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Avant propos

La majeure partie de mes travaux de recherche concerne le développement de modeles
physiques de plasmas hors équilibre thermodynamique et des codes numériques associés,
dans le cadre d'applications technologiques diverses.

Au cours des années j'ai rédigé de nombreuses notes relatives a ces modeles, détaillant par
exemple des adaptations des équations physiques, des méthodes numériques, etc. J'ai souvent
distribué ces notes aupres de mes collégues et des doctorants que jai encadrés ; je pense
qu’elles sont susceptibles d’intéresser plus généralement tous les chercheurs développant des
modeles physiques et numériques de plasmas hors équilibre.

Il m'a donc semblé utile de synthétiser dans ce document, en vue de l'obtention de
I'nabilitation a diriger des recherches, non seulement mes travaux de recherche publiés mais
aussi les notes mentionnées ci-dessus. J'ai choisi de rédiger le texte principal du manuscrit en
anglais afin de le rendre accessible aux collegues et étudiants étrangers. La chronologie de
mes activités de recherche et d'encadrement est decrite a la fin du premier chapitre, mon
projet de recherche dans le dernier chapitre. Des informations complémentaires d'ordre
administratif sont données en francais dans la partie annexe.

Gerjan Hagelaar
Toulouse, 1 septembre 2008

P.S. 9 janvier 2009

Depuis ma soutenance le 5 décembre, avant de distribuer ce document, j’y ai fait de
nombreuses corrections et quelques ajouts (notamment dans les chapitres 5 et 7). De plus, je
tiens a remercier vivement mes rapporteurs et membres de jury d’avoir examiné ces travaux.
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Chapter 1

INTRODUCTION

Plasma physics

Plasma is (partially) ionised gas which behaves so differently from normal gas that it is
sometimes considered the fourth state of matter. Among the remarkable properties of plasma
are : electrical conductivity, light emission, self-organisation, extraordinary chemical activity.
Although plasma makes up over 99% of the visible matter in the universe, it does almost not
exist naturally on earth but is created by man for technological purposes, in a process called
gas discharge. Plasma physics studies the origin of the plasma behaviour and develops ways
to create, sustain, and control plasma. This chapter outlines the physical principles of (man-
created) discharge plasmas, then focuses on so-called low-temperature plasmas and how these
are studied by modelling, and eventually outlines the scope of my own work.

In order to understand the behaviour of plasma, the first thing to recognise is that it consists of
particles of different species with different elementary properties : electrons, ions, and
neutrals. Electrons have a negative electric charge —e and a mass 2000 — 10° times smaller
than ions and neutrals. lons can have different charges +e, —e, +2e, +3e, etc. ; most common
are singly charged positive ions. Neutrals and ions have an internal structure which can be
excited to different atomic or molecular quantum states ; spontaneous decay of excited states
leads to emission of photons. Depending on these properties, the plasma particles have
different interactions with each other and with surrounding materials.

Short-range interactions can be represented as collisions : discrete interaction events between
two particles at the time. Elastic collisions cause scattering of the particle velocities and
kinetic energy transfer depending on the particle mass ratio ; elastic energy transfer between
electrons and other species is very small due to the small electron mass. Inelastic collisions
involve changes in the particle nature or internal state in which a certain (quantum) amount of
Kinetic energy is absorbed or released ; they can lead to creation or loss of particles and are
essential to sustain the plasma : ionisation of neutrals is due to inelastic collisions (mainly
with electrons) at high impact energy (of the order of 10 eV). Short-range interactions with
the walls bounding the plasma generally cause loss of plasma particles : electrons and ions
recombine at the walls and excited neutrals are often de-excited.

In addition to these short-range interactions, the electrons and ions interact over long
distances through electromagnetic fields, which gives rise to the collective behaviour that is
most characteristic of plasma. Assume (for simplicity) that all ions have a charge +e ; then
any difference in the electron and ion number densities implies a space charge density which
induces a so-called ambipolar field* driving the electrons and ions together. As a result, the
electron and ion densities become and remain nearly equal : the plasma is quasineutral. Since
the electrons move and diffuse much faster than the ions (due to their small mass) the
ambipolar field is systematically directed against the gradient of the electron density to limit
the electron diffusion and accelerate the ions. The field is particularly strong in front of the
walls bounding the plasma, where wall-recombination leads to the formation of a (non-

! The term 'ambipolar field" is used throughout this text to indicate the electrostatic field arising from the plasma
charges without distinction of sheath, presheath, plasma bulk field etc.



quasineutral) boundary layer containing almost no electrons, called sheath. The total
electrostatic potential drop of the ambipolar field is proportional to the electron temperature
and usually occurs for 80-90 per cent across the sheath. The thickness of the sheath,
characterised by the Debye length, decreases as the plasma density increases ; quasi-neutrality
can only be maintained if the plasma density so high that : Debye length << plasma size ; this
condition is part of the definition of plasma.? The ambipolar field also reacts to externally
applied electric fields : the sheath thickness and potentials tend to adjust such as to screen the
plasma from the applied field and prevent separation of electrons and ions.

Electrons and ions are continuously lost by (wall) recombination and need to be re-created by
ionisation, which costs energy. This energy is provided to the plasma by long-range
electromagnetic interaction with electrically powered conductors in the surroundings :
electrodes or antennas generate an applied field, which drives a current through the plasma,
which heats the plasma particles ; this process is called gas discharge and is the main means
of artificial plasma creation. Many different discharge configurations are possible, driving
direct, pulsed, or alternating currents, at higher or lower frequency, by electrostatic fields or
electromagnetic waves, etc. Due to their small mass and fast motion, the electrons are heated
more efficiently than the ions (especially by alternating fields) whereas they also collide more
often, hence the plasma is generated and sustained mainly by electron-impact ionisation.
Neutral gas breaks down into plasma if each electron is sufficiently heated and has enough
collisions to create at least one new electron on average during its life time. As the plasma
density increases, the plasma gradually screens its interior from the applied field by space
charges (sheaths) or currents (skin effect). Initially this screening effect can be favourable for
electron heating and ionisation because the field becomes stronger near the plasma edge ; the
plasma can then be sustained at weaker applied field than necessary for breakdown.
Eventually, however, the screening reduces the heating efficiency and this limits the plasma
density ; the ionisation degree, i.e. the ratio of electron density to total particle density, often
remains close to zero.

Plasma breakdown and sustainment are most easily achieved at some intermediate neutral gas
pressure (density), such that the electrons have many collisions but not so many as to lose
significant energy in (elastic) collisions before attaining the ionisation threshold energy. The
electron temperature is then of the order of the ionisation energy whereas the other species
stay close to room temperature ; this is characteristic of low-temperature plasmas. At higher
pressure, (elastic) energy transfer leads to the simultaneous heating of all species together and
breakdown requires a stronger applied field. At lower pressure, the electrons tend to be lost at
the walls before ionising ; however, plasma can be sustained if the applied field does not drive
the electrons to the wall so that the ambipolar field forms a stationary potential trap (e.g.
inductively coupled plasmas). Low-pressure plasmas are often generated with the use of
steady magnetic fields that trap the electrons in cyclotron orbits to reduce the electron wall
loss and increase the ionisation probability ; this also modifies the ambipolar field and the
interaction with the applied electric field, e.g. magnetized wave modes can provide special
kinds of plasma heating.

2 Plasma can be theoretically defined by two criteria. First, there are enough charged particles for the electric
interaction to strongly perturb the thermal motion of the electrons : the Debye length Ap = (&Telens)
characterising the distance over which the plasma fields can produce an electron velocity change of order of the
electron thermal speed, is small with respect to the plasma size. Second, the electrons have enough thermal
motion to interact with some average charged particle population, rather than with specific individual particles :
the number of particles in the Debye sphere Np = (4/3) zAp°n. >> 1. From this second condition, it is appropriate
to consider electrons and ions as separate continuous media interacting through macroscopic fields.



The electrons do not only sustain the plasma by ionisation, but also excite the neutrals to
various kinds of excited quantum states, which activates chemical processes, causes the
emission of electromagnetic radiation, and interferes with the electron heating and ionisation.
Excitation kinetics and chemistry depend strongly on the parent gas. Noble gases are used to
limit chemical activity, but molecular ions can be formed and metastable atomic species can
play an important role in stepwise ionisation. In molecular gases, the electrons lose much
energy by vibrational and rotational excitation, leading to gas heating and molecular
dissociation. In gases with high electron-affinity (oxygen), a significant part of the electrons
can get attached to neutrals and form negative ions, which reduces the ionisation efficiency
and modifies the ambipolar field in complex ways. Also the wall surfaces can be involved in
the plasma chemistry : wall material can be sputtered or etched, solid layers can be deposited,
etc. Surface treatment is an important technological application of plasma.

According to their physical principles, plasmas are historically divided into several categories
which are studied by rather distinct research communities : thermal, fusion, and low-
temperature plasmas. Thermal plasmas are highly collisional plasmas where all species are
near thermal equilibrium with deviations due mainly to radiation transport, created in high
pressure (atmospheric) arc discharges or appearing in natural phenomena such as lightning.
Fusion plasmas are fully ionised, magnetically confined, deuterium plasmas that are heated to
extremely high temperatures (10 keV) for the purpose of achieving (in the future) controlled
nuclear fusion exploitable as an energy source. The present text, however, focuses on low-
temperature plasmas : weakly ionised discharge plasmas with high electron temperature (1 —
50 eV) and low gas temperature (300 — 2000 K), created at low to intermediate gas pressure
or at small size in a large variety of discharge configurations for a large variety of
applications.

Plasma modelling

Most of the fundamental physics involved in plasmas is well established [Rax05] [Rai91] and
low-temperature plasma research is nowadays mainly concerned with the development and
optimisation of specific plasma configurations for technological applications [Lie05]. This is
done by a combination of experimental study, involving various electrical and optical
measurements, and modelling. A plasma model is a system of general fundamental physical
equations that are adapted, combined, and solved to describe (simulate) a specific plasma
configuration. The solution of the model equations is intended to reproduce observed and
measured plasma behaviour, thus explaining it in terms of fundamental physics, and if
possible to predict it, thus guiding experimental development. Some basic principles of low-
temperature plasma models are as follows :

¢ Different particle species are described separately. By order of importance : electrons
(sustain the plasma and interact intensively with applied fields), ions (influence the
electron motion through ambipolar coupling), excited neutrals (lead to stepwise
ionisation and plasma chemistry), ground-state neutrals (feed stock for all other
species). Often the neutral gas particles are so numerous that they are hardly affected
by the plasma and require no description other than constant density.

e The behaviour of a single particle species is described by the Boltzmann equation,
solved either by particle (Monte-Carlo) methods or through approximation by a set of
fluid equations. Fluid models are more usual at high gas density, when collision
effects are dominant, particle models at low gas density. Sometimes fluid equations
and particle methods are combined into so-called hybrid models.



e The long-range electromagnetic interaction of charged particle species is described by
electromagnetic fields from the Maxwell equations. The Poisson equation is used for
the ambipolar field and electrostatic applied field, the Maxwell-Ampere equation for
electrodynamic fields. Self-consistent description of the fields couples the Maxwell
equations directly with all charged particle equations.

e The frequency and effects of collisions are described by cross sections, transport
coefficients, and rate coefficients from the literature, deduced from measurements and
(quantum-mechanical) calculations. Well-established collision data exist only for the
most common (noble) gases ; much is lacking and of limited accuracy.

e The equations are solved by computer implementation of numerical methods, often
standard methods from fluid mechanics and electrodynamics. The main difficulty is
not so much to solve a specific equation with high accuracy, but rather to deal with the
couplings between the different particle equations and the Maxwell equations.

These principles should not be taken too literally : a wide variety of more or less elaborate
plasma models has been developed (and continues to be developed) all over the world for a
wide variety of purposes ; some models represent all major aspects of the plasma behaviour
self-consistently ; others focus on certain aspects to address specific questions. In fact, the
complexity of plasma physics is such that ad hoc assumptions and approximations are
required for each specific plasma configuration. The challenge of plasma modelling is to
represent all the physics that is relevant to a given configuration and a given purpose at the
same level of approximation, given the limited capabilities to solve the coupled plasma
equations, given the limited availability and accuracy of collision data. Since quantitative
predictions from plasma models are often not very good, the purpose of plasma modelling is
more to predict qualitative trends in the plasma behaviour and to help understand observed or
measured trends ; relatively simple models can be more effective for this purpose than
comprehensive models.

Scope of my own work

| have been an active researcher and publishing author in low-temperature plasma modelling
for more than 10 years, since my Ph. D. in the Netherlands, then as a post-doctoral researcher
in France, and as from 2005 as an Ingénieur de Recherche at the CNRS-LAPLACE in
Toulouse. During these years | have developed a number of plasma models for different
technological applications and in the context of different research projects :

e During my Ph. D. research at the university of Eindhoven and in collaboration with
experimental researchers at the Philips laboratories, | developed a comprehensive self-
consistent 2D fluid model of microdischarges for plasma-addressed-liquid-crystal
(PALC) and plasma-display-panel (PDP) televisions, as well as a series of Monte-
Carlo models for electrons, ions, and resonance photons in these microdischarges. The
aim was to help interpret various experimental results and optimise the discharge
configurations. Publications (in refereed international journals) : [1] [2] [3] [4] [5] [6]

[71[8] [9] [15].

e During a two-year post-doc in the group of J. P. Boeuf at the CPAT? in Toulouse, |
developed a 2D hybrid model of Hall effect thrusters for space propulsion ; later I
adapted this model for double-stage thrusters. The model has been extensively used in
the context of the GDR* Propulsion Plasma and different industrial contracts by

® Centre de Physique des Plasmas et de leurs Applications de Toulouse, now part of LAPLACE
* Groupement de Recherche = French national research program regrouping many laboratories and industrial
partners, supported by the CNRS for periods of 4 years renewable.



several colleagues at the CPAT / LAPLACE® : researcher L. Garrigues and Ph.D.
students J. Bareilles, C. Boniface, J. Perez-Luna. Purposes : thruster optimisation,
interpretation of experimental data from the GDR test facility in Orléans, basic
understanding of the operation of new thruster concepts. Publications [10] [12] [13]
[14] [16] [18] [21] [24] [27] [30] [36] [39] [40] [41] [42] [44].

e During a one-year contract at the LIMHP® in Paris, | rewrote, extended, and used a
self-consistent fluid model (originally developed by K. Hassouni) of a microwave
plasma reactor for diamant production ; | later adapted this model to study surface
wave plasma sources used at the CPAT. Publications [17] [20] [23].

e In collaboration with L. Pitchford at the CPAT / LAPLACE, | developed BOLSIG+, a
user-friendly solver for the homogeneous Boltzmann equation to obtain transport
coefficient and rate coefficients for fluid models from cross section data ; this code is
freely available to the international plasma physics community and widely used.
Publication [22] and web-site http://www.bolsig.univ-tlse.fr

e During a two-month stay at the Australian National University and also later at the
LAPLACE, I was involved in the Ph.D. research project of A. Meige (co-tutelle) on
modelling of electric double layers appearing in helicon and electronegative plasmas ;
| also helped N. Balcon (Ph.D. co-tutelle) to develop a fluid model of an atmospheric
pressure glow discharge. Publications [19] [28] [35].

e | participated in the development of a 2D model of post-arc plasma decay in a vacuum
circuit breaker, in the context of a contract with Schneider Electric and the Ph.D.
research of P. Sarrailh. Publications [29] [32] [38].

e In the context of an ANR’-project involving collaboration between the LAPLACE and
several French experimental groups, | developed a 2D fluid model of micro-hollow-
cathode-sustained discharges, a novel concept to sustain low-temperature plasmas at
atmospheric pressure ; this model was used by two post-doctoral researchers : E.
Mufoz-Serrano and K. Makasheva. Main purpose : interpretation of experimental
data. Publications [25] [31] [37].

e During the past one-and-a-half years, in the context of a collaboration between the
LAPLACE and the CEA® Cadarache, | developed a comprehensive 2D model of a
inductive negative ion source for neutral beam injection for ITER ; I initially focussed
on the inductive discharge in the ionisation stage of the source and am currently
extending the model to describe the magnetised plasma in the source body. This
research project is rapidly gaining importance and recently two new colleagues joined
me on it : researcher G. Fubiani and post-doc S. Kolev ; two new Ph.D. students will
start in October : N. Kohen and N. Oudini. The eventual purpose is to guide future
development and optimisation of the source. Publications so far : [33] [34].

e In the context of an ANR project with the group of J. Pelletier in Grenoble, | have
recently developed a 2D self-consistent model of a microwave plasma source based on
electron-cyclotron resonance ; further development and exploitation of the model will
be done together with post-doc K. Makasheva.

® Laboratoire Plasma et Conversion d’Energie = research laboratory in Toulouse were I currently work, created
in 2007 by merging of three laboratories, one of which the CPAT

® Laboratoire d’Ingénierie des Matériaux et des Hautes Pressions, Université Paris 13, Villetaneuse

" Agence National de la Recherche = French government agency providing financial support for research on the
basis of 3-year projects involving a small number of laboratories

8 Commissariat 4 I’Energie Atomique = French atomic energy agency, hosting the ITER fusion experiment



Note that | have actively participated in the supervision of several Ph.D. students, in particular
J. Bareilles, C. Boniface, A. Meige, N. Balcon, and J. Pérez-Luna with whom | share
numerous (19) refereed journal papers ; | was also part of the Ph.D. jury of the first four of
them (as a supervisor).

Organisation of the present document

Although my research activities cover a rather wide range of plasma configurations,
conditions, and technological applications, they show clear coherence from a more technical
point of view : | have taken on each new modelling project on the basis of my previous
experiences, starting from and extending the concepts, equations, and numerical methods that
| was familiar with and that worked well before. Over the years this has yielded a series of
well-developed methods and concepts that | consider the heart of my expertise. Therefore,
rather than presenting my work in chronological order or by research project, | have decided
to present (in the next 10 chapters) a more technical synthesis of my work by an overview of
these modelling methods ; this will be useful as a reference for my colleagues, my students,
myself, and anyone else working with the models | developed. The methods cover much of
the standard methods in low-temperature plasma modelling but include many original
contributions not published anywhere else ; these contributions are each time identified by
footnotes and illustrative examples from my publications are shown throughout the
presentation. Reflecting the practical reality of low-temperature plasma modelling, physical
and numerical questions are often discussed together.

