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Abstract

Distributional semantics has been revolutionized by neural-based word embed-
dings methods such as word2vec that made semantics models more accessible by
providing fast, efficient and easy to use training methods. These dense represen-
tations of lexical units based on the unsupervised analysis of large corpora are
more and more used in various types of applications. They are integrated as the
input layer in deep learning models or they are used to draw qualitative conclu-
sions in corpus linguistics. However, despite their popularity, there still exists
no satisfying evaluation method for word embeddings that provides a global yet
precise vision of the differences between models. In this PhD thesis, we propose
a methodology to qualitatively evaluate word embeddings and provide a compre-
hensive study of models trained using word2vec. In the first part of this thesis,
we give an overview of distributional semantics evolution and review the different
methods that are currently used to evaluate word embeddings. We then identify
the limits of the existing methods and propose to evaluate word embeddings using
a different approach based on the variation of nearest neighbors. We experiment
with the proposed method by evaluating models trained with different parameters
or on different corpora. Because of the non-deterministic nature of neural-based
methods, we acknowledge the limits of this approach and consider the problem of
nearest neighbors instability in word embeddings models. Rather than avoiding
this problem we embrace it and use it as a mean to better understand word em-
beddings. We show that the instability problem does not impact all words in the
same way and that several linguistic features are correlated. This is a step towards
a better understanding of vector-based semantic models.
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Résumé

La sémantique distributionnelle a récemment connu de grandes avancées avec
l’arrivée des plongements de mots (word embeddings) basés sur des méthodes neu-
ronales qui ont rendu les modèles sémantiques plus accessibles en fournissant des
méthodes d’entraînement rapides, efficaces et faciles à utiliser. Ces représentations
denses d’unités lexicales basées sur l’analyse non supervisée de gros corpus sont
de plus en plus utilisées dans diverses applications. Elles sont intégrées en tant
que première couche dans les modèles d’apprentissage profond et sont également
utilisées pour faire de l’observation qualitative en linguistique de corpus. Cepen-
dant, malgré leur popularité, il n’existe toujours pas de méthode d’évaluation des
plongements de mots qui donne à la fois une vision globale et précise des dif-
férences existant entre plusieurs modèles. Dans cette thèse, nous proposons une
méthodologie pour évaluer les plongements de mots. Nous fournissons également
une étude détaillée des modèles entraînés avec la méthode word2vec. Dans la
première partie de cette thèse, nous donnons un aperçu de l’évolution de la sé-
mantique distributionnelle et passons en revue les différentes méthodes utilisées
pour évaluer les plongements de mots. Par la suite, nous identifions les limites
de ces méthodes et proposons de comparer les plongements de mots en utilisant
une approche basée sur les voisins sémantiques. Nous expérimentons avec cette
approche sur des modèles entrainés avec différents paramètres ou sur différents
corpus. Étant donné la nature non déterministe des méthodes neuronales, nous
reconnaissons les limites de cette approche et nous concentrons par la suite sur le
problème de l’instabilité des voisins sémantiques dans les modèles de plongement
de mots. Plutôt que d’éviter ce problème, nous choisissons de l’utiliser comme
indice pour mieux comprendre les plongements de mots. Nous montrons que le
problème d’instabilité n’affecte pas tous les mots de la même manière et que plus
plusieurs traits linguistiques permettent d’expliquer une partie de ce phénomène.
Ceci constitue un pas vers une meilleure compréhension du fonctionnement des
modèles sémantiques vectoriels.
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Introduction

Motivation
The hypothesis behind distributional semantics stating that words sharing similar
contexts have similar meanings (Harris, 1954) led to the modern distributional
semantics where vector space is used to project meaning using observations auto-
matically extracted from corpora. The past few years, distributional semantics has
known a rapid growth mainly due to the introduction of distributional neural-based
models, also known as word embeddings. These models rapidly became attractive
because they are easy to train and to use, whether to compute semantic similar-
ity between words or to be integrated in deep learning models. With the release
of word2vec (Mikolov et al., 2013c), word embeddings rapidly became the most
commonly used models to represent meaning. Several improvements of word2vec
were proposed, as well as different ways to learn word embeddings (e.g. GloVe
(Pennington et al., 2014)). More recently, contextual embeddings (e.g. ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019)) have become very popular,
overshadowing earlier methods. While new techniques are released every year (or
even every few months), there is still no evaluation method that provides a satis-
fying way to evaluate word embeddings from different perspectives and especially
from a qualitative perspective.

One of the most common way to evaluate word embeddings is by using intrin-
sic methods that consist in comparing the similarity of selected pairs of words to
human judgments. While this type of evaluation is convenient and easy to im-
plement, it suffers from several biases. The ability of models to encode similarity
is tested through human annotations often made without any context. This is a
problem since the meaning of words is contextual, especially with the distribu-
tional hypothesis stating that meaning comes from the contexts of words. E.g. if
we consider the word tree, it can be used to describe an element of nature or an
algorithm depending on the context. As a consequence, the similarity evaluated in
datasets might seems slightly artificial. Moreover, neural-based word embeddings
are trained using non deterministic methods. As a consequence, training a model
with the same hyperparameters and on the same data actually yields different se-
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mantic representations. These variations are not detected by intrinsic evaluation
datasets.

While using quantitative methods is useful to develop and prototype models,
we are more interested in understanding how word representations are learned. As
a consequence, we prefer to focus on the different hyperparameters the semantic
representations are learned from, whether this means the corpus or the different
mechanisms specific to word2vec.

When evaluating models by integrating a linguistic point a view, it is difficult
to reduce observations within boundaries delimited by datasets. By integrating
a linguistic point of view to the evaluation process, we do not restrict our ob-
servations to limits set by datasets. Rather, we propose to adopt an exploratory
approach where we focus on comparing how models differ from a semantic point
of view. To do so we chose to observe nearest neighbors of words.

Nearest neighbors of words are interesting because they provide immediate
feedback on the meaning of a word as it was captured by a model from a given
corpus. Let’s look at a specific example to illustrate that. By evaluating using
intrinsic datasets, we assess if two pairs of words are more similar than two other
pairs of words. E.g. we expect the pair magician and wizard to be more similar
than the pair king and cabbage1. By looking at nearest neighbors, we directly
observe the words that are the most similar to a given word. Then we can imagine
that in a generic corpus, magician would be more similar to words like wizard,
sorcerer etc. As a consequence, we directly get an idea of the meaning captured in
the corpus and we can determine if the fact that the model considered these words
similar is appropriate or not. By observing nearest neighbors, we do not rely on
any a priori construct of meaning.

Despite providing immediate and direct feedback on a word semantic repre-
sentation, nearest neighbors also suffer biases. E.g. it is difficult to assert that a
neighbor is of good quality. Moreover, it is sometimes challenging to explain why
a nearest neighbor is considered similar to a target word. As a consequence, de-
pending only on the direct observation of nearest neighbors in a model might not
be appropriate. We propose instead to compare the variation in nearest neighbors
across models, i.e. given two models, we compare what changes in the neighbor-
hood of a given word across these two models. In this way, we are able to directly
identify words that are highly impacted by variation. This also provides a start-
ing point for detailed explorations. Moreover, by using this method to compare
models trained with different hyperparameters, we might be able to relate near-
est neighbors variation to the impact of different hyperparameters (whether this
means using a different corpus or different settings specific to the system used for
training).

1Examples selected from WordSim-353 Finkelstein et al. (2002).
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We also propose to use this method to examine the instability phenomenon
that is inherent to word embeddings trained using neural-based methods. We
specifically focus on word2vec. While some works have focused on this problem,
especially on measuring the amplitude of the phenomenon, it remains a poorly
known and often disregarded phenomenon. Rather than trying to fix this problem,
we propose here to embrace it and use it as a way to better understand word
embeddings. If we consider the resistance to instability, i.e. the resistance to
random processes, as an indicator of quality, we can identify stable and unstable
zones in the lexical space. Moreover, we go further by questioning the linguistics
aspects of the stability and instability of words. We are able to better understand
word embeddings by being able to correlate linguistic features to words variation.

Publications
The research conducted during this PhD and the participation to research projects
led to the following publications:

Pierrejean, B. and Tanguy, L. (2018a). Étude de la Reproductibilité des Word
Embeddings : Repérage des Zones Stables et Instables dans le Lexique. In TALN,
Rennes, France

Pierrejean, B. and Tanguy, L. (2018b). Predicting Word Embeddings Vari-
ability. In Proceedings of the 7th Joint Conference on Lexical and Computational
Semantics (*SEM), pages 154–159, New Orleans

Pierrejean, B. and Tanguy, L. (2018c). Towards Qualitative Word Embeddings
Evaluation: Measuring Neighbors Variation. In Proceedings of NAACL-HLT 2018:
Student Research Workshop, pages 32–39, New Orleans

Gaume, B., Tanguy, L., Fabre, C., Ho-Dac, L.-M., Pierrejean, B., Hathout, N.,
Farinas, J., Pinquier, J., Danet, L., Péran, P., De Boissezon, X., and Jucla, M.
(2018). Automatic Analysis of Word Association Data from the Evolex Psycholin-
guistic Tasks Using Computational Lexical Semantic Similarity Measures. In 13th
International Workshop on Natural Language Processing and Cognitive Science
(NLPCS), Krakow, Poland

Pierrejean, B. and Tanguy, L. (2019). Investigating the Stability of Concrete
Nouns in Word Embeddings. In Proceedings of the 13th International Conference
on Computational Semantics, pages 65–70, Gothenburg, Sweden

Gaume, B., Ho-Dac, L.-M., Tanguy, L., Fabre, C., Pierrejean, B., Hathout, N.,
Farinas, J., Pinquier, J., Danet, L., Péran, P., De Boissezon, X., and Jucla, M.
(2019). Towards a Computational Multidimensional Lexical Similarity Measure
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for Modeling Word Association Tasks in Psycholinguistics. In Proceedings of the
Workshop on Cognitive Modeling and Computational Linguistics, pages 71–76

Thesis Outline
We chose to organize this thesis in two parts.

In the first part we present Distributional Semantics. Chapter 1 focuses on
the evolution of distributional semantics, from the use of vector space to represent
meaning to the introduction of neural-based word embeddings models. We present
hyperparameters that are important when training distributional semantics mod-
els. We then present in details word2vec and its different hyperparameters.

In chapter 2 we present the different existing methods to evaluate word embed-
dings. We particularly focus on intrinsic evaluation methods by discussing selected
“traditional” evaluation datasets and the common problems they encounter. We
also present alternatives to these datasets that were developed specifically for the
evaluation of distributional semantics models.

Chapter 3 presents selected works that evaluate word embeddings using al-
ternatives to intrinsic datasets. We also explain why we chose to evaluate word
embeddings using qualitative methods.

In the second part, we focus on the method we used to evaluate word embed-
dings using a qualitative point of view.

Chapter 4 details the first experiment we conducted that focused on training
word embeddings using different hyperparameters. We first give an overview of
the different parameters we selected. We also present several studies that have
investigated these parameters. Then, we present the method we use to compare
variations existing between different models. Finally, we present the results of
this experiment, first from a quantitative point of view and secondly by using the
comparison of nearest neighbors.

In chapter 5 we discuss the internal instability phenomenon, which leads to in-
ternal variation when training word embeddings using the same hyperparameters.
We investigate the amplitude of this phenomenon on three different corpora.

Finally in chapter 6 we chose to investigate neighbors instability as a linguistic
phenomenon by looking at different features that could explain the variation. We
are able to identify stable and unstable zones in the lexical space. We go further
by being able to correlate these zones of stability and instability with selected
linguistic features.
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Chapter 1. Distributional Semantics Evolution

1.1 Introduction
To better understand distributional semantics today, we wanted to go back to its
foundations and origins. In this chapter, we propose to first look at the distribu-
tional hypothesis in the view of American structuralists. Then we show how the
distributional hypothesis was used to model meanings using vector spaces. Along
with modeling meaning in space, we focus on the notion of context, a key element
in distributional semantics that has a considerable impact on the model trained in-
dependently of the type of method used to create models. Finally we present word
embeddings and we focus more specifically on word2vec (Mikolov et al., 2013a),
which is the main tool we use throughout this thesis to train word embeddings.

1.2 The distributional hypothesis
The distributional hypothesis is rooted in the American structuralist movement,
with observations made by Harris (1954) and Firth (1957) that words appearing
in similar contexts have similar meanings (Jurafsky and Martin, 2018; Turney and
Pantel, 2010; Lenci, 2008). The following example illustrates the distributional
hypothesis:

If A and B have almost identical environments except chiefly for sen-
tences which contain both, we say they are synonyms: oculist and
eye-doctor. If A and B have some environments in common and some
not (e.g. oculist and lawyer) we say that they have different meanings,
the amount of meaning difference corresponding roughly to the amount
of difference in their environments.
(Harris, 1954, 157).

Thus oculist and eye-doctor are synonyms because they share almost the exact
same contexts. However, words with different meanings can still share similar
contexts (like oculist and lawyer) and the distribution of an element is defined by
the sum of all the environments it appears in (Harris, 1970). It is also important
to notice that the information we get about the meaning of a word is acquired
relatively to another word. This means that the harissian hypothesis focuses on
meaning not for a word by itself but by always comparing to another word.

Firth’s work also contributed to shape the distributional hypothesis we know
today and it is common to define the principle of distributional semantics with the
following famous quote:

You shall know a word by the company it keeps.
(Firth, 1957)
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1.2. The distributional hypothesis

Firth’s hypothesis relied on the notion of collocation to show that distributional
contexts can be used to explain the behavior of a word. By looking at the different
contexts and environments a word appears in, it is possible to get information
about its different senses (Pulman, 2013). We can differentiate this approach from
Harris’ because it focuses on a different aspect of meaning. Observing the contexts
of a word gives an idea of its meaning but most importantly it provides information
about its degree of polysemy. Moreover, Firth only considers contexts of a word
by itself and not necessarily in contrast with other words. For Harris, the contexts
that two words share give information about their degree of similarity.

We want to point out here the importance of the corpus in both approaches.
The degree of similarity of words and the different meanings of a word are extracted
from a corpus, through the different contexts observed. Those contexts are highly
dependent on the corpus used and two words are similar or dissimilar based on
their contexts in a given corpus. Their contexts might be completely different in
another corpus. Let’s take the example of the words apple and pear. If we search
both words in a generic corpus, like the BNC1, we find the following sentences:

(1) (...), it no longer makes cider but apple juice. (HMH)
(2) Yeah pear juice, I like (...). (KC5)

Both apple and pear are used with the word juice and refer to fruits. Their
contexts are similar and, following the harissian hypothesis, we can deduce that
apple and pear are very similar. They actually are co-hyponyms and are both
hyponyms of fruit. However if we look up the same words in the Medical Web
Corpus2, we observe the following uses:

(3) At the front of the throat, a laryngeal prominence, known as the Adam’s
apple (...) (Web-med 3)

(4) (...) such as peach, pineapple, and pear (...) (Web-med 59)

While pear still refers to the fruit, apple has a different meaning in example (3)
where it refers to a body part. It is thus very important to always consider that
the similarity observed by distributional semantics is corpus-dependent.

Later on, Rubenstein and Goodenough (1965) investigated the distributional
hypothesis by examining how synonymy is related to the similarity of contexts.
According to them, it is obvious that words sharing very similar contexts have
very similar meanings and words having very dissimilar contexts have very dis-
similar meanings. However, they were particularly interested in words that do not
fall in these two categories. The novelty of their approach was that rather than

1https://www.english-corpora.org/bnc/
2https://www.sketchengine.eu/medical-web-corpus/
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only making observations of words in contexts, they integrated the judgments of
the degree of synonymy made by human annotators. They confirmed that there
is a positive relation between the degree of similarity of words and the number
of contexts they shared. However, they could not prove that it was possible to
quantify the degree of similarity using the amount of shared contexts.

We saw that the distributional hypothesis actually encompasses two dimen-
sions. Both consider that the observation of words contexts provides information
about their semantic properties. First, following Harris’ hypothesis we can deter-
mine how similar two words are. Secondly, according to Firth, contexts provide
information about the degree of polysemy of a word. In the next section we present
how the distributional hypothesis has been used in computational linguistics.

1.3 Distributional Semantics
The distributional hypothesis proposes to observe word meanings by quantifying
their contexts, i.e. by counting the different contexts a word appears with. As
such, it provided a suitable framework for computational linguistics that makes
it easy to automatically extract and quantify the contexts of a word. Moreover,
multi-dimensional space can be used to model meaning. The use of vector spaces in
semantics is attractive because vectors provide a natural mechanism for computing
distance and similarity. The notion of distance allows to discriminate how the
meanings of two words are different (Clark, 2015). In this section we present the
representation of meaning in vector space. We also give an overview of the creation
of distributional semantic models.

1.3.1 Meaning in vector space
The spatial representation of meaning is rooted in the cognitive theory identified
by Lakoff and Johnson (1980), stating that because we are “embodied beings”, we
conceptualize and interpret abstract concepts through our spatio-temporal knowl-
edge of the world (Sahlgren, 2006).

Osgood et al. (1957) were amongst the first to propose the representation of
meaning in a multi-dimensional space with their work on the semantic differential
approach. They used 3 dimensions to represent affective meaning: valence (that
corresponds to the pleasantness of the stimulus), arousal (intensity of the emotion
the stimulus provokes) and dominance (degree of control the stimulus exerts).
Words are then represented with those 3 dimensions and can be projected in a
3-dimensional space (Sahlgren, 2006; Jurafsky and Martin, 2018).

Later on, vector space models based on co-occurrence matrices were imple-
mented for SMART (Salton, 1971), an information retrieval system. The idea
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was to represent documents as vectors in a vector space. Two documents that
are supposedly similar have the same words thus their vectors are geometrically
close. As a consequence, closer points represent documents that are semantically
similar (Turney and Pantel, 2010; Jurafsky and Martin, 2018). The success of Vec-
tor Space Models in information retrieval motivated their use for other semantic
tasks in Natural Language Processing. Deerwester et al. (1990) found that is was
possible to measure word rather than document similarity (Turney and Pantel,
2010). In this case, word co-occurrences are used to compute similarity between
words. Schütze (1998) used distributional techniques to learn word senses with-
out any external resources. He proposed a corpus-based method, where all word
representations are derived from a large corpus. Vectors are used to represent
words, contexts and senses. Rapp (2003) also proposed an automatic method for
word sense induction based on distributional similarity between words in a corpus
(Pulman, 2013).

In the literature, several names are used to refer to models created from co-
occurrences matrices. Sahlgren (2006) describes them as word space models in
reference to Schütze (1993). Turney and Pantel (2010) refer to them as vector space
models. Throughout this thesis we use distributional semantics models (henceforth
DSMs) following Baroni and Lenci (2010) to refer to all types of models trained
in distributional semantics. In the next section we present the main principles
behind DSMs.

1.3.2 Distributional semantics models
Rather than manually encoding semantic relations between words, DSMs provide
a way to automatically extract knowledge from corpora. In the most straightfor-
ward models, the semantic representations of words correspond to vectors where
elements are the number of occurrences of the target word in different contexts
(Turney and Pantel, 2010). Because the vector values are based on the number
of co-occurrences, these models are created using the number of co-occurrences
and are often referred to as count-based models. Figure 1.1 shows an example of
the raw counts of words with different contexts in Wikipedia. Each row of the
table corresponds to a word being described, the target word. The columns list
all words appearing in the corpus. They constitute the contexts. For each target
word, the number of co-occurrences3 is reported. Thus each vector corresponds
to the occurrences of the target word with contexts words. Using the number of
co-occurrences, it is then possible to compare how similar words are. E.g. the
vector of digital is circled in red and we can see that digital appears more with
computer and data (tech-related words) than with pie and sugar. On the contrary,

3We will see in details what co-occurrences are in section 1.3.4.
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the word cherry appears 8 times with data and 442 times with pie. The word in-
formation appears 5 times with pie and 3982 times with data. By just looking at
these two words and their contexts, we already know that even though they share
some contexts, cherry and information are not similar.

Figure 1.1: Example of co-occurrence vectors for words in the Wikipedia corpus,
taken from Jurafsky and Martin (2018).

Figure 1.2: Example of the projection of the words digital, information and cherry
using computer and data as dimensions.

Using the values from figure 1.1, we represented in figure 1.2 the words digital,
information and cherry using the dimensions computer and data. The proximity in
space represents the proximity in meaning and thus we can see that information is
closer to digital than cherry. Because vectors are constituted of a large number of
dimensions, it is not possible to visualize them all. Usually methods such as PCA
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(Principal Component Analysis) are used to visualize the vectors by reducing the
number of dimensions while keeping a maximum amount of information. When
visualizing words in multiple dimensions, it is important to remember that only
the proximity between words can be interpreted as an indicator of similarity. The
position of words in space (e.g. the fact that words are on the left or on the right
in the vector space) cannot be interpreted.

1.3.3 Measuring similarity
We just saw that words whose vectors are close in the semantic space are considered
distributionally similar. To compute the similarity between vectors, it is very
common to use cosine similarity which computes the similarity of two words based
on the dot product of their vectors. The cosine similarity4 is defined as follows:

cosine(v, w) = v · w
|v||w|

=

N∑
i=1

viwi√
N∑

i=1
v2

i

√
N∑

i=1
w2

i

(1.1)

where v and w are two vectors, and vi and wi correspond to the elements of
the vectors. |v| represents the norm of the vector and this normalization causes
the measure to range from 0 (words that are very different) to 1 (words that are
very similar).

Other measures exist to compute similarity, such as Euclidean distance, but
cosine similarity is the most popular one. Using cosine similarity, given a target
word it is then possible to compute its similarity with all the other words in the
vector space. The words having the closest similarity with a word are called its
nearest neighbors. For example, for a model built on a generic corpus we can imag-
ine that the nearest neighbors of the word cat will be dog, kitten, pet etc. because
they will appear in many similar contexts (e.g., eat, drink, run etc.). By retrieving
nearest neighbors, we directly get an idea about the semantic representation of a
word.

We gave an overview of distributional semantics and of the way multi-dimensional
spaces are used to compute semantic similarity between words. We saw that the
distributional hypothesis is based on the contexts of words and we showed exam-
pled of vectors using co-occurrences. In the next section we propose to take some
time to reflect on the notion of context in distributional semantics. This notion is
extremely important when building distributional models since it highly influences
the way semantic representations are learned.

4From Jurafsky and Martin (2018).
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1.3.4 Contexts
Context is at the roots of the distributional hypothesis. As a consequence the
meaning of a word is highly dependent on what we consider to be its context.
In the previous section, we used simplified examples of DSMs built with raw
co-occurrences. However, we did not go in details into what constitutes these
co-occurrences. In this section we propose to examine the different types of con-
texts used in distributional semantics. Traditionally, we can distinguish between
window-based contexts and dependency-based contexts.

1.3.4.1 Window-based contexts

Window contexts are based on co-occurrences of words extracted using a fixed size
sliding window around the target word. The window can be oriented in only one
direction (right or left) or it can be bi-directional and capture both words on the
right and left of the target word. Usually the sentence is considered the maximum
unit contexts are extracted from and the window stops at the end of a sentence.

Let’s consider the following sentence:

(5) Montréal is a beautiful city in the fall season.

If we consider a bi-directional window of size 2, the contexts of the target word
city are beautiful, a, in, the. If we consider a larger window of size 4 the contexts
are beautiful, a, is, and Montréal on the left and in, the, fall and season. As a
consequence, the size of the window is very important since it determines how
much information is extracted for the target word. The amount of information
then have a direct impact on the semantic representation of the word.

In the example above, words that might not be considered semantically inter-
esting were also captured such as a or the. To avoid this, it is possible to filter
contexts by removing highly frequent words or creating stop word lists (Curran,
2003).

Using window-based contexts presents several advantages. Their computa-
tional complexity is low and they are fast and easy to implement. They also
present the advantage of being language independent (as long as we can rely on
a tokenizer). However, window-based contexts can be considered slightly simplis-
tic as they lack syntactic information about the words extracted. Similarly to a
bag-of-word approach there is no consideration of word order and words appearing
before or after the target word are considered the same (Curran, 2003; Padó and
Lapata, 2007).

