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Avant propos 

 

La majeure partie de mes travaux de recherche concerne le développement de modèles 

physiques de plasmas hors équilibre thermodynamique et des codes numériques associés, 

dans le cadre d'applications technologiques diverses. 

 

Au cours des années j'ai rédigé de nombreuses notes relatives à ces modèles, détaillant par 

exemple des adaptations des équations physiques, des méthodes numériques, etc. J'ai souvent 

distribué ces notes auprès de mes collègues et des doctorants que j'ai encadrés ; je pense 

qu’elles sont susceptibles d’intéresser plus généralement tous les chercheurs développant des 

modèles physiques et numériques de plasmas hors équilibre. 

 

Il m'a donc semblé utile de synthétiser dans ce document, en vue de l'obtention de 

l'habilitation à diriger des recherches, non seulement mes travaux de recherche publiés mais 

aussi les notes mentionnées ci-dessus. J'ai choisi de rédiger le texte principal du manuscrit en 

anglais afin de le rendre accessible aux collègues et étudiants étrangers. La chronologie de 

mes activités de recherche et d'encadrement est décrite à la fin du premier chapitre, mon 

projet de recherche dans le dernier chapitre. Des informations complémentaires d'ordre 

administratif sont données en français dans la partie annexe. 

 

Gerjan Hagelaar 

Toulouse, 1 septembre 2008 

 

 

 

 

 

 

 

 

 

 

 

P.S. 9 janvier 2009 

Depuis ma soutenance le 5 décembre, avant de distribuer ce document, j’y ai fait de 

nombreuses corrections et quelques ajouts (notamment dans les chapitres 5 et 7). De plus, je 

tiens à remercier vivement mes rapporteurs et membres de jury d’avoir examiné ces travaux. 
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Chapter 1 

—————— 

INTRODUCTION 
 

 

Plasma physics 

Plasma is (partially) ionised gas which behaves so differently from normal gas that it is 

sometimes considered the fourth state of matter. Among the remarkable properties of plasma 

are : electrical conductivity, light emission, self-organisation, extraordinary chemical activity. 

Although plasma makes up over 99% of the visible matter in the universe, it does almost not 

exist naturally on earth but is created by man for technological purposes, in a process called 

gas discharge. Plasma physics studies the origin of the plasma behaviour and develops ways 

to create, sustain, and control plasma. This chapter outlines the physical principles of (man-

created) discharge plasmas, then focuses on so-called low-temperature plasmas and how these 

are studied by modelling, and eventually outlines the scope of my own work. 

 

In order to understand the behaviour of plasma, the first thing to recognise is that it consists of 

particles of different species with different elementary properties : electrons, ions, and 

neutrals. Electrons have a negative electric charge e and a mass 2000  10
6
 times smaller 

than ions and neutrals. Ions can have different charges +e, e, +2e, +3e, etc. ; most common 

are singly charged positive ions. Neutrals and ions have an internal structure which can be 

excited to different atomic or molecular quantum states ; spontaneous decay of excited states 

leads to emission of photons. Depending on these properties, the plasma particles have 

different interactions with each other and with surrounding materials.  

 

Short-range interactions can be represented as collisions : discrete interaction events between 

two particles at the time. Elastic collisions cause scattering of the particle velocities and 

kinetic energy transfer depending on the particle mass ratio ; elastic energy transfer between 

electrons and other species is very small due to the small electron mass. Inelastic collisions 

involve changes in the particle nature or internal state in which a certain (quantum) amount of 

kinetic energy is absorbed or released ; they can lead to creation or loss of particles and are 

essential to sustain the plasma : ionisation of neutrals is due to inelastic collisions (mainly 

with electrons) at high impact energy (of the order of 10 eV). Short-range interactions with 

the walls bounding the plasma generally cause loss of plasma particles : electrons and ions 

recombine at the walls and excited neutrals are often de-excited.  

 

In addition to these short-range interactions, the electrons and ions interact over long 

distances through electromagnetic fields, which gives rise to the collective behaviour that is 

most characteristic of plasma. Assume (for simplicity) that all ions have a charge +e ; then 

any difference in the electron and ion number densities implies a space charge density which 

induces a so-called ambipolar field
1
 driving the electrons and ions together. As a result, the 

electron and ion densities become and remain nearly equal : the plasma is quasineutral. Since 

the electrons move and diffuse much faster than the ions (due to their small mass) the 

ambipolar field is systematically directed against the gradient of the electron density to limit 

the electron diffusion and accelerate the ions. The field is particularly strong in front of the 

walls bounding the plasma, where wall-recombination leads to the formation of a (non-

                                                 
1
 The term 'ambipolar field' is used throughout this text to indicate the electrostatic field arising from the plasma 

charges without distinction of sheath, presheath, plasma bulk field etc. 
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quasineutral) boundary layer containing almost no electrons, called sheath. The total 

electrostatic potential drop of the ambipolar field is proportional to the electron temperature 

and usually occurs for 80-90 per cent across the sheath. The thickness of the sheath, 

characterised by the Debye length, decreases as the plasma density increases ; quasi-neutrality 

can only be maintained if the plasma density so high that : Debye length << plasma size ; this 

condition is part of the definition of plasma.
2
 The ambipolar field also reacts to externally 

applied electric fields : the sheath thickness and potentials tend to adjust such as to screen the 

plasma from the applied field and prevent separation of  electrons and ions. 

 

Electrons and ions are continuously lost by (wall) recombination and need to be re-created by 

ionisation, which costs energy. This energy is provided to the plasma by long-range 

electromagnetic interaction with electrically powered conductors in the surroundings : 

electrodes or antennas generate an applied field, which drives a current through the plasma, 

which heats the plasma particles ; this process is called gas discharge and is the main means 

of artificial plasma creation. Many different discharge configurations are possible, driving 

direct, pulsed, or alternating currents, at higher or lower frequency, by electrostatic fields or 

electromagnetic waves, etc. Due to their small mass and fast motion, the electrons are heated 

more efficiently than the ions (especially by alternating fields) whereas they also collide more 

often, hence the plasma is generated and sustained mainly by electron-impact ionisation. 

Neutral gas breaks down into plasma if each electron is sufficiently heated and has enough 

collisions to create at least one new electron on average during its life time. As the plasma 

density increases, the plasma gradually screens its interior from the applied field by space 

charges (sheaths) or currents (skin effect). Initially this screening effect can be favourable for 

electron heating and ionisation because the field becomes stronger near the plasma edge ; the 

plasma can then be sustained at weaker applied field than necessary for breakdown. 

Eventually, however, the screening reduces the heating efficiency and this limits the plasma 

density ; the ionisation degree, i.e. the ratio of electron density to total particle density, often 

remains close to zero. 

 

Plasma breakdown and sustainment are most easily achieved at some intermediate neutral gas 

pressure (density), such that the electrons have many collisions but not so many as to lose 

significant energy in (elastic) collisions before attaining the ionisation threshold energy. The 

electron temperature is then of the order of the ionisation energy whereas the other species 

stay close to room temperature ; this is characteristic of low-temperature plasmas. At higher 

pressure, (elastic) energy transfer leads to the simultaneous heating of all species together and 

breakdown requires a stronger applied field. At lower pressure, the electrons tend to be lost at 

the walls before ionising ; however, plasma can be sustained if the applied field does not drive 

the electrons to the wall so that the ambipolar field forms a stationary potential trap (e.g.  

inductively coupled plasmas). Low-pressure plasmas are often generated with the use of 

steady magnetic fields that trap the electrons in cyclotron orbits to reduce the electron wall 

loss and increase the ionisation probability ; this also modifies the ambipolar field and the 

interaction with the applied electric field, e.g. magnetized wave modes can provide special 

kinds of plasma heating. 

                                                 
2
 Plasma can be theoretically defined by two criteria. First, there are enough charged particles for the electric 

interaction to strongly perturb the thermal motion of the electrons : the Debye length D = (0Te/ene)
1/2

, 

characterising the distance over which the plasma fields can produce an electron velocity change of order of the 

electron thermal speed, is small with respect to the plasma size. Second, the electrons have enough thermal 

motion to interact with some average charged particle population, rather than with specific individual particles : 

the number of particles in the Debye sphere ND = (4/3)D
3
ne >> 1. From this second condition, it is appropriate 

to consider electrons and ions as separate continuous media interacting through macroscopic fields.  
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The electrons do not only sustain the plasma by ionisation, but also excite the neutrals to 

various kinds of excited quantum states, which activates chemical processes, causes the 

emission of electromagnetic radiation, and interferes with the electron heating and ionisation. 

Excitation kinetics and chemistry depend strongly on the parent gas. Noble gases are used to 

limit chemical activity, but molecular ions can be formed and metastable atomic species can 

play an important role in stepwise ionisation. In molecular gases, the electrons lose much 

energy by vibrational and rotational excitation, leading to gas heating and molecular 

dissociation. In gases with high electron-affinity (oxygen), a significant part of the electrons 

can get attached to neutrals and form negative ions, which reduces the ionisation efficiency 

and modifies the ambipolar field in complex ways. Also the wall surfaces can be involved in 

the plasma chemistry : wall material can be sputtered or etched, solid layers can be deposited, 

etc. Surface treatment is an important technological application of plasma. 

 

According to their physical principles, plasmas are historically divided into several categories 

which are studied by rather distinct research communities : thermal, fusion, and low-

temperature plasmas. Thermal plasmas are highly collisional plasmas where all species are 

near thermal equilibrium with deviations due mainly to radiation transport, created in high 

pressure (atmospheric) arc discharges or appearing in natural phenomena such as lightning. 

Fusion plasmas are fully ionised, magnetically confined, deuterium plasmas that are heated to 

extremely high temperatures (10 keV) for the purpose of achieving (in the future) controlled 

nuclear fusion exploitable as an energy source. The present text, however, focuses on low-

temperature plasmas : weakly ionised discharge plasmas with high electron temperature (1  

50 eV) and low gas temperature (300  2000 K), created at low to intermediate gas pressure 

or at small size in a large variety of discharge configurations for a large variety of 

applications. 

 

Plasma modelling 

Most of the fundamental physics involved in plasmas is well established [Rax05] [Rai91] and 

low-temperature plasma research is nowadays mainly concerned with the development and 

optimisation of specific plasma configurations for technological applications [Lie05]. This is 

done by a combination of experimental study, involving various electrical and optical 

measurements, and modelling. A plasma model is a system of general fundamental physical 

equations that are adapted, combined, and solved to describe (simulate) a specific plasma 

configuration. The solution of the model equations is intended to reproduce observed and 

measured plasma behaviour, thus explaining it in terms of fundamental physics, and if 

possible to predict it, thus guiding experimental development. Some basic principles of low-

temperature plasma models are as follows :  
 

 Different particle species are described separately. By order of importance : electrons 

(sustain the plasma and interact intensively with applied fields), ions (influence the 

electron motion through ambipolar coupling), excited neutrals (lead to stepwise 

ionisation and plasma chemistry), ground-state neutrals (feed stock for all other 

species). Often the neutral gas particles are so numerous that they are hardly affected 

by the plasma and require no description other than constant density.  
 

 The behaviour of a single particle species is described by the Boltzmann equation, 

solved either by particle (Monte-Carlo) methods or through approximation by a set of 

fluid equations. Fluid models are more usual at high gas density, when collision 

effects are dominant, particle models at low gas density. Sometimes fluid equations 

and particle methods are combined into so-called hybrid models. 
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 The long-range electromagnetic interaction of charged particle species is described by 

electromagnetic fields from the Maxwell equations. The Poisson equation is used for 

the ambipolar field and electrostatic applied field, the Maxwell-Ampere equation for 

electrodynamic fields. Self-consistent description of the fields couples the Maxwell 

equations directly with all charged particle equations. 
 

 The frequency and effects of collisions are described by cross sections, transport 

coefficients, and rate coefficients from the literature, deduced from measurements and 

(quantum-mechanical) calculations. Well-established collision data exist only for the 

most common (noble) gases ; much is lacking and of limited accuracy. 
 

 The equations are solved by computer implementation of numerical methods, often 

standard methods from fluid mechanics and electrodynamics. The main difficulty is 

not so much to solve a specific equation with high accuracy, but rather to deal with the 

couplings between the different particle equations and the Maxwell equations. 
 

These principles should not be taken too literally : a wide variety of more or less elaborate 

plasma models has been developed (and continues to be developed) all over the world for a 

wide variety of purposes ; some models represent all major aspects of the plasma behaviour 

self-consistently ; others focus on certain aspects to address specific questions. In fact, the 

complexity of plasma physics is such that ad hoc assumptions and approximations are 

required for each specific plasma configuration. The challenge of plasma modelling is to 

represent all the physics that is relevant to a given configuration and a given purpose at the 

same level of approximation, given the limited capabilities to solve the coupled plasma 

equations, given the limited availability and accuracy of collision data. Since quantitative 

predictions from plasma models are often not very good, the purpose of plasma modelling is 

more to predict qualitative trends in the plasma behaviour and to help understand observed or 

measured trends ; relatively simple models can be more effective for this purpose than 

comprehensive models. 

 

Scope of my own work 

I have been an active researcher and publishing author in low-temperature plasma modelling 

for more than 10 years, since my Ph. D. in the Netherlands, then as a post-doctoral researcher 

in France, and as from 2005 as an Ingénieur de Recherche at the CNRS-LAPLACE in 

Toulouse. During these years I have developed a number of plasma models for different 

technological applications and in the context of different research projects : 
 

 During my Ph. D. research at the university of Eindhoven and in collaboration with 

experimental researchers at the Philips laboratories, I developed a comprehensive self-

consistent 2D fluid model of microdischarges for plasma-addressed-liquid-crystal 

(PALC) and plasma-display-panel (PDP) televisions, as well as a series of Monte-

Carlo models for electrons, ions, and resonance photons in these microdischarges. The 

aim was to help interpret various experimental results and optimise the discharge 

configurations. Publications (in refereed international journals) : [1] [2] [3] [4] [5] [6] 

[7] [8] [9] [15]. 
 

 During a two-year post-doc in the group of J. P. Boeuf at the CPAT
3
 in Toulouse, I 

developed a 2D hybrid model of Hall effect thrusters for space propulsion ; later I 

adapted this model for double-stage thrusters. The model has been extensively used in 

the context of the GDR
4
 Propulsion Plasma and different industrial contracts by 

                                                 
3
 Centre de Physique des Plasmas et de leurs Applications de Toulouse, now part of LAPLACE 

4
 Groupement de Recherche = French national research program regrouping many laboratories and industrial 

partners, supported by the CNRS for periods of 4 years renewable.      
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several colleagues at the CPAT / LAPLACE
5
 : researcher L. Garrigues and Ph.D. 

students J. Bareilles, C. Boniface, J. Perez-Luna. Purposes : thruster optimisation, 

interpretation of experimental data from the GDR test facility in Orléans, basic 

understanding of the operation of new thruster concepts. Publications [10] [12] [13] 

[14] [16] [18] [21] [24] [27] [30] [36] [39] [40] [41] [42] [44]. 
 

 During a one-year contract at the LIMHP
6
 in Paris, I rewrote, extended, and used a 

self-consistent fluid model (originally developed by K. Hassouni) of a microwave 

plasma reactor for diamant production ; I later adapted this model to study surface 

wave plasma sources used at the CPAT. Publications [17] [20] [23]. 
 

 In collaboration with L. Pitchford at the CPAT / LAPLACE, I developed BOLSIG+, a 

user-friendly solver for the homogeneous Boltzmann equation to obtain transport 

coefficient and rate coefficients for fluid models from cross section data ; this code is 

freely available to the international plasma physics community and widely used. 

Publication [22] and web-site http://www.bolsig.univ-tlse.fr 
 

 During a two-month stay at the Australian National University and also later at the 

LAPLACE, I was involved in the Ph.D. research project of A. Meige (co-tutelle) on 

modelling of electric double layers appearing in helicon and electronegative plasmas ; 

I also helped N. Balcon (Ph.D. co-tutelle) to develop a fluid model of an atmospheric 

pressure glow discharge. Publications [19] [28] [35]. 
 

 I participated in the development of a 2D model of post-arc plasma decay in a vacuum 

circuit breaker, in the context of a contract with Schneider Electric and the Ph.D. 

research of P. Sarrailh. Publications [29] [32] [38]. 
 

 In the context of an ANR
7
-project involving collaboration between the LAPLACE and 

several French experimental groups,  I developed a 2D fluid model of micro-hollow-

cathode-sustained discharges, a novel concept to sustain low-temperature plasmas at 

atmospheric pressure ; this model was used by two post-doctoral researchers : E. 

Muñoz-Serrano and K. Makasheva. Main purpose : interpretation of experimental 

data. Publications [25] [31] [37].  
 

 During the past one-and-a-half years, in the context of a collaboration between the 

LAPLACE and the CEA
8
 Cadarache, I developed a comprehensive 2D model of a 

inductive negative ion source for neutral beam injection for ITER ; I initially focussed 

on the inductive discharge in the ionisation stage of the source and am currently 

extending the model to describe the magnetised plasma in the source body. This 

research project is rapidly gaining importance and recently two new colleagues joined 

me on it : researcher G. Fubiani and post-doc S. Kolev ; two new Ph.D. students will 

start in October : N. Kohen and N. Oudini. The eventual purpose is to guide future 

development and optimisation of the source. Publications so far : [33] [34]. 
 

 In the context of an ANR project with the group of J. Pelletier in Grenoble, I have 

recently developed a 2D self-consistent model of a microwave plasma source based on 

electron-cyclotron resonance ; further development and exploitation of the model will 

be done together with post-doc K. Makasheva.  

                                                 
5
 Laboratoire Plasma et Conversion d’Energie = research laboratory in Toulouse were I currently work, created 

in 2007 by merging of three laboratories, one of which the CPAT 
6
 Laboratoire d’Ingénierie des Matériaux et des Hautes Pressions, Université Paris 13, Villetaneuse 

7
 Agence National de la Recherche = French government agency providing financial support for research on the  

basis of 3-year projects involving a small number of laboratories  
8
 Commissariat à l’Energie Atomique = French atomic energy agency, hosting the ITER fusion experiment 
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Note that I have actively participated in the supervision of several Ph.D. students, in particular 

J. Bareilles, C. Boniface, A. Meige, N. Balcon, and J. Pérez-Luna with whom I share 

numerous (19) refereed journal papers ; I was also part of the Ph.D. jury of the first four of 

them (as a supervisor).  

 

Organisation of the present document 

Although my research activities cover a rather wide range of plasma configurations, 

conditions, and technological applications, they show clear coherence from a more technical 

point of view : I have taken on each new modelling project on the basis of my previous 

experiences, starting from and extending the concepts, equations, and numerical methods that 

I was familiar with and that worked well before. Over the years this has yielded a series of 

well-developed methods and concepts that I consider the heart of my expertise. Therefore, 

rather than presenting my work in chronological order or by research project, I have decided 

to present (in the next 10 chapters) a more technical synthesis of my work by an overview of 

these modelling methods ; this will be useful as a reference for my colleagues, my students, 

myself, and anyone else working with the models I developed. The methods cover much of 

the standard methods in low-temperature plasma modelling but include many original 

contributions not published anywhere else ; these contributions are each time identified by 

footnotes and illustrative examples from my publications are shown throughout the 

presentation. Reflecting the practical reality of low-temperature plasma modelling, physical 

and numerical questions are often discussed together.  

Chapters 2-3 treat particle description on a microscopic level, chapter 4 some methods 

to obtain the electron distribution function in velocity space from the Boltzmann equation, 

chapters 5-7 direct macroscopic description of a plasma particle species by fluid equations, 

chapter 8 ambipolar coupling between electrons and ions, and chapters 9-10 plasma 

interaction with electrodynamic fields. Chapter 11 concludes on the state of the art of my 

work and presents my future research projects.   
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Chapter 2 

————————— 

PARTICLE MODELS 
 

 

Particle models describe the trajectories of individual plasma particles (electrons, ions, 

neutrals) interacting with other plasma particles and surrounding materials. These individual 

particles are randomly sampled from the total physical particle population, which is too large 

(by many orders of magnitude) to be described completely, and are called test particles, super-

particles, or macro-particles. Macroscopic quantities and distribution functions, representative 

of the total population of a certain species, are obtained by averaging over a large number of 

macro-particles and contain statistical errors (fluctuations) which decrease slowly as the 

number of macro-particles is increased.   

 

The interaction between particles is usually not described directly but indirectly : each macro-

particle sees the other particles through macroscopic electromagnetic fields and macroscopic 

collision probabilities. The macro-particle trajectory in phase space is calculated by 

integration of Newton's equations 

  
qd

dt m
  

v
E v B  (2.1) 

 
d

dt


x
v , (2.2) 

where x is the particle position, v is the particle velocity, q is the particle charge, m is the 

particle mass, E is the electric field, and B is the magnetic field (induction). The fields can be 

assumed (applied fields) or calculated self-consistently from Maxwell’s equations. In the 

latter case, a large number of particles must be followed simultaneously, so that statistically 

relevant space charge densities and currents can be calculated during the time advancement of 

the trajectories. This technique is called particle-in-cell (PIC) [Bir94] [Ver05]. 

 

For a given macro-particle, the occurrence and effect of collisions are randomly sampled from 

probability distributions, based on a continuous (macroscopic) representation of the target 

particles. [Nan00] This random sampling is known as the Monte-Carlo-collision (MCC) 

method. The collision probability per unit time, called the collision frequency, is given by 

 ( )r rn v v  , (2.3) 

where n is the number density of the target particles,  is the cross section, and vr is the 

magnitude of the relative velocity of the macro-particle with respect to the target particle. The 

density and velocity distribution of the target particles can be assumed or calculated self-

consistently. For electron and ion collisions with neutrals, the target velocity can often be 

neglected so that vr = v is directly the macro-particle velocity. Cross sections for the different 

collision types are given in the literature, usually as a function of the relative energy Mvr
2
/2, 

where M is the reduced mass of the collision partners, or the laboratory energy  mv2
/2, where 

m is the electron or ion mass. Cross sections for (electron-impact) excitation or ionisation 

have a threshold as a function of energy
9
 ; the impacting particle (electron) loses exactly the 

threshold energy U so its velocity after the collision is v' = (v2
  2eU/m)

1/2
. In case of 

electron-impact ionisation, the remaining kinetic energy is distributed over the original 

electron and the new electron, which is then followed as a new macro-particle.  

                                                 
9
 kinetic energy in the frame of the particle being excited or ionised ≈ (electron) laboratory energy 
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The probability distribution of the collisional velocity scattering angle  is in principle 

determined by the differential cross section I(v,cos), but this is generally not available for 

direct use in particle models. Usually a simplified scattering angle distribution is assumed, 

e.g. isotropic scattering in the center-of-mass frame. For elastic collisions, the definition of the 

collision event and the cross section  depend directly on the assumed scattering angle 

distribution. Assuming isotropic scattering,  is defined as the momentum transfer cross 

section 

  ( ) 2 1 cos ( ,cos ) cosm v I v d      , (2.4) 

such that macroscopic momentum transfer to the target particles is consistently obtained. 

Elastic momentum-transfer cross sections, deduced from measured differential cross sections 

and macroscopic transport coefficients, are directly available from the literature. [Hay81] 

Elastic ion-neutral interaction is described by two collision types : isotropic-scattering 

collisions and backward-scattering collisions, for which effective cross sections are available. 

[Phe94]  

For electrons and ions, Coulomb (electric) interaction can contribute to elastic 

scattering. Since the electric field in equation (2.1) accounts only for the macroscopic charge 

density, averaged over individual particles, the effect of (three-dimensional) microscopic field 

fluctuations due to individual particle charges must be represented by so-called Coulomb 

collisions. The effective momentum-transfer cross section for Coulomb collisions is 

 
4

2 2 4

0

ln
( )

4
m

r

e
v

m v





  0 012 e e

e

T T

e en

 
  D9N , (2.5) 

where mr is the reduced particle mass and the Coulomb logarithm ln  ≈ 10 is related to 

ambipolar screening, which suppresses the microscopic field at distances beyond the Debye 

length ; ND is the number of electrons in a Debye sphere. In most low-temperature plasmas 

the electron and ion kinetics are dominated by collisions with neutrals so Coulomb collisions 

have little influence, but at higher ionisation degree >10
-5

 the energy transfer associated with 

electron-electron collisions leads to Maxwellisation of the electron energy distribution. To 

capture this effect in detail, particle-in-cell models use rather sophisticated methods, involving 

sampling of pairs of nearby macro-electrons [Nan97]. 

 

It is important to realise that the particle models described here do not provide a real 

microscopic description of the plasma kinetics, because the particles are not represented 

directly but only statistically as macro-particles. At best, if the macro-particles are properly 

sampled, the macro-particle average distribution function can be generalised to the real 

particle population (with some statistical error), but the microscopic nature of the real kinetics 

is not captured. Even PIC models, generally considered the most accurate method to describe 

the plasma kinetics, involve important approximations in this respect : whereas the real 

electromagnetic interaction between electrons and ions is essentially a three-dimensional n-

body problem, PIC models approximate it by superposition of macroscopic fields and binary 

Coulomb-collisions. [Tur06] In fact, a particle model of a certain species is exactly equivalent 

to a Monte-Carlo solution of the Boltzmann equation (see chapter 4).  

 

Particle models are used for a wide variety of purposes, ranging from educational use to get 

insight in individual particle trajectories (e.g. in a complex magnetic field) to complete self-

consistent PIC simulation of the plasma. They are also often combined with fluid equations 

into hybrid models to obtain detailed description of a specific aspect of the plasma but avoid 

the large computational effort required by complete PIC simulation ; figure 2.1 shows an 

example of such a hybrid simulation.  
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Figure 2.1. Simulation of a discharge in a Hall effect thruster for satellite propulsion by a self-consistent hybrid 

model combining particle description of ions and neutrals with electron fluid equations [10]. The discharge takes 

place in an annular channel (figure a), across a steady radial magnetic field of about 0.02 T near the thruster exit, 

between an anode at the bottom of the channel and an external hollow cathode with an applied voltage of 300 V. 

The cathode emits electrons that drift towards and multiply as they ionise the xenon gas injected at the anode. 

The magnetic field reduces the axial electron transport by inducing cyclotron orbits and an azimuthal Hall 

current as shown in figure b and discussed in chapter 5 ; hence the applied electric field penetrates inside the 

plasma and concentrates around the thruster exit to ensure current conservation. Due to their large mass the ions 

are insensitive to the magnetic field and are electrically accelerated through the thruster exit without collisions. 

The discharge exhibits different kinds of self-induced oscillations (instabilities). Figure c shows time evolution 

of the plasma density, potential, and the ion distribution in phase space during so-called transit-time oscillations 

at a frequency of about 100 kHz ; these oscillations strongly affect the properties of the ion beam : some ion 

energies exceed the applied voltage. From [16]. 

 

(b) (a) 

(c) 

plasma density 

+ 

potential lines 

macro-ions 

 in phase space  

(x, vx) 
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Chapter 3 

———————— 

NUMERICAL METHODS FOR PARTICLE MODELS 
 

 

Leapfrog method  

Newton's equations (2.1-2) are usually integrated numerically by the leapfrog method. The 

position x and the velocity v are calculated at different discrete moments in time, shifted by 

half time steps, such as to obtain central-difference approximations for the time derivatives: 

  1/2 1/2 1/2 1/2
( ) ( )

2

k k k k k kq t q t

m m

    
    v v E x v v B x  (3.1) 

 
1 1/2k k kt 
 x x v , (3.2) 

where t is the numerical time step, upper indexes refer to moments in time as tk+1
 = tk + t, 

and E and B are functions of space. In case there is magnetic field, equation (3.1) does not 

yield vk+1/2
 directly and needs to be rewritten as  

  1/2 1/2

1 1 12

2
( )

1

k k

b

 
     


v v v b v b b v , (3.3) 

where 

 
1/2

1
2

k q t

m

 
 v v E  (3.4) 

 
2

q t

m


b B  (3.5) 

and the time step must be small enough to resolve the cyclotron motion : t < 0.2m/qB. For 

optimal accuracy, the time shift t/2 between the velocity and the position should be observed 

when introducing new particles in the model, e.g. by off-setting the initial velocity from 

equation (3.1) with a negative half time step (replace t by t/2) ; this is of special interest 

for momentum conservation in particle-in-cell models. 

 

Use of random numbers 

To sample particles from the total physical population and to simulate collisions, random 

events are sampled from probability distributions using a numerical random number 

generator. Such generator yields uniformly distributed random numbers R between 0 and 1 

which can be used as follows. The occurrence of an event with probability p can be sampled 

by a Bernouilli test R < p, i.e. the event occurs if R < p. A random event i can be sampled 

from a set of possible events j with probabilities pj by 

 
1

1 1

i i

j j
j j

p R p


 

   . (3.6) 

A random value uR can be sampled from a probability distribution p(u) between u = a and u = 

b by 

 ( ) ( )
Ru b

a a

p u du R p u du  ;  (3.7) 

the right hand side reduces to R if p(u) is normalized.  

 

Rejection method 

Often the random value uR cannot be solved analytically from equation (3.7) ; then a rejection 

method can be used. First a tentative random value uR is chosen, not from the distribution 

p(u), but from a more convenient distribution p'(u) = p(u)/g(u) where g(u) is an arbitrary 
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function of u. Subsequently a second random number R is used to decide whether this 

tentative uR is accepted or rejected : uR is rejected and the procedure must be repeated if R > 

g(uR)/gmax where gmax is the maximum of g(u) over the entire range [a, b]. It can be shown that 

the accepted uR values are distributed exactly according to p(u). A convenient choice for g is 

g(u) = p(u) such that the tentative uR can be straightforwardly sampled from a uniform 

distribution p'(u) = 1 as uR = a + R(ba), but this is not always the most efficient : to minimize 

the number of rejections, g(u) should vary as little as possible, i.e. p'(u) should be as close as 

possible to p(u).  

 

Random position 

Initial particle positions are sampled from the spatial profile of the macroscopic particle 

number density n or source term S. This can be done by (numerical) spatial integration of n 

according to equation (3.7) but often the rejection method is more convenient. First a uniform 

random position xR is sampled, then it is tested by another random number R and rejected if R 

> n(xR)/nmax. In axisymmetric coordinates, the uniform position probability is proportional to 

the radius r, so equation (3.7) gives for a radial position between a and b : 

 
2 2 2

( )Rr a R b a   . (3.8) 

 

Random Maxwellian velocity 

Initial particle velocities are often sampled from a Maxwellian velocity distribution, 

corresponding to thermal equilibrium. Each Cartesian velocity component then has a 

Gaussian probability distribution function between  and + : 

 
2 21

( ) exp( / )x x T

T

p v v v
v

  , (3.9) 

and similar for vy and vz, where vT = (2eT/m)
1/2

 is the nominal thermal speed and T is the 

temperature in eV. From substitution in equation (3.7) it is clear that there is no analytical 

expression to sample directly a random Maxwellian velocity component. However, if we 

consider the magnitude of two Cartesian velocity components together v = (vx
2 

+ vy
2
)
1/2

 then 

the probability distribution between 0 and  is 

 
2 2

2

2
( ) exp( / )T

T

p v v v v
v

    . (3.10) 

Due to the additional factor v, equation (3.7) yields 

 lnR Tv v R   . (3.11) 

From this random value it is possible to generate two separate random Cartesian components 

vx and vy by sampling a random angle with respect to the vx-axis : 

 1 2ln cos(2 )xR Tv v R R   

 1 2ln sin(2 )yR Tv v R R  . (3.12) 

So random Maxwellian velocity components can be generated in pairs. Since the components 

are completely independent, they can be interchanged and used arbitrarily to form random 

Maxwellian velocity vectors, e.g. two random velocity vectors can be generated as three pairs 

of Cartesian components.
10

 

 

 

                                                 
10

 This method to generate random Maxwellian velocity components is more elegant and efficient than the 

methods proposed in the standard text books [Bir91] [Bir94].  
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Random half-Maxwellian velocity 

In case Maxwellian particles are introduced at a boundary surface, they are sampled from a 

flux rather than a density, and the probability distribution of the velocity component 

perpendicular to the surface contains an additional factor velocity with respect to equation 

(3.9). In fact, the perpendicular velocity component has exactly the probability distribution 

(3.10) and can be directly sampled by equation (3.11). The parallel velocity components are 

generated by equation (3.12) as before. This way of introducing particles results in a 

Maxwellian particle distribution in front of the surface, but only in the half of velocity space 

directed away from the surface, the other half being filled by particles coming from the 

volume.  

 

Random shifted Maxwellian velocity 

If particles are introduced at an open domain boundary, not corresponding to a physical wall, 

and if there is net particle influx, then half-Maxwellian velocity sampling leads to an 

unnatural discontinuity in the particle velocity distribution and the formation of an artificial 

boundary layer. These effects can be prevented (or at least reduced) by sampling the particles 

from a more natural shifted-Maxwellian distribution, i.e. the perpendicular velocity 

component v has a probability 

  2 2

2

2
( ) exp ( ) / T

T

p v v v w v
v

      , (3.13) 

where w is the mean velocity into the domain. Due to the velocity shift, direct sampling of v 

is impossible, but the following rejection method is quite efficient.
11

 Approximate (3.13) by  

  2 2

3

2( )
'( ) exp (1 / ) /T

T T

T

v w
p v v v w v v

v




   


   , (3.14) 

which corresponds to a centred Maxwellian distribution at slightly higher temperature, where 

 is a parameter of order unity. Now sample a tentative random velocity from p' as 

 1ln

1 /
R T

T

R
v v

w v








 (3.15) 

and accept this if 

  2 3

2exp ( / ) /R T Tw v v v R     , (3.16) 

otherwise reject it and repeat the procedure. The rejection probability is minimized by setting 

 2 21 / 4 / 2 1T Tw v w v      , (3.17) 

and is only a few per cent for w < vT. To prevent boundary layer effects, the mean velocity 

w must be consistent with the macroscopic mean velocity in the volume and if necessary  

iteratively adjusted. This can be done by equating the ratio of the numbers of macro-particles 

leaving and entering the domain, to the corresponding expectation value from the probability 

distribution (3.13). Approximating for w << vT, this yields 

   out in1
2

Tvw N N


   . (3.18) 

 

Occurrence of collisions 

As a particle advances in time, collisions of different types j occur at random moments with a 

total probability per unit time (mean frequency) 

                                                 
11

 To the best of my knowledge this method is original and more efficient than the method proposed in the 

standard text book [Bir94]. 
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 ( , ) ( , ) ( ) ( )j j j
j j

v v n v v    x x x , (3.19) 

which in general depends on the magnitude of its velocity and possibly also on its position. 