Chapters 2-3 treat particle description on a microscopic level, chapter 4 some methods
to obtain the electron distribution function in velocity space from the Boltzmann equation,
chapters 5-7 direct macroscopic description of a plasma particle species by fluid equations,
chapter 8 ambipolar coupling between electrons and ions, and chapters 9-10 plasma
interaction with electrodynamic fields. Chapter 11 concludes on the state of the art of my
work and presents my future research projects.
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Chapter 2

PARTICLE MODELS

Particle models describe the trajectories of individual plasma particles (electrons, ions,
neutrals) interacting with other plasma particles and surrounding materials. These individual
particles are randomly sampled from the total physical particle population, which is too large
(by many orders of magnitude) to be described completely, and are called test particles, super-
particles, or macro-particles. Macroscopic quantities and distribution functions, representative
of the total population of a certain species, are obtained by averaging over a large number of
macro-particles and contain statistical errors (fluctuations) which decrease slowly as the
number of macro-particles is increased.

The interaction between particles is usually not described directly but indirectly : each macro-
particle sees the other particles through macroscopic electromagnetic fields and macroscopic
collision probabilities. The macro-particle trajectory in phase space is calculated by
integration of Newton's equations

Z—\;zi(E+VxB) (2.1)
m
dx

m (2.2)

where x is the particle position, v is the particle velocity, q is the particle charge, m is the
particle mass, E is the electric field, and B is the magnetic field (induction). The fields can be
assumed (applied fields) or calculated self-consistently from Maxwell’s equations. In the
latter case, a large number of particles must be followed simultaneously, so that statistically
relevant space charge densities and currents can be calculated during the time advancement of
the trajectories. This technique is called particle-in-cell (PIC) [Bir94] [Ver05].

For a given macro-particle, the occurrence and effect of collisions are randomly sampled from
probability distributions, based on a continuous (macroscopic) representation of the target
particles. [Nan00] This random sampling is known as the Monte-Carlo-collision (MCC)
method. The collision probability per unit time, called the collision frequency, is given by
v=no(v,)v,, (2.3)

where n is the number density of the target particles, o is the cross section, and v, is the
magnitude of the relative velocity of the macro-particle with respect to the target particle. The
density and velocity distribution of the target particles can be assumed or calculated self-
consistently. For electron and ion collisions with neutrals, the target velocity can often be
neglected so that v = v is directly the macro-particle velocity. Cross sections for the different
collision types are given in the literature, usually as a function of the relative energy Mv,%/2,
where M is the reduced mass of the collision partners, or the laboratory energy mov?/2, where
m is the electron or ion mass. Cross sections for (electron-impact) excitation or ionisation
have a threshold as a function of energy® ; the impacting particle (electron) loses exactly the
threshold energy U so its velocity after the collision is v' = (v* — 2eU/m)"2. In case of
electron-impact ionisation, the remaining Kkinetic energy is distributed over the original
electron and the new electron, which is then followed as a new macro-particle.

% kinetic energy in the frame of the particle being excited or ionised = (electron) laboratory energy
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The probability distribution of the collisional velocity scattering angle € is in principle
determined by the differential cross section I(v,cosé), but this is generally not available for
direct use in particle models. Usually a simplified scattering angle distribution is assumed,
e.g. isotropic scattering in the center-of-mass frame. For elastic collisions, the definition of the
collision event and the cross section o depend directly on the assumed scattering angle
distribution. Assuming isotropic scattering, o is defined as the momentum transfer cross
section

o, (v)= 27z_[ (1-cos@)I(v,cos8)dcos8, (2.4)

such that macroscopic momentum transfer to the target particles is consistently obtained.
Elastic momentum-transfer cross sections, deduced from measured differential cross sections
and macroscopic transport coefficients, are directly available from the literature. [Hay81]
Elastic ion-neutral interaction is described by two collision types : isotropic-scattering
collisions and backward-scattering collisions, for which effective cross sections are available.
[Phe94]

For electrons and ions, Coulomb (electric) interaction can contribute to elastic
scattering. Since the electric field in equation (2.1) accounts only for the macroscopic charge
density, averaged over individual particles, the effect of (three-dimensional) microscopic field
fluctuations due to individual particle charges must be represented by so-called Coulomb
collisions. The effective momentum-transfer cross section for Coulomb collisions is

4
o (v) 2# A= 12761, /i 9N, 2.5)
TE, M,V e en,

where m; is the reduced particle mass and the Coulomb logarithm In A = 10 is related to
ambipolar screening, which suppresses the microscopic field at distances beyond the Debye
length ; Np is the number of electrons in a Debye sphere. In most low-temperature plasmas
the electron and ion kinetics are dominated by collisions with neutrals so Coulomb collisions
have little influence, but at higher ionisation degree >107 the energy transfer associated with
electron-electron collisions leads to Maxwellisation of the electron energy distribution. To
capture this effect in detail, particle-in-cell models use rather sophisticated methods, involving
sampling of pairs of nearby macro-electrons [Nan97].

It is important to realise that the particle models described here do not provide a real
microscopic description of the plasma kinetics, because the particles are not represented
directly but only statistically as macro-particles. At best, if the macro-particles are properly
sampled, the macro-particle average distribution function can be generalised to the real
particle population (with some statistical error), but the microscopic nature of the real kinetics
is not captured. Even PIC models, generally considered the most accurate method to describe
the plasma kinetics, involve important approximations in this respect : whereas the real
electromagnetic interaction between electrons and ions is essentially a three-dimensional n-
body problem, PIC models approximate it by superposition of macroscopic fields and binary
Coulomb-collisions. [Tur06] In fact, a particle model of a certain species is exactly equivalent
to a Monte-Carlo solution of the Boltzmann equation (see chapter 4).

Particle models are used for a wide variety of purposes, ranging from educational use to get
insight in individual particle trajectories (e.g. in a complex magnetic field) to complete self-
consistent PIC simulation of the plasma. They are also often combined with fluid equations
into hybrid models to obtain detailed description of a specific aspect of the plasma but avoid
the large computational effort required by complete PIC simulation ; figure 2.1 shows an
example of such a hybrid simulation.

12
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Figure 2.1. Simulation of a discharge in a Hall effect thruster for satellite propulsion by a self-consistent hybrid
model combining particle description of ions and neutrals with electron fluid equations [10]. The discharge takes
place in an annular channel (figure a), across a steady radial magnetic field of about 0.02 T near the thruster exit,
between an anode at the bottom of the channel and an external hollow cathode with an applied voltage of 300 V.
The cathode emits electrons that drift towards and multiply as they ionise the xenon gas injected at the anode.
The magnetic field reduces the axial electron transport by inducing cyclotron orbits and an azimuthal Hall
current as shown in figure b and discussed in chapter 5 ; hence the applied electric field penetrates inside the
plasma and concentrates around the thruster exit to ensure current conservation. Due to their large mass the ions
are insensitive to the magnetic field and are electrically accelerated through the thruster exit without collisions.
The discharge exhibits different kinds of self-induced oscillations (instabilities). Figure ¢ shows time evolution
of the plasma density, potential, and the ion distribution in phase space during so-called transit-time oscillations
at a frequency of about 100 kHz ; these oscillations strongly affect the properties of the ion beam : some ion
energies exceed the applied voltage. From [16].
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Chapter 3

NUMERICAL METHODS FOR PARTICLE MODELS

Leapfrog method

Newton's equations (2.1-2) are usually integrated numerically by the leapfrog method. The
position X and the velocity v are calculated at different discrete moments in time, shifted by
half time steps, such as to obtain central-difference approximations for the time derivatives:

VY2 2 +q_At E(Xk) +q_At(Vk+1/2 N Vk—uz)x B(Xk) (3.1)
m 2m

Xt =xE+ A2 (3.2)
where Af is the numerical time step, upper indexes refer to moments in time as #*! = t + At,
and E and B are functions of space. In case there is magnetic field, equation (3.1) does not
yield vi**2 directly and needs to be rewritten as

v = e (v, +V, xb+ (v, -b)b) - V™2, (3.3)
where
v, = VY2 LAt e (3.4)
2m
b=12lg (3.5)
2m

and the time step must be small enough to resolve the cyclotron motion : At < 0.2m/qgB. For
optimal accuracy, the time shift At/2 between the velocity and the position should be observed
when introducing new particles in the model, e.g. by off-setting the initial velocity from
equation (3.1) with a negative half time step (replace At by —At/2) ; this is of special interest
for momentum conservation in particle-in-cell models.

Use of random numbers

To sample particles from the total physical population and to simulate collisions, random
events are sampled from probability distributions using a numerical random number
generator. Such generator yields uniformly distributed random numbers R between 0 and 1
which can be used as follows. The occurrence of an event with probability p can be sampled
by a Bernouilli test R < p, i.e. the event occurs if R < p. A random event i can be sampled
from a set of possible events j with probabilities p; by

i—1 i
ij<R<ij. (3.6)
j=L j=L

A random value ug can be sampled from a probability distribution p(u) between u=aand u =
b by

ug b

I p(u)du = ij(u)du ; (3.7)
the right hand side reduces to R if p(u) is normalized.

Rejection method

Often the random value ug cannot be solved analytically from equation (3.7) ; then a rejection
method can be used. First a tentative random value ugr is chosen, not from the distribution
p(u), but from a more convenient distribution p'(u) = p(u)/g(u) where g(u) is an arbitrary
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function of u. Subsequently a second random number R is used to decide whether this
tentative ug is accepted or rejected : ug is rejected and the procedure must be repeated if R >
g(Ur)/gmax Where gmax is the maximum of g(u) over the entire range [a, b]. It can be shown that
the accepted ur values are distributed exactly according to p(u). A convenient choice for g is
g(u) = p(u) such that the tentative ug can be straightforwardly sampled from a uniform
distribution p'(u) = 1 as ur = a + R(b—a), but this is not always the most efficient : to minimize
the number of rejections, g(u) should vary as little as possible, i.e. p'(u) should be as close as
possible to p(u).

Random position

Initial particle positions are sampled from the spatial profile of the macroscopic particle
number density n or source term S. This can be done by (numerical) spatial integration of n
according to equation (3.7) but often the rejection method is more convenient. First a uniform
random position Xr is sampled, then it is tested by another random number R and rejected if R
> n(Xr)/mmax. IN axisymmetric coordinates, the uniform position probability is proportional to
the radius r, so equation (3.7) gives for a radial position between aand b :

1o = «faz +R(* -a°) . (3.8)

Random Maxwellian velocity

Initial particle velocities are often sampled from a Maxwellian velocity distribution,
corresponding to thermal equilibrium. Each Cartesian velocity component then has a
Gaussian probability distribution function between —oo and +oo :

p,) = J;lv exp(—0,2/0,%), (3.9)

and similar for v, and v., where vr = (2¢T/m)~* is the nominal thermal speed and T is the
temperature in eV. From substitution in equation (3.7) it is clear that there is no analytical
expression to sample directly a random Maxwellian velocity component. However, if we
consider the magnitude of two Cartesian velocity components together v, = (v:? + v,%)" then
the probability distribution between 0 and o is

1/2

2
p(v,)= FUL exp(—vf /UTZ) ' (3.10)
T
Due to the additional factor v,, equation (3.7) yields
v, =0,N-INR. (3.11)

From this random value it is possible to generate two separate random Cartesian components
vy and v, by sampling a random angle with respect to the vy-axis :

Ux =Ury—INR, c0S(27R,)
Uyr =vT,f—Iansin(27zR2). (3.12)

So random Maxwellian velocity components can be generated in pairs. Since the components
are completely independent, they can be interchanged and used arbitrarily to form random
Maxwellian velocity vectors, e.g. two random velocity vectors can be generated as three pairs
of Cartesian components.*°

% This method to generate random Maxwellian velocity components is more elegant and efficient than the
methods proposed in the standard text books [Bir91] [Bir94].
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Random half-Maxwellian velocity

In case Maxwellian particles are introduced at a boundary surface, they are sampled from a
flux rather than a density, and the probability distribution of the velocity component
perpendicular to the surface contains an additional factor velocity with respect to equation
(3.9). In fact, the perpendicular velocity component has exactly the probability distribution
(3.10) and can be directly sampled by equation (3.11). The parallel velocity components are
generated by equation (3.12) as before. This way of introducing particles results in a
Maxwellian particle distribution in front of the surface, but only in the half of velocity space
directed away from the surface, the other half being filled by particles coming from the
volume.

Random shifted Maxwellian velocity
If particles are introduced at an open domain boundary, not corresponding to a physical wall,
and if there is net particle influx, then half-Maxwellian velocity sampling leads to an
unnatural discontinuity in the particle velocity distribution and the formation of an artificial
boundary layer. These effects can be prevented (or at least reduced) by sampling the particles
from a more natural shifted-Maxwellian distribution, i.e. the perpendicular velocity
component v, has a probability

p(vi) = %UL exp(_(vL - wL)z /UTz) 1 (313)

T

where w, is the mean velocity into the domain. Due to the velocity shift, direct sampling of v,
is impossible, but the following rejection method is quite efficient.'* Approximate (3.13) by

po,) =20 =B exp(—0,21- pro, 107) 10,7, (3.14)
0

T
which corresponds to a centred Maxwellian distribution at slightly higher temperature, where

s a parameter of order unity. Now sample a tentative random velocity from p' as

—-InR,
Vg =0p [ ————— 3.15
= D (3.15)

exp(—Bw, (v, —0v, 1 B)° 1v,°)>R,, (3.16)

otherwise reject it and repeat the procedure. The rejection probability is minimized by setting
B=\l+w?*/4v? —w, [2v, ~1, (3.17)
and is only a few per cent for w, < vr. To prevent boundary layer effects, the mean velocity
w, must be consistent with the macroscopic mean velocity in the volume and if necessary
iteratively adjusted. This can be done by equating the ratio of the numbers of macro-particles
leaving and entering the domain, to the corresponding expectation value from the probability

distribution (3.13). Approximating for w, << vr, this yields

9 _(1-N,,/N,). (3.18)

szZ\/;

and accept this if

Occurrence of collisions
As a particle advances in time, collisions of different types j occur at random moments with a
total probability per unit time (mean frequency)

1 To the best of my knowledge this method is original and more efficient than the method proposed in the
standard text book [Bir94].
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v(X,v) = Zv]. (X,0) = an(x)a].(v)v : (3.19)

which in general depends on the magnitude of its velocity and possibly also on its position.
For simplicity we neglect the velocity of the target particles ; this is reasonable for electrons
and ions colliding with neutrals. The particle trajectory is integrated (by the leapfrog method)
by small time steps At during which it has a small probability vAt << 1 to collide. Collision
events can be sampled by testing this probability each time step against a new random number
as R < vAt but this is very inefficient. A better way to sample collisions is as follows. The
probability that the particle has no collisions until a future time t; is

P(t) = exp(— [Fve ')dt') , (3.20)
where vis a function of time through v(t) and x(#). Hence the probability distribution for the
time at which the next collision occurs is

p(t) = —Z—tp _ v(tc)exp(— [ v(t')dt') . (3.21)

c

Sampling a random collision time from this distribution by equation (3.7) is impossible
because the function 1{¢) is not known a priori. This problem can be solved by a variant of the
rejection method known as the null collision method [Sku68]. The null collision method
introduces an additional collision type (the null collision) without effect on the particle but
with a frequency w(X,0) = vinax — UX,0), Where vmax is the maximum of v over the entire
parameter range, so that the total collision frequency becomes a constant via. Equations
(3.21) and (3.7) then give directly a random collision time
1

t,=t———InR,. (3.22)

Vmax

The particle trajectory is integrated until & without further collision sampling. Once arrived
at t = tr the frequencies of the different collision types j (including the null collision) are
evaluated and a collision type i is sampled by a second random number R, as

i—1 i
Z;vj < Ry <Z;v].. (3.23)
J= J=

If this yields the null collision (R2vinax < W) then no collision is simulated, i.e. the collision
event is rejected.

Null collision method in particle-in-cell models

In particle-in-cell simulations, where a large number of particles is followed simultaneously,
the null collision method is often used differently. [VVah95, Ver05] Rather than sampling and
storing a random collision time ¢ for each macro-particle, a certain number of colliding
macro-particles is randomly sampled each time step. If there are N macro-particles, then the
expectation value for the number of macro-particle collisions (including null collisions)
during one time step is

N, =int(Nv,,At)+1, (3.24)
where we have rounded off to the next higher integer. To compensate for the rounding off,
Vimax Must be corrected as

., N

Viax = = 3.25
N (3:25)
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i.e. the null collision frequency is slightly increased. Now each time step, perform N collision
tests: choose a random macro-particle, evaluate the different frequencies v; for that macro-
particle, and sample a collision type by equation (3.23) using the corrected vmax'. Some
authors [Vah95] take special care to prevent that a same macro-particle is chosen twice during
the same time step, but this does not seem pertinent : if N is the number of macro-particle
collisions (rather than the number of colliding macro-particles) then each particle should be
allowed to collide more than once.

Target particle velocity

Sometimes the velocity of the target particles cannot be neglected and affects not only the
change in the macro-particle velocity, but also the collision probability, which essentially
depends on the relative velocity of the macro-particle with respect to the target particles, see
equation (2.3). Since the target particles are not considered individually but macroscopically,
it seems complicated to take this into account, but it is not. Using the null collision method,
the collision frequency vmax IS constant and a collision time t. can be sampled by equation
(3.22) as before. Now, before sampling the collision type by equation (3.23), sample a random
target particle velocity e.g. from a Maxwellian distribution by equation (3.12), then calculate
the relative velocity and use it to find the different frequencies v;. If necessary, different target
velocities can be sampled for different target species.

Isotropic elastic collisions

Isotropic elastic collisions are most easily described by transformation to the center-of-mass
(CM) frame. Consider a macro-particle with mass m; and velocity v; colliding with a target
particle with mass m, and velocity v, (e.g. sampled from a Maxwellian distribution). The CM
velocity is

Ve = Va TV, (3.26)
m, +m,
To find the macro-particle velocity v;' after the collision, transform v; to the CM frame, turn it
to a random direction, and transform back to the laboratory frame :
\4 ' =| Vi—Veu |eR tVey =V, + ™ (l Vi—V, |eR _(Vl _Vz))’ (3-27)
m, +m,
where egr is unit vector with random isotropic direction, which can be generated from two
random numbers R; and R, as follows. Consider an isotropic distribution in spherical
coordinates: the azimuthal angle ¢ is distributed uniformly between 0 and 2z and the cosine
of the zenith angle @ uniformly between —1 and 1. Equation (3.7) then yields cosék = 1 — 2R;
and ¢r = 2nR,. Now use these random angles to define an isotropic unit vector with respect to
the Cartesian coordinate axis :

cos 4, 1-2R
e, =| siné;sing;, |=| 2\/R,(1-R,)sin(2zR,) |. (3.28)
sinG, cosp, ) | 2, /R (1-R,) cos(2zR,)

The components can be interchanged. The above method is exact for arbitrary particle masses
and (non-relativistic) velocities and is much simpler than the method used by many authors
[\Vah95] where a scattering angle is sampled with respect to the incident velocity v;. Equation
(3.27) implicitly describes the elastic energy transfer between the particles. Averaging er and
assuming Maxwellian target particles with temperature T, the expected energy change of the
macro-particle is
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Y 0 L [1 o, - T] - (3.29)
2 (m, + mz) 2
This is more important as the masses are closer together.

