
HAL Id: tel-02748626
https://hal.science/tel-02748626v1

Submitted on 3 Jun 2020 (v1), last revised 14 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice algorithms and lattice-based cryptography
Natalia Kharchenko

To cite this version:
Natalia Kharchenko. Lattice algorithms and lattice-based cryptography. Cryptography and Security
[cs.CR]. Sorbonne Université, 2020. English. �NNT : �. �tel-02748626v1�

https://hal.science/tel-02748626v1
https://hal.archives-ouvertes.fr

thèse de doctorat de
sorbonne université

Spécialité Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Natalia Kharchenko

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Lattice algorithms and lattice-based cryptography

Thèse dirigée par Antoine Joux

soutenue publiquement le 27 Mai 2020

aprés avis des rapporteurs :

M. Pierre-Alain Fouque Prof., Université de Rennes
M. David Naccache Prof., ENS

devant le jury composé de :

M. Jean-Claude Bajard Prof., Sorbonne Université, IMJ
M. Pierre-Alain Fouque Prof., Université de Rennes
M. Louis Goubin Prof., UVSQ
M. Antoine Joux Tenured Research Faculty, CISPA Helmholtz Center
M. David Naccache Prof., ENS
Mme. Annick Valibouze Prof., Sorbonne Université, LIP6
Mme. Brigitte Vallée DR, Université Caen, GREYC

Résumé

La cryptographie basée sur les réseaux est un domaine de recherche qui étudie la construc-
tion d’outils et de protocoles pour une communication sécurisée basée sur des problèmes
de réseau difficiles. La cryptographie basée sur les réseaux est l’un des candidats les plus
prometteurs pour la communication sécurisée post-quantique en raison de sa sécurité
conjecturée contre les attaques quantiques et de son efficacité algorithmique. Une autre
caractéristique intéressante de la cryptographie basée sur les réseaux est un large éventail
de constructions disponibles qui incluent même des schémas de chiffrement totalement ho-
momorphes (Fully Homomorphic Encryption ou FHE en anglais). Cette thèse étudie les
algorithmes pour résoudre les problèmes de réseau difficiles et leur application à l’évaluation
de la sécurité des constructions cryptographiques basées sur les réseau. Cette thèse com-
porte deux parties.

Dans la première partie, on introduit une nouvelle famille d’algorithmes de sieving ap-
pelé sieiving cylindrique. Le sieving heuristique est actuellement l’approche la plus rapide
pour résoudre les problèmes de réseau central, le problème de vecteur le plus court (Shor-
test Vector Problem ou SVP en anglais) et le problème de vecteur le plus proche (Closest
Vector Problem ou CVP en anglais). Dans cette thèse, on propose un nouvel algorithme de
sieving pour résoudre SVP et CVP, qui fonctionne avec des vecteurs de réseau de géométrie
différente par rapport aux algorithmes de sieving habituels. Le sieving cylindrique fonc-
tionne en générant une liste de vecteurs de réseau à l’intérieur d’un hypercylindre long et
étroit, puis il tamise de manière itérative les vecteurs de la liste afin d’obtenir une nou-
velle liste de vecteurs à l’intérieur d’un hypercylindre beaucoup plus court mais légèrement
plus large. On montre que cette approche peut être très efficace pour résoudre certaines
variations de CVP et SVP. Premièrement, le sieving cylindrique améliore la complexité
temporelle asymptotique pour la résolution de SVP sur des réseaux dont le volume est un
nombre premier relativement petit. Par exemple, il permet de résoudre SVP pour un réseau
de dimension n de volume premier d’environ 2n dans le temps Õ(20.229n). Deuxièmement,
il permet d’obtenir la complexité temporelle polynomiale d’une requête pour résoudre le
problème de vecteur le plus proche avec prétraitement (Closest Vector Problem ou CVPP
en anglais), pour un coût en temps de Õ(20.531n) et en memoire Õ(2n/2) lors de la phase
de prétraitement pour un réseau arbitraire.

Dans la deuxième partie, on étudie la sécurité de Fast Fully Homomorphic Encryp-
tion scheme over Torus (TFHE). TFHE est l’un des schémas de chiffrement totalement
homomorphe les plus rapides basé sur le problème (ring-)Learning with Errors (LWE).
Dans cette thèse, on améliore l’attaque à base de réseau dual utilisée dans l’estimation de
sécurité initiale du schéma. Plus précisément, on réalise l’attaque duale sur des sous-réseaux
projetés, qui permet de générer des instances du problème LWE avec un bruit légèrement
plus grand qui correspond à une fraction de la clé secrète. Ensuite, on recherche la fraction
de la clé secrète en calculant le bruit correspondant pour chaque candidat en utilisant
les échantillons LWE construits. Comme les clés de TFHE sont des vecteurs binaires, on
peut effectuer l’étape de recherche très efficacement en exploitant la structure récursive
de l’espace de recherche. Cette approche offre un compromis entre le coût de la réduction
du réseau et la complexité de la partie recherche qui permet d’accélérer l’attaque. On
implémente un script qui estime la complexité de l’attaque duale d’origine et de notre
méthode hybride pour divers paramètres sous trois modèles de coûts différents pour la
réduction du réseau et montre que le niveau de sécurité actuel (en mars 2020) de TFHE
devrait être réévalué selon l’amélioration proposée.

Abstract

Lattice-based cryptography is an area of research that studies the construction of tools and
protocols for secure communication based on hard lattice problems. Lattice-based cryptog-
raphy is one of the most promising candidates for post-quantum secure communication due
to its conjectured security against quantum attacks and algorithmic efficiency. Another
attractive feature of lattice-based cryptography is a wide range of available constructions
which includes even Fully Homomorphic Encryption (FHE) schemes. This thesis studies
algorithms for solving hard lattice problems and their application to evaluating security of
lattice-based cryptographic constructions. This thesis has two parts.

In the first part, we introduce a new family of lattice sieving algorithms called cylin-
drical sieving. Heuristic sieving is currently the fastest approach for solving central lattice
problems, the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP). In
this thesis, we propose a new sieving algorithm for solving SVP and CVP, that works with
lattice vectors of different geometry compared to usual sieving algorithms. Cylindrical
sieving works by generating a list of lattice vectors inside a long and narrow hypercylinder
and then it iteratively sieves vectors from the list in order to obtain a new list of vectors
inside of much shorter but slightly wider hypercylinder. We show that this approach can
be very efficient for solving certain variations of CVP and SVP. First, cylindrical sieving
improves asymptotical time complexity for solving SVP on lattices whose volume is a rel-
atively small prime number. For example, it allows to solve SVP for n-dimensional lattice
of prime volume about 2n in time Õ(20.229n). Second, it allows to achieve the polynomial
time complexity of one query for solving the Closest Vector Problem with Preprocessing
(CVPP), at the cost of spending Õ(20.531n) time and Õ(2n/2) memory on the preprocessing
for an arbitrary lattice.

In the second part, we study the security of the Fast Fully Homomorphic Encryption
scheme over the Torus (TFHE). TFHE is one of the fastest FHE schemes based on the
(ring-)Learning with Errors (LWE) problem. In this thesis, we improve the dual lattice
attack used in the original security estimate of the scheme. More precisely, we use the dual
attack on a projected sublattice, which allows to generate instances of the LWE problem
with a slightly bigger noise that correspond to a fraction of the secret key. Then, we search
for the fraction of the secret key by computing the corresponding noise for each candidate
using the constructed LWE samples. As the TFHE keys are binary vectors, we can perform
the search step very efficiently by exploiting the recursive structure of the search space.
This approach offers a trade-off between the cost of lattice reduction and the complexity of
the search part which allows to speed up the attack. We implement a script that estimates
the complexity of the original dual attack and of our hybrid method for various parameters
under three different cost models for lattice reduction and show that current (as of March
2020) security level of the TFHE scheme should be re-evaluated according to the proposed
improvement.

Acknowledgements

First, I would like to thank Antoine Joux for being my thesis director. Thank you for
spending a lot of time explaining me various concepts and discussing with me different
ideas; thank you for always being there in spite of your busy schedule and being at another
continent sometimes. I’m also very grateful to you for solving all the financial and a lot
of bureaucratic problems concerning this thesis. I’ve learned a lot from you and it was my
great luck and pleasure to work with you during these years.

I’m very grateful to Jean-Claude Bajard and Louis Goubin for participating in the last
comité de suivi of my PhD and for very insightful discussion afterwards. Thank you for
trusting in me and recommending the doctoral school to allow me an additional scientific
year to work on my thesis. I would also like to thank the direction of EDITE, Habib
Mehrez and Lélia Blin, for agreeing to extend my PhD.

I would like to express my deepest gratitude to Jean-Claude Bajard, Pierre-Alain
Fouque, Louis Goubin, David Naccache, Annick Valibouze, and Brigitte Vallée for agree-
ing to be the members of my PhD defence jury. I’m very grateful to Pierre-Alain Fouque
and David Naccache for agreeing to review this manuscript, for their reviews and valuable
comments.

I would also like to thank all the people that I had a happy opportunity to work
with during my PhD. I thank Sonia Beläıd, Mélissa Rossi, Aurélie Bauer, and Malika
Izabachène for all our discussions and experiments at CryptoExperts and ANSSI. Special
thanks to Thomas Espitau for all our work on this dual hybrid attack and for all the
adventures around its submission. I’m very grateful to Brigitte Vallée for introducing
me to sandpile models for lattice reduction and for many valuable insights about lattice
reduction algorithms in general. I would also like to thank Kai-Min Chung for introducing
me to the world of quantum algorithms and quantum cryptography.

It was my great fortune to be a member of the ALMASTY team during my PhD.
The team has been evolving during these years, but it always remained a very warm and
friendly working environment. I would like to thank Cécile Pierrot, Thomas Espitau, and
Alexandre Gélin for their welcoming support during my first internship at LIP6 and the
first months of my PhD; also thanks to Anand, Vincent, Jérôme, Jérémy, Charles, Lucas,
and Florette for being such an amazing and friendly team. I’m very grateful to Damien
Vergnaud for organizing the group seminar and to everyone who participated; and also for
moving it online during the Covid confinement.

I would also like to thank Kai-Min Chung for inviting me for a two-month internship to
Academia Sinica in Taiwan. I’m grateful to all the members of the Computation Theory
and Algorithms group for interesting scientific discussions.

I’m very grateful to all the people who helped me with administrative tasks. I would
like to thank Jean-Claude Bajard and Damien Vergnaud who helped me during my first
and last year registrations to the university. Special thanks to Irphan Khan and Dany
Richard who explained me how various complicated procedures are working and helped
me numerous times with administrative things.

Thanks to all the PhD students and post-docs, not necessarily studying cryptography,
that I’ve met during my PhD, for an opportunity to share our experiences and discuss

2

various, not necessarily mathematical, things. In particular, I’m grateful to Ilya Galanov
and Luba Tupikina for all our conversations.

I’m very grateful to Sergey Dovgal for so many things that I would inevitably fail to
list them all. Among those are scientific and non-scientific discussions and showing me
many useful tricks in LATEX, vim, Python, and, especially, in Valgrind. Thank you for all
the typos you have found in my writing and for being my best friend for already almost
10 years.

Finally, I would like to thank my family, my parents and grandparents, for their constant
and unconditional love and support that makes everything possible.

3

Contents

1 Introduction 7
1.1 Appearance of modern cryptology . 7
1.2 Information-theoretical notion of security 8
1.3 Public-key cryptography . 9
1.4 Fully Homomorphic Encryption . 11
1.5 Hard problems in cryptography . 14
1.6 Lattices and related computational problems 15
1.7 Lattice-based cryptography. 16
1.8 Contribution of this thesis. 17

1.8.1 Cylindrical sieving . 17
1.8.2 Estimating TFHE’s security under hybrid dual lattice attack 26

2 Background 28
2.1 Notation . 28
2.2 Lattices . 28
2.3 Random lattice . 31
2.4 Computational lattice problems . 33
2.5 Lattice-related hard problems in cryptography 36

2.5.1 Short Integer Solution (SIS) . 36
2.5.2 Learning With Errors (LWE) . 38

2.6 Ring versions of SIS and LWE . 39

I Cylindrical sieving 43

3 Necessary background on lattice algorithms 44
3.1 Sieving algorithms . 45

3.1.1 Nguyen–Vidick sieve . 45
3.2 Solving hard lattice problems for lattices with a small volume 47
3.3 Enumeration of lattice points in easy special cases 48

3.3.1 Integer lattice . 48
3.3.2 Lattice with quasi-orthonormal basis 50

3.4 The nearest plane algorithm. 52
3.5 Sampling the discrete Gaussian distribution 53
3.6 Unbalanced lattice reduction . 54
3.7 Covering d-dimensional surfaces . 57

3.7.1 Covering a sphere with hemispheres 58
3.7.2 Covering a sphere with spherical caps 59
3.7.3 Cover a hypercylinder with random half-cylinders of smaller height . 61

4

4 Cylindrical sieving framework 63
4.1 Generation of lattice vectors inside a cylinder 63

4.1.1 Prime volume lattice case . 63
4.1.2 Generate vectors inside a hypercylinder for any lattice 65

4.2 Sort-and-subtract algorithm for SVP . 68
4.2.1 One step of cylindrical sieving . 69
4.2.2 Complexity of the sort-and-subtract algorithm for solving SVP . . . 71

4.3 Adding spherical sieving. 75
4.3.1 One step of cylindrical sieving with γ <

√
2. 76

4.3.2 Sort-and-sieve algorithm for a lattice with a prime volume 78
4.3.3 Sort-and-sieve algorithm for any lattice 80

5 Finding short vectors for lattices with a small prime volume 82
5.1 Complexity of cylindrical sieving for lattices with small prime volume 83
5.2 Complexity of finding short lattice vectors for a lattice with a small prime

volume . 84

6 Solving the Closest Vector Problem with cylindrical sieving 86
6.1 One step of preprocessing . 88
6.2 Preprocessing of lattice . 91

6.2.1 Preprocessing of lattice with prime volume 91
6.2.2 Preprocessing of any lattice . 93

6.3 Decoding for targets inside hypercylinder . 94
6.4 Solving CVPP in polynomial time. 98

6.4.1 Transformation of target vector: general idea 99
6.4.2 Solving CVPP for an integer lattice with a prime volume. 102
6.4.3 Solving CVPP for an arbitrary lattice. 104

6.5 Experimental results . 108
6.5.1 Description of implementation. 108
6.5.2 Dimension n = 30, volume vol(Λ) ≈ 260. 110
6.5.3 Dimension n = 20, volume vol(Λ) ≈ 2100. 113
6.5.4 Dimension n = 40, volume vol(Λ) ≈ 280. 114
6.5.5 Randomization of one target point 114

II Security of the TFHE scheme 116

7 Background on TFHE and security of LWE-based cryptosystems 117
7.1 TFHE and its security. 117
7.2 Modular Gaussian distribution . 119
7.3 Lattice attacks against LWE . 121
7.4 Hybrid attacks . 124
7.5 Lattice reduction in practice . 124
7.6 Probability background. 125

8 Hybridizing the dual distinguishing attack against LWE. 127
8.1 Dual distinguishing attack as described in [CGGI20] 127

8.1.1 Trapdoor construction by lattice reduction 128
8.1.2 Exponential kernel distinguisher for the uniform and the modular

Gaussian distributions . 129
8.1.3 Complexity of the dual attack from TFHE article 131

8.2 Hybrid key recovery attack . 132

5

8.2.1 Algorithm for computing the product of a matrix with the matrix of
all binary vectors . 133

8.2.2 Complexity of the attack . 134
8.2.3 Using sieving in the hybrid attack 136

9 Bit-security estimation and experimental verification 138
9.1 Bit-security of LWE parameters . 138
9.2 Application to the TFHE scheme . 138
9.3 Comparison with primal uSVP attack . 141
9.4 Experimental verification . 142

Conclusion 145
Cylindrical sieving . 145
Hybrid attacks against LWE . 145

A Omitted proofs and estimation results for the second part 147
A.1 Proof of Lemma 8.1. 147
A.2 Heatmaps for the enumeration and delta-squared BKZ cost models 148

Bibliography 150

6

Chapter 1

Introduction

Cryptology is a study of tools and techniques for secure communication in presence
of third parties. It includes two disciplines that study apparently opposite problems:
cryptography and cryptanalysis. While cryptography works on design and construction of
the systems for secure communication, cryptanalysis investigates methods of extracting
secret information from the cryptographic constructions.

Modern cryptography encompasses a variety of protocols for secure communication in
many different contexts from simple private message sending to electronic voting systems
and it would be hard to describe all the existing applications in short. However, most of
the protocols aim at ensuring at least one of the three basic properties: confidentiality,
data integrity, and authenticity.

Confidentiality. The most ancient cryptographic problem is ensuring secure message
transmission through the channel that can be eavesdropped. Confidentiality of messages
can be achieved by applying encryption to the messages before sending. Encryption turns
a plain text message into a sequence of letters, unreadable without an access to some
secret information. Then, the message received on the other side of the channel can be
easily deciphered only by the owner of the secret information. Until the XX century,
confidentiality was the only problem studied by cryptography and the words “encryption”
and “cryptography” are still used as synonyms sometimes.

Data integrity and authenticity. Another two problems connected to message trans-
mission are data integrity and authenticity. Data integrity means an ability to check that
the message was not modified by an adversary or by physical imperfections of the channel.
Authenticity means that the sender of the message is known and there is a possibility to
check that the sender is indeed the claimed person. Sealing envelopes and signing docu-
ments are the common tools for providing data integrity and authenticity used since the
advent of mails. In the digital world, data integrity and authenticity can be provided by
message authentication codes (MAC) and digital signatures.

1.1 Appearance of modern cryptology

Cryptology as an art of creating and breaking codes has a very long history often con-
nected to diplomatic and military communications. Most of the known ancient civilizations
developed their own methods to protect secret messages from enemy’s eyes. The fascinat-
ing history of cryptography starting from ancient Egypt to the middle of the XX century
can be found in [Kah96].

However, modern cryptology have appeared rather recently. The process of turning
from hidden military art into modern science was dramatically accelerated in the end of

7

the XIX century with the development of new technologies. Appearance of new means of
communication such as electrical telegraph and radio required new methods for secure com-
munication. In 1883, Auguste Kerckhoffs have formulated 6 principles of cryptosystem’s
design, one of which remains relevant and very important until now: the cryptosystem must
remain secure even if all the information about it, except the secret key, is public [Ker83].

A few decades later, the two world wars created a great need for both cryptographic
and cryptoanalytic techniques. World War II significantly advanced the usage of automati-
zation in cryptology. On one side, the rotor stream cipher machines were used extensively
to encrypt secret messages; on the other side, electromecanical devices were used for their
cryptanalysis. Probably the most impactful cryptanalytic event of World War II was the
breaking of Nazi Germany’s Enigma machine. Enigma ciphers were broken in 1932 by Mar-
ian Rejewski in Polish Cipher Bureau. Seven years later Polish Cipher Bureau shared their
discoveries with France and Great Britain. Then, Alan Turing advanced Polish techniques
and created an electromechanical machine called the bombe, which allowed the Allies to
read a plethora of German’s secret communication.

The cryptological experience of the two world wars together with the creation of the first
digital computers in the late 40s produced the necessity of a rigorous theory encompassing
existing knowledge and allowing to build new constructions. In the middle of XX century,
the modern cryptology has appeared. There are two fundamental and very impactful
papers, each of which can be considered as the starting point of modern cryptography. The
first is written by Claude Shannon in 1949 and it considers cryptography from information-
theoretical point of view [Sha49]. The second paper have appeared in 1976 [DH76]. In
this paper, Diffie and Hellman connect security of a cryptosystem with the computational
complexity of the underlying hard problem and introduce a revolutionary concept of public-
key cryptography.

1.2 Information-theoretical notion of security

The one-time pad is one of the most simple encryption techniques and it is the first
encryption scheme admitting provable security results. The one-time pad works as follows.
Assume that there are two communicating parties, Alice and Bob. First, they share a bit
string k = (k1, . . . , kn) ∈ {0, 1}n of length n using some secure communication channel.
The bit string k is the secret key for the one-time pad encryption. Then, when Alice decides
to send Bob a message M , she encodes M into a bit string m = (m1, . . . ,mn) ∈ {0, 1}n of
length n and encrypts each bit of the message m by adding it to the corresponding bit of
the key k modulo 2:

e = Enc(m) = (m1 ⊕ k1, . . . ,mi ⊕ ki, . . . ,mn ⊕ kn).

The decryption procedure coincides with the encryption. When Bob receives the en-
crypted message e, he adds bit-wise the secret key k to the encryption e and recovers the
original message m:

Dec(e) = (e1 ⊕ k1, . . . , ei ⊕ ki, . . . , en ⊕ kn) = (m1 ⊕ k1 ⊕ k1, . . . ,mn ⊕ kn ⊕ kn) = m.

In [Sha49], Shannon proved that if the secret key k is a random bit string, then the
one-time pad is information-theoretically secure. That is, the encryption e provides no
information about the plaintext m to the eavesdropper: after learning the encryption e,
the probability distribution on the set of all possible messages remains the same for the
eavesdropper as before seeing the encryption. This makes the one-time pad unbreakable
when properly used.

8

However, the information-theoretical notion of security has very strong limitations
which make it hard to use in practice. In order to ensure the security of the one-time
pad, two requirements should be fulfilled:

– the key should be as long as the plaintext message and can never be reused;
– the key should be truly random, i.e., sampled from the uniform distribution on
{0, 1}n.

As the key should be as long as the information needed to be transmitted, it might be
hard to provide secure key exchange for the one-time pad. Due to the difficulties of the
key management, the one-time pad is now rarely used in practice.

1.3 Public-key cryptography

A revolutionary solution to the key management problem was proposed by Diffie and
Hellman in 1976. In [DH76], they proposed a concept of a cryptosystem that can estab-
lish secure communication between users without any preliminary communication through
secure channels for key exchange. This is achieved by associating two keys instead of one
with each user: one key is for encryption and is public, another is for decryption and is
known only to its owner.

A note on secret-key cryptography. Public-key cryptography is also called asym-
metric cryptography sometimes in contrast to symmetric cryptography. Before 1976, only
symmetric cryptography existed. Symmetric, or secret key, cryptography studies encryp-
tion algorithms that use the same key for both encryption and decryption. For example,
one-time pad is a symmetric cipher. Another two famous examples of symmetric ciphers
are DES and AES. Symmetric ciphers are very efficient and widely used in practice, for
example, in TLS protocol for secure network communication. Public-key and secret-key
cryptography are often used together: some public key protocol (or Diffie-Hellman key
exchange) is used to share the symmetric secret key and then a symmetric cipher is used
for communication. As the focus of this thesis is public-key cryptography, we are not go-
ing into details about symmetric cryptography; for the introduction to symmetric ciphers
see [MKVOV96, Chapters 6 and 7].

Definition. Formally, a public-key cryptosystem can be described as a set of three algo-
rithms:

1. a probabilistic key generation algorithmK that takes as input the security parameter
n of the scheme and returns a pair of keys (ke, kd), where ke is the public key and
kd is the secret key;

2. an encryption algorithm Enc that takes as input a plaintext message m and the
public key ke and returns an encryption c = Enc(m, ke) of the message m;

3. a decryption algorithm Dec that takes as input an encrypted message c and the
secret key kd and returns a plaintext m = Dec(c, kd).

A public-key cryptosystem is used as follows. First, a new user Alice generates a pair
of keys (ke, kd) by the key generation algorithm K. Alice publishes the key ke and keeps
secret the key kd. Then, if Bob wants to send a secret message m to Alice, he encrypts it
using Alice’s public key ke and send c = Enc(m, ke) to Alice. Then, Alice decrypts Bob’s
message using her secret key kd and gets a plaintext m = Dec(c, kd).

For being correct and secure, a public-key cryptosystem must meet the following re-
quirements:

9

1. (correctness) for any message m, decryption of Enc(m, ke) under the correct key
should restore the original plaintext message: 1

∀m, Dec(Enc(m, ke), kd) = m;

2. (semantic security [GM84], informal) for any two messages m1 6= m2, there is no
efficient algorithm that given as input the public key ke, the messages m1,m2, and
the encryption c of one of the two messages chosen at random, cannot guess to which
message the encryption c belongs.

The semantic security can be seen as a relaxation of Shannon’s information-theoretical
security definition in context of computational complexity. The information-theoretical
definition of security demands that the encryption of a message leaks absolutely no infor-
mation about the plaintext, which implies too strong restrictions on cryptosystems sat-
isfying it. Diffie and Hellman in [DH76] suggested a more practical approach. Instead,
they allow the encryption to contain some information about the plaintext but demand
that retrieving that information from the encryption is computationally infeasible. Thus,
in order to measure the security of a cryptosystem, modern cryptography uses the tools
from computational complexity theory and to construct a secure cryptosystem we need
algorithmic problems that are hard to solve.

RSA cryptosystem. The first concrete instantiation of a public-key encryption scheme
is the RSA cryptosystem [RSA78], named by their authors Rivest, Shamir, and Adleman.
Now RSA is probably the most famous and the most widely-used cryptosystem. The
security of RSA relies on the integer factorization problem. Here we recall in short how
the “textbook RSA” works. 2

Key generation. In RSA, the key generation algorithm works as follows.

1. First, it generates two random prime numbers p, q of close binary length. p and q
should be kept secret.

2. Then, the algorithm computes the modulus n = p · q. All computations in RSA are
in Z∗n and n is a part of the public key.

3. Then, the algorithm computes Euler’s phi function φ(n) = (p−1)(q−1) and chooses
e such that e is coprime with φ(n).

4. Then, it computes d such that

d · e = 1 mod φ(n).

As e and φ(n) are coprime, d can be found using the extended Euclidean algorithm.

5. The key generation algorithm returns the pair (e, n) as public key and d as secret
key.

Encryption. In order to encrypt a message, a user should encode it into a number
m ∈ Zn and raise it to the power e:

c = Enc(m) = me mod n.

Decryption. The decryption works similarly, but the exponent for decryption is d:

Dec(c) = cd = me·d = m mod n.

1. This requirement can be relaxed: instead of requiring the correctness equality to always be fulfilled,
sometimes it is required that it holds with probability close to one.

2. Note that the “textbook RSA” is deterministic and thus it is not semantically secure. But RSA can
be made semantically secure and resistant to chosen plaintext attacks by padding techniques.

10

The equality that ensures the correctness of decryption follows from Fermat’s little theorem.
Security. The security of the RSA cryptosystem is based on the presumable hardness

of the following problem.

Definition 1.1. Given a number n that is a product of two unknown prime numbers, an
integer e coprime with φ(n), and c ∈ Z∗n, the RSA problem asks to find m ∈ Z∗n such that
m is a valid RSA decryption of c, i.e.,

me = c mod n.

The RSA problem is not harder than the integer factorization problem. If the factor-
ization of the modulus n is known, then φ(n) can be easily computed and the secret key
d can be obtained using the extended Euclidean algorithm in the same way as in the key
generation. The most efficient attacks against RSA start with factoring the modulus n,
thus the practical security of RSA is based on the integer factorization problem.

Theoretically, however, RSA might be an easier problem then the integer factorization.
For the moment there is no reduction showing that an algorithm solving the RSA problem
can be efficiently converted into an integer factorization algorithm.

Applications besides encryption. The advent of public-key cryptography has ex-
panded the applications of cryptographic constructions. Now, besides simple encryption
of messages, there are many other cryptographic protocols used on a daily basis such as
digital signatures and authentication schemes. The recent advances in public key cryptog-
raphy also allow to build more powerful constructions such as identity-based encryption,
attribute based encryption, and even fully homomorphic encryption.

1.4 Fully Homomorphic Encryption

In 1978, Rivest, Adleman, and Dertouzos suggested the idea of a privacy homomor-
phism [RAD+78]. They noted that existing encryption techniques are quite rigid in terms
of the operations allowed on the encrypted data: the encrypted data can be stored or sent
to a user, but for more complicated operations usually decryption is required. In [RAD+78]
the authors posed the following question: is it possible to construct an encryption scheme
that allows to perform arbitrary operations on encrypted data without decrypting it?

As an application of such an encryption scheme, Rivest, Adleman, and Dertouzos pro-
posed private data banks. Assume that Alice has some sensitive data that is too large
to be stored on her computer and that Bob is a data bank. Then, Alice can encrypt her
data using a homomorphic encryption scheme and send the encrypted data to Bob. Since
the encryption scheme allows to perform any computations homomorphically without de-
crypting, each time when Alice needs to retrieve some information from her storage, she
can just send a query (i.e., a function that she needs to compute) to Bob. Then, Bob can
apply the function to the encrypted data and send the encrypted answer to Alice’s query
without an access to the plaintext data. This is much more efficient than retrieving all the
information back from the server and decrypting it each time when something is needed.
Besides private data banks, homomorphic encryption can be used for solving other related
problems such as cloud computing and secure multi-party computations.

For the next three decades after [RAD+78] it was an open question whether an encryp-
tion scheme that allows homomorphic computation of any function can ever be constructed.
In 2009, Gentry solved the question by proposing the first fully homomorphic encryption
scheme based on ideal lattices [GB09].

11

Definition. A homomorphic encryption scheme is a public-key encryption scheme that
can be informally described as a set of three algorithms:

— – as a usual public-key cryptosystem, it has encryption and decryption procedures
Enc and Dec and the corresponding keys: a public key ke and a secret key kd;

— – it has an efficient algorithm for homomorphic computations Eval, that takes as
input a circuit Cf corresponding to a function f that user wants to evaluate, the
encryptions of the arguments of the function, and the public key and returns the
encryption of the value of f on the arguments.

To be correct, a homomorphic encryption scheme should satisfy the following require-
ment: for any allowed circuit Cf corresponding to the function f of t arguments, any
valid pair of keys (e, d), and any ciphertexts c1 = Enc(m1, ke), . . . , ct = Enc(mt, ke), the
algorithm Eval returns

cf = Eval(Cf , c1, . . . , ct, ke) such that Dec(cf , kd) = f(m1, . . . ,mt).

From partially to fully homomorphic. A fully homomorphic encryption scheme
should be able to evaluate any Boolean function on encrypted data. Recall that any
Boolean function can be expressed as a composition of elementary functions from some
functionally complete set. Common examples of functionally complete sets are {⊕,∧, 1}
and {NAND}, the latter is also known as Sheffer stroke x|y := ¬(x ∧ y).

Thus, in order to construct a fully homomorphic encryption scheme, it is enough to be
able to evaluate unlimited number of XOR and AND operations homomorphically. There
are different definitions of homomorphic encryption schemes.

Partially homomorphic schemes can evaluate only some operations homomorphi-
cally. For example, RSA in its basic version is partially homomorphic: it allows to perform
homomorphic multiplication. Let ke = (e, n) be a public key and let c1 = Enc(m1, ke)
and c2 = Enc(m2, ke) be ciphertexts for messages m1 and m2 correspondingly. Then, the
product c1 · c2 is a valid encryption of the message m1 ·m2:

Enc(m1, ke) · Enc(m2, ke) = me
1 ·me

2 mod n = (1.1)
(m1 ·m2)e mod n = Enc(m1 ·m2, ke). (1.2)

Somewhat homomorphic schemes can perform all the operations from some func-
tionally complete set, but only a limited number of them. For example, the homomorphic
encryption scheme from [BGN05] supports an arbitrary number of additions and one mul-
tiplication.

Fully homomorphic encryption scheme is able to perform unlimited number of op-
erations that form a functionally complete set. The first such construction is described
in [GB09] and it is able to perform an unlimited number of XOR and AND.

Gentry’s bootstrapping. Gentry showed that a somewhat homomorphic encryption
scheme which is able to perform a limited number of operations can be turned into a fully
homomorphic encryption scheme if certain conditions are satisfied. The cornerstone of this
construction is the bootstrapping of a scheme. We informally recall how it works.

Assume that we have a somewhat homomorphic encryption scheme S that can ho-
momorphicaly evaluate only circuits of a limited depth. Particularly, suppose that each
ciphertext is a sum of a function of the plaintext with some noise. Initially encrypted
ciphertexts have small noise, but performing homomorphic operations on ciphertexts in-
crease the associated noise of the result. The decryption algorithm works correctly only
while ciphertext’s noise is smaller than some threshold. The noise level required for the
correct decryption limits the depth of the circuit for homomorphic evaluation.

12

Gentry proposed a construction for refreshing noisy ciphertexts. Note that if we could
decrypt ciphertext and re-encrypt it again, noise level would be reduced to the initial low
levels, but decryption requires the secret key that should not be revealed. The idea of
Gentry is to perform the decryption procedure homomorphically using the encryption of
the secret key kd. Suppose that c is a noisy ciphertext we want to refresh. Then, the
bootstrapping procedure works as follows:

1. first, we compute the encrypt the ciphertext once again and get Enc(c, ke);
2. then, we evaluate a decryption circuit homomorphically using the encryption of the

secret key Enc(kd, ke) and get

cnew = Eval
(
CDec,Enc(c, ke),Enc(kd, ke), ke

)
.

The result of the homomorphic evaluation of the decryption with encrypted secret key
cnew is a fresh encryption corresponding to the same plaintext as c. The noise associated
originally with c is removed by the decryption, but evaluating the decryption circuit pro-
duces its own new noise. Assume that noise induced by the homomorphic decryption is
sufficiently low to allow perform at least one homomorphic NAND gate. Then, we can
perform NAND homomorphically unlimited number of times using the bootstrapping pro-
cedure. As any Boolean function can be expressed as a combination of NAND gates, the
somewhat homomorphic scheme S can be turned into a fully homomorphic scheme S∗ by
adding gate bootstrapping. Thus, a somewhat homomorphic scheme is bootstrappable if it
is able to evaluate its own decryption circuit and at least one NAND gate.

FHE constructions. The original Gentry’s construction is based on ideal lattices. Fol-
lowing Gentry’s work, other ideal lattice-based constructions were proposed [SV10, GH11a,
SS10]. The structure of the ideal lattices seems to be very suitable for FHE as they natu-
rally possess both additive and multiplicative homomorphic properties. However, the ideal
lattice-based FHE constructions are rather mathematically involved and not very efficient
in practice. The Gentry-Halevy implementation [GH11b] of Gentry’s FHE scheme uses a
public key of size 2.3 GB while its bootstrapping operation takes about 30 minutes.

The year after Gentry’s thesis, a new FHE construction has appeared. In [VDGHV10],
the authors translated Gentry’s FHE scheme to integers. The FHE scheme proposed
in [VDGHV10] is based on the approximate GCD problem and is conceptually much sim-
pler than the ideal lattice-based ones. Then, more integer-based schemes were created
(e.g., [CMNT11, CNT12, CLT14, CS15]). However, in terms of efficiency, the integer-
based schemes do not offer improvements over ideal lattice constructions.

Starting from 2011, another lattice-related family of FHE constructions appeared.
These schemes are based on the Learning With Error problem (LWE) and its ring ver-
sion Ring-LWE (e.g., [BV11, BGV14, FV12, BV14, Bra12, GSW13, DM15]). Now the
(Ring-) LWE branch of FHE research is the most active one and the (Ring-) LWE based
constructions are the most efficient. In order to achieve efficiency, some LWE-based con-
structions deviate from Gentry’s blueprint and avoid the costly bootstrapping operation.
It can be done by creating a leveled FHE scheme, a concept, introduced in [BGV14]. A
homomorphic encryption scheme is called leveled (LHE) if it can evaluate circuits of any
depth L, where L becomes a parameter of the scheme. That is, a leveled FHE can evaluate
circuits of an arbitrary depth, but the complexity of the scheme increases with L. Most of
the (Ring-) LWE-based HE schemes are LHE ones, but also allow bootstrapping.

The Ring-LWE-based FHE schemes became very efficient in the recent time compared
to the first FHE constructions. In 2015, Ducas and Micciancio proposed a scheme called
FHEW [DM15] that can do the bootstrapping faster than in 1 second. Then, next year,
the Fast Fully Homomorphic Encryption Scheme over Torus (TFHE) [CGGI16] broke the
record by performing the gate bootstrapping in less than 0.1 second.

13

1.5 Hard problems in cryptography

Ideally, we would like to be able to prove that breaking a cryptosystem takes an infea-
sible amount of time under some realistic computational model. In order to produce such
a proof, we need to show that breaking a cryptosystem is at least as hard as solving some
hard problem, i.e., a problem that can not be solved faster than in some huge time T . For-
tunately or not, for the moment there is no problem that admits a mathematical proof of
such property. For now, the main source of difficult problems for cryptography are the long
standing mathematical questions that were studied by the community during a long pe-
riod of time and still do not admit efficient solutions. A vast amount of existing public-key
constructions is based on two such problems: integer factorization and discrete logarithm.
This approach implies that the security of a cryptosystem is closely connected to the fastest
known algorithm for solving the underlying presumably hard problem. Therefore, choosing
a hard problem to construct a cryptosystem is an important and subtle task.

Hardness on average. To turn a hard problem into a cryptographic construction, it is
necessary to be able to generate many hard instances of the problem. One of the subtleties
in choosing the problem is that not every worst-case hard problem is hard on average and
allows to generate hard instances easily. For example, the Hamiltonian path problem is
known to be NP-complete, but there is an algorithm that solves this problem in expected
linear time on average [GS87] for a random G(n, p) graph with a fixed positive p. Thus, just
taking an NP-complete problem is not enough to guarantee security in the average case.
Most of the cryptographic constructions based on the NP-complete knapsack problem were
broken due to the usage of easy instances [Odl90].

Quantum computer. The hardness of a problem also depends on the model of compu-
tation. There does not yet exist a polynomial time algorithm for integer factorization and
discrete logarithm on a classical computer, but in the quantum world things are different.
In 1994, Peter Shor proposed an algorithm that solves integer factorization and discrete
logarithm in probabilistic polynomial time on a quantum computer [Sho99]. Thus, all the
existing public-key constructions based on integer factorization and discrete algorithm are
insecure in the world where a large-scale quantum computer exists.

Existing quantum computers are too small to be considered as a serious threat to ex-
isting RSA-like constructions (the largest quantum computer has only 53 qubits at the
moment of writing this text), but the quantum computing is a very active area of research
with a lot of efforts put from both academic and industrial sides. In 2016, National Insti-
tute of Standards and Technology (NIST) of US has initiated a process of standardizing
quantum-resistant public-key cryptographic algorithms. According to NIST, some engi-
neers predict that a quantum computer large enough to break existing public key schemes
may appear within about next 20 years. NIST have launched a competition for presumably
quantum-secure public-key encryption and signature schemes. Competition is now in the
second round, and most of the schemes that survived the first round are based on hard
problems arising in lattices, codes, and multivariate polynomials.

Suchwise, now more research is needed to build efficient quantum-resistant construc-
tions and understand their security. This thesis is focused on lattice-based cryptography
and algorithms for solving hard lattice problems. Lattice-based cryptography is currently
one of the most promising branches of post-quantum cryptography due to the algorithmic
efficiency of the constructions (especially ring-based), connection between the worst case
and average case hardness for certain lattice problems, and a wide range of cryptographic
constructions lattices allow to create.

14

1.6 Lattices and related computational problems

A lattice is a geometrical object that can be informally described as a set of inter-
section points of a regular grid in an n-dimensional space. By the definition, a lattice
Λ is formed by all integer linear combinations of the set of linearly independent vectors
B = {b1, . . . ,bm} ⊂ Rn, called a basis of Λ:

Λ :=
{ m∑
i=1

xi · bi
∣∣∣ x1, . . . , xm ∈ Z

}
.

Lattices as mathematical objects have been studied over more than two hundred years
and have rich connections to number theory and convex geometry. More recently, various
applications of lattices in computer science have been discovered, ranging from solving
computational problems like factoring polynomial over rationals [LLL82] and combinatorial
optimization to cryptographic constructions.

The two central computational lattice problems are the Shortest Vector Problem (SVP)
and the Closest Vector problem (CVP). In SVP, we are given a basis B of the lattice Λ
and the goal is to find the shortest non-zero vector of the lattice. In CVP, we are given a
target vector t ∈ Rn and a basis B of a lattice Λ and the goal is we need to find the closest
approximation of the target vector by a lattice vector, i.e., to find v ∈ Λ such that

‖t− v‖ = min
x∈Λ
‖t− x‖.

Both problems are known to be computationally hard. More precisely, the Closest Vector
Problem is NP-hard [DKS98] and the Shortest Vector Problem is NP-hard under random-
ized reduction [Ajt98].

SVP and CVP also have approximate versions. In the approximate versions, instead
of looking for the shortest/the closest vector, we search for a vector that lies within some
fixed distance from the origin / the target vector. That is, in γ-approximate SVP we search
for a lattice vector of the norm at most γ ·λ1, where λ1 is the length of the shortest vector
of the lattice. Approximate versions of SVP and CVP remain hard for constant and even
small polynomial factors.

Lattice algorithms. While exact lattice problems and their close approximate ver-
sions are hard to solve, 2O(n)-approximate SVP can be solved in polynomial time. In
1982, Lenstra, Lenstra, and Lovász proposed first lattice reduction algorithm for high-
dimensional lattices that achieves this approximation factors. The LLL algorithm works by
iteratively reducing two-dimensional projected sublattices of an input lattice, which allows
to bound the length of the first vector of the basis, returned by the algorithm, by 2O(n)λ1.
In spite of so large approximation factor, LLL allows to solve various computational prob-
lems. Moreover, the LLL algorithm was also proved to be a powerful cryptoanalytic tool
(see, e.g., [Odl90] for breaking knapsack-based cryptosystems using LLL).

As for exact and close approximate lattice problems, not surprisingly, the fastest algo-
rithms have at least exponential time complexity. For solving exact lattice problems, three
main strategies can be outlined: enumeration, sieving, and discrete Gaussian sampling.

The enumeration algorithm was proposed by Kannan in [Kan83]. The algorithm works
by enumerating all the lattice points inside a bounded ball and can solve both SVP and
CVP. The enumeration algorithms have superexponential running time (i.e., nO(n)) but
they require only a polynomial amount of memory.

The first sieving algorithm was proposed by Ajtai, Kumar, and Sivakumar (AKS)
in [AKS01]. The idea of sieving algorithms is based on a simple fact that a difference of
two lattice vectors is also a lattice vector. A sieving algorithm works as follows. First,

15

the algorithm randomly generates a long list of lattice vectors. Then, it searches for
the pairs of vectors from the list such that their difference is a little bit shorter than
the vectors from the original list. Such differences form a list of slightly shorter vectors
for the next iteration. Proceeding iteratively in this way, we obtain very short lattice
vectors in the end. The complexity of sieving algorithms is exponential both for time
and memory (i.e., 2O(n)). For a long time, sieving algorithm had been considered as
impractical because of presumably high hidden constant in the exponent and because of
huge memory requirements. Then, in [NV08], Nguyen and Vidick computed the exact
complexity of the AKS sieve and proposed its practical heuristic variant. Since that time,
various improvements for the sieving process have appeared. For the moment, the fastest
heuristic algorithm for solving SVP is the sieving algorithm from [BDGL16], it has 20.292n

time complexity and 20.207n memory complexity.
Another approach to solving SVP and CVP is the discrete Gaussian sampling, first

proposed in [ADRSD15]. Informally, the discrete Gaussian distribution is a Gaussian
distribution restricted to the lattice Λ, i.e., the probability of a lattice vector v ∈ Λ is
proportional to the Gaussian function of v. At a high level, the algorithms based on the
discrete Gaussian sampling can be seen as sieving algorithms. They start by sampling a
long list of lattice vectors from the discrete Gaussian distribution of a big width. Then,
the algorithm pairs vectors from the list so that the difference of the vectors from the pair
is also distributed according to the discrete Gaussian distribution, but of a smaller width.
Iteratively repeating this procedure, in the end, the algorithm obtains a list of lattice
vectors from the distribution of the width small enough to recover the shortest lattice
vector with high probability. The algorithms, based on the discrete Gaussian sampling,
have the best provable complexity for solving both exact SVP and CVP [ADSD15]. The
time and memory complexity for both problems is 2n.

In the middle between the algorithms for solving exact lattice problems and LLL there
are blockwise algorithms like BKZ [CN11] or D-BKZ [MW16], that achieve subexponential
approximation factors. The blockwise algorithms proceed by iteratively solving the exact
SVP on projected sublattices of smaller dimension. The enumeration or heuristic sieving
algorithms are usually used as an oracle for solving exact SVP in blockwise algorithms.

1.7 Lattice-based cryptography.

Lattice-based cryptography studies a usage of presumably hard lattice problems as
a foundation for secure cryptographic constructions. It appeared in 1996, when Ajtai
proposed a collision-resistant hash function whose security is based on a certain lattice-
related problem [Ajt96].

The two central hard problems in lattice-based cryptography are the Short Integer
Solution (SIS) and Learning With Errors (LWE). SIS was proposed by Ajtai in [Ajt96]. In
SIS, we are given a set of m random vectors a1, . . . ,am ∈ Znq , and the goal is to find a short
linear combination of these vectors that sums to zero, i.e., find z = (z1, . . . , zm)t ∈ Zm
such that

n∑
i=1

zi · ai = 0, ‖z‖ 6 β,

for some β > 0. In [Ajt96], Ajtai shows that, for certain choice of the parameters, solving
SIS on average is at least as hard as solving poly(n)-approximate SVP in the worst-case.
Then, many SIS-based cryptographic constructions appeared, for example, identification
protocols [Lyu08] and digital signature schemes [GPV08].

Then, in 2005, Regev introduced another lattice-related problem that admits similar
average-case hardness, called the Learning With Errors Problem [Reg05]. In LWE, we are

16

given m noisy linear equations, i.e.. we are given a m pairs (ai, bi) ∈ Znq × Zq such that

atis + ei = bi mod q,

where ei is a small noise added to the i-th equation and s ∈ Znq is a secret vector. The goal is
to recover the vector s. In [Reg05], Regev proposed the first public-key encryption scheme
based on LWE. Since that time, LWE have been a rich source of various cryptographic
constructions, including very powerful ones like identity based encryption [GPV08] and
fully homomorphic encryption (FHE) [BV11, FV12].

Both SIS and LWE have ring versions which are basically the same problems adapted
to a restricted family of lattices called ideal lattices. Ring versions of SIS and LWE allow
to build more compact and efficient cryptographic constructions thanks to the underlying
ring structure at the cost of having more restricted hardness assumption.

SIS and LWE posses many properties that make lattice-based cryptography very attrac-
tive. First, both problems are hard on average, which means that cryptographic construc-
tions based on SIS and LWE are as hard to break as to solve the worst-case lattice problems.
Second nice property is the conjectured hardness of SIS and LWE against quantum com-
puter. In contrast to integer factorization and discrete logarithm problems [Sho99], for the
moment there is no efficient quantum algorithm for hard problems underlying lattice-based
cryptography. Finally, lattice-based cryptography includes a very wide range of crypto-
graphic constructions, from classical public key encryption and signature schemes to very
sophisticated ones, like, e.g., attribute-based encryption [BGG+14] and fully homomorphic
encryption [GB09, BV11, FV12].

1.8 Contribution of this thesis.

This thesis has two parts. In the first part, we introduce a new family of lattice sieving
algorithms, called cylindrical sieving. In the second part, we study the security of the Fast
Fully Homomorphic Encryption scheme over Torus, which is currently the FHE scheme
with the fastest implementation.

1.8.1 Cylindrical sieving

The first part introduces a cylindrical sieving – a new family of heuristic sieving algo-
rithms for solving variants of the SVP and CVP problems. In the first part of this thesis,
we study the complexity of solving lattice problems using the cylindrical sieving and the
connections with other lattice algorithms. We show that cylindrical sieving approach can
outperform existing heuristic lattice algorithms in solving some lattice problems, namely,

– solving SVP for lattices with small prime volume,
– solving CVPP.

Sieving framework

A sieving algorithm can be divided in two steps:
– generation of an exponentially long list of lattice vectors with big but bounded norm,
– iterative sieving of the vectors from the list.

Typically, a sieving algorithm generates the initial list of lattice vectors by sampling them
independently from the distribution that is concentrated on the lattice vectors with some
fixed norm, for example, from the discrete Gaussian distribution of some fixed width. Then,
in the sieving step, the algorithm searches for the pairs of the vectors from the list such
that their differences are short, i.e., shorter then the vectors from the given list. Then, the
short differences form a new list of lattice vectors for the next iteration of sieving.

17

It is hard to describe the exact distribution of the lattice vectors from the list during the
iterative sieving process. Therefore, the behavior of sieving algorithms is usually analyzed
under the following natural heuristic assumption, informally described by Assumption 1.1.

Assumption 1.1. Let L be the list of lattice vectors produced by a sieving algorithm. We
assume that at any iteration of the algorithm the vectors from the list L, after rescaling,
behave as if they are sampled independently from the uniform distribution on the sphere
Sn−1 = {x ∈ Rn | ‖x‖ = 1}, where n is the dimension of the input lattice.

Cylindrical sieving framework

The cylindrical sieving algorithm has the structure of a usual sieving algorithm,i.e., it
also generates a long list of lattice vectors and then iteratively searches for the pairs of
vectors from the list that give short differences. The main difference is the geometry of the
vectors from the list, produced by the cylindrical sieving. Typically, in sieving algorithms,
we assume that the vectors, produced at each iteration, lie approximately on a sphere of
some fixed radius, that is, no direction is privileged. The cylindrical sieving algorithm
generates and sieves vectors in such a way that the vectors from the list lie inside the
hypercylinder with a huge height but with a small radius. That is, it lets the projection
of the vectors on one selected direction be long at the cost of having very short projection
on its orthogonal complement.

Initial generation of lattice vectors. There is a simple way to generate lattice vectors
inside a long and narrow hypercylinder for integer lattices whose volume is prime. If a
lattice Λ has a prime volume vol(Λ) = p, then it can be represented by the basis B of the
following shape:

H =

p a1 . . . an−1

0 1 0
...

. . .
0 0 1

 , (1.3)

where a1, . . . , ap ∈ Zp.
Using the shape of this matrix, we can generate a lattice vector v ∈ Λ such that the

first coordinate of v is big, but bounded by the volume of the lattice p while the last (n−1)
coordinates are short. This can be done as follows:

1. choose u = (u1, . . . , un−1) ∈ Zn−1 such that ‖u‖ 6 R;

2. compute v1 =
n−1∑
i=1

ai · ui mod p;

3. return v := (v1, u1, . . . , un−1)t.
This approach can be generalized for arbitrary lattices using unbalanced reduction

from [GINX16]. Unbalanced reduction is a polynomial-time algorithm that transforms an
arbitrary lattice basis B into a new basis C such that the Gram-Schmidt orthogonalization
of C satisfies:

– the last (n− 1) Gram-Schmidt vectors are short, i.e., ‖c∗i ‖ 6 σ;
– ‖c1‖ is long, but bounded.
The unbalanced reduction reveals a basis of (n − 1)-dimensional projected sublattice

ΛC of L(B) that allows to generate lattice vectors whose projection on the subspace
orthogonal to c1 is short. This projected sublattice can be seen as an analogue of Zn−1 in
case of lattices with prime volume. A lattice vector that lies inside a bounded hypercylinder
for an arbitrary lattice can be generated as follows:

1. choose v inL(B) such that the norm of the projection of v on the (n−1)-dimensional
subspace orthogonal to c1 is bounded by R > σ, using basis C;

18

2. reduce v with c1.
Thus, we obtain a vector whose projection on the direction of c1 is smaller than ‖c1‖

2 and
the projection on its orthogonal complement is bounded by R.

The approach for arbitrary lattices is very similar to the approach for prime volume
lattices, but for prime volume lattices the generation of vectors in a hypercylinder is some-
what easier, because we start with generating a short vector in Zn−1 instead of an arbitrary
(n − 1)-dimensional sublattice. Also, the parameters of the hypercylinder are different in
the two cases. Thus, for all the algorithms described further in this part of the thesis, we
separately consider the prime volume lattice case.

Sieving step. At a high level, one iteration of cylindrical sieving works similarly to one
iteration of usual sieving process. That is, input of one iteration of cylindrical sieving is
again a list of lattice vectors L ⊂ Λ and the goal is to find the pairs of vectors from the list
(x,y) ∈ L×L such that the difference x−y is shorter than some threshold. The difference
is the geometry of the vectors from the list.

Typically in sieving, all the vectors from the list L lie inside a hypersphere of a radius
R, and the goal of one iteration is to produce a list of lattice vectors that lie inside a
hypersphere of a smaller radius R′ < R. In cylindrical sieving, we have a list of vectors
that lie inside a hypercylinder of height h and radius R such that h is much bigger than R.
For most of the vectors from the list L, their projection on the direction of cylinder’s axis
contributes to their norm much more than the projection on its orthogonal complement.
Hence, in order to find pairs that give shorter differences, we consider the projection on
the cylinder’s axis and on its orthogonal complement separately. We look for pairs of
vectors such that the difference of their projection on the cylinder’s axis is short. Since
the projection on the orthogonal complement is small, we can let it slightly grow. In other
words, the goal of one iteration of cylindrical sieving is to produce a new list of lattice
vectors that lie inside a much shorter and slightly wider hypercylinder.