For simplicity we neglect the velocity of the target particles ; this is reasonable for electrons 

and ions colliding with neutrals. The particle trajectory is integrated (by the leapfrog method) 

by small time steps t during which it has a small probability t << 1 to collide. Collision 

events can be sampled by testing this probability each time step against a new random number 

as R < t but this is very inefficient. A better way to sample collisions is as follows. The 

probability that the particle has no collisions until a future time tc is 

  ( ) exp ( ') '
ct

c
t

P t t dt  , (3.20) 

where  is a function of time through v(t) and x(t). Hence the probability distribution for the 

time at which the next collision occurs is 

   ( ) ( )exp ( ') '
ct

c c
t

c

dP
p t t t dt

dt
     . (3.21) 

Sampling a random collision time from this distribution by equation (3.7) is impossible 

because the function (t) is not known a priori. This problem can be solved by a variant of the 

rejection method known as the null collision method [Sku68]. The null collision method 

introduces an additional collision type (the null collision) without effect on the particle but 

with a frequency 0(x,v) = max  (x,v), where max is the maximum of  over the entire 

parameter range, so that the total collision frequency becomes a constant max. Equations 

(3.21) and (3.7) then give directly a random collision time 

 1

max

1
lncRt t R


  . (3.22) 

The particle trajectory is integrated until tcR without further collision sampling. Once arrived 

at t = tcR the frequencies of the different collision types j (including the null collision) are 

evaluated  and a collision type i is sampled by a second random number R2 as 

 
1

2 max

0 0

i i

j j
j j

R  


 

   . (3.23) 

If this yields the null collision (R2max < 0) then no collision is simulated, i.e. the collision 

event is rejected.  

 

 

Null collision method in particle-in-cell models 

In particle-in-cell simulations, where a large number of particles is followed simultaneously, 

the null collision method is often used differently. [Vah95, Ver05] Rather than sampling and 

storing a random collision time tc for each macro-particle, a certain number of colliding 

macro-particles is randomly sampled each time step. If there are N macro-particles, then the 

expectation value for the number of macro-particle collisions (including null collisions) 

during one time step is 

  maxint 1cN N t   , (3.24) 

where we have rounded off to the next higher integer. To compensate for the rounding off, 

max must be corrected as 

 max '
c

N

N t
 


, (3.25) 
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i.e. the null collision frequency is slightly increased. Now each time step, perform Nc collision 

tests: choose a random macro-particle, evaluate the different frequencies j for that macro-

particle, and sample a collision type by equation (3.23) using the corrected max'. Some 

authors [Vah95] take special care to prevent that a same macro-particle is chosen twice during 

the same time step, but this does not seem pertinent : if Nc is the number of macro-particle 

collisions (rather than the number of colliding macro-particles) then each particle should be 

allowed to collide more than once. 

 

Target particle velocity 

Sometimes the velocity of the target particles cannot be neglected and affects not only the 

change in the macro-particle velocity, but also the collision probability, which essentially 

depends on the relative velocity of the macro-particle with respect to the target particles, see 

equation (2.3). Since the target particles are not considered individually but macroscopically, 

it seems complicated to take this into account, but it is not. Using the null collision method, 

the collision frequency max is constant and a collision time tc can be sampled by equation 

(3.22) as before. Now, before sampling the collision type by equation (3.23), sample a random 

target particle velocity e.g. from a Maxwellian distribution by equation (3.12), then calculate 

the relative velocity and use it to find the different frequencies j. If necessary, different target 

velocities can be sampled for different target species.  

 

Isotropic elastic collisions 

Isotropic elastic collisions are most easily described by transformation to the center-of-mass 

(CM) frame. Consider a macro-particle with mass m1 and velocity v1 colliding with a target 

particle with mass m2 and velocity v2 (e.g. sampled from a Maxwellian distribution). The CM 

velocity is  

 1 1 2 2

1 2

CM

m m

m m






v v
v . (3.26) 

To find the macro-particle velocity v1' after the collision, transform v1 to the CM frame, turn it 

to a random direction, and transform back to the laboratory frame : 

 1 1' | |CM R CM  v v v e v  2
1 1 2 1 2

1 2

| | ( )R

m

m m
    


v v v e v v , (3.27) 

where eR is unit vector with random isotropic direction, which can be generated from two 

random numbers R1 and R2 as follows. Consider an isotropic distribution in spherical 

coordinates: the azimuthal angle  is distributed uniformly between 0 and 2 and the cosine 

of the zenith angle  uniformly between 1 and 1. Equation (3.7) then yields cosR = 1  2R1 

and R = 2R2. Now use these random angles to define an isotropic unit vector with respect to 

the Cartesian coordinate axis : 

 

1

1 1 2

1 1 2

1 2cos

sin sin 2 (1 ) sin(2 )

sin cos 2 (1 ) cos(2 )

R

R R R

R R

R

R R R

R R R



  

  

  
  

    
  

   

e . (3.28) 

The components can be interchanged. The above method is exact for arbitrary particle masses 

and (non-relativistic) velocities and is much simpler than the method used by many authors 

[Vah95] where a scattering angle is sampled with respect to the incident velocity v1. Equation 

(3.27) implicitly describes the elastic energy transfer between the particles. Averaging eR and 

assuming Maxwellian target particles with temperature T, the expected energy change of the 

macro-particle is 
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mm
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 
    

  
. (3.29) 

This is more important as the masses are closer together. 

 

Constant macroscopic quantities 

If the model system is constant and infinite in space and time or if it describes local 

equilibrium, then macroscopic quantities can be calculated from a single macro-particle 

trajectory by averaging over time (ergodic theorem) : 

 
t

u u udt dt    1u  , (3.30) 

where u is an arbitrary quantity dependent on the particle velocity. The macro-particle is to be 

followed and the average to be taken over a time much longer than the characteristic time of 

the collisional energy transfer to the target particles. In principle the time average can be 

calculated by integrating u numerically over time, i.e. summing u over successive time steps, 

but is this not efficient because the particle velocities at successive time steps are strongly 

correlated. A more efficient way to calculate the time average is to sum only over certain 

observation times, randomly sampled by equation (3.22), with a mean frequency of the order 

of the total collision frequency, e.g. by defining an 'observation collision'. Macroscopic 

collision frequencies or collision rate coefficients can be obtained in two ways : either count 

the collision events of the macro-particle and divide by time, or average the collision 

probability (v) over time by equation (3.30) ; the latter is more efficient for collisions with a 

relatively small probability. To calculate the energy distribution function f, define a series of 

energy intervals , count for each interval the number of observations when the particle 

energy is contained in the interval, and divide by the total number of observations : 

 
1

f dt dt

 





  

1
1 1

  



   . (3.31) 

 

Macroscopic quantities as a function of space 

If the system is space-dependent and bounded but constant in time, then macroscopic 

quantities can be obtained by following different macro-particles successively, one at the 

time. A macro-particle is sampled from a volume source S or from a boundary flux , 

followed until it is lost or leaves the system, a next particle is sampled, and so on. To calculate 

the particle density n at a certain observation point in space, define a volume element V 

around the observation point, then integrate the total time of particle presence inside V, and 

continue this integral over successive macro-particles: 

 
 V

SdV dA
n dt

N V


 




 


x  

1
k V

SdV dA
t

N V 

 
 



 


x

, (3.32) 

where N is the number of macro-particles and the numerator is the number of physical 

particles entering the system per unit time (from which the macro-particles are sampled). The 

time integral is conveniently approximated by counting the total number of time steps when 

the particle position x
k
 is contained in V. The macroscopic average of a quantity u is 

 
  V V

u udt dt
 

  
x x   

1
k k

k

V V

u
 

  
x x

, (3.33) 

where u
k
 should be interpolated from vk1/2 

and vk+1/2
 to account for the time-shift of the 

leapfrog method. Summing over the time steps when x
k
 is inside V is efficient only if V is 

large enough that the macro-particles do not cross it within one time step. To obtain high 

spatial resolution (in one direction) another averaging method can be used. Define a surface 
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element A around the observation point and consider a volume element V = A with 

infinitesimal thickness . If a particle crosses A, the time spent inside V is /|v| where v is 

the particle velocity component perpendicular to A. Therefore, each time a particle crosses 

A, cumulate its absolute inverse perpendicular velocity:  

 
1

| |A

SdV dA
n

N A v  

 




 


x

 (3.34) 

 
1

| | | |A A

u
u

v v    

  
x x

. (3.35) 

For optimal accuracy, v and u must be interpolated to correspond to the exact crossing of A. 

Realise however that depending on the quantity u to be averaged, the surface element method 

(3.35) is not necessarily more efficient than the volume method (3.33), due to statistical errors 

of particles with a near-zero perpendicular velocity.  

 

Macroscopic quantities as a function of time and space  

can be obtained by following a large number of macro-particles simultaneously. This is of 

particular interest for particle-in-cell (PIC) models where the electric field is calculated self-

consistently at every time step from the complete spatial profiles of the electron and ion 

densities. The spatial domain is then divided into small volume elements centred around a 

grid of observation points, as shown in figure 3.1 for a two-dimensional domain. The spaces 

between the grid points are called cells. The number of simultaneous macro-particles has to be 

sufficiently large for each volume element to contain at least a hundred or so macro-particles, 

such that statically relevant averages can be calculated. It is customary to assign to each 

macro-particle a weight, defined as the number of physical particles it statistically represents.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Two-dimensional grid for particle-in-cell models. 
 

The particle density at each grid point can be straightforwardly calculated by summing the 

weights of the macro-particles inside the volume element and dividing by the volume (nearest 

grid point method), but this method is not very appropriate for PIC models. Smoother density 

profiles are obtained by distributing the macro-particle weight over the surrounding grid 

points with fractions according to proximity. Commonly used in PIC models is the linear 

distribution method : a macro-particle with one-dimensional position x is distributed over the 

surrounding grid points at x1 and x2 with respective fractions (x2x)/(x2x1) and (xx1)/(x2x1); 

for a macro-particle with two-dimensional position (x, y) inside a cell (x1-x2, y1-y2), the 

fraction distributed to the grid point (x1, y1) is then (x2x)/(x2x1)(y2y)/(y2y1) etc. Using 

this linear weight distribution method, the volume elements around the grid points must be 

defined consistently (such that dividing the cumulative weight by the volume yields the 

macro-particle 

weight to grid points 

cell  

 volume  

 element 

 grid point 
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proper particle density) by linear distribution of the cell volumes over the grid points. In 

Cartesian space, consistent volume elements are defined from the central positions between 

the grid points. In axisymmetric cylindrical space however, the radial edges of the volume 

elements do not correspond to the central positions between the grid points. Consider a cell 

between radial positions r1 and r2 with a volume (r2
2
r1

2
), which is to be distributed over the 

grid points at r1 and r2. The part of the volume distributed to r1 is  

  
2

1

2 22
2 2 1 1

2 1

2 2
3

r

r

r r
rdr r r r r

r r





  


2 2

1 1/2 1( )r r   . (3.36) 

The last member of this equation defines the effective edge of the volume element:  

 
2 2

1 1/2 1 1 2 2

1

3
r r r r r    . (3.37) 

Alternatively in cylindrical space, the particle weights can be distributed according to the 

quadratic radial positions, i.e. with fractions (r2
2
r

2
)/(r2

2
r1

2
) and (r

2
r1

2
)/(r2

2
r1

2
) ; the 

effective volume element edge is then given by the average quadratic radius r1+1/2
2
 = 

(r2
2
 + r1

2
)/2. It can also be useful to define uniform quadratic radial grid positions rather than 

a uniform grid, such as to obtain constant volume elements and avoid bad particle statistics 

near the axis. 

In PIC models, the particle weight distribution method must be consistent with the 

interpolation of the electric field to the macro-particle positions, otherwise artificial particle 

acceleration can occur, known as self-forces. Linear particle weight distribution is usually 

combined with linear interpolation of the electric field, calculated at the grid points by finite 

difference approximation of E = , where  is the electrostatic potential from finite-

difference solution of Poisson's equation (see chapter 8).  
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Chapter 4 

————————— 

BOLTZMANN EQUATION 
 

A plasma usually contains so many particles that statistical fluctuations of the number of 

particles contained in an arbitrary phase space interval (resolving the space and velocity scales 

of interest) can be neglected.
12

 Hence it is appropriate to represent the particles of a certain 

species as a continuum by the distribution function f defined as the particle number density in 

phase space, i.e. f(x,v,t)d3
xd3

v is the number of particles present at time t in an infinitesimal 

volume d3
x around position x with a velocity within an infinitesimal interval d3

v around v. 

The evolution of the distribution function under the influence of electromagnetic fields and 

binary collisions is described by the Boltzmann equation  

 ( ) [ ]
f q

f f C f
t m


      


vv E v B , (4.1) 

where v is the gradient operator in velocity space and C is the collision operator, 

representing the rate at which particles are transferred from one velocity (interval) to another 

in collisions ; without the collision term equation (4.1) is known as the Vlasov equation. The 

Boltzmann equation is one of the main tools to study the kinetics of plasma particles, but its 

solution (other than by Monte-Carlo particle methods) requires extensive approximations. 

Various approaches are used, focussing either on the solution of f as a function of velocity v 

while assuming simple space and time dependence, or rather on the description of f in space 

and time while approximating for the velocity ; the fluid approach presented in the next 

chapter falls into the second category. 

 

Two-term approximation 

For electrons, which are nearly isotropic due to elastic scattering by collisions and trapping by 

the ambipolar field, the distribution function is commonly approximated by spherical 

harmonics expansion in velocity space and truncation after the first order : 

 0 1( , , ) ( , , ) ( / ) ( , , )f t f v t v v t  x v x v f x , (4.2) 

where f0 is the isotropic part of the distribution function and f1 is an anisotropic perturbation 

in a certain direction ; the last term represents f1 times the cosine of the velocity angle with 

respect to this direction. This is known as the two-term approximation. Substituting the two-

term distribution function and averaging over angle space, the Boltzmann equation can be 

decomposed into 
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E f , (4.5) 

where m,j is the momentum transfer cross-section (2.4) for collisions with other species j and 

the magnetic force has been omitted (for simplicity). The collision term C0 is related to energy 

transfer and consists of various contributions for which appropriate expressions are derived in 

the literature. For elastic collisions with neutrals or ions : 
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, (4.6) 

                                                 
12

 This assumption is not as well justified as one might think : in some low-temperature plasmas the number of 

charged particles in a Debye sphere ND = 5.510
13

(Te
3
/ne)

1/2
 is only a few thousand ; the high-energy tail of the 

distribution function can then be expected to be 'statistically noisy'. 
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where mj and Tj are the target particle mass and temperature. For electron-electron collisions 

this expression (assuming Maxwellian target particles of mass >> me) is not appropriate and a 

more complex non-linear expression is necessary : 

 
4 2

2 4 4 0
0 0 0 0 02 2 2

0 0 0

4 ln 1
' ' ' ' ' '

3 3

v v

j

e v

fe v
C f v dv f f v dv f v dv

v v vm v





      
            

   . (4.7) 

This vanishes for a Maxwellian electron distribution function f0 ~ exp(v2
/vT

2
) at arbitrary 

temperature : electron-electron collisions Maxwellise the distribution function but do not 

control the electron temperature. For inelastic excitation and ionisation collisions C0j is non-

local in velocity space, removing particles at velocity v and injecting them elsewhere at a 

velocity v', respectively : 

 0 0 0( ) ( ) ( '/ ) ' ( ') ( ')j j j j jC n v v f v n v v v v f v     v'
2
 = v2  2eUj/me  (4.8) 

 0 0 0( ) ( ) 4 ( '/ ) ' ( ') ( ')j j j j jC n v v f v n v v v v f v     v'
2
 = v2

/2  eUj/me  (4.9) 

where U is the threshold energy and the factor 4 accounts for electron creation
13

, assuming 

that the remaining energy is distributed equally over the old and new electrons. 

 

Homogeneous approach 

Given these two-term collision integrals, equations (4.4-5) can be combined and solved 

numerically for simple configurations. The simplest configuration is that of a homogeneous, 

unbounded plasma in a constant electric field : all gradients vanish and f1 is defined along the 

electric field direction.
14

 To account for the creation of new electrons it is assumed that the 

distribution function grows exponentially in time as / if t f   .
15

 Then : 
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   , (4.11) 

where m is the effective frequency for momentum transfer to neutrals and ions, summed over 

all collisions, and i  is the net macroscopic ionisation frequency, summed over all ionisation 

collisions, which introduces non-linearity in equation (4.10) and is usually evaluated 

iteratively. Equation (4.10) is frequently used as an approximation for collisional electrons, 

assuming that the characteristic length for energy transfer (energy relaxation length) is short 

with respect to all macroscopic length scales of the plasma ; this is called the local-field 

approximation.  

 Homogeneous plasmas in a high-frequency electric field are described by assuming (in 

addition to exponential growth) harmonic time variation exp(it) for f1 while neglecting the 

time variation of f0 ; this is reasonable if the characteristic frequency for energy transfer is 

much lower than the field frequency : 
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13

 My paper [22] contains an error on this point: instead of a factor 4, equation (29) shows a factor 2.  
14

 This approach is the basis of BOLSIG+, the freeware Boltzmann solver that I developed together with Leanne 

Pitchford, documented in [22] and available at www.bolsig.univ-tlse.fr  
15

 This exponential growth model was originally used to describe pulsed Townsend experiments. Alternatively, 

electron creation can be included in the homogeneous Boltzmann equation by a spatial growth model, 

corresponding to steady state Townsend experiments. Some authors altogether neglect growth effects and treat 

ionisation as excitation. 
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where E is the field amplitude.  

Originally developed to check consistency between cross sections and measured 

macroscopic swarm parameters [Roc73], the homogeneous Boltzmann equations (4.10) and 

(4.12) are nowadays often used to obtain transport coefficients and rate coefficients for fluid 

models as described in chapter 5 [22]. Some examples of results are shown in figure 4.1. 

Neglecting electron-electron collisions, the shape of the distribution function f0(v) below the 

excitation threshold energy is directly controlled by the velocity-dependence of m(v) and is 

Maxwellian only if m is constant. Beyond the excitation threshold energy, f0 is generally 

depleted by the inelastic collision terms, which has a strong effect on the macroscopic 

ionisation rate coefficient.  

 

Nonlocal approach 

Another approach for the solution of the two-term Boltzmann equation is the so-called non-

local approach
16

 [Kor96], describing configurations where the electrons have only few 

collisions but are trapped by an ambipolar field  perpendicular to the applied field, as is 

(sometimes) the case in positive columns or inductive discharges. It is then assumed that f0 

and f1 are functions of the total energy  = mev
2
/2e  (x) including the ambipolar potential 

energy. After a coordinate transformation (x,v)  (x,) the equations (4.4-5) are integrated 

over the total plasma volume accessible to electrons of energy  and combined into one 

differential equation for f0() that is similar to equation (4.10). The distribution function 

f0(x,v) is found from f0() by simple back-substitution. In fact, when electron-electron 

collisions are dominant, the trapped electrons have a Maxwell-Boltzmann distribution  

  2 20
0 3/2 3
( , ) exp ( 2 ( ) / ) /e T

T

n
f v v e m v

v
   x x , (4.13) 

where n0 is the electron density in the centre of the plasma (where  = 0). The non-local two-

term Boltzmann solutions show the deviations from this distribution due to the applied field, 

collisions with neutrals, and wall recombination, e.g. depletion of the tail beyond v2
 > 

2e((x)w)/me where w is the wall potential. 

                                                 
16

 I have considered this approach for the model of the inductive ion source for ITER and did some preliminary 

calculations ; the problem is that the heating mechanism is still assumed local and that the description of 

nonlocal inductive heating is precluded by the standard two-term expansion ; I found however that it is possible 

to account for harmonic spatial variation of the heating field by a slightly different expansion.  
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(a)                                                                          (b) 

       
 

Figure 4.1. Results from the two-term homogeneous Boltzmann equation for electrons in an argon plasma 

accounting for both electron-neutral collisions and electron-electron collisions, solved by my freeware solver 

BOLSIG+. Figure a shows the electron energy distribution function (EEDF) = (4e/mene)vf0 as a function of 

energy mev
2
/2e in a reduced electric field E/n = 10 Td = 10

22
 Vm

2
  for different ionisation degrees ne/n. At low 

ionisation degree, the shape of the EEDF is determined by electron-neutral collisions and is depleted beyond the 

excitation threshold ≈ 12 eV. As the ionisation degree increases, the EEDF becomes increasingly Maxwellian 

due to electron-electron collisions. The consequences for the ionisation rate coefficient (4/ne)∫v3
f0dv are 

shown in figure b as a function of the mean electron energy (2e/mene)∫v
4
f0dv : at lower mean energy and low 

ionisation degree, the ionisation rate is much lower than for Maxwellian electrons. From [22]. 

 

 

 

 

 



 26 

Chapter 5 

————————— 

FLUID MODELS 
 

 

Fluid models describe the behaviour of particle species in terms of macroscopic quantities 

such as the particle density n, mean velocity w, and mean energy . The evolution of these 

quantities is described by fluid equations such as the continuity, momentum, and energy 

equations, which are partial differential equations in time and space. The macroscopic 

quantities correspond to velocity moments of the distribution function, i.e. integrals of some 

power of velocity times the distribution function over velocity-space: 

 
3

( , ) ( , , )n t f t d x x v v  (5.1) 
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where the triangular brackets indicate the macroscopic average 
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The fluid equations correspond to velocity moments of the Boltzmann equation, which form 

an infinite series, based on higher and higher powers of velocity, where each moment 

equation is linked to the next because it contains the gradient of the next-order moment of the 

distribution function (from the second term of the Boltzmann equation). The series is 

truncated at a certain order (usually first or second) by assumptions or approximations on the 

next-order moment, called closure approximations. In addition, various approximations are 

used to simplify the fluid equations and facilitate their solution coupled with that of the fluid 

equations for other species and the Maxwell equations. All these approximations are made 

from kinetic considerations, either by neglecting the microscopic time and length scales 

(inverse collision frequency 1/, mean free path 1/n, Larmor radius mvT/eB etc) with respect 

to the macroscopic scales, or by explicit assumptions on the distribution function.  

 

Collisions are represented in the fluid equations by various transport coefficients and rate 

coefficients, corresponding to averages of cross-section related quantities depending on the 

relative velocity of the collision partners. Assuming independent shifted Maxwellian 

distributions for two colliding species 1 and 2, the average relative velocity vr = |v1  v2| can 

be characterized by a relative temperature 
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w w .  (5.5) 

For particle species in thermal equilibrium this reduces to Tr = T1 = T2 ; for electron collisions 

Tr = Te due to the small electron mass ; for ion-neutral collisions the directed ion energy is 

important. Hence, experimentally measured transport and rate coefficients are often given in 

the literature as a function of gas temperature, electron temperature, or effective ion 

temperature.  

One of the main problems of fluid plasma models is the description of ionisation, 

which is due mainly to fast electrons that tend to be badly characterized by a Maxwellian 

temperature. To account for the non-Maxwellian character of the electron distribution, the 

ionisation rate coefficients and other electron fluid coefficients are often obtained from 

solutions f0 of the homogeneous Boltzmann equation (4.10/12). In collisional conditions these 
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homogeneous Boltzmann results can be generalized to fluid models by the local field 

approximation, assuming local equilibrium between electric acceleration and collisional 

momentum and energy losses, so that the transport and rate coefficients are direct functions of 

the local electric field E, or rather, the reduced electric field E/n since the collision frequency 

is proportional to the gas density n. The local field approximation is also used for collisional 

ions, for which experimental transport coefficients as a function of reduced field are available 

from the literature. [Ell76] 

 

Continuity equation 

The continuity equation, describing conservation of particles, is the integral of the Boltzmann 

equation (4.1) over velocity space:  

 ( )
n

n S
t


 


w . (5.6) 

The source term S is the net number of particles created per unit time per unit volume, and 

consists in general of different contributions from collisions or chemical reactions : 

 1 2i i i i
i

S N n n k  (5.7) 

where N is the number of particles created in one collision (negative in case of destruction), n1 

and n2 are the densities of the colliding particles, and k = <vr> is the rate coefficient in units 

m
3
/s. Sometimes there are three particles involved so a third factor density n3 is included and 

the rate coefficient k has units m
6
/s. Rate coefficients for electron-impact reactions can be 

calculated from the two-term Boltzmann solution as  
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4
k v f dv

n
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  . (5.8) 

The electron and ion source term due to electron-impact ionisation is sometimes evaluated 

from the electron flux as S = newe where  is the Townsend coefficient, for which semi-

empirical expressions are available as a function of the reduced electric field [Bro66] 

[Rai91].
17

 

 

Momentum equation 

The momentum equation is the first-order velocity moment of the Boltzmann equation : 

multiply (4.1) by v and integrate over velocity space : 
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where  

 
3

( ) ( )m fd   P v w v w v  (5.10) 

is the pressure tensor and km = <mvr> is an effective rate coefficient for momentum transfer 

to particles of other species j based on the momentum transfer cross section as defined in 

equation (2.4). The momentum equation (5.9) is generally solved for the mean velocity w, but 

this requires different approximations to simplify it. A first standard approximation for plasma 

particles is to assume that the pressure tensor is diagonal and isotropic : 

 enTP I  (5.11) 

where 
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17

 My freeware solver BOLSIG+ calculates both rate coefficients k and Townsend coefficients  as a function of 

reduced field E/n or electron mean energy e. 
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is the scalar pressure, T is the (generalized) temperature, and I is the identity matrix. Next, 

since most collisions are with neutral gas particles, the mean target velocity wj is neglected in 

the last term of equation (5.9). After substitution of equations (5.6) and (5.11) the momentum 

equation becomes  

 ( ) ( )m

q q e
nT

t m m mn



       



w
w w w B w E  (5.13) 

where  
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
  (5.14) 

is the macroscopic momentum transfer frequency.
18

 Without the collision term, equation 

(5.13) is known as the Euler equation. 

 

Drift-diffusion equation 

For collisional charged particles, the momentum equation (5.13) can be further simplified by 

neglecting the inertia terms and the magnetic term on the left-hand side with respect to the 

collision term, assuming that collisions take place on much shorter time and length scales than 

macroscopic field and pressure variations and cyclotron motion : 
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q
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q
 E . (5.15) 

This is the drift-diffusion equation, containing two transport coefficients : the mobility  and 

the diffusion coefficient D, each inversely proportional to the gas density. For Maxwellian 

particles, the ratio D/ (called characteristic energy) equals the temperature according to the 

Einstein relation, which is often used to estimate the diffusion coefficient from the mobility as 

D = T. The drift-diffusion equation is consistent with the local-field approximation and the 

two-term Boltzmann equation. Substitution of equation (4.5) into nw = ∫∫∫v(v/v)f1d
3
v and 

identification with (5.15) yields 
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which are commonly used expressions for electrons, where f0 is either solved from equation 

(4.10) or assumed Maxwellian.
19

 For positive ions the diffusion term is usually negligible. A 

compilation of measured ion mobilities 0j in various pure gases j at standard gas density n0 is 

given in [Ell76] as a function of the effective temperature (5.5) and the reduced field E/n = 

E0/n0. From equation (5.14), the mobility in a gas mixture is then given by the Blanc law 

[Bla08] 

 0

0/j j
j

n

n






; (5.17) 

more accurate mobility mixture-rules are discussed in [Pis03]. Equation (5.15) is also used 

with zero mobility for (excited) neutral species diffusing in much denser gas species. 

 

                                                 
18

 The inclusion of the creation (ionisation) frequency S/n in the momentum-transfer frequency is not standard 

but done here for simplicity and consistency with the microscopic momentum-transfer frequency (4.11) for the 

exponential growth model. Note that in (5.9) and (5.13) it is assumed that all particle creation takes place in the 

laboratory frame and hence appears as an effective momentum loss for the fluid ; this assumption is often 

reasonable especially for electrons and ions. More rigorously, the frequency S/n in equation (5.14) should only 

include the positive contributions (creation) to the particle source term (5.7). 
19

 These coefficients are provided by my freeware solver BOLSIG+ as a function of reduced field E/n or electron 

mean energy e. 
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Boltzmann relation 

Even further simplification of the momentum equation is obtained for non-collisional 

electrons and negative ions trapped in the ambipolar field, by neglecting all terms on the left-

hand side of (5.13) with respect to the field and pressure gradient : 

 ( )
e

q nT
n

 E . (5.18) 

This is the Boltzmann relation, which is consistent with the Maxwell-Boltzmann distribution 

(4.13) and the assumption of constant temperature T. Contrary to the other approximated 

momentum equations, the Boltzmann relation does not describe the mean velocity, but rather 

the spatial profile of the particle density 

 0 exp( / )n n q eT   , (5.19) 

where n0 is a reference density corresponding to  = 0. When using this relation explicitly, 

the absolute density and temperature can only be obtained from global balance equations 

corresponding to the space integrals of the continuity equation (5.6) and the energy equation 

(5.31). However, in self-consistent models the Boltzmann relation is automatically recovered 

from the drift-diffusion equation if  and D are sufficiently large : the ambipolar field then 

adjusts to satisfy equation (5.18). 

 

Magnetised drift-diffusion equation 

The drift-diffusion equation can be extended to describe magnetized particles, i.e. charged 

particles in a steady magnetic field so strong that the Larmor radius cannot be neglected with 

respect to the collision length. Neglecting only the inertia terms in equation (5.13) and 

keeping the magnetic force : 
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q
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q
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where G is the non-magnetized drift-diffusion flux as given by equation (5.15) and 

 
| |m

q q

m q



 

B
B  (5.21) 

is the magnetisation vector whose magnitude  is called Hall parameter and is a measure for 

the influence of the magnetic field ; this is generally much larger for electrons than for ions 

due to the small electron mass. Then 
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which defines the magnetized mobility and diffusion tensors. These tensors have anisotropic 

diagonal components : /// = D///D = 1 parallel to B and much smaller values / = D/D = 

1/(1+
2
) perpendicular to B ; in addition they have non-diagonal components / = D/D = 

±/(1+
2
) causing a flux in the direction of GB (Hall effect). So an electric field driving the 

particles across the magnetic field mainly results in particle drift in the EB direction rather 

than the E direction. Magnetized plasmas often have a cylindrical configuration with the 

fields in the axial-radial plane so that the EB drift is closed along the azimuthal direction.  

Equation (5.22) is sometimes used also for non-collisional electrons (mean free path > 

macroscopic lengths), e.g. in figure 5.1. In the direction perpendicular to the magnetic field 

this is justified by the fact that the perpendicular distance travelled between successive 

collisions is limited to the Larmor radius. Parallel to the magnetic field, equation (5.22) leads 

to the establishment of the Boltzmann relation (5.19) due to the large mobility and diffusion 

coefficient, but the parallel flux may be not correctly described. Equation (5.22) also fails to 

describe the effects of curvature and gradients of the magnetic field, due mainly to the 
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assumption of a diagonal isotropic pressure tensor (5.11). Another, more general problem 

with the description of magnetized electrons is that the transport across the magnetic field can 

be increased by microscopic (turbulent) field fluctuations so that the effective transport 

coefficients / = D/D > 1/(1+
2
) are anomalously high and hard to evaluate.

20
 [39] 

 

 
 
Figure 5.1. Plasma density, current and potential in the ionisation stage of a double-stage plasma thruster, 

obtained from a self-consistent model based on the continuity equation (5.6) and the magnetized drift-diffusion 

equation (5.22) for electrons coupled with Poisson's equation and an ion particle simulation.  The discharge 

configuration consists of an annular chamber with a complex steady magnetic field approximately parallel to the 

walls and steady voltages applied to several electrodes as shown in figure a. Electrons are emitted by the 

intermediate  electrode (filament) and driven to the chamber wall across the magnetic field, meanwhile ionising 

the gas injected in the back of the chamber. Due to the large anisotropy of the electron transport, the discharge 

current ( ≈ the electron current emitted by intermediate electrode) tends to follow the magnetic field lines (figure 

b) and the Boltzmann relation (5.19) is established along the lines :  = Teln(ne/n0) such that the potential of the 

intermediate electrode propagates along the entire magnetic field line intercepting it (separatrix) ; this creates a 

potential well guiding the (non-magnetised) ions to the chamber exit into the acceleration stage of the thruster 

(figure c). From [27]. 

 

High-frequency momentum equation 

For charged particles in high-frequency fields, another approximation of the momentum 

equation (5.13) is appropriate : assume that the distance travelled over one field period is 

small with respect to the length scale of field and pressure variations, so neglect all gradients : 

 m

q q

t m m



   



w
w B w E . (5.23) 

This is often used for electrons in microwave plasmas and describes oscillations of the mean 

velocity with a phase shift with respect to the field between 0 and /2 depending on the 

momentum-transfer frequency. The (non-linear) force due to the magnetic component of the 

high-frequency field is usually negligible, but the force of steady magnetic fields can be 

                                                 
20

 This is a major concern in modelling of Hall-effect thrusters. In our thruster simulations based on equation 

(5.22) anomalous electron transport is accounted for by an effective frequency, fitted to obtain agreement with 

current and performance measurements as discussed in [12]. Recent progress on this issue is reported in [39]. 

(a) 

(c) 

(b) 
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important, e.g. in electron-cyclotron-resonance discharges. Equation (5.23) is not fully 

consistent with the high-frequency two-term Boltzmann equation : assuming forms exp(it) 

for f1 and E, equation (4.5) yields the mean velocity 
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which can be rewritten as 

   2 2
( )e

r i e e r r i

e

w e
w m e E

t m
     


      

. (5.25) 

Compared with (5.23) this has an additional factor on the right hand side
21

. The factor  

vanishes (equals unity) for constant momentum frequency m(v). 

 

Navier-Stokes equation 

For dominant gas particles that are colliding mainly among themselves, the non-diagonal 

components of the pressure tensor cannot be neglected, but if the mean free path is 

sufficiently short they can be related to velocity gradients as viscosity. A common 

approximation of the momentum equation (5.9) for gas particles is the Navier-Stokes equation 

 
2

,

1
( ) ( ) ( )

3

j

m j m j j
j j

m e
n k nT

t m m mn
 

  
            

  


w
w w w w w g w , (5.26) 

where  is the kinematic viscosity coefficient, given in the literature for pure gases and 

approximately related to the momentum coefficients as
22
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where the sum includes all species so also the species of interest. Momentum transfer with 

other particle species occurs as a mutual process and can cause acceleration of the gas 

particles by the drag force term on the right-hand side, e.g. by positive ion impact in the 

(cathode) sheath. The gravitational acceleration g (neglected in all other equations) can play a 

role e.g. in thermal convection. The Navier-Stokes equation (5.26) is only marginally used in 

low-temperature plasma models ; often the gas is quasi-stationary and so little affected by the 

plasma that it is sufficient to assume constant gas pressure. Excited neutral species are 

described by the diffusion equation (5.15) (with zero mobility).  

 

Energy equation 

The energy equation is the second-order, scalar-product velocity moment of the Boltzmann 

equation : multiply (4.1) by mv2
/2 and integrate over velocity space : 

  
en

en qn
t





       


w P w Q w E  (5.28) 

where  is the net power density gained in collisions and chemical reactions (negative in case 

of power loss) and Q is the heat flux vector defined as 

 
2 31

| | ( )
2
m fd  Q v w v w v . (5.29) 

                                                 
21

 My freeware solver BOLSIG+ provides both coefficients appearing in square brackets in equation (5.25). 
22

 This expression is not standard but derived by myself from the collision term of the second (tensor-product) 

velocity-moment of the Boltzmann equation. For simplicity it is assumed that the shear pressure per particle P/n 

is the same for all species. The factor 0.7 corresponds to the experimental ratio of the kinematic viscosity to the 

self-diffusion coefficient for most gases ; it is 1 for constant km and 5/6 for constant m. To be verified. 
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Note that from the definition (5.12) the mean energy can be decomposed into thermal energy 

and directed energy :  = (3/2)T + mw2
/2e.  