Constant macroscopic quantities

If the model system is constant and infinite in space and time or if it describes local
equilibrium, then macroscopic quantities can be calculated from a single macro-particle
trajectory by averaging over time (ergodic theorem) :

(u)=(u), = [udt [ [dt ~ 3 u/>1, (3.30)

where u is an arbitrary quantity dependent on the particle velocity. The macro-particle is to be
followed and the average to be taken over a time much longer than the characteristic time of
the collisional energy transfer to the target particles. In principle the time average can be
calculated by integrating u numerically over time, i.e. summing u over successive time steps,
but is this not efficient because the particle velocities at successive time steps are strongly
correlated. A more efficient way to calculate the time average is to sum only over certain
observation times, randomly sampled by equation (3.22), with a mean frequency of the order
of the total collision frequency, e.g. by defining an ‘'observation collision’. Macroscopic
collision frequencies or collision rate coefficients can be obtained in two ways : either count
the collision events of the macro-particle and divide by time, or average the collision
probability v(v) over time by equation (3.30) ; the latter is more efficient for collisions with a
relatively small probability. To calculate the energy distribution function f,, define a series of
energy intervals Ag, count for each interval the number of observations when the particle
energy is contained in the interval and divide by the total number of observations :

=l dt/jdt~21 1. (3:31)

geAg gele

Macroscopic guantities as a function of space

If the system is space-dependent and bounded but constant in time, then macroscopic
quantities can be obtained by following different macro-particles successively, one at the
time. A macro-particle is sampled from a volume source S or from a boundary flux T,
followed until it is lost or leaves the system, a next particle is sampled, and so on. To calculate
the particle density n at a certain observation point in space, define a volume element AV
around the observation point, then integrate the total time of particle presence inside AV, and
continue this integral over successive macro-particles:

SAV + |TdA SdV + | TdA
:% jAV 4 tX§V1 (3.32)

where N is the number of macro-particles and the numerator is the number of physical
particles entering the system per unit time (from which the macro-particles are sampled). The
time integral is conveniently approximated by counting the total number of time steps when
the particle position x* is contained in AV. The macroscopic average of a quantity u is

= | udt/ | dt~ / (3.33)

XeAV XeAV
where u® should be interpolated from vk and to account for the time-shift of the
leapfrog method. Summing over the time steps when x* is inside AV is efficient only if AV is
large enough that the macro-particles do not cross it within one time step. To obtain high
spatial resolution (in one direction) another averaging method can be used. Define a surface
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element AA around the observation point and consider a volume element AV = 6AA with
infinitesimal thickness 6. If a particle crosses AA, the time spent inside AV is d|v,| where v, is
the particle velocity component perpendicular to AA. Therefore, each time a particle crosses
AA, cumulate its absolute inverse perpendicular velocity:

j SdV + j TdA 1
< < — (3.34)
AX—AA |UJ_ |
< / (3.35)
Ax—>AA [0, |/ moan | v, |

For optimal accuracy, v, and u must be interpolated to correspond to the exact crossing of AA.
Realise however that depending on the quantity u to be averaged, the surface element method
(3.35) is not necessarily more efficient than the volume method (3.33), due to statistical errors
of particles with a near-zero perpendicular velocity.

Macroscopic gquantities as a function of time and space

can be obtained by following a large number of macro-particles simultaneously. This is of
particular interest for particle-in-cell (P1C) models where the electric field is calculated self-
consistently at every time step from the complete spatial profiles of the electron and ion
densities. The spatial domain is then divided into small volume elements centred around a
grid of observation points, as shown in figure 3.1 for a two-dimensional domain. The spaces
between the grid points are called cells. The number of simultaneous macro-particles has to be
sufficiently large for each volume element to contain at least a hundred or so macro-particles,
such that statically relevant averages can be calculated. It is customary to assign to each
macro-particle a weight, defined as the number of physical particles it statistically represents.

Ali voI{Jme J.WL

element

P i e

............. \ / macro-particle
o

/ W
- | -

Figure 3.1. Two-dimensional grid for particle-in-cell models.

The particle density at each grid point can be straightforwardly calculated by summing the
weights of the macro-particles inside the volume element and dividing by the volume (nearest
grid point method), but this method is not very appropriate for PIC models. Smoother density
profiles are obtained by distributing the macro-particle weight over the surrounding grid
points with fractions according to proximity. Commonly used in PIC models is the linear
distribution method : a macro-particle with one-dimensional position x is distributed over the
surrounding grid points at x; and x, with respective fractions (X,—x)/(Xo—x1) and (x—x1)/(Xo—x1);
for a macro-particle with two-dimensional position (x, y) inside a cell (Xi;-X2, yi-Y2), the
fraction distributed to the grid point (X, y1) is then (Xo—x)/(xo—X1)x(y2=Y)/(y.—y1) etc. Using
this linear weight distribution method, the volume elements around the grid points must be
defined consistently (such that dividing the cumulative weight by the volume yields the
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proper particle density) by linear distribution of the cell volumes over the grid points. In
Cartesian space, consistent volume elements are defined from the central positions between
the grid points. In axisymmetric cylindrical space however, the radial edges of the volume
elements do not correspond to the central positions between the grid points. Consider a cell
between radial positions r; and r, with a volume z(r,>—r1%), which is to be distributed over the
grid points at r; and r,. The part of the volume distributed to r; is

7.

J. "% prdr = %(7’22 TN = 2712) = 77(71+1/22 _7’12) - (3.36)

The last member of this equation defines the effective edge of the volume element:

T = % \/712 +nrn, + rzz . (3.37)

Alternatively in cylindrical space, the particle weights can be distributed according to the
quadratic radial positions, i.e. with fractions (r2>-r?)/(r.>~r:1?) and (r’—r:i9)/(r2’—r1%) ; the
effective volume element edge is then given by the average quadratic radius rysi’ =
(r22 + r1%)/2. It can also be useful to define uniform quadratic radial grid positions rather than
a uniform grid, such as to obtain constant volume elements and avoid bad particle statistics
near the axis.

In PIC models, the particle weight distribution method must be consistent with the
interpolation of the electric field to the macro-particle positions, otherwise artificial particle
acceleration can occur, known as self-forces. Linear particle weight distribution is usually
combined with linear interpolation of the electric field, calculated at the grid points by finite
difference approximation of E = —V®, where ® is the electrostatic potential from finite-
difference solution of Poisson's equation (see chapter 8).
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Chapter 4

BOLTZMANN EQUATION

A plasma usually contains so many particles that statistical fluctuations of the number of
particles contained in an arbitrary phase space interval (resolving the space and velocity scales
of interest) can be neglected.'? Hence it is appropriate to represent the particles of a certain
species as a continuum by the distribution function f defined as the particle number density in
phase space, i.e.f(x,v,t)d3xd3v is the number of particles present at time t in an infinitesimal
volume d°x around position x with a velocity within an infinitesimal interval 4°v around v.
The evolution of the distribution function under the influence of electromagnetic fields and
binary collisions is described by the Boltzmann equation

Z_j;+v.vf+i(E+v><B)-va:C[f], (4.1)
m

where V, is the gradient operator in velocity space and C is the collision operator,
representing the rate at which particles are transferred from one velocity (interval) to another
in collisions ; without the collision term equation (4.1) is known as the Vlasov equation. The
Boltzmann equation is one of the main tools to study the kinetics of plasma particles, but its
solution (other than by Monte-Carlo particle methods) requires extensive approximations.
Various approaches are used, focussing either on the solution of f as a function of velocity v
while assuming simple space and time dependence, or rather on the description of f in space
and time while approximating for the velocity ; the fluid approach presented in the next
chapter falls into the second category.

Two-term approximation
For electrons, which are nearly isotropic due to elastic scattering by collisions and trapping by
the ambipolar field, the distribution function is commonly approximated by spherical
harmonics expansion in velocity space and truncation after the first order :

fxv,t)= fo(X,0,t)+(v/v)-f,(X0,t), (4.2)
where fy is the isotropic part of the distribution function and f; is an anisotropic perturbation
in a certain direction ; the last term represents f; times the cosine of the velocity angle with
respect to this direction. This is known as the two-term approximation. Substituting the two-
term distribution function and averaging over angle space, the Boltzmann equation can be
decomposed into

of, v e 0,
Loy O Et)=Cf]=YC. 4.4
ot T3" g o0 E W = Colhl ; ! 9
of e
R ) WS (4.5)

where o is the momentum transfer cross-section (2.4) for collisions with other species j and
the magnetic force has been omitted (for simplicity). The collision term Cy is related to energy
transfer and consists of various contributions for which appropriate expressions are derived in
the literature. For elastic collisions with neutrals or ions :

Cy = aﬁ(ajv“ ( £ +e—Tf%B, (4.6)

ij 0

12 This assumption is not as well justified as one might think : in some low-temperature plasmas the number of
charged particles in a Debye sphere Np = 5.5x10"(T,*/n,)*? is only a few thousand ; the high-energy tail of the
distribution function can then be expected to be 'statistically noisy'.
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where m; and T; are the target particle mass and temperature. For electron-electron collisions
this expression (assuming Maxwellian target particles of mass >> m;) is not appropriate and a
more complex non-linear expression is necessary :

47re InAa ) 1%, v’ |,
Cp=—r—55— “do v do'+—| o do' |22 |. (4.7)
0= T ujfo }fo {ff 3£fo -
This vanishes for a Maxwellian electron distribution function f, ~ exp(—v%/v1®) at arbitrary
temperature : electron-electron collisions Maxwellise the distribution function but do not
control the electron temperature. For inelastic excitation and ionisation collisions Cg; is non-
local in velocity space, removing particles at velocity v and injecting them elsewhere at a
velocity ', respectively :

Co; =—100;(0) fo(v) + 1, (v v)v" 0, (V") £, (V) v? =02 - 2eU;/ me (4.8)

Cy; =—1,00,(0) f,(v) + 41, (v v)v' 5.(v") f, (v) 02 = 0?12 — el;/ m. (4.9)

where U is the threshold energy and the factor 4 accounts for electron creation™, assuming
that the remaining energy is distributed equally over the old and new electrons.

Homogeneous approach

Given these two-term collision integrals, equations (4.4-5) can be combined and solved
numerically for simple configurations. The simplest configuration is that of a homogeneous,
unbounded plasma in a constant electric field : all gradients vanish and f; is defined along the
electric field direction.* To account for the creation of new electrons it is assumed that the
distribution function grows exponentially in time as of / &t = v, f .*® Then :

— j Colfol-V. 1o (4.10)

1% =Zna 0+, 1z =47z2nij.:aivafodv, (4.11)

where wy is the effective frequency for momentum transfer to neutrals and ions, summed over
all collisions, and v; is the net macroscopic ionisation frequency, summed over all ionisation

collisions, which introduces non-linearity in equation (4.10) and is usually evaluated
iteratively. Equation (4.10) is frequently used as an approximation for collisional electrons,
assuming that the characteristic length for energy transfer (energy relaxation length) is short
with respect to all macroscopic length scales of the plasma ; this is called the local-field
approximation.

Homogeneous plasmas in a high-frequency electric field are described by assuming (in
addition to exponential growth) harmonic time variation exp(iat) for f; while neglecting the
time variation of fy ; this is reasonable if the characteristic frequency for energy transfer is
much lower than the field frequency :

_EZEZE( ’(JZV 6fOJ O[fo] Vfo (4.12)

6m,’ ov|\v,’ +w’ v

3 My paper [22] contains an error on this point: instead of a factor 4, equation (29) shows a factor 2.

* This approach is the basis of BOLSIG+, the freeware Boltzmann solver that | developed together with Leanne
Pitchford, documented in [22] and available at www.bolsig.univ-tlse.fr

1> This exponential growth model was originally used to describe pulsed Townsend experiments. Alternatively,
electron creation can be included in the homogeneous Boltzmann equation by a spatial growth model,
corresponding to steady state Townsend experiments. Some authors altogether neglect growth effects and treat
ionisation as excitation.
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where E is the field amplitude.

Originally developed to check consistency between cross sections and measured
macroscopic swarm parameters [Roc73], the homogeneous Boltzmann equations (4.10) and
(4.12) are nowadays often used to obtain transport coefficients and rate coefficients for fluid
models as described in chapter 5 [22]. Some examples of results are shown in figure 4.1,
Neglecting electron-electron collisions, the shape of the distribution function fy(v) below the
excitation threshold energy is directly controlled by the velocity-dependence of vy(v) and is
Maxwellian only if v, is constant. Beyond the excitation threshold energy, fo is generally
depleted by the inelastic collision terms, which has a strong effect on the macroscopic
ionisation rate coefficient.

Nonlocal approach

Another approach for the solution of the two-term Boltzmann equation is the so-called non-
local approach®® [Kor96], describing configurations where the electrons have only few
collisions but are trapped by an ambipolar field —V® perpendicular to the applied field, as is
(sometimes) the case in positive columns or inductive discharges. It is then assumed that fy
and f, are functions of the total energy & = mev?/2e — ®(x) including the ambipolar potential
energy. After a coordinate transformation (x,v) — (X,¢) the equations (4.4-5) are integrated
over the total plasma volume accessible to electrons of energy ¢ and combined into one
differential equation for fyo(e) that is similar to equation (4.10). The distribution function
fo(x,0) is found from fo(e) by simple back-substitution. In fact, when electron-electron
collisions are dominant, the trapped electrons have a Maxwell-Boltzmann distribution

£,(X,0) = —0 exp(—(v” —2e0(x) I m,) [ v,°), (4.13)
A

where ng is the electron density in the centre of the plasma (where ® = 0). The non-local two-
term Boltzmann solutions show the deviations from this distribution due to the applied field,
collisions with neutrals, and wall recombination, e.g. depletion of the tail beyond v* >
2e(D(X)—Dy)/me Where @y, is the wall potential.

3

18| have considered this approach for the model of the inductive ion source for ITER and did some preliminary
calculations ; the problem is that the heating mechanism is still assumed local and that the description of
nonlocal inductive heating is precluded by the standard two-term expansion ; | found however that it is possible
to account for harmonic spatial variation of the heating field by a slightly different expansion.
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EEDF (eV*9)

energy (eV) mean energy (V)

Figure 4.1. Results from the two-term homogeneous Boltzmann equation for electrons in an argon plasma
accounting for both electron-neutral collisions and electron-electron collisions, solved by my freeware solver
BOLSIG+. Figure a shows the electron energy distribution function (EEDF) = (4 ze/mn¢)ofy as a function of
energy mev°/2e in a reduced electric field E/n = 10 Td = 10 Vm? for different ionisation degrees ne/n. At low
ionisation degree, the shape of the EEDF is determined by electron-neutral collisions and is depleted beyond the
excitation threshold = 12 eV. As the ionisation degree increases, the EEDF becomes increasingly Maxwellian
due to electron-electron collisions. The consequences for the ionisation rate coefficient (4 7/n.)/ov*f,dv are
shown in figure b as a function of the mean electron energy (2 ze/m.ne)fv*fodo : at lower mean energy and low
ionisation degree, the ionisation rate is much lower than for Maxwellian electrons. From [22].
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Chapter 5

FLUID MODELS

Fluid models describe the behaviour of particle species in terms of macroscopic quantities
such as the particle density n, mean velocity w, and mean energy & The evolution of these
quantities is described by fluid equations such as the continuity, momentum, and energy
equations, which are partial differential equations in time and space. The macroscopic
quantities correspond to velocity moments of the distribution function, i.e. integrals of some
power of velocity times the distribution function over velocity-space:

n(x, t) = ”j fx, v, t)d’v (5.1)
w=(v) =%J.”vfd3v (5.2)
m 2 m 2 13
822—e<v >:ﬂﬂjv fdv (5.3)
where the triangular brackets indicate the macroscopic average
1 3
(1) (x,t) = pror j j j u(V) £(x, v, )d°v . (5.4)

The fluid equations correspond to velocity moments of the Boltzmann equation, which form
an infinite series, based on higher and higher powers of velocity, where each moment
equation is linked to the next because it contains the gradient of the next-order moment of the
distribution function (from the second term of the Boltzmann equation). The series is
truncated at a certain order (usually first or second) by assumptions or approximations on the
next-order moment, called closure approximations. In addition, various approximations are
used to simplify the fluid equations and facilitate their solution coupled with that of the fluid
equations for other species and the Maxwell equations. All these approximations are made
from kinetic considerations, either by neglecting the microscopic time and length scales
(inverse collision frequency 1/v, mean free path 1/no, Larmor radius mvt/eB etc) with respect
to the macroscopic scales, or by explicit assumptions on the distribution function.

Collisions are represented in the fluid equations by various transport coefficients and rate
coefficients, corresponding to averages of cross-section related quantities depending on the
relative velocity of the collision partners. Assuming independent shifted Maxwellian
distributions for two colliding species 1 and 2, the average relative velocity v, = |v1 — V| can
be characterized by a relative temperature

__ mm, <v 2> _ myeT; +meT, L M,

3(m, +m,) 12 m, +m, 3(m, +my,)
For particle species in thermal equilibrium this reduces to T, = T, = T, ; for electron collisions
T, = Te due to the small electron mass ; for ion-neutral collisions the directed ion energy is
important. Hence, experimentally measured transport and rate coefficients are often given in
the literature as a function of gas temperature, electron temperature, or effective ion
temperature.

