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Title: Efficient Kinematic and Algorithmic Singularity Resolution for Multi-
Contact and Multi-Level Constrained Dynamic Robotic Control

Abstract: The introduction of the latest solvers for least-squares programs allows very
fast solving of multi-level constrained robotic control problems. However, seldom are
all these constraints perfectly achievable at the same time. This leads to kinematic and
algorithmic singularities, an issue that has concerned the research of many roboticists.

With this thesis, we build on this already available knowledge and introduce new
methods for singularity resolution tailored to such hierarchically constrained least-
squares programs for kinematic structures like humanoid robots.

In previous works the connection between the Gauss-Newton algorithm, Newton’s
method and the Levenberg-Marquardt algorithm has been shown. All have their origin
in the second order Taylor expansion of the non-linear function of the quadratic error
norm. It is expressible in least-squares form and suitable for our hierarchical least-
squares solvers. The Gauss-Newton algorithm, which neglects Taylor second order
terms, corresponds to the standard control algorithm exhibiting numerical instabilities
when close to singularities. The Levenberg-Marquardt algorithm, which can be consid-
ered a classical measure of singularity resolution, approximates the Taylor second-order
terms with a weighted identity matrix. Newton’s method uses the analytic expression.
Based on this circumstance, we assume that Newton’s method is a valid approach for
singularity resolution.

In a first step, we formulate the Lagrangian gradient and Hessian of the constrained
optimization problem. The former enables positive definite updates of the Hessian by
the Broyden-Fletcher-Goldfarb-Shanno algorithm which then can be used in a Quasi-
Newton method. The latter one can be directly used for Newton’s method of multi-level
constrained optimization. It also inspires another approximation method based on the
Symmetric Rank 1 method. We introduce a method to switch from the Gauss-Newton
algorithm to Newton’s method when in the vicinity of singularities. We validate our
methods in simulation on a set of different kinematic problems going in and out of
singularities while being numerically stable and exceeding Levenberg-Marquardt based
methods in terms of error reduction.

Next, we make the step from pure optimization to robot control which requires the
introduction of a suitable control time-step. This allows the formulation of controllers
which imitate acceleration-based control in the velocity domain as it is required for
Newton’s method. By doing so, we are able to incorporate the robot dynamics in the
form of the equation of motion into our control framework. Validation is conducted
with real robot experiments on the HRP-2Kai.

We conclude this work by giving some hints on how to leverage bound constraints in
hierarchical least-squares solvers. Our implementation is tailored to the LexLSI solver
and allows computational speed-ups for problems dominated by bound constraints.

Keywords: Constrained optimization, Least-squares, Kinematic singularities, Algo-
rithmic singularities, Legged Robotics, Humanoid robotics, Redundant robots
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Résumé de la thèse

L’usage en robotique des tous derniers solveurs de problèmes de moindres carrés linéaires
hiérarchiques permet de résoudre très rapidement des problèmes de contrôle multi-
niveaux. Cependant, il est rare que les contraintes puissent être toutes satisfaites
en même temps. Cela introduit des singularités cinématiques et algorithmiques, un
problème qui a fait l’objet de nombreuses études.

Dans cette thèse, nous nous basons sur l’état de l’art et introduisons de nouvelles
méthodes de résolution des singularités dédiées à ces problèmes de moindres carrés
hiérarchiques pour des structures cinématiques telles que des robots humanöıdes.

Au voisinage des deux types de singularités, la linéarisation du modèle géométrique
non-linéaire qui décrit des structures cinématiques comme les robots, typiquement
utilisée en contrôle, n’approxime pas suffisamment bien la fonction originale. Cela se
traduit par un mauvais conditionnement de la matrice Jacobienne, ce qui entraine des
changements rapides de la configuration du robot. Comme cela peut amener à des
comportements dangereux pour le robot ou son environnement, une telle situation doit
être évitée.

Résolution des singularités dans la cinématique in-

verse avec priorité

Une approche classique pour la résolution des singularités pour du contrôle en vitesse
consiste à introduire une régularisation ou un terme d’amortissement. Cela correspond
à l’algorithme de Levenberg-Marquardt, communément utilisé pour trouver la solution
de problèmes des moindres carrés. Un inconvénient important est qu’il n’existe pas de
recette parfaite pour choisir l’amplitude de la régularisation. Cela peut conduire à des
instabilités si la régularisation est trop faible, ou à une mauvaise vitesse de convergence
si elle est trop forte.

Dans l’état de l’art, la connexion a été faite entre les méthodes de Newton, Gauss-
Newton et Levenberg-Marquard. Toutes prennent leurs origines dans l’expansion de
Taylor au second ordre de l’erreur quadratique des fonctions non-linéaires. Cette ex-
pansion peut s’approximer comme un problème de moindres carrés linéaire qui peut se



VIII

résoudre avec un solveur hiérarchique. Les trois méthodes se différencient comme suit:

• L’approche Gauss-Newton néglige une partie des termes du second ordre dans
l’expansion de Taylor. C’est l’approche classique en contrôle, soumise à des in-
stabilités numériques à proximité des singularités.

• L’algorithme de Levenberg-Marquardt approxime ces mêmes termes via un mul-
tiple de l’identité

• La méthode de Newton utilise l’expression analytique complète des termes du
second ordre.

Du fait de ces caractéristiques, la méthode de Newton semble être un bon candidat pour
résoudre les singularités. Elle est cependant pensée pour l’optimisation sans contrainte
et il faut l’étendre au contrôle avec priorité.

L’optimisation avec contrainte et le contrôle avec priorité sont intimement liés. En
optimisation avec contraintes, le but est de trouver un pas qui optimise (i.e. minimise
ou maximise) un objectif tout en respectant les contraintes. Pour le contrôle avec
priorité, l’objectif est de trouver un nouvel état (i.e. les vitesses articulaires dans
un contrôleur en vitesse) qui minimise l’erreur à chaque niveau sans augmenter les
erreurs des niveaux de plus hautes priorités. L’optimisation et le contrôle peuvent être
connectés par la durée d’un cycle de contrôle.

Dans un premier temps, nous formulons un problème de contrôle avec priorité
basé sur l’optimisation, avec une durée de cycle de 1 seconde. Cela nous permet
d’utiliser les outils de la théorie de l’optimisation, en particulier la notion de lagrangien
d’un problème avec contraintes. Le gradient et la matrice hessienne correspondant au
lagrangien peuvent être utilisés de deux façons:

• Le gradient permet d’obtenir une approximation définie positive de la matrice
hessienne grâce à la méthode BFGS, ouvrant la porte à l’utilisation la méthode
quasi-Newton

• La matrice hessienne du lagrangien peut être utilisée directement avec la méthode
de Newton généralisée à l’optimisation hiérarchique. Son calcul inspire aussi une
autre approximation basée sur la méthode SR1. Comme la matrice peut ne pas
être définie positive, une régularisation couteuse basée sur une décomposition
SVD est nécessaire pour retourner à une forme de moindres carrés linéaires et
l’utilisation d’un solveur hiérarchique.

Un problème de la méthode de Newton hiérarchique est que la matrice hessienne ou
son approximation est de rang plein. Cela implique que toutes les articulations sur la
châıne cinématique d’une tâche sont utilisées et ne peuvent pas servir pour réaliser des
tâches de plus basses priorités. Nous présentons une méthode pour passer, de manière
fiable, de l’approche Gauss-Newton à la méthode de Newton seulement au voisinage
des singularités. Cela assure que les articulations de la châıne cinématique concernée
sont complètement utilisées quand la tâche correspondante est singulière, mais qu’elles
sont autrement disponibles pour les tâches de plus basses priorités.
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Nous présentons également une méthode d’adaptation de la région de confiance
adaptée à un contexte de contrôle robotique temps-réel. Elle examine directement la
stabilité des vitesses articulaires solutions. Si plusieurs changements de signe consécutifs
sont observés sur une même articulation, la taille de la région de confiance est diminuée,
uniquement pour cette articulation. Cela diffère des méthodes en optimisation pure
qui décroissent la taille de la région pour toutes les variables, et peuvent se permettre
de recalculer la solution avec la nouvelle taille, chose impossible en contrôle de part la
contrainte de temps réel.

Les trois méthodes (Newton, Quasi-Newton basée BFGS et Quasi-Newton basée
SR1) sont validées en simulation sur un simple robot stick en 2 dimensions puis sur
le robot humanöıde 3-D HRP-2KAI. Nous montrons que ces méthodes permettent un
comportement stable en singularités et au voisinage de celles-ci, tout en permettant
une meilleure réduction d’erreur que les méthodes basées sur Levenberg-Marquardt.

Résolution des singularités dans le contrôle dynamique

avec priorité

Le contrôle dynamique est formulé en accélération car l’équation de la dynamique est
aussi exprimée à ce niveau. Celle-ci connecte les quantités cinématiques (positions,
vitesse et accélérations articulaires) et dynamiques (couples articulaires et torseurs de
contact), et s’assure de la faisabilité physique en ne permettant une évolution du robot
que si les torseurs nécessaires peuvent être appliqués sur l’environnement aux points
de contacts.

Dans un premier temps, nous introduisons les méthodes de Gauss-Newton et New-
ton hiérarchiques pour le contrôle. Cela demande d’adopter un pas de contrôle souvent
bien plus faible que le pas unitaire que nous avons pris comme hypothèse dans la
dérivation de la méthode de Newton hiérarchique pour l’optimisation.

La résolution des singularités dans le contrôle en vitesse a fait l’objet de nombreuses
études, ce qui n’est pas le cas pour le contrôle en accélération. De manière similaire
au contrôle en vitesse, un modèle de contrôle linéarisé est défini (cette fois au second
ordre, avec comme variables de contrôle les accélérations articulaires), ce qui mène
aux mêmes problèmes de pertes de rangs des matrices jacobiennes à l’approche des
singularités. Nous montrons comment un terme d’amortissement ou une régularisation
exprimés directement en accélération a une influence négative sur la convergence des
contrôleurs de second ordre. La méthode de Newton hiérarchique amènerait le problème
car elle est très liée à l’amortissement présent dans Levenberg-Marquard. Cela nous
sert de motivation pour exprimer le contrôle dynamique, y compris l’équation de la
dynamique et les contrôleurs de mouvement, dans le domaine des vitesses en utilisant
une intégration explicite. Ainsi, la méthode de Newton hiérarchique, qui est supérieure
à celle de Levenberg-Marquardt en termes de convergence et de facilité d’utilisation
(car il n’y a pas de gain d’amortissement à régler), est bien définie.

Nous validons en simulation le caractère reproductible du contrôle basé accélération
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et exprimé en vitesse. Nous montrons de plus l’efficacité de la méthode de Newton
hiérarchique pour prévenir les comportements singuliers ou instables dans le contrôle
dynamique hiérarchique. La supériorité de la convergence obtenue par rapport aux
approches par amortissement est aussi confirmée par trois expériences sur robot réel.

Démonstration robotique avec un solveur pour opti-

misation contrainte

Bien que permettant de faire du contrôle avec un nombre arbitraire de niveaux de
priorité, les moindres carrés linéaires hiérarchiques ne se sont pas encore véritablement
imposés. De nombreux laboratoires, JRL compris, s’appuient sur des solveurs de pro-
grammes quadratiques (QP) classiques pour un contrôle avec deux niveaux: les con-
traintes et les objectifs. Il n’y a de fait pas de séparation lexicographique claire entre
la faisabilité physique, l’intégrité du robot, sa stabilité et les tâches à réaliser. De plus,
les contraintes doivent être réalisables à tout instant. Les singularités au niveau des
objectifs sont gérées par l’usage d’une tâche de posture qui a pour effet d’introduire
une régularisation au niveau des accélérations articulaires et permet de s’approcher des
singularités.

Malgré leurs défauts, les approches de contrôle par QP sont puissantes, et nous
montrons leurs capacités dans un scénario d’application industrielle: un robot hu-
manöıde serrant des écrous, dont les dimensions sont bien inférieures à celles du robot,
en se servant d’informations visuelles et de forces. Le robot est capable de localiser
correctement un écrou grâce à des marqueurs visuels, puis d’insérer celui-ci dans la tête
d’une clé dynamométrique du commerce qu’il tient à la main. En utilisant les infor-
mations d’un capteur de force, le robot peut confirmer si l’insertion s’est bien déroulée
et procède alors à serrer l’écrou, tout en maintenant les forces de réaction faible grâce
à un contrôle compliant et qui apprend les corrections à apporter. La robustesse du
procédé est confirmée par le serrage répété de plusieurs écrous à différents endroits.

Accélérations des calculs pour un solveur des moin-

dres carrés hiérarchiques

Nous concluons ce travail en donnant quelques indications sur la façon de prendre
en compte efficacement les contraintes de bornes dans un solveur de moindres carrés
hiérarchiques. Notre implémentation est dédiée au solveur LexLSI Dimitrov et al. [2015]
et permet d’accélérer les calculs quand le problème à résoudre contient de nombreuses
bornes. Nous proposons aussi de ne recommencer que les morceaux de factorisation
nécessaires entre deux itérations du solveur, en fonction du niveau de hiérarchie où une
contrainte a été activée ou désactivée. De plus, la connaissance de la structure des
matrices du problème est utilisée pour réduire le nombre de calculs à effectuer.
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Ces améliorations sont évaluées sur un ensemble de 5 tests, chacun sur aspect
différent des modifications. Tous les tests montrent des réductions de temps de calculs,
et que la prise en compte des informations supplémentaires nécessaires aux améliorations
n’induit qu’un surcoût de calcul négligeable.

Conclusion

Grâce aux méthodes proposées, nous sommes capables de contrôler des structure
cinématiques avec une approche par priorités au voisinage des singularités. Les problèmes
suivants demandent cependant des efforts de recherche supplémentaires:

• Dans des situations hautement dynamiques, des problèmes d’active-set peuvent
survenir. Dans de telles situations, un nombre important d’itérations du solveur
contrevient au besoin du temps réel. Même si nous avons proposés quelques
améliorations au solveur LexLSI, elles ne sont pas toujours suffisantes pour résoudre
ce problème. De futurs travaux devront d’abord étudier pourquoi le nombre
d’itérations augmente tant dans des situations dynamiques. La seconde étape
sera d’améliorer encore le solveur, en implémentant une méthode de mise à
jour des décompositions numériques internes plus avancée, ou en s’intéressant
à des stratégies plus efficaces pour l’activation/désactivation des contraintes et le
démarrage à chaud.

• Il sera nécessaire de trouver des méthodes plus avancées d’adaptation de la taille
de la région de confiance, afin de permettre des mouvements très rapides. Le
rayon de confiance doit être suffisamment petit à proximité des singularités pour
garantir une bonne précision de l’approximation de Taylor au second ordre et
assurer la stabilité. Cependant, cela limite la vitesse maximum dans les config-
urations régulières, qui pourraient avoir besoin d’une augmentation plus rapide
du rayon pour permettre des mouvements plus rapides.

• Enfin, dans ce travail nous avons introduit le concept de faisabilité dynamique
dans un contrôle en vitesse, en introduisant l’équation de la dynamique et les
contraintes dynamiques correspondantes au plus haut niveau de la hiérarchie.
Cela force les sorties des niveaux de plus basses priorités à suivre les principes
physiques. Cependant, il sera nécessaire de regarder plus en détail comment
le contrôle en force (à un niveau de priorité basse) et le concept de cohérence
dynamique s’incorporent et interagissent avec notre schéma de résolution des
singularités.
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Introduction

Over the course of time humans have unearthed more and more ways of describing
the surrounding world. From early cave drawings to human language we – in cosmic
dimensions – recently have found means of mathematically expressing the observable
regularities of our universe by ‘universal laws’:

“If a certain regularity is observed at all times and all places, without
exception, then the regularity is expressed in the form of a ‘universal law’ ”.

—Rudolph Carnap. “The Value of Laws: Explanation and Prediction.”, 1966

Laws as such have manifested themselves for example in Hubble’s law describing the
expansion of the universe. While such a law has little prevalence on a day-to-day basis,
Newton’s law of universal gravitation and Newton’s Three Laws of Motion are directly
describing the forces and moments any body experiences through gravitational and in-
ertial effects. Us humans instinctively adapt our movements to the given circumstances
through experience gained from trial and error. With the rise of robots however, and
especially of legged humanoid robots, we need to peculiarly design the robot’s motion
to enable physical stability without falling. The motion thereby needs to be governed
by the given laws of motion or physics. Or expressed mathematically:

Physical feasibility � Physical stability

We have now formulated a hierarchy where the robot is aware of the laws of physics, i.e.
it is physically feasible, and within the boundaries of these laws designs a motion which
enables for example walking without falling, i.e. physical stability is achieved. We
consider these two goals to be lexicographically ordered and separated on two different
lexicographical priority levels.

We refer to the law of physical feasibility as constraint (ctr.) and the goal of
physical stability as objective (obj.). This terminology is borrowed from constrained
optimization. It allows to optimize (i.e. minimize or maximize) an objective by finding
a suitable robot state which is within the limits that are given by the constraints.

However, besides physical feasibility and stability there might be further constraints
we want to respect and objectives we want to optimize when defining a robotic problem.
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Such constraints could be related to the robot’s own safety like obeying joint movement
limits, joint torque limits or self-collision constraints. Furthermore, contacts with the
environment need to be established, requiring the contacting body parts like feet or
hands of the robot to be at specific positions. Other objectives might include to rotate
the robot’s head to a point of interest or follow a moving target with the hand.

At this point, the terminology of what can be considered a constraint and what
an objective starts to become blurry. This dilemma becomes especially relevant when
using the classical approach of a two level robot control hierarchy. All the constraints
are put on the first level and all the objectives are put on the second level. In the
presence of multiple constraints and multiple objectives they can be weighted against
each other according to their relative importance. It becomes obvious that this is not
an exact image of the reality since the ultimate constraint of physical feasibility is not
lexicographically separated from physical stability and robot safety constraints.

It has been proposed however to introduce a hierarchy with n levels of the form

Ctr. 1 � Ctr./Obj. 2 � · · · � Ctr./Obj. p− 1 � Obj. p . (1)

Any level between the first and the last one can be interpreted as a constraint and an
objective at the same time. In such a hierarchy, any level l is only optimized to the
extent of not influencing the optimality of previous levels 1, . . . , l−1. We can therefore
formulate a lexicographical problem exactly representing the ‘needs’ of the robot:

Physical feasibility � Robot safety � Physical Stability � Obj. 1 � · · · � Obj. p .

In the following, we use the term ‘constraints’ and ‘objectives’ interchangeably.
Constraints are formulated as the linearized representation of the non-linear geo-

metric description of the robot. This linear approximation fails in certain cases and no
movement can be generated to bring the constraint closer to its goal. This is typically
the case if constraints become infeasible due to conflict between each other. We call
such a state a kinematic singularity. If one constraint is of lower priority with respect
to the other, the lower priority constraint is said to be in algorithmic singularity with
the higher priority one. In both cases numerical instabilities arise with large changes
of the joint values which can bring harm to the robot structure.

Resolving these kinematic and algorithmic singularities in an efficient manner is the
main topic of this thesis. We derive, implement and validate a method which improves
state of the art resolution methods in terms of convergence and easiness of use by
reducing tuning efforts.

This thesis is then divided as follows:

• First, we give some background on research that has been conducted so far on
hierarchical constrained optimization problems and handling of kinematic and
algorithmic singularities in kinematic and dynamic control scenarios. At the
same time we outline the problem at hand and our contributions (see chapter 1).

• In chapter 2 we proceed to give some details on robotic control and constrained
least-squares programs.
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• The obtained knowledge is then applied in a robot demonstration conducting a
task typically seen in industrial manufacturing with a two level control hierarchy.
The disadvantages of this type of control architecture are detailed (see chapter 3).

• The drawbacks of the two level hierarchical control framework are overcome by
using state of the art hierarchical least-squares solvers. We proceed to tackle
the issue of kinematic and algorithmic singularities for kinematic control (see
chapter 4).

• We extend the methods of singularity resolution in kinematic control to dynam-
ically feasible kinematic control (see chapter 5).

• We conclude this thesis by giving some hints on how to leverage bound constraints
in the used hierarchical least-squares solver in order to improve the computational
speed (see chapter 6).



4 Introduction



CHAPTER 1

State of the art, problem
formulation and contributions

A robot can be simply interpreted as a kinematic structure with certain points of
interest. These points, that we call end-effectors, can be located in operational or
task-space by a combination of non-linear geometric functions describing the kinematic
relationship of links and joints. An example might be a humanoid robot (kinematic
structure) standing in a laboratory (3-D operational space) and moving its CoM and
grippers (end-effectors) by rotating its motors (joints as rotating bearings) which are
connected to each other (kinematic relationship) through rigid (or possibly flexible)
materials (links).

1.1 Constrained optimization

It is now often desired to minimize the error of an end-effector between its actual and
targeted value. At this point, both the world of robotics and constrained optimization
start to merge. A constrained optimization problem takes the general form

min.
x

f(x) (1.1)

subject to (s.t.) cE(x) = 0 (1.2)

cI(x) ≥ 0 (1.3)

where a scalar (for example error) function f(x) depending on the state vector x is
supposed to be minimized (or maximized) while not violating an array of equality
cE(x) and / or inequality constraints cI(x).

The use of Lagrange multipliers Bertsekas [1982] allows to solve equality constrained
optimization problems by finding the stationary points of the Lagrangian function
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L(x,λE) = f(x) + λTEcE(x) with the Lagrange multipliers λE. The corresponding
first order optimality condition can be formulated as ∇Lx,λE

(x,λE) = 0.

In the presence of inequality constraints, the Lagrangian function becomes L(x,λ) =
f(x)+λTEcE(x)+λTI cI(x) and the first order optimality conditions from above extend
to the Karush-Kuhn-Tucker (KKT) Karush [1939]; Kuhn et Tucker [1951]; Nocedal et
Wright [2006] conditions:

∇xL = 0 (stationarity) (1.4)

cE(x) = 0, cI(x) ≥ 0 (primal feasilibity) (1.5)

λI ≥ 0 (dual feasilibity) (1.6)

λici = 0 for i ∈ I (complementary condition / slackness) . (1.7)

An important statement here is the complementary condition λici = 0 which states
that an inequality constraint i ∈ I is either active with ci = 0 and λi > 0 or is inactive
with ci > 0 and the corresponding Lagrange multiplier (or KKT multiplier) are zero
λi = 0. Violated or infeasible constraints ci < 0 are not allowed.

There are many forms of optimization problems, differing in the structure of the
constraint and the objective at hand. If both the constraint and the objective are non-
linear Sequential Quadratic Programming (SQP) Boggs et W. Tolle [1995] is a possible
solving method. SQP repeatedly applies Newton-steps to the first-order optimality
condition until the problem converges.

If all the constraints as well as the objectives are linear with c(x) = Ax − b
and f(x) = dTx we speak of Linear Programming and corresponding solvers like the
Simplex Method Dantzig [1991] can be used.

If the objective is a linear least squares problem (LSP) f(x) = ‖A2x− b2‖2
2 and

the constraints are linear c(x) = A1x − b1 we can apply Quadratic Programming
(QP) Frank et Wolfe [1956]; Gill et al. [1986] methods, for example the range-space or
null-space methods.

Problem formulation and contributions

We use such a constrained LSP solver to conduct a high precision industrial task with
a humanoid robot. However, such a two level hierarchical LSP formulation comes with
certain disadvantages which are outlined in chapter 3.

Those disadvantages are overcome in later chapters with a special form of con-
strained LSP’s as given in Dimitrov et al. [2015]. Here, a cascade of LSP’s is intro-
duced to realize any number of priority levels as depicted in (1), see next section 1.2
for details. While the solver called LexLSI solves these problems very efficiently, given
structures of the problem can be taken advantage of in order to save computational
cost. We explore those and modify the hierarchical least-squares solver accordingly,
see chapter 6.
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1.2 Prioritized kinematic control

In previous works least-squares solvers based on the null-space method with an unlim-
ited number of constraint levels have been developed Siciliano et Slotine [1991]. They
are designed for the inverse kinematics control of kinematically redundant robots,
i.e. robots which have more degrees of freedom (DoF) than required to fulfil a given
task Chiaverini [1997]. For that, a linearized control model of the non-linear error func-
tion is solved in a least-squares way. If there are remaining DoF’s, a second level can
then be solved at best in its projection onto the null-space of the first priority level
without interfering with its optimality.

The above approach was developed for robotic problems with equality constraints.
The seminal work of Kanoun et al. [2011] resolved this limitation and enabled the
formulation of inequality constraints at any priority level. Here, a LSP for each level
is stated which are constrained such that the optimality of the LSP’s of the previous
levels is maintained. This resembles a cascade of constrained LSP’s. Thereby, the
notion of the slack variable w allows the violation of constraints ci(x) 5 0 by intro-
ducing a relaxation ci(x) + wi 5 0. The downside of this approach is a relatively high
computation cost because each constrained LSP is redoing some work of the previous
ones. Additionally, similarities of the active-sets in consecutive control iterations can
not be leveraged by warm-starting each hierarchical LSP.

The work of Escande et al. [2014] improved the computation time significantly by
solving each level only once by considering the special structure of the constrained
LSP’s. Thereby, each level’s LSP is smaller than the previous one, enabling further
computational speed-up. Additional improvement was achieved in Dimitrov et al.
[2015]. The special structure of non-orthogonal null-space bases enables cheap matrix
products and computationally efficient blocking methods.

However, the conjunction of a linear control model and a hierarchical least-squares
resolution is failing when approaching singularities : the constraint matrix (or Jaco-
bian) of one of the tasks (kinematic singularities) or its projection onto the null-space of
higher-priority tasks (algorithmic singularities) is becoming nearly rank-deficient Chi-
averini [1997]. Besides the general problem of inverting such a matrix, the high condi-
tion number of the Jacobian amplifies numerical noise due to limited machine precision
which leads to numerical instabilities with very high joint velocities and accelerations.

Kinematic singularities can be predicted and prevented with an analytical robot
workspace analysis Shamir [1990]; Tourassis et Marcelo H. Ang [1992]; Khalil et Dombre
[2002]. Algorithmic singularities however depend on the conflict with higher priority
tasks at the current robot configuration and therefore are harder to analyse Chiaverini
[1997]. Furthermore, hierarchical solvers are intended to be employed on complex
robots in any industrial setting like Airbus airplane assembly halls. Engineers without
deeper understanding of these issues should be able to set up robot problems safely and
easily, even if for example sensor readings give targets that are outside of the feasible
workspace of the robot.

Directly limiting the magnitude of the solution is achieved by damping which cor-
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responds to the Levenberg-Marquardt (LM) algorithm Wampler et Leifer [1988]; Chi-
averini et al. [1994]; Baerlocher et Boulic [2004]. For this, a weighted term minimizing
the solution norm is added to the least-squares. Thereby, this weight can be either
fixed or can be automatically adapted, for example with the so-called manipulabil-
ity factor Nakamura et Hanafusa [1986] or some estimate of the minimum singular
value Maciejewski et Klein [1988]; Chiaverini et al. [1991]. Harish et al. [2016] find
an optimal damping value by parallelly solving the same control problem with differ-
ent damping values and choosing the one which leads to the largest error reduction.
Sugihara [2011] proposes to use the quadratic norm of the task error plus some small
weight adapted to the kinematic structure. The so-called truncated SVD decomposi-
tion discards singular values in the calculation of the Jacobian’s pseudo-inverse if they
are below a certain threshold Hansen [1987]. Another approach prohibits infeasibility
by clamping end-effector targets and introduces damping for the robot’s joints dis-
tinctively by considering all the Jacobian’s singular values Buss et Kim [2005]. The
Jacobian transpose method avoids the Jacobian inversion altogether by using its trans-
pose instead Wolovich et Elliott [1984]. However, this negatively influences the con-
vergence behaviour. In Nenchev et al. [2000], singularities in tracking of parametrized
trajectories are handled by re-parametrization.

These singularity resolution methods are either designed for equality only problems
or are not extended for multi-level constrained hierarchies including inequalities as han-
dled by the solvers in Escande et al. [2014]; Dimitrov et al. [2015]. Consequently, these
solvers’ evaluation was confined to simulation or well-calibrated experiments despite
their efficiency. To the best of our knowledge, singularities in multi-level hierarchies
have only been considered in Herzog et al. [2016] where the authors propose an efficient
cascade of constrained LSP’s with fixed damping on each level. The damping values
need to be tuned by hand and might only be appropriate for a certain set of robotic
scenarios but might lead to numerical instabilities in other situations.

Problem formulation and contributions

Approximating non-linear functions by simpler models is an approach rooted in opti-
mization and it certainly is interesting to draw parallels between control and non-linear
least-squares optimization methods Deo et Walker [1993]; Wieber et al. [2017]: Damp-
ing the joint velocities can be interpreted as approximating the second order derivatives
of the Taylor expansion of the quadratic task error norm Dennis et al. [1981]; Deo et
Walker [1993] as a weighted identity matrix while the Gauss-Newton (GN) algorithm
simply ignores it. Now, what if numerical instabilities caused by singularities are just
a sign of insufficient modelling? This is the point where we try to tackle the prob-
lem: improve the model in the vicinity of singularities by incorporating second-order
information since ignoring it does not seem to suffice. Newton’s method does so by
incorporating the analytical second order derivatives. These are usually costly to com-
pute, but methods have been developed to approximate them Dennis et al. [1981];
L. Toint [1987], the most widely used being the BFGS algorithm independently intro-
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duced by Broyden Broyden [1970], Fletcher Fletcher [1970], Goldfarb Goldfarb [1970]
and Shanno Shanno [1970]. Throughout this thesis we refer to such Quasi-Newton
methods as well as Newton’s method simply as Newton’s method.

Newton’s method is not specifically designed for multi-level hierarchies. An ap-
proach using BFGS updates for the second order information weights its objectives to
establish a non-strict hierarchy Zhao et Badler [1994]. Others Sugihara [2011]; Chi-
averini [1997] proposed to incorporate the LM algorithm into strict hierarchical schemes
by damping each objective of a hierarchical least-squares solver.

In this thesis (see chapter 4), we combine strictly prioritized task-space control with
the high model accuracy provided by Newton’s method. Based on Lagrangian deriva-
tions of the constrained optimization problem we formulate the hierarchical Newton’s
method. It extends to any number of hierarchy levels consisting equality and inequal-
ity constraints, may they be feasible or not, while encompassing numerical stability. A
method is presented which reliably detects singular configurations and switches from
the GN algorithm to Newton’s method.

We validate our methods with a simulation test bench with a simple 2-D stick
robot and a complex 3-D humanoid robot. They outperform current state of the art
methods of singularity robust kinematic control in terms of error convergence while
being computationally competitive.

1.3 Prioritized dynamic control

The second order differential equation of motion connects the entities of kinematics
(joint positions, velocities and accelerations) and dynamics (joint torques and contact
wrenches). Derived from the Newtonian laws of motion (other derivations from the
D’Alembert’s principle, Euler-Lagrange equations or Hamilton’s equations exist), it
ensures physical feasibility by allowing a change of momentum only if the necessary
wrench can be exerted on the environment through contact points. In general, the
equation of motion can be considered full rank if the inertia matrix is physically con-
sistent and therefore positive definite Udwadia et E. Kalaba [1992]; Udwadia et Schutte
[2010].

While kinematic control of robots can be sufficient for fixed base robots Caccavale
et al. [1997]; Wang et al. [2010] this does not hold for legged robots with an un-actuated
free-flyer base and unilateral friction contacts established with its environment. Main-
taining a physically stable posture is one of the main concerns when it comes to their
control. Different approaches have been proposed and applied: keeping the static cen-
ter of mass (CoM) Wieber [2002]; Bonnet et al. [2018] or the dynamic zero moment
point (ZMP) Vukobratovi et Stepanenko [1972] within the convex hull of the support
area is suitable for horizontal grounds, while extensions have been made for uneven
terrain for the CoM Bretl et Lall [2008] and the ZMP Sardain et Bessonnet [2004].
The Foot-Rotation Indicator Goswami [1999] or the Capture Point Pratt et al. [2006]
are other possibilities to quantify the degree of physical stability of a moving robot.
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Model predictive control on the other hand can give the robot the foresight to provide
the required contact wrenches and motor torques to tackle dynamic situations. It has
been applied on the ZMP of an inverted pendulum model Kajita et al. [2003]; Wieber
[2006], the linear and angular momentum around the CoM Audren et al. [2014] or the
CoM accelerations Caron et Kheddar [2016].

Consequently, the aim for physical stability governs the robot control within the
bounds given by the robot’s physical feasibility. Put into lexicographic order this can
be expressed as

Physical Feasiblity � Physical Stability. (1.8)

Such a prioritization is naturally respected in the context of prioritized torque control or
prioritized inverse dynamics. Khatib [1987] develop a controller for a fixed base robot
which compensates the static and dynamic forces. Prioritized operational forces are
realized with a special null-space projection which dynamically decouples the different
levels. This concept is later coined as dynamical consistency Khatib [1995]. In this
work simultaneous force and motion control is realized in orthogonal directions of each
other. Further work of the same group expands the prioritization to any number
of levels Sentis et Khatib [2004] and to free-floating robots Sentis et Khatib [2005].
Righetti et al. [2011] map the equation of motion into the dynamically consistent null-
space of the contact constraints. They then proceed to formulate computationally more
efficient bases derived from simple orthogonal decompositions of the constraint matrix.
Prioritized inverse dynamics controllers are then devised.

A strategy for torque control in the neighbourhood of kinematic singularities was
devised in Kyong-Sok Chang et Khatib [1995]. In order to overcome motion locks
due to zero commanded torque, the rate of the singular values associated with sin-
gular directions is controlled via a potential function. Null-space motion is realized
by rotating Jacobians in such a way that the identified singular directions are elimi-
nated. Dietrich et al. [2012] implement a prioritized torque controller with statically
consistent Dietrich et al. [2015] null-space bases. These bases are calculated using a
truncated pseudo-inverse with smooth transitions in order to handle singular cases.
Dynamical consistency and singularity robustness is realized by damping kinematic
null-space bases which are then transformed back into the dynamic domain Dietrich
et al. [2015].

However, such a projector based approach is generally not suitable for problems
with inequality constraints. Another way of realizing such kind of physically feasible
hierarchy is by defining a constrained optimization problem where the equation of
motion and all the corresponding dynamics constraints are put on the constraints
level, while the robot control is put on the objective levels. Such a formulation is
not necessarily limited to torque control but also allows kinematic control since joint
accelerations (forward dynamics) are computed as well. These two level constrained
optimization problems do not allow a strict prioritization between physical feasibility
(equation of motion), safety (joint limits) and physical stability (CoM) constraints but
they are all put on the first level. Handling of inequality constraints is possible. Abe
et al. [2007] implement such a hierarchy for a robot with an un-actuated base and
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frictional contacts with the environment. The contacts’ acceleration in operational
space is asked to be zero and the contact forces are required to be within the linearized
friction cone. Several objectives including a CoM regulator are defined on the second
level and are weighted against each other. In Collette et al. [2007], two QP’s are solved:
the static one computes a goal position for the CoM which is in accordance with desired
contact forces at the friction contacts. It is then fed to the dynamic QP returning the
corresponding joint torques to reach the goal. Bouyarmane et Kheddar [2011] use such
a QP formulation to realize motions between static postures prescribed by a multi-
contact stances planner. Contacts are added and removed on-the-go. Further examples
are given in the context of humanoid robot walking Feng et al. [2013]; Kuindersma et al.
[2014] and ladder climbing Vaillant et al. [2016].