 

Electron energy equation 

For collisional electrons, the heat flux vector is usually assumed proportional to the 

temperature gradient as [Bit04] 

 
5

2
e e e eeD n T  Q . (5.30) 

This closure approximation is derived from the perturbation solution of the Boltzmann 

equation around a local Maxwellian distribution function f0 assuming constant kinetic 

pressure neTe ; for magnetized electrons the diffusion coefficient De is to be replaced by the 

diffusion tensor De. The electron energy equation is then approximated as follows : substitute 

(5.30), assume an isotropic diagonal pressure tensor, and neglect directed energy such that e 

= (3/2)Te : 
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w w E , (5.31) 

and by substitution of the drift-diffusion equation (5.15) : 
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E w E  ; (5.32) 

for magnetized electrons replace again e by e and De by De. However, this electron energy 

equation is not in general fully consistent with the two-term Boltzmann equation. Evaluation 

of the energy flux (me/2e)∫∫∫v2
v(v/v)f1d

3
v from equation (4.5) suggests the following 

reformulation : 
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where 
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are the energy mobility and the energy diffusion coefficient
23

. Equation (5.33) is equivalent to 

equation (5.32) for Maxwellian electrons and for constant momentum frequency : then /e = 

D/De = 5/3. The collisional power term is generally negative and can be expressed in terms of 

rate coefficients as 

 e e i i i e j j
i j

en U n k en n K      een    (5.35) 
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   . (5.36) 

The first term is inelastic energy loss summed over all excitation and ionisation collisions i, 

where Ui is the threshold energy, ni is the target particle density, and ki the rate coefficient. 

The second term is elastic energy loss summed over all elastic collisions j, where nj is the 

target density and Kj is an elastic energy loss coefficient, proportional to the momentum 

transfer coefficient km,j in case of constant collision frequency m,jv ; cf. equation (3.29). The 

parameter  is commonly defined to represent the mean power loss per electron (in eV/s).
24

  

 

                                                 
23

 These coefficients are provided by my freeware solver BOLSIG+ as a function of e. 
24

 The coefficients Kj and  are calculated by BOLSIG+ as a function of e. 
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 fluid model Monte Carlo model 

    
 

 EEDF near cathode EEDF near anode 

 
Figure 5.2. Comparison of a fluid model and a Monte-Carlo (MC) particle model of the electrons in a direct-

current microdischarge for PALC displays (figure a). The fluid model consists of continuity equations (5.6) and 

drift-diffusion equations (5.15) for electrons and ions and the energy equation (5.32) for electrons, self-

consistently coupled with Poisson’s equation. Figures b-d show the spatial profiles of the electric potential, 

electron mean energy, and ionisation source term from this model. Due to plasma screening most of the applied 

potential drop occurs in a narrow sheath region in front of the cathode. Secondary electrons, emitted from the 

cathode by positive ion impact, are accelerated by the cathode sheath field and multiply in ionisation. To get 

insight in the errors of the fluid ionisation profile, comparison is made with a MC model, simulating the 

trajectories of individual electrons emitted from the cathode as well as all electrons subsequently created in 

ionisation, moving in the potential of figure b ; ionisation in fluid model seems too localised near the cathode. 

Figures f and g compare the electron energy distribution function (EEDF) at different locations near the cathode 

and anode. The EEDF from the MC model shows non-equilibrium phenomena such as peaks of fast electrons 

that have undergone none or only few collisions (figure f) and the absence of a high-energy tail (figure g) ; the 

EEDF assumed by the fluid model (through the ionisation rate coefficient as a function of mean energy) does not 

include these features but gives a better description than the EEDF of local field equilibrium. From [7]. 

Monte Carlo 

fluid 

Monte Carlo 

local mean energy 

local field 

(a) 

(b) 

(f) 

(e) 

(d) 

(c) 

(b) 

(g) 
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Mean energy approximation vs. local field approximation 

The main purpose of solving the electron energy equation in plasma models is to obtain the 

electron transport coefficients e and De and the rate coefficients k of electron-impact 

ionisation and excitation in conditions where the local field approximation is not justified 

because the electric field varies considerably over the energy relaxation length (which is much 

longer than the mean free path due to the small electron mass and poor elastic energy 

transfer). The transport and rate coefficients are then treated as functions of the electron mean 

energy e or temperature Te = (2/3)e. Since the electrons are generally not Maxwellian, the 

functional dependencies De(e) k(e) etc are generalized from the solutions of the 

homogeneous Boltzmann equation, without real justification ; it is not clear to what extend 

this approach can capture deviations from local field equilibrium ; see figure 5.2 for 

illustration. However, even in highly collisional conditions (where the local field 

approximation would at first sight seem appropriate) it has advantages to solve the electron 

energy equation. First, the local field approximation can only describe situations where the 

electron flux is driven by the electric field, whereas bounded plasmas always contain regions 

where diffusion dominates, e.g. the electrons diffuse across the ambipolar sheath ; the energy 

equation yields (an estimate of) the electron temperature and transport coefficients in these 

regions. Second, the energy equation relaxes the coupling between the electron equations and 

the electric field equation, which makes the numerical solution less sensitive to instabilities. 

 

Heat equation 

For neutral gas particles, the energy equation (5.28) is often approximated by the well-known 

heat equation, neglecting directed energy. The heat equation for molecules is then usually 

extended to include internal rotational and vibrational energy, assuming thermal equilibrium 

of all modes of motion, i.e. the mean energy is not m<v2
>/2 but cT where c is the heat 

capacity at constant volume, approximately 1/2 per degree of freedom of translational and 

rotational motion plus (up to) 1 per degree of freedom of vibrational motion
25

. Summing over 

all gas species j :  

    ( 1)j j j j j j j
j j
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where j is the thermal conductivity, approximately related to the momentum coefficients as
26
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where the sum i runs over all species including the species j ; j is directly available in the 

literature for pure gases relatively unaffected by the plasma. The gas temperature in these 

equations is in eV ; to use Kelvin replace eT by kBT ; the factor kB is then sometimes included 

in cj and j. The total collisional power  is generally positive and corresponds to the power 

lost by the electrons and ions, transferred to gas either directly as thermal energy or as atomic 

or chemical internal energy subsequently converted to thermal energy by exothermic 

processes. Equation (5.38) is (sometimes) solved in plasma models to estimate the gas heating 

due to  and the resulting decrease of the gas density (by the ideal gas law at constant 

pressure) and possible thermal dissociation of gas particles. The assumption of thermal 

                                                 
25

 This is according to classical theory. In reality the contributions from rotation and especially vibration are 

often smaller due to quantization of the energy, e.g. for light diatomic gases at room temperature c ≈ 5/2 rather 

than 7/2 because nearly all molecules are in the vibrational ground state.  
26

 This expression is not standard but derived by myself by generalisation of the expressions in [Rei65] and is to 

be verified. 
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equilibrium of the different modes of motion is questionable : the plasma tends to heat 

preferentially the vibrational mode ; sometimes a separate energy equation is used for the 

vibrational temperature or (even more rigorous) different vibrational states are described as 

separate species.  

 

Ion energy equation 

For ions, directed motion has an important (if not dominant) contribution to the mean energy. 

Assuming a heat capacity c and heat flux T as in equation (5.37) but including the 

directed energy mw2
/2, the ion energy equation becomes :  
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  (5.39) 

The collisional power term i is generally negative, as for electrons. The directed energy 

terms are closely related to the electric work term qnwE and can be conveniently rewritten by 

substitution of the scalar product of the momentum equation (5.13) and the mean velocity w : 
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which shows that the ion temperature (thermal energy) is created from the directed energy by 

collisions. In local field equilibrium, the ion temperature is controlled by the balance of the 

terms on the right-hand side of equation (5.40) ; for isotropic-scattering collisions with 

neutrals of mass mn and temperature Tn (see equation (3.29)) this yields  :  
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3
i n n ieT eT m w   . (5.41) 

The ion energy equation (5.39/40) is usually not solved in plasma models because the ion 

temperature is a rather unimportant parameter, e.g. for positive ions the pressure gradient 

(nT) is usually negligible with respect to the electric force. The ion transport coefficients are 

then evaluated by the local field approximation as a function of the reduced electric field or 

the relative temperature (5.5) estimated substituting (5.41) : Tr = Ti = Tn  + mnwi
2
/3e. [Ell76] 

Note also that the validity of the ion energy equation (5.39/40) and even the concept of ion 

temperature as introduced in equations (5.11-12) are questionable because the ion pressure 

tensor tends to be anisotropic, especially when charge-exchange collisions (with neutrals) are 

dominant.
27, 28

  

 

                                                 
27

 The ion pressure is anisotropic even when the ion distribution function is fully controlled by isotropic-

scattering collisions : from statistical analysis of equation (3.27), assuming local field equilibrium and a constant 

collision frequency, it follows that Ti// = Tn + [(4mi+mn)/(2mi+mn)]  mnwi
2
/3e parallel to the field and Ti = Tn + 

[(mi+mn)/(2mi+mn)]  mnwi
2
/3e perpendicular to the field, rather than equation (5.41).  

28
 My paper [5] presents simple analytical expressions to estimate the ion energy distribution in case charge-

transfer collisions are dominant. 
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Chapter 6 

—————————— 

BOUNDARY CONDITIONS FOR FLUID MODELS29 
 

 

The fluid equations are solved within a spatial domain with one or more (often all) closed 

boundaries corresponding to physical walls. The boundaries conditions at these boundaries 

describe the physical processes at the wall which play an important role in the plasma 

dynamics : electrons and ions are lost in recombination, excited neutrals de-excited, 

secondary electrons are emitted by ion and excited neutral impact, etc. Since the fluid 

equations are conservation equations for particles, momentum, and energy, appropriate 

boundary conditions specify the fluxes of particles, momentum, and energy perpendicular to 

the wall surface. To formulate such wall-flux boundary conditions, it is useful to distinguish 

between particles coming from the plasma, moving toward the wall, and particles coming 

from the wall, moving away from it ; write the net particle flux as 

 w wnw n nw    w n , (6.1) 

where n is a normal vector toward the wall, ww is the effective wall loss speed of the particles 

coming from the plasma, and w is the particle flux coming from the wall due to reflection 

and surface creation ; ww and w are positive by definition. The particle flux coming from the 

wall can be obtained from the incident fluxes as  

 ,w w j j w j
j

rnw n w   . (6.2) 

The first term represents reflection with a probability r and the second term represents 

creation due impact of other particle species j with a probability . The second term is 

particularly important for electrons to account for secondary electron emission by ion impact, 

in which case  is the secondary emission coefficient. 

The effective loss speed ww is to be derived from kinetic considerations, e.g. from 

assumptions on the distribution function in the half of velocity space containing the particles 

moving to the wall. The simplest approach is to assume a Maxwellian distribution function 

and integrate the particle flux over velocity half-space : 
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where v is the velocity component perpendicular to the wall and vT = (2eT/m)
1/2

 is the 

nominal thermal speed. This is often used for charged particles especially electrons (e.g. in 

classical sheath theory) but does not account for the effects of the electric field and particle 

density gradient and gives a bad description in case of significant directed motion, e.g. for 

ions accelerated to the wall by the electric field. Therefore, many authors add additional 

contributions to the effective wall loss speed to represent directed motion. Commonly used 

for collisional charged particles is the expression [Meu95][Boe95] 
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i.e. the perpendicular drift velocity is added in case it is directed to the wall. The two terms 

are sometimes interpreted as boundary expressions for the diffusion term and the drift term of 

                                                 
29

 One of my first papers [3] dealt with boundary conditions for fluid plasma models and excited many 

(sometimes disapproving) reactions which made me aware of some (conceptual) mistakes in it, e.g. the mobility 

term in equation (9) is inappropriate. My current views on the subject are presented here.  
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the drift-diffusion equation. However, such interpretation is not pertinent : the intrinsic 

approximations of the fluid equations do not hold at the wall and neither does the fluid-like 

separation into different flux terms. Drift, diffusion, thermal conductivity, heat flux, etc are 

not well defined at the wall.  

 

Collisional electrons and neutrals 

More consistent boundary conditions can be obtained by making more consistent assumptions 

on the distribution function. For near-isotropic collisional electrons and neutrals, it is 

reasonable to assume a shifted Maxwellian distribution around the mean velocity w. 

Approximate for |w| < vT and integrate the particle flux over velocity half-space : 
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Tv w


  ; (6.5) 

this is consistent with the two-term solution of the Boltzmann equation (4.5) for constant 

collision frequency m. Substitution into equation (6.1) yields
30
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i.e. without reflection or wall creation w the effective loss speed is twice as large as (6.3), but 

it is reduced as w increases. The max-limiter is added to prevent ww becoming negative in 

case of strong wall creation, when the approximation |w| << vT is no longer justified ; this 

happens for electrons at the cathode due to secondary emission by ion impact, and it is then 

indeed appropriate to set ww = 0 because the secondary emission coefficients  given in the 

literature have generally been deduced neglecting thermal electron loss to the cathode. In case 

w consists only of reflected particles, equations (6.1-2) and (6.6) can be combined to obtain 

the wall flux as  
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this is a common boundary condition for neutrals [Cha87]. 

 

Positive ions 

For positive ions, which have a strongly directed motion toward the wall w > vT due to 

acceleration by the ambipolar (sheath) field, equation (6.6) is not appropriate. Without the 

approximation w << vT and without wall creation w, the assumption of a shifted 

Maxwellian distribution around w leads to an infinite effective loss speed ww, i.e. to zero 

density at the wall. Although this seems unrealistic and is not commonly used, zero wall 

density n = 0 is not a bad boundary condition for ions. In fact, due to the strongly directed 

motion, the ion boundary condition does not propagate inside the volume (only over a 

negligible distance of order T/E) provided that the effective wall loss speed be larger than the 

mean velocity upstream such as to prevent ion accumulation at the wall. Another possible 

boundary condition for ions is therefore to simply add a drift term to equation (6.6) : 
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 This equation and many of the following equations in this chapter are not standard ; however I have not 

checked the literature carefully enough to claim them original. 
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this exceeds the ion velocity upstream not only in drift-diffusion models but also if the ion 

inertia terms are retained. Equation (6.8) has consistent limits for all particle species and is 

recommended instead of equation (6.4). 

 

Ions in quasineutral models 

In quasineutral plasma models (see chapter 8), the sheath in front of the wall is not 

represented and the boundary corresponds to the sheath edge rather than the wall. Then the 

ion boundary condition propagates inside the volume through its direct influence on the 

electric field and zero ion density is not an appropriate boundary condition. If the effective ion 

loss speed is larger than the mean ion velocity upstream e.g. by equation (6.8) then the plasma 

density gradient is increased near the boundary ; assuming electron Boltzmann equilibrium 

this increases the electric field towards the wall, which increases the ion velocity and loss 

speed, which further increases the plasma density gradient, and so on, until the loss speed 

attains the Bohm speed
31

 :  

 ( )w i e i iw qT eT m  i e iqT m ,  (6.9) 

which is the maximum speed for inertial ions allowed by the quasineutral approximation. This 

can be shown by a simple stability analysis of the ion fluid equations coupled with the 

electron Boltzmann relation in one dimension x : 
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   
. (6.10) 

Consider that the ions move in the positive x-direction towards a wall boundary and that the 

ion velocity near the boundary is slightly increased as w + w' exp(t + Kx) on a short length 

and time scale such that Kw >> |∂w/∂x| and  >> m ; substitution in equations (6.10) yields 

  ( )i e i i
qT eT m w K     : (6.11) 

there exists a positive  so the perturbation grows at arbitrarily large K for any w smaller than 

the limit (6.9). So, provided the spatial inertia term (w)w is included in the ion momentum 

equation, the Bohm speed (6.9) appears automatically from equation (6.8) or any other 

boundary condition describing complete ion absorption.
32

 However, this is rather sensitive to 

numerical errors due to spatial discretisation, which tend to bring to a halt the growth of the 

ion velocity before it actually attains the Bohm speed (6.9) ; it can therefore be preferable to 

impose (6.9) directly as a boundary condition. Equation (6.9) is an appropriate boundary 

condition also for quasineutral drift-diffusion models neglecting ion inertia. If there are more 

than one positive ion species then (6.9) is not generally justified for each species separately 

but rather 

 
2

,

i i e

i ei w i

n q n

Tmw
 ; (6.12) 

however, the steady-state loss speed of each species remains close to (6.9) as long as the mean 

free paths and the spatial ionisation profiles are similar. [Fra00] 

 

                                                 
31

 It is a common misconception that the description of the Bohm speed requires the description of the sheath ; it 

is a natural limit also for quasineutral models. In my opinion this is more relevant to the origin of the Bohm 

criterion than the arguments about space charge inversion advanced in most text books. Note also that the 

existence of a sheath is implicit in the electron Boltzmann relation : without sheath the electrons would not be in 

Boltzmann equilibrium.  
32

 This holds also for quasineutral PIC or hybrid models based on ion particle description with full ion absorption 

at the boundary, e.g. my hybrid model of the Hall effect thruster, although important errors can arise from 

discretisation.  
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Boundary conditions for the momentum equation are needed only if the inertia or viscosity 

terms are retained, i.e. for inertial ions or neutrals (Navier-Stokes equation). Usually simple 

boundary conditions are sufficient : for inertial ions w = 0 ; for collisional neutrals zero 

parallel velocity w// = w  wn = 0 and w as above from equations (6.1) and (6.6). 

 

Electron energy 

For the electron energy equation it is appropriate to use energy flux boundary conditions in 

analogy with the particle flux boundary conditions discussed above. Since electrons only 

transfer kinetic energy to the wall when they are lost, write the energy flux as 

 e w w wQ n w     , (6.13) 

where w is the mean energy lost per electron and  is the mean energy of the secondary 

electrons emitted from the surface. The energy loss per electron can be straightforwardly 

obtained by averaging over a half-Maxwellian distribution : 
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where ww from equation (6.3) ; the term vT
2
 in the particle energy accounts for the velocity 

components parallel to the surface. The energy loss of 2Te per electron is commonly used in 

plasma physics. However, for collisional electrons it seems more reasonable to assume a 

shifted Maxwellian distribution around the mean velocity, as above : 
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, (6.15) 

where ww from equation (6.6). Without secondary emission this is a factor 5/4 higher than 

(6.14) but decreases as secondary emission increases.  

In quasineutral models, where the boundary corresponds to the sheath edge rather than 

the wall, the sheath potential must be added to the energy loss per electron to account for the 

electron energy transferred to the ions by the sheath field : 

 2w e sT    (6.16) 

where the sheath potential s is to be deduced from a sheath model. For a non-collisional 

sheath (mean free path >> sheath thickness), assuming zero current to the wall, Maxwell-

Boltzmann electrons, the electron loss speed (6.3) at the wall, zero secondary electron 

emission, and the ion Bohm speed (6.9) at the sheath edge : 
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; (6.17) 

the last member is reasonable only for steady state.  

 It is interesting to observe that the first term 2Te in equation (6.16) holds for both a 

Maxwellian and a shifted Maxwellian electron distribution. For a shifted Maxwellian, 

consider that the quasi-totality of electrons is reflected at the sheath edge, substitute w = 

rnww = (vT/1/2
)r/(1+r) into equation (6.15) and take the limit for r approaching 1 : this yields 

2Te as for a centered Maxwellian. From comparison of equations (6.15) and (6.16) it then 

follows that in a collisional sheath (mean free path << sheath thickness), neglecting secondary 

emission and collisional energy loss inside the sheath, the electron temperature drops by a 

factor 4/5 from the sheath edge to the wall.  
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Chapter 7 

————————— 

NUMERICAL METHODS FOR FLUID MODELS 
 

 

Although there exist many sophisticated numerical methods for the solution of fluid equations 

in general, plasma models are usually based on more basic methods, which provide the 

flexibility and simplicity that is needed to successfully deal with the coupling between the 

different fluid equations and with the Maxwell equations (see chapter 8). This chapter 

describes some basic numerical methods that are well adapted and commonly used for fluid 

equations in plasma models.  

 

Time integration 

Consider the general form of a conservation equation with a drift-diffusion flux : 

  
n

n D n S
t


   


W ,  (7.1) 

where the density n, drift velocity W, diffusion coefficient D, source term S are generic, i.e. 

can have different physical meanings. This equation corresponds directly to the substitution of 

the drift-diffusion equation (5.15) into the continuity equation (5.6) (W = E), to the energy 

equation (5.32) (n = nee ; S = neweEne etc), and with some minor modification of the 

time derivative also to the energy equation (5.31) (n = e ; W = (5/3)newe ; D = (5/3)neDe 

etc) and the heat equation (5.37).  

Consider that equation (7.1) is part of a self-consistent plasma model where it is 

coupled with similar equations for other particle species and with the Maxwell equations. The 

couplings with the other equations act upon W, D and S and are generally resolved by explicit 

time integration : the model equations are integrated sequentially (one by one) over small time 

steps t, where any coupled quantity is evaluated explicitly from the previous time step. In 

fact, since fully explicit evaluation requires t to be smaller than the characteristic time scale 

of the coupling, various semi-implicit methods are used to avoid time step constraints (as 

discussed further on), but the equations are generally kept separated and in the form (7.1). 

Note that time integration is not only used to describe transient behaviour but is also a 

common and recommended method to obtain steady state model solutions, because it 

automatically respects the ordering of the different coupling time scales so that the physical 

stability properties are preserved ; some initial spatial solution is then advanced in time until it 

has relaxed to steady state.  

Hence, a spatial profile n(x) given at time tk is to be advanced to time tk+1
 = tk + t 

from equation (7.1) for given W, D and S. The time derivative is approximated by a finite 

difference. Simplest is to evaluate n in the transport term explicitly at time tk : 

  1k k k kn n tS t n D n
      W , (7.2) 

but this requires a severe Courant-Friedrichs-Lewy (CFL) constraint on the time step of the 

type 

  
1

2 2
2 2x yt W x W y D x D y



          (7.3) 

where x and y are spatial discretisation steps in two dimensions. Equation (7.2) is 

sometimes used in combination with a high-order spatial discretisation scheme to obtain the 

transport term with high accuracy, but often the accuracy of simple spatial discretisation 

schemes (see below) is sufficient and it is possible and recommended to evaluate the transport 

term implicitly at the new time step : 
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  1 1 11 1k k k kn n D n n S
t t

  
    

 
W  ; (7.4) 

this is stable without time step constraints so t can be much larger than (7.3). The accuracy 

of the time integration is only first order but this is sufficient : t tends to be limited more by 

the (stability of the) coupling with other equations than by accuracy.  

 

 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.1. Two-dimensional grid for fluid models. Scalar quantities are defined at the dots, x and y components 

of vector quantities at the horizontal and vertical arrowheads ; hatched areas represent blocked cells outside the 

computational domain. Figure a shows the indexing of the different points, figure b some volume and surface 

elements including an effective wall surface element to represent an oblique domain boundary. 
 

 

Spatial discretisation 

To solve equation (7.4), the space derivatives are discretised as follows. Consider a domain in 

two spatial dimensions x and y. The domain is divided in rectangular cells as shown in figure 

7.1, usually a hundred or so in each dimension. All scalar quantities are defined at the grid 

points, corresponding to the cell corners, referred to by indexes (i,j). The x and y components 

of vector quantities are defined at locations halfway between the grid points, indicated by 

arrowheads in figure 7.1, referred to by half-indexes (i+1/2,j) and (i,j+1/2).  

The divergence operator is discretised by the control volume method, according to 

which so-called control volumes are defined around the grid points with edges passing 

halfway between the grid points as shown in figure 7.1. Now integrate the conservation 

equation (7.4) over a control volume, apply the Gauss theorem, and approximate the volume 

and surface integrals by simple quadratures : 
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, (7.5) 

where V, Ax, and Ay are the geometrical volume and surface areas of the control volume, 

depending on the coordinate system (Cartesian, cylindrical etc). This discretisation method 

imposes conservation of the flux within any ensemble of control volumes so also within the 

entire domain.  
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The drift-diffusion flux is discretised by the exponential scheme [Sch69] 
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 (7.6) 

where  

 , 1/2 , 1/2 1 1/2( )x i x i i i iz W x x D     . (7.7) 

This is scheme is based on the analytical solution for n as a function of space assuming a 

piecewise constant flux, drift velocity, and diffusion coefficient. Since these assumptions are 

often reasonable, especially for electrons, the exponential scheme leads to accurate density 

profiles even with only few grid points, especially for the electron density in the sheath.
33

 

When diffusion is negligible (|z| >> 1), the exponential scheme turns into the classical upwind 

scheme, and when diffusion is dominant (|z| << 1), into the central difference scheme. The 

third member of equation (7.6) shows that the exponential scheme can be directly written as a 

combination of the upwind scheme for drift (first two terms) and the central difference 

scheme for diffusion (last term) with a decreased diffusion coefficient ; the factor in square 

brackets decreases from unity to zero as |z| increases. 

 

Linear system 

By substitution of (7.6) in (7.5), the spatial differential equation (7.4) is approximated by a 

system of linear five-point equations  
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relating the n-value at each grid point to those at the four neighbour points, where aC
, aE

, aW
, 

aN
, aS

, and aR
 are (central, east, west, north, south, result) coefficients depending on W, D and 

S as follows : 
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  , , , ,

R k
i j i j i j i ja V n t S   . (7.9) 

The central coefficient is dominant : |aC
| > |aE 

+ aW 
+ aN 

+ aS
| which ensures the existence of 

the solution of the linear system. Arbitrarily shaped plasma domains can be described by 

blocking grid cells as shown in figure 7.1b, such that the plasma boundaries pass through grid 

points. Boundary conditions for the wall flux of form (6.1) can then be directly implemented 

into the linear system by adding contributions Awww and Aww to the coefficients aC
 and aR

, 

respectively, where Aw is the surface area element at the wall. The boundary points have no 

links to points outside the plasma domain ; the corresponding coefficients aE-S
 are zero. The 

system of linear five-point equations is solved most efficiently by iterative methods since a 

good estimate of the solution is available from the previous time step ; a recommended 

solution method that is well adapted for plasma models is the so-called modified-strongly-

implicit procedure [Sch81]. In one-dimensional models, the discretised equations have a 

three-point form are solved directly by tridiagonal Gaussian elimination. 
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 The exponential scheme is also very appropriate to discretise the two-term Boltzmann equation (4.10) and is 

used by my freeware solver BOLSIG+.  
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Full momentum equation 

In case inertia or viscosity is included in the momentum equation (for ions or neutrals), the 

above methods are still applicable but they require some extensions. The following scheme is 

effective even if the inertia and viscosity terms completely dominate the momentum 

equation.
34

 First, calculate W  w
k+1

 as the new mean velocity from the momentum equation 

using the old density n
k
 for the pressure gradient. To avoid CFL time step constraints, treat the 

space derivatives implicitly and solve a linear system of five-point equations for each velocity 

component, e.g. for the ion momentum equation (5.13) : 
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q e
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t t m mn
      

 
W w W W w E . (7.10) 

Subsequently, solve the new density n
k+1

 from the continuity equation including an implicit 

diffusion-correction of the mean velocity to account for changes in the pressure gradient :  

    1 1 11 1k k k k kn n D n n S D n
t t

  
      

 
W  (7.11) 

The diffusion-correction terms appear on either side of the equation and cancel in steady state, 

but they are necessary to ensure numerical stability at larger time steps. The diffusion 

coefficient D is essentially a numerical parameter which does not require precise evaluation ; 

it is sufficient to estimate D approximately, e. g. for ions 
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  (7.12) 

where * is an effective frequency characterising the global ion transport, R is some average 

plasma radius, and the triangular brackets represent some volume average. The electron 

temperature is included in D to correct for changes in the electric field due to changes in the 

electron pressure (assuming quasi-neutrality and Maxwell-Boltzmann electrons) ; this 

facilitates the coupling with Poisson's equation in self-consistent plasma models (see chapter 

8). For neutrals described by the Navier-Stokes equation (5.26) the diffusion coefficient is 

estimated as D ≈ eT/m* with * ≈ 8<>/R
2
. Finally, update the new mean velocity with the 

new pressure gradient: 
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The continuity equation (7.11) can be discretised and solved as above, but care must be taken 

that both diffusion terms are discretised likewise (so that they really cancel in steady state) 

e.g. by using the last member of equation (7.6) without the exponential-factor in square 

brackets. The space derivative in (7.10) can be discretised by the upwind scheme : 
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 This scheme is used in my low-pressure plasma model for the ICP source for ITER.  
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Implicit source term prediction 

The source term S in equation (7.4) often depends on n. Explicit evaluation can then require 

time step constraints. To see this, consider a perturbation ñ around the stationary solution of n 

and assume the transport term proportional to n : 
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. (7.15) 

The perturbation grows so the stationary solution is unstable if S/n > S/n, e.g. for electrons 

with an ionisation source term S = kne
2 

; the solution is then stabilised externally by coupling 

with some other equation, e.g. the ionisation rate coefficient k depends indirectly on ne 

through the electron energy equation. If S/n < S/n then the solution is intrinsically stable 

provided that ñk+1
/ñk > 1, i.e. 

   2t S n S n      . (7.16) 

This time step constraint can be prohibitive if the transport term is small with respect to 

different positive and negative contributions of the source term but can be avoided by the 

following implicit linear prediction of the new source term : 

   1min , ,0 ( )k k kS S S n S n n n     , (7.17) 

as can be readily verified from the above analysis. The term S/n in the min-delimiter is 

included to prevent n becoming negative during transient stages of the time evolution. 

Implicit source term prediction is of particular interest for the electron energy equation 

(5.31/32). The energy source term is 

 2 ( )e e e e e e e eS n n n E D n n        w E E . (7.18) 

Neglecting energy transport, the electron mean energy is controlled by equilibrium of the 

positive heating term and the negative terms for diffusion cooling and collisional energy loss. 

Explicit evaluation tends to cause instabilities because De and especially  are strongly rising 

functions of the electron mean energy so that S/e >> |S/e| and the time step constraint 

(7.16) can be very severe. Using the Einstein relation De = (2/3)ee and neglecting the 

energy-dependence of e,  the implicitly predicted energy source term (7.17) becomes
35
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Sometimes the energy equation (5.32) is solved for the energy density (nee)
k+1

 rather than 

e
k+1

 and the appropriate implicit expression is 
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           
   

w E E , (7.20) 

where the electron conservation equation must be solved before the electron energy equation 

so that ne
k+1

 is known ; the mean energy is then obtained afterwards by dividing (nee)
k+1

/ne
k+1

. 

The min-delimiter has been omitted in equations (7.19-20) because it is generally superfluous. 

The prediction term adds positive contributions to the coefficients a
C
 and a

R
 of the five-point 

system. Note that when applied to particle source terms, equation (7.17) can affect the 

conservation of mass and charge of the plasma model because the source terms for different 

species are no longer entirely consistent.  

                                                 
35

 My paper [2] presents a more precise version of this energy source term prediction method, based on the 

linearisation of the exponential scheme (7.6-7) and accounting for the energy-dependence of the mobility. 

Unfortunately this paper contains sign errors throughout which have persisted even in the corresponding chapter 

of my thesis.  
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Figure 7.2. Numerical grid points involved in the discretisation of a (horizontal) magnetised flux component at 

position (i+1/2, j). 
 

Magnetized fluid equations 

The above methods can be extended to account for the drift-diffusion flux and energy flux of 

magnetised electrons as follows. The magnetised fluid equations do not have the form (7.1) 

but rather 

  
n

S
t


 


  

  2

1
( )

1
n     


w G G G     n D n  G W . (7.21) 

Consider an axisymmetric configuration with  = qB/m in the axial and radial directions ; 

this corresponds to most magnetised discharges. The transport in the axial-radial plane is then 

characterized by anisotropy of the transport coefficients D///D = 1 + 
2
 up to 6 orders of 

magnitude. The control volume method can be applied as before : 

 
1 1 1 1 1
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               , 

but the discretisation of the flux  is delicate. Expressing the flux components in cylindrical 

coordinates yields 
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1
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     
 (7.22) 

and an analogous expression for r. Clearly, if the magnetic field is not exactly aligned with 

the grid (xr  0) the flux components contain a cross term proportional to the gradient of n 

in the transverse direction. The two terms of (7.22) can be discretised separately by the 

exponential scheme (7.6-7) but the cross term requires interpolation from 4 locations 

involving 6 grid points as indicated in figure 7.2 : 
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is a numerical parameter introduced to facilitate the solution and limit discretisation errors for 

large Hall parameters (large anisotropy) as discussed below. In order to keep the discretised 

linear system in five-point form (7.8) as before, the cross term is evaluated explicitly from the 

previous time step, i.e. it is included in the result coefficient a
R
. This explicit treatment of the 

cross term converges regardless of the time step ; e.g. consider a stationary solution and 

perturb  and G with a form exp(ikx) assuming k = 0 (continuity) and kG = 0 (G is the 

gradient of a scalar quantity) ; then equation (7.23) yields 
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2 2 2 2

| 2 |
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k kG
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max

1

1 2 min( , )


  
, (7.25) 

i.e. the perturbation is dissipated. However, as shown in the last member of (7.25), the 

convergence is slower as the Hall parameter  is larger so that more iterations (time steps) are 

required to obtain the correct solution ; this seems to be a general problem which also occurs 

if the cross term is treated implicitly by a nine-point iterative solution procedure [Sch81].  

 A second and more serious problem is that the magnetised flux is very sensitive to 

discretisation errors : both terms in equation (7.23) are of the order of the non-magnetised flux 

G and tend to be opposite in sign and very much larger than the net flux  ; since the terms 

are discretised independently (from different grid points) the relative discretisation error in  

can be enormous. This is illustrated in figure 7.3. In fact, beyond a certain Hall parameter  > 

5-10, the flux across the magnetic field tends to be determined by numerical errors rather than 

by the physical coefficients  and D ; hence equation (7.23) is not appropriate for models of 

EB discharges (Hall effect thruster, Penning trap, magnetron). To limit these numerical 

errors, the factor  in equation (7.23) reduces the transport coefficients parallel to the 

magnetic field for large  > max while keeping the perpendicular coefficients intact.
36

  

 A more proper way to limit numerical errors across the magnetic field is to modify the 

flux discretisation scheme by elimination of the cross term using the expression for the 

transverse flux component :
37
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 (7.26) 

   , 

where the first term is discretised by the exponential scheme (7.6) like before and the second 

term is evaluated explicitly from the magnetised flux at the previous time step ; this converges  

as equation (7.25) but then for 
k+1

/
k
. Both terms of equation (7.26) are of the order of the 

flux across the magnetic field so their (relative) discretisation errors are not amplified in . 

However, with (7.26) the parallel transport involves iterative, mutual reinforcement of the two 

flux terms and tends to be slowed down, which can impede the establishment of the 

Boltzmann relation along the magnetic field lines and can even affect the stability of the 

ambipolar field. Depending on the discharge configuration one of the discretisation schemes 

                                                 
36

 Strong electron magnetisation usually occurs at very low gas pressure when the electrons are nearly 

collisionless as they move (oscillate) along the magnetic field lines. The drift-diffusion equation parallel to the 

magnetic field is then justified only insofar it yields the Boltzmann relation (5.19) and the parallel transport 

coefficients are not physically relevant ; all that counts is that they are much larger than the perpendicular 

coefficients. 
37

 I originally developed this scheme for two-stage Hall effect thrusters with a complex magnetic field, for which  

it works very well even without the factor . When I recently applied the scheme to a magnetron discharge it 

turned out to work less well and lead to unphysical artefacts and convergence problems for max > 10. The 

scheme is briefly described in my paper [27]. 