Assume that we choose the coordinate system in such a way that the axis of the cylinder
is parallel to the unit vector e1 = (1, 0, . . . , 0)t ∈ Rn and initially all the vectors from the
list L lie inside a hypercylinder of height h and radius R. Then, one iteration of cylindrical
sieving looks for the pairs of the vectors (v,w) ∈ L× L such that

– the first coordinate of the difference is much smaller than h, i.e. |v1 − w1| 6 h
N for

some big N ;
– the vector formed by the last (n − 1) coordinates of the difference might be bigger

than R by a constant factor: let uv := (v2, . . . , vn)t and uw := (w2, . . . , wn)t; then,
‖uv − uw‖ 6 γ ·R, where γ ∈ [1; 2].

The growth factor γ is never bigger than 2 because initially the projection on the
orthogonal complement to e1 is bounded by R for all vectors from L.

Splitting vectors into the sum of two orthogonal components and letting one of the
two components grow makes the search for suitable pairs easier. For example, if we let
the growth factor γ be equal to 2, we can completely ignore the second component and
just search for the vectors whose first coordinates are close. It can be done by sorting the
vectors from L by the values of their first coordinates and then choosing the pairs that are
close in the sorted list.

If we choose the growth factor γ smaller than 2, we need to take some care of the
second component. But having two components allows us to reduce the search space when
we look for a suitable pair for one fixed vector from the list. Instead of looking through all
the vectors in the list, we can separate the search process in three parts:

– we sort the list L by the value of the first coordinate of the vectors;
– we divide the sorted list L into N lists L1, . . . , LN such that for any v,w ∈ Li,
|v1 − w1| 6 h

N for all i;

19

– for each Li, we perform usual spherical sieving, ignoring the first coordinate of the
vectors, i.e., we search for pairs of vectors x,y ∈ Li such that ‖ux − uy‖ 6 γR,
where ux = (x2, . . . , xn)t, uy = (y2, . . . , yn)t.

One iteration of cylindrical sieving has two parameters: the decrease rate of the first
coordinate N and the growth factor of the last two coordinates γ. The parameter γ
defines how much time is spent on processing of one sublist Li, the parameter N controls
the number of sublists.

To sum up, cylindrical sieving works as follows. First, it samples a long list of lattice
vectors inside a bounded hypercylinder and then iteratively applies sieving step describing
above. The complexity and the length of the vectors, returned by the procedure depend
on the following parameters:

– parameters of the initial hypercylinder: length h and radius R;
– size of the list of the lattice vectors L;
– parameters of one iteration of the cylindrical sieving: the decrease rate N and the

growth factor γ.
Varying these parameters allows to adjust the algorithm depending on a target problem.

In this thesis, we consider the following applications of cylindrical sieving: solving SVP
for prime volume and arbitrary lattices, solving SVP for lattices with small prime volume
(i.e., vol(Λ) ≈ 2O(n)), and solving the Closest Vector Problem with Preprocessing for prime
volume and arbitrary lattices.

Gaussian heuristic. In this thesis, in order to get an estimate on the length of shortest
lattice vector and on the distance from some fixed point in the space to a lattice, we use
the Gaussian heuristic. Informally, the Gaussian heuristic states that the number of lattice
points inside a “nice” set S ⊂ Rn is close to the ratio of the volume of the set S and the
volume of the lattice,i.e. vol(S)

vol(Λ) .

The Gaussian heuristic implies that any ball of radius O(
√
n) · vol(Λ)1/n contains one

lattice point. Hence, we assume that the shortest vector of a lattice Λ has length close to
O(
√
n) · vol(Λ)1/n and, more generally, the distance from the lattice Λ to a point t ∈ Rn

is also close to O(
√
n) · vol(Λ)1/n.

Further, when we write “algorithm for solving SVP/CVP”, if there is no more precise
description, it means an algorithm that searches for lattice vectors of length O(

√
n) ·

vol(Λ)1/n / at the distance O(
√
n) · vol(Λ)1/n from the given target.

Solving SVP using cylindrical sieving

In Chapter 4, we consider solving the Shortest Vector Problem using the cylindrical
sieving approach. Here we recall in short the results from Chapter 4.

Heuristic assumption for solving SVP. The complexity of heuristic sieving algo-
rithms is usually analyzed under heuristic assumptions close to Assumption 1.1, i.e., it is
assumed that the vectors from the list, produced by a sieving algorithm, behave as sampled
from the uniform distribution on a sphere.

As the geometry of the vectors produced by the cylindrical sieving is different, we use
another heuristic assumption. At each iteration, the vectors from the list are contained
inside a hypercylinder of bounded height and radius. To analyse the complexity of the al-
gorithm, we separately consider the projections of the vectors from the list on the direction
of cylinder’s axis and the projections on its orthogonal complement.

– We do not need any heuristic assumption of the distribution of the projections on the
cylinder’s axis. The fact that it is bounded at each iteration is enough to guarantee
that after k iterations these projections are small using pigeonhole principle.

20

– The projections on the orthogonal complement of the cylinder’s axis are (n − 1)-
dimensional vectors. After cutting the hypercylinder into N chunks by the value
of the projection on the axis, the algorithm performs a usual spherical sieving on
the (n − 1)-dimensional projections of the vectors from one chunk. To analyze the
complexity of the sieving inside one chuck, we use usual spherical sieving assumption,
similar to Assumption 1.1.

Informally, the heuristic assumption that we use for analyzing the complexity of solving
SVP with cylindrical sieving can be summarized as follows.

Assumption 1.2. We assume that at any iteration of the cylindrical sieving process, the
projections of the vectors from the list L on the (n−1)-dimensional subspace orthogonal to
the axis of the hypercylinder, after rescaling, behave as if they are samples independently
from the uniform distribution on the sphere Sn−2 = {x ∈ Rn−1 | ‖x‖ = 1}, where n is the
dimension of the input lattice.

Difference between prime volume lattice case and general case. In Section 4.1,
we describe the initial generation of lattice vectors inside a long and narrow hypercylinder.
The algorithm for initial generation is different in case of prime volume lattices compared
to the general case. The complexity of the initial generation of lattice vectors and the
parameters of the resulting hypercylinders in the two cases are compared in Table 1.1.

Table 1.1 – Λ denotes a lattice given as input to an algorithm. The parameter β is bigger
than

√
e. 3

prime volume general case

cylinder’s params. h = vol(Λ)
R = O(

√
n)

h = 2O(n2) vol(Λ)1/n

R = 2−O(n) vol(Λ)1/n

time complexity Õ(N) to generate N vectors Õ(e
nβ2

2e) to generate
N = Õ(βn) vectors

Besides the initial generation of lattice vectors, the cylindrical sieving algorithm works
identically in both prime volume lattice and general cases. But, since the parameters of
the initial hypercylinder and the time complexity of the initial generation are different in
the two cases, the optimal choice of algorithm’s parameters (e.g., the number of iterations)
are different in the two cases.

Choice of the growth rate γ. In some sense, the growth rate γ is the main parameter of
the cylindrical sieving. First, when we fix the height and radius of the initial hypercylinder
and the desired length of the output vectors, all the other parameters and the overall
complexity of the algorithm are defined by the growth rate γ. Thus, the cylindrical sieving
can be seen as a family of algorithms with different ratios between the time and memory
complexities, parameterized by γ.

Second, the choice of the growth rate γ defines the complexity of the most time-
consuming part of the algorithm, i.e., of one iteration of the spherical sieving of (n − 1)-
dimensional vectors inside one chunk of the hypercylinder. The number of vectors needed
to perform the spherical sieving is defined by the number of random spherical caps of the
radius γ. The larger the parameter γ is, the fewer caps are needed to cover the sphere and
the cost of the spherical sieving part is smaller.

3. For our choice of parameters, β is always bigger than
√
e. However, when β <

√
e, the time

complexity in the general case is the same as in the prime volume case, i.e., the time needed to generate
N lattice vectors is Õ(N) (see Lemma 4.2).

21

The complexity of solving SVP using cylindrical sieving as a function of γ is considered
in Section 4.3. We are mostly interesting in the following three choices of the parameter γ:

– choose γ to optimize the time complexity of the whole algorithm;
– choose γ to optimize the time of the cylindrical sieving part (i.e., without initial

generation of lattice vectors);
– choose γ to optimize the time complexity of the spherical sieving part.
The complexity of cylindrical sieving for these choices of the parameter γ is summarized

in Tables 1.2 and 1.3.
Table 1.2 describes prime volume lattice case. In the prime volume lattice case,

the cylindrical sieving part takes much more time than the initial generation of lattice
vectors. Therefore, optimizing the time complexity of the whole algorithm is equivalent to
optimizing the complexity of the cylindrical sieving.

Table 1.2 – Complexity of solving SVP using cylindrical sieving for n-dimensional lattices
whose volume is a prime number.

optimize γ time memory

time complexity 3√
2

20.3774n 20.292n

spherical sieving time
√

2 2n/2 2n/2

Table 1.3 describes the complexity of cylindrical sieving in the general case.

Table 1.3 – Complexity of solving SVP using cylindrical sieving for an arbitrary n-
dimensional lattice.

optimize γ time memory

cylindrical sieving time 3√
2

20.396n 20.292n

time complexity 1.10378 20.3816n 20.262n

spherical sieving time
√

2 20.531n 2n/2

Though the complexities presented in Tables 1.2 and 1.3 imply that cylindrical sieving
is slower than the current fastest heuristic algorithm for solving SVP, they show that there
are two remarkable things about cylindrical sieving which make it interesting to study.

– First, the optimal complexity of the algorithm in the prime volume lattice case
(and the optimal complexity of the algorithm without initial generation step in the
general case) coincides with the complexity of the overlattice sieving algorithm by
Becker, Gama, and Joux [BGJ14].

– Second, in both prime volume and general cases, for γ =
√

2, cylindrical sieving
achieves polynomial time complexity of the spherical sieving part. As we will see
in Section 1.8.1, this property might be useful for solving other lattice problems.

Solving SVP using cylindrical sieving for lattices with small prime volume

In Chapter 5, we consider solving SVP for lattices whose volume is a relatively small
prime number. Before, we implicitly assumed that the volume of a lattice is equal to 2f(n),
where f(n) = poly(n) and lim

n→∞
f(n)
n =∞. In Chapter 5, we consider prime volume lattices

with the volume equal to 2cn for some constant c > 0.
In case of a prime volume lattice, small values of the volume are special for the cylin-

drical sieving. For prime volume lattices, the height of the hypercylinder that contains

22

1.0 1.2 1.4 1.6 1.8 2.0
log(p)/n

0.22

0.24

0.26

0.28

0.30

log(Tcs)
n

0.292

Figure 1.1 – Solving SVP using cylindrical sieving for n-dimensional prime volume lattices
of the volume 2cn. p denotes the volume of the lattice (i.e., c = log(p)

n), the blue line
represents the complexity of the cylindrical sieving, the green line represents the complexity
of the current fastest heuristic algorithm for solving SVP [BDGL16].

initially sampled points is equal to the volume of the lattice. Thus, when the volume of
an input lattice Λ is equal to 2cn, the hypercylinder is initially quite short and, after a few
iterations of sieving, the height of the hypercylinder is completely reduced. The number
of iterations is a constant that depends on c = log(vol(Λ))

n and on the ratio R0
Rt

, where R0 is
the initial radius of the hypercylinder and Rt is the desired length of the vectors returned
by the algorithm.

Up to the best of our knowledge, the complexity of solving exact SVP for small vol-
ume lattices was not considered specifically before. Thus, we compare complexity of the
cylindrical sieving to the current fastest sieving algorithm from [BDGL16] that works on
arbitrary lattices.

Figure 1.1 represents the complexity of solving SVP using cylindrical sieving as a
function of c. Figure 1.1 shows that cylindrical sieving is asymptotically faster than the
algorithm from [BDGL16] for lattices of the volume smaller than 21.71n.

However, for solving approximate SVP, there is a technique that allows to speed-up it
for small volume lattices, described by Cheon and Lee in [CL15]. In Section 3.2, we adapt
Cheon’s technique, instantiated with the algorithm from [BDGL16], to the prime volume
lattice case. Then, in Chapter 5, we compare complexities of the cylindrical sieving and
of Cheon’s technique (as it is described in Section 3.2) for solving approximate SVP. We
find out that if the approximation factor is not too small, Cheon’s technique is faster than
cylindrical sieving for solving approximate SVP (see Figure 5.2).

Solving CVPP using cylindrical sieving

In Chapter 6, we adapt cylindrical sieving for solve the Closest Vector Problem. We
find out that the cylindrical sieving can be very efficient for solving a variation of CVP,
namely, for solving the Closest Vector Problem with Preprocessing.

Approximating target vectors using cylindrical sieving. In CVP setting, we are
given a target vector t ∈ Rn and a lattice Λ ⊂ Rn and the goal is to find a lattice vector
v that is close to the target t.

Consider how cylindrical sieving can be modified in order to solve this problem. First,
in Section 6.3, we consider a special case of the problem, i.e., we assume that we are given

23

a target t that belongs to the initial hypercylinder of the cylindrical sieving algorithm.
Then, as when solving SVP, we generate a long list L ⊂ Λ of lattice vectors that lie inside
the hypercylinder. If the list L is big enough, with high probability, among the points from
the list L there is a point that is close to t. More precisely, we want to find a point v1

such that the difference t − v1 belongs to the next hypercylinder of the sieving process.
The vector t2 := t − v1 becomes a new target for the next iteration. Then, we sieve the
lattice vectors from the list L as when solving SVP to get an updated list L that belongs
to the next hypercylinder. To sum up, the i-th iteration works as follows:

1. reduce the current target point ti with the list L that belongs to the i-th hyper-
cylinder to get the target ti+1 that belongs to the next hypercylinder;

2. reduce the lattice points from L with each other to get a new list of lattice points
that belong to the next hypercylinder.

During this process, we store all the vectors v1, . . . ,vk ∈ Λ that were used to reduce
the target point. As the last difference tk − vk belongs to the last small hypercylinder,

this difference is short. Then, the sum
k∑
i=1

vi ∈ Λ is a close approximation of the target t.

The procedure described above can be extended to an arbitrary target vector. In Sec-
tion 6.4.1, we show that any t ∈ Rn can be decomposed into the sum of two vectors t′ and
v such that

– v belongs to the lattice Λ;
– t′ is very close to the first hypercylinder of the cylindrical sieving.

Thus, solving CVP for t′ implies solving CVP for the original target t. The desired
decomposition can be found by reducing the target t with the basis of Λ that is used for
the initial generation of lattice vectors.

Heuristic assumption. In order to analyze the complexity of solving CVP using the
cylindrical sieving, we need to estimate the probability to find a suitable pair for the target t
among the vectors from the list L. To estimate this probability, we need some assumption
on the behavior of the vectors from the list L. Before, when solving SVP, we assumed
that the projections of the vectors from the list L on the (n − 1)-dimensional subspace
orthogonal to the hypercylinder’s axis behave like uniformly distributed on a sphere, but
we didn’t need any assumption on the projections of the vectors on the cylinder’s axis. The
fact that this projection is bounded was enough to guarantee that we get short vectors in
the end. But, when solving CVP, we need to consider both projections, because during
the iterations of the sieving process the target vector may appear anywhere inside the
hypercylinder. Therefore, the heuristic assumption for solving CVP using the cylindrical
sieving has two parts for each of the two orthogonal components:

– for the projections of the vectors on the (n− 1)-dimensional subspace orthogonal to
the cylinder’s axis, the heuristic assumption remains the same as Assumption 1.2;

– for the projections of the vectors on the cylinder’s axis, we assume that they behave
as sampled from a quasi-uniform distribution; informally, a quasi-uniform distribu-
tion is the distribution on a bounded interval such that the probability of any not
too small subinterval is proportional to its length (see Definition 3.4 for a formal
definition).

Solving CVPP. Consider separately reducing a target point ti with the list of lattice
vectors L ⊂ Λ at the i-th iteration. Recall that the list L is sorted by the value of the
projection of the vectors on the cylinder’s axis. Reducing the target point t with the list
L can be divided in two parts:

1. find the first vector v ∈ L such that the projection of the difference ti − v on the
cylinder’s axis is small enough;

24

2. subsequently consider all the vectors in L starting from v until the vector v′ such
that the difference ti − v′ belongs to the next hypercylinder is found.

As the list L is sorted, the first step can be performed in time O(log(|L|)) = O(n). The
second step is essentially equivalent to search for a close vector on an (n− 1)-dimensional
sphere. In Section 1.8.1, we have seen that for certain parameters, i.e., when γ =

√
2, the

spherical sieving part of the cylindrical sieving can be performed in poly(n) time. Thus,
reducing a target point with the list L can be performed in a polynomial time when γ =

√
2.

The fact that reducing the target with the list L can be performed in a polynomial time
allows to construct a very efficient algorithm based on the cylindrical sieving for solving the
Closest Vector Problem with Preprocessing. The preprocessing part is basically identical
to the cylindrical sieving algorithm for solving SVP. The main difference is that now, after
each iteration of the cylindrical sieving, we store the state of the list L. The stored lists
of lattice vectors form the description of the lattice Λ. Then, when the target appears,
the decoding procedure consists in iterative reducing of the target with each of the lists of
lattice vectors, produced by the preprocessing. As the number of iterations is polynomial,
the overall complexity of the decoding is polynomial too.

The cylindrical sieving algorithm for solving CVPP is described in details in Section 6.4.
In Table 1.4, we summarize the complexity of the algorithm. 4 As for SVP, it is different
in the general case and in the case of prime volume lattices.

Table 1.4 – Complexity of solving CVPP for n-dimensional integer lattices using the cylin-
drical sieving.

lattice preprocessing time description size decoding time
prime volume 2n/2 2n/2 poly(n)

arbitrary 20.531n 2n/2 poly(n)

Thus, cylindrical sieving allows to solve CVPP queries in polynomial time at the cost
of spending an exponential time at the preprocessing stage. This asymptotically improves
the time complexity of the query cost compared to the current fastest heuristic Voronoi
cell algorithm for solving CVPP from [DLdW19]. The family of Voronoi cell algorithms
from [DLdW19] allows to solve a CVPP query in time 2εn+o(n) at the cost of spending(

1
ε

)O(n) for arbitrary ε > 0.

Implementation. Since the analysis of the cylindrical sieving algorithm for solving
CVPP is based on a new heuristic assumption, it is important to verify it experimen-
tally. To do so, we implement the cylindrical sieving algorithm in C++ using GMP library
and test our implementation on random prime volume lattices of the following parameters:

– dimension n = 30, volume vol(Λ) ≈ 260 (see Section 6.5.2);
– dimension n = 20, volume vol(Λ) ≈ 2100 (see Section 6.5.3);
– dimension n = 40, volume vol(Λ) ≈ 280. (see Section 6.5.4);
We describe our implementation and performed experiments in details in Section 6.5.

The main goal of the experiments was to check whether the distribution of the projections
of the vectors from the list L on the cylinder’s axis is quasi-uniform. For each set of the
parameters, at each iteration of the sieving process we measured several metrics, like the

4. Note that the cylindrical sieving, by the definition, is not a polynomial-time algorithm for solving
CVPP, because it produces a lattice description of an exponential size. See Section 2.4 for a formal definition
of CVPP. Also, note that since the decoding procedure performs a search in a list of an exponential size,
poly(n) time complexity means the complexity in the RAM computational model.

25

percentage of the cylinder’s surface, covered by the points from the list, number of colli-
sions/unique values in the list L, and others. Our experiments show that the distribution
of the vectors inside the hypercylinder is indeed quite regular.

Also, for each set of the parameters, we tried to solve 1000 random CVPP queries using
the preprocessing information. In most of the cases (more than 90%), a close lattice vector
was successfully recovered by the algorithm.

1.8.2 Estimating TFHE’s security under hybrid dual lattice attack

In the second part, we consider the security of the Fast Fully Homomorphic Encryption
scheme over Torus (TFHE). This part is based on joint work with Thomas Espitau and
Antoine Joux. We propose an improvement of the dual lattice attack that was originally
used in [CGGI17] to estimate the security of the scheme. We re-estimate the security of
TFHE under our improved version of the attack using several models of lattice reduction
algorithms.

Security of the TFHE scheme.

In Chapter 7, we recall basic information about TFHE and its security. Fast Fully
Homomorphic Encryption scheme over the Torus [CGGI16, CGGI17, CGGI20], is currently
the FHE scheme with the fastest implementation that we are aware of. Abstractly, all the
operations in the TFHE scheme are defined on the real torus T. The security of the TFHE
scheme relies on the hardness of a variation of the LWE problem, named Torus-LWE. As
a “learning a character” problem, it encompasses both the celebrated LWE and ring-LWE
problems.

The security of a cryptosystem is defined by the complexity of the most efficient known
attack against it. In particular, to estimate the security of an LWE-based construction, it is
important to know which attack is the best for the parameters used in the construction. It
can be a difficult issue; indeed, the survey of existing attacks against LWE given in [APS15]
shows that no known attack would be the best for all sets of LWE parameters.

The gate bootstrapping in TFHE consists of two parts: bootstrapping and key switch-
ing. Each part uses its own secret key, thus, the overall security of the scheme is the
security of the weakest of the two keys.

In the case of TFHE, the security estimation method together with the parameters of
the scheme has changed over time. Originally, in [CGGI17], the the authors adapted the
dual distinguishing lattice attack from [Alb17] to evaluate the security of their scheme.
Then, recently, in [CGGI20, Remark 9], the authors propose an updated set of the pa-
rameters for their scheme and estimate the security of the new parameters using the LWE
estimator from [ACD+18].

For a while, the default parameters of TFHE’s public implementation were a compo-
sition of the two sets: the key switching key was as in [CGGI17], while the bootstrapping
key was updated according to Remark 9 from [CGGI20]. Then, on February 21, 2020, the
parameters of the implementation were updated for both keys. The security of the new
implementation’s parameters is also estimated using the LWE estimator [ACD+18]. We
summarize all the choices of the parameters and recall their security claimed by TFHE’s
authors in Table 1.5.

Hybridizing dual lattice attack

In Chapter 8, we generalize the dual lattice attack which is currently used to evaluate
the security of the TFHE scheme. First, in Section 8.1, we present a complete and detailed

26

analysis of the standard dual lattice attack 5 on LWE from [CGGI20]. Then, in Section 8.2,
we show that applying the dual attack to a projected sublattice and combining it with the
search for a fraction of the key can yield a more efficient attack.

More precisely, our attack starts by applying lattice reduction to a projected sublattice
in the same way it is applied to the whole lattice in the dual attack with lazy modulus
switching. This way we generate LWE instances with bigger noise but in smaller dimension,
corresponding to a fraction of the secret key. Then, the freshly obtained instances are used
to recover the remaining fraction of the secret key. For each candidate for this missing
fraction, we compute the noise vector corresponding to the LWE instances obtained at
the previous step. This allows us to perform a majority voting procedure to detect the
most likely candidates. As the TFHE scheme uses binary vectors for keys, this step boils
down to computing a product of a matrix composed of the LWE samples with the matrix
composed of all binary strings of length equal to the dimension of the part of the secret
key that we are searching for. We show that this computation can be performed efficiently
thanks to the recursive structure of the corresponding search space. The number of bits
of the secret key that the attack aims to guess gives an additional parameter for tuning
the complexity of the attack. Hence, this hybrid approach offers a trade-off between the
quality of lattice reduction in the dual attack part and the time subsequently spent in
the exhaustive search part. Together with the efficient computation of the noise for each
candidate, the optimal parameters for this trade-off gives an asymptotic improvement of
the whole complexity.

We evaluate the complexity of the standard dual attack and of our attack for a wide
range of LWE parameters. We estimate the complexities of both attacks under three
different models of the lattice reduction. For all the models, our estimates show that our
attack outperforms the standard dual attack.

In particular, we estimate the complexity of our attack for the parameters used in the
TFHE scheme. For completeness, we re-evaluated the security of all the sets of TFHE’s
parameters. We describe all of these choices in Table 1.5 and showcase the corresponding
estimated security within our attack framework.

Table 1.5 – Security of the parameters of TFHE. n denotes the dimension, α is the pa-
rameter of the modular Gaussian distribution. The column “λ” represents the bit-security
claimed by TFHE’s authors, the column “new λ” represents the security of the scheme
against hybrid dual attack in the sieving model of lattice reduction.

key n α λ new λ

switching [CGGI17] 500 2.43 · 10−5 159 94
bootstrapping [CGGI17] 1024 3.73 · 10−9 198 122

switching [CGGI20] 612 2−15 128 118
bootstrapping [CGGI20] 1024 2−26 129 120
switching (impl. [G+16]) 630 2−15 128 121

bootstrapping (impl. [G+16]) 1024 2−25 130 125

5. We shall remark that this attack is slightly more subtle than the classical dual lattice attack, as it
encompasses a continuous relaxation of the lazy modulus switching technique of [Alb17].

27

Chapter 2

Background

In this chapter, we provide notation and background on lattices and computational
lattice problems common for both parts of the thesis.

2.1 Notation

Base-two logarithm is denoted by log, natural logarithm is denoted by ln. Vectors are
denoted by bold lower-case letters (e.g. x), matrices are denoted using bold upper-case
letters (e.g. A). For a vector x, we denote the transpose of x as xt, i.e. xt is a row-vector.
For any two vectors x and y, xty denotes the scalar product of x and y. For a matrix A,
its transpose is also denoted by At.

We denote the n-dimensional real space as Rn. We write 0 for the vector that consists
of zeros. For a vector x ∈ Rn, we write ‖x‖ to represent the Euclidean norm of x. When
a coordinate system is defined, we denote the coordinates of an n-dimensional vector x as
x1, . . . , xn. For any set S ∈ Rn, we denote a linear subspace of Rn, spanned by the vectors
from S, as span(S). For any subspace V of Rn, we denote its orthogonal complement as
V ⊥.

For a vector c ∈ Rn and a positive real R, we denote as Bn(c, R) := {x ∈ Rn | ‖x −
c‖ 6 R} the closed Euclidean ball in Rn of radius R centered at c, and we denote as
Sn−1(c, R) := {x ∈ Rn | ‖x − c‖ = R} the n-sphere of radius R centered at c. If the
center of a ball or a sphere is the origin or when the position of the center of a ball is not
important, we omit c and write Bn(R) for a ball of radius R and Sn−1(R) for a sphere of
radius R; we denote the n-dimensional ball of the radius 1 centered at the origin as Bn

and we denote n-sphere of the radius 1 centered at the origin as Sn−1.

2.2 Lattices

Lattice is a discrete subgroup of the additive group Rd. It can be pictured as a regular
infinite grid in the d-dimensional space. As a lattice is a subgroup of Rd, it consists of
d-dimensional vectors and any sum or difference of two lattice vectors is a lattice vector
again. A typical example of a lattice is the set Zn of all vectors with integer coefficients in
Rn.

Since a lattice is discrete, it can be described by a finite number of linearly independent
vectors. Thus, there is the following alternative definition of a lattice.

Definition 2.1. Let n and d be two positive integer numbers and let n 6 d. Let
b1, . . . ,bn ∈ Rd be n linearly independent vectors. Then, a lattice Λ ⊂ Rd can be de-

28

fined as a set of all integer linear combinations of the vectors from B:

Λ = L(b1, . . . ,bn) :=
{ n∑
i=1

xibi
∣∣ x1, . . . , xn ∈ Z

}
. (2.1)

The integers d and n from the definition of a lattice are called the dimension and the
rank of the lattice Λ, respectively. When n = d, we say that the lattice Λ has full-rank.

The vectors b1, . . . ,bn form a basis of Λ. Denote as B the matrix composed of the
basis vectors. Then, we can rewrite (2.1) in a more compact form:

Λ = {Bx | x ∈ Zn}.

Any lattice of rank bigger than 1 has infinitely many bases, that can be transformed
from one to another by unimodular transformations. Let U ∈ Zn×n be a unimodular
matrix, i.e., a square integer matrix with determinant +1 or −1. Then, U is invertible
over integers and UZn = Zn. Therefore, if we apply a unimodular transformation to a
basis B of a lattice Λ, we get an equivalent basis B′ = BU of the same lattice.

When considering integer lattices, sometimes it is convenient to use the Hermite Normal
Form.

Definition 2.2. Let H be a matrix with integer coefficients. We say that H is in Hermite
Normal Form (HNF), if it satisfies the following conditions:

1. H is an upper triangular matrix;
2. all diagonal elements of H are strictly positive;
3. for all i, all the elements to the right from the diagonal are smaller than the corre-

sponding diagonal element hii.

The HNF can be efficiently computed for any matrix with integer coefficients using a
series of unimodular transformations (see [Coh13] for the algorithm). Moreover, for any
integer matrix A, there exists a unique unimodular matrix U, such that H = AU is the
Hermite Normal Form of A. For lattices, it means that an integer lattice Λ ∈ Zn has a
unique basis in the Hermite Normal Form, that can be efficiently computed starting from
any basis of the lattice. It can be useful, for example, if we need to list all the integer
lattices with some particular properties.

For any basis B = {b1, . . . ,bn} of the lattice Λ, we call the parallelepiped, spanned by
the vectors of B, the fundamental parallelepiped of B and denote it as P(B):

P(B) = {Bx | xi ∈ [0; 1)}.

Using the notion of the fundamental parallelepiped, we can define an important lattice
invariant — a lattice volume.

Definition 2.3. Let B ∈ Rd×n be a basis of a lattice Λ ⊂ Rd. The volume of the lattice
Λ, denoted vol(Λ), is the volume of the fundamental parallelepiped P(B).

The volume of a lattice is a lattice invariant, because it is the same for any basis of the
lattice. This follows directly from the fact that any lattice basis can be transformed into
any other lattice basis by a unimodular transformation. Geometrically, the volume of the
lattice can be seen as a characterisation of the density of lattice points in the space, i.e.,
the smaller the lattice volume is, the denser the lattice is.

Given a basis B of a lattice Λ, the volume of the lattice can be computed as a square
root of the determinant of the Gram matrix BtB. In the special case of a full-rank lattice,
the volume of the lattice is equal to the absolute value of the determinant of the basis,i.e.,
vol(Λ) = |det(B)|.

29

Another way to compute the volume of a lattice is to compute the corresponding
Gram-Schmidt orthogonalization of its basis.

Definition 2.4. Let b1, . . . ,bn ∈ Rd be an ordered set of n vectors. Denote the cor-
responding matrix as B. For any vector v and any positive integer i < n, denote the
orthogonal projection of v over span(b1, . . . ,bi−1)⊥ as πi(v). Then, the corresponding
Gram-Schmidt vectors for b1, . . . ,bn are given by

b∗i := πi(bi) = bi −
i−1∑
j=1

btjbi

btibi
· bj ,

for all i ∈ {1, . . . , n}.

Note that the vectors, obtained by the Gram-Schmidt orthogonalization, depend on
the order of vectors in the set {b1, . . . ,bn}. We denote the matrix, composed of the
Gram-Schmidt vectors of B as B∗. The Gram-Schmidt vectors b∗1, . . . ,b

∗
n are pairwise

orthogonal, i.e., for i 6= j, (b∗i)
tb∗j = 0. If B is a basis of a lattice Λ, then the volume of Λ

can be computed as a product of norms of the Gram-Schmidt vectors of B:

vol(Λ) =
n∏
i=1

‖b∗i ‖.

An important lattice parameter is the length of its shortest non-zero vector, also called
the first minimum of a lattice. Another way to describe the first minimum is to consider
the closed ball centered at the origin. Since lattices have a discrete structure, if the radius
of the ball is sufficiently small, it does not contain any lattice point except the origin.

Definition 2.5. For a lattice Λ, the minimum radius λ1(Λ) such that the closed ball of
radius λ1(Λ), centered at the origin, contains at least one lattice point except the origin,
is called the first minimum of Λ.

The estimation of the length of the shortest non-zero lattice vector is a central question
in the study of lattices. In this preliminary section, we consider existing bounds on the
length of the shortest non-zero vector of a lattice, that depend only on the value of the
volume of the lattice and does not depend on its particular shape.

First, there is obviously no lower bound on the value of the first minimum. Consider
the following family of two-dimensional lattices of volume 1 with a basis that consists of
two orthogonal vectors, one of length x, another of length 1

x . We can make one of the two
vectors arbitrarily small by taking a huge value of x without changing the volume of the
lattice.

On the other side, if we fix the volume of the lattice, the shortest lattice vector obviously
can not be arbitrarily big. The Minkowski’s theorem gives the following upper bound on
the first minimum of lattices with a fixed volume.

Theorem 2.1 (Minkowski’s theorem). For any lattice Λ of rank n, there exists a lattice
vector v 6= 0, such that

‖v‖ 6
√
n · vol(Λ)1/n.

The proof of Minkowski’s theorem can be found in [Cas12].
The Minkowski’s theorem gives an upper bound on the Hermite constant, that is defined

as the supremum of the ratio λ1(Λ)

vol(Λ)1/n over all full-rank n-dimensional lattices. It is tight
up to the constant factor. The following asymptotic upper bound on the Hermite constant,
that can be found in [KL74], is the tightest upper bound on the Hermite’s constant that
we aware about:

γn 6
1.744n

2πe
· (1 + o(1)). (2.2)

30

2.3 Random lattice

For the theoretical analysis of lattice algorithms it is sometimes useful to heuristically
assume that the input lattice behaves like a random one. In this section, we recall some
basic facts about random lattices and their generation.

Probability measure on lattices. The natural probability measure on the set of all
n-dimensional full-rank lattices of volume 1 was first introduced by Siegel [Sie45] in 1945.
A precise description of the measure with all the proofs can be found in [Ajt02]. Here, for
completeness, we recall the general idea of the construction and some basic properties of
the measure.

Denote as Ln the set of all n-dimensional lattices Λ ⊂ Rn. Denote as Bn the set of all
sets of n linearly independent vectors:

Bn = {(b1, . . . ,bn) | ∀i ∈ {1, . . . , n},bi ∈ Rn, b1, . . . ,bn are linearly independent}.

In other words, Bn is the set of all bases for n-dimensional full-rank lattices. Similarly,
denote the set of all n-dimensional lattices of volume one as L̂n and denote the set of all
bases of the lattices from L̂n as B̂n.

Let Gn(R) denote the group of all invertible n×n matrices over R, denote as Sn(R) the
group of all invertible n × n matrices over R with determinant ±1, and denote as Un(Z)
the group of all unimodular matrices, i.e. n× n integer matrices of volume ±1.

Let (b1, . . . ,bn) be a basis from Bn. We can identify it with the n × n matrix B
such that the i-th column of B is the vector bi. Thus, each elements from the set Bn

can be identified with an invertible n × n matrix. Then, we can identify the set Bn with
Gn(R). Similarly, we can identify B̂n with Sn(R). This allows us to represent a lattice
Λ ∈ Ln as the set of all the matrices from Gn(R) whose columns form a basis of Λ.
Two bases B1 and B2 of the same lattice Λ can be transformed into each other using a
unimodular transformation, i.e., there exists U ∈ Un(Z) such that B1 = B2U. Then,
two bases correspond to the same lattice if and only if they lie in the same left coset of
Un(Z) in Gn(R). Therefore, the set of all lattices Ln can be identified with the set of left
cosets Gn(R)/Un(Z). Similarly, the set L̂n of all lattices of volume 1 can be identified with
Sn(R)/Un(Z).

For any matrix B ∈ Gn(R), denote as φ(B) the lattice whose basis is formed by the
columns of B. Also, for any lattice Λ ∈ Ln denote as φ−1(Λ) the set of all matrices
that correspond to the bases of Λ. For a set V ⊂ Ln, we write φ−1(V) for the set
{φ−1(Λ) | Λ ∈ V }.

Then, we can define topology and measure on Ln and L̂n by defining it for the set of
all left cosets of the subgroup Un(Z) in Gn(R) and Sn(R), correspondingly.

Gn(R) can be viewed as an open subset of Rn2 . Then, Gn(R) inherits the Euclidean
topology of Rn2 . It allows to define a topology on Ln in the following way: a set V ∈Ln

is open if and only if φ−1(V) is open in Gn(R).
Also, the set of all bases Gn(R) has measure inherited from Rn2 . The measure of a

Borel set A in Gn(R) is the n-dimensional volume of A. Then, we can define the measure
on the Borel sets of the set of all lattices. If A is the Borel subset of Ln, then its measure
is equal to the measure of φ−1(A).

As Sn(R) is an open subset of Gn(R), the topology and measure can be similarly defined
for the set L̂n of all n-dimensional lattice of volume 1. Denote this measure as µn.

µn is a probability measure, i.e., µn(Ln) 6 ∞ (see, e.g., [Ajt02, Lemma 12] for the
proof). It is invariant under linear transformations with determinant ±1 and it is a unique
probability measure that possesses this property.

31

Using the described probability measure on lattices, one can derive various results
about the average behavior of random lattices. One of the earliest results of that kind if
the following theorem due to Siegel [Sie45].

Theorem 2.2 (Siegel). Let f : Rn → R be a compactly supported Borel measurable
function. Then, ∫

Gn

∑
v∈Λ\{0}

f(v)dµn =

∫
Rn

f(x)dx.

We can apply Siegel’s theorem to the characteristic function of some measurable subset
S of Rn. Then, we obtain that, for a random lattice, the expectation of a number of lattice
points inside S is equal to the volume of S in Rn.

The heuristic assumption, based on this corollary from Siegel’s theorem, is called the
Gaussian Heuristic. It is often used in the analysis of lattice algorithms (see, e.g. [HS07] for
the usage of the Gaussian Heuristic for the analysis of the lattice enumeration algorithm).

Assumption 2.1 (Gaussian Heuristic). For a set S ⊂ Rn and a full-rank n-dimensional
lattice Λ, we assume that the number of lattice points inside S is given by

|S ∩ Λ| = vol(S)

vol(Λ)
.

Recall that the volume of a ball of radius R in the n-dimensional space is given by:

vol(Bn(R)) =
πn/2

Γ
(
n
2 + 1

)Rn, (2.3)

where Γ is Euler’s gamma function. Using Stirling’s approximation for the gamma function,
we obtain the following asymptotic formula:

vol(Bn(R)) ∼ 1√
πn
·
(2πe

n

)n/2
Rn. (2.4)

The Gaussian Heuristic together with the asymptotic formula for the volume of an
n-dimensional ball imply the following important properties of the behavior of random
lattices:

— for a random n-dimensional lattice Λ, the length of the shortest non-zero vector is
equal to Θ(

√
n) vol(Λ)1/n, i.e., the upper bound for the first minimum, given by

Minkowski’s theorem, becomes also a lower bound under the Gaussian Heuristic;
— for any vector t ∈ Rn, the expected distance from t to a random lattice Λ is equal

to Θ(
√
n) vol(Λ)1/n;

— for an n-dimensional random lattice Λ, the expected number of lattice points inside
the ball of radius O(

√
n) vol(Λ)1/n is exponential in n.

Although the Gaussian Heuristic seems to predict well the behavior of lattices that
are “random enough” (see, e.g., [BGJ14, Section 4] for the experimental results on the
Gaussian Heuristic), it does not necessarily hold for any lattice. One notable exception is
the integer lattice. In [MO90], the authors estimate the number of points in Zn inside a
ball of radius, proportional to

√
n. They show that for the integer lattice, the number of

the points inside the ball varies by exponential factors depending on the position of the
center of the ball, which is not consistent with the Gaussian Heuristic.

In [GM03], Goldstein and Mayer have proposed the following simple strategy to sample
a random lattice. First, notice that if we fix the dimension and the volume of a lattice,
we are left only with a finite number of integer lattices. The algorithm selects an integer
lattice with a fixed volume uniformly at random and then rescales it in order to obtain a

32

lattice of a volume 1 with rational coefficients. In [GM03], it is shown that the distribution,
generated by that algorithm, tends to the natural probability distribution on the set of all
lattices in Rn of volume 1 that was defined by Siegel.

Generation of a random integer lattice with a fixed volume is very easy when the volume
is a prime number. Consider lattices with a prime volume p. In that case, the Hermite
Normal Form of a lattice has one of the following n shapes:

1 0

. . .
1

0 p

 ,

1 0

. . .
1

p a1

0 0 1

 , . . . ,

p a1 . . . an−1

0 1 0
...

. . .
0 0 1

 , (2.5)

where ai’s are integers in the range {0, . . . , p − 1}. Then, sampling a random lattice
with a prime volume p can be done in the following two steps:

1. choose one of n possible types of HNFs, presented by (2.5);
2. assume that at the previous step i-th type of the HNF was chosen; then, sample

each of the numbers a1, . . . , an−i independently from the uniform distribution on
{0, . . . , p− 1}.

In order to obtain the uniform distribution on the set of all lattices, the probability
to choose i-th type of the lattice should be equal to the fraction of the HNFs of i-th type
among all the integer lattices with the volume p. There is one lattice of the first type,
there are p lattices of the second type , p2 lattices of the third type, and so on. The

whole number of integer lattices whose volume is equal to p is
n−1∑
k=0

pk. Then, to obtain

the desired distribution, the first step of sampling can be performed in the following way.

First, we sample an integer number from the uniform distribution on
{

1, 2, . . . ,
n−1∑
k=0

pk
}
. If

the sampled number falls into the interval from (
i−1∑
k=0

pk + 1) to
i∑

k=0

pk, then we choose i-th

type of the HNF.
The algorithm that we have just described samples exactly the uniform distribution on

the integer lattices with a fixed prime volume. When the dimension n and the volume p are
large, the overwhelming amount of lattices have the HNF that is given by the last matrix
from (2.5). In that case, the algorithm can be simplified: since the probability of choosing
the n-th type of HNF is close to 1, we can omit the first step, i.e. we can always choose the
n-th type of HNF and the resulting distribution will be close to the uniform. Then, the
problem of sampling a random integer lattice of dimension n with a large prime volume
p boils down to sampling n − 1 integer numbers from the set {0, . . . , p − 1} uniformly at
random.

2.4 Computational lattice problems

In this section, we give the formal definitions of the two fundamental computational
lattice problems: the Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP), and their variations, and recall some results on their theoretical and practical
complexity.

For all computational lattice problems and lattice algorithms that we consider, the
input of the problem is a basis B of a d-dimensional integer lattice Λ, i.e., a matrix with
at most d2 integer coefficients. We always assume that the size of the input and, therefore,
the size of the coefficients of the matrix is polynomial in d, i.e., the ‖B‖max = 2poly(n).

33

The Shortest Vector Problem. The most basic lattice problem is the Shortest Vector
Problem. In SVP, we are given a basis of a lattice, which may consist of arbitrarily long
vectors, and the goal is to find the shortest non-zero vector of the lattice.

Definition 2.6. Given a basis B of a lattice Λ, the Shortest Vector Problem (SVP) asks
to find a shortest non-zero lattice vector, i.e., a vector v ∈ Λ such that ‖v‖ = λ1(Λ).

The decision version of SVP is NP-hard under randomized reduction [Ajt98]. There is
also a relaxation of SVP, that, instead of finding the shortest vector, asks to find its close
approximation.

Definition 2.7. Let γ > 1. Given a basis B of a lattice Λ, the γ-approximate Shortest
Vector Problem (γ-SVP) asks to find a non-zero lattice vector of length at most γλ1(Λ),
i.e., a vector v ∈ Λ such that 0 < ‖v‖ 6 γλ1(Λ).

Another variation of SVP is called Hermite-SVP. It also asks to find a short lattice
vector, but now, following the definition of the Hermite’s constant, the length of the vector
is compared to the d-th root of the volume of the lattice instead of the first minimum.

Definition 2.8. Let γ > 1. Given a basis B of a d-dimensional lattice Λ, the γ-Hermite
approximate Shortest Vector Problem (γ-Hermite-SVP) asks to find a a vector v ∈ Λ such
that 0 < ‖v‖ 6 γ vol(Λ)1/d.

It can be shown, that poly(n)-SVP and poly(n)-Hermite-SVP are equivalent problems.
It is straightforwardly follows from Minkowski’s theorem, that the solution of γ-SVP is also
a solution of γ

√
n-Hermite-SVP. There is also an inverse reduction by Lovász. In [Lov86,

Chapter 1.2], he showed that if there is an algorithm, that solves γ-Hermite-SVP in poly-
nomial time, then there is an algorithm that solves γ2-SVP in polynomial time.

Hardness of solving the approximate problems depends on the approximation factor.
Approximating SVP within constant and even small polynomial factors remains a hard
problem. In [Kho05], it is shown that, under certain assumptions on the polynomial
hierarchy of complexity classes, there is no polynomial time algorithm that solves n

1
2
−ε-

approximate SVP for any ε. In the same time, it is very unlikely that the problem remains
NP-hard for approximation factors bigger than

√
n, because in [AR05] it is shown that

these problems lie in the intersection of NP and coNP.

Algorithms for SVP. For exponential approximation factors, the problem can be solved
in polynomial time by the LLL algorithm [LLL82]. However, for the moment the polynomial-
time algorithm is available only for exponential and slightly subexponential factors, i.e.,

the best achieved approximation factor by a polynomial time algorithm is 2
Θ(

d log(log(d)))
log(d)

).
The fastest provable algorithms for approximating SVP within polynomial and better

than polynomial factors require either superexponential running time (lattice enumeration
algorithms [Kan83]) or both exponential time and space (the algorithm based on the Dis-
crete Gaussian sampling [ADRSD15]). There are also heuristic algorithms for SVP, that
are based on certain assumptions on behavior of random lattices and random lattice points.
For the moment, there is a huge gap between the complexity of provable and heuristic al-
gorithms for solving SVP. The fastest heuristic algorithm for SVP runs in time Õ(20.292d),
while the fastest provable algorithm has the time complexity Õ(2d).

There are also blockwise lattice algorithms (e.g. [CN11, HPS11]) that can be seen as a
mixture of the two approaches described above, which proceed by solving SVP on projected
sublattices of dimension β < d. Such algorithms achieve approximation factors Θ(β

d
2β) in

time exponential in β.

34

The Closest Vector Problem. Another related hard lattice problem is the Closest
Vector Problem. In CVP, we are given a basis of a lattice together with an arbitrary target
point in the space, and the goal is to find the lattice point that is the best approximation
of the target point.

Definition 2.9. Given a basis B of a lattice Λ ⊂ Rn and a target point t ∈ Rn, the Closest
Vector Problem (CVP) asks to find a lattice vector v ∈ Λ such that ‖v− t‖ = min

x∈Λ
‖x− t‖.

The Closest Vector Problem, as SVP, also has an approximate version.

Definition 2.10. Let γ > 1. Given a basis B of a lattice Λ ⊂ Rn and a target point
t ∈ Rn, the γ-approximate Closest Vector Problem asks to find a lattice vector v ∈ Λ such
that ‖v − t‖ 6 γ ·min

x∈Λ
‖x− t‖.

In some sense, we can say that CVP is a “harder” problem than SVP, because there
is a reduction from SVP to CVP, that preserves the dimension of the lattice [GMSS99],
while there is no analogous reduction in the opposite direction. The decision version of
the Closest Vector Problem is known to be NP-complete (see [MG12, Chapter 3.2]), and
approximating CVP remains NP-hard to within almost polynomial factors. In [DKS98],
it is shown that, for some c > 0, nc/ log(log(n))-approximate CVP is NP-hard. But, as for
SVP, the

√
n-approximate problem lies in NP ∩ coNP.

Algorithms for CVP. The dependence of the complexity of the algorithms for solving
CVP on the desired approximation factor is very similar to the one of SVP.

For big approximation factors, there is the Babai Nearest Plane algorithm [Bab86]. The
Babai Nearest Plane algorithm takes a basis of a lattice and a target point as an input and
outputs the approximation of the target point. The quality of the approximation depends
on the basis used. For example, the Babai Nearest Plane algorithm, given an LLL-reduced
basis of a lattice, can solve 2Θ(n)-CVP.

The fastest provable algorithms for solving exact SVP can be adapted for solving CVP
as well. The lattice enumeration initially was suitable for solving both problems; the
adaptation for CVP of the algorithm, based on the Discrete Gaussian sampling can be
found in [ADSD15]. Also, as well as in case of SVP, there are heuristic sieving algorithms
for solving CVP [Laa16] with much smaller, but still exponential complexity.

The Closest Vector Problem with Preprocessing. There is a variation of the CVP
that is called the Closest Vector Problem with Preprocessing (CVPP). In CVPP, there
are two stages. At the first stage, we are given a basis of a lattice and we can preprocess
it in advance for an arbitrarily long amount of time. Then, at the second stage, target
vectors are revealed. The goal is, using the information obtained at the preprocessing
stage, efficiently find close vectors to the target points.

Definition 2.11. The Closest Vector Problem with Preprocessing (CVPP) asks to find a
preprocessing function P and a decoding algorithm D that satisfy the following properties.
Given as an input a basis B of a lattice Λ ∈ Rn, the preprocessing function P returns a
description L = P (B) of the lattice Λ, such that, the decoding algorithm D, given as input
the description L of the lattice Λ and a target point t ∈ Rn, returns a vector v ∈ Λ that
minimizes the distance from v to the lattice: ‖v − t‖ = min

x∈Λ
‖x− t‖. The computation of

the preprocessing function P can take arbitrary long time.

In the definition of CVPP, there is no restriction on the complexity of the computation
of the preprocessing function. In CVPP, we assume that we are given unlimited compu-
tational resources for computing the function P . The complexity of the algorithm, that

35

solves CVPP, is measured by the complexity of the decoding algorithm D. We say that an
algorithm solves CVPP in polynomial time, if it satisfies the following two conditions:

1. the description of a lattice, returned by the preprocessing function P has polynomial
size;

2. the decoding algorithm D has polynomial time complexity.

Although it is very unlikely that such an algorithm exists, as in [Mic01], it is shown
that, unless NP ⊂ P/ poly, there is no polynomial-time algorithm for CVPP.

The Closest Vector Problem with Preprocessing also has an approximate version, that
can be defined similarly to the approximate CVP. The exact CVPP and the γ-approximate
CVPP up to factor γ = 2log(d)1−ε are known to be hard to approximate under certain
complexity assumptions [KPV12]. However, already for O

(√
d

log(d)

)
-CVPP there is a

polynomial time algorithm, described in [AR05].

Algorithms for CVPP. Besides the polynomial-time algorithm for the O
(√

d
log(d)

)
-

approximate Closest Vector Problem with Preprocessing, there are not so much other
algorithms that separately consider CVPP. There is an heuristic algorithm for CVPP
by Doulgerakis, Laarhoven, and de Weger [DLdW19], that precomputes the approximate
Voronoi cell of an input lattice as the preprocessing step. This algorithm offers a trade-off
between the time, spent on the preprocessing and the time of one query: it can solve one

query in Õ(2εd) time at the cost of spending
(

1
ε

)O(d)
on the preprocessing of the input

lattice, for any ε > 0.

2.5 Lattice-related hard problems in cryptography

The two central average-case hard problems in lattice-based cryptography are the Short
Integer Solution (SIS) and the Learning With Errors (LWE). Both problems were proved
to be as hard on average as worst-case approximate lattice problems. SIS was introduced
by Ajtai in 1996 [Ajt96], almost ten years later Regev proposed the LWE problem [Reg05].
Since their introduction, SIS and LWE have served as a foundation for a range of cryp-
tographic constructions, like, e.g., collision resistant hash functions, signature schemes,
public key encryption schemes, and fully homomorphic encryption schemes.

Both problems have ring-based analogues [Mic02, LPR10]. The ring-based problems
are also as hard on average as certain approximate worst-case lattice problems, but for a
restricted class of lattices called ideal lattices. Most of the SIS and LWE-based construction
can be adapted to the ring settings. The ring-based problems allow more compact key sizes
and more efficient encryption and decryption procedures then standard SIS/LWE-based
constructions at the cost of having more restricted theoretical security foundations.

In this section, we recall the basic definitions, informally describe the hardness of the
problems, and recall some basic cryptographic constructions based on LWE, SIS, and their
ring analogues.

2.5.1 Short Integer Solution (SIS)

In 1996, Ajtai [Ajt96] described the first worst-case to average-case reduction for lat-
tice problems and introduced the first cryptographic object based on hardness of lattice
problem. Namely, Ajtai introduced the Short Integer Solution problem (SIS) together with
related one-way function. Informally, in SIS, we are given many random vectors from a
certain distribution, and the goal is to find a “short” integer combination them that is equal
to zero.

36

Definition 2.12. Let n,m, q ∈ Z, let β > 0 be a real number. For all i ∈ {1, . . . ,m}, let
ai be sampled from the uniform distribution on Znq . Let A be a matrix whose i-th column
is ai. Given A ∈ Zn×mq , the Short Integer Solution problem (SISn,q,β,m) asks to find a
non-zero integer vector z = (z1, . . . , zm)t ∈ Zm of norm at most β such that

fA(z) := Az =
m∑
i=1

zi · ai = 0 mod q. (2.6)

The problem depends on the choice of the parameters n, q, β and m. The following
corner-case observations illustrate the dependence:

– If the number of vectors m is too small, there might be no solution. For example,
if m = 1 and we are given only one non-zero vector a1, there is no non-zero z such
that z · a = 0.

– If the bound on the norm of the solution β is too big, the solution is easy to find. If
there is no bound at all, i.e., β =∞, we can find z using Gaussian elimination. For
β > q, we always have a trivial solution z = (q, 0, . . . , 0)t ∈ Zm.

Also, if we know a non-zero solution z′ for some non-empty subset A′ = {a′1, . . . ,am′} of
A = {a1, . . . ,am}, we can transform this solution into a solution for the original problem
by zeroing out the vectors that are not presented in A′. Thus, when m increases, the
problem becomes easier. On the other hand, increasing n implies a harder problem.

