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This thesis investigates the dynamics of beliefs and uncertainty management in DL-Lite, one of the most important lightweight description logics. The first part of the thesis concerns the problem of handling uncertainty in DL-Lite. First, we propose an extension of the main fragments of DL-Lite to deal with the uncertainty associated with axioms using a possibility theory framework without additional extra computational costs. We then study the revision of possibilistic DL-Lite bases when a new piece of information is available. Lastly, we propose a min-based assertional merging operator when assertions of ABox are provided by several sources of information having different levels of priority. The second part of the thesis concerns the problem of inconsistency handling in flat and prioritized DL-Lite knowledge bases. We first propose how to reason from a flat DL-Lite knowledge base, with a multiple ABox, which can be either issued from multiple information sources or resulted from revising DL-Lite knowledge bases. This is done by introducing the notions of modifiers and inference strategies. The combination of modifiers plus inference strategies can be mapped out in order to provide a principled and exhaustive list of techniques for inconsistency management. We then give an approach based on selecting multiple repairs using a cardinality-based criterion, and we identified suitable strategies for handling inconsistency in the prioritized case. Lastly, we perform a comparative analysis, followed by experimental studies, of the proposed inconsistency handling techniques. A tool for representing and reasoning in possibilistic DL-Lite framework is implemented.

Résumé

Cette thèse étudie la dynamique des croyances et la gestion de l'incertitude dans DL-Lite, une des plus importantes familles des logiques de description légères. La première partie de la thèse porte sur la gestion de l'incertitude dans DL-Lite. En premier lieu, nous avons proposé une extension des principaux fragments de DL-Lite pour faire face à l'incertitude associée aux axiomes en utilisant le cadre de la théorie des possibilités. Cette extension est réalisée sans engendrer des coûts calculatoires supplémentaires. Nous avons étudié ensuite la révision des bases DL-Lite possibilistes en présence d'une nouvelle information. Enfin, nous avons proposé un opérateur de fusion lorsque les assertions de ABox sont fournies par plusieurs sources d'information ayant différents niveaux de priorité. La deuxième partie de la thèse traite le problème de la gestion d'incohérence dans les bases de connaissances DL-Lite. Nous avons étudié, tout d'abord, comment raisonner à partir d'une base DL-Lite standard avec des ABox multiples en introduisant les notions de modificateurs et de stratégies d'inférence. La combinaison des modificateurs et de stratégies d'inférence fournit une liste exhaustive des principales techniques de gestion de l'incohérence. Nous avons proposé ensuite une approche, basée sur un critère de cardinalité, de sélection des réparations, et nous avons identifié les stratégies appropriées pour la gestion de l'incohérence pour les bases DL-Lite stratifiées. Enfin, nous avons effectué une analyse comparative, suivie par des études expérimentales, des différentes techniques de gestion d'incohérence proposées. Finalement, un outil de représentation et de raisonnement à partir des bases DL-Lite possibiliste est réalisé. knowledge base is flat or prioritized.

Another problem addressed in this thesis is the one of ontology dynamics. In fact, description logics have been proposed to represent the static knowledge of a domain of interest. However, knowledge may be non static and may evolve and change from one situation to another in order to take into account and integrate the changes that occur over time. One of the fundamental issues in Web applications is the dynamics of the knowledge base (e.g. [
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GENERAL INTRODUCTION

Context and motivations

In the last years, there is a growing use of ontologies in many application areas. Description Logics (DLs for short), mostly based on first order logic, are recognized as powerful formal frameworks for representing and reasoning on ontologies. A DL knowledge base is built upon two distinct components: A terminological base (called TBox), representing generic structural knowledge about an application domain, and an assertional base (called ABox), containing the assertional facts (i.e. individuals or constants) that instantiate the generic knowledge. In the context of Semantic Web, DLs provide the logical basis of the Web Ontology Language (OWL), standardized by the W3C. In many applications, ontologies are generally very large and some reasoning tasks can be prohibitive. There exist several description languages where the majority of them are intractable (e.g. SHOIQ, SROIQ), in the sense that they do not guarantee a polynomial complexity when reasoning. To this end, several lightweight DLs (e.g. EL [Baader et al., 2005a], DL-Lite [Calvanese et al., 2005]), mainly motivated by applications (like the ones involving large ontological knowledge), have been proposed. In particular, these logics allow a flexible representation of knowledge with a tractable computational complexity of the reasoning process.

DL-Lite [Calvanese et al., 2005] is a family of tractable DLs specifically dedicated to applications that use large volumes of data where query answering is the most important reasoning task. The consistency checking problem and all standard reasoning tasks are polynomial with respect to the size of the assertional base [Calvanese et al., 2007a]. In these logics, an important reasoning task is the one of answering complex queries (especially conjunctive queries) where reasoning complexity is in LogSpace for data complexity (namely, the size of the data) [START_REF] Artale | [END_REF]. This fact makes DL-Lite especially well-suited for the context of Ontology-Based Data Access (OBDA), which studies how to query a set of data sources using an unified generic (ontological) view. In such settings, the terminological base acts as a schema used to reformulate the queries in order to offer a better access to the set of data stored in several assertional bases [Poggi et al., 2008]. A crucially important problem that arises in the OBDA setting is how to handle efficiently the multiple data sources.

In this context, assertions are often provided by several and potentially conflicting sources having different reliability levels. Moreover, a given source may provide different sets of uncertain assertions with different confidence levels. Gathering such sets of assertions gives a prioritized or a stratified assertional base. This stratification generally results from two situations as pointed out in several research papers (e.g. [Baral et al., 1992;[START_REF] Benferhat | [END_REF]Benferhat et al., 1998b]).

• The first one is when each source provides its set of data without any priority between them, but there exists a total pre-ordering between different sources reflecting their reliability.

• The other one is when the sources are considered as equally reliable (i.e. having the same reliability level), but there exists a preference ranking between the set of provided data according to their level of certainty.

The standard DL-Lite framework does not offer means of taking advantage of priority or uncertainty in the knowledge. In [Dubois and Prade, 1991a], it is argued that handling priority/uncertainty is in a complete agreement with possibility theory [Dubois and Prade, 1988b]. This latter offers a very natural framework to deal with ordinal, qualitative uncertainty, preferences and priorities. This framework Part , Chapter 0 -Introduction is particularly appropriate when the uncertainty/priority scale only reflects a priority relation between different pieces of information. Recently, several works have been proposed to deal with probabilistic and non-probabilistic uncertainty [Dubois et al., 2006;Lukasiewicz et al., 2012a] on the one hand and to deal with fuzzy information [START_REF] Bobillo | Generalized fuzzy rough description logics[END_REF]Lukasiewicz and Straccia, 2009] on the other hand. A particular attention was given to fuzzy extensions of DLs (e.g. [START_REF] Bobillo | Delorean: A reasoner for fuzzy OWL 2[END_REF]Bobillo et al., 2013;Pan et al., 2007;Straccia, 2006b;[START_REF] Straccia | Umberto Straccia. Foundations of Fuzzy Logic and Semantic Web Languages[END_REF]). Besides, some works are devoted to possibilistic extensions of description logics (e.g. [Dubois et al., 2006;Hollunder, 1995;Qi et al., 2011]) which are basically based on standard reasoning services. This thesis fills this gap and proposes an extension of DL-Lite within a possibility theory setting.

In DL-Lite and ODBA settings, inconsistency and contradictions are always defined with respect to some assertions that contradict the terminology. Indeed, a DL-Lite terminology may be incoherent but never inconsistent. Faced to inconsistency, there are two main attitudes:

i) The first one consists in merging (e.g. [Kotis et al., 2006;[START_REF] Moguillansky | [END_REF]) the knowledge base using some aggregation strategies. Knowledge bases merging or belief merging (e.g. [START_REF] Bloch | [END_REF][START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF]), is a problem largely studied within the propositional logic setting. It focuses on aggregating pieces of information issued from distinct, and may be conflicting or inconsistent, sources in order to obtain a unified point of view by taking advantage of pieces of information provided by each source. Generally in OBDA setting, applying merging techniques on data sources lead to removing some assertions that contradict the terminological base (which may be seen as an integrity constraint) in order to restore consistency. This approach is too cautious since it comes down to throw out an important part of the data which becomes no longer useful when reasoning. In ontology area, there are few works which studied the application of merging techniques proposed within propositional logics to merge DL knowledge bases. The existing works mainly reduce the merging problem to an inconsistency handling one.

ii) The second attitude consists in accepting and leaving inconsistency while coping with it when performing inference using different inconsistency-tolerant inference strategies. Handling inconsistency is also a problem largely studied within the propositional logic setting [Bertossi et al., 2005b]. Several approaches were proposed to deal with inconsistency in propositional logic knowledge bases. These approaches focus either on restoring consistency (e.g. [Benferhat et al., 1997a]), using paraconsistent logics (e.g. [Hunter, 1998]), analyzing and measuring the inconsistency (e.g. [START_REF] Hunter | [END_REF]), employing argumentation framework (e.g. [START_REF] Besnard | [END_REF]). In the same spirit, several works (e.g. [START_REF] Qi | Measuring incoherence in description logic-based ontologies[END_REF][START_REF] Corcho | [END_REF]Ma and Hitzler, 2010;Lukasiewicz et al., 2013]) were proposed to handle inconsistency or incoherency in ontologies (Ontology debugging or repairing). Regarding DL-Lite, in the context of OBDA, existing works (e.g. [START_REF] Lembo | [END_REF]Bienvenu, 2012;[START_REF] Bienvenu | Tractable approximations of consistent query answering for robust ontology-based data access[END_REF]), basically inspired by the approaches proposed in the database area, tried to deal with inconsistency in DL-Lite by proposing and adapting several inconsistency-tolerant inference methods. All the proposed approaches are based on the notion of repair which is closely related to the notion of database repair defined in order to answer queries raised to inconsistent databases. A repair of a database contradicting a set of integrity constraints is a database obtained by applying a minimal set of changes in order to restore consistency. This notion was extended to the DL-Lite setting [START_REF] Lembo | [END_REF] by defining assertional-based repair for DL-Lite knowledge bases which is simply a maximal assertional subbase consistent with the TBox. Clearly, these works are closely related to works on restoring consistency, proposed for handling inconsistency in propositional logic knowledge bases.

In this thesis, we study merging of different data sources linked to the same ontological view, seen as integrity constraints. Besides, we more investigate inconsistency handling for DL-Lite in case where the

Part III

The question addressed in this part is how to revise DL-Lite knowledge bases with a new piece of information, in a prioritized setting. Moreover, as highlighted in fusion problems, there is a need to deal with inconsistent prioritized information. It appears that only few works addressed this problem in the DL-Lite setting. So, the third part of the thesis concerns the evolution and inconsistency handling of DL-Lite knowledge bases when the assertions in the ABox's are prioritized.

• Assertional-based revision: We investigate "Prioritized Removed Sets Revision" (PRSR) for revising stratified DL-Lite knowledge bases when a new sure piece of information, called the input, is added. The strategy of revision is based on inconsistency minimization and consists in determining the smallest subsets of assertions (prioritized removed sets) that should be dropped from the current stratified knowledge base in order to restore consistency and accept the input. We consider different forms of input: A membership assertion, a positive or a negative inclusion axiom. In some situations, the revision process leads to several possible revised knowledge bases where defining a selection function is required to keep the results within DL-Lite fragment. Lastly, we show how to use the notion of hitting set in order to compute the PRSR outcome.

• Selecting one preferred repair from prioritized DL-Lite knowledge bases: We first review the existing approaches for selecting preferred assertional-based repairs. Then, we focus on suitable strategies for handling inconsistency in DL-Lite. We propose, in particular, new approaches based on the selection of one assertional-based repair. These approaches have as a starting point the non-defeated assertional-based repair followed by additional ingredients like the linear-based, cardinality-based, deductive closure, etc. Lastly, we provide a comparative analysis followed by experimental studies of the different studied approaches.

Organization of the thesis

This thesis is organized as follows. We first give in Chapter 1, a refresher on description logics, with a focus on DL-Lite. We then give in Chapter 2, an overview about possibility theory, belief change problem in the context of propositional logic and description logics. Chapter 3 presents the extension of DL-Lite within a possibility theory setting. Chapter 4 first investigates merging of possibilistic DL-Lite and proposes a method based on conflict resolution to aggregate several sets of data linked to the same terminological base. It also gives preliminary results on conditioning in possibilistic DL-Lite framework.

Chapter 5 provides a non-merging roadmap for inconsistency handling in flat DL-Lite knowledge bases. Chapter 6 proposes a lexicographic-based approach for revising stratified DL-Lite knowledge bases when a new sure piece of information becomes available. Chapter 7 studies inconsistency handling in DL-Lite knowledge bases where the assertional base is prioritized. Finally, the thesis contains a conclusion and some future works. We also provide in the appendix additional material for Chapter 5 and a description of our tool developed for representing and reasoning in possibilistic DL-Lite framework.

Publications achieved in this thesis

International journal papers The efficiency of information and knowledge handling is one of the most crucial challenges in many applications such as medicine, biology, economie, etc. This is due to the fact that the volume of knowledge continuously increases while the structure of this latter becomes more and more complex. In fact, knowledge may be provided by multiple, heterogeneous and often conflicting sources of information. A real need to compactly represent and structure this information is required. Information should be faithfully handled, while avoiding confusions, incoherencies, contradictions or ambiguities between elements representing the domain of interest.

During the two last decades, lines of research from both the database and the artificial intelligence communities have focused on complex knowledge representation formalisms. A particular attention was given to the use of ontologies. An ontology provides an explicit and semantically rich framework for representing knowledge [START_REF] Mika | Ontology-based content management in a virtual organization[END_REF][START_REF] Kambhampati | Towards a new synthesis of ontology technology and knowledge management[END_REF]. Ontologies play a crucial role in sharing resources [START_REF] Torniai | [END_REF] and reasoning about the modeled domain with the ability of checking contradictions.

There exist various languages supporting ontologies such as fragments of first order logic, conceptual graphs (e.g. [START_REF] Chein | [END_REF]Chein and Mugnier, 2014]), UML class diagrams, description logics [Baader et al., 2010], etc. In this thesis, we are interested in the use of description logics, a family of logic-based languages of ontologies, mainly based on first order logics, which allows an efficient encoding and reasoning about the knowledge of a particular domain. Description logics have regained an important place in various domain areas such as the ontology-based data access (e.g. [START_REF] Pinto | [END_REF]Artale et al., 2013]), information and data integration (e.g. [START_REF] Meyer | [END_REF]) and the Semantic Web (e.g. [Baader et al., 2005b]) where they provide the foundations of the Web Ontology Language (OWL).

Nowadays, there exist several description logic languages that serve ontologies. As all logical formalisms, each description language is characterized by its expressive power and its reasoning complexity (the complexity of algorithms used for inference). There is a tradeoff between expressiveness and complexity of reasoning. Namely, more the language is expressive, more the computational complexity of reasoning is high [START_REF] Brachman | [END_REF].

The compromise between expressivity and complexity of reasoning is one of the main concerns in description logics area. Besides, most of the well-known classical description logics are intractable, in the sense that they do not guarantee polynomial complexity when reasoning. In general, these description logics are not designed to face recent applications where new challenges have raised. One can cite for instance, applications that involve large generic knowledge or huge volume of data where reasoning algorithms should scale up.

In recents years, several lines of research led to the introduction of lightweight description logics. These logics offer a nice compromise between the expressiveness and the tractability of the basic reasoning tasks. In this thesis, we focus on prominent members of the DL-Lite family that underly the OWL2-QL Part I, Chapter 1 -Knowledge representation and ontologies profile, especially dedicated for applications that use large amounts of data.

The rest of this chapter is organized as follows: Section 1.2 introduces the notion of ontology and recalls the main languages that support ontologies. Section 1.3 overviews main concepts of description logics. Section 1.4 presents the DL-Lite family. Section 1.5 concludes this chapter.

Ontology languages

The term ontology has its origin in philosophy and refers to the study of existence and being. In knowledge representation and reasoning, a branch of artificial intelligence, the term ontology refers to a representation framework that explicitly describes a formal conceptualization of a domain of interest [Hitzler et al., 2009]. An ontology specifies elements of a particular domain and describes relations and constraints holding over them. This latter is given by two distinct levels:

An intensional level: It describes a set of elements and specifies how to structure them using a set of rules called axioms.

Extensional level: It represents basic objects of the different elements given in the intensional level.

An ontology is supported by a language used to structure a domain of interest. In general, a language used to express an intensional level is usually built upon the following elements:

• Concept: Also called class, entity type or frame, it is used to denote a collection of objects (e.g. the concept "Mother" denotes the set of mothers of a particular domain).

• Relationship: Also called association, relationship, role or object property, it is used to express an association among concepts (e.g., "hasChild" is defined on "Mother" and "Person").

• Property: Also called attribute, feature, slot, data property, it is used to qualify an element of the ontology (i.e. a concept or a relationship). A property can be either atomic (e.g. integer, real, string, etc) or structured (e.g. set, list, etc).

• Axiom: Also called assertion, it is a logical formula used to express constraints or rules that must be satisfied by the elements specified at the extensional level (e.g. Subsumption axiom: "Male" is a "Person", disjointness axiom: "Female" is not a "Male", etc).

A language used to encode an extensional level usually includes:

• Instances: An instance represents an individual or an object that belongs to a concept (e.g. Paul is an instance of Person).

• Facts: A fact represents a relationship holding between instances (e.g. HasChild(Marie,Paul)).

Note that in the rest of the thesis, we do not make difference between facts and instances. In the following, we present a classification of main ontology languages.

• Graph-based languages: Family of languages based on graphs to represent ontologies such: UML class diagrams, semantic networks [Sowa, 1987], conceptual graphs [START_REF] Chein | [END_REF], etc.

Ontology languages

• Frame-based languages : Family of languages based on the frame approach [Gruber, 1995]. The most known languages based on frames are OKBC1 (Open Knowledge Base Connectivity), KM2 (Knowledge Machine).

• Logic-based languages: It is a family of languages based on logics to represent ontologies such as first order logic (e.g. KIF 3 , CycL4 ), Description Logics [Baader et al., 2010], Existential Rule (e.g. [START_REF] Calì | [END_REF]Mugnier and Thomazo, 2014]), F-logic [Kifer and Lausen, 1989], etc.

In this thesis, we are interested in logic-based languages, and in particular, the use of description logics as ontology languages. To obtain a semantically rich representation of a domain of interest, one can formalize the intensional level and the extensional level as a theory and then use this latter to perform reasoning tasks.

Semantic Web has been conceived as an extension of the World Wide Web that allows computers to intelligently search, combine, and process Web contents based on the meaning that this content has to humans [Hitzler et al., 2009;[START_REF] Shadbolt | [END_REF]. As for today, the most prominent standard technologies, recommended by the W3C 5 , for Semantic Web are based on ontologies. Description logics provide the foundations of the Web Ontology Language, one of the most important markup ontology languages recommended for the Semantic Web. In the following, we recall the widely used markup ontology languages:

• Resource Description Framework (RDF) 6 : It is a standard used for data interchange on the Web.

RDF has features that assist data merging even if the underlying schemas differ. Moreover, RDF specifically supports the evolution of schemas over time without requiring the modification of the data which are based on it.

• RDF Schema (RDFS)7 : It is a semantic extension of RDF that provides a data-modelling vocabulary for RDF data.

• Ontology Web Language (OWL)8 : It is an ontology language for the Semantic Web based on description logics.

According to [W3C, 2008], a concrete syntax is needed in order to store OWL2 ontologies and to exchange them among tools and applications. The primary exchange syntax for OWL2 is the RDF/XML language, which is compatible with the XML serializations of RDF documents, and it is the syntax that must be supported by all OWL2 tools. There are also other concrete syntaxes that may also be used, for instance the Manchester syntax (largely used in ontology editing tools) and the functional syntax (used to specify the structure of the ontology language). Finally, two alternative semantics for OWL are proposed: the direct semantics (OWL2-DL) which is based on a description logic called SROIQ and the RDF-based semantics (OWL2-Full). To develop applications that manipulate ontologies, the most commonly used tools are:

• Protégé-OWL API9 : The Protege-OWL API is an open-source Java library for the OWL and RDF(S). The API provides classes and methods to load and save OWL files, to query and ma-Part I, Chapter 1 -Knowledge representation and ontologies nipulate OWL data models, and to perform reasoning based on description logic algorithms. Furthermore, the API is optimized for the implementation of graphical user interfaces. Protégé-OWL API is built on top of OWL API.

• OWL API10 : It is a Java API and reference implementation for creating, manipulating and serializing OWL ontologies. The OWL API includes the following components: An API for OWL2 and an efficient in-memory reference implementation and parsers and writers for OWL in several formats, e.g. RDF/XML, OWL/XML parser, functional syntax of OWL, etc. Finally, it provides a reasoner interface that is supported by many description logics reasoners.

• Jena API11 : Jena is an open source framework for Java. It provides an API to extract data from and write to RDF graphs. The graphs are represented as an abstract "model". A model can be sourced with data from files, databases, URLs or a combination of these.

In recent years, there is a large use of ontologies in various application areas where new challenges emerged. These challenges mainly consist in equipping ontologies with new reasoning capabilities (e.g. evolution, merging, inconsistency handling, etc) or additional expressivity (e.g. uncertainty management) in order to face new requirements. In the following, we present some current lines of research on ontology formalisms:

1. Ontology matching (e.g. [START_REF] Euzenat | Ontology Matching[END_REF][START_REF] Shvaiko | Ontology matching: State of the art and future challenges[END_REF]): Given two heterogeneous ontologies, matching consists in producing an unified ontology associated with mappings that explicit the different correspondences between the vocabularies used in the input ontologies.

2. Ontology translation (e.g. [START_REF] Dou | [END_REF]Gruber, 1993;Dou et al., 2011]): Consists in equivalently translating an ontology, (i.e. axioms and/or vocabulary) expressed using a language L 1 , into an ontology using another representation language L 2 .

3. Ontology integration (e.g. [START_REF] Meyer | [END_REF]Hou et al., 2005]): Given a set of ontologies that represent knowledge about a similar domain, integration consists in combining these ontologies in order to obtain more knowledge by unifying the domain.

4. Ontology modularity (e.g. [START_REF] Grau | [END_REF]Grau et al., 2009]): It consists in extracting the smallest independent subsets of an ontology, called modules, with the aim to reusing them later in other applications.

5. Ontology evolution (e.g. [START_REF] Noy | [END_REF]Plessers et al., 2007]): It consists in modifying an ontology according to a set of change operations that may concern the knowledge about the domain or the structure of the ontology.

6. Ontology merging (e.g. [START_REF] Moguillansky | [END_REF]Kotis et al., 2006;Noy and Musen, 2000]): Given two ontologies that represent knowledge on the same domain, merging consists in producing a single ontology that represents a global point of view.

7. Ontology debugging (e.g. [START_REF] Kalyanpur | [END_REF][START_REF] Corcho | [END_REF]): It includes i) ontology diagnosis which consists in restoring the coherency of the intensional level of an ontology (e.g. [Peñaloza and Sertkaya, 2010;[START_REF] Ludwig | Error-tolerant reasoning in the description logic $\mathcal{E{\kern-.1em}L}[END_REF]) and ii) ontology repairing which consists in restoring consistency of the ontology (e.g. [START_REF] Lembo | [END_REF]Bienvenu, 2012]).

Logic-based languages

The aim of logic in artificial intelligence is to develop languages to formally represent knowledge of a domain and make them available for reasoning [START_REF] Huth | [END_REF]. A formal language, denoted by L, is equipped with a syntax, allowing a logical expression of formulas attached to a formal semantics telling the right meaning of these formulas. In general, the semantics of a language specifies how one can reason on the knowledge encoded syntactically through formulas.

Propositional logic

Propositional logic is one of the simplest languages for knowledge representation and reasoning. It is used in many applications to express statements to which one assigns a truth value (i.e. true or false) according to the possible world. This section recalls the syntax and the semantics of propositional logic. For more details, see for example [Garriga, 2013].

Syntax. The propositional logic vocabulary V is given in terms of propositional variables, called also propositions or atoms and denoted by tiny letters (a, b, ...). A propositional variable is a boolean variable that one can assign either true or false as truth value. The language L of propositional logic is built over a set of propositional variables, boolean constants: True ( ) and False (⊥), a set of logical connectors composed of: negation (¬), conjunction (∧), disjunction (∨), implication (→) and equivalence (↔).

Definition 1.1. Given a propositional language L, the elements of L are called propositional formulas (or well-formed formulas) and expressed in the following way:

• ⊥ and are formulas, Part I, Chapter 1 -Knowledge representation and ontologies

• if p ∈ V, then p is a formula.

• if φ is a formula, then ¬φ is a formula (Negation).

• if φ 1 and φ 2 are formulas, then (φ 1 ∧ φ 2 ) is a formula. (Conjunction)

• if φ 1 and φ 2 are formulas, then (φ 1 ∨ φ 2 ) is a formula. (Disjunction)

• if φ 1 and φ 2 are formulas, then (φ 1 → φ 2 ) is a formula. (Implication)

• if φ 1 and φ 2 are formulas, then (φ 1 ↔ φ 2 ) is a formula (Equivalence)

Propositional formulas are built using formulas given above. A literal l is either a propositional variable, called a positive literal, or its negation, called a negative literal. A clause is a finite disjunction of literals (in particular the constant , when the set of literals is empty) and a term is a finite conjunction of literals (in particular the constant ⊥, when the set of literals is empty). A propositional formula φ is said to be in a Conjunctive Normal Form (CNF) if it is formed by a conjunction of clauses. A propositional formula φ is said to be in a Disjunctive Normal Form (DNF) if it is constituted by a disjunction of terms.

Semantics. The semantics of propositional logic is given in terms of interpretations. Definition 1.2. An interpretation, denoted by I, is a mapping that assigns to each propositional variable p of a formula a truth value, true or false, denoted by p I . Given an interpretation I, the propositional formulas are interpreted as follows:

• I = true and ⊥ I = f alse.

• (¬φ) I = true if (φ) I =false, and (¬φ) I = f alse otherwise.

• (φ 1 ∧ φ 2 ) I = true if (φ 1 ) I = true and (φ 2 ) I = true and (φ 1 ∧ φ 2 ) I = f alse otherwise.

• (φ 1 ∨ φ 2 ) I = true if (φ 1 ) I = true or (φ 2 ) I = true and (φ 1 ∨ φ 2 ) I = f alse otherwise.

• (φ 1 → φ 2 ) I = true if (φ 1 ) I = f alse or (φ 2 ) I = true, and (φ 1 → φ 2 ) I = f alse otherwise.

Let I be an interpretation (an instantiation of all propositional variables) and φ be a propositional formula. We say that I is a model of φ or I satisfies φ, denoted by I |= φ if and only if (φ) I = true, otherwise, we say that I falsifies φ or I is a counter-model of φ and it is denoted by I |= φ. φ is said to be valid (i.e. a tautology) if it does not admit any counter-model. Otherwise, it is said to be invalid. A contradiction is a formula that does not admit any model.

Up to now, we presented the knowledge representation aspect in propositional logic. We now introduce the reasoning aspect which consists in deriving implicit knowledge from the ones explicitly represented. The principle of logical deduction represents the central element of reasoning in all logics. Logical deduction in propositional logic can be defined as follows: Definition 1.3 (Logical deduction). Given two formulas φ 1 and φ 2 . We say that φ 2 is entailed by φ 1 , denoted φ 1 |= φ 2 , if for every interpretation I that is model of φ 1 , I is also a model of φ 2 .

The truth table is a sure way to check the validity of a logical deduction (all reasoning tasks in general). However, it is not practically possible, since one should, in the worst case, enumerate 2 n interpretations to find a model, where n is the number of propositional variables present in the considered formulas. To this end, logical deduction can be done syntactically using the well-known refutation theorem, which states that φ 2 is a logical consequence of φ 1 if and only if φ 1 ∧ ¬φ 2 is unsatisfiable. Finally, note that the complexity of satisfiability problem of a set of propositional formulas is NP-complete [Cook, 1971]. 1.3. Logic-based languages 1.3.2 First order logic This section gives a brief refresher on the syntax of First Order Logic (FOL for short), also called predicate logic. For more details on FOL, the readers can refer to [Fitting, 1990;[START_REF] Huth | [END_REF] for examples.

The first order logic vocabulary V is built upon disjoint and finite sets N C , N F , N P and N V where N C is a set of constant symbols (also called individuals), N F is a set of function symbols, N P is a set of predicate symbols (or simply predicates) and N V is a set of variable names. Each function or predicate symbol is associated with a natural number, called arity. . Given a first-order vocabulary V = (N C , N F , N P , N V ), the set of terms is defined such that:

• if x ∈ N V , then x is a term.

• if a ∈ N C , then a is a term.

• Let f be an n-ary function and t 1 , t 2 , ..., t n be terms, then f (t 1 , t 2 , ..., t n ) is a term. Note that a 0-ary function is called a constant.

The terms are used also as arguments for predicates to form atomic formulas.

Definition 1.5 (First order atom). Let V = (N C , N F , N P , N V ) be a first-order vocabulary. Let f be an n-ary predicate and t 1 , t 2 , ..., t n be terms. Then an expression of the form P (t 1 , t 2 , ..., t n ) is said to be an atom. In first order logic with equalities, expressions of the form t 1 = t 2 or t 1 = t 2 where t 1 and t 2 are terms, are also called atoms.

The language L of a FOL is built over a set of atoms, a set of logical connectors (¬, ∧, ∨, → and ↔) as in propositional logic, the symbols ( )and (⊥) that correspond to 0-ary predicates, the universal quantifier (∀) and the existential quantifier (∃). Definition 1.6 (First order formulas). Given a first-order language L, the elements of L are called firstorder formulas and they are formed as follows:

• ⊥ and are formulas,

• Each atom is a formula. (Atomic formula)

• If φ is a formula, then (¬φ) is a formula. (Negation)

• If φ 1 and φ 2 are formulas, then (φ 1 ∧ φ 2 ) is a formula. (Conjunction)

• If φ 1 and φ 2 are formulas, then (φ 1 ∨ φ 2 ) is a formula. (Disjunction)

• If φ 1 and φ 2 are formulas, then (φ 1 → φ 2 ) is a formula. (Implication)

• If φ 1 and φ 2 are formulas, then (φ 1 ↔ φ 2 ) is a formula. (Equivalence)

• If x is a variable and φ is a formula, then (∀x.φ) is a formula. (Universal quantification)

• If x is a variable and φ is a formula, then (∃x.φ) is a formula. (Existential quantification)

• Let '=' be a binary predicate symbol, the formulas = (x, y) and ¬ = (x, y) are called equalities and they are simply denoted by x = y and x¬y. (Equalities)
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Note that the quantifiers have higher priority over all other connectors which have the same priorities as in propositional logic. A 0-ary predicate is called a proposition. Indeed, propositional logic is a fragment of first-order logic where predicates are restricted to 0-ary predicates and without using quantifications.

Definition 1.7 (Subformulas). Let φ be a first-order formula. The subformulas of φ are φ itself and all immediate subformulas of φ.

• Atomic formulas and ⊥ have no immediate subformulas.

• The only immediate subformula of ¬φ is φ. The immediate subformulas of φ 1 ∨ φ 2 or φ 1 ∧ φ 2 or φ 1 → φ 2 or φ 1 ↔ φ 2 are φ 1 and φ 2 . The only immediate subformula of ∀x.φ or ∃x.φ is φ.

Definition 1.8 (Scope, bound variable and free variable). Let φ be a formula, Q a quantifier, and Qx.ϕ a subformula of φ. Then Qx is called a quantifier for x. Its scope in ϕ is the subformula ϕ except subformulas of ϕ that begin with a quantifier for the same variable x.

Each occurrence of the variable x in the scope of Qx is said to be bound in φ by Qx. Each occurrence of x that is not in the scope of any quantifier for x is a free occurrence of x in φ.

Namely, x is bound if it is not contained in any subformula Qx.ϕ of φ. A formula is said to be a closed formula if it contains only bound occurrences of variables. Otherwise, it is said to be an open formula. A ground term is a term containing no variable. A ground formula is a formula containing no variable.

Description logics

Description logics (DLs for short) are a family of formalisms designed to represent knowledge of a particular domain, and subsequently, reason by deriving new knowledge. DLs were introduced as decidable subsets of FOL, having a precise model-theoretic semantics [Baader et al., 2010]. A DL language only uses unary and binary predicates, called respectively concepts and roles. To represent generic knowledge (i.e. intensional level), DLs restrict forms of logical formulas (called axioms), using only concepts and role inclusions. To represent the extensional level, DLs use ground facts expressed in term of membership assertions on concepts or roles. Interestingly enough, DLs provide a good compromise between expressive power and computational complexity. Throughout this section, we present basic concepts of DLs.

A DL knowledge base is built upon a description vocabulary V consisting of atomic concepts which correspond to unary predicates to denote sets of individuals, and atomic roles, which correspond to binary predicates, to denote binary relations among individuals. Definition 1.9 (DL vocabulary). A DL description vocabulary V is a triple (N C , N R , N I ) of pairwise disjoint sets of atomic concept names, denoted by N C , atomic role names, denoted by N R and individual names, denoted by N I .

Example 1.1. For example, the atomic concept "Mother" represents the set of all mothers in a particular domain. The atomic role "marriedTo" represents the set of all married couples in a particular domain. The individuals "Marie" and "Paul" represent constants in a particular domain.

Syntax

A description language L is characterized by a set of constructs used to form complex concepts and roles from atomic ones. It is used to structure a domain of interest through a set of logical formulas, called axioms. Each description language allows different sets of constructs. We start with one of the most basic description languages, called ALC (Attributive Language with Complement), which is an extension of the AL language that constitutes the foundation framework of many other DLs. The ALC allows the use of conjunction, disjunction, negation, universal quantification and existential quantification to form complex concepts and roles as presented in Note that ∃R and ∀R can be used as an abbreviation of ∃R. and ∀R. and any atomic concept A ∈ N C is also a concept.

Example 1.2. Let the following atomic concepts "Male", "Female" and "Person" be three atomic concepts and let "hasChild" be an atomic role. Using ALC language, one can express the following complex concepts:

• P erson ¬P arent : Persons who are not parents.

• F emale P erson : Female persons.

• (M ale P erson) ∃hasChild.P erson : Male persons who have at least a child.

• P erson ∀hasChild.¬F emale : Persons who do not have a Female as child.

A DL knowledge base, denoted by K = T , A contains two distinct components: A terminological base, called TBox and denoted by T , that describes the generic knowledge about the domain, and an assertional base, called ABox and denoted by A, that contains the assertional facts (i.e. individuals or constants) that instantiate the terminological knowledge. Namely, the TBox encodes the intensional level and the ABox stores the extensional level of an ontology. In the following, we give an example of ABox:

P erson(P aul) P erson(M arie) M ale(Bob)

F emale(M arie) hasChild (M arie, P aul) hasChild(Bob, Alice)

Semantics

The semantics of ALC is in the spirit of first order logic semantics and it is given in terms of interpretations. Definition 1.11 (DL interpretation). An interpretation I=(∆ I , . I ) consists of a non-empty domain, denoted by ∆ I , and an interpretation function, denoted by . I , defined from N I to ∆ I . The function . I associates with each individual a an element a I of ∆ I , to each atomic concept A a subset A I of ∆ I and to each atomic role R a binary relation R I over ∆ I × ∆ I . Furthermore, the interpretation function . I is extended in a straightforward way for ALC concepts and roles as follows: 

A I ⊆ ∆ I R I ⊆ ∆ I × ∆ I (¬C) I = ∆ I \ C I (C D) I = C I ∩ D I (C D) I = C I ∪ D I (∃R.C) I = {x ∈ ∆ I |∃y ∈ ∆ I such that (x, y) ∈ R I and y ∈ C I } (∀R.C) I = {x ∈ ∆ I | if (x, y) ∈ R I then y ∈ C I } Example 1.

Basic reasoning tasks

Reasoning is a fundamental issue in DLs. It allows to derive implicit knowledge from the one explicitly represented in the knowledge base. The main standard reasoning services over a DL knowledge base are:

• Concept satisfiability: A concept C is said to be satisfiable (or consistent), with respect to a TBox T , if there exists an interpretation I that is a model of T such that C I = ∅. 

• Subsumption checking

) ∈ R I H Role hierarchies R S R I ⊆ S I I Inverse roles R - {(b, a)|(a, b) ∈ R I } F Functional roles (f unct R) (a I , b I ) ∈ R I and there is no c I = b I s.t (a I , c I ) ∈ R I O Nominals {a 1 , ..., a n } {a I 1 , ..., a I n } • Role composition R • S {(a I , c I )|∃b∈∆ I s.t (a I , b I )∈R I and (b I , c I ) ∈ S I Complex role hierarchies R • S R (R • S) I ⊆ R I N Number restrictions nR a ∈ ∆ I |card b ∈ ∆ I | (a, b) ∈ R I n Q Qualified number restrictions nR.C a ∈ ∆ I |card b ∈ ∆ I | (a, b) ∈ R I ∧ b ∈ C I n
Table 1.2: DLs constructors where card (X) denotes the cardinality of the set X and denotes ≤ or ≥.

The knowledge base satisfiability or consistency problem is the main reasoning task in DLs. It allows to check whether the knowledge encoded in the TBox and the ABox is non-contradictory. According to [START_REF] Horrocks | Reducing OWL entailment to description logic satisfiability[END_REF]], all the above reasoning tasks can be reduced from subsumption test to satisfiability test, from instance checking to knowledge base consistency, etc. For instance [Baader et al., 2010]:

• C is unsatisfiable if and only if T |= C ⊥. • T |= C D if and only if C ¬D is unsatisfiable.
• C is satisfiable if and only if {C(a)} is consistent with respect to T .

• A |= C(a) if and only if A ∪ {¬C(a)} is inconsistent with respect to T .

In general, there exist several approaches of reasoning. The most widely used one is the so called tableau algorithm [Baader et al., 2010]. A tableau algorithm uses the concepts of negation to reduce subsumption to an (un)satisfiability problem. A tableau algorithm verifies whether a knowledge base contains contradictions or not by checking the existence of an interpretation that is a model of the knowledge base by constructing its finite representation, so-called tableau. Such technique decomposes axioms of the knowledge base using a set of consistency-preserving transformation rules (depending on the constructors used in the DL), called completion rules. For each application of a rule, an expression of an axiom is decomposed while preserving the semantics behind it into simple expressions. This decomposition leads to exhibit contradictory elements of the ABox. Therefore, one can check if there exists a model for the given knowledge base.

Expressive description logics

To define a DL language, one first needs to specify the set of concept and role constructors that can be used, and then what types of axioms that can be expressed in the knowledge base. In order to meet the needs of applications that require more expressiveness, the set of constructors in ALC was enriched with several constructors. Table 1.2 summarizes the most used ones.

Logic-based languages

By convention, we use S to denote ALCR + , the ALC constructors extended with role transitivity. A DL language is defined by a string of capital letters referring to the used constructors. There exist several DLs where the majority of them underly the ontology Web language OWL. For instance, in its first version OWL1 where OWL-Lite is based on SHIF and OWL-DL is based on SHOIN , and in its second version OWL2 where OWL2-DL is based on SROIQ, etc.

Computational complexity in description logics

The computational complexity of DLs is well studied in the literature. Given a decision problem, the complexity of DL reasoning tasks is performed around two settings.

• The combined complexity: It considers all the components of the knowledge base K = T , A as inputs, namely the size of the problem is equal to

|K| with |K| = |T | + |A|.
• The data complexity: It considers the TBox as fixed and only takes as input the size of the ABox |A|. 

Description logics Reasoners

There are several implementations of reasoning task algorithms for DLs. These implementations are operated in general around ontology languages and using programming tools presented in Section 1.2. In what follows, we give a description of some well-known reasoners. 14 . From Table 1.3, one can check that the classical DLs are intractable in the sense that there is no efficient (i.e. polynomial time) algorithm for checking satisfiability. To this end, several lightweight fragments of DLs that offer a nice tradeoff between expressivity and complexity of reasoning, were introduced. One of these lightweight fragments DLs, is the DL-Lite family.

According to the official documentation of W3C three profiles of OWL2 are proposed as sub-languages of the full OWL2 language, to offer important advantages in particular application scenarios. These lightweight logics are the EL family [Baader et al., 2005a] (underpinning OWL2-EL), the DL-Lite family [Calvanese et al., 2007a;[START_REF] Artale | [END_REF] (underpinning OWL2-QL), and the DL Programs [Grosof et al., 2003] (underpinning OWL2-RL).

In this thesis, we are interested in the DL-Lite family of description logics. DL-Lite is well suitable for ontology-based data access setting.

The DL-Lite family

In recent years, a lot of attention was given to DL-Lite, a family of lightweight DLs specifically designed for applications using huge volumes of data such as Web applications where query answering is the most important reasoning task [Calvanese et al., 2007a]. In particular, DL-Lite guarantees an efficient computational complexity of the reasoning process. In fact, the idea behind the reasoning (consistency checking and query answering) in DL-Lite is based on the so-called FOL-reducibility property. This latter permits to considerably reduce reasoning tasks to the evaluation of FOL queries over the set of assertions (i.e. data). The efficiency of reasoning in DL-Lite is ensured thanks to the use of relational database techniques.

The DL-Lite family and OWL2-QL

The knowledge representation format considered in this thesis is the one of DL-Lite language. We mainly consider three tractable members of the DL-Lite family. Namely, the DL-Lite core which is the core fragment of all DL-Lite logics, DL-Lite F and DL-Lite R which underlies the OWL2-QL profile. For the sake of simplicity and when there is no ambiguity, through this section (and this thesis, in general), we use DL-Lite to refer to these three fragments.

Syntax

The starting points are N C , N R and N I , three pairwise disjoint sets of atomic concepts, atomic roles and individuals. The DL-Lite language uses three unary connectors: "¬", "∃" and " -" and a binary connector " " to define complex concepts and roles and inclusions between concepts and roles. Let A ∈ N C , P ∈ N R , basic concepts (resp. roles) B (resp. R) and complex concepts (resp. roles) C (resp. E) are defined in DL-Lite as follows:

1.4. The DL-Lite family R -→ P | P - E -→ R | ¬R B -→ A | ∃R C -→ B | ¬B
where P -represents the inverse of P .

A DL-Lite knowledge base is a pair K= T , A . The DL-Lite core TBox is constituted by a finite set of inclusion axioms between concepts of the form

B C.

In the original conference paper [Calvanese et al., 2005], DL-Lite core does not use negation of roles. In the journal paper [Calvanese et al., 2007a], negation appears in DL-Lite. Here, we follow description of DL-Lite used in the journal paper [Calvanese et al., 2007a].

The ABox contains a finite set of membership assertions (or facts) on atomic concepts and on atomic roles respectively of the form A(a) and P (a, b)

where A ∈ N C , P ∈ N R and a, b ∈ N I .
The DL-Lite F language extends DL-Lite core with the ability of specifying functionality on roles or on their inverses of the form:

(f unct R)
The DL-Lite R language extends DL-Lite core with the ability of specifying in the TBox inclusion axioms between roles of the form:

R E.

Note that DL-Lite language does not allow the use of the conjunctive and the disjunctive operators. However, one can easily add conjunctions (resp. disjunctions) in the right-hand side (resp. left-hand side) of inclusion axioms. Indeed, as we will see it later, the conjunction of the form B C 1 C 2 is equivalent to the pair of inclusion axioms B C 1 and B C 2 , while the disjunction of the form B 1 B 2 C is equivalent to the pair of inclusion assertions B 1 C and B 2 C.

Any DL-Lite knowledge base can be equivalently written as a FOL knowledge base. Table 1.4 summarizes all possible expression of axiom in DL-Lite and their translation from to FOL formulas. For the ABox assertions, one can easily check that they are equivalent to ground atoms in FOL setting (see Section 1.3.2).
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DL-Lite axiom FOL formula DL-Lite axiom FOL formula

A 1 A 2 ∀x.A 1 (x) → A 2 (x) A 1 ¬A 2 ∀x.A 1 (x) → ¬A 2 (x)
A ∃P ∀x.A(x) → ∃y.P (x, y) A ¬∃P ∀x.A(x) → ¬∃y.P (x, y)

A ∃P - ∀x.A(x) → ∃y.P (y, x) A ¬∃P - ∀x.A(x) → ¬∃y.P (y, x) 

∃P A ∀x.∃yP (x, y) → A(x) ∃P ¬A ∀x.∃yP (x, y) → ¬A(x) ∃P -A ∀x.∃yP (y, x) → A(x) ∃P -¬A ∀x.∃yP (y, x) → ¬A(x) ∃P 1 ∃P 2 ∀x.∃yP 1 (x, y) → ∃z(x, z) ∃P 1 ¬∃P 2 ∀x.∃yP 1 (x, y) → ¬∃z(x, z) ∃P 1 ∃P - 2 ∀x.∃yP 1 (x, y) → ∃z(z, x) ∃P 1 ¬∃P - 2 ∀x.∃yP 1 (x, y) → ¬∃z(z, x) ∃P - 1 ∃P 2 ∀x.∃yP 1 (y, x) → ∃z(x, z) ∃P - 1 ¬∃P 2 ∀x.∃yP 1 (y, x) → ¬∃z(x, z) ∃P - 1 ∃P - 2 ∀x.∃yP 1 (y, x) → ∃z(z, x) ∃P - 1 ¬∃P - 2 ∀x.∃yP 1 (y, x) → ¬∃z(z,
(f unct P ) ∀x, y, z.P (x, y) ∧ P (x, z) → y = z (f unct P -) ∀x, y, z.P (y, x) ∧ P (z, x) → y = z
Table 1.4: The equivalence of the DL-Lite axioms in FOL.

Example 1.6. Let Teacher and Student be two atomic concepts and TeachesTo and HasSupervisor be two atomic roles. In the following, we give an example of DL-Lite core TBox:

T eacher ¬Student T eacher ∃T eachesT o ∃T eachesT o -Student Student ∃HasSupervisor ∃HasSupervisor -T eacher
To obtain a DL-Lite R TBox, one can extend the above DL-Lite core TBox with the following axiom:

HasSupervisor -T eachesT o
To obtain a DL-Lite F TBox, one can extend the DL-Lite core TBox with the following axiom:

(f unct HasSupervisor)
Finally, a DL-Lite ABox can be expressed as follows:

Student(P aul) HasSupervisor(P aul, Alice) T eachesT o(Alice, Bob)

Semantics The semantics is given in terms of interpretations where as usual an interpretation I = (∆ I , . I ) consists of a non-empty domain ∆ I and an interpretation function . I that assigns each a ∈N I to an element a I ∈ ∆ I , each A∈N C to a subset A I ⊆ ∆ I and each P ∈ N R to P I ⊆ ∆ I × ∆ I .

1.4. The DL-Lite family Furthermore, the interpretation function . I is extended in a straightforward way for DL-Lite core concepts and roles as follows: Regarding DL-Lite F , we say that an interpretation I is a model of an axiom

(P -) I = {(y, x) ∈ ∆ I × ∆ I |(x, y) ∈ P I } (∃R) I = {x ∈ ∆ I |∃y ∈ ∆ I such that (x, y) ∈ R I } (¬B) I = ∆ I \ B I (¬R) I = ∆ I × ∆ I \ R I
(f unct R) if and only if R I is a function, i.e., if (c, c ) ∈ R I and (c, c ) ∈ R I implies c = c
. Notice that we only consider DL-Lite with unique name assumption.

Note that the interpretation function . I is extended for and constructors respectively as follows:

(C 1 C 2 ) I = C I 1 ∩ C I 2 and (C 1 C 2 ) I = C I 1 ∪ C I 2 .
An interpretation I is said to satisfy a knowledge base K = T , A if and only if I satisfies every axiom in T and every axiom in A. Such interpretation is said to be a model of K.

Incoherence and inconsistency Two kinds of inconsistency can be distinguished in DL-based knowledge bases: incoherence and inconsistency [Baader et al., 2010]. The former is considered as a kind of inconsistency in the TBox, i.e. the terminological part of a knowledge base. The latter is the standard notion of inconsistency of knowledge bases. A knowledge base is said to be inconsistent if and only if it does not admit any model and it is said to be incoherent if there exists at least a non-satisfiable concept (i.e. no individual can belong to the concept). More formally: Definition 1.13. A DL-Lite terminological base T is said to be incoherent if there exists a concept C such that for each interpretation I which is a model of T , we have C I =∅.

Example 1.7. An example of incoherent TBox is the one composed of the two inclusion axioms T = {B 1 B 2 , B 1 ¬B 2 }. One can easily check that for all models I of T we have B I 1 = ∅. In a propositional setting the counterpart of incoherence is a so-called potential inconsistency, as defined for instance in [START_REF] Nonfjall | [END_REF].

The concept of knowledge base inconsistency is defined by: Definition 1.14. A DL-Lite knowledge base K= T , A is said to be inconsistent if it does not admit any model.

FOL-reducibility

An important property, called FOL-reducibility, has been established in [Calvanese et al., 2007a] for consistency checking and query answering in DL-Lite. This property reduces reasoning tasks in DL-Lite knowledge base K = T , A to the evaluation over the ABox of FOL queries obtained from T . Clearly, such a property separates the TBox and the ABox when reasoning. Namely, the reasoning tasks are done in two steps: The first one consists in producing FOL queries using axioms of the TBox. The second step consists in evaluating the obtained queries over the ABox that can be stored in a relational database, and thus, one can use SQL engines.

It is important to note that for other DL-Lite members that allow more expressivity (presented in Section 1.4.2) than DL-Lite core , DL-Lite F and DL-Lite R , the FOL-reducibility property is not always guaranteed [START_REF] Artale | [END_REF].

Part I, Chapter 1 -Knowledge representation and ontologies Consistency checking in DL-Lite In DL-Lite a TBox T = {T p , T n } can be viewed as composed of a set of positive inclusion axioms (denoted T p ) and a set of negative inclusion axioms (denoted T n ). A positive inclusion axiom (PI) is of the form B 1 B 2 and a negative inclusion axiom (NI) is of the form B 1 ¬B 2 . Intuitively T p specifies inclusion dependencies, while T n defines integrity constraints.

The DL-Lite logics, and in particular DL-Lite core , DL-Lite F and DL-Lite R , enjoy the canonical model property [Calvanese et al., 2007a]. This property states that given a consistent DL-Lite knowledge base K, one can construct a single model I c of K so that any other model I of K can be obtained from I c . This model is called canonical model and defined through the notion of Chase [START_REF] Abiteboul | [END_REF]. Using the notion of canonical interpretation, it was shown that a knowledge base that only contains PIs in its ABox is always consistent [Calvanese et al., 2007a]. Inconsistency is caused by NI axioms. Note that in query answering, the canonical interpretation allows to find the correct answers of queries.

DL-Lite deductive closure The negative closure of T , denoted by cln(T ), performs interaction between positive and negative axioms. It represents the propagation of the negative axioms using both positive axioms and negative axioms in the TBox. For DL-Lite core , the cln(T ) is obtained using the following rules repeatedly until reaching a fixed point (see [Calvanese et al., 2007a] for more details):

1. All negative axioms in T are in cln(T ).

2. If B 1 B 2 is in T and B 2 ¬B 3 is in cln(T ), then B 1 ¬B 3 is in cln(T ). 3. If B 1 B 2 is in T and B 3 ¬B 2 is in cln(T ), then B 1 ¬B 3 is in cln(T ).
For the DL-Lite R and DL-Lite F logics, we need the following additional rules: 4. All functionality axioms in T are also in cln(T ).

5. If R 1 R 2 is in T and ∃R 2 ¬B or B ¬∃R 2 is in cln(T ), then ∃R 1 ¬B is in cln(T ); 6. If R 1 R 2 is in T and ∃R - 2 ¬B or B ¬∃R - 2 is in cln(T ), then ∃R - 1 ¬B is in cln(T ); 7. If R 1 R 2 is in T and R 2 ¬R 3 or R 3 ¬R 2 is in cln(T ), then R 1 ¬R 3 is in cln(T );
8. (a) in the case where T is a DL-Lite R TBox, if one of the axioms ∃R ¬∃R, ∃R -¬∃R -or R ¬R is in cln(T ), then all these three axioms are in cln(T ).

(b) in the case where T is a DL-Lite F TBox, if one of the axioms ∃R ¬∃R, ∃R -¬∃R -is in cln(T ), then both such axioms are in cln(T ).

Example 1.8. From the DL-Lite core TBox given in Example 1.6, one can derive the following negated closure:

T eacher ¬Student ∃T eachesT o -¬T eacher ∃HasSupervisor -¬Student
The negated closure of the DL-Lite R TBox is constituted by adding the following axioms to the DL-Lite core negated closure:

∃T eachesT o ¬Student ∃HasSupervisor ¬T eacher

The negated closure of the DL-Lite F TBox is obtaining by adding the following axiom to the DL-Lite core negated closure : [Calvanese et al., 2007a]. In fact, this is a consequence of the property of FOL reducibility. Namely, it has been shown in [Calvanese et al., 2007a] that consistency checking can be reduced to evaluating FOL queries (called Unsat queries) over the ABox which may be considered as a relational database. Table 1.5 summarizes transformations from NI axioms to Unsat queries.

(f unct HasSupervisor) Formally, K = T , A is consistent if and only if cln(T ), A is consistent

NI axiom

Unsat query

A 1 ¬A 2 ∃x.A 1 (x) ∧ A 2 (x)
A ¬∃P or ∃P ¬A ∃x.A(x) ∧ ∃y.P (x, y)

A ¬∃P -or ∃P -¬A ∃x.A(x) ∧ ∃y.P (y, x)

∃P 1 ¬∃P 2 ∃x.∃y.P 1 (x, y) ∧ ∃z.P 2 (x, z) ∃P 1 ¬∃P - 2 or ∃P - 1 ¬∃P 2 ∃x.∃y.P 1 (x, y) ∧ ∃z.P 2 (z, x) ∃P - 1 ¬∃P - 2 ∃x.∃y.P 1 (y, x) ∧ ∃z.P 2 (z, x) P 1 ¬P 2 or P - 1 ¬P - 2 ∃x, y.P 1 (x, y) ∧ P 2 (x, y) P 1 ¬P - 2 or P - 1 ¬P 2 ∃x, y.P 1 (x, y) ∧ P 2 (y, x) (f unct P ) ∃x, y, z.P (x, y) ∧ P (x, z) ∧ y = z (f unct P -)
∃x, y, z.P (y, x) ∧ P (z, x) ∧ y = z Table 1.5: Transformation of the negative inclusion axioms to unsat queries Example 1.9. From Example 1.8, the set of queries associated with the DL-Lite core negated closure is as follows:

q 1 (x) = ∃x.T eacher(x) ∧ Student(x) q 2 (x) = ∃x.∃y.T eachesT o(y, x) ∧ P rof essor(x) q 3 (x) = ∃x.∃y.HasSupervisor(y.x) ∧ Student(x)
For the DL-Lite R negated closure, we add the following queries:

q 4 (x) = ∃x.∃y.T eachesT o(x, y) ∧ Student(x) q 5 (x) = ∃x.∃y.HasSupervisor(x, y) ∧ T eacher(x)
For the DL-Lite F negated closure, we add the following query: where φ( x) is a FOL formula with free variables x = x 1 , ..., x n (called also answer variables) and the arity n of q is the number of its free variables. When n = 0, the query is said to be a boolean or ground query. A boolean query of the form q={ |φ } is a query that does not involve free variables (i.e. with no answer variables).

q 4 (x) = ∃x,
Given an interpretation I=(∆ I , . I ), a boolean query is either interpreted as true in

I if [φ] I = true or false if [φ] I = f alse.
Indeed, the answer to such a query is either "yes" or "no". When n > 0, a non-boolean query q is interpreted as the set of tuples of the domain elements, called answer sets with respect to I, such that if we substitute x by an answer set a the query q will be evaluated to true in I.