One of the main problems of fluid plasma models is the description of ionisation,
which is due mainly to fast electrons that tend to be badly characterized by a Maxwellian
temperature. To account for the non-Maxwellian character of the electron distribution, the
ionisation rate coefficients and other electron fluid coefficients are often obtained from
solutions fp of the homogeneous Boltzmann equation (4.10/12). In collisional conditions these

|2

W, —w, (5.5)

r
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homogeneous Boltzmann results can be generalized to fluid models by the local field
approximation, assuming local equilibrium between electric acceleration and collisional
momentum and energy losses, so that the transport and rate coefficients are direct functions of
the local electric field E, or rather, the reduced electric field E/n since the collision frequency
is proportional to the gas density n. The local field approximation is also used for collisional
ions, for which experimental transport coefficients as a function of reduced field are available
from the literature. [EII76]

Continuity equation
The continuity equation, describing conservation of particles, is the integral of the Boltzmann
equation (4.1) over velocity space:

on
§+V~(nw) =S. (5.6)

The source term S is the net number of particles created per unit time per unit volume, and
consists in general of different contributions from collisions or chemical reactions :

5= ZNinlinZiki (5.7)

where N is the number of particles created in one collision (negative in case of destruction), n;
and n; are the densities of the colliding particles, and k = <ocv,> is the rate coefficient in units
m?>/s. Sometimes there are three particles involved so a third factor density n; is included and
the rate coefficient k has units m®s. Rate coefficients for electron-impact reactions can be
calculated from the two-term Boltzmann solution as

k=27 | “ov* fydv . (5.8)

n 90

The electron and ion source term due to electron-impact ionisation is sometimes evaluated
from the electron flux as S = nsw.a where « is the Townsend coefficient, for which semi-
empiricall7 expressions are available as a function of the reduced electric field [Bro66]
[Rai91].

Momentum equation
The momentum equation is the first-order velocity moment of the Boltzmann equation :
multiply (4.1) by v and integrate over velocity space :

an—W+V-(nw®w)+iv-P—ﬂ(E+W><B):—nz
ot m m ;

m;

nk, . (w-w;), (5.9)
m+m

where
P:mj(v—w)@)(v—w)fd?’v (5.10)

is the pressure tensor and kn, = <onv,> is an effective rate coefficient for momentum transfer
to particles of other species j based on the momentum transfer cross section as defined in
equation (2.4). The momentum equation (5.9) is generally solved for the mean velocity w, but
this requires different approximations to simplify it. A first standard approximation for plasma
particles is to assume that the pressure tensor is diagonal and isotropic :

P=enTl (5.11)
where

enT:%m'[lv—Wf fd*v (5.12)

My freeware solver BOLSIG+ calculates both rate coefficients k and Townsend coefficients ¢ as a function of
reduced field E/n or electron mean energy &.
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is the scalar pressure, T is the (generalized) temperature, and | is the identity matrix. Next,
since most collisions are with neutral gas particles, the mean target velocity w; is neglected in
the last term of equation (5.9). After substitution of equations (5.6) and (5.11) the momentum
equation becomes

%+(W-V)W+Vmw+iwa:iE—iV(nT) (5.13)
ot m m mn
where
m; S
V. = L nk .+= 5.14
" Zj:m+mj P (-14)

is the macroscopic momentum transfer frequency.'® Without the collision term, equation
(5.13) is known as the Euler equation.

Drift-diffusion equation

For collisional charged particles, the momentum equation (5.13) can be further simplified by
neglecting the inertia terms and the magnetic term on the left-hand side with respect to the
collision term, assuming that collisions take place on much shorter time and length scales than
macroscopic field and pressure variations and cyclotron motion :

mw=—1L_ -5 vnT) =L imE—v(Dn). (5.15)
mv myv |q]

m m

This is the drift-diffusion equation, containing two transport coefficients : the mobility « and
the diffusion coefficient D, each inversely proportional to the gas density. For Maxwellian
particles, the ratio D/u (called characteristic energy) equals the temperature according to the
Einstein relation, which is often used to estimate the diffusion coefficient from the mobility as
D = uT. The drift-diffusion equation is consistent with the local-field approximation and the
two-term Boltzmann equation. Substitution of equation (4.5) into nw = [[fv(v/v)-f.d®v and
identification with (5.15) yields

3 o 4
2 %o gy p, =37 [= fuo, (5.16)
31, % Vi
which are commonly used expressions for electrons, where f, is either solved from equation
(4.10) or assumed Maxwellian.* For positive ions the diffusion term is usually negligible. A
compilation of measured ion mobilities g in various pure gases j at standard gas density ng is
given in [EII76] as a function of the effective temperature (5.5) and the reduced field E/n =
Eo/no. From equation (5.14), the mobility in a gas mixture is then given by the Blanc law
[Bla08]

mn
ﬂ:—ol : (5.17)
an Hoj
]

more accurate mobility mixture-rules are discussed in [Pis03]. Equation (5.15) is also used
with zero mobility for (excited) neutral species diffusing in much denser gas species.

'8 The inclusion of the creation (ionisation) frequency S/n in the momentum-transfer frequency is not standard
but done here for simplicity and consistency with the microscopic momentum-transfer frequency (4.11) for the
exponential growth model. Note that in (5.9) and (5.13) it is assumed that all particle creation takes place in the
laboratory frame and hence appears as an effective momentum loss for the fluid ; this assumption is often
reasonable especially for electrons and ions. More rigorously, the frequency S/n in equation (5.14) should only
include the positive contributions (creation) to the particle source term (5.7).

9 These coefficients are provided by my freeware solver BOLSIG+ as a function of reduced field E/n or electron
mean energy &.
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Boltzmann relation

Even further simplification of the momentum equation is obtained for non-collisional
electrons and negative ions trapped in the ambipolar field, by neglecting all terms on the left-
hand side of (5.13) with respect to the field and pressure gradient :

gE=Sv(uT). (5.18)
n

This is the Boltzmann relation, which is consistent with the Maxwell-Boltzmann distribution
(4.13) and the assumption of constant temperature T. Contrary to the other approximated
momentum equations, the Boltzmann relation does not describe the mean velocity, but rather
the spatial profile of the particle density

n=n,exp(—qd/eT), (5.19)

where ng is a reference density corresponding to @ = 0. When using this relation explicitly,
the absolute density and temperature can only be obtained from global balance equations
corresponding to the space integrals of the continuity equation (5.6) and the energy equation
(5.31). However, in self-consistent models the Boltzmann relation is automatically recovered
from the drift-diffusion equation if 4 and D are sufficiently large : the ambipolar field then
adjusts to satisfy equation (5.18).

Magnetised drift-diffusion equation

The drift-diffusion equation can be extended to describe magnetized particles, i.e. charged
particles in a steady magnetic field so strong that the Larmor radius cannot be neglected with
respect to the collision length. Neglecting only the inertia terms in equation (5.13) and
keeping the magnetic force :

W+ Qx (W) = ﬁ LnE—V(Dn) =G (5.20)
q
where G is the non-magnetized drift-diffusion flux as given by equation (5.15) and
-1 _1 (5.21)
mv,, |q|

is the magnetisation vector whose magnitude Q is called Hall parameter and is a measure for
the influence of the magnetic field ; this is generally much larger for electrons than for ions
due to the small electron mass. Then

_4

Lo (G-QxG+(Q-G)Q) |q| nu-E—-V(Dn), (5.22)
which defines the magnetized mobility and diffusion tensors. These tensors have anisotropic
diagonal components : /¢ = Dy/D = 1 parallel to B and much smaller values z,/u=D,/D =
1/(1+Q?) perpendicular to B ; in addition they have non-diagonal components z./u = D./D =
+0)/(1+Q?) causing a flux in the direction of GxB (Hall effect). So an electric field driving the
particles across the magnetic field mainly results in particle drift in the ExB direction rather
than the E direction. Magnetized plasmas often have a cylindrical configuration with the
fields in the axial-radial plane so that the ExB drift is closed along the azimuthal direction.

Equation (5.22) is sometimes used also for non-collisional electrons (mean free path >
macroscopic lengths), e.g. in figure 5.1. In the direction perpendicular to the magnetic field
this is justified by the fact that the perpendicular distance travelled between successive
collisions is limited to the Larmor radius. Parallel to the magnetic field, equation (5.22) leads
to the establishment of the Boltzmann relation (5.19) due to the large mobility and diffusion
coefficient, but the parallel flux may be not correctly described. Equation (5.22) also fails to
describe the effects of curvature and gradients of the magnetic field, due mainly to the

nw =
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assumption of a diagonal isotropic pressure tensor (5.11). Another, more general problem
with the description of magnetized electrons is that the transport across the magnetic field can
be increased by microscopic (turbulent) field fluctuations so that the effective transport
coefficients x./u = D./D > 1/(1+Q?) are anomalously high and hard to evaluate.?’ [39]
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Figure 5.1. Plasma density, current and potential in the ionisation stage of a double-stage plasma thruster,
obtained from a self-consistent model based on the continuity equation (5.6) and the magnetized drift-diffusion
equation (5.22) for electrons coupled with Poisson's equation and an ion particle simulation. The discharge
configuration consists of an annular chamber with a complex steady magnetic field approximately parallel to the
walls and steady voltages applied to several electrodes as shown in figure a. Electrons are emitted by the
intermediate electrode (filament) and driven to the chamber wall across the magnetic field, meanwhile ionising
the gas injected in the back of the chamber. Due to the large anisotropy of the electron transport, the discharge
current ( = the electron current emitted by intermediate electrode) tends to follow the magnetic field lines (figure
b) and the Boltzmann relation (5.19) is established along the lines : ® = T¢In(ne/ng) such that the potential of the
intermediate electrode propagates along the entire magnetic field line intercepting it (separatrix) ; this creates a
potential well guiding the (non-magnetised) ions to the chamber exit into the acceleration stage of the thruster
(figure c). From [27].

High-frequency momentum equation

For charged particles in high-frequency fields, another approximation of the momentum
equation (5.13) is appropriate : assume that the distance travelled over one field period is
small with respect to the length scale of field and pressure variations, so neglect all gradients :

@+Vmw+inw:iE. (5.23)
ot m m

This is often used for electrons in microwave plasmas and describes oscillations of the mean
velocity with a phase shift with respect to the field between 0 and #/2 depending on the
momentum-transfer frequency. The (non-linear) force due to the magnetic component of the
high-frequency field is usually negligible, but the force of steady magnetic fields can be

% This is a major concern in modelling of Hall-effect thrusters. In our thruster simulations based on equation
(5.22) anomalous electron transport is accounted for by an effective frequency, fitted to obtain agreement with
current and performance measurements as discussed in [12]. Recent progress on this issue is reported in [39].
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important, e.g. in electron-cyclotron-resonance discharges. Equation (5.23) is not fully
consistent with the high-frequency two-term Boltzmann equation : assuming forms exp(iat)
for f; and E, equation (4.5) yields the mean velocity

eE 4z ¢ v, —iw 36f0 dv

W, =———— =—(u, +i)E (5.24)
m, 3n,yv,’+o
which can be rewritten as
2 2 e
¢ t-wp /pw, =—| mao(u + ey, |—E. 9.25
5 e /u]w. [mo(u +u?)/ ﬂl]m (5.25)

e

Compared with (5.23) this has an additional factor on the right hand side?. The factor
vanishes (equals unity) for constant momentum frequency vi.(v).

Navier-Stokes equation

For dominant gas particles that are colliding mainly among themselves, the non-diagonal
components of the pressure tensor cannot be neglected, but if the mean free path is
sufficiently short they can be related to velocity gradients as viscosity. A common
approximation of the momentum equation (5.9) for gas particles is the Navier-Stokes equation

%+(W-V)W+VWZW—U(V2W+%V(V-W)j:g+z
j
where 7 is the kinematic viscosity coefficient, given in the literature for pure gases and

approximately related to the momentum coefficients as*

n~ O7£[Z nk,, j, (5.27)

m

where the sum includes all species so also the species of interest. Momentum transfer with
other particle species occurs as a mutual process and can cause acceleration of the gas
particles by the drag force term on the right-hand side, e.g. by positive ion impact in the
(cathode) sheath. The gravitational acceleration g (neglected in all other equations) can play a
role e.g. in thermal convection. The Navier-Stokes equation (5.26) is only marginally used in
low-temperature plasma models ; often the gas is quasi-stationary and so little affected by the
plasma that it is sufficient to assume constant gas pressure. Excited neutral species are
described by the diffusion equation (5.15) (with zero mobility).

n. e
L —nk,w ——V(nT), (5.26)
m+m, " mn

m+m,

Energy equation

The energy equation is the second-order, scalar-product velocity moment of the Boltzmann

equation : multiply (4.1) by mo%/2 and integrate over velocity space :
a‘;’:g+V-(enwg+P~W+Q)—qnW~E=H (5.28)

where IT is the net power density gained in collisions and chemical reactions (negative in case

of power loss) and Q is the heat flux vector defined as

Q=%mj|v—w|2 (v—w) fd’v. (5.29)

21 My freeware solver BOLSIG+ provides both coefficients appearing in square brackets in equation (5.25).

22 This expression is not standard but derived by myself from the collision term of the second (tensor-product)
velocity-moment of the Boltzmann equation. For simplicity it is assumed that the shear pressure per particle P/n
is the same for all species. The factor 0.7 corresponds to the experimental ratio of the kinematic viscosity to the
self-diffusion coefficient for most gases ; it is 1 for constant k., and 5/6 for constant o;,. To be verified.
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Note that from the definition (5.12) the mean energy can be decomposed into thermal energy
and directed energy : &= (3/2)T + mw?/2e.

Electron energy equation
For collisional electrons, the heat flux vector is usually assumed proportional to the
temperature gradient as [Bit04]

Q, = —geDeneVTe . (5.30)

This closure approximation is derived from the perturbation solution of the Boltzmann
equation around a local Maxwellian distribution function f, assuming constant Kinetic
pressure neT, ; for magnetized electrons the diffusion coefficient D, is to be replaced by the
diffusion tensor D,. The electron energy equation is then approximated as follows : substitute
(5.30), assume an isotropic diagonal pressure tensor, and neglect directed energy such that &
= (3/2)Te:

a’gf‘f + Zv (nw,e,-n,DVe,)=-nw,- E+£1—Ie : (5.31)
e
and by substitution of the drift-diffusion equation (5.15) :
%%v-(—yﬁn@ ~-V(D,n,e,))=-nw, - E+1HC ; (5.32)
e

for magnetized electrons replace again /& by pe and D by D.. However, this electron energy
equation is not in general fully consistent with the two-term Boltzmann equation. Evaluation
of the energy flux (me/2e)flfv*v(viv)-fid®v from equation (4.5) suggests the following
reformulation :

—ar(;‘f:" +V-(-p,Ene, —V(D,n,e,))= —newe-E+lHe, (5.33)
e
where
2r T o° 6f0 27rm
He Sng'[v v ‘ 3engj fo .34)

e“e 0 "m eeOm

are the energy mobility and the energy diffusion coefficient?®. Equation (5.33) is equivalent to
equation (5.32) for Maxwellian electrons and for constant momentum frequency : then g/ e =
D.JD. = 5/3. The collisional power term is generally negative and can be expressed in terms of
rate coefficients as

I, = —engzuiniki - eneanKj =—en,® (5.35)
i j

2m, me< j 3>z 2m, k & (5.36)

m,j“e

K; =

m; 2e m.

]

The first term is inelastic energy loss summed over all excitation and ionisation collisions i,
where U; is the threshold energy, n; is the target particle density, and k; the rate coefficient.
The second term is elastic energy loss summed over all elastic collisions j, where #; is the
target density and K; is an elastic energy loss coefficient, proportional to the momentum
transfer coefficient k;,; in case of constant collision frequency omjv ; cf. equation (3.29). The
parameter © is commonly defined to represent the mean power loss per electron (in eV/s).?

% These coefficients are provided by my freeware solver BOLSIG+ as a function of &,.
** The coefficients K; and © are calculated by BOLSIG+ as a function of &.
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Figure 5.2. Comparison of a fluid model and a Monte-Carlo (MC) particle model of the electrons in a direct-
current microdischarge for PALC displays (figure a). The fluid model consists of continuity equations (5.6) and
drift-diffusion equations (5.15) for electrons and ions and the energy equation (5.32) for electrons, self-
consistently coupled with Poisson’s equation. Figures b-d show the spatial profiles of the electric potential,
electron mean energy, and ionisation source term from this model. Due to plasma screening most of the applied
potential drop occurs in a narrow sheath region in front of the cathode. Secondary electrons, emitted from the
cathode by positive ion impact, are accelerated by the cathode sheath field and multiply in ionisation. To get
insight in the errors of the fluid ionisation profile, comparison is made with a MC model, simulating the
trajectories of individual electrons emitted from the cathode as well as all electrons subsequently created in
ionisation, moving in the potential of figure b ; ionisation in fluid model seems too localised near the cathode.
Figures f and g compare the electron energy distribution function (EEDF) at different locations near the cathode
and anode. The EEDF from the MC model shows non-equilibrium phenomena such as peaks of fast electrons
that have undergone none or only few collisions (figure f) and the absence of a high-energy tail (figure g) ; the
EEDF assumed by the fluid model (through the ionisation rate coefficient as a function of mean energy) does not
include these features but gives a better description than the EEDF of local field equilibrium. From [7].
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Mean energy approximation vs. local field approximation

The main purpose of solving the electron energy equation in plasma models is to obtain the
electron transport coefficients 4 and D and the rate coefficients k of electron-impact
ionisation and excitation in conditions where the local field approximation is not justified
because the electric field varies considerably over the energy relaxation length (which is much
longer than the mean free path due to the small electron mass and poor elastic energy
transfer). The transport and rate coefficients are then treated as functions of the electron mean
energy & or temperature T, = (2/3)&. Since the electrons are generally not Maxwellian, the
functional dependencies De(s) k(&) etc are generalized from the solutions of the
homogeneous Boltzmann equation, without real justification ; it is not clear to what extend
this approach can capture deviations from local field equilibrium ; see figure 5.2 for
illustration. However, even in highly collisional conditions (where the local field
approximation would at first sight seem appropriate) it has advantages to solve the electron
energy equation. First, the local field approximation can only describe situations where the
electron flux is driven by the electric field, whereas bounded plasmas always contain regions
where diffusion dominates, e.g. the electrons diffuse across the ambipolar sheath ; the energy
equation yields (an estimate of) the electron temperature and transport coefficients in these
regions. Second, the energy equation relaxes the coupling between the electron equations and
the electric field equation, which makes the numerical solution less sensitive to instabilities.