In [Ajt96], Ajtai has shown that the Short Integer Solution problem with certain pa-
rameters is at least as hard as certain approximate lattice problems. More precisely, [Ajt96]
provides polynomial-time reduction, i.e., it is shown that if there is a probabilistic polyno-
mial time algorithm that solves SIS for certain parameters with a non-negligible probability,
then, using this algorithm as an oracle, it is possible to construct a probabilistic polyno-
mial time algorithm that solves approximate SVP and some other related problems for any
lattice. The following theorem is an informal adaptation of this result.

Theorem 2.3 ([Ajt96, Theorem 1]). For any m = poly(n), any β > 0 and q > β ·poly(n),
solving SISn,q,β,m is at least as hard as solving the following three problems on arbitrary
n-dimensional lattices with high probability:

– solving γ-approximate SVP,
– solving γ-unique SVP,
– solving γ-approximate SIVP,

where γ = β · poly(n).

Since the work of Ajtai, the parameters of the reduction have been significantly im-
proved (see [MR07, GPV08, MP13]). The work of Gentry, Peikert, and Vaikuntanathan [GPV08]
provides the reduction for the modulus q = β · Õ(n) and the approximation factor γ =
β · Õ(n). In 2013, Micciancio and Peikert [MP13] achieved an almost optimal value for the
modulus q. They proved the reduction for q = β · nε for any ε > 0, but the approximation
factor γ of their reduction depends on the infinity norm of the SIS solution.

The SIS problem allows to build various cryptographic constructions. A simple example
is the collision-resistant hash function. Consider the function fA, given by (2.6), defined on
the set of all binary vectors. Assume that we can efficiently find a collision for fA, i.e., there
is an efficient algorithm that finds two different binary vectors z1, z2 ∈ {0, 1}n such that
fA(z1) = fA(z2). Then, the difference z1−z2 is the solution for the SIS problem with β =
O(
√
n). Thus, finding a collision for fA is as hard as solving the corresponding SIS problem.

Besides collision-resistant hash functions, the SIS problem serves as a foundation for one-
way functions, digital signatures and many other cryptographic primitives. See [P+16,
Chapter 5] for an overview.

37

2.5.2 Learning With Errors (LWE)

In 2005, Regev introduced another important average-case problem called Learning
With Errors (LWE) [Reg05]. In this work, Regev also proposed a public-key encryption
scheme, based on LWE. Since that time, many other cryptographic constructions based on
LWE have appeared, including very sophisticated ones, like fully homomorphic encryption
schemes.

Informally, the LWE problem can be described as follows. We are given a list of m
noisy equations, i.e., we are given m pairs (ai, bi) ∈ Znq × Zq such that

at1s = b′1 mod q, b1 = b′1 + e mod q, (2.7)
... (2.8)

atms = b′m mod q, bm = b′m + e mod q. (2.9)

The goal is to find the unknown vector s ∈ Znq .
In order to define the LWE problem, we need to define the LWE distribution. It is

parameterized by the three parameters: the dimension n ∈ Z, the modulo q ∈ Z, and an
error distribution ξ. The error distribution ξ is some centered distribution over Z with
variance α · q, where α ∈ (0; 1) is some constant. Often ξ is chosen to be the discrete
Gaussian distribution on Z of width α · q.

Definition 2.13. Let n, q ∈ Z and let ξ be a distribution on Z with such that Eξ = 0 and
Var(ξ) = α · q for some α ∈ (0; 1). Let s ∈ Zq.

Then, the LWE distribution with the parameters s and ξ over Znq ×Zq, denoted as the
LWEs,ξ distribution, is the distribution obtained by sampling a uniformly at random from
Zq, sampling an error e from ξ and returning the following pair:

(a, b) = (a,ats + e). (2.10)

There are two versions of the LWE problem: search-LWE and decision-LWE. In search-
LWE, we are given many LWE samples and the goal is to recover the underlying secret
vector s. In decision-LWE, we need to distinguish the LWE distribution from the uniform
distribution on Znq × Zq.

Definition 2.14. Let s be sampled uniformly at random from Znq . The search-LWEn,q,ξ,m
problem asks to recover the secret vector s, given m independent samples from the LWEs,ξ

distribution.

Definition 2.15. Given m independent samples {(ai, bi)}mi=1 ⊂ Znq × Zq such that either
each sample is drawn from the uniform distribution on Znq × Zq or from the LWEs,ξ dis-
tribution, the decision-LWEn,q,ξ,m problem asks to guess with a non-negligible probability
the underlying distribution of the samples.

As in the SIS problem, the hardness of LWE also depends on the choice of the param-
eters. For example, notice that without the additional noise ei, the search-LWE can be
solved using Gaussian elimination. In general, if the variance of the noise is too small, the
problem might be easy to solve.

However, there are sets of parameters for which LWE is hard. In his original work [Reg05],
Regev have showed that solving the decision version of the LWE problem for a certain set
of the parameters is at least as hard as solving approximate worst-case lattice problems on
a quantum computer.

Theorem 2.4 ([Reg05, Theorem 1.1]). Let n ∈ Z, m = poly(n), and q = poly(n). Let
α ∈ (0; 1) be such that α · q > 2

√
n. Let ξ be the discrete Gaussian distribution of width

38

α ·q. Then, if there exists an efficient algorithm for solving decision-LWEn,q,ξ,m, then there
exists an efficient quantum algorithm that solves γ-GapSVP and γ-approximate SIVP for
γ = Õ

(
n
α

)
.

As for the moment there is no efficient algorithm that solves Õ(n/α)-approximate
lattice problems on quantum computer, such a result implies that the LWE problem is hard.
Besides the original quantum reduction, since 2005, many other results on the hardness
of the LWE problem have appeared, including the classical reduction to worst-case lattice
problems [Pei09], the results on hardness of LWE for various choices of the parameters n
and q (see, e.g., [LM09, BLP+13]), and the results that consider alternative distributions
of the error and of the secret key (e.g., [MP13, Mic18]). These results show that LWE
is quite robust problem and allows some flexibility in the choice of the parameters. For
example, in [BLP+13, Mic18], it is shown that LWE with a binary secret is as hard as
usual LWE problem of slightly smaller dimension.

Theorem 2.5 ([Mic18]). The LWE problem with a binary secret s ∈ {0, 1}n of size
n = O(k · log(q)) is as hard as the LWE problem with uniformly random secret in Zq.

Such a result is important for fully homomorphic encryption schemes based on LWE,
because mostly they use binary secrets.

In [Reg05], Regev introduced the first public key encryption scheme based on the
LWE problem. Then, many other cryptographic applications of LWE were proposed, for
example, other public key cryptosystems, identity-based encryption schemes, and fully
homomorphic encryption schemes. Here, to give a simple illustration of LWE applications
in cryptography, we recall how basic LWE-based public-key cryptosystem from [Reg05,
Section 5] works. Let n be the security parameter of the cryptosystem. Besides n, the
cryptosystem is also parameterized by N, q ∈ Z and a probability distribution ξ with the
support Zq.

– The private key s is a vector, sampled uniformly at random from Znq .
– The public key is a set of N samples from the LWEs,ξ distribution:

{(ai, bi)}Ni=1 ⊂ Znq × Zq.

– In order to encrypt one bit m ∈ {0, 1}, we choose a random subset S of the set
{1, . . . , N}. Then the encryption of the bit m is given by the pair(∑

i∈S
ai,m+

∑
i∈S

bi

)
∈ Znq × Zq.

– Let (a, b) ∈ Znq ×Zq be an encryption of the bit m ∈ {0, 1}. Then, to decrypt it, we
compute (b− ats). If (b− ats) is closer to 0 than to

⌊ q
2

⌋
modulo q, the decryption

returns 0, otherwise, it returns 1.
The security of the cryptosystem follows from the fact that for a proper choice of

the parameters, samples from the LWE distribution are computationally indistinguishable
from the pairs of the same shape (âi, b̂i) ∈ Znq ×Zq such that (̂bi)

N
i=1 are sampled from the

uniform distribution on Zq.

2.6 Ring versions of SIS and LWE

Ring-SIS

There is a ring-based analogue of the SIS problem, described in Section 2.5.1, called
Ring-SIS. Ring-SIS was also proved to be as hard as worst-case lattice problems, but for

39

some restricted families of lattices with additional structure. The cryptographic construc-
tions based on Ring-SIS are more efficient and allow more compact representation thanks
to the underlying ring structure.

To define Ring-SIS, we need to choose a ring. Most of the time, the Ring-SIS problem
is defined using a quotient ring of the form R := Z[X]/(f), where f is a polynomial of
degree n over integers. Each element of R can be represented by its residue modulo f ,
which is a polynomial of degree smaller than n with integer coefficients. Also, we assume
that R is equipped with some norm ‖ · ‖. If z = (z1, . . . , zm)t ∈ Rm is a vector of elements

from R, the norm of z is given by

√
m∑
i=1
‖zi‖2.

Let q be a positive integer number. Define another ring Rq := R/qR = Zq[X]/(f). The
elements of Rq can be represented by polynomials of degree less than n with coefficients
in Zq. Now, we can define the Ring-SIS problem that corresponds to the ring R and the
modulus q.

Definition 2.16. Let m ∈ Z. Let a1, . . . , am ∈ Rq be independent uniformly random
elements from Rq. The R-SISq,β,n,m problem asks to find a vector z ∈ Rm such that

– z is short, i.e., ‖z‖ 6 β;
– the scalar product of the vectors a = (a1, . . . , am)t ∈ Rmq and z is equal to zero in
Rq:

fa(z) := atz =
m∑
i=1

ai · zi = 0 ∈ Rq. (2.11)

Connection to SIS. The function of the form fa given by (2.11) was first introduced by
Micciancio in [Mic02]. In [Mic02], the ring R is defined as Z[X]/(Xn − 1). For this ring,
the R-SIS problem can be seen as a special case of the usual SIS problem. Any polynomial
a(X) = a0 + a1 ·X + · · ·+ an−1 ·Xn−1 ∈ R can be represented as an n-dimensional vector
a = (a0, . . . , an−1)t ∈ Zn of its coefficients. For any z(X) = z0+z1·X+· · ·+zn−1·Xn−1 ∈ R,
we define a circulant matrix C(z) as

C(z) :=

z0 zn−1 . . . z1

z1 z0 . . . z2
...

...
...

...
zn−2 zn−3 . . . zn−1

zn−1 zn−2 . . . z0

 . (2.12)

Let pab be a product of two polynomials a, b ∈ R = Z/(Xn − 1):

pab(X) := a(X)·b(X) = (a0 +a1 ·X+· · ·+an−1 ·Xn−1)·(b0 +b1 ·X+· · ·+bn−1 ·Xn−1) ∈ R.
(2.13)

Then, the product of two polynomials a, b ∈ R can be computed as the product of a
circulant matrix, corresponding to a, with the vector of coefficients of b, i.e.,

pab = C(a)b. (2.14)

Recall that in SIS we are given a matrix A ∈ Zm×nq and the goal is to find a short
vector z ∈ Zm such that fA(z) = Az = 0 ∈ Zq. Thus, computing the function fa(z)
(see (2.11)) is equivalent to computing the function fA′(z), where A′ is the concatenation
of the circulant matrices, corresponding to the polynomial a1, . . . , am, i.e.,

A′ =
(

C(a1) C(a2) . . . C(am)
)
∈ Zn×nm. (2.15)

Then, the Ring-SIS problem, given by m polynomials a1, . . . , am ∈ Rq, can be seen as
a structured SIS problem, given by the matrix A′ ∈ Zn×nmq .

40

One-way function. In [Mic02], Micciancio showed that for certain choice of parameters
n, q,m and β and for the ring R = Z[X]/(Xn − 1), the function fa is one-way, assuming
that approximate lattice problems are hard in the worst case for cyclic lattices, i.e., lattices,
that are invariant under cyclic rotations of the coordinates. That is, he showed that for a
random r ∈ Rq it is hard to find z ∈ R such that fa(z) = r, unless solving approximate
SIVP on cyclic lattices is easy. The paper [Mic02] lefts open the question whether it is
possible to prove that fa is collision resistant, like Ajtai’s function fA is.

Collision resistance. Later, in [PR06, LM06], it was proved that for the ring Z[X]/(Xn−
1) the function fa is actually not collision resistant and the homogeneous Ring-SIS problem
described in Definition 2.16 is easy to solve, because the ring has divisors of zero which can
be used to construct collisions. On the other hand, the same works [PR06, LM06] show
that this problem can be fixed by taking a ring of polynomials R = Z[X]/(f), where f is a
carefully chosen irreducible polynomial. For example, the cyclotomic ring Z[X]/(Xn + 1),
where n is a power of 2, allows to build a collision-resistant fa.

Ideal lattices. In [LM06], the authors also introduce a notion of ideal lattices, which
can be seen as a generalization of the cyclic lattices. Let σ be a function that identifies
polynomials from R = Z[X]/(f) with vectors in Zn, i.e., σ identifies a polynomial g ∈ R
with a vector of coefficients of g mod f .

Definition 2.17. An ideal lattice is an integer lattice Λ ⊂ Zn such that Λ = {σ(g) | g ∈ I}
for some monic polynomial f of degree n and an ideal I ∈ R = Z[X]/(f).

In the special case when R = Z[X]/(Xn − 1), the ideal lattices are cyclic lattices.
In [LM06], the authors proved that, for a proper choice of the underlying ring, the function
fa is collision resistant, unless certain approximation lattice problems on ideal lattices are
easy to solve.

Ring-LWE

In 2010, Lyubashevsky, Peikert, and Regev introduced the ring-LWE problem [LPR10],
a ring-based analogue of LWE, and showed that solving ring-LWE is as hard as solving
some approximate problems for ideal lattices.

Definitions and hardness. Let rings R and Rq be as defined in Section 2.6. That is,
R = Z[X]/(f) and Rq = R/qR, where f is some irreducible polynomial,e.g. f = Xn + 1,
where n is a power of 2. Let ‖ · ‖ be some norm defined on the elements of R and let ξ be
a distribution on R that is concentrated on the small elements of R with regards to the
chosen norm. Then, informally, the ring-LWE distribution can be defined as follows.

Definition 2.18. Let s ∈ Rq. Then, the R-LWEs,ξ distribution with support Rq × Rq
is the distribution, obtained by sampling a ∈ Rq uniformly at random from Rq, sampling
e ∈ R from ξ and returning the pair:

(a, b) = (a, (a · s+ e) mod f) ∈ Rq ×Rq.

The ring-LWE problem, as LWE, has search and decision version. In the search version,
we are asked to recover the secret s given a polynomial in n number of samples from the
ring-LWE distribution. In decision version, we are given polynomially many independent
samples either all from the uniform distribution on Rq × Rq or all from the ring-LWE
distribution and the goal is to guess the distribution of the samples.

41

In [LPR10], the authors proved that the ring-LWE distribution for certain parameters
is pseudorandom under the assumptions that approximate SVP is hard for ideal lattices.
The following theorem informally recalls this result.

Theorem 2.6 ([LPR10, Theorem 1]). Assume that there is no polynomial-time quantum
algorithm that solves approximate SVP in the worst case on ideal lattices for a fixed poly(n)
approximation factors. Then any poly(n) number of samples drawn independently from
the R-LWE distribution are pseudo-random, i.e., there is no polynomial-time algorithm
that distinguish them from the uniform distribution with a non-negligible advantage.

Theorem 2.6 implies that solving the decision version of ring-LWE is hard. The proof
of this result from [LPR10] has two parts. The first part is a quantum reduction from the
worst-case approximate SVP to the search version of the ring-LWE problem; the second
part shows that the ring-LWE distribution is pseudorandom under the assumption that
the search version of ring-LWE is hard.

Basic cryptosystem. Many of the cryptographic constructions based on LWE can be
adapted to ring-LWE settings with a gain in efficiency. To give some illustration of us-
age of ring-LWE in cryptography, we recall the idea of the very basic ring-LWE based
cryptosystem, introduced in [LPR10].

– The key generation algorithm samples three random polynomials:
— a from the uniform distribution on Rq;
— e ∈ R from the distribution ξ;
— the secret s from some distributions on R concentrated on the elements with

“small” norms.
The key generation algorithm return s ∈ R as a secret key and a pair (a, b :=
a · s+ e) ∈ Rq ×Rq as a public key.

– The encryption algorithm samples three random polynomials r, e1, e2 ∈ R with
small norms from the distribution ξ. Let M ∈ {0, 1}n be an n-bit message and
let m be the polynomial whose coefficients correspond to the bits of M . Then, the
encryption of the message M is a pair of polynomial (u, v) ∈ Rq ×Rq, given by

u = a · r + e1, (2.16)

v = b · r + e2 +
⌊q

2

⌉
·m. (2.17)

– The decryption algorithm computes

v − u · s = r · e− s · e1 + e2 +
⌊q

2

⌉
·m. (2.18)

Under the appropriate choice of the distributions of the secret s and of the error
vectors r, e1, e2, e, the coefficients of the polynomial (r · e − s · e1 + e2) ∈ R have
absolute values less than q

4 with high probability. Then, the i-th bit of the message
M can be decrypted in the following way: Mi = 0 if the i-th coefficient of the
polynomial (v − u · s) is closer to 0 than to

⌊ q
2

⌉
, otherwise, Mi = 1.

The semantic security of the cryptosystem follows from the pseudo-randomness of the
corresponding R-LWE distribution.

The complexity of the encryption and decryption algorithms is essentially the com-
plexity of performing several polynomial multiplications. This operation can be performed
very efficiently using FFT-techniques, which makes ring-LWE based constructions much
faster than their standard LWE analogues.

42

Part I

Cylindrical sieving

43

Chapter 3

Necessary background on lattice
algorithms

In this chapter, we provide all necessary background on lattice algorithms needed for
the first part of this thesis. This chapter is organised as follows. First, in Section 3.1, we
recall how sieving algorithms work. Second, in Section 3.2, we describe existing algorithms
for finding short lattice vectors for lattices of small volumes. Then, in Sections 3.3 to 3.6,
we describe various algorithmic techniques that we use later in this part. Finally, in Sec-
tion 3.7, we provide some results on covering n-dimensional spheres and hypercylinders
that underlie the estimation of the complexity of most of the sieving algorithms, and, in
particular, of the algorithms, described in this thesis.

Notation. For any two vectors x,a ∈ Rn, we write πx(a) for the projection of a on the
(n− 1)-dimensional subspace of Rn, orthogonal to x, i.e., πx(a) = a− atx

xtxx.

Let u ∈ Rn be a vector of norm 1. We denote as Cnu(h,R) a n-dimensional hypercylinder
of height h and radius R such that its axis is parallel to u:

Cnu(h,R) =
{

x ∈ Rd |xtu ∈
(
− h

2
,
h

2

)
, ‖πu(x)‖ 6 R

}
.

Cnu denotes a hypercylinder with h and R both equal to one. If only h (or only R) is
omitted, it means that only h (only R) is equal to one. When the value of u is clear from
the context or irrelevant, we omit the subscript u.

When we consider vectors in hypercylinders, sometimes it is convenient to rescale them
in such a way that the projection of the vector on the cylinder axis is inside the interval
[0; 1) and the length of the projection on the subspace, orthogonal to the cylinder axis, is
also equal to 1. Let u ∈ Rn be a vector of norm 1, parallel to the cylinder axis and let h > 0
be the height of the hypercylinder. For any vector x ∈ Rn, we denote as Rescaleu,h(x) a
vector which is given by

Rescaleu,h(x) =
ttu

h
· u +

1

‖πu(x)‖
· πu(x).

All the computational problems and algorithms that we consider in this part have a
dimension n as a parameter. We always assume that the input of an algorithm can be
written using polynomial in n number of bits. In order to simplify the description of the
complexity of algorithms, we use Õ-notation, i.e., for any function f , Õ(f(n)) denotes
O(f(n) · log(f(n))c) for any constant c.

44

3.1 Sieving algorithms

The first sieving algorithm for solving the Shortest Vector Problem [AKS01] was pro-
posed by Ajtai, Kumar, and Sivakumar (AKS) in 2001. This algorithm, as the most of its
followers, is based on the following two statements about lattices:

1. a difference of two lattice vectors is also a lattice vector;

2. given any basis of a lattice, we can efficiently generate a long list of lattice vectors
of huge, but bounded norm.

The first statement follows directly from the definition of a lattice. The second state-
ment is true thanks to the LLL algorithm. Namely, given any basis of a lattice Λ, we can
find a lattice basis, that consists of vectors of the norm, bounded by 2O(n) · λ1(Λ), in a
polynomial time by the LLL algorithm. Then, a long list of lattice vectors of bounded norm
can be produced by taking various linear combinations of the vectors from the LLL-reduced
basis. This can be done, for example, using Klein’s algorithm [Kle00].

The two ideas, described above, were composed by Ajtai, Kumar, and Sivakumar into
an algorithm for solving SVP that can be roughly described in the following way. The
algorithm starts with generating a long list L of lattice vectors. Then, it considers all the
pairwise differences v −w of the vectors from the list L. Most of the time, the obtained
difference v −w is longer than both vectors v and w, but if the list L is very long, some
non-negligible proportion of the differences has a smaller norm. The algorithm keeps the
shorter differences and stores them in a new list L′. Once the algorithm have considered
all the differences, it is left with the list L′ of lattice vectors that are shorter than the
vectors from the initial list L. If the list L′ is sufficiently long, the algorithm can repeat
the procedure and obtain even shorter vectors. In [AKS01], it is shown that if the size of
the initial list is 2Θ(n), then the algorithm can perform Θ(n) iterations of sieving which
allows to find a vector of length λ1(Λ) in the end.

The algorithm of Ajtai, Kumar, and Sivakumar was the first simply exponential algo-
rithm for solving SVP (the previous fastest SVP algorithm was Kannan’s enumeration of
the time complexity 2O(n log(n))), but for a long time it was considered as not practical due
to presumably high constant in the exponent and due to huge memory requirements.

Then, in 2008, the things have changed with the appearance of the work [NV08] of
Nguyen and Vidick. In [NV08], the authors, first, have shown that the constant in the
exponent of the complexity of the AKS sieve is actually not so huge, and, second that the
worst-case analysis of the AKS sieve does not predict well the behavior of the algorithm
in practice. For the average-case analysis, they have proposed to use a natural heuristic
assumption on the distribution of lattice vectors. The heuristic complexity of the algorithm,
described in [NV08], is (4/3)n+o(n) for the time and (4/3)n/2+o(n) for the memory.

We give a more detailed description of the Nguyen-Vidick (NV) sieve here, as further in
this thesis its variation is used as a building block for constructing other lattice algorithms.

3.1.1 Nguyen–Vidick sieve

The Nguyen–Vidick sieve starts with generating a long list of lattice vectors by sam-
pling them from the discrete Gaussian distribution with a huge variance. In order to do
so, Klein’s algorithm is used (see [GPV08] for a detailed description of the distribution,
generated by Klein’s algorithm). Then, the algorithm proceeds by iteratively applying the
sieving step, described in Algorithm 3.1, to the obtained list of lattice vectors.

One iteration of the Nguyen–Vidick sieve separates the vectors from the input list L
into two categories: centers and all the other vectors. At the beginning, the algorithm
creates an empty list of centers C. Then, for each vector v from the input list L, the
algorithm searches in the list C for a vector c, such that the difference v − c is short. If

45

such a center is found, the corresponding difference goes to the new list L′, otherwise, if
there is no suitable center for v, the vector v goes to the list C and becomes a new center
itself. The size of the new list of shorter vectors L′, returned by the algorithm, is equal
to |L| − |C|. Therefore, in order to find out how many lattice vectors we need to perform
a certain number of iterations and obtain a non-empty list in the end, it is important to
estimate the number of centers, lost at one iteration.

Algorithm 3.1: One iteration of the Nguyen–Vidick sieve
input : a list L ⊂ Λ of lattice vectors, such that for all v ∈ L, ‖v‖ 6 R, a

parameter γ ∈ (0; 1).
output: a list L′ ⊂ Λ of lattice vectors, such that for all v ∈ L′, ‖v‖ 6 γ ·R.

1 NVsieve(L, γ):
2 L′ ← ∅, C ← ∅
3 for v ∈ L′ do
4 if (∃c ∈ C such that ‖v − c‖ 6 γ ·R) then
5 L← L ∪ {v − c}
6 else
7 C ← C ∪ {v}
8 return L′

In order to estimate the size of the list of centers, Nguyen and Vidick proposed to
assume that the vectors from the list L behave like uniformly distributed on a sphere.
Assumption 3.1 presents the simplified version of the original assumption (see [NV08,
Heuristic, page 14]).

Assumption 3.1. The vectors from the list L in Algorithm 3.1, after being normalized,
behave as if they were sampled independently from the uniform distribution on the sphere
Sn−1.

In [NV08], it is shown that, if the decrease rate γ is close to 1, then the number of
centers, lost at one iteration, is equal to (4/3)n/2. This is the number of random spherical
caps of the angular radius π

3 , needed to cover the surface of the sphere Sn−1 with high
probability.

The algorithm starts with generating a list of lattice vectors of length 2O(n) ·λ1(Λ), each
iteration decreases the length of vectors from the list by the constant factor γ, therefore,
the number of iterations is linear in n. Then, in order to obtain a vector of length λ1, the
size of the initial list should be O(n) · (4/3)n/2.

The time complexity of one iteration of the Nguyen–Vidick sieve is equal to |L| · |C|.
Since the number of iterations is polynomial and since |L| = (4/3)n/2+o(n), the time com-
plexity of the algorithm is (4/3)n+o(n).

After the seminal work of Nguyen and Vidick, various improvements of the heuristic
sieving were proposed (see, e.g. [WLTB11, ZPH13, LdW15, Laa15b, BDGL16, BLS16,
HKL18]). We briefly describe the following four lines of research in heuristics sieving.

Leveled sieving. The Nguyen-Vidick sieve works by creating a list of centers. In [WLTB11],
in order to decrease the time, spent on looking for a suitable pair for a lattice vector, the
authors proposed to use two levels of centers instead of one. The goal of the centers of the
first level is to divide the search space into the smaller chunks. Now the algorithm has two
parameters γ1 and γ2 for each level of sieving, which allows to obtain a time-memory trade-
off. Then, a faster three-leveled-sieve, based on a similar idea, was proposed in [ZPH13].
Both algorithms are faster than the Nguyen–Vidick sieve, but at the cost of having bigger

46

memory complexity. In [Laa15a, Chapter 9], it is shown that taking more levels than three
does not improve further the time complexity of sieving.

Overlattice sieving. The overlattice sieving algorithm, introduced in [BGJ14], also can
be considered as a sieving algorithm, though it is rather far from all the other algorithms,
described in this section. It creates a tower of overlattices, related to the input lattice,
such that in the first overlattice we can efficiently enumerate all the short vectors, and the
last lattice in the tower is the input lattice. Then, the algorithm enumerates the short
vectors in the first lattice in the tower, considers the sums of the obtained vectors, and
keeps those that lie in the overlattice of the next level. Proceeding iteratively in such a way,
the algorithm obtains the short vectors in the original lattice in the end. The algorithm is
based on the Gaussian Heuristic. The time complexity of the algorithm is 20.3774n+o(n), the
memory complexity is 20.2925n+o(n), which makes the overlattice sieving faster than leveled
sieving algorithms.

Nearest-neighbor search. The time complexity of sieving is defined by the time,
needed to find a vector, close to a given one, in the list of N points. The Nguyen-
Vidick sieve performs this step just by going through all the vectors in the list, until
the desired pair is found or until all the list is checked, which takes O(N) time. There
is a line of research that studies how the process of finding a suitable pair in the list
of vectors can be accelerated using the techniques for the nearest-neighbor search on a
sphere, see, e.g., [LdW15, Laa15b, BDGL16]. The currently fastest heuristic sieving al-
gorithm [BDGL16] follows this line of research. It uses locality-sensitive filtering for the
nearest neighbor search on a sphere and achieves the time complexity (3/2)n/2+o(n) ≈
20.292n+o(n).

Tuple sieving. In order to decrease the memory requirement of sieving algorithms,
in [BLS16], the authors propose, instead of checking only differences of vectors from the
list, consider linear combinations of more than only two vectors. They show that con-
sidering triplets of vectors allows to decrease the memory complexity up to 20.1887n+o(n),
while the running time of the algorithm is 20.4812n+o(n). For further improvements in tuple
sieving, see, for example, [HKL18].

3.2 Solving hard lattice problems for lattices with a small
volume

In this section, we recall the algorithm by Cheon and Lee [CL15] that solves approxi-
mate SVP for lattices with a small volume. The technique, described in [CL15], exploits
the structure of the Hermite Normal Form of a lattice with a small volume in order to
speed up lattice algorithms.

Computing the Hermite Normal Form allows to find a sublattice with a volume that
does not exceed the volume of the initial lattice. Then, if the volume of the initial lattice
is not very huge, a relatively short vector in the initial lattice can be found by solving SVP
for the sublattice of smaller dimension.

In this thesis, we are interested in applying Cheon’s technique to a lattice with a small
prime volume. The Hermite Normal Form of a lattice with a prime volume p is given
by (2.5). By taking a sublattice, spanned by the first k < n columns of the HNF of a

47

prime volume lattice, we obtain a sublattice of smaller dimension with the same volume p:

p a1 . . . ak−1 ak . . . an−1

0 1 0 0 . . . 0
...

. . .
...

...
0 0 1 0 . . . 0

0 0 . . . 0 1 0
...

...
...

. . .
0 0 . . . 0 0 1

. (3.1)

In [CL15], the authors consider approximate SVP and they use the LLL algorithm for
finding short vectors in the sublattice. In this work, our goal is to find a close approximation
of the shortest vector of the lattice, so we replace LLL with the fastest heuristic algorithm
for solving SVP that we are aware of [BDGL16].

Algorithm 3.2: Cheon and Lee technique [CL15] for a lattice with a small prime
volume
input : a basis B of an n-dimensional lattice Λ with a prime volume, θ ∈ (0; 1).
output: v ∈ Λ such that 0 < ‖v‖ 6 √γθn · vol(Λ)

1
θn

1 (p, a1, . . . , an−1)← HNF(B)
2 k = bθnc
3 Λk = L(p, a1, . . . , ak−1)
4 v← SVP(Λk) . sieving algorithm from [BDGL16]
5 return v

Theorem 3.1 (see [CL15, Theorem 2]). Let n be a positive integer number and let θ ∈
(0; 1). Let p be a prime number such that p = 2cn for some c > 0. Let Λ be an n-
dimensional integer lattice with a prime volume p. Then, Algorithm 3.2, given as input
a basis of Λ and the parameter θ, outputs a non-zero lattice vector v of length at most√
γθn · 2c/θ, where

√
γθn is the Hermite constant of dimension θn. The time complexity of

the algorithm is Õ
((

3
2

)θn/2)
.

Proof. The time complexity and the length of the vector returned by the algorithm can be
obtained straightforwardly from the complexity of the algorithm [BDGL16] and from the
Minkowski’s bound for an nθ-dimensional lattice.

3.3 Enumeration of lattice points in easy special cases

In this section, we consider the following problem. Let R > 0, c ∈ Rn and let Λ be an
n-dimensional full-rank lattice. The goal is to enumerate all the lattice points inside the
ball Bn(c, R). In general, for an arbitrary lattice, this problem can be solved by Schnorr-
Euchner’s enumeration algorithm in a superexponential time Õ(2n log(n)) using polynomial
amount of memory. However, for some species of lattices, enumeration can be performed
much more efficiently. In this section, we consider two such special cases: the integer lattice
Zn and a lattice with a quasi-orthonormal basis.

3.3.1 Integer lattice

Consider the complexity of enumerating all integer points in the n-dimensional space
that lie inside a ball, centred at the origin, of some fixed radius.

48

As an integer lattice is symmetric, we have to enumerate only points in with non-
negative coordinates, all the other points can be obtained by changing the corresponding
signs of the coordinates.

The points with non-negative coordinates in a set Zn ∩ Bn(R) can be enumerated
recursively. First, we enumerate all integer points inside the ball of radius R in dimension
one, i.e., we just list all non-negative integers smaller than R. Denote the obtained list as
S1 := {0, . . . bRc}. Assume that we have a list Sn−1 = Zn−1∩Bn(R) of all the points inside
the ball in dimension n − 1. Then, we can construct Sn = Zn ∩ Bn(R) in the following
way. Let x = (x1, . . . , xn)t ∈ Sn−1. Denote as xk the n-dimensional vector formed by
concatenating x with k: xk := (x1, . . . , xn, k)t. Then, x0 ∈ Sn. For all k ∈ S1, until
the norm of xk is smaller than R, we add xk to Sn. Once we reach the value of k, such
that ‖xk‖ exceeds R, we switch to another point from Sn−1. The approach is summarized
in Algorithm 3.3.

Algorithm 3.3: Enumerate integer points inside a ball.
input : a positive integer n, R > 0
output: all points from Bn(R) ∩ Zn with non-negative coordinates

1 enumerateIntegerPoints(n, R):
2 S1 ← {0, 1, . . . , bRc}
3 for i ∈ {2, . . . , n} do
4 Si ← ∅
5 for (x = (x1, . . . , xi−1)t ∈ Si−1) do
6 k ← 0
7 xk ← (x1, . . . , xi−1, k)t

8 while (‖xk‖ < R) do
9 Si ← Si ∪ {xk}

10 k = k + 1
11 xk = (x1, . . . , xi−1, k + 1)t

12 return Sn

In the following lemma, we show that the complexity of enumerating integer points
inside a ball Bn(R) essentially is defined by the number of points inside the ball |Zn ∩
Bn(R)|.
Lemma 3.1. Algorithm 3.3, given as input a positive integer number n and R > 0,
outputs a list Sn = Zn ∩ Bn(R) in time poly(n) · Cn(R) using poly(n) · Cn(R) memory,
where Cn(R) is equal to |Zn ∩Bn(R)|.
Proof. For any positive integer i denote |Zi ∩ B(R)| as Ci(R). The memory complexity
is bounded by the memory required to store Sn = Zn ∩ Bn(R), which contains Cn(R)
n-dimensional vectors. Therefore, is we assume that storing one integer number takes
poly(n) memory, the memory complexity of the algorithm is poly(n) · Cn(R).

The time complexity of the i-th iteration is O(|Si|). As size of all Si’s are smaller than
the size of the final list Sn and since the number of iterations is n, the time complexity of
the algorithm is poly(n) · Cn(R).

Further in this part of the thesis, we need to enumerate points in Zn inside a ball,
centered at the origin, of radius, proportional to

√
n. In [MO90], the authors show that

asymptotically size of the set Zn ∩ Bn(
√
αn) for any α > 0 can be numerically estimated

using the saddle-point method.

Theorem 3.2 (see [MO90, Section 3]). Let α > 0 and let n → ∞. Then, the number
of n-dimensional integer points of norm smaller then

√
αn tends to ν(α)n, where ν is a

constant that depends only on α.

49

In this thesis, we are interested in the following two particular values of α:

|Zn ∩Bn(
√

0.084n)| ∼ 2n/2, |Zn ∩Bn(
√

0.0418n)| ∼ 20.292n. (3.2)

3.3.2 Lattice with quasi-orthonormal basis

In this section, we recall that the Schnorr-Euchner’s enumeration algorithm can be very
efficient, if it is given a "nice" lattice basis as an input, i.e., a basis that is composed of
almost orthogonal vectors. In general, obtaining such a basis for an arbitrary lattice is a
hard problem. But, for any lattice, we can efficiently compute an almost orthogonal basis
for a projected sublattice of a smaller dimension (see Section 3.6). Efficient enumeration of
the projected sublattice can be a useful subroutine for more complicated lattice algorithms.

This section is organized as follows. First, we shortly describe how the complexity of
Schnorr-Euchner’s enumeration algorithm depends on the quality of an input basis. For
a more detailed analysis of the enumeration algorithms, see, e.g., [HS07, GNR10]. Then,
we give a formal definition of a quasi-orthonormal basis, and, finally, we compute the
complexity of the enumeration, assuming that the algorithm obtains such a basis as input.

Schnorr-Euchner’s enumeration. Given a basis B of an n-dimensional lattice Λ,
Schnorr-Euchner’s enumeration algorithm [SE94] lists all lattice vectors that lie inside
the ball Bn(R).

The algorithm enumerates lattice vectors inside the ball by creating the enumeration
tree. The i-th level of the tree consists of all the vectors in the projected sublattice
πn−i+1(Λ) of norm at most R. The time complexity of the enumeration is N polynomial-
time operations, where N is the total number of the tree nodes:

N =

n∑
i=1

|πn−i+1(Λ) ∩Bi(R)|. (3.3)

The number of vectors of bounded norm in the projected sublattices can be estimated
using the Gaussian Heuristic. As the volume of the i-th projected sublattice is vol(πi(Λ)) =
n∏
k=i

‖b∗k‖, for the number of tree nodes we obtain the following estimate:

N =
n∑
i=1

vol(Bi(R))∏n
k=n−i+1 ‖b∗k‖

(3.4)

Therefore, the complexity of Schnorr-Euchner’s enumeration algorithm depends on the
shape of the given basis of the lattice, more precisely, on the norms of the Gram-Schmidt
vectors corresponding to the input basis.

Quasi-orthonormal basis. There is a generalisation of the Hermite’s constant, intro-
duced by Rankin in 1953 [Ran53]. Let Λ be an n-dimensional lattice. We can say that
Hermite’s constant gives a bound on the smallest volume of a one-dimensional sublattice of
a lattice. Then, Rankin’s constant gives a similar bound for an m-dimensional sublattice
for any m < n. The m-th Rankin invariant of the lattice Λ is the minimal ratio of the
volume of an m-dimensional sublattice of Λ and of vol(Λ)m/n:

√
γn,m := min

Lm is sublattice of Λ,
dim(Lm)=m

(vol(Lm)

vol(Λ)m/n

)
.

Rankin’s constant is the maximum of the Rankin’s invariant over all n-dimensional lattices:√
γn,m := maxΛ γn,m(Λ). When m = 1, then √γn,1 = maxΛ λ1(Λ)

vol(Λ)1/n , and Rankin’s constant
becomes Hermite’s constant.

50

As in [BGJ14], in order to measure how reduced is a basis B of a lattice Λ, we use
the notion of Rankin factor that is closely related to Rankin’s constant. An m-th Rankin
factor of a basis B measures how far is the volume of the sublattice, spanned by the first
m vectors of the basis from vol(Λ)m/n.

Definition 3.1. Let B be a basis of an n-dimensional lattice Λ and let m 6 n be some
positive integer number. The Rankin factor of B with index m is given by the following
ratio:

√
γn,m(B) :=

vol(L(b1, . . . ,bm))

vol(Λ)m/n
=

vol(Λ)
n−m
n

vol(πm+1(Λ))
=

vol(Λ)
n−m
n

‖b∗m+1‖ · · · · · ‖b∗n‖
. (3.5)

We say that a basis B is quasi-orthonormal,if all its Rankin factors are bounded.

Definition 3.2. A basis B of an n-dimensional lattice Λ is called quasi-orthonormal if√
γn,m(B) 6 poly(n) for all m ∈ {1, . . . , n}.

Any basis, such that the length of its Gram-Schmidt vectors are almost equal to each
other, would be quasi-orthonormal. However, the notion of reduction given by Defini-
tion 3.2 is very strong and even unachievable for most of the lattices. For example, an
LLL-reduced basis achieve Rankin factors equal to 2O(n2).

The following lemma describes the complexity of Schnorr-Euchner’s algorithm with a
quasi-orthonormal basis as an input.

Lemma 3.2. Assume that the Gaussian Heuristic holds. Then, given a quasi-orthonormal
basis B of an n-dimensional lattice Λ and a target radius R = β

√
n

2πe vol(Λ)1/n, where
β > 1 is some constant, the Schnorr-Euchner’s algorithm enumerates all lattice vectors

of norm at most R using e
nβ2

2e · poly(n) operations if β <
√
e, and using βn operations if

β >
√
e. Number of enumerated lattice vectors is equal to βn.

Proof. Consider the complexity of Schnorr-Euchner’s algorithm described by (3.4). If we
multiply the numerator and the denominator of each summand in (3.4) by vol(Λ)i/n, where
i is the number of the summand, we can rewrite it using Rankin factors in the following
way:

N =
n∑
i=1

vol(Λ)i/n

vol(πn+1−i(Λ))
· vol(Bi(R))

vol(Λ)i/n
=

n∑
i=1

√
γn,n−i(B) · vol(Bi(R))

vol(Λ)i/n
.

Then, for a quasi-orthonormal basis we obtain:

N 6 max
i

√
γn,n−i(B) ·

n∑
i=1

vol(Bi(R))

vol(Λ)i/n
= poly(n) ·

n∑
i=1

vol(Bi(R))

vol(Λ)i/n

Consider the sum

Sn =

n∑
i=1

vol(Bi(R))

vol(Λ)i/n
, (3.6)

assuming that the target radius R is equal to β ·
√

n
2πe vol(Λ)1/n, where β > 1 is some

constant. Using the asymptotic approximation for the volumes of the balls (see (2.4)), we
obtain:

Sn ≈
n∑
i=1

(√n

i
· β
)i
. (3.7)

The expression (β ·
√
n/i)i is maximized when i = nβ2/e. If β >

√
e, then the

biggest summand of Sn is the last one. It is equal to vol(Bn(R))
vol(Λ) = βn, which, under the

51

Gaussian heuristic, coincides with the number of lattice points inside the ball of radius R.
if R >

√
n
2π · vol(Λ)1/n, then we obtain:

N 6 n ·max
i
γn,n−i(B) ·max

j

(√n

j
· β
)j

6 poly(n) · βn.

Otherwise, if β <
√
e, the biggest summand is not the last one, and we obtain N 6

poly(n) · enβ2/2e.

By Lemma 3.2, when the radius of the ball for enumeration is bigger than
√

n
2π vol(Λ)1/n,

Schnorr-Euchner’s algorithm, given a quasi-orthonormal basis of Λ as an input, can enu-
merate all the points inside the ball in time Õ(|Bn(R) ∩ Λ|), which is optimal up to
subexponential factors. However, for smaller values of the radius, the time complexity
of the algorithm is determined by the number of points inside a sublattice of a smaller
dimension.

3.4 The nearest plane algorithm.

The nearest plane algorithm was proposed in 1986 by Babai in [Bab86] as an algorithm
for the approximate Closest Vector Problem. The quality of the approximation of the target
point with a lattice vector by the nearest plane algorithm depends on how reduced an input
basis is, i.e., it depends on the length of the Gram-Schmidt vectors that corresponds to the
input basis. Originally, Babai proposed to use the nearest plane algorithm together with
an LLL-reduced basis, which allows to solve 2Θ(n)-CVP.

The nearest plane algorithm is based on the following property of the Gram-Schmidt
orthogonalization: if we write a basis B in the coordinate system that corresponds to its
normalized Gram-Schmidt basis B∗, we obtain an upper triangular matrix with the norms
of the corresponding Gram-Schmidt vectors on the diagonal. Then, for any target vector
t, we can find such an integer linear combination of vectors of B that the i-th coordinate
of t in within ±‖b

∗
i ‖

2 from the i-th coordinate of the linear combination. The approach is
summarized by Algorithm 3.4, the complexity of the nearest plane algorithm in presented
by Lemma 3.3.

Algorithm 3.4: Nearest plane algorithm
input : a basis B ∈ Rm×n of a lattice Λ, Gram-Schmidt orthogonalization B∗,

t ∈ Rm
output: v ∈ Λ such that ‖b

∗
i ‖

2 6 (v−t)tb∗i
‖b∗i ‖

6 ‖b∗i ‖
2 for all i.

1 nearestPlane(B, B∗, t):
2 t′ ← t
3 for i ∈ {n, . . . , 1} do
4 t′ ← t−

⌊
ttb∗i
‖b∗i ‖2

⌉
· bi

5 return t− t′

Lemma 3.3. Let B be a basis of a lattice Λ ⊂ Rm of rank n and let B∗ be the Gram-
Schmidt orthogonalization of B. Then, Algorithm 3.4, given as input B, B∗, and any
t ∈ Rm, finds a lattice vector v ∈ Λ, such that the projection of y = t − v on the i-th
Gram-Schmidt vector bi is bounded by 1

2‖b
∗
i ‖ for all i ∈ {1, . . . , n}, in polynomial in n

time.

52

For the proof of Lemma 3.3, see [Bab86]. Essentially, for any target vector t ∈ Rn, the
Nearest Plane algorithm finds a lattice vector v, such that the difference t− v lies inside
the parallelepiped spanned by the vectors of the Gram-Schmidt orthogonalization B∗:

(t− v) ∈ P(B∗) :=
{

B∗x | xi ∈
[
− 1

2
;
1

2

]}
.

We use this property of the nearest plane algorithm’s output further in the thesis in
order to localize the target point in the algorithm for solving CVP(P) (see Section 6.4.1).

3.5 Sampling the discrete Gaussian distribution

In this section, we recall the algorithm that, given a lattice Λ ⊂ Rn and a point c ∈ Rn

and not too small parameter s, samples lattice points from the distribution that looks like
the n-dimensional Gaussian distribution with the expectation c and variance s2.

First, let us formally define this distribution. For any s > 0 and c ∈ Rn, the Gaussian
function ρs,c : Rn → R is defined by:

ρs,c(x) := exp
(
− π‖x− c‖2

s2

)
,

for all x ∈ Rn. When the subscript c is omitted, we take c equal to 0. For any discrete
set A ⊂ Rn, we denote the sum

∑
x∈A

ρs,c(x) as ρs,c(A). Then, for any s > 0, c ∈ Rn, and

any lattice Λ ⊂ Rn, the discrete Gaussian distribution Ds,c,Λ on Λ with the parameters s
and c is defined as:

∀x ∈ Λ, PDs,c,Λ{x} =
ρs,c(x)

ρs,c(Λ)
.

In [MR07], Micciancio and Regev introduced a lattice parameter, connected to the
discrete Gaussian distribution, called the smoothing parameter.

Definition 3.3. [MR07, Definition 3.1] For any lattice Λ and any ε > 0, the smoothing
parameter ηε(Λ) is the smallest positive s such that ρ1/s(Λ

∗\{0}) 6 ε.

In [MR07], Micciancio and Regev also described various properties of the discrete Gaus-
sian distribution. In this thesis, we are mostly interested in the following concentration
result.

Lemma 3.4. [MR07, Lemma 4.4] For any n-dimensional lattice Λ, c ∈ Rn, and ε ∈ (0; 1),
if the parameter s of the discrete Gaussian distribution on Λ satisfies s > ηε(Λ), we have:

PDs,c,Λ{‖x− c‖ > s
√
n} 6 1 + ε

1− ε
· 2−n.

Thus, if we can sample the discrete Gaussian distribution with the parameter s centered
at 0, we can get lattice vectors of bounded norm. The length of the sampled vectors depends
only on the parameter s.

In [GPV08], Gentry, Peikert, and Vaikuntanathan showed that, for not too small values
of the parameter s, the discrete Gaussian distribution can be sampled efficiently using a
randomized version of the Nearest Plane algorithm. The randomization of the Nearest
Plane algorithm was first proposed by Klein in [Kle00]. The Nearest Plane algorithm
proceeds by deterministic rounding of the coefficients that corresponds to the choice of
the closest hyperplane (see Line 4 of Algorithm 3.4). The randomized version at each
iteration assigns the probabilities to the hyperplanes depending on their distance to the

53

considered point and then randomly chooses the hyperplane. See Section 4.2 in [GPV08]
for the precise description of the randomized Nearest Plane algorithm.

In [GPV08], the authors analyze the distribution, produced by Klein’s algorithm.

Theorem 3.3. [GPV08, Theorem 4.1] Klein’s algorithm, given a basis B of an n-
dimensional lattice Λ, a parameter s = ‖B∗‖ · ω(

√
log(n)), and a center c ∈ Rn, outputs

a sample from a distribution that is statistically close to Ds,c,Λ.

Theorem 3.3 implies that, for any Λ ⊂ Rn, lattice vectors of length O(2n) · λ1(Λ) can
be sampled by Klein’s algorithm that is given an LLL-reduced basis as an input. This
allows to sample not too long lattice vectors in polynomial time. Klein’s algorithm is
widely used as a subroutine for initial sampling of lattice points in sieving algorithms (see,
for example, [NV08, Section 4.2.1]).

3.6 Unbalanced lattice reduction

In this section, we recall the unbalanced reduction algorithm from [GINX16]. The
algorithm takes as an input any basis B of an n-dimensional lattice Λ and σ > 0, and
returns a basis C of Λ such that the Gram-Schmidt orthogonalization of C satisfies the
following property: all Gram-Schmidt vectors, except the first one, are shorter than σ.

The algorithm is based on the following idea. Consider a two-dimensional lattice Λ,
given by a basis B = {b1,b2}. Let B∗ = {b∗1 = b1,b

∗
2} be the Gram-Schmidt orthogonal-

ization of B. Then, the volume of the lattice Λ is equal to the product of the norms of the
two Gram-Schmidt vectors:

vol(Λ) = ‖b1‖ · ‖b∗2‖.

We can make the first vector of the basis arbitrarily long by adding a suitable integer
multiple of b2 to it: B̂ := {b1 + α · b2,b2}, where α ∈ Z, is also a basis of Λ. Since the
norm of the first basis vector grows, the norm of the second Gram-Schmidt vector for the
updated basis should decrease, because their product is an invariant as the volume of the
lattice. Thus, we can make one of the two Gram-Schmidt vectors arbitrarily short at the
cost of increasing the norm of the another vector.

In [GINX16], the authors extend the idea, described above, to any dimension. The
unbalanced reduction, introduced in [GINX16], iteratively applies the two-dimensional
procedure to two-dimensional projected sublattices of the input lattice. This way, all the
Gram-Schmidt vectors, except one, can be made arbitrarily short.

In this section, we recall the unbalanced reduction algorithm and the analysis of its
complexity. First, we describe the two-dimensional case, then we recall the algorithm for
high dimensions. For simplicity, we consider a special case when the target bound σ is
less than the norm of the Gram-Schmidt vectors that we aim to reduce. The proof for
the general case is very similar (see [GINX16, Appendix C.2] for the proof with arbitrary
σ > 0).

The unbalanced reduction in the dimension two for σ < ‖b∗2‖ is summarized by Algo-
rithm 3.5.

Lemma 3.5. Let B = {b1,b2} be a basis of a lattice Λ ∈ R2, let σ be a positive real
number smaller than ‖b∗2‖. Then, Algorithm 3.5, given as an input B and σ, returns a
basis C = {c1, c2} of Λ that satisfies:

1. ‖c1‖ 6
‖b1‖‖b2‖

σ
+ ‖b1‖,

2. ‖c∗2‖ 6 σ,

in polynomial time of the size of the input.

54

Algorithm 3.5: Two-dimensional unbalanced reduction
input : a basis B = {b1,b2} of a lattice Λ ⊂ R2, 0 < σ < ‖b∗2‖.
output: a basis C = {c1, c2} of Λ such that ‖c∗2‖ 6 σ, ‖c1‖ 6 ‖b1‖‖b2‖

σ + ‖b1‖.
1 UnbalancedReductionDimTwo(B, σ):
2 if (bt1b2 < 0) then
3 b2 ← −b2

4 B∗ ← Gram-Schmidt(B)
5 c2 ← b1

6 α← − bt1b2

‖b1‖2
+
‖b∗2‖
‖b1‖

·
√
‖b1‖2

σ2
− 1

7 c1 ← b2 + dαe · b1

8 C← {c1, c2}
9 return C

Proof. The basis B, written in the coordinate system that corresponds to its Gram-Schmidt
orthogonalization B∗, is given by the following matrix:

B =

(
‖b∗1‖

bt1b2

‖b1‖
0 ‖b∗2‖

)
. (3.8)

The basis C, returned by Algorithm 3.5, in the same coordinate system, is given by

C =

((
bt1b2

‖b1‖ + dαe · ‖b1‖
)
‖b1‖

‖b∗2‖ 0

)
, (3.9)

where, by Line 4 of Algorithm 3.5,

α = − bt1b2

‖b1‖2
+
‖b∗2‖
‖b1‖

·
√
‖b1‖2

σ2
− 1. (3.10)

The first vector of the Gram-Schmidt orthogonalization of C coincides with c1. Using (3.9),
for the norm of ‖c1‖, we get:

‖c1‖ =

√
‖b∗2‖2 +

(bt1b2

‖b1‖
+ dαe · ‖b1‖

)2
. (3.11)

First, let us estimate ‖c1‖ from the below. This can be done by replacing dαe by α in (3.11),
because ‖b1‖ > 0 and bt1b2/‖b1‖ > 0 (this is ensured by Lines 2-3 in Algorithm 3.5):

‖c1‖ >

√
‖b∗2‖2 +

(bt1b2

‖b1‖
+ α · ‖b1‖

)2
=
‖b1‖‖b∗2‖

σ
. (3.12)

Then, using (3.12) together with the fact that vol(Λ) = ‖c1‖ · ‖c∗2‖ = ‖b1‖ · ‖b∗2‖, we see
that ‖c∗2‖ 6 σ.

Thus, we ensured that the second condition of the lemma is satisfied. In order to check
the first condition, we need an upper bound on ‖c1‖. To do so, we replace dαe by α + 1
in (3.11):

‖c1‖ 6

√
‖b∗2‖2 +

(bt1b2

‖b1‖
+ (α+ 1) · ‖b1‖

)2
=
‖b1‖‖b∗2‖

σ
+ ‖b1‖. (3.13)

(3.13) is obtained using the inequality
√
a2 + b2 6 |a|+ |b|.

