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ABSTRACT

Abstract

This thesis investigates the dynamics of beliefs and uncertainty management in DL-Lite, one of the
most important lightweight description logics. The first part of the thesis concerns the problem of han-
dling uncertainty in DL-Lite. First, we propose an extension of the main fragments of DL-Lite to deal
with the uncertainty associated with axioms using a possibility theory framework without additional ex-
tra computational costs. We then study the revision of possibilistic DL-Lite bases when a new piece of
information is available. Lastly, we propose a min-based assertional merging operator when assertions of
ABox are provided by several sources of information having different levels of priority. The second part
of the thesis concerns the problem of inconsistency handling in flat and prioritized DL-Lite knowledge
bases. We first propose how to reason from a flat DL-Lite knowledge base, with a multiple ABox, which
can be either issued from multiple information sources or resulted from revising DL-Lite knowledge
bases. This is done by introducing the notions of modifiers and inference strategies. The combination
of modifiers plus inference strategies can be mapped out in order to provide a principled and exhaustive
list of techniques for inconsistency management. We then give an approach based on selecting multiple
repairs using a cardinality-based criterion, and we identified suitable strategies for handling inconsistency
in the prioritized case. Lastly, we perform a comparative analysis, followed by experimental studies, of
the proposed inconsistency handling techniques. A tool for representing and reasoning in possibilistic
DL-Lite framework is implemented.

Résumé

Cette thèse étudie la dynamique des croyances et la gestion de l’incertitude dans DL-Lite, une des
plus importantes familles des logiques de description légères. La première partie de la thèse porte sur
la gestion de l’incertitude dans DL-Lite. En premier lieu, nous avons proposé une extension des prin-
cipaux fragments de DL-Lite pour faire face à l’incertitude associée aux axiomes en utilisant le cadre
de la théorie des possibilités. Cette extension est réalisée sans engendrer des coûts calculatoires sup-
plémentaires. Nous avons étudié ensuite la révision des bases DL-Lite possibilistes en présence d’une
nouvelle information. Enfin, nous avons proposé un opérateur de fusion lorsque les assertions de ABox
sont fournies par plusieurs sources d’information ayant différents niveaux de priorité. La deuxième partie
de la thèse traite le problème de la gestion d’incohérence dans les bases de connaissances DL-Lite. Nous
avons étudié, tout d’abord, comment raisonner à partir d’une base DL-Lite standard avec des ABox mul-
tiples en introduisant les notions de modificateurs et de stratégies d’inférence. La combinaison des mod-
ificateurs et de stratégies d’inférence fournit une liste exhaustive des principales techniques de gestion de
l’incohérence. Nous avons proposé ensuite une approche, basée sur un critère de cardinalité, de sélection
des réparations, et nous avons identifié les stratégies appropriées pour la gestion de l’incohérence pour
les bases DL-Lite stratifiées. Enfin, nous avons effectué une analyse comparative, suivie par des études
expérimentales, des différentes techniques de gestion d’incohérence proposées. Finalement, un outil de
représentation et de raisonnement à partir des bases DL-Lite possibiliste est réalisé.
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GENERAL INTRODUCTION

Context and motivations

In the last years, there is a growing use of ontologies in many application areas. Description Logics
(DLs for short), mostly based on first order logic, are recognized as powerful formal frameworks for
representing and reasoning on ontologies. A DL knowledge base is built upon two distinct components:
A terminological base (called TBox), representing generic structural knowledge about an application do-
main, and an assertional base (called ABox), containing the assertional facts (i.e. individuals or constants)
that instantiate the generic knowledge. In the context of Semantic Web, DLs provide the logical basis of
the Web Ontology Language (OWL), standardized by the W3C.

In many applications, ontologies are generally very large and some reasoning tasks can be prohibitive.
There exist several description languages where the majority of them are intractable (e.g. SHOIQ,
SROIQ), in the sense that they do not guarantee a polynomial complexity when reasoning. To this
end, several lightweight DLs (e.g. EL [Baader et al., 2005a], DL-Lite [Calvanese et al., 2005]), mainly
motivated by applications (like the ones involving large ontological knowledge), have been proposed.
In particular, these logics allow a flexible representation of knowledge with a tractable computational
complexity of the reasoning process.

DL-Lite [Calvanese et al., 2005] is a family of tractable DLs specifically dedicated to applications
that use large volumes of data where query answering is the most important reasoning task. The con-
sistency checking problem and all standard reasoning tasks are polynomial with respect to the size of
the assertional base [Calvanese et al., 2007a]. In these logics, an important reasoning task is the one of
answering complex queries (especially conjunctive queries) where reasoning complexity is in LogSpace
for data complexity (namely, the size of the data) [Artale et al., 2009]. This fact makes DL-Lite especially
well-suited for the context of Ontology-Based Data Access (OBDA), which studies how to query a set
of data sources using an unified generic (ontological) view. In such settings, the terminological base acts
as a schema used to reformulate the queries in order to offer a better access to the set of data stored in
several assertional bases [Poggi et al., 2008]. A crucially important problem that arises in the OBDA
setting is how to handle efficiently the multiple data sources.

In this context, assertions are often provided by several and potentially conflicting sources having dif-
ferent reliability levels. Moreover, a given source may provide different sets of uncertain assertions with
different confidence levels. Gathering such sets of assertions gives a prioritized or a stratified assertional
base. This stratification generally results from two situations as pointed out in several research papers
(e.g. [Baral et al., 1992; Benferhat et al., 1995; Benferhat et al., 1998b]).

• The first one is when each source provides its set of data without any priority between them, but
there exists a total pre-ordering between different sources reflecting their reliability.

• The other one is when the sources are considered as equally reliable (i.e. having the same reliability
level), but there exists a preference ranking between the set of provided data according to their level
of certainty.

The standard DL-Lite framework does not offer means of taking advantage of priority or uncertainty
in the knowledge. In [Dubois and Prade, 1991a], it is argued that handling priority/uncertainty is in a
complete agreement with possibility theory [Dubois and Prade, 1988b]. This latter offers a very natu-
ral framework to deal with ordinal, qualitative uncertainty, preferences and priorities. This framework

1



Part , Chapter 0 – Introduction

is particularly appropriate when the uncertainty/priority scale only reflects a priority relation between
different pieces of information. Recently, several works have been proposed to deal with probabilis-
tic and non-probabilistic uncertainty [Dubois et al., 2006; Lukasiewicz et al., 2012a] on the one hand
and to deal with fuzzy information [Bobillo and Straccia, 2012; Lukasiewicz and Straccia, 2009] on the
other hand. A particular attention was given to fuzzy extensions of DLs (e.g. [Bobillo et al., 2012;
Bobillo et al., 2013; Pan et al., 2007; Straccia, 2006b; Straccia, 2013]). Besides, some works are
devoted to possibilistic extensions of description logics (e.g. [Dubois et al., 2006; Hollunder, 1995;
Qi et al., 2011]) which are basically based on standard reasoning services. This thesis fills this gap and
proposes an extension of DL-Lite within a possibility theory setting.

In DL-Lite and ODBA settings, inconsistency and contradictions are always defined with respect to
some assertions that contradict the terminology. Indeed, a DL-Lite terminology may be incoherent but
never inconsistent. Faced to inconsistency, there are two main attitudes:

i) The first one consists in merging (e.g. [Kotis et al., 2006; Moguillansky and Falappa, 2007]) the
knowledge base using some aggregation strategies. Knowledge bases merging or belief merging
(e.g. [Bloch et al., 2001; Konieczny and Pino Pérez, 2002]), is a problem largely studied within
the propositional logic setting. It focuses on aggregating pieces of information issued from dis-
tinct, and may be conflicting or inconsistent, sources in order to obtain a unified point of view by
taking advantage of pieces of information provided by each source. Generally in OBDA setting,
applying merging techniques on data sources lead to removing some assertions that contradict the
terminological base (which may be seen as an integrity constraint) in order to restore consistency.
This approach is too cautious since it comes down to throw out an important part of the data which
becomes no longer useful when reasoning. In ontology area, there are few works which studied the
application of merging techniques proposed within propositional logics to merge DL knowledge
bases. The existing works mainly reduce the merging problem to an inconsistency handling one.

ii) The second attitude consists in accepting and leaving inconsistency while coping with it when
performing inference using different inconsistency-tolerant inference strategies. Handling incon-
sistency is also a problem largely studied within the propositional logic setting [Bertossi et al.,
2005b]. Several approaches were proposed to deal with inconsistency in propositional logic knowl-
edge bases. These approaches focus either on restoring consistency (e.g. [Benferhat et al., 1997a]),
using paraconsistent logics (e.g. [Hunter, 1998]), analyzing and measuring the inconsistency
(e.g. [Hunter and Konieczny, 2005]), employing argumentation framework (e.g. [Besnard and
Hunter, 2008]). In the same spirit, several works (e.g. [Qi and Hunter, 2007; Corcho et al., 2009;
Ma and Hitzler, 2010; Lukasiewicz et al., 2013]) were proposed to handle inconsistency or inco-
herency in ontologies (Ontology debugging or repairing). Regarding DL-Lite, in the context of
OBDA, existing works (e.g. [Lembo et al., 2010; Bienvenu, 2012; Bienvenu and Rosati, 2013]),
basically inspired by the approaches proposed in the database area, tried to deal with inconsistency
in DL-Lite by proposing and adapting several inconsistency-tolerant inference methods. All the
proposed approaches are based on the notion of repair which is closely related to the notion of
database repair defined in order to answer queries raised to inconsistent databases. A repair of a
database contradicting a set of integrity constraints is a database obtained by applying a minimal
set of changes in order to restore consistency. This notion was extended to the DL-Lite setting
[Lembo et al., 2010] by defining assertional-based repair for DL-Lite knowledge bases which is
simply a maximal assertional subbase consistent with the TBox. Clearly, these works are closely
related to works on restoring consistency, proposed for handling inconsistency in propositional
logic knowledge bases.

In this thesis, we study merging of different data sources linked to the same ontological view, seen as
integrity constraints. Besides, we more investigate inconsistency handling for DL-Lite in case where the
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knowledge base is flat or prioritized.
Another problem addressed in this thesis is the one of ontology dynamics. In fact, description logics

have been proposed to represent the static knowledge of a domain of interest. However, knowledge may
be non static and may evolve and change from one situation to another in order to take into account
and integrate the changes that occur over time. One of the fundamental issues in Web applications
is the dynamics of the knowledge base (e.g. [Qi et al., 2006c; Wang et al., 2010; Kharlamov et al.,
2013]) which is a problem closely related to the belief revision one (e.g. [Alchourrón et al., 1985;
Katsuno and Mendelzon, 1991; Hansson, 1998]). Several approaches were proposed by adapting revision
operators proposed within propositional logic setting to description logics ones. There are two main
approaches for revision: Model-based approaches (e.g. [Qi and Du, 2009; Wang et al., 2010]) or formula-
based approaches (e.g. [Halaschek-wiener et al., 2006; Ribeiro and Wassermann, 2007]). As pointed out
in [Calvanese et al., 2010], model-based approaches of revision are in general not appropriate for DL-Lite
in the sense that the result of the revision is not expressible in the initial DL-Lite language (before the
revision process). In this thesis, we follow a formula-based approach for revising DL-Lite knowledge
bases when the ABox is prioritized.

This thesis investigates the dynamics of knowledge and beliefs and uncertainty management in DL-
Lite, one of the most important lightweight DLs. It contains three main contributions: i) an extension
of DL-Lite to possibility theory, ii) a proposition for a roadmap for handling inconsistency in flat DL-
Lite knowledge bases, and iii) an analysis of revision and inconsistency handling in prioritized DL-Lite
knowledge bases.

Contributions

The first contribution of the thesis concerns the problem of handling uncertainty in DL-Lite. In fact,
in many contexts, the available information and knowledge may be uncertain or prioritized requiring a
framework to manage uncertainty and priorities.

Part I

• Possibilistic DL-Lite: We investigate an extension of the main fragments of DL-Lite to deal with
uncertainty associated with objects, concepts or relations using a possibility theory framework. It
is particularly useful for handling inconsistent knowledge. We first provide foundations of possi-
bilistic DL-Lite, denoted by π-DL-Lite, by extending the DL-Litecore logic, the core fragment of
all DL-Lite logics, within a possibility theory setting. We present syntax and semantics of π-DL-
Litecore, study the reasoning tasks and show how to compute the inconsistency degree of a π-DL-
Litecore knowledge base. We then extend our possibilistic approach to DL-LiteF and DL-LiteR,
two important fragments of DL-Lite family. Finally, we address the problem of query answering
over a π-DL-Lite knowledge bases. An important result is that the extension of the expressive
power of DL-Lite is done without additional extra computational costs. A tool for representing and
reasoning in π-DL-Lite is implemented.

• Conditioning and merging of possibilistic DL-Lite knowledge bases: We first focus on the use
of a minimum-based operator, well known as idempotent conjunctive operator, to combine π-DL-
Lite possibility distributions and show that this semantic fusion has a natural syntactic counterpart
when dealing with π-DL-Lite knowledge bases. The min-based fusion operator is recommended
when distinct sources that provide information are dependent. We then define a merging operator
for π-DL-Lite knowledge bases based on conflict resolution. We investigate a min-based asser-
tional merging operator. We study in particular the situation where the sources share the generic
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knowledge. We present a syntactic method based on conflict resolution which has a meaningful
semantic counterpart when merging possibility distributions. We finally provide an analysis in the
light of a new set of postulates dedicated to uncertain DL-Lite bases merging.

We also give first results on the revision of possibilistic DL-Lite knowledge bases when a new input
piece of information, possibly conflicting or uncertain, becomes available. We first study revision
at the semantic level consisting in directly conditioning possibility distributions. In particular, we
show that such conditioning provides in some situations some counterintuitive results compared
with the ones of conditioning directly the knowledge base syntactically. We then study revision at
the syntactic level of possibilistic DL-Lite knowledge bases.

Part II

• Inconsistency handling in flat DL-Lite knowledge bases: We propose how to reason from a DL-
Lite knowledge base with a multiple ABox, called an MBox DL-Lite knowledge base. An MBox
is a multi-set of ABox’s which can be either issued from multiple information sources or resulted
from revising inconsistent DL-Lite knowledge bases. We provide different inference strategies for
query answering from MBox DL-Lite knowledge bases. We then discuss three main elementary
changes or modifiers that can be operated on an MBox : i) Expansion modifiers, ii) Splitting
modifiers and iii) Selection-based modifiers. The second part of the chapter uses the concept of
MBox to provide a roadmap for handling inconsistent standard DL-Lite knowledge bases. We view
the problem of repairing an inconsistent DL-Lite knowledge base as composed of a composite or a
complex modifier on a given MBox followed by an inference-based strategy. Lastly, we show that
there are exactly eight major composite modifiers that can be applied on an inconsistent standard
DL-Lite knowledge base and identify those that produce a single consistent and preferred repair.

Part III

The question addressed in this part is how to revise DL-Lite knowledge bases with a new piece of in-
formation, in a prioritized setting. Moreover, as highlighted in fusion problems, there is a need to deal
with inconsistent prioritized information. It appears that only few works addressed this problem in the
DL-Lite setting. So, the third part of the thesis concerns the evolution and inconsistency handling of
DL-Lite knowledge bases when the assertions in the ABox’s are prioritized.

• Assertional-based revision: We investigate "Prioritized Removed Sets Revision" (PRSR) for re-
vising stratified DL-Lite knowledge bases when a new sure piece of information, called the input,
is added. The strategy of revision is based on inconsistency minimization and consists in determin-
ing the smallest subsets of assertions (prioritized removed sets) that should be dropped from the
current stratified knowledge base in order to restore consistency and accept the input. We consider
different forms of input: A membership assertion, a positive or a negative inclusion axiom. In some
situations, the revision process leads to several possible revised knowledge bases where defining a
selection function is required to keep the results within DL-Lite fragment. Lastly, we show how to
use the notion of hitting set in order to compute the PRSR outcome.

• Selecting one preferred repair from prioritized DL-Lite knowledge bases: We first review
the existing approaches for selecting preferred assertional-based repairs. Then, we focus on suit-
able strategies for handling inconsistency in DL-Lite. We propose, in particular, new approaches
based on the selection of one assertional-based repair. These approaches have as a starting point
the non-defeated assertional-based repair followed by additional ingredients like the linear-based,
cardinality-based, deductive closure, etc. Lastly, we provide a comparative analysis followed by
experimental studies of the different studied approaches.
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Organization of the thesis

This thesis is organized as follows. We first give in Chapter 1, a refresher on description logics, with
a focus on DL-Lite. We then give in Chapter 2, an overview about possibility theory, belief change
problem in the context of propositional logic and description logics. Chapter 3 presents the extension of
DL-Lite within a possibility theory setting. Chapter 4 first investigates merging of possibilistic DL-Lite
and proposes a method based on conflict resolution to aggregate several sets of data linked to the same
terminological base. It also gives preliminary results on conditioning in possibilistic DL-Lite framework.
Chapter 5 provides a non-merging roadmap for inconsistency handling in flat DL-Lite knowledge bases.
Chapter 6 proposes a lexicographic-based approach for revising stratified DL-Lite knowledge bases when
a new sure piece of information becomes available. Chapter 7 studies inconsistency handling in DL-Lite
knowledge bases where the assertional base is prioritized. Finally, the thesis contains a conclusion and
some future works. We also provide in the appendix additional material for Chapter 5 and a description
of our tool developed for representing and reasoning in possibilistic DL-Lite framework.
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CHAPTER 1

KNOWLEDGE REPRESENTATION AND
ONTOLOGIES

1.1 Introduction

The efficiency of information and knowledge handling is one of the most crucial challenges in many
applications such as medicine, biology, economie, etc. This is due to the fact that the volume of knowl-
edge continuously increases while the structure of this latter becomes more and more complex. In fact,
knowledge may be provided by multiple, heterogeneous and often conflicting sources of information. A
real need to compactly represent and structure this information is required. Information should be faith-
fully handled, while avoiding confusions, incoherencies, contradictions or ambiguities between elements
representing the domain of interest.

During the two last decades, lines of research from both the database and the artificial intelligence
communities have focused on complex knowledge representation formalisms. A particular attention was
given to the use of ontologies. An ontology provides an explicit and semantically rich framework for
representing knowledge [Mika et al., 2004; Mika and Akkermans, 2004]. Ontologies play a crucial role
in sharing resources [Torniai et al., 2008] and reasoning about the modeled domain with the ability of
checking contradictions.

There exist various languages supporting ontologies such as fragments of first order logic, conceptual
graphs (e.g. [Chein and Mugnier, 2009; Chein and Mugnier, 2014]), UML class diagrams, description
logics [Baader et al., 2010], etc. In this thesis, we are interested in the use of description logics, a family
of logic-based languages of ontologies, mainly based on first order logics, which allows an efficient
encoding and reasoning about the knowledge of a particular domain. Description logics have regained an
important place in various domain areas such as the ontology-based data access (e.g. [Pinto et al., 2012;
Artale et al., 2013]), information and data integration (e.g. [Meyer et al., 2005]) and the Semantic Web
(e.g. [Baader et al., 2005b]) where they provide the foundations of the Web Ontology Language (OWL).

Nowadays, there exist several description logic languages that serve ontologies. As all logical for-
malisms, each description language is characterized by its expressive power and its reasoning complexity
(the complexity of algorithms used for inference). There is a tradeoff between expressiveness and com-
plexity of reasoning. Namely, more the language is expressive, more the computational complexity of
reasoning is high [Brachman and Levesque, 1985].

The compromise between expressivity and complexity of reasoning is one of the main concerns in
description logics area. Besides, most of the well-known classical description logics are intractable, in
the sense that they do not guarantee polynomial complexity when reasoning. In general, these description
logics are not designed to face recent applications where new challenges have raised. One can cite for
instance, applications that involve large generic knowledge or huge volume of data where reasoning
algorithms should scale up.

In recents years, several lines of research led to the introduction of lightweight description logics.
These logics offer a nice compromise between the expressiveness and the tractability of the basic reason-
ing tasks. In this thesis, we focus on prominent members of the DL-Lite family that underly the OWL2-QL
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profile, especially dedicated for applications that use large amounts of data.
The rest of this chapter is organized as follows: Section 1.2 introduces the notion of ontology and

recalls the main languages that support ontologies. Section 1.3 overviews main concepts of description
logics. Section 1.4 presents the DL-Lite family. Section 1.5 concludes this chapter.

1.2 Ontology languages

The term ontology has its origin in philosophy and refers to the study of existence and being. In knowl-
edge representation and reasoning, a branch of artificial intelligence, the term ontology refers to a repre-
sentation framework that explicitly describes a formal conceptualization of a domain of interest [Hitzler et
al., 2009]. An ontology specifies elements of a particular domain and describes relations and constraints
holding over them. This latter is given by two distinct levels:

An intensional level: It describes a set of elements and specifies how to structure them using a set
of rules called axioms.

Extensional level: It represents basic objects of the different elements given in the intensional
level.

An ontology is supported by a language used to structure a domain of interest. In general, a language
used to express an intensional level is usually built upon the following elements:

• Concept: Also called class, entity type or frame, it is used to denote a collection of objects (e.g.
the concept "Mother" denotes the set of mothers of a particular domain).

• Relationship: Also called association, relationship, role or object property, it is used to express an
association among concepts (e.g., "hasChild" is defined on "Mother" and "Person").

• Property: Also called attribute, feature, slot, data property, it is used to qualify an element of the
ontology (i.e. a concept or a relationship). A property can be either atomic (e.g. integer, real,
string, etc) or structured (e.g. set, list, etc).

• Axiom: Also called assertion, it is a logical formula used to express constraints or rules that must
be satisfied by the elements specified at the extensional level (e.g. Subsumption axiom: "Male" is
a "Person", disjointness axiom: "Female" is not a "Male", etc).

A language used to encode an extensional level usually includes:

• Instances: An instance represents an individual or an object that belongs to a concept (e.g. Paul is
an instance of Person).

• Facts: A fact represents a relationship holding between instances (e.g. HasChild(Marie,Paul)).

Note that in the rest of the thesis, we do not make difference between facts and instances. In the
following, we present a classification of main ontology languages.

• Graph-based languages: Family of languages based on graphs to represent ontologies such: UML
class diagrams, semantic networks [Sowa, 1987], conceptual graphs [Chein and Mugnier, 2009],
etc.
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• Frame-based languages : Family of languages based on the frame approach [Gruber, 1995]. The
most known languages based on frames are OKBC1 (Open Knowledge Base Connectivity), KM2

(Knowledge Machine).

• Logic-based languages: It is a family of languages based on logics to represent ontologies such
as first order logic (e.g. KIF 3, CycL4), Description Logics [Baader et al., 2010], Existential Rule
(e.g. [Calì et al., 2012; Mugnier and Thomazo, 2014]), F-logic [Kifer and Lausen, 1989], etc.

In this thesis, we are interested in logic-based languages, and in particular, the use of description
logics as ontology languages. To obtain a semantically rich representation of a domain of interest, one
can formalize the intensional level and the extensional level as a theory and then use this latter to perform
reasoning tasks.

Semantic Web has been conceived as an extension of the World Wide Web that allows computers to
intelligently search, combine, and process Web contents based on the meaning that this content has to
humans [Hitzler et al., 2009; Shadbolt et al., 2006]. As for today, the most prominent standard tech-
nologies, recommended by the W3C5, for Semantic Web are based on ontologies. Description logics
provide the foundations of the Web Ontology Language, one of the most important markup ontology lan-
guages recommended for the Semantic Web. In the following, we recall the widely used markup ontology
languages:

• Resource Description Framework (RDF) 6: It is a standard used for data interchange on the Web.
RDF has features that assist data merging even if the underlying schemas differ. Moreover, RDF
specifically supports the evolution of schemas over time without requiring the modification of the
data which are based on it.

• RDF Schema (RDFS)7: It is a semantic extension of RDF that provides a data-modelling vocabu-
lary for RDF data.

• Ontology Web Language (OWL)8: It is an ontology language for the Semantic Web based on
description logics.

According to [W3C, 2008], a concrete syntax is needed in order to store OWL2 ontologies and to
exchange them among tools and applications. The primary exchange syntax for OWL2 is the RDF/XML
language, which is compatible with the XML serializations of RDF documents, and it is the syntax that
must be supported by all OWL2 tools. There are also other concrete syntaxes that may also be used, for
instance the Manchester syntax (largely used in ontology editing tools) and the functional syntax (used to
specify the structure of the ontology language). Finally, two alternative semantics for OWL are proposed:
the direct semantics (OWL2-DL) which is based on a description logic called SROIQ and the RDF-based
semantics (OWL2-Full). To develop applications that manipulate ontologies, the most commonly used
tools are:

• Protégé-OWL API 9: The Protege-OWL API is an open-source Java library for the OWL and
RDF(S). The API provides classes and methods to load and save OWL files, to query and ma-

1http://www.ai.sri.com/~okbc/
2http://www.cs.utexas.edu/users/mfkb/RKF/km.html
3http://www.ksl.stanford.edu/knowledge-sharing/kif/
4http://www.cyc.com/documentation/syntax-cycl
5http://www.w3.org
6http://www.w3.org/RDF/
7http://www.w3.org/TR/rdf-schema/
8http://www.w3.org/standards/techs/owl
9http://protegewiki.stanford.edu/wikiProtegeOWL_API_Programmers_Guide
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nipulate OWL data models, and to perform reasoning based on description logic algorithms. Fur-
thermore, the API is optimized for the implementation of graphical user interfaces. Protégé-OWL
API is built on top of OWL API.

• OWL API 10: It is a Java API and reference implementation for creating, manipulating and seri-
alizing OWL ontologies. The OWL API includes the following components: An API for OWL2
and an efficient in-memory reference implementation and parsers and writers for OWL in several
formats, e.g. RDF/XML, OWL/XML parser, functional syntax of OWL, etc. Finally, it provides a
reasoner interface that is supported by many description logics reasoners.

• Jena API 11: Jena is an open source framework for Java. It provides an API to extract data from and
write to RDF graphs. The graphs are represented as an abstract "model". A model can be sourced
with data from files, databases, URLs or a combination of these.

In recent years, there is a large use of ontologies in various application areas where new challenges
emerged. These challenges mainly consist in equipping ontologies with new reasoning capabilities (e.g.
evolution, merging, inconsistency handling, etc) or additional expressivity (e.g. uncertainty management)
in order to face new requirements. In the following, we present some current lines of research on ontology
formalisms:

1. Ontology matching (e.g. [Euzenat and Shvaiko, 2013; Shvaiko and Euzenat, 2013]): Given two
heterogeneous ontologies, matching consists in producing an unified ontology associated with map-
pings that explicit the different correspondences between the vocabularies used in the input ontolo-
gies.

2. Ontology translation (e.g. [Dou et al., 2005; Gruber, 1993; Dou et al., 2011]): Consists in equiva-
lently translating an ontology, (i.e. axioms and/or vocabulary) expressed using a language L1, into
an ontology using another representation language L2.

3. Ontology integration (e.g. [Meyer et al., 2005; Hou et al., 2005]): Given a set of ontologies that
represent knowledge about a similar domain, integration consists in combining these ontologies in
order to obtain more knowledge by unifying the domain.

4. Ontology modularity (e.g. [Grau et al., 2008; Grau et al., 2009]): It consists in extracting the
smallest independent subsets of an ontology, called modules, with the aim to reusing them later in
other applications.

5. Ontology evolution (e.g. [Noy et al., 2006; Plessers et al., 2007]): It consists in modifying an
ontology according to a set of change operations that may concern the knowledge about the domain
or the structure of the ontology.

6. Ontology merging (e.g. [Moguillansky and Falappa, 2007; Kotis et al., 2006; Noy and Musen,
2000]): Given two ontologies that represent knowledge on the same domain, merging consists in
producing a single ontology that represents a global point of view.

7. Ontology debugging (e.g. [Kalyanpur et al., 2005; Corcho et al., 2009]): It includes i) ontology
diagnosis which consists in restoring the coherency of the intensional level of an ontology (e.g.
[Peñaloza and Sertkaya, 2010; Ludwig and Peñaloza, 2014]) and ii) ontology repairing which
consists in restoring consistency of the ontology (e.g. [Lembo et al., 2010; Bienvenu, 2012]).

10http://owlapi.sourceforge.net
11https://jena.apache.org
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8. Ontology uncertainty management 12 (e.g. [Lukasiewicz and Straccia, 2008; Lukasiewicz et al.,
2012a; Bobillo et al., 2013]): This consists in dealing with imprecision/uncertainty that can be
attached to the elements of the vocabulary (e.g. concepts reflecting imprecise terms) or axioms
(e.g. uncertainty attached to an axiom).

9. Ontology peer-to-peer systems (e.g. [Adjiman et al., 2006]): It consists in offering access to the
information maintained by a set of peers linked to each other.

10. Ontology-based Data Access (e.g. [Pinto et al., 2012; Artale et al., 2013]): This consists in uni-
forming access to independent sets of data sources using an unified ontological view to which the
data sources are linked.

This thesis focuses on some ontology challenges given above, namely ontology evolution, merging,
debugging (especially inconsistency handling within Ontology-Based Data Access setting) and uncer-
tainty management management in ontologies. Note that these tasks are closely related to existing works
done on belief revision, belief merging, uncertainty and inconsistency handling within the propositional
logic setting. Chapter 2 gives an overview of these topics.

As said before, we use description logics as ontology language, with a focus on DL-Lite, a family of
lightweight description logics especially tailored for Ontology-Based Data Access. Before introducing
description logics and DL-Lite, we first recall basic concepts of propositional logic and first order logic,
needed to follow this thesis, and we fixe some notations.

1.3 Logic-based languages

The aim of logic in artificial intelligence is to develop languages to formally represent knowledge of a
domain and make them available for reasoning [Huth and Ryan, 2004]. A formal language, denoted by
L, is equipped with a syntax, allowing a logical expression of formulas attached to a formal semantics
telling the right meaning of these formulas. In general, the semantics of a language specifies how one can
reason on the knowledge encoded syntactically through formulas.

1.3.1 Propositional logic

Propositional logic is one of the simplest languages for knowledge representation and reasoning. It is
used in many applications to express statements to which one assigns a truth value (i.e. true or false)
according to the possible world. This section recalls the syntax and the semantics of propositional logic.
For more details, see for example [Garriga, 2013].

Syntax. The propositional logic vocabulary V is given in terms of propositional variables, called also
propositions or atoms and denoted by tiny letters (a, b, ...). A propositional variable is a boolean variable
that one can assign either true or false as truth value. The language L of propositional logic is built over
a set of propositional variables, boolean constants: True (>) and False (⊥), a set of logical connectors
composed of: negation (¬), conjunction (∧), disjunction (∨), implication (→) and equivalence (↔).

Definition 1.1. Given a propositional language L, the elements of L are called propositional formulas
(or well-formed formulas) and expressed in the following way:

• ⊥ and > are formulas,
12http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/
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• if p ∈ V , then p is a formula.

• if φ is a formula, then ¬φ is a formula (Negation).

• if φ1 and φ2 are formulas, then (φ1 ∧ φ2) is a formula. (Conjunction)

• if φ1 and φ2 are formulas, then (φ1 ∨ φ2) is a formula. (Disjunction)

• if φ1 and φ2 are formulas, then (φ1 → φ2) is a formula. (Implication)

• if φ1 and φ2 are formulas, then (φ1 ↔ φ2) is a formula (Equivalence)

Propositional formulas are built using formulas given above. A literal l is either a propositional
variable, called a positive literal, or its negation, called a negative literal. A clause is a finite disjunction
of literals (in particular the constant>, when the set of literals is empty) and a term is a finite conjunction
of literals (in particular the constant⊥, when the set of literals is empty). A propositional formula φ is said
to be in a Conjunctive Normal Form (CNF) if it is formed by a conjunction of clauses. A propositional
formula φ is said to be in a Disjunctive Normal Form (DNF) if it is constituted by a disjunction of terms.

Semantics. The semantics of propositional logic is given in terms of interpretations.

Definition 1.2. An interpretation, denoted by I , is a mapping that assigns to each propositional variable
p of a formula a truth value, true or false, denoted by pI . Given an interpretation I , the propositional
formulas are interpreted as follows:

• >I = true and ⊥I = false.

• (¬φ)I = true if (φ)I=false, and (¬φ)I = false otherwise.

• (φ1 ∧ φ2)I = true if (φ1)I = true and (φ2)I = true and (φ1 ∧ φ2)I = false otherwise.

• (φ1 ∨ φ2)I = true if (φ1)I = true or (φ2)I = true and (φ1 ∨ φ2)I = false otherwise.

• (φ1 → φ2)I = true if (φ1)I = false or (φ2)I = true, and (φ1 → φ2)I = false otherwise.

Let I be an interpretation (an instantiation of all propositional variables) and φ be a propositional
formula. We say that I is a model of φ or I satisfies φ, denoted by I |= φ if and only if (φ)I = true,
otherwise, we say that I falsifies φ or I is a counter-model of φ and it is denoted by I 6|= φ. φ is said to
be valid (i.e. a tautology) if it does not admit any counter-model. Otherwise, it is said to be invalid. A
contradiction is a formula that does not admit any model.

Up to now, we presented the knowledge representation aspect in propositional logic. We now intro-
duce the reasoning aspect which consists in deriving implicit knowledge from the ones explicitly rep-
resented. The principle of logical deduction represents the central element of reasoning in all logics.
Logical deduction in propositional logic can be defined as follows:

Definition 1.3 (Logical deduction). Given two formulas φ1 and φ2. We say that φ2 is entailed by φ1,
denoted φ1 |= φ2, if for every interpretation I that is model of φ1, I is also a model of φ2.

The truth table is a sure way to check the validity of a logical deduction (all reasoning tasks in gen-
eral). However, it is not practically possible, since one should, in the worst case, enumerate 2n interpreta-
tions to find a model, where n is the number of propositional variables present in the considered formulas.
To this end, logical deduction can be done syntactically using the well-known refutation theorem, which
states that φ2 is a logical consequence of φ1 if and only if φ1 ∧¬φ2 is unsatisfiable. Finally, note that the
complexity of satisfiability problem of a set of propositional formulas is NP-complete [Cook, 1971].
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1.3.2 First order logic

This section gives a brief refresher on the syntax of First Order Logic (FOL for short), also called pred-
icate logic. For more details on FOL, the readers can refer to [Fitting, 1990; Huth and Ryan, 2004] for
examples.

The first order logic vocabulary V is built upon disjoint and finite sets NC , NF , NP and NV where
NC is a set of constant symbols (also called individuals), NF is a set of function symbols, NP is a set of
predicate symbols (or simply predicates) and NV is a set of variable names. Each function or predicate
symbol is associated with a natural number, called arity.

Definition 1.4 (First-order terms). Given a first-order vocabulary V = (NC , NF , NP , NV ), the set of
terms is defined such that:

• if x ∈ NV , then x is a term.

• if a ∈ NC , then a is a term.

• Let f be an n-ary function and t1, t2, ..., tn be terms, then f(t1, t2, ..., tn) is a term. Note that a
0-ary function is called a constant.

The terms are used also as arguments for predicates to form atomic formulas.

Definition 1.5 (First order atom). Let V = (NC , NF , NP , NV ) be a first-order vocabulary. Let f be an
n-ary predicate and t1, t2, ..., tn be terms. Then an expression of the form P (t1, t2, ..., tn) is said to be an
atom. In first order logic with equalities, expressions of the form t1 = t2 or t1 6= t2 where t1 and t2 are
terms, are also called atoms.

The language L of a FOL is built over a set of atoms, a set of logical connectors (¬, ∧, ∨, → and
↔) as in propositional logic, the symbols (> )and (⊥) that correspond to 0-ary predicates, the universal
quantifier (∀) and the existential quantifier (∃).

Definition 1.6 (First order formulas). Given a first-order language L, the elements of L are called first-
order formulas and they are formed as follows:

• ⊥ and > are formulas,

• Each atom is a formula. (Atomic formula)

• If φ is a formula, then (¬φ) is a formula. (Negation)

• If φ1 and φ2 are formulas, then (φ1 ∧ φ2) is a formula. (Conjunction)

• If φ1 and φ2 are formulas, then (φ1 ∨ φ2) is a formula. (Disjunction)

• If φ1 and φ2 are formulas, then (φ1 → φ2) is a formula. (Implication)

• If φ1 and φ2 are formulas, then (φ1 ↔ φ2) is a formula. (Equivalence)

• If x is a variable and φ is a formula, then (∀x.φ) is a formula. (Universal quantification)

• If x is a variable and φ is a formula, then (∃x.φ) is a formula. (Existential quantification)

• Let ’=’ be a binary predicate symbol, the formulas = (x, y) and ¬ = (x, y) are called equalities
and they are simply denoted by x = y and x¬y. (Equalities)
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Note that the quantifiers have higher priority over all other connectors which have the same prior-
ities as in propositional logic. A 0-ary predicate is called a proposition. Indeed, propositional logic
is a fragment of first-order logic where predicates are restricted to 0-ary predicates and without using
quantifications.

Definition 1.7 (Subformulas). Let φ be a first-order formula. The subformulas of φ are φ itself and all
immediate subformulas of φ.

• Atomic formulas > and ⊥ have no immediate subformulas.

• The only immediate subformula of ¬φ is φ. The immediate subformulas of φ1 ∨ φ2 or φ1 ∧ φ2 or
φ1 → φ2 or φ1 ↔ φ2 are φ1 and φ2. The only immediate subformula of ∀x.φ or ∃x.φ is φ.

Definition 1.8 (Scope, bound variable and free variable). Let φ be a formula, Q a quantifier, and Qx.ϕ
a subformula of φ. Then Qx is called a quantifier for x. Its scope in ϕ is the subformula ϕ except
subformulas of ϕ that begin with a quantifier for the same variable x.

Each occurrence of the variable x in the scope ofQx is said to be bound in φ byQx. Each occurrence
of x that is not in the scope of any quantifier for x is a free occurrence of x in φ.

Namely, x is bound if it is not contained in any subformula Qx.ϕ of φ. A formula is said to be a
closed formula if it contains only bound occurrences of variables. Otherwise, it is said to be an open
formula. A ground term is a term containing no variable. A ground formula is a formula containing no
variable.

1.3.3 Description logics

Description logics (DLs for short) are a family of formalisms designed to represent knowledge of a par-
ticular domain, and subsequently, reason by deriving new knowledge. DLs were introduced as decidable
subsets of FOL, having a precise model-theoretic semantics [Baader et al., 2010]. A DL language only
uses unary and binary predicates, called respectively concepts and roles. To represent generic knowledge
(i.e. intensional level), DLs restrict forms of logical formulas (called axioms), using only concepts and
role inclusions. To represent the extensional level, DLs use ground facts expressed in term of member-
ship assertions on concepts or roles. Interestingly enough, DLs provide a good compromise between
expressive power and computational complexity. Throughout this section, we present basic concepts of
DLs.

A DL knowledge base is built upon a description vocabulary V consisting of atomic concepts which
correspond to unary predicates to denote sets of individuals, and atomic roles, which correspond to binary
predicates, to denote binary relations among individuals.

Definition 1.9 (DL vocabulary). A DL description vocabulary V is a triple (NC , NR, NI) of pairwise
disjoint sets of atomic concept names, denoted by NC , atomic role names, denoted by NR and individual
names, denoted by NI .

Example 1.1. For example, the atomic concept "Mother" represents the set of all mothers in a particular
domain. The atomic role "marriedTo" represents the set of all married couples in a particular domain.
The individuals "Marie" and "Paul" represent constants in a particular domain. �

Syntax

A description language L is characterized by a set of constructs used to form complex concepts and roles
from atomic ones. It is used to structure a domain of interest through a set of logical formulas, called
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axioms. Each description language allows different sets of constructs. We start with one of the most
basic description languages, calledALC (Attributive Language with Complement), which is an extension
of the AL language that constitutes the foundation framework of many other DLs. The ALC allows the
use of conjunction, disjunction, negation, universal quantification and existential quantification to form
complex concepts and roles as presented in Table 1.1:

Constructor Designation

> Top concept

⊥ Bottom concept

A Atomic concept

¬C Negation

C uD Conjunction

C tD Disjonction

∃R.C Existential quantification

∀R.C Universal quantification

Table 1.1: Constructors of the ALC logic where C and D are concepts and R is a role.

Note that ∃R and ∀R can be used as an abbreviation of ∃R.> and ∀R.> and any atomic concept
A ∈ NC is also a concept.

Example 1.2. Let the following atomic concepts "Male", "Female" and "Person" be three atomic con-
cepts and let "hasChild" be an atomic role. UsingALC language, one can express the following complex
concepts:

• Person u ¬Parent : Persons who are not parents.

• Female u Person : Female persons.

• (Male u Person) u ∃hasChild.Person : Male persons who have at least a child.

• Person u ∀hasChild.¬Female : Persons who do not have a Female as child.

�

A DL knowledge base, denoted by K = 〈T ,A〉 contains two distinct components: A terminological
base, called TBox and denoted by T , that describes the generic knowledge about the domain, and an
assertional base, called ABox and denoted by A, that contains the assertional facts (i.e. individuals or
constants) that instantiate the terminological knowledge. Namely, the TBox encodes the intensional level
and the ABox stores the extensional level of an ontology.

Definition 1.10 (DL axioms). Let K = 〈T ,A〉 be an ALC knowledge base. Then:

• The TBox contains a set of terminological axioms of the form:

– C v D: C is a subconcept of D.

– C ≡ D: C is equivalent to D (namely, C v D and D v C).

• The ABox contains a set of assertion axioms of the form:
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– C(a): a is an instance of C.

– R(a, b): a and b are related by R.

where C and D are concepts, R is a role and a and b are individuals.

Example 1.3. Consider the following set of atomic concepts NC = {Person, Female,Male} and the
following set of atomic roles NR = {hasChild}. In the following, we give an example of an ALC
TBox:

Woman ≡ Person u Female
Male v ¬Female

Man ≡ Person u ¬Women

Mother ≡Woman u ∃hasChild.Person
Father ≡Man u ∃hasChild.Person

Parent ≡ Father tMother

ParentWithoutDaughter ≡ Parent u ∀haschild.¬Woman

In the following, we give an example of ABox:

Person(Paul) Person(Marie)
Male(Bob) Female(Marie)

hasChild(Marie, Paul) hasChild(Bob,Alice)

�

Semantics

The semantics of ALC is in the spirit of first order logic semantics and it is given in terms of interpreta-
tions.

Definition 1.11 (DL interpretation). An interpretation I=(∆I , .I) consists of a non-empty domain, de-
noted by ∆I , and an interpretation function, denoted by .I , defined from NI to ∆I . The function .I

associates with each individual a an element aI of ∆I , to each atomic concept A a subset AI of ∆I and
to each atomic role R a binary relation RI over ∆I ×∆I . Furthermore, the interpretation function .I is
extended in a straightforward way for ALC concepts and roles as follows:

AI ⊆ ∆I

RI ⊆ ∆I ×∆I

(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃R.C)I = {x ∈ ∆I |∃y ∈ ∆I such that (x, y) ∈ RI and y ∈ CI}
(∀R.C)I = {x ∈ ∆I | if (x, y) ∈ RI then y ∈ CI}

Example 1.4. Let us continue Example 1.3. Assume that ∆I = {Marie, Paul, Bob,Alice, T iti}. One
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can consider the following interpretation:

(Person)I = {Paul,Marie,Bob,Alice}
(Female)I = {Marie,Alice, T iti}

(Male)I = {Bob, Paul}
(hasChild)I = {(Marie, Paul), (Bob,Alice)}
(Woman)I = {Marie,Alice}

(Man)I = {Bob, Paul}
(Mother)I = {Marie}
(Father)I = {Bob}

(ParentWithoutDaughter)I = {Marie}
(Parent)I = {Marie,Bob}

�

An interpretation I is said to satisfy a knowledge base K=〈T ,A〉 if and only if I satisfies every
axiom in T and every axiom in A. Such interpretation is said to be a model of K.

Definition 1.12. Let K=〈T ,A〉 be an ALC DL knowledge base. The satisfiability of axioms of K with
respect to an interpretation I is defined as follows:

• I |= C v D if and only if CI ⊆ DI .

• I |= C ≡ D if and only if CI = DI .

• I |= C(a) if and only if aI ∈ CI .

• I |= R(a, b) if and only if (aI , bI) ∈ RI .

Example 1.5. From Example 1.4, one can check that I is a model of the knowledge bases of Example
1.3 �

Basic reasoning tasks

Reasoning is a fundamental issue in DLs. It allows to derive implicit knowledge from the one explicitly
represented in the knowledge base. The main standard reasoning services over a DL knowledge base are:

• Concept satisfiability: A concept C is said to be satisfiable (or consistent), with respect to a TBox
T , if there exists an interpretation I that is a model of T such that CI 6= ∅.

• Subsumption checking: A concept C is said to be subsumed by another concept D with respect to
a TBox T , denoted by T |= C v D, if for each interpretation I such that I |= T , CI ⊆ DI holds.

• Classification: Given a TBox T , classification consists in computing all pairs of concepts (C,D)
such that T |= C v D.

• Knowledge base satisfiability or consistency: An ABox A is said to be consistent with respect to a
TBox T , if there exists an interpretation I such that I |= T and I |= A.

• Instance checking: An individual a (resp. a and b) is said to be an instance of C (resp. are
related by a role R) with respect to a knowledge base K = 〈T ,A〉, denoted by K |= C(a) (resp.
K |= R(a, b)), if for each interpretation I such that I |= T and I |= A, we have aI ∈ CI (resp.
(aI , bI) ∈ RI).
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Description Syntax Semantics

R+ Transitive role (traR) (aI , bI)∈RI and (bI , cI)∈RI implies (aI , cI) ∈ RI

H Role hierarchies R v S RI ⊆ SI

I Inverse roles R− {(b, a)|(a, b) ∈ RI}

F Functional roles (functR) (aI , bI) ∈ RI and there is no cI 6= bI s.t (aI , cI) ∈ RI

O Nominals {a1, ..., an} {aI1 , ..., aIn}

◦ Role composition R ◦ S {(aI , cI)|∃b∈∆I s.t (aI , bI)∈RI and (bI , cI) ∈ SI

Complex role hierarchies R ◦ S v R (R ◦ S)I ⊆ RI

N Number restrictions ./ nR
{
a ∈ ∆I |card

{
b ∈ ∆I | (a, b) ∈ RI

}
./ n

}
Q Qualified number

restrictions ./ nR.C
{
a ∈ ∆I |card

{
b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI

}
./ n

}
Table 1.2: DLs constructors where card (X) denotes the cardinality of the set X and ./ denotes ≤ or ≥.

The knowledge base satisfiability or consistency problem is the main reasoning task in DLs. It allows
to check whether the knowledge encoded in the TBox and the ABox is non-contradictory. According to
[Horrocks and Patel-Schneider, 2004], all the above reasoning tasks can be reduced from subsumption
test to satisfiability test, from instance checking to knowledge base consistency, etc. For instance [Baader
et al., 2010]:

• C is unsatisfiable if and only if T |= C v ⊥.

• T |= C v D if and only if C u ¬D is unsatisfiable.

• C is satisfiable if and only if {C(a)} is consistent with respect to T .

• A |= C(a) if and only if A ∪ {¬C(a)} is inconsistent with respect to T .

In general, there exist several approaches of reasoning. The most widely used one is the so called
tableau algorithm [Baader et al., 2010]. A tableau algorithm uses the concepts of negation to reduce
subsumption to an (un)satisfiability problem. A tableau algorithm verifies whether a knowledge base
contains contradictions or not by checking the existence of an interpretation that is a model of the knowl-
edge base by constructing its finite representation, so-called tableau. Such technique decomposes axioms
of the knowledge base using a set of consistency-preserving transformation rules (depending on the con-
structors used in the DL), called completion rules. For each application of a rule, an expression of an
axiom is decomposed while preserving the semantics behind it into simple expressions. This decomposi-
tion leads to exhibit contradictory elements of the ABox. Therefore, one can check if there exists a model
for the given knowledge base.

Expressive description logics

To define a DL language, one first needs to specify the set of concept and role constructors that can be
used, and then what types of axioms that can be expressed in the knowledge base. In order to meet the
needs of applications that require more expressiveness, the set of constructors in ALC was enriched with
several constructors. Table 1.2 summarizes the most used ones.
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By convention, we use S to denote ALCR+, the ALC constructors extended with role transitivity.
A DL language is defined by a string of capital letters referring to the used constructors. There exist
several DLs where the majority of them underly the ontology Web language OWL. For instance, in its
first version OWL1 where OWL-Lite is based on SHIF and OWL-DL is based on SHOIN , and in its
second version OWL2 where OWL2-DL is based on SROIQ, etc.

Computational complexity in description logics

The computational complexity of DLs is well studied in the literature. Given a decision problem, the
complexity of DL reasoning tasks is performed around two settings.

• The combined complexity: It considers all the components of the knowledge base K = 〈T ,A〉 as
inputs, namely the size of the problem is equal to |K| with |K| = |T |+ |A|.

• The data complexity: It considers the TBox as fixed and only takes as input the size of the ABox
|A|.

Table 1.3 summarizes the computational complexity of consistency checking in some important DLs,
The complexity results of other DLs including the ones given in Table 1.3, can be found at the following
link 13.

DL familly Combined Complexity Data Complexity

ALC EXPTIME-complete NP-complete

SHIF EXPTIME-complete NP-complete

SHOIN NEXPTIME-complete NP-hard

SROIQ N2EXPTIME-complete NP-hard

Table 1.3: Computational complexity of consistency checking of some expressive DLs

Description logics Reasoners

There are several implementations of reasoning task algorithms for DLs. These implementations are
operated in general around ontology languages and using programming tools presented in Section 1.2. In
what follows, we give a description of some well-known reasoners. 14.

• Pellet15: Pellet is an open-source reasoner for SROIQ DL with simple datatypes (i.e. OWL2-DL)
developed in Java. It can be used in command line, OWL API, Jena API, Pellet API or with
Protégé. It supports the OWL2-DL language and includes some support for the OWL2 profiles. The
main features of Pellet is that it incorporates optimizations for the use of nominals, conjunctive
query answering, and incremental reasoning. As a reasoning technique, Pellet uses a tableau-based
algorithm.

13http://www.cs.man.ac.uk/~ezolin/dl/
14A complete list of DL reasoners with their description is available at this link: http://www.cs.man.ac.uk/

~sattler/reasoners.html
15http://clarkparsia.com/pellet
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• HermiT 16: HermiT is an open-source reasoner for SROIQ DL with simple datatypes (i.e. OWL2-
DL) that supports description graphs. In particular, HermiT implements a reasoner based on a novel
“hypertableau” calculus which provides much more efficient reasoning than any previously known
algorithm. It can be used with OWL API or integrated with Protégé editor.

• FaCT++ 17: FaCT++ is an open-source reasoner for SROIQ DL with simple datatypes (i.e. OWL2-
DL) implemented in C++. It implements a tableau-based algorithm for general TBoxe’s (sub-
sumption, satisfiability, classification) and ABoxe’s (query). Now, it is used as one of the default
reasoners in the Protégé 4 editor.

From Table 1.3, one can check that the classical DLs are intractable in the sense that there is no
efficient (i.e. polynomial time) algorithm for checking satisfiability. To this end, several lightweight
fragments of DLs that offer a nice tradeoff between expressivity and complexity of reasoning, were
introduced. One of these lightweight fragments DLs, is the DL-Lite family.

According to the official documentation of W3C three profiles of OWL2 are proposed as sub-languages
of the full OWL2 language, to offer important advantages in particular application scenarios. These
lightweight logics are the EL family [Baader et al., 2005a] (underpinning OWL2-EL), the DL-Lite family
[Calvanese et al., 2007a; Artale et al., 2009] (underpinning OWL2-QL), and the DL Programs [Grosof et
al., 2003] (underpinning OWL2-RL).

In this thesis, we are interested in the DL-Lite family of description logics. DL-Lite is well suitable
for ontology-based data access setting.

1.4 The DL-Lite family

In recent years, a lot of attention was given to DL-Lite, a family of lightweight DLs specifically designed
for applications using huge volumes of data such as Web applications where query answering is the
most important reasoning task [Calvanese et al., 2007a]. In particular, DL-Lite guarantees an efficient
computational complexity of the reasoning process. In fact, the idea behind the reasoning (consistency
checking and query answering) in DL-Lite is based on the so-called FOL-reducibility property. This latter
permits to considerably reduce reasoning tasks to the evaluation of FOL queries over the set of assertions
(i.e. data). The efficiency of reasoning in DL-Lite is ensured thanks to the use of relational database
techniques.

1.4.1 The DL-Lite family and OWL2-QL

The knowledge representation format considered in this thesis is the one of DL-Lite language. We mainly
consider three tractable members of the DL-Lite family. Namely, the DL-Litecore which is the core
fragment of all DL-Lite logics, DL-LiteF and DL-LiteR which underlies the OWL2-QL profile. For the
sake of simplicity and when there is no ambiguity, through this section (and this thesis, in general), we
use DL-Lite to refer to these three fragments.

Syntax The starting points are NC , NR and NI , three pairwise disjoint sets of atomic concepts, atomic
roles and individuals. The DL-Lite language uses three unary connectors: "¬", "∃" and "−" and a binary
connector "v" to define complex concepts and roles and inclusions between concepts and roles. Let
A ∈ NC , P ∈ NR, basic concepts (resp. roles) B (resp. R) and complex concepts (resp. roles) C (resp.
E) are defined in DL-Lite as follows:

16http://hermit-reasoner.com
17http://owl.cs.manchester.ac.uk/tools/fact/
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1.4. The DL-Lite family

R −→ P | P− E −→ R | ¬R
B −→ A | ∃R C −→ B | ¬B

where P− represents the inverse of P .
A DL-Lite knowledge base is a pair K=〈T ,A〉. The DL-Litecore TBox is constituted by a finite set

of inclusion axioms between concepts of the form

B v C.

In the original conference paper [Calvanese et al., 2005], DL-Litecore does not use negation of roles. In
the journal paper [Calvanese et al., 2007a], negation appears in DL-Lite. Here, we follow description of
DL-Lite used in the journal paper [Calvanese et al., 2007a].

The ABox contains a finite set of membership assertions (or facts) on atomic concepts and on atomic
roles respectively of the form

A(a) and P (a, b)

where A ∈ NC , P ∈ NR and a, b ∈ NI .
The DL-LiteF language extends DL-Litecore with the ability of specifying functionality on roles or

on their inverses of the form:

(functR)

The DL-LiteR language extends DL-Litecore with the ability of specifying in the TBox inclusion ax-
ioms between roles of the form:

R v E.

Note that DL-Lite language does not allow the use of the conjunctive and the disjunctive operators.
However, one can easily add conjunctions (resp. disjunctions) in the right-hand side (resp. left-hand side)
of inclusion axioms. Indeed, as we will see it later, the conjunction of the formB v C1uC2 is equivalent
to the pair of inclusion axioms B v C1 and B v C2, while the disjunction of the form B1 t B2 v C is
equivalent to the pair of inclusion assertions B1 v C and B2 v C.

Any DL-Lite knowledge base can be equivalently written as a FOL knowledge base. Table 1.4 sum-
marizes all possible expression of axiom in DL-Lite and their translation from to FOL formulas. For
the ABox assertions, one can easily check that they are equivalent to ground atoms in FOL setting (see
Section 1.3.2).
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DL-Lite axiom FOL formula DL-Lite axiom FOL formula

A1 v A2 ∀x.A1(x)→ A2(x) A1 v ¬A2 ∀x.A1(x)→ ¬A2(x)

A v ∃P ∀x.A(x)→ ∃y.P (x, y) A v ¬∃P ∀x.A(x)→ ¬∃y.P (x, y)

A v ∃P− ∀x.A(x)→ ∃y.P (y, x) A v ¬∃P− ∀x.A(x)→ ¬∃y.P (y, x)

∃P v A ∀x.∃yP (x, y)→ A(x) ∃P v ¬A ∀x.∃yP (x, y)→ ¬A(x)

∃P− v A ∀x.∃yP (y, x)→ A(x) ∃P− v ¬A ∀x.∃yP (y, x)→ ¬A(x)

∃P1 v ∃P2 ∀x.∃yP1(x, y)→ ∃z(x, z) ∃P1 v ¬∃P2 ∀x.∃yP1(x, y)→ ¬∃z(x, z)

∃P1 v ∃P−2 ∀x.∃yP1(x, y)→ ∃z(z, x) ∃P1 v ¬∃P−2 ∀x.∃yP1(x, y)→ ¬∃z(z, x)

∃P−1 v ∃P2 ∀x.∃yP1(y, x)→ ∃z(x, z) ∃P−1 v ¬∃P2 ∀x.∃yP1(y, x)→ ¬∃z(x, z)

∃P−1 v ∃P
−
2 ∀x.∃yP1(y, x)→ ∃z(z, x) ∃P−1 v ¬∃P

−
2 ∀x.∃yP1(y, x)→ ¬∃z(z, x)

P1 v P2 ∀x, y.P1(x, y)→ P2(x, y) P1 v ¬P2 ∀x, y.P1(x, y)→ ¬P2(x, y)

P−1 v P
−
2 ∀x, y.P1(x, y)→ P2(x, y) P−1 v ¬P

−
2 ∀x, y.P1(x, y)→ ¬P2(x, y)

P1 v P−2 ∀x, y.P1(x, y)→ P2(y, x) P1 v ¬P−2 ∀x, y.P1(x, y)→ ¬P2(y, x)

P−1 v P2 ∀x, y.P1(x, y)→ P2(y, x) P−1 v ¬P2 ∀x, y.P1(x, y)→ ¬P2(y, x)

(funct P ) ∀x, y, z.P (x, y) ∧ P (x, z)→ y = z (funct P−) ∀x, y, z.P (y, x) ∧ P (z, x)→ y = z

Table 1.4: The equivalence of the DL-Lite axioms in FOL.

Example 1.6. Let Teacher and Student be two atomic concepts and TeachesTo and HasSupervisor be
two atomic roles. In the following, we give an example of DL-Litecore TBox:

Teacher v ¬Student
Teacher v ∃TeachesTo
∃TeachesTo− v Student

Student v ∃HasSupervisor
∃HasSupervisor− v Teacher

To obtain a DL-LiteR TBox, one can extend the above DL-Litecore TBox with the following axiom:

HasSupervisor− v TeachesTo

To obtain a DL-LiteF TBox, one can extend the DL-Litecore TBox with the following axiom:

(functHasSupervisor)

Finally, a DL-Lite ABox can be expressed as follows:

Student(Paul) HasSupervisor(Paul,Alice) TeachesTo(Alice,Bob)

�

Semantics The semantics is given in terms of interpretations where as usual an interpretation I =
(∆I , .I) consists of a non-empty domain ∆I and an interpretation function .I that assigns each a ∈NI

to an element aI ∈ ∆I , each A∈NC to a subset AI ⊆ ∆I and each P ∈ NR to P I ⊆ ∆I × ∆I .
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Furthermore, the interpretation function .I is extended in a straightforward way forDL-Litecore concepts
and roles as follows:

(P−)I = {(y, x) ∈ ∆I ×∆I |(x, y) ∈ P I}
(∃R)I = {x ∈ ∆I |∃y ∈ ∆I such that (x, y) ∈ RI}
(¬B)I = ∆I \BI

(¬R)I = ∆I ×∆I \RI

An interpretation I is said to be a model of a concept (resp. role) inclusion axiom, denoted by
I |= B v C (resp. I |= R v E), if and only if BI ⊆ CI (resp. RI ⊆ EI). Similarly, we say that an
interpretation I is a model of a membership assertion A(a) (resp. P (a, b)), denoted by I |= A(a) (resp.
I |= P (a, b)), if and only if aI ∈ AI (resp. (aI , bI) ∈ P I).

Regarding DL-LiteF , we say that an interpretation I is a model of an axiom (functR) if and only
if RI is a function, i.e., if (c, c′) ∈ RI and (c, c′′) ∈ RI implies c′ = c′′. Notice that we only consider
DL-Lite with unique name assumption.

Note that the interpretation function .I is extended for u and t constructors respectively as follows:
(C1 u C2)I = CI1 ∩ CI2 and (C1 t C2)I = CI1 ∪ CI2 .

An interpretation I is said to satisfy a knowledge base K = 〈T ,A〉 if and only if I satisfies every
axiom in T and every axiom in A. Such interpretation is said to be a model of K.

Incoherence and inconsistency Two kinds of inconsistency can be distinguished in DL-based knowl-
edge bases: incoherence and inconsistency [Baader et al., 2010]. The former is considered as a kind of
inconsistency in the TBox, i.e. the terminological part of a knowledge base. The latter is the standard
notion of inconsistency of knowledge bases. A knowledge base is said to be inconsistent if and only if it
does not admit any model and it is said to be incoherent if there exists at least a non-satisfiable concept
(i.e. no individual can belong to the concept). More formally:

Definition 1.13. A DL-Lite terminological base T is said to be incoherent if there exists a concept C
such that for each interpretation I which is a model of T , we have CI=∅.
Example 1.7. An example of incoherent TBox is the one composed of the two inclusion axioms T =
{B1 v B2, B1 v ¬B2}. One can easily check that for all models I of T we have BI1 = ∅. �

In a propositional setting the counterpart of incoherence is a so-called potential inconsistency, as
defined for instance in [Nonfjall and Larsen, 1992].

The concept of knowledge base inconsistency is defined by:

Definition 1.14. A DL-Lite knowledge base K=〈T ,A〉 is said to be inconsistent if it does not admit any
model.

FOL-reducibility An important property, called FOL-reducibility, has been established in [Calvanese
et al., 2007a] for consistency checking and query answering in DL-Lite. This property reduces reasoning
tasks in DL-Lite knowledge base K = 〈T ,A〉 to the evaluation over the ABox of FOL queries obtained
from T . Clearly, such a property separates the TBox and the ABox when reasoning. Namely, the rea-
soning tasks are done in two steps: The first one consists in producing FOL queries using axioms of the
TBox. The second step consists in evaluating the obtained queries over the ABox that can be stored in a
relational database, and thus, one can use SQL engines.