Namely q I = { a i ∈ (∆ I ) n |[φ( a i )] I = true}.
An interpretation that evaluates a boolean query (resp. non-boolean query) to true (resp. to a non empty answer set), is said to be a model of that query, written I |= q.

In DL-Lite, the more interesting queries are the class of conjunctive queries and the class of union of conjunctive queries. A Conjunctive Query (CQ) is a query of the form:

q={ x | ∃ y.conj( x, y)},
where x are free variables called distinguished or answer variables, y are existentially quantified variables called non-distinguished or bounded variables, and conj( x, y) is a conjunction of atoms of the form A(t i ) or P (t i , t j ) and equalities, where the predicates A and P are respectively an atomic concept name and an atomic role name appearing in K, and t i , t j are terms, i.e constants (individuals) in A or variables in x or y. Notice that we call instance query the one consisting of a single atom with no free variable, namely an ABox assertion. A Union of Conjunctive Query (UCQ) denoted by Q is simply an expression of the form:

Q={ x | i=i,..,n ∃ y i .conj( x, y i )}.
where each conj( x, y i ) is a conjunction of atoms and equalities with answer variables x and bound variable y i . Obviously, the class of UCQ contains the one of conjunctive queries.

Given K= T , A a DL-Lite knowledge base and a CQ q, we write K |= q when I |= q for all models I of K, otherwise K |= q. The answer to q over K, denoted ans(q, K), is the set of tuples of constants appearing in K such that ∀ a i : a i I ∈ q I , for every model

I of K. Namely ans(q, K) = { a i ∈ (K) n |K |= q( a i )}
where q( a i ) is the closed formula obtained by replacing the answer variables x in q by an answer set a i , and K |= q( a i ) means that every model of K is also model of q( a i ). This corresponds to the well-known certain answers semantics defined in [START_REF] Artale | [END_REF]Calvanese et al., 2007a]. Given K= T , A a DL-Lite knowledge base and a CQ q, a certain answer to q over K is an answer that holds in all the models satisfying K.

It is important to note that CQ answering can be reduced to boolean query answering. Namely, given a CQ q with free variables x={x 1 , ..., x n }, an answer set a={a 1 , ..., a n } is a certain answer for q over K if the boolean query q( a) obtained by replacing each variable x i by a i in q( x), evaluates to true for every model of K. Lastly, if K is inconsistent, then ans(q, K) is trivially the set of all possible answer sets, denoted AllT up(q, K).

1.4. The DL-Lite family DL-Lite Reasoner QuOnto18 is a free reasoner for DL-Lite developed in Jave. It implements a query rewriting algorithm for both consistency checking and query answering for unions of conjunctive queries over DL-Lite knowledge bases where the ABox is managed using a relational database.

The extended DL-Lite family

We now introduce the extended DL-Lite family of description logics proposed with the aim of capturing typical conceptual modeling formalisms, such as UML class diagrams and Entity-Relation models, while maintaining good computational properties of standard DL reasoning tasks [START_REF] Artale | [END_REF]. For more details, see the original paper [START_REF] Artale | [END_REF].

As usual, let N C , N R and N I respectively be pairwise disjoint sets of concepts, roles and individuals names. Let A ∈ N C , P ∈ N R and a ∈ N I . The syntax of the extended family of DL-Lite is composed of DL-Lite β α logics where α = {core, krom, horn, bool} and β = {-, H, F, N , HF, HN , (HF), (HN ), (HF) + , (HN )) + }, is defined using the following syntax:

R -→ P | P - B -→ ⊥ | A n | ≥ zR C -→ B | ¬C | C 1 C 2 with z ∈ N, and = ¬⊥, C 1 C 2 = ¬ (¬C 1 ¬C 2 ), ∃R = ∃R. = (≥ 1R), ≤ zR = ¬ (≥ z + 1R
). H denotes role hierarchies (i.e. role inclusion axioms), F denotes functionality (i.e. (F unct R), and N denotes number restriction ≥ zR. The semantics of N , H and (F unct R) is given in Table 1.2.

Let L α be DL-Lite α language where α = {core, krom, horn, bool}. Table 1.6 gives the forms of concept inclusion axioms and assertions that can be allowed in a DL-Lite knowledge base K = T , A expressed using L α . There is a tight relationship between the different DL-Lite members. The DL-Lite HN bool logic is considered as the supremum (most expressive) of all above logics. The most basic one (least expressive) is the DL-Lite core logic (presented in Section 1.4.1). Indeed, DL-Lite core is situated in the intersection of DL-Lite krom and DL-Lite horn since B 1 ¬B 2 is equivalent to B 1 B 2 ⊥. Moreover, DL-Lite H α logics are considered as fragments of DL-Lite HF α where these latter are considered as fragments of DL-Lite HN α (since from > zR, one can express ∃R for z = 1 and

DL-Lite

bool DL-Lite krom DL-Lite horn DL-Lite core TBox C 1 C 2 B 1 B 2 , B 1 ¬B 2 , ¬B 1 B 2 n B n B B 1 B 2 , B 1 ¬B 2 ABox A(a),¬A(a), P (a, b), ¬P (a, b)
(f unct R) (resp. (f unct R -) as ≥ 2R ⊥ (resp. ≥ 2R - ⊥) for z = 2).
Lastly, the TBox's of DL-Lite 

(x, y) ∈ R I ∧ (y, z) ∈ R I → (x, z) ∈ R I . • Disjointness (dis(R, S)): I |= dis(R 1 , S 2 ) if and only if R I 1 ∩ R I 2 = ∅. • Reflexivity (ref (R)): I |= ref (R) if and only if (x, x) ∈ R I for all x ∈ ∆ I .
• Irreflexivity (irr(R)): I |= irr(R) if and only if (x, x) / ∈ R I for all x ∈ ∆ I .

• Symmetry (sym(R)):

I |= sym(R) if and only if R I = (R -) I .
• Asymmetry (asy(R)): are restricted by the following constraints [START_REF] Artale | [END_REF]]:

I |= asy(R) if and only if R I ∩ (R -) I = ∅.
• T may contain only positive occurrences of qualified number restrictions ≥ zR.C, where C is a conjunction of concepts allowed in the right-hand side of DL-Lite α concept inclusions.

• if ≥ zR.C occurs in T , then T does not contain negative occurrences of number restrictions ≥ z R or ≥ z R -with z ≥ 2;

• if R has a proper sub-role in T , then T does not contain negative occurrences of ≥ zR or ≥ zR - with z ≥ 2.

In fact, the above restrictions limit the interaction between role inclusions and number restrictions in each DL-Lite α TBox in order to reduce the complexity of reasoning and allow the use of the above role constraints which increase the expressive power of the logics but do not affect their computational properties.

Table 1.9 reviews main computational complexity results of the different logics of the DL-Lite family. For a more detailed description on DL-Lite family, see [START_REF] Artale | [END_REF]. Recall that, in this thesis we only consider DL-Lite core , DL-Lite F and DL-Lite R logics. For the sake of simplicity and when there is no ambiguity, we use DL-Lite to refer to these three fragments.

Conclusion

In this chapter, we presented description logics, as decidable fragments of first order logics, that offer a nice logical framework to serve ontologies. We focused on three main members of the DL-Lite family Part I, Chapter 1 -Knowledge representation and ontologies investigated in this thesis: DL-Lite core , DL-Lite F and DL-Lite R which underly the OWL2-QL profile especially dedicated for applications using large data.

In real world applications, knowledge and data are usually affected with uncertainty and imprecision. Moreover, knowledge evolves from a situation to another or may be issued from different information sources. As pointed out in Section 1.2, merging, evolution and inconsistency and uncertainty management in ontologies are recognized as challenging problems. Next chapter will focus on these issues and will provide an overview on different techniques and tools proposed in the literature, especially in a propositional logic setting, to handle them. CHAPTER 2

BELIEF CHANGE AND UNCERTAINTY MANAGEMENT 2.1 Introduction

Originally ontologies have been proposed to represent the knowledge of a domain of interest [Baader et al., 2010] in a static form. However, in some applications (like Web-based ones), the knowledge may be non static and may evolve and change from one situation to another in order to take into account and integrate the changes that occur over time. This dynamic aspect of ontologies is closely related to the belief revision problem studied within propositional logic frameworks (e.g. [Alchourrón et al., 1985;Katsuno and Mendelzon, 1991]). Moreover, in some Web applications, knowledge may come form different and often conflicting sources of information where aggregating them in order to provide a global point of view, is required. Merging different pieces of information is also largely studied within a propositional logic setting (e.g. [START_REF] Bloch | [END_REF][START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF]).

In the artificial intelligence community, it is well-known that nonmonotonic reasoning and revision are considered as the two sides of the same coin [Makinson and Gärdenfors, 1989]. In general, revision or merging of different information sources may lead to inconsistency problems where several approaches based on either restoring the consistency of the knowledge base in order to exploit it and perform inferences (e.g. [Benferhat et al., 1997a]), or analyzing inconsistency using different measures (e.g. [START_REF] Hunter | [END_REF]), or using argumentation framework (e.g. [START_REF] Besnard | [END_REF]) to make decisions, were proposed.

Regarding the quality of the information, it can be affected with uncertainty and imprecision. This is due for instance to the reliability of sources that provide them. In general, information qualified as imperfect may be of different forms: incomplete information, heterogeneous information, incommensurable information, imprecise information, uncertain information, etc. Faithfully handling such pieces of information and taking them into account when reasoning is an important issue that arises in many Web applications. Probability theory is the oldest and the most widely used theory for handling uncertain information. This latter is suitable especially within a frequentist setting. Moreover, several non-classical probabilistic and non-probabilistic theories for handling uncertainties and imprecisions have been proposed. The most well-known ones are fuzzy set theory [Zadeh, 1965;Zadeh, 1988], Dempster-Shafer theory of evidence (or belief functions) [Shafer, 1976], the Spohn's ordinal conditional functions [Spohn, 1988], and possibility theory [Zadeh, 1978;Dubois and Prade, 1988b].

Choosing the right and appropriate framework to represent and reason under imperfect information is closely related to the context of the applications. In this thesis, we focus on possibility theory [Dubois and Prade, 1988b] which is a very natural framework to deal with ordinal and qualitative uncertainty. It deals with non-probabilistic information and it is particularly appropriate when the uncertainty scale only reflects a priority relation between different pieces of information. For instance, the choice of possibility theory in our context, can be justified in an Ontology-Based Data Access setting in which as presented in Section 1.2 data may be provided by different sources which can have different levels of priority.

This chapter aims to provide an overview about belief change and uncertainty management from a

Part I, Chapter 2 -Belief change and uncertainty management propositional logic point of view while giving the related works done in description logics in order to situate our works. The rest of the chapter is organized as follows: Section 2.2 reviews the notion of uncertainty and imprecision and recalls basic concepts of probability theory and provides a refresher on possibility theory. Section 2.3 recalls the context of merging, revision and uncertainty handling and presents relevant works done in description logics. Section 2.4 concludes this chapter.

Uncertainty management

An information, in a broad sense, refers to any collection of symbols or signs produced either through the observation of natural or artificial phenomena or by cognitive human activity [START_REF] Dubois | [END_REF]. A piece of information, can be of different forms (objective, subjective, quantitative, qualitative, singular, generic, etc) [START_REF] Dubois | [END_REF] and can be affected with different kinds of imperfection (incompleteness, confusion, irrelevance, imprecision, vagueness, etc) which are considered as forms of ignorance [START_REF] Parsons | [END_REF].

Throughout this section, we use the following notations.

• Ω = {ω 1 , ..., ω n }: Denotes the set of the states of the world, called the universe of discourse.

• ω i ∈ Ω: Denotes a state of the world, called an interpretation or elementary event.

• A, B, ..., E: Capital letters denote subsets of Ω. A subset A ⊆ Ω is called an event.

• v: Denotes a vector of variables where Ω is its domain.

A subset A of Ω is considered as a disjunctive set and it is viewed as a proposition that asserts a variable v in A. However, the propositions expressible on Ω may be attached with imperfections as said before. In the following, we present pieces of information qualified as incomplete.

Incomplete information. A piece of information is said to be incomplete (or partial) in a given context, if it is not sufficient enough to answer a relevant question asked in the same context. For instance, one can consider the following examples:

Example 2.1. The following gives examples of incomplete information.

1. Consider the following question: "What is exactly the age of Paul?". Let "Paul was born between 1980 and1984" be an information that one knowns. Such information does not allow to answer the above question.

2. Consider the following question: "What is the temperature of the patient ?". Let "The temperature of the patient is high" be an information that one has. Such information does not allow to precisely answer the question about the exact temperature.

3. Consider the following question: "Does student Paul succeed this year?". Let "The success rate for this year is about 50%" be an information about the known success rate. Such information is not enough to answer the asked question.

From Example 2.1, one can see that the nature of an incomplete information is not the same. Incompleteness can be, in general, imprecision, fuzziness, uncertainty, etc. For more details, see [START_REF] Parsons | [END_REF][START_REF] Dubois | [END_REF] for example.

Uncertainty management

Imprecise information Given a proposition that asserts a variable v in A ⊆ Ω, a piece of information is said to be imprecise, if it is insufficient to give the current value of the variable v in A. Imprecision is related to the content of the information. Said differently, the number of elements in A, that may correspond to v is greater than 1. Note that v takes only one value from A at a given time, and thus, elements in A are considered as possible values of v and they are mutually exclusive. Let us consider the following example.

Example 2.2. From Example 2.1 item 1, the quantity v = birthyear(P aul) ∈ {1980, 1981{1980, , 1982{1980, , 1983{1980, , 1984} which states that "Paul" was born between 1980{1980, and 1984"". This leads to consider that v = 1980

or v = 1981 or v = 1982 or v = 1983 or v = 1984.
Fuzzy information A fuzzy piece of information (or gradual linguistic piece of information) is considered as a subtype of imprecision. It represents a proposition asserting a variable v in A ⊆ Ω where one can not claim if it is totally true or totally false. Namely, the proposition is not boolean.

Example 2.3. From Example 2.1 item 2, the proposition stating that "The temperature of the patient is high" is fuzzy since it does not give the exact value of the temperature. Said differently, we only know that it is "high". Indeed, a temperature equal to 42 looks more credible than a temperature equal to 40 which is itself more credible than a temperature equal to 39. However, saying that "the temperature is equal to 37" is completely false referring to the context of the information that said that the temperature is high. In this case, one would rather say that the temperature of the patient is normal.

In fact, a fuzzy piece of information ranks values in A in terms of their relevance to give the current value of v [START_REF] Dubois | [END_REF]. Note that the meaning of a fuzzy information may be altered using linguistic quantifiers expressing intensity, for instance, consider the proposition "the temperature is very high" or "the temperature is slightly high", etc.

Uncertain information A piece of information is said to be uncertain when one can not decide if the information is completely true or completely false (for instance the question asked in item 3 of Example 2.1). Uncertainty is due either to variability (randomness) or lack of information about the real world, and it is in general related to the source providing the information. An uncertain piece of information is attached with a certainty qualifier which can be numerical (e.g. a probability) or symbolic (e.g. plausible).

Example 2.4. Let us consider the following information pieces:

• The probability that the task takes more than one hour is about 0.7.

• It is very possible that it will rain tomorrow.

• It is not absolutely certain that Paul will come to the meeting tomorrow.

Usually, an uncertain piece of information is represented by attaching (using a function f defined over Ω) to each event A ⊆ Ω a number f (A) belonging to the unit interval [0, 1] which evaluates the likelihood of A with respect to a proposition asserting v ∈ A. In other words, f (A) is the confidence of the agent in the truth of v ∈ A. Note that, contrary to fuzzy information, the proposition is boolean, namely it only takes true or false. When dealing with uncertainty, the following requirements are needed:

1. f (Ω) = 1 and f (∅) = 0. 2. ∀ A ⊆ Ω, ∀ B ⊆ Ω : if A ⊆ B then f (A) ≤ f (B) (Monotonicity).
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3. ∀ A ⊆ Ω, ∀ B ⊆ Ω : g(A ∩ B) ≤ min(f (A), f (B)). 4. ∀ A ⊆ Ω, ∀ B ⊆ Ω : g(A ∪ B) ≥ max(f (A), f (B)).
Example 2.5. From Example 2.1, one can be completely certain that the birth year of Paul is between 1980 and 1984, but less certain that Paul's birth date is in {1980, 1981, 1982}, even less certain that it is in 1981.

A piece of information could be at the same time:

• Precise and certain: "Paul was born is 1983".

• Precise and uncertain: "It is probable that Paul was born in 1984, with a confidence degree of 30%".

• Imprecise and certain: "It is certain that Paul was born between 1982 and 1984".

• Imprecise and uncertain: "It is possible that Paul was born between 1981 and 1984".

Lastly, there are other kinds of imperfect pieces of information such as heterogeneous information (i.e. information having different nature or expressed differently), incommensurable information (i.e. information expressed over different scales), multiple source information (i.e. information provided by different sources), etc.

Probability theory

Probability theory is the oldest and the most widely acknowledged among uncertainty theories. This section recalls basic concepts of probability theory.

Basic notions

The notion of probability distribution is the central element of probability theory. A probability distribution, denoted by p, is defined over the universe of discourse Ω such that ∀ω i ∈ Ω, p(ω i ) ∈ [0, 1]. A probability measure P : 2 Ω → [0, 1] is a function that assigns to each event A ⊆ Ω a degree belonging to the unit interval [0,1]. This degree reflects the chance or the likelihood of the occurrence or the realization of A. A probability measure and probability distribution satisfy the following requirements:

• Positivity: ∀A ⊆ Ω, P (A) ≥ 0.

• Normalization : P (Ω) = 1

• Additivity: P (A ∪ B) = P (A) + P (B) (if A and B are disjoint, namely A ∩ B = ∅).
The first axiom states that an event of Ω may be (in the worst case) impossible, i.e. P (A) = 0. The second states that the universe of discourse Ω is certain. Finally, the third axiom states that the probability of the union of two disjoint events is equal to the sum of the probabilities of the two events separately. As consequence of the above requirements, we have:

• n i=1 p(ω i ) = 1,
• P (∅) = 0 Given a probability distribution p defined on Ω, one can derive the probability measure of a subset A ⊆ Ω as follows:

• P (A) = 1 -P ( Ā) (where Ā is the complementary of A in Ω, namely Ā = Ω \ A)
P (A) = ω∈A p(ω)
Let B be an event of Ω. The probability of the realization of an event A can be updated according to the probability of the realization of the event B. Let P (A|B) denote the probability of the event A knowing the event B. The transformation from P (A) to P (A|B) is called probabilistic conditioning and it is computed as follows:

P (A|B) = P (A ∩ B) P (B)
The following property is called product rule and it is defined by (it is a consequence of the conditioning rule):

P (A ∩ B) = P (A) * P (B|A) = P (B) * P (A|B)
Bayes theorem states that the conditional probability of an event A given B is related to the converse conditional probability of B given A. This permits to compute the probability of B if we know A as follows:

P (A|B) = P (B|A) * P (A) P (B)
Bayes rule is very useful when performing inference like in classification problems, or learning from statistical data.

Possibility theory

Possibility theory, introduced first by Zadeh [Zadeh, 1999] and then developed by Dubois and Prade [Dubois and Prade, 1988b] and many other researchers, is a very natural framework to deal with ordinal and qualitative uncertainty. It deals with non-probabilistic information and it is particularly appropriate when the uncertainty scale only reflects a priority relation between different pieces of information. There are several interpretations of possibility degrees. The most supported ones are as follows [START_REF] Dubois | [END_REF]] :

• The feasibility or realizability, for instance "it is possible to repair the old car".

• The plausibility which refers to the degree to which an event can occur, for instance "it is possible that it will snow tomorrow".

• Consistency or compatibility which refers to a logical view of possibility and concerns the available information itself, for instance "it is impossible that Paul votes", knowing that "Paul is two years old".

Basic concepts

This section introduces basic concepts of possibility theory. We first recall the notion of possibility distribution.

Part I, Chapter 2 -Belief change and uncertainty management Possibility distribution. A possibility distribution, denoted by π, is a mapping from the universe of discourse Ω to a totally ordered scale O. This scale may often be a finite set of integers or the unit interval [0, 1] and encodes our knowledge on the real world. In general, it is the interval [0, 1] and it could be interpreted in two ways: a numerical interpretation when values have a real sense and an ordinal interpretation when values only reflect a total pre-order between the different states of the world. We further explain these two settings in Section 2.2.2.

The degree π(ω) is called possibility degree and represents the plausibility or compatibility of ω with available knowledge encoded by π. By convention, when π(ω) = 1, we say that ω is a totally possible state, and when π(ω) = 0, we say that ω is an impossible state. Given two states of the world ω and ω , if π(ω) > π(ω ), we say that ω is more preferred than ω or more plausible. Possibility theory can capture the two extreme forms of knowledge, namely:

1. Total ignorance when ∀ω ∈ Ω,π(ω)=1.

Complete knowledge when

∃ω ∈ Ω, π(ω ) = 1 and ∀ω ∈ Ω, ω = ω, π(ω) = 0.
Example 2.6. The following possibility distributions give situations of total certainty, partial ignorance and total ignorance.

ω i π(ω i ) ω 1 1 ω 2 0 ω 3 0 (a) Total certainty ω i π(ω i ) ω 1 1 ω 2 1 ω 3 .5 (b) Partial ignorance ω i π(ω i ) ω 1 1 ω 2 1 ω 3 1 (c) Total ignorance
A possibility distribution is said to be normalized if it admits at least one totally possible state, namely ∃ω ∈ Ω such that π(ω) = 1. Otherwise the possibility distribution is said to be sub-normalized. In this case, the inconsistency degree of the possibility distribution π, denoted Inc(π), is defined as follows:

Inc(π) = 1 -max ω∈Ω {π(ω)}
The concept of sub-normalization reflects the presence of contradictions in the set of available knowledge encoded by π. Lastly, possibility theory is driven by the principle of minimal specificity that states that any hypothesis not known to be impossible cannot be ruled out [Yager, 1992]. Given two possibility distributions π and π , π is said to be more specific than π if and only if ∀ω ∈ Ω, π(ω) ≤ π (ω).

Example 2.7. Consider the following two possibility distributions:

ω i π 1 (ω i ) ω 1 1 ω 2 .1 ω 3 0 ω i π 2 (ω i ) ω 1 1 ω 2 .5 ω 3
.8

One can check that π 1 is is more specific than π 2 .

Possibility and Necessity measures. Possibility theory offers two measures to assess the possibility (or the plausibility) and the necessity (or the certainty) of an event.

Uncertainty management

Possibility measure Given a possibility distribution π, a possibility measure, denoted by Π, of an event A ⊆ Ω is defined as follows:

Π(A) = max ω∈A (π(ω))
Intuitively, Π(A) evaluates to what extent A is plausible or compatible with the available knowledge expressed by π. We have:

• if Π(A) = 1 and Π( Ā) = 0 : this means that A is certain.

• if Π(A) = 1 and 0 < Π( Ā) < 1 : this means that A is somewhat certain.

• if Π(A) = 1 and Π( Ā) = 1 : this means that there is total ignorance about A.

• if Π(A) > Π(B) : this meaning that A is more plausible than B.
In the following, we give some properties of Π when the possibility distribution π is normalized.

• max(Π(A), Π( Ā)) = 1 : Meaning that A and Ā cannot be both somewhat impossible (consequence of the normalization axiom)

• Π(A ∩ B) ≤ min(Π(A), Π(B)) • Π(A ∪ B) = max(Π(A), Π(B)) (Maximitivity axiom)
Necessity Measure The necessity measure, denoted by N , of an event A ⊆ Ω is the dual of the possibility measure and it is defined follows:

N (A) = 1 -Π( Ā) = min ω / ∈A (1 -π(ω))
Intuitively, N (A) defines the certainty degree associated to an event A. Namely, it evaluates to what extent A is certainly implied from the available knowledge encoded by π. It is important to note that in a possibility theory setting, in order for an event A to have a certainty degree greater than zero, it must be totally possible. In other words, A must be completely possible before being somewhat certain. This fact ensures that N (A) ≤ Π(A). We have:

• if N (A) = 1 and N ( Ā) = 0: this means that A is certain, • if N (A) ∈ ]0, 1[ and N ( Ā) = 0: this means that A is somewhat certain,
• if N (A) = 0 and N ( Ā) = 0: this means that there is a total ignorance about A,

The following gives some properties of N when the possibility distribution π is normalized,

• min(N (A),N ( Ā)) = 0: Meaning that A and Ā can not be both somewhat certain.

• 

N (A ∩ B) = min(N (A), N (B)) • N (A ∪ B) ≥ max(N (A), N (B))
ω i X Y π(XY ) ω 1 x 1 y 1 1 ω 2 x 2 y 1 .8 ω 3 x 1 y 2 .5 ω 4 x 2 y 2 .1
One can check that: i) Π(x 1 )=1 and N (x 1 )=.2 ii) Π(y 1 )=1 and N (y 1 )=.5

Quantitative and qualitative settings

Contrary to many uncertainty frameworks (like probability theory, belief functions, etc.), possibilities could be expressed either using numeric values or using a ranking relation. These two kinds of interpretations correspond respectively to the quantitative setting (i.e. numerical interpretation of possibilities) and the qualitative setting (i.e. an ordinal interpretation of the possibility scale) [Dubois and Prade, 1998].

Quantitative Setting. The quantitative setting of possibility theory refers to the case where possibility degrees are real numbers in the unit interval [0, 1]. In such setting, possibility degrees have precise signification and must be a priori justified. Indeed, one can check that there are links between possibilities and probabilities. In fact, a degree of possibility can be considered as the upper probability bound [Dubois and Prade, 1992], and a possibility distribution can be viewed as a likelihood function [Dubois et al., 1997] where a possibility measure is also considered as a special case of plausibility function of Dempster-Shafer theory of evidence, etc. However, in some situations, it remains difficult to assign exact numerical values for possible states of the world. It seems to be more flexible, in this case, to consider that a state ω of the world is more plausible than another one ω instead of attaching to each state a numerical value. Hence, the idea to use a ranking relation over possible states of the universe of discourse Ω.

Qualitative possibility theory. The possibilistic qualitative setting refers to the case where the possibility distribution is a mapping from a universe of discourse Ω to a totally pre-ordered scale that ranks possible states of Ω. The idea of ranking the different states of the universe of discourse, was first introduced in [Spohn, 1988] through the so-called Spohn's ordinal conditional functions (OCF), well-known as kappa functions which map states of Ω into ordinals belonging to [0, +∞].

The idea behind qualitative settings is that the universe of discourse Ω is equipped with a total preorder, denoted by ≥ π , which corresponds to a plausibility relation on Ω allowing to affirm that a state ω is more plausible than another one ω . Given two possible states ω and ω , when:

• ω = π ω , we say that ω is as plausible as ω ,

• ω < π ω , we say that ω is less plausible than ω ,

• ω > π ω , we say that ω is more plausible than ω .

The pre-order ≥ π leads to induce a well-ordered partition of Ω, namely Ω = {S 1 , ..., S n }. In the qualitative setting, the ordinal scale O is of the form: O = {1, α 1 , α 2 , ..., α n , 0} where 1 > α 1 > α 2 > ... > α n > 0. A possibility distribution that maps a universe of discourse Ω to a totally ordered scale O, is called qualitative possibility distribution. It is important to note that the possibility scale can be numerical, namely of the form O = {0, 0.1, 0.3, ..., 1} where only the order relation between the values is significant, and not the real numerical values.

Uncertainty management

Possibilistic conditioning

Given a possibility distribution π, conditioning comes down to revise the available knowledge encoded in π, when a new piece of information (i.e. an evidence) is available [Dubois and Prade, 1988a;[START_REF] Dubois | The logical view of conditioning and its application to possibility and evidence theories[END_REF]. Conditioning the original possibility distribution π by an event B takes as input π and B and transforms π to a new possibility distribution denoted by π =π(.|B). Depending on the framework that we use (qualitative or quantitative), there are two main definitions of conditioning:

Quantitative setting In a quantitative setting, the widely used method of conditioning is called productbased conditioning. It uses the Dempster's rule of conditioning of belief functions, specialized to possibility measures which states that the conditional measure π(.|B) by an event B is such that (we assume that Π(B) > 0):

Π(A|B) * Π(B) = Π(A ∩ B)
Therefore, the impact of the event B on the available knowledge associated with an event A is given as follows (we assume that Π(B) > 0):

Π(A| p B) = Π(A ∩ B) Π(B)
Given a possibility distribution π, the presence of the new evidence B alters π, by first declaring all states outside B as impossible, and then, proportionally changing all the states with respect to B. More formally:

π(ω| p B) = π(ω) Π(B) if ω ∈ B 0 otherwise
It is important to note that there exit other ways for conditioning in the quantitative setting. For more details, see (e.g. [Fonck, 1997;[START_REF] Baets | [END_REF]Bouchon-Meunier et al., 2002]).

Qualitative setting Within a qualitative setting, the so-called min-based conditioning is the widely used method for conditioning. This latter is based on the qualitative counterpart of the Bayesian rule [Hisdal, 1978;Dubois and Prade, 1988b] which states that:

Π(A ∩ B) = min(Π(A|B), Π(B))
The min-based conditioning respects the minimum specificity principle which consists in assigning to the best element of the event B, the highest possibility degree (namely, 1). More formally, the min-based conditioning is performed as follows:

Π(A| m B) = 1 if Π(A ∩ B) = Π(B) Π(A ∩ B) if Π(A ∩ B) < Π(B)
Therefore, the min-based conditioning defined on all the states of a possibility distribution is given as follows:
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π(ω| m B) =        1 if π(ω) = Π(B) and ω ∈ B π(ω) if π(ω) < Π(B) and ω ∈ B 0 otherwise
Example 2.9. Let π be a possibility distribution over two binary variables X and Y and let y 2 be a new certain piece of information (observed information). One can compute the new possibility distribution π =π(.|y 2 ), using the qualitative or quantitative conditioning as follows:

X Y π(XY ) x 1 y 1 1 x 2 y 1 .8 x 1 y 2 .5 x 2 y 2 .1 (a) Initial possibility distribution X Y π(XY | p x 2 ) x 1 y 1 0 x 2 y 1 0 x 1 y 2 1 x 2 y 2 .2 (b) Quantitative conditioning X Y π(XY | m b 2 ) x 1 y 1 0 x 2 y 1 0 x 1 y 2 1 x 2 y 2 .1 (c) Qualitative conditioning

Possibilistic logic

Using a possibility theory framework, the knowledge of an agent can be compactly encoded using different ways. One can either use logic-based formalisms (for instance, the ones presented in Section 1.3) which lead to obtain a possibilistic belief (or knowledge) base or a graphical-based formalism which leads to define a possibilistic graph or network (e.g. [Dubois and Prade, 1991b]). In this thesis, we use logic-based formalisms to encode possibilistic knowledge. This section recalls standard possibilistic logic [START_REF] Dubois | [END_REF], an extension of propositional logic within a possibility theory setting. Next chapter (Chapter 3) is dedicated to the extension of DL-Lite within a possibility theory framework.

Syntax. Let B * = {φ i : i = 1, ..., n} be a propositional knowledge base composed of a finite set (more precisely, a conjunction) of propositional formulas. A possibilistic knowledge base or belief base 1 B, consists of a finite set of possibilistic formulas (φ i , α i ) of the form:

B = {(φ i , α i ) : i = 1, ..., n}
where φ i is a propositional formula and α i is its certainty degree, meaning that N (φ i ) > α i . Note that formulas with α i 's equal to '0' are not explicitly represented in the knowledge base. Moreover, when all α i 's are equal to 1, B coincides with a standard propositional knowledge base B * .

Semantics. The semantics of a possibilistic knowledge base B is given by a possibility distribution, denoted by π B , defined over the set of propositional interpretations, namely Ω = {I 1 , . . . , I n }. The possibility distribution π B attaches to each interpretation I ∈ Ω a possibility degree reflecting to what extent this latter satisfies2 formulas of the knowledge base. The possibility degree of an interpretation π(I) depends on the maximum weight of formulas falsified by the interpretation I.

2.2. Uncertainty management ∀I ∈ Ω, π B (I) = 1 if ∀(φ i , α i ) ∈ B, I |= φ i , 1 -max{α i : (φ i , α i ) ∈ B, I |= φ i } otherwise
It is important to note that a possibilistic knowledge base is considered as a compact representation of a possibility distributions. Namely, from each possibilistic knowledge base B, one can generate its possibility distribution π B .

By referring to classical logic, when the formulas of the knowledge base are completely certain (namely, having weights equal to 1 in a possibilistic setting), then the knowledge base will contain only models (i.e. π B (I) = 1) or countermodels (π B (I) = 0). As a consequence, the consistency of the knowledge base is binary, namely B is consistent or inconsistent. This is not the case in possibilistic knowledge bases. As the possibility distribution allows to attribute to the countermodels a degree of compatibility with the available knowledge. In this case, the consistency of an interpretation with respect to the available knowledge is not binary. Therefore, one can associate to a possibilistic knowledge base a degree of inconsistency between 0 and 1.

Example 2.10. Let B = {(a,[START_REF]{A} be an inconsistent DL-Lite knowledge base[END_REF], (a ∧ b, .1), (c ∨ b, .4)} be a possibilistic knowledge base. The joint possibility distribution π B of B is as follows:

I π B (I) abc 1 abc 1 abc .9 abc .6 abc .4 abc .4 abc .4 abc . 4 
Let B = {(φ i , α i ) : i = 1, .., n} be a possibilistic knowledge base, the inconsistency degree of B, denoted by Inc (B), is defined semantically and syntactically as follows:

• Semantically using the induced possibility distribution:

Inc(B) = 1 -max I∈Ω (π B (I))
where π B is its possibility distribution.

• Syntactically using the concepts of α-cut: Inc(B) = max{α i : B ≥α is inconsistent} where B ≥α , is called the α-cut of B and it is the subbase of B composed by formulas having weights greater than or equal to α.

If B ≥0 is consistent then Inc(B) = 0.
It was shown in [START_REF] Dubois | [END_REF] that the computational complexity of computing the inconsistency degree of a possibilistic knowledge base is in (log 2 (n)*SAT) where n is the number of different weights in the knowledge base and SAT is the complexity of the propositional satisfiability problem. Namely, computing inconsistency degrees needs log 2 (n) calls to a SAT solver. Contrary to classical logic, using the notion of inconsistency degree, possibilistic logic allows reasoning from an inconsistent knowledge base.

Let B = {(φ i , α i ) : i = 1, ..., n} be a possibilistic knowledge base, possibilistic entailments are defined semantically as follows:

• A formula is a logical consequence of a possibilistic knowledge base, denoted by

π B |= φ i if and only if N (φ i ) > 0 where N (φ i ) is the necessity degree of φ i computed from π B .
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• A formula is a logical consequence of a possibilistic knowledge base with a certainty degree α i , denoted by

π B |= (φ i , α i ) if and only if N (φ i ) ≥ α i > 0 where N (φ i ) is the necessity degree of φ i computed from π B .
The above reasoning tasks can be done syntactically as follows:

• A formula φ i is said to be a plausible conclusion of B, denoted by B |= P φ i if and only if B >inc (B) |= P φ i .

• A formula φ i is said to be a possibilistic conclusion of B, denoted by

B |= π (φ i , α i ) if and only if B ≥α i is consistent, B ≥α i |= φ i and ∀β > α i , B ≥β |= φ i .
Note that the above inferences can be reduced to computing the inconsistency degree of the possibilistic knowledge base. More formally: (B).

• B |= P φ i if and only if Inc(B ∪ {(¬φ i , 1)}) > Inc
• B |= π (φ i , α i ) if and only if Inc(B ∪ {(¬φ i , 1)}) > α i .
Another compact representation of possibility distributions is the one of possibilistic networks.

Possibilistic networks

Possibilistic networks (e.g. [Fonck, 1994;Gebhardt and Kruse, 1996;[START_REF] Benferhat | [END_REF]Benferhat et al., 2002a]) are frameworks used for representing and reasoning with uncertain information. Comparing with possibilistic logic, possibilistic networks explicit relationships between different variables of the domain while possibilistic logic only ranks formulas according to their certainty level.

A possibilistic network G= G, Θ is specified by: i) A graphical component G consisting of a directed acyclic graph (DAG) where vertices represent the variables and edges represent direct dependence relationships between variables. Each variable A i is associated with a domain D i containing the values a i taken by the variable A i .

ii) A numerical component Θ allowing to assess the uncertainty relative to each variable using local possibility tables. The possibilistic component consists in a set of local possibility tables Θ i = {θ a i |u i } where a i ∈D i and u i is an instance of U i denoting the parent variables of A i in the network G.

Note that all the local possibility distributions Θ i must be normalized, namely

∀i = 1..n, ∀u i ∈ D U i , max a i ∈D i (θ a i |u i ) = 1.
Example 2.11. The structure of G encodes a set of independence relationships I r = {I r (A i , U i , Y )} where each variable A i in the context of its parents U i is independent of its non descendants Y . For example, in the network of Figure 2.1, variable C is independent of B and D in the context of A.

In possibilistic networks, the joint possibility distribution is factorized using the possibilistic chain rule:

2.2. Uncertainty management A B C D A π(A) T 1 F .4 B π(B) T .1 F 1 C A π(C|A) T T .3 F T 1 T F .2 F F 1 D B A π(D|AB) T T T .4 F T T 1 T T F .2 F T F 1 T F T 1 F F T 1 T F F 1 F F F .1 Figure 2.1: Example of a possibilistic network π(a 1 , a 2 , .., a n ) = n i=1 (π(a i |u i )).
where is either the product-based or min-based operator. Lastly, there exists a translation from possibilistc networks to possibilistic knowledge bases [Benferhat et al., 2002a]. For reasoning in possibilistic networks, see [Fonck, 1994;[START_REF] Benamor | Nahla Benamor. Qualitative possibilistic graphical models: From independence to propagation algorithms[END_REF][START_REF] Ayachi | A comparative study of compilation-based inference methods for min-based possibilistic networks[END_REF] for instance.

Uncertainly management in description logics

Uncertainty reasoning for the World Wide Web has received in recent years a lot of attention 3 . Several approaches are proposed and they are based on the extension of DLs within uncertainty theories. In the following, we recall the main proposed approaches.

Probabilistic description logics

Probabilistic Description Logics (e.g. [START_REF] Giugno | [END_REF]Lukasiewicz, 2002;Lukasiewicz and Straccia, 2008;Lukasiewicz et al., 2012a]) is an extension of standard DLs with probabilistic terminological axioms and probabilistic assertional facts in order to manage uncertainty. Probabilistic knowledge in probabilistic description logics is modeled using the notion of probabilistic conditional constraints [Lukasiewicz, 1999]. A conditional constraint of the form (A|B) [l, u] is expressed by attaching a belief interval reflecting the lower bound l and the upper bound u of the probability of concluding A given an evidence B where A and B are two concepts. Intuitively, a conditional constraint represents a concept inclusion relation between two concepts A and B of the form B A, with a probability degree between l and u. This permits to model the fact that "generally, if an individual belongs to B, then it belongs to A with a probability lying between l and u". Similarly, for probabilistic assertions, a conditional constraint (A(a)| ) [l, u] is used to express the fact that a is an instance of the concept A with a probability degree that lies between l and u". In a probabilistic knowledge base, generic knowledge is encoded in a probabilistic TBox, denoted by PTBox, and assertions are stored in a probabilistic ABox, denoted by PABox. A PTBox P T = (T, P ) contains a set of standard DL axioms, i.e. a standard TBox T (expressed using the used DL language), and a set of conditional constraints P defined over the concepts of the domain. A PABox P o is a finite set of conditional constraints defined on probabilistic individuals o ∈ I p . A probabilistic knowledge base is a triple P K = (T, P, (P o ) o∈I P ) relative to I P . It is important to note that the set of individuals is partitioned into a set of standard individuals I s and a set of probabilistic individuals I p .

From a reasoning point of view, consistency checking in a probabilistic knowledge and entailment are based respectively on the notions of consistency and lexicographic entailment proposed in probabilistic default reasoning [Lukasiewicz, 2002].

Fuzzy description logics

Fuzzy Description Logics (e.g. [Straccia, 1998;[START_REF] Straccia | Umberto Straccia. Reasoning within fuzzy description logics[END_REF]Bobillo and Straccia, 2007;[START_REF] Bobillo | Generalized fuzzy rough description logics[END_REF]Lukasiewicz and Straccia, 2009]) are extensions of DLs within fuzzy sets theory. The aim of such extension is to model fuzziness attached to the elements of the domain. From a syntactic point of view, a fuzzy description logic uses first fuzzy concepts and weighted ABox assertions of the form (A(a), n) where A(a) is an ABox assertion and n ∈ [0, 1] is its membership degree to the fuzzy concept A.

The semantics of fuzzy DL relies on the fuzzy set semantics [Zadeh, 1965]. Recall that, a fuzzy set S is defined with respect to a set S by a membership function µ S : S → [0, 1], that assigns to each element in S a membership degree in [0, 1]. Within a description logic setting, a fuzzy interpretation is a pair I = (∆ I , . I ) where ∆ I is the domain of the interpretation, defined as in the standard description logic semantics, and . I is an interpretation function that maps i) each individual as in the standard case, ii) each concept into a membership function ∆ I → [0, 1] iii) and each role into membership function

∆ I × ∆ I → [0, 1].
Given an interpretation I, a concept A is interpreted as a membership function and A I (a) with a an individual (i.e. a I ∈ ∆ I ) is interpreted as the truth degree of the object a being an element of A under the interpretation I. The fuzzy interpretation is extended to DL constructs following a fuzzy semantics aggregation modes.

Lastly, it is important to note that this representation can be handled efficiently using possibility theory. For more details about fuzzy description logics, see [Lukasiewicz and Straccia, 2008].

Possibilistic description logics

Possibilistic Description Logics are frameworks introduced to deal with uncertainty and to ensure reasoning under inconsistent knowledge bases. The use of possibility theory to extend DLs has been proposed in [Hollunder, 1995] and discussed in [Dubois et al., 2006]. In [Hollunder, 1995] a possibilistic DL knowledge base was defined syntactically by attaching to every terminological axiom or assertion a necessity degree. However there is no formal foundation of the semantic counterpart of this extension. In addition, only some standard inference services have been defined. From an algorithmic point of view, Hollunder's method [Hollunder, 1995] is based on an instantiation of possibilistic entailment with a classical inference algorithm for DLs.

In [Qi et al., 2007b;Qi et al., 2007a], the authors go one step further in the definition of possibilistic DL. A possibilistic DL knowledge base has been defined syntactically by equipping every axiom with a confidence degree to encode its certainty. This confidence degree is simply the necessity value of an axiom and it reflects to what extent this latter can be considered as certain (priority, importance, etc) with respect to the available knowledge. These degrees are then used to determine the inconsistency degree 2.3. Belief change of a knowledge base and to ensure inference services. From a computational point of view, an algorithm to compute inconsistency degrees and possibilistic inference services has been provided. In general, it has been shown [Qi et al., 2007b;Qi et al., 2007a] that checking the consistency degree and several inference services can be done with classical DLs reasoning services through consistent sub-sets of the Possibilistic DL knowledge base. Clearly, computing inconsistency degrees comes down to perform a dichotomie search among the certainty scale while calling a standard DL reasoner is closely related to the method proposed in [START_REF] Dubois | [END_REF] for computing inconsistency degrees of a possibilistic propositional knowledge base.

An implementation of a reasoner called "DL-Poss", has been provided in [Qi et al., 2010a] (see also [Qi et al., 2011] for a discussion on Possibilistic DLs). Finally, another method has been introduced in [Couchariere et al., 2008a;Qi et al., 2008b;Zhu et al., 2013] for checking the inconsistency of a possibilistic DL base as a direct extension of the tableau algorithm [Baader et al., 2010].

In Chapter 3, we more discuss these works and we follow another direction to extend DL-Lite within a possibility theory setting. The main feature of this extension is that it is done by slightly modifying the reasoning method proposed in standard DL-Lite by propagating the uncertainty degrees associated with formulas in the knowledge base. Compared to the existing works, this extension allows to equip DL-Lite with many other reasoning capabilities like merging (Chapter 4), inconsistency handling (Chapter 7) when the assertional base is prioritized.

Belief change

As pointed out in Section 1.2, there are several lines of research that aim to equip ontologies with additional reasoning abilities (in addition to classical ones). In this thesis, we consider the problem of ontology evolution, ontology merging and ontology repairing, with a focus on the context of Ontology-Based Data Access. These problems are respectively closely related to belief revision, belief merging an inconsistency handling in a propositional logic setting. This section gives a brief overview on these topics.

Belief revision

Originally, description logics have been introduced to represent the static aspects of a domain of interest [Baader et al., 2010]. However, for some applications, knowledge may not be static and evolves from a situation to another in order to cope with changes that occur over time. Such dynamic aspects have been recognized as important problems (e.g. [Qi et al., 2006c;[START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF][START_REF] Wang | [END_REF]Kharlamov et al., 2013]) and often concern the situation where new information should be taken into account requiring to modify the old one while ensuring the consistency of the result. Such problem is well-known as belief revision.

Belief revision problem in a propositional logic setting

Belief revision has been defined as knowledge change and was characterized for instance by the wellknown AGM postulates [Alchourrón et al., 1985]. These postulates are based on the following three main ideas:

1. The principle of priority 4 which states that the priority between beliefs is given to the new pieces Part I, Chapter 2 -Belief change and uncertainty management of information, 2. The principle of consistency which states that the result of the revision operation must be a consistent set of beliefs, and 3. The principle of minimal change which states that as less as possible initial beliefs should be changed in the revision operation.

Belief revision has been largely considered in the literature when knowledge bases are encoded using a propositional language. In a propositional logic setting, the AGM postulates were equivalently presented in [Katsuno and Mendelzon, 1991]. Given a knowledge base and a new information expressed respectively using two propositional formulas φ and ϕ and a revision operator, denoted by •, then φ • ϕ should satisfy the following postulates, well-known as KM postulates [Katsuno and Mendelzon, 1991]:

(R1) φ • ϕ implies ϕ (R2) if φ ∧ ϕ is satisfiable, then φ • ϕ ≡ ϕ ∧ φ (R3) if ϕ is satisfiable, then φ • ϕ is satisfiable (R4) if φ 1 ≡ φ 2 and ϕ 1 ≡ ϕ 2 , then φ 1 • ϕ 1 ≡ φ 2 • ϕ 2 . (R5) (φ • ϕ) ∧ ψ implies φ • (ϕ ∧ ψ) (R6) if (φ•ϕ)∧ψ is satisfiable, then φ•(ϕ∧ψ) implies (φ•ϕ)∧ψ (where ψ is a propositional formula).
Intuitively, postulate (R1) states that the models of the revised formula with the new information ϕ are also models of ϕ, or simply the new information should be entailed from the result of revision. (R2) says that if the new information is consistent with the initial one, then the result of revision of φ with ϕ is made by their intersection. (R3) indicates that the result of revision is satisfiable if the new information is satisfiable. (R4) expresses the syntax independence of the revision operator. (R5) and (R6) together ensure closeness, i.e. the minimal change principle.

It is important to note that the KM postulates are equivalent to AGM postulates [Katsuno and Mendelzon, 1991] in a propositional logic setting. Moreover, a representation theorem, based on the notion of syncretic assignment was proposed. Recall that a faithful assignment is a function that defines a total preorder ≤ φ over the set of interpretations that represents the formula φ. Let mod(φ) be the set of models of φ, the pre-order ≤ φ associated to φ is a faithful assignment if and only if:

• if I ∈ mod(φ) and I ∈ mod(φ), then I = φ I , • if I ∈ mod(φ) and I / ∈ mod(φ), then I < φ I , • if φ ≡ ϕ, then ≤ φ =≤ ϕ .
A revision operator satisfies postulates (R1)-(R6) if there exist a faithful assignment that associates to φ a total pre-order ≤ φ such that:

mod(φ • ϕ) = min(mod(ϕ), ≤ φ )
Note that there exists other representation theorems used to define revision operators in addition of the representation theorem based on faithful assignment. Based on these works, several belief revision approaches are proposed. One can classify these approaches in two main classes:

have different pieces of information with different priority/uncertainty levels.

Belief change

Semantics approaches : well-known as model-based approaches, they are based on the interpretations of the formulas such as Grove's approach based on spheres [START_REF] Grove | Adam Grove. Two modellings for theory change[END_REF], revision operators based on distance between interpretations (e.g. [Borgida, 1985;Dalal, 1988;Satoh, 1988]), etc.

Syntactic approaches : well-known as formula-based approaches, they are based on formulas such as semi-revision [Hansson, 1997], selective revision [START_REF] Fermé | EduardoL. Fermé and SvenOve Hansson[END_REF], removed set revision [Papini, 1992;Würbel et al., 2000], etc.

Note that AGM postulates were defined for revising belief sets, i.e deductively closed sets of formulas, possibly infinite. Besides, an axiomatic characterization for revising belief bases, namely finite set of formulas was given in [Fuhrmann, 1997;Hansson, 1998].

There is an extended approach of revision, called iterative revision [Lehmann, 1995;[START_REF] Darwiche | [END_REF]] that permits revision of a knowledge base with a sequence of pieces of information, namely (ϕ 1 , ...ϕ n ) where as usual each piece of information ϕ i has the priority over the set of initial beliefs and ϕ j is more preferred than ϕ i for 1 < i < j < n. A logical characterization of iterative revision was given by Darwiche and Pearl in [START_REF] Darwiche | [END_REF]. There are several operators for iterative revision such as: revision proposed by Boutilier [Boutilier, 1993], possibilistic revision [Benferhat et al., 2002c], revision approach based on polynomials [Benferhat et al., 2002b], etc.

Revision within description logic settings

Recently, several works have been proposed for revising DLs knowledge bases. In [Flouris et al., 2004;Flouris et al., 2005] an adaptation of the AGM postulates was discussed in order to generalize it to DLs. The authors in [Qi et al., 2006c] focused on revising a finite representation of belief sets. They used a semantic reformulation of AGM postulates, done by Katsuno and Mendelzon [Katsuno and Mendelzon, 1991], to extend it to DLs knowledge bases. Recently, several works were proposed to define revision operators for description logics. In [START_REF] Halaschek-Wiener | Belief base revision for expressive description logics[END_REF]Ribeiro and Wassermann, 2007;Qi et al., 2008a] an extension of kernel-based revision and semi-revision operators to DLs frameworks has been proposed. It is closely related to the one proposed by [Hansson, 1997] in a propositional logic setting. In [START_REF] Qi | A survey of revision approaches in description logics[END_REF][START_REF] Qi | Model-based revision operators for terminologies in description logics[END_REF][START_REF] Wang | [END_REF], model-based approaches for revising DLs have also been proposed.

However, as pointed out in [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF] model-based approaches of revision are not expressible in DL-Lite in the sense that the result of revision is not expressible in the language in which the initial knowledge base is expressed. Moreover, most of the approaches are restricted to the revision of the TBox [START_REF] Qi | Model-based revision operators for terminologies in description logics[END_REF][START_REF] Zhuang | [END_REF] or the ABox (e.g. [Liu et al., 2006;[START_REF] Gao | [END_REF]) but not both. Regarding DL-Lite knowledge bases, few works have been proposed for the revision problem. In [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF]Kharlamov and Zheleznyakov, 2011], a formula-based approach for revising DL-Lite knowledge bases has been presented. Two algorithms have been proposed: one for revising the TBox, and the other for revising the ABox. Another operator for ABox revision in DL-Lite based on graph structure has been introduced in [START_REF] Gao | [END_REF]. In this work, the new information is restricted to ABox assertions. In [START_REF] Zhuang | [END_REF] a revision approach based on propositional logic reduction was proposed to revise a TBox.

In Chapter 6, we investigate a formula-based approach for revising DL-Lite with either a TBox axiom or an ABox assertion. We consider the case of a DL-Lite knowledge base where the ABox is prioritized. In such setting, a new TBox axiom can only expand (enrich) generic knowledge while revision process comes down to throw out some assertional facts in order to restore consistency.
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Belief merging

Knowledge bases merging or belief merging (e.g. [START_REF] Bloch | [END_REF][START_REF] Everaere | [END_REF]Everaere et al., 2012]) is an important problem addressed in many application areas such as multi-agent systems, distributed databases, etc. It focuses on aggregating pieces of information issued from distinct, and may be/potentially conflicting or inconsistent, sources of information. It leads to a global point of view of the considered problems by taking advantage of pieces of information provided by each source. Merging pieces of information requires to use some fusion operators that permit to combine them while respecting different constraints between sources. In the literature, several fusion operators have been proposed which depend on the nature and the representation of knowledge such as merging propositional knowledge bases (e.g. [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF]), prioritized knowledge bases (e.g. [Delgrande et al., 2006]) or weighted logical knowledge bases (e.g. [Benferhat et al., 1993a]).

The next two sections introduce merging in the framework of propositional logic and possibilistic logic.

Merging within a propositional logic setting

In propositional logic frameworks, a belief base denoted by K i , is constituted by a finite set of propositional formulas. Let us use E = {K i , ..., K n } to denote a multi-set, called belief profile, to represent the belief bases to be merged. Assume that each belief base is consistent. Merging multiple consistent belief bases may lead to conflicts between bases. Hence, the aggregation process requires to perform suitable merging operators.

Let us use to denote a merging operator and (E) to denote the result of this merging which is equal to a propositional formula (i.e. a knowledge base). In some cases, a merging operator is submitted to integrity constraints, denoted by ρ, generally expressed by a set of propositional formulas. Hence, a merging operation with integrity constraints, denoted by ρ (E), must retain the integrity constraints explicitly represented in the merging result and not simply implicitly consistent with the merging result. A logical characterization of integrity constraints merging operators has been proposed in [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF] through a set of rational postulates extended for the one proposed for belief revision. We recall rational postulates proposed to characterize the ideal behavior of a fusion operator.