The size of the coefficient α is polynomial in the size of the input (see Equation (3.10)).
Thus, the complexity of the algorithm is polynomial in the size of the input.

55

The unbalanced reduction in dimensions bigger than two works by iteratively apply-
ing Algorithm 3.5 to two-dimensional projected sublattices of the input lattice. The un-
balanced reduction for a dimension n > 2 is summarized in Algorithm 3.6.

Algorithm 3.6: Unbalanced reduction
input : a basis B = {b1, . . . ,bn} of a lattice Λ ⊂ Rn, 0 < σ < mini ‖b∗i ‖.
output: a basis C = {c1, . . . , cn} of Λ such that for all i ∈ {2, . . . , n}, ‖c∗i ‖ 6 σ,

‖c1‖ 6 σn · vol(Λ)
σn .

1 UnbalancedReduction(B, σ):
2 C = {c1, . . . , cn} ← B
3 for i ∈ {n− 1, . . . , 1} do
4 (ci, ci+1)← UnbalancedReductionDimTwo({ci, ci+1}, σ)
5 return C

The complexity and the quality of the output of the unbalanced reduction with a
parameter σ < mini ‖b∗i ‖ is analyzed in [BGJ14]. In Theorem 3.4, we recall this result.

Theorem 3.4. [BGJ14, Theorem 3.2] Let B be an LLL-reduced basis of an n-dimensional
integer lattice Λ. Let σ 6 mini ‖b∗i ‖ be a target bound. The unbalanced lattice reduction
outputs in a polynomial time a basis C of the lattice Λ such that:

‖c∗i ‖ 6 σ for all i ∈ {2, . . . n}, (3.14)

‖c1‖ 6 σn · vol(Λ)

σn
, (3.15)

σn+1−i

vol(πi(Λ))
6 n+ 1− i for all i ∈ {2, . . . , n}. (3.16)

Proof. For all i ∈ {n − 1, . . . , 1}, we use suffixes “old” and “new” to denote the values
of variables at the beginning and at the end of the i-th iteration, respectively. That is,
the suffix “old” denotes the values of variables just before applying the two-dimensional
unbalanced reduction to (ci, ci+1) (see Line 4 of Algorithm 3.6) and the suffix “new” denotes
the values just after applying Algorithm 3.5 to (ci, ci+1). Also, we denote as xi the value
‖c∗new
i ‖ at the i-th iteration. Note that, at the iteration i, xi+1 coincides with ‖c∗old

i+1 ‖. Also,
xn is the value of ‖c∗n‖ at first iteration (when the index i is equal to n− 1), therefore,

xn = ‖b∗n‖ = σan. (3.17)

For all i ∈ {1, . . . , n}, let ai = ‖b∗i ‖/σ. We show that, at each iteration i ∈ {n −
1, . . . , 1}, the following invariant holds:

aixi+1 6 xi 6 aixi+1 + σai. (3.18)

Using suffixes “old” and “new”, we can rewrite (3.18) as the following inequality for the
norms of the Gram-Schmidt vectors c∗i and c∗i+1 just before and just after the i-th iteration:

‖c∗old
i ‖‖c∗old

i+1 ‖
σ

6 ‖c∗new
i ‖ 6

‖c∗old
i ‖‖c∗old

i+1 ‖
σ

+ ‖c∗old
i ‖. (3.19)

As (cnew
i , cnew

i+1) are obtained by applying Algorithm 3.5 to (cold
i , cold

i+1), the inequalities given
by (3.19) hold by Lemma 3.5. Also,by Lemma 3.5, for all i ∈ {2, . . . , n}, ‖c∗new

i ‖ 6 σ,
which is equivalent to (3.14).

56

Now, using (3.18) and (3.17), we obtain a bound on the norm of the first vector of the
basis C, returned by Algorithm 3.6:

‖c1‖ = ‖c∗new
1 ‖ = x1 6 σ ·

n∑
k=1

k∏
i=1

ai 6 nσ
n∏
i=1

‖b∗i ‖
σ

= nσ
vol(Λ)

σn
. (3.20)

Similarly, for all i ∈ {1, . . . , n}, we get:

xi 6 (n+ 1− i)σ · vol(πi(Λ))

σn+1−i , (3.21)

which is equivalent to (3.16).

Theorem 3.4 implies that the unbalanced reduction allows to obtain quasi-orthonormal
bases for the projected sublattices of the input lattice.

Corollary 3.1. Let C be a basis of a lattice Λ that satisfies the conditions from Theo-
rem 3.4. Then, π2(C) is a quasi-orthogonal basis of the lattice π2(Λ).

Proof. The Rankin factor with index j 6 n− 1 of basis π2(C) is given by

γn−1,j =
vol(π2(Λ)

n−1−j
n−1)

vol(πj+2(Λ))

In order to estimate the Rankin factors of π2(C), we need an upper and lower bounds for
vol(πk(Λ)) for k > 2. Using (3.14) we obtain the following upper bound: vol(πk(Λ)) 6
σn−k+1. The lower bound can be deduced from (3.14) and (3.15):

vol(πk(Λ)) =
n∏
i=k

‖c∗i ‖ =
vol(Λ)

‖c1‖ ·
k−1∏
i=2
‖c∗i ‖

>
σn−k+1

n
.

Then, we obtain γn−1,j(π2(C)) 6 n for all j 6 n− 1.

3.7 Covering d-dimensional surfaces

In this section, we consider the problems of the following kind. We are given an d-
dimensional surface, such that we can define a uniform distribution on it. Then, we place
N points on the surface uniformly at random. With each placed point we associate its
vicinity on the surface of some particular shape, and we say that each point that belongs
to that vicinity is covered. The goal is to estimate how many points we need in order
to cover all the surface with a high probability, depending on the size and shape of the
covered vicinity, associated with each point.

More precisely, we consider the three following problems: covering a sphere with random
hemispheres, covering a sphere with spherical caps, and covering a hypercylinder with half-
cylinders of smaller height. For covering a sphere with random hemispheres we consider
the probability of covering the whole surface, for the other two problems, in order to
simplify the computations, we consider an easier problem of covering the vast majority of
the surface instead of the whole surface.

57

3.7.1 Covering a sphere with hemispheres

Consider covering a sphere with hemispheres. That is, we randomly drop points
x1, . . . , xN on the surface of the sphere and we say that one dropped point xi ∈ Sd−1

covers all the sphere points that lie at the angular distance π/2 from it. The goal is to
find how many hemispheres are enough to cover each point of the sphere at least once with
high probability.

The event that the sphere is covered by N hemispheres, is the complement of the event
that all N centers of the hemispheres have turned up on some hemisphere. In geometric
probability, there is a result due to Wendel that gives a probability of that complement
event.

Theorem 3.5. (Wendel’s theorem [Wen62]) Let x1, . . .xN ∈ Rd be N vectors that are
independently drawn from the uniform distribution over the surface of the unit sphere
Sd−1. Then, the probability that they all lie on some hemisphere is

pd,N =
1

2N−1
·
d−1∑
k=0

(
N − 1

k

)
.

The following straightforward corollary from Wendell’s theorem states that the linear
in the dimension amount of points is enough to cover the sphere with probability close to
one.

Corollary 3.2. Let C = {c1, . . . , c4d+1} ⊂ Sd−1 be a set of 4d + 1 points drawn in-
dependently from the uniform distribution over the unit sphere Sd−1. Let Hem(c) be a
hemisphere formed by all sphere points at the angular distance to c smaller than π/2.

Then, the probability that the sphere is covered by Hem(c1), . . .Hem(c4d+1) is at least
1−
√
d · 2−7d/4.

Proof. The event that the sphere is covered, is the complement of the event that there is
a hemisphere that contains all the points from C:

pcov := Pr[all points of Sd−1 are covered] = Pr[∀x ∈ Sd−1 : Hem(x) ∩ C 6= ∅] =

1− Pr[∃y ∈ Sd−1 : Hem(y) ∩ C = ∅] = 1− Pr[∃z ∈ Sd−1 : C ⊂ Hem(z)].
(3.22)

Then, using Theorem 3.5, we obtain:

pcov = 1− pd,4d+1 =

1− 1

24d
·
d−1∑
k=0

(
4d− 1

k

)
> 1− 2−4d · d ·

(
4d

d

)
.

(3.23)

We use Stirling’s approximation to estimate the binomial coefficient:(
4d

d

)
∼
√

2

3πd
·
(256

27

)d
.

Then, for the probability of the sphere being covered, we obtain:

pcov > 1−
√
d · 2−1.754d.

58

3.7.2 Covering a sphere with spherical caps

In this section, we consider the generalization of the previous problem: now, instead
of covering a sphere with hemispheres, i.e., with spherical caps of angular radius π

2 , we
consider covering a sphere with spherical caps of an arbitrary radius.

The problem of covering a hypersphere with spherical caps often arises in the analysis
of the complexity of lattice sieving algorithms. A typical sieving algorithm generates a list
of long lattice vectors and looks for pairs of vectors, such that their difference is slightly
shorter than the length of the vectors from the initial list. It is usually assumed that the
vectors from the list behave like uniformly distributed on the sphere. Therefore, in order
to ensure that the desired pairs of vectors can be found in the list, the size of the list should
be big enough to cover the surface of the sphere with high probability.

The results on covering a sphere with spherical caps can be found in the literature on
sieving algorithms. See, for example, [NV08, MV10], for covering a sphere with spherical
caps of angular radius close to π

3 , and see [BGJ14] for the volume of the intersection of
the hyperballs depending on the distance between their centers. Here, for completeness,
we provide a similar result on covering a sphere with random spherical caps of arbitrary
angular radius α ∈

(
0; π2

)
.

Let Cd(c, α) denote a spherical cap centered at c ∈ Sd−1 of angular radius α:

Cd(c, α) := {x ∈ Sd−1 |xtc > cos(α)}.

In the previous section, we estimated how many random hemispheres are needed to
cover the full surface of a sphere with high probability. Now, when considering a spherical
cap of radius α ∈ (0;π/2), in order to avoid cumbersome computations, we consider
an easier problem. Instead of estimating the probability of covering the full surface, we
estimate the probability to cover the proportion of the surface that is close to one.

In order to do so, we need essentially two ingredients: an estimate of the area of the
sphere surface covered by one spherical cap and Markov’s inequality.

Theorem 3.6 (Markov’s inequality). Let X be a non-negative random variable and let
a > 0. Then,

P{X > a} 6 EX
a
.

In Lemma 3.6, we recall the area of an n-dimensional spherical cap of angular radius
α.

Lemma 3.6. For any α ∈ (0; π2) and any c ∈ Sd−1, we have

A(Cd(c, α))

A(Sd−1)
= Θ

(1

d
· sin(α)d−1

)
.

Proof. The surface area of the cap is given by

A(Cd(c, α)) =
1

2
A(Sd−1)Isin(α)2

(d− 1

2
,
1

2

)
,

where I denotes the incomplete beta function (see [Li11]). Then, the ratio between the
surface of the spherical cap and the surface of the sphere is

A(Cd(c, α))

A(Sd−1)
=

1

2

sin(α)2∫
0

t
d−1

2

√
1− t

dt.

59

The integral can be bounded from the below and the above:

sin(α)d−1

(d− 1)
6

1

2

sin(α)2∫
0

t
d−1

2

√
1− t

dt 6
sin(α)d−1

(d− 1) cos(α)
. (3.24)

The following theorem states that O(d2) sin(α)d random spherical caps of angular ra-
dius α are enough to cover all the surface of the n-dimensional sphere Sn−1, except an
exponentially small part, with overwhelming probability.

Theorem 3.7. Let α ∈ (0;π/2). Let N be an integer number greater than
2 ln(2)d2

sin(α)d−1
. Let

C = {c1, . . . , cN} be a set of points, sampled independently from the uniform distribution
on Sd−1. Denote as Scov(C, α) the surface of the sphere, covered by the spherical caps of
angular radius α centered at the points from C. Then,

P
{A(Scov(C, α))

A(Sd−1)
> 1− 2−d

}
> 1− 2−d. (3.25)

Proof. Let X be the proportion of the surface of the sphere Sd−1 that is not covered by
the points from C, i.e.,

X =
A(Sd−1 \ Scov(C, α))

A(Sd−1)
.

X is a random variable with the set of outcomes equal to [0; 1]. For any x ∈ Sn−1, we
define as ξN (x) the indicator of the even that the point x is uncovered that is,

ξN (x) =

{
1, if x is uncovered;
0, otherwise.

The probability that the point x is uncovered, is equal to the probability that all the points
from C are outside of the spherical cap Cd(x, α) centered at x. Then, using Lemma 3.6,
for any x ∈ Sd−1, we obtain

P{ξN (x) = 1} 6
(

1− sin(α)n−1

n− 1

)N
.

We can rewrite X using ξN : X =
∫

Sd−1

ξN (x)p(x)dx. Therefore, the expectation of X is

E{X} = E
∫

Sd−1

ξN (x)p(x)dx 6
∫

Sd−1

(
1− sin(α)d−1

d− 1

)N
p(x)dx =

(
1− sin(α)d−1

d− 1

)N
.

Then, for N = 2 ln(2)d(d−1)
sin(α)d−1 , lim

n→∞
EX

2−2d = 1. Using the obtained estimate on the expectation
of X together with Markov’s inequality, we get an upper bound for X:

P{X > 2−d} 6 EX
2−d

= 2−d.

In the proof of Theorem 3.7, we used Markov’s inequality to estimate the probability
to cover a sphere. A more precise bound can be obtained using the second moment of
the distribution together with Chebyshev’s inequality. However, computing the second
moment involves estimation of the area of the intersection of two spherical caps, which is
rather complicated (see [LK14] for the surface area of the intersection of two n-spherical
caps).

60

3.7.3 Cover a hypercylinder with random half-cylinders of smaller height

In this thesis, we describe a sieving algorithm that generates a list of lattice vectors
that lie inside a long and narrow hypercylinder and then, as other sieving algorithms, looks
for a pairs of vectors that give a short difference. In order to analyze the complexity of
such an algorithm, we need a result, similar to the ones described in two previous sections,
but for a hypercylinder instead of a sphere. In this, section, we consider the problem of
covering a hypercylinder with random half-cylinders of smaller height.

For any ε ∈ (0; 1) and for any c ∈ Cdu(h,R), we denote as hCdu,h,R(c, ε) a half-cylinder of
height εh, centered at the point c, i.e., the following subset of the hypercylinder Cdu(h,R):

hCdu,h,R(c, ε) =
{

x ∈ Cdu(h,R) |xtu ∈
(
− εh

2
,
εh

2

)
, ‖πu(x− c)‖ 6 R

√
2.
}

We can get a figure of the same shape and volume as hCdu,h,R(c, ε), if we cut ε fraction
of the hypercylinder across the axis, and then cut the obtained hypercylinder into two
equal parts along the axis. We denote hCdu(c, ε) := hCdu,h=1,R=1(ε, c, Cdu).

Lemma 3.7. Let u ∈ Rd be any d-dimensional unit vector. Let ε ∈ (0; 1) and let µ > 0.
Let N = 4

ε ·µ. Let C = {c1, . . . , cN} ⊂ Cdu be a set of points, sampled independently from
the uniform distribution on the hypercylinder Cdu. Then, for any δ ∈ (0; 1), the probability
that at least (1− δ) fraction of the surface of Cdu is covered by the half-cylinders of height
ε, centered at the points from C, is at least 1− e−µ

δ .

Proof. The structure of the proof is similar to the proof of Theorem 3.7 about covering
a sphere with spherical caps. Again, we denote the fraction of the surface, uncovered by
N random points, as a random variable X. First, we compute the expectation of X and
then we use Markov’s inequality to estimate the probability that a certain amount of the
surface is uncovered.

In order to compute the expectation of X, we need the probability that a fixed point
x ∈ Cdu is uncovered. Denote at ξN (x) the indicator of x being uncovered. The probability
that ξN (x) = 1, is equal to the probability that all N sampled points are outside the
half-cylinder hC(x, ε), centered at x:

P{x is uncovered} = P{C ⊂ Cdu \ hC(ε,x)}.

The fraction of the hypercylinder, covered by one half-cylinder of height ε, ranges from
ε
4 for half-cylinders with a center on the boarder of the cylinder, to ε

2 for half-cylinders,
centered closer to the middle of the hypercylinder. Then, for the expectation of X we
obtain:

EX =

∫
Cdu

ξN (x)dx 6
∫
Cdu

(max
x

ξN (x))dx =
(
1− ε

4

)N
.

Then, forN > 4µ
ε , when ε is close to zero, we get EX 6 e−µ. Then, using Markov’s inequal-

ity, we obtain the desired bound on the probability of (1− δ) fraction of the hypercylinder
being uncovered.

In the proof of Lemma 3.7, as in the proof of the analogous result from the previous
section, we use only Markov’s inequality. Again, a more precise bound on the probability
can be obtained by considering the higher moments of the distribution. On the other side,
since the proof uses only the bound on the expectation of the uncovered fraction of the
surface, it can be adapted to non-uniform distributions of sampled points that behave like
uniform. Informally, the desired property of the probability distribution that allows to
obtain a result similar to the one described in Lemma 3.7, is that for half-cylinders of

61

not very small height, the probability to sample a point inside a half-cylinder is not much
smaller than its area.

Definition 3.4. Let ε ∈ (0; 1), h,R > 0. Let D be a probability distribution with the
support Cdu(h,R). We say that the distribution D is (ε, α)-quasi-uniform on Cdu(h,R) if it
satisfies the following three conditions:

1. there exists a constant α ∈ (0; 1), such that for any t ∈ (−h
2 ; h2), the probability

that the projection of a point, sampled from D, on the cylinder axis, falls into an
interval of length hε, centered at t, is bounded from the above:

PD

{
xtu ∈

(
t− hε

2
; t+

hε

2

)}
> ε · α;

2. the rescaled projection of the point, sampled from the distribution D, on the sub-
space orthogonal to the cylinder axis is uniformly distributed on Sn−2, i.e., if x is
sampled from D, then 1

‖πu(x)‖ · πu(x) is a random variable from the uniform distri-
bution on Sn−2;

3. the projections of the vector, sampled from D, on span(u) and on span(u)⊥ are
independent.

In Lemma 3.8, we generalize Lemma 3.7 for the defined species of distributions.

Lemma 3.8. Let u ∈ Rd be a d-dimensional unit vector. Let ε, α ∈ (0; 1), µ > 0. Let D
be a (ε, α)-quasi-uniform probability distribution on Cdu.

Let N >
2µ

εα
. Let C = {c1, . . . , cN} ⊂ Cdu be a set of N points, sampled independently

from the distribution D. Then, for any δ ∈ (0; 1), the probability that at least (1 − δ)
fraction of the surface of Cdu is covered by the half-cylinders of height ε, centered at the
points from C, is at least

P{(1− δ) fraction of cylinder is covered by N random points} > 1− e−µ

δ
.

Proof. The structure of the proof is very close to the proof of Lemma 3.7 and we keep the
same notation as in the proof Lemma 3.7. As before, X denotes a fraction of the surface
of the cylinder, uncovered by N random points and ξN (x) is an indicator of the event
that a point x ∈ Cdu is uncovered, i.e., none of N sampled points is inside hC(ε,x). By
the definition of the distribution D, the probability that a randomly sampled point is not
inside hCdu(ε,x) for any x ∈ Cdu is at least ε·α

2 . Than, for any x ∈ Cdu we get the following
bound:

P{x is uncovered by N points} = P{ξN (x) = 1} 6 (1− ε · α)N .

When ε→ 0, we get (1− ε · α)N → e−µ.
Consider the expectation of X:

EX =

∫
Cdu

ξN (x)dx 6
∫
Cdu

(max
x∈U

ξN (x))dx 6 e−µ.

Then, using Markov’s inequality for the random variable X, we get the bound on the
probability that (1 − δ) fraction of the cylinder is covered by N random points sampled
from D.

62

Chapter 4

Cylindrical sieving framework

In this chapter, we describe the framework of cylindrical sieving. First, we show that
for integer lattices whose volume is a prime number, we can easily sample lattice points
that lie inside a long but narrow hypercylinder. Then, we describe how these lattice points
can be paired and sieved, in order to get a new set of lattice points that lie inside a much
shorter but somewhat wider hypercylinder. By iteratively repeating the sieving step, we
obtain a simple algorithm that solves SVP for lattices with a prime volume in time Õ(2n/2).
Then, we show that this simple algorithm can be improved by controlling the growth of
the width of the cylinder at each iteration. It allows to obtain time and memory trade-off
and achieve the time complexity Õ(20.3774n).

We also show that, after some preprocessing, the cylindrical sieving can be applied to
any lattice. However, in the general case, the cost of the initial generation of lattice vectors
inside a cylinder is higher than for a lattice with a prime volume. The cost of the sieving
part remains the same as in the prime volume case. By choosing the parameters so that
the overall cost of the algorithm is minimized, we obtain an algorithm that solves SVP for
an arbitrary integer lattice with time complexity Õ(20.3816n).

4.1 Generation of lattice vectors inside a cylinder

The first step of any sieving algorithm is the generation of an exponentially big list of
lattice vectors with bounded length. In cylindrical sieving, we start with a list of lattice
vectors that lie inside a long and narrow hypercylinder.

In this section, we show how the initial sampling for the cylindrical sieving can be
performed. First, we show that in the case of a lattice with a prime volume, there is a
straightforward way to do it thanks to the structure of the Hermite Normal form of the
lattice. Then, we describe how to generate lattice vectors inside a cylinder for any input
lattice using the structural lattice reduction from [GINX16].

4.1.1 Prime volume lattice case

Let n be a positive integer. Consider an integer lattice Λ ∈ Zn whose volume is prime.
We denote the volume of Λ as p and we assume that log(p) = poly(n). As p is huge, after
computing the Hermite Normal Form of any basis of Λ most probably we get the following
shape (see Section 2.3):

B =

p a1 . . . an−1

0 1 0
...

. . .
0 0 1

 , (4.1)

where a1, . . . , an−1 are some numbers from Zp.

63

We can also obtain other shapes presented by (2.5). They can be seen as a concatenation
of an identity matrix of dimension 0 < m < n and of the matrix of the shape described
by (4.1) of dimension m − n. In that case, since the HNF contains unit vectors, by
computing HNF we have already found the shortest vector of the matrix, as a unit vector
is the shortest possible vector for any sublattice of Zn. If we are interested in finding other
non-trivial short vectors of the lattice, we need to consider the sublattice of the same shape
as given by (4.1), but of smaller dimension. Further in this work, we consider only the
case when there is no unit vectors in the HNF of a lattice, as the hardest one.

Denote an (n − 1)-dimensional vector with coordinates a1, . . . , an−1 as a. For any
x = (x1, . . . , xn−1)t ∈ Zn−1, a vector y, given by

y =

atx mod p

x1
...

xn−1

 , (4.2)

belongs to lattice Λ. Using this property, we can obtain a lattice vector that lies inside
a hypercylinder p × Sn−2(R) by taking an (n − 1)-dimensional integer vector of length
smaller than R and then computing the corresponding lattice vector as described by (4.2).

In order to obtain a long list of lattice vectors inside a bounded hypercylinder, we
enumerate all integer vectors that lie inside an (n − 1)-dimensional ball centered at the
origin and then compute the corresponding lattice vectors. If we take the radius of the
ball proportional to

√
n− 1, the number of lattice points that we obtain is exponential in

n. Thanks to the structure of the integer lattice, this enumeration can be performed very
efficiently. Algorithm 4.1 illustrates the approach.

Algorithm 4.1: Enumerate lattice points inside a hypercylinder.
input : description of a lattice Λ: a prime number p, a = (a1, . . . , an−1)t;

radius of a hypercylinder R =
√
αn.

output: ν(α)n points from Λ ∩ p× Sn−2(R).
1 S ← ∅
2 Ln−1 ← Zn−1 ∩Bn−1(R) . Algorithm 3.3
3 for x = (x1, . . . , xn−1)t ∈ Ln−1 do
4 v1 = atx mod p
5 v = (v1, x1, . . . , xn)t

6 S ← S ∪ {v}
7 return S

Lemma 4.1. Let p be a prime number and α be some positive constant. Let Λ be an integer
n-dimensional lattice with vol(Λ) = p. Then, Algorithm 4.1, given as input a description
of the lattice Λ, enumerates all the points from the set p× Sn−2(

√
α(n− 1)) ∩ Λ in time

O(n ·N), where N = ν(α)n is the number of the lattice points inside the hypercylinder.

Proof. The time complexity of the algorithm is the sum of the time required to create list
Ln−1 and of the time needed to compute the scalar product of a with each vector from the
list. By Lemma 3.1, the time complexity of constructing Ln−1 is O(n|Ln−1|) = O(n ·N).
The time complexity of computing the scalar product of a with each vector from the list
is O(n · N), as a and vectors from Ln−1 are (n − 1)-dimensional. Then, the overall time
complexity is also O(n ·N). The memory complexity is the complexity of storing the list S,
which is equal to O(n · |S|) = O(n · |Ln−1|) = O(nN). As the radius of the hypercylinder
is proportional to

√
n− 1, by Theorem 3.2, number of enumerated points N is exponential

in n and the constant in the exponent depends only on α = R2

n .

64

4.1.2 Generate vectors inside a hypercylinder for any lattice

Let Λ be an n-dimensional lattice, let h = 2O(n2) · vol(Λ)1/n, R = 2−O(n) · vol(Λ)1/n.
In this section, we describe an algorithm that, given a basis of an n-dimensional lattice Λ,
efficiently enumerates all lattice vectors that lie inside an n-dimensional hypercylinder of
height h and radius R.

The algorithm is based on the following idea. Let v ∈ Λ be a lattice vector shorter
than h. Assume that we can efficiently enumerate all the point in the lattice Λ such that
their projection on span(v)⊥ lies inside inside the ball of radius R, i.e., we can efficiently
compute the set

S′ =
{

x ∈ Λ
∣∣∣ ∥∥∥x− xtv

vtv
v
∥∥∥ 6 R

}
.

Now, we get a set S′ of lattice vectors that lie inside a hypercylinder of bounded radius
R, but the height of the cylinder might be arbitrarily big, i.e., the projection of the vectors
from S′ on span(v) is unbounded.

For any lattice vector x, we can compute the corresponding lattice vector x′ such that
the length of its projection on span(v) is bounded by ‖v‖/2 using size-reduction. The
projection of x′ on span(v)⊥ remains unchanged. Then, if we size-reduce the set S′ with
v, we get the desired set S of all the lattice vectors inside the hypercylinder:

S =
{

x−
⌈xtv

vtv

⌋
· v
∣∣∣ x ∈ S′

}
.

Therefore, in order to construct the algorithm, we need to find a vector v ∈ Λ of the
norm smaller than h, such that we can easily enumerate all the vectors, shorter than R,
in the lattice, obtained by the projection of Λ on span(v)⊥. This can be done by the
unbalanced reduction (see Section 3.6). Recall that the unbalanced reduction produces a
lattice basis C = {c1, . . . , cn} such that the first vector c1 is long, but bounded, and, in
addition, the last (n − 1) vectors form a short quasi-orthonormal basis for the projected
sublattice π2(C).

The following corollary from Theorem 3.4 shows that, by applying the unbalanced
reduction to an LLL-reduced basis of the lattice, we get the basis C with the desired
parameters.

Corollary 4.1. Let δ ∈ (1/4; 1), let q =
(
δ− 1

4

)−1
. Let B be a δ-LLL-reduced basis of an

n-dimensional lattice Λ. Then, the unbalanced reduction algorithm (see Algorithm 3.6),
given the basis B as an input, in polynomial time returns a basis C of the lattice Λ that
satisfies the following properties:

‖c∗i ‖ 6 q−
n−1

2 · vol(Λ)1/n for all i ∈ {2, . . . n}, (4.3)

‖c1‖ 6 q
(n−1)2

2 n · vol(Λ)1/n, (4.4)

basis π2(C) of the projected sublattice π2(Λ) is quasi-orthonormal. (4.5)

Proof. For any i, j ∈ {1, . . . , n} denote the ratio
btib
∗
j

b∗jb
∗
j
as µi,j . By the definition of δ-LLL-

reduced basis, the Gram-Schmidt orthogonalization B∗ of the basis B satisfies:

1. for all i ∈ {2, . . . , n}, j < i, |µi,j | 6 1
2 ;

2. for all i ∈ {1, . . . , n− 1}, δ‖b∗i ‖2 6 ‖µi+1,ib
∗
i + b∗i+1‖2.

65

Combining this two inequalities together, we get:

‖b∗i+1‖2 > (δ − 1

4
) · ‖b∗i ‖2 =

1

q
· ‖bi‖2, (4.6)

for all i ∈ {1, . . . , n− 1}. Then, by iterating the inequality given by (4.6) i times, for the
length of the first vector of the basis B we obtain:

‖b1‖ = ‖b∗1‖ 6 q
i−1

2 · ‖b∗i ‖ 6 q
n−1

2 min
i
‖b∗i ‖. (4.7)

We assume that the norm of the first vector of the basis B is bigger than vol(Λ)1/n.
We can safely assume that because, if this assumption doesn’t hold, it means that the LLL
algorithm returns a lattice vector shorter than the Minkowski’s bound of Λ, which is very
unlikely. With this assumption on the norm of b1, using (4.7), we get the following lower
bound on the shortest Gram-Schmidt vector of B:

min
i
‖b∗i ‖ > q−

n−1
2 vol(Λ)1/n. (4.8)

Then, since the shortest Gram-Schmidt vector of B is bounded from the below by (4.8),
we can apply the unbalanced lattice reduction to B with the parameter sigma σ = q−

n−1
2 ·

vol(Λ)1/n.
By Theorem 3.4 and Corollary 3.1, the unbalanced reduction algorithm return a basis

C of Λ that satisfies (4.3), (4.4), and (4.5).

Figure 4.1 presents the shape of basis C after unbalanced reduction.

‖c1‖ 6 σ · 2O(n2) ? . . . ?

0 ‖c∗2‖ 6 σ
...

...
. ?

0 . . . 0 ‖c∗n‖ 6 σ

Figure 4.1 – Basis C of a lattice Λ after unbalanced reduction in the coordinate system
that correspond to its normalized Gram-Schmidt basis C∗. Here green rectangle denotes
the quasi-orthonormal basis π2(C) of the projected sublattice π2(Λ).

Basis C can be used for enumerating lattice vectors inside a narrow hypercylinder of
height ‖c1‖ in the same way as the Hermite Normal Form is used in the case of a lattice with
a prime volume p to enumerate vectors inside a narrow hypercylinder of height p. First, as
C reveals a quasi-orthonormal basis of π2(Λ) (denoted by the green color in Figure 4.1),
we are able to enumerate vectors of π2(Λ) inside a ball of a bounded radius efficiently
using the Schnorr-Euchner’s enumeration. Then, for each obtained vector we compute
the corresponding vector in the lattice Λ. We can always ensure that the length of the
projection of the resulting vectors on the direction of c1 is smaller than ‖c1‖

2 . The approach
is summarized in Algorithm 4.2.

Algorithm 4.2, as well as Algorithm 4.1 for prime volume lattices, starts with enu-
merating short vectors in the (n − 1)-dimensional sublattice of the input lattice. The
difference between the prime volume case and the general case is that, in the prime volume
case, the sublattice is always Zn−1, while in the general case the sublattice can be any
(n− 1)-dimensional lattice with a quasi-orthonormal basis.

66

Algorithm 4.2: Enumerate lattice points inside a hypercylinder.
input : basis B of an n-dimensional lattice Λ,

parameter of LLL reduction q ∈
(√

4/3;
√

2
)
.

output: en/2 points from Λ ∩ h×Bn−1(R), where h = q
(n−1)2

2 · n vol(Λ)1/n,

R = q−
n−1

2 ·
√

n−1
2π vol(Λ)1/n.

1 B← LLL(B, q)

2 σ = q−
n−1

2 · vol(Λ)1/n

3 C = {c1, . . . , cn} ← UnbalancedReduction(B, σ) . (see Theorem 3.4)
4 Cn−1 = {c′2, . . . , c′n} ← π2(C)
5 Sn−1 ← Enumerate(Cn−1, R) . Schnorr-Euchner’s enumeration
6 S ← ∅

7 for
(
x =

n∑
i=2

αi · c′i ∈ Sn−1

)
do

8 v←
n∑
i=2

αi · ci

9 v← v − bvtc1

ct1c1
e · c1

10 S ← S ∪ {v}
11 return S

Let Λ′ be the (n − 1)-dimensional sublattice of Λ with a quasi-orthonormal basis,
recovered by Algorithm 4.2. In order to estimate the complexity of Algorithm 4.2, we need
to count the number of points in the set Sn−1(R) ∩ Λ′. To estimate the number of points
in the set, we use the Gaussian Heuristic. That is the main difference from the analysis
of Algorithm 4.1; in the prime volume case, in the similar situation, we used the estimates
for an integer lattice from [MO90]. Now, as the lattice Λ′ is not fixed, we assume that it
behaves like a random lattice and use the Gaussian Heuristic.

Lemma 4.2. Let Λ be an n-dimensional integer lattice. Let β > 1. Let δ ∈ (1/4; 1) be
the parameter of the LLL-reduction and let q = (δ − 1/4)−1. Then, Algorithm 4.2, given
as an input a basis B of Λ and the parameters β and δ, outputs a list S of βn lattice

vectors such that there is a hypercylinder of height h = q
(n−1)2

2 n vol(Λ)1/n and radius

R = β ·
√

n−1
2πe q

−n−1
2 vol(Λ)1/n, centered at the origin that contains all the vectors from S.

The time complexity T of Algorithm 4.2 is given by:

T =

{
Õ(βn), if β >

√
e,

Õ
(

exp
(
nβ2

2e

))
, otherwise.

(4.9)

Proof. First, let us consider the correctness of the algorithm, i.e., first, we check whether
the vectors, returned by the algorithm, are inside the hypercylinder of the height h and
the radius R. The algorithm starts by applying the unbalanced reduction to the input
basis (see Line 3 of Algorithm 4.2). By Theorem 3.4 and Corollary 3.1, the unbalanced
reduction returns the basis C of Λ such that

1. ‖c1‖ 6 h/2;

2. for all i ∈ {2, . . . , n}, ‖c∗i ‖ 6 σ := R · 1

β

√
2π

n− 1
;

3. the vectors c2, . . . , cn form a quasi-orthonormal basis of π2(Λ).

67

Denote the projected sublattice π2(Λ) as Λ′ and denote the basis, formed by c2, . . . , cn,
as C′. Using the quasi-orthonormal basis C′, the algorithm enumerates point of the pro-
jected sublattice Λ′ inside the ball of radius R, i.e., all the points from the set Sn−1 =
Λ′∩Bn−1(R) (see Line 5 of Algorithm 4.2). Then, the algorithm applies the size reduction
with the vector c1 to all the points from Sn−1 (see Lines 7-10 of Algorithm 4.2). Therefore,
the projections of the vectors, returned by the algorithm, on span(c1) is within the range
(−h/2;h/2). The projections on span(c1)⊥ is bounded by R (ensured by Line 5 of the
algorithm).

Now, consider the complexity of the algorithm. It is mostly defined by the complexity of
the enumeration of the points in Λ′, as the unbalanced reduction part takes only polynomial
time. In order to estimate the complexity of the enumeration part, we estimate the number
of lattice points inside the ball Bn−1(R) using the Gaussian Heuristic. To do so, we need
to estimate the volume of the projected sublattice. By Theorem 3.4, we get:

σn−1

n
6 vol(π2(Λ)) 6 σn−1,

i.e., vol(Λ′) ≈ σn−1. Then, using the Gaussian Heuristic, for the number of vectors of the
lattice Λ′ inside the ball of radius R, we obtain:

vol(Bn−1(R))

vol(π2(Λ))
≈ βn.

Thus, by Lemma 3.2, the complexity of the enumeration (and of the whole algorithm, if
we ignore polynomial factors) is given by (4.9).

4.2 Sort-and-subtract algorithm for SVP

In this section, we describe a simple heuristic sieving algorithm for solving SVP that
is based on the following idea. Assume that we are given a set of lattice vectors that lie
inside a bounded hypercylinder of tiny radius R and of huge but bounded height h. As we
have seen in the previous section, we can generate such a set of lattice vectors efficiently
for any lattice. Consider the coordinate system, such that the first axis is parallel to the
cylinder’s axis. Sort the set of lattice vectors by the value of the first coordinate in that
coordinate system. Since all the vectors lie inside the hypercylinder of height h, the first
coordinates of the vectors from the set is bounded. Denote the size of the set as N . If
we take the differences of vectors that are neighbours in the sorted set, we expect that for
most of the differences the value of the first coordinate is smaller than h

N . Thus, if the size
of the set is huge, we get a new set of vectors that lie inside the cylinder with a much lower
height. At the same time, the other coordinates of the vectors may increase. If we assume
that the vectors that consist of the last (n− 1) coordinates of the vectors from the initial
set, behave like independent and uniformly distributed on the sphere, then we may expect
that their differences are about

√
2 factor longer. Therefore, after taking the differences of

the neighbours in the sorted set, the last coordinates grow by the constant factor, while
the first coordinate decrease very much if the size of the initial list is big.

This way, by simply sorting vectors and subtracting neighbours, we get a new list of
lattice vectors that are much shorter than before. By iteratively repeating this process, we
can obtain lattice vectors of length close to the Minkowski’s bound.

This section is organizes as follows. First, we describe show how the idea presented
above can be made rigorous and turned into an algorithm that performs one sieving step.
Then, we combine the initial sampling with the iterative cylindrical sieving in order to
obtain an algorithm for finding short lattice vectors in 2n/2+o(n) time and space.

68

4.2.1 One step of cylindrical sieving

Assume that we are given a list L of lattice vectors, such that all the vectors from the
list lie inside a hypercylinder h × Bn−1(R), such that h is huge and R is tiny. The goal
is to transform the list L into another list L′ of lattice vectors, such that all vectors from
the new list lie inside a hypercylinder with much smaller height at the cost of allowing its
radius slightly grow:

h×Bn−1(R)→ h

N
×Bn−1(R

√
2).

This is achieved by the sieving process, which chooses pairs of vectors from the input
list in such a way that their differences satisfy the conditions above.

For convenience, we consider the coordinate system with the first axis parallel to the
axis of the cylinder, so that vectors from the list have big first coordinate while their other
coordinates are small. Further we use the following notation: for a vector v ∈ Rn, we
denote its first coordinate as v1 and the vector formed by the last (n− 1) coordinates of v
as uv. For any vector v from the input list L we obtain:

v =

(
v1 ∈ [0;h)

uv ∈ Bn−1(R).

)
∈ Λ.

At first consider the reduction of the big first coordinate. All first coordinates of the
vectors from list L lie inside the line segment of length h. We cut the line segment into N
equal parts and correspondingly separate list L into N sublists L1, . . . , LN : the i-th sublist
contains vectors whose first coordinates are in the i-th part of the segment:

L =
N⋃
i=1

Li, ∀i : Li = {v ∈ L | v1 ∈ [i− 1; i) · h/N}.

?? ?

?

?

?
?

?

?

??

?
?

?

?
?

?
?

?
?

?

?
?

? ?
?

?
?

?
?0 h

h/N

L1 . . . Li . . . LN

Consider the difference of two vectors from the same sublist Li. For any two vectors
x,y ∈ Li, the difference is a lattice vector again and the absolute value of its first coordinate
is bounded: |x1 − y1| < h/N .

The second condition that the difference x−y should satisfy to be accepted to the new
list L′ is that the vector ux−y = ux − uy, formed by the last (n − 1) coordinates of the
difference, should be short enough: ‖ux−y‖ have to be smaller than R

√
2. It might not be

true for any pair of vectors from Li: in the worst case, when the angle between two vectors
is almost π and both vectors have maximal length R, their difference is close to 2R, so we
have to sieve out differences with too long ux−y part.

In order to achieve this goal, the algorithm performs a sieving step similar to the
Nguyen-Vidick sieve inside each sublist Li. For each Li it selects a subset of centers
Ci ⊂ Li and for each v ∈ Li \Ci it finds a suitable pair c ∈ Ci such that ‖uv−uc‖ 6 R

√
2.

The approach is summarized in Algorithm 4.3.
Each vector from the input list has two possibilities: either the algorithm finds an

acceptable pair for it among centers and their difference passes to the new list L′, or
the vector becomes a center itself. Centers then are thrown away, so the size of the list
decreases by the number of centers chosen by the algorithm:

|L′| = |L| −
N∑
i=1

|Ci|.

69

Algorithm 4.3: One sieving step
input : decrease rate N , list L ⊂ Λ ∩ h×Bn−1(R), |L| > 4nN .
output: list L′ ⊂ Λ ∩ h

N ×Bn−1(
√

2R), |L′| > |L| − 4nN .
1 L′ ← ∅
2 L1 ← ∅, . . . , LN ← ∅
3 C1 ← ∅, . . . , CN ← ∅
4 for v ∈ L do
5 j ← dv1 ·N/he
6 Lj ← Lj ∪ {v}
7 for (i = 1 . . . N) do
8 for (v ∈ Li) do
9 if (∃c ∈ C such that ‖v − c‖ 6 R

√
2) then

10 L′ ← L′ ∪ {v − c}
11 Ci ← Ci ∪ {v}
12 return L′

The essential part in analyzing the complexity of the algorithm is estimation of the
required amount of centers. For that we make the following heuristic assumption:

Assumption 4.1. We assume that at any stage of Algorithm 4.3 vectors {uv}v∈L, after
being normalized, behave as they are mutually independent and uniformly distributed on
the unit sphere Sn−2.

Under this assumption, number of the points lost in different sublists are independent
random variables, so it is enough to consider the loss of points inside one fixed sublist
Li, i.e., the number of centers needed for one sublist. Inside one sublist Li, a vector x
becomes a center if there is no existing center such that the vector formed by its last
(n − 1) coordinates is at the angular distance less than or equal to π

2 from ux. Once the
centers from Ci have fully covered the sphere, all new incoming vectors in Li will get the
corresponding center from Ci and we won’t loose vectors anymore. Therefore, estimating
the number of centers lost inside one sublist turns into a problem of covering a sphere by
random hemispheres with big enough probability.

The following lemma describes the complexity of Algorithm 4.3.

Lemma 4.3. Let Λ ⊂ Zn be an n-dimensional lattice. Let h,R > 0. Let L ⊂ Λ be a list
of lattice vectors of size at least 4nN , such that all vectors from L satisfy the following
conditions:

∀ v ∈ L, v =

(
v1 ∈ Z

uv ∈ Zn−1

)
, 0 < v1 6 h, ‖uv‖ 6 R,

Then, if Assumption 4.1 holds, Algorithm 4.3, given as input the list L, outputs, with the
probability greater than 1−N · 2−7n/4+o(n), a list L′ ⊂ Λ of size at least |L| − 4nN , such
that all vectors from L′ satisfy the conditions:

∀ w ∈ L′, w =

(
w1 ∈ Z

uw ∈ Zn−1

)
, 0 < w1 6

h

N
, ‖uw‖ 6 R ·

√
2, (4.10)

in time O(n2|L|) using O(|L| log(h)) memory.

Proof. Algorithm 4.3 outputs lattice vectors, because the only operation it performs on
the input vectors is subtraction. The lines 4 − 6 and 9 of the algorithm ensure that the
output list L′ satisfy the requirements given by (4.10).

So, it remains to estimate how much shorter L′ is compared to L and evaluate the
complexity of the algorithm.

70

First, estimate the size of L′. There are two possible sources of the loss of points:
collisions (when algorithm creates several equal differences) and centers. Under Assump-
tion 4.1, the number of points lost due to collisions is negligible, therefore, it is enough to
estimate the number of centers

∑N
i=1 |Ci|.

Consider one sublist Li. We show that the number of points lost while processing one
sublist is bounded with high probability. Denote as covn(ε) the number such that covn(ε)
hemispheres, centered at points drawn from the uniform distribution on Sn−2, cover the
sphere with probability 1− ε.

Then, there are two cases: when |Li| > covn(ε) and when |Li| 6 covn(ε). In the first
case, with probability 1−ε, the number of centers |Ci| won’t exceed covn(ε). In the second
case, even if we loose all the points from |Li| we do not loose more than covn(ε) points.

Under Assumption 4.1, the number of points lost in different sublists are independent,
therefore, with probability pε > (1− ε)N number of all lost points satisfies

N∑
i=1

|Ci| 6 N · covn(ε).

By Corollary 3.2, for ε = 2−7n/4+o(n), the required number of points is covn(ε) = 4n.
Then, with probability

p > (1− ε)N > 1−N · ε = 1−N · 2−7n/4+o(n),

the number of lost points is less than 4nN .
Finally, estimate the complexity of the algorithm. The memory complexity is the

memory required to store list L. List L contains n-dimensional vectors such that their first
coordinate is less then h and all the other coordinates are smaller than R. If we assume
that h >> R · (n− 1), then the space needed to store one vector is O(log(h)). Then, the
memory complexity is O(|L| log(h)).

For the time complexity, there are two parts: separating list into N sublist (lines 4−6)
and performing sieving on every sublist (lines 8− 16).

The index of the corresponding subset for each v ∈ L can be computed in constant
number of operations and,therefore, the complexity of that part is linear in |L|.

In order to estimate the complexity of the sieving part consider one sublist Li. For each
v ∈ Li, the algorithm searches for the appropriate pair in Ci. If we assume that the subtrac-
tion of two n-dimensional vectors and computation of the norm of an n-dimensional vector
can be performed in O(n) operations, then the time spent on one sublist is O(n|Li| · |Ci|).
The overall number of operations is:

N∑
i=1

|Li| · |Ci| 6 covn(ε) ·
N∑
i=1

|Li| = 4n · |L|.

Then, the time complexity of the algorithm is O(n2|L|).

4.2.2 Complexity of the sort-and-subtract algorithm for solving SVP

In this section, we combine the generation of lattice vectors inside a narrow cylinder
with iteratively repeated cylindrical sieving in order to obtain an heuristic algorithm for
solving SVP. As the initial generation of lattice vectors for cylindrical sieving differs from
the general case for lattices with a prime volume, we start with analysing the case of
lattices with a prime volume separately. Then, we show that, with slight modifications,
the complexity analysis for the prime volume case can be adapted to the general case.

71

h

R

γ,N h
N

γR

Figure 4.2 – One iteration of the cylindrical sieving. h denotes the upper bound on the first
coordinate of the input vectors, R denotes the upper bound on the last (n−1) coordinates.
γ and N are the parameters of the cylindrical sieving algorithm. In Algorithm 4.3, γ =

√
2,

N = 2n/2.

Prime volume case. First, we describe the algorithm for the case of an n-dimensional
lattice with a prime volume. The algorithm starts with generating exponentially many
lattice vectors inside a narrow cylinder. For a lattice with a prime volume that can be done
just by enumerating integer vectors inside a ball of a small radius (see Algorithm 4.1). Then,
the algorithm iteratively applies the cylindrical sieving step to the list of lattice vectors
until the short enough vector is found. The approach is summarized in Algorithm 4.4.

Algorithm 4.4: Sort-and-subtract algorithm
input : a basis B of a lattice Λ with a prime volume p.
output: v ∈ Λ such that 0 < ‖v‖ 6 0.41

√
n vol(Λ)1/n.

/* initial enumeration part */

1 (p,a)← HNF(B)

2 L0 ← enumerateCylinder(p,a, R0 =
√

0.084(n− 1)) . Algorithm 4.1
/* sieving part */

3 k ←
⌈

2
n · log(p)

⌉
4 for (i ∈ {1, . . . , k}) do
5 Li ← Sieve(Li−1, N) . Algorithm 4.3
6 if (∃v ∈ L such that 0 < ‖v‖ 6 0.41

√
n vol(Λ)1/n) then

7 return v

We analyze the complexity of Algorithm 4.4 in Theorem 4.1. It states that Algo-
rithm 4.4 recovers a lattice vector of length close to the Minkowski’s bound, using Õ(2n/2)
time and memory.

Theorem 4.1. Let n be a positive integer number. Let p = poly(n) be prime and let
lim
n→∞

p
n = ∞. Let Λ be an n-dimensional lattice with volume p. Let Assumption 4.1

hold. Then, Algorithm 4.4, given as input a basis of Λ, with probability at least p =
1−2−5n/4+o(n), outputs a lattice vector of length shorter than 0.41

√
n vol(Λ)1/n. The time

and memory complexity of the algorithm are equal to O(2n/2 · log(vol(Λ))2).

Proof. For all i ∈ {1, . . . , k}, denote the parameters of the cylinder that contains the list

72

Li as hi and Ri: Li ⊂ hi × Bn−1(Ri). Then, by Lemma 4.3, the size of the list and the
geometry of the vectors contained in the list change with one iteration in the following
way:

|Li+1| > |Li| − 4n ·N, Ri+1 6 Ri ·
√

2, hi+1 6
hi
N
. (4.11)

Then, after k iterations:

|Lk| > |L0| − 4nkN, Rk 6 R0 · 2k/2, hk 6
h0

Nk
=

det(Λ)

Nk
. (4.12)

The goal is to obtain a vector of length close to Minkowski’s bound that is, we want
to find a vector of length α · √γn vol(Λ)1/n for some constant α > 1. In order to obtain a
lattice vector of the desired length, we need choose the parameters of the algorithm k and
N , such that they satisfy the following two conditions:

Rk = R0 · 2k/2 6

√
n− 1

n
· α
√
n vol(Λ)1/n, (4.13)

hk =
vol(Λ)

Nk
6 α vol(Λ)1/n. (4.14)

The first condition gives the upper bound for number of iterations k:

k 6
2

n
· log(vol(Λ)) + 2 log

(√
n− 1 · α

R0

)
. (4.15)

If α and R0 satisfy inequality the following inequality:

α

R0
>

√
2

n− 1
, (4.16)

then 2 log
(√

n− 1 · αR0

)
> 1 and the number of iterations k = d 2

n log(vol(Λ))e satisfies the
condition given by (4.15).

Now, using the chosen value of the number of iterations, we can choose the decrease
rate N that satisfies the condition given by (4.14):

log(N) >
n

2
− n log(α)

2 log(vol(Λ))
. (4.17)

Since we assume that lim
n→∞

log(vol(Λ))
n = ∞, the decrease rate N = 2n/2 satisfies the

condition given by (4.14).
Using the obtained values of the parameters k and N , we can evaluate the complexity

of the algorithm. The memory complexity is the memory required to store the initial
list L0. After k iterations, the list Lk should be not empty, i.e., |Lk| = |L0| − 4nkN
should be bigger than zero. Therefore, we require the size of the initial list to be equal to
(1 + µ) · 4nkN , where µ is some positive constant. Then, the initial list should contain
O(nkN) n-dimensional vectors. The vectors the first coordinate of the vectors from the
initial list is smaller than vol(Λ) and the last (n − 1) coordinates are bounded by the
constant R0. Therefore, one vector from the initial list requires O(log(vol(Λ))) of memory.
Hence, the memory complexity of the algorithm is given by

S = O(2n/2 · log(vol(Λ))2). (4.18)

Now, consider the time complexity. By Lemma 4.3, i-th iteration of the algorithm
requires O(n2 · |Li−1|) operations. Therefore, in order to estimate the time required for k

73

iterations, we need to compute the following sum:

k−1∑
i=0

|Li| =
k−1∑
i=0

(|L0| − 4nN · i) = k · |L0| − 4nN ·
k−1∑
i=0

i = k · (|L0| − 2nN(k − 1)) = O(n · k2N)

(4.19)
Then, the number of polynomial-time operations performed by the algorithm is given

by:

T = O
(

2n/2 · log(vol(Λ))2
)
. (4.20)

The probability of success of the algorithm is the product of probabilities of the successes
of each iteration. Then, by Lemma 4.3,

p = (1−N · 2−7n/4)k = 1− 2−5n/4 ·O
(vol(Λ)

n

)
.

The required size of the initial list for the algorithm is 2n/2+o(n). The required size of the
list defines the radius of the initial sampling R0. Using Theorem 3.2, we obtain R0 >√

0.084(n− 1). Then, using (4.16), we get α > 0.41.

Sort-and-subtract algorithm for any lattice. In the general case, the sort-and-
subtract algorithm remains almost the same as in the case of a lattice with a prime vol-
ume. Algorithm 4.5 represents the approach for any integer lattice. The sieving parts
of both algorithms are completely similar. The main difference between Algorithm 4.4
and Algorithm 4.5 is the generation of the initial list of lattice vectors. In the case of a
lattice with a non-prime volume, it takes more effort.

Algorithm 4.5: Sort-and-subtract algorithm
input : basis B of a lattice Λ

output: v ∈ Λ such that 0 < ‖v‖ 6
√

2n
πe vol(Λ)1/n

/* initial enumeration part */

1 L0 ← enumerateCylinder(B, q,
√

2) . Algorithm 4.2
/* sieving part */

2 k ← d(n− 1) log(q)e
3 for (i ∈ {1, . . . , k}) do
4 Li ← Sieve(Li−1, N) . Algorithm 4.3

5 if (∃v ∈ L such that 0 < ‖v‖ 6
√

2n
πe vol(Λ)1/n) then

6 return v

The quality of the output and the complexity of Algorithm 4.5 are summarized in The-
orem 4.2.

Theorem 4.2. Let Λ be an n-dimensional integer lattice. Let Assumption 4.1 hold.
Then, Algorithm 4.5, given as input a basis of the lattice Λ, with probability at least 1−
2−5n/4+o(n), returns a non-zero lattice vector of length less then or equal to

√
2n
πe vol(Λ)1/n.