It is important to note that for other DL-Lite members that allow more expressivity (presented in
Section 1.4.2) thanDL-Litecore, DL-LiteF andDL-LiteR, the FOL-reducibility property is not always
guaranteed [Artale et al., 2009].
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Consistency checking in DL-Lite In DL-Lite a TBox T = {Tp, Tn} can be viewed as composed of
a set of positive inclusion axioms (denoted Tp) and a set of negative inclusion axioms (denoted Tn). A
positive inclusion axiom (PI) is of the form B1 v B2 and a negative inclusion axiom (NI) is of the form
B1 v ¬B2. Intuitively Tp specifies inclusion dependencies, while Tn defines integrity constraints.

The DL-Lite logics, and in particular DL-Litecore, DL-LiteF and DL-LiteR, enjoy the canonical
model property [Calvanese et al., 2007a]. This property states that given a consistent DL-Lite knowledge
baseK, one can construct a single model Ic ofK so that any other model I ofK can be obtained from Ic.
This model is called canonical model and defined through the notion of Chase [Abiteboul et al., 1995].
Using the notion of canonical interpretation, it was shown that a knowledge base that only contains PIs
in its ABox is always consistent [Calvanese et al., 2007a]. Inconsistency is caused by NI axioms. Note
that in query answering, the canonical interpretation allows to find the correct answers of queries.

DL-Lite deductive closure The negative closure of T , denoted by cln(T ), performs interaction be-
tween positive and negative axioms. It represents the propagation of the negative axioms using both
positive axioms and negative axioms in the TBox. For DL-Litecore, the cln(T ) is obtained using the
following rules repeatedly until reaching a fixed point (see [Calvanese et al., 2007a] for more details):

1. All negative axioms in T are in cln(T ).

2. If B1 vB2 is in T and B2 v ¬B3 is in cln(T ), then B1 v ¬B3 is in cln(T ).

3. If B1 v B2 is in T and B3 v ¬B2 is in cln(T ), then B1 v ¬B3 is in cln(T ).

For the DL-LiteR and DL-LiteF logics, we need the following additional rules:

4. All functionality axioms in T are also in cln(T ).

5. If R1 v R2 is in T and ∃R2 v ¬B or B v ¬∃R2 is in cln(T ), then ∃R1 v ¬B is in cln(T );

6. If R1 v R2 is in T and ∃R−2 v ¬B or B v ¬∃R−2 is in cln(T ), then ∃R−1 v ¬B is in cln(T );

7. If R1 v R2 is in T and R2 v ¬R3 or R3 v ¬R2 is in cln(T ), then R1 v ¬R3 is in cln(T );

8. (a) in the case where T is a DL-LiteR TBox, if one of the axioms ∃R v ¬∃R, ∃R− v ¬∃R− or
R v ¬R is in cln(T ), then all these three axioms are in cln(T ).
(b) in the case where T is a DL-LiteF TBox, if one of the axioms ∃R v ¬∃R, ∃R− v ¬∃R− is
in cln(T ), then both such axioms are in cln(T ).

Example 1.8. From the DL-Litecore TBox given in Example 1.6, one can derive the following negated
closure:

Teacher v ¬Student
∃TeachesTo− v ¬Teacher
∃HasSupervisor− v ¬Student

The negated closure of the DL-LiteR TBox is constituted by adding the following axioms to the DL-
Litecore negated closure:

∃TeachesTo v ¬Student
∃HasSupervisor v ¬Teacher
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The negated closure of the DL-LiteF TBox is obtaining by adding the following axiom to the DL-
Litecore negated closure :

(functHasSupervisor)

�

Formally, K = 〈T ,A〉 is consistent if and only if 〈cln(T ),A〉 is consistent [Calvanese et al., 2007a].
In fact, this is a consequence of the property of FOL reducibility. Namely, it has been shown in [Calvanese
et al., 2007a] that consistency checking can be reduced to evaluating FOL queries (called Unsat queries)
over the ABox which may be considered as a relational database. Table 1.5 summarizes transformations
from NI axioms to Unsat queries.

NI axiom Unsat query

A1 v ¬A2 ∃x.A1(x) ∧A2(x)

A v ¬∃P or ∃P v ¬A ∃x.A(x) ∧ ∃y.P (x, y)

A v ¬∃P− or ∃P− v ¬A ∃x.A(x) ∧ ∃y.P (y, x)

∃P1 v ¬∃P2 ∃x.∃y.P1(x, y) ∧ ∃z.P2(x, z)

∃P1 v ¬∃P−2 or ∃P−1 v ¬∃P2 ∃x.∃y.P1(x, y) ∧ ∃z.P2(z, x)

∃P−1 v ¬∃P
−
2 ∃x.∃y.P1(y, x) ∧ ∃z.P2(z, x)

P1 v ¬P2or P−1 v ¬P
−
2 ∃x, y.P1(x, y) ∧ P2(x, y)

P1 v ¬P−2 or P−1 v ¬P2 ∃x, y.P1(x, y) ∧ P2(y, x)

(funct P ) ∃x, y, z.P (x, y) ∧ P (x, z) ∧ y 6= z

(funct P−) ∃x, y, z.P (y, x) ∧ P (z, x) ∧ y 6= z

Table 1.5: Transformation of the negative inclusion axioms to unsat queries

Example 1.9. From Example 1.8, the set of queries associated with the DL-Litecore negated closure is
as follows:

q1(x) = ∃x.Teacher(x) ∧ Student(x)
q2(x) = ∃x.∃y.TeachesTo(y, x) ∧ Professor(x)
q3(x) = ∃x.∃y.HasSupervisor(y.x) ∧ Student(x)

For the DL-LiteR negated closure, we add the following queries:

q4(x) = ∃x.∃y.TeachesTo(x, y) ∧ Student(x)
q5(x) = ∃x.∃y.HasSupervisor(x, y) ∧ Teacher(x)

For the DL-LiteF negated closure, we add the following query:

q4(x) = ∃x, y, z.HasSupervisor(x, y) ∧HasSupervisor(x, z) ∧ y 6= z

�
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Queries and certain answers over DL-Lite An n-ary query is an open formula of first-order logic with
equality of the form

q={~x |φ(~x)},

where φ(~x) is a FOL formula with free variables ~x = x1, ..., xn (called also answer variables) and the
arity n of q is the number of its free variables. When n = 0, the query is said to be a boolean or ground
query. A boolean query of the form q={ |φ } is a query that does not involve free variables (i.e. with no
answer variables).

Given an interpretation I=(∆I , .I), a boolean query is either interpreted as true in I if [φ]I = true
or false if [φ]I = false. Indeed, the answer to such a query is either "yes" or "no". When n > 0, a
non-boolean query q is interpreted as the set of tuples of the domain elements, called answer sets with
respect to I, such that if we substitute ~x by an answer set ~a the query q will be evaluated to true in I.
Namely qI = {~ai ∈ (∆I)n|[φ(~ai)]I = true}. An interpretation that evaluates a boolean query (resp.
non-boolean query) to true (resp. to a non empty answer set), is said to be a model of that query, written
I |= q.

In DL-Lite, the more interesting queries are the class of conjunctive queries and the class of union of
conjunctive queries. A Conjunctive Query (CQ) is a query of the form:

q={~x | ∃~y.conj(~x, ~y)},

where ~x are free variables called distinguished or answer variables, ~y are existentially quantified
variables called non-distinguished or bounded variables, and conj(~x, ~y) is a conjunction of atoms of the
form A(ti) or P (ti, tj) and equalities, where the predicates A and P are respectively an atomic concept
name and an atomic role name appearing in K, and ti, tj are terms, i.e constants (individuals) in A or
variables in ~x or ~y. Notice that we call instance query the one consisting of a single atom with no free
variable, namely an ABox assertion. A Union of Conjunctive Query (UCQ) denoted by Q is simply an
expression of the form:

Q={~x |
∨

i=i,..,n
∃~yi.conj(~x, ~yi)}.

where each conj(~x, ~yi) is a conjunction of atoms and equalities with answer variables ~x and bound
variable ~yi. Obviously, the class of UCQ contains the one of conjunctive queries.

Given K=〈T ,A〉 a DL-Lite knowledge base and a CQ q, we write K |= q when I |= q for all models
I of K, otherwise K 6|= q. The answer to q over K, denoted ans(q,K), is the set of tuples of constants
appearing in K such that ∀~ai: ~aiI ∈ qI , for every model I of K. Namely ans(q,K) = {~ai ∈ (K)n|K |=
q(~ai)} where q(~ai) is the closed formula obtained by replacing the answer variables ~x in q by an answer
set ~ai, and K |= q(~ai) means that every model of K is also model of q(~ai). This corresponds to the
well-known certain answers semantics defined in [Artale et al., 2009; Calvanese et al., 2007a]. Given
K=〈T ,A〉 a DL-Lite knowledge base and a CQ q, a certain answer to q over K is an answer that holds in
all the models satisfying K.

It is important to note that CQ answering can be reduced to boolean query answering. Namely, given
a CQ q with free variables ~x={x1, ..., xn}, an answer set ~a={a1, ..., an} is a certain answer for q over K
if the boolean query q(~a) obtained by replacing each variable xi by ai in q(~x), evaluates to true for every
model of K. Lastly, if K is inconsistent, then ans(q,K) is trivially the set of all possible answer sets,
denoted AllTup(q,K).
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DL-Lite Reasoner QuOnto 18 is a free reasoner for DL-Lite developed in Jave. It implements a query
rewriting algorithm for both consistency checking and query answering for unions of conjunctive queries
over DL-Lite knowledge bases where the ABox is managed using a relational database.

1.4.2 The extended DL-Lite family

We now introduce the extended DL-Lite family of description logics proposed with the aim of capturing
typical conceptual modeling formalisms, such as UML class diagrams and Entity-Relation models, while
maintaining good computational properties of standard DL reasoning tasks [Artale et al., 2009]. For more
details, see the original paper [Artale et al., 2009].

As usual, let NC , NR and NI respectively be pairwise disjoint sets of concepts, roles and individuals
names. Let A ∈ NC , P ∈ NR and a ∈ NI . The syntax of the extended family of DL-Lite is composed
of DL-Liteβα logics where
α = {core, krom, horn, bool} and
β = {−,H,F ,N ,HF ,HN , (HF), (HN ), (HF)+, (HN ))+},
is defined using the following syntax:

R −→ P | P−

B −→ ⊥ | An | ≥ zR
C −→ B | ¬C | C1 u C2

with z ∈ N, and > = ¬⊥, C1 t C2 = ¬ (¬C1 u ¬C2), ∃R = ∃R.> = (≥ 1R), ≤ zR =
¬ (≥ z + 1R). H denotes role hierarchies (i.e. role inclusion axioms), F denotes functionality (i.e.
(FunctR), andN denotes number restriction ≥ zR. The semantics ofN ,H and (FunctR) is given in
Table 1.2.

Let Lα be DL-Liteα language where α = {core, krom, horn, bool}. Table 1.6 gives the forms of
concept inclusion axioms and assertions that can be allowed in a DL-Lite knowledge base K = 〈T ,A〉
expressed using Lα.

DL-Litebool DL-Litekrom DL-Litehorn DL-Litecore

TBox C1 v C2 B1 v B2, B1 v ¬B2, ¬B1 v B2 u
n
Bn v B B1 v B2, B1 v ¬B2

ABox A(a),¬A(a), P (a, b), ¬P (a, b)

Table 1.6: Concept inclusion axioms and assertions in extended DL-Lite logics.

There is a tight relationship between the different DL-Lite members. The DL-LiteHNbool logic is con-
sidered as the supremum (most expressive) of all above logics. The most basic one (least expressive) is
the DL-Litecore logic (presented in Section 1.4.1). Indeed, DL-Litecore is situated in the intersection of
DL-Litekrom and DL-Litehorn sinceB1 v ¬B2 is equivalent toB1uB2 v ⊥. Moreover, DL-LiteHα logics
are considered as fragments of DL-LiteHFα where these latter are considered as fragments of DL-LiteHNα
(since from > zR, one can express ∃R for z = 1 and (functR) (resp. (functR−) as ≥ 2R v ⊥
(resp. ≥ 2R− v ⊥) for z = 2). Lastly, the TBox’s of DL-Lite(HN)

α , DL-Lite(HN)+
α , DL-Lite(HF )

α and
DL-Lite(HF )+

α can contain role constraints of the form:
18http://www.dis.uniroma1.it/~quonto/

29

http://www.dis.uniroma1.it/~quonto/


Part I, Chapter 1 – Knowledge representation and ontologies

• Transitivity (tra(R)): I |= tra(R) if and only if (x, y) ∈ RI ∧ (y, z) ∈ RI → (x, z) ∈ RI .

• Disjointness (dis(R,S)): I |= dis(R1, S2) if and only if RI1 ∩RI2 = ∅.

• Reflexivity (ref(R)): I |= ref(R) if and only if (x, x) ∈ RI for all x ∈ ∆I .

• Irreflexivity (irr(R)): I |= irr(R) if and only if (x, x) /∈ RI for all x ∈ ∆I .

• Symmetry (sym(R)): I |= sym(R) if and only if RI = (R−)I .

• Asymmetry (asy(R)): I |= asy(R) if and only if RI ∩ (R−)I = ∅.

Table 1.7 summarizes the different members of the extended DL-Lite family.

Role inclusion
Number restriction Constraints on roles

No Yes

DL-Liteα DL-LiteHα ∃R No

DL-LiteFα DL-LiteHFα ∃R/funct No

DL-LiteNα DL-LiteHNα ≥ zR No

DL-Lite(HF )
α ∃R.D/funct (c) dis, (a)sym, (ir)ref

DL-Lite(HN)
α ≥ zR.D (c) dis, (a)sym, (ir)ref

DL-Lite(HF )+

α ∃R.D/funct dis, (a)sym, (ir)ref, tra

DL-Lite(HN)+

α ≥ zR.D dis, (a)sym, (ir)ref, tra

Table 1.7: The extended DL-Lite family

Note that in Table 1.7, only DL-Lite(HN)+
α and DL-Lite(HF )+

α allow role transitivity constraint. More-
over DL-Lite(HN)

α and DL-Lite(HF )
α are restricted by the following constraints [Artale et al., 2009]:

• T may contain only positive occurrences of qualified number restrictions ≥ zR.C, where C is a
conjunction of concepts allowed in the right-hand side of DL-Liteα concept inclusions.

• if≥ zR.C occurs in T , then T does not contain negative occurrences of number restrictions≥ z′R
or ≥ z′R− with z′ ≥ 2;

• if R has a proper sub-role in T , then T does not contain negative occurrences of ≥ zR or ≥ zR−

with z ≥ 2.

In fact, the above restrictions limit the interaction between role inclusions and number restrictions
in each DL-Liteα TBox in order to reduce the complexity of reasoning and allow the use of the above
role constraints which increase the expressive power of the logics but do not affect their computational
properties.

Table 1.9 reviews main computational complexity results of the different logics of the DL-Lite family.
For a more detailed description on DL-Lite family, see [Artale et al., 2009].
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1.5. Conclusion

Languages

Complexity

Combined Complexity Data Complexity

Satisfiability Instance checking Query Answering

DL-Lite[ |H]
core NLogSpace AC0 AC0

DL-Lite[ |H]
horn P AC0 AC0

DL-Lite[ |H]
krom NLogSpace AC0 coNP

DL-Lite[ |H]
bool NP AC0 coNP

DL-Lite[F |N |(HF )|(HN)]
core NLogSpace AC0 AC0

DL-Lite[F |N |(HF )|(HN)]
horn P AC0 AC0

DL-Lite[F |N |(HF )|(HN)]
krom NLogSpace AC0 coNP

DL-Lite[F |N |(HF )|(HN)]
bool NP AC0 coNP

DL-LiteHFcore/horn EXPTIME P P

DL-LiteHFkrom/bool EXPTIME coNP coNP

DL-LiteHNcore/horn EXPTIME coNP coNP

DL-LiteHNkrom/bool EXPTIME coNP coNP

Table 1.8: Complexity of reasoning in DL-Lite logics (with unique name assemption)

Note that DL-LiteHcore (resp. DL-LiteFcore) language is the DL-LiteR (resp. DL-LiteF ) language
presented is section 1.4. The following table summarizes their complexity.

Languages

Complexity

Combined Complexity Data Complexity

Satisfiability Instance checking Query Answering

DL-Litecore NLogSpace AC0 AC0

DL-LiteR NLogSpace AC0 AC0

DL-LiteF NLogSpace AC0 AC0

Table 1.9: Complexity of reasoning in DL-Litecore, DL-LiteR and DL-LiteF

Recall that, in this thesis we only consider DL-Litecore , DL-LiteF and DL-LiteR logics. For the
sake of simplicity and when there is no ambiguity, we use DL-Lite to refer to these three fragments.

1.5 Conclusion

In this chapter, we presented description logics, as decidable fragments of first order logics, that offer a
nice logical framework to serve ontologies. We focused on three main members of the DL-Lite family
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investigated in this thesis: DL-Litecore, DL-LiteF and DL-LiteR which underly the OWL2-QL profile
especially dedicated for applications using large data.

In real world applications, knowledge and data are usually affected with uncertainty and imprecision.
Moreover, knowledge evolves from a situation to another or may be issued from different information
sources. As pointed out in Section 1.2, merging, evolution and inconsistency and uncertainty manage-
ment in ontologies are recognized as challenging problems. Next chapter will focus on these issues and
will provide an overview on different techniques and tools proposed in the literature, especially in a
propositional logic setting, to handle them.
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CHAPTER 2

BELIEF CHANGE AND UNCERTAINTY
MANAGEMENT

2.1 Introduction

Originally ontologies have been proposed to represent the knowledge of a domain of interest [Baader et
al., 2010] in a static form. However, in some applications (like Web-based ones), the knowledge may
be non static and may evolve and change from one situation to another in order to take into account
and integrate the changes that occur over time. This dynamic aspect of ontologies is closely related
to the belief revision problem studied within propositional logic frameworks (e.g. [Alchourrón et al.,
1985; Katsuno and Mendelzon, 1991]). Moreover, in some Web applications, knowledge may come
form different and often conflicting sources of information where aggregating them in order to provide a
global point of view, is required. Merging different pieces of information is also largely studied within a
propositional logic setting (e.g. [Bloch et al., 2001; Konieczny and Pino Pérez, 2002]).

In the artificial intelligence community, it is well-known that nonmonotonic reasoning and revision
are considered as the two sides of the same coin [Makinson and Gärdenfors, 1989]. In general, revision or
merging of different information sources may lead to inconsistency problems where several approaches
based on either restoring the consistency of the knowledge base in order to exploit it and perform infer-
ences (e.g.[Benferhat et al., 1997a]), or analyzing inconsistency using different measures (e.g. [Hunter
and Konieczny, 2005]), or using argumentation framework (e.g. [Besnard and Hunter, 2008]) to make
decisions, were proposed.

Regarding the quality of the information, it can be affected with uncertainty and imprecision. This
is due for instance to the reliability of sources that provide them. In general, information qualified as
imperfect may be of different forms: incomplete information, heterogeneous information, incommen-
surable information, imprecise information, uncertain information, etc. Faithfully handling such pieces
of information and taking them into account when reasoning is an important issue that arises in many
Web applications. Probability theory is the oldest and the most widely used theory for handling uncertain
information. This latter is suitable especially within a frequentist setting. Moreover, several non-classical
probabilistic and non-probabilistic theories for handling uncertainties and imprecisions have been pro-
posed. The most well-known ones are fuzzy set theory [Zadeh, 1965; Zadeh, 1988], Dempster-Shafer
theory of evidence (or belief functions) [Shafer, 1976], the Spohn’s ordinal conditional functions [Spohn,
1988], and possibility theory [Zadeh, 1978; Dubois and Prade, 1988b].

Choosing the right and appropriate framework to represent and reason under imperfect information
is closely related to the context of the applications. In this thesis, we focus on possibility theory [Dubois
and Prade, 1988b] which is a very natural framework to deal with ordinal and qualitative uncertainty. It
deals with non-probabilistic information and it is particularly appropriate when the uncertainty scale only
reflects a priority relation between different pieces of information. For instance, the choice of possibility
theory in our context, can be justified in an Ontology-Based Data Access setting in which as presented in
Section 1.2 data may be provided by different sources which can have different levels of priority.

This chapter aims to provide an overview about belief change and uncertainty management from a
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propositional logic point of view while giving the related works done in description logics in order to
situate our works.

The rest of the chapter is organized as follows: Section 2.2 reviews the notion of uncertainty and
imprecision and recalls basic concepts of probability theory and provides a refresher on possibility theory.
Section 2.3 recalls the context of merging, revision and uncertainty handling and presents relevant works
done in description logics. Section 2.4 concludes this chapter.

2.2 Uncertainty management

An information, in a broad sense, refers to any collection of symbols or signs produced either through
the observation of natural or artificial phenomena or by cognitive human activity [Dubois and Prade,
2010]. A piece of information, can be of different forms (objective, subjective, quantitative, qualitative,
singular, generic, etc) [Dubois and Prade, 2011] and can be affected with different kinds of imperfection
(incompleteness, confusion, irrelevance, imprecision, vagueness, etc) which are considered as forms of
ignorance [Parsons and Hunter, 1998].

Throughout this section, we use the following notations.

• Ω = {ω1, ..., ωn}: Denotes the set of the states of the world, called the universe of discourse.

• ωi ∈ Ω: Denotes a state of the world, called an interpretation or elementary event.

• A,B, ..., E: Capital letters denote subsets of Ω. A subset A ⊆ Ω is called an event.

• v: Denotes a vector of variables where Ω is its domain.

A subset A of Ω is considered as a disjunctive set and it is viewed as a proposition that asserts a
variable v in A. However, the propositions expressible on Ω may be attached with imperfections as said
before. In the following, we present pieces of information qualified as incomplete.

Incomplete information. A piece of information is said to be incomplete (or partial) in a given context,
if it is not sufficient enough to answer a relevant question asked in the same context. For instance, one
can consider the following examples:

Example 2.1. The following gives examples of incomplete information.

1. Consider the following question: "What is exactly the age of Paul?". Let "Paul was born between
1980 and 1984" be an information that one knowns. Such information does not allow to answer
the above question.

2. Consider the following question: "What is the temperature of the patient ?". Let "The temperature
of the patient is high" be an information that one has. Such information does not allow to precisely
answer the question about the exact temperature.

3. Consider the following question: "Does student Paul succeed this year?". Let "The success rate for
this year is about 50%" be an information about the known success rate. Such information is not
enough to answer the asked question.

�

From Example 2.1, one can see that the nature of an incomplete information is not the same. Incom-
pleteness can be, in general, imprecision, fuzziness, uncertainty, etc. For more details, see [Parsons and
Hunter, 1998; Dubois and Prade, 2011] for example.
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Imprecise information Given a proposition that asserts a variable v in A ⊆ Ω, a piece of information
is said to be imprecise, if it is insufficient to give the current value of the variable v in A. Imprecision
is related to the content of the information. Said differently, the number of elements in A, that may
correspond to v is greater than 1. Note that v takes only one value from A at a given time, and thus,
elements in A are considered as possible values of v and they are mutually exclusive. Let us consider the
following example.

Example 2.2. From Example 2.1 item 1, the quantity v = birthyear(Paul) ∈ {1980, 1981, 1982, 1983,
1984} which states that "Paul" was born between 1980 and 1984". This leads to consider that v = 1980
or v = 1981 or v = 1982 or v = 1983 or v = 1984. �

Fuzzy information A fuzzy piece of information (or gradual linguistic piece of information) is consid-
ered as a subtype of imprecision. It represents a proposition asserting a variable v in A ⊆ Ω where one
can not claim if it is totally true or totally false. Namely, the proposition is not boolean.

Example 2.3. From Example 2.1 item 2, the proposition stating that "The temperature of the patient is
high" is fuzzy since it does not give the exact value of the temperature. Said differently, we only know
that it is "high". Indeed, a temperature equal to 42 looks more credible than a temperature equal to 40
which is itself more credible than a temperature equal to 39. However, saying that "the temperature is
equal to 37" is completely false referring to the context of the information that said that the temperature
is high. In this case, one would rather say that the temperature of the patient is normal. �

In fact, a fuzzy piece of information ranks values in A in terms of their relevance to give the current
value of v [Dubois and Prade, 2011]. Note that the meaning of a fuzzy information may be altered using
linguistic quantifiers expressing intensity, for instance, consider the proposition "the temperature is very
high" or "the temperature is slightly high", etc.

Uncertain information A piece of information is said to be uncertain when one can not decide if the
information is completely true or completely false (for instance the question asked in item 3 of Example
2.1). Uncertainty is due either to variability (randomness) or lack of information about the real world,
and it is in general related to the source providing the information. An uncertain piece of information is
attached with a certainty qualifier which can be numerical (e.g. a probability) or symbolic (e.g. plausible).

Example 2.4. Let us consider the following information pieces:

• The probability that the task takes more than one hour is about 0.7.

• It is very possible that it will rain tomorrow.

• It is not absolutely certain that Paul will come to the meeting tomorrow.

�

Usually, an uncertain piece of information is represented by attaching (using a function f defined
over Ω) to each event A ⊆ Ω a number f(A) belonging to the unit interval [0, 1] which evaluates the
likelihood of A with respect to a proposition asserting v ∈ A. In other words, f(A) is the confidence
of the agent in the truth of v ∈ A. Note that, contrary to fuzzy information, the proposition is boolean,
namely it only takes true or false. When dealing with uncertainty, the following requirements are needed:

1. f(Ω) = 1 and f(∅) = 0.

2. ∀A ⊆ Ω, ∀B ⊆ Ω : if A ⊆ B then f(A) ≤ f(B) (Monotonicity).
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3. ∀A ⊆ Ω, ∀B ⊆ Ω : g(A ∩B) ≤ min(f(A), f(B)).

4. ∀A ⊆ Ω, ∀B ⊆ Ω : g(A ∪B) ≥ max(f(A), f(B)).

Example 2.5. From Example 2.1, one can be completely certain that the birth year of Paul is between
1980 and 1984, but less certain that Paul’s birth date is in {1980, 1981, 1982}, even less certain that it is
in 1981. �

A piece of information could be at the same time:

• Precise and certain: "Paul was born is 1983".

• Precise and uncertain: "It is probable that Paul was born in 1984, with a confidence degree of
30%".

• Imprecise and certain: "It is certain that Paul was born between 1982 and 1984".

• Imprecise and uncertain: “It is possible that Paul was born between 1981 and 1984”.

Lastly, there are other kinds of imperfect pieces of information such as heterogeneous information
(i.e. information having different nature or expressed differently), incommensurable information (i.e.
information expressed over different scales), multiple source information (i.e. information provided by
different sources), etc.

2.2.1 Probability theory

Probability theory is the oldest and the most widely acknowledged among uncertainty theories. This
section recalls basic concepts of probability theory.

Basic notions

The notion of probability distribution is the central element of probability theory. A probability distri-
bution, denoted by p, is defined over the universe of discourse Ω such that ∀ωi ∈ Ω, p(ωi) ∈ [0, 1]. A
probability measure P : 2Ω → [0, 1] is a function that assigns to each event A ⊆ Ω a degree belonging to
the unit interval [0, 1]. This degree reflects the chance or the likelihood of the occurrence or the realization
of A. A probability measure and probability distribution satisfy the following requirements:

• Positivity: ∀A ⊆ Ω, P (A) ≥ 0.

• Normalization : P (Ω) = 1

• Additivity: P (A ∪B) = P (A) + P (B) (if A and B are disjoint, namely A ∩B = ∅).

The first axiom states that an event of Ω may be (in the worst case) impossible, i.e. P (A) = 0. The
second states that the universe of discourse Ω is certain. Finally, the third axiom states that the probability
of the union of two disjoint events is equal to the sum of the probabilities of the two events separately.
As consequence of the above requirements, we have:

•
∑n
i=1 p(ωi) = 1,

• P (∅) = 0

• P (A) = 1− P (Ā) (where Ā is the complementary of A in Ω, namely Ā = Ω \A)
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• P (A ∪B) = P (A) + P (B)− P (A ∩B) where A ∈ Ω and B ∈ Ω.

Given a probability distribution p defined on Ω, one can derive the probability measure of a subset
A ⊆ Ω as follows:

P (A) =
∑
ω∈A

p(ω)

Let B be an event of Ω. The probability of the realization of an event A can be updated according
to the probability of the realization of the event B. Let P (A|B) denote the probability of the event A
knowing the event B. The transformation from P (A) to P (A|B) is called probabilistic conditioning and
it is computed as follows:

P (A|B) = P (A ∩B)
P (B)

The following property is called product rule and it is defined by (it is a consequence of the condi-
tioning rule):

P (A ∩B) = P (A) ∗ P (B|A) = P (B) ∗ P (A|B)

Bayes theorem states that the conditional probability of an event A given B is related to the converse
conditional probability of B given A. This permits to compute the probability of B if we know A as
follows:

P (A|B) = P (B|A) ∗ P (A)
P (B)

Bayes rule is very useful when performing inference like in classification problems, or learning from
statistical data.

2.2.2 Possibility theory

Possibility theory, introduced first by Zadeh [Zadeh, 1999] and then developed by Dubois and Prade
[Dubois and Prade, 1988b] and many other researchers, is a very natural framework to deal with ordinal
and qualitative uncertainty. It deals with non-probabilistic information and it is particularly appropriate
when the uncertainty scale only reflects a priority relation between different pieces of information. There
are several interpretations of possibility degrees. The most supported ones are as follows [Dubois and
Prade, 2011] :

• The feasibility or realizability, for instance "it is possible to repair the old car".

• The plausibility which refers to the degree to which an event can occur, for instance "it is possible
that it will snow tomorrow".

• Consistency or compatibility which refers to a logical view of possibility and concerns the available
information itself, for instance "it is impossible that Paul votes", knowing that "Paul is two years
old".

Basic concepts

This section introduces basic concepts of possibility theory. We first recall the notion of possibility
distribution.
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Possibility distribution. A possibility distribution, denoted by π, is a mapping from the universe of
discourse Ω to a totally ordered scale O. This scale may often be a finite set of integers or the unit
interval [0, 1] and encodes our knowledge on the real world. In general, it is the interval [0, 1] and it
could be interpreted in two ways: a numerical interpretation when values have a real sense and an ordinal
interpretation when values only reflect a total pre-order between the different states of the world. We
further explain these two settings in Section 2.2.2.

The degree π(ω) is called possibility degree and represents the plausibility or compatibility of ω with
available knowledge encoded by π. By convention, when π(ω) = 1, we say that ω is a totally possible
state, and when π(ω) = 0, we say that ω is an impossible state. Given two states of the world ω and ω′, if
π(ω) > π(ω′), we say that ω is more preferred than ω′ or more plausible. Possibility theory can capture
the two extreme forms of knowledge, namely:

1. Total ignorance when ∀ω ∈ Ω,π(ω)=1.

2. Complete knowledge when ∃ω′ ∈ Ω, π(ω′) = 1 and ∀ω ∈ Ω, ω′ 6= ω, π(ω) = 0.

Example 2.6. The following possibility distributions give situations of total certainty, partial ignorance
and total ignorance.

ωi π(ωi)
ω1 1
ω2 0
ω3 0

(a) Total certainty

ωi π(ωi)
ω1 1
ω2 1
ω3 .5

(b) Partial ignorance

ωi π(ωi)
ω1 1
ω2 1
ω3 1

(c) Total ignorance

�

A possibility distribution is said to be normalized if it admits at least one totally possible state, namely
∃ω ∈ Ω such that π(ω) = 1. Otherwise the possibility distribution is said to be sub-normalized. In this
case, the inconsistency degree of the possibility distribution π, denoted Inc(π), is defined as follows:

Inc(π) = 1−maxω∈Ω{π(ω)}

The concept of sub-normalization reflects the presence of contradictions in the set of available knowl-
edge encoded by π. Lastly, possibility theory is driven by the principle of minimal specificity that states
that any hypothesis not known to be impossible cannot be ruled out [Yager, 1992]. Given two possibility
distributions π and π′, π is said to be more specific than π′ if and only if ∀ω ∈ Ω, π(ω) ≤ π′(ω).

Example 2.7. Consider the following two possibility distributions:

ωi π1(ωi)
ω1 1
ω2 .1
ω3 0

ωi π2(ωi)
ω1 1
ω2 .5
ω3 .8

One can check that π1 is is more specific than π2. �

Possibility and Necessity measures. Possibility theory offers two measures to assess the possibility
(or the plausibility) and the necessity (or the certainty) of an event.
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Possibility measure Given a possibility distribution π, a possibility measure, denoted by Π, of an event
A ⊆ Ω is defined as follows:

Π(A) = max
ω∈A

(π(ω))

Intuitively, Π(A) evaluates to what extent A is plausible or compatible with the available knowledge
expressed by π. We have:

• if Π(A) = 1 and Π(Ā) = 0 : this means that A is certain.

• if Π(A) = 1 and 0 < Π(Ā) < 1 : this means that A is somewhat certain.

• if Π(A) = 1 and Π(Ā) = 1 : this means that there is total ignorance about A.

• if Π(A) > Π(B) : this meaning that A is more plausible than B.

In the following, we give some properties of Π when the possibility distribution π is normalized.

• max(Π(A),Π(Ā)) = 1 : Meaning that A and Ā cannot be both somewhat impossible (conse-
quence of the normalization axiom)

• Π(A ∩B) ≤ min(Π(A),Π(B))

• Π(A ∪B) = max(Π(A),Π(B)) (Maximitivity axiom)

Necessity Measure The necessity measure, denoted by N , of an event A ⊆ Ω is the dual of the
possibility measure and it is defined follows:

N(A) = 1−Π(Ā) = min
ω/∈A

(1− π(ω))

Intuitively, N(A) defines the certainty degree associated to an event A. Namely, it evaluates to what
extent A is certainly implied from the available knowledge encoded by π. It is important to note that in a
possibility theory setting, in order for an event A to have a certainty degree greater than zero, it must be
totally possible. In other words, A must be completely possible before being somewhat certain. This fact
ensures that N(A) ≤ Π(A). We have:

• if N(A) = 1 and N(Ā) = 0: this means that A is certain,

• if N(A) ∈ ]0, 1[ and N(Ā) = 0: this means that A is somewhat certain,

• if N(A) = 0 and N(Ā) = 0: this means that there is a total ignorance about A,

The following gives some properties of N when the possibility distribution π is normalized,

• min(N(A),N(Ā)) = 0: Meaning that A and Ā can not be both somewhat certain.

• N(A ∩B) = min(N(A), N(B))

• N(A ∪B) ≥ max(N(A), N(B))

Example 2.8. Let us consider the following possibility distribution defined over to binary variables X
and Y:
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ωi X Y π(XY )
ω1 x1 y1 1
ω2 x2 y1 .8
ω3 x1 y2 .5
ω4 x2 y2 .1

One can check that:
i) Π(x1)=1 and N(x1)=.2
ii) Π(y1)=1 and N(y1)=.5 �

Quantitative and qualitative settings

Contrary to many uncertainty frameworks (like probability theory, belief functions, etc.), possibilities
could be expressed either using numeric values or using a ranking relation. These two kinds of interpre-
tations correspond respectively to the quantitative setting (i.e. numerical interpretation of possibilities)
and the qualitative setting (i.e. an ordinal interpretation of the possibility scale) [Dubois and Prade, 1998].

Quantitative Setting. The quantitative setting of possibility theory refers to the case where possibil-
ity degrees are real numbers in the unit interval [0, 1]. In such setting, possibility degrees have precise
signification and must be a priori justified. Indeed, one can check that there are links between possibil-
ities and probabilities. In fact, a degree of possibility can be considered as the upper probability bound
[Dubois and Prade, 1992], and a possibility distribution can be viewed as a likelihood function [Dubois
et al., 1997] where a possibility measure is also considered as a special case of plausibility function of
Dempster-Shafer theory of evidence, etc.

However, in some situations, it remains difficult to assign exact numerical values for possible states
of the world. It seems to be more flexible, in this case, to consider that a state ω of the world is more
plausible than another one ω′ instead of attaching to each state a numerical value. Hence, the idea to use
a ranking relation over possible states of the universe of discourse Ω.

Qualitative possibility theory. The possibilistic qualitative setting refers to the case where the possi-
bility distribution is a mapping from a universe of discourse Ω to a totally pre-ordered scale that ranks
possible states of Ω. The idea of ranking the different states of the universe of discourse, was first intro-
duced in [Spohn, 1988] through the so-called Spohn’s ordinal conditional functions (OCF), well-known
as kappa functions which map states of Ω into ordinals belonging to [0,+∞].

The idea behind qualitative settings is that the universe of discourse Ω is equipped with a total pre-
order, denoted by ≥π, which corresponds to a plausibility relation on Ω allowing to affirm that a state ω
is more plausible than another one ω′. Given two possible states ω and ω′, when:

• ω =π ω
′, we say that ω is as plausible as ω′,

• ω <π ω′, we say that ω is less plausible than ω′,

• ω >π ω′, we say that ω is more plausible than ω′.

The pre-order ≥π leads to induce a well-ordered partition of Ω, namely Ω = {S1, ..., Sn}. In the
qualitative setting, the ordinal scale O is of the form: O = {1, α1, α2, ..., αn, 0} where 1 > α1 > α2 >
... > αn > 0. A possibility distribution that maps a universe of discourse Ω to a totally ordered scale
O, is called qualitative possibility distribution. It is important to note that the possibility scale can be
numerical, namely of the form O = {0, 0.1, 0.3, ..., 1} where only the order relation between the values
is significant, and not the real numerical values.
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Possibilistic conditioning

Given a possibility distribution π, conditioning comes down to revise the available knowledge encoded
in π, when a new piece of information (i.e. an evidence) is available [Dubois and Prade, 1988a; Dubois
and Prade, 1990]. Conditioning the original possibility distribution π by an event B takes as input π and
B and transforms π to a new possibility distribution denoted by π′=π(.|B). Depending on the framework
that we use (qualitative or quantitative), there are two main definitions of conditioning:

Quantitative setting In a quantitative setting, the widely used method of conditioning is called product-
based conditioning. It uses the Dempster’s rule of conditioning of belief functions, specialized to possi-
bility measures which states that the conditional measure π(.|B) by an event B is such that (we assume
that Π(B) > 0):

Π(A|B) ∗Π(B) = Π(A ∩B)

Therefore, the impact of the event B on the available knowledge associated with an event A is given
as follows (we assume that Π(B) > 0):

Π(A|pB) = Π(A ∩B)
Π(B)

Given a possibility distribution π, the presence of the new evidence B alters π, by first declaring all
states outside B as impossible, and then, proportionally changing all the states with respect to B. More
formally:

π(ω|pB) =
{
π(ω)
Π(B) if ω ∈ B
0 otherwise

It is important to note that there exit other ways for conditioning in the quantitative setting. For more
details, see (e.g. [Fonck, 1997; Baets et al., 1999; Bouchon-Meunier et al., 2002]).

Qualitative setting Within a qualitative setting, the so-called min-based conditioning is the widely used
method for conditioning. This latter is based on the qualitative counterpart of the Bayesian rule [Hisdal,
1978; Dubois and Prade, 1988b] which states that:

Π(A ∩B) = min(Π(A|B),Π(B))

The min-based conditioning respects the minimum specificity principle which consists in assigning to
the best element of the event B, the highest possibility degree (namely, 1). More formally, the min-based
conditioning is performed as follows:

Π(A|mB) =
{

1 if Π(A ∩B) = Π(B)
Π(A ∩B) if Π(A ∩B) < Π(B)

Therefore, the min-based conditioning defined on all the states of a possibility distribution is given as
follows:
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π(ω|mB) =


1 if π(ω) = Π(B) and ω ∈ B
π(ω) if π(ω) < Π(B) and ω ∈ B
0 otherwise

Example 2.9. Let π be a possibility distribution over two binary variables X and Y and let y2 be a new
certain piece of information (observed information). One can compute the new possibility distribution
π′=π(.|y2), using the qualitative or quantitative conditioning as follows:

X Y π(XY )
x1 y1 1
x2 y1 .8
x1 y2 .5
x2 y2 .1

(a) Initial possibility distribution

X Y π(XY |px2)
x1 y1 0
x2 y1 0
x1 y2 1
x2 y2 .2

(b) Quantitative conditioning

X Y π(XY |mb2)
x1 y1 0
x2 y1 0
x1 y2 1
x2 y2 .1

(c) Qualitative conditioning

Possibilistic logic

Using a possibility theory framework, the knowledge of an agent can be compactly encoded using dif-
ferent ways. One can either use logic-based formalisms (for instance, the ones presented in Section 1.3)
which lead to obtain a possibilistic belief (or knowledge) base or a graphical-based formalism which
leads to define a possibilistic graph or network (e.g. [Dubois and Prade, 1991b]). In this thesis, we
use logic-based formalisms to encode possibilistic knowledge. This section recalls standard possibilistic
logic [Dubois et al., 1994], an extension of propositional logic within a possibility theory setting. Next
chapter (Chapter 3) is dedicated to the extension of DL-Lite within a possibility theory framework.

Syntax. Let B∗ = {φi : i = 1, ..., n} be a propositional knowledge base composed of a finite set (more
precisely, a conjunction) of propositional formulas. A possibilistic knowledge base or belief base1 B,
consists of a finite set of possibilistic formulas (φi, αi) of the form:

B = {(φi, αi) : i = 1, ..., n}

where φi is a propositional formula and αi is its certainty degree, meaning that N(φi) > αi. Note
that formulas with αi’s equal to ’0’ are not explicitly represented in the knowledge base. Moreover, when
all αi’s are equal to 1, B coincides with a standard propositional knowledge base B∗.

Semantics. The semantics of a possibilistic knowledge base B is given by a possibility distribution,
denoted by πB, defined over the set of propositional interpretations, namely Ω = {I1, . . . , In}. The
possibility distribution πB attaches to each interpretation I ∈ Ω a possibility degree reflecting to what
extent this latter satisfies2 formulas of the knowledge base. The possibility degree of an interpretation
π(I) depends on the maximum weight of formulas falsified by the interpretation I .

1Note that throughout this Chapter and this thesis in general, and when there is no ambiguity, we do not make difference
between belief base and knowledge base.

2The satisfaction relation is recalled in Section 1.3.1
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∀I ∈ Ω, πB(I) =
{

1 if ∀(φi, αi) ∈ B, I |= φi,

1−max{αi : (φi, αi) ∈ B, I 6|= φi} otherwise

It is important to note that a possibilistic knowledge base is considered as a compact representation
of a possibility distributions. Namely, from each possibilistic knowledge base B, one can generate its
possibility distribution πB.

By referring to classical logic, when the formulas of the knowledge base are completely certain
(namely, having weights equal to 1 in a possibilistic setting), then the knowledge base will contain only
models (i.e. πB(I) = 1) or countermodels (πB(I) = 0). As a consequence, the consistency of the
knowledge base is binary, namely B is consistent or inconsistent. This is not the case in possibilistic
knowledge bases. As the possibility distribution allows to attribute to the countermodels a degree of
compatibility with the available knowledge. In this case, the consistency of an interpretation with respect
to the available knowledge is not binary. Therefore, one can associate to a possibilistic knowledge base a
degree of inconsistency between 0 and 1.

Example 2.10. Let B = {(a, .6), (a ∧ b, .1), (c ∨ b, .4)} be a possibilistic knowledge base. The joint
possibility distribution πB of B is as follows:

I πB(I)
abc 1
abc 1
abc .9
abc .6
abc .4
abc .4
abc .4
abc .4

Let B = {(φi, αi) : i = 1, .., n} be a possibilistic knowledge base, the inconsistency degree of B,
denoted by Inc(B), is defined semantically and syntactically as follows:

• Semantically using the induced possibility distribution: Inc(B) = 1 −max
I∈Ω

(πB(I)) where πB is

its possibility distribution.

• Syntactically using the concepts of α-cut: Inc(B) = max{αi : B≥α is inconsistent} where
B≥α, is called the α-cut of B and it is the subbase of B composed by formulas having weights
greater than or equal to α. If B≥0 is consistent then Inc(B) = 0.

It was shown in [Dubois et al., 1994] that the computational complexity of computing the inconsis-
tency degree of a possibilistic knowledge base is in (log2(n)*SAT) where n is the number of different
weights in the knowledge base and SAT is the complexity of the propositional satisfiability problem.
Namely, computing inconsistency degrees needs log2(n) calls to a SAT solver. Contrary to classical
logic, using the notion of inconsistency degree, possibilistic logic allows reasoning from an inconsistent
knowledge base.

Let B = {(φi, αi) : i = 1, ..., n} be a possibilistic knowledge base, possibilistic entailments are
defined semantically as follows:

• A formula is a logical consequence of a possibilistic knowledge base, denoted by πB |= φi if and
only if N(φi) > 0 where N(φi) is the necessity degree of φi computed from πB.

43



Part I, Chapter 2 – Belief change and uncertainty management

• A formula is a logical consequence of a possibilistic knowledge base with a certainty degree αi,
denoted by πB |= (φi, αi) if and only if N(φi) ≥ αi > 0 where N(φi) is the necessity degree of
φi computed from πB.

The above reasoning tasks can be done syntactically as follows:

• A formula φi is said to be a plausible conclusion of B, denoted by B |=P φi if and only if
B>inc(B) |=P φi.

• A formula φi is said to be a possibilistic conclusion of B, denoted by B |=π (φi, αi) if and only if
B≥αi is consistent, B≥αi |= φi and ∀β > αi,B≥β 6|= φi.

Note that the above inferences can be reduced to computing the inconsistency degree of the possi-
bilistic knowledge base. More formally:

• B |=P φi if and only if Inc(B ∪ {(¬φi, 1)}) > Inc(B).

• B |=π (φi, αi) if and only if Inc(B ∪ {(¬φi, 1)}) > αi.

Another compact representation of possibility distributions is the one of possibilistic networks.

Possibilistic networks

Possibilistic networks (e.g. [Fonck, 1994; Gebhardt and Kruse, 1996; Benferhat et al., 2001; Benferhat et
al., 2002a]) are frameworks used for representing and reasoning with uncertain information. Comparing
with possibilistic logic, possibilistic networks explicit relationships between different variables of the
domain while possibilistic logic only ranks formulas according to their certainty level.

A possibilistic network G=〈G,Θ〉 is specified by:

i) A graphical component G consisting of a directed acyclic graph (DAG) where vertices represent
the variables and edges represent direct dependence relationships between variables. Each variable
Ai is associated with a domain Di containing the values ai taken by the variable Ai.

ii) A numerical component Θ allowing to assess the uncertainty relative to each variable using local
possibility tables. The possibilistic component consists in a set of local possibility tables Θi =
{θai|ui

} where ai ∈Di and ui is an instance of Ui denoting the parent variables of Ai in the
network G.

Note that all the local possibility distributions Θi must be normalized, namely

∀i = 1..n, ∀ui ∈ DUi , max
ai∈Di

(θai|ui
) = 1.

Example 2.11. Figure 2.1 gives an example of a possibilistic network over four boolean variables A, B,
C and D.

The structure of G encodes a set of independence relationships Ir = {Ir(Ai, Ui, Y )} where each
variable Ai in the context of its parents Ui is independent of its non descendants Y . For example, in the
network of Figure 2.1, variable C is independent of B and D in the context of A.

In possibilistic networks, the joint possibility distribution is factorized using the possibilistic chain
rule:
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A B

C D

A π(A)
T 1
F .4

B π(B)
T .1
F 1

C A π(C|A)
T T .3
F T 1
T F .2
F F 1

D B A π(D|AB)
T T T .4
F T T 1
T T F .2
F T F 1
T F T 1
F F T 1
T F F 1
F F F .1

Figure 2.1: Example of a possibilistic network

π(a1, a2, .., an) =
n⊗
i=1

(π(ai|ui)).

where
⊗

is either the product-based or min-based operator.
Lastly, there exists a translation from possibilistc networks to possibilistic knowledge bases [Benfer-

hat et al., 2002a]. For reasoning in possibilistic networks, see [Fonck, 1994; Benamor, 2002; Ayachi et
al., 2013] for instance.

2.2.3 Uncertainly management in description logics

Uncertainty reasoning for the World Wide Web has received in recent years a lot of attention 3. Several
approaches are proposed and they are based on the extension of DLs within uncertainty theories. In the
following, we recall the main proposed approaches.

Probabilistic description logics

Probabilistic Description Logics (e.g.[Giugno and Lukasiewicz, 2002; Lukasiewicz, 2002; Lukasiewicz
and Straccia, 2008; Lukasiewicz et al., 2012a]) is an extension of standard DLs with probabilistic termi-
nological axioms and probabilistic assertional facts in order to manage uncertainty. Probabilistic knowl-
edge in probabilistic description logics is modeled using the notion of probabilistic conditional constraints
[Lukasiewicz, 1999]. A conditional constraint of the form (A|B) [l, u] is expressed by attaching a belief
interval reflecting the lower bound l and the upper bound u of the probability of concluding A given an
evidence B where A and B are two concepts. Intuitively, a conditional constraint represents a concept
inclusion relation between two concepts A and B of the form B v A, with a probability degree between
l and u. This permits to model the fact that "generally, if an individual belongs to B, then it belongs to A
with a probability lying between l and u". Similarly, for probabilistic assertions, a conditional constraint
(A(a)|>) [l, u] is used to express the fact that a is an instance of the concept A with a probability degree
that lies between l and u".

3http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/
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In a probabilistic knowledge base, generic knowledge is encoded in a probabilistic TBox, denoted by
PTBox, and assertions are stored in a probabilistic ABox, denoted by PABox. A PTBox PT = (T, P )
contains a set of standard DL axioms, i.e. a standard TBox T (expressed using the used DL language),
and a set of conditional constraints P defined over the concepts of the domain. A PABox Po is a finite
set of conditional constraints defined on probabilistic individuals o ∈ Ip. A probabilistic knowledge base
is a triple PK = (T, P, (Po)o∈IP

) relative to IP . It is important to note that the set of individuals is
partitioned into a set of standard individuals Is and a set of probabilistic individuals Ip.

From a reasoning point of view, consistency checking in a probabilistic knowledge and entailment are
based respectively on the notions of consistency and lexicographic entailment proposed in probabilistic
default reasoning [Lukasiewicz, 2002].

Fuzzy description logics

Fuzzy Description Logics (e.g. [Straccia, 1998; Straccia, 2001; Bobillo and Straccia, 2007; Bobillo and
Straccia, 2012; Lukasiewicz and Straccia, 2009]) are extensions of DLs within fuzzy sets theory. The aim
of such extension is to model fuzziness attached to the elements of the domain. From a syntactic point
of view, a fuzzy description logic uses first fuzzy concepts and weighted ABox assertions of the form
(A(a), n) where A(a) is an ABox assertion and n ∈ [0, 1] is its membership degree to the fuzzy concept
A.

The semantics of fuzzy DL relies on the fuzzy set semantics [Zadeh, 1965]. Recall that, a fuzzy set
S is defined with respect to a set S′ by a membership function µS : S′ → [0, 1], that assigns to each
element in S′ a membership degree in [0, 1]. Within a description logic setting, a fuzzy interpretation is
a pair I = (∆I , .I) where ∆I is the domain of the interpretation, defined as in the standard description
logic semantics, and .I is an interpretation function that maps i) each individual as in the standard case,
ii) each concept into a membership function ∆I → [0, 1] iii) and each role into membership function
∆I ×∆I → [0, 1].

Given an interpretation I, a concept A is interpreted as a membership function and AI(a) with a an
individual (i.e. aI ∈ ∆I) is interpreted as the truth degree of the object a being an element of A under
the interpretation I. The fuzzy interpretation is extended to DL constructs following a fuzzy semantics
aggregation modes.

Lastly, it is important to note that this representation can be handled efficiently using possibility
theory. For more details about fuzzy description logics, see [Lukasiewicz and Straccia, 2008].

Possibilistic description logics

Possibilistic Description Logics are frameworks introduced to deal with uncertainty and to ensure reason-
ing under inconsistent knowledge bases. The use of possibility theory to extend DLs has been proposed in
[Hollunder, 1995] and discussed in [Dubois et al., 2006]. In [Hollunder, 1995] a possibilistic DL knowl-
edge base was defined syntactically by attaching to every terminological axiom or assertion a necessity
degree. However there is no formal foundation of the semantic counterpart of this extension. In addition,
only some standard inference services have been defined. From an algorithmic point of view, Hollun-
der’s method [Hollunder, 1995] is based on an instantiation of possibilistic entailment with a classical
inference algorithm for DLs.

In [Qi et al., 2007b; Qi et al., 2007a], the authors go one step further in the definition of possibilistic
DL. A possibilistic DL knowledge base has been defined syntactically by equipping every axiom with
a confidence degree to encode its certainty. This confidence degree is simply the necessity value of an
axiom and it reflects to what extent this latter can be considered as certain (priority, importance, etc) with
respect to the available knowledge. These degrees are then used to determine the inconsistency degree
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of a knowledge base and to ensure inference services. From a computational point of view, an algorithm
to compute inconsistency degrees and possibilistic inference services has been provided. In general, it
has been shown [Qi et al., 2007b; Qi et al., 2007a] that checking the consistency degree and several
inference services can be done with classical DLs reasoning services through consistent sub-sets of the
Possibilistic DL knowledge base. Clearly, computing inconsistency degrees comes down to perform
a dichotomie search among the certainty scale while calling a standard DL reasoner is closely related
to the method proposed in [Dubois et al., 1994] for computing inconsistency degrees of a possibilistic
propositional knowledge base.

An implementation of a reasoner called “DL-Poss”, has been provided in [Qi et al., 2010a] (see also
[Qi et al., 2011] for a discussion on Possibilistic DLs). Finally, another method has been introduced
in [Couchariere et al., 2008a; Qi et al., 2008b; Zhu et al., 2013] for checking the inconsistency of a
possibilistic DL base as a direct extension of the tableau algorithm [Baader et al., 2010].

In Chapter 3, we more discuss these works and we follow another direction to extend DL-Lite within
a possibility theory setting. The main feature of this extension is that it is done by slightly modifying the
reasoning method proposed in standard DL-Lite by propagating the uncertainty degrees associated with
formulas in the knowledge base. Compared to the existing works, this extension allows to equip DL-
Lite with many other reasoning capabilities like merging (Chapter 4), inconsistency handling (Chapter 7)
when the assertional base is prioritized.

2.3 Belief change

As pointed out in Section 1.2, there are several lines of research that aim to equip ontologies with ad-
ditional reasoning abilities (in addition to classical ones). In this thesis, we consider the problem of
ontology evolution, ontology merging and ontology repairing, with a focus on the context of Ontology-
Based Data Access. These problems are respectively closely related to belief revision, belief merging
an inconsistency handling in a propositional logic setting. This section gives a brief overview on these
topics.

2.3.1 Belief revision

Originally, description logics have been introduced to represent the static aspects of a domain of interest
[Baader et al., 2010]. However, for some applications, knowledge may not be static and evolves from
a situation to another in order to cope with changes that occur over time. Such dynamic aspects have
been recognized as important problems (e.g. [Qi et al., 2006c; Calvanese et al., 2010; Wang et al., 2010;
Kharlamov et al., 2013]) and often concern the situation where new information should be taken into
account requiring to modify the old one while ensuring the consistency of the result. Such problem is
well-known as belief revision.

Belief revision problem in a propositional logic setting

Belief revision has been defined as knowledge change and was characterized for instance by the well-
known AGM postulates [Alchourrón et al., 1985]. These postulates are based on the following three
main ideas:

1. The principle of priority 4 which states that the priority between beliefs is given to the new pieces

4Note that the notion of priority here refers to the fact that the new information is more reliable than the old one while in
a prioritized setting two pieces of information may have different priority levels reflecting their plausibility with respect to to
available knowledge. Indeed, the priority of the new information refers to the dynamic aspect while in a static context, one can
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of information,

2. The principle of consistency which states that the result of the revision operation must be a consis-
tent set of beliefs, and

3. The principle of minimal change which states that as less as possible initial beliefs should be
changed in the revision operation.

Belief revision has been largely considered in the literature when knowledge bases are encoded using
a propositional language. In a propositional logic setting, the AGM postulates were equivalently pre-
sented in [Katsuno and Mendelzon, 1991]. Given a knowledge base and a new information expressed
respectively using two propositional formulas φ and ϕ and a revision operator, denoted by ◦, then φ ◦ ϕ
should satisfy the following postulates, well-known as KM postulates [Katsuno and Mendelzon, 1991]:

(R1) φ ◦ ϕ implies ϕ

(R2) if φ ∧ ϕ is satisfiable, then φ ◦ ϕ ≡ ϕ ∧ φ

(R3) if ϕ is satisfiable, then φ ◦ ϕ is satisfiable

(R4) if φ1 ≡ φ2 and ϕ1 ≡ ϕ2, then φ1 ◦ ϕ1 ≡ φ2 ◦ ϕ2.

(R5) (φ ◦ ϕ) ∧ ψ implies φ ◦ (ϕ ∧ ψ)

(R6) if (φ◦ϕ)∧ψ is satisfiable, then φ◦(ϕ∧ψ) implies (φ◦ϕ)∧ψ (where ψ is a propositional formula).

Intuitively, postulate (R1) states that the models of the revised formula with the new information ϕ
are also models of ϕ, or simply the new information should be entailed from the result of revision. (R2)
says that if the new information is consistent with the initial one, then the result of revision of φ with ϕ is
made by their intersection. (R3) indicates that the result of revision is satisfiable if the new information
is satisfiable. (R4) expresses the syntax independence of the revision operator. (R5) and (R6) together
ensure closeness, i.e. the minimal change principle.

It is important to note that the KM postulates are equivalent to AGM postulates [Katsuno and Mendel-
zon, 1991] in a propositional logic setting. Moreover, a representation theorem, based on the notion of
syncretic assignment was proposed. Recall that a faithful assignment is a function that defines a total pre-
order ≤φ over the set of interpretations that represents the formula φ. Let mod(φ) be the set of models
of φ, the pre-order ≤φ associated to φ is a faithful assignment if and only if:

• if I ∈ mod(φ) and I ′ ∈ mod(φ), then I =φ I
′,

• if I ∈ mod(φ) and I ′ /∈ mod(φ), then I <φ I ′,

• if φ ≡ ϕ, then ≤φ=≤ϕ.

A revision operator satisfies postulates (R1)-(R6) if there exist a faithful assignment that associates to
φ a total pre-order ≤φ such that:

mod(φ ◦ ϕ) = min(mod(ϕ),≤φ)

Note that there exists other representation theorems used to define revision operators in addition of
the representation theorem based on faithful assignment. Based on these works, several belief revision
approaches are proposed. One can classify these approaches in two main classes:

have different pieces of information with different priority/uncertainty levels.
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Semantics approaches : well-known as model-based approaches, they are based on the interpretations
of the formulas such as Grove’s approach based on spheres [Grove, 1988], revision operators based
on distance between interpretations (e.g. [Borgida, 1985; Dalal, 1988; Satoh, 1988]), etc.

Syntactic approaches : well-known as formula-based approaches, they are based on formulas such as
semi-revision [Hansson, 1997], selective revision [Fermé and Hansson, 1999], removed set revision
[Papini, 1992; Würbel et al., 2000], etc.

Note that AGM postulates were defined for revising belief sets, i.e deductively closed sets of formulas,
possibly infinite. Besides, an axiomatic characterization for revising belief bases, namely finite set of
formulas was given in [Fuhrmann, 1997; Hansson, 1998].

There is an extended approach of revision, called iterative revision [Lehmann, 1995; Darwiche and
Pearl, 1997] that permits revision of a knowledge base with a sequence of pieces of information, namely
(ϕ1, ...ϕn) where as usual each piece of information ϕi has the priority over the set of initial beliefs and
ϕj is more preferred than ϕi for 1 < i < j < n. A logical characterization of iterative revision was given
by Darwiche and Pearl in [Darwiche and Pearl, 1997]. There are several operators for iterative revision
such as: revision proposed by Boutilier [Boutilier, 1993], possibilistic revision [Benferhat et al., 2002c],
revision approach based on polynomials [Benferhat et al., 2002b], etc.

Revision within description logic settings

Recently, several works have been proposed for revising DLs knowledge bases. In [Flouris et al., 2004;
Flouris et al., 2005] an adaptation of the AGM postulates was discussed in order to generalize it to DLs.
The authors in [Qi et al., 2006c] focused on revising a finite representation of belief sets. They used a
semantic reformulation of AGM postulates, done by Katsuno and Mendelzon [Katsuno and Mendelzon,
1991], to extend it to DLs knowledge bases. Recently, several works were proposed to define revision
operators for description logics. In [Halaschek-wiener et al., 2006; Ribeiro and Wassermann, 2007;
Qi et al., 2008a] an extension of kernel-based revision and semi-revision operators to DLs frameworks
has been proposed. It is closely related to the one proposed by [Hansson, 1997] in a propositional logic
setting. In [Qi and Yang, 2008; Qi and Du, 2009; Wang et al., 2010], model-based approaches for revising
DLs have also been proposed.

However, as pointed out in [Calvanese et al., 2010] model-based approaches of revision are not
expressible in DL-Lite in the sense that the result of revision is not expressible in the language in which
the initial knowledge base is expressed. Moreover, most of the approaches are restricted to the revision
of the TBox [Qi and Du, 2009; Zhuang et al., 2014] or the ABox (e.g. [Liu et al., 2006; Gao et al.,
2012]) but not both. Regarding DL-Lite knowledge bases, few works have been proposed for the revision
problem. In [Calvanese et al., 2010; Kharlamov and Zheleznyakov, 2011], a formula-based approach
for revising DL-Lite knowledge bases has been presented. Two algorithms have been proposed: one for
revising the TBox, and the other for revising the ABox. Another operator for ABox revision in DL-Lite
based on graph structure has been introduced in [Gao et al., 2012]. In this work, the new information is
restricted to ABox assertions. In [Zhuang et al., 2014] a revision approach based on propositional logic
reduction was proposed to revise a TBox.

In Chapter 6, we investigate a formula-based approach for revising DL-Lite with either a TBox axiom
or an ABox assertion. We consider the case of a DL-Lite knowledge base where the ABox is prioritized.
In such setting, a new TBox axiom can only expand (enrich) generic knowledge while revision process
comes down to throw out some assertional facts in order to restore consistency.
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2.3.2 Belief merging

Knowledge bases merging or belief merging (e.g. [Bloch et al., 2001; Everaere et al., 2010; Everaere
et al., 2012]) is an important problem addressed in many application areas such as multi-agent systems,
distributed databases, etc. It focuses on aggregating pieces of information issued from distinct, and may
be/potentially conflicting or inconsistent, sources of information. It leads to a global point of view of
the considered problems by taking advantage of pieces of information provided by each source. Merging
pieces of information requires to use some fusion operators that permit to combine them while respecting
different constraints between sources. In the literature, several fusion operators have been proposed which
depend on the nature and the representation of knowledge such as merging propositional knowledge bases
(e.g. [Konieczny and Pino Pérez, 2002]), prioritized knowledge bases (e.g. [Delgrande et al., 2006]) or
weighted logical knowledge bases (e.g. [Benferhat et al., 1993a]).