The window can take different shapes: it can be triangular or rectangular.
A rectangular window is symmetrical and assigns the same weight to all contexts
surrounding the target word while a triangular window weighs differently the words
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surrounding the target word (Church and Hanks, 1990).

1.3.4.2 Dependency-based contexts

As an alternative to window-based contexts, it is possible to use contexts built
using syntactic information. One of the first approaches dates back to Grefenstette
(1994) who presented SEXTANT, a system using fine-grained syntactic contexts
to compute similarity between words. Lin (1998) also proposed to redefine “local
contexts” by using syntactic dependencies between words. Contrary to window-
based contexts, words are extracted depending on the relation they share with
the target word. As such, using syntactic analysis gives access to a wider range of
contexts. The co-occurrences are not determined by a fixed size window. Moreover,
contexts are more precise and word order can be mirrored in the semantic space
(Padó and Lapata, 2007; Grefenstette, 1994). Let’s consider the following example:

(6) Cats eat dry food.

Using window-based contexts (with a size of 3 or larger), eat and food are both
extracted as two words co-occurring with cat. However using dependency-based
contexts, the information about the syntactic relation can also be captured (cat is
subject of eat, food is the direct object of eat).

Because they do not necessarily need to appear in a small, fixed window,
dependency-based contexts can also provide a larger coverage of contexts (Padó
and Lapata, 2007). Let’s consider another example:

(7) I dislike my neighbor’s new and noisy cat.

In example (7), using window-based contexts, a large window size would be needed
to capture dislike as a context of cat. However, with dependency-based contexts,
since cat is the direct object of dislike, it can be captured as one of its contexts.

Because the extracted contexts are different, investigations have been con-
ducted on the type of information captured by both approaches. It was shown
that dependency-based contexts are more likely to capture words that are taxo-
nomically related, since words considered similar tend to have the same POS and
the same dependency relations with other words. Window-based models tend to
capture associative relations, since the extracted contexts consist of all words sur-
rounding the target word with no specific distinction made between them (Fabre
and Lenci, 2015).

Because it is possible to build a model by selecting different types of syntactic
contexts, dependency-based contexts can offer more flexibility. However, because
the syntactic information is obtained using a parsed corpus and might need ad-
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ditional work to filter syntactic relations, dependency-based contexts can also be
more expensive.

We presented the main differences between window-based and dependency-
based contexts. The choice of the type of context when creating DSMs does not
alter the representation method itself but reflects a choice made regarding the
integration of information. As such, contexts are considered a central parameter
when building DSMs. Context types are not the only parameters required when
creating DSMs and a number of decisions needs to be made. In the next section
we discuss weighting functions that can be applied to vectors.

1.3.5 Weighting functions
In section 1.3.2, we showed an example where co-occurrences were extracted us-
ing raw frequency. However, raw frequency is biased and is not a good way to
discriminate between uses. Some words are highly frequent, e.g. the determiners
the and a. Because they appear with many words they take too much importance
compared to other words (Jurafsky and Martin, 2018). We saw in the previous
section that it is possible to filter out some words (such as highly frequent words)
using stop lists. However, vectors can still suffer sparcity problems, i.e. some of
their elements being 0, because they are built using raw frequencies. To solve these
problems it is possible to use alternatives rather than the raw co-occurrences. Sev-
eral alternatives exist (tf-idf, log-likelihood etc.) but Positive Pointwise Mutual
Information is a popular one. It compares the probability that two words appear
together and the probability that they appear independently (Church and Hanks,
1990).

1.3.6 Dimensionality reduction
In the previous section, we saw that vectors often suffer sparcity problems. Sev-
eral techniques exist to reduce the dimensionality of vectors, making the vectors
dense. E.g. Singular Value Decomposition (SVD) was introduced by Deerwester
et al. (1990) as a way to improve similarity measurements between documents.
Landauer and Dumais (1997) applied it to word similarity (Latent Semantic Anal-
ysis) (Turney and Pantel, 2010). SVD consists in finding the most important
dimensions, and limiting the number of dimensions helps improving the similarity
measured between words (Jurafsky and Martin, 2018; Turney and Pantel, 2010).
Following Deerwester et al. (1990), other dimensionality reductions techniques were
introduced such as Non Negative Matrix Factorization (Lee and Seung, 1999) and
Latent Dirichlet Allocation (Blei et al., 2003).
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1.4. Word embeddings

In the previous sections, we saw that building DSMs requires to make decisions
concerning a number of parameters. Additional parameters exist. For example, us-
ing dependency-based contexts means that a parser is required. As a consequence,
the choice of the parser can be considered as a choice of parameter. Another pa-
rameter which is not directly related to the models mechanics is the corpus used
to create models as well as the pre-processing done on the corpus. We saw in
section 1.2 that the meanings of words depend on the situation. In our case they
depend on the corpus. As a consequence the selection of a corpus to create DSMs
also constitutes a parameter choice that needs to be made. We will discuss this in
more details in chapter 4.

We gave an overview of the main principles behind DSMs. We briefly discussed
the fact that different information can be captured by models and we saw that
many decisions need to be made when creating DSMs. Recently a new type of
models has become increasingly popular: word embeddings. Because this thesis
focuses on training models using word2vec, we present word2vec and its parameters
in more details in the following section.

1.4 Word embeddings
Distributed representations of words, more commonly called word embeddings,
are dense, low-dimensional and real valued vectors that are derived from neural
language models (Turian et al., 2009). Neural Language Models were designed
to overcome the high dimensionality problems when training language models for
Natural Language Processing. By sharing statistical strength between similar
words and their contexts, models learn to treat similarly words that have common
features (Bengio and Ducharme, 2001; Goodfellow et al., 2016). Because they
are dense, i.e. none of their elements is equal to 0, and have a low number of
dimensions, word embeddings are often advertised as a more efficient alternative
to count-based models.

Collobert and Weston (2008) were amongst the first ones to propose an efficient
neural language model inspired by Bengio and Ducharme (2001). However, these
models were computationally expensive. Several years later, Mikolov et al. (2013a)
released word2vec, a toolkit that is based on neural networks to compute word
embeddings in an efficient way.

When we started this work, other tools existed such as FastText (Bojanowski
et al., 2016) but word2vec was the most popular by far and conference proceedings
were flourishing with papers that proposed improved implementations of word2vec
(Herbelot and Baroni (2017); Levy and Goldberg (2014a) to cite a few). Due to its
high popularity it was thus obvious for us to use word2vec for our work. However, it
is important to note that at the moment where we are writing this thesis, numerous
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tools exist to train word embeddings and word2vec has mostly been replaced by
contextual embeddings with BERT (Devlin et al., 2019) probably getting the most
attention.

1.4.1 Word2vec

In this section, we present the main hyperparameters of word2vec. These hy-
perparameters correspond to decisions that need to be made when training word
embeddings using word2vec,

1.4.1.1 Architecture

Word2vec is based on a neural network, a supervised learning method which is
trained to correctly classify an item using a set of features. Neural networks
consist of different layers of so-called artificial neurons. Each neuron is a simple
calculation unit that provides a unique output based on several input values. The
input corresponds to the set of features, the output correspond to the predicted
classification. Building a neural language model consists in training a neural net-
work to predict a word given its context. As a consequence, a process that was
mainly non-supervised (building representations of words based on their distribu-
tion in a corpus) becomes a supervised learning method. The word embedding of
a word is then the weights that were learnt in the hidden layer. As such, it is a
dense vector of arbitrary dimensions that has “captured” the information gathered
from the observation of the contexts of a word.

In word2vec, Mikolov et al. (2013a) proposed two different architectures to
train word embeddings: Continuous Bag of Words (henceforth CBOW) and Skip-
Gram (henceforth SG). Both architectures start learning from randomly initialized
vectors. Then the vectors are updated depending on what is learnt from the
training examples. The two architectures differ in the way they learn how to
update vectors. The CBOW model is a bag of words architecture where word
order is not considered. As shown in figure 1.3, training consists in correctly
classifying the current word by using words surrounding the current word. The
input and output are the values corresponding to words, represented by a sparse
“one-hot” vector, where each dimension corresponds to a word in the corpus. As
a consequence these vectors are mostly constituted of zeros except for the current
word.

The number of context words that are used to learn from depend on the value
of the window size parameter (we will describe this parameters in further details
in section 1.4.1.4).
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1.4. Word embeddings

Figure 1.3: CBOW architecture, taken from Mikolov et al. (2013a).

The SG architecture is similar to CBOW except that instead of using surround-
ing words to predict the current word, as shown on figure 1.4, the words preceding
and following the target word are predicted. The SG architecture is often preferred
to CBOW because it gives better results on semantic and syntactic tasks (Mikolov
et al., 2013b). It is mostly used with the Negative Sampling algorithm.
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Figure 1.4: SG architecture, taken from Mikolov et al. (2013a).

1.4.1.2 Negative Sampling

Negative Sampling is an algorithm that was developed by Mikolov et al. (2013c)
to improve the predictions of word2vec SG. The main idea behind this algorithm
is that word2vec should learn both from positive and negative examples (contexts
that the neural network is trained to reject as possible outputs). Positive examples
correspond to contexts that were actually extracted from the corpus. Negative
examples are a generated number k of negative examples for each positive training
example (the default value of k is 5). To generate negative examples, the target
word is associated to a noise word randomly selected from the corpus vocabulary
according to its weighted unigram frequency (Mikolov et al., 2013c; Jurafsky and
Martin, 2018). Figure 1.5 displays an example of a training sentence with the
extracted positive examples for the target word t and the contexts c. The negative
examples are given for k=2. The algorithm learns to maximize the similarity of
positive examples and minimize the similarity of negative examples (Jurafsky and
Martin, 2018).
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1.4. Word embeddings

Figure 1.5: Example of positive and negative examples used to train word2vec
SG (from Jurafsky and Martin (2018)).

1.4.1.3 Subsampling

In section 1.3.5, we mentioned that count-based models use different weighting
schemes as alternatives to raw cooccurrence frequency values in order to balance
the occurrences of frequent and infrequent words. Word2vec does something sim-
ilar by subsampling very frequent words. The subsampling approach balances
the occurrences of rare and frequent words by discarding words according to the
following probability5:

P (wi) = 1−
√

t

f(wi)
(1.2)

f(wi) is the frequency of the word wi and t corresponds to a chosen threshold
(its default value is 10−3). During training, some contexts words are not presented
to the neural network. As a consequence, this approach is similar to removing
high frequency words to avoid giving them too much importance when learning
representations.

Using subsampling, the learning efficiency is improved since words with a fre-
quency greater than t are not used as training examples. At the same time, the
frequencies ranks are preserved (Mikolov et al., 2013c). However, in theory it
means choosing to randomly remove certain occurrences.

1.4.1.4 Window size

The window size parameter is crucial when training DSMs because it determines
the contexts provided to the model. We saw in section 1.3.4 that the window in
DSM can be either bi-directional (symmetrical) or uni-directional (asymmetrical).
In wor2vec the implementation of the window is symmetrical, i.e. the same number

5From Mikolov et al. (2013c).
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of words are considered before and after the target word and it is only possible
to control the size of the window (default value is 5). However, as noted by Levy
et al. (2015), word2vec window parameter is not a simple symmetrical window.
While the actual implementation is not mentioned in Mikolov et al. (2013a), the
window is “dynamic”. Contexts are weighted according to their distance from the
target word. The intuition behind this implementation is that words that are
closer to the target words are more important. As a consequence they are given
more weight. Words that are further from the target word are considered less
important and are thus assigned less weight. The weighting scheme is based on
the distance of a context word from the target word. If the window has a size of 5,
words surrounding the target word have a weight of 5

5 ,
4
5 ,

3
5 ,

2
5 and 1

5 from closest
to furthest (Levy et al., 2015). In other words, this corresponds to a triangular
window.

1.4.1.5 Number of dimensions

The dimensions in word2vec models do not correspond to contexts and are not
interpretable (Senel et al., 2018). The number of dimensions only corresponds
to the size of the vectors. It might be challenging to set the optimal number of
dimensions when training word embeddings. By default, in the C implementation
of word2vec, the number of dimensions is set to 100. In chapter 4 we experiment
with several different values.

1.5 Beyond word2vec
Word2vec makes it easy to train word embeddings efficiently and this partly ex-
plains the rapid success it encountered. Quite early on, many research papers
proposed to improve word embeddings by injecting additional knowledge such as
syntactic information (Levy and Goldberg, 2014a; Wang et al., 2015) or semantic
knowledge (Yu and Dredze, 2014). At the same time, other dense representa-
tions models were introduced, such as GloVe, which is trained using the non-zeros
elements of a word-by-word matrix (Pennington et al., 2014).

Because word2vec is a bit of a black box system, Levy and Goldberg (2014b)
decided to investigate the way it learns semantic representations. They found that
SG with negative sampling implicitly factorizes a word-context matrix. The cells
of the matrix correspond to the PMI of a word with its contexts that is shifted
using a global constant.

Choosing the appropriate parameters is also challenging with word2vec. As a
consequence, several studies focused on investigating hyperparameters used when
training word embeddings. E.g. Baroni et al. (2014) conducted a comparative
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study of count-based and predictive models to see if the keen interest and the “tri-
umphalist overtones surrounding predict models” were justified. They provided
an extensive evaluation of DSMs on several semantic tasks across many param-
eters settings (window size, vectors dimensions, negative sampling rate). They
found that predictive models yield very good results and recommended switching
to predictive models. Chiu et al. (2016) investigated the influence of the cor-
pus used as well as the impact of several hyper-parameters (negative sampling
rate, subsampling rate, min-count threshold, learning rate, vector dimensions and
window size) when training word embeddings for biomedical NLP. They found
that the performance of word vectors changed with different corpora and that the
model architecture and hyper-parameters settings had a huge impact on a model
performance. Caselles-Dupré et al. (2018) investigated the importance of tun-
ing hyper-parameters for recommendation systems. They found that optimizing
the negative sampling rate, the number of epochs, the subsampling rate and the
window size improves recommendations tasks performance.

Other studies compared the performance of models trained using word2vec
with the performance of other distributional semantics models. Bernier-Colborne
and Drouin (2016) provided an investigation of the impact of hyperparameters for
DSMs in the context of specialized lexicography. Sahlgren and Lenci (2016) studied
the impact of corpora size when training distributional semantics models. Among
other results, they showed that word2vec did not perform well when trained on
small corpora. Asr et al. (2016) examined several DSMs trained on child-directed
speech. They showed that claiming one model is better than another is not as easy
as it seems.

Finally, several studies investigated the influence of contexts used when training
word embeddings. Melamud et al. (2016) provided an extensive evaluation of the
influence of different context types when training skip-gram word embeddings. Li
et al. (2017) provided a systematical investigation of different syntactic context
types when training word embeddings.

Lots of works also focused on adapting word2vec to different types of input.
Levy and Goldberg (2014a) presented a modified version of word2vec skip-gram
that uses dependency-based context to train embeddings. Tissier et al. (2017)
presented Dict2vec, a new approach to learn word embeddings from lexical dictio-
naries derived from word2vec skip-gram. Herbelot and Baroni (2017) implemented
Nonce2Vec, a tool inspired from word2vec architecture to learn new words from
tiny data.

Recently, we observed parallel research trends. On one hand, with the growing
interest for deep learning, more and more people are not necessarily questioning
the word embeddings they are using and mainly use pre-trained word embeddings.
Most word embeddings implementations actually propose several pre-trained mod-
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els (either trained on different corpora or for different languages). The main idea
is that when training word embeddings, the more data the better. Since large cor-
pora are not necessarily accessible to everyone, providing pre-trained models help
making word embeddings “mainstream”. Recently, the release of ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019) even reinforced this impression that
only pre-trained embeddings are needed since both models are not as straightfor-
ward to train as word2vec (and others) and are prohibitively expensive to train.
On the other hand, we see people trying to make sense out of word embeddings
and investigating the role and influence of linguistics in word embeddings models
(see for example Andreas and Klein (2014); Tenney et al. (2019)).

Although giving access to better performing models seems necessary, one main
drawback is that those models do not provide access to a lot of linguistic infor-
mation that was previously accessible with count-based models. For example,
count-based models permit lots of freedom in terms of the types of contexts se-
lected and offer the possibility to observe the actual contexts that are used to
build the model. Reconstructing contexts with word2vec is more challenging since
word2vec algorithm transforms the input used for training, e.g. subsampling re-
moves highly frequent words. Count-based models present the advantage of pro-
viding a controlled environment where understanding the impact of a parameter
and investigating linguistic phenomena is easier.

In the next chapter we review selected evaluation methods for distributional
semantics models. We also discuss some problems existing with those methods.
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Distributional Semantics
Evaluation
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2.1 Evaluating distributional semantics models
In the previous chapter, we gave an overview of distributional semantics and of
different techniques available to build models. We saw that DSMs encode infor-
mation about the similarity of words and that words appearing in similar contexts
have similar vectors. However if DSMs are expected to encode semantic informa-
tion about words, it is difficult to understand exactly what type of information
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they capture and carry. One major issue that comes along with the use of DSMs
is to find an appropriate way to evaluate them. Whether we are talking about
neural-based models (word embeddings) or about traditional count-based models,
evaluating DSMs is not a recent problem and it has been investigated for several
decades. However, there is still no ideal way to evaluate DSMs and yearly calls for
papers from workshops such as RepEval (Workshop on Evaluating Vector Space
Representations for NLP) are a good illustration of that problem:

Models that learn real-valued vector representations of words, phrases,
sentences, and even document are ubiquitous in today’s NLP land-
scape. These representations are usually obtained by training a model
on large amounts of unlabeled data, and then employed in NLP tasks
and downstream applications. While such representations should ide-
ally be evaluated according to their value in these applications, doing
so is laborious, and it can be hard to rigorously isolate the effects of
different representations for comparison. There is therefore a need for
evaluation via simple and generalizable proxy tasks. To date, these
proxy tasks have been mainly focused on lexical similarity and relat-
edness, and do not capture the full spectrum of interesting linguistic
properties that are useful for downstream applications. This workshop
challenges its participants to propose methods and/or design bench-
marks for evaluating the next generation of vector space representa-
tions, for presentation and detailed discussion at the event.
Call for Papers RepEval 2017, https://repeval2017.github.io/call/

This call for the RepEval workshop proves that the evaluation of DSMs is a
real and complex problem that impacts all types of DSMs. The current evaluation
methods are not satisfying because they mainly focus on lexical similarity and
while this notion is major in distributional semantics, other linguistic properties
are omitted.

The difficulty of finding an appropriate evaluation task also lies in the fact that
DSMs are used in many different ways and for different applications. Some studies
focus on understanding the type of information encoded in vectors while other
studies are rather more interested in using DSMs for a particular application. In
both cases different aspects are investigated. As a consequence it is necessary to
adapt the evaluation so that it is relevant to the purpose evaluated.

In deep learning, word embeddings are used as the first layer in neural network
models to represent input words. As such, it is usual to use the best perform-
ing models. Deep learning models are expensive to train and it is thus common
to test the performance of embeddings separately without necessarily evaluating
the impact on the whole deep learning system. As a consequence, getting the
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best performing models generally means tuning the various different parameters
to find the combination that will train the best model. Sometimes different com-
binations are tested without even considering the various impacts of the different
parameters. Other studies focusing on the best combinations of parameters take
another approach by investigating the impact of those parameters (see for example
Caselles-Dupré et al. (2018); Chiu et al. (2016); Melamud et al. (2016)). As we saw
in the previous chapter, we can in fact state that DSMs have really become part of
two worlds. The deep learning world focuses more on using DSMs without neces-
sarily questioning the type of information they contain, while the linguistic world
uses DSMs in a more empirical way. The division between the two approaches is
actually identified as a problem.

DSMs provide great tools that can be used in linguistics. E.g. it is possible
to retrieve words that are semantically similar in a corpus by observing a word’s
nearest neighbors. In that case, the focus is rather set on the ability of DSMs to
properly reflect linguistic information and thus being able to use DSMs to observe
linguistic phenomena. However, before being able to use DSMs to draw linguistic
conclusions it is absolutely necessary to make sure that models are accurate and
this remains a difficult challenge.

Another empirical use of DSMs consists in investigating the DSMs themselves
to understand the type of information they encode. This type of research does
not necessarily target the use of DSMs for a specific goal but is more focused
on understanding the different linguistics processes encoded in DSMs (syntax,
polysemy etc.). E.g., Gupta et al. (2015) investigated how DSMs encode referential
attributes (e.g. Italy has 60 million inhabitants) using a supervised regression
model. Another example is Andreas and Klein (2014) who investigated the type
of syntactic information encoded by word embeddings.

Evaluating DSMs consists in comparing the performances of several models and
this comparison can sometimes aim at observing differences. E.g. in disciplines
like digital humanities (i.e. the use of techniques like NLP for the humanities)
DSMs can be used to investigate phenomena such as linguistic change (see for
example Hamilton et al. (2016))1.

This variety of usages and applications requires different ways to evaluate
DSMs. It would be irrelevant but also a waste of time and resources to evaluate
DSMs that are to be integrated into a deep learning system and DSMs that are
used to investigate linguistic phenomena with the same methods. Usually DSMs
are evaluated with two different types of methods: extrinsic and intrinsic.

Extrinsicmethods do not directly evaluate the model but the benefits it brings
when used as a component in a given task. This means that this type of evaluation
focuses on the performance of the models integrated into the system rather than

1We will review this study in more details in chapter 3.
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on the performance of the DSM itself. E.g. this is the case with part-of-speech
tagging, Named Entity Recognition or sentiment classification. In those cases,
evaluation is directly related to the task as a whole (texts used to evaluate are
labeled with named entities, documents are classified according to the sentiment
class they belong to etc.) and the evaluation measures used are specific to the task.
This type of evaluation assumes that having good quality DSMs helps improving
the performance of the tested model (Schnabel et al., 2015). Its primary focus is
not set on understanding better the different linguistic aspects encoded in DSMs.
We could expect that if a model helps get better results for a POS tagging task
it means it encodes good quality information about syntax. However, Schnabel
et al. (2015) specifically focused on the influence of embeddings quality on different
tasks and they found that tasks were impacted differently by the quality of models.
This means that by evaluating only with extrinsic methods it might be necessary
to multiply evaluation tasks to get a global overview of the impact of a model on
a task performances.

Intrinsic evaluation is the other type of method used to assess DSMs per-
formances. In the evaluation of NLP systems, intrinsic evaluation consists in
evaluating the output of a system according to predefined criteria that correspond
to how the system is supposed to function. Compared to extrinsic evaluation,
intrinsic evaluation is generally easy to setup automatically, since only the output
of the system is assessed. The first part of intrinsic evaluation usually consists
in getting data annotated by human judges. The annotated data is then used to
compare against the output of the evaluated system (Resnik and Lin, 2010). Let’s
consider the evaluation of a POS-tagger as an example. Usually POS-taggers are
used to process data and as such they are part of an intermediate phase. Then the
extrinsic evaluation consists in evaluating the whole pipeline for a given task (e.g.
pre-processing data by lemmatizing and POS-tagging words, and then using the
tagged data as the input of a sentiment classification task). In order to improve
the POS-tagger and be able to identify its limitations, it is necessary to use intrin-
sic evaluation methods. First, experts are asked to annotate sentences with the
POS corresponding to each token. Then the same sentences are used as an input
to the POS-tagger and the output given by the system is compared to the anno-
tations made by the judges. The annotations made by judges are considered the
gold standard. A well performing POS-tagging model is then able to get results
as close as possible to the human annotations.

Contrary to extrinsic evaluation, intrinsic evaluation focuses more on the DSMs
themselves by assessing the quality of word vectors through the comparison of
their performance against datasets (or gold standards) that were created gathering
human similarity judgments. If we considered intrinsic evaluation tasks literally,
experts would be asked to create vectors from scratch. Then these vectors would
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be compared to trained DSMs. However, this approach would be very naive and
actually impossible to set up. There is a need for an intermediate task that remains
close to the vectors. This is why the measure of similarity is used to evaluate DSMs.
Because it is easy to use these datasets, they are usually the standard method to
evaluate DSMs.