The memory complexity of Algorithm 4.5 is Õ(2n/2), the time complexity is Õ(20.531n).
The time complexity of the cylindrical sieving part is equal to the time required to perform
O(n4 · 2n/2) polynomial-time operations.

Proof. The proof of Theorem 4.2 is very similar to the proof of Theorem 4.1. As before,
after the enumeration part of the algorithm, we get a list L0 of lattice vectors that lie

74

inside a bounded hypercylinder: L0 = Λ ∩ h0 × Bn−1(R0). But, in the general case, the
parameters of the cylinder are different. By Lemma 4.2,

h0 6 q
(n−1)2

2 n vol(Λ)1/n, R0 6 β

√
n− 1

2πe
q−

n−1
2 vol(Λ)1/n, (4.21)

where q is the parameter of the LLL reduction used by Algorithm 4.2 and β is some
constant bigger than one that we choose later in the proof. The size of the list and the
parameters of the hypercylinder change during the iterations of the algorithm in the same
way as before (see (4.11)). The goal is to obtain a vector of length α

√
n vol(Λ)1/n after k

iterations, with the smallest possible factor α. In order to find such a vector, we choose
the number of iterations k and the decrease rate N such that they satisfy the conditions
given by (4.13) and (4.14). Then, proceeding similarly as in the proof of Theorem 4.1, we
get the following values for the number of iterations and on the decrease rate:

k = d(n− 1) log(q)e, N = 2n/2. (4.22)

The choice of k also restricts the possible values of α; α should be bigger than β√
πe
.

Now, using the obtained values of k and N , we can estimate the complexity of the sieving
part of the algorithm. The computations are similar to the proof of Theorem 4.1. The
memory complexity of the algorithm is the memory, required to store a list of O(n2 · 2n/2)
n-dimensional vectors. The time complexity is the time required to perform O(n4 · 2n/2)
polynomial-time operations.

In order to estimate the complexity of the whole algorithm, it remains only to estimate
the complexity of the enumeration part. For the sieving process to work, we need the initial
list of lattice vectors of size 2n/2+o(n). By Lemma 4.2, we need to take β =

√
2 to achieve

that size of the list. Then, the complexity of the enumeration part is Õ(e
nβ2

2e) ≈ Õ(20.531n).

The length of the outputted vector divided by the Minkowski’s bound is α 6
√

2
πe .

Table 4.1 summarizes the complexity of the sort-and-subtract algorithm. The memory
complexity and the time complexity of the sieving part of the algorithm is Õ(2n/2) inde-
pendently of the input lattice. However, the initial enumeration part is more costly in the
general case than for lattices with a prime volume.

prime volume any lattice
memory 2n/2 2n/2

sieving time 2n/2 2n/2

initial enumeration time 2n/2 20.513n

quality of output 0.41 0.484

Table 4.1 – The complexity of the sort-and-subtract algorithm for prime volume lattices
(see Algorithm 4.4) and in the general case (see Algorithm 4.5). All complexities in the
table are given without subexponential factors. The row “quality of the output” represents
the lengths of the vectors, returned by the algorithms, divided by the Minkowski’s bound
of the input lattice.

4.3 Adding spherical sieving.

The cylindrical sieving proceeds by cutting the cylinder into N equal parts across its
axis, in order to decrease the first coordinate of the lattice vectors, and then performing

75

the usual spherical sieving inside each part, in order to guarantee that the last (n − 1)
coordinates doesn’t grow too much. The cylindrical sieving algorithms from the previous
section (see Algorithms 4.4 and 4.5), are based on the idea that the length of the difference
between two random vectors on an n-dimensional sphere is, with high probability, about
the factor

√
2 bigger than the radius of the sphere. For the analysis of the complexity of

the algorithms it means that, in order to guarantee that the radius of the cylinder growth
at most by the factor

√
2, we loose only polynomial amount of points inside each of N

chunks of the cylinder during the sieving process.
In this section, we consider what happens, if we become more restrictive about the

growth of the radius of the cylinder. Namely, we say that now the growth rate γ ∈ (1;
√

2]
of the radius of the cylinder is an additional parameter of the algorithm.

When γ =
√

2, we obtain the algorithms from the previous section. Introducing the
new parameter γ adds an additional trade-off between the number of chunks of the cylinder
and the time, spent inside one chunk. When γ <

√
2, the number of points needed inside

one chunk becomes exponential in the dimension, but, since the growth rate of the radius
of the cylinder is smaller, we can allow more iterations of the algorithm and, therefore, we
may let the decrease rate N of the height of the cylinder be smaller.

The algorithms for γ <
√

2 remains essentially the same as described in Algorithms 4.3
to 4.5. We obtain the cylindrical sieving for arbitrary γ just by replacing

√
2 by the desired

value of γ in the algorithms. In the same time, the analysis of the resulting complexity is
slightly different.

In order to re-estimate the complexity of the cylindrical sieving for γ 6=
√

2, we first
consider the complexity of one sieving step (corresponds to Algorithm 4.3), which is the
same independently of the input lattice, and then, as before, we estimate separately the
complexity of the whole algorithm for an arbitrary lattice and for a lattice with a prime
volume.

4.3.1 One step of cylindrical sieving with γ <
√

2.

The algorithm that performs one step of the cylindrical sieving with the decrease rate
γ 6=

√
2 can be obtained from Algorithm 4.3 by replacing one line in pseudo-code. The

modified version with arbitrary γ is presented by Algorithm 4.6.

Algorithm 4.6: One iteration of sort-and-sieve algorithm.
input : decrease rate N , increase rate γ ∈ (1;

√
2), list L ⊂ Λ ∩ h×Bn−1(R),

|L| > N · cov(n, γ) + 1
output: list L′ ⊂ Λ ∩ h

N ×Bn−1(R), |L′| > |L| −N · cov(n, γ)− 1
1 The algorithm coincides with Algorithm 4.3 everywhere except Line 9. At Line 9,
checking inequality ‖ux − uc‖ 6 R

√
2 is replaced by checking ‖ux − uc‖ 6 Rγ.

In this section, we analyse the complexity of Algorithm 4.6 as a function of the decrease
rate γ.

As in Section 4.2.1, for the analysis of the complexity of one sieving step, we assume that
vectors, composed by the last (n−1) coordinates of the vectors from the input list, behave
like uniformly distributed on the sphere. As before, the key point in the analysis of the
complexity is the number of random points, needed to cover a sphere. When γ =

√
2, one

point covers a half of the sphere. Now, one point covers a spherical cap of an angular radius
less than π

2 . We further use the following straightforward corollary from Theorem 3.7, in
order to estimate number of points lost in the sieving process with γ <

√
2.

Corollary 4.2. Let n be a positive integer number and let γ ∈ (1;
√

2). Let α =

76

arcsin
(√

γ2 − γ4

4

)
and let N be bigger than

cov(n, γ) := 2 ln(2)n2 ·
(
γ2 − γ4

4

)−n−1
2
.

Let C = {c1, . . . , cN} be a list of points N sampled independently from the uniform
distribution on Sn−1. Then, the probability that the fraction of the sphere, covered by
spherical caps of the angular radius α centered at the points from C is at least 1− 2−d is
greater than or equal to 1− 2−d.

The complexity of Algorithm 4.6 is described by Lemma 4.4.

Lemma 4.4. Let Λ ⊂ Zn be an n-dimensional lattice. Let h,R > 0 and let γ ∈ (1;
√

2).
Let cov(n, γ) be as defined in Corollary 4.2. Let L ⊂ Λ be a list of lattice vectors, such
that all vectors from L satisfy the following conditions:

∀v ∈ L, v =

(
v1 ∈ Z

uv ∈ Zn−1

)
, 0 < v1 6 h, ‖uv‖ 6 R.

We assume that |L| = O(Ncov(n, γ)) and that N and γ are chosen in such a way that |L| 6
2n/2. Then, if Assumption 4.1 holds, Algorithm 4.6, given as input the list L, outputs,
with the probability greater than 1−2−nN , a list L′ ⊂ Λ of size at least |L|−Ncov(n, γ)−1,
such that all vectors from L′ satisfy the conditions:

∀w ∈ L′, w =

(
w1 ∈ Z

uw ∈ Zn−1

)
, 0 < w1 6

h

N
, ‖uw‖ 6 R · γ, (4.23)

in time Õ(cov(n, γ)|L|) = Õ(N · cov(n, γ)2) using Õ(|L|) = Õ(N · cov(n, γ)) memory.

Proof. The proof is similar to the proof of Lemma 4.3. The only part that is slightly
different, is the estimation of the number of points lost during the sieving process. Hence,
here we provide only that part of the proof.

As before, our goal is to estimate the number of points that the algorithm choose as

centers,i.e., to estimate the following sum:
N∑
i=1
|Ci|. Let εf and εp be two positive numbers

close to zero. Denote as Cγ(εf , εp) a positive integer number such that the following
expression is true:

P{Cγ(εf , εp) spherical caps of angular radius γ cover 1− εf of Sn−1} > 1− εp.

Then, consider the following two possibilities for the size of one sublist Li. First, the size
of the i-th sublist can be smaller than Cγ(εf , εp). In that case, even if we loose the whole
sublist, we do not loose more than Cγ(εf , εp) points.

Another possibility is that |Li| is bigger than Cγ(εf , εp). In that case, under Assump-
tion 4.1, after the number of centers in Li have reached Cγ(εf , εp) points, new points
become centers only with the probability at most εf . Therefore, the number of lost centers
does not exceed Cγ(εf , εp)+O(εf)(|Li|−Cγ(εf , εp)) with probability at least 1−εp. Then,
for the overall number of centers we obtain:

N∑
i=1

|Ci| 6
N∑
i=1

Cγ(εf , εp) +O(εf)(|Li| − Cγ(εf , εp)) 6 N · Cγ(εf , εp) +O(εf |L|),

with probability at least 1 − εp. If we choose εf = εp = 2−n, then Cγ(2−n, 2−n) is equal
to cov(n, γ); as we assume that |L| < 2n/2, the number of lost points is bounded by
N · cov(n, γ) + 1.

77

The probability of the success of the algorithm can be lower bounded by the probability
that, for each sublist, Cγ(εf , εg) points cover 1− εf of the sphere surface:

p > (1− εp)N > 1− N

2n
.

4.3.2 Sort-and-sieve algorithm for a lattice with a prime volume

In this section, we compute the complexity of cylindrical sieving with γ <
√

2 in case
of a lattice with a prime volume.

By replacing Algorithm 4.3 by Algorithm 4.6, parameterized by γ ∈ (1;
√

2), in the
sort-and-subtract algorithm (see Algorithm 4.4), we obtain a continuum of more efficient
algorithms (see Algorithm 4.7).

Algorithm 4.7: Sort-and-sieve algorithm for lattices with prime volume
input : a basis B of a lattice Λ with a prime volume p, parameter γ ∈ (1;

√
2).

output: v ∈ Λ such that 0 < ‖v‖ 6 α(γ)
√
γn vol(Λ)1/n.

/* initial enumeration part */

1 (p,a)→ HNF(B)
2 L0 → enumerateCylinder(p,a, R0(γ)) . Algorithm 4.1

/* sieving part */

3 k ←
⌈

log(p)
n log(γ)

⌉
4 for (i ∈ {1, . . . , k}) do
5 Li ← Sieve(γn, γ, Li−1) . Algorithm 4.6
6 if (∃v ∈ L such that 0 < ‖v‖ 6 α

√
γn vol(Λ)1/n) then

7 return v

Theorem 4.3. Let γ ∈ (1;
√

2). Let n and p be as in Theorem 4.1. let Λ be an n-
dimensional integer lattice with a prime volume vol(Λ) = p. Let Assumption 4.1 hold. Let

R0 > 0 be such that |Bn−1(R0) ∩ Zn−1| = Õ
(

1− γ2

4

)−n/2
. Then, Algorithm 4.7, given as

input a basis of the lattice Λ, with probability at least 1− 2(log(γ)−1)n+o(n), outputs a non-
zero lattice vector of length less then or equal to α(γ)

√
γn vol(Λ)1/n, where α(γ) = γ√

γn
R0.

The memory complexity of the algorithm is Õ
((

1 − γ2

4

)−n/2), the time complexity is

Õ
((
γ − γ3

4

)−n).
Proof. The structure of the proof is similar to the proof of Theorem 4.1. Essentially, the
proof can be obtained by replacing

√
2 by the parameter γ in the proof of Theorem 4.1,

and by replacing the number of vectors, lost at one iteration, according to Lemma 4.4.
By doing so for (4.11) that describes how the size of the list and the geometry of the

vectors in the list update after one iteration, we obtain:

|Li+1| > |Li| − cov(n, γ) ·N, Ri+1 6 Ri · γ, hi+1 6
hi
N
. (4.24)

As before, the goal is to obtain a vector of length that is equal to some constant multiple
of Minkowski’s bound of the lattice. Therefore, we choose the number of iterations k and
the decrease rate N such that, after k iterations, hk satisfies the condition, given by (4.14),
and Rk satisfies the condition, obtained from (4.13) by replacing

√
2 by γ:

Rk = R0 · γk 6
√
n− 1

n
· α
√
n vol(Λ)1/n, (4.25)

78

Proceeding as in the proof of Theorem 4.1, we choose the following values of the parameters
k and N :

k =
⌈ vol(Λ)

n log(γ)

⌉
, N = γn, (4.26)

and we also obtain the following bound for the ratio of the quality of the output α and the
radius of the initial sampling R0:

α

R0
>

γ√
n− 1

. (4.27)

Using the obtained values of the parameters k and N , we get the time and memory com-
plexities of the algorithm in the same way, as we obtain (4.18) and (4.20) in the proof
of Theorem 4.1:

S(γ) = Õ(cov(n, γ) ·N) = Õ
((

1− γ2

4

)−n/2)
, (4.28)

T(γ) = Õ(cov(n, γ)2 ·N) = Õ
((
γ − γ3

4

)−n)
. (4.29)

In order to estimate the probability of success of the algorithm, we estimate the product
of probabilities of success at each iteration. By Lemma 4.4, we obtain

p > 1− 2−nN ·Θ(vol(Λ)/n) = 1− γn · 2−n+o(n). (4.30)

The radius of the initial sampling, and, therefore, the quality of the output of the algorithm,
is defined by the required size of the initial list, which is given by (4.18). It can be
numerically computed for a particular value of γ using Theorem 3.2.

Denote as γopt the value of the parameter γ that optimizes the time complexity of Al-
gorithm 4.7:

γopt = arg min
γ∈(1;

√
2)

(
γ − γ3

4

)
=

2√
3
.

The complexity of Algorithm 4.7, given γ = γopt, coincides with the complexity of the
overlattice sieve algorithm [BGJ14]. The length of the lattice vector, recovered by Algo-
rithm 4.7 with γ = γopt, does not exceed the Minkowski’s bound of the lattice.

Corollary 4.3. Let γopt = 2√
3
be the growth rate of Algorithm 4.7. Let n and p be

as in Theorem 4.3. Then, if Assumption 4.1 holds, Algorithm 4.7, given as input an n-
dimensional lattice Λ with the prime volume p, with probability at least 1− 2−0.792n+o(n),
outputs a non-zero lattice vector of length at most 0.236

√
n vol(Λ)1/n. The time complexity

of the algorithm is equal to Õ(20.3774n), the memory complexity is Õ(20.292n).

Proof. The complexity is obtained straightforwardly from Theorem 4.3 by substituting γ
with γopt. In order to estimate the quality of the output of the algorithm, we need to choose
the radius R0 of the initial hypercylinder. We need to choose R0 in such a way that an
(n− 1)-dimensional ball of radius R0 contains S(γopt) integer points. Using Theorem 3.2,
we obtain R0 =

√
0.0418n. Therefore, by (4.27) requires that the quality of the output α

should at least 2√
3
·
√

0.0418. The probability of success of the algorithm follows from (4.30).

If we optimize the memory complexity instead of the time, we get γopt → 1, which
corresponds to the Nguyen-Vidick sieve algorithm [NV08].

79

Algorithm 4.8: Sort-and-sieve algorithm for lattices with prime volume
input : a basis B of a lattice Λ ⊂ Zn, parameter γ ∈ (1;

√
2).

output: v ∈ Λ such that 0 < ‖v‖ 6 βγ
√
γn vol(Λ)1/n.

/* initial enumeration part */

1 L0 ← enumerateCylinder(B, q, β) . Algorithm 4.2
/* sieving part */

2 k ←
⌈
n−1

2 ·
log(q)
log(γ)

⌉
3 for (i ∈ {1, . . . , k}) do
4 Li ← Sieve(γn, γ, Li−1) . Algorithm 4.6
5 if (∃v ∈ L such that 0 < ‖v‖ 6 α

√
γn vol(Λ)1/n) then

6 return v

4.3.3 Sort-and-sieve algorithm for any lattice

In this section, we estimate the complexity of the cylindrical sieving with the parameter
γ ∈ (1;

√
2) in the general case. That is, we replace the growth rate

√
2 in Algorithm 4.5 by

the parameter γ, and we compute the complexity of the resulting algorithm as a function
of γ. The parameters of the generalized algorithm are summarized in Algorithm 4.8.

The complexity of the sort-and-sieve algorithm for any lattice is described in Theo-
rem 4.4.

Theorem 4.4. Let γ ∈ (1;
√

2). Let Λ be an n-dimensional integer lattice. Let Assump-

tion 4.1 hold. Let β > 0 be such that βn = Õ
(

1− γ2

4

)−n/2
.

Then, Algorithm 4.8, given as input a basis of the lattice Λ, with probability at least
1 − 2(log(γ)−1)n+o(n), outputs a non-zero lattice vector of length less then or equal to
βγ
2πe

√
n vol(Λ)1/n. The memory complexity of the algorithm is Õ

((
1 − γ2

4

)−n/2). The

time complexity of the sieving part of the algorithm is Õ
((
γ − γ3

4

)−n). The time com-

plexity of the initial enumeration part is given by Õ(e
nβ2

2e), when β 6
√
e, otherwise it is

equal to Õ(β).

Proof. The proof is obtained by taking the proof of Theorem 4.2, replacing the growth
rate

√
2 by the parameter γ, and replacing the estimate for the number of points lost

by the algorithm after one iteration of sieving given by Lemma 4.3 with the estimate
by Lemma 4.4. The probability of success of the algorithm can be estimated exactly as
in Theorem 4.3. We do not rewrite all the steps again, instead, here we just provide the
resulting parameters of the algorithm. The number of iterations k and the decrease rate
N are given by:

k =
⌈n− 1

2
· log(q)

log(γ)

⌉
, N = γn. (4.31)

The ratio of the length of the vector, returned by Algorithm 4.8, and of the Minkowski’s
bound of the lattice is upper bounded by α = βγ

2πe .

Ignoring polynomial factors, the time complexity of Algorithm 4.8 is the maximum of
the complexities of the initial enumeration part and of the sieving part:

T = Õ(max(Tsieving,Tinitial enumeration)).

Denote as γ̂opt the value of the parameter γ that optimizes the time complexity of Algo-

80

rithm 4.7. It can be computed numerically.

γ̂opt = arg min
γ∈(1;

√
2)

(
max

(
e
nβ(γ)2

2e , (γ − γ3

4
)−n
))
≈ 1.10378. (4.32)

The complexity of Algorithm 4.8 with the parameter γ = γ̂opt, as well as the complexity
with the value of the parameter γ = γopt that optimized only the complexity of the sieving
part, is given in the following corollary from Theorem 4.4.

Corollary 4.4. Let γopt = 2√
3
and let γ̂opt ≈ 1.10378 be as in (4.32). Let Assumption 4.1

hold.
Then, Algorithm 4.8, given as input an n-dimensional integer lattice Λ and γopt, outputs

a non-zero lattice vector of length at most 0.342
√
n vol(Λ)1/n. The time complexity of the

initial enumeration is Õ(20.398n); the time complexity of the sieving part of the algorithm
is equal to Õ(20.3774n). The memory complexity of the algorithm is Õ(20.292n).

If the parameter γ of the algorithm is equal to γ̂opt, then the time complexity of
the initial enumeration part and of the sieving part are equal up to polynomial factor.
The time complexity of the algorithm for γ = γ̂opt is Õ(20.3816n), the memory complex-
ity is Õ(20.262n); the length of the lattice vector, returned by the algorithm is at most
0.32
√
n vol(Λ)1/n.

Table 4.2 summarizes the complexities of all the algorithms, presented in this chapter.

prime volume any lattice

γ =
√

2
time 2n/2

memory 2n/2

output 0.41

enum. time 20.531n

sieving time 2n/2

memory 2n/2

output 0.484

γ = 3√
2

time 20.3774n

memory 20.292n

output 0.236

enum. time 20.396n

sieving time 20.3774n

memory 20.292n

output 0.342

γ ≈ 1.10378
time 20.3816n

memory 20.262n

output 0.32

Table 4.2 – Complexity of finding short lattice vectors using cylindrical sieving. The first
row in the table represents the value of the growth rate used by an algorithm; γ =

√
2

corresponds to the sort-and-subtract algorithm, other values of γ correspond to the sort-
and-sieve algorithm. The row, marked “output”, represents the upper bound of the norm
of the lattice vector, returned by the algorithm, divided by the Minkowski’s bound of the
lattice.

81

Chapter 5

Finding short vectors for lattices
with a small prime volume

In the previous chapter, for the analysis of the complexity of algorithms, we do not
make any assumptions on the size of the volume of the lattice. We only assume that the
description of an input lattice can be stored using polynomial in the dimension amount of
space, which implies that the logarithm of the volume of the lattice is also polynomial in
the dimension.

In this chapter, we apply cylindrical sieving to a lattice with a small prime volume.
That is, now we consider a lattice Λ with a prime volume p = 2Θ(n).

In order to illustrate why cylindrical sieving may be efficient for lattices with a small
volume, we start with a small example. Consider the sort-and-subtract algorithm applied
to an n-dimensional lattice Λ with a prime volume, such that p = vol(Λ) is roughly equal to
2n. Let the size of the initially generated list of lattice points L0 be equal to poly(n) ·2n/4.
Initially, L0 is contained inside a hypercylinder p×Sn−2(

√
α(n− 1)), where α > 0 is some

constant. As we take a list of vectors of size poly(n) · 2n/4, the decrease rate of the first
coordinate of the vectors from the list is about 2n/4. Then, after 4 iterations, the first
coordinate of the vectors is completely reduced:

2n → 2n

2n/4
= 23n/4 → 2n/2 → 2n/4 → O(1).

In the sort-and-subtract algorithm, the increase rate of the last (n− 1) coordinates of the
vectors is equal to

√
2, then, after four iterations, the norm of the vectors, formed by the

last (n − 1) coordinates, is increased only by a factor
√

2
4

= 4. The Minkowski’s bound
for a lattice with volume 2n is 2

√
γn = O(

√
n). Therefore, using cylindrical sieving, for

a lattice with a prime volume p ≈ 2n, we can find a vector of length equal to a constant
approximation of the Minkowski’s bound in time Õ(2n/4), which is much faster than any
existing algorithm that solves SVP in the general case.

Similarly, if we take the initial list of size Õ(2n/ log(n)), we obtain an algorithm that finds
a polynomial approximation of the Minkowski’s bound of the lattice in a subexponential
time.

In this chapter, we consider the complexity of finding short vectors for lattices with a
prime volume equal to 2Θ(n) using cylindrical sieving. It is organized as follows. First, we
adapt the sort-and-sieve algorithm for lattices with a volume around 2cn and consider its
complexity as a function of c and of the length of the vector, returned by the algorithm.
Then, we numerically estimate the complexity of the algorithm for various values of c and
of the quality of the output, and compare the obtained algorithm with existing techniques
for lattices with a small volume.

82

5.1 Complexity of cylindrical sieving for lattices with small
prime volume

In this section, we consider the complexity of the sort-and-sieve algorithm applied to
a lattice with a prime volume p ≈ 2cn. If the logarithm of the volume of the lattice is
the constant multiple of the dimension, and if the size of the initial list of lattice vectors
is exponential in n, then, in order to decrease the first coordinate of the vectors, we need
only constant number of iterations. The last (n− 1) coordinates grow with each iteration
by a constant factor γ ∈ (1;

√
2]. Then, since initially generated vectors have length

proportional to
√
n, after the constant number of iterations we obtain a vector of length

equal to Minkowski’s bound of the lattice multiplied by some constant. How close is the
length of the vector, returned by the algorithm, to the Minkowski’s bound, depends on
the radius of the initial hypercylinder and on the number of iterations. The number of
iterations is defined by the exact size of the volume of the lattice and by the growth rate γ
of the algorithm. Theorem 5.1 describes the choice of the parameters and the complexity
of the resulting algorithm (see Algorithm 5.1) in a small volume case.

Algorithm 5.1: Sort-and-sieve algorithm for lattices with small prime volume
input : a basis B of a lattice Λ with a prime volume p = 2cn, parameter

γ ∈ (1;
√

2).
output: v ∈ Λ such that 0 < ‖v‖ 6 β

√
n vol(Λ)1/n.

/* initial enumeration part */

1 (p,a)→ HNF(B)
2 L0 → enumerateCylinder(p,a, R0(γ)) . Algorithm 4.1

/* sieving part */

3 k ←
⌈
c+log(β/

√
α)

log(γ)

⌉
4 for (i ∈ {1, . . . , k}) do
5 Li ← Sieve(γ

cn
c+log(β/

√
α) , γ, Li−1) . Algorithm 4.6

6 if (∃v ∈ L such that 0 < ‖v‖ 6 β
√
n vol(Λ)1/n) then

7 return v

Theorem 5.1. Let n be a positive integer number and let p be a prime, such that c = log(p)
n

is a positive constant. Let γ ∈ (1;
√

2), Let Λ be an n-dimensional lattice with vol(Λ) = p.

Denote c
c+log(β/

√
α)

as µ, and denote

(
γµ−2

1− γ2

4

)n
as S. Let α > 0 be such that the ball

Bn−1(
√
α(n− 1)) contains Õ(S) integer points and let β be bigger than

√
α. Let the

decrease rate of Algorithm 5.1 be equal to N = γµ.

Then, if Assumption 4.1 holds, Algorithm 5.1, given a basis of the lattice Λ, with
probability at least 1−Θ(2−n/2), returns a non-zero lattice vector v ∈ Λ such that ‖v‖ 6

β
√
n vol(Λ)1/n. The time complexity of Algorithm 5.1 isT = Õ

(
γ2(µ−1)

1− γ2

4

)n/2
, the memory

complexity is S = Õ(S).

Proof. The proof is similar to the proof of Theorem 4.3. The goal of the algorithm is to
obtain a vector of length β

√
n vol(Λ)1/n with β as small as possible. In order to achieve

it, iterations of the algorithm k that satisfies the following condition (analogous to (4.14)
and (4.25)) are satisfied: √

α(n− 1) · γk 6 β
√
n− 1 · 2c; (5.1)

83

and we choose the decrease rate of the height of the cylinder such that after k iterations
the height is small enough:

2cn

Nk
6 β · 2c. (5.2)

The number of iterations k = c+log(β/α)
log(γ) satisfies the condition given by (5.1). Then,

according to (5.2), we can choose N = γµ, where µ is as described in the theorem. Using
obtained values of k andN , we can derive the time and memory complexity of the algorithm
in the same way as in the proof of Theorem 4.1.

By Lemma 4.4, the probability of success of one iteration of sieving is (1−N ·2−n+o(n)).
Then, the probability of success of the whole algorithm is

(1−N · 2−n+o(n))k > 1− 2−n+µ log(γ)+o(n).

As µ is always less than 1 and γ <
√

2, the probability of success is at least 1− 2−n/2+o(n).

Hence, in order to find optimal parameters for approximating the Minkowski’s bound
of a lattice with a volume p ≈ 2cn up to the factor β > 1 by Algorithm 4.7, we need to
solve the following optimization problem:

|Zn−1 ∩Bn−1(
√
α(n− 1))| > S(c, α, β, γ),

β >
√
α,

(α, γ) = arg min
γ∈(1;

√
2),α>0

T(c, α, β, γ),
(5.3)

where T and S are as described in Theorem 5.1.

5.2 Complexity of finding short lattice vectors for a lattice
with a small prime volume

In this section, we estimate the complexity of finding short lattice vectors for lattices
with a prime volume p = 2cn for various values of c.

First, consider a problem of finding a lattice vector of length shorter than Minkowski’s
bound for a lattice with a small prime volume. Up to our knowledge, there is no exact SVP
algorithm that considers the case of lattices with a small volume separately. Therefore,
for finding vectors shorter than Minkowski’s bound, we compare the cylindrical sieving
algorithm from the previous section with the fastest heuristic sieving algorithm for solving
SVP [BDGL16] for an arbitrary lattice.

In order to estimate the time complexity of the cylindrical sieving for lattices with a
small prime volume, we implement a python script that, given as input c = log(vol(Λ))

n and

the parameter β = ‖v‖√
n vol(Λ)

1/n
that describes the length of the vector, returned by Algo-

rithm 5.1, finds optimal parameters of Algorithm 5.1 (see (5.3)).
Our estimates show that for lattices with a volume smaller than 21.71n, the cylindrical

sieving finds vectors of length shorter than
√

1.744n
2πe · vol(Λ)1/n faster then the current

fastest algorithm for SVP [BDGL16]. For example, for a lattice with a volume around
2n,the estimated time complexity of Algorithm 5.1 is Õ(20.229n), while the complexity of
the algorithm [BDGL16] is Õ(20.292n). The results are presented in Figure 5.1.

We also consider a problem of finding a vector of length that is at most a constant factor
longer than the shortest vector of a lattice. In that case, we can compare the cylindrical
sieving with Cheon’s technique for solving approximate lattice problems that also exploits
the small volume of the input lattice (see Section 3.2).

84

1.0 1.2 1.4 1.6 1.8 2.0
log(p)/n

0.22

0.24

0.26

0.28

0.30

log(Tcs)
n

0.292

Figure 5.1 – Time complexity of finding a lattice vector shorter than Minkowski’s bound
for lattices a small prime volume. n denotes the dimension, p denotes the volume of a
lattice, Tcs denotes the time complexity of finding a vector of length

√
1.744n

2πe vol(Λ)1/n by
cylindrical sieving (represented by blue line); 0.292n is the logarithm of the time complexity
of the algorithm [BDGL16] (represented by green line).

We estimate the time complexities of both approaches for a lattice with vol(Λ) ≈ 2n

for a range of approximation factors. The results are presented in Figure 5.2. When the
required length of the vector returned by the algorithm is close to Minkowski’s bound, the
cylindrical sieving outperforms Cheon’s technique. But, for bigger approximation factors,
Cheon’s technique is faster then the cylindrical sieving.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.10

0.15

0.20

0.25

0.30
log(Tcs)/n
log(TCheon)/n

Figure 5.2 – Complexity of solving approximate SVP by cylindrical sieving and by Cheon’s
technique for a lattice with a prime volume p ≈ 2n. β denotes the ratio ‖v‖√

n vol(Λ)1/n , where
v is the vector returned by an algorithm. The blue line represents the logarithm of the
time complexity of the cylindrical sieving, the green line represents the Cheon’s technique.

85

Chapter 6

Solving the Closest Vector Problem
with cylindrical sieving

In this chapter, we adapt the cylindrical sieving to solve the Closest Vector Problem.
In Chapter 4, we describe the cylindrical sieving algorithm for finding short lattice

vectors (see Algorithms 4.4 and 4.5). We recall in short how the cylindrical sieving works
for solving SVP. First, the algorithm generates a long list L of lattice vectors that lie inside
a long and narrow hypercylinder. Then, the algorithm iteratively repeats the following
procedure: it considers the differences of the vectors from the list and keeps for the next
iteration only those that lie inside a much shorter but slightly wider hypercylinder. At the
last iteration, we obtain lattice vectors of length smaller than Minkowski’s bound of the
lattice.

In this chapter, our goal is to solve the Closest Vector Problem. We are given a lattice
Λ and a vector t ∈ Rn and the goal is to construct an algorithm that finds a lattice point v
such that the norm of the difference v−t is short. Consider the special case of the problem,
when t belongs to the initial hypercylinder of the cylindrical sieving. Then, we can add
the target point t to the list L and run the cylindrical sieving process on the resulting
list L := L ∪ {t}. Assume that at the first iteration the algorithm successfully find a pair
v1 for t1 := t such that t1 − v1 belongs to the next hypercylinder. Then, t2 := t1 − v1

becomes a target point for the next iteration. Assume that at each iteration the algorithm
finds a suitable pair for ti and denote as vi the pair, found at the iteration i. Then, the

vector t −
k∑
i=1

vi, where k is the number of iteration, belongs to the last hypercylinder of

the sieving process. Thus, it is short. As all vis are the lattice vectors, the sum
k∑
i=1

vi is

a solution of the CVP problem. The complexity of the resulting algorithm coincides with
the complexity of solving SVP with the cylindrical sieving.

This approach has two restrictions. First, it can be applied only to the targets that lie
inside a certain hypercylinder. Second, we do not have a guarantee that there is a suitable
pair for the target among the vectors from the list. Consider these restrictions separately.

The first problem can be solved by reducing the target point t ∈ Rn with the lattice
basis that we used in Chapter 4 to sample the initial list of lattice vectors. For prime
volume lattices, it is the basis given by the Hermite Normal Form of the lattice; for an
arbitrary lattice we can obtain the basis using the unbalanced reduction.

The second restriction is harder to handle. In order to analyze the behavior of the
list of lattice vectors together with the target point during the iterations of the sieving
process, we need some assumptions on their distribution. We randomize the target point
by adding a random lattice vector to it, and assume that at each iteration it behaves as if
it is sampled from the uniform distribution on the corresponding hypercylinder.

86

h

R

N = 2n/2, γ =
√

2
h
2n

R
√

2

Figure 6.1 – One iteration of the cylindrical sieving for solving CVP. Blue points denote
the lattice points, red points denote the target points for approximation. The line with
blue and red points in the upper right part of the picture denotes the projection of the
input points on the axis that corresponds to the first coordinate of the input vectors.

Also, to predict the number of points, needed to cover most of the surface of each
hypercylinder, we need some assumptions on the behavior of the lattice points from the
list. For solving CVP, we assume that the points from the list behave as sampled from a
uniform-like distribution. Informally, we assume that the distribution has no holes, i.e.,
for not too small pieces of the hypercylinder, their probability is proportional to their
volume. See Assumption 6.1 for the precise description of the assumptions made on the
distribution.

The cylindrical sieving adapts nicely to solve the Closest Vector Problem with prepro-
cessing. If we store the lists of the lattice points after one run of the cylindrical sieving,
we can reuse them to solve new CVP instances for the given lattice. Then, to find a close
vector for a new target we just iteratively reduce it with each list. If we spend Õ(2

n
2) time

on the preprocessing, one instance of the problem can be solved in the polynomial time in
the dimension of the lattice.

This chapter is organized as follows. In Section 6.1, we analyze one iteration of the
cylindrical sieving under new assumptions. In Section 6.2, we show how the initial genera-
tion of lattice vectors inside a hypercylinder can be combined with the iterative cylindrical
sieving to produce the description of a lattice that can be used later for solving CVPP
instances. As the initial generation of lattice vectors for prime volume lattices is easier, we
describe the preprocessing for prime volume lattices and for the general case separately.

Then, in Section 6.3, we describe how to find close lattice vectors to the target points
that lie inside the initial hypercylinder, given a description of the lattice produced by the
preprocessing step.

In Section 6.4, we combine everything together and obtain an algorithm that solves
the Closest Vector Problem in polynomial time in RAM computational model. Again, we
describe two algorithms: one for a prime volume lattice, another for the general case.

Finally, in Section 6.5, we describe the implementation of the algorithm for prime
volume lattices and provide experimental results to support the proposed heuristic as-
sumptions.

87

6.1 One step of preprocessing

Let N > 1. In this section, we describe an algorithm that, given as input a list L of
lattice vectors, uniformly distributed inside a hypercylinder Cnu(h,R), produces two new
lists C and L′ of lattice vectors with the following properties:

— the list C is a subset of L, such that the overwhelming fraction of the hypercylinder
Cnu(h,R) is covered by the half-cylinders of height h

N , centered at points from C;
— all the vectors from the list L′ lie inside the hypercylinder of much smaller height

and slightly smaller radius Cnu(hN , R
√

2).
The algorithm is similar to Algorithm 4.3 that performs one sieving step for solving

SVP. It also creates an initially empty list of centers C, then goes through the input list
L and for each point from L tries to find a pair in the list C. If the search for a pair is
not successful, the considered vector from L becomes a new center and goes to the list of
centers C. The difference is that now, in addition to obtaining a new list L′ of shorter
lattice vectors, we also need to produce a coverage C of the hypercylinder Cnu(h,R). In
order to do so, in the preprocessing for CVPP, we keep the centers, produced by the
algorithm, instead of throwing them out as in Algorithm 4.3 for SVP.

The analysis of one step of the preprocessing for CVPP compared to one step of sieving
for SVP is also different, mainly because now we use a different assumption on the distribu-
tion of lattice vectors that an algorithm obtains as an input. Vector x from a hypercylinder
Cnu(h,R) can be presented as a sum of two orthogonal parts: (xtu)u and πu(x). When
analysing SVP, we considered only πu(x), for the rest of the vector the knowledge that
(xtu)u is bounded was enough to conclude that we get short enough vectors in the end.
Now, as we need to produce a coverage of the hypercylinder, we also need to take into
account the part of the vectors, parallel to the cylinder axis. We use a somewhat stronger,
but natural assumption that vectors from the input list are uniformly distributed inside
the corresponding hypercylinder.

This section is organized as follows. First, we consider a subroutine (see Algorithm 6.1)
that reduces one lattice point with a list of centers, i.e., returns a suitable pair for it, or adds
it to the list of centers. In Lemma 6.1, we analyze the complexity of the subroutine. Then,
we present one iteration of the preprocessing for CVPP in Algorithm 6.2. In Lemma 6.2,
we describe its complexity under Assumption 6.1 on the distribution of the input vectors.

Algorithm 6.1: Reduce one point with list of points
input : x ∈ Cnu(h,R), list C ⊂ Cnu(h,R), decrease rate N .
output: c ∈ C such that (v − c) ∈ Cnu

(
h
N , R

√
2
)
or None.

1 reducePointWithList(x, C, N):
2 if C = ∅ then
3 return None
4 find the first j such that (x−C[j])tu 6 h

N
5 for i ∈ {j, . . . ,min(j + n, |C|)} do
6 c← C[i]

7 if ((c− x)tu > h
N) then

8 break
9 if (‖πu(c)− πu(x)‖ 6 R

√
2) then

10 return c
11 return None

Lemma 6.1. Let h,R > 0 and let N > 1. Let α ∈
(

0; 1
2

)
. Let C be a list of points,

88

sampled independently from a
(

1
N , α

)
-quasi-uniform distribution on the hypercylinder

Cnu(h,R) and then sorted by the value of their projections on span(u). Then, Algorithm 6.1,
given as input the list C and a target point x ∈ Cnu(h,R), outputs a vector c ∈ C, such
that x−v ∈ Cnu

(
h
N , R

√
2
)
, or, outputs None if there is no such a vector in the list C. The

expected time complexity of the algorithm is O(log(|C|)).
If there is µ > 1 such that the size of the list C is greater than 2µ

α · N , than, for all
δ ∈ (0; 1), with probability at least 1 − e−µ

δ , for (1 − δ) fraction of all the possible input
points, the algorithm returns a suitable pair from the list C.

Proof. First, estimate the time complexity of the algorithm. When the algorithm searches
for a suitable pair in the list C, it looks only through those vectors, that have the projection
on the span(u) within the distance h

N from the projection on span(u) of the target vector
x. As the list C is sorted, the first occurrence of such a vector in the list can be found in
time O(log |C|) by the binary search.

Then, if a vector c ∈ C with a suitable projection on span(u) is found, the algorithm
checks whether the angle between the projections πu(c) and πu(x) is less than π

2 . If so,
the algorithm outputs c, otherwise it checks the next vector. The algorithm proceeds in
such a way until a suitable vector is found, or until the first vector with too big projection
on span(u) appears.

In order to estimate the running time of the algorithm, we need to estimate the number
of vectors, considered by the algorithm. First, if there is no vectors that have a suitable
projection on span(u), the algorithm immediately returns None and does not spend any
time considering vectors from the list. Assume that there are M > 0 vectors in c with a
suitable value of the projection on span(u): M =

∣∣∣{c ∈ C
∣∣∣ |(x− c)tu| 6 h

N

}∣∣∣. Then the
algorithm considers them subsequently until a vector that has also a suitable projection
on span(u)⊥ is found. As the projection of vectors from C on span(u)⊥ are independent
of their projections on span(u), the probability that the next vector has the projection
on span(u)⊥ at the angular distance at most π

2 from πu(x) is 1
2 for each new considered

vector. Thus, the probability that after considering k vectors from C we have not found a
suitable vector is 2−k. Then the expected number of considered vectors can be estimated
by:

E{number of considered vectors} =
M∑
k=1

k · 2−k 6
∞∑
k=1

k · 2−k = 2.

Then, the expected running time is O(log(|C|) + 2) = O(log(|C|)).
If the list C has size greater than 2µ

α ·N , the probability to find a suitable pair for an
input point among the vectors from the C can be estimated using Lemma 3.8.

Further, when we consider Algorithm 6.2, we always use the following assumption on
the distribution of its input.

Assumption 6.1. Let L ⊂ Cnu(h,R) be the list of lattice vectors that is given as input
for Algorithm 6.2. Let α ∈ (0; 1). Denote as Lr a list of vectors, obtained by rescaling the
vectors from L: Lr := {Rescaleu,h(x) | x ∈ L}, We assume that the vectors from the Lr
behave as if they were sampled independently from a (1/N, α)-quasi-uniform distribution
on Cdu.

Lemma 6.2. Let Λ be an n-dimensional lattice. Let 1 < N < 2n be the decrease rate
of Algorithm 6.2. Let L ⊂ Λ ∩ Cnu(h,R) be a list of lattice vectors of size 4n

α ·N < |L| <
poly(n) ·N . Let Assumption 6.1 hold. Then, Algorithm 6.2, given as input the list L, with
probability greater than 1− e−n(|L|+ 1), returns two lists of lattice vectors L and C with
the following properties:

89

Algorithm 6.2: One step of preprocessing with cylindrical sieving for CVPP
input : list L ⊂ Λ ∩ Cnu(h,R), decrease rate N .
output: list L′ ⊂ Λ ∩ Cnu

(
h
N , R

√
2
)
, list C ⊂ L such that |C| = O(nN), vectors

from C cover 1− e−n fraction of Cnu(h,R).
1 sievingStepCVP(t, L, N):
2 sort(L) . sort vectors by the value of the first coordinate
3 C ← ∅; L′ ← ∅
4 for v ∈ L do
5 c← reducePointWithList(v, C,N)
6 if (c 6= None) then
7 L′ ← L′ ∪ {v − c}
8 else
9 C ← C ∪ {v}

10 return (L′, C)

1. C is a subset of L of size 4n
α · N , such that points from C cover at least 1 − e−n

fraction of the hypercylinder Cnu(h,R);

2. L′ is a list of lattice vectors that lie inside the hypercylinder Cnu
(
h
N , R

√
2
)
, size of

the list L′ is at least |L| − 4n
α ·N .

The memory complexity of the algorithm is the memory, required to store O(|L|) n-
dimensional vectors, the expected time complexity is the time, required to perform O(n|L|)
polynomial time operations.

Proof. First, estimate the number of lattice vectors lost during the execution of Algo-
rithm 6.2, i.e., estimate the number of unpaired points that go to the list C. In order to
do that, we need to estimate the number of random half-cylinders of height h

N , required to
cover the cylinder Cnu(h,R).

By Lemma 3.8, 4n
α ·N half-cylinders of height h

N with centers at points, sampled from
(1/N, α)-quasi-uniform distribution, are enough to cover the fraction (1 − e−n) of the
hypercylinder of height h with probability at least (1− e−n).

Consider the probability of lost of new centers after the size of the list C have reached
4n
α ·N vectors. Denote as A the event that the fraction (1 − e−n) of the hypercylinder is
covered after the size of C have reached 4n

α N vectors, then, by Lemma 3.8, we get

P{A} > 1− e−n.

Denote asXi the indicator of the event that the i-th new point, considered by the algorithm
after the size of C have reached 4n

α ·N , becomes a center, i.e., the probability that it falls into
an uncovered region. Then, for all Xi, we have the following estimate on the conditional
probability:

(Xi |A) =

{
1, p1 6 e−n,

0, p0 > 1− e−n.

Denote asM the number of points considered after |C| become greater than 4n
α N . Consider

the random variable X̂ =
M∑
i=1

Xi, which counts the number of points lost in addition to
4n
α N centers. By Markov’s inequality, we obtain:

P{X̂ > 1 |A} 6 E(X̂ |A) = M · E(Xi |A) 6M · e−n.

90

Then, as X̂ is a number of lost points and, therefore, it ranges over non-negative integers,
we get P{X̂ = 0 |A} > 1−M · e−n.

The success of the algorithm is the intersection of the following two events: of the
event A that (1 − e−n) of the hypercylinder is covered by 4n

α N vectors from C, and of
the event, that once the number of centers have reached 4n

α N , algorithm do not produce
centers anymore, i.e., X̂ = 0. Then, for the probability of success of the algorithm, we
obtain:

P{A ∩ (X̂ = 0)} = P{X̂ = 0 |A} · P{A} > (1−M · e−n)(1− e−n).

As M = |L| − 4n
α N 6 |L|, the probability of success is greater than 1− e−n · (|L|+ 1).

Then, estimate the time complexity. The time complexity of the algorithm is the sum
of the time, required to sort the list L and of the time, needed to process each point from
the list: to find a suitable pair or to mark it as a new center.

The time, required to sort the list L by the value of its first coordinate is Õ(|L| log(|L|)) =
Õ(n|L|), as |L| 6 2n.

Under Assumption 6.1, the expected time needed to process one point is given
by Lemma 6.1 and is equal to O(log(|C|)) = O(n). Then, the overall expected time
complexity is ET = |L| ·O(n).

6.2 Preprocessing of lattice

In this section, we consider the preprocessing of the lattice,i.e. we describe the algorithm
that, given a basis of a lattice Λ, produces the description of the lattice that allows to speed
up solving instances of the CVP problem for the given lattice.

We show how the cylindrical sieving can be used to produce such a description of a
lattice. The preprocessing algorithm is very similar to the algorithms for solving SVP from
the previous chapter. Basically, the preprocessing algorithm runs the cylindrical sieving
for solving SVP and stores all the lists of lattice vectors that were produced during the
execution of the SVP algorithm. The produced lists of lattice vectors are contained in
the hypercylinders with decreasing heights. Then, when the target vector appears, we
iteratively reduce it with each list of lattice vectors. The geometry of the vectors from the
lists allows to search for a close vectors very efficiently.

The main difference for the analysis of the preprocessing compared to the SVP algo-
rithm, is that now in order to ensure that for most of the targets we can find a close vector
using the produced description, for each list we need to guarantee that vectors from the
list cover most of the corresponding hypercylinder.

As before, in the case of a lattice with a prime volume, we have slightly more efficient
algorithm, so we consider prime volume lattices separately. We start with the preprocessing
for a prime volume lattice, and then we describe the general case.

6.2.1 Preprocessing of lattice with prime volume

Lemma 6.3. Let Λ be an n-dimensional lattice with a prime volume. Let R0 =√
0.084(n− 1). Let Assumption 6.1 hold. Then, Algorithm 6.3, given as input a basis

B of the lattice Λ, in time Õ(2n/2), with probability at least 1 − 2−0.94n+o(n), outputs
a set of k =

⌈
2
n log(vol(Λ))

⌉
lists of lattice vectors C = {C1, . . . , Ck} such that for all

i ∈ {1, . . . , k}, the half-cylinders of height
vol(Λ)

2n(i+1)/2
, centered at the vectors from the list

Ci, cover at least the fraction (1− e−n) of the hypercylinder Cdu
(

vol(Λ)

2ni/2
, R0 · 2k/2

)
.

The time complexity of the algorithm is equal to Õ(log(vol(Λ))2 · 2n/2), the memory
complexity is Õ(log(vol(Λ)) · 2n/2). The memory, required to store the outputted set C is
Õ(log(vol(Λ) · 2n/2)).

91

Algorithm 6.3: Preprocessing for CVP for lattices with prime volume
input : a basis B of an n-dimensional lattice Λ with a prime volume vol(Λ) = p.
output: set C = {C1, . . . , Ck} of lists of lattice points such that

Ci ∈ Λ ∩ Cnu
(

p
2ni/2

, R · 2i/2
)
, where u = (1, 0, . . . , 0)t,

|Ci| = O(nN) for all i ∈ {1, . . . , k}.
1 preprocessingPrimeVolume(B):

/* initial generation of lattice vectors */

2 (p,a)← HNF(B)

3 L0 ← enumerateCylinder(p,a, R0 =
√

0.084(n− 1)) . Algorithm 4.1
4 C ← ∅
5 k ←

⌈
2
n log(p)

⌉
/* sieving part */

6 for i ∈ {1, . . . , k} do
7 (Li+1, Ci)← sievingStepCVP(Li, 2

n/2) . Algorithm 6.2
8 C ← C ∪ {Ci}
9 return C

Proof. By Lemma 4.1, the algorithm starts with generating a list L0 of 2n/2+o(n) lattice
vectors that lie inside a hypercylinder of height h0 = p = vol(Λ) and of radius R0 =√

0.084(n− 1). Then, Algorithm 6.3 iteratively applies the cylindrical sieving, as it is
described in Algorithm 6.2, to the generated list of lattice vectors.

We suppose that Assumption 6.1 holds at each iteration of the preprocessing, i.e., there
is a constant α ∈ (0; 1) such that at each iteration, after rescaling, vectors from the list Li
behave like independently sampled from the (1/N, α)-quasi-uniform distribution. Then,
we can use Lemma 6.2 to describe the evolution of the processed list of lattice vectors.
Thus, with probability at least (1− e−n(|Li|+ 1)), after the i-th iteration, the parameters
of the hypercylinder and the size of the list change in the following way:

hi+1 =
hi
N
, Ri+1 = Ri

√
2, |Li+1| = |Li| −

4n

α
N. (6.1)

Also, by Lemma 6.2, the size of the list |Ci| is equal to 4n
α N for all i.

Our goal is to obtain in the end a list of vectors such that their length is close to the
Minkowski’s bound of the lattice. In order to ensure that, we require that the hypercylinder
that contains the list Lk has the parameters hk =

√
c vol(Λ)1/n, Rk =

√
c(n− 1) vol(Λ)1/n,

where c is some positive constant. Then, proceeding similarly as in the proof of Theo-
rem 4.1, we obtain the following values of the number of iterations k and of the decrease
rate of the height of the hypercylinder N :

k =
⌈ 2

n
log(vol(Λ))

⌉
, N = 2n/2. (6.2)

Also, choosing that value of k implies that c = 2
(

R0√
n−1

)2
. As at each iteration 8nN

vectors become centers, in order to get a non-empty list in the end, we need to take the
list L0 of size at least k · 4n

α N = O(log(vol(Λ)) · 2n/2).
The time complexity of the algorithm is the sum of the time, needed to generate the

initial list of lattice vectors L0, and of the time, required to perform k iterations of the
cylindrical sieving. The initial generation of vectors, by Lemma 4.1, takes Õ(|L0|) time.

92

The sieving part of the time complexity is given by:

T(sieving part) =
k∑
i=1

O(n|Li|) = O
(
n ·

k∑
i=1

|L0|−
4n

α
Ni
)

= O(N log(vol(Λ))2) = Õ(2n/2).

(6.3)
The probability that the algorithm outputs the set C of lists of lattice vectors with

the desired properties is equal to the product of probabilities that at each iteration the
cylindrical sieving is successful, i.e., the number of centers, lost at each iteration, does not
exceed 4n

α N . Then, by Lemma 6.2, the overall probability of success is

k∏
i=1

(1− e−n(|Li|+ 1)) > (1− e−n(|L0|+ 1))k > 1− k · e−n · 2n/2+o(n) = 1− 20.94n+o(n).

6.2.2 Preprocessing of any lattice

Algorithm 6.4: Preprocessing for CVPP for any lattice
input : a basis B of an n-dimensional lattice Λ, parameter q of the LLL reduction
output: set C = {C1, . . . , Ck} of lists of lattice points such that

Ci ∈ Λ ∩ Cnu
(

h
2ni/2

, R · 2i/2
)
, |Ci| = O(nN) for all i ∈ {1, . . . , k}, where

k = d(n− 1) log(q)e, h = q
(n−1)2

2 · n vol(Λ)1/n, R =
√

n−1
πe q

−n−1
2

vol(Λ)1/n
.