 47 

is preferable : equation (7.26) for EB discharges and equation (7.23) for discharges with free 

transport along the magnetic field lines ; neither scheme is appropriate for all configurations.  

 For simple magnetic field topologies, numerical errors can be rigorously limited by the 

use of an orthogonal curvilinear grid following the magnetic field lines, so that the cross term 

vanishes from the flux expressions.
38

 

  

 

 

  
Figure 7.3. Numerical test results for a simple EB discharge where a horizontal electron flux is forced through 

a uniform plasma in a rectangular channel across an oblique magnetic field. The plasma potential and electron 

flux are solved from the electron continuity equation and magnetized drift-diffusion equation (7.21), assuming 

fixed ion density, quasineutrality, fixed potentials a and c at the vertical boundaries, and zero current at the 

horizontal boundaries. Figure a shows the electron flux in the centre of the channel obtained from different 

numerical methods for different magnetic field angles  and different Hall parameters. The standard method 

based on discretisation of transverse gradients as shown in equation (7.23) tends to overestimate the electron flux 

with respect to the transverse flux method of equation (7.26) ; the latter is in agreement with the analytical 

solution. Figure b shows the horizontal potential profile in the centre of the channel ; the analytical potential is 

linear (uniform electric field) within the triangular region where the magnetic field lines intercept the horizontal 

walls, but the standard method (7.23) yields a spurious curved potential profile. From [27]. 

                                                 
38

 Recently I have come across a publication [Gün05] proposing a simple scheme to calculate heat transport in 

strongly magnetised plasmas using a non-aligned grid, where numerical errors are strongly reduced by 

“symmetric” discretisation of the longitudinal and transverse gradients around the points (i+1/2, j+1/2). I have 

done some preliminary test calculations using this scheme in combination with an iterative 9-point solver ; the 

results are very promising ; it should be possible to adapt the scheme to the magnetised drift-diffusion equation 

coupled with Poisson’s equation in arbitrary geometry. To be continued. 
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Chapter 8 

—————————— 

AMBIPOLAR AND ELECTROSTATIC APPLIED FIELDS 
 

 

The ambipolar field generated by plasma charges is described by Poisson's equation   

 0( ) E 0( ) j j
j

q n   , (8.1) 

where the right-hand side is the plasma space charge density. Applied electrostatic fields can 

be taken into account by applying potential differences in the boundary conditions. To 

account for dielectric materials surrounding the plasma, Poisson's equation must be solved 

also inside these materials, including the relative dielectric permittivity (1+) in the left-hand 

side, up to a distance far enough to suppress the influence of any artificial boundary 

conditions at the domain edge (usually // = 0) ; plasma charges accumulated on the 

dielectric surface can be included in the right-hand side of equation (8.1) ; an example is 

shown in figure 8.1. Poisson's equation can be solved numerically by the same implicit 

method described in chapter 7 for the fluid equations, involving finite volumes for the 

divergence, central differences for the gradient, and some (iterative) solution procedure for 

the discretised system :  
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 
  . (8.2) 

The last term in the result coefficient a
R
 represents surface charges.  

 

When coupling Poisson's equation self-consistently with the description of the charged 

particle motion, it is important to observe the characteristic length and time scales of the 

coupling. From substitution of the electron Boltzmann relation (5.19) in Poisson's equation 

0
2
 ≈ ene/Te it follows that the characteristic length is the Debye length 

 D 0 e eT en  ,  (8.3) 

corresponding to the distance over which electron pressure variations can resist to the space 

charge field ; this also characterises the thickness of the ambipolar sheath at the wall. To find 

the characteristic time of the ambipolar coupling, differentiate Poisson's equation with respect 

to time and substitute the electron and ion continuity and momentum equations such as to 

obtain a differential equation for 
2
 as function of time. In the absence of collisions, the 

characteristic time is 1/p  the inverse of the plasma frequency  

 
2 2

p 0 0j j j e e
j

q n m e n m    . (8.4) 

Plasma oscillations can easily be excited at this angular frequency but are dissipated by 

collisions. Therefore, in collisional plasmas (m >> p) the ambipolar coupling is rather 

determined by the dielectric relaxation time 
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 0 0
d

| |j j j e e
j

q n e n

 


 
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

( > 1/p ) . (8.5) 

To fully resolve the ambipolar coupling, the numerical discretisation must respect the 

following constraints : spatial step x < D, time step t < 0.2/p for non-collisional and PIC 

models, and t < d for collisional drift-diffusion models.  

 

Semi-implicit method 

Often, however, one is not interested in describing ambipolar plasma oscillations or dielectric 

relaxation, but rather in plasma evolution on a much longer scale, and the above time step 

constraints can be very prohibitive. Then a semi-implicit time integration method can be used 

to achieve numerical stability at larger time steps. [Ven93] Consider a self-consistent plasma 

model consisting of continuity equations and drift-diffusion equations for electrons and ions 

coupled with Poisson's equation. All quantities are known at a time t
k
 and are to be advanced 

to time t
k+1

 = t
k
 + t. The particle densities are advanced implicitly as discussed in chapter 7 : 
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  
 (8.6) 

To avoid the time step constraints due to the ambipolar coupling, it is necessary to use the 

new potential 
k+1

 accounting for the new space charge density through Poisson's equation 

(8.1). Fortunately, however, it is not necessary to account for the exact new space charge 

density (which would imply solving all equations simultaneously) ; it is sufficient to estimate 

the new space charge in Poisson's equation by replacing n
k+1

 by n
k
 in the transport terms of the 

electron and ion equations (8.6), i.e. to use equation (7.2). Poisson's equation then becomes 

  1 1

0( ) | | )
k k k k k

j j j j j j
j

q n t q n q D n 
         

  . (8.7) 

Substituting (8.6) for the previous time step (from k1 to k), this can be written as
39
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So the modified Poisson's equation (8.8) includes a semi-implicit prediction of the future 

space charge density and is solved separately before the time advancement of the densities by 

equation (8.6). This scheme remains stable even if t >> d. Similar semi-implicit methods 

have been developed for non-collisional fluid models [Cri07] in which case e ≈ t
2
e

2
ne /me0 

and even for PIC models [Lan83]. 

 

Electron Maxwell-Boltzmann models 

A related problem occurs in models based on the Boltzmann relation (5.19) for electrons, i.e. 

ne = n0exp(/Te). Since electron inertia and collisions are neglected, the electron density 

responds instantaneously to the potential and requires implicit treatment in Poisson's 

equation ; however, it also has to satisfy the global (space integrated) electron conservation 

equation (through the reference density n0) 
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
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    , (8.10) 

                                                 
39

 My paper [2] presents a more precise version of the semi-implicit method based on linearisation of the 

exponential scheme of equation (7.6-7) ; for most purposes however the simpler equations shown here work just 

as well. 
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which makes fully implicit treatment into a global problem. To avoid  solving an implicit 

integro-differential equation, the following semi-implicit scheme can be used for the time 

advancement.
40

 First, the new reference density n0 is calculated from global electron 

conservation as 

  1 1 1 3

0 0( ) /
k k k k k k k k k

ea n a a a b a n b t S d V  
       (8.11) 
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where the square-root term under-relaxes n0 such as to critically damp oscillations. Then, the 

new potential is solved from Poisson's equation with implicit linearised Boltzmann factor : 

  1 1 1

0 0( ) exp( / ) 1 ( ) /
k k k k k

i i e e
i

q n en T T
  

        , (8.12) 

where summation only includes the ion species. This scheme is stable without electron-related 

time step constraints. The critical damping term in (8.11) has been derived from analytical 

considerations on the behaviour of the ambipolar field, explained in detail in [29]. 

 

Quasi-neutral models 

Sometimes the Debye length is so small with respect to the plasma size that resolving it is 

prohibitive and of limited interest. It is then customary to eliminate Poisson's equation from 

the model by the assumption of quasineutrality, i.e. the electron density is calculated from 

 
1

e i i
i

n q n
e

  , (8.13) 

after which the electron equations are solved for the potential  rather than ne. In case there is 

only one ion species (of charge +e) then quasi-neutral drift-diffusion models can be elegantly 

reformulated by splitting the electric field into the driving field d (applied field) and the 

ambipolar field a defined by the zero-current condition 

 a( ) ( ) 0e i e e i ee n e D D n        . (8.14) 

The ambipolar field is eliminated to obtain two separate equations for the plasma density and 

the driving potential :  
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    d d( ) 0e i ee n        , (8.16) 

where the effective transport coefficients are the ambipolar diffusion coefficient Da and the 

electric plasma conductivity . This is approach is frequently used in text books on plasma 

physics but is awkward and not recommended in case of multiple ion species.
41

 An additional 

complication of quasi-neutral models is that the sheath potential must be estimated 

analytically and included explicitly in the boundary conditions for the potential and the 

electron energy flux as shown in equation (6.17). In fact, the semi-implicit method presented 

above offers a good alternative to the explicit use of the quasi-neutrality condition (8.13) : this 

method remains stable even if the Debye length is not resolved, in which case it automatically 

                                                 
40

 I originally developed this method for a hybrid model of a vacuum circuit breaker ; it was then also used by 

Albert Meige to study electro-negative double layers and briefly described in his thesis ; it was finally the subject 

of a publication in J. Comp. Phys. : [29]. 
41

 I applied the quasineutral approach with multiple ion species in the first version of my model of the micro-

hollow-cathode-sustained discharge, used by E. Muñoz-Serrano [25] ; due to persistent numerical problems I 

later replaced the quasineutral approximation by the semi-implicit Poisson equation, in the version used by K. 

Makasheva [31][37] ; this turned out to work much better.   
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yields a plasma sheath with a thickness of one spatial discretisation step and a sheath potential 

reasonably close to the analytical value. Note that for larger time steps e >> 1, the modified 

Poisson equation (8.8) becomes equivalent to the quasi-neutral current conservation equation 

(8.16).  

  

   
 

  
 

  
 
Figure 8.1. Simulation of a microdischarge in one cell of plasma display panel (PDP) by a self-consistent fluid model 

consisting of continuity equations (5.6) and drift-diffusion equations (5.15) for about 10 different plasma species, the electron 

energy equation (5.33), and Poisson's equation (8.1). The plasma is sustained by coplanar electrodes (called common and 

scan in figure a) covered with a dielectric layer and driven with a 50 kHz alternating square voltage (figure b). When the PDP 

cell is on, a transient discharge occurs each time the sustain voltage changes polarity and is quenched by accumulation of 

surface charges on the dielectric, which screen the plasma from the voltage but reinforce the voltage at the next polarity 

switch. Figure c shows the time evolution of the electrostatic potential during the discharge ; the voltage is switched at t = 0 

s with a rise time of 0.1 s and is almost fully screened by surface charges at t = 0.34 ; the extreme potential values are 

indicated in volts. Figure d shows the corresponding time evolution of the excitation rate of the resonant Xe*(3P1) state in 

logarithmic scale from 1018 to 1022 cm3 s1 ; these states emit ultraviolet photons that excite the phosphors of the display. 

From [9]. 

(a) (b) 

(d) 

(c) 
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Chapter 9 

—————————————— 

MICROWAVE FIELDS  
 

 

To describe the interaction between a plasma and applied microwave fields, recognise that the 

microwave period is orders of magnitude shorter than the time scale of the evolution of the 

plasma density and chemistry, and hence decompose the electromagnetic field and particle 

quantities into separate components for plasma evolution and microwave oscillations, 

respectively denoted without and with tilde. The microwave fields are described by the 

Maxwell equations 

 0 een   E  (Gauss) (9.1) 

 0 B  (9.2) 
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where Jd is the driving current density exciting the microwaves somewhere outside the 

plasma. The first two Maxwell equations prescribe the initial conditions for the last two and 

are superfluous for periodic wave solutions. The plasma current is approximated as follows. 

First, ion motion on the microwave time scale is neglected with respect to electron motion due 

to the much larger ion mass. Second, since the Debye length is usually much smaller than the 

length scale of the microwave interaction (skin depth), the electron density ne ≈ ni >> ñe is 

assumed constant on the microwave time scale. The electron mean velocity is given by the 

local momentum equation (5.23) : 
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m e e

e
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w
w E , (9.5) 

neglecting the magnetic force (with respect to the electric force) and the distances travelled by 

the electrons during a microwave period (with respects to any gradient length).  

 

With the above approximations, the plasma-microwave interaction is completely linear and 

the periodic solution has simple harmonic time dependence at the (angular) wave frequency 

. Substituting the electron momentum equation in the Maxwell-Ampere equation, the 

plasma current can be represented by a combination of conductivity and permittivity : 
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or rather, using the complex notation exp(it), by a complex permittivity alone :  
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The interaction depends on the ratios of the plasma frequency, collision frequency, and wave 

frequency ; its characteristic length scales can be found from the complex wave number of the 

plane wave solution (assume E  B   and p constant), which has the limits 
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The real part is the inverse wave length and the imaginary part is the inverse skin depth, 

corresponding to exponential decay of the wave amplitudes. 

 

From the microwave solution, the time average power absorption per electron is 
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This can be injected in the source term of an electron energy equation that is part of a plasma 

model describing the plasma evolution time scale. A self-consistent description of a 

microwave-sustained plasma can thus be obtained by iteration : the microwave solution yields 

the time-average power absorption, which is injected in a plasma model to simulate the  

evolution of the plasma density over a certain time, which is injected back into the microwave 

equations to update the power absorption, etc, until a steady state is reached. During such 

iteration procedure, it is appropriate to continuously renormalise the power absorption such as 

to keep the total (space-integrated) absorbed power constant : this minimizes the coupling 

between the microwave and plasma-evolution parts of the model. 

  

Boundary conditions 

The microwave fields are solved not only inside the plasma but also in the surroundings. 

Boundary conditions for the microwave fields on metal surfaces are :  

 // 0E   0B   (9.12) 

i.e. zero parallel electric field and zero perpendicular magnetic field. For open domain 

boundaries there exist simple approximate absorption boundary conditions [Mur81, Kun93], 

e.g. for right axial (+), left axial (), and radial boundaries :  
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where W is any electric or magnetic field component. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.1. Two-dimensional (axial-radial) grid arrangement of the different electromagnetic field components 

for the FDTD method.  
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FDTD method 

A common and convenient method to solve the Maxwell equations for microwave fields is the 

so-called Finite Difference Time Domain (FDTD) method [Kun93], according to which the 

equations are explicitly integrated in time. Space is divided in a grid of rectangular (usually 

uniform) cells, and the different components of E and B are defined at different grid positions 

(shifted by half cells) and different times (shifted by half time steps), such as to enable central 

difference discretisation of all derivatives. An appropriate grid arrangement for a two-

dimensional axisymmetric domain is shown in figure 9.1, where E is defined at times tk and 

B at tk+1/2
. The fields are then advanced in time from the Faraday and Ampere equations as 

follows : 

 
1 , , 1 , ,1/2 1/2

, , 1/2 , , 1/2

1/2

k k

j i j j i jk k

x i j x i j

j

r E r E
B B t

r r

   

 




 


  (9.14) 

 

1/2 1/2

1/2 , 1/2, 1/2 1/2 , 1/2, 1/21 1/2

, 1/2, , 1/2, , 1/2,

0 0 0

[ ]

k k

j i j j i jk k k

x i j x i j e e x i j

j

r B r Bt e t
E E n w

r r

 

  

 

      

  

 
  


 (9.15) 

and similar for the other components. Rather than representing the plasma current by a 

conductivity and permittivity as shown in equation (9.6), it is preferable to integrate the 

electron momentum equation (9.5) explicitly in time, so that also possible non-harmonic 

behaviour can be captured : 
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where ew  is most conveniently defined at the same positions as E  and the same times as B . 

Due to the explicit time advancement, FDTD requires a CFL time step constraint, e.g. 

 
)( rxc

rxt


  (9.17) 

for cylindrical axisymmetric coordinates. This condition, combined with the requirement that 

the spatial step x be smaller than the skin depth 1/k (9.8-10), also ensures the stability of the 

explicit evaluation of the current (9.16) (t < 1/p). The time integration is continued over a 

number of microwave periods, until the solution becomes periodic, after which the power 

absorption per electron (and other quantities of interest) are averaged over one period. 

The FDTD method is particularly well adapted to account for  arbitrarily-shaped 

dielectric or conducting materials surrounding the plasma and capture abrupt transitions 

between these materials. Material properties can be defined per grid cell as shown in figure 

9.1. Inside dielectrics the relative permittivity is added in Ampere's equation (9.4). Inside 

conductors all field components are set to zero ; the grid definition is such that the boundary 

conditions (9.12) are automatically satisfied on the metal boundary points. The microwaves 

are excited by a sheet of current somewhere outside the plasma, usually inside some 

conductor-bounded area, e.g. TEM waves are excited in a coaxial wave-guide by adding a 

contribution J0sin(t)(r0/r)t/0 each time step to the radial electric field at a given axial 

position, where J0 is an arbitrary excitation current amplitude. The fields, currents, and power 

absorption are renormalized afterwards to impose a fixed total power.  

 

FDTD with magnetized electrons 

The FDTD method can also be adapted to account for magnetization of the electrons by a 

steady magnetic field, such as used in electron-cyclotron-resonance discharges to obtain 

electron heating at low gas density. The electron momentum equation is then 
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where the last term on the left is the force of the steady magnetic field B, which reduces the 

electron transport perpendicular to B and creates drift in the direction of E B , often the 

azimuthal direction of an axisymmetric configuration, thereby changing the polarisation state 

of the waves. Resonant plasma-wave interaction occurs wherever the cyclotron frequency 

eB/me equals . Several authors [Hun92, Lee99] translate the magnetized momentum 

equation (9.18) into a plasma conductivity and permittivity, which then take the form of 

tensors in analogy with the magnetized mobility and diffusion tensors in equation (5.22). For 

FDTD calculations, however, it is much more convenient to integrate the magnetized 

momentum equation explicitly in time, as above. For this, rewrite the central difference 

discretisation of equation (9.18) as follows : 
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where 
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in analogy with the leap-frog scheme for particle models shown in equation (3.3). The time 

step must be much smaller than the inverse cyclotron frequency : t << me/eB but this is 

usually satisfied by condition (9.17). To achieve the vector multiplications in equation (9.19) 

without interpolation errors, to which the magnetized electron velocity is very sensitive, it is 

necessary to define all velocity components at the same points in space, e.g. the grid points 

(i,j) in figure 9.1. As a result, the electric field components must be interpolated in equation 

(9.19) and the electron current in equation (9.15), e.g. for the radial components 
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where the weighting by r preserves the divergence of the electric field and electron flux. 

Special care must be taken of grid points at the plasma edge : due to a space charge layer the 

electric field is discontinuous at the plasma edge and instead of the latter interpolation the 

field on the edge points must be extrapolated from inside the plasma. 
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Figure 9.2. Self-consistent simulation of a surface wave discharge for the production of reactive species (e.g. for 

sterilization of medical equipment) in a gas flowing through a glass tube (here argon). The plasma is sustained 

by 2.45 GHz microwave fields applied by a so-called surfatron, which propagate as surface waves along the 

plasma-glass interface and are gradually absorbed by the plasma ; the length of the plasma column depends on 

the injected microwave power. Figure a shows that a transition in the tube diameter induces periodic spatial 

variations in the discharge intensity. This phenomena is simulated in figures b-d respectively showing : Ar
**

 

decay rate (~ visual light intensity), instantaneous electric field, and time-average field strength ; clearly part of 

the surface waves is reflected against the diameter transition thus creating standing wave patterns. These results 

are obtained by iteration between a FDTD microwave calculation and a fluid plasma model accounting for 5 

argon species and simplified argon excitation kinetics. The length of the simulated plasma column is very 

sensitive to the (assumed) effective life-time of resonant argon states which has here been adjusted to obtain 

agreement with experiments. From [20]. 
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Chapter 10 

—————————————— 

ELECTRODYNAMIC POTENTIALS AND INDUCTIVE COUPLING 
 

 

Potential formulation of the Maxwell equations  

An alternative to solving the Maxwell equations directly for the fields by FDTD as described 

in the previous chapter, is to solve them by the electrodynamic potentials, i.e. by substitution 

of  / t  E A  and B A . Imposing the Lorenz condition  

 
2

1

tc


  


A ,  (10.1) 

the Maxwell equations (9.1-4) become 
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The advantage of this approach is that it connects naturally to the usual description of the 

ambipolar and electrostatic fields by Poisson's equation as described in chapter 8, so that the 

same semi-implicit numerical methods can be used to avoid time step constraints, and the 

electrodynamic interaction can be described at arbitrarily low frequency. If desired the 

equations (10.2-3) can be extended to include the ion charge and current, the wave potential 

  can be merged with the ambipolar potential , and the simplified continuity equation 

(10.4) can be replaced by a full fluid model. 

Generalization of the semi-implicit method for Poisson's equation yields 
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where the terms containing  
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predict the future electron current and charge density from the following approximation of the 

momentum equation : 
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this is not as precise as the semi-implicit prediction of equation (8.8) for drift-diffusion 

models (e.g. the collision term has been neglected) but prevents instabilities at larger time 

steps without significant consequences for the accuracy, even for magnetized electrons. The 

actual mean velocity is calculated from a more complete momentum equation, e.g. equation 

(9.5) or (9.18). Each of the Maxwell equations (10.5-6) can be solved by the control volume 

method described in chapter 7.  

Note that it is not appropriate to calculate the scalar potential   from the Lorenz 

condition (10.1) because this is very sensitive to numerical errors and instabilities. In a near-

electrostatic case (wave length >> domain size), the second time derivatives in the Maxwell 
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equations are negligible and the difference between Lorenz gauge and Coulomb gauge A = 

0 vanishes. It is therefore necessary to solve   from the Maxwell-Gauss equation with the 

space charge density from the current conservation equation (10.4) :  
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Boundary conditions 

The boundary conditions for the potentials depend on the choice of gauge. In fact, the 

potential components can be transformed using a gauge function (x,t) as A = A' +  and  

= '  ∂/∂t without this changing the fields. Imposing the Lorenz condition (10.1), the gauge 

freedom is restricted to gauge functions that are solutions of the homogeneous wave equation 
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Since these solutions are uniquely determined by the boundary values, (x,t) can be freely 

chosen (only) at the boundaries ; hence the scalar potential  can be fixed to zero at the 

boundaries and separate boundary conditions for the different components of A can be 

derived from a physical model. For metal walls this yields : A = 0 and //A// = 0. [Jel70] 

However, important complications arise if the metal parts have corners ; the boundary 

conditions are then ill-defined at the corner points. In fact, the above electrodynamic potential 

method fails to account for wave scattering from any kind of metallic corner or angular 

surface (something that is well captured by FDTD). For similar reasons, the description of 

dielectric materials is complicated, involving the explicit description of magnetisation 

currents along the dielectric interfaces. This seriously limits the use of the electrodynamic 

potentials.
42

 

 

Inductive coupling 

The potential method, however, is well adapted to describe inductive coupling in radio-

frequency range /2 = 1-100 MHz. Inductive discharges usually have a cylindrical 

axisymmetric configuration where the fields are excited by an azimuthal driving current in a 

coil outside the plasma. For symmetry reasons, and neglecting the magnetic force on the 

electrons, the fields are described by the azimuthal component of the vector potential A 

alone, so only the azimuthal component of equation (10.3/6) needs to be solved.  

The main difficulty in describing inductive coupling is that often the gas density is so 

low that the simple electron momentum equation (9.5) is not appropriate. Due to thermal 

motion, in the near absence of collisions, the electrons tend to travel important distances 

during the field periods which destroys the local relation between field and current and causes 

the anomalous skin effect : the skin becomes non-monotonic and much larger than expected 

from equation (9.10) and the electrons are heated stochastically by resonance effects. To 

describe this effect in detail requires electron particle-simulation, but an approximate 

description can be obtained by including an effective viscosity term V in the electron 

momentum equation :
43
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42

 These are provisional conclusions of my personal attempts to use electrodynamic potentials to describe 

microwave plasmas.  
43

 I developed this effective viscosity approach for an inductive negative-ion source for neutral beam injection 

for ITER ; the approach has been presented and analysed in two publications : [33] and [34].  
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where  and  are effective viscosity coefficients :  

 
2 2

0 ,
2( 2)

T T

T m e

v v

k v
 

  
 

 
 (10.12) 

depending on the electron thermal speed vT = (2eTe/me)
1/2

 and the inverse anomalous skin 

depth  
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Equations (10.10-13) have been derived from a perturbation solution of the Boltzmann 

equation coupled with the Maxwell-Ampere equation for a 1D semi-infinite plasma [33][34] ; 

it is not entirely clear to what extend the equations can capture the anomalous skin effect in 

multidimensional configurations.  

The viscosity term V in equation (10.10) represents diffusion of the electron current 

due to thermal motion. Since the characteristic time of this diffusion is shorter than the wave 

period (in cases where the anomalous skin effect is important), it is appropriate to treat the 

viscosity implicitly in the momentum equation in order to avoid CFL time step constraints of 

the type t < x
2
. A simple way to achieve this is by semi-implicit prediction, in analogy 

with the method for the Maxwell equations : 
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The prediction terms on the left-hand side (terms in t) are obtained from simplifying the 

momentum equation as 
1

, ,

k k

e ew w V t 


   . The viscosity V

k+1
 is solved from (10.14) and then 

substituted explicitly in the momentum equation (10.10).  
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Figure 10.1. Modelling study of the energy coupling in an inductive ion source for a neutral beam injection 

system to heat fusion plasmas [Spe06]. The plasma is sustained in a cylindrical chamber (driver) by a radio-

frequency (RF) current in a coil wound around it (figure a), which generates an RF magnetic field, which 

induces a azimuthal RF electric field in the plasma, which heats the electrons. Due to the low gas density (210
19

 

m
3

) and driving frequency (5 MHz) the electron kinetics is strongly non-local which leads to the anomalous 

skin effect. In some recent publications [33][34] I have proposed to represent the non-local kinetics by an 

effective electron viscosity as shown in equations (10.10-13). Figure b compares the spatial power absorption 

profiles obtained from this equation (solid lines) with those from a more detailed particle-in-cell model (dashed 

lines) for a simplified semi-infinite plasma ; the effective viscosity approach seems to capture the qualitative 

features of the anomalous skin, including regions of negative power absorption appearing at intermediate 

frequency. The viscosity approach can be generalized to the more realistic two-dimensional configuration of 

figure c ; the plasma density, electron temperature, and collision frequency are assumed fixed. Figures e-g show 

the power absorption profiles from the local momentum equation (9.5), the momentum equation (10.10) with the 

effective viscosity term, and the magnetised momentum equation (9.18) to account for the effect of permanent 

magnets in the vicinity of the driver chamber ; in the latter case non-local effects seem of little importance but 

the magnetised electron current excites all components of the electromagnetic field which requires the solution 

of the full Maxwell equations (10.2-3). These results are preliminary and do not account for the effect of  

surrounding materials. 

(a) 

(b) 

(e) (f) 
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Chapter 11 

————————————— 

RESEARCH PROJECT 
 

 

Brief overview and scientific context of my work  

 

During the past 12 years I have developed low-temperature plasma models for different 

applications on the basis of the methods presented in the previous chapters. Much of my work 

has been concentrated on self-consistent fluid models, in particular the coupling of electron 

fluid equations with the Maxwell equations in different two-dimensional configurations. I 

have done some work on the Boltzmann equation, mainly for the purpose of complementing 

the electron fluid equations, e.g. to obtain fluid coefficients (BOLSIG+ [22]) or a fluid-like 

representation of non-local electron heating (effective viscosity [33]). I have also developed 

particle models, mainly to test the validity of fluid equations or combined with fluid equations 

in hybrid models. I have implemented my models as numerical computer codes (FORTRAN 

and C) and made several contributions to the numerical methods to solve the plasma 

equations.  

 

This fluid or hybrid approach corresponds to the state-of-the-art in low-temperature plasma 

modelling for technological applications and presents in this context significant advantages 

over the more fundamental PIC approach : it yields small-scale computer codes that run on a 

standard desktop computer within a few hours and often only a few minutes ; results are 

readily obtained and relatively easy to interpret in terms of elementary plasma physics. On the 

other hand, fluid and hybrid plasma models require physical approximations that can affect 

their accuracy and need to be adapted to each specific plasma configuration and to the 

purpose of the modelling ; it takes substantial expertise and understanding of plasma physics 

to achieve this.  

 

The self-consistent fluid approach has been very successful for the microdischarge models 

that I developed during my Ph.D. research for Philips, providing near-quantitative agreement 

with experiments and being of real help for the optimisation of the discharge configuration ; 

similar models were intensively used in the late 1990s by the television industry worldwide 

for the development of flat television [Boe03].  

 

For many low-temperature plasmas, however, modelling is subject to two kinds of 

complications. First, in molecular gases or gas mixtures, especially at higher pressure, the 

plasma chemistry and excitation kinetics are very complex, involving hundreds of species and 

processes for which hardly any data are available ; this is the main challenge in the modelling 

of atmospheric discharges or chemical processing plasmas. Second, at low pressure the 

validity of the fluid approach breaks down because the mean free path is not negligible with 

respect to the macroscopic length scales, e.g. the energy distribution is distorted by non-local 

effects, the pressure tensor is not diagonal, etc ; in addition the fluid equations tend to be more 

difficult to solve numerically due to inertia terms, anisotropy, etc. In principle low-pressure 

plasmas can be properly simulated by PIC models, but this is practically feasible only for the 

simplest configurations and often not very effective for technological purposes.  

 

This second complication has been (and will continue to be) a major focus in much of my 

work at the LAPLACE. The fluid and hybrid models I developed for the low-pressure 

(magnetized) plasmas of Hall-effect thrusters, electron-cyclotron-resonance sources, and 
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inductive ion sources, provide an approximate description of the plasma ; they are extremely 

useful to get insight in some of the main principles of the discharge operation but it is not 

clear to what extend their results are quantitatively accurate ; e.g. the hybrid Hall-effect 

thruster model has limited predictive capabilities because it fails to describe anomalous 

electron transport across the magnetic field due to microscopic field fluctuations. One of the 

main goals I have identified for my future research is to improve the modelling of low-

pressure (magnetized) low-temperature plasmas. 
 

 

Organisational context 

 

Most of the work that I did after my Ph.D. has been part of the research of the group 

GREPHE
44

 at the LAPLACE. This research group, founded and directed by Jean-Pierre 

Boeuf and Leanne Pitchford and currently comprising 14 permanent staff members (7 on 

plasma research), is one of the leading groups worldwide in modelling of low-temperature 

plasmas for technological applications. Over the years I have gradually taken up more and 

more responsibilities in the group ; I have developed many of the models currently used by 

the group and implemented the corresponding FORTRAN codes ; I am responsible for the 

physical and numerical pertinence of these models and work intensively with the Ph.D. 

students and researchers who use them (see the end of the introductory chapter). I expect to 

continue along these lines in the next few years. 

 

My current research activities are concentrated around two projects of the group GREPHE, 

concerning inductive negative-ion sources for neutral-beam injection and multi-dipolar 

electron-cyclotron-resonance sources. These two projects form the basis of my personal 

research project for the near future and are described more in detail in the next few sections. 

 

 

Project part 1 : Negative-ion sources for neutral beam injection 

 

The group GREPHE has been involved in the modelling of these sources since end 2006 

through several contracts with the CEA/EURATOM Cadarache and has recently become 

associated with the Fédération de Recherche Fusion Magétique ITER
45

 ; in addition the group 

takes part in the ANR project ITER-NIS
46

 that will start in November 2008. Negative-ion 

sources are necessary for the generation of fast neutral beams (> 200 keV) that are used to 

heat fusion plasmas and drive the plasma current that ensures their magnetic confinement. 

The eventual aim of the modelling work of GREPHE is to obtain a complete self-consistent 

model of a source proposed by the IPP Garching [Spe06] to produce negative hydrogen and 

deuterium ions at low gas pressure (< 0.3 Pa) and high current density (> 200 A/m
2
) and 

which is currently under development for the ITER fusion project. The plasma is generated by 

an inductive discharge at radio-frequency and then diffuses into the source body where 

permanent magnetic fields filter out the fast electrons. The negative ions are created in the 

plasma volume by electron attachment to high vibrational hydrogen states and by plasma-wall 

interactions involving caesium ; they are extracted from the plasma by a system of extraction 

grids and magnetic fields, accelerated to high velocities, neutralised, and finally injected into 

                                                 
44
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the fusion plasma. The modelling of this source is extremely challenging and will require 

several years of research and development.  

 

During the first year (2007), the ion-source modelling project was fully managed by myself ; I 

developed a 2D fluid model of the inductive discharge which I am currently extending to 

describe the magnetized plasma in the source body ; preliminary results from this model show 

the depletion of neutrals in the discharge volume and compression of the plasma by the 

driving field (ponderomotive force). By the end of 2007, post-doctoral researcher Stanimir 

Kolev joined the project ; he is developing a 1D PIC model of plasma transport through the 

magnetic filter in order to check and complement the 2D fluid model. Early 2008, the CNRS 

recruited the associate researcher Gweneal Fubiani on the project ; he is currently studying the 

volume and surface chemistry of the source and collecting the necessary data from different 

international groups. October 2008, Ph. D. student Nicolas Kohen will join the project ; he 

will start by using the 2D fluid model in realistic source conditions and making systematic 

comparisons with all available experimental data from the IPP Garching.  

 

For the moment the 2D fluid model will be at the heart of our modelling activities and serve 

as a framework for the description of the source as a whole. I will be in charge of this model 

and the integration of the more detailed works of S. Kolev and G. Fubiani ; I will also 

strongly participate in the supervision of N. Kohen. 

 

 

Project part 2 : Multidipolar plasmas 

 

Since November 2006, the group GREPHE is involved in the ANR project PLASMODIE
47

 

aiming at the development of a new generation of microwave-plasma reactors operating in a 

wide pressure and frequency range, piloted by the experimental group CRPMN
48

 of Jacques 

Pelletier in Grenoble. The role of GREPHE in this project is to develop models to accompany 

the experimental development and guide performance optimisation. The modelling work is 

mainly focused on the description of so-called dipolar sources (antennas) which can be used 

in a network to generate the plasma at the reactor wall. A single dipolar source consists of a 

permanent magnet, trapping fast electrons in an axisymmetric dipole field, and a microwave 

applicator, heating the trapped electrons by cyclotron resonance (ECR).  

 

Until recently, I managed this project by myself ; I have developed a self-consistent 2D model 

describing the resonant microwave coupling and the plasma transport and chemistry of a 

single dipolar source. Further development and exploitation of this model and confrontation 

with experimental results will be done together with the post-doctoral researcher Kremena 

Makasheva. 