The work we present here focuses on the investigation of word embeddings from
a linguistic point of view and we want to understand the role played by linguistics
when training word embeddings. We are thus interested in investigating the model
by itself. This is why we chose to focus on intrinsic evaluation. In the next section
we present selected intrinsic evaluation datasets used to evaluate DSMs. We show
that intrinsic methods can provide immediate feedback on the performance of
DSMs. We also show that this type of evaluation is not satisfying to understand
DSMs in a deeper way and that resources used in this type of evaluation present
several biases.

2.2 Intrinsic evaluation
When evaluating DSMs, we are interested in the distance between vectors which
reflects their similarity. The most direct way to test for this is by verifying if vectors
properly encode the notion of similarity as it is conceptualized by humans. Several
datasets were created by asking humans to rate the degree of semantic similarity
between word pairs (Baroni and Lenci, 2011; Baroni et al., 2014; Schnabel et al.,
2015). Pairs with high scores are considered highly similar and pairs with low score
are considered highly dissimilar. The performance of the model is then assessed by
computing the correlation between scores given by human annotators and a chosen
similarity score (such as the cosine score) computed between vectors. This task
is thus testing the extent to which a given model reproduces human judgments
(Gladkova, 2016). When comparing different DSMs, the model getting similarity
score the closest to the ones given by human annotators is considered the “best”
model.

Because several datasets already exist, intrinsic evaluation does not require a
lot of additional resources. Only a dataset annotated with human judgments as
well as a chosen similarity measure are needed to evaluate the performance of a
model. It is thus an efficient and easy way to evaluate DSMs with the guarantee
of getting immediate and easy to interpret feedback on a model’s performance.
At the same time, it also allows for faster prototyping and development of DSMs
(Faruqui et al., 2016). This explains why it is a very popular method to evaluate
DSMs.

With the introduction of word embeddings, analogy has become a popular
intrinsic evaluation task. Mikolov et al. (2013a) showed that word embeddings are
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good at capturing semantic information that can be retrieved thanks to simple
algebraic operations. This is illustrated by the famous following example:

vector(king) - vector(man) + vector(woman) = vector(queen)

where a model must be able to retrieve that queen is for woman what king is
to man.

Mikolov et al. (2013a) designed the Semantic-Syntactic Word Relationship
dataset to test how embeddings capture analogies. Table 2.1 displays some se-
lected examples from this dataset. We can see then that various types of relations
are expected to be captured, e.g. a capital to its country (Beirut is to Lebanon
what Berlin is to Germany) or an adjective to its superlative (bad superlative is
worst and high superlative is highest).

Relation Word Pair 1 Word Pair 2
Capital - Country Beirut - Lebanon Berlin - Germany

City - State Chicago - Illinois Houston - Texas
Adjective - Adverb complete -completely infrequent - infrequently

Adjective - Superlative bad - worst high- highest

Table 2.1: Examples of relations and word pairs from the Semantic-Syntactic
Word Relationship dataset (Mikolov et al., 2013a).

In the next sections we present selected datasets commonly used for intrinsic
evaluation. We first present what we consider to be “traditional” datasets, in the
sense that they are systematically used for DSMs evaluation. We then discuss
the various problems encountered with these datasets as well as the alternative
datasets developed to overcome these problems.

2.2.1 Traditional datasets
We consider traditional datasets, datasets of word similarity measures commonly
used for the evaluation of DSMs.

Rubenstein and Goodenough (1965) This dataset is one of the first ones
created to test semantic similarity. Rubenstein and Goodenough (1965) were con-
cerned by the relationship between similarity of context and similarity of meaning
and decided to investigate the hypothesis stating that words sharing many con-
texts are semantically related. The notion of similarity is difficult to evaluate. An
inexpensive way to test for it is to ask human annotators to rate the similarity of
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pairs of words. As a consequence, the authors gathered 65 pairs of common En-
glish nouns (48 different nouns) and asked 51 judges to rate those pairs between 0
and 4. The following instructions were given to the annotators:

1. After looking through the whole deck, order the pairs according to
amount of "similarity of meaning" so that the slip containing the pair
exhibiting the greatest amount, of "similarity of meaning" is at the top
of the deck and the pair exhibiting the least amount is on bottom,
2. Assign a value from 4.0-0.0 to each pair–the greater the "similarity
of meaning," the higher the number. You may assign the same value
to more than one pair.
(Rubenstein and Goodenough, 1965)

The annotated pairs were used to investigate the correlation between shared
contexts and synonymy. The authors did find a positive relationship between the
degree of similarity of words and the degree of similarity of their contexts.

Word1 Word2 Judgment score
fruit furnace 0.05

magician oracle 1.82
asylum madhouse 3.04
magician wizard 3.21

gem jewel 3.94

Table 2.2: Examples of pairs of words along with judgment similarity scores se-
lected from the Rubenstein and Goodenough (1965) dataset.

While this dataset was first designed to investigate a specific phenomenon, it
is still used nowadays to evaluate the performances of DSMs. Table 2.2 displays
selected examples of pairs of words from this dataset along with the average judg-
ment score assigned to the pair. While it is not surprising that fruit and furnace
have a very low similarity score, we can notice that asylum and madhouse have a
lower similarity score than magician and wizard or than gem and jewel. We can
wonder why this is the case and if it is really accurate. What makes wizard more
similar to magician compared to asylum and madhouse? Since the judgments are
given by human annotators without any explanations to justify their choices, we
can question the scores accuracy. This type of phenomenon is a recurring problem
with datasets used for intrinsic evaluation as we will observe later on.
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WordSim-353 (Finkelstein et al., 2002) Later on, with the development of
Natural Language Processing and Information Retrieval, there was an increased
need to be able to test semantic similarity. WordSim-353 is a highly popular
dataset that was created to test a system developed by Finkelstein et al. (2002).
At the time there were “no accepted procedures for evaluating performance of
semantic metrics” and the main idea was that “a good metric should approximate
human judgments well” (Finkelstein et al., 2002). Some resources already existed
such as the Rubenstein and Goodenough (1965) dataset, however they were a bit
limited and consisted of only a few pairs of words. As a consequence, Finkelstein
et al. (2002) decided to develop a test set containing 353 pairs of nouns (437
distinct nouns) with different degrees of similarity. Although we know that the
task was carried out by several judges (16 subjects were asked to give a similarity
score ranging from 0 to 10 to each pair of words), no details are explicitly given
regarding the way the resource was designed and the choice of words constituting
the 353 pairs.

Word1 Word2 Judgment score
king cabbage 0.23
glass metal 5.56
money laundering 5.65
cup coffee 6.58
tiger cat 7.35
book paper 7.46

computer keyboard 7.62
king queen 8.58

Maradona football 8.62
magician wizard 9.02

Table 2.3: Selected examples of pairs of words along with judgment similarity
scores from WordSim-353.

Table 2.3 displays selected pairs of words along with their judgment scores.
By looking at pairs with the highest scores, we notice that the semantic relations
shared by words are heterogeneous. For example, Maradona and football are linked
by a semantic relation of association, Maradona was a football player. Magician
and wizard are synonyms. Keyboard is a meronym of computer. It is thus challeng-
ing to understand the meaning of a high similarity judgement. Moreover, pairs of
co-hyponyms are not always evaluated in the same way. The pair glass and metal
have a lower similarity score than king and queen while they are both co-hyponyms.
Despite these anomalies, because there was a lack of resources to evaluate semantic
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similarity systems and because WordSim-353 was one of the first large semantic
similarity dataset, it rapidly became a standard for DSMs evaluation. It has been
and is still used in many studies. E.g., Lapesa and Evert (2014) used it as one
of the datasets to evaluate the impact of different parameters (corpus, window
direction, transformation applied to the model etc.) when training DSMs. Simi-
larly, Kiela and Clark (2014) used it to investigate several parameters used when
training DSMs. More recently, Li et al. (2017) used it as part of the evaluation of
several word embeddings models learned using different context types.

MEN (Bruni et al., 2013) While WordSim-353 contains more words than the
resource developed by Rubinstein et al. (2015), its coverage is still rather limited
especially considering that DSMs consist of thousands of words. MEN (Marco, Elia
and Nam) is a larger resource made of 3000 pairs of words (751 distinct words) and
was created specifically to evaluate multimodal distributional semantics models,
i.e. models that mix text and image features. Because of its large coverage, MEN
can be divided into development and test set to avoid overfitting on the dataset.
The dataset was created using words randomly collected from text corpora (words
had to appear at least 700 times in UKWaC and Wackypedia) combined with
image collections (words had to appear as tags at least 50 times in ESP-Game and
MIRFLICKR-1M). Each collected pair was randomly matched with another pair
and a single Amazon Mechanical Turk worker was asked to rate if a given pair was
more or less semantically related compared to the other pair provided. Each pair
was rated against 50 pairs thus giving a 50-scale points final score2. This scoring
method was used to avoid giving specific scores to pairs and to rather be able to
compare judgments without bias due to similarity perception.

Word1 Word2 Judgment score
automobile car 50
raspberry sweet 34
bedroom kitchen 30
beauty orchid 23
fun haircut 15
art beer 9

bakery zebra 0

Table 2.4: Selected pairs of words from MEN along with similarity score.

Table 2.4 gives some examples of word pairs in the MEN test set as well as
2https://staff.fnwi.uva.nl/e.bruni/MEN
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the comparison score out of 50. Again, we notice the variety of semantic relations
among pairs which is even made more challenging because of the variety of POS
used in the resource. E.g. sweet is an adjective and is an attribute of raspberry.
Its score is higher than the pair of co-hyponyms nouns bedroom and kitchen (34
and 30 respectively).

SimLex-999 (Hill et al., 2015) Recently, Hill et al. (2015) developed SimLex-
999, a test set made of 999 pairs of words (1028 distinct words) that focuses mainly
on similarity. This means that contrary to other datasets such as WordSim-353
that mixes the notion of similarity and of semantic relatedness34 SimLex contains
only pairs of words that are semantically similar. The pairs were selected using
the University of South Florida Free Association Database. This database was
constituted by presenting words to participants and asking them to write the first
word that came to their mind and that was associated or “meaningfully related”
to that word. Each concept was presented to at least 10 participants and the
database contains more than 72000 pairs of words. To select the 999 pairs of
words, some filtering was applied on the 72000 pairs of words. First, only pairs
that were semantically similar were kept. Then pairs where a word POS was
ambiguous were discarded. The pairs are made of words that have the same POS,
resulting in pairs of adjectives (e.g. wide-narrow), pairs of nouns (e.g. woman-
man) and pairs of verbs (e.g. vanish-disappear). The ratings of pairs was done by
participants via Amazon Mechanical Turk (500 participants). Participants were
asked to assign a rate ranging from 0 to 6 to 20 groups of pairs. Adjustments
were made to ensure that the ratings were not biased. The mean rating of each
participant was computed and when the absolute difference between the mean
rating and the mean of the ratings of all participants was greater than 1, the
ratings were increased or decreased to make sure the ratings were consistent. The
average mean ratings for each pair were then transposed from the 0 to 6 scale
to a 0 to 10 scale. Because Hill et al. (2015) wanted to represent all degrees of
concreteness in the test set, pairs of words have different degrees of concreteness.
Table 2.5 displays some pairs of words with the concreteness score5 of each word
as well as the similarity score assigned to the pair. Pairs such as book and text or
wood and paper are constituted of highly concrete words while pairs such as bizarre
and strange or belief and impressions are constituted of highly abstract words. We
will investigate the role of the degree of concreteness on DSMs in chapter 6.

3We saw such an example before with the high score of 8.62 for the word pair Maradona-
football.

4The distinction between semantic similarity and relatedness is discussed in section 2.2.2.6.
5We further discuss concreteness in section 2.2.2.4.
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Word1 Word2 Concr. Word1 Concr. Word2 Sim. score
book text 4.9 4.93 6.35
wood paper 4.85 4.93 2.88
sad funny 3.07 2.5 0.95

champion winner 3.82 3.21 8.73
acquire find 2.93 2.63 6.38
belief flower 1.19 5 0.4
bizarre strange 1.79 1.86 9.37
belief impression 1.19 2.23 5.95

Table 2.5: Pairs of words selected from SimLex-999 along with similarity score and
concreteness score for both words.

We presented four different datasets. We saw that each dataset was designed
differently. As a consequence, when using these test sets to evaluate DSMs, it
is not possible to compare the different results. Moreover, depending on the size
of the test set, only a small portion of the model is evaluated. While numerous
other datasets exist, we chose to present here a selection of popular ones. All the
presented datasets were created using average human annotations for several pairs
of words. We saw that these datasets were of different sizes. All datasets have a
similar approach to similarity that is not always clear. Despite this heterogeneity
and lack of clarity, there are all used in the same way, with automated measures
that are easy to implement.

In this section, we presented selected popular datasets often used as a bench-
mark in DSMs evaluation. We also showed that effort is made to improve datasets
over time with most recent ones trying to overcome known problems. However
several problems remain unresolved, e.g. no information is given about the type
of semantic relations governing the different pairs of words and no systematic dif-
ference made between semantic similarity and relatedness. Another problem is
that is it common to use several datasets to evaluate one model. The idea then is
to achieve the highest scores possible on the selected datasets. The better score
represents the best final evaluation result. Does the variety of resources implies
better results? Is a model considered more reliable because it performs well on
several datasets? The next section reviews and questions the main issues existing
with most of the datasets we presented.
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2.2.2 Common problems with classic datasets
Recently, the use of word embeddings have raised questions regarding the use of
intrinsic datasets as a main tool of evaluation. Faruqui et al. (2016) show that the
test sets used suffer several problems. Schnabel et al. (2015) argue that pairwise
similarity alone miss information encoded in word vectors. In this section, we
explore several problems existing with traditional datasets.

2.2.2.1 Size of datasets

The first datasets created to evaluate semantic similarity were relatively small.
While more recent datasets consisted of more pairs of words, datasets used for
evaluation are still very limited. Moreover, words used in those pairs are re-used
from one pair to the other. For example we saw that MEN is constituted of 3000
pairs of words made using 751 different words. This means that these datasets
only cover a limited portion of the model’s vocabulary, that might not always be
relevant for all models. E.g., WordSim-353 was developed in a particular context,
to evaluate the semantic core of an information retrieval system, IntelliZap. While
this system was performing general knowledge search, we can wonder if it is really
transferable to other systems and models without questioning the content of the
dataset.

2.2.2.2 Subjectivity of the annotation task

Another major problem with datasets used for intrinsic evaluation is the subjectiv-
ity implied by the annotation process for the pairs of words. The similarity scores
in datasets are human judgments, that are crowd-sourced most of the time. This
means that there is no control of the environment in which the annotation task
was conducted (Gladkova, 2016). The task is also not necessarily completed by
experts and as a consequence these scores seem to correspond more to an intuition
than to an exact way of measuring semantic similarity between words (Baroni
and Lenci, 2011). Evaluating the similarity of pairs of words is not trivial. We
can give as an example our own experience as annotator as part of the Evolex
project, a multidisciplinary project combining psychological, neuropsychological
and natural language processing methods. This project aims at proposing tools to
be able to evaluate how lexical access differs for people with or without language
deficits (Gaume et al., 2018). This project uses pairs of words that were gathered
by asking participants to name the word that would come to their mind given a
word. To perform analyses these pairs needed to be annotated with the semantic
relation they shared. While both persons in charge of the annotation task were
experienced linguists, they did not always agree on the type of semantic relation
shared by words. E.g. for the pair apricot and tree one annotator considered
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that tree was an holonym of apricot while the other annotator judged it was more
relevant to say that the two words were associated.

The problem is also, as noted by Faruqui et al. (2016), that the annotations
are not consistent between pairs of words. E.g. a pair such as cup and coffee
was considered more similar by annotators in WordSim-353 than a pair like car
and train. This could even be reinforced by the absence of context during the
annotation task that makes it challenging to distinguish between meanings that
are subtle most of the time6. Moreover, with no context available, it is challenging
to annotate polysemous words. As a consequence, the inter-annotator agreement
is low for a task that assumes that there exists a single similarity score for each
pair of words (Batchkarov et al., 2016). Looking at a specific example, the word
pair tiger-cat have scores ranging from 5 to 9 in WordSim-353.

2.2.2.3 Identification of words

We saw that datasets sizes remain limited and that the provided scores cannot be
fully relied on. Another major problem is that the same amount of information
is not provided across datasets making it difficult to compare results from one
dataset to another. For example, some datasets do not provide any information
about the POS of words. This is a problem for several reasons. First, it questions
the viability of the annotation task, since some words could be ambiguous and
be either nouns or verbs. Secondly, it also means that when using those datasets
one does not exactly know what is evaluated. While some datasets have tried to
overcome this problem, such as SimLex-999 which provides the POS of words, it
questions the use of multiple datasets and the ability to understand and interpret
results from one dataset to the other.

2.2.2.4 Concreteness of words

We saw that SimLex-999 incorporated information about the concreteness of pairs
of words. We were curious about the different concreteness degrees of words in
different datasets and decided to investigate it. We chose to focus on WordSim-353,
MEN and SimLex-999.

To investigate the average concreteness of words in evaluation test sets we used
crowdsourced concreteness ratings for 39954 words gathered by Brysbaert et al.
(2014). Each word has a concreteness score ranging from 1 (for abstract words)
to 5 (for concrete words). The average concreteness score over the whole test set
is of 3.04 with a standard deviation of 1.04. The following instructions were given
to participants:

6See also Muller et al. (2014).
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Some words refer to things or actions in reality, which you can ex-
perience directly through one of the five senses. We call these words
concrete words. Other words refer to meanings that cannot be ex-
perienced directly but which we know because the meanings can be
defined by other words. These are abstract words. Still other words
fall in-between the two extremes, because we can experience them to
some extent and in addition we rely on language to understand them.
We want you to indicate how concrete the meaning of each word is for
you by using a 5-point rating scale going from abstract to concrete. A
concrete word comes with a higher rating and refers to something that
exists in reality; you can have immediate experience of it through your
senses (smelling, tasting, touching, hearing, seeing) and the actions
you do. The easiest way to explain a word is by pointing to it or by
demonstrating it (e.g. To explain ‘sweet’ you could have someone eat
sugar; To explain ‘jump’ you could simply jump up and down or show
people a movie clip about someone jumping up and down; To explain
‘couch’, you could point to a couch or show a picture of a couch). An
abstract word comes with a lower rating and refers to something you
cannot experience directly through your senses or actions. Its meaning
depends on language. The easiest way to explain it is by using other
words (e.g. There is no simple way to demonstrate ‘justice’; but we
can explain the meaning of the word by using other words that capture
parts of its meaning).
Brysbaert et al. (2014)

According to Brysbaert et al. (2014), concrete words correspond to things you
can experience through your different senses while abstract words are things you
cannot experience directly and that are more difficult to demonstrate. Words
were presented to annotators without their POS which was added a posteriori
according to the dominant usage in corpus. Table 2.6 gives examples of abstract
words (although and belief ), somewhat concrete words (synaptic and tonight) and
very concrete words (human and elk). We notice that the POS attributed to words
do not correspond to the reality of the annotation. The high concreteness score of
human is probably a result of the fact that when it was presented to annotators
they thought about the noun. Moreover, elk is annotated as a verb while it actually
is a noun and it does not exist in any dictionary as a verb. Despite these aspects,
we decided to experiment with this resource because it is, to our knowledge, the
most comprehensive resource on concreteness.
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Word Concr. score Dominant POS
although 1.07 Conjunction
belief 1.19 Noun
synaptic 2.54 Adjective
tonight 2.93 Adverb
human 4.53 Adjective
elk 4.93 Verb

Table 2.6: Selected examples of words with their concreteness ratings and POS
from Brysbaert et al. (2014) resource.

For each word in each test set we retrieved its concreteness score and discarded
words that were not found in Brysbaert’s database. We then computed the average
degree of concreteness for each test set. This resulted in concreteness scores for
1028 words for SimLex-999, 743 words for MEN and 418 words for WordSim-353.
For the latter, words that did not exist in the resource were mainly proper nouns.

We found that both SimLex-999 and WordSim-353 contains a mix of abstract
and concrete words with an average concreteness score of respectively 3.63 and 3.73
and a standard deviation of respectively 1.13 and 1. Regarding SimLex-999 we
were expecting words with different degrees of concreteness since it was designed
this way. MEN contains mainly highly concrete words with an average concreteness
score of 4.42 and a standard deviation of 0.61. This bias towards concrete words is
most certainly due to the way the resource was constituted, selecting words that
appeared as tags in image collections.

Figure 2.1: Average concreteness score with standard deviation by POS and for
all POS together for words in WordSim-353, SimLex-999 and MEN.

Figure 2.1 displays the concreteness score grouped by POS as well as the overall
concreteness score for all POS for WordSim-353, SimLex-999 and MEN. We can
see that although SimLex-999 and WordSim-353 are on average a mix of abstract
and concrete words, the repartition among POS is not equally distributed. In
WordSim-353 adjectives are mainly abstract while it seems that nouns are mostly
concrete. A similar pattern can be observed in SimLex-999 with adjectives and
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verbs being mostly abstract and nouns being mostly concrete. We also found that
some POS are more present than others in SimLex-999 and that the majority of
the test set consists of nouns (1332 nouns, 444 verbs and 222 adjectives). MEN
mostly consists of concrete words, regardless of their POS.

2.2.2.5 Polysemy

Because of the nature of the annotation task, we also wanted to investigate the
polysemy of words in different test sets. Again, we chose to focus on WordSim-353,
SimLex-999 and MEN.

We computed the degree of polysemy of each word using Princeton Wordnet
(Miller, 1995). For each word in each evaluation test set we retrieved the number
of synsets it has. A word with a high number of synsets is considered to be highly
polysemous.

In order to get an idea of the average degree of polysemy of nouns, verbs and
adjectives, we computed the average number of synsets per POS in Wordnet. We
found that nouns have 1 synset on average (±1), verbs have 3 synsets on average
(±3) and adjectives have 2 synsets on average (±1).

When computing the average number of synsets per POS for words in the
selected benchmarks we found that in SimLex-999 and MEN verbs were highly
polysemous with an average number of synsets of respectively 7 (±8) and 12 (±10).
Among those highly polysemous verbs we observe generic verbs such as make,
carry, hold or draw. Verbs in WordSim-353 have 4 synsets on average (±1) which
is similar to what was observed for all verbs in WordNet. Adjectives also have
more synsets on average than all the adjectives in WordNet. However we observed
that adjectives have about the same number of synsets in the 3 benchmarks: 5 in
WordSim-353 (±4), 5 in SimLex-999 (±4) and 5 in MEN (±5). We found that
nouns in all the three benchmarks have 4 synsets on average (±3). It is interesting
to notice that unlike what could have been expected given their high degree of
concreteness, words in MEN are as polysemous as the one in SimLex-999 and
WordSim-353.

We found that on average words in benchmarks are more polysemous than
the average English nouns, verbs and adjectives. We also found that verbs and
adjectives are more polysemous than nouns. Since there is only one representation
per word, polysemy is directly related to the distributional semantics problem. As
a consequence, it is important to consider the bias towards polysemous words in
the datasets when using them.
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2.2.2.6 Semantic similarity and relatedness

The last issue we want to point at concerns how similarity is represented in
datasets. It is generally not clear what type of semantic relations are being as-
sessed. What does it mean that two words are considered similar? Do they need
to be synonyms? Are hyponyms considered similar and if so to what degree? Are
words bound by different semantic relations considered to hold different types of
similarity?

We usually distinguish between two different concepts: semantic similarity
and relatedness. For Budanitsky and Hirst (2006), relatedness is a more general
concept than semantic similarity and it refers to words that are related by the
semantic relation of meronymy (body-arm), antonymy (tall-small), by functional
association (cup-coffee) or by “non-classical relations”. Non-classical relations are
a reference to Lakoff (1987)’s terminology of “classical” relations that described
“categories whose members are related by shared properties” (Morris and Hirst,
2004). Non-classical relations then do not depend on shared properties. Such rela-
tions are often referred to using a “general case relation”, e.g. instrument/activity
for the pair of word ball-cricket (Morris and Hirst, 2004). Concerning semantic
similarity, Budanitsky and Hirst (2006) consider that pairs of words that are se-
mantically similar are pairs linked by a relation of synonymy (magician-wizard)
or hypernymy (animal-cat).