Heat equation
For neutral gas particles, the energy equation (5.28) is often approximated by the well-known

heat equation, neglecting directed energy. The heat equation for molecules is then usually
extended to include internal rotational and vibrational energy, assuming thermal equilibrium
of all modes of motion, i.e. the mean energy is not m<v®>/2 but cT where c is the heat
capacity at constant volume, approximately 1/2 per degree of freedom of translational and
rotational motion plus (up to) 1 per degree of freedom of vibrational motion?®. Summing over
all gas species j :

0
Z{E<CfnfET) +V- ((c]. +)n,weT —EKjVT)} = an =I1 (5.37)
] ]
where & is the thermal conductivity, approximately related to the momentum coefficients as?®
-1
eT m,
K; =M ;(Z —— nl.km],.j] , (5.38)
] ! ] !

where the sum i runs over all species including the species j ; x; is directly available in the
literature for pure gases relatively unaffected by the plasma. The gas temperature in these
equations is in eV ; to use Kelvin replace eT by kgT ; the factor kg is then sometimes included
in ¢; and x;. The total collisional power IT is generally positive and corresponds to the power
lost by the electrons and ions, transferred to gas either directly as thermal energy or as atomic
or chemical internal energy subsequently converted to thermal energy by exothermic
processes. Equation (5.38) is (sometimes) solved in plasma models to estimate the gas heating
due to IT and the resulting decrease of the gas density (by the ideal gas law at constant
pressure) and possible thermal dissociation of gas particles. The assumption of thermal

% This is according to classical theory. In reality the contributions from rotation and especially vibration are
often smaller due to quantization of the energy, e.g. for light diatomic gases at room temperature ¢ = 5/2 rather
than 7/2 because nearly all molecules are in the vibrational ground state.

% This expression is not standard but derived by myself by generalisation of the expressions in [Rei65] and is to
be verified.
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equilibrium of the different modes of motion is questionable : the plasma tends to heat
preferentially the vibrational mode ; sometimes a separate energy equation is used for the
vibrational temperature or (even more rigorous) different vibrational states are described as
separate species.

lon energy equation

For ions, directed motion has an important (if not dominant) contribution to the mean energy.
Assuming a heat capacity ¢ and heat flux —x<VT as in equation (5.37) but including the
directed energy mw?/2, the ion energy equation becomes :

2
ec, %+V-(€(q +D)nw.T, —ex;VT,) =TI, +g4.m,w, -E—?"#—?iv-<n,w.wi2) :

(5.39)
The collisional power term IT; is generally negative, as for electrons. The directed energy
terms are closely related to the electric work term gnw-E and can be conveniently rewritten by
substitution of the scalar product of the momentum equation (5.13) and the mean velocity w :
onT _ .
ec, %+V~(eciniWiTi —ex VT, )—en,(V-w,)T, =11, +(2V,, n, —S,.)%w,.2 (5.40)

which shows that the ion temperature (thermal energy) is created from the directed energy by
collisions. In local field equilibrium, the ion temperature is controlled by the balance of the
terms on the right-hand side of equation (5.40) ; for isotropic-scattering collisions with
neutrals of mass m, and temperature T, (see equation (3.29)) this yields :

2m, Vil (% w? +%(Ti —Tn)j =2V, 1 %wiz hence eT =eT, +%mnwi2 .(5.41)

m; + m,

The ion energy equation (5.39/40) is usually not solved in plasma models because the ion
temperature is a rather unimportant parameter, e.g. for positive ions the pressure gradient
V(nT) is usually negligible with respect to the electric force. The ion transport coefficients are
then evaluated by the local field approximation as a function of the reduced electric field or
the relative temperature (5.5) estimated substituting (5.41) : T, = Ti = Ty + mwi*/3e. [EII76]
Note also that the validity of the ion energy equation (5.39/40) and even the concept of ion
temperature as introduced in equations (5.11-12) are questionable because the ion pressure
tensor tends to be anisotropic, especially when charge-exchange collisions (with neutrals) are
dominant.?” %

" The ion pressure is anisotropic even when the ion distribution function is fully controlled by isotropic-
scattering collisions : from statistical analysis of equation (3.27), assuming local field equilibrium and a constant
collision frequency, it follows that Ty, = T, + [(4m;+m,)/(2m;+m,)] x mywi’/3e parallel to the field and T;; = T, +
[(mi+m,)/(2mi+m,)] x mywi?/3e perpendicular to the field, rather than equation (5.41).

% My paper [5] presents simple analytical expressions to estimate the ion energy distribution in case charge-
transfer collisions are dominant.
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Chapter 6

BOUNDARY CONDITIONS FOR FLUID MODELS?

The fluid equations are solved within a spatial domain with one or more (often all) closed
boundaries corresponding to physical walls. The boundaries conditions at these boundaries
describe the physical processes at the wall which play an important role in the plasma
dynamics : electrons and ions are lost in recombination, excited neutrals de-excited,
secondary electrons are emitted by ion and excited neutral impact, etc. Since the fluid
equations are conservation equations for particles, momentum, and energy, appropriate
boundary conditions specify the fluxes of particles, momentum, and energy perpendicular to
the wall surface. To formulate such wall-flux boundary conditions, it is useful to distinguish
between particles coming from the plasma, moving toward the wall, and particles coming
from the wall, moving away from it ; write the net particle flux as

nw, =nw-n=nw, —I",, (6.1)
where n is a normal vector toward the wall, w., is the effective wall loss speed of the particles
coming from the plasma, and I'y is the particle flux coming from the wall due to reflection
and surface creation ; wy, and I'y, are positive by definition. The particle flux coming from the
wall can be obtained from the incident fluxes as

r,=rnw, +;7jnjwwyj . (6.2)
The first term represents reflection with a probability r and the second term represents
creation due impact of other particle species j with a probability y. The second term is
particularly important for electrons to account for secondary electron emission by ion impact,
in which case yis the secondary emission coefficient.

The effective loss speed wy is to be derived from kinetic considerations, e.g. from
assumptions on the distribution function in the half of velocity space containing the particles
moving to the wall. The simplest approach is to assume a Maxwellian distribution function
and integrate the particle flux over velocity half-space :

1 7 2 2 1 1 [8eT
- exp(—v,2 10, )dv, =——p, == /— 6.3
ww {7Z'UT .([UL p( UL UT ) UL 2 !72' Z)T 4 T ( )

where v, is the velocity component perpendicular to the wall and vr = (2eT/m)"? is the
nominal thermal speed. This is often used for charged particles especially electrons (e.g. in
classical sheath theory) but does not account for the effects of the electric field and particle
density gradient and gives a bad description in case of significant directed motion, e.g. for
ions accelerated to the wall by the electric field. Therefore, many authors add additional
contributions to the effective wall loss speed to represent directed motion. Commonly used
for collisional charged particles is the expression [Meu95][Boe95]

1 q
w, =—=v,+max| — uE 0], 6.4
w 2\/7—2_ T [| qlﬂ 1 J (6.4)
i.e. the perpendicular drift velocity is added in case it is directed to the wall. The two terms
are sometimes interpreted as boundary expressions for the diffusion term and the drift term of

% One of my first papers [3] dealt with boundary conditions for fluid plasma models and excited many
(sometimes disapproving) reactions which made me aware of some (conceptual) mistakes in it, e.g. the mobility
term in equation (9) is inappropriate. My current views on the subject are presented here.
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the drift-diffusion equation. However, such interpretation is not pertinent : the intrinsic
approximations of the fluid equations do not hold at the wall and neither does the fluid-like
separation into different flux terms. Drift, diffusion, thermal conductivity, heat flux, etc are
not well defined at the wall.

Collisional electrons and neutrals

More consistent boundary conditions can be obtained by making more consistent assumptions
on the distribution function. For near-isotropic collisional electrons and neutrals, it is
reasonable to assume a shifted Maxwellian distribution around the mean velocity w.

Approximate for [w,| < vr and integrate the particle flux over velocity half-space :

w, :\/_ﬂ—lvTvL exp(—(vL —w, ) /sz)de
TO

~ 1 jvl(1+20lwijexp(—vf/sz)dvl :LUT+EwL; (6.5)

ULy o 2\r 2

this is consistent with the two-term solution of the Boltzmann equation (4.5) for constant
collision frequency vi. Substitution into equation (6.1) yields*

w0, = max(%vT —%,oj, (6.6)

i.e. without reflection or wall creation I"y, the effective loss speed is twice as large as (6.3), but
it is reduced as I, increases. The max-limiter is added to prevent ww. becoming negative in
case of strong wall creation, when the approximation |w,| << vr is no longer justified ; this
happens for electrons at the cathode due to secondary emission by ion impact, and it is then
indeed appropriate to set w, = 0 because the secondary emission coefficients y given in the
literature have generally been deduced neglecting thermal electron loss to the cathode. In case
', consists only of reflected particles, equations (6.1-2) and (6.6) can be combined to obtain
the wall flux as

(6.7)

this is a common boundary condition for neutrals [Cha87].

Positive ions

For positive ions, which have a strongly directed motion toward the wall w, > vr due to
acceleration by the ambipolar (sheath) field, equation (6.6) is not appropriate. Without the
approximation w; << vt and without wall creation T, the assumption of a shifted
Maxwellian distribution around w, leads to an infinite effective loss speed w., i.e. to zero
density at the wall. Although this seems unrealistic and is not commonly used, zero wall
density n = 0 is not a bad boundary condition for ions. In fact, due to the strongly directed
motion, the ion boundary condition does not propagate inside the volume (only over a
negligible distance of order T/E,) provided that the effective wall loss speed be larger than the
mean velocity upstream such as to prevent ion accumulation at the wall. Another possible
boundary condition for ions is therefore to simply add a drift term to equation (6.6) :

1 r q
w, =max| —=v; ——*,0 [+ max| — uE,,0 |; (6.8)
(ﬁ ! j [Iql ’ ]

n

% This equation and many of the following equations in this chapter are not standard ; however | have not
checked the literature carefully enough to claim them original.
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this exceeds the ion velocity upstream not only in drift-diffusion models but also if the ion
inertia terms are retained. Equation (6.8) has consistent limits for all particle species and is
recommended instead of equation (6.4).

lons in quasineutral models

In quasineutral plasma models (see chapter 8), the sheath in front of the wall is not
represented and the boundary corresponds to the sheath edge rather than the wall. Then the
ion boundary condition propagates inside the volume through its direct influence on the
electric field and zero ion density is not an appropriate boundary condition. If the effective ion
loss speed is larger than the mean ion velocity upstream e.g. by equation (6.8) then the plasma
density gradient is increased near the boundary ; assuming electron Boltzmann equilibrium
this increases the electric field towards the wall, which increases the ion velocity and loss
speed, which further increases the plasma density gradient, and so on, until the loss speed
attains the Bohm speed™' :

w, = \/(qz'Te +eT))/m; ~ \/‘71'Te/mi ’ (6.9)
which is the maximum speed for inertial ions allowed by the quasineutral approximation. This
can be shown by a simple stability analysis of the ion fluid equations coupled with the
electron Boltzmann relation in one dimension x :

on onw g - ow ow _ g eT; on  qT,+eT, on
—+—>=5 , —tw—+vV,w=-"+E-—>+—=—"—"1—
ot dx ot ox m, m.mn 0x mn  Ox
Consider that the ions move in the positive x-direction towards a wall boundary and that the
ion velocity near the boundary is slightly increased as w + w' exp(Q2t + Kx) on a short length

and time scale such that Kw >> |0w/0x| and © >> v_; substitution in equations (6.10) yields

(6.10)

Q= (i\/(qiTe +eT))/m, —w)K : (6.11)

there exists a positive Q so the perturbation grows at arbitrarily large K for any w smaller than
the limit (6.9). So, provided the spatial inertia term (w-V)w is included in the ion momentum
equation, the Bohm speed (6.9) appears automatically from equation (6.8) or any other
boundary condition describing complete ion absorption.* However, this is rather sensitive to
numerical errors due to spatial discretisation, which tend to bring to a halt the growth of the
ion velocity before it actually attains the Bohm speed (6.9) ; it can therefore be preferable to
impose (6.9) directly as a boundary condition. Equation (6.9) is an appropriate boundary
condition also for quasineutral drift-diffusion models neglecting ion inertia. If there are more
than one positive ion species then (6.9) is not generally justified for each species separately
but rather

P L (6.12)

i miww,iz T,
however, the steady-state loss speed of each species remains close to (6.9) as long as the mean
free paths and the spatial ionisation profiles are similar. [Fra00]

® |t is a common misconception that the description of the Bohm speed requires the description of the sheath ; it
is a natural limit also for quasineutral models. In my opinion this is more relevant to the origin of the Bohm
criterion than the arguments about space charge inversion advanced in most text books. Note also that the
existence of a sheath is implicit in the electron Boltzmann relation : without sheath the electrons would not be in
Boltzmann equilibrium.

%2 This holds also for quasineutral PIC or hybrid models based on ion particle description with full ion absorption
at the boundary, e.g. my hybrid model of the Hall effect thruster, although important errors can arise from
discretisation.
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Boundary conditions for the momentum equation are needed only if the inertia or viscosity
terms are retained, i.e. for inertial ions or neutrals (Navier-Stokes equation). Usually simple
boundary conditions are sufficient : for inertial ions V,w = 0 ; for collisional neutrals zero
parallel velocity w, =w —w,n =0 and w, as above from equations (6.1) and (6.6).

Electron energy

For the electron energy equation it is appropriate to use energy flux boundary conditions in
analogy with the particle flux boundary conditions discussed above. Since electrons only
transfer kinetic energy to the wall when they are lost, write the energy flux as

Q, =nw,&,-T,&, (6.13)

where &, is the mean energy lost per electron and & is the mean energy of the secondary
electrons emitted from the surface. The energy loss per electron can be straightforwardly
obtained by averaging over a half-Maxwellian distribution :

1 o0
& = —I - (sz + UJ_Z)UJ_ exp(—vf /UTz)va_ = ﬂUTZ =21, (6.14)
Jrow, g 2e e

where w,, from equation (6.3) ; the term o7 in the particle energy accounts for the velocity
components parallel to the surface. The energy loss of 2T, per electron is commonly used in
plasma physics. However, for collisional electrons it seems more reasonable to assume a

shifted Maxwellian distribution around the mean velocity, as above :

1 o0

&, = —I e
\Evaw 0 26

R N LR

e 4v, 2 no;

(0" +0,%)0, exp(~(v, —w,)* /v, )do,

T, (6.15)
where w, from equation (6.6). Without secondary emission this is a factor 5/4 higher than
(6.14) but decreases as secondary emission increases.

In quasineutral models, where the boundary corresponds to the sheath edge rather than
the wall, the sheath potential must be added to the energy loss per electron to account for the
electron energy transferred to the ions by the sheath field :

g, =21 + D, (6.16)
where the sheath potential ®s is to be deduced from a sheath model. For a non-collisional
sheath (mean free path >> sheath thickness), assuming zero current to the wall, Maxwell-
Boltzmann electrons, the electron loss speed (6.3) at the wall, zero secondary electron
emission, and the ion Bohm speed (6.9) at the sheath edge :

CDS:lTeIn[LZJ:ETEIn[ L ]; (6.17)
2

2rm,w,; 2 27m,

the last member is reasonable only for steady state.

It is interesting to observe that the first term 2T, in equation (6.16) holds for both a
Maxwellian and a shifted Maxwellian electron distribution. For a shifted Maxwellian,
consider that the quasi-totality of electrons is reflected at the sheath edge, substitute I",, =
rmwew = (o1l 77?)r/(1+r) into equation (6.15) and take the limit for r approaching 1 : this yields
2T, as for a centered Maxwellian. From comparison of equations (6.15) and (6.16) it then
follows that in a collisional sheath (mean free path << sheath thickness), neglecting secondary
emission and collisional energy loss inside the sheath, the electron temperature drops by a
factor 4/5 from the sheath edge to the wall.
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Chapter 7

NUMERICAL METHODS FOR FLUID MODELS

Although there exist many sophisticated numerical methods for the solution of fluid equations
in general, plasma models are usually based on more basic methods, which provide the
flexibility and simplicity that is needed to successfully deal with the coupling between the
different fluid equations and with the Maxwell equations (see chapter 8). This chapter
describes some basic numerical methods that are well adapted and commonly used for fluid
equations in plasma models.

Time integration
Consider the general form of a conservation equation with a drift-diffusion flux :

%+V-(Wn—DVn):S, (7.1)

where the density n, drift velocity W, diffusion coefficient D, source term S are generic, i.e.
can have different physical meanings. This equation corresponds directly to the substitution of
the drift-diffusion equation (5.15) into the continuity equation (5.6) (W = +4E), to the energy
equation (5.32) (N = ne& ; S = —nNWe-E—n® etc), and with some minor modification of the
time derivative also to the energy equation (5.31) (n = & ; W = —(5/3)new, ; D = (5/3)n.De
etc) and the heat equation (5.37).

Consider that equation (7.1) is part of a self-consistent plasma model where it is
coupled with similar equations for other particle species and with the Maxwell equations. The
couplings with the other equations act upon W, D and S and are generally resolved by explicit
time integration : the model equations are integrated sequentially (one by one) over small time
steps At, where any coupled quantity is evaluated explicitly from the previous time step. In
fact, since fully explicit evaluation requires At to be smaller than the characteristic time scale
of the coupling, various semi-implicit methods are used to avoid time step constraints (as
discussed further on), but the equations are generally kept separated and in the form (7.1).
Note that time integration is not only used to describe transient behaviour but is also a
common and recommended method to obtain steady state model solutions, because it
automatically respects the ordering of the different coupling time scales so that the physical
stability properties are preserved ; some initial spatial solution is then advanced in time until it
has relaxed to steady state.

Hence, a spatial profile n(x) given at time # is to be advanced to time #** = # + At
from equation (7.1) for given W, D and S. The time derivative is approximated by a finite
difference. Simplest is to evaluate n in the transport term explicitly at time ¢*:

™t =+ ALS— AV - (Wi - DVnk), (7.2)

but this requires a severe Courant-Friedrichs-Lewy (CFL) constraint on the time step of the
type
2 2\1

At <(W,/Ax+W, /Ay +2D/ Ax" + 2D/ Ay* ) (7.3)
where Ax and Ay are spatial discretisation steps in two dimensions. Equation (7.2) is
sometimes used in combination with a high-order spatial discretisation scheme to obtain the
transport term with high accuracy, but often the accuracy of simple spatial discretisation
schemes (see below) is sufficient and it is possible and recommended to evaluate the transport
term implicitly at the new time step :
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ink+1+V-(Wnk+l—DVnk+1):ink +S ; (7.4)
At At

this is stable without time step constraints so At can be much larger than (7.3). The accuracy
of the time integration is only first order but this is sufficient : At tends to be limited more by
the (stability of the) coupling with other equations than by accuracy.
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Figure 7.1. Two-dimensional grid for fluid models. Scalar quantities are defined at the dots, x and y components
of vector quantities at the horizontal and vertical arrowheads ; hatched areas represent blocked cells outside the
computational domain. Figure a shows the indexing of the different points, figure b some volume and surface
elements including an effective wall surface element to represent an oblique domain boundary.

