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1.1 Kinetic energy distribution and cross-scale

exchanges in the ocean

1.1.1 Oceanic kinetic energy

The ocean is a large body of water that covers approximately 70% of the planet

Earth. Density stratification and the rotation of the Earth makes the ocean behaves

differently compared to other bodies of fluid. The ocean is an integral part of the

climate system. Climate change has been affirmed to be a direct consequence of

anthropogenic carbon emission which is associated with human activities. 30% of

this anthropogenic CO2 is absorbed by the ocean. Also, the ocean absorbs most of

the excess heat from greenhouse gas emissions, leading to a rise in ocean tempera-

ture. Climate projections are made based on numerical models that have an ocean

component. So, better climate projection requires an ocean component that truly

captures the properties and dynamics of the ocean.

The ocean is constantly in motion with most of its kinetic energy coming from the

winds. This injection of wind energy at the surface has to be equilibrated by mixing

and dissipation in order to have a statistically balanced ocean. About 10% of this

energy is dissipated within the upper ocean (Ferrari and Wunsch, 2009), thereby

leaving a gap as to how and where the remaining energy is dissipated. Mixing

at small-scale can affect the uptake of heat and anthropogenic CO2 by the ocean

(Crueger et al., 2008). It can as well impact the meridional overturning circula-

tion and the global biogeochemical cycle of the ocean. Therefore, understanding

mixing and dissipation in the ocean is key for improving our knowledge of ocean

circulation, ocean model development and thereby improving climate projections.

The accurate representation of mixing in ocean (and climate) model is currently

still a challenge for numerical ocean modelers. Oceanic mixing and dissipation is

a direct consequence of scale interaction in the ocean that spans from microscale

O(1m) to large-scales O(1000km). In fact, mixing and dissipation arise from the

kinetic energy exchanges among different scales of motions. In summary, to better

understand mixing and dissipation, we need to comprehend how kinetic energy is

exchanged and redistributed in the ocean.

Over the years, much effort has been dedicated to understanding how kinetic energy

is distributed in the ocean. At first glance, the partition of energy among differ-

ent spatial (temporal) scale can be obtained through the wavenumber (frequency)

spectral analysis of kinetic energy. The kinetic energy spectra in the frequency

domain (Figure 1.1) separates the ocean into balanced motions (< f) (dominated

by geostrophic eddies) and higher-frequency unbalanced motions (> f) (dominated

by internal waves) where f is the Coriolis frequency. Both frequencies regime are
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characterized by a power-law σ−r where r is an empirical constant and σ is a radian

frequency. In particular, frequency band f < σ < N are controlled by gravity waves

while σ > N (N is the stratification frequency) are thought to be dominated primar-

ily by small-scale turbulent motions resulting from breaking of internal waves. This

qualitative separation of oceanic motion is consistent throughout the world ocean.

On the other hand, in the wavenumber domain, the kinetic energy spectrum still

follows a power-law (k−r) but without the distinctive feature seen in the frequency

spectrum. In the wavenumber spectra, there is a peak of energy at the mesoscale and

this energy generally decreases with wavenumber. Information from these two inde-

pendent spectra has over the years provide a measure of how energy is distributed in

the ocean. A joint frequency-wavenumber spectrum appears to be a more accurate

representation of the variance of different scales of oceanic motions in the kinetic

energy spectrum. Until recently, this was practically impossible due to the heavy

computation this kind of analysis requires. Results based on this kind of spectral

analysis (Figure 1.2) show that ocean kinetic energy is mostly concentrated at the

geostrophically 1 balanced mesoscale motions.

1.1.2 Geostrophic kinetic energy

The kinetic energy spectrum predicts that most of the ocean kinetic energy is con-

tained in geostrophic mesoscale motions with sub-inertial frequency and spatial scale

of the order of ∼ 100km. The dominance of kinetic energy at the oceanic mesoscale

was first documented in the early 1970s from the mooring and ship-going observa-

tions in the Western North Atlantic (Hua et al., 1986). A full characterization of the

properties and distribution of the mesoscale motion has only been possible in the past

20 years when satellite altimeters provided the first global pictures of the geostrophic

circulation at the ocean surface. These class of motions is associated with strong

mean flow features and energetic coherent structures, also known as mesoscale ed-

dies. Mesoscale eddies are mostly generated by baroclinic instability (Gill et al.,

1974; Stammer and Böning, 1992), meandering of strong ocean currents and are by

far the largest reservoir of ocean kinetic energy, accounting for over 90% of the ocean

kinetic energy (Wunsch, 2007). They are more densely populated in major ocean

currents such as, the Gulf stream, the Kuroshio currents and are pronounced in the

Southern Ocean where they delineate the Antartic Circumpolar Current. They are

characterized by small Rossby (Ro = U/fl) and Froude (Fr = U/Nh) where U is a

characteristic horizontal velocity scale, f is the local Coriolis frequency for Earths

rotation, N is stratification frequency, l is the horizontal length scale and h is the

vertical length scale. Mesoscale eddies have a spatial scale that mostly follows the

1A geostrophic current is an oceanic current in which the pressure gradient force is balanced by

the Coriolis force.
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Figure 1.1: From Ferrari and Wunsch (2009). Kinetic energy spectral estimates for instru-

ments on a mooring over the Mid-Atlantic Ridge near 27N (Fu et al. 1982). The inertial,

principal lunar semidiurnal M2, and diurnal O1, K1 tidal peaks are marked, along with

the percentage of kinetic energy in them and the kinetic energy lying between f and the

highest frequency estimate. Least-squares power-law fits for periods between 10 and 2 h

and for periods lying between 100 and 1000 h are shown. The approximate percentage of

the energy of the internal wave band lying in the inertial peak and the M2 peak is noted.

In most records, the peak centered near f is broader and higher than the one appearing at

the M2 frequency. When f is close to the diurnal frequency, it is also close to one-half the

frequency of M2, when the parametric subharmonic instability can operate. Some spectra

show the first overtone, 2 M2 of the semidiurnal tide. Instrument at (a) 128 m, (b) 1500

m, and (c) 3900 m (near the bottom). The geostrophic eddy band is greatly reduced in

energy near the bottom, as is the inertial band, presumably because of the proximity of

steep topography. Note the differing axis scales.
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Figure 1.2: From Torres et al. (2018). Frequency-wave number spectra of KE (KE [m2/s2])

corresponding to the Kuroshio-Extension, during the January- February-March season.

The spectrum is multiplied by k and ω, indicating the spectrum is variance preserved.

The right panel is the frequency spectrum; the upper middle panel is the wavenumber

spectrum; the bottom middle panel is the frequency-wave number spectrum; the left panel

is the schematic frequency-wave number spectrum. The schematic spectrum displays the

multiple dynamical regimes: RW stands for Rossby waves, MBM for mesoscale balanced

motions, SBM for submesoscale balanced motions, USM for unbalanced submesoscale

motions, and IGW for internal gravity waves. Additionally, the schematic spectrum shows

the dispersion relation of the first ten baroclinic modes: mode-1 in gray dotted line, mode-

2 to mode-9 green dashed lines, and mode-10 in black. Finally, the nondispersive line, ω−
ck = 0, is drawn with c corresponding to an eddy speed of 8.5 km/day (∼10 m/s). Gray

band in right and upper panels denote the 95% confidence intervals.
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Figure 1.3: From Ferrari and Wunsch (2009) Zonally averaged scales (in kilometers) of

the maximum growth rate of baroclinic instability of the main thermocline estimated from

hydrography (Smith 2007), the spectral peak of eddy kinetic energy from the analysis of

satellite observations by Stammer (1997), and the first deformation radius estimated from

Levitus climatology (Chelton et al., 1998). The estimate of the spectral peak of eddy

kinetic energy is uncertain. First, the altimetric signal is dominated by noise at scales

below 10050 km, and the spectral energy is largest at the smallest wave numbers. Hence

the spectral peak estimate is not independent of the choice of filter. Second, the spectral

peak is evident only in a small fraction of satellite tracks that cross well-defined coherent

eddy structures: The spectral peak does not characterize the background eddykinetic

energy spectrum, which is close to white.

estimate of the Rossby radius of deformation. Results from direct observation of

eddy size and the theoretical predictions from linear theory confirm this (Figure

1.3).

Despite being the largest reservoir of kinetic energy, geostrophic eddies do not con-

tribute to oceanic vertical mixing. This is because baroclinic instability that gener-

ates these eddies results in the extraction of potential and kinetic energy from large

scale circulation (Ferrari and Wunsch, 2009). This extraction of potential energy,

in fact, limit the chances of vertical mixing, a process that requires potential en-

ergy. However, the dissipation of eddies by interacting with bottom topography can

sometimes produce mixing (Molemaker et al., 2005).
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1.1.3 Sinks and cascades of geostrophic kinetic energy

The rotation of the earth and density stratification strongly suppress vertical ve-

locities for geostrophic eddies, and these motions are constrained to be quasi-two

dimensions with a large horizontal scale and weak vertical scale. The nonlinear inter-

actions among these two-dimensional eddies motions result in an inverse cascade of

energy that progressively builds up to bigger eddy motions and subsequently merg-

ing into zonal jets (Salmon, 1980). That is to say, without a dissipation mechanism

for geostrophic eddies, this inverse cascade of energy would result in the formation

of eddies with a spatial scale of the size of the ocean basins.

The dynamics of geostrophic eddies are expected to follow the properties of geostrophic

turbulence which was first proposed by Charney (1971) and have been well described

by other authors (Rhines, 1975, 1979). For stratified rotating quasi-two-dimensional

fluid motion, geostrophic turbulence theory predicts a direct cascade of energy for

a baroclinic flow but an inverse cascade of energy for a barotropic flow. For the

ocean with a surface intensified stratification, energy from higher baroclinic modes

concentrates in the first mode and then undergoes a direct cascade towards the de-

formation scale (Rd) (Smith and Vallis, 2002). At Rd, baroclinic energy is converted

to barotropic mode via a process called barotropization. At this point, most of

the energy near the deformation scale cascade towards a larger scale while a small

fraction undergoes direct cascade to dissipation.

The first estimates of kinetic energy flux in the real ocean based on altimeter (Scott

and Wang, 2005) confirmed the existence of an inverse cascade of energy at the

surface of the ocean with a little mismatch. First, the scale of the eddy source was

found to be of higher magnitude than the prediction of the geostrophic theory. This

shift in the scale of eddy source was attributed to the poor resolution of the altimeter

dataset i.e the kinetic energy spectral estimates do not account for the unresolved

smaller scales structures. This indicates that the magnitude and the range of kinetic

energy spectral flux estimates are sensitive to the resolution of small scale oceanic

motions. Secondly, the KE flux direction was contrary to geostrophic turbulence

prediction for a baroclinic flow. The result was a bit ambiguous because the altimeter

signal reflects only surface velocities, which are dominated by low baroclinic modes

(Smith and Vallis, 2002). How then is the KE flux (estimated from surface velocities)

dominated by an inverse cascade? Recent results from Scott and Arbic (2007) have

shown that the inverse cascade of energy is not confined to the barotropic mode

alone and that the kinetic energy associated with the first baroclinic mode also

fluxes energy upscale. In summary, the inverse cascade observed at the surface of

the ocean by altimeter is a combination of baroclinic and barotropic mode with the

former having stronger contribution to the net cascade. Many recent results have

equally confirmed this notion of an inverse cascade dominated ocean. Scott and
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Wang (2005); Eden (2007); Sasaki et al. (2017); Tulloch et al. (2011); Aluie et al.

(2017); Brüggemann and Eden (2015); Kjellsson and Zanna (2017); Khatri et al.

(2018).

Since geostrophic motions (the largest reservoir of ocean kinetic energy) do not

provide a route to kinetic energy dissipation by themselves, how then can energy

be transferred from the large scale to small scale where viscous dissipation can act?

Several processes have been proposed as potential sinks of geostrophic kinetic energy.

Some of the mechanism that could damp geostrophic motions are;

• (a) bottom drag : dissipative interaction with bottom topography (Arbic and

Flierl, 2004; Gille et al., 2000; Sen et al., 2008)

• (b) wave emissions : generation, radiation, and breaking of gravity waves

by mesoscale eddies interacting with small-scale rough topographic (Naveira

et al., 2004; Nikurashin and Ferrari, 2010; Nikurashin et al., 2013; Molemaker

et al., 2010). This is particularly efficient in regions with rough topography

such as the Southern Ocean

• (c) loss of balance : loss of geostrophic balance at the ocean surface boundary

due to frontogenesis. Surface frontogenesis describes the formation of sharp

density gradients as a result of eddy stirring at the ocean boundaries and

this represents a direct cascade of baroclinic energy to scales smaller than the

deformation radius (Molemaker et al., 2005; Hoskins and Bretherton, 1972)

• (d) interactions with the internal wave field : interaction between internal

waves and geostrophic eddies can result in an irreversible extraction of kinetic

energy from the geostrophic field. (Muller, 1976; Buhler and McIntyre, 2005)

• (e) suppression by wind work : wind stress act to spin down geostrophic eddies

(Chris, 2016; Chi et al., 2016).

Most of these routes involve the transfer of energy from large scale to smaller scales

where 3D turbulence can then cascade energy down to a dissipative scale. A review

of these processes can be found in Ferrari and Wunsch (2009) and Barkan et al.

(2017). In general, the flow of energy from large scale to dissipation is depicted in

Figure 1.4. The middle regime in Figure 1.4 is currently a frontier in oceanography

studies. New evidence from the investigation with numerous numerical simulations

suggests that oceanic motions with spatial scale less than 100km (therein referred to

as fine-scales) with Ro and Fr ∼ 1 are playing a key role in the down-scale flux of

kinetic energy towards dissipative scale. What exactly are these classes of motions

at fine-scales?
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Figure 1.4: Image taken from McWilliams (2016). Stages in the oceanic general circulation

from planetary-scale forcing to microscale dissipation and mixing. Indeed, we know much

about the large scale balanced dynamics (LHS) where energy is injected into the ocean and

the higher-frequency unbalanced motion (RHS) where this energy is been dissipated. The

intermediate scale in between these two regimes is currently an area of ongoing research

in the oceanography community.
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1.2 Oceanic fine-scale motions: a key player in

kinetic energy exchanges

1.2.1 Oceanic motions at fine-scale

Oceanic motion at fine-scale (< 200km) is dominated by submesoscale balanced

motions (< 50km) (vortices, fronts, and filaments) and high-frequency unbalanced

internal gravity waves (< 100km) (near-inertial waves, internal tides). These are

two classes of motions that share similar spatial and temporal scales but with very

different dynamical properties.

Submesoscales balanced motions are characterized by O(1) Rossby number (a value

much higher than mesoscale eddies) and large vertical velocity in the surface bound-

ary layers. Nonlinear interactions within this class of motions yields the so called

submesoscale turbulence. There is a wide variety of physical processes that can feed

submesoscale turbulence. These mechanisms include strain-induced frontogenesis,

topographic wakes, turbulent thermal winds, and mixed-layer instability (Thomas,

2008; Capet et al., 2008a; Mensa et al., 2013; Qiu et al., 2014; Sasaki et al., 2014;

Callies et al., 2015b; Brannigan et al., 2015; McWilliams, 2016). Furthermore, ob-

servations from in-situ measurement (Shcherbina et al., 2013; Buckingham et al.,

2016) and model simulations (Qiu et al., 2014; Sasaki et al., 2014; Brannigan et al.,

2015; Rocha et al., 2016) have shown that submesoscale motions undergo a strong

seasonality with stronger signature in wintertime. Many recent studies have argued

that this seasonality is driven by mixed-layer instability with a deep mixed-layer

in wintertime. This seasonality can be observed in form of a larger amplitudes of

submesoscale buoyancy flux Mensa et al. (2013) and also in the skewness of the

relative vorticity distribution in winter (Shcherbina et al., 2013; Buckingham et al.,

2016).

There are suggestions that submesoscale motions have a strong impact on ocean

circulation and the climate system as well. A recent result from Su et al. (2018)

argues that submesoscale could be playing an essential role in the modification of

momentum and heat exchange between the ocean and atmosphere and that the ver-

tical velocities associated with submesoscales are strong enough to generate vertical

fluxes of carbon and other biogeochemical tracers from the surface layer to the in-

terior (Balwada et al., 2018). Chassignet and Xu (2017) also shows that resolving

submesoscale motions in basin-scale ocean simulation has impacts on large scale

circulation. The authors through a series of North Atlantic simulation with varying

horizontal resolution (1/12◦,1/25◦,1/50◦) show that the Gulf stream separation and

its associated re-circulation gyres compare better with observation as the model’s

spatial resolution increases. Quantifying the impact of submesoscales in the global
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ocean is currently an ongoing task in physical oceanography studies.

Of particular interest in this thesis are submesoscales coherent vortices therein re-

ferred to as submesoscale eddies. This kind of motions dominates oceanic eddy field

at scales less than 100km. This class of eddy motions is less known due to the nature

of their size. They are too small to be captured by our exiting satellite mission and

they are also too big to be well resolved by shipboard instrument detection. Given

that submesoscale motions (in general) undergo strong seasonality with large am-

plitude in winter. We do not know if this seasonality includes submesoscale eddies

as well. In other words, do submesoscale eddies vary seasonally? If they do, will this

seasonality affect the distribution of the eddy length scale at the basin scale? Also,

we don’t know depth penetration of this class of eddy motions.

As already mentioned, internal gravity waves (IGWs) co-exist with submesoscale

balanced motions at fine scales. IGWs are a particular class of fast propagating

unbalanced motions with frequencies equal to or larger than f and a spatial scale

ranging from O(10m) to O(100km). IGWs include wind-induced near-inertial waves

with a frequency near the Coriolis frequency and internal tides (generated by large

scale barotropic tidal flow over topographic features) with diurnal and semidiurnal

frequencies. The kinetic energy of internal gravity waves undergoes strong season-

ality with large amplitude in summertime. This seasonality is due to shallower

mixed-layer and the intensification of vertical normal mode in summertime (Rocha

et al., 2016; Torres et al., 2018; Lahaye et al., 2019). It is worth stressing that the

seasonality of submesoscale balanced motions and unbalanced internal gravity waves

is out of phase and that the implication of this seasonality on cross-scale kinetic

energy exchanges is yet be explored.

At fine-scales, submesoscale and internal gravity waves signals overlap. The task

of separating these two classes of motion (with significantly different properties) is

currently an ongoing research task (Qiu et al., 2018; Torres et al., 2018). There

are indications that submesoscale motions and internal gravity waves motion do

interact and that this interaction could leads to mixing in the interior of the ocean

(Klein et al., 2003). Also, recent studies have emphasized that this interaction could

provide a prominent pathway to kinetic energy dissipation. The reader can see Klein

et al. (2019) for an up to date review on oceanic scale interaction.

1.2.2 Advancement in satellite missions and ocean models

The Surface Water and Ocean Topography (SWOT) altimetric mission (Fu and

Ubelmann, 2014) which is scheduled for launch in 2021 is going to advance our

knowledge of ocean dynamics at fine-scales by providing an unprecedented covered

of the world ocean down to kilometric scale. SWOT will provide for the first time a
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two dimensional (2D) map of Sea Surface Height (SSH) on a 1-2 km horizontal grid.

The low noise level of the SWOT observation should allow us to resolve physical

processes in the oceans down to a horizontal scale of 10km. This resolution is 10

times higher than existing conventional altimeters and observation from SWOT will

bridge the existing gap in our knowledge of fine-scale dynamics particular at scales

between 15km to 200km. This scale range which is dominated by fine-scale motions

is important for the understanding of ocean dynamics and kinetic energy budgets

particularly in terms of route to energy dissipation.

As promising as the information from SWOT would be for oceanographic study,

some challenges come with the reliability of the information it provides at very fine-

scales. At scale less than the Rossby radius, high-frequency and non-linear oceanic

processes are likely to become more important and the degree of geostrophic balance

is expected to fail. Like every other satellite, SWOT will provide velocities based

on geostrophic approximations with no information on the ageostrophic component.

Hence, how accurate will the estimate of kinetic energy cascade at fine-scale be if its

computation is based on geostrophic velocity ?

In anticipation of SWOT, realistic numerical ocean models such as the NEMO based

North Atlantic simulation with a horizontal resolution of 1/60◦ (NATL60), the Hy-

brid Coordinate Ocean Model of the Atlantic Ocean with a horizontal resolution of

1/50◦ (HYCOM50) and MIT General Circulation Model with horizontal resolution

of 1/48◦ (MITgcm) have been designed in preparation for the upcoming altimeter

mission. These state-of-the-art numerical experiments (with tidal forcing in some

cases) can resolve explicitly oceanic motion at basin scale down to kilometric scale

and can therefore provide virtual observations that anticipate the future SWOT

data. This thereby provides an opportunity to investigate the dynamics of fine-scale

oceanic motions by using basin scale realistic simulations.

1.2.3 A new route to kinetic energy dissipation

Many studies (e.g Sasaki et al. (2014) and Capet et al. (2008c)) by using subme-

soscale resolving simulations show that kinetic energy spectrum in high EKE region

is shallower than expected i.e kinetic energy spectra slope changes from -3 (Philips

regime) to -2 (Charney regime) move from eddy-resolving to submesoscale resolving

numerical simulation (Figure 1.6). This result indicates that submesoscale motions

play an active role in redistributing kinetic energy across scales. In a regime of

energetic submesoscales, the inverse cascade of kinetic energy involves a broader

scale-range that includes smaller scales and it also shows evidence of a stronger

forward cascade of energy at smaller scales. These results provide evidence that

submesoscales can feed large-scale motions via an inverse cascade of energy and can
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Figure 1.5: A schematic of the Surface Water and Ocean Topography satellite mission

(SWOT) by NASA-JPL. SWOT is expected to go live in 2021 and will provide for the

first time a two dimensional (2D) observation of the Sea Surface Height (SSH) on a 1-2

km grid. The low noise level of the SWOT observation should allow us to resolve physical

processes in the oceans down to a horizontal scale of 10km. This resolution is 10 times

higher than existing conventional altimeters.
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Figure 1.6: Image from Capet et al. (2008e). Kinetic energy at 10m depth as a function

of horizontal wavenumber. The five solid lines correspond to spectra for the different

simulations with horizontal grid scale decreasing from 12 to 0.75 km. The straight lines

indicate k−5/3 (dotted), k−2 (dashed), and k−3 (dotdash) spectrum slopes.

also trigger a direct cascade of energy from balanced motions down to dissipative

scales (Capet et al., 2008e; Ferrari and Wunsch, 2009; McWilliams, 2016). It is not

clear if this forward cascade by submesoscales extends towards the interior of the

ocean or is confined to the surface in the real ocean. We equally do not know if the

forward cascade is sensitive to the seasonality of submesoscale turbulence throughout

the ocean.