In their study on similarity and relatedness, Agirre et al. (2009) consider
that words that are similar are words that share a semantic relation of syn-
onymy, antonymy, hyponymy and hypernymy. According to them, meronyms
and holonyms are considered related just like words that are linked by a rela-
tion of association. We can point out some differences with Budanitsky and Hirst
(2006)’s theory who considered that antonyms are semantically related and not
semantically similar. As a consequence, we already get an idea of how complex
and challenging it can be to determine if two words are semantically similar or
semantically related.

Most of the datasets used for intrinsic evaluation mix both pairs of words that
are semantically related and semantically similar. As pointed by Agirre et al.
(2009), when rating word pairs in WordSim-353, annotators were not clearly in-
structed to differentiate between semantic similarity and relatedness and as a con-
sequence it contains a variety of semantic relations that are not equally distributed
between the different types of relations (Baroni and Lenci, 2011). Sometimes, se-
mantically related pairs are also rated differently and it is not clear how to explain
this rating difference. E.g. in table 2.3 we saw that cup and coffee have a similarity
score of 6.58 while Maradona and football have a similarity score of 8.62. Does it
mean than the second pair is more semantically related than the first one? What
is a good way to explain this difference apart from intuition? Moreover, some pairs
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which are semantically similar such as car-automobile have a rating very similar to
pairs that are semantically related (8.94 compared to 8.62 for Maradona-football).

To avoid the confusion between semantically related and semantically similar,
Agirre et al. (2009) decided to create two different dataset from WordSim-353, one
focusing on similarity and one focusing on relatedness7. Similarly, datasets like
SimLex-999 focus only on words that are similar to avoid ambiguity. While it is
interesting to distinguish between semantically similar and semantically related,
we do not really know which type of similarity should be captured by the model
(Faruqui et al., 2016) and as a consequence avoiding one type of similarity or
another might not be the appropriate solution.

As a response to the various problems we presented here, effort has been made
to propose datasets specifically designed to evaluate DSMs. In the next section
we present BLESS and Evalution 1.0, two alternative datasets addressing common
problems encountered with traditional datasets, that attempt to answer specific
questions about the way similarity is encoded in DSMs.

2.2.3 Alternative datasets
BLESS (Baroni and Lenci Evaluation of Semantic Spaces) (Baroni and
Lenci, 2011) Because most datasets existing to evaluate DSMs were not de-
signed specifically for distributional semantics and were also suffering caveats, Ba-
roni and Lenci (2011) decided to create a dataset specifically designed to evaluate
DSMs. The main goal was to provide a benchmark that would overcome problems
and biases existing with current datasets as well as give information about the
extent to which words that are close in the semantic space are actually semanti-
cally related. This means that instead of getting only a similarity score for a pair
of words, the dataset provides information about the type of semantic relations
governing words.

BLESS is made of 200 words that are distinct English concrete nouns that
are equally divided between living entities (e.g. frog, turtle, tuna) and non-living
entities (e.g. freezer, van, onion). Words are divided into 17 classes that are
identified in table 2.7. The selection of words was made to ensure a good coverage
of semantic relations and making sure at the same time that they presented no
ambiguity. This is why concrete nouns were chosen since they are the most studied
and they also present more agreement about the semantic relation that characterize
them. Words were mainly selected using the McRae Norms (McRae et al., 2005).
McRae Norms are semantic feature norms that were collected from about 725
participants for 541 living and non-living basic concepts. Participants were asked

7See Agirre et al. (2009); Baroni and Lenci (2011) for a detailed annotation of WordSim-353
test set.

42



2.2. Intrinsic evaluation

Semantic class Examples
AMPHIBIAN REPTILE alligator, frog

APPLIANCE dishwasher, fridge
BIRD dove, falcon

BUILDING castle, cottage
CLOTHING blouse, coat
CONTAINER bottle, mug

FRUIT banana, lemon
FURNITURE chair, sofa

GROUND MAMMAL beaver, cat
INSECT butterfly, moth

MUSICAL INSTRUMENT clarinet, guitar
TOOL fork, saw
TREE cedar, oak

VEGETABLE cucumber, radish
VEHICLE ambulance, bus

WATER ANIMAL goldfish, salmon
WEAPON dagger, revolver

Table 2.7: Semantic classes in the BLESS dataset.

to give different types of features to each concept such as physical properties,
functional properties or the category the concept belongs to. For example alligator
was assigned features such as a_reptile, an_animal, is_dangerous etc. Banana
was assigned the features is_yellow, a_fruit, grows_on_trees etc. Out of the 200
words used in BLESS, 175 were taken from the McRae norms and the 25 remaining
were chosen by the authors following the same criteria.

Words were also chosen to be reasonably high-frequency. To check frequency,
the authors used ukWaC and Wackypedia8. All words are single nouns in their
singular form and ambiguous and polysemous words were avoided.

To constitute pairs, each word was associated with several relata with which
it shares one of the following semantic relation: co-hyponymy (turtle-frog), hyper-
nymy (turtle-amphibian), meronymy (turtle-head), adjective that is an attribute
of the concept (turtle-aquatic) or verb referring to an action that the concept is
involved in (turtle-eat). Additionally a random adjective (turtle-complete), verb
(turtle-offer) and noun (turtle-salary) were selected to ensure the sanity of the
model. All relata were selected using a variety of semantic resources (McRae
Norms, WordNet and ConceptNet) as well as corpora (Wikipedia and ukWaC).

8http://wacky.sslmit.unibo.it/
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BLESS is a comprehensive dataset that contains various information about the
pairs of words and effort was made to represent equally different semantic rela-
tions that are clearly identified. As a consequence, this test set allows the user to
be in control of the semantic properties tested in DSMs.

EVALution1.0 (Santus et al., 2015) Following Baroni and Lenci (2011) work,
Santus et al. (2015) created EVALution 1.0, a dataset designed to support the
training and evaluation of DSMs. EVALution contains 7429 pairs of words re-
lated by different types of semantic relations such as hypernymy (e.g. sport and
basketball), synonymy (e.g. college and university), antonymy (e.g. abstract and
concrete) and meronymy (e.g. foot and body). It also contains additional infor-
mation for each pair of words such as the frequency of each word,the POS or the
semantic field it belongs to (e.g. nature, object etc.). Pairs were selected using
ConceptNet 5.0 (Liu and Singh, 2004) and WordNet (Fellbaum, 1998). Addition-
ally, judgments were collected through CrowdFlower. Corpus data was used to
collect information about the frequency of a word and its POS. Each word in word
pairs has to occur in more than one semantic relation. Moreover, all pairs are
different from the ones in BLESS. To collect information about relation between
words, sentences such as “Dog is a kind of animal” constructed using the pairs of
words were presented to subjects that were asked to rate the truth of the sentence
on a scale of 1 (strongly disagree) to 5 (strongly agree). For each sentence, 5
judgments were collected and only pairs getting at least 3 positive judgments were
kept. Subjects were also asked to provide information about the abstractness of a
term or its generality.

The two datasets we just described present several advantages. They were
designed and organized in a way that gives more freedom to evaluate DSMs. Since
semantic relations are provided, it is possible to focus only on a certain type of
semantic relation when evaluating a model. It is also possible to focus only on
a certain type of POS9. However, these datasets requires more effort to interpret
results compared to the previous ones such as WordSim-353. This might explain
why despite efforts put into their creation they are less used than traditional
intrinsic evaluation datasets.

2.3 Discussing intrinsic datasets
We presented several datasets commonly used for the evaluation of DSMs. Because
most of these datasets were not designed specifically for distributional semantics,
the way we use them to perform intrinsic evaluation tasks does not provide deep

9Only for EVALution since BLESS concepts are only nouns.
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information about evaluated DSMs. They do not provide any information on
the type of semantic relations captured by DSMs nor do they allow to observe if
results are different for one part-of-speech or another. This type of evaluation only
scratches at the surface some of the essential questions we might have about DSMs.
Even using datasets specifically designed to evaluate DSMs such as SimLex-999
does not provide enough satisfying insight.

Despite efforts made to propose alternatives, such as BLESS or EVALution
1.0, to improve upon existing datasets, their use is still limited and it is still much
more common to use classic datasets. We can think of several reasons that would
explain this phenomenon. First, classic datasets have been used for a long time
to evaluate DSMs. As a consequence, they really constitute a benchmark in the
evaluation of DSMs and it is common to use a specific dataset when evaluating to
be able to compare results to similar work that has been done before. Moreover,
alternative datasets often require to run more in depth analysis and were not
necessarily designed to make prototyping faster. If one wants to train the best
performing model to integrate it as a component of an NLP system, it is easier
to run an evaluation task that output a single score and to check if this score is
improving rather than conduct analyses on the type of semantic relations captured
by models.

Truth is, one might not even know what type of specific information they try to
capture and represent. Does it matter when trying to represent generic knowledge
that the models captures better co-hyponyms than synonyms or meronyms? This
leads to an actual question about the type of information encoded in DSMs. What
do we actually expect them to be about? When we know that common sense is
also a big part of semantic interpretation in human interactions, how do we expect
models to encode this type of information. Although this question is not the focus
of this thesis, it helps us understand why it is so difficult to find an appropriate
way to evaluate DSMs. With the recent arrival of word embeddings and their
massive use in the deep learning world, it is also not surprising to see that people
fall back on intrinsic evaluation tasks driven by the goal to get the highest score
possible. Deep learning models are complex and take time to train. Testing DSMs
as part of the entire system in downstream tasks could prove very time consuming
and it is common-sense to run intrinsic evaluations to get the best performing
models. Sometimes, models used in these systems are not even customed. This is
even more true with contextual word embeddings. Rather than re-train models it is
more common to fine tune pre-trained models because these models are considered
the best performing ones.

Our work focuses specifically on the evaluation of word embeddings. Our first
concern was to understand what changes when training word embeddings with
different configurations. As a consequence, we were curious about the type of
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information missing to be able to evaluate word embeddings in a way that allows
us to understand the real impact of parameters. In the next chapter we present
several works that adopt different methodologies for the evaluation of DSMs. We
will see how the evaluation of DSMs parameters has been investigated until now
and we will then present the approach we propose to adopt through the rest of
this work.

46



Chapter 3

Towards Qualitative Evaluation

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Alternative evaluation setups . . . . . . . . . . . . . . . 48

3.2.1 Evaluating DSMs parameters . . . . . . . . . . . . . . . 49
3.2.1.1 Evaluating parameters interaction . . . . . . . 49
3.2.1.2 Evaluation of parameters applied to special-

ized lexicography . . . . . . . . . . . . . . . . . 50
3.2.2 Investigating linguistic change . . . . . . . . . . . . . . . 51

3.2.2.1 Semantic shift in the context of medias . . . . 52
3.2.2.2 Diachronic semantic change . . . . . . . . . . . 52

3.2.3 DSMs applied to specialized corpora . . . . . . . . . . . 53
3.2.3.1 DSMs in the context of child-directed speech . 53
3.2.3.2 DSMs trained on specialized corpora . . . . . . 54

3.3 Moving towards qualitative evaluation . . . . . . . . . . 55

3.1 Introduction
In the previous chapter we presented traditional quantitative methods commonly
used to evaluate DSMs. These methods are convenient, easy to run and fast to
interpret which makes them one of the preferred methods when evaluating DSMs.
However, by only computing the correlation with human judgements on a limited
set of items, these methods fail to provide interesting material that allows to un-
derstand what changes across different models. While efforts are made to provide
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more comprehensive and suitable datasets, we still lack a method that supplies
both a global and detailed view of what is changing between models. Quantitative
methods do allow to rapidly detect anomalies. They also help detecting differ-
ences between two models. However they do not really give any insight about the
different problems encountered in models and the difference of accuracy is not nec-
essarily questioned as an indicator of a phenomenon to be examined. When DSMs
constitute a component in an NLP system, it is logical that the model integrated
has to perform optimally. The easiest way to measure this performance and fine
tune models if necessary, is by using intrinsic datasets. However, when models are
used to investigate linguistic phenomena, any fluctuation in the model can disrupt
results. As a consequence, it is essential to measure what changes from one model
to another. This means that the evaluation method should focus on understanding
the various impacts of different training configurations.

In social sciences, using only quantitative or qualitative methods is not satisfy-
ing because favoring one approach might end up omitting important information.
The quantitative methods measure the performance of the model, which is a way
to insure the sanity of the model, while qualitative methods provide more holistic
analyses based on observations. As a consequence the combination of quantitative
and qualitative methods is interesting (Galliers and Sparck Jones, 1993).

Adopting a qualitative evaluation methodology can be expensive in terms of
time and setup. Moreover, it takes time to investigate the data and interpret
results. However, it also presents several significant advantages. First, it is possible
to control the extent of the investigation by being able to choose exactly what
is analyzed (focus on a single phenomenon, target specific words etc.). Secondly,
qualitative evaluation allows to stay close to the explored data. It makes it possible
to adopt an approach targeting a specific goal or to rather conduct experiments in
an exploratory way.

In this chapter we present several studies that implemented custom evaluation
methods in order to explore specific phenomena. These methods can be either
quantitative or qualitative or include aspects of both. We chose to present the
different works grouped by research interest.

3.2 Alternative evaluation setups
We saw in chapter 1 that DSMs are used in many different ways and for various
applications, from their integration in deep learning systems where they act as a
representation of semantic knowledge to their use as a tool to investigate linguistic
phenomena such as textual entailment or the type of relations captured by DSMs.
DSMs are also used to explore phenomena such as diachronic linguistic change.
More recently, research studies have also focused on different aspects of DSMs
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such as the sociological biases they suffer from (Bolukbasi et al., 2016). With
these varieties of applications, different evaluation processes are required.

We present here selected studies that integrate a qualitative point of view to
evaluate word embeddings for a specific goal. The first set of studies investigate
parameters used when training DSMs. The second set focuses on the use of word
embeddings to explore linguistic change. Finally, we present a last group of studies
using DSMs in the context of specialized corpora.

3.2.1 Evaluating DSMs parameters
Building DSMs requires to tune a certain number of parameters whether the goal
is getting a model with optimal performances or finding appropriate parameters
in the context of a specific task. Because of the number of parameters to consider,
choosing the right configuration proves to be challenging. Moreover, understand-
ing those parameters is not always straightforward. We saw that in the case of
count-based models parameters are most of the time directly related to the data
used to build semantic representations. These parameters usually consist of the
window size or the direction of the window. Word embeddings are slightly differ-
ent since they involve parameters affecting the data used to learn (window used,
subsampling rate, negative sampling rate) and parameters impacting the learn-
ing algorithm itself (architecture). Moreover, when adjusting parameters, changes
might not directly be visible without investigating the implementation in details.
This is especially true for the tool we focus on in this thesis, word2vec. For ex-
ample, it is not possible to directly visualize the effects of subsampling without
modifying word2vec code. As a consequence, tuning word2vec parameters is an
opaque process making it difficult to understand the various effects of parameters.
As a consequence using only intrinsic evaluation datasets is not satisfying to fully
understand the impact of the various parameters. Using alternative evaluation
methods, that can be based on both quantitative and qualitative aspects, might
help shedding light on the relations between a model’s performance and the or-
ganization of its lexical space by providing insights about the behavior of specific
words or classes of words in regards to parameters changes. We present two differ-
ent works evaluating the impact of parameters when training DSMs. The first one
focuses on the interaction of different parameters and the impact of these inter-
actions on performances. The second one evaluates DSMs trained for specialized
lexicography.

3.2.1.1 Evaluating parameters interaction

Building DSMs requires to tune numerous parameters. One big challenge is that
the combination of all the available parameters can quickly expand and increase
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the number of models to be built and evaluated. Lapesa and Evert (2014) con-
ducted a major investigation of count-based models parameters and their inter-
action. They chose to examine various parameters: corpus, window size, window
direction, context filtering, distance metric, dimension reduction algorithm etc.
This work aimed at shedding light on unanswered questions about the different
parameters and their influence on models. They trained 537600 models total that
were evaluated on traditional datasets simlar to the ones we presented in chapter 2.
They also performed a noun clustering task which consisted in assigning nouns to
pre-defined semantic classes. The performances of models are evaluated in terms
of cluster purity.

Because of the large number of models evaluated, using qualitative evaluation
methods seems ambitious and this explains the use of tasks that are all very (or
exactly) similar to the intrinsic evaluation methods presented in chapter 2. The
clustering task is very similar to a word similarity dataset task. In fact, the
clusters are only evaluated quantitatively without further analysis of the words
that were assigned to the wrong clusters. However, looking at errors could provide
interesting insights about the semantic properties of models. The work conducted
by Lapesa and Evert (2014) allowed to detect general tendencies when building
DSMs. E.g. the transformation applied to vectors and the distance metric used
play an important role on the performances of DSMs. Moreover, they showed that
there is not one configuration better than other when building DSMs.

3.2.1.2 Evaluation of parameters applied to specialized lexicography

If finding optimal parameters when training DSMs is challenging for general se-
mantic knowledge, it can be even more challenging when training DSMs for specific
tasks and domains. Bernier-Colborne and Drouin (2016) conducted a “holistic”
study to find optimal parameters for DSMs in the context of specialized lexicog-
raphy. It is interesting to notice here the use of the word holistic in the name
of their paper, since it reminds us of what Galliers and Sparck Jones (1993) who
pointed out that qualitative evaluations are more holistic. As a consequence, from
the title we expect an analysis more based on qualitative observations.

The interaction of model-related and application-related factors was investi-
gated. Model-related factors refer to parameters used when building models: di-
rection of the context window, size and shape of the context window, weighting
scheme. In the case of specialized lexicography, application-related factors refer to
the kind of terms included in the lexical resource that is built as well as the kind
of relations described (paradigmatic relations such as synonymy and syntactic re-
lations which correspond to words with the same meaning but different POS). As
pointed by the authors, it is rare to find studies that combine both the analysis of
model-related factors and application-related factors. Most studies tend to focus
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on the importance of model-related factors only by focusing on the influence of
parameters on a model’s performance. Moreover, as we already showed before,
specific tasks and specific applications of DSMs lack resources that would be de-
signed for those needs. This is especially the case for specialized morphology since
there is no datasets that cover both morphological and syntactic derivations.

To evaluate the trained models, Bernier-Colborne and Drouin (2016) used a
thesaurus, i.e. a specialized resource, constituted of a subset of words specific to
the domain. Each word was associated to other words they share different semantic
relations with. Then, given a query, its nearest neighbors are retrieved using cosine
similarity. The ranked list of neighbors is then compared to the gold standard and
Mean Average Precision (MAP) is computed. When the related terms are closer
to the top of the list on average, the MAP is high.

The use of nearest neighbors in the evaluation process is interesting. Most
of the time and especially with traditional intrinsic evaluation methods, only the
similarity score or the ranks of neighbors rank is used to assess the quality of a
model. Nearest neighbors are usually not considered as part of the evaluation pro-
cess and metric and are rather used as a proof that a system works properly. While
the use of nearest neighbors along with their semantic relations is interesting, the
presented approach is very similar to intrinsic evaluation datasets since a specific
gold set is used to measure the performance of models.

3.2.2 Investigating linguistic change
DSMs are also used to explore specific linguistic phenomena. In particular, many
recent works have relied on word embeddings to investigate the semantic shift of
words, i.e. the observation of how words meanings change in different situations
(over time or in corpus of different nature). Different methods exist to explore this
type of linguistic change and evaluating their efficiency can be challenging. Seman-
tic shift is a phenomenon where the use of existing datasets is not possible since
part of the task is exploratory. Moreover, the analyzed shifts are corpus-dependent
and are either shifts that happen over time or shifts that happen because of spe-
cialized meaning (e.g. the word tree has a different meaning in the BNC corpus or
in a specialized NLP corpus like ACL). In that sense the use of DSMs for that par-
ticular task is pretty different from the traditional use of DSMs integrated in NLP
systems where the most important thing is to reflect a generic representation of
the world. In this section, we give an overview of selected works leveraging DSMs
to investigate semantic shift and of the different evaluation methods implemented.
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3.2.2.1 Semantic shift in the context of medias

Because language evolves over time and especially nowadays with the use of in-
ternet and social media tools, Kulkarni et al. (2015) proposed a methodology
to detect semantic shift. They particularly focus on medias such as micro-blogs
posts, reviews left for products and books. Different methods were tested based
on frequency, syntactic and distributional aspects. We focus here on the method
based on distributional semantics. To measure the evolution of a word’s meaning,
time series were constructed for each word. Word embeddings were trained with
gensim on different parts of the corpus corresponding to specific periods of time.
Aligning models in the same space is a challenging process when the dimensions
of vectors do not correspond to identified traits. As a consequence, the different
embeddings learned were aligned in the same space using words’ nearest neighbors
as a landmark. Once the embeddings were aligned, it was possible to measure how
words shifted across different time spans. The authors also identified the moment
where the semantic change occurred. To test the developed methods, experiments
were run on multiple corpora: Google Books N-Gram, Amazon Movies Reviews
and Twitter data. Several words were identified as undergoing semantic shift. E.g.
tape was used to designate adhesive paper before 1960 (red tape, tape from her
mouth) and then shifted to designate cassettes (a copy of the tape). Another ex-
ample is the word diet that was used to designate food consumed by people (diet
of bread and butter) while after 1970 it was used to describe a different way of
eating (go on a diet).

3.2.2.2 Diachronic semantic change

Hamilton et al. (2016) also focused on investigating linguistic diachronic change
over several time periods using different types of DSMs (count-based and word
embeddings). The authors showed that with enough data available, DSMs are a
good tool to detect semantic shifts. To be able to track diachronic change, first
the synchronic validity of models was tested, i.e. the authors made sure that
the trained models were able to capture similarity for words in the same time-
period. To do so, they decided to run an intrinsic evaluation using the MEN
test set1. Once synchronic validity was confirmed, Hamilton et al. (2016) were
able to measure semantic shifts. First, word embeddings were aligned in the same
space. Then, the aligned vectors were used to measure the displacement of words
across different periods of time. The cosine similarity between the different word

1We saw in chapter 2 that intrinsic evaluation datasets evaluate only a subset of a semantic
space. As a consequence we could argue that while they prove that the model does not suffer
any major problem, they cannot guarantee that the model properly captures semantic relations
between words.
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representations over time was used to quantify the amplitude of semantic change.
The ability of models to detect semantic shifts was evaluated using a set of

words known to undergo semantic shift (e.g. gay, fatal, nice, broadcast etc.) gath-
ered from different research works done on semantic shift. The change of nearest
neighbors across different periods of time allows to detect and visualize the under-
gone semantic shifts. E.g. the neighbors of nice shifted from pleasant and lovely
to refined and dainty. Another part of the evaluation focused on the model’s ap-
titude to detect unknown semantic shifts. To do so the authors examined words
having the highest displacement score. This was computed using cosine similarity
between the representations of a given word across several time periods. Examples
of words that changed the most between 1900 and 1990 are wanting, check, major
etc.

3.2.3 DSMs applied to specialized corpora
DSMs are often used to model general knowledge with models trained on generic
corpora, i.e. corpora that do not account for specialized domains but that reflect
the world’s general knowledge. However, before training DSMs using the largest
corpora possible became the norm, DSMs were used in the context of special-
ized corpora to build distributional thesauri in the 90s (Fabre and Lenci, 2015;
Grefenstette, 1994). Nowadays, a growing number of works is focusing on biomed-
ical NLP, with several conferences workshops particularly dedicated to this topic.
Using DSMs for the biomedical domain cannot be efficiently done using models
trained on generic corpora since the meaning of several words will be completely
different in those particular contexts2. As a consequence, common tasks designed
to evaluate word similarity in generic corpora are not applicable in the context of
specialized DSMs. As such, there is a need for different types of evaluation. In
this section we present two different works that focus on training and evaluating
models for specialized domains (child-directed speech and NLP scientific papers).