(IC0) ρ (E) |= ρ (IC1) If ρ is consistent, then ρ (E) is consistent. (IC2) If K∈E K is consistent with ρ, then ρ (E) = K∈E K ∧ ρ (IC3) If E 1 ≡ E 2 and ρ 1 ≡ ρ 2 , then ρ 1 (E 1 ) ≡ ρ 2 (E 2 ) (IC4) If K |= ρ and K |= ρ, then ρ ({K, K }) ∧ K is consistent if and only if ρ ({K, K }) ∧ K is consistent. (IC5) ρ (E 1 ) ∧ ρ (E 2 ) |= ρ (E 1 E 2 ) (IC6) If ρ (E 1 ) ∧ ρ (E 2 ) is consistent, then ρ (E 1 E 2 ) |= ρ (E 1 ) ∧ ρ (E 2 ) (IC7) ρ 1 (E) ∧ ρ 2 |= ρ 1 ∧ρ 2 (E) (IC8) if ρ 1 (E) ∧ ρ 2 is consistent, then ρ 1 ∧ρ 2 (E) |= ρ 1 (E) ∧ ρ 2
Intuitively, these postulates seek for a set of propositional formulas that represents the fusion result in the most faithful way to merge belief bases while respecting the integrity constraints. Indeed, the first postulate (IC0) states that the fusion result must satisfy the integrity constraints. (IC1) ensures that if the set of integrity constraints is consistent then the fusion result must also be consistent. (IC2) means that whenever is possible, the fusion result is simply the conjunction of the merged beliefs bases and the integrity constraint. (IC3) simply refers to the syntax-irrelevancy principle and it states that if two belief profiles are equivalent and that two integrity constraint sets are logically equivalent then the resulting belief base of each belief profile are logically equivalent. (IC4) assures that when merging a pair of belief bases then the merging operator must not give any preference to one of them. (IC5) and (IC6) together affirm that if possible one can find two subgroups of sources which are in agreement on at least one interpretation, then the fusion result is exactly the interpretations on which the two groups are in agreement. Finally, (IC7) and (IC8) are introduced to preserve the notion of closeness (early presented in KM postulates [Katsuno and Mendelzon, 1991] through the postulates R5 and R6).

In [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF] merging operators were classified in two major subclasses, namely majority merging operators and arbitration merging operators. Formally, the family of majority merging operators is logically characterized by the following postulate:

(Maj) ∃n ∈ N such that ρ (E 1 E n 2 ) |= ρ (E 2 )
This postulate affirms that if a particular set of beliefs is repeated quite enough in the whole set of belief profile then this particular set of beliefs must prevail in the fusion result. Hence, it is obvious that majority operators behavior is sensitive to redundancy.

Contrary to majority merging operators that take into account the opinion of the majority about a situation, arbitration merging operators try to better satisfy opinions as many opinions as possibles among integrity constraints [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF]. Namely, if a set of preferred opinions among a set of integrity constraints ρ 1 for a belief base K corresponds to the preferred opinions among the set of integrity constraints ρ 2 of another base K and if the opinions that belong to a set of integrity constraints but not to the other are equally preferred for the whole groups ({K, K }), then the subset of preferred opinions among the disjunction of integrity constraints will coincide with the preferred opinions of each base among their respective integrity constraints. Formally, the arbitration merging operators are logically characterized by the following postulate:

(Arb) ρ 1 (K 1 ) ≡ ρ 2 (K 2 ) ρ 1 ↔¬ρ 2 ({K 1 , K 2 }) (ρ 1 ↔ ¬ρ 2 ) ρ 1 ρ 2 ρ 2 ρ 1        ⇒ ρ 1 ∨ρ 2 ({K 1 , K 2 }) ≡ ρ 1 (K 1 )
Now, according to rational postulates IC0-IC8, an integrity constraint merging operator is logically defined by a representation theorem according to the notion of syncretic assignment [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF]. The syncretic assignment tries to build up a pre-order on interpretations and it is defined as an extension faithful assignment defined for belief revision [Katsuno and Mendelzon, 1991]. Note that a majority syncretic assignment and arbitration syncretic assignment are also defined by adding some conditions to those of syncretic assignment.

According to the notion of syncretic assignment, the representation theorem for integrity constraint merging operators states that the result of merging the belief sets with the merging operator ρ is simply represented by the pre-order ≤ E on the interpretations that consist in computing minimal interpretations to the pre-order associated to the belief bases to be merged. Namely, an integrity constraint merging operator satisfies postulates (IC1)-(IC8) if and only if there exists a syncretic assignment that associates to E a total pre-order ≤ E such that:

mod( ρ (E)) = min(mod(ρ), ≤ E )
Part I, Chapter 2 -Belief change and uncertainty management Generally, pieces of information provided by each source are represented, on one hand, syntacticly using a propositional set of formulas, and on the other hand, semantically through a set of interpretations. Thus, as for belief revision approaches, one can identify two categories of merging operators.

Semantic merging operators well-known as model-based merging operators, they are parametrized by a distance and an aggregation function. Merging process consists first in ranking interpretations using some distance measures, then combining them using an aggregation function to generally obtain a unique ordering on interpretations for all sources of information. There are several modelbased operators: The Sum merging operator which is considered as majority merging operator and satisfies the postulate (IC0)-( IC8), the M ax merging operator which is considered as an approximation of arbitration merging operator, the GM ax operator [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF], the DA 2 operators which are based on a distance (D) and two aggregation function (A 2 ), the disjunctive operators [START_REF] Everaere | [END_REF], etc.

Syntactic merging operators well-known as formula-based merging operators, they consist to merge formulas of each belief base to obtain a unique consistent belief base that represents all sources of information. The fusion result which must be a consistent set of formulas depends on the syntactic representation of the merged belief bases. This family of merging operators tries to find from the union of merged belief bases, the consistent and maximal subsets of formulas. Note that the maximality criterion here is in the sense of set inclusion (it can also be defined in terms of cardinality).

Formally, let us use M axCons (K, ρ) to denote the collection of the maximal consistent subsets from K ∪ ρ which necessarily satisfies the integrity constraints ρ. Namely, a maximal consistent subset M ∈ M axCons (K, ρ) satisfies the following requirements:

i) M ⊆ K ∪ ρ, ii) ρ ∈ M , and iii) if M ⊂ M ⊆ {K ∪ ρ} then M is inconsistent. Let M axCons (E, c) = M acCons( K i ∈E K i , ρ).
When the maximality criterion is in the sense of cardinality criterion, we will use M axCons card (E, ρ) as notation. One can define the combination operators as follows: Let E be a belief set an ρ be an integrity constraint:

C 1 ρ (E) = M axCons (E, ρ) C 3 ρ (E) = {M : M ∈ M axCons (E, ) and M ∪ {ρ} is consistent} C 4 ρ (E) = M axCons card (E, ρ) C 5 ρ (E) = {M ∪ {ρ} : M ∈ M axCons (E, ) and M ∪ {ρ} is consistent} if this set is not empty, otherwise ρ.
As pointed out in [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF], the combination operators are rather similar to the techniques dedicated to inconsistency-tolerant reasoning from an inconsistent belief bases, than merging operators. Hence, combination operators do not exploit the repartition of the information between sources. Besides, they generally lose the original information provided by merged information sources. To overcome this inconvenient behavior of combination operators, one can define selection functions in the same way as the belief revision. Those selection functions try to select from the whole maximal consistent sets a group in order to attenuate as much possible the fusion result produced by combination operators.

Merging in a possibilistic logic setting

In a possibility theory framework, several fusion operators (e.g. [Dubois et al., 1992;Benferhat et al., 1997b;[START_REF] Benferhat | Salem Benferhat and Souhila Kaci. Fusion of possibilistic knowledge bases from a postulate point of view[END_REF]) have been proposed for merging pieces of information issued from different and potentially conflicting or inconsistent sources. In general, the possibilistic fusion process first consists in combining a set of possibility distributions that encode the information in order to obtain a unique possibility distribution that represents the global point of view of the available information, and then, it provides for each fusion operator used to combine possibility distributions its syntactic counterpart when merging possibilistic knowledge bases.

Let E = {B 1 , ..., B n } be n possibilistic knowledge bases to be merged where each of them is associated to a possibility distribution, denoted by π i . Let V (I) = π 1 (I), ..., π n (I) be a vector that groups for each interpretation all possibility degree π i (I). When aggregating possibility distributions, two main properties are required:

• If ∀i, π i (I) = 1 then π = 1 and, • If ∀i, π i (I ) ≤ π i (I) then π (I ) ≤ π (I).
The first property is called consistency property and it states that if the different sources agree that nothing prevents I to be the real world, then the fusion result must confirm the total possibility of I. Intuitively, this property ensures the consistency of the fusion result if the union of the merged belief bases is consistent. The second property is called monotonicity property and it affirms that if all information sources are agree that an interpretation I is at least as preferred as another interpretation I , then the fusion result must conserve this preference.

According to the properties presented above, a possibilistic merging approach first introduces a semantic merging operator to combine possibility distributions, represented by V (I), to obtain a unique possibility distribution, denoted by π . Then it provides the syntactic counterpart for this operator used to combine possibility distributions for merging possibilistic knowledge bases and obtain a unique base, denoted by B5 such that π B = π .

The basic aggregation modes proposed for possibilistic merging are the conjunction and the disjunction modes.

Conjunctive operators When all the information sources are considered as equally and fully reliable, then one can exploit the complementarity between the difference sources. Namely, when the available information is inconsistent from one source to another. Thus all values that are considered as impossible by one source but possible by the others are rejected. A conjunctive merging operator, denoted by ⊕ is defined as follows:

∀a ∈ [0, 1] , ⊕(a, 1) = ⊕(1, a) = a
The result of the syntactic counterpart of conjunctive merging operator is a possibilistic knowledge base obtained as follows:

B ⊕ = B 1 ∪ B 2 ∪ {(ϕ i ∨ φ j , 1 -⊕ (1 -a i , 1 -b j ))}
In this case, possibilistic fusion preserves all the available information when the union of merged sources is consistent. Now, when the information sources are considered as dependent, one can see the redundancy as a way of strengthening or confirmation. Whereas when the information sources are assumed to be independent, the redundancy may be ignored. Indeed, the conjunctive aggregation modes may be adapted to these two kinds of situations. In the first case (dependent information sources) the conjunctive aggregation modes are called idempotent aggregation operators and they satisfy the following property:

Part I, Chapter 2 -Belief change and uncertainty management ∀a ∈ [0, 1] , ⊕(a, a) = a
It is obvious that idempotent operators ignore redundancy. Namely, if two different sources provide the same possibility distribution, then the result of their aggregation is simply the same possibility distribution. As an example of idempotent conjunctive operator, the well-known minimum (Min) operator defined as follows:

π min (I) = min(π 1 (I), ..., π n (I))
As syntactic counterpart associated to π min (I), we have the following possibilistic knowledge base:

B ⊕ = B 1 ∪ B 2
In [START_REF] Benferhat | A principled analysis of merging operations in possibilistic logic[END_REF], it was shown that, in some conditions, that the conjunctive operator may be considered as a majority merging operator. Formally, there exists n such that

(B 1 ⊕ B n 2 ) |= B 2 where B n
2 is the aggregation of B 2 with ⊕ for n iterations.

Disjunctive operators When the different sources are conflicting and having the same reliability, it seems to be unsafe to privilege one source to another. Namely, if the union of two distinct knowledge bases B 1 and B 2 is inconsistent, then the fusion result should neither imply B 1 nor B 2 . Such situation requires to use a disjunctive operator, denoted by ⊗, and defined as follows:

∀a ∈ [0, 1] , ⊗(a, 1) = ⊗(1, a) = 1
As syntactic counterpart, one can associate to ⊗ the following possibilistic knowledge base:

B ⊗ = {(ϕ i ∨ φ j , 1 -⊕ (1 -a i , 1 -b j ))}
According to [START_REF] Benferhat | A principled analysis of merging operations in possibilistic logic[END_REF], a disjunctive operator may lead to a situation of total ignorance. To this end, another class of disjunctive operators, called regular operators was introduced. This class satisfies the following condition.

∀a = 1, ∀b = 1, ⊗ (a, b) = 1
Intuitively, if the different sources consider an information as somewhat certain, then when aggregating them this information must be also somewhat certain. Clearly, in the presence of inconsistency the fusion result recovers the common set between belief bases. Formally, a regular disjunctive operator is as follows:

B * ⊕ = B * 1 ∨ B * 2
where B * i is the standard knowledge bases associated to B by ignoring all the weights in B. Finally, note that the disjunctive regular operators are not appropriate when the sources are assumed to be consistent since these operators promote less informative beliefs.

Ontology merging Regarding ontology merging, there are few approaches on belief merging for description logics in the spirit of standard belief merging. However, the existing approaches (e.g. [Noy and Musen, 2000;Kotis et al., 2006;[START_REF] Moguillansky | [END_REF]) are mainly based on techniques proposed in ontology debugging which is closely related to inconsistency handling in propositional logic. Moreover, there is to the best of our knowledge no approach for merging prioritized DLs knowledge bases.

Inconsistency handling

In the artificial intelligence community, it is well-known that nonmonotonic reasoning and revision are considered as the two sides of the same coin [Makinson and Gärdenfors, 1989]. In general, revision or merging of different information sources may lead to inconsistency problems. Several approaches were proposed to deal with inconsistency in flat propositional logic knowledge bases (by a flat propositional logic knowledge base, we mean a base where all the formulas have the same priority) and prioritized knowledge bases. This is generally done through the definition of many suitable notions for consequence relations. There exist several attitudes when faced to inconsistency. In what follows, we recall the main approaches of inconsistency handling:

Restoring consistency Consists in getting rid of inconsistency by first computing the set of maximal or not maximally consistent subsets that restore consistency of the initial base, then using them to perform inference. Let K be an inconsistent knowledge base. Inference relation comes down first to compute maximally consistent subbases of K. A maximally consistent subset, denoted by K, is defined as follows:

• K ⊆ K • K is consistent • if K ⊂ K ⊆ K, then K is inconsistent Let M C(K)
denote the set of maximally consistent subsets of K. Many inference strategies are proposed to select bases from M C(K) in order to perform inference. The well-known inconsistencytolerant inference relations are: the universal inference [Rescher and Manor, 1970], existential inference [Rescher and Manor, 1970], argued inference [Benferhat et al., 1993b;Amgoud, 2005;[START_REF] Amgoud | Leila Amgoud and Henri Prade. Using arguments for making and explaining decisions[END_REF], cardinality-based inference [Benferhat et al., 1997a], safe inference [Benferhat et al., 1992]. An extension of these inference strategies is proposed when the knowledge base is layered or stratified (i.e. the formulas are attached with priorities) [Brewka, 1989;Benferhat et al., 1998a]. In (e.g. [START_REF] Lang | [END_REF][START_REF] Lang | [END_REF]Konieczny et al., 2005]) another approach, based on the notion of variable forgetting, is proposed.

Paraconsistent logics This consists in accepting inconsistency while coping with it by weakening inference relations. This can be done either by weakening logical connectors (see for instance [START_REF] Besnard | Quasi-classical logic: Nontrivializable classical reasoning from incosistent information[END_REF]Hunter, 1998;Dubois et al., 2003] for more details) or localizing inconsistency using, for instance, richer semantics (e.g. the multi-valued-semantics) (see for instance [START_REF] Konieczny | Three-valued logics for inconsistency handling[END_REF][START_REF] Konieczny | [END_REF] for more details).

Inconsistency analysis : A standard knowledge base is either considered as completely consistent or completely inconsistent. In case of inconsistency, one cannot deduce meaningful conclusions. As mentioned in Section 2.2.2, one way for reasoning is to use the subset of formulas induced from the inconsistency degree to do reasoning. In the same way, many inconsistency approaches were proposed for analysising and measuring the inconsistency of a knowledge base in order to make inference (for more details, see [START_REF] Hunter | [END_REF][START_REF] Hunter | [END_REF][START_REF] Grant | [END_REF][START_REF] Grant | [END_REF] for example).

Argumentation framework : Argumentation frameworks [START_REF] Besnard | [END_REF] offers a good way to reason and make decision from conflicting pieces of information. Given a set of conflicting information, argumentation helps to identify pros and cons argument for a particular conclusion [START_REF] Amgoud | Inferring from inconsistency in preference-based argumentation frameworks[END_REF][START_REF] Hunter | [END_REF]Bertossi et al., 2005b].

Ontology debugging In the context of ontologies, several approaches are proposed to handle inconsistency. As explained above, there are works that dealt with inconsistency by: i) restoring consistency (e.g. [START_REF] Kalyanpur | [END_REF]Flouris et al., 2006a;Lam et al., 2008;[START_REF] Corcho | [END_REF]); ii) using paraconsistent semantics (e.g. [Ma et al., 2011;[START_REF] Zhou | [END_REF]); and iii) measuring inconsistency (e.g. [START_REF] Qi | Measuring incoherence in description logic-based ontologies[END_REF]Ma and Hitzler, 2010]); and using argumentation (e.g. [START_REF] Zhang | An argumentation framework for description logic ontology reasoning and management[END_REF][START_REF] Croitoru | [END_REF]) A crucially important problem that arises in Ontology-Based Data Access is how to manage inconsistency; otherwise the knowledge base is meaningless and useless. In such setting, inconsistency is defined with respect to some assertions that contradict the terminology. Typically, a TBox is usually verified and validated while the assertions can be provided in large quantities by various and unreliable sources and may contradict the TBox. Moreover, it is often too expensive to manually check and validate all the assertions. This is why it is very important in OBDA to reason in the presence of inconsistency. This consists in accepting and keeping the inconsistencies in the knowledge base while coping with them when performing inference (i.e. while answering queries).

Regarding DL-Lite, and especially within OBDA setting, existing works [Giacomo et al., 2007;[START_REF] Lembo | [END_REF]Bienvenu, 2012;[START_REF] Bienvenu | Tractable approximations of consistent query answering for robust ontology-based data access[END_REF], basically inspired by the approaches proposed in the database area, tried to deal with inconsistency in DL-Lite by proposing and adapting several inconsistency-tolerant inference methods. All the proposed approaches are based on the notion of repair (restoring consistency) which is closely related to the notion of database repair defined in order to answer queries raised to inconsistent databases. A repair of a database contradicting a set of integrity constraints is a database obtained by applying a minimal set of changes in order to restore consistency. This notion of repair was extended to the DL-Lite setting by defining assertional-based repair for DL-Lite knowledge bases which is simply a maximal assertional subbase consistent with the terminology. In the DL-Lite framework, the notion of assertional-based reparation is in the sprit of maximal consistent subsets defined in propositional logic. Clearly an assertional-based reparation is a maximal assertional subbase of the ABox that is consistent with the TBox.

In this thesis, we are interested in repairing or restoring consistency for DL-Lite knowledge bases. Many inference strategies will be discussed in Chapter 5, within an OBDA setting, and in Chapter 7 when the ABox is prioritized.

Conclusion

In the first part of this chapter, we recalled the basic concepts of possibility theory which offers a natural way to deal with ordinal and qualitative uncertainty. We then reviewed the main extensions of description logics to handle uncertainty/imprecision when specifying ontologies. The second part of this chapter introduced the belief change problem (merging and revision) and the different techniques for handling inconsistency in propositional logic settings while recalling relevant related works done in the description logics area. The rest of this thesis investigates these issues within DL-Lite frameworks, especially when the knowledge base is prioritized. To this end, we need to extend the DL-Lite languages to support uncertainty or priority between axioms that represent a domain of interest. Next chapter studies this extension using a possibility theory setting.

MIN-BASED POSSIBILISTIC DL-Lite

Introduction

Nowadays, in real world applications, knowledge is usually affected with uncertainty and imprecision. Recently, several works have been proposed to deal with probabilistic and non-probabilistic uncertainty [Dubois et al., 2006;Lukasiewicz et al., 2012a] on the one hand and to deal with fuzzy information [START_REF] Bobillo | Generalized fuzzy rough description logics[END_REF]Lukasiewicz and Straccia, 2009] on the other hand. A particular attention was given to fuzzy extensions of DLs (e.g. [START_REF] Bobillo | Delorean: A reasoner for fuzzy OWL 2[END_REF]Bobillo et al., 2013;Pan et al., 2007;Straccia, 2006b;[START_REF] Straccia | Umberto Straccia. Foundations of Fuzzy Logic and Semantic Web Languages[END_REF]. Besides, some works are devoted to possibilistic extensions of DLs (e.g. [Dubois et al., 2006;Hollunder, 1995;Qi et al., 2011]) which are basically based on standard reasoning services.

This chapter concerns the development of uncertainty-based DL-Lite using possibility theory. We focus on main fragments of DL-Lite. Namely DL-Lite core which is the simplest DL-Lite language, DL-Lite F and DL-Lite R which underlie the OWL2-QL language. Indeed, we first develop our study on the extension of DL-Lite core within a possibility theory setting. The restriction to DL-Lite core is mainly motivated by the clarity and lightness of the language on which we can easily show how the extension of DL-Lite to the possibility theory can be achieved. We then extend our approach to richer DL-Lite languages such as DL-Lite F or DL-Lite R .

An important question addressed in this chapter is: "can one extend the expressive power of DL-Lite, to deal with possibilistic uncertain information, without increasing the computational cost?" This chapter provides a positive answer to this question.

Note first that some existing extensions of possibilistic DLs [Qi et al., 2007b;Qi et al., 2007a] may need some extra computational costs (although their inference process is still in P). For instance, in some existing approaches (e.g. [Qi et al., 2007b;Qi et al., 2007a]), computing inconsistency degrees comes down to achieve log 2 (n) calls where n is the size of the uncertainty scale1 ) to the inconsistency checking in standard (without uncertainty) DLs. This method, based on a dichotomy search, is closely related to the method proposed in [START_REF] Dubois | [END_REF] for computing inconsistency degrees of a possibilistic propositional knowledge base (see Section 2.2.2).

This chapter departs from several approaches for computing the inconsistency degrees of a knowledge base and follows another direction to achieve reasoning tasks in possibilistic DL-Lite. The idea is to slightly modify the algorithm for checking the inconsistency of a knowledge base used in standard DL-Lite by propagating the uncertainty degrees associated with axioms. The uncertainty propagation does not generate any extra computational cost.

Note that a tool for representing and reasoning in possibilistic DL-Lite framework is implemented. A description of this tool is provided in the appendix A.

The rest of this chapter is organized as follows: Section 3.2 rephrases the possibility theory framework over DL-Lite interpretations. Section 3.3 discusses the possibilistic extension of DL-Lite core , denoted π-DL-Lite core , where we present its syntax and its semantics. Section 3.4 introduces the socalled π-negated closure of a π-DL-Lite core knowledge base. Section 3.5 gives a method to compute Part II, Chapter 3 -Min-based possibilistic DL-Lite the inconsistency degree of a π-DL-Lite core knowledge base using query evaluations. Section 3.6 extends possibilitic DL-Lite core to DL-Lite F and DL-Lite R , two important fragments of DL-Lite family. Section 3.7 studies different standard possibilistic inferences. Section 3.8 addresses the problem of query answering within π-DL-Lite framework. Section 3.9 deals with related works and Section 3.10 concludes the chapter.

Possibility distribution over DL-Lite interpretations

In this section, we rephrase the semantics of possibility theory over DL-Lite interpretations. Let L be a finite DL-Lite description language as defined in Section 1.4, Ω be a universe of discourse (here represented by a set of DL-Lite interpretations) and I = (∆ I , . I ) ∈ Ω be a DL-Lite interpretation.

Possibility distribution

In the context of possibilistic DL-Lite, a possibility distribution is a mapping, denoted by π, from the universe of discourse Ω to the unit interval [0, 1]. It assigns to each interpretation I ∈ Ω a possibility degree π(I) ∈ [0, 1] that represents its compatibility or consistency degree with respect to the set of available knowledge. When π(I) = 1, we say that I is totally possible and it is fully consistent with the set of available knowledge. When π(I) = 0, we say that I is impossible and it is fully inconsistent with the set of available knowledge. Two special cases exist:

1. Total ignorance when ∀I ∈ Ω, π(I) = 1.

Complete knowledge when

∃I ∈ Ω, π(I ) = 1 and ∀I ∈ Ω, I = I, π(I) = 0.
A possibility distribution π is said normalized if there exists at least one totally possible interpretation, namely ∃I ∈ Ω such that π(I) = 1, otherwise, we say that π is sub-normalized. The concept of normalization reflects the presence of conflicts in the set of available information. For two interpretations I and I , we say that I is more consistent or more compatible than I (with respect to the available knowledge) if π(I) > π(I ).

Possibility and necessity measures

Let us consider M to be a subset of Ω. Let M be the complementary of M , namely M = Ω \ M . In a standard possibility theory, given a possibility distribution π, one can define two measures from 2 Ω to the interval [0, 1] which discriminate between the plausibility and the certainty regarding the subset M . These two measures are:

Possibility measure A possibility measure, denoted by Π, is a function that assigns to each M ⊆ Ω a degree between [0, 1]. Given a possibility distribution π, Π(M ) is defined as:

Π(M ) = sup{π(I) : I ∈ M }.
Π (M ) evaluates to what extent the subset M is compatible with the available knowledge encoded by the possibility distribution π. When Π(M )=1, we say that M is totally possible if Π(M ) = 0 and M is somewhat possible if Π(M ) ∈ ]0, 1[. When Π(M )=1 and Π(M )=1, we say that there is a total ignorance about M . A possibility measure Π satisfies the following properties for normalized possibility distributions:

3.2. Possibility distribution over DL-Lite interpretations ∀M ⊆ Ω, ∀L ⊆ Ω, Π(M ∪ L) = max(Π(M ), Π(L)),
and

∀M ⊆ Ω, ∀L ⊆ Ω, Π(M ∩ L) ≤ min(Π(M ), Π(L)).
Necessity measure A necessity measure, denoted by N , is a function dual to Π. It is defined from Π as follows:

N (M ) = 1 -Π(M ).
N (M ) evaluates to what extent M is certainty entailed from available knowledge encoded by π.

When N (M )=1, we say that M is certain. When N (M ) ∈ ]0, 1[, we say that ϕ is somewhat certain.

When N (M ) = 0 and N (M ) = 0, we say that there is a total ignorance about M .

A necessity measure N satisfies the following properties for normalized possibility distributions:

∀M ⊆ Ω, ∀L ⊆ Ω, N (M ∩ L) = min(N (M ), N (L)),
and

∀M ⊆ Ω, ∀L ⊆ Ω, N (M ∪ L) ≥ max(N (M ), N (L)). Remark 3.1.
Clearly not all subsets of Ω, the universe of discourse defined over a set of interpretations, represent axioms of a DL-Lite language. Namely, if M is a subset of Ω, then it may happen that there is no φ, an axiom of a DL-Lite language, such that M = [φ] where [φ] denotes the models of φ. This is due to the fact that DL-Lite is not a very expressive language. For instance, assume that our vocabulary is composed of one concept A and two individuals a 1 and a 2 . Assume that we have two interpretations

I 1 = (∆ I = {a 1 , a 2 }, . I 1 ) and I 2 = (∆ I = {a 1 , a 2 }, . I 2 ) such that A I 1 = {a 1 } and A I 2 = {a 2 }.
Clearly, {I 1 , I 2 } does not correspond to any axiom of our DL-Lite language, since {I 1 , I 2 } intuitively encodes the formula A(a 1 ) ∨ A(a 2 ), while the disjunction operator between two assertions is not allowed in the DL-Lite language.

In the following, possibility and necessity measures are assumed to be only defined over a DL-Lite language. If φ is an axiom of the DL-Lite language, we use [φ] to denote the set of models of φ, we define its associated possibility measure and its associated necessity measure respectively as follows: where I |= φ means that I is not a model of φ. Remark 3.2. In standard propositional possibilistic logic, the necessity measure is the dual of the possibility measure and it is defined by

Π([φ]) = sup
N ([ψ]) = 1 -Π([¬ψ])
where ψ is a propositional formula and [ψ] is its associated propositional models (see Section 2.2.2). In possibilistic DL-Lite, the necessity measure cannot be defined as the dual of the possibility measure because the negation of a DL-Lite axiom is not allowed (except if φ denotes basic facts, i.e membership assertions of the form A(a) or P (a, b)).

Part II, Chapter 3 -Min-based possibilistic DL-Lite

Possibilistic DL-Lite core

In this section, we provide a possibilistic extension of DL-Lite core , denoted by π-DL-Lite core . We first present the syntax of π-DL-Lite core . We then show how to generate the possibility distribution associated with a π-DL-Lite core knowledge base. The section also contains some properties of π-DL-Lite core .

Syntax of π-DL-Lite core

Let us consider L core a DL-Lite core description language recalled in Section 1.4. A π-DL-Lite core knowledge base is defined as follows:

Definition 3.1. A π-DL-Lite core knowledge base K = { φ i , α i : 1, ...,
n} is a finite set of possibilistic axioms of the form φ, α where φ is an axiom expressed in L core language and α ∈ ] 0, 1] is the necessity (i.e. certainty) degree of φ.

Only somewhat certain information (namely α > 0) is explicitly represented in a π-DL-Lite knowledge base. A weighted axiom φ, α means that the certainty degree of φ is at least equal to α. The higher the degree α the more certain is the axiom or the fact. The degree α can be associated either with an inclusion assertion between concepts (TBox), or with a membership assertion (ABox). A π-DL-Lite knowledge base K will also be represented by a couple K= T , A where both elements in T and A are at least somewhat certain. Note that in the definition of possibilistic-DL knowledge base proposed by Hollunder in [Hollunder, 1995], a possibilistic axiom is attached with a possibility value or a necessity value. Here, we only represent certainty using necessity values.

Note that, if we consider ∀α i , α i = 1 then we represent a classical DL-Lite knowledge base:

K * = {φ i : φ i , α i ∈ K}.
Example 3.1. Let Loyal, Discount, N eedBased, Impulse and W andering be five atomic concepts that represent different types of customers. Let FidelityService be an atomic concept that represents fidelity service to be accorded to loyal customers. Let satisf iedBy be an atomic role that represents whether a loyal customer is satisfied by a fidelity service. We consider the following π-DL-Lite knowledge base where we use an ordinal uncertainty scale {0, γ 1 , ..., γ n , 1} with 0<γ 1 <γ 2 <...<γ n <1 and its possibilistic TBox T contains the following axioms:

Discount Loyal, γ 6 N eedBased ¬Loyal, γ 2 Impulse ¬N eedBased, γ 10 ∃satisf iedBy -F idelityService, 1 Impulse Discount, γ 3 N eedBased Discount, γ 8 W andering Impulse, γ 5 ∃satisf iedBy Loyal, 1
and its possibilistic ABox A contains the following axioms:

W andering(John), γ 4 N eedBased(John), γ 9
Loyal (M ary), γ 1 satisf iedBy(John, Gif ts), γ 11 This running example will be used in the rest of the chapter.

In a π-DL-Lite knowledge base, the necessity degree attached with an axiom reflects its confidence and evaluates to what extent this axiom is considered as certain. For instance in Example 3.1, the axiom Discount Loyal, γ 6 states that "a Discount customer may be a Loyal customer with a certainty degree equal or greater than γ 6 ". The degree 1 is used to represent fully certain pieces of information. The semantics of π-DL-Lite core is given by a possibility distribution, denoted by π K , defined over the set of all interpretations I = (∆ I , . I ) of a DL-Lite language L core (see Section 3.2). As in standard possibilistic logic [START_REF] Dubois | [END_REF], given a π-DL-Lite core knowledge base K, the possibility distribution induced by K is defined as follows:

Definition 3.2. For every I ∈ Ω, π K (I) = 1 if ∀ φ i , α i ∈ K, I |= φ i 1 -max{α i : φ i , α i ∈ K, I |= φ i } otherwise
where |= is the satisfaction relation of DL-Lite formulas recalled in Section 1.4. φ i , α i ∈ K means that φ i , α i either belongs to the TBox T or to the ABox A of K.

Example 3.2. [Example 3.1 continued] Using Definition 3.2, Table 3.1 below gives possibility degree of three interpretations I 1 , I 2 and I 3 . We assume that ∆ I ={John, M ary, Gif ts} is the same for the three interpretations:

In this example, we can see that the interpretation I 1 does not satisfy N eed-Based ¬Loyal,γ 2 , N eedBased Discount,γ 8 and W andering Impulse,γ 5 . The interpretation I 2 does not satisfy N eedBased ¬Loyal,γ 2 and W andering(John),γ 4 . The interpretation I 3 does not satisfy N eedBased ¬Loyal,γ 2 and (Impulse ¬N eedBased,γ 10 . Hence, none of these interpretations is a model of K.

A π-DL-Lite core knowledge base K is said to be consistent if its associated possibility distribution π K is normalized, namely there exists an interpretation I such that π K (I)=1. Otherwise, K is said to be inconsistent and its inconsistency degree is defined semantically as follows:

Definition 3.3. The inconsistency degree of a π-DL-Lite core knowledge base K, denoted by Inc(K), is semantically defined as follows:

Inc(K) = 1 -max I∈Ω {π K (I)}.
If Inc(K) = 1 then K is fully inconsistent and if Inc(K)=0 then it is simply said to be consistent. One can easily check that Inc(K) = 1 -Π([ ]), where Π is the possibility measure defined in Section 3.2 and is a tautology.

Part II, Chapter 3 -Min-based possibilistic DL-Lite Example 3.3. [Example 3.2 continued] One can check that the inconsistency degree of K according to π K is: Inc(K)=1 -max I∈Ω {π K (I)}=γ 4 , and hence K is inconsistent (in fact, there is no way to find an interpretation that satisfies K with a degree greater than γ 4 ).

The inconsistency degree allows to define different inference processes as follows: Definition 3.4 (Flat inference). Let K be a π-DL-Lite core knowledge base, π K be the possibility distribution associated with K and φ be a DL-Lite axiom. K |= π φ if and only if N π (φ) > Inc(K) where N π is the necessity measure induced by π K .

Here, what is important is just to know whether the conclusion is plausible or not. The following definition extends Definition 3.4, by requiring that a conclusion should be entailed with some degree. Definition 3.5 (Weighted inference). Let K be a π-DL-Lite core knowledge base, π K be the possibility distribution associated with K and φ be a DL-Lite axiom.

K |= π (φ, α) if and only if N π (φ) = α > Inc(K)
where N π is the necessity measure induced by π K .

A method based on inconsistency computation for implementing inferences of Definitions 3.4 and Definition 3.5 is given in Section 3.7. Besides, the two kinds of inference detailed in this chapter are :

• Flat entailment, from which one is only interested to know whether an axiom is entailed or not from a possibilistic DL-Lite knowledge base,

• Weighted entailment, where given a weight α, one is interested whether an axiom can be inferred with this specified degree. Now if one is interested to compute the maximal degree of entailment of an axiom, we can use dichotomic search. The dichotomic search is applied over the set of all degrees used in the knowledge base (in both weighed TBox and weighted ABox).

Remark 3.3. In a propositional possibilistic logic setting, each possibilistic knowledge base induces a unique joint possibility distribution and each possibility distribution can be represented by a possibilistic knowledge base. Although each π-DL-Lite knowledge base induces a unique joint possibility distribution, the converse does not always hold.

Consider again the example where we only have one concept A and two individuals a 1 and a 2 . Consider four interpretations I 1 , I 2 , I 3 and I 4 having the same domain ∆ I = {a 1 , a 2 } where (A)

I 1 = {a 1 }, (A) I 2 = {a 2 }, (A) I 3 = {a 1 , a 2 } and (A) I 4 = ∅. Assume that π(I 1 ) = π(I 2 ) = 1 and π(I 3 ) = π(I 4 ) = .5.
One can check that there is no π-DL-Lite knowledge base such that π K =π. This remark has no incidence on the results of this chapter. It simply points out some differences between standard propositional possibilistic logic and possibilistic DL-Lite core .

Logical properties of π-DL-Lite core

In the following, we present some properties of π-DL-Lite core . These properties simply show that one can add conjunctions (resp. disjunctions) in the right side (resp. left side) of weighted inclusion axioms. Such results already hold in standard DL-Lite core [Calvanese et al., 2007a] and in standard possibilistic logic [START_REF] Dubois | [END_REF]. For the sake of clarity, we rephrase them for possibilistic π-DL-Lite core .

Proposition 3.1 shows that a complex inclusion axiom of the form B 1 C 1 C 2 , α can be splitted into two elementary inclusion axioms that can be added to the π-DL-Lite core knowledge base without modifying its possibility distribution. 

Proposition 3.1. Let K = { B C 1 C 2 , α , A} and K = { B C 1 , α , B C 2 ,
I ⊆ (C 2 ) I . Hence (B) I ⊆ (C 1 ) I ∩ (C 2 ) I which means that I |= B C 1 C 2 , α . Therefore π K (I) = π K (I).
The other cases, where

I |= (B C 1 C 2 , α) or I |= (B C 1 , α) and I |= (B C 2 , α) follow similarly.
Proposition 3.2 shows that a complex inclusion axiom of the form (B 1 B 2 C, α) can be splitted into two elementary inclusion axioms that can be added to a π-DL-Lite core knowledge base without modifying its possibility distribution.

Proposition 3.2. Let K = { B 1 B 2 C, α , A} and K = { B 1 C,α , B 2
C, α }, A} be two π-DL-Lite core knowledge bases. Then K and K induce the same possibility distribution, namely

∀I ∈ Ω, π K (I) = π K (I).
Proof of Proposition 3.2. The proof of Proposition 3.2 is similar to the one of Proposition 3.1.

Possibilistic negated closure in π-DL-Lite core

The aim of this section is to define the so-called π-negated closure of a π-DL-Lite core knowledge base. This notion is crucial for characterizing the concepts of consistency and inference from a π-DL-Lite core knowledge base.

Rules used to obtain π-negated closure

A possibilistic π-DL-Lite core TBox T ={T p , T n } can be viewed as composed of positive inclusion axioms of the form B 1 B 2 , α and negative inclusion axioms of the form B 1 ¬B 2 , α . The possibilistic negated closure, denoted by π-neg(T ), will contain all the possibilistic negated axioms of the form B 1 ¬B 2 , α that can be derived from T . Roughly speaking, the set π-neg(T ) is obtained by applying a set of three rules that extend the ones defined in standard DL-Lite core when axioms are weighted with certainty degrees.

At the beginning π-neg(T ), is set to an empty set. The first rule states that negative axioms that are explicitly stated in K are trivially entailed from K, and hence can be added to π-neg(T ). The second rule expresses transitivity relation induced by the inclusion assertion relation. As we will see in Proposition 3.3, these rules (Rules 3.1-3.3) are enough for π-DL-Lite core . In particular, these rules will be useful to equivalently define an efficient inference using directly π-neg(T ). As it will be shown later, the minimum operation used in the rules for propagating certainty degrees is justified by the fact that the joint possibility distribution will not be affected if the derived inclusion relations are added to the knowledge base. Lastly, when the degrees α i 's are equal to 1, then π-neg(T ) simply collapses with the standard negated closure defined for standard DL-Lite core knowledge bases. In fact, π-neg(T ) extends standard DL-Lite core when one only deals with fully certain pieces of information. • Impulse Discount,γ 3 and Discount ¬N eedBased,γ 2 lead to adding Impulse ¬N eedBased,γ 2 to π-neg(T ).

Rule 3.2. If B 1 B 2 , α 1 ∈ T and B 2 ¬B 3 , α 2 ∈π-neg(T ) then add B 1 ¬B 3 , min(α 1 , α 2 ) to π-neg(T ).
Rule 3.3. If B 1 B 2 , α 1 ∈ T and B 3 ¬B 2 , α 2 ∈π-neg(T ) then add B 1 ¬B 3 , min(α 1 , α 2 ) to π-neg(T ).
• N eedBased Discount,γ 8 and Discount ¬N eedBased,γ 2 , lead to adding N eedBased ¬N eedBased,γ 2 to π-neg(T ).

Next lemma deals with redundancy and simply states that an axiom does not need to appear several times in a knowledge base. It is enough to keep the one having the highest degree. 

= (T \ { B 1 B 2 , α 1 , B 1 B 2 , α 2 }) ∪ { B 1 B 2 , max(α 1 , α 2 ) } are equivalent in the sense that for all I ∈ Ω, π K (I) = π K (I).
2. Similarly, assume that X, α 1 and X, α 2 belong to A. Then K and K = T , A where A = (A\ { X, α 1 , X, α 2 })∪{ X, max(α 1 , α 2 ) } are equivalent in the sense that for all I ∈ Ω, π K (I) = π K (I).

Proof of Lemma 3.1. The proof of the lemma immediately follows from the definition of the possibility distribution associated with a π-DL-Lite core knowledge base. This subsection gives some properties of the π-negated closure of a π-DL-Lite core . Given K= T , A a π-DL-Lite core knowledge base, we define the α-cut of K (resp. T and A), denoted by K ≥α (resp. T ≥α and A ≥α ), the subbase of K (resp. T and A) composed of axioms having weights α i that are at least equal to α and the strict α-cut of K (resp. T and A), denoted by K >α (resp. T >α , A >α ), as a subbase of K (resp. T and A) composed of axioms having weights α i strictly greater than α.

Lemma 3.2. Let K = T , A be a π-DL-Lite core knowledge base. Let α 1 and α 2 be two degrees in [0, 1] such that α 1 > α 2 . Then:

π-neg(T ≥α 1 )⊆π-neg(T ≥α 2 )
Proof of Lemma 3.2. The proof is immediate. Indeed, to obtain π-neg(T ≥α 2 ), one may apply Rules 3.1-3.3 to all axioms of T ≥α 2 and implicitly T ≥α 1 , since T ≥α 1 ⊆ T ≥α 2 . This leads to trivially obtain π-neg(T ≥α 1 ) by re-applying again Rules 3.1-3.3 on remaining weighted axioms of T ≥α 1 .

The following lemma states that deriving negative axioms with weights greater or equal to α can be equivalently done either by deriving all weighted negative axioms then select those having a weight greater or equal to α, or select initial axioms from K having a weight greater or equal to α then apply the negative closure of this subbase of K. Lemma 3.3. Let K be a π-DL-Lite core knowledge base. Let π-neg(T ) be the possibilistic negative closure of K. Then:

π-neg(T ) ≥α =π-neg(T ≥α )
Proof of Lemma 3.3. The proof of this lemma can be obtained by first noticing that to compute π-neg(T ) one may start with only axioms having a weigh greater or equal to α. This leads to π-neg(T ≥α ). Now, applying Rules 3.1-3.3 to axioms with weights strictly less than α leads to derive negative axioms with weights also less than α. Hence, they will not belong to π-neg(T ) ≥α . Proposition 3.3 states that adding all negative axioms of π-neg(T ) to T does not change the induced possibility distribution. Proposition 3.3. Let T = {T p , T n } and π-neg(T ) be the negated closure of T obtained using Rules (3.1-3.3). Then K = T , A and its 

K = T ∪ π -neg(T ), A induce the same possibility distribution, namely ∀I ∈ Ω : π K (I) = π K (I).
I |= B 2 ¬B 3 , follows similarly). Let K = K \ { B 1 B 2 , α 1 , B 2 ¬B 3 , α 2 }. We have: π K (I) = min(π K (I), 1 -α 2 ) = min(π K (I), 1 -α 2 , 1 -min(α 1 , α 2 )) = π K (I) 3. I |= B 1 B 2 and I |= B 2 ¬B 3 . Again let K = K \ { B 1 B 2 , α 1 , B 2 ¬B 3 , α 2 }.
We have

π K (I) = min(π K (I), 1 -α 1 , 1 -α 2 ) = min(π K (I), 1 -α 1 , 1 -α 2 , 1 -min(α 1 α 2 )) = π K (I).

Checking inconsistency degrees

In this section, we show how to compute the inconsistency degree of a π-DL-Lite core knowledge base using query evaluations.

Additional properties of π-neg(T )

In the previous section (Section 3.4), we showed that adding π-neg(T ) to T does not modify the joint possibility distribution (Proposition 3.3). This subsection shows that computing the inconsistency degree of K= T , A comes down to compute the inconsistency degree of K = π-neg(T ),A .

We first introduce the two following technical lemmas.

Lemma 3.4. Let K be a π-DL-Lite core knowledge base. Let K * be the standard DL-Lite core knowledge base obtained from K by ignoring the weights associated with axioms of K. Let cln(T * ) be the negated closure (NI-closure) defined in [Calvanese et al., 2007a]. Then:

cln(T * ) = {B 1 ¬B 2 : B 1 ¬B 2 , α ∈ π-neg(T )}
This lemma states that our definition of π-neg(T ) recovers the one used in standard DL-Lite core . Namely, we derive the same set of negative axioms as in standard DL-Lite core knowledge base. However, in our approach the negative axioms are attached with certainty degrees.

Proof of Lemma 3.4. The proof of Lemma 3.4 follows from the fact that removing weights from Rules 3.1-3.3 gives exactly the same rules used in [Calvanese et al., 2007a] for deriving the negated closure, denoted by cln(T ), of a standard DL-Lite core knowledge base B = T , A . Proposition 3.4. Recall that in standard DL-Lite, a DL-Lite core knowledge base K s = T s , A s is inconsistent if and only if the knowledge base cln(T s ), A s is inconsistent, where cln(T s ) is the negative closure of K s defined in [Calvanese et al., 2007a] (see Section 1.4).

Inc(K) = Inc(K ) Proof of
Let K = T , A be a π-DL-Lite core knowledge base. Now assume that Inc(K) = α. This means that K >α is consistent and K ≥α is inconsistent. This also means that (using the above lemmas):

cln(T ), A >α is consistent,
and cln(T , A ≥α is inconsistent. Now, using Lemma 3.5, this also means that:

π -neg(T ), A >α is consistent while π -neg(T ), A ≥α is inconsistent,
which means that the inconsistency degree of K = π -neg(T ), A is equal to α. The converse follows in a similar way.

Proposition 3.4 is important since it provides a way to compute the inconsistency degree of a π-DL-Lite core knowledge base. Indeed, computing the inconsistency degree of K = T , A is reduced to computing the inconsistency degree of K = π -neg(T ), A .

Computing inconsistency degrees in π-DL-Lite core

We now provide a characterization of the inconsistency degree of a π-DL-Lite core knowledge base by only focusing on π-neg(T ),A . First recall that the ABox only contains positive membership assertions (facts). Hence, the ABox alone is always consistent. Similarly, the TBox π-neg(T ) alone (namely, when ABox=∅) is also consistent. Indeed, it is easy to define an interpretation I which is a model of π-neg(T ). For each B i ¬B j , α ∈π-neg(T ), we let

(B i ) I = ∅ if B i is a concept and (R) I = ∅ if B i is of the form ∃R or ∃R -and
R is a role. I is then trivially a model of π-neg(T ). Hence, pieces responsible of inconsistency should involve both elements from π-neg(T ) and A.

We now introduce the concept of a conflict and to what extent its elements are conflicting.

Definition 3.6. A conflict C of π-neg(T ),A is a subbase of π-neg(T ),A of the form { B 1 ¬B 2 ,α 1 , X,α 2 , Y ,α 3 } such that: • B 1 ¬B 2 ,α 1 ∈π-neg(T ).
• X,α 2 ∈A and Y ,α 3 ∈A with X and Y are such that there exist two individuals a and b where:

X=      A(a) if B 1 is a basic concept A, P (a, b) if B 1 is of the form ∃P and P is a role, P (b, a) if B 1 is of the form ∃P -and P is a role. Part II, Chapter 3 -Min-based possibilistic DL-Lite Y =      A(a) if B 2 is a basic concept A , P (a, b) if B 2
is of the form ∃P and P is a role, P (b, a) if B 2 is of the form ∃P -and P is a role.

Besides, an inconsistency problem is always defined with respect to some ABox assertions and a TBox axiom, since a TBox may be incoherent but never inconsistent. Before introducing the property of conflict in π-DL-Lite core , let us first remind the Calvanese et al. result [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF].

Lemma 3.6. Let K = T , A be a DL-Lite knowledge base. If K is inconsistent, then there exists a subset A 0 ⊆ A with at most two elements, such that T ∪ A 0 is inconsistent.

The following lemma relates the concept of conflict given in Definition 3.6 with a standard definition of conflicts.

Lemma 3.7. C is a conflict of π-neg(T ),A (using Definition 3.6) if and only if it is a minimal inconsistent subset of π-neg(T ),A .

Proof of Lemma 3.7. Assume that C is a conflict in the sense of Definition 3.6. By definition, C is inconsistent. • Now let us show the converse. Namely, assume that C is a minimal inconsistent subset of πneg(T ),A . Since π-neg(T ) and A taken alone are consistent, then C necessarily contains at least an element of π-neg(T ) and at least an element from A. Besides, from Lemma 3.6, there exists at most two elements from A in C. If there exists exactly one element X,α 2 from A ∈ C, then there exists necessarily one negative axiom B 1 ¬B 1 , α 1 in π-neg(T ) which is inconsistent with X, α 2 . This is a particular case of Definition 3.6 where B 1 = B 2 , X = Y and α 2 = α 3 . Now, if there are two elements X, α 2 and Y, α 3 from A in C then necessarily there exists again one axiom B 1 ¬B 2 , α 1 from T (otherwise C will not be minimal). We get again the characterization of conflicts given in Definition 3.6.

• Let us show that C is minimal. Indeed, let C = { B 1 ¬B 2 , α 1 , X, α 2 , Y, α 3 }. First note that if B 1 = B 2 (hence X = Y and α 2 = α 3 ) then clearly { B 1 ¬B 1 , α 1 } and X, α 2 are individually consistent. More generally, when B 1 = B 2 , we have C \ { B 1 ¬B 1 , α 1 } is consistent since it is only composed of assertional facts. Similarly, C \ { X, α 2 } (resp. C \ { Y, α 2 }) is also consistent. Indeed if X = B 1 (a) (the
A conflict is clearly an inconsistent subset of information. It is minimal (up to a particular case where B 1 = B 2 ). Indeed, removing any element of a conflict restores consistency. A particular case is when B 1 ¬B 1 belongs to π-neg(T ). This corresponds to the situation of an unsatisfiable concept. Namely, there is no way to find an individual that belongs to B 1 . In this case, a conflict is only composed of two elements. A conflict hence involves one negative axiom from π-neg(T ) and one or two membership assertions. The following definition introduces the concepts of the degree of a conflict.

Definition 3.7. Let C be a conflict. We define the degree of conflict, denoted by Deg(C), as:

Deg(C) = min(α 1 , α 2 , α 3 ),
where We are now ready to give a characterization of Inc(K) using conflicts and their degrees:

(B 1 ¬B 2 , α 1 ) ∈ C, (X, α 2 ) ∈ C and (Y, α 3 ) ∈ C,
Proposition 3.5. Let K = T , A be a π-DL-Lite core knowledge base and π-neg(T ) be its negated closure. Then:

Inc(K) = Inc( π -neg(T ), A ) = max{Deg(C) : C is a conflict of π -neg(T ), A }
Proof of Proposition 3.5. Assume that Inc( π-neg(T ),A ) = α. This means that:

π -neg(T ), A >α is consistent but π -neg(T ), A ≥α is inconsistent
This also means that there exists a conflict C ∈ π-neg(T ), A ≥α . Indeed, to build a conflict C from the inconsistent knowledge base π-neg(T ), A ≥α , it is enough to proceed iteratively by removing one element at once until reaching minimal inconsistency. More precisely, i) we first let

C = π-neg(T ), A ≥α , ii) if there exists x ∈ C such that C \ {x} is inconsistent, then C = C \ {x}, iii) repeat step (ii) until there is no x such that C \ {x} is inconsistent. C is then a conflict. Besides, Deg(C) = α. Otherwise π-neg(T ), A >α would be inconsistent. Now, the fact that π -neg(T ), A >α is consistent means that there is no conflict C that belongs to π -neg(T ), A >α . Hence, max{Deg(C) : C is a conflict of π -neg(T ), A } = α.
The converse is also straightforward. Indeed, let max{Deg(C) : C is a conflict of π-neg(T ), A } = α. This means that π -neg(T ), A >α is consistent. Otherwise there exists a conflict C ∈ πneg(T ), A >α with Deg(C) > α (which is impossible).

This also means that π -neg(T ), A ≥α is inconsistent. Therefore, by definition, Inc( π -neg(T ), A = α.

Example 3.10. [Example continued] From Example 3.9, one can easily check that Inc( π-neg(T ), A ) = γ 4 .

Part II, Chapter 3 -Min-based possibilistic DL-Lite Proposition 3.5 is important since it provides a natural way to compute Inc( π -neg(T ), A ). A contradiction is present when the same individual belongs to two concepts that compose a negated axiom (i.e. an axiom of π-neg(T )). The idea in computing the inconsistency degree is to evaluate over A suitable weighted queries expressed from π-neg(T ) to exhibit whether the ABox A contains or not contradictions and to compute the inconsistency degree.

The first idea in the algorithm is to first remove the redundancies from both the TBox and ABox. Then we compute for each π-negated axiom B 1 ¬B 2 ,α in π-neg(T ) all pairs of instances from the ABox A that contradict this π-negated axiom. To this end, we will use FOL-reducibility property of standard DL-Lite (see Section 1.4). It consists in evaluating FOL queries over A stored in a database using for instance an SQL engine in order to detect contradictions. Note that for an efficient evaluation of queries, we remove the redundancies from that ABox. This does not affect the results according to Lemma 3.1.

We will first need to use some standard notations. ψ denotes a translation function that takes as argument a possibilistic negative axiom B 1 ¬B 2 ,α and produces a weighted FOL query of the form q, α . Note that the semantics of q is similar to the one used in standard DL-Lite. Here we simply use the notation q, α in order to take into account the weight α when computing inconsistency degree. The notation σ i used below simply represents the degree attached to an assertion A(x i ) in the ABox.

Definition 3.8. ψ is a function that transforms all axioms in π-neg(T ) to a weighted query q, α :

ψ( B 1 ¬B 2 ,α )= (x, σ 1 , σ 2 ).λ 1 (x, σ 1 ) ∧ λ 2 (x, σ 2 ), α
with λ i is a translation function from axioms in π-neg(T ) to FOL formulas, defined as follows:

• λ i (x, σ i )=A i (x, σ i ) if B i =A i , • λ i (x, σ i )=∃y.P i (x, y, σ i ) if B i =∃P i , • λ i (x, σ i )=∃y.P i (y, x, σ i ) if B i =∃P - i ,
where σ i is the degree to which A i (x) (resp. P i (x, y), P i (y, x)) holds in the ABox.

Intuitively, if B 1 ¬B 2 ,α belongs to π-neg(T ), then a query associated with B 1 ¬B 2 is simply denoted by ψ( B 1 ¬B 2 ,α ) and it means return all pairs of assertions { X, σ 1 , Y, σ 2 } that are present in the ABox and conflict with B 1 ¬B 2 where X and Y are given in Definition 3.6. In fact, ψ can be viewed as a simple rewriting of the concept of conflict presented in Definition 3.6.