There are new shreds of evidence based on idealized simulations that suggest that in-

ternal gravity waves (particularly near-inertial waves) can provide a route to kinetic

energy dissipation. Wave emission has been reported to be leading order mechanisms

for a direct cascade of energy at fine-scales (Brüggemann and Eden, 2015; Barkan

et al., 2017). Results on the direct cascade of kinetic energy by wave emission can

be classified into two mechanisms; (i) stimulated generation of a forward cascade of

kinetic energy by near-inertial waves from balanced flows (Gertz and Straub, 2009;

Rocha et al., 2018) and (ii) spontaneous generation of kinetic energy by near-inertial

waves from balanced flows (Nagai et al., 2015; Shakespeare and Hogg, 2017). In a

stimulated generation, near-inertial waves are first introduced by external forcing

(e.g. wind) at the inertial frequency and then grow by extracting energy from the

balanced flow (Barkan et al., 2017; Thomas, 2017; Gertz and Straub, 2009) while

spontaneous generation is the emission of waves by unbalanced, large Rossby number
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flow at density fronts without external forcing. Most of these studies have focused

on the impact of wind-generated near-inertial waves on kinetic energy dissipation.

Whereas little is known as to the role of internal tides on kinetic energy exchanges.

We know that internal tides contribute to the building up of internal gravity waves

continuum (Müller et al., 2015) and that they contribute to diapycnal mixing in the

interior of the ocean (St. Laurent and Garrett, 2002; Chris, 2003; Vic et al., 2019).

Weather they could be playing a significant role in the down-scale transfer of kinetic

energy is yet to be fully explored.

1.3 North Atlantic ocean

My thesis will use the North Atlantic ocean as a typical mid-latitude ocean basin

for studying cross-scale energy exchanges. To that end, we present in this section

the North Atlantic Ocean. This is a well-studied region of the ocean and we do

not intend to give a summary of the existing literature but rather to highlights and

introduce this ocean basin has our region of study in this thesis. The North Atlantic

Ocean as the name implies is the northern part of the Atlantic Ocean starting from

around 8oN up to the subpolar region. The North Atlantic ocean surface circulation

(Figure 1.7) comprises of three major inter-connected currents; the Gulf stream,

the North Atlantic current and the subpolar fronts. These currents are organized

into two major gyres: the sub-polar and the sub-tropical gyres. The North Atlantic

Subpolar Gyre plays a key role in climate variability, it forms an important part of

the global overturning circulation serving as a region of deep water formation. Also,

the Gulf stream is famous for transporting warm water from the subtropics to the

polar regions and into Europe.

The North Atlantic ocean (like every other ocean) basin is baroclinically unstable

and is therefore dominated by geostrophic eddy field. The Gulf stream, being a west-

ern boundary current is a major site for the generation of geostrophic eddies. Results

from satellite observation and in-situ measurement have equally shown strong eddy

energy along the North Atlantic Current and the Azores Current. The dynamics of

this ocean basin, its impact on the world ocean circulation and its importance to

climate can not be overemphasized and have therefore received much attention over

the years.

The size of the North Atlantic ocean basin, existing knowledge about its circulation

and cross-scale interaction makes it an ideal natural laboratory to study kinetic en-

ergy distribution and exchanges at fine-scales in the ocean. Recently Aluie et al.

(2017) using 1/10th of degree numerical simulation investigated the cross-scale ex-

changes of kinetic energy in the Atlantic ocean. Their result (Figure 1.8) show that

the North Atlantic ocean is dominated by an inverse cascade of eddy energy towards
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larger-scale ocean circulation. This result is consistent with the findings of Schlösser

and Eden (2007) who performed a similar analysis using an eddy-resolving model of

the North Atlantic.

Similarly, the dynamical characteristics of eddy motions at large-scale (particularly

scale of eddies) have been investigated in the North Atlantic. The typical scale of

mesoscale eddies in the North Atlantic is between the Rosbby radius of deformation

and the Rhine scale Eden (2007); Chelton et al. (2011). However, these aforemen-

tioned studies provide no information as to the nature of cross-scale kinetic energy

exchanges and the scale of eddy motions at finer-scales. The focus in this thesis

work is to extend on these existing literature by investigating the distribution of

eddy scale and kinetic energy exchanges down to 10km scale in the North Atlantic

ocean.

Figure 1.7: Schematic of the North Atlantic circulation pattern. Deeper currents are in

blue, shallower ones in orange/yellow. Image taken from Alice et al. (2015)
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Figure 1.8: Figure from Aluie et al. (2017). Geographic maps of the cross-scale kinetic

energy exchanges at the surface averaged over three years for scales > 200 km. The color

map used, is not linear; most of the color shown has small values close to zero (white),

and some blue/red regions exceed the maximum values on the color bar. We observe a

downscale transfer in the current south of Florida, as the Gulf Stream turns northward,

possibly indicative of eddy shedding or even just the small scale associated with the sharp

turn in the trajectory. We also observe a strong (dark blue) upscale transfer in the Gulf

Stream core east of Florida and the Carolinas. This persists well beyond the separation

point (Cape Hatteras), indicating that energy is transferred from mesoscale eddies into the

Gulf Stream, accelerating and focusing the current. Flanking both sides of this (dark blue)

core, we see downscale transfer (red) most probably associated with barotropic instabilities

resulting from strong shear. Overall, an upscale transfer dominates in the Gulf Stream,

in accordance with QG.
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1.4 Thesis Objective

In this introduction, based on recent literature, we have highlighted that subme-

soscales and internal gravity waves can provide a route to dissipate geostrophic

kinetic energy. These classes of motions are more pronounced at fine-scales but we

lack qualitative and quantitative information from observations at these scales. Our

current knowledge of fine-scales is based mostly on kilometric numerical simulation

of the ocean. These kilometric numerical simulations are computationally expen-

sive to run at a global scale and have mostly been implemented for regional ocean

basin. In this thesis, our objective is to use high-resolution submesoscale

permitting ocean models to investigate the impact of fine-scale motions

on kinetic energy exchanges in the North Atlantic ocean. This objective is

divided into three themes with each theme addressing specific open questions.

A: Seasonal and regional distribution of fine-scale eddy structures in the

North Atlantic.

Given that eddies are the largest reservoir of kinetic energy in the ocean, the goal of

this theme is to investigate the spatial and temporal variability of oceanic eddies in

the North Atlantic. In contrast to existing literature, we focus specifically on eddies

with scales < 100km and we attempt to answer the following questions;

• What are the scales of oceanic eddies at fine-scales??

• What is the depth penetration of submesoscale eddies?

• Is the scale of oceanic eddies sensitive to the seasonality of submesoscale tur-

bulence?

B: Kinetic energy transfer at fine-scale in a regime of energetic subme-

soscale motions.

In this research theme, our aim is to understand how submesoscale turbulence affects

kinetic energy exchanges at fine-scales both at the surface and in the interior of the

ocean. The key questions in this theme are listed below.

• Does the seasonality of submesoscale turbulence affect cross-scale kinetic en-

ergy exchanges?

• Is the forward cascade due to submesoscales surface-confined?
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• At fine-scale, (using geostrophic current), how accurate is the estimate of ki-

netic energy cascade?

C: Kinetic energy transfer at fine-scale in a regime of externally forced

internal tides.

Based on recent pieces of evidence on the role of internal gravity waves on kinetic

energy dissipation and particularly that of internal tides on mixing in the ocean.

We aim to investigate whether internal tides impact kinetic energy dissipation. We

aim to answer the following questions;

• Do internal tides affect the distribution of kinetic energy at a fine-scale?

• How do internal tides modify kinetic energy cascade?

• Can internal tides provide a route to kinetic energy dissipation?

In light of the objective of the thesis work, we organized this manuscript as follows:

Chapter 2 provides a description and the evaluation of the North Atlantic numeri-

cal simulations used in this thesis work. In Chapter 3, we investigate the seasonal

and regional variability of fine-scale eddy structures in the North Atlantic. Chapter

4 presents the impacts of submesoscale motions on cross-scale kinetic energy ex-

changes while in chapter 5, we investigate how externally forced internal tide can

affect kinetic energy cascade at fine-scales. We conclude this thesis in Chapter 6 by

providing a summary of our scientific findings, the key differences between the two

major numerical simulations used in this thesis, and the implication of our results

for future work.
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2.1 Introduction

Realistic ocean simulations have recently been designed and implemented in an-

ticipation of the Surface Water and Ocean Topography satellite mission. These

numerical simulations are capable of resolving oceanic motions down to kilomet-

ric scale. Due to the limitation in computational cost, these high-resolution ocean

simulations have mostly been implemented for regional ocean basin. The results pre-

sented in this thesis are based on the analysis of three of such existing submesoscale

permitting simulations of the North Atlantic ocean. Namely, these simulations are

(i) the NEMO-based North Atlantic simulation with horizontal resolution of 1/60◦

(NATL60) (ii) the Hybrid Coordinate Ocean Model of the Atlantic Ocean with a

horizontal resolution of 1/50◦ (HYCOM50) and (iii) the spatially extended version

of NATL60 with/without tidal forcing thereafter referred to as eNATL60. These

numerical simulations have been designed to explicitly resolve oceanic fine-scale

motions, a class of motions that are currently less known in physical oceanography.

The key objective of this thesis is to investigate the role of fine-scale (< 100km)

motions on cross-scale kinetic exchanges on the basis of these numerical simulations.

We are equally interested in investigating the spatial and temporal variability of

ocean eddies at fine-scales. Diagnosing kinetic energy exchanges at fine-scales partly

depends on accurate estimates of velocity gradients at kilometric scale. To that

end, the focus of this chapter is not to provide a full evaluation of these numerical

simulations but rather to access the ability of these simulations to predicts the

dynamics in the North Atlantic Ocean particularly at fine-scales and we would like

to know to what extents we can trust these models in terms of their resolved;

• large-scale ocean circulation patterns,

• upper-ocean kinetic energy levels,

• and upper-ocean horizontal gradients of velocity and buoyancy.

The analysis presented in this chapter comprises of contributions from scientists that

have used these numerical simulation for different studies. It is worth noting that

eNATL60 simulation was performed recently and at the moment, we have limited

materials as regards the evaluation of this simulation with observation. Also because

NATL60 is performed in MEOM group, this model’s output is easily accessible and

therefore we have more materials on NATL60 evaluation compared to HYCOM50.

In concise, we compare the output of these simulations to observations from satellite

and in-situ measurements. We focused on evaluating the ability of these simulations

to reproduce kinetic energy levels across the North Atlantic at different spatial
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scales and also on the ability of NATL60 to predicts the statistics of (horizontal)

velocity and buoyancy gradients at fine-scales. In the next section, we provide a short

description of these numerical simulations. In section 3 we present the evaluation

of these models based on resolved meso and large scale dynamics while in section

4, we compare and contrast the statistics of horizontal gradients of NATL60 with

in-situ measurements.

2.2 Description of North Atlantic Numerical Sim-

ulations

2.2.1 NATL60

NATL60 is a NEMO-based submesoscale permitting simulation of the North Atlantic

with a horizontal resolution of 1/60◦ (NATL60). The simulation has a horizontal

grid spacing of 1.6 km at 26◦N and 0.9 km at 65◦N. The grid has been designed

so that the model explicitly simulates the scales of motions that will be observed

by SWOT altimeter. i.e the simulation can resolve oceanic motion down to about

10 km in wavelength. The initial and open boundary conditions are based on

GLORYS2v3 ocean reanalysis with a relaxation zone at the northern boundary

for sea-ice concentration and thickness. The model has 300 vertical levels with a

resolution of 1 m at the top-most layers. The atmospheric forcing is based on DFS5.2

(Dussin et al., 2018), the grid and bathymetry follow Ducousso et al. (2017). To

implicitly adapt lateral viscosity and diffusivity to flow properties, a third-order

upwind advection scheme is used for both momentum and tracers in the model

simulation. The model spin-up is for a period of six months followed by a one-year

simulation output from October 2012 to September 2013. A summary of the model

parameter is presented in Table 2.1. NATL60 simulation outputs have been used in

recent studies by Fresnay et al. (2018) and Amores et al. (2018). Figure 2.1 present

a snapshot of surface relative vorticity for September 1st, well depicted in the plot

is the ability of NATL60 to resolve both large and fine-scale oceanic motions. In

particular, we see vortices, fronts, and filaments at fine-scales.

2.2.2 eNATL60

eNATL60 is a spatially-extended version of NATL60 with the same numerical con-

figuration. eNATL60 spans the North Atlantic from about 6◦N up to the polar

circle and fully includes the Gulf of Mexico, the Mediterranean Sea, and the Black

Sea. The model is spin-up for a period of 18 months, followed by a one-year sim-
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Figure 2.1: NATL60 : snapshot of surface relative vorticity field normalized by the Coriolis

frequency on September 1st.
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ulation output from July 2009 to June 2010. eNATL60 has two identical runs (i)

eNATL60 with tidal forcing (M2, S2, N2, K1, O1) therein referred to as eN60-

WT and (ii) eNATL60 with no tidal forcing eN60-NT. The two simulations have

the same numerical configuration except for the inclusion of tidal motions in eN60-

WT. The inclusion of tides in eN60-WT run provides conversion of tidal energy

into the internal wave field through, both, flow-topography interactions and wave-

balanced motions interactions. A plot of surface relative vorticity is presented in

Figure 2.2. Like NATL60, eNATL60 resolves both mesoscale motions, submesoscale

motions, and Internal Gravity Waves. Very visible from the plot is the famous

North Atlantic Gulf stream and its separation. The tidal motions are equally vis-

ible in the English Channel and the North sea in a snapshot of the surface speed

(https://vimeo.com/300943265). A summary of the model parameter is presented

in Table 2.1.

2.2.3 HYCOM50

The Hybrid Coordinate Ocean Model of the Atlantic Ocean with a horizontal res-

olution of 1/50◦ (HYCOM50) is a simulation with a climatological forcing. The

simulation was integrated for 20 years and the last year of the simulation output

is used in this thesis work. HYCOM50 has a horizontal resolution of 2.25 km at

the equator and (∼ 1.5 km in the Gulf Stream region) and like NATL60 can resolve

oceanic motion down to 10km in wavelength. The model extends from 28◦S to 80◦N,

but in this study, we consider the outputs of HYCOM50 for exactly the same region

covered by NATL60 to have comparable results. The vertical coordinate is hybrid

and it has 32 layers. The atmospheric forcing is based on ERA-40 and the initial

and boundary conditions are based on GDEM. The horizontal viscosity operator is

a combination of Laplacian and Biharmonic. The bathymetry is based on the Naval

Research Laboratory (NRL) digital bathymetry database. The model configuration

and a detailed evaluation of the model results in the Gulf Stream region with ob-

servation are documented in Chassignet and Xu (2017). A summary of the model

parameter is presented in Table 2.1 and a snapshot of the surface relative vorticity

is presented in Figure 2.3.

Model comparison strategy

In the introduction, we established that the objective of this thesis work is to use

the above described numerical simulations to investigate fine-scale oceanic motions.

Given that our simulations differ in terms of numerical configuration and period of

spin-up, we would not be surprised to see differences in the predicted dynamics of

these simulations despite having a similar horizontal resolution. In this chapter, we

https://vimeo.com/300943265
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Figure 2.2: eNATL60 : snapshot of surface relative vorticity field normalized by the

Coriolis frequency on September 1st.
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Figure 2.3: HYCOM50 : snapshot of surface relative vorticity field normalized by the

Coriolis frequency on September. We show RV for the same region covered by NATL60

and not for the entire region of HYCOM50.
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Table 2.1: Table of model parameters for NATL60, HYCOM50 and eNATL60.

NATL60 eNATL60 HYCOM50

Domain 26.5N - 65N 9N - 65N 28S - 80N

Numerical Code Nemo v.3.6 Nemo v.3.6 HYCOM

Horizontal grid 1/60: 0.9-1.6 km 1/60: 0.9-1.6 km 1/50:1.1-2.2 km

Vertical coordinate Z partial cells Z partial cells Hybrid (Z & isopycnal)

Vertical grid 300 Levels : 1-50 m 300 Levels : 1-50 m 32 Layers

Boundary conditions GLORYS2v3 GLORYS2v3 GDEM

Atmospheric forcing DFS5.2 DFS5.2 ERA-40

Horizontal Viscosity UPS UPS Laplacian & Biharmonic

Tidal constituents − M2, S2, N2, K1, O1 −

will not discuss the results of the model comparison. Our findings on the differences

and similarity between these simulations based on the results of this thesis are

presented in each study and a summary of these findings is documented in the

concluding chapter of the thesis.

2.3 Evaluation of Resolved Large-scale Dynamics

In this section, we present a short comparison of the North Atlantic simulations with

observational datasets. We do this by analyzing, the mean dynamical topography,

the vertical profile of temperature and salinity, the root-mean-squared of sea surface

height, SSH spectra density, the vertical distribution of the zonal velocity and eddy

kinetic energy. Observation from satellite altimeter remains a major source of in-

formation about the ocean at global scale. In particular, we compare the output of

these simulations with gridded AVISO product and SARAL AltiKa satellite altime-

ter data. This comparison focuses on evaluating large and mesoscale (> 100km)

oceanic motions that are resolved in these numerical simulations. As previously

highlighted eNATL60 was available only at the end of this thesis work and a thor-

ough assessment of this dataset has not been performed yet at the time of writing

this manuscript. Nonetheless, we believe that, the dynamics resolved by eNATL60

should be similar to NATL60 given that the eNATL60 is a spatially extend version

of NATL60 with similar numerical configuration.

2.3.1 Large scale circulation and stratification

In this section, we evaluate the resolved large-scale circulation in NATL60. Large-

scale ocean circulation is driven by global density gradient that is created by surface

heat and freshwater fluxes. Large-scale ocean circulation has great impacts on tem-
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perature (θ) and salinity (S) profiles both at the surface and in the interior. Thanks

to measurements by Argo floats, our approach of assessing the representation of

large scale flows in our model is to compare the observed vertical profiles of tem-

perature and salinity in the real ocean with the prediction of the model. In Figure

2.4 and 2.5, we show the profiles of θ and S for NATL60 and EN4 datasets. These

profiles are estimated within 10◦ x 10◦ boxes across the North Atlantic Ocean. In

both plots, the black line represents observation from Argo float averaged over one

year while the red (for temperature) and blue (for salinity) shade represents the 10th

percentile, the mean and the 90th percentile that are estimated from NATL60. The

observed profiles compare well with the predictions of NATL60. This agreement is

particularly strong in the interior with a slight deviation at the surface layers within

the subpolar gyres.

Another quick way to assess the representation of the resolved large scale circulation

in our simulation is to compare the simulation output with information coming from

AVISO in terms of the mean state of the geostrophic current and the mean dynamical

topography. This analysis averaged over one year is presented in Figure 2.6. The

magnitude of the geostrophic current and the mean dynamical topography predicted

by NATL60 is identical with the observation from AVISO with the likelihood of a

stronger current around and along the Gulf stream. This information coupled with

the agreement between NATL60 and the observed temperature and salinity profiles

validates the reliability of the resolved large scale circulation in NATL60.

2.3.2 Mesoscale variability

In this section, we assess the fidelity of our models to reproduce energy levels at

different spatial scales by comparing their estimate of SSH spectral density with

SARAL-AltiKa. We present in Figure (2.7) the SSH spectral density of NATL60,

eNATL60 and SARAL/AltiKa in a region at the center of the North Atlantic gyre

(50◦W to 20◦W,30◦N to 50◦N), both in wintertime (January. February and March)

and summertime (July, August and September). The model spectra density is based

on SSH values that were extracted from the model’s hourly output following the 1D

along-track coordinates of SARAL-AltiKa. The spectra results for the simulations

and the observation show strong agreement. This agreement is robust for scales

greater than 100km because spectral result below this scale is affected by the satel-

lite instrument noise. The spectral density for eN60-NT (no tides) and NATL60

is identical across all scale both in winter and summer. As already highlighted,

eNATL60 is a spatially extended version of NATL60 and we do not expect to see

much difference between the two simulations. Also, there seems to be quite a robust

agreement between eN60-WT (with tides) and eN60-NT (no tides) simulations at

all scales in wintertime. However, of particular interest is the difference between the
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Figure 2.6: Mean surface geostrophic velocity intensity (ms−1) in AVISO (top panel) and

NATL60 (bottom panel), contours are mean absolute dynamical topography (contours

every 20cm).
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Figure 2.7: SSH wavenumber spectra for SARAL AltiKa (black line), NATL60 (green),

eNATL60-NoTides (red line) and eNATL60-WithTides (blue line) in box at the middle of

North Atlantic Gyre 50◦W to 20◦W,30◦N to 50◦N. The model spectra is estimated from

along track SSH values based on SARAL AltiKa flight coordinates. The analysis presented

in this plot was prepared by Laurent Brodeaux (Ocean-Next)

eN60-WT and eN60-NT in summertime where variance at fine-scales is of higher

magnitude in eN60-WT. We shall see in Chapter 5 that this difference is due to

enhanced internal wave activity due to internal tides in eN60-WT.

NATL60 and eNATL60 SSH spectra in Figure 2.7 is extracted using the hourly

output of SSH fields. HYCOM50 SSH values are saved in daily averages and due to

this, we could not reproduce this analysis for HYCOM50. To facilitate an accurate

comparison between NATL60 and HYCOM50 in terms of SSH spectra, we present

in Figure 2.8 a spectral density based on the 2D SSH field in a region around the

Gulf stream for HYCOM50 and NATL60. The SSH spectra from the two models

agree reasonably well. This indicates that the distribution of energy across scales in

both models is similar, except that the variance at large scale is higher in HYCOM50

compared to NATL60. More in-depth analysis of the differences between the two

simulations is provided later in this thesis work in chapter 3 and 4.
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Figure 2.8: Seas Surface Hight (SSH) wavenumber spectra density for NATL60 (thick line)

and HYCOM50 (dash line) in a region close to the Gulf Stream (70◦W to 60◦W , 30◦N
to 40◦N). This spectra is estimated using two dimensional SSH values for both model

output.
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The root-mean-square sea surface height computed from one year daily outputs of

NATL60, HYCOM50, and AVISO is presented in Figure 2.9. The AVISO SSH field

is derived from observations obtained by altimeter missions and then interpolated

onto 0.25◦ mecartor grid. In this comparison, we have used AVISO mean dynami-

cal topography dataset for October 2012 to September 2013. The SSH values from

NATL60 and HYCOM50 are not degraded and the fields shown in Figure 2.9 are

based on the models’ original resolution. The comparison between the model out-

put and AVISO data appears to be consistent in terms of geographical pattern of

energetic oceanic motions except for the differences along the Gulf stream. The

Gulf stream seems to be more energetic in HYCOM50 compared to NATL60 and

AVISO. HYCOM50 has a spin-up of 20 years and this long spin-up allows for the

full development of the Gulf stream energetics while NATL60 has a spin-up of 6

months. This difference in terms of spin-up strategy could be contributing a lot to

differences in the energetics of the two simulations. We shall better discuss this in

chapter 4.