The next two sections introduce merging in the framework of propositional logic and possibilistic
logic.

Merging within a propositional logic setting

In propositional logic frameworks, a belief base denoted by Ki, is constituted by a finite set of proposi-
tional formulas. Let us use E = {Ki, ...,Kn} to denote a multi-set, called belief profile, to represent the
belief bases to be merged. Assume that each belief base is consistent. Merging multiple consistent belief
bases may lead to conflicts between bases. Hence, the aggregation process requires to perform suitable
merging operators.

Let us use 4 to denote a merging operator and 4(E) to denote the result of this merging which is
equal to a propositional formula (i.e. a knowledge base). In some cases, a merging operator is submitted
to integrity constraints, denoted by ρ, generally expressed by a set of propositional formulas. Hence,
a merging operation with integrity constraints, denoted by 4ρ(E), must retain the integrity constraints
explicitly represented in the merging result and not simply implicitly consistent with the merging result.
A logical characterization of integrity constraints merging operators has been proposed in [Konieczny and
Pino Pérez, 2002] through a set of rational postulates extended for the one proposed for belief revision.
We recall rational postulates proposed to characterize the ideal behavior of a fusion operator.

(IC0) 4ρ(E) |= ρ

(IC1) If ρ is consistent, then4ρ(E) is consistent.

(IC2) If
∧
K∈E K is consistent with ρ, then4ρ(E) =

∧
K∈E K ∧ ρ

(IC3) If E1 ≡ E2 and ρ1 ≡ ρ2, then4ρ1(E1) ≡ 4ρ2(E2)

(IC4) If K |= ρ and K ′ |= ρ, then4ρ ({K,K ′})∧K is consistent if and only if4ρ ({K,K ′})∧K ′ is
consistent.

(IC5) 4ρ (E1) ∧4ρ (E2) |= 4ρ (E1
⊔
E2)

(IC6) If4ρ (E1) ∧4ρ (E2) is consistent, then4ρ (E1
⊔
E2) |= 4ρ (E1) ∧4ρ (E2)

(IC7) 4ρ1 (E) ∧ ρ2 |= 4ρ1∧ρ2 (E)

(IC8) if4ρ1 (E) ∧ ρ2 is consistent, then4ρ1∧ρ2 (E) |= 4ρ1 (E) ∧ ρ2

Intuitively, these postulates seek for a set of propositional formulas that represents the fusion result
in the most faithful way to merge belief bases while respecting the integrity constraints. Indeed, the first
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postulate (IC0) states that the fusion result must satisfy the integrity constraints. (IC1) ensures that if
the set of integrity constraints is consistent then the fusion result must also be consistent. (IC2) means
that whenever is possible, the fusion result is simply the conjunction of the merged beliefs bases and the
integrity constraint. (IC3) simply refers to the syntax-irrelevancy principle and it states that if two belief
profiles are equivalent and that two integrity constraint sets are logically equivalent then the resulting
belief base of each belief profile are logically equivalent. (IC4) assures that when merging a pair of
belief bases then the merging operator must not give any preference to one of them. (IC5) and (IC6)
together affirm that if possible one can find two subgroups of sources which are in agreement on at least
one interpretation, then the fusion result is exactly the interpretations on which the two groups are in
agreement. Finally, (IC7) and (IC8) are introduced to preserve the notion of closeness (early presented
in KM postulates [Katsuno and Mendelzon, 1991] through the postulates R5 and R6).

In [Konieczny and Pino Pérez, 2002] merging operators were classified in two major subclasses,
namely majority merging operators and arbitration merging operators. Formally, the family of majority
merging operators is logically characterized by the following postulate:

(Maj) ∃n ∈ N such that4ρ (E1
⊔
En2 ) |= 4ρ (E2)

This postulate affirms that if a particular set of beliefs is repeated quite enough in the whole set of
belief profile then this particular set of beliefs must prevail in the fusion result. Hence, it is obvious that
majority operators behavior is sensitive to redundancy.

Contrary to majority merging operators that take into account the opinion of the majority about a
situation, arbitration merging operators try to better satisfy opinions as many opinions as possibles among
integrity constraints [Konieczny and Pino Pérez, 2002]. Namely, if a set of preferred opinions among a
set of integrity constraints ρ1 for a belief base K corresponds to the preferred opinions among the set of
integrity constraints ρ2 of another base K ′ and if the opinions that belong to a set of integrity constraints
but not to the other are equally preferred for the whole groups ({K,K ′}), then the subset of preferred
opinions among the disjunction of integrity constraints will coincide with the preferred opinions of each
base among their respective integrity constraints. Formally, the arbitration merging operators are logically
characterized by the following postulate:

(Arb)

4ρ1 (K1) ≡ 4ρ2 (K2)
4ρ1↔¬ρ2 ({K1,K2}) (ρ1 ↔ ¬ρ2)
ρ1 2 ρ2
ρ2 2 ρ1

⇒4ρ1∨ρ2 ({K1,K2}) ≡ 4ρ1 (K1)

Now, according to rational postulates IC0-IC8, an integrity constraint merging operator is logically
defined by a representation theorem according to the notion of syncretic assignment [Konieczny and Pino
Pérez, 2002]. The syncretic assignment tries to build up a pre-order on interpretations and it is defined as
an extension faithful assignment defined for belief revision [Katsuno and Mendelzon, 1991]. Note that
a majority syncretic assignment and arbitration syncretic assignment are also defined by adding some
conditions to those of syncretic assignment.

According to the notion of syncretic assignment, the representation theorem for integrity constraint
merging operators states that the result of merging the belief sets with the merging operator4ρ is simply
represented by the pre-order ≤E on the interpretations that consist in computing minimal interpretations
to the pre-order associated to the belief bases to be merged. Namely, an integrity constraint merging
operator satisfies postulates (IC1)-(IC8) if and only if there exists a syncretic assignment that associates
to E a total pre-order ≤E such that:

mod(4ρ(E)) = min(mod(ρ),≤E)
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Generally, pieces of information provided by each source are represented, on one hand, syntacticly
using a propositional set of formulas, and on the other hand, semantically through a set of interpretations.
Thus, as for belief revision approaches, one can identify two categories of merging operators.

Semantic merging operators well-known as model-based merging operators, they are parametrized by
a distance and an aggregation function. Merging process consists first in ranking interpretations
using some distance measures, then combining them using an aggregation function to generally
obtain a unique ordering on interpretations for all sources of information. There are several model-
based operators: The Summerging operator which is considered as majority merging operator and
satisfies the postulate (IC0)-(IC8), the Max merging operator which is considered as an approxi-
mation of arbitration merging operator, theGMax operator [Konieczny and Pino Pérez, 2002], the
DA2 operators which are based on a distance (D) and two aggregation function (A2), the disjunctive
operators [Everaere et al., 2010], etc.

Syntactic merging operators well-known as formula-based merging operators, they consist to merge
formulas of each belief base to obtain a unique consistent belief base that represents all sources of
information. The fusion result which must be a consistent set of formulas depends on the syntactic
representation of the merged belief bases. This family of merging operators tries to find from the
union of merged belief bases, the consistent and maximal subsets of formulas. Note that the maxi-
mality criterion here is in the sense of set inclusion (it can also be defined in terms of cardinality).
Formally, let us use MaxCons (K, ρ) to denote the collection of the maximal consistent subsets
from K ∪ ρ which necessarily satisfies the integrity constraints ρ. Namely, a maximal consistent
subset M ∈MaxCons (K, ρ) satisfies the following requirements: i) M ⊆ K ∪ρ, ii) ρ ∈M , and
iii) if M ⊂M ′ ⊆ {K ∪ ρ} then M ′ is inconsistent.

Let MaxCons (E , c) = MacCons(
⋃

Ki∈E
Ki, ρ). When the maximality criterion is in the sense of

cardinality criterion, we will useMaxConscard (E , ρ) as notation. One can define the combination
operators as follows: Let E be a belief set an ρ be an integrity constraint:

4C1
ρ (E) =

∨
MaxCons (E , ρ)

4C3
ρ (E) =

∨
{M : M ∈MaxCons (E ,>) and M ∪ {ρ} is consistent}

4C4
ρ (E) =

∨
MaxConscard (E , ρ)

4C5
ρ (E) =

∨
{M ∪ {ρ} : M ∈ MaxCons (E ,>) and M ∪ {ρ} is consistent} if this set is not

empty, otherwise ρ.

As pointed out in [Konieczny and Pino Pérez, 2002], the combination operators are rather similar
to the techniques dedicated to inconsistency-tolerant reasoning from an inconsistent belief bases,
than merging operators. Hence, combination operators do not exploit the repartition of the infor-
mation between sources. Besides, they generally lose the original information provided by merged
information sources. To overcome this inconvenient behavior of combination operators, one can
define selection functions in the same way as the belief revision. Those selection functions try to
select from the whole maximal consistent sets a group in order to attenuate as much possible the
fusion result produced by combination operators.

Merging in a possibilistic logic setting

In a possibility theory framework, several fusion operators (e.g. [Dubois et al., 1992; Benferhat et al.,
1997b; Benferhat and Kaci, 2003]) have been proposed for merging pieces of information issued from
different and potentially conflicting or inconsistent sources. In general, the possibilistic fusion process
first consists in combining a set of possibility distributions that encode the information in order to obtain
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a unique possibility distribution that represents the global point of view of the available information, and
then, it provides for each fusion operator used to combine possibility distributions its syntactic counterpart
when merging possibilistic knowledge bases.

Let E = {B1, ...,Bn} be n possibilistic knowledge bases to be merged where each of them is asso-
ciated to a possibility distribution, denoted by πi. Let V (I) = 〈π1(I), ..., πn(I)〉 be a vector that groups
for each interpretation all possibility degree πi(I). When aggregating possibility distributions, two main
properties are required:

• If ∀i, πi(I) = 1 then π� = 1 and,

• If ∀i, πi(I ′) ≤ πi(I) then π�(I ′) ≤ π�(I).

The first property is called consistency property and it states that if the different sources agree that
nothing prevents I to be the real world, then the fusion result must confirm the total possibility of I .
Intuitively, this property ensures the consistency of the fusion result if the union of the merged belief bases
is consistent. The second property is called monotonicity property and it affirms that if all information
sources are agree that an interpretation I is at least as preferred as another interpretation I ′, then the
fusion result must conserve this preference.

According to the properties presented above, a possibilistic merging approach first introduces a se-
mantic merging operator to combine possibility distributions, represented by V (I), to obtain a unique
possibility distribution, denoted by π�. Then it provides the syntactic counterpart for this operator used
to combine possibility distributions for merging possibilistic knowledge bases and obtain a unique base,
denoted by B�5 such that πB� = π�.

The basic aggregation modes proposed for possibilistic merging are the conjunction and the disjunc-
tion modes.

Conjunctive operators When all the information sources are considered as equally and fully reliable,
then one can exploit the complementarity between the difference sources. Namely, when the available
information is inconsistent from one source to another. Thus all values that are considered as impossible
by one source but possible by the others are rejected. A conjunctive merging operator, denoted by ⊕ is
defined as follows:

∀a ∈ [0, 1] ,⊕(a, 1) = ⊕(1, a) = a

The result of the syntactic counterpart of conjunctive merging operator is a possibilistic knowledge
base obtained as follows:

B⊕ = B1 ∪ B2 ∪ {(ϕi ∨ φj , 1−⊕ (1− ai, 1− bj))}

In this case, possibilistic fusion preserves all the available information when the union of merged
sources is consistent.

Now, when the information sources are considered as dependent, one can see the redundancy as a way
of strengthening or confirmation. Whereas when the information sources are assumed to be independent,
the redundancy may be ignored. Indeed, the conjunctive aggregation modes may be adapted to these two
kinds of situations. In the first case (dependent information sources) the conjunctive aggregation modes
are called idempotent aggregation operators and they satisfy the following property:

5For the sake of simplicity and to respect notations proposed in the original papers on possibilistic merging, we used B�
instead of 4�.
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∀a ∈ [0, 1] ,⊕(a, a) = a

It is obvious that idempotent operators ignore redundancy. Namely, if two different sources provide
the same possibility distribution, then the result of their aggregation is simply the same possibility dis-
tribution. As an example of idempotent conjunctive operator, the well-known minimum (Min) operator
defined as follows:

πmin(I) = min(π1(I), ..., πn(I))

As syntactic counterpart associated to πmin(I), we have the following possibilistic knowledge base:

B⊕ = B1 ∪ B2

In [Benferhat et al., 2000], it was shown that, in some conditions, that the conjunctive operator may
be considered as a majority merging operator. Formally, there exists n such that (B1 ⊕ Bn2 ) |= B2 where
Bn2 is the aggregation of B2 with ⊕ for n iterations.

Disjunctive operators When the different sources are conflicting and having the same reliability, it
seems to be unsafe to privilege one source to another. Namely, if the union of two distinct knowledge
bases B1 and B2 is inconsistent, then the fusion result should neither imply B1 nor B2. Such situation
requires to use a disjunctive operator, denoted by ⊗, and defined as follows:

∀a ∈ [0, 1] ,⊗(a, 1) = ⊗(1, a) = 1

As syntactic counterpart, one can associate to ⊗ the following possibilistic knowledge base:

B⊗ = {(ϕi ∨ φj , 1−⊕ (1− ai, 1− bj))}

According to [Benferhat et al., 2000], a disjunctive operator may lead to a situation of total ignorance.
To this end, another class of disjunctive operators, called regular operators was introduced. This class
satisfies the following condition.

∀a 6= 1, ∀b 6= 1,⊗ (a, b) 6= 1

Intuitively, if the different sources consider an information as somewhat certain, then when aggregat-
ing them this information must be also somewhat certain. Clearly, in the presence of inconsistency the
fusion result recovers the common set between belief bases. Formally, a regular disjunctive operator is as
follows:

B∗⊕ = B∗1 ∨ B∗2

where B∗i is the standard knowledge bases associated to B by ignoring all the weights in B.
Finally, note that the disjunctive regular operators are not appropriate when the sources are assumed

to be consistent since these operators promote less informative beliefs.

Ontology merging Regarding ontology merging, there are few approaches on belief merging for de-
scription logics in the spirit of standard belief merging. However, the existing approaches (e.g. [Noy
and Musen, 2000; Kotis et al., 2006; Moguillansky and Falappa, 2007]) are mainly based on techniques
proposed in ontology debugging which is closely related to inconsistency handling in propositional logic.
Moreover, there is to the best of our knowledge no approach for merging prioritized DLs knowledge
bases.
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2.3.3 Inconsistency handling

In the artificial intelligence community, it is well-known that nonmonotonic reasoning and revision are
considered as the two sides of the same coin [Makinson and Gärdenfors, 1989]. In general, revision or
merging of different information sources may lead to inconsistency problems. Several approaches were
proposed to deal with inconsistency in flat propositional logic knowledge bases (by a flat propositional
logic knowledge base, we mean a base where all the formulas have the same priority) and prioritized
knowledge bases. This is generally done through the definition of many suitable notions for consequence
relations. There exist several attitudes when faced to inconsistency. In what follows, we recall the main
approaches of inconsistency handling:

Restoring consistency Consists in getting rid of inconsistency by first computing the set of maximal or
not maximally consistent subsets that restore consistency of the initial base, then using them to
perform inference. Let K be an inconsistent knowledge base. Inference relation comes down first
to compute maximally consistent subbases of K. A maximally consistent subset, denoted by K, is
defined as follows:

• K ′ ⊆ K
• K ′ is consistent

• if K ′ ⊂ K ′′ ⊆ K, then K ′′ is inconsistent

Let MC(K) denote the set of maximally consistent subsets of K. Many inference strategies are
proposed to select bases fromMC(K) in order to perform inference. The well-known inconsistency-
tolerant inference relations are: the universal inference [Rescher and Manor, 1970], existential in-
ference [Rescher and Manor, 1970], argued inference [Benferhat et al., 1993b; Amgoud, 2005;
Amgoud and Prade, 2009], cardinality-based inference [Benferhat et al., 1997a], safe inference
[Benferhat et al., 1992]. An extension of these inference strategies is proposed when the knowl-
edge base is layered or stratified (i.e. the formulas are attached with priorities) [Brewka, 1989;
Benferhat et al., 1998a]. In (e.g. [Lang and Marquis, 2002; Lang and Marquis, 2010; Konieczny et
al., 2005]) another approach, based on the notion of variable forgetting, is proposed.

Paraconsistent logics This consists in accepting inconsistency while coping with it by weakening infer-
ence relations. This can be done either by weakening logical connectors (see for instance [Besnard
and Hunter, 1995; Hunter, 1998; Dubois et al., 2003] for more details) or localizing inconsistency
using, for instance, richer semantics (e.g. the multi-valued-semantics) (see for instance [Konieczny
and Marquis, 2002; Konieczny et al., 2008] for more details).

Inconsistency analysis : A standard knowledge base is either considered as completely consistent or
completely inconsistent. In case of inconsistency, one cannot deduce meaningful conclusions.
As mentioned in Section 2.2.2, one way for reasoning is to use the subset of formulas induced
from the inconsistency degree to do reasoning. In the same way, many inconsistency approaches
were proposed for analysising and measuring the inconsistency of a knowledge base in order to
make inference (for more details, see [Hunter and Konieczny, 2005; Hunter and Konieczny, 2010;
Grant and Hunter, 2011; Grant and Hunter, 2013] for example).

Argumentation framework : Argumentation frameworks [Besnard and Hunter, 2008] offers a good
way to reason and make decision from conflicting pieces of information. Given a set of conflicting
information, argumentation helps to identify pros and cons argument for a particular conclusion
[Amgoud and Cayrol, 2002; Hunter and Konieczny, 2005; Bertossi et al., 2005b].
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Ontology debugging In the context of ontologies, several approaches are proposed to handle incon-
sistency. As explained above, there are works that dealt with inconsistency by: i) restoring consistency
(e.g. [Kalyanpur et al., 2005; Flouris et al., 2006a; Lam et al., 2008; Corcho et al., 2009]); ii) using
paraconsistent semantics (e.g. [Ma et al., 2011; Zhou et al., 2012]); and iii) measuring inconsistency
(e.g. [Qi and Hunter, 2007; Ma and Hitzler, 2010]); and using argumentation (e.g. [Zhang and Lin, 2013;
Croitoru and Vesic, 2013])

A crucially important problem that arises in Ontology-Based Data Access is how to manage inconsis-
tency; otherwise the knowledge base is meaningless and useless. In such setting, inconsistency is defined
with respect to some assertions that contradict the terminology. Typically, a TBox is usually verified
and validated while the assertions can be provided in large quantities by various and unreliable sources
and may contradict the TBox. Moreover, it is often too expensive to manually check and validate all the
assertions. This is why it is very important in OBDA to reason in the presence of inconsistency. This
consists in accepting and keeping the inconsistencies in the knowledge base while coping with them when
performing inference (i.e. while answering queries).

Regarding DL-Lite, and especially within OBDA setting, existing works [Giacomo et al., 2007;
Lembo et al., 2010; Bienvenu, 2012; Bienvenu and Rosati, 2013], basically inspired by the approaches
proposed in the database area, tried to deal with inconsistency in DL-Lite by proposing and adapting
several inconsistency-tolerant inference methods. All the proposed approaches are based on the notion
of repair (restoring consistency) which is closely related to the notion of database repair defined in order
to answer queries raised to inconsistent databases. A repair of a database contradicting a set of integrity
constraints is a database obtained by applying a minimal set of changes in order to restore consistency.
This notion of repair was extended to the DL-Lite setting by defining assertional-based repair for DL-
Lite knowledge bases which is simply a maximal assertional subbase consistent with the terminology. In
the DL-Lite framework, the notion of assertional-based reparation is in the sprit of maximal consistent
subsets defined in propositional logic. Clearly an assertional-based reparation is a maximal assertional
subbase of the ABox that is consistent with the TBox.

In this thesis, we are interested in repairing or restoring consistency for DL-Lite knowledge bases.
Many inference strategies will be discussed in Chapter 5, within an OBDA setting, and in Chapter 7
when the ABox is prioritized.

2.4 Conclusion

In the first part of this chapter, we recalled the basic concepts of possibility theory which offers a natural
way to deal with ordinal and qualitative uncertainty. We then reviewed the main extensions of description
logics to handle uncertainty/imprecision when specifying ontologies. The second part of this chapter
introduced the belief change problem (merging and revision) and the different techniques for handling
inconsistency in propositional logic settings while recalling relevant related works done in the description
logics area. The rest of this thesis investigates these issues within DL-Lite frameworks, especially when
the knowledge base is prioritized. To this end, we need to extend the DL-Lite languages to support
uncertainty or priority between axioms that represent a domain of interest. Next chapter studies this
extension using a possibility theory setting.
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CHAPTER 3

MIN-BASED POSSIBILISTIC DL-Lite

3.1 Introduction

Nowadays, in real world applications, knowledge is usually affected with uncertainty and imprecision.
Recently, several works have been proposed to deal with probabilistic and non-probabilistic uncertainty
[Dubois et al., 2006; Lukasiewicz et al., 2012a] on the one hand and to deal with fuzzy information
[Bobillo and Straccia, 2012; Lukasiewicz and Straccia, 2009] on the other hand. A particular attention
was given to fuzzy extensions of DLs (e.g. [Bobillo et al., 2012; Bobillo et al., 2013; Pan et al., 2007;
Straccia, 2006b; Straccia, 2013]. Besides, some works are devoted to possibilistic extensions of DLs (e.g.
[Dubois et al., 2006; Hollunder, 1995; Qi et al., 2011]) which are basically based on standard reasoning
services.

This chapter concerns the development of uncertainty-based DL-Lite using possibility theory. We
focus on main fragments of DL-Lite. Namely DL-Litecore which is the simplest DL-Lite language, DL-
LiteF and DL-LiteR which underlie the OWL2-QL language. Indeed, we first develop our study on the
extension of DL-Litecore within a possibility theory setting. The restriction to DL-Litecore is mainly
motivated by the clarity and lightness of the language on which we can easily show how the extension
of DL-Lite to the possibility theory can be achieved. We then extend our approach to richer DL-Lite
languages such as DL-LiteF or DL-LiteR.

An important question addressed in this chapter is: “can one extend the expressive power of DL-Lite,
to deal with possibilistic uncertain information, without increasing the computational cost?” This chapter
provides a positive answer to this question.

Note first that some existing extensions of possibilistic DLs [Qi et al., 2007b; Qi et al., 2007a] may
need some extra computational costs (although their inference process is still in P). For instance, in some
existing approaches (e.g. [Qi et al., 2007b; Qi et al., 2007a]), computing inconsistency degrees comes
down to achieve log2(n) calls where n is the size of the uncertainty scale 1) to the inconsistency checking
in standard (without uncertainty) DLs. This method, based on a dichotomy search, is closely related
to the method proposed in [Dubois et al., 1994] for computing inconsistency degrees of a possibilistic
propositional knowledge base (see Section 2.2.2).

This chapter departs from several approaches for computing the inconsistency degrees of a knowledge
base and follows another direction to achieve reasoning tasks in possibilistic DL-Lite. The idea is to
slightly modify the algorithm for checking the inconsistency of a knowledge base used in standard DL-
Lite by propagating the uncertainty degrees associated with axioms. The uncertainty propagation does
not generate any extra computational cost.

Note that a tool for representing and reasoning in possibilistic DL-Lite framework is implemented. A
description of this tool is provided in the appendix A.

The rest of this chapter is organized as follows: Section 3.2 rephrases the possibility theory frame-
work over DL-Lite interpretations. Section 3.3 discusses the possibilistic extension of DL-Litecore,
denoted π-DL-Litecore, where we present its syntax and its semantics. Section 3.4 introduces the so-
called π-negated closure of a π-DL-Litecore knowledge base. Section 3.5 gives a method to compute

1number of levels in the used scale
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the inconsistency degree of a π-DL-Litecore knowledge base using query evaluations. Section 3.6 ex-
tends possibiliticDL-Litecore toDL-LiteF andDL-LiteR, two important fragments of DL-Lite family.
Section 3.7 studies different standard possibilistic inferences. Section 3.8 addresses the problem of query
answering within π-DL-Lite framework. Section 3.9 deals with related works and Section 3.10 con-
cludes the chapter.

3.2 Possibility distribution over DL-Lite interpretations

In this section, we rephrase the semantics of possibility theory over DL-Lite interpretations. Let L be a fi-
nite DL-Lite description language as defined in Section 1.4, Ω be a universe of discourse (here represented
by a set of DL-Lite interpretations) and I = (∆I , .I) ∈ Ω be a DL-Lite interpretation.

3.2.1 Possibility distribution

In the context of possibilistic DL-Lite, a possibility distribution is a mapping, denoted by π, from the
universe of discourse Ω to the unit interval [0, 1]. It assigns to each interpretation I ∈ Ω a possibility
degree π(I) ∈ [0, 1] that represents its compatibility or consistency degree with respect to the set of
available knowledge. When π(I) = 1, we say that I is totally possible and it is fully consistent with the
set of available knowledge. When π(I) = 0, we say that I is impossible and it is fully inconsistent with
the set of available knowledge. Two special cases exist:

1. Total ignorance when ∀I ∈ Ω, π(I) = 1.

2. Complete knowledge when ∃I ′ ∈ Ω, π(I ′) = 1 and ∀I ∈ Ω, I ′ 6= I, π(I) = 0.

A possibility distribution π is said normalized if there exists at least one totally possible interpretation,
namely ∃I ∈ Ω such that π(I) = 1, otherwise, we say that π is sub-normalized. The concept of
normalization reflects the presence of conflicts in the set of available information. For two interpretations
I and I ′, we say that I is more consistent or more compatible than I ′ (with respect to the available
knowledge) if π(I) > π(I ′).

3.2.2 Possibility and necessity measures

Let us consider M to be a subset of Ω. Let M be the complementary of M , namely M = Ω \M . In
a standard possibility theory, given a possibility distribution π, one can define two measures from 2Ω to
the interval [0, 1] which discriminate between the plausibility and the certainty regarding the subset M .
These two measures are:

Possibility measure A possibility measure, denoted by Π, is a function that assigns to each M ⊆ Ω a
degree between [0, 1]. Given a possibility distribution π, Π(M) is defined as:

Π(M) = sup{π(I) : I ∈M}.

Π(M) evaluates to what extent the subset M is compatible with the available knowledge encoded
by the possibility distribution π. When Π(M)=1, we say that M is totally possible if Π(M) = 0 and
M is somewhat possible if Π(M) ∈ ]0, 1[. When Π(M)=1 and Π(M)=1, we say that there is a total
ignorance about M . A possibility measure Π satisfies the following properties for normalized possibility
distributions:
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∀M ⊆ Ω, ∀L ⊆ Ω,Π(M ∪ L) = max(Π(M),Π(L)),

and

∀M ⊆ Ω,∀L ⊆ Ω,Π(M ∩ L) ≤ min(Π(M),Π(L)).

Necessity measure A necessity measure, denoted by N , is a function dual to Π. It is defined from Π
as follows:

N(M) = 1−Π(M).

N(M) evaluates to what extent M is certainty entailed from available knowledge encoded by π.
When N(M)=1, we say that M is certain. When N(M) ∈ ]0, 1[, we say that ϕ is somewhat certain.
When N(M) = 0 and N(M) = 0, we say that there is a total ignorance about M .

A necessity measure N satisfies the following properties for normalized possibility distributions:

∀M ⊆ Ω,∀L ⊆ Ω, N(M ∩ L) = min(N(M), N(L)),

and

∀M ⊆ Ω, ∀L ⊆ Ω, N(M ∪ L) ≥ max(N(M), N(L)).

Remark 3.1. Clearly not all subsets of Ω, the universe of discourse defined over a set of interpretations,
represent axioms of a DL-Lite language. Namely, if M is a subset of Ω, then it may happen that there
is no φ, an axiom of a DL-Lite language, such that M = [φ] where [φ] denotes the models of φ. This is
due to the fact that DL-Lite is not a very expressive language. For instance, assume that our vocabulary
is composed of one concept A and two individuals a1 and a2. Assume that we have two interpretations
I1 = (∆I = {a1, a2}, .I1) and I2 = (∆I = {a1, a2}, .I2) such that AI1 = {a1} and AI2 = {a2}.
Clearly, {I1, I2} does not correspond to any axiom of our DL-Lite language, since {I1, I2} intuitively
encodes the formulaA(a1)∨A(a2), while the disjunction operator between two assertions is not allowed
in the DL-Lite language.

In the following, possibility and necessity measures are assumed to be only defined over a DL-Lite
language. If φ is an axiom of the DL-Lite language, we use [φ] to denote the set of models of φ, we define
its associated possibility measure and its associated necessity measure respectively as follows:

Π([φ]) = sup
I∈Ω
{π(I) : I |= φ},

and

N([φ]) = 1− sup
I∈Ω
{π(I) : I 6|= φ}.

where I 6|= φ means that I is not a model of φ.

Remark 3.2. In standard propositional possibilistic logic, the necessity measure is the dual of the possi-
bility measure and it is defined by N([ψ]) = 1 − Π([¬ψ]) where ψ is a propositional formula and [ψ]
is its associated propositional models (see Section 2.2.2). In possibilistic DL-Lite, the necessity measure
cannot be defined as the dual of the possibility measure because the negation of a DL-Lite axiom is not
allowed (except if φ denotes basic facts, i.e membership assertions of the form A(a) or P (a, b)).
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3.3 Possibilistic DL-Litecore

In this section, we provide a possibilistic extension of DL-Litecore, denoted by π-DL-Litecore. We
first present the syntax of π-DL-Litecore. We then show how to generate the possibility distribution
associated with a π-DL-Litecore knowledge base. The section also contains some properties of π-DL-
Litecore.

3.3.1 Syntax of π-DL-Litecore

Let us consider Lcore a DL-Litecore description language recalled in Section 1.4. A π-DL-Litecore
knowledge base is defined as follows:

Definition 3.1. A π-DL-Litecore knowledge base K = {〈φi, αi〉 : 1, ..., n} is a finite set of possibilistic
axioms of the form 〈φ, α〉where φ is an axiom expressed in Lcore language and α ∈ ] 0, 1] is the necessity
(i.e. certainty) degree of φ.

Only somewhat certain information (namely α > 0) is explicitly represented in a π-DL-Lite knowl-
edge base. A weighted axiom 〈φ, α〉 means that the certainty degree of φ is at least equal to α. The
higher the degree α the more certain is the axiom or the fact. The degree α can be associated either with
an inclusion assertion between concepts (TBox), or with a membership assertion (ABox). A π-DL-Lite
knowledge base K will also be represented by a couple K=〈T ,A〉 where both elements in T and A are
at least somewhat certain. Note that in the definition of possibilistic-DL knowledge base proposed by
Hollunder in [Hollunder, 1995], a possibilistic axiom is attached with a possibility value or a necessity
value. Here, we only represent certainty using necessity values.

Note that, if we consider ∀αi, αi = 1 then we represent a classical DL-Lite knowledge base:
K∗ = {φi : 〈φi, αi〉 ∈ K}.

Example 3.1. Let Loyal, Discount, NeedBased, Impulse and Wandering be five atomic concepts
that represent different types of customers. Let FidelityService be an atomic concept that represents
fidelity service to be accorded to loyal customers. Let satisfiedBy be an atomic role that represents
whether a loyal customer is satisfied by a fidelity service. We consider the following π-DL-Lite knowl-
edge base where we use an ordinal uncertainty scale {0, γ1, ..., γn, 1} with 0<γ1<γ2<...<γn<1 and its
possibilistic TBox T contains the following axioms:

〈DiscountvLoyal, γ6〉
〈NeedBasedv¬Loyal, γ2〉
〈Impulsev¬NeedBased, γ10〉
〈∃satisfiedBy−vFidelityService, 1〉

〈ImpulsevDiscount, γ3〉
〈NeedBasedvDiscount, γ8〉
〈WanderingvImpulse, γ5〉
〈∃satisfiedByvLoyal, 1〉

and its possibilistic ABox A contains the following axioms:

〈Wandering(John), γ4〉
〈NeedBased(John), γ9〉

〈Loyal(Mary), γ1〉
〈satisfiedBy(John,Gifts), γ11〉

This running example will be used in the rest of the chapter. �

In a π-DL-Lite knowledge base, the necessity degree attached with an axiom reflects its confidence
and evaluates to what extent this axiom is considered as certain. For instance in Example 3.1, the axiom
〈Discount v Loyal, γ6〉 states that “a Discount customer may be a Loyal customer with a certainty
degree equal or greater than γ6”. The degree 1 is used to represent fully certain pieces of information.
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I .I πK

I1

Loyal={John,Mary}, Discount={}
1-γ8Impulse={}, NeedBased={John}, Wandering={John},

FidelityService={Gifts}, satisfiedBy={(John,Gifts)}

I2

Loyal={John,Mary}, Discount={John}
1-γ4Impulse={}, NeedBased={John}, Wandering={}

FidelityService={Gifts}, satisfiedBy={(John,Gifts)}

I3

Loyal={John,Mary}, Discount={John}
1-γ10Impulse={John}, NeedBased={John}, Wandering={John}

FidelityService={Gifts}, satisfiedBy={(John,Gifts)}

Table 3.1: Example of a possibility distribution πK computed using Definition 3.2.

3.3.2 From a π-DL-Litecore knowledge base to a π-DL-Litecore possibility distribution

The semantics of π-DL-Litecore is given by a possibility distribution, denoted by πK, defined over the set
of all interpretations I = (∆I , .I) of a DL-Lite language Lcore (see Section 3.2). As in standard possi-
bilistic logic [Dubois et al., 1994], given a π-DL-Litecore knowledge base K, the possibility distribution
induced by K is defined as follows:

Definition 3.2. For every I ∈ Ω,

πK(I) =
{

1 if ∀〈φi, αi〉 ∈ K, I |= φi

1−max{αi : 〈φi, αi〉 ∈ K, I 6|= φi} otherwise

where |= is the satisfaction relation of DL-Lite formulas recalled in Section 1.4. 〈φi, αi〉 ∈ K means that
〈φi, αi〉 either belongs to the TBox T or to the ABox A of K.

Example 3.2. [Example 3.1 continued] Using Definition 3.2, Table 3.1 below gives possibility degree of
three interpretations I1, I2 and I3. We assume that ∆I={John, Mary, Gifts} is the same for the three
interpretations:
In this example, we can see that the interpretation I1 does not satisfy 〈Need-Basedv¬Loyal,γ2〉,
〈NeedBasedvDiscount,γ8〉 and 〈WanderingvImpulse,γ5〉. The interpretation I2 does not satisfy
〈NeedBasedv¬Loyal,γ2〉 and 〈Wandering(John),γ4〉. The interpretation I3 does not satisfy
〈NeedBasedv¬Loyal,γ2〉 and (Impulsev¬NeedBased,γ10〉. Hence, none of these interpretations is
a model of K. �

A π-DL-Litecore knowledge base K is said to be consistent if its associated possibility distribution
πK is normalized, namely there exists an interpretation I such that πK(I)=1. Otherwise, K is said to be
inconsistent and its inconsistency degree is defined semantically as follows:

Definition 3.3. The inconsistency degree of a π-DL-Litecore knowledge base K, denoted by Inc(K), is
semantically defined as follows:

Inc(K) = 1−max
I∈Ω
{πK(I)}.

If Inc(K) = 1 then K is fully inconsistent and if Inc(K)=0 then it is simply said to be consistent.
One can easily check that Inc(K) = 1 − Π([>]), where Π is the possibility measure defined in Section
3.2 and > is a tautology.
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Example 3.3. [Example 3.2 continued] One can check that the inconsistency degree of K according to
πK is: Inc(K)=1 − max

I∈Ω
{πK(I)}=γ4, and hence K is inconsistent (in fact, there is no way to find an

interpretation that satisfies K with a degree greater than γ4). �

The inconsistency degree allows to define different inference processes as follows:

Definition 3.4 (Flat inference). Let K be a π-DL-Litecore knowledge base, πK be the possibility distri-
bution associated with K and φ be a DL-Lite axiom. K |=π φ if and only if Nπ(φ) > Inc(K) where Nπ

is the necessity measure induced by πK.

Here, what is important is just to know whether the conclusion is plausible or not.
The following definition extends Definition 3.4, by requiring that a conclusion should be entailed

with some degree.

Definition 3.5 (Weighted inference). Let K be a π-DL-Litecore knowledge base, πK be the possibility
distribution associated with K and φ be a DL-Lite axiom. K |=π (φ, α) if and only if Nπ(φ) = α >
Inc(K) where Nπ is the necessity measure induced by πK.

A method based on inconsistency computation for implementing inferences of Definitions 3.4 and
Definition 3.5 is given in Section 3.7. Besides, the two kinds of inference detailed in this chapter are :

• Flat entailment, from which one is only interested to know whether an axiom is entailed or not
from a possibilistic DL-Lite knowledge base,

• Weighted entailment, where given a weight α, one is interested whether an axiom can be inferred
with this specified degree.

Now if one is interested to compute the maximal degree of entailment of an axiom, we can use
dichotomic search. The dichotomic search is applied over the set of all degrees used in the knowledge
base (in both weighed TBox and weighted ABox).

Remark 3.3. In a propositional possibilistic logic setting, each possibilistic knowledge base induces a
unique joint possibility distribution and each possibility distribution can be represented by a possibilistic
knowledge base. Although each π-DL-Lite knowledge base induces a unique joint possibility distribu-
tion, the converse does not always hold.

Consider again the example where we only have one concept A and two individuals a1 and a2.
Consider four interpretations I1, I2, I3 and I4 having the same domain ∆I = {a1, a2} where (A)I1 =
{a1}, (A)I2 = {a2}, (A)I3 = {a1, a2} and (A)I4 = ∅. Assume that π(I1) = π(I2) = 1 and π(I3) =
π(I4) = .5. One can check that there is no π-DL-Lite knowledge base such that πK=π. This remark
has no incidence on the results of this chapter. It simply points out some differences between standard
propositional possibilistic logic and possibilistic DL-Litecore.

3.3.3 Logical properties of π-DL-Litecore

In the following, we present some properties of π-DL-Litecore. These properties simply show that one
can add conjunctions (resp. disjunctions) in the right side (resp. left side) of weighted inclusion axioms.
Such results already hold in standard DL-Litecore [Calvanese et al., 2007a] and in standard possibilistic
logic [Dubois et al., 1994]. For the sake of clarity, we rephrase them for possibilistic π-DL-Litecore.

Proposition 3.1 shows that a complex inclusion axiom of the form 〈B1 v C1 uC2, α〉 can be splitted
into two elementary inclusion axioms that can be added to the π-DL-Litecore knowledge base without
modifying its possibility distribution.
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Proposition 3.1. Let K = {〈B v C1 u C2, α〉,A} and K′ = {〈B v C1, α〉, 〈B v C2, α〉,A} be
two π-DL-Litecore knowledge bases. Then K and K′ induce the same possibility distribution, namely
∀I ∈ Ω, πK(I) = πK′(I).

Proof of Proposition 3.1. The proof is immediate. Let I = (∆I , .I) be an interpretation. Assume
that I |= 〈B v C1 u C2, α〉. By definition of the satisfaction relation, this means that (B)I ⊆(
(C1)I ∩ (C2)I

)
. Hence (B)I ⊆ (C1)I and (B)I ⊆ (C2)I , which means that I |= 〈B v C1, α〉

and I |= 〈B v C2, α〉. Therefore πK(I) = πK′(I).
Conversely, assume that I |= 〈B v C1, α〉 and I |= 〈B v C2, α〉. By definition of the satisfaction

relation, this again means that (B)I ⊆ (C1)I and (B)I ⊆ (C2)I . Hence (B)I ⊆
(
(C1)I ∩ (C2)I

)
which means that I |= 〈B v C1 u C2, α〉. Therefore πK(I) = πK′(I).

The other cases, where I 6|= (B v C1 u C2, α) or I 6|= (B v C1, α) and I 6|= (B v C2, α) follow
similarly.

Proposition 3.2 shows that a complex inclusion axiom of the form (B1 tB2 v C,α) can be splitted
into two elementary inclusion axioms that can be added to a π-DL-Litecore knowledge base without
modifying its possibility distribution.

Proposition 3.2. Let K = {〈B1 t B2 v C,α〉,A} and K′ = {〈B1 v C,α〉,〈B2 v C,α〉},A} be
two π-DL-Litecore knowledge bases. Then K and K′ induce the same possibility distribution, namely
∀I ∈ Ω, πK(I) = πK′(I).

Proof of Proposition 3.2. The proof of Proposition 3.2 is similar to the one of Proposition 3.1.

3.4 Possibilistic negated closure in π-DL-Litecore

The aim of this section is to define the so-called π-negated closure of a π-DL-Litecore knowledge base.
This notion is crucial for characterizing the concepts of consistency and inference from a π-DL-Litecore
knowledge base.

3.4.1 Rules used to obtain π-negated closure

A possibilistic π-DL-Litecore TBox T ={Tp, Tn} can be viewed as composed of positive inclusion ax-
ioms of the form 〈B1 v B2, α〉 and negative inclusion axioms of the form 〈B1 v ¬B2, α〉. The pos-
sibilistic negated closure, denoted by π-neg(T ), will contain all the possibilistic negated axioms of the
form 〈B1 v ¬B2, α〉 that can be derived from T . Roughly speaking, the set π-neg(T ) is obtained
by applying a set of three rules that extend the ones defined in standard DL-Litecore when axioms are
weighted with certainty degrees.

At the beginning π-neg(T ), is set to an empty set.

Rule 3.1. Let T = {Tp, Tn} then add all negated axioms of T to π-neg(T ).

Example 3.4. [Example 3.1 continued] Using Rule 3.1, we add 〈NeedBased v ¬Loyal, γ2〉 and
〈Impulse v ¬NeedBased, γ10〉 to π-neg(T ). �

The first rule states that negative axioms that are explicitly stated in K are trivially entailed from K,
and hence can be added to π-neg(T ).

Rule 3.2. If 〈B1 v B2, α1〉 ∈ T and 〈B2 v ¬B3, α2〉 ∈π-neg(T ) then add 〈B1 v ¬B3,min(α1, α2)〉
to π-neg(T ).
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The second rule expresses transitivity relation induced by the inclusion assertion relation.

Rule 3.3. If 〈B1 v B2, α1〉 ∈ T and 〈B3 v ¬B2, α2〉 ∈π-neg(T ) then add 〈B1 v ¬B3,min(α1, α2)〉
to π-neg(T ).

Remark 3.4. Note that instead of Rule 3.3 one can define the following rule:
If 〈B1 v ¬B2, α〉 ∈π-neg(T ) then add 〈B2 v ¬B1, α〉 ∈π-neg(T ) and then re-use Rule 3.2.

As we will see in Proposition 3.3, these rules (Rules 3.1-3.3) are enough for π-DL-Litecore. In par-
ticular, these rules will be useful to equivalently define an efficient inference using directly π-neg(T ). As
it will be shown later, the minimum operation used in the rules for propagating certainty degrees is justi-
fied by the fact that the joint possibility distribution will not be affected if the derived inclusion relations
are added to the knowledge base. Lastly, when the degrees αi’s are equal to 1, then π-neg(T ) simply
collapses with the standard negated closure defined for standard DL-Litecore knowledge bases. In fact,
π-neg(T ) extends standard DL-Litecore when one only deals with fully certain pieces of information.

Example 3.5. [Example 3.1 continued] Using π-neg(T ) of Example 3.4, Rules 3.2-3.3 allow to derive
the following negative axioms:

• 〈Discount v Loyal, γ6〉 and 〈NeedBased v ¬Loyal, γ2〉 lead to adding
〈Discount v ¬NeedBased, γ2〉 to π-neg(T ).

• 〈ImpulsevDiscount,γ3〉 and 〈Discountv¬NeedBased,γ2〉 lead to adding
〈Impulse v¬NeedBased,γ2〉 to π-neg(T ).

• 〈NeedBasedvDiscount,γ8〉 and 〈Discountv¬NeedBased,γ2〉, lead to adding
〈NeedBased v ¬NeedBased,γ2〉 to π-neg(T ). �

Next lemma deals with redundancy and simply states that an axiom does not need to appear several
times in a knowledge base. It is enough to keep the one having the highest degree.

Lemma 3.1. Let K = 〈T ,A〉 be a π-DL-Litecore knowledge base. Let B1 v B2 (or B1 v ¬B2) be a
TBox axiom and X be an ABox assertion.

1. Assume that 〈B1 v B2, α1〉 and 〈B1 v B2, α2〉 belong to T . Then K and K′ = 〈T ′,A〉 where
T ′ = (T \ {〈B1 v B2, α1〉, 〈B1 v B2, α2〉}) ∪ {〈B1 v B2,max(α1, α2)〉} are equivalent in the
sense that for all I ∈ Ω, πK(I) = πK′(I).

2. Similarly, assume that 〈X,α1〉 and 〈X,α2〉 belong toA. ThenK andK′=〈T ,A′〉 whereA′ = (A\
{〈X,α1〉, 〈X,α2〉})∪{〈X,max(α1, α2)〉} are equivalent in the sense that for all I ∈ Ω, πK(I) =
πK′(I).

Proof of Lemma 3.1. The proof of the lemma immediately follows from the definition of the possibility
distribution associated with a π-DL-Litecore knowledge base.

Example 3.6. [Example continued] In the π-neg(T ) of Examples 3.4 and 3.5, we observe that we derive
both 〈Impulsev¬NeedBased,γ10〉 and 〈Impulsev¬Need Based,γ2〉. Using Lemma 3.1, we only
keep 〈Impulsev¬NeedBased,γ10〉 in π-neg(T ). �

Example 3.7. [Example continued] We now give the π-neg(T ) of the Example 3.1 using Rules 3.1-3.3
and Lemma 3.1:

〈NeedBasedv¬Loyal,γ2〉
〈Impulsev¬NeedBased,γ10〉
〈Discountv¬NeedBased,γ2〉

〈NeedBasedv¬NeedBased,γ2〉
〈Wanderingv¬NeedBased,γ5〉
〈∃satisfiedByv¬NeedBased,γ2〉

�
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3.4.2 Properties of π-negated closure

This subsection gives some properties of the π-negated closure of a π-DL-Litecore. Given K=〈T ,A〉 a
π-DL-Litecore knowledge base, we define the α-cut of K (resp. T and A), denoted by K≥α (resp. T≥α
and A≥α), the subbase of K (resp. T and A) composed of axioms having weights αi that are at least
equal to α and the strict α-cut of K (resp. T and A), denoted by K>α (resp. T>α, A>α), as a subbase of
K (resp. T and A) composed of axioms having weights αi strictly greater than α.

Lemma 3.2. Let K = 〈T ,A〉 be a π-DL-Litecore knowledge base. Let α1 and α2 be two degrees in
[0, 1] such that α1 > α2. Then:

π-neg(T≥α1)⊆π-neg(T≥α2)

Proof of Lemma 3.2. The proof is immediate. Indeed, to obtain π-neg(T≥α2), one may apply Rules
3.1-3.3 to all axioms of T≥α2 and implicitly T≥α1 , since T≥α1 ⊆ T≥α2 . This leads to trivially obtain
π-neg(T≥α1) by re-applying again Rules 3.1-3.3 on remaining weighted axioms of T≥α1 .

The following lemma states that deriving negative axioms with weights greater or equal to α can
be equivalently done either by deriving all weighted negative axioms then select those having a weight
greater or equal to α, or select initial axioms from K having a weight greater or equal to α then apply the
negative closure of this subbase of K.

Lemma 3.3. Let K be a π-DL-Litecore knowledge base. Let π-neg(T ) be the possibilistic negative
closure of K. Then:

π-neg(T )≥α=π-neg(T≥α)

Proof of Lemma 3.3. The proof of this lemma can be obtained by first noticing that to compute π-neg(T )
one may start with only axioms having a weigh greater or equal to α. This leads to π-neg(T≥α). Now,
applying Rules 3.1-3.3 to axioms with weights strictly less than α leads to derive negative axioms with
weights also less than α. Hence, they will not belong to π-neg(T )≥α.

Proposition 3.3 states that adding all negative axioms of π-neg(T ) to T does not change the induced
possibility distribution.

Proposition 3.3. Let T = {Tp, Tn} and π-neg(T ) be the negated closure of T obtained using Rules
(3.1-3.3). Then K = 〈T ,A〉 and its K′ = 〈T ∪ π − neg(T ),A〉 induce the same possibility distribution,
namely ∀I ∈ Ω : πK(I) = πK′(I).

Proof of Proposition 3.3. It is sufficient to show that one application of Rule 3.2 (or Rule 3.3) does
not modify the possibility distribution. It is enough then to repeat the application of Rule 3.2 (or
Rule 3.3) on the obtained and derived negative inclusion axioms. Assume that 〈B1 v B2, α1〉 ∈ T
and 〈B2 v ¬B3, α2〉 ∈ T . Let us show that the result of applying Rule 3.2, which leads to add
〈B1 v ¬B3,min(α1, α2)〉 does not modify the possibility distribution. Namely, K = 〈T ,A〉 and
K′ = 〈T ∪ {〈B1 v ¬B3,min(α1, α2〉},A〉 are equivalent. Let I = (∆I , .I) be an interpretation. We
consider three cases:

1. I |= B1 v B2 and I |= B2 v ¬B3. By definition of the satisfaction relation, this means that:
(B1)I ⊆ (B2)I and (B2)I ⊆ (¬B3)I . Hence, (B1)I ⊆ (¬B3)I , which means that I |= B1 v
¬B3. Therefore πK(I) = πK′(I).
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2. I |= B1 v B2 and I |= B2 v ¬B3 (the other case, where I 6|= B1 v B2 and I |= B2 v ¬B3,
follows similarly). Let K′′ = K \ {〈B1 v B2, α1〉, 〈B2 v ¬B3, α2〉}. We have:

πK(I) = min(πK′′(I), 1− α2)
= min(πK′′(I), 1− α2, 1−min(α1, α2))
= πK′(I)

3. I 6|= B1 v B2 and I 6|= B2 v ¬B3. Again let K′′ = K \ {〈B1 v B2, α1〉, 〈B2 v ¬B3, α2〉}. We
have

πK(I) = min(πK′′(I), 1− α1, 1− α2)
= min(πK′′(I), 1− α1, 1− α2, 1−min(α1α2))
= πK′(I).

3.5 Checking inconsistency degrees

In this section, we show how to compute the inconsistency degree of a π-DL-Litecore knowledge base
using query evaluations.

3.5.1 Additional properties of π-neg(T )

In the previous section (Section 3.4), we showed that adding π-neg(T ) to T does not modify the joint
possibility distribution (Proposition 3.3). This subsection shows that computing the inconsistency degree
of K=〈T ,A〉 comes down to compute the inconsistency degree of K′=〈π-neg(T ),A〉.

We first introduce the two following technical lemmas.

Lemma 3.4. LetK be a π-DL-Litecore knowledge base. LetK∗ be the standardDL-Litecore knowledge
base obtained from K by ignoring the weights associated with axioms of K. Let cln(T ∗) be the negated
closure (NI-closure) defined in [Calvanese et al., 2007a]. Then:

cln(T ∗) = {B1 v ¬B2 : 〈B1 v ¬B2, α〉 ∈ π-neg(T )}

This lemma states that our definition of π-neg(T ) recovers the one used in standard DL-Litecore.
Namely, we derive the same set of negative axioms as in standard DL-Litecore knowledge base. How-
ever, in our approach the negative axioms are attached with certainty degrees.

Proof of Lemma 3.4. The proof of Lemma 3.4 follows from the fact that removing weights from Rules
3.1-3.3 gives exactly the same rules used in [Calvanese et al., 2007a] for deriving the negated closure,
denoted by cln(T ), of a standard DL-Litecore knowledge base B = 〈T ,A〉.

Lemma 3.5. Let K be a π-DL-Litecore knowledge base. Then

cln(T ∗≥α) = {B1 v ¬B2 : 〈B1 v ¬B2, β〉 ∈π-neg(T ) and β ≥ α}

Lemma 3.5 is in the spirit of Lemma 3.4. It states that the negative closure of a subbase of K can be
recovered from π-neg(T ).
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Proposition 3.4. Let K = 〈T ,A〉 and let K′=〈π-neg(T ),A〉 Then:

Inc(K) = Inc(K′)

Proof of Proposition 3.4. Recall that in standard DL-Lite, aDL-Litecore knowledge baseKs = 〈Ts,As〉
is inconsistent if and only if the knowledge base 〈cln(Ts),As〉 is inconsistent, where cln(Ts) is the
negative closure of Ks defined in [Calvanese et al., 2007a] (see Section 1.4).

Let K = 〈T ,A〉 be a π-DL-Litecore knowledge base. Now assume that Inc(K) = α. This means
that K>α is consistent and K≥α is inconsistent. This also means that (using the above lemmas):

〈cln(T ),A〉>α is consistent,

and
〈cln(T ,A〉≥α is inconsistent.

Now, using Lemma 3.5, this also means that:

〈π − neg(T ),A〉>α is consistent

while
〈π − neg(T ),A〉≥α is inconsistent,

which means that the inconsistency degree of K′=〈π − neg(T ),A〉 is equal to α. The converse follows
in a similar way.

Proposition 3.4 is important since it provides a way to compute the inconsistency degree of a π-DL-
Litecore knowledge base. Indeed, computing the inconsistency degree of K = 〈T ,A〉 is reduced to
computing the inconsistency degree of K′ = 〈π − neg(T ),A〉.

3.5.2 Computing inconsistency degrees in π-DL-Litecore

We now provide a characterization of the inconsistency degree of a π-DL-Litecore knowledge base by
only focusing on 〈π-neg(T ),A〉. First recall that the ABox only contains positive membership assertions
(facts). Hence, the ABox alone is always consistent. Similarly, the TBox π-neg(T ) alone (namely, when
ABox=∅) is also consistent. Indeed, it is easy to define an interpretation I which is a model of π-neg(T ).
For each 〈Bi v ¬Bj , α〉 ∈π-neg(T ), we let (Bi)I = ∅ if Bi is a concept and (R)I = ∅ if Bi is of the
form ∃R or ∃R− and R is a role. I is then trivially a model of π-neg(T ). Hence, pieces responsible of
inconsistency should involve both elements from π-neg(T ) and A.

We now introduce the concept of a conflict and to what extent its elements are conflicting.

Definition 3.6. A conflict C of 〈π-neg(T ),A〉 is a subbase of 〈π-neg(T ),A〉 of the form

{〈B1v¬B2,α1〉,〈X ,α2〉,〈Y ,α3〉}

such that:

• 〈B1v¬B2,α1〉∈π-neg(T ).

• 〈X ,α2〉∈A and 〈Y ,α3〉∈A with X and Y are such that there exist two individuals a and b where:

X=


A(a) ifB1 is a basic concept A,
P (a, b) ifB1 is of the form∃P andP is a role,
P (b, a) ifB1 is of the form∃P− andP is a role.
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Y =


A(a) ifB2 is a basic concept A ,

P (a, b) ifB2 is of the form∃P andP is a role,
P (b, a) ifB2 is of the form∃P− andP is a role.

Besides, an inconsistency problem is always defined with respect to some ABox assertions and a
TBox axiom, since a TBox may be incoherent but never inconsistent. Before introducing the property of
conflict in π-DL-Litecore, let us first remind the Calvanese et al. result [Calvanese et al., 2010].

Lemma 3.6. Let K = 〈T ,A〉 be a DL-Lite knowledge base. If K is inconsistent, then there exists a
subset A0 ⊆ A with at most two elements, such that T ∪ A0 is inconsistent.

The following lemma relates the concept of conflict given in Definition 3.6 with a standard definition
of conflicts.

Lemma 3.7. C is a conflict of 〈π-neg(T ),A〉 (using Definition 3.6) if and only if it is a minimal incon-
sistent subset of 〈π-neg(T ),A〉.

Proof of Lemma 3.7. Assume that C is a conflict in the sense of Definition 3.6. By definition, C is incon-
sistent.

• Let us show that C is minimal. Indeed, let C = {〈B1 v ¬B2, α1〉, 〈X,α2〉, 〈Y, α3〉}. First note
that if B1 = B2 (hence X = Y and α2 = α3) then clearly {〈B1 v ¬B1, α1〉} and 〈X,α2〉
are individually consistent. More generally, when B1 6= B2, we have C \ {〈B1 v ¬B1, α1〉}
is consistent since it is only composed of assertional facts. Similarly, C \ {〈X,α2〉} (resp. C \
{〈Y, α2〉}) is also consistent. Indeed if X = B1(a) (the other cases where X = P (a, b) or
X = P (b, a) follow similarly), then it is enough to define a model I in which (B1)I = {a} and
(B2)I = ∅.

• Now let us show the converse. Namely, assume that C is a minimal inconsistent subset of 〈π-
neg(T ),A〉. Since π-neg(T ) and A taken alone are consistent, then C necessarily contains at least
an element of π-neg(T ) and at least an element from A. Besides, from Lemma 3.6, there exists
at most two elements from A in C. If there exists exactly one element 〈X ,α2〉 from A ∈ C, then
there exists necessarily one negative axiom 〈B1 v ¬B1, α1〉 in π-neg(T ) which is inconsistent
with 〈X,α2〉. This is a particular case of Definition 3.6 where B1 = B2, X = Y and α2 = α3.
Now, if there are two elements 〈X,α2〉 and 〈Y, α3〉 from A in C then necessarily there exists
again one axiom 〈B1 v ¬B2, α1〉 from T (otherwise C will not be minimal). We get again the
characterization of conflicts given in Definition 3.6.

A conflict is clearly an inconsistent subset of information. It is minimal (up to a particular case where
B1 = B2). Indeed, removing any element of a conflict restores consistency. A particular case is when
B1 v ¬B1 belongs to π-neg(T ). This corresponds to the situation of an unsatisfiable concept. Namely,
there is no way to find an individual that belongs to B1. In this case, a conflict is only composed of two
elements. A conflict hence involves one negative axiom from π-neg(T ) and one or two membership
assertions.

Example 3.8. [Example continued] Using Definition 3.6, from π-neg(T ) of Example 3.7 and the ABox
of Example 3.1, we have the following conflicts:

• C1 = {〈NeedBased v ¬NeedBased, γ2〉, 〈NeedBased(John),γ9〉} (conflict composed only
of two elements).

70



3.5. Checking inconsistency degrees

• C2={〈Wanderingv¬NeedBased,γ5〉,〈NeedBased(John),γ9〉, 〈Wandering(John), γ4〉}

• C3={〈∃satisfiedByv¬NeedBased,γ2〉,〈satisfiedBy(John,Gifts), γ11〉,
〈NeedBased(John), γ9〉}. �

The following definition introduces the concepts of the degree of a conflict.

Definition 3.7. Let C be a conflict. We define the degree of conflict, denoted by Deg(C), as:

Deg(C) = min(α1, α2, α3),

where (B1 v ¬B2, α1) ∈ C, (X,α2) ∈ C and (Y, α3) ∈ C, and X , Y are defined in Definition 3.6.

Example 3.9. [Example continued] From Example 3.8, the degree of the conflict C1 is Deg(C1) =
(γ2, γ9) = γ2, the degree of the conflict C2 is Deg(C2)=min(γ5, γ4, γ9)=γ4 and the degree of the conflict
C3 is Deg(C3)=min(γ2, γ11, γ9)=γ2. �

We are now ready to give a characterization of Inc(K) using conflicts and their degrees:

Proposition 3.5. Let K = 〈T ,A〉 be a π-DL-Litecore knowledge base and π-neg(T ) be its negated
closure. Then:

Inc(K) = Inc(〈π − neg(T ),A〉)
= max{Deg(C) : C is a conflict of 〈π − neg(T ),A〉}

Proof of Proposition 3.5. Assume that Inc(〈π-neg(T ),A〉) = α. This means that:

〈π − neg(T ),A〉>α is consistent

but
〈π − neg(T ),A〉≥α is inconsistent

This also means that there exists a conflict C ∈ 〈π-neg(T ),A〉≥α. Indeed, to build a conflict C from
the inconsistent knowledge base 〈π-neg(T ),A〉≥α, it is enough to proceed iteratively by removing one
element at once until reaching minimal inconsistency. More precisely,

i) we first let C = 〈π-neg(T ),A〉≥α,

ii) if there exists x ∈ C such that C \ {x} is inconsistent, then C = C \ {x},

iii) repeat step (ii) until there is no x such that C \ {x} is inconsistent. C is then a conflict.

Besides, Deg(C) = α. Otherwise 〈π-neg(T ),A〉>α would be inconsistent. Now, the fact that
〈π − neg(T ),A〉>α is consistent means that there is no conflict C that belongs to 〈π − neg(T ),A〉>α.
Hence, max{Deg(C) : C is a conflict of 〈π − neg(T ),A〉} = α.

The converse is also straightforward. Indeed, letmax{Deg(C) : C is a conflict of 〈π−neg(T ),A〉} =
α. This means that 〈π − neg(T ),A〉>α is consistent. Otherwise there exists a conflict C ∈ 〈π −
neg(T ),A〉>α with Deg(C) > α (which is impossible).

This also means that 〈π−neg(T ),A〉≥α is inconsistent. Therefore, by definition, Inc(〈π−neg(T ),
A〉 = α.

Example 3.10. [Example continued] From Example 3.9, one can easily check that Inc(〈π−neg(T ),A〉)
= γ4. �
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Proposition 3.5 is important since it provides a natural way to compute Inc(〈π − neg(T ),A〉). A
contradiction is present when the same individual belongs to two concepts that compose a negated axiom
(i.e. an axiom of π-neg(T )). The idea in computing the inconsistency degree is to evaluate over A
suitable weighted queries expressed from π-neg(T ) to exhibit whether the ABox A contains or not
contradictions and to compute the inconsistency degree.

