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Introduction

The electrical properties of semiconductors, such as concentrations and mobili-
ties of charge careers, are strongly influenced by the types of dopants and defects
inserted or formed during the synthesis of materials (Mahajan, 2000; Holt and
Yacobi, 2007). In the field of photovoltaics, the objective of device is to convert
the sunlight into electricity via charge separation on a p-n junction. When pho-
tons are absorbed by the material, they excite the minority charge carriers, i.e.,
holes in n-type and electrons in p-type semiconductors, creating a electron-hole
pair, which subsequently flows into the solar cell’s electrical contacts. In this
process, the structural defects inevitably present in the semiconductor result in
various obstacles, such as phase stability’s perturbation, supplementary energy
level appearing in the band gap, etc. and can degrade the efficiency and durabil-
ity of solar cells (Sopori, 1999; Carr and Chaudhary, 2013). The understanding
of these effects is thus a priority for solar cell development in order to increase
the efficiency and the lifetime of the cell. Experimental process and characteri-
sation techniques are widely used, yet the defects remain hard to identify and to
characterise (Seeger, 1974; Saarinen et al., 1997). Theoretical study and simula-
tion works are then complementary to experimental technics. They can describe
concentration too low to be characterised, or probe a system under specific condi-
tions not experimentally achievable. When dealing with material properties and
behaviour, different length and time scales of study are possible, from atomic to
macroscopic.

At the atomistic scale, speaking specifically about first-principles simulation,
different theories and approximations exist but the calculation are usually done
within, or with, the Hartree-Fock (HF) approximation (Hartree, 1928a,b) or the
density functional theory (DFT) (Hohenberg and Kohn, 1964). Among the prac-
tical issues important for modelling the materials in photovoltaics are the ability
of calculation schemes to predict the equilibrium structure and the optical prop-
erties, or, at least, the magnitude and the character (direct vs indirect) of the
optical gap. The “straightforward” determination of the band gap (estimated
from the electron band structures) turns out to be largely overestimated, as com-
pared to experimental values, when using the HF and underestimated in the DFT.
Therefore, more justified methods like the configuration interaction method (CI)
and the GW approximation should be used but these requires a big amount of
time and computational resources. One possible alternative can be the use of hy-
brid functional within the DFT framework. This pragmatic approach combined
results from both HF and DFT, thus using their drawbacks for more accurate



2 Introduction

description of the electronic properties of the system.
In any case, temperature is not taken into account in first-principles calcula-

tions. Classical molecular dynamics simulations deal with evolution of the tem-
perature, but electronic structures are not explicit variables in the model. As both
of these aspect are primordials, the quasi-harmonic approximation (QHA) can be
used by bringing a posteriori the temperature in the model via the vibrational
modes of the crystal.

At mesoscopic or macroscopic scale of simulation, transport properties are
very important in order to understand the behaviour of the material. However,
these are properties intrinsic to the material and deeply linked to its composition,
doping or the presence of other defects. These properties like the conductivity
are accessible via the Boltzmann transport equation that describes the non equi-
librium behaviour of charge carriers by statistically averaging over all possible
quantum states.

The main problematic of this work is the development of a pragmatic method
that would permit a quick and accurate description of realistic complex system
depending on temperature. The objective here is to be able to understand the
behaviour of system under the influence of changing the alloy concentration,
modification of the level of doping by impurities, or creation of other types of
point defects. The context of photovoltaic imposes the correct description of the
electronic and transport properties in particular. This method will be applied to
the analysis of two groups of materials common for applications in photovoltaics,
namely chalcopyrite-type Cu(III)(VI)2 compounds and crystalline silicon.

The first species represents a family of compounds which can be ternary,
quaternary or penternary, depending of the composition. In this work, we are in-
terested in the copper-based chalcopyrite (Coughlan et al., 2017; Abou-Ras et al.,
2017), of which the most general form is CuGaxIn1−x(SySe1−y)2. These materi-
als are conventionally referred to in shorthand notation, depending of the atoms
present. For exemple, CIGSSe is the general form, CIGS correspond to the qua-
ternary CuIn1−xGaxS2, and CGSe to the ternary CuGaSe2. This direct band gap
material have high absorption properties that allows high efficiency for thin-film
solar cells. Various properties of CIGSSe are directly linked to its compositions.
A broad range of band gap, lattice parameter values and other properties can be
obtained within this family of materials, especially with a new type of dopant,
alkali metals. This is why its application in tandem solar cell, e.g., with silicon,
is considered. In a solar cell, the absorber that captures phonons is sensible to a
certain range of photon energy and thus can only absorb a part of the sunlight.
In order to increase the number of photons captured, the stacking of more than
one solar cell is called a multijunction or tandem solar cell. A typical tandem
structure can be found in figure 1. The optimised efficiency for tandem solar
cell have been calculated in the literature (Meillaud et al., 2006). The maximum
efficiency range corresponds to a bottom cell having the band gap of around 1 eV
and the top cell having the band gap of 1.5 – 1.7 eV. The objective for the study
on chalcopyrites is then to determine the composition or doping that would lead
to a band gap in the desired area.



3

Figure 1 Tandem solar cell device with silicon bottom cell under sunlight irradiation.

For silicon, the situation is different. Silicon is the main semiconductor used
in the photovoltaic market, and its properties are well known. However, with
new type of cell architecture, different type of degradation induced by light and
elevated temperature (LID and LeTID) appeared (Osterwald et al., 2002; Ram-
speck et al., 2012). This deterioration of the performance seems to be linked to
hydrogen defect (Wenham et al., 2018), that is however not yet well understood.
A special attention in the present work is then brought on silicon point defects,
especially hydrogen.

The manuscript is organised as follows. In the first part of this thesis, the
theoretical background of different concepts, approximations and methods used
throughout this whole work is introduced. In the second part, the methodol-
ogy developed to correctly describe complex system is outlined. The accurate
electronic properties are then obtained by the use of optimised hybrid functional,
whereas the temperature and transport properties are incorporated via the quasi-
harmonic approximation and the Boltzmann transport equation. This method
chosen undergoes tests on pure compounds used in the photovoltaic field, and
the results of such tests are compared to experimental data and other theoretical
works. In the third part, chalcopyrite-type compounds are investigated with the
aim to find compositions suitable for tandem application. Two different studies
are undertaken. Firstly, a mapping of electronic, structural and thermodynamic
properties for all the concentration of CIGSSe is carried out. Secondly, an inser-
tion of alcali metal atoms to substitute copper is simulated, with corresponding
effect on lattice relaxation and electronic properties. The experimentally appar-
ent improvement of the cell efficiency via alkali metal admixture is not yet well
understood. The variation of properties under Li, Na, K, Rb ans Cs doping of
ternary chalcopyrite-type compounds is calculated. Finally, in the last part of
this work, hydrogen, iron and boron point defect in silicon are simulated. This
preliminary works takes place within the frame of a larger project devoted to the
ageing of silicon solar cells.





Chapter 1

Theoretical background

Before diving into their practical use, the different methods and procedures ap-
plied during this thesis are described theoretically. The Hartree-Fock (HF) and
density functional theory (DFT) are summarised before the introduction of the
hybrid approach. In order to deal with the effect of temperature, the theory
behind the quasi-harmonic approximation is explained. Finally, the derivation
of the electrical conductivity and other transport properties from the Boltzmann
transport equation (BTE) are demonstrated.

1.1 First-principles calculations
In this section, the first-principles approaches are presented. They are based on
the resolution of the time-independent Schrödinger equation,

ĤΨ = EΨ, (1.1)

where the Hamiltonian operator Ĥ is

Ĥ = −1

2

∑

i

∇2
i +

∑

i

1

2MA

∇2
A −

∑

i,A

ZA
riA

+
∑

A,B

ZAZB
RAB

+
∑

i>j

1

rij
, (1.2)

with i, j refering to electrons and A, B to nuclei. In order to simplify this equa-
tion, the adiabatic or Born-Oppenheimer approximation (Born and Oppenheimer,
1927) decouples the motion of nuclei and electrons, adopting the following form
of the wavefunction:

Ψ{R}(r) = Ψelectron(r;R)Ψnuclei(R), (1.3)

where the nuclei positions {R} are entering as parameters. The remaining task
is to solve the electronic part of the Schrödinger equation with the following
Hamiltonian:

Ĥe = −1

2

∑

i

∇2
i −

∑

i,A

ZA
riA

+
∑

i>j

1

rij
(1.4)

= T + VeN + Vee, (1.5)
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with T being the operator of the kinetic energy of the electrons, VeN the operator
of interaction between electron and nuclei and Vee the operator of interaction
between electrons.

The later term is a sum overN independent particles difficult to evaluate. This
equation is not exactly solvable for more than two particles. Different methods
to tackle this problem exist as we briefly explain in the following sections.

1.1.1 Hartree-Fock approximation

The first method we evoke is the Hartree-Fock (HF) approximation (Hartree,
1928a,b; Fock, 1930). The objective of HF approximation is to find the wave-
function of the fundamental state via a variational method. It is a purely mono-
electronic model where one electron is under the influence of the mean field of
all others. In order to satisfy the Pauli’s exclusion principle, we assume that
the many-electron wavefunction takes the form of a Slater determinant of single-
electron wavefunctions (Slater, 1929):

Ψ =
1√
N !

ϕ1(r1) · · · ϕN(r1)
...

...
ϕ1(rN) · · · ϕN(rN)

. (1.6)

In this context, each electron is associated to a wavefunction ϕi and the mono-
electronic Hamiltonians for the i -th electron can be written as follows:

ĥi = −1

2
∇2
i −

∑

A

ZA
riA

+
1

2

∑

j

[
Ĵj(ri) + K̂j(ri)

]
(1.7)

ĥi = T̂ + V̂eN + Ĵ [ρ(r)] + K̂[ρ(r, r′)], (1.8)

where Ĵj the Coulombian operator between electrons and K̂j the exchange oper-
ator defined as

Ĵj(ri)ϕi(ri) =

[∫
ϕ∗j(rj)

1

rij
ϕj(rj)

]
ϕi(ri) (1.9)

and
K̂j(ri)ϕi(ri) =

[∫
ϕ∗j(rj)

1

rij
ϕj(ri)

]
ϕi(ri). (1.10)

One of the big drawbacks of this method is that it fails to represent the correla-
tion between electrons beyond the Pauli’s exclusion principle. The correlation is
defined as the difference between the real ground state energy of the system and
the one determined by HF method:

Ec = Ereal
TOT + EHF . (1.11)

The lack of correlation here means that an electron at a position r has no influence
on the position r′ of another electron other than Coulomb interaction. That
leads to an overestimation of the ionic character of the system. The band gaps
of semiconductors and insulators are thus highly overestimated. The J and K
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operators lead to a calculation time proportional to N4, with N the number of
electrons in the system. From a computational point of view, the system is either
0D (molecules), 1D (chains, or polymers), 2D (surfaces) or 3D (periodic crystals).
In our case, we deal with 3D cells with periodic boundary conditions.

1.1.2 Density Functional Theory

Driven by a motivation to grasp the electron correlation within a practical theory,
Hohenberg and Kohn put foundation to what is nowadays known as the density
functional theory (DFT) (Hohenberg and Kohn, 1964). They proved that the
ground state energy is a functional of the electronic density and that the minimum
of this functional is the true electronic density:

E0 ≤ E[ρ0] = min
ρ

(
min

Ψ

[
F [ρ] +

∫
ρ(r)veN(r)d3r

])
. (1.12)

In the Kohn-Sham DFT (Kohn and Sham, 1965), the wavefunction-based the-
ory (WFT) is abandoned and the real density is mimicked by a density of non-
interacting particles under the influence of an external potential Vxc. In this
context, the Hamiltonian of the mono-electronic equation is

ĥi = T̂ + V̂eN + Ĵ [ρ(r)] + v̂xc(r). (1.13)

The terms are the same as for equation (1.8) except for the exchange-correlation
functional v̂xc. The external potential is defined such that the electronic density
of non-interacting electrons equals the one of the real system:

ρ(r) =
N∑

i=1

|ψi(r)|2. (1.14)

The only problem is that the form of the exchange-correlation functional is un-
known and we need to use some approximations. The simplest is the local density
approximation (LDA) where the exchange-correlation energy Exc is the one of an
uniform electron gas:

ELDA
xc =

∫
εxcρ(r)d3r, (1.15)

where εxc is the exchange-correlation energy per particle of an uniform electron
gas of density ρ. When density undergoes rapid spatial variations, LDA fails and
the semi-local generalised gradient approximation (GGA) is used. It takes into
account the density and its gradient with position ∇ρ(r). As these methods are
based on the assumption that the electron distribution is more delocalised and
homogeneous like in metal, it thus underestimates the band gap. This method is
even faster than HF as it is proportional to N3(Leach, 2001).

1.1.3 Beyond HF and DFT

Both HF and DFT suffer from drawbacks, especially their inevitable error on the
determination of the band gap of semiconductors. Further methods called post-
HF and -DFT were created to correct some of these issues. In the WFT, a many-
electrons wavefunction corresponds to a particular electronic configuration where
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the electrons are assigned to specific orbitals. The HF wavefunction corresponds
to the ground state configuration where electrons filled the lowest orbitals. The
configuration interaction (CI) method (Hehre et al., 1986) takes advantage of
all these configurations. Its wavefunction is a sum of Slater determinants of
wavefunctions corresponding to specific electron configurations:

Ψ = c0Ψ0 + c1Ψ1 + c2Ψ2 + · · · . (1.16)

In this framework, the correlation is taken into account, including also the excited
states. However, this method can be very time consuming (proportional to N12)
and the full CI where all the configurations are investigated can only be done for
small systems.

Within the DFT, the many-body GW approximation correct the electronic
structures determined by LDA or GGA. It takes advantage of Green’s functions
describing the photoemission process, and the screen-Coulomb interaction to ap-
proximate the exact exchange self-energy (Aryasetiawan and Gunnarsson, 1998;
Reining, 2018): This method thus increases the description of the electron’s in-
teraction with its environment. CI and GW are not the only methods available
to reach more accurate results from HF and DFT. However, all of these methods
require important computational time. The time necessary for GW calculations
scales with the system size as N8. For a quick but reliable description of semi-
conductors properties, hybrid functionals are a good alternative.

1.1.4 Hybrid functionals

In order to correct the drawback of DFT and HF, hybrid functionals were intro-
duced by Becke (1993b). It is a pragmatic approach which combines the exact
exchange of HF with DFT exchange-correlation term, since both methods give
error of the opposite sign when compared to the experimental data. The simplest
form corresponds to full-range hybrid functionals which is a linear combination
of the HF and DFT exchange:

EPBE0
xc = α× EHF

x + (1− α)× EPBE
x + EPBE

c , (1.17)

with α being the exchange mixing ratio. This notation should not be mixed up
with the similar labelling of the thermal expansion coefficient in the subsequent
chapters. In the case of the PBE0 functional, 25% of HF exact exchange are
mixed with the PBE exchange (Adamo and Barone, 1999); this exchange mixing
ratio is not empirical but based on a model (Perdew et al., 1996b). Because of the
potentially very demanding computational time of the exact exchange for long
distance interactions, it is decomposed into short (sr) and long (lr) range parts.
This is done by splitting the Coulomb interaction as

1

r
=

erfc(ωr)
r

+
erf(ωr)
r

, (1.18)

where r is the interatomic distance between r and r′, and ω is the screening
parameter that defines the range separation. When the screening parameter is
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zero, equation (1.18) is equivalent to equation (1.17). One of the most used hybrid
defined this way is HSE06 (Heyd et al., 2003, 2006). It is a short range hybrid
functional where the exchange energy is written as

EHSE06
xc = 0.25× EHF,sr,µ

x + 0.75× EPBE,sr,µ
x + EPBE,lr,µ

x + EDFT
c . (1.19)

In this case, the µ parameter is defined empirically. The performance of hybrid
functionals will be discussed more thoroughly in section 2.1.

1.2 Computational details

1.2.1 Basis set

In a vast majority of calculation methods in practical use, either one or the
other of two families of functions serve as basis sets in order to represent the
wavefunction, or the electron density.

The first family of localised basis sets is the Gaussian-type orbitals (GTO). A
Gaussian-type orbital (Boys, 1950), centered at some site and possessing the angu-
lar symmetry Ylm(θ, φ) around it, can be expressed by equation (1.20), whereby
the parameter α gives control over the desired extension (more or less diffuse
character) of the radial part:

gl,m(r) = B(l, α)rl exp(−αr2)Ylm(θ, φ). (1.20)

This type of basis set is easily tuned. As the product of two Gaussians is another
Gaussian, the two-center and other multicenter integrals involving these functions
can be expressed analytically and thus easy to compute. The wavefunction is
expressed as a linear combinaison of GTOs. One drawback of this type of orbital
is that, for metallic system, the number of diffuse GTOs required can be quite
important.

The second family is the plane-waves basis sets. A plane-wave (PW) is written
as

p(r) =
1

Ω
exp(iG · r), (1.21)

with G a vector of the reciprocal lattice. The drawback here is that a large
number of plane-wave functions is required for a good description of system with
inhomogeneous electronic clouds.

Since the HF exact exchange is difficult to determine in the PW framework
(Betzinger, 2007; Dziedzic et al., 2013), some codes such as VASP (Paier et al.,
2005) propose an approximative way to do it but do not allow to have a self-
consistent description of the system. In general, the optimisation of the geometry
is done within LDA or GGA approximation. The determination of the electronic
structure is further on done at a fixed geometry with the hybrid functional. As
GTOs do not suffer from this problem, all calculations done during this thesis have
been performed with the GTO-oriented CRYSTAL17 code (Dovesi et al., 2018). The
description of the basis sets used can be found in the appendix A.
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1.2.2 The CRYSTAL code

CRYSTAL17 is based on the linear crystalline atomic orbital (LCAO) theory where
the wave function is described as a sum of one-electron crystalline orbitals that
are solutions of the one-particle equation:

ĥiϕki = εkiϕki . (1.22)

The one-particle Hamiltonian ĥi is the one explicit for HF and KS in the equa-
tions (1.8) and (1.13) respectively. These one-electron crystalline orbitals are in
turn expressed as a sum of Bloch function φi build from local Gaussians:

ϕi(r,k) =
∑

j

cij(k)φj(r,k). (1.23)

In order to computationally solve it, the one-electron Schrödinger equation can
be written in a form of matrix equation (Dovesi et al., 2005):

H(k)C(k) = S(k)C(k)E(k), (1.24)

with S(k) being the overlap matrix and C(k) the matrix of coefficients from equa-
tion (1.23). In CRYSTAL, the self-consistent field (SCF) observes the following
steps (Dovesi et al., 2005). After creating the basis sets and evaluating the over-
lap matrix and the Fock matrix (corresponding to the single electron operator ĥi)
in direct space, these matrices are then Fourier-transformed into the reciprocal
space. The Schrödinger equation is then solved at every k-point, and the Fermi
energy is calculated. After that, the density matrix is determined and Fourier-
transformed back into the direct space. At the end on this procedure, the total
energy of the system is calculated. This is the cornerstone of every other calcu-
lations. Once we know how to solve the Schrödinger equation for a given nuclei
geometry thanks to the different theories and approximations, various proper-
ties can be obtained from different types of calculations. Below, we outline the
quasi-harmonic approximation and the transport properties calculations as two
important parts of this work.

1.3 Quasi-harmonic approximation
Geometry optimisations, once performed, lead to the equilibrium position in the
potential energy surface where the other types of calculations can take place.
However in a real crystal, the lattice is not rigid and each atom moves around
its equilibrium position. The effect of temperature on the crystal vibrational
properties can be taken into account via the crystal vibrational properties. When
looking for small variations around the equilibrium position, the Taylor expansion,
see -equation (1.25), comes in handy:

f(x) = f(x0) + (x− x0) · df(x0)

dx
+

(x− x0)2

2
· df

2(x0)

d2x
+ · · · (1.25)

By definition, the first derivative of energy over displacements at the equilibrium
position is zero so that the first assumption is to consider only the quadratic
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term. This would correspond to the harmonic approximation for atomic vibra-
tions. The Hessian or dynamic matrix is obtained by the finite displacement tech-
nique, whereby the atoms are shifted one by one from their equilibrium positions.
The dynamical equations which contain the Hessian are then diagonalised, yield-
ing the phonon eigenvalues (frequencies squared) and eigenvectors (displacement
patterns within each mode). By default in CRYSTAL, the phonon calculation
is done at the Γ point. In order to take phonons with other (commensurate)
wavevectors into account, one can resort to constructing a supercell which would
accommodate the vibration wave in question. The phonon calculation is e.g.,
useful for checking the dynamical stability of presumably equilibrium structure.
An instability could be identified by detecting an imaginary phonon frequency,
that means that a combined displacement pattern exists which would lower the
total energy on displacement from the equilibrium. Once the phonon frequencies
are calculated in the harmonic approximation, the energy levels of corresponding
quantum oscillators can be artificially populated with Bose-Einstein distribution
for a specific temperature. Even as this would allow the calculation of different
thermodynamic properties, a major drawback of such approach is that it does
not provide a mechanism that would relate the variation of interatomic distances
with temperature. That means for example that there is no thermic expansion
of the crystal or that the thermal conductivity will be infinite.

This problem can be tackled down via the incorporation of inharmonic terms
but this requires to solve more complex equation. A simpler solution is the quasi-
harmonic approximation (QHA) that keeps the harmonic expression but adds an
explicit dependence of vibration phonon frequencies on volume.

The quasi-harmonic approximation has been implemented in CRYSTAL17 (Erba,
2014). An automated algorithm computes the influence of the temperature and
pressure on different structural and thermodynamic properties. The procedure
needs to start from an optimised geometry at 0 K, either from a previous work
or done at the beginning of the calculation. Depending of the chosen param-
eters, the algorithm performes structural optimisation and phonon calculation
for different contracted or expanded systems around the zero-temperature equi-
librium position. Once all those structures have been computed, their volume
and energy can be used to fit the purely electronic internal energy as a function
of volume via different equations-of-state (EOS) from the literature. CRYSTAL
proposes different EOS but uses the third-order Birch-Murnaghan (Birch, 1947;
Murnaghan, 1944) for further thermodynamic calculations. Volume dependence
of each phonon frequency is then individually fitted with second or third-order
polynomes.
For a given temperature, the Helmholtz free energy is calculated thanks to the
following equations :

FQHA(T, V ) = U0(V ) + FQHA
vib (T, V ), (1.26)

FQHA
vib (T, V ) =EZP

0 (V ) + kBT
∑

kp

[
ln

(
1− e−

~ωkp(V )

kBT

)]
(1.27)
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and
EZP

0 (V ) =
∑

kp

~ωkp(V )/2. (1.28)

For each temperature, the Helmholtz free energy is minimised in order to ob-
tain the equilibrium structure. In that way, the temperature dependence of the
volume can be plotted. As several properties depend on the derivative of the
volume’s variation with the temperature, the number of temperature steps must
be sufficiently large.

Once the geometry has been fitted at each temperature, the band gap can be
calculated for this fixed geometry.

1.4 Electrical transport properties

1.4.1 Boltzmann transport equation

In order to study the classical transport of charge carrier in the bulk, the Boltz-
mann transport equation (BTE) is used that deals with the local concentration
of carriers in the state k close to the point r and describes how this concentration
changes in time (Allen, 1996). Even though the transport properties need, in
principle, to be calculated by taking into account the phonon contribution, only
the electronic contribution will be considered in this thesis. Three different effects
should be indicated in what concerns the charge carriers’ distribution.

• The first one is their diffusion. If the velocity of a carrier in state k is
denoted vk, the carrier will travel a distance tvk in an interval t, with the
velocity:

vα (i,k) =
1

~
∂εi,k
∂kα

. (1.29)

Thanks to Liouville’s theorem, which states that "the phase-space distribu-
tion function is constant along the trajectories of the system", we can write
for the probability density function f :

fk(r, t) = fk(r− tvk, 0), (1.30)

so that : [
∂fk
∂t

]

diff

= −vk
∂fk
∂r

= −vk∇rfk. (1.31)

• The second effect concerns constant external fields that change the vector
k at a rate of

dk
dt

=
e

~

(
E +

1

c
vk ∧H

)
. (1.32)

This corresponds to the velocity in k-space so that by analogy with equa-
tion (1.30), the impact of the field is

[
∂fk
∂t

]

field

= − e
~

(
E +

1

c
vk ∧H

)
∇kfk. (1.33)
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• The last one is the scattering effect. It is more complicated to express and
we generally stay in the scope of elastic scattering.

The BTE states that the net rate of change of fk(r) with time is zero :
[
∂fk
∂t

]

diff

+

[
∂fk
∂t

]

field

+

[
∂fk
∂t

]

scatt.

= 0. (1.34)

The distribution function can be seen as the perturbation, gk(r), of the equilib-
rium Fermi-Dirac distribution function defined at spatially variable temperature
T (r):

fk(T (r)) = f 0
k(T (r)) + gk(r), (1.35)

with:
f 0
k =

1

e
εk−µ
kBT + 1

. (1.36)

In the absence of temperature gradients (∇rfk = 0) and for an external force
consisting only of a low electric field E (H = 0), the equation (1.34) becomes:

(
∂fk(T )

∂t

)

s

= eEvk

(
−∂f

0
k(T )

∂ε

)
. (1.37)

1.4.2 Relaxation Time approximation

In order to solve the BTE, the scattering effect term must be explicated. However,
instead of defining every possible scattering effects, the following assumption is
made: [

∂fk
∂t

]

scatt.

= −1

τ
· gk, (1.38)

with τ the relaxation time needed for a system without the influence of external
fields to go back to its equilibrium. This can also be seen as

gk(t) = gk(0)e−
t
τ . (1.39)

By replacing equation (1.38) in equation (1.37), we obtain

gk = −τvk · eE
(
−∂f

0
k(T )

∂ε

)
. (1.40)

Even though the relaxation time depends on the band index and the vector di-
rection, it is usually taken as a constant in the constant relaxation time approxi-
mation (CRTA).