The vertical distribution of the zonal velocity (upper panel) and eddy kinetic energy

(lower panel) along the 55◦W for both NATL60 and HYCOM50 is presented in

Figure 2.10. The 55◦W is a well-observed section with measurements taken during

the POLYMODE experiments (Richardson, 1985) and SYNOP (Bower and Hogg,

1996). The level and the pattern of the vertical zonal velocity and eddy kinetic

energy is fairly identical between the simulations and observation (Figure 2.11).

However, between the two simulations, HYCOM50 shows a stronger penetration of

eddy kinetic energy around 40◦N - 42◦N latitude. As stated above, differences in

terms of energetics between the two simulations will be discussed later in this thesis

work.

2.4 Evaluation of Resolved Fine-scale Dynamics

in NATL60

In this section, we focus specifically on evaluating the ability of NATL60 to resolve

fine-scale (< 100km) oceanic dynamics. In particular, we compare the distribution

of upper ocean velocity and buoyancy gradients with measurements from satellite

and in-situ measurements. Before going into this comparison with observation, we

would like to emphasize that NATL60 is cable of capturing the seasonality of oceanic

motions at fine-scales. Figure 2.12 reveals the emergence of strong and obvious

seasonality in the surface relative vorticity field. This seasonality is pronounced

almost everywhere in the North Atlantic and it is characterized by fine-scale motions

with larger amplitudes of vorticity in winter compared to summer. In the next

section, we will show that the statistics of the resolved relative vorticity (and the
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Figure 2.9: Standard deviation of sea surface height based on one year datasets for (a)

AVISO, (b) NATL60 and (c) HYCOM50. The SSH values for NATL60 and HYCOM50 is

not degraded.
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Figure 2.10: Vertical distribution of zonal velocity (upper panel) and eddy kinetic energy

(lower panel) along 55◦W for NATL60 and HYCOM50. The analysis presented in this

plot was prepared by Aurelie Albert (MEOM, CNRS)

Figure 2.11: Vertical distribution of the observed (left) zonal velocity (cms−1) and (right)

eddy kinetic energy (cm2s−2) along 55◦W based on current meter moorings and subsurface

floats from (Richardson, 1985)
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Figure 2.12: NATL60 : Snapshort of surface relative vorticity field normalized by the

Coriolis frequency. Upper panel : February 15 and Lower panel : Augusts 15. Strong

surface seasonality is due to the emergence of submesoscale fronts, filaments and vortices

in winter.

horizontal gradient of velocities in general) is consistent with observations from the

real ocean.

2.4.1 Upper ocean horizontal velocity gradients

Recent results from Shcherbina et al. (2013), Rocha et al. (2016) and Buckingham

et al. (2016) have used the statistics of horizontal velocity tensor as a descriptor of

the characteristics of submesoscale dynamics in the upper ocean. In this section, we

use a similar approach to access the ability of NATL60 to capture the signature of

fine-scale motions within the upper ocean. We do this by comparing the statistics

of vorticity, divergence, and strain-rate with observation taking in the open ocean

under the project called OSMOSIS. OSMOSIS (Buckingham et al., 2016) is an

acronym for Ocean Surface Mixing, Ocean Sub-mesoscale Interaction Study. It is
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Figure 2.13: Geographical location of the OSMOSIS mooring array. Image from (Buck-

ingham et al., 2016)

a research consortium formed to better understand the dynamics within the ocean

surface boundary layer. Measurements of ocean quantities within the ocean surface

boundary layer were taken in the North-east Atlantic Ocean (Figure 2.13) near (16◦

,48◦). This is a region where mean flows are weak and mesoscale eddies dominate

the kinetic energy (Painter et al., 2010).

Nine (9) moorings and two (2) gliders were deployed in a two array formation as

shown in Figure 2.14 and measurements of temperature, salinity, and horizontal

velocity were taken for a period of one year from September 2012 to September

2013. This period of data acquisition corresponds to the same period of NATL60

production. On each mooring, Acoustics Current Metres (ACM) and MicroCAT

Conductivity-Temperature-Depth (CTD) sensors were spaced 30m - 100m in the

vertical. The time sampling interval for the CTD and ACM was 10 minutes for the

outer mooring array and 5 minutes for the CTD attached to the center mooring.

This dataset has been used in recently published articles to discuss the seasonality

of submesoscale flows (Buckingham et al., 2016) and also the restratification effect

of submesoscale vertical flow in the upper ocean (Yu et al., 2019).

In this thesis work, we used measurements taken by the outer mooring array because

this array formation has a grid spacing that is consistent with the wavelength of

oceanic motion that can be effectively resolved by NATL60. Horizontal velocities

were obtained from the current meter while pressure, temperature, and salinity

were obtained from the CTD. Prior to any computation, the dataset retrieved from

these moorings were linearly interpolated in the vertical to get a well distributed

vertical profile. To compare NATL60 and OSMOSIS datasets, horizontal velocity

and potential density data were extracted from the model at the closet location to

the coordinates of OSMOSIS outer mooring array. OSMOSIS time series is down-

sampled to daily averages to facilitate accurate comparison with NATL60 daily
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Figure 2.14: OSMOSIS mooring array and its vertical sections. The mooring array includes

one central mooring (black), four inner moorings (blue) and four outer moorings (dark

yellow). Current meters are shown as green diamonds, and MicroCAT-CTDs are shown

as red squares. This image is taken from (Yu et al., 2019)

Location Northeast Atlantic

Period 09/2012 - 09/2013

Instruments Nine (9) Mooring and Two (2) gliders

Vertical levels Moorings: 50m - 500m

Measurements θ , S and uh

Table 2.2: Tabular description of OSMOSIS datasets.

outputs. A comparison of the time series of the mixed layer depth for both datasets

is presented in Figure 2.15. From the plot we can deduce that NATL60 fairly

reproduce the seasonality of mixed-layer depth as observed in the OSMOSIS region.

We compute the estimate of the horizontal velocity gradients from the five points

mooring array by using a finite difference method (see Apendix B). A histogram

of the vorticity, strain-rate, and divergence for the depth range of (60m - 180m)

for a period of 11 months (Oct 2012 to August 2013) is presented in Figure 2.16.

The distribution of the velocity gradients is fairly consistent between NATL60 and

OSMOSIS. The model reasonably reproduced the statistics of vorticity, strain, and

divergence at fine-scale as observed by the OSMOSIS outer mooring array. How-

ever, there is a likelihood of extreme divergent motions in OSMOSIS that is not

captured by the model. That NATL60 underestimates divergent motions compare

to observation isn’t that surprising because NATL60 model simulation is without

tidal forcing; one of the major sources of wave energy. This indicates that the simu-

lation of submesoscales by NATL60 is consistent with observation in this region but
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Figure 2.15: Time series of mixed layer depth for OSMOSIS and NATL60. The blue line

depicts ML depths derived from OSMOSIS glider observations, while the red line and

shaded region denote the NATL60 mean and ± standard deviation from the mean. Both

were estimated as the depth at which the potential density exceeds its value at 10 m by

0.03 kgm−3. This image is taken from Buckingham et al. (2019)

Figure 2.16: Distribution of upper ocean vorticity, strain-rate and divergence for NATL60

and HYCOM50. Depths covered : 60m - 180m.

with a weak signature of internal gravity waves.

2.4.2 Upper ocean lateral buoyancy gradients

Horizontal buoyancy gradients play a dynamical role in ocean energetic as they

represent a source of available potential energy for mixed-layer instabilities and

frontogenesis processes, that feed submesoscale motions (Capet et al., 2008e). In

this section, we compare the statistics of horizontal buoyancy gradients in NATL60

with the observation TSG in order to evaluate the statistics of buoyancy gradients

predicted by NATL60. The TSG dataset is extracted from the Global Ocean Surface

Underway Data (GOSUD), which gathers three different databases: Sea Surface

Salinity data from Voluntary Observing Ships Network (SNO-SSS), Sea Surface
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Salinity from French RESearcH Vessels (SSS-FRESH), Sea Surface Salinity from

Sailing ships (SSS-Sail).

NATL60 model has a grid size of about 2 km, which is likely to fully resolve lateral

motions at scales of 10 km. Below this cutoff, the explicit dissipation already distorts

motions and damps KE. TSG measurements are made every 15 seconds and delivered

at 5-minute averages by taking the median. This operation yields an average spatial

resolution of 2.5 km for a 20-knot cruise speed. Thus, TSG ship-track observations

are able to capture temperature and salinity gradients at 10-km scales. To ensure

that we focus only on 10-km horizontal gradients, NATL60 10-m depth outputs

are filtered using a bi-dimensional Gaussian window with a standard deviation of

σ = λ
2π

, where λ is the cutoff wavelength set to 10 km in this case. A similar

Gaussian filter is applied to ship-track TSG data to filter out smaller scales. The

Gaussian kernel g is based on the distance between the coordinates at the center

of the kernel (xj, yj) and surrounding observations (xi, yi), with a similar standard

deviation as for NATL60 outputs. The weights of the kernel are thus defined as:

gj(xi, yi) = e−
(xi−xj)2+(yi−yj)2

2σ2 . (2.1)

Only valid values are taken into account in the filtering and the kernel weights

are normalized prior to the multiplication with the data. The gradients are then

computed along-track and the median is taken over 1◦x1◦ bins to produce maps of

temperature, salinity and buoyancy gradients as shown in Figure 2.18.

The Gulf Stream pattern, associated with substantial surface tracer gradients from

the US east coast to 35 W, is remarkably similar between NATL60 and TSG obser-

vations, albeit salinity and temperature gradients are weaker in observations. More

interesting is the comparable amplitude of buoyancy gradients between NATL60 and

TSG observations over the whole basin, suggesting that the dynamical role of tem-

perature and salinity gradients is close between model and observations. However

the amplitude of the gradients tend to be slightly underestimated in TSG dataset.

This is because the ship tracks are not a priori aligned with the direction of the gra-

dients. NATL60 also exhibits a coherent pattern of larger salinity gradients in the

subtropical gyre which is not captured in TSG observations. The opposite is true

around Europe - and particularly substantial around Norway and Sweden - where

salinity gradients in TSG observations are larger than those estimated in NATL60.

Freshwater fluxes might be underestimated in NATL60 run-off leading to weaker

salinity gradients.

Overall, we find good consistency in the western side of the North Atlantic basin

between NATL60 and TSG observations in terms of buoyancy gradients. There are

also substantial differences between the center and the eastern side of the basin,
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Figure 2.17: Horizontal gradient of temperature in a 2 x 2 degree boxes for (a) NATL60

and (b) TSG dataset. The analysis presented in this plot was prepared by Guillaume

Serazin (UNSW)
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Figure 2.18: Horizontal gradient of salinity in a 2 x 2 degree boxes for (a) NATL60 and

(b) TSG dataset. The analysis presented in this plot was prepared by Guillaume Serazin

(UNSW)



2.4. Evaluation of Resolved Fine-scale Dynamics in NATL60 45

Figure 2.19: Horizontal gradient of buoyancy in a 2 x 2 degree boxes for (a) NATL60 and

(b) TSG dataset. The analysis presented in this plot was prepared by Guillaume Serazin

(UNSW)
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suggesting that NATL60 might need some improvements in those regions.

2.5 Conclusion

In this chapter, we have described the North Atlantic simulations used in this thesis

work and we have assessed the ability of NATL60 simulation to resolve fine-scale

dynamics by using satellite and in-situ measurements. From our analysis, we show

that both the NEMO and HYCOM based simulations have the ability to repro-

duce realistic basin and mesoscale circulation in the North Atlantic. The energy

levels diagnosed through SSH variance is almost similar between the simulations

and compares favorably with the observation from SARAL/AltiKa. The statis-

tics of horizontal velocity gradients at 10km scale show strong agreement between

NATL60 and OSMOSIS data although NATL60 might be underestimating extreme

divergence events because of the lack of tidal forcing. Comparison of buoyancy gra-

dients between NATL60 and TSG observation show great agreement as well with

little differences at the eastern side of the North Atlantic basin.
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3.1 Introduction

Oceanic kinetic energy is dominated by eddy motions with spatial scales ranging

from 10km to 300km. The interaction between these eddies and large scale flow is

an important factor in ocean circulation and kinetic energy exchanges between the

different scale of motions. In non-eddy resolving ocean and climate models, this

interaction is represented through parameterization scheme based on mixing length

hypothesis (which uses eddy length scale and eddy velocity). The dynamics and

distribution of eddies with scale > 100km is well known because they are easily

identified by ocean observing satellites. On the other hand, eddies with scales <

100km are relatively less known due to their size. The first objective of this thesis

work is to investigate the dynamics and distribution of oceanic eddies with scales <

100km in the North Atlantic ocean. Given that eddy kinetic energy dominates the

kinetic energy in the ocean, understanding the distribution of fine-scale eddies could

give a priori information as to how energy is distributed at fine-scale in the North

Atlantic ocean. This will provide a context for our future study on the impact of

submesoscale turbulence on oceanic kinetic energy exchanges.

The method and the result of this chapter were prepared in the form of a manuscript

and have been submitted to the Journal of Geophysical Research - Ocean with the

title: Spatial and Temporal Variability of North Atlantic Eddy Field at Scale less

than 100km. https://doi.org/10.1002/essoar.10501076.1

3.2 Spatial and Temporal Variability of North At-

lantic Eddy Field at Scale less than 100km

(Publication)

https://doi.org/10.1002/essoar.10501076.1
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Abstract

Ocean circulation is dominated by turbulent geostrophic eddy fields with typical

scales ranging from 10 km to 300 km. At mesoscales (> 50 km), the size of eddy

structures varies regionally following the Rossby radius of deformation. The variabil-

ity of the scale of smaller eddies is not well known due to the limitations in existing

numerical simulations and satellite capability. But it is well established that oceanic

flows (< 50km) generally exhibit strong seasonality. In this study, we present a basin-

scale analysis of coherent structures down to 10 km in the North Atlantic Ocean using

two submesoscale-permitting ocean models, a NEMO-based North Atlantic simula-

tion with a horizontal resolution of 1/60 (NATL60) and an HYCOM-based Atlantic

simulation with a horizontal resolution of 1/50 (HYCOM50). We investigate the

spatial and temporal variability of the scale of eddy structures with a particular fo-

cus on eddies with scales of 10 to 100 km, and examine the impact of the seasonality

of submesoscale energy on the seasonality and distribution of coherent structures

in the North Atlantic. Our results show an overall good agreement between the

two models in terms of surface wavenumber spectra and seasonal variability. The

key findings of the paper are that (i) the mean size of ocean eddies show strong

seasonality; (ii) this seasonality is associated with an increased population of sub-

mesoscale eddies (10 – 50 km) in winter; and (iii) the net release of available potential

energy associated with mixed layer instability is responsible for the emergence of the

increased population of submesoscale eddies in wintertime.
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1 Introduction

Ocean circulation combines large (> 500 km), meso (50 – 500 km) and submesoscale

(1 – 50 km) structures that result from direct forcing and energy exchanges through

nonlinear scale interactions. The ocean is a turbulent fluid and most of its energy

is concentrated in geostrophically balanced eddy fields. The coherent structures

that make up the eddy field are mostly generated by baroclinic instability in an

intensified ocean flow (Stammer, 1997) and therefore scale with the first Rossby

radius of deformation. These ubiquitous, energetic, time-dependent circulations

have their signature in all aspects of ocean activities and have, therefore, been

defined as the weather system of the ocean (Bryan, 2008; McWilliams, 2016).

Improving our knowledge of the scale of eddy structures is key to several applications

in physical oceanography. The interaction between the eddy field and large-scale flow

is one of the main drivers of ocean circulation. This interaction is presently param-

eterized in non-eddy resolving ocean and climate models and the parameterizations

used in these models are usually derived from a mixing length hypothesis based on

eddy velocity and eddy length scale to derive eddy diffusivity (Fox-Kemper et al.,

2008; Bates et al., 2014). The correlation scale of mesoscale eddies is also central

to the design of the inversion algorithm used in satellite remote sensing. For in-

stance, the optimal interpolation method currently used in calibrating AVISO prod-

ucts takes as input correlation radii based on eddy length scales (Ducet and Traon,

2001). If the typical scale of eddies varies in time and space in the ocean, then this

variability should be accounted for in ocean model parameterizations schemes and

in satellite data interpolation algorithms, hence the need to document how eddy

scale vary in space and time.

Satellite missions have revolutionized the way we see the Earth surface from space

and continue to serve as a large-scale observational platform for modern oceanog-

raphy. Satellite data are currently the major source of knowledge about oceanic

eddies,their scales and their variability. A concise review of the knowledge gained

from using satellite altimeters to study mesoscale eddies in the global ocean is pre-

sented in Fu et al. (2010). Early works include a regional study on the variability of

mesoscale eddies using Geosat by Le Traon et al. (1990), where the authors inferred

scales of eddies from the spatial autocorrelation function of observed sea surface

height (SSH) fields and recorded a high variability of mesoscale eddy fields in space

across the entire North Atlantic. More recently, the merging of altimeter products

covering a 16-year period paved the way for the automated identification, tracking,

and documentation of about 35,000 mesoscale eddies with a lifetime greater than 16

weeks (Chelton et al., 2011). This analysis confirmed that the observed eddy scales

mostly fall between the first Rossby radius of deformation Ld and the Rhines scale

Ld (Klocker and Abernathey, 2014). This is in agreement with Eden (2007) who
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found in an eddy-permitting numerical simulation of the North Atlantic that north

of 30◦N eddy scales are isotropic and proportional to Ld, while south of 30◦N the

eddies’ scales are more closely related to the Lr. The scale min(Lr,Ld) was found to

be the best predictor of eddy scale over the entire North Atlantic domain.

Studies focusing on coherent eddy structures in the ocean have mostly been limited

to structures with scales on the order of 100 km (Amores et al., 2018). This is largely

due to the non-availability of a high-resolution global oceanic dataset for the smaller

wavelength range, a consequence of the limitations of existing numerical and satellite

altimetry capability (Dufau et al., 2016). That been said, several ocean models, such

as the NEMO-based North Atlantic simulation with a horizontal resolution of 1/60◦

(NATL60) and the HYCOM-based Atlantic simulation with a horizontal resolution

of 1/50◦ (HYCOM50), were designed in preparation for the upcoming Surface Water

and Ocean Topography (SWOT) altimeter mission (Fu and Ubelmann, 2014). These

simulations now have the ability to capture explicitly ocean circulation at the basin-

scale down to 10 km and therefore provide a platform to investigate the variability

of eddy structures at scales less than 100 km.

At scale smaller than 100 km, oceanic flows are dominated by surface-intensified

energetic submesoscale motions and they include coherent vortices, fronts, and fil-

aments. Furthermore, both observations and model simulations have shown that

submesoscale motions undergo a strong seasonality with large amplitudes in win-

ter (Callies et al., 2015a; Qiu et al., 2014; Sasaki et al., 2014; Brannigan et al.,

2015; Rocha et al., 2016). The emergence in winter of submesoscale motions has

been attributed to frontogenesis, wind-induced frontal instabilities, and mixed layer

instability (Thomas, 2008; McWilliams, 2016). Mixed layer instability (which is as-

sociated with the weakening of surface stratification in winter conditions) has been

put forward as the dominant mechanism driving the emergence of submesoscales

in winter in mid-latitudes (Capet et al., 2008; Mensa et al., 2013; Qiu et al., 2014;

Sasaki et al., 2014; Callies et al., 2015b).

In this paper, the emphasis is on eddies with scales < 100 km, with a focus on coher-

ent structures within the 10–50 km scale range, hereafter referred to as submesoscale

eddies (SMEs) (Sasaki et al., 2017). Our key objective is to investigate how resolv-

ing submesoscales affects eddy motions and their variability, specifically in terms

of spatial scale and depth penetration. This paper intends to answer this question

by documenting the statistics of SMEs and their overall impact on the variability

of averaged eddy scales in the North Atlantic. This is done by first performing a

basin-scale analysis of the spatial and temporal variability of coherent structures

down to 10 km in the North Atlantic Ocean using two submesoscale resolving ocean

models, NATL60 and HYCOM50. Then, we examine the impact of the seasonality

of submesoscale energy on the distribution and depth penetration of eddy structures

in the North Atlantic.
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This paper is organized as follows: In section 2, we provide a description of the

NATL60 and HYCOM50 datasets. In section 3, we present the description of eddy

statistics. Sections 4 focuses on the spatial variability of eddy scales while section

5 presents the seasonality of eddy scales with insights on the impact of mixed layer

instability on eddy statistics. We summarize and conclude our analysis in section 6.

2 Datasets and Methodology

2.1 North Atlantic Ocean model simulations

In this study, we use numerical outputs from two submesoscale eddy-permitting

simulations of the North Atlantic: a NEMO-based North Atlantic simulation with a

horizontal resolution of 1/60◦ (NATL60) and a HYCOM-based Atlantic simulation

with a horizontal resolution of 1/50◦ (HYCOM50).

The NEMO-based NATL60 has a horizontal grid spacing that ranges from 1.6 km

at 26◦N to 0.9 km at 65◦N. The grid has been designed so that the model explic-

itly simulates the scales of motions that will be observed by the SWOT altimetric

mission. In practice, the model’s effective resolution is about 10-15 km in wave-

length. The initial and open boundary conditions are based on GLORYS2v3 ocean

reanalysis with a relaxation zone at the northern boundary for sea-ice concentration

and thickness. The model has 300 vertical levels with a resolution of 1 m at the

top-most layers. The atmospheric forcing is based on DFS5.2 (Dussin et al. (2018)).