1 preprocessingAnyLattice(B, q):
/* initial generation of lattice vectors */

2 L0 ← enumerateCylinder(B, q) . Algorithm 4.2
3 C ← ∅
4 k ←

⌈
(n− 1) log(q)

⌉
/* sieving part */

5 for i ∈ {1, . . . , k} do
6 (Li+1, Ci)← sievingStepCVP(Li, 2

n/2) . Algorithm 6.2
7 C ← C ∪ {Ci}
8 return C

Lemma 6.4. Let Λ be an n-dimensional lattice, let R0 =
√

n−1
πe q

−n−1
2 vol(Λ)1/n, and

h0 = q
(n−1)2

2 n vol(Λ)1/n. Let Assumption 6.1 hold. Then, Algorithm 6.4, given as input a
basis B of the lattice Λ, in time Õ(2n/2), with probability at least 1−2−0.94n+o(n), outputs
a set of k = d(n − 1) log(q)e lists of lattice vectors C = {C1, . . . , Ck} such that for all
i ∈ {1, . . . , k}, the half-cylinders of height h0/2

n(i+1)/2, centered at the vectors from the
list Ci, cover at least the fraction (1− e−n) of the hypercylinder Cdu

(
h0

2ni/2
, R0 · 2k/2

)
.

The time complexity of the algorithm is equal to Õ(20.531n), the memory complexity is
Õ(2n/2). The time, required to perform the sieving part is Õ(2n/2). The memory, required
to store the outputted set C is the memory, required to store O(n2 · 2n/2) n-dimensional
vectors.

Proof. Algorithm 6.4, as Algorithm 6.3, has two parts: the initial generation of lattice
vectors inside a hypercylinder and the iterative sieving part. The sieving part is essentially
the same as the sieving part of Algorithm 6.3, but the initial generation of lattice vectors

93

is different: in both cases, we enumerate lattice vectors inside a hypercylinder, but we use
different algorithms and we get the hypercylinders with different parameters in the end. In
both algorithms, the goal is to obtain a set of lists of lattice vectors, such that the last list
consists of vectors with a norm close to Minkowski’s bound. Since the parameters of the
initial hypercylinders that contain the list L0 are not the same for Algorithms 6.3 and 6.4,
the number of iteration of the sieving part also changes.

In Algorithm 6.4, for initial generation of lattice vectors, we use Algorithm 4.2, based on
the unbalanced lattice reduction and Schnorr-Euchner’s enumeration of an n-dimensional
quasi-orthonormal sublattice. Then, by Lemma 4.2, after the initial generation part, we
obtain a list L0 of Õ(βn) lattice points inside a hypercylinder of height h0 and radius R0:

h0 := q
(n−1)2

2 n vol(Λ)1/n, R0 := β

√
n

2πe
q−

n−1
2 vol(Λ)1/n, (6.4)

where β is the constant that we choose later, depending on how many lattice vectors we
need for the algorithm to proceed, and q >

√
4
3 is the parameter of the lattice reduction

used by Algorithm 4.2. As the desired length of the vectors from the lists Lk and Ck
should be at most c

√
n vol(Λ)1/n, we require that the height hk and the radius Rk of the

k-th hypercylinder satisfy

hk =
h0

Nk
6 c vol(Λ)1/n, Rk = R0 · 2k/2 6 c

√
n− 1 vol(Λ)1/n, (6.5)

where N is the decrease rate of one iteration of the cylindrical sieving. Then, using (6.4)
and (6.5), we obtain the following values of the decrease rate N and of the number of
iterations k:

k = d(n− 1) log(q)e, N = 2n/2. (6.6)

Also, taking k = d(n − 1) log(q)e implies the following bound on the ratio of c and β:
c
β >

√
1
πe (see the proof of Algorithm 4.4 for similar computations).

Then, by Lemma 6.2, at each iteration, 4n
α N vectors from the processed list become

centers. Therefore, in order to have a non-empty list after k = O(n) iterations, we need
the initial list of 4n

α N · k = O(n2 · 2n/2) vectors. In order to obtain the initial list of
lattice vectors of the required size, we need to take β =

√
2, which implies that the time

complexity of the initial sampling is equal to

T(initial generation) = Õ(20.531n)

and that the constant α should be at least
√

2
πe .

Consider the time complexity of the sieving part. By Lemma 6.2, the time complexity
of the i-th iteration of sieving is equal to O(n|Li|) polynomial time operations. Then, the
overall time complexity of k = O(n) iterations of sieving is given by

T(sieving) = Õ
(k∑
i=1

(|L0| −
4n

α
Ni)

)
= Õ(n4N).

The probability of success of the algorithm can be computed in the same way as in Lemma 6.3.

6.3 Decoding for targets inside hypercylinder

Let u be an n-dimensional unit vector, let h and R be two positive real numbers such
that h >> R. Let Cnu(h,R) be the n-dimensional hypercylinder of height h and radius

94

R. Let Λ be an n-dimensional lattice. Assume that we are given k lists of lattice points
C1, . . . , Ck ⊂ Λ such that the points from the i-th list cover most of the surface of the
hypercylinder Cnu(h/N i, R · 2i/2) with half-cylinders of length h

N i+1 .
In this section, we describe an algorithm that, given a target point t ∈ Cu(h,R) from

the first hypercylinder as input, find a lattice point v ∈ Λ such that the difference v − t
belongs to the last hypercylinder Cnu(h/Nk, R · 2k/2), using the lists C1, . . . , Ck.

First, we show that an algorithm that solves the problem for k = 1 can be turned into
an algorithm that solves the problem for any k. Assume that we can solve the problem
when k = 1 for any reasonable pair of the parameters h and R. That is, there is an
algorithm A that, given a target t ∈ Cnu(h,R) and a list C1 ⊂ Cnu(h,R)∩Λ, finds a lattice
point v1 ∈ Λ such that the difference t − v belongs to the hypercylinder Cnu(h/N,R

√
2).

Then, if we have a coverage C2 ⊂ Λ for the second hypercylinder Cnu(n/N,R
√

2), we can
also solve a problem for k = 2: we apply the algorithm A to the input that consists of the
list C2 and the new target t − v1. Let v2 ∈ Λ be a pair, found by the algorithm for the
target t− v1. Then, if we have k lists C1, . . . , Ck, we can perform k iterations:

Input: t ∈ Cnu(h,R), C1 ⊂ Λ ∩ Cnu(h,R); (6.7)

Iteration 1: v1 ← A(t, C1),v1 ∈ Λ, (t− v1) ⊂ Cnu(h/N,R
√

2); (6.8)

Iteration 2: v2 ← A(t− v1, C2), v2 ∈ Λ, (t− v1 − v2) ⊂ Cnu(h/N2, 2R); (6.9)
... (6.10)

Iteration k : vk ← A
(
t−

k−1∑
i=1

vi, Ck

)
, vk ∈ Λ,

(
t−

k∑
i=1

vi

)
⊂ Cnu(h/Nk, R · 2k/2);

(6.11)

After k iterations, we get a vector tk := t −
k∑
i=1

vi that lies inside the hypercylinder

Cnu(h/Nk, R · 2k/2). Subtracting the initial target t from tk, we get the desired lattice

vector v =
k∑
i=1

vi ∈ Λ.

Now, the goal is to construct an algorithm A that can solve the problem for k = 1.
The algorithm A takes as input a point t ∈ Cnu(h,R) and a list of lattice points C1 ⊂
Λ ∩Cnu(h,R) such that points from the list C1 cover most of the surface of Cnu(h,R) with
half-cylinders of length h/N . The algorithm should find a lattice point v ∈ Λ such that
the difference t− v satisfies the following two conditions:

1. the projection of the difference on the hypercylinder axis is bounded by h/N :

|(t− v)tu| < 1

2
· h
N

; (6.12)

2. the projection of the difference on the subspace, orthogonal to the cylinder axis is
bounded by R

√
2:

‖πu(t− v)‖ 6 R
√

2. (6.13)

Recall that in Section 6.1, while describing how one step of the preprocessing works,
we used the subroutine that solves a very similar problem (see Algorithm 6.1). In Algo-
rithm 6.1, we are given a target point x ∈ Cnu(h,R) and a list of points C ⊂ Cnu(h,R) that
are sampled independently from a certain uniform-like distribution and then sorted by the
value of the projection of the vectors on the cylinder axis. The goal there was to find a
vector c ∈ C such that the difference x− c satisfies the same conditions as the difference
t− v (see (6.12) and (6.13)).

95

Algorithm 6.1 has two steps. First, it finds a position j ∈ {0, . . . , |C| − 1} of the first
vector in the sorted list C such that the difference x−C[i] satisfies the first condition given
by (6.12). Then the algorithm checks the two conditions for all the vectors in the list C
starting from the j-th vector, until one of the two events happens:

1. the algorithm founds a vector that satisfies both conditions,i.e., the desired pair for
the target x is found;

2. the algorithm finds a first vector that does not satisfy the first condition, i.e., is no
suitable pair for x in the list C.

Algorithm 6.1 ensures the same conditions as we need in the current settings, so we
can use it to find a suitable pair for the target t. Then, the decoding algorithm consists in
iterative application of Algorithm 6.1 to a target. The decoding algorithm is summarized
in Algorithm 6.5.

Algorithm 6.5: Decoding algorithm
input : preprocessing of an n-dimensional lattice Λ:

C = {C1 ⊂ Cnu(h1, R1), . . . , Ck ⊂ Cnu(hk, Rk)} ⊂ Λ, where hi = h
N i−1 ,

Ri = R1 · 2
i−1

2 for all i, a target vector t ∈ Cnu(h1, R1).
output: v ∈ Λ such that ‖v − t‖ 6

√
h2
k +R2

k

1 decode(C, t):
2 v← 0
3 for i ∈ {1, . . . , k} do
4 vi ← reducePointWithList(t, C,N) . Algorithm 6.1
5 if (vi 6= None) then
6 v← v + vi
7 t← t− vi
8 else
9 return v

10 return v

However, the analysis of the complexity and of the probability of success of Algo-
rithm 6.1 is different in the new settings, because now an input list and a target point have
different properties compared to the ones described in Section 6.1.

Recall in short the analysis of the complexity of Algorithm 6.1. The search for the
position j can be done in O(log(|C|)) time, as the list C is sorted by the length of the
projection of the vectors on the cylinder axis. We also showed in Lemma 6.1 that, on
average, the algorithm needs to check only a constant number of vectors until the desired
pair for the target is found. We can get such an estimate because we assume that the
projections of the vectors from the list C on the subspace orthogonal to u, after rescaling,
behave as if they are sampled from the uniform distribution on Sn−2.

Consider the difference between the current input and the input of Algorithm 6.1,
described in Section 6.1. In Section 6.1, we did not require anything for the target point,
except that the target point should belong to the hypercylinder. For the list C, we required
that the vectors from the list should behave like sampled independently from a (1/N, α)-
quasi-uniform distribution, where α ∈ (0; 1/2) is some constant.

Now, we do not require any specific distribution for the list C1. The only requirement
for C1 is that the points from C1 should cover most of the surface of the cylinder. But
since we do not have any requirements on the distribution of the vectors from C1, we need
to add some assumption on the target point t. First, because if the point t falls into
uncovered region, there is no suitable pair for it in the list C1. Second, if we do not have

96

any assumption on the distribution of t, it is hard to estimate how many points in the list
C the algorithm needs to check until the pair is found.

Therefore, for the analysis of the decoding algorithm, we assume that the target point,
given as input to Algorithm 6.1, behaves as sampled from the uniform distribution on the
hypercylinder with the corresponding parameters (see Assumption 6.2).

Assumption 6.2. Let h,N, k, and u be as in Algorithm 6.5. We assume that for all i ∈
{1, . . . , k}, at i-th iteration of Algorithm 6.5, the rescaled target vector Rescaleu,h1/N i(t)

behaves like it is sampled from the uniform distribution on Cdu.

The differences between the inputs for Algorithm 6.1, when it is used as a subroutine
for the preprocessing and for the decoding, are summarized in Table 6.1.

preprocessing decoding

points from list C cover (1− ε) fraction
of the hypercylinder Cnu(h,R)

sampled independently from
(1/N, α)-quasi-uniform distribution

target t any point in Cnu(h,R) ∩ Λ uniformly distributed in Cnu(h,R)

Table 6.1 – Comparison of the input properties of Algorithm 6.1 for the preprocessing and
for the decoding.

The complexity and the probability of success of the decoding procedure under As-
sumption 6.2 are analyzed in Lemma 6.5.

Lemma 6.5. Let Λ be an n-dimensional lattice. Let k be a positive integer number and
let N > 1. Let ε ∈ (0; 1). Let u ∈ Rn be a unit vector. Let R, h > 0 and, for all
i ∈ {1, . . . , k}, let Ri = R · 2(i−1)/2, hi = h/N i−1. Let C = {C1, . . . , Ck} be a set of k lists
of lattice vectors such that for all i ∈ {1, . . . , k}, the list Ci satisfies the following three
properties:

1. the vectors in the list Ci are sorted by the value of their projection on span(u);
2. half-cylinders of height hi

N , centered at the vectors from the list Ci, cover
the (1− ε)-fraction of the hypercylinder Cu(hi, Ri);

3. for any pair of vectors x,y ∈ Ci, at least one of the two conditions holds:
(a) |(x− y)tu| > hi

N ;

(b) ‖πu(x− y)‖ > Ri
√

2.
Let Assumption 6.2 hold. Then, Algorithm 6.5, given as input a target point t ∈ Cu(h1, R1)
and the set C, with probability at least (1− ε)k, outputs a lattice vector v ∈ Λ, such that
‖t− v‖ 6

√
h2
k +R2

k. The expected time complexity of the algorithm is

k∑
i=1

O(log(|Ci|)). (6.14)

Proof. Under Assumption 6.2, since at each iteration (1− ε)-fraction of the corresponding
hypercylinder is covered by points from Ci, the probability to find a suitable pair at one
iteration is 1− ε. Then, as we assume that iterations are independent, the probability to
find a pair at each iteration is (1− ε)k.

Denote the target point, given to the algorithm as input, as t0. Then, after k iterations,
if at each iteration the pair was successfully found, we obtain

t = t0 −
k∑
i=1

vi ∈ Cnu(h ·N−k, R · 2k/2)

97

and v =
k∑
i=1

vi (see Lines 6-7 of Algorithm 6.5). The algorithm outputs v. It is a lattice

vector, as all vi are lattice vectors. The difference t0 − v belongs to the hypercylinder
Cnu(h ·N−k, R · 2k/2), so its norm is bounded by

√
(h
Nk)2 +R2 · 2k.

The time complexity of the algorithm is the complexity of reducing a point with each
of the k lists. Under Assumption 6.2, the time complexity of the i-th iteration is the time
complexity of Algorithm 6.1, applied to a target point t from the uniform distribution on
Cnu(hi, Ri) and to the set Ci. The goal of the algorithm is to find a vector c ∈ Ci such that
the difference t− c satisfies:

1. |(t− c)tu| 6 hi
N ;

2. ‖πu(t− c)‖ 6 Ri
√

2.
Algorithm 6.1 starts with finding the first vector in the sorted list Ci that satisfies the
first condition. It is done using the binary search and takes O(|Ci|) time.

If such a vector is found, Algorithm 6.1 checks whether the second condition is also
satisfied. If so, then the desired vector is found. Otherwise, the algorithm moves to the
next vector in the list and checks both conditions. Algorithm proceeds in such a way until
the vector, that satisfies both conditions is found or until it meets the first vector that does
not satisfy the first condition.

To estimate the time complexity, we need an upper bound for the expectation of the
number of vectors, considered by the algorithm until the desired pair for t is found. Assume
that there areM vectors in Ci that satisfy the first assumption. Denote their rescaled pro-
jections on span(u)⊥ as c1, c2, . . . , cM . Under Assumption 6.2, t is uniformly distributed,
then t̂ = πu(t)/‖πu(t)‖ is uniformly distributed on Sn−2. If t̂ and c1 appear in the same
hemisphere, the second condition for c1 is satisfied and the desired point is found. Then,
the probability that the first considered point satisfies the second condition is at least 1

2 .
In order to estimate the expectation of the number of considered points, we need to

estimate the probability that the desired pair is found after checking m points, i.e., the
probability that the firstm−1 points do not satisfy the second condition, while cm satisfies.
In other words, it is the probability that for all i ∈ {1, . . . ,m− 1}, the vectors ci and t lie
in different hemispheres while cm and t are in the same hemisphere.

For any i, j ∈ {1, . . . ,M}, i 6= j, the angle between ci and cj is at least π/2 (see
Property 3 from the statement of the lemma). Then, c1 covers a half of the sphere Sn−2,
c2 covers at least a half of sphere’s surface non-covered by c1. More generally, any subset
D of the set {c1, . . . , cM} of size k cover at least (1− 2−k)-fraction of the sphere, and any
ci /∈ D covers at least a half of the surface of the sphere, uncovered by D. Therefore, the
probability that the desired pair is found after considering m points is at most 2−m. Then,
the expected number of points, considered by the algorithm is bounded:

E{number of checked points} 6
M∑
m=1

m · 2−m 6
∞∑
m=1

m · 2−m = 2.

The expected time complexity of k iterations of the algorithm is bounded by:
k∑
i=1

(O(log(|Ci|)) + 2) =
k∑
i=1

O(log |Ci|).

6.4 Solving CVPP in polynomial time.

Solving CVPP has two parts: the preprocessing part and the decoding part. In Sec-
tion 6.2, we described how a lattice can be preprocessed using the cylindrical sieving.

98

In Section 6.3, we presented the decoding algorithm (see Algorithm 6.5) that works for
the target points that are uniformly distributed on a certain n-dimensional hypercylinder.
The parameters of the hypercylinder, accepted by Algorithm 6.5 depend on the description
of a lattice that is given to the decoding algorithm.

In this chapter, we put all the pieces together and obtain an algorithm, that heuristically
solves the Closest Vector Problem with Preprocessing in polynomial time. Namely, we
describe a modification of Algorithm 6.5 that can handle any target point from Rn.

Let Λ be an n-dimensional lattice. Let N = 2n/2, k = poly(n), h = O(
√
n) · vol(Λ)1/n ·

2nk/2, and R = O(
√
n) · vol(Λ)1/n · 2−k/2. Let u ∈ Rn be a unit vector. Algorithm 6.5,

by Lemma 6.5, takes as input a description C of the lattice Λ and a target point x. The
description C = {C1, . . . , Ck} is a set of lists of lattice points. By Lemma 6.5, in order to
form a correct input for Algorithm 6.5, the pair (C,x) should satisfy:

1. for all i ∈ {1, . . . , k}, the half-cylinders of height hi
N , centered at the vectors from

Ci, cover most of the surface of a hypercylinder Cnu(hi, Ri), where hi = hi
N i−1 ,

Ri = R · 2
i−1

2 ;
2. the target point t should belong to the first hypercylinder, covered by the vectors

from C:
t ∈ Cnu(h,R); (6.15)

3. the target point t should behave as sampled from the uniform distribution on
Cnu(h,R).

In order to construct a decoding algorithm for solving CVPP, we need to prepare an
input for Algorithm 6.5 that satisfies the conditions, listed above. The first condition is on
the description of the lattice. In Section 6.2, we showed that a description that satisfies
this condition can be obtained using cylindrical sieving in time 2O(n).

The goal of this section is to construct a polynomial-time algorithm, that transforms
an arbitrary target point t ∈ Rn into a target point x that satisfies conditions 4 and 5.
That is, after the transformation, the vector x should behave as sampled from the uniform
distribution on the hypercylinder with certain parameters.

The parameters of the hypercylinder that should contain x depend on the available
description C of the given lattice. The lattice descriptions have different parameters in
case of a prime volume lattice and in the general case, so the algorithms for preparing the
target point are also slightly different. First, we describe the general idea which is similar
in both cases, then, in Section 6.4.2, we describe solving CVPP for integer lattices with
a prime volume, and, finally, in Section 6.4.3, we describe solving CVPP for an arbitrary
lattice.

6.4.1 Transformation of target vector: general idea

In this section, we consider the following problem. We are given a target point t ∈ Rn
and a basis C = {c1, . . . , cn} of a lattice Λ that satisfies:

1. the first vector of the basis is bounded: ‖c1‖ 6 h;

2. for all i ∈ {2, . . . , n}, ‖c∗i ‖ 6
R√
n− 1

.

Denote 1
‖c1‖ · c1 as u. The goal is to construct an algorithm that, given the vector t and

the basis C as input, finds a vector x′ such that
1. x′ belongs to Cnu(h,R);
2. x′ behaves like it is sampled from the uniform distribution on Cnu(h,R);
3. if we are able to approximate x′ by a lattice vector, then we can use this approxi-

mation to find a close lattice vector to t.

99

If the first two conditions are satisfied, we can find a lattice vector that is close to x′

using Algorithm 6.5.
The first condition is easy to satisfy. Using the nearest plane algorithm, we can reduce

the target vector t with the basis C. Thus we get a lattice vector v0 ∈ Λ such that the
difference t− v0 belongs to the hypercylinder Cnu(h,R).

The third condition is also easy to satisfy, if the only operations, performed on the
target, are adding or subtracting lattice vectors. Assume that x′ = t+y, where y ∈ Λ and
we can approximate x′ by a lattice point, i.e., we are able to find a vector v ∈ Λ such that
‖x′−v‖ 6 r for some small r > 0. Then, (v−y) ∈ Λ is a lattice vector that approximates
the initial target t : ‖t− (v − y)‖ = ‖x′ − v‖ 6 r.

To satisfy the second condition, we need to add some randomness to the target point.
Assume that we are able to use the basis C to sample a random lattice point r from the
uniform-like distribution D on the hypercylinder Cnu(h,R′) of the same height h, but of a
possibly bigger radius R′ > R. Consider the sum of the random vector r and of the target,
reduced with the basis C:

x := t− v0 + r.

The vector x might not belong to the hypercylinder Cnu(h,R). The both projections
on span(u) and on span(u)⊥ may be longer than needed. The length of the projection on
span(u) can be made short enough to fit into the hypercylinder by size-reducing x with
c1:

x := x− dx
tc1

ct1c1
c · c1.

The vector x now has a short enough projection on span(u), but the projection of x on
span(u)⊥ is bounded only by R′ +R/2. Consider x′, obtained by rescaling the projection
of x on span(u)⊥:

x′ ← x− πu(x) ·
(

1− R

R′

)
.

This vector is a good candidate to satisfy the first two conditions: it is inside the desired
hypercylinder and it has some randomness inside. Although the last transformation was not
adding a lattice vector, if the sampling radius R′ is not too big, finding a close lattice point
to x allows to recover a close approximation for t. We describe how it can be done in details
in Lemma 6.6. The transformation of the target point is summarized by Algorithm 6.6.

Algorithm 6.6: Transform target point
input : a target vector t ∈ Rn, u ∈ Rn such that ‖u‖ = 1, h,R > 0, a basis C of Λ.
output: w ∈ Λ and x′ ∈ Cu(h,R) such that t−w −Decode(x′) is short.

1 transformTarget(t, C):
2 v0 ← nearestPlane(C, t) . Algorithm 3.4
3 r← sampleD(Cu(h,R′) ∩ Λ)
4 x← t− v0 + r

5 x← x− dxtc1

ct1c1
c · c1

6 R′ ← ‖πu(x)‖
7 x′ ← x− πu(x) ·

(
1− R

R′

)
8 return (w := v0 − r,x′)

Lemma 6.6. Let h,R, r > 0. Let Λ be an n-dimensional lattice. Let C = {c1, . . . , cn} be
a basis of Λ such that ‖c1‖ 6 h and, for all i ∈ {2, . . . , n}, ‖c∗i ‖ 6 R/

√
n− 1.

Denote the vector 1
‖c1‖ · c1 as u. Let R′ > R. Let (w ∈ Λ,x′ ∈ Cnu(h,R)) be the pair

of vectors, returned by Algorithm 6.6 on the input t and C. Suppose that sampleD is an

100

algorithm that, given C, samples the distribution D on the set Cnu(h,R′)∩Λ such that the
distribution of Rescaleu,h(y) is close to the uniform on Cnu for a vector y sampled from D.

Then, x′ is uniformly distributed on Cnu(h,R). If there is a lattice vector v ∈ Λ such
that ‖x′ − v‖ 6 r, then the distance from t to (w + v) ∈ Λ is also bounded:

‖t− (w + v)‖ 6 R′ + r. (6.16)

If the time complexity of sampleD is poly(n), then the time complexity of Algorithm 6.6
is also poly(n).

Proof. Consider the norm of the difference t−(w+v). According to Line 8 of Algorithm 6.6,
w = v0 − r. Then,

‖t− (w + v)‖ = ‖t− v0 + r− v‖. (6.17)

By Line 4 of Algorithm 6.6, t − v0 + r can be replaced by x. Then, after adding and
subtracting the vector x′ and using the triangle inequality, we get:

‖t− (w + v)‖ = ‖x− v‖ 6 ‖x− x′‖+ ‖x′ − v‖ = ‖x− x′‖+ r. (6.18)

Then, to prove that the inequality, given by (6.16), holds for the output of Algorithm 6.6,
we need to show that ‖x − x′‖ 6 R′. By Line 7 of Algorithm 6.6, the norm of x − x′ is
given by

‖x− x′‖ =
(

1− R

R′

)
· ‖πu(x)‖. (6.19)

Hence, consider the norm of the projection of x on span(u)⊥ = span(c1)⊥. By Line 4
of Algorithm 6.6, x is the sum of the two vectors: (t− v0) and r. Thus we have

‖πu(x)‖ = ‖πu(t− v0)‖+ ‖πu(r)‖. (6.20)

By Line 3 of Algorithm 6.6, the vector r is sampled from the distribution with the
support Cnu(h,R′) ∩ Λ, therefore,

‖πu(r)‖ 6 R′. (6.21)

The vector v0 ∈ Λ is a lattice vector, obtained by reducing t with the basis C using
the nearest plane algorithm. Then, using Lemma 3.3, we get

‖πu(t− v0)‖ 6

√√√√ n∑
i=2

‖ci‖2
4

6
R

2
. (6.22)

Combining (6.19), (6.20), (6.21), and (6.22), we obtain

‖x− x′‖ 6
(

1− R

R′

)
·
(
R′ +

R

2

)
6 R′. (6.23)

Thus, (6.23) and (6.18) imply that the inequality, given by (6.16), holds for the vectors x′

and w, returned by Algorithm 6.6.
By Lines 3-5 of Algorithm 6.6, after rescaling, the distribution of x should be close to

the uniform on Cnu . As the vector x′ is obtained from x by rescaling the projection of x on
span(u)⊥ (Line 7), the distribution of Rescaleu,h(x′) also should be close to the uniform
on Cnu .

Algorithm 6.6 consists is calling the nearest plane algorithm on the input (C, t),
sampling the vector r from the distributionD, and performing several arithmetic operations
on n-dimensional vectors (Lines 4-7). Since the nearest plane algorithm has the time
complexity poly(n) and since we assume that sampling from D also takes polynomial
time, the time complexity of the whole algorithm is poly(n).

101

6.4.2 Solving CVPP for an integer lattice with a prime volume.

In this section, we describe a decoding algorithm that solves CVPP for prime volume
integer lattices using the cylindrical sieving.

Let Λ be an n-dimensional integer lattice whose volume is a prime number p. The
decoding algorithm takes as input a basis B of the lattice Λ, a description of Λ, produced
by the preprocessing algorithm for prime volume lattices (see Algorithm 6.3), and a target
vector t ∈ Rn, and returns a lattice vector x ∈ Λ such that ‖x− t‖ = O(

√
n) vol(Λ)1/n.

Let N = 2n/2, R = O(
√
n), u = (1, 0, . . . , 0)t ∈ Rn. Recall that the preprocessing

algorithm produces the lists C1, . . . , Ck of lattice vectors such that the vectors from the
i-th list cover the hypercylinder of the height p/N i−1 and the radius R · 2(i−1)/2 with
half-cylinders of height p/N i.

The decoding algorithm has two parts. First, it transforms the input target vector t
into a vector x′ that belongs to the hypercylinder Cn

u(h,R), i.e., the first hypercylinder
covered by the lattice vectors, returned by the preprocessing. For the targets inside the
first hypercylinder we have the decoding procedure, given by Algorithm 6.5. The second
part is applying Algorithm 6.5 to x′. The vector, returned by Algorithm 6.5, is then used
to recover a lattice vector that is close to the initial target t.

Consider the first part of the decoding: transforming the target t into the target x′ that
can be given as input to Algorithm 6.5. In the previous section, we have seen that this can
be done by Algorithm 6.6, if we have an access to the oracle that samples a uniform-like
distribution D on Cn

u(h,R) ∩ Λ. More precisely, uniform-like means that, for x sampled
from D, y = Rescaleu,h(x) has the distribution that is close to the uniform on Cnu .

For a prime volume lattice, we can replace an oracle that samples the distribution D by
the following simple algorithm. First, we randomly sample an (n− 1) dimensional integer
vector ux such that ‖ux‖ 6 R. Then, using the shape of the HNF of Λ, we compute a
lattice vector x that corresponds to ux:

HNF(Λ) =

p a2 . . . an
0 1 0
...

. . .
0 0 1

 , ux =

x2
...
xn

 , x =

n∑
i=2

ai · xi mod p

x2
...
xn

 . (6.24)

In order to sample a random vector inside the ball of the radius R = O(
√
n), we sample

each coordinate independently from the Bernoulli distribution with the parameter α, i.e.,

P{xi = 1} = α, P{xi = 0} = 1− α,

for all i ∈ {2, . . . , n}. Changing α allows to change the radius of sampling. The algorithm
for replacing the oracle that samples D is summarized by Algorithm 6.7.

Algorithm 6.7: Sample a random lattice point in a hypercylinder
1 sampleD(B, α):
2 {p, a2, . . . , an} ← HNF(B)
3 x1 ← 0
4 for i ∈ {2, . . . , n} do
5 xi ← Bernoulli(α)
6 x1 = x1 + xi · ai mod p

7 x← (x1, x2, . . . , xn)t

8 return x

102

Some properties of the distribution, produced by Algorithm 6.7, are described in Lemma 6.7.

Lemma 6.7. Let Λ be an n-dimensional lattice such that vol(Λ) = p is a prime number.
Let B be a basis of Λ, let α ∈ (0; 1). Let u = (1, 0, . . . , 0)t ∈ Rn. Then, Algorithm 6.7,
given as input B and α, returns a vector r = (r1, . . . , rn)t ∈ Λ such that

1. |r1| 6
p

2
;

2. ‖πu(r)‖ 6
√
n;

3. for ε > 0, the following inequality holds:

P{‖πu(r)‖ 6
√

(α+ ε)n} > 1− e−2nε2 . (6.25)

The time complexity of the algorithm is poly(n).

Proof. As Λ is a prime volume lattice, its HNF is given by (6.24). Therefore, the vector x,
returned by the algorithm is a lattice vector as an integer linear combination of the vectors
that form the HNF of Λ.

The first property is ensured by Line 6 of Algorithm 6.7.
Consider the second and the third properties. The vector πu(r) is given by (0, r2, . . . , rn).

Then, ‖πu(r)‖ =

√
n∑
i=2

r2
i . As each ri is sampled independently from the Bernoulli dis-

tribution with the support {0, 1}, we get ‖πu(r)‖ =

√
n∑
i=2

ri 6
√
n. The inequality, given

by (6.25), follows from Hoeffding’s inequality for the sum of n independent Bernoulli ran-
dom variables with the parameter α.

The time complexity of the algorithm is the complexity of computing the HNF for
n × n matrix and generating n independent Bernoulli random variables. Thus, the time
complexity of the algorithm is polynomial in n.

We heuristically assume that the distribution, produced by Algorithm 6.7 is uniform-
like. Then, we can use Algorithm 6.7 as an oracle for Algorithm 6.6. Thus, by combining
Algorithms 6.5 to 6.7, we obtain the decoding algorithm that solves CVPP for prime
volume integer lattices (see Algorithm 6.8).

Algorithm 6.8: Solving CVPP with cylindrical sieving for lattices with prime volume
input : a target vector t ∈ Rn, a basis B of Λ, the description C of Λ, produced

by Algorithm 6.3.
output: a lattice vector x ∈ Λ such that ‖t− x‖ = O(

√
n) vol(Λ)1/n

1 findCloseLatticeVector(t, B, C):
2 C← HNF(B)

/* Algorithm 6.6 with Algorithm 6.7 for sampling a random lattice vector */

3 (w,x′)← transformTarget(C, t)
4 v← decode(C,x′) . Algorithm 6.5
5 return w + v

The complexity and the probability of success of Algorithm 6.8 are described in Theo-
rem 6.1.

Theorem 6.1. Let Λ ⊂ Zn be an n-dimensional lattice whose volume is a prime number
p. Let C be a description of the lattice Λ, produced by Algorithm 6.3. Let Assumption 6.2

103

hold. Then, Algorithm 6.8, given as input a basis B of the lattice Λ, the description C,
and a target vector t ∈ Rn, finds a lattice vector v ∈ Λ such that

‖v − t‖ 6 0.41(1 + o(1))
√
n vol(Λ)1/n (6.26)

in poly(n) time, with probability at least 1− e−n+o(n).

Proof. Let R =
√

0.084(n− 1), N = 2n/2, and k =
⌈

2
n log(p)

⌉
. First, Algorithm 6.8

computes the Hermite Normal Form of Λ. We denote the basis of Λ that corresponds
to the HNF as C. As vol(Λ) = p is a prime number, C is given by (6.24). Then, the
Gram-Schmidt orthogonalization C∗ satisfies:

1. ‖c1‖ = p;
2. for all i ∈ {2, . . . , n}, ‖c∗i ‖ = 1.
Then, Algorithm 6.8 applies Algorithm 6.6 to the input (C, t). Algorithm 6.6 uses Algo-

rithm 6.7 as oracle for sampling a random lattice point r. The support of the distribution,
produced by Algorithm 6.7 is the set Λ∩Cnu(p,R′), where R′ =

√
n. Then, by Lemma 6.6,

Algorithm 6.6 returns a pair of vectors (w,x′) such that
1. w ∈ Λ;
2. x′ ∈ Λ ∩ Cnu(p,R)

3. if there exists v ∈ Λ and r > 0 such that ‖v − x′‖ 6 r, then

‖t− (v + w)‖ 6 r +R′. (6.27)

Finally, the algorithm applies the decoding for targets inside cylinder (see Algorithm 6.5)
to the vector x′ and the description C of the lattice Λ. Here we suppose that Assump-
tion 6.2 holds, i.e., the distribution of x′ is required in Lemma 6.5. As the description C
is produced by the preprocessing described in Algorithm 6.3 and x′ is produced by Algo-
rithm 6.6, the input (C,x′) satisfies the requirements of Lemma 6.5. Then, by Lemma 6.5,
with probability at least 1− e−n+o(n), Algorithm 6.5 returns a vector v such that

‖v − x′‖ 6
√

p2

N2k
+R2 · 2k 6 0.41

√
n vol(Λ)1/n. (6.28)

Combining (6.27) and (6.28), we get

‖t− (v + w)‖ 6
√
n+ 0.41

√
n vol(Λ)1/n = 0.41

√
n vol(Λ)1/n · (1 +O(vol(Λ)−1/n)). (6.29)

Assuming that log(vol(Λ)) = ω(n), we obtain the bound given by (6.26).
Since the time complexity of both Algorithms 6.5 and 6.6 is poly(n), the time com-

plexity of Algorithm 6.8 is also poly(n).

6.4.3 Solving CVPP for an arbitrary lattice.

In this section, we consider solving CVPP for an arbitrary n-dimensional lattice Λ. As
in the previous section, our goal is to modify the decoding algorithm (see Algorithm 6.5),
so that it can be applied to any target t ∈ Rn.

Let h >> R > 0 be some fixed constants, N = 2
n
2 , and k be a positive integer number.

Let u ∈ Rn be a unit vector.
Recall that an input for Algorithm 6.5 consists of the description C = {C1, . . . , Ck} of

the lattice Λ and of the target point x, that satisfy certain conditions (see Conditions 1-3
listed at the beginning of Section 6.4). Informally, the target vector x should belong to the
hypercylinder Cnu(h,R) that is covered by the vectors from C1 and, moreover, x should
behave as sampled from the uniform distribution on this hypercylinder.

104

In Section 6.2, we describe an algorithm that can produce a description C = {C1, . . . , Ck}
for an arbitrary lattice Λ such that the vectors from the first list C1 cover the hypercylinder
Cnu(h,R) with the following parameters:

h = q
(n−1)2

2 · n · vol(Λ)1/n, R = q−
n−1

2 · vol(Λ)1/n, (6.30)

where q > 4
3 is some fixed constant, while the vectors from the last list Ck cover the

hypercylinder with the parameters, given by

hk = O(vol(Λ)1/n), Rk = O(vol(Λ)1/n) ·
√
n− 1. (6.31)

Therefore, if we use the output of Algorithm 6.4 as a description of Λ for Algorithm 6.5,
we need a procedure that transforms an arbitrary target vector t ∈ Rn into a target point
x such that

x ∈ Cnu(h,R); (6.32)

x behaves as sampled from the uniform distribution on Cnu(h,R). (6.33)

In Section 6.4.1, we describe an algorithm (see Algorithm 6.6) that transforms an
arbitrary t ∈ Rn into x that satisfies the conditions given by (6.32) and (6.33). To do
so, Algorithm 6.6 requires a basis C of Λ such that ‖c1‖ 6 h and, for all i ∈ {2, . . . , n},
‖ci‖ 6 R√

n−1
, and an access to an oracle that samples a distribution with the support

Cnu(h,R′) ∩ Λ that is, in some sense, close to the uniform on Cnu(h,R′), where R′ > R is
close to R.

The desired basis C can be obtained by applying the unbalanced reduction to any
LLL-reduced basis of Λ (see Section 3.6 for the description of the unbalanced reduction
algorithm).

In order to get an oracle that samples a uniform-like distribution on Cnu(h,R), we can
sample a discrete Gaussian distribution on a certain projected sublattice of Λ. More pre-
cisely, computing the basis C using the unbalanced reduction reveals a projected sublattice
π2(Λ) together with its basis π2(C) such that ‖π2(C)∗‖ is smaller than R/

√
n− 1. Having

such a basis allows us to sample a discrete Gaussian distribution on π2(Λ) with the small
parameter s = R√

n−1
· ω(

√
log(n)) in polynomial time using Klein’s algorithm (see Sec-

tion 3.5 or [GPV08]). The lattice vectors, sampled in such a way, with high probability
will have short projection on span(c1)⊥. Then, we can reduce the sampled vectors with
c1 6 h in order to obtain vectors that have short enough projection on span(c1) to get
inside the hypercylinder Cnu(h,R′).

Thus, using the unbalanced reduction of the lattice basis together with sampling the
discrete Gaussian distribution on a projected sublattice, we can sample a random vector
from the set Cnu(h,R′) ∩ Λ. The approach is summarized in Algorithm 6.9

The distribution, produced by Algorithm 6.9, is analyzed in Lemma 6.8.

Lemma 6.8. Let q > 4/3. Let B be a basis of an n-dimensional lattice Λ. Then, there
exists a unit vector u ∈ Rn such that Algorithm 6.9, given B and q as input, returns a
vector r ∈ Λ that satisfies

1. the norm of the projection of r on span(u) is bounded by 1
2 · q

(n−1)2/2 · n vol(Λ)1/n;

2. ‖πu(r)‖ 6 σ ·
√
n log(n), where σ = q−(n−1)/2 vol(Λ)1/n.

The expected time complexity of the algorithm is poly(n). With probability at least
1−O(2−n), the number of calls to the discrete Gaussian sampler is equal to 1.

Proof. By Corollary 3.1, the unbalanced reduction algorithm (see Algorithm 3.6), given as
input a (q−1 +1/4)-LLL-reduced basis B and a parameter σ = q−(n−1)/2 vol(Λ)1/n, returns
a basis C of Λ that satisfies

1. ‖c1‖ 6 q(n−1)2/2 · n · vol(Λ)1/n;

105

Algorithm 6.9: Sample a random lattice point in a hypercylinder for an arbitrary
lattice
1 sampleD(B, α):
2 B← LLL(B, q)

3 σ ← q−
n−1

2 vol(Λ)1/n

4 C← UnbalancedReduction(B, σ) . Algorithm 3.6
5 s← σ · log(n))
6 rmax = s ·

√
n

7 rnorm = rmax + 1
8 while (rnorm > rmax) do
9 r← sampleDiscreteGaussian(π2(C), s) . sampling algorithm

from [GPV08]
10 rnorm ← ‖πu(r)‖
11 r← r−

⌊
rtc1

ct1c1

⌉
· c1

12 return r

2. for all i ∈ {2, . . . , n}, ‖ci‖ 6 σ.

Let u = 1
‖c1‖ · c1. Then, the bound on the projection of r on span(u) from Lemma 6.8 is

ensured by reducing the vector r with c1 in Line 8 of Algorithm 6.9.
Consider the projection of r on span(u)⊥. The projection πu(r) is sampled from the

centered discrete Gaussian distribution on the projected sublattice π2(Λ) with the param-
eter s = σ log(n). The norm of ‖π2(C)∗‖ = max26i6n ‖c∗i ‖ is bounded by σ. Therefore,
by Theorem 3.3, the distribution, statistically close to the described above, can be sampled
in polynomial time by Klein’s algorithm using the basis π2(C).

Since πu(r) has the discrete Gaussian distribution with the parameter σ·log(n), Lemma 3.4
implies the following probabilistic bound on the norm of πu(r):

P{‖πu(r)‖ 6 σ ·
√
n log(n)} > 1−O(2−n), (6.34)

Thus, after one call to Klein’s sampler we get the vector r with short enough projection
on span(u)⊥ with the probability at least 1−O(2−n).

As the LLL algorithm, the unbalanced reduction, and Klein’s algorithm are polynomial-
time algorithms, the expected time complexity of Algorithm 6.9 is also poly(n).

Then, using Algorithm 6.9 as oracle for Algorithm 6.6, we can transform any target
t ∈ Rn into a valid input for Algorithm 6.5. Algorithm 6.10 describes finding close lat-
tice vectors for an arbitrary target using the information, produced by the preprocessing
(i.e. Algorithm 6.4).

The complexity of solving CVPP for an arbitrary integer lattice by Algorithm 6.10 is
described by Theorem 6.2.

Theorem 6.2. Let Λ be an n-dimensional lattice.. Let C be a description of the lattice
Λ, produced by Algorithm 6.4. Let Assumption 6.2 hold. Then, Algorithm 6.10, given as
input a basis B of the lattice Λ, the description C, and a target vector t ∈ Rn, finds a
lattice vector v ∈ Λ such that

‖v − t‖ 6 0.483 · (1 + c−n+o(log(n)))
√
n vol(Λ)1/n, (6.35)

where c is some positive constant. The time complexity of Algorithm 6.10 is poly(n), the
probability of success is at least 1− e−n+o(n).

106

Algorithm 6.10: Solving CVPP with cylindrical sieving for an arbitrary lattice
input : a target vector t ∈ Rn, a basis B of Λ, the description C of Λ, produced

by Algorithm 6.4.
output: a lattice vector x ∈ Λ such that ‖t− x‖ = O(

√
n) vol(Λ)1/n

1 findCloseLatticeVector(t, B, C):
2 B← LLL(B, q)

3 σ ← q−
n−1

2 vol(Λ)1/n

4 C← UnbalancedReduction(B, σ) . Algorithm 3.6
/* Algorithm 6.6 with Klein’s algorithm from [GPV08] for sampling a random

lattice vector */

5 (w,x′)← transformTarget(C, t)
6 v← decode(C,x′) . Algorithm 6.5
7 return w + v

Proof. Let δ = 1
4 + 1

q be the parameter of the LLL reduction of the basis B at the Line

2 of Algorithm 6.10. Let σ = q−(n−1)/2 · vol(Λ)1/n, R =
√

n−1
πe σ, N = 2n/2, and h =

q(n−1)2/2 · n vol(Λ)1/n. Let k = d(n− 1) log(q)e.
Algorithm 6.10 starts with applying the unbalanced reduction with the parameter σ to

the δ-LLL-reduced basis B of Λ. We denote the basis of Λ obtained after the unbalanced
reduction as C. By Corollary 3.1, the Gram-Schmidt orthogonalization C∗ satisfies:

1. ‖c1‖ 6 h;
2. for all i ∈ {2, . . . , n}, ‖c∗i ‖ 6 σ.
Then, Algorithm 6.10 applies Algorithm 6.6 to the input (C, t). Algorithm 6.6 uses

Klein’s algorithm that samples the discrete Gaussian distribution Dπ2(Λ),s as oracle for
sampling a random lattice point r, where s = σ · log(n).

By Lemma 6.8, the norm of the projection r on span(c1)⊥ is bounded by R′ = σ ·√
n log(n).
Thus, the support of the distribution, produced by Algorithm 6.9 is the set Λ∩Cnu(p,R′).

Then, by Lemma 6.6, Algorithm 6.6 returns a pair of vectors (w,x′) such that
1. w ∈ Λ;
2. x′ ∈ Λ ∩ Cnu(h,R)

3. if there exists v ∈ Λ and r > 0 such that ‖v − x′‖ 6 r, then

‖t− (v + w)‖ 6 r +R′. (6.36)

Finally, the algorithm applies the decoding for targets inside cylinder (see Algorithm 6.5)
to the vector x′ and the description C of the lattice Λ. Here we suppose that Assump-
tion 6.2 holds, i.e., the distribution of x′ is required in Lemma 6.5. As the description C
is produced by the preprocessing described in Algorithm 6.4 and x′ is produced by Algo-
rithm 6.6, the input (C,x′) satisfies the requirements of Lemma 6.5. Then, by Lemma 6.5,
with probability at least 1− e−n+o(n), Algorithm 6.5 returns a vector v such that

‖v − x′‖ 6
√

p2

N2k
+R2 · 2k 6 0.483

√
n vol(Λ)1/n. (6.37)

Combining (6.36) and (6.37), we get

‖t− (v + w)‖ 6
√
n log(n) · σ + 0.483

√
n vol(Λ)1/n (6.38)

=
√
n vol(Λ)1/n · (0.483 + log(n) · q−(n−1)/2), (6.39)

107

prime volume any lattice
preprocessing: time 2n/2 20.531n

preprocessing: memory 2n/2 2n/2

decoding: time poly(n) poly(n)

size of lattice description log(vol(Λ))
n · 2n/2 n2 · 2n/2

distance 0.403
√

2
πe ≈ 0.484

Table 6.2 – Complexity of solving CVPP using cylindrical sieving. The time and mem-
ory complexities of the algorithms are given ignoring polynomial factors. The row “size
of lattice description” represents the number of n-dimensional vectors in the description
of an input lattice, produced by the preprocessing algorithms, ignoring constant factors.
The row “distance” represents the upper bound on the ratio of the distance between the
lattice and the vector, returned by the decoding algorithms and of the Minkowski’s bound√
n vol(Λ)1/n.

which implies the bound given by (6.35).
Since the time complexity of both Algorithms 6.5 and 6.6 is poly(n), the time com-

plexity of Algorithm 6.10 is also poly(n).

Table 6.2 summarizes the complexity of solving CVPP using the cylindrical sieving in
case of a lattice with a prime volume and in the general case.

6.5 Experimental results

Since the theoretical analysis of our algorithm for solving CVPP is based on heuristic
assumptions, it is important to provide experiments in order to see whether the proposed
assumptions are feasible. In this section, we describe our implementation of Algorithm 6.8
for solving CVPP with the cylindrical sieving and the obtained experimental results.

6.5.1 Description of implementation.

We implement the algorithm that solves CVPP using the cylindrical sieving for lattices
with a prime volume. Namely, we implement the preprocessing and decoding algorithms,
given by Algorithms 6.3 and 6.8 correspondingly. Both parts are implemented in C++
using GMP library [GMP]. For the implementation, we used simplified versions of Algo-
rithms 6.3 and 6.8. Essentially, the main differences are the initial sampling of the lattice
vectors and the randomization of the target point. In the next two paragraphs, we describe
all the differences in details, first, for the preprocessing algorithm, then, for the decoding.

Preprocessing. The preprocessing of a lattice with the cylindrical sieving has two parts:
the initial generation part (see Lines 2-3 of Algorithm 6.3) and the sieving part (see Lines 6-
8 of Algorithm 6.3). The implementation of the sieving part of the preprocessing coincides
with the sieving part described in Algorithm 6.3. But, the implemented version of the
initial generation slightly differs from the one described in Lines 2-3 of Algorithm 6.3. In
Line 3 of Algorithm 6.3, we suggest to use Algorithm 4.1 to generate the lattice points
inside the hypercylinder. Algorithm 4.1 enumerates all the integer vectors of dimension
(n − 1) inside a ball Bn−1(O(

√
n)) and then computes the corresponding lattice vector

for each of the enumerated integer vectors. In order to simplify the implementation, we
replace enumerating the set Zn−1 ∩ Bn−1(O(

√
n)) by enumerating all the binary vectors

108

with k < n ones. Also, due to memory constrains, in all our experiments, the initial list of
lattice vectors is shorter than theoretically required. By Lemma 4.3, the upper bound on
the number of vectors, lost at one iteration of the sieving process, is O(n · 2

n
2). Thus, for

k iterations of sieving, we need the initial list of size O(n · k · 2
n
2). For the experiments, we

usually took the initial list of size about 2k · 2
n
2 .

Decoding The implementation of the decoding is also slightly different from Algo-
rithm 6.8. Algorithm 6.8 decode has two parts: transformation of the target point (see
Line 3 of Algorithm 6.8) and decoding of the target inside the hypercylinder (see Line 4
of Algorithm 6.8). In the implementation, decoding of the target inside cylinder is exactly
the same as described in Algorithms 6.5 and 6.8. But, the transformation of the target
is simpler. In our experiments, we consider only target vectors from Zn, which allows to
simplify Algorithm 6.6. If the target t is an integer vector, then, after reducing it with the
HNF of a prime volume lattice (see (4.1) for the shape of the HNF), we get a vector v ∈ Λ
such that the difference v − t has only one non-zero coordinate:

v − t = (v1, 0, . . . , 0)t ∈ Zn, |v1| 6
vol(Λ)

2
.

Then, to randomize the target, we can just add to v − t a random vector that lies
inside the hypercylinder and reduce the first coordinate of the resulting vector modulo
vol(Λ). The implementation version of the transformation of the target is described by Al-
gorithm 6.11.

Algorithm 6.11: Transform target point (implementation version)
input : a target vector t ∈ Zn, B = HNF(Λ).
output: x ∈ Cu(vol(Λ), O(

√
n)) such that t− x ∈ Λ, where u = (1, 0, . . . , 0)t ∈ Zn.

1 transformTarget(t, B):
2 v← nearestPlane(B, t) . v− t = (v1, 0, . . . , 0)t, where v1 ∈

(
− vol(Λ)

2 ; vol(Λ)
2

)
3 for i ∈ {2, . . . , n} do
4 ri ← Bernoulli(α) . a2, . . . , an are from the HNF of Λ, see (4.1)

5 r1 ←
n∑
i=2

ri · ai

6 x = ((r1 + v1) mod vol(Λ), r2, . . . , rn)t

7 return x

Experiments. We tested our implementation on random lattices with prime volumes.
To generate a random lattice, we use the algorithm described in Section 2.3. We consider
lattices with the following parameters: dimension n = 20 and vol(Λ) ≈ 2100, dimension
n = 30 and vol(Λ) ≈ 260,dimension n = 40 and vol(Λ) ≈ 280. Here, when we write
vol(Λ) ≈ 2m for some m ∈ Z, it means that the volume of Λ is equal to the biggest prime
number that is smaller than 2m.

For each of the three lattices, we first run the preprocessing and then try to find close
vectors for 1000 randomly generated targets, using the description of the lattice, produced
by the preprocessing. The results of these experiments are described in Sections 6.5.2
to 6.5.4.

Also, for dimension n = 30 and vol(Λ) ≈ 260, we picked one target and randomized it
by adding random lattice vectors to it (see Algorithm 6.11). Thus we obtained 105 different
targets and then tried to find close lattice vectors using the cylindrical sieving for each of
them. The results of this experiment is described in Section 6.5.5.

All the experiments were performed on a 1.8GHz computer with 4 GB of RAM.

109

6.5.2 Dimension n = 30, volume vol(Λ) ≈ 260.

Let Λ be a random lattice of dimension 30 with a volume equal to the biggest prime
smaller than 260. The parameters of the CVPP algorithm (Algorithm 6.3), applied to the
lattice Λ, namely, the decrease rate N and the number of iterations k, are given by:

N = 2n/2 ≈ 215, k =
⌈ log(vol(Λ))

n/2

⌉
= 4.

We want to obtain the initial list of size bigger than 2k · N = 8 · 215. The size of the
initial list L0 is equal to the number of all the binary vectors of dimension n− 1 = 29 with
m ones. Therefore, taking m = 6 is sufficient to obtain the initial list of the desired size:(

29
6

)
≈ 14.5 · 215.

Preprocessing. The preprocessing of Λ consists in performing 4 iterations of the cylin-
drical sieving. Performing the preprocessing takes 8.4 seconds. Table 6.3 describes the
properties of the list of lattice vectors L and of the list of centers C obtained at each of 4
iterations of the preprocessing.

iteration d R |C| |L| unique values in L coverage
1 260 2.45 0.94 · 215 14.5 · 215 100% 93.5%
2 245 3.46 1.36 · 215 13.6 · 215 47% 92%
3 230 4.9 1.06 · 215 12.2 · 215 25% 81%
4 215 6.92 0.55 · 215 11.3 · 215 6% (72%) 85%

Table 6.3 – Preprocessing of a random lattice Λ of dimension n = 30 with prime volume
vol(Λ) ≈ 260.
The columns named d and R represent respectively the height and the radius of the hy-
percylinder that contains the list L. The columns named |C| and |L| represent the size of
the list of centers C and the size of the list of lattice vectors L respectively.
Unique values in L. Let u(L) be the number of unique values of the first coordinate of the
vectors from L. The column named unique values in L represent the ratio u(L)

|L| . For the

iteration 4, the number in brackets in column unique values in L is the ratio u(L)
215 .