1.4.3 Electrical conductivity

The number of carriers in the volume dk is g(k)dk
4π3 so that we can write the current

density in the band n as

Jn = −e
∫

1

4π3
vn,kgn,kdk. (1.41)
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As the electrical conductivity is the sum of the contribution of each band Jn =
σnEn,

σ =
∑

n

e2

∫
1

4π3
τnvn,kvn,k

(
−∂f

0
k(T )

∂ε

)
dk, (1.42)

and the inverse mass tensor,

M−1
βu (i,k) =

1

~2

∂2εi,k
∂kβ∂ku

, (1.43)

the different transport properties can be written :

[σ]i,j (T ;µ) = e2

∫
Σi,j (ε)

[
−∂f(µ,E, T )

∂E

]
dE, (1.44)

[σS]ij =
e

T

∫
Σi,j (ε)

[
−∂f(µ,E, T )

∂E

]
(E − µ)dE, (1.45)

and
[κe]i,j (T ;µ) =

1

T

∫
Σi,j (ε)

[
−∂f(µ,E, T )

∂E

]
(E − µ)2dE, (1.46)

with the transport distribution function defined as

Σij(E) =
1

V

∑

n,k

vi(n, k)vj(n, k)τn,kδ(E − En,k). (1.47)

1.4.4 Computational approaches

During the last decade, different codes were developed in order to calculate the
transport properties from the BTE. The underlying theory is usually the same.

First, the rigid band approximation (RBA) implies that the band structure
does not change under the influence of temperature or chemical potential.

The different packages principally differ in their way to interpolate the band
structure. One of the most famous package is BoltzTraP (Madsen and Singh,
2006) that uses a Fourier expansion to interpolate the band. This numerical
interpolation offers the advantage of directly obtaining the group velocity and
the inverse mass tensor from the derivative with the finite-difference procedure.
The problem with this method is the potential band crossing at the boundaries. In
this case, a very fine k-grid needs to be used to correctly describe the phenomena.
To avoid that, Scheidemantel et al. (2003) calculated the group velocities with
the momentum matrix , also called the intraband optical matrix element:

vn,k =
1

m
pn,k =

1

m
〈Ψn,k|p̂|Ψn,k〉 . (1.48)

The new version of BoltzTraP, simply called BoltzTraP2 (Madsen et al., 2018),
had implemented the momentum matrix approach. Another method consists in
using Wannier functions as in BoltzWann (Pizzi et al., 2014). This analytical
method uses the localised Wannier functions on a coarse k-point grid to avoid
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the finite-difference methods. Boltzmann transport equation has also been im-
plemented in CRYSTAL17 within the RBA and RTA.

Until now, all the codes cited performed calculations under the constant re-
laxation time approximation (CRTA). However, this is not a necessary limitation.
For example, one can abandon the CRTA by varying the relaxation time with
the energy. Another possible way is to take into account different types of scat-
tering process. This is the case for the work of Faghaninia (Faghaninia et al.,
2015; Faghaninia, 2016) who suggested an abinitio model for calculating mobility
and Seebeck coefficient using the Boltzmann transport (aMoBT) which was imple-
mented in the AMSET (Faghaninia et al., 2015, 2017) script. This Python module
approximates scattering effects via different properties such as the phonon fre-
quencies and the dielectric constant. The acoustic deformation potential, ionised
impurity, piezoelectric and polar optical phonon differential scattering rates are
available in this code.

In this thesis, we tested BoltzTraP2 and CRYSTAL17 . As we used CRYSTAL17
for all the type of calculation, we first calculated the transport properties of
the build-in module of CRYSTAL17 . The calculation works smoothly for the
material tested in a within a bearable time. A defective system of 32 atoms with
low symmetry takes less than three hours. However, the important number of
integrals to calculate and store during the time of simulation results in creating
files of several gigabytes of data. For one simulation, 1.2 Tb of temporary data
have been accumulated. This is problematic because of the limit of memory of the
computer. Even if the jobs are launched sequentially, one heavy file can stop the
program due to a memory error. This is why we turned to the second solution,
the python module BoltzTraP2. It is not configured for CRYSTAL17 output but
we created the necessary interface. BoltzTraP2 can be used in command line or
as a python library. Here, only the command line function was used.

1.5 Summary and conclusion
All these methods are complementary and can be used to reach different types of
properties. The hybrid functionals are a pragmatic way to correct the band gap
problem of Hartree-Fock and density functional theory and prevent the compu-
tational cost of more sophisticated methods. Quasi-harmonic approximation and
Boltzmann transport equation enable us to access the temperature dependence
of various properties and the transport properties of our material. We explained
the underlying theory in this chapter and their practical use and optimisation will
be developed in the next one. The properties calculated from the quasi-harmonic
approximation and the transport properties will be compared to experimental
data and the performance of different functionals.





Chapter 2

Hybrid functional performances

The main objective of this thesis is to access macroscopic properties of defective
materials in the context of photovoltaic applications. In this thesis, hybrid func-
tionals have been optimised to reproduce the experimental value of the studied
materials’ band gap. This method will first be explained before comparing the
optimised hybrid functionals to the theoretical and experimental works of litera-
ture for perfect compounds in order to verify the reliability of this method. Once
these are obtained, the temperature effect will be tested via the quasi-harmonic
approximation. Finally, the Boltzmann transport equation will be solved for the
determination of macroscopic transport properties. The methodology introduced
in this chapter is tested for pure compounds and its results are compared with
the experimental and computational works from literature.

2.1 Hybrid functionals

2.1.1 Hamiltonian optimisation

State-of-the-art

As we saw in section 1.1.4, hybrid functionals were created to correct the “band
gap problem” of density functional theory and Hartree-Fock approximation. They
could be an interesting alternative to accurate but time-consuming methods such
as GW. In the full-range hybrid functionals, a percentage of the HF exact ex-
change, called α, see equation (1.17), is incorporated into the DFT functionals.
Other parameters such as the screening parameter are used in short- and long-
range hybrid functionals but we limit ourselves to the full-range hybrid function-
als in this thesis. In the early years of hybrid functionals, different Hamiltonians
were created with a fixed value of the exchange mixing ratio. For example, PBE0
(Adamo and Barone, 1999) uses a PBE functional (Perdew et al., 1996a) with 25%
of exact exchange from HF. This value was obtained without any experimental
considerations (Perdew et al., 1996b). Nevertheless, PBE0 is known to overesti-
mate the band gap of low band gap materials and underestimate the one of high
band gap materials (Alkauskas et al., 2011). It is more a compromise than an
absolute and perfect value. Since the middle of the 2000s, discussions about the
optimised amount of exact exchange to incorporate in DFT functionals have been



18 Chapter 2. Hybrid functional performances

set. This value can be system-dependent but its determination must be done in
preliminary calculation. Alkauskas et al. (2008) tuned the exchange mixing ratio
to reproduce the experimental band gap for the determination of band offsets
at silicon-based semiconductors interface. They found that the lineup of bulk
reference levels is practically independent of α. In the same year, the same group
observed a linear impact of α on the evolution of the valence- and conduction-
band edges of Si and Ge (Broqvist et al., 2008). In both cases, the DFT functional
chosen was PBE and the optimised values of α were 0.11, 0.15 and 0.15 for Si,
Ge and SiC respectively. Moreover, they observed that the optimised value of
the exchange mixing is related to an effective static screening of the long-range
interaction (Alkauskas et al., 2008). The link between the optimised value and
the high frequency dielectric constant (ε∞) has also been found by Shimazaki and
Asai (2008) at the same period. The relation is

α ' 1

ε∞
. (2.1)

This can be explained by observing the similarity with GW approximation (Alka-
uskas and Pasquarello, 2011). The non-local exchange-correlation potential of hy-
brid functionals can be seen as the many-electron exchange-correlation self-energy
in the GW approximation. In this approximation, the long-range interaction can
be compared to a screened exchange whose asymptotic is the inverse of the dielec-
tric constant times the distance between r and r′. As the DFT, semi-local, terms
of the hybrid functional are short-ranged, the long-range interactions are fully cov-
ered by the non-local, HF exact exchange α/|r− r′|. Since the cited observation
of Alkauskas and Pasquarello, numerous works used the inverse of the dielectric
constant as an approximation for the exchange mixing ratio (Alkauskas et al.,
2011; Marques et al., 2011; Conesa, 2012; Hinuma et al., 2017; Shimazaki and
Nakajima, 2014; Fritsch et al., 2017). In order to automatise the process, some
self-consistent methods have been proposed (Shimazaki and Asai, 2009; Skone
et al., 2014). They suggest to calculate the dielectric constant self-consistently
until convergence by changing at each iteration the value of alpha. The method
proposed by Skone et al. (2014) was implemented in CRYSTAL17 (Erba, 2017).
The procedure is exposed in figure 2.1. In this algorithm, the dielectric constant
is calculated via a coupled-perturbed Kohn-Sham or HF (CPKS or CPHF) cal-
culation (Ferrero et al., 2008) at each iteration for a given value α defined as in
equation (2.1).

Band gap optimised hybrid functional

For tandem applications, the band gaps of the two absorbers need to be comple-
mentary to capture as much of the incident light as possible. In order to have a
qualitative and quantitative description of the electronic properties such as the
band structure, we adjusted α in order to define a hybrid functional that leads to
a band gap which matches its experimental value for each material. A fully au-
tomated algorithm for the determination of the optimal fraction was developed.
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Figure 2.1 Flow charts of the automated algorithm for the system-specific definition of self-
consistent hybrid functionals (a)as implemented into the CRYSTAL17 program (Erba, 2017)
(b) as done in this work for an accurate description of the band gap.

In a self-consistent way it allows, from the knowledge of the experimental band
gap, to obtain α as seen in figure 2.1.

PBE and PBEsol functionals (Perdew et al., 2008), corresponding to the re-
vised PBE improving the description of the equilibrium properties of solids, were
chosen as DFT basis for our hybrid functionals because of their important use
in the solid state physic field. Materials used to test our hybrid Hamiltonians
are zinc blend semiconductors, important in the photovoltaic area, namely sili-
con (Si), germanium (Ge), silicon-germanium (SiGe) and the III–V family with
III = Ga, Al, In and V = P, As, Sb, and four ternary chalcopyrites, CuGaS2,
CuGaSe2, CuInS2 and CuInSe2.

The effect of α on the electronic properties

As it has been explained in chapter 1.1, HF overestimates the band gap value (by
more than 100%) whereas DFT underestimates it (by around 50%). Since these
two limits are far from each other, the variation of the HF exact exchange can then
lead to a significant variation of the band gap. This is illustrated in figure 2.2
which displays the variation of the band gap and the dielectric constant with
the percentage of the HF exact exchange in the hybrid functional for different
materials. The variation is practically linear for the band gap whereas as it has
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been already indicated by Broqvist et al. (2008). The dielectric constant varies
as the inverse of the percentage of the exact exchange. For a small gap material
like germanium, the PBE functional converges to a metallic solution, leading to
an infinite value of the dielectric constant. Here, an inclusion of at least 10%
of the exact exchange are then necessary for the system to converge on a semi-
conductor solution. When varying the α parameter, a change of 0.01% leads to
a variation of the band gap of 0.001 eV. Thus in order to obtain a band gap of
1.17 eV for silicon, the hybrid made from PBEsol must include 12.3% of the exact
exchange. This is sufficient for a precision on the second decimal of the band gap.
The underlying DFT description used for the exchange-correlation, be it PBE or
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Figure 2.2 Calculated band gap values (upper panels) and the electron dielectric function
ε∞ (lower panels) for different semiconductors, depending on the mixing parameter α in the
hybrid exchange-correlation functional based on the PBE (left panels) and PBEsol (right panels)
prescriptions for the exchange-correlation.
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Figure 2.3 Influence of the percentage of exact exchange in the hybrid functional on the
structural parameters for different materials.

PBEsol, hardly makes a noticeable difference. Moreover, as their impact on the
final result decreases with the increase of α, they tend to the same HF limit.

Impact on the structural properties

Even though we are interested here in the correct description of the band gap,
the other parameters are of significant importance. The structural properties
have also a key role for tandem application where the lattice parameters of the
two compounds must be similar to avoid lattice mismatch and thus growth and
adhesion problems. According to literature, α does not have a strong influence on
the structural properties (Deák et al., 2005; Paier et al., 2006; Heyd et al., 2005).
Figure 2.3 shows the variation of the lattice parameter a for Si, Ge, SiGe, GaP,
GaAs and GaSb. Similar to the behaviour of the band gap, the lattice parameter
can be seen at first approximation as linear with the percent α. However, unlike
the variation of the band gap, the lattice parameter decreases for higher α. The
relative variation of each one is of the order of magnitude of 0.1 for the whole
range of percentage of exact exchange studied.

If we turn this differently, in an attempt to optimise our hybrid not according
to the band gap but to the lattice parameter, the percentage would need to
be changed drastically for a very small change of the lattice parameter. Thus,
the corresponding value of the band gap might happen to be too far from the
experimental value.

Optimised HF exact exchange percentage

Figure 2.4 shows the values of the mixing parameter α, optimised by the pro-
cedure described in figure 2.1, and grouped as function of calculated band gap
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values (left column) and depending on the calculated values of the electron static
dielectric constant (right column), for the PBE (upper row) and PREsol (bottom
row) exchange-correlation functionals. In the right column moreover, the inverse
function of the dielectric constant is traced, to illustrate that the mixing values α
do indeed follow its trend closely enough. For the rest of this thesis, the general
optimised hybrid functionals are named as Hhyb, with H the name of the origi-
nal Hamiltonian, i.e. PBEhyb. For a material-specific optimised hybrid, it will
be named similarly as Hx with x the percentage of exact exchange. The hybrid
PBEsol12.3 is then based on PBEsol exchange-correlation with 12.3% of HF exact
exchange. For the material studied, the optimised percentages of exact exchange
are contained between 5% and 25% for both PBE and PBEsol hybrid functionals.
Only SiGe for the PBEhyb has a exchange mixing ratio inferior to 5%. When look-
ing at the variation of α with the band gap, different trends can be observed. The
ternary chalcopyrites have the highest percentage of exact exchange between 20%
and 25%. The III-V semiconductors are divided into three different categories,
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for which the value of α is dictated by the V’s atoms. Phosphide-based materials
are in the same range of percentage, just as arsenide-based and antimonide-based
materials. This is true for both PBE and PBEsol hybrid functionals. SiGe is not
in the middle of a line between Si and Ge even though its band gap is comprised
between their values. In general, two materials with the same approximate band
gap do not have the same optimised α. AlSb and CuGaSe2 each have a band gap
around 1.70 eV but their optimised exchange mixing ratio differs from more than
10% for PBEsol-based and more than 15% for PBE-based hybrid functional. On
the contrary, different materials with various band gap may have practically the
same optimised exchange mixing ratio. This is the case for InSb, GaSb, Si and
GaP for a PBEhyb optimised with 10% of exact exchange for band gaps going from
0.23 eV to 2.32 eV. Thus, there is no direct correlation between the optimised
amount of exact exchange to incorporate into DFT functionals and the band gap
of the material. Other parameters like the chemical nature of the compound
might have an influence.

For the dielectric, our results are in accordance with equation (2.1). The
global description of α by the inverse dielectric constant is well reproduced for
PBEsol functional and to a lesser extent for PBE where there is more dispersion.
However, even though the description of α by the inverse dielectric constant can
be a first good approximation, some difference arise. As for the band gap, two
materials with the same dielectric constant do not have the same optimised α.
This is true for both PBE and PBEsol-based hybrids.

Comparison with the performance of the hybrid functionals optimised
using Skone’s method

Here, we will compare our Hamiltonians with functionals optimised with Skone’s
method that have been implemented in CRYSTAL17. Table 2.1 shows the per-
formance of the two types of hybrid functionals on the structural, dielectric and
electronic properties. The first column for each material corresponds to the per-
centage of exact exchange incorporated in the functional. The values of α are
sensitively different for both methods in numerous cases. In Ge, for example,
when our hybrids have α equal to 19 % and 13 % for PBEhyb and PBEsolhyb,
the dielectric dependent functionals have 6 % and 4 % respectively. This leads
to different calculated values for the band gap. For PBE and PBEsol-based di-
electric dependent hybrid Hamiltonian, the band gap is underestimated. PBEε∞
even gives a nearly disappearing band gap (0.04 eV). The same test was made
for the ternary compound and PBEsolε∞ converged, for CuInSe2, to a solution
with closing band gap. The hybrid functionals optimised taking into account the
calculated values of the dielectric constant are not well suited for an accurate de-
scription of the band gap. The description of the dielectric constant is not better
compared to the one obtained with PBEhyb and PBEsolhyb. The performances are
globally the same, except for the band gap. Hence, our hybrids are more adapted
for photovoltaic applications where the electronic properties are of most interest.
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Table 2.1 Comparison of the performance of two type of self-consistent hybrid Hamiltonians
in reproducing the various properties of semiconductors.

Si Ge SiGe
α a ε Eg α a ε Eg α a ε Eg

PBEEg 9.45 5.464 10.85 1.17 18.57 5.684 14.06 0.74 3.79 5.542 11.87 0.99

PBEsolEg 12.29 5.432 10.78 1.17 12.62 5.625 14.40 0.74 7.37 5.485 11.43 0.99

PBEε∞ 9.1848 5.465 10.88 1.16 5.86 5.717 17.05 0.04 8.52 5.517 11.73 1.13

PBEsolε∞ 9.0464 5.434 11.05 1.02 3.69 5.637 27.07 0.30 8.61 5.463 11.60 0.99

Others 5.46 11.76 0.99 15.65 0.71

Exp. 5.430 11.4 1.17 5.652 15.36 0.74 5.537 13.95 0.99

GaP GaAs GaSb
α a ε Eg α a ε Eg α a ε Eg

PBEEg 8.75 5.474 8.45 2.32 17.75 5.663 9.79 1.52 9.37 6.111 13.43 0.81

PBEsolEg 11.53 5.418 8.35 2.32 14.58 5.606 9.99 1.52 5.16 6.045 13.87 0.81

PBEε∞ 12.06 5.469 8.29 2.51 8.78 5.686 11.38 0.94 6.91 6.107 14.47 0.78

PBEsolε∞ 11.99 5.418 8.34 2.34 9.23 5.613 10.83 1.18 7.37 6.032 13.57 0.97

Others
Exp. 5.447 8.46 2.31 5.648 10.58 1.52 6.096 13.80 0.81

InP InAs InSb
α a ε Eg α a ε Eg α a ε Eg

PBEEg 14.81 5.931 8.38 1.42 17.08 6.110 13.01 0.41 9.05 6.516 21.89 0.23

PBEsolEg 13.23 5.877 8.55 1.42 15.47 6.047 13.15 0.41 5.73 6.445 22.99 0.23

PBEε∞ 11.26 5.940 8.88 1.21

PBEsolε∞ 11.36 5.880 8.80 1.32

Others
Exp. 5.866 9.56 1.42 6.058 11.78 0.41 6.479 16.76 0.23

AlP AlAs AlSb
α a ε Eg α a ε Eg α a ε Eg

PBEEg 11.50 5.497 6.81 2.49 11.96 5.687 7.90 2.23 5.70 6.149 10.11 1.69

PBEsolEg 14.57 5.463 6.80 2.49 15.02 5.643 7.77 2.23 8.53 6.093 9.89 1.69

PBEε∞ 14.90 5.491 6.71 2.67 12.62 5.689 7.92 2.26 10.20 6.151 9.80 1.88

PBEsolε∞ 14.71 5.463 6.79 2.50 12.61 5.647 7.93 2.10 10.21 6.102 9.79 1.77

Others 7.23 2.37

Exp. 5.464 9.8 2.50 5.660 8.2 2.23 6.136 9.88 1.69

Table 2.2 Calculated mean absolute relative error (MARE) in percent for each tested Hamil-
tonians for the structural properties (a), the bulk modulus (B), the band gap (Eg), the dielectric
constant (ε), the Gamma phonon frequencies (ω), the average of all the properties (MAREtot)
and all except the band gap (MARE0)).

Hamiltonian a B Eg ε ω MAREtot MARE0

HF 1.05 36.95 350.80 34.76 10.92 86.90 20.92

PBE 0.52 12.09 43.00 30.6 0.39 17.32 10.90

PBE0 1.34 22.46 31.49 11.23 5.89 14.48 10.23

PBEsol 0.14 20.30 19.69 40.56 2.59 16.66 15.90

PBEsol0 0.64 33.02 52.45 15.98 7.56 21.93 14.30

LDA 0.47 18.77 41.01 14.96 4.22 15.89 9.61

B3LYP 1.22 14.36 8.19 34.30 1.37 11.89 12.81

HSE06 1.29 21.20 18.14 5.18 11.45 9.22

HSEsol 0.56 31.49 20.85 6.95 14.96 13.00

M06 1.10 18.95 18.20 3.26 10.38 7.77

M06L 1.07 16.21 55.48 1.20 18.49 6.16

HISS 1.65 28.50 29.46 8.68 17.07 12.94

PBEhyb 0.45 20.24 2.15 3.80 3.11 5.95 6.90

PBEsolhyb 0.40 27.47 0.26 3.69 5.29 7.42 9.21
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2.1.2 Hamiltonian benchmark

Method

Once the hybrid functionals were optimised to accurately describe the exper-
imental band gap, we tested and compared them against the other Hamilto-
nians from literature. Several exchange-correlation functionals were used for
the comparison. The local density approximation (LDA) is represented by a
Dirac-Slater exchange (Dirac, 1930) plus a Vosko-Wilk-Nusair correlation po-
tential (Vosko et al., 1980). The varieties of the GGA used were the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional (Perdew et al., 1996a),
and PBEsol (Perdew et al., 2008). Different hybrid HF/KS functionals were also
considered: three global, B3LYP (Becke, 1993a; Lee et al., 1988), PBE0 (Adamo
and Barone, 1999) and PBEsol0, three range-separated, HSE06 (Heyd et al., 2003,
2006), HSEsol (Schimka et al., 2011; Perdew et al., 2008) and HISS (Henderson
et al., 2007, 2008), and two meta-GGA, M06 (Zhao and Truhlar, 2006) and M06L
(Zhao and Truhlar, 2008). All those Hamiltonian were tested by comparing their
equilibrium geometry a (Å), Gamma phonon frequency ω (cm−1), elastic Cij and
B (GPa) as well as the dielectric properties ε∞ and direct and indirect band gap
Egd,i (eV), with experimental data. The dielectric properties are calculated via
the coupled-perturbed HF/KS which option, however, is not yet implemented for
HSE06, HSEsol, M06, M06L and HISS. The tables 2.3 to 2.8 regroup the different
calculated values for each material and the corresponding relative error with the
experimental data are shown in the figures 2.5 to 2.11.

Results

Several patterns can be pointed out in the different tables. The first one is the
direct or indirect behaviour of the band gap. For GaP, GaSb and AlAs, the calcu-
lated band gaps converge to the wrong solution for functionals such as B3LYP or
M06. For the second one, as LDA and GGA underestimate the band gap, small
band gap semiconductors are sometimes seen as metal by some LDA or GGA.
This is the case here for Ge, InaS, InSb and CuInSe2 which become metallic for
several Hamiltonians. Finally, some calculated band gaps are really close to zero.
This leads to an infinite dielectric constant, as for InSb with the PBEsol func-
tional with its 0.01 eV. All these problems are linked to the electrical properties.
With the optimised hybrid functionals, those types of problems disappear.

Relative error from experimental data

In order to have a general point of view of the different error with experimental
data, these errors are quantified in table 2.2. In this table, the mean absolute rel-
ative error (MARE) was calculated for each family of properties. The mean value
regrouping the different lattice parameters a, c and u can be found in the first
column, noted a. For every functional, it has been obtained by taking the average
value of the mean absolute relative value for all the material. For the structural
properties, different constants are calculated. We then took the average value of
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Table 2.3 Si, SiGe and Ge equilibrium lattice constant a (Å), Gamma phonon frequency ω
(cm−1), elastic Cij , B (GPa), dielectric constant ε, and band gap, direct Egd and indirect Egi

(eV) calculated with different Hamiltonians compared with experimental data.

Hamilt. a ω C11 C12 C44 B ε Egd Egi
HF 5.513 583. 196. 62. 101. 107. 7.32 8.65 6.44

PBE 5.477 515. 157. 59. 78. 91. 11.70 2.55 0.77

PBE0 5.446 544. 174. 66. 85. 102. 9.82 3.84 1.88

PBEsol 5.441 522. 162. 65. 78. 87. 11.91 2.51 0.62

PBEsol0 5.423 548. 177. 69. 86. 105. 9.92 3.81 1.78

LDA 5.410 527. 167. 67. 80. 100. 11.91 2.53 0.60

B3LYP 5.498 528. 165. 54. 85. 91. 9.87 3.72 1.92

HSE06 5.449 540. 172. 65. 85. 100. 3.29 1.31

HSEsol 5.425 545. 176. 69. 85. 104. 3.26 1.21

M06 5.459 539. 171. 66. 83. 102. 4.07 2.20

M06L 5.428 542. 176. 64. 89. 102. 2.91 1.20

HISS 5.427 558. 185. 69. 90. 107. 3.67 1.56

PBE9.45 5.464 527. 163. 61. 81. 95. 10.85 3.02 1.17

PBEsol12.29 5.432 535. 169. 67. 82. 101. 10.78 3.13 1.17

Si

Exp. 5.430a 520.b 168.c,d 65.c,d 80.c,d 99.c,d 11.4e 4.19f 1.17g

HF 5.599 487. 191. 60. 100. 104. 7.58 8.12 6.45

PBE 5.547 433. 152. 57. 76. 89. 12.34 1.88 0.85

PBE0 5.514 458. 170. 64. 85. 99. 10.03 3.51 1.95

PBEsol 5.489 442. 161. 65. 79. 97. 12.25 2.16 0.68

PBEsol0 5.476 463. 176. 69. 87. 104. 10.03 3.70 1.84

LDA 5.446 447. 168. 69. 82. 102. 12.23 2.23 0.63

B3LYP 5.577 441. 159. 53. 83. 88. 10.59 2.57 1.96

HSE06 5.519 454. 168. 63. 84. 98. 2.97 1.40

HSEsol 5.480 459. 174. 68. 86. 103. 3.15 1.28

M06 5.522 444. 161. 70. 76. 100. 2.75 1.94

M06L 5.541 440. 159. 60. 80. 93. 2.38 1.16

HISS 5.487 469. 182. 67. 91. 105. 3.67 1.61

PBE3.79 5.542 437. 155. 58. 78. 90. 11.87 2.11 0.99

PBEsol7.37 5.485 449. 165. 66. 81. 99. 11.43 2.59 0.99

Si
G
e

Exp. 5.537h 407.i 147.j 56.j 73.j 86.j 13.95j 2.77j 0.99k

HF 5.727 349. 161. 48. 91. 85. 8.91 5.30

PBE 5.734 300. 115. 38. 64. 64. 19.34

PBE0 5.669 328. 136. 44. 75. 75. 12.54 1.14

PBEsol 5.643 316. 126. 44. 69. 72. 93.09 0.14

PBEsol0 5.610 333. 144. 49. 78. 81. 12.03 1.43

LDA 5.581 320. 134. 49. 73. 77. 35.68 0.23

B3LYP 5.757 308. 121. 36. 69. 65. 0.02

HSE06 5.677 324. 133. 43. 74. 73. 0.74

HSEsol 5.617 330. 141. 48. 77. 79. 1.01

M06 5.681 323. 130. 60. 62. 83. 0.67

M06L 5.758 308. 115. 41. 62. 66. 0.06

HISS 5.631 335. 147. 48. 81. 81. 1.41

PBE18.57 5.684 323. 131. 43. 73. 72. 14.06 0.74

PBEsol12.62 5.625 325. 135. 47. 74. 76. 14.40 0.74

G
e

Exp. 5.652l 301.m,n 131.o 49.o,p 68.o 76.o,p 15.36q 0.74r

aStaroverov et al. (2004), bParker et al. (1967), cHall (1967), dMcSkimin and Andreatch (1972), eFaulkner
(1969), fAspnes and Studna (1972), gBludau et al. (1974), hDismukes et al. (1964), iAlonso and Winer (1989),
jLevinshtein et al. (2001), kWeber and Alonso (1989), lStaroverov et al. (2004), mParker et al. (1967), nOlego
and Cardona (1982), oFine (1955), pMcSkimin and Andreatch (1972), qFaulkner (1969), rKittel (2004)
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Figure 2.5 Absolute value of the relative error between calculated and experimental proper-
ties of Si, SiGe and Ge for each Hamiltonian. Hybrid functionals optimised for the material are
displayed in orange.
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Table 2.4 GaP, GaAs and GaSb equilibrium lattice constant a (Å), Gamma phonon frequency
ω (cm−1), elastic Cij , B (GPa), dielectric constant ε, and band gap, direct Egd and indirect
Egi (eV) calculated with different Hamiltonians compared with experimental data.