The grid and bathymetry follow Ducousso et al. (2017). In order to implicitly adapt

lateral viscosity and diffusivity to flow properties, a third-order upwind advection

scheme is used for both momentum and tracers in the model simulation. The model

is spun-up for a period of six months, and a one-year simulation output from 2012

to 2013 is used in this study. A description of the NATL60 simulation is available

from Le Sommer et al. (2019) and the outputs have been used in recent studies by

Fresnay et al. (2018) and Amores et al. (2018).

The HYCOM-based HYCOM50 extends from 28◦S to 80◦N and has a horizontal

grid spacing ranging from 2.25 km at the equator, ∼ 1.5 km in the Gulf Stream re-

gion, and 1 km in the subpolar gyre. As for NATL60, the effective resolution is

about 10–15 km. The vertical coordinate is hybrid and consists of 32 layers. The

simulation is initialized using potential temperature and salinity from the GDEM

climatology and spun up from rest for 20 years using climatological atmospheric

forcing from ERA-40 (Uppala et al., 2005), with 3-hourly wind anomalies from the

Fleet Numerical Meteorology and Oceanography Center 3-hourly Navy Operational

Global Atmospheric Prediction System (NOGAPS) for the year 2003. The year
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Figure 1: Surface eddy kinetic energy (cm2s−2) computed from daily mean outputs of the

total velocity. (a) NATL60 and (b) HYCOM50
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2003 is considered to be a neutral year over the 1993 to present timeframe in terms

of long-term atmospheric patterns of the North Atlantic Oscillation. The last year

of the simulation is used to perform the analysis. The horizontal viscosity operator

is a combination of Laplacian and Biharmonic. The bathymetry is based on the

Naval Research Laboratory (NRL) digital bathymetry database. The model con-

figuration and a detailed evaluation of the model results in the Gulf Stream region

with observations are documented in Chassignet and Xu (2017).

Table 1: Table of model parameters for NATL60 and HYCOM50

NATL60 HYCOM50

Domain 26.5N - 65N 28 - 80N

Numerical Code Nemo v.3.6 HYCOM

Horizontal grid 1/60: 0.9-1.6 km 1/50:1.1-2.2 km

Vertical coordinate Z partial cells Hybrid (Z & isopycnal)

Vertical grid 300 Levels : 1-50 m 32 Layers

Boundary conditions GLORYS2v3 GDEM

Atmospheric forcing DFS5.2 ERA-40

Horizontal Viscosity Implicit in momentum advection Laplacian & Biharmonic

Both NATL60 and HYCOM50 resolve the first Rossby radius of deformation ev-

erywhere within the model domains and these simulations reproduce realistic eddy

statistics with levels of kinetic energy in the range of altimetric observations (Le

Sommer et al., 2019; Chassignet and Xu, 2017) (Figure 1). HYCOM50 shows a

higher eddy kinetic energy (EKE) level along and around the Gulf Stream-North

Atlantic Current path. The less energetic Gulf Stream-North Atlantic Current in

the NATL60 simulation may be due, in part, to its shorter spin-up period (6 months

versus 19 years).

A summary of the model parameters is tabulated in Table 1. In this study, we

consider the outputs of HYCOM50 for exactly the same region covered by NATL60

to have comparable results and we perform statistical analysis of the model outputs

in two dimensional 10◦× 10◦ boxes, following earlier approaches by Stammer and

Böning (1992), Uchida et al. (2017), and Chassignet and Xu (2017).

2.2 Wavenumber spectra

Wavenumber spectra provide a way to quantify the variability and energy associated

with motions of different spatial scales across different regions. In this study, spectral

analysis is performed in subdomains of 10◦× 10◦ boxes across the North Atlantic

in order to document regional variability. Prior to spectral analysis, the field of

each box is detrended in both direction and a 50% cosine taper window (turkey
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Figure 2: Seasonality of resolved vorticity field in NATL60 and HYCOM50 in Box 1
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Figure 3: One year averaged wavenumber power spectra density in a 2D 10◦ square box

(Box 1, Fig. 1) around the energetic Gulf Stream region computed from daily output of

NATL60 (thick black line) and HYCOM50 (thick dash line). (a) SSH (b) surface KE from

total velocity (c) surface relative vorticity.

windowing) is applied for tapering. a Fast Fourrier Transform (FFT) is applied to

the tapered data and a one-dimensional isotropic spectrum is obtained by averaging

over azimuthal directions. Our spectral approach is in line with Chassignet and

Xu (2017) and because we are making use of year 20 of the HYCOM50 simulation

used in Chassignet and Xu (2017), we were able to compare our SSH wavenumber

spectra estimates with the already published results for the same dataset and found

our result to be consistent as well (not shown).

Figure 3 shows the wavenumber power spectral density for SSH, surface kinetic

energy (KE), and surface relative vorticity (RV) in a region close to the Gulf Stream

(Box 1, as defined in Figure 1) for the two datasets. The wavenumber power spectra

from the two models agree well, indicating that the distribution of energy across

scales is similar in both models. The estimated slope from the SSH and KE spectra

indicates that the two models agree with quasigeostrophic dynamics, which predict

a slope of k−5 and k−3 for SSH and KE spectra, respectively. This agreement is

particularly strong for the wavelength band of 10 – 100 km. HYCOM50 shows more

variance at low wavenumbers compare to NATL60. This is consistent with the lower

EKE in NATL60 compared to HYCOM50 at these scales (Figure 1).

In Figure 4, we present the seasonality of SSH, KE, and RV wavenumber power

spectral density. At scales smaller than 100 km, the variance of SSH, KE, and RV is

of higher magnitude in winter (January, February, and March) compared to summer

(July, August, and September). Whereas, the variance associated with scales larger

than 100 km has a higher magnitude in the summer compared to winter. This

winter-to-summer contrast is more pronounced in RV wavenumber spectra and is

usually more visible in a winter-summer contrast of a RV snapshot (Figure 2).

The overall assessment shows that NATL60 and HYCOM50 agree reasonably well

with each other on the dynamics governing the ocean surface. The small mismatch
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Figure 4: Winter (JFM) (thick black line) and summer (JAS) (thick dash line) wavenumber

power spectra density in a 2D 10◦ square box (Box 1, Fig 1) around the energetic Gulf

Stream region computed from daily output of NATL60 and HYCOM50.

between the result of the models may be a function of the differences in the model

parameters and the length of their spin-up. In the next section, we focus on describ-

ing the statistics of eddy scales as seen in the two simulations.

2.3 Eddy length scale metric

A well-known approach for describing turbulent oceanic flows is to identify the

typical length scale of motion that characterizes the dynamics of the flow. This

involves computing the integral length scale of the energy-containing eddies (Qiu

et al., 2014; Moum, 1996) or the enstrophy-containing scale (Scott, 2001; Morris

and Foss, 2005) from the velocity and vorticity wavenumber spectrum, respectively.

These length scales in physical space correspond to the scale of the most energetic

eddy structures and are roughly consistent with the averaged scale of eddies that

can be identified by eddy detection algorithms (Stammer, 1997; Chelton et al., 2007,

2011).

In this paper, we measure averaged eddy scales in each of our study regions by

estimating the enstrophy-containing scale Lζ from the vorticity wavenumber power

spectra density following Scott (2001). The vorticity wavenumber spectral density is

estimated (as described in section 2.2) using surface relative vorticity computed from

the daily averaged model outputs. The enstrophy-containing scale is the enstrophy
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weighted mean scale defined in equation (1) and it represents the scale of the most

intense vortical structure in that flow. In equation (1), Z(k, l) denotes the vorticity

wavenumber power spectral density, while k and l are the zonal and meridional

wavenumber, respectively.

Lζ =

∫ ∫
Z(k, l)dkdl∫ ∫ √

k2 + l2Z(k, l)dkdl
(1)

To describe the distribution of the individual coherent eddy structures, we used

an automated eddy detection algorithm. The algorithm detects coherent eddies by

identifying closed SSH contours. A closed contour is then identified as an eddy if

it satisfies some specific criteria with regards to its amplitude, number of pixels,

the existence of at least one local extremum, etc. The successful application of

the algorithm is documented in Chelton et al. (2011). This method is hereafter

referred to as C11 and the corresponding eddy scale is referred to as Lη. We applied

C11 to daily averages of SSH in two-dimensional 10◦ boxes for a period of one

year. The implementation of the C11 algorithm in Python is available online at

https://github.com/chrisb13/eddyTracking.

3 Description of eddy statistics

In this section, we present the variability of eddy statistics across the North Atlantic

as diagnosed from the vorticity wavenumber spectra. The analysis is presented

for both winter (January, February, and March) and summer (July, August, and

September) in two regions: the Gulf Stream extension (Box 1) and the Labrador

sea (Box 11). These two boxes were selected based on the fact that Box 1 is a well-

documented high EKE region (Mensa et al., 2013) while Box 11 (a relatively low

EKE region compare to Box 1) is a region with a very deep mixed layer in winter

and energetic submesoscale activities.

In Figure 5, we show the vorticity wavenumber spectra for winter and summer in

Box 1 and Box 11. In both boxes, vorticity wavenumber spectra vary notably from

winter to summer, with the peak and enstrophy-containing scale (thick dot) of the

spectra shifting to finer scales in winter. This change is evident in both models and in

both regions. Similarly, the magnitude of the enstrophy-containing scale and spectra

density vary from one region to another. The enstrophy-containing scale in Box 1

is of higher wavelength compared to Box 11. This type of regional difference in the

spectra estimates and its weighted scale represents the spatial variability associated

with the energy of the vortical structures across the North Atlantic. Regardless

of the model or region, the winter spectra are shallower compared to the summer
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Figure 5: Surface relative vorticity wavenumber spectra for box 1 and box 11 (box defined

in Figure 1), calculated from daily averages for winter time, JFM (red line) and summer

time, JAS (blue line). Thick dot represent enstrophy-containing scale for each spectra.

(a) NATL60 Box 1 (b) HYCOM50 Box 1 (c) NATL60 Box 11 (d) HYCOM50 Box 11.
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Figure 6: Winter and summer averages of vorticity spectral coherence as a function of

depth for NATL60 and HYCOM50 in Box 1.

spectra (Figure 5), which indicates that energetic structures occupy a wider range

of scales in winter. Also in winter, eddy motions with scales around 30 km can be

as energetic as eddy motions with scales around 100 km.

In order to characterize the depth penetration of eddy structures, we estimate for

typical length scale the phase relationship between the vorticity spectral density at

the surface and in the interior down to 1000 m. This spectral correlation provides a

proxy for the depth penetration of energetic surface structures (Klein et al., 2009).

In Figure 6, we present the winter and summer averages of spectral correlation of

vorticity in Box 1 for the two simulations. In both seasons and in the two models,

we see that energetic motions with a scale larger than 100 km are strongly correlated

down to a depth of about 1000 m. On the other hand, scales smaller than 100 km

penetrate less into the water column with an observed seasonality. In fact, at these

scales, surface motions are correlated with the interior roughly down to 170 m in

winter and down to 40 m in summer. Scales of motions less than 50 km tend to

penetrate slightly deeper into the water column in NATL60. These summer and

winter depth penetration values coincide fairly with the average mixed layer depth

in the two seasons. This indicates that mixed layer instability could be a possible

modulator of the vertical structure of fine-scale eddy motions. Overall, despite the

differences in vertical resolution (300 vertical z levels in NATL60 and 36 hybrid

isopycnal layers in HYCOM50), it is worth noting that the two simulations agree

fairly well in terms of the depth penetration of eddies.
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In order to explain the seasonality of the enstrophy-containing scale in terms of the

statistics of isolated eddy structures, Figure 7 shows the distribution of eddy scales

obtained from the application of C11 to SSH fields. The histogram show eddies

with a lifetime greater than ten (10) days, in order to filter out short-lived features

wrongly identified as eddies by the algorithm. In the plot, the seasonal differences in

the distributions of the scales of eddies are more pronounced for eddies with scales

smaller than 50 km. Following our definition of submesoscales eddies (SMEs) as

eddies with scales from 10 km to 50 km, we find that the seasonality of enstrophy-

containing scale is attributed to an increased population of SMEs in winter. This

information is supported by our analysis for both models across the North Atlantic

and is, therefore, a robust signal.

The increase in the number of detected SMEs in winter corroborates the large

variance at a high wavenumber in the vorticity spectra (Figure 5). However, we

should note that the information about SME seasonality from the application of C11

highlights only the coherent structures, while the results of the spectra at a high

wavenumber might include the vorticity variance coming from fronts, filaments, and

all other active submesoscales features other than coherent vortices.

Noticeable in Figure 7 is the discrepancy in the tails of eddy scale distribution. In

particular, there are more large-scale eddies (> 50 km) in HYCOM50 compare to

NATL60. This difference, observed in most of the boxes, may be due to the difference

in the choices of the sub-grid closures used in the models and/or, as discussed later,

evidence of a stronger inverse energy cascade in HYCOM50.

4 Spatial variability of eddy scale

The spatial variability of the eddy scale is documented by computing the annual

mean of the enstrophy-containing scale (Lζ) computed from daily relative vorticity

spectra for each box. The values of the mean length scale in each of the boxes for

the two models is presented in Figure 8. The averaged scale varies spatially with a

factor of about 2 as you move from the south to north in the North Atlantic. This

spatial variability is consistent in the two models, but HYCOM50 has an annual

mean scale slightly larger than NATL60 in almost all the boxes. This is consistent

with what is observed in Figure 7 where typical eddy scales are larger in HYCOM50

than in NATL60.

To better understand how the eddy scales compare with the Rossby radius of defor-

mation, we present in Figure 9 a plot of the annual mean of Lζ versus the estimate

of the first Rossby radius of deformation. The deformation radius is estimated us-

ing the GLORYS2v3 datasets following the approach highlighted in Chelton et al.
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Figure 7: Histogram of eddy scale from eddy detection algorithm for box 1 and box 11

(defined in Figure 1), for winter time, JFM (red line) and summer time, JAS (blue line).

(a) NATL60, Box 1 (b) HYCOM50, Box 1 (c) NATL60, Box 11 (d) HYCOM50, Box 11.
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Figure 8: Map of one year averaged eddy scale (Lζ) in all the 2D 10◦ boxes for NATL60

and HYCOM50

(1998). The spatial variability of the annually averaged scale is consistent with

the estimate of the Rossby radius of deformation (Ld) with latitude (Figure 9). The

length scales from HYCOM50 show less variability and this is evident in the slope of

the fitted line plot (grey dash line). The slope for the annual averaged eddy scale is

steeper for NATL60 (0.70) and shallower for HYCOM50 (0.27). The averaged eddy

scale in winter is roughly consistent in the two models, while the difference in the

annual mean of eddy scale between the two models is largely due to the difference

in the scale of eddies in summer.

Following Klocker et al. (2016), we present a regime diagram for eddies identified

from the application of C11 to SSH fields. The regime diagram presents a plot of

eddy scale (Lη) normalised by the Rossby radius of deformation against a nonlin-

earity parameter (r = U/c) computed as the ratio of the root mean squared eddy

velocity (U) and the Rossby wave phase speed (c = βL2
d). The eddy velocity used

in this study is the characteristic flow speed (U) within the eddy which is defined

as the average geostrophic speed within the eddy interior (Chelton et al., 2007).

U = (g/f)(A/L), where g is the gravitational acceleration, f is the Coriolis param-

eter, A is the eddy amplitude and L is the effective radius of the eddy.

The regime diagram introduces frontiers along which the dynamical behavior of

eddies is expected to change significantly (Klocker et al., 2016). Two different

boundaries are considered in this study: (i) rotation dominated (L/Ld < 1) to

stratification dominated (L/Ld > 1) and (ii) weak to strong Rossby elasticity which

is represented by the Rhines scale (Lr). Figure 10 presents a kernel density plot
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Figure 9: Eddy length scale Lζ versus first baroclinic Rossby radius Ld. (a) NATL60 and

(b) HYCOM50. Dash line represents estimated regression line and each circle corresponds

to a averaged eddy scale in a box.

and describes the relative position of eddies (as a function of eddy nonlinearity)

to Ld and Lr. The first baroclinic Rossby radius of deformation defines the length

scale of variability over which the internal vortex stretching is more important than

relative vorticity (Chelton et al., 1998), while the Rhines scale can be thought of as

a threshold of scale at which the inverse cascade of energy is arrested. The Rhines

scale can also be interpreted as the scale where the dispersion of Rossby wave begins

to dominate the ocean signal (Rhines, 1975).

Most of the detected eddies are nonlinear and the spread of eddy nonlinearity in-

creases with latitude. The eddy scales lie between Ld and Lr which is consistent

with the findings of Eden (2007), but the scales mostly follow the Ld for NATL60

(Figure 10a) while most scales in HYCOM50 are much bigger than Ld (Figure 10b).

This difference follows from the argument presented in section 4 with regard to the

abundance of eddies with larger scales in HYCOM50. Also, eddies in the 55oN lati-

tude band (grey shading) are more nonlinear in NATL60 compared to HYCOM50.

One explanation could be that 55oN latitude eddies in HYCOM50 are more elastic

due to their bigger size (w.r.t to NATL60) and thus have smaller speed magnitude

and hence smaller nonlinearity compared to NATL60. This could be interpreted as

evidence of a stronger inverse cascade in HYCOM50, possibly because of the longer

spin-up phase. The result from NATL60 is similar to that of Eden (2007) where

the author argued that north of the 30◦N, the eddy length scale should follow the

Rossby radius of deformation and not the Rhines scale.
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Figure 10: Kernel density plot of eddy nonlinearity (r) versus normalised eddy scale Lη/Ld
for eddies identified by the automated eddy detection algorithm. The nonlinearity pa-

rameter (r) is defined as r = U/c following Chelton et al 2007. Colour blue, red and

grey represents eddies in the 35◦, 45◦, and 55◦ latitudinal band. This regime diagram is

adapted from Klocker et al. (2016). This plot combines data corresponding to 4680 and

3755 detected eddy structures for NATL60 and HYCOM50 respectively.
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Figure 11: Time series of the enstrophy containing scale Lζ for Box 1 (NATL60 dataset).

The enstrophy containing scale is the enstrophy weighted mean scale defined in equation

(1)

5 Temporal variability of eddy scale

In section 3 we established that scales of eddies undergo seasonal variability in the

North Atlantic and that this seasonality is as a result of an increased population of

submesoscale eddies (10 – 50 km) in winter. In Figure 11, we show the time series

of Lζ in Box 1, which illustrates the seasonality of eddy scale as captured by the

enstrophy-containing scale defined in Equation (1). This seasonality is pronounced

everywhere in the North Atlantic, as shown in Figure 12: The averaged eddy scale

of Lζ is about a factor of two larger in summer compared to winter. This reduction

in scale from summer to winter is expected because there are more SMEs in winter

and that results to smaller averaged eddy scales in winter.

So far we have shown that the average eddy scale varies in time across the entire

North Atlantic following the seasonality of the number of SMEs. In what follows,

we study the mechanism responsible for the seasonanlity of eddies from a dynami-

cal point of view. Submesoscales are more active in wintertime (Thompson et al.,

2016). Their emergence is believed to be driven by mechanisms such as frontogenesis,

wind-induced frontal instabilities, and mixed layer instability among other processes

(Thomas, 2008; McWilliams, 2016). Recent studies have identified baroclinic mixed

layer instability (a specific frontal instability occurring in regions with a deep mixed

layer and intense horizontal buoyancy gradients) as the dominant mechanism driving

the emergence of submesoscale turbulence at mid-latitudes (Boccaletti et al., 2007;

Fox-Kemper et al., 2008; Capet et al., 2008; Mensa et al., 2013; Sasaki et al., 2017)).

Also, Uchida et al. (2017), using a mesoscale permitting ocean model on a global

scale, surmised that mesoscale seasonality is a direct result of an inverse cascade
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Figure 12: Map of averaged eddy length scale (Lζ) in winter (JFM) and summer (JAS).

(a) NATL60 and (b) HYCOM50
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Figure 13: Time series of available potential energy, PK (blue line) and mixed layer depth,

MLD (black line) for NATL60

of submesoscale energy generation by mixed layer instability. However, how the

seasonality of submesoscales translates to the seasonality of SMEs is still unclear.

This section aims to show that the increased population of SMEs in winter is di-

rectly linked to the advent of submesoscale turbulence in winter. Frontal structures

that generate submesoscale eddies (Gula et al., 2016) exhibit high values of relative

vorticity (Held et al., 1995). We intend to show the relationship between relative

vorticity and submesoscale eddy statistics following a correlation of the later with

mixed layer depth as shown in Sasaki et al. (2017).

In order to establish the relationship between the seasonality of submesoscale energy

and eddy scale seasonality, we quantify the conversion of KE through baroclinic

mixed layer instability following Boccaletti et al. (2007), Fox-Kemper et al. (2008),

and Capet et al. (2008)). This conversion rate of available potential energy (APE)

to eddy kinetic energy is defined as

PK =
1

h

∫ −h

0

〈w′
b
′〉xy dz. (2)

h, w, and b represent the mixed layer depth, vertical velocity, buoyancy gradient,

respectively. The prime sign [′] indicates the small-scale component of the flow

obtained by applying Lanczos windowing (with a cut frequency of 0.0125 and window

size of 80 grid points) method to the two-dimensional fields of vertical velocity (w)

and buoyancy (b).

Figure 13 presents the time series of mixed-layer depth (MLD) (blue line) and PK

(black line) in box 1 and box 11 for NATL60. These two quantities are correlated

with similar peaks in wintertime. This is consistent with previously published results

of Boccaletti et al. (2007) and Sasaki et al. (2014) and this underscores mixed layer

instability as the major driver for the emergence of submesoscale in winter.

We show similar time series for MLD (blue line), RV (red line) and daily counts
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Figure 14: Time series of mixed layer depth, MLD (thin black line), root mean square of

the surface relative vorticity RV (red line) and the number of submesoscale eddies (thick

black line) in Box 1 for NATL60 and HYCOM50 datasets. nSMEs (daily number of Lη
with a scale between 10km and 50 km)
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Figure 15: Time series of mixed layer depth, MLD (thin black line), root mean square of

the surface relative vorticity RV (red line) and the number of submesoscale eddies (thick

black line) in Box 11 for NATL60 and HYCOM50 datasets. nSMEs (daily number of Lη
with a scale between 10km and 50 km)
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of SMEs (thick black line) in Figure 14 and 15 for Box 1 and Box 11, respectively.

