De nombreux facteurs influent sur la probabilité d'une menace.

Quand la source de la menace est un attaquant, selon leur point de vue, «l'objectif principal est de poursuivre des attaques plus faciles et moins coûteuses à mener et qui ont une plus grande probabilité de réussir plutôt que d'échouer», selon le CISO AppSec Guide de l'OWASP 1 . C'est-à-dire que, dans ce cas particulier, lors de l'analyse du risque et de l'évaluation de la probabilité d'une attaque, il faudrait au moins tenir compte de la difficulté de l'attaque, du coût de son exécution et de la probabilité de son succès, exprimés de manière qualitative ou quantitative. Une fois les probabilités et les conséquences des menaces estimées, les risques sont évalués : ils peuvent être comparés à certains critères d'acceptation des risques supposés, certains risques peuvent être regroupés en un seul risque et leur tolérabilité peut être évaluée.

De nombreuses techniques peuvent être employées pour mener à bien le processus d'évaluation des risques et divers outils peuvent rendre la tâche plus facile à accomplir. Lors de l'évaluation des risques, on peut, par exemple, suivre les directives d'évaluation des risques (en constante évolution) créées par des organismes officiels pour traiter des systèmes spécifiques, ou utiliser des méthodologies générales, telles que EBIOS, CRAM, ITSG-04 ou MAGERIT, pour n'en citer que quelques-unes. Ces quatre méthodologies sont décrites et comparées dans le rapport de l'OTAN intitulé Improving Common Security Risk Analysis [TR-08]. Les auteurs du rapport affirment également que, dans certains cas, les méthodes basées sur les arbres d'attaque offrent une alternative viable à des méthodes aussi complexes.

Les arbres d'attaque peuvent être utilisés à la fois pour identifier et analyser les risques. Leur fonction fondamentale consiste à traduire les objectifs de l'attaquant en actions simples menant à la réalisation de ces objectifs. Le processus même de leur création pourrait fournir des informations précieuses au cours des délibérations sur l'évaluation des risques et permettre de mieux comprendre le système étudié et les menaces auxquelles il est confronté. Mais leurs applications potentielles ne se limitent pas à ces fonctions. Si l'on peut attribuer aux actions susmentionnées des informations quantitatives ou qualitatives, reflétant par exemple l'investissement monétaire nécessaire à leur exécution, les arbres peuvent être analysés à l'aide de méthodes bien documentées, fournissant des résultats utiles pour évaluer la probabilité d'attaques particulières. Il est également possible d'inclure des contre-mesures dans les modèles arborescents d'attaque, ce qui rend ces modèles étendus utiles dans la phase de gestion des risques qui suit l'évaluation des risques, à savoir le traitement des risques. Le traitement des risques consiste en des activités visant à déterminer et à sélectionner les moyens de faire face aux risques, y compris, entre autres, l'évitement des risques, la réduction des risques, le transfert des risques.
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Résumé Contexte

Le seul système totalement sécurisé est le système vide, qui n'offre aucune fonctionnalité. Tout autre système offrant un réel service, qu'il s'agisse d'un guichet automatique, d'un serveur Web ou d'une centrale nucléaire, sera toujours vulnérable aux attaques. Ces attaques peuvent viser la disponibilité du système (par exemple, attaques par déni de service), l'intégrité des données liées au système (par exemple, modification des dossiers financiers d'un client bancaire) ou la confidentialité des renseignements liés au système (par exemple, accès au dossier médical du patient). Pour atteindre leurs objectifs malveillants, les attaquants, externes ou internes au système, peuvent employer diverses approches, notamment des moyens numériques, des attaques physiques et des techniques d'ingénierie sociale reposant sur la manipulation psychologique. Tous ces aspects doivent être pris en compte lors de l'analyse de la sécurité d'un système. La sécurisation d'un système contre les attaques est d'autant plus difficile que la sécurité parfaite nécessite des ressources illimitées, en termes de moyens financiers et de temps, qui ne sont malheureusement jamais disponibles. C'est dans ce contexte que l'évaluation des risques joue un rôle majeur.

Le risque peut être défini de manière informelle comme la probabilité d'un incident et ses conséquences pour un actif [START_REF]Cyber-Risk Management[END_REF]. Pour un actif qui serait la disponibilité d'un service sur un serveur Web, un incident pourrait être une attaque par déni de service : la conséquence serait que le serveur Web devient indisponible pour ses utilisateurs légitimes. Pour faire face aux risques liés à un système, un processus d'identification, d'analyse et de gestion proactive des risques, appelé gestion des risques, est mené. L'évaluation des risques fait partie du processus de gestion des risques. Bien qu'il n'existe pas de définition unique de l'évaluation des risques, elle comprend trois phases selon la norme ISO 3100 [START_REF]Risk management -Guideliness[END_REF] : l'identification des risques, l'analyse des risques et l'évaluation des risques.

L'objectif de la phase d'identification des risques est, sans surprise, d'obtenir une liste exhaustive des risques possibles liés au système et à ses actifs. Il s'agit d'identifier les vulnérabilités présentes dans le système, les manières dont elles peuvent être exploitées pour provoquer un incident (menaces), et les causes possibles de leur exploitation (sources de menaces). Une fois les risques identifiés, l'analyse des risques peut commencer. Son but est d'estimer la probabilité et de déterminer les conséquences des menaces identifiées.

1

Introduction informelle aux arbres d'attaque et aux arbres d'attaque et de défense

Arbres d'attaque Les arbres d'attaque [START_REF] Schneier | Attack trees[END_REF] sont un formalisme graphique bien établi et couramment utilisé pour la modélisation de la sécurité. Inspirés des arbres de défaillance [START_REF] Haasl | Fault tree handbook[END_REF], utilisés dans l'analyse de fiabilité des systèmes, et des arbres logiques de menaces [START_REF] Weiss | A system security engineering process[END_REF], ils fournissent une représentation lisible et structurée des attaques possibles contre un système à protéger. Leur structure hiérarchique révèle les caractéristiques communes des attaques et permet une évaluation quantitative des éléments, mettant ainsi en évidence les vulnérabilités les plus graves sur lesquelles il faut se concentrer lors de la mise en oeuvre de contre-mesures. Formellement, les arbres d'attaque sont des arbres avec une racine et des noeuds étiquetés. Les étiquettes des noeuds représentent les buts de l'attaquant, avec l'étiquette de la racine correspondant au but principal de l'attaquant. Cet objectif, souvent de haut niveau et abstrait, est alors récursivement raffiné en sous-objectifs représentés par les étiquettes des noeuds restants. Le modèle de base des arbres d'attaque admet deux types de raffinements : le raffinement conjonctif AND et le raffinement disjonctif OR. Pour atteindre l'objectif d'un noeud AND, il faut atteindre les sous-objectifs de tous ses enfants, alors que pour atteindre l'objectif d'un noeud OR il suffit d'atteindre au moins un but de ses noeuds enfants. Un autre raffinement souvent considéré est le raffinement conjonctif séquentiel (SAND). De même que dans le cas du raffinement conjonctif, l'atteinte d'un but d'un noeud SAND nécessite l'atteinte des sous-buts de tous ses enfants, mais dans un ordre spécifique.

Arbres d'attaque et de défense

Les arbres d'attaque et de défense [START_REF] Kordy | Attack-defense trees[END_REF] améliorent la puissance expressive des arbres d'attaque en permettant de représenter explicitement les objectifs du défenseur dans le modèle. Dans un scénario représenté par un arbre d'attaque et de défense, le but d'un acteur (attaquant ou défenseur) peut être contré par le but de l'autre acteur. C'est-à-dire, chacun des noeuds, y compris un noeud non raffiné, peut avoir parmi ses enfants un noeud de l'autre acteur, qui représente un moyen de contrer le but du noeud parent. L'objectif d'un noeud ayant une contre-mesure parmi ses enfants est atteinte si les conditions issues du raffinement du noeud sont atteintes (dans le cas où le noeud est raffiné) et si l'objectif du noeud de contre-mesure n'est pas atteint. On peut noter qu'exiger que chaque noeud ait au plus une contre-mesure parmi ses enfants n'est pas restrictive : s'il est possible de décrire l'objectif d'un noeud de plusieurs possibilités, elles peuvent toutes être regroupées sous un noeud parent commun raffiné de façon disjonctive, qui devient alors l'unique contre-mesure du noeud.

Selon la terminologie introduite dans [START_REF] Kordy | Attack-defense trees[END_REF], l'acteur principal d'un arbre d'attaque et de défense est appelé le proponent et l'autre acteur est l'opponent. L'objectif du proponent est d'atteindre l'objectif fondamental, alors que l'opponent tente de le rendre impossible. Les étiquettes des noeuds qui ne sont pas raffinées sont appelées actions de Résumé base. Elles représentent les actions que les acteurs exécutent pour atteindre les objectifs des noeuds raffinés.

Notation graphique Lors de la représentation graphique des arbres d'attaque et de défense, nous utilisons les conventions standard. Les noeuds de l'attaquant sont représentés par des ellipses rouges et les noeuds du défenseur par des rectangles verts. Les noeuds AND diffèrent des noeuds OR en ce que les bords qui les relient à leurs enfants sont reliés par un arc. Les contre-mesures sont attachées aux noeuds qu'elles contrent par une ligne pointillée. Les noeuds de contre-mesure et les fils d'un noeud sont représentés sous le noeud.

Exemple fil rouge Un arbre d'attaque et de défense utilisé comme exemple récurrent tout au long de cette thèse est illustré en figure 1. Le scénario modélisé avec cet arbre est expliqué dans l'exemple 1.

Exemple 1. Dans le scénario représenté par l'arbre d'attaque et de défense de la figure 1, le proponent est l'attaquant et l'opponent est le défenseur. L'attaquant veut voler l'argent du compte du défenseur. Pour atteindre cet objectif, l'agresseur peut utiliser des moyens physiques, c'est-à-dire apprendre le NIP de la victime, voler sa carte, puis retirer de l'argent à un guichet automatique. Pour apprendre le NIP, l'agresseur pourrait forcer la victime à le révéler ou l'intercepter lorsqu'elle entre le NIP. La victime pourrait prévenir ce dernier en recouvrant le clavier de sa main. Cependant, la couverture du clavier échoue si l'attaquant surveille le clavier avec une micro-caméra cachée installée à un endroit approprié. Au lieu d'attaquer d'un point de vue physique, l'attaquant peut voler de l'argent en exploitant les services bancaires en ligne. Pour ce faire, il pourrait apprendre le nom d'utilisateur et le mot de passe de la victime. Ces deux objectifs peuvent être atteints en créant un faux site Web de banque et en utilisant des techniques d'hameçonnage pour amener le titulaire du compte à entrer ses informations d'identification. Il pourrait aussi essayer de deviner quel est le mot de passe et le nom d'utilisateur. L'utilisation d'un mot de passe solide permettrait au titulaire du compte de contrer une telle attaque par devinette. Une fois que l'attaquant obtient les identifiants, il peut les utiliser pour se connecter à la banque en ligne et exécuter un transfert. Pour prévenir une telle attaque, les dispositions de transfert pourraient être en outre sécurisés par une authentification bifactorielle à l'aide de SMS. Cette mesure de sécurité pourrait être contrée en volant le téléphone de la victime.

L'arbre de la figure 1 est un exemple jouet, pratique pour illustrer les notions introduites plus loin dans la thèse. Dans le chapitre 7, nous construisons un arbre d'attaque et de défense plus grand et réaliste, d'après un arbre d'attaque analysé par le Département de l'énergie des États-Unis dans [START_REF]Analysis of selected electric sector high risk failure scenarios, version 2.0[END_REF].

Actions de base répétées

Il n'est pas rare que dans un arbre d'attaque et de défense certains noeuds portent la même étiquette. Dans un tel cas, il y a deux façons de les interpréter.

-Les noeuds représentent la même instance unique du but -par exemple, les deux noeuds étiquetés avec l'action de phishing dans l'arbre de la figure 1 peuvent se référer à la même action, comme décrit dans l'exemple 1. En d'autres termes, le simple fait de créer un faux site Web de banque et d'inciter la victime à entrer ses informations d'identification permet d'obtenir à la fois un nom d'utilisateur et un mot de passe.

-Chacun des noeuds est traité comme une instance distincte du but. Par exemple, dans le scénario modélisé à l'aide de l'arbre de la figure 1, on pourrait utiliser deux techniques d'hameçonnage différentes, chacune conçue spécialement pour atteindre exactement l'un des objectifs suivants : obtenir un nom d'utilisateur et un mot de passe. Dans un tel cas, alors que les deux noeuds pourraient encore être appelées hameçonnage, elles représenteraient des cas distincts d'une attaque d'hameçonnage.

La présence de différents noeuds étiquetés de la même manière est naturelle. Certains buts et actions peuvent contribuer à de multiples façons d'attaquer ou de défendre un système, et certains de ces moyens peuvent exiger qu'une action soit effectuée plusieurs fois. Il est facile de contrôler les étiquettes si un arbre est petit et s'il est construit manuellement, et de le construire avec une interprétation fixe des étiquettes répétées en tête. Des problèmes peuvent survenir si un arbre est le résultat d'une procédure automatique, ou s'il est, par exemple, composé d'arbres plus petits créés par différents analystes analysant des sous-scénarios du scénario, ou ayant des connaissances sur des sous-systèmes particuliers du système à l'étude.

Dans ce travail, nous suppons la première des deux manières d'interprétation données ci-dessus. Il y a au moins deux raisons à ce choix. Nous croyons que cette méthode correspond à la lecture intuitive des arbres d'attaque et de défense, c'est-à-dire que lorsqu'une personne reçoit un arbre, elle est plus susceptible de considérer que les étiquettes répétées représentent le même événement, et non des instances distinctes de celui-ci. De façon plus importante et plus formelle, cette interprétation est plus libérale que l'autre. Elle permet de modéliser à la fois des objectifs et des actions contribuant à des objectifs multiples, en utilisant le même label, tout en gardant la possibilité de modéliser différentes instances d'une même action ou d'un même but, en utilisant des étiquettes légèrement différentes. Si l'autre interprétation était utilisée, il serait impossible de modéliser la possibilité d'une seule action contribuant à des attaques multiples.

Selon [START_REF] Bossuat | Evil twins: Handling repetitions in attack-defense trees -A survival guide[END_REF], nous appelons une action de base qui sert d'étiquette pour au moins deux noeuds un clone ou une action basique clonée. Les noeuds représentant des instances distinctes de la même action ou objectif sont supposés avoir des étiquettes différentes. Dans ce réglage, il est pratique d'utiliser des graphes orientés acycliques, où les noeuds Résumé portant la même étiquette sont fusionnés en un seul noeud, au lieu d'arbres. Une telle approche conduit à une meilleure lisibilité des modèles et peut être exploitée pour l'accélération des calculs effectués sur les arbres. Utiliser des graphes orientés acycliques au lieu d'arbres est une mesure standard dans le domaine de l'analyse des arbres de défaillance [START_REF] Ruijters | Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools[END_REF], où les sous-arbres enracinés dans les noeuds portant le même label sont appelés sous-arbres partagés, et les analogues des clones sont des événements de base partagés, prise aussi parfois dans le cas d'arbres d'attaque, par exemple dans [START_REF] Arnold | Time-Dependent Analysis of Attacks[END_REF]. Notre définition des arbres d'attaque et de défense basée sur des graphes acycliques orientés sera donnée au Chapitre 2. La représentation graphique de l'arbre de la figure 1 redessinée en graphe orienté acyclique est donnée à la figure 2. La seule différence entre les deux représentations est que dans ce dernier cas, les noeuds étiquetés avec l'action de phishing sont fusionnés en un seul noeud.

Questions de recherche et contributions

L'objectif principal des travaux de recherche dont cette thèse est issue est d'identifier et de lever les limites de l'utilité des arbres de défense contre les attaques dans le processus d'évaluation des risques. Parmi les limites que nous avons pu identifier, mentionnons les suivantes.

1. De nombreuses méthodes d'analyse des arbres d'attaque et de défense qui pourraient être utiles pour estimer la probabilité d'attaques sont soit développées dans l'hypothèse explicite que les arbres ne contiennent pas de clones, soit d'une manière qui les rend impropres aux arbres avec clones.

2. Les méthodes d'analyse axées sur un certain nombre de paramètres à la fois, par exemple pour déterminer les attaques qui sont optimales en termes de coût et de probabilité de réussite, ne sont généralement pas efficaces dans le cas de grands modèles et/ou peuvent être appliquées à un nombre limité de paramètres.

3. Les approches pour une sélection optimale (dans un sens bien défini) des contremesures en des scénarios de sécurité modélisés à l'aide d'arbres d'attaque et de défense sont soit formulés en termes d'une analyse par simulation, c'est-à-dire qu'elles permettent de sélectionner des contre-mesures dans le cadre d'un comportement fixe de l'attaquant, ou bien elles ne peuvent être appliquées qu'aux arbres satisfaisant certaines restrictions structurelles. Contributions Pour aborder la première de ces limitations, nous avons analysé l'une des méthodes fondamentales d'analyse des arbres de défense contre les attaques, à savoir la procédure ascendante pour calculer les paramètres liés aux attaques. Elle peut être utilisée, par exemple, pour obtenir efficacement des valeurs telles que le coût minimal ou la probabilité maximale de succès d'une attaque. Nous avons pu déterminer les causes du dysfonctionnement de la procédure ascendante en présence de clones. Cela nous a permis de développer des méthodes alternatives pour calculer ces paramètres et de construire des algorithmes efficaces pour déterminer les attaques optimales du point de vue de l'attaquant. Nous avons pu adapter ces nouvelles méthodes pour l'objectif de l'analyse multiparamétrique de scénarios de sécurité modélisés à l'aide d'arbres, c'est-à-dire en abordant dans une certaine mesure le deuxième des quatre points soulevés ci-dessus.

Nous avons également abordé le problème de l'exploitation de modèles d'arbres d'attaque et de défense pour une sélection optimale des contre-mesures dans les scénarios de sécurité. Nous avons développé une méthode pour extraire des modèles les comportements possibles d'un attaquant rationnel, ainsi que des moyens de contrer de tels comportements par le défenseur. Ces informations peuvent être utilisées comme données d'entrée pour des méthodes d'optimisation standard, permettant ainsi de déterminer, par exemple, un ensemble de contre-mesures dont la mise en oeuvre correspond à un budget donné et maximise l'investissement nécessaire de l'attaquant pour atteindre son but. Enfin, nous nous sommes efforcés d'accroître l'accessibilité du grand public aux développements récents dans le domaine de l'analyse des arbres d'attaque. Tout d'abord, nous avons passé en revue les articles de recherche pertinents publiés au cours des années 2014-2018. Nous avons évalué les points forts et les points faibles des méthodologies présentées, étudié les relations entre elles et décrit nos conclusions. Deuxièmement, nous avons développé un support d'outil pour les méthodes d'analyse présentées dans cette thèse. L'outil OSEAD (Optimal Strategies Extractor for Attack-Defense Trees) est un logiciel facile à utiliser et disponible gratuitement qui vise à soutenir les analystes dans leur travail.

Le processus d'évaluation des risques est une tâche quelque peu délicate, dont les résultats ne sont généralement accessibles à personne d'autre que les parties intéressées. C'est peut-être la cause de l'impossibilité de trouver des modèles réalistes basés sur des arbres d'attaque. Pour valider les méthodes décrites dans cette thèse, nous avons donc créé un arbre d'attaque et de défense réaliste basé sur un scénario de sécurité considéré dans [START_REF]Analysis of selected electric sector high risk failure scenarios, version 2.0[END_REF]. Nous avons mené une étude de cas sur le scénario modélisé avec l'arbre, en utilisant certaines des méthodes décrites dans cette thèse. Nous espérons que le modèle lui-même pourra être utile à d'autres chercheurs comme banc d'essai pour leurs idées.

Chapter 1 Introduction 1.1 Context

The only system that is guaranteed to be fully secure is the empty system, which does not provide any functionality. Any other system offering an actual service, be it an automated teller machine, a web server or a nuclear power plant, will always be vulnerable to attacks. These attacks may target the system's availability (e.g., denial-of-service attacks), the integrity of system-related data (e.g., modification of financial records of a bank client), or the confidentiality of system-related information (e.g., gaining access to a patient's medical record). To achieve their malicious goals, attackers, who might be external to the system or insiders, can employ various approaches, including digital means, physical attacks, and social engineering techniques relying on psychological manipulation. All these aspects should be taken into account when analyzing security of a system. The task of securing a system against attacks is made even more difficult by the fact that perfect security requires unlimited resources, in terms of financial means and time, which are of course never available. This is where the risk assessment comes into play.

Risk can be informally defined as the likelihood of an incident and its consequences for an asset [START_REF]Cyber-Risk Management[END_REF]. For the asset being the availability of a web server services, an incident might be a denial-of-service attack, the consequence of which is the web server becoming unavailable to its intended users. To tackle the risks related to the system of interest, the process of risks identification, analysis and proactive management, called risk management, is conducted. Risk assessment is a part of the risk management process. While no single definition of risk assessment exists, according to the ISO 3100 standard [START_REF]Risk management -Guideliness[END_REF] it consists of three phases: risk identification, risk analysis and risk evaluation.

The goal of the risk identification phase is, not surprisingly, to obtain an exhaustive list of possible risks related to the system and its assets. It involves identifying vulnerabilities present in the system, the ways in which they can be exploited to cause an incident (threats), and the possible causes for their exploitation (threat sources). With the risks identified, the risk analysis can begin. Its aim is to estimate the likelihood and to determine the consequences of identified threats. Numerous factors impact the likeli-9 hood of a threat. When the threat source is an attacker, then from their perspective "the main goal is to pursue attacks that are easier and cheaper to conduct and have the highest probability to succeed rather than otherwise," according to OWASP CISO AppSec Guide 1 . That is, in this particular case, when conducting a risk analysis and assessing the likelihood of an attack, one could take at least the attack's difficulty, the cost of its execution and the probability of its success into account, expressed either qualitatively or quantitatively. Once the likelihoods and the consequences of threats are estimated, the risks are evaluated: they might be compared against some assumed risk acceptance criteria, some of the risks can be aggregated into one risk, and their tolerability can be assessed.

Numerous techniques can be employed for conducting the risk assessment process and various tools can make the task easier to handle. When performing risk assessment, one can, for instance, follow (ever evolving) risk assessment guidelines created by official bodies for dealing with specific systems, or use general-purpose methodologies, such as EBIOS, CRAM, ITSG-04 or MAGERIT, to name a few. These four methodologies are described and compared in the NATO's Improving Common Security Risk Analysis report . The authors of the report state also that in some cases methods based on attack trees offer a viable alternative to such complex methodologies. Attack trees can be used for both identifying and analyzing risks. Their fundamental function lies in translating the attacker goals into simple actions leading to realization of these goals. The very process of their creation might provide valuable insights during the risk assessment deliberations and offer a better understanding of the system under consideration and the threats that the system is facing. But their potential applications are not limited to these functions. If the above mentioned actions can be assigned quantitative or qualitative information, reflecting for instance the monetary investment necessary for their execution, trees can be analyzed using well-studied methods, providing results helpful in assessing the likelihood of particular attacks. It is also possible to include countermeasures against attacks in the attack tree-based models, which makes such extended models useful in the phase of risk management that follows the risk assessment, namely, risk treatment. Risk treatment consists of activities aimed at determining and selecting ways of dealing with risks, including risk avoidance, risk reduction, risk transfer and others.

Informal introduction to attack trees and attackdefense trees

Attack trees Attack trees [START_REF] Schneier | Attack trees[END_REF] are a well-established and commonly used graphical formalism for security modeling. Inspired by fault trees [START_REF] Haasl | Fault tree handbook[END_REF], which are used in system reliability analysis, and threat logic trees [START_REF] Weiss | A system security engineering process[END_REF], they provide readable and structured representation of possible attacks against a system to protect. Their hierarchical structure reveals common features of the attacks and enables quantitative evaluation of security, thus highlighting the most severe vulnerabilities to focus on while implementing countermeasures. Formally, attack trees are rooted trees with labeled nodes. The labels of the nodes represent goals of the attacker, with the label of the root node corresponding to the attacker's main goal. This, often high-level and abstract, goal is recursively refined into subgoals represented by the labels of the remaining nodes. The basic model of attack trees admits two types of refinements: conjunctive refinement AND and disjunctive refinement OR. To achieve a goal of an AND node one needs to achieve the subgoals of all of its children, whereas to achieve the goal of an OR node it is enough to achieve any of the goals of its child nodes. Another often considered refinement is the sequential conjunctive refinement (SAND). Similarly as in the case of the conjunctive refinement, achieving a goal of a SAND node requires achieving the subgoals of all of its children, but in a specific order. [START_REF] Kordy | Attack-defense trees[END_REF] enhance the expressive power of attack trees by allowing for explicitly depicting goals of a defender in the model. In a scenario represented by an attack-defense tree, a goal of an actor (attacker or defender) can be countered by a goal of the other actor. That is, each of the nodes, including the non-refined ones, can have among its children a single node of the other actor, which represents a way of countering the parent node's goal. The goal of a node having a countermeasure among its children is achieved if the achievement conditions following from the node's refinement are satisfied (if the node is refined) and the goal of the countermeasure node is not achieved. Note that the requirement of every node having at most one countermeasure among its children is not limiting at all: should it be possible to counter a goal of a node in many different ways, all of these ways can be gathered under a common disjunctively refined parent, which can then be the single unique countermeasure of the node.

Attack-defense trees Attack-defense trees

According to the terminology introduced in [KMRS14], the root actor in an attackdefense tree is called the proponent and the other actor is the opponent. The aim of the proponent is to achieve the root goal, whereas the opponent tries to make this impossible. The labels of the nodes that are non-refined are called basic actions. They represent actions that the actors execute to achieve the goals of the refined nodes.

Graphical notation When depicting attack-defense trees graphically, we use the standard conventions. The nodes of the attacker are represented with red ellipses, and the nodes of the defender with green rectangles. The AND nodes differ from the OR nodes in that the edges connecting them with their children are joined with an arc. The countermeasures are attached to the nodes they are countering via a dotted line. Both countermeasure and child nodes of a node are depicted below the node.

Running example An attack-defense tree used as a running example in this thesis is depicted in Figure 1. The scenario modeled with this tree is explained in Example 1.

Example 1. In the scenario represented by the attack-defense tree from Figure 1, the proponent is the attacker and the opponent is the defender. The attacker wants to steal money from the defender's account. To achieve this goal, the attacker can use physical means, i.e., learn the victim's PIN, steal their card, and then withdraw cash from an ATM. To learn the PIN, the attacker could force the victim to reveal it or eavesdrop on the victim when they enter the PIN. The victim could prevent the latter by covering the keypad with hand. However, covering the keypad fails if the attacker monitors the keypad with a hidden micro-camera installed at an appropriate spot.

Instead of attacking from a physical angle, the attacker can steal money by exploiting online banking services. In order to do so, they could learn the victim's user name and password. Both of these goals can be achieved by creating a fake bank website and using phishing techniques for tricking the account holder into entering their credentials. The attacker could also try to guess what the password and the user name are. Using very strong password would allow the account holder to counter such a guessing attack. Once the attacker obtains the credentials, they can use them for logging into the online banking services and execute a transfer. To prevent such an attack, transfer dispositions might be additionally secured with two-factor authentication using mobile phone text messages. This security measure could be counterattacked by stealing the victim's phone.

The tree in Figure 1 is a toy example, convenient for illustrating notions introduced further in the thesis. In Chapter 7, we construct a bigger, realistic attack-defense tree, based on an attack tree analyzed by the U.S. Department of Energy in [START_REF]Analysis of selected electric sector high risk failure scenarios, version 2.0[END_REF].

Repeated basic actions

It is not rare that in an attack-defense tree some nodes bear the same label. In such a case, there are two ways of interpreting them.

-The nodes represent the same single instance of the goal -e.g., both of the nodes labeled with the phishing action in the tree from Figure 1 might refer to the same action, as described in Example 1. That is, the single action of setting up a fake bank's website and luring the victim into entering their credentials achieves both the get user name and get password goals. Figure 1: Attack-defense tree for stealing money from somebody's account -Each of the nodes is treated as a distinct instance of the goal. For instance, in the scenario modeled with the tree from Figure 1 one could employ two different phishing techniques, each tailored specifically for achieving exactly one of the goals get user name and get password. In such a case, while both nodes could still be labeled phishing, they would represent distinct instances of a phishing attack.

steal
The presence of different nodes being labeled in the same way is natural. Some goals and actions might contribute to multiple ways of attacking or defending a system, and some of these ways might require an action to be performed a number of times. It is easy to control the labels if a tree is small and if it is constructed manually, and to construct it with a fixed interpretation of repeated labels in mind. Problems might arise if a tree is a result of an automatic procedure, or if it is, for instance, composed from smaller trees created by different analysts analyzing subscenarios of the scenario, or having knowledge about particular subsystems of the system under consideration.

In this work we assume the first of the two ways of interpretation given above. There are at least two reasons for this choice. We believe that this way corresponds to the intuitive reading of attack-defense trees, that is, we believe that when a person is given a tree, they are more likely to consider the repeated labels to stand for the same event, and not for distinct instances of it. More importantly and more formally, this interpretation is more liberal than the other one. It allows for modeling both goals and actions contributing to multiple goals, by using the same label, while keeping the possibility of modeling different instances of the same action or goal, by using slightly different labels. Should the other interpretation be used, it would be impossible to model the possibility of a single action contributing to multiple attacks.

Following [START_REF] Bossuat | Evil twins: Handling repetitions in attack-defense trees -A survival guide[END_REF], we call a basic action that serves as a label for at least two nodes a clone or a cloned basic action. Nodes representing distinct instances of the same action or goal are assumed to have different labels. In this setting, it is convenient to use directed acyclic graphs, where nodes bearing the same label are merged into a single node, instead of trees. Such approach leads to a better readability of models and can be exploited for speeding up computations performed on trees. Using directed acyclic graphs instead of trees is a standard measure in the field of fault trees analysis [START_REF] Ruijters | Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools[END_REF] (where subtrees rooted in nodes bearing the same label are called shared subtrees, and the analogue of clones are shared basic events), taken also sometimes in the case of attack trees, e.g., in [START_REF] Arnold | Time-Dependent Analysis of Attacks[END_REF]. Our definition of attack-defense trees based on directed acyclic graphs will be given in Chapter 2. The graphical representation of the tree from Figure 1 redrawn as a directed acyclic graph is given in Figure 2. The only difference between the two representations is that in the latter the nodes labeled with the phishing action are merged into a single node. 

Research questions and our contributions

Research questions The main goal of the research that this thesis is a byproduct of was to identify and to lift limitations on the usefulness of attack-defense trees in the risk assessment process. Among the limitations that we were able to identify are the following.

1. Many methods for analysis of attack-defense trees that could be useful for estimating likelihood of attacks are either developed under the explicit assumption of trees not containing clones, or in a way that makes them not suitable for trees with clones.

2. Analysis methods focusing on a number of parameters at a time, e.g., for determining attacks that are optimal w.r.t. 2 both cost and success probability, are generally not efficient in the case of big models and/or can be applied to a limited number of parameters.

3. Approaches for optimal (in a well defined sense) selection of countermeasures in security scenarios modeled with attack-defense trees are either formulated in terms of a "what-if" analysis, that is, they allow for selection of countermeasures under fixed behavior of the attacker, or else they can be applied only to trees satisfying some structural restrictions.

4. The access of risk analysts to the latest developments in the field of attack-defense trees is very limited. New analysis techniques are being created yearly, and it is difficult to have a clear overview of the field, even for the researchers working in the domain. Furthermore, very few tools implementing most recent analysis techniques are accessible, and not all of the existing tools are maintained.

In the light of the above limitations, we have posed and tried to answer the following research questions.

1. How to determine optimal attacks efficiently in the presence of clones?

2. How to determine efficiently attacks optimal w.r.t. to multiple parameters, possibly in the presence of clones?

3. How to determine efficiently sets of optimal countermeasures, possibly in the presence of clones?

Contributions Trying two answer the first two of the above questions, we have analyzed one of the fundamental methods for analysis of attack-defense trees, namely, the 2 To be read as with respect to.

bottom-up procedure for computing attack-related parameters. It can be used, for instance, for efficiently obtaining values such as the minimal cost or the maximal success probability of an attack. We were able to determine causes of the bottom-up procedure malfunctioning in the presence of clones. This allowed us for developing alternative methods for computing such parameters, and for constructing efficient algorithms for determining attacks optimal from the point of view of the attacker. We were able to adapt these new methods for the purpose of multi-parameter analysis of security scenarios modeled with trees.

We have also tackled the problem of exploiting attack-defense trees models for optimal selection of countermeasures in security scenarios, thus partially answering the third of the research question posed above. We have developed a method for extracting possible behaviors of a rational attacker from models, as well as ways of countering such behaviors by the defender. This information can be used as input for standard optimization methods, thus allowing for determining, e.g., a set of countermeasures the implementation of which fits a given budget and maximizes the necessary investment of the attacker into achieving their goal.

Finally, we have made efforts to raise accessibility of the recent developments in the field of attack tree analysis to general public. First, we have surveyed relevant research articles published in the years 2014-20183 . We have assessed the strong and weak points of the methodologies presented within, studied relations between them and described our findings. Second, we have developed a tool support for the analysis methods presented in this thesis. The OSEAD tool (Optimal Strategies Extractor for Attack-Defense Trees) is an easy-to-use and freely available software that aims at supporting risk analysts in their work.

The risk assessment process is a somewhat delicate task, a one the results of which are generally not made accessible to anyone beyond the parties of interest. This might be the cause for realistic attack tree-based models being almost impossible to find. To validate the methods described in this thesis, we have thus created a realistic attack-defense tree model, based on a security scenario considered in [START_REF]Analysis of selected electric sector high risk failure scenarios, version 2.0[END_REF]. We conducted a case study of the scenario modeled with the tree, using some of the methods described in this thesis. We hope that the model itself might be useful for other researchers as a testing ground for their ideas.

Thesis structure

In Chapter 2, we provide the formal background necessary for full understanding of the remaining parts of the thesis.

To place the results of our research in the context of the field of attack tree analysis, we describe some of the existing works that are closely related to ours in Chapter 3, which is based on our survey [START_REF] Wide L | Beyond 2014: Formal methods for attack tree-based security modeling[END_REF].

The problem of quantitative analysis of security using attack-defense trees containing clones is studied in depth in Chapter 4. The foundations of the framework described in this chapter have been layed in [START_REF] Kordy | On Quantitative Analysis of Attack-Defense Trees with Repeated Labels[END_REF]. Most of the results are new, and have not been prepared for publication yet.

Chapter 5, based on [START_REF] Fila | Efficient Attack-Defense Tree Analysis using Pareto Attribute Domains[END_REF], is devoted to the multi-parameter analysis of security.

The optimal selection of countermeasures in scenarios modeled with trees is the focal point of Chapter 6. The ideas underlying the approach described in the chapter, as well as some preliminary results, have been presented in [START_REF] Kordy | How Well Can I Secure My System?[END_REF]. The remainder of the chapter consists of recent developments that have not been published yet.

Finally, in Chapter 7, we describe the OSEAD tool and use it for conducting a case study of a security scenario related to the energy sector. The study has been published as [START_REF] Fila | Attack-defense trees for abusing optical power meters: A case study and the OSEAD tool experience report[END_REF].

We conclude in Chapter 8.

Chapter 2 Preliminaries

Reliable methods for modeling and analysis of security necessarily require firm formal foundations. In Section 2.1-2.4, we recall and illustrate with examples some of the notions and concepts underlying security analysis based on attack-defense trees. Definition of attack-defense trees based on directed acyclic graphs is given in Section 2.5. The last part of this chapter, Section 2.6, is devoted to the so-called attribute domains and the bottom-up procedure, which is a standard tool for analysis of models based on AND/OR trees, including attack trees, attack-defense trees, fault trees and many others.

Elements of set theory and abstract algebra

We use N for the set of natural numbers, including zero, and R for the set of real numbers.

For n P N and r P R, the set of natural numbers greater than or equal to n and the set of real numbers greater than or equal to r are denoted by N ěn and R ěr , respectively. The number of elements of a finite set X is denoted by |X|. We use 2 X for the set of all subsets of X (the powerset of X). For a subset Y of X, we write Y Ď X if Y P 2 X , and Y Ă X if Y P 2 X ztXu. A subset R of the Cartesian product X ˆX is called a binary relation over X. For better readability, we sometimes write xRy instead of px, yq P R. Binary relations that will be of particular interest for us are partials orders.

Definition 1 (Partial order). A binary relation ĺ over a set X is called a partial order on X if -it is reflexive, i.e., x ĺ x for every x P X, -it is antisymmetric, i.e., if x ĺ y and y ĺ x for some x, y P X, then x " y, -it is transitive, i.e., if x ĺ y and y ĺ z for some x, y, z P X, then x ĺ z. Definition 2 (Partially ordered set). A partially ordered set is a pair pX, ĺq, where X is a set and ĺ is a partial order on X.

For a partially ordered set pX, ĺq, we use x ă y to denote the fact that x ĺ y and x ‰ y. An element x of X is a minimal (respectively, maximal) element w.r.t. the order ĺ if there is no y P X such that y ă x (respectively, x ă y).

Example 2. For every set X, the pair p2 X , Ďq is a partially ordered set. The empty set ∅ is the unique minimal element w.r.t. the relation of inclusion Ď, and the unique maximal element w.r.t. this order is the set X.

Recall that a function f from a set X to a set Y is defined by a subset G f of the Cartesian product X ˆY such that for every x P X there is exactly one y P Y satisfying px, yq P G f . The set G f is called the graph of the function f . The notation f : X Ñ Y is used to denote the fact that f is a function from X to Y . If px, yq P G f , then y is called the image of x by f and denoted by f pxq. If the set Y is obvious from the context or irrelevant, the function f is said to be a function on X. A binary operation on a set X is a function f : X ˆX Ñ X. For f being a binary operation on X, we sometimes write xf y instead of f px, yq.

A special example of the partial order is the canonical partial order on idempotent semirings.

Definition 3 (Semiring). Let X be a set and let ' and b be binary operations on X. The triple pX, ', bq is a semiring if -both ' and b are associative, i.e., px'yq'z " x'py'zq and pxbyqbz " xbpybzq, for every x, y, z P X, -the operation ' is commutative, i.e., x ' y " y ' x, for every x, y P X, -X contains neutral element for ', i.e., an element e ' satisfying x ' e ' " x, for every x P X, A semiring pX, ', bq is commutative if the operation b is commutative. If the operation ' is idempotent, that is, if for every x P X the equality x ' x " x holds, then the semiring pX, ', bq is an idempotent semiring. Every idempotent semiring admits a partial order defined as follows.

-
Definition 4 (Canonical partial order on idempotent semiring). Let pX, ', bq be an idempotent semiring. The canonical partial order on pX, ', bq is the order defined for x, y P X by x ĺ y if and only if x ' y " y.

We illustrate the notion of canonical partial order with the following two examples.

Example 3. For a set X, the triple p2 X , Y, Xq is a commutative idempotent semiring. The neutral elements for the union and intersection of sets are the empty set ∅ and the set X, respectively. The empty set is also the absorbing element for the intersection. The canonical partial order on this semiring is the inclusion relation, defined for Y, Z P 2 X by Y ĺ Z if and only if Y Y Z " Z.

Example 4. The commutative idempotent semiring pr0, 1s, max, ¨q, where ¨is the multiplication operator, belongs to the class of so-called Viterbi semirings. The neutral elements for the operation of taking maximum and the multiplication are 0 and 1, respectively. The former is also the absorbing element for the multiplication. The canonical partial order on this semiring is the less than or equal to relation ď, defined for x, y P r0, 1s by x ĺ y if and only if maxpx, yq " y.

If every two elements of a set X are comparable under a partial order ĺ, that is, if x ĺ y or y ĺ x holds for every two elements x, y P X, then ĺ is called total order. If ĺ is a total order, then the pair pX, ĺq is a totally ordered set.

Another relation that will be of use for us is the equivalence relation.

Definition 5 (Equivalence relation). A binary relation " over a set X is called an equivalence relation on X if

-it is reflexive, i.e., x " x for every x P X, -it is symmetric, i.e., if x " y implies that y " x, for every x, y P X, -it is transitive, i.e., if x " y and y " z for some x, y, z P X, then x " z.

For a function

f : X Ñ Y , we use f | Z to denote the restriction of f to the subset Z Ď X of X, i.e., g " f | Z if Z Ď X, g : Z Ñ Y and gpxq " f pxq, for x P Z.
A function f is a Boolean function if f : t0, 1u n Ñ t0, 1u, for some n P N ě1 .

Definition 6. Let f be a Boolean function on t0, 1u n , with n P N ě1 , and let k P t1, . . . nu. The function f is positive (respectively, negative) in the k-th variable if for every px 1 , . . . , x k´1 , x k`1 , . . . , x n q P t0, 1u n´1 the inequality

f px 1 , . . . , x k´1 , 0, x k`1 , . . . , x n q ď f px 1 , . . . , x k´1 , 1, x k`1 , . . . , x n q (respectively, f px 1 , . . . , x k´1 , 0, x k`1 , . . . , x n q ě f px 1 , . . . , x k´1 , 1, x k`1 , . . . , x n qq holds.
Finally, an unranked function is defined as follows.

Definition 7 (Unranked function). An unranked function on a set X is a family of functions pf n q `8 n"1 such that f n : X n Ñ X, for n P N ě1 .

Throughout the thesis, we naturally treat binary, associative operations as unranked functions. In such a case, we assume that when provided with a single argument, the function returns the argument itself. The following example illustrates the notion of unranked function.

Example 5. The families pf n q `8 n"1 and pg n q `8 n"1 with f n and g n being defined for n P N ě1 and x 1 , . . . , x n P R as

f n px 1 , . . . , x n q :" n ÿ i"1 x i , g n px 1 , . . . , x n q :" n ź i"1 x i ,
are unranked functions on R. To represent pf n q `8 n"1 and pg n q `8 n"1 in a simple manner, we would use the (binary and associative) operators `and ¨, respectively.

Another concept which will be of use in our considerations is that of a multiset.

Definition 8 (Multiset).

Multiset is a pair pX, mq, where X is the underlying set of the multiset and m : X Ñ N is the multiplicity function.

The multiplicity function describes the number of occurrences of particular elements of the underlying set in the multiset. For a set X, we denote by MpXq the set of all multisets whose underlying set is X. If M 1 " pX, m 1 q and M 2 " pX, m 2 q are multisets belonging to MpXq, then their sum is defined as M 1 Ţ M 2 :" pX, m 1 `m2 q, with pm 1 `m2 qpxq defined as m 1 pxq `m2 pxq for x P X. For simplicity, we use the t| ¨|u notation to denote multisets, and when defining a multiset pX, mq, we specify the function m by explicitly listing each of the elements x of X the corresponding number mpxq of times. For example, we write t|a, a, b|u for the multiset pta, b, cu, mpaq " 2, mpbq " 1, mpcq " 0q P Mpta, b, cuq. Example 6. Let M 1 " t|a, a, b|u and M 2 " t|a, b, c|u be multisets belonging to Mpta, b, cuq.

Their sum is M 1 Ţ M 2 " t|a, a, a, b, b, c|u.
We finish this section with a simple and yet useful lemma.