Hamilt. a ω C11 C12 C44 B ε Egd Egi
HF 5.536 392. 167. 66. 85. 100. 5.79 8.56 7.83

PBE 5.488 362. 132. 60. 64. 84. 9.10 1.94 1.83

PBE0 5.452 382. 149. 68. 72. 95. 7.58 3.59 3.19

PBEsol 5.425 374. 141. 68. 66. 92. 9.16 2.12 1.75

PBEsol0 5.411 389. 155. 73. 73. 100. 7.66 3.69 3.03

LDA 5.379 381. 149. 72. 69. 97. 9.24 2.17 1.67

B3LYP 5.519 365. 138. 56. 70. 84. 7.99 2.79

HSE06 5.457 380. 148. 67. 71. 94. 3.02 2.59

HSEsol 5.415 387. 154. 72. 73. 99. 3.13 2.43

M06 5.471 363. 142. 66. 66. 91. 2.88

M06L 5.467 365. 143. 68. 69. 91. 2.68 2.36

HISS 5.423 392. 161. 73. 77. 102. 3.76 2.84

PBE8.75 5.474 370. 139. 63. 67. 88. 8.45 2.49 2.32

PBEsol11.53 5.418 382. 148. 70. 70. 96. 8.35 2.82 2.32

Exp. 5.447a,b 367.c,d 144.e 65.e 71.e 91.e 8.46f 2.87g 2.31h

G
aP

366.i 141.j 63.j 70.j 89.j

HF 5.716 289. 141. 55. 76. 83. 6.56 6.73

PBE 5.709 263. 105. 44. 56. 64. 13.69 0.48

PBE0 5.647 280. 124. 54. 65. 77. 9.14 2.00

PBEsol 5.625 275. 115. 53. 59. 73. 12.26 0.72

PBEsol0 5.594 287. 131. 59. 67. 83. 9.09 2.16

LDA 5.567 282. 123. 58. 63. 79. 12.30 0.74

B3LYP 5.734 265. 111. 43. 60. 65. 10.39 1.10

HSE06 5.655 278. 121. 52. 64. 75. 1.54

HSEsol 5.600 285. 129. 58. 66. 81. 1.69

M06 5.670 273. 121. 55. 61. 77. 1.64

M06L 5.705 263. 110. 47. 59. 67. 1.10

HISS 5.612 287. 134. 58. 70. 83. 2.22

PBE17.75 5.663 275. 118. 51. 62. 73. 9.79 1.52

PBEsol14.58 5.606 282. 124. 56. 64. 79. 9.99 1.52

Exp. 5.648k 273.l,m 123.n 57.n 60.n 79.n 10.58o 1.52p

G
aA

s

121.q 55.q 60.q 77.q 10.92r

HF 6.141 265. 125. 49. 60. 75. 7.69 6.19 5.92

PBE 6.136 238. 92. 42. 43. 58. 19.11 0.34

PBE0 6.073 253. 107. 48. 49. 68. 11.00 1.75

PBEsol 6.052 246. 99. 47. 45. 65. 15.49 0.57

PBEsol0 6.018 259. 112. 52. 51. 72. 10.91 1.90 1.80

LDA 5.996 251. 104. 51. 47. 69. 15.63 0.58

B3LYP 6.164 240. 96. 40. 47. 59. 12.83 0.81

HSE06 6.083 251. 105. 47. 49. 66. 1.32 1.31

HSEsol 6.026 256. 110. 51. 50. 71. 1.48 1.33

M06 6.113 250. 100. 51. 43. 67. 1.31

M06L 6.155 240. 95. 43. 44. 60. 0.78

HISS 6.037 260. 115. 51. 53. 72. 1.67

PBE9.37 6.111 244. 98. 44. 45. 62. 13.43 0.81

PBEsol5.16 6.045 249. 102. 48. 46. 66. 13.87 0.81

Exp. 6.096s 231.t 91.u 41.u 44.u 58.u 13.80t 0.809v

G
aS

b

227.w 0.813x

aDeus et al. (1983b), bReeber and Wang (1995), cKrishnan and Krishnamurthy (1965), dTiginyanu (1999),
eBoyle and Sladek (1975), fBarker (1968), gVurgaftman et al. (2001), hLorenz et al. (1968), iMooradian and
Wright (1966), jWeil and Groves (1968), kStaroverov et al. (2004), lMooradian and Wright (1966), mHass and
Henvis (1962), nGarland and Park (1962), oMoore and Holm (1996), pSturge (1962), qCottam and Saunders
(1973), rRode (1970), sStraumanis and Kim (1965), tRode (1970), uBoyle and Sladek (1975), vMuñoz et al.
(2000), wSekine et al. (1976), xWu and Chen (1992)
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Figure 2.6 Absolute value of the relative error between calculated and experimental proper-
ties of GaP, GaAs and GaSb for each Hamiltonian.Hybrid functionals optimised for the material
are displayed in orange.
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Table 2.5 InP, InAs and InSb equilibrium lattice constant a (Å), Gamma phonon frequency
ω (cm−1), elastic Cij , B (GPa), dielectric constant ε, and band gap, direct Egd and indirect
Egi (eV) calculated with different Hamiltonians compared with experimental data.

Hamilt. a ω C11 C12 C44 B ε Egd
HF 5.974 327. 126. 61. 61. 83. 10.41 6.70

PBEXC 5.971 297. 93. 48. 44. 63. 7.67 0.61

PBE0 5.910 316. 109. 58. 50. 75. 10.16 2.08

PBESOLXC 5.897 309. 100. 55. 45. 70. 7.74 0.72

PBESOL0 5.864 324. 114. 62. 51. 79. 10.32 2.11

SVWN 5.851 315. 105. 59. 47. 74. 8.49 0.70

B3LYP 5.995 300. 98. 48. 48. 64. 8.57 1.32

HSE06 5.915 315. 107. 57. 50. 73. 1.54

HSESOL 5.869 322. 112. 61. 50. 78. 1.59

M06 5.941 306. 103. 57. 44. 72. 1.55

M06L 5.957 289. 97. 53. 44. 69. 1.25

HISS 5.874 326. 118. 62. 54. 81. 2.13

PBE14.81 5.931 309. 102. 54. 48. 70. 8.38 1.42

PBEsol13.23 5.877 317. 108. 59. 49. 75. 8.55 1.42

Exp. 5.866a 308.b 102.c 58.c 46.c,d 73.c 9.56e 1.42f,g

In
P

101.d 56.d 71.d

HF 6.136 226. 108. 52. 55. 69. 6.24 5.47

PBEXC 6.171 204. 75. 39. 36. 50. 15.29

PBE0 6.087 222. 91. 48. 43. 61. 9.83 0.88

PBESOLXC 6.077 214. 83. 46. 38. 57. 14.39

PBESOL0 6.030 228. 97. 53. 45. 66. 9.72 0.94

SVWN 6.020 220. 89. 50. 40. 62. 14.67

B3LYP 6.186 210. 81. 38. 41. 51. 97.39 0.10

HSE06 6.096 220. 89. 47. 42. 60. 0.46

HSESOL 6.038 227. 95. 51. 44. 65. 0.52

M06 6.133 220. 88. 46. 40. 59. 0.55

M06L 6.198 201. 75. 40. 36. 50.

HISS 6.047 228. 99. 52. 47. 66. 0.99

PBE17.08 6.110 217. 86. 45. 41. 58. 13.01 0.41

PBEsol15.47 6.047 224. 92. 50. 42. 63. 13.15 0.41

Exp. 6.058h 220.i 90.j 50.j 39.j 63.j 11.78k 0.41l

In
A
s

83.m 45.m 40.m

HF 6.524 211. 102. 47. 47. 63. 7.20 5.39

PBEXC 6.548 186. 71. 37. 31. 47. 16.42

PBE0 6.468 202. 85. 44. 37. 56. 10.87 1.08

PBESOLXC 6.457 194. 77. 42. 33. 52. 0.01

PBESOL0 6.410 206. 89. 47. 38. 60. 10.77 1.19

SVWN 6.402 197. 81. 44. 34. 56. 15.92

B3LYP 6.571 191. 76. 36. 35. 48. 17.35 0.29

HSE06 6.478 200. 83. 43. 36. 55. 0.71

HSESOL 6.418 205. 88. 46. 37. 58. 0.81

M06 6.544 200. 77. 43. 31. 53. 0.61

M06L 6.590 189. 72. 38. 31. 48. 0.14

HISS 6.426 207. 92. 47. 40. 60. 1.22

PBE9.05 6.516 194. 77. 40. 33. 50. 21.89 0.23

PBEsol5.73 6.445 199. 80. 43. 34. 54. 22.99 0.23

Exp. 6.479n 182.o 67.p 34.p 31.p,q 45.p 16.76r 0.23s

In
Sb

69.q 38.q

aReeber andWang (1995), bMooradian andWright (1966), cHickernell and Gayton (1966), dNichols et al. (1980),
eRode (1970), fPavesi et al. (1991), gVarshni (1967) hIoffe Institute (2019), iCarles et al. (1980), jGerlich (1964),
kRode (1970), lFang et al. (1990), mGerlich (1963) nStraumanis and Kim (1965), oKiefer et al. (1975), pPotter
(1956), qSlutsky and Garland (1959), rRode (1970), sZollner et al. (1991)
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Figure 2.7 Absolute value of the relative error between calculated and experimental proper-
ties of InP, InAs and InSb for each Hamiltonian. Hybrid functionals optimised for the material
are displayed in orange.
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Table 2.6 AlP, AlAs and AlSb equilibrium lattice constant a (Å), Gamma phonon frequency
ω (cm−1), elastic Cij , B (GPa), dielectric constant ε, and band gap, direct Egd and indirect
Egi (eV) calculated with different Hamiltonians compared with experimental data.

Hamilt. a ω C11 C12 C44 B ε Egd Egi
HF 5.540 474. 162. 68. 83. 99. 5.07 10.30 8.10

PBEXC 5.513 440. 129. 62. 62. 84. 7.26 3.19 1.91

PBE0 5.479 459. 143. 69. 68. 93. 6.38 4.90 3.20

PBESOLXC 5.476 448. 132. 67. 61. 88. 7.41 3.25 1.72

PBESOL0 5.455 463. 145. 72. 67. 96. 6.46 4.91 3.07

SVWN 5.440 453. 137. 69. 63. 92. 7.43 3.32 1.68

B3LYP 5.529 444. 138. 60. 69. 86. 6.40 4.46 3.23

HSE06 5.482 457. 142. 68. 67. 92. 4.28 2.58

HSESOL 5.457 462. 144. 71. 67. 95. 4.31 2.44

M06 5.489 429. 138. 67. 64. 90. 4.46 3.26

M06L 5.456 452. 145. 71. 69. 95. 4.20 2.30

HISS 5.459 470. 151. 72. 72. 99. 4.97 2.88

PBE11.50 5.497 449. 136. 65. 64. 89. 6.81 3.91 2.49

PBEsol14.57 5.463 457. 140. 70. 64. 93. 6.80 4.14 2.49

Exp. 5.464a 440.b 133.c 63.c 62.c 86.c 7.54d 3.6e 2.50f

A
lP

2.52g

HF 5.710 380. 142. 58. 75. 86. 5.49 8.48 7.48

PBEXC 5.714 355. 109. 50. 54. 69. 8.66 1.83 1.68

PBE0 5.663 372. 123. 57. 61. 79. 7.30 3.44 2.87

PBESOLXC 5.661 363. 113. 55. 55. 74. 8.69 1.95 1.50

PBESOL0 5.631 377. 126. 61. 61. 82. 7.32 3.51 2.74

SVWN 5.616 369. 118. 58. 57. 78. 8.68 2.00 1.47

B3LYP 5.720 358. 117. 48. 62. 71. 7.42 2.86

HSE06 5.668 370. 122. 57. 61. 78. 2.89 2.28

HSESOL 5.635 376. 125. 60. 61. 81. 2.96 2.15

M06 5.673 361. 122. 56. 60. 77. 3.25 3.06

M06L 5.674 362. 118. 54. 60. 75. 2.55 1.92

HISS 5.637 380. 131. 61. 65. 84. 3.55 2.52

PBE11.96 5.687 363. 116. 53. 58. 74. 7.90 2.45 2.23

PBEsol15.02 5.643 372. 121. 59. 59. 79. 7.77 2.77 2.23

A
lA

s

Exp. 5.660h 360.i 120.j 57.j 59.j 78.j 8.2k 3.13l 2.23m

HF 6.166 367. 123. 50. 58. 72. 6.55 7.90 6.67

PBEXC 6.162 333. 93. 43. 41. 58. 10.67 1.71 1.46

PBE0 6.109 350. 105. 48. 46. 66. 8.79 3.21 2.52

PBESOLXC 6.105 340. 96. 47. 41. 62. 10.67 1.86 1.33

PBESOL0 6.072 354. 107. 51. 46. 68. 8.80 3.31 2.43

SVWN 6.061 343. 99. 49. 42. 64. 10.66 1.89 1.30

B3LYP 6.177 337. 99. 42. 46. 59. 9.01 2.57 2.39

HSE06 6.115 348. 104. 48. 46. 65. 2.70 1.97

HSESOL 6.077 352. 106. 50. 45. 68. 2.80 1.88

M06 6.130 342. 100. 50. 41. 65. 2.78 2.40

M06L 6.138 340. 99. 46. 44. 62. 2.23 1.60

HISS 6.079 358. 111. 51. 49. 70. 3.31 2.17

PBE5.70 6.149 338. 96. 44. 42. 60. 10.11 1.97 1.69

PBEsol8.53 6.093 345. 100. 48. 43. 64. 9.89 2.27 1.69

A
lS
b

Exp. 6.136n 318.o 89.p 44.p 41.p 59.p 9.88q 2.21r 1.69s

aSingh (1992), bBeer et al. (1968), cVurgaftman et al. (2001), dYu and Cardona (2010), eYu and Cardona (2010),
fMonemar (1973), gLorenz et al. (1970) hSingh (1992), iAzuhata et al. (1995), jAdachi (1985), kLockwood et al.
(2005), lYu and Cardona (2010), mMonemar (1973) nSingh (1992), oIsaenko et al. (2003), pBolef and Menes
(1960), qLockwood et al. (2005), rCardona et al. (1966), sPalmer (2019)
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Figure 2.8 Absolute value of the relative error between calculated and experimental proper-
ties of AlP, AlAs and AlSb for each Hamiltonian.Hybrid functionals optimised for the material
are displayed in orange.
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this different properties and defined a global error for the structural parameters.
The same procedure have been done for the other properties. Thus, we found the
bulk modulus, the electrical properties corresponding to the average error for di-
rect and indirect band gap, the dielectric properties which regroup the dielectric
constant and the vibrational frequencies. Even though all this properties are not
directly comparable, we summed their relative errors with experiments to have a
global point of view of the functional’s performances. As the hybrid functional
developed in this work correctly reproduced the experimental band gap, the rel-
ative error for the electronic properties only comes from the divergence between
the calculated and experimental values of the direct band gap of indirect-band
gap semiconductors. This error is then extremely small compared to the other
functionals from literature. We then define the measure of two distinct global
errors for every Hamiltonian. The first one, called MAREtot, is the average er-
ror throughout all properties. The second one, called MARE0, is the same as
MAREtot without the contribution of the electronic properties’ error.

As expected, the Hartree-Fock Hamiltonian leads to an overestimation of the
band gap (350%) when LDA and GGA functionals underestimate its value, giving
40% and 43% respectively. PBEhyb and PBEsolhyb obviously give the best results
for the band gap. B3LYP was created for organic molecular systems with covalent
bonds. The high number of covalent materials among our test cases explains
therefore that the mean B3LYP energy is low. However, B3LYP wrongly predicts
the band gap to be direct for GaP and AlAs. PBEsol, HSe06 and M06 are the
other functionals that lead to the lowest MARE, around 19%. When looking at
the structural properties, PBE and PBEsol functionals have the lowest MARE.
This is why the MARE of PBEhyb and PBEsolhyb is better than the majority of
the other functionals with only 0.5 %. This is not the case for the precision in
the bulk modulus calculation where PBEhyb is in the average error of the other
functionals and PBEsolhyb is among those with the highest error. Just as for
the lattice parameters, PBE gives the lowest MARE. Nonetheless, these results
are less significant because of the experimental precision of the bulk modulus
that is often of the order of several tens of percent. The dielectric properties
calculated with PBEhyb and PBEsolhyb are very close to the experimental data
with less than a 5% error. The other functionals tested give results from 10%
to more than 30% for PBEsol. This comparison is not complete as the coupled-
perturbed Kohn-Sham/Hartree-Fock (CPKS/HF) method is not implemented for
several functionals used here. Finally, the last properties studied were the Gamma
vibration frequencies of the crystal. Once again, PBE has the smallest MARE
which is 0.39%. All the MARE are less or equal to 10%. In this context, the
two optimised hybrid functionals do not give significant result compared to the
other functionals with 3% and 5% for PBEhyb and PBEsolhyb respectively. The
penultimate column is the average value for all the properties of each functional.
Thanks to their performance for the calculation of the band gap, PBEhyb and
PBEsolhyb give the lowest relative error. However, if we exclude the electronic
properties of the mean values as in the last colum (MARE0), these two optimised
hybrid functionals are still the most accurate ones included in the tests, with
relative errors of 6% and 9% just as LDA, HSE06 and the M06 functionals.



2.1. Hybrid functionals 35

L Γ X
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8 Si

E
n

er
gy

/
eV

Figure 2.9 Comparison of the electronic structure computed via the PBEsolhyb (grey) and
the GW calculation (red) of Rohlfing et al. (1993) for silicon compared to experimental data
by Ortega and Himpsel (1993).

Chalcopyrite optimised hybrids

In the case of chalcopyrite, one optimised hybrid functional for every compound
is not very well suited if we want to compare results throughout systems. For ex-
ample, in chapter 3, alkali metals will be incorporated in the chalcopyrite for each
ternary compound. We then created an optimised hybrid for the whole family
by minimising the global relative error for the structural, dielectric and electri-
cal properties of the materials. The lattice parameter, the dielectric constant
and the band gap were computed for different values of α and then compared
to experimental data. The performance of these hybrid functionals can be found
in tables 2.7 to 2.8. The first observation is that the four ternary compounds
are relatively close in term of percentage of optimised exact exchange, both for
PBEhyb and PBEsolhyb as it has been seen in figure 2.4. This leads to a relatively
small discrepancy between the material-optimised hybrid functionals and the one
created for the family. Thus, the performances of both cases are quite similar.
Therefore, hybrid functionals which were optimised to correctly describe the ex-
perimental band gap and other main properties of materials with low mean ab-
solute relative error compared to the Hamiltonians from literature.

2.1.3 Comparison of electronic structures from hybrid func-
tional and from GW calculations

We just saw that the optimised hybrid functionals correctly described various
types of properties for the studied semiconductors. By the procedure of tuning,



36 Chapter 2. Hybrid functional performances

Table 2.7 Equilibrium geometry (a, b, c/a and u in Å), bulk modulus (B in GPa), band gap
(Eg in eV) and dielectric properties (εa∞, εc∞ and ε∞) of CuGaS2 and CuGaSe2, calculated with
different Hamiltonians and compared with experimental data.

Hamiltonian a b c/a u B Eg εa∞ εc∞ ε∞

PBE 5.412 10.736 1.984 0.247 80. 0.61 8.06 8.12 8.08

PBESOL 5.325 10.605 1.992 0.244 92. 0.74 8.00 8.04 8.02

PBE0 5.403 10.609 1.963 0.254 84. 2.79 5.45 5.42 5.44

PBESOL0 5.339 10.530 1.972 0.251 93. 2.82 5.58 5.56 5.58

LDA 5.268 10.505 1.994 0.243 101. 0.80 8.03 8.05 8.04

B3LYP 5.481 10.766 1.964 0.255 75. 2.10 5.69 5.67 5.68

HSE06 5.406 10.619 1.964 0.254 84. 2.17

HSESOL 5.341 10.538 1.963 0.251 93. 2.21

HISS 5.397 10.553 1.955 0.251 86. 3.03

M06 5.404 10.619 1.964 0.254 90. 2.62

M06L 5.428 10.647 1.961 0.253 84. 1.10

PBE22.11 5.403 10.622 1.966 0.253 84. 2.52 5.60 5.57 5.59

PBE22.46 5.403 10.622 1.966 0.255 84. 2.55 5.58 5.55 5.57

PBEsol21.74 5.335 10.539 1.975 0.250 93. 2.53 5.76 5.74 5.75

PBEsol22.63 5.336 10.540 1.975 0.251 93. 2.61 5.71 5.69 5.70

Exp. 5.349a 10.470a 1.958a,b 0.25a 94.c 2.53 6.1d 6.2d 6.17d

5.356b 10.444b 0.28b 96.e

C
uG

aS
2

5.347f 10.474f 97.g

PBE 5.652 11.295 1.998 0.241 70. 0.15 12.79 16.17 13.92

PBESOL 5.560 11.128 2.001 0.239 80. 0.25 11.62 12.42 11.89

PBE0 5.636 11.140 1.977 0.249 75. 2.05 6.64 6.68 6.65

PBESOL0 5.567 11.040 1.983 0.246 82. 2.07 6.79 6.83 6.80

LDA 5.500 11.025 2.004 0.238 88. 0.08 12.02 12.91 12.32

B3LYP 5.720 11.314 1.978 0.249 66. 1.38 7.16 7.24 7.19

HSE06 5.638 11.154 1.978 0.248 74. 1.51

HSESOL 5.570 11.051 1.984 0.246 82. 1.54

HISS 5.628 11.074 1.967 0.251 76. 2.25

M06 5.624 11.148 1.982 0.248 82. 1.96

M06L 5.682 11.263 1.982 0.247 73. 0.62

PBE21.18 5.637 11.160 1.980 0.248 74. 1.73 6.96 7.00 6.97

PBE22.46 5.637 11.153 1.979 0.248 74. 1.83 6.85 6.89 6.86

PBEsol20.66 5.565 11.051 1.986 0.245 83. 1.72 7.16 7.19 7.17

PBEsol22.63 5.567 11.047 1.984 0.246 83. 1.87 6.99 7.02 7.00

Exp. 5.607h 10.99h 1.960h 0.25h 71.i 1.73j 6.8k 6.6k 6.7k

5.614l 11.03l 1.965l 0.250l

C
uG

aS
e 2

5.604m 11.089m

aHahn et al. (1953), bSpiess et al. (1974), cBettini and Holzapfel (1975), dBaars and Koschel (1972), eWerner
et al. (1981), fAbrahams and Bernstein (1974), gTinoco et al. (1994), hHahn et al. (1953), iKraft et al. (1983),
j, kMárquez and Rincón (1995), lSpiess et al. (1974), mRincón and Ramírez (1992)
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Figure 2.10 Absolute value of the relative error between calculated and experimental prop-
erties of CuGaS2 and CuGaSe2 for each Hamiltonian. Hybrid functionals optimised for the
material are displayed in orange and the one optimised for the chalcopyrite family in red.
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Table 2.8 Equilibrium geometry (a, b, c/a and u in Å), bulk modulus (B in GPa), band gap
(Eg in eV) and dielectric properties (εa∞, εc∞ and ε∞) of CuInS2 and CuInSe2, calculated with
different Hamiltonians and compared with experimental data.

Hamiltonian a b c/a u B Eg εa∞ εc∞ ε∞

PBE 5.614 11.325 2.017 0.218 66. 0.03 16.99 17.48 17.15

PBESOL 5.525 11.142 2.016 0.216 77. 0.02 16.20 16.64 16.35

PBE0 5.576 11.250 2.018 0.228 71. 1.73 5.92 5.86 5.90

PBESOL0 5.512 11.131 2.019 0.225 80. 1.72 6.09 6.00 6.07

LDA 5.469 11.018 2.015 0.214 85. 0.01 27.65 17.47 24.26

B3LYP 5.674 11.392 2.008 0.229 62. 1.14 6.49 6.38 6.45

HSE06 5.583 11.249 2.015 0.228 71. 1.14

HSESOL 5.517 11.134 2.018 0.225 79. 1.14

HISS 5.563 11.200 2.013 0.232 73. 1.90

M06 5.587 11.267 2.017 0.227 77. 1.59

M06L 5.616 11.336 2.018 0.224 70. 0.07

PBE22.72 5.580 11.245 2.015 0.228 71. 1.52 6.13 6.04 6.10

PBE22.46 5.580 11.245 2.015 0.228 71. 1.50 6.15 6.06 6.12

PBEsol22.82 5.512 11.131 2.019 0.225 80. 1.53 6.29 6.19 6.26

PBEsol22.63 5.512 11.131 2.019 0.225 80. 1.52 6.31 6.20 6.28

Exp. 5.517a 11.06a 2.005a 0.20a 75.b 1.53 6.0d 6.2d 6.1d

5.523e 11.12e 2.013e 0.214e

C
uI
nS

2

5.523f 11.133f

PBE 5.877 11.819 2.011 0.214 56. 0.01 31.42 21.04 27.96

PBESOL 5.775 11.628 2.013 0.212 66.