Saab et al. [2013] extends the hierarchy to any number of levels. The equation of
motion on the first level realizes physically feasible control of the motion controllers on
some lower priority level. Mansard [2012] notes that simultaneously solving the forward
and inverse dynamics in such a hierarchy can lead to numerical instabilities due to the
coupling of motion (joint accelerations) and actuation (joint torques). An appropriate
decoupling of the dynamics by using null-space bases of the contact constraints is
presented. Herzog et al. [2016] likewise implements such a hierarchy. A momentum
regulator controls either the accelerations or the contact forces. Another example for
prioritized force control is given in Sherikov et al. [2015]. The contact forces on the
hand are minimized on some low priority level by using model predictive control during
a reaching task.

Problem formulation and contributions

Dynamic control is usually formulated in the acceleration domain as both the equation
of motion and linearized motion controllers are of second order. Singularity resolution
in velocity-based control has been extensively treated while this is not the case for
acceleration-based control. Herzog et al. [2016] introduce a small regularization or
damping term but not with singularities in mind. The same holds for Vaillant et al.
[2016] who include a regularizing posture task in their objective formulation which
enforces the robot to stay as close as possible to a reference posture as it executes the
tasks. This allows approaching singularities but is not specifically mentioned in the
work.

In the second part of this thesis (see chapter 5) we first introduce the hierarchical
GN algorithm of control and the hierarchical Newton’s method of control. This requires
the adoption of a control time step which is usually much smaller than the unit time
step we assume in the derivation of the hierarchical Newton’s method of optimization.

We then direct our attention towards singularities in acceleration-based control.
Similarly to velocity-based control a linearized control model is defined which leads
to the same rank issues of the task Jacobian around singularities. We show how reg-
ularization or damping terms directly on the accelerations negatively influence the
convergence behaviour of the second order motion controllers. The hierarchical New-
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ton’s method, which we develop in the first part, causes the same diverging behaviour
as its formulation is closely related to damping through the LM algorithm. This moti-
vates us to express dynamic control including the equation of motion and the motion
controllers in the velocity domain by using forward integration. Here the hierarchical
Newton’s method, which is superior to the LM algorithm in terms of convergence and
easiness of use due to the lack of damping tuning, is well defined. We evaluate the
reproducibility of acceleration-based control in the velocity domain in simulation. Fur-
thermore, we show the effectiveness of the hierarchical Newton’s method in terms of
preventing singular and numerically unstable behaviour in hierarchical dynamic con-
trol. Three real robot experiments confirm superior convergence rates compared to
damping based approaches.



CHAPTER 2

Preliminaries

With this chapter we first introduce possible error functions which often happen to be
non-linear. We therefore find certain abstractions which enable linear control formu-
lations that can be solved by classical solvers for linear least-squares problems (LSP)
with linear constraints. We give a quick overview of the workings of these solvers before
we step on to the next chapter 3 where we apply our obtained knowledge in a robotic
demonstration.

2.1 From a non-linear robot to quadratic objectives

with linear constraints

2.1.1 Kinematic control

We have mentioned so-called error functions e(q) ∈ Rm

e(q) = fd(t)− f(q) (2.1)

where fd is the desired value and f(q(t)) is the actual value of an end-effector. They

are dependent of the state vector q =
[
tT pT

]T ∈ Rn where p ∈ Rn−6 denotes the
joint positions while t ∈ SE(3) describes the configuration of the free-flyer base with
respect to an inertial frame (usually the fixed world frame).

In the following, we refer to these error functions as tasks. A few typical examples
are given below Vaillant et al. [2016]:

• Posture task to maintain a desired posture qd: eposture = qd − q = 0;

• Joint limit task: esup = q − q ≥ 0 and einf = q − q ≥ 0;

• CoM task: eCoM = xCoM,d − xCoM(q) = 0;



14 Preliminaries
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Fig. 2.1. Schematic of a robotic manipulator in 2-D with gravity neglected. The square box
indicates the end-effector of mass m with current position x. Its movement is determined by
the kinematic structure given in light grey (which is assumed to be massless) with fixed base
at the origin. The robot is pulled towards the desired position xd with a spring-damper system
with spring stiffness kp and damping ratio kv.

• Body i position task: epos = xd,i − xi(q) = 0;

• Body i orientation task: eori = log(Ri(q)TRd,i) = 0;

• Collision avoidance ecol = δi,j(q) ≥ 0.

The superscript d denotes a desired value specified by the user. q and q are the lower
and upper joint limits of q. xi and Ri are the position and orientation of the i-th
robot body. log is the logarithm over SO(3) (see Murray et al. [1994]). δi,j denotes the
distance between body i and j (one of which can be part of the environment).

Our goal is to drive these error functions to zero e = 0 with a certain control
behaviour. A typical control behaviour for a position task is realized by a virtual 3-D
massless (m = 0) robot in space connected with its environment by a spring and a
damper. The actual and desired translational positions are f = x and fd = xd such
that the error function is e = xd − x, ė = −ẋ, ë = −ẍ. The position of the robot is
determined by the gray kinematic structure (see fig. 2.1).

The motion of such a system can be deducted from the free-body diagram fig. 2.2
and leads to the differential equation

kvė+ kpe = −kvẋ+ kpe = −kvJ(q)q̇ − ėctrl = 0 (2.2)

with the simplified choice kv = 1 for the isotropic coefficient for the damping value. kp
is the isotropic coefficient for the spring stiffness. ẋ is the first order time derivative

d

dt
x = ẋ = J(q)q̇ (2.3)
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m

Fd = −kvẋ

Fs = kp(xd − x)

ẋ
ẍ

Fig. 2.2. Free body diagram of the mass-damper-spring system. Applying for example
D’Alembert’s principle yields the inertial forces and corresponding equation of motion of the
system. Note that the kinematic structure only determines the position x of the end-effector
as a holonomic constraint but does not exert any forces on it. Thus, reaction forces only
occur at the point xd which is connected to the environment able to sustain infinite reaction
forces.

with the Jacobian J(q) = ∂f(q)/∂q = (∇qf(q))T ∈ Rm,n.

ėctrl def
= −kpe (2.4)

is a typical first order control law for velocity-based control we refer to as Proportional
controller.

For small changes ∆q of the robot state q in every control iteration k, we can adapt
the linearisation

∆x ≈ J∆q (2.5)

which maps changes of the joint configuration into changes in the task-space.
This permits the omission of the direct integration of the coupled differential equa-

tion (2.2) over time. Rather, a new velocity is calculated in a least squares sense

min.
q̇(k)

o = min.
q̇(k)
‖Jq̇(k) + ėctrl‖2

2 (2.6)

using the relation (2.2). It is then used for the forward integration to the new joint
angle configuration

q(k+1) = q(k) + ∆tq̇(k) = q(k) + ∆q(k) (2.7)

or the free-flyer quaternion by

q(k+1) = exp(q̇(k)∆t)q(k) . (2.8)

∆t is the time difference between two control steps. Throughout this work, we omit
the index k for better readability if it is not indispensable for understanding and only
keep the indices k − 1 and k + 1.

A second order control law

ëctrl def
= −kpe− kvė , (2.9)



16 Preliminaries

commonly referred to as a Proportional derivative controller, can be derived by describ-
ing the behaviour of a spring-damper system attached to a unit mass point robot, see
fig. 2.2 and fig. 2.1, now with m = 1kg but in a gravity free environment. Exponen-
tial convergence can be achieved if the mass-spring-damper system is critically damped
with kv = 2

√
mkp. The differential equation is

më+ kvė+ kpe = −ẍ+ kvė+ kpe = −Jq̈ − J̇ q̇ − ëctrl = 0 (2.10)

based on the derivative
d2e

dt2
= ë = −ë = −Jq̈ − J̇ q̇ . (2.11)

J̇ ∈ Rm,n is the time derivative of the Jacobian J̇ = d
dt
J .

Similarly to our velocity-based control law, we calculate the new acceleration by
solving the least-squares problem

min.
q̈(k)

o = min.
q̈(k)
‖Jq̈(k) + ëctrl + J̇ q̇‖2

2 . (2.12)

Again, the Euler-method is applied to integrate the joint angles by

q(k+1) = q + ∆tq̇ +
∆t2

2
q̈(k) . (2.13)

The free-flyer quaternion is integrated by

q(k+1) = exp

(
1

2
Ω

)
q (2.14)

where Ω = f(∆t, q̇, q̈(k)) is the Magnus expansion of third order (see Blanes et al.
[2009] for details).

2.1.2 Dynamic control

While the robot tries to achieve above control objectives it is indispensable that it
obeys the laws of physics. Mathematically we can express this law with the so-called
equation of motion Walker et Orin [1982]

M (q)q̈ +N(q, q̇) = STτ + JTc Kγ . (2.15)

The equation is non-linear in q ∈ Rn and q̇ ∈ Rn but linear in the joint accelerations
q̈ ∈ Rn, joint torques τ ∈ Rn and the generalized contact wrenches γ. The relationship
f = Kγ with the external contact forces f holds where K is the discretized friction
cone matrix Vaillant et al. [2016]; Stewart [2000]. M ∈ Rn,n denotes the generalized
inertia matrix of the robot,N ∈ Rn gathers the centrifugal, Coriolis and gravity effects,
S ∈ Rn,n is a selection matrix accounting for the underactuation of the robot base and
Jc(q) is the Jacobian matrix of the contact points.
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We now define following constrained optimization problem Abe et al. [2007]

min.
q̈,τ ,γ

∑
i

ωioi(q, q̇, q̈) + ωp‖p‖2 + ωf‖γ‖2 + ωτ‖τ‖2 (2.16)

s.t. M(q)q̈ +N (q, q̇) = Sτ + JTc Kγ (2.17)

τ ≤ τ ≤ τ (2.18)

γ ≥ 0 (2.19)

− Jiq̈ − J̇iq̇ 5 ëctrl
i ∀i . (2.20)

By virtue of the equation of motion (2.17) we ensure that the required accelerations
from the objectives (2.16) are physically feasible, i.e. the joint torques τ (2.18) are
within their limits and the generalized contact wrenches are within the discretized
version of the Coulomb friction cones γ (2.19) such that the equation of motion is
satisfied. The constraints also consist of motion controllers for example for geometric
contact constraints of end-effectors (2.20).

The objective is composed as the sum of tasks c weighted with a corresponding
scalar ω depending on the task’s relative importance and desired accuracy. Addition-
ally, a posture reference task p is introduced which can be interpreted as a regular-
ization / damping term on the joint accelerations. It allows to approach kinematic
singularities or tasks to be in conflict with constraints. Furthermore, regularization
terms on the generalized contact wrenches γ and on the joint torques τ are formulated
in order to yield a fully determined problem.

2.2 Solving unconstrained LSP’s

We first solve level 1 of the hierarchy (2.16)

min.
x

1

2
‖A1x− b1‖2

2 = min.
x

1

2
xTAT

1A1x− xTAT
1 b1 = min.

x
f1 (2.21)

with A1 ∈ Rm1,n, x ∈ Rn and b1 ∈ Rn. The solution of this unconstrained LSP corre-
sponds to the stationary points ∇xf1 = 0 of the scalar function f1. This corresponds
to the pseudo-inverse solution

x = A+
1 b1 . (2.22)

Computing the pseudo-inverse A+
1 explicitly can be achieved with the Singular-Value-

Decomposition (SVD) but is expensive with a computational complexity of O(4m2n+
22n3), Golub et Van Loan [1996] chapter 5. There are cheaper approaches where solvers
rely on decompositions including orthogonal transformations with Q−1 = QT and a
triangular matrix whose inverse consists of a simple forward or backward substitution.

Such decompositions include for example the QR decomposition (LexLSI [Dimitrov
et al. 2015], see chapter 6), the Complete Orthogonal Decomposition (HQP, [Escande
et al. 2014]) or the TQ Decomposition (LSSOL solver [Gill et al. 1986]). The overall
complexity of these decompositions is approximately O(2n3) Escande et al. [2013].
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2.3 Solving feasible hierarchical LSP’s with linear

equality constraints

We now step to our actual goal of solving constrained minimization problems as
in (2.16). We consider the case of a hierarchy with p levels. Each level l is then stated
as a constrained LSP with the LSP’s of the previous levels < l as linear constraints:

min.
x

1

2
‖Alx− bl‖2

2 = min.
x

1

2
xTAT

l Alx− xTAT
l bl l = 1, . . . , p (2.23)

s.t. Al−1x = bl−1 . (2.24)

The underlined vector bl−1 or matrixAl−1 is the stacked vector bl−1 =
[
bT1 · · · bTl−1

]T
or the stacked matrix Al−1 =

[
AT

1 · · · AT
l−1

]T
.

We start with p = 2. The Lagrangian function of this constrained optimization
problem then writes as

L2 =
1

2
xTAT

2A2x− xTAT
2 b2 + (A1x− b1)Tλ1,2 . (2.25)

where λ1,2 are the Lagrange multipliers indicating the conflict of the objective on level 2
with the constraints on level 1. A positive high value shows that a further minimization
of level 2 would lead to a great violation of the constraints. The Lagrange multipliers
can therefore also be referred to the sensitivity between the constraints’ and objectives’
optimality Nocedal et Wright [2006].

At the optimum, we need to fulfil following first-order necessary optimality condi-
tions

∇xL2 = AT
2A2x−AT

2 b2 +AT
1λ1,2 = 0 (2.26)

∇λ1,2L2 = A1x− b1 = 0 . (2.27)

A possible way of solving this system is the so-called null-space method. It introduces
a change of basis

x = Y1x1,Y +Z1x1,Z . (2.28)

Z1 is a basis of the null-space of A1. A1Z1 = 0 holds.
After we have obtained x∗1,Y by solving (2.27) we can find the solution of the ob-

jective without influencing the optimality of the constraints by inserting x = Y1x
∗
1,Y +

Z1x1,Z into (2.23)

min.
x1,Z

∥∥A2Z1x1,Z +A2Y1x
∗
1,Y − b2

∥∥2

2
(2.29)

and then solving for x1,Z .
(2.26) lets us calculate the Lagrange multipliers after multiplying it from the left

by Y T
1

(A1Y1)Tλ1,2 = Y T
1 (A2b2 −AT

2A2x
∗) . (2.30)
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The procedure above can be repeated for any number of constraint levels, introducing
consecutively variable changes xl−1,Z = Ylxl,Y +Zlxl,Z . This leads to a minimization
problem of the form

min.
xl,Z

‖AlNl−1xl,Z +Al

l−1∑
k=1

(Nk−1Ykx
∗
k,Y )− bl‖2

2 (2.31)

for each level l = 1, . . . , p. The summation is not conducted if l−1 < 1. Ni = Z1 . . .Zi

is the accumulation of null-spaces from level 1 to i with N0 = I.
The solution is then given by

x∗ = Y1x
∗
1,Y +Z1(Y2x

∗
2,Y +Z2(Y3x

∗
3,Y +Z3(. . . ))) =

p∑
i=1

Ni−1Yix
∗
i . (2.32)

and the Lagrange multipliers by

Y T
l−1 . . .Y

T
1

l−1∑
k=1

AT
kλk,l = Y T

l−1 . . .Y
T

1 (Albl −AT
l Alx

∗) . (2.33)

Details are given in Dimitrov et al. [2015].

2.4 Solving infeasible hierarchical LSP’s with linear

inequality constraints

In the above derivation we assumed that the objectives and constraints are perfectly
achievable without any conflicts between constraints on the same or different levels.
However, in robotic problems this is barely the case and we either have infeasible
constraints (for example a target is out of reach) or an objective is in conflict with
constraints (for example the high priority CoM constraint prevents the robot to move
its hand any further to the front). In this case we can introduce the notion of the
so-called slack variable w which relaxes a level in case of infeasibility or conflict with a
higher priority task. It also allows the handling of inequality constraints Kanoun et al.
[2011].

min.
x,wl

1

2
‖wl‖2 l = 1, . . . , p (2.34)

s.t. Alx− bl 5 wl (2.35)

Al−1x− bl−1 5 w
∗
l−1 . (2.36)

The symbol 5 gathers both equality (=) and inequality (≤) constraints. Thereby, lower
bounds Âx− b̂ ≥ ŵ are included by simply writing −Âx+ b̂ ≤ −ŵ = Ax− b ≤ w.
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Such problems are solved very efficiently by the solvers presented in Escande et al.
[2014] and Dimitrov et al. [2015].

At each level l we want to minimize the relaxation of the objective wl while keeping
the optimal relaxation already found for previous levels w∗i , i = 1, . . . , l−1 untouched.
This can be achieved by sequentially minimizing the residual of every level l = 1, . . . , p
by (2.31) where wl is given implicitly.

The Lagrangian function for every of the p constrained optimization problems can
be written as

Ll =
1

2
wT
l wl + (Alx− bl −wl)

Tλl,l + (Al−1x− bl−1 −wl−1)Tλl−1,l . (2.37)

The corresponding first-order optimality conditions are given as

∇xLl = AT
l λl,l +AT

l−1λl−1,l = 0 (2.38)

∇wl
Ll = wl − λl,l = 0 (2.39)

∇λl
Ll = Alx− bl −wl = 0 (2.40)

∇λl−1
Ll = Al−1x− bl−1 −w∗l−1 = 0 (2.41)

with wl = λl,l. The corresponding matrix of Lagrange multipliers then takes following
structure

Λ =



w1 λ1,2 λ1,3 . . . λ1,p−1 λ1,p

0 w2 λ2,3 . . . λ2,p−1 λ2,p

0 0 w3 . . . λ3,p−1 λ3,p

...
...

...
...

...
0 0 0 . . . wp−1 λp−1,p

0 0 0 . . . 0 wp


(2.42)

where each column l contains the relaxation of infeasibility wl and the conflict with
higher priority levels λi,l, i = 1, . . . , l− 1. Due to the notion of strict hierarchy, higher
priority constraints are never in conflict with lower priority constraints, rendering λi,l =
0 for i > l and leading to the triangular structure. Ifwl = λl,l = 0 then also λ1:l−1,l = 0
because of (2.33), meaning that a feasible objective l is not in conflict with any higher
priority constraint i < l. If a constraint is inactive we have both λ1:l−1,l = 0 and
λl,l:p = 0.

The so called active-set method determines which inequality constraints need to be
active at the optimal solution x∗,w∗. At every iteration s of the active-set search the
problem (2.34) composed of all equality and all active inequality constraints is solved.
A line search x(s+1) = x(s)+α(x̂(s+1)−x(s)) from the current iterate x(s) to the solution
of the subproblem x̂(s+1) is then conducted. α = [0, 1] is chosen in such a way that it
leads to the saturation of the closest constraint (independent of priority level). This
constraint is then added to the active-set. If no constraint needs to be activated but
the Lagrange multipliers corresponding to a constraint are lexicographically negative
(i.e. the first non-zero element of the row of Λ(s) corresponding to the constraint is
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Fig. 2.3. Two steps of the active-set search with initial feasible point x(0).

negative), the constraint prevents moving into a descend direction and therefore needs
to be removed from the active-set. If several constraints are associated to lexicograph-
ically negative Lagrange multipliers, the one of highest priority (or with the largest
absolute value if the constraints are on the same level) is chosen for deactivation. The
search converges once a full step α = 1 can be taken and no lexicographically negative
Lagrange multipliers are left.

Figure 2.3 gives a graphical overview of an active-set search with two stages. In
the beginning, no constraints are violated. If this is not the case the active-set algo-
rithm conducts a series of constraint activations with full step α = 1 until all violated
constraints are activated.

In the first stage, a full step to the unconstrained optimum x̂(1) is prevented by
constraint 1 which is consequently added to the active-set A1. α < 1 is chosen in
such a way that the current iterate x(1) saturates constraint 1. In the second stage,
constraint 2 is added to the active-set A1,2 since it prevents moving to the optimum
x̂(2) associated with the active-set A1. At this point x(2)∗ (again with some α < 1), no
constraints need to be activated or deactivated and the active-set search finishes.

For more details on the hierarchical active-set search see Escande et al. [2014].
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CHAPTER 3

Nut fastening with a humanoid
robot

In the previous chapter we outlined means to solve constrained LSP’s. We now want to
proceed with a direct application of our obtained knowledge. For this, we implement
a robot demonstration with the Kawada HRP-2Kai robot conducting the industrial
task of nut fastening1. It shows the robot’s capabilities in terms of accuracy with the
current robot framework which is based on the LSSOL solver Gill et al. [1986]. LSSOL
solves LSP’s being subject to a set of linear constraints

min.
x

∥∥W 1/2(Ax− b)
∥∥2

2
(3.1)

s.t. l < Cx < u . (3.2)

W is a positive and diagonal matrix weighting the objectives against each other. l and
u are the lower and upper bounds of the constraints. In this chapter, the constraints
and the regularization terms on the reference posture and contact wrenches on the
objective level are given according to (2.16). The remaining objectives’ formulation is
concerned with the movement of the end-effectors and is described later in this chapter,
see sec. 3.3. This solver is referred to as WLS (Weighted Least Squares) in chapter 5.

We can directly identify some of the weaknesses of this formulation which builds
up our narrative of introducing multi-level constrained LSP’s (2.34) in later chapters 4
and 5:

• Feasibility of the constraints
Unlike the hierarchical leas-squares solvers HQP Escande et al. [2014] and LexLSI Dim-
itrov et al. [2015], LSSOL does not introduce the notion of constraint relaxation

1The accompanying video can be found at https://youtu.be/r U3LHHGAdY

https://youtu.be/r_U3LHHGAdY
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through slack variables. While infeasible constraints are rare in practice they
lead to solver (and therefore robot control) failure. A possible scenario could be
a self-collision constraint that is in conflict for example with the CoM constraint.
Also, the constraint matrix is assumed to be always full rank, meaning that there
is no handling of rank deficiency and the numerical instabilities that come with
such singular cases.

• Notion of a soft or weighted hierarchy
A ‘soft’ or weighted hierarchy prevents clear decoupling of constraints which are
‘existential’ for the robot (equation of motion) and ensure its own safety and
physical stability.

• Automatic singularity handling
Even for a two level hierarchy, like it is given in the constrained least-squares
formulation (2.16), automatic handling of singularities is advantageous. While
in the current framework damping is introduced in the form of a reference pos-
ture task, it is attributed with a certain weight relative to other objectives on
the objective level. Depending on the level of damping this allows to approach
kinematic or algorithmic singularities to a certain degree. However, the level of
damping needs to be chosen by hand and might be insufficient for certain singular
configurations. In other situations it might be too large which leads to slow robot
behaviour and reduces the amount of objective error minimization.

Despite the problems which come with such a formulation, such an approach has been
widely applied Abe et al. [2007]; Collette et al. [2007]; Bouyarmane et Kheddar [2011];
Feng et al. [2013]; Kuindersma et al. [2014]; Vaillant et al. [2016] and allows an array
of applications of which one we are eager to show in the following.

3.1 Motivation and problem formulation

In this experiment we let the humanoid robot conduct the common task of nut fas-
tening. In a typical industrial scenario like aircraft assembly, nut fastening is among
many other repetitive tasks like drilling and riveting. They require high precision over
large structures like the fuselage and wings in order to live up to the high quality and
safety standards necessary in aviation. Due to their repetitive and physically exhaust-
ing nature (for example when working over head or in hardly accessible places) they
bring the danger of human workers suffering from concentration loss leading to costly
errors. Automation represents an interesting option in order to prevent these errors.

Mounted robots are adversely affected by their immobility if assembly work over
large structures is required. Legged humanoid robots overcome this aspect due to
their mobile base and could be a feasible vector of automation in the aircraft assembly
industry. In previous works (walking on uneven terrains Kim et Oh [2007], climbing
ladders Vaillant et al. [2016], driving cars Paolillo et al. [2014]) robots already have
been proven to be able to conduct tasks usually performed by humans.
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The operation of nut onto bolt fastening can be considered a high precision in-
dustrial scenario due to the small size of the nut compared to the robot’s dimensions.
While LSP based controllers Vaillant et al. [2016] have been used in various simple tasks
and multi-contact scenarios (see Abe et al. [2007]; Collette et al. [2007]; Bouyarmane
et Kheddar [2011]; Feng et al. [2013]; Kuindersma et al. [2014]; Vaillant et al. [2016] to
name a few), employing a humanoid robot not necessarily designed for high-precision
purposes such as nut-fastening is a new research direction.

In this chapter we aim to fasten a nut onto a bolt with the human sized humanoid
robot HRP-2KAI. Following conditions and assumptions are given:

• We use a commercially available wrench tool typically used in industrial settings
like Airbus manufacturing halls. In particular it allows reverse motion without
unfastening the nut.

• The nut and bolt used in the experimental evaluation (sec. 3.4) have diameters
of 10mm and 5mm, respectively and correspond to dimensions typically found
for example in aircraft assembly.

• Currently available visual-tracking libraries and the used robot camera are not
capable of reliably and accurately locating small and reflecting metallic nuts.
Instead, we use the marker based visual feedback library whycon Nitsche et al.
[2015]. The position of the nuts relatively to the visual markers is known.

• The robot is placed in such a way that the nut is within the robot’s workspace and
the fastening can be performed without changing contacts (the robot’s relative
position to the nut is unknown however).

• The tool is placed into the robot’s hand before the demonstration.

• The nut is already partly fastened onto the bolt.

Despite these simplifications there remain several challenges. First and foremost, the
correct insertion of the tool-tip onto the nut poses the biggest challenge. It requires
high precision in position as well as in orientation which is not necessarily given by
the vision system. Since the tool occludes the nut a force sensing approach has to be
employed for the final stages of the insertion. Secondly, there are several uncertainties
given for example by the position of the tool in the robot hand which is not perfectly
known. Furthermore, the robot does not necessarily perform the fastening motion
perfectly due to the weighted LSP formulation, noise inflicted sensor readings and
modelling errors. With the nut actually being inserted this generates internal forces
which might be harmful to the robot structure and therefore need to be avoided.

In this chapter we design several dedicated tasks in our LSP formulation which in
their sum enable the humanoid robot to fasten nuts onto bolts. First, we propose a
quick and reliable method to confirm tool onto nut insertion (sec. 3.2). We then present
the trajectory design for the fastening movement which keeps the reaction forces with
the environment low. (sec. 3.3). Experimental validation with a reliability confirmation
is then conducted in sec. 3.4.
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3.2 Detection of correct nut in tool insertion

The insertion detection is based on the property that any movement in the wall plane
leads to reaction forces F pointing towards the nut if the nut is correctly inserted into
the tool. Mathematically this can be expressed by

x
(k)
yw − xnut

yw

x
(k)
xw − xnut

xw

=
F

(k)
yw

F
(k)
xw

for |F (k)
xw | >= |F (k)

yw |, |F
(k)
yw | > 0 . (3.3)

which expresses the directional alignment of the reaction force F (k) and the displace-
ment vector xnut − x(k) between the tool position of the current control iteration and
the yet unknown position of the nut xnut (see fig. 3.2). The xw- and yw- axes define
the plane of the wall from which the bolt is perpendicularly sticking out. The detection
method consists of moving the tool-tip (exploration movement) and verifying that this
is indeed the case. Depending on which force component is larger and in order to avoid
singularities the inverse of the above equation (3.3) can be used:

x
(k)
xw − xnut

xw

x
(k)
yw − xnut

yw

=
F

(k)
xw

F
(k)
yw

for |F (k)
xw | < |F (k)

yw | . (3.4)

(3.3) and (3.4) are rewritten to[
F

(k)
yw

F
(k)
xw

−1

] [
xnut
xw

xnut
yw

]
=
F

(k)
yw
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xw

x
(k)
xw − x(k)

yw for |F (k)
xw | ≥ |F (k)

yw | > 0 (3.5)[
1 −F
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] [
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yw

]
= x

(k)
xw −

F
(k)
xw

F
(k)
yw

x
(k)
yw for |F (k)

xw | < |F (k)
yw | (3.6)

and then sampled over time (k = 1, . . . , n) in a test movement recording the tool tip
position x and force F . This enables us to solve for the unknown xnut in a least-squares
sense xnut = A+b where A is the regressor and b is the right hand side of the sampled
equations (3.5) or (3.6).

The information about the force either pointing to or pointing away from the now
known nut position is not contained in (3.5) or (3.6). In order to learn the structure
of the force field we restore this information with a scalar value we call force field
characteristic (FFC)

FFC =
1

n

n∑
k=1

xnut − x(k)

‖xnut − x(k)‖
· F

(k)

‖F (k)‖
. (3.7)

The FFC can take values between −1.0 (source, totally repelling) and 1.0 (sink, totally
attracting). In the case of a correct tool insertion we demand that the gross of the
recorded reaction forces point towards the nut. We deem FFC ≥ 0.8 to be a good
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yw

xw

nw

F
t

xnut

‖F ‖ = ‖Fd‖

x(k)

Fig. 3.1. Force field around the nut cen-
ter: At the nut center itself ‖F ‖ = 0N is
assumed. Ideally the robot end-effector would
move along the green contour line where a de-
sired constant force norm is given.

yw

xw
x(1)

x(2)
x(3)

F (1)

F (2)

F (3)

× xnut

Fig. 3.2. Schematic drawing of the three
recorded forces F and positions x used for
the nut position regression problem xnut and
the calculation of the force field characteristic
FFC. The origin of the wall reference system
is put at the position of the first measurement
x(1).

threshold for a correct insertion when accounting for friction when moving along the
exploration trajectory and dealing with noisy and offset force sensors.

In order to increase the reliability of the insertion detection method we define further
decision criteria based on our obtained measurement data:

• The condition number κ of the regressor A is high if the exploration movement
and the corresponding recorded reaction forces do not contain enough information
for a good identification of xnut. This is the case for example for a straight line
motion with some offset on the force sensor. In this work a value of κ < 2.0 is
the threshold for a correct insertion.

• A drifting exploration movement is an indicator for an incorrect tool insertion.
For a correct insertion we request that the robot hand may only move within
the range ‖x(1) − x(k)‖ ≤ 0.015 m from the initial tool-tip position x(1). This
threshold considers both robot elasticity and clearance between the tool and the
nut.

• In order to obtain reasonable results only recorded forces with a norm above the
threshold of 1.0 N are considered for the least squares regression. If more than
50% of the points recorded during the exploration movement resulted in reaction
forces below the threshold we assume that the insertion failed.

3.2.1 Exploration movement

While sampling the regression problem in (3.5) or (3.6) the robot should be able to
explore the force field autonomously rather than moving along a predefined trajectory
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Fig. 3.3. Free body diagram of the wrench tool: world (blue), wall (w, green) and hand
(h, red) reference systems. Following relationships between the reaction torques and forces
acting on the tool and the nut/bolt hold: F hx = −F bolt

x (light green), F hy = −F bolt
y (turqoise),

Mh
z = −τfastening − LwrenchF

bolt
y (turqoise).

Ahmad et Lee [1990] Mi et Jia [2004]. An exploration motion should be rich in in-
formation such that it leads to a well-conditioned regressor. Also, we want to record
reaction forces as low as possible to limit the load on the robot structure.

The first goal can be achieved by moving along a tangent of the force field around
the nut

t = nw × F . (3.8)

nw is the wall normal and F is the currently measured external force. This leads to a
circulating movement around the nut if a perfectly circular 2-D force field is assumed.

Low reaction forces can be achieved with a radial component along the direction
of the gradient of the force field g = F /‖F ‖ along which we want to control the force
error εF = ‖F ‖ − ‖F ‖d . This keeps the robot end-effector on a single contour line of
the force field with a desired constant force norm ‖F ‖d, see fig. 3.1.

The superposition of the tangential and radial component gives us the overall change
of motion which is then added to the current end-effector position x(k)

x
(k+1)
d = x(k) + htangentt+ hforceεFg (3.9)

h are the respective control gains with htangent ≈ 3hforce.

3.3 Fastening trajectory

The robot continues to fasten the nut once the insertion of the nut into the wrench
tool is confirmed. The fastening trajectory is thereby composed of three components:

• Basic trajectory: It is designed as a circular motion
[
−Lwrench cos(α) Lwrench sin(α)

]
in the wall plane xw−yw. Lwrench is the length of the wrench tool. The nut posi-
tion is the circle center and the wrench length is its radius. The hand is orientated
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Fig. 3.4. The trajectory learning control diagram: The system is unknown and outlines
the robot’s dynamics and its interaction with the environment. Its input are the desired
trajectories for the end-effector xd and Rd and its output is the measured wrench error ∆Γ.

around the wall normal axis zw by Rzw(α) in such a way that it points towards
the nut at all times (see fig. 3.3). α is a minimum jerk parametrization Flash et
Hogan [1985].

• Admittance control: This enables safe interaction between the robot and its
environment which it is quasi rigidly connected to by the tool-nut connection.
The admittance control law connects the external (ext) reaction forces Fext and
moments Text measured by the 6-D wrench sensor at the hand (h) with the cor-
responding translational and rotational displacements ∆xh and ∆φh as follows:

∆F h
ext = Fmeasured,h

ext − F h
ext,d = M∆ẍh +D∆ẋh +K∆xh (3.10)

∆T h
ext = Tmeasured,h

ext − T h
ext,d = J∆φ̈h +L∆φ̇h +C∆φh . (3.11)

All gain matrices are chosen to be diagonal which allows solving the decoupled
second order ODE system for ∆xh and ∆φh by the finite difference method. In
this work we choose the gains on the diagonals as M = 2000 kg, D = 1600kg

s
,

K = 20kg
s2

, J = 800 kg ·m, L = 600kg·m
s

and C = 13kg·m
s2

.

• Trajectory learning control: Admittance control is only suitable for slow
deviations from the desired value due to its low pass filter characteristics. For
occurrences of rapid reaction wrenches we apply a phase-free learned trajectory Ψ
(Fig. 3.4) Bien et Xu [1998]. The recorded reaction wrenches ∆Γi in each turning
motion i are zero-phase low-pass filtered to ∆Γ0ϕ

i in an offline process. The low-
pass filter is designed as a mass-damper-spring system with gains M = 1.0 kg,
D = 1.0 kg/s, K = 1.0 kg/s2, J = 1 kg · m, L = 1kg·m

s
and C = 1kg·m

s2
. The

learned wrenches are convoluted by a Tukey window τ Harris [1978] which sets
the learned trajectory to zero amplitude on both ends t = 0 s and t = T :
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Fig. 3.5. Robot during nut insertion and nut fastening

Ψi+1 = Ψi + τklearning∆Γ0ϕ
i . (3.12)

This ensures that the wrench characteristics are repeatable by resetting the initial
conditions of the system after every trial. klearning is a learning gain chosen in the
range between 0 and 1.

These three components are then expressed in the world frame and composed to the
desired hand position xd and rotation Rd.