 

 

Project part 3 : Model unification 

 

The above plasmas (of the negative-ion source and multi-dipolar source) present many 

similarities with the plasma of Hall-effect thrusters studied by GREPHE for over 10 years : 

the electrons are trapped in steady magnetic fields, the ions are not magnetised and nearly 

collisionless, etc. Hence also the models that I developed for these different applications are 

in part similar, e.g. they are all based on anisotropic drift-diffusion equations for magnetised 
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electrons in 2D cylindrical space. In the near future I intend to combine these different models 

into one general model for magnetised low-temperature plasmas, which can then be used to 

study also other types of magnetised plasma sources, e.g. magnetrons and so-called Kaufmann 

sources used in the industry. Applying such a general model to many different sources and 

systematically comparing the results with the experimental data available for each of them 

will be of great interest to asses the validity and limitations of the fluid approach for 

magnetised electrons.  

 

In parallel to the unification of the existing models based on electron fluid equations, it is 

important to explore other more detailed modelling methods such as PIC in order to check, 

complement, and if necessary replace the electron fluid equations. Among the questions that 

need to be investigated are the description of the magnetic mirror force and its effect on the 

magnetised plasma transport, the tail of the electron energy distribution function and its effect 

on the plasma chemistry, etc. In this context a new Ph. D. student has been recruited as from 

October 2008, Nourredine Oudini, whom I will supervise and who will help me with the 

general improvement of our magnetised low-temperature plasma models.  

 

In addition to my activities on the modelling of magnetized plasmas for the negative-ion 

source and the multi-dipolar source, I will continue to participate in several other research 

projects of the group GREPHE such as the RTRA
49

 project PLASMAX
50

 on microwave 

plasmas for aerospace applications and the ANR project on micro-hollow cathode discharges 

(see introduction). 
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Low luminous efficacy is one of the major drawbacks of plasma display panels~PDPs!, where the
main limiting factor is the efficiency of the microdischarges in generating UV radiation. In this work
we use a two-dimensional self-consistent fluid model to analyze the energy loss mechanisms in
neon–xenon discharges in coplanar-electrode color PDPs and interpret experimental data on the
luminous efficacy of these PDPs. The modeling results are in good agreement with the measured
UV emission spectrum and measured trends in the efficacy. Most of the electrical input energy is
transferred to ions and subsequently to the gas and the surface. The electrical energy transferred to
electrons is mostly used for ionization and excitation, where the part used for xenon excitation
largely ends up in UV radiation. The amplitude, frequency, and rise time of the driving voltage
mainly affect the energy losses due to ion heating. The xenon content also affects the conversion of
electron energy into UV energy. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1337084#

I. INTRODUCTION

Plasma display panel~PDP! technology is a promising
technology for large, lightweight, flat displays.1,2 In PDPs,
the light of each picture element~pixel! is emitted from a
tiny high-pressure glow discharge, typically called a micro-
discharge. Color PDPs use microdischarges in xenon mix-
tures to generate UV radiation, and convert this into red,
blue, and green light by phosphors. One of the major draw-
backs of PDPs is their low luminous efficacy: about 1 lm/W,
compared to 4 lm/W for the conventional cathode ray tube
~CRT! displays.

In color PDPs, energy loss occurs in various ways: Only
about 40% of the UV photons emitted by the discharges is
captured by the phosphors, where an additional 80% of pho-
ton energy is lost in the conversion to visible light, mainly
due to the difference in wavelength of the visible light
~;600 nm! and the UV radiation~;150 nm!. Next, only
about half of the visible light emitted by the phosphors
leaves the display on the front side, the other half is absorbed
somewhere in the display. However, the largest energy loss
occurs in the microdischarges themselves: only about 10% of
the electrical input energy is used for the emission of UV
photons. In this article, we use a two-dimensional self-
consistent fluid model3 to analyze the energy loss mecha-
nisms in the microdischarges and interpret experimental data
on the luminous efficacy. We extend, improve, and discuss
more elaborately the analysis briefly presented in Refs.
4 and 5.

We consider the most common type of color PDP: the
coplanar-electrode ac PDP.6 Figure 1 schematically depicts a
PDP of this type. The panel consists of two glass plates,
separated by a gap of about 150mm that is filled with a
mixture of neon and a small percentage of xenon at 450 Torr.
Each plate is equipped with a large number of parallel elec-
trodes, covered by dielectric material. A discharge cell~cor-
responding to a pixel! is formed by the intersection of a pair
of sustain electrodes on the front plate, and an address elec-
trode on the back plate. In operation, a square wave voltage
with a frequency of 50–250 kHz is constantly applied be-
tween each pair of sustain electrodes. The amplitude of this
sustain voltage is below the breakdown voltage. To switch a
certain discharge cell on, a write voltage pulse is applied
between the address electrode and one of the sustain elec-
trodes of the cell. This initiates a microdischarge, which is
quickly quenched due to the accumulation of surface charge
on the dielectric material that covers the electrodes. On its
next half cycle, the sustain voltage changes polarity. The
stored surface charge now reinforces the sustain voltage,
causing the ignition of a new microdischarge, despite the fact
that the sustain voltage itself is below the breakdown volt-
age. A new surface charge distribution develops, quenches
the discharge again, and so on. In this way, a transient mi-
crodischarge occurs in the cell every time the sustain voltage
changes polarity, due to the presence of surface charge.

The article is organized as follows: Secs. II and III out-
line the fluid model and the simulation of the transient mi-
crodischarges in a PDP cell. In Sec. IV we analyze how the
electrical energy is dissipated in the discharge. In Sec. V we
study how the energy dissipation and the resulting dischargea!Electronic mail: hagelaar@discharge.phys.tue.ni
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efficiency are influenced by several discharge parameters,
thus interpreting measured trends in the luminous efficacy.

II. DESCRIPTION OF THE MODEL

To simulate the PDP discharges we use the two-
dimensional model presented in Ref. 3. Following the well-
known fluid approach, this model describes the behavior of
plasma particle species~electrons, ions, and excited neutrals!
by the first few moments of the Boltzmann equation: the
continuity equation, the momentum transport equation, and
the energy transport equation. For each plasma particle spe-
cies p the evolution of the number densitynp is calculated
from a continuity equation

]np

]t
1¹•Gp5(

r
cp,rRr , ~1!

whereGp is the particle flux, and the right hand side repre-
sents the total particle production or loss in reactions. The
summation is over all possible reactionsr, whereRr is the
reaction rate andcp,r is the net number~positive or negative!
of particles of speciesp created in one reaction of typer. The
flux is given by the momentum transport equation, which we
approximate by the drift-diffusion equation

Gp5sgn~qp!mpEnp2Dp¹np . ~2!

HereE is the electric field,qp is the particle charge,mp is the
mobility and Dp is the diffusion coefficient. The first term
represents the flux due to the electric field~drift!, the second
term the flux due to concentration gradients~diffusion!. Par-
ticle inertia is neglected. The electric field is self-consistently
calculated from Poisson’s equation

¹•~«E!5(
p

qpnp , ~3!

where« is the dielectric permittivity.
Equations~1! and ~2! require the input of mobilities,

diffusion coefficients, and reaction rate coefficients. In gen-
eral these quantities depend on the energy distribution of the
considered particles. For ions we use the local field approxi-
mation, which assumes a direct relation between the particle
energy distribution and the local electric field: the ion diffu-

sion coefficients and mobilities are regarded as functions of
the electric field. For the electrons however, the local field
approximation seems unrealistic, in view of the combination
of the poor energy transfer in electron-neutral collisions and
the strong spatial variations of the electric field in PDP dis-
charges. Unlike most PDP models,7–11 our model does not
adopt the local field approximation for electrons, but as-
sumes the electron mobility, electron diffusion coefficient,
and the rate coefficients of electron impact reactions to be
functions of the electron mean energy. The electron mean
energy«̄ is calculated from the energy balance equation

]~ne«̄ !

]t
1¹•S 2

5

3
meE~ne«̄ !2

5

3
De¹~ne«̄ ! D

52eGe•E2(
r

«̄ rRr , ~4!

wherene is the electron density,me is the electron mobility,
De is the electron diffusion coefficient, andGe is the electron
flux. The two terms on the right-hand side represent heating
by the electric field and energy loss in collisions, respec-
tively. The summation in the loss term is only over the elec-
tron impact reactions, with«̄ r the threshold energy. Energy
loss due to elastic collisions is included in this term by using
an imaginary threshold energy of 1 eV in combination with
an effective collision rate. Contrary to Ref. 12, we found that

FIG. 1. Schematic drawing of a coplanar-electrode ac PDP.

FIG. 2. Model geometry used in the calculations. This geometry represents
a discharge cell of a coplanar-electrode PDP. The top of the geometry cor-
responds to the back plate of the display, the bottom to the front plate. The
sustain electrodes are indicated as the common and scan electrodes. The
dielectric constant of the glass is 11.0.

FIG. 3. Electrode potentials as a function of time in the model driving
scheme. This figure relates to the model geometry shown in Fig. 2, where
the common and scan electrodes are the sustain electrodes. Typically the
amplitude of the sustain voltage isVs5180– 300 V, its frequency 50–250
kHz.
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the electron energy equation considerably improves the reli-
ability of the PDP model; for the calculated discharge effi-
ciency the difference with the local field approximation may
be as large as a factor of two.

The transport Eqs.~1! and ~2! for heavy species are
solved for the boundary condition of zero particle reflection
and influx. The boundary conditions for the electron equa-
tions are similar, but include an influx by secondary electron
emission. Poisson’s equation is solved not only in the
discharge, but also in surrounding dielectric materials, taking
into account possible surface charge. For details on the
basic equations and the boundary conditions we refer to
Ref. 3.

The considered model geometry, shown in Fig. 2, repre-
sents a discharge cell, or actually an entire row, of the dis-
play. Due to its two dimensionality, the model geometry is
only an approximation of the real PDP geometry, which has
important three-dimensional features. The barrier ribs that
separate the columns of the display are not represented in the
model; instead, the model cell has side walls along the sus-
tain electrodes.~Compare Fig. 2 with Fig. 1.! The model
electrode driving scheme is shown in Fig. 3. Although each
simulation is started with a write pulse to initiate the dis-
charges and switch the cell on, we will not consider the
writing itself in this article. An external circuit, involving
backcoupling from the current to the electrode voltage, is not
included in the model. We do however take into account a
realistic rise time~;100 ns! for all voltage changes. We
remark that in the model the required sustain voltages are
generally slightly higher~20%! than in reality. This differ-
ence can easily be removed by adjusting the model input

data ~e.g., the secondary emission coefficients! within their
experimental inaccuracies, but in our opinion such adjust-
ments are unnecessary and might even be deceiving. The
electrical behavior of the discharge and the mechanisms of
UV photon generation are described by an extensive reaction
scheme, similar to the scheme used in Ref. 7, consisting of
80 reactions, involving 15 different plasma species. The full
simulation of a single PDP discharge takes 15–20 min on a
modern personal computer.

III. SIMULATION OF A PDP DISCHARGE

Figures 4 and 5 show the electric potential and the xenon
excitation rate in the model geometry, during the simulation
of a typical PDP discharge. By the end of the discharge that
precedes the one considered in these figures, stored surface
charge screens the discharge gas almost entirely from the
applied voltage. After the sustain voltage has been switched,
the same surface charge reinforces the applied voltage rather
than canceling it. The total voltage across the discharge gas
is now so high that the ignition of a new discharge takes
place. It appears from Figs. 4 and 5 that the discharge starts
in the center of the geometry, where the electrodes are close
together. As soon as a new surface charge distribution is
established in the center of the geometry, the discharge
spreads outward. Eventually, all the electrodes are screened
by the new surface charge distribution, and the discharge
stops. Note that the current through the electrodes is a dis-
placement current resulting from the changes in the electric
fields in the dielectric layer that covers them. During the
discharge extremely strong electric fields are present in the

FIG. 4. Time evolution of the electric
potential profile during a PDP dis-
charge. The geometry is shown in Fig.
2. The sustain voltage is 225 V, the
sustain frequency is 50 kHz, the pres-
sure is 450 Torr, and the xenon per-
centage is 5%. The momentt50 cor-
responds to the end of the previous
sustain pulse; the sustain voltage is
switched between t50 ms and t
50.10ms, with a rise time of 0.10ms.
The increment of the contours is 1/10
times the difference of the maximum
and minimum values, which are indi-
cated in each plot. The unit of the in-
dicated potentials is V.

FIG. 5. Time evolution of the excitation rate of the
resonant Xe* (3P1) state during a PDP discharge. This
figure shows results of the same simulation as Fig. 4;
the discharge conditions are indicated in the caption of
that figure. For all plots the contours correspond to a
logarithmic scale covering the range from 1018 to
1022 cm23 s21; the increment of the contours is a factor
of 2.51. The unit of the values indicated in the plots is
cm23 s21.

2035J. Appl. Phys., Vol. 89, No. 4, 15 February 2001 Hagelaar et al.

Downloaded 31 Aug 2004 to 163.28.48.70. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



plasma sheath front of the cathode, which has the character
of a cathode fall. Ionization and excitation mainly take place
in the vicinity of this cathode sheath.

Figure 6 shows the calculated time evolution of the
~space integrated! densities of the most important species
during the discharge. The densities rapidly increase at the
beginning of the sustain pulse and then gradually decay.
Neon ions are only present during the very first part of the
discharge; during the plasma decay Xe2

1 becomes the most
important ion species.

IV. ANALYSIS OF THE ENERGY DISSIPATION

During the discharge electrical energy is transferred to
the plasma through the acceleration of the charged particles.
The energy that is thus consumed by the particle speciesp is

Wp5E
time

E E E
discharge
volume

qpGp•Ed3Vdt. ~5!

Note that the sum of these energies must be equal to the total
electrical energy input:

(
p

Wp5E
time

I 3Vdt, ~6!

whereI is the~displacement! current through a sustain elec-
trode andV is the sustain voltage. We confirmed that this
relation is reproduced by the fluid model within 0.01%,
which illustrates its numerical consistency. The main energy
consumption takes place in the plasma sheaths, mostly on the
cathode side of the discharge, where the sheath contains an
extremely strong electric field, as can be seen in Fig. 4.

Figure 7 shows the calculated energy consumption of the
various charged particle species in a typical PDP discharge.
The larger part of the energy turns out to be consumed by
ions. This energy is forever lost for the production of UV
photons: under PDP discharge conditions ionization or exci-
tation by ion impact seem negligible, which implies that all
the ion energy is eventually transferred to the gas and the
surface. We remark that ion impact ionization or excitation is
not included in the model; even if they would occur, we

FIG. 6. Time evolution of the numbers of particles of the most important
species. This figure shows results of the same simulation as Fig. 4; the
discharge conditions are indicated in the caption of that figure.

FIG. 7. Breakdown of the electrical input energy into the heating of the
different charged particle species. The total energy consumption is 3.4
31027 J per discharge~pulse! per cm21 of row length. The sustain voltage
is 225 V, the sustain frequency is 250 kHz, the gas pressure is 450 Torr, and
the xenon percentage is 5%.

FIG. 8. Breakdown of the loss of electron energy into the different electron
impact excitation and ionization processes. The discharge conditions are
indicated in the caption of Fig. 7.

FIG. 9. Ratio of the energy carried by 147 nm resonance photons and the
total energy carried by UV photons. This plot compares the result of fluid
simulations to the experimental data of Ref. 13. The discharge conditions,
for both simulation and experiment, are the same as with Fig. 7. The experi-
mental discharge geometry is very similar to the model geometry of Fig. 2.
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would not see them in the simulations. The electron energy,
on the other hand, is largely used for the excitation and ion-
ization. The energy that is used for a reactionr is

Wr5E
time

E E E
discharge
volume

«̄ rRrd
3Vdt. ~7!

Figure 8 shows how the electron energy is used in the dif-
ferent reactions. Note that the electron energy Eq.~4! ensures
that the sum of all the energy losses in Fig. 8 is equal to the
total energy transferred to electrons by the field as given by
Eq. ~5!.

Of all the processes in Fig. 8 it is mainly the excitation
of xenon atoms that eventually leads to the generation of UV
photons. There are several possible mechanisms: First, the
resonant state Xe* (3P1) decays directly to the ground state,
emitting UV photons at a wavelength of 147 nm. Second,
both the resonant Xe* (3P1) and metastable Xe* (3P2) states
may attach to xenon gas atoms and form excited dimers
Xe2* ; these dimers decay radiatively into ground state atoms.
The photons thus emitted by the higher vibrational levels
Xe2* (Ou

1) are distributed around 150 nm, those emitted by
the lower vibrational levels Xe2* (3Su

1 ,1Su
1) around 173 nm.

The higher atomic states Xe** and Xe*** do not directly
lead to UV photons, but cascade down to the Xe(3P1 ,3P2)
levels. In this case some amount of energy is lost in the form
of infrared radiation or gas heating.

The energy that is emitted from the discharge in the form
of UV photons with a wavelengthl is

Wl5E
time

E E E
discharge
volume

~hc/l!Rld3Vdt, ~8!

whereh is Planck’s constant,c is the velocity of light, and
Rl is the rate of the decay process leading to the emission.
The relative importance of the different UV wavelengths
~147, 150, and 173 nm! depends heavily on partial xenon
pressure. Figure 9 shows the fraction of the UV energy emit-
ted at 147 nm,W147 nm/(W147 nm1W150 nm1W172 nm), as a
function of the xenon content. The simulation results are in
excellent agreement with the experimental values of Ref. 13,
determined by integrating the measured emission spectrum.

V. PARAMETRIC STUDIES

The efficiency of the discharge in generating UV pho-
tons is defined as

h5(
l

WlY(
p

Wp . ~9!

In view of the analysis given in the previous section, it is
interesting to split the discharge efficiency into two partial
efficiencies

r15WeY(
p

Wp , ~10!

r25(
l

WlYWe , ~11!

whereWe is the electrical energy transferred to the electrons,
as given by Eq.~5! andh5r1r2 . The partial efficiencyr1 is
the efficiency of the discharge in heating the electrons,r2 is
the efficiency of the electrons in generating UV radiation.

We will now investigate how theh, r1 , andr2 are in-
fluenced by various discharge parameters. Wherever pos-
sible, we will compare the simulation results with experi-

FIG. 10. Calculated efficiency as a function of the sec-
ondary emission coefficient, for~a! neon ions and~b!
xenon ions. The sustain voltage is 225 V, the sustain
frequency is 250 kHz, the xenon percentage is 5%.

FIG. 11. Calculated efficiency as a function of the sus-
tain voltage, for~a! two different frequencies and a rise
time of 100 ns, and~b! two different rise times and a
frequency of 250 kHz. The xenon percentage is 5%.
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mental data on the PDP efficacy of 4 in. test panels, taken
from Ref. 14. The efficacy is a measure for the light output
of the display—weighted according to the sensitivity of the
human vision—per unit of electrical input energy; it is thus
not only determined by the discharge efficiency, but also by
other factors, such as the efficiency of the phosphors in con-
verting the UV radiation into visible light. Here we assume
that these other factors stay constant. The experimental elec-
trode size and distance, thickness of the covering dielectric
layer, and cell height are well reflected by the model geom-
etry of Fig. 2.

We start with the influence of the secondary emission
coefficient. In present day PDPs, where the surface is coated
with magnesium oxide, this coefficient has been estimated to
be around 0.45 for neon ions and below 0.001 for xenon
ions.15 Figure 10 shows that bothh and r1 increase with
increasing secondary emission coefficient;r2 is nearly unaf-
fected. This result is not very surprising: The secondary
emission coefficient directly determines the relative contri-
butions of the electrons and the ions to the current density in
the cathode fall, where the main particle heating occurs. The
relative contribution of the electrons—and consequently
r1—increases monotonically with increasing secondary
emission coefficient. Of main importance is the secondary
emission coefficient of the neon ions. For xenon ions, the

secondary emission coefficient is so low that its exact value
does not really matter: xenon hardly contributes to the sec-
ondary emission anyway.

The effect of the sustain voltage is shown in Fig. 11. For
not too high sustain voltages, bothh and r1 increase with
increasing voltage. This trend is also seen in the efficacy
measurements shown in Fig. 12~a!. The model reveals the
mechanism behind this trend: As the voltage increases, the
electric fields and the electron energies in the discharge go
up. Since neon has a higher ionization energy than xenon,
this leads to an increase of the relative contribution of neon
to the total ion flux, which implies an increase of the average
secondary emission coefficient. As we have seen before, this
is favorable for the electron heating efficiencyr1 .

Figure 11~a! also shows that the sustain frequency has a
strong effect on the calculated efficiency. This fact is known
from experiments; see Fig. 12~b!: Beyond a certain sustain
frequency, the discharge efficiency drops dramatically. In
Refs. 4 and 5 it is suggested that this effect is caused by the
role played by metastable xenon atoms. However, when
looking at the modeling results more carefully, we find an
entirely different underlying mechanism: At low frequencies
~50 kHz! there is a short time between the switching of the
sustain voltage and the breakdown. At high frequencies~250
kHz!, the plasma does not completely decay in between the
discharges, which facilitates their ignition: breakdown now
already occurs during the switching of the voltage. This is
illustrated by Fig. 13. Due to the premature breakdown, the
surface charge on the dielectric layer is already changed be-
fore the sustain voltage reaches its full value, so that the final
voltage across the gas is lower. As we have seen before, this
results in a lowerr1 . This observation suggests that for high
frequencies~250 kHz! the rise time of the sustain voltage
might influence the efficiency. According to the simulation
results shown in Fig. 11~b! this is indeed the case. For 50
kHz no influence of the rise time is found: rise times of 10,
100, and 1000ms yield exactly the same efficiency@not
shown in Fig. 11~b!#. We remark that these results are only
of qualitative value. In general, the exact time between the
switching of the voltage and the breakdown is not very ac-
curately predicted by fluid models.8

As we have seen, the amplitude, frequency, and rise time
of the sustain voltage mainly affecth via r1 , leaving r2

nearly unchanged. A parameter that can be expected to di-
rectly affectr2 is the xenon content of the gas mixture. Fig-

FIG. 12. Measured efficacy as a function of~a! the
sustain voltage, where the frequency is 250 kHz, and
~b! the sustain frequency, where the voltage is 225 V
~Ref. 12!. The xenon percentage is 10%.

FIG. 13. Comparison between of the time evolution of the electron density
for two different sustain frequencies. The xenon percentage is 5%.
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ure 14~a! shows that the calculated efficiency increases with
increasing percentage of xenon. This trend has been reported
in the literature, e.g., in Ref. 7, but is not fully reflected by
the efficacy measurements shown in Fig. 14~b!. We remark
that it is known that the phosphor performance strongly de-
pends on the UV wavelength, which is influenced as well by
the xenon percentage~see Fig. 9!. It appears from Fig. 14~a!
that not onlyr2 , but alsor1 is responsible for the increase of
h with increasing xenon content.

VI. CONCLUSIONS

The fluid model presented in Ref. 3 is capable of simu-
lating the microdischarges in a coplanar-electrode PDP. We
have reproduced a write pulse and a series of sustain pulses
in one cell of the display.

From the simulation results, we have analyzed how the
electrical input energy is dissipated in the cell. The largest
part of the electrical energy is transferred to ions and subse-
quently to the gas and the surface. The electrical energy
transferred to electrons is mostly used for ionization and ex-
citation. The part used for xenon excitation largely ends up
in UV radiation. The calculated fraction of the UV energy
that is carried by resonance photons is in excellent agreement
with experimental results.

We have studied how the energy loss mechanisms are
influenced by several discharge parameters. The amplitude,
frequency, and rise time of the sustain voltage mainly affect
the losses due to ion heating. The xenon content also affects
the conversion of electron energy into UV energy. The
trends in the calculated discharge efficiency are in good
agreement with measured trends in the luminous efficacy.
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Stationary plasma thrusters~SPTs! are advanced propulsion devices that use a gas discharge to
ionize and accelerate the propellant. We present in detail a two-dimensional model of an SPT
discharge. The model combines a particle simulation of neutral atoms and ions with a fluid
description of electrons, where the electric field is obtained from imposing quasineutrality. The
electron mobility and energy loss are treated in an empirical way and characterized by ad hoc
parameters. Typical simulation results are shown. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1465125#

I. INTRODUCTION

Stationary plasma thrusters~SPTs!, also known as Hall
thrusters, are advanced electrostatic propulsion devices.1 In
an SPT, a propellant~typically xenon! is ionized by an elec-
trical discharge. The electric field of the discharge subse-
quently accelerates the produced ions to a high exhaust ve-
locity ~;20 km/s!. Because of this high exhaust velocity,
SPTs consume, when providing a certain thrust, much less
propellant than conventional chemical propulsion devices.
SPTs have been developed for almost four decades now,
mainly in Russia; many Russian satellites use them for sta-
tion keeping and orbit correction. Since the late eighties,
important SPT research and development efforts have been
undertaken also in the US, Europe, and Japan.

Figure 1 shows a schematic picture of an SPT. The dis-
charge takes place in an annularly shaped discharge channel
~central radius;4 cm, width;1.5 cm, and length;3 cm!.
External electromagnets generate a radial magnetic field in
the channel, with a maximum strength~;0.02 T! near the
channel exhaust. The discharge voltage~;300 V! is applied
axially, between an anode at the closed end of the channel
and an external hollow cathode, situated beyond the exhaust.
The propellant is introduced in the channel via holes in the
anode. The gas density (;1018– 1020m23) is so low that the
mean free paths of both electrons and ions are much larger
than the channel dimensions. However, having a small Lar-
mor radius~;1 mm!, the electrons are confined by the mag-
netic field: they cycle around the magnetic field lines and at
the same time drift in the azimuthal direction~E3B drift!.
Net electron transport in the axial direction~along the elec-
tric field! can take place only when collisions occur. The ion
Larmor radius is relatively large~;1 m! so that the ion mo-
tion is nearly unaffected by the magnetic field and collision-
less.

Up until now, the SPT discharge operation is far from
fully understood. Within the past few years, several dis-
charge models have been developed to better understand and
predict the SPT discharge behavior. Most of these models are

based on the ideas of the Russian SPT specialist Morozov,2

combining a particle description of neutral atoms and ions
with a fluid description of electrons. Among the first were the
one-dimensional model of Boeuf and Garrigues,3 which ex-
plained observed low-frequency discharge oscillations, and
the two-dimensional model of Fife.4

In this article, we present a two-dimensional model of
the SPT discharge, similar to Fife’s model. We point out that,
due to a lack of understanding of some of the involved physi-
cal phenomena, the model has some important empirical as-
pects. Our aim here is to document the principles of the
model; some typical simulation results are presented for
demonstration, but detailed results and parametric studies are
saved for future publication.

II. DESCRIPTION OF THE MODEL

This section describes in detail the physical and numeri-
cal basis of our model.

A. Geometry

Only the axial and radial dimensions of the SPT geom-
etry and discharge are represented in the model; azimuthal
symmetry is assumed. The main computational grid is rect-
angular in cylinder coordinates. The two-dimensional calcu-
lation domain, which comprises both the discharge channel
and the near exterior of the thruster, is shown in Fig. 2. The
discharge is simulated only within a certain region that is
confined by physical walls and magnetic field lines. Note
that the magnetic field is curved and not perfectly radial,
especially outside the channel.

B. Magnetic field

The magnetic field is assumed to be entirely determined
by the electromagnets and to be unaffected by the discharge.
This assumption is realistic and makes it possible to calculate
the magnetic fielda priori from

¹•B5¹•¹s50, ~1!

whereB is the magnetic field ands is a magnetic potential.
Rather than being calculated directly from the configurationa!Electronic mail: hagelaar@cpat.ups-tlse.fr
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of electromagnets, the magnetic field in the discharge chan-
nel is obtained from a set of boundary values that are speci-
fied on the domain boundaries. This allows the direct imple-
mentation of experimental magnetic field data and the
deliberate adjustment of the magnetic field, which is useful
for studying its influence. However, Eq.~1! implies that the
perpendicular magnetic field integrated over any closed sur-
face must be zero. The specified boundary values are cor-
rected in order to ensure this.

To facilitate the solution of the electron transport equa-
tions, a magnetic stream functionl is calculated from

]l

]x
5rBr and

]l

]r
52rBx , ~2!

wherex and r are the axial and radial position coordinates
and Bx and Br are the axial and radial components of the
magnetic field. Thel defined by these equations is constant
along magnetic field lines~B•¹l50! and usually increases
monotonically from anode to cathode. The cross field gradi-
ent of any quantityQ can be expressed in terms ofl as

¹'Q5rB
]Q

]l
, ~3!

which we will use in the following.

C. Neutral gas particles

We consider xenon as a propellant gas. The density of
neutral xenon atoms in the thruster, essential to find the ion-
ization rate and the electrical conductivity of the plasma, is
obtained from a Monte Carlo simulation. That is, the indi-
vidual paths of a large number of neutrals are calculated,
where collisions are treated with random numbers. This ap-
proach is realistic but takes much computation time and in-
troduces statistical errors.

The neutrals are introduced in the simulation at a certain
injection region at the anode and are followed until they
reach the right boundary of the geometry. Their initial veloc-
ity distribution is taken to be isotropic and Maxwellian with
a temperature of typically about 500 K. Only collisions with
walls are considered, in which the neutrals may be either
specularly reflected or isotropically scattered. Neutral loss by
ionization is implemented as follows: to each simulated neu-
tral a certain weightw is attributed, which gradually de-
creases in time as

w5w0 exp~2nki t !, ~4!

wherew0 is the initial weight,n is the local plasma density,
ki is the ionization rate coefficient dependent on the local
electron mean energy, andt is the time. This technique leads
to better statistics than simply eliminating neutrals from the
simulation according to their ionization probability, espe-
cially beyond the exhaust where the neutral density may be
quite low.

D. Ions

Only singly charged xenon ions are included in the
model. Like the neutrals, the ions are described by a Monte
Carlo simulation. They are introduced in the simulation at
positions that are randomly chosen according to the ioniza-
tion rate profile. The initial ion velocity distribution is iso-
tropic and Maxwellian at the neutral gas temperature. The
ions are assumed to be accelerated by the electric field only,
i.e., to be insensitive to the magnetic field. Ion collisions are
not considered. The ions are followed until they reach any of
the boundaries of the simulation domain; ions striking the
walls are thus assumed to recombine at the surface. Besides
the ion density, the ion Monte Carlo simulation yields the ion
flux and the ion energy distribution.

E. Electrons and electric field

The electrons are described by a fluid model, i.e., the
behavior of the electron density, flux, and mean energy is
described by the first few moments of the Boltzmann equa-
tion ~transport equations!. This approach incorporates many
assumptions and is not entirely realistic. In view of the high
plasma density in SPTs, it is assumed that the electron den-
sity is everywhere equal to the ion density. With this assump-
tion, it becomes impossible to obtain the electric field from

FIG. 1. Schematic picture of an SPT.

FIG. 2. SPT simulation domain.
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Poisson’s equation. Instead, knowing the electron density, we
use the electron transport equations to calculate the electric
field. Note that there is indeed a space charge; in reality
Poisson’s equation is valid.

The electron transport equations are: the continuity
equation

¹•Ge5Nnki2
]n

]t
5¹•G i , ~5!

the momentum equation, which we approximate by the
drift–diffusion equation

Ge52mEn2
2

3e
m¹~ne!, ~6!

and the energy equation

]~ne!

]t
1

5

3
¹•~Gee!2

10

9e
¹•~mne¹e!

52eE•Ge2Nnk2nW. ~7!

In these equations,n is the plasma density,Ge is the electron
flux, e is the electron mean energy,N is the gas density,G i is
the ion flux,E is the electric field,m is the electron mobility,
and e is the elementary charge. The last two terms in the
energy equation represent energy loss by collisions with gas
particles and with the walls, respectively, wherek andW are
effective energy loss coefficients dependent one. The wall-
loss coefficientW is further discussed in Sec. III B. Equa-
tions ~6! and~7! assume the electron distribution to be Max-
wellian and predominantly isotropic; the same assumption is
used to obtain the collision coefficientski andk from cross
section data.

Due to the magnetic field, the mobilitym is not a simple
scalar: its value is much larger for electron transport along
magnetic field lines than for transport across them. From
current conservation, however, it is clear that the electron
flux can not be much larger along magnetic field lines than
across them. This implies that along the field lines, the two
terms of Eq.~6! should virtually cancel each other. Taking
into account similar considerations for the electron energy
flux, one can derive that the electron mean energy must be
constant along magnetic field lines and that the electric po-
tential V behaves as

V~x,r !5V* ~l!1
2

3e
e~l!ln

n~x,r !

n0
, ~8!

whereV* is a function andn0 is a reference density. While
V and n vary over all space,V* and e depend only on the
stream functionl. Note that by using Eq.~8!, we lose the
possibility to calculate the electron flux along magnetic field
lines from the drift-diffusion equation. For the cross field
electron flux on the other hand, we find

Ge,'5rBm'n
]V

]l
2

2

3e
rBm'

]~ne!

]l

5rBm'n
]V*

]l
1

2

3e
rBm'nS ln

n

n0
21D ]e

]l
, ~9!

wherem' is now the cross field mobility, which is further
discussed in Sec. III A.

Let us now define the following~surface!! integrals
along magnetic field lines

c15EE G i ,' ds, ~10!

c25EE rBm'nds, ~11!

c35EE rBm'nS ln
n

n0
21Dds, ~12!

and ~volume! integrals between consecutive field lines

c45EEE ndv, ~13!

c55EEE Nndv, ~14!

c65EEE 2eE'Ge,' dv, ~15!

where ds and dv are surface and volume elements.
Using these integrals, the continuity and momentum

equations can be replaced by the following one-dimensional
equation for current conservation:

EE Ge,' ds5c2

]V*

]l
1

2

3e
c3

]e

]l
5c12

b

e
I , ~16!

whereI is the discharge current andb is a multiplicity factor
representing the number of times the current crosses the field
line, i.e.,b51 for the field lines between the anode and the
cathode and 0 for field lines beyond the cathode. It is as-
sumed that no current escapes to the walls.

In a similar way, the energy equation can be written as

]~c4,kek!

]t
1

5

3 S c1,k11/22
1

e
bk11/2I D ek11/22

5

3 S c1,k21/2

2
1

e
bk21/2I D ek21/22

10

9e
c2,k11/2ek11/2

]e

]lU
k11/2

1
10

9e
c2,k21/2ek21/2

]e

]lU
k21/2

5c6,k2c5,kkk2c4,kWk , ~17!

wherek11/2 andk21/2 refer to two field lines, andk to the
interval between them. This equation neglects electron trans-
port to the surface and does not hold for the interval contain-
ing the cathode because of the strong electron inflow there.

From Eqs.~16! and ~17!, we calculatee and V* as a
function of l, fixing e to a few eVs at the boundaries and at
the cathode. Subsequently, the spatial profile of the electric
potential is found from Eq.~8!. The current in Eqs.~16! and
~17! is chosen such that a specified voltage drop results be-
tween anode and cathode:

Va2Vc52E
a

c ]V*

]l
dl1

2

3e
ea ln

na

n0
2

2

3e
ec ln

nc

n0
,

~18!

5594 J. Appl. Phys., Vol. 91, No. 9, 1 May 2002 Hagelaar et al.

Downloaded 01 Sep 2004 to 202.118.106.48. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



where the labelsa andc refer to anode and cathode, and the
na,c are spatially averaged over the electrode lines. How ex-
actly this is done is described in Sec. II F.