PBE0 5.832 11.709 2.008 0.223 62. 1.16 7.41 7.29 7.37

PBESOL0 5.759 11.586 2.012 0.221 69. 1.14 7.62 7.46 7.56

LDA 5.716 11.492 2.009 0.211 73.

B3LYP 5.932 11.896 2.006 0.224 53. 0.62 8.61 8.40 8.54

HSE06 5.837 11.719 2.008 0.223 61. 0.70

HSESOL 5.765 11.588 2.010 0.220 68. 0.68

HISS 5.814 11.658 2.005 0.227 63. 1.34

M06 5.838 11.715 2.006 0.221 68. 1.05

M06L 5.908 11.874 2.010 0.218 58. 0.02

PBE23.47 5.834 11.715 2.008 0.223 61. 1.04 7.64 7.50 7.59

PBE22.46 5.835 11.718 2.008 0.222 61. 0.97 7.79 7.64 7.74

PBEsol23.79 5.758 11.589 2.013 0.220 69. 1.04 7.80 7.62 7.74

PBEsol22.63 5.759 11.589 2.012 0.220 69. 0.96 7.99 7.79 7.92

Exp. 5.778h 11.55h 2.001h 0.22h 72.i 1.03j 7.80k 7.59k 7.73k

5.784l 11.616l 2.008l 0.224l

C
uI
nS

e 2

5.873m 11.583m

aHahn et al. (1953), bTinoco et al. (1996), c, dMárquez and Rincón (1995), eSpiess et al. (1974), fAbrahams
and Bernstein (1974), g, hHahn et al. (1953), iTinoco et al. (1996), j, kNeumann (1986), lSpiess et al. (1974),
mRincón and Ramírez (1992),
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the band gaps are reproduced faithfully. However, we only looked at the smallest
value of the gap, or its value at the middle of the Brillouin zone, the Γ point. In
order to see the global performance of these hybrid functionals, we investigated
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Figure 2.12 Electronic structure computed via the PBEsolhyb ( ) and the GW calculation
( ) of Malone and Cohen (2013) compared to experimental data for GaP, GaAs, GaSb, InP,
InAs, InSb, AlP, AlAs and AlSb.
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their ability to correctly describe the electronic structure of different materials
and compare their results with those obtained via the more complex and time-
consuming GW method.
We started by looking at the various III-V semiconductors. Silicon electronic
structures calculated with PBEsol12.29 is shown in figure 2.9. IThe comparison is
done to the GW results of Rohlfing et al. (1993) and the experimental data by
Ortega and Himpsel (1993). We can see that the hybrid functional and the GW
approximation give the same description of the band structure near the band gap
and close to the experimental data. The electronic structures of GaX, AlX and
InX, with X=P,As and Sb, are displayed in figure 2.12. In this figure, our results

Table 2.9 Comparison of the hybrid functionals and GW+SO calculated energies Malone
and Cohen (2013) at the Γ point for the III-V semiconductors. (III = Ga, In, Al and V = P,
As, Sb). Experimental data are from Malone and Cohen (2013).

GaP GaAs GaSb
Hyb. GW+SO Exp. Hyb. GW+SO Exp. Hyb. GW+SO Exp.

Γ1v −13.29 −12.14 12.5 −13.81 −12.53 −13.8/− 13.1 −12.00 −11.47 −11.6

Γ15v 0.00 −0.09, 0.00 −0.08, 0.00 0.00 −0.35, 0.00 −0.34, 0.00 0.00 −0.73, 0.00 −0.76/0.0

Γ1c 2.82 2.75 2.88 1.52 1.31 1.63 0.81 0.70 0.81

Γ15c 4.84 4.88, 5.05 4.7 4.53 4.38, 4.58 4.71/4.8 3.18 3.09, 3.31

X1v −10.09 −9.47 −9.9 −11.05 −10.29 −10.7 −9.36 −9.21 −9.6/− 9.4

X3v −7.15 −6.57 −6.8 −7.37 −6.79 −7.1/− 6.7 −7.06 −6.86 −6.9

X5v −2.92 −2.69,−2.67 −3.0/− 2.9 −3.05 −2.84,−2.76 −2.8/− 2.5 −2.73 −2.96,−2.70 −3.10,−2.86

X1c 2.32 2.52 2.12 2.03 2.10/2.18 1.37 1.26 1.13

X3c 3.90 2.84 3.31 2.35 2.58 1.54 1.48

L1v −11.054 −10.27 −10.7 −11.863 −10.96 −12.0/−11.24 −10.252 −9.97 −10.3/− 10.1

L1v −7.113 −6.53 −6.6 −7.276 −6.68 −7.1/− 6.7 −6.68 −6.51 −6.9/− 6.6

L3v −1.198 −1.16,−1.09 −0.9 −1.313 −1.36,−1.14 −1.4/− 1.3 −1.158 −1.60,−1.18 1.55,−1.1

L1c 2.478 2.68 1.905 1.75 1.84 0.871 0.85 1.09

L3c 5.981 5.75, 5.81 5.956 5.33, 5.42 4.255 4.09, 4.21 4.36, 4.49

InP InAs InSb
Hyb. GW+SO Exp. Hyb. GW+SO Exp. Hyb. GW+SO Exp.

Γ1v −12.20 −11.04 −11.4/− 11.0 −12.76 −11.53 −12.3 −11.14 −10.54 −11.7/− 10.8

Γ15v 0.00 −0.11, 0.00 −0.11, 0.00 0.00 −0.38, 0.00 −0.37, 0.00 0.00 −0.78, 0.00 −0.85, 0.0

Γ1c 1.42 1.47 1.42 0.42 0.42 0.36 0.24 0.28 0.24

Γ15c 5.03 4.78, 5.23 4.78, 5.14 4.77 4.25, 4.73 4.5 3.34 3.06, 3.50 3.14, 3.53

X1v −9.69 −9.00 −9.6/− 8.9 −10.59 −9.84 −9.8 9.05 −8.84 −9.5

X3v −6.10 −5.55 −6.0/− 5.9 −6.30 −5.78 −6.3/− 6.0 6.14 −5.96 −6.4/− 6.1

X5v −2.47 −2.36,−2.25 −2.7/− 2.2 −2.55 −2.42 −2.7/− 2.4 2.38 −2.60,−2.43 −2.4

X1c 2.57 2.54 2.8 2.36 2.04 1.9 1.67 1.55 1.8

X3c 4.76 3.18 4.62 2.67 2.06 1.65

L1v −10.381 −9.57 −10.0 −11.174 −10.31 −10.6 −9.696 −9.38 −10.5/− 10.0

L1v −6.106 −5.59 −6.246 −5.75 −5.88 −5.74

L3v −1.024 −1.04,−0.92 −1.0 −1.089 −1.23,−0.96 −0.9 −1.014 −1.50,−1.01 −1.4/− 0.9

L1c 2.225 2.38 2.38 1.754 1.57 0.856 0.89

L3c 6.14 5.67, 5.84 5.972 5.20, 5.40 4.363 4.05, 4.25 4.32, 4.47

AlP AlAs AlSb
Hyb. GW+SO Exp. Hyb. GW+SO Exp. Hyb. GW+SO Exp.

Γ1v −12.32 −11.21 −12.81 −11.73 −11.31 −10.62

Γ15v 0.00 −0.06, 0.00 0.00 −0.31, 0.00 −0.31, 0.00 0.00 −0.68, 0.00 −0.67, 0.00

Γ1c 4.20 4.14 2.85 2.73 3.11 2.32 1.87 2.38

Γ15c 5.65 5.66, 5.69 5.12 5.05, 5.10 3.68 3.53, 3.58 3.7

X1v −9.787 −8.99 −10.63 9.88 9.16 −8.79

X3v −5.718 −5.38 −5.94 5.64 5.81 −5.81

X5v −2.307 −2.17,−2.15 −2.43 −2.40,−2.27 −2.45,−2.30 2.34 −2.60,−2.30

X1c 2.49 2.63 2.5 2.22 2.19 1.69 1.62

X3c 4.951 3.56 4.45 3.06 2.07 1.85

L1v −10.5 −9.62 −11.24 −10.40 −9.81 −9.35

L1v −5.994 −5.58 −6.12 5.77 −5.79 −5.70

L3v −0.837 −0.82,−0.79 −0.93 −0.92

L1c 3.732 3.79 3.03 2.85 2.49/2.54 1.91 1.68

L3c 6.251 6.01, 6.02 5.97 5.54, 5.56 4.39 4.22, 4.26
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are plotted in dark grey and the GW results from Malone and Cohen (2013)
in red. In their article, they take into account the spin-orbit (SO) coupling.
When we compare our results, there is not much difference around the band gap
except for the SO that we did not look at. We have the same trends and we are
even closer to the experiment value, by force of the optimisation procedure. As
DFT and HF are not meant to describe excited states, our results diverge for the
conduction band, even though we are still close to the results from GW for InSb
or GaSb.

We quantified this good reproduction ofGW electronic structures by analysing
the energy band at the high symmetry point, Γ, X and L. Table 2.9 lists all these
energies calculated from PBEsolhyb and GW approximation and compared to
experimental data by Malone and Cohen (2013). As it was deduced from the
figure 2.12, our results are sometimes closer to experimental data at the band
gap. This is the case for GaP at Γ1c. We obtained an energy of 2.82 eV against
2.75 eV for GW approximation for an experimental value of 2.88 eV. However,
the spin-orbit coupling is well reproduced by the GW calculation cited, which
gives accurate result for all the point observed with a maximum difference of 0.5
eV.

The same comparison was made for CuGaSe2. We used the hybrid functional
optimised for the chalcopyrite family and compared the electronic structure with
the GW results of Aguilera et al. (2011). Even though we did not compare the
energy at each point, the general trends are the same, and the gaps between
occupied bands situated at about -3 and -7 eV are correctly described by our
functional, which is not the case for LDA calculation (Aguilera et al., 2011).
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Figure 2.13 Electronic structure computed via the PBEsolhyb (left) and the GW calculation
(right) of Aguilera et al. (2011) for CuGaSe2.
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Hence, the accuracy of the hybrid functional is remarkably close to the one ob-
tained with most complex method as GW approximation. We developed hybrid
functional that has the same precision on structural, mechanical and vibrational
properties of other functionals in the literature, a better description of the di-
electric properties and enables a very accurate reproduction of the band gap and
of the electronic structure as a whole. Far less ressources-consuming than GW
methods, our hybrid Hamiltonian are thus a pragmatic way to obtain quick and
accurate result for semiconductors used in the photovoltaic field.

2.2 Temperature dependence of various proper-
ties

2.2.1 Structural parameters

In QHA, the effect of the temperature is directly linked to the thermal evolution
of the lattice structure. Each temperature corresponds to a specific set of lattice
constants. This is why the first type of properties to consider when looking at
the QHA is the structural parameters and/or thermal expansion coefficient.

Figure 2.14 represents the variation of the thermal expansion coefficient α with
the temperature for the set of semiconductors studied in this thesis for different
Hamiltonians. These computed variations were compared to experimental data
from literature. The behaviour of the calculated thermal expansion coefficient
is close to the experimental ones for all the materials of figure 2.14. The only
divergence is an underestimation for several III-V semiconductors (AlP, AlAs,
AlSb and GaSb). We can see that we have a good description of the negative
thermal expansion at low temperatures. It has been observed for various III-V
semiconductors and Si and is due to the negative Grüneissen parameters of the
transverse acoustical phonon branches near the limit of the Brillouin zone (Soma
et al., 1982; Sparks and Swenson, 1967; Gibbons, 1958; Xu et al., 1991; Biernacki
and Scheffler, 1989). The QHA successfully reproduces this behaviour and even
has a small tendency to overestimate it as it can be seen for the Al- and In-based
III-V semiconductors. The comparison of the different functionals shows similar
behaviour and small dispersion. The highest difference between two functionals
at a fixed temperature does not exceed 3 × 10−6 K−1 and is only obtained for
germanium which exhibits the maximum dispersion.

We then looked at the lattice expansion of copper-based ternary chalcopy-
rites. In this case, the anisotropy of the system leads to two different thermal
expansion coefficients αa and αc. Figure 2.15 shows their variation with the tem-
perature. The Hamiltonian used is the PBEsol-based optimised one for the whole
chalcopyrite family (see section 2.1.1). The above observation, concerning a good
reproduction of the experimental data, applies in this case as well. However, the
difference between αa and αc is smaller when calculated than according to exper-
iment. This is particularly true for CuGaSe2 where the two calculated curves are
nearly overlapping. For this material, the negative thermal expansion is not well



44 Chapter 2. Hybrid functional performances

reproduced compared to the experimental value of Nagaoka et al. (2012). It is
underestimated for αc with a difference of several hundred percents whereas it is
overestimated for αa which does not show negative expansion experimentally.

The QHA leads to thermal expansion coefficients close to the experimental one
for the semiconductors studied here. Even when the low temperature behaviour
is not as well reproduced as in CuGaSe2, the description of the values at room
temperature seems satisfactory.

2.2.2 Electronic properties

After looking at the temperature dependence of the structural parameters, we
turn now to the analysis of electronic properties. For the same set of materi-
als, we calculated the band gap throughout the range of temperatures, using the
QHA. Once again, the temperature here corresponds to a specific lattice param-
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Figure 2.14 Temperature dependence of the linear thermal expansion coefficient α of various
semiconductors compared to experimental data (Lyon et al., 1977; Kagaya and Soma, 1987;
Novikova, 1966; Deus et al., 1983b; Sparks and Swenson, 1967; Ioffe Institute, 2019; Gibbons,
1958).
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eter. Figure 2.16 represents the band gap variation with the temperature for
different functionals. Here we can note that the calculated results quite differ
from the experimental trend. For Ga and In-based III-V semiconductors and Ge,
the band gap decreases with the temperature consistently with the experimental
data. However, the predicted decline of the band gap with temperature turns out
systematically too slow. For Si and Al-based materials it is even worse. The cal-
culated band gap increases with the temperature whereas the experimental one
declines. In reality, the main contribution to the temperature dependence comes
from the electron-phonon interaction (Allen and Heine, 1976; Zollner et al., 1991).
However, we do not consider this type of interaction in our calculations. This
might explain the discrepancies between our results and the experiments.

The same tendency as for germanium takes place for chalcopyrite. In fig-
ure 2.17, the descending variation of the band gap with temperature for the four
ternary chalcopyrites is well described by the quasi-harmonic approximation for
the PBEsolhyb.

Coming back to figure 2.16, in most of the cases different functionals yield the
same behaviour. Nevertheless, PBE and PBEhyb show some divergences for GaP
and AlSb. They first vary with the temperature in the same way as the other
functionals but then start to decrease. Apart from this, the choice of Hamiltonian
is not especially crucial if we only looked at the variation with the temperature.
PBEhyb or PBEsolhyb are still closer to the experimental variation since they start
at the experimental value at 0K.

-9
-6
-3
0
3
6
9

12

α
/

10
−

6
·K CuGaS2 CuGaSe2

0 200 400 600
-9
-6
-3
0
3
6
9

12

T / K

CuInS2

0 200 400 600

CuInSe2

Figure 2.15 Temperature influence on the linear thermal expansion coefficient αa ( ) and
αc ( ) for CuGaS2, CuGaSe2 CuInS2 and CuInSe2, calculated from the quasi-harmonic ap-
proximation with the PBEsol22.63 functional and experimental data (Bodnar and Orlova, 1983;
Nagaoka et al., 2012; Deus et al., 1983a).
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2.2.3 Thermodynamic properties

One important feature that we want to inspect in this thesis is the variation of the
defects formation energy with the temperature. We then looked at the binding
energy of the perfect material and other properties such as the heat capacity at
constant volume. It has been shown that HF tends to underestimate binding
energies, LDA overestimate them when PBE give more accurate results (Labat
et al., 2007).

The formation energy of pure silicon crystal from isolated atoms is plotted
in figure 2.18 between 0 and 1000 K for three different Hamiltonians, PBEsol,
PBEsol0 and PBEsolhyb. We can see that the three functionals yield the same
trend in the formation energy varying with temperature. However, the corre-
sponding curves are separated by nearly rigid shifts, occurring already at zero
temperature. Compared to experimental data (Corruccini and Gniewek, 1960;
Desai, 1986), the gradual decrease of the formation energy with temperature is
well reproduced, especially at low temperature under 300 K. The kink at 300 K
is coming from the two different experimental procedures used.

The heat capacity at constant volume for Si, GaP, GaAs and GaSb was calcu-
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Figure 2.16 Temperature dependence of the band gap energy ∆Eg of various semiconductors.
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Figure 2.17 Temperature dependence of the band gap of CuGaS2, CuGaSe2, CuInS2, and
CuInSe2 calculated via hybrid functional optimised for the material (red) and the chalcopyrite
family (blue), compared to experimental data (green dots).

lated with PBEsolhyb from 0 to 600 K and is shown in the figure 2.19. The figure
also reproduces the experimental data from the literature (Pässler, 2013; Glazov
and Pashinkin, 2001). We have a very good agreement with the experimental
data for the four materials, and this in fact independently on the functional cho-
sen. Therefore, one can admit that the use of hybrid functionals is not imperative
when thermodynamic properties are object of study; an LDA or GGA calcula-
tion would yield practically undistinguishable results in this sense. As we can
see in figures 2.14 and 2.15, the thermal expansions for the studied materials are
3×10−6 K−1. The lattice constants’ variations with temperature are then negligi-
ble and as the thermodynamic properties can also be calculated from the phonon
calculation, the QHA may be not necessary for the calculation of thermodynamic
properties in this case. In the other cases, the QHA is a good first approximation
to take into account the temperature without too much calculation time. It is
not well suited for simulating the temperature variation of the band gap without
the considering of electron-phonon coupling.
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Figure 2.18 Formation energy of silicon for three different Hamiltonians compared to exper-
imental data from Corruccini and Gniewek (1960) (•) and Desai (1986) (•).
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2.3 Electrical conductivity

The last type of properties than we want to reach in this thesis are the transport
properties, especially the electrical conductivity σ. This can be done from the
Boltzmann transport equation (BTE). We saw in section 1.4 that there is a lot of
different implementation of the BTE in the literature. Here we used BoltzTraP2.

Effect of the choice of functional

We first investigated the impact of the Hamiltonians on the electrical conduc-
tivity. Figure 2.20 shows the variation of the electrical conductivity, normalised
by the relaxation time, with the chemical potential of silicon for different func-
tionals. As it has been observed by Sansone et al. (2017), the influence of the
Hamiltonian is not very important. The trends obtained in calculations using
different hybrid Hamiltonians turn out to be very similar. The curves are prac-
tically the same, up to a rigid shift. However, the quantitative analysis shows
variation between functionals. The lower the calculated band gap, the lower the
electrical conductivity. HF has the highest electrical conductivity when PBE has
the lowest. The only important aspect is the value of the band gap calculated
by the functional. When defects come into play, the chemical potential moves
from its value at 0 K, the Fermi level. We then need to have the most accurate
description of the variation of the transport properties near the band gap. This is
why the self-consistent hybrid functionals developed in this thesis are important.
The accurate description of the band gap leads to the most accurate description
of the electrical conductivity via the BTE.
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Figure 2.20 Electrical conductivity of silicon calculated with different functionals.



50 Chapter 2. Hybrid functional performances

Effect of the temperature

The quantitative estimation of the electrical conductivity must be done at given
temperature and chemical potential. The influence of temperature is shown in
figure 2.21 for silicon for the PBEsol12.29. In this case, the conductivity decreases
with the temperature. Each system has a particular chemical potential, that
depends on the doping. For each temperature, it is the one that yields zero net
charge carrier density. For silicon, its variation is only 10−4 eV for 500 K. We
can then consider that this value is constant with the temperature and take the
chemical potential equal to the Fermi level.

Applications

We can then compare the different semiconductor materials. The electrical con-
ductivity versus the chemical potential, normalised by the relaxation time, of
different semiconductors is plotted in figure 2.22. Each material has a specific
curve even though the behaviour are usually the same. The electrical conduc-
tivity is lower in the valence band compared to the one of the conduction band.
The distribution of the electrical conductivity σ is directly linked to the density
of state of the material. Even without looking at the quantitative data, we see
that the normalisation of the electrical conductivity permits to compare materials
behaviours.
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2.4 Summary and conclusion
The hybrid functionals were optimised in order to accurately describe the ex-
perimental value of the material’s band gap. They were tested and compared
to different types of functionals for various properties. They described the elec-
tronic structure, which matches that calculated using the GW method, but also
the structural and dielectric properties. The impact of the particular Hamilto-
nian chosen is not significant for the description of structural properties with the
temperature but it becomes crucial for the transport properties. Even though
the trends are similar, the accurate description of the electronic structure of our
optimised functional leads to a better description of the electrical conductivity.
Thus, these approaches have been validated on pure compound, giving an accu-
rate value of the different properties studied. We can then explore the impact of
defects in the following chapters.





Chapter 3

Chalcopyrite-type compounds for
tandem applications

In the previous chapters, the methodology relevant for this thesis was outlined
in what regards theory foundations and practical implementation. Experimental
data concerning perfect semiconductors were discussed. In the present chapter,
this methodology is applied to investigate the chalcopyrite-type complex systems
for tandem application. In order to use the chalcopyrite as the top cell for a silicon
bottom cell, its optimal band gap must be in the range 1.5−1.7 eV. Moreover, the
lattice mismatch with the silicon substrate needs to be as small as possible in order
to avoid the growth of a buffer layer. In the following, two types of chalcopyrite-
type compounds will be examined. We start by investigating the variation of
concentrations x and y in CuGaxIn1−xSySe1−y compounds and its impact on the
various properties of the material. We will then look at the cation (especially
copper) substitution by alkali metals in four different ternary chalcopyrites.

3.1 Doping/defect incorporation method

Some general remarks on the chalcopyrite structure might be in place here. The
chalcopyrite structure can be viewed as that of II-VI zincblende in which the
anions are tetrahedrally coordinated by cations. They have a tetragonal body
centered Bravais lattice. Their conventional unit cell is shown in the Figure
3.1 with 16 atoms (two primitive cells). Their space group is I 4̄2d, and their
structure is fully described by three crystallographic parameters: the two lattice
parameters a, c and the anions fractional coordinate u. The Cu atom is always
at the origin, (Ga/In) and (S/Se) atoms at the (0.5, 0.5, 0) and (u, 0.25, 0.125)
positions, respectively. As shown in the Figure 3.1, the anions tetrahedra can be
described by three internal parameters: d defined as the cation-anion distance, θ1

as the (S/Se) – (Cu/Ga/In) – (S/Se) angle between atoms along the tetrahedra’s
basal plane, and, θ2 as the (S/Se) – (Cu/Ga/In) – (S/Se) angle along the median
of the tetrahedra.

In order to incorporate defect in the bulk material, or to tune its intrinsic
composition, a procedure is adopted as outlined in figure 3.2. First of all, the
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d

q1

q2

Figure 3.1 Chalcopyrite structure of CuBX2 with B = Ga and In, and, X = S and Se.
d, θ1 and θ2 stand for the cation-anion distances and the different angles in the tetrahedra,
respectively.

supercell approach is used. It is mandatory for isolated defect calculation and
otherwise permits to widen the range of compositions accessible. For example, in
the CuInSe2 primitive cell, there are two copper, two indium and four selenium
atoms. If we want to substitute indium by gallium (CuGaxIn1−xSe2), only three
compositions are reachable: x = 0, 0.5 and 1, the intermediate one representing
a fictitious ordered compound. A supercell containing two times the number of
atoms of the primitive cell gives access to two more concentrations, x = 0.25 and
0.75, even if the placement of atoms over sites remains “too ordered” as compared
to a genuine alloy. The bigger the supercell, the more concentrations are available
and the better is the possibility, within a concentration given, to sample different
distributions of atoms over the lattice sites.

Once the size of the supercell is (arbitrarily) fixed, the nominal (unperturbed)
atomic positions are given, and the “commensurate” composition of choice cn can
be used to choose the placements of atoms over sites, numbered via various con-
figurations cnm . For a given concentration, the number of configurations, given
by the binomial coefficients, can be quite high. For a 64 atoms supercells with
16 indium sites, if four atoms of indium are substituted, 1820 configurations are
possible, many of which will be however equivalent by symmetry. In this work,
we keep only those configurations which preserve the original symmetry of the
cell. This means that if two atoms are equivalent, either both of them or neither
one would be substituted. This decreases the number of possible configurations
and thus the calculation time. The total energy calculation for each selected con-
figuration included the geometry optimisation, which was in all cases done within
the constraints imposed by the above-mentioned preserving the supercell sym-
metry. This enabled to reduce ambiguity and in comparing results over different
configurations. After all relaxations done, the most stable configuration c0

n was
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Figure 3.2 Flow chart of the method used to determine the different atomic structures asso-
ciated to each concentration of complex chalcopyrites.

identified and retained for each composition. Following the static structure re-
laxation, the calculation of phonon frequencies around the ground-state structure
thus found served to check whether all vibration frequencies are real and hence
the optimised structure is dynamically stable. Imaginary vibration frequencies
are then scanned and their geometry optimised within the original supercell or
not.