Example 3.11. [Example continued] From Example 3.7, recall that we have π-neg(T ). Using ψ defined in Definition 3.8 on N eedBased ¬Loyal,γ 2 , we obtain (x, σ 1 , σ 2 ). N eedBased(x, σ 1 )∧Loyal(x, σ 2 ), γ 2 . Applying ψ on all axioms in π-neg(T ) gives the following queries:

• (q 1 ) (x, σ 1 , σ 2 ).N eedBased(x, σ 1 ) ∧ Loyal(x, σ 2 ), γ 2 • (q 2 ) (x, σ 1 , σ 2 ).Impulse(x, σ 1 ) ∧ N eedBased(x, σ 2 ), γ 10 • (q 3 ) (x, σ 1 , σ 2 ).Discount(x, σ 1 ) ∧ N eedBased(x, σ 2 ), γ 2 • (q 4 ) (x, σ 1 , σ 2 ).N eedBased(x, σ 1 ) ∧ N eedBased(x, σ 2 ), γ 2 • (q 5 ) (x, σ 1 , σ 2 ).W andering(x, σ 1 ) ∧ N eedBased(x, σ 2 ), γ 5
• (q 6 ) (x, σ 1 , σ 2 ).∃y.satisf iedBy(x, y, σ 1 ) ∧ N eedBased(x, σ 2 ), γ 2 .

Checking inconsistency degrees

One query is associated with each negated query of π-neg(T ). For instance (x, σ 1 , σ 2 ).N eedBased(x, σ 1 ) ∧ Loyal(x, σ 2 ), γ 2 , means compute all pair of membership assertions N eedBased(x, σ 1 ) and Loyal(x, σ 2 ) that belong to A. If A is implemented using a relational database, this can be easily computed using an SQL query.

An algorithm for computing inconsistency degrees

Now, we provide below an algorithm called Inconsistency, which takes as input a K = π-neg(T ),A and computes Inc(K ), the inconsistency degree of K (recall that it is equal to Inc(K), the inconsistency degree of K). Algorithm 1 implements main definitions and properties presented in this chapter.

Input: K = π-neg(T ),A Output: Inc(K ) 1: remove redundancies from π -neg(T ) and A 2: cont = 0 3: for all (φ i , α i ) ∈ π -neg(T ); i = 1..|π -neg(T )| do 4:
if α i > cont then 5:

(q, α q ) ← (ψ(φ i , α i ))

6:

if Eval(q, A) = ∅ then 7:

β ← min(α q , max(Eval(q, A))

8: if β > cont then 9:
cont ← β return cont Algorithm 1: Inconsistency Algorithm 1 has as input the π-negated closure of T plus the ABox A. It has as output the inconsistency degree of the whole π-DL-Lite knowledge base. The variable cont stores the highest inconsistency degree found during the execution of the algorithm. At the beginning, we assume that K is consistent. This is the meaning of the initialization Step 2: cont=0. Then for each weighted negated axiom (of π -neg(T )) we look whether the current inconsistency degree can be increased or not. In line 4, if α i ≤cont then the inconsistency degree cannot increase. Hence, there is no need to consider conflicts induced by the negated axiom (φ i , α i ). Eval(q, A) denotes the evaluation of a weighted query q over A obtained by transforming an axiom of π-neg(T ) with the function given in Definition 3.8. Eval(q, A) (uses an SQL engine for instance) returns all possibilistic assertions that contradict the query and their corresponding certainty degrees. Note that if ∃P (resp. ∃P -) in one of the atoms of the query q, the function Eval(q, A) returns all first (resp. second) components of the role P that may be grounded for the query. Next, the function max(Eval(q,A)) is used to return the maximal weight, stored in the variable β, of all pairs of assertions that contradict a query q.

This degree represents the inconsistency level of the ABox A and the asked query q and it is calculated as follows: for each pair of assertions B 1 (a),α i and B 2 (a),α j presented in a query result, we only consider one constant having the lowest certainty degree, i.e. (a, min(α j , α j )). Note that the use of the min operator for propagating and aggregating the certainty degrees comes from the property of the conjunction of necessity valued formulas (see Section 3.2). Recall that dropping only one assertion leads to eliminate a conflict (Definition 3.6). The degree β corresponds the highest one among these degrees. In case of consistency, the "if part" of the algorithm (lines 6-9) is never used, and the algorithm returns the value 0 (namely, Inc(K)=0). This explains why cont is initialized to 0 (line 2).

Example 3.12. [Example continued] From queries of Example 3.11 and the ABox of Example 3.1, we have: Eval(q 1 , A)=∅, Eval(q 2 , A)=∅ and Eval(q 3 , A)=∅. Next, we have Eval(q 4 , A) = ∅ with Part II, Chapter 3 -Min-based possibilistic DL-Lite (q 4 ): (x, σ 1 , σ 2 ).N eedBased(x, σ 1 )∧N eedBased(x, σ 2 ), γ 2 and (a, .γ 9 , γ 9 ) is the query result. Thus β=γ 9 and cont=max(0, min(γ 9 , γ 2 )) = γ 2 . Continuing with q 5 , we have Eval(q 5 , A) = ∅ where (a, .γ 4 , γ 9 ) is the query result. So, β=γ 4 and cont=max(γ 2 , min(γ 4 , γ 5 )) = γ 4 . Lastly, we have Eval(q 6 , A) = ∅ where (a, .γ 9 , γ 11 ) is the query result. So, β = γ 9 and cont = max(γ 4 , min(γ 2 , γ 9 )) = γ 4 .

Therefore, the inconsistency degree of the knowledge base is Inc(K)=γ 4 .

We now provide two propositions that show on one hand that π-DL-Lite extends standard DL-Lite and on the other hand that the computational complexity of Algorithm 1 is the same as the one in standard DL-Lite.

Proposition 3.6. Let K s = T s , A s be a standard DL-Lite knowledge base. Let K π = T π , A π a π-DL-Lite knowledge base where T π (resp. A π ) is defined from T s (resp. A s ) by assigning a degree 1 to each axiom of T s (resp. A s ), namely: The complexity of reasoning in DL-Lite is recalled in Table 1.7.

T π = { φ i , 1 : φ i ∈ T s } and A π = { φ i , 1 : φ i ∈ A s }. Then K s is consistent (in the sense of standard DL-Lite) if and only if Inc(K π ) = 0 and K s is inconsistent if and only if Inc(K π ) = 1.
Proof of Proposition 3.7. To see why proposition 3.7 holds it is enough to see the differences between Algorithm 1 and the one used in ( [Calvanese et al., 2007a], section 3.1.3) for standard DL-Lite. The first remark, concerns the returned result. In our algorithm, results of queries are weighted while in standard DL-Lite, they are not. This does not change the complexity. The difference concerns lines 6-9, where in standard DL-Lite algorithm they are replaced by: 1: if Eval(q, A) = ∅ then return False At first, in case of consistency both algorithms perform the same steps, because the "if part of the algorithm" is never considered. Now in case of inconsistency, the worst case appears when the whole "loop" is used, namely inconsistency appears with the last element of π-neg(T ). In both cases, let A be the result of the evaluation of Eval(q c , A). This needs at least O(|A|) steps. Algorithm 1 (contrary to the algorithm in standard DL-Lite [Calvanese et al., 2007a]) computes also max{α i : φ i , α i ∈ A} which needs again O(|A|). Since O(2|A|) = O(|A|), our algorithm has the same complexity as in standard DL-Lite. Hence we increase the expressive power of DL-Lite while keeping the complexity as low as the one of standard DL-Lite.

Possibilistic DL-Lite F and possibilistic DL-Lite R

In this section, we first briefly show how to extend the possibilistic DL-Lite core approach to DL-Lite R and DL-Lite F , two other important fragments of DL-Lite family. These extensions, denoted by π-DL-Lite R and π-DL-Lite F , follow the same steps as π-DL-Lite core .

We first give rules to obtain the negated closure of π-DL-Lite R and π-DL-Lite F knowledge bases. These rules extend the ones proposed in Section 3.4 to obtain the negated closure of π-DL-Lite core . We then generalize inconsistency degree checking process for π-DL-Lite R and π-DL-Lite F knowledge bases.

3.6. Possibilistic DL-Lite F and possibilistic DL-Lite R Considering L R (resp. L F ) a DL-Lite R (resp. DL-Lite F ) description language, a π-DL-Lite R (resp. π-DL-Lite F ) knowledge base K = { φ i , α i : 1, ..., n} is a finite set of possibilistic axioms of the form (φ, α) where φ is an axiom expressed in L R (resp. L F ) and α ∈ ] 0, 1] is the certainty degree of φ. As in π-DL-Lite core , the semantics of π-DL-Lite R (resp. π-DL-Lite F ) is given by a possibility distribution, denoted by π K , defined over the set of all interpretations I=(∆ I , . I ) of a DL-Lite R (resp. DL-Lite F ) language L R (resp. L F ). This possibility distribution is computed using again Definition 3.2.

π-DL-Lite F negated closure

Recall that the DL-Lite F extends DL-Lite core with the ability of specifying functionality on roles or on their inverses of the form:

(f unct R)
Let us start by defining the negated closure of a π-DL-Lite F knowledge base. The following rules are added to rules 3.1-3.3 (Section 5.1) to show how to obtain this negated closure of π-DL-Lite F knowledge base.

Rule 3.4. If (f unct R), α ∈ T then add (f unct R), α to π-neg(T ). Rule 3.5. If ∃R ¬∃R, α ∈π-neg(T ) then add ∃R -¬∃R -, α to π-neg(T ). Rule 3.6. If ∃R -¬∃R -, α ∈π-neg(T ) then add ∃R ¬∃R, α to π-neg(T ).
Once the π-DL-Lite F negated closure computed, calculating the inconsistency degree of the knowledge base comes down to compute the maximal degree of potential conflicts. A conflict C in K is an inconsistent subset of K, such that no one of subsets of C is consistent. By adding functionality on roles, new forms of conflict are present in addition to conflicts defined for a π-DL-Lite core knowledge base (Definition 3.6). These new conflicts are of the form:

{ (f unct P ), α 1 , P (a, b), α 2 , P (a, c), α 3 }, with b different from c. { (f unct P -), α 1 , P (b, a), α 2 , P (c, a), α 3 }, with b different from c.
As said in Section 3.5, the main idea of computing the inconsistency degree is to evaluate over the ABox queries obtained from the π-negated closure in order to determine the maximal degree of conflicting elements. To obtain queries from a π-DL-Lite F knowledge base, we extend Definition 3.8 as follows:

ψ( (f unct P ), α ) = (x, σ 1 , σ 2 ).∃y.∃z.P (x, y, σ 1 ) ∧ P (x, z, σ 2 ) ∧ y = z, α ψ( (f unct P -), α ) = (x, σ 1 , σ 2 ).∃y.∃z.P (y, x, σ 1 ) ∧ P (z, x, σ 2 ) ∧ y = z, α
Where σ i is the degree to which R(x, y) and R(x, z) hold in the ABox. 

π-DL-Lite R negated closure

The DL-Lite R extends DL-Lite core with the ability of specifying inclusion axioms between roles of the form:

R E

We now show how to obtain the negated closure of a π-DL-Lite R knowledge base. In addition to Rules 3.1-3.3 proposed in section 3.5 for π-DL-Lite core knowledge bases, the following rules should be added for π-DL-Lite R .

Rule 3.7. If R 1 R 2 , α 1 ∈ T and ∃R 2 ¬B, α 2 ∈π-neg(T ) or B ¬∃R 2 , α 2 ∈π-neg(T ) then add ∃R 1 ¬B, min(α 1 , α 2 ) to π-neg(T ). Rule 3.8. If R 1 R 2 , α 1 ∈ T and ∃R - 2 ¬B, α 2 ∈π-neg(T ) or B ¬∃R - 2 , α 2 ∈π-neg(T ) then add ∃R - 1 ¬B, min(α 1 , α 2 ) to π-neg(T ). Rule 3.9. If R 1 R 2 , α 1 ∈ T and R 2 ¬R 3 , α 2 ∈π-neg(T ) or R 3 ¬R 2 , α 2 ∈π-neg(T ) then add R 1 ¬R 3 , min (α 1 , α 2 ) to π-neg(T ). Rule 3.10. if R ¬R, α ∈π-neg(T ) or ∃R ¬∃R, α ∈π-neg(T ) or ∃R - ¬∃R -, α ∈π- neg(T ) then add R ¬R, α and ∃R ¬∃R,α and ∃R -¬∃R -, α to π-neg(T ).
Given this set of rules and syntax of a π-DL-Lite R knowledge base, a new form of conflicts may be generated. Namely,

{ R 1 ¬R 2 ,α 1 , R 1 (a, b), α 2 , R 2 (a, b), α 3 }
To this end, Definition 3.8 needs to be extended in order to obtain weighted queries used to exhibit contradictions in the ABox and compute the the inconsistency degree of a π-DL-Lite R knowledge base as follows:

ψ( R 1 ¬R 2 , α )= (x, y, σ 1 , σ 2 ).ν 1 (x, y, σ 1 ) ∧ ν 2 (x, y, σ 2 ), α with • ν i (x, y, σ i )=P i (x, y, σ i ) if R i =P i • ν i (x, y, σ i )=P i (y, x, σ i ) if R i =P - i
Where σ i is the degree to which R(x, y) holds in the ABox. In this section, we present standard DL-Lite core inference services (i.e. subsumption and instance checking) within a possibility theory setting. We show how to compute possibilistic inferences given in Definition 3.4 and Definition 3.5 when φ is either a membership assertion (i.e. a fact) or a subsumption relation (i.e. a TBox axiom).

In π-DL-Lite core , we define two different kinds of inference services, namely flat subsumption (resp. instance checking) and weighted subsumption (resp. instance checking). The main difference between flat subsumption (resp. instance checking) and weighted subsumption (resp. instance checking) is that in the first case, we only check whether the subsumption (resp. instance checking) holds whatever is the degree, while in the second case, the subsumption (resp. instance checking) should be satisfied to a maximal degree.

In what follows, we detail these two types of inferences and we start by studying flat inference.

Proposition 3.8 (Flat subsumption). Let K = T , A be a π-DL-Lite core knowledge base (such that Inc(K) < 1), C 1 and C 2 be two general concepts, X be an atomic concept not appearing in T and x be a constant not appearing in A. Then, K |=C 1 C 2 if and only if the knowledge base K 1 = T 1 , A 1 is inconsistent to some degree (∃α > 0 such that Inc(K 1 ) = α) where Definition 3.4, this means that:

T 1 = T >Inc(K) ∪ { X C 1 , 1 , X ¬C 2 , 1 } and A 1 = { X(x), 1 } Proof of Proposition 3.8. Let us assume that K |= C 1 C 2 . By
N (C 1 C 2 ) > Inc(K).
By definition of necessity measures, this leads to:

N (C 1 C 2 ) = 1 -max I∈Ω {π(I) : I |= C 1 C 2 } > Inc(K) = max I∈Ω {π(I) : I |= C 1 C 2 } < 1 -Inc(K).
which means that:

∀I ∈ Ω such that I |= C 1 C 2 , we have π(I) < 1 -Inc(K). (1)
Besides, it is easy to show that:

I |=T >Inc(K) if and only if π(I) = 1 -Inc(K). (2)
From ( 1) and ( 2), we conclude that:

∀I ∈ Ω such that I |= T >Inc(K) , we have I |= C 1 C 2 . (3) From (3), it is impossible to satisfy T >Inc(K) and formulas {X C 1 , X ¬C 2 , X(x)} (since models of T >Inc(K) satisfy C 1 C 2 ) which means that K 1 is inconsistent.
Conversely, let us assume that K 1 = T 1 , A 1 is inconsistent. Then, there exists an α > 0 such that Inc(K 1 )=α. This means that:

K 1≥α is inconsistent, Part II, Chapter 3 -Min-based possibilistic DL-Lite and K 1>α is consistent.
Besides, it is easy to see that:

K 1>α |= π { X C 1 , 1 , X ¬C 2 , 1 , X(x), 1 }. (4)
This means that:

K 1>α |= C 1 C 2 (5)
From ( 4) and ( 5), one can easily show that there exists an interpretation I such that:

π(I) < 1 -α and I |= C 1 C 2 .
Since all axioms of K 1 have weights greater than Inc(K) then: By adding the intermediary concept X, the knowledge base K 1 = T 1 , A 1 is as follow:

π(I) < 1 -α ≤ 1 -Inc(K) (6) So, from (6), we have N (C 1 C 2 ) > Inc(K). Therefore by Definition 3.4, K |= π C 1 C 2 .
T 1 =T >γ 4 ∪{ X N eedBased, 1 , X ¬Loyal, 1 } and A 1 ={ X(x), 1 }
Computing now π-neg(T 1 ), we obtain the following negative inclusion axioms:

Impulse ¬N eedBased, γ 10 W andering ¬N eedBased, γ 5 X ¬Loyal, 1 Discount ¬X, γ 6 N eedBased ¬X, γ 6 X ¬X, γ 6 ∃satisf iedBy ¬X, 1
One can easily check that X ¬X conflicts with X(x). Then, we conclude that K 1 is inconsistent. Therefore K |=N eedBased Loyal. Proposition 3.9 (Flat instance checking). Let K be a π-DL-Lite core knowledge base (such that Inc(K) < 1), C be a concept, X be an atomic concept not appearing in T and x be a constant appearing in A. Then, K |= C(x) if and only if the knowledge base K 1 = T 1 , A 1 is inconsistent to some degree where

T 1 =T >Inc(K) ∪ { X ¬C, 1 } and A 1 = A >Inc(K) ∪ { X(x), 1 }
Proof of Proposition 3.9. The proof is basically the same as the one of Proposition 3.8. By adding the intermediary concept X, K 1 = T 1 , A 1 is as follow:

T 1 = T >γ 4 ∪ { X ¬Loyal, 1 } and A 1 = A >γ 4 ∪ { X(John), 1 }
Computing now π-neg(T 1 ), we obtain the following negative inclusion axioms:

Impulse ¬N eedBased, γ 10 W andering ¬N eedBased, γ 5 X ¬Loyal, 1 Discount ¬X, γ 6 N eedBased ¬X, γ 6 ∃satisf iedBy ¬X, 1
One can easily check that N eedBased ¬X, γ 6 conflicts with X(John), 1 and N eedBased(John), γ 9 and ∃satisf iedBy ¬X, 1 conflict with X(John), 1 and satisf iedBy(John, Gif ts), γ 11 . Then, we conclude that K 1 is inconsistent. Therefore K|=Loyal(John).

As we can see, flat inference is done in a similar way than inference in standard DL-Lite core and it permits to cope with inconsistency. However, the second type of inference (i.e. weighted inference) is stronger than flat inference and it deals with uncertainty by determining to what extent an inference task can be done from a π-DL-Lite core knowledge base. Proposition 3.10 (Weighted subsumption). Let K = T , A be a π-DL-Lite core knowledge base, C 1 and C 2 be two general concepts, X be an atomic concept not appearing in T , and x be a constant not appearing in A. Then, K |= π C 1 C 2 , α if and only if the Inc(K 1 ) = α > Inc(K) where

K 1 = T 1 , A 1 with T 1 = T ≥α ∪ { X C 1 , 1 , X ¬C 2 , 1 } and A 1 = { X(x), 1 }
Proof of Proposition 3.10. The proof of Proposition 3.10 is similar to the one of Proposition 3.8. Let us assume that K |= π C 1 C 2 , α . From Definition 3.5, we have

N (C 1 C 2 ) = α > Inc(K)
By definition of necessity measure, this leads to:

N (C 1 C 2 ) = 1 -max I∈Ω {π(I) : I |= C 1 C 2 } = α > Inc(K), = max I∈Ω {π(I) : I |= C 1 C 2 } = 1 -α < 1 -Inc(K).
which means that:

∀I ∈ Ω such that I |= C 1 C 2 , we have π K (I) ≤ 1 -α < 1 -Inc(K) (1)
Note that α > Inc(K). This means that T ≥α is consistent, and

∀I ∈ Ω such that I |= T ≥α , we have π K (I ) ≤ 1 -α (2)
Part II, Chapter 3 -Min-based possibilistic DL-Lite From ( 1) and ( 2), we conclude that:

∀I ∈ Ω such that I |= T ≥α , it implies I |= π C 1 C 2 , α and I |= π { X C 1 , 1 , X ¬C 2 , 1 , X(x), 1 }.
This also means that K 1 is inconsistent. Hence

Inc(K 1 ) ≥ α > Inc(K). Since T ≥α ∪ { X C 1 , 1 , X ¬C 2 , 1 , X(x), 1 } is inconsistent. Then Inc(K 1 ) = max I∈Ω {π K (I)} ≤ 1 -α (since
all formulas of K 1 have a weight greater than α).

Let us now show that Inc(K 1 )=α. It is enough to show that:

T >α ∪ { X C 1 , 1 , X ¬C 2 , 1 , X (x) , 1 } is consistent Assume that it is inconsistent. This means that ∀I ∈ Ω, if I |= T >α then I |= {X C 1 , X ¬C 2 , X(x)} and I |= C 1 C 2 .
Recall that T >α is consistent. This means that max{I :

I |= C 1 C 2 } < 1 -α which contradicts N (C 1 C 2 ) = α. Hence K 1>α is consistent. Therefore Inc(K 1 ) = α > Inc(K).
Conversely, let us assume that K 1 is inconsistent and Inc(K 1 ) = α > Inc(K). This means that:

K 1>α is consistent, (3) 
and K 1≥α is inconsistent. ( 4)

From ( 3) we have:

K 1>α |= π { X C 1 , 1 , X ¬C 2 , 1 , X(x), 1 } Since trivially { X C 1 , 1 , X ¬C 2 , 1 , X(x), 1 }⊆K 1>α
This means that:

K 1>α |= π C 1 C 2 , α (5) 
From ( 4), we have

T ≥α ∪{ X C 1 , 1 , X ¬C 2 , 1 , X(x), 1 } is inconsistent.
Since Inc(K 1 )≥α>Inc(K), this means that T ≥α is consistent and

∀I such that I |= T ≥α , we have π K (I ) ≤ 1 -α (6) ∀I such that I |= T ≥α implies I |= π C 1 C 2 , α but I |= π { X C 1 , 1 , X ¬C 2 , 1 , X(x), 1 } (7)
From ( 5), ( 6) and ( 7), one can show that there exists an interpretation I such that:

π(I) ≤ 1 -α and I |= C 1 C 2 . (8)
From ( 8), we conclude that N (C 1 C 2 ) = α. Therefore by Definition 3.5,

K |= π C 1 C 2 , α .
Example 3.17. [Example continued] From Example 3.15, one can easily check that Inc(K 1 )=γ 6 then K|= π N eedBased Loyal, γ 6 .

3.8. Query answering in possibilistic DL-Lite Proposition 3.11 (Weighted instance checking). Let K be a π-DL-Lite core knowledge base, C be a concept, X be an atomic concept not appearing in T and x be a constant not appearing in A. Then, Hence from Proposition 3.8-3.11, we deduce that flat subsumption (resp. instance checking) and weighted subsumption (resp. instance checking) can be obtained using Algorithm 1 presented above. The above results show that the complexity of flat subsumption (resp. instance checking) and weighted subsumption (resp. instance checking) in π-DL-Lite is the same as the one used in standard DL-Lite.

K |= π C(x), α if and only if Inc(K 1 ) = α > Inc(K) where K 1 = T 1 , A 1 with T 1 = T ≥α ∪ { X ¬C, 1 } and A 1 = A ≥α ∪ { X(x), 1 } Proof of

Query answering in possibilistic DL-Lite

In this section, we briefly address the problem of query answering within π-DL-Lite framework. The problem of standard query answering is closely related to the ontology-based data access problem which takes a set of assertions (i.e. an ABox), an ontology (i.e. a TBox) and a conjunctive query q and aims to find if there exists an answer or find all the answers to q over the set of data. In such a setting, an ontology acts as a schema used to enrich the query. The problem of query answering within DL-Lite setting has been mainly studied in [Calvanese et al., 2007a]. Query answering process comes down first to the reformulation of the query q over the TBox in order to enrich it while eliminating all the redundancies and then evaluate the new obtained queries over the ABox.

We now briefly present query answering process over the π-DL-Lite setting. This procedure follows similar steps as in [Calvanese et al., 2007a;Straccia, 2006a;Straccia, 2012]. It consists in:

1. Query reformulation: given a query q over K = T , A a π-DL-Lite knowledge base, we first use the positive axioms of T >Inc(K) to enrich the query q. This leads at each possible application of a positive axiom to obtain a new query q . The resulting set of queries is then used under the ABox (stored as a database). Let us denote by Q = ref (q, T >Inc(K) ) the set of queries obtained by reformulating q over T >Inc(K) .

2. Query evaluation: given ref (q, T >Inc(K) ), we first evaluate over A >Inc(K) each q in ref (q, T >Inc(K) ) while taking the most certain answers. Let us denote by ans π (K, q) the certain answers of the query q over K = T , A a π-DL-Lite knowledge base.

In DL-Lite, the evaluation of a Conjunctive Query (CQ) uses the notion of FOL-reducibility and it is based on a method that separates the TBox and the ABox. Namely, we use positive axioms of the TBox for reformulating a CQ on the Union of Conjunctive Query (UCQ) to be evaluated over the ABox (may be represented by a relational database). Given a CQ q, we recall the query reformulation algorithm PerfectRef proposed in [Calvanese et al., 2007a] that reformulates q taking into account only positive axioms of a π-DL-Lite TBox T having weights strictly greater than the inconsistency degree.

Part II, Chapter 3 -Min-based possibilistic DL-Lite Input: T >α where α = Inc(K) and q a CQ Output: Q query reformulation 1: Q 1 ← {q} // set of queries 2: repeat 3:

Q 2 ← Q 1 4:
for all q ∈ Q 2 do 5:

for all g in q do

6:

for all P I i ∈ T ≥α do 7:

if P I is applicable to g then 8:

Q 1 ← Q 1 ∪ {q [g gr(g, P I)]} 9:
for all g 1 , g 2 in q do 10:

if g 1 and g 2 unify then 11:

Q 1 ← Q 1 ∪ {τ [reduce(q, g 1 , g 2 )]} 12: until Q 2 ← Q 1 return (Q 2 )
Algorithm 2: P erf ectRef (q, T >α )

In this algorithm, gr(g, P I) denotes the result of applying a positive axiom to an atom of the query. Let use the symbol "_" to denote non-distinguished non-shared variables (i.e. appeared only once in the query), the function gr(g, P I) is described as follows: A positive axiom is applicable to a factual concept A(x), if the positive inclusion has the concept A in its right-hand side. Similarly a positive inclusion is applicable to a factual relation P (x 1 , x 2 ), if either (i) x 1 = _ and ∃P is in its right-hand side, or (ii) x 2 = _ and ∃P -is in its right-hand side, (iii) positive inclusion is a role inclusion and on in its right-hand side is P or P -.

Furthermore q [g gr(g, P I)] denotes the CQ obtained from q by replacing the atom g with a new atom gr(g, P I). In addition reduce is a function that takes as input a CQ q and two atoms g 1 and g 2 and returns a CQ q obtained by applying to q the most general unifier between g 1 and g 2 . Finally τ is a function that takes as input a CQ q and returns a new CQ obtained by replacing each occurrence of an unbound variable in q with the symbol "_". Note that gr(g, P I), q [g gr(g, P I)], τ and reduce are the same used in [Calvanese et al., 2007a]. For more details see [Calvanese et al., 2007a]. Discount Loyal, γ 6 Impulse ¬N eedBased, γ 10 ∃satisf iedBy -F idelityService, 1

N eedBased Discount, γ 8 W andering Impulse, γ 5 ∃satisf iedBy Loyal, 1 Let us consider the following conjunctive query q: q(x)←∃y.satisf iedBy(x, y)∧F idelityService(y)

At the first execution of algorithm P erf ectRef (q, T >α )) the following query is added in Q 1 : q 1 (x)←∃y.satisf iedBy(x, y)∧satisf iedBy (-, y) since ∃satisf iedBy -F idelityService is applicable to the atom F idelityService(y). Now, one can see that the two atoms of the added query unify, then the algorithm inserts the following query:

q 2 (x)←satisf iedBy(x, _)
The above two queries and the original one are returned by the algorithm as the set of queries obtained by reformulating q over T >Inc(K) .

Query answering in possibilistic DL-Lite

We now explain the main ideas behind query answering in π-DL-Lite framework. Let q( x) ← ∃ y.conj( x, y) be a conjunctive query with answer variable x = x 1 , ..., x n and arity n. Given an interpretation I = (∆ I , . I ), recall that in standard DL-Lite, q I is interpreted as a set of tuples a ∈ (∆) n that belong to the domain of interpretation such that if we substitute x by the constants a the query q will be evaluated as true under I.

In the spirit of instance checking (presented in Section3.7), when certainty degrees are available over the set of constants in A, query answering process comes down to search the most certain answers for the query q and to compute to what extent the answer of this query holds. As mentioned at the beginning of this section, the first step of query answering is the query reformulation. This step leads to obtain a set of queries where the union of the answer sets of these queries will be the answer to the original query. Before given the way to deal with Q = ref (q, T >Inc(K) ) the set of queries obtained by reformulating q over T >Inc(K) , let us first show how to deal with CQ over π-DL-Lite setting in order to take into account the weights attached to assertions in the ABox.

Let I = (∆ I , . I ) be a DL-Lite interpretation and q( x) ← ∃ y.conj( x, y) be a CQ. Let us first consider the case where the query does not involve existential variables, namely q is of the form q( x) ← A i ( x) where A i are atoms. Let a ∈ (∆ I ) n be a tuple of constants considered as a possible substitution of the conjunction between atoms under I. Within π-DL-Lite setting, the certainty degree of a is the minimum weight (i.e. min) of certainty degrees of constants a i ∈ a. Recall that within standard possibilistic logic, given φ and ϕ two formulas, we have N (φ ∧ ϕ) = min(N (φ), N (ϕ)).

Example 3.20. Consider the following ABox: A(a), α 1 , B(a), α 2 , A(b), α 3 and B(b), α 4 with α i ∈ ] 0, 1] and the query q(x) ← A(x)∧B( x). The answer set to the query q consists of a, min(α 1 , α 2 ) and b, min(α 3 , α 4 ) .

Let us consider now the case where the query contains existential quantifications. Suppose that we have a query that contains only one atom with an existential variable y (i.e. q(x) ← ∃y.P (x, y)). Then for each fixed constant a that may substitute x a free variable, there may exist several possible constants c that may substitute y where each one is attached with a certainty degree. In that case, the certainty degree of the answer is the maximal degree (i.e. max) for each valid join on y. Recall that within standard possibilistic logic, given φ and ϕ two formulas, we have N (φ ∨ ϕ) ≥ max(N (φ), N (ϕ)).

Example 3.21. Let us consider the following ABox: P (a, b 1 ), α 1 , P (a, b 2 ), α 2 , P (b 1 , c 1 ), α 3 , P (b 1 , c 2 ), α 4 , P (b 2 , c 1 ), α 5 , P (b 2 , c 2 ), α 6 with α i ∈ ] 0, 1] and the query q(x)←∃y.P (x, y). The answer set of this query consists of a, max(α 1 , α 2 ) , b 1 , max(α 3 , α 4 ) and b 2 , max(α 5 , α 6 ) . Now the certainty degree of a general conjunctive query q( x)←∃ y.conj( x, y) is simply computed by first considering for each valid join on y the certainty degree of the conjunction of possible substitution using the min to aggregate their values, and then considering the maximal degree for each valid join having the same constants as answer.

Example 3.22. Let us consider the ABox of Example 3.21 and the query q(x 1 , x 2 )←∃y. P (x 1 ,y) ∧P (y, x 2 ). The possible joins and their certainty degrees are: a, b 1 , c 1 , min(α 1 , α 3 ) , a, b1, c2, min(α 1 , α 4 ) , a, b2, c1, min(α 2 , α 5 ) and a, b2, c2,min(α 2 , α 6 ) .

Then the answer set consists of a, c1, max(min(α 1 , α 3 ), min(α 2 , α 5 ) and a, c2, max(min(α 1 , α 4 ), min(α 2 , α 6 ) .

Let us denote by a, α an answer of a query q with a is a tuple of constants occurring in A >inc(K) and α is the least certainty degree in which all atoms occurring in the query q grounded by a having Part II, Chapter 3 -Min-based possibilistic DL-Lite weights at least greater or equal to α are necessarily true. Namely, we say that K >inc(K) entails a tuple a for a query q to a degree α, denoted K >inc(K) |= q( a), α if and only if ∀I,q I ( a)≥α.

For a given conjunctive query, it may correspond several tuples a i , α i as answer sets. So, a more interesting thing is to find the maximal entailment degree of a query. Given q a conjunctive query, this maximal entailment degree of q is as follows: Let us consider the following query q: q(x)←∃y.N eedBased(x)∧satisf iedBy(x, y)

α=max{α i |K >inc(K) |= q( a i ), α i }. Example 3.
According to the above ABox, we have two tuples as the answer set of the query q: John, max(min(γ 9 , γ 10 ), min(γ 9 , γ 6 )) and M ary, max(min(γ 8 , γ 11 ), min(γ 8 , γ 5 )) where K >inc(K) |= q(John), γ 9 and K >inc(K) |= q(M ary), γ 8 . One can easily check that the maximal entailment degree of q is γ 9 . Now given Q=ref (q, T >Inc(K) ) the set of queries obtained by reformulating q over T >Inc(K) , we view Q as a disjunction of queries. Let us denote by ans π (K, q) the answer set of the query q formed by considering the union of all answer sets of each q i ∈Q. As said above, for each query q i ∈Q, there may correspond a set of tuples a i , α i as answer set where the maximal degree of the α i 's corresponds the maximal entailment degree of q i . Indeed, the entailment degree of q is the highest degree among the entailment degrees of all q i 's found by query reformulation since within possibilistic logic, given φ and ϕ two formulas, we have N (φ∨ϕ)≥max(N (φ), N (ϕ)).

Example 3.24. [Example 3.23 continued] Let us consider the following query q: q(x)←Loyal(x) By applying P erf ectRef (q, T >α ) algorithm, the set ref (q, T >Inc(K) ) will contain in addition of the original query the following ones:

q 1 (x)←Discount(x) and q 2 (x)←N eadBased(x)
Let us consider now the following ABox: Loyal(M ary), γ 7 Loyal(John), γ 9 N eedBased(P aul), γ 13 Discount(Bob), γ 6 N eedBased(Eric), γ 5 Discount(Elise), γ 10 According to the above ABox and the set of queries ref (q, T >Inc(K) ), the answer set ans(K, q) of the query q is John, γ 9 , M ary, γ 7 , P aul, γ 13 , Bob, γ 6 , Eric, γ 5 , Elise, γ 10 . The entailment degree of q is equal to γ 13 .

When the assertional facts in the ABox are attached with weights, an answer to a query is a set of tuples that satisfy with a certain degree the asked query. In that case, one may consider a new reasoning task.

Discussions and related works

It consists first in ranking answers according to their certainty degrees and then selecting the relevant ones. This task is closely related to the top-k ranking query answering approach introduced in [Straccia, 2006b;Straccia, 2006a;Straccia, 2012] within fuzzy DL-Lite logics. The top-k query answering permits to order the results according to their attached degrees and then chose the top-k relevant results. More formally, given K= T, A a π-DL-Lite knowledge base and Q=ref (q, T >Inc(K) ) the set of queries obtained by reformulating q over T >Inc(K) , we search for the top-k ranked tuples of the answer set of q, denoted ans k (K, q)=T op k { a, α |q i ∈ Q and A >Inc(K) |= (q i (c), α)}. To compute the set ans k (K, q), one can calculate first the answer set ans π (K, q) by considering the union of all answer sets of query reformulation, and then order ans π (K, q) in descending order with respect to degrees of tuples and then selecting the top-k relevant tuples.

Example 3.25. [Example continued] From the answer set ans(K, q) of Example 3.24, the top-4 relevant results for q(x)←Loyal(x) are: P aul, γ 13 , Elise, γ 10 , John, γ 9 , M ary, γ 7 .

Discussions and related works

There are few works devoted to the possibilistic extension of description logics (DLs). The original work on this topic has been introduced in [Hollunder, 1995] where a possiblistic DL knowledge base is only syntactically defined as a set of terminological (resp. assertion) axioms attached with possibility or necessity degrees. In [Hollunder, 1995], the author is only interested in basic inference tasks such as instance checking and subsumption problem and extends them with respect to possibilistic entailments. These inference services allow to check whether an axiom is inferred or not from a possibilistic DL knowledge base and the degree of possibility or the necessity of its entailment. From an algorithmic point of view, Hollunder's [Hollunder, 1995] method uses classical inference algorithm for DLs to check inferences. In our definition of a possibilistic DL-Lite knowledge base, we only represent certainty degrees using necessity values. This is in agreement with standard propositional logic, and has a meaningful counterpart when generating possibility distributions.

In [Qi et al., 2011;Qi et al., 2007b;Qi et al., 2007a], the authors first provided the syntax and semantics of possibilistic DLs knowledge bases and then they define inference process. In this chapter, the syntax and semantic of π-DL-Lite knowledge bases is given in a similar way as in [Qi et al., 2011].

Given K a possibilistic DL knowledge base, in [Qi et al., 2011;Qi et al., 2007b;Qi et al., 2007a] an α-cut approach is used to compute the inconsistency degree of K. Namely, the inconsistency degree of K is the maximum weight of axioms making the α-cut of K by this weight inconsistent and the strict α-cut of K by this same weight consistent. Using such approach, the algorithm proposed in [Qi et al., 2011;Qi et al., 2007b;Qi et al., 2007a] operates a binary search to find this weight and this comes down to achieve a number of calls, at most log 2 (n) + 1, where n is the size of the different uncertainty scale appearing in the knowledge base, to a standard DLs (without uncertainty) inconsistency checking algorithm. This definition is in the spirit of standard possibilistic logic [START_REF] Dubois | [END_REF]. In [Calvanese et al., 2007a] checking inconsistency of a standard DL-Lite knowledge base can be done in a polynomial time with respect to combined complexity k (the size of the whole knowledge base). Knowing that the size n of certainty scales is at least equal to the size of the knowledge base k, it is important to note that although the α-cut algorithm [Qi et al., 2011;Qi et al., 2007b;Qi et al., 2007a] requires an extra cost (at least log 2 (n) calls to a standard DL inconsistency check algorithm in order to compute inconsistency degree). However, this still can be achieved in polynomial time.

Other lines of approaches have been proposed to compute the inconsistency degrees of possibilistic DLs knowledge bases, such as the works of [Couchariere et al., 2008a;Couchariere et al., 2008b;Qi et al., 2008b;Zhu et al., 2013]. These approaches are based on the extension of a Tableau algorithm within possibilistic logic setting. As shown in [Couchariere et al., 2008a;Qi et al., 2008b;Zhu et al., 2013],

Part II, Chapter 3 -Min-based possibilistic DL-Lite such extension does not require any extra computational cost. However, these approaches are not defined within DL-Lite languages.

In [Zhou et al., 2009], the authors give a method to measure the inconsistency of a DL-Lite knowledge base based on the three-valued semantics. The proposed algorithm calculates the number of axioms that fall into the third truth value (denoting contradictory information) and can be achieved in polynomial time. This clearly departs from our approach.

In our work, computing inconsistency degree is done by a direct extension of the main standard consistency check algorithm presented in [Calvanese et al., 2007a] of a standard DL-Lite knowledge base. This represents a new way to compute the inconsistency degree of a possibilistic DL-Lite knowledge base that departs from the existing works. There is no exiting work that extends rules for the defined negated closure in a possibility theory framework. Our approach comes down to first defining the notion of negated closure when each axiom in the knowledge base is equipped with a certainty degree. This negated closure is then transformed to weighted queries performed over the set of individuals in order to compute the inconsistency degree. The inconsistency degree associated with a query and a given tuple of individuals (provided as an answer for the query) is the maximum weight among all the certainty degrees of the query and this tuple. The computational complexity associated to this procedure does not require any extra cost comparing with the one of consistency checking algorithm of classical DL-Lite knowledge bases.

Conclusion

In this chapter, we proposed a possibilistic extension of DL-Lite. We first introduced the syntax and the semantics of such extension. We provided properties of π-DL-Lite and showed how to compute the inconsistency degree of π-DL-Lite knowledge base having a complexity identical to the one used in standard DL-Lite. This is done by defining π-DL-Lite negative closure that extends the one of standard DL-Lite. Then, we gave a method to check the consistency for π-DL-Lite. Finally, we discussed inference problems. In particular, we distinguished different inference tasks depending whether we use flat inferences or weighted inferences. Results of this chapter are important since they extend DL-Lite languages to deal with priorities (between TBox axioms or ABox axioms) or uncertainty degrees without increasing the computational complexity.

In several situations, pieces of information are provided with uncertainty which can simply represent reliability of the distinct sources. Next chapter addresses the problem of fusion of multiple data sources linked to the same terminology in the case where the sources have different levels of priorities. CHAPTER 4
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Introduction

In several situations, pieces of information are provided with uncertainty which can represent reliability of the distinct sources. Possibility theory is a very natural framework to deal with such pieces of information. In the framework of possibility theory, several approaches for merging possibilistic logic bases have been proposed (e.g. [START_REF] Benferhat | [END_REF][START_REF] Benferhat | A principled analysis of merging operations in possibilistic logic[END_REF]Benferhat et al., 1993a;Qi et al., 2010b]). However there is no work that deals with the problem of merging possibilistic DLs knowledge bases by introducing convenient fusion operators although the impact of possibilistic DLs on ontology merging has been introduced in [Qi et al., 2011].

In the first part of this chapter, we study merging within possibilistic DL-Lite framework. We first focus on the use of minimum-based (min-based) operator, well known as idempotent conjunctive operator presented in Section 2.3.2, for merging possibilistic DL-Lite knowledge bases. We then place ourselves in the context of Ontology-based Data Access (OBDA) setting, in which a TBox is used to reformulate posed queries to offer a better access to the set of data encoded in the ABox [Poggi et al., 2008]. We go one step further in the definition of merging operators for π-DL-Lite knowledge bases by investigating the aggregation of assertional bases (ABox) which are linked to the same TBox. Two important results of this study are:

• Our merging approach based on conflict resolution can be extended to define other merging operators, and

• The computational complexity of min-based assertional fusion outcome is polynomial.

Another important reasoning task in possibilistic setting is the one of conditioning possibilistic knowledge bases [Benferhat et al., 2002c]. Unfortunately, there is to the best of our knowledge no approach for conditioning possibilistic DLs or DL-Lite when a new uncertain information is available. This chapter fills this gap and gives a first result of possibilistic DL-Lite conditioning.

The rest of this chapter is organized as follows: Section 4.2 first introduces merging of π-DL-Lite possibility distributions using a min-based operator and then discusses the syntactic counterpart when merging π-DL-Lite knowledge bases. In Section 4.3, we first introduce a syntactic merging operator, namely a min-based assertional operator based on conflict resolution. We show that such a merging operator gives a more satisfactory result compared with the one proposed in Section 4.2. We then study merging at a semantic level, and we show that our operator has a natural counterpart when combining several possibility distributions. Lastly, we rephrase the set of postulates proposed in [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF] to characterize the logical behavior of belief bases merging operators and we provide a postulates-based logical analysis of the min-based assertional operator in the light of this new set of Part II, Chapter 4 -Min-based conditioning and merging approach of DL-Lite knowledge bases postulates dedicated to the uncertain DL-Lite framework. Section 4.4 presents first result on possibilistic DL-Lite conditioning and Section 4.5 concludes the chapter.

Min-based merging of π-DL-Lite knowledge bases

This section first introduces merging of π-DL-Lite possibility distributions using a min-based operator and then discusses the syntactic counterpart of the proposed operator when merging π-DL-Lite knowledge bases.

Example 4.1. Let K= T , A be a π-DL-Lite knowledge base where T ={(T ¬S, .8), (∃F T, . 6), (∃F -S, .5)} and A={(F (b, c), 1)}. The possibility distribution π K associated to K is computed using Definition 3.2 as follows where ∆ I ={b, c}:

I . I π 1 I 1 S = {b, c}, T = {b}, F = {(b, c)} .2 I 2 S = {b, c}, T = {}, F = {(b, c)} .4 I 3 S = {c}, T = {b}, F = {(b, c)} 1 Table 4.1:
Example of a possibility distribution induced from a π-DL-Lite knowledge base One can observe that π K (I 3 )=1 meaning that π K is normalized, and thus, K is consistent.

Merging of π-DL-Lite possibility distributions

In a possibility theory framework, several fusion operators (e.g. [Dubois et al., 1992;Benferhat et al., 1997b;[START_REF] Benferhat | Salem Benferhat and Souhila Kaci. Fusion of possibilistic knowledge bases from a postulate point of view[END_REF]) have been proposed for merging pieces of information issued from different and potentially conflicting or inconsistent sources. These fusion operators lead to combine multiple possibility distributions that encode sources of information to obtain a unique possibility distribution that represent the global point of view of available information. Moreover, a syntactic counterpart for each fusion operator used to combine possibility distributions has been introduced to merge possibilistic knowledge bases.

When the distinct sources that provide possibility distributions are dependent, then the recommended fusion operator is the min-based operator well-known as idempotent conjunctive operator. The aim of this section is to study semantic merging of π-DL-Lite possibility distributions using min-based operator. The syntactic counterpart of this combination will be presented in Section 4.2.2. Let us assume that π 1 , ..., π n are possibility distributions provided by n sources of information that share the same domain of interpretations (namely ∆ I 1 = ... = ∆ I n ), and that all possibility distributions use the same scale to represent uncertainty. According to Definition 4.1, the min-based operator ignores redundancy. Since, if all the sources provide the same possibility distribution then the result of fusion using ⊕ is the same possibility distribution. 

I

.

I π ⊕ I 1 S = {b, c}, T = {b}, P = {b}, F = {(b, c)} .2 I 2 S = {b, c}, T = {}, P = {}, F = {(b, c)} .4 I 3 S = {c}, T = {b}, P = {}, F = {(b, c)} .1
One can easily check that merging two π-DL-Lite normalized possibility distributions may lead to a sub-normalized possibility distribution. This is the case with our example (Example 4.2). Now, we focus on the normalization problem when the use of min-based operator ⊕ provides a subnormalized possibility distribution. Let us consider:

h(π ⊕ ) = max I∈Ω {π ⊕ (I)}
a function that computes to what extent there exists at least one interpretation which is confirmed by all sources. Considering π N ⊕ the normalized possibility distribution of π ⊕ , π N ⊕ must respect the following conditions. Proposition 4.2. ∀I , ∀I ∈ Ω, the minimal requirements for π N ⊕ are:

• ∃I, π N ⊕ (I) = 1. • If π ⊕ (I) > π ⊕ (I ) then π N ⊕ (I) > π N ⊕ (I ). • If π ⊕ (I) is normalized then π ⊕ (I) = π N ⊕ (I).
The first condition states that π N ⊕ must be normalized (there exists at least one interpretation such that π N ⊕ (I) = 1). The second condition entails that only interpretations having possibility degrees equal to h(π ⊕ ) can receive value 1 in the normalization process. Assuming these following requirements for π N ⊕ (Proposition 4.2), we consider the following definition of normalization. Definition 4.2. For every I ∈ Ω and h(π ⊕ ) > 0 

π N ⊕ (I) = 1 if π ⊕ (I) = h(π ⊕ ) π ⊕ (I) otherwise

Syntactical merging of π-DL-Lite knowledge bases

Let us consider K 1 , ..., K n a set of π-DL-Lite knowledge bases where each K i represents the knowledge of a single source of information or agent and π 1 , ..., π n is a set of n possibility distributions associated with K 1 , ..., K n . Namely each π-DL-Lite knowledge base K i is associated with a possibility distribution π i which is its semantical counterpart. In the previous section, we have presented merging of possibility distributions using min-based operator. In this section, we give a syntactical counterpart of merging n π-DL-Lite knowledge bases K 1 , ..., K n provided by n different sources.

Let us consider S 1 , ..., S n be the signatures of K 1 , ..., K n . A signature S is the set of concept names, role names and individual names used in K. We assume that all K i 's share the same signature. Namely if a concept name (resp. role name, individual name) A appears in S 1 and S 2 then A is assumed to be the same. Now, we look to identify syntacticly the min-based operator ⊕ on the K i 's which correspond to the min-based operator ⊕ on the π i 's reviewed in the Section 4.2.1 . More formally, given (π 1 , ..., π n ) possibility distributions associated with (K 1 , ..., K n ) π-DL-Lite knowledge bases, then for the minbased operator ⊕ applied to (π 1 , ..., π n ), we look for a π-DL-Lite knowledge base

K ⊕ constructed from (K 1 , ..., K n ) such that π ⊕ = π K ⊕ .
Definition 4.3. The syntactic counterpart of the min-based operator ⊕ for π-DL-Lite knowledge bases is defined as follow where (φ i , α i ) ∈ K 1 and (ϕ i , β i ) ∈ K 2 :

K ⊕ = K 1 ∪ K 2
Example 4.4. Let K 2 = T , A be a π-DL-Lite knowledge base where T ={(P S, .7), (P T, .9)} and A={(S(b), .9)}. The possibility distribution π 2 associated to K 2 is presented in Example 4.2. Now, using Definition 4.3, we present the following π-DL-Lite knowledge base K ⊕ as result of merging K 1 (Example 4.1) and K 2 : T ⊕ = {(T ¬S, .8), (P S, .7), (P T, .9), (∃F T, .6), (∃F - S, .5)} A ⊕ = {(S(b), .9), (F (b, c), 1)}. The semantic counterpart of K ⊕ is reported in Example 4.2 through the possibility distribution π ⊕ .

Remark 4.1. In DL-Lite literature, it is often assumed that TBox are consistent (admit a model). This makes sense when one has one source of information. However, when we deal with multiple sources such assumption is questionable. In particular, it may happen that, one can cheek that there is no ABox A such that T ⊕ ∪ A is consistent.

In general, merging two π-DL-Lite consistent knowledge bases may lead to an inconsistent knowledge base. This is the case with our example (Example 4.4) where K 1 (Example 4.1) and K 2 (Example 4.4) are consistent but their merging is inconsistent. Hence, we study the normalization problem at the syntactical level when the use of min-based operator ⊕ provides an inconsistent π-DL-Lite knowledge base.

Let K ⊕ be a π-DL-Lite knowledge base associated with π ⊕ , a sub-normalized possibility distribution where h(π ⊕ ) = max I∈Ω {π ⊕ (I)}. Then the normalization rule can be defined as follows where K N ⊕ denotes the normalized π-DL-Lite knowledge base: 

I ∈ Ω: π N ⊕ (I)= 1 if π ⊕ (I) = h(π ⊕ ) π ⊕ (I) otherwise
is associated with:

K N ⊕ = {(φ i , α i )|(φ i , α i ) ∈ K ⊕ and α i > 1 -h(π ⊕ )}
According to Definition 4.3, the normalization does not modify the certainty degrees of π-DL-Lite knowledge base encoded by π ⊕ . It just permits to ignore the presence of contradictions (or conflicts) and maintains all the axioms of K ⊕ whose certainty degrees are higher than the inconsistency degree of K ⊕ . In this example, it is easy to see that K N ⊕ is consistent and this is confirmed through π N ⊕ where the interpretation I 1 is a model of K N ⊕ .

It is important to note that the normalization process allows to find an inconsistency degree identical to the one computed using an algorithmic approach proposed in Section 3.5 to compute the inconsistency degree of a π-DL-Lite knowledge base.

Min-based assertional merging approach for π-DL-Lite knowledge bases

This section introduces a syntactic merging operator, namely a min-based assertional operator based on conflict resolution. We show that such a merging operator gives a more satisfactory result compared with the one proposed in the previous Section 4.2 and has a natural semantic counterpart.

Syntactic merging of π-DL-Lite assertional bases

Let us consider A 1 ,...,A n a set of assertional bases (ABox) where each A i represents assertional facts provided by a single source of information. We assume that we have a well-formed and coherent terminological base (TBox) T where each A i is consistent with T .

In this section, we study syntactic merging of n assertional bases A 1 ,...,A n that are linked to the same TBox T . We cast available information within the π-DL-Lite framework. For the sake of simplicity, we omit the weights notation attached to the TBox axioms considered as the ones having the highest certainty level, namely, an axiom in T is of the form (ϕ,1). We only represent explicitly weights attached to A i assertions. An assertion f in A i is of the form f =(ϕ, α) where α ∈ [0, 1]. Note that copies of the same assertions ϕ are allowed in several A i and they are considered as different in the sense of priorities or certainty and not in terms of interpretations since we use the Unique Name Assumption.

Let us consider S 1 , ..., S n be the signatures of A 1 ,...,A n and T . Recall that a signature S of a knowledge base K is the set of concept names, role names and individual names used in K. We assume that all A i 's and T share the same signature. We look to identify a syntactical merging operator on the A i 's with respect to a TBox T which will be semantically meaningful. Merging at semantic level will be presented in Section 4.3.2.

Part II, Chapter 4 -Min-based conditioning and merging approach of DL-Lite knowledge bases Example 4.6. Let K= T , A be a π-DL-Lite knowledge base where T ={(A B, 1), (B ¬C, .9)} and A={(A(a), .6), (C(b).5)}. The possibility distribution π K associated to K is computed using Definition 3.2 as follows where ∆ I ={a, b}:

I . I π K I 1 A={a},B={},C={b} 0 I 2 A={a},B={a},C={b} 1 I 3
A={},B={},C={a,b} .4 I 4 A={a,b},B={a,b},C={} .5 Table 4.2: Example of a possibility distribution induced from a π-DL-Lite KB One can observe that π K (I 2 )=1, meaning that π K is normalized, and thus, K is consistent.

Merging using the classical min-based operator

To show properties of our assertional-based merging operator, we first perform merging of A 1 ,...,A n a with respect to T using the classical min-based merging operator proposed in Section 4. According to Definition 4.4, merging operation does not modify the certainty degrees of the π-DL-Lite knowledge base. It just permits to ignore the presence of contradictions (or conflicts) and maintain all the assertions of A ⊕ whose certainty degrees are higher than the inconsistency degree of T , A ⊕ . It is clear that the formal expression of the normalized π-DL-Lite knowledge base K ⊕ given in Definition 4.4 provides a consistent knowledge base. However, this result is not very satisfactory, since many assertions in A 1 ,...,A n , which are not involved in any conflict are thrown out. To this end, we investigate a new approach to merge assertional bases based on conflict detection. 