Lemma 1. Let A 1 , . . . , A k and B 1 , . . . , B k , for k P N ě1 , be sets such that A i X B j " ∅, for i, j P t1, . . . , ku, i ‰ j, satisfying k ď j"1 A j Ď k ď j"1 B j . If A i ‰ B i , for some i P t1, . . . , ku, then A i Ă B i .
Proof. Let i P t1, . . . , ku be such that A i ‰ B i . Since A i X B j " ∅ for j P t1, . . . , ku, j ‰ i, and every element of

A i belongs to k Ť j"1
B j , it follows that every element of A i belongs to B i .

Elements of term rewriting

Elements of term rewriting

For technical reasons, it will be sometimes useful to transform algebraic expressions over semirings into a specific form. Formally, we will apply to such expressions term rewriting rules, which will iteratively reduce the expressions to the desired form. This section, based on [START_REF] Baader | Term rewriting and all that[END_REF], is devoted to introducing notions necessary for defining the above mentioned reductions. An abstract reduction system is a pair pA, Ñq, where A is a set and Ñ is a binary relation on A, called reduction. The reflexive transitive closure of the reduction Ñ, denoted Ý Ñ, is defined as

Ý Ñ:" Ñ Y tpx, xq : x P Au
Y tpx, yq : there is n P N ě1 and x 1 , . . . , x n P A such that

x Ñ x 1 , x n Ñ y and x i Ñ x i`1 , for i P t1, . . . , n ´1uu.

Intuitively, if x Ý Ñ y, then x can be reduced to y in a finite number of steps using the reduction Ñ. An element x P A is reducible, if there is y P A, y ‰ x, such that x Ñ y. If x P A is not reducible, then it is said to be in normal form. An element y P A is a normal form of x if x Ý Ñ y and y is in normal form.

Example 7 (Example 2.1.2 in [START_REF] Baader | Term rewriting and all that[END_REF]). Let A " Nzt0, 1u and Ñ" tpm, nq : m ą n and n divides mu. The elements of A that are not reducible are the prime numbers. An element p P A is a normal form of m P A if and only if p is a prime factor of m.

Among the properties of reduction systems that will be of interest for us are local confluence and termination. Definition 9. Let pA, Ñq be an abstract reduction system. The reduction Ñ is -locally confluent, if for every x, y 1 , y 2 P A satisfying x Ñ y 1 and x Ñ y 2 there is

z P A such that y 1 Ý Ñ z and y 2 Ý Ñ z, -terminating, if there is no infinite sequence x 1 , x 2 , . . . of elements of A such that x i Ñ x i`1 , for i P N ě1 .
Example 8. Let pA, Ñq be the reduction system considered in Example 7. The reduction Ñ is terminating, since every sequence of reductions using Ñ ends with a prime number that cannot be reduced further. The reduction is not locally confluent. Indeed, if n " p 1 ¨p2 is a product of two distinct prime numbers, then n Ñ p 1 and n Ñ p 2 , but neither of the two primes is reducible.

Note that a reduction system in which every element can be reduced to exactly one element is trivially locally confluent. This is the case, since if for every x P A there is exactly one y P A such that x Ñ y, then the only possible choice of y 1 and y 2 from the definition of local confluence is y 1 " y, y 2 " y, and the second part of the definition is satisfied by z " y.

Reduction systems that are both locally confluent and terminating have the following property.

Lemma 2 (Reformulation of Theorem 2.1.9 and Lemma 2.7.2 from [START_REF] Baader | Term rewriting and all that[END_REF]). Let pA, Ñq be an abstract reduction system. If Ñ is locally confluent and terminating, then every element of A has a unique normal form.

Elements of graph theory

In this section, we recall basic notions necessary for defining attack-defense trees using directed graphs. The content of this section is based mainly on [START_REF] John | Graph Theory[END_REF].

Definition 10 (Directed graph). A directed graph is an ordered pair D " pV, Aq consisting of a set V of nodes and a set A, disjoint from V , of arcs, together with an incidence function ψ D that associates with each arc of D an ordered pair of (not necessarily distinct) nodes of D.

Let D " pV, Aq be a directed graph. If a is an arc in A and ψ D paq " pw, vq, then a is said to join w and v. In this work, we consider directed graphs with no parallel arcs, i.e., directed graphs having injective incidence functions. For such graphs, we identify arcs with their images by the incidence function. In other words, we assume that A Ď V ˆV .

Let pV, Aq be a directed graph. If the pair pw, vq is an arc in A, then w is called a child of v and v is a parent of w. A path in pV, Aq is a sequence of nodes of V in which each node is a child of its successor in the sequence.

Definition 11 (Directed acyclic graph). A directed acyclic graph (DAG) is a directed graph pV, Aq in which none of the nodes appears more than once in any of the paths in pV, Aq.

When depicting DAGs graphically, we place children of a node below that node, and connect each of them with the parent using a line segment. Example 9. Let V " 2 t0,1u and let A " tpX, Y q : X Ă Y u. In the DAG pV, Aq, depicted in Figure 3, the sequence p∅, t0u, t0, 1uq is a path, since the node ∅ is a child of the node t0u, and the latter is a child of the node t0, 1u.

If a DAG pV, Aq contains a unique node that has no parents, then this node is called the root of pV, Aq. DAG containing a root node is called rooted.

Example 10. The DAG depicted in Figure 3 is rooted. Its root is the node t0, 1u.

t0, 1u t0u ∅ t1u Figure 3: DAG p2 t0,1u , tpX, Y q : X Ă Y uq. A directed graph pV 1 , A 1 q is a subgraph of a directed graph pV, Aq if V 1 Ď V and A 1 Ď A. If the set A 1 consists
of all the arcs of A whose both nodes belong to V 1 , then pV 1 , A 1 q is a subgraph of pV, Aq induced by V 1 . If both pV, Aq and pV 1 , A 1 q are DAGs, we use the word subdag for pV 1 , A 1 q, instead of subgraph.

Example 11. Consider again the DAG pV, Aq depicted in Figure 3. Let V 1 " t∅, t0u, t0, 1uu, A 1 " tp∅, t0uq, pt0u, t0, 1uqu and A 2 " tp∅, t0uq, pt0u, t0, 1uq, p∅, t0, 1uqu.

The pair pV 1 , A 1 q is a subdag of pV, Aq, and pV 1 , A 2 q is a subdag of pV, Aq induced by V 1 .

If for every two nodes u, v of a directed graph pV, Aq there is a sequence of nodes v 1 , v 2 , . . . , v k such that v 1 " u, v k " v and for every i P t1, . . . , k ´1u either pv i , v i`1 q or pv i`1 , v i q is an arc in A, then the graph is said to be connected. A maximal, w.r.t. to the inclusion of both nodes and arcs sets, connected subgraph of a directed graph pV, Aq is called a component of pV, Aq. Note that the only component of a connected directed graph is the graph itself, and that every rooted DAG is connected.

Elements of formal language theory

It is standard to represent attack-defense trees as typed ground terms over a specific signature. In this section, we briefly recall notions necessary for the understanding of this representation. An interested reader is referred to [START_REF] Kozen | Automata and computability[END_REF] for more details.

An alphabet is any finite set. The elements of an alphabet Σ are called symbols. A string over Σ is any finite-length sequence of elements of Σ. The length of a string s is the number of symbols in s. The unique string of length zero over Σ is called the empty string and is denoted by . Example 12. Let Σ " ta, bu. Both s 1 " aaa and s 2 " abab are strings over Σ. The length of s 1 is three, and the length if s 2 is four.

The set of all strings over an alphabet Σ is denoted by Σ ˚. A language over Σ is any subset of Σ ˚. Some languages can be concisely described with a finite set of production rules. Production rules specify how strings in a language can be transformed into other strings in this language.

Example 13. Let Σ " ta, bu and let L " t , aa, aaaa, aaaaaa, . . .u be the language of strings containing an even number of the letter a. The language L can be described using the production rules s ::" | saa.

They can be read as follows: every string s in L is either the empty string or a concatenation of a string in L with two letters a.

An algebraic signature is an alphabet consisting of function symbols in which each symbol is assigned a natural number, called its arity.

Definition 12 (Algebraic signature). An algebraic signature is a pair pΣ, arq such that Σ is an alphabet consisting of function symbols and ar : Σ Ñ N is a function assigning a natural number to each of the symbols.

If pΣ, arq is an algebraic signature, then an element of Σ is called constant, unary, binary, trinary or n-ary if its arity is 0, 1, 2, 3 or n, respectively. An expression built from the function symbols of Σ that respects the arities of symbols is called a ground term over the signature.

Definition 13 (Ground term over a signature). The set T Σ of ground terms over a signature pΣ, arq is defined recursively as follows. Any constant function symbol c P Σ is in T Σ . If t 1 , . . . , t n P T Σ and f is an n-ary function symbol of Σ, then f pt 1 , . . . , t n q P T Σ .

The following example illustrates the notion of ground terms over a signature.

Example 14. Consider the alphabet Σ " tx, y, _, ^u, with x and y being constant symbols, and _ and ^being unranked functions, i.e., families p_ n q nPN ě1 , p^nq nPN ě1 , with the arity function defined as arp_ n q " n and arp^nq " n, for n P N ě1 . The set of ground terms over the signature pΣ, arq is T Σ " tx, y, _px, xq, _py, yq, _px, yq, ^px, xq, ^py, yq, ^px, yq, . . .u, and it can be seen as the set of representations of all propositional formulae involving variables x and y and logical conjunction and disjunction.

On the top of a signature a type system can be defined, assigning types (called sorts) to symbols. This is usually achieved by generalizing the arity function in the following manner.

Definition 14 (Many-sorted algebraic signature). A many-sorted algebraic signature is a triple pS, Σ, arq, where S is a set of sorts, Σ is an alphabet consisting of function symbols and ar is a function assigning to each of the symbols its arity of the form s 1 ˆ. . . ˆsn Ñ s n`1 , for s 1 , . . . , s n`1 P S.

Intuitively, the arity function defined as in Definition 14 specifies for a function symbol f P Σ the number of its arguments, the sorts of the arguments, and the sort of the image by f . For the constant symbols, i.e., when n " 0, the arity function describes their sorts.

Since the sets of ground terms over a signature are special strings over an alphabet, they can sometimes be specified using appropriate production rules, as illustrated in the next example.

Example 15. Let T Σ be the language produced by the grammar t s ::" x s | y s | _ s pt s , . . . , t s q | ^spt s , . . . , t s q | ^ s pt s , t sq, for s P ts 1 , s 2 u and s 1 " s 2 , s 2 " s 1 . The language T Σ is the set of ground terms over many-sorted algebraic signature

pts 1 , s 2 u, tx s 1 , x s 2 , y s 1 , y s 2 , _ s 1 , _ s 2 , ^s1 , ^s2 , ^ s 1 , ^ s 2 , u, arq,
with the arity function ar defined as arpx s q " s, arpy s q " s, arp_ s n q " s n Ñ s, arp^s n q " s n Ñ s, arp^ s q " s ˆs Ñ s, for s P ts 1 , s 2 u and n P N ě1 .

Attack-defense trees

Various definitions of attack(-defense) trees can be found in the literature, each of them being either graph-based [AHPS14, KW17] or term-based [KMRS14, AN15, GHL `16]. We use the following definition based on DAGs.

Definition 15 (Attack-defense tree). An attack-defense tree is a tuple T " pV, A, L, λ, actor, refq, where -pV, Aq is a rooted DAG, -L is a set of labels representing the attacker's and the defender's goals, λ : V Ñ L is an injective function assigning labels to the nodes, CHAPTER 2. Preliminaries -actor : V Ñ ta, du is a function assigning actors to the nodes, in such a way that every node has at most one child assigned to the other actor, -ref : V Ñ tOR, AND, Nu describes refinements of nodes. We use OR for disjunctively and AND for conjunctively refined nodes, N stands for the non-refined nodes, i.e., nodes labeled with basic actions, -for every node v P V , refpvq " N if and only if v has no child assigned to the same actor as v, -for every node v P V , the set of children of v is totally ordered 1 , and if v has a child belonging to the other actor, then this child is the maximal element of this set 2 .

From now on, whenever we use the word "tree", we mean attack-defense tree. The root of a tree T , denoted rootpT q, is the root of its underlying DAG. The actor assigned to the root of a tree is called proponent, and the other one is called opponent. For a tree T , we use p T to mark the components of T assigned to the proponent, and o T for those assigned to the opponent, i.e., p T stands for actorprootpT qq and o T stands for the other actor. The labels of the non-refined nodes are basic actions. For s P tp, ou, we denote by B s T the set of basic actions of the corresponding actor in T , and we set B T :"

B p T Y B o T .
The universe of all basic actions is denoted with B. Note that the fact that the labeling function from Definition 15 is injective implies that the sets B p T and B o T are disjoint. We use T for the set of all attack-defense trees.

Let T " pV, A, L, λ, actor, refq be an attack-defense tree. For v P V , we use children T pvq :" tw P V : wv P A, actorpwq " actorpvqu to denote the set of children of v that are assigned the same actor as v. Whenever a function acts over children of v, the order of its arguments follows the total order of the set of children, beginning with the minimal element. If v has a child belonging to the other actor, this child is denoted by v. If all of the nodes of a tree belong to the same actor, then the tree is an attack tree. Finally, for v P V , we use T pvq to denote the maximal subdag of T rooted at v , i.e., a subdag of T induced by all the nodes w such that there is a path from w to rootpT q passing by v. While labels of refined nodes are important when creating a tree, they might not be necessary for its analysis. Indeed, they are disregarded in most of the formal approaches to the attack-defense trees analysis, e.g., in [AN15, GHL `16, KW17]. Similarly, it is often irrelevant for the analysis who the proponent is, i.e., whether the root actor is 1 In the case of graph-based definitions of attack trees, the condition of children being ordered is often formulated by defining a function that maps nodes to lists of their children, see, e.g., [START_REF] Arnold | Time-Dependent Analysis of Attacks[END_REF][START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF]. In the term-based definitions the order is explicit in the form of the term.

2 The choice of this particular child being the maximal element w.r.t. the order is dictated by the fact that such a child is listed as the last one in the standard term-based notation.

the attacker or the defender. This is also true for the methods presented in this thesis. Therefore, for the purpose of concise representation of trees, we employ the standard term-based notation, which relies only on the labels of the non-refined nodes and on the refinement operators of the refined ones, and distinguishes the actors with respect to the root goal of the tree. With the following definition, we formalize the procedure for creating attack-defense terms corresponding to trees, sketched graphically in [START_REF] Kordy | Attack-defense trees[END_REF].

Definition 17 (Attack-defense term corresponding to an attack-defense tree). Let T " pV, A, L, λ, actor, refq be an attack-defense tree and let v P V be a node such that actorpvq " s T , s P tp, ou, refpvq " OP and children T pvq " tv 1 , . . . , v k u, with the children being ordered according to their indices. Let tpT, vq be the function defined recursively as follows tpT, vq :"

$ ' ' ' ' ' & ' ' ' ' ' % λpvq s , if OP " N and v does not exist, C s pλpvq, tpT, vqq , if OP " N and v exists,
OP s ptpT, v 1 q, . . . , tpT, v k qq , if OP ‰ N and v does not exist, C s pOP s ptpT, v 1 q, . . . , tpT, v k qq, tpT, vqq , otherwise.

The attack-defense term corresponding to T , denoted tpT q, is then defined as tpT, rootpT qq.

In the remainder of this thesis, when using attack-defense terms, we skip types of the basic actions. For example, we would use C p pb 1 , b 2 q instead of C p pb p 1 , b o 2 q. Since for a given tree T the sets B p T and B o T are disjoint, this does not introduce any ambiguity. When introducing an attack-defense tree, we either use the corresponding attackdefense term or the graphical representation. In the former case, the order of children of particular nodes follows the order in which they appear in the term. Thus, the underlying attack-defense tree can be easily reconstructed, with the exception of the actors assigned to the nodes (attacker/defender) and the labels of refined nodes. In the latter, we assume that the children of a node are placed from left to right, following the corresponding total order.

Attribute domains for attack-defense trees

Among the existing approaches to analysis of attack-defense trees there are methods that can be formulated using the notion of attribute domains (even if originally they were not). In this section, we recall the notion of attribute domains and some of the ways in which they can be exploited for the purpose of analysis of attack-defense trees. Most of the notions and definitions used in this section are well-established [MO05, KMRS14, KW18], but we adapt them to the DAG-based formalization of attack-defense trees.

Intuitively, an attribute of an attack-defense tree is a piece of information regarding the scenario modeled with the tree. Attributes can represent quantitative aspects of the scenario, such as minimal cost of executing an attack or maximal damage caused by an attack. As it will be extensively illustrated in Section 3.1, they can also correspond to other scenario-related information, e.g., the ways in which goals and subgoals of the actors can be achieved.

Numerous methods for evaluation of attributes on attack-defense trees exist, and most of them involve a bottom-up procedure: some of them as the sole method of evaluation, some of them as a subprocedure. The idea behind the bottom-up procedure is to assign attribute values to the basic actions and to propagate them up to the root of the tree using appropriate operations at the intermediate nodes. The notions of an attribute and the bottom-up evaluation are formalized using attribute domains. In practice, α appearing in the above definition is usually a shorthand for an intuitive description of the attribute, such as cost for the minimal cost for the proponent attribute. To analyze an attack-defense tree using attribute domains, one assigns values of the attribute to the basic actions of the actors and then combines them using the domain's operations. In the next example, the domain for the minimal cost for the proponent attribute is presented. The choice of its operations will be explained once a way in which they can be exploited is introduced. Further examples of attribute domains are given in Table 1.

Definition 18 (Attribute domain). Let α be an attribute of attack-defense trees. An attribute domain for α is a tuple

Example 17. The standard attribute domain for the minimal cost for the proponent attribute is A cost " pR ě0 Y t`8u, min, `, `, min, `, minq.

A function β : B Ñ D α is called a basic assignment for attribute α. A standard way of combining the values of the basic assignment to obtain the value of the attribute corresponding to the modeled scenario is the following. 

pOP s α q v 1 Pchildren T pvq α B pT, β, v 1 q, if OP ‰ N and v does not exist, C s α `pOP s α q v 1 Pchildren T pvq α B pT, β, v 1 q, α B pT, β, vq ˘, otherwise.
The value of attribute α for T under β obtained via the bottom-up procedure, denoted by α B pT, βq, is then defined as α B pT, β, rootpT qq. In the notation α B pT, βq, the subscript B refers to the "bottom-up" computation.

An extensive overview of attribute domains and their classification can be found in [START_REF] Kordy | Quantitative questions on attack-defense trees[END_REF]. The article [START_REF] Bagnato | Attribute decoration of attack-defense trees[END_REF] contains a case study and guidelines for practical application of the bottom-up procedure. Numerous examples of attributes of attack trees and attack trees extended with additional sequential refinement have been given in [JKM `15] and [START_REF] Horne | Semantics for specialising attack trees based on linear logic[END_REF].

The following two examples illustrate the bottom-up evaluation of the cost attribute in attack and attack-defense trees.

Example 18.

In Figure 4 a bottom-up evaluation of the minimal cost for the proponent attribute, whose domain A cost " pR ě0 Y t`8u, min, `, `, min, `, minq has been given in Example 17, is depicted. Since the OR nodes of the proponent correspond to a choice, the minimal cost is computed at these nodes using the operation of taking the minimum. The addition is used at the AND nodes of the proponent, as the achievement of a goal of an AND node requires achieving goals of all of its children.

Example 19. In Figure 5 a bottom-up evaluation of the minimal cost for the proponent attribute on an attack-defense tree is depicted. Recall that the domain for minimal cost for the proponent is A cost " pR ě0 Y t`8u, min, `, `, min, `, minq. Similar intuition as the one provided in Example 18 supports the choice of operations for the nodes of the opponent: to counter the goal of an opponent's AND node, it is sufficient for the proponent to counter any of its child nodes (the proponent has a choice, thus the min operation), and to counter the goal of an opponent's OR node, all of the children of the node need to be countered (addition).

The choice of the operations to be performed when the bottom-up evaluation traverses countermeasures is closely related to the values assigned to the basic actions of the opponent. For C p cost " `and C o cost " min, the reasonable values for the actions of the opponent are 0, modeling the opponent not executing the action, and `8, modeling the action being executed by the opponent. Note that `8 is both the neutral element for taking the minimum and the absorbing element for the addition, while 0 is the neutral element for the addition. In consequence, the values assigned to the actions not executed by the opponent do not influence the bottom-up evaluation of minimal cost for the proponent. The actions executed and the goals achieved by the opponent do, since they either absorb the results of the bottom-up evaluation, yielding `8, modeling the impossibility for the proponent being successful (as it is the case for the OR node of the defender in the tree from Figure 5), or else they force the values of countermeasures attached to them to be taken into account (via the min operator; as it is the case for the node labeled d 1 and the AND node of the defender in the tree from Figure 5).

The discussion from the above paragraph justifies further the choice of the addition being performed at the opponent's OR nodes. If each of the basic actions of the opponent is assigned either 0 or `8, then the value computed at the nodes the goals of which the proponent does not have to counter will be 0. Thus, the result of addition at an OR node of the opponent corresponds to the cost of countering all the goals of the child nodes of the node that have been achieved by the opponent; the remaining goals are ignored.

The result of the bottom-up evaluation of minimal cost for the proponent on the tree in Figure 5 can be therefore interpreted as follows: if the opponent executes actions d 1 , d 2 and d 3 , then the minimal cost of achieving the root goal by the proponent is 22. It corresponds to the execution of both actions a and c.

Excluding the satisfiability attribute, the attribute domains presented in Table 1 have the following feature in common. Each of them is of the form pD α , ', b, b, ', b, 'q, where pD α , ', bq is a commutative idempotent semiring. We shall say that such domains are induced by semirings.

Definition 20 (Attribute domain induced by a semiring). An attribute domain A α is induced by a semiring if A α " pD α , ', b, b, ', b, 'q and pD α , ', bq is a commutative idempotent semiring. The reasoning behind the choice of the operations for the minimal cost for the proponent attribute domain, given in Example 19, can be generalized for attribute domains induced by semirings.

Remark 1. For a number of attribute domains of the form A α " pD α , ', b, b, ', b, 'q, with pD α , ', bq being a commutative idempotent semiring, under the assumption that a given basic action is executed by the opponent, the value assigned to it is a b (" e ' ), whereas the value assigned to the opponent's actions assumed not to be executed is e b . In consequence, the actions not executed by the opponent do not influence the bottom-up evaluation of the attribute, while the executed actions (unless countered by the proponent) absorb the results of the computation corresponding to a given subtree of the tree.

Example 19 and Remark 1 highlight the particular applicability of the bottom-up evaluation for the so called "what-if" analysis. Being able to compute, say, the minimal cost of a successful attack under the given behavior of the defender can be exploited for selecting an optimal set of countermeasures to be implemented for increasing security of a system.

Attribute domains can also be used for formalizing the intuition behind the notions of refinements and goal achievement. This is usually done using the satisfiability attribute domain A sat " pt0, 1u, _, ^, _, ^, ‹, ‹q, where x ‹ y " x ^ y, for x, y P t0, 1u. Under the basic assignment that assigns 1 to each of the actions assumed to be executed by the actors and 0 to the remaining actions, the result of the bottom-up evaluation of sat models the root goal of a tree being or not being achieved. In the following definition, we use 1 X for the indicator function of a set X Ď B, i.e., a function that assigns one to each of the elements of X, and zero to each of the remaining elements of B.

Definition 21 (Goal achievement). Let T " pV, A, L, λ, actor, refq be an attack-defense tree, let v P V be one of its nodes, and let X Ď B T be a set of basic actions in T . With achieved T pv, Xq being a shorthand for sat B pT, 1 X , vq, we say that the goal of v is achieved by X in T if achieved T pv, Xq " 1.

Example 20. Let T be the attack-defense tree from Figure 6 (considered also on Figure 5). Assuming that the attacker executes only the actions a and c and the defender executes only d 1 , d 2 and d 3 , which is modeled by assigning 1 to each of these actions and 0 to the remaining basic actions, the defender fails to counter the action a (the value computed at the AND node countering a is 0), and so the attacker achieves the goal of the root node (the value computed at the root node is 1). In other words, for the set X " ta, c, d 1 , d 2 , d 3 u the equality achieved T prootpT q, Xq " 1 holds.

A careful reader will notice that nothing stops a potential user of attack-defense trees from, e.g., setting contradictory goals as labels of children of an AND node in a tree. In such a case, results of any analysis performed on the tree cannot be relied upon. This considers in particular the value of achieved T p¨, ¨q. In the following, we assume that the basic actions are independent, as it is classically done, e.g., in [AN15, GHL `16, AN17]. That is, the only dependency between the basic actions that we allow for, is that an action might be a countermeasure against another action.

Remark 2. The notion of achievement from Definition 21 is closely related to the notion of propositional semantics for attack-defense trees [START_REF] Kordy | Attack-defense trees[END_REF]. For β being a function assigning to every basic action b P B the propositional variable βpbq " x b , the propositional semantics of an attack-defense tree T is the Boolean function PpT q obtained by the bottom-up propagation of these variables using the operators of the satisfiability domain. Thus, for X Ď B T , the value of achieved T prootpT q, Xq is equal to the value of PpT q, when the variables corresponding to the basic actions in X are assigned 1, and the remaining actions are assigned 0. Remark 3. The propositional semantics PpT q of a tree T , sketched in Remark 2, has been proven in [START_REF] Kordy | Computational aspects of attack-defense trees[END_REF] to be a Boolean function positive (respectively, negative) in the variables corresponding to the basic actions of the proponent (respectively, in the variables corresponding to basic actions of the opponent).

OR 1 " 1 _ 0 a 1 1 " 1 ^ 0 AND 0 " 0 ^1 ^1 d 1 1 0 " 1 ^ 1 c 1 d 2 1 AND 0 " 1 ^0 b 0 0 " 0 ^ 1 OR 1 " 1 _ 0 d 3 1 d 4 0
More generally, for a node v of T and a set X Ď B T , the value of achieved T pv, Xq is obtained by evaluating a Boolean function that is positive in the variables corresponding to the basic actions of actorpvq, and negative in the remaining variables.

The formalization of the notion of achievement provided in Definition 21 is standard, in the sense that it is widely used, even though under various names, or sometimes under no name at all. For instance, for an attack-defense tree T , a set P Ď B p T and a set O Ď B o T , the authors of [GHL `16] call the value of achieved T prootpT q, P Y Oq the "standard boolean semantics" of T . The same expression is used also in [HJL `17], to define the final states of automata that the authors transform attack-defense trees into.

Similarly, the authors of [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF] call the pair pmin tmax tachieved T prootpT q, P Y Oq :

O Ď B o T u : P Ď B p T u, max tmin tachieved T prootpT q, P Y Oq : O Ď B o T u : P Ď B p T uq (2)
the "boolean semantics evaluation of an attack-defense tree T ". Since the authors of [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF] allow the presence of basic actions that are assumed to be always executed (representing, for example, countermeasures already present in the system), denoting the set of such basic actions in T with X and employing Remark 2 and 3, we note that the pair (2) is equal to pachieved T prootpT q, Xq, achieved T prootpT q, P Y Oqq.

As the bottom-up computation simply propagates the values assigned to the basic actions up to the root of the tree, it involves a number of evaluations of the attribute domain's operations that is linear in the size of the tree. Thus, it is generally very fast. On the downside, it may provide unreliable results in the presence of clones. This fact can be easily illustrated with the tree T " AND p pa, OR p pa, bqq. Under the basic assignment βpaq " 5, βpbq " 10 of the minimal cost for the proponent attribute, the result of the bottom up evaluation is cost B pT, βq " 5 `minp5, 10q " 10. However, to achieve the goal of the root node it is sufficient to execute the basic action a once, at the cost of 5.

In Chapter 4 we study in detail conditions ensuring that the bottom-up evaluation of attributes yields correct results in trees containing clones. For the case when these conditions are not satisfied, we devise an alternative method of attributes evaluation.

Another, heuristic method for the special case of this problem, i.e., for computing the minimal cost of achieving the root goal in attack trees containing clones, is described in Section 3.2.1.

Chapter 3

State of the art

The field of graphical modeling and quantitative analysis of security using attack trees and attack-defense trees is relatively young, but it is developing fast. Numerous approaches are being adapted for improving the applicability of trees for the real-life situations, in particular for answering the questions raised in Section 1.3. In this chapter, we give a detailed overview of some of the frameworks that are closely related to our work, and a brief description of other approaches. We focus on three main areas, namely, on -formal semantics for attack-defense trees (Section 3.1), where the objective is to give a rigorous meaning to an attack tree or attack-defense tree model, -quantitative analysis of security using attack-defense trees (Section 3.2), and -approaches to the problem of optimal selection of countermeasures in the security scenarios modeled with attack-defense trees (in Section 3.3).

It is of course impossible to cover the whole research field in a single chapter. An interested reader is referred to the survey [START_REF] Kordy | DAG-based attack and defense modeling: Don't miss the forest for the attack trees[END_REF] for an exhaustive state of the art on DAG-based security modeling until the year 2013. Usability aspects, practical applications, and computer tools for graphical security modeling are discussed in [START_REF] Hong | A survey on the usability and practical applications of graphical security models[END_REF]. Further examples of recent developments in the first two of the three areas that we cover in this chapter, as well as their deeper comparison, can be found in the recent survey [START_REF] Wide L | Beyond 2014: Formal methods for attack tree-based security modeling[END_REF]. Finally, a detailed overview of approaches to the problem of optimal selection of countermeasures against potential attacks, including some works based on attack trees and attack graphs, is given in [START_REF] Nespoli | Optimal countermeasures selection against cyber attacks: A comprehensive survey on reaction frameworks[END_REF].

Formal semantics for attack-defense trees

Even a small and easily readable attack-defense tree might encode a vast number of possible realizations of the underlying attack-defense scenario, as illustrated by the following example.

Example 21. Consider an attack tree T " AND p pOR p pb 1 , b 2 q, . . . , OR p pb n´1 , b n qq. For β being a basic assignment for the satisfiability attribute, the value of sat B pT, β,) is equal to pβpb 1 q _ βpb 2 qq ^. . . ^pβpb n´1 q _ βpb n qq.

A simple proof by induction shows that for n being an even natural number the number of assignments for which the above formula evaluates to 1 is 3 n{2 . Thus, there are 3 n{2 sets of basic actions of the proponent that achieve the goal of the root of T .

Formal analysis of possible realizations of the modeled scenario (which need not be the basic assignments under which the root goal of the tree is achieved, as it is the case in Example 21) is made possible by formally specifying what is considered to be such realization. This is achieved by defining a formal semantics for attack-defense trees. Transforming attack-defense trees into objects modeling realizations of the underlying scenario, such as propositional formulae or automata, helps addressing a wide range of problems, including enumerating all ways in which the root goal of the tree can be achieved [START_REF] Kordy | Attack-defense trees[END_REF], checking whether two structurally different trees represent the same security scenario [MO05, KMRS14, HMT17], comparing whether one tree contains more information than another one [MO05, KMRS14, HMT17], identifying paths in the analyzed system that correspond to potential attacks [START_REF] Audinot | Guided design of attack trees: A system-based approach[END_REF], and verifying the quality of the tree refinements [START_REF] Audinot | Is My Attack Tree Correct[END_REF].

In this section, we recall some of the existing semantics for attack-defense trees. Our goal is to illustrate possible approaches to the problem of interpretation of attack-defense trees and to highlight their advantages and disadvantages.

Multiset semantics

One of the first semantics introduced for attack-defense trees is the multiset semantics. Formalized for attack trees by Mauw and Oostdijk in [START_REF] Mauw | Foundations of Attack Trees[END_REF], generalized for attackdefense trees in [START_REF] Kordy | Attack-defense trees[END_REF] by Kordy et al., and used for the purpose of threat analysis of ATMs in [FFG `16], it interprets attack-defense trees as sets of pairs of multisets.

The definition of the multiset semantics for attack-defense trees employs the operation defined for sets of pairs of multisets of basic actions X 1 , . . . , X k Ď MpBq ˆMpBq as k e i"1

X i :" tp k ě i"1 P i , k ě i"1 O i q | pP i , O i q P X i u.
(3) The multiset semantics of T , denoted MpT q, is the result M B pT, βq of the bottom-up evaluation of M on T under the basic assignment β.

Each of the elements of the multiset semantics is of the form pP, Oq, where P is a multiset of basic actions of the proponent, and O is a multiset of basic actions of the opponent. Intuitively, as stated in [START_REF] Kordy | Attack-defense trees[END_REF], "A bundle [pair] pP, Oq [belonging to the multiset semantics of a tree] encodes how the proponent can achieve his goal [goal of the root node]: the proponent must perform all actions present in P while the opponent must not perform any of the actions in O." The multiset semantics is created by propagating sets of pairs of multisets of basic actions of the actors up to the root of the tree, combining them along the way using appropriate operations. Since the achievement of a goal of an OR node requires that at least one goal of its child nodes is achieved, the sets' union is performed; as achieving the goal of an AND node is possible only by achieving goals of all of its children, the different ways of achieving these goals are combined using the e operation. Similar reasoning as the one given in Example 19 motivates the choice of the remaining operations.

Example 22. The multiset semantics MpT q of the tree T in Figure 2 is MpT q " pt|force, card, cash|u, ∅q, pt|cam, eav, card, cash|u, ∅q, pt|eav, card, cash|u, t|cover|uq, pt|phish, phish, log&trans|u, t|sms|uq, pt|phish, uname, log&trans|u, t|sms|uq, pt|phish, pwd, log&trans|u, t|spwd, sms|uq, pt|uname, pwd, log&trans|u, t|spwd, sms|uq, pt|phish, phish, phone, log&trans|u, ∅q, pt|phish, uname, phone, log&trans|u, ∅q, pt|phish, pwd, phone, log&trans|u, t|spwd|uq, pt|uname, pwd, phone, log&trans|u, t|spwd|uq

( .
As illustrated in the above example by the pair pt|phish, phish, log&trans|u, t|sms|uq, the multiset semantics does not interpret repeated basic actions as clones. The meaning of the pair pt|phish, phish, log&trans|u, t|sms|uq is the following: if the opponent does not perform sms action (transfer dispositions are not secured with two-factor authentication using mobile phone text messages), then the proponent can steal money from the opponent's account by executing the phish action twice, and by performing the log&trans action. Thus, the multiset semantics could be employed for analysis of attack-defense trees if repeated basic actions are not interpreted as clones (cf. the second of the two interpretations of repeated basic actions given on page 14).

A modification of the multiset semantics that could be a viable option for analysis of attack-defense trees under the clones interpretation of repeated basic actions has been proposed in [START_REF] Bossuat | Evil twins: Handling repetitions in attack-defense trees -A survival guide[END_REF]. We present it in the next section.

Set semantics

The set semantics for attack-defense trees has been first defined by Bossuat and Kordy in [START_REF] Bossuat | Evil twins: Handling repetitions in attack-defense trees -A survival guide[END_REF], for the purpose of interpretation of repeated basic actions as clones. It is a simple adaptation of the multiset semantics, where multisets are replaced with sets. Its definition employs the operation defined for sets of pairs of sets of basic actions

X 1 , . . . , X k Ď 2 B ˆ2B as k ä i"1 X i :" tp k ď i"1 P i , k ď i"1 O i q | pP i , O i q P X i u. ( 4 
)
Definition 23 (Set semantics). Let T be an attack-defense tree and let S be the attribute specified by the attribute domain A S " p2 The set semantics of T , denoted SpT q, is the result S B pT, βq of the bottom-up evaluation of S on T under the basic assignment β.

The intuition behind the set semantics is similar to the one behind the multiset semantics: the presence of a pair pP, Oq in the set semantics SpT q means that if the proponent executes all the actions from P and the opponent executes none of the actions from O, then the root goal of T is achieved. The choice of the operations performed when creating the set semantics is dictated by the same reasoning as in the case of the multiset semantics.

Example 23. The set semantics SpT q of the tree T in Figure 2 Note that the pair pt|phish, phish, log&trans|u, t|sms|uq, that belongs to the multiset semantics of the tree from Example 23 became the pair ptphish, log&transu, tsmsuq under the set semantics interpretation. That is, employing sets instead of multisets results in no repetitions of basic actions in the elements of the set semantics. While the set semantics seems fit for analyzing attack-defense trees containing clones, we note that it should not be interpreted in the same way as the multiset semantics. What we mean by this, is that, while for a pair pP, Oq P MpT q, "A bundle pP, Oq encodes how the proponent can achieve his goal: the proponent must perform all actions present in P while the opponent must not perform any of the actions in O [emphasis added]," the "must" and "must not" no longer applies in the case of a pair pP, Oq belonging to the set semantics SpT q. This fact can be illustrated with the two trees T 1 " OR p pa, AND p pa, bqq and T 2 " OR p pa, bq, depicted in Figure 7. While the notion of achievement is not explicitly formalized in [START_REF] Bossuat | Evil twins: Handling repetitions in attack-defense trees -A survival guide[END_REF], its informal description is equivalent with the one we provided in Section 1.2. Following this description, execution of both actions a and b in both T 1 and T 2 results in the root goal being achieved, and in none of the two trees both actions are necessary; executing only the action a suffices. However, the set semantics of the trees T 1 and T 2 are SpT 1 q " tptau, ∅q, pta, bu, ∅qu, SpT 2 q " tptau, ∅q, ptbu, ∅qu, i.e., the pair pta, bu, ∅q belongs to the set semantics of T 1 , but not to the set semantics of T 2 . While one could argue that pta, bu, ∅q is indeed one of the possible realizations of the scenario modeled with the tree T 1 , as it represents a way of achieving the goal of the AND node, we believe that the information provided by this pair is redundant. This is the case, because the fact that pta, bu, ∅q achieves the root goal follows immediately from the fact that the pair ptau, ∅q achieves it. To provide an intuitive grasp on the contents of the set semantics, we study its properties in Section 4.2. The established properties allow for using the results of the evaluation of attributes on the set semantics as a reference point for the results obtained via other methods, as discussed in detail in Chapter 4.

SP semantics

Neither the multiset nor the set semantics interpretation of a tree provides information on the order in which actions should be executed by the proponent so that the root goal can be achieved. The problem of ordering actions that compose an attack has been apparent for attack trees since their introduction in 1999. It is also visible in the attack-defense tree in Figure 2: while it does not matter whether the attacker first learns the victim's password or the user name, they need to learn both pieces of information before being able to log in to the online banking system.

In the attack tree literature, the problem of ordering actions in attack trees has been addressed in two ways: either AND is implicitly interpreted as an ordered operator, or an extra sequential refinement, that we call SAND and depict with an arrow, is added to capture that some actions must be executed in a specific order. While some works focused on the problem of ordering actions composing an attack existed before [JW09, PB10], it was not until the publication of [AHPS14, KRS15] and [JKM `15] that a formal semantics for attack trees containing SAND refinement1 has been given. In [AHPS14, KRS15] and [JKM `15], basic actions are assigned mathematical objects (cumulative distribution functions, priced timed automata and series-parallel graphs, respectively), and the object corresponding to the whole tree is obtained from such an assignment using a bottom-up evaluation. Here, we focus on the SP semantics of Jhawar et al., introduced in [JKM `15], as it is closely related to the multiset semantics. `15] is to provide mathematical foundations of attack trees extended with the SAND refinement, called SAND attack trees. To do so, the authors introduce a formal semantics for SAND attack trees, based on series-parallel graphs (SP graphs), and extend the bottom-up method for quantitative analysis from classical attack trees formalized in [START_REF] Mauw | Foundations of Attack Trees[END_REF] to SAND attack trees. `15] use three types of refinements: OR, AND, and SAND. They thus allow to distinguish between actions that can be executed in parallel (connected with AND) from those that need to be executed sequentially (connected with SAND). To formally interpret SAND attack trees, Jhawar et al. use SP graphs. SP graphs are oriented, edge-labeled graphs that contain two distinct nodes -a source with no incoming edges, and a sink with no outgoing edges -and that can be built in a recursive way from smaller SP graphs, using their parallel and sequential compositions. The parallel composition glues two SP graphs by identifying their sinks and their sources, respectively. The sequential composition attaches the second SP graph to the first one, by identifying the sink of the first one with the source of the second one.

The objective of [JKM

SAND attack trees considered in [JKM

The semantics developed in [JKM `15], called the SP semantics, interprets an SAND attack tree as a set of SP graphs whose edges are labeled with the basic actions of the attacker. The semantics is created in a bottom-up manner, similarly to the multiset and set semantics. Each of the nodes labeled with basic actions, i.e., each of the leaves of the tree, is interpreted as an SP graph consisting of a single edge, labeled with that action. The parallel and sequential compositions are used to interpret the AND and SAND refinements, respectively. OR refinements are simply interpreted as the union of the sets of SP graphs corresponding to their children. Each SP graph belonging to the set of SP graphs interpreting a tree corresponds to a way of achieving the goal of the root of the tree. An example of a SAND attack tree and its SP semantics is given in Figure 8. The SP semantics is a conservative extension of the multiset semantics for classical AND/OR attack trees of [START_REF] Mauw | Foundations of Attack Trees[END_REF]. The SP semantics equips the multisets of the multiset semantics with a partial order encoding which of the actions need to be performed sequentially.

Path semantics

The goal of the work presented in [APK17] by Audinot et al. is to verify the correctness of an OR/AND/SAND attack tree with respect to the analyzed system represented as a transition system. In this paper, the authors introduce a novel way of labeling the attack tree nodes and a new semantics for attack trees which is based on paths in the underlying transition system. This allows them to define four correctness properties describing how well the children of an attack tree node refine the node's goal, in the context of a given system. The paper establishes the theoretical complexity of checking the introduced correctness properties. Audinot et al. use transition systems to model real-life systems. A transition system [START_REF] Robert | Formal verification of parallel programs[END_REF] is an operational state-transition model with non-deterministic transitions. In [START_REF] Audinot | Is My Attack Tree Correct[END_REF], the states of the transition system are labeled with propositions that express possible configurations of the real-life system, and the transitions correspond to the actions of the attacker. Attack trees considered in this work make use of the same set of propositions as the underlying transition system. Each node of an attack tree is labeled with a so called goal, expressed with the help of two propositions: the initial configuration representing the situation before the node's attack starts (preconditions), and the final configuration, describing the situation to be reached (postconditions). These pre-and postconditions characterize the states of the transition system from which the attacker can start and where they can end their attack. The nodes' goals are not necessarily independent.