The first idea in the algorithm is to first remove the redundancies from both the TBox and ABox.
Then we compute for each π-negated axiom 〈B1v¬B2,α〉 in π-neg(T ) all pairs of instances from the
ABox A that contradict this π-negated axiom. To this end, we will use FOL-reducibility property of
standard DL-Lite (see Section 1.4). It consists in evaluating FOL queries over A stored in a database
using for instance an SQL engine in order to detect contradictions. Note that for an efficient evaluation
of queries, we remove the redundancies from that ABox. This does not affect the results according to
Lemma 3.1.

We will first need to use some standard notations. ψ denotes a translation function that takes as
argument a possibilistic negative axiom 〈B1v¬B2,α〉 and produces a weighted FOL query of the form
〈q, α〉. Note that the semantics of q is similar to the one used in standard DL-Lite. Here we simply use
the notation 〈q, α〉 in order to take into account the weight α when computing inconsistency degree. The
notation σi used below simply represents the degree attached to an assertion A(xi) in the ABox.

Definition 3.8. ψ is a function that transforms all axioms in π-neg(T ) to a weighted query 〈q, α〉:

ψ(〈B1v¬B2,α〉)=〈(x, σ1, σ2).λ1(x, σ1) ∧ λ2(x, σ2), α〉

with λi is a translation function from axioms in π-neg(T ) to FOL formulas, defined as follows:

• λi(x, σi)=Ai(x, σi) if Bi=Ai,

• λi(x, σi)=∃y.Pi(x, y, σi) if Bi=∃Pi,

• λi(x, σi)=∃y.Pi(y, x, σi) if Bi=∃P−i ,

where σi is the degree to which Ai(x) (resp. Pi(x, y), Pi(y, x)) holds in the ABox.

Intuitively, if 〈B1v¬B2,α〉 belongs to π-neg(T ), then a query associated with B1v¬B2 is simply
denoted by ψ(〈B1v¬B2,α〉) and it means return all pairs of assertions {〈X,σ1〉,〈Y, σ2〉} that are present
in the ABox and conflict with B1v¬B2 where X and Y are given in Definition 3.6. In fact, ψ can be
viewed as a simple rewriting of the concept of conflict presented in Definition 3.6.

Example 3.11. [Example continued] From Example 3.7, recall that we have π-neg(T ). Using ψ defined
in Definition 3.8 on 〈NeedBasedv¬Loyal,γ2〉, we obtain
〈(x, σ1, σ2). NeedBased(x, σ1)∧Loyal(x, σ2), γ2〉. Applying ψ on all axioms in π-neg(T ) gives the
following queries:

• (q1) 〈(x, σ1, σ2).NeedBased(x, σ1) ∧ Loyal(x, σ2), γ2〉

• (q2) 〈(x, σ1, σ2).Impulse(x, σ1) ∧NeedBased(x, σ2), γ10〉

• (q3) 〈(x, σ1, σ2).Discount(x, σ1) ∧NeedBased(x, σ2), γ2〉

• (q4) 〈(x, σ1, σ2).NeedBased(x, σ1) ∧NeedBased(x, σ2), γ2〉

• (q5) 〈(x, σ1, σ2).Wandering(x, σ1) ∧NeedBased(x, σ2), γ5〉

• (q6) 〈(x, σ1, σ2).∃y.satisfiedBy(x, y, σ1) ∧NeedBased(x, σ2), γ2〉.
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One query is associated with each negated query of π-neg(T ). For instance
〈(x, σ1, σ2).NeedBased(x, σ1) ∧ Loyal(x, σ2), γ2〉, means compute all pair of membership assertions
NeedBased(x, σ1) and Loyal(x, σ2) that belong to A. If A is implemented using a relational database,
this can be easily computed using an SQL query. �

3.5.3 An algorithm for computing inconsistency degrees

Now, we provide below an algorithm called Inconsistency, which takes as input a K′=〈π-neg(T ),A〉
and computes Inc(K′), the inconsistency degree ofK′ (recall that it is equal to Inc(K), the inconsistency
degree of K). Algorithm 1 implements main definitions and properties presented in this chapter.

Input: K′=〈π-neg(T ),A〉
Output: Inc(K′)

1: remove redundancies from π − neg(T ) and A
2: cont = 0
3: for all (φi, αi) ∈ π − neg(T ); i = 1..|π − neg(T )| do
4: if αi > cont then
5: (q, αq)← (ψ(φi, αi))
6: if Eval(q,A) 6= ∅ then
7: β ← min(αq,max(Eval(q,A))
8: if β > cont then
9: cont← β

return cont

Algorithm 1: Inconsistency

Algorithm 1 has as input the π-negated closure of T plus the ABox A. It has as output the inconsis-
tency degree of the whole π-DL-Lite knowledge base. The variable cont stores the highest inconsistency
degree found during the execution of the algorithm. At the beginning, we assume that K′ is consistent.
This is the meaning of the initialization Step 2: cont=0. Then for each weighted negated axiom (of
π − neg(T )) we look whether the current inconsistency degree can be increased or not. In line 4, if
αi≤cont then the inconsistency degree cannot increase. Hence, there is no need to consider conflicts
induced by the negated axiom (φi, αi). Eval(q,A) denotes the evaluation of a weighted query q over A
obtained by transforming an axiom of π-neg(T ) with the function given in Definition 3.8. Eval(q,A)
(uses an SQL engine for instance) returns all possibilistic assertions that contradict the query and their
corresponding certainty degrees. Note that if ∃P (resp. ∃P−) in one of the atoms of the query q, the func-
tion Eval(q,A) returns all first (resp. second) components of the role P that may be grounded for the
query. Next, the function max(Eval(q,A)) is used to return the maximal weight, stored in the variable
β, of all pairs of assertions that contradict a query q.

This degree represents the inconsistency level of the ABoxA and the asked query q and it is calculated
as follows: for each pair of assertions 〈B1(a),αi〉 and 〈B2(a),αj〉 presented in a query result, we only
consider one constant having the lowest certainty degree, i.e. (a,min(αj , αj)). Note that the use of
the min operator for propagating and aggregating the certainty degrees comes from the property of the
conjunction of necessity valued formulas (see Section 3.2). Recall that dropping only one assertion leads
to eliminate a conflict (Definition 3.6). The degree β corresponds the highest one among these degrees.
In case of consistency, the “if part” of the algorithm (lines 6-9) is never used, and the algorithm returns
the value 0 (namely, Inc(K)=0). This explains why cont is initialized to 0 (line 2).

Example 3.12. [Example continued] From queries of Example 3.11 and the ABox of Example 3.1,
we have: Eval(q1,A)=∅, Eval(q2,A)=∅ and Eval(q3,A)=∅. Next, we have Eval(q4,A) 6= ∅ with
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(q4):〈(x, σ1, σ2).NeedBased(x, σ1)∧NeedBased(x, σ2), γ2〉 and 〈(a, .γ9, γ9)〉 is the query result. Thus
β=γ9 and cont=max(0,min(γ9, γ2)) = γ2. Continuing with q5, we have Eval(q5,A) 6= ∅ where
〈(a, .γ4, γ9)〉 is the query result. So, β=γ4 and cont=max(γ2,min(γ4, γ5)) = γ4. Lastly, we have
Eval(q6,A) 6= ∅where 〈(a, .γ9, γ11)〉 is the query result. So, β = γ9 and cont = max(γ4,min(γ2, γ9)) =
γ4.

Therefore, the inconsistency degree of the knowledge base is Inc(K)=γ4. �

We now provide two propositions that show on one hand that π-DL-Lite extends standard DL-Lite
and on the other hand that the computational complexity of Algorithm 1 is the same as the one in standard
DL-Lite.

Proposition 3.6. Let Ks=〈Ts,As〉 be a standard DL-Lite knowledge base. Let Kπ=〈Tπ,Aπ〉 a π-DL-
Lite knowledge base where Tπ (resp. Aπ) is defined from Ts (resp. As) by assigning a degree 1 to each
axiom of Ts (resp. As), namely: Tπ = {〈φi, 1〉 : φi ∈ Ts} and Aπ = {〈φi, 1〉 : φi ∈ As}. Then Ks
is consistent (in the sense of standard DL-Lite) if and only if Inc(Kπ) = 0 and Ks is inconsistent if and
only if Inc(Kπ) = 1.

Proposition 3.7. The complexity of Algorithm 1 is the same as the one used in standard DL-Lite ([Cal-
vanese et al., 2007a], section 3.3, Theorem 26).

The complexity of reasoning in DL-Lite is recalled in Table 1.7.

Proof of Proposition 3.7. To see why proposition 3.7 holds it is enough to see the differences between
Algorithm 1 and the one used in ([Calvanese et al., 2007a], section 3.1.3) for standard DL-Lite. The first
remark, concerns the returned result. In our algorithm, results of queries are weighted while in standard
DL-Lite, they are not. This does not change the complexity. The difference concerns lines 6-9, where in
standard DL-Lite algorithm they are replaced by:

1: if Eval(q,A) 6= ∅ then
2: return True
3: else
4: return False

At first, in case of consistency both algorithms perform the same steps, because the “if part of the
algorithm” is never considered. Now in case of inconsistency, the worst case appears when the whole
“loop” is used, namely inconsistency appears with the last element of π-neg(T ). In both cases, let A be
the result of the evaluation ofEval(qc,A). This needs at leastO(|A|) steps. Algorithm 1 (contrary to the
algorithm in standard DL-Lite [Calvanese et al., 2007a]) computes also max{αi : 〈φi, αi〉 ∈ A} which
needs again O(|A|). Since O(2|A|) = O(|A|), our algorithm has the same complexity as in standard
DL-Lite. Hence we increase the expressive power of DL-Lite while keeping the complexity as low as the
one of standard DL-Lite.

3.6 Possibilistic DL-LiteF and possibilistic DL-LiteR

In this section, we first briefly show how to extend the possibilistic DL-Litecore approach to DL-LiteR
and DL-LiteF , two other important fragments of DL-Lite family. These extensions, denoted by π-DL-
LiteR and π-DL-LiteF , follow the same steps as π-DL-Litecore.

We first give rules to obtain the negated closure of π-DL-LiteR and π-DL-LiteF knowledge bases.
These rules extend the ones proposed in Section 3.4 to obtain the negated closure of π-DL-Litecore. We
then generalize inconsistency degree checking process for π-DL-LiteR and π-DL-LiteF knowledge
bases.
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Considering LR (resp. LF ) a DL-LiteR (resp. DL-LiteF ) description language, a π-DL-LiteR
(resp. π-DL-LiteF ) knowledge base K = {〈φi, αi〉 : 1, ..., n} is a finite set of possibilistic axioms of
the form (φ, α) where φ is an axiom expressed in LR (resp. LF ) and α ∈ ] 0, 1] is the certainty degree
of φ. As in π-DL-Litecore, the semantics of π-DL-LiteR (resp. π-DL-LiteF ) is given by a possibility
distribution, denoted by πK, defined over the set of all interpretations I=(∆I , .I) of a DL-LiteR (resp.
DL-LiteF ) language LR (resp. LF ). This possibility distribution is computed using again Definition
3.2.

3.6.1 π-DL-LiteF negated closure

Recall that the DL-LiteF extends DL-Litecore with the ability of specifying functionality on roles or on
their inverses of the form:

(functR)

Let us start by defining the negated closure of a π-DL-LiteF knowledge base. The following rules
are added to rules 3.1-3.3 (Section 5.1) to show how to obtain this negated closure of π-DL-LiteF
knowledge base.

Rule 3.4. If 〈(functR), α〉 ∈ T then add 〈(functR), α〉 to π-neg(T ).

Rule 3.5. If 〈∃R v ¬∃R,α〉 ∈π-neg(T ) then add 〈∃R− v ¬∃R−, α〉 to π-neg(T ).

Rule 3.6. If 〈∃R− v ¬∃R−, α〉 ∈π-neg(T ) then add 〈∃R v ¬∃R,α〉 to π-neg(T ).

Once the π-DL-LiteF negated closure computed, calculating the inconsistency degree of the knowl-
edge base comes down to compute the maximal degree of potential conflicts. A conflict C in K is an
inconsistent subset of K, such that no one of subsets of C is consistent. By adding functionality on roles,
new forms of conflict are present in addition to conflicts defined for a π-DL-Litecore knowledge base
(Definition 3.6). These new conflicts are of the form:

{〈(funct P ), α1〉, 〈P (a, b), α2〉, 〈P (a, c), α3〉}, with b different from c.
{〈(funct P−), α1〉, 〈P (b, a), α2〉, 〈P (c, a), α3〉}, with b different from c.

As said in Section 3.5, the main idea of computing the inconsistency degree is to evaluate over
the ABox queries obtained from the π-negated closure in order to determine the maximal degree of
conflicting elements. To obtain queries from a π-DL-LiteF knowledge base, we extend Definition 3.8
as follows:

ψ(〈(funct P ), α〉) = 〈(x, σ1, σ2).∃y.∃z.P (x, y, σ1) ∧ P (x, z, σ2) ∧ y 6= z, α〉

ψ(〈(funct P−), α〉) = 〈(x, σ1, σ2).∃y.∃z.P (y, x, σ1) ∧ P (z, x, σ2) ∧ y 6= z, α〉

Where σi is the degree to which R(x, y) and R(x, z) hold in the ABox.

Example 3.13. [Example continued] Let us extend the TBox of Example 3.1 with the following axiom
〈(funct SatisfiedBy), γ14)〉 and the ABox with the following axiom
〈SatisfiedBy(john, discount), γ15)〉. One can check that
{〈(funct SatisfiedBy), γ14)〉, 〈SatisfiedBy(john, discount), γ15)〉, 〈SatisfiedBy(john, gifts),γ11)〉}
is a conflict set. �
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3.6.2 π-DL-LiteR negated closure

TheDL-LiteR extendsDL-Litecore with the ability of specifying inclusion axioms between roles of the
form:

R v E

We now show how to obtain the negated closure of a π-DL-LiteR knowledge base. In addition to
Rules 3.1-3.3 proposed in section 3.5 for π-DL-Litecore knowledge bases, the following rules should be
added for π-DL-LiteR.

Rule 3.7. If 〈R1 v R2, α1〉 ∈ T and 〈∃R2 v ¬B,α2〉 ∈π-neg(T ) or 〈B v ¬∃R2, α2〉 ∈π-neg(T )
then add 〈∃R1 v ¬B,min(α1, α2)〉 to π-neg(T ).

Rule 3.8. If 〈R1 v R2, α1〉 ∈ T and 〈∃R−2 v ¬B,α2〉 ∈π-neg(T ) or 〈B v ¬∃R−2 , α2〉 ∈π-neg(T )
then add 〈∃R−1 v ¬B,min(α1, α2)〉 to π-neg(T ).

Rule 3.9. If 〈R1 v R2, α1〉 ∈ T and 〈R2 v ¬R3, α2〉 ∈π-neg(T ) or 〈R3 v ¬R2, α2〉 ∈π-neg(T ) then
add 〈R1 v ¬R3,min (α1, α2)〉 to π-neg(T ).

Rule 3.10. if 〈R v ¬R,α〉 ∈π-neg(T ) or 〈∃R v ¬∃R,α〉 ∈π-neg(T ) or 〈∃R− v ¬∃R−, α〉 ∈π-
neg(T ) then add 〈R v ¬R,α〉 and 〈∃R v ¬∃R,α〉 and 〈∃R− v ¬∃R−, α〉 to π-neg(T ).

Given this set of rules and syntax of a π-DL-LiteR knowledge base, a new form of conflicts may be
generated. Namely,

{〈R1v¬R2,α1〉,〈R1(a, b), α2〉,〈R2(a, b), α3〉}

To this end, Definition 3.8 needs to be extended in order to obtain weighted queries used to exhibit
contradictions in the ABox and compute the the inconsistency degree of a π-DL-LiteR knowledge base
as follows:

ψ(〈R1v¬R2, α〉)=〈(x, y, σ1, σ2).ν1(x, y, σ1) ∧ ν2(x, y, σ2), α〉

with

• νi(x, y, σi)=Pi(x, y, σi) if Ri=Pi

• νi(x, y, σi)=Pi(y, x, σi) if Ri=P−i

Where σi is the degree to which R(x, y) holds in the ABox.

Example 3.14. [Examples 3.1 and 3.7 continued] Let us extend the TBox with the following axiom
〈AppropriateFor−vSatisfiedBy,γ14)〉 and the ABox with the following axiom
〈AppropriateFor(Gifts, John), γ15)〉. Using rule 3.7, one can generate the following negated axiom:
〈AppropriateFor−v¬NeedBased,γ14〉. One can check that
{〈AppropriateFor−v¬NeedBased,γ14〉,〈AppropriateFor (Gifts, John), γ15)〉,
〈Neadbased(John, γ9)〉} is a conflict. �
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3.7 Basic inferences in π-DL-Litecore

In this section, we present standardDL-Litecore inference services (i.e. subsumption and instance check-
ing) within a possibility theory setting. We show how to compute possibilistic inferences given in Defini-
tion 3.4 and Definition 3.5 when φ is either a membership assertion (i.e. a fact) or a subsumption relation
(i.e. a TBox axiom).

In π-DL-Litecore, we define two different kinds of inference services, namely flat subsumption (resp.
instance checking) and weighted subsumption (resp. instance checking). The main difference between
flat subsumption (resp. instance checking) and weighted subsumption (resp. instance checking) is that
in the first case, we only check whether the subsumption (resp. instance checking) holds whatever is
the degree, while in the second case, the subsumption (resp. instance checking) should be satisfied to a
maximal degree.

In what follows, we detail these two types of inferences and we start by studying flat inference.

Proposition 3.8 (Flat subsumption). Let K = 〈T ,A〉 be a π-DL-Litecore knowledge base (such that
Inc(K) < 1), C1 and C2 be two general concepts, X be an atomic concept not appearing in T and x be
a constant not appearing in A. Then, K |=C1 v C2 if and only if the knowledge base K1=〈T1,A1〉 is
inconsistent to some degree (∃α > 0 such that Inc(K1) = α) where

T1 = T>Inc(K) ∪ {〈X v C1, 1〉, 〈X v ¬C2, 1〉} and A1 = {〈X(x), 1〉}

Proof of Proposition 3.8. Let us assume that K |= C1 vC2. By Definition 3.4, this means that:

N(C1 v C2) > Inc(K).

By definition of necessity measures, this leads to:

N(C1 v C2) = 1−max
I∈Ω
{π(I) : I 6|= C1 v C2} > Inc(K)

= max
I∈Ω
{π(I) : I 6|= C1 v C2} < 1− Inc(K).

which means that:

∀I ∈ Ω such that I 6|= C1 v C2, we have π(I) < 1− Inc(K). (1)

Besides, it is easy to show that:

I 6|=T>Inc(K) if and only if π(I) = 1− Inc(K). (2)

From (1) and (2), we conclude that:

∀I ∈ Ω such that I |= T>Inc(K), we have I |= C1 v C2. (3)

From (3), it is impossible to satisfy T>Inc(K) and formulas {X v C1, X v ¬C2, X(x)} (since models
of T>Inc(K) satisfy C1 v C2) which means that K1 is inconsistent.

Conversely, let us assume that K1 = 〈T1,A1〉 is inconsistent. Then, there exists an α > 0 such that
Inc(K1)=α. This means that:

K1≥α is inconsistent,
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and

K1>α is consistent.

Besides, it is easy to see that:

K1>α |=π {〈X v C1, 1〉, 〈X v ¬C2, 1〉, 〈X(x), 1〉}. (4)

This means that:

K1>α 6|= C1 v C2 (5)

From (4) and (5), one can easily show that there exists an interpretation I such that:

π(I) < 1− α and I 6|= C1 v C2.

Since all axioms of K1 have weights greater than Inc(K) then:

π(I) < 1− α ≤ 1− Inc(K) (6)

So, from (6), we have N(C1 v C2) > Inc(K). Therefore by Definition 3.4, K |=π C1 v C2.

Example 3.15. [Example continued] Let us check if K|=NeedBasedvLoyal. From Example 3.12, we
have Inc(K)=γ4 then T>γ4 is as follows:

〈DiscountvLoyal, γ6〉
〈Impulsev¬NeedBased, γ10〉
〈∃satisfiedBy−vFidelityMethod, 1〉

〈NeedBasedvDiscount, γ8〉
〈WanderingvImpulse, γ5〉
〈∃satisfiedByvLoyal, 1〉

By adding the intermediary concept X , the knowledge base K1=〈T1,A1〉 is as follow:

T1=T>γ4∪{〈XvNeedBased, 1〉,〈Xv¬Loyal, 1〉} and A1={〈X(x), 1〉}

Computing now π-neg(T1), we obtain the following negative inclusion axioms:

〈Impulsev¬NeedBased, γ10〉
〈Wanderingv¬NeedBased, γ5〉
〈Xv¬Loyal, 1〉
〈Discountv¬X, γ6〉

〈NeedBasedv¬X, γ6〉
〈Xv¬X, γ6〉
〈∃satisfiedByv¬X, 1〉

One can easily check that Xv¬X conflicts with X(x). Then, we conclude that K1 is inconsistent.
Therefore K |=NeedBasedvLoyal. �

Proposition 3.9 (Flat instance checking). LetK be a π-DL-Litecore knowledge base (such that Inc(K) <
1), C be a concept, X be an atomic concept not appearing in T and x be a constant appearing in A.
Then, K |= C(x) if and only if the knowledge base K1 = 〈T1,A1〉 is inconsistent to some degree where

T1=T>Inc(K) ∪ {〈X v ¬C, 1〉} and A1 = A>Inc(K) ∪ {〈X(x), 1〉}

Proof of Proposition 3.9. The proof is basically the same as the one of Proposition 3.8.
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Example 3.16. [Example continued] Let us check if K|=Loyal(John). Consider the TBox T>γ4 of Ex-
ample 3.15 and the following ABox A>γ4 where Inc(K)=γ4:

〈NeedBased(John), γ9〉 〈satisfiedBy(John,Gifts), γ11〉

By adding the intermediary concept X , K1=〈T1,A1〉 is as follow:

T1 = T>γ4 ∪ {〈X v ¬Loyal, 1〉} and A1 = A>γ4 ∪ {〈X(John), 1〉}

Computing now π-neg(T1), we obtain the following negative inclusion axioms:

〈Impulsev¬NeedBased, γ10〉
〈Wanderingv¬NeedBased, γ5〉
〈Xv¬Loyal, 1〉

〈Discountv¬X, γ6〉
〈NeedBasedv¬X, γ6〉
〈∃satisfiedByv¬X, 1〉

One can easily check that 〈NeedBasedv¬X, γ6〉 conflicts with 〈X(John), 1〉 and
〈NeedBased(John), γ9〉 and 〈∃satisfiedByv¬X, 1〉 conflict with 〈X(John), 1〉 and
〈satisfiedBy(John,Gifts), γ11〉. Then, we conclude that K1 is inconsistent.
Therefore K|=Loyal(John). �

As we can see, flat inference is done in a similar way than inference in standard DL-Litecore and it
permits to cope with inconsistency. However, the second type of inference (i.e. weighted inference) is
stronger than flat inference and it deals with uncertainty by determining to what extent an inference task
can be done from a π-DL-Litecore knowledge base.

Proposition 3.10 (Weighted subsumption). Let K = 〈T ,A〉 be a π-DL-Litecore knowledge base, C1
and C2 be two general concepts, X be an atomic concept not appearing in T , and x be a constant
not appearing in A. Then, K |=π 〈C1 vC2, α〉 if and only if the Inc(K1) = α > Inc(K) where
K1 = 〈T1,A1〉 with

T1 = T≥α ∪ {〈X v C1, 1〉, 〈X v ¬C2, 1〉} and A1 = {〈X(x), 1〉}

Proof of Proposition 3.10. The proof of Proposition 3.10 is similar to the one of Proposition 3.8. Let us
assume that K |=π 〈C1 v C2, α〉. From Definition 3.5, we have

N(C1 v C2) = α > Inc(K)

By definition of necessity measure, this leads to:

N(C1 v C2) = 1−max
I∈Ω
{π(I) : I 6|= C1 v C2} = α > Inc(K),

= max
I∈Ω
{π(I) : I 6|= C1 v C2} = 1− α < 1− Inc(K).

which means that:

∀I ∈ Ω such that I 6|= C1 v C2, we have πK(I) ≤ 1− α < 1− Inc(K) (1)

Note that α > Inc(K). This means that T≥α is consistent, and

∀I ′ ∈ Ω such that I ′ |= T≥α, we have πK(I ′) ≤ 1− α (2)
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From (1) and (2), we conclude that:

∀I ′ ∈ Ω such that I ′ |= T≥α, it implies I ′ |=π 〈C1 v C2, α〉 and
I ′ 6|=π {〈X v C1, 1〉, 〈X v ¬C2, 1〉, 〈X(x), 1〉}.

This also means that K1 is inconsistent. Hence Inc(K1) ≥ α > Inc(K). Since T≥α ∪ {〈X v
C1, 1〉, 〈X v ¬C2, 1〉, 〈X(x), 1〉} is inconsistent. Then Inc(K1) = max

I∈Ω
{πK(I)} ≤ 1 − α (since

all formulas of K1 have a weight greater than α).
Let us now show that Inc(K1)=α. It is enough to show that:

T>α ∪ {〈X v C1, 1〉 , 〈X v ¬C2, 1〉 , 〈X (x) , 1〉} is consistent

Assume that it is inconsistent. This means that ∀I ∈ Ω, if I |= T>α then I 6|= {X v C1, X v
¬C2, X(x)} and I |= C1 v C2. Recall that T>α is consistent. This means that max{I ′ : I ′ 6|=
C1 v C2} < 1 − α which contradicts N(C1 v C2) = α. Hence K1>α is consistent. Therefore
Inc(K1) = α > Inc(K).

Conversely, let us assume that K1 is inconsistent and Inc(K1) = α > Inc(K). This means that:

K1>α is consistent, (3)

and

K1≥α is inconsistent. (4)

From (3) we have:

K1>α |=π {〈X v C1, 1〉, 〈Xv¬C2, 1〉, 〈X(x), 1〉}

Since trivially {〈XvC1, 1〉, 〈Xv¬C2, 1〉, 〈X(x), 1〉}⊆K1>α
This means that:

K1>α 6|=π〈C1vC2, α〉 (5)

From (4), we have

T≥α∪{〈XvC1, 1〉, 〈Xv¬C2, 1〉, 〈X(x), 1〉} is inconsistent.

Since Inc(K1)≥α>Inc(K), this means that T≥α is consistent and

∀I ′ such that I ′ |= T≥α, we have πK (I ′) ≤ 1− α (6)

∀I ′ such that I ′ |= T≥α implies I |=π 〈C1 v C2, α〉 but
I ′ 6|=π {〈X vC1, 1〉, 〈X v ¬C2, 1〉, 〈X(x), 1〉} (7)

From (5), (6) and (7), one can show that there exists an interpretation I such that:

π(I) ≤ 1− α and I 6|= C1 v C2. (8)

From (8), we conclude that N(C1 v C2) = α. Therefore by Definition 3.5, K |=π 〈C1 v C2, α〉.

Example 3.17. [Example continued] From Example 3.15, one can easily check that Inc(K1)=γ6 then
K|=π〈NeedBasedvLoyal, γ6〉. �
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Proposition 3.11 (Weighted instance checking). Let K be a π-DL-Litecore knowledge base, C be a
concept, X be an atomic concept not appearing in T and x be a constant not appearing in A. Then,
K |=π 〈C(x), α〉 if and only if Inc(K1) = α > Inc(K) where K1 = 〈T1,A1〉 with

T1 = T≥α ∪ {〈X v ¬C, 1〉} and A1 = A≥α ∪ {〈X(x), 1〉}

Proof of 3.11. The same proof as the proof of Proposition 3.10.

Example 3.18. [Example continued] From Example 3.16, one can easily check that Inc(K1)=γ6 then
K|=π〈Loyal(John), γ6〉. �

Hence from Proposition 3.8-3.11, we deduce that flat subsumption (resp. instance checking) and
weighted subsumption (resp. instance checking) can be obtained using Algorithm 1 presented above.
The above results show that the complexity of flat subsumption (resp. instance checking) and weighted
subsumption (resp. instance checking) in π-DL-Lite is the same as the one used in standard DL-Lite.

3.8 Query answering in possibilistic DL-Lite

In this section, we briefly address the problem of query answering within π-DL-Lite framework. The
problem of standard query answering is closely related to the ontology-based data access problem which
takes a set of assertions (i.e. an ABox), an ontology (i.e. a TBox) and a conjunctive query q and aims to
find if there exists an answer or find all the answers to q over the set of data. In such a setting, an ontology
acts as a schema used to enrich the query. The problem of query answering within DL-Lite setting has
been mainly studied in [Calvanese et al., 2007a]. Query answering process comes down first to the
reformulation of the query q over the TBox in order to enrich it while eliminating all the redundancies
and then evaluate the new obtained queries over the ABox.

We now briefly present query answering process over the π-DL-Lite setting. This procedure follows
similar steps as in [Calvanese et al., 2007a; Straccia, 2006a; Straccia, 2012]. It consists in:

1. Query reformulation: given a query q over K = 〈T ,A〉 a π-DL-Lite knowledge base, we first
use the positive axioms of T>Inc(K) to enrich the query q. This leads at each possible application
of a positive axiom to obtain a new query q′. The resulting set of queries is then used under the
ABox (stored as a database). Let us denote by Q = ref(q, T>Inc(K)) the set of queries obtained
by reformulating q over T>Inc(K).

2. Query evaluation: given ref(q, T>Inc(K)), we first evaluate over A>Inc(K) each q′ in ref(q,
T>Inc(K)) while taking the most certain answers. Let us denote by ansπ(K, q) the certain answers
of the query q over K = 〈T ,A〉 a π-DL-Lite knowledge base.

In DL-Lite, the evaluation of a Conjunctive Query (CQ) uses the notion of FOL-reducibility and it
is based on a method that separates the TBox and the ABox. Namely, we use positive axioms of the
TBox for reformulating a CQ on the Union of Conjunctive Query (UCQ) to be evaluated over the ABox
(may be represented by a relational database). Given a CQ q, we recall the query reformulation algorithm
PerfectRef proposed in [Calvanese et al., 2007a] that reformulates q taking into account only positive
axioms of a π-DL-Lite TBox T having weights strictly greater than the inconsistency degree.
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Input: T>α where α = Inc(K) and q a CQ
Output: Q query reformulation

1: Q1 ← {q} // set of queries
2: repeat
3: Q2 ← Q1
4: for all q ∈ Q2 do
5: for all g in q do
6: for all PIi ∈ T≥α do
7: if PI is applicable to g then
8: Q1 ← Q1 ∪ {q [g�gr(g, PI)]}
9: for all g1, g2 in q do

10: if g1 and g2 unify then
11: Q1 ← Q1 ∪ {τ [reduce(q, g1, g2)]}
12: until Q2 ← Q1 return (Q2)

Algorithm 2: PerfectRef(q, T>α)

In this algorithm, gr(g, PI) denotes the result of applying a positive axiom to an atom of the query.
Let use the symbol "_" to denote non-distinguished non-shared variables (i.e. appeared only once in
the query), the function gr(g, PI) is described as follows: A positive axiom is applicable to a factual
concept A(x), if the positive inclusion has the concept A in its right-hand side. Similarly a positive
inclusion is applicable to a factual relation P (x1, x2), if either (i) x1 = _ and ∃P is in its right-hand side,
or (ii) x2 = _ and ∃P− is in its right-hand side, (iii) positive inclusion is a role inclusion and on in its
right-hand side is P or P−.

Furthermore q [g�gr(g, PI)] denotes the CQ obtained from q by replacing the atom g with a new
atom gr(g, PI). In addition reduce is a function that takes as input a CQ q and two atoms g1 and g2
and returns a CQ q′ obtained by applying to q the most general unifier between g1 and g2. Finally τ is
a function that takes as input a CQ q and returns a new CQ obtained by replacing each occurrence of an
unbound variable in q with the symbol "_". Note that gr(g, PI), q [g�gr(g, PI)], τ and reduce are the
same used in [Calvanese et al., 2007a]. For more details see [Calvanese et al., 2007a].

Example 3.19. [Examples 3.1 continued] Let us consider the following TBox with T>Inc(K).
〈DiscountvLoyal, γ6〉
〈Impulsev¬NeedBased, γ10〉
〈∃satisfiedBy−vFidelityService, 1〉

〈NeedBasedvDiscount, γ8〉
〈WanderingvImpulse, γ5〉
〈∃satisfiedByvLoyal, 1〉

Let us consider the following conjunctive query q:

q(x)←∃y.satisfiedBy(x, y)∧FidelityService(y)

At the first execution of algorithm PerfectRef(q, T>α)) the following query is added in Q1:

q1(x)←∃y.satisfiedBy(x, y)∧satisfiedBy(−, y)

since ∃satisfiedBy−vFidelityService is applicable to the atom FidelityService(y). Now, one
can see that the two atoms of the added query unify, then the algorithm inserts the following query:

q2(x)←satisfiedBy(x, _)

The above two queries and the original one are returned by the algorithm as the set of queries obtained
by reformulating q over T>Inc(K). �
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We now explain the main ideas behind query answering in π-DL-Lite framework. Let q(~x) ←
∃~y.conj(~x, ~y) be a conjunctive query with answer variable ~x = x1, ..., xn and arity n. Given an inter-
pretation I = (∆I , .I), recall that in standard DL-Lite, qI is interpreted as a set of tuples ~a ∈ (∆)n that
belong to the domain of interpretation such that if we substitute ~x by the constants ~a the query q will be
evaluated as true under I.

In the spirit of instance checking (presented in Section3.7), when certainty degrees are available over
the set of constants inA, query answering process comes down to search the most certain answers for the
query q and to compute to what extent the answer of this query holds. As mentioned at the beginning of
this section, the first step of query answering is the query reformulation. This step leads to obtain a set
of queries where the union of the answer sets of these queries will be the answer to the original query.
Before given the way to deal with Q = ref(q, T>Inc(K)) the set of queries obtained by reformulating q
over T>Inc(K), let us first show how to deal with CQ over π-DL-Lite setting in order to take into account
the weights attached to assertions in the ABox.

Let I = (∆I , .I) be a DL-Lite interpretation and q(~x)← ∃~y.conj(~x, ~y) be a CQ. Let us first consider
the case where the query does not involve existential variables, namely q is of the form q(~x)←

∧
Ai(~x)

where Ai are atoms. Let ~a ∈ (∆I)n be a tuple of constants considered as a possible substitution of the
conjunction between atoms under I. Within π-DL-Lite setting, the certainty degree of ~a is the minimum
weight (i.e. min) of certainty degrees of constants ai ∈ ~a. Recall that within standard possibilistic logic,
given φ and ϕ two formulas, we have N(φ ∧ ϕ) = min(N(φ), N(ϕ)).

Example 3.20. Consider the following ABox: 〈A(a), α1〉, 〈B(a), α2〉, 〈A(b), α3〉 and 〈B(b), α4〉 with
αi ∈ ] 0, 1] and the query q(x)← A(x)∧B(x). The answer set to the query q consists of 〈a,min(α1, α2)〉
and 〈b,min(α3, α4)〉. �

Let us consider now the case where the query contains existential quantifications. Suppose that we
have a query that contains only one atom with an existential variable y (i.e. q(x) ← ∃y.P (x, y)). Then
for each fixed constant a that may substitute x a free variable, there may exist several possible constants c
that may substitute y where each one is attached with a certainty degree. In that case, the certainty degree
of the answer is the maximal degree (i.e. max) for each valid join on y. Recall that within standard
possibilistic logic, given φ and ϕ two formulas, we have N(φ ∨ ϕ) ≥ max(N(φ), N(ϕ)).

Example 3.21. Let us consider the following ABox: 〈P (a, b1), α1〉, 〈P (a, b2), α2〉, 〈P (b1, c1), α3〉,
〈P (b1, c2), α4〉, 〈P (b2, c1), α5〉, 〈P (b2, c2), α6〉 with αi ∈ ] 0, 1] and the query q(x)←∃y.P (x, y). The
answer set of this query consists of 〈a,max(α1, α2)〉, 〈b1,max(α3, α4)〉 and 〈b2,max(α5, α6)〉. �

Now the certainty degree of a general conjunctive query q(~x)←∃~y.conj(~x, ~y) is simply computed by
first considering for each valid join on y the certainty degree of the conjunction of possible substitution
using the min to aggregate their values, and then considering the maximal degree for each valid join
having the same constants as answer.

Example 3.22. Let us consider the ABox of Example 3.21 and the query q(x1, x2)←∃y. P (x1 ,y)
∧P (y, x2). The possible joins and their certainty degrees are:
〈a, b1, c1, min(α1, α3)〉,
〈a, b1, c2,min(α1, α4)〉,
〈a, b2, c1,min(α2, α5)〉 and
〈a, b2, c2,min(α2, α6)〉.

Then the answer set consists of
〈a, c1,max(min(α1, α3), min(α2, α5)〉 and
〈a, c2,max(min(α1, α4),min(α2, α6)〉. �

Let us denote by 〈~a, α〉 an answer of a query q with ~a is a tuple of constants occurring in A>inc(K)
and α is the least certainty degree in which all atoms occurring in the query q grounded by ~a having
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weights at least greater or equal to α are necessarily true. Namely, we say that K>inc(K) entails a tuple ~a
for a query q to a degree α, denoted K>inc(K)|=〈q(~a), α〉 if and only if ∀I,qI(~a)≥α.

For a given conjunctive query, it may correspond several tuples 〈~ai, αi〉 as answer sets. So, a more
interesting thing is to find the maximal entailment degree of a query. Given q a conjunctive query, this
maximal entailment degree of q is as follows:

α=max{αi|K>inc(K)|=〈q(~ai), αi〉}.

Example 3.23. [Example 3.1 continued] Let us consider now the following ABox obtained fromA>Inc(K)
and some new assertions:
〈NeedBased(Mary), γ8〉
〈NeedBased(John), γ9〉
〈NeedBased(Paul), 1〉
〈NeedBased(Bob), γ12〉

〈satisfiedBy(John,Gifts1), γ10〉
〈satisfiedBy(John,Gifts2), γ6〉
〈satisfiedBy(Mary,Gifts3), γ11〉
〈satisfiedBy(Mary,Gifts1), γ5〉

Let us consider the following query q:

q(x)←∃y.NeedBased(x)∧satisfiedBy(x, y)

According to the above ABox, we have two tuples as the answer set of the query
q: 〈John, max(min(γ9, γ10),min(γ9, γ6))〉 and 〈Mary, max(min(γ8, γ11), min(γ8, γ5))〉 where
K>inc(K) |= 〈q(John), γ9〉 and K>inc(K)|=〈q(Mary), γ8〉. One can easily check that the maximal en-
tailment degree of q is γ9. �

Now given Q=ref(q, T>Inc(K)) the set of queries obtained by reformulating q over T>Inc(K), we
view Q as a disjunction of queries. Let us denote by ansπ(K, q) the answer set of the query q formed
by considering the union of all answer sets of each qi∈Q. As said above, for each query qi∈Q, there
may correspond a set of tuples 〈~ai, αi〉 as answer set where the maximal degree of the αi’s corresponds
the maximal entailment degree of qi. Indeed, the entailment degree of q is the highest degree among the
entailment degrees of all qi’s found by query reformulation since within possibilistic logic, given φ and
ϕ two formulas, we have N(φ∨ϕ)≥max(N(φ), N(ϕ)).

Example 3.24. [Example 3.23 continued] Let us consider the following query q:

q(x)←Loyal(x)

By applying PerfectRef(q, T>α) algorithm, the set ref(q, T>Inc(K)) will contain in addition of the
original query the following ones:

q1(x)←Discount(x) and q2(x)←NeadBased(x)

Let us consider now the following ABox:
〈Loyal(Mary), γ7〉
〈Loyal(John), γ9〉
〈NeedBased(Paul), γ13〉

〈Discount(Bob), γ6〉
〈NeedBased(Eric), γ5〉
〈Discount(Elise), γ10〉

According to the above ABox and the set of queries ref(q, T>Inc(K)), the answer set ans(K, q) of
the query q is 〈John, γ9〉, 〈Mary, γ7〉, 〈Paul, γ13〉, 〈Bob, γ6〉, 〈Eric, γ5〉, 〈Elise, γ10〉. The entailment
degree of q is equal to γ13. �

When the assertional facts in the ABox are attached with weights, an answer to a query is a set of tu-
ples that satisfy with a certain degree the asked query. In that case, one may consider a new reasoning task.
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It consists first in ranking answers according to their certainty degrees and then selecting the relevant ones.
This task is closely related to the top-k ranking query answering approach introduced in [Straccia, 2006b;
Straccia, 2006a; Straccia, 2012] within fuzzy DL-Lite logics. The top-k query answering permits to order
the results according to their attached degrees and then chose the top-k relevant results. More formally,
given K=〈T,A〉 a π-DL-Lite knowledge base and Q=ref(q, T>Inc(K)) the set of queries obtained by
reformulating q over T>Inc(K), we search for the top-k ranked tuples of the answer set of q, denoted
ansk(K, q)=Topk{〈~a, α〉|qi ∈ Q and A>Inc(K) |= (qi(c), α)}. To compute the set ansk(K, q), one can
calculate first the answer set ansπ(K, q) by considering the union of all answer sets of query reformula-
tion, and then order ansπ(K, q) in descending order with respect to degrees of tuples and then selecting
the top-k relevant tuples.

Example 3.25. [Example continued] From the answer set ans(K, q) of Example 3.24, the top-4 relevant
results for q(x)←Loyal(x) are: 〈Paul, γ13〉, 〈Elise, γ10〉, 〈John, γ9〉, 〈Mary, γ7〉. �

3.9 Discussions and related works

There are few works devoted to the possibilistic extension of description logics (DLs). The original work
on this topic has been introduced in [Hollunder, 1995] where a possiblistic DL knowledge base is only
syntactically defined as a set of terminological (resp. assertion) axioms attached with possibility or neces-
sity degrees. In [Hollunder, 1995], the author is only interested in basic inference tasks such as instance
checking and subsumption problem and extends them with respect to possibilistic entailments. These
inference services allow to check whether an axiom is inferred or not from a possibilistic DL knowledge
base and the degree of possibility or the necessity of its entailment. From an algorithmic point of view,
Hollunder’s[Hollunder, 1995] method uses classical inference algorithm for DLs to check inferences. In
our definition of a possibilistic DL-Lite knowledge base, we only represent certainty degrees using ne-
cessity values. This is in agreement with standard propositional logic, and has a meaningful counterpart
when generating possibility distributions.

In [Qi et al., 2011; Qi et al., 2007b; Qi et al., 2007a], the authors first provided the syntax and
semantics of possibilistic DLs knowledge bases and then they define inference process. In this chapter,
the syntax and semantic of π-DL-Lite knowledge bases is given in a similar way as in [Qi et al., 2011].

Given K a possibilistic DL knowledge base, in [Qi et al., 2011; Qi et al., 2007b; Qi et al., 2007a] an
α-cut approach is used to compute the inconsistency degree of K. Namely, the inconsistency degree of K
is the maximum weight of axioms making the α-cut of K by this weight inconsistent and the strict α-cut
of K by this same weight consistent. Using such approach, the algorithm proposed in [Qi et al., 2011; Qi
et al., 2007b; Qi et al., 2007a] operates a binary search to find this weight and this comes down to achieve
a number of calls, at most log2(n) + 1, where n is the size of the different uncertainty scale appearing
in the knowledge base, to a standard DLs (without uncertainty) inconsistency checking algorithm. This
definition is in the spirit of standard possibilistic logic [Dubois et al., 1994]. In [Calvanese et al., 2007a]
checking inconsistency of a standard DL-Lite knowledge base can be done in a polynomial time with
respect to combined complexity k (the size of the whole knowledge base). Knowing that the size n of
certainty scales is at least equal to the size of the knowledge base k, it is important to note that although
the α-cut algorithm [Qi et al., 2011; Qi et al., 2007b; Qi et al., 2007a] requires an extra cost (at least
log2(n) calls to a standard DL inconsistency check algorithm in order to compute inconsistency degree).
However, this still can be achieved in polynomial time.

Other lines of approaches have been proposed to compute the inconsistency degrees of possibilistic
DLs knowledge bases, such as the works of [Couchariere et al., 2008a; Couchariere et al., 2008b; Qi et
al., 2008b; Zhu et al., 2013]. These approaches are based on the extension of a Tableau algorithm within
possibilistic logic setting. As shown in [Couchariere et al., 2008a; Qi et al., 2008b; Zhu et al., 2013],
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such extension does not require any extra computational cost. However, these approaches are not defined
within DL-Lite languages.

In [Zhou et al., 2009], the authors give a method to measure the inconsistency of a DL-Lite knowledge
base based on the three-valued semantics. The proposed algorithm calculates the number of axioms that
fall into the third truth value (denoting contradictory information) and can be achieved in polynomial
time. This clearly departs from our approach.

In our work, computing inconsistency degree is done by a direct extension of the main standard
consistency check algorithm presented in [Calvanese et al., 2007a] of a standard DL-Lite knowledge base.
This represents a new way to compute the inconsistency degree of a possibilistic DL-Lite knowledge
base that departs from the existing works. There is no exiting work that extends rules for the defined
negated closure in a possibility theory framework. Our approach comes down to first defining the notion
of negated closure when each axiom in the knowledge base is equipped with a certainty degree. This
negated closure is then transformed to weighted queries performed over the set of individuals in order to
compute the inconsistency degree. The inconsistency degree associated with a query and a given tuple of
individuals (provided as an answer for the query) is the maximum weight among all the certainty degrees
of the query and this tuple. The computational complexity associated to this procedure does not require
any extra cost comparing with the one of consistency checking algorithm of classical DL-Lite knowledge
bases.

3.10 Conclusion

In this chapter, we proposed a possibilistic extension of DL-Lite. We first introduced the syntax and the
semantics of such extension. We provided properties of π-DL-Lite and showed how to compute the
inconsistency degree of π-DL-Lite knowledge base having a complexity identical to the one used in
standard DL-Lite. This is done by defining π-DL-Lite negative closure that extends the one of stan-
dard DL-Lite. Then, we gave a method to check the consistency for π-DL-Lite. Finally, we discussed
inference problems. In particular, we distinguished different inference tasks depending whether we use
flat inferences or weighted inferences. Results of this chapter are important since they extend DL-Lite
languages to deal with priorities (between TBox axioms or ABox axioms) or uncertainty degrees without
increasing the computational complexity.

In several situations, pieces of information are provided with uncertainty which can simply represent
reliability of the distinct sources. Next chapter addresses the problem of fusion of multiple data sources
linked to the same terminology in the case where the sources have different levels of priorities.
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CHAPTER 4

MIN-BASED CONDITIONING AND
MERGING APPROACH OF DL-Lite

KNOWLEDGE BASES

4.1 Introduction

In several situations, pieces of information are provided with uncertainty which can represent reliability of
the distinct sources. Possibility theory is a very natural framework to deal with such pieces of information.
In the framework of possibility theory, several approaches for merging possibilistic logic bases have been
proposed (e.g. [Benferhat et al., 1999; Benferhat et al., 2000; Benferhat et al., 1993a; Qi et al., 2010b]).
However there is no work that deals with the problem of merging possibilistic DLs knowledge bases by
introducing convenient fusion operators although the impact of possibilistic DLs on ontology merging
has been introduced in [Qi et al., 2011].

In the first part of this chapter, we study merging within possibilistic DL-Lite framework. We first
focus on the use of minimum-based (min-based) operator, well known as idempotent conjunctive operator
presented in Section 2.3.2, for merging possibilistic DL-Lite knowledge bases. We then place ourselves
in the context of Ontology-based Data Access (OBDA) setting, in which a TBox is used to reformulate
posed queries to offer a better access to the set of data encoded in the ABox [Poggi et al., 2008]. We go
one step further in the definition of merging operators for π-DL-Lite knowledge bases by investigating
the aggregation of assertional bases (ABox) which are linked to the same TBox. Two important results
of this study are:

• Our merging approach based on conflict resolution can be extended to define other merging opera-
tors, and

• The computational complexity of min-based assertional fusion outcome is polynomial.

Another important reasoning task in possibilistic setting is the one of conditioning possibilistic knowl-
edge bases [Benferhat et al., 2002c]. Unfortunately, there is to the best of our knowledge no approach for
conditioning possibilistic DLs or DL-Lite when a new uncertain information is available. This chapter
fills this gap and gives a first result of possibilistic DL-Lite conditioning.

The rest of this chapter is organized as follows: Section 4.2 first introduces merging of π-DL-Lite
possibility distributions using a min-based operator and then discusses the syntactic counterpart when
merging π-DL-Lite knowledge bases. In Section 4.3, we first introduce a syntactic merging operator,
namely a min-based assertional operator based on conflict resolution. We show that such a merging
operator gives a more satisfactory result compared with the one proposed in Section 4.2. We then study
merging at a semantic level, and we show that our operator has a natural counterpart when combining
several possibility distributions. Lastly, we rephrase the set of postulates proposed in [Konieczny and
Pino Pérez, 2002] to characterize the logical behavior of belief bases merging operators and we provide
a postulates-based logical analysis of the min-based assertional operator in the light of this new set of
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postulates dedicated to the uncertain DL-Lite framework. Section 4.4 presents first result on possibilistic
DL-Lite conditioning and Section 4.5 concludes the chapter.

4.2 Min-based merging of π-DL-Lite knowledge bases

This section first introduces merging of π-DL-Lite possibility distributions using a min-based operator
and then discusses the syntactic counterpart of the proposed operator when merging π-DL-Lite knowl-
edge bases.

Example 4.1. Let K=〈T ,A〉 be a π-DL-Lite knowledge base where T ={(T v ¬S, .8), (∃F v T, .6),
(∃F− v S, .5)} andA={(F (b, c), 1)}. The possibility distribution πK associated toK is computed using
Definition 3.2 as follows where ∆I={b, c}:

I .I π1
I1 S = {b, c}, T = {b}, F = {(b, c)} .2
I2 S = {b, c}, T = {}, F = {(b, c)} .4
I3 S = {c}, T = {b}, F = {(b, c)} 1

Table 4.1: Example of a possibility distribution induced from a π-DL-Lite knowledge base

One can observe that πK(I3)=1 meaning that πK is normalized, and thus, K is consistent. �

4.2.1 Merging of π-DL-Lite possibility distributions

In a possibility theory framework, several fusion operators (e.g. [Dubois et al., 1992; Benferhat et al.,
1997b; Benferhat and Kaci, 2003]) have been proposed for merging pieces of information issued from
different and potentially conflicting or inconsistent sources. These fusion operators lead to combine mul-
tiple possibility distributions that encode sources of information to obtain a unique possibility distribution
that represent the global point of view of available information. Moreover, a syntactic counterpart for
each fusion operator used to combine possibility distributions has been introduced to merge possibilistic
knowledge bases.

When the distinct sources that provide possibility distributions are dependent, then the recommended
fusion operator is the min-based operator well-known as idempotent conjunctive operator. The aim of this
section is to study semantic merging of π-DL-Lite possibility distributions using min-based operator.
The syntactic counterpart of this combination will be presented in Section 4.2.2. Let us assume that
π1, ..., πn are possibility distributions provided by n sources of information that share the same domain
of interpretations (namely ∆I1 = ... = ∆In), and that all possibility distributions use the same scale to
represent uncertainty.

Definition 4.1. A min-based operator or idempotent conjunctive operator, denoted by ⊕, is a mapping
from ∀I ∈ Ω, ν(I) = (π1(I), ..., πn(I)) a vectors of possibility values to an interval [0, 1] defined as
follows:

π⊕(I) = min
I∈Ω

(ν(I))

According to Definition 4.1, the min-based operator ignores redundancy. Since, if all the sources pro-
vide the same possibility distribution then the result of fusion using⊕ is the same possibility distribution.

Proposition 4.1. The min-based operator satisfies the characteristic properties:
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• If ∀I ∈ Ω : πi(I) = 1 then π⊕(I) = 1.

• If ∀I ′,∀I ∈ Ω : πi(I) ≥ πi(I ′) then π⊕(I) ≥ π⊕(I ′).

Example 4.2. Let us continue example 4.1. Let π2 be the possibility distribution that encodes pieces of
information of K2 a π-DL-Lite knowledge base. Assume that ∆I = {b, c}:

I .I π2
I1 S = {b, c}, T = {b}, P = {b} 1
I2 S = {b, c}, T = {}, P = {} 1
I3 S = {c}, T = {b}, P = {} .1

Using Definition 4.1, we present the following possibility distribution π⊕ as the result of merging π1
(Example 4.1) and π2.

I .I π⊕
I1 S = {b, c}, T = {b}, P = {b}, F = {(b, c)} .2
I2 S = {b, c}, T = {}, P = {}, F = {(b, c)} .4
I3 S = {c}, T = {b}, P = {}, F = {(b, c)} .1

�

One can easily check that merging two π-DL-Lite normalized possibility distributions may lead to
a sub-normalized possibility distribution. This is the case with our example (Example 4.2).

Now, we focus on the normalization problem when the use of min-based operator ⊕ provides a
subnormalized possibility distribution. Let us consider:

h(π⊕) = max
I∈Ω
{π⊕(I)}

a function that computes to what extent there exists at least one interpretation which is confirmed
by all sources. Considering πN⊕ the normalized possibility distribution of π⊕, πN⊕ must respect the
following conditions.

Proposition 4.2. ∀I ′, ∀I ∈ Ω, the minimal requirements for πN⊕ are:

• ∃I, πN⊕(I) = 1.

• If π⊕(I) > π⊕(I ′) then πN⊕(I) > πN⊕(I ′).

• If π⊕(I) is normalized then π⊕(I) = πN⊕(I).

The first condition states that πN⊕ must be normalized (there exists at least one interpretation such
that πN⊕(I) = 1). The second condition entails that only interpretations having possibility degrees equal
to h(π⊕) can receive value 1 in the normalization process. Assuming these following requirements for
πN⊕ (Proposition 4.2), we consider the following definition of normalization.

Definition 4.2. For every I ∈ Ω and h(π⊕) > 0

πN⊕(I) =
{

1 if π⊕(I) = h(π⊕)
π⊕(I) otherwise

Example 4.3. [Example 4.2 continued] Using Definition 4.2, we present the following normalized pos-
sibility distribution πN⊕ from π⊕.
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I .I πN⊕
I1 S = {b, c}, T = {b}, P = {b}, F = {(b, c)} .2
I2 S = {b, c}, T = {}, P = {}, F = {(b, c)} 1
I3 S = {c}, T = {b}, P = {}, F = {(b, c)} .1

�

4.2.2 Syntactical merging of π-DL-Lite knowledge bases

Let us considerK1, ...,Kn a set of π-DL-Lite knowledge bases where eachKi represents the knowledge
of a single source of information or agent and π1, ..., πn is a set of n possibility distributions associated
withK1, ...,Kn. Namely each π-DL-Lite knowledge baseKi is associated with a possibility distribution
πi which is its semantical counterpart. In the previous section, we have presented merging of possibility
distributions using min-based operator. In this section, we give a syntactical counterpart of merging n
π-DL-Lite knowledge bases K1, ...,Kn provided by n different sources.

Let us consider S1, ..., Sn be the signatures of K1, ...,Kn. A signature S is the set of concept names,
role names and individual names used in K. We assume that all Ki’s share the same signature. Namely if
a concept name (resp. role name, individual name) A appears in S1 and S2 then A is assumed to be the
same.

Now, we look to identify syntacticly the min-based operator ⊕ on the Ki’s which correspond to
the min-based operator ⊕ on the πi’s reviewed in the Section 4.2.1 . More formally, given (π1, ..., πn)
possibility distributions associated with (K1, ...,Kn) π-DL-Lite knowledge bases, then for the min-
based operator⊕ applied to (π1, ..., πn), we look for a π-DL-Lite knowledge base K⊕ constructed from
(K1, ...,Kn) such that π⊕ = πK⊕ .

Definition 4.3. The syntactic counterpart of the min-based operator ⊕ for π-DL-Lite knowledge bases
is defined as follow where (φi, αi) ∈ K1 and (ϕi, βi) ∈ K2:

K⊕ = K1 ∪ K2

Example 4.4. Let K2=〈T ,A〉 be a π-DL-Lite knowledge base where T ={(P v S, .7), (P v T, .9)}
and A={(S(b), .9)}. The possibility distribution π2 associated to K2 is presented in Example 4.2.

Now, using Definition 4.3, we present the following π-DL-Lite knowledge base K⊕ as result of
mergingK1 (Example 4.1) andK2: T⊕ = {(T v ¬S, .8), (P v S, .7), (P v T, .9), (∃F v T, .6), (∃F− v
S, .5)} A⊕ = {(S(b), .9), (F (b, c), 1)}. The semantic counterpart of K⊕ is reported in Example 4.2
through the possibility distribution π⊕. �

Remark 4.1. In DL-Lite literature, it is often assumed that TBox are consistent (admit a model). This
makes sense when one has one source of information. However, when we deal with multiple sources
such assumption is questionable. In particular, it may happen that, one can cheek that there is no ABox
A such that T⊕ ∪ A is consistent.

In general, merging two π-DL-Lite consistent knowledge bases may lead to an inconsistent knowl-
edge base. This is the case with our example (Example 4.4) where K1 (Example 4.1) and K2 (Example
4.4) are consistent but their merging is inconsistent. Hence, we study the normalization problem at the
syntactical level when the use of min-based operator ⊕ provides an inconsistent π-DL-Lite knowledge
base.

LetK⊕ be a π-DL-Lite knowledge base associated with π⊕, a sub-normalized possibility distribution
where h(π⊕) = max

I∈Ω
{π⊕(I)}. Then the normalization rule can be defined as follows where KN⊕

denotes the normalized π-DL-Lite knowledge base:
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Proposition 4.3. The possibility distribution, where

I ∈ Ω: πN⊕(I)=

{
1 if π⊕(I) = h(π⊕)
π⊕(I) otherwise

is associated with:

KN⊕ = {(φi, αi)|(φi, αi) ∈ K⊕ and αi > 1− h(π⊕)}

According to Definition 4.3, the normalization does not modify the certainty degrees of π-DL-Lite
knowledge base encoded by π⊕. It just permits to ignore the presence of contradictions (or conflicts) and
maintains all the axioms of K⊕ whose certainty degrees are higher than the inconsistency degree of K⊕.

Example 4.5. Using Definition 4.3, we give the normalized π-DL-Lite knowledge baseKN⊕ associated
to the normalized possibility distribution πN⊕: T⊕ = {(T v ¬S, .8), (P v S, .7), (P v T, .9)} A⊕ =
{(S(b), .95), F (b, c), 1)}.

In this example, it is easy to see that KN⊕ is consistent and this is confirmed through πN⊕ where the
interpretation I1 is a model of KN⊕. �

It is important to note that the normalization process allows to find an inconsistency degree identical
to the one computed using an algorithmic approach proposed in Section 3.5 to compute the inconsistency
degree of a π-DL-Lite knowledge base.

4.3 Min-based assertional merging approach for π-DL-Lite knowledge
bases

This section introduces a syntactic merging operator, namely a min-based assertional operator based on
conflict resolution. We show that such a merging operator gives a more satisfactory result compared with
the one proposed in the previous Section 4.2 and has a natural semantic counterpart.

4.3.1 Syntactic merging of π-DL-Lite assertional bases

Let us consider A1,...,An a set of assertional bases (ABox) where each Ai represents assertional facts
provided by a single source of information. We assume that we have a well-formed and coherent termi-
nological base (TBox) T where each Ai is consistent with T .

In this section, we study syntactic merging of n assertional basesA1,...,An that are linked to the same
TBox T . We cast available information within the π-DL-Lite framework. For the sake of simplicity,
we omit the weights notation attached to the TBox axioms considered as the ones having the highest
certainty level, namely, an axiom in T is of the form (ϕ,1). We only represent explicitly weights attached
to Ai assertions. An assertion f in Ai is of the form f=(ϕ, α) where α ∈ [0, 1]. Note that copies of the
same assertions ϕ are allowed in several Ai and they are considered as different in the sense of priorities
or certainty and not in terms of interpretations since we use the Unique Name Assumption.

Let us consider S1, ..., Sn be the signatures of A1,...,An and T . Recall that a signature S of a knowl-
edge base K is the set of concept names, role names and individual names used in K. We assume that all
Ai’s and T share the same signature. We look to identify a syntactical merging operator on theAi’s with
respect to a TBox T which will be semantically meaningful. Merging at semantic level will be presented
in Section 4.3.2.
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Example 4.6. Let K=〈T ,A〉 be a π-DL-Lite knowledge base where T ={(AvB, 1), (Bv¬C, .9)} and
A={(A(a), .6), (C(b).5)}. The possibility distribution πK associated to K is computed using Definition
3.2 as follows where ∆I={a, b}:

I .I πK
I1 A={a},B={},C={b} 0
I2 A={a},B={a},C={b} 1
I3 A={},B={},C={a,b} .4
I4 A={a,b},B={a,b},C={} .5

Table 4.2: Example of a possibility distribution induced from a π-DL-Lite KB

One can observe that πK(I2)=1, meaning that πK is normalized, and thus, K is consistent. �

Merging using the classical min-based operator

To show properties of our assertional-based merging operator, we first perform merging of A1,...,An a
with respect to T using the classical min-based merging operator proposed in Section 4.2 to aggregate
π-DL-Lite knowledge bases. The min-based merging operator, denoted by ⊕ considers the union of all
ABox. Namely: A⊕=A1∪A2∪. . .∪An. The following definition gives the formal logical representation
of the normalized knowledge base.

Definition 4.4. Let T be a TBox and A⊕ be the aggregation of A1, ...An, n ABox using classical min-
based operator. Let x=Inc(〈T ,A⊕〉). Then, the normalized knowledge base, denoted, KN⊕ is such
that:

KN⊕=〈T , {(ϕ, α) : (ϕ, α) ∈ A⊕ andα > x}〉

Example 4.7. [Example 4.6 continued] Let us continue with the TBox T ={A v B, B v ¬C} presented
in Example 4.6 while assuming that the certainty degree of each axioms is set to 1. Let us consider the
following set of ABox to be linked to T :
A1={(A(a), .6), (C(b), .5)},
A2={(C(a), .4), (B(b), .8), (A(b), .7)} and
A3={(A(b), .2), (A(c), .5), (B(c), .4)}.
We have A⊕={(A(a),.6), (C(b),.5), (C(a), .4), (B(b),.8), (A(b),.7), (A(b),.2), (A(c), .5), (B(c),.4)}
where Inc(〈T ,A⊕〉) = .5. Then KN⊕=T ∪{(A(a),.6),(B(b), .8), (A(b),.7)}. �

According to Definition 4.4, merging operation does not modify the certainty degrees of the π-DL-
Lite knowledge base. It just permits to ignore the presence of contradictions (or conflicts) and maintain
all the assertions ofA⊕ whose certainty degrees are higher than the inconsistency degree of 〈T ,A⊕〉. It is
clear that the formal expression of the normalized π-DL-Lite knowledge baseK⊕ given in Definition 4.4
provides a consistent knowledge base. However, this result is not very satisfactory, since many assertions
in A1,...,An, which are not involved in any conflict are thrown out.