Indeed, Figure 14a,b and 15a,b highlight how mixed layer instability drives the

evolution of relative vorticity with a peak value in winter. An abrupt decay of

MLD is observed in late winter that is not observed for RV. A similar result was

recorded by Sasaki et al. (2017) and the authors attributed this difference in MLD

and RV (starting in late winter) to the evolution of RV in two-dimensional turbulent

flow in free decay after an abrupt decay of MLD. This implies that the dynamics

immediately after wintertime is characterized by an inverse cascade of energy. This

inverse cascade is evident in the subsequent decline in the number of submesoscale

eddies in late winter (Figures 14c,d and 15c,d). It is, however, worth mentioning

that SMEs and RV show a strong correlation with a similar peak in winter.

Figure 16 presents the vertical profile of eddy buoyancy fluxes 〈w′
b
′〉 in March and

September for Box 1 and Box 11. We see seasonality in the profiles and this is

associated with changes in mixed layer depth. The magnitude of 〈w′
b
′〉 in March is

higher compared to September for the two simulations. A higher 〈w′
b
′〉 is responsible

for feeding the growth and emergence of submesoscales eddies in winter. This growth

is, however, region dependent. The winter-summer change in APE in Box 1 is about

a factor of 3 higher than Box 11 for both NATL60 and HYCOM50.

6 Conclusion

The spatial and temporal variability of the typical size of oceanic eddies smaller than

100 km is investigated in this study using two submesoscale-permitting ocean model

simulations of the North Atlantic; NATL60 and HYCOM50. The scale of oceanic

eddies shows a strong temporal and spatial variability as reflected in the enstrophy-

containing scale which is estimated from the vorticity wavenumber spectra. Our

analysis reveals that the increased population of submesoscale eddies (10 km - 50

km), driven by mixed layer instability in wintertime, is responsible for the seasonality

of eddy scale in the North Atlantic. The winter/summer difference in the averaged

eddy scale is about a factor of two in favor of summer. The map of averaged eddy

scale reveals that the spatial variability of eddy length scale is consistent with the

latitudinal dependence of the first Rossby radius of deformation and that most of the

eddies 30◦N of the North Atlantic are nonlinear in nature with a wider nonlinearity

spread in the 55◦N latitudinal bands. In terms of eddy penetration, we found that at

scales less than 100 km the vertical structures of energetic eddy motion (diagnosed

from the spectral coherence of vorticity) vary seasonally as a function of the mixed

layer depth. In fact, the depth penetration of eddies with scales < 50 km is confined

to the mixed layer. This further highlights how mixed layer instability modulates

fine-scale dynamics.
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Figure 16: March (blue line) and September (red line) profile of w
′
b
′

in Box 1 and Box 11

for NATL60 (thick line) and HYCOM50 (dashed line). Thick dot represent mixed layer

depth.

While the focus of this study is to investigate eddy scale variability, we also ex-

amined the ability of NATL60 and HYCOM50 as a virtual observation scene for

the SWOT mission. Following the analysis presented in this study and despite

the model differences in terms of numerics, parameterization scheme, and vertical

resolution, the statistics of eddy scale and the vertical structure of eddy motions

captured by the two models are comparable. We can reasonably conclude that both

NATL60 and HYCOM50 have the capability to resolve and characterize fine-scale

dynamics down to 15 km scales in the North Atlantic, and that the fine-scale dy-

namics predicted by the models are a robust feature of this class of submesoscale

permitting ocean models. This is key for the SWOT mission because information

about eddy scale variability from these simulations (with respect to their horizontal

resolution) is very useful for the calibration of inversion techniques for estimating

two-dimensional maps of SSH from SWOT data. This knowledge of eddy scale vari-

ability will also be useful for improving eddy parameterization schemes of ocean

models. However, there are concerns as to the size of the eddies identified in the

models. The eddies are relatively smaller in NATL60 than in HYCOM50, and this

is possibly a consequence of NATL60 short spin-up pahse (6 months) and smaller

inverse energy cascade. In light of that, a longer run of NATL60 is recommended

for future study to allow enough time for the simulated eddies to equilibrate.
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4.1 Introduction

Much is known about the ocean kinetic energy at scales > 200km where 2D balanced

motions dominate and also at scales less than 1km where unbalanced motions in 3D

turbulence are at play. However, a wide gap remains in between these two spatial

regimes and which is where fine-scale motion resides. 3D turbulence is characterized

by a forward cascade of energy, but we do not know exactly the spatial range occu-

pied by this forward cascade neither are we really sure of the mechanisms that flux

energy downscale towards dissipation. Recent evidence suggests that submesoscale

motions could provide a pathway to energy dissipation. Having said that, it is not

clear at the moment if this forward cascade by submesoscales extends towards the

interior of the ocean. In the previous chapter, we showed that submesoscales un-

dergo strong seasonality that is associated with mixed-layer instability and that this

seasonality affects the distribution and the average spatial scale of oceanic eddies.

This is true both in the North Atlantic mid-latitudes and in the subpolar gyre. The

aim of this chapter is to investigate how submesoscale and its associated seasonality

affect cross-scale kinetic energy exchanges both at the surface and the interior of

the ocean.

The method and the result of this chapter were prepared in the form of a manuscript

and have been submitted to the Journal of Advances in Modeling Earth Systems with

the title: Diagnosing cross-scale kinetic energy exchanges from two submesoscale

permitting ocean models. https://doi.org/10.1002/essoar.10501077.1

4.2 Diagnosing cross-scale kinetic energy exchanges

from two submesoscale permitting ocean mod-

els (Publication)

https://doi.org/10.1002/essoar.10501077.1
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Abstract

The upper-ocean at fine-scales (<100 km) contributes significantly to energy ex-

changes and dissipation. However, our knowledge of fine-scale motions (in terms

of kinetic energy density and transfer) in the real ocean is limited due to lack of

sufficient observational datasets at these scales. Kilometric resolving ocean models

have been developed in anticipation for the Surface Water and Ocean Topography

(SWOT) satellite mission. This mission would provide unprecedented global cov-

erage of energetic oceanic flows down to 10 km. In this study, we investigate the

distribution and exchange of energy across different scales down to 10 km based on

two state-of-the-art realistic North Atlantic basin simulations with horizontal resolu-

tion of ∼ 1.5 km. The results show that ageostrophic motions have direct impacts on

cross-scale kinetic energy exchanges and that these exchanges undergo both regional

and seasonal variability. In particular, this seasonality which is more pronounced at

fine-scale is characterized by a significant amount of direct KE cascade in winter-

time. In general, we found the forward cascade to be confined to the mixed layer

depth while the inverse cascade extends down to about 700m in the interior.

1 Introduction

The world ocean is a turbulent fluid with a very broad range of energetic scales, rang-

ing from large ∼O(1000km) to centimeter scales. The ocean kinetic energy is mostly
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concentrated in quasi-geostrophic mesoscale eddy field with scales ∼O(100 km)

(Stammer and Böning, 1992). Due to non-linear interactions among different length

scales, energy can be transferred both from large to small (forward, or direct cascade)

and from small to large scale (inverse cascade). Understanding the distribution of

kinetic energy and variance across scale in oceanic flows is, therefore, key to our

knowledge of ocean circulation (Ferrari and Wunsch, 2009).

To estimate the variance and energy associated with eddy motions at different scales,

velocity wavenumber spectral density has proven to be very efficient (Le Traon et al.,

1990, 2008; Fu et al., 2010; Dufau et al., 2016; Uchida et al., 2017). However, spec-

tral density does not indicate the direction of kinetic energy exchanges between

the different scales. A better knowledge of cross-scale energy exchanges is gained

by looking at the KE cascade due to nonlinearity. This important feature in tur-

bulence study dates back to the work of Charney (1971) and Salmon (1980) on

geostrophic turbulence. For a stratified rotating quasi-two-dimensional fluid mo-

tion, classical geostrophic turbulence theory predicts a direct cascade of energy if

the flow is depth-dependent (baroclinic) but an inverse cascade of energy if the

flow is depth-independent (barotropic). In particular, for the ocean with a sur-

face intensified stratification, energy from higher baroclinic modes concentrates in

the first mode and then undergoes a direct cascade towards the deformation scale

(Rd) (Smith and Vallis, 2002). At Rd, baroclinic energy is converted to barotropic

mode via barotropization. At this point, most of the energy near the deformation

scale cascade towards larger scale while a small fraction undergoes direct cascade to

dissipation (see Figure 1).

This prediction of geostrophic turbulence theory has been observed both in the

virtual ocean and the real ocean but with a little discrepancy. Based on altimeter

data, Scott and Wang (2005) showed that the (Pacific) ocean is dominated by an

inverse cascade of energy at scales larger than Rd. So, if one agrees that the altimeter

data is reflecting the first baroclinic mode (Smith and Vallis, 2002), then this is in

contrast with geostrophic turbulence theory which predicts a forward cascade for

a baroclinic flow. From this discrepancy, two questions arise. (i) is the inverse

cascade seen at the surface due to the barotropic mode? or (ii) is it possible that

the baroclinic modes experience an inverse cascade? Scott and Arbic (2007) using

a 2-layer model simulation showed that the inverse cascade at the ocean surface

is mostly baroclinic with a small contribution from the barotropic mode. More

recent literature Eden (2007); Sasaki et al. (2017); Tulloch et al. (2011); Aluie et al.

(2017); Brüggemann and Eden (2015); Kjellsson and Zanna (2017); Khatri et al.

(2018) have also shown that inverse cascade of energy mostly dominates the surface

ocean at scales larger than Rd.

Indeed we know much about the inverse-cascade-dominated-ocean-surface for scales

larger than the deformation radius. What about at fine-scales where ocean struc-
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Figure 1: Schematics of kinetic energy spectral flux. Blue : inverse cascade of energy, Red

: forward cascade of energy.

tures are very energetic and are highly modulated seasonally? In fact, at scales

< 100 km, oceanic motion includes energetic submesoscale motions (< 50km). Re-

sults from numerical simulation and observation have shown an injection of energy

in wintertime at submesocales (Sasaki et al., 2017). This energy injection is partly

responsible for both meso and submesoscale seasonality (Uchida et al., 2017; Capet

et al., 2008a; Sasaki et al., 2014) and has been argued to be associated with mixed

layer instability (Callies et al., 2015; Qiu et al., 2014; Sasaki et al., 2014; Brannigan

et al., 2015; Rocha et al., 2016). This seasonality is responsible for the shallowing

of KE spectra slope from -3 in summer to -2 in winter. This is usually interpreted

as a shift from a turbulence dominated by interior gradients (Charney regime) to

a regime dominated by surface driven turbulence (Philips regime) (Sasaki et al.,

2014). Apart from the work of Sasaki et al. (2017, 2014), we are unaware of any

investigation on the implication of submesoscale seasonality on cross-scale energy

exchanges at basin scale. There are also a few other open questions with regard

to energy transfer at fine-scales that are worth investigating, e.g., (i) what are the

range of scales that corresponds to forward and inverse cascade of energy, (ii) the

depth penetration of this cascade and in particular (iii) how much energy is cascaded

in the forward direction at fine scale.

Submesoscale resolving ocean models have been developed in anticipation for the

Surface Water and Ocean Topography (SWOT) satellite mission (Fu et al., 2010).

At a global scale, satellite altimeter remains the major source of information on

the distribution of energy across scales. However, at the moment, the resolution

capability of our existing ocean-observing satellite altimeter stands at roughly 70 km
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(Dufau et al., 2016). This limitation undermines our ability to investigate energy

exchanges at scales < 100 km. To solve this challenge, SWOT is been implemented to

provide 10 times higher resolution than conventional altimeters and numerical ocean

models have been designed to prepare for SWOT. These state-of-the-art numerical

experiments with high resolution capability thereby provide an opportunity to study

cross-scale energy exchanges down to kilometric scales while keeping in mind the

aforementioned open questions.

To this end, the aim of this study is to investigate the distribution and transfer

of energy across different scales by using outputs of two sub-mesoscale permitting

ocean models of the North Atlantic. In particular, we focus on the seasonality

and depth penetration of cross-scale KE variance and transfer with an emphasis

on scales < 100 km. This paper is organized as follows, section 2 presents a short

description of the two numerical simulations. In section 3, we examine the kinetic

energy wavenumber spectral density and slope. The KE cascade, the seasonality

and the influence of ageostrophic flow on energy cascade in the North Atlantic are

discussed in section 4. Finally, in section 5 we summarize the findings and discuss

the relevance of this work to the anticipated SWOT mission.

2 North Atlantic Numerical Simulations

In this study, we use numerical outputs from two submesoscale eddy-permitting

simulations of the North Atlantic: a NEMO-based simulation with a horizontal

resolution of 1/60◦ (NATL60) and a HYCOM-based (HYbrid Coordinate Ocean

Model) simulation with a horizontal resolution of 1/50◦ (HYCOM50).

The NEMO-based NATL60 has a horizontal grid spacing ranging from 1.6 km at

26◦N to 0.9 km at 65◦N. The initial and open boundary conditions are based on

the GLORYS2v3 ocean reanalysis with a relaxation zone at the northern boundary

for sea-ice concentration and thickness. The model has 300 vertical levels with a

resolution of 1 m at the top-most layers. The atmospheric forcing is based on DFS5.2

Dussin et al. (2018) and the grid and bathymetry follows Ducousso et al. (2017).

In order to implicitly adapt lateral viscosity and diffusivity to flow properties, a

third-order upwind advection scheme is used for both momentum and tracers in

the model simulation. The model is spin-up for a period of six months, and a

one-year simulation outputs from the year 2012 to 2013 are used in this study. A

description of the NATL60 simulation is available from Le Sommer et al. (2019)

and the outputs have been used in the recent studies by Fresnay et al. (2018) and

Amores et al. (2018).

The HYCOM-based HYCOM50 extends from 28◦S to 80◦N and has a horizontal
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Figure 2: Left panel : snapshot of surface speed on march 1st for NATL60 and HYCOM50.

Right panel : eddy kinetic energy computed from daily output of surface velocity field.

grid spacing ranging from 2.25 km at the equator, ∼ 1.5 km in the Gulf Stream re-

gion, and 1 km in the subpolar gyre. As for NATL60, the effective resolution is

about 10–15 km. The vertical coordinate is hybrid and consists of 32 layers. The

simulation is initialized using potential temperature and salinity from the GDEM

climatology and spun up from rest for 20 years using climatological atmospheric

forcing from ERA-40 (Uppala et al., 2005), with 3-hourly wind anomalies from the

Fleet Numerical Meteorology and Oceanography Center 3-hourly Navy Operational

Global Atmospheric Prediction System (NOGAPS) for the year 2003. The year

2003 is considered to be a neutral year over the 1993 to present timeframe in terms

of long-term atmospheric patterns of the North Atlantic Oscillation. The last year

of the simulation is used to perform the analysis. The horizontal viscosity operator

is a combination of Laplacian and Biharmonic. The bathymetry is based on the

Naval Research Laboratory (NRL) digital bathymetry database. The model con-

figuration and a detailed evaluation of the model results in the Gulf Stream region

with observations are documented in Chassignet and Xu (2017).

Both NATL60 and HYCOM50 resolve the first Rossby radius of deformation ev-

erywhere within the model domains and these simulations reproduce realistic eddy

statistics with levels of kinetic energy in the range of altimetric observations (Le

Sommer et al., 2019; Chassignet and Xu, 2017) (Figure 2). HYCOM50 shows a

higher eddy kinetic energy (EKE) level along and around the Gulf Stream-North
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Atlantic Current path. The less energetic Gulf Stream-North Atlantic Current in

the NATL60 simulation may be due, in part, to its shorter spin-up period (6 months

versus 19 years). A summary of the model parameters is tabulated in Table 1.

Table 1: Table of model parameters for NATL60 and HYCOM50

NATL60 HYCOM50

Domain 26.5N - 65N 28 - 80N

Numerical Code Nemo v.3.6 HYCOM

Horizontal grid 1/60: 0.9-1.6 km 1/50:1.1-2.2 km

Vertical coordinate Z partial cells Hybrid (Z & isopycnal)

Vertical grid 300 Levels : 1-50 m 32 Layers

Boundary conditions GLORYS2v3 GDEM

Atmospheric forcing DFS5.2 ERA-40

Horizontal Viscosity Implicit in momentum advection Laplacian & Biharmonic

Since the NATL60 covers a smaller domain than HYCOM50, we consider the HY-

COM50 outputs for exactly the same region covered by NATL60 to have comparable

results and we perform spectral analysis in sub-domains of 14 10◦× 10◦ boxes across

the North Atlantic. We focus specifically on quantifying kinetic energy wavenum-

ber spectral density (Eq. 1) and flux (Eq. 2) using horizontal velocity fields. In

equation (1) and equation (2),ˆrefers to Fourier transform, * represents the complex

conjugate, Re refers to the real part of a complex number and k =
√
k2x + k2y. Be-

fore performing spectral analysis the 2D velocity field from each subdomain (box)

is detrended in both direction and a 50% cosine taper window (turkey windowing)

is applied for tapering. An FFT is applied to the tapered data and a 1D isotropic

spectrum is obtained by averaging in the azimuthal direction. Our spectra method

is consistent with procedures previously used in Stammer and Böning (1992); Sasaki

and Klein (2012); and Chassignet and Xu (2017).

E(k) =

∫ k+δk

k

[û∗ · û] (k)dk (1)

Π(k) =

∫ ks

k

−Re
[
û∗ ·

(
̂u · ∇Hu

)]
(k)dk (2)
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Figure 3: One year average of kinetic energy spectral density (computed from daily outputs

for Box 8) as a function of depth for (a) NATL60 and (b) HYCOM50.

3 Distribution of Kinetic Energy

3.1 Spectral Density

We present in this section the analysis of the kinetic energy wavenumber spectra as

a proxy to quantify the energy across different scales of motions. In Figure 3 we

present the KE spectral density as a function of depth for the two simulations (Box

8). The peak of the spectral density is around the mesoscale motions (100–500 km)

and, as expected, the energy associated with large scale motion are relatively higher

compared to that of fine-scales. The peak is preserved with depth, but the variance

at all scales decreases with depth. The decrease in the spectral variance with depth

relative to the surface is more pronounced at the fine scales when compared to large

scales. This indicates that the fine-scale structures (relative to the surface) are less

energetic in the interior of the ocean.

The comparison between the two simulations is better illustrated in Figure 5a where
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Figure 4: Winter and summer averages of kinetic energy spectral density for Box 8 com-

puted from horizontal total velocity as a function of depth for (a) NATL60 and (b) HY-

COM50.

we present the annual, winter and summer depth-averages of KE spectra density for

the two simulations in the same region (Box 8). The spectral density from the two

models agrees well and both are consistent with the QG prediction with a spectral

shape of k−3. There is a strong seasonality in the variance associated with fine-scale

motions (Figure 4 and 5b). The increase in spectral density observed in wintertime

at high wavenumbers underscores the energetic nature of fine-scale structures in

wintertime. From the KE density plot, we also see that HYCOM50 is more energetic

than NATL60 both at the surface and also in the interior.

The disparity between the energy level of the two models is not the main focus of this

paper. Having said that, we propose a few reasons why the two model could differ in

terms of energetics. Firstly, the eddy structures in NATL60 are not fully developed

due to the short spin-up (6 months for NATL60 versus 20 years for HYCOM50).

The first 2 years of the HYCOM50 simulation show a clear increase of total kinetic

energy level; see Figure 2 in Chassignet and Xu (2017). Furthermore, as recently

documented in Ajayi et al. (2019), the typical eddy scales are smaller in NATL60

(than in HYCOM50) and this could be a direct consequence of the shorter spin-up

length. Secondly, the question did arise as to whether the coarser vertical resolution

in HYCOM50 (32 hybrid vertical layers versus 300 z-levels in NATL60) could lead

to a stronger inverse cascade and hence a higher energy level because of an under-

resolved stratification and the depth dependence of flows. However, a comparison of

the vorticity spectral coherence with respect to depth shows that the two simulations
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Figure 5: Kinetic energy spectra density for Box 8 (averaged over 1000m depth) computed

from daily output of horizontal total velocity for NATL60 (thick line) and HYCOM50

(dash line). (a) one year mean (b) winter (blue line) and summer (red line) averages.

are essentially identical in terms of the depth penetration of energetic eddy structures

(Ajayi et al., 2019). Furthermore, in section 4, a comparison of the KE spectral flux

at depths for the two simulations will show that HYCOM50 upscale energy flux

is not surfaced intensified and that having only 32 isopycnal vertical levels is not

detrimental to the representation of the dynamics in the ocean interior. Thirdly,

the choice of sub-grid parameterization is different between the two simulations and

could possibly have a strong effect on how energy is dissipated between them.

3.2 Spectral Slope

Horizontal wavenumber spectral density generally exhibits power-law behavior, where

the exponent is interpreted in terms of the dynamical processes governing the

eddy energy transfer. Existing theoretical frameworks predict (for horizontal ve-

locity) a spectral slope of -3 and -5/3 for Quasigeostrophic (QG) and surface quasi-

geostrophic (SQG) turbulence respectively. A slope of -2 is also well known for a

front dominated flow (Fu and Ferrari, 2008). Over the years, many research works

have tried to establish the accuracy of these predictions by using outputs of realis-

tic ocean models (Sasaki and Klein, 2012; Chassignet and Xu, 2017; Uchida et al.,

2017) and also recently within context of the real ocean by using altimeter dataset

(Le Traon et al., 1990; Dufau et al., 2016). Their results have argued for the non-

existence of a universal wavenumber spectrum (Le Traon et al., 2008) following

observed regional variability.

A quick way to estimate the wavenumber spectral power law is to compute the 1D

wavenumber spectra then estimate a slope from this spectra by fitting a line to the
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Figure 6: Average KE wavenumber spectral and slope for box 1 in the month of March

for three different selected wavenumber range. The wavelengths range are represented by

dashed lines with the color red, blue and black for 10-100km, 10-250km and 70 – 250km

respectively.
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spectral density curve within a selected wavenumber range. This method is fast and

easy to implement and provides a way to investigate regional variability of ocean

energetics both at the basin and global scale. For studies focused on mesoscale

energetics using satellite datasets and model outputs, this wavenumber range is

mostly within the error limits of the altimeter (∼ 70 km) with an upper bound of

250–300 km. One drawback of this approach is that it does not account for the

changes in the scale of average energetic eddy structures with latitude. Scales of

motions that are mesoscales in the polar regions are classified as sub-mesoscales in

the tropics.