Contrary to the existing formalizations of attack trees, the semantics of the trees considered by Audinot et al. relies on paths in the underlying transition system and not on the collection of the attacker's actions. The semantics of a node is defined as a set of paths in the transition system linking a state where the initial configuration of the node's goal is satisfied with a state where the final configuration is valid. The semantics of a disjunctive (OR), conjunctive (AND), and sequential (SAND) composition of nodes is defined using respectively the union, the parallel composition, and the concatenation of the paths belonging to the semantics of its components. For instance, a conjunctive composition of several goals is realized if there is a path that can be decomposed into (possibly overlapping) paths that realize each of these goals. Such a view disallows any kind of parallelism in the execution model. The correctness of an attack tree refinement is then defined by comparing the se-mantics of a parent node with the semantics of its refinement, i.e., the semantics of the combination of its children using the parent node's operator. The following four correctness properties are introduced: meet -when the intersection between the node's semantics and the semantics of its refinement is non-empty; under-match -when the semantics of the refinement is included in the semantics of the parent node; over-matchwhen the semantics of the node is included in the semantics of its refinement; and match when the semantics of a node is equal to the semantics of its refinement. The complexity of verifying the four correctness properties is summarized in Table 2. The verification procedures have been implemented in the ATSyRA Studio tool [ats18]. The authors of [START_REF] Audinot | Deciding the non-emptiness of attack trees[END_REF] follow-up on the work initiated in [START_REF] Audinot | Is My Attack Tree Correct[END_REF] by providing tight bounds for the complexity of deciding the non-emptiness of the path semantics of an attack tree. The non-emptiness problem is shown to be NP-complete for arbitrary attack trees, and NL-complete for attack trees without AND refinements.

Sequence semantics

A common approach in the attack trees literature is to provide a reader with an intuitive explanation of the rules of goals' achievement, and then to proceed directly with defining a semantics for trees (as, e.g., in the works described in Section 3.1.1 -3.1.3 or in [START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF]). The achievement rules are rarely formalized independently of a semantics; rather, the starting point is a semantics, and it is assumed that the semantics does describe the ways in which the root goal of a tree can be achieved. In the case of semantics involving basic actions of the attacker, e.g., the multiset semantics or the SP semantics, further relations between the root goal and the attacks present in the semantics are almost never studied. Such relations are the main focus of Mantel and Probst in [START_REF] Mantel | On the Meaning and Purpose of Attack Trees[END_REF]. The authors of [START_REF] Mantel | On the Meaning and Purpose of Attack Trees[END_REF] aim at introducing a framework in which numerous connections between the attacks and the root goal of an attack tree can be formally specified. Relying on a description of the system under consideration and formalization of the attacker's goals using propositional formulae , the authors provide means for defining various criteria for attacks to be successful in scenarios modeled with trees.

The trees considered in [START_REF] Mantel | On the Meaning and Purpose of Attack Trees[END_REF] are SAND attack trees, in which the leaf nodes represent basic actions of the attacker. Any finite, non-empty sequence of the attacker's actions is an attack; attacks relevant to a given tree are gathered in its semantics, which we will call sequence semantics 2 . The sequence semantics of a SAND attack tree is created using a bottom-up procedure similar to the one used for the SP semantics. The semantics of a leaf node is a singleton consisting of a sequence whose only element is the node's label (attacker's action). Attacks belonging to the sequence semantics of an OR node are the attacks that belong to the semantics of at least one of the node's child nodes. The semantics of an AND node is obtained by interleaving the attacks belonging to the semantics of the node's child nodes. That is, an attack belongs to the sequence semantics of an AND node if it can be partitioned into subsequences, in such a way that each of the subsequences belongs to the sequence semantics of one of the child nodes of the node. Finally, the attacks in the semantics of the child nodes are concatenated in order to obtain attacks in the semantics of their parent SAND node.

To analyze connections between the attacks in the sequence semantics and the goals that the nodes of the tree are labeled with, the authors of [START_REF] Mantel | On the Meaning and Purpose of Attack Trees[END_REF] rely on a description of the system in the context of which the tree is analyzed. The minimal viable description of the system is a set of states, with state being a function that assigns values to the system's locations. The attacker's goals are then modeled with propositional formulae parameterized by locations. Intuitively, a goal modeled with a formula is achieved, if the system is in a state in which this formula is satisfied. Finally, the possible interactions of the attacker with the system (realizations of the security scenario) are modeled as sequences of alternating states and the attacker's actions, starting with a state. In the remainder of this section we will call such sequences traces.

Formalization of the attacker's goals using propositional formulae allows for specifying what does it mean for the goal to be achieved in a trace (that is, in a particular realization of the scenario), and for introducing two types of attack occurrences in a trace. Arguing that an occurrence of an attack in a trace and a goal being achieved by a trace constitute the minimal sensible criterion for an attack being successful w.r.t. the attacker's goal, Mantel and Probst specify three degrees of freedom in defining a success criterion. Called purity, persistence, and causality, these degrees allow for making the definition of achieving the root goal more specific. For instance, one could consider an attack occurring in a trace to be successful only if no other actions are executed in between the executions of the actions belonging to the attack (high degree of purity), or if, once satisfied in some state in a trace, the root goal remains satisfied in each of the following states (high degree of persistence).

The whole framework sketched above relies on a formal description of a system. Such description is the starting point in some of the existing approaches for semi-automatic generation of attack trees (e.g., [START_REF] Vigo | Automated generation of attack trees[END_REF][START_REF] Marieta | Attack tree generation by policy invalidation[END_REF]; see also [START_REF] Wide L | Beyond 2014: Formal methods for attack tree-based security modeling[END_REF] for an overview of methods for attack trees generation). A combination of such approaches with the framework developed in [START_REF] Mantel | On the Meaning and Purpose of Attack Trees[END_REF] could be the first step in a meaningful methodology for analysis of security with the help of attack trees, which could be followed, e.g., by application to the created model some of the existing methods for quantitative analysis of trees. We finish this section with noting that the sequence semantics does not interpret repeated basic actions as clones. Furthermore, in contrast to the SP semantics, it does not allow for reasoning about attacks in which some of the actions could be executed in parallel.

Quantitative analysis of security using attackdefense trees

To fully benefit from the process of security modeling using attack-defense trees, semantic analysis, that, e.g., exhibits possible attacks against a system and highlights its vulnerabilities, should be accompanied by a quantitative analysis of the modeled scenario. One of the common ways of doing this is to employ attribute domains and the bottom-up evaluation of attributes [KMS12, BKMS12, KMRS14, HMT17]. Another way is to transform the tree into another formal object, such as an automaton [GHL `16, HJL `17] or a stochastic two-player game [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF], and to perform analysis on the resulting object.

In this section, we provide an overview of some of the attack tree-based methods for quantitative analysis of security. We begin with the works [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF] of Buldas et al. and [AN15] of Aslanyan and Nielson, which are closely related to the analysis framework based on attribute domains. They tackle the same problems that we are interested in: the problem of attributes evaluation in the presence of clones, and the problem of multiobjective quantitative analysis of scenarios modeled with attack-defense trees. We present these works in Section 3.2.1 and 3.2.2, respectively. In the next two sections we give a flavor of the second approach, the one involving transformation of an attack-defense tree into another formal object. An analysis method based on stochastic two-player games is described in Section 3.2.3. In Section 3.2.4 we give an overview of selected works involving stochastic timed automata. Section 3.2.5 is devoted to a narrow description of some of the approaches to the problem of multi-parameter analysis of security using attack-defense trees, and to a comparison between them and the framework that we develop in Chapter 5.

Approximation of the minimal cost of an attack in the presence of clones

The focus of Buldas et al. in [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF] is to provide proofs that for some attack trees no profitable attacks exist. Formally, the problem is addressed by determining whether the cost of a cheapest attack is greater than a given threshold. This is partially achieved by evaluating a lower bound for the cost of a cheapest attack via a combination of a weight reduction technique and the bottom-up evaluation of the minimal cost for the proponent attribute.

This work considers standard AND/OR attack trees that might contain repeated basic actions. Attack trees are modeled with monotone Boolean functions over propositional variables representing successful executions of particular basic actions by the attacker. An attack in a tree is a minterm of the corresponding formula, i.e., a conjunction of some of the variables that implies the truth of the whole formula. Given a weight function w that assigns non-negative, real values to the propositional variables, the cost of an attack is the sum of weights of its variables3 . For a tree Φ, a weight function w, and a profit threshold K, the aim is to determine whether it is profitable for the attacker to execute an attack, i.e., whether the weight of a cheapest attack in Φ, denoted with wpΦq, does not exceed K. This problem can be formulated in terms of the weighted monotone satisfiability problem, which is known to be NP-complete [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF]. To bypass the complexity of this problem, the authors of [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF] propose a method for computing a lower bound for wpΦq, which is then compared with K. The quality of the obtained lower bound is indicated by the relative error of the method, i.e., by the ratio of the difference between the upper bound and the lower bound to the lower bound.

The lower bound for wpΦq is obtained in two steps. First, a weight reduction technique is employed. For every propositional variable x that appears multiple times in the formula Φ, each of its occurrences is replaced with a new variable, and the weight of x is distributed among the new variables, i.e., the sum of weights of the new variables is equal to wpxq. Information on how the weights of repeated variables of Φ should be distributed among their occurrences is called a certificate for Φ. In the propositional formula obtained after this step, every variable appears exactly once. As we shall prove in Chapter 4, the exact cost of the cheapest attack in this new tree can be obtained via the bottom-up evaluation. This exact cost is computed in the second step of the method. It provides a lower bound for wpΦq. Furthermore, Buldas et al. prove that if in every subformula of the form G ^F of Φ the subformalae G and F have at most one variable in common, then there exists a certificate for which this lower bound is actually equal to wpΦq. If the lower bound is greater than the profit K, then it is not profitable for the attacker to conduct an attack.

Once a certificate for Φ is known, it is computationally easy to verify it, that is, to check whether the lower bound for the cost of the cheapest attack in Φ that it provides exceeds K. The choice of a certificate that would achieve the best approximation of wpΦq remains problematic. It is worth noting that the exact value of wpΦq can be obtained using methods presented in Chapter 4, in a time linear in the number of nodes of a tree and exponential in the number of repeated basic actions. A method for extracting an attack the cost of which is equal to wpΦq is also described in Chapter 4.

Pareto efficient strategies in attack-defense trees

In [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF], Aslanyan and Nielson provide a formal approach to the problem of multiparameter optimization in attack-defense trees. Every set of basic actions of the actors (called strategy throughout this section) is assigned a vector v " pv 1 , . . . , v k q of k ě 1 values. Some of the values might represent costs associated with execution of the actions of the proponent that belong to a given strategy. Among them there might also be the probability of the root goal being achieved when the strategy is executed (probability of success). The aim is to determine the strategies that achieve the root goal and optimize all of the values at once. Such optimal strategies are defined in terms of Pareto efficiency. A strategy is optimal if its corresponding vector v is Pareto efficient in the set of vectors corresponding to all strategies, i.e., if every other vector that offers an improvement w.r.t. v on at least one coordinate entails a worsening on some other coordinate.

The underlying assumption of the whole framework is the independence of basic actions performed by the actors. The main focus is put on the class of trees that do not contain clones, called linear trees by the authors. The basic model of attack-defense trees introduced in [KMRS14] is extended with a negation operator, which allows for capturing the situation in which execution of an action by an actor makes it impossible for them to perform some other action. Aslanyan and Nielson use this operator also for defining a specific class of attack-defense trees, called polarity-consistent trees (PCTrees), in which multiple occurrences of basic actions are allowed under some constraints.

Each of the basic actions is assigned two probability values: a probability of achieving the goal it represents in the case of attempted execution, and a probability of achieving the goal in the case when the action is not executed (in the Boolean case, where the problem of satisfiability of the root goal is tackled, these values are 1 and 0, respectively). Furthermore, each of the actions is decorated with a vector c " pc 1 , . . . , c m q of m ě 0 realvalued costs. In this setting, two approaches to the problem of determining Pareto optimal strategies that maximize the probability of success and minimize costs are considered. In the first one, called semantic evaluation, the probabilities and costs corresponding to all possible strategies (with the cost of a strategy being a coordinate-wise sum of costs of the actions that constitute the strategy) are computed, and only then the Pareto optimal values are selected. This method has the drawback of high complexity, due to the fact that the number of strategies in an attack-defense tree is exponential in the size of the tree. To overcome this difficulty, the authors of [AN15] develop an alternative method, which they call algorithmic evaluation. For the case when m " 0, this method is a combination of two standard bottom-up procedures, and determines the lowest and the highest values of probability of success in a linear tree, in the time linear in the size of the tree. Boolean version of this problem is solved similarly in the class of PCTrees. In the Boolean variant the result reflects the influence of the actions of the other actor on the actions of the root actor. For instance, the result can highlight the fact that the root goal is always achieved, no matter what the other actor does, or that the other actor can select actions that ensure that the root goal cannot be achieved by the root actor. The algorithmic evaluation method in the case of m " 1, that is, in the presence of both probability and a single cost, propagates up to the root of a tree only the Pareto efficient values. In a linear tree, the result obtained at the root coincides with the result of the semantic evaluation, and, again, is obtained in the time linear in the size of the tree. The computation of the set of Pareto optimal solutions for the probability and cost parameters has been automated in the Attack Tree Evaluator tool (ATE) [START_REF] Aslanyan | presentation of a tool developed for the EU project TREsPASS[END_REF][START_REF] Aslanyan | Stochastic Model Checking of Socio-Technical Models[END_REF].

It is worth noticing that the complexity of the algorithmic evaluation increases with the growth of the number m of costs associated with the basic actions, i.e., for any fixed m there is an attack-defense tree T of size linear in m and with the number of unique Pareto optimal strategies exponential in the number of nodes of T . For instance, for an even m, the tree T " AND p pOR p pb 1 , b 2 q, OR p pb 3 , b 4 q, . . . , OR p pb m´1 , b m qq has n " 3{2 m `1 nodes. Set the probability of successful execution of each of the actions to 1, and, for i P t1, . . . , mu, let the cost of execution of the action b i be a vector assuming 1 on the ith coordinate and 0 on each of the remaining m ´1 coordinates. It is not difficult to see that every set of the form tb i 1 , b i 2 , . . . , b i m{2 u, where i j P t2j ´1, 2ju, is Pareto optimal, and that the value corresponding to such set is unique. The number of such strategies is 2 m{2 " 2 pn´1q{3 .

In the framework of [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF] the possible behavior of the actors is described by sets of actions that they execute. This description does not take the order of the actions' execution into account. To additionally capture the order of execution of actions, Aslanyan et al. develop a framework based on stochastic two-player games, in [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF] (see Section 3.2.3). Contrary to the approaches for multi-parameter optimization in attackdefense trees based on timed automata (see Section 3.2.4), the methods presented in [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF] do not capture the possibility of a single action being executed multiple times.

The work of [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF] served as the main motivation for our research on the multiparameter optimization in attack-defense trees. In Chapter 5, we provide a general framework for Pareto-based analysis of security scenarios modeled with attack-defense trees. Contrary to the work of Aslanyan and Nielson, our framework allows for optimization of parameters belonging to a wide class, including maximal probability for the proponent and minimal cost for the proponent attributes, and can be employed for analysis of trees containing clones. To overcome the limitations of usual static analysis of scenarios modeled with attackdefense trees, Aslanyan et al. propose a more dynamic approach in [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF]. The formalism of attack-defense trees is extended with sequential conjunctive and sequential disjunctive nodes, to capture temporal or causal dependencies between the goals of the actors. With the basic actions being given an assignment of cost of attempted execution and probability of successful execution, the aim is to synthesize strategies for the actors that satisfy given constraints on the two parameters. Intuitively, a strategy provides an actor with information on what actions to perform, as well as in which order or under which circumstances particular actions should be executed. Formally, the strategies are represented as decision trees. They are derived from a specific stochastic two-player game (STG) [START_REF] Neyman | Stochastic Games and Applications[END_REF] that the underlying attack-defense tree is transformed into. The whole framework is sketched in Figure 9.

Stochastic game interpretation of attack-defense trees

In order to analyze an attack-defense tree, taking the order in which actions are executed into account, the authors of [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF] propose a way of transforming the tree into an STG. To explicitly reason about strategies available to the players in the stochastic game, they use probabilistic model checking techniques for stochastic games based on the probabilistic alternating-time temporal logic with rewards (rPATL) [CFK `13a]. This allows for expressing and answering questions such as "can the defender ensure that the probability of a successful attack is less than a given threshold?" or "what strategy of the attacker maximizes the probability of a successful attack?". An extension of rPATL [CFK `13b] is employed to synthesize memoryless strategies (or verify their existence) satisfying given constraints on both parameters under consideration, i.e., a bound on the probability of a successful attack and a bound on the expected cost of implementing a strategy by one of the actors. The actual analysis of the game is performed by the PRISM-games tool [START_REF] Kwiatkowska | Prism-games 2.0: A tool for multi-objective strategy synthesis for stochastic games[END_REF]. Apart from answering the above-mentioned questions, the tool can also present the Pareto optimal strategies (cf. Section 3.2.2; note however, that here the expected, and not the exact, cost is considered).

Strategies of the actors in an attack-defense tree are intuitively represented using a variant of decision trees. Given a pair of strategies to be implemented by the actors, the possible realizations of the modeled scenario are represented as a discrete-time Markov chain (DTMC) [START_REF] Privault | Discrete-time markov chains[END_REF]. The equivalence between those strategies and the ones originating from the corresponding STG, as well as ways of obtaining the former given the latter, is presented in [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF]. Finally, Aslanyan et al. implement a prototype tool that translates an attack-defense tree into a specification of the corresponding STG that is accepted as input by the PRISM-games tool.

The presented framework is developed under the assumption that the sequential nodes present in a tree cannot have non-sequential nodes among their ancestors. For the rest of this section let us refer to a maximal subtree of an attack-defense tree that does not contain sequential nodes as simply subtree. We observe that the authors of [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF] do not explicitly state the way in which they interpret multiple occurrences of a single basic action in a tree. However, one can deduce from the procedure constructing an STG that multiple nodes labeled with the same basic action and belonging to the same subtree are interpreted as the same single instance of the action. On the contrary, multiple occurrences originating from different subtrees are interpreted as distinct instances of the action.

From the complexity perspective, the approach of [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF] does not manage to escape the state space explosion problem. In the simplest case of an AND/OR attack tree with n basic actions, there are n `2n `3 states in the resulting stochastic game, which seems to make the framework not usable in practice.

Attack-defense trees analysis with timed automata

The main goal of the framework developed in [GHL `16] is to model temporal behavior of the attacker in an attack-defense tree and to exploit this modeling for the purpose of quantitative analysis of the underlying attack-defense scenario. Gadyatskaya et al. propose a way of encoding the actors and their basic actions as networks of timed automata [START_REF] Alur | Automata for modeling real-time systems[END_REF]. Such a network is then provided as input to the Uppaal model checker [BDL04, LPY97], which allows for extracting strategies of the actors satisfying particular properties, as schematized in Figure 10. The standard model of attack-defense trees with OR and AND refinements only is considered. The success or failure of the attacker in a tree T , when the attacker has executed set of actions A and the defender the set of actions D, is defined as the value of achieved T prootpT q, A Y Dq. First, an attack-defense tree is used to derive a directed labeled graph, called by the authors of [GHL `16] an attackdefense graph. This graph represents possible realizations of the scenario modeled by the tree, i.e., combinations of all sets of actions executed by the defender with all potential sequences of the actions executed by the attacker. The attack-defense graph is used to define the attacker's profile, which models the capabilities (what are the actions that the attacker can execute and what are the properties of their execution times) and preferences (the probability that a given action is chosen) of the attacker in any situation that can occur in the scenario. Formally, the attacker is modeled as a timed transition system [START_REF] Henzinger | Timed transition systems[END_REF] equipped with a description of its non-deterministic behavior. The attack-defense graph and the profile of the stochastic attacker are combined to create a stochastic timed transition system that models possible realizations of the scenario.

Given a set of actions executed by the defender, and taking into account the stochasticity of the attacker, the probability of successful execution of basic actions, and the cost of attempting their execution, Gadyatskaya et al. derive explicit formulae for the probability of the attacker's success, and the expected cost within a given time bound. This naturally leads to the problem of choosing the attacker's profile that optimizes these values.

The final transition system is encoded using network of stochastic timed automata, in a way that ensures that the runs of the network correspond to sequences of transitions in the system. The encoding is performed in a modular manner, i.e., the network consists of an automaton that models the attacker, an automaton modeling the defender, and an automaton for each of the basic actions of the attacker, that models possible outcomes of executing the action. The authors of [GHL `16] implemented the encoding procedure, and the implementation outputs a specification of the network that is accepted as input by the Uppaal model checking engine [START_REF] Behrmann | A tutorial on uppaal[END_REF], [START_REF] Kim Guldstrand Larsen | UPPAAL in a nutshell[END_REF]. Using Uppaal, it is then possible to, e.g., determine the probability of a successful attack or the expected cost of succeeding (for a specific attacker profile) within a given time bound.

The approach from [GHL `16] is expanded upon by Hansen et al.,in [HJL `17], with three novelties. First, a dependency between the total cost of execution of an action and the time spent on the execution of the latter is introduced. Instead of being equipped with a real value of cost, as in [GHL `16], every basic action in [HJL `17] is assigned a relative cost of execution per time unit. Second, Hansen et al. formalize a profile of a cost-preserving attacker. The probability of a given action being executed by a costpreserving attacker depends on the relative cost of the action and the maximal possible time needed for its execution. The lower the impact of the execution of an action on the attacker's budget, the more likely the attacker is to execute the action. Since a costpreserving attacker might not behave in a way that maximizes the probability of success, a parametrization of such an attacker is proposed. In the case of the parametrized costpreserving attacker, the probabilities based on the impact of the execution of an action on the attacker's budget are additionally weighted. Finally, a method for selecting a configuration of parameters that minimize the expected cost of an attack in a given tree and under given stochastic defender is proposed. For a given set of configurations of parameters, a number of simulations of the attack-defense scenario is performed for each of the configurations, and the results (costs of success) are subject to analysis of variance. As long as the analysis of the variance detects differences between the sets of results, some of the configurations are being removed, additional simulations are performed for the remaining configurations, and the results are tested again. When no differences are detected, the results of the simulations are assumed to originate from identically distributed random variables. In particular, it is assumed that all of the remaining configurations of the parameters yield the same (optimal) expected cost of the attacker being successful within the given time bound.

In order for the results of the analysis proposed in both [GHL `16] and [HJL `17] to be meaningful, the underlying attack-defense tree should satisfy some properties, which seem to be implicitly assumed. Computations of the probability of the attacker's success rely on the assumption of mutual independence of all basic actions. Furthermore, if the actions under an AND node of the attacker can be executed in parallel, this information is lost in the automata interpretation of the tree, since the final behavior of the attacker is represented as a sequence of actions. Finally, it is assumed that every action of the attacker can be executed an unbounded number of times, until it is completed successfully.

Multi-parameter analysis of security using attack-defense trees

The works presented in Section 3.2.2-3.2.4 provide ways of analyzing security scenarios modeled with attack-defense trees while taking multiple parameters (or attributes) into account simultaneously. In this section, we briefly describe some of the other possible approaches to this task, and compare them with the framework that we develop in Chapter 5. We limit this section to the works concerned with multi-parameter quantitative evaluation and attack-defense trees possibly containing clones.

One way of addressing the problem of multi-parameter quantitative analysis of security using attack tree-based models is to construct an attribute being a combination of several relevant elementary parameters. An example of such an attribute is the expected outcome of the attacker, considered by Jürgenson and Willemson in the context of attack trees in [START_REF] Jürgenson | Computing exact outcomes of multiparameter attack trees[END_REF]. The expected outcome represents monetary profit of the attacker, expressed in terms of the gain of the attacker in case the attack succeeds, the costs of the attack, its success probability, as well as the probability of being caught, and the related penalties.

Similarly as [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF], this work uses Boolean functions as the underlying formal model of attack trees. The expected outcome's value is computed for all valuations satisfying the Boolean function representing an attack tree, and the solution with the highest value is retained as the outcome that the attacker can get from performing an attack. Since the logical operators used by Boolean functions are idempotent, repeated basic actions are treated in [START_REF] Jürgenson | Computing exact outcomes of multiparameter attack trees[END_REF] as clones. Due to the necessity of checking all relevant valuations, the complexity of the solution from [START_REF] Jürgenson | Computing exact outcomes of multiparameter attack trees[END_REF] is higher than the complexity of the framework presented in Chapter 5.

In [START_REF] Edge | Using Attack and Protection Trees to Analyze Threats and Defenses to Homeland Security[END_REF], Edge et al. discuss how to combine the probability, expected cost, and impact parameters into a metrics called risk. The individual parameters are propagated using the standard bottom-up approach, and the risk at each node of an attack tree is then computed according to the formula pprobability{costq ¨impact. A simple analysis of the bottom-up propagation rules for probability and cost used in [START_REF] Edge | Using Attack and Protection Trees to Analyze Threats and Defenses to Homeland Security[END_REF] implies that they are not suited for trees containing clones.

More recently, several approaches exploiting model checking techniques have been proposed to address the problem of multi-parameter quantitative evaluation on attack tree-based models. The focus of Aslanyan and Nielson in [START_REF] Aslanyan | Model checking exact cost for attack scenarios[END_REF] is on attack trees with the exact cost4 and the probability parameters. Attack trees are transformed into Markov decision processes with reward structure, and erPCTL5 queries, such as "what is the maximum probability of an attack with the cost at most c?" are answered using probabilistic model checking. Compared to the framework of Chapter 5, the approach developed by Aslanyan and Nielson deals with two-parameter evaluation (exact cost and probability) only, and similarly to [START_REF] Edge | Using Attack and Protection Trees to Analyze Threats and Defenses to Homeland Security[END_REF], it does not seem to be suited for attack trees containing repeated labels.

In [START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF], Kumar et al. consider attack trees with basic actions decorated with cost structures modeling time, skills, damage, and difficulty. Attack trees are translated into priced timed automata which are then given to the Uppaal Cora model checker where they are queried for quantitative properties of interest expressed with weighted computation tree logic (CTL) queries. The objective is to provide an effective way of computing the necessary resources (e.g., time, skills) and the corresponding attack paths leading to the achievement of the root goal. This solution allows the authors to deal with two-parameter optimization using an iterative procedure. The method is suitable for attack trees with repeated basic actions, but cannot be applied to attack-defense trees and does not tackle the probability attribute. In his Ph.D. thesis [START_REF] Kumar | Truth or Dare: Quantitative security risk analysis via attack trees[END_REF], Kumar automatizes this procedure with the help of the ATTop tool [KSR `18], but does not provide time measurements. Interestingly, for the attack tree considered in [KSR `18], having 12 nodes and no repeated basic actions, the authors state that the ATTop tool needed more than 6 seconds for computing an attack of minimal time, i.e., for performing the first step of the iterative method for determining Pareto optimal attacks. In the light of the results presented in Section 5.3.2, it thus seems that our solution outperforms the method of [START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF] (on inputs suitable for both methods).

Model checking of attack-defense trees decorated with the cost of attempted execution and the success probability is the focus of Aslanyan et al. in [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF], as detailed in Section 3.2.3. To capture temporal or causal dependencies between the goals of the actors, sequential conjunctive and sequential disjunctive refinements have been added to attack-defense trees to complement the two standard refinements OR and AND. The expressive power of attack-defense trees from [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF] is thus richer than in the case of our work. However, from the perspective of quantitative analysis, our framework of Chapter 5 is more general in a sense, because [START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF] is limited to the evaluation of two specific attributes only, namely expected cost and success probability.

In the works described in Section 3.2.4 it is assumed that the attacker may try executing each of their actions several times, until executed successfully, with a certain probability of succeeding, which is not the case in our work. On the other hand, the Uppaal-based approach of [GHL `16] is tailored to specific attributes, namely cost, probability, and time, whereas the solution that we propose in Chapter 5 can be applied to a wide class of attributes whose domains satisfy the assumptions of Theorem 5. Among all existing solutions for multi-parameter evaluation of security on attackdefense trees, the approach introduced by Aslanyan and Nielson in [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF], described in Section 3.2.2, is the closest to our framework of Chapter 5. To the best of our knowledge, this is the only work considering Pareto optimization on attack-defense trees using the bottom-up approach. The advantages of our framework over the approach of [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF] are that, first, it allows for computing strategies that optimize a number of different parameters, and second, that it can be applied to attack-defense trees containing clones.

Selection of countermeasures in attack-defense scenarios

Finding an optimal way of protecting a system is crucial from several perspectives. A security expert will mostly be interested in identifying a set of countermeasures that can cover the largest possible part of attack surface. The system owner will rather take an economic point of view and aim at spending on security only as much as it is really necessary. By estimating the cost of an optimal set of countermeasures, the security expert can provide to the system owner an impartial argument about the minimal budget that should be devoted for securing the system. The optimization criteria of interest for security expert or a system owner can be diverse. On the one hand, they may want to select the countermeasures in such a way that the remaining uncountered attacks are as expensive for the attacker as possible (attacker investment problem), or that the number of countered attacks is maximal (attack coverage problem). Both these problems fall into the class where the objective is to maximize a certain function that quantifies possible attacks. On the other hand, the aim could also be to minimize the defender's investment under some constraints (defender investment problem). Classically, if one is able to express which countermeasures disable which attacks, the aforementioned problems can be addressed with the help of integer linear programing, see, e.g., [RDR12, Saw13, ZALT19] and references therein.

In this section, we focus mostly on works that aim at extracting the above-mentioned pairs (attack, countermeasure) from attack-defense trees. Similarly as in the previous section, we briefly compare them with our approach to this problem, developed in Chapter 6, in a way that does not require being familiar with the approach. Here, we would like to only emphasize the fact that our method can be applied to any attack-defense tree, which is not the case in any of the works described in the following paragraphs.

In [START_REF] Roy | Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees[END_REF], Roy et al. use attack countermeasure trees (ACT), which are attack trees augmented with countermeasure nodes composed of a detective and a mitigating part. They exploit what can be seen as our method of Chapter 6 in the special case of attack trees in which to each node of the attacker a single non-refined countermeasure node can be attached. In other words, this modeling framework does not allow for nodes of the opponent to be refined or countered. The authors propose a linear programming-based solution to the problem of minimizing defender's investment while covering some of the attacks, and the problem of maximizing the defender's return on investment (ROI). While the former can be applied to trees containing clones, the latter cannot, as it relies on the bottom-up computation of success probability that is known not to work in trees with clones. The main research focus of [START_REF] Roy | Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees[END_REF] is on algorithms for solving the optimization problems, while we mostly concentrate on extracting information on reasonable ways of achieving the root goal and on reasonable behavior countering these ways from trees.

Maximization of the defender's ROI in scenarios modeled with attack-defense trees has also been addressed in [START_REF] Muller | Fast and optimal countermeasure selection for attack defence trees[END_REF]. Trees considered by Muller et al. in [START_REF] Muller | Fast and optimal countermeasure selection for attack defence trees[END_REF] are assumed to have no clones of the proponent, and, similarly as in [START_REF] Roy | Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees[END_REF], the nodes of the opponent can have no children, i.e., they can be neither refined nor countered. The main contribution of [START_REF] Muller | Fast and optimal countermeasure selection for attack defence trees[END_REF] is a branch-and-bound algorithm that iterates in a nonnaive way over sets of countermeasures that the opponent can implement, in the search of the one that maximizes the value of the opponent's ROI.

The framework described in Section 3.2.3 could also be applied to AND/OR attackdefense trees for the purpose of optimal selection of countermeasures. That is, an attackdefense tree could be transformed into a stochastic two-player game, in which an optimal strategy for the defender, corresponding to an optimal set of countermeasures in the modeled scenario, could be synthesized. This method, however, can only be applied to small trees: as detailed in the last paragraph of Section 3.2.3, the size of the resulting game is exponential in the size of the tree.

The complexity of our framework described in Chapter 6 originates from the fact that the dependencies between basic actions of the actors are encoded in attack-defense trees; they are complex, and to make use of them, one needs to decode them. In the approaches developed for optimal selection of countermeasures in [START_REF] Brown | Defending critical infrastructure[END_REF][START_REF] Khouzani | Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs[END_REF], the relations between behaviors of the actors are simple: in [START_REF] Brown | Defending critical infrastructure[END_REF], every attacker's actions disables a set of defender's actions, and in [START_REF] Khouzani | Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs[END_REF], every defender's action impacts success probability of each of the attacker's actions. This simplicity allows for an immediate formulation of the optimization problems as bilevel mixed integer programming (MIP) programs [START_REF] Moore | The mixed integer linear bilevel programming problem[END_REF][START_REF] Wood | Deterministic network interdiction[END_REF], which can be solved using standard methods. We note that, in the light of Definition 21 of goal achievement, the root node of an attack-defense tree being achieved corresponds to a propositional formula being satisfied. The optimization problems considered in Chapter 6 could thus have been expressed as variants of the satisfiability problem, which in turn could be directly encoded as MIP programs [START_REF] Hooker | A quantitative approach to logical inference[END_REF]GWH `18]. Since the goals of the actors are conflicting (e.g., the attacker wants to minimize, and the defender wants to maximize the value of the objective function), and the defender is the first one to act, the result of such encoding would be a bilevel MIP problem resembling the ones considered in [START_REF] Brown | Defending critical infrastructure[END_REF][START_REF] Khouzani | Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs[END_REF]. A standard technique for dealing with bilevel programs involves replacing the inner problem with its dual or the dual of its linear relaxation [START_REF] Wood | Deterministic network interdiction[END_REF][START_REF] Brown | Defending critical infrastructure[END_REF][START_REF] Khouzani | Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs[END_REF]. If the inner problem is a linear programming problem or the integrality gap of its linear relaxation is 1, one eventually obtains a single level optimization problem equivalent to the initial one. In our case, the integrality gap is greater than 1, i.e., the difference between the optimal solution of the final program and the optimal solution of the initial one can not be predicted. Therefore, even though this method would allow for omitting the computationally expensive construction of defense semantics, we decided to pursue the approach yielding the exact optimal solutions. We believe that our framework could thus play an important role in assessing performance of heuristic methods for optimal selection of countermeasures in attack-defense trees developed in the future.

Chapter 4 Evaluation of attributes on attack-defense trees with clones

When discussing the bottom-up evaluation of attributes, we have mentioned on page 37 that it might return incorrect results for attack-defense trees containing clones. This is a widely known issue, motivating the work of [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF] and causing some analysis frameworks to be developed under the explicit assumption of trees not having repeated basic actions [AN15, MHM16, KW17]. The difficulty introduced by the presence of clones can be sometimes bypassed by transforming a tree into another object, and performing quantitative analysis on this object. An example of such approach is the method of evaluation of attributes on the set semantics, defined in [START_REF] Bossuat | Evil twins: Handling repetitions in attack-defense trees -A survival guide[END_REF].

We begin this chapter with a preliminary Section 4.1, in which the notion of the evaluation of attributes on the set semantics is recalled. In the same section, the normal form of the bottom-up evaluation, a useful tool for analyzing parallels between attribute domains, is introduced. In Section 4.2, properties of the set semantics are studied, providing insights into the actual contents of the semantics. We discuss the complexity of the evaluation of attributes on the set semantics, and present conditions under which the result of this evaluation can be quickly obtained using the bottom-up evaluation in Section 4.3. For the case when these conditions are not satisfied, we develop an alternative method for evaluation of attributes. It is described in Section 4.4. Finally, for attributes such as minimal cost for the proponent or maximal probability for the proponent, we tackle the issue of efficiently extracting the optimal strategies, i.e., the ones achieving the optimal value of an attribute, from attack-defense trees. An algorithm solving this problem is presented in Section 4.5. In Section 4.6, we sketch possible applications of the methods developed in the previous sections in fields related to attack-defense trees. Finally, Section 4.7 is devoted to experimental results highlighting the differences between various evaluation procedures. We conclude in Section 4.8

Preliminaries

When introducing a new attribute domain and studying its properties, one might wish to examine its relations with another domain. In such a case, valuable insights can be sometimes obtained by comparing the bottom-up evaluations of the two attributes. To make such comparison straightforward, we employ the term rewriting techniques.

Consider an attribute domain A α " pD α , ', b, b, ', b, 'q with the operations ' and b being associative and commutative, and with b distributing over '. Let β be a basic assignment for α, and let L be the language generated by the grammar t ::" βpbq | 'pt, . . . , tq | bpt, . . . , tq, (

for b P B.

Let Ñ be a reduction relation on L defined as follows: for t, t 1 P A, we say that t Ñ t 1 if t 1 can be obtained from t by replacing the leftmost subterm of t that is in one of the forms bpt 1 , 'pt 2 , t 3 qq, bp'pt 2 , t 3 q, t 1 q with 'pbpt 1 , t 2 q, bpt 2 , t 3 qq or 'pbpt 2 , t 1 q, bpt 3 , t 1 qq, respectively. In other words, the first place in which the distributivity rule of the semiring pD α , ', bq can be applied is identified, and the appropriate rule is applied. Note that this definition implies that for every t P L there is at most one t 1 P L such that t Ñ t 1 . Thus, the reduction Ñ is locally confluent. It is also easy to see that Ñ is terminating. Therefore, by Lemma 2, every element in L has a unique normal form.

Suppose now that during the bottom-up evaluation of α on tree T under the basic assignment β no evaluation of the operations takes place at the intermediate nodes, but rather that the expressions are propagated up to the root of the tree, eventually yielding an algebraic expression, involving the operators ', b and the values assigned to the basic actions. By switching to the prefix notation, the expression becomes a term belonging to the language L. By reducing this term to its normal form and switching back to the infix notation, one obtains an expression of the form

α B pT, βq " pβpb 1 1 q b βpb 1 2 q b . . . b βpb 1 k 1 qq' . . . ' pβpb i 1 q b βpb i 2 q b . . . b βpb i k i qq' . . . ' pβpb n 1 q b βpb n 2 q b . . . b βpb n kn qq, (6) 
where

n Ť i"1 k i Ť j"1 tb i j u " B T .
We call the result of the above procedure the normal form of the bottom-up evaluation α B pT, βq. Note that the attribute domains induced by semirings admit the normal form of the bottom-up evaluation.

Example 24. Let A α " pD α , ', b, b, ', b, 'q be an attribute domain induced by a semiring, let T be the attack-defense tree depicted in Figure 5 and let β be a basic assignment for α. After the first step of the procedure described in the previous paragraph, that is, after propagating algebraic expressions up to the root of T , one obtains the expression α B pT, βq " `βpaq b ppβpd 1 q ' βpcqq ' βpd 2 q ' βpd 3 qq ˘'

' ˆ`βpaq b ppβpd 1 q ' βpcqq ' βpd 2 q ' βpd 3 qq ˘b βpbq b βpd 3 q b βpd 4 q ˙.

Switching to the prefix notation yields term α B pT, βq " ' ˆb `βpaq, 'pβpd 1 q, βpcq, βpd 2 q, βpd 3 qq ˘, b `b pβpaq, 'pβpd 1 q, βpcq, βpd 2 q, βpd 3 qqq, bpβpbq, βpd 3 q, βpd 4 qq ˘˙, which reduces to

α B pT, βq " ' ˆ' `b pβpaq, βpd 1 qq, bpβpaq, βpcqq, bpβpaq, βpd 2 qq, bpβpaq, βpd 3 qq ˘,
b `b pβpaq, 'pβpd 1 q, βpcq, βpd 2 q, βpd 3 qqq, bpβpbq, βpd 3 q, βpd 4 qq ˘˙.

Reducing the last term to its normal form and switching back to the infix notation results in the following normal form of α B pT, βq:

α B pT, βq " `βpaq b βpd 1 q ' `βpaq b βpcq ' `βpaq b βpd 2 q ' `βpaq b βpd 3 q ' `βpaq b βpd 1 q b βpbq b βpd 3 q b βpd 4 q ' `βpaq b βpcq b βpbq b βpd 3 q b βpd 4 q ' `βpaq b βpd 2 q b βpbq b βpd 3 q b βpd 4 q ' `βpaq b βpd 3 q b βpbq b βpd 3 q b βpd 4 q ˘.
The next example provides an illustration of the normal form of the set semantics. The usefulness of the normal form of the bottom-up evaluation will be demonstrated in the remaining sections of this chapter.

To tackle the difficulties in the evaluation of attributes in the presence of clones, Bossuat and Kordy introduced in [BK17] the evaluation of attributes on the set semantics.

Definition 24 (Evaluation of attributes on the set semantics). Let α be an attribute with the attribute domain pD α , OR p α , AND p α , OR o α , AND o α , C p α , C o α q such that the operations OR p α , AND p α and OR o α are associative and commutative. Let T be an attack-defense tree, and let β be a basic assignment for α. The value of α for T under β evaluated on the set semantics, denoted by α S pT, βq, is defined as α S pT, βq :" pOR p α q pP,OqPSpT q ˆCp α `pAND p α q bPP βpbq, pOR o α q bPO βpbq ˘˙.

In the notation α S pT, βq, the subscript S refers to the computation on the "set semantics".

From now on, we shall call the elements of set semantics strategies. The attribute evaluation on the set semantics consists of computing values of the attribute corresponding to particular strategies, and then combining these values using the OR p α operator. This is visible in the following two examples.

Example 26. Consider an attribute domain A α " pD α , ', b, b, ', b, 'q induced by a semiring pD α , ', bq. For a tree T and a basic assignment β for α, the evaluation of α on the set semantics of T acquires the form

α S pT, βq " à pP,OqPSpT q ˆâ `â bPP β α pbq, â bPO β α pbq ˘˙" " à pP,OqPSpT q â bPP YO β α pbq.
Example 27. Consider the tree T from Figure 2 Intuitively, the result obtained in Example 27 seems to be correct: the time needed for execution of any set of actions of the proponent that achieves the root goal when the opponent executes all of their actions is at least 125. We note that in this particular case, the bottom-up evaluation fails, as illustrated in the next example. Similarly as it is the case with the bottom-up evaluation of attributes, the evaluation on the set semantics should be applied with care. In particular, the result of this evaluation method is not meaningful for all attributes. This fact is visible in the following example.

Example 29. Consider the attribute domain A " pr0, 1s, ˝, ¨, ˝, ¨, ', 'q, where p 1 ˝p2 ˝. . . ˝pn :" 1 ´n ź

i"1 p1 ´pi q, p 1 ' p 2 :" p 1 ¨p1 ´p2 q, for p 1 , . . . , p n P r0, 1s and n P N ě1 . This domain has been used in [START_REF] Kordy | Quantitative questions on attack-defense trees[END_REF][START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF] and [START_REF] Eisentraut | Expected Cost Analysis of Attack-Defense Trees[END_REF] for formalizing the attribute called success probability, with the authors of [START_REF] Kordy | Quantitative questions on attack-defense trees[END_REF] stating explicitly that the bottom-up evaluation of this attribute yields meaningful results only in trees with no dependencies between the basic actions. Let T " OR p pa, AND p pa, bqq. Assume that the probabilities of successful execution of actions a and b are ppaq and ppbq, respectively. Furthermore, assume that the actions are independent, i.e., that neither an attempted nor a successful execution of any of the two actions impacts the probability of a successful execution of the other one, and that a successful execution of any of them does not cancel the consequences of a successful execution of the other one.

Following Definition 21 of achievement, there are two sets of actions that achieve the root goal of T : the singleton tau and the set ta, bu. Thus, if the root goal of T is achieved, then the attacker must have executed successfully either the action a or else both actions a and b. In either case, the attacker must have executed successfully the action a. On the other hand, since the singleton tau achieves the root goal of T , should the attacker execute the action a successfully, they will have achieved the root goal of T . It follows that the root goal of T is achieved if and only if the basic action a is executed successfully. Therefore, it seems plausible to conclude that the probability of the attacker achieving the root goal cannot be greater than ppaq.

However, regardless of the intuitive meaning of the attribute corresponding to the domain A, the result of its evaluation on the set semantics of T is

1 ´p1 ´ppaqqp1 ´ppaqppbqq,
and it is greater than ppaq for ppaq, ppbq R t0, 1u.