Example 4.8. [Example 4.7 continued] One can see that the assertions (A(c), .5) and (B(c), .4) are not
involved in any conflict, but they are not integrated in the merging result. �

To this end, we investigate a new approach to merge assertional bases based on conflict detection.
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Min-based assertional merging using conflict resolution

Let K=〈T ,A〉 be a π-DL-Lite knowledge base. In Section 3.5, it was shown that computing the in-
consistency degree of K comes down to compute the one of 〈π − neg(T ),A〉 where π-neg(T ) is the
negated closure of T . Indeed, computing inconsistency degree of K consists in calculating the maximal
weight attached to minimal inconsistent subsets involved in inconsistency (i.e. Definition 3.6). Within a
DL-Lite setting, the inconsistency problem is always defined with respect to some ABox, since a TBox
may be incoherent but never inconsistent. Recall that in this chapter, we assume that T is coherent. So,
from the definition of minimal inconsistent subsets, we define the notion of ABox conflict as a minimal
inconsistent subset of assertions. More formally:

Definition 4.5. Let K=〈T ,A〉 be an inconsistent π-DL-Lite knowledge base where axioms in T are set
to 1. A subbase C ⊆ A is said to be an assertional conflict set of K if and only if

• Inc(〈T , C〉) > 0 and

• ∀ f∈C, Inc(〈T , C − {f}〉)=0

It is clear that in Definition 4.5, removing any assertion ϕ from C restores the consistency of 〈T , C〉.
Recall that when the TBox is coherent, a conflict involves exactly two assertions.

Example 4.9. [Example 4.7 continued] Let us consider T and A⊕ from the above example. The π-
neg(T )={Av¬C, Bv¬C}. One can compute the following conflict sets:
C1={(A(a), .6), (C(a), .4)},
C2={(C(b), .5), (B(b), .8)},
C3={(C(b), .5), (A(b), .7)} and
C4={(C(b), .5), (A(b), .2)}. �

Let us assume that A1,...,An are assertional bases provided by n sources of information to be linked
to the same TBox T and they use the same scale to represent uncertainty. Let denote by f=(ϕ,α) an
assertion or a fact in Ai, we define the notion of conflict vector as follows:

Definition 4.6. Let T be a TBox and A1,...,An be a set of ABox provided by n distinct sources of
information to be linked to T . Then ∀f∈Ai we define a conflict vector associated with,

∀i ∈ {1, .., n}, ∀f = (ϕ, α) ∈ Ai,V(f) = 〈ν1, ν2, ..., νn〉

such that:

∀j = 1..n : Vj(f) =
{

1 if 〈T , {(ϕ, 1) ∪ Ai}〉 is consistent
Inc(〈T , {(ϕ, 1) ∪ Ai}〉) otherwise

Where Vi represents the ith component of the vector V .

Intuitively, for each assertion provided by an information source we built upon a vector that represents
to what extend this latter contradicts the other ones provided by other source. To this end, we add first the
assertion with a highest prescribed level in each source and then we compute the inconsistency degree of
this one. It is obvious that the conflict vector of a non conflicting assertion is equal to V(f)=〈1, 1, ..., 1〉.
However assertions that are involved in conflict will have at least a νi strictly less than 1.

Example 4.10 (Example continued). One can obtain the following conflict vectors:
V((A(a),.6)) =〈1, .6, 1〉,
V((A(b), .7))=〈.5, 1, 1〉,
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V((A(b), .2))=〈.5, 1, 1〉,
V((A(c), .5))=〈1, 1, 1〉,
V ((B(b), .8))=〈.5, 1, 1〉,
V((B(c), .4))=〈1, 1, 1〉,
V((C(a), .4))=〈.4, 1, 1〉 and
ν((C(b), .5))=〈1, .2, .8〉

�

From now on, we give the way to aggregate assertional bases using conflict vectors attached to each
assertion. Let denote by Σ the set of conflict vectors, we define the min-based assertional merging
operators, denoted by Λ as follows:

Definition 4.7. Let T be a TBox andA1,A2, ...,An be a set of ABox provided by n sources to be linked
to T . Let Σ be the collection of conflict vectors associated to each assertion on Ai. Then the min-based
assertional merging operator, denoted by Λ, is defined on Σ as follows:

∀V(f)∈Σ: Λ(f)=min{νi(f)}

Let us denote by ΣΛ, the vector resulting by min aggregation of conflict vectors.

Example 4.11 (Example continued). ΣΛ contains the following elements:
Λ((A(a), .6)) =.6,
Λ((A(b), .7))=.5,
Λ((A(b), .2))=.5,
Λ((A(c), .5))=1,
Λ((B(b), .8)) =.5,
Λ((B(c), .4))=1,
Λ((C(a), .4)) =.4 and
Λ((C(b), .5))=.2. �

According to conflict vectors, one can associate to the set of assertions a new pre-order by attaching
to each of them a new weight (i.e. ∀(ϕ, α)∈Ai:(ϕ, α)=(ϕ, Λ(f))). According to this new pre-order, we
define the knowledge base resulting from the fusion operation as follows.

Definition 4.8. Let T be a TBox and A1, ...,An be a set of n ABox to be linked to T . Let AΛ =
{(ϕ,Λ(f)) : f = (ϕ, α) ∈ Ai and Λ(f) ∈ ΣΛ}. Let x=Inc(〈T ,AΛ〉). Then the resulting knowledge
base KΛ is such that:

KΛ=〈T , {(ϕ, α) : (ϕ, α) ∈ AΛ andα > x}〉

Example 4.12 (Example continued). One can obtain:
AΛ={(A(a), .6), (A(b), .5), (A(b), .5), (A(c), 1), (B(b), .5), (B(c), 1),(C(a), .4),(C(b), .2)}
where Inc(〈T ,AΛ〉=.4.
Then KΛ = T ∪ {(A(a), .6),(A(b), .5), (A(b), .5), (A(c), 1), (B(b), .5), (B(c), 1)}. �

According to Definition 4.8, it is clear that method based on conflict vectors is more productive
than the classical definition of the min-based merging operator proposed in Definition 4.4. Note that
this approach can easily propose others aggregation modes such as product-based merging or sum-based
merging.

The definition of this merging operator is based on a notion of conflict measure between sources of
information. However, one can observe that original weights attached to assertions are lost. Regarding for
instance assertion B(c), it is provided by only one source where its initial weight was .4. This means that
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B(c) is not a totally reliable information. In the new knowledge base its weight is raised to 1. This can
be justified by the fact that such assertion is not involved in any conflict. However when we proceed to
an iteration process this approach may be not very useful. To overcome such limitation while preserving
the same productivity of the fusion result, we propose the following definition.

Definition 4.9. Let T be a TBox and A1, ...,An be a set of n ABox to be linked to T . Let AΛ =
{(ϕ,Λ(f)) : (ϕ, α) ∈ Ai}. Let x=Inc(〈T ,AΛ〉). Then the resulting knowledge base K′Λ is such that:

K′Λ=〈T , {f = (ϕ, α) ∈ Ai : i ∈ {1, ..., n}, (ϕ,Λ(f)) ∈ AΛ and Λ(f) > x}〉

4.3.2 Semantic counterpart

Let us considerA1,...,An a set of ABox’s where eachAi represents data of a single source of information.
We assume that we have a well-formed and coherent TBox T where eachAi is consistent with the T . Let
π1,...,πn be the set of possibility distributions associated with K1,...,Kn where each Ki=〈T ,Ai〉. Namely
each π-DL-Lite knowledge base Ki is associated with a possibility distribution πi which is its semantic
counterpart.

In this section, we investigate fusion of weighted π-DL-Lite assertional bases at semantic level.
We show that such merging operation is the natural semantic counterpart of the Λ merging operators
(presented in 4.3.1) used to merge π-DL-Lite ABox A1,...,An with respect to a T .

More formally, given (π1,...,πn) possibility distributions associated with (K1,...,Kn) π-DL-Lite knowl-
edge bases, then for the proposed operator Λ applied to aggregate A1,...,An with respect to T , we look
for a π-DL-Lite possibility distribution πΛ constructed from the aggregation of (π1,...,πn) with the se-
mantic counterpart of Λ that corresponds to the possibility distribution πKΛ induced from KΛ. Namely
πΛ=πKΛ .

As usual, assume that π1,...,πn share the same domain of interpretations (namely ∆I1 =...=∆In), and
that all possibility distributions use the same scale to represents uncertainty. The following definition
introduces the semantic definition of conflict vectors.

Definition 4.10. Let A1,...,An be a set of ABox and π1,...,πn be a the set of possibility distributions
induced from K1,...,Kn where each Ki=〈T ,Ai〉. Then ∀f∈Ai with f=(ϕ,α), we define semantically a
conflict vector, denoted by V(f), as follows:

V(f)=〈Ππ1(ϕ),Ππ2(ϕ), ...,Ππn(ϕ)〉

where ∀i=1..n:Ππi(f) denotes the possibility measure of ϕ induced from the possibility distribution πi

Intuitively, a conflict vector associated to any ABox assertion represents to what extent this latter is
compatible with available knowledge provided by each source.

Example 4.13. [Examples continued] Assuming that ∆I={a, b, c}, let us consider the following possi-
bility distributions π1, π2 and π3 to be merged. Note that we only have considered interpretations that are
models of T .
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I .I π1 π2 π3

I1 A = {a}, B = {a}, C = {b, c} 1 .2 .5
I2 A = {b}, B = {b}, C = {a, c} .4 1 .5
I3 A = {c}, B = {c}, C = {a, b} .4 .2 .8
I4 A = {a, b}, B = {a, b}, C = {c} .5 .6 .5
I5 A = {a, c}, B = {a, c}, C = {b} 1 .2 .8
I6 A = {b, c}, B = {b, c}, C = {a} .4 1 1
I7 A = {a, b, c}, B = {a, b, c}, C = {} .5 .6 1
I8 A = {}, B = {}, C = {a, b, c} .4 .2 .5

Table 4.3: Possibility distributions induced from three knowledge bases

One can compute the following conflict vectors for each assertion:
V(A(a))=〈max(1, .5, 1, 1),max(.2, .6, .2, .6),max(.5, .6, .8, 1)〉=〈1, .6, 1〉,
V(A(b))=〈max(.4, .5, .5, 5),max(1, .6, .1, .6),max(.5, .5, 1, 1)〉=〈.5, 1, 1〉,
V(A(c))=〈max(.4, 1, .4, .5),max(.2, .2, 1, .6),max(.8, .8, 1, 1)〉=〈1, 1, 1〉,
V(B(b))=〈.5, 1, 1〉, V(B(c))=〈1, 1, 1〉, V(C(a))=〈.4, 1, 1〉 and V(C(b))=〈1, .2, .8〉which are equal to the
ones computed syntactically in Example 4.10. �

Let us denote by Σ the collection of conflict vectors associated to each assertion ofAi. Next definition
introduces min-based assertional merging operator, denoted Λ, on the conflict vectors of Σ.

Definition 4.11. Let A1,...,An be a set of ABox and π1,...,πn be a the set of possibility distributions
induced from K1,...,Kn where each Ki=〈T ,Ai〉. Let Σ be the collection of conflict vectors associated to
each assertion on Ai computed using Definition 4.10. Then the min-based assertional merging operator,
denoted by Λ, is defined on Σ as follows: ∀V(f)∈Σ:V(f)=〈Ππ1(ϕ),Ππ2(ϕ), ...,Ππn(ϕ)〉,

Λ(f)= min{νi(f) ∈ V(f)}

Let us denote by ΣΛ, the vector resulting by min-based aggregation of conflict vectors.

Example 4.14. [Example continued] One can compute the set ΣΛ as follow: Λ((A(a), .6)) = .6,
Λ((A(b), .7)) = .5, Λ((A(b), .2)) = .5, Λ((A(c), .5))=1, Λ((B(b), .8)) =.5, Λ((B(c), .4))=1, Λ((C(a), .4))
=.4 and Λ((C(b), .5))=.2. �

From Definition 4.11, one can associate to each assertion a new weight that represents its compatibil-
ity with other assertions provided by the other sources.

Definition 4.12. Let A1,...,An be a set of ABox and π1,...,πn be a the set of possibility distributions
induced from K1,...,Kn where each Ki=〈T ,Ai〉. Then the possibility distribution πΛ as follows:

∀I ∈ Ω : πΛ(I) =
{

1 if ∀ (ϕ, α) ∈ Ai, I |= ϕ

1−max{Λ((ϕ, α)) : (ϕ, α) ∈ Ai, and I 6|= ϕ} otherwise
where Λ(ϕi) is the compatibility measure of ϕi computed using definition 4.11

Example 4.15 (Example continued). We have (A(c), .1), (B(c), 1), (A(a), .6), (A(b), .5), (B(b), .5),
(C(a), .4), (C(a), .2). Then:

I I1 I2 I3 I4 I5 I6 I7 I8

πΛ 0 0 .4 0 .5 .4 .6 0

Table 4.4: Possibility distribution resulting from assertional min-based merging.
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�

One can check that merging normalized possibility distributions may lead to a sub-normalized pos-
sibility distribution. This is the case with our example. Indeed, we focus on the normalization problem
when the use of min-based assertional operators min provides a subnormal possibility distribution.

Definition 4.13. Let us consider: h(πΛ)=max
I∈Ω
{πΛ(I)}. Then for every I∈Ω and h(πΛ)>0,

πNΛ(I) =
{

1 if πΛ(I) = h(πΛ)
πΛ(I) otherwise

Example 4.16 (continued). From previous Example, we have:

I I1 I2 I3 I4 I5 I6 I7 I8

πΛ 0 0 .4 0 .5 .4 .6 0
πNΛ 0 0 .4 0 .5 .4 1 0

Table 4.5: Normalized possibility distribution resulting from assertional min-based merging

�

The following proposition states the equivalence between the semantic and syntactic approaches.

Proposition 4.4. Let A1,...,An be a set of ABox and π1,...,πn be a the set of possibility distributions
induced from K1,...,Kn where each Ki=〈T ,Ai〉.Then the possibility distribution

πNΛ(I) =
{

1 if πΛ(I) = h(πΛ)
πΛ(I) otherwise

is associated with

KΛ=〈T , {(ϕ,Λ(f)) : (ϕ,Λ(f)) ∈ AΛ andΛ(f) > x}〉

4.3.3 Logical properties

Let us use E = {K1, ...,Kn} to denote a multi-set, called belief profile, that represents the knowledge
bases to be merged (where each Ki is associated with a possibility distribution πi). Let us use 4 to
denote a merging operator. This merging operator can be parametrized by an integrity constraint, being
a konwledge base K, and 4K(E) denotes the result of the merging operator under this constraint K. A
logical characterization of integrity constraint merging operators has been proposed in [Konieczny and
Pino Pérez, 2002] through a set of rational postulates extended from the ones proposed for belief revision
[Katsuno and Mendelzon, 1991]. The following postulates rephrase the ones proposed in [Konieczny and
Pino Pérez, 2002] within DL-Lite framework.

(Mπ
0) 4K(E) |= K

(Mπ
1) if K is consistent, then4K(E) is consistent

(Mπ
2) if K ∪

⋃
Ki∈E Ki is consistent, then4K(E)=K ∪

⋃
Ki∈E Ki

(Mπ
3) if E1 ≈ E2 and K1 ≡ K2, then4K1(E1) ≡ 4K2(E2).
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(Mπ
4) if K1 |= K and K2 |= K, then 4K(K1 ∪ K2) is consistent implies that 4K(K1 ∪ K2) ∪ K2 is

consistent

(Mπ
5) 4K(E1) ∪4K(E2) |= 4K(E1 ] E2)

(Mπ
6) if4K(E1) ∪4K(E2) is consistent, then4K(E1 ] E2) |= 4K(E1) ∪4K(E2)

(Mπ
7) 4K(E) ∪ K′ |= 4K∪K′(E)

(Mπ
8) if4K(E) ∪ K′ is consistent, then4K∪K′(E) |= 4K(E) ∪ K′

(Mπ
maj) ∃n4K(E1 ] En2 ) |= 4K(E2)

(Mπ
I ) ∀n4K(E1 ] En2 ) ≡ 4K(E1 ] E2)

With:

1. K1 |= K2 if and only if arg maxI πK1(I) ⊆ arg maxI πK2(I)

2. K1 ≡ K2 if and only if K1 |= K2 and K2 |= K1

3. E1 ≈ E2 if and only if there exists a bijection g from E1 to E2 such that ∀K ∈ E1 : πK=πg(K)

4. ] is the union of multisets [Knuth, 1998]

5. En = E ] ... ] E︸ ︷︷ ︸
n times

Note that in the special case where we only consider only one TBox T1 for E, these postulates are
equivalent with the ones proposed in [Qi et al., 2006b], by considering the revision of T1 by the shared
TBox T . Hence, our postulates extend (with very few adaptations) the notion of Revision of [Qi et al.,
2006b].

For the assertional-based merging operator considered in the present chapter, the integrity constraint
is K=〈T , ∅〉 where T is the set of TBox axioms of each Ki ∈ E and Ki = 〈T ,Ai〉.

Finally, one can check that the min-based assertional merging operators satisfies (Mπ
0), (Mπ

1), (Mπ
2),

(Mπ
3), (Mπ

5), (Mπ
6), (Mπ

7), (Mπ
8), (Mπ

I ) and falsifies (Mπ
4), (Mπ

maj).

4.4 Conditioning of possibilistic DL-Lite knowledge bases: Preliminary
results

In this section, we first study conditioning of π-DL-Lite knowledge bases semantically by condition-
ing the possibility distribution associated to DL-Lite interpretations by the new information. We start
by adapting the standard conditioning proposed in the possibilistic setting to the π-DL-Lite setting.
We show in particular that conditioning the possibility distribution within DL-Lite differs from the one
proposed by [Benferhat et al., 2002c] within the standard possibilistic setting in the sense that a direct
adaptation of conditioning to π-DL-Lite framework is not satisfactory. Roughly speaking, according to
the interaction between the new information and the knowledge base, we identify situations where condi-
tioning in DL-Lite differs from the one of the standard possibilistic setting. To this end, we study revision
at syntactic level of π-DL-Lite knowledge bases. We propose two other definitions that generalize and
refine the classical one.
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4.4.1 Conditioning of DL-Lite possibility distributions

Let K=〈T ,A〉 be a π-DL-Lite knowledge base where πK is its joint possibility distribution computed
according to Definition 3.2. For the sake of simplicity, we assume that K is consistent (namely πK is
normalized).

Example 4.17. Let K=〈T ,A〉 be a π-DL-Lite knowledge base where T ={(AvB,.4)} and
A={(A(a), .5),(C(a), .7)}). One can compute πK the possibility distribution induced from K using
Definition 3.2.

I .I πK

I1 A = {},B = {},C = {} .3
I2 A = {a},B = {},C = {} .3
I3 A = {},B = {a},C = {} .3
I4 A = {},B = {},C = {a} .5
I5 A = {a},B = {a},C = {} .3
I6 A = {a},B = {},C = {a} .6
I7 A = {},B = {a},C = {a} .5
I8 A = {a},B = {a},C = {a} 1

Table 4.6: Example of a possibility distribution πK computed using Definition 3.2.

One can observe that πK(I8)=1 meaning that the knowledge base is consistent. Note that we have chosen
a simple example in order to enumerate all interpretations. This will be helpful to illustrate the condition-
ing of a π-DL-Lite possibility distribution. �

Let us denote by (ϕ, µ) the new information to be accepted. Within the π-DL-Lite setting, ϕ may
be an assertion of the form A(a) or P (a, b), a positive inclusion axiom of the form B1vB2 or a negative
inclusion axiom of the form B1v¬B2 and µ∈] 0, 1]. The new input can be a totally reliable informa-
tion (i.e. µ=1) or uncertain (i.e. 0<µ<1). In π-DL-Lite, conditioning comes down to add the new
information with its prescribed level of certainty while ensuring the consistency of the results.

In the following, we investigate conditioning at the semantic level. It consists in conditioning the orig-
inal possibility distribution πK by the new information (ϕ, µ). This operation takes as input a possibility
distribution πK and the new information (ϕ, µ) and transforms πK to a revised possibility distribution
π′=πK(.|(ϕ, µ)). Here, the input (ϕ, µ) is considered as a constraint that must be satisfied in π′. More
precisely, the revised distribution is such that Π′(ϕ)=1 (recall that in the possibilistic setting, in order for
an event ϕ to have a certainty degree greater than zero, it must be totally possible, hence Π′(ϕ)=1, see
Section 2.2.2) and N ′(ϕ)≥µ meaning that the axiom ϕ is certain at least to the degree µ. Here Π′ (resp.
N ′) is the possibility (resp. necessity) measure induced by the revised possibility distribution π′.

Logical properties

In [Benferhat et al., 2002c], conditioning in the possibilistic logic setting is characterized with the fol-
lowing properties rephrased in our framework. A revised possibility distribution π′ is considered eligible
for revising the initial distribution πK with the new input (ϕ, µ) if it satisfies the following properties.

(A1) maxI∈Ω(π′(I))=1.

(A2) Π′(ϕ)=1 and N ′(ϕ)≥µ.

(A3) ∀I1 6|=ϕ, I2 6|=ϕ, if πK(I1)≤πK(I2) then π′(I1)≤π′(I2).
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(A4) ∀I1|=ϕ, I2|=ϕ, if πK(I1)≤πK(I2) then π′(I1)≤π′(I2).

(A5) If NK(ϕ)>0 then ∀I|=ϕ: πK(I)=π′(I)

(A6) If πK(I)=0 then π′(I)=0.

Property A1 ensures the consistency of the revised possibility distribution by guaranteeing a nor-
malized distribution π′. A2 guarantees that the added information should be inferred from the revised
distribution π′ with a weight at least equal to its prescribed priority level. A3 ensures that the relative
order between the interpretations that falsify ϕ is preserved. A4 states that the new possibility distribution
π′ should preserve the previous pre-order between interpretations which are models of ϕ. A5 means that
the conditioning process does not affect models of ϕ when ϕ is a priori fully accepted. A6 states that
every impossible interpretation remains impossible after conditioning. In order to satisfy properties A3
and A4, it is clear that the conditioning operation should condition both the interpretations satisfying ϕ
and those falsifying ϕ.

According to properties A1-A6, two different types of possibility distribution conditioning when
Π(ϕ) > 0 are proposed in [Dubois and Prade, 1988a], namely in an ordinal setting and in a quantitative
setting. These conditionings are extended to the case where the new input is uncertain in [Dubois and
Prade, 1997] and studied in [Benferhat et al., 2011]. In this chapter, we only focus on conditioning in the
ordinal setting, well-known as min-based conditioning [Benferhat et al., 2002c].

Belief conditioning (or revision) with uncertain information was studied in many works and its close
relation to Jeffrey’s rule [Jeffrey, 1965] (generalizing probability theory’s conditioning) is pointed out.
In [Benferhat et al., 2002c] the possibilistic counterpart was given for belief revision with uncertain
inputs when dealing with belief bases encoded in possibilistic logics (e.g. [Dubois et al., 1994]) The
authors show that the conditioning process comes down syntactically to adding the new information with
a prescribed level of certainty while maintaining the consistency of the resulting base and semantically to
conditioning the possibility distribution representing the current epistemic state in order to add the new
input.

Min-based π-DL-Lite possibility distribution conditioning

In order to define conditioning of possibility distribution πK, let us first recall that in standard proposi-
tional possibilistic logic, the necessity measure is the dual of the possibility measure and it is defined
by N(φ)=1-Π(¬φ) where φ is a propositional formula. In possibilistic DL-Lite, a necessity measure
cannot be defined as the dual of the possibility measure because the negation of an axiom in DL-Lite is
not allowed (see Section 3.2).

The following definition rephrases conditioning within the possibilistic DL-Lite setting.

Definition 4.14. Let K=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility distribu-
tion. Let (ϕ,µ) be a new information. The min-based conditioning is extended to the π-DL-Lite setting
as follows:

• ∀I|=ϕ, πK(.|m(ϕ, µ))=

{
1 if πK(I)=Π(ϕ)
π(I) otherwise

• ∀I6|=ϕ, πK(.|m(ϕ, µ))=


1-µ if π(I)=max{π(I) : I 6|= ϕ}
1-µ if πK(I)>1-µ
π(I) otherwise
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According to Definition 4.14, accepting the input consists in raising the degree of the most plausible
model of ϕ to 1. This allows to deal only with axioms that are consistent with the input. For the counter-
models, it is clear that the most plausible is set to 1-µ and all the interpretations that are more compatible
than 1-µ should be shifted down to 1-µ.

Proposition 4.5. LetK=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility possibil-
ity distribution. Let (ϕ, µ) be a new information. Then π′=πK(.|(ϕ, µ)) computed using Definition 4.14
satisfies postulates (A1)-(A6).

Example 4.18. Let us consider πK presented in Example 4.17. Assume that we have in this example
separately two cases of new information pieces to be accepted. The first one is (B v ¬C, .9) and
the second one is (Bv¬C, .2). Using Definition 4.14, the min-based revised possibility distribution
π′ = πK(I|m(B v ¬C, .9)) (resp. π′ = πK(I|m(B v ¬C, .2)) is as follows:

I .I πK πK(I|m(Bv¬C,.9)) πK(I|m(Bv¬C,.2))
I1 A = {},B = {},C = {} .3 .3 .3
I2 A = {a},B = {},C = {} .3 .3 .3
I3 A = {},B = {a},C = {} .3 .3 .3
I4 A = {},B = {},C = {a} .5 .5 .5
I5 A = {a},B = {a},C = {} .3 .3 .3
I6 A = {a},B = {},C = {a} .6 1 1
I7 A = {},B = {a},C = {a} .5 .1 .5
I8 A = {a},B = {a},C = {a} 1 .1 .8

Table 4.7: Example of possibility distribution revisied by two information pieces.

In this example, the first scenario is revising πK associated to K with the input (Bv¬C,.9). Given
that in πK, we have a priori Π(Bv¬C)=.6 (hence it’s necessity is 0) then the new input requires to be
satisfied to increase the necessity of the axiom Bv¬C until .9.

In the second scenario, the necessity of the axiom B v ¬C has to be shifted down to .2. One can
observe in πK that the interpretations {I1, I2, I3, I4, I5, I6} |= B v ¬C where Π(B v ¬C) = .6 while
{I7, I8} 6|= B v ¬C where max{π(I) : I 6|= B v ¬C} = 1. �

Definition 4.14 is a direct adaptation of conditioning in possibilistic logic [Dubois and Prade, 1988a]
to π-DL-Lite framework. As it will be shown in the following example, conditioning of Definition
4.14 is not satisfactory as it provides somehow counterintuitive results. More precisely, conditioning of
Definition 4.14 works when the new information is inconsistent with the knowledge base or it is a priori
inferred with a weight less than its prescribed level µ. Hence conditioning here consists in simply adding
the new information to the old knowledge (it is a kind of knowledge expansion). However, conditioning
of Definition 4.14 does not work properly when the input is a priori inferred with a weight greater than
its prescribed level µ. The following example illustrates this situation.

Example 4.19. Assume that we have a π-DL-Lite knowledge base K where the TBox T ={(AvB, .4),
(BvC,.7)} and the ABox A={(A(a),.3)}. One can easily check that we have a priori K|=π(AvC,.4)
(indeed, as it is shown in Table 4.8, the axiomAvC has a necessity degree of .4 in the possibility distribu-
tion πK associated toK). Now assume the two following situations: In the first one, the information piece
to be accepted byK is (AvC,.9) while in the second situationK is revised with (AvC,.2). Let πK be the
possibility distribution associated with K and Let π′=πK(I|m(AvC,.9)) (resp. π′′=πK(I|m(AvC,.2)))
the conditioned min-based possibility distribution using Definition 4.14.
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I .I πK π′=πK(I|m(AvC,.9)) π′′=πK(I|m(AvC,.2))
I1 A={}, B={a}, C={} .3 .3 .3
I2 A={a}, B={}, C={a} .6 .6 .6
I3 A={}, B={}, C={} .7 .7 .7
I4 A={}, B={}, C={a} .7 .7 .7
I5 A={}, B={a}, C={a} .7 .7 .7
I6 A={a}, B={a}, C={a} 1 1 1
I7 A={a}, B={}, C={} .6 .1 .8
I8 A={a},B={a},C={} .3 .1 .3

Table 4.8: Second example of possibility distribution conditioning by two information pieces.

The interpretations {I1, I2, I3, I4, I5, I6} satisfy the input axiom A v C and we have a priori
Π(A v C) = 1 and Πn(AvC)=.6. The possibility degrees of the interpretations {I7, I8} are set to
(1-.9)=.1 in order to ensure that N ′(AvC)=.9. It is easy to check that properties (A1)-(A6) are satisfied
by the distribution π′ computed according to Definition 4.14. However when the input is (AvC,.2), there
is a problem regarding the possibility degree associated to I2 in π′′. Indeed, we have AvC is implied by
the fact AvB and BvC. Hence, in order to have a necessity degree of AvC of .2 then one has to shift
down at least the necessity degree of the axiom AvB down to .2 as it has a lower priority than BvC.
However, if the necessity of AvB is shifted down to .2 then the corresponding πK after this modification
will not be equivalent to the one given in Table 4.8. For instance, the interpretation I2 will be associated
with a degree of .8 instead of .6 currently. Clearly revision with conditioning of Definition cannot fully
capture syntactic revision detailed in the following section. �

It is important to note that in the DL-Lite framework, it is not guaranteed that any set of interpretations
represents a DL-Lite axiom (see Section 3.2).

In the next section, we analyze revision at syntactic level. We then provide a definition of conditioning
possibility distributions that refines Definition 4.14.

4.4.2 Syntactic revision

In this section, we study revision with the new information (ϕ, µ) at the syntactic level. Revision here
consists in obtaining from a π-DL-Lite knowledge base K = 〈T ,A〉 associated to a possibility distribu-
tion πK and an uncertain input information (ϕ, µ), a new π-DL-Lite knowledge base K′=〈T ′,A′〉. As
in possibilistic logic, in π-DL-Lite, revision comes down to add the new information with its prescribed
level of certainty while ensuring the consistency of the revision results.

As mentioned is the previous section a simple adaptation of conditioning in possibilistic logic to π-
DL-Lite framework is not very satisfactory. So, we identify cases where K′=〈T ′,A′〉 is associated to
possibility πK′ such that:

∀I ∈ Ω, πK′(I)=πK(I|m(ϕ, µ))

where πK′ is the possibility distribution obtained from conditioning πK by (ϕ, µ) using minimum-based
conditioning of Definition 4.14.

As illustrated in Example 4.19, Definition 4.14 doesn’t provide good results and in particular when
the (ϕ, µ) is inferred from the knowledge base with a weight greater than its prescribed one. Indeed,
according the logical form of K′, we propose an new definition of minimum-based conditioning that
refine Definition 4.14.
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When adding the new information to the knowledge base, several situations may be encountered,
namely when the input is consistent or inconsistent with the the original knowledge. The following two
subsections analyse these situations where they give formal representation of the revised knowledge base
and re-define minimum-based conditioning in order to πK′ from πK.

The input (ϕ,µ) is inconsistent with the knowledge base

We address here the situation where the new information (ϕ,µ) is inconsistent with the knowledge base
K, namely ΠK(ϕ)<1 (recall that in possibility theory, if Π(ϕ)<1 thenN(ϕ)=0). There are two situations
to be considered. The first one is when (ϕ,µ) is implicitly inhibited by higher priority TBox or ABox
axioms that contradict it. The second one is when (ϕ,µ) is not inhibited by higher priority axioms that
contradict it. For these two cases, the construction of the augmented π-DL-Lite knowledge base K′ is
performed according to the following steps:

1. Add the input ϕ to the knowledge base K with the highest prescribed level (i.e. µ=1).

2. Compute the inconsistency degree β=Inc(K1) with K1=K∪{(ϕ, 1)}.

3. Drop every axiom in K1 having a priority less than or equal to the inconsistency degree β. Let K2
the obtained consistent knowledge base.

4. Add ϕ with its prescribed level µ to K2. Let K′=K2∪{(ϕ, µ)}.

These steps ensure the consistency of the resulting knowledge base after adding the input (ϕ,µ) with
its prescribed level. The following proposition relates the resulting knowledge baseK′ with the possibility
distribution πK′ associated to K′ with the results of conditioning at the semantic level using Definition
4.14. namely πK′(I)=πK(I|m(ϕ, µ)) using min-based conditioning defined in Definition 4.14 .

Proposition 4.6. Let K=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility distri-
bution. Let (ϕ, µ) be the added uncertain input information and β=Inc(K1) where K1=K ∪ {(ϕ, 1)}.
Let K′=〈T ′,A′〉 such that K′={(ϕ, µ)}∪{(φ, α) : (φ, α) ∈ K andα > β} and let πK′ be the possibility
distribution associated to K′. Then,

∀I ∈ Ω, πK′(I)=πK(I|m(ϕ, µ)),

where πK(I|m(ϕ, µ)) denotes the revised possibility distribution πK computed using min-based condi-
tioning defined in Definition 4.14.

Example 4.20 (examples 4.17 and 4.18 continued). We have T ={(AvB,.4)} andA={(A(a), .5), (C(a), .7)}).
Let us first assume a new input (Bv¬C, .9) and then another input (Bv¬C, .2). One can easily check
that Inc(K∪{(Bv¬C, 1)}=.4. So, (Bv¬C, .2) (resp. (Bv¬C, .9)) is inhibited (resp. not inhibited)
by higher priority axioms that contradict it. For the first case, it is easy to check that K′={(Bv¬C, .2),
(A(a), .5), (C(a), .7)} is such that πK′(I)=πK(I|m(Bv¬C, .2)) presented in Example 4.18. For the
second case however,K′={(Bv¬C, .9), (A(a), .5), (C(a), .7)}) such that πK′(I)=πK(I|m(Bv¬C, .9))
presented in Example 4.18. �

The input (ϕ,µ) is consistent with the knowledge base

When the input (ϕ,µ) is consistent with the knowledge base K (namely Π(ϕ)=1), two situations are to
be considered:

1. The first one is when (ϕ, µ) is a priori inferred from the knowledge base K, namely K|=πφ.
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2. The second one is when (ϕ, µ) cannot be inferred from K, namely K6|=πφ. Here, revision is
performed with a simple expansion of K with the input (ϕ, µ), namely K′=K∪(ϕ, µ).

Let us first discuss the situation where the input (ϕ, µ) is a priori inferred from the knowledge base
K. In this situation, two scenarios can hold depending on the a priori necessity measure of ϕ (denoted
N(ϕ)=ν), and its prescribed posterior necessity N ′(ϕ)=µ. Namely:

1. When ν≤µ meaning that the new information is inferred with a certainty degree ν less than its
prescribed one µ. Note that this situation is similar to the case of revising with a certain input
(namely case where µ=1).

2. When ν>µ meaning that the new information is inferred with a certainty degree ν that is greater
than its prescribed one µ.

In the π-DL-Liteframework, two different kinds of inference services are given, namely flat sub-
sumption (resp. instance checking) and weighted subsumption (resp. instance checking) (see Section
3.7). To determine to what extent the input (ϕ) is inferred from the knowledge base, namely K|=π (ϕ,ν)
with ν≥µ or ν<µ, we first add to K the assumption that ϕ is false encoded by the following statements:
{(Y v C1, 1), (Y v ¬C2, 1), (Y (y), 1)} if ϕ=C1 v C2 and {(Y v ¬C1, 1), (Y (a), 1)} if ϕ=C1(a)
where Y (resp. y) is a new concept (resp. individual) not appearing in K. Then we compute the incon-
sistency degree of the augmented knowledge base. This inconsistency degree corresponds to ν. Namely
K |=π (ϕ,ν) if and only if Inc(K1)=ν where K1=〈T1,A1〉 with T1=T ∪ {(Y v C1, 1), (Y v ¬C2, 1)}
and A1={(Y (y), 1)} or T1=T ∪ {(Y v ¬C1, 1)} and A1=A ∪ {(Y (a), 1)}.

Now, the construction of the augmented π-DL-Lite knowledge base K′ is performed using the fol-
lowing steps:

1. Add the assumption that ϕ is false to K with the highest prescribed level (i.e. µ = 1).

2. Compute the inconsistency degree of the augmented knowledge base (i.e. Inc(K1)=ν).

3. If µ≥ν, then the revision outcome is K′=K∪{(ϕ, µ)}.

4. if (µ < ν) two solutions can be proposed.

(a) The first one is to shift down the weights of axioms in K which are between µ and ν to µ.

(b) The second solution is to compute first the set X⊆K of axioms in K that imply ϕ. Then we
shift down the weights of axioms in X which are between µ and ν to µ.

These steps ensure inferring the new input ϕ from the resulting knowledge baseK′ with its prescribed
level µ. Following these steps, it is clear that the revision process does not change the initial weights
attached to axioms ofK ifK|=π (ϕ, ν) with ν≤µ. However it changes the initial weights attached to some
axioms responsible or not for inferring ϕ fromKwith the weight µwhen ν>µ. According to the Example
4.19 presented in the previous section, conditioning proposed by Definition 4.14 is counterintuitive when
(µ < ν). To this end, we fit Definition 4.14 before giving the formal representation of K′.

Semantic counterpart

Let us start with the case where ν > µ. The following definition gives a min-based conditioning of
π-DL-Lite possibility distribution generalizing Definition 4.14.
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Definition 4.15. LetK=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility possibility
distribution. Let (ϕ,µ) be the new information. The min-based conditioning is extended to the π-DL-
Lite setting as follows:

• ∀I|=ϕ, πK(.|m(ϕ, µ))=


1 if πK(I)=Π(ϕ)
1− µ if max{π(I) : I 6|= ϕ}≤πK(I)≤1-µ
π(I) otherwise

• ∀I6|=ϕ, πK(.|m(ϕ, µ))=

{
1-µ if π(I)=max{π(I) : I 6|= ϕ} or πK(I)>1-µ
π(I) otherwise

According to Definition 4.15, accepting the input consists in raising the degree of the most plausible
model of ϕ to 1. Moreover when N(ϕ) ≥ µ, some models of ϕ will all be set to 1− µ. For the counter-
models, the most plausible is set to 1-µ and all interpretations that are more compatible than 1-µ should
be shifted down to 1-µ. Moreover, when N(ϕ)=ν > µ the interpretations that falsify less priority axioms
inferring ϕ will be revised.

Proposition 4.7. Let K=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility possi-
bility distribution. Let (ϕ,µ) be the new information. If Π(ϕ)<1, Then π′=πK(.|(ϕ, µ)) computed using
Definition 4.15 satisfies postulates (A1), (A2), (A3), (A4), (A6).

The following proposition relates the resulting knowledge base K′ with the possibility distribution
πK′ associated to K′ with the results of conditioning at the semantic level using Definition 4.15

Proposition 4.8. Let K=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility dis-
tribution. Let (ϕ, µ) be the added uncertain input information and ν=Inc(K1) where K1 is the aug-
mented knowledge base by the assumption that ϕ is false. Then the revised π-DL-Lite knowledge base
K′=〈T ′,A′〉 such that:

K′={(ϕ, µ)}∪{(φ, α):(φ, α)∈K andα>ν}∪{(φ, α):(φ, α)∈K andα<µ} ∪ {(φ, µ):(φ, α) ∈
K andµ≤α≤ν}

The possibility distribution πK′ associated to K′ is such that:

∀I ∈ Ω, πK′(I)=πK(I|m(ϕ, µ)),

where πK(I|m(ϕ, µ)) denotes the revised possibility distribution of πK using the min-based conditioning
of Definition 4.15.

Proposition 4.8 leads to shift down the weights of axioms in K which are between µ and ν to µ.
However, one can improve the result with a minimal change consisting in revising only the weights of
some axioms responsible of implying the new information.

Example 4.21 (Examples 4.19 continued). We have T ={(AvB,.4), (BvC,.7)} and A={(A(a),.3)}.
Let us consider (AvC,.9) and (AvC,.2). One can easily check that Inc(K1)=.4 where K1=〈T ∪
{(Y v A, 1), (Y v ¬C, 1)}, {(Y (y), 1)}〉 . So K|=π(AvC,.4). When the input is (AvC,.9), then
K′={(AvB,.4), (BvC,.7), (AvC,.9), (A(a), .3)} such that πK′(I)=πK(I|m(AvC,.9) presented in
Example 4.19. Now, when the input is (AvC,.2), then K′={(AvB,.2), (BvC,.7), (AvC,.2), (A(a),
.2)} such that πK′(I) = πK(I|m(AvC,.2) presented in Example 4.19 becomes as follows:
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I .I πK π′=πK(I|m(AvC,.9)) π′′=πK(I|m(AvC,.2))
I1 A={}, B={a}, C={} .3 .3 .3
I2 A={a}, B={}, C={a} .6 .6 .8
I3 A={}, B={}, C={} .7 .7 .8
I4 A={}, B={}, C={a} .7 .7 .8
I5 A={}, B={a}, C={a} .7 .7 .8
I6 A={a}, B={a}, C={a} 1 1 1
I7 A={a}, B={}, C={} .6 .1 .8
I8 A={a},B={a},C={} .3 .1 .3

Table 4.9: Example of possibility distribution revision by two information pieces using Definition 4.15

�

Given the set X⊆K of axioms in K that infer ϕ, we distinguish semantically four sets of interpreta-
tions when the new information ϕ is satisfied:

1. Interpretations that are models of X and K-X ,

2. Interpretations that are models of X but are not models of K-X ,

3. Interpretations that are models of K-X but are not models of X and

4. Interpretations that are neither models of K-X nor X .

The following definition provides another min-based conditioning of π-DL-Lite possibility distribu-
tion that also adapts Definition 4.14.

Definition 4.16. LetK=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility possibility
distribution. Let (ϕ, µ) be the new information. Let X⊆K be the set of axioms inferring ϕ. Let

µ′=max{α : (φ, α) ∈ K − X and I 6|= φ}.

In an ordinal setting, we define the min-based conditioning as follows:

• ∀I|=(ϕ∪X ), π(.|m(ϕ,µ))=

{
1 if π(I)=Π(ϕ)
π(I) otherwise

• ∀I|=ϕ∪(K-X ), I6|=X , π(.|m(ϕ,µ))=

{
1-µ if π(I)=max{π(I) : I 6|= ϕ}
π(I) otherwise

• ∀I |= ϕ,I 6|= X , I 6|= K−X ,π(.|m(ϕ, µ))=


1-µ if π(I)=max{π(I) : I 6|= ϕ} and 1− µ′≥1-µ
1-µ′ if π(I)=max{π(I) : I 6|= ϕ} and 1− µ′≤1-µ
π(I) otherwise

• ∀I 6|= ϕ,π(.|m(ϕ, µ))=


1-µ if π(I)=max{π(I) : I 6|= ϕ}
1-µ if π(I)>1-µ
π(I) otherwise
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4.4. Conditioning of possibilistic DL-Lite knowledge bases: Preliminary results

Proposition 4.9. Let K=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility possi-
bility distribution. Let (ϕ, µ) be the new information. If Π(ϕ)<1. Then π′=πK(.|(ϕ, µ)) computed using
Definition 4.16 satisfies postulates (A1),(A2),(A3) and (A6).

The following proposition relates the resulting knowledge base K′ with the possibility distribution
πK′ associated to K′ with the results of conditioning at the semantic level using Definition 4.16.

Proposition 4.10. Let K=〈T ,A〉 be a π-DL-Lite knowledge base and πK be its joint possibility dis-
tribution. Let (ϕ, µ) be the added uncertain input information and ν=Inc(K1) where K1 is the aug-
mented knowledge base by the assumption that ϕ is false. Then the revised π-DL-Lite knowledge base
K′=〈T ′,A′〉 such that

K′={(ϕ, µ)} ∪ {K − X} ∪ {(φ, α) : (φ, α) ∈ X andα > ν} ∪ {(φ, µ) : (φ, ν) ∈ X and ν = α}

The possibility distribution πK′ associated to K′ is such that:

∀I ∈ Ω, πK′(I)=πK(I|m(ϕ, µ)),

where πK(I|m(ϕ, µ)) denotes the revised possibility distribution of πK using the min-based conditioning
defined in Definition 4.16.

Example 4.22 (Examples 4.19 continued). When the input is (AvC,.9), then K′= {(A v B, .4),
(BvC,.7), (AvC,.9), (A(a), .3)} such that πK′(I)=πK(I|m(AvC,.9) presented in Example 4.19.
Now, when the input is (AvC,.2), then K′={(AvB,.2), (BvC,.7), (AvC,.9), (A(a), .3)} such that
πK′(I)=πK(I|m(AvC,.2) becomes as follows:

I .I πK π′=πK(I|m(AvC,.9)) π′′=πK(I|m(AvC,.2))
I1 A={}, B={a}, C={} .3 .3 .3
I2 A={a}, B={}, C={a} .6 .6 .8
I3 A={}, B={}, C={} .7 .7 .7
I4 A={}, B={}, C={a} .7 .7 .7
I5 A={}, B={a}, C={a} .7 .7 .7
I6 A={a}, B={a}, C={a} 1 1 1
I7 A={a}, B={}, C={} .6 .1 .8
I8 A={a},B={a},C={} .3 .1 .3

Table 4.10: Example of possibility distribution revision by two information pieces using Definition 4.16

�

Let us now discuss the case where µ≥ν. It is similar to the revision by a totally reliable information
(i.e. µ=1). In this case, it is natural that all the interpretations that are models of ϕ must be preserved and
all the interpretations that falsify ϕ must be set as impossible (the necessity degree of the input equals 0).
In this case the conditioning operation follows from Definitions 4.15 and 4.16. Moreover conditioning
according Definitions 4.15 and 4.16 agrees with Definition 4.14. Finally when (ϕ, µ) cannot be inferred
from K, this means that the revision process is performed simply with an expansion of K with the input.
In such situation, conditioning follows trivially according to Definitions 4.15 and 4.16 and coincides with
Definition 4.14. It is similar to the case where the input is inconsistent with K. Clearly, Inc(K∪(ϕ,
µ))=0.
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Discussions

According to the new definition, conditioning of π-DL-Lite possibility distribution with (ϕ, µ) estab-
lishes a new pre-order between counter-models and models of ϕ. This new ranking depends on the a
priori necessity measure of ϕ, and the prescribed posterior necessity measure of ϕ. Roughly speaking, if
N(ϕ)≤µ then with a min-based conditioning every interpretation that falsifies ϕ and that is more com-
patible than 1-µ is shifted down to 1-µ. This means that some a priori pre-order on these interpretations
will be lost. Moreover, the fact that within π-DL-Lite framework, the necessity measure is not the dual
of the possibility measure, some a priori pre-order on interpretations which are models of ϕ will also be
lost. This is a consequence of shifting down to 1-µ some more compatible counter-models of ϕ when
N(ϕ)≤µ. Regarding the computational complexity of the syntactic revision, it is obvious that it is poly-
nomial since computing the inconsistency degree of a π-DL-Lite knowledge base is polynomial using
the algorithm proposed in Section 3.5.

To compute the revision outcome, we need one step further when (ϕ, µ) is inferred from the knowl-
edge base. Namely, we need to compute the set of axioms responsible for deducing the input. The
computational complexity of this subset is also polynomial. This step is in the spirit of computing the
π-negated closure of a π-DL-Lite knowledge base. Clearly, computing this subset X comes down by
adding every axiom involved in computing the π − neg(T1) starting only from the negative inclusion
axiom added from the assumption that ϕ is false. This is for obtained TBox axioms. Obtaining ABox
assertions comes down to detect all assertions in the original ABox that contradict negative inclusion in
X .

4.5 Conclusion

In this chapter, we first investigated merging of uncertain DL-Lite knowledge bases by adapting the min-
based idempotent conjunctive operator. We then proposed a new min-based operator for merging multiple
sources ABoxe’s sharing the same terminology in the context of π-DL-Lite. We propose a syntactic
version of this operator and its semantic counterpart. This operator turns out to be more productive than
the classical one, without increasing the complexity of the merging process. In particular, it picks any
piece of information that is not in contradiction with the other bases: it is not affected by the drowning
effect. We finally provide an analysis in the light of a new set of postulates dedicated to uncertain DL-Lite
merging.

This chapter addressed also conditioning of π-DL-Lite knowledge bases when a new piece of infor-
mation (ϕ, µ), possibly conflicting or uncertain, becomes available. We first studied revision at the se-
mantic level by adapting conditioning of possibility distributions proposed within the possibilistic setting.
We have shown that such conditioning may provide some counterintuitive results. We then investigated
revision at the syntactic level of π-DL-Lite knowledge bases. Finally, we proposed two other definitions
of π-DL-Lite possibility distribution s conditioning that generalize the first one.

From the works on merging, it seems that our merging approach based on conflict resolution is closely
related to handling inconsistency approaches. In fact, among the crucial issues when merging is how to
deal with conflicting information. This has led us to orientate our works towards inconsistency manage-
ment. Unfortunately, even in the flat case, (when there is no priority between sources), only few works
addressed this problem. To this end, the second part concerns the problem of inconsistency handling in
flat DL-Lite knowledge bases.
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Inconsistency handling in flat DL-Lite
knowledge bases
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CHAPTER 5

NON-MERGE INCONSISTENCY
MANAGEMENT ROADMAP IN FLAT DL-Lite

KNOWLEDGE BASES

5.1 Introduction

In this chapter, we place ourselves in the context of handling an inconsistent set of pieces of information.
As a case of study, we consider the setting of flat Ontology Based Data Access (OBDA) that studies how
to query a set of independent data sources using an unified ontological view. A specific research challenge
within the OBDA setting addresses the case when the data sources put together are inconsistent. Existing
works (e.g. [Lembo and Ruzzi, 2007; Lembo et al., 2010; Bienvenu and Rosati, 2013; Rosati, 2014]) have
focused on the study of different inference strategies (called semantics) based on productivity criteria
(how two semantics relate to each other based on their answer sets) and computational complexity. In
these studies, closely related to works on consistent query answering from inconsistent databases (e.g.
[Chomicki, 2007; Bertossi, 2011]), there is a lack of studies on how existing inference strategies can be
placed within the space of possible inference strategies.

This chapter produces a roadmap of different inconsistency management techniques from a DL-Lite
knowledge base with a multiple ABox, called an MBox DL-Lite knowledge base. An MBox is a multi-set
of ABox’s which can be issued from multiple information sources (as per the OBDA view) but could also,
for instance, be resulted from revising inconsistent DL-Lite knowledge bases.

We build upon the state of the art and:

1. Introduce, discuss and provide properties for three main elementary changes or modifiers that can
be operated on an MBox, namely expansion modifiers, splitting modifiers and selection-based
modifiers.

2. Provide and study different inference strategies for query answering from MBox DL-Lite knowl-
edge bases.

3. Show how the combination of modifiers and inference strategies provides a natural general setting
that extends existing consistent query answering OBDA techniques.

4. Provide a study of productivity results for modifier plus inference strategies combinations.

Based on the above notions, an additional and important contribution in this chapter is providing a
generalized view for handling inconsistent standard DL-Lite knowledge bases. The important points of
this roadmap lay in its principled nature and completeness. Within this setting, the particular problem
of repairing an inconsistent DL-Lite knowledge base can be seen as made out of a (1) composite or a
complex modifier on a given MBox followed by (2) an inference-based strategy. We show that there are
exactly eight major composite modifiers that can be applied on an inconsistent DL-Lite knowledge base
and identify those that produce a single consistent and preferred repair.

111



Part III, Chapter 5 – Non-merge inconsistency management roadmap in flat DL-Lite knowledge bases

The rest is organized as follows: Section 5.2 first defines the concept of DL-Lite knowledge bases
with multiple ABox, and then introduces three elementary modifiers that, applied on MBox, define new
modifiers. Section 5.3 presents several inference-based strategies that can be applied on an MBox DL-
Lite knowledge base. Section 5.4 investigates the problem of repairing an inconsistent DL-Lite knowledge
base, which is considered as composed of a composite modifier applied on a given MBox followed by
an inference-based strategy. Section 5.5 studies the productivity and gives a complexity analysis of
the different inconsistency-tolerant inferences. Section 5.6 discusses the different results. Section 5.7
concludes the chapter. Finally, additional propositions and counterexamples can be found in the appendix
B.

5.2 Reasoning from MBox knowledge bases

This section proposes how to reason from a DL-Lite knowledge base with a multiple ABox, called an
MBox DL-Lite knowledge base. We discuss three main elementary changes or modifiers on an MBox.
We provide different ways to compose them in order to obtain a composite modifier and propose inference
strategies for querying MBox DL-Lite knowledge bases.

5.2.1 MBox: Multiple ABox

We first introduce the concept of DL-Lite knowledge bases with multiple ABox, called MBox DL-Lite
knowledge bases.

Definition 5.1. A DL-Lite knowledge base with an MBox, called MBox DL-Lite knowledge base, is of
the form KM = 〈T ,M〉 where T is a standard DL-Lite TBox andM = {A1, . . . ,An} is a multi-set of
facts, called MBox, where each Ai is a standard DL-Lite ABox.

In the above definition, there is no additional assumption regarding the consistency of each 〈T ,Ai〉.
However, in general, 〈T ,Ai〉’s are often assumed to be consistent while (T ,

⋃
Ai∈MAi) is unlikely to be

consistent. An MBox may be viewed as a convenient way to represent a multiple-sources of information,
where each ABox Ai is assumed to be provided by a distinct source. An MBox may also be the result
of revising an inconsistent standard DL-Lite knowledge base. In this case, each element of the MBox
reflects a possible repair of the inconsistent DL-Lite knowledge base. This view of an MBox will be
assumed in large in Section 5.4.

In the rest of the chapter, an MBox DL-Lite knowledge base KM = 〈T , {A1, ...,An}〉 is said to be
consistent if each 〈T ,Ai〉 is individually consistent. A standard knowledge base will be indifferently
represented by 〈T ,A〉 or by an MBox knowledge base KM = 〈T ,M = {A}〉 with only a single ABox
inM.

Example 5.1. Let T = {C v B} be a DL-Lite TBox. LetM = {{C(a), B(a)}, {B(c), B(a)}} and
M′ = {{C(a), B(a), B(c)}} be two MBox’s. Then KM = 〈T ,M〉 is a DL-Lite knowledge base with
an MBox containing a set of ABox and K′M = 〈T ,M′〉 is a DL-Lite knowledge base with an MBox that
is only composed with one single ABox. K′M encodes a standard DL-Lite knowledge base. �

5.2.2 Elementary modifiers on MBox

We now introduce elementary modifiers that, applied on MBox, define new modifiers.
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5.2. Reasoning from MBox knowledge bases

Expansion modifiers

The first considered modifier operators concern expansion of ABox’s. It consists in adding to each ABox
Ai some assertions. One natural way to define an expansion modifier on MBox is to use the notion of
a deductive closure of DL-Lite knowledge bases. There are different definitions of deductive closures
in DL-Lite (e.g. [Lembo et al., 2010]). Here, we propose the one that is appropriate for the context of
inconsistency handling.

Note that the use of deductive closure of an ABox fully makes sense in DL languages, while for
instance in propositional logic the closure of an inconsistent knowledge base trivially leads to produce
the whole language. We denote by ◦cl(M) the expansion modifier on MBoxM, defined as:

Let us denote by ◦cl(M) the deductive closure operator of an MBoxM, defined as follows:

Definition 5.2. LetKM = 〈T ,M〉 be an MBox DL-Lite knowledge base. Let Tp be the set of all positive
inclusion axioms of T 1, DI be the set of all individuals in all ABox’s; DC and DR be the set of concepts
respectively roles in KM.

• Standard DL-Lite: the deductive closure of a given ABox Ai with respect to T is defined as:

ClT (Ai) = {B(a) : 〈Tp,Ai〉 |= B(a), B ∈ DC , a ∈ DI}
∪
{R(a, b) : 〈Tp,Ai〉 |= R(a, b), R ∈ DR, a ∈ DI , b ∈ DI}

• DL-Lite with an MBox: the deductive closure ofM is defined as:

◦cl(M) = {Cl(Ai) : Ai ∈M}

The expansion modifier ◦cl(M) takes as input an MBoxM = {A1, ...,An} and produces as output
an MBox ◦cl(M) obtained by replacing each Ai ∈M by its deductive closure.

Example 5.2. Let KM = 〈T ,M〉 be a DL-Lite knowledge base where T = {∃P v B,A v B,A v
¬C} and M = {{A(a), P (c, b)}, {C(d)}}. Using Definition 5.2, the deductive closure of M is :
◦cl(M) = {{A(a), B(a), P (c, b), B(c)}, {C(d)}}. �

The deductive closure represents one natural way to define an expansion of an MBox. Another natural
way to define an expansion is to add to each Ai ∈ M the set of common assertions that can be derived
from each 〈T ,Ai〉.

Ai = Ai ∪
{B(a) : ∀Aj ∈M, 〈Tp,Aj〉 |= B(a), a ∈ DI , B ∈ DC} ∪
{R(a, b) : ∀Aj ∈M, 〈Tp,Aj〉 |= R(a, b), R ∈ DR, a ∈ DI , b ∈ DI}

Where DC (resp. DR, DI ) is the set of all concepts (resp. roles, individuals) used inM.
In the rest of the chapter, by an expansion modifier, we refer to the use of deductive closure modifier

◦cl given in Definition 5.2.

Splitting modifiers

The second class of modifiers is called splitting modifiers. The idea is to replace some Ai of an MBox
by one or several of their subsets. This typically happens when some Ai is inconsistent with respect to

1Positive inclusion axioms are of the form B1 v B2.
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T . Then it may be reasonable to replace each Ai by some of its consistent subsets. Here, we choose as a
splitting modifier the widely used inclusion-based maximally consistent subsets, defined by:

Definition 5.3. Let K = 〈T ,A〉 be a standard DL-Lite knowledge base. R ⊆ A is an inclusion-based
maximally consistent subset of A with respect to T if and only if:

1. 〈T ,R〉 is consistent,

2. ifR 6= A then ∀R′ : R  R′, 〈T ,R′〉 is inconsistent.

According to Definition 5.3, adding any fact f from A\R toR entails the inconsistency of 〈T ,R∪
{f}〉. Note that if K is consistent, then K admits a unique maximally consistent subset which isR = A.
The splitting modifier on a single ABox A, denoted indifferently by ◦incl(A) or ◦incl({A}), is the set of
all maximally inclusion-based consistent subsets of A with respect to T .

Definition 5.3 is extended to MBox as follows:

Definition 5.4. Let KM = 〈T ,M〉 be an MBox DL-Lite knowledge base. An inclusion-based modifier
onM, denoted ◦incl(M), is defined by:

◦incl(M) =
⋃
Ai∈M

{X : X ∈ ◦incl(Ai)}

Namely, ◦incl(M) consists in replacing each inconsistent Ai ofM by its maximally consistent sub-
bases.

Example 5.3. Let KM = 〈T ,M〉 be a DL-Lite knowledge base where T ={C v ¬B} and M =
{{B(a), C(a), B(b)}, {C(e), B(e)}}.
Using Definition 5.4, ◦incl(M) = {{B(a), B(b)}, {C(a), B(b)}, {C(e)}, {B(e)}}. �

Selection-based modifiers

The last elementary modifiers considered in this chapter are selection-based modifiers which consist in
considering only some subsets ofM to make inferences for instance. An example of a selection modifier
simply consists in keeping only ABox’s issued from the most reliable sources and getting rid those that
are not enough reliable. Another natural way to define such a selection function is to only keep the largest
ABox’s. This selection function, adopted in this chapter, is called cardinality-based selection, denoted by
◦card(M) and is defined as follows:

Definition 5.5. Let KM = 〈T ,M〉 be an MBox DL-Lite knowledge base. A cardinality-based selection
on MBoxM is an MBox, denoted ◦card(M), defined by:

◦card(A) = {Ai : Ai ∈M such that @Aj ∈M, |Aj | > |Ai|}.

Namely, ◦card(M) selects among the ABox’s inM the ones with maximal assertion number.

Example 5.4. Let KM = 〈T ,M〉 be a DL-Lite knowledge base where T = {∃P v B,B v ¬C} and
M = {A1 = {P (c, b), B(a)},A2 = {C(a), B(b), },A3 = {B(c)}}.
One can check that ◦card(M) = {{P (c, b), B(a)}, {C(a), B(b)}}. Indeed, |A1| = |A2| = 2, while
|A3| = 1. Hence, only A1 and A2 are kept. �
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5.2. Reasoning from MBox knowledge bases

5.2.3 Composite modifiers on MBox

In the above section, we presented three main elementary modifiers2 that operate on an MBox. These
modifiers can be combined and composed to define composite modifiers.

The following lemma first shows that the elementary modifiers ◦cl, ◦incl and ◦card are idempotent.
Besides, it also shows that expansion and splitting modifiers only need to be applied once. These proper-
ties considerably reduce the number of combinations that can be done on elementary modifiers.

Lemma 5.1. Let KM = 〈T ,M〉 be an MBox DL-Lite knowledge base.

1. Let ◦cl, ◦incl, ◦card be the three elementary modifiers on MBox presented in Section 5.2.2. Then:

(a) ◦incl(◦incl(M)) = ◦incl(M)
(b) ◦card(◦card(M)) = ◦card(M), and

(c) ◦cl(◦cl(M)) = ◦cl(M).

2. Let ◦d be a composite modifier (i.e. a combination of elementary modifiers). Then:

(a) ◦cl(◦d(◦cl(M))) = ◦d(◦cl(M)), and

(b) ◦incl(◦d(◦incl(M))) = ◦d(◦incl(M)).

Proof of Lemma 5.1. The proof of the item (1.a) follows from the facts that:

• ∀Ai ∈ ◦incl(M), 〈T ,Ai〉 is consistent,

• if 〈T ,Ai〉 is consistent, then ◦incl(Ai) = {Ai}.