3.4 Experimental validation

For the experimental validation (see fig. 3.5) a Kawada HRP-2Kai humanoid robot
with 32 DoF’s (plus 6 DoF’s for the unactuated free-flyer) and 6-D wrench sensors
on its hands is used. Since the fastening movements are slow we deem a purely static
gravity compensation as sufficient. We choose the FACOM E.306-30D weighing 1.52 kg
as our torque wrench. In order to allow a firm grasp of the tool we 3-D printed an
adapter for the tool handle for a better fit into the robot gripper. The hexagonal
nut is pre-fastened onto a M5 bolt sticking 1 cm out of a metal plate. The plate is
perpendicularly fixed in a solid metal structure of dimensions 2× 2× 2 m3. The robot
is equipped with a Xtion RGB-D camera. The marker tracking is done by the open
source software whycon Nitsche et al. [2015] with the 3-D marker positions in image
frame as output. A single marker only gives the position but the orientation can be
easily obtained by aligning three markers into a L-shape.

3.4.1 Visual servoing and tool insertion

In order to obtain accurate knowledge of the relative position between the nut and
the tool both the tool and the wall are equipped with whycon markers. The offset
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Fig. 3.6. Sensed force field for inserted (left, with green background) and non-inserted tool
(right, with red background); forces with ‖F ‖ < 1 N are coloured gray.

between the nut to the wall marker is known. First, the tool marker is approximately
moved into the field of view. The visual servoing controller then steers the tool-tip
in front of the nut with a certain offset in wall normal direction before slowly moving
towards the nut until a certain force threshold is surpassed in wall normal direction.
At this point the hexagonal nut and the hexagonal tooltip are most likely misaligned.
In order to overcome this misalignment the robot commences the circular fastening
motion around the nut while pressing slightly along the nut axis. This way a full
insertion can be achieved within usually two turns.

3.4.2 Insertion detection

The tool and nut connection is now occluded by the tool and requires tactile sensing
in order to determine whether the insertion was conducted successfully. For this we
use the method described in section 3.2 which enables to reliably detect both cases of
inserted and non-inserted nuts.

The recorded exploration movement with recorded reaction forces for the case of
a correct insertion of the tool onto the nut is depicted in the left graph of fig. 3.6.
The robot performs a circular movement around the point which is later identified as
the nut position xnut. This 10 s and 0.054 m long exploration movement resulted in
FFC = 0.90 and κ = 1.10. Additionally, 95% of the data points are deemed valid with
‖F ‖ ≥ 1.0 N, correctly indicating a successful tool insertion. The peak reaction force
was ‖F ‖max = 3.33 N and is only slightly above the desired one ‖F ‖d = 2 N. The low
reaction forces occurring at the beginning of the exploration can be explained by the
clearance between the wrench tool and the tool-adapter and between the tool-adapter
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Fig. 3.7. Force deviations F hx and F hz from their desired values F hx,d = 0 N and F hz,d = 3.5 N
(in color) and applied learned trajectory (in gray) for the two fastening processes. The force
error peaks are decreasing with time as the trajectory is refined by the learning control.

and the nut.

The case of an unsuccessful insertion is depicted in the right graph of fig. 3.6. Here,
the end-effector clearly drifts away from the starting point and stops after the travelled
distance exceeds the threshold of ‖x(0) − x(k)‖ ≤ 0.015 m. The FFC is close to one
FFC = 0.96 but the high condition number κ = 4.93 due to the almost linear motion
correctly identifies the incorrect insertion. Additionally, only 16% of the recorded forces
were above the threshold.

The corresponding gains for the exploration motion are chosen relatively small
htangent = 0.006 and hforce = 0.00225 such that it results in a quasi static exploration
movement with a speed of ≈ 0.54 cm/s.

3.4.3 Fastening process

The fastening motion is designed as described in sec. 3.3. One movement up or down
covers an angle of 90° within 10 s. The wall plane is approximately 0.9 m in front of
the robot and makes the desired trajectory achievable well within the workspace of the
robot.

The tool and wall axial directions of the end-effector are subject to admittance
control in order to enable safe interaction between the robot and its environment. By
prescribing the desired force F h

z,d = 3.5 N, the robot presses the end-effector against
the nut in order to prevent breaking contact during the execution of the fastening
movement. Low reaction forces are achieved by reducing force components in radial
direction along the tool axis F h

x,d = 0 N and the torque about the nut axis Mh
z,d = 0 Nm.
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Fig. 3.8. HRP-2Kai fastening the nut on the upper inclined wall.

Figure 3.7 shows how the trajectory learning reduces the quickly occurring and
vanishing high reaction force peaks by approximately 50%. Such peaks up to 10 N for
F h
x and F h

z can be observed at around 175 s but decrease to 5 N at around 245 s. The
same behaviour can be observed for a second trial from 420 s to 530 s (with the learned
trajectory from the first trial being reset beforehand).

3.4.4 Process Reliability

In order to test the reliability of the fastening process we set up an experiment where
one nut needs to be fastened onto a M8 bolt fixed on a 45◦ inclined wall. The robot
then proceeds to fasten a second nut on a perpendicular metal wall (see fig. 3.8). The
current fastening torque is calculated by (see fig. 3.3)

τfastening = −Mh
z + LwrenchF

h
y (3.13)

in order to identify the desired fastening torque of 7 Nm.
The overall process of fastening two nuts was repeated nine times with robot restarts

between the repetitions. Five trials were successful while for three attempts some issue
occurred (see table 3.1). In one case the tool adapter fell off from the wrench during the
removal of the tool from the first nut. The rest of the times several insertion attempts
were necessary for the first or second nut. In one trial the insertion of the second nut
failed completely such that it had to be aborted.

The fastening torque exceeds the desired value in all the trials since the robot is
not able to stop its movement exactly in the instance of reaching the desired threshold.

Since the trials with some issue take more time the overall trial duration has quite a
large standard deviation of 58 s. Also, the degree of pre-fastening of the nuts influenced
the number of fastening movements #turns necessary to tighten the nut. The fastening
of the first nut on the inclined wall was conducted with a smaller value of α = 70◦ in
order to avoid collision with the environment. This increases the number of necessary
fastening motions.
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full success 5 56% τfastening 8.14 ± 0.27 Nm
with some issues 3 33% duration/trial 6:31 ± 0:58 min

failure 1 11% 1st nut: #turns 17.1 ± 2.6∑
9 100% 2nd nut: #turns 11.8 ± 1.6

Table 3.1 – Experimental results

3.5 Conclusion

With this nut fastening demonstration we showed the high precision capabilities of
the HRP-2Kai humanoid robot with the corresponding control framework centered
around the LSSOL quadratic programming solver. For this we implemented specific
tasks and validated the reliability of our approach experimentally. The high precision
capabilities were shown with the nut insertion and the low reaction forces during the
fastening process.

Sensors play a vital part in the achievement of such precise tasks. Force sensors are
subject to noise and offsets which need to be accounted for. The vision system used
here is marker based and is only precise to a certain degree depending on the distance
between the camera and the markers. However, with fusing both those measurements
we are able to reliably locate, approach and insert the nut into the tool.

In order to achieve precise fastening movements the motion speed is limited. Besides
further developments in the control domain changes, the kinematic structure itself could
contribute positively to further improvements. Thinkable are dedicated robots with
specialized tools. An example would be Kawada’s Nextage robot which can change its
end-effector on the fly.

Lastly, by adding further contacts between the robot and its environment the qual-
ity of the fastening motion can be improved through increased physical stability and
rigidity of the robot structure.



CHAPTER 4

Singularity resolution for kinematic
control problems

In the previous chapter we used the LSP formulation (2.16) in order to tackle a typical
industrial task with a humanoid robot. It delivered high accuracy despite the weighted
formulation of tasks on the objective level. However, we imposed two big assumptions:

• the constraints are always fully feasible without any conflict between them and
kinematic singularities for example of the geometric contact constraints are avoided

• the objective tasks approach kinematic and algorithmic singularities only to such
a degree as it is safeguarded by the damping introduced by the reference posture
task.

Additionally, the notion of a soft or weighted hierarchy prevents clear distinction be-
tween safety, security and optimality concerned tasks.

This motivates us in this chapter to first introduce the notion of hierarchical LSP’s
of the form (2.34)

min.
x,wl

1

2
‖wl‖2 l = 1, . . . , p (4.1)

s.t. Alx− bl 5 wl (4.2)

Al−1x− bl−1 5 w
∗
l−1 . (4.3)

Solving these LSP’s in a very efficient manner was first proposed in Escande et al.
[2014] and then further refined in Dimitrov et al. [2015].

This sort of multi-level constrained optimization problems with constraint relax-
ation overcomes the issue of the need for always feasible constraints. Additionally,
the notion of strict hierarchies allows clear distinction between safety, security and
optimality concerned tasks.
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The main purpose of this chapter is now to design, implement and validate methods
to handle kinematic and algorithmic singularities in multi-level hierarchies for kinemat-
ics based control problems. While not only enabling tuning free and numerically stable
behaviour over a large task-space we also supersede classical damping approaches in
terms of accuracy.

The first section 4.1 is dedicated to exploring the problem of kinematic singularities
in kinematic control problems from a Taylor model point of view. We do this for a single
level and observe how singularities negatively influence the robot control. A resolution
method based on Newton’s method of optimization is then proposed (sec. 4.1.1). The
method is extended to multi-level constrained optimization problems (sec. 4.1.2). In a
last step inequality constraints are incorporated into our scheme (sec. 4.1.3).

In the next section 4.2 technical details are given for the calculation of the sec-
ond order information for Newton’s method. This can be achieved either analytically
(sec. 4.2.1.1) or by approximation with the SR1 method (sec. 4.2.1.2) and the BFGS
algorithm (sec. 4.2.1.3).

Section 4.3 presents the implemented switching strategy between the GN algorithm
and Newton’s method. In sec. 4.4, a trust region adaptation method for the case of
multi-level constrained hierarchies is introduced. Finally, the proposed methods are
evaluated on a simulation test bench with a 2-D and a 3-D robot in sec. 4.5.

To test 1 of this test bench we refer to throughout this chapter (namely sec-
tions 4.2.1.2 and 4.3) so we shortly introduce it. Here, a 2-D 4 DoF robot with a
translating base and three links and three revolute joints (uniform link length of 1 m)
follows two targets oscillating cross-diagonally with its two hierarchically ordered end-
effector (ef) tasks. The targets are just reachable in the corner case (the robot needs
to stretch into kinematic singularity in order to be able to reach the high priority blue
target, see fig. 4.1).

Fig. 4.1. Schematics of test 1. The high priority ef 1 follows the blue dashed line while the
lower priority ef 2 tries to reach the green dashed line.

More details including the exact task hierarchy (fig. 4.7) are given in sec. 4.5.1.
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4.1 Kinematic and algorithmic singularities in kine-

matic control and their resolution

4.1.1 Single level with equality constraints - A model point of
view

In the previous chapter 2.1 we have stated the first order controller

− ėctrl − Jq̇(k) = kpe− Jq̇(k) = e− J∆q(k) = 0, (4.4)

which drives the task error e ∈ Rm → 0 to zero, see (2.2). In this chapter the
proportional gain is set to kp = 1 for simplicity. Additionally, the control time step is
chosen as ∆t = 1 s which leads to the trivial relation q̇ = ∆q ∈ Rn.

We can now look for a small change ∆q of the robot’s configuration q with which
we update the new one to q(k+1) = q + ∆q. The required error decrease ėctrl may not
be achievable so we solve the above at best using the linear LSP

min.
∆q

1

2
‖J∆q − e‖2

2 . (4.5)

This form is akin to the Gauss-Newton (GN) algorithm and can be solved with the
help of the pseudo-inverse J+ such that ∆q = J+e. This approach is not robust in
the vicinity of singularities: J is almost loosing at least one rank and ∆q becomes
very large. This can be seen by

J+ = V Σ−1UT =
r∑
i=1

1

σi
viu

T
i . (4.6)

where the Singular Value Decomposition (SVD) of J = UTΣV is used to calculate
the pseudo-inverse. If the current robot configuration q is far away from singularities
numerically stable results are obtained. However, if singularities are approached at
least one singular value tends towards zero σ → 0. This causes numerically high
changes ∆q in the joint configuration which can damage the robot’s structure and
needs to be prevented.

An example is given in the following with a two DoF robot with link length 1 m.
The robot’s initial end-effector’s position is at [1, 1] m from which it reaches to the
desired position at [

√
2/2,
√

2/2] m, see fig. 4.2. From the control iteration 10, the
robot is close to kinematic singularity with the Jacobian being almost rank deficient
with low minimum singular value. Slight numerical instabilities are seen on the joint
level (∼ 1−5 m) and the minimum singular value (see fig. 4.3).

If the target is slightly out of reach at [
√

2/2 + 0.01,
√

2/2 + 0.01] m, the robot
behaves clearly numerically unstable with high joint velocities, see Fig. 4.4. In this
case the infeasibility acts as a disturbance of the right hand side δe = 0.01 m. It
leads to a significant perturbation of the end-effector position by δx = J+δe as it is
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y

x

∗Target

Fig. 4.2. 2-D, 2 DoF robot with link length 2 m. The initial configuration is depicted in
gray, the desired configuration with the target ∗ is given in black. The workspace of the robot
is the area within the circle.

Fig. 4.3. Joint angles (rad), task error (m)
and largest and smallest singular value while
approaching the singular configuration. The
target is just in reach at [

√
2/2,
√

2/2] m. The
task-space behaviour is numerically stable but
there is some noise on the joint level (upper
graph) and the smallest singular value (lower
graph).

Fig. 4.4. Joint angles (rad), task er-
ror (m) and largest and smallest singular
value while approaching the singular config-
uration. The target is just out of reach at
[
√

2/2 + 0.01,
√

2/2 + 0.01] m. The robot is
numerically unstable with large changes in the
joint angles (upper graph) and heavily oscil-
lating end-effector (middle graph).

magnified by the pseudo-inverse of the ill-conditioned Jacobian J (see the perturbation
analysis for least-squares solutions, Björck [1996], p. 28).

If the robot is exactly at the singularity, the corresponding singular value is zero
and the Jacobian is rank deficient. In the calculation of the pseudo-inverse this value
is skipped and a well defined solution can be obtained. The so-called truncated SVD
decomposition implements a similar behaviour of discarding singular values in the
pseudo-inverse calculation if they are below a certain threshold Hansen [1987].

To further outline the GN algorithm’s lack of robustness if close to singularities
we now formulate another closely related LSP. For this, let us define the scalar target
function Dennis et al. [1981]; Deo et Walker [1993]:

Φ(q) =
1

2
‖fd − f(q)‖2

2 =
1

2
‖e(q)‖2

2 =
1

2
eTe . (4.7)
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This non-linear function can be approximated by a second order Taylor series

Φ(q + ∆q) ≈ Φ(q) + ∆qT∇Φ +
1

2
∆qT∇2Φ∆q (4.8)

= Φ(q)−∆qTJTe+
1

2
∆qT (JTJ +H)∆q . (4.9)

H ∈ Rn,n assembles the second order derivatives (or Hessians) of f(q). This model
can only be ‘trusted’ to accurately represent the original function Φ in a small neigh-
bourhood ∆ of the current point q. It is commonly referred to as trust region. Further
details are given in sec. 4.4. The corresponding gradient is given by

∇Φ(q) = −JTe (4.10)

and the corresponding second order derivative is given by

∇2Φ(q) = JTJ +
m∑
i=1

ei∇2fi = JTJ +H . (4.11)

∆q can then be computed by the minimization problem

min.
∆q

Φ(q + ∆q) = min.
∆q

1

2
eTe−∆qTJTe+

1

2
∆qT (JTJ +H)∆q . (4.12)

This minimization problem corresponds to Newton’s method applied to non-linear least-
squares Nocedal et Wright [2006]. In case of positive definiteness of the second order
information H , the Cholesky decomposition H = RTR can be obtained. Now above
can be reformulated to the following least-squares program

min.
∆q

1

2

∥∥∥∥[JR
]

∆q −
[
e
0

]∥∥∥∥2

2

= min.
∆q

1

2
‖J∆q − e‖2

2 +
1

2
‖R∆q‖2

2 . (4.13)

It can be seen that the GN algorithm is a degraded version of this form where the
second order term H (or R) has been discarded. This increases the model error of
the second-order Taylor-series. While a truncated Taylor approximation represents the
original non-linear function sufficiently away from singularities this does not hold when
approaching them. In this case the matrix R helps to keep full rank as the rank of J
decreases. In appendix B we illustrate such an augmentation with a simple 2-D robot.

Above form (4.13) is very similar to a classical method of singularity resolution in
kinematic control problems: Damped least-squares or the LM algorithm regularizes
the solution vector ∆q by

min
∆q

1

2
‖J∆q − e‖2

2 +
1

2
α2‖I∆q‖2

2 . (4.14)



40 Singularity resolution for kinematic control problems

This leads to Chiaverini [1997]

J∗ = JT (JJT + α2I)−1 =
r∑
i=1

σi
σ2
i + α2

viu
T
i , (4.15)

compare with (4.6). If the damping factor α is chosen small with α� σi then the factor
σi/(σ

2
i + α2) ≈ 1/σi is close to the one of the un-damped pseudo-inverse. However,

if σi → 0 then the factor is still well defined with σi/(σ
2
i + α2) → 1/α instead of

1/σi →∞.
Interestingly, the LM algorithm corresponds to approximating the second order

information H of the Taylor expansion as a multiple of the identity. While this leads
to numerical stability it does not necessarily lead to the best representation of the
original function.

Instead, we propose in this thesis to use the true second order information or its
approximation by the SR1 method or the BFGS algorithm. If we are approaching
singularities we switch from the GN algorithm to Newton’s method. A switching
method is proposed in sec. (4.3).

Our reasoning is that neglecting the second order information in the Taylor expan-
sion marks an insufficient model of the original non-linear function around singularities.
At the same time the Hessian can be interpreted as an ‘optimal damping’ term due
to the close relationship of Newton’s method with the LM algorithm. Instead of ap-
proximating the second order information by a weighted identity matrix, Newton’s
method uses the true Hessian. We show throughout this and the next chapter that
this approach not only leads to numerically stable robot behaviour but also exceeds
the classical damping approach in terms of error convergence.

In the following we refer to Newton’s method as being the ‘augmented’ (as in
augmented with second order information) version of the GN algorithm Dennis et al.
[1981].

4.1.2 Hierarchies with equality constraints

In the previous section 4.1.1 we have seen that linear control problems can be cast
into an optimization based formulation thanks to our choice of the time step param-
eter ∆t = 1 s. Both the GN algorithm and Newton’s method of optimization can be
conveniently expressed in least-squares form which makes them eligible to be solved
with the constrained QP solvers previously presented in chapter 2. We then can lexi-
cographically order control objectives from level 1 to l in the following way:

For l = 1, . . . , p :

min.
∆q,w

(k+1)
l

1

2
‖w(k+1)

l ‖2
2 (4.16)

s.t. el − Jl∆q = w
(k+1)
l (4.17)

el−1 − J l−1∆q = w
∗,(k+1)
l−1 . (4.18)
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Unlike in the previous section 4.1.1, the relaxation w is introduced on each level (also
in the case of a single level) and we keep this formulation throughout this thesis.

The corresponding Lagrangian function of this discretized problem at time step
k + 1 can be formulated as follows (the index k + 1 of w(k+1), w∗,(k+1) and λ(k+1) is
omitted for better readability):

Ll =
1

2
wT
l wl + λTl,l(wl − el + Jl∆q) + λTl−1,l

(
w∗l−1 − el−1 + J l−1∆q

)
=

1

2
wT
l wl + λTl,l (wl − el) + λTl−1,l

(
w∗l−1 − el−1

)
+ ∆qTJTl λl,l + ∆qTJTl−1λl−1,l .

(4.19)

λl,l are the Lagrange multipliers associated to (4.17) and λl−1,l are the ones associated
to (4.18). λi,l indicates the conflict of level l with level i.

We can now find the solution of this constrained optimization problem by deter-
mining the stationary points of the Lagrangian function ∇∆q,wl,λl,l,λl−1,l

Ll = 0. These
first order optimality conditions are stated as

∇∆q,wl,λl,l,λl−1,l
Ll = Kl(∆q,wl,λl,l,λl−1,l) =


JTl λl,l + JTl−1λl−1,l

wl + λl,l
wl − el + Jl∆q

w∗l−1 − el−1 + J l−1∆q

 = 0 (4.20)

or in matrix form
0 0 JTl JTl−1

0 I I 0
Jl I 0 0
J l−1 0 0 0




∆q
wl

λl,l
λl−1,l

 =


0
0
el

el−1 −w∗l−1

 . (4.21)

In the above derivation we have formulated our constrained optimization problem with
the goal of driving the linearisation of the non-linear task error e(q) = fd−f(q) (with
∇qe = −J)

el(q + ∆q) ≈ el(q) +∇qel(q)∆q = el(q)− J∆q = 0 (or w∗l ) (4.22)

to zero ‘at best’ with some possible relaxation w∗l in the case of infeasibility. However,
this Lagrangian analysis does not result in an expression for the hierarchical second
order information since we have ∇2

∆qLl = 0.
Therefore, let’s look at the original non-linear optimization problem which is to be

solved:

min.
q,wl

1

2
‖wl‖2 l = 1, . . . , p (4.23)

s.t. el(q) = wl (4.24)

el−1(q) = w∗l−1 . (4.25)
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The goal now is to drive the constraint violation wl of each level l to zero ‘at best’
such that the task error el(q) = 0 (or el(q) = w∗l in the case of infeasibility). Al-
ready obtained optimal violations of previous levels w∗l−1 must stay unchanged. The
Lagrangian function of this problem writes as

Ll =
1

2
wT
l wl + λTl,l(wl − el) + λTl−1,l(w

∗
l−1 − el−1) . (4.26)

λl,l are the Lagrange multiplier associated to (4.24) and λl−1,l are the ones associated
to all the constraints (4.25). The first order optimality condition of this problem is

∇q,wl,λl,l,λl−1,l
Ll = Kl(q,wl,λl,l,λl−1,l) =


JTl λl,l + JTl−1λl−1,l

wl + λl,l
wl − el

w∗l−1 − el−1

 . (4.27)

Thereby, the gradient ∇∆qLl = JTl λ
(k+1)
l,l + JTl−1λ

(k+1)
l−1,l in (4.20) seems to be the dis-

cretized version of ∇qLl = JTl λl,l + JTl−1λl−1,l at time step k + 1.

We then apply a Newton step

Kl(x+ ∆x) ≈Kl(x) +∇Kl(x)∆x = 0 (4.28)

which leads to the expression
JTl λl,l + JTl−1λl−1,l

wl + λl,l
wl − el

w∗l−1 − el−1

+


∑l

i=1

∑mi

u=1 λ
u
i,lHu,i 0 JTl JTl−1

0 I I 0
Jl I 0 0
J l−1 0 0 0




∆q
∆wl

∆λl,l
∆λl−1,l

 = 0 (4.29)

with x =
[
qT wT

l λTl,l λTl−1,l

]T
. We define

Ĥl = ∇2
qLl = ∇qJTl λl,l =

l∑
i=1

mi∑
u=1

λui,lHu,i (4.30)

which we refer to as the Lagrangian Hessian Ĥl of level l throughout this thesis.
It provides us with the second order information for Newton’s method of multi-level
constrained optimization.

Using the variable changes

w(k+1) = w + ∆w (4.31)

λ(k+1) = λ+ ∆λ (4.32)

λ(k+1) = λ+ ∆λ , (4.33)
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we get the system (the index k + 1 is omitted again)
Ĥl 0 JTl JTl−1

0 I I 0
Jl I 0 0
J l−1 0 0 0




∆q
wl

λl,l
λl−1,l

 =


0
0
el

el−1 −wl−1

 . (4.34)

Solving this system yields the step ∆q which can be integrated to the new configuration
q(k+1) = q + ∆q.

Above is also the optimality condition ∇xLl = 0 of the quadratic program

min.
∆q,w

(k+1)
l

1

2
‖w(k+1)

l ‖2 +
1

2
∆qTĤl∆q (4.35)

s.t. el − Jl∆q = w
(k+1)
l (4.36)

el−1 − J l−1∆q = w
∗,(k+1)
l−1 (4.37)

with the Lagrangian function (the index k + 1 is again omitted for better readability)

Ll =
1

2
wT
l wl +

1

2
∆qTĤl∆q (4.38)

+ λTl,l(wl − el + Jl∆q) + λTl−1,l(w
∗
l−1 − el−1 + J l−1∆q) . (4.39)

This form is akin to the hierarchical Newton’s method of optimization. If Ĥl is positive
definite above problem can be rewritten to least squares form

min.
∆q

1

2

∥∥∥∥[JlRl

]
∆q −

[
el
0

]∥∥∥∥2

2

l = 1, . . . , p (4.40)

s.t. el−1 − J l−1∆q = w
∗,(k+1)
l−1 , (4.41)

with the Cholesky decomposition Ĥl = RT
l Rl and with w

(k+1)
l being given implicitly.

If the second order information Rl is neglected we get the hierarchical GN-algorithm

min.
∆q

1

2
‖Jl∆q − el‖2

2 l = 1, . . . , p (4.42)

s.t. el−1 − J l−1∆q = w
∗,(k+1)
l−1 . (4.43)

Both the hierarchical Newton’s method and hierarchical GN algorithm are generaliza-
tions of (4.13) for the case of multi-level constrained optimization.

4.1.3 Hierarchies including inequality constraints

In robotic control problems it is often the case that a task value is not necessarily
asked to be at a single value but to be within an admissible range. Examples are joint
angles to be within their joint limits or the CoM to lay within the support polygon
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spanned by the projection of the feet onto the ground. The linearized problem then is
formulated as

For l = 1, . . . , p :

min.
∆q,wl

1

2
‖w(k+1)

l ‖2
2 (4.44)

s.t. el − Jl∆q 5 w(k+1)
l

el−1 − J l−1∆q 5 w∗,(k+1)
l−1 . (4.45)

The first order optimality conditions developed in the previous section extend to the
Karush-Kuhn-Tucker conditions. The according complementary condition provides
the basis for the active-set method. The hierarchical GN algorithm and hierarchical
Newton’s method are then formulated as

min.
∆q

1

2
‖Jl∆q − el‖2

2 l = 1, . . . , p (4.46)

s.t. el−1 − J l−1∆q 5 w∗,(k+1)
l−1 (4.47)

and

min.
∆q

1

2

∥∥∥∥[JlRl

]
∆q −

[
el
0

]∥∥∥∥2

2

l = 1, . . . , p (4.48)

s.t. el−1 − J l−1∆q 5 w∗,(k+1)
l−1 , (4.49)

respectively. Both formulations include equality constraints. Inactive constraints l
result in wl = 0, λl,l+1:p = 0 so they do not further influence the Lagrangian Hessian

Ĥg =

g∑
i=1

∑
j∈A(k)

i

λji,gHj,i = RT
gRg (4.50)

on some level g > l. A(k)
i is the active-set of the level i at the control iteration k

containing mi tasks.

4.1.4 Algorithm outline

At this stage we have designed a concept of resolving singularities in multi-level con-
strained hierarchies. The overall resolution method’s outline is as follows:

• We state a multi-level hierarchy as in (4.1) with the first level as a trust re-
gion constraint due to our considerations from a Taylor model point of view in
sec. 4.1.1. More detailed explanations, definitions and a trust region adaptation
method are given in sec. 4.4.
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• For every level of the hierarchy and in every control iteration we check if a task
is about to become singular.

– If this is not the case the GN algorithm is sufficient and the respective level
is formulated as in (4.47).

– If this is the case the GN algorithm is not sufficient and the respective level
is formulated as Newton’s method (4.49).

The process of checking for singularities and the reason for switching back to the
GN algorithm in regular configurations are explained in sec. 4.3.

• The hierarchical Newton’s method requires the hierarchical Lagrangian Hes-
sian (4.30). Its computation is detailed in the next section 4.2.

• Finally, each level’s formulation (either the GN algorithm (4.47) or Newton’s
method (4.49)) is sent to a hierarchical least squares solver like LexLSI Dimitrov
et al. [2015] or HQP Escande et al. [2014] and the whole problem is solved for
the new control output ∆q.

4.2 Hessian calculation

In order to augment the GN algorithm to Newton’s method in the case of singularities
we require the knowledge of the Lagrangian Hessian (4.30) or (4.50) in the case of
inequality constraints. While the LM algorithm approximates it by a simple weighted
identity matrix we want to gain a better model representation by either providing
the true analytic Hessian or an approximation of it by the SR1 method or the BFGS
algorithm.

In the following we detail the calculation first for multi-level hierarchies with equal-
ities in sec. 4.2.1. These results also hold for problems with a single level by setting
the number of levels to p = 1. In sec. 4.2.2 necessary extensions are presented in order
to incorporate inequality constraints.

4.2.1 Hierarchies with equality constraints

In the above section 4.1.2 we have formulated the Lagrangian function (4.26) and the
corresponding first order optimality condition (4.27) for a multi-level equality con-
strained optimization problem. This resulted in the formulation for the Hessian of the
Lagrangian (4.30). In the following, we give technical details for the calculation of the
analytic Hessian and its approximation by the SR1 method or the BFGS algorithm.
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4.2.1.1 Analytic Lagrangian Hessian (LexLSAug2AH)

For the analytic Hessian calculation Ĥl of level l (4.30)

Ĥl =
l∑

i=1

mi∑
u=1

λui,lHu,i (4.51)

we need to calculate the second order derivatives

Hu,i = ∇2
qfu,i(q) with i = 1, . . . , l and u = 1, . . . ,mi (4.52)

of the geometric functions fi(q) ∈ Rmi for all levels i = 1, . . . , l. For this we follow Er-
leben et Andrews [2017]. While the calculation of a single Hessian is of complexity
O(n3), the calculation of Ĥl is of order O(n3

∑l
i=1mi)

Numerical behaviour can be improved if Hessians H are only added to Ĥl if their
corresponding Lagrange multiplier λ > ρ with ρ ≈ 1e−12 being a small numerical value.

Since the Hessian Ĥl can become indefinite a simple Cholesky decomposition can
not be applied. Instead we use the regularization proposed in Higham [1988] beforehand

to get the closest semi positive definite matrix Ĥ
reg

l by

Ĥ
reg

l =
1

2
(Ĥ l + V (Σ + ιI∗)V T ) . (4.53)

The regularization requires a full polar decomposition for example by the SVD decom-
position Ĥl = UΣV T which is computationally expensive with O(12n3). An approx-
imation of the polar decomposition based on Newton’s method is available Higham
[1986] but does not calculate the squared singular values Σ explicitly. A cheaper regu-
larization based on the Bunch-Kaufman decomposition Bunch et al. [1976] could also
be applied but only gives an approximation to the closest positive definite matrix. In
some preliminary results however, we observed worse behaviour and therefore apply
the Higham regularization.
Ĥ

reg

l is the matrix Ĥl with all the negative Eigenvalues being zero. We add a small
term ιI∗ with ι� 1 in order to make the Hessian Ĥ

reg

l strictly positive definite in order
to be able to apply the Cholesky decomposition. This improves numerical stability
and smoothness of the solution. However, the convergence behaviour is influenced
negatively. Indeed, the tendency to only converge to suboptimal minima increases
with the magnitude of ι.
I∗l is an identity matrix only occupying diagonal entries corresponding to joints on

the kinematic chain of the tasks on all levels ≤ l. Otherwise lower priority objectives
acting in the task’s null-space can not make use of these unnecessarily occupied joints.
For visualization, a problem is given with two levels where each level has tasks with
distinct kinematic chains. For level 1 (m1 = 4) , all joints except joints 9, 10, 13 and
14 are on the tasks’ kinematic chains. The corresponding Jacobian J1 with maximum
rank rank(J1) = 4 is given below. ×i is the matrix entry corresponding to the i-th
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column. Empty spaces are filled with zeros. Columns without any entries are marked
in gray.

Level 1:

J1 =


×1 ×2 ×3 ×4

×1 ×2 ×3 ×4 ×5 ×6

×1 ×2 ×3 ×4 ×7 ×8

×1 ×2 ×3 ×4 ×7 ×8 ×11 ×12

 . (4.54)

The corresponding dotted identity matrix I∗ is then

I∗1 =



11 · · · 0

12

...
13

14

15

16

17

18

09

010

111

112

... 013

0 · · · 014



. (4.55)

In the case of rank deficiency of J1, augmentation of the level with the Cholesky de-
composition R1 of the Hessian Ĥ1 becomes necessary. With the dotted identity matrix

I∗1 , the rank of
[
JT1 RT

1

]T
is 10 and the size of the level 1 null-space is size(N1) = 4.

If I∗1 was a full identity matrix its size would be 14 and the size of the level 1 null-space
would be size(N1) = 0, leaving no variables (or joints) for the tracking of the tasks on
the lower priority level 2:

Level 2:

J2 =
[
×1 ×5 ×6 ×7 ×8 ×9 ×10 ×11 ×12 ×13 ×14

]
(4.56)
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I∗2 =



11 · · · 0

12

...
13

14

15

16

17

18

19

110

111

112

... 113

0 · · · 114



(4.57)

With the given dotted identity matrix I∗1 and the corresponding augmentation R1 on
level 1, joints 9, 10, 13 and 14 can still be used for the fulfilment of the task given in
J2.

Note that I∗2 includes the joints 2, 3 and 4 which are only on the kinematic chain
of the level 1. However, they need to be incorporated due to the formulation of the
hierarchical Hessian (4.30) which is the sum of the Hessians of both levels 1 and 2.

In appendix B we illustrate the effect on lower levels of such a dotted augmentation.
The overall structure of the algorithm, which we call LexLSAug2AH (Lexicographic

Least-Squares Augmentation with 2nd order information from the Analytic Hessian,
at times abbreviated to ‘...-AH’), is given in alg. 3 of appendix C.

4.2.1.2 Lagrangian Hessian built from BFGS or SR1 approximations (LexL-
SAug2SR1)

In the previous section 4.2.1.1 we have used the analytic second order derivatives of the
geometric functions f(q) ∈ Rm in order to calculate the Hessian Ĥl. While computing
∇2
qf(q) is somewhat expensive (the computational complexity is of order O(mn3)) we

can calculate a cheaper approximation of order O(mn2). The approximation can be ob-
tained by the BFGS algorithm which was introduced independently by Broyden Broy-
den [1970], Fletcher Fletcher [1970], Goldfarb Goldfarb [1970] and Shanno Shanno
[1970]:

B
(k)
i = B

(k−1)
i +

yiy
T
i

yTi ∆q(k−1)
− B

(k−1)
i ∆q(k−1)∆q(k−1),TB

(k−1)
i

∆q(k−1),TB
(k−1)
i ∆q(k−1)

with i = 1, . . . ,m .