Therefore, for the attribute domain A, turning to the evaluation on the set semantics is not enough to obtain meaningful results in the presence of clones.

The least that one could require from a method of evaluation of attributes, is that it returns the same result for, possibly syntactically different, trees describing the same attack-defense scenario. This requirement being satisfied by a particular attribute and its evaluation on the set semantics can indicate that the results obtained with this evaluation method of the attribute are meaningful. To be more specific, if for a non-trivial attribute domain1 A α and any two attack-defense trees T 1 and T 2 satisfying SpT 1 q " SpT 2 q the value of α S pT 1 , βq is the same as α S pT 2 , βq for any basic assignment β for α, it seems reasonable to expect that the evaluation of α on the set semantics yields meaningful results.

In [START_REF] Kordy | Attack-defense trees[END_REF], where the authors consider any equivalence relation on the set of all terms produced by the grammar (1) to be a semantics for attack-defense trees, this requirement is formalized for the bottom-up evaluation with the notion of compatibility of attribute domain with semantics for attack-defense trees. Since the result of any evaluation method of attributes on attack-defense trees relies on the tree under consideration and some additional data, such as basic assignment, we generalize the compatibility notion of [START_REF] Kordy | Attack-defense trees[END_REF] as follows.

Definition 25 (Compatibility with an equivalence relation on T). Let X be a set and let f be a function on T ˆX. For " being an equivalence relation on T, function f is said to be compatible with " if for any two trees T 1 , T 2 satisfying T 1 " T 2 the equality f pT 1 , xq " f pT 2 , xq holds for every x P X.

In particular, we say that a function is compatible with the set semantics if it is compatible with the equivalence relation defined on the set T of all trees by T 1 " S T 2 if and only if SpT 1 q " SpT 2 q.

Example 30. Considerations from Example 26 imply that if A α is an attribute domain induced by a semiring, then the evaluation of α on the set semantics, seen as a function defined on the set T ˆtβ : β is a basic assignment for αu is compatible with the set semantics.

While every attribute domain should be examined carefully before employing the evaluation of the corresponding attribute on the set semantics, Example 29 and 30 suggest that the results obtained for the attributes induced by semirings are likely to be meaningful.

Properties of the set semantics

In order to study the properties of the set semantics, we employ the notion of minimal strategy.

Definition 26 (Minimal strategy). Let T be an attack-defense tree. A minimal strategy in T is a pair pP, Oq P 2 B p T ˆ2B o T such that 1. if the proponent executes all the actions from P , and the opponent does not perform any of the actions from O, then the root goal of T is achieved, i.e., for every set O 1 Ď B o T zO the equality achieved T prootpT q, P Y O 1 q " 1 holds, 2. all the actions from P need to be executed when O is not performed in order for the root goal to be achieved: should the proponent perform only a nonempty proper subset of P , the opponent could prevent them from succeeding by executing some of the allowed actions. That is, for every nonempty subset P 1 Ă P , there is a set O 1 Ď B o T zO such that achieved T prootpT q, P 1 Y O 1 q " 0,

none of the actions from

O can be performed by the opponent so that the proponent executing P cannot be prevented by the opponent from succeeding: if only a subset O 2 of O was forbidden, execution of P could be countered by the opponent. That is, if the set O is not empty, then for every subset

O 2 Ă O, there is a set O 1 Ď B o T zO 2
such that the equality achieved T prootpT q, P Y O 1 q " 0 holds.

Intuitively, the non-minimal strategies are the strategies that do not provide any additional insight into the scenario modeled with an attack-defense tree: for every nonminimal strategy describing a way of achieving the root goal, there is a minimal one from which this description can be deduced.

Example 31. Consider again the tree T 1 " OR p pa, AND p pa, bqq from Figure 7a on page 44, whose set semantics is SpT 1 q " tptau, ∅q, pta, bu, ∅qu.

The pair ptau, ∅q is a minimal strategy in T 1 : the condition achieved T prootpT q, tauY∅q " 1 holds, and the remaining two conditions are vacuously true.

The strategy pta, bu, ∅q is not minimal, as it does not satisfy the second condition of Definition 26. Indeed, for P 1 " tau Ď ta, bu, and O 1 " ∅, which is the only subset of B o T z∅, the equality achieved T prootpT q, P 1 Y O 1 q " 1 holds.

On the intuitive level, knowing that execution of only the action a is enough for achieving the root goal allows for deducing that executing both a and b achieves the root goal, too.

The next example illustrates the intuition behind the third condition of Definition 26.

Example 32. Consider the attack-defense tree T " C p pAND p pa, bq, C o pd, bqq. Its set semantics is SpT q " tpta, bu, ∅q, pta, bu, tduqu.

The pair pta, bu, ∅q is a minimal strategy in T . This is the case, since achieved T prootpT q, ta, bu Y tduq " 1, and for P 1 being any of the sets tau and tbu setting O 1 " ∅ yields achieved T prootpT q, P 1 Y O 1 q " 0.

The strategy pta, bu, tduq is not minimal in T , as it does not satisfy the third condition of Definition 26. Indeed, for O 2 " ∅ the only possible choice of O 1 is O 1 " ∅, and the equality achieved T prootpT q, ta, bu Y O 1 q " 1 holds.

Intuitively, knowing that the execution of a and b achieves the root goal regardless of the behavior of the opponent, allows for deducing that the same actions achieve the root goal when the opponent does not execute d.

Finally, we illustrate the notion of the minimal strategy on our running example.

Example 33. Consider again the tree T from Figure 2. As described in Example 23 on page 42 the pairs pP, Oq " ptphish, log&transu, tsmsuq and pP 1 , O 1 q " ptphish, uname, log&transu, tsmsuq both belong to the set semantics of T . It is easy to verify that both pairs satisfy the first condition of Definition 26. Since the set P is contained in P 1 , the pair pP 1 , O 1 q is not a minimal strategy in T : it fails to satisfy the second condition of the definition.

Since there is no opponent in attack trees, each pair belonging to the set semantics of an attack tree has the empty set as its second component. Thus, the elements of the set semantics of an attack tree can be seen as sets of actions. It follows that the minimal strategies in the case of attack trees are the minimal (w.r.t. inclusion) sets of actions of the proponent that achieve the root goal of the tree.

Definition 26 is intentionally verbose, to ensure that it indeed formalizes our intuition behind the minimal strategies. Nevertheless, a simpler characterization of minimal strategies can be derived from it instantaneously. Let T be a tree and let pP, Oq, pP 1 , O 1 q P 2 B p T ˆ2B o T . Assume that pP, Oq ‰ pP 1 , O 1 q, P 1 Ď P , O 1 Ď O and that both pairs of sets satisfy the first condition of Definition 26. It is easy to see that if P 1 ‰ P , then the pair pP, Oq does not satisfy the second condition of Definition 26. Similarly, if O 1 ‰ O, then the third condition of Definition 26 is not satisfied by pP, Oq. This implies the following. The elements minimal in X w.r.t. the partial order ĺ are the minimal strategies in T .

The above formulation will be useful in studying the properties of the set semantics. We will begin with proving that every pair pP, Oq belonging to the set semantics of an attack-defense tree satisfies the first condition of Definition 26, i.e., that for every such pair the root goal is indeed achieved when P is executed and none of the actions from O are executed. Then, we will demonstrate that every minimal strategy in T belongs to the set semantics of T , and that if there are no clones in T , then in fact each of the strategies in T is minimal.

Our proofs rely on the following lemma, which shows that in order to verify whether a set of actions achieves the root goal in a tree, one can use the satisfiability for the proponent attribute (abbreviated as satp; see Table 4) instead of the satisfiability attribute (sat). Since, contrary to the latter, the domain of the former is induced by a semiring, this allows for exploiting the normal form of its bottom-up evaluation. Lemma 3. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, and let P Ď B p T , O Ď B o T . Let β sat and β satp be basic assignments of satisfiability and satisfiability for the proponent attributes, respectively, defined as

β sat pbq " $ & % 1 if b P P Y O, 0 otherwise, β satp pbq " $ & % 1 if b P P or b P B o T zO, 0 if b P O or b P B p T zP.
For every v P V the following holds.

-If actorpvq " p T , then satp B pT, β satp , vq " sat B pT, β sat , vq, -if actorpvq " o T , then satp B pT, β satp , vq " sat B pT, β sat , vq.

In particular, achieved T prootpT q, P Y Oq " satp B pT, β satp q.

Proof. The proof is by induction on the structure of the subdag T pvq. For the base case, assume that v is a non-refined node and that v does not exist. In this case the required equalities follow immediately from definitions of the basic assignments β sat and β satp . We now proceed with the remaining cases.

Case 1. The node v is not refined and v exists.

If actorpvq " p T , then

satp B pT, β satp , vq " β satp pλpvqq ^satp B pT, β satp , vq " β sat pλpvqq ^ sat B pT, β sat , vq " sat B pT, β satp , vq,
where the second of the equalities follows from the definitions of the two basic assignments and the induction hypothesis, and the remaining ones from definitions of the two satisfiability attributes' domains. For the cases when v is a refined node, we let OP " refpvq and children T pvq " tv 1 , . . . , v k u.

Case 2. The node v is refined and actorpvq " p T . 

If v does not exist, then

satp B pT, β satp , vq " satp B pT, β satp , v 1 q OP p satp . . . OP p satp satp B pT, β satp , v k q " sat B pT, β sat , v 1 q OP p sat . . . OP p sat sat B pT, β sat , v k q " sat B pT, β sat ,
satp B pT, β satp , vq " satp B pT, β satp , v 1 q OP o satp . . . OP o satp satp B pT, β satp , v k q " ` sat B pT, β satp , v 1 q OP o sat . . . OP o sat sat B pT, β satp , v k q " `sat B pT, β sat , v 1 q OP o sat . . . OP o sat sat B pT, β sat , v k q " sat B pT, β sat , vq,
where the second equality follows from the induction hypothesis. If v does exist, then

satp B pT, β satp , vq " " C o satp `satp B pT, β satp , v 1 q OP o satp . . . OP o satp satp B pT, β satp , v k q, satp B pT, β satp , vq " C o satp ˆ ` satp B pT, β satp , v 1 q OP o sat . . . OP o sat satp B pT, β satp , v k q ˘, sat B pT, β satp , vq ˘" C o sat `sat B pT, β sat , v 1 q OP o sat . . . OP o sat sat B pT, β sat , v k q, sat B pT, β sat , vq " sat B pT, β sat , vq,
where for the consecutive equalities we used the equality x OP o satp y " p x OP o sat yq, the induction hypothesis, and the equality C o satp px, yq " C o sat p x, yq, respectively.

With the next proposition we establish that each element of the set semantics of a tree indeed describes a way of achieving the root goal of the tree.

Proposition 1. Let T be an attack-defense tree. If a pair pP, Oq belongs to the set semantics SpT q of T , then for every set O 1 Ď B o T zO the equality achieved T prootpT q, P Y O 1 q " 1 holds.

Proof. Recall that the set semantics SpT q is a result of the bottom-up evaluation of the attribute S whose domain is A S " p2 2 B ˆ2B , Y, d, d, Y, d, Yq, where d is the operation defined on page 42, under the basic assignment

βpbq " $ & % `tbu, ∅ ˘( if b P B p T , `∅, tbu ˘( otherwise.
Let O 1 Ď B o T be a set satisfying O 1 Ď B o T zO, and let

β satp pbq " $ & % 1 if b P P or b P B o T zO 1 , 0 if b P O 1 or b P B p T zP.
Lemma 3 implies that achieved T pT, P Y O 1 q " satp B pT, β satp q.

Since both p2 2 B ˆ2B , Y, dq and pt0, 1u, _, ^q are commutative idempotent semirings, the bottom-up evaluations of S and achieved T pT, P Y O 1 q can be represented using their normal forms

SpT q " pβpb 1 1 q d βpb 1 2 q d . . . d βpb 1 k 1 qqY . . . Y pβpb i 1 q d βpb i 2 q d . . . d βpb i k i qqY . . . Y pβpb n 1 q d βpb n 2 q d . . . d βpb n kn qq, (7) 
and achieved T pT, P Y O 1 q " pβ satp pb 1 1 q ^βsatp pb 1 2 q ^. . . ^βsatp pb 1 k 1 qq_ . . .

_ pβ satp pb i 1 q ^βsatp pb i 2 q ^. . . ^βsatp pb i k i qq_ . . . _ pβ satp pb n 1 q ^βsatp pb n 2 q ^. . . ^βsatp pb n kn qq. (8) 
From the definition of the basic assignment β and the operation d it follows that for every i P t1, . . . , nu the ith term

βpb i 1 q d βpb i 2 q d . . . d βpb i k i q
of representation (7) is a set consisting of exactly one pair of sets. Let us denote this term with tpP i , O i qu. Since pP, Oq P SpT q, there is i P t1, . . . , nu such that pP i , O i q " pP, Oq. Thus, under the basic assignment β satp , the corresponding term

β satp pb i 1 q ^βsatp pb i 2 q ^. . . ^βsatp pb i k i q
of representation (8) evaluates to 1, implying that achieved T pT, P Y O 1 q " 1, as required.

Next, we shall demonstrate that among the strategies in an attack-defense tree there are all of the minimal strategies in this tree.

Proposition 2. Let T be an attack-defense tree. If pP, Oq is a minimal strategy in T , then pP, Oq P SpT q.

Proof. Let O 1 " B o T zO.
Since pP, Oq is a minimal strategy, the equality achieved T pT, P Y O 1 q " 1 holds. Let β satp be the basic assignment of the satisfiability for the proponent attribute defined by

β satp pbq " $ & % 1 if b P P Y O, 0 otherwise.
Then, by Lemma 3, achieved T pT, P Y O 1 q " satp B pT, β satp q, and so there is i P t1, . . . , nu such that the ith term of the representation (8) of achieved T pT, P Y O 1 q evaluates to 1. The definition of β satp together with the choice of O 1 imply that

P Y O Ě tb i 1 , b i 2 , . . . , b i k i u.
We will prove that the two sets are actually equal. Towards a contradiction, suppose that this is not the case. Then for

P " P X tb i 1 , b i 2 , . . . , b i k i u, O " O X tb i 1 , b i 2 , . . . , b i k i u,
it holds that P ‰ P or O ‰ O. Suppose first that P ‰ P . Note that the value of the ith term of the representation (8) of achieved T pT, P Y O 1 q is the same as that of achieved T pT, P Y O 1 q. Thus, achieved T pT, P Y O 1 q " 1, contradicting the assumption of pP, Oq being the minimal strategy.

Suppose now that O ‰ O, i.e., that O is a strict subset of O. Then for any r

O Ď B o T zO setting r β satp pbq " $ & % 1 if b P P or b P B o T z r O,
0 if otherwise, yields r β satp ˇˇO " 1, implying that the ith term of representation (8) of satp B pT, r β satp q evaluates to 1. Since achieved T prootpT q, P Y r Oq " satp B pT, r β satp q, by Lemma 3, it follows that achieved T prootpT q, P Y r

Oq " 1. This means that the pair pP, Oq does not satisfy the third condition of Definition 26, in contradiction with the choice of pP, Oq as a minimal strategy in T .

The above reasoning proves that P YO " tb i 1 , b i 2 , . . . , b i k i u. It follows that the ith term of the representation (7) of the set semantics of T is βpb i 1 q d βpb i 2 q d . . . d βpb i k i q " pP, Oq, completing the proof.

Proposition 2 shows that minimal strategies are strategies. Combining it with Corollary 1 leads to the following corollary.

Corollary 2. The minimal strategies in an attack-defense tree T are the minimal elements in SpT q w.r.t. the partial order ĺ defined in Corollary 1.

We finish our characterization of the set semantics by demonstrating that for many trees the converse of Proposition 2 holds, i.e., that in a class of trees with no clones every strategy is a minimal strategy. Proposition 3. Let T " pV, A, L, λ, actor, refq be an attack-defense tree. If there are no clones in T , then every element of the set semantics SpT q is a minimal strategy in T .

Proof. Recall that the set semantics of T is the result S B pT, βq of the bottom-up evaluation of the attribute S whose attribute domain is Y,d,d,Y,d,Yq, where d is the operation defined on page 42, under the basic assignment β defined as

A S " p2 2 B ˆ2B ,
βpbq " $ & % `tbu, ∅ ˘( if b P B p T , `∅, tbu ˘( otherwise.
Informally speaking, we shall prove that for every node v P V , every pair belonging to the intermediate result S B pT, β, vq of the process of the set semantics creation satisfies locally the definition of minimal strategy. That is, relying on Corollary 2, for every v P V we will prove that every element of S B pT, β, vq is a minimal element in S B pT, β, vq w.r.t. the relation ĺ defined by pP 1 , O 1 q ĺ pP, Oq if and only if P 1 Ď P and O 1 Ď O.

Since SpT q " S B pT, β, rootpT qq, the claimed statement will follow.

The proof is by induction on the structure of the subdag T pvq. For the base case, assume that v is a non-refined node and that v does not exist. The required minimality condition is then trivially satisfied, since S B pT, β, vq is a singleton. We now proceed with the remaining cases.

Case 1. The node v is not refined and v exists.

To ease the presentation, for the proof of this case we let b :" λpvq. Case 1.1 actorpvq " p T In this case, definition of the attribute domain A S and the basic assignment β imply that every element of S B pT, β, vq is of the form ptbu, ∅q d pP 1 , O 1 q " pP 1 Y tbu, O 1 q, for some pP 1 , O 1 q P S B pT, β, vq. Note that for pP 1 , O 1 q, pP 2 , O 2 q P S B pT, β, vq the relation pP 1 Y tbu, O 1 q ĺ pP 2 Y tbu, O 2 q holds if and only if pP 1 , O 1 q ĺ pP 2 , O 2 q. Thus, since every element of S B pT, β, vq is minimal in S B pT, β, vq w.r.t. ĺ, by the induction hypothesis, it follows that every element of S B pT, β, vq is also minimal in S B pT, β, vq w.r.t. ĺ.

Case 1.2 actorpvq " o T

In this case, S B pT, β, vq " S B pT, β, vq Y tp∅, tbuqu. Thus, the order between the elements of S B pT, β, vq in S B pT, β, vq is the same as in S B pT, β, vq. Since there are no clones in T , for every pP 1 , O 1 q P S B pT, β, vq it holds that b R O 1 , and so p∅, tbuq ĺ pP 1 , O 1 q does not hold. Therefore, by the induction hypothesis, every element of S B pT, β, vq is a minimal element in S B pT, β, vq w.r.t. ĺ. Clearly, the pair p∅, tbuq is also a minimal element in S B pT, β, vq w.r.t. ĺ. Thus, the statement holds.

For a proof of the remaining cases, when v is a refined node, we let children T pvq " tv 1 , . . . , v k u and assume that the node v exists. The proof for the cases when v does not exist is obtained by skipping the parts related to v in what follows. Finally, we denote with pP, Oq an arbitrary but fixed element of S B pT, β, vq.

Case 2. The node v is refined and actorpvq " p T .

Case 2.1 refpvq " OR For a proof by contradiction, suppose that pP, Oq is not a minimal element in S B pT, β, vq w.r.t. the order ĺ. Then, there is an element pP 1 , O 1 q P S B pT, β, vq such that pP 1 , O 1 q ă pP, Oq. From definition of the attribute domain A S it follows that there are i, j P t1, . . . , ku, nodes v i , v j and pairs pP i , O i q P S B pT, β, v i q, pP j , O j q P S B pT, β, v j q, pP , Oq, pP 1 , O

1 q P S B pT, β, vq, such that pP, Oq " pP i Y P , O i Y Oq pP 1 , O 1 q " pP j Y P 1 , O j Y O 1 q.
Note that the definition of A S and the basic assignment β imply that none of the sets P i and P j is empty.

Since there are no clones in T , if P i ‰ P j , then the sets in each of the triples pP i , P j , P q, pP i , P j , P 1 q are pairwise disjoint. Thus, the condition P 1 Ď P is not satisfied, contradicting the choice of pP 1 , O 1 q and implying that pP, Oq is indeed a minimal element in S B pT, β, vq w.r.t. ĺ.

Suppose now that P i " P j . Since there are no clones in T , this implies that v i " v j . Furthermore, from the choice of pP 1 , O 1 q as an element satisfying pP 1 , O 1 q ă pP, Oq it follows that P 1 Ď P . Since every element of S B pT, β, vq is minimal in S B pT, β, vq w.r.t. ĺ, by the induction hypothesis, this implies that either pP , Oq " pP

1 , O 1 q or else O 1 is not a subset of O. If pP , Oq " pP 1 , O 1 q, then, since pP 1 , O 1 q ă pP, Oq, it follows that O i ‰ O j and O i Ď O j .
But then pP i , O i q ĺ pP i , O j q, contradicting the induction hypothesis for v i .

Thus, P i " P j , P 1 Ď P and O 1 is not a subset of O. The last of these facts implies in particular the the set O 1 is not empty. But, since pP 1 , O 1 q ă pP, Oq, we have that X O i cannot be empty. And yet, empty it surely is, since there are no clones in T . This final contradiction completes the proof of this case. Case 2.2 refpvq " AND In this case, the pair pP, Oq can be represented as

O j Y O 1 Ď O i Y O,
pP, Oq " pP 1 Y . . . Y P k Y P , O 1 Y . . . Y O k Y Oq,
for some pP i , O i q P S B pT, β, v i q, for i P t1, . . . , ku, and some pP , Oq P S B pT, β, vq. For a proof by contradiction, suppose again that pP, Oq is not a minimal element in S B pT, β, vq w.r.t. the order ĺ, i.e., that there is an element pP 1 , O 1 q P S B pT, β, vq such that pP 1 , O 1 q ă pP, Oq. Let

pP 1 , O 1 q " pP 1 1 Y . . . Y P 1 k Y P 1 , O 1 1 Y . . . Y O 1 k Y O 1 q,
for some pP 1 i , O 1 i q P S B pT, β, v i q, for i P t1, . . . , ku, and some pP 1 , O 1 q P S B pT, β, vq. Since there are no clones in T , for i, j P t1, . . . , ku, i ‰ j, each of the intersections

P i X P j , P i X P 1 j , P i X P , P i X P 1 , P 1 i X P , P 1 i X P 1 , O i X O j , O i X O 1 j , O i X O, O i X O 1 , O 1 i X O, O 1 i X O 1
is empty. Note that, since pP 1 , O 1 q ‰ pP, Oq, either there is i P t1, . . . , ku such that

pP i , O i q ‰ pP 1 i , O 1 i q or else pP , Oq ‰ pP 1 , O 1 q.
But then it follows from Lemma 1 that either pP i , O i q ă pP 1 i , O 1 i q or else pP , Oq ă pP 1 , O 1 q. This contradicts the induction hypothesis for v i or v.

Case 3. The node v is refined and actorpvq " o T . Case 3.1 refpvq " OR From the definition of the set semantics it follows that pP, Oq " pP 1 Y . . . Y P k , O 1 Y . . . Y O k q for some pP i , O i q P S B pT, β, v i q, for i P t1, . . . , ku, or else pP, Oq P S B pT, β, vq. If the former is true, then, since the operation performed during the bottom-up creation of the set semantics at the AND nodes of the proponent and the OR nodes of the opponent is the same, a proof of the declared statement is obtained by repeating the reasoning from Case 2.2, combined with the fact that for every i P t1, . . . , ku, every pP 1 , O 1 q P S B pT, β, v i q and every pP , P 1 q P S B pT, β, vq, neither pP 1 , O 1 q ă pP , Oq nor pP , Oq ă pP 1 , O 1 q. Thus, we assume that pP, Oq P S B pT, β, vq. But now the statement follows immediately from the induction hypothesis for v and the last part of the previous sentence, i.e., neither pP 1 , O 1 q ă pP, Oq nor pP, Oq ă pP 1 , O 1 q being satisfied for any of i P t1, . . . , ku, and any of pP 1 , O 1 q P S B pT, β, v i q.

Case 3.2 refpvq " AND

In this case, definition of the set semantics implies that

S B pT, β, vq " ď v 1 Ptv 1 ,...,v k ,vu S B pT, β, v 1 q.
Since there are no clones in T , for every v 1 , v 2 P tv 1 , . . . , v k , vu, v 1 ‰ v 2 and every pP 1 , O 1 q P S B pT, β, v 1 q, pP 2 , O 2 q P S B pT, β, v 1 q, the sets P 1 , P 2 are disjoint, and the sets O 1 , O 2 are disjoint. Thus, neither pP 1 , O 1 q ă pP 2 , O 2 q nor pP 2 , O 2 q ă pP 1 , O 1 q. Combined with the induction hypothesis, this implies that every element in S B pT, β, vq is minimal w.r.t. the order ĺ.

Summarizing the results presented in Proposition 1-3, (1) the elements of the set semantics indeed describe ways of achieving the root goal of a tree, (2) among them there are all of the minimal strategies in the tree, and (3) there are trees, in particular the class of trees with no clones, in which every element of the set semantic is a minimal strategy. We believe that this characterization can be useful for proper interpretation of the results of evaluation of attributes on the set semantics. The following example supports this belief.

Example 34. Consider the maximal probability for the proponent attribute prob, whose attribute domain is pr0, 1s, max, ¨, ¨, max, ¨, maxq (cf. Table 1). Let pP, Oq and pP 1 , O 1 q be strategies in an attack-defense tree T such that pP, Oq ‰ pP 1 , O 1 q and P Ď P Therefore, if β assigns to basic actions the probability of successful execution, then the value of prob S pT, βq represents the maximal probability of achieving the root goal of T when executing exactly one of the minimal strategies in T .

Computational aspects of the evaluation of attributes on the set semantics

Having provided means for intuitive interpretation of its results, we now turn our attention to the computational aspects of the evaluation of attributes on the set semantics. We begin with noting that the first step of this evaluation method is the creation of the set semantics, which is highly complex, due to the d operation defined by formula (4). Indeed, because of this operation, the size of the set semantics might be exponential in both the number of basic actions in the tree and the total number of nodes, as illustrated by the following construction (see also Figure 11). Therefore, while the set semantics is useful for formalizing intuition behind an attribute with an appropriate attribute domain, there are trees for which its practical application for evaluation of attributes is limited. What is important, however, is that this is not the case for all trees. That is, even if a tree is big, in the sense of the number of nodes or basic actions, the size of its set semantics might be small enough so that the evaluation of attributes on the semantics will perform well. Should one want to evaluate an attribute on a tree with clones, it seems thus reasonable to try to estimate the size of the set semantics of the tree before trying to create it. Should the obtained estimate be reasonable, one could proceed with this evaluation method. The following proposition provides a fast procedure for computing an upper bound on the size of the set semantics of a given tree. Proposition 4. Let SetSemBound be an attribute with the attribute domain A SetSemBound " pN, `, ¨, ¨, `, ¨, `q, where ¨is the multiplication operator. Let β SetSemBound " 1 be a basic assignment of SetSemBound. Then the inequality

| SpT q| ď SetSemBound B pT, β SetSemBound q (9)
holds for every attack-defense tree T .

Proof. Since pN, `, ¨q is a commutative semiring, the result of the bottom-up computation of the SetSemBound attribute can be represented in the normal form

SetSemBound B pT, β SetSemBound q " p1 ¨1 ¨. . . ¨1q.

. . `p1 ¨1 ¨. . . ¨1q.

. .

`p1 ¨1 ¨. . . ¨1q.
The number of terms in the above expression is the same as the number of terms in the normal form (7) of the set semantics of T . Since the latter is at least |SpT q|, the statement follows.

Proposition 4 shows that an upper bound on the number of strategies can be found in time linear in the size of the tree. We note that the bound provided by the inequality (9) is tight: the equality is attained for instance for trees from Example 352 . Nevertheless, the difference between the bound and the actual size of the set semantics can be arbitrarily large. For example, there are three elements in the set semantics of the tree AND p pOR p pa, bq, . . . , OR p pa, bqq, while the bound is equal to 2 to the power equal to the number of OR nodes.

Having an easily computable formula for a non-trivial lower bound on the size of the set semantics would also be very useful. It seems that such a lower bound cannot be computed using a single bottom-up procedure that would simply propagate natural numbers throughout the tree. This is the case, because such a procedure would have to yield 1 for every attack tree in which all the leaf nodes bear the same label, irrespective of the tree structure. To obtain a non-trivial lower bound, one would have to propagate, along a number, some additional information about the repeated basic actions seen so far in the tree.

There are at least two other ways of avoiding the possible complexity of the evaluation of attributes on the set semantics. One of them would be to use the bottom-up evaluation, while being sure that it will return the same, correct result. The other one, to be employed if the bottom-up procedure fails, is to devise yet another, alternative method of attributes evaluation. With the following theorem we establish some sufficient conditions for employing the simple bottom-up evaluation instead of the evaluation on the set semantics with the guarantee of obtaining the correct result.

Theorem 1. Let T be an attack-defense tree and let A α " pD α , ', b, b, ', b, 'q be an attribute domain such that the operations ' and b are associative and commutative, ' is idempotent, and b distributes over '. Furthermore, let β 1 be a basic assignment of α. If -there are no repeated labels in T , or -the operator b is idempotent, or -for every clone b in T it holds that β 1 pbq P ta b , e b u, then the equality α B pT, β 1 q " α S pT, β 1 q holds. Proof. Let β be the basic assignment defined for T as in Definition 23 of the set semantics. Consider the normal forms

SpT q " pβpb 1 1 q d βpb 1 2 q d . . . d βpb 1 k 1 qqY . . . Y pβpb i 1 q d βpb i 2 q d . . . d βpb i k i qqY . . . Y pβpb n 1 q d βpb n 2 q d . . . d βpb n kn qq, (10) 
α B pT, β 1 q " pβ 1 pb 1 1 q b β 1 pb 1 2 q b . . . b β 1 pb 1 k 1 qq' . . . ' pβ 1 pb i 1 q b β 1 pb i 2 q b . . . b β 1 pb i k i qq' . . . ' pβ 1 pb n 1 q b β 1 pb n 2 q b . . . b β 1 pb n kn qq. (11) 
Relying on the idempotency of both sets union and the operator ', we assume that every term appearing in the two representations is unique, i.e., that for any two distinct i 1 and i 2 belonging to the set t1, . . . , nu the multisets

t|b i 1 1 , b i 1 2 , . . . , b i 1 k i 1 |u and t|b i 2 1 , b i 2 2 , . . . , b i 2 k i 2 |u are different.
Let us denote again the ith term of representation (10) with tpP i , O i qu. Note that if the operation b is idempotent or every cloned basic action is assigned a b or e b under the basic assignment β 1 , then for every clone b in T the equality

β 1 pbq b β 1 pbq b . . . b β 1 pbq " β 1 pbq
holds. Furthermore, if there are no clones in T , then for every i P t1, . . . , nu the multiset

t|b i 1 , b i 2 , . . . , b i k i |u is in fact a set, i.e.
, every basic action appears in each of the terms of representation (10) and (11) at most once. It follows that under any of the three conditions we have

β 1 pb i 1 q b β 1 pb i 2 q b . . . b β 1 pb i k i q " â bPP i YO i β 1 pbq,
implying that α B pT, β 1 q " à pP,OqPSpT q â bPP YO β 1 pbq " α S pT, β 1 q, as required.

Among the attribute domains gathered in Table 1, there are two of the form pD α , ', b, b, ', b, 'q satisfying the assumptions of Theorem 1, with the operation b being idempotent. Therefore, the bottom-up procedure can be used to evaluate these attributes on attack-defense trees containing repeated basic actions, yielding the same result as the evaluation on the set semantics. The attribute domains in which the operation b is not idempotent include the domains for the minimal cost for the proponent and the maximal probability for the proponent attributes. Nevertheless, these two domains enjoy a useful property that can be exploited for the purpose of the attribute evaluation on attack-defense trees with clones. This property is captured by the following notion.

Definition 27 (Non-increasing attribute domain). An attribute domain A α is nonincreasing if A α is of the form pD α , ', b, b, ', b, 'q, where pD α , ', bq is a commutative idempotent semiring, such that for every c, d P D α the equality c ' pc b dq " c holds3 .

To give some intuition regarding the non-increasing attribute domains, assume that pD α , ', b, b, ', b, 'q is such a domain. Then, for an attack-defense tree T , two sets 

holds. In other words, if an attribute has a non-increasing domain, then the non-minimal strategies have no impact on the evaluation of this attribute on the set semantics. We note that from the attribute domains displayed in Table 1, only the maximal damage done by the proponent and satisfiability domains are not non-increasing. This is because the equality maxpc, c `dq " c does not hold for every c, d P R ě0 , and because the satisfiability domain is not induced by a semiring.

In the next section, we present an alternative method for attributes evaluation that can be employed for attributes having non-increasing domains, yielding the same result as the evaluation on the set semantics. We finish this section with a remark regarding the compatibility of the bottom-up evaluation of attributes with the set semantics, which follows immediately from Theorem 1. Proposition 5. Let A α " pD α , ', b, b, ', b, 'q be an attribute domain such that the operations ' and b are associative and commutative, ' is idempotent, and b distributes over '. Let D B α and be the set of all basic assignments for α and let T 1 be the set of all trees containing no clones. Finally, let

f 1 : T 1 ˆDB α Q pT, βq Þ Ñ α B pT, βq and f : T ˆDB α Q pT, βq Þ Ñ α B pT, βq.
The function f 1 is compatible with the set semantics, and the function f is compatible with the set semantics if and only if the operation b is idempotent.

Proof. By Theorem1, the equality f 1 pT, βq " α S pT, βq holds for every pT, βq P T 1 ˆDB α , and if b is an idempotent operation, then f pT, βq " α S pT, βq for every pT, βq P T ˆDB α . The assumptions on A α imply that α S pT, βq " à pP,OqPSpT q â bPP YO β α pbq.

It follows that for any two trees T 1 and T 2 having the same set semantics the equality α S pT 1 , βq " α S pT 2 , βq holds for every β P D B α . Thus, the function f 1 is compatible with the set semantics, and if b is idempotent, then f is also compatible with the set semantics.

To prove that f is not compatible with the set semantics when the operation b is not idempotent, it is enough to consider trees T 1 " b and T 2 " AND p pb, bq. Note that SpT 1 q " SpT 2 q. If b is not idempotent, then there exists x P D α such that x b x ‰ x. Thus, for every basic assignment β assigning x to the basic action b the value of f pT 1 , βq is different from f pT 2 , βq.

A method for evaluation of attributes in trees with clones

In the previous section, we have identified the class of attributes having non-increasing attribute domains, which includes such important attributes like minimal cost for the proponent and maximal probability for the proponent (cf. Example 34). As the bottomup evaluation of these attributes might result in incorrect results, and their evaluation on the set semantics might be computationally infeasible, we are going to develop a new method of evaluation of attributes. It is tailored specifically for the attributes having non-increasing attribute domains, it can be applied on trees having clones, and in terms of computational complexity, it offers a compromise between the bottom-up evaluation and the evaluation on the set semantics. The idea behind our method is simple. The values assigned to the repeated basic actions are temporarily modified, and for each such modification the bottom-up evaluation is performed. The values modification mimics the proponent performing some of the clones, and not performing others. The results obtained in this way are eventually combined in an appropriate manner, yielding the same result as the computation on the set semantics.

Necessary and optional clones

Since we would like to be able to perform a "what-if" analysis similar to the one enabled by the remaining two methods, we begin with determining, for a given set O of actions of the opponent, the clones that the proponent needs to execute in order to achieve the root goal when the opponent performs O. This knowledge will determine the way in which the values assigned to the clones will be tackled later. The clones that need to be executed under fixed behavior of the opponent are called necessary clones.

Definition 28 (Necessary and optional clones). Let b be a cloned basic action of the proponent in an attack-defense tree T and let O Ď B o T . The action b is a necessary clone w.r.t. O in T if

-there is a strategy pP, O 1 q P SpT q satisfying O X O 1 " ∅, and -for every strategy pP, O 1 q P SpT q satisfying O X O 1 " ∅ it holds that b P P .

If b is not a necessary clone w.r.t. O, then it is called an optional clone w.r.t. O.

In the case of attack trees, the set of basic actions of the opponent is empty, and so the only set that a clone can be necessary or optional w.r.t., is the empty set ∅. Hence, in the case of attack trees we reason simply about necessary and optional clones, without specifying the corresponding set. A necessary clone in an attack tree is a one that belongs to every strategy in this tree, as illustrated by the following example.

Example 36. Consider the attack tree T depicted in Figure 12. The set semantics of T is SpT q " tpta, b, cu, ∅q, pta, c, du, ∅q, ptb, c, du, ∅q, ptb, cu, ∅qu.

Hence, c is the only necessary clone in T , and the only optional clone is b; in order to achieve the root goal, the attacker has to perform action c, and there are ways of achieving the root goal that do not involve executing b.

In the case of attack-defense trees, clone can be optional w.r.t. some of the sets of basic actions of the opponent, and necessary w.r.t. to others, as illustrated by Example 37.

Example 37. Let T be the attack-defense tree from Figure 13. The set semantics of T is SpT q " tpta, cu, tduq, ptb, cu, tduq, pta, b, cu, ∅q, ptb, cu, ∅qu. Lemma 4. Let T be an attack-defense tree, a P B p T be a cloned basic action of the proponent in T and O Ď B o T be a set of basic actions of the opponent. Let β skill be the basic assignment of the minimal skill of the proponent attribute defined as

The only clone in

β skill pbq " $ ' ' ' & ' ' ' % 1 if b " a, `8 if b P O, 0 otherwise.
The basic action a is a necessary clone w.r.t. O if and only if skill B pT, β skill q " 1.

Proof. Recall that the attribute domain for the minimal skill of the proponent attribute is pN Y t0, `8u min, max, max, min, max, minq. Since max is an idempotent operation, it follows from Theorem 1 that skill B pT, β skill q " skill S pT, β skill q. Observe that skill S pT, β skill q can be represented as skill S pT, β skill q " min pP,OqPSpT q max bPP YO Assume first that a is a necessary clone w.r.t. O. It follows from Definition 28 that the set semantics SpT q of T contains no pairs pP, Oq satisfying O X O " ∅ and a R P . Thus, the expression (13) reduces to skill S pT, β skill q " minp min pP,OqPSpT q aPP OXO"∅ max bPP YO b, min pP,OqPSpT q OXO‰∅ max bPP YO bq.

β skill pbq " min `min pP,OqPSpT q aPP OXO"∅ max bPP YO β skill pbq, min pP,OqPSpT q aRP OXO"∅ max bPP YO β skill pbq, (13) 
Together with the basic assignment β skill this implies that skill S pT, β skill q " 1, whether the set semantics SpT q contains pairs pP, Oq satisfying O X O ‰ ∅ or not. Assume now that skill B pT, β skill q " 1. Then, it immediately follows from ( 13) and the definition of β skill that there is a strategy pP, Oq P SpT q satisfying O X O " ∅, and that a P P for every strategy pP, Oq P SpT q satisfying OXO " ∅, i.e., that a is a necessary clone w.r.t. O.

Repeated bottom-up evaluation of attributes

The idea behind our novel method of evaluation of attributes, given in Algorithm 1, is to first recognize the set C N pOq of necessary clones and temporarily ensure that the values of the attribute assigned to them do not influence the result of the bottom-up 

r C Ð α B pT, β 1 q b  bPC O pOqzC βpbq 9:
α RB pT, β, Oq Ð α RB pT, β, Oq ' r C 10: end for 11: α RB pT, β, Oq Ð α RB pT, β, Oq b  bPC N pOq βpbq 12: return α RB pT, β, Oq procedure. Then the values of the optional clones are also temporarily modified, and the corresponding bottom-up evaluations are performed. Only then the result is adjusted in such a way that the original values of the necessary clones are taken into account. We now proceed with providing the details.

Algorithm 1 takes as input an attack-defense tree T , an attribute domain A α , a basic assignment β for α, and a set O of basic actions of the opponent in T . Once the sets of necessary and the optional clones w.r.t. O have been determined, new basic assignments are created. Under each of these assignments β 1 , the clones necessary w.r.t. O receive the neutral element e b (in line 3). Intuitively, this ensures that in the final result of the algorithm, the values of β assigned to the necessary clones are taken into account exactly once (with the expression  bPC N pOq βpbq in line 11). In lines 6-7, an assignment β 1 is created for every subset C of the set of optional clones C O pOq. The clones from C are assigned a b " e ' , which intuitively ensures that they are ignored by the bottom-up procedure whenever possible, and the remaining optional clones are assigned e b (again, to ensure that their values under β will eventually be counted exactly once; this happens in line 8).

The result of the computations performed in the for loop is eventually combined in line 11 with the values assigned to the necessary clones, and the result is returned. The subscript RB in the notation α RB pT, β, Oq refers to the "repeated bottom-up" evaluation.

Before analyzing the results provided by Algorithm 1 and its complexity, we illustrate its behavior with two examples.

Example 39. Let T be the tree from Figure 13 and A prob be the attribute domain for the maximal probability for the proponent attribute, given in Table 1. Let β be the basic As illustrated in Figure 14, the bottom-up evaluation of prob in T results in the value of prob B pT, βq " 0.2. When performing evaluation on the set semantics of T (given in Example 37), one obtains prob S pT, βq " 0.4, which is the probability of successful execution of both actions b and c.

Consider now the behavior of Algorithm 1. The initialization phase consists of setting prob RB pT, β, Oq " 0,

C N pOq " tbu, C O pOq " ∅,
and of creating the basic assignment β 1 which differs from β only in the value assigned to the necessary clone b, i.e., β 1 | ta,c,du " β and β 1 pbq " 1.

The only subset of the set of clones optional w.r.t. O is the empty set. Therefore, no modification of values takes place in the for loop, and the value of prob RB pT, βq is set in line 9 to maxp0, r ∅ q " maxp0, prob B pT, β 1 qq " maxp0, 0.8q " 0.8

(see Figure 15 for the bottom-up evaluation of prob B pT, β 1 q). Then, in line 11, the final result of prob RB pT, β, Oq " 0.8 ¨0.5 " 0.4 is obtained. Note that prob RB pT, β, Oq " prob S pT, βq. 1; let β be the basic assignment of minimal cost for the proponent in T defined as βpaq " 10, βpbq " 16, βpcq " 10, βpdq " 5.

In this setting, it is easy to compute cost B pT, βq " 35 and cost S pT, βq " 25, the latter value being the cost of execution of the actions a, c and d .

Consider now the behavior of Algorithm 1 for T , β, O " ∅ and the minimal cost for the proponent attribute domain. The initialization phase consists of setting cost RB pT, β, Oq " `8,

C N pOq " tcu, C O pOq " tbu,
and of creating the basic assignment β 1 which differs from β only in the value assigned to the necessary clone c, i.e., β 1 | ta,b,du " β and β 1 pcq " 0.

The sets C considered in the for loop, their influence on the assignment of cost, and their corresponding results r C are the following 

C " ∅, β 1 cost pbq " 0, r ∅ " 21 C " tbu
C " ∅, β 1 cost pphishq " 0, r c " 125 C " tphishu, β 1 cost pphishq " `8, r c " 135.
Thus, after the for loop is executed, the value assigned to cost RB pT, βq is cost RB pT, βq " minp`8, 125, 135q " 125, and it is returned in line 12.