The proof of the item (1.b) follows from the facts that:

• ∀Ai ∈ ◦card(M),∀Aj ∈ ◦card(M), we have |Ai| = |Aj |

• if ∀Ai ∈ ◦card(M),∀Aj ∈ ◦card(M), |Ai| = |Aj | then ◦card(M) =M.

For item (1.c), it is enough to show that for a given A ∈ M, ◦cl(◦cl(A)) = ◦cl(A). From the
definition of ◦cl, clearly we have ◦cl(A) ⊆ ◦cl(◦cl(A)). Now assume that f ∈ ◦cl(◦cl(A)) but f /∈
◦cl(A). Let Bf ⊆ ◦cl(A) be the subset that allows to derive f , namely 〈Tp, Bf 〉 |= f . Now for each
element x of Bf , we have 〈Tp,A〉 |= x. Then clearly, 〈Tp,A〉 |= f .

Regarding item (2.a), if ◦d is an elementary modifier then it can be either ◦cl, ◦card, or ◦incl. If
◦d = ◦cl then the result holds thanks to item (1.c). If ◦d = ◦card then the selected elements from
◦card(◦cl(M)) are closed set of assertions since ◦card only discards some elements of ◦cl(M) but does
not change the content of remaining elements. Lastly, let us consider the case where ◦d = ◦incl. Again
∀A′ ∈ ◦incl(◦cl(M)),A′ = ◦cl(A′). Let us recall thatA′ is maximally consistent subset ofA ∈ ◦cl(M),
with A = ◦cl(A). If A′ 6= ◦cl(A) this means that ∃f ∈ ◦cl(A′) (hence f ∈ A) such that f /∈ A′ despite
the fact that 〈T ,A′〉 |= f . This is impossible since A′ should be a maximal consistent subbase of A.
Since each ◦d ∈ {◦cl, ◦card, ◦incl} applied on closed ABox preserves the closeness property, then clearly
a composite modifier also preserves this closeness property.

The proof of item (2.b) follows immediately from the fact that

• ∀Ai ∈ ◦incl(M), 〈T ,Ai〉 is consistent,

2One can add other elementary modifiers as a concatenate modifier or a merging modifier (using different strategies). This
will lead to obtaining other composite modifiers which are not considered in this chapter and are left to future works
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• ifM is consistent, then ∀◦d ∈ {◦cl, ◦card, ◦incl} gives a consistent subbase, and

• ◦incl(M) =M ifM is consistent.

Figure 5.1 presents the set of all possible composite modifiers that can be applied on MBox. The
starting point is an MBox DL-Lite knowledge base KM=〈T ,M〉.

Left-side operations

An MBox DL-Lite knowledge base KM=〈T ,M〉

Expansion:
◦cl(M)

Splitting:M7=
◦incl(◦cl(M))

Selection:M8=
◦card(◦incl(◦cl(M)))

Splitting:M1=
◦incl(M)

Expansion:M5=
◦cl(◦incl(M))

Selection:M2=
◦card(◦incl(M))

Expansion:M3=
◦cl(◦card(◦incl(M)))

Selection:M6=
◦card(◦cl(◦incl(M)))

Selection:M4=
◦card(◦cl(◦card(◦incl(M))))

Selection:
◦card(M)

Duplication
of the

left-side
operations

Selection:M9=
◦card(◦cl(M))

Splitting:M10=
◦incl(◦card(◦cl(M)))

Selection:M11=
◦card(◦incl(◦card(◦cl(M))))

Figure 5.1: Composite modifiers on MBox

At the beginning, one can either use expansion modifier (◦cl(M)), selection modifier (◦card(M)) or a
splitting modifier (◦incl(M)). Expansion can only be followed either by a splitting modifier (◦incl(◦cl(M)))
or by a selection modifier (◦card(◦cl(M))). From the splitting operation one can only make selection
(◦card(◦incl(◦cl(M)))) thanks to Lemma 5.1. From the selection operation one can only make splitting
operation (◦incl(◦card(◦cl(M)))) thanks to Lemma 5.1. This splitting operation allows again the reuse of
a selection operation (◦card(◦incl(◦card(◦cl(M))))).

From the MBox ◦incl(◦cl(M)) only a selection can be applied, thanks to Lemma 5.1, where ◦incl(M)
and ◦cl(M) only needs to be applied once. Similarly, if one starts with a splitting operation followed by a
selection operation, then only an expansion can be applied (thanks to Lemma 5.1 where ◦incl(M) needs
only to applied). From ◦cl(◦card(◦incl(M))) only a selection can be applied, since again from Lemma
5.1, ◦incl(M) and ◦cl(M) needs only to be applied once. If one starts by a splitting modifier followed
by an expansion, then only a selection needs to be applied. If one starts with a selection operation, then
one can either apply an expansion or a splitting operation, and thus, we duplicate the same operations
presented in the left-side box of the figure.
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5.3. Inference-based strategies from MBox

Note that if one starts with an MBox DL-Lite knowledge base that only contains one ABox, then there
is no need to add a selection child to the root. Similarly for such singleton MBox, applying an expansion
modifier followed by a selection modifier leads to same results as if one start with an expansion modifier
followed by a splitting modifier (M9=◦cl(M)). Hence we have M10=M7 and M11=M8. The case
where the starting point is a singleton MBox will be discussed in Section 5.4.

5.3 Inference-based strategies from MBox

This section addresses the issue of query answering from MBox DL-Lite knowledge bases. It presents
several inference-based strategies that can be applied on an MBox DL-Lite knowledge base. An inference-
based strategy takes as input an MBox M, a TBox T (i.e. an ontology) and a query and aims to find
if there exists an answer for such a query over the set of ABox’s of the MBox DL-Lite knowledge base
K = 〈T ,M〉.

Let KM = 〈T ,M〉 be a DL-Lite knowledge base with an MBox M. The following subsections
provide main inference-based strategies that can be applied on KM.

5.3.1 Universal inference

The universal inference-based strategy states that a conclusion is valid if and only if it can be obtained
(in a standard way) from every ABox Ai of a given MBoxM. More precisely,

Definition 5.6. Let KM = 〈T ,M〉 be a DL-Lite knowledge base with an MBox M = {A1, ...,An}.
A query q is said to be a universal consequence of KM, denoted by KM |=∀ q, if and only if ∀Ai ∈
M, 〈T ,Ai〉 |= q 3.

Example 5.5. Let K = 〈T ,M〉 be a DL-Lite knowledge base where T = {D v B,C v B,D v ¬C}
andM = {{D(a), C(b)}, {C(a)}}. One can check that KM |=∀ B(a), since

• 〈T , {D(a), C(b)}〉 |= B(a), and

• 〈T , {C(a)}〉 |= B(a).

�

The universal inference is a standard way to derive conclusions from different sources. It is also
known as a skeptical inference, used for instance in default reasoning [Reiter, 1987], where one only
accepts conclusions derived from each extension of a default theory.

In Definition 5.6, q in general represents a first order formula. Now, when we deal with DL-Lite
framework, q may (and often) represents a conjunctive query.

When q is a boolean query, then q holds universally from an MBox DL-Lite knowledge base KM if
and only if q holds in each standard DL-Lite knowledge base Ki=〈T ,Ai〉, with Ai ∈M.

If q is a general conjunctive query of the form

q(x1, . . . , xn)← (x1, . . . , xn) : ∃y1, . . . , yl.B1 ∧ ... ∧Bm

then q(a1, ..., an) universally follows from an MBox DL-Lite knowledge base KM = 〈T ,M〉 if
q(a1, . . . , an) follows from each standard DL-Lite knowledge base Ki = 〈T ,Ai〉 with Ai ∈ M, where
(a1, . . . , an) is an instance of the distinguished variables (x1, . . . , xn).

3|= is the inference relation from a standard DL-Lite knowledge base presented in Section 1.4
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Said differently, using the universal consequence relation, answers to a query q from an MBox DL-
Lite knowledge base KM is defined as the intersection of answers to q obtained from each standard
DL-Lite Ki of KM.

Example 5.6. Let K=〈T ,M〉 be a DL-Lite knowledge base where
T ={∃S v B, ∃S− v C, S v ¬H,∃H v B, ∃H− v D}, andM = {A1,A2,A3} where
A1 = {S(a, c), H(c, b), S(b, f), H(f, k)},
A2 = {S(a, d), H(d, b), S(b, t)} and
A3 = {S(a, e), H(g, b), S(b, y)}

Let us illustrate universal inferences over the different forms of queries: instance query (or instance
checking), atomic ground queries, boolean queries, general conjunctive queries and first order formulas.

1. Let q ← B(a) be an instance query. One can check that KM |=∀ B(a), since B(a) holds respec-
tively from A1, A2, and A3 using T .

2. Let q ← B(b) ∧D(b) be an atomic ground query. One can check that KM |=∀ q.

3. Let q ← ∃z.D(b) ∧ S(b, z) be a boolean query with existential variables. One can verify that
KM |=∀ q.

4. Let q(x1, x2)← (x1, x2)∃y.S(x1, y) ∧H(y, x2) be a conjunctive query. The answer sets that can
be computed from each ABox inM are :
Using A1: {< a, b >, < b, k >}
Using A2: {< a, b >}
Using A3: {< a, b >}
The certain answers to q that universally hold from KM are:{< a, b >}.

5. Let q ← C(c) ∨ C(d) ∨ C(e) be a first order query. One can verify that KM |=∀ q.

�

5.3.2 Existential inference

The existential inference-based strategy is an inference strategy that only checks if a conclusion holds
from at least one ABox of a given MBox. More formally,

Definition 5.7. Let KM = 〈T ,M〉 be a DL-Lite knowledge base with an MBox M = {A1, ...,An}.
A query q is said to be an existential consequence of KM, denoted by KM |=∃ q, if and only if ∃Ai ∈
M, 〈T ,Ai〉 |= q.

The existential inference, called also credulous inference, is a very adventurous inference relation.
It only makes sense in some decision problems when one is only looking for a possible solution of a
set of constraints or preferences. It is often considered as undesirable when KM represents available
knowledge base on some problem. The existential consequence relation is so adventurous that it may
lead to an inconsistent set of conclusions (with respect to T ).

Example 5.7. Let KM = 〈T ,M〉 be a DL-Lite where T = {C v B} and M = {{C(a), B(a)},
{C(b), B(d)}, {B(c)}}.
One can check that KM |=∃ B(b), since 〈T , {C(b), B(d)}〉 |= B(b). �
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5.3.3 Safe inference

The safe inference-based strategy considers as valid conclusions those that are only derived from facts
belonging to the intersection of all ABox’s. More formally,

Definition 5.8. Let KM = 〈T ,M〉 be a DL-Lite knowledge base with an MBoxM={A1, ...,An}. A
query q is said to be a safe consequence of KM, denoted by KM |=∩ q, if and only if 〈T ,

⋂
Ai∈MAi〉 |=

q.

Obviously, the safe inference is a very sound and conservative inference relation since it only consid-
ers common assertions between the different ABox, to perform inferences.

Example 5.8. Let KM = 〈T ,M〉 be a DL-Lite knowledge base where T = {C v B} and M =
{{C(a)},{C(a), B(b)},{C(a), B(c)}}. We have

⋂
Ai∈MAi = {C(a)}, and thus, KM |=∩ B(a), since

〈T , {C(a)}〉 |= B(a). �

5.3.4 Other inferences

We now provide additional inference-based strategies called: Majority-based inference, Proportional-
based inference and Non-objection inference. These inference relations offer a good compromise be-
tween universal or safe inference relations and existential inference relations.

Majority-based inference

The majority-based inference relation (maj for short) considers a conclusion as valid if it is confirmed
by the majority of ABox’s. More formally:

Definition 5.9. Let KM = 〈T ,M〉 be a DL-Lite knowledge base with an MBoxM = {A1, ...,An}. A
query q is said to be a majority-based consequence of KM, denoted KM |=maj q, if and only if:

|Ai : Ai ∈M, 〈T ,Ai〉 |= q|
|M|

> 1/2.

Definition 5.9 simply states that a query q is a majority-based consequence of KM if and only if it
can be deduced from more than the half of ABox’s inM.

Example 5.9. Let KM = 〈T ,M〉 be a DL-Lite knowledge base where T = {C v B} and M =
{{C(a)}, {C(a), B(b)}, {C(c), B(c)}}.
We have 〈T , {C(a)}〉 |= B(a) and 〈T , {C(a), B(b)}〉 |= B(a) and |M| = 3. Hence KM |=maj B(a).
�

Proportional-α-based inference

The Proportional-α-based inference (prop for short) requires that a conclusion is valid if it can be derived
from a proportion α of ABox’s of an MBox. More formally:

Definition 5.10. Let KM = 〈T ,M〉 be a DL-Lite knowledge base with an MBoxM={A1, ...,An} and
α ≥ 0. A query q is said to be a proportional-α-based consequence of KM, denoted KM |=α q, if and
only if

|Ai : Ai ∈M, 〈T ,Ai〉 |= q|
|M|

≥ α.
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Following Definition 5.10, the proportional-α-based inference generalizes the above inference-based
strategies as follows:

• if α = 1, then we recover the universal inference.

• if α > 1/2, then we recover the majority-based inference.

• if α = ε, then we recover the existential inference.

Note that, the major difference of Proportional-α-based inference relation is how to fit the parameter
α.

Non-objection inference

The non-objection inference or argued inference (obj for short) is an inference strategy where a conclu-
sion q is accepted if it can be obtained using at least one ABox while there is no ABox that implies ¬q.
More formally:

Definition 5.11. Let KM = 〈T ,A〉 be a DL-Lite knowledge base with an MBoxM={A1, ...,An}. A
query q is said to be a non-objection consequence relation of KM, denoted by KM |=obj q, if and only if

1. ∃Ai ∈M : 〈T ,Ai〉 |= q, and

2. there exists no Aj ∈M such that 〈T ,Aj〉 |= ¬q.

Example 5.10. LetK=〈T ,M〉 be a DL-Lite where T ={C v ¬B,B v D} andM = {{C(a)}, {B(a)}}.
One can check that K |=obj D(a). �

One can easily check that, if q is a first order formula then the non-objection inference is more
cautious than the existential inference relation but it is more productive than the universal inference
relation.

As it is said before, within DL-Lite framework, q is often restricted to conjunctive queries. In this
case, the second item of Definition 5.11 does not really make sense, since negation is not allowed in the
definition of a conjunctive query. Besides, if one restricts inferences to boolean queries, and interprets
〈T ,Ai〉 |= ¬q in definition as 〈T ,Ai〉 |= q does not hold, then the non-objection is simply equivalent to
existential inference.

In the rest of the chapter, we will not make reference to non-objection inference, since it comes
down to existential inference for boolean query. Of course, one may weaken item 2 of Definition 5.11
for atomic grounded queries of the form (

∧n
i=1Ai(a)) ∧ (

∧m
j=1 Pj(a, b)) where Ai and Pj are concepts

and roles respectively. In item 2, one may replace 〈T ,Ai〉 |= ¬q by 〈T ,Ai ∪ q〉 is inconsistent. This
weakened form of Definition 5.11 is not considered in the chapter and is left for further research.

Given the limitations of existential, non-objection and proportional-based inferences, in the rest of
the chapter, we only focus on universal, safe and majority-based inference.

5.3.5 Comparing inference-based strategies from a fixed MBox

Given a fixed MBoxM, the following figure summarizes the cautiousness relationships between different
inference-based strategies, defined in the above subsections.
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Safe inference

Universal inference

Majority-based inference

(1)

(2)

Figure 5.2: Comparison between inference-based strategies

The top of Figure 5.2 corresponds to the most conservative inference relation which is the safe infer-
ence relation. The existential inference is the most productive inference. In Figure 5.2, X −→ Y means
that each conclusion of X is also a conclusion of Y .

Proposition 5.1 (Figure 5.2). LetM be a consistent MBox with respect to a TBox T . Let q be a query.
Then:

1. if 〈T ,M〉 |=∩ q then 〈T ,M〉 |=∀ q.

2. if 〈T ,M〉 |=∀ q then 〈T ,M〉 |=maj q.

Proof of Proposition 5.1. Item 1 holds from the fact that ∀Ai ∈ M, we have (
⋂
Ai∈MAi) ⊆ Ai. Items

2 holds due to the fact that universal consequence requires that q follows from all ABox inM. Hence, q
holds in at least the half of Ai’s inM.

Example 5.11 (Counter-examples of Proposition 5.1). The following gives counter-examples for items
1-3 of Proposition 5.1.

1. Let T ={D v B,C v B,D v ¬C} andM={{D(a), C(b)}, {C(a)}}. Let q ← B(a). We have
〈T ,M〉|=∀B(a) but 〈T ,M〉6|=∩B(a).

2. Let T ={D v B} and M={{D(a)}, {D(a), B(b)}, {D(c), B(c)}}. Let q ← B(a). We have
〈T ,M〉|=majB(a) but 〈T ,M〉6|=∀B(a), since 〈T , {D(c), B(c)}〉 does not allow to entail B(a).

The following lemma gives cautiousness relations between different inference strategies from two
MBox’s where one MBox is included (or equal) in the other. This lemma and the next one will be helpful
for next sections.

Lemma 5.2. LetM1 andM2 be two consistent MBox with respect to a TBox T s.tM1⊆M2 (namely,
∀Ai∈M1, we have Ai∈M2). Let q be a query. Then:

1. If 〈T ,M2〉 |=∀ q then 〈T ,M1〉 |=∀ q.

2. If 〈T ,M2〉 |=∩ q then 〈T ,M1〉 |=∩ q.

3. The majority-based inference fromM1 is incomparable with the one obtained fromM2.

Proof of Lemma 5.2. The proof is immediate. For item 1, if q holds in all Ai of M2 then trivially it
holds in all Aj of M1 (since M1 ⊆ M2). Item 2 holds due to the fact that M1 ⊆ M2 implies that⋂
Ai∈M2 Ai ⊆

⋂
Aj∈M1 Aj .
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Example 5.12 (Counter-examples of Lemma 5.2). The converse of Items 1 and 2 does not hold. As
it is shown by the following counter-example (we also provides the counter-example of item 3). Let
T = ∅, M1 = {B(a)} and M2 = {{B(a)},{B(c)}, {B(c)}}. First, note that M1 ⊆ M2. Clearly
〈T ,M1〉 |=∀ B(a) (resp. 〈T ,M1〉 |=∩ B(a)) holds, while 〈T ,M2〉 |=∀ B(a) (resp. 〈T ,M2〉 |=∩
B(a)) does not hold.

Regarding majority-based inference, one can check that 〈T ,M1〉 |=maj B(a) holds while
〈T ,M2〉 |=maj B(a) does not hold. And 〈T ,M2〉 |=maj B(c) holds while 〈T ,M1〉 |=maj B(c) does
not hold.

The following inference relations hold between an MBoxM and its expansion ◦cl(M).

Lemma 5.3. LetM1 andM2 be two consistent MBox with respect to T . LetM2 be the closure ofM1,
namelyM2={Cl(Ai):Ai∈M1}. Let q be a query. Then:

1. 〈T ,M1〉 |=∀ q if and only if 〈T ,M2〉 |=∀ q.

2. 〈T ,M1〉 |=maj q if and only if 〈T ,M2〉 |=maj q.

3. if 〈T ,M1〉 |=∩ q then 〈T ,M2〉 |=∩ q.

Proof of Lemma 5.3. The proof is again immediate. Item 1 and 2 follow from the fact that in standard DL-
Lite, if A is a consistent ABox with T , then 〈T ,A〉 |= q iff 〈T ,ClT (A)〉 |= q. Item 3 follows from the
fact that Ai ⊆ Cl(Ai) for each Ai ∈M1. Hence

⋂
Ai∈M1 Ai ⊆

⋂
Ai∈M1 Cl(Ai) =

⋂
Aj∈M2 Aj .

5.4 Handling inconsistency=Composite modifiers+inference strategies

As it is said in the introduction, an MBox may be issued from multiple-sources of information or may
be resulted from handling inconsistent standard DL-Lite knowledge base K, where each element of the
MBox represents a possible repair of K. In the context of multiple-sources of information, it may make
sense to merge the ABox’s of an MBox, in order to get a single ABox. As it is suggested in the title of
this chapter, this work is not oriented towards merging ABox’s but rather on the use of MBox as a way to
represent and reason about inconsistent DL-Lite knowledge bases. We view the problem of repairing an
inconsistent DL-Lite knowledge base as composed of a composite modifier on a given MBox followed
by an inference-based strategy.

As it was said before, from Figure 5.1, if one starts with a standard DL-Lite knowledge base (i.e. a
single MBox), there are only eight main composite modifiers useful for handling inconsistency (Lemma
5.4). These composite modifiers are given in Figure 5.1, and summarized in Table 5.1.
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MBox Combination

M1 ◦M1 = ◦incl(M)

M2 ◦M2 = ◦card(◦incl(M))

M3 ◦M3 = ◦cl(◦card(◦incl(M)))

M4 ◦M4 = ◦card(◦cl(◦card(◦incl(M))))

M5 ◦M5 = ◦cl(◦incl(M))

M6 ◦M6 = ◦card(◦cl(◦incl(M)))

M7 ◦M7 = ◦incl(◦cl(M))

M8 ◦M8 = ◦card(◦incl(◦cl(M)))

Table 5.1: Composite modifiers on MBox with KM = 〈T ,M = {A}〉

Lemma 5.4. Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let {◦M1 ,.., ◦M8}
be the eight composite modifiers summarized in Table 5.1. Then for each composite modifier ◦d (obtained
by a finite combination of elementary modifiers ◦incl,◦card,◦cl), there exists ◦c∈{◦M1 ,..,◦M8} such that
◦d(M)=◦c(M).

Let us now provide the set inclusion relations between the different MBox’s resulting from apply-
ing composite modifiers ◦M1 ,...,◦M8 on an initial inconsistent DL-Lite knowledge base KM=〈T ,M =
{A}〉. Figure 5.3 gives different relations between MBox’s issued from applying the main composite
modifiers:

M1

M2 M5

M3

M4

M6

M7

M8

⊆

◦cl

⊆

⊆cl

◦cl

⊆

⊆incl

⊆
⊆

Figure 5.3: Inclusion relations between MBox’s where "X−→
⊆
Y " means that the MBox X is included

(set inclusion) in Y , "X−→
⊆incl

Y " means that ∀A∈X , ∃B∈Y s.t A⊆B. "X−→
⊆cl

Y " means that for each

A∈X , ∃B∈Y s.t B=◦cl(A) and "X−→
◦cl
Y " means that X=◦cl(Y ).

Let us briefly explain why the relations given in Figure 5.3 hold. First, note that by definition of the
elementary modifier ◦card, ◦card(M) ⊆M (since ◦card is a selection operation), hence the relations:
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M4 ⊆M3,M2 ⊆M1,M6 ⊆M5, andM8 ⊆M7

trivially hold.
Similarly, using the definition of the elementary modifier ◦cl(), we also have:

M5 = ◦cl(M1) andM3 = ◦cl(M2).

As consequence of the above relations, we have:

M3 ⊆M5.

RegardingM2 ◦ clM5, we haveM2 ⊆ M1, hence ∀A ∈ M2, we also have A ∈ M1. Recall that
M5 = ◦cl(M1). This means that ∀A ∈M2, ∃B ∈M5 such that B = Cl(A).

It remains now to show that M5 ◦ clM7. Let B ∈ ◦incl({A}) and let us show that there exists
a set of assertions X such that ◦cl({B}) ⊆ X and X ∈ M7. Since B ∈ ◦incl({A}), this means
by definition that B ⊆ A and hence B ⊆ ◦cl(A). Now, B is consistent, this means that there exists
R ∈ ◦incl(◦cl(A)) = M7 such that B ∈ R. From Lemma 5.1, R is a closed set of assertions, then this
means that Cl(B) ⊆ R.

5.5 Comparative studies

We now compare main inference-based strategies (Section 5.3) applied on the eight identified composite
modifiers for handling inconsistent standard DL-Lite knowledge base. The studies concern productivity
relations and computational complexity.

5.5.1 Productivity

This section provides an exhaustive study of productivity results for modifier plus inference strategies
combinations.

Composite modifiers + universal inference

The following figure summarizes existing cautiousness relations between universal consequence relations
(∀-entailment) applied on {M1, ...,M2} identified in Section 5.2.3.

〈M1,∀〉≡〈M5,∀〉

〈M6,∀〉〈M2, ∀〉≡〈M3,∀〉

〈M4,∀〉

〈M7, ∀〉

〈M8, ∀〉

Figure 5.4: Relationships between ∀-entailment fromM1-M8

In Figure 5.4, the arrow n1→n2 means that each conclusion that can be derived using n1 is also a
conclusion using n2. Proofs of different links and counter-examples of the converse relations are given
in the Appendix.
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Composite modifiers + safe inference

Figure 5.5 gives existing cautiousness relations between safe inferences (∩-entailment) applied on {M1, ...,M2}.

〈M1,∩〉

〈M2,∩〉 〈M5,∩〉

〈M3,∩〉

〈M4,∩〉

〈M6,∩〉

〈M7,∩〉

〈M8,∩〉

Figure 5.5: Relationships using safe entailment fromM1-M8

In Figure 5.5: the bold arrow n1→n2 means that each conclusion that can be derived using n1 is also
a conclusion using n2.

Composite modifiers + majority-based inference

Figure 5.6 considers the case of majority-based consequence relations.

〈M1,maj〉〈M2,maj〉

〈M5,maj〉〈M3,maj〉

〈M7,maj〉

Figure 5.6: Relationships using majority-based inference fromM1-M8

Global schema

Figure 5.7 pairwise compares inference-based strategies given in Figure 5.2. Dashed arrow only holds
for instance checking.
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〈M1,∩〉〈M2,∩〉〈M3,∩〉〈M4,∩〉 〈M5,∩〉 〈M6,∩〉 〈M7,∩〉 〈M8,∩〉

〈M1,∀〉〈M2,∀〉〈M3,∀〉〈M4,∀〉 〈M5,∀〉 〈M6,∀〉 〈M7,∀〉 〈M8,∀〉

〈M1,maj〉〈M2,maj〉〈M3,maj〉〈M4,maj〉 〈M5,maj〉 〈M6,maj〉 〈M7,maj〉 〈M8,maj〉

Figure 5.7: Relationships between different inference relations

Lastly, when the initial knowledge base is consistent, then all inference relations collapse with stan-
dard inferences, namely:

Proposition 5.2. Let K = 〈T ,M〉 be a consistent standard DL-Lite knowledge base. Then: ∀s ∈
{∀,maj,∩},∀Mi ∈ {M1,...,M8}, 〈T ,Mi〉 |=s q if and only if 〈T ,M〉 |= q.

Proof of Proposition 5.2. The proof basically follows from three facts:

1. when 〈T ,M〉 is consistent then ◦incl(M) =M and ◦card(M) =M,

2. M1 =M2 =M and for i = 3, ..., 8:Mi = ◦cl(M), and

3. ∀q,〈T ,M〉 |= q if and only if 〈T , ◦cl(M)〉 |= q.

5.5.2 Complexity analysis

This section discusses computational complexity of inference relations presented in the chapter. We first
give the main ideas behind the complexity of inference relation 〈M2 = L◦incl(M), ∀〉, and then provide
different tables summarizing complexity results of inference relations studied in this chapter.

Let K be an inconsistent knowledge base, we first define the notion of conflict which is a minimal
inconsistent subset of A, more formally:

Definition 5.12. Let K = 〈T ,A〉 be an inconsistent DL-Lite knowledge base. A conflict set C is a set of
membership assertions such that:

• C ⊆ A,

• 〈T , C〉 is inconsistent,

• ∀C ′, C ′ ⊂ C, 〈T , C ′〉 is consistent.

We denote by C(A) the collection of conflicts in K. Since K is assumed to be finite, if K is inconsis-
tent then C(A) 6= ∅ is also finite. Moreover, as mentioned in Lemma 3.6 and 3.7 in possibilistic DL-Lite,
∀C ∈ C(A), it holds that |C| = 2. Note that this definition is in the spirit of 4.5 in prioritized case.

Let us now consider a simple case of instance-based checking, namely what is the complexity of the
decision problem:

"Does 〈T ,M2〉 |=∀ B(a) (resp.. R(a, b)) holds ?"
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where B ∈ DC (resp. R ∈ DR), and a ∈ DI (resp. a, b ∈ DI ).
The complexity analysis can be easily generalized to any conjunctive query q and also to the inference

relation 〈M8, ∀〉. To reach this aim, we will use complexity results which are known in graph theory
regarding the problem of Maximum Independent Sets (MIS). Let us recall k-MIS the following decision
problem:

"Given a symmetric graph G, is there an independent set of size (at least) k?"

The computational complexity of k-MIS is known to be NP complete. [Garey and Johnson, 1979].
The following gives transformations between graphs and DL-Lite knowledge bases.

A transformation from an inconsistent DL-Lite knowledge base to G

Let K = 〈T ,A〉 be an inconsistent DL-Lite knowledge base. Let C(A) be the set of all conflicts in
A. Recall that when T is coherent, then all conflicts of C are pairs of A and are computed in PTime. We
define a graph associated with K as follows:

1. The set of nodes is simply the set of assertions in A (one assertion = one different node), and

2. A non-oriented arc is drawn from f to g if there is f ∈ A, g ∈ A such that (f, g) is a conflict of
〈T ,A〉.

Example 5.13. Let us consider K = 〈T ,A〉 a DL-Lite knowledge base where T = {B v ¬C} and
A = {B(a), C(a), R(b, c)}. The graph associated with K is :

B(a)

C(a)

R(a, b)

�

Then we have the following result:

Proposition 5.3. Let K = 〈T ,A〉 be a DL-Lite knowledge base, and G be its associated graph as it is
defined above. Let R ⊆ A be a subset of A and GR be the set of nodes associated to R. Then R is a
maximal consistent subset of A if and only if GR is a maximal independent set of G.

Proof of Proposition 5.3. The proof is immediate.
Assume that R is a maximal consistent subbase of A but GR is not a maximal independent set of G.

This means that there exists a node f (namely an assertion of A) such that f /∈ GR and ∀g ∈ GR, there
is no arc between f and g. Said differently, there exists an assertion f ∈ A such that f /∈ R and ∀g ∈ R,
there is no conflict C of the form (f, g). This means that R ∪ {g} is consistent and this contradicts the
fact that R is a maximally consistent subbase of A.
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Similarly, assume that GR is a maximal independent set of G and let us show that R (the subset of
assertions present in GR) is a maximally consistent subset of A. Clearly, R is consistent, since ∀f ∈
R, ∀g ∈ R, we have (f, g) /∈ C where C is conflict (otherwise, the would be an arc between f and g).
R is maximal, since ∀h /∈ R there is an arc between h and a node from GR. Hence there is a conflict
between h and an element of R, namely R ∪ {h} is inconsistent. Hence R is maximal.

Let us now give the converse transformation

Let G be a non-oriented graph. The DL-Lite knowledge base associated with G is defined as follows:

1. We associate to each node e a concept also denoted by e (two different nodes have two distinct
associated concepts),

2. We use "a" as the unique individual used in A,

3. For each non-oriented arc e −→ f , we add (e v ¬f ) to T , namely the TBox associated with G is
defined by: T = {e v ¬f : e −→ f is an arc of G}, and

4. The ABox is simply the set of nodes with the same individual "a", namely A = {e(a) : a is an
individual and e is a node of G}.

Example 5.14. Let G be the following graph:

B

C D

E

Then the DL-Lite knowledge base associated with G is :
T = {B v ¬C,B v ¬D,D v ¬E} and A = {B(a), C(a), D(a), E(a)}. �

The DL-Lite knowledge base associated with a graph only involves one individual. It neither contains
positive axioms nor relation symbols.

Proposition 5.4. Let G be a non-oriented graph, and K=〈T ,A〉 be the DL-Lite knowledge base associ-
ated with G, as it is defined above. Then, ∀e(a) ∈ A,∀f(a) ∈ A, (e(a), f(a)) ∈ C if and only if there is
an non-oriented arc between f and e.

Proof of Proposition 5.4. The proof is immediate. Since there is no relation symbols nor positive axioms,
then the negative closure of T is simply T . Besides, for each e v ¬f of T (namely, an arc from G by
construction), there exists exactly one conflict (e(a), f(a)) from A (since there is exactly one individual
a).

Using the two above propositions, the following proposition gives the complexity of computing the
cardinality of the largest maximal consistent subbase of A.

Proposition 5.5. Let K = 〈T ,A〉 be an inconsistent DL-Lite knowledge base. The complexity of com-
puting the cardinality of the largest maximal consistent subset of K is O(log2(|A|)∗k-MIS.
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Proof of Proposition 5.5. The proof is immediate. It is enough to apply a dichotomy search between 1
and |A|, and for each value 1 ≤ k ≤ |A| we call a k-MIS problem.

We are now ready to give the complexity of the decision problem, denoted (∀-card), namely

(∀ − card) "Does 〈T ,M2〉 |=∀B(a) (resp. R(a,b)) hold ?"

Proposition 5.6. Let K = 〈T ,A〉 be an inconsistent DL-Lite knowledge base. Assume that kmax is the
size of the largest maximal subbase of A. Then (∀ − card) is NP-complete.

Proof of Proposition 5.6. Recall first that in standard consistent DL-Lite knowledge baseK1 = 〈T1,A1〉,
checking if K1 |= B(a) comes down to check if 〈T ∪ {D v ¬B},A1 ∪ {D(a)}〉 is consistent, where a
is a new individual and D is a new symbol.

Let D be a new concept symbol an a be a new individual. Let K′ = 〈T ′ = T ∪ {D v ¬B},A′ =
A∪ {D(a)}〉 be a DL-Lite knowledge base. Let G′ be the graph associated with K′. Then one can check
that 〈T , ◦cl(◦incl(A))〉 6|=∀ B(a) iff G′ admits a maximal independent set of size (kmax + 1).

Indeed, assume that G′ does not admit a maximal independent set of size (kmax + 1). This means
that ∀R′ a maximally consistent subset ofA′ is of size kmax. This means that ∀R a maximally consistent
subset of A consistent with D(a) with respect to T , hence K |= B(a). Similarly, if G′ admits a maximal
independent set of size (kmax + 1). This means that ∃R′ a maximally consistent subset of A′ of size
(kmax + 1). Hence, there exists R a maximally consistent subset of A with respect to T ′ which is
consistent with D(a). Hence R |= B(a) and therefore K |=∀ B(a).

Proposition 5.7. Computing 〈M2,∩〉 needs |A| calls to a solver of k-MIS problem.

Proof. Recall that 〈M2,∩〉=
⋂
Ai∈M2 Ai whereM2 = L◦incl(A).

Hence, one way to compute 〈M2,∩〉 is to check whether each instance of A is a universal conse-
quence of M2. Following Proposition 5.6, checking whether an instance of A follows from 〈M2,∀〉
needs exactly one call to a solver of k-MIS problem. Hence, computing 〈M2,∩〉 needs |A| calls to a
solver of k-MIS problem.

Similarly proof can be given for 〈M8,∩〉, where it is enough to replace |A| by | ◦cl (()A)|.

As corollary, we have:

• The proof of NP completeness of 〈M3,∀〉 follows immediately from the result of Proposition 5.6
and from the fact that 〈M2,∀〉 is equivalent to 〈M3, ∀〉.

• Similarly, we have shown that 〈M1,∀〉 is equivalent to 〈M5, ∀〉. Hence, the proof of the complete-
ness of 〈M5, ∀〉 follows from the fact that 〈M1,∀〉 has been shown to be NP-complete in [Lembo
et al., 2010].

• The proof of NP-completeness of 〈M7, ∀〉 is exactly the same as the one of 〈M1, ∀〉. The main
difference is rather to start with the initial ABox A, one should start with its closure ◦cl(A). Note
that 〈M7, ∀〉 is equivalent to CAR-entailment proposed in [Lembo et al., 2010] where it has been
shown that this latter is NP-complete.

• The proof of NP-completeness of 〈M8, ∀〉 is exactly the same as the one of 〈M2,∀〉. The main
difference is rather to start with the initial ABox A, one should start with its closure ◦cl(A).

• The computational complexity of 〈M4, ∀〉, 〈M6, ∀〉 comes down to enumerate all possible repairs.
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We now provide a study of computational complexity of the rest of inference relations.
The majority-based inference 〈Mi,maj〉 for i = 1, ..., 8 are in #P (for more details on #P class of

complexity, see [Valiant, 1979]), since it comes down to counting models implying the query.
We now give the complexity of safe inference relations. Note that, once

⋂
Ai∈Mj

Ai is computed, the
query answering has a same complexity as in standard DL-Lite.

• The inference relation 〈M1,∩〉 (resp. 〈M7,∩〉) is in PTime, since it comes down to compute
conflict set from A (resp. ◦cl(A)) and throw them out in order to obtain

⋂
Ai∈M1 Ai (resp.⋂

Ai∈M7 Ai) where the computation of conflict sets in DL-Lite is in PTime.

• The computational complexity of computing 〈M2,∩〉 (resp. 〈M8,∩〉) is O(|A|∗k-MIS) (resp.
O(|Cl(A)|∗k-MIS)).

5.6 Related works and discussions

This section first gives related works and then discusses the main inference strategies studied in this
chapter.

5.6.1 Related works

Handling inconsistency in ontologies is a very important problem that received a particular attention in
recent years either on works on debugging or repairing generic knowledge (e.g. [Schlobach and Cornet,
2003; Haase et al., 2005; Peñaloza and Sertkaya, 2010]) or revising ontologies (e.g. [Qi and Du, 2009;
Wang et al., 2010; Zhuang et al., 2014]).

This present work is rather oriented to inconsistency handling within an OBDA setting. In [Lembo
et al., 2010] four inconsistency-tolerant semantics called AR, IAR, CAR and ICAR were proposed. An
inconsistency-tolerant semantics corresponds in our work to the combination of an MBox composite
modifier followed by an inference-based strategy. It is easy to check that AR, IAR, CAR and ICAR
semantics correspond respectively to 〈M1,∀〉, 〈M1,∩〉, 〈M7,∀〉 and 〈M7,∩〉. It was shown in that
CQ answering from AR and CAR is co-NP-complete in data complexity and IQ (instance checking)
from CAR is in PTime, but it remains co-NP-complete under AR semantics. Besides both IQ and CQ
answering under IAR and ICAR are in PTime for data complexity.

In [Bienvenu, 2012] a new semantics, called ICR, was given as a sound approximation for AR se-
mantics. The ICR semantics corresponds to 〈M5,∩〉 in our work.

In [Bienvenu and Rosati, 2013], two parametrized inconsistency-tolerant semantics, called k-support
and k-defeater semantics, were studied for DL-Litehorn and DL-Litecore logics where it was shown that
instance checking (resp. CQ answering), within DL-Litecore framework, is NLSpace (resp. NP) for both
k-support and k-defeater semantics. In a nutshell, a query q is said to be a k-support consequence of
an inconsistent DL-Lite knowledge base K, if there exist k consistent subsets {S1, ..., Sn} of A such
that ∀Si, 〈T , Si〉 |= q and ∀Ai ∈ M1, there is at least an Si ⊆ Ai. A query is said to be a k-defeater
consequence of K, if there does not exists a consistent subset S of A with |S| ≤ k such that 〈T , S ∪ C〉
is inconsistent where C ⊆ A is a minimal support of q (i.e. there is no proper subset of C that support q).

Another family of parametrized semantics, called k-lazy semantics, was proposed in [Lukasiewicz
et al., 2012b] within Datalog+/- setting. However, as mentioned in [Bienvenu and Rosati, 2013], these
semantics are not a sound approximation of consistent query answering and they don’t have good com-
putational properties where CQ answering is co-NP-hard in data complexity for every k≥1.

In [Zhou et al., 2012] a four-valued semantics reasoning approach,was proposed to reason under
inconsistent DL-Lite knowledge bases. However this approach leads to derive inconsistent conclusion
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with respect to generic knowledge.

5.6.2 Majority-based inference within DL-Lite framework

In the context of the use of majority-based inference for managing inconsistent set of information, there
is one main and major advantage of using DL-Lite language rather than expressive DLs or propositional
logic: It concerns the consistency of the set of derived conclusions. To illustrate our proposal, let us focus
on instance checking problem and let consider 〈M1,maj〉. which represents majority-based inference
over the set of maximally consistent subset of an inconsistent knowledge base. Then we have:

Proposition 5.8. Let K = 〈T ,A〉 be an inconsistent standard DL-Lite knowledge base. Then

Res(K) = {A(a) : a ∈ DI , A ∈ DC , 〈M1,Maj〉 |= A(a)} ∪
{R(a, b) : a, b ∈ DI , R ∈ DR, 〈M1,Maj〉 |= R(a, b)}

is consistent with respect to T , where DI , DC and DR are given in Def.5.3.

Note that, Proposition 5.8 does not hold with general DLs. Assume that we have a DL language
where ′u′ is allowed in the left-side of inclusion axioms. Consider the following knowledge base

K = 〈T = {A uB v ¬C,A u C v ¬B,B u C v ¬A}, A = {A(a), B(a), C(a)}〉.

Clearly, K admits three maximally consistent subsets, namely M1 = {A1 = {A(a),B(a)},A2 =
{A(a), C(a)},A3 = {B(a), C(a)}}. Clearly 〈T ,M1〉 |=maj A(a), 〈T ,M1〉 |=maj B(a) and
〈T ,M1〉 |=maj C(a), while the set {A(a), B(a), C(a)} is consistent with T . A similar example can be
provided in a propositional logic setting.

5.6.3 Which inference relations are appropriate to deal with inconsistent DL-Lite knowl-
edge bases?

Intuitively, an appropriate method is such that:

i Outputs a single ABox, or a limited set of ABox’s,

ii Produces as many safe conclusions as possible, and

iii the size of the produced ABox should be polynomial with respect to the initial ABox.

Clearly majority-based and universal inference do not fit item (i) and (iii). If one is interested in keep-
ing inference relations that avoid deriving contestable conclusions, then inference 〈M7, s〉 and 〈M8, s〉,
with s ∈ {∀,maj,∩}, should be discarded. Indeed, considering first the closure, may lead to consider
as plausible a conclusion with a contestable support. For instance, let K = 〈{A v ¬B,A v C},M =
{A(a), B(a)}〉. Clearly, 〈T ,M7〉 |=s C(a) (resp. 〈T ,M8〉 |=s C(a). This conclusion C(a) is obtained
using A(a), but A(a) is contestable and it is not a conclusion of 〈T ,M7〉 (resp. 〈T ,M8〉).

The inclusion-based criterion (namely M1) followed by universal entailment is widely used in the
literature. The cardinality-based criterion may make sense in some applications where counting falsified
formulas is important. For instance, consider an ABox encoding facts about women and men (distin-
guished by the TBox) attending a conference. From the point of view of the output, safe inferences
〈Mi,∩〉 are appropriate for handling inconsistency in DL-Lite. Safe inferences using different Mi’s,
fit at the requirement (i) and (iii). The inference 〈M1,∩〉 is considered as safe since it is equivalent to
consider a subbase of the initial ABox obtained by ignoring all conflicting facts, namely:
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Ar =
⋂
Ai∈M1 Ai = {f : f ∈ A and @C ∈ C(A) such that f ∈ C}

where C(A) is the set of conflicts. The main advantage of this approach is that computing Ar is done in
linear time. However, the main limitations is that its associated inference relation is very cautious. To get
a more productive one and to better fit requirement (ii), one may take the intersection of largest consistent
sets from the ABox, namely, Ar=

⋂
Ai∈Mj

Ai, j = 2, .., 6. The advantage of this approach is that the
obtained inference relation is productive and its space complexity is |DI | × |DC |+|DI |2 × |DR|, in the
worst case.

5.7 Conclusion

This chapter considered an MBox as a result of modifying inconsistent standard DL-Lite knowledge base.
We generalize techniques for non-merge inconsistency management approaches in flat knowledge bases
by introducing the notions of (1) modifier and (2) inference strategy. The combination modifiers plus in-
ference strategies can be mapped out in order to provide a principled and exhaustive list of techniques for
inconsistency management. We study the productivity and give a complexity analysis for such techniques
in the case of flat knowledge bases and show how our work extends the state of the art.

The last part of this thesis concerns dynamics and handling inconsistency in prioritized assertional
DL-Lite knowledge bases.
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On the revision of prioritized DL-Lite
knowledge bases
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CHAPTER 6

PRIORITIZED ASSERTIONAL-BASED
REMOVED SETS REVISION OF DL-Lite

KNOWLEDGE BASES

6.1 Introduction

Dynamics of a DL-based knowledge bases gave rise to increasing interest (e.g. [Qi et al., 2006c; Qi
and Du, 2009]) and often concerns the situation where new information should be incorporated while
ensuring the consistency of the result. Several works have recently dealt with revising DL-Lite TBox
with a terminological information (e.g. [Wang et al., 2010; Calvanese et al., 2010]) or with an assertional
information (e.g. [Calvanese et al., 2010; Kharlamov and Zheleznyakov, 2011; Gao et al., 2012]) as
input.

Besides, data are often provided by several and potentially conflicting sources. Concatenating them
gives a prioritized or a stratified ABox. This stratification generally results from two situations as pointed
out in [Benferhat et al., 1995; Benferhat et al., 1998b]. The first one is when each source provides its
set of data without any priority between them, but there exists a total pre-ordering between different
sources reflecting their reliability. The other one is when the sources are considered as equally reliable
(i.e. having the same reliability level), but there exists a preference ranking between the set of provided
data according to their level of certainty. The role of priorities in belief revision is very important and it
was largely studied in the literature where knowledge bases are encoded in a propositional logic setting
(e.g. [Benferhat et al., 2002c; Benferhat et al., 2010b]). The notion of priorities in DLs is used in (e.g.
[Baader and Hollunder, 1995; Qi et al., 2006a; Qi and Pan, 2007]) to deal with default terminologies
while assuming that the ABox is completely sure. However, as far as we know, revising prioritized
DL-Lite knowledge bases has not been addressed so far.

Belief revision has been largely considered in the literature when knowledge bases are encoded using
a propositional language. Among these revision approaches the so-called Removed Sets Revision, also
known as a cardinality-based approach, has been proposed in [Papini, 1992; Benferhat et al., 1993a]
for revising a set of propositional formulas. This approach stems from removing a minimal number of
formulas, called removed set, to restore consistency. The minimality in Removed Sets Revision refers to
the cardinality criterion and not to the set-inclusion one. This approach has interesting properties: it has
not a high computational complexity, it is not too cautious and satisfies all rational AGM postulates when
extended to belief sets revision.

This chapter studies Prioritized Removed Sets Revision (PRSR), when knowledge bases are described
in DL-Lite logics. One of the motivations in considering PRSR is to take advantage of tractability of
DL-Lite for the revision process as well as of rational properties satisfied by PRSR. In particular, we
investigate the well-known DL-LiteR logic which offers a good compromise between expressive power
and computational complexity. We consider different forms of input: a membership assertion, a positive
inclusion axiom or a negative inclusion axiom, since they lead to different revision problems, different
algorithms and different complexity results. A crucially important problem that arises when revising
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a DL-Lite knowledge base is how to restore consistency. In this chapter restoring consistency leads to
ignoring some assertions, namely we give a priority to TBox over ABox. Another important feature
when dealing with DL-Lite knowledge base is that computing the set of minimal information responsible
of inconsistency can be done in polynomial time. Besides minimal assertional sets that cause inconsis-
tency are either singletons or doubletons. This is helpful in defining removed sets necessary to restore
consistency in presence of new information.

The rest of this chapter is organized as follows. Section 6.2 studies Prioritized Removed Sets Revision
within this framework when priorities between assertional facts are available. Section 6.3 reformulates
the well-known Hansson’s postulates defined for propositional belief bases revision within a DL-Lite
setting and gives logical properties of PRSR operators. Section 6.4 provides algorithms for computing
prioritized removed sets through the use of hitting sets. Finally, Section 6.5 presents some related works
and Section 6.6 concludes the chapter.

6.2 Assertional-based revision of DL-Lite knowledge bases

In this section, we investigate the revision of DL-Lite knowledge bases in the case where priorities are
available between assertions in the ABox. We study different forms of the input: An assertion, a positive
inclusion axiom or a negative inclusion axiom. We consider a lexicographical strategy where only small-
est subsets of assertions should be dropped from the knowledge base in order to restore its consistency
and accept the new piece of information. Note that the choice of dropping information only from the
ABox is motivated by the fact that in many applications (such as in ontology-based data access applica-
tions) a TBox is often seen as a well-formed and coherent ontology whereas the ABox represents data
that are not necessarily reliable and consistent with the ontology. In other words, when the input is a
terminological information, the revising process comes down to enrich the ontology while preserving the
coherence of the resulting TBox. However, in case of inconsistency, the ABox may be modified in order
to take into account the input.

Let K = 〈T ,A〉 be a consistent DL-Lite knowledge base. Let us denote by N a new consistent
information to be accepted. The presence of this new information may lead to inconsistency according to
the content of the TBox and the nature of the input information.

Within the DL-Lite language, the new piece of information N may be :

• A membership assertion of the form A(a) or P (a, b),

• A positive inclusion axiom (PI) of the form B1 v B2 or

• A negative inclusion axiom (NI) of the form B1 v ¬B2.

We assume that the input is consistent with the terminological base (otherwise, the input will be
simply ignored. According to [Calvanese et al., 2007a], every DL-Lite knowledge base K with only PIs
in its TBox is always satisfiable (consequence of Lemma 7 in [Calvanese et al., 2007a]). Hence, if N is
a membership assertion or a PI axiom, there is no inconsistency. However when the TBox T contains NI
axioms then N may have an undesirable interaction with K and which leads to an inconsistency.

We use C(A) the collection of conflicts in K as defined in Definition 5.12. Recall that when T is
coherent, then ∀C ∈ C(A), |C| = 2.

Example 6.1. LetK = 〈T ,A〉 be an inconsistent knowledge base such that T = {B1 v B2, B2 v ¬B3}
and A = {B1(a), B3(a), B2(b), B3(b), B1(c)}. We have cln (K) = {B2 v ¬B3, B1 v ¬B3}. Then
C(A) = {{B1(a), B3(a)}, {B2(b), B3(b)}}. �
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6.2.1 Prioritized DL-Lite assertional base

We use the notion of a DL-Lite prioritized knowledge base, simply denoted by K = 〈T ,A〉. We assume
that T is coherent and not stratified. Namely, all elements of T have the same level of importance. On
contrast, the ABox is assumed to be stratified, i.e. partitioned into n strata,A = A1 ∪ · · · ∪An such that:

• The strata are pairwise disjoint, namely ∀Ai, ∀Aj : Ai ∩ Aj = ∅,

• The assertions in Ai have the same level of priority,

• The assertions of Ai have higher priority than the ones in Aj where j > i. Hence assertions in A1
are the most important ones, while assertions in An are the least important ones.

We first define the lexicographic preference relation between subsets of the ABox as follows.

Definition 6.1. let X and X ′ be two subsets of A. X is strictly preferred to X ′, denoted by X <lex X
′,

if and only if, there exists i, 1 ≤ i ≤ n such that:

• |X ∩ Ai| < |X ′ ∩ Ai|, and

• ∀j, 1 ≤ j < i, |X ∩ Aj | = |X ′ ∩ Aj |.

Similarly, X is equally preferred to X ′, denoted by X =lex X
′, if and only if ∀i, 1 ≤ i ≤ n, |X ∩

Ai| = |X ′ ∩ Ai|. Lastly, X is at least as preferred as X ′, denoted by X ≤lex X ′, if and only if
X <lex X

′ or X =lex X
′. The relation ≤lex is a total pre-order.

Example 6.2. Let A be a stratified ABox, A = A1 ∪ A2 ∪ A3 where A1 = {B1(a)},A2 = {B2(b)}
and A3 = {B3(a), B3(b)}. Let X = {B3(a), B3(b)} and X ′ = {B3(a), B2(b)} be two subsets of A,
we have X <lex X

′. �

6.2.2 Prioritized Removed Sets Revision of DL-Lite knowledge bases

We now investigate the revision of DL-Lite knowledge bases according to the nature of the input infor-
mation. We consider an approach using a lexicographical strategy well-known as ”Prioritized Removed
Sets Revision” (PRSR) [Benferhat et al., 2010a] proposed within a propositional logic setting.

Within the DL-Lite framework, in order to restore consistency while keeping new information, the
Prioritized Removed Sets Revision strategy removes exactly one assertion in each conflict minimizing
the minimum number of assertions from A1, then the minimum number of assertions in A2, and so on.
Using lexicographic criterion instead of set inclusion one, will reduce the set of potential conflicts.

Note that taking the stratification of the ABox into account has not been considered before for re-
vising or repairing DL-Lite knowledge bases. Next Chapter (Chapter 7) investigates repairing DL-Lite
knowledge bases when the ABox is layered.

Revision by a membership assertion

We first consider the case whereN is an ABox assertion which corresponds to the revision by a fact or by
an observation. In this case, N is added to a new stratum having the highest and a new priority. However,
in order to avoid heavy notations, we simply write K ∪ {N} or 〈T ,A ∪ {N}〉 where A is a prioritized
ABox, to denote the fact that N is added to a new and highest priority stratum of A.

The following definition introduces the concept of prioritized removed sets.
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Definition 6.2. Let K = 〈T ,A〉 be a consistent stratified knowledge base and N be a membership
assertion. A prioritized removed set, denoted by X , is a set of membership assertions such that:

• X ⊆ A,

• 〈T , (A\X) ∪ {N}〉 is consistent,

• ∀X ′ ⊆ A, if 〈T , (A\X ′) ∪ {N}〉 is consistent then X ≤lex X ′.

We denote by PR(K ∪ {N}) the set of all prioritized removed sets of K ∪ {N}. If K ∪ {N} is
consistent then PR(K ∪ {N}) = {∅}. Besides, if K ∪ {N} is inconsistent then every conflict C of
K ∪ {N} contains N . More formally.

Lemma 6.1. Let K = 〈T ,A〉 be a consistent prioritized knowledge base and N be an assertion. If
K ∪ {N} is inconsistent then ∀C ∈ C(A) it holds that N ∈ C.

Proof of Lemma 6.1. The proof is immediate. If K ∪ {N} is inconsistent then C(K ∪ {N}) 6= ∅. This
means that there exists at least a conflict C = (α, β) ∈ C(K ∪ {N}) (recall that |C| = 2). Let C be a
conflict of K ∪ {N}. Suppose that N 6∈ C. This means that α ∈ A and β ∈ A. This is a contradiction
since K is assumed to be consistent, namely C(A) = ∅.

As consequence, there exists exactly one prioritized removed set. More formally.

Proposition 6.1. Let K be a consistent stratified knowledge base and N be a membership assertion. If
K ∪ {N} is inconsistent then |PR(K ∪ {N})| = 1.

Proof of Proposition 6.1. Suppose that there are two prioritized removed sets X and X ′ such that X 6=
X ′. By Definition 6.2, X ⊆ A, X ′ ⊆ A and X =lex X

′. Since (T ∪ {N}) ∪ (A\X) and (T ∪ {N}) ∪
(A\X ′) are consistent, we have ∀C ∈ C(K ∪ {N}) on one hand C ∩X 6= ∅ and |C ∩X| = 1 and on
the other hand C ∩X ′ 6= ∅ and |C ∩X ′| = 1. Moreover, since N is a single assertion, by Lemma 6.1,
|C ∩N | = 1. Therefore there are three elements in C namely N , one element of X and one element of
X ′. Hence, this contradicts Lemma 3.6 that states that |C ∩ A| ≤ 2.

Definition 6.3. Let K = 〈T ,A〉 be a consistent stratified knowledge base and N be a membership
assertion. The revised knowledge base K ◦PRSR N is such that K ◦PRSR N = 〈T ,A ◦PRSR N〉 where
A ◦PRSR N = (A\X) ∪ {N} with X ∈ PR(K ∪ {N}).

Example 6.3. Let K = 〈T ,A〉 be a consistent stratified knowledge base such that:
T = {B1 v B2, B2 v ¬B3, B3 v ¬B4} andA = A1 ∪A2 ∪A3 whereA1 = {B1(a)} A2 = {B3(b)},
and A3 = {B4(a)}.
Let N = B3(a) then K ∪ {N} is inconsistent. By Definition 5.12, C(K ∪ {N}) = {{B1(a), B3(a)},
{B3(a), B4(a)}}.
Hence by Definition 6.2, PR(K∪{N}) = {{B1(a), B4(a)}}. ThereforeA◦PRSRN = {B3(a), B3(b)}
and A ◦PRSR N = A′1 ∪ A′2 ∪ A′3 where A′1 = {B3(a)}, A′2 = {B3(b)} and A′3 = ∅. �

As detailed in Section 6.4 (precisely, subsection 6.4.1) computing the set of conflicts is polynomial.
Moreover when the input information is a membership assertion, as stated by Proposition 6.1 and illus-
trated in the above example, there is only one prioritized removed set. Next subsection investigates the
case where the input information is a positive or a negative inclusion axiom.
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Revision by a positive or a negative axiom

We now consider the case where the input N is a PI axiom or a NI axiom. This new axiom should be
added to the TBox and since we gave priority to the TBox over the ABox, the input is kept in the revised
knowledge base. In this case, K∪{N} denotes 〈T ∪ {N},A〉. Since T is considered as non prioritized,
then T ∪ {N} simply denotes a simple addition of N to T .

Definition 6.4. Let K = 〈T ,A〉 be a consistent stratified knowledge base and N be a PI or a NI axiom.
A prioritized removed set, denoted by X , is a set of assertions such that:

• X ⊆ A,

• 〈T ∪ {N}, (A\X)〉 is consistent and

• ∀X ′ ⊆ A, if 〈T ∪ {N}, (A\X ′)〉 is consistent then X ≤lex X ′.

Let us point out that Definition 6.4 is similar to Definition 6.2, except that new information is not
added to the ABox but to the TBox. However, the revision process still considers the TBox as a stable
knowledge, and hence to restore consistency assertional elements from ABox should be removed. We
denote again by PR(K ∪ {N}) the set of prioritized removed sets of K ∪ {N}.

Example 6.4. Let K=〈T ,A〉 be a consistent stratified knowledge base such that
T = {B1 v B2, B3 v ¬B4} and
A = A1 ∪ A2 ∪ A3 where A1 = {B1(a)}, A2 = {B2(b)}, and A3 = {B3(a), B3(b)}.
Let N = B2 v ¬B3 then K ∪ {N} is inconsistent. C(K ∪ {N}) = {{B1(a), B3(a)}, {B2(b), B3(b)}}.

The four possible candidates to be removed are:
X1 = {B1(a), B2(b)},
X2 = {B1(a), B3(b)},
X3 = {B3(a), B2(b)}, and
X4 = {B3(a), B3(b)}.
There is only one prioritized removed set X4 as illustrated in Table 6.1.

Ai |X1 ∩ Ai| |X2 ∩ Ai| |X3 ∩ Ai| |X4 ∩ Ai|
A3 0 1 1 2
A2 1 0 1 0
A1 1 1 0 0

Table 6.1: One prioritized removed set.

If the stratification of A, now is A1 = {B1(a), B3(a)}, A2 = {B2(b)}, A3 = {B3(b)}, then there
are two prioritized removed sets X2 and X4 as illustrated in Table 6.2.

Ai |X1 ∩ Ai| |X2 ∩ Ai| |X3 ∩ Ai| |X4 ∩ Ai|
A3 0 1 0 1
A2 1 0 1 0
A1 1 1 1 1

Table 6.2: Two prioritized removed sets.

�
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We have seen that when the input is a membership assertion then there exists exactly one prioritized
removed set. However, when the input information is a NI or a PI axiom there may exist one or several
prioritized removed sets, as illustrated in the previous example. The first case to consider, which is also
the easiest one, is when each conflict intersects two distinct strata: then, there exists only one prioritized
removed set. More formally,

Proposition 6.2. If for each C ∈ C(K ∪ {N}) there exists i and j, i 6= j, such that C ∩ Ai 6= ∅ and
C ∩ Aj 6= ∅ then |PR(K ∪ {N})| = 1.

Proof of proposition 6.2. Suppose there are two prioritized removed sets, X and X ′ and X 6= X ′. By
Definition 6.4, X ⊆ A, X ′ ⊆ A, and X =lex X

′. Since (T ∪ {N})∪ (A\X) and (T ∪ {N})∪ (A\X ′)
are consistent, ∀C ∈ C (K ∪ {N}) we have C ∩ X 6= ∅ and C ∩ X 6= ∅. If |C ∩ X| = 2 (resp.
|C ∩X ′|=2) then X (resp. X ′) is not a prioritized removed set, since C is a minimal inconsistent subset
with two elements by Lemma 3.6. If |C ∩X| = 1 and |C ∩X ′| = 1 two cases hold. If C ∩X 6= C ∩X ′
since there exists i and j, i 6= j, such that C ∩ Ai 6= ∅ and C ∩ Aj 6= ∅ it contradicts X =lex X

′. If
C ∩ X = C ∩ X ′, since C intersects two strata, and |C ∩ X| = |C ∩ X ′| = 1 then X = X ′ which
contradicts the hypothesis.

This situation holds when each stratum is consistent with T ∪{N} for example, when the stratification
comes from several experts with different degrees of reliability. In this case, as detailed in Section 6.4.2
computing the unique prioritized removed set is polynomial.

There may be several prioritized removed sets as soon as there are conflicts included in a stra-
tum where each conflict may lead to two prioritized removed sets. Namely, let NC be the number
of conflicts such that each one is included in a stratum, the number of prioritized removed sets is
bounded by 2NC . In such case, each prioritized removed set leads to a possible revised knowledge
base: Ki = 〈T ∪ {N}, (A\Xi)〉 with Xi ∈ PR(K ∪ {N}).

In DL-Lite language it is not possible to find a knowledge base that represents the disjunction of such
possible revised knowledge bases. If we want to keep the result of revision in DL-Lite one can define a
selection function that selects fromPR(K∪{N}) one or several prioritized removed sets. More formally.