3.2.3.1 DSMs in the context of child-directed speech

Asr et al. (2016) focus on the ability of DSMs to learn semantic categories from
child-directed speech. To do so, the authors trained DSMs on the CHILDES
corpus (MacWhinney, 2000), a corpus gathering conversations between children
and their parents and care-givers. The corpus is relatively small with about 8
million words. Models were built using count-based and neural-based models.
Because of the specificity of the corpus as well as its small size, it is not possible
to use traditional datasets to evaluate models. In that case, contrary to what we

2We saw an example of such a phenomenon in chapter 1 with the word apple in the BNC and
in the Medical Web Corpus.
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observed with diachronic studies, it is not even possible to use those datasets to
attest the validity of models. As a consequence, the authors designed a specific
word categorization task. They used 1244 nouns with a high frequency in the
corpus. Each word belonged to different categories that were non-ambiguous (e.g.
mammal, clothing etc.). Using those words, they constituted pairs of words that
either belonged to the same category (e.g. dog and cat are both mammal) or not
(e.g. dog is a mammal while shoe belongs to the clothing category). Models were
used to predict if both words belonged to the same category.

This word categorization task was used in two different contexts: to find opti-
mal parameters for models trained with word2vec and to determine if count-based
or neural-based models perform better for this type of task. The authors were able
to determine that different architectures in word2vec capture semantic categories
differently. E.g., the model trained using CBOW was better at capturing similarity
of furniture items than fruit items. This type of evaluation is interesting because
it provides insight about the properties of DSMs that are often ignored.

3.2.3.2 DSMs trained on specialized corpora

Tanguy et al. (2015) focused on models trained on the TALN corpus (Boudin,
2013), a corpus gathering french NLP papers that is made of about 2 million
words. The goal of this study was to compare count-based models trained using
different types of contexts (window-based and dependency-based contexts) and
parameters resulting in 2592 models. To evaluate models, the authors improved
a pre-existing dataset designed by Fabre et al. (2014) based on words extracted
from the TALN corpus. The dataset comprised 15 words (5 nouns, 5 verbs and
5 adverbs). To improve the dataset the authors added 5 more nouns, 5 more
verbs and 5 more adverbs of high and low frequency to ensure that all frequency
ranges are represented in the dataset. The target words in the datasets represent
both specialized (e.g. performance, fréquence) and non-specialized terms (e.g.
élément, correct). For each target word, the 3 nearest neighbors were retrieved
in each trained model, resulting in 64 to 445 nearest neighbors for each target
word. To ensure the validity of these neighbors, 4 annotators that were NLP
experts were asked to select accurate nearest neighbors. As a consequence, each
selected nearest neighbor (i.e. nearest neighbors that were at least chosen by one
annotator) were assigned a score between 1 and 4 corresponding to the number of
annotators that chose this neighbor. After the annotation process, the dataset was
constituted of 1328 pairs of words (target word and one of its closest neighbor)
representing different types of semantic relations (e.g. synonyms such as complexe
and compliqué or antonyms such as complexe and simple).

Models were evaluated by retrieving the 50 nearest neighbors of each target
word in each of the 2592 models. These neighbors were then compared to the
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selected neighbors constituting the gold standard using a metric which helped
determine the best configurations. Because the dataset was created using POS
and frequency information, it makes it possible to analyze and interpret results
based on their POS or their frequency range allowing better understanding of the
information captured by models.

They also compared the differences in ranking of nearest neighbors across the
best 106 models by computing the Rank Biased Overlap (Webber et al., 2010), a
measure comparing two ranked lists that considers that differences at the top of
the list are more important than differences at the bottom of the list. This method
showed that different models capture different type of semantic information.

The two methods presented here offer the advantage to perform advanced anal-
yses of the type of semantic information captured by different models. However,
the construction of a gold standard specific to the corpus is expensive in terms
of time and resources. Moreover, the gold standard is not applicable to another
corpus and experts are required to validate nearest neighbors.

3.3 Moving towards qualitative evaluation
We presented several studies using DSMs to analyze different phenomena: finding
the appropriate combinations of parameters, detecting semantic shifts and using
DSMs in the context of specialized corpora. The evaluation methods used in these
research works tried to go beyond intrinsic evaluation using traditional datasets
with tasks ranging from semantic clustering to the construction of a corpus-specific
gold standard. The choice of these alternative evaluation methods was often moti-
vated by the lack of resources (this was the case especially for specialized corpora).
It is also a proof that existing methods are not satisfying for the various types of
applications of DSMS. Despite their convenience, traditional intrinsic evaluation
datasets often provide insufficient insights regarding the semantic information cap-
tured by DSMs.

While the work done for this PhD does not specifically focus on specialized
corpora, the approach we adopt is similar in many points to the different studies
presented here. We are interested in investigating as well as understanding the
type of linguistic information encoded in DSMs. As a consequence, we want to go
further than running evaluations limited to measure the performance of models on
traditional datasets. We want to go further than simply evaluating the semantic
similarity of selected pairs of words and want to be able to understand, or at
least get intuitions about, what is happening in a model’s semantic space as a
whole. This means that we want to adopt an evaluation approach that is corpus
independent (i.e. that can be applied to any corpus) and that is not relying on
pre-existing resources. We want to get both a global overview of the model, by
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being able to describe what is happening in general (is the model sane? Or can we
already detect that there is something wrong?), and a local overview, i.e. we want
to be able to zoom in selected local areas to observe the semantic representations
and semantic behaviors of selected words.

To be able to get such an overview of a model, we need to approach the evalua-
tion from two different points of view, similarly to what Galliers and Sparck Jones
(1993) advised. First, we adopt a quantitative point of view to be able to operate
a quick sanity check to detect any major issue with the trained models. Then
we use qualitative methods to investigate semantic behavior of words using lin-
guistic knowledge and methods. To do so, we choose to evaluate models using
words nearest neighbors, since they provide immediate and interpretable feedback
on the quality of semantic representations. Observing the behavior of the nearest
neighbors of a word from one model to another can give us accurate insights about
what is really happening when training DSMs. In the second part of this thesis, we
present several experiments conducted to get a better understanding of the type
of information captured by word embeddings.
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4.1 Introduction

In the previous chapters, we saw that there is still no perfect way to evaluate
word embeddings. While several works focused on appropriate ways to evaluate
DSMs, we still lack a methodology evaluating word embeddings both globally,
i.e. by giving a general idea of the performance of a model, and locally, i.e. a
methodology that allows to explore selected local areas.

Several studies have investigated the choice of parameters to build good DSMs.
E.g. in chapter 1 we presented the work of Lapesa and Evert (2014) who per-
formed a large-scale evaluation of DSMs. Another example was Bernier-Colborne
and Drouin (2016) who focused on the importance of the choice of parameters for
specialized lexicography. Often, the evaluation of parameters is done using intrin-
sic evaluation datasets without necessarily questioning the impact of the different
configurations. We propose here to investigate the qualitative impact of hyper-
parameters choices when training word embeddings models. As a consequence,
we decided to change only one hyperparameter at a time. First we explain what
hyperparameters are and we present the ones selected for this study. Then we use
nearest neighbors to compare models trained with one different hyperparameter.
Using nearest neighbors present several advantages. They give direct feedback on
the semantic representation of a word. They also are easy to manipulate and can
be easily integrated in an evaluation metric. While this type of method has already
been used in works investigating DSMs (e.g. (Sahlgren, 2006; Bernier-Colborne
and Drouin, 2016; Tanguy et al., 2015)), the novelty of our approach lies in the
fact that we propose to use nearest neighbors to evaluate models as a whole and
not only selected words.
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4.2 Hyperparameters

4.2.1 What are hyperparameters?
Training “good” word embeddings requires to tune a certain number of hyperpa-
rameters, such as the size of the window, vectors dimensions etc. We can distin-
guish between internal and external hyperparameters.

Internal hyperparameters are directly related to the algorithm used for training,
e.g. this corresponds to the number of dimensions, the negative sampling rate or
the subsampling rate that we described in chapter 1.

External hyperparameters are related to the input given to the system. They
are also crucial to train word embeddings. These external hyperparameters can
be the corpus or the type of context used for training. Another example would be
the tagger used to label the training data.

In the following sections, we present the different hyperparameters we chose
to investigate when training models using word2vec. Some hyperparameters in
word2vec are more opaque than others. As a consequence, we decided to select
the ones that are easy to manipulate and for which we can have an intuition that
helps us linguistically interpreting the different observed phenomena.

4.2.2 Selected hyperparameters
We selected hyperparameters that are often investigated. For each hyperparame-
ter presented here, we selected related works that focused on investigating those
specific parameters. Table 4.1 displays all of the selected hyperparameters along
with the different works that examined them with the different examined values.
In this work, we do not only consider these different values and try to find the best
combination of parameters. We are rather interested in approaching hyperparam-
eters investigation by adopting a linguistic point of view and trying to understand
the impact of different hyperparameters on the lexical space when training word
embeddings.

4.2.2.1 Architecture

In chapter 1 we presented the two different architectures of word2vec (Skip-Gram
and Continuous Bag of Words). Most of the studies focusing on training good word
embeddings try both architectures but SG is often preferred to CBOW because
as we already mentioned in section 1.4.1.1 it gives better results on semantic and
syntactic tasks. However it is slower to train compared to the CBOW architecture
and it might be preferable to use it when training on smaller corpora.
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In their work investigating the hyperparameters of DSMs in the context of spe-
cialized lexicography, Bernier-Colborne and Drouin (2016) tested both the CBOW
and SG architectures. They found that both architectures captured different se-
mantic relations. CBOW gave better results for synonyms while SG is better at
capturing syntactic derivatives.

Sahlgren and Lenci (2016) also tested different hyperparameters for both count-
based models and predictive models. For word2vec, they found that the CBOW
architecture was giving better results for words in the high and low frequency
range.

4.2.2.2 Number of dimensions

The number of dimensions is another hyperparameter often investigated when
training word embeddings. While Mikolov et al. (2013a) advises to use more di-
mensions to get better accuracy results, several studies have been conducted to
investigate the impact of the number of dimensions when training word embed-
dings. Baroni et al. (2014) compared the performances of count-based models and
predictive models on different semantic tasks. They considered dimensions values
of 200, 300, 400, and 500 and found that the best results were achieved with word
embeddings trained with 400 dimensions. Chiu et al. (2016) tested a wider range
of values (25, 50, 100, 200, 300, 400, 500, 800) for word embeddings trained for
biomedical NLP. They tested the models on various extrinsic and intrinsic tasks
and observed results improvements with higher dimensions. Asr et al. (2016) ex-
perimented with 30, 50, 100, 200 and 300 dimensions to train word embeddings
in the context of the acquisition of semantic categories. Following Mikolov et al.
(2013a), they expected the model with the highest number of dimensions to per-
form the best. However, they achieved better results on the word categorization
task they developed when training models with 200 dimensions. Bernier-Colborne
and Drouin (2016) also tested different numbers of dimensions (100 and 300). They
found that models trained with more dimensions were performing better on the
gold set they designed.

The different studies we presented do not give consistent results regarding the
number of dimensions. Sometimes models perform better when they have the
larger number of dimensions, sometimes less dimensions will give better results.
This is also dependent on the task used to test models. It thus seems essential
to try to understand what is impacted in the lexical space when the number of
dimensions is changed.
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4.2.2.3 Window size

Numerous studies have investigated the impact of the window size when training
word embeddings. It has been shown that different window sizes capture different
type of semantic information. E.g., Bansal et al. (2014) showed that when training
models with a small window size, nearest neighbors tend to have the same POS
while training with larger windows retrieve nearest neighbors that are more topi-
cally related. This is logical since with a small window the only context captured
for an adjective for example, is the noun it modifies. With a bigger size window,
the contexts of adjectives are more varied and include verbs, non-modified nouns,
other adjectives etc. Melamud et al. (2016) trained word embeddings with differ-
ent window size values (1, 5 and 10) and found that larger windows group words
that are both functionally and topically similar while smaller windows group words
that share the same POS and that are less topically related. Chiu et al. (2016)
also tested window size values ranging from 1 to 30 and found that results are dif-
ferent depending on the type of the evaluation task (intrinsic tasks and extrinsic
tasks). Asr et al. (2016) noticed that changing the window size from 2 to 12 when
training using the CBOW architecture did not improve results on a word catego-
rization task. Bernier-Colborne and Drouin (2016) experimented with a window
size ranging from 1 to 10 and found that smaller windows are good at captur-
ing paradigmatic relations while larger windows are good at capturing syntactic
relations.

From all the examples presented above, it is clear that the window size is a
highly important hyperparameter that can yield very different semantic represen-
tations. Because of the different type of information smaller and larger windows
capture, it is one of the hyperparameter that we expect to highly impact the lexical
space.

4.2.2.4 Context type

In chapter 1, we saw that several studies have investigated the contribution of
syntactic information to DSMs. Padó and Lapata (2007) found that dependency-
based models performed better at word sense disambiguation tasks than window-
based models. Tanguy et al. (2015) found that using complex syntactic information
when training DSMs yield better results than using raw co-occurrences on the
gold set they designed for the TALN corpus. Lapesa and Evert (2017) found that
dependency-based models performed better only for a noun clustering task.

Training count-based models requires to prepare contexts beforehand. While
this might appear as a restriction, it actually comes with a lot of flexibility making
it possible to choose to only select certain POS or certain syntactic relations. The
original implementation of word2vec does not allow to simply modify the type of
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contexts used for training and only the size of the window can be chosen. To be
able to experiment with different types of contexts, Levy and Goldberg (2014a)
modified the SG with negative sampling algorithm of word2vec making it possible
to train using different types of contexts. Their modified version, word2vecf, does
not rely on the system to create the contexts but requires to create contexts before
training. This means that the contexts can be easily modified and manipulated.
Levy and Goldberg (2014a) provided the code and scripts to extract contexts that
are dependency-based, i.e. that integrate syntactic information1. To be able to
extract dependency-based contexts, a dependency parsed corpus is required. Using
this corpus it is possible to extract syntactic triples constituted by a dependent,
a governor and the dependency relation that they share. Levy and Goldberg
(2014a) suggest to collapse preposition by connecting the head and the object of
the preposition.

Figure 4.1: Example of a dependency annotated sentence taken from Levy and
Goldberg (2014a). The second sentence illustrates the idea of collapsing relations
that include prepositions by connecting the head and the object of the preposition.
The table below the sentences display the resulting extracted dependencies.

There are different ways to use dependencies for DSMs. Figure 4.1 displays an
example of a dependency annotated sentence and the resulting extracted triples
from Levy and Goldberg (2014a). As we can see, the contexts extracted to train are
selected depending on the relations shared by words. In a window-based model the
target word scientist would have star associated as one of its contexts. However,
this is not the case with dependency-based contexts since these two words are not
related by any dependency relation. While dependencies are interesting to build

1https://bitbucket.org/yoavgo/word2vecf/src/default/
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DSMs, it is important to be aware that they can sometimes be problematic because
they are highly dependent on the parser used.

Levy and Goldberg (2014a) showed that training word embeddings using dif-
ferent type of contexts has an impact on the type of nearest neighbors retrieved
by models. Raw co-occurrence models capture domain similar words while models
trained using dependency-based contexts capture words sharing the same semantic
type.

Figure 4.2 displays selected examples from Levy and Goldberg (2014a) of words
and their nearest neighbors retrieved from models using window contexts of size 5
and 2 (BoW5 and BoW2) and models using dependency contexts (DEPS). We see
that for the word batman all models retrieved the same type of nearest neighbors,
i.e. other super heroes names (e.g. aquaman, catwoman etc.). For the word hog-
warts window-based models retrieved words related to the Harry Potter universe
(dumbledore, hallows etc.) while the dependency-based model retrieved names of
schools (e.g. sunnydale, collinwood etc.).

Figure 4.2: Examples of nearest neighbors retrieved for the words batman and
hogwarts from models trained using bag of words contexts (BOW5 and BOW2)
and model trained using dependency-based contexts. Example taken from Levy
and Goldberg (2014a).

Melamud et al. (2016) used word2vecf to experiment with the impact of differ-
ent contexts types on extrinsic and intrinsic evaluation tasks. They found similar
results to Levy and Goldberg (2014a) regarding the differences in topical and
functional similarity. They also found significant differences of results on eval-
uation tasks. E.g. they observed low performances for the dependency-based
model on the WordSim-353 relatedness test set. However the dependency-based
model performed better on the WordSim-353 Similarity test set and on SimLex-
999. They also observed that dependency-based models yielded better results on
parsing tasks. Similar results were observed by Li et al. (2017).
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4.2.2.5 Corpus

The last hyperparameter presented here is the corpus used to train word em-
beddings. The corpus constitutes the source, the raw material from which the
semantic representations are learned. With recent neural-based word embeddings,
it is popular to attest that the more data used when training the better the trained
model and Mikolov et al. (2013a) recommends to use a larger corpus to get better
accuracy results. It is also important to take into account the type of corpus used
when training. To go back to the example presented in chapter 1, apple can mean
different things in a general corpus and in a medical corpus.

We are aware of only a very limited number of studies investigating the impact
of the corpus used for training and most of these studies solely focus on the size
of the data used. Asr et al. (2016) experimented with training models using a
small corpus (child directed speech data in the CHILDES corpus). They found
that word2vec models are outperformed by count-based models where Principal
Component Analysis was applied (dimension reduction method) when training
with a small amount of data. Sahlgren and Lenci (2016) investigated the amount
of data needed to train good word embeddings. They performed a comparative
study with count-based models to determine which type of models to use when the
quantities of available data are limited. The models were evaluated using different
benchmarks: the TOEFL and ESL multiple choice vocabulary test set as well
as MEN, SimLex-999 and Stanford Rare Words. Their results showed that word
embeddings were not performing the best with small data. However, they also
found that no model was displaying good performance on small amounts of data.
Chiu et al. (2016) also experimented with different corpus sizes in the context of
biomedical NLP. They were surprised to find that the corpus size impact was not
what they initially expected with more data being detrimental to the performances
of their models.

We presented several hyperparameters used to train word embeddings as well
as selected studies that investigated the impact of those hyperparameters on the
quality of word embeddings. Results were sometimes different from what was
expected, e.g. adding more dimensions is not always helping to improve results
or adding more data is not necessarily beneficial when training word embeddings
for biomedical NLP. Most of the studies research done on hyperparameters are
carried out in the context of specific tasks. To understand better the impact of
each hyperparameter, we propose in the following section an experiment that helps
us analyzing the impact of each hyperparameter used to train word embeddings.
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4.3 Method

4.3.1 Models and hyperparameters
In this section, we present the different models trained for our experiment. One
model (default model) serves as the basis of comparison. All the other models are
trained using one different parameter from the default model.

4.3.1.1 Default model

The purpose of the DEFAULT model is not to achieve good performances in any
way. It is simply a model that constitutes the basis to which all other models are
compared to. To train this model we used word2vec original source code with the
default values for all hyperparameters. However, we set the architecture to SG
since most people prefer this architecture when training models with word2vec.
This is explained by the fact that SG, while slower to train yields better results.
We also used window-based contexts by default. The default hyperparameters are
the following:

• window size: 5,
• vector size: 100,
• negative sampling rate: 5,
• subsampling rate: 1e-3,
• number of iterations: 5.

We did not experiment with the negative sampling rate, the subsampling rate
and the number of iterations (which corresponds to the number of times the train-
ing data is seen). As a consequence for each model trained, their values remain
the ones indicated here. We also decided to set the min-count hyperparameter
to a value that remains the same across trainings. Min-count corresponds to a
threshold that determines the minimum frequency words must have to be taken
into account for training, To set the frequency threshold value, we followed litera-
ture recommendation and set a threshold of 100 occurrences. This means that we
only considered words appearing at least 100 times to be included in our models.

Corpus used To train the default model we used the British National Corpus2.
The BNC is made of samples of written and spoken texts that were assembled
to give an overview of British English at the end of the 20th century. Overall,
the BNC contains about 100 million words and around 10 percent of the BNC
correspond to transcripts of spoken texts. Because it is too different from the

2http://www.natcorp.ox.ac.uk/
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rest of the corpus, we decided to remove the spoken texts. The corpus we used
is thus made of around 90 million words. Given the size of corpora used today,
the BNC is considered a small size corpus. However, it is regularly used in studies
investigating DSMs (see for example Lapesa and Evert (2014) or Padó and Lapata
(2007)). As a consequence we decided to used it as well to train our models.

We wanted to keep POS information when training word embeddings to be able
to detect how hypeparameters impact different POS. To do so, we lemmatized and
POS-tagged the BNC corpus with Talismane (Urieli, 2013).

The POS-tagset used (Penn Treebank tagset3) distinguishes between verbs in
their base form, in their past participle form etc. Because we wanted to maximize
the number of contexts for each word, we decided to group together selected POS.
We grouped POS as shown in table 4.2.

Original POS Mapped POS
VBG, VBD, VBN,
VBP, VBZ, VB VB

NNS, NN NN
NNPS, NNP NNP
JJS, JJR, JJ JJ

RBS, RBR, RB RB

Table 4.2: Mappings for POS.

Example (1) shows a tagged and lemmatized sentence before grouping POS.
The simplified version is shown in example (2).

(1) VBZ#do DT#the NN#lead VB#cause DT#the JJR#lower P#’ NNP#iq
#’ P#?

(2) VB#do DT#the NN#lead VB#cause DT#the JJ#lower P#’ NNP#iq
P#’ P#?

4.3.1.2 Variant models: hyperparameters variation

The DEFAULT model serves as a basis to make hyperparameters vary. Models
were trained with one different hyperparameter value at a time to isolate as much as
possible the effect of the given hyperparameter4. The evaluated hyperparameters
are the one we presented before:

3https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
4As we mentioned before, word2vec implies some random processes such as the starting seed

for training. We chose to not fix the seed to the same value every time and controlled only the
hyperparameters presented before.
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• architecture,
• number of dimensions,
• window size,
• context type,
• corpus.

To choose the different values to be examined, we relied on the different values
tested in the literature. Those values are reported in table 4.3.

Hyperparameters Default Alternate values tested
Architecture SG CBOW

Vectors dimensions 100 50, 200, 300, 400, 500, 600
Window size 5 1 to 10
Context type window deps, deps+

Corpus BNC ACL

Table 4.3: Hyperparameters values used to train word embeddings that are com-
pared.

Architecture We decided to test both architectures: CBOW and SG.

Number of dimensions The number of dimensions is another important factor
when training word embeddings. The default value in word2vec is 100. We wanted
to test a smaller value as well as larger values, following the different studies we
presented in section 4.2. We thus chose to test the following values: 50, 200, 300,
400, 500 and 600.

Window size In word2vec C implementation the default window size is 5. In
order to get a good overview of the impact of the window size we decided to test
values ranging from 1 to 10.

Context type In section 4.2.2.4, we presented the modified version of word2vec
developed by Levy and Goldberg (2014a). We decided to use it to experiment
with dependency-based contexts. Table 4.4 below shows a sentence from the BNC
corpus that was lemmatized, POS-tagged and parsed (CoNLL format) using Tal-
ismane5.

5Recently, Tanguy et al. (2019) investigated several parsers for specialized corpora. They
found that Talismane yielded the best results.
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1 The the DT NMOD 2
2 loss loss NN SBJ 5
3 of of IN NMOD 2
4 communication communication NN PMOD 3
5 did do VBD ROOT 0
6 not not RB ADV 5
7 affect affect VB VC 5
8 the the DT NMOD 9
9 mission mission NN OBJ 7
10 . . P P 5

Table 4.4: Example of a lemmatized, POS-tagged and parsed sentence from the
BNC.

The dependency relations used are the ones from the Penn Tree Bank converted
to the Stanford Dependencies6. Using the annotated corpus, we extracted triples
with the structure head modifier#reltype. These triples constitute the input to
train word2vecf. We wanted to assess the impact of the dependencies on the
models. To do so we trained embeddings using two different types of triples. For
the DEPS triples, we used the scripts provided by Levy and Goldberg (2014a)7.
All dependencies relations are extracted and only prepositions are “collapsed” so
that the head and object of the preposition are connected8.