In Theorem 2 we give sufficient conditions for the result α RB pT, β, Oq of Algorithm 1 to be equal to the result α S pT, βq of evaluation on the set semantics. Proof. Let SpT q " tpP 1 , O 1 q, . . . , pP n , O n qu. Consider the result r C of the bottom-up procedure obtained in the line 8 of Algorithm 1 for a set C Ď C O pOq of optional clones. Due to the values assigned to clones by both basic assignments β and β 1 , we have

r C " α B pT, β 1 q b â bPC O pOqzC βpbq " α S pT, β 1 q b â bPC O pOqzC βpbq,
by Theorem 1. Thus,

r C " " n à i"1 â bPP i YO i β 1 pbq ‰ b â bPC O pOqzC βpbq " n à i"1 "`â bPP i YO i β 1 pbq ˘b â bPC O pOqzC βpbq ‰ .
Denote by r C i the ith term of the above expression, i.e., set

r C i :" `â bPP i YO i β 1 pbq ˘b â bPC O pOqzC βpbq.
Note that if C X P i ‰ ∅, then r C i " a b , due to the values assigned to the clones belonging to C in the for loop. Furthermore, observe that the result of Algorithm 1 is

α RB pT, β, Oq " « à CĎC O pOq r C ff b â bPC N βpbq " ˜n à i"1 « à CĎC O pOq r C i ff¸b â bPC N βpbq. ( 14 
)
Since a b " e ' , the inner expression can be expanded as

à CĎC O pOq r C i " à CĎC O pOq CXP i ‰∅ r C i ' à CĎC O pOq CXP i "∅ r C i " à CĎC O pOq CXP i "∅ » - - `â bPP i bRC N pOqYC O pOq βpbq b â bPP i bPC N pOqYC O pOqzC e b b â bPO i βpbq ˘b â bPC O pOqzC βpbq fi ffi fl " à CĎC O pOq CXP i "∅ » - - `â bPP i YO i bRC N pOqYC O pOq βpbq ˘b â bPC O pOqzC βpbq fi ffi fl " à CĎC O pOq CXP i "∅ » - - â bPP i YO i bRC N pOq βpbq b â bRP i bPC O pOqzC βpbq fi ffi fl ,
where the last transition is a simple regrouping of factors.

Due to the values assigned to the basic actions of the opponent by β, and because a b " e ' , the last expression can be transformed to the form

à CĎC O pOq r C i " à CĎC O pOq CXP i "∅ OXO i "∅ » - - â bPP i YO i bRC N pOq βpbq b â bRP i bPC O pOqzC βpbq fi ffi fl " à CĎC O pOq CXP i "∅ OXO i "∅ » - - â bPP i bRC N pOq βpbq b â bRP i bPC O pOqzC βpbq fi ffi fl .
Since the attribute domain is non-increasing, the last "sum" is absorbed by the term corresponding to the set C for which no b P `CO pOqzC ˘zP i exists, i.e., the set C satisfying 

C O pOqzC " P i X C O . The corresponding term is  bPP i bRC N pOq βpbq. Thus, à CĎC O pOq r C i " $ & %  bPP i bRC N pOq βpbq, if O X O i " ∅ e ' ,
â bPP i YO i βpbq " α S pT, βq,
where the second equality follows from Definition 28 of necessary clones w.r.t. O, and the third one from the definition of the basic assignment β, i.e., from the fact that β| O " a b " e ' . The proof is complete. Theorem 2 specifies conditions under which the evaluation of attributes on the set semantics can be replaced with the repeated bottom-up evaluation, i.e., the conditions under which Algorithm 1 can be employed for the purpose of a "what-if" analysis of security scenarios modeled with attack-defense trees. We note that if there are no clones in a given tree, the repeated bottom-up evaluation boils down to a single bottom-up evaluation.

Complexity of repeated bottom-up evaluation of attributes

We now turn our attention to the complexity of Algorithm 1. Among the operations performed in lines 1-4, the most complex one is the initialization of the sets C N pOq and C O pOq. For a tree with n nodes, the time complexity of this step is in Opn 2 q, by Lemma 4. The for loop from line 5 iterates over all of the subsets of the optional clones, and the most complex of the operations performed within the loop is the bottom-up evaluation, the complexity of which depends on the complexity of operators ' and b. By combining these considerations with Theorem 2, we get the following result, in which we use |β| to denote the number of bits needed for storing the basic assignment β. Theorem 3. Let T be an attack-defense tree with n nodes and k repeated basic actions of the proponent. Let A α " pD α , ', b, b, ', b, 'q be a non-increasing attribute domain such that for a basic assignment β for α a single bottom-up computation α B pT, βq is performed in time Opf pn, |β|qq, for some function f : N ˆN Ñ R. Recall that even in the simplest case of attack trees and minimal cost for the proponent attribute, the problem of determining the cost of a cheapest attack is equivalent to solving the weighted monotone satisfiability problem, which is known to be NPcomplete [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF]. Theorems 1 and 3 indicate that this difficulty originates from the presence of repeated basic actions of the proponent. In particular, the complexity of the repeated bottom-up evaluation is exponential in the number of repeated basic actions of the proponent. Therefore, among the trees containing n basic actions the running time of the repeated bottom-up procedure is maximized for a tree in which every basic action is a repeated basic action of the proponent. This is the case, for instance, for the tree T " AND p pOR p pb 1 , . . . , b n q, OR p pb 1 , . . . , b n qq.

Contrarily, in the worst-case, the size of the set semantics, and so the complexity of the evaluation on the set semantics, is exponential in the total number of nodes. Nevertheless, the evaluation on the set semantics has at least one advantage over the repeated bottomup evaluation. If the attribute is such that its value correspond to the execution of exactly one strategy, as it is the case for the minimal cost for the proponent, knowing the set semantics allows not only for computing the value of the attribute, but also for extracting the strategy for which this value is achieved. In the next section we will demonstrate how, under appropriate assumptions, the two methods of evaluation can be combined for extracting such strategy without creating the whole set semantics of a tree.

Extraction of optimal strategies

Both the standard bottom-up evaluation and the repeated bottom-up evaluation of attributes are suitable for performing a "what-if" analysis, the result of which is a value of an attribute under specified behavior of the opponent. In many cases, such a value is a solution to an optimization problem, providing an answer to questions such as "what is the minimal cost of achieving the root goal?" or "what is the maximal probability of achieving the root goal when executing exactly one of the minimal strategies?". The corresponding strategy however, is not obtained. We shall now present a method for obtaining the strategies corresponding to such optimal values, in a way that, if possible, does not involve the creation of the set semantics of a tree. We begin with defining the object that we want to extract from a tree. Definition 29 (Optimal strategy). Let A α " pD α , ', b, b, ', b, 'q be a non-increasing attribute domain with D α Ď R and with ' being the operation of taking maximum or minimum 4 . A pair pP, Oq P SpT q is a strategy in T optimal w.r. 

Tree pruning procedure

Our method for determining optimal strategies relies on the repeated bottom-up evaluation of attributes and the following lemma.

Lemma 5. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, A α be an attribute domain induced by a semiring pD α , ', bq, and let β be a basic assignment of α satisfying α B pT, βq ‰ a b . For T 1 " pV 1 , A 1 , L, λ, actor, refq being the component containing the root of T of the subdag of T induced by the set tv P V : α B pT, β, vq ‰ a b u, the equality α B pT, βq " α B pT 1 , βq holds.

Proof. We shall prove that for every node v P V 1 the equality α B pT 1 , β, vq " α B pT, β, vq holds. The proof is by induction on the structure of the subdag T pvq. For the base case, assume that v is not refined in T and has no countermeasure attached in T . Then, v is also not refined and has no countermeasure attached in T 1 . Thus, α B pT 1 , β, vq " βpλpvqq " α B pT, β, vq. Assume now that refpvq ‰ N or that v exists in T . Recall that for s " actorpvq and OP " refpvq the value of α B pT, β, vq is

α B pT, β, vq " $ ' ' ' ' ' & ' ' ' ' ' %
βpλpvqq, if OP " N and v does not exist, C s α pβpλpvqq, α B pT, β, vqq , if OP " N and v exists, pOP s α q v 1 Pchildren T pvq α B pT, β, v 1 q, if OP ‰ N and v does not exist, C s α `pOP s α q v 1 Pchildren T pvq α B pT, β, v 1 q, α B pT, β, vq ˘, otherwise.

We consider three cases.

Case 1. The node v is not refined and v exists. In this case, α B pT, β, vq " C s α pβpλpvqq, α B pT, β, vqq. Thus, if v P V 1 , then the required equality follows from the induction hypothesis. Otherwise, α B pT 1 , β, vq " βpλpvqq and α B pT, β, vq " a b . Since v P V 1 , we have α B pT, β, vq ‰ a b , which combined with the fact that a b " e ' implies that C s α " '. Hence, α B pT, β, vq " βpλpvqq ' e ' " βpλpvqq " α B pT 1 , β, vq.

Case 2. The node v is not refined and v does not exist. In this case, the value of α B pT, β, vq is pOP s α q v 1 Pchildren T pvq α B pT, β, v 1 q. If children T pvq Ă V 1 , then the required equality follows from the induction hypothesis. Otherwise, there is v 1 P childrenpvq such that α B pT, β, v 1 q " a b . Since α B pT, β, vq ‰ a b and a b " e ' , it follows again that the operation performed by the bottom-up evaluation at the node v in T is ', i.e., OP s α " '. Thus,

α B pT, β, vq " à v 1 Pchildren T pvq α B pT, β, v 1 q " à v 1 Pchildren T 1 pvq α B pT, β, v 1 q " α B pT 1 , β, vq.
Case 3. The node v is refined and v exists in T . Under the assumptions of this case, the equality α B pT, β, vq " C s α `pOP s α q v 1 Pchildren T pvq α B pT, β, v 1 q, α B pT, β, vq holds.

Similarly as in the previous cases, if all of the children of v in T belong to V 1 , then the claim follows from the induction hypothesis. If this is not the case, then V 1 X pchildren T pvq Y tvuq ‰ ∅. Note that regardless of whether or not there is a node v 1 P children T pvq not belonging to V 1 , by repeating the reasoning from the proof Case 2 one obtains the equality pOP s α q v 1 Pchildren T pvq α B pT, β, v 1 q " pOP s α q v 1 Pchildren T 1 pvq α B pT, β, v 1 q. Combining this equality with the reasoning from the proof of Case 1 leads to the claimed statement.

Tree reduction technique preserving optimal strategies

The idea behind our method for determining the optimal strategies is the following. Should the result of the bottom-up evaluation be equal to that of evaluation on the set semantics, one could apply Lemma 5 repetitively, thus reducing the size of the tree while keeping the result of the bottom-up evaluation unchanged. If the equality of the results provided by the two evaluation methods was maintained after each application of Lemma 5, the eventually obtained tree would contain an optimal strategy that is also optimal in the original tree. Hopefully, after the reduction is performed, the set semantics of the final tree is significantly smaller than that of the original tree, and can be computed easily.

The starting point of the procedure sketched above, and given in detail in Algorithm 2, is the repeated bottom-up evaluation. Note that for an attribute domain A α as in Definition 29, the operation performed in line 9 of the repeated bottom-up evaluation consists of setting the value of α RB pT, β, Oq to be the minimum/maximum of the currently stored value and the result of the bottom-up procedure performed in the current iteration of the for loop. Algorithm 1 could be therefore modified, so that along the optimal value, the set C of optional clones corresponding to the iteration in which the value has been obtained is stored. Suppose that the pair pα RB pT, β, Oq, Cq is returned by such modified algorithm, for a tree T " pV, A, L, λ, actor, refq, an attribute domain A α , a basic assignment β and a set O satisfying the assumptions of Theorem 2. Note that α RB pT, β, Oq is then α RB pT, β, Oq " α B pT,

β 1 q b â bPC O pOqzC βpbq b â bPC N pOq βpbq, ( 15 
)
where

β 1 pbq " $ ' ' ' & ' ' ' % βpbq, if b P B T zpC N pOq Y C O pOqq, e b , if b P C N pOq Y pC O pOqzCq, a b , if b P C.
Assume that α RB pT, β, Oq ‰ a b , since otherwise there is no need for optimization: if α RB pT, β, Oq " a b , then α S pT, βq " a b , implying that for every strategy pP , Oq P SpT q the equality À bPP YO " a b holds. This assumption implies that none of the actions from the set C N pOq Y pC O pOqzCq is assigned a b under the basic assignment β, and that the value of α B pT, β 1 q is also different from a b . Thus, Lemma 5 can be applied to T , A α and β 1 .

Let T 1 be the tree obtained from T as described in Lemma 5. Then

α S pT, βq " α B pT, β 1 q b â bPC O pOqzC βpbq b â bPC N pOq βpbq " α B pT 1 , β 1 q b â bPC O pOqzC βpbq b â bPC N pOq βpbq " α S pT 1 , β 1 q b â bPC O pOqzC βpbq b â bPC N pOq βpbq, ( 16 
)
where the first equality follows from (15) and Theorem 2, the second one from Lemma 5, and the last one from Theorem 1 and the fact that under the basic assignment β 1 every clone in T 1 is assigned either a b or e b . Note that for every node v in T 1 , the value of α B pT 1 , β 1 , vq is different from a b . To reduce the size of T 1 further, consider a basic action b in B T 1 that does not belong to the set C N pT, Oq Y C O pT, Oq. Create a new basic assignment for α, say, β 2 , that differs from β 1 in that it assigns a b to b. That is, define β 2 with β 2 | B T 1 ztbu " β 1 and β 2 pbq " a b . Under this new basic assignments, there is at least one node v in T 1 for which α B pT 1 , β 2 , vq " a b . Thus, if α B pT 1 , β 2 q ‰ a b , Lemma 5 can be applied again, reducing tree T 1 to a smaller tree, say T 2 . Such a reduction might not be beneficial: it should be performed only if α B pT 1 , β 2 q " α B pT 1 , β 1 q, as otherwise it might happen that all the optimal strategies in T 2 under β are suboptimal in T . Thus, if α B pT 1 , β 2 q " α B pT 1 , β 1 q, apply Lemma 5 to T 1 , obtaining T 2 . Since both β 1 and β 2 satisfy the assumptions of Theorem 1, the equalities α B pT 1 , β 1 q " α S pT 1 , β 1 q and α B pT 2 , β 2 q " α S pT 2 , β 2 q hold. Furthermore, Lemma 5 implies that the equality α B pT 2 , β 2 q " α B pT 1 , β 2 q holds, and the definition of T 2 and the definition of the basic assignment β 2 imply that α S pT 2 , β 2 q " α S pT 2 , βq. To summarize, we have

α S pT 1 , β 1 q " α B pT 1 , β 1 q " α B pT 1 , β 2 q " α B pT 2 , β 2 q " α S pT 2 , β 2 q " α S pT 2 , βq.
Substituting α S pT 2 , βq to ( 16) for α S pT 1 , β 1 q yields α S pT, βq " α S pT 2 , βq b

â bPC O pOqzC βpbq b â bPC N pOq βpbq.
Thus, if the pair pP , Oq is an optimal strategy in T 2 w.r.t. α under the basic assignment β, then the pair pP Y C N pOq Y C O pOq, Oq is as good as an optimal strategy in T , in the sense that for any optimal strategy p P , Ôq in T the equality

â bP P Y Ô βpbq " â bPpP YC N pOqYC O pOqzC,Oq βpbq (17) 
holds.

The procedure described in the previous paragraph can be now performed again, for a basic action b in B T 2 not belonging to the set C N pT, Oq Y C O pT, Oq. This yields another, hopefully smaller tree, in which the procedure can be repeated again. Eventually, a tree T 2 will be obtained, in which the procedure can no longer be applied, i.e., in which switching a value assigned to any of the actions not in C N pT, OqYC O pT, Oq to a b switches the result of the bottom-up evaluation to a b . Since the equality [START_REF] Hjl | [END_REF] holds for this final tree T 2 , computing its set semantics allows for determining a strategy that is as good as an optimal strategy in T , in the sense explained above.

The above reasoning proves the following. We believe that the following, stronger statement, that we are currently unable to prove, is true. and the tree T 1 is the output of Algorithm 2 on input T, A α , β, O, then every strategy in T 2 optimal w.r.t. α under the basic assignment β is also an optimal strategy in T .

Conjecture 1. Let T be an attack-defense tree,

Algorithm 2 Tree reduction preserving optimal strategies

Input: Attack-defense tree T " pV, A, L, λ, actor, refq, attribute domain pD α , ', b, b, ', b, 'q, basic assignment β : β 2 pbq Ð a b 13:

B Ñ D α , set O Ď B o T Output: Attack-defense tree T 1 " T 1 pT, A α , β, Oq 1: initialize C N pT, Oq, C O pT, Oq 2: set pα RB pT, β,
β 2 pb 1 q Ð β 1 pb 1 q for every b 1 P B T 1 ztbu 14: if α B pT 1 , β 2 q " α B pT 1 , β 1 q then 15:
T 2 Ð the connected component containing the root of T 1 of the subdag of T 1 induced by the set tv P V : α B pT 1 , β 2 , vq ‰ a b u 16:

T 1 Ð T 2 17:
end if 11. Let β be the basic assignment for minimal cost for the proponent defined as βpb ij q " 4 ´j, for i P t1, 2, 3u, j P t1, 2, 3u (see Figure 16). Note that there are 27 elements in the set semantics of T , the value of cost S pT, βq is cost S pT, βq " cost RB pT, βq " cost B pT, βq " 1 `1 `1 " 3, and that the optimal strategy in T w.r.t. minimal cost for the proponent under β is

ptb 13 , b 23 , b 33 u, ∅q.
Let T, β, O " ∅ and the domain for minimal cost for the proponent be the input for Algorithm 2. In line 2, C is set to be the empty set. Since there are no clones in T and C " ∅, no modification of the basic assignment β takes place in lines 6-8. That is, after line 8 is executed, β 1 " β. Similarly, in line 9, T 1 is set to be T .

Assume that in the while loop, the search for a candidate basic action b satisfying the condition in line 10 is performed starting from the lowest index possible, and progressing towards the highest. Thus, when the algorithm enters the while loop for the first time, b is set in line 11 to be b 11 . Then, in lines 12 and 13, the basic assignment β 2 is defined with β 2 | B T 1 ztb 11 u " β 1 and β 2 pb 11 q " `8. Thus, cost B pT 1 , β 2 q " cost B pT 1 , β 1 q " 3, and in line 15 the node labeled b 11 is removed from T 1 . Hence, after the while loop is executed for the first time, we have Thus, the tree returned by Algorithm 2 is T 1 " AND p pOR p pb 13 q, OR p pb 23 qOR p pb 33 qq.

The set semantics of this tree is SpT 1 q " tptb 13 , b 23 , b 33 u, ∅qu, i.e., it is a singleton consisting of the optimal strategy in T w.r.t. minimal cost for the proponent under β.

The previous example demonstrates that Algorithm 2 sometimes allows for transforming a tree having set semantics of size exponential in the tree size into a tree having very small number of strategies, while retaining at least one of the strategies optimal in the original tree in the set semantics. We now illustrate the behavior of Algorithm 2 on our running example. Figure 16: A tree with the size of the set semantics exponential in the number of basic actions, with the basic assignment of minimal cost for the proponent given in the nodes labeled with basic actions Example 44. Let T be the attack-defense tree from Figure 2, and let β be the basic assignment of minimal time for the proponent that assigns `8 to the basic actions of the opponent and the values given in Table 3 to the basic actions of the proponent. Recall that there are eleven strategies in T (listed in Example 23) and that the optimal strategy in T w.r.t. minimal time under β is ptphish, phone, log&transu, ∅q (see, e.g., Example 27).

Let O " B o T . Then, C N pOq " ∅ and C O pOq " tphishu. The (optimal) value returned by the repeated bottom-up evaluation of minimal time for the proponent on T under β is 125, and it is obtained when in the for loop of Algorithm 1 the set C " ∅ is considered (see Example 41. Thus, after the first nine lines of Algorithm 2 are executed on input T , β, O and the minimal time for the proponent attribute domain, we have

C N pOq " ∅, C O pOq " tphishu, C " ∅,
the assignment β 1 differs from β only in the value assigned to the action phish, which is β 1 pphishq " 0, and T 1 is obtained by removing the nodes labeled pwd and spwd from T .

Observe that time B pT, β 1 q " 25, and that this value comes from the subdag of T rooted in the node labeled via online banking. Thus, setting the value assigned to any of the basic actions from the subdag of T rooted in the node labeled via ATM to `8 does not change the result of the bottom-up evaluation. Hence, after all of these basic actions are considered in the while loop, the subdag rooted in the via ATM node is removed from T .

On the other hand, if the value of any of the basic actions phone, log&trans and sms is set to `8, the value computed at the node labeled via online banking with the bottom-up evaluation will be `8, and so the value computed at the root will be different than time B pT, β 1 q. Thus, when any of these three basic actions is considered in the while loop, no modification of the tree occurs. Finally, setting the value assigned to the basic action uname to `8 results in the node labeled with that action being removed from T .

Thus, Algorithm 2 returns the tree T 1 depicted in Figure 17. The set semantics of this tree contains two strategies: the strategy ptphish, phone, log&transu, ∅q and the strategy ptphish, log&transu, smsq 

Complexity of Algorithm 2

Having illustrated the usefulness of Algorithm 2, we now turn to analyzing its complexity. For this purpose, assume that T is a tree on n nodes, containing k repeated basic actions of the proponent. Let A α " pD α , ', b, b, ', b, 'q be a non-increasing attribute attribute domain with D α Ď R and with ' being the operation of taking maximum or minimum. Assume that for a basic assignment β for α a single bottom-up computation α B pT, βq is performed in time Opf pn, |β|qq5 for some function f : N ˆN Ñ R. Among the operation performed by Algorithm 2 in lines 1 -8 the most complex one is the repeated bottom-up evaluation, performed in time O `maxpn 2 `f pn, |β|q, 2 k f pn, |β|qq ˘.

The tree T 1 from line 9 can be identified in time linear in n, using a variant of graph traversal algorithm. Since there are n nodes in T , the operation within the while loop will be performed at most n times. In the worst case, checking the while condition itself will require n¨f pn, |β|q operations. Once this condition is checked, the value of α B pT 1 , β 2 q is known, and so the only operation performed in line 14 is comparison of two real numbers. Determination of T 2 in line 15 is performed again in time linear in n, assuming that the values obtained at the intermediate nodes when computing α B pT 1 , β 2 q are stored once the algorithm enter the while loop.

It follows that Algorithm 2 will terminate in time O `maxpn 3 f pn, |β|q, 2 k f pn, |β|qq ˘.

Relations to other formalisms

Attack and attack-defense trees are only one of many modeling frameworks employing AND/OR trees. In this section, we discuss relations between the results presented in this chapter and some of the other similar formalisms. We do not argue that the applications presented here are necessarily useful per se. We believe that their value lies in demonstrating that it is worthwhile to try to reformulate analysis methods developed in terms of one formalism in the language of another one.

Fault trees

Fault trees [HRVG81, RS15] is a modeling framework for depicting and studying dependencies between elements of complex systems. In their simplest form, they are syntactically equivalent to attack trees: they are directed acyclic graphs with leaf nodes corresponding to failures of system components (basic events) and the refined nodes (gates) modeling failures propagation throughout the system. Static fault trees (SFTs) admit three types of gates: AND gates, OR gates and k-out-of -n gates; the latter can be modeled using only AND and OR gates [START_REF] Ruijters | Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools[END_REF]. Thus, we shall consider SFTs to be attack trees.

In the field of fault trees analysis it is standard to interpret repeated basic events (called shared basic events) as clones [START_REF] Stecher | Evaluation of large fault-trees with repeated events using an efficient bottom-up algorithm[END_REF][START_REF] Codetta-Raiteri | Bdd based analysis of parametric fault trees[END_REF][START_REF] Ruijters | Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools[END_REF]. The semantics of an SFT, as given in [START_REF] Ruijters | Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools[END_REF], describes for a given set of basic events that have occurred (equivalently, a set of components that have failed), for each element (gate or basic event) in the tree, whether the component or subsystem corresponding to this element failed. For a given set S of basic events that occurred, the semantics of an element represented with a node v in the fault tree T is achieved T pv, Sq. A minimal set S of basic events for which achieved T pv, Sq " 1 is called a minimal cut set (MCS) in T .

Minimal cut sets in SFTs are thus equivalent to minimal strategies in attack trees. Therefore, the necessary clones in an SFT are the events that are present in every MCS. Furthermore, by Proposition 2, MCSs belong to the set semantics of an SFT6 . One of the reliability characteristics of MCSs considered in [START_REF] Haasl | Fault tree handbook[END_REF] is minimal cut set unavailability, which is the probability that all the basic events in the MCS occur. In the particular case when each of the basic events is assigned a constant probability of occurrence, and under the assumption that the basic events are independent, the unavailability of a MCS is computed as the product of probabilities of its elements. Together with Theorem 2 and the fact that the attribute domain pr0, 1s, max, ¨q is non-increasing, this implies that the maximal value of MCS unavailability over all the MCSs can be computed in SFTs containing shared subtrees using the repeated bottom-up evaluation; an MCS achieving this value can be extracted from the SFT using Algorithm 2.

When applying the repeated bottom-up evaluation to an SFT and the minimal cost for the proponent attribute, with all the basic events being assigned 1, one obtains the size of the smallest of all the MCSs in the SFT. Again, Algorithm 2 can be used for extracting such MCS from the SFT without extracting all of MCSs.

Finally, combining Algorithm 1 with the framework developed in Chapter 5 allows for determining pairs of the form psize, unavailabilityq corresponding to MCSs optimal (in the sense of Pareto optimality) w.r.t. both the size and unavailability, i.e., minimizing the former while maximizing the latter.

Weighted monotone satisfiability problem

In the case of attack trees, the problem of determining the value of a cheapest strategy is equivalent to determining the minimal sum of costs (or weights) assigned to propositional variables of an AND{OR propositional formula, over all sets of variables satisfying this formula. Determining this value solves the weighted monotone satisfiability problem [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF]. Algorithm 2 can be used for reducing such monotone propositional formula to a smaller form, from which the set of variables corresponding to the optimal value could be extracted using the set semantics.

Attack graphs

In the work [START_REF] Wang | Minimum-cost network hardening using attack graphs[END_REF], the authors tackle the problem of determining the most costeffective ways of increasing the security of networks (network hardening problem). They employ a variant of attack graphs for modeling dependencies between the security conditions related to hosts (e.g., existence of a vulnerability or existence of an established connection) and the possible exploits. Their goal is to determine a set of initially satisfied security conditions that should be disabled in order to secure the network, at the lowest cost possible. To achieve this goal, the authors of [START_REF] Wang | Minimum-cost network hardening using attack graphs[END_REF] translate attack graphs into weighted monotone propositional formulae, which are later transformed into disjunctive normal form (DNF) and analyzed further. As a weighted monotone propositional formula is equivalent to an attack tree with a basic assignment of cost, Algorithm 2 could be applied for reducing the formula before the transformation into DNF, thus possibly avoiding the exponential explosion.

Empirical validation

We have implemented the two methods of evaluation of attributes (evaluation on the set semantics and the repeated bottom-up evaluation) and tested their performance on synthetic trees. The main goal of our experiment was to compare how the two methods perform, depending on the characteristics of the analyzed trees. An excerpt from the obtained results is presented in Table 5. Full description of the experimental setup, as well as all the sources necessary to reproduce the results are available at https: //github.com/wwidel/rbu-tests.

For a tree T with n nodes and k repeated basic actions of the proponent, we used the two methods for evaluating the minimal cost for the proponent attribute. Basic assignments β were constructed under the assumption that the opponent performs all of their actions. Values assigned to the basic actions of the proponent were generated randomly. We have measured the time of the evaluation on the set semantics cost S pT, βq (which includes the time needed for the construction of the set semantics itself) and using the repeated bottom-up evaluation (Algorithm 1). Each time value presented in Table 5 is an average over twenty measurements.

Table 5 is partitioned into three parts. For the trees from the first part, the performance of the two methods is comparable. For the trees presented in the second part, the computation on the set semantics outperforms Algorithm 1, while the opposite is true for the third part of the table.

We would like to point out that the trees from the second part of Table 5 have small set semantics, while having a significant number of repeated basic actions. The trees tree10 and tree13 have large set semantics, while having a very low number of repeated basic actions. These results are in line with the established complexity of the two methods of evaluation of attributes.

Conclusion and future work

The main focus of this chapter was the problem of evaluation of attributes on attackdefense trees containing clones. By determining several elementary properties of the set semantics, we motivated the usage of the evaluation of attributes on the set semantics in the case of attributes whose domains are induced by semirings, and in particular, the ones having non-increasing attribute domains.

With Theorem 1, we established sufficient conditions for the standard bottom-up evaluation of attributes returning meaningful results in attack-defense trees containing clones. An alternative method of evaluation, the repeated bottom-up evaluation, given in Algorithm 1, has been developed for the attributes having non-increasing attribute domains. It serves as the starting point of the tree reduction procedure given in Algorithm 2, which can be used for extracting optimal strategies from attack-defense trees. There are several interesting directions in which the work presented in this chapter could be developed further. First, it seems worthwhile to try verifying Conjecture 1. Second, since the running time of Algorithm 1 and 2 is exponential in the number of clones of the proponent, one could try to construct approximate variants of the two algorithms. For instance, Algorithm 1 could be parameterized with an upper bound on the number of subsets of the set of optional clones considered in the for loop, causing the complexity of the algorithm to depend mostly on the complexity of the bottom-up evaluation of the attribute domain provided as input. It seems that with Algorithm 2 relying on this heuristic variant of Algorithm 1, replacing the equality from line 14 with the "less than or equal to" inequality would be sufficient for obtaining a fast, approximate method for extracting optimal strategies from attack-defense trees.

Chapter 5

Multi-parameter analysis of security

In the previous chapter, we studied the problem of quantitative analysis of security using attributes of attack-defense trees. Classically, attribute domains have been used for formalizing single parameter optimization problems on attack-defense trees, such as determining the minimal cost or maximal probability of achieving the root goal. In this chapter, we tackle the issue of multi-parameter optimization. We demonstrate how multiple attribute domains can be combined into a single one, called Pareto attribute domain, with the evaluation of the corresponding attribute providing Pareto optimal values of attributes of achieving the root goal. We build upon the results presented in Chapter 4 to identify Pareto attribute domains whose attributes can be evaluated in trees containing clones using the repeated bottom-up evaluation (Algorithm 1).

The structure of this chapter is as follows. In Section 5.1, we recall the notion of Pareto optimality, adapted to the setting that we are mostly interested in. The construction and some properties of Pareto attribute domains are presented in Section 5.2. The applicability of Pareto attribute domains is illustrated in Section 5.3, with both a small case study, and with results of tests conducted on synthetic trees. We conclude the chapter and discuss possible future research directions in Section 5.4.

Preliminaries

To compare different strategies while taking multiple attributes related to their execution into account, we assign vectors of values to the strategies. Our main focus is on the attribute domains induced by semirings. Therefore, every set D i considered in the remainder of this chapter is equipped with two binary operations ' i and b i , such that pD i , ' i , b i q is a commutative idempotent semiring. Vectors belonging to D 1 ˆ. . . ˆDm will be marked in bold, and if d is a vector, d i will stand for its ith coordinate. We use ĺ i to denote the canonical partial order on D i , defined with d ĺ i d 1 if and only if 1), which are induced by the commutative idempotent semirings pN Y t`8u, min, `q and pr0, 1s, max, ¨q, respectively. To choose strategies optimal w.r.t. both attributes, we consider the set pN Y t`8uq ˆr0, 1s. Following Definition 30, a point pd 1 , d 2 q belonging to this set is dominated by a point

d ' i d 1 " d 1 ,
pd 1 1 , d 1 2 q if minpd 1 , d 1 1 q " d 1 1 and maxpd 2 , d 1 2 q " d 1 2 . In other words, pd 1 , d 2 q ĺ pd 1 1 , d 1 2 q if d 1 ě d 1
1 and d 2 ď d1 2 . For example, let D " tp125, 0.114q, p135, 0.057q, p145, 2 ´23 qu be the set of points representing the minimal time and the maximal success probability of the strategies ptphish, phone, log&transu, ∅q, ptforce, card, cashu, ∅q and ptphish, uname, phone, log&transu, ∅q, respectively, under the basic assignments given by Table 3 and6. The points p145, 2 ´131 q and p135, 0.057q are both dominated by p125, 0.114q. If an element of D 1 ˆ. . . ˆDm corresponding to the value of a strategy pP, Oq is dominated by the value of a strategy pP 1 , O 1 q, e.g., the two strategies are equally likely to succeed, but the cost of execution of pP 1 , O 1 q is smaller, then the proponent has no incentive to execute pP, Oq. Therefore, the interesting elements of D 1 ˆ. . . ˆDm are the ones that are not dominated by others. Our ultimate goal is to identify values of strategies that are not dominated by values corresponding to the execution of other strategies. In other words, the final result of our analysis will be a set whose every element is a Pareto point.

Definition 33 (Pareto optimal set). A finite set D Ď D 1 ˆ. . . ˆDm satisfying D " maxpDq is called a Pareto optimal set. We use P pD 1 ˆ. . . ˆDm q to denote the set of all Pareto optimal sets in D 1 ˆ. . . ˆDm .

The considerations in Example 45 and 46 show that D defined in Example 45 is not a Pareto optimal set.

Pareto attribute domains

We are now ready to develop a general method for combining attribute domains into a single domain suitable for determining Pareto optimal strategies in attack-defense trees.

For i P t1, . . . , mu, let A α i be the attribute domain pD i , ' i , b i , b i , ' i , b i , ' i q. Given basic assignments β α i for the attributes α i , we create a new assignment, which assigns the singleton tpβ α 1 pbq, . . . , β αm pbqqu to each basic action b P B. Note that this singleton is a Pareto optimal set, and it contains the optimal value corresponding to the execution of b. Such singletons will be combined using appropriate operations, eventually resulting in a Pareto optimal set of values corresponding to strategies in an attack-defense tree. We now define these operations.

For d,

d 1 P D 1 ˆ. . . ˆDm , let d b d 1 :" pd 1 b 1 d 1 1 , . . . , d m b m d 1 m q, (18) 
and, with a slight abuse of notation, let

D b D 1 :" td b d 1 : d P D, d 1 P D 1 u, ( 19 
) D b D 1 :" maxpD b D 1 q, ( 20 
) D ' D 1 :" maxpD Y D 1 q, ( 21 
)
for D, D 1 P P pD 1 ˆ. . . ˆDm q.

The intuition behind the above construction is the following. Suppose that two sets D and D 1 contain Pareto optimal values corresponding to the achievement of two different subgoals by the proponent in a tree with no repeated basic actions. If in order to achieve the root goal of T the proponent has to achieve at least one of the two subgoals, then the set of Pareto optimal values of achieving the root goal is computed as D ' D 1 : this operation first gathers all the values corresponding to the strategies achieving the root goal in a single set, and then returns the Pareto frontier of this set. Similarly, if the proponent had to achieve both of the aforementioned goals, then the Pareto optimal values of strategies in T would be obtained by computing D b D 1 : here the result is the Pareto frontier of the set of all possible values corresponding to simultaneous achievement of the two subgoals.

Given the above construction, the values of Pareto optimal strategies can be obtained using the attribute domain pP pD 1 ˆ. . . ˆDm q, ', b, b, ', b, 'q. Throughout the rest of the thesis, we refer to the attribute domains resulting from the above process as Pareto attribute domains.

Definition 34 (Pareto attribute domain).

A Pareto attribute domain is an algebraic structure of the form pP pD 1 ˆ. . . ˆDm q, ', b, b, ', b, 'q, for some attribute domains

A α i " pD i , ' i , b i , b i , ' i , b i , ' i q induced by
semirings, for i P t1, . . . , mu, and with the operations ' and b defined by ( 18)-( 21). We say that the Pareto attribute domain pP pD 1 ˆ. . . ˆDm q, ', b, b, ', b, 'q is induced by the attribute domains A α i , for i P t1, . . . , mu.

Pareto attribute domains enjoy the following fundamental properties. Theorem 5. A Pareto attribute domain pP pD 1 ˆ. . . ˆDm q, ', b, b, ', b, 'q induced by attribute domains A α i induced by semirings, for i P t1, . . . , mu, is an attribute domain (in the sense of Definition 18), and pP pD 1 ˆ. . . ˆDm q, ', bq is a commutative idempotent semiring.

Furthermore, if the domains A α i , i P t1, . . . , mu, are non-increasing, then the induced Pareto attribute domain is also non-increasing.

Before presenting its proof, we briefly discuss the immediate consequences of Theorem 5. The first of them follows from Theorem 1: if there are no repeated basic actions in an attack-defense tree, then the evaluation of a number of attributes having domains induced by semirings can be performed using a single bottom-up procedure. Second, if a tree contains repeated basic actions and the Pareto attribute domain is induced by non-increasing attribute domains, then, by Theorem 2, the repeated bottom-up evaluation given in Algorithm 1 can be applied, and the values of Pareto optimal strategies can still be obtained without the need of constructing the set semantics of the entire tree. Third, note that if a Pareto domain is induced by attribute domains whose multiplicative operations are idempotent, then the operation b is itself idempotent. Therefore, again due to Theorem 1, in such a case the evaluation of a Pareto attribute can be performed using a single bottom-up procedure.

The above discussion is summarized in the following theorem. Theorem 6. Let T be an attack-defense tree and let A Par " pP pD 1 ˆ. . . ˆDm q, ', b, b, ', b, 'q be a Pareto attribute domain induced by the attribute domains A α i , for i P t1, . . . , mu. Then -if there are no repeated labels in T , then the equality Par B pT, β Par q " Par S pT, β Par q holds for any basic assignment β Par , -if the operator b i is idempotent, for every i P t1, . . . , mu, then the equality Par B pT, β Par q " Par S pT, β Par q holds for any basic assignment β Par , 

-if A α i is a non-increasing

Proof of Theorem 5

Our proof of Theorem 5 exploits some elementary properties of the dominance relation and of the Pareto frontier, stated in Lemma 6-9. Recall that, for every i P t1, . . . , mu, pD i , ' i , b i q is an idempotent commutative semiring and that the dominance relation ĺ in D 1 ˆ. . . ˆDm is defined w.r.t. the canonical partial orders ĺ i .

Lemma 6. Let d, d 1 and d 2 be elements of D 1 ˆ. . . ˆDm . Then,

1. if d 1 ĺ d 2 , then d b d 1 ĺ d b d 2 , 2. if the relation d b i d 1 ĺ i d 1
holds for every i P t1, . . . , mu and for every d,

d 1 P D i , then d b d 1 ĺ d 1 .
Proof. For every i P t1, . . . , mu, pD i , ' i , b i q is an idempotent commutative semiring. Therefore, for d, d 1 , d 2 P D i we have that if d 1 ĺ i d 2 , then

d b i d 2 " d b i pd 1 ' i d 2 q " pd b i d 1 q ' i pd b i d 2 q, meaning that d b i d 1 ĺ i d b i d 2 .
Together with definition of the dominance relation, this implies the first statement.

The second statement follows immediately from the definition of dbd 1 , defined by (18) on page 109, and the definition of the dominance relation. We are now ready to prove Theorem 5.

Proof. We begin with proving that pP pD 1 ˆ. . .ˆD m q, ', bq is a commutative idempotent semiring. Since a binary associative operation can be modeled with an unranked operator, this immediately implies that pP pD 1 ˆ. . .ˆD m q, ', b, b, ', b, 'q is an attribute domain.

For A P P pD 1 ˆ. . . ˆDm q, we have

A ' A " maxpA Y Aq " maxpAq " A,
i.e., the operation ' is idempotent. It is easy to verify that both ' and b are commutative and that a b " tpa b 1 , . . . , a bm qu. Since a b i " e ' i for every i P t1, . . . , mu, together with the definitions of canonical partial orders and Definition 30 this implies that a b is dominated by every other element of D 1 ˆ. . . ˆDm . Therefore, for any D P P pD 1 ˆ. . . ˆDm q, we have that D ' a b " maxpD Y a bq " maxpDq " D. This proves that e ' " a b.

The associativity of the two operations follows from Lemma 8 and 9. Namely, We prove that b distributes over ' in a similar way:

pA ' Bq ' C " maxpmaxpA Y Bq Y Cq Lemma 8 " maxpA Y B Y Cq Lemma 8 " maxpA Y maxpB Y Cqq " A 'pB ' Cq
A bpB ' Cq " maxpA b maxpB Y Cqq Lemma 9 " maxpA b pB Y Cqq " maxpA b B Y A b Cq Lemma 8 " maxpmaxpA b Bq Y maxpA b Cqq " pA b Bq 'pA b Cq.
The above reasoning proves that pP pD 1 ˆ. . . ˆDm q, ', bq is a commutative idempotent semiring and that pP pD 1 ˆ. . . ˆDm q, ', b, b, ', b, 'q is an attribute domain.

Assume now that the domains pD i , ' i , b i , b i , ' i , b i , ' i q are non-increasing, for i P t1, . . . , mu. To prove the second statement of the theorem, it remains to prove that for every A, B P P pD 1 ˆ. . . ˆDm q the equality A 'pA b Bq " A holds. Let A, B P P pD 1 ˆ. . . ˆDm q. Observe that, since the domains pD i , ' i , b i , b i , ' i , b i , ' i q are non-increasing, the second item of Lemma 6 implies that maxpA Y pA b Bqq " maxpAq. Furthermore, since A is a Pareto optimal set, the equality maxpAq " A holds. Thus,

A 'pA b Bq " maxpA Y maxpA b Bqq Lemma 8 " maxpA Y pA b Bqq " maxpAq " A.
The proof of Theorem 5 is complete.

Complexity issues

Theorems 1-5, summarized in Theorem 6, provide a general framework for a convenient multi-objective analysis of scenarios modeled with attack-defense trees. Before illustrating the applicability of the framework, we briefly discuss its complexity.

Recall that even in the simplest case of attack trees with a single minimal cost attribute domain, the problem of determining a cheapest strategy is known to be NPhard [START_REF] Buldas | Simple Infeasibility Certificates for Attack Trees[END_REF], and that this difficulty originates from the presence of repeated basic actions of the proponent (as indicated by Theorems 1 and 2). One could therefore hope for the multi-objective optimization to also be easier in trees with no repeated basic actions. Unfortunately, this is not necessarily the case, due to the number of possible Pareto optimal strategies. The following construction illustrates this issue.

Example

47. Let m ě 2 be an even integer and let T " AND p pOR p pb 1 , b 2 q, OR p pb 3 , b 4 q, . . . , OR p pb m´1 , b m qq. Consider a Pareto domain induced by m minimal cost for the proponent attribute domains and a basic assignment that assigns to the action b i a vector assuming 1 on the ith coordinate and 0 on each of the remaining m ´1 coordinates. Then, every pair of the form ptb i 1 , b i 2 , . . . , b i m{2 u, ∅q, where i j P t2j ´1, 2ju, is a Pareto optimal strategy in T , and the value corresponding to such a strategy is unique. Clearly, the number of such strategies is 2 m{2 .

If the number of domains inducing a Pareto domain is small, then the time and space complexities of the methods for evaluation of attributes depend mostly on two factors: the size of the set semantics and the number k of repeated basic actions in the considered tree. In the case when k is big and the number of strategies is small, it is better to use the computation on the set semantics. This is obviously due to the fact that the time complexity of Algorithm 1 is exponential in k. If k is small and the number of strategies in the tree is big, then Algorithm 1 will perform better. This intuition is supported by the experimental results presented in Section 5.3.2. These results provide also some indications towards making the meaning of the words "big" and "small" more precise for particular use cases.