Definition 6.5. A selection function f is a mapping from PR(K ∪ {N}) to A such that:

• f(PR(K ∪ {N})) ⊆ A

• ∃Xi ∈ PR(K ∪ {N}) such that Xi ⊆ f(PR(K ∪ {N}))

• f(PR(K ∪ {N})) ⊆
⋃
Xi∈PR(K∪{N})Xi

The first item in Definition 6.5 simply states that f(PR(K ∪ {N})) should only contain elements of
A. This condition guarantees that the result of revision will be within the DL-Lite language. The second
item states that at least one prioritized removed set should be in f(PR(K ∪ {N})). This guarantees that
〈T ,A\f(PR(K∪{N}))〉 is consistent. The last item states that only elements from

⋃
Xi∈PR(K∪{N})Xi

should be removed and ignored to restore consistency. Hence, elements which are not responsible of
conflicts will not be removed.

We now define the revised knowledge base as follows.

Definition 6.6. Let K = 〈T ,A〉 be a consistent and stratified knowledge base and N be a PI or a NI
axiom. Let f be a selection function, the revised knowledge base K ◦PRSR N is such that K ◦PRSR
N=〈T ∪ {N},A ◦PRSR N〉 where A ◦PRSR N = (A\f(PR(K ∪ {N}))).

In the next subsection, we present some examples of selection functions.
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6.2.3 Examples of selection functions

The definition of selection functions can be seen as the application of modifiers (presented in Chapter 5)
on an MBox (resulting from the revision process) followed by inference based strategy.

Let us first start with two basic selection functions, denoted simply by f1 and f2. The first selection
function f1 consists in taking all prioritized removed sets. More formally,

f1(PR(K ∪ {N})) =
⋃

Xi∈PR(K∪{N})
Xi

which corresponds to the intersection of all possible revised knowledge bases. In this case K ◦PRSR
N = 〈T ∪ {N},A ◦PRSR N〉 where A ◦PRSR N=A \ f1(PR(K ∪ {N}))=∩ni=1(A\Xi). This first
selection function may be too cautious since it could remove too many assertions and is not in agreement
with the minimal change principle.

Another option is to choose a selection function that only picks one prioritized removed set, more
formally,

f2(PR(K ∪ {N})) = Xi

which corresponds to the choice of only one revised knowledge base. This option is less cautious
than the previous one and captures, in some sense, the existence of a possibility for restoring consistency.

Example 6.5. Let us consider the knowledge base of Example 4. We have
T = {B1 v B2, B3 v ¬B4} and
A = A1 ∪ A2 ∪ A3 where A1 = {B1(a), B3(a)}, A2 = {B2(b)} and A3 = {B3(b)}.
Let N=B2 v ¬B3 be a new piece of information. We have K ∪ {N} is inconsistent. The prioritized
removed sets are: X1 = {B1(a), B3(b)} and X2 = {B3(a), B3(b)}. We have:
f1(PR(K ∪ {N})) = {B1(a), B3(b), B3(a)} and
f2(PR(K ∪ {N})) can be either {B1(a), B3(b)} or {B3(a), B3(b)}. �

The third example of selection function, denoted by f3, is strongly related to the notion of universal
or skeptical inference that can be defined from PR(K∪ {N}). Namely, we first need to define the set of
all possible assertions that can be derived from each A \Xi with Xi ∈ PR(K ∪ {N}).

More precisely, let DC be the set of concepts of T , DR be the set of roles of T and DI be the set of
individuals ofA. Then we define the set of universal assertional consequences, denoted UAC(K∪{N})
as :

UAC(K ∪ {N}) = {A(a) : a ∈ DI , A ∈ DC and

∀Xi ∈ PR(K ∪ {N}), 〈T ,A \Xi〉 |= A(a)}
∪
{R(a, b) : a ∈ DI , b ∈ DI , R ∈ DR and

∀Xi ∈ PR(K ∪ {N}), 〈T ,A \Xi〉 |= R(a, b)}

The selection function f3 is then simply defined by :

f3(PR(K ∪ {N})) = A \ UAC(K ∪ {N})

Example 6.6. Let us consider T = {A v B,C v B} and A = A1 where A1 = {B(b), A(a), C(a)}.
Let N=A v ¬C be a new piece of information. We have K ∪ {N} is inconsistent. The two possible
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prioritized removed sets that can be computed are: X1 = {A(a)} and X2 = {C(a)}.
One can check that UAC(K ∪ {N})={B(a), B(b)}. Hence f3={A(a), C(a)}. �

The last selection function uses the notion of deductive closure using Definition 5.2. Using the notion
deductive closure, one can refine the set of prioritized removed sets in which a selection function operates.
This new subset, denoted CPR(K∪{N}, is made by keeping only prioritized removed setsX inPR(K∪
{N} such that the deductive closure of the set A\X is maximal with respect to lexicographical criterion.
More formally,

Definition 6.7. LetK = 〈T ,A〉 be a DL-Lite knowledge base andN be a new information. Let PR(K∪
{N}) be the set of prioritized removed sets. The set CPR(K∪{N}) is composed of prioritized removed
sets X from PR(K ∪ {N}) such that @Y ∈ PR(K ∪ {N}), | ◦cl (A \ Y )| ≥ | ◦cl (A \X)|.

Then the last selection function, denoted by f4 and based on the deductive closure, is simply defined
by :

f4(PR(K ∪ {N})) =
⋃

Xi∈CPR(K∪{N})
Xi

Clearly, CPR(K∪{N}) ⊆ PR(K∪{N}) then we have f2(PR(K∪{N})) ⊆ f3(PR(K∪{N})) ⊆
f1(PR(K ∪ {N})). f4(PR(K ∪ {N})) offers a good compromise between an arbitrary choice of the
prioritized removed set to be ignored from the ABox A, and a skeptical choice where all prioritized
removed sets are ignored from the ABox.

Example 6.7. From Example 6.5, one can check that:
◦cl(A \X1) = {B3(a), B2(b)}, and
◦cl(A \X2) = {B1(a), B2(a), B2(b)}.
Then CPR(K ∪ {N}) = {X2}. �

6.2.4 Multiple revision

In the pervious sections, it is assumed that the input information is only composed of a single element:
An assertional fact, a positive axiom or a negative axiom. This section briefly discusses the case where
the input contains more than one element. This problem is known as multiple revision and has been
addressed for instance in [Hansson, 1992; Fuhrmann and Hansson, 1994] in a propositional setting.

Let K = 〈T ,A〉 be a DL-Lite prioritized knowledge base. Let us start with the situation where
the input, simply denoted again by N , is a set of assertional facts. If 〈T , N〉 is consistent, then our
approach can be applied straightforwardly. The definition of prioritized removed set is exactly the same.
Definitions 6.2 to 6.7 can be used as it is except that N is a set of assertional facts instead of a single one.
The same holds for Lemma 6.1 as well as Propositions 6.1-6.2.

Example 6.8. Let us consider T = {A v ¬B} and A = A1 ∪ A2 where A1 = {A(a), B(c)} and
A2 = {B(b)}.
Let N = {A(b), B(a)} where 〈T , N〉 is consistent. Now, 〈T ,A ∪N〉 is inconsistent. There only exists
one prioritized removed set: X1 = {A(a), B(b)} and A ◦PRSR N = {A(b), B(a), B(c)}. �

Now assume that 〈T , N〉 is inconsistent. In this case, if we still consider that T as a stable knowledge,
then the input cannot be completely accepted. In this case, the prioritized removed set will both contain
elements from A and also from N , with elements of N being preferred to all elements of A. Definition
6.2 needs the following adaptation :

Definition 6.8. Let K=〈T ,A〉 be a consistent stratified knowledge base and N be a set of membership
assertions. A prioritized removed set, denoted by X , is a set of membership assertions such that:
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• X ⊆ A ∪N ,

• 〈T , (A ∪N) \X〉 is consistent,

• ∀X ′ ⊆ A ∪N , if 〈T , (A ∪N) \X ′〉 is consistent then X ≤lex X ′.

Note thatA∪N is a new prioritized ABox, where elements of N are put in a new important stratum.
Namely, let A=A1 ∪ . . . ∪ An be a prioritized ABox. Then A ∪ N=A′1 ∪ . . . ∪ A′n+1 where A′1 = N ,
and A′i = Ai−1 for i = 1, ..., n+ 1.

The remaining definitions are valid, however Lemma 3.6 and Proposition 6.1 do not hold as it is
shown the following counter-example.

Example 6.9. Let us consider T = {A v ¬B} and A = A1 ∪ A2 where A1 = {A(a)} and A2 =
{B(c)}. Let N = {A(b), B(b), B(a)} where 〈T , N〉 is inconsistent. We have 〈T , N ∪ A〉 is also
inconsistent. The conflict sets are: C1 = {A(a), B(a)} and C2 = {A(b), B(b)}. The two prioritized
removed sets are: X1 = {A(a), A(b)} and X2 = {A(a), B(b)}.

One can check that there exist more than one prioritized removed set which both contain elements
from A and N . �

When the input N is a set of PI axioms or NI axioms. We assume that T ∪ N is coherent, since
the TBox of the knowledge base is assumed to be stable. Of course 〈T ∪ N,A〉 may be inconsistent.
In this case PRSR behaves in the same way as simple revision by a single input. In both cases (set of
assertions or axioms), the most noticeable difference is that the number of conflicts may be higher and by
consequence the size of prioritized removed sets may be higher.

Lastly, if the input contains both membership assertions and PI axioms or NI axioms, then this
comes down to revise the DL-Lite prioritized knowledge base K = 〈T ,A〉 with another knowledge
base 〈T ′,A′〉. One way to achieve such revision is to apply PRSR on 〈T ∪ T ′,A ∪N〉.

Example 6.10. Let us consider T = {A v ¬B} and A = A1 ∪ A2 where A1 = {A(a)} and A2 =
{B(b)}. Let N = {C v A,C(a), A(b)}. We have 〈T ∪ T ′,A ∪ N〉 is inconsistent. There exists only
one conflict set C1 = {A(b), B(b)}, and then one prioritized removed set X1 = {B(b)}. �

6.3 Logical properties

In this section we go a step further in the characterization of Prioritized Removed Sets Revision for DL-
Lite knowledge bases by presenting logical properties of the proposed operator through a set of postulates.

As mentioned in the Introduction, the AGM postulates [Alchourrón et al., 1985] have been formulated
to characterize belief revision in a propositional logic setting. Flouris at al. [Flouris et al., 2004; Flouris
et al., 2005; Flouris et al., 2006b] have studied which logics are AGM-compliant, that is, DLs where the
revision operation satisfies AGM postulates. Indeed, the problem is that AGM postulates are defined for
belief sets, i.e deductively closed sets of formulas, possibly infinite. Qi et al. [Qi et al., 2006c] focused
on revising a finite representation of belief sets. They used a semantic reformulation of AGM postulates,
done by Katsuno and Mendelzon [Katsuno and Mendelzon, 1991], to extend it to DLs knowledge bases.
However, as pointed out in [Calvanese et al., 2010] known model-based approaches of revision are not
expressible in DL-Lite. AGM postulates are defined for belief sets, however efficient implementation
and computational tractability require finite representations. Moreover, cognitive realism stems from
finite structures [Hansson, 2008] since infinite structures are cognitively inaccessible. Revision within the
framework of DLs, particularly, DL-Lite, requires belief bases, i.e. finite sets of formulas. Postulates have
been proposed for characterizing belief bases revision in a propositional logic setting [Fuhrmann, 1997;
Hansson, 1998].
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In order to give logical properties of PRSR operators, we first rephrase Hansson’s postulates within
the DL-Lite framework. We then analyze to what extent our operators satisfy these postulates.

6.3.1 Hansson’s postulates reformulated

Let K, K′ be DL-Lite knowledge bases, N and M be either membership assertions or a positive or a neg-
ative axiom, ◦ be a revision operator. K+N denotes the non closing expansion, i.e. K+N = K∪{N}.
Let K = 〈T ,A〉 be a knowledge base. When N is a membership assertion K+N = 〈T ,A∪ {N}〉 and
when N is a positive or a negative axiom K+N = 〈T ∪{N},A〉. We rephrase the Hansson’s postulates
as follows.

Success N ∈ K ◦N
Inclusion K ◦N ⊆ K +N .
Consistency K ◦N is consistent.
Vacuity If K ∪ {N} is consistent then K ◦N = K +N .
Pre-expansion (K +N) ◦N = K ◦N .
Internal exchange If N , M ∈ K then K ◦N = K ◦M .
Core retainment If M∈K and M 6∈K ◦N then there exists K′ such that

K′⊆K +N and K′ is consistent but K′∪{M} is incon-
-sistent.

Relevance If M∈K and M 6∈ K ◦N then there exists K′ such that
K ◦N⊆K′⊆K +N , and K′ is consistent but K ′∪{M}
is inconsistent.

Success and Consistency express the basic principles of revision. Inclusion states that the union of the
initial knowledge bases is the upper bound of any revision operation. Vacuity says that if the new infor-
mation is consistent with the knowledge base then the result of revision equals the non closing expansion.
Pre-expansion states that expanding first by an assertion does not change the result of revision by the
same assertion. Internal exchange says that revising by two different assertions from the knowledge base
does not change the result of revision. Core-retainment and Relevance express the intuition that nothing
is removed from the original knowledge bases unless its removal in some way contributes to make the
result consistent.

6.3.2 Prioritized Removed Sets Revision: logical properties

We now present the logical properties of Prioritized Removed Sets operators.

Proposition 6.3. Let K be a consistent stratified DL-Lite knowledge base and N be a membership as-
sertion. The revision operator ◦PRSR satisfies Success, Inclusion, Consistency, Vacuity, Pre-expansion,
Internal exchange, Core retainment and Relevance.

Proof of proposition 6.3. Since N is a membership assertion, K ∪ {N} = 〈T ,A ∪ {N}〉. By Definition
6.3, K ◦PRSR N = 〈T ,A ◦PRSR N〉 with A ◦PRSR N = (A\X) ∪ {N} and the postulates Success,
Inclusion, Consistency are satisfied.
Vacuity: If K ∪ {N} is consistent, then PR(K ∪ {N})=∅ and A ◦PRSR N = A ∪ {N}, therefore the
postulate holds.
Pre-expansion: (A∪{N})◦PRSRN = ((A∪{N})\X)∪{N} = (A\X)∪{N}, therefore the postulate
is satisfied.
Internal exchange: If N,M ∈ A, A ∪ {M}=A ∪ {N}=A and PR(K ∪ {N})=PR(K ∪ { M})=∅,
therefore the postulate is satisfied.
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Core retainment: The case where M ∈ T is impossible since the ◦PRSR operator may only modify the
ABox. When M is a membership assertion, if M ∈ K and M 6∈ K ◦PRSR N then there exists X such
that M ∈ X and X ∈ PR(K ∪ {N}). Let K′ = 〈T ,A\X〉, we have K′ ⊆ K ∪ {N} et K′ is consistent
but K′ ∪ {M} is inconsistent, therefore the postulate is satisfied.
Relevance: Since the postulate Core retainment is satisfied, and by Proposition 6.1 we have |PR(K ∪
{N})| = 1, so K ◦PRSR N ⊆ K′ and thus the postulate holds.

This proposition states that PRSR with a membership assertion as input satisfies all postulates. The
situation is slightly different when N is a PI or a NI axiom.

Proposition 6.4. Let K be a consistent stratified DL-Lite knowledge base. If N is a PI or a NI axiom
then for any selection function, the revision operator ◦PRSR satisfies Success, Inclusion, Consistency,
Vacuity, Pre-expansion, Internal exchange, Core retainment but does not satisfy Relevance.

Proof of proposition 6.4. Since N is a positive or a negative axiom, K ∪ {N} = 〈T ∪ {N},A〉. By
Definition 6.6, K◦PRSRN=〈T ∪ {N},A ◦PRSR N〉 withA◦PRSRN = (A\f(R(K∪{N}))) and the
postulates Success, Inclusion, Consistency are satisfied.
Vacuity: If K ∪ {N} is consistent, PR(K ∪ {N}) = ∅ and A ◦PRSR N = A, therefore the postulate
holds.
Pre-expansion: (K ∪ {N}) ◦PRSR N , (〈T ∪ {N},A〉) ◦PRSR N = 〈T ∪ {N},A ◦PRSR N〉, therefore
the postulate is satisfied.
Internal exchange: IfN,M ∈ T , T ∪{M} = T ∪{N} = T and PR(K∪{N}) = PR(K∪{M}) = ∅,
therefore the postulate is satisfied.
Core retainment: The case where M ∈ T is impossible since the ◦PRSR operator may only modify the
ABox. When M is a membership assertion, if M ∈ K and M 6∈ K ◦PRSR N , then for any selection
function used for defining ◦PRSR, there existsX ∈ PR(K∪{N}) such thatM ∈ X andX ⊆ f(R(K∪
{N})) by Definition 6.5. Let K′ = 〈T ∪ {N},A\X〉, we have K′ ⊆ K ∪ {N} and K′ is consistent but
K′ ∪ {M} is inconsistent, therefore the postulate is satisfied.
Relevance: Since the postulate Core retainment is satisfied, there exists K′ = 〈T ∪ {N},A\X〉 that
is consistent. Since there may exist several prioritized removed sets, let X and X ′ be two prioritized
removed sets such that X ′ 6= X , suppose that f(PR(K ∪ {N})) = X ′, we have K ◦PRSR N =
〈T ∪ {N},A\X ′〉 thereforeK◦PRSRN 6⊆ K′, therefore the postulate Relevance is not satisfied. We now
give a counter-example where K and N come from Example 6.4. Let M = B3(b), X = {B3(a), B3(b)}
and X ′ = {B1(a), B3(b)} be two prioritized removed sets, suppose that f(PR(K ∪ {N})) = X ′ we
have A ◦PRSR N = {B3(a), B2(b)} and A\X = {B1(a), B2(b)}.

In fact, Relevance requires the existence of only one prioritized removed set which is the case where
N is a membership assertion. However, when N is a PI or a NI axiom, in general, there may exist several
prioritized removed sets.

6.4 Computing the revision operation outcome

As stated before, when trying to revise a DL-Lite knowledge base by a membership assertion, a PI axiom
or a NI axiom, we want to withdraw only ABox assertions in order to restore consistency, i.e. prioritized
removed sets will only contain elements from the ABox.

From the computational point of view, we have to distinguish several cases depending on the nature
of the input N and the content of the knowledge base.
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First of all, if the TBox T only contains PI axioms, and if the input N is a PI axiom or a membership
assertion, no inconsistency can occur, so the revision operation PRSR trivially becomes a simple union.
Among the remaining cases, we distinguish two different situations:

(i) N is a membership assertion: the computation of conflicts and the overall revision algorithm is
a very simple task, thanks to Proposition 6.1, and is detailed below.

(ii)N is a PI axiom or a NI axiom : this is the most complicated case, as several prioritized removed
sets may exist. Moreover, we will see that this case has to be splitted into two subcases. Whatever
case we consider, we first need to compute the conflicts of K ∪ {N}.

In what follows, we use the following notations: K′=〈T ′,A′〉=K ∪ {N} where:

• T ′ = T ∪ {N} and A′ = A, if N is a PI or NI axiom, and

• T ′ = T and A′ = A ∪ {N}, if N is an ABox assertion.

6.4.1 Computing the conflicts

This step follows from the algorithm given in [Calvanese et al., 2007a] for checking the consistency of
a DL-Lite knowledge base. The main difference is that in [Calvanese et al., 2007a] the aim is to check
whether a DL-Lite knowledge base is consistent or not. Here, we have to perform one step further, as we
need to enumerate all assertional pairs involved in conflicts. Hence, we need to adapt the algorithm.

Computing C(K∪{N}) first requires to obtain the negative closure cln (T ′), using the rules recalled
in the refresher on DL-Lite logic in Section 1.4. We suppose that this is performed by a NEGCLOSURE
function. Then the computation of the conflicts proceeds with the evaluation over A′ of each NI axiom
in cln (T ′) in order to exhibit whether A′ contains pairs of assertions that contradict the NI axioms.
Intuitively, for each X v ¬Y belonging to cln (T ′), the evaluation of X v ¬Y over the A′ simply
amounts to return all (X(x), Y (x)) such that X(x) and Y (x) belong to A′. Note X(x) (resp. Y (x))
may be a basic concept assertion, or a role assertion of the form R(x, y) if X = ∃R (resp. Y = ∃R)
or R(y, x) if X = ∃R− (resp. Y = ∃R−). The result of the evaluation of a NI axiom is a collection of
sets containing two elements, or one element if N is a membership assertion). Algorithm 3 describes the
algorithm of the function COMPUTECONFLICTS, which computes C(K ∪ {N}).

1: function COMPUTECONFLICTS(K = 〈T ,A〉, N )
2: K′ = 〈T ′,A′〉 ← K ∪ {N}
3: C(K′)← ∅
4: cln (T ′)← NEGCLOSURE(T ′)
5: for all X v ¬Y ∈ cln (T ′) do
6: for all {αt, αj} ∈ A′ do
7: if 〈X v ¬Y, {αt, αj}〉 is inconsistent then
8: C(K′)← C(K′) ∪ {{αt, αj}}
9: Return C(K′)

Algorithm 3: COMPUTECONFLICTS(K)

The set C(K′) stores the conflict sets. The first step of the algorithm consists in the computation
of the negative closure of T ′. Then, for each NI axiom X v ¬Y of cln (T ′) the algorithm looks for
the existence of a contradiction in the ABox. This is done by checking whether 〈X v ¬Y, {αt, αj}〉 is
consistent or not. Note that this step can be performed by a boolean query expressed from X v ¬Y to
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look whether {αt, αj} contradicts the query, or not. If the ABox is consistent with X v ¬Y , then the
result of the query is an empty set.

It is important to note that if N is a membership assertion, then in each conflict {αt, αj} either αt or
αj belongs to A (but not both), and that either αt or αj is equal to N (but not both). This special case is
detailed in the next subsection.

6.4.2 Computing the PRSR outcome

Based on the computation of conflict sets, we propose in what follows algorithms for computing the
results of revision according to the different cases.

Revision by an assertion

When the input N is a membership assertion (namely a fact), then there exists only one prioritized
removed set, and the priorities are not involved. The computation of this single prioritized removed set
amounts in picking in each conflict the membership assertion which is different from the new information
N . One can easily check that every conflict set {αt, αj} that contradicts a NI axiom is of the form {x,N}
where x ∈ A. This means that there exists exactly one prioritized removed set. Hence, in this case the
prioritized removed set computation can be performed in polynomial time: when returning from the call
to COMPUTECONFLICTS, the only prioritized removed set is

⋃
ci∈C(K∪{N}) (ci \ {N}).

Algorithm 4 describes the algorithm of the function COMPUTEPRSR1 as a special case of Algo-
rithm 3. It computes directly the single prioritized removed set when revising by a membership assertion.

1: function COMPUTEPRSR1(K = 〈T ,A〉, N = A(a) or N = R(a, b))
2: R← ∅
3: cln (T )←NEGCLOSURE(T )
4: for all X v ¬Y ∈ cln (T ) do
5: for all α ∈ A do
6: if 〈X v ¬Y, {α,N}〉 is inconsistent then
7: R← R ∪ {α}
8: return R

Algorithm 4: COMPUTEPRSR1(K, N)

Revision by an axiom

Now, we detail the case where N is a PI or a NI axiom. According to Definition 6.4, the computation
of PR(K ∪ {N}) starts with the computation of PR((T ∪ {N}) ∪ A1), followed by the computation
of PR((T ∪ {N}) ∪ (A1 ∪ A2)), and so on. A prioritized removed set is formed by picking in each
conflict the least priority element. However, according to the form of conflicts, two situations hold, as
pointed out in Section 6.2.2. The first one is when each conflict involves two elements having different
levels of priority. In this case, Proposition 6.2 ensures that there exists only one prioritized removed
set. We provide algorithm COMPUTEPRSR2 which computes this single prioritized removed set PR ∈
PR(K ∪ {N}).

The algorithm COMPUTEPRSR2 proceeds from a current layer to all the other less preferred layers
and selects the assertions that conflict with the ones in the current layer. Here we increment from a layer
to another in order to ensure the minimality of the prioritized removed set with respect to lexicographic
ordering. Note that this algorithm is based on inconsistency checking and its computational complexity
is polynomial.
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1: function COMPUTEPRSR2 (K = 〈T ,A〉, N )
2: Res← A1
3: PR← ∅
4: C ←COMPUTECONFLICTS(K, N)
5: for i← 2, n do
6: for all α ∈ Ai do
7: if ∃C ∈ C, Res ∩ C 6= ∅ and α ∈ C then
8: PR← PR ∪ {α}
9: Ai ← Ai \ {α}

10: Res← Res ∪ Ai
11: Return PR

Algorithm 5: COMPUTEPRSR2

Now, we detail the second case where there exists at least a conflict involving two elements having
the same priority level. In such situation there exists several prioritized removed sets, as pointed out in
section 6.2.2. To compute them, we use the hitting set notion [Reiter, 1987] and adapt it to the stratified
structure of the knowledge base.

A hitting set is a set which intersects each set in a collection. A minimal hitting set, with respect to set
inclusion, is called a kernel. Moreover, kernels which are minimal according to cardinality correspond
to the definition of a removed set [Würbel et al., 2000]. The same result holds for DL-Lite knowledge
bases where the computation of the kernels of C(K∪{N}) is performed using Reiter’s algorithm [Reiter,
1987], modified in [Wilkerson et al., 1989]. We recall this algorithm.

Definition 6.9. A tree T is an HS-tree of C(K ∪ {N}) if and only if it is the smallest tree having the
following properties:

1. Its root is labeled by an element from C(K ∪ {N}). If C(K ∪ {N}) is empty, its root is labeled by
’
√

’.

2. If m is a node from T, let H(m) be the set of branch labels on the path going from the root to T to
m. If m is labeled by ’

√
’, it has no successor in T.

3. If m is labeled by a set C ∈ C(K ∪ {N}), then, for each c ∈ C, m has a successor node mc in
T, joined to m by a branch labeled by c. The label of mc is a set C

′ ∈ C(K ∪ {N}) such that
C
′ ∩H(mc) = ∅, if such a set exists. Otherwise, mc is labeled by ’

√
’.

The kernels correspond to the leaves labeled by
√

. For each such node m, H(m) is a kernel of C(K ∪
{N}). We use the same pruning techniques as in [Wilkerson et al., 1989].

Prioritized removed sets are not necessarily minimal with respect to cardinality, but they are minimal
with respect to lexicographic ordering (≤lex for short). So, a naive algorithm for computing PR(K ∪
{N}) could be : (i) compute the kernels of C(K ∪ {N}). (ii) keep only minimal ones with respect to
≤lex. However, we can improve this algorithm. As we said before, a prioritized removed set is computed
from a layer to another. The idea of the enhancement of the algorithm is as follows: Compute conflicts in
the first layer, i.e. in 〈T ∪ {N},A1〉. Then, build the hitting set tree on this collection of conflicts. This
tree allows for the computation of the kernels of 〈T ∪{N},A1〉, which are minimal with respect to≤lex.
From these kernels, we continue the construction of the tree using conflicts in 〈T ∪ {N}, {A1 ∪ A2}〉 if
they exist, and so on until reaching a fixed point where no conflict will be generated. Then, the kernels
of the final hitting set tree — i.e. those built using the conflicts in 〈T ∪ {N}, {A1 ∪ A2 ∪ ... ∪ An}〉
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1: function COMPUTEPRSR3 (K=〈T ,A〉, N )
2: T ′ ← T ∪ {N}, K′ = 〈T ′,A〉
3: cln (T ′)← NEGCLOSURE(T ′)
4: PR(K′)← ∅ , C ← ∅, TREE← ∅, i← 1
5: while i ≤ n do
6: for all X v ¬Y ∈ cln (T ′) do
7: for all (α, β) s.t. α ∈ A1, β ∈ A1 ∪ . . . ∪ Ai do
8: if 〈X v ¬Y, {α, β}〉 is inconsistent then
9: C ← C ∪ {α, β}

10: TREE← TREE.ADDFROMLEXKERNEL(HS(C))
11: C ← ∅,
12: i← i+ 1
13: PR(K′)← LEXKERNEL(TREE)
14: return PR(K′)

Algorithm 6: COMPUTEPRSR3

— which are minimal with respect to ≤lex are the prioritized removed sets. Algorithm 6 describes the
algorithm of the function COMPUTEPRSR3, which computes PR(K ∪ {N}).

In this algorithm, the function HS(C) takes as input the conflicts computed in each strata (if they
exist) and builds the corresponding hitting sets tree (TREE) using the algorithm presented in [Reiter, 1987;
Wilkerson et al., 1989]. From one layer to another, we resume the construction of (TREE) from its current
kernels minimal with respect to ≤lex. Namely, the function ADDFROMLEXKERNEL((HS(C)) builds the
hitting set tree out of a collection of conflicts C, starting from the branches of the current TREE which are
minimal with respect to ≤lex. Finally, PR(K∪{N}) corresponds to the kernels of TREE obtained using
function LEXKERNEL(TREE) which are minimal with respect to ≤lex. Note that COMPUTEPRSR3 is
a generalization of COMPUTEPRSR2, since when all conflicts involve elements from distinct layers,
then the final tree will only contain one prioritized removed set. The following example illustrates this
algorithm.

Example 6.11. Consider K = 〈T ,A〉, with T = {A v B,C v B} andA = A1 ∪A2 ∪A3 ∪A4 where
A1 = {A(a), D(a)},A2={C(a), B(b)}, A3={D(b)} and A4={D(c), C(c)}. We want to revise K with
N=B v ¬D. Then, we have cln (T ∪ {B v ¬D})={B v ¬D,A v ¬D,C v ¬D}.

• The set of conflicts obtained from 〈cln (T ′) ,A1〉 is {{A(a), D(a)}}. The HS tree built by calling
HS({{A(a), D(a)}}) will contain two branches labeled respectively by A(a) and D(a) which are
kernels minimal with respect to ≤lex (≤lex-kernel).

• We go on with 〈cln (T ′) ,A1 ∪A2〉 where {C(a), D(a)} is a newly identified conflict. We resume
the construction of the tree from its current ≤lex-kernel branches labeled by A(a) and D(a), and
we obtain three HS-tree branches: {A(a), C(a)}, {A(a), D(a)} and D(a), where only D(a) is a
≤lex-kernel.

• Now, we go to the next strata, that is, we use 〈cln (T ′) ,A1 ∪ A2 ∪ A3〉. This produces a new
conflict {B(b), D(b)} and we continue the construction of the Tree from D(a). We potentially
obtain {D(a), D(b)} and {D(a), B(b)} as new prioritized removed sets, but only {D(a), D(b)} is
a ≤lex kernel.

• Finally, we identify a new conflict {D(c), C(c)} from 〈cln (T ′) ,A1 ∪ A2 ∪ A3 ∪ A4〉. We con-
tinue the construction of the tree from the branch labeled by {D(a), D(b)}. We obtain two other
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branches labeled respectively by {D(a), D(b), C(c)} and {D(a), D(b), D(c)} which are two≤lex
kernels. Hence, PR(K ∪ {N})={{D(a), D(b), C(c)}, {D(a), D(b), D(c)}}.

�

6.5 Discussions and related works

In [Calvanese et al., 2010], the authors study the problem of knowledge base evolution in DL-Lite. Under
the word evolution, they encompass both revision and update operations. Note that the update focuses on
the changes of the actual state whereas revision focuses on the integration of new information [Wang et
al., 2010]. In this chapter, we focus on revision. The part of the article [Calvanese et al., 2010] dedicated
to formula-based approaches is closely related to our work. They define several operators which perform
revision of a knowledge base expressed in DL-Lite at a syntactical level. The first difference concerns
the form of the input. In our case, new information is a membership assertion, a single PI axiom or
NI axiom, that is a single formula. In [Calvanese et al., 2010], the input is a set of formulas. The
second difference is that in [Calvanese et al., 2010] they develop two operators whose strategy is to non-
derministically choose some maximal consistent subset. The first one, called BoldEvol, starts with the
input, and incrementally and non-deterministically adds as many formulas as possible from the closure
of the knowledge base. The algorithm for computing such set is polynomial. However, in the case where
the input is a set of membership assertions, they give a result similar to our operator. Namely, the result
only gives one maximal consistent subset, which corresponds to Proposition 6.1.

The selected maximal subset is a subset of the consequences of the knowledge base, which is very
different from our point of view. Prioritized Removed Sets Revision relies only on the explicit content of
the knowledge base. The resulting knowledge base will not contain formulas which are not present in the
original knowledge base. Only working with explicitly given information, we follow Hansson’s point of
view [Hansson, 2008].

Following this line, extensions of belief bases revision to DLs have been proposed, however these
approaches differ from ours in several aspects. Within the general framework of DLs, in [Qi et al.,
2008a] the authors extend kernel-based revision [Hansson, 1994] for revising flat terminologies. Our
approach is very different since we deal with knowledge bases which are prioritized and expressed in a
lightweight DLs. Furthermore, our revision operators do not modify the TBox but revise the prioritized
ABox according to a lexicographical strategy.

In [Halaschek-wiener et al., 2006], the authors focus on SHOIN DL, they extend kernel revision
and semi-revision operators [Hansson, 1997] to SHOIN knowledge bases. Moreover, they propose an
algorithm for revision stemming from the computation of kernels. This algorithm shares several common
points with our algorithm for the computation of prioritized removed sets. What they call justification of
the inconsistency is very similar to our notion of conflict. But in their case, the generation of conflicts
has a higher computational cost than in our case, as they work with SHOIN logic. In order to lower
this extra-complexity, they rely on an optimized version of the Pellet consistency checker which uses
properties of the SHOIN logic, allowing them to define an incremental version of their consistency
checking tableau algorithm.

In [Ribeiro and Wassermann, 2007], the authors propose another extension of kernel-based revision
and semi-revision operators to DLs, namely external kernel revision and semi-revision with weak success.
Again, their logical framework is richer than ours, since they consider SHOIN and SHIF logics in
order to capture all the OWL-DL and OWL-Lite languages. Our revision operators can be viewed as
restrictions of the operator they define under the name kernel revision without negation. The restrictions
are : (i) our knowledge bases are prioritized and expressed in DL-Lite; (ii) the minimality of the result of
the incision function is defined in terms of lexicographic criterion in our case.
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Following another idea, the authors in [Qi et al., 2006a] extend weakening-based revision to ALC
knowledge bases. Instead of removing conflicting assertions, the proposed revision operators weaken
terminological axioms or assertions by adding exceptions which drop individuals responsible of the con-
flicts. Furthermore, this weakening-based revision is generalized to stratified knowledge bases. Our revi-
sion operators differ from this approach since our prioritized knowledge bases are expressed in DL-Lite.
Moreover, the spirit is different since PRSR removes conflicting assertions according to a lexicographical
strategy.

6.6 Conclusion

In this chapter, we investigated the problem of revising prioritized DL-Lite knowledge bases where the
ABox is stratified. We considered several forms of the incorporated information, more precisely, when
the input is a membership assertion, a positive or negative inclusion axiom. According to the form of the
input we proposed a family of operators, Prioritized Removed Sets (PRSR) operators, stemming from a
lexicographical strategy for removing some assertions, namely the prioritized removed sets, in order to
restore consistency.

When the input is a membership assertion, the revision process leads to a unique revised knowledge
base. However, when the input is a positive or negative inclusion axiom, the revision process may lead to
several possible revised knowledge bases. In this case, we defined selection functions in order to keep the
result within the DL-Lite language and we gave some concrete PRSR operators with examples of selection
functions. We studied the logical properties of PRSR operators through Hansson’s postulates rephrased
within the DL-Lite framework. From a computational point of view, we first proposed an algorithm for
pinpointing inconsistencies, then according to the nature of the input, we proposed algorithms, some of
them using the notion of hitting set, for computing the prioritized removed sets.

Based on the discussion about suitable techniques for inconsistency handling presented in Chapter 5
and the assumption that the ABox is prioritized, next chapter proposes several approaches to select one
preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases.
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CHAPTER 7

HOW TO SELECT ONE PREFERRED
ASSERTIONAL-BASED REPAIR FROM

INCONSISTENT AND PRIORITIZED
DL-Lite KNOWLEDGE BASES?

7.1 Introduction

In Chapter 5, we addressed the problem of inconsistency handling in flat DL-Lite knowledge bases. We
showed, in particular, that dealing with inconsistency in an Ontology-Based Data Access setting comes
down first to compute the assertional-based repairs, and then, perform inference. However, as pointed
out in previous chapter (Chapter 6), assertions are often provided by several and potentially conflicting
sources having different reliability levels. In the previous chapter, we were interested in analyzing the
problem of adding a new piece of information (assertional fact, positive inclusion axiom and negative
inclusion axiom) in DL-Lite knowledge bases when the assertional base is prioritized. We followed a
revision strategy that consists in throwing out some assertional facts to restore consistency. This chapter
goes one step further and studies the problem of inconsistency handling in prioritized DL-Lite knowledge
bases. The main question addressed in this chapter is how to select one preferred assertional-based repair.
Selecting only one repair is important since it allows efficient query answering once the preferred repair
is computed.

In this context, several works (e.g. [Martinez et al., 2008; Staworko et al., 2012]) studied the notion
of priority when querying inconsistent databases. In [Du et al., 2013], a maximal repair with respect to
set inclusion was introduced in order to answer queries from an inconsistent SHIQ DL knowledge base.
In the DL-Lite area, there is to the best of our knowledge only one work [Bienvenu et al., 2014] dealing
with reasoning under inconsistency using the priorities of assertions within the OBDA setting.

In this chapter, we first review the main existing inconsistency-tolerant reasoning methods for pri-
oritized knowledge bases. We provide consequence relations based either i) on the selection of one
consistent prioritized assertional base which is in general not maximal or ii) on the choice of several pri-
oritized repairs. It is important to note that some inference relations are specific to DL-Lite even if they
are inspired by other formalisms, such as propositional logic settings.

This chapter also contains different main strategies for computing repairs that are suitable for the DL-
Lite setting. As mentioned in Chapter 5, a suitable inconsistency-tolerant relation is a one that outputs a
consistent DL-Lite knowledge base and produces as many safe conclusions as possible. In particular, it
should be at least as productive as taking the intersection of all the repairs. Interestingly enough, many
of such consequence relations allow an efficient handling of inconsistency in DL-Lite knowledge base.

The rest of this chapter is organized as follows: Section 7.2 reviews existing works for computing
preferred repairs. Section 7.3 introduces the notion of prioritized deductive closure and studies the prop-
erties of existing approaches with respect to the notion of deductive closure. Section 7.4 investigates
new inference strategies based on the selection of one preferred repair. Section 7.5 provides a compara-
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tive analysis of the main approaches studied in this chapter. Section 7.6 gives experimental studies and
Section 7.7 concludes the chapter.

Notations: Let us first summarize in Table 7.1 the different notations of repairs that will be used in the
rest of this chapter.

Acronym Definition Signification

MAR(A) Definition 5.3 (flat) inclusion-based repairs of A

MARcard(A) ◦card(◦incl(A)) (Chapter 5) (flat) cardinality-based repairs of A

PAR(A) Definition 7.1 preferred inclusion-based repair of A

π(A) Definition 7.5 possibilistic-based repair of A

`(A) Definition 7.7 linear-based repair of A

prlex(A) Definition 7.3 preferred lexicographic-based repair of A

nd(A) Definition 7.10 non-defeated reapir of A

free(S) Definition 7.11 non-conflicting assertions of a subset S w.r.t a TBox T

clnd(A) Equation 7.2 closed non-defeated repair of A

`nd(A) Algorithm 7 linear-based non-defeated repair of A

nd(A)card Definition 7.13 cardinality-based non-defeated repair of A

consnd(A)card Definition 7.14 consistent cardinality-based non-defeated repair of A

pind(A) Definition 7.15 prioritized inclusion-based non-defeated repair of A

pindlex(A) Equation 7.5 prioritized lexicographical-based non-defeated repair of A

Table 7.1: Notations of repairs using in this Chapter.

7.2 Existing assertional-based preferred repairs

This section reviews approaches dealing with inconsistent DL-Lite knowledge bases that either have
been proposed in a DLs setting or have been proposed in a propositional logic setting but need a slight
adaptation to be suitable for DL-Lite.

A DL-Lite knowledge baseK=〈T ,A〉 with a prioritized assertional base is a DL-Lite knowledge base
where A is partitioned into n layers (or strata) of the form

A = S1 ∪ . . . ∪ Sn

where each layer Si contains the set of assertions having the same level of priority i and they are
considered as more reliable than the ones present in a layer Sj when j > i. Within the OBDA setting,
we assume that T is stable and hence its elements are not questionable in the presence of conflicts.
Throughout this chapter and when there is no ambiguity, we simply use "prioritized DL-Lite knowledge
base K = 〈T ,A〉" to refer to a DL-Lite knowledge base with a prioritized assertional base of the form
A=S1 ∪ . . . ∪ Sn.
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Example 7.1. Let K=〈T ,A〉 such that T = {A v ¬B} and that assertional facts of A come from three
distinct sourcesA=S1∪S2∪S3 where S1 = {B(a), A(b)}, S2 = {A(a)} and S3 = {B(c)}. S1 contains
the most reliable assertions. S3 contains the least reliable assertions. �

In Example 7.1, it is easy to check that the knowledge base is inconsistent. Coping with inconsistency
can be done by first computing the set of repairs, then using them to perform inference. In order to
compute the repairs, we use the notion of conflict sets presented in Chapter 5 (Definition 5.12).

7.2.1 Preferred inclusion-based repair

In the flat case1, one of the main strategies for handling inconsistency comes down to computing the
ABox repairs of an inconsistent DL-Lite knowledge base. A repair is a maximal subbase of the ABox,
denoted by MAR, that is consistent with the TBox (Definition 5.3 in Section 5.2).

Example 7.2. Consider T ={Av ¬B} and A={A(a),B(a), A(b)}. We have C(A)={A(a), B(a)}. The
set of MAR is: R1={A(a), A(b)} andR2={B(a), A(b)}. �

According to the definition of MAR, adding any assertion f fromA\R toR entails the inconsistency
of 〈T ,R ∪ {f}〉. Moreover, the maximality in MAR is used in the sense of set inclusion. We denote by
MAR(A) the set of MAR of A with respect to T . A query is said to be a universal consequence (i.e.
〈M1,∀〉 given in Chapter 5) if it can be derived from every MAR. The following definition extends the
definition of MAR when the DL-Lite ABox is prioritized.

Definition 7.1. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. A preferred inclusion-based
repair (PAR) P = P1 ∪ . . .∪Pn ofA is such that there is no a MAR P ′ = P ′1 ∪ . . .∪P ′n of S1 ∪ . . .∪Sn,
and an integer i where:

i) Pi is strictly included in P ′i , and

ii) ∀j = 1..(i− 1), Pj is equal to P ′j

This definition of PAR has been largely used in a propositional logic setting (e.g. [Brewka, 1989;
Benferhat et al., 1998a]) and has been recently used in a DL-Lite framework [Bienvenu et al., 2014]. A
PAR of A is formed by first computing the MAR of S1, then enlarging this MAR as much as possible by
assertions of S2 while preserving consistency, and so on.

Example 7.3. Consider T ={A v ¬B} and A = S1 ∪ S2 where S1={A(a)} and S2 = {B(a), A(b)}.
There is exactly one PAR which is: P1={A(a), A(b)}. �

Priorities reduce the number of MAR as one can see in Example 7.3 in comparison with Example
7.2. Indeed, within a prioritized setting, the notion of PAR operates as a selection function among pos-
sible MAR. Following the definition of ABox conflict (Definition 5.12), an important feature in restoring
consistency in DL-Lite, when the ABox is layered, is that when there is no conflict in A involving two
assertions having the same priority level, there exists only one PAR.

Proposition 7.1. Let K = 〈T ,A〉 be a prioritized DL-Lite. Let C(A) be the set of conflicts in A. Then if
∀C = (f, g) ∈ C(A) we have f ∈ Si, g ∈ Sj and i 6= j then there exits exactly one PAR.

Proof of Proposition 7.1. The proof is immediate. In every conflict inA, we throw out only the assertion
having the lowest priority level. Therefore there exits only one PAR of A.

1By a flat knowledge base, we mean a base where all the assertions have the same priority.
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When a conflict involves two assertions having the same priority level, restoring consistency leads to
several PAR. From now on, PAR(A) denotes the set of PAR of A. The following definition introduces
universal inference when A is layered.

Definition 7.2. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. A query q is said to be a
PAR-consequence of K, denoted K |=PAR q, if and only if ∀P ∈ PAR(A), 〈T ,P〉 |=2q where PAR(A)
denotes the set of PAR of A.

Definition 7.2 states that a query q is a universal consequence if and only if it can be deduced from
every preferred inclusion-based repair. Note that the PAR-entailment extends the definition of MAR-
entailment (i.e. 〈M1, ∀〉 proposed in Section 5) when the ABox is prioritized. Besides, it is argued that
priorities simplify the computation of PAR, but it remains a hard task since in the flat case the inference
is coNP-complete (see Section 5.5.2 on complexity analysis). When a conflict involves two assertions
having the same priority level, restoring consistency often leads to several PAR.

7.2.2 Lexicographic preferred-based repair

This subsection rewrites the cardinality-based or lexicographic inference or prioritized removed set re-
pair, defined in Chapter 6, to the context of inconsistency handling. The lexicographic inference has been
widely used in the propositional setting (e.g. [Benferhat et al., 1998a]). In fact, one of the major prob-
lems of PAR-entailment is the large number of PAR that can be computed from an inconsistent DL-Lite
knowledge base. In order to better choose a PAR, one can follow a lexicographic-based approach. We
introduce a preferred lexicographic-based repair which is based on the cardinality criterion instead of the
set inclusion criterion.

Definition 7.3. Let PAR(A) be the set of PAR ofA. ThenL = L1∪. . .∪Ln is said to be a lexicographical
preferred-based repair, denoted by PARlex, if and only if:

i) ∀P = P1 ∪ . . . ∪ Pn ∈ PAR(A): there is no i such that |Pi| > |Li|,

ii) ∀j < i, |Pj | = |Lj |.

where |X| is the cardinality of the set X .

Clearly, using a lexicographic-based approach comes down to select among the set of repairs in
PAR(A) the ones having the maximal number of elements.

Definition 7.4. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. A query q is said to be
Lex-consequence of K, denoted by K |=L q, if and only if ∀L ∈ PARlex(A) : 〈T ,L〉 |= q.

Example 7.4. Consider T = A v ¬B,B v ¬C and A = S1 ∪ S2 where S1 = {A(a), B(a)} and
S2 = {C(a)}. We have two PAR: P1 = {A(a), C(a)} and P2 = {B(a)} and only one PARlex which is
L = {A(a), C(a)}. �

We propose to review in the two next subsections inconsistency-tolerant inferences based only on
selecting one preferred repair.

2|= denotes the standard entailment used from flat and consistent DL-Lite knowledge base [Calvanese et al., 2007a]
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7.2.3 Possibilistic-based repair

This section briefly rewrites possibilistic-based approach of Chapter 3 when the knowledge base is strat-
ified.

One of the interesting aspects of possibilistic knowledge bases, and more generally weighted knowl-
edge bases, is the ability of reasoning with partially inconsistent knowledge [Dubois and Prade, 1991a].
As shown in Chapter 3, entailment in possibilistic DL-Lite, an extension of DL-Lite within a possibil-
ity theory setting, is based on the selection of one consistent, but not necessarily maximal, subbase of
K. This subbase is induced by a level of priority called the inconsistency degree of K. The following
definition reformulates the definition of inconsistency degree to fit the case where A is prioritized.

Definition 7.5. Let K=〈T ,A〉 be an inconsistent prioritized DL-Lite knowledge base. The inconsistency
degree of K, denoted Inc(K), is defined as follows: Inc(K)=i+ 1 if and only if:

i) 〈T ,S1 ∪ . . . ∪ Si〉 is consistent and,

ii) 〈T ,S1 ∪ . . . ∪ Si+1〉 is inconsistent.

The subbase π(A) is made of the assertions having priority levels that are strictly less than Inc(K),
namely π(A) = S1 ∪ . . . ∪ S(Inc(K)−1). If K is consistent then we simply let π(A)=A. The following
definition extends the possibilistic entailment (π-entailment ) to the case where A is stratified.

Example 7.5. Consider T = {A v ¬B} andA = S1∪S2∪S3 where S1 = {A(a)}, S2 = {B(a), A(b)}
and S3 = {B(b)}. One can check that π(A) = {A(a)} since 〈T ,S1〉 is consistent, but 〈T ,S1 ∪ S2〉 is
inconsistent. �

Definition 7.6. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. A query q is said to be a
π-consequence of K, denoted K |=π q, if and only if 〈T , π(A)〉 |= q.

The π-entailment is cautious in the sense that assertions from A\π(A) that are not involved in any
conflict are inhibited because of their low priority levels.

7.2.4 Linear-based repair

One way to recover the inhibited assertions by the possibilistic entailment is to define the linear-based
repair from A. The following definition introduces the notion of linear subset. Linear entailment has
been used in a propositional logic setting in [Nebel, 1994] and has been applied for a DL setting (e.g. [Qi
et al., 2011]).

Definition 7.7. Let K = 〈T ,A〉 be a prioritized DL-Lite. The linear assertional-based repair of A,
denoted `(A) = S1 ∪ . . . ∪ Sn, is obtained as follows:

i) For i = 1 : `(S1) = S1 if 〈T ,S1〉 is consistent. Otherwise `(S1) = ∅.

ii) For i > 1 : `(S1 ∪ . . .∪Si) = `(S1 ∪ . . .∪Si−1)∪Si if 〈T , `(S1 ∪ . . .∪Si−1)∪Si〉 is consistent.
Otherwise `(S1 ∪ . . . ∪ Si) = `(S1 ∪ . . . ∪ Si−1).

Clearly, `(A) is obtained by discarding a layer Si when its facts conflict with the ones involved in the
previous layer.

Definition 7.8. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. A query q is a linear conse-
quence (`-consequence) from K, denoted K |=` q, if and only if 〈T , `(A)〉 |= q.
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Example 7.6. Let us consider again T = {A v ¬B} and A = S1 ∪ S2 ∪ S3 where S1 = {A(a)},
S2 = {B(a), A(b)} and S3 = {B(b)}. One can check that `(A) = {A(a), B(b)} since 〈T ,S1〉 is
consistent, 〈T ,S1 ∪ S2〉 is inconsistent and 〈T ,S1 ∪ S3〉 is consistent. �

The subbase `(A) is unique and consistent with T . The following proposition gives the complexity
of π-entailment and `-entailment which are in P.

Proposition 7.2. The computational complexity of π-entailment is in O(cons) where cons is the com-
plexity of consistency checking of standard DL-Lite. The complexity of `-entailment is in O(n ∗ cons)
where n is the number of strata in the knowledge base.

Proof of Proposition 7.2. The proof of the complexity of π-entailment can be found in Section 3.5. The
proof of the complexity of `-entailment is immediate since to see whether a stratum should be kept or not
in the result of restoring consistency, one consistency check is needed.

The `-entailment is more productive than π-entailment as one can see in Example 7.6 in comparison
with Example 7.6, but incomparable with PAR-entailment and Lex-entailment. However from Defini-
tions 7.5 and 7.7, both π(A) and `(A) are not guaranteed to be maximal.

7.3 Sensitivity to the prioritized closure

Before presenting new strategies that only select one preferred repair, we briefly introduce the concept of
a prioritized closure and check which among existing approaches is sensitive to the use of the deductive
closure.

The inference relations given in the previous section can be either defined on 〈T ,A〉 or on 〈T , ◦cl(A)〉
where ◦cl denotes the deductive closure of a set of assertions. The following definition extends Definition
5.2 to the prioritized case.

Definition 7.9. LetK = 〈T ,A〉 be a prioritized DL-Lite knowledge base. Then, we define the prioritized
closure of A with respect to T , simply denoted by ◦cl(A), as follows:

◦cl(A) = S ′1 ∪ . . . ∪ S ′n

where:

S ′1 = ◦cl(Si),
∀i = 2, .., n : S ′i = ◦cl(S ′1 ∪ . . . ∪ S ′i) \ (S ′1 ∪ . . . ∪ S ′i−1)

Example 7.7. Consider T = {A v B,B v C,C v ¬D} and A = S1 ∪ S2 where S1 = {A(a), D(a)}
and S2 = {B(b)}. Using Definition 7.9, we have ◦cl(A) = S ′1∪S ′2 where S ′1 = {A(a), B(a), C(a), D(a)}
and S ′2 = {B(b), C(b)}. �

An important feature of π-inference and `-inference is that they are insensitive to the deductive clo-
sure. This is not the case with PAR-entailement or Lex-entailment, more precisely:

Proposition 7.3. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. Then ∀q:

• 〈T ,A〉 |=π q if and only if 〈T , ◦cl(A)〉 |=π q.

• 〈T ,A〉 |=` q if and only if 〈T , ◦cl(A)〉 |=` q.
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Proof of Proposition 7.3. Intuitively, both π-inference and `-inference use a consistency checking of the
whole stratum to decide whether this stratum should be kept or not for restoring the consistency of the
knowledge base. Besides, one can easily check that in standard DL-Lite, 〈T ,A〉 is consistent if and only
if 〈T , ◦cl(A)〉 is consistent.

The following proposition shows that preferred inclusion-based inference and lexicographic-based
inference are sensitive to the deductive closure.

Proposition 7.4. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. Then,

• the preferred inclusion-based inference (PAR-entailment) applied to 〈T ,A〉 is incomparable with
the one applied to 〈T , ◦cl(A)〉.

• the lexicographic inference (Lex-entailment) applied to 〈T ,A〉 is incomparable with the one ap-
plied to 〈T , ◦cl(A)〉.

Example 7.8 (Counterexample for PAR-entailment). Let T = {Av ¬B,AvD,Dv ¬E} and A=S1∪S2
where S1={A(a), B(a)} and S2={E(a)}. We have P1={A(a)} and P2= {B(a),E(a)}. Consider now
the deductive closure: we have ◦cl(S1)={A(a), B(a), D(a)} and ◦cl(S1 ∪ S2)={E(a)}. We also have:
P1={A(a), D(a)} andP2={B(a), D(a)}. One can check that i)D(a) is a PAR-entailment of 〈T , ◦cl(A)〉
while it does not follow from 〈T ,A〉, ii) E(a)∨A(a) is a PAR-entailment of 〈T ,A〉 while it does not
follow from 〈T , ◦cl(A)〉. �

Example 7.9 (Counterexample Lex-entailment). Let us consider the following cases:

i) T = {A v ¬B,A v C} and A = S1 = {A(a), B(a)}. We have 〈T ,A〉 6|=lex C(a) while
〈T , ◦cl(A)〉 |=lex C(a).

ii) T = {A v ¬B,B v F, F v ¬A,C v ¬B} and S1 = {A(a), B(a)} and S2 = {C(a)}. We only
have a lexicographic subbase of 〈T ,S1∪S2〉which isL = {A(a), C(a)} hence 〈T ,L〉 |=lex C(a).
Besides ◦cl(S1) = {A(a), B(a), F (a)} and ◦cl(S2) = {C(a)}. We also have one lexicographic
subbase of 〈T , ◦cl(A)〉 which is L = {B(a), F (a)} hence 〈T , ◦cl(A)〉 6|=lexC(a). �

7.4 New strategies for selecting one preferred repair

This section presents new strategies that only select one preferred repair. Selecting only one repair is
important since it allows efficient query answering once the preferred repair is computed. These strategies
are based on the so-called non-defeated entailment, described in the next section, by adding different
criteria: deductive closure, cardinality, consistency and priorities.

7.4.1 Non-defeated repair

One way to get one preferred repair is to iteratively apply, layer per layer, the intersection of maximally
assertional-based repairs (i.e. MAR). More precisely:

Definition 7.10. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. We define the non-defeated
reapir, denoted by nd(A)=S ′1 ∪ . . . ∪ S ′n, as follows:

∀i = 1, .., n : S ′i =
⋂

Ri∈MAR(S1∪...∪Si)
Ri (7.1)
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As it will be shown below, the non-defeated entailment corresponds to the definition of non-defeated
subbase proposed in [Benferhat et al., 1998a] within a propositional logic setting. However, contrarily
to the propositional setting i) the non-defeated repair can be applied on A or its deductive closure ◦cl(A)
which leads to two different inference relations, ii) the non-defeated repair is computed in polynomial
time in a DL-Lite setting while its computation is hard in a propositional logic setting. Let us now
rephrase non-defeated repair (Equation 7.1) using the concept of free inference. First, we recall the
notion of non-conflicting or free elements.

Definition 7.11. Let K = 〈T ,A〉 be DL-Lite knowledge base. An assertion f ∈ A is said to be free if
and only if ∀C ∈ C(A) : f /∈ C.

Intuitively, free assertions are those assertions that are not involved in any conflict. Let S ∈ A be a
set of assertions, we denote by free(S) the set of free assertions in S. The notions of free elements and
free-entailment are originally proposed in [Benferhat et al., 1992] where knowledge bases are encoded
in a propositional logic setting. The definition of free-entailment is also equivalent to the MBox M1
followed by the safe inference strategy i.e. 〈M1,∩〉 presented in Section 5.5.

The following proposition shows that the notion of free(A) extended to the prioritized case gives a
non-defeated repair.

Proposition 7.5. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. The non-defeated repair of
A, given in Definition 7.10, is equivalent to:

nd(A) = free(S1) ∪ free(S1 ∪ S2) ∪ . . . ∪ free(S1 ∪ . . . ∪ Sn)

where ∀i : free(S1 ∪ . . . ∪ Si) denotes the set of free facts in (S1 ∪ . . . ∪ Si).

Proof. The proof is immediate since ∀i : free(S1 ∪ . . . ∪ Si) =
⋂
R∈MAR(S1∪...∪Si)R.

The non-defeated repair is an extension of the free assertional base when A is prioritized. The fol-
lowing definition introduces non-defeated entailment.

Definition 7.12. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. A query q is a non-defeated
consequence (nd-consequence) of K, denoted K |=nd q, if and only if 〈T , nd(A)〉 |= q.

In Definition 7.11, a free element is not involved in any conflict. Hence the following proposition
holds.

Proposition 7.6. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. Let nd(A) be its dominant
subbase. Then 〈T , nd(A)〉 is consistent.

Proof of Proposition 7.6. We will use the recurrence to show the proof. Namely, assume that for some i:

free(S1) ∪ free(S1 ∪ S2) ∪ . . . ∪ free(S1 ∪ . . . ∪ Si)

is consistent.
This assumption is true for i = 1, since by definition free(S1) is consistent. Let us show that the

assumption holds for rank (i+ 1), namely:

free(S1) ∪ free(S1 ∪ S2) ∪ . . . ∪ free(S1 ∪ . . . ∪ Si+1)

is consistent.
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Assume that this is not the case. This means that there exists f ∈ free(S1) ∪ free(S1 ∪ S2) ∪ . . . ∪
free(S1 ∪ . . . ∪ Si) and g ∈ free(S1) ∪ free(S1 ∪ S2) ∪ . . . ∪ free(S1 ∪ . . . ∪ S1+1) such that (f, g)
is conflicting. Since,

free(S1)∪free(S1∪S2)∪. . .∪free(S1∪. . .∪Si) ⊆ free(S1)∪free(S1∪S2)∪. . .∪free(S1∪. . .∪Si+1)

this means that f ∈ free(S1) ∪ free(S1 ∪ S2) ∪ . . . ∪ free(S1 ∪ . . . ∪ Si+1) and g ∈ free(S1) ∪
free(S1 ∪ S2) ∪ . . . ∪ free(S1 ∪ . . . ∪ Si+1). Hence, this is a contradiction, since g cannot belong to
free(S1) ∪ free(S1 ∪ S2) ∪ . . . ∪ free(S1 ∪ . . . ∪ Si+1).

Example 7.10. Let us consider again T = {A v ¬B} and A = S1 ∪ S2 ∪ S3 where S1 = {A(a)},
S2 = {B(a), A(b)} and S3 = {B(b)}. One can check that nd(A) = {A(a), A(b)}. �

The computational complexity of the computation of the dominant subbase of A is polynomial.

Proposition 7.7. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. The complexity of nd-
entailment is in P.

Proof of Proposition 7.7. The proof follows from the fact that computing free subbase is done in poly-
nomial time. nd-entailment proceeds to a linear number of computations of free subbases.

7.4.2 Adding the deduction closure

The non-defeated inference, when it is defined on A, is safe since it only uses elements of A which are
not involved is conflicts. One way to get a more productive inference is to use ◦cl(A) instead of A.
Namely, we define, a closed non-defeated repair, denoted clnd(A) = S ′1 ∪ . . . ∪ S ′n, such that:

S ′i =
⋂

R∈MAR(◦cl(S1∪...∪Si))
R (7.2)

Example 7.11. Consider T = {A v ¬B,B v C} and A = S1 ∪ S2 where S1 = {A(a)} and S2 =
{B(a)}. We have MAR(◦cl(S1)) = {A(a)} and MAR(◦cl(S1 ∪ S2)) = {(A(a), C(a)), (B(a), C(a))}.
Then clnd(A) = {A(a), C(a)}. �.

Contrarily to π-entailment and `-entailment, the following proposition shows that nd-inference is
sensitive to the use of the deductive closure.

Proposition 7.8. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. Then ∀q: if 〈T ,A〉 |=nd q
then 〈T , ◦cl(A)〉 |=nd q. The converse is false.

Proof of Proposition 7.8. For the converse it is enough to consider T = {E v ¬B,B v C,E v C}
and A = S1 = {E(a), B(a)}. We have nd(A) = ∅ and nd(◦cl(A)) = {C(a)}. Hence C(a) is an
nd-consequence of 〈T , ◦cl(A)〉 but it is not an nd-consequence of 〈T ,A〉

7.4.3 Combining linear entailment and non-defeated entailment: Adding consistency

We now present a new way to select a single preferred assertional-based repair. It consists in slightly
improving linear entailment, where rather to ignore a full stratum, in case of inconsistency, one can only
ignore conflicting elements.