For the DEPS+ triples we only selected a set of syntactic relations based
on Padó and Lapata (2007) work. The following dependency relations were se-
lected: subject, noun modifier, object, adjectival modifier, coordination, apposi-
tion, prepositional modifier, predicate, verb complement. Prepositions were still
collapsed à la Levy and Goldberg and the same was done for conjunctions.

Table 4.5 and 4.6 display the triples extracted for DEPS and DEPS+ for the
sentence in table 4.4

For DEPS, the inverse relation is annotated with I while in DEPS+ it is an-
notated with -1. We see that there are fewer triples for DEPS+ since we only
selected a specific set of dependency relations.

6https://nlp.stanford.edu/software/stanford-dependencies.shtml
7https://bitbucket.org/yoavgo/word2vecf/src/default/scripts/
8An example of collapsed preposition is displayed in figure 4.1
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Word Context
nn#loss nmod_dt#the
dt#the nmodI_nn#loss
vb#do sbj_nn#loss
nn#loss sbjI_vb#do
nn#loss nmod_in#of
in#of nmodI_nn#loss
in#of pmod_nn#communication
nn#communication pmodI_in#of
vb#do adv_rb#not
rb#not advI_vb#do
vb#do vc_vb#affect
vb#affect vcI_vb#do
nn#mission nmod_dt#the
dt#the nmodI_nn#mission
vb#affect obj_nn#mission
nn#mission objI_vb#affect
vb#do p_p#.
p#. pI_vb#do

Table 4.5: Triples extracted for DEPS using Levy and Goldberg (2014a)’s scripts
for the sentence in table 4.4.

Word Context
vb#do nn#loss#sbj
nn#loss vb#do#sbj-1
nn#loss nn#communication#pmod:of
nn#communication nn#loss#pmod:of-1
vb#affect nn#mission#obj
nn#mission vb#affect#obj-1

Table 4.6: Triples extracted for DEPS+ for the sentence in table 4.4.

Corpus We saw that most studies considering the corpus as one of the param-
eter used for training focused only on the size of the corpus. We wanted to test
other types of texts and domains to train word embeddings. Because the method
we propose is not relying on benchmarks, we wanted to choose a corpus that is
specialized in a domain we are familiar with. As a consequence, we chose the ACL
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corpus (Bird et al., 2008) as an alternative corpus. It is constituted of NLP sci-
entific papers from the ACL Anthology. Its size is similar to the BNC with about
100 million words. Because the BNC and ACL are two very different corpora, we
expect a lot of variation in the semantic representations of words. However, we
might observe interesting phenomena that are independent of the corpus nature.

Starting from the default configuration, we trained one model per possible
hyperparameter value listed in table 4.3. We thus trained 20 models. To compare
these models to the DEFAULT model, we needed to use an evaluation metric that
will allow us to approach word embeddings evaluation differently. We present the
metric we chose in the next section.

4.3.2 Variation metric
In the next section we explain why we decided to use nearest neighbors to compare
DSMs and how we integrated them in a metric that is easy to understand and
manipulate.

4.3.2.1 Nearest neighbors for embeddings evaluation

There are numerous works on the evaluation of DSMs that aim at finding the best
set of hyperparameters to train word embeddings that will perform optimally and
improve state of the art results. The work presented throughout this thesis does
not pretend to improve word embeddings models but rather aims at providing
clues and insights that helps understanding those models. We want to examine
how information is encoded and organized in the semantic space of a model. To
do so we need to access information in the model that reflects what is happening
in the lexical space. Using only intrinsic evaluation datasets, it is not possible to
get enough information and material to investigate the lexical structure of word
embeddings models. Moreover those types of approach do not allow to really
compare what is changing from one model to another. If we were training word
embeddings for a specific task, we could design a custom evaluation task. However,
because our work is exploratory, we want to use a method that gives us both a
global overview of how a model compares to another by quantifying the amount
of difference as well as a method that allows us to explore selected areas more
thoroughly.

By using a metric that involves nearest neighbors, we can get information
about the degree of difference of a word neighborhood between two models but we
can also retrieve concrete linguistic material that can provide an entry point to
investigate what varies from one model to another.
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Using a metric based on nearest neighbors also presents several advantages.
First, it is not dependent on a specific resource. Then, by just looking at the
nearest neighbors of a word without performing any computation we can already
get an idea of the quality of the semantic representation as well as observe which
semantic senses were captured by the model. Finally, using nearest neighbors
provide landmarks that are easy to assess. Because neighbors are retrieved as an
ordered list, sorted from most to least similar, a rank can be associated with every
nearest neighbor. It is thus easy to compare if two neighbors are the same or
different for a given rank or to check if a neighbors rank has changed from one
model to another.

The type of approach we present here was already proposed by Sahlgren (2006)
who used it to compare syntagmatic and paradigmatic word space models by
measuring their overlap. It also corresponds to usage of DSMs in corpus linguistics
where the quality of a semantic representation is evaluated through its nearest
neighbors. Nearest neighbors are also often used as a proof that a model works
properly. We saw it for word2vecf with the nearest neighbors of hogwarts (see
figure 4.2). The problem of simply looking at the nearest neighbors without using
a metric is that it might lead to over interpretation. It is necessary to measure
what is changing between word spaces and it is possible to do so by comparing the
nearest neighbors of a target word in two models. To select the nearest neighbors to
be compared, it is possible to either set a threshold corresponding to the minimum
similarity score to be considered or to select a given N number of neighbors. The
overlap between the two models is then computed on those selected neighbors.
A large overlap means that the two semantic spaces are very similar while a low
overlap means that the two spaces are very different (Sahlgren, 2006).

In the following section, we present in more details the variation metric we
used to compare models trained using different hyperparameters.

4.3.2.2 Nearest neighbors variation score

While inspired by Sahlgren (2006), our approach brings novelty by comparing a
new type of models (word embeddings) and by using the global overlap score to
identify local zones of words that we then investigate individually.

To compute the variation between models, we propose to compute the degree
of nearest neighbors variation between two models. For two models M1 and M2, we
first get the common vocabulary since it might change from one model to another
depending on the corpus or the types of contexts used for training. More precisely
the variation score of a word varnn across two models M1 and M2 is measured as:

varnnN
M1,M2(w) = 1−

|nnN
M1(w) ∩ nnN

M2(w)|
N (4.1)
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nnN
M(w) represents the N words having the closest cosine similarity score with

word w in a distributional model M.
For example, let’s consider the word cat. Its 3 nearest neighbors in a model

trained on ACL are dog, bark and fish. In a model trained on the BNC its nearest
neighbors are monkey, dog and fox. As a consequence the variation score of cat
across these two models is:

varnn3
M1,M2(cat) = 1− 1

3 = 0.66

Using a cosine score threshold to limit the number of nearest neighbors does
not appear to be the best solution. The main problem would be to find a good way
to set that threshold. Cosine scores can vary greatly from one word to another
and some words’ top neighbor might have a low cosine score. Would that mean
no neighbor should be selected if it does not reach the fixed threshold? Moreover,
retrieving neighbors according to a given threshold might retrieve a different num-
ber of neighbors for two models that are compared. Is it then possible to compare
models by considering a different number of neighbors? To avoid this type of
situations it seems more reliable to select a fixed number N of nearest neighbors.

Even though we decided to select a fixed number of nearest neighbors to com-
pare models, we still need to set the number of neighbors. To do so, we need to
consider several factors. Choosing a too small number could lead to lack of mate-
rial to be examined. On the other hand choosing a too high number could provide
unnecessary information that could lead to overlook important information. We
thus decided to experiment with different values to be able to select an appropriate
and representative value.

We retrieved neighbors according to the following candidate values of N: 1, 5,
10, 15, 25, 50 and 100. For each value we computed the variation score for each
word of the vocabulary for two randomly selected models (DEFAULT and WIN10
models). We then computed the correlation matrix between all different values of
N. The matrix is reported in table 4.7. We can observe an important decrease of
the correlation for the values 1 and 5. We need to use the value of N where the
correlation coefficients are maximized. This corresponded to the value of 25. We
thus chose to always compute the variation score with N = 25.
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Values of N N1 N5 N10 N15 N25 N50 N100
N1 1 0.42 0.35 0.33 0.30 0.28 0.26
N5 0.42 1 0.78 0.70 0.65 0.60 0.56
N10 0.5 0.78 1 0.89 0.80 0.74 0.69
N15 0.33 0.71 0.89 1 0.89 0.81 0.76
N25 0.30 0.65 0.80 0.89 1 0.90 0.84
N50 0.28 0.60 0.73 0.81 0.90 1 0.93
N100 0.26 0.56 0.69 0.76 0.84 0.93 1

Table 4.7: Correlation matrix between the different values of N for the DEFAULT
and WIN10 models.

We also decided to compute the variation only for open-class parts of speech
i.e. nouns, verbs, adjectives and adverbs since these open classes are more likely to
be impacted by variation. However, to preserve the geometry of the lexical space
we did not filter out nearest neighbors according to their POS meaning that all
POS can be found among nearest neighbors.

We are aware that this measure present the disadvantage of not accounting for
the rank of neighbors and only the presence or absence of a nearest neighbor is
considered. However, the variation measure we presented has several advantages.
First, it can easily be interpreted since we directly get an idea of the number
of neighbors that vary for a given word between two models. Moreover, it is
not computationally expensive. This measure also allows to get both a global
overview, by being able to compute the average variation score for a model, and a
local overview, by computing the variation score for every word. This means that
it is easy to examine words that vary more or less.

4.4 Results
In this section we examine the variation score between the 20 models trained.
Before comparing models, we first run an intrinsic evaluation task. Although
this task is not going to satisfy our linguistic curiosity, we saw before that many
research works were first performing a sanity check to make sure that the models
do not present any major problem.

4.4.1 Quantitative Evaluation
To perform the quantitative part of our evaluation, we selected two datasets that
are commonly used to evaluate DSMs in the literature: SimLex-999 (Hill et al.,
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2015) and WordSim-353 (Finkelstein et al., 2002). Because our models are POS-
tagged, we automatically added POS in the datasets using the available informa-
tion (SimLex-999 contains POS information and WordSim-353 is constituted of
pairs of nouns).

Figures 4.3, 4.4 and 4.5 display the performances of the different models on both
WordSim-353 and SimLex-999 as well as the confidence interval for the DEFAULT
model. We can see that depending on the hyperparameters we changed, there are
more or less differences in models’ performance. However these differences are
generally not significant.

By taking a closer look at figure 4.3 we see that the performances of the different
models are not consistent between the two benchmarks. On WordSim-353 most
models perform similarly independently of the number of dimensions. However, on
SimLex-999 we observe more notable performance differences. Models with fewer
dimensions have less good performance results than models with a higher number
of dimensions.

Figure 4.3: Evaluation results for models trained with different vector size (DIM
models) on WordSim-353 and SimLex-999 with 95% confidence interval span com-
puted from DEFAULT model. DEFAULT model is shown in bold.

We observe a similar tendency on figure 4.4 with different results on the two
benchmarks. Increasing the window size gives better results for WordSim-353 but
not necessarily for SimLex-999. However, results are less good when increasing
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Figure 4.4: Evaluation results for models trained with different size windows
(WIN models) on WordSim-353 and SimLex-999 with 95% confidence interval
span computed from DEFAULT model. DEFAULT model is shown in bold.

the window size to the maximum value of 10. The performance score is actually
similar to the model trained with a window size of 1. On SimLex-999 results are
pretty similar for the different window sizes even if increasing the window size
actually seems to give slightly worse results. We also notice that models trained
with a window size of 1 and 10 have similar performances on SimLex-999. This is
surprising since this corresponds to the most extreme values tested and we would
expect both models to perform differently.

Figure 4.5 displays the performance for models trained with a different ar-
chitecture (SG and CBOW), a different corpus (BNC and ACL) and a different
type of contexts (window and dependency-based contexts). Differences in per-
formances for those models are more noticeable on both datasets. This is not
surprising because the hyperparameters changed in those models are expected to
drastically change the semantic space since in one case completely different infor-
mation is provided to the algorithm (the semantic world is completely different in
ACL compared to BNC) and another type of information is provided to the model
to learn from (dependency-based contexts can capture information that is further
away than information captured by a window of size 5).

The DEFAULT model trained with SG performs slightly better than all the
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Figure 4.5: Evaluation results for models trained with a different architecture
(CBOW), different contexts (DEPS and DEPS+) and a different corpus (ACL) on
WordSim-353 and SimLex-999 with 95% confidence interval span computed from
DEFAULT model. DEFAULT model is shown in bold.

other models on WordSim-353. However its performance on SimLex-999 is very
similar to the CBOW model and it is outperformed by DEPS and DEPS+ on
SimLex-999. DEPS and DEPS+ get the worst results on WordSim-353 but the
best results on SimLex-999. While trained on a very different corpus, the ACL-
based model performs better than the CBOW model (trained with the BNC) on
WordSim-353. However it gets the worst results on SimLex-999.

Generally speaking, we can say that there are some differences between the
models trained according to the benchmarks. First, all models have lower perfor-
mance scores on SimLex-999 compared with WordSim-353. The number of pairs
is different so it could influence the results but this could also be a reflection of the
fact that the two datasets are evaluating different types of information. Secondly,
it is important to be aware that while models perform differently on the same
dataset when we change only one hyperparameter, those differences are generally
not significant (the differences in Spearman’s correlation score are very low).

Because evaluating using this type of datasets only assesses the performance
and quality of a few hundreds of pairs of words, it is difficult to know what changes
from one model to another. Even if the evaluation scores remain similar from one
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model to another, it does not guarantee that the same pairs of words have the
same cosine values.

Using the evaluation measure we presented in section 4.3.2.2, we want to go
further than just investigating selected pairs of words. In the next section we
show that by evaluating the variation of nearest neighbors for each word in the
model, we are able to get some insights that help us understand the impact of each
hyperparameter when training word embeddings.

4.4.2 Qualitative Evaluation

To perform a qualitative comparison of our models, we computed the nearest
neighbors variation score between the DEFAULT model and every other model
trained with a different hyperparameter.

Figure 4.6: Mean variation value with standard deviation interval for all trained
models compared to DEFAULT model.
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4.4.2.1 Variation score

Figure 4.6 shows the mean variation score (computed on all common words between
models) with the standard deviation span between the DEFAULT model and the
19 other models. The size of the vocabulary is different for models trained on the
BNC and the model trained on the ACL corpus. When comparing models trained
on the BNC, the neighbors of 27437 words were evaluated. When comparing the
DEFAULT model to the ACL model the vocabulary size was much smaller with
the evaluation of 10274 words. As we can see, it is obvious that training using
different hyperparameters triggers a high variation between nearest neighbors from
one model to another with a variation score of at least 0.3. This means that by
changing only one hyperparameter, among the 25 nearest neighbors of a given
word about 1 neighbor out of 3 is missing from one model to another.

We computed paired t-tests between models presenting the same sample size
(e.g. we computed paired t-tests between each WIN model and every other WIN
model as well as every DIM model since they are constituted of the same words).
We found that the differences in variation are generally significant with p < 0.05.
However the differences between WIN8 and WIN10 and WIN8 and DIM400 were
not significant (p = 0.66 and p = 0.10 respectively) meaning that training a model
with a window of size 8 or 10 or training a model with a window of size 8 or 400
dimensions had the same impact on the model.

The ACL model is the one showing the highest variation with an average score
of 0.8. This variation was expected since both models were trained on different
corpora and the ACL corpus is a specialized corpus.

The high variation displayed by the DEPS and DEPS+ models is slightly more
surprising. We saw in section 4.2.2.4 that when trained using different contexts,
word embeddings capture different type of semantic information, this could explain
the high variation observed. Models showing the lowest variation are models with
less drastic differences with the DEFAULT model. E.g. when the vector size was
changed from 100 to 200 or when the window size was changed from 5 to 6. A
general tendency is that models trained with minimum and maximum values for
a given hyperparameter show more variation. For example the WIN1 and WIN10
models display more variation than the WIN6 and WIN7 models.

The performance scores on WordSim-353 and SimLex-999 that we presented in
section 4.4.1 were not displaying such a high variation. Scores were sometimes dif-
ferent but those differences in scores were generally not significant. It is interesting
to notice here that models with a performance score close to the DEFAULT model
can still display a high variation in their neighbors. E.g. the DIM600 model had
a performance score very similar to the DEFAULT model. However its variation
score is higher than 0.4.

Figure 4.6 displays a high standard variation for each model. This means that
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there are different behaviors across the lexicon and some words vary more than
others. In the next section we propose to manually observe some words displaying
high variation and some words displaying lower variation scores as well as factors
that could explain variation.

4.4.3 Factors explaining the variation
Variation does not impact all words in the same way. To continue our investigation
at a global level, we decided to explore two factors, the POS of a word and its
frequency, that could explain the difference of variation among words.

4.4.3.1 POS

We first investigated the interaction between the POS of a word and its variation
score. Figure 4.7 displays the relation between the POS of words and their vari-
ation scores for two models presenting high variation, CBOW and WIN1. The
labels correspond to the tagset used by Talismane, jj stands for adjectives, nn for
nouns, nnp for proper nouns, rb for adverbs and vb for verbs. We observe a few
outliers in both graphs mainly for nouns and adjectives. However, we see that
the boxplots are mostly aligned, meaning that the repartition of the variation is
similar independently of the POS. Only proper nouns displayed a mean variation
score slightly higher than all the other POS in both models. Similar tendencies
were observed for all models meaning that the POS does not explain the measured
variation.

Figure 4.7: Variation score per POS for the CBOW (on the left) and WIN1 (on
the right) models.
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4.4.3.2 Frequency

The second factor we investigated is the role played by frequency on the variation
score. Schnabel et al. (2015) showed that word embeddings encode information
about frequency even after length normalization and that this could be the cause
of variability across embeddings and evaluation methods. As a consequence, we
decided to examine the role of the frequency in the variation of nearest neighbors.
Figure 4.8 and 4.9 display the mean variation score given the frequency of a word.
We see that the effect of frequency over variation is not linear. For all window-
based models, we observe a clear pattern: words in the mid-frequency range (1000
to 10000) display less variation than words in lower and higher frequency ranges.
This is in line with Sahlgren and Lenci (2016) who showed that DSMs perform
the best for medium to high-frequency ranges items. Models trained with different
dimensions seem less affected by frequency. The variation is quite constant across
all frequency ranges. CBOW, DEPS and DEPS+ follow the same pattern than
the window models, with a variation less high for medium frequency words. ACL9

displays a very high variation for low frequency words but the variation decreases
with frequency.

Figure 4.8: Effect of frequency on words variation for models trained with different
window sizes. The frequency is indicated in log base 10.

9The variation for ACL was measured on a smaller vocabulary set. The frequency used in
Figure 4.8 is the one from the BNC.
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Figure 4.9: Effect of frequency on words variation for models trained with different
dimensions, architecture, contexts and corpus. The frequency is indicated in log
base 10.

4.4.3.3 Exploring the variation

We used the variation measure to examine more local differences. For given pairs
of models we can easily identify which words show the most extreme variation
values. Table 4.8 displays the 38 words varying the most in the ACL model. We
see that all the words presented have a variation score of 1. This means that they
do not share any of their 25 nearest neighbors with the DEFAULT model. This is
not surprising since the ACL and BNC corpora are very different. We notice some
tagging errors with some nouns tagged as proper nouns (e.g. mission and flight).
However, we do notice that there are many proper nouns among the words that
vary the most. We also observe words that have a specialized meaning in ACL.
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Word Variation score
jj#proximal 1
nn#casing 1
nn#algorithm 1
vb#slash 1
nn#forest 1
nn#grass 1
nnp#doc 1
nn#token 1
nn#multiplier 1
nnp#salim 1
nnp#mission 1
nnp#flight 1
nnp#monde 1
nn#voice 1
nnp#kuhn 1
nnp#grove 1
nn#contradiction 1
nn#exponent 1
nnp#gerhard 1
rb#qualitatively 1
nnp#ben 1
nnp#dd 1
nnp#hercules 1
nnp#hubert 1
nnp#viktor 1
nnp#or 1
jj#intractable 1
nn#gloss 1
nnp#lucas 1
nn#presenter 1
nnp#live 1
nnp#district 1
nn#boss 1
nnp#workshop 1
nnp#jay 1
nn#development 1
nn#tracing 1
nn#independence 1

Table 4.8: Words displaying the most variation when comparing the DEFAULT
and ACL models.
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Table 4.9 displays the nearest neighbors of the word forest in the ACL and
DEFAULT models. We see that in ACL, its nearest neighbors refer to the algo-
rithm (hypergraph, parse) while in the DEFAULT models, the nearest neighbors
are related to nature (woodland, meadow etc.).

ACL model DEFAULT model
packed woodland

hypergraph marsh
tree grassland
parse meadow

Table 4.9: Nearest neighbors of the word forest in the ACL and DEFAULT
models.

We also investigated words varying the least for the ACL model. Table 4.10
displays the 38 most stable words. Just by looking at that table, we are able
to identify some regularities for words varying the least. We observe numerous
adverbs (consequently, sufficiently, furthermore etc.) and we also see numerals
(3rd, 2nd, sixth etc.).
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Word Variation score
rb#moreover 0.28
nnp#e. 0.28
nnp#c. 0.28
nnp#o. 0.32
nnp#n. 0.32
nnp#w 0.32
nnp#b. 0.32
jj#hungarian 0.32
nn#afternoon 0.32
rb#consequently 0.32
rb#sufficiently 0.32
nnp#l. 0.32
rb#usually 0.32
rb#furthermore 0.32
rb#however 0.32
nnp#t. 0.32
nnp#march 0.32
jj#less 0.32
nnp#april 0.32
nnp#f. 0.36
nnp#a. 0.36
jj#greater 0.36
rb#nevertheless 0.36
rb#mostly 0.36
jj#several 0.36
rb#thirdly 0.36
rb#dramatically 0.36
nnp#d 0.36
rb#secondly 0.36
rb#unfortunately 0.36
jj#2nd 0.36
jj#sixth 0.36
nnp#2nd 0.4
nnp#d. 0.4
nnp#r. 0.4
jj#easier 0.4
jj#3rd 0.4
rb#mainly 0.4

Table 4.10: Words displaying the least variation when comparing the DEFAULT
and ACL models.
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We wanted to see if it was possible to identify regularities among words that
vary the most and the least in the different models. To do so, we selected two
models, ACL and DIM200. We based our observations on the first hundreds of
words displaying the most and the least variation compared to the DEFAULT
model. Table 4.11 displays selected examples of words that vary the most and the
least for both models. We chose to ignore phenomena that seemed to be the result
of errors (e.g. tagging errors) and classes of words that were less interesting (such
as e., c. etc.). We were able to identify different semantic classes that emerge in
each case. For stable words, these classes seem to correspond to dense clusters
(e.g. nationalities), each word having all others as close neighbor. For example
among the nearest neighbors of hungarian in the ACL model we observe other
nationalities such as german, polish, russian, french etc.

We found that some of these clusters remain the same across the two pairs of
models (e.g. nationality adjectives) while other clusters are different. In the ACL
model, we find a cluster of time nouns while in the DIM200 model we find family
nouns. We see that words varying the most for the specialized corpus are words
carrying a specific meaning (e.g. nominal, graph). We also observe that words
with a high variation score are highly polysemic or generic in the DIM200 model
(e.g. field, marker).

Model Var. Identified semantic classes
ACL Low numerals (2nd, 14th, 10th...)

nationalities (hungarian, french, danish, spanish...)
time nouns (afternoon, week, evening...)

High specialized lexicon (embedded, differential, nominal,
probabilistic, patch, spell, string, graph...)

DIM200 Low numerals (40th, 15th...)
nationalities (hungarian, dutch, french, spanish...)
family nouns (grandparent, sister, son, father...)

High generic adjectives (all, near, very, real...)
polysemic nouns (field, marker, turn, position...)

Table 4.11: Words showing lowest and highest variation for ACL and DIM200
compared to the DEFAULT model.