(4.58)
We use it to approximate each component i = 1, . . . ,m of the second order derivatives
B

(k)
i ≈ ∇2

qfi(q) of the function f(q). This requires the knowledge of the last update

B
(k−1)
i , the solution from the previous control iteration ∆q(k−1) and the change of the

gradient yi between the current iteration k and the previous iteration k − 1. For each
component of f(q) we set it as the difference of the transposed corresponding row of
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J (k) and J (k−1)

yi = (J
(k)
i − J

(k−1)
i )T with i = 1, . . . ,m . (4.59)

The update B
(k)
i is positive definite for a given positive definite B

(k−1)
i and for positive

curvature
yTi ∆q(k−1) > ξ . (4.60)

ξ is a small numerical threshold like ξ = 10−12. If the curvature condition is not met
no update is done but rather the last update is kept B

(k)
i = B

(k−1)
i .

In the beginning, B
(k−1)
i = µI∗ is initialized with a (positive definite) identity

matrix. Following the approach in Sugihara [2011] µ is set as

µ = max(ζ,
1

2
‖e‖2

2) . (4.61)

ζ = 10−3 is a lower threshold to handle cases when the norm of the error ‖e‖2
2 is very

small but the task is still required to assemble Ĥl.
For the composition of the Hessian of some level l Ĥl (4.30)

Ĥl ≈ B̂l =
l∑

i=1

mi∑
u=1

λui,lB
(k)
u,i . (4.62)

we need to conduct
∑l

i=1 ml BFGS updates (4.58) in order to obtain the Hessian ap-

proximationsB for all fj(q), j = 1, . . . , l. The overall complexity is thenO(n2
∑l

i=1 mi).
If augmentations on several levels are necessary it is of course sufficient to calculate the
respective Hessian approximations B(k) only once if they are required for the assembly
of B̂ on several levels.

The BFGS updates B(k) are positive definite but due to the summation (with pos-
sibly negative Lagrange multipliers as weights) we again can end up with an indefinite
matrix B̂ which needs to be regularized by the Higham regularization.

Some preliminary results for this BFGS method showed bad behaviour (i.e. un-
smooth joint trajectories). The Symmetric Rank 1 (SR1) method Conn et al. [1988,
1991]; Khalfan et al. [1993]

B
(k)
i = B

(k−1)
i +

(yi −B(k−1)
i ∆q(k−1))(yi −B(k−1)

i ∆q(k−1))T

(yi −B(k−1)
i ∆q(k−1))T∆q(k−1)

with i = 1, . . . ,m .

(4.63)
is an alternative as it allows indefinite updates and therefore gives a good approximation
to the indefinite analytic Hessians of f(q).

Figure 4.5 shows the joint velocities for test 1 of the evaluation section 4.5. Three
different update methods for the Lagrangian Hessian are compared: the BFGS algo-
rithm with the positive curvature condition yT∆q(k−1) > ξ (upper graph) and with
a modified curvature condition |yT∆q(k−1)| > ξ (middle graph) and the SR1 method
with |(y −B(k−1)∆q(k−1))T∆q(k−1)| > ξ (lower graph). Despite the use of the trust
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Fig. 4.5. Joint velocities for test 1. The upper graph shows the numerically unstable be-
haviour for positive definite BFGS updates of the approximation of the second order derivates.
This is in contrast to the indefinite BFGS (middle graph) and SR1 (bottom graph) updates
which both result in numerically stable joint velocities.

region adaptation method (see sec. 4.4) numerical instabilities of large magnitude can
be observed for the positive definite BFGS updates (iterations 5000 - 7000, 12000 -
13000 and 18000 - 18500). This is in contrast to the modified BFGS algorithm and the
SR1 method which both behave numerically stable despite their indefinite updates.

In light of these results, the Lagrangian Hessian in the algorithm LexLSAug2SR1
(Lexicographic Least-Squares Augmentation with 2nd order information from the
Symmetric Rank 1, at times abbreviated to ‘...-SR1’) is built from SR1 approximations.
Its pseudo-algorithm is given in Alg. 4 (see appendix C).

LexLSAug2SR1 is very similar to LexLSAug2AH in terms of the calculation of the
Lagrangian Hessian. While its behaviour is slightly worse than that of LexLSAug2AH
(especially in test 20 of the evaluation section 4.5 we observed bad conditioning of
the updates which leads to bad numerical behaviour) it only provides little speed up
which is negligible compared to the computational effort of the Higham regulariza-
tion. Therefore we do not evaluate it in the next chapter 5 and prefer the usage of
LexLSAug2AH.

4.2.1.3 Direct BFGS approximation of the Lagrangian Hessian (LexL-
SAug2BFGS)

Above we have seen that the analytic Hessian in sec. 4.2.1.1 (or its composition by
SR1 approximations in sec. 4.2.1.2) can become negative definite which requires an
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expensive regularization to a positive definite matrix. In the previous section 4.1.2 we
have derived the gradient of the Lagrangian function of the constrained optimization
problem on level l. This enables the direct and positive definite approximation of the
Hessian of the Lagrangian function ∇2

qLl = Ĥl ≈ B̂l with the BFGS algorithm (4.58)
by using the Lagrangian gradient ∇qLl of (4.27).

Only one BFGS update needs to be done per augmented level. This means that for
the calculation of the Lagrangian Hessian B̂l on level l the computational effort isO(n2)
instead of O(n3

∑l
i=1 mi) for LexLSAug2AH and O(n2

∑l
i=1mi) for LexLSAug2SR1,

respectively.
We only use the Lagrange multipliers of the current iteration in the calculation of

yl Nocedal et Wright [2006]

yl = ∇qL(k)
l −∇qL

(k−1)
l = J

(k),T
l λ

(k)
l,l + J

(k),T
l−1 λ

(k)
l−1,l − (J

(k−1),T
l λ

(k−1)
l,l + J

(k−1),T
l−1 λ

(k−1)
l−1,l )

(4.64)

→ yl = (J
(k)
l − J

(k−1)
l )Tλ

(k)
l,l + (J

(k)
l−1 − J

(k−1)
l−1 )Tλ

(k)
l−1,l . (4.65)

B̂
(k−1)
l of level l is initialized as

B̂
(k−1)
l =

l∑
i=1

max(ζ,
1

2
‖ei‖2

2)I∗i . (4.66)

For numerical stability and similarly to the analytic Hessian we conduct the Cholesky
decomposition on a strictly positive definite matrix B̂

(k)
l +ιI∗l with a small value ι� 1.

Alg. 5 (see appendix C) gives an overview of the algorithm of calculating the sec-
ond order augmentation B̂l by the BFGS algorithm. We name this algorithm LexL-
SAug2BFGS (Lexicographical Least Squares Augmented with 2nd order information
from the BFGS algorithm).

4.2.2 Hierarchies including inequality constraints

At every control iteration k, the optimal active-sets A(k+1)
l of all levels l = 1, . . . , p need

to be found. It contains the active inequality constraints in addition to all equality
constraints. The active-set might differ between control iterations. This needs to be
considered if a level i contains a singular task which requires second order augmentation
Ri. Ri is of full rank and therefore all the joints on the kinematic chains of the tasks
are occupied. These joints can not be used any more for the resolution of tasks of lower
priority l > i.

If a constraint on some level cA < i (cA is the level of highest priority from all the
levels where an active-set change occurred) is now deactivated, corresponding joints
do not need to be augmented any more with Ri (only in case that these joints are not
part of the kinematic chains of other still active tasks on levels l ≤ i). In the given
example (4.54), (4.55) and (4.56), if the second task J2,1 of level 1 is deactivated, the
joints 5 and 6 can now be used for the fulfilment of the level 2 task.
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4.2.2.1 Analytic Lagrangian Hessian and Lagrangian Hessian built from
BFGS or SR1 approximations (LexLSAug2AH and LexLSAug2SR1)

For both LexLSAug2AH and LexLSAug2SR1 the Lagrangian Hessian is composed as

Ĥl =
l∑

i=1

∑
j∈A(k)

i

λji,lHj,i ≈ B̂l =
l∑

i=1

∑
j∈A(k)

i

λji,lB̂
(k)
j,i . (4.67)

It can be immediately seen that inactive constraints j /∈ A(k)
i are not added to the

Hessian any more (additionally, λjl,l+1:p = 0 for inactive constraints). Therefore, no
further steps are required.

4.2.2.2 Direct BFGS approximation of Lagrangian Hessian
(LexLSAug2BFGS)

With the presence of inequalities, the BFGS gradient of level l is composed by (4.65)

yl =
l∑

i=1

∑
j∈A(k)

i

(J
(k)
j,i − J

(k−1)
j,i )Tλji,l . (4.68)

The gradient itself only contains the gradient information of the current active-set A(k)
i .

Consequently, only joints corresponding to tasks of the current active-set are occupied
and no further adjustments are required.

However, the BFGS algorithm is of iterative nature such that B̂
(k)
l is dependent of

the Hessian approximation of the last control iteration B̂
(k−1)
l . B̂

(k−1)
l still occupies

joints on the kinematic chains of deactivated constraints. Therefore, a reinitialization
of the form

B̂
(k−1)
l =

l∑
i=1

∑
j∈A(k)

i

max(µ,
1

2
‖ej,i‖2

2)I∗j,i (4.69)

is necessary. Inactive constraints and their corresponding dotted identity matrices I∗

are neglected in the summation. This needs to be done for all levels l ≥ cA.

In our example (4.54), (4.55) and (4.56), cA = 1 and p = 2 so the dotted identity
matrix becomes
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I∗1 =



11 · · · 0

12

...
13

14

05

06

17

18

09

010

111

112

... 013

0 · · · 014



(4.70)

where the kinematic chain corresponding to the deactivated constraint J2,1 (rows and
columns coloured in dark gray) is omitted.

Another possibility of reinitializing the BFGS algorithm is to keep the last update
B̂(k−1) and only set rows and columns of joints to zero that are not occupied any
more by the now inactive constraints. In the case of constraint activation we put a
small value on the diagonal of now occupied joints by newly activated constraints.
Especially with the occurrence of several on and off switches of the same constraint
over several control iterations it seems unreasonable to discard the so far gained second
order information. In some other cases however it might be more favourable to fully
restart the BFGS algorithm in order to avoid second order artefacts of some inactivated
constraints which might decelerate convergence of the current active-set. However, in
our simulations we show that the BFGS algorithm possesses quick recovery capabilities
which allows second order artefacts to vanish over the course of a few control iterations.

4.3 Switching strategy between GN-algorithm and

Newton’s method

The analytic expression (LexLSAug2AH) or its approximation by the SR1 method

(LexLSAug2SR1) of Ĥl =
∑l

i=1

∑mi

u=1 λ
u
i,lHu,i ≈ B̂l =

∑l
i=1

∑mi

u=1 λ
u
i,lB

(k)
u,i becomes nil

inherently for a combination of either λ = 0 or H = B(k) = 0. This is not the case for
the direct BFGS approximation of the Lagrangian Hessian B̂

(k)
l (LexLSAug2BFGS)

but has to be explicitly enforced. Similarly to the inequality case, the augmentation
unnecessarily occupies joints which then are missing in the fulfilment of lower priority
tasks.

The second order Taylor approximation of level l of the current iteration is given
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by

Φl(q = q(k−1) + ∆q(k−1)) =
1

2
eTl (q)el(q) (4.71)

=Φl(q
(k−1))−∆q(k−1),TJ

(k−1),T
l el(q

(k−1)) (4.72)

+
1

2
∆q(k−1),T (J

(k−1),T
l J

(k−1)
l +Ĥ

(k−1)
l )∆q(k−1) +O(k)

l (4.73)

=
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2

∥∥∥∥[ J (k−1)
l

Rl
(k−1)

]
∆q(k−1) −
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el(q
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0
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2
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∥∥∥∥∥
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w
R,(k)
l

]∥∥∥∥∥
2

2

+O(k)
l (4.74)

which enables us to solve for the model error

O(k)
l =

1

2
eTl (q)el(q)− 1

2

∥∥∥∥∥
[
w
J,(k)
l

w
R,(k)
l

]∥∥∥∥∥
2

2

. (4.75)

The Taylor series of our non-linear model function is limited to second order so the
approximation error is at least of order O(∆q3). However, due to either omitting (GN
algorithm) or approximating (Newton’s method) the second order information the error
is dominated by O(∆q2).

The value of O(k) can be both negative and positive and therefore poses difficult
to threshold. Instead we propose to observe the sign-free quadratic norm residual wJ

of the current control iteration in order to decide whether the use of only the GN
algorithm is appropriate

εl =
1

2
‖wJ

l ‖2
2 =

1

2
‖Jl∆q − el‖2

2 . (4.76)

In the presence of several tasks (for example one end-effector task for the left hand
and one for the right hand) on the same level l, the value wR

l of each respective task
is not available. The reason is that on a single level there is only one Hessian matrix
Ĥl with corresponding slack wR

l . Therefore, wR
l is neglected during the calculation of

each respective task’s ε.
ε addresses whether we can find a step ∆q within the scope of our model such

that all the constraints J∆q = e are fulfilled. The problem is then feasible with a
(numerical) zero slack wJ ≈ 0. The measure can be seen as an indicator of numerical
accuracy during the least-squares solving.

The GN algorithm is used whenever ε is equal or smaller than a certain numerical
threshold ν (typically 10−12). Newton’s method is used whenever ε is larger:

ε ≤ ν → GN algorithm (4.77)

ε > ν → Newton’s method . (4.78)

Despite our considerations in the beginning of this section, we also use the switch-
ing method for the two methods LexLSAug2AH and LexLSAug2SR1. The reason is
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Fig. 4.6. Test 1. The upper graph shows the squared norms of the slack w1 and the task
error e1 and the model error O1 for level 1. The two lower graphs show the values for level
2 with the bottom graph showing a close-up of level 2 being feasible.

that due to numerical inaccuracies Ĥl becomes only approximately zero and still un-
necessarily occupies joints which are then missing in the fulfilment of lower priority
tasks.

For LexLSAug2BFGS in the case of a switch from the GN algorithm to Newton’s
method on level cGN→N, all augmentations from level cGN→N to the last level p are
reset. Details with regards to the BFGS reinitialization are discussed in sec. 4.2.2.2.

Behaviour of the different values

The switching method (4.78) is facilitated by the fact that ε can easily become numer-
ical zero whenever the least squares problem is feasible. This is in contrast to both O
and e (which also could be considered as a decision variable in the switching method)
which hardly become numerical zero which complicates the choice of a threshold. The
different values for test 1 of the validation section 4.5 are given in fig. 4.6.

The upper graph shows the values for level 1 while the two lower graphs show the
values for level 2 with a close-up in the bottom graph. For level 1 and during iteration
4850 to 5150 also for level 2 (see bottom graph for a close-up), ε is numerically zero
which triggers the use of the GN algorithm. The other two values O and e are of
magnitude 10−5 m2. The level 1 end-effector task becomes infeasible if the trust region
constraint forbids fast enough motions to follow the moving target. This is the case as
seen from the three spikes of all three values in the upper graph which requires a switch
to Newton’s method since ε1 > ν. The level 2 end-effector task is in conflict with the
level 1 task at most times but switches back to the GN algorithm approximately at
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iteration 1400, 4850 and 7800 with ε2 ≤ ν.
The trust region radius is chosen as ∆ = 0.01 rad for revolute or ∆ = 0.01 m for

translational joints (see next section 4.4) and consequently O(∆q) ∼ 10−4 as expected
(can be seen especially in the middle graph with O2 � 1 at all times).

4.4 Choosing the Trust Region Radius

The second order Taylor series (4.9) represents the original non-linear function (4.7)
only with a given model error which is dependent on the step ∆q. Therefore, the step
length ‖∆q‖∞ needs to be bounded within a small neighbourhood ∆ of the current
state q in order to keep the model error small. This neighbourhood is commonly
referred to as the trust region with trust region radius ∆. It can be enforced with a
constraint of the form

‖∆q‖∞ < ∆ . (4.79)

The trust region constraint needs to be put on the very first level of the hierarchy as
−∆ ≤∆q ≤∆. ∆ and ∆ are vectors with n entries where all values are set to ∆.

Choosing the trust region ∆ such that the Taylor approximation is well defined
requires some attention. Self-tuning methods from unconstrained optimization (for
example observing the error reduction behaviour ρ, see more in appendix A) are difficult
to transfer to the constrained robot control case:

• It is unclear how to introduce the notion of hierarchy. With good error reduction
on high priority levels but bad error reduction on some lower priority levels, to
which extent do we interfere with the high priority levels’ performance to achieve
good performance on the lower priority levels? One approach for a constrained
optimization problem was proposed in Fletcher et Leyffer [2002] in the context of
a trust region sequential quadratic programming (SQP) solver (see appendix A).

• In SQP, if the trust region is deemed too large it is reduced and the current step is
recomputed. This is not an approach we can afford in control due to computation-
time constraints (while for now we have ∆t = 1 s, in the next chapter 5 we adapt
our control time step to ∆t� 1s).

• With redundant robots it seems unnecessary to reduce or increase the trust region
radius of all the joints if one of the tasks with a limited kinematic chain yields a
bad error reduction.

This argumentation calls for a different approach in designing a trust region adaptation
method for ∆. Our idea is to ignore both the hierarchical and kinematic structure of
the problem and directly observe the solution variable ∆q.

• Loop through all variables i = 1, . . . , n of the solution ∆q(k) and check if a single
entry ∆q

(k)
i changed its sign compared to the previous solution ∆q

(k−1)
i .

• If so, ηi = min(η, ραi
dec · ηi), and increase αi by 1.



4.5 Validation 57

• If not, ηi = max(1, 1/ρinc · ηi), and decrease αi by 1.

• Change the trust region radius for joint i by ∆i = −∆/ηi and ∆i = ∆/ηi.

η and α are vectors with n entries. η and α are initialized with 1’s. η is an upper
threshold with for example η = 106 which prevents that the trust region radius becomes
too small. ρdec = ρinc = 1.2 are the trust region decrease or increase ratios. These values
are determined in simulation such that occurring numerical instabilities are effectively
suppressed. At the same time quick restoration of the original trust region radius needs
to be ensured when the robot motion is numerically stable.

The original trust region radius ∆ needs to be chosen in such a way that the model
behaves well in a wide array of situations. This might require some tuning by starting
with a high value (possibly desired since it corresponds to the joint velocity limits)
which is successively reduced until satisfactory (i.e. numerically stable and smooth
results especially in singular configurations) results are obtained. From our experience,
this value depends on the time step, the task gains and the kinematic structure itself.
In this work, we set ∆ = 0.01 rad for revolute or ∆ = 0.01 m for translational joints.

In addition to the trust region adaptation method we introduce a further adjust-
ment that operates directly on the BFGS Lagrangian Hessian approximation B̂ of
LexLSAug2BFGS. For this, we observe the joint accelerations. Once we have several
(usually two) consecutive sign changes in the joint accelerations we add a small value
(ζ) on the diagonal of B̂(k−1) corresponding to the joint where the event occurred. In
case that consecutive sign changes in the acceleration q̈j of joint j are observed, B̂(k−1)

is modified to B̂(k−1)(j, j) = B̂(k−1)(j, j) + ζ. After this the BFGS update (4.58) for
B̂(k) is conducted. This way we add additional damping to decelerate this specific joint
and avoid potential numerical instability.

4.5 Validation

We assess our methods LexLSAug2AH, LexLSAug2SR1 and LexLSAug2BFGS (which
we refer to as ‘LexLSAug2 methods’ at times) on a simulation test bench1. The GN
algorithm (4.47) as well as Newton’s method (4.49) are solved with the hierarchical
least-squares solver LexLSI Dimitrov et al. [2015]). We use two different robots and
compare with three solvers that are able to solve multi-level constrained control prob-
lems:

1. The hierarchical GN-algorithm.

2. The hierarchical inverse kinematics solver with adaptive damping (ADLS) de-
scribed in Chiaverini [1997]. It allows any number of levels with equality con-
straints. For a single level, it corresponds to the LM-algorithm. The maximum
damping is set to 2 while the threshold for the minimum singular value is 0.5.

1The accompanying video can be found at https://youtu.be/XJzkVOHLIvw

https://youtu.be/XJzkVOHLIvw
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Hierarchy A (T1 and T3 to T19) and B (T2)

0. 4 trust region limits ∆ ≤ I∆q ≤∆ (GN, LexLSAug2AH, LexLSAug2SR1
and LexLSAug2BFGS) or 4 velocity limits ∆ ≤ Iq̇ ≤ ∆ (DHQP)

0.-1. 2 inequality constraints on shoulder

1. 2 equality constraints on blue end-effector

2. 2 equality constraints on green end-effector

3. Minimal norm solution q̇ = ∆q = 0

Fig. 4.7. Hierarchy A (T1 and T3 to T19) and B (T2)

Fig. 4.8. Robot for T1 and T3 to T19 (left) and T2 (right) (LexLSAug2BFGS screenshot).
The robot can translate along the long axis of the black slider. The other joints are revolute.
The green end-effector is tracking the green target while the blue end-effector is tracking the
blue target. In both frames, the targets are at their turning points [2, 2] m (blue ball) and
[−2, 2] m (green ball). The robot is able to just reach the blue target for T1 while for T2 both
targets remain unreachable. This is due to the position of the shoulder being bound inside the
white box.

3. The damped hierarchical quadratic programming (DHQP) described in Herzog
et al. [2016]. It handles both equality and inequality constraints. The damping
is set to 2.

4.5.1 Test bench

The test bench consists of 20 different test cases with a limited length of 25000 control
iterations. The first 19 test cases T1 to T19 are performed with a 2-D 4 DoF robot
with two end-effectors and a uniform link length of 1 m (see fig. 4.8). A translational
DoF at its base allows the robot to move along the x axis of the world reference frame.
Furthermore, it possesses three revolute joints, one at the base and two at its ‘shoulder’
enabling the two end-effectors to rotate freely. The task hierarchy is given in fig. 4.7.

The joint velocity constraint is omitted for ADLS since inequalities can not be
handled with this solver. Test T2 adds an additional inequality constraint on the
‘shoulder’ between level 0 and 1 of hierarchy A.
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Fig. 4.9. T20 screenshots for LexLSAug2BFGS, from left to right: HRP2 reaching for the
target on its top left (out of reach, both CoM tasks are active), then the target is in reach (the
left hand task is switched to the GN-algorithm) and finally the target is out of reach again in
HRP2’s far right bottom. The robot tries to stay as long as possible in the smaller (green)
CoM bounding box on the last level as it is tracking the target (made possible by switching to
the GN-algorithm when the target is in reach, and which can not be observed for DHQP).

The initial robot configuration is [0, 0] m for the free flyer and [−π/2, 0, 0] rad
for the revolute joints (this corresponds to a fully stretched robot with both end-
effectors at [0, 2] m). The end-effectors at the tip of both arms then must follow two
targets oscillating diagonally with amplitude [2, 2] m starting from [0, 0] m. For T1,
the kinematic structure of the robot (stretched length of 2 m) allows to just reach
the targets in the corner cases. For T3, the targets oscillate with amplitude [2, 3] m
which renders the targets to be unreachable in the corner cases. For T2 an additional
inequality constraint (hierarchy B) is imposed on the position of the shoulder while
the targets move like in T1. The constraint box reaches from [−1, 0] m to [1, 1] m. A
schematic drawing of the tests is given in fig. 4.10. The robot links are given in grey in
the generic posture 0 m for the base and [π/2, π/4,−π/2] rad for the revolute joints.

T4 to T8 are characterized by static targets for level 1 and 2 at [0, y] m and [x, 1] m
with (x, y) equal to (1, 2), (1+ε, 2+ε), (1−ε, 2−ε), (1+10, 2+10) and (1−0.25, 2−0.25).
The three first cases are intended to test the robustness of the switching method by
slight variations with ε = 0.001 m (1/1000 of the link length) so both targets are either
just out of reach or just in reach. The last two cases test the behaviour in case that
the targets are either well out of reach or fully reachable. A schematic drawing of the
tests is given in fig. 4.11.

T9 shows that the second-order approximation can deal with highly noisy targets.
For this, both targets change their position randomly within [±2,±1000] m at each
of the first 12500 iterations, and then are static at [−1.9,−422] m and [−1.5, 299] m
respectively for the rest of the test.

T10 to T19 are intended to show that our method is capable of simultaneously
tracking static and dynamic targets with interchanged priority and robustness in the
switching method.
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Fig. 4.10. The schematics of T1 to T3. The robot links are given in grey. The base is
kinematically restricted to the black line. The shoulder is bounded within the dotted red box
(T2 only) while the end-effectors 1 and 2 try to follow at best the blue and the green dashed
lines, respectively.

Fig. 4.11. The schematics of T4 to T8. The robot links are given in grey. The base is
kinematically restricted to the black line. The shoulder is unbounded and can move freely.
The end-effectors 1 and 2 try to reach at best the blue and the green dots, respectively.

For T10 to T14, the targets for the first and the second end-effector are at [t, y] m
and [−2, 2] m respectively. t increases linearly by 0.001 m with the number of iterations
while y has the same value as for T4 to T8. A schematic drawing of the tests is given
in fig. 4.12.

For T15 to T19, the first target is at [0, y] m, with y having the same value as for
T4 to T8 while the second target oscillates as in T1. A schematic drawing of the tests
is given in fig. 4.13.
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Fig. 4.12. The schematics of T10 to T14. The robot links are given in grey. The base
is kinematically restricted to the black line. The shoulder is unbounded and can move freely.
The end-effector 1 tries to follow at best a target moving on one of the blue lines while the
end-effector 2 tries to reach the green dot.

Fig. 4.13. The schematics of T15 to T19. The robot links are given in grey. The base
is kinematically restricted to the black line. The shoulder is unbounded and can move freely.
The end-effector 1 tries to reach one of the blue dots while the end-effector 2 tries to follow
a target moving on the the green line.

T20 shows that our LexLSAug2 methods are suitable for robots with any number
of DoF. In the experiment, the robot HRP-2Kai with 38 DoF is standing in a cluttered
aircraft assembly environment with both feet on the ground and the left hand grabbing
a pole in front of the robot. Those contacts are fixed and do not change throughout the
course of the simulation. On the next priority level, the center of mass (CoM) projection
is bound within a rectangle exceeding the support polygon spanned by the feet a little
bit to the front ([−0.1,−0.275,−] m to [0.3, 0.275,−] m, the z direction is unbounded).
The right hand on the next hierarchy level then tracks a target swinging from the
robot’s far top left [2, 1, 3] m to its far right bottom [−1,−2, 0] m. Finally, we constrain
the CoM to a smaller polygon corresponding to the feet only ([−0.1,−0.275,−] m to
[0.215, 0.275,−] m). The overall hierarchy is given in fig. 4.14.
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Hierarchy C for T20 with HRP-2Kai

0. 38 trust region limits ∆ ≤ I∆q ≤∆ (GN, LexLSAug2AH, LexLSAug2SR1
and LexLSAug2BFGS) or 38 velocity limits ∆ ≤ Iq̇ ≤∆ (DHQP)

1. 38 joint limits

2. 18 in-reach equality constraints (translation, rotation) on left, right foot and
left hand

3. 3 inequality constraints on the CoM

4. 3 in/out-of-reach equality constraints (translation, oscillating target in 3-D
space) on right hand

5. 3 stricter inequality constraints on the CoM

6. Minimal norm solution q̇ = ∆q = 0

Fig. 4.14. Hierarchy C for T20 with HRP-2Kai.

4.5.2 Evaluation criteria

The main problem that arises near a singularity are high joint velocities (possibly to
the extent of total solver failure with numerically high values). However, with damping
or a trust region constraint present, numerical instabilities occur in the form of high
frequency oscillations. We measure the presence of oscillations by tracking the sign
changes of each component of the solution vector ∆q between iterations. The sum of
the amplitude of these changes is our evaluation criteria Σ

Σ =
25000∑
k=2

d∑
i=1

{
|∆q(k)

i | if sgn(∆q
(k)
i ) 6= sgn(∆q

(k−1)
i )

0 otherwise

A low Σ means few or no oscillations.

Additionally, the normed error of the equality with highest priority (level 1 blue
end-effector task for hierarchy A and B, right hand task for hierarchy C) is integrated
over all control iterations and then normalized by the smallest value of all solvers for
this test case (Ξ). Since bad convergence of a task with high priority can lead to
better convergence of a task of lower priority, the performance of lower priority tasks
is not considered due to lack of relevance. ADLS is able to converge faster from the
initial position to the targets since the joint velocity constraint is omitted. Therefore,
its performance is not considered in the normalization of Ξ (corresponding values are
coloured in grey). For static test cases, we deem the robot to be converged if every
entry of the solution vector becomes smaller than 10−6 rad or m. The corresponding
iteration is given as Ψ.
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T1 T2 T3 T4 T5
...-AH 0.15 / 1. 0 / 1 0.007 / 1. 0 / 1.-171 0 / 1-160
...-SR1 0.14 / 1. 0. / 1. 0.005 / 1. 0 / 1.-172 0 / 1.-164
...-BFGS 0.3 / 1 0.06 / 1.1 0.3 / 1. 0 / 1.-201 0 / 1.-169
DHQP 0 / 2.4 0.3 / 1. 284 / 1.1 0 / 1.3-15k 0 / 1.4-17k
ADLS 0 / 0.5 - 4 · 106 / 10 0 / 0.3-15k 0 / 0.5-17k
GN 574 / 1. 155 / 1.2 547 / 1 0 / 1-169 103 / 1.2

T6 T7 T8 T9 T10
...-AH 0 / 1.-163 0 / 1-160 0 / 1.-204 0.01 / 1-13k 0.015 / 1.
...-SR1 0 / 1.-163 0 / 1.04-166 0 / 1.-204 0.01 / 1-13k 0.005 / 1.
...-BFGS 0 / 1-171 0 / 1.-162 0 / 1-210 0.1 / 1-13k 0.02 / 1
DHQP 0 / 1.3-10k 828 / 21 0 / 1.1-280 470 / 10 808 / 4.8
ADLS 0 / 0.3-10k 105 / 30 0 / 0.1-29 3 · 103 / 1.1 105 / 600
GN 0 / 1-163 103 / 21 0 / 1-205 551 / 10 912 / 1.02

T11 T12 T13 T14 T15
...-AH 0 / 1. 0 / 1. 0 / 1. 0 / 1. 0.010 / 1.
...-SR1 0 / 1. 0. / 1. 0 / 1. 0 / 1. 0.011 / 1.
...-BFGS 0 / 1 10−6 / 1 0 / 1 0 / 1 0.03 / 1
DHQP 809 / 4.6 806 / 4.8 743 / 1. 693 / 2.1 7.4 / 1.4
ADLS 105 / 600 105 / 600 105 / 1.4 105 / 600 4.6 / 0.4
GN 821 / 1.01 955 / 1 966 / 1. 849 / 1 775 / 1.

T16 T17 T18 T19 T20
...-AH 0 / 1. 0.3 / 1. 0 / 1. 0.002 / 1. 0.003 / 1
...-SR1 0 / 1. 0.24 / 1. 0 / 1. 0.002 / 1. 0.05 / 1
...-BFGS 0 / 1 0.1 / 1 0 / 1 0.004 / 1 0.7 / 1
DHQP 12 / 1.3 1.9 / 1.3 605 / 1. 0 / 1. 0.2 / 1.1
ADLS 6.5 / 0.5 1.9 / 0.3 105 / 1.4 0 / 0.1 -
GN 696 / 1. 890 / 1. 971 / 1. 516 / 1 2000 / 1.

Table 4.1 – Performance results for the tests T1 to T20. Table entries are of following form:
Σ / Ξ - Ψ (Ψ only for static test cases and when smaller than 25000); Red coloured entries
mean that the test case was numerically unstable (high Σ). Blue coloured entries mean that
the corresponding solver performed best in this category for the corresponding test case. The
ADLS values for Σ compared to the others solvers are much higher for numerically unstable
tests since the solution is not bound by a velocity constraint.

4.5.3 Evaluation

Table 4.1 shows the evaluation results of all test cases. Our LexLSAug2 methods are
numerically stable (low Σ) and perform best in terms of convergence (Ξ ≈ 1). DHQP
and ADLS are numerically unstable in many test cases. This is due to the fact that
the damping values found for T1, T2 and T20 enabling numerically stable behaviour
and a fair comparison for the convergence Ξ are also applied to all the other tests.
Especially for the tests T10 to T15 these damping values are not sufficient but could
be tuned in such a way that Σ ≈ 0 rad (possibly requiring very high damping terms
leading to slow convergence behaviour).

The results of the tests show the following characteristics of our LexLSAug2 meth-
ods:

• Numerical stability in the presence of singularities
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– when the target is far away (T7, T9, T10, T11, T12, T13, T14, T18)

– when the target is at the border of reachability (T1, T4, T5, T6, T10, T11,
T12, T15, T16, T17)

• Fast and good convergence properties

• Numerically stable for all test cases without the need for damping tuning.

• Works for inequalities (T2, T20)

• Scalable, applicable for any number of DoF (T20)

• Strong self-regulating capabilities (T9)

• The hierarchy is not disturbed as it is the case with constant damping (i.e. the
damping term does not become zero in non-singular robot configurations) as
it is the case for DHQP. It introduces a model discontinuity when the rank of a
matrix changes and the damping is not applied in the same null-space (T15, T16)

(a damped pseudo-inverse
[
JT IT

]T+
is applied for the solution of each level

but the null-space bases are computed from a SVD of just J). While it violates
the notion of strict hierarchies it discards the need for a switching strategy. This
is because the null-space is always of maximum dimension and does not occupy
joints which are then missing in the fulfilment of lower priority tasks (for example
if we disable the switching method and constantly apply Newton’s method).

The joint velocities for T1 are given in fig. 4.16 (the joint velocities for LexLSAug2SR1
are given in fig. 4.5, see sec. 4.2.1.2). For LexLSAug2BFGS, slight numerical insta-
bilities of low amplitude < 10−3 rad can be observed on the shoulder joint for the
level 2 end-effector. The joint velocities for the LexLSAug2 methods change quickly
in order to track the targets optimally. This is in contrast to DHQP and ADLS with
slow changes of joint velocities. This is behaviour typically seen for the LM algorithm.
Consequently, better error norm reduction is achieved for the LexLSAug2 methods as
seen in fig. 4.16. The level 1 targets are tracked very well due to the switching to the
GN-algorithm by removing the damping characteristic of the second order information
(recall that a small damping term is applied in order to render the Hessians strictly
positive definite). ADLS shows the same behaviour when its damping term is set to
zero by the adaptation method. At times, DHQP and ADLS have lower task error
norms for the second end-effector. This is caused by the worse convergence of level 1,
enabling the level 2 end-effector to move closer to its prescribed position. Generally,
DHQP shows the highest error norm due to the constantly present damping.

The GN-algorithm is numerically unstable with a high Σ = 574[rad]. It shows that
the GN-algorithm alone is not a safe method around singularities.

The adapted trust region radius (symmetric with ∆ = |∆| = ∆) for LexL-
SAug2BFGS is given in fig. 4.20. The trust region radii of the base translational
joint and the shoulder joint for the end-effector 1 are only reduced at a few instances.
However, especially during instances when the base rotational joint is in an upright
configuration as seen on the left picture of fig. 4.8 (iteration 2200 to 3500 and 5700 to
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Fig. 4.15. T1, joint velocities seen for the different methods LexLSAug2BFGS, LexL-
SAug2AH, DHQP, ADLS and pure GN algorithm (from top to bottom).