More precisely, the linear-based non-defeated repair, denoted by `nd(A), is given by the following
algorithm:
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Input: K = 〈T ,A〉 where A = S1 ∪ . . . ∪ Sn
Output: `nd(A)

1: `nd(A) = free(S1)
2: for i = 2 to n do
3: if 〈T , `nd(A) ∪ Si〉 is consistent then
4: `nd(A)← `nd(A) ∪ Si
5: else
6: `nd(A)← `nd(A) ∪ free(Si ∪ `nd(A))

Algorithm 7: linear-based non-defeated repair

Example 7.12. Let T = {A v B,B v ¬C} and A = S1 ∪ S2 ∪ S3 where S1 = {A(a)}, S2 =
{C(a), C(b)} and S3 = {B(b), A(c)}. We have `nd(A) = {A(a), C(b), A(c)}. �

Clearly `nd(A) is consistent and it is more productive than π(A) and `(A), but it remains incompa-
rable with other approaches. Note that `nd(A)∪ free(Si ∪ `nd(A)) =

⋂
{R : R ∈ MAR(Si ∪ `nd(A))

andR∪ `nd(A)} is consistent. Hence, `nd(A) extends nd(A) by only focusing on MAR(Si ∪ `nd(A))
that are consistent with `nd(A). The nice feature of `nd-entailment is that the extension of `-entailment
and nd-entailment is done without extra computational cost. More precisely, computing `nd(A) is in P.

7.4.4 Introducing cardinality in non-defeated inference

A natural question is whether one can introduce a cardinality criterion, instead of set inclusion criterion,
in the definition of non-defeated repair given by Equation 7.1. Namely, we define the cardinality-based
non-defeated repair as follows:

Definition 7.13. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. The cardinality-based non-
defeated repair, denoted by nd(A)card = S ′1 ∪ . . . ∪ S ′n, is defined as follows:

∀i = 1, .., n : S ′i =
⋂

R∈MARcard(S1∪...∪Si)
R (7.3)

where MARcard(S) = {R : R ∈ MAR(S) and @R′ ∈ MAR(S) such that |R′| > |R|}.

One main advantage of this approach is that it produces more conclusions then the standard non-
defeated inference relation. Namely, nd(A) ⊆ nd(A)card where nd(A) and nd(A)card are respectively
given by Equations 7.1 and 7.3. The converse is false.

Proposition 7.9. Let K = 〈T ,A〉 be a prioritized DL-Lite knowledge base. Then

nd(A) ⊆ nd(A)card

where nd(A) and nd(A)card are respectively given by Equations 7.1 and 7.3. The converse is false.

Proof. The proof follows from the fact that:

∀i = 1, .., n : MARcard(S1 ∪ . . . ∪ Si) ⊆ MAR(S1 ∪ . . . ∪ Si)

For the converse, consider the following counter-example.
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Example 7.13 (counter-example). Let T = {A v ¬B,B v ¬C} and A = S1 ∪ S2 where S1 =
{A(a), B(a)} and S2 = {C(a)}. We have nd(A) = ∅ while nd(A)card = {A(a), C(a)}. �

The main limitation of nd(A)card is that it may be inconsistent with T as it is illustrated with the
following example.

Example 7.14. Consider T = {A v ¬B,A v ¬C} and A=S1 ∪ S2 where S1 = {A(a)} and
S2 = {B(a), C(a)}. Using Equation 7.3, we have S ′1 = {A(a)} and S ′2 = {B(a), C(a)}. Clearly,
nd(A)card = S ′1 ∪ S ′2 contradicts T . �

One way to overcome such limitation is to only select MARcard of (S1∪. . .∪Si) that are consistent
with (S ′1∪. . .∪S ′i−1), namely:

Definition 7.14. Let K=〈T ,A〉 be an prioritized DL-Lite knowledge base. We define the consistent
cardinality-based non-defeated repair, denoted by consnd(A)card = S ′1 ∪ . . . ∪ S ′n such that:

S ′1 =
⋂

R∈MARcard(S1)
R

∀i = 2, .., n : S ′i=
⋂
{R:R∈MARcard(S1∪. . .∪Si) andR is consistent with S ′1∪. . .∪S ′i−1}

Clearly, contrarily to nd(A)card, consnd(A)card is always consistent.

Example 7.15. Consider the example where T = {A v ¬B, A v ¬C} and A = S1 ∪ S2 where
S1 = {A(a)} and S2 = {B(a), C(a)}. We have S ′1 = {A(a)} and S ′2 = ∅. Clearly consnd(A)card is
consistent with T . �

7.4.5 Adding priorities to non-defeated inference

In the definition of nd-inference, given by Equation 7.1, a flat notion of MAR (maximally inclusion-based
repair) has been used. A natural way to extend the nd-entailment is to use a prioritized version of MAR
(i.e. PAR), namely:

Definition 7.15. Let K=〈T ,A〉 be an prioritized DL-Lite knowledge base. We define the prioritized
inclusion-based non-defeated repair, denoted by pind(A) = S ′1 ∪ . . . ∪ S ′n, as follows:

∀i = 1, .., n : S ′i =
⋂

P∈PAR(S1∪...∪Si)
P (7.4)

The following proposition shows that there is no need to consider all S ′i for i < n when computing
pind(A), namely:

Proposition 7.10. Let K=〈T ,A〉 be a prioritized DL-Lite knowledge base. Then

pind(A) =
⋂

P∈PAR(S1∪...∪Sn)
P.

Proof. The proof follows from the fact that ∀i < n, ∀A ∈ PAR(S1 ∪ . . .Si+1), ∃B ∈ PAR(S1 ∪ . . .Si)
such that B ⊆ A. Namely, prioritized inclusion-based maximal repairs from S1 ∪ . . .Si+1 are obtained
from prioritized inclusion-based maximal repairs from S1 ∪ . . .Si by adding some elements from Si+1.
Hence, for i < n, we have:

163



Part IV, Chapter 7 – How to select one preferred assertional-based repair from inconsistent and prioritized
DL-Lite knowledge bases?

π(A)

nd(A) `(A)`nd(A)consnd(A)card

pind(A)

pind(A)lex PAR(A)

PARlex(A)

Figure 7.1: Relationships between inferences

⋂
B∈PAR(S1∪...∪Si)

B ⊆
⋂

B∈PAR(S1∪...∪Si+1)
B

Therefore:

pind(A) =
⋂

B∈PAR(S1∪...∪Sn)
B

Besides, a cardinality-based version of Equation 7.4, denoted by pind(A)lex = S1 ∪ . . .∪Sn, can be
defined as follows:

∀i = 1, .., n : S ′i =
⋂

L∈PARlex(S1∪...∪Sn)
L (7.5)

Lastly, both pind(A) and pind(A)lex can be defined on ◦cl(A) instead of A or be defined on closed
repairs instead of repairs themselves. This leads to new inferences strategies that only select one preferred
subbase.

7.5 Comparative analysis

From a computational complexity point of view, π-entailment, `-entailment, nd-entailment and `nd-
entailment and the entailments based on their closures, are the most promising ones since both computing
the repair and query answering are tractable. For other strategies based on the nd-inference, computing
the repairs is a hard task, but it is done ONCE. Answering queries, when the single repair is computed, is
efficiently computed since it has the same complexity as in standard DL-Lite.

From productivity, Figure 7.1 summarizes the relationships between main entailments considered in
the paper when the ABox is prioritized. Note that for the sake of simplicity, we do not make reference in
Figure 7.1 to inferences defined on ◦cl(A).

In Figure 7.1, n1→n2 means that each conclusion that can be universally derived from repairs in n1 is
also a conclusion using repairs in n2. From Figure 7.1, π-entailment is the most cautious relation. Adding
priorities, cardinality and consistency to the definition of nd-entailment allow to provide more productive
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inference relations. However `-entailment remains incomparable with the nd-entailment, since layers
including non free assertions can be present in `(A). Moreover, `nd(A) is incomparable with other
approaches. Within the prioritized setting, nd(A) plays the same role with respect to PAR as free(A)
for MAR in the flat case. As a consequence, each nd-consequence of A is also a PAR-consequence of A.
The converse is false. Moreover, it is well-known that each PAR-entailment is also a Lex-entailment and
the converse is false, since the Lex-entailment only uses subsets of prioritized repair (PAR).

7.6 Experimental evaluation

In this section, we present an experimental evaluation on the computation of main repairs proposed in
this Chapter using some algorithms proposed in Chapter 6.

All the experiments are performed on a MacBook Pro laptop with 2.6GHz Intel Core (i7) processor
and 16GB 1600 MHz DDR3 RAM. We considered a TBox containing 100 negative inclusion axioms with
a proportion of conflicts at least equal to 1/5 per assertion. This TBox is adapted from the DL-LiteR
university benchmark proposed in [Lutz et al., 2013]. We use the Extended University Data Generator
(EUDG) 3 to generate the ABox assertions. Once the ABox is produced, we fit it to our setting using 4
strata until 7 strata. Moreover the computation of conflicts is performed layer per layer. Note that the time
used for computing the conflicts is not included in the time used for computing the repairs, since this is
done in a polynomial time. Said differently, computing conflicts is negligible with respect to computing
repairs.

# conflict #MAR time #MAR #MARcard time #MARcard
18 28080 105ms 192 65ms
25 688128 2268ms 256 789ms
37 16815986 206089ms 56 5422ms
75 20160000 272830ms 96 216236ms
105 - Time-out 2034 8259s

Table 7.2: Number of conflicts, number of MAR, time taken to compute MAR in ms (milliseconds) or s
(seconds), number of #MARcard, time taken to compute #MARcard.

Table 7.2 gives the experimental results of the computation of MAR and MARcard. One can see that
using the cardinality criterion instead of the set inclusion one refines the result and improves the compu-
tation time of the repairs. Moreover, an important influential parameter when computing the repairs is the
number of occurrences of an assertion in conflicts. Namely, the more an assertion is recurring in conflicts
the more the conflict resolution has better chances to be achieved. For instance, in Table 7.2 considering
the case of 37 conflicts, by increasing the percentage of occurrences of some assertions in conflicts, we ob-
tain 23082 MAR in 136ms instead of 16815986 in 206089ms. In such case, the number of Lex decreases
also where we compute only 24 #MARcard having cardinality equal to 14 assertions. Similar results on
the effect of the number of occurrences of assertions in conflicts are provided [Pivert and Prade, 2010;
Deagustini et al., 2014].

Now, concerning PARlex, we also use the notion of minimal inconsistent subsets where the minimal-
ity refers to a lexicographic ordering. Table 7.3 gives the results on the computation of PARlex and the
main repairs given in this paper. One can first observe that given an ABox A whatever is its size, com-
puting π or ` does not need long computation time as needed by inconsistency checking. Regarding now
the computation of the non-defeated repair, it depends on the number of conflicts in the ABox. Another

3available at https://code.google.com/p/combo-obda/
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parameter that also influences the results is the number of layers. This can be clearly seen when comput-
ing #PARlex. Indeed, the number of PARlex decreases as the number of layers increases. Clearly, more
the stratification of the ABox is important more the conflicts resolution has better chances to be achieved.

# Conflicts # Strata time π time ` time nd #PARlex time PARlex

61
4 4ms 7ms 7ms 16 17ms
7 4ms 8ms 6ms 2 11ms

123
4 5ms 8ms 10ms 16 43ms
7 4ms 8ms 9ms 4 38ms

502
4 5ms 9ms 24ms 2024 1072ms
7 5ms 8ms 13ms 128 90ms

1562
4 4ms 8ms 129ms 1392 128:47s
7 5ms 8ms 64ms 232 34:52s

Table 7.3: Number of conflicts, number of strata, time taken to compute π, `, nd and PARlex and number
of computed PARlex.

7.7 Conclusion

This chapter focuses on how to produce a single preferred repair from a prioritized inconsistent DL-
Lite knowledge base based on the notion of the non-defeated inference relation. We first reviewed some
well-known approaches that select one repair (such as possibilistic repair or linear-based repair) or several
repairs (such as preferred inclusion-based repairs or lexicographic-based repairs). Then, we presented dif-
ferent strategies for selecting one preferred repair. These strategies have as starting point the non-defeated
repair and mainly add one/several of the four main criteria: priorities, deductive closure, cardinality and
consistency.
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CONCLUSION

In this thesis, we studied dynamics of beliefs and uncertainty management in DL-Lite. In the first part
we investigated the problem of uncertainty handling in DL-Lite. We first proposed an extension of the
main fragments of DL-Lite to deal with the uncertainty associated with axioms using a possibility theory
framework. We introduced the syntax and the semantics of such extensions. We provided the properties
of π-DL-Lite and showed how to compute the inconsistency degree of π-DL-Lite knowledge base using
query evaluation obtained by defining the π-DL-Lite negative closure that extends the one of standard
DL-Lite. This extension permits to deal with priorities or uncertainty degrees (between DL-Lite axioms)
without increasing the computational complexity. A tool for representing and reasoning in possibilistic
DL-Lite framework is implemented. We introduced main reasoning tasks in π-DL-Lite and we provided
a preliminary result on conditioning π-DL-Lite knowledge bases when a new piece of information is
available. Lastly, we proposed a min-based assertional merging operator when the assertions of ABox
are provided by several sources of information having different levels of priority. We showed that this
operator is more productive than the classical one, without increasing the complexity of the merging
process.

In the second part of the thesis, we studied the problem of inconsistency handling in flat DL-Lite
knowledge bases. We generalized techniques for inconsistency handling in flat knowledge bases by in-
troducing the notions of modifier and inference strategy. We showed that the combination of modifiers
and inference strategies provides a principled and exhaustive list of techniques for inconsistency man-
agement. We studied the productivity and the computational complexity for the proposed techniques and
showed how our work extends the state of the art.

The third part of this thesis was dedicated to the revision and inconsistency handling in prioritized
DL-Lite knowledge bases where the ABox is stratified. We first investigated the problem of revising by
considering different forms of input information, namely when the input is an ABox assertion or a TBox
axiom. We proposed syntactic revision operators, called Prioritized Removed Sets (PRSR) operators.
These operators follow a lexicographical strategy for removing some assertions, namely the prioritized
removed sets, in order to restore consistency. We showed in particular that when the input is an ABox
axiom, the revision process leads to a unique revised knowledge base. However, when the input is a
TBox axiom, the revision process may lead to several possible revised knowledge bases. In this case,
we defined selection functions in order to keep the result within the DL-Lite language. We provided
the logical properties of PRSR operators using Hansson’s postulates rephrased within our framework.
Finally, we proposed algorithms to computing the prioritized removed sets where some of them are based
on the notion of hitting set.

We studied the problem of inconsistency handling in prioritized DL-Lite knowledge bases. We in-
troduced several inconsistency-tolerant inference approaches in DL-Lite when the ABox is stratified. We
first reviewed some well-known approaches that select one assertional-based repair or several assertional-
based repairs, and then, proposed different strategies for selecting a single assertional-based repair. These
strategies have as starting point the non- defeated assertional-based repair and mainly adding one/several
of four main ingredients: priorities, deductive closure, cardinality and consistency. We showed that these
inconsistency-tolerant relations are proper to DL-Lite logics and some of them allow tractable handling of
inconsistency without additional complexity in comparison to standard DL-Lite. We provided complexity
results and experimental studies showing the efficiency of the proposed entailments.
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Future works

Uncertainty management The inconsistency notion used Chapter 3 is fully in the spirit of the one used
in standard DL-Lite. In presence of certainty degrees, one may consider other forms of inconsis-
tency that depart from the one used in standard DL-Lite logic. This depends on the uncertainty
framework and the knowledge modeling steps may play a crucial role. For instance, if one uses
a probability theory framework, and roughly speaking if 〈A v B,α〉 is interpreted as “the con-
ditional probability of an individual to be in B given the fact that he is A is α, then 〈A v B, .9〉
and 〈A v ¬B, .1〉 are closely related. Hence, the way we write uncertain pieces has an impor-
tant role and the definition of inconsistency degrees should take into account the used uncertainty
framework. Note that in a possibility theory setting, an axiom ϕ and its negated axiom ¬ϕ are
only weakly related since we only have min(N(ϕ), N(¬ϕ)) = 0. Besides, in the future, we plan
to explore more parsimonious definitions of inconsistency degrees. For instance, in the rules used
for defining the π-negated closure of a DL-Lite knowledge base we used the minimum operator
for propagating certainty degrees. The question is how to use other operators (such that leximin or
descrimin [Benferhat et al., 1993a; Dubois et al., 1992] or simply the product operators) that lead
to new definitions of inconsistency degrees. The aim is to get more productive relations that only
provide safe conclusions and run in a polynomial time.

Another future work is to consider richer extensions of DL-Lite logics such as DL− LiteR,u and
DL − LiteF,u [Calvanese et al., 2006] (DL-LiteHhorn and DL-LiteFhorn presented in Section 1.4.2)
that allow conjunction on the left side of a concept inclusion. We are also interested in considering
possibilistic DL-Lite with disjunctive ABox as it has been done in databases [Molinaro et al.,
2009]. Namely, we plan to enrich DL-languages with the propositional disjunction "A ∨ B". The
question is then how to extend the concepts of conflicts, associated with negated axioms, to define
inconsistency degrees of possibilistic knowledge bases with disjunctive ABox. This extension is
useful when one has to merge multiple sources information, where the union of the TBox (issued
from each source) is consistent, but the whole set of information is conflicting.

Knowledge base fusion This thesis opens several perspectives regarding the fusion issue. For instance,
we focus on a min operator for aggregating conflict vectors, in order to preserve possibilistic
semantics. Nevertheless, other aggregation operators can be considered (e.g. the product operator)
or direct comparisons from vectors (e.g. G-max based operator). From a postulates point of view,
other postulates dedicated to DL knowledge bases could be studied and adapted (e.g. arbitration
[Konieczny and Pino Pérez, 2002]). Moreover, we plan to investigate other measures of conflicts
such as Shapley measure proposed in [Hunter and Konieczny, 2010]. Finally, we will investigate
the extension of Removed Sets Fusion [Hué et al., 2008], defined in a propositional setting, to the
merging of DL-Lite knowledge bases. Another extension is to study merging of uncertain DL-Lite
knowledge bases in the context where uncertainty scales are incommensurable [Benferhat et al.,
2007].

Ontological-based revision vs assertional based revision When revising a prioritized DL-Lite knowl-
edge base, we only considered the case where the input is a single assertion or a simple positive or
negative axiom. A future work will investigate the case where the input is a set of assertions or a
set of axioms. A future work will focus on a deeper study of the computational complexity of the
PRSR operators. We plan also to study revision of TBox, when a new axiom (i.e. rule) is available.
We will study revision in the general case, namely when the revision process comes down to throw
out both TBox axioms and ABox assertions to restore consistency.

Regarding inconsistency handling, other modifiers such as merging or concatenating modifiers
have to be investigated. Besides, the considered framework may be reapplied easily for other
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richer DL-Lite logics (or rules-based languages (e.g. [Baget et al., 2009; Baget et al., 2011; Calì et
al., 2012]) provided that data is separated from generic knowledge.
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APPENDIX OF CHAPTER 3

Possibilistic DL-Lite ontology tool

In this appendix, we present a tool for representing and reasoning in possibilistic DL-Lite framework.
This tool is developed in JAVA and it implements the inconsistency check algorithm based on query
evaluation presented in Chapter 3. In this tool, the ABox is managed using SQL database engine. As
ontology language, we use the OWL-QL functional syntax extended with the ability to attach weights
to axioms. To this end, we developed our proper parser in order to manage weighted axioms. In what
follows, we present some screenshots of this tool followed by a explanation about its features.

Ontology representation

The following figure presents the main interface of the possibilistic DL-Lite ontology editor. The main
interface is partitioned into two panels: one for specifying the TBox and the other for expressing the
ABox.

Figure A.1: Main interface

Using the different buttons of the toolbar, one can express either π-DL-Litecore, π-DL-LiteF or π-
DL-LiteR axioms. As presented in Figure A.2, one can express either flat axioms (i.e. when the weight
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associated to the axioms is equal to 1. We do not represent in the interface weights equal to 1 or weighted
axioms. Note that when all weights are set to 1, then we represent a standard DL-Lite knowledge base.

Figure A.2: Example of TBox axioms

Once the TBox is edited, one can export it using extended OWL-QL functional syntax as follows:

Weighted(SubClassOf(author , person), 0.6)
DisjointClasses(book , person)
ObjectPropertyDomain(hasTitle, book )
Weighted(ObjectPropertyRange(hasAuthor, author ), 0.3)
SubClassOf(novel, book)

In fact, when developing this tool, we could not use the existing ontology programming tools such
Jena, OWL API (see Section 1.2). Hence, we developed our proper parser. Note that when all weights are
equal to 1, one can manipulate standard OWL-QL functional syntax. Clearly, one can read any standard
OWL-QL file, edited using a standard ontology editor tool such as Protégé (see Section 1.2) and add
different weights. Finally, we adapted such encoding with the aim to add other reasoning capabilities to
our tool when dealing with uncertainty or priorities.

Similarly, the ABox is expressed using weighted or flat assertions as presented in Figure A.3. Note
that ABox is managed using an SQL-lite1 engine.

1https://www.sqlite.org
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Figure A.3: Example of ABox assertions

Reasoning tasks

The current version of the tool implements two main reasoning algorithms. The first reasoning task
concerns the detection of modeling errors when specifying the ontology, namely the incoherency of the
TBox (see Definition 1.13). An important feature of our tool, compared with existing ones (i.e. flat case)
is that incoherency detection is done instantly after adding any axiom to the TBox. Once an incoherency
is detected and according to the weights of formulas, the editor points out the source of incoherency using
"italic style". Figure A.4 gives an example.

Figure A.4: Incoherency detection

The second main reasoning task is the computation of the inconsistency degree. The tool computes
first the negated closure using the rules presented in Section 3.4. As for incoherency checking, the com-
putation of the negated closure is done instantly after adding any axiom. This closure is transformed to
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weighted queries performed over the set of individuals in the ABox in order to compute the inconsistency
degree. The inconsistency associated with a query and a given tuple of assertions provided as an answer
for the query is the maximum weight among all the certainty degrees of the query and this tuple. The
maximum among these inconsistency degrees is the inconsistency degree associated with the knowledge
base. Figure A.5 shows an example of computation of inconsistency degree. Once the inconsistency
degree is computed, all axioms having weights less or equal to this degree are highlighted using "italic
style".

Figure A.5: Inconsistency degree

Lastly, the possibilistic DL-Lite tool permits to compute and export ABox conflicts as follows.

fconflict(book(pakerpyne), person(pakerpyne))
pconflict((book(pakerPyne),0.8), (person(pakerPyne),0.4)
Note that these conflict sets are used for experimentation in Section 7.6.
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Handling inconsistent DL-Lite knowledge bases =Composite modifiers+inference
strategies

Proposition B.1 (Figure 5.3). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
{M1,...,M8} be the eight composite modifiers summarized in Table 5.1. Then:

1. M2 ⊆M1.

2. M4 ⊆M3.

3. M6 ⊆M5.

4. M8 ⊆M7.

5. M3 = ◦cl(M2).

6. M5 = ◦cl(M1).

7. M2 ⊆clM5.

8. M3 ⊆M5.

9. M5 ⊆inclM7.

Proof of Proposition B.1. The proof are as follows:

• Items 1-4 follow from the definition of the elementary modifier ◦card. Since ◦card selects subsets
ofM having maximal cardinality. Namely, givenM an MBox, we have ◦card(M) ⊆ M. Hence
relationsM4 ⊆M3,M2 ⊆M1,M6 ⊆M5, andM8 ⊆M7 holds.

• Items 5-6 follow immediately from the definition of the elementary modifier ◦cl, hence we trivially
haveM5 = ◦cl(M1) andM3 = ◦cl(M2).

• Let us show thatM2 ⊆cl M5, namely ∀A∈M2,∃B ∈ M5 such that B = Cl(A). The proof is
immediate. Recall that M2 ⊆ M1, hence ∀A ∈ M2 we also have A ∈ M1. Recall also that
M5 = ◦cl(M1). This means that ∀A ∈M2, ∃B ∈M5 such that B = Cl(A).

• Regarding the proof of Item 8, we have M2 ⊆cl M5. This means that ∀A ∈ M2, there exists
B ∈ M5 such that B = Cl(A). Said differently, ∀A ∈ M2, we have Cl(A) ∈ M5. Since
M3=◦cl(M2), we conclude thatM3 ⊆M5.

• We now show that M5⊆inclM7. Let B∈◦incl({A}) and let us show that there exists a set of
assertions X such that ◦cl({B})⊆X and X∈M7. Since B∈◦incl({A}), this means by definition
that B ⊆ A and hence B ⊆ ◦cl(A). Now, B is consistent, this means that there exists R ∈
◦incl(◦cl(A)) =M7 such that B ⊆ R. From Lemma 5.1, R is a closed set of assertions, then this
means that Cl(B) ⊆ R.
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Example B.1 (Counter-examples relations given in Figure 5.3). The converse of relations given in Figure
5.3 does not holds.

1. The converse ofM2 ⊆M1 does not hold.
Let T ={BvC,Cv ¬D} andM={{B(a), C(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1=◦incl(M)={{C(a), B(a)}, {D(a)}}, and
M2 = ◦card(M1) = {{C(a), B(a)}}.
One can check thatM1 *M2.

2. The converse ofM4 ⊆M3 does not hold.
Let T ={A v B, B v ¬C} andM={{A(a), C(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1=◦incl(M)={{A(a)}, {C(a)}},
M2 = ◦card(M1) = {{A(a)}, {C(a)}},
M3 = ◦cl(M2) = {{A(a), B(a)}, {C(a)}}, and
M4 = ◦card(M3) = {{A(a), B(a)}}.
One can check thatM3 *M4.

3. The converse ofM6 ⊆M5 does not hold.
Let T ={B v C, C v ¬D} andM={{B(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1=◦incl(M)={{B(a)}, {D(a)}},
M5 = ◦cl(M1)={{C(a), B(a)}, {D(a)}}, and
M6 = ◦card(M5)={{C(a), B(a)}}
One can check thatM5 *M6.

4. The converse ofM8 ⊆M7 does not hold.
Let T ={A v B, B v ¬D} andM={{A(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
◦cl(M)={{A(a), B(a), D(a)}},
M7 = ◦incl(◦cl(M))={{A(a), B(a)}, {D(a)}}, and
M8 = ◦card(M7)={{A(a), B(a)}}
One can check thatM7 *M8.

5. The converse ofM2 ⊆clM5 does not hold.
Let T ={A v B, B v C, C v ¬D} andM={{A(a), B(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a), B(a)}, {D(a)}},
M5 = ◦cl(M1) = {{A(a), B(a), C(a)}, {D(a)}}, and
M2 = ◦card(M1)={{A(a), B(a)}}.
One can check thatM5 *clM2.

6. The converse ofM3 ⊆M5 does not hold.
Let T ={A v B, B v C, C v ¬D} andM={{A(a), B(a), D(a)}}.
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It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1=◦incl(M)={{A(a), B(a)}, {D(a)}},
M5 = ◦cl(M1) = {{A(a), B(a), C(a)}, {D(a)}},
M2 = ◦card(M1)={{A(a), B(a)}}, and
M3 = ◦cl(M2)={{A(a), B(a), C(a)}}.
One can check thatM5 *M3.

7. The converse ofM5 ⊆inclM7 does not hold.
Let T ={A v ¬B, B v D} andM={{A(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
◦cl(M)={{A(a), B(a), D(a)}},
M7 = ◦incl(◦cl(M))={{A(a), D(a)}, {B(a), D(a)}},
M1=◦incl(M)={{A(a)}, {B(a)}}, and
M5 = ◦cl(M1)={{A(a)}, {B(a), D(a)}},
One can check thatM7 *inclM5.

Corollary B.1. Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let {M1,...,M8}
be the eight composite modifiers summarized in Table 5.1. Then:

1. ∀Ai ∈M3, ∃Aj ∈M1 such that Ai = Cl(Aj).

2. ∀Ai ∈M4, ∃Aj ∈M1 such that Ai = Cl(Aj).

3. ∀Ai ∈M6, ∃Aj ∈M1 such that Ai = Cl(Aj).

4. ∀Ai ∈M1, ∃Aj ∈M7 such that Ai ⊆ Aj .

5. ∀Ai ∈M1, ∃Aj ∈M8 such that Ai ⊆ Aj .

6. ∀Ai ∈M4, ∃Aj ∈M2 such that Ai = Cl(Aj).

7. ∀Ai ∈M2, ∃Aj ∈M7 such that Ai ⊆ Aj .

8. ∀Ai ∈M3, ∃Aj ∈M7 such that Ai ⊆ Aj .

9. ∀Ai ∈M4, ∃Aj ∈M7 such that Ai ⊆ Aj .

10. ∀Ai ∈M5, ∃Aj ∈M8 such that Ai ⊆ Aj .

Proposition B.2 (Figure 5.3). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
{M1,...,M8} be the eight composite modifiers summarized in Table 5.1. Then:

1. M6 andM8 are incomparable.

2. M2 andM6 are incomparable.

3. M3 andM6 are incomparable.

4. M4 andM6 are incomparable.

5. M2 andM8 are incomparable.

6. M3 andM8 are incomparable.
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7. M4 andM8 are incomparable.

Example B.2 (Examples of Proposition B.2). The following examples show incomparability between
MBox’s

1. The MBoxM6 andM8 are incomparable.
Let T ={B v ¬C,B v A,C v A,A v ¬D,D v E,E v F} andM={{A(a), B(a), C(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M) = {{A(a), C(a)}, {A(a), B(a)}, {D(a)}}, and
M5 = ◦cl(M1)={{A(a), C(a)}, {A(a), B(a)}, {D(a), E(a), F (a)}}, and
M6 = ◦card(M5)={{D(a), E(a), F (a)}},
◦cl(M)={{A(a), B(a), C(a), D(a), E(a), F (a)}},
M7 = ◦incl(◦cl(M))={{A(a), C(a), E(a), F (a)}, {A(a), B(a), E(a), F (a)}, {D(a), E(a), F (a)}},
and
M8 = ◦incl(M7) = {{A(a), C(a), E(a), F (a)}, {A(a), B(a), E(a), F (a)}}
One can check thatM6 andM8 are incomparable.

2. The MBoxM2,M3 andM4 are incomparable withM6.
Let T ={A v ¬B, C v A, B v D, D v F} andM={{A(a), C(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a), C(a)}, {B(a)}},
M2 = ◦card(M2)={{A(a), C(a)}},
M5 = ◦cl(M1)={{A(a), C(a)}, {B(a), D(a), F (a)}},
M6 = ◦card(M5)={{B(a), D(a), F (a)}},
One can check thatM2 is incomparable withM6.
We have alsoM2=M3=M4={{A(a), C(a)}}, So, we conclude thatM3 andM4 are incompara-
ble withM6.

3. The MBoxM2,M3 andM4 are incomparable withM8.
Let T ={B v A, C v A,A v ¬D,E v D,D v F} andM={{A(a), D(a), E(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M) = {{A(a)}, {D(a), E(a)}}, and
M2 = ◦card(M1)={D(a), E(a)}}, and
M3 =M4={{D(a), E(a), F (a)}},
◦cl(M)={{A(a), B(a), C(a), D(a), E(a), F (a)}},
M7 = ◦incl(◦cl(M))={{A(a), C(a), B(a), F (a)}, {D(a), E(a), F (a)}}, and
M8 = ◦incl(M7) = {{A(a), C(a), B(a), F (a)},
One can check thatM2,M3 andM4 are incomparable withM8.

Comparative studies

Composite modifiers + universal inference

Proposition B.3 (Figure 5.4). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Let q be a boolean query. Then:

1. q is a universal conclusion of 〈T ,M1〉 iff q is a universal conclusion of 〈T ,M5〉.

2. q is a universal conclusion of 〈T ,M2〉 iff q is a universal conclusion of 〈T ,M3〉.
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Proof. Item 1 and 2 follow from item 1 of Lemma 5.3 and the facts that M5 = ◦cl(M1) and M3 =
◦cl(M2).

Proposition B.4 (Figure 5.4). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Let q be a boolean query. Then:

1. If q is a universal conclusion of 〈T ,M1〉 (or 〈T ,M5〉) then q is a universal conclusion of 〈T ,M2〉.

2. If q is universal conclusion of 〈T ,M3〉 (or 〈T ,M2〉) then q is a universal conclusion of 〈T ,M4〉.

3. If q is universal conclusion of 〈T ,M1〉 (or 〈T ,M5〉) then q is a universal conclusion of 〈T ,M6〉.

4. If q is universal conclusion of 〈T ,M7〉 then q is a universal conclusion of 〈T ,M8〉.

5. If q is universal conclusion of 〈T ,M1〉 (or 〈T ,M5〉) then q is a universal conclusion of 〈T ,M7〉.

Proof. For Items 1, 2, 3 and 4, we have M2 ⊆ M1, M4 ⊆ M3, M6 ⊆ M5 and M8 ⊆ M7.
Then following Item 1 of Lemma 5.2, we have if 〈T ,M1〉 |=∀ q then 〈T ,M2〉 |=∀ q. Similarly for
M4 ⊆M3,M6 ⊆M5 andM8 ⊆M7.

Finally, for item 5 recall first that 〈M5,∀〉 ≡ 〈M1,∀〉 and ∀A ∈ M5, ∃B ∈ M7 such that A ⊆ B.
Now let us show that ∀B ∈ M7, ∃A ∈ M5 such that A ⊆ B. Let B ∈ M7 = ◦incl(◦cl(M)). This
means that B ⊆ ◦cl(M) and B is a maximally consistent subset. Let C ∈ ◦incl(M). This means that
C ⊆ M ⊆ ◦cl(M). Since C is also a maximally consistent subset then C ⊆ B. Now, recall that B is
a closed set of assertion, then A = Cl(C) ⊆ B. Therefore we conclude that if a conclusion holds from
M5, then it holds fromM7.

Example B.3 (Counter-examples of Proposition B.4 of Figure 5.4). The following counter-examples
illustrate the difference between inference relations.

1. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion
of 〈T ,M2〉, but q is not a universal conclusion of 〈T ,M1〉:
Let us consider T = {A v B,B v ¬C} andM = {{A(a), B(a), C(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M) = {{A(a), B(a)}, {C(a)}}, and
M2 = ◦card(M1) = {{A(a), B(a)}}.
Let q ← A(a) be a query. One can check that:
〈M2, ∀〉 |= q but
〈M1, ∀〉 6|= q, since 〈T , {C(a)}〉 6|= q.

2. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion
of 〈T ,M4〉, but q is not a universal conclusion of 〈T ,M2〉:
Let us consider T = {A v ¬B,A v F} andM={{A(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 =M2 = {{A(a)}, {B(a)}},
M3 = {{A(a), F (a)},{B(a)}}, and
M4 = {{A(a), F (a)}}.
Let q ← F (a) be a query. One can check that:
〈M4, ∀〉 |= q but
〈M2, ∀〉 6|= q, since 〈T , {B(a)}〉 6|= q.
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3. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion
of 〈T ,M6〉, but q is not a universal conclusion of 〈T ,M5〉:
Let us consider T ={B v C, C v ¬D} andM = {{B(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = {{B(a)}, {D(a)}},
M5 = {{B(a), C(a)}, {D(a)}}, and
M6 = {{B(a), C(a)}}.
Let q ← C(a) be a query. One can check that:
〈M6,∀〉 |= q but
〈M5,∀〉 6|= q, since 〈T , {D(a)}〉 6|= q

4. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion
of 〈T ,M8〉, but q is not a universal conclusion of 〈T ,M7〉:
Let us consider T ={A v B, B v ¬C, C v D, D v F} andM = {{A(a), C(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
◦cl(M) = {A(a), C(a), B(a), D(a), F (a)},
M7 = {{A(a), B(a), D(a), F (a)}, {C(a), D(a), F (a)}}, and
M8 = {{A(a), B(a), D(a), F (a)}}.
Let q ← A(a) be a query. One can check that:
〈M8,∀〉 |= q, but
〈M7,∀〉 6|= q, since 〈T , {C(a), D(a), F (a}〉 6|= q.

5. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion
of 〈T ,M7〉, but q is not a universal conclusion of 〈T ,M5〉:
Let T ={A v ¬B, B v D} andM={{A(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1={{A(a)}, {B(a)}},
◦cl(M)={{A(a), B(a), D(a)}}, and
M7={{A(a), D(a)}, {B(a), D(a)}}.
Let q ← D(a) be a query. One can check that:
〈M7,∀〉 |= q but
〈M1,∀〉 6|= q, since 〈T , {A(a)}〉.

Proposition B.5 (Figure 5.4). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Then:

1. The universal inference fromM6 is incomparable with the one obtained fromM7.

2. The universal inference fromM6 is incomparable with the one obtained fromM8.

3. The universal inference fromM2 (resp.M3,M4) is incomparable with the one obtained fromM6.

4. The universal inference fromM2 (resp.M3,M4) is incomparable with the one obtained fromM7.

5. The universal inference fromM2 (resp.M3,M4) is incomparable with the one obtained fromM8.

Example B.4 (Examples of Figure 5.4). The following examples show incomparability between univer-
sal inference.
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1. The universal inference fromM6 is incomparable with the one obtained fromM7.
Let T ={C v F , F v A, A v ¬B,B v D} andM={{C(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{C(a)}, {B(a)}}, and
M5 = ◦cl(M1)={{A(a), C(a), F (a)}, {B(a), D(a)}}, and
M6 = ◦card(M5)={{A(a), C(a), F (a)}},
◦cl(M)={{A(a), C(a), F (a), B(a), D(a)}},
M7 = ◦incl(◦cl(M))={{A(a), C(a), F (a), D(a)}, {D(a), B(a)}},
Let q1 ← F (a) and q2 ← D(a) be two queries. One can check that:
〈M7,∀〉 |= q2 but 〈M6,∀〉 6|= q2 while 〈M6,∀〉 |= q1 but 〈M7,∀〉 6|= q1.

2. The universal inference fromM6 is incomparable with the one obtained fromM8.
Let T ={B v ¬C,B v A,C v A,A v ¬D,D v E,E v F} andM={{A(a), B(a), C(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a), C(a)}, {A(a), B(a)}, {D(a)}}, and
M5 = ◦cl(M1)={{A(a), C(a)}, {A(a), B(a)}, {D(a), E(a), F (a)}}, and
M6 = ◦card(M5)={{D(a), E(a), F (a)}},
◦cl(M)={{A(a), B(a), C(a), D(a), E(a), F (a)}},
M7 = ◦incl(◦cl(M))={{A(a), C(a), E(a), F (a)}, {A(a), B(a), E(a), F (a)}, {D(a), E(a), F (a)}},
and
M8 = ◦card(M7)={{A(a), C(a), E(a), F (a)}, {A(a), B(a), E(a), F (a)}}
Let q1 ← D(a) and q2 ← A(a) be two queries. One can check that:
〈M8,∀〉 |= q2 but 〈M6,∀〉 6|= q2 while 〈M6,∀〉 |= q1 but 〈M8,∀〉 6|= q1.

3. The universal inference fromM2 (resp. M3 andM4 is incomparable with the one obtained from
M6.
Let T ={A v ¬B, C v A, B v D, D v F} andM={{A(a), C(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a), C(a)}, {B(a)}},
M2 = ◦card(M2)={{A(a), C(a)}},
M4 = {{A(a), C(a)}},
M5 = ◦cl(M1)={{A(a), C(a)}, {B(a), D(a), F (a)}},
M6 = ◦card(M5)={{B(a), D(a), F (a)}},
Let q1 ← A(a) and q2 ← B(a) be two queries. One can check that:
〈M2,∀〉 |= q1 but 〈M6,∀〉 6|= q1 while 〈M6,∀〉 |= q2 but 〈M2,∀〉 6|= q2. Similarly forM4

4. The universal inference fromM2 (resp. M3 andM4 is incomparable with the one obtained from
M7.
Let T ={A v ¬B, C v A, B v D, D v F} andM={{A(a), C(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a), C(a)}, {B(a)}},
M2 = ◦card(M2)={{A(a), C(a)}},
M4 = {{A(a), C(a)}},
◦cl(M)={{A(a), C(a), B(a), D(a), F (a)}},
M7 = ◦incl(◦cl(M))={{A(a), C(a), D(a), F (a)}, {B(a), D(a), F (a)}},
Let q1 ← A(a) and q2 ← D(a) be two queries. One can check that:
〈M2,∀〉 |= q1 but 〈M7,∀〉 6|= q1 while 〈M7,∀〉 |= q2 but 〈M2,∀〉 6|= q2. Similarly forM4.
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5. The universal inference fromM2 (resp. M3 andM4 is incomparable with the one obtained from
M8.
Let T ={B v A, C v A,A v ¬D,E v D,D v F} andM={{A(a), D(a), E(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M) = {{A(a)},{D(a), E(a)}}, and
M2 = ◦card(M1)={D(a), E(a)}}, and
M4={{D(a), E(a), F (a)}},
◦cl(M)={{A(a), B(a), C(a), D(a), E(a), F (a)}},
M7 = ◦incl(◦cl(M))={{A(a), C(a), B(a), F (a)}, {D(a), E(a), F (a)}}, and
M8 = ◦incl(M7) = {{A(a), C(a), B(a), F (a)},
Let q1 ← D(a) and q2 ← A(a) be two queries. One can check that:
〈M2,∀〉 |= q1 but 〈M8,∀〉 6|= q1 while 〈M8,∀〉 |= q2 but 〈M2,∀〉 6|= q2. Similarly forM4

Composite modifiers+safe inference

Proposition B.6 (Figure 5.5). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Let q be a boolean query. Then:

1. If q is a safe conclusion of 〈T ,M1〉 then q is a safe conclusion of 〈T ,M2〉.

2. If q is a safe conclusion of 〈T ,M1〉 then q is a safe conclusion of 〈T ,M5〉.

3. If q is a safe conclusion of 〈T ,M2〉 then q is a safe conclusion of 〈T ,M3〉.

4. If q is a safe conclusion of 〈T ,M3〉 then q is a safe conclusion of 〈T ,M4〉.

5. If q is a safe conclusion of 〈T ,M5〉 then q is a safe conclusion of 〈T ,M3〉.

6. if q is a safe conclusion of 〈T ,M5〉 then q is a safe conclusion of 〈T ,M6〉.

7. If q is a safe conclusion of 〈T ,M5〉 then q is a safe conclusion of 〈T ,M7〉.

8. If q is a safe conclusion of 〈T ,M7〉 then q is a safe conclusion of 〈T ,M8〉.

Proof. The proof is as follows:

1. For items 1, we haveM2 ⊆M1, then following Item 2 of Lemma 5.2, if 〈M1,∩〉 implies a query
q then 〈M2,∩〉 implies it also. The proof follow similarly for Items 4,5, 6 and 8 sinceM4 ⊆M3,
M3 ⊆M5,M6 ⊆M5, andM8 ⊆M7.

2. For items 2 and 3, we have M5 = ◦cl(M1) and M3 = ◦cl(M2). Then following Item 3 of
Lemma 5.3, if a query holds in 〈M,∩〉 then it also holds in 〈◦cl(M),∩〉.

3. For item 7, we have ∀A ∈ M5, ∃B ∈ M7 such that A ⊆ B. Let A(a) ∈
⋂
Ai∈M5 Ai. Then

one can check that there is no conflict C in 〈T ,Cl(M)〉 such that A(a) ∈ C. Indeed, assume that
such conflict exists. Then this means that there exists B(a) ∈ Cl(M) where 〈T , {(A(a), B(a)}〉
is conflicting. Two options:

i)B(a) ∈M. This means that there exists a maximally consistent subsetX ofMwithB(a) ∈ X .
Since B(a) is conflicting with A(a), with respect to T . Then A(a) neither belongs to X nor to
Cl(X). This contradict the fact that A(a) ∈

⋂
Ai∈M5 Ai.

ii) B(a) /∈ M. Let Y ⊆ M such that 〈T , Y 〉 |= B(a). Then clearly 〈T , Y ∪ {A(a)}〉 is
inconsistent. Hence, there exists D(a) ∈ M such that 〈T , {(D(a), A(a)}〉 is conflicting and
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D(a) ∈ Y . This comes down to item (i). Now, since there is no conflict in Cl(M) containing
A(a), then A(a) belong to all maximally consistent subsets of Cl(M), hence A(a) belongs to⋂
Aj∈M7 Aj . Therefore if a q holds in 〈M5,∩〉, then it holds that 〈M5,∩〉.

Example B.5 (Counter-examples of Figure 5.5). The following counter-examples illustrate the difference
between inference relations given in Figure 5.5.

1. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of
〈T ,M2〉, but q is not a safe conclusion of 〈T ,M1〉:
Let us consider T ={A v B,B v ¬C} andM = {{C(a), A(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = {{C(a)}}, {A(a), B(a)}}, and
M2 = {{A(a), B(a)}}.
Let q ← A(a) be a query. One can check that:
M2 |=∩ q, since

⋂
Ai∈M2 Ai={A(a), B(a)} but

M1 6|=∩ q.

2. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of
〈T ,M5〉, but q is not a safe conclusion of 〈T ,M1〉:
Let us consider T ={B v D,B v ¬C,C v D} andM = {{C(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = {{C(a)}, {B(a)}}, and
M5 = {{B(a), D(a)}, {C(a), D(a)}}.
Let q ← D(a) be a query. One can check that :
M5 |=∩ q since

⋂
Ai∈M5 Ai={D(a)}, but

M1 6|=∩ q.

3. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of
〈T ,M3〉, but q is not a safe conclusion of 〈T ,M2〉:
Let us consider T ={B v ¬C,C v A,B v A} andM = {{C(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 =M2 = {{C(a)}, {B(a)}},and
M3 = {{C(a), A(a)}}, {B(a), A(a)}}.
Let q ← A(a) be a query. One can check that:
M3 |=∩ q, but
M2 6|=∩ q.

4. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of
〈T ,M4〉, but q is not a safe conclusion of 〈T ,M3〉:
Let us consider T ={A v B,B v ¬D} andM = {{A(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 =M2 = {{A(a)}, {D(a)}},
M3 = {{A(a), B(a)}, {D(a)}}, and
M4 = {{A(a), B(a)}}.
Let q ← A(a) be a query. One can check that
M4 |=∩ q but
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M3 6|=∩ q.

5. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of
〈T ,M3〉, but q is not a safe conclusion of 〈T ,M5〉:
Let us consider T ={A v B, B v ¬D} andM = {{A(a), D(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = {{A(a), B(a)}, {D(a)}},
M2 =M3 = {{A(a), B(a)}}, and
M5 = {{A(a), B(a)}, {D(a)}}.
Let q ← A(a) be a query. One can check that
M3 |=∩ q but
M5 6|=∩ q.

6. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of
〈T ,M6〉, but q is not a safe conclusion ofM5:
Let us consider T ={B v C, C v ¬D} andM={{B(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = {{B(a)}, {D(a)}},
M5 = {{B(a), C(a)}, {D(a)}}, and
M6 = {{B(a), C(a)}}.
Let q ← B(a) be a query. One can check that
M6 |=∩ q but
M5 6|=∩ q.

7. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of
〈T ,M7〉, but q is not a safe conclusion ofM5:
Let T ={A v ¬B, B v D} andM={{A(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1={{A(a)}, {B(a)}},
M5={{A(a)}, {B(a), D(a))}},
◦cl(M)={{A(a), B(a), D(a)}}, and
M7={{A(a), D(a)}, {B(a), D(a)}}.
Let q ← D(a) be a query. One can deduce that:
M7 |=∩ q but
M5 6|=∩ q.

8. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of
〈T ,M8〉, but q is not a safe conclusion of 〈T ,M7〉:
Let us consider T ={A v B, B v ¬C, C v D} andM = {{A(a), C(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
◦cl(M) = {A(a), C(a), B(a), D(a)},
M7 = {{A(a), B(a), D(a)}, {C(a), D(a)}}, and
M8 = {{A(a), B(a), D(a)}}.
Let q ← A(a) be a boolean query. One can deduce that:
M8 |=∩ q, but
M7 6|=∩ q.
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Proposition B.7 (Figure 5.5). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Let q be a boolean query. Then:

1. The safe inference fromM2 is incomparable with the one obtained fromM6.

2. The safe inference fromM3 is incomparable with the one obtained fromM6.

3. The safe inference fromM6 is incomparable with the one obtained fromM7.

4. The safe inference fromM6 is incomparable with the one obtained fromM8.

5. The safe inference fromM2 is incomparable with the one obtained fromM5.

Example B.6 (Examples of Figure 5.5). The following examples show incomparability between MBox’s

1. The safe inference fromM6 is incomparable with the one obtained fromM7.
Let T ={C v F ,F v A,A v ¬B,B v D} andM={{C(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{C(a)}, {B(a)}}, and
M5 = ◦cl(M1)={{A(a), C(a), F (a)}, {B(a), D(a)}}, and
M6 = ◦card(M5)={{A(a), C(a), F (a)}},
◦cl(M)={{A(a), C(a), F (a), B(a), D(a)}},
M7 = ◦incl(◦cl(M))={{A(a), C(a), F (a), D(a)}, {D(a), B(a)}},
Let q1 ← F (a) and q2 ← D(a) be two queries. One can check that:
〈M7,∩〉 |= q2 but 〈M6,∩〉 6|= q2 while 〈M6,∩〉 |= q1 but 〈M7,∩〉 6|= q1.

2. The safe inference fromM6 is incomparable with the one obtained fromM8.
Let T ={B v ¬C,B v A,C v A,A v ¬D,D v E,E v F} andM={{A(a),B(a),C(a),D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a), C(a)}, {A(a), B(a)}, {D(a)}},
M5 = ◦cl(M1)={{A(a), C(a)}, {A(a), B(a)}, {D(a), E(a), F (a)}},
M6 = ◦card(M5)={{D(a), E(a), F (a)}},
◦cl(M)={{A(a), B(a), C(a), D(a), E(a), F (a)}},
M7 = ◦incl(◦cl(M))={{A(a), C(a), E(a), F (a)}, {A(a), B(a), E(a), F (a)}, {D(a), E(a), F (a)}},
and
M8 = ◦incl(M7)={{A(a), C(a), E(a), F (a)}, {A(a), B(a), E(a), F (a)}}
Let q1 ← D(a) and q2 ← A(a) be two queries. One can check that:
〈M8,∩〉 |= q2 but 〈M6,∩〉 6|= q2 while 〈M6,∩〉 |= q1 but 〈M8,∩〉 6|= q1.

3. The safe inference fromM2 is incomparable with the one obtained fromM6.
Let T ={A v ¬B, C v A, B v D, D v F} andM={{A(a), C(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a), C(a)}, {B(a)}},
M2 = ◦card(M2)={{A(a), C(a)}},
M5 = ◦cl(M1)={{A(a), C(a)}, {B(a), D(a), F (a)}},
M6 = ◦card(M5)={{B(a), D(a), F (a)}},
Let q1 ← A(a) and q2 ← B(a) be two queries. One can check that:
〈M2,∩〉 |= q1 but 〈M6,∩〉 6|= q1 while 〈M6,∩〉 |= q2 but 〈M2,∩〉 6|= q2.
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4. The safe inference fromM2 is incomparable with the one obtained fromM5.
Let T ={A v B, C v B, A v ¬C, D v C} andM={{A(a), C(a), D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a)}, {C(a), D(a)}},
M2 = ◦card(M1)={{C(a), D(a)}}, and
M5 = ◦cl(M1)={{A(a), B(a)}, {B(a), D(a), C(a)}},
Let q1 ← D(a) and q2 ← B(a) be two queries. One can check that:
〈M2,∩〉 |= q1 but 〈M5,∩〉 6|= q1 while 〈M5,∩〉 |= q2 but 〈M2,∩〉 6|= q2.

Composite modifiers+majority-based inference

Proposition B.8 (Figure 5.6). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Let q be a boolean query. Then:

• 〈T ,M1〉 |=maj q iff 〈T ,M5〉 |=maj q.

• 〈T ,M2〉 |=maj q iff 〈T ,M3〉 |=maj q.

• If 〈T ,M5〉 |=maj q then 〈T ,M7〉 |=maj q.

Proof. The proof of items 1 and 2 follow immediately from the proof of item 2 of Lemma 5.3, since
M5 = ◦cl(M1) andM2 = ◦cl(M3). For Item 3, we have ∀Ai ∈ M5, ∃Aj ∈ M7 such that Ai ⊆ Aj .
From proof of item 5 of proposition B.4, we have ∀Aj ∈ M7,∃Ai ∈ M5 such that Ai ⊆ Aj . We
conclude that if a majority-based conclusion holds fromM5, it holds also fromM7. The converse does
not hold.

Example B.7 (Counter-examples of Figure 5.6). The following counter-examples illustrate the difference
between inference relations given in Figure 5.6.

1. There exists a DL-Lite knowledge base, and a query q such that q is a majority-based conclusion of
〈T ,M7〉, but q is not a majority-based conclusion of 〈T ,M5〉:
Let T ={A v ¬B, B v D} andM={{A(a), B(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
◦cl(M)={{A(a), B(a), D(a)}},
M7 = ◦incl(◦cl(M))={{A(a), D(a)}, {B(a), D(a)}},
M1=◦incl(M)={{A(a)}, {B(a)}}, and
M5 = ◦cl(M1)={{A(a)}, {B(a), D(a)}},
Let q ← D(a) be a query. One can check that:
〈M7,maj〉 |= q but 〈M5,maj〉 6|= q

Proposition B.9 (Figure 5.6). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Let q be a boolean query. Then:

• The majority-based inference from 〈T ,M1〉 is incomparable with the one obtained from 〈T ,M2〉.

• The majority-based inference from 〈T ,M3〉 is incomparable with the one obtained from 〈T ,M4〉.

• The majority-based inference from 〈T ,M5〉 is incomparable with the one obtained from 〈T ,M6〉.

• The majority-based inference from 〈T ,M7〉 is incomparable with the one obtained from 〈T ,M8〉.
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Example B.8 (Examples of Figure 5.6). The following examples show incomparability between majority-
based inferences.

1. The majority-based inference from 〈T ,M1〉 is incomparable with the one obtained from 〈T ,M2〉.
Let T ={B v ¬C, B v A, C v A, A v ¬D, D v E, E v F} and M={{A(a), B(a),
C(a), D(a), E(a), F (a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 = ◦incl(M)={{A(a), C(a)}, {A(a), B(a)}, {D(a), E(a), F (a)}}, and
M2 = ◦card(M1)={{D(a), E(a), F (a)}}
Let q1 ← D(a) and q2 ← A(a) be two queries. One can check that:
〈M1,maj〉 |= q2 but 〈M2,maj〉 6|= q2 while 〈M2,maj〉 |= q1 but 〈M1,maj〉 6|= q1.

2. The majority-based inference from 〈T ,M3〉 is incomparable with the one obtained from 〈T ,M4〉.
Let T ={B v ¬C,B v A,C v A,A v ¬D, F v D,D v E} andM={{A(a), B(a), C(a), F (a),
D(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 =M2={{A(a), C(a)}, {A(a), B(a)}, {D(a), F (a)}},
M3={{A(a), C(a)}, {A(a), B(a)}, {D(a), F (a), E(a)}},
M4={{D(a), E(a), F (a)}}
Let q1 ← D(a) and q2 ← A(a) be two queries. One can check that:
〈M3,maj〉 |= q2 but 〈M4,maj〉 6|= q2 while 〈M4,maj〉 |= q1 but 〈M3,maj〉 6|= q1.

3. The majority-based inference from 〈T ,M5〉 is incomparable with the one obtained from 〈T ,M6〉.
Let T ={B v ¬C,B v A,C v A,A v ¬D,F v D,D v E} andM={{A(a), B(a), C(a), F (a),
D(a), E(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
M1 =M5={{A(a), C(a)}, {A(a), B(a)}, {D(a), F (a), E(a)}},
M6={{D(a), E(a), F (a)}}
Let q1 ← D(a) and q2 ← A(a) be two queries. One can check that:
〈M5,maj〉 |= q2 but 〈M6,maj〉 6|= q2 while 〈M6,maj〉 |= q1 but 〈M5,maj〉 6|= q1.

4. The majority-based inference from 〈T ,M7〉 is incomparable with the one obtained from 〈T ,M8〉.
Let T ={B v ¬C, B v A, C v A,A v ¬D,F v D,E v D} and M={{A(a), F (a), E(a),
B(a), C(a)}}.
It is easy to check that 〈T ,M〉 is inconsistent. We have:
◦cl(M)={{A(a), C(a), B(a), D(a), F (a), E(a)}},
M7={{D(a), E(a), F (a)}, {A(a), B(a)}, {A(a), C(a)}},and
M8={{D(a), E(a), F (a)}},and
Let q1 ← D(a) and q2 ← A(a) be two queries. One can check that:
〈M7,maj〉 |= q2 but 〈M8,maj〉 6|= q2 while 〈M8,maj〉 |= q1 but 〈M7,maj〉 6|= q1.

Global schema

Proposition B.10 (Figure 5.7). LetKM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Let q be boolean query. Then ∀Mi ∈ {M1, ...,M8}:

1. if q is a safe conclusion of 〈T ,Mi〉 then q is a universal conclusion of 〈T ,Mi〉.

2. if q is a universal conclusion of 〈T ,Mi〉 then q is a majority-based conclusion of 〈T ,Mi〉.

Proof. The proof of item 1 (resp. item 2) follows immediately from the proof of Item 1 (resp. item 2) of
Proposition 5.1.
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Proposition B.11 (Figure 5.7). LetKM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base. Let
M1,...,M8 be the eight MBox’s given in Table 5.1. Let q be boolean query. Then ∀Mi ∈ {M1, ...,M8}:

1. if q is a safe conclusion of 〈T ,M3〉 then q is a universal conclusion of 〈T ,M4〉.

2. if q is a safe conclusion of 〈T ,M2〉 then q is a universal conclusion of 〈T ,M3〉.

3. if q is a safe conclusion of 〈T ,M1〉 then q is a universal conclusion of 〈T ,M2〉.

4. if q is a safe conclusion of 〈T ,M5〉 then q is a universal conclusion of 〈T ,M1〉.

5. if q is a safe conclusion of 〈T ,M5〉 then q is a universal conclusion of 〈T ,M6〉.

6. if q is a safe conclusion of 〈T ,M7〉 then q is a universal conclusion of 〈T ,M8〉.

Proof. The proof of item 1 follows from the facts that i) each safe conclusion of M3 is a universal
conclusion ofM3 and ii)M4 ⊆ M3. The proof of items 3, 5 and 6 follow similarly. Regarding item
2 (resp. Item 4), it holds due the fact that (M2, ∀) ≡ (M3, ∀) (resp. (M1, ∀) ≡ (M5, ∀)). So if a
conclusion holds from (M1,∩) (resp. (M2,∩)), then it holds from (M5, ∀) (resp. (M3,∀)).

Proposition B.12 (Figure 5.7). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base.
LetM1,...,M8 be the eight MBox’s given in Table 5.1. Let q be boolean query. Then:

1. if q is a universal conclusion of 〈T ,M3〉 then q is a majority-based conclusion of 〈T ,M4〉.

2. if q is a universal conclusion of 〈T ,M3〉 then q is a majority-based conclusion of 〈T ,M2〉.

3. if q is a universal conclusion of 〈T ,M2〉 then q is a majority-based conclusion of 〈T ,M3〉.

4. if q is a universal conclusion of 〈T ,M1〉 then q is a majority-based conclusion of 〈T ,M2〉.

5. if q is a universal conclusion of 〈T ,M1〉 then q is a majority-based conclusion of 〈T ,M5〉.

6. if q is a universal conclusion of 〈T ,M5〉 then q is a majority-based conclusion of 〈T ,M1〉.

7. if q is a universal conclusion of 〈T ,M5〉 then q is a majority-based conclusion of 〈T ,M6〉.

8. if q is a universal conclusion of 〈T ,M5〉 then q is a majority-based conclusion of 〈T ,M7〉.

9. if q is a universal conclusion of 〈T ,M7〉 then q is a majority-based conclusion of 〈T ,M8〉.

Proof. Item 1 holds due to the facts that i) the universal inference from M3 considers as valid a con-
clusion q iff q follows from each Ai ∈ M3 and ii) since M4 ⊆ M3, then q is a majority-based con-
clusion ofM4. Item 4, 7 and 9 follow similarly. Items 2 and 3 follow immediately from the facts that
M3 = ◦cl(M2) and (M2, ∀) ≡ (M3,∀). Then if a conclusion q is a universal conclusion ofM2 (resp.
M3) then it is a majority-based conclusion ofM3 (resp. M2). Items 5 and 6 follow similarly. Item 8
holds from the fact that a universal conclusion ofM5 is a universal conclusion ofM7, and thus, it is a
majority-based conclusion ofM7.

Proposition B.13 (Figure 5.7). Let KM=〈T ,M = {A}〉 be an inconsistent DL-Lite knowledge base.
LetM1,...,M8 be the eight MBox’s given in Table 5.1. Let q be instance query. Then:

1. if q is a universal conclusion of 〈T ,M2〉 then q is a safe conclusion of 〈T ,M3〉.

2. if q is a universal conclusion of 〈T ,M1〉 then q is a safe conclusion of 〈T ,M5〉.
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3. q is a universal conclusion of 〈T ,M5〉 iff q is a safe conclusion of 〈T ,M5〉.

4. q is a universal conclusion of 〈T ,M6〉 iff q is a safe conclusion of 〈T ,M6〉.

5. q is a universal conclusion of 〈T ,M7〉 iff q is a safe conclusion of 〈T ,M7〉.

6. q is a universal conclusion of 〈T ,M8〉 iff q is a safe conclusion of 〈T ,M8〉.

7. if q is a universal conclusion of 〈T ,M5〉 iff q is a safe conclusion of 〈T ,M7〉.

Proof. The proof of Item 1 follows from the facts: i)M2 ⊆cl M3, ii) the set of universal conclusions
ofM2 UCM2={B(a) : a ∈ DI , B ∈ DC and ∀Ai ∈ M2, 〈T ,Ai〉 |= B(a)}∪{R(a, b) : a ∈ DI , b ∈
DI , R ∈ DR and ∀Ai ∈ M2,〈T ,Ai〉 |= R(a, b)}, and iii) according to the definition of deductive
closure modifier UCM2=

⋂
Aj∈M3 Aj . The proof of item 2 and 7 follow similarly.

For item 3, we have fromProposition 5.1, if q is a safe conclusion of 〈T ,M5〉 then it is a universal
conclusion of 〈T ,M5〉. Now, let UCM5={B(a) : a ∈ DI , B ∈ DC and ∀Ai ∈ M5, 〈T ,Ai〉 |=
B(a)}∪{R(a, b) : a ∈ DI , b ∈ DI , R ∈ DR and ∀Ai ∈ M5,〈T ,Ai〉 |= R(a, b)} be the set of universal
conclusions ofM5. We haveM5 = ◦cl(◦incl(M)), then according to the definition of deductive closure
modifier, one can check that UCM5=

⋂
Aj∈M5 Aj . The same proof holds for items 4,5 and 6.
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