Empirical validation

In Section 5.3.1, we validate the practicality of Pareto attribute domains with a small case study. Experimental results illustrating the approach's scalability and the differences between the two methods for attributes evaluation are presented in Section 5.3.2.

Case study

We illustrate the applicability of the developed framework with a "what-if" analysis of the scenario modeled with the attack-defense tree T from Figure 2. For this purpose, we use the Pareto attribute domain induced by the domains for minimal time for the proponent, minimal (technical) skill level of the proponent and maximal probability for the proponent attributes (given in Table 1) 3 . In other words, we use the domain

`P `pN Y t`8uq 2 ˆr0, 1s ˘, ', b, b, ', b, ' ˘,
where b and ' are given by equations ( 19)-( 21) for b defined by We denote the above domain with A Par and let the values assigned to the basic actions of the proponent to be as specified in Table 7, e.g., the value assigned to the action cam is tp60, 2, 0.8qu. We consider three scenarios. In the first of them, scenario S 1 , the opponent executes none of their actions. In scenario S 2 , the only action executed by the opponent is sms. Finally, the opponent executes all of their actions in scenario S 3 . For each of the scenarios the basic assignment from Table 7 is extended according to Remark 1 with the values presented in Table 8. For instance, the value assigned to each of the opponent's actions in scenario S 1 is tp0, 0, 1qu. Using the set semantics of the tree from Figure 2 (given in Example 23 on page 42), it is straightforward to compute the values corresponding to the execution of the strategies in the particular scenarios (see Table 10), as well as the Pareto optimal values. We illustrate the computation in a bit more detail for the case of scenario S 1 , denoting with β Par the basic assignment for this scenario. Following Definition 24, we have max `tp135, 1, 0.057qu Y . . . Y tp345, 1, 0.12 ¨2´68 qu " max `tp135, 1, 0.057q, . . . , p345, 1, 0.12 ¨2´68 qu "tp135, 1, 0.057q, p485, 1, 0.095q, p105, 4, 0.57qu.

d b d 1 :" pd 1 `d1 1 , maxpd 2 , d 1 2 q, d 3 ¨d1 3 q for d, d 1 P pN Y t`8uq 2 ˆr0, 1s ˘.
The strategies corresponding to the Pareto optimal values obtained above are presented in Table 9, along the results of the evaluation of the Pareto domain on the set semantics in the remaining scenarios. One can draw several corollaries from Table 9. As two of the optimal values and the optimal strategies obtained for scenarios S 1 and S 2 are the same, one could conclude that securing transfer dispositions with two-factor authentication using mobile phone text messages (sms) does not increase significantly one's resistance against stealing from the account in the scenario modeled by the tree from Figure 2. Furthermore, the strategy ptforce, card, cashu, ∅q consisting of forcing the victim to reveal their PIN, stealing the payment card and withdrawing cash from an ATM, implementation of which requires relatively low amount of time and very low technical skill level, is an optimal strategy in all of the three scenarios. Knowing the values corresponding to strategies that achieve the root goal in particular scenarios, as well as the capabilities of the attacker and constraints on available resources, might help a security expert in making an informed decision on which security measures should be implemented.

Performance tests

To verify that the quantitative analysis of attack-defense trees using Pareto attribute domains is applicable for trees describing even more complex scenarios than the one from Figure 2, we have tested our implementation on a number of automatically generated trees. Full description of the experimental setup, as well as all the sources necessary to reproduce the results are available at https://github.com/wwidel/pareto-tests. The main goal of our experiment was to compare how the two methods perform, depending on the characteristics of the analyzed trees. An excerpt from the obtained results is presented in Table 11.

For a tree T with n nodes and k repeated basic actions of the proponent, two Pareto domains were considered. Each of them is induced by m domains for minimal cost for the proponent, one domain for minimal skill of the proponent, and one domain for minimal time for the proponent. Basic assignments β were constructed under the assumption that the opponent performs all of their actions. Values assigned to the basic actions of the proponent were generated randomly. For the computation of Pareto frontiers, the naive method, where each element of a set is compared with the other elements, coordinate by coordinate, was used. We have measured the time of the computation of the Pareto optimal values using the evaluation on the set semantics Par S pT, βq (which includes the time needed for the construction of the set semantics itself) and using the repeated bottom-up evaluation (Algorithm 1) applied to Pareto domains. Each time value presented in Table 11 is an average over twenty measurements.

Table 11 is partitioned into three parts. For the trees from the first part, the performance of the two methods is comparable. For the trees presented in the second part, the evaluation on the set semantics outperforms the repeated bottom-up evaluation, while the opposite is true for the third part of the table.

We would like to point out the following facts.

1. The attack trees from the second part of Table 11 have small set semantics, while having a significant number of repeated basic actions.

2. The trees tree10 and tree13 have large set semantics, while having a very low number of repeated basic actions.

3. The running times for trees tree12 and tree30 differ significantly, while the two trees have the same number of nodes and repeated basic actions, and small set semantics. However, there are more Pareto optimal values under the basic assignments generated for tree30. This illustrates the impact of the actual values assigned to the basic actions, which translates into different numbers of Pareto optimal values, on the running time.

Conclusion and future work

The main objective of the work presented in this chapter was to develop an efficient method for multi-parameter optimization of security based on attack-defense trees. The proposed Pareto attribute domains are suitable for this purpose, and can be used with attack-defense trees containing repeated basic actions. As discussed already in Section 3.2.5, Pareto attribute domains are a viable alternative to many of the existing methods developed for tackling the same problem. Our construction shows that the multiparameter evaluation can be addressed with techniques existing for the single-parameter evaluation. Additionally, Theorem 5 constitutes a general algebraic result that might be of independent interest on its own. We focused on optimization from the point of view of the proponent only. However, the optimization from the point of view of the opponent, or both actors at the same time is also worth investigating. As stated in Remark 1, the basic assignments that we consider for the opponent are limited to express whether actions are executed or not, without taking their actual values, e.g., cost, probability, etc. into account. Should such values be considered, interesting questions arise. For instance, given the assignment of a number of attributes to the basic actions of the proponent, as well as the cost of the basic actions of the opponent, which countermeasures should the opponent (having a fixed budget) implement to make the achievement of the root goal as "difficult" as possible, in the sense of Pareto optimality? And if the actions of the opponent are decorated with several attributes, how to determine a Pareto optimal solution to the above problem?

The Pareto domains defined in this chapter are intentionally crafted in a way ensuring that they behave well when induced by non-increasing attribute domains. Nevertheless, other constructions are possible. For instance, by replacing the tuple pP pD 1 ˆ. . . Dm q, ', b, b, ', b, 'q, in Definition 34 with the tuple pP pD 1 ˆ. . .ˆD m q, b, b, b, b, b, bq, one obtains a domain similar in spirit to the ones considered in [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF]. While the former is suitable for attributes whose evaluation on the set semantics does not depend on the non-minimal strategies, the latter could be used when every set of basic actions of the actors is considered to be a possible realization of the security scenario modeled with a tree. 

Selection of countermeasures in attack-defense scenarios

As highlighted in Section 3.3, a somewhat generic approach to the problem of selection of countermeasures in attack-defense scenarios is, not surprisingly, mathematical programming, and in particular linear programming and integer programming [START_REF] Chvátal | Linear Programming[END_REF]. The standard input required for formulating security related programming problems includes a set of attacks (or threats; these are sets or sequences of vulnerabilities or attack steps), together with a set of mitigations (or countermeasures) and a description of relations between the attacks and the mitigations, as in, e.g., [START_REF] Rakes | It security planning under uncertainty for high-impact events[END_REF][START_REF] Sawik | Selection of Optimal Countermeasure Portfolio in IT Security Planning[END_REF][START_REF] Zheng | A budgeted maximum multiple coverage model for cybersecurity planning and management[END_REF]. Existing methods for extracting such information from attack-defense trees have limited applications, as they have been developed for specific attack-defense trees of very limited expressive power (see Section 3.3 for details).

The work described in this chapter is aimed at achieving two goals. The first of them is the extraction of the information described in the previous paragraph from attackdefense trees, under no structural restrictions being imposed on trees. The second goal is to exploit the specific form of the extracted information for formulating integer linear programming problems interesting from the security point of view.

In Chapter 4, to solve the problem of evaluation of attributes on attack-defense trees containing clones, we proceeded by studying properties of an existing semantics for attack-defense trees, and then exploited them to develop Algorithms 1 and 2. Here, we take a different approach. We begin with formalizing our intuition regarding the knowledge that we would like to extract from trees. This results in a novel semantics for attack-defense trees, defined in Section 6.2, that we call defense semantics. Only then we proceed with the (non-trivial) task of developing a method for the construction of this semantics, in Section 6.2.1. Section 6.3 is devoted to a number of security-related optimization problems, expressed in terms of mathematical programming and relying on the defense semantics. We conclude in Section 6.4. 123

Preliminaries

The framework developed in this chapter relies on some structural elements of attackdefense trees and on properties of the satisfiability attribute domain. We introduce them in this section.

Due to the different shapes and colors used for representing nodes of the two actors, the first thing noticed when one looks at a graphically depicted attack-defense tree are its structural components, namely, the maximal rooted subdags whose all nodes belong to one of the actors. We call them homogeneous subdags.

Definition 35 (Homogeneous subdag). Let T " pV, A, L, λ, actor, refq be an attackdefense tree and let H " pV H , A H q be a rooted DAG such that

-V H Ď V , A H " A X pV H ˆVH q,
-at least one of the parents of rootpHq in T belongs to the actor other than actorprootpHqq or else rootpHq " rootpT q, Example 48. In the tree T from Figure 2, the attacker is the proponent and the defender is the opponent. Each of the nodes of the defender constitutes a homogeneous subdag of the defender in T . Each of the nodes labeled cam and phone is a homogeneous subdag of the attacker in T , and the last homogeneous subdag of the attacker in T is the subdag of T induced by the remaining nodes of the attacker.

-children T pvq Ď V H , for every v P V H , -v R V H ,
The next example illustrates the fact that every node can belong to more than one homogeneous subdag of a tree.

Example 49. There are two homogeneous subdags of the defender in the tree from Figure 5. These are AND o pd 1 , d 2 , d 3 q and OR o pd 3 , d 4 q. The node labeled d 3 belongs to both of them.

Recall that the for a tree T and a set B Ď B T the value of achieved T prootpT q, Bq is obtained by evaluating a Boolean function that is positive in the variables corresponding to the basic actions of the proponent, and negative in the remaining variables (cf. Remark 2 and 3). This fact has multiple consequences, some of them intuitively obvious, of which the following will be of use for us. Corollary 3. Let T " pV, A, L, λ, actor, refq be an attack-defense tree and let B Ď B s T , with s P tp, ou, be a set of actions of one of the actors. If the equality achieved T pv, Bq " 0 holds for a node v P V , then achieved T pv, Bztbuq " 0, for every b P B T .

Proof. For the proof, we assume that b P B, since otherwise the statement is obviously true.

Suppose first that actorpvq " s T . Then, the value of achieved T pv, ¨q is computed by evaluating a Boolean function that is positive in the variables corresponding to the basic actions of the actor s T . Together with the equality achieved T pv, Bq " 0 and the fact that the value of achieved T pv, Bq is computed by substituting the 0 assigned to the variable corresponding to the basic action b in achieved T pv, Bztbuq with 1, this implies that achieved T pv, Bztbuq " 0.

Suppose now that actorpvq " sT . Observe that Definition 15 and 19 together with the definition of the satisfiability attribute domain imply that achieved T pv, ∅q " 0. Together with the fact the the function achieved T pv, ¨q is negative in the variables corresponding to the actions belonging to the set B, this implies that achieved T pv, Bztbuq " 0. Corollary 4. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, B Ď B T be a set of basic actions of the actors, and v P V be a node with actorpvq " s T , for s P tp, ou. Then, -if achieved T pv, Bq " 0, then achieved T pv, B Y B 1 q " 0, for every B 1 Ď B sT , and -if achieved T pv, Bq " 1, then achieved T pv, B Y B 1 q " 1, for every B 1 Ď B s T .

Of special usefulness for us will be the contraposition of the first of the two statements given in Corollary 4. Corollary 5. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, let v P V be a node satisfying actorpvq " p T and let P Ď B p T be a set of basic actions of the proponent. If there is a set O Ď B o T of basic actions of the opponent such that achieved T pv, P Y Oq " 1, then achieved T pv, P q " 1.

Corollary 4 implies also the following. Corollary 6. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, and let P Ď B p T and O Ď B o T be sets of basic actions of the actors. If the equalities achieved T pv, P q " 0 and achieved T pv, Oq " 0 hold for a node v P V , then achieved T pv, P Y Oq " 0.

We rely on Corollary 6 to prove the intuitively obvious statement: if a root goal of an attack-defense tree is achieved by a set of basic actions and an action from this set does not contribute to the goal being achieved, then the goal is still achieved after the action is removed from the set. Lemma 10. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, and let P Ď B p T and O Ď B o T be sets of basic actions of the actors. If v P V is a node such that -refpvq " N, -achieved T prootpT q, P Y Oq " 1, and -on every path from v to rootpT q there is a node v 1 satisfying achieved T pv 1 , P q " 0 and achieved T pv 1 , Oq " 0, then achieved T prootpT q, P Y Oztλpvquq " 1.

Proof. Let v 1 be one of the nodes satisfying the last condition of the lemma. Corollary 6 implies that achieved T pv 1 , P YOq " 0. Therefore, when the value of achieved T prootpT q, P Y Oq is computed using the bottom-up procedure, the value propagated up to the root from v 1 is zero. Furthermore, it follows from Corollary 3 that achieved T pv 1 , Oztλpvquq " 0 and achieved T pv 1 , P ztλpvquq " 0. Thus, by Corollary 6, achieved T pv 1 , P Y Oztλpvquq " 0, i.e., the value propagated from v 1 remains unchanged after the removal of the basic action λpvq from P Y O. Hence, achieved T prootpT q, P Y Oztλpvquq " achieved T prootpT q, P Y Oq " 1.

Defense semantics

Our ultimate goal is to extract possible behaviors of rational actors from an attackdefense tree modeling a security scenario, and to exploit this information for optimal selection of countermeasures to be implemented by the opponent. Similarly as in the previous chapters, we will express actors' behavior in terms of sets of their basic actions. While some works consider every subset of basic actions of an actor to model a possible realization of the scenario (e.g., [START_REF] Aslanyan | Pareto efficient solutions of attackdefence trees[END_REF] or [GHL `16]) such an approach is not only computationally ineffective, but also unnecessary, in the sense that among all the subsets there are inefficient ones that do not correspond to a reasonable behavior. Note that the second condition of Definition 35 implies that the goal of the root node of a homogeneous subdag either counters some goal of the other actor, or else achieving it means success for the proponent. Therefore, in order to succeed, the actors need to achieve the root goals of (some of) their corresponding homogeneous subdags; if a set of actions achieves none of the root goals of the homogeneous subdags, its execution has no impact on the realization of the modeled scenario. Therefore, as the building blocks for our formalization of the behavior of rational actors we use minimal sets of actions that achieve root goals of homogeneous subdags. We call them proponent's and opponent's vectors.

Definition 36 (Proponent's/opponent's vector). Let T be an attack-defense tree and let H be a homogenous subdag of the proponent (opponent) in T . A minimal, w.r.t. the inclusion, set of basic actions of the proponent (resp. opponent) achieving the root goal of H is called a proponent's vector (resp. an opponent's vector) in H.

Example 50. Let T 1 be the subdag of the tree T from Figure 2 induced by the nodes bearing labels from the set B p T ztcam, phoneu. The proponent's vectors in this homogeneous subdag of the proponent in T are tforce, card,

We assume that in order to counter the proponent in the best way possible, the opponent might be interested in executing a number of opponent's vectors in a single homogeneous subdag of an attack-defense tree. On the other hand, given a specific behavior of the opponent, we assume that a rational proponent executes only those actions that are necessary for achieving the root goal. Thus, we try to capture the behavior of rational actors with the following notion of strategies of the actors.

Definition 37 (Proponent's/opponent's strategy). Let T be an attack-defense tree.

-A set O Ď B o T is called an opponent's strategy in T if it is a union of any number of opponent's vectors from some of the homogeneous subdags of T . Note that the empty set is a possible opponent's strategy.

-A set P Ď B p T is called a proponent's strategy in T if there exists an opponent's strategy O in T for which P is a minimal set satisfying achieved T prootpT q, P YOq " 1. Such a set O is called a witness for the proponent's strategy P .

Note that every proponent's strategy can be witnessed by many opponent's strategies, and that each of the opponent's strategies can be a witness for a number of proponent's strategies.

Example 51. Consider again the tree T from Figure 2. The opponent's strategies in T are the elements of the set 2 B o T , i.e., the sets ∅, tcoveru, tspwdu, tsmsu, tcover, spwdu, tcover, smsu, tsms, spwdu, and tcover, spwd, smsu. The proponent's vectors listed in Example 50 are the proponent's strategies witnessed by the empty opponent's strategy ∅. Intuitively, this means that should the defender perform none of their actions in the scenario modeled with T , the reasonable attacker would achieve the root goal by executing any of the four vectors. The remaining proponent's strategies in T and their (in this case, unique) witnesses are tcam, eav, card, cashu, witnessed by tcoveru, tphish, phone, log&transu, witnessed by tsmsu, tuname, pwd, phone, log&transu, witnessed by tsmsu.

Let P be a proponent's strategy and O be an opponent's strategy in T . We say that O counters P , if achieved T prootpT q, P Y Oq " 0; otherwise P counters O. With the actors' strategies defined by Definition 37, our objective of determining possible behavior of a rational proponent and ways of countering it is accomplished with the notion of defense semantics2 . Definition 38 (Defense semantics). The defense semantics of an attack-defense tree T , denoted DpT q, is the set of all pairs pP, Oq, where P is a proponent's strategy in T and O is a minimal (w.r.t. the inclusion) opponent's strategy in T that counters P .

We would like to stress that the proponent's strategies in an attack-defense tree that cannot be countered do not appear in its defense semantics. The proponent's strategies in T that do appear in the defense semantics of T , i.e., those that can be countered by an opponent's strategy in T , are called counterable. The defense semantics of our running attack-defense tree is given in the following example.

Example 52. Recall the strategies of the actors in the tree T from Figure 2 given in Example 51. The defense semantics of T is DpT q " tpteav, card, cashu, tcoveruq, ptphish, log&transu, tsmsuq, ptuname, pwd, log&transu, tspwduq ptuname, pwd, log&transu, tsmsuq ptuname, pwd, phone, log&transu, tspwduqu.

The strategies that are not counterable in T are tforce, card, cashu, teav, cam, card, cashu, and tphish, phone, log&transu.

While the concept of the defense semantics is intuitively simple and self-explanatory, constructing this semantics is a complex task. We proceed with describing our method for its construction.

Construction of the defense semantics

To construct the defense semantics of an attack-defense tree T , one could consider the following naive approach, which we are going to build upon.

1. Create all the opponent's strategies in T .

2. For every opponent's strategy, determine the proponent's strategies witnessed by it.

3. For every proponent's strategy, identify the minimal opponent's strategies countering it.

The first of the three steps is already very expensive, since every subset of basic actions of the opponent might constitute an opponent's strategy, as illustrated in Example 51. We reduce this step's complexity by creating (if possible) only a subset of the set of all possible opponent's strategies in T , while ensuring that every proponent's strategy is witnessed by at least one element of this subset. Then, we proceed with the remaining two steps. The construction of the defense semantics is summarized in Algorithm 3. The rest of this section is devoted to proving its correctness and completeness. DpT q Ð DpT q Y tpP, Oq : O is a minimal set in CounterPro B pT, β P , rootpT qqu 9: end for 10: return DpT q

We start by introducing four operations on sets of sets that we use to define attribute domains employed by Algorithm 3. For n sets A 1 , . . . , A n of sets, let

n ò i"1 A i :" t n ď i"1 A i | A i P A i u, (22) 
n ð i"1 A i :" ď IĎt1,...,nu ò iPI A i , ( 23 
)
A 1 m A 2 :" $ & % t∅u, if A 1 " t∅u or A 2 " t∅u, A 1 Y A 2 , otherwise, (24) 
A 1 l A 2 :" A 1 Y pA 1 b A 2 q. ( 25 
)
To construct a set of witnesses sufficient for determining all proponent's strategies, we use the sufficient witnesses attribute, abbreviated as SuffWit, formalized with the attribute domain A SuffWit :" p2 2 B , ', ', ', b, ', lq. In Proposition 6, we give an elementary property of the bottom-up evaluation of the SuffWit attribute under a specific basic assignment. Proposition 6. Let T " pV, A, L, λ, actor, refq be an attack-defense tree and let β be the basic assignment for the SuffWit attribute defined as βpbq :"

$ & % ∅, if b P B p T , ttbuu, otherwise. (26)
If O P SuffWit B pT, βq, then O is an opponent's strategy in T .

Proof. We shall prove that, for every v P V , every element of O P SuffWit B pT, β, vq is a union of opponent's vectors from some of the homogeneous subdags of T pvq. The validity of this statement for v " rootpT q completes the proof of Proposition 6.

The proof is by induction on the structure of T pvq. For the base case, let v be a non-refined node such that v does not exist. Then, the statement is obviously true by the definition of the basic assignment β.

If v is refined or v exists, then, since every element of SuffWit B pT, β, vq is a union of some of the sets belonging to

ď v 1 Pchildren T pvqYtvu SuffWit B pT, β, v 1 q,
by formulae (22), ( 23) and (25), the statement follows from the induction hypothesis.

The above proof provides some insight into our motivation for the choice of most of the operations of the SuffWit attribute domain: they are defined in a way that ensures that the result of the bottom-up evaluation under the basic assignment given by (26) consists of opponent's strategies. There is an additional motivation behind the choice of the l operation that we will comment on later in this chapter. Nevertheless, being aware that the definition of the attribute domain A SuffWit is somewhat non-intuitive, we illustrate its usage with three examples. Throughout the rest of the chapter, whenever we say "bottom-up evaluation of the SuffWit attribute", we mean its bottom-up evaluation under the basic assignment given by (26).

b 1 ∅ ttd 1 u, td 1 , d 2 uu " ∅ ' ttd 1 u, td 1 , d 2 uu d 1 ttd 1 uu ttd 1 u, td 1 , d 2 uu " ttd 1 uu l ttd 2 uu b 2 ∅ ttd 2 uu " ∅ ' ttd 2 uu d 2 ttd 2 uu
Example 53. Consider the tree T " C p pb 1 , C o pd 1 , C p pb 2 , d 2 qqq. The bottom-up evaluation of the SuffWit attribute in T is depicted in Figure 18. It is easy to verify that the opponent's strategy td 1 u is the unique minimal witness for the proponent's strategy tb 1 , b 2 u. The set td 1 , d 2 u is an opponent's strategy in T , but it is not a witness for any of the proponent's strategies.

Should a node of the attacker labeled b 3 be attached as a countermeasure to the node labeled d 2 , the set obtained with the bottom-up evaluation of SuffWit in the resulting tree would be the same as in T . In this case, however, the opponent's strategy td 1 , d 2 u would be the unique minimal witness for the proponent's strategy tb 1 , b 2 , b 3 u.

There are attack-defense trees for which the result of the bottom-up evaluation of the SuffWit attribute consists of exactly the non-empty witnesses necessary for determining all proponent's strategies. As illustrated by Example 53, this is the case, for instance, for an attack-defense tree being a path of alternating non-refined nodes of the proponent and the opponent, with the first node on the path belonging to the proponent. We discuss these trees further in the next example.

Example 54. Let T " C p pb 1 , C o pd 1 , C p pb 2 , C o pd 2 , . . . C o pd n , b n`1 q . . .qqqq be an attackdefense tree being a path of alternating non-refined nodes of the proponent and the opponent, with the first node on the path belonging to the proponent, and with n nodes of the opponent. The total number of non-empty opponent's strategies in T is 2 n ´1, whereas there are only n ´1 strategies in the result of the bottom-up evaluation of SuffWit on T . Furthermore, each of them is a unique witness for one of the proponent's strategies: the opponent's strategy td 1 , . . . , d i u, with i P t1, . . . , nu, is the unique witness for the proponent's strategy tb 1 , . . . , b i`1 u.

Observe the following: if O is an opponent's strategy belonging to the result of the bottom-up evaluation of SuffWit on T and d i P O, with i P t1, . . . , nu, then d j P O for every j P t1, . . . , i ´1u. Informally speaking, there are no "gaps" in the obtained opponent's strategies. This is intentional: should the above condition be not satisfied by an opponent's strategy O, say, O " td 1 , . . . , d i , d i`k u, with i, i`k P t1, . . . , nu, k ą 1, then O is a witness for the same proponent's strategies as td 1 , . . . , d i u. This example motivates our choice of the operation l as the one to be performed in the bottom-up procedure when traversing countermeasures against goals of the opponent.

Example 53 illustrates also the fact that, in general, there might be opponent's strategies in the result of the bottom-up evaluation of the SuffWit attribute that do not witness any proponent's strategy, or that witness the same proponent's strategies as other elements of the set. This is also the case in our running example.

Example 55. Let T be an attack-defense tree from Figure 2. Recall that the operation performed at the nodes of the proponent during the bottom-up evaluation of the SuffWit attribute is ', defined by (23), and the one performed when traversing countermeasures against goals of the opponent is l, defined by (25). Observe that for A being a set of sets the equalities

A ' ∅ " A, A b ∅ " ∅ and A l ∅ " A hold.
Recalling the basic assignment given by (26), it is thus easy to see that the results of the bottom-up evaluation of the SuffWit attribute at the nodes labeled via ATM, via online banking and steal from account are ttcamuu, ttspwdu, tsmsu, tspwd, smsuu and 2 B o T z∅, respectively.

In Proposition 7, we shall prove that the result of the bottom-up evaluation of the SuffWit attribute on T contains at least one witness for each of the proponent's strategies in T . Our proof of Proposition 7 relies on the following property of the attribute domain A SuffWit . Lemma 11. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, let v P V and let β be the basic assignment of the SuffWit attribute defined by (26). Let T 1 " pV 1 , A 1 q be a rooted subdag of T such that -rootpT 1 q " v, -if v 1 P V 1 and refpv 1 q " AND, then children

T pv 1 q Ď V 1 , -if v 1 P V 1 and refpv 1 q " OR, then the intersection children T pv 1 q X V 1 is not empty, -A 1 " A X pV 1 ˆV 1 q. Let B o T T 1 :" tλpv 1 q : v 1 P V 1 , actorpv 1 q " o T , refpv 1 q " Nu (27)
be the set of all basic actions of the opponent in T that appear in T 1 . If the set B o T T 1 is non-empty, then it belongs to SuffWit B pT, β, vq.

Proof. The proof is by induction on the structure of T 1 . We consider three cases.

Case 1. The node v is not refined and v R V 1 . Since the set B o T T 1 is not empty, it follows that actorpvq " o T , B o T T 1 " tλpvqu, and SuffWit B pT, β, vq " ttλpvquu. Thus, the claim holds.

Case 3. The node v is refined. Let k be the size of the (possibly empty) set

tv 1 P children T pvq X V 1 | B o T
T 1 pv 1 q ‰ ∅u. If k ‰ 0, we use v 1 , . . . , v k to denote the elements of this set. Depending on whether or not v P V 1 , we have

B o T T 1 " k ď i"1 B o T T 1 pv i q or B o T T 1 " k ď i"1 B o T T 1 pv i q Y B o T T 1 pvq .
Note that, since B o T T 1 ‰ ∅, this implies that k ě 1 or the set B o T T 1 pvq is not empty. Observe also that, by the induction hypothesis, B o T T 1 pv i q P SuffWit B pT, β, v i q, for every i P t1, . . . , ku. If in addition v P V 1 and B o T T 1 pvq ‰ ∅, then also B o T T 1 pvq P SuffWit B pT, β, vq. We distinguish two subcases, depending on the value of k.

Case 3.1 k " 0

The assumption of this case implies that actorpvq " p T , v P V 1 , and SuffWit B pT, β, v i q, if v exists, are subsets of SuffWit B pT, β, vq. Thus, Ť k i"1 B o T T 1 pv i q P SuffWit B pT, β, vq, and if v exists and the set B o T T 1 pvq is not empty, then also

B o T T 1 " B o T T 1 pvq ‰ ∅.
Ť k i"1 B o T T 1 pv i q YB o T
T 1 pvq P SuffWit B pT, β, vq. This completes the proof of Lemma 11.

We are now ready to state and prove Proposition 7. Proposition 7. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, let P be a proponent's strategy in T and let β be the basic assignment defined by (26). If O is a minimal non-empty witness for P in T , then O P SuffWit B pT, βq.

Proof. We begin with constructing an appropriate subdag of T to which we then apply Lemma 11. Let V 1 :" tv P V : achieved T pv, P q " 1 or achieved T pv, Oq " 1u, V 2 :" tv P V 1 : there are nodes v 1 , v 2 , . . . , v m P V, such that v 1 v 2 . . . v m is a path in T, v 1 " v, v m " rootpT q, and v i P V 1 , for i P t1, . . . , mu.

Let T 2 be the subdag of T induced by V 2 . Observe that, since achieved T prootpT q, P Y Oq " 1, it follows from Corollary 5 that the root of T belongs to the set V 1 . Together with the definition of V 2 , this implies that the subdag T 2 is connected and rooted at3 rootpT q. Furthermore, the choice of V 1 and V 2 implies that T 2 satisfies the assumptions of Lemma 11 (as the subdag T 1 ). Therefore, if the set B o T T 2 defined by ( 27) is not empty, then B o T T 2 P SuffWit B pT, βq. To complete the proof we shall thus prove that B o T T 2 " O. The inclusion B o T T 2 Ď O follows immediately from the choice of V 2 . To prove that the two sets are in fact equal, suppose that there is a node v P V with λpvq P O which does not belong to V 2 . Then, since v P V 1 , it follows that on every path from v to rootpT q there is a node other than v, such that achieved T pv 1 , P q " 0 and achieved T pv 1 , Oq " 0. Since O is a witness for P , we have achieved T prootpT q, P Y Oq " 1. Therefore, Lemma 10 implies that achieved T prootpT q, P Y Oztλpvquq " 1. This contradicts the choice of O as the minimal witness for P . Hence, B o T T 2 " O, completing the proof.

Proposition 6 and 7 imply that the bottom-up evaluation of the SuffWit attribute is a suitable choice for the first step in the process of construction of the defense semantics. Corollary 7. Let T " pV, A, L, λ, actor, refq be an attack-defense tree and let β be the basic assignment defined by (26). The set tP Ď B p T : there is O P SuffWit B pT, β, rootpT qq such that P is a minimal set countering O or P is a minimal set countering ∅u consists of all the proponent's strategies in T .

With a set of witnesses constructed, the next step in our method of creation of the defense semantics is to determine the proponent's strategies. This can be achieved with the help of the attribute CounterOpp, formalized with the attribute domain A CounterOpp :"

p2 2 B , Y, b, b, Y, b, mq.
Proposition 8. Let T " pV, A, L, λ, actor, refq be an attack-defense tree, let v P V and O Ď B o T . Let β O be the basic assignment for the CounterOpp attribute defined by

β O pλpvqq :" $ ' ' ' & ' ' ' % ttλpvquu, if actorpvq " p T , ∅, if actorpvq " o T , λpvq P O, t∅u, if actorpvq " o T , λpvq R O. ( 28 
)
Let P be a set of basic actions of the proponent such that P P CounterOpp B pT, β O , vq. If actorpvq " p T , then achieved T pv, P Y Oq " 1; otherwise achieved T pv, P Y Oq " 0.

Proof. The proof is by induction on the structure of T pvq -the maximal subdag of T rooted at v. We distinguish several cases, depending on the refinement of and the actor assigned to v, as well as on the existence of v.

For the base case, let v be a non-refined node and assume that v does not exist. Since the set CounterOpp B pT, β O , vq is not empty, the definition of the basic assignment β O implies that actorpvq " p T and P " tλpvqu or actorpvq " o T and P " ∅. In the former case, the claim follows immediately. In the latter, we have λpvq R O, implying that achieved T pv, P Y Oq " achieved T pv, Oq " 0, as required.

Case 1. The node v is not refined and v exists. For the cases when v is a refined node, we let children T pvq " tv 1 , . . . , v k u.

Case 2. The node v is refined and refpvq " OR.

Case 2.1. actorpvq " p T Depending on whether or not v exists, either P " P i Y P (if v does exist) or P " P i (if v does not exist), for some i P t1, . . . , ku, P i P CounterOpp B pT, β O , v i q and children T pvq " ∅ and that v does not exist. If actorpvq " p T , then the only set P satisfying the assumptions of the theorem is P " tλpvqu. If actorpvq " o T , then either no such P exists (if λpvq P O) or else P " ∅ (if λpvq R O). In either case, the statement holds.

We now proceed with the remaining cases.

Case 1. The node v is not refined and v exists.

Case 1.1. actorpvq " p T Since achieved T pv, P YOq " 1, the assumptions of this case imply that achieved T pv, P Y Oq " 0. From the minimality of P it follows that P can be represented as P Y tλpvqu, for some minimal set P satisfying achieved T pv, P Y Oq " 0. By the induction hypothesis, we have P P CounterOpp B pT, β O , vq, and so P P CounterOpp B pT, β O , vq.

Case 1.2. actorpvq " o T

The proof in this case is analogous to that from the previous one. Nevertheless, we include it for completeness. Since achieved T pv, P Y Oq " 0, it follows from the definition of the satisfiability domain domain that achieved T pv, P Y Oq " 1. The minimality of P implies that P " P for some minimal set P satisfying achieved T pv, P Y Oq " 1. As P P CounterOpp B pT, β O , vq, by the induction hypothesis, the definition of the CounterOpp attribute domain now implies that P P CounterOpp B pT, β O , vq, as required.

For a proof of the remaining cases, when v is a refined node, we let children T pvq " tv 1 , . . . , v k u and assume that the node v exists. The proof for the cases when v does not exist is obtained by skipping the parts related to v in what follows.

Case 2. The node v is refined and refpvq " OR.

Case 2.1. actorpvq " p T We begin with proving that there exists i P t1, . . . , ku, a minimal set P 1 for which achieved T pv i , P 1 Y Oq " 1 and a minimal set P for which achieved T pv, P Y Oq " 0, such that P " P 1 YP . To obtain such sets P 1 and P , proceed iteratively as follows. Set P 1 :" P , P :" P . As long as there exists a basic action b P P such that achieved T pv, P Y Oztbuq " 0, set P :" P ztbu. Similarly, as long as there exists a basic action b P P 1 such that achieved T pv i , P 1 ztbu Y Oq " 1, for at least one i P t1, . . . , ku, remove b from P 1 . Observe that, by the minimality of P , the actions that were removed from P belong to P 1 , and those removed from P 1 belong to P . In other words, the equality P " P 1 Y P indeed holds. Furthermore, the sets P 1 and P are minimal sets satisfying achieved T pv, P YOq " 0 and achieved T pv i , P 1 Y Oq " 1, for some i P t1, . . . , ku. Thus, by the induction hypothesis, we have that P 1 P CounterOpp B pT, β O , v i q and P P CounterOpp B pT, β O , vq. Hence, The above reasoning implies the following.

Corollary 9. Let T be an attack-defense tree and P be a proponent's strategy in T . With β P being the basic assignment defined by (30), the minimal (w.r.t. the inclusion) sets from CounterPro B pT, β P , rootpT qq are the minimal opponent's strategies in T countering P .

The considerations of this section, in particular Corollary 7, 8 and 9, imply that the procedure described in Algorithm 3 is indeed suitable for creating a defense semantics of an attack-defense tree.

Corollary 10. On input attack-defense tree T , Algorithm 3 outputs the defense semantics DpT q of T .

Regarding the complexity of Algorithm 3, we note that -in the worst case, the number of the opponent's strategies created using the SuffWit attribute domain is exponential in both the number of basic actions of the opponent and the number of the opponent's nodes in the tree (see, e.g., Example 55),

-the number of proponent's strategies witnessed by a given opponent's strategy can be exponential in both the number of basic actions of the proponent and the number of the proponent's nodes in the tree (e.g., in a tree obtained by attaching to the node labeled d in the tree C p pb, dq the root node of a tree belonging to the family described in Example 35),

-the number of minimal opponent's strategies countering a given proponent's strategy can be exponential in both the number of basic actions of the opponent and the number of the opponent's nodes in the tree (e.g., in a tree T obtained by attaching as a countermeasure to the root node of the tree b the root of a tree T 1 belonging to the family described in Example 35, with the nodes of T 1 belonging to the opponent in T ).

The above examples imply that for a tree T with n nodes, the time needed for execution of each of the lines 1, 4 and 8 is in Op2 n q, implying that Algorithm 3 returns the defense semantics of T in time Op2 2n q. We note that it seems impossible to construct a tree in which each of the three lines would indeed require a number of operations exponential in the number of basic actions in the tree.

Optimal selection of countermeasures

We will now demonstrate how the information stored in the defense semantics of an attack-defense tree can be exploited for the purpose of optimal selection of countermeasures to be implemented by the opponent. We provide a generic framework for solving optimization problems expressed in terms of integer linear programming. We consider single parameter and multi-parameter cases, we deal with proponent and opponent-related parameters, and we show how to proceed in a stochastic case. The contents of this section are inspired by and based on [START_REF] Zheng | A budgeted maximum multiple coverage model for cybersecurity planning and management[END_REF].

The mathematical model

We first present the mathematical model that we use to address the optimization problems. It relies on a number of variables modeling behavior of the two actors. Given an attack-defense tree T and its defense semantics DpT q, let b 1 , . . . , b p be the basic actions of the opponent present in T , -P 1 , . . . , P n be the distinct proponent's strategies that appear in DpT q,

-O 1 , . . . , O m be the distinct opponent's strategy that appear in DpT q.

Furthermore, for k P t1, . . . , pu, i P t1, . . . , nu, and j P t1, . . . , mu, we set

y kj " $ & % 1, if b k P O j , 0, otherwise, P ij " $ & % 1, if pP i , O j q P DpT q, 0, otherwise.
Every basic action b of the opponent is assumed to be assigned a non-negative integer cost value costpbq. The budget available to the opponent is denoted by B. The ways in which execution of particular actions contributes to the implementation of opponent's strategies, which, in turn, results in some proponent's strategies being countered, are modeled with inequalities involving Boolean variables:

x k , for k P t1, . . . , pu: x k " 1 if and only if the opponent executes action b k , z i , for i P t1, . . . , nu: z i " 1 if and only if the proponent's strategy P i achieves the root node of T in the presence of currently deployed countermeasures, f j , for j P t1, . . . , mu: f j " 1 if and only if the opponent does not execute at least one of the basic actions from the opponent's strategy O j .

Optimization problems in the deterministic case

We begin with the deterministic case, where there is no uncertainty about the outcome of the actions of the opponent, i.e., we assume that every action executed by the opponent succeeds, and that every countermeasure contributes fully to all the goals that depend on it. defined on B p such that costpbq P Z `, for b P B p T . By solving the problem from Figure 19 extended with constraints (37) for SpP q :" ř bPP costpbq, one obtains a set of countermeasures that maximizes the minimal necessary investment of the proponent into achieving the root goal.

Countering Pareto optimal proponent's strategies. Let us start with a generic mathematical setting. Suppose that there is a partial order ĺ defined on the set of proponent's strategies P " tP 1 , . . . , P n u, and that maximal elements w.r.t. this order correspond to the strategies most appealing to the proponent. For a given P P P, denote by #P ĺ P Z `the number of elements of a largest totally ordered subset of P, in which P is the minimal element. 5 The smaller the value of #P ĺ , the more appealing the proponent's strategy P is for the proponent, because there are not many strategies that are better than P . The opponent's objective is thus to first counter the proponent's strategies P for which the value of #P ĺ is small. By applying the model from Figure 19 extended with constraints (37) for SpP q :" #P ĺ , one identifies a set of countermeasures which maximizes the minimal number #P ĺ over all proponent's strategies that are not countered, i.e., a set for which the uncountered strategies are as unattractive to the proponent as possible.

The setting described above applies to any partial order on the set of proponent's strategies. In particular, it can be used for countering Pareto optimal proponent's strategies. That is, should each of the proponent's strategies be assigned a vector of values originating from partially ordered sets, one could introduce a partial order ĺ on the set of strategies, were the maximal elements are the strategies that are Pareto optimal w.r.t. all the considered parameters. By instantiating the above generic setting with this order, one selects a set of countermeasures that focuses on countering the proponent's strategies that are Pareto optimal in the scenario modeled with the tree.

Optimizing the opponent's investment without jeopardizing the system

Assume now that the opponent's budget is not limited, but they do not want to spend on security more than necessary. Suppose that there exists a solution to the coverage problem, in which all counterable proponent's strategies are countered. The opponent can identify a cheapest set of countermeasures countering all counterable proponent's strategies by solving the problem from Figure 19, for F :" ´řp k"1 costpb k qx k , with the constraints (32) and (36) being removed, and with additional n constraints z i ď 0, for i P t1, . . . , nu.

In the case of an attack-defense tree T in which all of the proponent's strategies can be countered, the optimization of the opponent's investment can be done using the methods presented in Chapter 4 and 5. This can be achieved with the trick performed when introducing the A CounterPro attribute domain on page 140: by creating an attack-defense tree T 1 by attaching the root of T as a countermeasure to a new node belonging to o T , bearing a unique label. Then, p T 1 " o T , and so the value obtained using evaluation of the minimal cost for the proponent attribute on T 1 under the assumption that the opponent in T 1 (who is the proponent in T ) performs all of their actions is in fact the minimal investment of the opponent in T needed for countering all proponent's strategies in T . The same maneuver can be employed for other attribute domains induced by semirings.

Optimization goal:

maximize Gpx 1 , . . . , x p q `ErHpx 1 , . . . , x p , ξqs Subject to:

p ÿ k"1 costpb k qx k ď B x k P t0, 1u, 1 ď k ď p
where Hpx 1 , . . . , x p , ξq is the optimal value of the problem maximize Hpf 1 , . . . , f m , z 1 , . . . , z n q Subject to: 

f j ě ř p k"1 A kj p1 ´ξk x k q p , 1 ď j ď m f j ď p ÿ k"1 A kj p1 ´ξk x k q, 1 ď j ď m z i ě 1 `m ÿ j"1 B ij pf j ´1q, 1 ď i ď n z i ď ř m j"1 B ij f j ř m j"1 B ij , 1 ď i ď n f j P t0, 1u, 1 ď j ď m, z i P t0, 1u, 1 ď i ď n.