Fig. 4.16. T1, norm of task errors for level
1 and 2 with different methods.

Fig. 4.17. T1, difference of the norm of task
errors for level 1 and 2 between the different
methods.

6600), both the base rotational joint and the shoulder joint of the end-effector 2 are
almost completely put to a hold with ∆(2) ≈ 0 and ∆(4) ≈ 0 in order to prevent nu-
merical instabilities. Thereby, for the shoulder joint of the end-effector 2 back and forth
behaviour (between reducing and relaxing the trust region radius) of small amplitude
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Fig. 4.18. T2, norm of task errors for
level 1, 2 and 3 for LexLSAug2AH, LexL-
SAug2SR1, LexLSAug2BFGS and DHQP.

Fig. 4.19. T2, difference of the norm of
task errors for level 1, 2 and 3 between LexL-
SAug2BFGS and DHQP. Positive values in-
dicate that LexLSAug2BFGS converges better
than DHQP. DHQP is slightly numerically
unstable on the second level due to insufficient
damping as can be seen from the jittering in
the lower graph (for example iterations 4500
- 5000).

< 10−3 rad can be observed. The development of more advanced trust region adap-
tation heuristics might be able to prevent such behaviour. Furthermore, a full trust
region relaxation might be desired if the robot is in a singularity-free configuration and
motion speeds higher than admissible by the trust region constraint are required.

For T2, which is omitted for ADLS due to the presence of the inequality task
bounding the robot shoulder, the task error norms for the level 2 and level 3 end-
effectors are given in fig. 4.18. The inequality constraint on level 1 is tracked to a high
degree with only a few violations at a low amplitude ∼ 10−5 m and is not shown. The
LexLSAug2 methods and DHQP track the level 2 target very well. At around iteration
17000, LexLSAug2BFGS looses track especially of the level 2 target due to a Type 2
singularity Kyong-Sok Chang et Khatib [1995] (high velocities are prevented by the
trust region constraint). The LexLSAug2 methods behave slightly better in instances
when the target is fully reachable. In these cases, the error norm for the LexLSAug2
methods is close to zero while for DHQP some residual of < 0.05 m remains. This
again enables DHQP to minimize the error on level 3 to a higher degree than seen for
the LexLSAug2 methods.

For the static test cases T4 to T8, the LexLSAug2 methods behave in a numerically
stable manner while DHQP becomes numerically unstable when the targets are at
[0, 2 + 10] m and [1 + 10, 1] m. While the LexLSAug2 methods converge quickly within
less than 210 iterations due to the switch to the GN algorithm, DHQP converges in
an exponential fashion only after iteration ≥ 104 for T4, T5 and T6. DHQP, ADLS
and the GN-algorithm are numerically unstable during T7 due to insufficient damping.
All solvers behave well for T8 which poses a feasible problem without any singularities
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Fig. 4.20. Test 1, LexLSAug2BFGS, adapted trust region radius for the base’s translational
(unit: m) and rotational joint and the shoulder joints (unit: rad) for the end-effector 1 and
end-effector 2. The original trust region is chosen as 0.01 rad (or m for the translational base
joint). The bottom graph shows a section of the shoulder joint for the end-effector 2 where
the trust region adaptation method suppresses numerical instabilities of small amplitude.

present.
For T9, the LexLSAug2 methods do not follow the random noise of the targets with

a low Σ ≤ 0.1 rad due to the trust region adaptation method. For DHQP, ADLS and
the GN algorithm we have Σ = 470 rad, Σ = 3e3 rad and Σ = 551 rad respectively. The
value for ADLS is exceptionally high since the solution is not bounded by a velocity
constraint.

For T10 to T14, the LexLSAug2 methods are numerically stable with Σ < 0.02 rad.
DHQP and ADLS are only numerically stable in the beginning of each test and then
become increasingly numerically unstable as the robot moves away from the second
target. Increasing the damping values would prevent these numerical instabilities but
leads to worse convergence behaviour.

For T15 to T16 the hierarchy is violated by DHQP due to the damping not being
applied in the calculation of the null-spaces. The first end-effector is trying to reach
at best the just in reach or just out of reach targets at [0, 2] m and [0, 2 + 0.001] m
respectively. For the LexLSAug2 methods, the base and the shoulder joints are solely
attributed to the achievement of the first end-effector task. For DHQP however, these
joints move as they are involved to a small degree in the achievement of reaching the
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Fig. 4.21. T20. The upper graph shows the norm of the task error for the right hand on
hierarchy level 3. LexLSAug2AH, LexLSAug2SR1 and LexLSAug2BFGS move closer to the
target than DHQP. The lower graph shows the difference between the methods.

Fig. 4.22. T20, map of activity (light gray)
and Newton’s method (dark gray) for LexL-
SAug2BFGS.

Fig. 4.23. T20, control loop times in ms.
The maximum loop times are 4.5 ms for LexL-
SAug2BFGS, 4.0 ms for LexLSI and 0.5 ms
for LexLSAug2BFGS. The maximum number
of active-set iterations in LexLSI is 49.

Fig. 4.24. T20, excerpt of the map of activity (light gray) and Newton’s method (dark
gray) with overlaid active-set iteration count for LexLSAug2BFGS. The maximum active-set
iteration count is 30 at control iteration 5565 and 5610.

level 2 target with the second end-effector.
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For T20, the LexLSAug2 methods and DHQP track the target in a numerically
stable manner with Σ = 0.003 rad, Σ = 0.05 rad, Σ = 0.7 rad and Σ = 0.2 rad
respectively. Fig. 4.21 shows the better convergence of the LexLSAug2 methods for
the level 4 task of the right hand tracking the oscillating target (the error norms
of the remaining higher priority tasks are not shown since for all methods they are
zero). Especially, if the target is in reach the LexLSAug2 methods show a task error
norm close to zero due to switching to the GN-algorithm. DHQP only gets into the
proximity of the reachable target. For LexLSAug2SR1, the conditioning of the SR1
updates deteriorates over time with increasingly high condition numbers. While it
does not lead to solver failure, first the smoothness of the joint trajectories deteriorates
before the augmentation takes very large values on certain joints such that they stop
moving. The exact reason for this behaviour requires further investigation.

The activation of the tasks and whether the GN algorithm or Newton’s method is
used is shown for LexLSAug2BFGS in fig. 4.22. An augmented task is also active.

The computation time for the control iterations are given for LexLSAug2BFGS in
fig. 4.23. The computations were done on an Intel Core i7-4720HQ CPU @ 2.60GHz
with 8 GB of RAM. Even with several levels being augmented to Newton’s method
the computation times lay well below 1 ms. However, some peaks up to 4.5 ms (with
35 active-set iterations) can be observed when the number of active-set iterations in-
creases significantly (maximum 49 active-set iterations at control iteration 15932 with
a computation time of 3.128 s). Note that the increase in active-set iterations occurs at
different instances than the switches between the GN algorithm and Newton’s method.
An example (see fig. 4.24) would be the CoM task on level 4 which is activated at
control iteration 5348 within 1 active-set iteration. The task then switches to New-
ton’s method at control iteration 5446 which requires 2 active-set iterations. Shortly
after at control iteration 5505, the level 3 right hand task switches to Newton’s method
which requires 10 active-set iterations. Finally, the level 2 CoM task is activated at
control iteration 5563 with 1 active-set iteration. However, shortly after the active-set
iteration count goes up to 30 at control iteration 5565.

Since the computations with DHQP are only done with an unoptimized version of
the algorithm we omit its computation times due to the lack of a fair comparison.

4.5.4 Performance comparison

The overall performance of the LexLSAug2 methods (in combination with LexLSI) and
DHQP (as a stack of LSP’s solvers) and ADLS (uses the SVD for the pseudo-inverse
calculation) in the test bench is compiled comprehensively in table 4.2.

The LexLSAug2 methods performed best in the category ‘Error convergence’. The
performance of DHQP and ADLS is highly dependent of the level of chosen damping.
Its behaviour can only be considered acceptable at best since determining ‘perfect’
damping without proper adaptation methods seems intractable. The same holds for
the ‘Joint stability’ and ‘Joint smoothness’ of the joint trajectories. If the damping
weights are too low, the behaviour is numerically unstable and therefore not smooth.
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...-AH ...-SR1 ...-BFGS DHQP ADLS
Error convergence + + + o / – o / –
Joint stability + + + + / – + / –
Joint smoothness + / o o o + / – + / –
Easiness of use + + + – –
Computation time o / – o / – + / – o o
Lex. separation + + + o +
Handling of infeas. ctr. + + + + +
Handling of inequ. ctr. + + + + -

Table 4.2 – Comprehensive overview of the test bench performance of LexLSAug2AH, LexL-
SAug2SR1 and LexLSAug2BFGS (in combination with LexLSI) and DHQP (as a stack of
QP solvers) and ADLS (uses the SVD for the pseudo-inverse calculation). The symbols +,
o, – indicate best, acceptable and worst performance in the corresponding evaluation criteria.
Criteria solely dependent on the characteristics of LexLSI or the corresponding solver are
coloured in grey.

If the damping weights are too high the joint trajectories are very smooth but the error
convergence is bad.

LexLSAug2AH shows very smooth joint trajectories. LexLSAug2SR1 and LexL-
SAug2BFGS perform a bit worse with less smooth joint trajectories. Especially LexL-
SAug2BFGS relies on the trust region adaptation method in order to suppress numer-
ical instabilities at times. These numerical instabilities are not of high amplitude. In
T20 we observed bad conditioning of the SR1 updates which led to numerical instabil-
ities for LexLSAug2SR1. For all three methods no damping tuning is required which
makes them very easy to use (‘Easiness of use’).

For T20, LexLSI required an increased number of active-set iterations in some
instances. The control loop time was still under 5 ms but might violate the real-time
constraint if more active-set iterations are required (see next chapter’s section 5.3).
LexLSAug2AH and LexLSAug2SR1 require the expensive SVD decomposition for the
Higham regularization of the Lagrangian Hessian which makes its computation time
only acceptable at best.

All methods allow an unlimited number of hierarchy levels (‘lexicographical (lex.)
separation’) and infeasible constraints (‘Handling of infeas. ctr.’). HDHQP does not
propagate damping terms onto the null-spaces which violates the notion of strict lexi-
cographic separation to a certain degree.

4.6 Conclusion

With this chapter we have proposed, implemented and validated new robust methods
which handle singularities in prioritized inverse kinematics control schemes. Our meth-
ods LexLSAug2AH, LexLSAug2SR1 and LexLSAug2BFGS are able to solve robotic
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problems with any number of hierarchical levels consisting of equality and inequality
constraints. These constraints may be infeasible, in kinematic singularities or in conflict
with higher priority constraints without showing signs of numerical instability. Instead,
our methods enable smooth control. At the same time, our approach converges to a
higher degree than other state-of-the-art methods.

Our approach is inspired by methods of constrained optimization: Newton’s method
represents the original non-linear task error function accurately around singularities
which provides numerically stable and accurate control. Our adaptation method switches
reliably to the GN-algorithm whenever a problem becomes feasible. This frees joints
which then can be used by lower priority levels. Furthermore, due to the least-squares
formulation of the GN-algorithm and Newton’s method we are able to solve the hierar-
chical LSP’s by state-of-the-art, fast hierarchical least-squares solvers into our scheme
allowing real-time control.

We do not elaborate on the discontinuity that comes with a switch from the GN
algorithm to Newton’s method. A perturbation analysis for least-squares problems in
the sense of Björck [1996] is relevant for full rank problems and gives an upper bound
on the discontinuity. However, with our full rank augmentation the rank of the least-
squares problem usually changes since m < n. In this case only a lower bound can be
found [Wei 1992; Wedin 1973]. Putting these results into context of our hierarchical
least-squares formulation needs to be addressed in future work.

We introduced methods both for analytically calculating and approximating the
Lagrangian Hessian. The Hessian provided by LexLSAug2AH and LexLSAug2SR1
can become indefinite if not close to the solution. This requires an expensive SVD
decomposition in order to enforce semi-positive-definiteness of the Hessian using the
Higham regularization.

In future work it is desirable to more thoroughly understand the negative defi-
niteness either of the analytic Hessians (LexLSAug2AH) or the SR1 updates (LexL-
SAug2SR1) on numerical stability and convergence. Cheaper regularization meth-
ods based for example on the Bunch-Kaufman decomposition require our attention.
Also, occurrences of negative definite curvature during the BFGS updates (LexL-
SAug2BFGS) are ignored but rather the last positive definite update is kept. This
slows down convergence and also might lead to numerical instability and needs to be
investigated.

Model inaccuracies are accounted for with a trust region adaptation method which
is customized for constrained optimization. Further developments might include a full
trust region relaxation method. This is of relevance if the robot is in a singularity-free
configuration and motion speeds higher than admissible by the trust region constraint
are required.

For LexLSAug2BFGS, it would be desirable to directly update the Cholesky de-
composition Rl of B̂l as realized in Fletcher [2006] in order to save computation time.

The methods were evaluated on a test bench with 20 test cases. As the evaluation
criteria for numerical stability we counted consecutive sign changes on joints of the
calculated joint velocity vector. While this measure gives a rough idea about the



72 Singularity resolution for kinematic control problems

numerical stability performance of the methods it is desirable to formulate a more
universal definition of a numerical instability, for example based on the singular values
of the Jacobian or the Lagrangian Hessian.



CHAPTER 5

Dynamically feasible kinematic
control with singularity resolution

The previous chapter was concerned with resolving singularities in multi-level con-
strained kinematic control problems. While kinematic control of robots can be suffi-
cient for fixed base robots Caccavale et al. [1997]; Wang et al. [2010], this does not
necessarily hold for legged humanoid robots with an un-actuated free-flyer base and
unilateral friction contacts. Only with knowledge of the dynamic forces and torques
acting on the robot’s body a control can be designed which aims at maintaining a
physically stable posture Khatib [1987]. Therefore, we present ways to include the
equation of motion and dynamics constraints (torque limits, contact force constraints)
into our methods from the previous chapter 4 to realize dynamically feasible motions.

Additionally, the time step was conveniently chosen as ∆t = 1 s which enabled the
formulation of kinematic control problems as optimization problems. The application
of Newton’s method for multi-level constrained optimization problems was then trivial.
However, in dynamic control we have to consider the true dynamic robot state including
the joint velocities and accelerations without making an assumption about the time
step.

This chapter then presents the following new contributions:

• We adapt the GN algorithm and Newton’s method, which are both tools from
optimization, to control (see sec. 5.1).

• We show how regularization terms like damping negatively influence the expo-
nential convergence of second-order motion controllers (see sec. 5.2.1).

• Second-order motion controllers are then suitably adapted so they can be ex-
pressed as the velocity-based Newton’s method of control (see sec. 5.2.2).
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• The dynamics in form of the equation of motion are adapted accordingly and
then integrated into the hierarchical control scheme (see sec. 5.2.3).

• We experimentally assess our developments with the HRP-2Kai humanoid robot
(see sec. 5.4).

5.1 From optimization to kinematic control

In the previous chapter 4 we introduced the GN algorithm and Newton’s method
of constrained optimization to drive a non-linear geometric error function to zero.
This is equivalent to defining a quadratic Taylor approximation (4.9) of the quadratic
function (4.7) around q(k) and looking for a bounded step ∆q(k) in a certain neigh-
bourhood (called trust region) of it. Assuming a control time step of ∆t = 1 s with
∆q(k) = ∆tq̇(k)∗ = q̇(k)∗ we can make a trivial connection between optimization, which
aims at making a step ∆q(k) towards the optimum, and control, which aims at de-
termining the new robot state triple

[
q(k+1), q̇(k+1), q̈(k+1)

]
while minimizing the error

function with a certain behaviour. q̇(k)∗ corresponds to the new velocity q̇(k+1) (in the
case of acceleration-based control q̈(k)∗ = q̈(k+1)). We introduce this specific notation
in order to keep the control formulation consistent with the step ∆q(k) which is calcu-
lated in optimization for the current index k. At the same time we distinguish it from
the value q̇(k) which is used to calculate ėctrl

PD , see sec. 5.2.2.

However, a robot is usually controlled at a much higher frequency with ∆t � 1 s.
Especially when considering the robot dynamics one needs to compute the new velocity
q̇(k)∗ at each control step k without making an assumption about the time step ∆t.
One can look for the new velocity q̇(k)∗ with the relation ėctrl = −Jq̇(k)∗ (2.2). A
solution is given by q̇(k)∗ = −J+ėctrl using the Moore-Penrose pseudo-inverse J+.
This formulation corresponds to the GN algorithm.

However, this approach is not suitable in the vicinity of singularities: J is almost
loosing at least one rank and q̇(k)∗ becomes very large due to numerical limitations. In
such situations we proposed in the previous chapter 4 to use Newton’s method instead.
Our claim was that neglecting the second order information H in the second order
Taylor approximation (4.7) (as done in the GN algorithm) is only sufficient if away
from singularities. Using the second order information close to singularities restores
the original accuracy of the second order Taylor approximation and prevents singular
behaviour.

In the hierarchy, each non-linear task f(q) = fd or f(q) ≤ fd is rewritten to the
constrained GN algorithm of control

min.
q̇(k)∗

1

2
‖Jlq̇(k)∗ + ėctrl

l ‖2
2 (5.1)

s.t. − ėctrl
l−1 − J l−1q̇

(k)∗ 5 w∗,(k+1)
l−1 (5.2)
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or the constrained Newton’s method of control

min.
q̇(k+1)

1

2

∥∥∥∥[JlRl

]
q̇(k)∗ +

[
ėctrl
l

0

]∥∥∥∥2

2

(5.3)

s.t. − ėctrl
l−1 − J l−1q̇

(k)∗ 5 w∗,(k+1)
l−1 . (5.4)

Unlike in the previous chapter 4 we do not make the assumptions ∆t = 1 s and
ėctrl = −kpe = −e as it was done in (4.4). The set of priority-ordered least-squares
problems is then passed to the hierarchical solver Dimitrov et al. [2015].

∆t thereby connects the two entities of ‘optimization’ (optim) and ‘control’

J∆q(k) + ∆tėctrl = ∆t(Jq̇(k)∗ + ėctrl) (5.5)

= woptim = ∆twctrl . (5.6)

That is, we calculate a new velocity q̇(k)∗ but only do a model based step ∆q(k) =
∆tq̇(k)∗ towards the optimum. Consequently, the model needs to be updated with
the Lagrangian Hessian (4.26) using woptim and λoptim. Since solving the constrained
control problems (5.1) or (5.3) yields wctrl and λctrl, a scaling of the form woptim =
∆twctrl according to (5.6) is required. Due to the linear dependency between the
slack w and the Lagrange multipliers λ (see Dimitrov et al. [2015]) we further get
λoptim = ∆tλctrl (or simply Λoptim = ∆tΛctrl). In what follows, we write w = woptim

and λ = λoptim.

Accordingly, the thresholds for the switching method and BFGS algorithm need to
be adapted too. ξ is a threshold for yT∆q(k−1) = (JT∆tλctrl)T∆tq̇(k−1), ζ a threshold
for ∆tėctrl,T∆tėctrl and ν a threshold forwoptim,Twoptim = ∆twctrl,T∆twctrl. Since these
values are all quadratically dependent of the time step ∆t, we choose ξ = ∆t2ξ as the
threshold of the positive curvature condition for the BFGS algorithm, ζ = ∆t2ζ for the
minimum value in the BFGS initialization and ν = ∆t2ν for the switching method.

5.2 Dynamically feasible kinematic control

The equation of motion ensuring physical feasibility is of second order and correspond-
ingly second order motion controllers are defined. However, in the previous section 5.1
we have formulated the GN algorithm and Newton’s method only in the velocity do-
main. In sec. 5.2.1 we argue why Newton’s method cannot be extended easily to the
acceleration domain. Therefore, our idea for acceleration-based control is to change
the right hand side ėctrl from a linear proportional controller to some controller ėctrl

PD

that emulates second order PD control ëctrl in the velocity domain. In sec. 5.2.2 we
show how this can be achieved and apply the corresponding necessary adaptations to
the equation of motion which we include into our control framework (see sec. 5.2.3).
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5.2.1 Damping in acceleration-based control

In the following we show that

min.
q̈(k)∗

1

2

∥∥∥∥[JR
]
q̈(k)∗ +

[
J̇ q̇ + ëctrl

0

]∥∥∥∥2

2

(5.7)

leads to low frequency oscillations around a minimum. For simplicity, we assume
R = µI.

Let’s take a look at a 1D robot as a point mass (m = 1 kg) moving on a line with
position f = x. Its desired position is xd = 0. The task error is then e = xd− x = −x.
The Jacobian of this robot is J = df

dx
= dx

dx
= 1, the time derivative of the Jacobian is

J̇ = 0.

5.2.1.1 Velocity-based control

The control law is usually written as the first order ordinary differential equation (ODE)

Jẋ+ ėctrl = Jẋ− kpe = ẋ+ kpx = 0 (5.8)

with the solution

x = De−kpt , (5.9)

where x→ 0 for kp > 0 and t→∞. D is a constant of integration.

The numerical integration can be formulated as

x(k+1) = x−∆tkpx . (5.10)

5.2.1.2 Velocity-based control with damping

If we introduce damping we get the following form[
1
µ

]
ẋ+

[
kp
0

]
x =

[
0
0

]
. (5.11)

The least squares solution to this problem for ẋ is the first order ODE

ẋ+
kp

1 + µ2
x = 0 (5.12)

and converges exponentially as in sec. 5.2.1.1.
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Fig. 5.1. The second order homogeneous ODE solution (5.15) with k∗p and k∗v from (5.17)

are plotted for m = 1 kg, kp = 1, different µ and kv(kp) = 2
√
mkp (black line and dashed

lines) or kv(kp, µ) = 2
√
m(1 + µ2)kp.

5.2.1.3 Acceleration-based control

The control law for acceleration-based control is usually written as (see (2.10))

m(Jẍ+ J̇ ẋ) + ëctrl = m(Jẍ+ J̇ ẋ)− kpe− kvė = m(Jẍ+ J̇ ẋ) + kpx+ kvẋ (5.13)

=mẍ+ kvẋ+ kpx = 0 . (5.14)

An analytic solution can be found in

x = exp(−δt)(A cos(wdt) +B sin(wdt)) . (5.15)

δ = kv/2/m and wd =
√
kp/m− δ2. Exponential convergence can be achieved if the

eigenvalue of the system is chosen as wd = 0. This tuning of gains is called critical
damping and corresponds to kv = 2

√
mkp.

5.2.1.4 Acceleration-based control with damping

For the augmented system[
1
µ

]
mẍ+

[
1
0

]
kvẋ+

[
1
0

]
kpx =

[
0
0

]
(5.16)

we get the following ODE as its least-squares solution for ẍ:

mẍ+
kv

1 + µ2
ẋ+

kp
1 + µ2

x = mẍ+ k∗v ẋ+ k∗px = 0 . (5.17)

The analytical solution is given by (5.15) with kp and kv in δ and wd replaced by k∗p
and k∗v . The numerical integration writes as

x(k+1) = x+ ∆tẋ+
∆t2

2m

(
− kv

1 + µ2
ẋ− kp

1 + µ2
x

)
, (5.18)
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clearly exposing the influence of the damping µ on the critically damped task gains
kp and kv. Critical damping can now be achieved with kv(kp, µ) = 2

√
m(1 + µ2)kp.

Some convergence curves of (5.15) with k∗p and k∗v are plotted in fig. 5.1. It can be
clearly seen that the damping µ influences the critically damped system negatively (i.e.
overshooting) if the gain is chosen according to kv(kp, 0) instead of kv(kp, µ).

For a more complicated 3-D robot with more and especially coupled DoF’s and
a time varying R it seems cumbersome to find the expression for critical damping
kv(kp,R) such that overshooting behaviour can be prevented.

Therefore, we favour to shift the whole problem into the velocity domain and emu-
late acceleration-based control by adapting the right hand-side accordingly. This way
we can easily achieve exponential convergence as shown in the next section 5.2.2.

5.2.2 Acceleration-based control expressed in the velocity do-
main

In acceleration-based control a new joint acceleration can be obtained by solving

ëctrl = −Jq̈(k)∗ − J̇ q̇ (5.19)

for q̈(k)∗. ëctrl is defined as a PD controller ëctrl def
= −kpe − kvė (2.9). We extend

the formulation to a multi-level constrained control hierarchy where each level is either
formulated as the GN algorithm (5.1) or Newton’s method (5.3) such that we get for
the stacked values Jp and ëctrl

p

Jp =


J1

R1

· · ·
Jp−1

Rp−1

Ip

 , ëctrl
p =


ëctrl

1 + J̇1q̇
01

· · ·
ëctrl
p−1 + J̇p−1q̇

0p−1

pp

 . (5.20)

The gray matrices and vectors are only present in case that the respective level l is
augmented with second order information Rl due to a switch to Newton’s method.
The identity matrix on the last level ensures that the problem is fully determined. The
corresponding right hand side pp is defined such that the last level corresponds to the
zero velocity task Iq̇ = 0 expressed as an acceleration task.

The integration to the new joint configuration takes the form

q̈(k+1) = q̈(k)∗ = −J ‡pëctrl
p (5.21)

q̇(k+1) = q̇ + ∆tq̈(k+1) = q̇ −∆tJ ‡pë
ctrl
p , (5.22)

q(k+1) = q + ∆tq̇ +
∆t2

2
q̈(k+1) = q + ∆tq̇ − ∆t2

2
J ‡pë

ctrl
p . (5.23)
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J ‡p is the hierarchical inverse of Jp Escande et al. [2014]. We now want to find a
velocity-based controller ėctrl

PD which imitates the acceleration-based PD controller ëctrl

and leads to the same results for q̇(k+1) and q(k+1).
For this lets replace the accelerations in (5.19) by forward differences

q̈(k)∗ =
q̇(k)∗ − q̇(k)

∆t
(5.24)

such that we get
ėctrl

PD = −Jq̇(k)∗ . (5.25)

ėctrl
PD replaces ėctrl in 5.1 and in 5.3 and is defined as

ėctrl
PD

def
= −Jq̇ + ∆t(ëctrl + J̇ q̇) (5.26)

for the GN algorithm and

ėctrl
PD

def
= −

[
J
R

]
q̇ + ∆t

[
ëctrl + J̇ q̇

0

]
(5.27)

for Newton’s method, respectively. The stacked value ëctrl
PD,p then is

ëctrl
PD,p = −Jpq̇ + ∆tëctrl

p . (5.28)

Note that this forward integration requires the orientation of the robot-base to be
expressed in Euclidean space instead of quaternions. Singular cases (gimbal lock) of
Euler-angles (in our case we use the x − y − x Euler angles α, β and γ) need to be
avoided. For this, in every control iteration the robot’s free-flyer base configuration
(for example the Denavit-Hartenberg parameters) is updated with the newly calculated
Euler angles. After that the Euler angles are reset to zero. The changes of the base
orientation between control iterations are assumed to be small with α, β, γ � π/2 so
singular configurations are avoided.

The acceleration-based PD control in velocity gives

q̇(k+1) = q̇(k)∗ = −J ‡pëctrl
PD,p = J ‡pJpq̇ −∆tJ ‡pë

ctrl
p (5.29)

q(k+1) = q + ∆tq̇(k+1) = q −∆tJ ‡pë
ctrl
PD,p = q + ∆tJ ‡pJpq̇ −∆t2J ‡pë

ctrl
p . (5.30)

If rank(Jp) = n (which it is because of the identity matrix on the last level) then

J ‡pJp = I Escande et al. [2014] and the above value of q̇(k+1) in (5.30) is the same as
the one obtained with acceleration-based control in (5.23). However, the joint positions
are missing the factor 0.5 in front of the third term of (5.30). Therefore, an adjustment
in the calculation of the joint positions needs to be made:

q
(k+1)
mod = qmod + ∆t(

1

2
q̇(k+1) +

1

2
q̇) (5.31)

= qmod + ∆t(
1

2
(q̇ −∆tJ ‡pë

ctrl
p ) +

1

2
q̇) (5.32)

= qmod + ∆tq̇ − ∆t2

2
J ‡pë

ctrl
p . (5.33)
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The modified joint positions correspond to the ones of the acceleration-based control
problem. The joint velocities q̇(k+1) stay untouched since they already correspond to
the ones of the acceleration-based PD controller. Accordingly, we need to calculate the
step ∆q for LexLSAug2BFGS by

∆qmod = q
(k+1)
mod − qmod (5.34)

instead of ∆q = ∆tq̇(k)∗. Both LexLSAug2AH and LexLSAug2BFGS are robust with
regard to the inconsistent Lagrange multipliers which correspond to the step ∆q and
not to the true step ∆qmod.

Another possibility, which is consistent with the Lagrange multipliers, is to use

q̈(k)∗ =
q̇(k)∗ − q̇(k)

0.5∆t
. (5.35)

instead of the forward differences in (5.24) for replacing the accelerations in (5.19). We
then get the controller (similar for the case of Newton’s method)

ėctrl
PD,0.5

def
= −Jq̇ +

∆t

2
(ëctrl + J̇ q̇) . (5.36)

The stacked value ëctrl
PD,0.5,p is

ëctrl
PD,0.5,p = −Jpq̇ +

∆t

2
ëctrl
p . (5.37)

If used in 5.1 and in 5.3 instead of ėctrl it leads to the joint positions and velocities

q̇(k+1) = q̇(k)∗ = −J ‡pëctrl
PD,0.5,p = J ‡pJpq̇ −

∆t

2
J ‡pë

ctrl
p (5.38)

q(k+1) = q + ∆tq̇(k+1) = q −∆tJ ‡pë
ctrl
PD,0.5,p = q + ∆tJ ‡pJpq̇ −

∆t2

2
J ‡pë

ctrl
p (5.39)

Now the joint positions (5.39) correspond to the ones of the acceleration-based PD
controller (5.23) but the joint velocities (5.38) are weighted with the wrong factor 0.5
in front of the second term. They can be corrected by

q̇
(k+1)
mod = 2q̇(k+1) − q̇mod = 2q̇mod − 2

∆t

2
J ‡(ëctrl + J̇ q̇mod)− q̇mod (5.40)

= q̇mod −∆tJ ‡(ëctrl + J̇ q̇mod) . (5.41)

This of course needs to be done after the integration to the joint positions. However,
this modification leads to some instabilities as we observed in sec. 5.4.1.1. Especially
with direct constraints on the joint velocities, as it is the case for the trust region
constraint, we observed severe numerical instabilities on the modified joint velocities.

It is subject to discussion whether consistency with the acceleration-based problem
or consistency with the Lagrange multipliers is preferred. In further research the be-
haviour of solving the problem (5.1) or (5.3) twice with both the integrations (5.24)
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and (5.35) could be investigated. The former one gives the correct velocity while the
latter one gives the correct joint positions and Lagrange multipliers corresponding to
the true step ∆q. Of special interest is whether the active-sets of both solutions are
similar or even identical which would greatly facilitate the computational aspect of
solving two hierarchical problems.

For the real robot experiments in the validation section 5.4.2 we use (5.24) without
the corresponding modification of the joint positions (5.31). This poses a good com-
promise between consistency with the acceleration-based problem and the optimization
theory.

In Flacco et De Luca [2014] it is proposed to simply control a robot in velocity-based
control

ėctrl = −Jq̇(k)∗ (5.42)

with ėctrl = −kpe since both velocity-based and acceleration-based control are consis-
tent. However, desired behaviours like PD control can not be realized. That is why
we choose to implement the above presented method for acceleration-based control in
velocity, solving (5.1) or (5.3) with our new right hand side ėctrl

PD (5.26).
To come back to the 1-D robot example from the previous section 5.2.1, we can

now see that damping terms do not influence the critically damped system kp, kv. The
new velocity for a control step k can be calculated by

ẋ(k+1) = −ėctrl
PD = J−1Jẋ−∆tJ−1(ëctrl + J̇ ẋ) = ẋ−∆tëctrl (5.43)

with J = 1 and J̇ = 0. The numerical integration can be formulated as

x(k+1) = x+ ∆tẋ−∆t2ëctrl . (5.44)

Note that for exponential convergence the original system ẍ+kvẋ+kpx = 0 still needs
to be critically damped with kv = 2

√
mkp.

The augmented system’s [
1
µ

]
ẋ(k+1) +

[
ėctrl

PD

0

]
=

[
0
0

]
(5.45)

least-squares solution for ẋ is

ẋ(k+1) = − 1

1 + µ2
ėctrl

PD =
1

1 + µ2
(Jẋ−∆t(ëctrl + J̇ ẋ)) . (5.46)

The numerical integration can be formulated as

x(k+1) = x+
∆t

1 + µ2
(ẋ−∆tëctrl) . (5.47)

The original critically damped system kp, kv is not influenced by the damping µ which
ensures exponential convergence.



82 Dynamically feasible kinematic control with singularity resolution

5.2.3 Including the dynamics constraints

We have formulated our second order motion controllers in the velocity domain. Simi-
larly, the acceleration components of the equation of motion (2.15) are replaced by the
forward differences (5.24):

M (q)
q̇(k)∗ − q̇(k)

∆t
+N(q, q̇) = Sτ (k+1) + JTc γ

(k+1) , (5.48)

or rewritten into matrix form[
M (q)

∆t
−S −JTc

] q̇(k)∗

τ (k+1)

γ(k+1)

 = M
q̇

∆t
−N(q, q̇) . (5.49)

However, for numerical robustness it is desirable to keep the conditioning of the system
matrix by

[
M (q) −S −JTc

]  q̇(k)∗

∆tτ (k+1)

∆tγ(k+1)

 = Mq̇ −∆tN(q, q̇) . (5.50)

This computes q̇(k)∗, ∆tτ (k+1) and ∆tγ(k+1), so the solution vector has to be changed
accordingly to get τ (k+1) and γ(k+1) by dividing ∆tτ (k+1) and ∆tγ(k+1) by ∆t.

The equation of motion can be considered full rank if the inertia matrix M is
physically consistent and therefore positive definite Udwadia et E. Kalaba [1992]; Ud-
wadia et Schutte [2010]. This means that the system matrix of the equation of motion[
M −ST −JTc

]
is not concerned with kinematic singularities of the contact Jaco-

bians Jc.
For the joint velocities we then get

q̇(k+1) = q̇(k)∗ = {
[
M(q) −S −JTc

]+
Mq̇}1:n (5.51)

−∆t{
[
M (q) −S −JTc

]+
N (q, q̇)}1:n (5.52)

= q̇ −∆t{
[
M(q) −S −JTc

]+
N (q, q̇)}1:n (5.53)

q(k+1) = q + ∆tq̇(k+1) (5.54)

= q + ∆tq̇ −∆t2{
[
M (q) −ST −JTc

]+
N (q, q̇)}1:n . (5.55)

{}1:n are the first n entries of the vector in the braces with n being the number of joint
variables. The same modifications of the joint positions as described in the previous
section 5.2.2 need to be applied. Note that[

M (q) −S −JTc
]+
M(q)q̇ (5.56)

=
[
M (q) −S −JTc

]+ [
M (q) −S −JTc

] q̇0
0

 =

q̇0
0

 (5.57)
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if the pseudo inverse is a left inverse.