Spatial discretisation

To solve equation (7.4), the space derivatives are discretised as follows. Consider a domain in
two spatial dimensions x and y. The domain is divided in rectangular cells as shown in figure
7.1, usually a hundred or so in each dimension. All scalar quantities are defined at the grid
points, corresponding to the cell corners, referred to by indexes (i,j). The x and y components
of vector quantities are defined at locations halfway between the grid points, indicated by
arrowheads in figure 7.1, referred to by half-indexes (i+1/2,7) and (i,j+1/2).

The divergence operator is discretised by the control volume method, according to
which so-called control volumes are defined around the grid points with edges passing
halfway between the grid points as shown in figure 7.1. Now integrate the conservation
equation (7.4) over a control volume, apply the Gauss theorem, and approximate the volume
and surface integrals by simple quadratures :

1%

ini,]‘ + Ax,i+ﬂ2,j (Wxn - D@_ﬂj - Ax,i—llz,j (Wxn - D@j
At OX )i OX )i 4y,

on on 1
Ay jewe (Wy”—D—J —Ay e (Wyn—D—J -V, (A—tnjf +S, fj’ (7.5)
i,j+1/2 ij112

where V, Ay, and Ay are the geometrical volume and surface areas of the control volume,
depending on the coordinate system (Cartesian, cylindrical etc). This discretisation method
imposes conservation of the flux within any ensemble of control volumes so also within the
entire domain.
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The drift-diffusion flux is discretised by the exponential scheme [Sch69]

W._. W .
(Wxn _ Da_nj — x,i+1/2 n,‘ + x,i+1/2
0X )iy 1—€Xp(=2,;,10) 1-exp(z, ;1)

i+1

. |2, 02 | n,—n
=min(W_...,,0n. . +max(W_ ..., 0)n. — s D,,,—— 7.6
( x,i+1/2 ) i+1 ( x,i+1/2 ) i |:exp(| Zx’H_l/z D—l i+1/2 xi+1 —x, ( )
where
Zeian =Wy (Xig — xi)/Dz'+1/2 . (7.7)

This is scheme is based on the analytical solution for n as a function of space assuming a
piecewise constant flux, drift velocity, and diffusion coefficient. Since these assumptions are
often reasonable, especially for electrons, the exponential scheme leads to accurate densit
profiles even with only few grid points, especially for the electron density in the sheath.
When diffusion is negligible (|z| >> 1), the exponential scheme turns into the classical upwind
scheme, and when diffusion is dominant (|z] << 1), into the central difference scheme. The
third member of equation (7.6) shows that the exponential scheme can be directly written as a
combination of the upwind scheme for drift (first two terms) and the central difference
scheme for diffusion (last term) with a decreased diffusion coefficient ; the factor in square
brackets decreases from unity to zero as |z| increases.

Linear system
By substitution of (7.6) in (7.5), the spatial differential equation (7.4) is approximated by a

system of linear five-point equations

c E W N s R
@ M T 0 M T 0 g 1 g 1 =0 (7.8)

relating the n-value at each grid point to those at the four neighbour points, where a®, a%, 2",
aV, a°, and a® are (central, east, west, north, south, result) coefficients depending on W, D and
S as follows :

afj - amvj + [AXWX ]i+JJ2,j - _[AXWX/(EXp(ZX) a 1)]i+U2,j

N

ij = aisﬁl + [AyWy j|i,j+1/2 - _[Aywy/(eXp(zy) _1):|i,j+1/2

c _ _E _ W _ N _ s
ai,j_‘/i,j/At O =@ @1 jn

af =V, (nf; [At+S, ). (7.9)
N

a

The central coefficient is dominant : || > |a + 2" + a™ + 4°| which ensures the existence of
the solution of the linear system. Arbitrarily shaped plasma domains can be described by
blocking grid cells as shown in figure 7.1b, such that the plasma boundaries pass through grid
points. Boundary conditions for the wall flux of form (6.1) can then be directly implemented
into the linear system by adding contributions Auw. and A to the coefficients a© and 4%,
respectively, where A is the surface area element at the wall. The boundary points have no
links to points outside the plasma domain ; the corresponding coefficients o= are zero. The
system of linear five-point equations is solved most efficiently by iterative methods since a
good estimate of the solution is available from the previous time step ; a recommended
solution method that is well adapted for plasma models is the so-called modified-strongly-
implicit procedure [Sch81]. In one-dimensional models, the discretised equations have a
three-point form are solved directly by tridiagonal Gaussian elimination.

% The exponential scheme is also very appropriate to discretise the two-term Boltzmann equation (4.10) and is
used by my freeware solver BOLSIG+.

42



Full momentum equation
In case inertia or viscosity is included in the momentum equation (for ions or neutrals), the
above methods are still applicable but they require some extensions. The following scheme is
effective even if the inertia and viscosity terms completely dominate the momentum
equation.®® First, calculate W ~ w*** as the new mean velocity from the momentum equation
using the old density n* for the pressure gradient. To avoid CFL time step constraints, treat the
space derivatives implicitly and solve a linear system of five-point equations for each velocity
component, e.g. for the ion momentum equation (5.13) :
L wrw vywsr w=twis L
At At m mn
Subsequently, solve the new density n“"* from the continuity equation including an implicit
diffusion-correction of the mean velocity to account for changes in the pressure gradient :

Aitn"” +V~(Wnk+1 —Dw"”) =Aitnk +S—V~(DVnk) (7.11)

¢ v(Tn"). (7.10)

k

The diffusion-correction terms appear on either side of the equation and cancel in steady state,
but they are necessary to ensure numerical stability at larger time steps. The diffusion
coefficient D is essentially a numerical parameter which does not require precise evaluation ;
it is sufficient to estimate D approximately, e. g. for ions

_ e(T+T) N oy

D () ve=o e(T,)/m (7.12)
where v* is an effective frequency characterising the global ion transport, R is some average
plasma radius, and the triangular brackets represent some volume average. The electron
temperature is included in D to correct for changes in the electric field due to changes in the
electron pressure (assuming quasi-neutrality and Maxwell-Boltzmann electrons) ; this
facilitates the coupling with Poisson's equation in self-consistent plasma models (see chapter
8). For neutrals described by the Navier-Stokes equation (5.26) the diffusion coefficient is
estimated as D ~ eT/mv* with v* ~ 8<7>/R%. Finally, update the new mean velocity with the
new pressure gradient:
D V('™ —n"). (7.13)

k+1
n

The continuity equation (7.11) can be discretised and solved as above, but care must be taken
that both diffusion terms are discretised likewise (so that they really cancel in steady state)
e.g. by using the last member of equation (7.6) without the exponential-factor in square
brackets. The space derivative in (7.10) can be discretised by the upwind scheme :
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% This scheme is used in my low-pressure plasma model for the ICP source for ITER.
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Implicit source term prediction

The source term S in equation (7.4) often depends on n. Explicit evaluation can then require
time step constraints. To see this, consider a perturbation fi around the stationary solution of n
and assume the transport term proportional to n :

S~k ~ e+l
-1 +[§jﬁk”—(&9}fzk : "™t 1+ AtoS/on (7.15)

=2 ie. = .
At n on " 1+AtS/n

The perturbation grows so the stationary solution is unstable if 6S/on > S/n, e.g. for electrons
with an ionisation source term S = kn¢? ; the solution is then stabilised externally by coupling
with some other equation, e.g. the ionisation rate coefficient k depends indirectly on ne
through the electron energy equation. If 6S/on < S/n then the solution is intrinsically stable
provided that 7x*/i7k > -1, i.e.

At(0S/on+S/n)>-2. (7.16)
This time step constraint can be prohibitive if the transport term is small with respect to

different positive and negative contributions of the source term but can be avoided by the
following implicit linear prediction of the new source term :

S=S5"+min(8S/on,S/n,0)(n** —n"), (7.17)
as can be readily verified from the above analysis. The term S/n in the min-delimiter is
included to prevent n becoming negative during transient stages of the time evolution.

Implicit source term prediction is of particular interest for the electron energy equation
(5.31/32). The energy source term is

S=-nw,-E-n®@=nuFE*+V(Dn) E-n®. (7.18)
Neglecting energy transport, the electron mean energy is controlled by equilibrium of the
positive heating term and the negative terms for diffusion cooling and collisional energy loss.
Explicit evaluation tends to cause instabilities because D and especially ® are strongly rising
functions of the electron mean energy so that 0S/0& >> |S/&| and the time step constraint
(7.16) can be very severe. Using the Einstein relation D, = (2/3)u& and neglecting the
energy-dependence of 1, the implicitly predicted energy source term (7.17) becomes™

e

k
S=-nw,-E-n 0"+ [% uvn, -E—n, {Sg} J(eek*l -&). (7.19)

k+1

Sometimes the energy equation (5.32) is solved for the energy density (nes)" ~ rather than

& and the appropriate implicit expression is

3n

e

k
S=-nWw,-E-n®" J{ﬁVnE -E —{2—(9} J((ngge)k+l —nek*lgek) , (7.20)
86

where the electron conservation equation must be solved before the electron energy equation
so that ne<* is known ; the mean energy is then obtained afterwards by dividing (ne&)"*/ne<**.
The min-delimiter has been omitted in equations (7.19-20) because it is generally superfluous.
The prediction term adds positive contributions to the coefficients a and a® of the five-point
system. Note that when applied to particle source terms, equation (7.17) can affect the
conservation of mass and charge of the plasma model because the source terms for different
species are no longer entirely consistent.

% My paper [2] presents a more precise version of this energy source term prediction method, based on the
linearisation of the exponential scheme (7.6-7) and accounting for the energy-dependence of the mobility.
Unfortunately this paper contains sign errors throughout which have persisted even in the corresponding chapter
of my thesis.
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Figure 7.2. Numerical grid points involved in the discretisation of a (horizontal) magnetised flux component at
position (i+1/2, j).

Magnetized fluid equations

The above methods can be extended to account for the drift-diffusion flux and energy flux of
magnetised electrons as follows. The magnetised fluid equations do not have the form (7.1)
but rather

@+V~I‘=S
ot
I‘Enw=1 lQZ(G—QxGJr(Q-G)Q) G=Wn-DVn. (7.21)
+

Consider an axisymmetric configuration with Q = gB/mv in the axial and radial directions ;
this corresponds to most magnetised discharges. The transport in the axial-radial plane is then
characterized by anisotropy of the transport coefficients Dy/D, = 1 + Q? up to 6 orders of
magnitude. The control volume method can be applied as before :

(Vn / At)k+l + (Axrx)f:J:bZ,j - (Axrx)fjﬁlj + (Arrr)i'(,;];JJZ - (Arrr)zl'(,;iJJZ = (Vn / At + VS)k

i,j i,j?
but the discretisation of the flux T is delicate. Expressing the flux components in cylindrical

coordinates yields
2
r, =t (Wxn - Da—"j 1282 (w,n - Da—”j (7.22)
1+Q ox) 1+Q or
and an analogous expression for I'.. Clearly, if the magnetic field is not exactly aligned with
the grid (.2, = 0) the flux components contain a cross term proportional to the gradient of n
in the transverse direction. The two terms of (7.22) can be discretised separately by the
exponential scheme (7.6-7) but the cross term requires interpolation from 4 locations
involving 6 grid points as indicated in figure 7.2 :
k+1 k
kil A2\ ([ 7 ~ On A A (o~ - on
T, _{(1—@ )(Wxn—Dgﬂ +[er+ﬂ2’j {Qx (W,n—Dgﬂlwm (7.23)

i j+1/2

et
O=-0/\lla+’
W =W (1+aQ7)/(1+Q%)
D=D(+aQ?)/1+Q)
where
a =min(, /1) (7.24)
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is a numerical parameter introduced to facilitate the solution and limit discretisation errors for
large Hall parameters (large anisotropy) as discussed below. In order to keep the discretised
linear system in five-point form (7.8) as before, the cross term is evaluated explicitly from the
previous time step, i.e. it is included in the result coefficient a®. This explicit treatment of the
cross term converges regardless of the time step ; e.g. consider a stationary solution and
perturb I and G with a form exp(ik-x) assuming k-I" = 0 (continuity) and kxG = 0 (G is the
gradient of a scalar quantity) ; then equation (7.23) yields

G | 2002, Q k k. | - 1

= < , 7.25
G' A+ +1+a)k’ ~ 1+2/min(Q’, ) (7.25)

m
i.e. the perturbation is dissipated. However, as shown in the last member of (7.25), the
convergence is slower as the Hall parameter Q is larger so that more iterations (time steps) are
required to obtain the correct solution ; this seems to be a general problem which also occurs
if the cross term is treated implicitly by a nine-point iterative solution procedure [Sch81].

A second and more serious problem is that the magnetised flux is very sensitive to
discretisation errors : both terms in equation (7.23) are of the order of the non-magnetised flux
G and tend to be opposite in sign and very much larger than the net flux I" ; since the terms
are discretised independently (from different grid points) the relative discretisation error in "
can be enormous. This is illustrated in figure 7.3. In fact, beyond a certain Hall parameter Q >
5-10, the flux across the magnetic field tends to be determined by numerical errors rather than
by the physical coefficients 4, and D, ; hence equation (7.23) is not appropriate for models of
ExB discharges (Hall effect thruster, Penning trap, magnetron). To limit these numerical
errors, the factor « in equation (7.23) reduces the transport coefficients parallel to the
magnetic field for large ©Q > Qnax While keeping the perpendicular coefficients intact.*

A more proper way to limit numerical errors across the magnetic field is to modify the
flux discretisation scheme by elimination of the cross term using the expression for the
transverse flux component :*’

k+1 ~
P = s (W=D | 4| 2| [ar]
X,i+1/2,j l+QZ x ax ‘ A 1+QZ oy Xt r 1

r i+1/2,j r 7

Q=JaQ,
where the first term is discretised by the exponential scheme (7.6) like before and the second
term is evaluated explicitly from the magnetised flux at the previous time step ; this converges
as equation (7.25) but then for T**%/T*. Both terms of equation (7.26) are of the order of the
flux across the magnetic field so their (relative) discretisation errors are not amplified in T.
However, with (7.26) the parallel transport involves iterative, mutual reinforcement of the two
flux terms and tends to be slowed down, which can impede the establishment of the
Boltzmann relation along the magnetic field lines and can even affect the stability of the
ambipolar field. Depending on the discharge configuration one of the discretisation schemes

(7.26)

i,j-1/2
i,j+1/2
i+1,j-1/2
i+1,j+1/2

% Strong electron magnetisation usually occurs at very low gas pressure when the electrons are nearly
collisionless as they move (oscillate) along the magnetic field lines. The drift-diffusion equation parallel to the
magnetic field is then justified only insofar it yields the Boltzmann relation (5.19) and the parallel transport
coefficients are not physically relevant ; all that counts is that they are much larger than the perpendicular
coefficients.

¥ | originally developed this scheme for two-stage Hall effect thrusters with a complex magnetic field, for which
it works very well even without the factor a. When | recently applied the scheme to a magnetron discharge it
turned out to work less well and lead to unphysical artefacts and convergence problems for Qq., > 10. The
scheme is briefly described in my paper [27].
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is preferable : equation (7.26) for ExB discharges and equation (7.23) for discharges with free
transport along the magnetic field lines ; neither scheme is appropriate for all configurations.

For simple magnetic field topologies, numerical errors can be rigorously limited by the
use of an orthogonal curvilinear grid following the magnetic field lines, so that the cross term
vanishes from the flux expressions.®

10 - - | . .
(a) 0.0
T ] — F standard method
3 [xs)
P = 02
. standard method 2 —
7 10°F 3 2 4| fluxmethod
N angle = n/6 3 3 L
E 10° — N st
E (18] - .

5 w4 3 = aspect ratio 1/4
= . w3 S -0.8| grid 80x20

10 F aspect ratio 1/4 analytical g = field angle =/4

F grid 80x20 (flux method) ] 1.0 | Hall parameter 100
106 Lo il M | L Py L 1 L 1 L 1 . 1 .
1 10 100 1000 anode 0.2 0.4 0.6 0.8 cathode
Hall parameter horizontal position
insulator wall
I'r ----------------- #
: 1
anode| uniform B ,f’h cathode
£
(111 + v O ’ i’ ('I‘Jl_
’ —l—= /7
insulator wall

Figure 7.3. Numerical test results for a simple ExB discharge where a horizontal electron flux is forced through
a uniform plasma in a rectangular channel across an oblique magnetic field. The plasma potential and electron
flux are solved from the electron continuity equation and magnetized drift-diffusion equation (7.21), assuming
fixed ion density, quasineutrality, fixed potentials ®, and ®, at the vertical boundaries, and zero current at the
horizontal boundaries. Figure a shows the electron flux in the centre of the channel obtained from different
numerical methods for different magnetic field angles « and different Hall parameters. The standard method
based on discretisation of transverse gradients as shown in equation (7.23) tends to overestimate the electron flux
with respect to the transverse flux method of equation (7.26) ; the latter is in agreement with the analytical
solution. Figure b shows the horizontal potential profile in the centre of the channel ; the analytical potential is
linear (uniform electric field) within the triangular region where the magnetic field lines intercept the horizontal
walls, but the standard method (7.23) yields a spurious curved potential profile. From [27].