3.2 Chalcopyrite composition

Among copper-based chalcopyrite-type materials for photovoltaic applications,
the main prototype compounds are those with either Ga or In as cations and ei-
ther S or Se as anions. As a throughout continuous alloying is possible on each of
the respective sublattices, a general mixed chalcopyrite, in the following analysis,
could be described by a general formula, CuInxGa1−x(SeyS1−y)2. We retain that
x would stand for indium over gallium substitution, and y for selenium over sul-
phur one. The flexibility in adjusting the concentrations results in broad ranges
of the band gap and lattice parameter variation. Even as separate variations of x
and y were subject to a number of experimental (Roa et al., 1990; Bodnar et al.,
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1981; Bodnar and Lukomskii, 1986; Tinoco et al., 1991) and theoretical (Jiang
and Feng, 2008) studies, only one work, to our knowledge, addressed both sub-
stitutions simultaneously (Bär et al., 2004). In this work, a model was proposed
to parametrise the band gap of CuInxGa1−x(SeyS1−y)2, by extending the usual
description of the band gap in binary compounds A1−xBx:

Eg(x) = (1− x)Eg(A) + xEg(B)− bx(1− x) , (3.1)

where b is the optical bowing constant Wei and Zunger (1995). For the penternary
chalcopyrite, Bär et al. (2004) obtained the following band gap (in eV):

Eg(x, y) = 1.00 + 0.13x2 + 0.08y2 + 0.13xy + 0.55x+ 0.54y. (3.2)

In the present study, the band gap was probed in a series of first-principles calcu-
lations on a number of mixed structures. In particular, 81 different compositions
for CuInxGa1−x(SeyS1−y)2 were analysed via the procedure described in figure 3.2.
This 81-sample mesh corresponds to 9×9 trials with the values of 0, 1

8
, 2

8
, . . . , 7

8
, 1

over both x and y. As some concentrations could have been represented by many
different configurations of atoms within the given supercell size and composition,
the geometry optimisations have been performed on more than eight hundreds
configurations, in order to identify the most competitive ones. In all cases, the
trial systems maintained the symmetry of the chalcopyrite space group. The
structural, electronic and thermodynamic properties of these compounds were
then analysed under an angle of identifying the range of composition suited for
tandem application.

3.2.1 The variation of the band gap with concentration

The effect of concentration on the band gap in mixed chalcopyrite-type com-
pounds is shown at the top of figure 3.3. The four corner points of the figure
are occupied by the perfect ternary compounds CuGaS2, CuGaSe2, CuInS2 and
CuInSe2. The variation of the band gap is linear with both the concentration of
In x and Se y, just as it was reported in the work of Bär et al. (2004). For a varia-
tion of x or y of 10 %, the increase of gap throughout x is ∼1 eV but throughout y
only ∼0.6 eV. The whole span of the band gap variation across the diagonal of the
plot goes from 1.03 eV for CuInSe2 to 2.53 eV for CuGaS2. Separately, both the
gallium and sulphur incorporation increase the band gap value. The interesting
range of 1.5-1.7 eV for tandem cells is well defined in the figure. It corresponds
to the parallelepiped delimited by (x, y) = (0.2, 1); (0.4, 1); (0.8, 0); (1, 1).

Whereas the inner region of this (x, y) map was not systematically investigated
experimentally, the works have been done accurately exploring its four borders.
A comparison of our calculations with these data are shown in figure 3.4. A very
good agreement is found for all binary trends, especially for CuIn(Se2S1−x)2. An
important conclusion from this is that our optimised hybrid functional is quite
accurate throughout the whole range of substitutions and is then a reasonable
compromise to use for practical predictions of electronic structure concerning
this family of compounds. This conclusion gets further support from the results
concerning the lattice parameters, reported in the following section.
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Figure 3.3 Variation with the concentration x and y for CuInxGa1−x(SeyS1−y)2 of the band
gap (a) the lattice parameter a (b) and c (c).
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Figure 3.4 Band gap’s variation with the concentration x for CuInxGa1−xSe2,
CuInxGa1−xS2, CuIn(SexS1−x)2 and CuGa(SexS1−x)2 compared to experimental value (Roa
et al., 1990; Bodnar et al., 1981; Bodnar and Lukomskii, 1986; Tinoco et al., 1991).

3.2.2 Variation of lattice parameters with concentration

In order to grow chalcopyrite on top of silicon wafer, the lattice mismatch needs
to be considered and minimised. It is then crucial to find a compromise in the
choice of (x, y) concentration so that the optimal band gap would go along with
acceptable levels of lattice mismatch. Unfortunately, it turns out that no easy
compromise offers itself. The two lowest parts of figure 3.3 show the optimised
lattice parameters a and c in their dependence on the variation of x and y.
The variation is practically linear with x and y going from the smallest cell for
CuGaS2 with 5.336 Å and 10.540 Å for a and c respectively, to the biggest cell for
CuInSe2 (a = 5.759 Å and c = 11.589 Å). A change of composition, either x or y,
of 20 % leads to a variation of a around 0.05 Å and c around 0.1 Å. Note that the
lattice constant a of silicon is 5.430 Å. Consulting the figure 3.3, this value would
correspond to mixed compounds with an important concentration of gallium, at
least 60%, and more sulphur than selenium, x 6 0.5. This combination does not
correspond to the concentrations suited for the optimal band gap. The span from
the line corresponding to a ' 5.43 Å in the second graph of figure 3.3 to the
“parallelepiped of optimal band gaps” in the first graph of figure 3.3 defines the
limits of the compromise for practical applications, the details of which have yet
to be better inspected. If the band gap is a priority, an inclusion of an additional
buffer layer seems to be an imposed solution, even if one of the initial motivations
for this study was exactly to avoid this complication.
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3.2.3 Influence of the concentration on thermodynamic
properties.

We conclude our study on mixed chalcopyrite-type alloys with the analysis of
alloying energetics, calculating, throughout the concentrations mesh, the binding
and formation energies. Specifically, the binding energy was obtained via the
equation:

Cu + In + Ga + S + Se→ CuGaxIn1−x(S1−ySey)2, (3.3)

and the formation energy by:

1−y
2
Cu2S + y

2
Cu2Se + 1−x

2
[(1− y)Ga2S3 + yGa2Se3]

+ x
2

[(1− y)In2S3 + yIn2Se3]→ CuGaxIn1−x(S1−ySey)2. (3.4)

In both cases, the zero point energy was not taken into account. The contour
plots of the corresponding calculated energies over the map of concentrations
are shown in figures 3.5 and 3.6. The behaviours are not the same for the two
reactions. When we look at the binding energy, i.e., the energy of assembling the
compound (or, an alloy) from elements, the CuInSe2 compound is the most stable
with an energy around −1.3 eV, whereas the other three ternary compounds have
binding energies close to −0.4 eV or −0.5 eV. Such a difference of the order of 1 eV
is quite remarkable. For the formation energy, the reference system is represented
by selenide and sulphide binary compounds really used in the synthesis. Under
this perspective, the selenide-based chalcopyrites are the less stable; however, the
difference with the sulphur-based compound is only 0.05 eV. All these energies
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Figure 3.5 Variation of the binding energy with concentration x and y for
CuInxGa1−x(SeyS1−y)2.
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Figure 3.6 Formation energy’s variation with concentration x and y for
CuInxGa1−x(SeyS1−y)2.

are negative, indicating that the chalcopyrite-based compounds under study are
indeed stable (leaving the issue of their dynamic stability out of consideration).

3.3 Copper substitution by alkali metal

3.3.1 Review on alkali incorporation in chalcopyrite

Recently, doping with alkali metals got into the focus of studies aimed at improv-
ing the performance of the chalcopyrite-based solar cells. Their incorporation
have gained attention thanks to a new post-deposition process (PDT) that led
to an improved efficiency of the cell. In five years, the efficiency of thin film
chalcopyrite solar cell went from 20.4 % (Chirilă et al., 2013) to 23.3 % (Solar
Frontier, 2019).

The beneficial impact of the alkali metal on the properties of chalcopyrite
solar cell was already discovered in the mid-1990s (Hedstrom et al., 1993). When
comparing different types of substrate, Hedstrom et al. (1993) observed an im-
proved performance of the cell grown on soda lime glass (SLG) that were later
linked to the diffusion of sodium from this substrate. Investigations on heavier
alkali incorporation followed. Contreras et al. (1997) reported that potassium
and caesium-doped CIGSe absorber did not have as good efficiencies (11.4 % and
11.9 %, respectively) as sodium-doped one (13.5 %). The beneficial effects of K
were brought into discussion by Wuerz et al. (2012) who tested a different sub-
strate, enamelled steel sheets, and obtained better results that for SLG, due to
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the higher concentration of potassium. Since then, potassium, rubidium and cae-
sium were tried, that pushed the efficiency record even further. A number of
review articles summarise the influence of the alkali incorporation in chalcopy-
rites (Salomé et al., 2015; Muzzillo, 2017; Sun et al., 2017).

Sodium incorporation into CIGS absorber modifies the latter’s properties in a
number of ways. The major modification is the increase of the hole net concentra-
tion (Cho et al., 2012; Rudmann et al., 2004), whereupon follows the increase of
the fill factor (FF) and the open circuit voltage (Voc) (Rau et al., 1998; Granath
et al., 2000; Cho et al., 2012). The same effects, yet with superior FF and Voc

than with sodium doping, were observed with potassium (Pianezzi et al., 2014;
Khatri et al., 2016; Laemmle et al., 2013; Wuerz et al., 2012). The exact origin of
the increase of the p-doping with the increase of the net hole concentration for Na
(Cho et al., 2012; Rudmann et al., 2004) and K (Laemmle et al., 2013; Pianezzi
et al., 2014; Khatri et al., 2016) doping is still under debate. Different hypothesis
are discussed in the literature. First, Na annihilates donor states, especially InCu.
When competing for a Cu site, Na or K are more likely to take the place than
In or Ga, so that the alkali incorporation lowers the InCu or GaCu concentration
(Contreras et al., 1997; Laemmle et al., 2013; Shin et al., 2016). Secondly, as
proposed by Niles et al. (1997), Na takes the place of In or Ga in CIGS in order
to create NaIn/Ga. The third hypothesis is that sodium enhanced the formation
of oxyde at the surface and passivates selenium vacancies (Ruckh et al., 1996;
Kronik et al., 1998); moreover, the oxygen substitutes for selenium vacancies.
Finally, Yuan et al. (2016) proposed a mechanism in which sodium in copper site
out-diffuses during the cooling down, thus increasing the concentration of copper
vacancies (VCu) and the net hole concentrations. Furthermore, the reduction of
the thickness of the CdS layer is permitted thanks to potassium incorporation
with a better diffusion of Cd into the absorber (Chirilă et al., 2013), that leads
to a decrease of the optical loss and thus to an increase of the short circuit cur-
rent. Potassium doping has an influence of the composition and structure near
the surface (Muzzillo, 2017). For example, a Cu and Ga depleted zone appears
(Chirilă et al., 2013), or a layer of a new material containing K is formed at the
interface (Handick et al., 2017). The Ga gradient becomes larger while increasing
the Na (Ishizuka et al., 2009) or K concentration (Laemmle et al., 2015; Wuerz
et al., 2012).

The investigation of the heaviest alkali, rubidium and caesium, began with
the work of Jackson et al. (2016). As in the case of the lighter alkali, this resulted
in an increase of the open circuit voltage (Wuerz et al., 2018; Karki et al., 2019;
Weiss et al., 2018; Schöppe et al., 2017), the fill factor (Kato et al., 2018; Wuerz
et al., 2018) and of the majority carrier concentration (Wuerz et al., 2018; Karki
et al., 2019) of the cell. However, the gain in the open circuit voltage has been
observed to be more (Wuerz et al., 2018) or less (Jackson et al., 2016) important
than the one of the sodium post-deposition treatment. Ishizuka et al. (2018) found
that the Voc and fill factor increase whereas the short circuit current decreases for
indium-based chalcopyrite, whereas they have found the opposite trends for the
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gallium-based compound. As Na and K (Khatri et al., 2016), Rb also increases
the carrier lifetime (Karki et al., 2019). Just like potassium, rubidium has an
important impact on the morphology and the composition of the surface. The
reduction of the Cu and Ga concentration near the surface (Maticiuc et al., 2018)
and formation of a RbInSe2 compound at the CIGS/CdS interface was directly
observed using TEM measurements (Taguchi et al., 2018; Maticiuc et al., 2018;
Kodalle et al., 2018). More recently, a number of works addressed the effect of
doping with caesium (Jackson et al., 2016; Kim et al., 2018).

As the incorporation of alkali in chalcopyrite begun with sodium and con-
tinued with heavier alkali, lithium incorporation was less studied than the rest of
the family. Lithium incorporation in ternary chalcopyrites was investigated exper-
imentally and theoretically (Maeda et al., 2017; Kusumoto et al., 2019; Rong-Tie
et al., 2017; Boehnke and Neumann, 1992). The chalcopyrite phase sustains up
to 10 % of Li on Cu sites in case of CuInS2 (Maeda et al., 2017; Kusumoto et al.,
2019), 20 % for CuGaS2 (Maeda et al., 2017; Kusumoto et al., 2019), 40 % for
Cu(In,Ga)(S,Se)2(Rong-Tie et al., 2017) and even 50 % for CuInSe2 (Boehnke
and Neumann, 1992). At higher concentration, the chalcopyrite phase coexists
with the orthorhombic one corresponding to the Li(In,Ga)(S,Se)2 compound.

Combining different alkali offers an additional option potentially useful for
better performances (Chirilă et al., 2013; Kim et al., 2018). However, ion ex-
change mechanism takes place inside the absorber. This is the case for K that
tends to replace Na (Chirilă et al., 2013) or Rb that pushes away lighter alkali
(Jackson et al., 2016; Vilalta-Clemente et al., 2018; Kodalle et al., 2018; Maticiuc
et al., 2018). That mechanism is not yet well understood.

The origin of the beneficial effect of alkali on the solar cell efficiency is still
unclear (Oikkonen et al., 2013; Mungan et al., 2013). It seems difficult to pin-
point whether the effect primarily stems from the grain boundaries (Urbaniak
et al., 2014) or from inside the bulk (Yuan et al., 2016; Wei et al., 1999), as alkali
have been found in both these locations (Laemmle et al., 2014; Forest et al., 2017;
Cojocaru-Mirédin et al., 2011; Cojocaru-Mirédin et al., 2013; Schöppe et al., 2017;
Wuerz et al., 2018; Kodalle et al., 2018). The presence of different alkali plays a
crucial role in the diffusivity inside the absorber as it has been proved by Wuerz
et al. (2018) by means of secondary ion mass spectrometry.

Compositions and defects were characterised by different techniques such as
scanning electron microscopy (Eid et al., 2015; Kodalle et al., 2018) or secondary
ion mass spectrometry (Eid et al., 2015). Werner et al. (2018) have shown that
the electronic effects due to alkali doping in chalcopyrite absorbers are not char-
acterisable today because of the strong influence of the buffer/window stack. For
deeper understanding or predictions, first-principles studies have to be performed.

There are only few papers that discussed the incorporation of alkali metal
on CIGS from a theoretical point of view. The majority of these papers are con-
cerned with chalcopyrite ternary compounds and particularly CuInSe2 (Oikkonen
et al., 2013; Ghorbani et al., 2015; Malitckaya et al., 2017). In order to explain the
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evolution of properties due to alkali doping, different parameters are calculated
such as the band gap, lattice constants, or the absorption coefficient. The prop-
erties of the major interest for us will be the formation energies for different in-
corporations possible like AlkCu, AlkIn/Ga, Alki etc. with Alk = (Li,Na,K,Rb,Cs).

First of all, alkali metals substitute either the cation or the anion. In all the
calculation done, the anion substitution has a very high formation energy [higher
than 1.2 eV -see Malitckaya et al. (2017)] that makes it very unlikely to occur,
except maybe at considerable anion deficiency. An alkali element would therefore
substitute either copper or indium/gallium. In the first case, the formal valence
state is not changed on substitution, whereas in the second case the univalent
Cu will substitute an atom with three valent electrons, thus resulting in two elec-
trons missing and effectively a +2-charged defect. In all previous studies, the
neutral copper substitution was found to be the most favourable event. This can
be attributed to the covalent bond linking the anion and the copper atom being
relatively weak (Oikkonen et al., 2013). The dumbbell configuration was found
possible only for Li and Na at the copper site (Malitckaya et al., 2017). The
indium-based chalcopyrite has lower substitution energy than the gallium-based
one. This is the case for the substitution of In compared to the one of Ga but
also when copper is substituted: NaCu has a higher formation energy in CuGaSe2

compared to CuInSe2 (Maeda et al., 2015). This substitution does not directly
explain the observed increase of the net hole concentration on the chalcopyrite
compound after alkali-fluoride PDT. AlkIn/Ga could explain this increase of con-
centration but it is not the preponderant defect in the material. However, the
substitution energy of indium in copper site by sodium is lower than the one of
copper, so that sodium may first decrease the concentration of InCu defects and
thus increase the net hole concentration (Wei et al., 1999). On the contrary, if
the alkali take the place of copper vacancies, this decreases the net hole concen-
tration.

An interstitial incorporation of the alcali metal atoms was also investigated
and found possible in the ternary compounds. Sodium (Oikkonen et al., 2013;
Malitckaya et al., 2017) and heavier alkali (Malitckaya et al., 2017) occupied
preferably the tetrahedral sites whereas lithium prefers octahedral sites. Ghor-
bani et al. (2015) added that Na is more likely to go to the tetrahedral site
surrounded by two cations and two anions, whereas K prefers the one completely
surrounded by cations. Yet, all these interstitial incorporations have higher for-
mation energy than the copper substitution, and thus less likely to happen. The
diffusion mechanisms of these point defects inside the bulk were also discussed
but are beyond the scope of the present work.

All the theoretical investigations cited were performed on isolated point de-
fects, and the effect of concentration was extrapolated. In the following, we
systematically and explicitly investigate the impact of alkali concentration in-
side the bulk. That leads to a more detailed picture of the alkali incorporation
throughout a broad range of composition. We start with the most stable defect
on the literature, the neutral substitution of copper by alkali metals.
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3.3.2 Influence of the substitutions on the crystals struc-
tures

The methodology used to generate the different substitutions have been discussed
in details in the previous section. The table 3.1 summarises the different initial
supercells used in this work. It gives their lattice parameters, the supercell ex-
pansion matrices with respect to the primitive cell, the list of the irreducible Cu
sites and the number of sites equivalent by symmetry for each of them, as well
as the Monkhorst-Pack k-points meshes (Monkhorst and Pack, 1976) applied in
each case. Except for the primitive cell (space group I 4̄2d), the space group of
each supercell is P 4̄. In total, 12 different concentrations have been probed for a
total of 50 configurations of different symmetries. In the following, the obtained
results are discussed in terms of pseudo-conventional tetragonal parameters evo-
lution and tetrahedra’s deformation.

The Figure 3.8 shows the relative modifications of the lattice parameters (a/a0,
b/b0, c/c0) induced by the copper substitution by alkali metals. The obtained
trends are in good agreement with experimental data, when available, as illus-
trated by the Figure 3.7: for Cu1−xLix(Ga/In)(S/Se)2, with 0 < x < 0.60, our
calculated lattice deformation are compared to the results of Kusumoto et al.
(2019), Rong-Tie et al. (2017) and Maeda et al. (2017) on CuGaS2, CuInS2 and
CuInSe2 respectively. The absolute error between our theoretical and experimen-
tal data is less than 1 % for these three compounds. Other alkali incorporation at
these ranges of concentration has not yet been done experimentally, to our best
knowledge.

In general, with the rate of substitution, the lattice parameters vary in a not
trivial way. For K, Na, Rb and Cs substituted chalcopyrite, the lattice parameters
a and b increase when c decreases as the alkali metal concentration grows. This
is also true for CuGa(S/Se)2 substituted with Li; however, it is not the case for
the two indium-based compounds, in which, as copper is replaced by lithium, the
c parameters grows as well, albeit less pronouncedly than a and b (within 1 %).
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Figure 3.7 Comparison between the calculated and experimental(Kusumoto et al., 2019;
Rong-Tie et al., 2017; Maeda et al., 2017) lattice deformations, a
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Table 3.1 Construction of the supercells used in the calculations. The indices P and C stand
for primitive and conventional, respectively. The supercell expansion matrices refer to the
primitive lattice vectors. The fractional coordinates (x, y, z) of the irreducible sites of copper
as well as their multiplicity (M , number of equivalent sites) in the supercells are given. The
Monkhorst-Pack k-points meshes (Monkhorst and Pack, 1976) (k) to realise the optimisation
of the structures are also provided.

Number Space Lattice Supercell Irreducible M. k

of group parameter expansion Cu sites
atoms matrix (x, y, z)

8 I 4̄2d a = b = c = aP



1 0 0

0 1 0

0 0 1




1 - (0, 0, 0) 2 18

α = β = αP

γ = γP

16 P 4̄ a = aC



0 1 1

1 0 1

1 1 0




1 - (0, 0, 0) 1 12

c = cC 2 - (1
2 ,

1
2 ,

1
2) 1

3 - (1
2 , 0,

1
4) 2

32 P 4̄ a =
√

2 · aC



1 1 2

1 −1 0

1 1 0




1 - (0, 0, 0) 1 10

c = cC 2 - (1
2 ,

1
2 , 0) 1

3 - (1
2 , 0,

1
2) 2

4 - (3
4 ,

1
4 ,

3
4) 4

64 P 4̄ a = 2 · aC



2 0 2

0 −2 −2

1 1 0




1 - (0, 1
2 , 0) 2 8

c = cC 2 -(1
2 ,

1
2 , 0) 1

3 - (0, 0, 0) 1
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1
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2) 4
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4 ,

3
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3
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128 P 4̄ a = 2 · aC



0 2 2

2 0 2

2 2 0



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1
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Figure 3.8 Lattice deformations a
a0

(•), b
b0

(•) and c
c0

(•) of Cu1−xAlkx(Ga,In)(S,Se)2 in
function of the alkali concentration (x) with Alk = Li, Na, K, Rb, Cs. a0, b0 and c0 refer to
the lattice parameters of Cu(Ga,In)(S,Se)2 as given in Tables 2.7 and 2.8. When available, the
comparisons with experimental data (dotted square) are given in Figure 3.7.

Whatever the materials, these lattice parameters variations induce an increase of
the volume of the cell, as shown in the table C.1 of the appendix C. The induced
lattice distortion are strongly depending of the substituted crystal and the size
of the inserted ions:

1 – The maximal lattice parameters distortion are 3 % for the Li substitution
up to 35 % for the other alkali, as Cs.
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Table 3.2 Evolution of the average structure of the anions tetrahedra associated to each
alkali. d (in Å), θ1 and θ2 (in degree) stand for the cation-anion distances and the different
angles in the tetrahedra, respectively as defined in Fig. 3.1. The data of the Cu tetrahedra in
Cu(Ga/In)(S/Se)2 (referenced as Cu) are given for comparison. The different parameters are
obtained for the crystals with the P 4̄ space group; the ones in italic correspond to the C2/c
type crystals.

Alk. CuGaS2 CuInS2 CuGaSe2 CuInSe2

d θ1 θ2 d θ1 θ2 d θ1 θ2 d θ1 θ2

Cu 2.30 109. 110. 2.32 106. 111. 2.39 109. 110. 2.40 110. 111.
Li 2.35 108. 112. 2.38 109. 111. 2.45 109. 111. 2.48 109. 111.
Na 2.60 107. 116. 2.63 107. 113. 2.70 108. 116. 2.72 107. 114.
K 2.86 106. 128. 2.86 109. 115. 2.95 106. 129. 2.98 109. 119.

3.00 98. 144. 2.97 102. 131. 3.10 99. 142. 3.12 100. 138.
Rb 3.02 103. 121. 3.06 104. 118. 3.08 106. 127 3.21 100. 128.

3.16 97. 146. 3.19 99. 132. 3.21 97. 135. 3.36 96. 131.
Cs 3.15 107. 117. 3.18 107. 117. 3.31 102. 121. 3.35 102. 124.

3.41 92. 142. 3.38 98. 128. 3.55 92. 147. 3.50 94. 132.

2 – As shown by the gray area in Figure 3.8, except for Li (whatever the chal-
copyrite) and Na in CuInS2, whatever the alkali, for a given threshold con-
centration, the substitution brings about a phase transition. The obtained
phase can be described as derived from the C2/c Alk2(Ga/In)(S/Se)2 crys-
tal. These phase transitions explain the sudden change of slope or discon-
tinuity of the curves a(x)/a0 and c(x)/c0.

3 – At the phase transition, the main trend is a dilatation in the (a, b) plane
accompanied by a compression along the c axis.

Lithium and sodium in CuInS2 have specific behaviour: whatever the concen-
tration, the crystal maintains its P 4̄ symmetry though the (Li/Na)(Ga/In)(S/Se)2

crystal have a C2/c space group. This behaviour is probably linked to a weak-
ness of the used method in this work. Since it is based on the determination of
unstable phonons, if the configuration correspond to a local energy minimum (or
metastable state), the phase transition cannot be determined by this way. The
phase transitions are influenced by the nature of the different cations. Na, K,
Rb and Cs in Cu(Ga/in)S2 and Cu(Ga/In)Se2 have the same trend: the con-
centration needed to reach the transition is smaller in the In-based materials
than in the Ga-based ones. It can be explained by the evolution of the local
structure in the respective compounds. The tables 3.2 and 3.3 give the average
structure of the tetrahedra surrounding the alkali and (Ga/In) cations, respec-
tively (the tables giving the evolution of the tetrahedra structure with the alkali
concentration can be found in the table C.2 of the appendix C). It can be no-
ticed that, for each alkali, the cation-anion distances d are equal in Cu(Ga/In)S2

and Cu(Ga/In)Se2, whereas the θ1 and θ2 angles (cf. figure 3.1) are equal in
CuGa(S/Se)2 and CuIn(S/Se)2. In comparison, the local structures of the tetra-
hedra surrounding Ga and In are less influenced by the substitution, as shown
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Table 3.3 Evolution with the alkali of the average structure of the anions tetrahedra associ-
ated to Ga and In. d (in Å), θ1 and θ2 (in degree) stand for the cation-anion distances and the
different angles in the tetrahedra, respectively as defined in Fig. 3.1. The data of the Ga and
In tetrahedra in Cu(Ga/In)(S/Se)2 (referenced as Cu) are given for comparison. The different
parameters are obtained for the crystals with the P 4̄ space group; the ones in italic correspond
to the C2/c type crystals.

Alk. CuGaS2 CuInS2 CuGaSe2 CuInSe2

d θ1 θ2 d θ1 θ2 d θ1 θ2 d θ1 θ2

Cu 2.30 109. 110. 2.48 108. 112. 2.42 109. 110. 2.60 108. 112.
Li 2.30 109. 110. 2.47 108. 112. 2.42 109. 110. 2.60 108. 112.
Na 2.30 108. 113. 2.48 107. 114. 2.42 107. 113. 2.60 107. 114.
K 2.30 107. 117.. 2.48 106. 115. 2.42 106. 115. 2.61 106. 116.

2.30 104. 119. 2.48 106. 115. 2.42 104. 120. 2.60 104. 120.
Rb 2.30 106. 117. 2.48 105. 118. 2.42 106. 115. 2.60 105 119.