A number of recent studies have tried to propose different approaches to estimate

wavenumber spectral power law as a way to correctly characterize the spectral sig-

nature. Vergara et al. (2019) estimated spectra slope for mesoscale motions by com-

puting the slope between the peak of the spectra and the minimum of the Rossby

radius and the Rhines scale following Eden (2007). A similar approach was presented

in Sasaki and Klein (2012), where the authors estimated spectral slope between a

fixed wavelength of 30 km (at the lower bound) and the scale that corresponds to

the peak of the KE wavenumber spectra.

In order to show how sensitive the estimated slopes are to the selected wavelength

range, we present in Figure 6 the average KE wavenumber spectra and slope for

box 1 in the month of March for three different selected wavenumber ranges. The

wavelengths are represented by dashed lines with the color red, blue and black for

10–100 km, 10–250 km and 70–250 km respectively. The estimated slopes for these

three different wavelength range have different values, therefore raising the question

as to which slope is most representative of the dynamics of this region. We repeat

this analysis for all the boxes and present the map in Figure 7. The mismatch

is particularly pronounced at the sub-polar region, where the scales of the eddy

structures are smaller. The 70–250 km wavelength range is a typical wavelength for

estimating spectral slope for satellite datasets because 70 km roughly corresponds

to the wavelength where the satellite data becomes noisy. The spectral slope in this

range is fairly consistent with the already published work of Dufau et al. (2016) and

Chassignet and Xu (2017).

To avoid the sensitivity of the estimated spectral slope to an a-priori selected wave-

length range, we introduce an approach that takes into account the dynamics of the

regions and the resolving capability of the model by estimating the spectral slope

(Figure 8) between the energy-containing scale (Kjellsson and Zanna, 2017) and the

effective resolution of the model (Soufflet et al., 2016). The energy-containing scale

(which represents the scale of the most energetic eddy structure) is estimated from

the kinetic energy wavenumber spectra using equation (3) while the effective reso-

lution (a function of the model grid-size) is taken as 5 × the model grid size and

this is roughly equally to 10 km for both models. This approach takes into account
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Figure 7: Map of spectral slope estimated from three different wavelength range. Colour

red, blue and black represent 10 - 100km , 10 - 250km and 70 - 250km respectively
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Figure 8: A schematic to illustrate the proposed dynamical approach to estimate spectral

slope. λe is the energy-containing scale (which represents the scale of the most energetic

eddy structure) and it is estimated from the kinetic energy wavenumber spectra using

equation (3) while Er is the effective resolution (a function of the model grid-size) and is

taken as 5 × the model grid size. Er is roughly equally to 10 km for both NATL60 and

HYCOM50.
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the scale of the energetic eddy structures within the flow region and also takes into

account the geographical variability of this scale, and therefore provides a way to

infer dynamical properties of oceanic motions in different regions.

λe =

∫ ∫
E(kx, ky)dkxdky∫ ∫ √

k2x + k2yE(kx, ky)dkxdky
(3)

We apply this technique to the output of both simulations and we present the esti-

mated spectral slope and the energy-containing scale (integral scale) for all the boxes

in the North Atlantic (Figure 9). The estimated integral scale from the wavenumber

spectra represents the averaged scale of energetic motions in the selected region. On

one hand, this scale varies regional and fairly follows the variability of the Rossby

radius of deformation with latitude, with high values in the south and relatively low

values in the north. On the other, the estimated slope across the basin is almost

uniform and follows the prediction of QG with a slope value ∼ k−3. This consistency

with the QG prediction is observed in both model outputs and also holds in the well

known high energetic Gulf stream (box 1) and the low energetic OSMOSIS (box 10)

regions. This result suggests that the North Atlantic Ocean is well described by QG

dynamics.

4 Kinetic Energy Cascade

In this section, we present and discuss the exchange of energy due to non-linearity

across different scales of motion. This exchange is estimated from the horizontal

velocity fields using equation (2). A positive flux represents a direct cascade of

energy while a negative value represents an inverse cascade of energy. The novelty

of the estimated spectral flux presented in this study is partly based on the ability of

the models to reasonably resolve the cross-scale energy exchanges at scales <100 km.

We show in Figure 10, the result of the KE spectra flux computed using one year

daily outputs of surface velocity fields. For simplicity, we show plots for box 3, 8 and

11 representing latitudes of 35N, 45N, and 55N respectively. In all the boxes and in

both model outputs, the spectral flux is dominated by an inverse cascade of energy

at large scales (between 25-50km and 500km) and a forward cascade of energy below

25-50 km. Depending on the region, part of the submesoscale range of 0 to 50km

(as defined by Sasaki et al. (2017)) falls to the left of the zero-crossing (where the

flux changes sign). This implies that a significant part of submesoscales motions are

involved in fluxing energy to large scales via an inverse cascade of energy, and this,

in a way indicates how submesoscales flow impact meso and large scales circulations

via energy exchanges.
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Figure 9: Blue colour : spectral slope estimated between the model effective resolution

(Ef ) and the integral scale (λe). Black colour : energy containing scale estimated from

the kinetic energy wavenumber spectral density
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Figure 10: One year average of kinetic energy spectral flux computed from the daily output

of horizontal total velocities. NATL60 (upper panel) and HYCOM50 (lower panel)

The scale at which the inverse cascade is most intense coincides with the energy-

containing scale (dashed line in Figure 10) estimated from the kinetic energy spec-

trum. This signifies that the strength of the inverse cascade is maximum at the scale

of the most energetic eddies. Just like the energy-containing scale, the scale of the

most intense inverse cascade also varies with latitude with relatively smaller values

in the sub-polar regions.

Figure 11 presents the KE spectral flux for Box 8 as a function depth. The overall

shape of the flux is preserved and the scale at which the inverse cascade is maximum

is also consistent with depth. However, the strength of inverse cascade decreases

with depth and the direct cascade at high wavenumbers is confined mostly to the

surface. We saw in section 1, that fine-scale structures are less energetic at depth, a

consequence of that is the absence of a direct cascade of energy (at high wavenumber)

at depth. The depth averaged flux for the two simulations is presented in Figure

14a.

In section 3.1, the question was raised as to whether HYCOM50’s higher KE when

compared to NATL60 is a consequence of HYCOM50’s coarser vertical resolution

which could lead to a surface intensified inverse cascade and hence more energetic

surface eddies. However, in Figure 11, we can see that both at the surface and at

all depth levels, the estimated inverse and direct cascade is stronger in HYCOM50

than in NATL60. This clearly indicates that HYCOM50 upscale energy flux is not

surfaced intensified and we can conclude that the disparity between the two model in

terms of energy levels is most likely due to differences in the length of the spin-up and
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Figure 11: One year average of kinetic energy spectral flux for Box 8 computed from

horizontal total velocity as a function of depth for (a) NATL60 and (b) HYCOM50. The

dashed line (λe) is the energy containing scale estimated for the kinetic energy wavenumber

spectra.
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that having only 32 isopycnal vertical levels is not detrimental to the representation

of the dynamics in the ocean interior.

4.1 Seasonality of energy cascade

In this section, we present the seasonality of the kinetic energy spectral flux by

comparing winter (JFM) and summer (JAS) averages. Figure 12 shows the winter

cascade in blue and the summer cascade in red. There are two notable differences

between the seasons. First, there is a shift in the zero crossings to higher wavenum-

bers in winter. As previously highlighted in the preceding section, a zero-crossing at

the very high wavenumbers partly indicates how much of submesoscales motions are

involved in feeding large scales motions via an inverse cascade of energy. So, a shift

to higher wavenumbers in wintertime signifies that smaller-scale structures are in-

volved in fluxing energy to larger scales. Second, there is a stronger forward cascade

within submesoscale wavenumber range towards dissipation in winter. Recent stud-

ies have shown that submesoscales motions are more energetic in wintertime (Sasaki

et al., 2017; Rocha et al., 2016; Brannigan et al., 2015; Capet et al., 2008b) and their

emergence is forced by mechanisms such as frontogenesis, wind-induced frontal in-

stabilities, mixed layer instability among many others (Thomas, 2008; McWilliams,

2016). A possible explanation for this seasonality is that energetic submesoscale

motions inject energy at small scales and part of this energy feeds larger scale mo-

tion via inverse cascade. This seasonality highlights how submesoscales motions

modulate the redistribution of energy between scales of motions. Hence, the need

for climate (ocean) models with submesoscale resolving capability. The seasonal

differences that we see at the surface extend to the interior as well (Figure 13). The

forward cascade at high wavenumbers in winter is confined within the mixed-layer

depth and this corroborates what we expect, because we know that submesoscales

emerging from mixed layer instability are confined to the mixed layer depth. The

mean over all the depth levels is presented in Figure 14b.

It is noteworthy that the integral scale and scale of the maximum inverse cascade

also undergo seasonality. There is a shift in the scale to high wavenumber from

winter to summer. This can be interpreted as a reduction in the averaged size of

energetic eddies structures in winter and this is consistent with the findings of Ajayi

et al. (2019).

4.2 Impact of ageostrophic flows on KE flux

We have discussed so far the KE spectral flux computed using the daily output

of total horizontal velocities. As mentioned earlier, NATL60 and HYCOM50 are
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Figure 12: Winter (blue line) and summer (red line) average of kinetic energy spectral

flux computed from daily output of horizontal total velocities. Dash lines represents the

energy containing scale. NATL60 (upper panel) and HYCOM50 (lower panel)

Figure 13: Winter and summer averages of kinetic energy spectral flux for Box 8 computed

from horizontal total velocity as a function of depth for (a) NATL60 and (b) HYCOM50.

Black dash line represents the average mixed layer depth.
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Figure 14: Kinetic energy spectra flux (averaged over 1000m depth) for Box 8 computed

from daily output of horizontal total velocity for NATL60 (thick line) and HYCOM50

(dash line). (a) one year mean (b) winter (blue line) and summer (red line) averages.

submesoscale permitting model simulations that have been created to simulate the

scales of motions that we expect SWOT to see from space. SWOT like every other

satellite mission will provide the measurement of sea surface heights from which

velocities (based on geostrophic approximations) are inferred. The world ocean is

predominantly dominated by geostrophically balanced motions at meso and large

scale, and the inferred geostrophic velocities at this scale mostly reflect the abso-

lute velocity of these large scales motions. However, geostrophy is less accurate for

fine-scale motions and this questions our ability to trust satellite altimeter to re-

solve effectively the energetics of fine-scale motions in terms of energy redistribution

within the submesoscales range (<50 km). SWOT will provide information down to

15km and we are curious to see if the geostrophically inferred surface velocity would

capture the true energetics at scales less than 50 km where geostrophy is likely to

fail.

In Figure 15, we present the spectral flux from total velocity and geostrophic velocity

for three regions (same as for the previous sections). The strength of the energy

cascade differs between the flux computed from the total velocity and that of the

geostrophic velocity. This difference is consistent in all the three boxes and in the

two models. In particular, at the very high wavenumbers, the strength of the forward

cascade is underestimated in the flux computed from the geostrophic velocity. A

possible reason for this mismatch at smaller scales could be explained by the findings

of Brüggemann and Eden (2015) that showed that ageostrophic flows at fine scales

are a good catalyst for energy cascade towards dissipation. Despite the differences

in terms of flux magnitude, the overall shape of the flux is consistent for the two

forms of spectral flux. In fact, the scale of the maximum inverse cascade is the same

irrespective of the type of velocity fields.
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Figure 15: Kinetic energy spectral flux computed from total velocity (black line) versus

spectral flux computed from geostrophic velocity (green line). NATL60 (upper panel) and

HYCOM50 (lower panel)

5 Discussion and Summary

Kinetic energy wavenumber spectra density, slope, and flux are estimated in this

study. The analysis presented has shown that the North Atlantic ocean follows the

framework of quasi-geostrophy dynamic with a KE spectral shape of ∼ k−3 almost

everywhere. Owing to the ability of our kilometric ocean models (NATL60 and

HYCOM50) to reasonably resolve fine-scale structures down to 10km, kinetic energy

spectral flux computed from daily outputs of horizontal total velocities revealed an

overall net inverse cascade of energy with a significant direct cascade of energy at

high wavenumbers. The cascade as a function of depth reveal that the forward

cascade at high wavenumber is confined to the mixed layer depth while the inverse

cascade dominates the water column down to 700m. We showed that the maximum

inverse cascade occurs at a scale that coincides with the energy-containing scale

estimated from the kinetic energy wavenumber spectra.

The results presented in this study are based on the analysis of two kilometric sim-

ulations outputs with similar horizontal grid space but different numerics, sub-grid

parametrization and vertical resolution. In particular, NATL60 has 300 z levels

while HYCOM50 has 32 hybrid layers. Despite these differences, the two simula-

tions agree well on the overall dynamics of the North Atlantic. Having said that,

HYCOM50 show stronger energy level compared to NATL60 both at the surface

and in the interior. We found the estimated cascade in HYCOM50 to be of higher

magnitude compared to NATL60 for both direct and inverse cascade. The difference
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in energetics between the two models is possibly due to the difference in the length

of the spin-up or the subgrid scale parameterization choices. Initially, we thought

that HYCOM50 having just 32 hybrid layers in the vertical could lead to a more

surface intensified energy cascade in HYCOM50 than in NATL60. But this is not

the case, because across all scales and at depth, HYCOM50 seems to show stronger

energetics compared to NATL60.

NATL60 and HYCOM50 are designed particularly to serve as an observational

dataset for the much-anticipated SWOT mission. So what is the implication of

our results for the upcoming fine-scale resolving satellite mission SWOT? From

SWOT we will able get surface geostrophic velocity as usual hence we can compute

cross-scale energy transfer. Our results show that not accounting for ageostrophic

fine-scale motions underestimates the forward cascade of energy.
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5.1 Introduction

Submesoscale balanced motions and unbalanced internal gravity waves are the two

major classes of motions that dominates oceanic fine-scale motions. In the previous

chapter, we show that kinetic energy flux at scale < 50km undergo forward cascade

of energy. This forward flux is particularly strong in wintertime when submesoscale

turbulence is active, suggesting that submesoscale motions can provide a route to

kinetic energy dissipation. The result of the kinetic energy cascade presented in

chapter 4 is based on daily averages of horizontal velocity fields. Daily averaging the

model outputs suppresses the ageostrophic and super-inertial motions therefore not

accounting for the effect of higher frequency motions in the estimate of the spectral

flux. This statement is made obvious in Fig. 5.1 where we compare the kinetic energy

spectral flux estimated form daily averaged and hourly snapshots of velocities. This

plot highlights that using daily averages underestimate the magnitude of the kinetic

energy forward cascade at high wavenumbers in wintertime. However, this does

not change the results presented in Chapter 4 because spectral flux estimated from

daily averaged velocity fields permits to isolate the impact of submesoscale motions

on kinetic energy exchanges, which was the aim of that chapter. Following this

results and other literature on the role of unbalanced high-frequency motions on the

direct cascade of energy to dissipative scale, we investigate in this study, the role

of high-frequency waves motions (in particular externally forced internal tides) on

cross-scale kinetic energy exchanges.

The results of this chapter are been prepared in form of a manuscript to be submitted

to the Journal of Geophysical Research Ocean with the title: On the modulation of

kinetic energy transfer by externally forced internal tides.

5.2 On the modulation of kinetic energy transfer

by externally forced internal tides (Publica-

tion)
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Figure 5.1: Kinetic energy spectral flux computed from daily averages and hourly snapshot

of horizontal velocity outputs of NATL60 in box at the middle of North Atlantic Gyre

50◦W to 20◦W,30◦N to 50◦N. (a) JFM : Janaury, February and March (b) JAS : July,

August and September
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Abstract

The question of how kinetic energy (KE) is dissipated in the ocean remains a key

question in physical oceanography. Recent literature suggests that quasi-balanced

submesoscale motions and internal gravity waves (IGWs) can play an active role in

fluxing kinetic energy towards dissipative scales. The process and mechanisms by

which these classes of motions may provide a route to dissipation remain as open

questions. In this study, we investigate the impact of internal tides generated by

tidal motions on cross-scale kinetic energy exchanges at mid-latitude. Our analysis

is based on the output of two NEMO based sub-mesoscale permitting ocean model

simulations of the North Atlantic ocean (with/without tidal forcing). Our results

show that resolving both submesoscales and IGWs yields a strong forward cascade

toward dissipative scales. But we find that different mechanisms are controlling this

forward cascade depending on the season. In wintertime, energetic submesoscales

are the key driver for the forward cascade of KE while in summertime IGWs are

responsible for the forward cascade. We found that, in both seasons, the forward

cascade at high wavenumbers extends vertically over a significant fraction of the

upper ocean.
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1 Introduction

The kinetic energy of ocean circulation is mostly concentrated in motions close

to geostrophic balance, with frequencies smaller than the Coriolis frequency (f)

and spatial scales larger than the first Rossby deformation radius (Rd). These

balanced motions (BMs) are largely energized through baroclinic instability which

extracts energy from large scale stratification. Balanced motions include large-scale

motions (>300 km), mesoscale motions (50-300) and submesoscale balanced motions

(<50km) McWilliams (2016). Balanced motions are characterized by an inverse

cascade of energy (Scott and Wang, 2005; Scott and Arbic, 2007; Eden, 2007; Aluie

et al., 2017), so they do not provide a route to dissipation by themselves. Therefore,

energy has to be transferred from balanced motions to high-frequency unbalanced

motion for dissipation to occur.

A particular class of unbalanced motions are fast propagating internal gravity waves

(IGWs) with frequencies equal to or larger than f and spatial scale ranging from

O(10m) to O(100km). IGWs include wind-induced near-inertial waves with a fre-

quency near the Coriolis frequency and internal tides (generated by large scale

barotropic tidal flow over topographic features) with diurnal and semidiurnal fre-

quencies. Near-inertial waves are stronger in winter than in summer because they

are driven by surface winds (D’Asaro, 1985) while internal tides are likely to be

stronger in summer time.

In concise form, to equilibrate the well known inverse cascade of energy, the ocean

requires ageostrophic processes to extract energy from balanced motions. Mecha-

nisms that might effect a forward transfer of energy from balanced motions down

to dissipate scale includes but are not limited to (i) bottom boundary-layer tur-

bulence (Wunsch and Ferrari, 2004), (ii) generation of lee waves by mesoscale ed-

dies interacting with topography (Nikurashin and Ferrari, 2010; Nikurashin et al.,

2013), (iii) generation of internal waves by upper-ocean frontal instabilities (Dan-

ioux et al., 2012; Shakespeare and Taylor, 2014) and (iv) direct cascade of energy by

energetic submesoscales motions (Capet et al., 2008b,a; Ferrari and Wunsch, 2009;

McWilliams, 2016). In summary, at fine scale, there two classes of motions that

can provide efficient transfer of energy to dissipative scale; submesoscale motions

and internal gravity waves. In particular, kinetic energy forward cascade due to

IGWs can be classified into two mechanisms; (i) stimulated generation of forward

cascade of kinetic energy by near-inertial waves from balanced flows (Gertz and

Straub, 2009; Rocha et al., 2018) and (ii) spontaneous generation of near-inertial

waves from balanced flows (Nagai et al., 2015; Shakespeare and Hogg, 2017). In

stimulated generation, near-inertial waves are first introduced by external forcing

(e.g. wind) at the inertial frequency and then grow by extracting energy from the

balanced flow (Barkan et al., 2017; Thomas, 2017; Gertz and Straub, 2009) while
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spontaneous generation is the emission of waves by unbalanced, large Rossby number

flow at density fronts without external forcing. These waves then radiate vertically

downwards into the interior and amplify by extracting energy from deep balanced

flow (Shakespeare and Hogg, 2017). Spontaneous generation is localized at sharp

submesoscale fronts and is not very efficient at small Rossby numbers (Danioux

et al., 2012; Nagai et al., 2015; Shakespeare and Hogg, 2017). On the other hand,

stimulated generation is efficient at small Rossby number provided that the waves

are forced externally.

Recent works have highlighted that these two classes of motions; submesoscale mo-

tions and internal gravity waves are out of phase seasonally (Rocha et al., 2016).

Submesoscales motions are more stronger than IGWs in wintertime. The emergence

of submesoscales is due to winter favored mechanisms such as mixed layer instability,

wind-induced frontal instability among other processes (Callies et al., 2015b; Qiu

et al., 2014; Sasaki et al., 2014; Brannigan et al., 2015; McWilliams, 2016). On the

other hand, the kinetic energy associated with internal gravity waves shows stronger

amplitude in summertime. This is due the intensification of vertical normal modes

and shallow mixed layer (Callies et al., 2015a; Rocha et al., 2016). Having said that,

due to high-frequency winds and tidal motions, energy extraction via IGWs seems to

be a highly probably means of (balanced motions) kinetic energy sinks. Most of the

previous study has focused on the impact of wind-generated near-inertial waves on

energy dissipation (see Rocha et al. (2018) for summary). Whereas little is known

as to the role of internal tides on kinetic energy exchanges. Although we know that

internal tides contributes to the building up of internal gravity waves continuum

(Garret-Munk spectra) and that their energy eventually contributes to dyapycnal

mixing in the ocean interior. But weather they could be playing a significant role

in down-scale transfer of kinetic energy is yet to be fully explored.

In this study, we focus on investigating the role of IGWs on cross-scale kinetic

energy exchanges in a regime with active submesoscale motions and externally forced

internal tides. We show that externally forced IGWs enhances KE dissipation in

summertime by catalyzing the transfer of energy from balanced motion to dissipative

scale. We do this by using a twin submesoscale resolving numerical simulations

(with/without tides) of the North Atlantic Ocean with a horizontal resolution of

1/60◦. The only difference between the two simulations is the inclusion of tidal

forcing. This permit to investigate how IGWs (particularly internal tides) affect

kinetic energy exchanges in the presence of active submesoscales motions.

This paper is organized as follows, in the next section, we describe the numerical

simulations. In section three (3), we present the seasonality of balanced motions and

internal gravity waves characterized by the kinetic energy frequency-wavenumber

spectral density. The contribution of balanced motions and internal gravity waves

to the kinetic energy transfer is presented in section four (4). We discuss the impacts

5.2. On the modulation of kinetic energy transfer by externally forced internal
tides (Publication) 102



Figure 1: Snapshot of surface speed of eN60-WT (with tidal forcing) on the 1st of March.