Min-based assertional merging using conflict resolution

Let K= T , A be a π-DL-Lite knowledge base. In Section 3.5, it was shown that computing the inconsistency degree of K comes down to compute the one of π -neg(T ), A where π-neg(T ) is the negated closure of T . Indeed, computing inconsistency degree of K consists in calculating the maximal weight attached to minimal inconsistent subsets involved in inconsistency (i.e. Definition 3.6). Within a DL-Lite setting, the inconsistency problem is always defined with respect to some ABox, since a TBox may be incoherent but never inconsistent. Recall that in this chapter, we assume that T is coherent. So, from the definition of minimal inconsistent subsets, we define the notion of ABox conflict as a minimal inconsistent subset of assertions. More formally: Definition 4.5. Let K= T , A be an inconsistent π-DL-Lite knowledge base where axioms in T are set to 1. A subbase C ⊆ A is said to be an assertional conflict set of K if and only if

• Inc( T , C ) > 0 and • ∀ f ∈C, Inc( T , C -{f } )=0
It is clear that in Definition 4.5, removing any assertion ϕ from C restores the consistency of T , C . Recall that when the TBox is coherent, a conflict involves exactly two assertions. Let us assume that A 1 ,...,A n are assertional bases provided by n sources of information to be linked to the same TBox T and they use the same scale to represent uncertainty. Let denote by f =(ϕ,α) an assertion or a fact in A i , we define the notion of conflict vector as follows: Definition 4.6. Let T be a TBox and A 1 ,...,A n be a set of ABox provided by n distinct sources of information to be linked to T . Then ∀f∈A i we define a conflict vector associated with,

∀i ∈ {1, .., n}, ∀f = (ϕ, α) ∈ A i , V(f ) = ν 1 , ν 2 , ..., ν n such that: ∀j = 1..n : V j (f ) = 1 if T , {(ϕ, 1) ∪ A i } is consistent Inc( T , {(ϕ, 1) ∪ A i } ) otherwise
Where V i represents the i th component of the vector V.

Intuitively, for each assertion provided by an information source we built upon a vector that represents to what extend this latter contradicts the other ones provided by other source. To this end, we add first the assertion with a highest prescribed level in each source and then we compute the inconsistency degree of this one. It is obvious that the conflict vector of a non conflicting assertion is equal to V(f )= 1, 1, ..., 1 . However assertions that are involved in conflict will have at least a ν i strictly less than 1.

Example 4.10 (Example continued). One can obtain the following conflict vectors: 4, 1, 1 and ν((C(b), . 5)) = 1, .2, .8 From now on, we give the way to aggregate assertional bases using conflict vectors attached to each assertion. Let denote by Σ the set of conflict vectors, we define the min-based assertional merging operators, denoted by Λ as follows: Definition 4.7. Let T be a TBox and A 1 , A 2 , ..., A n be a set of ABox provided by n sources to be linked to T . Let Σ be the collection of conflict vectors associated to each assertion on A i . Then the min-based assertional merging operator, denoted by Λ, is defined on Σ as follows:

V((A(a),.6)) = 1, .6, 1 , V((A(b), .7))= .5, 1, 1 , V((A(b), .2))= .5, 1, 1 , V((A(c), .5))= 1, 1, 1 , V ((B(b), .8))= .5, 1, 1 , V((B(c), .4))= 1, 1, 1 , V((C(a), .4))= .
∀V(f )∈Σ: Λ(f )=min{ν i (f )}
Let us denote by Σ Λ , the vector resulting by min aggregation of conflict vectors. According to conflict vectors, one can associate to the set of assertions a new pre-order by attaching to each of them a new weight (i.e. ∀(ϕ, α)∈A i :(ϕ, α)=(ϕ, Λ(f ))). According to this new pre-order, we define the knowledge base resulting from the fusion operation as follows.

Definition 4.8. Let T be a TBox and A 1 , ..., A n be a set of n ABox to be linked to

T . Let A Λ = {(ϕ, Λ(f )) : f = (ϕ, α) ∈ A i and Λ(f ) ∈ Σ Λ }. Let x=Inc( T , A Λ ).
Then the resulting knowledge base K Λ is such that: According to Definition 4.8, it is clear that method based on conflict vectors is more productive than the classical definition of the min-based merging operator proposed in Definition 4.4. Note that this approach can easily propose others aggregation modes such as product-based merging or sum-based merging.

K Λ = T , {(ϕ, α) : (ϕ, α) ∈ A Λ and α > x}
The definition of this merging operator is based on a notion of conflict measure between sources of information. However, one can observe that original weights attached to assertions are lost. Regarding for instance assertion B(c), it is provided by only one source where its initial weight was .4. This means that 4.3. Min-based assertional merging approach for π-DL-Lite knowledge bases B(c) is not a totally reliable information. In the new knowledge base its weight is raised to 1. This can be justified by the fact that such assertion is not involved in any conflict. However when we proceed to an iteration process this approach may be not very useful. To overcome such limitation while preserving the same productivity of the fusion result, we propose the following definition. Definition 4.9. Let T be a TBox and A 1 , ..., A n be a set of n ABox to be linked to

T . Let A Λ = {(ϕ, Λ(f )) : (ϕ, α) ∈ A i }. Let x=Inc( T , A Λ ).
Then the resulting knowledge base K Λ is such that:

K Λ = T , {f = (ϕ, α) ∈ A i : i ∈ {1, ..., n}, (ϕ, Λ(f )) ∈ A Λ and Λ(f ) > x}

Semantic counterpart

Let us consider A 1 ,...,A n a set of ABox's where each A i represents data of a single source of information. We assume that we have a well-formed and coherent TBox T where each A i is consistent with the T . Let π 1 ,...,π n be the set of possibility distributions associated with K 1 ,...,K n where each K i = T , A i . Namely each π-DL-Lite knowledge base K i is associated with a possibility distribution π i which is its semantic counterpart.

In this section, we investigate fusion of weighted π-DL-Lite assertional bases at semantic level. We show that such merging operation is the natural semantic counterpart of the Λ merging operators (presented in 4.3.1) used to merge π-DL-Lite ABox A 1 ,...,A n with respect to a T .

More formally, given (π 1 ,...,π n ) possibility distributions associated with (K 1 ,...,K n ) π-DL-Lite knowledge bases, then for the proposed operator Λ applied to aggregate A 1 ,...,A n with respect to T , we look for a π-DL-Lite possibility distribution π Λ constructed from the aggregation of (π 1 ,...,π n ) with the semantic counterpart of Λ that corresponds to the possibility distribution π K Λ induced from K Λ . Namely

π Λ =π K Λ .
As usual, assume that π 1 ,...,π n share the same domain of interpretations (namely ∆ I 1 =...=∆ I n ), and that all possibility distributions use the same scale to represents uncertainty. The following definition introduces the semantic definition of conflict vectors. Definition 4.10. Let A 1 ,...,A n be a set of ABox and π 1 ,...,π n be a the set of possibility distributions induced from K 1 ,...,K n where each K i = T , A i . Then ∀f ∈A i with f =(ϕ,α), we define semantically a conflict vector, denoted by V(f ), as follows:

V(f )= Π π 1 (ϕ), Π π 2 (ϕ), ..., Π πn (ϕ)
where ∀i=1..n:Π π i (f ) denotes the possibility measure of ϕ induced from the possibility distribution π i Intuitively, a conflict vector associated to any ABox assertion represents to what extent this latter is compatible with available knowledge provided by each source.

Example 4.13. [Examples continued] Assuming that ∆ I ={a, b, c}, let us consider the following possibility distributions π 1 , π 2 and π 3 to be merged. Note that we only have considered interpretations that are models of T .

I

.

I π 1 π 2 π 3 I 1 A = {a}, B = {a}, C = {b, c} 1 .2 .5 I 2 A = {b}, B = {b}, C = {a, c} .4 1 .5 I 3 A = {c}, B = {c}, C = {a, b} .4 .2 .8 I 4
A = {a, b}, B = {a, b}, C = {c} .5 .6 .5

I 5 A = {a, c}, B = {a, c}, C = {b} 1 .2 .8 I 6 A = {b, c}, B = {b, c}, C = {a} .4 1 1 I 7 A = {a, b, c}, B = {a, b, c}, C = {} .5 .6 1 I 8 A = {}, B = {}, C = {a, b, c} .4 .2 .5
Table 4.3: Possibility distributions induced from three knowledge bases One can compute the following conflict vectors for each assertion:

V(A(a))= max (1, .5, 1, 1), max (.2, .6, .2, .6), max(.5, .6, .8, 4, .5, .5, 5), max (1, .6, .1, .6), max(.5, .5, 4, 1, .4, .5), max(.2, .2, 1, .6), max(.8, .8, .2, .8 which are equal to the ones computed syntactically in Example 4.10.

1) = 1, .6, 1 , V(A(b))= max(.
1, 1) = .5, 1, 1 , V(A(c))= max(.
1, 1) = 1, 1, 1 , V(B(b))= .5, 1, 1 , V(B(c))= 1, 1, 1 , V(C(a))= .4, 1, 1 and V(C(b))= 1,
Let us denote by Σ the collection of conflict vectors associated to each assertion of A i . Next definition introduces min-based assertional merging operator, denoted Λ, on the conflict vectors of Σ. Definition 4.11. Let A 1 ,...,A n be a set of ABox and π 1 ,...,π n be a the set of possibility distributions induced from K 1 ,...,K n where each K i = T , A i . Let Σ be the collection of conflict vectors associated to each assertion on A i computed using Definition 4.10. Then the min-based assertional merging operator, denoted by Λ, is defined on Σ as follows:

∀V(f )∈Σ:V(f )= Π π 1 (ϕ), Π π 2 (ϕ), ..., Π πn (ϕ) , Λ(f )= min{ν i (f ) ∈ V(f )}
Let us denote by Σ Λ , the vector resulting by min-based aggregation of conflict vectors. From Definition 4.11, one can associate to each assertion a new weight that represents its compatibility with other assertions provided by the other sources. Definition 4.12. Let A 1 ,...,A n be a set of ABox and π 1 ,...,π n be a the set of possibility distributions induced from K 1 ,...,K n where each K i = T , A i . Then the possibility distribution π Λ as follows: One can check that merging normalized possibility distributions may lead to a sub-normalized possibility distribution. This is the case with our example. Indeed, we focus on the normalization problem when the use of min-based assertional operators min provides a subnormal possibility distribution. The following proposition states the equivalence between the semantic and syntactic approaches.

∀I ∈ Ω : π Λ (I) = 1 if ∀ (ϕ, α) ∈ A i , I |= ϕ 1 -max{Λ((ϕ, α)) : (ϕ, α) ∈ A i ,
π N Λ (I) = 1 if π Λ (I) = h(π Λ ) π Λ (I) otherwise
Proposition 4.4. Let A 1 ,...,A n be a set of ABox and π 1 ,...,π n be a the set of possibility distributions induced from K 1 ,...,K n where each K i = T , A i .Then the possibility distribution

π N Λ (I) = 1 if π Λ (I) = h(π Λ ) π Λ (I) otherwise
is associated with

K Λ = T , {(ϕ, Λ(f )) : (ϕ, Λ(f )) ∈ A Λ and Λ(f ) > x}

Logical properties

Let us use E = {K 1 , ..., K n } to denote a multi-set, called belief profile, that represents the knowledge bases to be merged (where each K i is associated with a possibility distribution π i ). Let us use to denote a merging operator. This merging operator can be parametrized by an integrity constraint, being a konwledge base K, and K (E) denotes the result of the merging operator under this constraint K. A logical characterization of integrity constraint merging operators has been proposed in [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF] through a set of rational postulates extended from the ones proposed for belief revision [Katsuno and Mendelzon, 1991]. The following postulates rephrase the ones proposed in [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF] within DL-Lite framework. 

(M π 0 ) K (E) |= K (M π 1 ) if K is consistent, then K (E) is consistent (M π 2 ) if K ∪ K i ∈E K i is consistent, then K (E)=K ∪ K i ∈E K i (M π 3 ) if E 1 ≈ E 2 and K 1 ≡ K 2 , then K 1 (E 1 ) ≡ K 2 (E 2 ).

Conditioning of DL-Lite possibility distributions

Let K= T , A be a π-DL-Lite knowledge base where π K is its joint possibility distribution computed according to Definition 3.2. For the sake of simplicity, we assume that K is consistent (namely π K is normalized).

Example 4.17. Let K= T , A be a π-DL-Lite knowledge base where T ={(A B,.4)} and A={(A(a), .5),(C(a), .7)}). One can compute π K the possibility distribution induced from K using Definition 3.2.

I . I π K I 1 A = {},B = {},C = {} .3 I 2 A = {a},B = {},C = {} .3 I 3 A = {},B = {a},C = {} .3 I 4 A = {},B = {},C = {a} .5 I 5 A = {a},B = {a},C = {} .3 I 6 A = {a},B = {},C = {a} .6 I 7 A = {},B = {a},C = {a} .5 I 8 A = {a},B = {a},C = {a} 1 Table 4.6: Example of a possibility distribution π K computed using Definition 3.2.
One can observe that π K (I 8 )=1 meaning that the knowledge base is consistent. Note that we have chosen a simple example in order to enumerate all interpretations. This will be helpful to illustrate the conditioning of a π-DL-Lite possibility distribution.

Let us denote by (ϕ, µ) the new information to be accepted. Within the π-DL-Lite setting, ϕ may be an assertion of the form A(a) or P (a, b), a positive inclusion axiom of the form B 1 B 2 or a negative inclusion axiom of the form B 1 ¬B 2 and µ∈] 0, 1]. The new input can be a totally reliable information (i.e. µ=1) or uncertain (i.e. 0<µ<1). In π-DL-Lite, conditioning comes down to add the new information with its prescribed level of certainty while ensuring the consistency of the results.

In the following, we investigate conditioning at the semantic level. It consists in conditioning the original possibility distribution π K by the new information (ϕ, µ). This operation takes as input a possibility distribution π K and the new information (ϕ, µ) and transforms π K to a revised possibility distribution π =π K (.|(ϕ, µ)). Here, the input (ϕ, µ) is considered as a constraint that must be satisfied in π . More precisely, the revised distribution is such that Π (ϕ)=1 (recall that in the possibilistic setting, in order for an event ϕ to have a certainty degree greater than zero, it must be totally possible, hence Π (ϕ)=1, see Section 2.2.2) and N (ϕ)≥µ meaning that the axiom ϕ is certain at least to the degree µ. Here Π (resp. N ) is the possibility (resp. necessity) measure induced by the revised possibility distribution π .

Logical properties

In [Benferhat et al., 2002c], conditioning in the possibilistic logic setting is characterized with the following properties rephrased in our framework. A revised possibility distribution π is considered eligible for revising the initial distribution π K with the new input (ϕ, µ) if it satisfies the following properties.

(A1) max I∈Ω (π (I))=1.

(A2) Π (ϕ)=1 and N (ϕ)≥µ.

(A3) ∀I 1 |=ϕ, I 2 |=ϕ, if π K (I 1 )≤π K (I 2 ) then π (I 1 )≤π (I 2 ).
According to Definition 4.14, accepting the input consists in raising the degree of the most plausible model of ϕ to 1. This allows to deal only with axioms that are consistent with the input. For the countermodels, it is clear that the most plausible is set to 1-µ and all the interpretations that are more compatible than 1-µ should be shifted down to 1-µ. Proposition 4.5. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility possibility distribution. Let (ϕ, µ) be a new information. Then π =π K (.|(ϕ, µ)) computed using Definition 4.14 satisfies postulates (A1)-(A6).

Example 4.18. Let us consider π K presented in Example 4.17. Assume that we have in this example separately two cases of new information pieces to be accepted. The first one is (B ¬C, .9) and the second one is (B ¬C, .2). Using Definition 4.14, the min-based revised possibility distribution π = π K (I| m (B ¬C, .9)) (resp. π = π K (I| m (B ¬C, .2)) is as follows:

I . I π K π K (I| m (B ¬C,.9)) π K (I| m (B ¬C,.2)) I 1 A = {},B = {},C = {} .3 .3 .3 I 2 A = {a},B = {},C = {} .3 .3 .3 I 3 A = {},B = {a},C = {} .3 .3 .3 I 4 A = {},B = {},C = {a} .5 .5 .5 I 5 A = {a},B = {a},C = {} .3 .3 .3 I 6 A = {a},B = {},C = {a} .6 1 1 I 7 A = {},B = {a},C = {a} .5 .1 .5 I 8 A = {a},B = {a},C = {a} 1 .1 .8
Table 4.7: Example of possibility distribution revisied by two information pieces.

In this example, the first scenario is revising π K associated to K with the input (B ¬C,.9). Given that in π K , we have a priori Π(B ¬C)=.6 (hence it's necessity is 0) then the new input requires to be satisfied to increase the necessity of the axiom B ¬C until .9.

In the second scenario, the necessity of the axiom B ¬C has to be shifted down to . Definition 4.14 is a direct adaptation of conditioning in possibilistic logic [Dubois and Prade, 1988a] to π-DL-Lite framework. As it will be shown in the following example, conditioning of Definition 4.14 is not satisfactory as it provides somehow counterintuitive results. More precisely, conditioning of Definition 4.14 works when the new information is inconsistent with the knowledge base or it is a priori inferred with a weight less than its prescribed level µ. Hence conditioning here consists in simply adding the new information to the old knowledge (it is a kind of knowledge expansion). However, conditioning of Definition 4.14 does not work properly when the input is a priori inferred with a weight greater than its prescribed level µ. The following example illustrates this situation.

Example 4.19. Assume that we have a π-DL-Lite knowledge base K where the TBox T ={(A B, .4), (B C,.7)} and the ABox A={(A(a),.3)}. One can easily check that we have a priori K|= π (A C,.4) (indeed, as it is shown in Table 4.8, the axiom A C has a necessity degree of .4 in the possibility distribution π K associated to K). Now assume the two following situations: In the first one, the information piece to be accepted by K is (A C,.9) while in the second situation K is revised with (A C,.2). Let π K be the possibility distribution associated with K and Let π =π K (I| m (A C,.9)) (resp. π =π K (I| m (A C,.2))) the conditioned min-based possibility distribution using Definition 4.14.

I

. C) = 1 and Π n (A C)=.6. The possibility degrees of the interpretations {I 7 , I 8 } are set to (1-.9)=.1 in order to ensure that N (A C)=.9. It is easy to check that properties (A1)-( A6) are satisfied by the distribution π computed according to Definition 4.14. However when the input is (A C,.2), there is a problem regarding the possibility degree associated to I 2 in π . Indeed, we have A C is implied by the fact A B and B C. Hence, in order to have a necessity degree of A C of .2 then one has to shift down at least the necessity degree of the axiom A B down to .2 as it has a lower priority than B C. However, if the necessity of A B is shifted down to .2 then the corresponding π K after this modification will not be equivalent to the one given in Table 4.8. For instance, the interpretation I 2 will be associated with a degree of .8 instead of .6 currently. Clearly revision with conditioning of Definition cannot fully capture syntactic revision detailed in the following section.

I π K π =π K (I| m (A C,.9)) π =π K (I| m (A C,.2)) I 1 A={},
It is important to note that in the DL-Lite framework, it is not guaranteed that any set of interpretations represents a DL-Lite axiom (see Section 3.2).

In the next section, we analyze revision at syntactic level. We then provide a definition of conditioning possibility distributions that refines Definition 4.14.

Syntactic revision

In this section, we study revision with the new information (ϕ, µ) at the syntactic level. Revision here consists in obtaining from a π-DL-Lite knowledge base K = T , A associated to a possibility distribution π K and an uncertain input information (ϕ, µ), a new π-DL-Lite knowledge base K = T , A . As in possibilistic logic, in π-DL-Lite, revision comes down to add the new information with its prescribed level of certainty while ensuring the consistency of the revision results.

As mentioned is the previous section a simple adaptation of conditioning in possibilistic logic to π-DL-Lite framework is not very satisfactory. So, we identify cases where K = T , A is associated to possibility π K such that:

∀I ∈ Ω, π K (I)=π K (I| m (ϕ, µ))
where π K is the possibility distribution obtained from conditioning π K by (ϕ, µ) using minimum-based conditioning of Definition 4.14.

As illustrated in Example 4.19, Definition 4.14 doesn't provide good results and in particular when the (ϕ, µ) is inferred from the knowledge base with a weight greater than its prescribed one. Indeed, according the logical form of K , we propose an new definition of minimum-based conditioning that refine Definition 4.14.

Part II, Chapter 4 -Min-based conditioning and merging approach of DL-Lite knowledge bases 2. The second one is when (ϕ, µ) cannot be inferred from K, namely K |= π φ. Here, revision is performed with a simple expansion of K with the input (ϕ, µ), namely K =K∪(ϕ, µ).

Let us first discuss the situation where the input (ϕ, µ) is a priori inferred from the knowledge base K. In this situation, two scenarios can hold depending on the a priori necessity measure of ϕ (denoted N (ϕ)=ν), and its prescribed posterior necessity N (ϕ)=µ. Namely:

1. When ν≤µ meaning that the new information is inferred with a certainty degree ν less than its prescribed one µ. Note that this situation is similar to the case of revising with a certain input (namely case where µ=1).

2. When ν>µ meaning that the new information is inferred with a certainty degree ν that is greater than its prescribed one µ.

In the π-DL-Liteframework, two different kinds of inference services are given, namely flat subsumption (resp. instance checking) and weighted subsumption (resp. instance checking) (see Section 3.7). To determine to what extent the input (ϕ) is inferred from the knowledge base, namely K|= π (ϕ,ν) with ν≥µ or ν<µ, we first add to K the assumption that ϕ is false encoded by the following statements:

{(Y C 1 , 1), (Y ¬C 2 , 1), (Y (y), 1)} if ϕ=C 1 C 2 and {(Y ¬C 1 , 1), (Y (a), 1)} if ϕ=C 1 (a)
where Y (resp. y) is a new concept (resp. individual) not appearing in K. Then we compute the inconsistency degree of the augmented knowledge base. This inconsistency degree corresponds to ν. Namely K |= π (ϕ,ν) if and only if Inc(K 1 )=ν where

K 1 = T 1 , A 1 with T 1 =T ∪ {(Y C 1 , 1), (Y ¬C 2 , 1)} and A 1 ={(Y (y), 1)} or T 1 =T ∪ {(Y ¬C 1 , 1)} and A 1 =A ∪ {(Y (a)
, 1)}. Now, the construction of the augmented π-DL-Lite knowledge base K is performed using the following steps:

1. Add the assumption that ϕ is false to K with the highest prescribed level (i.e. µ = 1).

2. Compute the inconsistency degree of the augmented knowledge base (i.e. Inc(K 1 )=ν).

If µ≥ν, then the revision outcome is

K =K∪{(ϕ, µ)}.
4. if (µ < ν) two solutions can be proposed.

(a) The first one is to shift down the weights of axioms in K which are between µ and ν to µ.

(b) The second solution is to compute first the set X ⊆K of axioms in K that imply ϕ. Then we shift down the weights of axioms in X which are between µ and ν to µ.

These steps ensure inferring the new input ϕ from the resulting knowledge base K with its prescribed level µ. Following these steps, it is clear that the revision process does not change the initial weights attached to axioms of K if K|= π (ϕ, ν) with ν≤µ. However it changes the initial weights attached to some axioms responsible or not for inferring ϕ from K with the weight µ when ν>µ. According to the Example 4.19 presented in the previous section, conditioning proposed by Definition 4.14 is counterintuitive when (µ < ν). To this end, we fit Definition 4.14 before giving the formal representation of K .

Semantic counterpart

Let us start with the case where ν > µ. The following definition gives a min-based conditioning of π-DL-Lite possibility distribution generalizing Definition 4.14. Definition 4.15. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility possibility distribution. Let (ϕ,µ) be the new information. The min-based conditioning is extended to the π-DL-Lite setting as follows:

• ∀I|=ϕ, π K (.| m (ϕ, µ))=        1 if π K (I)=Π(ϕ) 1 -µ if max{π(I) : I |= ϕ}≤π K (I)≤1-µ π(I) otherwise • ∀I |=ϕ, π K (.| m (ϕ, µ))= 1-µ if π(I)=max{π(I) : I |= ϕ} or π K (I)>1-µ π(I) otherwise
According to Definition 4.15, accepting the input consists in raising the degree of the most plausible model of ϕ to 1. Moreover when N (ϕ) ≥ µ, some models of ϕ will all be set to 1 -µ. For the countermodels, the most plausible is set to 1-µ and all interpretations that are more compatible than 1-µ should be shifted down to 1-µ. Moreover, when N (ϕ)=ν > µ the interpretations that falsify less priority axioms inferring ϕ will be revised. Proposition 4.7. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility possibility distribution. Let (ϕ,µ) be the new information. If Π(ϕ)<1, Then π =π K (.|(ϕ, µ)) computed using Definition 4.15 satisfies postulates (A1), (A2), ( A3), (A4), (A6).

The following proposition relates the resulting knowledge base K with the possibility distribution π K associated to K with the results of conditioning at the semantic level using Definition 4.15 Proposition 4.8. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility distribution. Let (ϕ, µ) be the added uncertain input information and ν=Inc(K 1 ) where K 1 is the augmented knowledge base by the assumption that ϕ is false. Then the revised π-DL-Lite knowledge base K = T , A such that:

K ={(ϕ, µ)}∪{(φ, α):(φ, α)∈K and α>ν}∪{(φ, α):(φ, α)∈K and α<µ} ∪ {(φ, µ):(φ, α) ∈ K and µ≤α≤ν}

The possibility distribution π K associated to K is such that:

∀I ∈ Ω, π K (I)=π K (I| m (ϕ, µ)),
where π K (I| m (ϕ, µ)) denotes the revised possibility distribution of π K using the min-based conditioning of Definition 4.15.

Proposition 4.8 leads to shift down the weights of axioms in K which are between µ and ν to µ. However, one can improve the result with a minimal change consisting in revising only the weights of some axioms responsible of implying the new information. Given the set X ⊆K of axioms in K that infer ϕ, we distinguish semantically four sets of interpretations when the new information ϕ is satisfied:

I . I π K π =π K (I| m (A C,.9)) π =π K (I| m (A C,.2)) I 1 A={},
1. Interpretations that are models of X and K-X , 2. Interpretations that are models of X but are not models of K-X , 3. Interpretations that are models of K-X but are not models of X and 4. Interpretations that are neither models of K-X nor X .

The following definition provides another min-based conditioning of π-DL-Lite possibility distribution that also adapts Definition 4.14. Definition 4.16. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility possibility distribution. Let (ϕ, µ) be the new information. Let X ⊆K be the set of axioms inferring ϕ. Let µ =max{α : (φ, α) ∈ K -X and I |= φ}.

In an ordinal setting, we define the min-based conditioning as follows: Proposition 4.9. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility possibility distribution. Let (ϕ, µ) be the new information. If Π(ϕ)<1. Then π =π K (.|(ϕ, µ)) computed using Definition 4.16 satisfies postulates (A1),(A2),(A3) and (A6).

• ∀I|=(ϕ∪X ), π(.| m (ϕ,µ))= 1 if π(I)=Π(ϕ) π(I) otherwise • ∀I|=ϕ∪(K-X ), I |=X , π(.| m (ϕ,µ))= 1-µ if π(I)=max{π(I) : I |= ϕ} π(I) otherwise • ∀I |= ϕ,I |= X , I |= K-X ,π(.| m (ϕ, µ))=        1-µ if π(I)=max{π(I) : I |= ϕ} and 1 -µ ≥1-µ 1-µ if π(I)=max{π(I) : I |= ϕ} and 1 -µ ≤1-µ π(I) otherwise • ∀I |= ϕ,π(.| m (ϕ, µ))=        1-µ if π(I)=max{π(I) : I |= ϕ} 1-µ if π(I)>1-µ π(I) otherwise
The following proposition relates the resulting knowledge base K with the possibility distribution π K associated to K with the results of conditioning at the semantic level using Definition 4.16. Proposition 4.10. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility distribution. Let (ϕ, µ) be the added uncertain input information and ν=Inc(K 1 ) where K 1 is the augmented knowledge base by the assumption that ϕ is false. Then the revised π-DL-Lite knowledge base

K = T , A such that K ={(ϕ, µ)} ∪ {K -X } ∪ {(φ, α) : (φ, α) ∈ X and α > ν} ∪ {(φ, µ) : (φ, ν) ∈ X and ν = α}
The possibility distribution π K associated to K is such that:

∀I ∈ Ω, π K (I)=π K (I| m (ϕ, µ)),
where π K (I| m (ϕ, µ)) denotes the revised possibility distribution of π K using the min-based conditioning defined in Definition 4.16.

Example 4.22 (Examples 4.19 continued). When the input is

(A C,.9), then K = {(A B, .4), (B C,.7), (A C,.9), (A(a), .3)} such that π K (I)=π K (I| m (A C,.9) presented in Example 4.19. Now, when the input is (A C,.2), then K ={(A B,.2), (B C,.7), (A C,.9), (A(a), .3)} such that π K (I)=π K (I| m (A C,.
2) becomes as follows: Let us now discuss the case where µ≥ν. It is similar to the revision by a totally reliable information (i.e. µ=1). In this case, it is natural that all the interpretations that are models of ϕ must be preserved and all the interpretations that falsify ϕ must be set as impossible (the necessity degree of the input equals 0). In this case the conditioning operation follows from Definitions 4.15 and 4.16. Moreover conditioning according Definitions 4.15 and 4.16 agrees with Definition 4.14. Finally when (ϕ, µ) cannot be inferred from K, this means that the revision process is performed simply with an expansion of K with the input. In such situation, conditioning follows trivially according to Definitions 4.15 and 4.16 and coincides with Definition 4.14. It is similar to the case where the input is inconsistent with K. Clearly, Inc(K∪(ϕ, µ))=0.

I . I π K π =π K (I| m (A C,.9)) π =π K (I| m (A C,.2)) I 1 A={},
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Discussions

According to the new definition, conditioning of π-DL-Lite possibility distribution with (ϕ, µ) establishes a new pre-order between counter-models and models of ϕ. This new ranking depends on the a priori necessity measure of ϕ, and the prescribed posterior necessity measure of ϕ. Roughly speaking, if N (ϕ)≤µ then with a min-based conditioning every interpretation that falsifies ϕ and that is more compatible than 1-µ is shifted down to 1-µ. This means that some a priori pre-order on these interpretations will be lost. Moreover, the fact that within π-DL-Lite framework, the necessity measure is not the dual of the possibility measure, some a priori pre-order on interpretations which are models of ϕ will also be lost. This is a consequence of shifting down to 1-µ some more compatible counter-models of ϕ when N (ϕ)≤µ. Regarding the computational complexity of the syntactic revision, it is obvious that it is polynomial since computing the inconsistency degree of a π-DL-Lite knowledge base is polynomial using the algorithm proposed in Section 3.5.

To compute the revision outcome, we need one step further when (ϕ, µ) is inferred from the knowledge base. Namely, we need to compute the set of axioms responsible for deducing the input. The computational complexity of this subset is also polynomial. This step is in the spirit of computing the π-negated closure of a π-DL-Lite knowledge base. Clearly, computing this subset X comes down by adding every axiom involved in computing the π -neg(T 1 ) starting only from the negative inclusion axiom added from the assumption that ϕ is false. This is for obtained TBox axioms. Obtaining ABox assertions comes down to detect all assertions in the original ABox that contradict negative inclusion in X .

Conclusion

In this chapter, we first investigated merging of uncertain DL-Lite knowledge bases by adapting the minbased idempotent conjunctive operator. We then proposed a new min-based operator for merging multiple sources ABoxe's sharing the same terminology in the context of π-DL-Lite. We propose a syntactic version of this operator and its semantic counterpart. This operator turns out to be more productive than the classical one, without increasing the complexity of the merging process. In particular, it picks any piece of information that is not in contradiction with the other bases: it is not affected by the drowning effect. We finally provide an analysis in the light of a new set of postulates dedicated to uncertain DL-Lite merging.

This chapter addressed also conditioning of π-DL-Lite knowledge bases when a new piece of information (ϕ, µ), possibly conflicting or uncertain, becomes available. We first studied revision at the semantic level by adapting conditioning of possibility distributions proposed within the possibilistic setting. We have shown that such conditioning may provide some counterintuitive results. We then investigated revision at the syntactic level of π-DL-Lite knowledge bases. Finally, we proposed two other definitions of π-DL-Lite possibility distribution s conditioning that generalize the first one.

From the works on merging, it seems that our merging approach based on conflict resolution is closely related to handling inconsistency approaches. In fact, among the crucial issues when merging is how to deal with conflicting information. This has led us to orientate our works towards inconsistency management. Unfortunately, even in the flat case, (when there is no priority between sources), only few works addressed this problem. To this end, the second part concerns the problem of inconsistency handling in flat DL-Lite knowledge bases. CHAPTER 5

NON-MERGE INCONSISTENCY MANAGEMENT ROADMAP IN FLAT DL-Lite

KNOWLEDGE BASES

Introduction

In this chapter, we place ourselves in the context of handling an inconsistent set of pieces of information. As a case of study, we consider the setting of flat Ontology Based Data Access (OBDA) that studies how to query a set of independent data sources using an unified ontological view. A specific research challenge within the OBDA setting addresses the case when the data sources put together are inconsistent. Existing works (e.g. [Lembo and Ruzzi, 2007;[START_REF] Lembo | [END_REF][START_REF] Bienvenu | Tractable approximations of consistent query answering for robust ontology-based data access[END_REF]Rosati, 2014]) have focused on the study of different inference strategies (called semantics) based on productivity criteria (how two semantics relate to each other based on their answer sets) and computational complexity. In these studies, closely related to works on consistent query answering from inconsistent databases (e.g. [Chomicki, 2007;Bertossi, 2011]), there is a lack of studies on how existing inference strategies can be placed within the space of possible inference strategies.

This chapter produces a roadmap of different inconsistency management techniques from a DL-Lite knowledge base with a multiple ABox, called an MBox DL-Lite knowledge base. An MBox is a multi-set of ABox's which can be issued from multiple information sources (as per the OBDA view) but could also, for instance, be resulted from revising inconsistent DL-Lite knowledge bases.

We build upon the state of the art and:

1. Introduce, discuss and provide properties for three main elementary changes or modifiers that can be operated on an MBox, namely expansion modifiers, splitting modifiers and selection-based modifiers.

2. Provide and study different inference strategies for query answering from MBox DL-Lite knowledge bases.

3. Show how the combination of modifiers and inference strategies provides a natural general setting that extends existing consistent query answering OBDA techniques.

4. Provide a study of productivity results for modifier plus inference strategies combinations.

Based on the above notions, an additional and important contribution in this chapter is providing a generalized view for handling inconsistent standard DL-Lite knowledge bases. The important points of this roadmap lay in its principled nature and completeness. Within this setting, the particular problem of repairing an inconsistent DL-Lite knowledge base can be seen as made out of a (1) composite or a complex modifier on a given MBox followed by (2) an inference-based strategy. We show that there are exactly eight major composite modifiers that can be applied on an inconsistent DL-Lite knowledge base and identify those that produce a single consistent and preferred repair. The rest is organized as follows: Section 5.2 first defines the concept of DL-Lite knowledge bases with multiple ABox, and then introduces three elementary modifiers that, applied on MBox, define new modifiers. Section 5.3 presents several inference-based strategies that can be applied on an MBox DL-Lite knowledge base. Section 5.4 investigates the problem of repairing an inconsistent DL-Lite knowledge base, which is considered as composed of a composite modifier applied on a given MBox followed by an inference-based strategy. Section 5.5 studies the productivity and gives a complexity analysis of the different inconsistency-tolerant inferences. Section 5.6 discusses the different results. Section 5.7 concludes the chapter. Finally, additional propositions and counterexamples can be found in the appendix B.

Reasoning from MBox knowledge bases

This section proposes how to reason from a DL-Lite knowledge base with a multiple ABox, called an MBox DL-Lite knowledge base. We discuss three main elementary changes or modifiers on an MBox. We provide different ways to compose them in order to obtain a composite modifier and propose inference strategies for querying MBox DL-Lite knowledge bases.

MBox: Multiple ABox

We first introduce the concept of DL-Lite knowledge bases with multiple ABox, called MBox DL-Lite knowledge bases. In the above definition, there is no additional assumption regarding the consistency of each T , A i . However, in general, T , A i 's are often assumed to be consistent while (T , A i ∈M A i ) is unlikely to be consistent. An MBox may be viewed as a convenient way to represent a multiple-sources of information, where each ABox A i is assumed to be provided by a distinct source. An MBox may also be the result of revising an inconsistent standard DL-Lite knowledge base. In this case, each element of the MBox reflects a possible repair of the inconsistent DL-Lite knowledge base. This view of an MBox will be assumed in large in Section 5.4.

In the rest of the chapter, an MBox DL-Lite knowledge base 

K M = T , {A 1 , ..., A n } is said to be consistent if each T , A i is individually consistent. A

Elementary modifiers on MBox

We now introduce elementary modifiers that, applied on MBox, define new modifiers.

Reasoning from MBox knowledge bases

Expansion modifiers

The first considered modifier operators concern expansion of ABox's. It consists in adding to each ABox A i some assertions. One natural way to define an expansion modifier on MBox is to use the notion of a deductive closure of DL-Lite knowledge bases. There are different definitions of deductive closures in DL-Lite (e.g. [START_REF] Lembo | [END_REF]). Here, we propose the one that is appropriate for the context of inconsistency handling.

Note that the use of deductive closure of an ABox fully makes sense in DL languages, while for instance in propositional logic the closure of an inconsistent knowledge base trivially leads to produce the whole language. We denote by • cl (M) the expansion modifier on MBox M, defined as:

Let us denote by • cl (M) the deductive closure operator of an MBox M, defined as follows:

Definition 5.2. Let K M = T , M be an MBox DL-Lite knowledge base. Let T p be the set of all positive inclusion axioms of T1 , D I be the set of all individuals in all ABox's; D C and D R be the set of concepts respectively roles in K M .

• Standard DL-Lite: the deductive closure of a given ABox A i with respect to T is defined as:

Cl T (A i ) = {B(a) : T p , A i |= B(a), B ∈ D C , a ∈ D I } ∪ {R(a, b) : T p , A i |= R(a, b), R ∈ D R , a ∈ D I , b ∈ D I }
• DL-Lite with an MBox: the deductive closure of M is defined as:

• cl (M) = {Cl(A i ) : A i ∈ M}
The expansion modifier • cl (M) takes as input an MBox M = {A 1 , ..., A n } and produces as output an MBox • cl (M) obtained by replacing each A i ∈ M by its deductive closure. The deductive closure represents one natural way to define an expansion of an MBox. Another natural way to define an expansion is to add to each A i ∈ M the set of common assertions that can be derived from each T , A i .

A i = A i ∪ {B(a) : ∀A j ∈ M, T p , A j |= B(a), a ∈ D I , B ∈ D C } ∪ {R(a, b) : ∀A j ∈ M, T p , A j |= R(a, b), R ∈ D R , a ∈ D I , b ∈ D I } Where D C (resp. D R , D I ) is the set of all concepts (resp. roles, individuals) used in M.
In the rest of the chapter, by an expansion modifier, we refer to the use of deductive closure modifier • cl given in Definition 5.2.

Splitting modifiers

The second class of modifiers is called splitting modifiers. The idea is to replace some A i of an MBox by one or several of their subsets. This typically happens when some A i is inconsistent with respect to T . Then it may be reasonable to replace each A i by some of its consistent subsets. Here, we choose as a splitting modifier the widely used inclusion-based maximally consistent subsets, defined by: Definition 5.3. Let K = T , A be a standard DL-Lite knowledge base. R ⊆ A is an inclusion-based maximally consistent subset of A with respect to T if and only if:

1. T , R is consistent, 2. if R = A then ∀R : R R , T , R is inconsistent.
According to Definition 5.3, adding any fact f from A \ R to R entails the inconsistency of T , R ∪ {f } . Note that if K is consistent, then K admits a unique maximally consistent subset which is R = A. The splitting modifier on a single ABox A, denoted indifferently by • incl (A) or • incl ({A}), is the set of all maximally inclusion-based consistent subsets of A with respect to T . Definition 5.3 is extended to MBox as follows:

Definition 5.4. Let K M = T , M be an MBox DL-Lite knowledge base. An inclusion-based modifier on M, denoted • incl (M), is defined by:

• incl (M) = A i ∈M {X : X ∈ • incl (A i )}
Namely, • incl (M) consists in replacing each inconsistent A i of M by its maximally consistent subbases. 

Selection-based modifiers

The last elementary modifiers considered in this chapter are selection-based modifiers which consist in considering only some subsets of M to make inferences for instance. An example of a selection modifier simply consists in keeping only ABox's issued from the most reliable sources and getting rid those that are not enough reliable. Another natural way to define such a selection function is to only keep the largest ABox's. This selection function, adopted in this chapter, is called cardinality-based selection, denoted by • card (M) and is defined as follows: (M), defined by:

Definition 5.5. Let K M = T , M be an MBox DL-Lite knowledge base. A cardinality-based selection on MBox M is an MBox, denoted • card
• card (A) = {A i : A i ∈ M such that A j ∈ M, |A j | > |A i |}.
Namely, • card (M) selects among the ABox's in M the ones with maximal assertion number. 

Composite modifiers on MBox

In the above section, we presented three main elementary modifiers2 that operate on an MBox. These modifiers can be combined and composed to define composite modifiers.

The following lemma first shows that the elementary modifiers • cl , • incl and • card are idempotent. Besides, it also shows that expansion and splitting modifiers only need to be applied once. These properties considerably reduce the number of combinations that can be done on elementary modifiers. (M), and

(a) • incl (• incl (M)) = • incl (M) (b) • card (• card (M)) = • card
(c) • cl (• cl (M)) = • cl (M).
2. Let • d be a composite modifier (i.e. a combination of elementary modifiers). Then:

(a) • cl (• d (• cl (M))) = • d (• cl (M)), and (b) • incl (• d (• incl (M))) = • d (• incl (M)).
Proof of Lemma 5.1. The proof of the item (1.a) follows from the facts that:

• ∀A i ∈ • incl (M), T , A i is consistent, • if T , A i is consistent, then • incl (A i ) = {A i }.
The proof of the item (1.b) follows from the facts that:

• ∀A i ∈ • card (M), ∀A j ∈ • card (M), we have |A i | = |A j | • if ∀A i ∈ • card (M), ∀A j ∈ • card (M), |A i | = |A j | then • card (M) = M.
For item (1.c), it is enough to show that for a given (M)) are closed set of assertions since • card only discards some elements of • cl (M) but does not change the content of remaining elements. Lastly, let us consider the case where

A ∈ M, • cl (• cl (A)) = • cl (A). From the definition of • cl , clearly we have • cl (A) ⊆ • cl (• cl (A)). Now assume that f ∈ • cl (• cl (A)) but f / ∈ • cl (A). Let B f ⊆ • cl (A) be the subset that allows to derive f , namely T p , B f |= f . Now for each element x of B f , we have T p , A |= x. Then clearly, T p , A |= f . Regarding item (2.a), if • d is an elementary modifier then it can be either • cl , • card , or • incl . If • d = • cl then the result holds thanks to item (1.c). If • d = • card then the selected elements from • card (• cl
• d = • incl . Again ∀A ∈ • incl (• cl (M)), A = • cl (A ). Let us recall that A is maximally consistent subset of A ∈ • cl (M), with A = • cl (A). If A = • cl (A) this means that ∃f ∈ • cl (A ) (hence f ∈ A) such that f / ∈ A despite the fact that T , A |= f . This is impossible since A should be a maximal consistent subbase of A. Since each • d ∈ {• cl , • card ,
• incl } applied on closed ABox preserves the closeness property, then clearly a composite modifier also preserves this closeness property.

The proof of item (2.b) follows immediately from the fact that

• ∀A i ∈ • incl (M), T , A i is consistent,
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• if M is consistent, then ∀• d ∈ {• cl , • card ,
• incl } gives a consistent subbase, and 

• • incl (M) = M if M is consistent.
• cl (M) Splitting:M 7 = • incl (• cl (M)) Selection: M 8 = • card (• incl (• cl (M))) Splitting:M 1 = • incl (M) Expansion:M 5 = • cl (• incl (M)) Selection: M 2 = • card (• incl (M)) Expansion:M 3 = • cl (• card (• incl (M))) Selection: M 6 = • card (• cl (• incl (M))) Selection: M 4 = • card (• cl (• card (• incl (M))))
Selection:

• card (M)

Duplication

of the left-side operations 

Selection:M 9 = • card (• cl (M)) Splitting:M 10 = • incl (• card (• cl (M))) Selection:M 11 = • card (• incl (• card (• cl (M))))
• card (• incl (• card (• cl (M))))).
From the MBox • incl (• cl (M)) only a selection can be applied, thanks to Lemma 5.1, where • incl (M) and • cl (M) only needs to be applied once. Similarly, if one starts with a splitting operation followed by a selection operation, then only an expansion can be applied (thanks to Lemma 5.1 where • incl (M) needs only to applied). From • cl (• card (• incl (M))) only a selection can be applied, since again from Lemma 5.1, • incl (M) and • cl (M) needs only to be applied once. If one starts by a splitting modifier followed by an expansion, then only a selection needs to be applied. If one starts with a selection operation, then one can either apply an expansion or a splitting operation, and thus, we duplicate the same operations presented in the left-side box of the figure.

Inference-based strategies from MBox

Note that if one starts with an MBox DL-Lite knowledge base that only contains one ABox, then there is no need to add a selection child to the root. Similarly for such singleton MBox, applying an expansion modifier followed by a selection modifier leads to same results as if one start with an expansion modifier followed by a splitting modifier (M 9 =• cl (M)). Hence we have M 10 =M 7 and M 11 =M 8 . The case where the starting point is a singleton MBox will be discussed in Section 5.4.

Inference-based strategies from MBox

This section addresses the issue of query answering from MBox DL-Lite knowledge bases. It presents several inference-based strategies that can be applied on an MBox DL-Lite knowledge base. An inferencebased strategy takes as input an MBox M, a TBox T (i.e. an ontology) and a query and aims to find if there exists an answer for such a query over the set of ABox's of the MBox DL-Lite knowledge base K = T , M .

Let K M = T , M be a DL-Lite knowledge base with an MBox M. The following subsections provide main inference-based strategies that can be applied on K M .

Universal inference

The universal inference-based strategy states that a conclusion is valid if and only if it can be obtained (in a standard way) from every ABox A i of a given MBox M. More precisely, Definition 5.6. Let K M = T , M be a DL-Lite knowledge base with an MBox M = {A 1 , ..., A n }. A query q is said to be a universal consequence of K M , denoted by The universal inference is a standard way to derive conclusions from different sources. It is also known as a skeptical inference, used for instance in default reasoning [Reiter, 1987], where one only accepts conclusions derived from each extension of a default theory.

K M |= ∀ q, if and only if ∀A i ∈ M, T , A i |= q 3 .
In Definition 5.6, q in general represents a first order formula. Now, when we deal with DL-Lite framework, q may (and often) represents a conjunctive query.

When q is a boolean query, then q holds universally from an MBox DL-Lite knowledge base K M if and only if q holds in each standard DL-Lite knowledge base

K i = T , A i , with A i ∈ M.
If q is a general conjunctive query of the form

q(x 1 , . . . , x n ) ← (x 1 , . . . , x n ) : ∃y 1 , . . . , y l .B 1 ∧ ... ∧ B m
then q(a 1 , ..., a n ) universally follows from an MBox DL-Lite knowledge base K M = T , M if q(a 1 , . . . , a n ) follows from each standard DL-Lite knowledge base K i = T , A i with A i ∈ M, where (a 1 , . . . , a n ) is an instance of the distinguished variables (x 1 , . . . , x n ).
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Example 5.6. Let K= T , M be a DL-Lite knowledge base where T ={∃S B, ∃S -C, S ¬H, ∃H B, ∃H -D}, and H(g, b), S(b, y)}

M = {A 1 , A 2 , A 3 } where A 1 = {S(a, c), H(c, b), S(b, f ), H(f, k)}, A 2 = {S(a, d), H(d, b), S(b, t)} and A 3 = {S(a, e),
Let us illustrate universal inferences over the different forms of queries: instance query (or instance checking), atomic ground queries, boolean queries, general conjunctive queries and first order formulas.

1. Let q ← B(a) be an instance query. One can check that K M |= ∀ B(a), since B(a) holds respectively from A 1 , A 2 , and A 3 using T .

2. Let q ← B(b) ∧ D(b) be an atomic ground query. One can check that K M |= ∀ q.

3. Let q ← ∃z.D(b) ∧ S(b, z) be a boolean query with existential variables. One can verify that

K M |= ∀ q. 4. Let q(x 1 , x 2 ) ← (x 1 , x 2 )∃y.S(x 1 , y) ∧ H(y, x
2 ) be a conjunctive query. The answer sets that can be computed from each ABox in M are :

Using A 1 : {< a, b >, < b, k >} Using A 2 : {< a, b >} Using A 3 : {< a, b >}
The certain answers to q that universally hold from K M are:{< a, b >}.

5. Let q ← C(c) ∨ C(d) ∨ C(e) be a first order query. One can verify that K M |= ∀ q.

Existential inference

The existential inference-based strategy is an inference strategy that only checks if a conclusion holds from at least one ABox of a given MBox. More formally, Definition 5.7. Let K M = T , M be a DL-Lite knowledge base with an MBox M = {A 1 , ..., A n }.

A query q is said to be an existential consequence of K M , denoted by

K M |= ∃ q, if and only if ∃A i ∈ M, T , A i |= q.
The existential inference, called also credulous inference, is a very adventurous inference relation. It only makes sense in some decision problems when one is only looking for a possible solution of a set of constraints or preferences. It is often considered as undesirable when K M represents available knowledge base on some problem. The existential consequence relation is so adventurous that it may lead to an inconsistent set of conclusions (with respect to T ). 

Safe inference

The safe inference-based strategy considers as valid conclusions those that are only derived from facts belonging to the intersection of all ABox's. More formally, Definition 5.8. Let K M = T , M be a DL-Lite knowledge base with an MBox M={A 1 , ..., A n }. A query q is said to be a safe consequence of K M , denoted by

K M |= ∩ q, if and only if T , A i ∈M A i |= q.
Obviously, the safe inference is a very sound and conservative inference relation since it only considers common assertions between the different ABox, to perform inferences. 

Other inferences

We now provide additional inference-based strategies called: Majority-based inference, Proportionalbased inference and Non-objection inference. These inference relations offer a good compromise between universal or safe inference relations and existential inference relations.

Majority-based inference

The majority-based inference relation (maj for short) considers a conclusion as valid if it is confirmed by the majority of ABox's. More formally: Definition 5.9. Let K M = T , M be a DL-Lite knowledge base with an MBox M = {A 1 , ..., A n }. A query q is said to be a majority-based consequence of K M , denoted K M |= maj q, if and only if:

|A i : A i ∈ M, T , A i |= q| |M| > 1/2.
Definition 5.9 simply states that a query q is a majority-based consequence of K M if and only if it can be deduced from more than the half of ABox's in M. 

Proportional-α-based inference

The Proportional-α-based inference (prop for short) requires that a conclusion is valid if it can be derived from a proportion α of ABox's of an MBox. More formally: Definition 5.10. Let K M = T , M be a DL-Lite knowledge base with an MBox M={A 1 , ..., A n } and α ≥ 0. A query q is said to be a proportional-α-based consequence of K M , denoted K M |= α q, if and only if

|A i : A i ∈ M, T , A i |= q| |M| ≥ α.
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• if α = 1, then we recover the universal inference.

• if α > 1/2, then we recover the majority-based inference.

• if α = , then we recover the existential inference.

Note that, the major difference of Proportional-α-based inference relation is how to fit the parameter α.

Non-objection inference

The non-objection inference or argued inference (obj for short) is an inference strategy where a conclusion q is accepted if it can be obtained using at least one ABox while there is no ABox that implies ¬q. More formally: Definition 5.11. Let K M = T , A be a DL-Lite knowledge base with an MBox M={A 1 , ..., A n }. A query q is said to be a non-objection consequence relation of K M , denoted by K M |= obj q, if and only if 1. ∃A i ∈ M : T , A i |= q, and 2. there exists no A j ∈ M such that T , A j |= ¬q. One can easily check that, if q is a first order formula then the non-objection inference is more cautious than the existential inference relation but it is more productive than the universal inference relation.

As it is said before, within DL-Lite framework, q is often restricted to conjunctive queries. In this case, the second item of Definition 5.11 does not really make sense, since negation is not allowed in the definition of a conjunctive query. Besides, if one restricts inferences to boolean queries, and interprets T , A i |= ¬q in definition as T , A i |= q does not hold, then the non-objection is simply equivalent to existential inference.

In the rest of the chapter, we will not make reference to non-objection inference, since it comes down to existential inference for boolean query. Of course, one may weaken item 2 of Definition 5.11 for atomic grounded queries of the form

( n i=1 A i (a)) ∧ ( m j=1 P j (a, b))
where A i and P j are concepts and roles respectively. In item 2, one may replace T , A i |= ¬q by T , A i ∪ q is inconsistent. This weakened form of Definition 5.11 is not considered in the chapter and is left for further research.

Given the limitations of existential, non-objection and proportional-based inferences, in the rest of the chapter, we only focus on universal, safe and majority-based inference.

Comparing inference-based strategies from a fixed MBox

Given a fixed MBox M, the following figure summarizes the cautiousness relationships between different inference-based strategies, defined in the above subsections.

Example 5.12 (Counter-examples of Lemma 5.2). The converse of Items 1 and 2 does not hold. As it is shown by the following counter-example (we also provides the counter-example of item 3). Let The following inference relations hold between an MBox M and its expansion • cl (M).

T = ∅, M 1 = {B(a)} and M 2 = {{B(a)},{B(c)}, {B(c)}}. First, note that M 1 ⊆ M 2 . Clearly T , M 1 |= ∀ B(a) (resp. T , M 1 |= ∩ B(a)) holds, while T , M 2 |= ∀ B(a) (resp. T , M 2 |= ∩ B(
Lemma 5.3. Let M 1 and M 2 be two consistent MBox with respect to T . Let M 2 be the closure of M 1 , namely M 2 ={Cl(A i ):A i ∈M 1 }. Let q be a query. Then:

1. T , M 1 |= ∀ q if and only if T , M 2 |= ∀ q. 2. T , M 1 |= maj q if and only if T , M 2 |= maj q. 3. if T , M 1 |= ∩ q then T , M 2 |= ∩ q.
Proof of Lemma 5.3. The proof is again immediate. Item 1 and 2 follow from the fact that in standard DL-Lite, if A is a consistent ABox with T , then T , A |= q iff T , Cl T (A) |= q. Item 3 follows from the fact that

A i ⊆ Cl(A i ) for each A i ∈ M 1 . Hence A i ∈M 1 A i ⊆ A i ∈M 1 Cl(A i ) = A j ∈M 2 A j .

Handling inconsistency=Composite modifiers+inference strategies

As it is said in the introduction, an MBox may be issued from multiple-sources of information or may be resulted from handling inconsistent standard DL-Lite knowledge base K, where each element of the MBox represents a possible repair of K. In the context of multiple-sources of information, it may make sense to merge the ABox's of an MBox, in order to get a single ABox. As it is suggested in the title of this chapter, this work is not oriented towards merging ABox's but rather on the use of MBox as a way to represent and reason about inconsistent DL-Lite knowledge bases. We view the problem of repairing an inconsistent DL-Lite knowledge base as composed of a composite modifier on a given MBox followed by an inference-based strategy.