Coverage. The values in the column coverage are obtained in the following way. For each
iteration, we divide the line segment [0; d) into N = 215 non-intersecting segments. Then,
we compute the number of covered segments, i.e., the segments that contain at least one
center from the list C. The column coverage represents the percentage of the covered
segments.

First coordinate. Figure 6.2 is a visualization of the first coordinate of the vectors from
the lists L and C during the preprocessing. The pictures from Figure 6.2 are obtained in
the following way. Let L be the list of lattice vectors from the i-th iteration. First, we
take a random subset of L of size 1000. Then, for each vector v from the chosen subset we
add a blue point on the i-th picture such that the horizontal coordinate of the blue point
is equal to the first coordinate of v and the vertical coordinate is a real number, sampled
uniformly at random from [0; 1).

The centers from C are visualized in the similar way. We take a random subset of C
size of size equal to

⌈
1000 · |C||L|

⌋
and then for each point from the obtained subset we add

an orange star on the picture in the same way as for the vectors from L.
While analysing the complexity of the preprocessing, we heuristically assume that the

distribution of the points inside the hypercylinder is quasi-uniform (see Definition 3.4

110

and Assumption 6.1). Informally, for the first coordinate of the vectors, it means that there
is no gaps in the distribution of the first coordinate, i.e., there is no sub-intervals with very
low probability. The pictures from Figure 6.2 show that, indeed, at each iteration there is
no visible gaps in the distribution of the first coordinate. The only observable deviation
from uniformity can be noticed for the last two iterations. For the last two iterations, there
are quite a lot of points with the first coordinate equal to zero. But, since there are still
points all along the whole interval, it should not affect the behavior of the algorithm.

Number of the unique values of the first coordinate in the list L is given by the column
“unique values in L” in Table 6.3. We see that just after the initial generation of the list
all the values are unique. After 3 iterations of sieving we are left with 25% of unique
values, which is still a lot: about 3 · 215 unique values of the first coordinate. After the
last iteration of sieving there are only 6% of unique values. This percentage looks small,
but actually it is normal, because at the 4-th iteration the first coordinate ranges from 0
to 215, thus, there can not be more than 215 different values of it, while the size of |L| is
11.3 · 215.

Last (n − 1) coordinates. At each iteration of the cylindrical sieving, the algorithm
considers the differences of the lattice vectors from L and rejects those that do not fit at
least one of the two requirements:

– the first coordinate of the difference should be small enough;
– the length of the vector, formed by the last (n − 1) coordinates of the difference

should be short enough: if the list L belongs to the hypercylinder of radius R, for
the next iteration we keep only the differences such that the length of the vector,
formed by their last (n− 1) coordinates, is smaller than R

√
2.

For each of the 4 iterations, we have computed the number of differences such that their
first coordinate is small enough, but the vector formed by the last (n− 1) coordinates, is
too long. The results are summarized in Table 6.4.

iteration number of differences rejected ratio
1 444361 0 0
2 458843 59182 13%
3 364870 34110 9%
4 346935 21991 6%

Table 6.4 – Number of pairs, rejected due to the length of the vector formed by the last
(n− 1) coordinates.
Column number of differences denotes the number of differences such that their first coor-
dinate fits the requirements, column rejected denotes the number of differences that were
rejected because of the length of the vector formed by the last (n − 1) coordinates of the
difference.

For the analysis of the algorithm, we assume that the vectors, formed by the last (n−1)
coordinates, behave as uniformly distributed on a sphere (see Assumption 6.1). Thus, we
expect that about one half of the differences that have small enough first coordinate, should
be rejected because the last (n−1) coordinates. Table 6.4 shows that the rejections caused
by the last (n− 1) coordinates appear rarer than we theoretically expect.

Decoding. We tried to solve 1000 CVP instances using the description of the lattice
obtained after the preprocessing. Each target is a random n-dimensional vector with
coordinates, sampled independently from the uniform distribution on integer numbers from
0 to some huge threshold T . The results are presented in Table 6.5. More than 95% of

111

0.0 0.2 0.4 0.6 0.8 1.0
×1018

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×1013

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
×109

0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000 20000 25000 30000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2 – First coordinate of vectors from L and centers at each iteration of preprocessing
for lattice Λ of dimension n = 30 with volume vol(Λ) ≈ 260.
The horizontal axis represent the value of the first coordinate of the vectors. The i-th
picture from the above represents the i-th iteration. Blue points denote vectors from the
list L, orange stars denote centers. Blue points obtained as a random sample of size 1000
from the list L, orange starts is the sample from C of size

⌈
1000 · |C||L|

⌋
.

112

the CVP instances were successfully solved. The average distance from the target to the
lattice point found by the algorithm is 8.91, which is more than 2 times smaller than the
Minkowski’s bound of the lattice Λ:

√
n · vol(Λ)1/n =

√
30 · 260/30 ≈ 21.9.

success rate time average distance maximum distance
953/1000 18.2 ms 8.91 12.08

Table 6.5 – Decoding for a lattice Λ of dimension n = 30 with prime volume vol(Λ) ≈ 260.
Success rate denotes the number of targets for which close lattice vector is successfully
recovered. Time is the average time of solving one CVP instance. Average (maximum)
distance denotes the average (maximum) distance from recovered lattice vector to the
target.

6.5.3 Dimension n = 20, volume vol(Λ) ≈ 2100.

In this section, we present the results of applying the cylindrical sieving to solving
CVPP for a random lattice Λ of dimension n = 20 with the volume equal to the largest
prime number smaller than 2100. The number of iterations and the decrease rate of the
first coordinate of Algorithm 6.3 for these parameters are given by

k =
⌈ log(vol(Λ))

n/2

⌉
= 10, N = 210.

In order to produce the initial list of lattice vectors of size 2k · 2n/2, we enumerate all
binary vectors with m = 10 ones.

Preprocessing. The running time of the preprocessing is 4.25 seconds.

iteration d R |C| |L| unique values in L coverage
1 2100 4.47 1013 90 · 210 100% 99%
2 290 6.32 1025 89 · 210 45% 98%
3 280 8.94 1139 88 · 210 31% 96%
4 270 12.65 1254 87 · 210 24% 97%
5 260 17.88 1346 85.8 · 210 18% 96%
6 250 25.29 1325 84.6 · 210 15% 96%
7 240 35.77 1270 83.3 · 210 11% 94%
8 230 50.59 1174 82 · 210 8% 91%
9 220 71.55 1046 80.89 · 210 6% 85%
10 210 101.19 637 79.8 · 210 1.2%(96%) 98%

Table 6.6 – Preprocessing of a random lattice Λ of dimension n = 20 with prime volume
vol(Λ) ≈ 2100. The structure of the table is identical to Table 6.3
.

Decoding. We have tried to solve 1000 CVP instances using the description of the lattice,
produced by the preprocessing. The results are summarized in Table 6.7.

The average distance from the target to the lattice vector recovered by the implementa-
tion of Algorithm 6.8 is lower than the Minkowski’s bound of the lattice Λ, which is given
by
√
n vol(Λ)1/n ≈ 143.1.

113

success rate time average distance maximum distance
998/1000 29.7 ms 85 123.2

Table 6.7 – Decoding for a lattice Λ of dimension n = 20 with prime volume vol(Λ) ≈ 2100.
The structure of this table is similar to Table 6.5.

6.5.4 Dimension n = 40, volume vol(Λ) ≈ 280.

In this section, we describe the results of running CVPP algorithm for a random lattice
of dimension n = 40 with the volume equal to the largest prime number smaller than 280.
The number of iterations and the decrease rate of the first coordinate of Algorithm 6.8 for
these parameters are given by

k =
⌈ log(vol(Λ))

n/2

⌉
= 4, N = 220.

In order to obtain the initial list of lattice vectors of size at least 2k ·2n/2, we enumerate
all binary vectors m = 7 ones.

Preprocessing. For this example, the preprocessing takes 6 minutes 58 seconds.

iteration d R |C| |L| unique values in L coverage
1 280 3.74 0.94 · 220 14.7 · 220 100% 94%
2 260 5.29 1.37 · 220 13.7 · 220 42% 91%
3 240 7.48 0.99 · 220 12.4 · 220 20.5% 77.4%
4 220 10.58 0.48 · 220 11.4 · 220 5.3%(60%) 77.3%

Table 6.8 – Preprocessing of a random lattice Λ of dimension n = 40 with prime volume
vol(Λ) ≈ 280. The structure of the table is similar to Table 6.3.

Decoding. As before, we tried to solve 1000 CVP instances using the description of the
lattice, produced by the preprocessing. The results are summarized in Table 6.9.

success rate time average distance maximum distance
902/1000 1.7 s 9.79 12.45

Table 6.9 – Decoding for a lattice Λ of dimension n = 40 with prime volume vol(Λ) ≈ 280.
The structure of the table is similar to Table 6.5.

The average distance from the target to the lattice vector recovered by our implemen-
tation of Algorithm 6.8 is more than two times smaller than the Minkowski’s bound of the
lattice Λ, given by

√
n vol(Λ)1/n ≈ 25.3.

6.5.5 Randomization of one target point

While analysing the complexity of the decoding algorithm (see Algorithm 6.5), we
assume that at each iteration the target point behaves like uniformly distributed inside
the corresponding hypercylinder (see Assumption 6.2). In order to produce a target that
looks like random for the decoding algorithm, we randomize the input target by adding

114

a random lattice point to it (see Algorithms 6.6 and 6.11). In order to check how this
randomization works in practice, we performed the following experiment.

For the experiment, we used the preprocessing of a random lattice of dimension n = 30
with a volume equal to the highest prime number smaller than 260 (the same lattice as
in Section 6.5.2). We randomly picked one target point and randomized it: we produced
105 different target points by adding random lattice points to the chosen target as in Al-
gorithm 6.11.

Then, for each of the obtained target points we tried to find a close lattice vector using
the decoding algorithm. The decoding was successful for 94651 targets out of 105, i.e.
94.6% of CVP instances were successfully solved. This ratio is close to the ratio that we
get for independent random targets in Section 6.5.2 (see Table 6.5).

The visualisation of the list of randomized targets at each iteration of the decoding is
presented by Figure 6.3.

0.0 0.2 0.4 0.6 0.8 1.0
×1018

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
×1013

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
×109

0.0

0.5

1.0

0 5000 10000 15000 20000 25000 30000
0.00

0.25

0.50

0.75

1.00

Figure 6.3 – First coordinate of randomized targets at each iteration of decoding for a
random lattice of dimension n = 30 of volume vol(Λ) ≈ 260.
The i-th picture from the above represents i-th iteration. The i-th picture is obtained
in the following way. First, we take a random subset of size 500 of the list of targets at
the i-th iteration. Then, for each point from the obtained subset we sample a random
number from the uniform distribution on the interval [0; 1). The horizontal axis on the
picture corresponds to the first coordinate of the vectors from the subset, the vertical axis
corresponds to the random numbers from the interval [0; 1) that were matched up with the
points from the subset.

115

Part II

Security of the TFHE scheme

116

Chapter 7

Background on TFHE and security
of LWE-based cryptosystems

In this chapter, we recall all the background information needed in the second part
of the thesis. In Section 7.1, we recall some basic information about the TFHE scheme
and its security. Then, in Section 7.2, we recall the definition and the properties of the
modular Gaussian distribution, which occurs in TFHE. In Sections 7.3 and 7.4, we briefly
review existing lattice and hybrid lattice attacks against LWE. Then, in Section 7.5, we
recall practical models for the complexity of lattice reduction algorithms that we use later
in this part to estimate the complexity of our attack. Finally, in Section 7.6, we recall
some useful probability concentration inequalities.

Notation. We denote the set of real numbers modulo 1 as the torus T. For a finite
set S, we denote by U(S) the discrete uniform distribution on S. For any compact set
S ⊂ Rn, the uniform distribution over S is also denoted by U(S). When S is not specified,
U denotes uniform distribution over (−0.5; 0.5).

7.1 TFHE and its security.

In this part of the thesis, we consider the security of the Fast Fully Homomorphic En-
cryption Scheme over the Torus (TFHE) [CGGI16, CGGI17, CGGI20]. TFHE is currently
the FHE scheme with the fastest implementation that we aware of: it performs the gate
bootstrapping in time of 10-20 ms on a single core.

TFHE is a descendant of the GSW scheme [GSW13], therefore, the security of TFHE
is based on the LWE problem and its ring variants (see Section 2.5.2 for the description of
LWE). The authors of TFHE propose the generalization of the LWE problem and of the
GSW construction over the real torus T.

(T)LWE problem. Abstractly, all operations of the TFHE scheme are defined on the
real torus T. In order to estimate the security of the scheme it is convenient to consider a
scale-invariant version of LWE problem.

Definition 7.1 (Learning with Errors, [BLP+13, Definition 2.11]). Let n > 1, s ∈ Zn, ξ
be a distribution over R and S be a distribution over Zn.

We define the LWEs,ξ distribution as the distribution over Tn×T obtained by sampling
a vector a from the uniform distribution on Tn, sampling e from ξ, and returning (a,ats+e).
We call pairs (a, b) ∈ Tn × T sampled from the LWEs,ξ distribution LWEs,ξ samples.

Given access to outputs from this distribution, we can consider the two following prob-
lems:

117

— Decision-LWE. Distinguish, given arbitrarily many samples, between U(Tn × T)
and LWEs,ξ distribution for a fixed s sampled from S.

— Search-LWE. Given arbitrarily many samples from the LWEs,ξ distribution with
fixed s← S, recover the vector s.

To complete the description of the LWE problem we need to choose the error distri-
bution ξ and the distribution of the secret key S. Following the description of the TFHE
scheme, we choose S to be U({0, 1}n) and ξ to be a centered continuous Gaussian dis-
tribution, i.e. , we consider the LWE problem with binary secret. In [BLP+13, Mic18],
it is shown that LWE with binary secret remains hard. We use the notation LWEs,σ as
a shorthand for LWEs,ξ, when ξ is the Gaussian distribution centered at 0 and with the
standard deviation σ.

The message space of the TFHE scheme is M =
{

0, 1
2

}
. The encryption of a message

µ ∈ M under a key K ∈ {0, 1}n is the sum of a random TLWE sample (a, b) ∈ Tn × T
that corresponds to the key K and a pair (0, µ) ⊂ Tn × T:

TLWEK(µ) := (a, b+ µ) = (a,atK + e+ µ), (7.1)

where e is sampled from the distribution ξ.

Gate bootstrapping in TFHE. The simplest FHE scheme consists of a NAND gate
together with a bootstrapping procedure. At a high level, the gate bootstrapping in TFHE
works in the following way. It takes as input an encryption of a message µ, given by a
TLWE sample TLWEK(µ), and returns a new encryption of the same message under the
same keyK, but with a fixed amount of noise. The gate bootstrapping procedure [CGGI20,
Algorithm 10] has two parts: bootstrapping and key switching.

– Bootstrapping [CGGI20, Algorithm 9] constructs an encryption of the message µ
with a fixed amount of noise, independent of the input, but under a different key
K̄. It uses an intermediate encryption scheme based on the Ring-LWE problem.

– Key switching [CGGI20, Algorithm 2] takes as input the encryption of µ produced
by bootstrapping and constructs a new encryption of µ with a fixed amount of noise
under the original key K.

Thus, the security of TFHE is based on the security of the TLWE samples, produced
by key switching and TRLWE samples, used in bootstrapping. Key switching and boot-
strapping use different keys of different parameters, we further refer to them as switching
key and bootstrapping key, correspondingly.

Parameters and security analysis. Practically, the security of the cryptosystem is
defined by the complexity of the most efficient attack against it. The security of the TFHE
scheme is based on the TLWE problem, which can be seen as a scale-invariant version of
LWE. In order to analyze the security of the scheme, the authors of TFHE use the dual
distinguishing lattice attack on LWE, similar to the one described in [Alb17]. In [CGGI17,
Section 7], the dual attack is adapted to the settings of the TFHE scheme. We recall this
version of the dual attack in details in Chapter 8.

The parameters of the bootstrapping and switching keys and their security level, pro-
posed in the first papers on TFHE [CGGI16, CGGI17], are given in Table 7.1. The security
level in Table 7.1 is estimated according to the dual distinguishing attack from [CGGI17,
Section 7] (see Chapter 8).

The recent journal version of the paper on TFHE [CGGI20] also contains the adaptation
of the dual attack and the parameters from Table 7.1. However, in addition to these
parameters, the paper introduces a new set parameters (see [CGGI20, Remark 9]). We
recall the new parameters in Table 7.2. The security of the new parameters is estimated
according to the LWE estimator from [ACD+18].

118

n α λ

switching key 500 2.43 · 10−5 159
bootstrapping key 1024 3.73 · 10−9 198

Table 7.1 – Parameters and security of TFHE from [CGGI16, CGGI17] (see [CGGI20,
Table 3]). n and α are the parameters of the underlying TLWE problem, n denotes the
dimension, α denotes the parameter of the noise distribution. λ is the security level in bits.
The bold number denotes the overall security of the scheme.

n α λ

switching key 612 2−15 128
bootstrapping key 1024 2−26 129

Table 7.2 – Parameters and security of TFHE from [CGGI20, Table 4]. n and α are the
parameters of the underlying TLWE problem, n denotes the dimension, α denotes the
parameter of the noise distribution. λ is the security level in bits. The bold number
denotes the overall security of the scheme.

Until very recent time, the default parameters used by the implementation of TFHE,
available on-line, were a composition of the sets presented by Tables 7.1 and 7.2. The boot-
strapping key parameters used by the implementation corresponded to the new parameters
from Table 7.2, while the keyswitching key was still as in Table 7.1.

Then, at 21/02/2020, the parameters of the implementation were updated again. At
the moment of writing this text, the parameters used by the public implementation of
TFHE are as in Table 7.3 (see [G+16] for the link to the github repository of TFHE).
These new parameters are quite close to the ones presented in [CGGI20, Table 4]. Their
security is also estimated according to LWE estimator from [ACD+18].

n α λ

switching key 630 2−15 128
bootstrapping key 1024 2−25 130

Table 7.3 – Parameters and security of TFHE from its public implementation [G+16] on
GitHub. n and α are the parameters of the underlying TLWE problem, n denotes the
dimension, α denotes the parameter of the noise distribution. λ is the security level in
bits. The bold number denotes the overall security of the scheme.

7.2 Modular Gaussian distribution

The TFHE scheme uses the continuous centered Gaussian distribution as an error
distribution ξ to produce samples from the TLWE distribution. Thus, if (a, b) ∈ Tn × T
is a sample from the TLWE distribution corresponding to the secret s ∈ {0, 1}n, then
e = (b−ats mod 1) ∈ T has the distribution called modular Gaussian distribution. In this
section, we give a formal definition of this distribution and recall some useful properties.

Let σ > 0. For all x ∈ R, the density of the centered Gaussian distribution with
standard deviation σ is defined as ρσ(x) = 1√

2πσ
exp

(
− x2

2σ2

)
.

Definition 7.2. We define the distribution that is obtained by sampling a centered Gaus-

119

sian distribution of standard deviation σ and reducing it modulo 1 as the modular Gaussian
distribution of parameter σ and denote it as Gσ.

The support of the distribution is
(
− 1

2 ; 1
2

)
. The probability density function is given

by the absolutely convergent series:

gσ(x) =
∑
k∈Z

ρσ(x+ k).

For large values of σ, the sum that defines the density of a modular Gaussian can be
closely approximated.

Lemma 7.1. As σ →∞, gσ(x) = 1 + 2e−2π2σ2
cos(2πx) +O(e−8π2σ2

).
More precisely, for all x ∈

(
− 1

2 ; 1
2

)
, we have∣∣∣gσ(x)−

(
1 + 2e−2π2σ2

cos(2πx)
)∣∣∣ 6 e−8π2σ2 · 2

1− e−2π2σ2 .

Proof. The Fourier transform of the Gaussian function ρσ,m(x) = 1√
2πσ

e−
(x+m)2

2σ2 is given

by ρ̂σ,m(y) = e−2π2σ2m2+2πimx. Then, using the Poisson summation formula, we obtain:

gσ(x) =
1√
2πσ

∑
k∈Z

e−
(k+x)2

2σ2 = 1 + 2
∑
k>0

e−2π2σ2k2
cos(2πkx) =

1 + 2e−2π2σ2
cos(2πx) + 2 ·

+∞∑
k=2

e−2π2σ2k2 · cos(2πk).

(7.2)

Then, we have

∣∣gσ(x)−
(
1 + 2e−2π2σ2

cos(2πx)
)∣∣ = 2 ·

∣∣∣ +∞∑
k=2

e−2π2σ2k2 · cos(2πk)
∣∣∣ (7.3)

The absolute value of the sum from (7.3) can be bounded:

∣∣∣ +∞∑
k=2

e−2π2σ2k2 · cos(2πk)
∣∣∣ 6 +∞∑

k=2

e−2π2σ2k2
6

+∞∑
k=8

(e−2π2σ2
)k =

e−8π2σ2

1− e−2π2σ2 . (7.4)

In (7.4), we use the following facts:
– the first inequality: |

∑
i xi| 6

∑
i |xi| and | cos(t)| 6 1 for all t.

– the second inequality:
∑+∞

k=m x
k2

6
∑+∞

k=m2 xk for all x ∈ (0; 1).

When the parameter σ grows, the modular Gaussian distribution becomes closer to the
uniform distribution. The following lemma estimates the statistical distance between the
distributions for big values of σ.

Lemma 7.2. The statistical distance between the modular Gaussian distribution Gσ and
the uniform distribution on

(
− 1

2 ; 1
2

)
can be estimated as follows:

δ(Gσ,U) =
4

π
· e−2π2σ2

+O(e−8π2σ2
).

120

Proof. By the definition, the total variation distance between the two distributions is given
by

δ(Gσ,U) = sup
A⊂(− 1

2
; 1
2

)

|PGσ{A} − PU{A}| =
1

2
·

1/2∫
−1/2

|gσ(x)− 1|dx. (7.5)

Then, substituting gσ in (7.5) with its approximation from Lemma 7.1, we get

δ(Gσ,U) =

1
2∫

− 1
2

∣∣2 · e−2π2σ2
cos(2πx) +O(e−8π2σ2

)
∣∣dx =

4

π
· e−2π2σ2

+O(e−8π2σ2
). (7.6)

In (7.6), we used the fact that for any x, ε ∈ R, |x| − |ε| 6 |x+ ε| 6 |x|+ |ε|.

7.3 Lattice attacks against LWE

Since the appearance of the LWE problem, various attacks against it have been pro-
posed. Up to the best of our knowledge, for the moment there is no single best attack
against all the parameters of LWE and the security of concrete instances of the LWE prob-
lem is an area of on-going research. A survey on attacks against various types of LWE
can be found in [APS15]. This survey outlines three strategies for attacks against LWE:
exhaustive search, BKW algorithm [BKW03, ACF+15] and lattice reduction. Lattice at-
tacks against LWE can be separated into three categories depending on the lattice used:
distinguishing dual attacks [Alb17], decoding (primal) attacks [LP11, LN13], and solving
LWE by reducing it to unique-SVP [AFG13].

In this section, we recall the basic ideas behind each of the three types of lattice attacks.
To be consistent with the version of the LWE problem, used in TFHE, we always consider
scale-invariant version of LWE when describing the attacks.

Distinguishing dual attack. The distinguishing dual attack is the attack against search-
LWE, i.e., givenm samples all from the LWE-distribution, or from the uniform distribution
on Tn × T, the attack guesses the distribution of the samples.

Let (a1, b1), . . . , (am, bm) ∈ Tn × T be m samples all drawn from one of the two distri-
butions. In a matrix form, the samples can be written as a pair (A,b) ∈ Tn×m×Tm, where
A = (a1, . . . ,am) is a matrix whose i-th column is the vector ai and b = (b1, . . . , bm)t.

The basic version of the dual distinguishing attack (as described, e.g., in [RS10]) is
based on the following idea. Assume that we can find a short linear combination of the
vectors a1, . . . ,am that sums to zero modulo 1, i.e. assume that we know a short vector
v ∈ Zm such that

Av = 0 mod 1, (7.7)

i.e., Av ∈ Zm. The vector v can be seen as a short vector in the lattice dual to L(At).
Then, consider the scalar product vtb. If the samples (A,b) are from the LWE distribution
that corresponds to a secret s ∈ Zn, then we have

vtb = vt(Ats + e) = vte.

As both v and e are short, with high probability, the product vtb is close to 0 modulo
1. On the other hand, if the samples are from the uniform distribution, the product vtb
mod 1 has distribution that is very close to the uniform on

(
− 1

2 ; 1
2

)
.

121

The dual distinguishing attack has two parts: lattice reduction and distinguishing
distributions.

– First, the attack recovers a short vector v ∈ Zm that satisfies (7.7) by applying a
lattice reduction algorithm to the lattice dual to L(At).

– The attack guesses the distribution of vtb, i.e. distinguishes the uniform distribution
on
(
− 1

2 ; 1
2

)
from some concentrated around zero distribution.

The complexity of the attack consists of the costs of the two parts whose complexities
can be balanced. If the attack spends more time on the lattice reduction, it produces a
shorter vector v. Shorter v gives a more concentrated distribution of vte, which is easier
to distinguish from the uniform in the second part of the attack.

In [CGGI17], the security of the TFHE scheme is estimated using a variation of the
dual distinguishing attack, very close to the one described in [Alb17]. This version of
the dual attack takes into account the small secret settings and applies techniques from
BKW-like algorithms, like modulus-switching. We recall the dual attack from [CGGI17]
in details in Chapter 8.

Decoding attack. The decoding (primal) attack is the attack against search-LWE, i.e.,
it recovers the secret key s, given a set of the samples from the LWE distribution. The
decoding attack is based on the idea that an instance of the LWE problem (A,b = Ats+e)
can be seen as an instance of the bounded distance decoding (BDD) problem for the lattice
L(At).

In BDD settings, the problem can be reformulated as follows. We are given a lattice
Λ = L(At) and a vector b ∈ Rn. The goal is to find a lattice vector v such that
‖v − b‖ 6 β, where the bound β is chosen depending on the distribution of the error
vector e. If we recover the vector v, most probably, it coincides with Ats, which allows to
recover the secret s = (At)−1v.

The standard method to solve BDD is to use Babai’s nearest plane algorithm (see Sec-
tion 3.4). First, we apply some lattice reduction algorithm to At and get a reduced basis B
of Λ. Then, we give the basis B together with the target b to the nearest plane algorithm
as input. The algorithm returns a vector v ∈ Λ such that the difference v − b belongs to
the fundamental parallelepiped P(B∗), where B∗ is the Gram-Schmidt orthogonalization
of B. Thus, if b = v + e, the Babai’s nearest plane algorithm returns the desired vector v
if and only if the error vector e belongs to P(B∗). The probability of successful recovery
of v = Ats is given by

P{e ∈ P(B∗)} =
d∏
i=1

P
{
|etb∗i | 6

‖b∗i ‖2

2

}
, (7.8)

where d is the dimension of the lattice Λ. The probability of success depends on the length
of the Gram-Schmidt vectors of the reduced basis B, i.e., longer Gram-Schmidt vectors
imply higher probability of success. Usually, a reduced basis has relatively long first Gram-
Schmidt vectors, while the last Gram-Schmidt vectors are very short, which can make the
probability to recover the vector v very low. In [LP11], Lindner and Peikert propose
a generalization of Babai’s nearest plane algorithm, called NearestPlanes, that allows to
increase the probability of successful recovery at the cost of spending more time. The
algorithm proposed in [LP11] can be seen as a version of Schnorr-Euchner’s enumeration
algorithm [SE94] with pruning.

NearestPlanes is recursive and works similarly to Babai’s nearest plane with the only
difference that at the i-the level of the recursion, the algorithm considers several nearest
hyperplanes to the projection of the current target instead of one. The running time of
the NearestPlanes is described by the following lemma.

122

Lemma 7.3. [LP11, Lemma 4.1] For i ∈ {1, . . . , d}, let ci be the number of hyperplanes

that the NearestPlane considers at the i-th level. Then, the NearestPlanes outputs
d∏
i=1

ci

lattice vectors that lie inside the parallelepiped b + P(B∗C) in time that is equal to the

time of
d∏
i=1

ci runs of Babai’s nearest plane algorithm, where C = diag(c1, . . . , cd).

Lindner and Peikert also proposed an heuristic estimate of the probability of success of
the algorithm under the assumption that the distribution of the error can be approximated
by the continuous Gaussian with standard deviation σ. Then, using (7.8), we get:

P{e ∈ P(B∗C)} =

d∏
i=1

erf
(ci · ‖b∗i ‖√π

2σ

)
. (7.9)

The complexity of the decoding attack from [LP11] is the sum of the complexity of the
lattice reduction and of the NearestPlanes. As before, if the attack spends more time on
the lattice reduction and get a better basis B, the second step of the attack requires less
time to achieve the same probability of successful recovery. It is quite hard to determine
optimal values for all the parameters of the attack, so, in [LP11], the authors suggests a
simple heuristic method for choosing the values of cis: they choose cis so that the value
min(ci‖b∗i ‖) is maximized.

The primal attack, as the dual attack, also has several variations. For example,
in [LN13], Liu and Nguyen propose a randomized variant of the NearestPlanes algorithm
from [LP11]. Besides that, noting the similarities between the NearestPlane and enu-
meration with pruning, they propose another primal lattice attack on LWE that uses
enumeration with pruning to recover the close lattice vector.

Reducing to unique-SVP. Another way to solve LWE is to reduce the underlying
BDD problem, described in the previous paragraph, to the unique Shortest Vector Prob-
lem (unique-SVP). This approach was proposed by Albrecht, Fitzparick, and Göpfert
in [AFG13].

In unique-SVP, we are given a basis of a lattice Λ such that there is a gap between the
first and second minima of the lattice, i.e., λ2(Λ)

λ1(Λ) > γ for some γ > 1. As in SVP, the goal
is to find the shortest nonzero vector of Λ. When the gap γ between the first two minima is
huge, the unique-SVP problem is much easier to solve than usual SVP. For example, if the
gap γ is exponential in the dimension, the unique-SVP problem can be solved using the
LLL algorithm. In practice, for subexponential values of γ, the unique-SVP can be solved
using lattice reduction algorithms like BKZ with some probability of success that depends
on the value of the gap. The experimental model for the dependence of the probability of
success of the lattice reduction on the gap can be found in [GN08].

The LWE problem can be reduced to unique-SVP using Kannan’s embedding tech-
nique [Kan87]. Kannan’s technique works by embedding the lattice that corresponds to
the LWE problem into a higher-dimensional lattice with a gap between the first two min-
ima. Let (A,b = Ats+e) ∈ Tn×m×Tm be m samples from the LWE distribution written
in the matrix form. Let Λ be a lattice that corresponds to the LWE samples:

Λ := {v ∈ Tm | ∃x ∈ Zn such that v = Atx mod 1}. (7.10)

Let Â ∈ Tm×m be a basis of Λ. A basis B for Kannan’s embedding technique can be
constructed as follows:

B :=

(
Â b
0 t

)
∈ T(m+1)×(m+1). (7.11)

123

If the parameter t is smaller than λ1(Λ)
2γ , then the lattice L(B) has a γ-unique shortest

vector (see [LM09] for the equivalence of BDD and unique-SVP), which is given by (e,−t)t.
Thus, finding the shortest vector in L(B) allows to recover the error e of the LWE samples,
which implies recovering of the secret s.

The attack from [AFG13] works by applying the lattice reduction to the basis of the
form given by (7.11). The complexity of the attack depends on the complexity of the
lattice reduction and on the probability that the lattice reduction successfully returns a
multiple of a unique shortest vector of the lattice L(B). In [AFG13], the authors estimate
the complexity of the attack using an experimental model of lattice reduction algorithms.

7.4 Hybrid attacks

The idea of hybrid lattice reduction attack was introduced by Howgrave–Graham
in [HG07]. He proposed to combine a meet-in-the-middle attack with lattice reduction
to attack NTRUEncrypt.

Then, several works [BGPW16, Wun16] adapted Howgrave–Graham’s approach to the
settings of the LWE problem. These works combine the decoding (primal) lattice attack
with meet-in-the-middle strategy for recovering the error vector. In [BGPW16] it is shown
that this approach can be efficient for small error distributions, i.e., for binary or ternary
errors.

Also, very recently, two new works [SC19, CHHS19] on the hybrid attacks against
LWE have appeared. Both works are concentrated on the LWE problem with sparse and
ternary secrets, which is typical for many FHE schemes. In [SC19], the authors revisit
the combination of primal lattice attack based on Babai’s nearest plane algorithm with
meet-in-the-middle approach. In [CHHS19], the authors study the combination of the dual
lattice attack from [Alb17] with the meet-in-the-middle search for the secret key. Both
works show that hybrid attacks can outperform other strategies in case of ternary and
sparse secret.

The attack [CHHS19] is quite close to the attack that we propose in this work, as both
attacks can be seen as a combination of the dual lattice attack with the search for some
part of the binary key. However, the attacks consider different species of the LWE problem:
the attack from [CHHS19] is for LWE with sparse and ternary secrets, while our attack is
for binary non-sparse secrets used in TFHE. This implies different search strategies for the
search parts of the attacks.

7.5 Lattice reduction in practice

A lattice reduction algorithm is an algorithm which, given as input some basis of
the lattice, finds a basis that consists of relatively short and relatively pairwise-orthogonal
vectors. The quality of the basis produced by lattice reduction algorithms is often measured

by the Hermite factor δ =
‖b1‖

det(Λ)1/d
, where b1 is the first vector of the output basis.

Hermite factors bigger than
(

4
3

)n/4
can be reached in polynomial time using the LLL

algorithm [LLL82]. In order to obtain smaller Hermite factors, blockwise lattice reduction
algorithms, like BKZ-2.0 [CN11] or S-DBKZ [MW16], can be used. The BKZ algorithm
takes as input a basis of dimension d and proceeds by solving SVP on lattices of dimension
β < d using sieving [BDGL16] or enumeration [GNR10]. The quality of the output of BKZ
depends on the blocksize β. In [HPS11] it is shown that after a polynomial number of calls
to SVP oracle, the BKZ algorithm with blocksize β produces a basis B that achieves the

124

following bound:

‖b1‖ 6 2γ
d−1

2(β−1)
+ 3

2

β · vol(B)1/d.

However, up to our knowledge, there is no closed formula that tightly connects the quality
and complexity of the BKZ algorithm. In this work, we use experimental models proposed
in [ACF+15, ACD+18] in order to estimate the running time and quality of the output
of lattice reduction. They are based on the following two assumptions on the quality and
shape of the output of BKZ. The first assumption states that the BKZ algorithm outputs
vectors with balanced coordinates, while the second assumption connects the Hermite
factor δ with the chosen blocksize β.

Assumption 7.1. Given as input a basis B of a d-dimensional lattice Λ, BKZ outputs a
vector of the norm close to δd · det(Λ)1/d with balanced coordinates. Each coordinate of
this vector follows a distribution that can be approximated by a Gaussian with mean 0
and standard deviation δd√

d
det(Λ)1/d.

Assumption 7.2. BKZ with blocksize β achieves Hermite factor

δ =
(β

2πe
(πβ)1/β

) 1
2(β−1)

.

This assumption is experimentally verified in [Che13].

BKZ cost models. To estimate the running time of BKZ, we use three different
models. The first model is an extrapolation by Albrecht [ACF+15] et al. of the Liu–
Nguyen datasets [LN13]. According to that model, the logarithm of the running time of
BKZ-2.0 (expressed in bit operations) is a quadratic function of log(δ)−1:

log(T (BKZδ)) =
0.009

log(δ)2
− 27.

We further refer to this model as the delta-squared model. This model was used in [CGGI17,
CGGI20] to estimate the security of TFHE.

Another more recent cost model [ACD+18] assumes that the running time of BKZ with
blocksize β for d-dimensional basis is T (BKZβ,d) = 8d · T (SVPβ), where T (SVPβ) is the
running time of an SVP oracle in dimension β. For the SVP oracle, we use the following
two widely used models:

Sieving model: T (SVPβ) ≈ 20.292β+16.4,

Enumeration model: T (SVPβ) ≈ 20.187β log(β)−1.019β+16.1.

The sieving algorithm [BDGL16] yields around
(

4
3

)n
2 short vectors while solving SVP

on an n-dimensional lattice. Therefore, when using the sieving model, we shall assume that

one run of the BKZ routine produces
(

4
3

)β
2 short lattice vectors, where β is the chosen

blocksize.

7.6 Probability background.

In this section, for completeness, we recall two important probability inequalities used
later in this part of the thesis.

125

Berry-Esseen inequality. The Berry-Esseen inequality shows how closely the distri-
bution of the sum of independent random variables can be approximated by a Gaussian
distribution.

Theorem 7.1. Let X1, . . . , Xn be independent random variables such that for all i ∈
{1, . . . , n} E{Xi} = 0, E{X2

i } = σ2
i > 0, and E{|Xi|3} = ρi <∞. Denote the normalized

sum
n∑
i=1

Xi√
n∑
i=1

σ2
i

as Sn. Also denote by Fn the cumulative distribution function of Sn, and by Φ the cu-
mulative distribution function of the standard normal distribution. Then, there exists a
constant C0 such that

sup
x∈R
|Fn(x)− Φ(x)| 6 C0

n∑
i=1

ρi(n∑
i=1

σ2
i

)3/2
.

We use the Berry-Esseen inequality in order to estimate how closely the distribution
that we obtain after the lattice reduction step of the dual attack can be approximated by
a discrete Gaussian distribution (see Lemma 8.1). The Berry-Esseen inequality requires a
finite third absolute moment of the random variables. In the proof of Lemma 8.1, we need
the expression of third absolute moment of a Gaussian distribution. It can be obtained
from the following lemma.

Lemma 7.4. Let σ > 0. Let X be a random variable of a Gaussian distribution with
mean 0 and standard deviation σ2. Then, E{|X|3} = 2

√
2
πσ

3.

Proof. Classically we have:

E{|X|3} = 2 · 1√
2πσ

∞∫
0

x3e−
x2

2σ2 dx = 2

√
2

π
σ3.

Hoeffding’s inequality. Hoeffding’s inequality gives an exponentially decreasing upper
bound on the probability that the sum of bounded independent random variables deviates
from its expectation by a certain amount.

Theorem 7.2. Let X1, . . . , XN be independent random variables such that ai 6 Xi 6 bi

for all i ∈ {1, . . . , N}. Denote the average 1
N

N∑
i=1

Xi as X̄. Then, for t > 0, we have

P{X̄ − E{X̄} > t} 6 exp

(
− 2N2t2

n∑
i=1

(bi − ai)2

)
, (7.12)

P{X̄ − E{X̄} 6 −t} 6 exp

(
− 2N2t2

n∑
i=1

(bi − ai)2

)
. (7.13)

In this paper, we use Hoeffding’s inequality to construct a distinguisher for the uniform
and the modular Gaussian distributions (see Section 8.1.2).

126

Chapter 8

Hybridizing the dual distinguishing
attack against LWE.

In this chapter, we revisit the distinguishing dual attack against LWE described in [CGGI20])
and generalize it by combining the dual approach with the search for a fraction of the secret
key. First, in Section 8.1, we recall the dual attack from [CGGI20], providing complete
proofs and introducing finer tools as a novel distinguisher for the uniform distribution and
the modular Gaussian. Then, in Section 8.2, we construct a more efficient hybrid attack
on top of the dual distinguishing attack from [CGGI20].

8.1 Dual distinguishing attack as described in [CGGI20]

Setting. Let s ∈ {0, 1}n be a secret vector and let α > 0 be a fixed constant. The
attack takes as input m samples (a1, b1), . . . , (am, bm) ∈ Tn+1×T which are either all from
LWEs,α distribution or all from U(Tn × T), and guesses the input distribution.

We can write input samples in a matrix form:

A := (a1, . . . ,am) ∈ Tn×m, b = (b1, . . . , bm)t ∈ Tm,

if input samples are from the LWEs,α distribution:

b = Ats + e mod 1.

Distinguisher reduction using a small trapdoor. In order to distinguish between
the two distributions, the attack searches for a short vector v = (v1, . . . , vm)t ∈ Zm such
that the linear combination of the left parts of the inputs samples defined by v, i.e.:

x :=

m∑
i=1

viai = Av mod 1

is also a short vector. If the input was from the LWE distribution, then the corresponding
linear combination of the right parts of the input samples is also small as a sum of two
relatively small numbers:

vtb = vt(Ats + e) = xts + vte mod 1. (8.1)

On the other hand, if the input is uniformly distributed, then independently of the
choice of the non-zero vector v, the product v · b mod 1 has uniform distribution on
(−1/2; 1/2). Recovering a suitable v thus turns the decisional-LWE problem into an easier
problem of distinguishing two distributions on T.

127

This remaining of section is organized in the following way. First, in Section 8.1.1 we
describe how such a suitable vector v can be discovered by lattice reduction and analyze the
distribution of vtb. Then, in Section 8.1.2, we estimate the complexity of distinguishing
two distributions on T that we obtain after this first part. Eventually, in Section 8.1.3 we
estimate the time complexity of the whole attack.

8.1.1 Trapdoor construction by lattice reduction

Finding a vector v such that both parts of the sum (8.1) are small when the input has
LWE distribution is equivalent to finding a short vector in the following (m+n)-dimensional
lattice:

L(A) =

{(
Av mod 1

v

)
∈ Rm+n

∣∣∣∣∣ ∀v ∈ Zm
}
.

The lattice L(A) can be generated by the columns of the following matrix:

B =

(
In A

0m×n Im

)
∈ R(m+n)×(m+n)

A short vector in L(A) can be found by applying a lattice reduction algorithm to the
basis B. Using Assumption 7.1, we expect that the lattice reduction process produces a
vector w = (x||v)t ∈ Zn+m with equidistributed coordinates. Our goal is to minimize
the product vtb = xts + vte. The vectors e and s come from different distributions and
have different expected norms. For the TFHE scheme, the variance of e is much smaller
than the variance of s. To take this imbalance into account, one introduces an additional
rescaling parameter q ∈ R>0. The first n rows of the matrix B are multiplied by q, the
last m rows are multiplied by q−n/m. Odiously, this transformation doesn’t change the
determinant of the matrix. A basis Bq of the transformed lattice is given by

Bq =

(
qIn qA

0m×n q−n/mIm

)
∈ R(m+n)×(m+n).

We apply a lattice reduction algorithm to Bq. Denote the first vector of the reduced
basis as wq. By taking last m coordinates of wq and multiplying them by qn/m we recover
the desired vector v. This technique can be thought as a continuous relaxation of the
modulus switching technique. That part of the attack is summarized in Algorithm 8.1.

Algorithm 8.1: Transform m LWE samples to one sample from modular Gaussian
distribution
input : A ∈ Tn×m, b ∈ Tm, S > 0, α > 0, δ ∈ (1; 1.1)
output: x ∈ T

1 computeV(A, S, α, δ):

2 q :=
(
S
α

) m
n+m

3 Bq :=

(
qIn qA

0m×n q−n/mIm

)
∈ R(m+n)×(m+n)

4 wq ← BKZδ(Bq)

5 v := qn/m · (wqn+1, . . . wqn+m)t

6 return (v)

7 LWEtoModGaussian(A, b, S, α, δ):
8 v← computeV(A, S, α, δ)
9 return vtb mod 1

128

The following lemma describes the distribution of the output of Algorithm 8.1 un-
der Assumption 7.1 that BKZ outputs vectors with balanced coordinates.

Lemma 8.1 (see [CGGI20, Section 7]). Let α > 0 and S ∈ (0; 1) be fixed constants,
n ∈ Z>0. Let s ∈ {0, 1}n be a binary vector such that all bits of s are sampled independently
from the Bernoulli distribution with parameter S2: for all i ∈ {1, . . . , n}: P{si = 1} = S2,
P{si = 0} = 1 − S2. Suppose that Assumption 7.1 holds and let δ > 0 be the quality of
the output of the BKZ algorithm. Then, given as input m =

√
n · ln(S/α)

ln(δ) −n samples from
the LWEs,α distribution, Algorithm 8.1 outputs a random variable x with distribution that
can be approximated by a Gaussian distribution with mean 0 and standard deviation σ

σ = α · exp
(

2
√
n ln(S/α) ln(δ)

)
.

Denote as Fx the cumulative distribution function of x and denote as Φσ the cumulative
distribution function of the Gaussian distribution with mean 0 and standard deviation σ.
Then, the distance between the two distributions can be bounded:

sup
t∈R
|Fx(t)− Φσ(t)| = O

(1√
S2(m+ n)

)
,

as n→∞.

Lemma 8.1 can be proved using the Berry-Esseen theorem. We give a proof in Ap-
pendix A.1 for completeness.

8.1.2 Exponential kernel distinguisher for the uniform and the modular
Gaussian distributions

We now describe a novel distinguisher for the uniform and the modular Gaussian dis-
tributions. Formally, we construct a procedure which takes as input N samples which are
all sampled independently from one of the two distributions and guesses this distribution.

The crux of our method relies on the use of an empirical estimator of the Levy transform
of the distributions, to essentially cancel the effect of the modulus 1 on the Gaussian.

Namely, from the N samples X1, . . . , XN , we construct the estimator Ȳ = 1
N ·

N∑
i=1

e2πiXi .

As N is growing to infinity, this estimator converges to the Levy transform at 0 of the
underlying distribution, that is to say:

— to 0 for the uniform distribution
— to e−2π2σ2 for the modular Gaussian.
Hence, in order to distinguish the distribution used to draw the samples, we now only

need to determine whether the empirical estimator Ȳ is closer to 0 or to e−2π2σ2 .

Remark 1. The optimal value for the corresponding threshold can be obtained as a log-
likelihood estimator. However, this optimization is not giving a close formula. It appears
that the gains obtained from a numerical optimization of this value are negligible compared
to taking the natural threshold of 1

2 · e
−2π2σ2 .

Lemma 8.2. Let σ > 0 be a fixed constant. Assume that Algorithm 8.2 is given as input
N points that are sampled independently from the uniform distribution U or from the
modular Gaussian distribution Gσ. Then, Algorithm 8.2 guesses the distribution of the
input points correctly with probability at least

pσ = 1− exp
(
− e−4π2σ2

8
·N
)
. (8.2)

The time complexity of the algorithm is polynomial in the size of the input.

129

Algorithm 8.2: Distinguish U and Gσ

input : X1, . . . , XN ∈
(
− 1

2 ; 1
2

)
, σ > 0, sampled independently from U or Gσ

output: A guess: G if the samples are drawn under Gσ or U otherwise

1 DistinguishGU(X1, . . . , XN , σ):

2 Ȳ = 1
N ·

N∑
i=1

exp(2πiXi)

3 if (Ȳ 6 1
2 · e

−2π2σ2
) then

4 return U
5 else
6 return G

Proof. For all i ∈ {1, . . . , N}, denote e2πiXi as Yi. As Xi ∈
(
− 1

2 ,
1
2

)
, <(Yi) ∈ (−1; 1].

First, we compute the expectation of Ȳ = 1
N ·

N∑
i=1

Yi in the two possible cases where

Xis are sampled from the uniform distribution, and where Xis are sampled from the
modular Gaussian with standard deviation σ. Note that, in both cases, as Xis are sampled
independently and identically from the same distribution, E{Ȳ } = EYi.

In case of the uniform distribution, the expectation of the real part of Ȳ is equal to
zero, because the function <(e2πix) is symmetric around the origin:

EU{<(Ȳ)} =

1/2∫
−1/2

e2πixdx = 0. (8.3)

Now in case of the modular Gaussian distribution, we exploit the 1-periodicity of t 7→
e2iπt to cancel out the modulus 1:

EG{Ȳ } =

+1/2∫
−1/2

e2πix
∑
k∈Z

1√
2πσ

· e−
(x+k)2

2σ2 dx (8.4)

=
∑
k∈Z

+1/2∫
−1/2

e2πix 1√
2πσ

· e−
(x+k)2

2σ2 dx (8.5)

=

+∞∫
−∞

e2πix · 1√
2πσ

· e−
x2

2σ2 dx (8.6)

= e−2π2σ2 · 1√
2πσ

+∞∫
−∞

e−
(x−2iπσ)2

2σ2 dx = e−2π2σ2
, (8.7)

the sum-integral exchange being justified by uniform convergence of the sum.
Now, using the expectations of Ȳ and the Hoeffding’s inequality, we can estimate the

probability of getting a correct guess.
First, consider the probability wrongly guessing when the distribution of the input is

uniform. By Line 3 of Algorithm 8.2, it is given by:

P{G|U} = PU{Ȳ >
1

2
· e2π2σ2}.

130

Since Yis are bounded, i.e., for all i ∈ {1, . . . , N}, Yi ∈ (−1; 1], we can use Hoeffding’s
inequality (see Theorem 7.2) to bound the probability P{G|U}:

P{G|U} 6 exp
(
− e−4π2σ2

8
·N
)
. (8.8)

Similarly, we get the same bound on the probability of the wrong guess when the distribu-
tion of the input is the modular Gaussian:
P{U |G} 6 exp

(
− e−4π2σ2

8 ·N
)
. Together with (8.8), we get the bound on the probability

of the successful guess, given by (8.2).
Since Algorithm 8.2 consists of computing the average of the input sample and per-

forming one comparison, it is polynomial in the size of the input.

Lemma 8.2 implies that in order to distinguish the uniform distribution and the mod-
ular Gaussian distribution with the parameter σ with a non-negligible probability, we need
to take a sample of size N = O(e4π2σ2

).

Remark 2. The original dual attack, proposed in [CGGI20], does not specify, which
algorithm is used for distinguishing the uniform and the modular Gaussian distributions.
Instead, to estimate the size of the sample, needed to distinguish the distributions, they
estimate the statistical distance ε between the distributions U and Gσ (see Lemma 7.2
for an estimate for ε) and use O(1/ε2) as an estimate for the required size of the sample
(see [CGGI20, Section 7, Equation(3),(6)]). Such an estimate is however asymptotic and
does not allow a practical instantiation in the security analysis.

It turns out that the exponential kernel distinguisher, described in Algorithm 8.2,
(ignoring some constant factors), has the same complexity as the statistical distance es-
timate from [CGGI20] suggests, while enjoying a sufficiently precise analysis to provide
non-asymptotic parameters estimation.

8.1.3 Complexity of the dual attack from TFHE article

The distinguishing attack is summarized in Algorithm 8.3. It takes as input m × N
samples from an unknown distribution, then transforms them into N samples which have
the uniform distribution if the input of the attack was uniform and the modular Gaussian
distribution if the input was from the LWE distribution. Then, the attack guesses the
distribution of N samples using Algorithm 8.2 and outputs the corresponding answer.

Algorithm 8.3: Dual distinguishing attack (adapted from [CGGI20, Section 7])
input : {(Ai,bi)}Ni=1, where ∀i Ai ∈ Tn×m, bi ∈ Tm, α > 0, S > 0, δ ∈ (1; 1.1)
output: guess for the distribution of the input: Uniform or LWE distribution

1 DistinguishingAttack({Ai,bi}Ni=0, α, S, δ):
2 X := ∅
3 σ := α · exp

(
2
√
n ln(S/α) ln(δ)

)
4 for i ∈ {1, . . . , N} do
5 x← LWEtoModGaussian(Ai,bi, S, α, δ)
6 X ← X ∪ x
7 if (DistinguishGU(X,σ) = G) then
8 return LWE distribution
9 else

10 return Uniform

131

The following theorem states that the cost of the distinguishing attack can be estimated
by solving a minimization problem. It revisits the estimate given in [CGGI20, Section 7].

Theorem 8.1. Let α > 0 and S ∈ (0; 1) be some fixed constants, n ∈ Z>0. Let s ∈ {0, 1}n
be a binary vector such that all bits of s are sampled independently from a Bernoulli
distribution with parameter S2. Suppose that Assumption 7.1 holds. Then, the time
complexity of solving Decision-LWEs,α with probability of success p by the distinguishing
attack described in Algorithm 8.3 is

TTFHEattack = min
δ

(
N(σ, p) · T (BKZδ)

)
, (8.9)

where σ = α · exp
(
2
√
n ln(S/α) ln(δ)

)
, N(σ, p) = 8 ln(1

1−p) · e4π2σ2
.

Proof. The cost of the attack is the cost of the lattice reduction multiplied by the number
of samples N needed to distinguish the uniform distribution and the modular Gaussian
distribution with the parameter σ:

T = N · T (BKZδ). (8.10)

By Lemma 8.2, Algorithm 8.2, given as an input a sample of size N , guesses its distribution
correctly with the probability at least 1− exp

(
−N · e−4π2σ2

8

)
. Thus, in order to achieve

the probability p, we need to produce a sample of size N(σ, p) = 8 ln(1
1−p) · e4π2σ2

.
The parameter σ of the discrete Gaussian distribution as a function of δ can be esti-

mated using Lemma 8.1. Then, the time complexity can be obtained by optimizing the
expression, given by (8.10), as a function of δ.