The Big box is the domain of interest and the small box corresponds to the region where

we compute frequency-wavennumber spectra.

of this observed seasonality on the kinetic energy spectral flux and we identify two

different mechanisms that support a direct cascade of energy in a dynamical regime

with/without tidal motions.

2 North Atlantic Ocean Simulation

In this study, we use numerical outputs from a NEMO-based submesoscale eddy-

permitting simulations of the North Atlantic with horizontal resolution of 1/60◦

(eNATL60). eNATL60 is a spatially-extended version of NATL60 (Le Sommer et al.,

2019). The simulation spans the North Atlantic ocean from about 6◦N up to the

polar circle. This simulation has a horizontal grid spacing ranging from 1.6 km at 6◦N

to 0.9 km at 65◦N. The model has 300 vertical levels with a resolution of 1 m at the

top-most layers to better resolve a realistic surface boundary layer. In practice, the

model effective resolution is about 10-15 km in wavelength, the same as the resolution

of the anticipated Surface Water and Ocean Topography (SWOT) altimetry mission

(Fu and Ubelmann, 2014). The initial and open boundary conditions are based on
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GLORYS2v3 ocean reanalysis with a relaxation zone at the northern boundary for

sea-ice concentration and thickness. The atmospheric forcing is based on ERA-

Interim (ECMWF), the grid and bathymetry follow (Ducousso et al., 2017). To

implicitly adapt lateral viscosity and diffusivity to flow properties, a third-order

upwind advection scheme is used for both momentum and tracers in the simulation.

The model is spin-up for a period of 18 months, and a one-year simulation output

from July 2009 to June 2010 is used in this study. eNATL60 has two identical runs (i)

eNATL60 with tidal forcing herein referred to as eN60-WT and (ii) eNATL60 with

no tidal forcing eN60-NT. The two simulations have perfectly the same configuration

except for the inclusion of tidal motions in eN60-WT. In the rest of this article, we

use eNATL60 to refer to the two simulations while individual runs are addressed as

eN60-WT (with tides) or eN60-NT (no tides). The inclusion of tidal forcing in eN60-

WT run provides the conversion of tidal energy into the internal wave field through,

both, flow-topography interactions and wave-balanced motions interactions (Arbic

et al., 2008). Consequently, the comparison between the two simulations allows

diagnosing the impacts of the internal tides on cross-scale energy transfer in the

North Atlantic.

To investigate cross-scale energy exchanges between the different scales of motions,

we estimate kinetic energy spectral density in frequency-wavenumber space as a

proxy to understand the energetic nature of balanced/unbalanced motions in regimes

with/without tidal motions. Also, we estimate the rate at which nonlinear mecha-

nisms exchange energy across temporal and spatial scales in the two scenarios. In

what follows, our analysis of KE density and transfer is based on hourly output of

horizontal total velocity field and is computed using the following equations;

∂K̂E

∂t
= TKE + û∗ ·OT (1)

K̂E =
1

2
û∗ · û (2)

TKE = −û∗ · [û · ∇u] (3)

Equation (1) to equation (3) is derived from the Fourier transform of momentum

equation multiplied by horizonatal velocity field (Scott and Wang, 2005; Capet et al.,

2008b; Müller et al., 2015). In the momentum equation (eq. 1), KE and TKE
represents the kinetic energy density and kinetic energy transfer respectively while

OT stands for ”Other Terms”. [̂ ] refers to the Fourier transform and * represents

the complex conjugate. Before performing spectral analysis the 2D time series were

detrended and windowed in space and time. The procedure performed in this study
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Figure 2: Comparison of SSH wavenumber spectra between eNATL60 and SARAL Alika

satellite.

is consistent with standard procedures previously used in Rocha et al. (2016),Müller

et al. (2015) and Torres et al. (2018).

We presents in figure 1, the snapshot of surface speed in eN60-WT. The simulation

resolves well to a reasonable extent mesoscale motions, submesoscale motions, and

IGWs. Very visible from the plot is the famous North Atlantic Gulf stream and its

separation. The tidal motions are equally visible in the English Channel and the

North sea. To assess the fidelity of the model to reproduce energy level at different

temporal and spatial scales, we compare the spectral density obtained from the Sea

Surface Height (SSH) of SARAL/AltiKa satellite altimeter with that of eNATL60

both in winter and summer. For this comparison, we used SSH values in a region

centered at the middle of the North Atlantic (70◦W to 60◦W, 30◦N to 40◦N, Figure

1). This comparison of SSH spectral density is presented in Figure 2 and the SSH

variance of the model output compares well with the satellite dataset for scales >

100km. The difference at scales < 100k is due to the satellite instrument noise level.

Also, there seems to be quite a robust agreement between the two runs of eNATL60

simulations in wintertime. However, of particular interest is the difference between
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Figure 3: (a) One year average of kinetic energy wavenumber spectral density computed

from hourly outputs of eN60-NT (no tides) and eN60-WT (with tides)

the runs in summertime where variance at fine-scales are of higher magnitude in

eN60-WT compared to eN60-NT.

A similar analysis of the kinetic energy spectral density in the same region (Fig-

ure 3), show that the variance associated with fine-scale motions smaller than

100km is higher in the eN60-WT compared to eN60-NT. So what are the mech-

anism/dynamics at fine-scales in eN60-WT that could be responsible for this higher

variance? A possible answer to this is that the inclusion of tidal motion in eN60-WT

simulation is responsible for enhanced wave activity and this is why we see higher

variance at fine scales in the SSH and KE spectra density plot. To qualitative

investigate this, we separate the flow into its rotational and divergent part which

represents the balanced and the unbalanced wave motions respectively. Figure (4)

presents the spectral density for these two components. The spectral of the rota-

tional part for the two runs are almost indistinguishable and this indicates that both

simulations are identical in terms of the resolved geostrophically balanced motions.

However, the spectral of the divergence part of the kinetic energy is very different

between the two simulations. This difference is obvious at scales less than 500km

and indeed, the divergent motions are more energetic in eN60-WT by a factor of 2
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Figure 4: (a) Helmholtz decomposition of kinetic energy into rotational (ζ) and divergent

(δ) spectral components. thick line (eN60-NT) and dashed lines (eN60-WT)

with two interesting peaks. We can conclude from this that the higher variance in

eN60-WT at fine-scales compared to eN60-NT is primarily due to stronger divergent

wave motions in eN60-WT and this is caused by the inclusion of tidal forcing in this

simulation.

3 Seasonality of BMs and IGWs

In this section, we present the different classes of motions and their seasonality

on the basis of wavenumber-frequency decomposition. This diagnostic will help

to better understand how the difference in wave activity between the two simula-

tions affects the spectral signature of oceanic motions across different temporal and

spatial scales. For simplicity, we would refer to frequency-wavenumber spectra as

ω-k spectral. Following Torres et al. (2018), we begin by presenting a schematics

(Figure 5) showing the different observable dynamical regimes in the ocean as a

function of their temporal and spatial scale. These classes of motions starting with

low frequency, small wavenumber motions to high-frequency, high wavenumber mo-
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Figure 5: A schematic of the observable dynamical regimes with different classes of

motions in the ocean. These classes of motions starting with low frequency, small

wavenumber motions to high frequency frequency, high wavenumber motions are Rossby

waves(RW),Mesoscale balanced motions (MBM) ,Submesoscale balanced motions (SBM),

Unbalanced submesoscale motions (USM) and Internal gravity waves (IGW)
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Figure 6: Kinetic energy frequency-wavenumber spectral computed from hourly outputs

of eN60-NT (no tides) and eN60-WT (with tides) for winter (JFM) and summer (JAS)

time.

tions are Rossby waves(RW), Mesoscale balanced motions (MBM), Submesoscale

balanced motions (SBM), Unbalanced submesoscale motions (USM) and Internal

gravity waves (IGW). In this study, we focus more on understanding how IGWs and

BMs (in the presence of tidal motions) affect cross-scale kinetic energy transfer. Due

to computational cost of this diagnostic tool, we decide to perform the ω-k spectra

analysis in a 5◦ x 5◦ (−40◦ to −35◦, 40◦ to 45◦) box located inside the previous large

box (Figure 1).

We show in Figure (6), the winter and summer averages of kinetic energy ω-k spectra

for the two runs. In the Figure, the upper panel corresponds to eN60-NT and

the lower panel for eN60-WT. From these plots, we recover fairly the classes of

motions described previously in Figure (5). The winter-summer contrast clearly

shows a strong seasonality of submesoscale balanced motions and internal gravity

waves. In wintertime, for eN60-WT (simulation with tidal forcing), energy is mostly
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concentrated in BMs, near-inertial waves and in the dispersion curve of IGWs while

in summertime, energy is mostly concentrated in the mesoscale BMs, near-inertial

waves and internal tides. In summary, the variance associated with submesoscale

BMs is stronger in winter while that of IGWs is stronger in summer. This out of

phase seasonality of submesoscale BMs and IGWs is consistent with the findings

of Rocha et al. (2016) and Torres et al. (2018). IGWs are stronger in summer due

to shallow mixed layer depth and the intensification of vertical normal modes while

submesoscale BMs are stronger in winter because they are driven by winter favored

mechanism such as frontogenesis, wind-induced frontal instabilities and mixed layer

instability among other processes (Callies et al., 2015b; Qiu et al., 2014; Sasaki et al.,

2014; Brannigan et al., 2015; McWilliams, 2016).

Similarly, eN60-NT resolve fairly the same classes of motion as eN60-WT except

that IGWs are less energetic in this simulation. In fact, we do not resolve internal

tides in eN60-NT with the obvious reason that is connected to the absence of tidal

forcing in this simulation. In wintertime, energy is mostly concentrated in BMs,

near-inertial waves and dispersion curve of IGWs. This is consistent with winter

dynamics in eN60-WT. In summertime, energy is concentrated in mesoscale bal-

anced motions and near-inertial waves. Unlike eN60-WT, the seasonality observed

in eN60-NT is associated with stronger submesoscale BMs and IGWs in winter. We

see in Figure (6) that the seasonality of IGWs is reversed in eN60-NT (simulation

without tidal forcing). How can this be? we know that the classical paradigm for the

generation of IGW continuum is that winds produce near-inertial waves, barotropic

tidal flow over topographic features creates internal tides and the energy in the dis-

persion curve are due to nonlinear interactions. Both simulations are forced with

realistic high-frequency winds with 3-hourly outputs. These winds are stronger in

winter, hence a well resolved near-inertial wave and IGWs dispersion curves in win-

ter. The dynamics in summertime is different between the two runs. For eN60-WT

simulation, internal tides generated by tidal motions are amplified by shallow mixed

layer in summertime and nonlinearity produce energy in IGWs dispersion curve. For

eN60-NT, the mechanism for generating waves in summertime are relatively weak;

no tidal forcing and weaker winds, hence a relatively weak wave motions in summer.

The KE spectra integrated over all wavenumbers for the two runs are presented in

Figure 7. In summertime the variance at high frequencies is higher in eN60-WT

compared to eN60-NT. This is due to the amplification of internal gravity waves by

tidal motions. eN60-WT spectra approximately follows the estimated Garrett-Munk

spectra in summertime. Clearly visible in eN60-WT spectra are the peaks at inertia

frequency and the M2 tidal frequency. We only recover the peak at inertia frequency

in eN60-NT. To a large extent, we now understand the dynamics responsible for the

differences in kinetic energy density that we see in the two simulations. In the

following sections, we shall discuss how the different classes of motions redistribute
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Figure 7: Kinetic energy spectral density integrated over all wavenumbers for eN60-NT (no

tides) and eN60-WT (with tides). The two grey dash line represents the inertia frequency

and the M2 tidal frequency. The dashed black line represents the estimate of the Garrent

Monk spectra computed with reference values of total energy of the internal wavefield and

stratification set to E0 = 6.3e−5m2s−2 and N0 = 5.2e−3s−1, respectively. (a) Winter

(JFM) and (b) Summer (JAS).

energy in different dynamical regimes

4 Modulation KE forward flux by IGWs

In this section, we are going to discuss the impact of resolving submesoscale and

internal tides on the direction of kinetic energy cascade. We do this in spectral

space by estimating the net energy passing through each individual wavenumbers.

The spectral flux is obtained by integrating the energy transfer (equation 3) from a

particular wavenumber k to k0 (the wavenumber corresponding to the box size).

We present in Figure 8, the annual mean of the spectral flux for the two simulations.

The overall shape of the flux is consistent in the two simulations with a net inverse

cascade at a scale larger than 50km and a net forward cascade at a scale smaller

than 50km. The magnitude of the forward cascade at high wavenumbers in eN60-

WT is higher compared to eN60-NT. Given that the difference between the two

simulations is the inclusion of tidal forcing in eN60-WT, it is interesting to see that

the enhanced wave activity by tidal forcing has an impact on the magnitude of

kinetic energy cascade. We understand from previous section that this enhanced

wave activity is more pronounced in summertime. In fact, we shall show that the

difference in the kinetic energy flux between the two simulations is particularly due

to higher magnitude of forward cascade in eN60-WT in summertime. We present

in Figure 9, the winter and summer averages of kinetic energy spectral flux. In

wintertime and in the two simulations (Figure 9b), the flux is identical across all
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Figure 8: (a) One year average of kinetic energy spectral flux computed from hourly

outputs of eN60-NT (no tides) and eN60-WT (with tides)

wavenumbers. The forward cascade starts at around 25km and extends down to a

kilometric scale. In summertime (Figure 9a), the magnitude of the forward cascade

differs significantly between the two runs at high wavenumbers. The magnitude of

the forward flux in eN60-WT is a factor of 4 compared to eN60-NT. This differences

in cascade clearly highlights how internal tides enhance forward cascade of kinetic

energy at high wavenumbers in summertime.

So far the kinetic energy cascade is based on surface horizontal velocities. Of great

interest is to understand the nature of the kinetic energy cascade in the interior of

the ocean. We are curious to know if the forward cascade at high wavenumbers is

surface confined or not. In Figure (10), we present the spectral flux computed at

32 different vertical levels in the water column. Both in winter and summer, the

average kinetic energy spectral flux in the two simulation is characterized by a net

inverse cascade that extends down to around 700m in the interior. In wintertime,

the forward cascade in eN60-WT (Figure 10a) is strong both at the surface and

in the interior. Whereas in eN60-NT (Figure 10c), the forward cascade is confined

mostly to the surface. In summertime, the forward cascade in eN60-WT (Figure 10c)

span the upper ocean but with a gradual decrease in magnitude as you go down the

water column. Whereas in eN60-NT (Figure 10d), the forward cascade is almost zero

throughout the upper ocean. A stronger forward cascade (in summertime for eN60-

WT) in the interior is an indication that internal tides can serve as a substantial

route of kinetic energy to dissipative scale in the ocean.

We have to come to understand that internal tides enhance the energetics of IGWs
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Figure 9: Kinetic energy spectral flux computed from hourly outputs of eN60-NT (no

tides) and eN60-WT (with tides). (a) summer : July, August and September (b) winter :

Janaury, February and March
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Figure 10: Winter and summer averages of kinetic energy spectral flux as a function of

depth for eN60-NT and eN60-WT.

and in particular enhance forward cascade of energy in summertime. To better ex-

plain how internal tides modify cross-scale energy exchanges among different classes

of motion, we present the kinetic energy transfer in frequency-wavenumber space.

We present in Figure 11 the winter and summer averages of kinetic energy spec-

tral transfer in frequency-wavenumber space. In the ω-k spectra, negative values of

spectra transfer imply that non-linearity extract energy from these regions to feed

other regions with positive values. In other words, sinks of energy are characterized

by positive values while a source of energy has negative values.

We start by discussing the spectral transfer in wintertime (left column of Figure 11).

In eN60-NT, the largest negative values of the spectral transfer show that energy

is being extracted from the balanced motions (source of energy) while near-inertial

motions and motions with scale less than 10km are the major sinks of kinetic energy.

The rate of non-linear exchanges in eN60-WT is fairly identical with eN60-NT except

for the intensification of energy gained by IGWs in eN60-WT. In concise, subme-

socale motions and internal gravity waves are sinks of kinetic energy in wintertime

with the former playing the major role.

The summer spectra differ significantly between the two runs. In eN60-NT, balanced

motions are the major source of energy while energy is gained mostly by near-

inertial motions. The transfer at high frequencies and wavenumbers is almost zero,

i.e high-frequency motions and submesoscale motions are less energetic in eN60-NT

in summertime. This is consistent with what we saw in the KE spectra density. In
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Figure 11: Kinetic energy transfer in frequency-wavenumber space computed from hourly

outputs of eN60-NT (no tides) and eN60-WT (with tides) for winter (JFM) and summer

(JAS) time.

eN60-WT, the narrative is different. The major source of energy is the mesoscale

balanced motions and the internal tides (M2 semi-diurnal tides). Near-inertial waves,

submesoscale BMs and IGWs dispersion curves are seen in Figure (11) to be sinks

of energy.

In concise, there are two mechanisms of energy extraction in summertime. (i) In a

flow without tidal forcing, near-inertial waves extract energy from balanced motions

and (ii) in a flow with tidal forcing, near-inertial waves and IGWs dispersion curves

extract energy from internal tides and mesoscale balanced motions. In summary,

the forward cascade in eN60-WT, is associated with the transfer of energy by non-

linearity from balanced motions and internal tides to near-inertial waves and IGWs

dispersion curves. This is possible due to the intensification of IGWs in the presence

of tidal motions. The lack of tidal motions in eN60-NT (compared to eN60-WT)

shows how effective internal tides are providing a route to energy dissipation in sum-
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mertime, both at the surface and in the interior. This strongly emphasizes the need

to include tidal forcing in ocean model simulations in order to accurately capture

cross-scale energy exchanges at fine-scales.

5 Summary and Conclusion

The role of internal tides on the seasonality of kinetic energy density and transfer

is investigated in this study. Our analysis is based on the output of a realistic sim-

ulation of the North Atlantic with a horizontal resolution of 1/60◦. We used two

outputs of this simulation; simulation with/without tidal forcing. These twin ex-

periments permit to investigate how internal tides generated by tidal forcing modify

kinetic energy variance, cross-scale exchanges and its seasonality. We found that

the seasonality of IGWs is sensitive to tidal forcing. In simulation without tides,

IGWs are stronger in winter whereas, in simulation with tides, they are stronger in

summer. The latter condition is consistent with the findings of Rocha et al. (2016)

and Torres et al. (2018). Also, our result shows that resolving internal tides in the

presence of energetic submesoscale motions have strong impact on kinetic energy

transfer in summertime. The magnitude of the estimated forward cascade (both at

the surface and at depth) in the simulation with tidal forcing is a factor 4 higher

compared to the simulation without tidal forcing. Overall, we identified that there

are two mechanisms that support kinetic energy forward cascade. Forward cascade

due to energetic submesoscale motions in wintertime and forward cascade due to

IGWs (enhanced by tidal forcing) in summertime. Our results underscores that at

fine-scales, internal tides can provide an effective route to kinetic energy dissipation.
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Conclusion and Perspective
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6.1 Context

In the context of future observing satellite missions, the Surface Water and Ocean

Topography (SWOT) altimeter would be a landmark in oceanographic studies.

SWOT would provide an unprecedented view of the ocean surface down to 10km

- 15km in wavelength and this information would help oceanographers to better

understand the dynamics of the ocean at intermediate scales (10km - 200km). This

thereby would help bridge the gap between our knowledge of large scale motions

(where energy is injected into the ocean) and microscale motions (where energy is

dissipated).

In this thesis, we have used numerical simulations (capable of mimicking SWOT res-

olution) to investigate the impact of oceanic fine-scale motions (particularly subme-

soscale motions and internal gravity waves) on kinetic energy exchanges in the North

Atlantic ocean. Outputs of several North Atlantic simulations based on NEMO and

HYCOM ocean model were used in this thesis. We shall present in this chapter,

the summary of the main findings of this thesis work, the key differences between

NEMO & HYCOM simulations and the implications of our results for future work.

6.2 Thesis results

In chapter 1, we have divided the objective of this thesis into three research themes

with each theme answering specific questions. In this section, we shall summarize

the results of this thesis in light of these key research questions.

A: Seasonal and regional distribution of fine-scale eddy structures in the

North Atlantic ocean.

What are the scales of oceanic eddies at fine-scales?

Our results show that most of the eddies in the North Atlantic with scales < 100km

are nonlinear and the spread of eddy nonlinearity increases with latitude. The typical

scale of these eddies lies between the Rossby radius and the Rhine scale. This result

is consistent with the findings of Eden (2007) who investigated mesoscale eddies

with a coarse simulation of the North Atlantic ocean.

What is the depth penetration of submesoscale eddies

The vertical structures of submesoscale eddy motion (diagnosed from the spectral

coherence of relative vorticity) varies as a function of the mixed layer depth with

higher amplitude in wintertime compared to summer. For eddies with scale > 100km

(mesoscale eddies), the vertical scale extends into to the interior beyond 1000m and
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does not undergo strong seasonality.

Is the scale of oceanic eddies sensitive to the seasonality of subme-

soscale motions

Estimates of enstrophy-containing scale the statistics of eddy-scale identified by

eddy-detection algorithm showed that and the distribution of the scale of oceanic

eddies in the North Atlantic undergoes strong seasonality. We found this season-

ality to be directly linked to the emergence of submesoscale eddies that are driven

by mixed-layer instability in wintertime. We found the scale of eddies in the North

Atlantic to be on average smaller by a factor of 2 in wintertime compared to sum-

mertime. A large population of smaller eddies in wintertime reduces the value of

the average size of oceanic eddies.

B: Kinetic energy transfer at fine-scale in a regime of energetic subme-

soscale motions.

Does the seasonality of submesoscale turbulence affect cross-scale ki-

netic energy exchanges ?

According to our results, kinetic energy exchanges undergo strong seasonality with

a stronger forward cascade in winter at scales < 50km. This scale-range corresponds

to scales of submesoscale motions. We found the flux at submesoscales to be almost

zero in summer.

Is the forward cascade due to submesoscales surface-confined ?

The forward flux due to submesoscales in winter is mostly confined within the mixed-

layer. This follows directly from the fact that submesoscales are energetic in winter

and are mostly driven by mixed layer instability.

At fine-scale, (using geostrophic current), how accurate is the estimate

of kinetic energy cascade?

In this thesis work, we found that the estimate of spectral flux based on geostrophic

velocity differs from the results based on total velocity. The magnitude of the forward

cascade at high wavenumbers is underestimated by the spectra flux estimated from

geostrophic velocity. This result highlights the limitation we might face with kinetic

energy exchanges that will be computed form SWOT data.