4.5 Conclusion
We experimented with selected hyperparameters when training word embeddings
and saw that evaluating on intrinsic evaluation datasets was not identifying major
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differences between the trained models. Using a metric that compares the nearest
neighbors between models, we were able to detect an important variation among
nearest neighbors when training models with one different parameter. This varia-
tion shows that changing hyperparameters has an impact on the lexical space, and
that while these changes are not detected by evaluation datasets, at least one third
of the nearest 25 neighbors of a word are different from one model to another.

We saw that the variation is not affecting all words of the semantic space
equally and we found features which help identify some areas of (in)stability in the
semantic space. Words having a low and high frequency range have a tendency to
display more variation. Words in the medium frequency range show more stability.
By observing words that vary the most and the least in two models, we were able
to identify regularities and found that numerals and nationalities were less likely
to be impacted by variation than polysemic nouns.

While the variation we observed with the DEFAULT model was fairly high, it
is difficult to draw conclusions about neighbors variation if we ignore the inherent
instability of word2vec that is a result of several random processes (initialization of
the vectors, negative sampling etc.). To be able to properly understand parameters
variation, it is necessary to understand this inherent variation. As a consequence,
we decided to investigate this phenomenon. We present our method and results in
the next chapter.
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Chapter 5

Internal instability - a poorly
known phenomenon
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5.1 Introduction
In the previous chapter, we investigated the impact of different hyperparameters
on word embeddings by comparing nearest neighbors across models. We observed
an important variation between models with a minimum mean variation of 0.3.
However, to be able to interpret this variation, it is important to take into account
the instability that is inherent to word embeddings. Because it is a neural-based
method, word2vec implies random processes when training and models trained
with the same hyperparameters are different across runs. As a consequence, how
can we be sure that the variation observed in chapter 4 is not a result of the
inherent instability of the system?
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In this chapter, we propose to investigate the internal stability caused by
random processes in word2vec. We first explain what causes internal instabil-
ity. Then, we propose to measure the amplitude of this phenomenon for word
embeddings trained using word2vec by measuring nearest neighbors variation for
models trained with the same hyperparameters. The different experiments we
made are conducted on different corpora to ensure the phenomena observed are
not dependent on the corpus.

5.2 Word embeddings instability

5.2.1 What is instability?
The question of reproducibility, reliability and stability has been recently brought
up in the machine learning community and has been more and more of a concern.
It is sometimes referred to as a “reproducibility crisis” and workshops have been
specifically dedicated to this phenomenon. This crisis is due to the lack of sharing
of resources or code used when training models but it also comes from the lack
of clarity about the conditions in which experiments have been conducted (Hut-
son, 2018). Neural-based word embeddings methods imply random processes that
introduce inherent instability even if models are trained using the same hyperpa-
rameters. In the case of word2vec, the instability is a result of several processes
such as the random initialization of vectors that happens prior training, the use
of negative examples for training (negative sampling) and the removal of highly
frequent words (subsampling)1. Because of this, training word embeddings with
the same hyperparameters yields different vectors. The initialization of vectors is
done differently depending on the version of word2vec used for training. In the
original C implementation developed by Mikolov et al. (2013c) the pseudo-random
number generator used to initialize vectors depends on the multi-threading option.
As a consequence, it is possible to force word2vec to be deterministic by setting
the number of threads to 1. Word2vec was also implemented as a Python library
named gensim (Rehurek and Sojka, 2010). In this library, the training process
can also be forced to be deterministic by setting the seed for the random number
generator. It is also required to set the thread option to 1 to avoid randomness
caused by arbitrary thread scheduling2.

Training without setting the seed may have a direct impact on the nearest
neighbors of words because vectors vary across runs. Table 5.1 displays the 5
nearest neighbors for the words paper and white for 3 models trained on the BNC
using the same hyperparameters (SG with negative sampling, negative sampling

1See chapter 1.
2https://radimrehurek.com/gensim/models/word2vec.html
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rate of 5, vectors of 100 dimensions, subsampling rate set to 10−3, 5 iterations
and mincount set to 100). We see that the rank of some neighbors change across
models (e.g. magazine, pamphlet and book for paper and yellow and blue for white).
Other words disappear from the top 5 nearest neighbor. E.g. for the target word
paper, the neighbor newspaper only appears in one model. Similarly, for the word
white, the neighbor pink only appears once.

Target
word paper (n) white (adj)

Rank Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
1 magazine book book black black black
2 book magazine sheaf grey grey yellow
3 pamphlet newspaper magazine blue yellow grey
4 journal pamphlet folder yellow red blue
5 article folder parchment pink blue red

Table 5.1: Example of nearest neighbors variation for the words paper and white
in models trained using word2vec with the same hyperparameters on the BNC
corpus.

Although it is possible to control for instability by setting the seed, doing so
seems artificial and defeats the purposes of the algorithm (Hellrich and Hahn,
2016). It is important to note here that this instability is not unique to neural-
based models. Some techniques used to reduce the number of dimensions in count-
based models, such as random indexing where the word representations are ran-
domly initialized (Sahlgren, 2005), also suffer from these effects. However, in all
these methods, algorithms are designed to converge towards the same representa-
tion and the effects of random processes are expected to be minimal.

When using word embeddings as a component of a complex deep learning
system, not paying too much attention to instability might not necessarily be a
problem since a number of random processes are already involved. Word embed-
dings only constitute an additional source of randomness. However, when word
embeddings are used to explore different phenomena with a qualitative point of
view, it is important to be aware of the inherent instability and account for it.

Word embeddings have rapidly become popular to qualitatively explore data
in various domains such as digital humanities and corpus linguistics. E.g. Kim
et al. (2014) used word2vec embeddings to automatically detect changes in word
usage. We also saw in chapter 3 that Kulkarni et al. (2015) used word embed-
dings to detect and track linguistic shifts. Hamilton et al. (2016) compared words
meanings and their evolution by aligning word embeddings trained on corpora
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representing different eras. Bolukbasi et al. (2016) focused on the study of bias in
word embeddings. However, these studies disregard instability.

A few studies have specifically focused on the instability problem. Hellrich
and Hahn (2016) investigated the reliability3 of word embeddings in the context of
diachronic linguistic, i.e. they assessed if word embeddings can be trusted to con-
duct analyses in diachronic linguistics. They identified different factors influencing
neighborhood reliability. Some factors are directly related to the algorithm, e.g.
the number of epochs used for training. Other factors are related to the corpus
used for training, e.g. word frequency, or to the intrinsic features of a word, e.g. its
degree of polysemy. They also showed that the identified factors vary depending
on the corpus used for training. As a consequence, it is important to consider
the corpus used to train word embeddings and more data is not necessarily better.
The final conclusion of this work is that word embeddings are not reliable with top
neighbors varying a lot over different training. As a consequence the authors ad-
vise against using word embeddings for digital humanities. Antoniak and Mimno
(2018) also investigated the different factors influencing neighbors instability but
they chose to focus on models trained on small corpora. Similarly to Hellrich and
Hahn (2016) they insist on the importance of acknowledging neighbors instability
as ignoring it could completely invalidate the presented results. They also found
that the ranks of some nearest neighbors change across models and sometimes
some words even disappear from the nearest neighbors, similarly to what we il-
lustrated with table 5.1. They concluded that word embeddings “are not even a
single objective view of a corpus, much less an objective view of language”. As such
to be able to use word embeddings for qualitative analyses, they advise to present
results taking into account the instability observed. While this practice is common
in deep learning, it might be more complex to apply for qualitative studies. Should
a neighbor be considered valid only if it appears across all models?

Rather than rejecting completely word embeddings or trying to fix the insta-
bility problem, we propose to embrace the instability phenomenon and use it to
better understand word embeddings.

5.2.2 A note on terminology
Different words are used to describe the internal instability phenomenon that exists
with word embeddings: reliability, reproducibility and stability. While similar,
these three words refer to different aspects of the phenomenon. We propose to
explain them here.

Galliers and Sparck Jones (1993) define reliability when evaluating NLP sys-
tems as follows:

3See section 5.2.2.
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Reliability refers to the extent to which variation in measures is at-
tributable to the nature of measurements themselves as opposed to the
nature of the phenomena being measured: a reliable measure can be
depended on to give consistent and stable results.
Galliers and Sparck Jones (1993, 50)

As a consequence, reliability really encompasses the ability of models to be
trusted. Moreover reliability is associated with random errors and a model that
suffers from a lot of random errors cannot be trusted (Galliers and Sparck Jones,
1993). This is exactly how Hellrich and Hahn (2016) used reliability, as a measure
assessing if word embeddings can be used or not.

Reproducibility, is an important aspect of scientific research (Jimenez et al.,
2017). Results have to be reproducible by someone else and by applying the same
procedure on the same data, results are expected to be the same.

Stability refers to the idea that neighbors stay the same from one model
to another without any judgment on the performance of the model (such as the
investigation done by (Antoniak and Mimno, 2018)).

In this thesis, we propose to embrace the instability problem. We are not
trying to improve word embeddings performances and we are not using them to
draw qualitative conclusions in a specific context. We consider that the variation
in nearest neighbors across models trained with the same hyperparameters is a
phenomenon worth to be investigated. We aim at understanding better word
embeddings by comparing nearest neighbors across models. As a consequence, we
mainly use the words (in)stability and variation to describe the observed changes
of nearest neighbors across models.

In the following section we present the amplitude of the stability phenomenon.

5.3 Amplitude of the instability phenomenon
In section 5.2.1 we saw that the nearest neighbors of the words paper and white
vary across two models trained with the same hyperparameters. Some neighbors
disappeared from the top nearest neighbors while other neighbors’ ranks changed.
We also saw that is it possible to control for instability by setting the seed to a
fixed number and train using only one thread. However, this process seems artifi-
cial and would raise other questions (should the choice of the seed be arbitrary?).
In chapter 4 we observed different variations scores for words across models. Words
are differently impacted by variation with some words having a low variation score
(e.g. ordinals and nationalities) and some words having a high variation score
(e.g. polysemous nouns and generic adjectives). As a consequence we wondered
if a similar phenomenon could be observed for models trained with the same hy-
perparameters. If we are able to identify words that are always impacted in the
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same way, we might be able to gather useful information about nearest neighbor
variation and that might help us work better with word embeddings. We might
be able to identify some types of words for which they perform well and other
types of words for which we should avoid to use word embeddings. This means
that we will be partly able to control this instability phenomenon in a way that
will not hurt the linguist’s satisfaction. Because we wanted to know if the obser-
vations made depend on the corpus used for training, we decided to experiment
with three different corpora. We present the corpora used and the trained models
in the following section.

5.3.1 Models
The models used for the following experiments were trained on 3 different corpora.
We already presented two of them in chapter 4: ACL, a specialized corpus made of
NLP scientific papers, and the BNC (British National Corpus). The third corpus
we selected is PLOS, a specialized corpus we created using biology scientific papers
from All of PLOS4. The size of PLOS is similar to ACL and the BNC with about
100 million words. Similarly to what we presented in chapter 4, we lemmatized
and POS-tagged the corpora using Talismane (Urieli, 2013).

Our experiments focus on models trained with the same hyperparameters. We
decided to train 5 models per corpus to get a good overview of the variation phe-
nomenon. This allows us to compare 10 pairs of models per corpus. We decided
to use the same hyperparameters used for the DEFAULT model in chapter 4. As
a consequence, for each corpus we trained 5 models using the original word2vec
C code without deactivating multi-threading and with the following hyperparam-
eters:

• Skip-Gram with negative sampling,
• negative sampling rate of 5,
• window size of 5,
• vectors of 100 dimensions,
• subsampling rate set to 10−3,
• number of iterations set to 5,
• mincount set to 100.

5.3.2 Quantitative evaluation
In chapter 4, before measuring the variation of nearest neighbors across models,
we first ran a quantitative evaluation. We decided to do the same here, to see
if any change between models was detected by intrinsic evaluation datasets. We

4https://www.plos.org/text-and-data-mining
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checked the performance of our models on WordSim-353, SimLex-999 and MEN.
The minimum and maximum performance scores for each corpus are reported in
table 5.2. Since ACL and PLOS are specialized corpora, it is not surprising that
their performance scores on all 3 datasets are lower than the BNC. However, we
note that ACL performs better on WordSim-353 than PLOS but the contrary is
observed on SimLex-999 and MEN. Similarly to what we observed in 4, models
trained on the BNC perform better on WordSim-353 and MEN than on SimLex-
999. Most importantly, the differences in variation are very low for all 3 corpora
on the 2 datasets with minimum and maximum values that are very similar.

Corpus WS353 (min–max) Simlex-999 (min–max) MEN (min–max)
ACL 0.592 – 0.601 0.192 – 0.201 0.505 – 0.510
BNC 0.631 – 0.639 0.306 – 0.312 0.727 – 0.730
PLOS 0.392 – 0.403 0.273 – 0.279 0.573 – 0.575

Table 5.2: Minimum and maximum performance scores on WordSim-353 and
SimLex-999 for the 5 models trained for each corpus.

We observe that the differences in performances between models are relatively
low. This means that the inherent instability of word embeddings is not captured
by intrinsic datasets and this could be the reason explaining that it is often dis-
regarded. In the next section we measure variation across models by comparing
nearest neighbors.

5.3.3 Measuring variation
As we discussed in chapter 4, nearest neighbors are a good way to get immediate
feedback on what changes across models. Moreover, they allowed us to discover
that not all words are similarly impacted by variation, with the nearest neighbors
of some words varying more than others. As a consequence, we decided to use
the same measure of nearest neighbor variation presented in section 4.3.2.2. We
compare the 25 nearest neighbors of nouns, proper nouns, adjectives, adverbs and
verbs across the 10 pairs of models, i.e. we computed 10 variation scores for each
word per corpus.

Table 5.3 displays the number of words evaluated for each model as well as the
mean variation score for each corpus. The mean score was computed across the
10 comparisons and across all words in the model. We also indicated the mean
standard deviation for models and the mean standard deviation for words.

We computed paired t-tests for pairs of comparisons, i.e. BNC1_BNC2 vs.
BNC1_BNC3, BNC1_BNC2 vs. BNC1_BNC4, BNC2_BNC3 vs. BNC2_BNC4
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etc. such as both comparisons had one model in common. This resulted in 20
paired t-tests per corpus. We found that the differences were generally significant5

with p < 0.05 meaning that models are different.

Corpus Vocabulary Mean Std dev. Std dev.
variation (models) (words)

ACL 22292 0.16 0.04 0.08
BNC 27434 0.17 0.04 0.07
PLOS 31529 0.18 0.05 0.07

Table 5.3: Size of evaluated vocabulary, mean variation score and standard devi-
ations for models trained using the same parameters on ACL, BNC and PLOS.

In table 5.3, we see that the mean variation score is similar for all three corpora
meaning that the instability phenomenon does not seem to be dependent on the
corpus used for training. The average variation score is about 0.17. As a conse-
quence, when looking at the 25 nearest neighbors of a word, 4 or 5 of these 25
nearest neighbors change from one model to another. If we only relied on evalu-
ating models using intrinsic datasets, we would not have noticed the importance
of this variation (as seen in section 5.3.2).

We also notice that the variation score is stable across pairs of models with
a standard deviation of about 0.04 for the 3 corpora. This means that from one
pair of models to another, the variation measured for a given word is very similar.
However we observe a slightly higher standard deviation between words, with a
score of about 0.07 for the 3 corpora. This means that variation across words is
more heterogeneous with some words varying more than others.

Before looking into the differences of variation between words, it seems impor-
tant to go back to the experiments we conducted with models trained with different
hyperparameters. Since we used the BNC as the main corpus in that experiment,
we reported the mean variation score of the BNC on figure 5.1. While this score
is lower than the mean variation scores of models trained with different hyper-
parameters, considering the standard deviation score of 0.08 across words, some
words have the same variation score in models that are trained using the same
hyperparameters and models trained using different hyperparameters. E.g. in the
WIN6 model, words displaying the lowest variation have a score similar to words
displaying a high variation score in the models trained with the same hyperparam-
eters. As a consequence it seems highly important to understand internal variation
before being able to investigate variation related to change of hyperparameters.

5Except for ACL1_ACL4 vs. ACL1_ACL5 (p = 0.13), ACL2_ACL3 vs. ACL1_ACL2
(p = 0.57) and PLOS2_PLOS4 vs. PLOS2_PLOS5 (p = 0.19).
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Figure 5.1: Variation score for models trained with different parameters. We
added the mean variation score for 5 models trained using the same hyperparame-
ters. The dotted line indicates the mean variation score for 5 models trained using
the same hyperparameters as the DEFAULT model.

Before exploring the variation of words for models trained with the same hy-
perparameters in details, we decided to examine words varying the most and the
least in those models in the 3 corpora.

Table 5.4 displays the first 35 words with the lowest mean variation score
across the 5 models trained using the same hyperparameters for the BNC corpus.
First, we notice some tagging errors such as finance which should be tagged as a
noun. Then, we observe some words with a variation score of 0 (immense, 70s,
textitrumble etc.), meaning that their nearest neighbors remained the same across
the different models. However, it is important to remember here that the way
we compare neighbors across models does not include the ranks of neighbors. As
a consequence, while nearest neighbors remain the same, their ranks might have
changed. We also observe words that remained stable across models trained with
different hyperparameters in chapter 4 such as ordinals (e.g. sixteenth, 25th) and
family members (e.g. wife, daughter and grandmother). It thus seems that these
words are not sensitive to the different hyperparameters used when training nor
to the inherent instability in word embeddings. We observed similar behaviors

99



Chapter 5. Internal instability - a poorly known phenomenon

for models trained on ACL and PLOS6. For ACL, words that vary the least are
ordinals (e.g. 51st, 50th etc.) and words that are specific to the NLP domain
(e.g. precision, recall, n-grams etc.). For PLOS, words that vary the least are
also ordinals (e.g. 8th, ninth etc.), conjunctive adverbs (e.g. furthermore, firstly,
moreover) and words that described molecules (e.g. polyacrylamide, hygromycin
etc.).

Table 5.5 displays the 35 words with the highest mean variation score across
the 5 models trained for the BNC corpus. The variation scores are quite high
reaching at least 0.4. This means that almost half of their nearest neighbors are
different from one model to another. Among words that vary the most we observe
a lot of proper nouns (e.g. Hatton, Jacobsen etc.) similarly to what we observed
in chapter 4. We also observe generic verbs such as make that can appear in a
variety of contexts. For ACL and PLOS7 we also observe a lot of proper nouns
among words that vary the most that seem to correspond to acronyms (e.g. cd,
cbs for ACL and hsr and pcb for PLOS). It is thus clear that not all words are
impacted similarly by variation and that the observed variation is a phenomenon
related to the words (or at least to their use in a given corpus) and not to the
models.

5.4 What to do next?
In this chapter we presented the instability phenomenon that impacts word em-
beddings trained with word2vec. This instability is a result of random processes
inherent to neural-based methods. We decided to investigate this instability by
training 5 models with the same hyperparameters for 3 different corpora. We saw
that the variation was not captured by intrinsic datasets, with very similar perfor-
mance scores across models. By observing the 35 words varying the most and the
least in all 3 corpora we were able to identify regularities (e.g. ordinals tend to
vary less). We also found that words varying the most and the least were similar
to those observed when training models with different hyperparameters (ordinals,
family nouns, polysemic nouns). As a consequence we want to explore in details
the variation across models. We propose to do so in the next chapter where we
investigate variation through different linguistic features.

6See Appendix A for ACL and Appendix B for PLOS
7See Appendix C for ACL and appendix D for PLOS
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Word Mean var. across models
jj#immense 0
nn#70s 0
nn#rumble 0
nn#vice-president 0
nnp#w.l.r. 0
vb#analyse 0
jj#1/4 0.016
jj#100g 0.016
jj#sixteenth 0.016
jj#windy 0.016
jj#worried 0.016
nn#melody 0.016
nn#sitting-room 0.016
nn#unemployment 0.016
nn#whisky 0.016
nn#writer 0.016
nn#1890s 0.016
nn#kitchen 0.016
nn#magma 0.016
nn#pm 0.016
nn#scotch 0.016
nn#seventy 0.016
nn#wife 0.016
nnp#£ 0.016
nnp#a.c. 0.016
nnp#finance 0.016
nnp#m.r. 0.016
jj#tory 0.024
jj#few 0.024
nn#1960s 0.024
nn#cottage 0.024
nn#daughter 0.024
nn#grandmother 0.024
nn#television 0.024
nnp#25th 0.024

Table 5.4: Words displaying the lowest mean variation score for 5 models trained
with the same hyperparameters on the BNC corpus.
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Word Mean var. across models
nnp#hvk 0.772
nnp#jacobsen 0.532
nn#rink 0.528
nnp#hatton 0.512
nnp#boyd 0.5
nnp#harlequin 0.492
nn#reckoning 0.48
nnp#page 0.476
nnp#hook 0.472
nnp#wolff 0.472
nnp#bean 0.468
nnp#met 0.468
nnp#bart 0.468
nnp#priestley 0.464
nnp#banks 0.464
jj#finishing 0.46
nn#natural 0.46
nnp#vince 0.46
nn#con 0.456
nnp#moira 0.456
nnp#lewis 0.452
nnp#stapleton 0.452
nnp#beattie 0.448
nnp#sandison 0.448
nnp#mallender 0.448
nnp#cochrane 0.448
vb#make 0.448
nnp#wilcox 0.444
nnp#horne 0.444
nnp#shepherd 0.444
nnp#draper 0.44
nnp#mowbray 0.44
nnp#sec 0.44
nnp#burgess 0.44
nnp#clifford 0.44

Table 5.5: Words displaying the highest mean variation for 5 models trained using
the same hyperparameters on the BNC corpus.
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6.1 Introduction
In the previous chapter we presented the instability phenomenon and its amplitude
by experimenting with 5 models trained with the same hyperparameters. We used
corpora of different genres to investigate if the observed effects were caused by
the corpus used for training. We found that words are impacted differently by
instability with some words displaying more instability in their nearest neighbors.
We were able to identify some regularities for words that remained stable across
trainings. In this chapter we propose to investigate several factors that could
explain why some words are more impacted by variation than others. We selected
internal and external factors. Internal factors corresponds to features directly
related to the model and the data used for training, such as words frequency.
External factors are directly related to a word, such as its POS, its degree of
polysemy or its degree of concreteness.

6.2 Factors explaining variation
In chapter 4, section 4.4.3, we used frequency and POS to explore the variation of
words when training models using different hyperparameters. As a consequence,
before exploring any other factors, we wanted to know if the observed effects were
similar for models trained using the same hyperparameters.

6.2.1 Frequency
When training models using different hyperparameters, we observed a non-linear
effect of frequency on nearest neighbors’ variation. Words in the mid-frequency
range were more stable than words in the low and high frequency range. We wanted
to know if the same effect was observed for models trained with the same hyperpa-
rameters. As a consequence, we investigated the relation between frequency and
nearest neighbors variation. For each corpus, we compared the mean variation
score (that was computed across 5 models trained with the same hyperparameters
presented in section 5.3.1) to the frequency of words.

Figure 6.1 displays this relation for all 3 corpora. The frequency is indicated
using its log (base 10). We observe that for words in the low and mid-frequency
range, variation decreases with frequency. For words in the high frequency range,
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we observe different behaviors depending on the corpus. For ACL, variation de-
creases with frequency even for high frequency words (e.g. model occurs 285127
time and has a variation score of 0.1). For PLOS, high frequency words display
more variation (e.g. cell appears 629937 times and has a mean variation score of
0.436). Because of the difference of behavior, we decided to look into the nearest
neighbors of model in ACL and cell in PLOS. The nearest neighbors of models
all refer to types of models and measures (e.g. log-linear, rnn, bigram etc.) and
the neighbors that change across models are accurate. For cell nearest neighbors
mostly refer to types of cells (e.g. d4+cd25+, HSCs etc.). However, despite the
high variation score of cell, its nearest neighbors are accurate across models. Fi-
nally for the BNC, the variation score between mid-frequency and high frequency
range words is very similar. In any case it is recommended to interpret carefully
high-frequency words since there are fewer high-frequency words in all 3 corpora
and it might be more difficult to identify patterns to explain their (in)stability.