2.30 105. 119. 2.48 105. 120. 2.42 105. 119. 2.59 103. 126.
Cs 2.31 105. 117. 2.48 105. 117. 2.43 105. 119. 2.61 104. 120.

2.30 105. 121. 2.48 104. 123. 2.42 105. 124. 2.61 104. 123.

by the table 3.3: the main changes concern θ2 with a variation of ± 4 % with
respect to the pure compounds. The d values grow from Li to Cs which is linked
to the more ionic character of the alkali – anions bonds, as will be evidenced
by the Mulliken population analysis in the next section. The phase transitions
seem to be mainly explained by a strong variation of θ2 of about + 20 % with
respect to the tetragonal phase (the average variation of d and θ1 are +8 and -9
%, respectively) which explains the increase of a and b, and the decrease of c.

Now, the evolution of the electronic structure with the alkali concentration
will be described.

3.3.3 Electronic structures

Mulliken population analysis

The Mulliken net atomic charges and the overlap populations of the bonds be-
tween alkali and the sulfur and selenium are collected in table 3.4. The detailed
table of the variation of these date with the alkali concentration is given in ap-
pendix C. Even if this analysis tends to overestimate the covalence contributions
in chemical bonding, it provides reasonable trends, especially for comparisons
between similar materials as it is the case in the present work.

For the pure chalcopyrites, the Cu-(S/Se) bonds have a iono-covalent charac-
ter: first, the net charge of Cu is +0.4 and +0.1 for the sulfur and the selenium
based on chalcopyrite (to compare to the nominal charge of the Cu cation +1),
and, second, the populations of the Cu-(S/Se) bonds are near to 0.4 (to compare
to a pure ionic bond with a population near to 0., and, a covalent bond, such as
H-O in H2O, with a population of 0.7).
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Table 3.4 Average Mulliken net atomic charges of alkali (q) and Alk-(S/Se) bond populations
(bAlk−(S/Se)) for the different chalcopyrites. The data for Cu in Cu(Ga/In)(S/Se)2 (referenced
as Cu) are given for comparison.

Alk. CuGaS2 CuGaSe2 CuInS2 CuInSe2

q bAlk−S q bAlk−S q bAlk−S q bAlk−S

Cu 0.377 0.306 0.141 0.372 0.357 0.356 0.139 0.414

Li 0.390 0.193 0.205 0.210 0.391 0.231 0.209 0.287

Na 0.414 0.170 0.261 0.217 0.420 0.201 0.273 0.241

K 0.682 0.037 0.595 0.061 0.713 0.047 0.632 0.078

Rb 1.028 −0.037 1.016 −0.027 1.023 −0.033 1.108 −0.013

Cs 1.006 −0.036 0.995 −0.044 1.011 −0.051 0.998 −0.035

As concerns the Mulliken net atomic charges of alkali metals, they are higher
than those of Cu, thus revealing a more ionic character of their bonding. These
charges moreover increase from +0.4 to +1.0 when going from Li to Cs, which is
characteristic of the reinforcement of the ionicity of the Alk-(S/Se) bonds. As for
the pure chalcopyrite, the Alk-(S/Se) bonds have a more iono-covalent character
for the selenium than the sulfur based on chalcopyrites.

These different trends are confirmed by the bond population analysis: from Li
to Cs, the bond populations decrease from +0.2 to near to 0., which characterises
an increase of the bonding’s ionicity. These findings correlate with the increase
of the Alk-(S/Se) bond lengths, discussed in the previous section (see table 3.2).

To conclude, the Mulliken population analysis show that the different com-
pounds become more ionic with the incorporation of alkali which will have some
impacts on the band structures of the obtained materials.

Band structures and densities of states

Table 3.5 and figure 3.9 summarise the results obtained on the effects of the copper
substitution by the different alkali. The results obtained are coherent with the
conclusions of the previous sections: the substitution increases the band gap of
the different materials. They are also in a good agreement with experimental data
when available (notably for the substitution of Cu by Li and K in CuInS2 and
CuInSe2), and other theoretical works (Kusumoto et al., 2019; Rong-Tie et al.,
2017; Maeda et al., 2017, 2015; Muzzillo and Anderson, 2018): the error on the
calculated data is less than 10%.

When the compound does not exhibit a phase transition such as for Li or Na
in CuInS2, the band gaps vary linearly with the concentration. When the phase
transition occurs, there is a clear change in the slope of the band gaps variation
with the concentration due to the more ionic nature of the Alk(Ga/In)(S/Se)2

compounds.

In the chalcopyrite phase, due to the iono-covalent character of chemical bond-
ing involving lighter alkali, such as Li and Na, the variation of the band gap is
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Figure 3.9 Cu1−xAlkx(Ga,In)(S,Se)2 (Alk = Li, Na, K, Rb, Cs) band gap evolution (in eV)
with the concentration of alkali (x). • and • give the direct and indirect band gaps, respectively.
The gray area mark the concentrations for which the obtained phases can be described as derived
from the C2/c type crystals of Alk(Ga, In)(S, Se)2.

more important than for the heavier alkali metals, such as K, Rb and Cs: in
that way, Cu1−xLixGaS2 band gap goes from 2.6 eV to more than 3.0 eV for x
between 6 % and 31 % whereas Cu1−xCsxGaS2 band gap is constant in the same
range of concentration. The band gap can remain direct or become indirect
with concentration, namely for the heavier alkali like caesium in CuGaSe2 and
CuInSe2, but already for potassium in CuInS2 as well.
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Figure 3.10 Bands structures of CuInSe2 and Cu0.75Cs0.25InSe2 in their tetragonal phases.
The red line represents the Fermi level.

The figures 3.10 and 3.11 summarise the main features of the band struc-
tures and density of states with the Cu substituted by 25 % of Cs in CuInSe2.
The alkali-free ternary compound have been studied since the 1970s, and their
electronic structure are well known (Jaffe and Zunger, 1983). Among their pecu-
liar features one can point out a gap at about −3 eV within the occupied states, in
between the bunch of bands stemming from Cu 3d hybridising with the p orbital
of the anion. The lower states of the conduction bands are mainly composed by

Table 3.5 Variation of the Cu1−xAlkx(Ga/In)(S/Se)2 (with Alk = Li, Na, K, Rb and Cs)
band gap (in eV) with x varying from 1

16 to (→) 7
8 . The band gaps of Cu(Ga/In)(S/Se)2

(referenced as Cu) are given for comparison.

Alk. CuGaS2 CuGaSe2 CuInS2 CuInSe2

Cu 2.61 1.87 1.52 0.96
Li 2.66 → 4.20 1.93 → 3.51 1.56 → 2.89 1.01 → 2.46
Na 2.64 → 4.27 1.91 → 3.44 1.54 → 2.73 1.00 → 2.52
K 2.61 → 4.75 1.88 → 3.77 1.53 → 3.08 0.98 → 2.56
Rb 2.49 → 4.70 1.81 → 4.17 1.46 → 3.93 0.95 → 3.10
Cs 2.39 → 4.11 1.72 → 3.67 1.38 → 3.77 0.90 → 2.88
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Figure 3.11 DOS of Cu0.75Alk0.25InSe2. At the top, the CuInSe2 DOS is given as reference.
The grey background is the total DOS; the different lines represent the projected DOS on the
states associated to Cu ( ), In ( ), Se ( ) and the alkline ( ) atoms. For the valence
states, À is mainly composed of the 4d orbitals of In; Á are the 4s of Se; Â are the states
associated to the Cu–Se bond (hybridisation of the 4s of Cu with the 4p of Se); Ã are the 3d of
Cu and 4p of Se. The contribution of K, Rb and Cs appearing in the valence states correspond
to their np orbitals with n = 3, 4, 5 , respectively; the different states associated to Li and Na
are lower in energy. For the conduction bands, the lower states Ä are mainly composed of the
ns orbitals of the alkali (with n = 2, 3, 4, 5 6 for Li, Na, K, Rb and Cs, respectively, and, the
4 and 5 s orbitals of Cu and In, respectively.
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the empty s orbitals of Cu, Ga and In.

The use of supercells with a partial loss of symmetry lifts the degeneracy
of different bands. The main effects on the substitution is the appearance of an
isolated state associated to the p orbitals of K, Rb, Cs at −9, −11 and −14 eV,
respectively; the s orbital of Li and p orbitals are deeper at -30 eV. The change
of bonding, depending on the concentration, can lead to the disappearance of
the gap between the p orbitals of S/Se and the d orbitals of Cu. The increase
of the band gap is mainly due to the shift towards higher energies of the lowest
conduction bands, linked to the increase of the empty s alkali’s orbitals rate to
these bands.

Recollecting that the target of this work is the design of materials for tandem
application with an optimal band gap in the range 1.5 – 1.7 eV, we note that
only the indium-based chalcopyrites reach this criteria. Let’s consider now their
thermodynamical properties.

3.3.4 Thermodynamical properties of the substituted chal-
copyrites

Energies of copper substitution by alkali metals

In order to evaluate the feasibility of the copper substitution by alkali metals, the
corresponding energy needs to be evaluated as a function of x. In our case, the
following chemical reactions have been considered to determine the substitution
energy of copper:

xAlk + CuAB2 → xCu + Cu1−xAlkxAB2, (3.5)

with Alk = Li, Na, K, Rb and Cs; A = Ga and In, and, B = S and Se. The
substitution energy is then

Ef = E
Cu1−xAlkxAB2

tot + x× ECu − ECuAB2
tot − x× EAlk, (3.6)

where ECu1−xAlkxAB2

tot is the total energy of the defective supercell normalised by
the number of CuAB2 moities in the cell, ECuAB2

tot is the total energy of one CuAB2,
and ECu and EAlk the total energies of the isolated atoms in their fundamental
states. The zero point energy was taken into account here, differently from the
energy calculations reported in section 3.2. The calculated substitutions energies
are plotted in figure 3.12.

For all substituting alkali metals, the formation energy exhibits the same
trend: it initially increases until it reaches a maximum around 10 %, and then
decreases. At low concentration, it is more difficult to substitute copper by an
alkali metal, whereas at high concentration, with the joint effect of the cell ex-
pansion and phase transitions, the incorporation is easier.

Two groups of alkali metals can be distinguished: whereas the lighter ones (Li,
Na and K) are characterised by formation energies lower than 2 eV, the formation
energy of the heavier ones (Rb and Cs) is above 3 eV. The substitution energies for
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Figure 3.12 Substitution energy of Cu by the different alkali (Ef , in eV), as determined with
equation (3.5), including the zero point energy.

the different alkali are in good agreement with previous theoretical work realised
with the PBE (Maeda et al., 2015) or HSE06 (Malitckaya et al., 2017) functionals.
Whatever the concentration, the lithium incorporation is easier in the sulfur-
based compounds whereas for Na, K, Rb and Cs, the distinction is between Ga-
and In-based compounds, with more favorable formation energy occurring for
In-based chalcopyrites. However, none of these energies are negative, so that the
reaction (3.5) is not spontaneous.

Experimentally, during the process of synthesis of these materials, some sec-
ondary phases can appear which could stabilise the different compounds. These
possible mechanisms will be explored in the next section.

Thermodynamical stability of secondary phases

In this section, the possible mechanisms leading to secondary phases is investi-
gated following the approach of Malitckaya et al. (2017). Our interest focuses on
the Alk2(S/Se) reactions with the ternary compound Cu(Ga/In)(S/Se)2 through
these two following mechanisms:

x

2
Alk2B + CuAB2 →

x

2
Cu2B + Cu1−xAlkxAB2, (3.7)

and
x

2
Alk2B + CuAB2 → xAlkAB2 + (1− x)CuAB2 +

x

2
Cu2B, (3.8)

with Alk = Li, Na, K, Rb and Cs; A = Ga and In, and, B = S and Se. The
obtained energies of reactions are

EA = E
Cu1−xAlkxAB2

tot +
x

2
× ECuB2

tot − x

2
× EAlk2B

tot − ECuAB2
tot , (3.9)

and

EB = x×EAlkAB2
tot +(1−x)×ECuAB2

tot +
x

2
×ECuB2

tot − x
2
×EAlk2B

tot −ECuAB2
tot , (3.10)
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for the reactions (3.7) and (3.8), respectively. ECu1−xAlkxAB2

tot is the total energy of
the defective supercell normalised by the number of CuAB2 moities in the cell,
ECuAB2

tot , ECu2B
tot EAlk2B

tot EAlkAB2
tot are the total energy of one CuAB2, Cu2B, Alk2B

and AlkAB2, respectively. The zero point energy was taken into account. The
figure 3.13 represents the obtained energies for both reactions.

The reaction energies for lithium substituted compounds are positive but close
to zero. This is coherent with the experimental observation which show stable
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Table 3.6 Formation energies (in eV) of Alk(Ga/In)(S/Se)2 with (À) or without (Á) sec-
ondary phases from the reactions (3.11) and (3.12), respectively. The energies include the zero
point energy. The space group of the Li(Ga/In)(S/Se)2 phases is Pna21; whereas for Na, K,
Rb and Cs, the space group of Alk(Ga/In)(S/Se)2 is C2/c.

Alk. AlkGaS2 AlkGaSe2 AlkInS2 AlkInSe2

À Á À Á À Á À Á

Li 0.02 −0.43 0.07 −0.31 0.00 −0.22 0.05 −0.20

Na −0.12 −0.57 −0.04 −0.42 −0.03 −0.25 0.06 −0.19

K −0.61 −1.06 −0.48 −0.86 −0.55 −0.77 −0.46 −0.71

Rb −1.25 −1.71 −1.16 −1.54 −1.32 −1.54 −1.27 −1.52

Cs −1.37 −1.82 −1.30 −1.68 −1.56 −1.73 −1.47 −1.72

chalcopyrite phases with x values up to ∼0.5, as mentioned by Maeda et al.
(2015).
For Na and K, the reaction (3.8) is the most favourable which means that ther-
modynamically the system will be a mix of the three (Na/K)(Ga/In)(S/Se)2,
Cu(Ga/In)(S/Se)2 and Cu2(S/Se) phases.

For Rb and Cs, the situation is more complicated: at low concentration till
x =0.5, only the reaction (3.8) is the favourable; but for x> 0.5, the energy of the
reaction (3.7) becomes negative as well. Since the energy difference between these
two reactions is about 0.5 eV only this means that the four phases can coexist,
thermodynamically.

Alternatively, the formation of the compounds AlkAB2 with or without pre-
cipitates can be considered through the reactions of Alk2B with the adsorber
CuAB2 or A3B2 via the equations (3.11) and (3.12), respectively

1

2
Alk2B + CuAB2 →

1

2
Cu2B + AlkAB2, (3.11)

and
1

2
Alk2B + A3B2 → AlkAB2. (3.12)

The energies of these reactions are summarised in the table 3.6. The obtained
results for the reaction (3.11) are coherent with the ones of (3.7) and (3.8): except
for the lithium and sodium for which the energies are closed to 0 eV, this reaction
have negative energies whatever the materials of reference. The reaction (3.12)
is always favourable with energies of the same order of magnitude than the ones
of the previous reactions.

In conclusion, except for the lithium, from the thermodynamical point of view,
the substitution of Cu by alkali metals seems likely to lead to the appearance of
the secondary phases via one or the other of the mechanisms discussed.
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3.4 Summary and conclusion
One of the key advantages of CIGS for photovoltaics is a possibility to con-
trol their composition that leads to a tunability of different properties such as
the lattice parameter or the band gap. This feature makes chalcopyrite system
promising candidates for tandem application. At the beginning of this chapter,
the influence of the penternary chalcopyrite CuInxGa1−x(SeyS1−y)2’s composition
on different properties was investigated. A complete mapping of the lattice pa-
rameters, band gap and formation energy with the two concentrations x and y
was made. The target band gap values for photovoltaic applications are accessi-
ble for higher concentration of indium than gallium. However, in this very range
of concentrations, the lattice mismatch with silicon is quite appreciable, whereas
a good matching with the silicon lattice parameter correspond to chalcopyrite
with higher concentration of gallium and sulphur. Throughout these relevant
compositions, the system stays in the chalcopyrite symmetry, and its energy of
formation is negative, thus the system remains thermodynamically stable.

In a similar method, alkali incorporation by means of cation substitution was
simulated. The first observation is that alkali metals increase the volume of the
cell with an expansion of the lattice parameter a and a contraction of c. How-
ever, the system goes from the P 4̄ symmetry at lowest concentration to C2/c
for the highest one, except in the case of doping with lithium and most of the
cases concerning sodium; however, this might be due to an intrinsic issue of the
method. This deformation is purely due to the local deformation of the tetrahe-
dra around the substituted atoms. The calculation of electronic properties were
then performed. The Mulliken population analysis shows that the different com-
pounds become more ionic with the incorporation of alkali. As for the band gap,
it increases with the concentration of alkali metal. That is not a good news for
gallium-based ternary chalcopyrites that have band gap already larger than the
target value, however might be useful for indium-based chalcopyrites to reach the
target value. Different energy relations were then calculated corresponding to
various chemical reactions. The main conclusion is that alkali metals incorpora-
tion is not easy in chalcopyrite. Even if Li, Na and K have substitution energy
lower than 2 eV and hence much lower than Rb and Cs whose substitution energy
is around 4 – 5 eV, all these energies are positive, and the substitution reaction is
not spontaneous. Moreover, except for the lithium, thermodynamically, the sub-
stitution of the Cu by a alkali metals will lead to the appearance of the secondary
phases whatever the considered mechanisms.





Chapter 4

Point defects in crystalline silicon
for ageing investigation

Thin-film solar cells like those based on chalcopyrite-type compounds represent
only a few percent of the photovoltaic market, which is otherwise dominated by
silicon cells. An important issue regarding these latter is ageing due to exposition
to light and elevated temperatures. At the microscopic scale, this comes down
to the study of point defects, their creation and interaction, hence the problems
related to those covered by the previous chapter. For the present work, the study
of defects in silicon has a somehow subordinated character. In fact the ongoing
Ph.D. work of Elisa Tejeda Zacarias (under direction of Holger Vach and Philippe
Baranek), whose preliminary studies, in the framework of the master internship
of Boris Belin, were supervised by me and Philippe Baranek, is expected to
reveal this problematics in much more completed form. In the present chapter, I
concentrate on results which are marked by my essential contribution and offer
sometimes an interesting comparison with the other topics covered by my thesis.
In particular, the impact of three point defects well-known in the literature, the
incorporation of hydrogen, boron and iron, is considered. The goal is to validate
our method via comparison with the literature and to prepare considering the
point defects in combination, e.g., the Fe-B complex.

4.1 Context

Even if the works dealing with silicon solar cells are innumerable, not everything
in the latters’ behaviour is yet fully understood, so that some hard cases persist.
One of them is the light induced degradation (LID). This effect was reported
for panels tested in real conditions (Osterwald et al., 2002) which suffer from a
major decrease of their efficiency during the first hours following their installation.
This degradation was linked to boron-oxyde defects. Oxygen atoms or molecules
trapped in the silicon bulk are excited and migrate until they reach a boron atom
with whom they will form a complex that acts as a recombinaison center (Schmidt
et al., 1997). Both explication of, and countermeasures against, the LID have
been found since, the latter being the hydrogenation of the material that leads to
the recovery of the degradation by the passivation of BO defect (Wilking et al.,
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2013; Hallam et al., 2013; Nampalli et al., 2015). The process can be decomposed
into three steps (Herguth et al., 2006) : (1) the creation of the recombination
inactive defect precursors (2) activation of the defect that degrade the material (3)
restauration of the defect. Further on, the light-and elevated temperature-induced
degradation (LeTID) was discovered in 2012 (Ramspeck et al., 2012). Whereas
the LID sets on already in the first few hours of the installation, the LeTID is a
much slower process which can take several thousands of hours. Unfortunately,
the solutions found for the LID do not work for the LeTID. For example, the
three-stage process is not fully repeatable so that it would gradually suppress
the degradation at each cycle (Fung et al., 2018). Following the implementation
of the notion of the hydrogen reservoir by Fung et al. (2018), Wenham et al.
(2018) introduced the "Bucket Theory". This theory suggests a picture of three
buckets in a vertical row, each bucket able to be emptied into those below. This
picture of buckets implies that the hydrogen flow occurs in one main direction,
the reverse flaw being negligible. The first step consists of trapping hydrogen in
the bulk to create defects (bucket two) and a reservoir of defect through firing
(bucket one). In the LeTID condition, the weak bonds that holds the hydrogen
atoms are broken, so that hydrogen “falls into the bucket 3”, that corresponds to
the degradation of the cell. The third bucket then starts to empty as hydrogen
passivates other defects, or gets dispersed in the bulk. After a while, when the
three buckets are empty, the system has recovered and all hydrogen atoms are
in stable bonds, strong enough to resist new LeTID conditions. The hydrogen
diffusion plays therefore the crucial role in these phenomena (Chen et al., 2018;
Lindroos and Savin, 2016).
Hydrogen integration inside silicon have been simulated, mainly by Van de Walle
and his team (Van de Walle et al., 1989; Van de Walle, 1994; Herring et al., 2001;
Van de Walle and Neugebauer, 2006). In their works, they identify the most stable
position for the neutral and charge hydrogen point defect. H− was found at the
center of the tetrahedral site of the silicon cell, region with the lowest electronic
density, as H2, whereas H+ was stable in the bond center, midway between two
Si atoms, as for H0. H0 was found to be a transition state, thermodynamically
unstable in silicon (Van de Walle and Neugebauer, 2006).
Boron is intentionally used to dope silicon into a p-type semiconductor. Iron is
a defect that may appear depending on the growth condition of silicon. It tends
to deteriorate the silicon cells’ properties. Iron preferably occupies a tetrahedral
interstitial and can then form a complex with the boron atom in the silicon site
(Brotherton et al., 1985).

4.2 Defect incorporation

4.2.1 Silicon vacancies

Before investigating extrinsic defects in silicon, silicon vacancies were analysed.
One atom of silicon, not linked to any other atom in the cell to keep the high-
est symmetry possible, was removed from the bulk. Four different states were
investigated: the metallic one and three silicon configuration with spin angular



4.2. Defect incorporation 81

a) b)

0 50 100 150 200 250

Natom/cell

0.34

0.36

0.38

0.40

E
f

/
k
J
·m

o
l−

1
metallic
Sz=0

Sz=1

Sz=2

0 50 100 150 200 250

Natom/cell

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

V
/
V

0

metallic
Sz=0

Sz=1

Sz=2

Figure 4.1 a) Formation energy of the bulk silicon b) Structural deformation of the bulk
silicon (V /V0) with one vacancy per supercells of different sizes, probing four different silicon
vacancy corresponding to the metallic state and to three non-metallic ones, with spin (Sz = 0,
1, 2).

momentum Sz equal to 0, 1 and 2. For a charged system, CRYSTAL uses a uniform
charged background of opposite sign in order to counteract the charge. To sim-
ulate an isolated defect, the supercell approach was used in order to sufficiently
separate the defect from its translated replicas. The influence of the size of the
supercell was examined so as to reach the convergence of different properties with
the smallest cell possible. Thus, the structural deformation and the formation
energy of the defective system was plotted for different size of the cell as can be
seen in figure 4.1. The size is indicated by the number of atoms per cell, the
higher the number is, the lower the defect concentration. The structural defor-
mation corresponds to the ratio of the defective system’s volume V over the one
of the perfect system V0. Since the Gaussian-type basis sets are not complete and
pinned on atoms, they suffer from the basis set superposition error (BSSE). The
BSSEis taken care of in the course of estimating of the formation energy accord-
ing to the counterpoise method by Boys and Bernardi (1970). It was evaluated
from the energy of an isolated silicon at the center of a cluster of ghost atoms.

At higher concentration, defects interact with each other. For insufficiently
large supercells, a spurious interaction between translated defects leads to large
unphysical variations of the calculated properties (shown in figure. 4.1) with the
supercell size. The results become reasonably stabilised from the 64-atom cell on.
For instance, the modification of volume does not exceed 2%. In this case, the
deformation created by an isolated vacancy does not spread to reach its image
on the neighbouring cells. The formation energy then converges to the formation
energy of the isolate vacancy in silicon.

Even though the structural and thermodynamic properties are considered con-
verged from a theoretical part of view, it is not the case for the band structures,
as evidenced by figure 4.2. It is important to note that the distance between the
high symmetry point are not the same since the symmetry of the cell differs from
one supercell to the other. However, we are interested here in the (unoccupied)
levels in the band gap induced by silicon vacancies. As the vacancy concentration
effectively decreases on increase of the supercell size, these band flatten tending
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one atom has been removed.

to become non-dispersive in the limit of an isolated defect. This is not yet the
case even for the supercell size of 128 minus 1 atoms. For the rest of the study
concerning the defects in silicon, in order to stay within reasonable computa-
tional time, we performed the calculations for the 64-atom supercells, except for
the cases when the use of 128-atom cells was explicitly indicated.

4.2.2 Hydrogen point defects

The first type of extrinsic defect studied for silicon was the (obviously, intersti-
tial) hydrogen impurity. Three different interstitial positions were investigated
as represented in figure 4.3: the tetrahedral position and the bond-center posi-
tion. The last position concerns dissociated H2 with one atom lying in a bond
center when the second is in a antibonding-typeposition (Chang and Chadi, 1989).

In table 4.1, the formation energy and the band gap values of the H0, H−, H+

and H2 at the different interstitial positions are shown for supercells containing
64 atoms. The values in the table are listed for defects being in their respective
most stable configurations. H+ stable position is the bond center where the elec-
tronic density is the highest, as it was found by Van de Walle et al. (1989). At
the opposite, H− prefers the tetrahedral position in the low density region of the
cell.

The variation of the formation energy of the last two charged defects with the
chemical potential µ is shown if figure 4.4, following the equation:

Ef (H
±) = ESi+H± − ESi −

1

2
EH2 ± µ, (4.1)
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Figure 4.3 Different positions of hydrogen point defects (in green) in silicon bulk (blue) : (a)
Tetrahedral (b) H2 (c) Dissociated H2 (d) Bond centered.

where Ef(H±) being the formation energy of the defect H±, ESi+H± the energy
of the crystal with the defect, ESi the energy of the equivalent pure crystal, EH2

Table 4.1 Band gap and formation energy (in eV) of different impurities after relaxation. T
stands for tetrahedral, BC for the bond center position and D for dissociated H2 dissociated
with one electron in the tetrahedral position and the other on one of the closest bond centered
position.