In the hierarchy dynamic constraints including the equation of motion and torque
and contact force limits have the highest priority. Furthermore, we do not apply the
linearization described in sec. 4.1.2 on the equation of motion. It is already linear in
the accelerations (or velocities in case of the forward integration), joint torques and
generalized contact wrenches. It therefore fits into our lexicographical problem (2.34)
with the system matrix A =

[
M −ST −JTc

]
and the right hand side b = −Mq̇ +

∆tN(q, q̇). We consequently do not consider it in the hierarchical gradient and Hessian
calculation of the lower level linearized constraints.

5.3 Computational performance

The problem (5.1) or (5.3) is built and solved in a matter of several hundred mi-
croseconds. Yet the real computational challenge is the active-set method which might
require solving (5.1) or (5.3) several times until the optimal active-set is determined.
Especially in dynamically challenging motions, e.g. contact switching, robot falling or
being close to falling with almost loosing closure of the friction contacts... we observed
cases of above hundred active-set iterations. This is caused by an interplay between the
dynamic constraints and the trust region constraint and requires further investigation.

Since making the solver Dimitrov et al. [2015] faster is highly involved (for example
updating the QR-decomposition factors after an active-set change or improving the
active-set search itself) we resort to a makeshift in which we stop the active-set method
once a certain level is optimal enough. Usually this would be the contact constraints
since we do not want to compromise on their optimality and risk falling.

After every active-set iteration we decide upon several criteria whether we stop the
active-set search:

• Measure the quadratic norm of the slack w of the decision level and check if it is
below a certain numerical threshold. We choose it identically to the threshold ν
of the switching method between the GN algorithm and Newton’s method.

• We have gone through a certain number of iterations in the optimality phase (10
iterations). The optimality phase starts with the first deactivation of a constraint.

• We are above a certain number of overall active-set iterations (30 iterations).

If so, we exit the solver and are satisfied with the current solution. At this point,
the robot motion is physically feasible and all the hard constraints like contact wrench,
joint torque and joint limits, the trust region constraint and the contact constraints are
at their optimum. However, lower level constraints are only solved sub-optimally. In
the following control iteration the solver is warm started with the found intermediary
active-set and the active-set search is continued. Due to the continuity property Es-
cande et al. [2014] good behaviour is guaranteed in practice.
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Fig. 5.2. Example 1, initial configuration of the two link two joint robot.

Hierarchy for example 1

1. • Equation of motion, acceleration-based or velocity-based with accelera-
tions integrated by 5.24 or by 5.35

• τ = 0

2. • Regularization term q̇ = 0 (vel. based), expressed with accelerations
by using forward differences (5.24) or (5.35) in case of acceleration-based
control

Fig. 5.3. Example 1. Hierarchy for swinging pendulum.

Since cases of high active-set iterations only occur over a limited number of control
iterations the optimality of lower priority levels is restored quickly in subsequent control
iterations Escande et al. [2014].

We also use a slightly modified version of Dimitrov et al. [2015] where we only
restart the decomposition from the level where the active-set change occurred (see
chapter 6; the bound handling was not enabled during the experiments).

5.4 Validation

In this section we first conduct three simulations in order to confirm the behaviour of
this chapter’s derivations, see sec. 5.4.1. Later, we transfer the method from small 2-D
robots to real robot experiments with the HRP-2Kai humanoid robot, see sec. 5.4.21.

5.4.1 Three examples in simulation

5.4.1.1 Example 1: Freely swinging pendulum

In this example we let a 2-D robot with two links (each link with unit length and unit
mass) and two revolute joints and fixed base swing freely. The initial configuration is
[−π/2, 0] rad with zero velocity (see fig. 5.2). The motion of the pendulum is deter-
mined by solving the instantaneous equation of motion in a least squares sense. The
joint torques of the two joints are asked to be zero to allow the swinging pendulum
motion. We then solve the problem given in fig. 5.3.

1The accompanying video can be found at https://youtu.be/6ClRlODUdys

https://youtu.be/6ClRlODUdys
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Fig. 5.4. Example 1. Joint positions and velocities of the swinging pendulum for the
acceleration-based (‘acc. based’) equation of motion and the velocity-based (‘vel. based’) one
where the accelerations are replaced by (5.24). The first and third graphs show the positions
/ velocities of the acceleration- and velocity-based approach. The second and fourth graphs
show the difference between the values. For the first second the values are close but start to
diverge from each other afterwards.

Fig. 5.5. Example 1. The upper graph shows the difference of the joint positions of the
swinging pendulum in the case of the acceleration-based (‘acc. based’) equation of motion and
the velocity-based (‘vel. based’) one. The accelerations are replaced by (5.35) (‘0.5’). The
values immediately diverge from each other. The lower graph shows the difference in joint
velocity.

We compare the behaviour of the acceleration-based equation of motion as reference
with the velocity-based ones where the acceleration is replaced by forward differences
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Fig. 5.6. Example 1. The upper graph
shows the joint positions of the swinging pen-
dulum for the acceleration-based (‘acc. based’)
equation of motion and the velocity-based
(‘acc. based’) ones where the accelerations
are replaced by either (5.24) with modified
(‘mod.’) joint positions according to (5.31) or
replaced by (5.35) (‘0.5’) with modified joint
velocities according to (5.40). The two lower
graphs show the difference between the values.
A very good match is achieved thanks to the
modifications.

Fig. 5.7. Example 1. The upper graph
shows the joint velocities of the swinging pen-
dulum for the acceleration-based equation of
motion (‘acc. based’) and the velocity-based
(‘vel. based’) ones where the accelerations
are replaced by either (5.24) with modified
(‘mod.’) joint positions according to (5.31)
or (5.35) (‘0.5’) with modified joint veloci-
ties according to (5.40). The two lower graphs
show the difference between the values. A very
good match is achieved thanks to the modifica-
tions. However, the modification of the joint
velocities (5.40) comes with numerical noise
with an increasing frequency over time.

either given in (5.24) or (5.35). For both replacement schemes of the acceleration it can
be observed that the joint positions and velocities diverge from the reference ones (see
fig. 5.4 for (5.24) and fig. 5.5 for (5.35)) While there is a good match for the first few
seconds for (5.24) (see fig. 5.4), the wrong velocities from (5.35) lead to an immediate
and strong deviation from the reference due to the wrong calculation of N (q, q̇) (see
fig. 5.5).

However, if we apply the modifications of the joint positions or velocities according
to (5.31) or (5.40) we can perfectly reproduce the behaviour of the acceleration-based
equation of motion in the velocity domain (see fig. 5.6 for the joint positions and
fig. 5.7 for the joint velocities). Slight numerical instabilities can be observed in the
lower graph of fig. 5.7 for the joint velocities modified according to (5.40).
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×Target

Fig. 5.8. Example 2, initial configuration of the two link two joint robot. The desired
end-effector position is at the cross.

Hierarchy for example 2

1. Equation of motion, acceleration-based or velocity-based with accelerations in-
tegrated by 5.24

2. Joint velocity limit (corresponds to the trust region constraint), expressed with
accelerations by using forward differences (5.24) in the case of acc. based control

3. End-effector task with ëctrl (acc. based) or with ėctrl
PD (vel. based)

4. q̇ = 0 (vel. based), expressed with accelerations by using forward differ-
ences (5.24) in case of acceleration-based control

5. τ = 0

Fig. 5.9. Example 2, hierarchy.

Fig. 5.10. Example 2, joint (J.) positions, joint velocities, joint torques and task error
norm. They are identical for the acceleration- and velocity-based equation of motion and PD
motion controllers ëctrl and ėctrlPD.
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Fig. 5.11. Example 2, converged robot posture.
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q1

q2

q3

g

×Target

Fig. 5.12. Example 3, initial configuration of the three link three joint robot. The desired
end-effector position is at the cross.

5.4.1.2 Example 2: In reach end-effector task

In this simulation we make the robot from the first example 5.4.1.1 reach for the
point [1, 1] m. The initial robot posture corresponds to the arbitrary non-singular
configuration [−π, 1] rad, see fig. 5.8. We define the acceleration- or velocity-based
hierarchy in fig. 5.9.

The problem is solved by the GN algorithm and all accelerations are replaced by 5.24
with the modifications of the joint positions by (5.31) in the case of velocity-based
control. The joint positions, joint velocities, joint torques and task error norms are
given in fig. 5.10. It can be seen that both the acceleration and velocity-based problem
lead to identical behaviour. The converged robot posture is given in fig. 5.11.

5.4.1.3 Example 3: Conflict between linearized task constraint and dy-
namics constraint

In this simulation we want to test the behaviour of the robot if a linearized end-
effector task is in algorithmic conflict with a (non-linearized) dynamics constraint.
Numerical instabilities due to algorithmic singularities with higher level non-linearized
tasks only occur if the higher priority task forces kinematic subchains of the lower
priority linearized end-effector task into kinematic singularity in order to minimize the
task error. Therefore, we require at least a three link three joint robot. We set its
initial configuration to [−π, 1, 0] rad, see fig. 5.12. The commanded joint torque of
joint 1 is set to zero and therefore conflicts with the end-effector task of reaching the
point [1, 1] m. A trust region constraint is introduced (also for the acceleration-based



5.4 Validation 89

Hierarchy for example 3

1. • Equation of motion, acceleration-based or velocity-based with accelera-
tions integrated by 5.24

• τ1 = 0

2. Trust region constraint, expressed with accelerations by using forward differ-
ences (5.24) in the case of acc. based control

3. End-effector task with ëctrl (acc. based) or with ėctrl
PD (vel. based), solved by

the GN algorithm, Newton’s method (vel. based) or the LM algorithm (acc.
based)

4. q̇ = 0 (vel. based), expressed with accelerations by using forward differ-
ences (5.24) in case of acceleration-based control

5. τ = 0

Fig. 5.13. Example 3, hierarchy.

Fig. 5.14. Example 3, task error norm for the end-effector task. Damping in the accel-
eration domain leads to overshooting behaviour and the error is barely minimized (dark gray
curve). The velocity-based PD controller ėctrlPD prevents this behaviour.

control) in order to be able to apply Newton’s method with second order information
either from LexLSAug2AH or LexLSAug2BFGS in the velocity-based control. The
hierarchy is given in fig. 5.13.

The norm of the distance of the end-effector from the target is given in fig. 5.14.
As we have discussed in sec. 5.2.1, damping in the acceleration domain leads to slowly
oscillating behaviour as can be observed from the error curve ‘acc. based, damping’.
The damping value was set to µ = 0.1. The error norm of the other methods gets
minimized fairly well but is disturbed by the slow oscillations of the freely swinging
joint 1. The joint torque of joint 1 is zero as can be seen in fig. 5.15.

Figure 5.16 shows the joint velocities of the robot. For the GN algorithm (both
acc. and vel. based) numerical instabilities can be observed. This is due to the zero
commanded joint torque of joint 1 which conflicts with the aim of getting closer to the
target with the end-effector. In order to minimize the task error as much as possible the
kinematic subchain consisting of link 2 and link 3 is forced into kinematic singularity .

Newton’s method with second order information from both LexLSAug2AH and
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Fig. 5.15. Example 3, joint torques. The acc. and vel. based GN algorithm leads to numer-
ical instabilities in the joint torques of joint 2 and 3. LexLSAug2AH and LexLSAug2BFGS
are numerically stable.

Fig. 5.16. Example 3, joint velocities. The acc. and vel. based GN algorithm leads to
numerical instabilities in the joint torques of joint 2 and 3. They occur whenever the kinematic
subchain consisting of link 2 and link 3 is close to kinematic singularity. LexLSAug2AH and
LexLSAug2BFGS are numerically stable. Damping in the acceleration domain is numerically
stable but leads to the mentioned overshooting behaviour.

LexLSAug2BFGS leads to numerically stable joint velocity behaviour without the over-
shooting end-effector characteristics seen for the damping in acceleration-based control.
The robot configuration with low error norm but some remaining swaying motion is
given in fig. 5.17. Note that both LexLSAug2AH and LexLSAug2BFGS do not take
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Fig. 5.17. Example 3. The robot managed to come to the target as close as possible
(LexLSAug2BFGS). However, some swaying motion remains due to the freely swinging joint
1 (white ball) with zero commanded torque. Note how the kinematic subchain of the green
and blue link is in kinematic singularity.

Hierarchy for LexLSAug2BFGS and LexLSAug2AH

1. • 4nc (nc: number of contacts) bounds on generalized contact wrenches:
γ > 0

• 32 joint limits using a velocity damper Faverjon et Tournassoud [1987]

2. • 38 integrated equations of motion

• 38 torque limits

3. 38 trust region limits

4. 3 inequality constraints for self-collision avoidance

5. 18 (12 for exp. 1) geometric contact constraints

6. 1 equality constraint on the head yaw joint to put the vision marker into the
field of view, not for exp. 1

7. 3 inequality constraints on the CoM

8. • 6 end-effector equality constraints for left and right hand

• 3 equality constraints to keep the chest orientation upright, not
in exp. 1

9. 3 stricter inequality constraints on the CoM, not for exp. 1.

10. 38 constraints to minimize joint velocities: q̇ = 0

11. 4nc constraints to minimize the generalized contact wrenches: γ = 0

Fig. 5.18. Exp. 1 to exp. 3, hierarchy for LexLSAug2BFGS and LexLSAug2AH.

into account the equation of motion or the dynamics constraints in the hierarchical
gradient or Hessian calculation.
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Hierarchy for WLS

1. • 4nc bounds on generalized contact wrenches: γ > 0

• 32 joint limits using an acceleration damper Faverjon et Tournassoud
[1987]

• 38 equations of motion

• 38 torque limits

• 3 inequality constraints for self collision avoidance

• 18 (12 for exp. 1) geometric contact constraints

• 3 inequality constraints on the CoM

2. • 6 end-effector equality constraints for left and right hand

• 32 equality constraints to maintain a reference posture (with the head yaw
joint turned towards the vision marker, exp. 2 and exp. 3)

• 4nc constraints to minimize the generalized contact wrenches: γ = 0

Fig. 5.19. Exp. 1 to exp. 3, hierarchy for WLS.

5.4.2 Three real robot experiments

Now that we have validated our derivations from this chapter in simulation we move on
to conduct three experiments with the position controlled HRP-2Kai robot with 32 DoF
(plus 6 DoF for the un-actuated free-flyer), 1.71 m height and 2.11 m arm span. As
our solver we use LexLSI Dimitrov et al. [2015] which solves problem (5.1) or possi-
bly (5.3) with second order augmentation from LexLSAug2AH or LexLSAug2BFGS.
LexLSAug2SR1 is not evaluated due to its similar but worse behaviour in terms of
numerical stability and smoothness compared to LexLSAug2AH. Its slight advantage
in computational speed is negligible (see sec. 4.2.1.2). LexLSI is based on the active-set
method and we warm start it at every control iteration with the active-set found in the
previous control iteration. As mentioned in sec. 5.2.2, the accelerations are replaced
by (5.24) but the joint positions are not modified according to (5.31). We then solve
for the variables q̇(k+1), ∆tτ (k+1) and ∆tγ(k+1). The resulting velocities are integrated
to the joint positions (2.7) which are sent to the robot with a control frequency of
200 Hz (∆t = 5 ms). The corresponding hierarchy is given in fig. 5.18.

Constraints in bold are considered in the calculation of the hierarchical Hessian.
Dynamic constraints and bound constraints are not taken into account. Note that for
bound constraints we generally have B = 0 and H = 0.

The hierarchical separation of the bound constraints on the generalized contact
wrenches and the joint limits from the equation of motion allows LexLSI to cheaply
handle the variable bounds on the first level.

The trust region constraint is necessary to ensure that the new step ∆q = ∆tq̇(k+1)
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is bounded within a certain neighbourhood ∆ of the current state q, ‖∆q‖∞ < ∆.
In this region we ‘trust’ the second order Taylor approximation of Φ(q) (4.7) to be
accurate enough. We set ∆ = 0.01 rad or m.

Note that the trust region constraint and the joint velocity minimum norm task
include the none actuated free-flyer. Indeed, the free-flyer is numerically relevant as it
is present in all the Jacobians. Therefore, we put the constraint only after the equation
of motion to avoid constricting the free-flyer velocity for example in the case of a robot
free fall.

As comparison we use the least squares solver LSSOL Gill et al. [1986] which is also
used in our laboratory’s robot control framework. It has a constraint (level 1) and an
objective level (level 2). Thereby, inequality constraints are only allowed on level 1. It
is also based on the active-set method and we warm start it with the active-set found
in the previous control iteration. On both levels a soft hierarchy can be established
by weighting tasks against each other (therefore we call this solver Weighted Least
Squares - WLS). The constrained robot problem is then defined in fig. 5.19 following
previous works Abe et al. [2007]; Collette et al. [2007]; Bouyarmane et Kheddar [2011];
Feng et al. [2013]; Kuindersma et al. [2014]; Vaillant et al. [2016]; Pfeiffer et al. [2017]
which make use of control frameworks based on weighted constrained LSP’s.

The hierarchy for WLS contains the dynamic constraints (equation of motion, γ
bounds, τ bounds), joint limits, self-collision avoidance, CoM task and contact tasks
as constraints on level 1. All these tasks have the same priority without weighting.
Since the notion of constraint relaxation is not introduced in LSSOL, the feasibility
of these constraints has to be guaranteed in order to avoid solver failures. Especially
the self-collision avoidance, the contact and the CoM constraints are the source of
potential conflict or even of (unresolved) kinematic singularities. This highlights the
significance of being able to easily design safe robot problems with LexLSAug2BFGS
or LexLSAug2AH.

The reaching task is defined as an objective on level 2. A posture reference task is
also added at the objective level. Similarly to the LM algorithm it acts as a velocity
damper, allowing to approach singular configurations. The task is added with a low
weight 1e−3 (5e−2 for exp 2 and exp 3), which needs to be tuned depending on the
task to be performed. For example reaching for very far away targets requires a higher
weight. Additionally, another task γ = 0 on the objective level is added to yield a
fully determined and full rank problem. It has a small weight 1e−5 (1e−4 for exp. 2
and exp.3).

We solve for the variables q̈(k+1), τ (k+1) and γ(k+1) and integrate the accelerations
twice to the joint positions (2.13) which are then sent to the robot.

For both solvers we substitute the torques τ (k+1) with the equation of motion which
reduces the number of variables from 108 to 70 for exp. 1 and 112 to 74 for exp. 2 and
exp. 3 respectively.
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Fig. 5.20. Exp. 1, from left to right: 1.: LexLSAug2BFGS, the robot has moved both its
hands to the first target, 2.: LexLSAug2BFGS, the robot has converged with both arms and
both legs stretched 3.: LexLSAug2AH, the robot has converged with one arm and both legs
stretched, 4.: WLS, the robot has converged with only the legs stretched.

5.4.2.1 Experiment 1: Stretching

In the first experiment (exp. 1, see Fig. 5.20) the robot is controlled to take a simple
stretching pose. It shows that LexLSAug2BFGS and LexLSAug2AH enable numer-
ically stable robot behaviour even with the presence of kinematic and algorithmic
singularities. At the same time the task error norm is minimized to a higher degree
w.r.t WLS.

For this we establish two contacts with the environment on the two feet standing
on the ground. Each foot consists of four contact points (overall nc = 8) placed on
each corner of the rectangular foot.

The robot then continues to move the left hand to [0.4, 0.5, 1.3] m and the right
hand to [0.4,−0.5, 1.3] m which is on each side of the robot’s chest. After that it targets
[0.4,−2, 2] m and [0.4, 2, 2] m which are both out-of-reach positions on its left top and
right top side respectively. This forces the robot to take a stretched configuration
along the convergence process. At this point, the end-effector tasks are in algorithmic
singularity due to conflict with the geometric contact constraints.

Thereby, LexLSAug2BFGS shows the best minimization of the norm of the Eu-
clidean distance of the left and right hand to their targets (see Fig. 5.21). Both legs
and arms are fully stretched. Consequently, the contact Jacobians of the left and right
foot are singular. This seemingly does not influence the robot’s joint velocity (see
Fig. 5.22), joint torque (see Fig. 5.30) and contact wrench (see Fig. 5.32) behaviour
due to the full rank property of the equation of motion.

The convergence is the longest out of the three solvers as there is a large period of
flat curvature with very small yT∆q(k−1) ≈ 1e−16 (between ca. 45 s and 90 s). This
leads to slow joint motions since the BFGS Hessian approximation is not updated but
rather remains as a static damping term similar to the LM algorithm.

The joint velocities are fairly smooth (see Fig. 5.22) and pose no problem on the
real robot. If for some end-user the movements are too jerky a weighted and dotted
identity matrix αI∗ could be added to B. However, this has a light side effect on the
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Fig. 5.21. Exp. 1, comparison of sum of the error norms of the right and the left hand.
LexLSAug2BFGS has a final error of 1.86 m, LexLSAug2AH of 1.87 m and WLS of 1.9 m.
The lower graph shows the differences of the error norms of the different methods. The data
of LexLSAug2AH and WLS is synchronized with the one of LexLSAug2BFGS.

Fig. 5.22. Exp. 1, LexLSAug2BFGS, joint velocities.

convergence.

The switch to Newton’s method is taking place on the way to the first way point at
around 25 s. There is a quick switch to Newton’s method and back at around 105 s on
the left and right foot position task but does not further influence the robot behaviour
(see Fig. 5.23).

For most of the time there is only one active-set iteration per control iteration,
yielding computation times well below 5 ms. However, at approximately 40 s there is
a peak in active-set iterations of 17 with a loop time of just below 5 ms (see Fig. 5.24).
Other peaks are computational artefacts on the home PC which was used to remote
control the robot (PC Intel Core i7-4720HQ CPU @ 2.60GHz with 8 GB of RAM).
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Fig. 5.23. Exp. 1, LexLSAug2BFGS, map
of activity (light gray) and Newton’s method
(dark gray).

Fig. 5.24. Exp. 1, LexLSAug2BFGS, com-
putation times and number of active-set it-
erations. LexLSAug2BFGS peaks at 376 µs,
LexLSI at 3.55 ms and overall at 4.23 ms.
The maximum number of active-set iterations
is 17 iterations.

Fig. 5.25. Exp. 1, LexLSAug2AH, joint velocities.

Similar behaviour is seen for LexLSAug2AH but it converges faster to a less optimal
minimum (see Fig. 5.21 for the task error norm and Fig. 5.25 for joint behaviour)

In Fig. 5.27 a clear increase in computation times can be seen at around 26 s when
the second order augmentation and the corresponding Higham regularization with SVD
decomposition start (see Fig. 5.26).

Note that the Hessian is computed all the time even if there is no augmentation.
Its computation time is included in ‘All’. Computing the CoM Hessian of the 38
DoF HRP-2Kai robot takes about 150 µs and calculating all the Hessians accounts for
approximately less than 1 ms.

The WLS method shows the worst convergence (see fig. 5.21). Especially during
the first motion the robot fails to lift both its arms up due to conflict with the posture
reference task. The joint velocities are very smooth but slow (see fig. 5.28) which is
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Fig. 5.26. Exp. 1, LexLSAug2AH, map
of activity (light gray) and Newton’s method
(dark gray).

Fig. 5.27. Exp. 1, LexLSAug2AH, com-
putation times and number of active-set it-
erations. LexLSAug2AH peaks at 1.55 ms,
LexLSI at 2.96 ms and overall at 4.75 ms.
The maximum number of active-set iterations
is 15.

Fig. 5.28. Exp. 1, WLS, joint velocities. Fig. 5.29. Exp. 1, WLS, computa-
tion times and number of active-set itera-
tions. LSSOL peaks at 3.76 ms and overall
at 4.46 ms with 4 active-set iterations.

Fig. 5.30. Exp. 1, LexLSAug2BFGS, joint
torques.

Fig. 5.31. Exp. 1, WLS, joint torques.

behaviour typically seen for the LM algorithm. Consequently, there are less active-
set iterations than seen for LexLSAug2BFGS and LexLSAug2AH due to less abrupt
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Fig. 5.32. Exp. 1, comparison of the ground reaction forces (top) and torques (bottom)
of the left foot between LexLSAug2BFGS (left column) and WLS (right column), measured
(sens) and computed (calc). They are of similar magnitude.

motion changes.

The computation times for LSSOL for a single iteration are a multiple of the ones of
LexLSI. However, it only increases slightly with a higher number of active-set iterations.
The reason is that LSSOL cheaply updates decomposition factors for the current active-
set which have been computed for the previous one (see Fig. 5.29).

Figures 5.30 and 5.31 show the computed joint torques for LexLSAug2BFGS and
WLS. They are approximately of the same magnitude and show the validity of our
approach of forward integrating the accelerations in the equation of motion. The joint
torques for LexLSAug2AH are very similar to the ones of LexLSAug2BFGS and are
therefore not depicted here.

Figure 5.32 shows a comparison of the computed and measured ground reaction
forces and torques of the left foot for LexLSAug2BFGS and WLS. They are approx-
imately of the same magnitude and once more show the validity of our approach of
forward integrating the accelerations in the equation of motion. The discrepancy be-
tween measured and sensed values comes to a large extent from the un-modelled elas-
ticity of the ankle pitch joints but is consistent for LexLSAug2BFGS and WLS. The
ground reaction forces and torques for LexLSAug2AH are very similar to the ones of
LexLSAug2BFGS and therefore are not depicted here.
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Fig. 5.33. Exp. 1 without or badly-tuned
augmentation, joint velocities. The pure GN
algorithm suffers from important joint oscilla-
tions while WLS with only 1/1000 of the orig-
inal weight for the posture reference task fails
completely at 25.9 s.

Fig. 5.34. Exp. 1 without or badly-
tuned augmentation, joint torques. Upper
graph: the joint oscillations require high mo-
tor torques. Lower graph: Joint torques for
WLS with a weight of 1e−6 for the posture
reference task.

5.4.2.2 Experiment 1 without or badly-tuned augmentation

For reference we show the robot joint behaviour for exp. 1 in the case of the pure GN
algorithm without the switch to Newton’s method in case of singularities.

Since singular behaviour would be highly harmful to the robot we conducted this
experiment only in simulation.

The robot is clearly numerically unstable on joint level (see Fig. 5.33) and sways
heavily. The reason is that joint torque limits are reached repeatedly (see Fig. 5.34)
since the joint oscillations require very high motor torques.

Additionally, exp. 1 is conducted with WLS where the reference posture task is
weighted with only 1/1000 of its original weight. The weight used is then 1e−6. While
there are no joint oscillations the robot sways slightly until LSSOL fails completely
at around 26 s with numerically high joint velocities due to approaching a singular
configuration.

5.4.2.3 Experiment 2: Stretching with a third contact

The second experiment (exp. 2, see Fig. 5.35) is designed in such a way that a third
contact between the left hand and a rigid pole must be established in order to prevent
falling. This contact is not a friction contact but a fixed contact such that we only need
to define one contact point here (overall nc = 9). Also, the bound γ > 0 needs to be
omitted for this contact since we allow negative contact forces if the robot is ‘hanging’
from the pole.

In the following we describe the experiment for LexLSAug2BFGS.
At first, the robot moves its left hand in front of a vertical metal pole which is

supposed to be grabbed at approximately [0.5, 0.25, 1] m. The exact pole position
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Fig. 5.35. Pictures of HRP-2Kai performing exp. 2, LexLSAug2AH, from left to right:
1.: The left hand has grabbed the pole while the right hand task on level 9 is in conflict with
the CoM task on level 8. 2.: The CoM on level 8 switched from box 1 to box 2 and is not in
conflict with the right hand task any more The right hand task on level 9 is not augmented
any more 3.: HRP-2Kai is in full forward stretch. 4.: The robot moves its right hand to
the back. 5.: HRP-2Kai is in full backward stretch. 6.: The robot during its second forward
stretch.

is determined via marker based vision provided by the whycon library Nitsche et al.
[2015]. During the movement, the CoM task on level 8 constrained to the bounding
box [±0.03,±0.1,±∞] m gets activated. The right hand on the next level 9, which
must remain at its current position, is therefore in conflict and starts to move slightly
backwards. This is a purely algorithmic singularity and triggers the switch to Newton’s
method. Figure 5.38 shows the activation of the CoM task and the augmentation of
the right hand position task and the chest orientation task at around 8 s.

The left gripper is closed and the left-hand-to-pole contact is added to the equation
of motion. Then we open up the CoM bounding box in x-direction from [±0.03,±0.1,±∞] m
to [±0.2, 0.05± 0.05,±∞] m since we have increased the support area of the robot in
the sagittal plane due to the additional contact (see Fig. 5.40). However, the robot
requires several control iterations with a high number of active-set iterations to adjust
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Fig. 5.36. Exp. 2, comparison of the error norm of the right hand tracking the swinging
target during forward (for.) and backward (back.) stretch. The lower graph shows the differ-
ences of the error norms of the different methods. The data of LexLSAug2AH and WLS is
synchronized with the one of LexLSAug2BFGS.

Fig. 5.37. Exp. 2, LexLSAug2BFGS, joint velocities. The upper graph shows the moment
when the CoM is released and the 52 active-set iterations occur (followed by 5 occurrences of
30 iterations until 32.7 s). The middle one shows the moment when the right hand stretches
to the right and starts being augmented. The lower graph shows the joint velocities when the
robot stretches to the back and crouches.

the robot state. In Fig. 5.39 at the 32 s mark, it can be seen that within 28 control
iterations, peaks of 1 × 52 and 5 × 30 active-set iterations occur. Figure 5.38 shows
that at the instant of the CoM release at around 32 s both CoM tasks at level 8 and
10 are activated and shortly after deactivated again. Similar behaviour is seen for the
collision constraint between the left elbow and the torso.

Furthermore, the upper graph of Fig. 5.37 shows how the velocity suddenly increases
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Fig. 5.38. Exp. 2, LexLSAug2BFGS, map
of activity (light gray) and Newton’s method
(dark gray)

Fig. 5.39. Exp. 2, LexLSAug2BFGS, com-
putation times and number of active-set iter-
ations. LexLSAug2BFGS peaks at 1.11 ms,
LexLSI at 9.66 ms and overall at 10.75 ms.
The maximum number of active-set iterations
is 52 iterations. At around 105 s and for the
duration of a few seconds there is a computa-
tional artefact from the robot controlling PC.

Fig. 5.40. Exp. 2, LexLSAug2BFGS, CoM movement. The CoM starts at the black dot
and moves until it arrives at the white dot, first being constrained in box 1 and then in box 2.

from zero to maximum velocity 0.5 s during the CoM release. This requires large joint
torques of around 150 Nm as can be seen from the lower graph of Fig. 5.45. The
corresponding dynamic effects need to be adjusted for in the trust region and the
contact force constraints (with interplay) which leads to the large number of active-set
iterations.

Note that without the active-set iteration limitation method presented in section 5.3
the active-set iteration count might easily go up to 200 or more.

At around 36 s the augmentation of the level 9 position task stops as the right hand
arrives back at its prescribed position (see Fig. 5.38).

The right hand then first tries to reach [0,−1.5, 1] m and continues to follow a
target swinging from the front [3,−1.5, 2] m to the back [−3,−1.5, 0] m of the robot.
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Fig. 5.41. Exp. 2, LexLSAug2AH, map
of activity (light gray) and Newton’s method
(dark gray).

Fig. 5.42. Exp. 2, LexLSAug2AH, com-
putation times and number of active-set it-
erations. LexLSAug2AH peaks at 2.63 ms,
LexLSI at 8.03 ms and overall at 11.16 ms.
The maximum number of active-set iterations
is 52 iterations.

Fig. 5.43. Exp. 2, WLS, joint velocities. Fig. 5.44. Exp. 2, WLS, computation
times and number of active-set iterations. In
the time segment from 0 s to 56 s (exclud-
ing the computational artefact from the con-
troller PC, but including the active-set peak),
LSSOL peaks at 2.20 ms and overall at 2.94
ms with 34 active-set iterations. Again, there
are some computational artefacts on the robot
controlling PC from 56 s and from 110 s.

This target is always out of reach.

From Fig. 5.47 (top left graph) it can be seen that during the forward stretches
from 62 s and from 125 s the robot pushes its left hand against the pole with more
than 100 N. This shows the necessity of this contact to prevent falling.

In Fig. 5.40, the CoM moves from the black to the white dot. During the stretch mo-
tions it is well outside the support polygon of the feet which covers about [±0.1,±0.2,±∞] m.
The CoM at level 8 is first constrained to box 1 and then to box 2. Note that the CoM
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Fig. 5.45. Exp. 2, LexLSAug2BFGS, joint
torques. The upper graph shows the whole ex-
periment while the lower graph only shows the
moment when the CoM is released and the 52
active-set iterations occur (followed by 5 oc-
currences of 30 iterations until 32.7 s). The
maximum torque is -152.8 Nm.

Fig. 5.46. Exp. 2, WLS, joint torques. The
maximum joint torque is -71 Nm.

Fig. 5.47. Exp. 2, comparison of the reaction forces (top) and torques (bottom) of the
left hand grabbing the pole between LexLSAug2BFGS (left column) and WLS (right column),
measured (sens) and computed (calc). They are of similar magnitude.

constraint at the white dot is also activated in y-direction. This is due to the velocity
damper which starts to act 0.02 m before the actual bounding box edge. The contin-
uous augmentation of the right hand and the chest task at level 9 occupies all joints.
Therefore, the CoM constraint on level 10 has no influence and is therefore not shown
here.
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Figure 5.36 shows the norms of the tracking error of the right hand during the
stretch motions. Especially during the second forward stretch LexLSAug2BFGS gets
over 0.05 m closer to the target than WLS due to fully stretching its arm into kine-
matic singularity. Overall, most of the time the error norm difference ErrWLS −
ErrLexLSAug2BFGS > 0 and shows the better convergence of LexLSAug2BFGS compared
to WLS.

While LexLSAug2AH also allows limbs to be fully stretched into kinematic singular-
ities, it has a higher error norm than WLS especially during the backward stretch (see
Fig. 5.36). This is despite the fact that the robot crouches more than seen for WLS.
The reason is partly due to local minima created by joint limits. However, at forward
stretches LexLSAug2AH performs better than WLS (ErrWLS − ErrLexLSAug2AH > 0).

In Fig. 5.42 it can be seen that the average overall computation time ‘All’, which
includes the calculation time of the analytic Hessian, increases by about 1.5 ms com-
pared to the ones of LexLSAug2BFGS in Fig. 5.39. An additional increase can be
observed at 40 s for ‘LexLSAug2AH’ when the CoM task on level 10 requires augmen-
tation too (see Fig. 5.41). Now two expensive SVD decompositions for the Higham
regularizations of the hierarchical analytic Hessian on level 9 and 10 are required.

In general, LexLSAug2AH behaves very similar to LexLSAug2BFGS and shows the
capabilities of the BFGS algorithm to provide a valid approximation of the analytic
hierarchical Hessian. Therefore, the joint velocities, CoM motion, ground and pole
reaction forces and joint torques are not shown since they are very similar to the ones
of LexLSAug2BFGS.