C: Kinetic energy transfer at fine-scale in a regime of externally forced

internal tides

What is the impact of internal tides on kinetic energy distribution at

fine-scales

Internal tides have strong impacts on the distribution of kinetic energy in the ocean,
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particularly at fine-scales. Our result confirms that internal tides introduced via

tidal forcing enhance wave activity. This is pronounced in the diurnal and semi-

diurnal tidal frequencies and in general, we see the intensification of variance along

the internal gravity waves dispersion curve. This variance is particularly strong in

summertime.

How do internal tides modify kinetic energy cascade

Internal tides modify kinetic energy cascade by directly serving as a source of energy

that feeds the internal gravity wave continuum in summertime through nonlinear

exchanges.

Can internal tides provide a route to kinetic energy dissipation

Internal tides can indeed provide a route to kinetic energy dissipation. Our result

shows that non-linear exchanges in the internal gravity wave continuum (due to

externally forced internal tides) drives a forward cascade of energy. This process

can be classified as a simulated generation of the forward cascade by internal gravity

waves because internal gravity waves in this scenario are externally forced by tidal

motions.

6.3 Summary on model comparison

In this thesis, we have used 3 numerical simulations of the North Atlantic ocean

based on NEMO (NATL60, eNATL60) and HYCOM (HYCOM50). These simu-

lations differ specifically in terms of numerical configuration, vertical resolution,

and duration of model spin-up. Their simulation output shows strong similarity in

terms of the large scale and mean circulation pattern of the North Atlantic. Also,

all three simulations adequately characterized fine-scales dynamics down to 15km

in the North Atlantic. This is relevant for the upcoming SWOT mission because

information such as the variability of scales of eddy motion would be useful in the

calibration of inversion techniques for estimating two-dimensional maps of SSH from

SWOT data. However, there are notable differences between the simulations that

are worth been highlighted. We shall present below a summary of the comparison

between the simulations in terms of the results of this thesis work. This comparison

would be useful for numerical ocean modelers that might be interested in knowing

the similarity/difference between NEMO and HYCOM simulation output.

Higher amplitude of KE and larger eddies in HYCOM50

From our analysis of surface eddy kinetic energy and velocity spectra, we found that

HYCOM50 shows a higher amplitude of kinetic energy level compared to NATL60,

particularly along the Gulf stream. Also, the scale of resolved eddies at fine-scales

in HYCOM50 seems to be a larger compared to NATL60. We believe that this
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disparity between the two simulations in terms of the energy levels and the scale of

eddies could be due to a shorter length of spin-up for NATL60 (6 months) compared

to HYCOM50 (20 years).

Stronger submesoscale eddy buoyancy flux in NATL60

NATL60 and HYCOM50 simulation reproduce similar statistics of surface relative

vorticity. Both simulations capture the seasonality of submesoscale motions diag-

nosed through the vorticity wavenumber spectra and submesoscale eddy buoyancy

fluxes (wIbI). The magnitude of wIbI for the two simulations in the mid-latitude

Gulf stream region is very similar. Whereas in the subpolar region, the values

for HYCOM50 are slightly smaller compared to NATL60 for both wintertime and

summertime despite, HYCOM50 having a deeper mixed layer in this region. The

vorticity spectral density for the two simulations is identical except that there is a

tendency for HYCOM50 to show a sharp increase in variance at high wavenumber in

high EKE regions. This observation suggests that the subgrid-scale parametrization

in HYCOM50 is probably weak at damping enstrophy at a kilometric scale.

Stronger KE cascade in HYCOM50

Another major difference between the two simulations is the vertical resolution: 32

hybrid vertical layers in HYCOM50 versus 300 z-levels in NATL60. Initially one

would think that the coarser vertical resolution in HYCOM50 could significantly

lead to a difference in the representation of the kinetic energy flux compared to

NATL60. From the kinetic energy spectral flux as a function of depth, we found

that the inverse cascade of energy in HYCOM50 is not surfaced intensified and that

having only 32 isopycnal vertical levels is not detrimental to the representation of

the dynamics in the ocean interior. Also, we found the vertical penetration of eddies

to be essentially identical in the two simulations.

6.4 Future perspective

In this thesis work, we focused on oceanic fine-scales motions and how they affect

the distribution and the exchanges of kinetic energy. We have equally investigated

the impact of submesoscale turbulence on the variability of scales of oceanic eddies

in this regime. The results of this thesis work provides supporting evidence as

to the role of fine-scale motions in ocean dynamics as highlighted in the previous

sections. However, these results are not without caveats and thereby have room for

improvement.

Our results have shown that at fine-scales, submesoscale balanced motions and un-

balanced wave motions can provide a route to kinetic energy to dissipative scales.

Several diagnostics could be made as an extension to the results of this thesis work.
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Torres et al. (2018) showed the isolated contribution of these classes of motions to

the kinetic energy density in the frequency-wavenumber domain by first separating

the flow into the rotational and divergent part using Helmholtz decomposition and

then estimating the spectral density of the individual component. A similar analysis

for the kinetic energy spectra flux would illuminate the different spatial-temporal

contributions of these classes of motion in kinetic energy exchanges. Additional

insight on the impact of submesoscales on kinetic energy exchanges can be gained

by estimating the frequency-wavenumber spectra of the buoyancy flux. This would

provide information on the amount of energy that is transformed from potential to

kinetic energy within the mixed-layer due to energetic submesoscale motions.

The results presented in this thesis are based on the output of an ocean simulation

forced with realistic winds. Recent literature suggests that air-sea coupling at fine-

scale affects the evolution and energetics of meso and submesoscale eddies. Renault

et al. (2016) using a coupled/uncoupled model of the California Upwelling System

argued that the ocean-atmosphere interactions have feedback that acts as an oceanic

eddy killer. This feedback deflects energy from the geostrophic current into the

atmosphere and dampens geostrophic kinetic energy. A possible future study would

be to recompute the (kinetic energy transfer) diagnostics in this study using outputs

of the ocean-atmosphere coupled model. This sort of future analysis would take into

account the direct impact of air-sea interaction on kinetic energy exchanges in the

ocean and maybe provide a more accurate estimate of the flux.

The kinetic energy flux presented in this thesis work is based on spectral analysis of

the non-linearity term in the kinetic energy equation. The spectral analysis method

relies upon an assumption of statistical homogeneity and also requires data pre-

condition (detrending and windowing) before the application of Fourier transform.

There are few caveats to this, the assumption of homogeneity is not valid every-

where in the ocean and secondly, windowing function (if not carefully applied ) can

introduce artificial length scales into the spectral flux estimates (see Appendix ). Re-

cently, Aluie et al. (2017) developed a filtering approach based on a coarse-graining

method to estimate kinetic energy flux. His method showed great consistency with

the spectral method for large-scale kinetic energy flux with a little mismatch in non-

homogeneous regions. The method also provides a way to avoid the tendency of

spurious length scales in the spectral estimates. However, the result of this method

is sensitive to the choice of the kernel used for filtering and it is therefore important

to keep this in mind when comparing Aluie’s approach to spectral method. Having

said that, how these methods compare at fine-scales is currently not clear.

More recently Dewar et al. (2019) investigated cross-scale kinetic energy transfer

using a somewhat different approach based on the application of Greens function

to the kinetic energy equation. The authors applied this method to an idealized

numerical simulation of vortex merger, resulting in the demonstration of the ex-
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pected upscale energy cascade. While there is room for improvement, the results

of this method provided a complementary view of how kinetic energy is exchanged

between different scales of motion. Analysis of kinetic energy flux based on Aluie’s

and Dewar’s method on a submesoscale resolving ocean model would be a promising

scientific exercise. The findings of such an analysis coupled with the existing results

based on the spectral method would solidify our knowledge of what we should expect

from SWOT in terms of kinetic energy exchanges at fine-scales.

As a concluding remark, I would like to stress that the task of understanding the

ocean has become a big data problem. The advancement in high-resolution ocean

simulations is providing data in the order of petabytes coupled with the daily in-

flux of observation from satellite and in-situ measurements. These large datasets

have become more than what our personal computers can handle. The analysis

and management of this huge volume of information require the creation of com-

puting platforms and workflows that support reproducible research work. One of

such resources currently available for oceanographic studies is PANGEO. PANGEO

is a community platform for Big Data geoscience based on an interactive comput-

ing platform (Jupyter) and a flexible python analytic library for parallel computing

(Dask). We have leveraged on the availability of this scientific tool to provide some

of the results presented in this thesis work. Without mincing words, future sci-

entific research; from data collection to finished article would very much depend

on collaborative open-source scientific packages and cloud computing resources like

PANGEO.
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Appendix A

Spectral Analysis

A.1 Introduction

This Appendix aims to present the diagnostics tools (based on spectra analysis

method) that are used in this thesis work. This section is not intended to give a

full nor thorough description of spectra analysis, a more comprehensive description

of the spectral method can be found in major statistics textbooks. This present

section of my thesis manuscript provides only the elements needed to understand

the different spectral methods used in the thesis work.

A.2 Spectra density

Spectral analysis is a statistical method that is used to partition the variance of a

time series as a function of frequency/wavenumber. In oceanography, it is efficiently

applied to estimate the energy that is associated with different temporal/spatial

scales of motions in a given time series. The estimation of the spectral density used

in this thesis work is based on the periodogram method i.e a direct transformation of

the time series to obtain its Fourier components by using Fast Fourier Transforms.

Fourier analysis itself is based on the premise that any infinitely repeated time series

with finite length can be represented by a linear summation of cosines and sines, and

this approach is particularly effective for representing sinusoidal oscillations, which

are frequently encountered in physical oceanography.
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A.2.1 1D spectra

To begin, lets consider a time series φ(t) = (φ0, φ1, φ2...φn) sampled at equally spaced

time increment such that tn = n∆t. This time series can be written in terms of its

Fourier component, as;

φ(t) = ¯φ(t) +
∞∑

n=1

[Ancos(2πnf1t) +Bncos(2πnf1t)] (A.1)

where ¯φ(t) is the mean value of the time series, f is the frequency (cycles per unit

time) and Ap, Bp are Fourier coefficients. Using exponential function, equation (A.1)

can equally be written as

φ(t) =
∞∑

n=−∞
ane

i2πfnt, (A.2)

where an, is the spectral amplitude (Fourier coefficient). This spectral amplitude

provides a measure of the relative importance of each frequency component to the

overall spectral variability. The spectral density at each frequency is the square

of the spectral amplitude and it is written as

Eφ(fn) =
a2n
∆f

(A.3)

In a spatial dataset, time (t) is replaced by the wavelength (λ) and the spectral

density can be rewritten as

Eφ(kn) =
a2n
∆k

(A.4)

where k = 1/λ is defined as the wavenumber (cycles per unit distance).

A.2.2 2D wavenumber spectra

In this thesis, our analysis is based mostly on two-dimensional outputs of numeri-

cal ocean simulations with zonal (x) and meridional (y) components. Following a

1D time-series, a 2D time series φ(x, y) can be represented in terms of its Fourier

components as
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φ(x, y) =
∞∑

m=−∞

∞∑

n=−∞
amne

i2π(kmx+lny) =

∫ ∞

−∞

∫ ∞

−∞
Eφ(k, l)ei2π(kx+ly)dkdl (A.5)

where k and l is the wavenumber in the zonal and meridional direction. The second

and third term is the discretized and continuous form of the inverse Fourier Trans-

form. The corresponding spectral density estimate can equally be calculated from

the squared coefficients:

Eφ(kn, lm) =
|anm|2
∆k∆l

(A.6)

A common practice in oceanography is to obtain an isotropic 1D wavenumber spectra

from a 2D wavenumber spectra for easy interpretation of the results in terms of the

variance associated with each wavenumber. Technically, we want to preserve the

area under the 2D spectrum such that

∫ ∞

−∞

∫ ∞

−∞
Eφ(k, l)dkdl =

∫ ∞

−∞

∫ π

−π
krEφ(kr, θ)dθdkr (A.7)

where kr =
√
k2 + l2 is the isotropic wavenumber and the extra kr in the second

integral is a geometric factor coming from the change of variables from catersian to

polar coordinates. Assuming isotropy implies that Eφ(kr, θ) = Eφ(kr) and equation

(A.7) becomes

∫ ∞

−∞

∫ ∞

−∞
Eφ(k, l)dkdl =

∫ ∞

−∞
krEφ(kr)dkr (A.8)

The right-hand side of equation (A.8) is the 1D isotropic wavenumber spectral den-

sity of a 2D spatial datasets. A step by step mathematical description of isotropic

averaging of a 2D wavenumber spectra to a 1D wavenumber spectra can be found

in (Uchida et al., 2017).

A.3 Frequency - wavenumber spectra

The frequency-wavenumber spectra provide a way to estimate the variance associ-

ated with different oceanic motion as a function of their spatial and temporal scale.

This type of spectra is used as a means to track propagating sinusoidal patterns in

oceanography studies. Lets consider a 2D dataset φ(x, t) where x and t represents
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space and time respectively such that 0 < x < X and 0 < t < T . We can represent

φ as a function of its Fourier transform as

φ(x, t) =
∞∑

n=−∞
ane

i2πfnt or φ(x, t) =
∞∑

m=−∞
ame

i2πkmx (A.9)

where

fn =
n

T
and km =

m

X
(A.10)

By extension we can do this process in two dimensions to get :

φ(x, t) =
∞∑

n=−∞

∞∑

m=−∞
anme

i2π(fnt+kmx) (A.11)

The corresponding spectral density estimate can be calculated from the squared

coefficients as

E(km, fn) =
|anm|2
∆k∆f

(A.12)

A.4 Spectra Coherence

Spectra coherence provides information that is analogous to a correlation coeffi-

cient. It tells us whether two series are statistically linked at any specific fre-

quency/wavenumber. Spectra coherence between two time-series is calculated based

on the estimates of the cross spectra between the two time-series. The cross-

spectrum, on the other hand, indicates the shared power between two time-series

at each frequency/wavenumber. To illustrates these concepts mathematically, let’s

consider two time-series φ(t) and µ(t) such that 0 < t < T . In terms of Fourier

components, these time series can be written as

φ(t) =
∞∑

n=−∞
ane

i2πfnt, (A.13)

µ(t) =
∞∑

n=−∞
bne

i2πfnt (A.14)

The cross-spectrum, Cψµ(fn) between φ & µ is defined as



A.5. Spectral flux 131

Cψµ(fn) =
〈a∗nbn〉

∆f
(A.15)

and the spectra coherence, Sψµ(f) between the two time-series is estimated as

Sψµ(f) =
|Cψµ(f)|2

Cφφ(f) ∗ Cµµ(f)
(A.16)

Sψµ(f) satisfy that 0 < Sψµ < 1 where 0 means no coherence and 1 means perfect

coherence. Cφφ and Cµµ in equation (A.16) represents the autospectral density for

φ and µ respectively and are defined.

Cφφ(fn) = Eψ(fn) =
a2n
∆f

(A.17)

Cµµ(fn) = Eµ(fn) =
b2n
∆f

(A.18)

A.5 Spectral flux

In this section, we present the mathematical description of the kinetic energy spectral

flux. This flux is due to nonlinear terms in the momentum equation. In a simplified

form, the momentum equation can be written as

∂u

∂t
= −u ·∇u + OT (A.19)

where u is the horizontal velocity field and OT represents other terms in the momen-

tum equation. If we take the Fourier Transform of equation (A.19) then multiplied

it by û∗ (wherêand ∗ represents Fourier transform and its conjugate respectively),

then we have

û∗ · ∂û

∂t
= −û∗ · [û ·∇u] + û∗ ·OT (A.20)

∂(1
2
û∗ · û)

∂t
= −û∗ · [û ·∇u] + û∗ ·OT (A.21)

Equation (A.21) is the kinetic energy equation and can be rewritten as
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∂KE

∂t
= TKE + û∗ ·OT (A.22)

where the kinetic energy spectral density (KE) is defined as

KE =
1

2
û∗ · û (A.23)

KE =
1

2
[û∗ · û + v̂∗ · v̂] (A.24)

and the kinetic energy spectral flux (TKE) is

TKE = −û∗ · [û · ∇u] (A.25)

TKE = −û∗
(

̂
u
∂u

∂x
+ v

∂u

∂y

)
+ v̂∗

(
̂

u
∂v

∂x
+ v

∂v

∂y

)
(A.26)

In equation (A.24) and (A.26), u and v represents the zonal and meridional velocity

fields respectively, while x and y in equation (A.26) represents the distance between

two velocity points in the zonal and meridional direction.

A.6 Spectral analysis approach

The spectra estimate in this thesis work is based mostly on two-dimensional fields

of Sea Surface Height (SSH) and horizontal velocities (u, v) in different regions of

the North Atlantic Ocean. The spectra densities are estimated following standard

spectra analysis procedure and are also consistent with published spectra results.

Below is the step-wise approach that was followed in this thesis.

1. Define rectangular box over a region of interest: In order to perform

spectra analysis in a region, we define a rectangular box that is big enough

to accommodate the scale of oceanic motion that is of interest to our study.

For example in a 10◦ x 10◦ box, the highest wavelength that can be reliably

resolved by spectra is 500km i.e approximate half of the box size. So, we can

sufficiently resolve fine-scale and large scale dynamics up to 500km in a 10◦ x

10◦ box.
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2. Avoid islands or replace them with interpolated values: Island are

represented by big values or NaN in most oceanographic datasets. In some

cases, our region of interest might include areas that contain small islands. If

the island covers a very small fraction of the domain, one possible way to deal

with such a case is to replace the values at the grid point corresponding to the

island with an interpolated value. However, if the island covers a significant

fraction, it is advisable to consider subdividing the domain to smaller boxes

to avoid the island.

3. Remove the mean and the trend from the time series: In spectral

analysis, it is customary to remove the mean and trend of the time series

before the application of FFT. This is because, the Fourier transform of a

linear trend puts energy into every possible frequency and this indicates that

if you dont detrend your data, any residual trend will give you a red spectrum
1. If the detrending is not properly done, it can distort the low-frequency

component of the spectrum. In a 2D time series like ours, detrending can be

implemented by fitting a plane to the time series or removing the trend in

both axes of the datasets.

4. Apply smoothing functions to time-series: To increase the reliability of

spectra results, we can decide to average many spectral results, apply window

function directly to the time series or do both. A window is a smoothing func-

tion applied to finite observation to minimize leakage in the spectra domain i.e

windowing reduces the transfer of energy from one spectral frequency to the

neighboring frequencies. Short time series are discontinuous at the boundary

and this discontinuity can introduce spectral leakage, because, discrete Fourier

transform implicitly assumes that our record repeats again and again, so any

discontinuity between the beginning and end of the record can create a step

function. Windowing can be used to reduce the order of discontinuity at the

boundary. When applied in the time/space domain, the window smoothly

brings the values of at the boundary of a time series to zero and thereby mak-

ing the time series periodic in nature. Several existing window functions can

be used depending on the dataset. In this thesis work, given our 2D spatial

dataset, we used in different cases Hanning and Tukey windowing to increase

the statistical reliability of our spectral estimate.

5. Compute the Fourier transforms: Fourier components of a time series can

be estimated by applying Fast Fourier Transforms to the time. FFT is readily

implemented in may statistical software such as Python, MATLAB, etc. From

the Fourier components, we can then calculate the spectral density by taking

the square of the components then normalizing by the size of the time series.

1A red spectrum is a spectrum whose spectral density decreases with increasing frequency
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The implementation of this spectra method for estimating spectral density, frequency-

wavenumber spectra, spectra coherence and spectra flux have documented and can

be found on this GitHub repository 2

In order to show the importance of detrending and windowing on the spectral es-

timate, we present in figure (A.1), a two dimensional map of (a) sea surface height

(raw SSH) (b) SSH data detrended in both direction (c) SSH data multiplied by

a Tukey widow (c) SSH data detrended in both axises and also multiplied by a

Tukey window. The spectra estimate for these different forms of SSH dataset is

presented in figure (A.2). The spectra of the raw SSH field differ significantly from

the remaining two spectra. The difference between the ”detrend + window” spectra

and the ”window” is due to the higher variance at high wavenumbers in the later.

The impact of removing trends is to avoid the distortion of the spectral density,

particularly at low wavenumbers. This is evident in the shape of the ”windowed

SSH” spectra. The peak of this spectra coincides with the lowest wavenumber. This

shouldn’t be because the lowest wavenumber corresponds to the largest wavelength

in the domain and can not have the highest variance due to poor sampling at this

scale. So this shows how not detrending introduces artificial energy at the lowest

wavenumber.

2https://github.com/adeajayi-kunle/PowerSpec/blob/master/PowerSpec.py



A.6. Spectral analysis approach 135

Figure A.1: Snapshot of sea surface height (SSH) (a) raw data (b) data multiplied by

Tukey window and (c) data with trend removed and also multiplied by Tukey window.
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Figure A.2: Power sepctral density estimated using raw SSH data and preconditioned

dataset.



Appendix B

Estimation of OSMOSIS

Horizontal velocity gradients

This Appendix presents a short description of horizontal velocity gradient compu-

tation from OSMOSIS five points mooring array. The gradient estimate is based on

a finite difference method, FMD (Bryden and Fofonoff (1977)), which is defined as

∂Q

∂d
=

1

N

N∑

i=1

(
Qc −Qi

dc − di

)
(B.1)

In equation (B.1), Q is any scalar quantity, d is the zonal or meridional position of

the moorings and subscripts c and i denote the center mooring and the neighboring

moorings respectively. From these gradients we diagnosed the vorticity (ζ), strain-

rate (α) and divergence (δ) as

ζ =
∂v

∂x
− ∂u

∂y
(B.2)

δ =
∂u

∂x
+
∂v

∂y
(B.3)

α =

[(
∂u

∂x
− ∂v

∂y

)2

+

(
∂v

∂x
+
∂u

∂y

)2
]1/2

(B.4)

where u and v are the zonal and meridional velocity fields while x and y are the zonal

and meridional distance between two moorings. The FDM of gradient estimation

was validated by comparing the estimate of its vorticity with the vorticity values

computed using the Stokes formula (Eq. B.5);
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ζ = (∇× u) · k̂ =
1

A

∮
uh · dl (B.5)

with A being the area enclosed by the path, uh the horizontal velocity, and dl the

differential pointing in the direction of the closed path.
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