Defect Site Eg Ef
H2 T 1.19 1.18

H0 BC 1.2/0.4 −0.8

H− T 1.06 −0.03

H+ BC 0.85 −1.77

H2 D 1.20 1.50
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the binding energy of H2 taken as a reference and µ the chemical potential of the
electron reservoir, allowing to add or remove an electron to simulate the doped (p
or n) crystal. In agreement with the literature (Van de Walle and Neugebauer,
2006), H+ is more stable than H− for chemical potential energies comprise be-
tween the Fermi level and 0.8 eV. Hydrogen then acts as donor in the p-type Si
and as acceptor in the n-type Si.

The temperature dependence, from QHA calculation, of the formation en-
ergy of the three states of the monoatomic hydrogen defect has been plotted in
figure 4.5. The formation energy increases with temperature for the four types of
defects. Finally, electronic structure calculations were performed for the hydro-
gen point defects. The figure 4.6 represents the band structures of H2, H− and
H0 interstitial in silicon along the X-Γ-K path in the Brillouin zone. Whereas H2

slightly increases the band gap value, the H− partially closes it due to a presence
of an additional band in the band gap at the top of the valence band. The en-
ergy level associated with the s orbital of hydrogen defects is not visible for H2,
because it falls deep into the valence bond. However, such levels are placed near
the band gap for H− and H0 with spin α and even in the middle of it, around
0.5 eV, for the β spin of H0. We can see that the electronic structure is not fully
converged with the supercell size, that is especially visible for H0 where the band
at 0.5 eV is not flat as it is supposed to be for the case of an isolated defect.

4.2.3 Fe, B and FeB complex

The same type of simulation as for hydrogen has been also performed for Fe and
B impurities, as well as for the FeB complex. The energy formation calcula-
tion confirms the observation of the literature (Brotherton et al., 1985) that Fe
tends to go interstitial whereas B substitutes silicon. From there, we simulate
FeB complex as a boron in a silicon position bonded with iron inside a tetra-
hedra. Other configurations were not considered. Different types of oxydation
were investigated, FeB, FeB+ and FeB−, to find that the neutral complex is the
most stable. The band structures of the three defect-containing systems are on
display in figures 4.7. Silicon cells doped with boron exhibit the metallic be-
haviour. For interstitial iron, the band structure is available for α and β spin.
In the minority-spin, the band gap additionally opens due to a lower placed va-
lence bond, whereas in the majority-spin channel the band gap decreases due to
a presence of a split-off occupied band. At more realistic lower concentration,
these effects would eventually disappear. Finally, the FeB electronic structure
clearly shows the formation of an additional isolated band in the middle of the
gap, responsible for the recombination behaviour of this defect. Both in Fe and
FeB electronic structure, the energy level in the middle of the gap or near the
Fermi energy are due to the d orbitals of iron.
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Figure 4.7 Electronic structure and density of states of silicon with a) interstitial Fe at the
tetrahedral position, b) substitutional B at the Si site, c) the FeB complex combining the a)
and b) defects in adjacent positions.
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4.3 Summary and conclusion
Isolated point defects in silicon have been studied in this chapter. For hydrogen
incorporation, the neutral defect is less stable than H− and H+. Preferential
position of iron and boron defect in silicon that have been identified correspond
to those earlier suggested in the literature (Brotherton et al., 1985). At high
concentration, boron atom in silicon tends to make the compound metallic. Fe
does not change the electronic structure except when it forms a complex with
B, thus creating a recombination center. Those preliminary results verify our
method against earlier known results from the literature and start the work on
the silicon cell ageing. In the future work, different type of defect and their
combination will be tested.



General conclusion

In solid state physics in general and in the photovoltaic industry in particular,
dopants and defects have a major impact on the properties of the material. In
order to control them, the comprehension of the atomic behaviour is crucial.

In this thesis, a methodology was adopted to perform quick yet accurate
simulation of complex system. The main feature is the use of hybrid functional
approach that was optimised in order to correctly describe the experimental value
of the band gap. PBE and PBEsol-based hybrid functionals were optimised for
various materials used in photovoltaic field: silicon, germanium, SiGe, III-V semi-
conductors (with III = Ga, In, Al and V = P, As, Sb) and quaternary copper-
based chalcopyrite CuAB2 (with A = In, Ga and B = Se, S). The optimisation
scheme employed here was compared to the self-consistent hybrid functional in
which the percentage α of the Hartree-Fock exact exchange is linked to the inverse
of the high-frequency dielectric constant. Even though the dielectric procedure
is a good approximation for α, it does not always describe the electronic prop-
erties correctly. For example, small-gap semiconductors such as CuInSe2 turn
out metallic with this approach. The direct optimisation of α for the description
obviously does not suffer from this problem and is more pertinent in the context
where the correct description of electronic properties is crucial, as in photovoltaic.
The PBE and PBEsol-based optimised hybrid functionals were compared to their
different counterparts from literature. Their performances on structural, vibra-
tional, mechanical, dielectric and electronic properties were investigated, and the
mean absolute relative errors with the experimental data were calculated. The
hybrid functional optimised in this work logically gives better result for the elec-
tronic properties, but also other properties, especially the structural ones, are
well described for the compounds studied in this work. In general, the optimised
functionals have the lowest relative errors compared to the other functionals.

GW calculation are time-consuming but very accurate method to obtain the
complete electronic structure of a material. Electronic structures of several com-
pounds have been computed via the PBEsolhyb and compared with the results
obtained within the GW approximation. In the vicinity of the band gap, the en-
ergy bands calculated with the optimised hybrid functional are very close to those
obtained within the GW approximation. They are even sometimes better since
they are optimised to correspond to the exact experimental band gap. Thus,
optimised hybrid functionals are then a very interesting tool to calculate the
electronic properties accurately, with precision close to that attainable within the
GW , at least in the vicinity of the band gap, in significantly shorter calculation
time.
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The effect of temperature was then tested with the quasi-harmonic approxi-
mation. The variation of the thermal expansion, the heat capacity and the band
gap with the temperature show different behaviour compared to experimental
data. The first two properties are well described with the temperature variation,
but the band gap dependence does not correspond to experimental trends. The
inclusion of the electron-phonon coupling in the calculations might be necessary
in order to provide the essential correction. Nevertheless, the choice of particular
functional does not seem to be very important for estimating the temperature
dependence of properties, the resulting behaviour comes out about the same.
For thermodynamic study, the optimised hybrid functional is then not markedly
better than the other functionals.

Finally, the influence of the choice of functional on the electrical conductivity
was studied. Once again, thanks to the correct description of the band gap,
optimised hybrid functional give the most accurate result. The larger the fraction
of the HF-exact exchange, the higher the calculated electrical conductivity. At
this point the methodology have been validated for pure material and ready to
use on more complex systems.

The first complex systems investigated were chalcopyrite compounds. One of
the key features of CIGSSe is the control of their composition that leads to a
tunability of different properties, such as the lattice parameter or the band gap.
This feature makes chalcopyrite system promising candidates for applications in
tandem cells. In this work, two separate studies on CIGSSe were performed
In the first study, the influence of composition for the penternary chalcopyrite
CuInxGa1−x(SeyS1−y)2 on different properties was investigated. A complete map-
ping of the lattice parameters, band gap and formation energy with the two con-
centrations x and y was done. The variation of the first properties was practically
linear with the concentration and was in agreement with the experimental data.
The “optimal” band gap values of 1.5 – 1.7 eV are accessible for higher concen-
tration of indium than gallium. However, the lattice mismatch with the lattice
parameter of silicon in this range of concentrations becomes more important.
Even if the lattice mismatch is low, the epitaxy of chalcopyrite on top of a silicon
wafer might be difficult. The silicon lattice parameter corresponds to that of
chalcopyrite with higher concentration of gallium and sulphur. In all the compo-
sitions studied, the system stays in the chalcopyrite symmetry and the energies
of formation are negative, thus the system is thermodynamically stable and no
secondary phases appear.

In the second study, alkali incorporation by means of cation substitution were
performed by a similar method. As alkali post-deposition treatment has been
shown in the last five years to be able to importantly increase the efficiency of
CIGSSe solar cells, the understanding of the origin of this effect is of great inter-
est. In a few theoretical works so far done on the simulation of point defects, the
copper site was identified as the most favorable incorporation site. In this work,
we substituted copper by alkali metal for a broad range of concentration, in order
to grasp their influence of these dopants on the bulk. The first observation is
that alkali metal atoms increase the volume of the cell with an expansion of the
lattice parameter a but a contraction of c. However, the system goes from the
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P 4̄ symmetry at lowest concentration to C2/c for the highest one, except for the
case of doping with lithium and most of the cases concerning sodium; however,
this might be due to an intrinsic issue of the method. This deformation is purely
due to the local deformation of the tetrahedra around the substituted atoms.
The calculation of electronic properties were then performed. The Mulliken pop-
ulation analysis shows that the different compounds become more ionic with the
incorporation of alkali As for the band gap, it increases with the concentration of
alkali metal. That is not a good news for gallium-based ternary chalcopyrites that
have band gap already larger than the target value, however might be useful for
indium-based chalcopyrites to reach the target value. Different energy relations
were then calculated corresponding to various chemical reactions. The main con-
clusion is that the alkali metals incorporation is not easy in chalcopyrite. Even
if Li, Na and K have substitution energy lower than 2 eV and hence much lower
than Rb and Cs whose substitution energy is around 4 – 5 eV, all these energies
are positive, and the substitution reaction is not spontaneous. Moreover, except
for the lithium, thermodynamically, the substitution of the Cu by a alkali met-
als will lead to the appearance of the secondary phases whatever the considered
mechanisms.

Finally, the second complex system studied was silicon with various point
defects. In the context of a global project working on the ageing of silicon so-
lar cell, the light and elevated temperature induced degradation (LeTID) might
be the consequence of atomic effect linked to hydrogen trapped in the bulk and
interacting with defect (iron) or dopant (boron). In this thesis, we performed
preliminary calculation of H, Fe, B point defects and FeB complex. Even though
these defects are well known in the literature, they served excellent benchmarks
to test and validate the calculation method. The most stable position of the
different charge states of the point defect correspond to the knowledge from the
literature. Now that the simulation of simple isolated defects have been demon-
strated to be reliable, the combination of defects can be probed, and the way
opened to simulations of the defects’ interaction among themselves and e.g. with
dislocations.
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Summary

The electrical properties of semiconductors, such as concentrations and mobili-
ties of charge careers, are strongly influenced by the types of dopants and defects
inserted or formed during the synthesis of materials. In the field of photovoltaics,
these defects lead to various perturbations (distortions of the phase stability, ap-
pearance of supplementary energy levels in the band gap, etc.) and can degrade
the efficiency and durability of solar cells. In this context, ab initio simulation
methods, such as Hartree-Fock (HF) or those implemented in the framework of
density functional theory (DFT), are relevant to understand these behaviours
and thus improve and optimise the photovoltaic materials. However, a qualita-
tive and quantitative description of properties, such as the electronic structures,
requires sophisticated but time consuming techniques, implementing, e.g., the
GW approximation. An interesting alternative to this can be provided by hybrid
functionals, which combine a certain percentage of the HF exact exchange with
the exchange-correlation provided by functionals from the various realisations of
the DFT.
Firstly, hybrid functionals were optimised in order to accurately describe the band
gap for different compounds by carefully adjusting the percentage of the HF ex-
act exchange in the exchange part of the PBE and PBEsol functionals, suggested
within the generalised gradient approximation of the DFT. The materials investi-
gated were Si, Ge, SiGe, III-V and the chalcopyrite-type compounds. The results
obtained by this approach were compared to those available from the literature,
paying particular attention to the GW calculation results. The description of
the electronic properties, such as the band structures, with the hybrid functional
turns out to generally match that from the GW calculations. Structural and
dielectric properties were also in good agreement with the experimental data.
The temperature evolution of various thermodynamic properties, like the heat
capacity, was calculated via the quasi-harmonic approximation (QHA). In this
latter approximation and for the range of studied materials, optimised hybrid
functionals however do not bring any noticeable improvement against the ex-
isting functionals. Nevertheless, they bring about a coherent description of the
materials.
Secondly, these optimised hybrid functionals were used to systematically describe
the impact of chemical composition on chalcopyrite’s properties for tandem solar
cells. First, they enable the determination of the compositions, structural and
electrical properties of CuGaxIn1−x(SySe1−y)2 for band gap specific to this kind of
application. Then, the effect of alkali metals incorporations into the chalcopyrite-
type bulk materials was addressed. Doping with alkali metals leads to a major
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enhancement of the photovoltaic efficiency of the chalcopyrite-type compounds.
Interesting results have been obtained concerning the substitution of copper by
Li, Na, K, Rb and Cs. The impact of these dopants on the band gap was in-
terpreted via the structural evolution and the thermodynamic stability of the
different crystallines phases that can exist within the material.
Finally, hydrogen, iron and boron point defects in silicon were simulated as a part
of a preliminary study on the light and elevated temperature induced degradation
(LeTID) which is among the major challenges in the study of the ageing process
of the silicon solar cells.



Résumé en français

Introduction

Les propriétés électriques des semi-conducteurs sont fortement influencées par
le type de dopants et défauts (ponctuels ou étendus) insérés ou formés lors de
leur synthèse. Dans le domaine du photovoltaïque, ces défauts, sources de nom-
breuses métastabilités (perturbation de la stabilité des phases cristallines, appari-
tion de niveau électronique dans la bande interdite, etc.), vont fortement dégrader
l’efficacité et la durabilité des cellules solaires, mais restent difficile à caractériser
expérimentalement. Dans ce contexte de défauts nanoscopiques, les méthodes de
simulation ab initio sont nécessaires afin de comprendre leur influence sur divers
matériaux.
Les approches de type Hartree-Fock (HF) ou celles utilisées dans le cadre de la
théorie de la fonctionnelle de la densité (DFT), sont pertinentes pour une com-
préhension de ces différents effets nécessaire à l’optimisation et l’amélioration des
matériaux pour le photovoltaïque. L’approximation HF détermine la fonction
d’onde de l’état fondamental en utilisant le principe variationnel sur un modèle
purement mono-électronique où chaque électron est sous l’influence du champ
moyen crée par les autres électrons, mais ne prend pas en compte la corréla-
tion entre électrons autre que le principe d’exclusion de Pauli. Pour prendre
en compte la corrélation Coulombienne, la DFT abandonne la fonction d’onde
pour la densité électronique. Néanmoins, les approches HF et DFT sont connues
pour respectivement surestimer et sous-estimer la valeur de l’énergie de bande
interdite, définie à leurs façons, par référence aux valeurs propres des équations
respectives. L’obtention d’une description aussi bien qualitative que quantita-
tive de propriétés, comme les structures en bandes électroniques, requiert alors
l’utilisation d’approches sophistiquées, comme les méthodes de type GW , coû-
teuses en temps de calcul. Ainsi, les approches pragmatiques basées sur les fonc-
tionnelles hybrides, combinant un certain pourcentage (α) d’échange HF (EHF

x )
avec les échanges issus des différentes approximations de la DFT (EDFT

x et EDFT
c ),

représentent une alternative intéressante pour explorer les propriétés de systèmes
complexes. Les fonctionnelles hybrides à un seul paramètre sont définies par
l’équation suivante :

EHyb
xc = α× EHF

x + (1− α)× EDFT
x + EDFT

c . (4.2)
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Fonctionnelles hybrides optimisées

Performances des fonctionnelles hybrides

Le pourcentage α a d’abort été maintenu constant dans la littérature (Adamo
and Barone, 1999), puis les fonctionnelles ont été optimisées grâce au calcul de
la constante diélectrique qui est directement proportionnelle au pourcentage α
Alkauskas et al. (2008). Cependant, on montre ici que cette méthode peut con-
verger sur des solutions métalliques pour des matériaux à faible valeur d’énergie de
bande interdite, comme pour le CuInSe2 par exemple. Dans la première partie de
cette thèse, les fonctionnelles hybrides ont été optimisées afin d’avoir une bonne
description de l’énergie de bande interdite pour différents composés en faisant
varier le pourcentage d’échange HF dans le terme d’échange des fonctionnelles de
type PBE et PBEsol de l’approximation GGA de la DFT. Les matériaux consid-
érés étaient le Si, Ge, SiGe, les III-V et quatre composés chalcopyrites (CIGSSe),
CuGaS2, CuInS2, CuGaSe2 et CuInSe2. Les résultats obtenus avec cette approche
semi-empirique ont été confrontés à ceux de la littérature et notamment à ceux
obtenus au niveau GW . De manière générale, les fonctionnelles hybrides opti-
misées ici permettent d’obtenir des valeurs calculées des différentes propriétés
avec des erreurs relatives par rapport aux valeurs expérimentales les plus faibles,
comparables à celle d’HSE06 ou de M06. Pour la famille des chalcopyrites, une
fonctionnelle hybride a été optimisée pour les quatre composés en trouvant la
valeur de α minimisant l’erreur relative globale par rapport à l’expérience. La
valeur de l’énergie de bande interdite correspondant à celle expérimentale par déf-
inition, la bonne reproduction du reste de la structure électronique fut étudiée. La
description des propriétés électroniques, comme les structures en bandes, est sim-
ilaire à celle obtenue au niveau GW comme on peut le voir sur la figure i pour les
trois semiconducteurs III-V à base de gallium. Cette optimisation des fonction-
nelles hybrides permet donc une bonne description des propriétés électroniques
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Figure i Bandes d’énergie calculées via la fonctionnelle hybride optimisée PBEsolhyb ( ) et
des calculs GW ( ) de Malone and Cohen (2013) comparées aux valeurs expérimentales (�)
pour le GaP, GaAs et GaSb.
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pour des temps de calculs beaucoup plus raisonnables que ceux nécessaires lors
de calcul GW.

Influence de la température et propriétés de transport

L’utilisation des approches ab initio ne permet pas la prise en compte direct des
effets de température sur les systèmes étudiés. Pour cela, l’approximation quasi-
harmonique (QHA) fut utilisée. Via cette approximation, l’évolution en tempéra-
ture de différentes données thermodynamiques a été abordée comme le montre la
figure ii. Les variations du coefficient d’expansion thermique et des chaleurs spé-
cifiques en fonction de la temperature pour différents matériaux sont comparées
et correspondent aux données expérimentales. Parmis les propriétés étudiées, la
variation en température de l’énergie de bande interdite de certains matériaux,
comme le silicium, ne correspond pas aux tendances observées dans la littérature.
Le couplage électron-phonon doit alors être pris en compte. Pour l’ensemble des
matériaux étudiés, les approches hybrides n’apportent pas d’amélioration par rap-
port aux fonctionnelles existantes. Néanmoins, elles permettent une description
cohérente des matériaux.
Enfin, l’obtention de la conductivité électrique par les fonctionnelles hybrides op-
timisées fut comparée à celle de diverses autres fonctionnelles. Les différentes
fonctionnelles donnent une même tendance générale pour la variation de la con-
ductivité électrique avec le potentiel chimique. Cependant, les fonctionnelles
hybrides optimisées donnent les tendances les plus cohérentes avec leurs énergies
de bande interdite correspondantes aux valeurs expérimentales.
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Figure ii a. Variation du coefficient de dilatation linéaire a ( ) et c ( ) en fonction de la
température du Cu(In,Ga)(S,Se)2 comparé aux données experimentales (Bodnar and Orlova,
1983; Nagaoka et al., 2012; Deus et al., 1983a) b. Variation de la capacité thermique en fonction
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Composition des matériaux chalcopyrites pour
cellules tandem
Dans une seconde partie, ces fonctionnelles ont été utilisées pour réaliser une
étude systématique de l’impact de la composition chimique sur les propriétés des
chalcopyrites (CIGSSe) pour des cellules solaires de type tandem en complément
de cellule silicium.

Compositions des composés chalcopyrites

Tout d’abord, elles ont permis de déterminer les compositions, propriétés struc-
turales et électroniques des CuGaxIn1−x(SySe1−y)2 avec des gaps donnés compat-
ibles à leur utilisation en tant que cellule supérieure dans une cellule tandem. Le
but de cette étude est de cartographier les différentes compositions possibles afin
de déterminer celles ayant une énergie de bande interdite proche de 1.7 eV, valeur
optimale pour la cellule supérieure complémentaire à une cellule à base de sili-
cium. 81 compositions ont été modélisées et ont permis d’obtenir les graphiques
de la figure iii représentant les variations de l’énergie de bande interdite et du
paramètre de maille a en fonction des concentrations x et y. Ainsi, le paramètre
de maille des compositions ayant une énergie de bande interdite de 1.7 eV sont
directement comparables à celui du silicium pour déceler d’éventuel problémes
structuraux. Les deux critères n’étant pas remplis dans les mêmes conditions,
des compromis doivent être fait comme par exemple avoir une énergie de bande
interdite supérieure à 1.7 eV ou alors utiliser une couche tampon entre les deux
matériaux.

Substitution du cuivre par des métaux alcalins

Après avoir étudié l’impact de la concentration, l’effet de l’insertion des alcalins
dans les chalcopyrites a été abordé. En effet, cette voie permet de nettes amélio-
rations des rendements de ces matériaux (Salomé et al., 2015; Muzzillo, 2017;
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Figure iv Comparaison entre les valeurs expérimentales et calculées de la déformation du
paramètre de maille des chalcopyrites ternaires dopés (a. CuGaS2 b. CuInS2 c. CuInSe2) avec
du Li.

Sun et al., 2017). Divers sites d’incorporation existent mais aux vues de la lit-
térature, l’accent a été mis sur la substitution du cuivre par le Li, Na, K, Rb
et Cs. Il existe peu de données expérimentales sur des composés chalcopyrites
mixés avec des alcalins. Cependant, les valeurs calculées dans cette thèse cor-
respondent aux rares données trouvées dans la littérature comme le montre la
figure iv pour les déformations structurelles découlant de l’ajout de lithium dans
des chalcopyrites ternaires. Ainsi, l’impact sur les déformations structurelles, sur
l’évolution de l’énergie de bande interdite ou encore les énergies de subsitution
ont été déterminées. La figure v montre par exemple l’évolution de l’énergie de
bande interdite des quatre chalcopyrites ternaires en fonction de la concentration
de césium incorporé. Les zones grisées dans cette figure correspondent à une
nouvelle phase. En effet, on montre ici que pour K, Rb et Cs, pour des compo-
sitions seuils allant de 30 % à plus de 80 %, le composé chalcopyrite passe d’un
groupe d’espace P2 à un dérivé du C/2c. En plus de ce changement structural,
l’incorporation de métaux alcalins augmente la valeur de l’énergie de bande in-
terdite. De ce fait, les composés à base de gallium ne permettent pas d’obtenir
une énergie de bande interdite de 1.7 eV, au contraire de CuInSe2 et CuInS2. On
montre enfin que l’incorporation des alcalins dans les CIGSSe n’est pas favorable
et tend énergétiquement vers une séparation de phase.
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potentiel chimique.

Étude du vieillissement des cellules silicium:
importance des défauts ponctuels

Enfin, les défauts ponctuels d’hydrogène, de fer et de bore dans le silicium ont été
modélisés dans le cadre d’une étude préliminaire sur le thème de la dégradation
induite par la lumière à haute temperature (LeTID) qui est l’un des mécanismes
de vieillissement des cellules à base de silicium. Cette première étude des défauts
ponctuels dans le silicium par des fonctionelles hybrides optimisées confirment
les résultats de la littérature (Van de Walle et al., 1989; Brotherton et al., 1985).
Pour les défauts d’hydrogène, H+ préfère se placer au centre d’une liaison Si-
Si alors que H− se glisse dans les tetrahèdres de la maille. En faisant varier le
potentiel chimique comme sur la figure vi, et comme montré par Van de Walle and
Neugebauer (2006), l’hydrogène réagit comme accepteur dans le silicium dopé n
et donneur dans celui dopé p. H0 correspond quand à lui à un état de transition,
instable thermodynamiquement. Le fer et le bore forment de leur côté un centre
de recombinaison avec l’apparition d’un niveau d’énergie au centre de la bande
interdite.

Conclusion

Dans cette thèse, une méthodologie a été adoptée afin d’obtenir des résultats
rapide et précis pour des systèmes complexes. Elle repose sur l’utilisation de
fonctionnelles hybrides optimisées afin de reproduire les valeurs expérimentales
des énergies de bandes interdites des matériaux étudiés. Cette approche pragma-
tique permet de réduire les erreurs relatives par rapport à l’expérience au niveau
caractéristique standard lors de l’usage des fonctionnelles HSE06 ou M06. Les
propriétés électroniques, telle que les structures en bandes, obtenues via cette
approche sont comparables à celle calculées par des calculs GW. Cette méthode a
par la suite été mise en application pour deux cas concrets relatifs au monde du
photovoltaïque: l’utilisation de matériaux chalcopyrites pour des cellules tandem
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et le vieillissement des cellules à base de silicium. Pour une application tandem,
la composition des chalcopyrites ainsi que l’incorporation de métaux alcalins en
substitution du cuivre ont été étudiées dans le but d’obtenir un matériau ayant
une énergie de bande interdite d’environ 1.7 eV. En jouant sur la concentra-
tion du gallium et du souffre, les énergies souhaitées entrainent un décalage des
paramètres de mailles avec la cellule silicium en dessous, et nécessitent donc des
compromis. L’incorporation d’alcalins entraine une augmentation de l’énergie de
bande interdite. Les chalcopyrites à base d’indium sont alors les seuls à per-
mettre une énergie de bande interdite de 1.7 eV. Cependant, ces incorporations
ne sont pas stables et amènent à des séparations de phases. Enfin, en vue de
comprendre les phénomènes de dégradation liés à la lumière et aux hautes tem-
pératures des cellules silicium, diverses défauts ponctuels relatifs à l’hydrogène,
au fer et au bore, ont été analysés. Les principaux résultats de la littérature ont
été retrouvés, comme la formation de complexe Fe-B, centre de recombinaison
néfaste pour la cellule solaire. La simulation des défauts ponctuels étant fiable,
de futurs travaux se tourneront sur l’intéraction de ces défauts, entre eux mais
également avec d’autres éléments comme des dislocations.
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Appendix A

Basis set

Table A.1 Exponents of the uncontracted GTFs of Li, Na, K, Rd and Cs – see Dovesi et al.
(1983, 1991); CRYSTAL17 (2019) for a complete set of data. The K, Rb and Cs basis sets are
used in conjunction with the Hay-Wadt small-core pseudoptentials (Hay and Wadt, 1985b,a) .

Atom Shell Expt. Coeff.
s(d) p

Li sp 1.466596 1. 1.

sp 0.463406 1. 1.

sp 0.092101 1. 1.

d 0.447768 1.