As it was said before, from Figure 5.1, if one starts with a standard DL-Lite knowledge base (i.e. a single MBox), there are only eight main composite modifiers useful for handling inconsistency (Lemma 5.4). These composite modifiers are given in Figure 5.1, and summarized in Table 5.1.

Handling inconsistency=Composite modifiers+inference strategies

MBox

Combination

M 1 • M 1 = • incl (M) M 2 • M 2 = • card (• incl (M)) M 3 • M 3 = • cl (• card (• incl (M))) M 4 • M 4 = • card (• cl (• card (• incl (M)))) M 5 • M 5 = • cl (• incl (M)) M 6 • M 6 = • card (• cl (• incl (M))) M 7 • M 7 = • incl (• cl (M)) M 8 • M 8 = • card (• incl (• cl (M)))
Table 5.1: Composite modifiers on MBox with

K M = T , M = {A} Lemma 5.4. Let K M = T , M = {A} be an inconsistent DL-Lite knowledge base. Let {• M 1 ,.., • M 8 }
be the eight composite modifiers summarized in Table 5.1. Then for each composite modifier • d (obtained by a finite combination of elementary modifiers

• incl ,• card ,• cl ), there exists • c ∈{• M 1 ,..,• M 8 } such that • d (M)=• c (M).
Let us now provide the set inclusion relations between the different MBox's resulting from applying composite modifiers • M 1 ,...,• M 8 on an initial inconsistent DL-Lite knowledge base K M = T , M = {A} . Figure 5.3 gives different relations between MBox's issued from applying the main composite modifiers:

M 1 M 2 M 5 M 3 M 4 M 6 M 7 M 8 ⊆ •cl ⊆ ⊆ cl •cl ⊆ ⊆ incl ⊆ ⊆ Figure 5.3: Inclusion relations between MBox's where "X-→ ⊆ Y " means that the MBox X is included (set inclusion) in Y , "X -→ ⊆ incl Y " means that ∀A∈X, ∃B∈Y s.t A⊆B. "X-→ ⊆ cl Y " means that for each A∈X, ∃B∈Y s.t B=• cl (A) and "X-→ •cl Y " means that X=• cl (Y ).
Let us briefly explain why the relations given in Figure 5. trivially hold. Similarly, using the definition of the elementary modifier • cl (), we also have:

M 5 = • cl (M 1 ) and M 3 = • cl (M 2 ).
As consequence of the above relations, we have:

M 3 ⊆ M 5 . Regarding M 2 • clM 5 , we have M 2 ⊆ M 1 , hence ∀A ∈ M 2 , we also have A ∈ M 1 . Recall that M 5 = • cl (M 1 ). This means that ∀A ∈ M 2 , ∃B ∈ M 5 such that B = Cl(A).
It remains now to show that M 5 • clM 7 . Let B ∈ • incl ({A}) and let us show that there exists a set of assertions X such that

• cl ({B}) ⊆ X and X ∈ M 7 . Since B ∈ • incl ({A}), this means by definition that B ⊆ A and hence B ⊆ • cl (A). Now, B is consistent, this means that there exists R ∈ • incl (• cl (A)) = M 7 such that B ∈ R. From Lemma 5.1, R is a closed set of assertions, then this means that Cl(B) ⊆ R.

Comparative studies

We now compare main inference-based strategies (Section 5.3) applied on the eight identified composite modifiers for handling inconsistent standard DL-Lite knowledge base. The studies concern productivity relations and computational complexity.

Productivity

This section provides an exhaustive study of productivity results for modifier plus inference strategies combinations.

Composite modifiers + universal inference

The following figure summarizes existing cautiousness relations between universal consequence relations (∀-entailment) applied on {M 1 , ..., M 2 } identified in Section 5.2.3. In Figure 5.4, the arrow n1→n2 means that each conclusion that can be derived using n1 is also a conclusion using n2. Proofs of different links and counter-examples of the converse relations are given in the Appendix. In Figure 5.5: the bold arrow n1→n2 means that each conclusion that can be derived using n1 is also a conclusion using n2. Lastly, when the initial knowledge base is consistent, then all inference relations collapse with standard inferences, namely: Proposition 5.2. Let K = T , M be a consistent standard DL-Lite knowledge base. Then: ∀s ∈ {∀, maj, ∩}, ∀M i ∈ {M 1 ,...,M 8 }, T , M i |= s q if and only if T , M |= q.

M 1 , ∀ ≡ M 5 , ∀ M 6 , ∀ M 2 , ∀ ≡ M 3 , ∀ M 4 , ∀ M 7 , ∀ M 8 , ∀

Composite modifiers + majority-based inference

M 1 , ∩ M 2 , ∩ M 3 , ∩ M 4 , ∩ M 5 , ∩ M 6 , ∩ M 7 , ∩ M 8 , ∩ M 1 , ∀ M 2 , ∀ M 3 , ∀ M 4 , ∀ M 5 , ∀ M 6 , ∀ M 7 , ∀ M 8 , ∀ M 1 , maj M 2 , maj M 3 , maj M 4 , maj M 5 , maj M 6 , maj M 7 , maj M 8 , maj
Proof of Proposition 5.2. The proof basically follows from three facts: 

1. when T , M is consistent then • incl (M) = M and • card (M) = M,

Complexity analysis

This section discusses computational complexity of inference relations presented in the chapter. We first give the main ideas behind the complexity of inference relation M 2 = L• incl (M), ∀ , and then provide different tables summarizing complexity results of inference relations studied in this chapter.

Let K be an inconsistent knowledge base, we first define the notion of conflict which is a minimal inconsistent subset of A, more formally: Definition 5.12. Let K = T , A be an inconsistent DL-Lite knowledge base. A conflict set C is a set of membership assertions such that:

• C ⊆ A, • T , C is inconsistent, • ∀C , C ⊂ C, T , C is consistent.
We denote by C(A) the collection of conflicts in K. Since K is assumed to be finite, if K is inconsistent then C(A) = ∅ is also finite. Moreover, as mentioned in Lemma 3.6 and 3.7 The complexity analysis can be easily generalized to any conjunctive query q and also to the inference relation M 8 , ∀ . To reach this aim, we will use complexity results which are known in graph theory regarding the problem of Maximum Independent Sets (MIS). Let us recall k-MIS the following decision problem:

"Given a symmetric graph G, is there an independent set of size (at least) k?"

The computational complexity of k-MIS is known to be NP complete. [START_REF] Garey | [END_REF]. The following gives transformations between graphs and DL-Lite knowledge bases.

A transformation from an inconsistent DL-Lite knowledge base to G Let K = T , A be an inconsistent DL-Lite knowledge base. Let C(A) be the set of all conflicts in A. Recall that when T is coherent, then all conflicts of C are pairs of A and are computed in PTime. We define a graph associated with K as follows:

1. The set of nodes is simply the set of assertions in A (one assertion = one different node), and Then we have the following result: Proposition 5.3. Let K = T , A be a DL-Lite knowledge base, and G be its associated graph as it is defined above. Let R ⊆ A be a subset of A and G R be the set of nodes associated to R. Then R is a maximal consistent subset of A if and only if G R is a maximal independent set of G.

2. A non-oriented arc is drawn from f to g if there is f ∈ A, g ∈ A such that (f, g) is a conflict of T , A .
Proof of Proposition 5.3. The proof is immediate.

Assume that R is a maximal consistent subbase of A but G R is not a maximal independent set of G. This means that there exists a node f (namely an assertion of A) such that f / ∈ G R and ∀g ∈ G R , there is no arc between f and g. Said differently, there exists an assertion f ∈ A such that f / ∈ R and ∀g ∈ R, there is no conflict C of the form (f, g). This means that R ∪ {g} is consistent and this contradicts the fact that R is a maximally consistent subbase of A.

Part III, Chapter 5 -Non-merge inconsistency management roadmap in flat DL-Lite knowledge bases Similarly, assume that G R is a maximal independent set of G and let us show that R (the subset of assertions present in G R ) is a maximally consistent subset of A. Clearly, R is consistent, since ∀f ∈ R, ∀g ∈ R, we have (f, g) / ∈ C where C is conflict (otherwise, the would be an arc between f and g). R is maximal, since ∀h / ∈ R there is an arc between h and a node from G R . Hence there is a conflict between h and an element of R, namely R ∪ {h} is inconsistent. Hence R is maximal.

Let us now give the converse transformation

Let G be a non-oriented graph. The DL-Lite knowledge base associated with G is defined as follows:

1. We associate to each node e a concept also denoted by e (two different nodes have two distinct associated concepts),

2. We use "a" as the unique individual used in A,

3.

For each non-oriented arc e -→ f , we add (e ¬f ) to T , namely the TBox associated with G is defined by: T = {e ¬f : e -→ f is an arc of G}, and 4. The ABox is simply the set of nodes with the same individual "a", namely A = {e(a) : a is an individual and e is a node of G}.

Example 5.14. Let G be the following graph: Indeed, assume that G does not admit a maximal independent set of size (k max + 1). This means that ∀R a maximally consistent subset of A is of size k max . This means that ∀R a maximally consistent subset of A consistent with D(a) with respect to T , hence K |= B(a). Similarly, if G admits a maximal independent set of size (k max + 1). This means that ∃R a maximally consistent subset of A of size (k max + 1). Hence, there exists R a maximally consistent subset of A with respect to T which is consistent with D(a). Hence, one way to compute M 2 , ∩ is to check whether each instance of A is a universal consequence of M 2 . Following Proposition 5.6, checking whether an instance of A follows from M 2 , ∀ needs exactly one call to a solver of k-MIS problem. Hence, computing M 2 , ∩ needs |A| calls to a solver of k-MIS problem.

Similarly proof can be given for M 8 , ∩ , where it is enough to replace |A| by | • cl (()A)|.

As corollary, we have:

• The proof of NP completeness of M 3 , ∀ follows immediately from the result of Proposition 5.6 and from the fact that M 2 , ∀ is equivalent to M 3 , ∀ .

• Similarly, we have shown that M 1 , ∀ is equivalent to M 5 , ∀ . Hence, the proof of the completeness of M 5 , ∀ follows from the fact that M 1 , ∀ has been shown to be NP-complete in [START_REF] Lembo | [END_REF].

• The proof of NP-completeness of M 7 , ∀ is exactly the same as the one of M 1 , ∀ . The main difference is rather to start with the initial ABox A, one should start with its closure • cl (A). Note that M 7 , ∀ is equivalent to CAR-entailment proposed in [START_REF] Lembo | [END_REF] where it has been shown that this latter is NP-complete.

• The proof of NP-completeness of M 8 , ∀ is exactly the same as the one of M 2 , ∀ . The main difference is rather to start with the initial ABox A, one should start with its closure • cl (A).

• The computational complexity of M 4 , ∀ , M 6 , ∀ comes down to enumerate all possible repairs.
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We now provide a study of computational complexity of the rest of inference relations. The majority-based inference M i , maj for i = 1, ..., 8 are in #P (for more details on #P class of complexity, see [Valiant, 1979]), since it comes down to counting models implying the query.

We now give the complexity of safe inference relations. Note that, once A i ∈M j A i is computed, the query answering has a same complexity as in standard DL-Lite.

• The inference relation M 1 , ∩ (resp. M 7 , ∩ ) is in PTime, since it comes down to compute conflict set from A (resp. • cl (A)) and throw them out in order to obtain A i ∈M 1 A i (resp.

A i ∈M 7 A i )
where the computation of conflict sets in DL-Lite is in PTime.

• The computational complexity of computing

M 2 , ∩ (resp. M 8 , ∩ ) is O(|A| * k-MIS) (resp. O(|Cl(A)| * k-MIS)).

Related works and discussions

This section first gives related works and then discusses the main inference strategies studied in this chapter.

Related works

Handling inconsistency in ontologies is a very important problem that received a particular attention in recent years either on works on debugging or repairing generic knowledge (e.g. [START_REF] Schlobach | Non-standard reasoning services for the debugging of description logic terminologies[END_REF]Haase et al., 2005;Peñaloza and Sertkaya, 2010]) or revising ontologies (e.g. [START_REF] Qi | Model-based revision operators for terminologies in description logics[END_REF][START_REF] Wang | [END_REF][START_REF] Zhuang | [END_REF]). This present work is rather oriented to inconsistency handling within an OBDA setting. In [START_REF] Lembo | [END_REF] four inconsistency-tolerant semantics called AR, IAR, CAR and ICAR were proposed. An inconsistency-tolerant semantics corresponds in our work to the combination of an MBox composite modifier followed by an inference-based strategy. It is easy to check that AR, IAR, CAR and ICAR semantics correspond respectively to M 1 ,∀ , M 1 ,∩ , M 7 ,∀ and M 7 ,∩ . It was shown in that CQ answering from AR and CAR is co-NP-complete in data complexity and IQ (instance checking) from CAR is in PTime, but it remains co-NP-complete under AR semantics. Besides both IQ and CQ answering under IAR and ICAR are in PTime for data complexity.

In [Bienvenu, 2012] a new semantics, called ICR, was given as a sound approximation for AR semantics. The ICR semantics corresponds to M 5 ,∩ in our work.

In [START_REF] Bienvenu | Tractable approximations of consistent query answering for robust ontology-based data access[END_REF], two parametrized inconsistency-tolerant semantics, called k-support and k-defeater semantics, were studied for DL-Lite horn and DL-Lite core logics where it was shown that instance checking (resp. CQ answering), within DL-Lite core framework, is NLSpace (resp. NP) for both k-support and k-defeater semantics. In a nutshell, a query q is said to be a k-support consequence of an inconsistent DL-Lite knowledge base K, if there exist k consistent subsets {S 1 , ..., S n } of A such that ∀S i , T , S i |= q and ∀A i ∈ M 1 , there is at least an S i ⊆ A i . A query is said to be a k-defeater consequence of K, if there does not exists a consistent subset S of A with |S| ≤ k such that T , S ∪ C is inconsistent where C ⊆ A is a minimal support of q (i.e. there is no proper subset of C that support q).

Another family of parametrized semantics, called k-lazy semantics, was proposed in [Lukasiewicz et al., 2012b] within Datalog+/-setting. However, as mentioned in [START_REF] Bienvenu | Tractable approximations of consistent query answering for robust ontology-based data access[END_REF], these semantics are not a sound approximation of consistent query answering and they don't have good computational properties where CQ answering is co-NP-hard in data complexity for every k≥1.

In [START_REF] Zhou | [END_REF] a four-valued semantics reasoning approach,was proposed to reason under inconsistent DL-Lite knowledge bases. However this approach leads to derive inconsistent conclusion 5.6. Related works and discussions with respect to generic knowledge.

Majority-based inference within DL-Lite framework

In the context of the use of majority-based inference for managing inconsistent set of information, there is one main and major advantage of using DL-Lite language rather than expressive DLs or propositional logic: It concerns the consistency of the set of derived conclusions. To illustrate our proposal, let us focus on instance checking problem and let consider M 1 ,maj . which represents majority-based inference over the set of maximally consistent subset of an inconsistent knowledge base. Then we have: Intuitively, an appropriate method is such that:

i Outputs a single ABox, or a limited set of ABox's,

ii Produces as many safe conclusions as possible, and

iii the size of the produced ABox should be polynomial with respect to the initial ABox.

Clearly majority-based and universal inference do not fit item (i) and (iii). If one is interested in keeping inference relations that avoid deriving contestable conclusions, then inference M 7 , s and M 8 , s , with s ∈ {∀, maj, ∩}, should be discarded. Indeed, considering first the closure, may lead to consider as plausible a conclusion with a contestable support. For instance, let (a). This conclusion C(a) is obtained using A(a), but A(a) is contestable and it is not a conclusion of T , M 7 (resp. T , M 8 ).

K = {A ¬B, A C}, M = {A(a), B(a)} . Clearly, T , M 7 |= s C(a) (resp. T , M 8 |= s C
The inclusion-based criterion (namely M 1 ) followed by universal entailment is widely used in the literature. The cardinality-based criterion may make sense in some applications where counting falsified formulas is important. For instance, consider an ABox encoding facts about women and men (distinguished by the TBox) attending a conference. From the point of view of the output, safe inferences M i , ∩ are appropriate for handling inconsistency in DL-Lite. Safe inferences using different M i 's, fit at the requirement (i) and (iii). The inference M 1 ,∩ is considered as safe since it is equivalent to consider a subbase of the initial ABox obtained by ignoring all conflicting facts, namely:
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A r = A i ∈M 1 A i = {f : f ∈ A and C ∈ C(A) such that f ∈ C}
where C(A) is the set of conflicts. The main advantage of this approach is that computing A r is done in linear time. However, the main limitations is that its associated inference relation is very cautious. To get a more productive one and to better fit requirement (ii), one may take the intersection of largest consistent sets from the ABox, namely, A r = A i ∈M j A i , j = 2, .., 6. The advantage of this approach is that the obtained inference relation is productive and its space complexity is

|D I | × |D C |+|D I | 2 × |D R |, in the worst case.

Conclusion

This chapter considered an MBox as a result of modifying inconsistent standard DL-Lite knowledge base. We generalize techniques for non-merge inconsistency management approaches in flat knowledge bases by introducing the notions of (1) modifier and ( 2) inference strategy. The combination modifiers plus inference strategies can be mapped out in order to provide a principled and exhaustive list of techniques for inconsistency management. We study the productivity and give a complexity analysis for such techniques in the case of flat knowledge bases and show how our work extends the state of the art.

The last part of this thesis concerns dynamics and handling inconsistency in prioritized assertional DL-Lite knowledge bases.

CHAPTER 6

PRIORITIZED ASSERTIONAL-BASED REMOVED SETS REVISION OF DL-Lite KNOWLEDGE BASES

Introduction

Dynamics of a DL-based knowledge bases gave rise to increasing interest (e.g. [Qi et al., 2006c;[START_REF] Qi | Model-based revision operators for terminologies in description logics[END_REF]) and often concerns the situation where new information should be incorporated while ensuring the consistency of the result. Several works have recently dealt with revising DL-Lite TBox with a terminological information (e.g. [START_REF] Wang | [END_REF][START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF]) or with an assertional information (e.g. [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF]Kharlamov and Zheleznyakov, 2011;[START_REF] Gao | [END_REF]) as input.

Besides, data are often provided by several and potentially conflicting sources. Concatenating them gives a prioritized or a stratified ABox. This stratification generally results from two situations as pointed out in [START_REF] Benferhat | [END_REF]Benferhat et al., 1998b]. The first one is when each source provides its set of data without any priority between them, but there exists a total pre-ordering between different sources reflecting their reliability. The other one is when the sources are considered as equally reliable (i.e. having the same reliability level), but there exists a preference ranking between the set of provided data according to their level of certainty. The role of priorities in belief revision is very important and it was largely studied in the literature where knowledge bases are encoded in a propositional logic setting (e.g. [Benferhat et al., 2002c;Benferhat et al., 2010b]). The notion of priorities in DLs is used in (e.g. [START_REF] Baader | [END_REF]Qi et al., 2006a;[START_REF] Qi | A stratfication-based approach for inconsistency handling in description logics[END_REF]) to deal with default terminologies while assuming that the ABox is completely sure. However, as far as we know, revising prioritized DL-Lite knowledge bases has not been addressed so far.

Belief revision has been largely considered in the literature when knowledge bases are encoded using a propositional language. Among these revision approaches the so-called Removed Sets Revision, also known as a cardinality-based approach, has been proposed in [Papini, 1992;Benferhat et al., 1993a] for revising a set of propositional formulas. This approach stems from removing a minimal number of formulas, called removed set, to restore consistency. The minimality in Removed Sets Revision refers to the cardinality criterion and not to the set-inclusion one. This approach has interesting properties: it has not a high computational complexity, it is not too cautious and satisfies all rational AGM postulates when extended to belief sets revision.

This chapter studies Prioritized Removed Sets Revision (PRSR), when knowledge bases are described in DL-Lite logics. One of the motivations in considering PRSR is to take advantage of tractability of DL-Lite for the revision process as well as of rational properties satisfied by PRSR. In particular, we investigate the well-known DL-Lite R logic which offers a good compromise between expressive power and computational complexity. We consider different forms of input: a membership assertion, a positive inclusion axiom or a negative inclusion axiom, since they lead to different revision problems, different algorithms and different complexity results. A crucially important problem that arises when revising Part IV, Chapter 6 -Prioritized Assertional-Based Removed Sets Revision of DL-Lite knowledge Bases a DL-Lite knowledge base is how to restore consistency. In this chapter restoring consistency leads to ignoring some assertions, namely we give a priority to TBox over ABox. Another important feature when dealing with DL-Lite knowledge base is that computing the set of minimal information responsible of inconsistency can be done in polynomial time. Besides minimal assertional sets that cause inconsistency are either singletons or doubletons. This is helpful in defining removed sets necessary to restore consistency in presence of new information.

The rest of this chapter is organized as follows. Section 6.2 studies Prioritized Removed Sets Revision within this framework when priorities between assertional facts are available. Section 6.3 reformulates the well-known Hansson's postulates defined for propositional belief bases revision within a DL-Lite setting and gives logical properties of PRSR operators. Section 6.4 provides algorithms for computing prioritized removed sets through the use of hitting sets. Finally, Section 6.5 presents some related works and Section 6.6 concludes the chapter.

Assertional-based revision of DL-Lite knowledge bases

In this section, we investigate the revision of DL-Lite knowledge bases in the case where priorities are available between assertions in the ABox. We study different forms of the input: An assertion, a positive inclusion axiom or a negative inclusion axiom. We consider a lexicographical strategy where only smallest subsets of assertions should be dropped from the knowledge base in order to restore its consistency and accept the new piece of information. Note that the choice of dropping information only from the ABox is motivated by the fact that in many applications (such as in ontology-based data access applications) a TBox is often seen as a well-formed and coherent ontology whereas the ABox represents data that are not necessarily reliable and consistent with the ontology. In other words, when the input is a terminological information, the revising process comes down to enrich the ontology while preserving the coherence of the resulting TBox. However, in case of inconsistency, the ABox may be modified in order to take into account the input.

Let K = T , A be a consistent DL-Lite knowledge base. Let us denote by N a new consistent information to be accepted. The presence of this new information may lead to inconsistency according to the content of the TBox and the nature of the input information.

Within the DL-Lite language, the new piece of information N may be :

• A membership assertion of the form A(a) or P (a, b),

• A positive inclusion axiom (PI) of the form B 1 B 2 or

• A negative inclusion axiom (NI) of the form B 1 ¬B 2 .

We assume that the input is consistent with the terminological base (otherwise, the input will be simply ignored. According to [Calvanese et al., 2007a], every DL-Lite knowledge base K with only PIs in its TBox is always satisfiable (consequence of Lemma 7 in [Calvanese et al., 2007a]). Hence, if N is a membership assertion or a PI axiom, there is no inconsistency. However when the TBox T contains NI axioms then N may have an undesirable interaction with K and which leads to an inconsistency.

We use C(A) the collection of conflicts in K as defined in Definition 5.12. Recall that when T is coherent, then ∀C ∈ C(A), |C| = 2. We use the notion of a DL-Lite prioritized knowledge base, simply denoted by K = T , A . We assume that T is coherent and not stratified. Namely, all elements of T have the same level of importance. On contrast, the ABox is assumed to be stratified, i.e. partitioned into n strata, A = A 1 ∪ • • • ∪ A n such that:

• The strata are pairwise disjoint, namely ∀A i , ∀A j : A i ∩ A j = ∅,

• The assertions in A i have the same level of priority,

• The assertions of A i have higher priority than the ones in A j where j > i. Hence assertions in A 1 are the most important ones, while assertions in A n are the least important ones.

We first define the lexicographic preference relation between subsets of the ABox as follows.

Definition 6.1. let X and X be two subsets of A. X is strictly preferred to X , denoted by X < lex X , if and only if, there exists i, 1 ≤ i ≤ n such that:

• |X ∩ A i | < |X ∩ A i |, and • ∀j, 1 ≤ j < i, |X ∩ A j | = |X ∩ A j |.
Similarly, X is equally preferred to X , denoted by X = lex X , if and only if ∀i,

1 ≤ i ≤ n, |X ∩ A i | = |X ∩ A i |.
Lastly, X is at least as preferred as X , denoted by X ≤ lex X , if and only if X < lex X or X = lex X . The relation ≤ lex is a total pre-order. 

Prioritized Removed Sets Revision of DL-Lite knowledge bases

We now investigate the revision of DL-Lite knowledge bases according to the nature of the input information. We consider an approach using a lexicographical strategy well-known as "Prioritized Removed Sets Revision" (PRSR) [Benferhat et al., 2010a] proposed within a propositional logic setting.

Within the DL-Lite framework, in order to restore consistency while keeping new information, the Prioritized Removed Sets Revision strategy removes exactly one assertion in each conflict minimizing the minimum number of assertions from A 1 , then the minimum number of assertions in A 2 , and so on. Using lexicographic criterion instead of set inclusion one, will reduce the set of potential conflicts.

Note that taking the stratification of the ABox into account has not been considered before for revising or repairing DL-Lite knowledge bases. Next Chapter (Chapter 7) investigates repairing DL-Lite knowledge bases when the ABox is layered.

Revision by a membership assertion

We first consider the case where N is an ABox assertion which corresponds to the revision by a fact or by an observation. In this case, N is added to a new stratum having the highest and a new priority. However, in order to avoid heavy notations, we simply write K ∪ {N } or T , A ∪ {N } where A is a prioritized ABox, to denote the fact that N is added to a new and highest priority stratum of A.

The following definition introduces the concept of prioritized removed sets.
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We have seen that when the input is a membership assertion then there exists exactly one prioritized removed set. However, when the input information is a NI or a PI axiom there may exist one or several prioritized removed sets, as illustrated in the previous example. The first case to consider, which is also the easiest one, is when each conflict intersects two distinct strata: then, there exists only one prioritized removed set. More formally, Proposition 6.2. If for each C ∈ C(K ∪ {N }) there exists i and j, i = j, such that C ∩ A i = ∅ and

C ∩ A j = ∅ then |PR(K ∪ {N })| = 1.
Proof of proposition 6.2. Suppose there are two prioritized removed sets, X and X and X = X . By Definition 6.4, X ⊆ A, X ⊆ A, and X = lex X . Since (T ∪ {N }) ∪ (A\X) and

(T ∪ {N }) ∪ (A\X ) are consistent, ∀C ∈ C (K ∪ {N }) we have C ∩ X = ∅ and C ∩ X = ∅. If |C ∩ X| = 2 (resp.
|C ∩ X |=2) then X (resp. X ) is not a prioritized removed set, since C is a minimal inconsistent subset with two elements by Lemma 3.6. This situation holds when each stratum is consistent with T ∪{N } for example, when the stratification comes from several experts with different degrees of reliability. In this case, as detailed in Section 6.4.2 computing the unique prioritized removed set is polynomial.

If |C ∩ X| = 1 and |C ∩ X | = 1 two cases hold. If C ∩ X = C ∩ X since there exists i and j, i = j, such that C ∩ A i = ∅ and C ∩ A j = ∅ it contradicts X = lex X . If C ∩ X = C ∩ X ,
There may be several prioritized removed sets as soon as there are conflicts included in a stratum where each conflict may lead to two prioritized removed sets. Namely, let N C be the number of conflicts such that each one is included in a stratum, the number of prioritized removed sets is bounded by 2 N C . In such case, each prioritized removed set leads to a possible revised knowledge base:

K i = T ∪ {N }, (A\X i ) with X i ∈ PR(K ∪ {N }).
In DL-Lite language it is not possible to find a knowledge base that represents the disjunction of such possible revised knowledge bases. If we want to keep the result of revision in DL-Lite one can define a selection function that selects from PR(K∪{N }) one or several prioritized removed sets. More formally. Definition 6.5. A selection function f is a mapping from PR(K ∪ {N }) to A such that:

• f (PR(K ∪ {N })) ⊆ A • ∃X i ∈ PR(K ∪ {N }) such that X i ⊆ f (PR(K ∪ {N })) • f (PR(K ∪ {N })) ⊆ X i ∈PR(K∪{N }) X i
The first item in Definition 6.5 simply states that f (PR(K ∪ {N })) should only contain elements of A. This condition guarantees that the result of revision will be within the DL-Lite language. The second item states that at least one prioritized removed set should be in f (PR(K ∪ {N })). This guarantees that T , A\f (PR(K∪{N })) is consistent. The last item states that only elements from X i ∈PR(K∪{N }) X i should be removed and ignored to restore consistency. Hence, elements which are not responsible of conflicts will not be removed.

We now define the revised knowledge base as follows. In the next subsection, we present some examples of selection functions.

6.2. Assertional-based revision of DL-Lite knowledge bases

Examples of selection functions

The definition of selection functions can be seen as the application of modifiers (presented in Chapter 5) on an MBox (resulting from the revision process) followed by inference based strategy.

Let us first start with two basic selection functions, denoted simply by f 1 and f 2 . The first selection function f 1 consists in taking all prioritized removed sets. More formally,

f 1 (PR(K ∪ {N })) = X i ∈PR(K∪{N }) X i
which corresponds to the intersection of all possible revised knowledge bases. In this case K

• P RSR N = T ∪ {N }, A • P RSR N where A • P RSR N =A \ f 1 (PR(K ∪ {N }))=∩ n i=1 (A\X i ).
This first selection function may be too cautious since it could remove too many assertions and is not in agreement with the minimal change principle.

Another option is to choose a selection function that only picks one prioritized removed set, more formally,

f 2 (PR(K ∪ {N })) = X i
which corresponds to the choice of only one revised knowledge base. This option is less cautious than the previous one and captures, in some sense, the existence of a possibility for restoring consistency. The third example of selection function, denoted by f 3 , is strongly related to the notion of universal or skeptical inference that can be defined from PR(K ∪ {N }). Namely, we first need to define the set of all possible assertions that can be derived from each A \ X i with X i ∈ PR(K ∪ {N }).

More precisely, let D C be the set of concepts of T , D R be the set of roles of T and D I be the set of individuals of A. Then we define the set of universal assertional consequences, denoted U AC(K ∪ {N }) as :

U AC(K ∪ {N }) = {A(a) : a ∈ D I , A ∈ D C and ∀X i ∈ PR(K ∪ {N }), T , A \ X i |= A(a)} ∪ {R(a, b) : a ∈ D I , b ∈ D I , R ∈ D R and ∀X i ∈ PR(K ∪ {N }), T , A \ X i |= R(a, b)}
The selection function f 3 is then simply defined by : 

f 3 (PR(K ∪ {N })) = A \ U AC(K ∪ {N }) Example 
• X ⊆ A ∪ N , • T , (A ∪ N ) \ X is consistent, • ∀X ⊆ A ∪ N , if T , (A ∪ N ) \ X is consistent then X ≤ lex X .
Note that A ∪ N is a new prioritized ABox, where elements of N are put in a new important stratum. Namely, let A=A 1 ∪ . . . ∪ A n be a prioritized ABox. Then A ∪ N =A 1 ∪ . . . ∪ A n+1 where A 1 = N , and A i = A i-1 for i = 1, ..., n + 1.

The remaining definitions are valid, however Lemma 3.6 and Proposition 6.1 do not hold as it is shown the following counter-example. One can check that there exist more than one prioritized removed set which both contain elements from A and N .

When the input N is a set of PI axioms or NI axioms. We assume that T ∪ N is coherent, since the TBox of the knowledge base is assumed to be stable. Of course T ∪ N, A may be inconsistent. In this case PRSR behaves in the same way as simple revision by a single input. In both cases (set of assertions or axioms), the most noticeable difference is that the number of conflicts may be higher and by consequence the size of prioritized removed sets may be higher.

Lastly, if the input contains both membership assertions and PI axioms or NI axioms, then this comes down to revise the DL-Lite prioritized knowledge base K = T , A with another knowledge base T , A . One way to achieve such revision is to apply PRSR on T ∪ T , A ∪ N . 

Logical properties

In this section we go a step further in the characterization of Prioritized Removed Sets Revision for DL-Lite knowledge bases by presenting logical properties of the proposed operator through a set of postulates.

As mentioned in the Introduction, the AGM postulates [Alchourrón et al., 1985] have been formulated to characterize belief revision in a propositional logic setting. Flouris at al. [Flouris et al., 2004;Flouris et al., 2005;Flouris et al., 2006b] have studied which logics are AGM-compliant, that is, DLs where the revision operation satisfies AGM postulates. Indeed, the problem is that AGM postulates are defined for belief sets, i.e deductively closed sets of formulas, possibly infinite. Qi et al. [Qi et al., 2006c] focused on revising a finite representation of belief sets. They used a semantic reformulation of AGM postulates, done by Katsuno and Mendelzon [Katsuno and Mendelzon, 1991], to extend it to DLs knowledge bases. However, as pointed out in [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF] known model-based approaches of revision are not expressible in DL-Lite. AGM postulates are defined for belief sets, however efficient implementation and computational tractability require finite representations. Moreover, cognitive realism stems from finite structures [Hansson, 2008] since infinite structures are cognitively inaccessible. Revision within the framework of DLs, particularly, DL-Lite, requires belief bases, i.e. finite sets of formulas. Postulates have been proposed for characterizing belief bases revision in a propositional logic setting [Fuhrmann, 1997;Hansson, 1998].

Computing the revision operation outcome

Core retainment: The case where M ∈ T is impossible since the • P RSR operator may only modify the ABox. When M is a membership assertion, if M ∈ K and M ∈ K • P RSR N then there exists X such that M ∈ X and X ∈ PR(K ∪ {N }). Let K = T , A\X , we have K ⊆ K ∪ {N } et K is consistent but K ∪ {M } is inconsistent, therefore the postulate is satisfied. Relevance: Since the postulate Core retainment is satisfied, and by Proposition 6.1 we have |PR(K ∪ {N })| = 1, so K • P RSR N ⊆ K and thus the postulate holds. This proposition states that PRSR with a membership assertion as input satisfies all postulates. The situation is slightly different when N is a PI or a NI axiom. 

: If K ∪ {N } is consistent, PR(K ∪ {N }) = ∅ and A • P RSR N = A, therefore the postulate holds. Pre-expansion: (K ∪ {N }) • P RSR N , ( T ∪ {N }, A ) • P RSR N = T ∪ {N }, A • P RSR N , therefore the postulate is satisfied. Internal exchange: If N, M ∈ T , T ∪{M } = T ∪{N } = T and PR(K ∪{N }) = PR(K ∪{ M }) = ∅, therefore the postulate is satisfied.
Core retainment: The case where M ∈ T is impossible since the • P RSR operator may only modify the ABox. When M is a membership assertion, if M ∈ K and M ∈ K • P RSR N , then for any selection function used for defining • P RSR , there exists X ∈ PR(K ∪ {N }) such that M ∈ X and X ⊆ f (R(K ∪ {N })) by Definition 6.5. Let K = T ∪ {N }, A\X , we have K ⊆ K ∪ {N } and K is consistent but K ∪ {M } is inconsistent, therefore the postulate is satisfied. Relevance: Since the postulate Core retainment is satisfied, there exists K = T ∪ {N }, A\X that is consistent. Since there may exist several prioritized removed sets, let X and X be two prioritized removed sets such that X = X, suppose that f (PR(K ∪ {N })) = X , we have K • P RSR N = T ∪ {N }, A\X therefore K• P RSR N ⊆ K , therefore the postulate Relevance is not satisfied. We now give a counter-example where K and N come from Example 6.4. Let 

M = B 3 (b), X = {B 3 (a), B 3 (b)} and X = {B 1 (a), B 3 (b)} be two prioritized removed sets, suppose that f (PR(K ∪ {N })) = X we have A • P RSR N = {B 3 (a), B 2 (b)} and A\X = {B 1 (a), B 2 (b)}.
In fact, Relevance requires the existence of only one prioritized removed set which is the case where N is a membership assertion. However, when N is a PI or a NI axiom, in general, there may exist several prioritized removed sets.

Computing the revision operation outcome

As stated before, when trying to revise a DL-Lite knowledge base by a membership assertion, a PI axiom or a NI axiom, we want to withdraw only ABox assertions in order to restore consistency, i.e. prioritized removed sets will only contain elements from the ABox.

From the computational point of view, we have to distinguish several cases depending on the nature of the input N and the content of the knowledge base.

First of all, if the TBox T only contains PI axioms, and if the input N is a PI axiom or a membership assertion, no inconsistency can occur, so the revision operation PRSR trivially becomes a simple union. Among the remaining cases, we distinguish two different situations:

(i) N is a membership assertion: the computation of conflicts and the overall revision algorithm is a very simple task, thanks to Proposition 6.1, and is detailed below.

(ii) N is a PI axiom or a NI axiom : this is the most complicated case, as several prioritized removed sets may exist. Moreover, we will see that this case has to be splitted into two subcases. Whatever case we consider, we first need to compute the conflicts of K ∪ {N }.

In what follows, we use the following notations: K = T , A =K ∪ {N } where:

• T = T ∪ {N } and A = A, if N is a PI or NI axiom, and

• T = T and A = A ∪ {N }, if N is an ABox assertion.

Computing the conflicts

This step follows from the algorithm given in [Calvanese et al., 2007a] for checking the consistency of a DL-Lite knowledge base. The main difference is that in [Calvanese et al., 2007a] the aim is to check whether a DL-Lite knowledge base is consistent or not. Here, we have to perform one step further, as we need to enumerate all assertional pairs involved in conflicts. Hence, we need to adapt the algorithm.

Computing C(K ∪ {N }) first requires to obtain the negative closure cln (T ), using the rules recalled in the refresher on DL-Lite logic in Section 1.4. We suppose that this is performed by a NEGCLOSURE function. Then the computation of the conflicts proceeds with the evaluation over A of each NI axiom in cln (T ) in order to exhibit whether A contains pairs of assertions that contradict the NI axioms. Intuitively, for each X ¬Y belonging to cln (T ), the evaluation of X ¬Y over the A simply amounts to return all (X(x), Y (x)) such that X(x) and Y (x) belong to A . Note X(x) (resp. Y (x)) may be a basic concept assertion, or a role assertion of the form R(x, y) if X = ∃R (resp. Y = ∃R) or R(y, x) if X = ∃R -(resp. Y = ∃R -). The result of the evaluation of a NI axiom is a collection of sets containing two elements, or one element if N is a membership assertion). Algorithm 3 describes the algorithm of the function COMPUTECONFLICTS, which computes C(K ∪ {N }).

1: function COMPUTECONFLICTS(K = T , A , N ) 2: K = T , A ← K ∪ {N } 3: C(K ) ← ∅ 4: cln (T ) ← NEGCLOSURE(T ) 5:
for all X ¬Y ∈ cln (T ) do 

for all {α t , α j } ∈ A do 7: if X ¬Y, {α t , α j } is inconsistent then 8: C(K ) ← C(K ) ∪ {{α t , α j }} 9: Return C(K ) Algorithm 3: COMPUTECONFLICTS(K)
The set C(K ) stores the conflict sets. The first step of the algorithm consists in the computation of the negative closure of T . Then, for each NI axiom X ¬Y of cln (T ) the algorithm looks for the existence of a contradiction in the ABox. This is done by checking whether X ¬Y, {α t , α j } is consistent or not. Note that this step can be performed by a boolean query expressed from X ¬Y to look whether {α t , α j } contradicts the query, or not. If the ABox is consistent with X ¬Y , then the result of the query is an empty set.

It is important to note that if N is a membership assertion, then in each conflict {α t , α j } either α t or α j belongs to A (but not both), and that either α t or α j is equal to N (but not both). This special case is detailed in the next subsection.

Computing the PRSR outcome

Based on the computation of conflict sets, we propose in what follows algorithms for computing the results of revision according to the different cases.

Revision by an assertion

When the input N is a membership assertion (namely a fact), then there exists only one prioritized removed set, and the priorities are not involved. The computation of this single prioritized removed set amounts in picking in each conflict the membership assertion which is different from the new information N . One can easily check that every conflict set {α t , α j } that contradicts a NI axiom is of the form {x, N } where x ∈ A. This means that there exists exactly one prioritized removed set. Hence, in this case the prioritized removed set computation can be performed in polynomial time: when returning from the call to COMPUTECONFLICTS, the only prioritized removed set is c i ∈C(K∪{N }) (c i \ {N }).

Algorithm 4 describes the algorithm of the function COMPUTEPRSR1 as a special case of Algorithm 3. It computes directly the single prioritized removed set when revising by a membership assertion. Revision by an axiom Now, we detail the case where N is a PI or a NI axiom. According to Definition 6.4, the computation of PR(K ∪ {N }) starts with the computation of PR((T ∪ {N }) ∪ A 1 ), followed by the computation of PR((T ∪ {N }) ∪ (A 1 ∪ A 2 )), and so on. A prioritized removed set is formed by picking in each conflict the least priority element. However, according to the form of conflicts, two situations hold, as pointed out in Section 6.2.2. The first one is when each conflict involves two elements having different levels of priority. In this case, Proposition 6.2 ensures that there exists only one prioritized removed set. We provide algorithm COMPUTEPRSR2 which computes this single prioritized removed set P R ∈ PR(K ∪ {N }).

The algorithm COMPUTEPRSR2 proceeds from a current layer to all the other less preferred layers and selects the assertions that conflict with the ones in the current layer. Here we increment from a layer to another in order to ensure the minimality of the prioritized removed set with respect to lexicographic ordering. Note that this algorithm is based on inconsistency checking and its computational complexity is polynomial. Return P R Algorithm 5: COMPUTEPRSR2 Now, we detail the second case where there exists at least a conflict involving two elements having the same priority level. In such situation there exists several prioritized removed sets, as pointed out in section 6.2.2. To compute them, we use the hitting set notion [Reiter, 1987] and adapt it to the stratified structure of the knowledge base.

A hitting set is a set which intersects each set in a collection. A minimal hitting set, with respect to set inclusion, is called a kernel. Moreover, kernels which are minimal according to cardinality correspond to the definition of a removed set [Würbel et al., 2000]. The same result holds for DL-Lite knowledge bases where the computation of the kernels of C(K ∪ {N }) is performed using Reiter's algorithm [Reiter, 1987], modified in [START_REF] Wilkerson | [END_REF]. We recall this algorithm. Definition 6.9. A tree T is an HS-tree of C(K ∪ {N }) if and only if it is the smallest tree having the following properties: The kernels correspond to the leaves labeled by √ . For each such node m, H(m) is a kernel of C(K ∪ {N }). We use the same pruning techniques as in [START_REF] Wilkerson | [END_REF].

Prioritized removed sets are not necessarily minimal with respect to cardinality, but they are minimal with respect to lexicographic ordering (≤ lex for short). So, a naive algorithm for computing PR(K ∪ {N }) could be : (i) compute the kernels of C(K ∪ {N }). (ii) keep only minimal ones with respect to ≤ lex . However, we can improve this algorithm. As we said before, a prioritized removed set is computed from a layer to another. The idea of the enhancement of the algorithm is as follows: Compute conflicts in the first layer, i.e. in T ∪ {N }, A 1 . Then, build the hitting set tree on this collection of conflicts. This tree allows for the computation of the kernels of T ∪ {N }, A 1 , which are minimal with respect to ≤ lex . From these kernels, we continue the construction of the tree using conflicts in T ∪ {N }, {A 1 ∪ A 2 } if they exist, and so on until reaching a fixed point where no conflict will be generated. Then, the kernels of the final hitting set tree -i.e. those built using the conflicts in T ∪ {N }, {A 1 ∪ A 2 ∪ ... ∪ A n } 6.4. Computing the revision operation outcome

1: function COMPUTEPRSR3 (K= T , A , N ) 2: T ← T ∪ {N }, K = T , A 3: cln (T ) ← NEGCLOSURE(T ) 4: PR(K ) ← ∅ , C ← ∅, TREE← ∅, i ← 1 5: while i ≤ n do 6: for all X ¬Y ∈ cln (T ) do 7: for all (α, β) s.t. α ∈ A 1 , β ∈ A 1 ∪ . . . ∪ A i do 8:
if X ¬Y, {α, β} is inconsistent then In this algorithm, the function HS(C) takes as input the conflicts computed in each strata (if they exist) and builds the corresponding hitting sets tree (TREE) using the algorithm presented in [Reiter, 1987;[START_REF] Wilkerson | [END_REF]. From one layer to another, we resume the construction of (TREE) from its current kernels minimal with respect to ≤ lex . Namely, the function ADDFROMLEXKERNEL((HS(C )) builds the hitting set tree out of a collection of conflicts C, starting from the branches of the current TREE which are minimal with respect to ≤ lex . Finally, PR(K ∪ {N }) corresponds to the kernels of TREE obtained using function LEXKERNEL(TREE) which are minimal with respect to ≤ lex . Note that COMPUTEPRSR3 is a generalization of COMPUTEPRSR2, since when all conflicts involve elements from distinct layers, then the final tree will only contain one prioritized removed set. The following example illustrates this algorithm. 

Discussions and related works

In [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF], the authors study the problem of knowledge base evolution in DL-Lite. Under the word evolution, they encompass both revision and update operations. Note that the update focuses on the changes of the actual state whereas revision focuses on the integration of new information [START_REF] Wang | [END_REF]. In this chapter, we focus on revision. The part of the article [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF] dedicated to formula-based approaches is closely related to our work. They define several operators which perform revision of a knowledge base expressed in DL-Lite at a syntactical level. The first difference concerns the form of the input. In our case, new information is a membership assertion, a single PI axiom or NI axiom, that is a single formula. In [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF], the input is a set of formulas. The second difference is that in [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF] they develop two operators whose strategy is to nonderministically choose some maximal consistent subset. The first one, called BoldEvol, starts with the input, and incrementally and non-deterministically adds as many formulas as possible from the closure of the knowledge base. The algorithm for computing such set is polynomial. However, in the case where the input is a set of membership assertions, they give a result similar to our operator. Namely, the result only gives one maximal consistent subset, which corresponds to Proposition 6.1.

The selected maximal subset is a subset of the consequences of the knowledge base, which is very different from our point of view. Prioritized Removed Sets Revision relies only on the explicit content of the knowledge base. The resulting knowledge base will not contain formulas which are not present in the original knowledge base. Only working with explicitly given information, we follow Hansson's point of view [Hansson, 2008].

Following this line, extensions of belief bases revision to DLs have been proposed, however these approaches differ from ours in several aspects. Within the general framework of DLs, in [Qi et al., 2008a] the authors extend kernel-based revision [START_REF] Hansson | [END_REF] for revising flat terminologies. Our approach is very different since we deal with knowledge bases which are prioritized and expressed in a lightweight DLs. Furthermore, our revision operators do not modify the TBox but revise the prioritized ABox according to a lexicographical strategy.

In [START_REF] Halaschek-Wiener | Belief base revision for expressive description logics[END_REF], the authors focus on SHOIN DL, they extend kernel revision and semi-revision operators [Hansson, 1997] to SHOIN knowledge bases. Moreover, they propose an algorithm for revision stemming from the computation of kernels. This algorithm shares several common points with our algorithm for the computation of prioritized removed sets. What they call justification of the inconsistency is very similar to our notion of conflict. But in their case, the generation of conflicts has a higher computational cost than in our case, as they work with SHOIN logic. In order to lower this extra-complexity, they rely on an optimized version of the Pellet consistency checker which uses properties of the SHOIN logic, allowing them to define an incremental version of their consistency checking tableau algorithm.

In [Ribeiro and Wassermann, 2007], the authors propose another extension of kernel-based revision and semi-revision operators to DLs, namely external kernel revision and semi-revision with weak success. Again, their logical framework is richer than ours, since they consider SHOIN and SHIF logics in order to capture all the OWL-DL and OWL-Lite languages. Our revision operators can be viewed as restrictions of the operator they define under the name kernel revision without negation. The restrictions are : (i) our knowledge bases are prioritized and expressed in DL-Lite; (ii) the minimality of the result of the incision function is defined in terms of lexicographic criterion in our case.

Conclusion

Following another idea, the authors in [Qi et al., 2006a] extend weakening-based revision to ALC knowledge bases. Instead of removing conflicting assertions, the proposed revision operators weaken terminological axioms or assertions by adding exceptions which drop individuals responsible of the conflicts. Furthermore, this weakening-based revision is generalized to stratified knowledge bases. Our revision operators differ from this approach since our prioritized knowledge bases are expressed in DL-Lite. Moreover, the spirit is different since PRSR removes conflicting assertions according to a lexicographical strategy.

Conclusion

In this chapter, we investigated the problem of revising prioritized DL-Lite knowledge bases where the ABox is stratified. We considered several forms of the incorporated information, more precisely, when the input is a membership assertion, a positive or negative inclusion axiom. According to the form of the input we proposed a family of operators, Prioritized Removed Sets (PRSR) operators, stemming from a lexicographical strategy for removing some assertions, namely the prioritized removed sets, in order to restore consistency.

When the input is a membership assertion, the revision process leads to a unique revised knowledge base. However, when the input is a positive or negative inclusion axiom, the revision process may lead to several possible revised knowledge bases. In this case, we defined selection functions in order to keep the result within the DL-Lite language and we gave some concrete PRSR operators with examples of selection functions. We studied the logical properties of PRSR operators through Hansson's postulates rephrased within the DL-Lite framework. From a computational point of view, we first proposed an algorithm for pinpointing inconsistencies, then according to the nature of the input, we proposed algorithms, some of them using the notion of hitting set, for computing the prioritized removed sets.

Based on the discussion about suitable techniques for inconsistency handling presented in Chapter 5 and the assumption that the ABox is prioritized, next chapter proposes several approaches to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases.

Part IV, Chapter 7 -How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases? tive analysis of the main approaches studied in this chapter. Section 7.6 gives experimental studies and Section 7.7 concludes the chapter.

Notations: Let us first summarize in Table 7.1 the different notations of repairs that will be used in the rest of this chapter. 

Acronym

Existing assertional-based preferred repairs

This section reviews approaches dealing with inconsistent DL-Lite knowledge bases that either have been proposed in a DLs setting or have been proposed in a propositional logic setting but need a slight adaptation to be suitable for DL-Lite.

A DL-Lite knowledge base K= T , A with a prioritized assertional base is a DL-Lite knowledge base where A is partitioned into n layers (or strata) of the form

A = S 1 ∪ . . . ∪ S n
where each layer S i contains the set of assertions having the same level of priority i and they are considered as more reliable than the ones present in a layer S j when j > i. Within the OBDA setting, we assume that T is stable and hence its elements are not questionable in the presence of conflicts. Throughout this chapter and when there is no ambiguity, we simply use "prioritized DL-Lite knowledge base K = T , A " to refer to a DL-Lite knowledge base with a prioritized assertional base of the form A=S 1 ∪ . . . ∪ S n .

Example 7.1. Let K= T , A such that T = {A ¬B} and that assertional facts of A come from three distinct sources A=S 1 ∪ S 2 ∪ S 3 where S 1 = {B(a), A(b)}, S 2 = {A(a)} and S 3 = {B(c)}. S 1 contains the most reliable assertions. S 3 contains the least reliable assertions. In Example 7.1, it is easy to check that the knowledge base is inconsistent. Coping with inconsistency can be done by first computing the set of repairs, then using them to perform inference. In order to compute the repairs, we use the notion of conflict sets presented in Chapter 5 (Definition 5.12).

Preferred inclusion-based repair

In the flat case1 , one of the main strategies for handling inconsistency comes down to computing the ABox repairs of an inconsistent DL-Lite knowledge base. A repair is a maximal subbase of the ABox, denoted by MAR, that is consistent with the TBox (Definition 5.3 in Section 5.2). According to the definition of MAR, adding any assertion f from A \ R to R entails the inconsistency of T , R ∪ {f } . Moreover, the maximality in MAR is used in the sense of set inclusion. We denote by MAR(A) the set of MAR of A with respect to T . A query is said to be a universal consequence (i.e. M1, ∀ given in Chapter 5) if it can be derived from every MAR. The following definition extends the definition of MAR when the DL-Lite ABox is prioritized.

Definition 7.1. Let K = T , A be a prioritized DL-Lite knowledge base. A preferred inclusion-based repair (PAR) P = P 1 ∪ . . . ∪ P n of A is such that there is no a MAR P = P 1 ∪ . . . ∪ P n of S 1 ∪ . . . ∪ S n , and an integer i where: i) P i is strictly included in P i , and ii) ∀j = 1..(i -1), P j is equal to P j This definition of PAR has been largely used in a propositional logic setting (e.g. [Brewka, 1989;Benferhat et al., 1998a]) and has been recently used in a DL-Lite framework [START_REF] Bienvenu | Querying inconsistent description logic knowledge bases under preferred repair semantics[END_REF]. A PAR of A is formed by first computing the MAR of S 1 , then enlarging this MAR as much as possible by assertions of S 2 while preserving consistency, and so on. Priorities reduce the number of MAR as one can see in Example 7.3 in comparison with Example 7.2. Indeed, within a prioritized setting, the notion of PAR operates as a selection function among possible MAR. Following the definition of ABox conflict (Definition 5.12), an important feature in restoring consistency in DL-Lite, when the ABox is layered, is that when there is no conflict in A involving two assertions having the same priority level, there exists only one PAR.

Proposition 7.1. Let K = T , A be a prioritized DL-Lite. Let C(A) be the set of conflicts in A. Then if ∀C = (f, g) ∈ C(A) we have f ∈ S i , g ∈ S j and i = j then there exits exactly one PAR.

Proof of Proposition 7.1. The proof is immediate. In every conflict in A, we throw out only the assertion having the lowest priority level. Therefore there exits only one PAR of A.

Part IV, Chapter 7 -How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases?

When a conflict involves two assertions having the same priority level, restoring consistency leads to several PAR. From now on, PAR(A) denotes the set of PAR of A. The following definition introduces universal inference when A is layered. Definition 7.2. Let K = T , A be a prioritized DL-Lite knowledge base. A query q is said to be a PAR-consequence of K, denoted K |= PAR q, if and only if ∀P ∈ PAR(A), T , P |=2 q where PAR(A) denotes the set of PAR of A.

Definition 7.2 states that a query q is a universal consequence if and only if it can be deduced from every preferred inclusion-based repair. Note that the PAR-entailment extends the definition of MARentailment (i.e. M 1 , ∀ proposed in Section 5) when the ABox is prioritized. Besides, it is argued that priorities simplify the computation of PAR, but it remains a hard task since in the flat case the inference is coNP-complete (see Section 5.5.2 on complexity analysis). When a conflict involves two assertions having the same priority level, restoring consistency often leads to several PAR.

Lexicographic preferred-based repair

This subsection rewrites the cardinality-based or lexicographic inference or prioritized removed set repair, defined in Chapter 6, to the context of inconsistency handling. The lexicographic inference has been widely used in the propositional setting (e.g. [Benferhat et al., 1998a]). In fact, one of the major problems of PAR-entailment is the large number of PAR that can be computed from an inconsistent DL-Lite knowledge base. In order to better choose a PAR, one can follow a lexicographic-based approach. We introduce a preferred lexicographic-based repair which is based on the cardinality criterion instead of the set inclusion criterion.