8.2 Hybrid key recovery attack

In this section, we show how the dual distinguishing attack recalled in Chapter 8 can be
hybridized with exhaustive search on a fraction of the secret vector to obtain a continuum
of more efficient key recovery attacks on the underlying LWE problem. Let s ∈ {0, 1}n be
a secret vector and let α > 0 be a fixed constant. Our attack takes as input samples from
the LWE distribution of form

(A,b = Ats + e mod 1) ∈ (Tn×m,Tm), (8.11)

where e ∈ Rm has centered Gaussian distribution with standard deviation α. The attack
divides the secret vector into two fractions:

s = (s1||s2)t, s1 ∈ {0, 1}n1 , s2 ∈ {0, 1}n2 , n = n1 + n2.

The matrix A is also fractionned into two parts corresponding to the separation of the
secret s:

A =

a1,1 . . . a1,m
...

...
an1,1 . . . an1,m

an1+1,1 . . . an1+1,m
... . . .

...
an,1 . . . an,m

=

(
A1

A2

)
(8.12)

Then, (8.11) can be rewritten as

At
1s1 + At

2s2 + e = b mod 1.

132

By applying lattice reduction to matrix A1 as described in Algorithm 8.1, we recover a
vector v such that vt(At

1s1+e) is small and it allows us to transformsm input LWE samples
(A,b) ∈ (Tn×m,Tm) into one new LWE sample (â, b̂) ∈ (Tn2 ,T) of smaller dimension and
bigger noise:

vtAt
2︸ ︷︷ ︸

a

s2 + vt(At
1s1 + e)︸ ︷︷ ︸
ê

= vtb︸︷︷︸
b̂

mod 1. (8.13)

The resulting LWE sample in smaller dimension can be used to find s2. Let x ∈ {0, 1}n2
be a guess for s2. If the guess is correct, then the difference

b̂− âtx = b̂− âts2 = (ê mod 1) ∼ Gσ (8.14)

is small.
If the guess is not correct and x 6= s2, then there exist some y 6= 0 such that x = s2−y.

Then, we rewrite b̂− âtx in the following way:

b̂− âtx = (̂b− âts2) + âty = âty + ê.

We can consider (â, âty + ê) as a sample from the LWE distribution that corresponds to
the secret y. Therefore, we may assume that if x 6= s2, the distribution of b̂− âtx mod 1
is close to uniform, unless the decision-LWE is easy to solve.

In order to recover s2, the attack generates many LWE samples with reduced dimension.
Denote by R the number of generated samples and put them into matrix form as (Â, b̂) ∈
Tn2×R × TR. There are 2n2 possible candidates for s2. For each candidate x ∈ {0, 1}n2 ,
the attack computes an R-dimensional vector ex = b − Ats. The complexity of this
computation for all the candidates is essentially the complexity of multiplying the matrices
Â and S2, where S2 is a matrix whose columns are all binary vectors of dimension n2.
Naively, the matrix multiplication requires O(n·2n2 ·R) operations. However, by exploiting
the recursive structure of S2, it can be done in time O(R · 2n2).

Then, for each candidate x for s2 the attack checks whether the corresponding vector ex
is uniform or concentrated around zero distribution. The attack returns the only candidate
x whose corresponding vector ex has concentrated around zero distribution.

The rest of this chapter is organized as follows. First, we describe the auxiliary algo-
rithm for multiplying a matrix by the matrix of all binary vectors that let us speed up the
search for the second fraction of the secret key. Then, we evaluate the complexity of our
attack.

8.2.1 Algorithm for computing the product of a matrix with the matrix
of all binary vectors

For any d ∈ Z>0, define the function bind : Z ∩ [0; 2d] → {0, 1}d that maps any
positive integer k 6 2d to bind(k) the d-dimensional binary vector obtained from the
binary representation of k.

For any positive integer d, denote by S(d) the matrix of all binary vectors of dimension
d, in lexicographic order. Thus, the i-th column of S(d) is equal to bind(i). These matrices
can be constructed recursively. For d = 1 it is given by S(1) =

(
0 1

)
, and for any d > 1

the matrix S(d) can be constructed by concatenating two copies of the matrix S(d−1) and
adding a row which consists of 2d−1 zeros followed by 2d−1 ones as the first row to the
resulting matrix:

S(d) =

(
0 . . . 0 1 . . . 1
S(d−1) S(d−1)

)
. (8.15)

Let a = (a1, . . . , ad)
t be a d-dimensional vector. Our goal is to compute the scalar

products of a with every column of S(d). We can do it by using the recursive structure

133

of S(d). Assume that we know the desired scalar products for a(d−1) = (a2, . . . , ad)
t and

S(d−1) Then, using (8.15), we get

atS(d) =
(
a1 at(d−1)

)
·
(

0 . . . 0 1 . . . 1
S(d−1) S(d−1)

)
=

(
at(d−1)S(d−1)(

a1 . . . a1

)t
+ at(d−1)S(d−1)

)
, (8.16)

that is, the resulting vector is the sum of the vector at(d−1)S(d−1) concatenated with itself
with the vector whose first 2d−1 coordinates are zeros and the last 2d−1 coordinates are all
equal to a1. The approach is summarized in Algorithm 8.4.

Algorithm 8.4: Compute a scalar product of a vector with all binary vectors
input : a = (a1, . . . , ad)

t

output: atS(d), where S(d) ∈ {0, 1}2
d×d is the matrix whose columns are all binary

vectors of dimension d written in the lexicographical order
1 computeScalarProductWithBinaryVectors(a):
2 x← (0, ad)

t

3 for i ∈ {d− 1, . . . , 1} do
4 y← x

5 for j ∈ {1, . . . , 2d−i} do
6 yj ← yj + ai
7 x′ ← x ∪ y
8 x← x′

9 return x

Lemma 8.3. Let d be a positive integer number. Algorithm 8.4, given as input a d-
dimensional vector a, outputs the vector x of dimension 2d such that for all i ∈ {1, . . . , 2d}
xi = atbind(i). The time complexity of the algorithm is O(2d).

Proof. The correctness of the algorithm follows from the recursive structure of the matrix
S(d) (see (8.15) and (8.16)). The algorithm performs only additions of some coordinates of
the vector a. At the i-th iteration of the cycle (3-8) the algorithm performs 2d−i additions.
Number of iterations is (d− 1). The overall number of additions is 2 + 22 + · · ·+ 2d−1 =
2d − 2.

Corollary 8.1. Let A be a matrix with R rows and d columns. The product of A and
S(d) can be computed in time O(R · 2d).

Proof. In order to compute A ·S(d) we need to compute the product of each of the R rows
of A with Sd. By Lemma 8.3 it can be done in time O(2d). Then the overall complexity
of multiplying the matrices is O(R · 2d).

8.2.2 Complexity of the attack

The pseudo-code corresponding to the full attack is given in Algorithm 8.5.

Theorem 8.2. Let α > 0, p ∈ (0; 1), S ∈ (0; 1), and n ∈ Z>0 be fixed constants. Let
s ∈ {0, 1}n and σ > 0. Suppose that Assumption 7.1 holds. Then, the time complexity of
solving the Search-LWEs,α problem with probability of success p by the attack described
in Algorithm 8.5 is

Tattack = min
δ,n2

((
2n2 + T (BKZδ)

)
·R(n2, σ, p)

)
, (8.17)

where R(n2, σ, p) = 8 · e4π2σ2
(n2 ln(2)− ln(ln(1/p))).

134

Algorithm 8.5: Hybrid key recovery attack
input : {(Ai,bi)}Ri=1, where ∀i Ai ∈ Tn×m, bi ∈ Tm, α > 0, S > 0, δ > 1,

n1 ∈ {2, . . . , n− 1}
output: s2 ∈ {0, 1}n−n1

1 recoverS({(Ai,bi)}Ri=1,α, S, δ, n1):
2 n2 ← (n− n1)

3 σ ← α · exp
(
2
√
n1 ln(S/α) ln(δ)

)
4 Â← ∅ , b̂← ∅

/* lattice reduction part */

5 for i ∈ {1, . . . , R} do
6 A← Ai, b← bi
7 (A1,A2)← splitMatrix(A, n1) . see (8.12)
8 v← computeV(A1, S, α, δ) . Algorithm 8.1
9 Â← Â ∪ {A2v}, b̂← b̂ ∪ {vtb}

/* search for s2 */

10 S(n2) ← matrix of all binary vectors of dimension n2 in lexicographical order
11 B̂← (b̂, . . . , b̂) ∈ TR×2n2

12 Ê← B̂− ÂtS(n2) mod 1 . see Corollary 8.1 and Algorithm 8.4
13 for i ∈ {1, . . . , 2n2} do
14 ê← Ê[i]

/* guess the distribution of e (see Algorithm 8.2) */

15 if (distinguishGU(ê, σ) = G) then
16 return S(n2)[i]

Proof. The attack can be divided in two steps: the lattice reduction step and the exhaustive
search for the second fraction of the secret key. The first step of the attack takes R ×m
LWEs,α samples and transforms them into R LWEs2,σ samples such that s2 is the second
fraction of the secret key s and the noise parameter σ is bigger than the noise parameter α
of the input. It takes time R ·T (BKZδ). Denote the matrix form of obtained LWE samples
as (Â, b̂) ∈ (Tn2×R,TR).

At the search step, the goal is to recover s2 using the obtained LWE samples. For each
of the candidates for s2 the attack computes the error vector that corresponds to R LWE
samples obtained at the previous step. It is equivalent to computing the following matrix
expression:

Ê = B̂− ÂtS(n2) mod 1,

where S(n2) is the matrix composed of all binary vectors of length n2 written in lexico-
graphic order and B̂ ∈ TR×2n2 is the matrix formed of 2n2 repetition of the vector b̂. The
complexity of computing that expression is dominated by the complexity of computing the
product of Ât ∈ TR×n2 and S(n2). By Corollary 8.1, it can be computed in O(R · 2n2)
operations. Once the attack obtain an error vector for each of the candidates, it guesses
the distribution of each error vector using Algorithm 8.2 and returns the candidate whose
error vector has concentrated around zero modular Gaussian distribution.

The time complexity of the attack is the sum of the complexities of the two steps:

Tattack = R ·
(
2n2 + T (BKZδ)

)
. (8.18)

Now the goal is to evaluate the number of samples R needed to recover s2 with proba-
bility p. By Lemma 8.2, using Algorithm 8.2, we can guess correctly the distribution of a
sample of size R with probability at least pσ = 1− exp

(
− e−4π2σ2

8 ·R
)
. In order to recover

135

s2, we need successfully guess the distribution for each of 2n2 candidates. Assume that
the distributions, produced by the candidates are independent. Then, the probability to
correctly recover s2 is at least p2n2

σ . Thus, to recover s2 we need to choose the size of the
sample R that satisfies:

p2n2

σ =

(
1− exp

(
− e−4π2σ2

8
·R
))2n2

> p. (8.19)

Let R be given by the following expression:

R = 8 · e4π2σ2
(n2 ln(2)− ln(ln(1/p))). (8.20)

Combining (8.19) and (8.20), we obtain:

p2n2

σ =
(

1− ln(1/p)

2n2

)2n2

. (8.21)

Then, when n2 → ∞, p2n2

σ → p. Thus, the sample size R, given by (8.20) is sufficient to
recover s2 with the probability p.

By combining (8.18) and (8.20) we obtain the time complexity of the attack.

8.2.3 Using sieving in the hybrid attack

Assume that the BKZ algorithm uses the sieving algorithm (see for instance [BDGL16])
as an SVP oracle. At its penultimate step, the sieving algorithm produces many short
vectors, so that by storing this pool of vectors, we may suppose that BKZ produces many
short vectors in one run. Thus, if we need N short lattice vectors, we need to run the
lattice reduction only

⌈
N
m

⌉
times, where m is the number of short vectors, returned by the

lattice reduction
In the following corollary from Theorem 8.2, we use this property of the sieving algo-

rithm to revisit the time complexity of our attack under the sieving BKZ cost model.

Corollary 8.2. Let α, p, n, σ and s ∈ {0; 1}n be as in Theorem 8.2. Assume that the lattice
reduction algorithm, used by Algorithm 8.3, uses the sieving algorithm from [BDGL16] as
an oracle for solving SVP. Suppose that Assumption 7.1 holds. Then, the time complexity
of solving the Search-LWEs,α problem with probability of success p by the attack described
in Algorithm 8.5 is

Tattack = min
δ,n2

(
2n2 ·R(n1, σ, p) + T (BKZδ)

)
·
⌈R(n2, σ, p)

(4/3)β/2

⌉)
, (8.22)

where β is the smallest blocksize such that the lattice reduction with the blocksize β
achieves the Hermite factor δ; R(n2, σ, p) is as defined in Theorem 8.2.

Proof. By Theorem 8.2, the time complexity of Algorithm 8.5 can be seen as the sum of
complexities of the two parts of the algorithm. The first part is producing R short lattice
vectors and the second part is evaluating R scalar products for each of 2n2 candidates for
the secret key. As in the sieving model one run of the lattice reduction produces (4/3)β/2

short vectors, the first part of Algorithm 8.5 attack takes time T (BKZδ)
)
·
⌈
R(n2,σ,p)

(4/3)β/2

⌉
,

which implies that the complexity of Algorithm 8.5 in the sieving BKZ cost model is given
by (8.22).

Remark on using the sieving model with the attack from Section 8.1. As
the dual attack from [CGGI20] consists in running the BKZ algorithm many times, it can

136

also benefit from using all the vectors, produced by the sieving subroutine. Then, the
complexity of the dual attack from [CGGI20] in the sieving model is essentially divided
by the number of vectors, produced by the sieving subroutine. See Corollary 8.3 for the
complexity of the dual attack under the sieving BKZ cost model.

Corollary 8.3. Let α, S and s ∈ {0, 1} be as in Theorem 8.1. Suppose that Assump-
tion 7.1 holds. Assume that the lattice reduction algorithm, used by Algorithm 8.3, uses
the sieving algorithm from [BDGL16] as an oracle for solving SVP. Then, the time complex-
ity of solving Decision-LWEs,α with probability of success p by the distinguishing attack
described in Algorithm 8.3 is given by

TTFHEattack = min
δ

(⌈ N(σ, p)

(4/3)β/2

⌉
· T (BKZδ)

)
, (8.23)

where β is the smallest blocksize such that the lattice reduction with the blocksize β
achieves the Hermite factor δ; σ and N(σ, p) are as defined in Theorem 8.1.

137

Chapter 9

Bit-security estimation and
experimental verification

We implement a Python script that, given parameters of an LWE problem and a BKZ
cost model as an input, finds optimal parameters for the dual attack and for our attack
(see Chapter 8). Using this script, we evaluate the computational cost of the dual attack
and our attacks for a wide range of LWE parameters and in particular for the parameters
used in the TFHE scheme. In this chapter, we report the results of our numerical estimation
and show that the security level of the TFHE scheme should be updated with regard to
the hybrid attack. We support our argument by an implementation working on a small
example.

9.1 Bit-security of LWE parameters

We numerically estimate the cost of solving LWE problem by the dual attack and
by our attack for all pairs of parameters (n, α) from the following set: (n,− log(α)) ∈
{100, 125, . . . , 1050}×{5, 6.25, . . . , 38.5}. In all cases, we take S2 = 1/2, which corresponds
to choosing the secret key uniformly at random from {0, 1}n as done in the TFHE scheme.
For each attack, we consider three BKZ cost models. For each case, we create a heatmap
representing the cost of the attack as a function of parameters n and α. The results
obtained using the sieving BKZ cost model are presented in Figure 9.1. The left heatmap
in Figure 9.1 represents the logarithm of the time complexity of the dual attack, the right
heatmap represents the logarithm of the time complexity of our attack. Figure 9.1 shows
that for the same sets of parameters the cost of our attack is always less then or equal to
the cost of the dual distinguishing attack and that the difference between the costs of the
attacks grows with the hardness of the problem. We obtain similar pictures for the two
other considered models. For completeness, we present the heatmaps for the other models
in Appendix A.2.

9.2 Application to the TFHE scheme

The TFHE scheme uses two sets of parameters: for the switching key and for the
bootstrapping key. The security of the scheme is, in fact, defined by the security of the
switching key, which is the weaker link.

In [CGGI20], the authors of the TFHE scheme describe two sets of parameters for each
of the keys. The first set of the parameters is given by [CGGI20, Table 3] and coincides
with the parameters given in the previous papers on TFHE [CGGI16, CGGI17]. The bit-
security for the parameters from [CGGI20, Table 3] is estimated according to the dual

138

200 400 600 800 1000
n

5

10

15

20

25

30

35

40
lo

g(
1/

)

60
90

120

160

200 300500

log(TD)

0

250

500

750

1000

1250

1500

(a) dual attack

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60

90

120

160

200
300

500

log(TK)

0

250

500

750

1000

1250

1500

(b) our attack

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

10 20
40

80

log(TD) log(TK)

0

100

200

300

400

500

(c) difference

Figure 9.1 – Comparison of the costs of the attacks under the enumeration BKZ cost
model. Here, n and α denote the dimension and the standard deviation of the noise
of LWE samples, TD denotes the time complexity of the dual distinguishing attack, TK
denotes the time complexity of our key recovery attack.

attack, described in Chapter 8.
Another set of the parameters is introduced by [CGGI20, Remark 9] and specified

in [CGGI20, Table 4]. The security of the updated parameters is evaluated according to
the LWE estimator from [ACD+18].

Also, very recently, new parameters for the public implementation of the TFHE scheme
were introduced (see Table 7.3).

For completeness, we re-evaluate the security of all the three sets of the parameters
under the dual attack as it is described in Chapter 8 and under our hybrid attack. In Ta-
ble 9.1, we we present the results of our estimates for the old parameters (given by [CGGI20,
Table 3]), in Table 9.2, we present the bit-security of the new parameters from [CGGI20,
Table 4], and, in Table 9.3, we present the bit-security of the parameters of the public
implementation that appeared at 21/02/2020.

In all cases, the cost of our attack is lower than the cost of the dual attack. In addition,
the lattice reduction part is always easier for our attack than for the dual attack, because
the required quality parameter of lattice reduction δ is always bigger for our attack than
for the dual attack. However, the difference of the costs depends on the choice of the
model: it is bigger for models that predict higher complexity of BKZ. For example, for the
old switching key parameters, the difference under the sieving model is 8 bits while under
enumeration model it is 58 bits.

In Figure 9.2 we present an estimation of the bit-security of the revisited LWE pa-

139

Table 9.1 – Security of the parameters of the TFHE scheme from [CGGI20, Table 3]. λ
denotes security in bits, δ and n1 are the optimal parameters for the attacks. “-” means
that the distinguishing attack doesn’t have the parameter n1.

BKZ model switching key
n = 500, α = 2.43 · 10−5

bootstrapping key
n = 1024, α = 3.73 · 10−9

delta-squared
attack λ δ n1

dual 169 1.0052 -
new attack 119 1.0059 406

attack λ δ n1

dual 204 1.0046 -
new attack 160 1.0051 889

sieving
dual 102 1.0054 -

new attack 94 1.0058 455
dual 117 1.0048 -

new attack 112 1.005 972

enumeration
dual 195 1.0052 -

new attack 137 1.0062 388
dual 230 1.0046 -

new attack 180 1.0052 868

Table 9.2 – Security of the parameters of the TFHE scheme from [CGGI20, Table 4]. λ
denotes security in bits, δ and n1 are the optimal parameters for the attacks. “-” means
that the distinguishing attack doesn’t have the parameter n1.

BKZ model switching key
n = 612, α = 2−15

bootstrapping key
n = 1024, α = 2−26

delta-squared
attack λ δ n1

dual 256 1.0043 -
new attack 169 1.0051 474

attack λ δ n1

dual 237 1.0043 -
new attack 179 1.0049 871

sieving
dual 127 1.0045 -

new attack 118 1.0048 559
dual 126 1.0045 -

new attack 120 1.0047 970

enumeration
dual 279 1.0043 -

new attack 185 1.0053 457
dual 261 1.0043 -

new attack 179 1.0049 871

Table 9.3 – Security of the parameters of the TFHE scheme: recent update of implementa-
tion’s parameters [G+16]. λ denotes security in bits, δ and n1 are the optimal parameters
for the attacks. “-” means that the distinguishing attack doesn’t have the parameter n1.

BKZ model switching key
n = 630, α = 2−15

bootstrapping key
n = 1024, α = 2−25

delta-squared
attack λ δ n1

dual 270 1.0042 -
new attack 176 1.005 485

attack λ δ n1

dual 256 1.0042 -
new attack 190 1.0048 862

sieving
dual 131 1.0044 -

new attack 121 1.0047 576
dual 131 1.0044 -

new attack 125 1.0046 967

enumeration
dual 292 1.0042 -

new attack 192 1.0052 469
dual 280 1.0041 -

new attack 209 1.0049 842

rameters according to the combination of our attack and the collision attack, with time
complexity 2n/2. Thus, Figure 9.2 represents the function min(TourAttack(n, α), 2n/2), where
TourAttack(n, α) is the cost of our attack for parameters n and α. Figure 9.2 is obtained
under the enumeration BKZ cost model. See Appendix A.2 for other models.

140

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60
95 118

150

200
300 450 100

200

300

400

500

Figure 9.2 – Bit-security as a function of the LWE parameters n and α assuming the
sieving BKZ cost model. Here, n denotes the dimension, α denotes the standard de-
viation of the noise. The picture represents the security level λ of LWE samples,
λ = log(min(TourAttack(n, α), 2n/2)). The numbered lines on the picture represent secu-
rity levels. The star symbol denotes the key switching parameters from the implemen-
tation of the TFHE scheme, the diamond symbol denotes the key switching parameters
recommended in [CGGI20, Table 4].

9.3 Comparison with primal uSVP attack

The security of the recent parameters from TFHE’s implementation is evaluated using
the LWE estimator from [APS15, ACD+18]. As the results of this estimation suggest,
under the sieving BKZ cost model, the best attack against the current parameters of the
TFHE scheme among the attacks presented in the LWE estimator is the primal uSVP
attack [BG14] (see also [APS15, Section 6.3] for the description of the attack). Therefore,
it is interesting to compare our hybrid dual attack with the primal uSVP attack on a wider
range of parameters.

In order to compare our attack with the primal uSVP attack, we estimate the time
complexity of both attacks for each pair of the parameters (n, α) from the following set:
(n,− log(α)) ∈ {200, 250, . . . , 1450} × {10, 12, . . . , 48}. We evaluate the cost of the primal
uSVP attack using the LWE estimator [APS15, ACD+18]. For this comparison, we consider
two BKZ cost models: sieving and enumeration. The results of our estimation are presented
in Figures 9.3 and 9.4.

Figures 9.3 and 9.4 show that under both BKZ cost models, it is not so that one
attack is better than another for all the sets of the parameters. Under both BKZ cost
models, the primal uSVP attack outperforms the hybrid dual attack when dimension is
high (i.e., n > 800) and the noise parameter is small (i.e., α < 2−35). For the rest of the
parameters that we consider, the hybrid dual attack outperforms the primal uSVP attack.
The difference in the cost of the attacks depends on the chosen BKZ cost model; for the
enumeration BKZ cost model the difference between attacks in more significant than for
the sieving model.

141

200 400 600 800 1000 1200 1400
n

10

15

20

25

30

35

40

45

50

lo
g(

1/
)

60

100
200

300

400
600

log(TP), enumeration model

200

400

600

800

1000

1200

(a) primal uSVP attack

200 400 600 800 1000 1200 1400
n

10

15

20

25

30

35

40

45

50

lo
g(

1/
)

60

80

10
0

150

200

300
400

500

log(THD), enumeration model

100

200

300

400

500

600

700

(b) our attack

200 400 600 800 1000 1200 1400
n

10

15

20

25

30

35

40

45

50

lo
g(

1/
)

-60-50-40-30-20-10

0

0

10

20
50

110
200

300

P HD

0

100

200

300

400

500

(c) difference

Figure 9.3 – Comparison of the costs of the hybrid dual attack and primal uSVP attack
from [BG14] under the enumeration BKZ cost model. Here, n and α denote the dimension
and the standard deviation of the noise of LWE samples, TP denotes the time complexity
of the primal uSVP attack, THD denotes the time complexity of our hybrid dual attack,
λP − λHD := log(TP)− log(THD).

9.4 Experimental verification

In order to verify the correctness of our attack, we have implemented it on small
examples. Our implementation recovers 5 bits of a secret key for LWE problems with the
following two sets of parameters: (n, α) = (30, 2−8) and (n, α) = (50, 2−8).

For implementation purposes, we rescaled all the elements defined over torus T to
integers modulo 232. For both examples, we use BKZ with blocksize 20, which yields the
quality of the lattice reduction around δ . 1.013. We computed the values of parameters
of the attack required to guess correctly 5 bits of the key with probability 0.99 assuming
that quality of the output of BKZ. The required parameters for both experiments are
summarized in Table 9.4.

The first experiment was repeated 20 times, the second – 10 times. For both experi-
ments, the last five bits of the key were successfully recovered at all attempts.

The correctness of both attacks rely on assumptions made in Lemma 8.1 for approx-
imating the distribution of vt(Ats + e) mod 1 by modular Gaussian distribution Gσ. In
order to verify these assumptions, while running both experiments we have collected sam-
ples to check the distribution: each time when the attack found correctly the last bits of
the secret key s2, we collected the corresponding ẽ = b̃− ãts2 = vt(Ats1 +e). For the first
experiment, the size of the collected sample is 20× R1 = 640, for the second experiment,

142

200 400 600 800 1000 1200 1400
n

10

15

20

25

30

35

40

45

50
lo

g(
1/

)

65

80

100

130

180
250

300

log(TP), sieving model

50

100

150

200

250

300

350

400

(a) primal uSVP attack

200 400 600 800 1000 1200 1400
n

10

15

20

25

30

35

40

45

50

lo
g(

1/
) 40 60

80

100

150

200
250

300

log(THD), sieving model

50

100

150

200

250

300

350

(b) our attack

200 400 600 800 1000 1200 1400
n

10

15

20

25

30

35

40

45

50

lo
g(

1/
)

-25-20
-1

0

0

11 15 20

P HD

20

10

0

10

20

(c) difference

Figure 9.4 – Comparison of the costs of the hybrid dual attack and primal uSVP attack
from [BG14] under the sieving BKZ cost model. Here, n and α denote the dimension
and the standard deviation of the noise of LWE samples, TP denotes the time complexity
of the primal uSVP attack, THD denotes the time complexity of our hybrid dual attack,
λP − λHD := log(TP)− log(THD).

(n,− log(α)) m σ R

(30,8) 76 0.0521 32

(50,8) 90 0.126 74

Table 9.4 – Parameters required for guessing 5 bits of the key with δ = 1.013. m is the
number of samples needed for one lattice reduction (A.4), σ is the parameter of modular
Gaussian distribution Gσ (Lemma 8.1), R is the number of samples needed to distinguish
distributions Gσ and U (8.20).

it is 10×R2 = 740. The collected data is presented in Figure 9.5.
In Table 9.5, we compare theoretical predictions and estimations obtained from the

experiments for the parameters of modular Gaussian distribution Gσ. Experimental esti-
mations of mean and variance in both cases match closely theoretical predictions.

143

0.4 0.2 0.0 0.2 0.4
x

0

2

4

6

8

n = 30, = 0.0521
g

(a)

0.4 0.2 0.0 0.2 0.4
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

n = 50, = 0.126
g

(b)

Figure 9.5 – Distribution of ẽ = vt(Ats1 + e) mod 1.
Figure 3a represents data from the experiment with parameters (n, α) = (30, 2−8), figure 3b – from
the experiment with parameters (n, α) = (50, 2−8). Blue histograms denote observed data, orange
lines – theoretical predictions of the distribution.

Table 9.5 – Estimated mean and variance. σ is the parameter of the modular Gaussian
distribution Gσ, Var(Gσ) is variance of G

(n, α) sample size σ Var(Gσ) estimated variance average of sample

(30, 2−8) 640 0.0521 0.002714 0.002619 -0.00207

(50, 2−8) 740 0.126 0.1587 0.14515 0.0064

144

Conclusion

Cylindrical sieving

In the first part of the thesis, we introduced a new family of heuristic sieving algorithms,
called cylindrical sieving, and showed that in some situations cylindrical sieving can be
more efficient than the spherical sieving algorithms, namely, for solving SVP for lattices
with a small prime volume and for solving the Closest Vector Problem with Preprocessing.

We should remark that the cylindrical sieving algorithm for solving CVPP can be used
in the batch mode. That is, after the preprocessing stage, instead of reducing one target
vector with the lists of lattice vectors prepared during the preprocessing, we can reduce
many targets in the same time. Thus, we will iteratively obtain new targets lying in smaller
and smaller hypercylinders. This approach allows to solve 2n/2 CVP instances in Õ(2n/2)
time and space.

Concerning solving SVP in the general case with cylindrical sieving, the natural ques-
tion to ask is whether it is possible to get a faster algorithm by using the nearest-neighbour
search techniques for the spherical sieving part (i.e., sieving performed inside one chunk
of the hypercylinder). Unfortunately, the answer is negative. Assume that we have N
vectors on a sphere and an oracle that can find two “close” vectors among them in time
less than

√
N (which is true for the NNS technique used in [BDGL16]). If we optimize the

complexity of the cylindrical sieving with such oracle used for the spherical sieving part,
we get that the optimal growth factor γ tends to one, which means that the cylindrical
sieving degenerates into a fully spherical sieving algorithm.

Another possible direction for the future work is to consider the cylindrical sieving
algorithm for prime volume lattices when γ =

√
2. This special case is interesting because

the requirements on the distribution of the lattice vectors during the sieving iterations
are minimal and maybe there is a way to weaken the heuristic assumption. Essentially,
the main requirement is that the first coordinate of lattice vectors behaves as if it is
independent of the last coordinates. Probably some relaxation of this requirement might
be made provable using the tools for analysis of modular sums.

Hybrid attacks against LWE

In the second part of the thesis, we considered the security of the TFHE scheme and
showed that it should be re-evaluated under the hybrid dual attack against LWE. More
generally, the hybrid dual attack described in the second part of the thesis can be used
to estimate security of any binary-LWE-based cryptosystem. For example, it can be used
to evaluate the security level of FHEW, another FHE scheme based on the LWE problem
with binary secrets; under the hybrid dual attack we get 96 bits of security for FHEW’s
parameters.

One of the tools used by the attack is the algorithm for fast multiplication of an arbi-
trary matrix with the matrix of all binary vectors. The multiplication algorithm exploits
the recursive structure of the matrix of all binary vectors. This algorithm can be easily

145

generalized for matrices that consist of all vectors whose coordinates are from some finite
set. Such a generalization would allow to extend our hybrid dual attack against binary-
LWE to an attack against more general versions of the LWE problem. We believe that
adapting the attack to ternary- and small-secret-LWE is an interesting direction for the
future work.

In order to estimate the complexity of the attack, we used three different models of
lattice reduction. When estimating the complexity of the attack under the sieving model,
we assume that the SVP-oracle used by the BKZ algorithm returns many short vectors
instead of one. This assumption is based on the structure of the sieving algorithms that
work with exponentially long lists of lattice vectors. However, the precise distribution of
the lattice vectors at the last iteration of sieving is not well-studied. More work is needed
to make the assumption more precise and provide a practical verification.

146

Appendix A

Omitted proofs and estimation
results for the second part

A.1 Proof of Lemma 8.1.

Proof. Under Assumption 7.1, the coordinates of wq are independent and distributed ac-
cording to the Gaussian distribution with expectation 0 and standard deviation δn+m/

√
n+m.

Since wq = (q ·x || q−n/m ·v)t, the coordinates of vectors x and v also have centered Gaus-
sian distribution, but with different standard deviations. Let

σx =
1

q
· δm+n

√
m+ n

and σv = qn/m · δm+n

√
m+ n

be the standard deviation of coordinates of x and of v correspondingly. Consider the
distribution of

vtb = xts + vte =
n∑
i=1

xi · si +
m∑
i=1

vi · ei.

vtb is a sum of m + n independent random variables and, therefore, its distribution can
be approximated by a Gaussian distribution according to the Central Limit Theorem. In
order to learn the parameters of the Gaussian, we need to obtain the expectations and
variances of x1 · s1 and v1 · e1.

First, consider the distribution of x1 · s1. As s1 has a Bernoulli distribution with
parameter S2, x1s1 is a random variable from the distribution that can be obtained by
sampling 0 with probability S2 and sampling from a Gaussian distribution with mean 0
and variance σ2

x with probability 1−S2. Therefore, E(x1 · s1) = 0 and Var(xi · si) = S2σ2
x.

Then, consider v1e1. As v and e are independent and E(v1) = E(e1) = 0, E(v1e1) =
E(v1)E(e1) = 0 and Var(v1e1) = Var(v1) ·Var(e1) = α2σ2

v.
Thus, the distribution of vtb is close to the Gaussian distribution with expectation 0

and variance

σ2 = nVar(x1s1) +mVar(v1e1) = nS2σ2
x +mα2σ2

v =
δ2(m+n)

m+ n

(nS2

q2
+mα2q2n/m

)
. (A.1)

Our goal is to obtain a distribution that is as concentrated around zero as possible. Hence
we choose parameters m and q in order to minimize variance of vtb.

First, we find the optimal value of q by differentiation of Equation (A.1) :

∂σ2

∂q
=
δ2(m+n)

m+ n
·
(
− 2nS2

q3
+

2n

m
·mα2q

2n
m
−1
)

= 0 → qopt =
(S
α

) m
m+n

.

147

After replacing q by qopt in Equation (A.1) we obtain:

σ2 =

(
Sδm+n

(α
S

) m
m+n

)2

. (A.2)

Also, for σx and σv we obtain the following relation

σx
σv

=
q−n/m

q
=
α

S
. (A.3)

Then, we find the optimal value of m by differentiating ln(σ):

∂ ln(σ)

∂m
= ln(δ) + n ln

(α
S

)
· 1

(m+ n)2
= 0 → mopt =

√
n · ln(S/α)

ln(δ)
− n (A.4)

Now, replacing m by mopt in Equation (A.2), we find:

σ(δ, n, S, α) = σ(m̂, δ, n, S, α) = α · exp
(
2
√
n ln(S/α) ln(δ)

)
.

The distance between the distribution of vtb and the Gaussian distribution with mean
0 and variance σ2 can be estimated by the Berry-Esseen inequality (see Theorem 7.1). To
use this inequality, we need to compute the third absolute moments of x1s1 and v1e1.

We start with x1s1. As x1 and s1 are independent,

E{|x1s1|3} = E{|x1|3}E{|s1|3}.

By Lemma 7.4, E{|x1|3} = 2
√

2/πσ3
x. As s1 has the Bernoulli distribution with parameter

S2, E{|s1|3} = E{s1} = S2. Putting two parts together, we get

ρx1s1 = E{|x1s1|3} = 2
√

2/πS2σ3
x. (A.5)

In the same way, we obtain

ρv1e1E{|v1e1|3} =
8

π
α3σ3

v. (A.6)

Denote the cumulative distribution function of vtb by Fvtb, and denote the cumulative
distribution function of the Gaussian distribution with mean 0 and variance σ2 by Φσ. By
the Berry-Esseen inequality, there exists a constant C0 such that

sup
x∈R
|Fvtb(x)− Φσ(x)| 6 C0 ·

nρx1s1 +mρv1e1

(nS2σ2
x +mα2σ2

v)3/2.
(A.7)

Then, using Equations (A.3) and (A.5) to (A.7), for the distance between the distributions
we get:

sup
x∈R
|Fvtb(x)− Φσ(x)| 6 C0

√
8

S2π
·
n+mS

√
8/π

(m+ n)3/2
6 C0

√
8

S2π
· 1√

m+ n
. (A.8)

A.2 Heatmaps for the enumeration and delta-squared BKZ
cost models

148

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60
10

0

200

300

500
800

1000

log(TD)

0

500

1000

1500

2000

(a) dual attack

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60

10
0

150

200

300

500
800

log(TK)

0

500

1000

1500

2000

(b) our attack

Figure A.1 – Comparison of the costs of the attacks under the enumeration BKZ cost
model.

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60

120

200

350

650

1000

log(TD)

0

500

1000

1500

2000

2500

(a) dual attack

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60 120
200

300
400

600

log(TK)

0

500

1000

1500

2000

2500

(b) our attack

Figure A.2 – Comparison of the costs of the attacks under the delta-squared BKZ cost
model.

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60

90

136

185
250

320
400

50
0 100

200

300

400

500

(a) enumeration

200 400 600 800 1000
n

5

10

15

20

25

30

35

40

lo
g(

1/
)

60

90

120

170

240

320
400

50
0 100

200

300

400

500

(b) delta-squared

Figure A.3 – Bit-security as a function of LWE parameters n and α under the sieving and
delta-squared BKZ cost models.

149

Bibliography

[ACD+18] Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson, Rachel Player, EamonnW
Postlethwaite, Fernando Virdia, and Thomas Wunderer. Estimate all the {LWE, NTRU}
schemes! In International Conference on Security and Cryptography for Networks, pages
351–367. Springer, 2018.

[ACF+15] Martin R Albrecht, Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick, and Ludovic
Perret. On the complexity of the BKW algorithm on LWE. Designs, Codes and Cryptography,
74(2):325–354, 2015.

[ADRSD15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the
Shortest Vector Problem in 2n time using discrete Gaussian sampling. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 733–742. ACM, 2015.

[ADSD15] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the Closest Vector
Problem in 2n time – The Discrete Gaussian Strikes Again! In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 563–582. IEEE, 2015.

[AFG13] Martin R Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solving
LWE by reduction to unique-SVP. In International Conference on Information Security and
Cryptology, pages 293–310. Springer, 2013.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pages 99–108. ACM, 1996.

[Ajt98] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for randomized reductions. In
Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 10–19.
ACM, 1998.

[Ajt02] Miklos Ajtai. A conjectured 0-1 law about the polynomial time computable properties of
random lattices. In Electronic Colloquium on Computational Complexity (ECCC), number
061, 2002.

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm for the shortest
lattice vector problem. In Proceedings of the thirty-third annual ACM symposium on Theory
of computing, pages 601–610. ACM, 2001.

[Alb17] Martin R Albrecht. On dual lattice attacks against small-secret LWE and parameter choices
in HElib and SEAL. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 103–129. Springer, 2017.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of Learning
with Errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[AR05] Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. Journal of the ACM
(JACM), 52(5):749–765, 2005.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combina-
torica, 6(1):1–13, 1986.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete algorithms, pages 10–24. Society for Industrial
and Applied Mathematics, 2016.

[BG14] Shi Bai and Steven D Galbraith. Lattice decoding attacks on binary lwe. In Australasian
Conference on Information Security and Privacy, pages 322–337. Springer, 2014.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryp-
tion, arithmetic circuit abe and compact garbled circuits. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 533–556. Springer, 2014.

[BGJ14] Anja Becker, Nicolas Gama, and Antoine Joux. A sieve algorithm based on overlattices.
LMS Journal of Computation and Mathematics, 17(A):49–70, 2014.

150

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In
Theory of Cryptography Conference, pages 325–341. Springer, 2005.

[BGPW16] Johannes Buchmann, Florian Göpfert, Rachel Player, and Thomas Wunderer. On the hard-
ness of LWE with binary error: Revisiting the hybrid lattice-reduction and meet-in-the-
middle attack. In International Conference on Cryptology in Africa, pages 24–43. Springer,
2016.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT),
6(3):13, 2014.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of Learning with Errors. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 575–584. ACM, 2013.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. LMS Journal of Com-
putation and Mathematics, 19(A):146–162, 2016.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In Annual Cryptology Conference, pages 868–886. Springer, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In Annual cryptology conference, pages 505–524.
Springer, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing, 43(2):831–871, 2014.

[Cas12] John William Scott Cassels. An introduction to the geometry of numbers. Springer Science
& Business Media, 2012.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 3–33. Springer,
2016.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE. In International
Conference on the Theory and Application of Cryptology and Information Security, pages
377–408. Springer, 2017.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.

[Che13] Yuanmi Chen. Réduction de réseau et sécurité concrete du chiffrement completement homo-
morphe. PhD thesis, Paris 7, 2013.

[CHHS19] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A Hybrid of Dual and
Meet-in-the-Middle Attack on Sparse and Ternary Secret LWE. IEEE Access, 7:89497–89506,
2019.

[CL15] Jung Hee Cheon and Changmin Lee. Approximate algorithms on lattices with small deter-
minant. Technical report, Cryptology ePrint Archive, Report 2015/461, 2015.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully homo-
morphic encryption over the integers. In International Workshop on Public Key Cryptogra-
phy, pages 311–328. Springer, 2014.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully ho-
momorphic encryption over the integers with shorter public keys. In Annual Cryptology
Conference, pages 487–504. Springer, 2011.

[CN11] Yuanmi Chen and Phong Q Nguyen. Bkz 2.0: Better lattice security estimates. In Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
pages 1–20. Springer, 2011.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and
modulus switching for fully homomorphic encryption over the integers. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages
446–464. Springer, 2012.

[Coh13] Henri Cohen. A course in computational algebraic number theory, volume 138, chapter Z-
Modules and the Hermite and Smith Normal Forms. Springer Science & Business Media,
2013.

151

[CS15] Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption over the integers revis-
ited. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 513–536. Springer, 2015.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976.

[DKS98] Irit Dinur, Guy Kindler, and Shmuel Safra. Approximating-CVP to within almost-polynomial
factors is NP-hard. In Proceedings 39th Annual Symposium on Foundations of Computer
Science (Cat. No. 98CB36280), pages 99–109. IEEE, 1998.

[DLdW19] Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Finding closest lattice
vectors using approximate Voronoi cells. PQCRYPTO. Springer (2019, to appear), 2019.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less
than a second. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 617–640. Springer, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

[G+16] Nicolas Gama et al. Github repository. TFHE: Fast fully homomorphic encryption library
over the torus. https://github.com/tfhe/tfhe, 2016.

[GB09] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme, volume 20. Stanford
University Stanford, 2009.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-
3 arithmetic circuits. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 107–109. IEEE, 2011.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme.
In Annual international conference on the theory and applications of cryptographic techniques,
pages 129–148. Springer, 2011.

[GINX16] Nicolas Gama, Malika Izabachène, Phong Q Nguyen, and Xiang Xie. Structural lattice
reduction: generalized worst-case to average-case reductions and homomorphic cryptosys-
tems. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 528–558, 2016.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer and system
sciences, 28(2):270–299, 1984.

[GM03] Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke points. In Forum
Mathematicum, volume 15, pages 165–190. Berlin; New York: De Gruyter, c1989-, 2003.

[GMP] GMP, The GNU Multiple Precision Arithmetic Library. https://gmplib.org.
[GMSS99] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and J-P Seifert. Approximating shortest

lattice vectors is not harder than approximating closest lattice vectors. Information Process-
ing Letters, 71(2):55–61, 1999.

[GN08] Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages 31–51.
Springer, 2008.

[GNR10] Nicolas Gama, Phong Q Nguyen, and Oded Regev. Lattice enumeration using extreme prun-
ing. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 257–278. Springer, 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 197–206. ACM, 2008.

[GS87] Yuri Gurevich and Saharon Shelah. Expected computation time for hamiltonian path prob-
lem. SIAM Journal on Computing, 16(3):486–502, 1987.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Annual Cryptology
Conference, pages 75–92. Springer, 2013.

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against
NTRU. In Annual International Cryptology Conference, pages 150–169. Springer, 2007.

[HKL18] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and time–memory
trade-offs for tuple lattice sieving. In IACR International Workshop on Public Key Cryptog-
raphy, pages 407–436. Springer, 2018.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algorithms
using dynamical systems. In Annual Cryptology Conference, pages 447–464. Springer, 2011.

152

https://github.com/tfhe/tfhe
https://gmplib.org

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan’s shortest lattice vector
algorithm. In Annual International Cryptology Conference, pages 170–186. Springer, 2007.

[Kah96] David Kahn. The Codebreakers: The comprehensive history of secret communication from
ancient times to the internet. Simon and Schuster, 1996.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice problems. In
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 193–206.
ACM, 1983.

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
operations research, 12(3):415–440, 1987.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. journal des sciences militaries. IX (38), 5,
1883.

[Kho05] Subhash Khot. Hardness of approximating the Shortest Vector Problem in lattices. Journal
of the ACM (JACM), 52(5):789–808, 2005.

[KL74] GA Kabatyanskiı and VI Levenshteın. Bounds for packings on a sphere and in space. Prob-
lems of Information Transmission, 95:148–158, 1974.

[Kle00] Philip Klein. Finding the closest lattice vector when it’s unusually close. In Proceedings of
the eleventh annual ACM-SIAM symposium on Discrete algorithms, pages 937–941. Society
for Industrial and Applied Mathematics, 2000.

[KPV12] Subhash Khot, Preyas Popat, and Nisheeth K Vishnoi. 2log1−ε n hardness for the Closest Vec-
tor Problem with Preprocessing. In 44th Annual ACM Symposium on Theory of Computing,
STOC’12, pages 277–288, 2012.

[Laa15a] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of
Technology, 2015. http://www.thijs.com, 2015.

[Laa15b] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In Annual Cryptology Conference, pages 3–22. Springer, 2015.

[Laa16] Thijs Laarhoven. Sieving for closest lattice vectors (with preprocessing). In International
Conference on Selected Areas in Cryptography, pages 523–542. Springer, 2016.

[LdW15] Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice vectors using spher-
ical locality-sensitive hashing. In International Conference on Cryptology and Information
Security in Latin America, pages 101–118. Springer, 2015.

[Li11] Shengqiao Li. Concise formulas for the area and volume of a hyperspherical cap. Asian
Journal of Mathematics and Statistics, 4(1):66–70, 2011.

[LK14] Yongjae Lee and Woo Chang Kim. Concise formulas for the surface area of the intersection
of two hyperspherical caps. KAIST Technical Report, 2014.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision
resistant. In International Colloquium on Automata, Languages, and Programming, pages
144–155. Springer, 2006.

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique short-
est vectors, and the minimum distance problem. In Annual International Cryptology Con-
ference, pages 577–594. Springer, 2009.

[LN13] Mingjie Liu and Phong Q Nguyen. Solving BDD by enumeration: An update. In Cryptog-
raphers’ Track at the RSA Conference, pages 293–309. Springer, 2013.

[Lov86] László Lovász. An algorithmic theory of numbers, graphs, and convexity, volume 50. SIAM,
1986.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Cryptographers’ Track at the RSA Conference, pages 319–339. Springer, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and Learning with
Errors over rings. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 1–23. Springer, 2010.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks. In
International Workshop on Public Key Cryptography, pages 162–179. Springer, 2008.

[MG12] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic
perspective, volume 671. Springer Science & Business Media, 2012.

[Mic01] Daniele Micciancio. The hardness of the Closest Vector Problem with Preprocessing. IEEE
Transactions on Information Theory, 47(3):1212–1215, 2001.

153

[Mic02] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way
functions from worst-case complexity assumptions. In The 43rd Annual IEEE Symposium
on Foundations of Computer Science, 2002. Proceedings., pages 356–365. IEEE, 2002.

[Mic18] Daniele Micciancio. On the hardness of Learning with Errors with binary secrets. Theory of
Computing, 14(1):1–17, 2018.

[MKVOV96] Alfred J Menezes, Jonathan Katz, Paul C Van Oorschot, and Scott A Vanstone. Handbook
of applied cryptography. CRC press, 1996.

[MO90] James E Mazo and Andrew M Odlyzko. Lattice points in high-dimensional spheres. Monat-
shefte für Mathematik, 110(1):47–61, 1990.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In
Annual Cryptology Conference, pages 21–39. Springer, 2013.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaus-
sian measures. SIAM Journal on Computing, 37(1):267–302, 2007.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the
Shortest Vector Problem. In Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms, pages 1468–1480. Society for Industrial and Applied Mathematics,
2010.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 820–849. Springer, 2016.

[NV08] Phong Q Nguyen and Thomas Vidick. Sieve algorithms for the Shortest Vector Problem are
practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.

[Odl90] Andrew M Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology and computa-
tional number theory, 42:75–88, 1990.

[P+16] Chris Peikert et al. A decade of lattice cryptography. Foundations and Trends R© in Theo-
retical Computer Science, 10(4):283–424, 2016.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case Shortest Vector Problem. In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 333–
342. ACM, 2009.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In Theory of Cryptography Conference, pages 145–166. Springer,
2006.

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[Ran53] Robert Alexander Rankin. On positive definite quadratic forms. Journal of the London
Mathematical Society, 1(3):309–314, 1953.

[Reg05] O Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography,
2005. In STOC, pages 84–93. ACM, 2005.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-based cryptosys-
tems. IACR Cryptology ePrint Archive, 2010:137, 2010.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[SC19] Yongha Son and Jung Hee Cheon. Revisiting the hybrid attack on sparse and ternary secret
LWE. IACR Cryptology ePrint Archive, 2019:1019, 2019.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved practical al-
gorithms and solving subset sum problems. Mathematical programming, 66(1-3):181–199,
1994.

[Sha49] Claude E Shannon. Communication theory of secrecy systems. Bell system technical journal,
28(4):656–715, 1949.

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM review, 41(2):303–332, 1999.

[Sie45] Carl Ludwig Siegel. A mean value theorem in geometry of numbers. Annals of Mathematics,
pages 340–347, 1945.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In International
Conference on the Theory and Application of Cryptology and Information Security, pages
377–394. Springer, 2010.

154

[SV10] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In International Workshop on Public Key Cryptography,
pages 420–443. Springer, 2010.

[VDGHV10] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomor-
phic encryption over the integers. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 24–43. Springer, 2010.

[Wen62] James G Wendel. A problem in geometric probability. Math. Scand, 11:109–111, 1962.
[WLTB11] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved nguyen-vidick

heuristic sieve algorithm for shortest vector problem. In AsiaCCS, pages 1–9, 2011.
[Wun16] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis and refined security

estimates. IACR Cryptology ePrint Archive, 2016:733, 2016.
[ZPH13] Feng Zhang, Yanbin Pan, and Gengran Hu. A three-level sieve algorithm for the Shortest

Vector Problem. In International Conference on Selected Areas in Cryptography, pages 29–47.
Springer, 2013.

155

	Introduction
	Appearance of modern cryptology
	Information-theoretical notion of security
	Public-key cryptography
	Fully Homomorphic Encryption
	Hard problems in cryptography
	Lattices and related computational problems
	Lattice-based cryptography.
	Contribution of this thesis.
	Cylindrical sieving
	Estimating TFHE's security under hybrid dual lattice attack

	Background
	Notation
	Lattices
	Random lattice
	Computational lattice problems
	Lattice-related hard problems in cryptography
	Short Integer Solution (SIS)
	Learning With Errors (LWE)

	Ring versions of SIS and LWE

	I Cylindrical sieving
	Necessary background on lattice algorithms
	Sieving algorithms
	Nguyen–Vidick sieve

	Solving hard lattice problems for lattices with a small volume
	Enumeration of lattice points in easy special cases
	Integer lattice
	Lattice with quasi-orthonormal basis

	The nearest plane algorithm.
	Sampling the discrete Gaussian distribution
	Unbalanced lattice reduction
	Covering d-dimensional surfaces
	Covering a sphere with hemispheres
	Covering a sphere with spherical caps
	Cover a hypercylinder with random half-cylinders of smaller height

	Cylindrical sieving framework
	Generation of lattice vectors inside a cylinder
	Prime volume lattice case
	Generate vectors inside a hypercylinder for any lattice

	Sort-and-subtract algorithm for SVP
	One step of cylindrical sieving
	Complexity of the sort-and-subtract algorithm for solving SVP

	Adding spherical sieving.
	One step of cylindrical sieving with < 2.
	Sort-and-sieve algorithm for a lattice with a prime volume
	Sort-and-sieve algorithm for any lattice

	Finding short vectors for lattices with a small prime volume
	Complexity of cylindrical sieving for lattices with small prime volume
	Complexity of finding short lattice vectors for a lattice with a small prime volume

	Solving the Closest Vector Problem with cylindrical sieving
	One step of preprocessing
	Preprocessing of lattice
	Preprocessing of lattice with prime volume
	Preprocessing of any lattice

	Decoding for targets inside hypercylinder
	Solving CVPP in polynomial time.
	Transformation of target vector: general idea
	Solving CVPP for an integer lattice with a prime volume.
	Solving CVPP for an arbitrary lattice.

	Experimental results
	Description of implementation.
	Dimension n = 30, volume vol()260.
	Dimension n = 20, volume vol()2100.
	Dimension n = 40, volume vol()280.
	Randomization of one target point

	II Security of the TFHE scheme
	Background on TFHE and security of LWE-based cryptosystems
	TFHE and its security.
	Modular Gaussian distribution
	Lattice attacks against LWE
	Hybrid attacks
	Lattice reduction in practice
	Probability background.

	Hybridizing the dual distinguishing attack against LWE.
	Dual distinguishing attack as described in chillotti2020tfhe
	Trapdoor construction by lattice reduction
	Exponential kernel distinguisher for the uniform and the modular Gaussian distributions
	Complexity of the dual attack from TFHE article

	Hybrid key recovery attack
	Algorithm for computing the product of a matrix with the matrix of all binary vectors
	Complexity of the attack
	Using sieving in the hybrid attack

	Bit-security estimation and experimental verification
	Bit-security of LWE parameters
	Application to the TFHE scheme
	Comparison with primal uSVP attack
	Experimental verification

	Conclusion
	Cylindrical sieving
	Hybrid attacks against LWE

	Omitted proofs and estimation results for the second part
	Proof of lemma:sigma.
	Heatmaps for the enumeration and delta-squared BKZ cost models

	Bibliography