38 Recently | have come across a publication [GUn05] proposing a simple scheme to calculate heat transport in
strongly magnetised plasmas using a non-aligned grid, where numerical errors are strongly reduced by
“symmetric” discretisation of the longitudinal and transverse gradients around the points (i+1/2, j+1/2). | have
done some preliminary test calculations using this scheme in combination with an iterative 9-point solver ; the
results are very promising ; it should be possible to adapt the scheme to the magnetised drift-diffusion equation
coupled with Poisson’s equation in arbitrary geometry. To be continued.
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Chapter 8

AMBIPOLAR AND ELECTROSTATIC APPLIED FIELDS

The ambipolar field generated by plasma charges is described by Poisson's equation
V-(gE)=-V: (VD)= qunj , (8.1)
j

where the right-hand side is the plasma space charge density. Applied electrostatic fields can
be taken into account by applying potential differences in the boundary conditions. To
account for dielectric materials surrounding the plasma, Poisson's equation must be solved
also inside these materials, including the relative dielectric permittivity (1+y) in the left-hand
side, up to a distance far enough to suppress the influence of any artificial boundary
conditions at the domain edge (usually V,® = 0) ; plasma charges accumulated on the
dielectric surface can be included in the right-hand side of equation (8.1) ; an example is
shown in figure 8.1. Poisson's equation can be solved numerically by the same implicit
method described in chapter 7 for the fluid equations, involving finite volumes for the
divergence, central differences for the gradient, and some (iterative) solution procedure for
the discretised system :

C E R
a,.’jfl)iy]. + aiijD

S
+a, D, =a

W N
¥ 0P+, Dy i

where
afj = um,j =-[A. 1+ Z)go]iwz,j/(xm —X;)
aiIT]j = r’s,j+ =-[A, Q1+ Z)go]i,jmz/(ym ~Y;)
4y =—ay;—ay —ag—a;

t
a {VZ% +A,f Zqznzwﬂdt} : (8.2)
1 1 i
The last term in the result coefficient a" represents surface charges.

When coupling Poisson's equation self-consistently with the description of the charged
particle motion, it is important to observe the characteristic length and time scales of the
coupling. From substitution of the electron Boltzmann relation (5.19) in Poisson's equation
gOVZ(D ~ en,®/T, it follows that the characteristic length is the Debye length

Ao = 4jgoTe/enc , (8.3)
corresponding to the distance over which electron pressure variations can resist to the space
charge field ; this also characterises the thickness of the ambipolar sheath at the wall. To find
the characteristic time of the ambipolar coupling, differentiate Poisson's equation with respect
to time and substitute the electron and ion continuity and momentum equations such as to
obtain a differential equation for V2® as function of time. In the absence of collisions, the
characteristic time is 1/ @, the inverse of the plasma frequency

@, =Jqu2nj/£0mj E\/ezne/gome : (8.4)
]

Plasma oscillations can easily be excited at this angular frequency but are dissipated by
collisions. Therefore, in collisional plasmas (v >> @) the ambipolar coupling is rather
determined by the dielectric relaxation time
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i

fme 0 = 50 (51a). (8.5)
Z| q; | Hn, o epn,
j

To fully resolve the ambipolar coupling, the numerical discretisation must respect the
following constraints : spatial step AX < Ap, time step At < 0.2/, for non-collisional and PIC
models, and At < z for collisional drift-diffusion models.

Semi-implicit method

Often, however, one is not interested in describing ambipolar plasma oscillations or dielectric
relaxation, but rather in plasma evolution on a much longer scale, and the above time step
constraints can be very prohibitive. Then a semi-implicit time integration method can be used
to achieve numerical stability at larger time steps. [Ven93] Consider a self-consistent plasma
model consisting of continuity equations and drift-diffusion equations for electrons and ions

coupled with Poisson's equation. All quantities are known at a time t and are to be advanced
k+1

0 time =1 + AL € particie densities are aavanced iImplici as aiscussed In cnapter [ :

to time 1 = t* + At. The particle densiti dvanced implicitly as discussed in chapter 7
ink+l +V- i,unk”Vd)k+1 -DVi |= ink +S (8.6)
At |q] At

To avoid the time step constraints due to the ambipolar coupling, it is necessary to use the
new potential ®*** accounting for the new space charge density through Poisson's equation
(8.1). Fortunately, however, it is not necessary to account for the exact new space charge
density (which would imply solving all equations simultaneously) ; it is sufficient to estimate
the new space charge in Poisson's equation by replacing n“** by n* in the transport terms of the
electron and ion equations (8.6), i.e. to use equation (7.2). Poisson's equation then becomes

V- (5,VO) = Z[anj" — ALY (g, | VO —q]DVnk))} . (8.7)
j
Substituting (8.6) for the previous time step (from k—1 to k), this can be written as*®
V- (&1+ 2)VO) =X g,(2n) —n/ )=V (g2, VD") (8.8)
j

At At
Ze:_ZV/j |:ujn]'k:_' (8'9)

€ Ty

So the modified Poisson's equation (8.8) includes a semi-implicit prediction of the future
space charge density and is solved separately before the time advancement of the densities by
equation (8.6). This scheme remains stable even if At >> z;. Similar semi-implicit methods
have been developed for non-collisional fluid models [Cri07] in which case y. = Atzezne IMe&y
and even for PIC models [Lan83].

Electron Maxwell-Boltzmann models

A related problem occurs in models based on the Boltzmann relation (5.19) for electrons, i.e.
Ne = Neexp(d/Te). Since electron inertia and collisions are neglected, the electron density
responds instantaneously to the potential and requires implicit treatment in Poisson's
equation ; however, it also has to satisfy the global (space integrated) electron conservation
equation (through the reference density np)

st + [ a=[fstv 610

% My paper [2] presents a more precise version of the semi-implicit method based on linearisation of the
exponential scheme of equation (7.6-7) ; for most purposes however the simpler equations shown here work just
as well.
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which makes fully implicit treatment into a global problem. To avoid solving an implicit
integro-differential equation, the following semi-implicit scheme can be used for the time
advancement.” First, the new reference density no is calculated from global electron
conservation as

an, = (a“ L@ —d )W 1 )nok b+ at[[[sdV (8.11)
a = jﬂexp(d)" IT)dV
b* = At[[w,, exp(@" I T)d’A,
where the square-root term under-relaxes no such as to critically damp oscillations. Then, the

new potential is solved from Poisson's equation with implicit linearised Boltzmann factor :
~V-(g,VO) = g, —eny " exp(@* / T)) (1+ (@ — ")/ T) , (8.12)

where summation only includes the ion species. This scheme is stable without electron-related
time step constraints. The critical damping term in (8.11) has been derived from analytical
considerations on the behaviour of the ambipolar field, explained in detail in [29].

Quasi-neutral models

Sometimes the Debye length is so small with respect to the plasma size that resolving it is
prohibitive and of limited interest. It is then customary to eliminate Poisson's equation from
the model by the assumption of quasineutrality, i.e. the electron density is calculated from

n, :EZqini , (8.13)
€

after which the electron equations are solved for the potential @ rather than n. In case there is
only one ion species (of charge +e) then quasi-neutral drift-diffusion models can be elegantly
reformulated by splitting the electric field into the driving field —V®4 (applied field) and the
ambipolar field —V®, defined by the zero-current condition

—e(u, + u)n, Vo, +e(D,—D.)Vn, =0. (8.14)
The ambipolar field is eliminated to obtain two separate equations for the plasma density and
the driving potential :

on, -v.[MwejE M. _y.(Dvn,)=S5, (8.15)
ot M, + 1 ot
V-(e(y, + 1 )n,V0,)=V-(cVD,) =0, (8.16)

where the effective transport coefficients are the ambipolar diffusion coefficient D, and the
electric plasma conductivity o. This is approach is frequently used in text books on plasma
physics but is awkward and not recommended in case of multiple ion species.** An additional
complication of quasi-neutral models is that the sheath potential must be estimated
analytically and included explicitly in the boundary conditions for the potential and the
electron energy flux as shown in equation (6.17). In fact, the semi-implicit method presented
above offers a good alternative to the explicit use of the quasi-neutrality condition (8.13) : this
method remains stable even if the Debye length is not resolved, in which case it automatically

“0 | originally developed this method for a hybrid model of a vacuum circuit breaker ; it was then also used by
Albert Meige to study electro-negative double layers and briefly described in his thesis ; it was finally the subject
of a publication in J. Comp. Phys. : [29].

1| applied the quasineutral approach with multiple ion species in the first version of my model of the micro-
hollow-cathode-sustained discharge, used by E. Mufioz-Serrano [25] ; due to persistent numerical problems |
later replaced the quasineutral approximation by the semi-implicit Poisson equation, in the version used by K.
Makasheva [31][37] ; this turned out to work much better.
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yields a plasma sheath with a thickness of one spatial discretisation step and a sheath potential
reasonably close to the analytical value. Note that for larger time steps y. >> 1, the modified
Poisson equation (8.8) becomes equivalent to the quasi-neutral current conservation equation
(8.16).
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Figure 8.1. Simulation of a microdischarge in one cell of plasma display panel (PDP) by a self-consistent fluid model
consisting of continuity equations (5.6) and drift-diffusion equations (5.15) for about 10 different plasma species, the electron
energy equation (5.33), and Poisson's equation (8.1). The plasma is sustained by coplanar electrodes (called common and
scan in figure a) covered with a dielectric layer and driven with a 50 kHz alternating square voltage (figure b). When the PDP
cell is on, a transient discharge occurs each time the sustain voltage changes polarity and is quenched by accumulation of
surface charges on the dielectric, which screen the plasma from the voltage but reinforce the voltage at the next polarity
switch. Figure ¢ shows the time evolution of the electrostatic potential during the discharge ; the voltage is switched att =0
ps with a rise time of 0.1 ps and is almost fully screened by surface charges at t = 0.34 ; the extreme potential values are
indicated in volts. Figure d shows the corresponding time evolution of the excitation rate of the resonant Xe*(°P,) state in
logarithmic scale from 10 to 10?2 cm™3s™ ; these states emit ultraviolet photons that excite the phosphors of the display.
From [9].

51



Chapter 9

MICROWAVE FIELDS

To describe the interaction between a plasma and applied microwave fields, recognise that the
microwave period is orders of magnitude shorter than the time scale of the evolution of the
plasma density and chemistry, and hence decompose the electromagnetic field and particle
quantities into separate components for plasma evolution and microwave oscillations,
respectively denoted without and with tilde. The microwave fields are described by the
Maxwell equations

&V -E=—efl, (Gauss) (9.1)

V-B=0 (9.2)

VxE= —Z—? (Faraday) (9.3)

L vsBe J,—enW, + &, s : (Ampere) (9.4)
Hy ot

where Jq4 is the driving current density exciting the microwaves somewhere outside the
plasma. The first two Maxwell equations prescribe the initial conditions for the last two and
are superfluous for periodic wave solutions. The plasma current is approximated as follows.
First, ion motion on the microwave time scale is neglected with respect to electron motion due
to the much larger ion mass. Second, since the Debye length is usually much smaller than the
length scale of the microwave interaction (skin depth), the electron density n. = n; >> i, is
assumed constant on the microwave time scale. The electron mean velocity is given by the
local momentum equation (5.23) :

“ 4, W, =——E, (9.5)

e

ot m,

neglecting the magnetic force (with respect to the electric force) and the distances travelled by
the electrons during a microwave period (with respects to any gradient length).

With the above approximations, the plasma-microwave interaction is completely linear and
the periodic solution has simple harmonic time dependence at the (angular) wave frequency
. Substituting the electron momentum equation in the Maxwell-Ampere equation, the
plasma current can be represented by a combination of conductivity and permittivity :

2— 2 ~
~ E. V. ~ )
iVXB= % E+ 1—ﬁ EOE, (96)
My @ +V,, @ +V,, ot
or rather, using the complex notation exp(iat), by a complex permittivity alone :
1 ~ o} s
—VxB=|1-—F—— |g,(iwE) . (9.7)
ty o(w-iv,,)

The interaction depends on the ratios of the plasma frequency, collision frequency, and wave
frequency ; its characteristic length scales can be found from the complex wave number of the

plane wave solution (assume E L B L V and a, constant), which has the limits

2—
e @i e

c m a)pz << C()2 + ‘7m2,e (98)
m,e
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a)p I0)

k~—t |——(1+i) w2 >> V2 >> o (9.9)
c\2v,, . '
.

o~ | Yine s 02>> @’ >>V 2. (9.10)
c \ 2w : '

The real part is the inverse wave length and the imaginary part is the inverse skin depth,
corresponding to exponential decay of the wave amplitudes.

From the microwave solution, the time average power absorption per electron is

27l
P=-22 [ E-wdt. (9.11)
2 5,

This can be injected in the source term of an electron energy equation that is part of a plasma
model describing the plasma evolution time scale. A self-consistent description of a
microwave-sustained plasma can thus be obtained by iteration : the microwave solution yields
the time-average power absorption, which is injected in a plasma model to simulate the
evolution of the plasma density over a certain time, which is injected back into the microwave
equations to update the power absorption, etc, until a steady state is reached. During such
iteration procedure, it is appropriate to continuously renormalise the power absorption such as
to keep the total (space-integrated) absorbed power constant : this minimizes the coupling
between the microwave and plasma-evolution parts of the model.

Boundary conditions
The microwave fields are solved not only inside the plasma but also in the surroundings.
Boundary conditions for the microwave fields on metal surfaces are :

E, =0 B, =0 (9.12)
i.e. zero parallel electric field and zero perpendicular magnetic field. For open domain
boundaries there exist simple approximate absorption boundary conditions [Mur81, Kun93],
e.g. for right axial (+), left axial (), and radial boundaries :

oW ¢ 0

where W is any electric or magnetic field component.

Figure 9.1. Two-dimensional (axial-radial) grid arrangement of the different electromagnetic field components
for the FDTD method.
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EDTD method

A common and convenient method to solve the Maxwell equations for microwave fields is the
so-called Finite Difference Time Domain (FDTD) method [Kun93], according to which the
equations are explicitly integrated in time. Space is divided in a grid of rectangular (usually
uniform) cells, and the different components of E and B are defined at different grid positions
(shifted by half cells) and different times (shifted by half time steps), such as to enable central
difference discretisation of all derivatives. An appropriate grid arrangement for a two-
dimensional axisymmetric domain is shown in figure 9.1, where E is defined at times # and

B at #"2. The fields are then advanced in time from the Faraday and Ampere equations as
follows :

Ef. ,-1E

~ ~ 7. .. —rE .
k+1/2 _ pk-12 jH1 i+ i eidj
Bx,i,j+l/2 - Bx,i,j+1/2 — At A (9-14)
rj+1/2 r
S k+1/2 S k+1/2
FRl N At TiaoBy i e =2 By e N €At[ b 1972 (9.15)
x,i+12,j T x,i+l/2,j A eWexdi+1/2,j '
Hy&y rAr o

and similar for the other components. Rather than representing the plasma current by a
conductivity and permittivity as shown in equation (9.6), it is preferable to integrate the
electron momentum equation (9.5) explicitly in time, so that also possible non-harmonic
behaviour can be captured :

Wi;l/z _ _ 2 WI;%IJZ . eAt Ek _WI;—UZ’ (9.16)
1+v, At]2 2m,

where W, is most conveniently defined at the same positions as E and the same times as B.
Due to the explicit time advancement, FDTD requires a CFL time step constraint, e.g.

AXAr
At< C(AX+ATr) (9.17)

for cylindrical axisymmetric coordinates. This condition, combined with the requirement that
the spatial step Ax be smaller than the skin depth 1/k (9.8-10), also ensures the stability of the
explicit evaluation of the current (9.16) (At < 1/a,). The time integration is continued over a
number of microwave periods, until the solution becomes periodic, after which the power
absorption per electron (and other quantities of interest) are averaged over one period.

The FDTD method is particularly well adapted to account for arbitrarily-shaped
dielectric or conducting materials surrounding the plasma and capture abrupt transitions
between these materials. Material properties can be defined per grid cell as shown in figure
9.1. Inside dielectrics the relative permittivity is added in Ampere's equation (9.4). Inside
conductors all field components are set to zero ; the grid definition is such that the boundary
conditions (9.12) are automatically satisfied on the metal boundary points. The microwaves
are excited by a sheet of current somewhere outside the plasma, usually inside some
conductor-bounded area, e.g. TEM waves are excited in a coaxial wave-guide by adding a
contribution Josin(wt)(ro/r)Atl g each time step to the radial electric field at a given axial
position, where ]y is an arbitrary excitation current amplitude. The fields, currents, and power
absorption are renormalized afterwards to impose a fixed total power.

FDTD with magnetized electrons

The FDTD method can also be adapted to account for magnetization of the electrons by a
steady magnetic field, such as used in electron-cyclotron-resonance discharges to obtain
electron heating at low gas density. The electron momentum equation is then
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Crv W, - BxW, =———E, (9.18)
ot ’ m m

where the last term on the left is the force of the steady magnetic field B, which reduces the
electron transport perpendicular to B and creates drift in the direction of ExB, often the
azimuthal direction of an axisymmetric configuration, thereby changing the polarisation state
of the waves. Resonant plasma-wave interaction occurs wherever the cyclotron frequency
eB/m. equals . Several authors [Hun92, Lee99] translate the magnetized momentum
equation (9.18) into a plasma conductivity and permittivity, which then take the form of
tensors in analogy with the magnetized mobility and diffusion tensors in equation (5.22). For
FDTD calculations, however, it is much more convenient to integrate the magnetized
momentum equation explicitly in time, as above. For this, rewrite the central difference
discretisation of equation (9.18) as follows :

WA = 2 (2w, + 2w, xb+ (w, D)D)~ 9.19)

2 2
‘ z°+b ¢

where
z=1+v, At/2

W, = l[wig—uz _ eAt Ej
z 2m

e

b--p
2m,

in analogy with the leap-frog scheme for particle models shown in equation (3.3). The time
step must be much smaller than the inverse cyclotron frequency : At << m¢/eB but this is
usually satisfied by condition (9.17). To achieve the vector multiplications in equation (9.19)
without interpolation errors, to which the magnetized electron velocity is very sensitive, it is
necessary to define all velocity components at the same points in space, e.g. the grid points
(i,7) in figure 9.1. As a result, the electric field components must be interpolated in equation
(9.19) and the electron current in equation (9.15), e.g. for the radial components

. 1 . .

E, = 5(7’]‘71/25',:',]‘71/2 + rj+:IJZEr,i,j+:IJZ) (9.20)

]

nw, | ..,=——
[ e e,r]z,]+l/2 27’]-+1/2
where the weighting by r preserves the divergence of the electric field and electron flux.
Special care must be taken of grid points at the plasma edge : due to a space charge layer the
electric field is discontinuous at the plasma edge and instead of the latter interpolation the

field on the edge points must be extrapolated from inside the plasma.