F. Numerical solution technique

The solution of the system of electron transport equa-
tions constitutes a delicate numerical problem and deserves
some further description. The electron mean energy and the
electric field are strongly coupled and can therefore not be
calculated separately. Furthermore, the energy equation is
nonlinear and its source term tends to produce numerical
oscillations. Suppose that all quantities are known at a cer-
tain timet l . We found the following numerical scheme to be
most appropriate to calculate their values a momentDt later,
at time t l 115t l1Dt:

~1! The ions and atoms in the Monte Carlo model are
moved. This yieldsNl 11, nl 11 andG i

l 11.
~2! The integralscl 11 are calculated; the electron heating

integral is evaluated as

c6
l 115eEEE r 2B2m'nl 11

]Vl

]l S ]V* l

]l

1
2

3 S ln
nl 11

n0
21D ]e l

]l Ddv. ~19!

~3! The discharge current is estimated from Eqs.~8!,
~16!, and~18!, as

I l 115eS Va2Vc2
2

3e
ea

l ln
na

l 11

n0
1

2

3e
ec

l ln
nc

l 11

n0

1E
a

c c1
l 11

c2
l 11 dl

2
2

3e Ea

c c3
l 11

c2
l 11

]e l

]l
dl D Y E

a

c b

c2
l 11 dl. ~20!

~4! The electron mean energy is calculated from the en-
ergy equation

1

Dt
~c4,k

l 11ek
l 112c4,k

l ek
l !1

5

3 S c1,k11/2
l 11 2

1

e
bk11/2I

l 11D ek11/2
l 11

2
5

3 S c1,k21/2
l 11 2

1

e
bk21/2I

l 11D ek21/2
l 11

2
10

9e
c2,k11/2

l 11 ek11/2
l ]e l 11

]l U
k11/2

1
10

9e
c2,k21/2

l 11 ek21/2
l ]e l 11

]l U
k21/2

5c6,k
l 112c5,k

l 11kk
l 2c5,k

l 11 ]k l

]e U
k

~ek
l 112ek

l !

2c4,k
l 11Wk

l 2c4,k
l 11 ]Wl

]e U
k

~ek
l 112ek

l !, ~21!

in which the energy loss terms are linearly corrected for
changes in the electron energy; this avoids strong time-step

restrictions; for more details see Ref. 5. Note that the non-
linear terms on the left-hand side are linearized by partially
evaluating them explicitly. We use an exponential scheme6 to
further discretize Eq.~21! in space, where the argument of
the exponential functions is given by

3~lk112lk!~ec1,k11/22bk11/2I !/c2,k11/2~ek111ek!.

~5! The electric potential is calculated from current con-
servation

]V* l 11

]l
5

c1
l 11

c2
l 112

b

ec2
l 11 I l 112

2c3
l 11

3ec2
l 11

]e l 11

]l
, ~22!

followed by

Vl 115V* l 111
2

3e
e l 11 ln

nl 11

n0
. ~23!

This scheme is very robust. Note that we use the same
numerical time step for both the electron equations and the
heavy particle Monte Carlo simulation. The simulation of 1
ms of SPT discharge operation, sufficient to see most of its
temporal features, takes typically a few tens of minutes of
CPU time on a 1 GHz personal computer~PC!.

III. EMPIRICAL ASPECTS OF THE MODEL

The model described in Sec. II is incomplete without the
formulation of the cross field electron mobilitym' and the
energy loss to the wallsW. Unfortunately, a lack of under-
standing forces us to treat these quantities in a rather empiri-
cal, phenomenological way. We discuss this next.

A. Cross field electron mobility

Cross field electron mobility is a crucial parameter that
has strong influence on the simulation results.7 The classical
expression form' is given by

m',c5
enm /me

nm
2 1~eB/me!

2 '
menm

eB2 , ~24!

where me is the electron mass andnm is the momentum–
transfer frequency of electron–particle collisions. It is clear
however that the classical mobility is too small to be realistic
for the electron transport in SPTs, especially near and beyond
the exhaust where the gas density is very low.

Apparently, there are additional mechanisms of electron
transport. As a first additional mechanism, it is generally
assumed that electron collisions with the channel walls cause
momentum transfer, thus enabling cross field electron trans-
port. This effect is sometimes referred to as near-wall con-
ductivity or near-wall current.8–10 In our model, it can be
taken into account by including the momentum–transfer fre-
quency of the wall collisions in the cross field mobility of
Eq. ~24!. However, being dependent on the plasma sheath
voltage and very sensitive to the electron energy distribution
function, the wall–collision frequency is difficult to
quantify.10 Rough estimates yield 106– 107 s1. Therefore, we
use, as in Ref. 3,
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nm5nm,particles1nm,walls5nm,particles1a3107 ~s21!,
~25!

wherea is a constant fitting parameter. We find that fora in
the range 0.1–0.5, the discharge is reasonably simulated in-
side the channel~i.e., there is a qualitative agreement with
experimental data!.

Outside the channel wall collisions are not expected to
be of much importance. Here most authors attribute the elec-
tron transport to the Bohm effect:1,4 plasma fluctuations alow
the electrons to cross the magnetic field. The resulting
anomalous Bohm mobility is proportional to 1/B; for some
magnetized plasmas a proportionality constant of 1/16 has
been found empirically. Outside the channel, we use there-
fore

m'5
K

16B
, ~26!

whereK is a fitting parameter. It turns out that in order to
yield acceptable results, our simulation requiresK to be on
the order of 1.

Note that we do not use Bohm mobility inside the chan-
nel; mainly because we can not find reasonable simulation
results if we do. Also, it has been suggested that the plasma
is more stable where the magnetic field strength increases in
the direction of the ion flow, i.e., inside the channel.1 Note
furthermore, that the Bohm mobility is orders of magnitude
larger than the classical mobility; much larger also than the
assumed mobility inside the channel, including the wall col-
lisions.

Finally, we remark that exactly what kind of fluctuations
would cause the Bohm effect in SPTs is unclear. Several
mechanisms have been proposed. For instance, azimuthal
plasma waves, not described by our model, can be shown to
lead to an increased cross field electron transport behaving as
1/B.4 Full particle in cell~PIC! simulations reveal turbulence
increasing the cross field transport.11,12

B. Electron energy loss

Electron energy loss due to collisions with neutrals is
insufficient to explain observed electron mean energies.4,13 It
is believed that important additional energy loss is due to

FIG. 3. Time-averaged profiles of various quantities in the typical simulation of an SPT discharge. Each plot shows ten equidistant contours, on the right-hand
side in linear scale and on the left-hand side in a log scale covering three decades. Note that the plots show only a part of the simulation domain. The channel
exhaust is atx50.025 m; its inner and outer radii are 0.035 m and 0.05 m, respectively.
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electron-impact secondary-electron emission from the chan-
nel walls: when a high-energy electron strikes the wall, it is
likely to cause the emission of a low-energy secondary elec-
tron. How this process takes place exactly and how much net
energy loss it causes is unclear. In addition, as stated in the
Sec. III A, it is difficult to calculate the frequency of the wall
collisions. Some authors4,10 argue that beyond a certain
breakpoint energy, strong secondary-electron emission
causes the plasma sheath to collapse, which results in an
enormous wall-collision frequency and an enormous energy
loss preventing the mean energy from increasing further.
More detailed treatments10,14,15however show that the wall
collisions depopulate the tail of the electron energy distribu-
tion, thus strongly reducing the effective secondary-emission
coefficient and the energy loss at the wall.

In view of the this, we choose to use the phenomeno-
logical expression of Ref. 3,

W5ae3107e expS 2
U

e D ~s21!, ~27!

wherea andU are once again fitting parameters. This does
not result from physical derivation, but is simply a conve-
nient expression stating that the energy loss increases mono-
tonically with increasing mean energy, becoming important
beyond an energyU. We find reasonable simulation results
usingU520 eV andae in the range 0.1–0.5.

IV. TYPICAL SIMULATION RESULTS

In this section we show simulation results for the typical
conditions that the applied voltage is 300 V, the xenon debit
is 5 mg/s, the wall parametersa5ae50.1, and the Bohm
parameterK51. The position of the cathode is marked in
Fig. 3~b!. The results presented here are in good qualitative
agreement with experimental data from, for instance, Refs.
13, 16, and 17.

The two-dimensional plots of Fig. 3 demonstrate the
main features of the discharge. The magnetic field is slightly
curved so as to form a convex magnetic lense. Its strength,
maximum at the exhaust, decreases only slowly outside the
channel. The electric potential lines deviate significantly
from the magnetic field lines due to the second term of Eq.
~8!. Most of the electric field is concentrated in a so-called
acceleration region which is located near the exhaust, where
the neutral density is so low that the electron mobility is
determined by the wall collisions alone. Outside the channel
the much larger Bohm mobility prevents a strong electric
field; the potential drop outside is only about 50 V. Note that
the abruptness of the transition from the high field inside to
the low field outside reflects the discontinuity in the assumed
electron mobility; a smooth transition would obviously be
more realistic. The simulation suggests that beyond the cath-
ode line the potential rises again to ensure an electron flux
along with the ion flux. This rise has been reported previ-
ously in Ref. 18. It depends heavily on the assumed electron
mobility outside the channel.

The plasma density is highest in the center of the chan-
nel and decreases in the acceleration region due to the in-
creasing ion velocity. Ionization takes place in a region

slightly shifted inward with respect to the acceleration re-
gion. This implies that most of the created ions will eventu-
ally leave the thruster with an energy approximately corre-
sponding to the applied voltage. Deep into the channel the
electric field is small and many produced ions are lost to the
channel walls, where they recombine into neutrals.

The results in Fig. 3 are time averaged; the simulation
however shows oscillating discharge behavior. This is illus-
trated by Fig. 4, which presents the discharge current as a
function of time. We find that the calculated oscillations de-
pend strongly on the electron mobility parameters. In addi-
tion to the low frequency~15–20 kHz! oscillations previ-
ously reported in Ref. 3 and related to the depletion of
neutrals, the simulation may develop high frequency~150–
200 kHz! oscillations, related to local plasma density
maxima traveling outward with the ion velocity. For the case
shown here, both oscillations are present. We intend to elabo-
rate further on the results of our model in a future article.

V. CONCLUSION

We have developed a two-dimensional hybrid model of
an SPT discharge. The model provides a complete simulation
of the temporal and spatial behavior of the discharge, both
inside and outside the SPT channel. The numerical code is
robust and efficient; a typical simulation takes a few tens of
CPU minutes on a 1 GHz PC.

The model uses ad hoc empirical parameters to charac-
terize the cross field electron mobility and the electron en-
ergy loss. By appropriately choosing these parameters, we
can obtain simulation results that seem to be quite realistic
and lead to useful insight in the operation of the SPT dis-
charges. To perform quantitative predictions however we
need more understanding and experimental evidence on the
electron mobility and energy loss.
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Abstract
Fluid models of gas discharges require the input of transport coefficients and
rate coefficients that depend on the electron energy distribution function.
Such coefficients are usually calculated from collision cross-section data by
solving the electron Boltzmann equation (BE). In this paper we present a
new user-friendly BE solver developed especially for this purpose, freely
available under the name BOLSIG+, which is more general and easier to use
than most other BE solvers available. The solver provides steady-state
solutions of the BE for electrons in a uniform electric field, using the
classical two-term expansion, and is able to account for different growth
models, quasi-stationary and oscillating fields, electron–neutral collisions
and electron–electron collisions. We show that for the approximations we
use, the BE takes the form of a convection-diffusion continuity-equation
with a non-local source term in energy space. To solve this equation we use
an exponential scheme commonly used for convection-diffusion problems.
The calculated electron transport coefficients and rate coefficients are
defined so as to ensure maximum consistency with the fluid equations.
We discuss how these coefficients are best used in fluid models and illustrate
the influence of some essential parameters and approximations.

1. Introduction

Fluid models of gas discharges describe the transport of
electrons, ions and possibly other reactive particle species by
the first few moments of the Boltzmann equation (BE): (1) the
continuity equation, (2) the momentum equation, usually
approximated by the drift-diffusion equation and (3) the
energy equation, usually only for electrons. Each of these
equations contains transport coefficients or rate coefficients
which represent the effect of collisions and which are input
data for the fluid model [1–4] (see also references therein).

Transport coefficients and rate coefficients may be
rather specific for the discharge conditions. In particular,
coefficients concerning electrons depend on the electron
energy distribution function (EEDF), which in general is
not Maxwellian but varies considerably depending on the
conditions. For simple conditions (swarm experiments) and
common gases, the electron transport coefficients and rate
coefficients have been measured and tabulated as functions

of the reduced electric field E/N (ratio of the electric field
strength to the gas particle number density) [5].

In general, the EEDF and the electron coefficients
for the given discharge conditions can be calculated from
the fundamental collision cross-section data by solving the
electron BE [6]. A common approach is to solve some
approximation of the BE for a series of reduced electric-
field values and to put the resulting coefficients in tables
versus the reduced field or versus the mean electron energy
(disregarding the field values), which are then used in the fluid
model to find the transport coefficients and rate coefficients by
interpolation. Fluid models without electron energy equation
treat the electron coefficients as functions of the local reduced
field; models with an electron energy equation treat them as
functions of the local mean electron energy.

The BE solvers used to generate the electron-related input
data for fluid models are usually based on techniques developed
during the 1970s and 1980s, when much work was done on the
solution of the BE for the purpose of checking the consistency
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between cross-section data and transport coefficients or rate
coefficients measured in different experiments [7–16]. These
solution techniques originally aimed at simulating specific
experiments and calculating the exact physical quantities
measured in these experiments with high numerical precision.
For fluid discharge modelling, however, one has somewhat
different objectives:

(1) the BE solver should work over a large range of discharge
conditions (reduced electric field, ionization degree, gas
composition, field frequency) rather than simulate a
specific experiment;

(2) the calculated transport coefficients and rate coefficients
should correspond formally to the same coefficients
appearing in the fluid equations (moments of the BE)
rather than to quantities measured in experiments; note
that the literature gives different definitions of the transport
coefficients, some of which are not completely consistent
with the fluid equations;

(3) the errors in the calculated transport coefficients and rate
coefficients should not limit the accuracy of the fluid
model; this is a less strict requirement than the extreme
precision (e.g. 0.1% in the drift velocity) needed for the
cross-section testing of the 1970s and 1980s;

(4) the BE solver should be fast and reliable without ad hoc
calculation parameters to adjust.

There exist several user-friendly BE solvers that are often used
and cited by authors in the field of fluid discharge modelling;
we mention in particular the commercial ELENDIF [13] and
the freeware BOLSIG [17], but there are many others. These
solvers however were not designed with the above objectives
in mind: they can be applied only for a limited range of
discharge conditions, are inconvenient to generate the tables
of coefficients or are ill-documented (especially the popular
BOLSIG), making it difficult to evaluate the appropriateness of
their results for fluid modelling. For years we have felt the need
for a new BE solver, able to deal with a larger range of discharge
conditions, faster, easier to use and paying more attention to a
consistent definition of the calculated coefficients. This is the
reason why we have recently developed a new user-friendly BE
solver and made it freely available to the discharge modelling
community under the name BOLSIG+ [18].

In this paper we document BOLSIG+ in detail. We discuss
its physical approximations, numerical techniques, calculated
transport coefficients and rate coefficients, and how to use
these coefficients in fluid models. In doing so, we provide
an extensive discussion on the topic of solving the BE to
obtain input data for fluid models. We believe that this is
extremely useful: although the techniques used by BOLSIG+
and described in this paper may be well known to BE
specialists, developers and users of fluid models are often
not aware of them and have little feeling for the precision
of the calculated coefficients. The existing literature on BE
calculations is so specialized, focusing on specific details, that
it is hard to see the consequences for fluid models. This paper
looks at the BE from the point of view of a fluid modeller.

2. Boltzmann equation solver

In the following sections we document the physical
assumptions and numerical techniques used by our BE solver.

We indicate the relation with previous work without trying to
be exhaustive; the literature on the electron BE in this context
is vast.

The BE for an ensemble of electrons in an ionized gas is

∂f

∂t
+ v · ∇f − e

m
E · ∇vf = C[f ], (1)

where f is the electron distribution in six-dimensional phase
space, v are the velocity coordinates, e is the elementary
charge, m is the electron mass, E is the electric field, ∇v is the
velocity-gradient operator and C represents the rate of change
in f due to collisions.

To be able to solve the BE, we need to make drastic
simplifications. To start with, we limit ourselves to the case
where the electric field and the collision probabilities are all
spatially uniform, at least on the scale of the collisional mean
free path. The electron distribution f is then symmetric in
velocity space around the electric field direction. In position
space f may vary only along the field direction. Using
spherical coordinates in velocity space, we obtain

∂f

∂t
+ v cos θ

∂f

∂z
− e

m
E

(
cos θ

∂f

∂v
+

sin2 θ

v

∂f

∂ cos θ

)
= C[f ],

(2)
where v is the magnitude of the velocity, θ is the angle between
the velocity and the field direction and z is the position along
this direction.

The electron distribution f in equation (2) depends on
four coordinates: v, θ , t and z. The next few sections describe
how we deal with this. We simplify the θ -dependence by the
classical two-term approximation (section 2.1). To simplify
the time dependence, we only consider steady-state cases
where the electric field and the electron distribution are
either stationary or oscillate at high frequency (section 2.3).
Additional exponential dependence of f on t or on z is assumed
to account for electron production or loss due to ionization and
attachment (section 2.2). We then describe the collision term
(section 2.4), put all pieces together into one equation for the
EEDF (section 2.5), and discuss the numerical techniques we
use to solve this equation (section 2.6).

2.1. Two-term approximation

A common approach to solve equation (2) is to expand
f in terms of Legendre polynomials of cos θ (spherical
harmonics expansion) and then construct from equation (2)
a set of equations for the expansion coefficients. For high
precision results six or more expansion terms are needed
[15], but for many cases a two-term approximation already
gives useful results. This two-term approximation is often
used (e.g. by the BE solvers BOLSIG and ELENDIF) and
has been extensively discussed in the literature [19, 20].
Although the approximation is known to fail for high values
of E/N when most collisions are inelastic and f becomes
strongly anisotropic [21], the errors in the calculated transport
coefficients and rate coefficients are acceptable for fluid
discharge modelling in the usual range of discharge conditions.
Note that when the two-term approximation fails, some other,
intrinsic approximations of fluid models also fail.
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Using the two-term approximation we expand f as

f (v, cos θ, z, t) = f0(v, z, t) + f1(v, z, t) cos θ, (3)

where f0 is the isotropic part of f and f1 is an anisotropic
perturbation. Note that θ is defined with respect to the field
direction, so f1 is negative; this differs from some other texts
where θ is defined with respect to the electron drift velocity
and f1 is positive. Also note that f is normalized as∫ ∫ ∫

f d3v = 4π

∫ ∞

0
f0v

2 dv = n, (4)

where n is the electron number density.
Equations for f0 and f1 are found from equation (2)

by substituting equation (3), multiplying by the respective
Legendre polynomials (1 and cos θ ) and integrating over cos θ :

∂f0

∂t
+

γ

3
ε1/2 ∂f1

∂z
− γ

3
ε−1/2 ∂

∂ε
(εEf1) = C0, (5)

∂f1

∂t
+ γ ε1/2 ∂f0

∂z
− Eγ ε1/2 ∂f0

∂ε
= −Nσmγ ε1/2f1, (6)

where γ = (2e/m)1/2 is a constant and ε = (v/γ )2 is
the electron energy in electronvolts. The right-hand side of
equation (5) represents the change in f0 due to collisions
and will be discussed in detail in section 2.4. The right-
hand side of equation (6) contains the total momentum-transfer
cross-section σm consisting of contributions from all possible
collision processes k with gas particles:

σm =
∑

k

xkσk, (7)

where xk is the mole fraction of the target species of the
collision process; realize that the gas can be a mixture
of different species, including excited states1. For elastic
collisions, σk is the effective momentum-transfer cross-
section, as clearly discussed in [22], accounting for possible
anisotropy of the elastic scattering. For inelastic collisions,
σk is the total cross section, assuming that all momentum is
lost in the collision, i.e. that the remaining electron velocity
after the collision is scattered isotropically. One needs to be
careful about the definition of σm: omitting, for example, the
contribution from inelastic collisions completely changes the
calculation results; some data forσm in the literature are unclear
on this point.

2.2. Growth of the electron density

We further simplify equations (5) and (6) by making
assumptions about the temporal and spatial dependence of f0

and f1. In general f cannot be constant in both time and space
because some collision processes (ionization, attachment) do
not conserve the total number of electrons. Previous work
[19, 22–24] proposed a simple technique to approximately
describe the effects of net electron production in swarm

1 The momentum-transfer cross-section σm appearing in equation (5) is
equivalent to the diffusion cross section discussed in [22]. It can also be
identified with the effective momentum-transfer cross-section derived from
analysis of swarm experiments, at least at low E/N where ionization can be
treated as an excitation process.

type experiments. Following this technique, we separate the
energy-dependence of f from its dependence on time and
space by assuming that

f0,1(ε, z, t) = 1

2πγ 3
F0,1(ε)n(z, t), (8)

where the energy distribution F0,1 is constant in time and space
and normalized by

∫ ∞

0
ε1/2F0 dε = 1. (9)

The time or space dependence of the electron density n is now
related to the net electron production rate. For this, we consider
two simple cases corresponding to specific swarm experiments.
Most discharges resemble at least one of these cases.

Exponential temporal growth without space dependence.
This case corresponds to Pulsed Townsend experiments [11].
The temporal growth rate of the electron number density equals
the net production frequency ν̄i :

1

ne

∂ne

∂t
= ν̄i ≡ Nγ

∫ ∞

0

( ∑
k=ionization

xkσk −
∑

k=attachment

xkσk

)

×εF0 dε, (10)

where the sum is over the ionization and attachment processes;
we remind that xk is the mole fraction of the target species of
collision process k.

Equation (6) becomes

F1 = E

N

1

σ̃m

∂F0

∂ε
, (11)

where

σ̃m = σm +
ν̄i

Nγ ε1/2
. (12)

Substituting this in equation (5), we find

− γ

3

∂

∂ε

( (
E

N

)2
ε

σ̃m

∂F0

∂ε

)
= C̃0 + R̃, (13)

where the collision term

C̃0 = 2πγ 3ε1/2 C0

Nn
(14)

has been divided by the gas density N and the electron density
n with respect to the collision term C0 in equation (5), which
makes it largely independent of these densities2. The term

R̃ = − ν̄i

N
ε1/2F0 (15)

ensures that F0 remains normalized to unity in the case of net
electron production. Previous work [23] interpreted this term
as the energy needed to heat the secondary electrons up to the
mean electron energy.

2 Note that C̃0 and C0 are physical quantities and not collision operators as
used in some other texts.
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Exponential spatial growth without time dependence. This
case corresponds to Steady State Townsend experiments [11].
While the electrons drift against the electric field their flux
and density grow exponentially with a constant spatial growth
rate α (Townsend coefficient), which is related to the net
electron production by

α ≡ −1

n

∂n

∂z
= − ν̄i

w
, (16)

where the mean velocity w is determined by F1, constant in
space and negative.

Using the definition of α, equation (6) becomes

F1 = 1

σm

(
E

N

∂F0

∂ε
+

α

N
F0

)
(17)

and equation (5) can again be written in the form

− γ

3

∂

∂ε

((
E

N

)2
ε

σ̃m

∂F0

∂ε

)
= C̃0 + R̃, (18)

where this time σ̃m = σm and the growth-renormalization
term is

R̃ = α

N

γ

3

[
ε

σm

(
2
E

N

∂F0

∂ε
+

α

N
F0

)
+

E

N
F0

∂

∂ε

(
ε

σm

)]
.

(19)

The value of α is found from combining equations (16)
and (17):

w = 1

3
γ

∫ ∞

0
F1ε dε ≡ −µE + αD = − ν̄i

α
, (20)

which yields

α = 1

2D
(µE −

√
(µE)2 − 4Dν̄i), (21)

where µ and D are written out and identified with the mobility
and the diffusion coefficient, respectively, in section 3.1.

2.3. High frequency fields

The quasi-stationary approach of the previous sections
assumes that the electric field remains constant on the time
scale of the collisions. With some slight modifications,
however, the same approach can also be used for high-
frequency oscillating fields [19]. Using the complex notation,
we express the oscillating electric field as

E(t) = E0 eiωt . (22)

Rather than equation (3), we use the following two-term
approximation:

f (v, cos θ, z, t) = f0(v, z, t) + f1(v, z, t) cos θ eiωt , (23)

where the time-variation of f0 and f1 is slow with respect to
the oscillation; f1 may be complex to account for phase shifts
with respect to the electric field.

Equation (23) is appropriate if the field frequency is
so high that the electron energy lost over one field cycle
is small. For elastic collisions this implies that the field

frequency should be much greater than the collision frequency
times the ratio of the electron mass to the gas particle mass:
ω/N � (2m/M)σmγ ε1/2. A frequency limit related to
inelastic collisions is more difficult to estimate. In practice
equation (23) is reasonable for field frequencies in the
gigahertz range (microwave discharges) and beyond (optical
breakdown). For intermediate field frequencies, where the
energy transfer per cycle is neither full nor negligible, a more
complete solution of the time-dependent BE is necessary [25].

Using equation (23), we proceed exactly as before. Only
the temporal growth model makes sense, because the high
frequency field does not lead to time-averaged transport, and
we find

F1 = E0

N

σ̃m − iq

σ̃ 2
m + q2

∂F0

∂ε
, (24)

where σ̃m = σm +ν̄i/Nγ ε1/2 and q = ω/Nγ ε1/2. Substituting
this in the equation for F0 and averaging the energy absorption
over the field cycle, we finally obtain

− γ

3

∂

∂ε

( (
E0

N

)2
σ̃mε

2(σ̃ 2
m + q2)

∂F0

∂ε

)
= C̃0 + R̃, (25)

where the growth-renormalization term R̃ is given by
equation (15).

We remark that in the case of a constant momentum-
transfer frequency ν = σ̃mNγε1/2 (σm is inversely
proportional to ε1/2), equation (25) can be written exactly as
equation (13) for a stationary electric field, where the field E is
replaced by an effective field Eeff = 2−1/2(1 + ω2/ν2)−1/2E0.
This concept of effective field is used by some authors [26] to
relate the EEDF and the electron properties in oscillating fields
to those in dc fields.

2.4. Collision terms

The right-hand sides of equations (13), (18) and (25) contain
the collision term consisting of contributions from all different
collision processes k with neutral gas particles and from
electron–electron collisions:

C̃0 =
∑

k

C̃0,k + C̃0,e. (26)

Here we describe these contributions in detail.

Elastic collisions. The effect of elastic collisions can be
described by [20]

C̃0,k=elastic = γ xk

2m

Mk

∂

∂ε

[
ε2σk

(
F0 +

kBT

e

∂F0

∂ε

)]
, (27)

where Mk is the mass of the target particles and T is their
temperature. The first term represents the kinetic energy lost
to the target particles and the second term is the energy gained
from the target particles assuming that these are Maxwellian;
this term is important only at very low E/N .
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Excitation/de-excitation. Excitation and de-excitation colli-
sions cause a discrete energy loss or gain, continuously remov-
ing electrons from the energy distribution and reinserting them
somewhere else [19]:

C̃0,k=inelastic = −γ xk[εσk(ε)F0(ε)

− (ε + uk)σk(ε + uk) F0(ε + uk)], (28)

where uk is the threshold energy of the collision and is negative
for de-excitation. The two terms are known, respectively, as the
scattering-out and scattering-in terms; the scattering-in term
clearly vanishes for ε < −uk in the case of de-excitation.

Ionization. The effect of ionization depends on how the
remaining energy is shared by the two electrons after
ionization. For some gases differential cross sections can
be found for the energy sharing, which usually show that
the energy is shared less equally as the remaining energy is
large [27]. Here we consider only the two limiting cases of
equal and zero energy sharing. In the case of equal energy
sharing:

C̃0,k=ionization = −γ xk[εσk(ε)F0(ε)

−2(2ε + uk)σk(2ε + uk)F0(2ε + uk)], (29)

where the factor 2 in the scattering-in term represents the
secondary electrons being inserted at the same energy as the
primary electrons. In case the primary electron takes all
remaining energy (zero sharing)

C̃0,k=ionization = −γ xk[εσk(ε)F0(ε)

−(ε + uk)σk(ε + uk)F0(ε + uk)]

+δ(ε)γ xk

∫ ∞

0
uσk(u)F0(u) du, (30)

where δ is the Dirac delta-function. The last term denotes the
secondary electrons, which are all inserted at zero energy.

Attachment. Attachment simply removes electrons from the
energy distribution:

C̃0,k=attachment = −γ xkεσk(ε)F0(ε). (31)

Electron–electron collisions. Previous work [9] gives the
following expression for the collision term due to electron–
electron collisions, assuming the electron distribution to be
isotropic:

C̃0,e = a
n

N

[
3ε1/2F 2

0 + 2ε3/2 ∂ψ

∂ε

∂

∂ε

(
ε1/2 ∂F0

∂ε

)
+ ψ

∂F0

∂ε

]
,

(32)

where

ψ = 3A1 − A2

ε
+ 2ε1/2A3, (33)

A1 =
∫ ε

0
u1/2F0(u) du, (34)

A2 =
∫ ε

0
u3/2F0(u) du, (35)

A3 =
∫ ∞

ε

F0(u) du, (36)

a = e2γ

24πε2
0

ln �, � = 12π(ε0kBTe)
3/2

e3n1/2
,

kBTe = 2

3
eA2(∞). (37)

After some manipulation this becomes:

C̃0,e = a
n

N

∂

∂ε

[
3A1F0 + 2(A2 + ε3/2A3)

∂F0

∂ε

]
, (38)

which expresses the electron–electron collision term as the
divergence of the electron flux in energy space. The first
term of the flux represents cooling by collisions with colder
electrons (A1 is the fraction of electrons below ε) and the
second term is usually heating (diffusion to higher energies).
For a Maxwellian distribution function the two terms cancel
out, as can be readily seen by substituting F0 ∝ exp(−ε/τ)

for arbitrary τ .

2.5. Equation for the EEDF

When combining the previous equations, we find an equation
for F0 that looks like a convection-diffusion continuity-
equation in energy space:

∂

∂ε

(
W̃F0 − D̃

∂F0

∂ε

)
= S̃, (39)

where

W̃ = −γ ε2σε − 3a
n

N
A1, (40)

D̃ = γ

3

(
E

N

)2
ε

σ̃m
+

γ kBT

e
ε2σε + 2a

n

N
(A2 + ε3/2A3), (41)

σε =
∑

k=elastic

2m

Mk

xkσk, (42)

S̃ =
∑

k=inelastic

C̃0,k + G. (43)

It is instructive to interpret the left-hand side of equation (39) as
the divergence of the electron flux in energy space. This flux
then has a convection part with a negative flow velocity W̃ ,
representing cooling by elastic collisions with less energetic
particles (neutrals or electrons), and a diffusive part with
diffusion coefficient D̃, representing heating by the field and by
elastic collisions with more energetic particles. Note that in the
case of HF fields the heating term is modified as discussed in
section 2.3. Note also that the source term S̃ on the right-hand
side of equation (39) has the special property that it is non-local:
due to the scattering-in terms it depends on energies elsewhere
in energy space. This means that the equation is no ordinary
differential equation and solving it requires some special care.

2.6. Numerical solution of the equation

Equation (39) is discretized on a grid in energy space,
consisting of a series of subsequent energy intervals, here
called grid cells, numbered i = 1, 2, . . .. The subscript i

refers to the centre of the grid cell i and the subscript i + 1
2

to the boundary between the cells i and i + 1. The energy
distribution function F0 is defined in the cell centres. For each
cell i we obtain a linear equation relating the local value F0,i to
the values F0,j in the other cells, by integrating the differential
equation over the cell:[
W̃F0 − D̃

∂F0

∂ε

]
i+1/2

−
[
W̃F0 − D̃

∂F0

∂ε

]
i−1/2

=
∫ εi+1/2

εi−1/2

S̃ dε

(44)

and then discretizing the various terms.
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The left-hand side of the equation is discretized by
the exponential scheme of Scharfetter and Gummel [28]
commonly used for convection-diffusion problems:[
W̃F0 − D̃

∂F0

∂ε

]
i+1/2

= W̃i+1/2F0,i

1 − exp[−zi+1/2]
+

W̃i+1/2F0,i+1

1 − exp[zi+1/2]
,

(45)

where zi+1/2 = W̃i+1/2(εi+1 −εi)/D̃i+1/2 (Peclet number). This
scheme is very accurate when the convection and diffusion
terms are about equal, i.e. when inelastic collisions play no
important role, and becomes equivalent to a second-order
accurate central-difference scheme when the diffusion term is
dominant. The electron–electron collision terms in W̃ and D̃

depend on F0 and require iteration. To speed up convergence
these terms are implicitly corrected. In addition, we start the
iteration procedure from a Maxwellian distribution function at
a temperature deduced from the global energy balance of the
electrons.

The inelastic collision terms on the right-hand side are
non-local in energy but linear in F0 and are evaluated fully
implicitly, which involves direct inversion of a matrix that
is more or less sparse, depending on the different threshold
energies of the collisions. We discretize as follows:∫ εi+1/2

εi−1/2

S̃ dε ≡ −PiF0,i +
∑

j

Qi,jF0,j , (46)

where the two terms represent scattering-out and scattering-in:

Pi =
∑

inelastic

γ xk

∫ εi+1/2

εi−1/2

εσk exp[(εi − ε)gi] dε, (47)

Qi,j =
∑

inelastic

γ xk

∫ ε2

ε1

εσk exp[(εj − ε)gj ] dε, (48)

where the interval [ε1, ε2] is the overlap of cell j , and cell i

shifted by the threshold energy uk:

ε1 = min(max(εi−1/2 + uk, εj−1/2), εj+1/2), (49)

ε2 = min(max(εi+1/2 + uk, εj−1/2), εj+1/2). (50)

The exponential factors in the P - and Q-integrals assume the
distribution F0 to be piecewise exponential, with a (local)
logarithmic slope estimated as

gi = 1

εi+1 − εi−1
ln

(
F0,i+1

F0,i−1

)
. (51)

This technique requires iteration but converges extremely
rapidly. The P - and Q-integrals are calculated exactly,
assuming the cross sections to be linear in between the points
specified by the user in a table of cross section versus energy.

For simplicity we have not written out the effects of
ionization or attachment in the above equations. In the
case of ionization the scattering-in term accounts for the
secondary electrons, as discussed before, and in the case
of attachment there is no scattering-in. In either case an
additional growth-renormalization term is included accounting
for temporal or spatial growth, as discussed before. The
growth-renormalization term is non-linear in F0 and also
requires iteration. To ensure convergence, however, this term

must be linearized and partly evaluated implicitly. We use
different ways of linearizing this term depending on the growth
type (temporal growth or spatial growth) and on the sign of the
net electron production (production or loss). We impose that
the term integrated over all energies equals exactly the net
production.