Stochastic model

All the problems considered in Section 6.3.2, assume that the opponent always perform their actions successfully. However, in practice, this is almost never the case. We sketch briefly a non-deterministic mode, where the countermeasures may fail. Formally, we associate with every basic action b k P B o T of the opponent a random variable ξ k that is equal to 1 if b k has been implemented successfully, and 0 otherwise (according to the Bernoulli distribution). After splitting the function F into two parts F " G `H, with G " Gpx 1 , . . . , x p q, H " Hpf 1 , . . . , f m , z 1 , . . . , z n q, the optimization problem from Figure 19 becomes then a stochastic programming problem (see, e.g., [START_REF] Shapiro | Lectures on Stochastic Programming -Modeling and Theory[END_REF]) given in Figure 20, where ξ :" pξ 1 , . . . , ξ p q. This general problem can be instantiated similarly as the deterministic one. It can be solved using variants of the well-studied sampling average approximation approach [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF], or other efficient heuristics, e.g., as in [START_REF] Zheng | A budgeted maximum multiple coverage model for cybersecurity planning and management[END_REF].

An interested reader is referred to [START_REF] Zheng | A budgeted maximum multiple coverage model for cybersecurity planning and management[END_REF] for details.

Conclusion and future work

The main goal of the work presented in this chapter was to tackle the issue of determining optimal sets of countermeasures in attack-defense scenarios modeled with attack-defense trees. To this end, we developed a novel method for extracting rational behaviors of the actors from attack-defense trees possibly containing clones and countermeasures against countermeasures. We illustrated how the information stored in the resulting defense semantics can be employed for formulating numerous optimization problems in terms of (stochastic) integer linear programming. Some of the optimization problems formalized in this work have been implemented in the OSEAD tool. The practical evaluation of the framework developed in this chapter will be performed in Chapter 7. The bottleneck of our approach is the defense semantic itself. It would be worthwhile to study possible ways of approximating the defense semantics, i.e., creating its smaller variants without significant loss in the information stored. One way of doing this could be to develop a procedure similar in the spirit to Algorithm 2 for the set semantics. Another possible approach would be to relax the definition of opponent's strategy, for instance by limiting the number of opponent's vectors originating from the same homogeneous subdag contained in the same opponent's strategy. Under this new definition, it seems that to create the set of sufficient witnesses it would suffice to replace the OR o witnesses " ' operation with the sets union, thus achieving a significant speedup.

Chapter 7

Tool support and a case study

To validate the theoretical developments of the previous three chapters in practice, and to make them easily usable by a wider public, we have created a tool that we call OSEAD-Optimal Strategies Extractor for Attack-Defense trees. At its core lies the adtrees Python package [Wid19] that we developed. While OSEAD is intended to be an easy-to-use tool supporting security analysis, the adtrees package is targeted at the scientific community, as it can serve as a convenient basis for implementing and testing new analysis methods for attack-defense trees. The OSEAD tool is described in Section 7.1.

In Section 7.2, we present a case study of an electricity theft scenario that we conducted using OSEAD. Attack-defense trees have been used in the past to perform practical studies of security scenarios. In [FFG `16], the security of ATM machines was analyzed. The main difference between [FFG `16] and the current study is that the former focuses on the modeling aspects only, i.e., it does not involve any quantitative analysis. In [START_REF] Bagnato | Attribute decoration of attack-defense trees[END_REF], an RFID-based management system has been analyzed. This work resulted in a list of guidelines describing how to carry out a case study involving the attack-defense tree modeling and its quantitative analysis. These guidelines were respected in our electricity theft study. However, [START_REF] Bagnato | Attribute decoration of attack-defense trees[END_REF] concentrates on analysis w.r.t. single parameter, and it uses only the bottom-up evaluation of attributes, which is not well-suited for trees with clones.

The OSEAD tool

The OSEAD tool from the user's perspective OSEAD aims at allowing its users to analyze trees in a simple and intuitive way, using methods described in Chapter 4-6. Users operate the tool in a step-by-step manner, via a graphical interface illustrated in Figure 21. The first step is to provide a file storing the structure of the attack-defense tree of interest, which is an XML file produced by ADTool [GJK `16], well-known software for creating attack-defense trees. Furthermore, should the user want to analyze an attack tree created with the help of ATCalc [ABvdB `13] or ATE [START_REF] Aslanyan | presentation of a tool developed for the EU project TREsPASS[END_REF], the output files of these tools can be easily transformed into an ADTool-like XML file with the help of Once the tree is provided, users select the problem of interest, which can be • extraction of attacks1 that optimize a single parameter (tab Find optimal attacks in Figure 21),

• extraction of attacks that are Pareto optimal (tab Find Pareto optimal attacks), or

• extraction of an optimal strategy of the defender (tab Find optimal set of countermeasures).

The last step preceding the actual analysis is the assignment of values of parameters of interest to the basic actions present in the tree. The values can be entered manually, imported from an XML file generated by ADTool, or loaded from a TXT file produced by OSEAD, as visualized in Figure 22. With all the inputs provided, OSEAD solves the optimization problem specified by the user. The results obtained can be exported to a TXT file (see Figure 23).

Implementation details OSEAD's computation engine and its user interface have been implemented in Python. Its architecture is depicted in Figure 24. The implementation model consists of the Tree Model (storing the tree structure), the Attribute Domain (object representing an attribute domain for attack-defense trees), the ILP Problem (derived from the Tree Model, using defense semantics, and storing the matrix of the selected optimization problem) and the Basic Assignment (storing values of parameters assigned to the basic actions). The extraction of optimal attacks (tabs Find optimal attacks and Find Pareto optimal attacks in Figure 21) consists of two steps. In the first step, the evaluation of the selected attribute on the set semantics of the tree is performed, yielding both the set semantics of the tree and the optimal value of the attribute. In the second step, a topological sorting of the strategies is performed, w.r.t. their corresponding values, which allows for returning specified number of the "best" strategies. Depending on the optimization problem selected, the "best" strategies can be the cheapest ones, the ones most likely to succeed, the ones requiring the least level of skill, or the Pareto optimal ones. The task of Finding optimal set of countermeasures requires selecting optimization problem to be solved, which can be either the coverage problem (see page 143) or the attacker's investment problem (where the defender aims at maximizing the necessary investment of the attacker, as described on page 144). The additional input needed here is the budget available to the defender. The task is tackled by creating the defense semantics of the tree and using it for formulating the corresponding integer linear programming problem. The problem itself is solved with the help of the free linear programming solver lp solve [START_REF] Berkelaar | lp solve: Open source (Mixed-Integer) Linear Programming system[END_REF]. OSEAD's performance To solve the optimization problems, OSEAD creates either the set semantics or the defense semantics of the tree provided. In the worst case, the size of each of these semantics is exponential in the number of basic actions in the tree. Another possible bottleneck in the process of determining an optimal strategy for the defender is solving an integer linear programming problem.

In non-extremal cases, OSEAD performs well. Each of the problems considered in the case study described in Section 7.2 was solved in time not exceeding one second. We have also tested OSEAD's performance on trees having structure significantly more complex than the one considered in the case study, i.e., on trees encoding hundreds and thousands of attacks. Using some of the trees considered in Chapter 5, in Table 11, we have measured the time OSEAD needs to determine Pareto optimal attacks2 . An excerpt from the tests' results is presented in Table 12.

Case study: electricity theft scenario

Electricity theft is a widespread practice [START_REF] Kelly-Detwiler | Electricity Theft: A Bigger Issue Than You Think[END_REF][START_REF] Krebs | FBI: Smart Meter Hacks Likely to Spread[END_REF] that generates huge financial losses yearly across the world [Fre19, Kia18, LLC14, T&15], with more than the third of the losses affecting the BRIC countries (Brazil, Russia, India and China) [START_REF]World Loses $89.3 Billion to Electricity Theft Annually[END_REF]. One of the ways in which electricity is being stolen, is by tampering with power meter in a way that results in the household's or facility's power consumption being under-reported. Modern smart meters make identifying crude power meter tampering attempts easier, but remain vulnerable to (not necessarily sophisticated) hacking attacks [Ms.12]. This study is concerned with the issue of tampering with power meters. We consider a malicious user whose aim is to reconfigure their power meter, in order to lower the recorded electricity consumption of their household. We extend the attack tree-based model of possible behavior of such a user, analyzed by the U.S. Department of Energy in [START_REF]Analysis of selected electric sector high risk failure scenarios, version 2.0[END_REF], to take possible countermeasures into account.

Description of the scenario

The set-up We consider a fifth year student of an engineering school, whom we will name Marcel, who is renting an apartment where he needs to pay for the electricity consumption. Marcel would like to lower his electricity bill and he decided to achieve this by reconfiguring the power meter in his apartment. In this study, Marcel plays a role of an attacker and his opponent, i.e., a defender, is the electricity provider. The meter under study is equipped with an optical port that allows a user to connect to the meter using an optical probe (see Figure 25 and26).

The starting point of our analysis was the scenario and the attack tree described in Section 2.3 of [START_REF]Analysis of selected electric sector high risk failure scenarios, version 2.0[END_REF]. We complemented this tree with additional attacks, and added possible countermeasures that we identified based on [START_REF] Carpenter | Advanced Metering Infrastructure Attack Methodology[END_REF][START_REF] Mccullough | Deterrent and detection of smart grid meter tampering and theft of electricity, water, or gas[END_REF], and [START_REF] Weber | Optiguard: A Smart Meter Assessment Toolkit[END_REF]. The resulting attack-defense tree contains 68 nodes, 5 repeated basic actions of the attacker and 3 repeated basic actions of the defender. The XML file, compatible with ADTool and OSEAD, containing the entire attack-defense tree for tampering with the power meter is available at https://people.irisa.fr/Wojciech.Widel/studies/meter_study.zip.

The scenario In order to reconfigure his power meter via optical port, Marcel has to have physical access to the power meter and reconfigure it using appropriate software tools. Since the power meter is located in the apartment where Marcel lives, we assume Figure 25: A power meter with an optical port (source: https://nl.wikipedia.org/wiki/IEC_62056) that accessing the power meter is a basic action, i.e., the corresponding node is not refined. In order to reconfigure the power meter with the help of software, we have identified the following three sub-scenarios that Marcel can follow, taking into account his knowledge, capabilities, and financial profile:

The do it yourself approach -Marcel reconfigures the meter himself by using unauthorized software tools (Figure 28, 29, 30, 31, 32),

The social engineering approach -Marcel social engineers a technician employed by the electricity provider to reconfigure the power meter for him using authorized software tools (Figure 33),

The get employed approach -Marcel gets employed by the electricity provider as a field technician to gain access to the authorized tools and to be able to reconfigure the meter himself (Figure 34). This high-level view of the analyzed scenario is presented by the tree from Figure 27, where the black triangles illustrate subtrees presented in further figures. We now detail the three approaches considered by Marcel.

The do it yourself approach

To reconfigure the power meter by himself, Marcel needs to obtain unauthorized software and tools, use optical probe to establish connection with the meter via its optical port, and finally reconfigure the meter using unauthorized software. He can find and download unauthorized software from the Internet. As for the optical probe, he can buy it or make it himself. The corresponding tree is given in Figure 28. Establishing connection to the meter via its optical port might be secured by password authentication. Also, independently of whether a password-based protection is implemented or not, an authentication could be required before the power consumption configuration can be modified. These two possible countermeasures are present in the tree in Figure 28.

If the connection to the power meter was protected by a password, Marcel could still reach his goal if he was able to authenticate using the correct credentials. To do so, he would need to obtain the credentials and enter them to the power meter while authenticating, as visualized in Figure 29. The power meter credentials could be obtained by -exploiting the hardware components of the power meter (Figure 30), -performing a brute force attack (Figure 31), or -social engineering a technician working for the energy provider (Figure 32). 30, can be achieved in two ways: either by extracting them from a data dump or by spying on communication between the hardware components. To extract the credentials from the data dump, the dump needs to be made, the location where encrypted credentials are placed in the dump needs to be identified, and finally the credentials need to be extracted from the encrypted dump. To extract the credentials from the communication between the hardware components, the communication needs to be monitored and the credentials need to be intercepted. In this study, we assume that during the communication between the hardware components, the data are sent unencrypted. A brute force attack is illustrated in Figure 31. It makes use of software for hacking power meters (in our scenario, this is exactly the same software as the one used by the attacker to reconfigure power meter). An off-line brute force attack using tools like Ophcrack [Oph16], John the Ripper [tR16], or hashcat [has16], can be prevented if a strong password is used. To make an on-line cracking impossible, the number of possible invalid authentication attempts could be limited. Finally, credentials could also be obtained by social engineering a technician, as depicted in Figure 32. To do so, a suitable technician would need to be selected and social engineered. A social engineering attack would require to assemble background information on employees of the energy provider and to select one who would fall into the social engineering attack to reveal the credentials. Marcel could obtain the background knowledge on employees by searching on the Internet, diving into dumpster and looking for relevant documents and physical artefacts, or by infiltrating the energy provider. To infiltrate the energy provider, Marcel could get hired as an intern student and then collect information by exchanging gossips with the company employees. The following policies could be enforced by the company to prevent access to the background information about its employees:

-a policy to minimize the Internet disclosure, -a policy to minimize the leakage of physical documents and artefacts, -a policy of performing thorough background check before hiring new employees.

Once the right social engineering target is selected, the attack itself consists in bribing, coercing or tricking the technician so that they reveal the power meter credentials. The tricking attack could be prevented by a security training during which the personnel is made aware of popular social engineering tricks. To perform the social engineering, a suitable technician who would reconfigure the power meter needs to be identified and Marcel needs to convince them to reconfigure the meter. Identification of the suitable social engineering target is performed in exactly the same way as in the do it yourself approach, by assembling relevant background knowledge on employees. Once identified, the technician who will reconfigure the power meter is selected. To persuade the technician to reconfigure the power meter, Marcel can bribe or coerce them.

The get employed approach

Marcel can also get hired by the power provider company to be officially able to reconfigure power meters. To do so, he needs to get employed as a field technician and then reconfigure his power meter using authorized software provided by the company to its technicians. Performing thorough background check on future employees would mitigate this attack, as it was the case in the two previous approaches. The get employed attack is illustrated in Figure 34. 

Quantitative analysis of the tampering scenario

The first objective of this case study is to analyze the scenario described in Section 7.2.1. This includes enumeration of all possible attacks, identification of those that are optimal from the point of view of the attacker, as well as pinpointing the countermeasures that offer the best protection to the analyzed system. In what follows, we will use the word attack for a set of basic actions of the proponent that belongs to a minimal strategy in the tree. By defender's strategy, we understand a set of countermeasures that the defender can implement to secure the system (a set of basic actions that the defender can execute). The three types of optimization problems that we tackle in this study are:

-selection of attacks optimal w.r.t. one parameter, -selection of attacks optimal w.r.t. several parameters, -selection of the defender's strategy optimal from the point of view of their resources and objective.

We begin with describing the attributes of interest for the case study. We give their names, the semirings inducing their corresponding attribute domains, and the values that they can attain. The process of estimation of the input values, i.e., the basic assignments for the attributes, is then described. Some issues related to the reliability of the input values and the computation methods used are discussed in Section 7.3.

The parameters used

Cost, domain induced by p p pR R R ě0 Y Y Y t`8 8 8u, min, `q q q The first parameter of interest is the monetary investment necessary to implement an attack (or a defender's strategy). To express it, we use non-negative real numbers representing the necessary investment in euro. The actions that are too expensive to be executed are assigned the value of `8. Time, domain induced by p p pt0, 10, 10 2 , 103 , 10 4 , `8 8 8u, min, maxq q q Since Marcel would like to lower his electricity bill as soon as possible, the time that an attack would take is an important parameter to consider. The following scale is used to express time values:

-Instantaneous (0): can be performed by the actor in less than a minute.

-Quick (10): can be performed by the actor in less than an hour, but not less than a minute.

-Slow (10 2 ): can be performed by the actor in less than a week, but not less than an hour.

-Very slow (10 3 ): can be performed by the actor in less than six months, but not less than a week.

-Extremely slow (10 4 ): can be performed by the actor within a human lifetime, but not less than six months.

-Impossible (`8): not doable within a human lifetime.

Since this scale is discrete, it is reasonable to assume that the time necessary to perform an attack is the maximum value over the time values of its composing actions. As in the case of cost, we are interested in minimizing the time necessary to attack the system, thus we select the attack which requires minimal time.

Success probability, domain induced by p p pr r r0, 1s s s, max, ¨q q q Attacks that are very cheap or very fast are useless if their probability of succeeding is negligible. Here, we are thus interested in what is the probability that, if executed, an attack will be successful. The probability of successful execution of an action is a value from the interval r0, 1s, and the probability of an attack is the product of the probabilities assigned to the actions constituting the attack 3

The remaining three parameters assess the level of special skills -cybersecurity, technical, and social -that is necessary to be able to perform an action successfully. In all three cases, the skill level necessary to perform an attack is defined as the maximum among the skill levels necessary to perform its components. By optimal, we mean an attack requiring minimal skill level.

Cybersecurity skills level, domain induced by p p pt0, 1, 2, 3, `8 8 8u, min, maxq q q Some of the actions considered in our scenario may require specific expertise regarding cybersecurity. We distinguish five levels of such expertise:

-None (0): no cybersecurity-related skills required.

-Basic (1): requires basic cybersecurity knowledge and skills.

-Advanced (2): requires employing advanced cybersecurity-related skills, e.g., executing a man in the middle attack on a protocol.

-Expert (3): requires employing cybersecurity-related skills available to few experts, e.g., return-oriented programming or fault attack on AES.

-Impossible (`8): beyond the known capability of today's human beings.

Technical skills level, domain induced by p p pt0, 1, 2, 3, `8 8 8u, min, maxq q q Similarly to cybersecurity skills, some actions may require some technical expertise. Here again, we distinguish five levels:

-None (0): no technical skills required.

-Basic (1): requires basic technical skills, e.g., finding information online.

-Advanced (2): requires advanced technical skills, available for graduates of technical vocational schools.

-Expert (3): requires technical skills available to experienced engineers.

-Impossible (`8): beyond the known capability of today's human beings.

Social skills level, domain induced by p p pt0, 1, 2, 3, `8 8 8u, min, maxq q q Finally, since some attacks in our scenario rely strongly on social engineering, we are also interested in social skills necessary to perform the considered actions. The five levels of social skills are defined as follows:

-None (0): does not involve social interactions.

-Basic (1): requires basic social interactions, e.g., obtaining information via a conversation.

-Advanced (2): requires convincing or tricking someone into doing something they would not do otherwise.

-Expert (3): requires convincing or tricking someone into doing something punishable by law.

-Impossible (`8): beyond the known capability of today's human beings.

Estimation of input values

The analysis methods employed in our case study require numerical inputs, including the basic assignments of attributes to the basic actions. We now provide these values, and explain how they have been obtained. The values of basic actions of the attacker that we have used in this study are given in Table 13. They represent a consensus reached as a result of the following procedure. Seven independent participants, whose profiles correspond to the expertise of Marcel, were involved in the values' estimation. The participants were given a document describing the scenario and the attack-defense tree from Section 7.2.1. They had access to the Internet and relevant materials, including [START_REF] Carpenter | Advanced Metering Infrastructure Attack Methodology[END_REF][START_REF]Analysis of selected electric sector high risk failure scenarios, version 2.0[END_REF] and [START_REF] Weber | Optiguard: A Smart Meter Assessment Toolkit[END_REF]. Each participant estimated the values for all six parameters for every basic action present in the tree. Unsurprisingly, some of the values were not consistent among different participants. A semi-automatic procedure has thus been used to extract a single value for each parameter at every basic action:

-for the parameters different than probability: if all (but one) among the seven values were the same, this value was retained, -for the probability parameter, a simple average over seven values was computed, -for the cases that do not fall into any of the above items, the retained value is the result of a discussion between the author of this thesis and Barbara Fila (Kordy), -finally, in the case of strong disagreement, the author of the analyzed attack-defense tree who, among the seven participants, knows the best the optical meter technology, had the decisive power.

The estimation of values took one hour to each participant, on average. The consensus discussion lasted for 3 hours.

Table 14 gathers the basic actions of the defender and gives their cost. The values of the defender's cost represent the investment that the electricity provider needs to make to hire security experts who will advise the company on potential threats and suitable countermeasures against them, organize meetings where the decisions on policies to be implemented will be taken, put in place improved software or hardware solutions, for instance those allowing more secure authentication, and remunerate its personnel for performing specific activities, such as background checks before hiring new employees. 

Optimal strategies for the attacker and the defender

We now present the results of the power meter tampering scenario analysis. We begin, in Section 7.2.4, by determining sets of countermeasures that the defender can implement under specified budget and that are optimal w.r.t. a given criterion (coverage or attacker's investment). For some of these sets, we then perform a what-if analysis: if a given strategy of the defender is implemented, what are the attacks optimal w.r.t. one (Section 7.2.5) or many (Section 7.2.6) parameters? Our objective is to verify whether an attacker having a profile of Marcel would be able to launch a successful attack on its power meter.

The analysis has been performed using the OSEAD tool. The files containing all the inputs used, as well as all of the obtained results, are available at https://people. irisa.fr/Wojciech.Widel/studies/meter_study.zip.

Selection of optimal sets of countermeasures

The choice of an optimal strategy for the defender depends on the budget that they have at their disposal, and on the optimization problem of interest. In our study, we consider a small, local electricity provider, and we thus analyze three possible values for the defender's budget: 20000, 30000, and 40000 euros. Table 15 presents optimal strategies for a defender interested in maximizing the number of prevented attacks (coverage problem) and another one focused on maximizing the necessary investment of the attacker necessary to achieve his objective (investment problem).

Requiring authentication for introducing changes in power consumption configuration (d 6 ) and performing thorough background check before hiring new employees (d 7 ) is an optimal strategy for a defender interested in covering a maximal number of possible attacks and having the budget of 20000 euros. We denote this strategy by D 1 . Under the same budget, but with the goal of maximizing the necessary investment of the attacker in mind, the optimal behavior of the defender would be to enforce policy to minimize Internet disclosure (d 2 ), enforce policy to minimize leakage of physical artefacts (d 3 ) and perform thorough background check before hiring new employees (d 7 ). This ensures that the minimal necessary investment of the attacker into achieving the root goal is 14. This means, in particular, that the execution of the three actions prevents all the attacks having the cost of 0 euros.

The other two strategies that we consider are D 2 which corresponds to D 1 extended with the action of enforcing policy to minimize Internet disclosure (d 2 ), and D 3 consisting of enforcing policy to minimize Internet disclosure (d 2 ), enforcing policy to minimize leakage of physical artefacts (d 3 ), performing thorough background check before hiring new employees (d 7 ), and tracking popular social engineering attacks and warning personnel (d 8 ). The strategies D 2 and D 3 are optimal for a defender having 30000 euros, and interested in the coverage problem and the attacker's investment problem, respectively.

Finally, a defender having 40000 euros is able to fully secure the analyzed system, by implementing the countermeasures d 2 , d 3 , d 6 , and d 7 . Due to space restrictions, we refer the reader to Table 14 for their meaning. For the rest of our study, we retain the strategies D 1 , D 2 , and D 3 and look for optimal attacks in the case when one of these strategies is implemented by the defender.

Attacks optimizing single parameter

In total, there are 33 attacks4 in the studied scenario. Their list is available at https: //people.irisa.fr/Wojciech.Widel/studies/meter_attacks.txt. The attacks of interest for us are those that are not countered by at least one of the three defender's strategies D 1 , D 2 or D 3 . There are twelve such attacks, and they are presented in Table 16.

By analyzing Table 16, one notices that if the defender decides to implement one of the strategies D 1 or D 2 , Marcel will be able to succeed only by executing some of the attacks from the social engineering approach. If the strategy D 3 is implemented, then the only possible attacks are those from the do it yourself approach. acquire information from dumpster diving acquire information from public Internet source bribe technician to reconfigure the power meter bribe technician to reveal power meter credentials buy optical probe coerce technician into reconfiguring the power meter coerce technician into revealing power meter credentials collect information by exchanging gossips with employees enter power meter credentials extract credentials find and download software for hacking power meters get employed as field technician get employed as intern by the energy provider have physical access to the power meter intercept credentials locate encrypted credentials in the dump make optical probe make the data dump from hardware component monitor communication between hardware components perform brute force attack provide power meter credentials reconfigure power meter using authorized software/tools reconfigure power meter using unauthorized software select technician for obtaining power meter credentials select technician for reconfiguring power meter technician reconfigures power meter using authorized software/tools trick technician into revealing power meter credentials use optical probe to establish connection to the meter via the optical port Defender's strategy under which the attack is successful Once the values corresponding to the attacks are obtained, OSEAD returns the optimal ones. We list them in Table 17. This table can be used to check whether an attacker of interest would be able to launch a successful attack. We recall that Marcel is a fifth year student of an engineering school. We assume that he has advanced technical skills, but he has only basic knowledge of cybersecurity. Being a student, he is not rich, but he can manage his time availability freely. Optimal value 14 100 0.64 1 2 0

Since the cost aspect is of the highest priority for Marcel, we assume that he would analyze the attacks optimal w.r.t. to this parameter first. The preference is given to attack A 2 which consists of having physical access to the power meter, acquiring information from dumpster diving, selecting technician for reconfiguring power meter, coercing technician into reconfiguring power meter and the technician reconfiguring power meter using authorized software/tools. While this attack is optimal from the point of view of cost and all the three skills levels under strategies D 1 and D 2 , it would require from Marcel to force someone to perform an action punishable by law. Also, A 2 is not prevented by the strategy D 3 . Indeed, implementation of D 3 counters all the attacks from the social engineering approach.

The strategy D 3 does not secure the meter from any attack in the do it yourself approach. An interesting attack within this approach is A 6 , consisting of having physical access to the power meter, making optical probe, finding and downloading software for hacking power meters, using optical probe to establish connection to the meter via the optical port, and reconfiguring power meter using unauthorized software. Note that A 6 corresponds to the profile of Marcel, from the point of view of his resources and skills. Its only drawback is that its probability of success is quite low -only 0.26, as can be seen in Table 18.

Thanks to Table 17, we can also study the impact of the implemented countermeasures on the attacks available to the attacker. Upgrading the system's protection from D 1 do D 2 (by enforcing policy to minimize Internet disclosure) at the cost of 9600 euros (see Table 14) is not worthwhile if the defender considers cheap attacks to be the most tempting for the attacker -the attack A 2 achieves the root goal under both strategies D 1 and D 2 . However, if the defender aims at making the attacker less likely to succeed, then this investment is beneficial, as it lowers the attacker's success probability from 0.41 (for attack A 3 which would not work under D 2 ) to 0.10 (for A 4 that still works when D 2 is implemented).

Attacks optimizing several parameters

Unfortunately, for every attack listed in Table 17, i.e., optimal w.r.t. to one of the parameters, there is always another one that is better from the point of view of another parameter. To overcome this problem, we are now looking for Pareto optimal attacks, i.e., attacks that are not dominated by another one, while taking all six parameters into account simultaneously.

Table 18: Pareto optimal attacks and their values for: cost (c), time (t), prob (pb), cyber skills (cs), tech. skills (ts), and social skills (ss)

Defender's strategy Pareto optimal attacks Values pc, t, pb, cs, ts, ssq D 1 A 1 p0, 100, 0.24, 0, 1, 3q A 2 p0, 1000, 0.06, 0, 0, 3q A 3 p500, 100, 0.41, 0, 1, 3q A 4 p500, 1000, 0.10, 0, 0, 3q D 2 A 2 p0, 1000, 0.06, 0, 0, 3q A 4 p500, 1000, 0.10, 0, 0, 3q D 3 A 6 p14.0, 100, 0.26, 1, 2, 0q A 9 p71.2, 100, 0.64, 1, 2, 0q

The Pareto optimal attacks are presented in Table 18, along with the values corresponding to their execution. Observe that under strategies D 1 or D 2 , all of the attacks available to Marcel are Pareto optimal, including the attack A 2 discussed in the previous section. If the strategy D 3 is implemented by the defender, there exist eight possible attacks that achieve the root goal, but only two of them are Pareto optimal, namely A 6 and A 9 . Observe that A 9 is a very interesting attack. It is almost the same as A 6 , except that it involves buying optical probe instead of making it. Attack A 9 is optimal w.r.t. to all parameters, except cost. However, when checking its cost value, one realizes that the investment necessary to perform it (71.2 euros) would probably be acceptable for Marcel. The greatest advantage of A 9 is that its success probability (0.64) is significantly higher than that of A 6 (0.26).

The importance of the multi-parameter analysis is further illustrated by two facts. First, securing the system in a way that maximizes the necessary investment of the attacker, by implementing D 3 , not only leaves the system vulnerable to more attacks than it is the case for the coverage problem (eight attacks versus two or four, see last row of Table 16), but also allows the attacker to execute attack A 9 , which has a high probability of succeeding. Second, when the defender implements strategy D 3 , the attack A 6 is among the cheapest ones, and the attack A 9 is the optimal one w.r.t. the probability.

When we analyze the scenario taking only one of these parameters into consideration, we overlook one of these two attacks. But both of them are Pareto optimal, and as such, both can be considered equally appealing for the attacker.

On the reliability of the computation framework

Quantifying security is a highly disputable exercise. The reliability of the obtained results depends on the quality of the employed input values and on the suitability of the functions used to perform computations. Despite a great effort of the academic and the industrial communities, numerous underlying issues still remain unsolved. In this section, we debate on drawbacks that we met while performing this study, some of which we have not necessarily managed to overcome.

The quantitative analysis of graphical security models relies on numerical inputs whose exact values can almost never be provided. Their estimation is a difficult task that requires a thorough understanding of -the parameters employed, -the meaning of the basic actions present in the tree, -the attacker's and defender's profiles and knowledge.

In practice, this estimation is very subjective, as it relies to a great extent on the modeler's expertise. In real-life, input values are usually based on historical data, statistics, information gathered from surveys or open sources, e.g., Internet. Such inputs inevitably carry some uncertainty about the values, and this uncertainty propagates during the computations and is accumulated in the final result of the analysis. While there is no established methodology for determining the best approximations of the actual values of the parameters under consideration, we believe that a reasonable estimates can still be obtained, if provided in collaboration with experts in the respective domains. Several industry practitioners performing security and risk analysis on a daily basis, that we had an opportunity to work with, suggest to follow a couple of simple rules.

-Finding a consensus through a discussion usually results in numbers that are more accurate than standard composite values, e.g., the average. People providing inputs might have misunderstood the significance of a parameter or the meaning of an action, thus their values might be inconsistent. Computing a simple average over such values is meaningless. A discussion allows to identify such misunderstandings and results in a more reliable estimate.

-If a discrete scale is used, an odd number of possible values, such as low-mediumhigh, should be avoided. People having problems with deciding on the most suitable value, for instance due to the lack of knowledge, often tend to chose the middle value, because it seems to be the most neutral alternative. However, if numerous attacks get the same value, their ranking and thus a selection of the optimal ones become impossible.

-A way of taking the knowledge of the value providers into account is to complement the parameter value with the information on how certain the provider is about this value. Such an approach has, for instance, been used in the case study described in [START_REF] Bagnato | Attribute decoration of attack-defense trees[END_REF], where a confidence level was used in addition to the actual values of the parameters of interest. The confidence level plays a role of a weight, allowing to give more importance to values with high confidence (usually provided by experts) compared to those with low confidence (probably coming from less knowledgeable participants).

Note that in our study we decided not to use the confidence level, because our value providers had exactly the same profile as our potential attacker Marcel. We thus assumed that their estimates would be consistent with the estimates (and thus indirectly with the decisions) that Marcel would make. Another factor possibly undermining the pertinence of the quantitative analysis of security are the computations performed on the input values during the analysis. We illustrate this issue on the examples of probability and risk metrics. An arguable but commonly used operator in the context of attack tree analysis is the multiplication employed to propagate the probability values at AND nodes in a bottom-up fashion. Using multiplication implies that attack components are considered to be independent, which is rarely the case in reality. This means that, even if the input values are correct, the probability computation might introduce some error or inaccuracy to the final result. To overcome this known drawback of the classical bottom-up propagation, some more advanced methods for computing attacks' probability have been proposed in the literature. Their weakness however lies in the fact that they often require sophisticated inputs, such as conditional probability tables [START_REF] Kordy | Probabilistic reasoning with graphical security models[END_REF] or probability distributions [START_REF] Arnold | Time-Dependent Analysis of Attacks[END_REF], instead of simply probability points. An interested reader is referred to Section 7 of [START_REF] Wide L | Beyond 2014: Formal methods for attack tree-based security modeling[END_REF] for a description of some of the probabilistic frameworks for attack tree-based analysis. Another example highlighting both the importance and the difficulty of quantifying security is the risk metrics. Various formulas for risk exist. In [START_REF]Cyber-Risk Management[END_REF], the authors state that the standard way of defining risk is "the likelihood of an incident and its consequences for an asset", with all the words used having some specified meaning. This definition is used for instance in the French risk analysis method EBIOS [START_REF] Anssi | La Méthode EBIOS Risk Manager[END_REF]. It relies on two factors only, but other definitions are possible. In [START_REF] Edge | Using Attack and Protection Trees to Analyze Threats and Defenses to Homeland Security[END_REF], risk has been defined in terms of cost, probability, and impact. For a discussion on possible three-factor and many-factor risk measure definitions see Chapter 11 of [START_REF]Cyber-Risk Management[END_REF] and references therein. On the one hand, the fact that there are many risk metrics definitions can be seen as a positive thing, because it allows the expert to select the one that is most suitable in a specific analysis context or w.r.t. the available input values. On the other hand, however, different risk formulas will provide different results, so it might be unclear which risk formalization should be used in which case.

To conclude this discussion section, we would like to stress that graphical security models are not the silver bullet for the risk assessment process, and that their role is to accompany other threat and risk analysis approaches, such as penetration testing, red teaming, standardized ISO 27XXX-compatible methods, e.g., [START_REF] Anssi | La Méthode EBIOS Risk Manager[END_REF][START_REF] Mass | Model-Driven Risk Analysis -The CORAS Approach[END_REF], etc. Each of these methods focuses on different types of attacks and different security problems, so it is worthwhile to combine them in order to get the most complete and full-fledged results.

Conclusion and future work

In this chapter, we used attack-defense trees to analyze a realistic security scenario of tampering with a power meter. The study allowed us to validate the quantitative analysis methods discussed in Chapter 4-6. To facilitate and automate their usage, we have implemented the OSEAD tool described in Section 7.1.

We took great care so that our model and analysis are as unbiased and impartial as possible. The tree was created by crossing several industrial and academic sources, and the input values estimation was performed by independent participants with various cultural background, from Estonia, France, Poland, and Russia.

As discussed in Section 7.2.6, we were able to confirm the intuitive conjecture about the practical importance of the multi-parameter analysis. We note that, despite the fact that the algorithms implemented in OSEAD are highly complex, the tool performs extremely well when applied to trees encoding hundreds of attacks, and reasonably well in the case of trees with up to several thousands of attacks.

This study corroborates practical usefulness of attack-defense trees in security and risk analysis. However, solutions for some pragmatic issues still need to be found. The bottleneck of our study was the attribution of parameter values to basic actions. While for some parameters, e.g., cost, finding an accurate estimate is easy (nowadays, it suffices to search on the Internet), for some others, e.g., success probability, this task is much more difficult, if not impossible. More research and practical investigation is definitely necessary before a reliable methodology for the estimation of values for basic actions can be proposed.

Finally, we would like to emphasize that an attack tree-based analysis, as the one performed in this case study, does not fully cover the entire process of risk analysis. For instance, a practical issue regarding Marcel's return on investment was not discussed in our work. This issue includes the analysis of the actual gain of Marcel versus the necessary expenses related to making the tampering possible, or the estimation of minimal time after which Marcel's investment in attacking the system would start to pay back. Also, one should not forget about a completely separate dimension of risk of being arrested for performing illegal tampering. Although we judged these aspects out of scope of our study, in real life they should be investigated before a truly optimal attack can be identified.

Chapter 8 Conclusion

The main focus of this thesis were methods for quantitative analysis of security based on attack-defense trees, under a fixed interpretation of repeated labels. We studied the problem of attributes evaluation on such trees, including attributes suitable for multiparameter analysis of security. The problem of optimal selection of countermeasures in security scenarios modeled with trees has also been investigated. Finally, we constructed a realistic attack-defense tree and performed a thorough case study of the corresponding scenario using the OSEAD tool that we have created.

For the convenience of a reader, we have decided to conclude each of the chapters separately. Here, we would like to only reiterate two important points raised in Chapter 7. The first of them is that attack-defense trees (in particular, attack trees) are just one of many tools available for risk analysts. Their proper usage is not easy, especially due to the process of their creation being error-prone; actions available to the actors might be overlooked and not included in the model, nodes might be labeled in an inappropriate way, giving raise to misleading results, etc. Just for these reasons, attack-defense trees should never be used as the sole device for performing risk analysis. The second issue regarding the practical usability of trees, and in particular the methods presented in this thesis, is the difficulty in obtaining reliable numerical inputs, as discussed in detail in Section 7.3.

There are many paths in the field of attack trees analysis that a curious researcher might pursue, with some of them highlighted in Section 4.8, 5.4 and 6.4. In the light of the difficulties described in the previous paragraph, one could hesitate whether these paths are worth pursuing. We believe so; even if the attack-defense trees itself will never become popular among risk analysts, they will remain closely related to Boolean functions and other modeling frameworks based on AND/OR trees, such as fault trees. Further theoretical work on attack-defense trees could thus result in new insights into problems arising in other research areas. Title : Formal modeling and quantitative analysis of security using attack-defense trees Keywords : risk analysis, attack tree, attack-defense tree Abstract : Risk analysis is a very complex process. It requires rigorous representation and in-depth assessment of threats and countermeasures. This thesis focuses on the formal modelling of security using attack and defence trees. These are used to represent and quantify potential attacks in order to better understand the security issues that the analyzed system may face. They therefore make it possible to guide an expert in the choice of countermeasures to be implemented to secure their system.

Index

The main contributions of this thesis are as follows: -The enrichment of the attack and defence tree model allowing the analysis of real security scenarios. In particular, we have developed the theoretical foundations and quantitative evaluation algorithms for the model where an attacker's action can contribute to several attacks and a countermeasure can prevent several threats.

-The development of a methodology based on Pareto dominance and allowing several quantitative aspects to be taken into account simultaneously (e.g., cost, time, probability, difficulty, etc.) during a risk analysis.

-The design of a technique, using linear programming methods, for selecting an optimal set of countermeasures, taking into account the budget available for protecting the analyzed system. It is a generic technique that can be applied to several optimization problems, for example, maximizing the attack surface coverage, or maximizing the attacker's investment.

To ensure their practical applicability, the model and mathematical algorithms developed were implemented in a freely available open source tool. All the results were also validated with a practical study on an industrial scenario of alteration of electricity consumption meters.

  4. L'accès des analystes aux derniers développements dans le domaine des arbres d'attaque et de défense est très limité. De nouvelles techniques d'analyse sont créées chaque année et il est difficile d'avoir une vue d'ensemble claire du domaine, même pour les chercheurs travaillant dans ce domaine. De plus, très peu d'outils mettant en oeuvre les techniques d'analyse les plus récentes sont accessibles et tous les outils existants ne sont pas maintenus.

  X contains neutral element for b, i.e., an element e b satisfying x b e b " x and e b b x " x, for every x P X, -the neutral element e ' for ' is equal to the absorbing element a b for b, i.e., x b e ' " e ' , for every x P X, -the operation b distributes over ', i.e., x b py ' zq " px b yq ' px b zq and py ' zq b x " py b xq ' pz b xq for every x, y, z P X.

Example 16 .

 16 Using the abbreviations of basic actions in tree T from Figure 2, one obtains the corresponding attack-defense term tpT q " OR p ˜AND p ˆOR p ´Cp `eav, C o pcover, camq ˘, force AND p ˆOR p ´Cp ppwd, spwdq, phish ¯, OR p ´phish, uname ¯, C p ´log&trans, C o psms, phoneq ¯˙¸.

Figure 5 :

 5 Figure 5: Bottom-up evaluation of the minimal cost for the proponent attribute on an attack-defense tree. Values assigned to the basic actions are given in black, values computed at the intermediate nodes -in dark blue

Figure 6 :

 6 Figure 6: Bottom-up evaluation of satisfiability attribute. Values assigned to the basic actions are given in black, values computed at the intermediate nodes using the attribute domain's operations -in dark blue.

  T 1 " OR p pa, AND p pa, bqq OR a b (b) T 2 " OR p pa, bq

Figure 7 :

 7 Figure 7: Two attack trees in which execution of both actions a and b achieves the goal of the root node

  The SP semantics of the tree from Figure8a

Figure 8 :

 8 Figure 8: The SP interpretation of an SAND attack tree

Figure 9 :

 9 Figure9: PRISM-games for attack-defense trees by[START_REF] Zaruhi Aslanyan | Quantitative verification and synthesis of attack-defence scenarios[END_REF] 

Figure 10 :

 10 Figure 10: Uppaal-based analysis of attack-defense trees by [GHL `16] and [HJL `17]

Example 25 .

 25 Consider again the tree T from Figure 5. Example 24 implies that the normal form of the set semantics SpT q of T is SpT q " ptau, ∅q d p∅, td 1 uq ( Y ptau, ∅q d ptcu, ∅q ( Y ptau, ∅q d p∅, td 2 uq ( Y ptau, ∅q d p∅, td 3 uq ( Y ptau, ∅q d p∅, td 1 uq d ptbu, ∅q d p∅, td 3 uq d p∅, td 4 uq ( Y ptau, ∅q d ptcu, ∅q d ptbu, ∅q d p∅, td 3 uq d p∅, td 4 uq ( Y ptau, ∅q d p∅, td 2 uq d ptbu, ∅q d p∅, td 3 uq d p∅, td 4 uq ( Y ptau, ∅q d p∅, td 3 uq d ptbu, ∅q d p∅, td 3 uq d p∅, td 4 uq ( .

  Similarly, if actorpvq " o T , then satp B pT, β satp , vq " β satp pλpvqq _ satp B pT, β satp , vq " β sat pλpvqq _ sat B pT, β sat , vq " `βsat pλpvqq ^ sat B pT, β sat , vq " sat B pT, β satp , vq.

  and so the intersection O 1

  1 , O Ď O 1 . Then, for any basic assignment β the equality max ˜ź bPP YO βpbq, follows that the result of evaluation of prob on the set semantics in T under the basic assignment β is prob S pT, βq " max pP,OqPSpT q ź bPP YO βpbq " max pP,OqPSpT q pP,Oq is a minimal strategy in T ź bPP YO βpbq.

AND OR b 11 b 12 b 13 OR b 21 b 22 b 23 OR b 31 b 32 b 33 Figure 11 :

 13233311 Figure 11: An example of a tree with the size of the set semantics exponential in the number of basic actions (see Example 35)

Example 35 .

 35 Let T " AND p pOR p pb 11 , b 12 , b 13 q, . . . , OR p pb k1 , b k2 , b k3 qq be an attack tree with n " 3k basic actions and 4k `1 nodes, containing no clones. Proposition 3 implies that the set semantics of T consists of the minimal sets achieving the root goal of T . The number of such sets is 3 k " 3 n{3 .

Figure 12 :Figure 13 :

 1213 Figure 12: In the attack-defense tree T " AND p `OR p pa, bq, OR p pb, AND p pd, cqq, c ˘, the clone c is necessary, and the clone b is optional.