As for WLS, it shows again the worst convergence (see Fig. 5.36) with very smooth
joint velocities (see Fig. 5.43). Especially during the forward stretches the robot does
not fully stretch its right arm. Also during the backward stretch the robot crouches to
a lesser extent than seen for LexLSAug2BFGS and LexLSAug2AH.

Since there are no jerky movements the joint torques do not show high peaks
(see 5.46). What is quite interesting is that there is still a peak of 32 active-set itera-
tions (see Fig. 5.44) during the first forward stretch at 55 s. However, the computation
time only increases by a fraction due to updating factorizations in LSSOL.

5.4.2.4 Experiment 3: Stretching with user defined target

With the last experiment (exp. 3) we show the importance of handling kinematic and
algorithmic singularities automatically.

This experiment is set up similarly to exp. 2, except that the robot right hand
follows a target tracked by a motion capture system (10 Krestel cameras from Motion
Analysis). Typical applications could be human to robot hand-overs. In such situa-
tions, and especially for a humanoid robot with multi-level prioritized constraints, it
is difficult to determine the robot workspace beforehand. Here our proposed methods
LexLSAug2BFGS and LexLSAug2AH allow to only have approximate knowledge or
no knowledge at all of the robot workspace while still enabling safe control for the
robot. A hand-over could happen at the border of the workspace with the end-effector
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Fig. 5.48. Exp. 3, LexLSAug2BFGS, right
hand task error. The upper graph shows the
actual right hand position in x, y and z di-
rection and the desired ones xd, yd and zd.
The lower graph shows the error norm of the
right and left hand. The error of the left hand
holding the rail can be considered zero once
the contact is created at around 20 s.

Fig. 5.49. Exp. 3, LexLSAug2BFGS, map
of activity (light gray) and Newton’s method
(dark gray).

being in kinematic singularity or being in algorithmic conflict with a physical stabil-
ity task like the CoM task on a higher priority level. At the same time, the whole
possible workspace is used without restricting it artificially for example with a badly
tuned LM algorithm. Thereby, a non-adaptive LM algorithm can always be considered
badly tuned. It needs to be tuned with a certain overhead in order to ensure non-
singular behaviour over a range of robot configurations. This leads to bad convergence
in singularity-free configurations where the robot would be numerically stable without
damping.

Since the end-effector target is defined by user input, for the lack of comparability
we only conducted the experiment with LexLSAug2BFGS.

In order to prevent too fast motions we set the right hand proportional task gain
to kp = 0.5 instead of kp = 1 in the two previous experiments. Additionally, the CoM
bounding box 2 is chosen a bit more conservatively as [±0.1, 0.05±0.05,±∞] m instead
of [±0.2, 0.05± 0.05,±∞] m in exp. 2.

The right hand tracking error is given in Fig. 5.48. At around 10 s the left hand
moves towards the pole before closing the gripper and adding the contact to the equa-
tion of motion. At around 35 s the CoM constraint changes from box 1 to box 2. The
right hand stops being in algorithmic conflict with the CoM constraint and moves to
its original position (see Fig. 5.49 at around 42 s, the right hand is not augmented
any more). From around 50 s onwards, the right hand is following the position of the
middle marker of a wand with 3 markers tracked by the motion capture system. The
provided position xd, yd and zd is filtered by a 3 s moving average filter (see dotted
lines in upper graph of Fig. 5.48). We first move the marker outside of the approximate
workspace of the robot (until 100 s). The right arm is in kinematic singularity and
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in conflict with the CoM constraint on level 8. We then continue to move the marker
within the workspace of the robot. The CoM task at level 8 gets deactivated. However,
the right hand switches from Newton’s method to the GN algorithm only for a short
period from 108.5 s to 109 s and from 109.75 s to 110.25 s before being augmented
again. Note that the task error e does not necessarily need to be zero for this to hap-
pen. Our switching method only indicates that within the context of our linearized
model we can (more or less) numerically stably provide the error velocity prescribed
by the PD control emulated in velocity. Hence, there is no conflict with the kinematic
restrictions of the robot or other constraints with the same or higher priority. The
switching method could be tuned to be less sensitive although this could increase the
risk that a singular task might not get augmented in certain situations. A good middle
ground needs to be found in tuning the parameter ν of our switching method. Future
work could also include the implementation of more accurate switching methods for
example by observing the matrix rank of the constraint Jacobians or their projections
onto the Jacobians of higher priority tasks.

5.5 Conclusion

In this chapter we extended our method on handling kinematic and algorithmic sin-
gularities in kinematic robot control to dynamically feasible kinematic robot control.
We showed that it enables the robot to approach and reach singular configurations
smoothly and without the high velocities typically seen for unresolved singularities.
Thereby, our approach consisting of forward integrating the accelerations proved viable
to shift second-order motion controllers and the equation of motion into the velocity
domain. Dynamic constraints are respected and joint torques and contact forces are
calculated correctly.

While velocity-based dynamic control can exactly represent the acceleration-based
one, this requires modifications of the joint positions in an after-processing step. How-
ever, this causes inconsistent Lagrange multipliers which deteriorates the quality of the
Lagrangian Hessian for Newton’s method. We therefore decided to omit the modifica-
tion of the joint positions. In future work it is desirable to find ways of maintaining
consistency of both the acceleration-based control but also the Lagrange multipliers,
for example by solving two different problems, see sec. 5.2.2.

Evaluated in three experiments on the position controlled HRP-2Kai robot, our
method supersedes classical damping methods in terms of accuracy and error norm
reduction. At the same time the notion of hierarchy enables formulating problems
with strict safety prioritizations. Some cases of jerky joint movements are handled
easily by adding a small damping term.

Computation times of the hierarchical least squares solver are a limiting factor of
our approach of augmentation with the BFGS Hessian as well as the analytic Hessian.
Without important dynamic effects, the active-set iteration count is limited to a few
iterations. However, situations where several torque, trust region and contact force
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constraints become active are more challenging for the active-set search. Our future
work needs to focus on handling these situations cheaply, for example by factorization
updates in the solver by Dimitrov et al. [2015] or a more effective active-set search.



CHAPTER 6

Computational accelerations for
LexLSI

While LexLSI Dimitrov et al. [2015] can be considered the state-of-the-art method
for solving hierarchical LSP’s we saw in the last chapter 5 that it tends to perform
quite poorly if a large number of active-set iterations is necessary in order to find the
optimal active-set. The reason is that factorizations available from the previous active-
set iteration are not cheaply updated as it is the case for example in Escande et al.
[2014]. Rather, all factorizations from the first to the last level are computed anew,
even if the active-set change occurred on some level l > 1. In app. D, a comparison of
computational times with the solver Escande et al. [2014] incorporating factorization
updates is given for a dynamic control problem.

In this chapter we present some methods to computationally accelerate LexLSI.
First some details on the inner workings of LexLSI (sec. 6.1) are given. These are
necessary for understanding the mechanisms which allow LexLSI to save computational
time. In 6.2 the necessary steps are developed to restart the factorization from the level
lasc > 1 where the active-set change occurred (asc: active-set change). Secondly, the
decomposition itself is accelerated by leveraging the structure of the constraint matrix
(see sec. 6.3) and bound constraints (see sec. 6.4). These changes to LexLSI are then
validated in 6.5 on a test bench of five numerical tests showing their capability of
enhancing the original algorithm in terms of computational speed.

6.1 Preliminaries

In sec. 2.3 the so-called null-space method was introduced which solves objectives in
the projection of the null-space of the constraints. In the case of LexLSI, the bases for
the null-space Zl and its complementary space Yl of level l are chosen as
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Yl = Πl

[
R−1
l

0

]
, Zl = Πl

[
−R−1

l Tl
I

]
(6.1)

with the QR decomposition of Ãl = AlNl−1 ∈ Rml,n−r1:l−1 (recall that Ni = Z1 . . .Zi;
r1:l−1 =

∑l−1
i=1 rank(Ãi))

QT
l ÃlΠl =

[
Ql
′ Ql

′′]T ÃlΠl =

[
Rl Tl
0 0

]
. (6.2)

We have Ql
′ ∈ Rml,rl , Ql

′′ ∈ Rml,ml−rl , Rl ∈ Rrl,rl and Tl ∈ Rrl,n−r1:l . QT
l = Hrl . . .H1

assembles the rl = rank(Ãl) orthogonal Householder transformations (HHT). The
HHT transforms the vector tpvi ∈ Rmt , mt = ml− i+ 1 at stage i of the decomposition
as follows:

H2,2
i

[
tpvi T

]
=

[
α H2,2

i (1, :)T

0 H2,2
i (2 : mt, :)T

]
(6.3)

with Hi =

[
0 ∈ Ri−1,i−1

H2,2
i ∈ Rmt,mt

]
. (6.4)

The colon : encompasses every single entry of the row or column while j : k contains
every entry from the j-th to the k-th row or column index. The complexity of the
operation is O(4nmt), see Golub et Van Loan [1996], page 211. In every of the rl
stages of the decomposition, the pivot column tpvi is chosen from the right bottom
block T 2

i−1,l (which corresponds to
[
tpv T

]
in (6.3)) of the previous iterate i− 1 of the

decomposition

Hi−1 . . .H1ÃlΠ1 . . .Πi−1 =

[
Ri−1,l ∈ Ri−1,i−1 T 1

i−1,l ∈ Ri−1,n−r1:l−1−i+1

0 T 2
i−1,l ∈ Rmt,n−r1:l−1−i+1

]
. (6.5)

The pivot column can be picked in a simple ascending fashion pvi = i with i = 1, . . . , rl
and Πl = I. However, Ãl might be rank deficient. By always choosing the col-
umn of T 2

i−1,l which has the largest quadratic norm ρ, a so-called rank revealing QR
decomposition is conducted, see Björck [1996], chapter 1. This selection of pivot
columns ρpv1 > ρpv2 > · · · > ρpvrl introduces a sequence of column permutations
Πl = Π1,l . . .Πrl,l which swap the pivot column pvi with the column of the current
index i of the QR decomposition.

The algorithm stops if the rank of the matrix is revealed by reaching either the max-
imum rank (= min(nrRows, nrCols)) or by revealing rank deficiency with the column
norms of all the remaining columns T 2

rl+1,l being below a small numerical threshold
(≈ 1e−12).
Zl is a basis of the null-space of Ãl as can be seen from

ÃlZl = Ql

[
Rl Tl
0 0

]
ΠT
l Πl

[
−R−1

l Tl
I

]
= Ql

[
−RlR

−1
l Tl + Tl
0

]
= 0 . (6.6)
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The independence of the bases is given by the identity matrix which chooses a set
of n −m independent variables for the null-space basis, see chapter 15 of Nocedal et
Wright [2006].

The bases are not orthogonal (Y TY 6= I, ZTZ 6= I) and do not result in minimal
norm solutions x. However, they enable a simple variable elimination

xl−1 = Ylxl,Y +Zlxl,Z = Πl

[
R−1
l (xl,Y − Tlxl,Z)

xl,Z

]
. (6.7)

where xl,Z is some simple selection of variables by the permutation matrix Πl. The
term variable elimination originates from the fact that a certain set of variables (the
size corresponds to the rank of the respective constraint matrix) is dedicated to the
fulfilment of each level. These are then ‘eliminated’ and are not available any more for
the fulfilment of lower priority levels.

For every level, a least squares problem of the form (2.31)

min.
xl,Z

‖Ãlxl,Z + yl‖2
2 l = 1, . . . , p (6.8)

with yl = Al

∑l−1
k=1(Nk−1Ykx

∗
k,Y ) + bl is solved. LexLSI implements the lexicographic

QR decomposition

Ap =


Q′1 Q1

′′

L21 Q′2
. . .

...
...

. . .
. . .

Lp1 Lp2 · · · Qp Qp
′′



R1 T12 · · · T1p

R2 · · · T2p

. . .
...
Rp

0 0 · · · 0

ΠT (6.9)

with the stacked constraint matrix Ap =
[
AT

1 . . . AT
p

]T
and the QR decomposi-

tions (6.2) of Ã1 to Ãp. The components L are a result of the variable elimination and
their computation is detailed in (6.10).

This lexicographic decomposition can be conducted in place which overwrites the
original stacked constraint matrix Ap. Its general shape is given in fig. 6.1 (without
the modifications due to the constraint addition). Note that the matrix A ∈ RmAp

,n is
assigned as a maximum sized matrix mAp

=
∑p

i=1mi including all possible inequality
constraints in order to avoid memory reassignment in cases of active-set changes. The
overall algorithm is described in the following:

• Conduct the rank revealing QR decomposition of Ãl in place. Column permuta-
tions Πl are applied to the whole matrix Ap. The orthogonal matrix Ql can be
stored below Rl as Householder vectors Hl but is omitted in fig. 6.1.

• Conduct the variable elimination in two steps

– First, form the matrix product

Ll+1:p,l = Al+1:p,lR
−1
l (6.10)
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in place. Al+1:p,l is the matrix block below Rl and Hl. The inverse of Rl

only requires a cheap backward substitution.

– Secondly, form the matrix

Al+1:p,l+1:p ← Al+1:p,l+1:p −Al+1:p,lTl (6.11)

in place. Al+1:p,l+1:p is the matrix block below Tl.

• Repeat for each level l = 1, . . . , p

For more details see Dimitrov et al. [2015].

6.2 Factorization from some level l

So far no strategy has been proposed to update the chosen bases in LexLSI. Especially,
propagating rank changes from the level lasc where the active-set change occurred to
the lower priority levels (i.e. updating the range and null-space bases) seems difficult.
Therefore, we look for other means of improving the computational speed of the LexLSI
solver. LexLSI redoes the whole factorization even if the active-set change occurred on
some low priority level. We identify this circumstance as a possible lever to accelerate
the computations. Our goal in this section is to only redo the factorization from lasc.

6.2.1 Constraint addition

Let’s assume that the active-set search has determined that the constraint a needs to
be activated on level 3. Figure 6.1 depicts the structure of the completed factorization
from the previous active-set iteration (see Dimitrov et al. [2015]). In order to insert
the new constraint into the constraint matrix, the orange box L is moved one row
down and the new constraint row is inserted into the freed space (in the figure 6.1 it
has already be done). This partly overwrites data from the red box which can not
be reused anyway. Note that the column permutations from the rank revealing QR
decompositions of the levels 1 to lasc − 1 are applied to a. In the following, the gray
patterned box is completely overwritten while the filled orange box and the framed
blue box need to undertake a few adjustments.

The columns in the blue box T need to be reversed to the state after the factoriza-
tion of the second level lasc−1 = 2. This is done by applying the column permutations
TΠT

p . . .Π
T
lasc

from the rank revealing QR decompositions of the level lasc to the last
level p in reverse order.

The gray patterned box needs to be factorized again from scratch. In order to do so
it is filled with the trailing ends of all the constraints that already have been in the old
active-set (corresponding to the red dashed boxes T3, T4 and T5). Again, the column
permutations of the levels 1 to lasc − 1 are applied (not to a3,T ).

Next, the variable elimination (6.10), (6.11) needs to be applied to the new row and
the dashed red framed boxes. For this we loop from level i = 1 to level lasc−1 = 2. We
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a3,1 a3,2

R1

T1

T1
T16T12 T13 T14 T15

≈ 0

R2

T2

T2
T26T23 T24 T25L21

R3

T3

T3

T36T34 T35L31 L32

R4

T4

T4

T46T45
L41 L42

L43

R5

T5

T5

T56
L51 L52

L53 L54

T

T
a3,T

L

Fig. 6.1. The structure of the completed factorization from the previous active-set iteration
(in black). The new row (filled orange box) has already been inserted after the orange framed
box was moved one row down.

apply the inverse of the upper triangular matrix R−1
i of the current index i from the

right to the part of the new row alasc,i that is below the Ri matrix of the current index
i. Then, the second step of the variable elimination with the multiplication from the
right with Ti,j=i+1:lasc−1 is conducted to the trailing end of the new row alasc,j=i+1:lasc−1.
Note that both Ti,j and alasc,j have the same column order since the permutations of
the QR decomposition of the trailing levels are already applied to a. With the now
updated matrices Llasc,1:lasc−1 we proceed with the standard variable elimination of the
remaining trailing blocks Tlasc:p (red dashed framed boxes). The algorithm structure is
given in alg. 1. Information about the column lengths and bound constraints can be
taken advantage of as described in sec. 6.3 and sec. 6.4.

Note that the added constraint on lasc does not change the pivot column choice of
the rank revealing QR decompositions of the previous levels (where the main criteria
is to look for the columns with the largest norm of each respective level). Therefore,
there is no concern of ill conditioning of the constraint matrices even after several



114 Computational accelerations for LexLSI

Algorithm 1 – Pre-variable elimination after active-set change on level lasc

1: lasc = 3, p = 5
2: for i = 1 : lasc − 1 do
3: if Add constraint then
4: alasc,i ← alasc,iR

−1
i

5: for j = i+ 1 : lasc − 1 do
6: alasc,j ← alasc,j − alasc,iTi,j
7: end for
8: end if
9: for k = lasc : p do

10: Tk ← Tk −Lk,iTi
11: end for
12: end for

constraint additions and removals. The level lasc, where the new (possibly linear de-
pendent) constraint was added, and lower priority levels are subject to rank revealing
QR decompositions from scratch. Possible linear dependency is therefore sufficiently
handled by the original algorithm.

6.2.2 Constraint removal

In the case of a constraint removal the box L is moved one row up which overwrites the
deactivated constraint. Furthermore, in alg. 1 the pre-variable elimination of the new
row can be skipped and only the handling of the trailing end needs to be conducted.

6.3 Leveraging column lengths

Another way to save computational cost is by taking advantage of the structure of the
constraint matrix A. For this, in the very first active-set iteration we measure the
length of each column of each level’s constraint matrix Al, l = 1, . . . , p. For this the
algorithm goes through all columns Al,c(j), c = 1, . . . , n from the bottom to the top
j = ml, . . . , 1. In case that a value |Al,c(j)| > κ is found the current index j is noted
in the column length matrix Υ ∈ Rp,n as

column length(l, c) = Υ(l, c) = j . (6.12)

The algorithm proceeds with the next column c = c+1. κ = 10−18 is a small numerical
value.

Known structure about the problem can be shared with the solver beforehand.
In the robotic control case, this could include the kinematic task structure. Joints
not on the kinematic chain yield zero columns for the corresponding variable of the
task Jacobian. Same holds for the case of incorporated dynamics in the form of the
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equation of motion. Jacobians of motion controllers only include the kinematic but not
the dynamic variables like joint torques and contact wrenches.

Note that bound constraints are generally ignored in the column length matrix Υ
(see sec. 6.4.1). Also, the column permutations Π have to be applied to Υ after every
step of the QR decomposition. In the case of an active-set change, the permutations
from level p to lasc then have to be reversely applied ΥΠT

p . . .Π
T
lasc

to restore the
ordering corresponding to the state of the column permutations after the factorization
of the level lasc − 1.

6.3.1 Usage during the QR decomposition and the variable
elimination

The column length information enables a shortened HHT during the QR decomposition
of the constraint matrix Ãl of level l (6.2). If there are bottom zeros on the pivot column
tpvi , (6.3) becomes

H
[
tpvi T

]
= H

[
t1pvi T 1

0 T 2

]
=

[
H1,1 0

0 0

] [
t1pvi T 1

0 T 2

]
=

α H1,1(1, :)T 1

0 H1,1(2 : mt, :)T
1

0 T 2


(6.13)

where t1pvi is of length mt = Υ(l, pvi) − i + 1. This knowledge enables computational
savings of order O(4n(ml −Υ(l, pvi))).

This is especially helpful if the problem is augmented with an upper triangular
matrix R [

J
R

]
(6.14)

or a level with bounds of the form [
J1 J2

0 I

]
. (6.15)

Furthermore, the knowledge of the column lengths allows to omit bottom zero rows
during the variable elimination (6.10)

Li,l = Ai,l =

[
Âi,l

0

]
← Ai,lR

−1
l =

[
Âi,l

0

]
R−1 =

[
Âi,lR

−1

0

]
(6.16)

and (6.11)

Ai,l+1:p =

[
Âi,l+1:p
ˆ̂Ai,l+1:p

]
← Ai,l+1:p −Ai,lTl =

[
Âi,l+1:p
ˆ̂Ai,l+1:p

]
−
[
Âi,lTl

0

]
(6.17)

for i = l+1, . . . , p. The length of 0 (and ˆ̂Ai,l+1:p) is thereby determined by mi−max(Υi,l

where max(Υi,l) is the length of the longest column in Ai,l.
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6.3.2 Updating the column lengths

Constantly determining the column lengths Υ from scratch during every step of the
the QR decomposition, the variable elimination or active-set changes is very expensive
(and not necessary).

Instead, we keep track of the longest column on the ‘left side’ υ ∈ Rp,1, i.e. the
longest column length of all the pivot columns pv that have been chosen so far during
the QR decompositions of the levels 1, . . . , l (and then were column swapped to the
current column index of the QR decomposition - or the ‘left side’). A quick example
is given below with the QR decomposition of the level 1 constraint matrix A1:
× × × ×
× × ×
× ×

×

→

× × × ×
× × ×
× ×
×

→

× × × ×
× × ×
× ×
×

→

× × × ×
× × ×
× ×
×

 . (6.18)

The pivot column of each iteration of the QR decomposition is marked in green.
Columns that already have been chosen as pivot columns and have been permuted
to the ‘left side’ are marked in red. Matrix entries that have been affected by the HHT
are colored in blue. The HHT of the last column is omitted.

With each chosen pivot column pv we update υ by

υ(i) = max(υ(i),Υ(i, pv)) i = l, . . . , p . (6.19)

In our example υ and Υ are given as

υ = 0; Υ =


3
2
4
1


T

→ υ = 2; Υ =


2
3
4
1


T

→ υ = 3; Υ =


2
3
4
1


T

→ υ = 4; Υ =


2
3
4
1


T

.

(6.20)
Υ is only updated with regard to the column permutations.

In multi-level scenarios we need to consider the lengths of the pivot column on all
levels l + 1, . . . , p after the level l currently subject to the rank revealing QR decom-
position. This information can then be used in the variable elimination of the levels
l + 1, . . . , p once the QR decomposition of level l is finished (and also in the QR de-
composition of these lower priority levels). At this point, the current values of υ(i)
are stored in another matrix C ∈ Rp,p as C(i, l) = υ(i) with i = l, . . . , p. With this
information υ can be properly reset as

υ(i) = C(i, lasc) i = lasc, . . . , p (6.21)

in the case of a factorization restart on level lasc, see sec. 6.2.
With the activation or deactivation of a constraint on lasc only the column length

of this specific level is influenced. New constraints are inserted at the top of the
constraint matrix Alasc . We then loop through all the column lengths of this level
Υ(lasc, i), i = 1, . . . , n and adapt them in the following manner:
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• Υ(lasc, i) > 0 → increase column length Υ(lasc, i) by 1

• Υ(lasc, i) = 0

– value of current index of the new row 6= 0→ increase column length Υ(lasc, i)
by 1

– value of current index of the new row == 0 → do nothing

In the case of the deactivation of constraint d on level lasc, we apply following similar
update scheme on the lasc-th row of Υ:

• Υ(lasc, i) ≥ d → decrease column length Υ(lasc, i) by 1

• Υ(lasc, i) < d → do nothing.

6.4 Bound handling

While bound constraints on the first level are cheaply handled in LexLSI (actually, only
if the first level exclusively consists of bound constraints), there is no special bound
treatment on lower levels. However, considering bound constraints especially in the
variable elimination has the potential to decrease the computational effort.

6.4.1 Keeping track of bound constraints

Bound constraints are thoroughly kept track of during the composition of the constraint
matrix Ap at the beginning of every active-set iteration and during every step of the
QR decomposition.

During the constraint matrix composition a differentiation between ‘general’ and
‘bound’ constraints is made. General constraints are put at the top of each level while
bound constraints are put at the bottom. Each bound constraint’s row number in the
constraint matrix Ap is stored.

During the QR decomposition bound constraints require attention if the column
corresponding to the bounded variable is chosen as the pivot column. In this case the
bound is removed from the bound tracker and turned into a general constraint. On
the other hand, if a column corresponding to a bound constraint is permuted with
the pivot column (not necessarily containing a bounded variable) the permutation also
needs to be applied to the bound tracker (for example we are at iteration 5 of the QR
decomposition of level 1; column 5 corresponds to a bounded variable and column 8
was chosen as a pivot column; then the bound tracker is updated such that the newly
bounded variable is variable 8 due to the column permutation of column 8 with column
5). Note that bound constraint which not have been pivoted yet are not considered
in the column length. Once we pivot a column pv containing bound constraints we
update υ by

υ(i) = max(υ(i),Υ(i, pv) + 1) (6.22)
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with i being every level i = l, . . . , p where the corresponding variable is bounded.
In the case of active-set changes and usage of the factorization restart method

the bound tracker needs to be updated accordingly. Special attention is required if
the variable bounded by the added constraint was already used as a pivot column
during the decomposition of a level < lasc. If so, the constraint is counted as a general
constraint and put at the top of the bound constraints. If not, the bound is added to
the bound tracker and put at the bottom of the bound constraints.

6.4.2 Using bounds in the variable elimination

The inverse of a blocked matrix can be calculated in the following way for invertible
full rank and square matrices M and P Carlson [1986]:

R−1 =

[
M N
O P

]−1

(6.23)

=

[
(M −NP−1O)

−1 − (M −NP−1O)
−1
NP−1

−P−1O (M −NP−1O)
−1

P−1 + P−1O (M −NP−1O)
−1
NP−1

]
.

(6.24)

In our case, R is upper triangular so we have O = 0. With the presence of bound
constraints I the QR factorization is designed in such a way that bounds come last,
i.e. P = I (see sec. 6.4.3).

The inverse of R then writes as follows:

R−1 =

[
M N
0 I

]−1

=

[
M−1 −M−1N

0 I

]
. (6.25)

Now only the inversion of the smaller upper triangular matrix M instead of R is
required. This means for the first step of the variable elimination (6.10) that Al+1:p,l

is divided into

Al+1:p,l =
[
Al+1:p,l Al+1:p,l

]
(6.26)

so

Al+1:p,lR
−1
l =

[
Al+1:p,l Al+1:p,l

] [M−1
l −M−1

l Nl

0 Il

]
(6.27)

=
[
Al+1:p,lM

−1
l Al+1:p,l −Al+1:p,lM

−1
l Nl

]
. (6.28)

6.4.3 Special QR factorization

In order to be able to leverage bound constraints in the variable elimination step a
special QR decomposition needs to be applied which aims to permute bound constraints
to the bottom right corner of the triangular matrix R.
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The level subject to the QR decomposition is of following form:

A =

[
M N

0 Î

]
(6.29)

The full rank matrix Î is an ‘unordered’ identity matrix, i.e. every column and row has
only a single entry 1 which are not necessarily ordered diagonally. This can happen
since during the composition of the constraint matrix A there is no specific ordering.
The rank ofA is then rank(A) = rank(M )+rank(Î). This can be seen by multiplying
A from the left with a full rank square matrix (which does not change the original rank
of the (possibly non-square) matrix A)

rank(A) = rank

([
Î −N
0 Î

]
A

)
= rank

([
Î −N
0 Î

] [
M N

0 Î

])
(6.30)

= rank

([
M 0

0 Î

])
= rank(M) + rank(Î) . (6.31)

For this it needs to be ensured that a variable is bounded once at most per level.
First, a rank revealing QR decomposition of M is conducted. Once rank(M ) is

revealed pivot columns from
[
NT ÎT

]T
are chosen. Since the rank of the remaining

columns is already known (= rank(Î)), the rank revealing part of the QR decomposi-
tion is omitted. Instead, any remaining column containing a bound constraint is chosen
without ordering them after their norm. This does not change the condition number
of R since orthogonal transformations (or no orthogonal transformation thereof due to
the absence of column permutations) can be applied under invariance of the condition
number:

cond(A) = cond(PA) = cond(PQR) = cond(R) . (6.32)

If a pivot column is chosen which represents a bounded variable either on the level
currently subject to the QR decomposition or some lower level, it requires removing
its entry from the bound tracker.

For visualization of the case of a bounded pivot column, let us take following ex-
ample with A ∈ R10,11, M ∈ R5,6, N ∈ R5,5 and Î ∈ R5,5. The rank of the matrix A
is rank(A) = 9 with rank(M ) = 4 and rank(Î) = 5. The algorithm then starts with
the QR decomposition of the matrix M .

M

0

N

Î

→

RM

0 0

TM

≈ 0

TN

≈ 0

11

12
13

14

15
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Assume that at this stage the rank of M has been identified as rank(M ) = 4. The
quadratic norms of the remaining columns of M are below the threshold for linear
dependency so pivot columns representing bound constraints need to be chosen.

Pivot columns are chosen from left to right, starting with the column that contains
11. A row permutation (swapping the two coefficients 11 and 12 and the corresponding
entries of the right hand side b is enough) is then applied. Note that this requires
a parallel update of the active-set ordering. 11 is then permuted with the column
corresponding to the current iteration of the QR decomposition i = 5:

RM

0 0

TM

≈ 0

TN

≈ 0

11

12

13

14

15

→

RM

0 0

T̃

12

13

14

15

11

≈ 0

Now a shortened HHT can be applied on the leftmost vector

H

[
0
11

]
=

[
1
0

]
(6.33)

where 0 ∈ Rrd,1 and rd = 1 is the rank deficiency of M and A respectively. The
Householder vector v for H = I − τvvT can be simply defined as

v =

[
1
s

]
=

 1
0
−1

 . (6.34)

s is the essential vector that can be stored cheaply as H (in the decomposition fig 6.1
below the R’s) instead of maintaining a full representation of the Q matrices. τ = 1
and 0 ∈ Rrd−1,1. Note that applying H to the trailing end of the matrix only consists
of a row swap of the right hand side b.

Eventually, the following decomposition is obtained (with T = T̃Π5:):

RM

0 0

T

1
−1 1
−1 1
−1 1
−1 1
−1 →

RM

0

T

I

≈ 0 .
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If the matrix M is empty with

A =

[
N

Î

]
(6.35)

then all pivot columns have the form

pivot =
[
βT 0T 1 0T

]T
. (6.36)

β is a vector containing non-zero values. In this case a shortened HHT is not applicable.
Instead, we first need to swap the bound below β and then apply a full HHT on[
βT 1

]T
.

6.5 Evaluation

We conduct some timing tests comparing the performance of the modified version of
LexLSI (v1), which enables factorization restarts after active-set changes and takes ad-
vantage of bound constraints and column lengths, to the original one (v0). In the first
row of the timing graphs the overall computation times of v0 and v1 are given. Addi-
tionally, the timings of some components are given. ’Advance’ (’Adv’) encompasses the
time of the pivot column search, the bound handling and the column length handler
updates. ’Householder Transform’ (’HHT’) and ’Variable elimination’ (’VarEl’) give
the duration of the HHT and the variable elimination respectively. Other components
are for example data initialization and data copying (at the beginning of each active-set
iteration) but their computation time is not depicted separately since they are of same
computational complexity for both v0 and v1.

The second row of the graphs shows how many rows were involved in the HHT
while the third row indicates how many rows were involved in the variable elimination.
The third row also indicates with ‘nrBounds’ how many bound constraints could be
used for simplified operations during the HHT and the variable elimination.

For all the timings and row counts the percentage of how v1 performed against v0
is given in the right column of the graphs:

perf =
v1

v0
· 100% . (6.37)

6.5.1 Test 1: Factorization restart

In test 1 the effect of the factorization restart on the computation time is demonstrated.
Two full rank matrix A ∈ RmA,n and B ∈ RmB ,n with mA + mB = n and n = 100
are defined. Level 1 consists of a set of equality constraints Ax = bA, level 2 consists
of a set of inequality constraints lB < Bx < uB and B on level 3 is a set of equality
constraints Bx = bB. bB are chosen as either bB < lB or bB > uB in order to trigger
the activation of the inequality constraints on level 2. Initially, the matrices A and B
are of size mA = n − 1 and mB = 1 respectively. Their sizes are then incrementally
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Fig. 6.2. Test 1, schematic of the problem development. The size of A is decreased and
the size of B on the second and third level is increased successively.

Fig. 6.3. Test 1, evaluation data. The test is characterized by a decreasing number of
equality constraints on the first and increasing number of inequalities on the second of four
priority levels.

decreased and increased until A ∈ R1,n consists of a single row and B ∈ Rn−1,n. The
structure of the evolving problem is given in fig. 6.2.
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The speed up accomplished with the factorization restart is heavily dependent on
the priority level where the active-set change and therefore the restart is happening,
and the size of the factorization of the previous levels. This example however can give
a rough idea about the achievable behaviour (see fig. 6.3). The bound handling method
is disabled.

With more inequalities added on the second level the number of active-set iterations
increases linearly to it. LexLSI does a sequence of full steps to activate all the (violated)
inequality constraints on the second level. Thereby, the matrix A is only factorized
once in the first iteration. Especially in the beginning, when A still has high row
dimensionality, the speed-up is significant. For mA = 86 and mb = 14 there are 15
active-set iterations (the first active-set iteration is without any constraints activated
on level 2). The factorization of A ∈ R86,50 is conducted only once instead of 15
times as it is the case for v0. This leads to v1 only taking about 30% (2.96 ms) of the
time seen for v0 (9.73 ms). The reduced number of HHT operations has the biggest
influence with a duration of 4.86 ms for v0 and 0.57 ms for v1. With decreasing size of
A however, its QR decomposition takes less effort and makes the time savings of the
factorization restart decrease as well.

The number of rows involved in the variable elimination sees a steeper increase for
v0 than for v1. This is due to sparse structure of the last level of bound constraints
where v1 omits bottom zeros with the knowledge of the column lengths.

6.5.2 Test 2: Computational cost of tracking the bound con-
straints

Test 2 can be considered a worst case scenario, with a large number of bound constraint
present but with no possibility of making use of them. Level 1 is structured as a
square and full rank constraint matrix A ∈ R50,50 while increasingly more levels with
square bound constraint matrices I ∈ R50,50 are added until p = 100 is reached. All
constraints are equality constraints so the problem is always solved within one active-
set iteration. LexLSI stops after the decomposition of A since no variables are left for
the decomposition of the remaining levels. The schematic of the test is given in fig. 6.4.

For the case p = 100, in every step of the QR decomposition of A the bounds of the
pivot column need to be swapped 99 times to the bottom of the general constraints of
each respective level. Furthermore, each time they need to be removed from the bound
tracker. In fig. 6.5 a linear increase of the ’Advance’ computation times with the
number of pure bound levels can be observed, making it 50 times slower than without
bound handling for p = 100. However, its absolute computation of 0.25 ms can be
considered small, making up only 2% of the overall computation time of 12.89 ms.

The number of rows involved in the HHT stays constant for v0 and v1 since the
first level is of full rank so no variables are left for the decomposition of the lower levels.
The number of rows involved in the variable elimination increases linearly for both v0
and v1 due to the increasing number of lower priority levels.
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Level 3

Level 99

Level 100

x = b

x = 0

x = 0

x = 0

x = 0

Fig. 6.4. Test 2, schematic of the problem development. More pure bound constraint
matrices I are added on an increasing number of priority levels.