We impose the boundary condition that there is no flux
in energy space at zero energy. In addition we impose the
normalization condition.

3. Coefficients for fluid equations

Although more flexible than BOLSIG and most other solvers,
our BE solver only describes the simplest discharge conditions:
uniform electric field, uniform or exponentially growing
electron density, etc. We now want to use the results from the
BE solver to obtain transport coefficients and rate coefficient
for fluid models which describe much more general conditions:
arbitrarily varying electric fields, electron densities, etc. This
implies a generalization of the coefficients as a function of
E/N or mean electron energy, which is difficult to justify and
should be seen as just an assumption made out of technical
necessity. However, if we are careful about the definition of
the coefficients, we can ensure that whenever the fluid model
is used for the simple conditions assumed by the BE solver,
it yields exactly the same mean velocity and mean energy as
the solver. We thus obtain maximum consistency between the
fluid model and the BE.

In order to find out how best to calculate the transport
coefficients and rate coefficients from the energy distribution
function F0, we need to make the link between the two-term
formulation of the BE equation, represented by equations (5)
and (6), and the fluid equations. In the next few sections we
discuss this for common fluid equations and their coefficients.

3.1. Electron transport

The continuity equation for electrons can be obtained from
equation (5) by multiplying by ε1/2 and integrating over all
energies:

∂n

∂t
+

∂�

∂z
= S, (52)

where S is the net electron source term and the electron flux is

� = nw = n
γ

3

∫ ∞

0
εF1 dε. (53)

Combining this with equation (6), we find the well-known
drift-diffusion equation

� = −µEn − ∂(Dn)

∂z
, (54)

where the mobility and diffusion coefficient are given by

µN = −γ

3

∫ ∞

0

ε

σ̃m

∂F0

∂ε
dε, (55)

DN = γ

3

∫ ∞

0

ε

σ̃m
F0 dε. (56)

The effective momentum-transfer cross-section σ̃m in these
equations includes the effect of possible temporal growth as
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given by equation (12). Although the normalized energy
distribution F0 is assumed to be independent of space when
solving the BE, the above fluid equations and coefficient
definitions are also valid in case the energy distribution is
space dependent. The diffusion coefficient in equation (54)
then clearly appears inside the divergence and can generally
not be put in front of it, as is done in Fick’s law.

3.2. Energy transport

Similar to the derivation of the continuity equation in the
previous section, the energy equation is obtained from
equation (5) by multiplying by ε3/2 and integrating:

∂nε

∂t
+

∂�ε

∂z
+ E� = Sε, (57)

where the energy density and the energy flux are given by

nε = n

∫ ∞

0
ε3/2F0 dε ≡ nε̄, (58)

�ε = n
γ

3

∫ ∞

0
ε2F1 dε, (59)

where ε̄ is the mean electron energy in electronvolts. The last
term on the left-hand side of equation (57) represents heating
by the electric field; the term Sε on the right-hand side is the
total energy transfer (usually loss) due to collisions. Using
equation (6), we can write the energy flux as well in a drift-
diffusion form:

�ε = −µεEnε − ∂(Dεnε)

∂z
, (60)

where the energy mobility and the energy diffusion coefficient
are defined by

µεN = − γ

3ε̄

∫ ∞

0

ε2

σ̃m

∂F0

∂ε
dε, (61)

DεN = γ

3ε̄

∫ ∞

0

ε2

σ̃m
F0 dε. (62)

The above formulation of the energy equation is somewhat
unusual but we recommend it because of its consistency with
the two-term BE. The formulation is basically equivalent to that
of Allis [29]; our energy mobility and diffusion coefficient are
straightforwardly related to Allis’ thermoelectricity β and heat
diffusion G as µε = β/ε̄ and Dε = G/ε̄; some other authors
using this approach are Ingold [30] and Alves et al [31].

Other formulations of the energy equation found in the
literature [32] show a separation of the electron energy flux
into a convective part proportional to the electron flux and
a thermal conduction part proportional to the gradient of
the mean electron energy; this however involves additional
assumptions and may lead to ambiguity in the definition of
the energy transport coefficients (e.g. the thermal conductivity
appearing in such energy equations); some further discussion
on this issue is given in section 4.5.

Note also that the above formulation of the energy
equation is technically convenient because it has exactly the
same form as the particle continuity equation and can be solved
for nε by the same numerical routine. The mean energy is
subsequently obtained by dividing, ε̄ = nε/n. A semi-implicit
technique to avoid numerical instabilities due to the possible
energy-dependence of the source term Sε has previously been
developed [33] and proved to work very well.

3.3. Source terms

Various coefficients can be defined for the purpose of
calculating the reaction rates appearing in the source terms
of fluid equations. Most straightforward is to define rate
coefficients (in units of volume per time) as

kk = γ

∫ ∞

0
εσkF0 dε, (63)

from which the reaction rate for the collision processes k is
obtained by multiplication by the density of the electrons and
the target species:

Rk = kkxkNn. (64)

In an alternative approach one can define Townsend
coefficients αk (in units of inverse length) such that

Rk = αkxk|�|. (65)

For the cases of temporal and spatial growth discussed in
section 2.2, these Townsend coefficients are then given by

αk

N
= kkα

ν̄i

(66)

and
αk

N
= kk

µE
. (67)

Using Townsend coefficients, the reaction rates are calculated
from the electron flux rather than from the electron density.
Clearly this makes no difference for the cases of pure spatial
or temporal growth, but in general equations (66) and (67) yield
different results. It is recommended to use rate coefficients in
situations where the electrons diffuse against the electric force
(plasma bulk) and Townsend coefficients in situations where
the flux is field driven. The use of Townsend coefficients is
especially recommended for modelling the cathode region in
dc discharges, where the poor physical reality of the drift-
diffusion equation leads to large errors in the electron density
but hardly affects the electron flux; models without energy
equation may not even have a solution when rate coefficients
are used in the cathode fall.

3.4. High frequency momentum equation

Some models of HF discharges use an electron momentum
equation of the form

∂w

∂t
+ ν̄effw = −φ

e

m
E, (68)

where w is the electron drift velocity and ν̄eff is an effective
collision frequency. The factor φ is usually omitted, but we
show here that this factor is needed to be consistent with the
BE. According to the two-term approach of section 2.3, and
using the complex notation, the electron drift velocity in HF
fields is equal to

w = γ eiωt

∫ ∞

0
εF1 dε = −γE

3N

∫ ∞

0
ε
σ̃m − iq

σ̃ 2
m + q2

∂F0

∂ε
dε

≡ −(µr + iµi)E, (69)
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which defines a complex electron mobility µ = µr + iµi .
Substituting this in the momentum equation, we find that the
coefficients must be calculated as

ν̄eff = −µr

µi

ω, (70)

φ = −µ2
r + µ2

i

µi

meω

e
. (71)

The factor φ equals unity for a constant momentum-transfer
frequency (σm inversely proportional to ε1/2) but may be quite
different from unity in case the momentum-transfer frequency
depends on energy. This has been pointed out previously [34]
but is frequently overlooked.

We remark that, strictly speaking, the momentum
equation (68) is not very useful to describe the electron motion
in a pure harmonic HF field, since the electron drift velocity
w can be obtained directly from the complex mobility by
equation (69). However, the momentum equation is useful
to describe more general cases where the electric field is not
purely harmonic, but resembles a harmonic oscillation at a
certain frequency.

4. Examples of results

We have extensively tested our BE solver for the gases argon
and nitrogen. These are model gases used in many BE
calculations described in the literature; we use the cross
sections recommended by Phelps [35]. As default options
for our calculations we consider the assumptions done by
BOLSIG and most other BE solvers available: exponential
temporal growth, quasi-stationary electric field, only collisions
with ground state gas particles. For these assumptions
our calculation results are identical to those obtained with
BOLSIG. We consider that this exact agreement obtained using
two very different solution techniques validates each. The
typical calculation time for one EEDF is on the order of a few
tens of milliseconds on a standard 2 GHz PC.

Calculation results for the default options are so well
known from previous work that there is no use showing them
again in this paper. Instead, we show results for options
different from default, not included in BOLSIG and most
other solvers. The next few sections illustrate the influence
of the growth model (section 4.1), electron–electron collisions
(section 4.2), electron collisions with excited neutrals
(section 4.3), high frequency field oscillations (section 4.4),
and some commonly used assumptions concerning the
transport coefficients (section 4.5). Similar results have been
presented previously and are known to BE specialists, but often
overlooked by developers and users of fluid models. Our aim
here is to provide a feeling of how and when the new options
of our BE solver should be used and how they might affect the
fluid model coefficients. We do not intend to be exhaustive;
the presented results are just illustrative examples and more
systematic investigation is saved for future work.

4.1. Influence of growth model

When solving the BE one needs to make assumptions on what
happens if collision processes (ionization, attachment) do not
conserve the total number of electrons. In section 2.2 we
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Figure 1. EEDF for 600 Td in argon calculated using the
exponential temporal growth model, exponential spatial growth
model, and neglecting growth (treating ionization as excitation).

discussed two model cases included in our BE solver, where the
net production (loss) of electrons leads to exponential temporal
growth (decay) and exponential spatial growth (decay) of the
electron density. Clearly these are only ideal cases that do not
always exactly fit real discharges. Some discharges, such as
a fully developed dc glow discharge between parallel plates,
closely resemble the case of exponential spatial growth. Other
discharge situations, such as the ignition of a dielectric barrier
discharge, have features of both spatial and temporal growth.
Yet other discharge situations cannot be described by either of
the exponential growth models; in a dc positive column, for
example, net production is balanced by transverse diffusion
loss. There is no growth model that works for all discharges,
but we estimate that for many cases the exponential spatial
growth model is probably the most realistic. Note however that
BOLSIG and most other solvers assume exponential temporal
growth.

In general the growth effects reduce the mean electron
energy (for a given E/N) but have only a minor influence on
the shape of the EEDF (for a given mean energy). This is
illustrated for argon by figure 1, which compares the EEDFs
for the different exponential growth models with the EEDF
when growth is neglected, i.e. when ionization is treated as
an excitation process and no secondary electrons are inserted.
Note that the difference between the two exponential growth
models is on the same order as the difference between the
temporal growth model and no growth model at all. Figure 2
then shows the influence of the growth effects on the ionization
rate coefficient in argon. Although the differences between
the curves for the different growth models in figure 2 seem
relatively small, our experience is that they can have serious
consequences for the fluid simulation results. More systematic
investigation on this point is definitely needed but beyond the
scope of this paper.

4.2. Influence of electron–electron collisions

Electron–electron collisions cause the EEDF to tend towards
a Maxwellian distribution function. The influence of these
collisions depends essentially on the ionization degree n/N

and is known to become significant for n/N > 10−6 in
some gases. Note from equation (32) that there is also a
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Figure 2. Ionization rate coefficient in argon for different
exponential growth models.
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Figure 3. EEDF for 10 Td in argon, taking into account
electron–electron collisions, for different ionization degrees.

weak dependence on the plasma density which appears in
the Coulomb logarithm accounting for the screening of the
Coulomb potential by space charge effects. Figure 3 shows
the EEDF in argon for different ionization degrees, a plasma
density of 1018 m−3 and a weak reduced electric field of 10 Td.
For increasing ionization degree the EEDF resembles more and
more a Maxwellian distribution function, i.e. a straight line in
the logarithmic plot of figure 3.

These effects are usually neglected in fluid models, but is
this justified? The most important consequence of electron–
electron collisions for fluid models is that they increase the
rate coefficients of inelastic collisions (ionization, excitation)
by repopulating the tail of the EEDF. This is illustrated by
figure 4 which shows the ionization rate coefficient of ground
state argon for different ionization degrees. The inelastic rate
coefficients may be strongly increased for ionization degrees of
10−5 and higher, but only at low mean electron energy, because
the cross-section for electron–electron collisions drops off
rapidly with increasing electron energy.

The eventual consequences of this for fluid simulations
clearly depend on the discharge conditions. Many discharges
have such low ionization degree or such high mean electron
energy that it is perfectly justified to neglect the influence
of electron–electron collisions. Some discharges, however,
operate at precisely those conditions where electron–electron
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Figure 4. Ionization rate coefficient in argon, taking into account
electron-electron collisions, for different ionization degrees and for
a Maxwellian EEDF.
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Figure 5. EEDF for 10 Td in argon, taking into account collisions
with excited neutrals, for different excitation degrees.

collisions are important; microwave discharges, for example,
can have a high ionization degree beyond 10−5 and a low
electron mean energy of only a few electronvolts. These
conditions occur typically in discharges sustained by stepwise
ionization and where the EEDF is also influenced by electron
collisions with excited neutrals; see section 4.3.

We remark that it may be technically cumbersome to
account for the influence of electron–electron collisions in a
fluid model: due to these collisions the rate coefficients are
functions not only of E/N or the mean energy, but also of the
ionization degree n/N ; this implies using two-dimensional
interpolation tables.

4.3. Influence of collisions with excited neutrals

Collisions with excited neutrals may be super-elastic and
accelerate electrons immediately into the tail of the EEDF.
The influence of this on the EEDF is shown by figure 5 for
argon for different excitation degrees (fractional densities of
excited neutrals). The results in this figure have been obtained
by regrouping all excited argon states in one compound state,
for which we estimated an overall super-elastic cross-section
by detailed balancing, taking into account only transitions to
the ground state.

As with electron–electron collisions, the most important
consequence for fluid simulations is an increase of the rate
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Figure 6. Ionization rate coefficient in argon, taking into account
collisions with excited neutrals, for different excitation degrees.
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Figure 7. EEDF in argon for oscillating electric fields with different
amplitudes and different reduced frequencies ω/N (in units of
m3 s−1), each having the same mean electron energy of 2.150 eV.

coefficients of inelastic collisions at low mean electron energy.
Figure 6 shows the ionization rate coefficient of ground
state argon. See further our discussion on electron–electron
collisions.

4.4. Influence of high-frequency oscillations

In HF oscillating fields with a frequency comparable with or
greater than the collision frequency, the electron heating is less
efficient than in dc fields. As a result, a stronger reduced field is
required to achieve the same mean electron energy. In addition
the shape of the EEDF may be different (for the same mean
energy), because the electron heating depends differently on
collisional momentum transfer: in dc fields collisions impede
the heating whereas in HF fields they enhance it; compare the
electron heating terms in equations (13) and (25). In gases
where the momentum-transfer frequency depends strongly on
the electron energy, this leads to large differences in the shape
of EEDF. This is illustrated by figure 7, which shows the EEDF
in argon for the same mean energy and for different reduced
field-frequencies ω/N .

Rate coefficients for fluid models of HF discharges (e.g.
microwave discharges) need to account for the field-oscillation
effects on the shape of the EEDF. Figure 8 shows the ionization
rate coefficient of ground state argon as a function of the
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Figure 8. Ionization coefficient in (a) argon and (b) nitrogen for
oscillating electric fields with different reduced frequencies ω/N (in
units of m3 s−1).

mean energy for different reduced frequencies. The effects are
important mainly at lower mean electron energy (where more
electrons see the Ramsauer minimum in the elastic collision
cross section) which is exactly where most HF discharges
operate. The influence of the oscillations is much less
important in gases with a more constant collision frequency,
as is illustrated in figure 8 for the case of nitrogen.

When implementing the high-frequency rate coefficients
in a fluid model a technical complication can arise when the
gas is heated by the discharge such that ω/N is not constant;
two-dimensional interpolation tables may then be necessary.
We also remark that for some gases and some values ofω/N the
mean energy may not be a monotonic function of E/N : there
may exist two different EEDFs with the same mean energy,
so that it becomes impossible to define rate coefficients or
transport coefficients as unique functions of the mean energy.
We found this behaviour for argon for a wide range of ω/N

(10−13–10−11 m3 s−1) and low mean energies (around 2 eV),
but not for nitrogen.

4.5. Accuracy of some common approximations

Fluid models often use approximations concerning the
transport coefficients, such as the Einstein relation between
the diffusion coefficient and the mobility. In this section we
check some of these approximations against the results of our
BE solver in order to get an idea of their accuracy.
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Figure 9. Diffusion coefficients in (a) argon and (b) nitrogen for
electrons and electron energy, calculated precisely and calculated
from the Einstein relation.

The commonly used Einstein relation is [36]:

D = 2
3µε̄, (72)

which is exact for a Maxwellian EEDF or a constant
momentum-transfer frequency (σm inversely proportional to
ε1/2) but more or less approximate for real discharge situations.
To illustrate the possible errors of the Einstein relation, figure 9
shows the diffusion coefficient in argon and in nitrogen
calculated exactly from equation (62) and calculated from
the Einstein relation. For argon the Einstein relation is off
by a factor 2 due to the strong energy-dependence of the
momentum-transfer frequency; for nitrogen the errors are
much smaller.

One must realize, however, that the results of our BE
solver are approximations as well. For instance, more
detailed analysis [37] shows different diffusion coefficients
for transport along and perpendicular to the electric field
direction, whereas this distinction vanishes with our BE solver
based on the two-term expansion. Realize also that for many
discharge conditions the drift-diffusion equation itself gives
a rather bad description of reality, without this having too
serious consequences for the discharge simulation as a whole
[38]. In the cathode region of dc discharges the drift-diffusion
equation is known to lead to large errors in the electron density
without seriously affecting the rest of the discharge; also see
our also remarks in section 3.3.

Further common approximations concern the electron
energy transport. Many fluid models in the literature use an

electron energy equation where (once written as equation (60))
the energy transport coefficients are given by

µε = 5
3µ and Dε = 5

3D. (73)

These approximations can be derived by assuming a
Maxwellian EEDF, a constant momentum-transfer frequency
and constant kinetic pressure [36]. The approximations allow
the separation of the energy flux into a part proportional to the
electron flux and a part proportional to the gradient of the mean
energy, as in classical fluid mechanics:

�ε = 5
3�ε̄ − 5

3nD∇ ε̄, (74)

where the factor in front of the energy gradient is the electron
thermal conductivity.

Some authors [29–31] however avoid the approximations
given by equation (73) and calculate the energy transport
coefficients more precisely as discussed in section 3.2.
To illustrate the difference between the approximations and
the more precise expressions given by equations (61) and (62),
figure 9 also shows the energy diffusion coefficient Dε

calculated from equation (62) and multiplied by 3/5, which
(according to equation (73)) is to be compared with the
electron diffusion coefficient D. Once again the difference
is about a factor 2 for argon and much smaller for nitrogen.
For the energy mobility µε the difference is usually much
smaller than for Dε. To our knowledge the consequences of
equation (73) for fluid simulations have never been investigated
systematically, but one can imagine that for some gases they
are quite significant.

5. Conclusions

We have developed a new user-friendly BE solver to calculate
the electron transport coefficients and rate coefficients that
are input data for fluid models. Our BE solver is called
the BOLSIG+ and is available as a freeware [18]. The
solver provides steady-state solutions of the BE for electrons
in a uniform electric field, using the classical two-term
expansion, and is able to account for different growth
models, quasi-stationary and oscillating fields, electron–
neutral collisions and electron–electron collisions. We show
that for the approximations we use, the BE takes the form
of a convection-diffusion continuity-equation with a non-local
source term. To solve this equation we use an exponential
scheme commonly used for convection-diffusion problems.
The calculation time for one EEDF is on the order of tens of
milliseconds on a standard 2 GHz PC. The calculated electron
coefficients are defined so as to ensure maximum consistency
with the fluid equations. Special care must be taken of
the transport coefficients for electron energy, for which we
recommend the formulation proposed previously by Allis [29].

We have illustrated the influence of several non-standard
options included in our BE solver, frequently overlooked
by users and developers of fluid models. The results from
our BE solver show that growth effects significantly reduce
the mean electron energy and the ionization rate coefficient;
there are also significant differences between the exponential
models for temporal and spatial growth. Electron–electron
collisions may strongly increase the rate coefficients of
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inelastic collisions (excitation, ionization) for low electron
mean energies (� threshold energy) and ionization degrees
of 10−5 and higher; these conditions are present in some
common gas discharges. A similar increase in the inelastic
rate coefficients can be due to super-elastic collisions with
excited neutrals for excitation degrees of 10−5 and higher.
In HF oscillating fields the shape of the EEDF can be strongly
modified by oscillation effects, causing large differences in the
electron coefficients as a function of mean electron energy with
respect to dc fields, especially for gases where the momentum-
transfer frequency depends strongly on energy. For such gases
also the Einstein relation can be wrong by as much as a
factor 2, and special care must be taken about the definition
of energy transport coefficients. All results presented here
are just illustrative examples; more systematic investigation is
necessary to obtain a complete picture of when and how best
to use the different options of our BE solver.
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Abstract
Magnetic fields are sometimes used to confine the plasma in low-pressure
low-temperature gas discharges, for example in magnetron discharges,
Hall-effect-thruster discharges, electron-cyclotron-resonance discharges and
helicon discharges. We discuss how these magnetized discharges can be
modelled by two-dimensional self-consistent models based on electron fluid
equations. The magnetized electron flux is described by an anisotropic
drift–diffusion equation, where the electron mobility is much smaller
perpendicular to the magnetic field than parallel to it. The electric potential
is calculated either from Poisson’s equation or from the electron equations,
assuming quasineutrality. Although these models involve many
assumptions, they are appropriate to study the main effects of the magnetic
field on the charged particle transport and space charge electric fields in
realistic two-dimensional discharge configurations. We demonstrate by new
results that these models reproduce known phenomena such as the
establishment of the Boltzmann relation along magnetic field lines, the
penetration of perpendicular applied electric fields into the plasma bulk and
the decrease in magnetic confinement by short-circuit wall currents. We also
present an original method to prevent numerical errors arising from the
extreme anisotropy of the electron mobility, which tend to invalidate model
results from standard numerical methods.

1. Introduction

The use of steady, external magnetic fields makes it possible to
create high-density low-temperature plasmas in gas discharges
at very low gas pressure. There are different types of
such magnetized discharges, where the magnetic field plays
different roles. In general, the magnetic field confines the
plasma and limits charge particle loss to the walls, which
allows magnetron discharges to operate at relatively low dc or
rf voltage. More specifically, in Hall-effect thrusters (HETs),
the magnetic field allows perpendicular applied electric fields
to penetrate inside the plasma bulk, heat the bulk electrons and
accelerate the ions. In electron-cyclotron-resonance (ECR)
discharges and helicon discharges, the electrons are heated
by magnetized wave modes. Throughout the present paper we
will simply refer to these discharges as magnetized discharges;
this is not to be confused with fusion-related discharges.

The magnetic field complicates the physics and hence
the numerical modelling of magnetized discharges. Standard
discharge modelling techniques, such as particle-in-cell
(PIC), are often cumbersome for these discharges, and
low-order physical approximations are necessary to avoid
technical complications and limit computation times. On
the other hand, even the lowest order approximations show
rich and interesting physics. There is great interest in
developing relatively simple numerical models, not to be
(mis)used as predictive simulation tools, but simply to help
identify and understand the physical principles of magnetized
discharges. In fact, the most basic principles of magnetized
discharges are known from early analytical work for idealized
configurations and can be found in classical texts, but
numerical models are necessary to investigate the role of
these basic principles in realistic multi-dimensional discharge
configurations.

0963-0252/07/010057+10$30.00 © 2007 IOP Publishing Ltd Printed in the UK S57
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In this context, the present paper provides a general
description and discussion of self-consistent models based on
simple fluid equations for magnetized electrons. We discuss
the principles, use and limits of these models, both from a
physical and a numerical point of view. We demonstrate, by
new calculation results, that these models are appropriate to
study the main effects of the magnetic field on the particle
transport and space charge electric fields in two-dimensional
discharge configurations and in much greater detail than
analytical treatments. We focus on charged particle transport
and do not describe electron heating or energy, which we
consider beyond the scope of this paper. The relation to
previous work and work by others is indicated, but not
exhaustively; this is not a review paper.

2. Elementary physics

We shall briefly recall the principal effects of the magnetic field
on charged particle transport on a microscopic level. Due to
the Lorentz force

F = qv × B, (1)

where q and v are the particle charge and velocity, charged
particles gyrate around the direction of the magnetic field B,
so as to generate a diamagnetic current. The angular frequency
and the radius of the gyration, called the cyclotron frequency
and the Larmor radius, are

ωc = |q|
m

B, ρL = v⊥
ωc

, (2)

where m is the particle mass and v⊥ is the velocity component
perpendicular to the magnetic field. This means that charged
particles are unable to travel perpendicular to the magnetic
field over distances greater than ρL: they are confined. In case
there is a perpendicular electric field trying to push the particles
across the magnetic field (E ×B configuration), the following
happens: the particles drift in the direction perpendicular to
both the electric field and the magnetic field. This phenomenon
is called the E × B drift and is illustrated in figure 1. Most
magnetized discharges have a cylindrical geometry, where the
electric and magnetic fields are in the radial-axial plane, so that
the E × B drift is closed along the azimuthal direction.

The magnetic confinement is destroyed in case the charged
particles undergo collisions and exchange momentum, for
example with neutral gas particles or with walls. In each
collision, the centre of the gyration is allowed to shift over a
distance ρL (see figure 1) perpendicular to the magnetic field,
which gives rise to so-called cross-field diffusion and cross-
field mobility. The magnetic confinement can be characterized
by the Hall parameter

� ≡ ωc

ν
= |q|B

mν
, (3)

where ν is the total collision frequency (momentum-transfer
frequency); good confinement requires � � 1.

Table 1 lists typical conditions for magnetized low-
temperature discharge plasmas. Only the electrons are really
magnetized (confined), having a small Larmor radius and a
large Hall parameter, whereas the ion Larmor radius is often
comparable to or larger than the plasma dimensions. In spite of

E

E×B drift 

collision 

electron 
trajectory 

B

Figure 1. Electron drift in an E × B configuration.

Table 1. Typical conditions for magnetized discharges.

Plasma parameters
Pressure 0.1–20 mTorr
Plasma density 1015–1019 m−3

Electron temperature 2–20 eV
Magnetic field 0.001–0.1 T

Lengths
Debye length 10−5–10−3 m
Electron Larmor radius 10−4–0.01 m
Ion Larmor radius 0.02–5 m
Mean free path 0.01–1 m
Plasma size 0.01–1 m

Frequencies
Electron-plasma frequency 2 × 109–2 × 1011 s−1

Electron-cyclotron frequency 2 × 108–2 × 1010 s−1

Electron-collision frequency 3 × 105–108 s−1

Electron Hall parameter 10–1000
Ion Hall parameter 0.01–1

the long mean free path, of the order of the plasma dimensions,
the magnetic confinement ensures that the electrons undergo
many collisions during their lifetime, which makes it possible
to sustain a plasma.

3. Modelling

It is customary to describe low-pressure discharges (<1 Torr)
by PIC models, calculating the trajectories of large numbers of
electrons and ions from Newton’s equations, self-consistently
coupled with the space charge electric field from Poisson’s
equation. For magnetized discharges, however, PIC models
are particularly cumbersome, because

(1) the plasma density is much higher than in unmagnetized
low-pressure discharges, resulting in a higher electron-
plasma frequency and a shorter Debye length, requiring
smaller numerical time steps and smaller grid cells for the
PIC scheme to be stable and

(2) the magnetized discharges are often very sensitive to
the magnetic field configuration and other geometrical
parameters requiring a multi-dimensional description.
PIC models have been developed for ECR sources [1],
dc magnetron discharges [2, 3] and HETs [4] but are of
limited practical use because of their long computation
times. There is great interest in simpler faster models,
even if these are only approximate and fail to describe
part of the physics.
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Fortunately, the electrons have collisional properties due to the
magnetic confinement and can, to some extend, be described by
fluid equations. Replacing the electron particle description of
PIC models by fluid equations, one obtains much faster hybrid
models appropriate to study the overall plasma dynamics in two
spatial dimensions. Such hybrid models have been developed
and used for ECR plasma reactors [5] and HETs [6, 7]. Some
magnetized discharge models [8–10] describe also the ions by
fluid equations and are pure fluid models, but in general the
ions undergo only few collisions and an ion particle description
seems both more realistic and practical. Note, however, that
(for the most part) these hybrid and fluid models are very
similar and that most of the discussion presented here on hybrid
models also holds for fluid models. We shall now briefly
describe the electron fluid equations and the way they are used
in hybrid models; a more physical discussion is given in the
next section.

The equation for electron conservation is

∂ne

∂t
+ ∇ · �e = S, (4)

where ne is the electron density, �e is the electron flux and S is
the ionization source term. Following the standard approach,
the electron flux is related to the electron density and to the
electric potential � by the drift–diffusion equation:

�e = µne∇� − µ∇(neTe), (5)

where the two terms describe transport due to the electric force
and due to the kinetic pressure gradient; µ is the electron
mobility and Te is the electron temperature in eV. Due to the
magnetic field, the mobility is not a scalar but a tensor: its
value depends on the direction with respect to the magnetic
field direction. It is shown in classical text books [11, 12]
that the mobility components parallel and perpendicular to the
magnetic field are

µ‖ = µ0 ≡ e

meν
, (6)

µ⊥ = 1

1 + �2
µ0 = eν/me

ν2 + ω2
c

, (7)

where ν is the collision frequency, µ0 is the mobility
without magnetic field and � is the Hall parameter. The
perpendicular mobility (cross-field mobility) is smaller than
the parallel mobility, often by many orders of magnitude,
and is approximately proportional to the collision frequency.
The standard boundary condition for electron conservation is
to set the electron flux at the wall equal to nevth/4, where
vth = (8eTe/πme)

1/2 is the Maxwellian thermal speed; since
vth is very large this is almost equivalent to setting the electron
density at the wall equal to zero.

The fluid equations for electron conservation and flux can
be complemented by an equation for electron energy in order
to obtain a self-consistent estimate of the electron temperature
(appearing in the diffusion flux) and the ionization source term.
We will not discuss this here, but we note that the electron
energy transport also shows strong anisotropy. Similar to the
mobility, the electron thermal conductivity is much smaller
perpendicular to the magnetic field than parallel to it.

A typical hybrid model is now composed as follows:

(1) ion velocity distribution, density and flux from a particle
description,

(2) electron density and flux from equations (4) and (5),
(3) electric potential from Poisson’s equation:

ε0∇2� = e(ne − ni), (8)

all coupled together in a self-consistent manner. The advantage
with respect to PIC models is that the time integration of the
electron equations can be implicitly coupled with Poisson’s
equation, which damps away electron-plasma oscillations and
makes it possible to use much larger numerical time steps.

The above hybrid scheme can be further simplified by
assuming quasineutrality, as follows:

(1) ion velocity distribution, density and flux from a particle
description,

(2) electron density set equal to the ion density,
(3) electric potential from the electron equations (4) and (5)

or equivalently from current conservation (generalized
Ohm’s law):

∇ · �e = ∇ · (µni∇� − µ∇(niTe)) = ∇ · �i. (9)

The quasineutral scheme does not resolve the space charge
sheaths, which makes it possible to use numerical cells much
larger than the electron Debye length. On the other hand,
although the magnetized plasma sheaths are often negligibly
thin, the sheath potentials can play an important role in the
macroscopic plasma dynamics. Some quasineutral models
use the sheath potential from analytical sheath models in the
boundary conditions for the current conservation equation
[5, 6]. Lampe et al [13] developed an interesting and

sophisticated variant of the quasineutral hybrid scheme for
magnetized discharges, where the electron pressure, the
electron-collision frequency and the ionization source term are
calculated from an electron particle description.

4. Limits of the electron fluid equations

When describing the electrons by fluid equations as shown in
the previous section, much physical information is lost with
respect to PIC models: all details of the electron velocity dis-
tribution are averaged out, as well as the microscopic electron-
field interactions, the electron-plasma oscillations are damped
away, etc and only the macroscopic dynamics is retained.
However, for magnetized electrons it is particularly difficult
to describe the macroscopic dynamics without considering the
microscopic details, and the magnetized fluid equations are
only very approximate, involving many assumptions.

An important problem is the fundamental lack of
knowledge of the cross-field electron transport. Experimental
data show that the electrons are often much less confined than
expected from the classical mobility shown in equation (7), due
(probably) to microscopic turbulent electron-field interactions
[14, 15]. This phenomenon is known as anomalous electron
transport and has also been observed in PIC simulations [4].
In spite of much fundamental research, no theory has been
able to correctly predict and quantify the anomalous transport
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as yet, but an approximate upper limit has been found as
µ⊥ < 1/16B (Bohm diffusion). For the moment, the only
way to deal with this problem is to define empirical transport
parameters (for example, an effective collision frequency
or Hall parameter) and adjust those for a given discharge
configuration so as to obtain agreement between the model
results and experimental results. We have used this empirical
approach in HET simulations [16].

Apart from the anomalous transport problem, it is
important to realize that the drift–diffusion equation is derived
from a local balance between forces and collisional momentum
loss and is therefore only valid if the mean free path is
small with respect to the plasma dimensions and gradient
lengths. For magnetized electrons, the use of the drift–
diffusion equation is justified for the direction perpendicular
to the magnetic field by the fact that the perpendicular distance
travelled between successive collisions is limited to the Larmor
radius, but parallel to the magnetic field it is often more difficult
to justify. In fact, the parallel electron flux is sensitive to
a number of phenomena not described by the drift–diffusion
equation, including

(1) inertia: it takes a finite length for the electrons to accelerate
to a certain velocity;

(2) diamagnetic force (grad-B force): as the electrons move
along a diverging (converging) magnetic field their
gyration velocity is gradually converted into parallel
velocity (parallel velocity into gyration) so as to conserve
their magnetic moment, which appears as a parallel force
pushing the electrons against the gradient of magnetic
field strength; the diamagnetic force is sometimes used
to enhance magnetic confinement, for example, in multi-
pole configurations (mirror confinement) [11, 17].

These non-local phenomena can be approximately included
in the electron fluid equations, but only at great cost of
complexity and loss of numerical stability. For example,
describing the diamagnetic force involves the distinction
between two different electron temperatures for gyration and
parallel motion, solved from two different but strongly coupled
energy equations [13].

Note also that the parallel electron flux is often imposed or
limited by the boundary conditions. In particular, the electron
flux along magnetic field lines that end on insulator walls must
be of the order of the ion flux. The drift–diffusion equation
then yields

µ‖ne∇‖� ≈ µ‖∇‖(neTe) (10)

because of the relatively large parallel mobility. Similarly,
the large thermal conductivity along the lines results in an
almost uniform electron temperature: ∇‖Te ≈ 0. From these
considerations it follows that

�(r) = �∗(λ) + Te(λ) ln(ne(r)/n0), (11)

where r are the space coordinates and λ refers to a magnetic
field line: the magnetic field lines are equipotential except for
a diffusion term of the order of the electron temperature. This
is nothing other than the Boltzmann relation applied along
magnetic field lines and it provides a well-established rule
of thumb, in the context of plasma propulsion sometimes
connected with the name of Morozov [18]. Contrary to the

drift–diffusion equation, the Boltzmann (Morozov) relation
does not directly assume a short mean free path and is
meaningful even for collisionless electrons. Therefore, along
the magnetic field lines the drift–diffusion equation is justified
insofar as it reduces to the Boltzmann relation, but it cannot be
expected to correctly predict either the parallel electron flux or
deviations from Boltzmann.