Na sp 0.517941 1. 1.

sp 0.089944 1. 1.

d 0.162856 1.

K sp 0.310588 1. 1.

sp 0.101487 1. 1.

d 0.525 1.

Rb sp 0.227558 1. 1.

d 0.521716 1.

Cs sp 0.162258 1. 1.

d 0.490609 1.





Appendix B

Structural data

Table B.1 Reference crystal structure data and the band gap values for the compounds used
for the tests in the present work the substitution energy and their structural properties.

Name Space Eg a b c α

group
Cu2S P21/c Calc. 1.65 15.027 11.805 13.272 116.

Exp. 15.246 11.884 13.494 116.

Cu2Se P21/c Calc. 1.23 6.993 4.277 6.823 70.

Li2S Fm3̄m Calc. 4.97 5.649

Exp. 5.708a

Li2Se Fm3̄m Calc. 4.34 5.942

Exp. 6.005a

Na2S Fm3̄m Calc. 4.27 6.472

Exp. 6.526a

Na2Se Fm3̄m Calc. 3.72 6.735

Exp. 6.809a

K2S Fm3̄m Calc. 4.54 7.224

Exp. 7.391a

K2Se Fm3̄m Calc. 4.15 7.452

Exp. 7.676a

Rb2S Fm3̄m Calc. 13.48 7.503

Exp. 7.650a

Rb2Se Fm3̄m Calc. 12.53 7.670

Exp. 8.019b

Cs2S Pnma Calc. 11.27 8.628 5.183 10.383

Exp. 8.571b 5.383b 10.39b

Cs2Se Pnma Calc. 10.73 8.770 5.257 10.657

Exp. 8.79b 5.55b 10.78b

LiGaS2 Pna21 Calc. 5.22 6.520 7.802 6.197

Exp. 3.62c 6.519d 7.872d 6.238d

6.513e 7.863e 6.218e

LiGaSe2 Pna21 Calc. 3.69 6.070 10.206 6.097

Exp. 3.13c 6.833f 8.227f 6.541f

6.832e 8.237e 6.535e

Continued on next page
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Continuation of TABLE
Name Space Eg a b c α

group
LiInS2 Pna21 Calc. 3.88 6.884 8.002 6.457

Exp. 3.56c 6.887g 8.050g 6.474g

LiInSe2 Pna21 Calc. 2.955 7.225 9.654 6.765

Exp. 2.83c 7.218h 8.441h 6.772h

NaGaS2 C2/c Calc. 4.658 10.188 10.189 13.430 101.

NaGaSe2 C2/c Calc. 3.449 10.617 10.654 14.019 105.

NaInS2 C2/c Calc. 3.256 10.836 10.536 13.828 104.

NaInSe2 C2/c Calc. 2.365 10.815 11.381 13.883 94.

KGaS2 C2/c Calc. 4.959 10.359 10.360 14.639 100.

Exp. 2.71i 14.791i,j 10.425i,j 10.424i,j 100.i,j

KGaSe2 C2/c Calc. 3.994 10.741 10.742 15.203 100.

Exp. 3.14i 10.909i 10.920i 15.470i 100.i

2.60k

KInS2 C2/c Calc. 3.783 10.911 10.875 14.934 100.

Exp. 11.003l,m,n 10.995l,m,n 15.021l,m,n 101.l,m,n

KInSe2 C2/c Calc. 2.943 11.281 11.230 15.378 98.

Exp. 11.423o 11.428o 15.621o 101.o

RbGaS2 C2/c Calc. 5.441 10.413 10.413 15.340 100.

Exp. 2.86i 10.495i 10.485i 15.432i 100i

15.64p 11.10p 11.16p 100.p

RbGaSe2 C2/c Calc. 4.529 10.755 10.755 15.863 100.

Exp. 3.16i 10.954i,q 10.949i,q 16.064i,q 100.i,q

RbInS2 C2/c Calc. 4.399 10.969 10.971 15.608 100.

Exp. 3.3r 10.47s 10.49s 15.46s 100.s

11.07r 11.068r 15.610r 100.r

RbInSe2 C2/c Calc. 3.674 11.298 11.282 16.062 99.

Exp. 11.065t 11.064t 15.580t 100.t

CsGaS2 C2/c Calc. 5.213 10.643 10.642 16.154 99.

Exp. 2.89i 10.622i 10.616i 16.170i 100.i

CsGaSe2 C2/c Calc. 4.459 10.948 10.949 16.744 99.

Exp. 3.17i 11.046i 11.051i 16.827i 99.i

CsInS2 C2/c Calc. 4.429 11.149 11.147 16.491 100.

Exp. 11.14s 11.31s 16.08s 101.s

Exp. 3.4r 11.197r 11.158r 16.358r 100.r

CsInSe2 C2/c Calc. 3.771 11.431 11.433 17.123 100.

Exp. 11.4467u 11.4530u 17.0338u 100.u

aZintl et al. (1934); bSommer and Hoppe (1977); cEifler et al. (2000); dLeal-Gonzalez et al.
(1990); eIsaenko et al. (2003); fKuriyama and Nozaki (1981); gKish (1985); hKamijoh and
Kuriyama (1981); iFriedrich et al. (2017a); jLemoine et al. (1984); kFeng et al. (2012); mSchubert
and Hoppe (1970); nLowe-Ma et al. (1991); oKrebs (2006); pMüller et al. (2014); qFriedrich et al.
(2017b); rZeng et al. (2007); sSchubert and Hoppe (1970); tHuang et al. (2005); uWard et al.
(2014)
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Table C.1 Evolution with the alkaline concentration of the average structure of the anions
tetrahedra associated to each alkaline for Ga-based chalcopyrite. V (in Å3), d (in Å), θ1 and
θ2 (in degree) stand for the volume of the primitive cell, the cation-anion distances and the
different angles in the tetrahedra, respectively as defined in Fig. 1. The different parameters
are obtained for the crystals with the P 4̄ space group; the ones in italic correspond to the C2c
type crystals.

CuGaS2 CuGaSe2
V d θ1 θ2 V d θ1 θ2

Li
0.0625 301. 2.34 109. 111. 343. 2.44 109. 110
0.1875 302. 2.34 109. 111. 345. 2.44 109. 110.
0.25 303. 2.35 109. 111. 346. 2.45 109. 111.
0.3125 303. 2.35 108. 112. 347. 2.45 108. 112.
0.375 304. 2.35 109. 112. 347. 2.45 109. 111.
0.4375 305. 2.36 108. 112. 348. 2.46 108. 112.
0.5 306. 2.36 108. 112. 349. 2.46 108. 112.
0.75 309. 2.37 108. 113. 354. 2.47 108. 113.

Na
0.0625 304. 2.54 109. 111. 346. 2.64 109. 110.
0.1875 311. 2.55 109. 111. 354. 2.65 109. 111.
0.25 315. 2.59 107. 115. 359. 2.69 109. 113.
0.3125 319. 2.60 108. 112. 363. 2.68 107. 118.
0.375 322. 2.59 108. 117. 367. 2.69 107. 120.
0.4375 327. 2.61 108. 116. 372. 2.70 106. 120.
0.5 331. 2.61 107. 118. 377. 2.72 108. 118.
0.75 346. 2.68 103. 126. 382. 2.83 100. 147.

K
0.0625 307. 2.78 109. 111. 350. 2.88 109. 110.
0.1875 318. 2.80 107. 126. 361. 2.91 105. 130.
0.25 325. 2.86 106. 125. 369. 2.97 105. 130.
0.3125 332. 2.90 107. 119. 377. 3.00 107. 121.
0.375 334. 2.89 102. 148. 376. 3.01 100. 152.
0.4375 342. 2.93 104. 136. 384. 3.06 102. 140.
0.5 347. 2.96 97. 151. 388. 3.07 96. 152.
0.75 373. 3.05 100. 137. 413. 3.17 98. 134.

Rb
0.0625 308. 2.92 109. 111. 350. 3.05 107. 132.
0.1875 323. 2.95 106. 129. 366. 3.06 105. 132.
0.25 332. 3.02 102. 116. 376. 3.12 106. 119.
0.3125 339. 3.08 108. 116. 383. 3.17 106. 122.
0.375 344. 3.04 91. 120. 386. 3.16 93. 135.
0.4375 354. 3.12 102. 134. 393. 3.22 94. 129.
0.5 362. 3.12 96. 158. 404. 3.22 95. 159.
0.75 395. 3.19 99. 134. 438. 3.30 98. 131.

Cs
0.0625 310. 3.05 109. 111. 353. 3.20 108. 127.
0.1875 330. 3.09 106. 128. 372. 3.21 106. 135.
0.25 339. 3.17 103. 115. 383. 3.29 101. 115.
0.3125 348. 3.27 109. 115. 393. 3.36 108. 117.
0.375 387. 3.38 97. 133. 402. 3.32 92. 119.
0.4375 401. 3.36 99. 119. 409. 3.46 98. 115.
0.5 398. 3.43 90. 166. 435. 3.54 92. 136.
0.75 427. 3.48 83. 149. 455. 3.56 93. 158.
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Table C.2 Evolution with the alkaline concentration of the average structure of the anions
tetrahedra associated to each alkaline for In-based chalcopyrite. V (in Å3), d (in Å), θ1 and
θ2 (in degree) stand for the volume of the primitive cell, the cation-anion distances and the
different angles in the tetrahedra, respectively as defined in Fig. 1. The different parameters
are obtained for the crystals with the P 4̄ space group; the ones in italic correspond to the C2c
type crystals.

CuInS2 CuInSe2
V d θ1 θ2 V d θ1 θ2

Li
0.0625 339. 2.37 109. 111. 385. 2.47 109. 111.
0.1875 341. 2.37 109. 111. 388. 2.47 109. 111.
0.25 342. 2.38 109. 111. 389. 2.48 109. 111.
0.3125 342. 2.38 109. 111. 390. 2.47 109. 111.
0.375 343. 2.38 108. 112. 391. 2.47 108. 112.
0.4375 344. 2.38 109. 111. 392. 2.48 109. 112.
0.5 345. 2.38 109. 111. 394. 2.48 108. 111.
0.75 350. 2.39 109. 111. 399. 2.49 109. 111.

Na
0.0625 342. 2.58 109. 110. 389. 2.68 109. 111.
0.1875 351. 2.60 109. 111. 399. 2.69 109. 112.
0.25 356. 2.62 109. 112. 405. 2.72 109. 112.
0.3125 361. 2.63 109. 111. 409. 2.71 108. 114.
0.375 365. 2.61 105. 115. 415. 2.72 105. 116.
0.4375 370. 2.64 107. 113. 420. 2.73 106. 117.
0.5 375. 2.64 106. 114. 426. 2.74 108. 116.
0.75 396. 2.69 105. 118. 449. 2.79 106. 118.
K
0.0625 346. 2.82 109. 110. 393. 2.93 109. 111.
0.1875 362. 2.84 111. 112. 409. 2.95 110. 118.
0.25 368. 2.92 107. 124. 415. 3.03 107. 129.
0.3125 377. 2.93 108. 118. 424. 3.02 109. 118.
0.375 378. 2.93 104. 142. 424. 3.07 104. 143.
0.4375 389. 2.95 106. 130. 434. 3.09 103. 132.
0.5 396. 2.99 101. 125. 441. 3.12 97. 128.
0.75 418. 3.07 98. 142. 465. 3.18 96. 151.

Rb
0.0625 348. 2.98 109. 110. 393. 3.12 108. 132.
0.1875 365. 3.01 108. 122. 411. 3.13 107. 134.
0.25 375. 3.07 108. 121. 423. 3.18 108. 123.
0.3125 384. 3.11 105. 115. 431. 3.23 102. 125.
0.375 384. 3.11 89. 121. 429. 3.23 91. 128.
0.4375 397. 3.15 100. 128. 439. 3.27 92. 127.
0.5 408. 3.19 99. 125. 450. 3.30 95. 126.
0.75 445. 3.22 99. 138. 487. 3.36 96. 131.

Cs
0.0625 349. 3.13 109. 110. 395. 3.27 108. 133.
0.1875 371. 3.17 108. 124. 417. 3.29 107. 136.
0.25 382. 3.25 104. 112. 431. 3.37 102. 111.
0.3125 394. 3.31 109. 114. 443. 3.42 102. 113.
0.375 395. 3.27 92. 124. 435. 3.41 91. 127.
0.4375 438. 3.36 100. 119. 453. 3.47 89. 119.
0.5 464. 3.52 91. 146. 472. 3.49 97. 132.
0.75 514. 3.46 97. 138. 530. 3.53 95. 144.
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Table C.3 Mulliken net atomic charges of alkali (q) and Alk-(S/Se) bond populations
(bAlk−(S/Se)) for the different chalcopyrites. The data for Cu in Cu(Ga/In)(S/Se)2 (referenced
as Cu) are given for comparison.

Alk. CuGaS2 CuGaSe2 CuInS2 CuInSe2
q bAlk−S q bAlk−S q bAlk−S q bAlk−S

Li
0.0625 +0.411 +0.1883 +0.226 +0.256 +0.404 +0.228 +0.221 +0.284

0.125 +0.414 +0.1884 +0.227 +0.254 +0.405 +0.228 +0.222 +0.284

0.1875 +0.410 +0.1894 +0.224 +0.255 +0.402 +0.228 +0.220 +0.286

0.25 +0.407 +0.1926 +0.224 +0.258 +0.402 +0.229 +0.220 +0.286

0.3125 +0.386 +0.1944 +0.202 +0.258 +0.389 +0.230 +0.207 +0.286

0.375 +0.391 +0.1937 +0.205 +0.258 +0.392 +0.230 +0.210 +0.287

0.4375 +0.376 +0.1963 +0.191 +0.259 +0.383 +0.232 +0.201 +0.287

0.5 +0.381 +0.1969 +0.196 +0.259 +0.385 +0.232 +0.204 +0.287

0.625 +0.386 +0.1955 +0.201 +0.258 +0.389 +0.232 +0.207 +0.288

0.75 +0.370 +0.1985 +0.186 +0.260 +0.379 +0.234 +0.199 +0.289

0.875 +0.361 +0.1992 +0.177 +0.261 +0.373 +0.235 +0.193 +0.289

Na
0.0625 +0.439 +0.1680 +0.284 +0.224 +0.433 +0.196 +0.283 +0.246

0.125 +0.444 +0.1622 +0.278 +0.224 +0.433 +0.196 +0.279 +0.246

0.1875 +0.438 +0.1680 +0.279 +0.225 +0.430 +0.198 +0.280 +0.247

0.25 +0.437 +0.1708 +0.289 +0.223 +0.435 +0.198 +0.291 +0.244

0.3125 +0.428 +0.1727 +0.264 +0.229 +0.432 +0.198 +0.266 +0.250

0.375 +0.412 +0.1752 +0.264 +0.227 +0.418 +0.203 +0.273 +0.249

0.4375 +0.411 +0.1777 +0.249 +0.233 +0.417 +0.204 +0.257 +0.254

0.5 +0.403 +0.1809 +0.257 +0.230 +0.408 +0.206 +0.264 +0.252

0.625 +0.411 +0.1749 +0.268 +0.218 +0.416 +0.204 +0.272 +0.249

0.75 +0.389 +0.1797 +0.225 +0.190 +0.403 +0.207 +0.267 +0.248

0.875 +0.346 +0.1485 +0.209 +0.169 +0.398 +0.205 +0.267 +0.168

K
0.0625 +0.712 +0.0127 +0.624 +0.060 +0.734 +0.030 +0.646 +0.076

0.125 +0.717 −0.003 +0.629 +0.042 +0.731 +0.020 +0.661 +0.061

0.1875 +0.709 +0.0137 +0.619 +0.058 +0.730 +0.033 +0.649 +0.075

0.25 +0.709 +0.0319 +0.624 +0.065 +0.736 +0.041 +0.653 +0.072

0.3125 +0.702 +0.0375 +0.618 +0.070 +0.732 +0.045 +0.628 +0.088

0.375 +0.683 +0.0373 +0.591 +0.068 +0.718 +0.046 +0.639 +0.073

0.4375 +0.683 +0.0437 +0.591 +0.071 +0.719 +0.051 +0.642 +0.080

0.5 +0.655 +0.0528 +0.567 +0.075 +0.703 +0.058 +0.620 +0.083

0.625 +0.659 +0.0589 +0.589 +0.067 +0.689 +0.061 +0.619 +0.074

0.75 +0.649 +0.0628 +0.562 +0.085 +0.683 +0.062 +0.602 +0.087

0.875 +0.627 +0.0633 +0.540 +0.081 +0.671 +0.067 +0.591 +0.087

Rb
0.0625 +1.049 −0.082 +1.035 −0.056 +1.037 −0.066 +1.027 −0.043

Continued on next page
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Continuation of table C.3
Alk. CuGaS2 CuGaSe2 CuInS2 CuInSe2

q bAlk−S q bAlk−S q bAlk−S q bAlk−S
0.125 +1.054 −0.082 +1.044 −0.062 +1.051 −0.069 +1.039 −0.048

0.1875 +1.049 −0.073 +1.035 −0.054 +1.038 −0.060 +1.025 −0.039

0.25 +1.037 −0.042 +1.023 −0.031 +1.029 −0.034 +1.016 −0.024

0.3125 +1.032 −0.035 +1.019 −0.023 +1.026 −0.030 +1.015 −0.019

0.375 +1.029 −0.035 +1.017 −0.022 +1.027 −0.027 +1.016 −0.017

0.4375 +1.023 −0.026 +1.012 −0.018 +1.024 −0.025 +1.014 −0.013

0.5 +1.016 −0.020 +1.006 −0.013 +1.011 −0.019 +1.002 −0.015

0.625 +1.013 −0.011 +1.007 −0.010 +1.016 −0.013 +1.007 −0.004

0.75 +1.007 −0.013 +0.999 −0.006 +1.009 −0.013 +1.002 −0.005

0.875 +1.000 −0.008 +0.992 −0.004 +1.004 −0.007 +0.997 −0.004

Cs
0.0625 +1.040 −0.134 +1.020 −0.089 +1.032 −0.108 +1.019 −0.071

0.125 +1.052 −0.139 +1.031 −0.101 +1.051 −0.117 +1.032 −0.080

0.1875 +1.040 −0.121 +1.018 −0.086 +1.033 −0.099 +1.017 −0.065

0.25 +1.022 −0.059 +1.005 −0.052 +1.018 −0.056 +1.001 −0.037

0.3125 +1.013 −0.056 +0.997 −0.038 +1.013 −0.047 +0.999 −0.032

0.375 +0.983 −0.025 +0.998 −0.038 +1.015 −0.042 +0.997 −0.026

0.4375 +0.989 −0.026 +0.983 −0.027 +1.003 −0.028 +0.993 −0.020

0.5 +0.987 −0.021 +0.977 −0.011 +1.000 −0.017 +0.982 −0.021

0.625 +0.988 −0.019 +0.977 −0.017 +0.992 −0.018 +0.982 −0.013

0.75 +0.980 −0.015 +0.972 −0.013 +0.988 −0.016 +0.978 −0.009

0.875 +0.972 −0.016 +0.963 −0.010 +0.981 −0.014 +0.973 −0.009
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Table C.4 Mulliken net atomic charges of gallium (q) and Ga-(S/Se) bond populations
(bGa−(S/Se)) for the different Ga-based chalcopyrites.

Alk. CuGaS2 CuGaSe2
q bGa−S q bGa−S

Li
0.0625 0.4110 0.2605 0.2260 0.2557

0.125 0.4140 0.2610 0.2270 0.2566

0.1875 0.4103 0.2620 0.2243 0.2575

0.25 0.4070 0.2626 0.2240 0.2584

0.3125 0.3862 0.2634 0.2018 0.2594

0.375 0.3907 0.2643 0.2047 0.2604

0.4375 0.3757 0.2648 0.1907 0.2612

0.5 0.3805 0.2657 0.1955 0.2620

0.625 0.3856 0.2671 0.2008 0.2638

0.75 0.3698 0.2686 0.1864 0.2658

0.875 0.3606 0.2701 0.1770 0.2677

Na
0.0625 0.4390 0.2609 0.2840 0.2560

0.125 0.4440 0.2619 0.2780 0.2571

0.1875 0.4380 0.2633 0.2790 0.2585

0.25 0.4370 0.2647 0.2890 0.2601

0.3125 0.4282 0.2663 0.2636 0.2611

0.375 0.4123 0.2667 0.2640 0.2623

0.4375 0.4110 0.2688 0.2494 0.2634

0.5 0.4025 0.2694 0.2570 0.2653

0.625 0.4108 0.2720 0.2678 0.2675

0.75 0.3888 0.2741 0.2247 0.2657

0.875 0.3457 0.2704 0.2086 0.2644

K
0.0625 0.7120 0.2610 0.6240 0.2561

0.125 0.7170 0.2605 0.6290 0.2545

0.1875 0.7090 0.2634 0.6190 0.2581

0.25 0.7090 0.2652 0.6240 0.2600

0.3125 0.7016 0.2678 0.6178 0.2625

0.375 0.6830 0.2652 0.5910 0.2601

0.4375 0.6833 0.2690 0.5914 0.2621

0.5 0.6551 0.2668 0.5665 0.2619

0.625 0.6594 0.2666 0.5888 0.2535

0.75 0.6489 0.2618 0.5619 0.2498

0.875 0.6274 0.2687 0.5403 0.2662

Rb
0.0625 1.0490 0.2608 1.0350 0.2558

Continued on next page
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Continuation of table C.4
Alk. CuGaS2 CuGaSe2

q bGa−S q bGa−S
0.125 1.0540 0.2599 1.0440 0.2466

0.1875 1.0493 0.2628 1.0353 0.2577

0.25 1.0370 0.2655 1.0230 0.2611

0.3125 1.0316 0.2684 1.0194 0.2631

0.375 1.0290 0.2647 1.0168 0.2562

0.4375 1.0230 0.2697 1.0124 0.2598

0.5 1.0161 0.2680 1.0059 0.2643

0.625 1.0128 0.2711 1.0072 0.2643

0.75 1.0067 0.2730 0.9994 0.2534

0.875 0.9997 0.2723 0.9923 0.2664

Cs
0.0625 1.0400 0.2604 1.0200 0.2476

0.125 1.0520 0.2587 1.0310 0.2530

0.1875 1.0400 0.2613 1.0183 0.2549

0.25 1.0220 0.2640 1.0050 0.2592

0.3125 1.0130 0.2676 0.9972 0.2624

0.375 0.9830 0.2652 0.9983 0.2579

0.4375 0.9887 0.2679 0.9829 0.2469

0.5 0.9872 0.2677 0.9770 0.2637

0.625 0.9876 0.2699 0.9770 0.2623

0.75 0.9797 0.2751 0.9717 0.2698

0.875 0.9720 0.2729 0.9626 0.2744
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Table C.5 Mulliken net atomic charges of indium (q) and In-(S/Se) bond populations
(bIn−(S/Se)) for the different In-based chalcopyrites.

Alk. CuGaS2 CuGaSe2
q bIn−S q bIn−S

Li
0.0625 0.4040 0.2151 0.2210 0.2289

0.125 0.4050 0.2155 0.2220 0.2295

0.1875 0.4020 0.2162 0.2197 0.2301

0.25 0.4020 0.2166 0.2200 0.2308

0.3125 0.3892 0.2172 0.2070 0.2313

0.375 0.3920 0.2177 0.2097 0.2319

0.4375 0.3830 0.2182 0.2013 0.2324

0.5 0.3850 0.2188 0.2040 0.2330

0.625 0.3888 0.2198 0.2074 0.2343

0.75 0.3788 0.2206 0.1985 0.2354

0.875 0.3730 0.2214 0.1926 0.2365

Na
0.0625 0.4330 0.2148 0.2830 0.2286

0.125 0.4330 0.2151 0.2790 0.2286

0.1875 0.4303 0.2153 0.2797 0.2291

0.25 0.4350 0.2157 0.2910 0.2296

0.3125 0.4318 0.2161 0.2664 0.2297

0.375 0.4177 0.2164 0.2730 0.2303

0.4375 0.4174 0.2169 0.2570 0.2306

0.5 0.4080 0.2171 0.2640 0.2311

0.625 0.4156 0.2176 0.2718 0.2321

0.75 0.4032 0.2186 0.2670 0.2333

0.875 0.3979 0.2180 0.2671 0.2224

K
0.0625 0.7340 0.2146 0.6460 0.2283

0.125 0.7310 0.2150 0.6610 0.2203

0.1875 0.7303 0.2151 0.6493 0.2280

0.25 0.7360 0.2151 0.6530 0.2284

0.3125 0.7320 0.2161 0.6278 0.2287

0.375 0.7180 0.2153 0.6393 0.2212

0.4375 0.7191 0.2173 0.6419 0.2259

0.5 0.7027 0.2158 0.6200 0.2288

0.625 0.6888 0.2159 0.6188 0.2182

0.75 0.6826 0.2025 0.6018 0.2174

0.875 0.6710 0.2162 0.5907 0.2323

Rb
0.0625 1.0370 0.2144 1.0270 0.2208

Continued on next page
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Continuation of table C.5
Alk. CuInS2 CuInSe2

q bIn−S q bIn−S
0.125 1.0510 0.2070 1.0390 0.2192

0.1875 1.0377 0.2141 1.0250 0.2265

0.25 1.0290 0.2149 1.0160 0.2287

0.3125 1.0260 0.2161 1.0154 0.2290

0.375 1.0273 0.2141 1.0160 0.2144

0.4375 1.0239 0.2175 1.0136 0.2191

0.5 1.0111 0.2172 1.0015 0.2301

0.625 1.0162 0.2026 1.0074 0.2341

0.75 1.0091 0.2217 1.0015 0.2168

0.875 1.0041 0.2217 0.9969 0.2316

Cs
0.0625 1.0320 0.2138 1.0190 0.2203

0.125 1.0510 0.2058 1.0320 0.2179

0.1875 1.0327 0.2124 1.0167 0.2110

0.25 1.0180 0.2135 1.0010 0.2264

0.3125 1.0132 0.2146 0.9986 0.2271

0.375 1.0153 0.1901 0.9970 0.2007

0.4375 1.0027 0.2178 0.9929 0.2031

0.5 0.9999 0.2186 0.9819 0.2217

0.625 0.9920 0.2147 0.9820 0.2245

0.75 0.9875 0.2218 0.9784 0.2373

0.875 0.9806 0.2256 0.9726 0.2404
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