Fig. 6.5. Test 2, evaluation data. The test is characterized by an increasing number of
levels constraining all variables.

6.5.3 Test 3: Taking advantage of bound constraints during
the QR decomposition

In test 3 the general ability of the bound handling to speed up the QR decomposition
of a square full rank matrix is shown. The matrix A is of dimensions A ∈ R50,50.
The number of bounds is increased incrementally by 1 such that I ∈ R0→50,0→50 and
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04

Level 1

x = b

Fig. 6.6. Test 3, schematic of the problem development. The number of bound constraints
in the matrix A is increased successively.

Fig. 6.7. Test 3, evaluation data for the decomposition of a square matrix with increasing
number of bound constraints.

eventually A only consists of bound constraints A = I. The general structure of the
problem is given in fig. 6.6.

Timings are given in fig. 6.7. The computation time of v1 decreases linearly with
the addition of bound constraints. Eventually, the computation times of v1 fall below
50% of the ones seen for v0. Foremost, the rank revealing QR decomposition is only

applied on M (and not on
[
MT 0T

]T
) which is reflected in the decreasing number

of HHT rows (HHTv1) in the left graph of the second row of fig. 6.7. This is due
to the knowledge of the column lengths which enables to make use of the sparsity of
the bound constraints. Once v1 proceeds to the QR decomposition of I the simplified
HHT is applied, leading to an additional time saving. This is reflected in the increasing
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Fig. 6.8. Test 4, schematic of the problem development. The rank of the matrix A is
decreased successively.

number of pure bound constraints nrBoundsv1.

For A = I ∈ R50,50 a sharp decrease in computation time is seen for v0. This is
due to the fact that the HHT from the Eigen library Guennebaud et al. [2010] does
not apply the trivial (since H22 = I) multiplication (6.3).

The timings for the case of 49 bound constraints I ∈ R49,49 are as following: v0
takes 0.082 ms for the decomposition, with the HHT adding 0.053 ms and ’Advance’
adding 0.004 ms. v1 on the other hand takes 0.043 ms for the decomposition, with HHT
contributing with 0.002 ms and ’Advance’ adding 0.013 ms to the overall computation
time.

Since there is only one level no variable elimination is conducted.

6.5.4 Test 4: Taking advantage of bound constraints during
the variable elimination

Test 4 shows the computational speed up achieved by leveraging bound constraints
during the variable elimination. A two level problem is defined. Level 1 is a square
matrix ∈ R100,100 composed of a rectangular matrix A ∈ R50,100 and a bound constraint
matrix I ∈ R50,50 constraining the last 50 variables. The rank of A is incrementally
decreased from 50 to 1. A fully determined problem is obtained with the minimal
norm task I ∈ R100,100 which is added on the second level, bounding all variables. The
schematic of the test is given in fig. 6.8.

In this example significant speed-up is achieved (for rank(A) = 50, v1 only takes
61% of the time needed for v0, and for rank(A) = 1, v1 only takes 40% of the time
needed for v0) since the problem is dominated by bound constraints (see fig. 6.9).

First, a rank revealing QR decomposition of M is conducted. Once its rank (or A’s
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Fig. 6.9. Test 4, evaluation data with decreasing rank of A on the first level, leaving more
and more variables for the decomposition of the bound constraints on the second level.

rank, respectively) is revealed, the algorithm proceeds to the simplified decomposition
of the identity matrices on the first and second level. v1 only Householder-transforms
less than 50% of the rows transformed by v0. The number of rows involved in the
HHT for v1 increases until rank(A) ≈ 15 and then starts to decrease again. The
increase comes from the fact that increasingly more rows on the second level need
to be Householder transformed during the QR decomposition (in the beginning no
variables are left for the QR decomposition of the second level). The saturation on the
other hand is due to the fact that in the beginning a high number of bound constraints
on the second level are permuted to the ‘left side’, creating a high count of general
constraints during the variable elimination. This is also the reason why the number of
pure bound rows ‘nrBoundsv1’ does not increase linearly with decreasing rank of the
matrix A but stays constant at ‘nrBoundsv1’= 50. This corresponds to the number of
bound constraints on level 1 which can be handled as pure bound constraints, enabling
a shortened HHT and a matrix block inversion during the variable elimination of the
second level.

For rank(A) = 1, v0 takes 0.55 ms for the decomposition, with the HHT adding
0.36 ms, ’Advance’ adding 0.013 ms and ’VarEl’ adding 0.078 ms to the overall com-
putation time. v1 on the other hand takes 0.22 ms for the decomposition, with HHT
adding 0.070 ms, ’Advance’ adding 0.020 ms and ’VarEl’ contributing with 0.028 ms to
the overall computation time.
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Fig. 6.10. Test 5, schematic of the problem development. The number of variables n is
increased successively.

6.5.5 Test 5: Increasing the number of variables

Test 5 shows a problem on which the solver v1 can hardly achieve any computational
accelerations despite the presence of bound constraints. The problem starts with full
rank matrices A ∈ R50,50 on the first and I ∈ R50,50 on the second level. The number
of variables n is increased from 50 to 100 (x ∈ R50→100) with A ∈ R50,50→100 on the first
and

[
I ∈ R50,50 0 ∈ R50,0→50

]
on the second level. Note that the problem is always

fully determined since n ≤ m1 +m2. The schematic of the test is given in fig. 6.10.

The achieved speed-up is relatively small, if noticeable at all (see fig. 6.11). The
reason is that the rank revealing QR decomposition of A chooses pivot columns indis-
tinguishably of possible bound constraints on the second level. These bound constraints
then cannot be used for a simplified pivot column search and HHT on the second level.

Nonetheless, for n = 100, v1 takes about 90% of the computation time required for
v0. v1 applies the HHT only on about 66% of the rows of v0 but this only leads to a
15% speed-up in HHT’s computation time. In fig. 6.12 it can be seen that the overall
relative HHT effort (corresponds to the size ’nrRows × nrCols’ of the matrices the
HHT is applied on) is a bit higher (81%) than just the HHT row count (66%).

The number of rows involved in the HHT for v1 increases until the problem has
grown to about 80 variables and then starts to decrease again. This is the same
phenomenon as seen in test 4: bound constraints on the second level are swapped
to the ‘left side’ during the QR decomposition of the first level. These constraints
are then converted to general constraints which shapes the level 2 constraint matrix
into the form (6.35). This increases the number of rows that need to be Householder
transformed and prohibits the simplified HHT in general.

The computational effort for the variable elimination decreases to 56% of the one of
v0. Its overall time is small compared to the one of the HHT and therefore only leads
to a small decrease of overall computation time of v1. The decrease is due to the fact
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Fig. 6.11. Test 5, evaluation data with an increasing number of variables, leaving more
and more variables for the decomposition of the bound constraints on the second level.

Fig. 6.12. Test 5, number of overall matrix operations during the HHT.

that in the beginning all bound constraints are swapped to the ‘left side’ during the
QR decomposition of the first level. However, with an increasing number of variables
chances decrease to pivot a column which corresponds to a bounded variable on the
second level. This leads to an approximately linear decrease of the rows involved in
the variable elimination of the second level.

For n = 100, v0 takes 0.295 ms for the decomposition, with the HHT adding
0.166 ms, ’Advance’ adding 0.011 ms and ’VarEl’ adding 0.041 ms to the overall com-
putation time. v1 on the other hand takes 0.266 ms for the decomposition, with HHT
contributing with 0.141 ms, ’Advance’ adding 0.022 ms and ’VarEl’ contributing with
0.025 ms to the overall computation time.
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6.6 Conclusion

In this chapter we adapted the given solver LexLSI by a few modifications in order
to gain computational speed-up. Our implemented methods of restarting factoriza-
tions, the bound and column length handling and the matrix block inversion method
indeed can lead to a computational improvement. However, the five tests showed that
the achievable speed-up in computation time depends heavily on the structure of the
problem.

For the factorization restart method it is relevant on which level the active-set
change takes place and of what dimensions the decomposition of higher priority levels
is. With active-set changes on high priority levels (as it is the case for typical robot
applications, e.g. joint, joint torque, contact wrench and trust region limits) the savings
in computation times might be negligible since the factorization of only a small number
of levels can be kept.

The same holds for the bound handling method. While keeping track of the bound
constraints only adds a negligible overhead, time savings can only be achieved if there
is a certain amount of bound constraints present. In this case a simplified column pivot
search, a simplified HHT, or a HHT on a reduced number of rows can be applied. Of
advantage is that in typical robotic applications bound constraints are on high priority
levels (e.g. joint, joint torque, contact wrench and trust region limits) which promotes
cheap variable elimination on a high number of lower priority levels using block matrix
inversion techniques.

For typical robot applications however, the introduced improvements are not suf-
ficient to compensate for the high number of active-set iterations observed in our ex-
periments, see sec. 5.4.2. It is therefore necessary to dedicate further research on how
to counter these numerical issues and on how to incorporate factorization updates into
LexLSI.



Summary and outlook

Summary

With this thesis we developed an efficient method for the resolution of kinematic and
algorithmic singularities in multi-level constrained robotic control problems. Thereby,
we achieved high convergence rates and overcame the necessity for damping tuning
necessary for classical Levenberg-Marquardt based approaches. The methods were
evaluated in simulation for the kinematic control case and on real robot experiments
with the HRP-2Kai robot for the dynamic control case. Besides the advantages given by
the formulation of hierarchical least-squares problems with constraint relaxation itself
(and which are detailed in chp. 3), we achieved following goals with our singularity
resolution methods LexLSAug2AH, LexLSAug2SR1 and LexLSAug2BFGS:

• Kinematic and algorithmic singularity resolution for multi-level constrained least-
squares control problems while ensuring

– Numerical (joint) stability

– Joint smoothness

– Strict prioritization

– Better convergence than damping based approaches

– Computational affordability.

• No need for damping tuning. Our Newton’s method can be rather interpreted as
‘optimal damping’ as it is closely related to the LM algorithm.

• Least squares formulation enabling the usage of state-of-the-art and fast hierar-
chical least-squares solvers.

• Demonstration of numerical stability and good convergence when kinematic and
algorithmic singularities are approached and reached in a test bench with 20 test
cases and three real robot experiments.

On our way to these results, we first conducted an experimental validation of a con-
troller based on a weighted two level hierarchical least-squares solver without constraint
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relaxation. The necessary accuracy for the high precision industrial task of nut fas-
tening is provided. However, a clear distinction between safety and physical stability
relevant tasks is not possible. Additionally, the feasibility of constraints needs to be en-
sured at all times. This gave strong motivation for introducing multi-level constrained
least-squares hierarchies with constraint relaxation.

Solving linearized control problems with such hierarchically constrained least-squares
solvers requires the resolution of kinematic and algorithmic singularities. The approach
we presented in this thesis is based on principles originating from unconstrained opti-
mization, namely the GN algorithm and Newton’s method. Both can be derived from
the second order Taylor approximation of the quadratic error norm function and can
be expressed as a least-squares problem. The GN algorithm thereby neglects second
order information which leads to numerical instabilities close to singularities due to
insufficient model representation. In these cases we switch to Newton’s method with
the help of a reliable switching method based on the feasibility of the least-squares
problem.

We adapted both the GN algorithm and Newton’s method for the case of multi-level
constrained optimization by finding a formulation for the corresponding Lagrangian
gradient and Hessian. The former allowed the design of a BFGS based approximation
method for the Lagrangian Hessian (LexLSAug2BFGS). It is computationally cheap
and yields positive definite updates. This is in contrast to the analytic calculation
(LexLSAug2AH) or the approximation by the SR1 method (LexLSAug2SR1) which
both require an expensive SVD based regularization approach (Higham regularization)
for the possibly indefinite Lagrangian Hessian. However, LexLSAug2AH is superior in
terms of robot behaviour.

We formulated both the GN algorithm and Newton’s method as trust region meth-
ods. A trust region adaptation method for multi-level constrained optimization was
devised which observes directly the robot’s joint velocity state. This is in contrast to
other approaches which are designed for unconstrained optimization or optimization
with a single constraint level and are not easily transferable to constrained optimiza-
tion. The adaptation method effectively suppresses occurring numerical instabilities
after a few control iterations. A further method observing the robot’s joint acceler-
ation state introduces joint-wise damping to the direct BFGS Hessian approximation
(LexLSAug2BFGS). This further improves numerical stability and joint smoothness.

The GN algorithm and Newton’s method all rooted in optimization were then
adapted to the robot control case. We achieved this by incorporating a control time step
∆t � 1 s into our methods LexLSAug2AH, LexLSAug2SR1 and LexLSAug2BFGS.
This required weighting the Lagrange multipliers with the time step for correctly cal-
culating the Lagrangian gradient and Hessian for Newton’s method.

As the last step we adapted our methods to the inclusion of dynamics constraints.
The equation of motion and the corresponding motion controllers are of second order.
However, Newton’s method is not well defined in the acceleration domain. We therefore
designed motion controllers which emulate acceleration-based control in the velocity
domain. The equation of motion was accordingly adapted by forward integration which
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was validated with the simulation of a freely swinging pendulum. We compromised
between the consistency with the acceleration-based control and the correct calculation
of the Lagrange multipliers. Our real robot experiments showed the validity of this
compromise as it yields dynamic values in accordance with the reference values from
acceleration-based controllers and wrench sensor data.

Outlook

With our proposed methods we are able to dynamically control kinematic structures
in a multi-level hierarchy around kinematic and algorithmic singularities. Following
issues however require more research effort:

• Problems occurred with the active search in dynamically challenging situations.
Here, a high number of active-set iterations leads to violation of the real-time
computation constraint. While a few computational adjustments for the hierar-
chical least squares solver LexLSI have been introduced they are not sufficient to
overcome this problem. Further investigations first must address the reason why
these numerical issues occur when solving dynamic robot problems. Secondly,
the solver itself needs to be improved by implementing factorization updates or
a more effective active-set search and warm-start strategy.

• Further developments of the trust region adaptation methods are necessary to
allow very fast motions. A sufficiently small radius is necessary in the vicinity of
singularities in order to ensure numerical stability by good model accuracy of the
second order Taylor approximation. However, this limits the maximum speed in
regular configurations and requires a trust region relaxation if faster motions are
required.

• It would be desirable for LexLSAug2BFGS to directly update the Cholesky de-
composition of the Lagrangian Hessian similarly to Fletcher [2006] in order to
save computation time.

• For the indefinite Lagrangian Hessian of LexLSAug2AH and LexLSAug2SR1
cheaper regularization methods than the Higham regularization based for ex-
ample on the Bunch-Kaufman decomposition require our attention. Also, occur-
rences of negative definite curvature during the BFGS updates (LexLSAug2BFGS)
are ignored but rather the last positive definite update is kept and used for New-
ton’s method. This slows down convergence and also might lead to numerical
instability and needs to be investigated.

• We do not elaborate on the discontinuity that comes with a switch from the GN
algorithm to Newton’s method. A perturbation analysis for least-squares prob-
lems in the sense of Björck [1996] is relevant for full rank problems and gives
an upper bound on the discontinuity. However, with our full rank augmentation
the rank of the least-squares problem usually changes since the number of con-
straints is smaller than the number of variables. In this case only a lower bound
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can be found [Wei 1992; Wedin 1973]. Putting these results into context of our
hierarchical least-squares formulation needs to be addressed in future work.

• In the first set of evaluation tests we counted consecutive sign changes of the
calculated joint velocity vector in order to obtain a quantitative value for nu-
merical instabilities. While this measure gave a rough idea about the numerical
stability performance of the methods it is desirable to formulate a more universal
definition of numerical instability. For example, measures based on the singular
values of the Jacobian or the Lagrangian Hessian could be considered.

• Finally, with our work we introduced the concept of dynamically feasible kine-
matic control by incorporating the equation of motion and corresponding dy-
namic constraints on a high priority level. This shapes the kinematic control
output from motion controllers of lower priority levels in such a way that the mo-
tion is dynamically feasible and obeys the dynamics constraints. However, force
control (for example on some low priority level) and the concept of dynamical
consistency require more attention and it needs to be investigated how they can
be incorporated into our singularity resolution schemes.



APPENDIX A

Trust region adaptation methods
from constrained optimization

A common trust region adaptation method for unconstrained optimization Nocedal et
Wright [2006] decides upon the scalar value

ρ =
redact

redpred

=
Φ(q(k))− Φ(q(k)) + ∆q(k))

Φ(q(k))− ε(k)
(A.1)

=Φ(q(k))− Φ(q(k) + ∆q(k)) (A.2)

(A.3)

=
Φ(q(k))− Φ(q(k)) + ∆q(k))

∆q(k),TJ (k),Te(k) − 1
2
∆q(k),T (J (k),TJ (k) +H(k−1))∆q(k−1)

(A.4)

whether a step is accepted or rejected. Φ and ε are the quadratic norms of the task
error (4.7) and the slack (4.76), respectively. redact and redpred are the actual and
predicted reduction between two consecutive control iterations. From a computational
point of view, note that the calculation of Φ(q(k) + ∆q(k)) requires a full update of the
robot forward kinematics. Additionally, ρ is not defined for a converged robot with
∆q = 0 or Φ(k) = 0 and ε(k) = 0.

In unconstrained optimization and with a well chosen trust region radius, the model
yields a positive reduction redpred ≥ 0 at all times. If this is not the case, the step is
rejected and a new step is calculated with an adapted, smaller trust region. Choosing
a trust region such that the original function is well represented by the model is not
trivial. Additionally, we allow the desired value fd(t) to change over time which could
mean that a target is moving away from the current value f(q(t)), leading to redpred < 0
(this can be countered by calculating Φ(q(k) + ∆q(k)) of redact with fd(t

(k)) instead of
fd(t

(k+1))).
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Fig. A.1. Converged robot for test 4 with two just in reach static targets for each end-effector.

Fig. A.2. Test 4 with two static targets for each end-effector. The upper graph shows ρ1 of
level 1 and the lower graph shows ρ2 of level 2.

First, we look at the behaviour of ρ during test 4 (T4) of our validation section 4.5.1.
In the converged configuration, both targets are exactly reachable (see fig. A.1) with
the level 1 end-effector in kinematic singularity and the level 2 task exactly on the limit
of being in algorithmic singularity with the level 1 task. The values of ρ for the level
1 and level 2 end-effectors are given in the upper and lower graph of A.2 respectively.
The actual and predicted reduction match well in the beginning with ρ1 ≈ 1 whereas at
around 160 iterations the value drops which indicates a model misrepresentation with
the predicted reduction being larger than the actual one. Shortly before convergence at
iteration 206, the end-effector comes to a halt with zero actual reduction redact,1 = 0,
ρ1 = 0. In the converged and numerically stable (due to switching to Newton’s method)
state, for both levels we have Φ = 0 and ε = 0 for which ρ is not defined (from iteration
208). For level 2, ρ2 in the bottom graph also shows a good model state despite its
conflict with the level 1 task during the approach of the level 2 target.
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Fig. A.3. Test 1 with diagonally oscillating targets for each end-effector. The upper graph
shows ρ1 of level 1 and the lower graph shows ρ2 of level 2. The static value thereby accounts
for the changing value of fd(t) by using redact(fd(t

(k))) instead of redact(fd(t
(k+1))).

Next, the behaviour of ρ for test 1 (T1, refer to the validation section 4.5.1) is
analysed. In contrast to test 4, the targets for the two end-effectors are not static
but change over time. The values of ρ both calculated with redact(e(f

(k+1)
d )) (‘dy-

namic’) and redact(e(f
(k)
d )) (‘static’) for the level 1 and level 2 end-effectors are given

in fig. A.3. For level 1, the dynamic ρ value is almost constantly zero since redact = 0
due to the constantly changing desired value fd(t). However, the static values nicely
compensate for this on both levels, showing good matching between the actual and
predicted reduction with ρstatic ≈ 1.

A possible trust region adaptation method could for example reduce the trust region
radius for joints that are on the kinematic chain of a faulty task. Such a faulty task
could be judged upon its deviation of ρ from the optimal value 1.

Another option could be based on the filter method of Fletcher et Leyffer [2002].
Here, p − 1 filters are introduced for every of the p constrained QP problems except
the first one. Infeasible constraints are accepted. However, it is difficult to adapt the
concept of step domination and constraint minimization. Especially on lower priority
levels, dominated steps might occur all the time due to conflict with higher priority
tasks. This leads to a constant reduction of the trust region until all the joints on the
kinematic chain of these tasks are set to zero.
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APPENDIX B

Illustration of the effect of the
second order augmentation

In the following we illustrate the influence of second order augmentation on the GN
algorithm. For this, we take a fixed based robot in kinematic control mode (velocity-
based, proportional controller ėctrl (2.4)) with eight revolute joints. Six of these joints
(q1, q2, q3, q4, q5 and q6) are on the kinematic chain of the level 1 task. The end-effector
tip is asked to move to a target along the y-axis which is out of reach. Another end-
effector is branching off its kinematic chain and is composed of the joints q1, q2, q3, q7

and q8. Its target is in reach (see fig. B.1).

In the beginning, no augmentation is necessary since joint velocities for the level
1 end-effector can be created by the robot which minimize the error between current
and desired position. The problem is solved by the GN algorithm. Close to kinematic
singularity however, this ability gets lost due to imminent rank loss of the task Jacobian
J1 in the y-direction. A switch to Newton’s method is necessary to ensure numerical
stability on joint level of the level 1 kinematic chain. We augment the Jacobian J1

with the weighted dotted identity matrix I∗1 (q1, q2, q3, q4, q5, q6) as an approximation of
the true Hessian.

At this point all the joints q1 to q6 must be fully occupied with the fulfilment of
the level 1 task in order to minimize the error to the target at best. This can be easily
seen from fig. B.1 with the level 1 kinematic chain being in kinematic singularity. The
original non-linear problem ensures this naturally. However, it could not be achieved
solely by the GN algorithm which can fully ‘dedicate’ only two joints to the level 1
task due to the Jacobian being of maximum rank rank(J1) = 2. Instead, we rely
on a full rank (full rank with respect to the level 1 kinematic chain, rank(I∗1 ) = 6)
augmentation of the GN algorithm to the Newton’s method. The augmentation ‘locks’
the joints such that they are fully dedicated to the movement (or no movement thereof



140 Illustration of the effect of the second order augmentation

y
x

q1

q2

q3

q4,7

q5

q6

q8

×
Target 1

×
Target 2

→
y

x
q1

q2

q3

q4,7

q5

q6

q8

×
Target 1

×
Target 2

Fig. B.1. Left: the robot in initial configuration. q4,7 consists of two distinct revolute joints
q4 and q7 such that the rotation of q7 has no influence on the level 1 end-effector and the
rotation of q4 has no influence on the motion of the level 2 end-effector. The level 1 target
is out of reach (black kinematic chain), the level 2 target is in reach (blue and dashed blue
kinematic chain). Right: the robot in converged configuration. The black kinematic chain is
fully dedicated to the level 1 task. The full rank augmentation I∗1 (q \q7, q8) does not influence
the joints q7 and q8 which is the only one left for controlling the level 2 end-effector.

by preventing numerical instabilities and influence from lower priority levels) of the
corresponding singular task.

The joints q1 to q3, which are shared by the kinematic chains of both the level 1
and level 2 tasks, are now fully dedicated to the achievement of the level 1 task. By
virtue of the dotted identity matrix I∗1 (q \ q7, q8), the two joints q7, q8 are still used for
the fulfilment of the level 2 end-effector task.

Figure B.2 shows the corresponding joint positions and velocities for the level 1
end-effector converging to target 1 in kinematic control for LexLSAug2AH. The joint
positions and velocities of the level 2 end-effector are not displayed in order to avoid
a cluttered graph. The time step is chosen as ∆t = 1 s so ∆q = q̇ holds. Also,
the proportional gain kp for the end-effector tasks is chosen as kp = 0.01 in order to
achieve a slow robot behaviour. The algorithm switches to Newton’s method at control
iteration 129 for a trust region radius of ∆ = 0.01 rad/s. Note that the switch would
occur earlier for a smaller trust region radius and later or not at all if the trust region
is chosen larger or too large in the worst case.
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Fig. B.2. Joint positions and velocities for LexLSAug2AH of the joints q1, q2, q3, q4, q5

and q6 of the level 1 end-effector converging to target 1. The switch to Newton’s method takes
place at control iteration 129 and is depicted with a gray background.
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APPENDIX C

Pseudo-algorithms

Algorithm 2 gives the structure of the main robot control loop. For simplicity, we
assume only one task −ėctrl

l − Jlq̇(k+1) 5 wl per level l = 1, . . . , p. Note that ėctrl
l

also includes ėctrl
PD,l for dynamically feasible kinematic control. LexLSI() solves prob-

lem (2.34) and implements an active-set search in the presence of inequality constraints.
The found optimal active-set can then be accessed by ActiveSet(). cA is an indicator
for the highest among possible several priority levels where a change of the active-set oc-
curred. cA is set to −1 if no change of the active-set occurred. LagrangeMultipliers()
returns the Lagrange multipliers. UpdateRobot() updates the tasks’ Jacobians J and
motion controllers ėctrl with the new joint positions and velocities q(k+1) and q̇(k+1).
The vector H stores the Hessian matrices of all geometric functions fi ∈ Rmi of all
levels p. They are calculated externally in the function Hessian(), for example as
described in Erleben et Andrews [2017].

The augmentation R is calculated in LexLSAug2AH, LexLSAug2SR1 or LexL-
SAug2BFGS depending on the chosen method. Their pseudo-algorithms are given in
the following. Bound constraints (i.e. constraints on the variable x of the form Ix 5 c)
do not need to be considered since H = ∇qJ = 0. This also holds for LexLSAug2SR1
and LexLSAug2BFGS since J (k) − J (k−1) = 0.

The augmentation in the lines 13, 14 and 15 is only necessary if the corresponding
level contains a task which is formulated as Newton’s method. Note that the augmen-
tation is generally omitted for the equation of motion and dynamic and trust region
constraints.

C.1 LexLSAug2AH

Algorithm 3 describes the calculation of the Lagrangian Hessian Ĥ and its regularized
decomposition R by LexLSAug2AH. Higham(B) gives back the Cholesky factor R of
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Algorithm 2 – Main control loop

1: k = 0
2:
[
J (k) ėctrl,(k)

]
= UpdateRobot(q(k), q̇(k) = 0)

3: while control = true do
4: if LexLSAug2AH then
5: H = Hessian()
6: R = LexLSAug2AH(H ,Λoptim)
7: else if LexLSAug2SR1 then
8: R = LexLSAug2SR1(J (k),J (k−1), ėctrl,(k),Λoptim,(k),A(k), cA,∆q

(k),∆t)
9: else if LexLSAug2BFGS then

10: R = LexLSAug2BFGS(J (k),J (k−1), ėctrl,(k),Λoptim,(k),A(k), cA,∆q
(k),∆t)]

11: end if
12: for l = 1 : p do

13: Al =
[
−JTl −RT

l

]T
14: ll =

[
ėctrl, lower bound,T
l 0T

]T
15: ul =

[
ėctrl, upper bound,T
l 0T

]T
16: end for
17: k += 1
18:

[
q̇(k),T τ (k),T/∆t γ(k),T/∆t

]T
= LexLSI.solve(A, l,u)

19:
[
cA A(k)

]
= LexLSI.ActiveSet()

20: Λctrl,(k) = LexLSI.LagrangeMultipliers()
21: Λoptim,(k) = ∆tΛctrl,(k)

22: ∆q(k) = ∆tq̇(k)

23:
[
J (k) ėctrl,(k)

]
= UpdateRobot(q(k), q̇(k), τ (k),γ(k))

24: Wait until ∆t is reached
25: end while

the input matrix Ĥ regularized by the Higham method.

C.2 LexLSAug2SR1

Algorithm 4 describes the calculation of the Lagrangian Hessian Ĥ and its regularized
decomposition R by LexLSAug2SR1. Any underlined vector or matrix contains the
values from level l = 1, . . . , p. Bi contains the SR1 approximations B from level
1, . . . , i.
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Algorithm 3 – Lexicographic second order augmentation LexLSAug2AH

Input: H , Λ(k), ∆t
1: for l = 1 : p do
2: for i = l : p do
3: Ĥi +=

∑mi

d=1 λ
d
i,lHd,l . Build Lagrangian Hessian

4: end for
5: if 1

2
‖wJ

l ‖2 > ∆t2ν then . Newton’s method

6: Rl = Higham(Ĥl)
7: else . GN algorithm
8: Rl = {}
9: end if

10: end for
11: return R

C.3 LexLSAug2BFGS

Algorithm 5 describes the calculation of the Lagrangian Hessian Ĥ and its decompo-
sition R by LexLSAug2BFGS. Cholesky(B) gives back the Cholesky factor R of the
input matrix B + ιI∗. The weighted identity matrix is added in order to make B
strictly positive definite.
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Algorithm 4 – Lexicographic second order augmentation LexLSAug2SR1

Input: J (k),J (k−1), ėctrl,(k),Λ(k),A(k), cA,∆q
(k), k,∆t

Internal variables: B
1: y = 0
2: for l = 1 : p do
3: if k = 0 or cA > −1 and l ≥ cA then
4: B1:ml,l =

∑l
i=1

∑
j∈A(k)

i
max(∆t2ζ, 1

2
‖ėctrl,(k)

j,i ‖2
2)I∗j,i . SR1 reinitialization

5: end if
6: if k > 0 then
7: y1:ml,l = (J

(k)
l − J

(k−1)
l )T . Gradient difference of fl

8: if (y1:ml,l −B1:ml,l∆q
(k))T∆q(k) > ∆t2ξ then

9: B1:ml,l +=
(y1:ml,l

−B1:ml,l
∆q(k))(y1:ml,l

−B1:ml,l
∆q(k))T

(y1:ml,l
−B1:ml,l

∆q(k))T ∆q(k)
. SR1 update

10: else
11: . use last updated Bi,l

12: end if
13: else . No update since J

(−1)
l is not available

14: end if
15: for i = l : p do
16: Ĥi +=

∑mi

d=1 λ
d
i,lB

(k+1)
d,l

17: end for
18: if 1

2
‖wJ

l ‖2 >,∆t2ν then . Newton’s method

19: Rl = Higham(Ĥ
(k+1)
l )

20: else . GN algorithm
21: Rl = {}
22: end if
23: end for
24: return R
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Algorithm 5 – Lexicographic second order augmentation LexLSAug2BFGS

Input: J (k),J (k−1), ėctrl,(k),Λ(k),A(k), cA,∆q
(k), k,∆t

Internal variables: B
1: y = 0
2: for l = 1 : p do
3: if k = 0 or cA > −1 and l ≥ cA then
4: Bl =

∑l
i=1

∑
j∈A(k)

i
max(∆t2ζ, 1

2
‖ėctrl,(k)

j,i ‖2
2)I∗j,i . BFGS reinitialization

5: end if
6: if k = 0 then
7: Rl = Cholesky(Bl) . No update since J

(−1)
l not available

8: else
9: ∆Jl = (J

(k)
l − J

(k−1)
l )T

10: for all j ≥ l and j ∈ A do
11: yj += ∆Jlλ

(k)
j,l . Build difference of Lagrangian gradient

12: end for
13: if 1

2
‖wJ

l ‖2 > ∆t2ν then . Newton’s method
14: if yTl ∆q(k) > ∆t2ξ then

15: Bl +=
yly

T
l

yTl ∆q(k)
− Bl∆q∆q

(k),T Bl

∆q(k),TBl∆q(k)
. BFGS update

16: Rl = Cholesky(Bl + ιI∗)
17: else
18: . use last updated Rl

19: end if
20: else . GN algorithm
21: Rl = {}
22: end if
23: end if
24: end for
25: return R
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APPENDIX D

Comparison between LexLSI and
HQP

The solver HQP presented in Escande et al. [2014] provides the bases for the null-
space and the range-space by complete orthogonal decompositions. While these bases
are somewhat expensive to compute (in the case of linear dependency it requires a
second non rank revealing QR decomposition) the factorizations are updatable in a
straightforward manner.

If the active-set iteration count is close to one iteration, as it is usually the case
for slowly developing robot problems, LexLSI outperforms HQP. However, in the two
chapters 4 and 5 we observed control iterations which came with a large change of the
active-set. Determining those requires a large number of active-set iterations. LexLSI
does not incorporate an update strategy but rather recomputes the factorizations from
scratch with each addition or deletion of a constraint from the active-set. The sum of
all the factorizations is computationally expensive. Obviously this is not suitable for
real-time robot control and incorporating an update strategy seems unavoidable.

A comparison between the computation times of LexLSI and HQP for a stretch
demo is given in fig. D.1. The stretch demo is based on the same hierarchy given in
fig. 5.18 of chapter 5 with the same contact configuration of the two feet standing on
the ground and the left hand grabbing to a pole. The right hand then stretches to an
out-of-reach target in its upper right direction. The right end-effector task therefore
ends up in an algorithmic singularity with the geometric contact constraints which is
resolved by a simple augmentation with a weighted identity matrix corresponding to
the LM-method. For a better comparability, both HQP and LexLSI solve exactly the
same problem. This is achieved by only using the solution of LexLSI after every control
iteration for the robot update. The updated robot problem is then again solved by both
HQP and LexLSI. Additionally, the problem is always started with an active-set only
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Fig. D.1. Comparison of computation times and active-set iteration count between HQP and
LexLSI for a simple stretch demo with HRP-2KAI. It can be observed that HQP, which im-
plements a factorization update strategy, takes about 50% of the computation time of LexLSI
once a certain number of active-set iterations is surpassed.

containing the equalities (this is a so-called ’cold start’ in contrary to a ’warm start’
where the active-set search is commenced from the set found in the previous control
iteration). Additionally, the heuristics to exit the active-set search from sec. 5.3 is
disabled.

The active-set iteration count for HQP is higher than the one seen for LexLSI.
Even though HQP implements a slightly different active-set search where the slack
variables are always given implicitly (and therefore always being optimal) this result
has to be taken with care since HQP does not implement a proper strategy for stalling
and cycling (iterations where repeatedly the same constraints are activated and de-
activated with a null step α = 0, see 2.4). Despite this circumstance, HQP shows
approximately the same computation times as LexLSI between control time 5 s and 8 s
even though it requires over twice as much active-set iterations (the active-set search is
exited when 300 iterations are reached). This is due to cheaply updating factorizations
after constraint additions and removals. From ≈ 8 s to ≈ 15 s both HQP and LexLSI
require about 30 active-set iterations. However, HQP is clearly superior to LexLSI in
terms of computation times, requiring only about half of the computation time seen
for LexLSI. However, even in this case HQP excesses the desired loop time of 5 ms
with ≈ 6 ms. This stresses the need to further investigate the reason why these high
active-set iteration counts occur.
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Overall, it can be observed that HQP takes about 50% of the computation time of
LexLSI once a certain number of active-set iterations is surpassed. This emphasizes the
need for factorization updates in LexLSI in order to be computationally competitive
in the case of high numbers of active-set iterations.
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