Algorithm 1

 1 Repeated bottom-up evaluation of attributesInput: Attack-defense tree T , attribute domain pD α , ', b, b, ', b, 'q, basic assignmentβ : B Ñ D α , set O Ď B o T Output: α RB pT, β, Oq 1: α RB pT, β,Oq Ð e ' 2: initialize C N pOq, C O pOq 3: β 1 pbq Ð e b for every b P C N pOq 4: β 1 pbq Ð βpbq for every b P B T zpC N pOq Y C O pOqq 5: for every subset C Ď C O pOq do 6: β 1 pbq Ð a b for every b P C 7: β 1 pbq Ð e b for every b P C O pOqzC 8:

Figure 14 :

 14 Figure 14: Bottom-up evaluation of the maximal probability for the proponent attribute. Values assigned to the basic actions are given in black, values computed at the intermediate nodes -in dark blue

Figure 15 :

 15 Figure 15: Bottom-up evaluation of the maximal probability for the proponent attribute. Values assigned to the basic actions are given in black, values computed at the intermediate nodes -in dark blue

Theorem 2 .

 2 Let T be an attack-defense tree, A α " pD α , ', b, b, ', b, 'q be a nonincreasing attribute domain and let O Ď B o T . If the basic assignment β of the attribute α satisfies βpbq " a b for b P O, βpbq " e b for b P B o T zO, then the equality α RB pT, β, Oq " α S pT, βq holds.

  Finally, let O Ď B o T and let β 1 : B Ñ D α be a basic assignment satisfying βpbq " a b for b P O, βpbq " e b for b P B o T zO. On input pT, A α , β, Oq, Algorithm 1 returns α S pT, βq in time O `maxpn 2 `f pn, |β|q, 2 k f pn, |β|qq ˘.

Theorem 4 .

 4 Let T be an attack-defense tree, A α " pD α , ', b, b, ', b, 'q be a nonincreasing attribute domain with D α Ď R and with ' being the operation of taking maximum or minimum, and let O Ď B o T . If the basic assignment β of the attribute α satisfies βpbq " a b for b P O, βpbq " e b for b P B o T zO, and the tree T 1 is the output of Algorithm 2 on input T, A α , β, O, then the equality α S pT, βq " α S pT 1 , βq b â bPC O pT,OqzC βpbq b â bPC N pT,Oq βpbq holds.

  A α " pD α , ', b, b, ', b, 'q be a nonincreasing attribute domain with D α Ď R and with ' being the operation of taking maximum or minimum, and let O Ď B o T . If the basic assignment β of the attribute α satisfies βpbq " a b for b P O, βpbq " e b for b P B o T zO,

  Oq, Cq to be as in text 3: if α RB pT, β, Oq " a b then 4: return T 5: end if 6: β 1 pbq Ð βpbq for every b P B T zpC N pT, Oq Y C O pT, Oqq 7: β 1 pbq Ð e b for every b P C N pT, Oq Y pC O pT, OqzCq 8: β 1 pbq Ð a b for every b P C 9: T 1 Ð the connected component containing the root of T of the subdag of T induced by the set tv P V : α B pT, β, vq ‰ a b u that contains the root of T 10: while there is b P B T 1 zpC N pT, OqYC O pT, Oqq such that α B pT 1 , β 2 q ‰ a b for β 2 defined with β 2 | B T 1 ztbu " β 1 and β 2 pbq " a b do 11:b Ð one of the basic actions satisfying the condition in line 1012:

T 1 "

 1 AND p pOR p pb 12 , b 13 q, OR p pb 21 , b 22 , b 23 qOR p pb 31 , b 32 , b 33 qq. It is easy to see that in the next iteration of the while loop the node b 12 is removed from T 1 in the same manner, reducing the tree to T 1 " AND p pOR p pb 13 q, OR p pb 21 , b 22 , b 23 qOR p pb 31 , b 32 , b 33 qq. Now setting the value assigned to b 13 to `8 results in the bottom-up evaluation on T 1 returning `8. Thus, b 13 is not a viable candidate for the action b in line 11. The next new b is therefore b " b 21 . Due to the simple structure of T , it is easy to see what will happen next: the nodes labeled with the basic actions b 21 , b 22 , b 31 and b 32 will be removed from T 1 , one by one.

Figure 17 :

 17 Figure 17: An attack-defense tree obtained by applying Algorithm 2 to the attack-defense tree from the running example

Definition 31 (

 31 Pareto point). An element d P D Ď D 1 ˆ. . . ˆDm is called a Pareto point of D if it is not dominated by any other element of D, i.e., if d ł d 1 holds for every d 1 P D, d 1 ‰ d. Definition 32 (Pareto frontier). The set of all Pareto points of a finite set D Ď D 1 ˆ. . . ˆDm , denoted maxpDq 2 , is called Pareto frontier of D. Example 46. Consider again the two domains and the set D from Example 45. As already observed, the point p125, 0.114q dominates the remaining points of D. Thus, the Pareto frontier of D is maxpDq " tp125, 0.114qu.

  attribute domain, for every i P t1, . . . , mu, then for every O Ď B o T and every basic assignment β Par satisfying β Par pbq " a b for b P O, β Par pbq " e b for b P B o T zO, the equality Par RB pT, β Par , Oq " Par S pT, β Par q holds.

Lemma 7 .

 7 If A and B are finite subsets of D 1 ˆ. . . ˆDm , then 1. maxpA Y Bq Ď maxpAq Y maxpBq, 2. maxpA b Bq Ď maxpAq b maxpBq. Proof. For a proof of the first of the two statements, let d P maxpA Y Bq. Since d is not dominated by any other element of A Y B, it follows that if d P A, then d P maxpAq, and if d P B, then d P maxpBq. Hence, d P maxpAq Y maxpBq. Now, let d " d A b d B P maxpA b Bq for some d A P A and d B P B. Towards a contradiction, suppose that d R maxpAq b maxpBq. Then, there exist elements d 1 A P maxpAq, d 1 B P maxpBq, such that d 1 A dominates d A and d 1 B dominates d B , with d 1 A ‰ d A or d 1 B ‰ d B . Since d R maxpAq b maxpBq, it follows that d ‰ d 1 A b d 1 B . Furthermore, by Lemma 6, it holds that d ĺ d 1 A b d 1 B . This contradicts the choice of d as a Pareto point in A b B. Lemma 8. If A and B are finite subsets of D 1 ˆ. . . ˆDm , then maxpmaxpAq Y Bq " maxpA Y Bq. Proof. Let d P maxpA Y Bq. Observe that d P maxpAq Y B, by Lemma 7. Furthermore, since d is not dominated by any of the points in A Y B, it is also not dominated by any of the points in maxpAq Y B. This proves that maxpmaxpAq Y Bq Ě maxpA Y Bq. For a proof of the inclusion maxpmaxpAq Y Bq Ď maxpA Y Bq, let d be a Pareto point in maxpAq Y B. Suppose that d is not a Pareto point in A Y B. Then there exists d 1 P A Y B, d 1 ‰ d, such that d ĺ d 1 . Since d is not dominated by any element of B, it follows that d 1 P A. But then, since ĺ is a transitive relation, every d 2 P maxpAq that dominates d 1 dominates also d. This contradicts the choice of d. Lemma 9. If A and B are finite subsets of D 1 ˆ. . . ˆDm , then maxpmaxpAq b Bq " maxpA b Bq. Proof. For a proof of the inclusion maxpmaxpAqbBq Ď maxpAbBq, let d P maxpmaxpAqb Bq. Towards a contradiction, suppose that d is not a Pareto point in A b B. This implies that there exist elements d A P A and d B P B such that d ĺ d A b d B and d ‰ d A b d B . Let d 1 A P maxpAq be such that d A ĺ d 1 A . Then d ĺ d A b d B ĺ d 1 A b d B , by Lemma 6. Since d 1 A b d B P maxpAq b B, this contradicts the choice of d. Assume now that d is a Pareto point in A b B. Observe that d P maxpAq b B, by Lemma 7. Since d is not dominated by any element of A b B, it is in particular not dominated by any element of maxpAq b B. Therefore, d is a Pareto point in maxpAq b B.

and pA b " maxpA b B b Cq Lemma 9 "

 b9 Bq b C " maxpmaxpA b Bq b Cq Lemma 9 maxpA b maxpB b Cqq " A bpB b Cq.

  Par S pT, β Par q " p ' pP,OqPSpT q `p b bPP YO β Par pbq " max `βPar pforceq b β Par pcardq b β Par pcashq Y . . . Y β Par punameq b β Par ppwdq b β Par pphoneq b β Par plog&transq b β Par pspwdq "

Algorithm 3

 3 Defense semantics for attack-defense trees Input: Attack-defense tree T Output: Defense semantics DpT q of T 1: O Ð SuffWit B pT, β, rootpT qq Y t∅u 2: P Ð ∅ 3: for O P O do 4: P Ð P Y tP : P is a minimal set in CounterOpp B pT, β O , rootpT qqu 5: end for 6: DpT q Ð ∅ 7: for P P P do 8:

Figure 18 :

 18 Figure 18: Bottom-up evaluation of the SuffWit attribute on the attack-defense tree C p pb 1 , C o pd 1 , C p pb 2 , d 2 qqq. Values assigned to the basic actions are given in black, values computed at the intermediate nodes -in dark blue.

  Similarly to Case 2, now it follows from the definition of the attribute domain for SuffWit and the operation defined by formula (23) that SuffWit B pT, β, vq Ď SuffWit B pT, β, vq. Hence, B o T T 1 P SuffWit B pT, β, vq. Case 3.2 k ą 0 In this case, the definitions of the attribute domain for SuffWit and the operations given by formulae (22), (25), and (23) imply that k ò i"1 SuffWit B pT, β, v i q as well as SuffWit B pT, β, vq b k ò i"1

  Case 1.1. actorpvq " p T Under the assumptions of this case, and since the set CounterOpp B pT, β O , vq is not empty, formula (22), the definition of the CounterOpp domain, and the definition of the basic assignment β O imply that CounterOpp B pT, β O , vq ‰ ∅ and P " P Y tλpvqu, for some set P P CounterOpp B pT, β O , vq. By the induction hypothesis, the equality achieved T pv, P Y Oq " 0 holds, and so the definition of the satisfiability attribute domain implies that achieved T pv, P Y Oq " 1.Case 1.2. actorpvq " o T In the case when λpvq P O, we have CounterOpp B pT, β O , vq " CounterOpp B pT, β O , vq, by formula (24) and the definition of the assignment β O . Thus, P P CounterOpp B pT, β O , vq, which together with the induction hypothesis implies that achieved T pv, P Y Oq " 1. Now the equality achieved T pv, P Y Oq " 0 follows from the definition of the satisfiability attribute domain.If λpvq R O, then β O pλpvqq " t∅u, and so CounterOpp B pT, β O , vq " t∅u, by formula (24). And indeed, since λpvq R O, the demanded equality achieved T pv, P Y Oq " achieved T pv, Oq " 0 follows from the definition of the satisfiability attribute domain.

Figure 20 :

 20 Figure 20: General stochastic integer programming problem

  ATTop [KSR`18].

Figure 21 :

 21 Figure 21: OSEAD's main user interface

Figure 22 :

 22 Figure 22: Input management in OSEAD

Figure 23 :

 23 Figure 23: Results generated by OSEAD

Figure 26 :

 26 Figure 26:Optical probe connected to the power meter (source:

Figure 27 :

 27 Figure 27: How to reconfigure the power meter -a high level view

Figure 29 :

 29 Figure 29: Overcoming the password-based authentication

Figure 30 :

 30 Figure 30: Obtaining power meter credentials from its hardware components

Figure 31 :

 31 Figure 31: Obtaining credentials by brute force attack

Figure 33 :

 33 Figure 33: The social engineering approach

Figure 34 :

 34 Figure 34: The get employed approach

Table 13 :

 13 Parameter values for basic actions of the attacker to establish connection to the meter via the optical port Cost of basic actions of the defender Basic action Cost d 1 " enforce policy of using strong passwords 11600 d 2 " enforce policy to minimize Internet disclosure 9600 d 3 " enforce policy to minimize leakage of physical artefacts 9600 d 4 " limit the number of possible invalid authentication attempts 11600 d 5 " password authentication for establishing connection 13600 d 6 " require authentication for introducing changes in power consumption configuration 13600 d 7 " thorough background check before hiring new employees 320 d 8 " track popular social engineering attacks and warn personnel 1500

  do it yourself (Y); social engineering (S); get employed (E)

Titre:

  Modélisation formelle et analyse quantitative de la sécurité à l'aide d'arbres les attaques et de défense Mots clés : analyse des risque, arbres d'attaque, arbres d'attaque et de défense Résumé : L'analyse de risque est un processus très complexe. Elle nécessite une représentation rigoureuse et une évaluation approfondie des menaces et de leur contre-mesures. Cette thèse porte sur la modélisation formelle de la sécurité à l'aide d'arbres d'attaque et de défense. Ces derniers servent à représenter et à quantifier les attaques potentielles afin de mieux comprendre les enjeux de sécurité auxquels le système analysé peut être confronté. Ils permettent donc de guider un expert dans le choix des contre-mesures à implémenter pour sécuriser son système. Les principales contributions de cette thèse sont les suivantes : -L'enrichissement du modèle des arbres d'attaque et de défense permettant d'analyser des scénarios de sécurité réels. Nous avons notamment développé les fondements théoriques et les algorithmes d'évaluation quantitative pour le modèle où une action de l'attaquant peut contribuer à plusieurs attaques et où une contre-mesure peut prévenir plusieurs menaces. -Le développement d'une méthodologie basée sur la dominance de Pareto et permettant de prendre en compte plusieurs aspects quantitatifs simultanément (e.g., coût, temps, probabilité, difficulté, etc.) lors d'une analyse de risques. -La conception d'une technique, utilisant les méthodes de programmation linéaire, pour sélectionner un ensemble de contre-mesures optimal, en tenant compte du budget destiné à la protection du système analysé. C'est une technique générique qui peut être appliquée à plusieurs problèmes d'optimisation, par exemple, la maximisation de la couverture de surface d'attaque, ou encore la maximisation du investissement de l'attaquant. Pour garantir leur applicabilité pratique, le modèle et les algorithmes mathématiques développés ont été implémentés dans un outil informatique à source ouverte et accès gratuit. Tous les résultats ont également été validés lors d'une étude pratique portant sur un scénario industriel d'altération de compteurs de consommation d'électricité.

  

  International Conference, POST 2018, Proceedings, volume 10804 of Lecture Notes in Computer Science, pages 325-346. Springer, 2018. [KW17] Barbara Kordy and Wojciech Wide l. How well can I secure my system? In Integrated Formal Methods -13th International Conference, IFM 2017, Proceedings, volume 10510 of Lecture Notes in Computer Science, pages 332-347. Springer, 2017.
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  ::" b s | OR s pt s , . . . , t s q | AND s pt s , . . . , t s q | C s pt s , t sq,

	Definition 16 (Attack-defense term). An attack-defense term over a set of basic actions
	B is a typed term conforming with the grammar
	t (1)
	where b P B, s P tp, ou and p :" o, ō :" p.

s 

  A α " pD α , OR p

	α , AND p α , OR o α , AND o α , C p α , C o α q, where
	-D α is a set of values that the attribute can attain,
	-OR s α and AND s α are unranked functions on D α , for s P tp, ou,
	-C s α is a binary function on D α , for s P tp, ou.

Table 1 :

 1 Selected attribute domains for attack-defense trees, where x ‹ y :" x ^ y for x, y P t0, 1u " pV, A, L, λ, actor, refq, a basic assignment β for α, and a node v P V , such that actorpvq " s T , s P tp, ou, and refpvq " OP, the value of α at v

	Attribute	α	D α	OR p α	AND p α OR o α	AND o α	C p α	C o α
	Minimal cost for the proponent	cost R ě0 Y t`8u min	``min `min
	Maximal							
	damage done by	dmg	R ě0 Y t´8u max ``max `max
	the proponent							
	Minimal skill							
	level of the	skill N Y t0, `8u min max max min max min
	proponent							
	Maximal							
	probability for	prob	r0, 1s	max	¨¨max	¨max
	the proponent							
	Minimal time							
	for the	time N Y t0, `8u min	``min `min
	proponent							
	Satisfiability for the proponent	satp	t0, 1u	_	^^_	^_
	Satisfiability	sat	t0, 1u	_	^_	^‹	‹
	Definition 19 (Bottom-up evaluation of attributes). Let α be an attribute of attack-
	defense trees, and let A α " pD α , OR p α , AND p α , OR o α , AND o α , C p α , C o α q be its attribute domain.
	Given an attack-defense tree T						

B pT, β, vqq , if OP " N and v exists,

  is

	SpT q " ptforce, card, cashu, ∅q,	
	ptcam, eav, card, cashu, ∅q,	
	pteav, card, cashu, tcoveruq,	
	ptphish, log&transu, tsmsuq,	
	ptphish, uname, log&transu, tsmsuq,	
	ptphish, pwd, log&transu, tspwd, smsuq,	
	ptuname, pwd, log&transu, tspwd, smsuq,	
	ptphish, phone, log&transu, ∅q,	
	ptphish, uname, phone, log&transu, ∅q,	
	ptphish, pwd, phone, log&transu, tspwduq,	
	ptuname, pwd, phone, log&transu, tspwduq (	.

Table 2 :

 2 Complexity of correctness checking of[START_REF] Audinot | Is My Attack Tree Correct[END_REF] 

		meet under-match over-match match
	OR	P	P	P	P
	SAND	P	P	P	P
	AND NP-c	co-NP-c	co-NP	co-NP

Table 3 :

 3 Basic assignment of time to the basic actions of the proponent from tree in Figure2.Basic action b β time pbq Basic action b β time pbqwhich is the minimal time necessary to achieve the root of T when executing the strategy ptforce, card, cashu, ∅q. It exceeds the actual minimal time, obtained using the evaluation on the set semantics in Example 27, by 10 time units. This is the case, because the bottom-up disregards any piece of information about nodes other than value assigned to them. In consequence, the value corresponding to the cloned phish action has been taken into account twice, in the expressions maxp100, 300, `8q and minp100, 20q, leading to the value of 125 time units not appearing in the computations.

	cam	60	eav	360
	force	10	card	120
	cash	5	pwd	300
	phish	100	uname	20
	log&trans	5	phone	20

Example 28. Consider again the tree, the attribute domain and the basic assignment from Example 27. In this setting, the bottom-up evaluation yields time B pT, β time q "

Table 4 :

 4 Two satisfiability domains for attack-defense trees Let T be an attack-defense tree and let ĺ be the partial order defined on the set X of all elements of 2 B p T ˆ2B o T satisfying the first condition of Definition 26 by pP 1 , O 1 q ĺ pP, Oq if and only if P 1 Ď P and O 1 Ď O.

	attribute α	D α	OR p α	AND p α OR o α	AND o α	C p α px, yq	C o α px, yq
	satp	t0, 1u _	^^_	x ^y	x _ y
	sat	t0, 1u _	^_	^x ^ y	x ^ y
	Corollary 1.						

  vq, where the second equality follows from the fact that OP p satp " OP p sat and from the induction hypothesis. Similarly, if v does exist, then satp B pT, β satp , vq " " C p satp `satp B pT, β satp , v 1 q OP p satp . . . OP p satp satp B pT, β satp , v k q, satp B pT, β satp , vq " `satp B pT, β satp , v 1 q OP p satp . . . OP p satp satp B pT, β satp , v k q ˘^satp B pT, β satp , vq " `satp B pT, β satp , v 1 q OP p satp . . . OP p satp satp B pT, β satp , v k q ˘^ ` satp B pT, β satp , vq " `sat B pT, β sat , v 1 q OP p sat . . . OP p sat sat B pT, β sat , v k q ˘^ sat B pT, β sat , vq " C p sat `sat B pT, β sat , v 1 q OP p sat . . . OP p sat sat B pT, β sat , v k q, sat B pT, β sat , vq " sat B pT, β sat , vq, The node v is refined and actorpvq " o T . To prove the lemma's conclusion in this case, we employ de Morgan's laws, which imply that for x, y P t1, 0u the equalities x OP o satp y " p x OP o sat yq and C o satp px, yq " C o sat p x, yq hold. Similarly as in the previous case, we begin with the subcase when v does not exist. Then,

	as required.
	Case 3.

  Note that cost RB pT, β, Oq " cost S pT, βq. Let T be the attack-defense tree from Figure2, let β be the basic assignment of minimal time for the proponent given in Table3, and let O " B o

	,	β 1 cost pbq " `8,	r tbu " 15.
	Thus, after the for loop is executed, the value assigned to cost RB pT, βq is
		cost RB pT, βq " minp`8, 21, 15q " 15,	
	and it is modified in line 11, taking the value of the necessary clone into account, yielding
	the final result of		
		cost RB pT, β, Oq " 15 `10 " 25.	
	Example 41.		

T 

. As illustrated in Example 38, C N pOq " ∅ and C O pOq " tphishu. Thus, the sets C considered in the for loop, their influence on the assignment of time, and their corresponding results r c are the following

  otherwise.

	Substituting to (14) yields							
	α RB pT, β, Oq "	¨à iPt1,...,nu	» --	bPP i â	βpbq	fi ffi fl ‹ 'b	bPC N pOq â	βpbq
		OXO i "∅		bRC N pOq		
	"	à	â	βpbq		
		iPt1,...,nu	bPP i				
		OXO i "∅						
		n						
		à						
	"							
		i"1						

  As illustrated in Example 27, the strategy ptphish, phone, log&transu, ∅q is optimal in the tree T from Figure2w.r.t. minimal time for the proponent attribute, under the basic assignment β time given in Table3.

			t. α under the basic
	assignment β if		
	α S pT, βq "	â	βpbq.
		bPP YO	
	Example 42.		

  Before analyzing the complexity of Algorithm 2, we illustrate its behavior with two examples. Let T " AND p pOR p pb 11 , b 12 , b 13 q, OR p pb 21 , b 22 , b 23 qOR p pb 31 , b 32 , b 33 qq be the attack tree depicted in Figure

	Example 43.
	18: end while
	19: return T 1

Table 5 :

 5 Running time of the methods for randomly generated trees with n nodes and k repeated basic actions of the proponent.

		Parameters		Time in sec
	Name of file storing T	n k |SpT q|	|SpT qq| Proposition 4 bound of	cost S pT, βq Algorithm 1
	tree04	31 7	352	1024	0.01	0.02
	tree08	37 9	928	4096	0.04	0.05
	tree12	43 11 2436	16384	0.25	0.27
	tree20	36 4	832	1024	0.04	ă 0.01
	tree03	31 4	640	1024	0.03	ă 0.01
	tree29	41 10	640	1280	0.02	0.12
	tree30	43 11	704	1408	0.02	0.28
	tree31	45 12	768	1536	0.02	0.54
	tree32	47 13	832	1664	0.03	1.17
	tree24	50 8	9536	16384	3.42	0.04
	tree10	43 2 14336	16384	10.34	ă 0.01
	tree13	46 0 32768	32768	95.45	ă 0.01
	tree15	46 6 13824	32768	8.19	ă 0.01
	Both algorithms can prove useful in problems involving AND{OR trees or, more generally,
	monotone Boolean formulae, as demonstrated in Section 4.6.	

  for d, d 1 P D i . Intuitively, d ĺ i d 1 if and only if d 1 is preferred over d. To compare the elements of the set D 1 ˆ. . . ˆDm , we use the following standard partial ordering 1 induced by the orders ĺ i . Definition 30 (Dominance). For d, d 1 P D 1 ˆ. . . ˆDm , the element d 1 dominates d (equivalently, d is dominated by d 1 ), denoted d ĺ d 1 , if the inequality d i ĺ i d 1i holds for every i P t1, . . . , mu. Consider the minimal time for the proponent and the maximal probability for the proponent attribute domains (given in Table

	Example 45.

Table 6 :

 6 Basic assignment of probability to the basic actions of the proponent from tree in Figure2.

Basic action b β prob pbq Basic action b β prob pbq

  

	cam	0.8	eav	0.5
	force	0.3	card	0.2
	cash	0.95	pwd	2 ´48
	phish	0.6	uname	2 ´20
	log&trans	0.95	phone	0.2

Table 7 :

 7 Assignment of time, skill level, and probability to the basic actions of the proponent. Basic action b β time pbq β skill pbq β prob pbq

	cam	60	2	0.8
	eav	360	0	0.5
	force	10	0	0.3
	card	120	0	0.2
	cash	5	1	0.95
	phish	100	4	0.6
	pwd	300	0	2 ´48
	uname	20	0	2 ´20
	log&trans	5	1	0.95
	phone	20	0	0.2

Table 8 :

 8 Assignment of time, skill level and probability to the basic actions of the opponent in scenarios S 1 , S 2 , and S 3 .

	Basic action	S 1	S 2	S 3
	cover	p0, 0, 1q	p`8, `8, 0q p`8, `8, 0q
	spwd	p`8, `8, 0q	p0, 0, 1q	p0, 0, 1q
	sms	p0, 0, 1q	p0, 0, 1q	p`8, `8, 0q

Table 9 :

 9 The Pareto optimal strategies in scenarios S 1 , S 2 , and S 3 .

	Scenario Pareto optimal values	Corresponding strategies
		p135, 1, 0.057q	ptforce, card, cashu, ∅q
	S 1	p485, 1, 0.095q	pteav, card, cashu, tcoveruq
		p105, 4, 0.57q	ptphish, log&transu, tsmsuq
		p135, 1, 0.057q	ptforce, card, cashu, ∅q
	S 2	p485, 1, 0.095qq	pteav, card, cashu, tcoveruq
		p125, 4, 0.114q	ptphish, phone, log&transu, tsmsuq
		p135, 1, 0.057q	ptforce, card, cashu, ∅q
	S 3	p545, 2, 0.076q	ptcam, eav, card, cashu, ∅q
		p125, 4, 0.114q	ptphish, phone, log&transu, ∅q

Table 10 :

 10 Values of the strategies in scenarios S 1 , S 2 , and S 3 .

	ptforce, card, cashu, ∅q	Strategy
		S 1
		S 2
		S 3

Table 11 :

 11 Running times of the methods for some trees with n nodes and k repeated basic actions of the proponent. Pareto S pT, βq Pareto RB pT, β, B o T q

			Parameters				Time in sec
	Name			| SpT q|		Number	
	of file			bound		of	
	stor-	n k | SpT q|	of	m	Pareto	
	ing			Propo-		optimal	
	T			sition 4		values	
	tree04 31 7	352	1024	1 5	3 20	0.02 0.11	0.02 0.05
	tree08 37 9	928	4096	1 5	2 30	0.07 0.69	0.09 0.23
	tree12 43 11 2436	16384	1 5	1 72	0.27 4.97	0.4 3.2
	tree20 36 4	832	1024	1 5	2 12	0.04 0.07	0.01 0.01
	tree29 41 10	640	1280	1 5	2 304	0.03 13.32	0.25 65.05
	tree30 43 11	704	1408	1 5	3 184	0.03 6.52	0.67 67.51
	tree31 45 12	768	1536	1 5	2 128	0.04 2.92	1.12 53.58
	tree32 47 13	832	1664	1 5	4 378	0.05 27.88	3.47 827.92
	tree03 31 4	640	1024	1 5	2 131	0.04 2.77	ă 0.01 0.14
	tree10 43 2 14336	16384	1 5	3 658	9.68 2178.31	ă 0.01 1.7
	tree13 46 0 32768	32768	1 5	5 2151	81.93 ą 3600	ă 0.01 5.56
	tree24 50 8	9536	16384	1 5	2 15	2.9 3.36	0.07 0.1

  An overview of the OSEAD architecture OSEAD is open source and it runs on all main platforms. The version for Windows can be downloaded from https://people.irisa.fr/Wojciech.Widel/suftware/ osead.zip. Using OSEAD on other platforms requires installing the adtrees Python package [Wid19].

			User			
			interact			
			GUI		Implementation Model
	XML TXT XML	load save/load load	Tree Selection Task Selection Basic Assignment Run Analysis	create create create create	Tree Model Attribute Domain signment Basic As-ILP Problem	set semantics Results TXT lp solve save
			Figure 24:			

Table 12 :

 12 OSEAD's runtime for determining Pareto optimal attacks

	Name of file storing tree structure	Number of basic actions	Name of file storing basic assignment	Number of attacks	Number of Pareto attacks optimal	Runtime in seconds
	tree03	16	tree03 1 cost	640	2	1
	tree10	26	tree10 1 cost	14336	3	438
	tree12	17	tree12 5 costs	2436	63	11
	tree29	22	tree29 5 costs	640	304	1
	tree30	23	tree30 5 costs	704	184	1
	tree32	25	tree32 5 costs	832	378	1

The Social engineering approach

  Instead of attacking by himself, Marcel can social engineer a technician, so that they reconfigure the power meter for him, as modeled in Figure33.

				disclosure	to minimize Internet	enforce policy	public Internet source	acquire information from	social engineered technician reconfigures power meter using authorized software/tools
	acquire information from public Internet source	before hiring new employees	thorough background check	obtain power meter convince technician credentials from a social engineered technician to reconfigure the identify and select technician for obtaining power meter into reconfiguring the power meter bribe technician coerce technician to reconfigure power meter social engineer technician bribe technician to reveal acquire information by infiltrating the energy provider power meter credentials power meter for reconfiguring select technician select technician for obtaining power meter credentials identify and select acquire information by infiltrating the the energy provider collect information with employees acquire information from dumpster diving by exchanging gossips on employees of energy provider get employed as intern by the energy provider assemble background technician for reconfiguring power meter power meter credentials assemble background on employees of the energy provider acquire information from dumpster diving enforce policy to minimize leakage into reconfiguring power meter using technician reconfigures power meter using authorized of physical artefacts authorized software/tools software/tools
	enforce policy			enforce policy	get employed	collect information
	to minimize Internet disclosure			to minimize leakage of physical artefacts	as intern by the thorough background check coerce technician into revealing before hiring new employees power meter credentials energy provider	obtain power meter by exchanging gossips credentials from selected technician with employees
							tricks and warn personnel	track popular social engineering	power meter credentials	trick technician into revealing
	Figure 32: Obtaining credentials by social engineering a technician

Table 15 :

 15 Optimal strategies of the defender " td 2 , d 6 , d 7 u 31{33 D 3 " td 2 , d 3 , d 7 , d 8 u 14 40000 td 2 , d 3 , d 6 , d 7 u 33{33 td 2 , d 3 , d 6 , d 7 u `8

		Coverage problem	Investment problem
	Defender's	Optimal	Prevented	Optimal	Necessary attacker's
	budget	strategy	/preventable	strategy	investment
	20000	D 1 " td 6 , d 7 u	29{33	td 2 , d 3 , d 7 u	14
	30000	D 2			

Table 16 :

 16 Some of the attacks available to Marcel

Table 17 :

 17 Attacks optimal w.r.t. a single parameter and their values

				Attacks optimal w.r.t.		
	Defender's						
	strategy	Cost	Time	Prob	Cyber	Tech	Social
	D 1	A 1 , A 2	A 1 , A 3	A 3	A 1 , A 2 , A 3 , A 4	A 2 , A 4	A 1 , A 2 , A 3 , A 4
	Optimal value	0	100	0.41	0	0	3
	D 2	A 2	A 2 , A 4	A 4	A 2 , A 4	A 2 , A 4	A 2 , A 4
	Optimal value	0	1000	0.10	0	0	3
	D 3	A 5 , A 6 , A 7 , A 8	A 5 -A 12	A 9	A 5 , A 6 , A 9 , A 12		

A 5 , A 6 , A 8 , A 9 , A 11 , A 12 A 5 -A 12

The previously published articles have been extensively surveyed before, and compared taking different criteria into account, see, e.g.,[START_REF] Kordy | DAG-based attack and defense modeling: Don't miss the forest for the attack trees[END_REF][START_REF] Hong | A survey on the usability and practical applications of graphical security models[END_REF][START_REF] Nespoli | Optimal countermeasures selection against cyber attacks: A comprehensive survey on reaction frameworks[END_REF].

Called SEQ in[START_REF] Arnold | Time-Dependent Analysis of Attacks[END_REF].

This will make referring to this particular semantics easier. We note that the authors of[START_REF] Mantel | On the Meaning and Purpose of Attack Trees[END_REF] do not give the semantics that they define any name.

Expressed in our terminology: an attack in an attack tree is a set of basic actions of the attacker that achieves the goal of the tree's root node; the cost of an attack is the sum of costs of the basic action that constitute it.

The word exact is used to mark a difference with expected cost often used in the context of attack tree modeling.

erPCTL stands for probabilistic computation tree logic with exact rewards.

A trivial attribute domain could be, e.g., a domain with the set of values that the attribute can attain being a singleton, and with all six domain operations being the same idempotent operation. The result of evaluation of the corresponding attribute, whether using the bottom-up procedure or evaluation on the set semantics, would be the same for all trees.

In fact, we believe that the equality is attained for every tree that does not contain clones. We are, however, unable to prove this statement.

This condition is equivalent to the inequality d b c ĺ c, where ĺ stands for the canonical partial order on the semiring pD α , ', bq. This is the reason for the name non-increasing.

Note that all of the attribute domains from Table 1 other than the satisfiability domain are of this form.

Similarly as in Theorem 2, |β| denotes here the number of bits needed for storing the basic assignment β.

This is fact is neither suprising nor new. A method for minimal cut sets determination equivalent to the creation of set semantics has been given already in[START_REF] Haasl | Fault tree handbook[END_REF], Chapter XI.

In the general case of partially ordered sets (not necessarily commutative idempotent semirings) the definitions are analogous, cf.[START_REF] Geilen | An Algebra of Pareto Points[END_REF].

The choice of the maxp¨q notation is dictated by the fact that Pareto points are the maximal elements w.r.t. the dominance relation.

A more realistic case study, involving a Pareto attribute domain induced by a greater number of domains, is conducted in Chapter 7

In such a case, T is in fact an attack tree.

We decided to keep the name under which this semantics was initially introduced in [KW17], as the name seems reasonable no matter which of the actors is the opponent. The semantics aims at helping the opponent to defend against the proponent, regardless of whether the proponent is the attacker or the defender.

Case 2. The node v is not refined and v P V 1 . If actorpvq " p T , thenB o T T 1 " B o T T 1 pvq . Since B o T T 1 ‰ ∅, it follows that B o T T 1 pvq ‰ ∅,and so the subdag T 1 pvq of T 1 rooted at v satisfies all of the assumptions of the lemma. Thus, by the induction hypothesis, we have B o T T 1 pvq P SuffWit B pT, β, vq. The definition of the attribute domain for SuffWit and the operation ' defined by formula (23) imply thatSuffWit B pT, β, vq Ď SuffWit B pT, β, vq. Hence, B o T T 1 P SuffWit B pT, β, vq. If actorpvq " o T , then B o T T 1 " B o T T 1 pvq Y tλpvqu.From the definition of the attribute domain for SuffWit, the basic assignment β, and the operation l defined by formula (25), it follows that both sets ttλpvquu and SuffWit B pT, β, vq b ttλpvquu are subsets of SuffWit B pT, β, vq. Therefore, regardless of whether the set B o T T 1 pvq is empty or not, we have B o T T 1 P SuffWit B pT, β, vq, as required.

In fact, T 2 is the component of the subdag of T induced by the set V 1 that contains the root of T .Intuitively, T 2 models the (relevant part of the) particular realization of the scenario modeled with T , when the opponent executes all of the actions in O, and the proponent -all of the actions in P .

Note that the denominator in the right hand side of constraints (35) is a constant, i.e., the constraints (35) do not introduce any non-linearity into the programming problem.

Notice that #P ĺ induces a total order on P.

The word attack is used here, since the default proponent in the trees created with ADTool is the attacker, and the opponent is the defender.

The XML files storing the trees are available at https://github.com/wwidel/pareto-tests/ tree/master/trees, while the basic assignments used are to be found at https://github.com/wwidel/ pareto-tests/tree/master/assignments.

Recall that we are working under the assumption of the basic actions being independent.

Recall that, in this chapter, the word attack has a meaning specified in the first paragraph of Section 7.2.2.
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Case 2.2. actorpvq " o T If P P CounterOpp B pT, β O , vq, then the definition of the CounterOpp attribute domain and operation m defined by (24) imply that P P CounterOpp B pT, β O , vq. Thus, in this case the claimed statement holds.

Assume now that P R CounterOpp B pT, β O , vq. Since achieved T pv, P Y Oq " 0, it follows from the definition of the satisfiability attribute domain that for every i P t1, . . . , ku the equality achieved T pv i , P Y Oq " 0 holds. Furthermore, P being a minimal set satisfying achieved T pv, P Y Oq " 0 implies that it can be represented as

for some minimal sets P 1 , . . . , P k satisfying achieved T pv i , P i Y Oq " 0. To see that this is indeed the case, suppose for a proof by contradiction that it is not. Then, in every representation (29) of P there is a set P i satisfying achieved T pv i , P i Y Oq " 0, for some i P t1, . . . , ku, that is not a minimal set having this property. Let P 1 1 Y . . . Y P 1 k be a representation (29) of P that minimizes the number of such non-minimal sets, and let P 1 j be such a non-minimal set. Then, there is a set P 2 j Ă P 1 j that is a minimal set for which achieved T pv j , P 2 j Y Oq " 0 holds. The first statement of Corollary 4 implies that achieved T pv i , P 

This contradicts the minimality of P . Thus, the set P admits the representation (29). Now it follows from the induction hypothesis that for every i P t1, . . . , ku, the set P i from (29) belongs to CounterOpp B pT, β O , v i q. Together with the definition of the CounterOpp attribute domain and operation b defined by (22) this fact implies that P P CounterOpp B pT, β O , vq, completing the proof of this case.

Case 3. The node v is refined and refpvq " AND.

Case 3.1. actorpvq " p T The assumptions of this case and the fact that P is a minimal set for which the equality achieved T pv, P Y Oq " 1 holds imply that P can be represented as P " P 1 Y . . . Y P k Y P , for some minimal sets P 1 , . . . , P k and P satisfying achieved T pv i , P i Y Oq " 1 and achieved T pv, P Y Oq " 0. By the induction hypothesis, we have P i P CounterOpp B pT, β O , v i q, for i P t1, . . . , ku, and P P CounterOpp B pT, β O , vq. Thus, P P CounterOpp B pT, β O , vq, by the definition of the CounterOpp attribute domain and operation b defined by (22). Case 3.2. actorpvq " o T Similarly as in Case 2.1, we assume that P R CounterOpp B pT, β O , vq, since otherwise the claimed statement follows immediately. In this case, the definition of the satisfiability domain and the fact that P is a minimal set satisfying achieved T pv, P Y Oq " 0 imply that there is i P t1, . . . , ku for which P is a minimal set satisfying achieved T pv i , P Y Oq " 0. Thus, by the induction hypothesis, P P CounterOpp B pT, β O , v i q. Now it follows immediately from the definition of the CounterOpp attribute domain that P P The final ingredient of our algorithm for creation of the defense semantics is a method for determining minimal opponent's strategies countering a given proponent's strategy. Conceptually, this task is the same as the one achieved by the domain of the CounterOpp attribute, but it requires, informally speaking, switching of the actors. What we mean by this, is the following: for an attack-defense tree T , let T 1 be the tree obtained by attaching the root of T as a countermeasure to a new node belonging to o T . Assume that the the new node bears a unique label, say x. Then, p T 1 " o T , o T 1 " p T and for every proponent's strategy P in T there is a set O 1 " P of basic actions of the opponent in T 1 . Thus, when creating proponent's strategies countering O 1 in T 1 , one in fact creates the opponent's strategies countering P in T . That is, every opponent's strategy countering O 1 in T 1 is of the form P 1 Y txu, where P 1 " O, for some opponent's strategy O in T countering P .

Thus, we define the domain A CounterPro :" p2 2 B , b, Y, Y, b, m, bq, with the operations performed by the bottom-up evaluation at the nodes of the proponent being the ones performed at the nodes of the opponent in the attribute domain A CounterOpp , and vice versa. Finally, for an attack-defense tree T " pV, A, L, λ, actor, refq and a set P Ď B p T of basic actions of the proponent let

∅, if actorpvq " p T , λpvq P P, t∅u, if actorpvq " p T , λpvq R P.

(30)

General integer linear programming problem

The goal of the opponent is to select countermeasures to be implemented, in a way that optimizes a linear function F dependent on variables x k , f j , and z i . The total cost of the countermeasures cannot exceed the budget B available to the opponent. The general form of such optimization problem is given in Figure 19.

Constraint (32) ensures that the opponent's investment cannot exceed their budget. The next two families of constraints model the meaning of the variables f j : constraints (33) ensure that if the opponent does not execute some of the actions from O j , then f j " 1; constraints (34) ensures that if f j " 1, then the opponent does not execute some action from O j . Next, we model the meaning of the variables z i : constraints (35) ensure that if the opponent does not execute some action in any of the sets countering P i (i.e., f j " 1 for every j, such that P ij " 1), then z i " 1; and constraints (36) ensure that if the opponent executes all the actions from at least one of the sets O j countering the proponent's strategy P i (i.e., there exists j, such that P ij " 1 and f j " 0), then z i " 0 4 . Remark 4. Observe that the number of elements in the opponent's strategy O j can be expressed as |O j | " ř p k"1 y kj . Thus, the opponent executes all of the actions from O j if and only if

In consequence, if there is j for which the above equality holds and P ij " 1, then the proponent cannot succeed by employing the proponent's strategy P i . Conversely, if for all j with P ij " 1 the above equality does not hold, then the proponent can achieve the root goal with P i . This explains the form of inequalities (33) and (34).

Let us have a look at specific instances of this problem. Coverage problem. Setting F :" ´řn i"1 z i results in so called coverage problem, where the goal is to maximize the number of proponent's strategies countered by the opponent.

Countering the most appealing proponent's strategies

For an attack-defense tree T , let S : 2 B p T Ñ Z `be a score function used for comparing proponent's strategies. The higher the value of the score function of an proponent's strategy, the less appealing the strategy is for the proponent. If the opponent cannot fully protect the system, they can at least implement a set of countermeasures that maximizes the minimal value of the score function, among the proponent's strategies

Optimization goal:

maximize F px 1 , . . . , x p , f 1 , . . . , f m , z 1 , . . . , z n q (31) Subject to:

y kj p1 ´xk q, 1 ď j ď m (34)

x k P t0, 1u, 1 ď k ď p, f j P t0, 1u, 1 ď j ď m, z i P t0, 1u, 1 ď i ď n. C S ď z i SpP i q `2p1 ´zi q max P PtP 1 ,...,Pnu SpP q, for i P t1, . . . , nu.

(37) Constraints (37) relate the value of C S to the values of the score function attained by proponent's strategies not countered by the considered set of countermeasures. They ensure that C S is always bounded from above by the minimum of these values, i.e., that maximizing C S is beneficial for the opponent. Should all the proponent's strategies be countered by the opponent under some configuration of variables, then the optimal solution to the optimization problem will be 2 max P PtP 1 ,...,Pnu SpP q.

The constant multiplier is a technical trick allowing for distinguishing the case when all the proponent's strategies can be countered (result exceeds the maximal of the scores of the proponent's strategies) from the case when they cannot (the result will correspond to the minimal of the scores among the proponent's strategies that are not countered).

Below, we present two instances of this problem that are of practical interest in risk analysis.

Countering the cheapest proponent's strategies. Typical example of score function S is the cost of execution of a strategy. Assume that the cost of the proponent's actions is modeled with non-negative integers, i.e., that there is a function costp)