([rn w ]ivj +[rn,w ]i,j+1) , (9.21)

e e,;r e e,r
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Figure 9.2. Self-consistent simulation of a surface wave discharge for the production of reactive species (e.g. for
sterilization of medical equipment) in a gas flowing through a glass tube (here argon). The plasma is sustained
by 2.45 GHz microwave fields applied by a so-called surfatron, which propagate as surface waves along the
plasma-glass interface and are gradually absorbed by the plasma ; the length of the plasma column depends on
the injected microwave power. Figure a shows that a transition in the tube diameter induces periodic spatial
variations in the discharge intensity. This phenomena is simulated in figures b-d respectively showing : Ar”~
decay rate (~ visual light intensity), instantaneous electric field, and time-average field strength ; clearly part of
the surface waves is reflected against the diameter transition thus creating standing wave patterns. These results
are obtained by iteration between a FDTD microwave calculation and a fluid plasma model accounting for 5
argon species and simplified argon excitation kinetics. The length of the simulated plasma column is very
sensitive to the (assumed) effective life-time of resonant argon states which has here been adjusted to obtain
agreement with experiments. From [20].
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Chapter 10

ELECTRODYNAMIC POTENTIALS AND INDUCTIVE COUPLING

Potential formulation of the Maxwell equations

An alternative to solving the Maxwell equations directly for the fields by FDTD as described
in the previous chapter, is to solve them by the electrodynamic potentials, i.e. by substitution
of E=—-V®—-0A/ot and B=VxA. Imposing the Lorenz condition

1 o0

V-A=-—"2 10.1
¢’ ot (10.3)
the Maxwell equations (9.1-4) become
)~
& 8_(3) —£,0’V?D = —’eil, (10.2)
ot
2
& % —g,0’VIA=], —en W, (10.3)
where
on
£=-V-(n,W,). 10.4
Py (n,\W,) (10.4)

The advantage of this approach is that it connects naturally to the usual description of the
ambipolar and electrostatic fields by Poisson's equation as described in chapter 8, so that the
same semi-implicit numerical methods can be used to avoid time step constraints, and the
electrodynamic interaction can be described at arbitrarily low frequency. If desired the
equations (10.2-3) can be extended to include the ion charge and current, the wave potential
® can be merged with the ambipolar potential @, and the simplified continuity equation
(10.4) can be replaced by a full fluid model.
Generalization of the semi-implicit method for Poisson's equation yields

G0 Fk L 29 2k _ €y (& k &k 2 ~k
e ety (@+ 2 )vo )_At2 (20 - @) +c"p (10.5)

8 (1 AT P VPAT = L0 (24 2 )A - AT 13 e, (106)
At At
where the terms containing
2 2
_enAt
mego

predict the future electron current and charge density from the following approximation of the
momentum equation :

(10.7)

e

W =W+ (e m, ) (AT - AT+ AFVD™

this is not as precise as the semi-implicit prediction of equation (8.8) for drift-diffusion
models (e.g. the collision term has been neglected) but prevents instabilities at larger time
steps without significant consequences for the accuracy, even for magnetized electrons. The
actual mean velocity is calculated from a more complete momentum equation, e.g. equation
(9.5) or (9.18). Each of the Maxwell equations (10.5-6) can be solved by the control volume
method described in chapter 7.

Note that it is not appropriate to calculate the scalar potential @ from the Lorenz
condition (10.1) because this is very sensitive to numerical errors and instabilities. In a near-
electrostatic case (wave length >> domain size), the second time derivatives in the Maxwell
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equations are negligible and the difference between Lorenz gauge and Coulomb gauge V-A =

0 vanishes. It is therefore necessary to solve ® from the Maxwell-Gauss equation with the
space charge density from the current conservation equation (10.4) :

i =7 —eAtV-(nW ). (10.8)

Boundary conditions
The boundary conditions for the potentials depend on the choice of gauge. In fact, the
potential components can be transformed using a gauge function y(x,t)as A=A'+ Vyand ©
= @' — dy/ot without this changing the fields. Imposing the Lorenz condition (10.1), the gauge
freedom is restricted to gauge functions that are solutions of the homogeneous wave equation

azl// 22

pve ¢’V =0. (10.9)
Since these solutions are uniquely determined by the boundary values, w(x,t) can be freely
chosen (only) at the boundaries ; hence the scalar potential ® can be fixed to zero at the
boundaries and separate boundary conditions for the different components of A can be
derived from a physical model. For metal walls this yields : V,A;, =0 and V,A; = 0. [Jel70]
However, important complications arise if the metal parts have corners ; the boundary
conditions are then ill-defined at the corner points. In fact, the above electrodynamic potential
method fails to account for wave scattering from any kind of metallic corner or angular
surface (something that is well captured by FDTD). For similar reasons, the description of
dielectric materials is complicated, involving the explicit description of magnetisation
currents along the dielectric interfaces. This seriously limits the use of the electrodynamic
potentials.*?

Inductive coupling

The potential method, however, is well adapted to describe inductive coupling in radio-
frequency range @2z = 1-100 MHz. Inductive discharges usually have a cylindrical
axisymmetric configuration where the fields are excited by an azimuthal driving current in a
coil outside the plasma. For symmetry reasons, and neglecting the magnetic force on the
electrons, the fields are described by the azimuthal component of the vector potential Ay
alone, so only the azimuthal component of equation (10.3/6) needs to be solved.

The main difficulty in describing inductive coupling is that often the gas density is so
low that the simple electron momentum equation (9.5) is not appropriate. Due to thermal
motion, in the near absence of collisions, the electrons tend to travel important distances
during the field periods which destroys the local relation between field and current and causes
the anomalous skin effect : the skin becomes non-monotonic and much larger than expected
from equation (9.10) and the electrons are heated stochastically by resonance effects. To
describe this effect in detail requires electron particle-simulation, but an approximate
description can be obtained by including an effective viscosity term V in the electron
momentum equation :**

ow ~ 0A
_e'¢+17mewe¢+vz_iE¢ :i_¢
ot c m m, ot

e

(10.10)

2 These are provisional conclusions of my personal attempts to use electrodynamic potentials to describe
microwave plasmas.

| developed this effective viscosity approach for an inductive negative-ion source for neutral beam injection
for ITER ; the approach has been presented and analysed in two publications : [33] and [34].
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V+T%=—n(iV-(nevwe,¢)— “fj (10.11)
e T

where nand rare effective viscosity coefficients :
_ Z7T2 _ UTZ z'
Jrkyo, +(z-2)v,, 7-2

depending on the electron thermal speed vr = (2eTe/m.) and the inverse anomalous skin

depth
1/3
K, [J;ww”] | (10.13)

2
vy

7 (10.12)

Equations (10.10-13) have been derived from a perturbation solution of the Boltzmann
equation coupled with the Maxwell-Ampere equation for a 1D semi-infinite plasma [33][34] ;
it is not entirely clear to what extend the equations can capture the anomalous skin effect in
multidimensional configurations.

The viscosity term V in equation (10.10) represents diffusion of the electron current
due to thermal motion. Since the characteristic time of this diffusion is shorter than the wave
period (in cases where the anomalous skin effect is important), it is appropriate to treat the
viscosity implicitly in the momentum equation in order to avoid CFL time step constraints of
the type At < AX. A simple way to achieve this is by semi-implicit prediction, in analogy
with the method for the Maxwell equations :

At
The prediction terms on the left-hand side (terms in 7At) are obtained from simplifying the
momentum equation as @,";" =,", — VAt . The viscosity V" is solved from (10.14) and then

substituted explicitly in the momentum equation (10.10).

~ k
w
(1+L+W_A2fj PRI G vyt Ly _n(iv (V) ——‘ffj (10.14)
r r

e e
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Figure 10.1. Modelling study of the energy coupling in an inductive ion source for a neutral beam injection
system to heat fusion plasmas [Spe06]. The plasma is sustained in a cylindrical chamber (driver) by a radio-
frequency (RF) current in a coil wound around it (figure a), which generates an RF magnetic field, which
induces a azimuthal RF electric field in the plasma, which heats the electrons. Due to the low gas density (2x10"
m~3) and driving frequency (5 MHz) the electron kinetics is strongly non-local which leads to the anomalous
skin effect. In some recent publications [33][34] | have proposed to represent the non-local kinetics by an
effective electron viscosity as shown in equations (10.10-13). Figure b compares the spatial power absorption
profiles obtained from this equation (solid lines) with those from a more detailed particle-in-cell model (dashed
lines) for a simplified semi-infinite plasma ; the effective viscosity approach seems to capture the qualitative
features of the anomalous skin, including regions of negative power absorption appearing at intermediate
frequency. The viscosity approach can be generalized to the more realistic two-dimensional configuration of
figure c ; the plasma density, electron temperature, and collision frequency are assumed fixed. Figures e-g show
the power absorption profiles from the local momentum equation (9.5), the momentum equation (10.10) with the
effective viscosity term, and the magnetised momentum equation (9.18) to account for the effect of permanent
magnets in the vicinity of the driver chamber ; in the latter case non-local effects seem of little importance but
the magnetised electron current excites all components of the electromagnetic field which requires the solution
of the full Maxwell equations (10.2-3). These results are preliminary and do not account for the effect of
surrounding materials.
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Chapter 11

RESEARCH PROJECT

Brief overview and scientific context of my work

During the past 12 years | have developed low-temperature plasma models for different
applications on the basis of the methods presented in the previous chapters. Much of my work
has been concentrated on self-consistent fluid models, in particular the coupling of electron
fluid equations with the Maxwell equations in different two-dimensional configurations. I
have done some work on the Boltzmann equation, mainly for the purpose of complementing
the electron fluid equations, e.g. to obtain fluid coefficients (BOLSIG+ [22]) or a fluid-like
representation of non-local electron heating (effective viscosity [33]). | have also developed
particle models, mainly to test the validity of fluid equations or combined with fluid equations
in hybrid models. | have implemented my models as numerical computer codes (FORTRAN
and C) and made several contributions to the numerical methods to solve the plasma
equations.

This fluid or hybrid approach corresponds to the state-of-the-art in low-temperature plasma
modelling for technological applications and presents in this context significant advantages
over the more fundamental PIC approach : it yields small-scale computer codes that run on a
standard desktop computer within a few hours and often only a few minutes ; results are
readily obtained and relatively easy to interpret in terms of elementary plasma physics. On the
other hand, fluid and hybrid plasma models require physical approximations that can affect
their accuracy and need to be adapted to each specific plasma configuration and to the
purpose of the modelling ; it takes substantial expertise and understanding of plasma physics
to achieve this.

The self-consistent fluid approach has been very successful for the microdischarge models
that | developed during my Ph.D. research for Philips, providing near-quantitative agreement
with experiments and being of real help for the optimisation of the discharge configuration ;
similar models were intensively used in the late 1990s by the television industry worldwide
for the development of flat television [Boe03].

For many low-temperature plasmas, however, modelling is subject to two Kkinds of
complications. First, in molecular gases or gas mixtures, especially at higher pressure, the
plasma chemistry and excitation kinetics are very complex, involving hundreds of species and
processes for which hardly any data are available ; this is the main challenge in the modelling
of atmospheric discharges or chemical processing plasmas. Second, at low pressure the
validity of the fluid approach breaks down because the mean free path is not negligible with
respect to the macroscopic length scales, e.g. the energy distribution is distorted by non-local
effects, the pressure tensor is not diagonal, etc ; in addition the fluid equations tend to be more
difficult to solve numerically due to inertia terms, anisotropy, etc. In principle low-pressure
plasmas can be properly simulated by PIC models, but this is practically feasible only for the
simplest configurations and often not very effective for technological purposes.

This second complication has been (and will continue to be) a major focus in much of my

work at the LAPLACE. The fluid and hybrid models I developed for the low-pressure
(magnetized) plasmas of Hall-effect thrusters, electron-cyclotron-resonance sources, and
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inductive ion sources, provide an approximate description of the plasma ; they are extremely
useful to get insight in some of the main principles of the discharge operation but it is not
clear to what extend their results are quantitatively accurate ; e.g. the hybrid Hall-effect
thruster model has limited predictive capabilities because it fails to describe anomalous
electron transport across the magnetic field due to microscopic field fluctuations. One of the
main goals | have identified for my future research is to improve the modelling of low-
pressure (magnetized) low-temperature plasmas.

Organisational context

Most of the work that | did after my Ph.D. has been part of the research of the group
GREPHE™ at the LAPLACE. This research group, founded and directed by Jean-Pierre
Boeuf and Leanne Pitchford and currently comprising 14 permanent staff members (7 on
plasma research), is one of the leading groups worldwide in modelling of low-temperature
plasmas for technological applications. Over the years | have gradually taken up more and
more responsibilities in the group ; | have developed many of the models currently used by
the group and implemented the corresponding FORTRAN codes ; | am responsible for the
physical and numerical pertinence of these models and work intensively with the Ph.D.
students and researchers who use them (see the end of the introductory chapter). | expect to
continue along these lines in the next few years.

My current research activities are concentrated around two projects of the group GREPHE,
concerning inductive negative-ion sources for neutral-beam injection and multi-dipolar
electron-cyclotron-resonance sources. These two projects form the basis of my personal
research project for the near future and are described more in detail in the next few sections.

Project part 1 : Negative-ion sources for neutral beam injection

The group GREPHE has been involved in the modelling of these sources since end 2006
through several contracts with the CEA/EURATOM Cadarache and has recently become
associated with the Fédération de Recherche Fusion Magétique ITER* ; in addition the group
takes part in the ANR project ITER-NIS* that will start in November 2008. Negative-ion
sources are necessary for the generation of fast neutral beams (> 200 keV) that are used to
heat fusion plasmas and drive the plasma current that ensures their magnetic confinement.
The eventual aim of the modelling work of GREPHE is to obtain a complete self-consistent
model of a source proposed by the IPP Garching [Spe06] to produce negative hydrogen and
deuterium ions at low gas pressure (< 0.3 Pa) and high current density (> 200 A/m?) and
which is currently under development for the ITER fusion project. The plasma is generated by
an inductive discharge at radio-frequency and then diffuses into the source body where
permanent magnetic fields filter out the fast electrons. The negative ions are created in the
plasma volume by electron attachment to high vibrational hydrogen states and by plasma-wall
interactions involving caesium ; they are extracted from the plasma by a system of extraction
grids and magnetic fields, accelerated to high velocities, neutralised, and finally injected into

* Groupe de Recherche Energétique, Plasma, Hors-Equilibre

*® The Fédération Nationale de Recherche Fusion par Confinement Magnétique - ITER is a French organisation
created in April 2008 on the initiative of the CNRS, CEA, INRIA, universities of Aix-Marseilles, Nice, Nancy,
and Ecole Polytechnique, in order to coordinate the French research related to the ITER project.

“® ITER Negative lon Source research project ; project number : BLAN08-2_310122
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the fusion plasma. The modelling of this source is extremely challenging and will require
several years of research and development.

During the first year (2007), the ion-source modelling project was fully managed by myself ; |
developed a 2D fluid model of the inductive discharge which |1 am currently extending to
describe the magnetized plasma in the source body ; preliminary results from this model show
the depletion of neutrals in the discharge volume and compression of the plasma by the
driving field (ponderomotive force). By the end of 2007, post-doctoral researcher Stanimir
Kolev joined the project ; he is developing a 1D PIC model of plasma transport through the
magnetic filter in order to check and complement the 2D fluid model. Early 2008, the CNRS
recruited the associate researcher Gweneal Fubiani on the project ; he is currently studying the
volume and surface chemistry of the source and collecting the necessary data from different
international groups. October 2008, Ph. D. student Nicolas Kohen will join the project ; he
will start by using the 2D fluid model in realistic source conditions and making systematic
comparisons with all available experimental data from the IPP Garching.

For the moment the 2D fluid model will be at the heart of our modelling activities and serve
as a framework for the description of the source as a whole. | will be in charge of this model
and the integration of the more detailed works of S. Kolev and G. Fubiani ; I will also
strongly participate in the supervision of N. Kohen.

Project part 2 : Multidipolar plasmas

Since November 2006, the group GREPHE is involved in the ANR project PLASMODIE®
aiming at the development of a new generation of microwave-plasma reactors operating in a
wide pressure and frequency range, piloted by the experimental group CRPMN* of Jacques
Pelletier in Grenoble. The role of GREPHE in this project is to develop models to accompany
the experimental development and guide performance optimisation. The modelling work is
mainly focused on the description of so-called dipolar sources (antennas) which can be used
in a network to generate the plasma at the reactor wall. A single dipolar source consists of a
permanent magnet, trapping fast electrons in an axisymmetric dipole field, and a microwave
applicator, heating the trapped electrons by cyclotron resonance (ECR).

Until recently, | managed this project by myself ; | have developed a self-consistent 2D model
describing the resonant microwave coupling and the plasma transport and chemistry of a
single dipolar source. Further development and exploitation of this model and confrontation
with experimental results will be done together with the post-doctoral researcher Kremena
Makasheva.

Project part 3 : Model unification

The above plasmas (of the negative-ion source and multi-dipolar source) present many
similarities with the plasma of Hall-effect thrusters studied by GREPHE for over 10 years :
the electrons are trapped in steady magnetic fields, the ions are not magnetised and nearly
collisionless, etc. Hence also the models that | developed for these different applications are
in part similar, e.g. they are all based on anisotropic drift-diffusion equations for magnetised

" PLASmas Micro-Onde Dlstribués & conditions opératoires Etendues ; project number ANR-06-BLAN-0177.
*8 Centre de Recherche Plasmas-Matériaux-Nanostructures
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electrons in 2D cylindrical space. In the near future | intend to combine these different models
into one general model for magnetised low-temperature plasmas, which can then be used to
study also other types of magnetised plasma sources, e.g. magnetrons and so-called Kaufmann
sources used in the industry. Applying such a general model to many different sources and
systematically comparing the results with the experimental data available for each of them
will be of great interest to asses the validity and limitations of the fluid approach for
magnetised electrons.

In parallel to the unification of the existing models based on electron fluid equations, it is
important to explore other more detailed modelling methods such as PIC in order to check,
complement, and if necessary replace the electron fluid equations. Among the questions that
need to be investigated are the description of the magnetic mirror force and its effect on the
magnetised plasma transport, the tail of the electron energy distribution function and its effect
on the plasma chemistry, etc. In this context a new Ph. D. student has been recruited as from
October 2008, Nourredine Oudini, whom | will supervise and who will help me with the
general improvement of our magnetised low-temperature plasma models.

In addition to my activities on the modelling of magnetized plasmas for the negative-ion
source and the multi-dipolar source, | will continue to participate in several other research
projects of the group GREPHE such as the RTRA* project PLASMAX®® on microwave
plasmas for aerospace applications and the ANR project on micro-hollow cathode discharges
(see introduction).

*° Réseau Thématique de Recherche Avancée = French national research program
%0 Full project title : Modélisation des interactions microondes/plasma pour des applications aérospatiales
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