Definition 7.3. Let PAR(A) be the set of PAR of A. Then L = L 1 ∪. . .∪L n is said to be a lexicographical preferred-based repair, denoted by PAR lex , if and only if:

i) ∀P = P 1 ∪ . . . ∪ P n ∈ PAR(A): there is no i such that |P i | > |L i |, ii) ∀j < i, |P j | = |L j |.
where |X| is the cardinality of the set X.

Clearly, using a lexicographic-based approach comes down to select among the set of repairs in PAR(A) the ones having the maximal number of elements.

Definition 7.4. Let K = T , A be a prioritized DL-Lite knowledge base. A query q is said to be Lex-consequence of K, denoted by K |= L q, if and only if ∀L ∈ PAR lex (A) : T , L |= q. We propose to review in the two next subsections inconsistency-tolerant inferences based only on selecting one preferred repair.

Existing assertional-based preferred repairs

Possibilistic-based repair

This section briefly rewrites possibilistic-based approach of Chapter 3 when the knowledge base is stratified.

One of the interesting aspects of possibilistic knowledge bases, and more generally weighted knowledge bases, is the ability of reasoning with partially inconsistent knowledge [Dubois and Prade, 1991a]. As shown in Chapter 3, entailment in possibilistic DL-Lite, an extension of DL-Lite within a possibility theory setting, is based on the selection of one consistent, but not necessarily maximal, subbase of K. This subbase is induced by a level of priority called the inconsistency degree of K. The following definition reformulates the definition of inconsistency degree to fit the case where A is prioritized.

Definition 7.5. Let K= T , A be an inconsistent prioritized DL-Lite knowledge base. The inconsistency degree of K, denoted Inc(K), is defined as follows: Inc(K)=i + 1 if and only if: i) T , S 1 ∪ . . . ∪ S i is consistent and, ii) T , S 1 ∪ . . . ∪ S i+1 is inconsistent.

The subbase π(A) is made of the assertions having priority levels that are strictly less than Inc(K), namely π(A) = S 1 ∪ . . . ∪ S (Inc(K)-1) . If K is consistent then we simply let π(A)=A. The following definition extends the possibilistic entailment (π-entailment ) to the case where A is stratified. Definition 7.6. Let K = T , A be a prioritized DL-Lite knowledge base. A query q is said to be a π-consequence of K, denoted K |= π q, if and only if T , π(A) |= q.

The π-entailment is cautious in the sense that assertions from A\π(A) that are not involved in any conflict are inhibited because of their low priority levels.

Linear-based repair

One way to recover the inhibited assertions by the possibilistic entailment is to define the linear-based repair from A. The following definition introduces the notion of linear subset. Linear entailment has been used in a propositional logic setting in [Nebel, 1994] and has been applied for a DL setting (e.g. [Qi et al., 2011]).

Definition 7.7. Let K = T , A be a prioritized DL-Lite. The linear assertional-based repair of A, denoted (A) = S 1 ∪ . . . ∪ S n , is obtained as follows: i) For i = 1 : (S 1 ) = S 1 if T , S 1 is consistent. Otherwise (S 1 ) = ∅.

ii) For i > 1 : (S 1 ∪ . . . ∪ S i ) = (S 1 ∪ . . . ∪ S i-1 ) ∪ S i if T , (S 1 ∪ . . . ∪ S i-1 ) ∪ S i is consistent.

Otherwise (S 1 ∪ . . . ∪ S i ) = (S 1 ∪ . . . ∪ S i-1 ).

Clearly, (A) is obtained by discarding a layer S i when its facts conflict with the ones involved in the previous layer.

Definition 7.8. Let K = T , A be a prioritized DL-Lite knowledge base. A query q is a linear consequence ( -consequence) from K, denoted K |= q, if and only if T , (A) |= q.
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Proposition 7.2. The computational complexity of π-entailment is in O(cons) where cons is the complexity of consistency checking of standard DL-Lite. The complexity of -entailment is in O(n * cons) where n is the number of strata in the knowledge base.

Proof of Proposition 7.2. The proof of the complexity of π-entailment can be found in Section 3.5. The proof of the complexity of -entailment is immediate since to see whether a stratum should be kept or not in the result of restoring consistency, one consistency check is needed.

The -entailment is more productive than π-entailment as one can see in Example 7.6 in comparison with Example 7.6, but incomparable with PAR-entailment and Lex-entailment. However from Definitions 7.5 and 7.7, both π(A) and (A) are not guaranteed to be maximal.

Sensitivity to the prioritized closure

Before presenting new strategies that only select one preferred repair, we briefly introduce the concept of a prioritized closure and check which among existing approaches is sensitive to the use of the deductive closure.

The inference relations given in the previous section can be either defined on T , A or on T , • cl (A) where • cl denotes the deductive closure of a set of assertions. The following definition extends Definition 5.2 to the prioritized case. Definition 7.9. Let K = T , A be a prioritized DL-Lite knowledge base. Then, we define the prioritized closure of A with respect to T , simply denoted by • cl (A), as follows: An important feature of π-inference and -inference is that they are insensitive to the deductive closure. This is not the case with PAR-entailement or Lex-entailment, more precisely: Proposition 7.3. Let K = T , A be a prioritized DL-Lite knowledge base. Then ∀q:

• T , A |= π q if and only if T , • cl (A) |= π q.

• T , A |= q if and only if T , • cl (A) |= q.

7.4. New strategies for selecting one preferred repair Proof of Proposition 7.3. Intuitively, both π-inference and -inference use a consistency checking of the whole stratum to decide whether this stratum should be kept or not for restoring the consistency of the knowledge base. Besides, one can easily check that in standard DL-Lite, T , A is consistent if and only if T , • cl (A) is consistent.

The following proposition shows that preferred inclusion-based inference and lexicographic-based inference are sensitive to the deductive closure.

Proposition 7.4. Let K = T , A be a prioritized DL-Lite knowledge base. Then,

• the preferred inclusion-based inference (PAR-entailment) applied to T , A is incomparable with the one applied to T , • cl (A) .

• the lexicographic inference (Lex-entailment) applied to T , A is incomparable with the one applied to T , • cl (A) . 

New strategies for selecting one preferred repair

This section presents new strategies that only select one preferred repair. Selecting only one repair is important since it allows efficient query answering once the preferred repair is computed. These strategies are based on the so-called non-defeated entailment, described in the next section, by adding different criteria: deductive closure, cardinality, consistency and priorities.

Non-defeated repair

One way to get one preferred repair is to iteratively apply, layer per layer, the intersection of maximally assertional-based repairs (i.e. MAR). More precisely: As it will be shown below, the non-defeated entailment corresponds to the definition of non-defeated subbase proposed in [Benferhat et al., 1998a] within a propositional logic setting. However, contrarily to the propositional setting i) the non-defeated repair can be applied on A or its deductive closure • cl (A) which leads to two different inference relations, ii) the non-defeated repair is computed in polynomial time in a DL-Lite setting while its computation is hard in a propositional logic setting. Let us now rephrase non-defeated repair (Equation 7.1) using the concept of free inference. First, we recall the notion of non-conflicting or free elements.

Definition 7.11. Let K = T , A be DL-Lite knowledge base. An assertion f ∈ A is said to be free if and only if ∀C ∈ C(A) : f / ∈ C.

Intuitively, free assertions are those assertions that are not involved in any conflict. Let S ∈ A be a set of assertions, we denote by free(S) the set of free assertions in S. The notions of free elements and free-entailment are originally proposed in [Benferhat et al., 1992] where knowledge bases are encoded in a propositional logic setting. The definition of free-entailment is also equivalent to the MBox M 1 followed by the safe inference strategy i.e. M 1 , ∩ presented in Section 5.5.

The following proposition shows that the notion of free(A) extended to the prioritized case gives a non-defeated repair. where ∀i : f ree(S 1 ∪ . . . ∪ S i ) denotes the set of free facts in (S 1 ∪ . . . ∪ S i ).

Proof. The proof is immediate since ∀i : f ree(S 1 ∪ . . . ∪ S i ) = R∈MAR(S 1 ∪...∪S i ) R.

The non-defeated repair is an extension of the free assertional base when A is prioritized. The following definition introduces non-defeated entailment.

Definition 7.12. Let K = T , A be a prioritized DL-Lite knowledge base. A query q is a non-defeated consequence (nd-consequence) of K, denoted K |= nd q, if and only if T , nd(A) |= q.

In Definition 7.11, a free element is not involved in any conflict. Hence the following proposition holds.

Proposition 7.6. Let K = T , A be a prioritized DL-Lite knowledge base. Let nd(A) be its dominant subbase. Then T , nd(A) is consistent.

Proof of Proposition 7.6. We will use the recurrence to show the proof. Namely, assume that for some i: f ree(S 1 ) ∪ f ree(S 1 ∪ S 2 ) ∪ . . . ∪ f ree(S 1 ∪ . . . ∪ S i ) is consistent. This assumption is true for i = 1, since by definition f ree(S 1 ) is consistent. Let us show that the assumption holds for rank (i + 1), namely: f ree(S 1 ) ∪ f ree(S 1 ∪ S 2 ) ∪ . . . ∪ f ree(S 1 ∪ . . . ∪ S i+1 ) is consistent.
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Assume that this is not the case. This means that there exists f ∈ f ree(S 1 ) ∪ f ree(S 1 ∪ S 2 ) ∪ . . . ∪ f ree(S 1 ∪ . . . ∪ S i ) and g ∈ f ree(S 1 ) ∪ f ree(S 1 ∪ S 2 ) ∪ . . . ∪ f ree(S 1 ∪ . . . ∪ S 1+1 ) such that (f, g) is conflicting. Since, f ree(S 1 )∪f ree(S 1 ∪S 2 )∪. . .∪f ree(S 1 ∪. . .∪S i ) ⊆ f ree(S 1 )∪f ree(S 1 ∪S 2 )∪. . .∪f ree(S 1 ∪. . .∪S i+1 ) this means that f ∈ f ree(S 1 ) ∪ f ree(S 1 ∪ S 2 ) ∪ . . . ∪ f ree(S 1 ∪ . . . ∪ S i+1 ) and g ∈ f ree(S 1 ) ∪ f ree(S 1 ∪ S 2 ) ∪ . . . ∪ f ree(S 1 ∪ . . . ∪ S i+1 ). Hence, this is a contradiction, since g cannot belong to f ree(S 1 ) ∪ f ree(S 1 ∪ S 2 ) ∪ . . . ∪ f ree(S 1 ∪ . . . ∪ S i+1 ). The computational complexity of the computation of the dominant subbase of A is polynomial.

Proposition 7.7. Let K = T , A be a prioritized DL-Lite knowledge base. The complexity of ndentailment is in P.

Proof of Proposition 7.7. The proof follows from the fact that computing f ree subbase is done in polynomial time. nd-entailment proceeds to a linear number of computations of free subbases.

Adding the deduction closure

The non-defeated inference, when it is defined on A, is safe since it only uses elements of A which are not involved is conflicts. One way to get a more productive inference is to use • cl (A) instead of A. Namely, we define, a closed non-defeated repair, denoted clnd(A) = S 1 ∪ . . . ∪ S n , such that: We now present a new way to select a single preferred assertional-based repair. It consists in slightly improving linear entailment, where rather to ignore a full stratum, in case of inconsistency, one can only ignore conflicting elements.

More precisely, the linear-based non-defeated repair, denoted by nd(A), is given by the following algorithm:
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Input: K = T , A where A = S 1 ∪ . . . ∪ S n Output: nd(A)

1: nd(A) = f ree(S 1 ) 2: for i = 2 to n do 3:

if T , nd(A) ∪ S i is consistent then Clearly nd(A) is consistent and it is more productive than π(A) and (A), but it remains incomparable with other approaches. Note that nd(A) ∪ f ree(S i ∪ nd(A)) = {R : R ∈ MAR(S i ∪ nd(A)) and R ∪ nd(A)} is consistent. Hence, nd(A) extends nd(A) by only focusing on MAR(S i ∪ nd(A)) that are consistent with nd(A). The nice feature of nd-entailment is that the extension of -entailment and nd-entailment is done without extra computational cost. More precisely, computing nd(A) is in P.

Introducing cardinality in non-defeated inference

A natural question is whether one can introduce a cardinality criterion, instead of set inclusion criterion, in the definition of non-defeated repair given by Equation 7 One main advantage of this approach is that it produces more conclusions then the standard nondefeated inference relation. Namely, nd(A) ⊆ nd(A) card where nd(A) and nd(A) card are respectively given by Equations 7.1 and 7.3. The converse is false. Proposition 7.9. Let K = T , A be a prioritized DL-Lite knowledge base. Then nd(A) ⊆ nd(A) card where nd(A) and nd(A) card are respectively given by Equations 7.1 and 7.3. The converse is false.

Proof. The proof follows from the fact that: ∀i = 1, .., n : MAR card (S 1 ∪ . . . ∪ S i ) ⊆ MAR(S 1 ∪ . . . ∪ S i )

For the converse, consider the following counter-example. 7.6. Experimental evaluation inference relations. However -entailment remains incomparable with the nd-entailment, since layers including non free assertions can be present in (A). Moreover, nd(A) is incomparable with other approaches. Within the prioritized setting, nd(A) plays the same role with respect to PAR as f ree(A) for MAR in the flat case. As a consequence, each nd-consequence of A is also a PAR-consequence of A. The converse is false. Moreover, it is well-known that each PAR-entailment is also a Lex-entailment and the converse is false, since the Lex-entailment only uses subsets of prioritized repair (PAR).

Experimental evaluation

In this section, we present an experimental evaluation on the computation of main repairs proposed in this Chapter using some algorithms proposed in Chapter 6.

All the experiments are performed on a MacBook Pro laptop with 2.6GHz Intel Core (i7) processor and 16GB 1600 MHz DDR3 RAM. We considered a TBox containing 100 negative inclusion axioms with a proportion of conflicts at least equal to 1/5 per assertion. This TBox is adapted from the DL-Lite R university benchmark proposed in [Lutz et al., 2013]. We use the Extended University Data Generator (EUDG) 3 to generate the ABox assertions. Once the ABox is produced, we fit it to our setting using 4 strata until 7 strata. Moreover the computation of conflicts is performed layer per layer. Note that the time used for computing the conflicts is not included in the time used for computing the repairs, since this is done in a polynomial time. Said differently, computing conflicts is negligible with respect to computing repairs. Table 7.2 gives the experimental results of the computation of MAR and MAR card . One can see that using the cardinality criterion instead of the set inclusion one refines the result and improves the computation time of the repairs. Moreover, an important influential parameter when computing the repairs is the number of occurrences of an assertion in conflicts. Namely, the more an assertion is recurring in conflicts the more the conflict resolution has better chances to be achieved. For instance, in Table 7.2 considering the case of 37 conflicts, by increasing the percentage of occurrences of some assertions in conflicts, we obtain 23082 MAR in 136ms instead of 16815986 in 206089ms. In such case, the number of Lex decreases also where we compute only 24 #MAR card having cardinality equal to 14 assertions. Similar results on the effect of the number of occurrences of assertions in conflicts are provided [START_REF] Pivert | Handling dirty databases: From user warning to data cleaning -towards an interactive approach[END_REF][START_REF] Deagustini | [END_REF]. Now, concerning PAR lex , we also use the notion of minimal inconsistent subsets where the minimality refers to a lexicographic ordering. Table 7.3 gives the results on the computation of PAR lex and the main repairs given in this paper. One can first observe that given an ABox A whatever is its size, computing π or does not need long computation time as needed by inconsistency checking. Regarding now the computation of the non-defeated repair, it depends on the number of conflicts in the ABox. Another Part IV, Chapter 7 -How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases? parameter that also influences the results is the number of layers. This can be clearly seen when computing #PAR lex . Indeed, the number of PAR lex decreases as the number of layers increases. Clearly, more the stratification of the ABox is important more the conflicts resolution has better chances to be achieved. 

# conflict

Conclusion

This chapter focuses on how to produce a single preferred repair from a prioritized inconsistent DL-Lite knowledge base based on the notion of the non-defeated inference relation. We first reviewed some well-known approaches that select one repair (such as possibilistic repair or linear-based repair) or several repairs (such as preferred inclusion-based repairs or lexicographic-based repairs). Then, we presented different strategies for selecting one preferred repair. These strategies have as starting point the non-defeated repair and mainly add one/several of the four main criteria: priorities, deductive closure, cardinality and consistency.

In this thesis, we studied dynamics of beliefs and uncertainty management in DL-Lite. In the first part we investigated the problem of uncertainty handling in DL-Lite. We first proposed an extension of the main fragments of DL-Lite to deal with the uncertainty associated with axioms using a possibility theory framework. We introduced the syntax and the semantics of such extensions. We provided the properties of π-DL-Lite and showed how to compute the inconsistency degree of π-DL-Lite knowledge base using query evaluation obtained by defining the π-DL-Lite negative closure that extends the one of standard DL-Lite. This extension permits to deal with priorities or uncertainty degrees (between DL-Lite axioms) without increasing the computational complexity. A tool for representing and reasoning in possibilistic DL-Lite framework is implemented. We introduced main reasoning tasks in π-DL-Lite and we provided a preliminary result on conditioning π-DL-Lite knowledge bases when a new piece of information is available. Lastly, we proposed a min-based assertional merging operator when the assertions of ABox are provided by several sources of information having different levels of priority. We showed that this operator is more productive than the classical one, without increasing the complexity of the merging process.

In the second part of the thesis, we studied the problem of inconsistency handling in flat DL-Lite knowledge bases. We generalized techniques for inconsistency handling in flat knowledge bases by introducing the notions of modifier and inference strategy. We showed that the combination of modifiers and inference strategies provides a principled and exhaustive list of techniques for inconsistency management. We studied the productivity and the computational complexity for the proposed techniques and showed how our work extends the state of the art.

The third part of this thesis was dedicated to the revision and inconsistency handling in prioritized DL-Lite knowledge bases where the ABox is stratified. We first investigated the problem of revising by considering different forms of input information, namely when the input is an ABox assertion or a TBox axiom. We proposed syntactic revision operators, called Prioritized Removed Sets (PRSR) operators. These operators follow a lexicographical strategy for removing some assertions, namely the prioritized removed sets, in order to restore consistency. We showed in particular that when the input is an ABox axiom, the revision process leads to a unique revised knowledge base. However, when the input is a TBox axiom, the revision process may lead to several possible revised knowledge bases. In this case, we defined selection functions in order to keep the result within the DL-Lite language. We provided the logical properties of PRSR operators using Hansson's postulates rephrased within our framework. Finally, we proposed algorithms to computing the prioritized removed sets where some of them are based on the notion of hitting set.

We studied the problem of inconsistency handling in prioritized DL-Lite knowledge bases. We introduced several inconsistency-tolerant inference approaches in DL-Lite when the ABox is stratified. We first reviewed some well-known approaches that select one assertional-based repair or several assertionalbased repairs, and then, proposed different strategies for selecting a single assertional-based repair. These strategies have as starting point the non-defeated assertional-based repair and mainly adding one/several of four main ingredients: priorities, deductive closure, cardinality and consistency. We showed that these inconsistency-tolerant relations are proper to DL-Lite logics and some of them allow tractable handling of inconsistency without additional complexity in comparison to standard DL-Lite. We provided complexity results and experimental studies showing the efficiency of the proposed entailments.
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Future works

Uncertainty management The inconsistency notion used Chapter 3 is fully in the spirit of the one used in standard DL-Lite. In presence of certainty degrees, one may consider other forms of inconsistency that depart from the one used in standard DL-Lite logic. This depends on the uncertainty framework and the knowledge modeling steps may play a crucial role. For instance, if one uses a probability theory framework, and roughly speaking if A B, α is interpreted as "the conditional probability of an individual to be in B given the fact that he is A is α, then A B, .9 and A ¬B, .1 are closely related. Hence, the way we write uncertain pieces has an important role and the definition of inconsistency degrees should take into account the used uncertainty framework. Note that in a possibility theory setting, an axiom ϕ and its negated axiom ¬ϕ are only weakly related since we only have min(N (ϕ), N (¬ϕ)) = 0. Besides, in the future, we plan to explore more parsimonious definitions of inconsistency degrees. For instance, in the rules used for defining the π-negated closure of a DL-Lite knowledge base we used the minimum operator for propagating certainty degrees. The question is how to use other operators (such that leximin or descrimin [Benferhat et al., 1993a;Dubois et al., 1992] or simply the product operators) that lead to new definitions of inconsistency degrees. The aim is to get more productive relations that only provide safe conclusions and run in a polynomial time.

Another future work is to consider richer extensions of DL-Lite logics such as DL -Lite R, and DL -Lite F, [START_REF] Calvanese | [END_REF] (DL-Lite H horn and DL-Lite F horn presented in Section 1.4.2) that allow conjunction on the left side of a concept inclusion. We are also interested in considering possibilistic DL-Lite with disjunctive ABox as it has been done in databases [Molinaro et al., 2009]. Namely, we plan to enrich DL-languages with the propositional disjunction "A ∨ B". The question is then how to extend the concepts of conflicts, associated with negated axioms, to define inconsistency degrees of possibilistic knowledge bases with disjunctive ABox. This extension is useful when one has to merge multiple sources information, where the union of the TBox (issued from each source) is consistent, but the whole set of information is conflicting.

Knowledge base fusion This thesis opens several perspectives regarding the fusion issue. For instance, we focus on a min operator for aggregating conflict vectors, in order to preserve possibilistic semantics. Nevertheless, other aggregation operators can be considered (e.g. the product operator) or direct comparisons from vectors (e.g. G-max based operator). From a postulates point of view, other postulates dedicated to DL knowledge bases could be studied and adapted (e.g. arbitration [START_REF] Konieczny | Merging information under constraints: A logical framework[END_REF]). Moreover, we plan to investigate other measures of conflicts such as Shapley measure proposed in [START_REF] Hunter | [END_REF]. Finally, we will investigate the extension of Removed Sets Fusion [Hué et al., 2008], defined in a propositional setting, to the merging of DL-Lite knowledge bases. Another extension is to study merging of uncertain DL-Lite knowledge bases in the context where uncertainty scales are incommensurable [Benferhat et al., 2007].

Ontological-based revision vs assertional based revision When revising a prioritized DL-Lite knowledge base, we only considered the case where the input is a single assertion or a simple positive or negative axiom. A future work will investigate the case where the input is a set of assertions or a set of axioms. A future work will focus on a deeper study of the computational complexity of the PRSR operators. We plan also to study revision of TBox, when a new axiom (i.e. rule) is available. We will study revision in the general case, namely when the revision process comes down to throw out both TBox axioms and ABox assertions to restore consistency.

Regarding inconsistency handling, other modifiers such as merging or concatenating modifiers have to be investigated. Besides, the considered framework may be reapplied easily for other richer DL-Lite logics (or rules-based languages (e.g. [Baget et al., 2009;[START_REF] Baget | [END_REF][START_REF] Calì | [END_REF]) provided that data is separated from generic knowledge. 

Reasoning tasks

The current version of the tool implements two main reasoning algorithms. The first reasoning task concerns the detection of modeling errors when specifying the ontology, namely the incoherency of the TBox (see Definition 1.13). An important feature of our tool, compared with existing ones (i.e. flat case) is that incoherency detection is done instantly after adding any axiom to the TBox. Once an incoherency is detected and according to the weights of formulas, the editor points out the source of incoherency using "italic style". The second main reasoning task is the computation of the inconsistency degree. The tool computes first the negated closure using the rules presented in Section 3.4. As for incoherency checking, the computation of the negated closure is done instantly after adding any axiom. This closure is transformed to Part IV, Chapter A -Appendix of Chapter 3 weighted queries performed over the set of individuals in the ABox in order to compute the inconsistency degree. The inconsistency associated with a query and a given tuple of assertions provided as an answer for the query is the maximum weight among all the certainty degrees of the query and this tuple. The maximum among these inconsistency degrees is the inconsistency degree associated with the knowledge base. Figure A.5 shows an example of computation of inconsistency degree. Once the inconsistency degree is computed, all axioms having weights less or equal to this degree are highlighted using "italic style". fconflict(book(pakerpyne), person(pakerpyne)) pconflict((book(pakerPyne),0.8), (person(pakerPyne),0.4) Note that these conflict sets are used for experimentation in Section 7.6.

It is easy to check that T , M is inconsistent. We have: Let q 1 ← D(a) and q 2 ← A(a) be two queries. One can check that: M 1 ,maj |= q 2 but M 2 ,maj |= q 2 while M 2 ,maj |= q 1 but M 1 ,maj |= q 1 . Let q 1 ← D(a) and q 2 ← A(a) be two queries. One can check that: M 3 ,maj |= q 2 but M 4 ,maj |= q 2 while M 4 ,maj |= q 1 but M 3 ,maj |= q 1 .

3. The majority-based inference from T , M 5 is incomparable with the one obtained from T , M Let q 1 ← D(a) and q 2 ← A(a) be two queries. One can check that: M 7 ,maj |= q 2 but M 8 ,maj |= q 2 while M 8 ,maj |= q 1 but M 7 ,maj |= q 1 . Global schema Proposition B.10 (Figure 5.7). Let K M = T , M = {A} be an inconsistent DL-Lite knowledge base. Let M 1 ,...,M 8 be the eight MBox's given in Table 5.1. Let q be boolean query. Then ∀M i ∈ {M 1 , ..., M 8 }:

1. if q is a safe conclusion of T , M i then q is a universal conclusion of T , M i .

2. if q is a universal conclusion of T , M i then q is a majority-based conclusion of T , M i .

Proof. The proof of item 1 (resp. item 2) follows immediately from the proof of Item 1 (resp. item 2) of Proposition 5.1.
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Definition 1 .

 1 10 (DL axioms). Let K = T , A be an ALC knowledge base. Then: • The TBox contains a set of terminological axioms of the form: -C D: C is a subconcept of D. -C ≡ D: C is equivalent to D (namely, C D and D C). • The ABox contains a set of assertion axioms of the form: Part I, Chapter 1 -Knowledge representation and ontologies -C(a): a is an instance of C. -R(a, b): a and b are related by R. where C and D are concepts, R is a role and a and b are individuals. Example 1.3. Consider the following set of atomic concepts N C = {P erson, F emale, M ale} and the following set of atomic roles N R = {hasChild}. In the following, we give an example of an ALC TBox: W oman ≡ P erson F emale M ale ¬F emale M an ≡ P erson ¬W omen M other ≡ W oman ∃hasChild.P erson F ather ≡ M an ∃hasChild.P erson P arent ≡ F ather M other P arentW ithoutDaughter ≡ P arent ∀haschild.¬W oman

4 .

 4 Let us continue Example 1.3. Assume that ∆ I = {M arie, P aul, Bob, Alice, T iti}. One 1.3. Logic-based languages can consider the following interpretation: (P erson) I = {P aul, M arie, Bob, Alice} (F emale) I = {M arie, Alice, T iti} (M ale) I = {Bob, P aul} (hasChild) I = {(M arie, P aul), (Bob, Alice)} (W oman) I = {M arie, Alice} (M an) I = {Bob, P aul} (M other) I = {M arie} (F ather) I = {Bob} (P arentW ithoutDaughter) I = {M arie} (P arent) I = {M arie, Bob} An interpretation I is said to satisfy a knowledge base K= T , A if and only if I satisfies every axiom in T and every axiom in A. Such interpretation is said to be a model of K. Definition 1.12. Let K= T , A be an ALC DL knowledge base. The satisfiability of axioms of K with respect to an interpretation I is defined as follows: • I |= C D if and only if C I ⊆ D I . • I |= C ≡ D if and only if C I = D I . • I |= C(a) if and only if a I ∈ C I . • I |= R(a, b) if and only if (a I , b I ) ∈ R I . Example 1.5. From Example 1.4, one can check that I is a model of the knowledge bases of Example 1.3

  : A concept C is said to be subsumed by another concept D with respect to a TBox T , denoted by T |= C D, if for each interpretation I such that I |= T , C I ⊆ D I holds. • Classification: Given a TBox T , classification consists in computing all pairs of concepts (C, D) such that T |= C D. • Knowledge base satisfiability or consistency: An ABox A is said to be consistent with respect to a TBox T , if there exists an interpretation I such that I |= T and I |= A. • Instance checking: An individual a (resp. a and b) is said to be an instance of C (resp. are related by a role R) with respect to a knowledge base K = T , A , denoted by K |= C(a) (resp. K |= R(a, b)), if for each interpretation I such that I |= T and I |= A, we have a I ∈ C I (resp. (a I , b I ) ∈ R I ). , b I )∈R I and (b I , c I )∈R I implies (a I , c I

  An interpretation I is said to be a model of a concept (resp. role) inclusion axiom, denoted by I |= B C (resp. I |= R E), if and only if B I ⊆ C I (resp. R I ⊆ E I ). Similarly, we say that an interpretation I is a model of a membership assertion A(a) (resp. P (a, b)), denoted by I |= A(a) (resp. I |= P (a, b)), if and only if a I ∈ A I (resp. (a I , b I ) ∈ P I ).

  y, z.HasSupervisor(x, y) ∧ HasSupervisor(x, z) ∧ y = z Part I, Chapter 1 -Knowledge representation and ontologies Queries and certain answers over DL-Lite An n-ary query is an open formula of first-order logic with equality of the form q={ x |φ( x)},

  + α can contain role constraints of the form: Part I, Chapter 1 -Knowledge representation and ontologies • Transitivity (tra(R)): I |= tra(R) if and only if

2. 2 .

 2 Uncertainty management • P (A ∪ B) = P (A) + P (B) -P (A ∩ B) where A ∈ Ω and B ∈ Ω.

Example 2 . 8 .

 28 Let us consider the following possibility distribution defined over to binary variables X and Y: Part I, Chapter 2 -Belief change and uncertainty management

Figure 2 .

 2 1 gives an example of a possibilistic network over four boolean variables A, B, C and D.

Part I, Chapter 2 -

 2 Belief change and uncertainty management

  I∈Ω {π(I) : I |= φ}, and N ([φ]) = 1 -sup I∈Ω {π(I) : I |= φ}.

  α , A} be two π-DL-Lite core knowledge bases. Then K and K induce the same possibility distribution, namely ∀I ∈ Ω, π K (I) = π K (I). Proof of Proposition 3.1. The proof is immediate. Let I = (∆ I , . I ) be an interpretation. Assume that I |= B C 1 C 2 , α . By definition of the satisfaction relation, this means that (B) I ⊆ (C 1 ) I ∩ (C 2 ) I . Hence (B) I ⊆ (C 1 ) I and (B) I ⊆ (C 2 ) I , which means that I |= B C 1 , α and I |= B C 2 , α . Therefore π K (I) = π K (I). Conversely, assume that I |= B C 1 , α and I |= B C 2 , α . By definition of the satisfaction relation, this again means that (B) I ⊆ (C 1 ) I and (B)

Rule 3 . 1 .

 31 Let T = {T p , T n } then add all negated axioms of T to π-neg(T ).Example 3.4. [Example 3.1 continued] Using Rule 3.1, we add N eedBased ¬Loyal, γ 2 and Impulse ¬N eedBased, γ 10 to π-neg(T ).

  Part II, Chapter 3 -Min-based possibilistic DL-Lite

Remark 3 . 4 .

 34 Note that instead of Rule 3.3 one can define the following rule: If B 1 ¬B 2 , α ∈π-neg(T ) then add B 2 ¬B 1 , α ∈π-neg(T ) and then re-use Rule 3.2.

  Example 3.5. [Example 3.1 continued] Using π-neg(T ) of Example 3.4, Rules 3.2-3.3 allow to derive the following negative axioms: • Discount Loyal, γ 6 and N eedBased ¬Loyal, γ 2 lead to adding Discount ¬N eedBased, γ 2 to π-neg(T ).

Lemma 3 . 1 .

 31 Let K = T , A be a π-DL-Lite core knowledge base. Let B 1 B 2 (or B 1 ¬B 2 ) be a TBox axiom and X be an ABox assertion. 1. Assume that B 1 B 2 , α 1 and B 1 B 2 , α 2 belong to T . Then K and K = T , A where T

Proof of Proposition 3 . 3 .

 33 It is sufficient to show that one application of Rule 3.2 (or Rule 3.3) does not modify the possibility distribution. It is enough then to repeat the application of Rule 3.2 (or Rule 3.3) on the obtained and derived negative inclusion axioms. Assume that B 1 B 2 , α 1 ∈ T and B 2 ¬B 3 , α 2 ∈ T . Let us show that the result of applying Rule 3.2, which leads to add B 1 ¬B 3 , min(α 1 , α 2 ) does not modify the possibility distribution. Namely, K = T , A and K = T ∪ { B 1 ¬B 3 , min(α 1 , α 2 }, A are equivalent. Let I = (∆ I , . I ) be an interpretation. We consider three cases: 1. I |= B 1 B 2 and I |= B 2 ¬B 3 . By definition of the satisfaction relation, this means that: (B 1 ) I ⊆ (B 2 ) I and (B 2 ) I ⊆ (¬B 3 ) I . Hence, (B 1 ) I ⊆ (¬B 3 ) I , which means that I |= B 1 ¬B 3 . Therefore π K (I) = π K (I). Part II, Chapter 3 -Min-based possibilistic DL-Lite 2. I |= B 1 B 2 and I |= B 2 ¬B 3 (the other case, where I |= B 1 B 2 and

Lemma 3 . 5 .

 35 Let K be a π-DL-Lite core knowledge base. Then cln(T * ≥α ) = {B 1 ¬B 2 : B 1 ¬B 2 , β ∈π-neg(T ) and β ≥ α} Lemma 3.5 is in the spirit of Lemma 3.4. It states that the negative closure of a subbase of K can be recovered from π-neg(T ).

3. 5 .

 5 Checking inconsistency degrees Proposition 3.4. Let K = T , A and let K = π-neg(T ),A Then:

  other cases where X = P (a, b) or X = P (b, a) follow similarly), then it is enough to define a model I in which (B 1 ) I = {a} and (B 2 ) I = ∅.

Example 3 .

 3 8. [Example continued] Using Definition 3.6, from π-neg(T ) of Example 3.7 and the ABox of Example 3.1, we have the following conflicts:• C 1 = { N eedBased¬N eedBased, γ 2 , N eedBased(John),γ 9 } (conflict composed only of two elements).• C 2 ={ W andering ¬N eedBased,γ 5 , N eedBased(John),γ 9 , W andering(John), γ 4 }• C 3 ={ ∃satisf iedBy ¬N eedBased,γ 2 , satisf iedBy(John, Gif ts), γ 11 , N eedBased(John), γ 9 }.

Proposition 3 . 7 .

 37 The complexity of Algorithm 1 is the same as the one used in standard DL-Lite([Calvanese et al., 2007a], section 3.3, Theorem 26).

Example 3 .

 3 13. [Example continued] Let us extend the TBox of Example 3.1 with the following axiom (f unct Satisf iedBy), γ 14 ) and the ABox with the following axiom Satisf iedBy(john, discount), γ 15 ) . One can check that { (f unct Satisf iedBy), γ 14 ) , Satisf iedBy(john, discount), γ 15 ) , Satisf iedBy(john, gif ts),γ 11 ) } is a conflict set. Part II, Chapter 3 -Min-based possibilistic DL-Lite

Example 3 .

 3 14. [Examples 3.1 and 3.7 continued] Let us extend the TBox with the following axiom AppropriateF or -Satisf iedBy,γ 14 ) and the ABox with the following axiom AppropriateF or(Gif ts, John), γ 15 ) . Using rule 3.7, one can generate the following negated axiom: AppropriateF or -¬N eedBased,γ 14 . One can check that { AppropriateF or -¬N eedBased,γ 14 , AppropriateF or (Gif ts, John), γ 15 ) , N eadbased(John, γ 9 ) } is a conflict.

3. 7 .

 7 Basic inferences in π-DL-Lite core 3.7 Basic inferences in π-DL-Lite core

Example 3 .

 3 15. [Example continued] Let us check if K|=N eedBased Loyal. From Example 3.12, we have Inc(K)=γ 4 then T >γ 4 is as follows: Discount Loyal, γ 6 Impulse ¬N eedBased, γ 10 ∃satisf iedBy -F idelityM ethod, 1 N eedBased Discount, γ 8 W andering Impulse, γ 5 ∃satisf iedBy Loyal, 1

Example 3 .

 3 19. [Examples 3.1 continued] Let us consider the following TBox with T >Inc(K) .

Definition 4 . 1 .

 41 A min-based operator or idempotent conjunctive operator, denoted by ⊕, is a mapping from ∀I ∈ Ω, ν(I) = (π 1 (I), ..., π n (I)) a vectors of possibility values to an interval [0, 1] defined as follows:

Proposition 4 . 1 .

 41 The min-based operator satisfies the characteristic properties:

4. 2 .

 2 Min-based merging of π-DL-Lite knowledge bases• If ∀I ∈ Ω : π i (I) = 1 then π ⊕ (I) = 1. • If ∀I , ∀I ∈ Ω : π i (I) ≥ π i (I ) then π ⊕ (I) ≥ π ⊕ (I ).

Example 4 . 2 .I π 2 I 1 S 3 S 1 Using

 422131 Let us continue example 4.1. Let π 2 be the possibility distribution that encodes pieces of information of K 2 a π-DL-Lite knowledge base. Assume that ∆ I = {b, c}: I . = {b, c}, T = {b}, P = {b} 1 I 2 S = {b, c}, T = {}, P = {} 1 I = {c}, T = {b}, P = {} .Definition 4.1, we present the following possibility distribution π ⊕ as the result of merging π 1 (Example 4.1) and π 2 .

Example 4 . 3 . 3 S

 433 [Example 4.2 continued] Using Definition 4.2, we present the following normalized possibility distribution π N ⊕ from π ⊕ . I . I π N ⊕ I 1 S = {b, c}, T = {b}, P = {b}, F = {(b, c)} .2 I 2 S = {b, c}, T = {}, P = {}, F = {(b, c)} 1 I = {c}, T = {b}, P = {}, F = {(b, c)} .1

4. 3 .

 3 Min-based assertional merging approach for π-DL-Lite knowledge bases Proposition 4.3. The possibility distribution, where

Example 4 . 5 .

 45 Using Definition 4.3, we give the normalized π-DL-Lite knowledge base K N ⊕ associated to the normalized possibility distribution π N ⊕ : T ⊕ = {(T ¬S, .8), (P S, .7), (P T, .9)} A ⊕ = {(S(b), .95), F (b, c), 1)}.

  2 to aggregate π-DL-Lite knowledge bases. The min-based merging operator, denoted by ⊕ considers the union of all ABox. Namely: A ⊕ =A 1 ∪A 2 ∪. . .∪A n . The following definition gives the formal logical representation of the normalized knowledge base. Definition 4.4. Let T be a TBox and A ⊕ be the aggregation of A 1 , ...A n , n ABox using classical minbased operator. Let x=Inc( T , A ⊕ ). Then, the normalized knowledge base, denoted, K N ⊕ is such that: K N ⊕ = T , {(ϕ, α) : (ϕ, α) ∈ A ⊕ and α > x} Example 4.7. [Example 4.6 continued] Let us continue with the TBox T ={A B, B ¬C} presented in Example 4.6 while assuming that the certainty degree of each axioms is set to 1. Let us consider the following set of ABox to be linked to T : A 1 ={(A(a), .6), (C(b), .5)}, A 2 ={(C(a), .4), (B(b), .8), (A(b), .7)} and A 3 ={(A(b), .2), (A(c), .5), (B(c), .4)}. We have A ⊕ ={(A(a),.6), (C(b),.5), (C(a), .4), (B(b),.8), (A(b),.7), (A(b),.2), (A(c), .5), (B(c),.4)} where Inc( T , A ⊕ ) = .5. Then K N ⊕ =T ∪{(A(a),.6),(B(b), .8), (A(b),.7)}.

Example 4 .

 4 8. [Example 4.7 continued] One can see that the assertions (A(c), .5) and (B(c), .4) are not involved in any conflict, but they are not integrated in the merging result.

4. 3 .

 3 Min-based assertional merging approach for π-DL-Lite knowledge bases

Example 4 .

 4 9. [Example 4.7 continued] Let us consider T and A ⊕ from the above example. The πneg(T )={A ¬C, B ¬C}. One can compute the following conflict sets: C 1 ={(A(a), .6), (C(a), .4)}, C 2 ={(C(b), .5), (B(b), .8)}, C 3 ={(C(b), .5), (A(b), .7)} and C 4 ={(C(b), .5), (A(b), .2)}.

Example 4 .

 4 11 (Example continued). Σ Λ contains the following elements: Λ((A(a), .6)) =.6, Λ((A(b), .7))=.5, Λ((A(b), .2))=.5, Λ((A(c), .5))=1, Λ((B(b), .8)) =.5, Λ((B(c), .4))=1, Λ((C(a), .4)) =.4 and Λ((C(b), .5))=.2.

Example 4 .

 4 12 (Example continued). One can obtain: A Λ ={(A(a), .6), (A(b), .5), (A(b), .5), (A(c), 1), (B(b), .5), (B(c), 1),(C(a), .4),(C(b), .2)} where Inc( T , A Λ =.4. Then K Λ = T ∪ {(A(a), .6),(A(b), .5), (A(b), .5), (A(c), 1), (B(b), .5), (B(c), 1)}.

Example 4 .

 4 14. [Example continued] One can compute the set Σ Λ as follow: Λ((A(a), .6)) = .6, Λ((A(b), .7)) = .5, Λ((A(b), .2)) = .5, Λ((A(c), .5))=1, Λ((B(b), .8)) =.5, Λ((B(c), .4))=1, Λ((C(a), .4)) =.4 and Λ((C(b), .5))=.2.

  and I |= ϕ} otherwise where Λ(ϕ i ) is the compatibility measure of ϕ i computed using definition 4.11 Example 4.15 (Example continued). We have (A(c), .1), (B(c), 1), (A(a), .6), (A(b), .5), (B(b), .5), (C(a), .4), (C(a), .2). Then: I I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 π Λ 0 0 .4 0 .5 .4 .6 0 Table 4.4: Possibility distribution resulting from assertional min-based merging.

4. 3 .

 3 Min-based assertional merging approach for π-DL-Lite knowledge bases

Definition 4 .

 4 13. Let us consider: h(π Λ )=max I∈Ω {π Λ (I)}. Then for every I∈Ω and h(π Λ )>0,

Example 4 .I I 1 I 2 I 3 I 4 I 5 I 6 I 5 :

 41234565 16 (continued). From previous Example, we have: Normalized possibility distribution resulting from assertional min-based merging

4. 4 .

 4 Conditioning of possibilistic DL-Lite knowledge bases: Preliminary results

2 .

 2 One can observe in π K that the interpretations {I 1 , I 2 , I 3 , I 4 , I 5 , I 6 } |= B ¬C where Π(B ¬C) = .6 while {I 7 , I 8 } |= B ¬C where max{π(I) : I |= B ¬C} = 1.

4. 4 .

 4 Conditioning of possibilistic DL-Lite knowledge bases: Preliminary results

Example 4 .

 4 21 (Examples 4.19 continued). We have T ={(A B,.4),(B C,.7)} and A={(A(a),.3)}. Let us consider (A C,.9) and (A C,.2). One can easily check that Inc(K 1 )=.4 whereK 1 = T ∪ {(Y A, 1), (Y ¬C, 1)}, {(Y (y), 1)} . So K|= π (A C,.4). When the input is (A C,.9), then K ={(A B,.4), (B C,.7), (A C,.9), (A(a), .3)} such that π K (I)=π K (I| m (A C,.9) presented in Example 4.19. Now, when the input is (A C,.2), then K ={(A B,.2),(B C,.7), (A C,.2), (A(a), .2)} such that π K (I) = π K (I| m (A C,.2) presented in Example 4.19 becomes as follows:

4. 4 .

 4 Conditioning of possibilistic DL-Lite knowledge bases: Preliminary results

Part III, Chapter 5 -

 5 Non-merge inconsistency management roadmap in flat DL-Lite knowledge bases

Definition 5 . 1 .

 51 A DL-Lite knowledge base with an MBox, called MBox DL-Lite knowledge base, is of the form K M = T , M where T is a standard DL-Lite TBox and M = {A 1 , . . . , A n } is a multi-set of facts, called MBox, where each A i is a standard DL-Lite ABox.

  standard knowledge base will be indifferently represented by T , A or by an MBox knowledge base K M = T , M = {A} with only a single ABox in M. Example 5.1. Let T = {C B} be a DL-Lite TBox. Let M = {{C(a), B(a)}, {B(c), B(a)}} and M = {{C(a), B(a), B(c)}} be two MBox's. Then K M = T , M is a DL-Lite knowledge base with an MBox containing a set of ABox and K M = T , M is a DL-Lite knowledge base with an MBox that is only composed with one single ABox. K M encodes a standard DL-Lite knowledge base.

Example 5 . 2 .

 52 Let K M = T , M be a DL-Lite knowledge base where T = {∃P B, A B, A ¬C} and M = {{A(a), P (c, b)}, {C(d)}}. Using Definition 5.2, the deductive closure of M is : • cl (M) = {{A(a), B(a), P (c, b), B(c)}, {C(d)}}.

Example 5 . 3 .

 53 Let K M = T , M be a DL-Lite knowledge base where T ={C ¬B} and M = {{B(a), C(a), B(b)}, {C(e), B(e)}}. Using Definition 5.4, • incl (M) = {{B(a), B(b)}, {C(a), B(b)}, {C(e)}, {B(e)}}.

Example 5 . 4 .

 54 Let K M = T , M be a DL-Lite knowledge base where T = {∃P B, B ¬C} and M = {A 1 = {P (c, b), B(a)}, A 2 = {C(a), B(b), }, A 3 = {B(c)}}. One can check that • card (M) = {{P (c, b), B(a)}, {C(a), B(b)}}. Indeed, |A 1 | = |A 2 | = 2, while |A 3 | = 1. Hence, only A 1 and A 2 are kept.

Lemma 5 . 1 .

 51 Let K M = T , M be an MBox DL-Lite knowledge base. 1. Let • cl , • incl , • card be the three elementary modifiers on MBox presented in Section 5.2.2. Then:

Figure 5 .

 5 Figure 5.1 presents the set of all possible composite modifiers that can be applied on MBox. The starting point is an MBox DL-Lite knowledge base K M = T , M .

Figure 5 . 1 :

 51 Figure 5.1: Composite modifiers on MBox

Example 5 . 5 .

 55 Let K = T , M be a DL-Lite knowledge base where T = {D B, C B, D ¬C} and M = {{D(a), C(b)}, {C(a)}}. One can check that K M |= ∀ B(a), since • T , {D(a), C(b)} |= B(a), and • T , {C(a)} |= B(a).

  Example 5.7. Let K M = T , M be a DL-Lite where T = {C B} and M = {{C(a), B(a)}, {C(b), B(d)}, {B(c)}}. One can check that K M |= ∃ B(b), since T , {C(b), B(d)} |= B(b).

Example 5 . 8 .

 58 Let K M = T , M be a DL-Lite knowledge base where T = {C B} and M = {{C(a)},{C(a), B(b)},{C(a), B(c)}}. We have A i ∈M A i = {C(a)}, and thus, K M |= ∩ B(a), since T , {C(a)} |= B(a).

Example 5 .

 5 9. Let K M = T , M be a DL-Lite knowledge base where T = {C B} and M = {{C(a)}, {C(a), B(b)}, {C(c), B(c)}}. We have T , {C(a)} |= B(a) and T , {C(a), B(b)} |= B(a) and |M| = 3. Hence K M |= maj B(a).

Example 5 .

 5 10. Let K= T , M be a DL-Lite where T ={C ¬B, B D} and M = {{C(a)}, {B(a)}}. One can check that K |= obj D(a).

  a)) does not hold. Regarding majority-based inference, one can check that T , M 1 |= maj B(a) holds while T , M 2 |= maj B(a) does not hold. And T , M 2 |= maj B(c) holds while T , M 1 |= maj B(c) does not hold.

  3 hold. First, note that by definition of the elementary modifier • card , • card (M) ⊆ M (since • card is a selection operation), hence the relations: Part III, Chapter 5 -Non-merge inconsistency management roadmap in flat DL-Lite knowledge bases M 4 ⊆ M 3 , M 2 ⊆ M 1 , M 6 ⊆ M 5 , and M 8 ⊆ M 7

Figure 5 . 4 :

 54 Figure 5.4: Relationships between ∀-entailment from M 1 -M 8

Figure 5 .Figure 5 . 5 :

 555 Figure 5.5 gives existing cautiousness relations between safe inferences (∩-entailment) applied on {M 1 , ..., M 2 }.

Figure 5 .Figure 5 . 6 :

 556 Figure 5.6 considers the case of majority-based consequence relations.

Figure 5 . 7 :

 57 Figure 5.7: Relationships between different inference relations

2. M 1 =

 1 M 2 = M and for i = 3, ..., 8: M i = • cl (M), and 3. ∀q, T , M |= q if and only if T , • cl (M) |= q.

  in possibilistic DL-Lite, ∀C ∈ C(A), it holds that |C| = 2. Note that this definition is in the spirit of 4.5 in prioritized case. Let us now consider a simple case of instance-based checking, namely what is the complexity of the decision problem: "Does T , M 2 |= ∀ B(a) (resp.. R(a, b)) holds ?" where B ∈ D C (resp. R ∈ D R ), and a ∈ D I (resp. a, b ∈ D I ).

Example 5 .

 5 13. Let us consider K = T , A a DL-Lite knowledge base where T = {B ¬C} and A = {B(a), C(a), R(b, c)}. The graph associated with K is :

E

  Then the DL-Lite knowledge base associated with G is : T = {B ¬C, B ¬D, D ¬E} and A = {B(a), C(a), D(a), E(a)}. The DL-Lite knowledge base associated with a graph only involves one individual. It neither contains positive axioms nor relation symbols. Proposition 5.4. Let G be a non-oriented graph, and K= T , A be the DL-Lite knowledge base associated with G, as it is defined above. Then, ∀e(a) ∈ A,∀f (a) ∈ A, (e(a), f (a)) ∈ C if and only if there is an non-oriented arc between f and e. Proof of Proposition 5.4. The proof is immediate. Since there is no relation symbols nor positive axioms, then the negative closure of T is simply T . Besides, for each e ¬f of T (namely, an arc from G by construction), there exists exactly one conflict (e(a), f (a)) from A (since there is exactly one individual a). Using the two above propositions, the following proposition gives the complexity of computing the cardinality of the largest maximal consistent subbase of A. Proposition 5.5. Let K = T , A be an inconsistent DL-Lite knowledge base. The complexity of computing the cardinality of the largest maximal consistent subset of K is O(log 2 (|A|) * k-MIS.

5 .

 5 The proof is immediate. It is enough to apply a dichotomy search between 1 and |A|, and for each value 1 ≤ k ≤ |A| we call a k-MIS problem.We are now ready to give the complexity of the decision problem, denoted (∀-card), namely(∀ -card) "Does T , M 2 |= ∀ B(a) (resp. R(a,b)) hold ?"Proposition 5.6. Let K = T , A be an inconsistent DL-Lite knowledge base. Assume that k max is the size of the largest maximal subbase of A. Then (∀ -card) is NP-complete.Proof of Proposition 5.6. Recall first that in standard consistent DL-Lite knowledge baseK 1 = T 1 , A 1 , checking if K 1 |= B(a) comes down to check if T ∪ {D ¬B}, A 1 ∪ {D(a)} is consistent,where a is a new individual and D is a new symbol. Let D be a new concept symbol an a be a new individual. Let K = T = T ∪ {D ¬B}, A = A ∪ {D(a)} be a DL-Lite knowledge base. Let G be the graph associated with K . Then one can check that T , • cl (• incl (A)) |= ∀ B(a) iff G admits a maximal independent set of size (k max + 1).

  Hence R |= B(a) and therefore K |= ∀ B(a). Proposition 5.7. Computing M 2 , ∩ needs |A| calls to a solver of k-MIS problem. Proof. Recall that M 2 , ∩ = A i ∈M 2 A i where M 2 = L• incl (A).

Proposition 5 . 8 .

 58 Let K = T , A be an inconsistent standard DL-Lite knowledge base. ThenRes(K) = {A(a) : a ∈ D I , A ∈ D C , M 1 , M aj |= A(a)} ∪ {R(a, b) : a, b ∈ D I , R ∈ D R , M 1 , M aj |= R(a, b)}is consistent with respect to T , where D I , D C and D R are given in Def.5.3.Note that, Proposition 5.8 does not hold with general DLs. Assume that we have a DL language where is allowed in the left-side of inclusion axioms. Consider the following knowledge baseK = T = {A B ¬C, A C ¬B, B C ¬A}, A = {A(a), B(a), C(a)} .Clearly, K admits three maximally consistent subsets, namelyM 1 = {A 1 = {A(a),B(a)}, A 2 = {A(a), C(a)}, A 3 = {B(a), C(a)}}. Clearly T , M 1 |= maj A(a), T , M 1 |= maj B(a)and T , M 1 |= maj C(a), while the set {A(a), B(a), C(a)} is consistent with T . A similar example can be provided in a propositional logic setting. 5.6.3 Which inference relations are appropriate to deal with inconsistent DL-Lite knowledge bases?

Example 6 . 1 .

 61 Let K = T , A be an inconsistent knowledge base such that T = {B 1 B 2 , B 2 ¬B 3 } and A = {B 1 (a), B 3 (a), B 2 (b), B 3 (b), B 1 (c)}. We have cln (K) = {B 2 ¬B 3 , B 1 ¬B 3 }. Then C(A) = {{B 1 (a),B 3 (a)}, {B 2 (b), B 3 (b)}}.

6. 2 .

 2 Assertional-based revision of DL-Lite knowledge bases 6.2.1 Prioritized DL-Lite assertional base

Example 6 . 2 .

 62 Let A be a stratified ABox, A = A 1 ∪ A 2 ∪ A 3 where A 1 = {B 1 (a)}, A 2 = {B 2 (b)} and A 3 = {B 3 (a), B 3 (b)}. Let X = {B 3 (a), B 3 (b)} and X = {B 3 (a), B 2 (b)} be two subsets of A, we have X < lex X .

  since C intersects two strata, and |C ∩ X| = |C ∩ X | = 1 then X = X which contradicts the hypothesis.

Definition 6 . 6 .

 66 Let K = T , A be a consistent and stratified knowledge base and N be a PI or a NI axiom. Let f be a selection function, the revised knowledge base K • P RSR N is such that K • P RSR N = T ∪ {N }, A • P RSR N where A • P RSR N = (A\f (PR(K ∪ {N }))).

Example 6 . 5 .