Although this is somewhat beyond the scope of the
present paper, we remark that the electron fluid equations
are particularly limited as it comes to describing ionization.
Ionization is often ensured by fast electrons in the tail of the
electron energy distribution, whose behaviour can be rather
different from that of the ‘average’ electrons described by
the fluid equations and is badly captured by fluid properties
such as electron temperature. Some models [8, 10] use an
additional particle simulation of fast electrons to predict the
ionization source term. On the other hand, in magnetized
discharges for plasma propulsion (HETs) the ionization source
term is determined mainly by the depletion of the neutral gas
and seems relatively insensitive to the approximations of the
electron equations.

5. Numerical solution

There exist efficient standard techniques for the numerical
solution of the electron fluid equations coupled with Poisson’s
equation, used for example in fluid models of glow discharges
[19]. Most of these techniques can be directly applied
to hybrid models of magnetized discharges, but in two-
dimensional models additional complications arise from the
extreme anisotropy of the electron transport. In particular, the
electron flux across the magnetic field tends to be determined
by numerical errors rather than by the physical cross-field
mobility. This is frequently overlooked and merits some
further discussion.

In order to couple the electron equations to the ion particle
description, it is convenient to solve them on a rectangular
(cylindrical or Cartesian) numerical grid, preferably the same
grid used to track the ion density, as is done in PIC simulations
for Poisson’s equation. Expressing the electron flux in
rectangular coordinates x and y, we have

�e,x = 1 + �2
x

1 + �2

[
µ0ne

∂�

∂x
− µ0

∂neTe

∂x

]

+
�x�y

1 + �2

[
µ0ne

∂�

∂y
− µ0

∂neTe

∂y

]
(12)

and an analogous expression for �e,y , where we have
generalized the Hall parameter into a vector Ω = �B/B.
Unless the magnetic field is exactly aligned with the grid,
each flux component has two terms, proportional to gradients
in the longitudinal direction and in the transverse direction,
respectively. These two terms are generally opposite in
sign and very much larger than the flux itself, whereas their
numerical errors are independent. As a result, the relative
numerical error in the flux can be enormous, even when
accurate numerical schemes are used for the separate terms.

This problem is illustrated by the following example.
Consider the Cartesian E ×B configuration in figure 2, where
a horizontal electron flux is forced through a uniform plasma
in a rectangular channel, across an oblique magnetic field. We
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Figure 2. Simple E × B configuration used for the numerical test.
The dashed parallelogram outlines the region where the magnetic
field lines intercept only dielectric walls.
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Figure 3. Numerical results for the simple E × B configuration of
figure 2 with an aspect ratio h/l = 1/4, compared with the
analytical solution shown in equation (13). (a) Normalized electron
flux �e,x l/µ0ni(�a − �c) in the centre of the channel for different
Hall parameters and different magnetic field angles α.
(b) Horizontal profile at half the height of the normalized potential
(� − �a)/(�a − �c). The grid size is 80 × 20 cells.

describe this configuration by a two-dimensional quasineutral
model. Assuming a fixed ion density and neglecting the ion
current, the current conservation equation becomes ∇ · Γe =
∇ · (µni∇�) = 0, which is an anisotropic elliptic equation
for �. The boundary conditions are fixed potentials � = �c

and � = �a at the left and right boundaries and zero vertical
flux �e,y = 0 at the bottom and top boundaries. Substituting
�e,x and �e,y from equation (12) and approximating the
derivatives by central differences, we obtain a system of linear
equations relating the potential in each grid point to that
in the surrounding eight neighbour points, which is solved
by standard techniques [20]. Figure 3 shows the calculated
potential profile and corresponding electron flux in the centre of
the channel for different values of the Hall parameter � and the

magnetic field angle α. Analytically we expect that in the limit
� → ∞, the electric field be uniform and perpendicular to the
magnetic field over the entire (parallelogram-shaped) region
where the magnetic field lines do not intercept the electrodes
(see figure 2); the horizontal electron flux in this region is then

�e,x = −µ0niEx

1 + �2 sin2 α
= µ0ni(�a − �c)/ l

(1 + �2 sin2 α)(1 − cos αh/l)
.

(13)

The numerical results however show different behaviour:
increasing � beyond � ≈ 10, the electric field becomes
increasingly non-uniform due to numerical errors, and the
electron flux tends asymptotically towards a finite value.

For magnetized discharges � is typically >100 and the
standard transverse-gradient method seriously overestimates
the electron flux and distorts the electric potential profile.
This clearly invalidates the hybrid model results, especially
for E × B configurations. Surprisingly, none of the papers
we found mentions this problem. Costin et al [9] recently
presented a solution method for magnetron modelling based
on transverse gradients without discussing numerical errors.

We now briefly present a simple numerical method of our
own design, which seems appropriate to solve the electron
fluid equations in most magnetized discharge models. Rather
than calculating each flux component from longitudinal and
transverse gradients as shown by equation (12), we calculate
it from the longitudinal gradients and the transverse-flux
component, in an iterative manner:

�k+1
e,x = 1

1 + �2
y

[
µ0ne

∂�

∂x
− µ0

∂neTe

∂x

]k+1

+
�x�y

1 + �2
y

�̄k
e,y,

(14)

where the indexes k and k+1 refer to successive iterations. That
is, we solve the electron conservation equation several times,
each time updating the transverse-flux terms from the previous
solution, until convergence. It turns out that the transverse-
flux terms can be efficiently updated real-time during the
solution of the discretized conservation equation, for which
we use the modified strongly implicit solver [21]. Note
also that, following standard discretization methods, the flux
components are defined at different locations midway between
the grid points; the bar on �e,y in the last term of equation (14)
symbolizes interpolation from the �e,y locations to the �e,x

locations.
Our transverse-flux method is appropriate for modelling

E × B configurations, where it yields accurate electron fluxes
and correct potential profiles; for the testing of figure 3 the flux
agrees with the analytical expression to within a few per cent
and the electric potential is linear. We have used the transverse-
flux method for the results presented in section 6. However,
the method seems less appropriate for configurations where
a strong electron flux flows along the magnetic field lines, in
which case it tends to underestimate this flux; the transverse-
gradient method is then preferable.

Finally, let us say a word about the solution of Poisson’s
equation in non-quasineutral hybrid models. As mentioned in
the previous section, strong numerical time step restrictions
(related to electron-plasma oscillations) can be avoided by
coupling the solution of Poisson’s equation to that of the
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electron fluid equations. This is most easily done by the semi-
implicit technique described in [19,22], according to which the
different equations are still solved separately, but Poisson’s
equation is modified to include an implicit estimate for the
change in the space charge density:

∇ · ((ε0 + e�tµne)∇� − e�tµ∇(neTe)) = e(ne − ni), (15)

where �t is the time step. This modified Poisson’s equation
is again an anisotropic elliptic equation for �, similar to the
current conservation equation (9), and can be solved by the
transverse-flux method presented above.

6. Model results

In this section we present examples of steady-state hybrid-
model solutions for some typical discharge configurations.
Our aim is not to study the operation of these discharges but
to demonstrate that relatively simple hybrid models can really
help to identify and understand the principles of magnetized
electron transport and its interaction with ion transport
through space charge electric fields. The different discharge
configurations have been chosen to bring out different aspects
of the magnetized electron and ion transport.

For the sake of clarity, we consider only the most relevant
physics and use a minimal model, consisting of an ion
particle simulation, the electron fluid equations (4) and (5)
and Poisson’s equation (8). Poisson’s equation is included to
describe the sheath potentials without additional assumptions,
and the plasma density is deliberately kept low, much lower
than in the real discharges, in order to be able to resolve
the sheath regions on a uniform numerical grid. The model
includes no equations for electron energy, gas density or
ionization: we simply assume a constant uniform electron
temperature, a constant two-dimensional Gaussian profile
for the ionization source and a constant electron collision
frequency (used to calculate the mobility tensor). The ions
are assumed to have the argon mass, are created with an
isotropic Maxwellian velocity at 300 K and undergo charge-
exchange collisions at a constant frequency. Other model
input parameters are the magnetic field configuration and the
configuration of electrodes and dielectric walls surrounding the
plasma. The model results are the electron and ion densities,
the electron and ion fluxes and the electric potential. The
computation times needed to attain the presented steady-state
results are of the order of 15 min on a standard 2 GHz personal
computer.

We remark that this minimal hybrid model could be
extended to calculate the electron temperature, ionization
source, gas density, plasma chemistry, etc, but this would not
really change the transport principles we are interested in here.
We believe that physical principles are best studied by minimal
models where most assumptions are clear and explicit, rather
than by complete models where all assumptions are hidden in
equations.

6.1. Example I. Magnetized expansion

ECR or helicon discharges typically have a configuration as
shown in figure 4. The plasma is created in a cylindrical
source chamber with an axial magnetic field, parallel to the

grounded or insulator

ionization 
source

grounded wall 0 V

insulator 
wall

cylinder axis

Figure 4. Typical configuration of ECR or helicon discharges. The
figure shows the reactor walls (thick line), the magnetic field lines
(thin lines) and the ionization source profile (grey scale plot) in the
axial-radial plane; the cylinder axis is at the bottom.
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Figure 5. Calculated electron density and potential for the ECR
configuration of figure 4 where the side wall of the source chamber
is covered with dielectric.

side wall, and then expands into a process chamber of much
larger diameter. Both chambers are metallic, but the inside
of the source chamber is often covered with dielectric, and
also the bottom of the source is of dielectric material. In
ECR discharges, the magnetic field strength is about 0.1 T in
the source chamber (required for microwave ECR) and drops
below 0.01 T in the process chamber; in helicon discharges
it is somewhat lower. The process that transports the plasma
from the source chamber into the process chamber is ambipolar
diffusion: the electrons diffuse due to their kinetic pressure,
dragging along the ions by space charge fields. However, the
electrons mainly diffuse along the diverging magnetic field
lines, and almost not across them, which makes the ambipolar
diffusion more complicated than in unmagnetized plasmas.

To illustrate that magnetized ambipolar diffusion can
involve the chamber walls, we compare the calculated electron
density and potential for different source wall materials, shown
in figures 5 and 6, and the calculated fractional wall losses
shown in table 2. In these calculations the assumed Gaussian
ionization source is centred in the source chamber as shown in
figure 4, the electron temperature is 3 eV, the electron-collision
frequency is 3 × 107 s−1, approximately corresponding to
10 mTorr argon gas, and the ions undergo charge-exchange
collisions with a frequency of 105 s−1. The numerical grid
size is 100 × 80 cells.
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Figure 6. Calculated electron density and potential for the ECR
configuration of figure 4 where the side wall of the source chamber
is metallic and grounded.

Table 2. Calculated fractions of the electrons and ions that are lost
to the different walls of the ECR configuration of figure 4, assuming
a dielectric and a metallic source wall, respectively.

Dielectric Metallic

Electrons Ions Electrons Ions

Source side 0.43 0.43 0.18 0.81
Source bottom 0.28 0.28 0.05 0.05
Process chamber 0.29 0.29 0.78 0.15

In case the source chamber wall is covered with dielectric
(figure 5), the electron flux incident on it must be equal to the
incident ion flux and therefore Γe ≈ Γi in the source. Since the
radial electron flux is impeded by the magnetic field, no sheath
or pre-sheath is necessary to attain this, so the radial potential
profile in the source becomes almost flat, and the radial plasma
loss is relatively small. The dielectric source wall charges up
so as to generate an axial electric field that evacuates the ions
to the process chamber and to the insulating source bottom.

In case the source chamber wall is grounded (figure 6),
the condition Γe ≈ Γi is no longer imposed. The electrons
and ions now flow in different directions: the electrons along
the magnetic field and the ions mainly to the source wall; see
also table 2. This results in a current flowing through the
plasma and through the metal chamber walls, short-circuiting
the magnetic confinement; some current streamlines are shown
in figure 6. The electric potential in the source chamber shows
the formation of a (pre)sheath, accelerating the ions to the side
wall. The overall wall loss is much greater than with dielectric;
the plasma density for a given ionization source term is about
one order of magnitude lower; less ions arrive in the process
chamber. This reduction in magnetic confinement by short-
circuit wall currents has been known since the 1950s and was
first described by Simon [23], whose analytical results have
later been used and refined, for example in [11, 24, 25].

6.2. Example II: Hall-effect thruster

A typical HET configuration is shown in figure 7. The
plasma is created in an annular channel between two concentric

ionization
source

dielectric

dielectric

gas

cylinder axis

cathode -300 V

anode 
0 V

           
plasma

Figure 7. Typical HET configuration.

dielectric walls, containing a radial magnetic field with a
maximum strength of about 0.02 T near the channel exit. A
constant voltage of about 300 V is applied between the anode at
the bottom of the channel and an external hollow cathode. The
cathode emits electrons which drift towards the anode across
the magnetic field and multiply as they ionize the gas. The
gas is injected through holes in the anode at a pressure of a
few mTorr and is almost fully ionized. Beyond the channel
exit, where the gas density is nearly zero, the electron drift is
ensured by anomalous transport mechanisms.

In the calculations presented here, the strongly non-
uniform gas density and the anomalous transport are simply
represented by an effective electron-collision frequency,
linearly decreasing from ν = 108 s−1 at the anode to ν =
107 s−1 at the channel exit, and uniform ν = 107 s−1 outside the
channel. The assumed Gaussian ionization source is centred
in the channel (figure 7), the electron temperature is 10 eV
and the boundary conditions for electron conservation account
for the electron current emitted by the hollow cathode. The
boundary conditions on the open limits of the computational
domain (dashed lines in figure 7) are as follows. In the electron
conservation equation, the electron density is set equal to
the ion density. In Poisson’s equation, these boundaries are
described as a dielectric: the potential is locally adjusted so as
to ensure zero perpendicular current. The numerical grid has
65 × 65 cells.

Figure 8 shows the calculated electron density, current
streamlines and electric potential. The electron flux along
the magnetic field lines is almost completely blocked by
the dielectric walls, and the field lines are approximately
equipotential, according to the Boltzmann (Morozov) relation
shown in equation (11). Because of the small cross-field
electron mobility, the electrons are unable to screen the
bulk of the plasma from the applied electric field, as they
do in unmagnetized plasmas by forming a cathode sheath.
The applied electric field penetrates inside the plasma bulk
to ensure current conservation and concentrates around the
channel exit, where the magnetic field is strongest and the
cross-field mobility is smallest. This makes it possible to
(1) heat the electrons in the plasma bulk and maintain ionization
(not calculated here) and (2) accelerate the created ions in
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Figure 8. Calculated electron density and potential profile in the
HET configuration of figure 7. Also some current streamlines are
shown.

a controlled manner towards an open boundary, resulting in
an ion beam capable of providing thrust. Previous, more
detailed HET modelling studies [6, 7] have shown that the
spatial distribution of the electric field and the properties of
the ion beam depend strongly on the assumed anomalous
transport coefficients. Note also that the density profile in
figure 8 shows that some low energy ions are trapped by the
electric potential around the magnetic field line intercepting the
cathode.

6.3. Example III: Semi-Galathea source

Figure 9 shows the configuration of an ion source for plasma
propulsion, based on the Galathea trap developed by Morozov
and co-workers [26,27] and previously modelled in [28]. This
source configuration shows some similarity to the Penning
discharge configuration developed in the 1930s [29] and used
in ion sources in the 1950s [30]. The plasma is created in an
annular source chamber containing a complex magnetic field
and then flows into an acceleration channel similar to a standard
HET channel; we focus on the source chamber. The magnetic
field is generated by means of a cylindrical coil in the centre
of the chamber, is largely parallel to the chamber walls and
has an X-point near the chamber exit. The configuration has
several electrodes: (1) the metal wall at the back of the chamber,
(2) the central coil, (3) an intermediate electrode near the

cylinder axis

ionisation source

dielectric wall

gas

coil 0 V

grounded wall 0 V

intermediate
     electrode 
     -50 V

external 
cathode 
-300 V

plasma

Figure 9. Configuration of a semi-Galathea ion source for plasma
propulsion.

chamber exit and (4) an external cathode beyond the chamber
exit. A negative voltage of about −50 V is applied to the
intermediate electrode with respect to the chamber wall and the
central coil. According to the Boltzmann (Morozov) relation,
this voltage is felt all along the magnetic field lines intercepting
the intermediate electrode, which results in a potential well
confining the ions, guiding them to the chamber exit and into
the acceleration channel.

In order to correctly describe the chamber exit region,
the calculations presented here include the beginning of the
acceleration channel. At the calculation boundary inside the
acceleration channel we set the electron density equal to
the ion density and then fix the potential to −100 V (somewhat
arbitrary). We also account for electron emission (0.5 A) from
the intermediate electrode in the boundary conditions of the
electron equations, for reasons that will be explained below.
Other calculation parameters are: Gaussian ionization source
centred near the back of the chamber, close to the gas inlet
position, uniform electron temperature Te = 10 eV, uniform
effective electron-collision frequency ν = 3 × 106 s−1, no ion
collisions and grid size 80 × 40 cells.

Figure 10 shows the calculation results. As intended,
the intermediate electrode lowers the potential in the plasma
bulk, resulting in (rather narrow) potential barriers which keep
the ions away from the chamber walls and the central coil.
Nearly all created ions go into the acceleration channel; only
few are lost to the walls. Note however that this potential
structure is the opposite of the usual (pre)sheath structure and
favours electron wall loss. There is a continuous cross-field
electron drift from the intermediate electrode to the chamber
wall, illustrated by the current streamlines in figure 10,
which requires electron emission from the intermediate
electrode.

One might wonder what happens if the intermediate
electrode does not emit electrons. Figure 11 shows the answer
of the hybrid model: a cathode sheath forms in front of the
intermediate electrode and the potential well disappears; most
of the ions are lost to the chamber walls. In fact, the need for an
emissive intermediate electrode in this plasma source is still a
controversial issue. The original concept included an emissive
filament-electrode, but recent experiments show that the source
performs nearly as well with a normal electrode. When
looking into this issue more closely, we note that there is also
some electron inflow into the chamber from the acceleration
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Figure 10. Electron density, current lines and electric potential in
the ion source of figure 9, where the intermediate electrode emits
electrons.

Figure 11. Electron density, current lines and electric potential in
the ion source of figure 9, where the intermediate electrode does not
emit electrons.

channel; figure 11 suggests that this inflow is not sufficient to
compensate for the electron wall loss and maintain the potential
well, but this result could depend (for example) on the assumed
effective collision frequency (anomalous transport).

7. Conclusions

PIC models are often cumbersome for magnetized discharges
and there is an interest in simpler faster models. In this context,
we have presented self-consistent hybrid models, combining
an ion particle description with electron fluid equations. The
magnetized electron flux is described by an anisotropic drift–
diffusion equation, where the electron mobility is much smaller
in the direction perpendicular to the magnetic field than in
the parallel direction. The electric potential is calculated
either from Poisson’s equation or from the electron equations,
assuming quasineutrality.

These hybrid models involve many assumptions: they
describe the anomalous electron transport by empirical
parameters, they neglect electron inertia and diamagnetic
force, etc and can therefore not be expected to yield quantitative
results. However, they help to identify and understand the main
physical principles of magnetized discharges in realistic two-
dimensional configurations. The hybrid models are especially
appropriate to study the main effects of the magnetic field on
the charged particle transport and space charge electric fields;
they demonstrate the important role played by the boundaries
and reproduce known phenomena such as the establishment
of the Boltzmann relation along magnetic field lines, the
penetration of perpendicular applied electric fields into the
plasma bulk and the decrease in magnetic confinement by
short-circuit wall currents (Simon diffusion); they make the
study of these phenomena possible in much greater detail than
the analytical treatments found in classical texts, taking into
account the two-dimensional magnetic field configuration and
other geometrical parameters.

Due to the extreme anisotropy of the electron mobility, the
solution of the electron equations is very sensitive to numerical
errors. Using standard numerical methods, the numerical
errors often dominate the physical behaviour and invalidate
the model results, especially for E × B configurations, where
the cross-field electron flux can be strongly overestimated.
We have presented an alternative method, based on the
interpolation of flux components, which yields accurate
electron fluxes and potential profiles in E × B configurations.
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In inductively coupled plasmas, nonlocal electron kinetics lead to the anomalous skin effect. We show
that this can be approximately described through a fluid equation for electron momentum including a
viscosity term with an effective-viscosity coefficient. The solution of this momentum equation coupled
with the Maxwell equations is in good agreement with results from a particle-in-cell simulation over a
wide range of conditions, reproducing the nonmonotonic structure of the anomalous skin with sometimes
local negative power absorption.
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Inductively coupled plasmas (ICPs), used for material
processing in the microelectronics industry [1] and re-
cently proposed as ion sources for thermonuclear fusion
[2], are sustained by a rf electric field induced by a rf
current in a coil outside the plasma chamber. The descrip-
tion of the inductive field-plasma interaction requires the
solution of the Maxwell equations coupled with an equa-
tion for the plasma current density in response to the field.
For a cylindrical ICP configuration, neglecting the dis-
placement current and the ion contribution to the plasma
current, the Maxwell equations reduce to

 r2E�
E

r2 � ��0ene
@w
@t
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me!2
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ec2
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where E is the azimuthal rf electric field, ne is the electron
density, w is the azimuthal mean electron velocity, e is the
elementary charge, �0 is permeability of vacuum, !p is
the electron plasma frequency,me is the electron mass, and
c is the speed of light. According to classical theory [1], the
mean electron velocity is related to the local electric field
by the local electron momentum equation
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where � is the electron-neutral collision frequency (mo-
mentum transfer frequency). The self-consistent solution
of Eqs. (1) and (2) shows the classical skin effect: expo-
nential decay of the field and current as a function of
distance from the plasma edge. From this solution, the
time-average power density h�enewEi absorbed by the
electrons depends on the collision frequency �with respect
to the angular driving frequency ! and vanishes as �=!
tends to zero (Ohmic heating).

However, these classical results disagree with experi-
mental evidence showing anomalously high power absorp-
tion in an anomalously large and sometimes nonmonotonic
skin [3–5]. It is well known [6] that the anomalous skin
effect in ICPs is due to thermal motion of the electrons: the
electrons travel important random distances over the field
period which destroys the local relation between field and

current as given by Eq. (2). Although a wide variety of
theoretical studies [6–9] has demonstrated the principles
of this nonlocal electron kinetics, it remains difficult to
account for the anomalous skin effect and electron heating
in ICP models, especially in multidimensional models used
for ICP reactor design and optimization, where the imple-
mentation of rigorous nonlocal theory is cumbersome. A
common approach to avoid practical complications is to
use the local momentum equation (2) but replace the
electron-neutral collision frequency by a (higher) effective
frequency such as to obtain the correct global power ab-
sorption and anomalous skin depth [1]; this however results
in incorrect (exponential) spatial profiles of the field and
current.

In this Letter we propose an alternative approach: to
represent the nonlocal electron kinetics by a viscosity term
in the electron momentum equation. To derive this, we
consider the electron Boltzmann equation in the case of a
one-dimensional plasma in Cartesian coordinates. The
plasma extends over a finite length in the x direction and
is uniform and infinite in the y and z directions. The rf
electric field E is in the y direction. Given this configura-
tion, the Boltzmann equation becomes
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where f is the electron distribution function in phase space,
vx and vy are the velocity coordinates, and � is the
ambipolar potential. The collision term on the right-hand
side of Eq. (3) is an approximation assuming that collisions
occur with a constant frequency � and redistribute the
velocity with a given isotropic distribution function f0.
The momentum equation is obtained as the velocity mo-
ment of the Boltzmann equation. Multiplying Eq. (3) by
mevy and integrating over velocity space we get

 

@menew
@t

� �menew�
@S
@x
� �eneE; (4)

where ne is the electron number density, w is the mean
velocity (in the y direction), and
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 S � me

Z
vxvyfd

3v � me

Z
vx�vy � w�fd

3v (5)

is the shear pressure. Clearly, any nonlocal effects are
represented in Eq. (4) by the shear pressure gradient
term, also known as the viscosity term. To evaluate the
shear pressure we proceed as follows: we (i) solve the
Boltzmann equation by a perturbation approximation,
(ii) calculate the mean velocity w and the shear pressure
S from the perturbation solution, and (iii) look for a useful
relation between S and w. So we substitute f � f0�1� ’�,
where f0 � exp����mev

2=2e�=Te	 is the Maxwell-
Boltzmann distribution at a given temperature Te and ’
is a small perturbation due to the rf field. The perturbation
equation is

 

@�
@t
� vx

@�
@x
�

e
me

@�

@x
@�
@vx
� �� � �

E
Te
vy: (6)

We consider a uniform plasma density, hence � � const,
and apply the usual Fourier-Laplace transformation assum-
ing wave forms exp�ikx� i!t�, where k is the wave num-
ber (coordinate). The solution of the perturbation equation
is then given by

 �k � �
Ek
Te

vy
i�kvx �!� � �

; (7)

where ’k and Ek are the transforms of ’ and E. The
(transform of) the mean velocity is

 wk �
1

ne

Z
vy�kf0d3v

� �

����
�
p

eEk
mevT

1

k
exp��z2�

�
k
jkj
� i erfi�z�

�
; (8)

where erfi is the imaginary error function, vT �
�2eTe=me�

1=2 is the nominal thermal speed, and z � �!�
i��=kvT is a complex parameter characterizing the ‘‘local-
ity’’ of the electron transport. The shear pressure Sk can be
obtained from a similar calculation or more easily from

 ��i!� ��menewk � ikSk � �eneEk: (9)

Eliminating Ek from Eqs. (8) and (9), we find the desired
relation between Sk and wk:

 Sk �
�

1����
�
p

exp�z2�

i�jkj=k� � erfi�z�
� z

�
vTmenewk: (10)

In collisional conditions, the locality parameter jzj 
 1
and Eq. (10) reduces to Sk � vTmenewk=2z �
��menev2

T=2���ikwk�, which corresponds in real space to
the classical expression S � ��@w=@x� with a viscosity
coefficient � � menev2

T=2� as in the Navier-Stokes equa-
tions. What we are interested in, however, is the opposite
limit jzj< 1 describing the case that nonlocal effects are
important. Approximating Eq. (10) to first order of z and
rearranging the terms, we obtain

 �
����
�
p
jkjvT � ��� 2���i!� ��	Sk � �menev2

T�ikwk�:

(11)

We now wish to transform this result back to real space.
The inverse transformation is considerably simplified if we
approximate Eq. (10) further to zeroth order of z, i.e., if we
neglect the second term on the left:

 Sk � �
menevT����

�
p

1

jkj
�ikwk�: (12)

Realizing that the Fourier transform of 1=x is���=2�1=2�
�ik=jkj� and using the convolution theorem, we find

 S�x� � �
menevT
�3=2

Z 1
0

w�x� x0� � w�x� x0�
x0

dx0: (13)

This is a nonlocal velocity difference. Equations (12) and
(13) were proposed previously by [10] and applied to ICPs
by [8]. Although relatively simple, Eq. (13) is still not very
satisfactory from a practical point of view, especially since,
in order to account for reflection of electrons at the plasma
edge, the integral should continue over consecutive mirror
images of the plasma repeated until infinity.

We therefore propose another approach. We approxi-
mate the absolute wave number jkj on the left-hand side
of Eq. (11) by jkj � hjkji some kind of average wave
number. The inverse transformation is now straightfor-
ward:

 �
����
�
p
hjkjivT����2��	S����2�

@S
@t
��menev2

T
@w
@x
;

(14)

but hjkji still needs to be specified. To estimate hjkji we
make use of the fact that the wave numbers present in the
plasma are not arbitrary but depend on the coupling be-
tween w and E via the Maxwell equations. Combining
Eq. (14) with the momentum equation (4) and the
Maxwell equation (1), neglecting � and ! with respect to
hjkjivT (as before), we obtain

 

@4w

@x4
� �

����
�
p
hjkji!2

p

c2vT

@w
@t
: (15)

The general solution of this differential equation is a
superposition of four waves each with the same absolute
wave number

 k0 � hjkji1=4

� ����
�
p

!!2
p

c2vT

�
1=4
; (16)

which clearly characterizes the length scale of velocity
variations in the plasma. We assume now simply that
hjkji � k0. Equation (16) becomes

 hjkji � k0 �

� ����
�
p

!!2
p

c2vT

�
1=3
; (17)

which is the inverse of the usual expression for the anoma-
lous skin depth [1]. We then write the momentum equation
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(4) and the shear pressure equation (14) in the following
convenient form:

 

@w
@t
� �w� V � �

e
me

E; (18)

 V � �
@V
@t
� ��

@2w

@x2 ; (19)

where V � �@S=@x�=neme and � and � are effective-
viscosity coefficients given by

 � �
v2
T����

�
p

k0vT � ��� 2��
�

v2
T

�� 2
�: (20)

The viscosity equation (19) can be generalized to cylindri-
cal coordinates and nonuniform plasma density in analogy
with the viscosity term in the cylindrical Navier-Stokes
equations:

 V � �
@V
@t
� ��

�
1

ne
r 
 �nerw� �

w
r

�
; (21)

where w is azimuthal as in Eq. (1).
Finally, we need to specify a boundary condition for

Eqs. (18)–(21). Because of the high plasma density in
ICPs, the plasma sheaths are negligibly thin, and the
plasma is usually described by a quasineutral model
(where the sheaths have been analytically removed). It is
then appropriate to assume that the quasitotality of the
electrons arriving at the plasma edge are specularly re-
flected. Total reflection destroys the velocity gradient nor-
mal to the edge:

 r?w � 0; (22)

which is an appropriate boundary condition.
We propose the fluid equations (18)–(22) as an improve-

ment of the local electron momentum equation (2) to
describe nonlocal effects in ICPs. Clearly, the derivation
of these equations is not mathematically rigorous and there
is no guarantee that they give correct results. To corrobo-
rate the equations, we implement and compare two nu-
merical models: a fluid model and a simplified particle-in-
cell (PIC) model. Both models provide a self-consistent
solution in one spatial dimension of the Maxwell equation
(1) coupled with a description of the electrons. We assume
a fixed spatial ion-density profile and constant electron
temperature. In the fluid model, the electron density is
set equal to the ion density and the mean electron velocity
is solved from the fluid equations (18)–(22). The PIC
model describes the electrons in much greater detail, but
is nevertheless designed to reproduce as closely as possible
the conditions assumed in the fluid model: nearly
Maxwellian electron distribution, total specular electron
reflection at the edge, etc.

The principles of the PIC model are as follows. The
electrons are represented by a large number of macro-
particles, which are conserved throughout the simulation
and have a total statistical weight equal to the space-

integrated ion density. The macroparticles are simulta-
neously pushed by integration of Newton’s equation over
numerical time steps, accounting for (i) the ambipolar elec-
trostatic force along the simulation dimension, (ii) the
rf electric force perpendicular to the simulation dimen-
sion, and (iii) specular reflection at the plasma edge.
Collisions of the macroparticles are simulated by the usual
Monte Carlo method, assuming a constant collision proba-
bility ��t per time step and a random Maxwellian redis-
tribution of the velocity. Each time step, the spatial profiles
of the electron density and mean velocity are calculated
from the macroparticle positions and velocities. The am-
bipolar electric potential is solved from Poisson’s equation
with an increased permittivity to mitigate numerical con-
straints on the time step and grid spacing. Because of the
specular electron reflection at the edge, no plasma sheath
forms, but the ambipolar field arises from density gradients
in the plasma bulk. To check the numerical convergence of
the PIC model, we compare results for different numerical
parameters (105–107 macroparticles, 102–104 time steps
per rf period, 50–500 grid points uniform and nonuniform)
and calculate their statistical variance. We estimate that the
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FIG. 1. Comparison of the spatial power absorption profiles
from the fluid model (solid line) and the PIC model (dashed line)
for a semi-infinite uniform plasma. The different plots corre-
spond to different driving frequencies and collision frequencies
(indicated on the plots). The plasma density is 3� 1017 m�3 and
the electron temperature is 10 eV. The power absorption density
is normalized to e2E2

0ne=2me!, where E0 is the field amplitude
at the edge.
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total error in the presented PIC results does not exceed a
few tens of percents over the entire range shown.

First, we compare the results from the fluid and PIC
models for the case of a semi-infinite uniform plasma.
Using Cartesian coordinates, we define the plasma edge
at the left boundary at x � 0, impose zero field and current
at the right boundary, and make sure that the simulation
domain is large enough for the results to be independent of
domain size. Figure 1 shows the spatial profiles of the
absorbed power (time average rf current� field) from
the two models for different driving frequencies 5–
20 MHz, different collision frequencies 107–108 s�1,
plasma density 3� 1017 m�3, and electron temperature
10 eV. The overall agreement between the models is
good. Figure 1(b) shows a negative absorption region,
known from experimental measurements [4] and rigorous
nonlocal theory [9].

Then, we compare the two models for a more realistic
configuration: a diffusive cylindrical plasma of finite radial
size (but infinite axial size). We assume a parabolic radial
profile for the ion density, decreasing from 1018 m�3 in the

plasma center to 3� 1017 m�3 at the plasma edge. This
configuration has an additional degree of freedom with
respect to the semi-infinite case: the plasma radius R.
Figure 2 shows the power absorption profiles from the
two models for different plasma radii 3–5 cm, driving
frequency 20 MHz, and different collision frequencies
107–108 s�1. The agreement between the models is again
good for large plasma radii k0R> 5, but significant dif-
ferences appear for smaller radii and small collision fre-
quencies [Fig. 2(b)]; at higher collision frequencies the
agreement remains good [Fig. 2(c)].

Let us also remark that the results from our fluid model
are consistent with those (not shown here) from Eqs. (12)
and (13) previously used in [8], except that they are in
significantly better agreement with the PIC results at
higher driving frequencies and collision frequencies (!
or � > 0:5k0vT). Contrary to Eqs. (12) and (13), the vis-
cosity equations (19) and (20) account for oscillation and
collision effects on the shear pressure.

In summary, we propose a simple approach to describe
the anomalous skin effect and electron heating in ICPs
through a fluid equation for electron momentum including
a viscosity term with an effective-viscosity coefficient to
represent nonlocal kinetics. Specular reflection at the
plasma edge is represented as a boundary condition. The
numerical solution of the improved momentum equation
coupled with the Maxwell equations agrees well with
results from a PIC simulation over a wide range of con-
ditions, although for a diffusive cylindrical plasma differ-
ences appear as the plasma radius approaches the skin
depth at low collision frequency. The proposed equations
are straightforwardly generalized and solved for two-
dimensional plasma configurations and are of practical
use for ICP models.

This work was performed in the framework of a col-
laboration LAPLACE-CEA Cadarache on the modeling of
ICP sources for neutral beam injection for ITER.
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FIG. 2. Comparison of the radial power absorption profiles
from the fluid model (solid line) and the PIC model (dashed
line) for a finite, diffusive, cylindrical plasma. The different plots
correspond to different plasma radii and collision frequencies
(indicated on the plots). The plasma density has parabolic radial
profile, increasing from 3� 1017 m�3 at the edge (r=R � 1) to
1018 m�3 in the center (r=R � 0). The electron temperature is
10 eV. The power absorption density is normalized to
e2E2

0n0=2me!, where E0 and n0 are the field amplitude and
the plasma density at the edge. The indicated k0R values corre-
spond to n0.
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