 65 Let us consider the knowledge base of Example 4. We haveT = {B 1 B 2 , B 3 ¬B 4 } and A = A 1 ∪ A 2 ∪ A 3 where A 1 = {B 1 (a), B 3 (a)}, A 2 = {B 2 (b)} and A 3 = {B 3 (b)}. Let N =B 2¬B 3 be a new piece of information. We have K ∪ {N } is inconsistent. The prioritized removed sets are:X 1 = {B 1 (a),B 3 (b)} and X 2 = {B 3 (a), B 3 (b)}. We have: f 1 (PR(K ∪ {N })) = {B 1 (a), B 3 (b), B 3 (a)} and f 2 (PR(K ∪ {N })) can be either {B 1 (a), B 3 (b)} or {B 3 (a), B 3 (b)}.

6 . 6 .

 66 Let us consider T = {A B, C B} and A = A 1 where A 1 = {B(b), A(a), C(a)}. Let N =A ¬C be a new piece of information. We have K ∪ {N } is inconsistent. The two possible 6.3. Logical properties

Example 6 . 9 .

 69 Let us consider T = {A ¬B} and A = A 1 ∪ A 2 where A 1 = {A(a)} and A 2 = {B(c)}. Let N = {A(b), B(b), B(a)} where T , N is inconsistent. We have T , N ∪ A is also inconsistent. The conflict sets are: C 1 = {A(a), B(a)} and C 2 = {A(b), B(b)}. The two prioritized removed sets are: X 1 = {A(a), A(b)} and X 2 = {A(a), B(b)}.

Example 6 .

 6 10. Let us consider T = {A ¬B} and A = A 1 ∪ A 2 where A 1 = {A(a)} and A 2 = {B(b)}. Let N = {C A, C(a), A(b)}. We have T ∪ T , A ∪ N is inconsistent. There exists only one conflict set C 1 = {A(b), B(b)}, and then one prioritized removed set X 1 = {B(b)}.

Proposition 6 . 4 .

 64 Let K be a consistent stratified DL-Lite knowledge base. If N is a PI or a NI axiom then for any selection function, the revision operator • P RSR satisfies Success, Inclusion, Consistency, Vacuity, Pre-expansion, Internal exchange, Core retainment but does not satisfy Relevance. Proof of proposition 6.4. Since N is a positive or a negative axiom, K ∪ {N } = T ∪ {N }, A . By Definition 6.6, K • P RSR N = T ∪ {N }, A • P RSR N with A • P RSR N = (A\f (R(K ∪ {N }))) and the postulates Success, Inclusion, Consistency are satisfied. Vacuity

1 :

 1 function COMPUTEPRSR1(K = T , A , N = A(a) or N = R(a, b))

Part IV, Chapter 6 -

 6 Prioritized Assertional-Based Removed Sets Revision of DL-Lite knowledge Bases 1: function COMPUTEPRSR2 (K = T , A , N ) for all α ∈ A i do 7: if ∃C ∈ C, Res ∩ C = ∅ and α ∈ C then

1 . 2 .

 12 Its root is labeled by an element from C(K ∪ {N }). If C(K ∪ {N }) is empty, its root is labeled by ' √ '. If m is a node from T, let H(m) be the set of branch labels on the path going from the root to T to m. If m is labeled by ' √ ', it has no successor in T. 3. If m is labeled by a set C ∈ C(K ∪ {N }), then, for each c ∈ C, m has a successor node m c in T, joined to m by a branch labeled by c. The label of m c is a set C ∈ C(K ∪ {N }) such that C ∩ H(m c ) = ∅, if such a set exists. Otherwise, m c is labeled by ' √ '.

  minimal with respect to ≤ lex are the prioritized removed sets. Algorithm 6 describes the algorithm of the function COMPUTEPRSR3, which computes PR(K ∪ {N }).

Example 6 .

 6 11. Consider K = T , A , with T = {A B, C B} and A = A 1 ∪ A 2 ∪ A 3 ∪ A 4 where A 1 = {A(a), D(a)}, A 2 ={C(a), B(b)}, A 3 ={D(b)} and A 4 ={D(c), C(c)}. We want to revise K with N =B ¬D. Then, we have cln (T ∪ {B ¬D})={B ¬D, A ¬D, C ¬D}. • The set of conflicts obtained from cln (T ) , A 1 is {{A(a), D(a)}}. The HS tree built by calling HS({{A(a), D(a)}}) will contain two branches labeled respectively by A(a) and D(a) which are kernels minimal with respect to ≤ lex (≤ lex -kernel). • We go on with cln (T ) , A 1 ∪ A 2 where {C(a), D(a)} is a newly identified conflict. We resume the construction of the tree from its current ≤ lex -kernel branches labeled by A(a) and D(a), and we obtain three HS-tree branches: {A(a), C(a)}, {A(a), D(a)} and D(a), where only D(a) is a ≤ lex -kernel. • Now, we go to the next strata, that is, we use cln (T ) , A 1 ∪ A 2 ∪ A 3 . This produces a new conflict {B(b), D(b)} and we continue the construction of the Tree from D(a). We potentially obtain {D(a), D(b)} and {D(a), B(b)} as new prioritized removed sets, but only {D(a), D(b)} is a ≤ lex kernel. • Finally, we identify a new conflict {D(c), C(c)} from cln (T ) , A 1 ∪ A 2 ∪ A 3 ∪ A 4 . We continue the construction of the tree from the branch labeled by {D(a), D(b)}. We obtain two other branches labeled respectively by {D(a), D(b), C(c)} and {D(a), D(b), D(c)} which are two ≤ lex kernels. Hence, PR(K ∪ {N })={{D(a), D(b), C(c)}, {D(a), D(b), D(c)}}.

Example 7. 2 .

 2 Consider T ={A ¬B} and A={A(a),B(a), A(b)}. We have C(A)={A(a), B(a)}. The set of MAR is: R 1 ={A(a), A(b)} and R 2 ={B(a), A(b)}.

Example 7. 3 .

 3 Consider T ={A ¬B} and A = S 1 ∪ S 2 where S 1 ={A(a)} and S 2 = {B(a), A(b)}. There is exactly one PAR which is: P 1 ={A(a), A(b)}.

Example 7. 4 .

 4 Consider T = A ¬B, B ¬C and A = S 1 ∪ S 2 where S 1 = {A(a), B(a)} and S 2 = {C(a)}. We have two PAR: P 1 = {A(a), C(a)} and P 2 = {B(a)} and only one PAR lex which is L = {A(a), C(a)}.

Example 7. 5 .

 5 Consider T = {A ¬B} and A = S 1 ∪S 2 ∪S 3 where S 1 = {A(a)}, S 2 = {B(a), A(b)} and S 3 = {B(b)}. One can check that π(A) = {A(a)} since T , S 1 is consistent, but T , S 1 ∪ S 2 is inconsistent.

Example 7. 6 .

 6 Let us consider again T = {A ¬B} and A = S 1 ∪ S 2 ∪ S 3 where S 1 = {A(a)}, S 2 = {B(a), A(b)} and S 3 = {B(b)}. One can check that (A) = {A(a), B(b)} since T , S 1 is consistent, T , S 1 ∪ S 2 is inconsistent and T , S 1 ∪ S 3 is consistent.

•S 1 =

 1 cl (A) = S 1 ∪ . . . ∪ S n where: • cl (S i ), ∀i = 2, .., n : S i = • cl (S 1 ∪ . . . ∪ S i ) \ (S 1 ∪ . . . ∪ S i-1 )Example7.7. Consider T = {A B, B C, C ¬D} and A = S 1 ∪ S 2 where S 1 = {A(a), D(a)} and S 2 = {B(b)}. Using Definition 7.9, we have • cl (A) = S 1 ∪S 2 where S 1 = {A(a), B(a), C(a), D(a)} and S 2 = {B(b), C(b)}.

  Example 7.8 (Counterexample for PAR-entailment). Let T = {A ¬B,A D,D ¬E} and A=S 1 ∪S 2 where S 1 ={A(a), B(a)} and S 2 ={E(a)}. We have P 1 ={A(a)} and P 2 = {B(a),E(a)}. Consider now the deductive closure: we have • cl (S 1 )={A(a), B(a), D(a)} and • cl (S 1 ∪ S 2 )={E(a)}.We also have:P 1 ={A(a), D(a)} and P 2 ={B(a), D(a)}. One can check that i) D(a) is a PAR-entailment of T , • cl (A) while it does not follow from T , A , ii) E(a)∨A(a) is a PAR-entailment of T , A while it does not follow from T , • cl (A) .Example 7.9 (Counterexample Lex-entailment). Let us consider the following cases: i) T = {A ¬B, A C} and A = S 1 = {A(a), B(a)}. We have T , A |= lex C(a) while T , • cl (A) |= lex C(a). ii) T = {A ¬B, B F, F ¬A, C ¬B} and S 1 = {A(a), B(a)} and S 2 = {C(a)}. We only have a lexicographic subbase of T , S 1 ∪S 2 which is L = {A(a), C(a)} hence T , L |= lex C(a). Besides • cl (S 1 ) = {A(a), B(a), F (a)} and • cl (S 2 ) = {C(a)}. We also have one lexicographic subbase of T , • cl (A) which is L = {B(a), F (a)} hence T , • cl (A) |= lex C(a).

  Definition 7.10. Let K = T , A be a prioritized DL-Lite knowledge base. We define the non-defeated reapir, denoted by nd(A)=S 1 ∪ . . . ∪ S n , as follows:∀i = 1, .., n : S i = R i ∈MAR(S 1 ∪...∪S i ) R i (7.1)Part IV, Chapter 7 -How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases?

Proposition 7. 5 .

 5 Let K = T , A be a prioritized DL-Lite knowledge base. The non-defeated repair of A, given in Definition 7.10, is equivalent to:nd(A) = f ree(S 1 ) ∪ f ree(S 1 ∪ S 2 ) ∪ . . . ∪ f ree(S 1 ∪ . . . ∪ S n )

  Example 7.10. Let us consider again T = {A ¬B} and A = S 1 ∪ S 2 ∪ S 3 where S 1 = {A(a)}, S 2 = {B(a), A(b)} and S 3 = {B(b)}. One can check that nd(A) = {A(a), A(b)}.

  Example 7.11. Consider T = {A ¬B, B C} and A = S 1 ∪ S2 where S 1 = {A(a)} and S 2 = {B(a)}. We have MAR(• cl (S 1 )) = {A(a)} and MAR(• cl (S 1 ∪ S 2 )) = {(A(a), C(a)), (B(a), C(a))}. Then clnd(A) = {A(a), C(a)}. . Contrarily to π-entailment and -entailment, the following proposition shows that nd-inference is sensitive to the use of the deductive closure. Proposition 7.8. Let K = T , A be a prioritized DL-Lite knowledge base. Then ∀q: if T , A |= nd q then T , • cl (A) |= nd q. The converse is false. Proof of Proposition 7.8. For the converse it is enough to consider T = {E ¬B, B C, E C} and A = S 1 = {E(a), B(a)}. We have nd(A) = ∅ and nd(• cl (A)) = {C(a)}. Hence C(a) is an nd-consequence of T , • cl (A) but it is not an nd-consequence of T , A 7.4.3 Combining linear entailment and non-defeated entailment: Adding consistency

else 6 :

 6 nd(A) ← nd(A) ∪ f ree(S i ∪ nd(A)) Algorithm 7: linear-based non-defeated repair Example 7.12. Let T = {A B, B ¬C} and A = S 1 ∪ S 2 ∪ S 3 where S 1 = {A(a)}, S 2 = {C(a), C(b)} and S 3 = {B(b), A(c)}. We have nd(A) = {A(a), C(b), A(c)}.

  .1. Namely, we define the cardinality-based non-defeated repair as follows: Definition 7.13. Let K = T , A be a prioritized DL-Lite knowledge base. The cardinality-based nondefeated repair, denoted by nd(A) card = S 1 ∪ . . . ∪ S n , is defined as follows: ∀i = 1, .., n : S i = R∈MAR card (S 1 ∪...∪S i ) R (7.3) where MAR card (S) = {R : R ∈ MAR(S) and R ∈ MAR(S) such that |R | > |R|}.

Figure A. 3 :

 3 Figure A.3: Example of ABox assertions

  Figure A.4 gives an example.

Figure A. 4 :

 4 Figure A.4: Incoherency detection

Figure A. 5 :

 5 Figure A.5: Inconsistency degree

M 1 =

 1 • incl (M)={{A(a), B(a)}, {D(a)}}, M 5 = • cl (M 1 ) = {{A(a), B(a), C(a)}, {D(a)}}, M 2 = • card (M 1 )={{A(a), B(a)}}, and M 3 = • cl (M 2 )={{A(a), B(a), C(a)}}. One can check that M 5 M 3 . 7. The converse of M 5 ⊆ incl M 7 does not hold. Let T ={A ¬B, B D} and M={{A(a), B(a)}}.It is easy to check that T , M is inconsistent. We have:• cl (M)={{A(a), B(a), D(a)}}, M 7 = • incl (• cl (M))={{A(a), D(a)}, {B(a), D(a)}}, M 1 =• incl (M)={{A(a)}, {B(a)}}, and M 5 = • cl (M 1 )={{A(a)}, {B(a), D(a)}}, One can check that M 7 incl M 5 . Corollary B.1. Let K M = T , M = {A} be an inconsistent DL-Lite knowledge base. Let {M 1 ,...,M 8 } be the eight composite modifiers summarized in Table 5.1. Then: Example B.8 (Examples of Figure 5.6). The following examples show incomparability between majoritybased inferences. 1. The majority-based inference from T , M 1 is incomparable with the one obtained from T , M={{A(a), B(a), C(a), D(a), E(a), F (a)}}. It is easy to check that T , M is inconsistent. We have: M 1 = • incl (M)={{A(a), C(a)}, {A(a), B(a)}, {D(a), E(a), F (a)}}, and M 2 = • card (M 1 )={{D(a), E(a), F (a)}}

2 .

 2 The majority-based inference from T , M 3 is incomparable with the one obtained from T , M 4 . Let T ={B ¬C, B A, C A, A ¬D, F D, D E} and M={{A(a), B(a), C(a), F (a), D(a)}}. It is easy to check that T , M is inconsistent. We have: M 1 = M 2 ={{A(a), C(a)}, {A(a), B(a)}, {D(a), F (a)}}, M 3 ={{A(a), C(a)}, {A(a), B(a)}, {D(a), F (a), E(a)}}, M 4 ={{D(a), E(a), F (a)}}

6 .

 6 Let T ={B ¬C, B A, C A, A ¬D, F D, D E} and M={{A(a), B(a), C(a), F (a), D(a), E(a)}}. It is easy to check that T , M is inconsistent. We have: M 1 = M 5 ={{A(a), C(a)}, {A(a), B(a)}, {D(a), F (a), E(a)}}, M 6 ={{D(a), E(a), F (a)}}Let q 1 ← D(a) and q 2 ← A(a) be two queries. One can check that: M 5 ,maj |= q 2 but M 6 ,maj |= q 2 while M 6 ,maj |= q 1 but M 5 ,maj |= q 1 . 4. The majority-based inference from T , M 7 is incomparable with the one obtained from T , M 8 . Let T ={B ¬C, and M={{A(a), F (a), E(a), B(a), C(a)}}. It is easy to check that T , M is inconsistent. We have: • cl (M)={{A(a), C(a), B(a), D(a), F (a), E(a)}}, M 7 ={{D(a), E(a), F (a)}, {A(a), B(a)}, {A(a), C(a)}},and M 8 ={{D(a), E(a), F (a)}},and
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Table 1 .

 1 

		1:
	Constructor	Designation
		Top concept
	⊥	Bottom concept
	A	Atomic concept
	¬C	Negation
	C D	Conjunction
	C D	Disjonction
	∃R.C	Existential quantification
	∀R.C	Universal quantification

Table 1 .

 1 

1: Constructors of the ALC logic where C and D are concepts and R is a role.

Table 1 .

 1 3 summarizes the computational complexity of consistency checking in some important DLs, The complexity results of other DLs including the ones given in Table1.3, can be found at the following link 13 .

	DL familly Combined Complexity Data Complexity
	ALC	EXPTIME-complete	NP-complete
	SHIF	EXPTIME-complete	NP-complete
	SHOIN	NEXPTIME-complete	NP-hard
	SROIQ N2EXPTIME-complete	NP-hard

Table 1 . 3

 13 

: Computational complexity of consistency checking of some expressive DLs

•

  Pellet 15 : Pellet is an open-source reasoner for SROIQ DL with simple datatypes (i.e. OWL2-DL) developed in Java. It can be used in command line, OWL API, Jena API, Pellet API or with Protégé. It supports the OWL2-DL language and includes some support for the OWL2 profiles. The main features of Pellet is that it incorporates optimizations for the use of nominals, conjunctive query answering, and incremental reasoning. As a reasoning technique, Pellet uses a tableau-based algorithm.

13 http://www.cs.man.ac.uk/~ezolin/dl/ 14 A complete list of DL reasoners with their description is available at this link: http://www.cs.man.ac.uk/ ~sattler/reasoners.html 15 http://clarkparsia.com/pellet

  • HermiT 16 : HermiT is an open-source reasoner for SROIQ DL with simple datatypes (i.e. OWL2-DL) that supports description graphs. In particular, HermiT implements a reasoner based on a novel "hypertableau" calculus which provides much more efficient reasoning than any previously known algorithm. It can be used with OWL API or integrated with Protégé editor. • FaCT++ 17 : FaCT++ is an open-source reasoner for SROIQ DL with simple datatypes (i.e. OWL2-DL) implemented in C++. It implements a tableau-based algorithm for general TBoxe's (subsumption, satisfiability, classification) and ABoxe's (query). Now, it is used as one of the default reasoners in the Protégé 4 editor.

Table 1 . 6

 16 

: Concept inclusion axioms and assertions in extended DL-Lite logics.

Table 1 .

 1 7 summarizes the different members of the extended DL-Lite family.

		Role inclusion	Number restriction	Constraints on roles
		No	Yes	
	DL-Lite α	DL-Lite H α		∃R	No
	DL-Lite F α	DL-Lite HF α		∃R/f unct	No
	DL-Lite N α	DL-Lite HN α		≥ zR	No
			DL-Lite (HF ) α		∃R.D/f unct (c)	dis, (a)sym, (ir)ref
			DL-Lite (HN ) α		≥ zR.D (c)	dis, (a)sym, (ir)ref
			DL-Lite (HF ) + α		∃R.D/f unct	dis, (a)sym, (ir)ref, tra
			DL-Lite (HN ) + α		≥ zR.D	dis, (a)sym, (ir)ref, tra
			Table 1.7: The extended DL-Lite family
	Note that in Table 1.7, only DL-Lite (HN ) + α	and DL-Lite (HF ) + α	allow role transitivity constraint. More-
	over DL-Lite (HN ) α	(HF ) and DL-Lite α	

Table 1 .

 1 9: Complexity of reasoning in DL-Lite core , DL-Lite R and DL-Lite F

	1.5. Conclusion

Table 3 .

 3 1: Example of a possibility distribution π K computed using Definition 3.2.

	3.3. Possibilistic DL-Lite core

3.3.2 From a π-DL-Lite core knowledge base to a π-DL-Lite core possibility distribution

  Example 3.6. [Example continued] In the π-neg(T ) of Examples 3.4 and 3.5, we observe that we derive both Impulse ¬N eedBased,γ 10 and Impulse ¬N eed Based,γ 2 . Using Lemma 3.1, we only keep Impulse ¬N eedBased,γ 10 in π-neg(T ).

	Example 3.7. [Example continued] We now give the π-neg(T ) of the Example 3.1 using Rules 3.1-3.3
	and Lemma 3.1:
	N eedBased ¬Loyal,γ

2 Impulse ¬N eedBased,γ 10 Discount ¬N eedBased,γ 2 N eedBased ¬N eedBased,γ 2 W andering ¬N eedBased,γ 5 ∃satisf iedBy ¬N eedBased,γ 2 3.4. Possibilistic negated closure in π-DL-Lite core 3.4.2 Properties of π-negated closure

  and X, Y are defined in Definition 3.6.Example 3.9. [Example continued] From Example 3.8, the degree of the conflict C 1 is Deg(C 1 ) = (γ 2 , γ 9 ) = γ 2 , the degree of the conflict C 2 is Deg(C 2 )=min(γ 5 , γ 4 , γ 9 )=γ 4 and the degree of the conflict C 3 is Deg(C 3 )=min(γ 2 , γ 11 , γ 9 )=γ 2 .

  3.7. Basic inferences in π-DL-Lite core Example 3.16. [Example continued] Let us check if K|=Loyal(John). Consider the TBox T >γ 4 of Example 3.15 and the following ABox A >γ 4 where Inc(K)=γ 4 :

	N eedBased(John), γ 9	satisf iedBy(John, Gif ts), γ 11

  3.11. The same proof as the proof of Proposition 3.10. Example 3.18. [Example continued] From Example 3.16, one can easily check that Inc(K 1 )=γ 6 then K|= π Loyal(John), γ 6 .

  23. [Example 3.1 continued] Let us consider now the following ABox obtained from A >Inc(K)

	and some new assertions:	
	N eedBased(M ary), γ 8 N eedBased(John), γ 9 N eedBased(P aul), 1	satisf iedBy(John, Gif ts1), γ 10 satisf iedBy(John, Gif ts2), γ 6 satisf iedBy(M ary, Gif ts3), γ 11
	N eedBased(Bob), γ 12	satisf iedBy(M ary, Gif ts1), γ 5

Table 4 .

 4 8: Second example of possibility distribution conditioning by two information pieces. The interpretations {I 1 , I 2 , I 3 , I 4 , I 5 , I 6 } satisfy the input axiom A C and we have a priori Π(A

		B={a}, C={}	.3	.3	.3
	I 2 A={a}, B={}, C={a}	.6	.6	.6
	I 3	A={}, B={}, C={}	.7	.7	.7
	I 4	A={}, B={}, C={a}	.7	.7	.7
	I 5 A={}, B={a}, C={a}	.7	.7	.7
	I 6 A={a}, B={a}, C={a} 1	1	1
	I 7	A={a}, B={}, C={}	.6	.1	.8
	I 8	A={a},B={a},C={}	.3	.1	.3

Table 4 .

 4 9: Example of possibility distribution revision by two information pieces usingDefinition 4.15 

		B={a}, C={}	.3	.3	.3
	I 2 A={a}, B={}, C={a}	.6	.6	.8
	I 3	A={}, B={}, C={}	.7	.7	.8
	I 4	A={}, B={}, C={a}	.7	.7	.8
	I 5 A={}, B={a}, C={a}	.7	.7	.8
	I 6 A={a}, B={a}, C={a} 1	1	1
	I 7	A={a}, B={}, C={}	.6	.1	.8
	I 8	A={a},B={a},C={}	.3	.1	.3

Table 4 .

 4 10: Example of possibility distribution revision by two information pieces usingDefinition 4.16 

		B={a}, C={}	.3	.3	.3
	I 2 A={a}, B={}, C={a}	.6	.6	.8
	I 3	A={}, B={}, C={}	.7	.7	.7
	I 4	A={}, B={}, C={a}	.7	.7	.7
	I 5 A={}, B={a}, C={a}	.7	.7	.7
	I 6 A={a}, B={a}, C={a} 1	1	1
	I 7	A={a}, B={}, C={}	.6	.1	.8
	I 8	A={a},B={a},C={}	.3	.1	.3

Table 7 .

 7 

		Definition	Signification
	MAR(A)	Definition 5.3	(flat) inclusion-based repairs of A
	MAR card (A)	• card (• incl (A)) (Chapter 5)	(flat) cardinality-based repairs of A
	PAR(A)	Definition 7.1	preferred inclusion-based repair of A
	π(A)	Definition 7.5	possibilistic-based repair of A
	(A)	Definition 7.7	linear-based repair of A
	pr lex (A)	Definition 7.3	preferred lexicographic-based repair of A
	nd(A)	Definition 7.10	non-defeated reapir of A
	free(S)	Definition 7.11	non-conflicting assertions of a subset S w.r.t a TBox T
	clnd(A)	Equation 7.2	closed non-defeated repair of A
	nd(A)	Algorithm 7	linear-based non-defeated repair of A
	nd(A) card	Definition 7.13	cardinality-based non-defeated repair of A
	consnd(A) card	Definition 7.14	consistent cardinality-based non-defeated repair of A
	pind(A)	Definition 7.15	prioritized inclusion-based non-defeated repair of A
	pind lex (A)	Equation 7.5	prioritized lexicographical-based non-defeated repair of A

1: Notations of repairs using in this Chapter.

Table 7 .

 7 2: Number of conflicts, number of MAR, time taken to compute MAR in ms (milliseconds) or s (seconds), number of #MAR card , time taken to compute #MAR card .

		#MAR	time #MAR #MAR card time #MAR card
	18	28080	105ms	192	65ms
	25	688128	2268ms	256	789ms
	37	16815986 206089ms	56	5422ms
	75	20160000 272830ms	96	216236ms
	105	-	Time-out	2034	8259s

#

  Conflicts # Strata time π time time nd #P AR lex time P AR lex

	61	4 7	4ms 4ms	7ms 8ms	7ms 6ms	16 2	17ms 11ms
	123	4 7	5ms 4ms	8ms 8ms	10ms 9ms	16 4	43ms 38ms
	502	4 7	5ms 5ms	9ms 8ms	24ms 13ms	2024 128	1072ms 90ms
	1562	4 7	4ms 5ms	8ms 8ms	129ms 64ms	1392 232	128:47s 34:52s

Table 7 .

 7 3: Number of conflicts, number of strata, time taken to compute π, , nd and P AR lex and number of computed P AR lex .

http://www.ai.sri.com/~okbc/

http://www.cs.utexas.edu/users/mfkb/RKF/km.html

http://www.ksl.stanford.edu/knowledge-sharing/kif/

http://www.cyc.com/documentation/syntax-cycl

http://www.w3.org

http://www.w3.org/RDF/

http://www.w3.org/TR/rdf-schema/

http://www.w3.org/standards/techs/owl

http://protegewiki.stanford.edu/wikiProtegeOWL_API_Programmers_Guide

http://owlapi.sourceforge.net

https://jena.apache.org

http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/

http://hermit-reasoner.com

http://owl.cs.manchester.ac.uk/tools/fact/

http://www.dis.uniroma1.it/~quonto/

Note that throughout this Chapter and this thesis in general, and when there is no ambiguity, we do not make difference between belief base and knowledge base.

The satisfaction relation is recalled in Section 1.3.1

http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/

Note that the notion of priority here refers to the fact that the new information is more reliable than the old one while in a prioritized setting two pieces of information may have different priority levels reflecting their plausibility with respect to to available knowledge. Indeed, the priority of the new information refers to the dynamic aspect while in a static context, one can

For the sake of simplicity and to respect notations proposed in the original papers on possibilistic merging, we used B instead of .

number of levels in the used scale

3.4. Possibilistic negated closure in π-DL-Lite core

Positive inclusion axioms are of the form B1 B2.

One can add other elementary modifiers as a concatenate modifier or a merging modifier (using different strategies). This will lead to obtaining other composite modifiers which are not considered in this chapter and are left to future works

|= is the inference relation from a standard DL-Lite knowledge base presented inSection 1.4 

By a flat knowledge base, we mean a base where all the assertions have the same priority.

|= denotes the standard entailment used from flat and consistent DL-Lite knowledge base[Calvanese et al., 2007a] 

available at https://code.google.com/p/combo-obda/

https://www.sqlite.org

PART II

On the possibilistic extension of DL-Lite

With:

1. K 4. is the union of multisets [START_REF] Knuth | [END_REF] 5. E n = E ... E n times

Note that in the special case where we only consider only one TBox T 1 for E, these postulates are equivalent with the ones proposed in [Qi et al., 2006b], by considering the revision of T 1 by the shared TBox T . Hence, our postulates extend (with very few adaptations) the notion of Revision of [Qi et al., 2006b].

For the assertional-based merging operator considered in the present chapter, the integrity constraint is K= T , ∅ where T is the set of TBox axioms of each K i ∈ E and K i = T , A i .

Finally, one can check that the min-based assertional merging operators satisfies (M π 0 ), (M π 1 ), (M π 2 ), (M π 3 ), (M π 5 ), (M π 6 ), (M π 7 ), (M π 8 ), (M π I ) and falsifies (M π 4 ), (M π maj ).

Conditioning of possibilistic DL-Lite knowledge bases: Preliminary results

In this section, we first study conditioning of π-DL-Lite knowledge bases semantically by conditioning the possibility distribution associated to DL-Lite interpretations by the new information. We start by adapting the standard conditioning proposed in the possibilistic setting to the π-DL-Lite setting.

We show in particular that conditioning the possibility distribution within DL-Lite differs from the one proposed by [Benferhat et al., 2002c] within the standard possibilistic setting in the sense that a direct adaptation of conditioning to π-DL-Lite framework is not satisfactory. Roughly speaking, according to the interaction between the new information and the knowledge base, we identify situations where conditioning in DL-Lite differs from the one of the standard possibilistic setting. To this end, we study revision at syntactic level of π-DL-Lite knowledge bases. We propose two other definitions that generalize and refine the classical one.

Part II, Chapter 4 -Min-based conditioning and merging approach of DL-Lite knowledge bases (A4) ∀I 1 |=ϕ, I 2 |=ϕ, if π K (I 1 )≤π K (I 2 ) then π (I 1 )≤π (I 2 ).

(A5) If N K (ϕ)>0 then ∀I|=ϕ: π K (I)=π (I)

Property A1 ensures the consistency of the revised possibility distribution by guaranteeing a normalized distribution π . A2 guarantees that the added information should be inferred from the revised distribution π with a weight at least equal to its prescribed priority level. A3 ensures that the relative order between the interpretations that falsify ϕ is preserved. A4 states that the new possibility distribution π should preserve the previous pre-order between interpretations which are models of ϕ. A5 means that the conditioning process does not affect models of ϕ when ϕ is a priori fully accepted. A6 states that every impossible interpretation remains impossible after conditioning. In order to satisfy properties A3 and A4, it is clear that the conditioning operation should condition both the interpretations satisfying ϕ and those falsifying ϕ.

According to properties A1-A6, two different types of possibility distribution conditioning when Π(ϕ) > 0 are proposed in [Dubois and Prade, 1988a], namely in an ordinal setting and in a quantitative setting. These conditionings are extended to the case where the new input is uncertain in [Dubois and Prade, 1997] and studied in [Benferhat et al., 2011]. In this chapter, we only focus on conditioning in the ordinal setting, well-known as min-based conditioning [Benferhat et al., 2002c].

Belief conditioning (or revision) with uncertain information was studied in many works and its close relation to Jeffrey's rule [Jeffrey, 1965] (generalizing probability theory's conditioning) is pointed out. In [Benferhat et al., 2002c] the possibilistic counterpart was given for belief revision with uncertain inputs when dealing with belief bases encoded in possibilistic logics (e.g. [START_REF] Dubois | [END_REF]) The authors show that the conditioning process comes down syntactically to adding the new information with a prescribed level of certainty while maintaining the consistency of the resulting base and semantically to conditioning the possibility distribution representing the current epistemic state in order to add the new input.

Min-based π-DL-Lite possibility distribution conditioning

In order to define conditioning of possibility distribution π K , let us first recall that in standard propositional possibilistic logic, the necessity measure is the dual of the possibility measure and it is defined by N (φ)=1-Π(¬φ) where φ is a propositional formula. In possibilistic DL-Lite, a necessity measure cannot be defined as the dual of the possibility measure because the negation of an axiom in DL-Lite is not allowed (see Section 3.2).

The following definition rephrases conditioning within the possibilistic DL-Lite setting.

Definition 4.14. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility distribution. Let (ϕ,µ) be a new information. The min-based conditioning is extended to the π-DL-Lite setting as follows: When adding the new information to the knowledge base, several situations may be encountered, namely when the input is consistent or inconsistent with the the original knowledge. The following two subsections analyse these situations where they give formal representation of the revised knowledge base and re-define minimum-based conditioning in order to π K from π K .

The input (ϕ,µ) is inconsistent with the knowledge base

We address here the situation where the new information (ϕ,µ) is inconsistent with the knowledge base K, namely Π K (ϕ)<1 (recall that in possibility theory, if Π(ϕ)<1 then N (ϕ)=0). There are two situations to be considered. The first one is when (ϕ,µ) is implicitly inhibited by higher priority TBox or ABox axioms that contradict it. The second one is when (ϕ,µ) is not inhibited by higher priority axioms that contradict it. For these two cases, the construction of the augmented π-DL-Lite knowledge base K is performed according to the following steps:

1. Add the input ϕ to the knowledge base K with the highest prescribed level (i.e. µ=1).

2. Compute the inconsistency degree β=Inc(K 1 ) with K 1 =K∪{(ϕ, 1)}.

3. Drop every axiom in K 1 having a priority less than or equal to the inconsistency degree β. Let K 2 the obtained consistent knowledge base.

Add ϕ with its prescribed level

These steps ensure the consistency of the resulting knowledge base after adding the input (ϕ,µ) with its prescribed level. The following proposition relates the resulting knowledge base K with the possibility distribution π K associated to K with the results of conditioning at the semantic level using Definition 4.14. namely π K (I)=π K (I| m (ϕ, µ)) using min-based conditioning defined in Definition 4.14 . Proposition 4.6. Let K= T , A be a π-DL-Lite knowledge base and π K be its joint possibility distribution. Let (ϕ, µ) be the added uncertain input information and β=Inc(K 1 ) where K 1 =K ∪ {(ϕ, 1)}. Let K = T , A such that K ={(ϕ, µ)} ∪ {(φ, α) : (φ, α) ∈ K and α > β} and let π K be the possibility distribution associated to K . Then,

where π K (I| m (ϕ, µ)) denotes the revised possibility distribution π K computed using min-based conditioning defined in Definition 4.14. Example 4.20 (examples 4.17 and 4.18 continued). We have T ={(A B,.4)} and A={(A(a), .5), (C(a), .7)}). Let us first assume a new input (B ¬C, .9) and then another input (B ¬C, .2). One can easily check that Inc(K∪{(B ¬C, 1)}=.4. So, (B ¬C, .2) (resp. (B ¬C, .9)) is inhibited (resp. not inhibited) by higher priority axioms that contradict it. For the first case, it is easy to check that K ={(B ¬C, .2), (A(a), .5), (C(a), .7)} is such that π K (I)=π K (I| m (B ¬C, .2)) presented in Example 4.18. For the second case however, K ={(B ¬C, .9), (A(a), .5), (C(a), .7)}) such that π K (I)=π K (I| m (B ¬C, .9)) presented in Example 4.18.

The input (ϕ,µ) is consistent with the knowledge base When the input (ϕ,µ) is consistent with the knowledge base K (namely Π(ϕ)=1), two situations are to be considered:

1. The first one is when (ϕ, µ) is a priori inferred from the knowledge base K, namely K|= π φ.

PART III

Inconsistency handling in flat DL-Lite knowledge bases The top of Figure 5.2 corresponds to the most conservative inference relation which is the safe inference relation. The existential inference is the most productive inference. In Figure 5.2, X -→ Y means that each conclusion of X is also a conclusion of Y .

PART IV

On the revision of prioritized DL-Lite knowledge bases Definition 6.2. Let K = T , A be a consistent stratified knowledge base and N be a membership assertion. A prioritized removed set, denoted by X, is a set of membership assertions such that:

We denote by PR(K ∪ {N }) the set of all prioritized removed sets of K ∪ {N }.

Lemma 6.1. Let K = T , A be a consistent prioritized knowledge base and N be an assertion. If

As consequence, there exists exactly one prioritized removed set. More formally. Proposition 6.1. Let K be a consistent stratified knowledge base and N be a membership assertion.

Proof of Proposition 6.1. Suppose that there are two prioritized removed sets X and X such that X = X . By Definition 6.2, X ⊆ A, X ⊆ A and X = lex X . Since (T ∪ {N }) ∪ (A\X) and (T ∪ {N }) ∪ (A\X ) are consistent, we have ∀C ∈ C(K ∪ {N }) on one hand C ∩ X = ∅ and |C ∩ X| = 1 and on the other hand C ∩ X = ∅ and |C ∩ X | = 1. Moreover, since N is a single assertion, by Lemma 6.1, |C ∩ N | = 1. Therefore there are three elements in C namely N , one element of X and one element of X . Hence, this contradicts Lemma 3.6 that states that |C ∩ A| ≤ 2. Definition 6.3. Let K = T , A be a consistent stratified knowledge base and N be a membership assertion. The revised knowledge base K

As detailed in Section 6.4 (precisely,subsection 6.4.1) computing the set of conflicts is polynomial. Moreover when the input information is a membership assertion, as stated by Proposition 6.1 and illustrated in the above example, there is only one prioritized removed set. Next subsection investigates the case where the input information is a positive or a negative inclusion axiom.

Revision by a positive or a negative axiom

We now consider the case where the input N is a PI axiom or a NI axiom. This new axiom should be added to the TBox and since we gave priority to the TBox over the ABox, the input is kept in the revised knowledge base. In this case, K ∪ {N } denotes T ∪ {N }, A . Since T is considered as non prioritized, then T ∪ {N } simply denotes a simple addition of N to T . Definition 6.4. Let K = T , A be a consistent stratified knowledge base and N be a PI or a NI axiom. A prioritized removed set, denoted by X, is a set of assertions such that:

Let us point out that Definition 6.4 is similar to Definition 6.2, except that new information is not added to the ABox but to the TBox. However, the revision process still considers the TBox as a stable knowledge, and hence to restore consistency assertional elements from ABox should be removed. We denote again by PR(K ∪ {N }) the set of prioritized removed sets of K ∪ {N }.

Example 6.4. Let K= T , A be a consistent stratified knowledge base such that

The four possible candidates to be removed are:

There is only one prioritized removed set X 4 as illustrated in Table 6.1.

, then there are two prioritized removed sets X 2 and X 4 as illustrated in Table 6.2.

Table 6.2: Two prioritized removed sets.

Part IV, Chapter 6 -Prioritized Assertional-Based Removed Sets Revision of DL-Lite knowledge Bases prioritized removed sets that can be computed are:

The last selection function uses the notion of deductive closure using Definition 5.2. Using the notion deductive closure, one can refine the set of prioritized removed sets in which a selection function operates. This new subset, denoted CPR(K∪{N }, is made by keeping only prioritized removed sets X in PR(K∪ {N } such that the deductive closure of the set A \ X is maximal with respect to lexicographical criterion. More formally, Definition 6.7. Let K = T , A be a DL-Lite knowledge base and N be a new information. Let PR(K ∪ {N }) be the set of prioritized removed sets. The set

Then the last selection function, denoted by f 4 and based on the deductive closure, is simply defined by :

) offers a good compromise between an arbitrary choice of the prioritized removed set to be ignored from the ABox A, and a skeptical choice where all prioritized removed sets are ignored from the ABox. Example 6.7. From Example 6.5, one can check that:

Multiple revision

In the pervious sections, it is assumed that the input information is only composed of a single element: An assertional fact, a positive axiom or a negative axiom. This section briefly discusses the case where the input contains more than one element. This problem is known as multiple revision and has been addressed for instance in [START_REF] Hansson | [END_REF][START_REF] Fuhrmann | A survey of multiple contractions[END_REF] in a propositional setting.

Let K = T , A be a DL-Lite prioritized knowledge base. Let us start with the situation where the input, simply denoted again by N , is a set of assertional facts. If T , N is consistent, then our approach can be applied straightforwardly. The definition of prioritized removed set is exactly the same. Definitions 6.2 to 6.7 can be used as it is except that N is a set of assertional facts instead of a single one. The same holds for Lemma 6.1 as well as Propositions 6.1-6.2. Now assume that T , N is inconsistent. In this case, if we still consider that T as a stable knowledge, then the input cannot be completely accepted. In this case, the prioritized removed set will both contain elements from A and also from N , with elements of N being preferred to all elements of A. Definition 6.2 needs the following adaptation : Definition 6.8. Let K= T , A be a consistent stratified knowledge base and N be a set of membership assertions. A prioritized removed set, denoted by X, is a set of membership assertions such that:
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In order to give logical properties of PRSR operators, we first rephrase Hansson's postulates within the DL-Lite framework. We then analyze to what extent our operators satisfy these postulates.

Hansson's postulates reformulated

Let K, K be DL-Lite knowledge bases, N and M be either membership assertions or a positive or a negative axiom, • be a revision operator. K + N denotes the non closing expansion, i.e. K + N = K ∪ {N }. Let K = T , A be a knowledge base. When N is a membership assertion K + N = T , A ∪ {N } and when N is a positive or a negative axiom K + N = T ∪ {N }, A . We rephrase the Hansson's postulates as follows.

Core retainment

If M ∈K and M ∈K • N then there exists K such that

Success and Consistency express the basic principles of revision. Inclusion states that the union of the initial knowledge bases is the upper bound of any revision operation. Vacuity says that if the new information is consistent with the knowledge base then the result of revision equals the non closing expansion. Pre-expansion states that expanding first by an assertion does not change the result of revision by the same assertion. Internal exchange says that revising by two different assertions from the knowledge base does not change the result of revision. Core-retainment and Relevance express the intuition that nothing is removed from the original knowledge bases unless its removal in some way contributes to make the result consistent.

Prioritized Removed Sets Revision: logical properties

We now present the logical properties of Prioritized Removed Sets operators. In Chapter 5, we addressed the problem of inconsistency handling in flat DL-Lite knowledge bases. We showed, in particular, that dealing with inconsistency in an Ontology-Based Data Access setting comes down first to compute the assertional-based repairs, and then, perform inference. However, as pointed out in previous chapter (Chapter 6), assertions are often provided by several and potentially conflicting sources having different reliability levels. In the previous chapter, we were interested in analyzing the problem of adding a new piece of information (assertional fact, positive inclusion axiom and negative inclusion axiom) in DL-Lite knowledge bases when the assertional base is prioritized. We followed a revision strategy that consists in throwing out some assertional facts to restore consistency. This chapter goes one step further and studies the problem of inconsistency handling in prioritized DL-Lite knowledge bases. The main question addressed in this chapter is how to select one preferred assertional-based repair.

Selecting only one repair is important since it allows efficient query answering once the preferred repair is computed.

In this context, several works (e.g. [Martinez et al., 2008;[START_REF] Staworko | [END_REF]) studied the notion of priority when querying inconsistent databases. In [Du et al., 2013], a maximal repair with respect to set inclusion was introduced in order to answer queries from an inconsistent SHIQ DL knowledge base. In the DL-Lite area, there is to the best of our knowledge only one work [START_REF] Bienvenu | Querying inconsistent description logic knowledge bases under preferred repair semantics[END_REF] dealing with reasoning under inconsistency using the priorities of assertions within the OBDA setting.

In this chapter, we first review the main existing inconsistency-tolerant reasoning methods for prioritized knowledge bases. We provide consequence relations based either i) on the selection of one consistent prioritized assertional base which is in general not maximal or ii) on the choice of several prioritized repairs. It is important to note that some inference relations are specific to DL-Lite even if they are inspired by other formalisms, such as propositional logic settings.

This chapter also contains different main strategies for computing repairs that are suitable for the DL-Lite setting. As mentioned in Chapter 5, a suitable inconsistency-tolerant relation is a one that outputs a consistent DL-Lite knowledge base and produces as many safe conclusions as possible. In particular, it should be at least as productive as taking the intersection of all the repairs. Interestingly enough, many of such consequence relations allow an efficient handling of inconsistency in DL-Lite knowledge base.

The rest of this chapter is organized as follows: Section 7.2 reviews existing works for computing preferred repairs. Section 7.3 introduces the notion of prioritized deductive closure and studies the properties of existing approaches with respect to the notion of deductive closure. Section 7.4 investigates new inference strategies based on the selection of one preferred repair. Section 7.5 provides a compara- The main limitation of nd(A) card is that it may be inconsistent with T as it is illustrated with the following example. One way to overcome such limitation is to only select MAR card of (S 1 ∪. . .∪S i ) that are consistent with (S 1 ∪. . .∪S i-1 ), namely: Definition 7.14. Let K= T , A be an prioritized DL-Lite knowledge base. We define the consistent cardinality-based non-defeated repair, denoted by consnd(A) card = S 1 ∪ . . . ∪ S n such that:

Clearly, contrarily to nd(A) card , consnd(A) card is always consistent. 

Adding priorities to non-defeated inference

In the definition of nd-inference, given by Equation 7.1, a flat notion of MAR (maximally inclusion-based repair) has been used. A natural way to extend the nd-entailment is to use a prioritized version of MAR (i.e. PAR), namely: Definition 7.15. Let K= T , A be an prioritized DL-Lite knowledge base. We define the prioritized inclusion-based non-defeated repair, denoted by pind(A) = S 1 ∪ . . . ∪ S n , as follows:

The following proposition shows that there is no need to consider all S i for i < n when computing pind(A), namely: 

P.

Proof. The proof follows from the fact that ∀i < n, ∀A ∈ PAR(S 1 ∪ . . . S i+1 ), ∃B ∈ PAR(S 1 ∪ . . . S i ) such that B ⊆ A. Namely, prioritized inclusion-based maximal repairs from S 1 ∪ . . . S i+1 are obtained from prioritized inclusion-based maximal repairs from S 1 ∪ . . . S i by adding some elements from S i+1 . Hence, for i < n, we have:
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PAR lex (A) Lastly, both pind(A) and pind(A) lex can be defined on • cl (A) instead of A or be defined on closed repairs instead of repairs themselves. This leads to new inferences strategies that only select one preferred subbase.

Comparative analysis

From a computational complexity point of view, π-entailment, -entailment, nd-entailment and ndentailment and the entailments based on their closures, are the most promising ones since both computing the repair and query answering are tractable. For other strategies based on the nd-inference, computing the repairs is a hard task, but it is done ONCE. Answering queries, when the single repair is computed, is efficiently computed since it has the same complexity as in standard DL-Lite.

From productivity, Figure 7.1 summarizes the relationships between main entailments considered in the paper when the ABox is prioritized. Note that for the sake of simplicity, we do not make reference in Figure 7.1 to inferences defined on • cl (A).

In Figure 7.1, n1→n2 means that each conclusion that can be universally derived from repairs in n1 is also a conclusion using repairs in n2. From Figure 7.1, π-entailment is the most cautious relation. Adding priorities, cardinality and consistency to the definition of nd-entailment allow to provide more productive

Appendix APPENDIX OF CHAPTER 3 Possibilistic DL-Lite ontology tool

In this appendix, we present a tool for representing and reasoning in possibilistic DL-Lite framework. This tool is developed in JAVA and it implements the inconsistency check algorithm based on query evaluation presented in Chapter 3. In this tool, the ABox is managed using SQL database engine. As ontology language, we use the OWL-QL functional syntax extended with the ability to attach weights to axioms. To this end, we developed our proper parser in order to manage weighted axioms. In what follows, we present some screenshots of this tool followed by a explanation about its features.

Ontology representation

The following figure presents the main interface of the possibilistic DL-Lite ontology editor. The main interface is partitioned into two panels: one for specifying the TBox and the other for expressing the ABox. Weighted(SubClassOf(author , person), 0.6) DisjointClasses(book , person) ObjectPropertyDomain(hasTitle, book ) Weighted(ObjectPropertyRange(hasAuthor, author ), 0.3) SubClassOf(novel, book)

In fact, when developing this tool, we could not use the existing ontology programming tools such Jena, OWL API (see Section 1.2). Hence, we developed our proper parser. Note that when all weights are equal to 1, one can manipulate standard OWL-QL functional syntax. Clearly, one can read any standard OWL-QL file, edited using a standard ontology editor tool such as Protégé (see Section 1.2) and add different weights. Finally, we adapted such encoding with the aim to add other reasoning capabilities to our tool when dealing with uncertainty or priorities.

Similarly, the ABox is expressed using weighted or flat assertions as presented in Figure A.3. Note that ABox is managed using an SQL-lite 1 engine.
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Handling inconsistent DL-Lite knowledge bases =Composite modifiers+inference strategies Proposition B.1 (Figure 5.3). Let K M = T , M = {A} be an inconsistent DL-Lite knowledge base. Let {M 1 ,...,M 8 } be the eight composite modifiers summarized in Table 5.1. Then:

Proof of Proposition B.1. The proof are as follows:

• Items 1-4 follow from the definition of the elementary modifier • card . Since • card selects subsets of M having maximal cardinality. Namely, given M an MBox, we have

, and M 8 ⊆ M 7 holds.

• Items 5-6 follow immediately from the definition of the elementary modifier • cl , hence we trivially have

• Regarding the proof of Item 8, we have M 2 ⊆ cl M 5 . This means that ∀A ∈ M 2 , there exists

• We now show that M 5 ⊆ incl M 7 . Let B∈• incl ({A}) and let us show that there exists a set of assertions X such that • cl ({B})⊆X and X∈M 7 . Since B∈• incl ({A}), this means by definition that B ⊆ A and hence B ⊆ • cl (A). Now, B is consistent, this means that there exists R ∈

Comparative studies

Composite modifiers + universal inference Proposition B.3 (Figure 5.4). Let K M = T , M = {A} be an inconsistent DL-Lite knowledge base. Let M 1 ,...,M 8 be the eight MBox's given in Table 5.1. Let q be a boolean query. Then:

1. q is a universal conclusion of T , M 1 iff q is a universal conclusion of T , M 5 .

2. q is a universal conclusion of T , M 2 iff q is a universal conclusion of T , M 3 .

Proof. Item 1 and 2 follow from item 1 of Lemma 5.3 and the facts that

Proposition B.4 (Figure 5.4). Let K M = T , M = {A} be an inconsistent DL-Lite knowledge base. Let M 1 ,...,M 8 be the eight MBox's given in Table 5.1. Let q be a boolean query. Then:

1. If q is a universal conclusion of T , M 1 (or T , M 5 ) then q is a universal conclusion of T , M 2 .

2. If q is universal conclusion of T , M 3 (or T , M 2 ) then q is a universal conclusion of T , M 4 .

3. If q is universal conclusion of T , M 1 (or T , M 5 ) then q is a universal conclusion of T , M 6 .

4. If q is universal conclusion of T , M 7 then q is a universal conclusion of T , M 8 .

5. If q is universal conclusion of T , M 1 (or T , M 5 ) then q is a universal conclusion of T , M 7 .

Proof. For Items (M)). This means that B ⊆ • cl (M) and B is a maximally consistent subset. Let C ∈ • incl (M). This means that C ⊆ M ⊆ • cl (M). Since C is also a maximally consistent subset then C ⊆ B. Now, recall that B is a closed set of assertion, then A = Cl(C) ⊆ B. Therefore we conclude that if a conclusion holds from M 5 , then it holds from M 7 . 1. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion of T , M 2 , but q is not a universal conclusion of T , M Let q ← A(a) be a query. One can check that:

2. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion of T , M 4 , but q is not a universal conclusion of T , M Let q ← F (a) be a query. One can check that: M 4 , ∀ |= q but M 2 , ∀ |= q, since T , {B(a)} |= q.
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3. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion of T , M 6 , but q is not a universal conclusion of T , M Let q ← C(a) be a query. One can check that: M 6 , ∀ |= q but M 5 , ∀ |= q, since T , {D(a)} |= q 4. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion of T , M 8 , but q is not a universal conclusion of T , M Let q ← A(a) be a query. One can check that: M 8 , ∀ |= q, but M 7 , ∀ |= q, since T , {C(a), D(a), F (a} |= q.

5. There exists a DL-Lite knowledge base, and a boolean query q such that q is a universal conclusion of T , M 7 , but q is not a universal conclusion of T , M 5.1. Then:

1. The universal inference from M 6 is incomparable with the one obtained from M 7 .

2. The universal inference from M 6 is incomparable with the one obtained from M 8 .

3. The universal inference from M 2 (resp.M 3 , M 4 ) is incomparable with the one obtained from M 6 .

4. The universal inference from M 2 (resp.M 3 , M 4 ) is incomparable with the one obtained from M 7 .

5. The universal inference from M 2 (resp.M 3 , M 4 ) is incomparable with the one obtained from M 8 . 

D(a)

∈ Y . This comes down to item (i). Now, since there is no conflict in Cl(M) containing A(a), then A(a) belong to all maximally consistent subsets of Cl(M), hence A(a) belongs to A j ∈M 7 A j . Therefore if a q holds in M 5 , ∩ , then it holds that M 5 , ∩ . 1. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of T , M 2 , but q is not a safe conclusion of T , M Let q ← A(a) be a query. One can check that:

2. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of T , M 5 , but q is not a safe conclusion of T , M Let q ← D(a) be a query. One can check that :

3. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of T , M 3 , but q is not a safe conclusion of T , M Let q ← A(a) be a query. One can check that:

4. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of T , M 4 , but q is not a safe conclusion of T , M 5. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of T , M 3 , but q is not a safe conclusion of T , M Let q ← A(a) be a query. One can check that M 3 |= ∩ q but M 5 |= ∩ q.

6. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of T , M 6 , but q is not a safe conclusion of Let q ← B(a) be a query. One can check that M 6 |= ∩ q but M 5 |= ∩ q.

7. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of T , M 7 , but q is not a safe conclusion of Let q ← D(a) be a query. One can deduce that:

8. There exists a DL-Lite knowledge base, and a boolean query q such that q is a safe conclusion of T , M 8 , but q is not a safe conclusion of T , M Let q 1 ← D(a) and q 2 ← B(a) be two queries. One can check that: M 2 ,∩ |= q 1 but M 5 ,∩ |= q 1 while M 5 ,∩ |= q 2 but M 2 ,∩ |= q 2 .

Composite modifiers+majority-based inference Proposition B.8 (Figure 5.6). Let K M = T , M = {A} be an inconsistent DL-Lite knowledge base. Let M 1 ,...,M 8 be the eight MBox's given in Table 5.1. Let q be a boolean query. Then:

• T , M 1 |= maj q iff T , M 5 |= maj q.

• T , M 2 |= maj q iff T , M 3 |= maj q.

• If T , M 5 |= maj q then T , M 7 |= maj q.

Proof. The proof of items 1 and 2 follow immediately from the proof of item 2 of Lemma 5.3, since M 5 = • cl (M 1 ) and M 2 = • cl (M 3 ). For Item 3, we have ∀A i ∈ M 5 , ∃A j ∈ M 7 such that A i ⊆ A j . From proof of item 5 of proposition B.4, we have ∀A j ∈ M 7 , ∃A i ∈ M 5 such that A i ⊆ A j . We conclude that if a majority-based conclusion holds from M 5 , it holds also from M 7 . The converse does not hold. 1. There exists a DL-Lite knowledge base, and a query q such that q is a majority-based conclusion of T , M 7 , but q is not a majority-based conclusion of T , M 5.1. Let q be a boolean query. Then:

• The majority-based inference from T , M 1 is incomparable with the one obtained from T , M 2 .

• The majority-based inference from T , M 3 is incomparable with the one obtained from T , M 4 .

• The majority-based inference from T , M 5 is incomparable with the one obtained from T , M 6 .

• The majority-based inference from T , M 7 is incomparable with the one obtained from T , M 8 .