Globally, we observe a similar effect than for models trained with different
hyperparameters. Words in the mid-frequency range (1000 to 10000 occurrences)
are the most stable. Low frequency words tend to vary the most independently of
the corpus.
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Figure 6.1: Relation between variation score and frequency for ACL, BNC and
PLOS.

6.2.2 POS

When training models using different parameters we saw that variation was affect-
ing all POS similarly except for proper nouns that were displaying a slightly higher
variation score. Because we are experimenting with 3 different corpora, we decided
to examine the effect of POS when training models using the same parameters.
Figures 6.2, 6.3 and 6.4 show the repartition of variation per POS in ACL, the
BNC and PLOS. We observe similar patterns for all 3 corpora. The mean variation
score is similar across POS except for proper nouns. This is actually in line with
the first observations made in section 5.3.3 where we looked at words varying the
most and noticed a considerable amount of proper nouns (names and acronyms).
In all 3 corpora we also observe quite a few outliers that are highly impacted by
variation. They correspond to low frequency words in ACL and PLOS, e.g. the
verb gloss and the noun umbrella in ACL, the adjective inclusive and the verb
browse in PLOS. In the BNC these outliers are both low frequency words (e.g. the
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adverb narrowly) and high frequency words (the verbs make and might). Some of
the outliers also correspond to tagging errors in all 3 corpora.

Examining the influence of frequency and POS provided interesting insights
about the way words are impacted by instability. Frequency has an impact on
the instability of words but it does not explain it all. Moreover, while proper
nouns have a tendency to vary more, POS by itself does not allow to completely
understand why some words vary more than others.

Similarly to what we have done before, it seems crucial to explore words that
display the least and most variation across models for all corpora. We propose to
do so in the next section.

Figure 6.2: Mean variation score per POS for ACL.
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Figure 6.3: Mean variation score per POS for the BNC.

Figure 6.4: Mean variation score per POS for PLOS.

108



6.3. Exploring stable and unstable words

6.3 Exploring stable and unstable words
In chapter 5, we already took a closer look at words varying the least and the most
in all 3 corpora. We observed some words with a variation score of 0 across runs.
We also were able to roughly identify some clusters of words for all 3 corpora:
family nouns in the BNC, words that are specific to the NLP domain for ACL and
conjunctive adverbs for PLOS. We also managed to identify regularities for words
varying the most in all 3 corpora with proper nouns being more likely to vary in
all 3 corpora. This was even confirmed in the previous section when we examined
the relation between variation and POS. As a consequence, we wondered if it could
be possible to identify semantic classes that remain stable across runs. We present
this experiment in the following sections.

6.3.1 Stability of nearest neighbor
Before trying to identify clusters of words that remain stable, we were curious
about the clusters we observed. We wanted to first investigate if the cosine score
of the first nearest neighbor could be an indicator of stability, with the idea that
a high cosine score would guarantee a stable nearest neighbor. To check this, we
computed the correlation between the cosine score of the nearest neighbor of each
word and the variation score. We found a partial correlation of about -0.4. This
means that the cosine score of the nearest neighbor of a word partly explains the
stability of the word.

We also decided to investigate the stability of nearest neighbors for stable
words. For example, grandmother, daughter and wife were identified as stable
words. We decided to look at their nearest neighbors. In the BNC, the nearest
neighbors of grandmother are also family members (e.g. aunt, mother, sister, uncle
etc.). We observed the same phenomenon for daughter with nearest neighbors
like sister, son and niece. It thus seems that family members have other family
members as nearest neighbors, and they correspond to family members that we
were able to identify as stable words.

We tested this hypothesis on all our data for the BNC. For each word with a
computed variation score (nouns, proper nouns, adjectives, adverbs and verbs), we
retrieved the union of the 25 nearest neighbors across models. Then we computed
the mean variation score for the union of the nearest neighbors. We computed the
correlation between the mean variation score of the neighbors and the variation
score of the word. We found that the variation score of stable words is correlated
with the variation score of its nearest neighbors, with a correlation of 0.5 on
average. This means that we can explain the stability of some words because of the
stability of their neighbors. Some words remain stable across runs because they
belong to stable zones in the semantic space (e.g. family nouns). As a consequence
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Word NN1 Rank1 Rank2 NN2 Rank1 Rank2
nn#head nn#shoulder 1 1 nn#shoulder 1 1
nn#head nn#ear 2 2 nn#ear 2 2
nn#head vb#bend 3 3 vb#bend 3 3
nn#head nn#nose 4 6 nn#arm 6 4

Table 6.1: Nearest neighbors of the target word head along with their ranks in 2
models trained on the BNC using the same hyperparameters.

it means that we should be able to identify these stable semantic zones.
During this PhD, we also co-advised the research’s work of a master’s student.

For this work we selected a subset of nouns, adjectives and verbs belonging to
different frequency ranges (low, mid and high) in the BNC. For each word, we
retrieved its 25 nearest neighbors in two models trained with the same hyperpa-
rameters on the BNC (SG with negative sampling, negative sampling rate of 5,
vectors of 100 dimensions, subsampling rate set to 10−3, 5 iterations and mincount
set to 100). Table 6.1 gives an example of a word with its nearest neighbors in two
models (NN1 and NN2). The rank of each neighbor is indicated in both models
(Rank1 and Rank2). Using this data, for each neighbor Bravo Candel (2019) com-
puted the variation of the rank. He also identified semantic relations between the
target word and each neighbor. His analyses showed that nearest neighbors that
are hypernyms, hyponyms or synonyms of the target word significantly remain
stable across the 2 models. However, neighbors that are only related to the target
word (or when associating a semantic relation was more challenging) are mostly
unstable. As a consequence, we can consider that the stability is an indicator of
the good quality of the semantic relation shared by a target word and its neighbor.

6.3.2 Identifying semantic stable zones
We saw that some words are less sensitive to variation across runs. To identify
semantic zones of stable words, we decided to cluster words using their semantic
similarity computed with cosine score. E.g. in the BNC, we selected the 300 words
with the lowest mean variation scores across the 10 pairs of models. Then, we com-
puted the cosine similarity between all those words for each of the five models, so
that for two given words we have the cosine similarity in the first model, the second
model etc. Using these cosine similarities, we performed hierarchical agglomera-
tive clustering using the R1 function hclust. We used the Ward’s agglomeration
method and arbitrarily set the number of clusters to 10. We performed clustering

1R Core Team (2017).
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for the 5 models trained. As a consequence we ended up with 5 different cluster-
ings, one for each model, each containing 10 clusters. We wanted to make sure that
the identified clusters remained the same across models. To do so, we evaluated
the agreement between clusters using Rand Index (Rand, 1971) which is defined
as follows:

R(Y, Y ′) =
∑N

i<j γ(ij)(
N
2

) (6.1)

Y and Y ′ are two clusterings the agreement is computed for. N is the number
of data points in the clusters, so

(
N
2

)
is the number of different pairs of words. For

each possible combination of pairs of points, γ(ij) is 1 if the two points appear in
the same cluster in Y and Y ′ or if the two points belong to different clusters in Y
and Y ′. Otherwise, γ(ij) is 0. As such the Rand Index is the ratio of word pairs
that are treated the same way in both clusterings. We measured the Rand index
for all 10 pairs of models and obtained an average value of 0.93 (± 0.01, IC 95%).
The same values were obtained for the other two corpora. As a consequence, the
clusters identified are very similar across models.

Figure 6.5 shows the 10 identified clusters for models trained on ACL2. First,
we notice that the clusters are of various sizes. Then, we are able to manually
identify the following semantic clusters:

• foreign words (e.g. cada, politecnica, habe etc.),
• ordinals (40th, 52nd etc.),
• evaluation measures and processes in NLP (e.g. crossvalidation, non-expert,
reliability, precision, f-score etc.),
• conjunctive adverbs (e.g. nevertheless, etc.),
• verbs describing scientific processes (e.g. observe, describe etc.),
• words referring to pre-processing in NLP (e.g. tokenization, n-grams, post-
processing etc.),
• internal references to figures and tables (e.g. 6b, 7a etc.).

We were not able to identify a semantic class for all clusters, some being con-
stituted of a variety of proper nouns that are mostly tagging or tokenization errors
(e.g. r.a, 1995a, g. etc.).

For the BNC, among the 10 clusters we were able to identify the following
classes:

• cooking measurements (e.g. 4oz, 100g, tbsp etc.),
2Visualization was done on a randomly selected ACL model. We used https://projector.

tensorflow.org to project points with a PCA on the vectors of the 300 most stable words.
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• family members (e.g. uncle, son, spouse, nephew etc.),
• countries (e.g. sweden, france, poland etc.),
• rooms and objects of the house (e.g. bathroom, bedroom, furniture etc.),
• references to date and time (e.g. noon, april, pm etc.),
• ordinals (e.g. sixteenth, fifteenth etc.),
• words referring to sadness and pain (e.g. regret, rueful, misgiving, grief etc.).

Finally among the 10 detected clusters for PLOS, we were able to identify the
following semantic clusters:

• enzymes (e.g. saci, bglii, clai etc.),
• internal references to figures (e.g. 7a, 1b, figs, table etc.),
• dates (e.g. october, december etc.),
• serial dilution3 (e.g. 2-fold, ten-fold etc.),
• conjunctive adverbs (e.g. thirdly, moreover etc.),
• scientific processes (e.g. implicate, reason etc.),
• injection type (e.g. intranasal, intraperitoneally etc.),
• antibiotics (e.g. puromycin, colistin, blacsticidin etc.).

As we noticed earlier, the identified clusters are of different sizes ranging from
a few elements (e.g. performance measures) to several dozens (e.g. ordinals). This
means that the identified clusters are not a result of the bias of the number of
nearest neighbors selected.

By looking at the identified clusters across the 3 corpora, we are able to classify
clusters into broader semantic classes. For example for both specialized corpora
we identified conjunctive adverbs and scientific processes that correspond to trans-
disciplinary scientific lexicon (Tutin, 2007). Table 6.2 lists the different semantic
classes of clusters we analyzed. In addition to the transdisciplinary scientific lexi-
con, we were able to identify broader semantic clusters for all 3 corpora:

• specific localized contexts: foreign words used in examples in ACL, internal
references in PLOS, measures used in recipes in the BNC;
• closed classes of co-hyponyms: performance measures in ACL, antibiotics in

PLOS and family members in the BNC.

Overall, these semantic classes correspond to words which appear with restricted,
specific and regular contexts for which we expect distributional semantics to per-
form well.

3Dilution of a substance in solution (https://en.wikipedia.org/wiki/Serial_dilution).

112

https://en.wikipedia.org/wiki/Serial_dilution


6.3. Exploring stable and unstable words

Fi
gu

re
6.
5:

C
lu
st
er
s
id
en
tifi

ed
fo
r
th
e
30
0
m
os
t
st
ab

le
wo

rd
s
fo
r
m
od

el
s
tr
ai
ne
d
on

A
C
L.

V
isu

al
iz
at
io
n
do

ne
us
in
g

ht
tp

s:
//

pr
oj

ec
to

r.
te

ns
or

fl
ow

.o
rg

.

113

https://projector.tensorflow.org


Chapter 6. Neighbors instability as a linguistic phenomenon

Cluster type Corpus Examples
Specific localized contexts ACL foreign words used in examples (para,

com, sobre...), (der, das, nicht, die...)
ordinals (12th, eleventh, 41st...)

PLOS internal references (figures, table, 6b,
1a... )
figures description (dot, triangle, filled,
orange...)

BNC temporal expressions (am, pm, 31st,
noon...)
measures in recipes (tsp, tbsp, oz...)

Closed classes of co-
hyponyms

ACL performance measures (precision, recall,
f-score...)
linguistic pre-processing (parsing,
lemmatization, tokenizing...)

PLOS antibiotics (puromycin, blasticidin, cefo-
taxime...)
injection type (intraperitoneally, in-
tranasal, intramuscular...)

BNC family members (wife, grandmother, son,
sister...)
rooms and objects of the house (kitchen,
sitting-room, bathroom, furniture...)

Transdisciplinary scientific
lexicon

ACL conjunctive adverbs (nevertheless, rela-
tively, secondly, additionally...)
scientific processes (discuss, describe, ob-
serve...)

PLOS conjunctive adverbs (moreover, further-
more, conversely...)
scientific processes (hypothetize, reason,
elucidate...)

Table 6.2: Selected stable clusters identified for each corpus.

6.3.3 Investigating unstable words
We also decided to try to find common features that would help us group unstable
words into classes. We already examined a sample of the most unstable words from
the BNC in section 5.3.3. E.g. we saw that among words varying the most there
were a lot of proper nouns. We decided to extend our observations by looking at
the 300 most unstable words in all 3 corpora. Given the instability of these words,
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it is not possible to identify regularities using clustering. As a consequence, we
decided to directly observe the most unstable words, by considering words with
the highest mean variation scores across models.

We reported the unstable classes we identified in table 6.3. As we did before, we
noticed that some of the unstable words corresponded to POS-tagging mistakes
(e.g. smile was tagged as a proper noun in PLOS, course was also tagged as
a proper noun in ACL). We also observed that real proper nouns were highly
impacted by variation. They correspond to names in the BNC (e.g. Bart, Vince
etc.) and ACL (e.g. Steve, Joyce etc.) and acronyms in PLOS (e.g. PCB, DMC
etc.). We also noticed an important number of words that correspond to central
concepts in the specialized corpora (e.g. gene, cell and protein in PLOS, language
and sign in ACL). These words vary across corpora and while very frequent, their
semantic content is generic.

Corpus Series Examples
ACL proper nouns Steve, Joyce, Ivan...

generic words language, sign
generic adjectives free, mix, special
polysemous words account, card, zone, sign

PLOS proper nouns PCB, DMC, TLP, ACD ...
generic words gene, cell, protein
generic adjectives free, current, near, double

BNC proper nouns Bart, Vince, Lewis...
generic adjectives whole, general
polysemous words make, close, cast

Table 6.3: Selected examples of classes of unstable words for each corpus.

We also observed that generic adjectives (e.g. whole, super and general in the
BNC, free and current in PLOS) and highly polysemous words (e.g account and
zone in ACL,make and close in the BNC) are also challenging for the distributional
semantics mechanism. This is because they appear in a variety of contexts but
also because few words are similar to those words. Even though those words are
highly impacted by variation, it does not mean that their neighbors are irrelevant.
E.g. the adjective exclusive in the BNC has a mean variation score of 0.408. Some
of its neighbors reflect the idea of privilege (prestigious, complimentary or unique)
conveyed by this word. However, we also observe irrelevant neighbors that are
more likely to change from one model to another (e.g. Granada, Disney etc.).

We were able to identify features possibly correlated to the stability and insta-
bility of some words. Using clustering on the most stable words across trainings,
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Chapter 6. Neighbors instability as a linguistic phenomenon

we identified classes of words sharing semantic similarities. We also managed to
identify linguistic regularities (polysemous words, proper nouns etc.). We now
propose to further explore those features by using them to predict the stability of
a word.

6.4 Predicting variation
We want to know if the stable and unstable words we identified in the previous
section are associated with linguistic features that determine their stability. To
do so, we decided to use a predictive model. In this way we can investigate
the impact of several features and observe which ones are the most significant.
Subsequently, the predictive model can be used to detect words that are more
impacted by variation. In the following section, we present the features we decided
to experiment with and the observations made.

6.4.1 Selected features
We selected three different types of features to predict the variation: features
intrinsic to a word, to the corpus used for training and to the model. We present
them in details below.

6.4.1.1 Features intrinsic to the word: POS and polysemy

Features that are intrinsic to a word represent inherent characteristics of words
such as its POS and its degree of polysemy. We chose to select the POS as a feature
because we observed in section 6.2.2 that proper nouns had a tendency to be more
unstable. Regarding the degree of polysemy, we located highly polysemous words
(e.g. make and cast in the BNC, zone and sign in ACL) that were highly impacted
by variation.

We could argue that polysemy is actually a feature intrinsic to the corpus since
the polysemy of a word is also dependent on the corpus and the meanings it has in
the corpus. However, because we computed the degree of polysemy of words using
an external resource, it does not necessarily reflect the usage made in the corpus.

To get the POS of a word, we simply retrieved the information from the
tagger. To compute the degree of polysemy, we used ENGLAWI (Sajous and
Hathout, 2015), an XML-encoded machine-readable dictionary extracted from the
Wiktionary. It consists of 752770 articles and contains 108747 adjectives, 18062
adverbs, 283183 nouns, 46272 proper nouns and 36919 verbs4. We computed the
degree of polysemy of a word by counting the number of entries it has in the

4It also contains entries for all other POS but we only selected the ones we are interested in.
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resource. When a word did not exist in the resource, we made the decision to
assign a degree of polysemy of value 1 to the word. We are conscious that the way
we computed polysemy is not perfect and might be perceived as a bit simplistic.
Because the Wiktionary is a crowd-sourced resource, it contains errors and we did
notice some problems for polysemous words that had only one definition in the re-
source. However, this method was computationally inexpensive and was satisfying
for our investigation.

When looking at the most unstable words, we noticed that many polysemous
words were impacted by nearest neighbors variation. Moreover, because word
embeddings encompasses several definitions in one vector, we expect polysemous
words to display more variation.

6.4.1.2 Features relative to the corpus: frequency and entropy

Unlike the POS of a word and its degree of polysemy, features such as frequency
and entropy are dependent on the corpus. In section 6.2.1, we were able to iden-
tify a relation between frequency and stability. We observed that mid-frequency
words are more stable than low and high frequency words. Moreover, frequency is
an essential feature in distributional semantics. Frequency is also part of the dif-
ferent hyperparameters that need to be set when training word embeddings with
word2vec (we set the mincount threshold to 100 occurrences and high frequency
words are subsampled). As a consequence, it was logical to choose frequency as
one of the selected features.

We also noticed in section 6.3.3 that generic words specific to the corpus do-
main tend to be more impacted by variation (e.g. gene, cell, language etc.). We
wondered if this was related to the fact that these words appear with a lot of
different contexts making it difficult for the distributional method to detect regu-
larities. As a consequence, we decided to investigate the role played by the variety
of contexts a word appears in on its stability. To do so, we computed the entropy
of a word with its contexts. This corresponds to the dispersion of the contexts of
a word in the corpus. We computed the normalized entropy of a word as follows5:

H(x) =
−

n∑
i=1

pilog2(pi)

log2(n) (6.2)

where pi is the probability of context i to appear with word x, i.e. the relative
frequency of context i, and n is the number of context types. The denominator
allows to normalize the entropy to be able to compare words with different numbers
of occurrences and contexts. A higher value indicates a high variability in the
contexts. We expect the entropy to be correlated to variation.

5Adapted from https://en.wikipedia.org/wiki/Entropy_(information_theory)
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We computed the normalized entropy of a word by considering its collocates
on a symmetrical window of size 5 for open classes of words only. However we did
not filter the POS of contexts.

6.4.1.3 Features intrinsic to the model: L2-norm and nearest neighbor
similarity

We considered two last features that are intrinsic to the model: the norm of the
vector and the nearest neighbor cosine similarity score. We considered the L2-
norm as a feature because Trost and Klakow (2017) showed that the L2-norm of
common words do not follow the general distribution of models. We thus wondered
if the L2-norm would be a good indicator of a word’s stability.

The L2-norm is the square root of the sum of the squared vector values. It
measures the distance of a vector from the arbitrary center of the vector space.
Vectors with a high norm are separated from other vectors. When computing the
similarity between two vectors, the norm is not taken into account since the cosine
score only measure the angle between vectors. This would be completely different
if the euclidean distance was used instead.

We also chose to investigate the impact of the nearest neighbor cosine score
because we saw in section 6.3.1 that words having a nearest neighbors with a high
cosine score have a tendency to be more stable. We expect this measure to be
correlated to the stability of a word.

6.4.2 Models and results
We chose to study the impact of these 6 features on the variation score using mul-
tiple linear regression models. While we could have tried to use models that give
the best prediction results, we are mostly interested in examining which features
have the most impact on the stability of a word. As such, linear regression is
the most straightforward to interpret results and understand the impact of each
feature used for training.

We decided to check if the features used for training were suffering from mul-
ticollinearity effects. We computed the Variance Inflation Factor (VIF) using the
R package usdm6. While the VIF scores for the entropy and frequency were higher
than for other variables for all corpora, there were still under the value of 10 which
would indicate a multicollinearity problem.

We used the word embeddings models presented in section 5.3.1. For each
corpus, we trained 5 regression models, one per word embeddings model, using
pairwise interaction of the features. This means that features were both used by

6https://cran.r-project.org/web/packages/usdm/usdm.pdf
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themselves and combined. The 5 regression models all had the same target to be
predicted, the mean variation score of a word that was computed across the 10
comparisons made for each corpus.

To evaluate the accuracy of our models, we used the adjusted R2 value which
measures the amount of variance of the target variable which is explained by the
statistical model. The adjusted R2 value is interesting because the R2 value in-
creases with added features, even though these features are not relevant. Table 6.4
displays the mean values and standard deviations across the 5 regression models
for the 3 corpora. We were able to explain 39% of the variance for ACL, 43% for
BNC and 48% for PLOS. The low standard deviations indicate that these scores
are reliable. While far from an efficient prediction, these values prove that we nev-
ertheless captured important features that can explain the stability of embeddings.

Corpus Mean adjusted R2 (std. dev.)
ACL 0.39 (0.0007)
BNC 0.43 (0.0102)
PLOS 0.48 (0.0006)

Table 6.4: Mean adjusted R2 score for predicting the variation of a word on ACL,
BNC and PLOS.

To understand the contribution of each feature on the variation prediction, we
decided to use a feature ablation approach similar to the one used by Lapesa and
Evert (2017) which consists in training several regression models by removing one
feature at a time and compute the loss in R2 from not using each feature. If the
removed feature is an important predictor, the R2 score will decrease. On the
contrary, a superfluous feature will not impact the R2 score. As a consequence,
it is possible to classify features according to their importance. This method is
simple to use and to interpret, especially since we are training models with pairwise
interactions where the interpretation of coefficients could be challenging.

For each word embedding model, we trained one multiple linear regression
model using all features and we then trained 6 other models by removing one
feature at a time. We computed the loss of the adjusted R2 for each of this model
compared to models trained with all 6 features. The loss is seen as the relative
importance of the ablated feature.
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Figure 6.6: Feature ablation for multilinear regression models trained for ACL,
BNC and PLOS.

Figure 6.6 display the impact of each feature. We observe a similar pattern
for the 3 corpora. The most important feature is the cosine similarity score of the
first nearest neighbor (NN-sim). It explains around 20% of the variance by itself.
However, this feature does not explain all the variance. We expected this result
since we had already observed the impact of the nearest neighbor cosine score on
the variation score in section 6.3.1

The second most important feature is the POS (pos) of a word. This is a bit
surprising since when we observed the impact of the POS on the variation score,
we only noticed that proper nouns were more impacted by variation. We thus did
not expect it to be the second most important feature.

The entropy of a word’s contexts and the degree of polysemy are the features
displaying the less (or even none) effect on all 3 corpora. Because in section
6.3.3 we observed that some of the most unstable words were highly polysemous,
we expected the degree of polysemy to play an important role in predicting the
variation. The lack of impact could be due to the resource we used or to the fact
that we computed polysemy outside the corpus while it would be more accurate
to compute it inside a given corpus. We were also surprised that entropy was not
playing an important role in predicting the variation. Because we observed that
generic words specific to the domain of the corpus (e.g. protein, language etc.)
were higly impacted by variation, we expected words with a variety of contexts to
be more sensitive to variation.
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The norm and frequency features have different impact depending on the cor-
pus. The norm helps to predict the variation for models trained on the BNC but
not for models trained on PLOS and ACL. Frequency has slighty more importance
for PLOS than for the BNC and ACL. While we saw before that mid-frequency
words tend to be more stable, the lack of impact here can be explained by the fact
that the frequency effect on variation is not linear as we saw in section 6.2.2.

To get a better understanding of the impact of each feature on the varia-
tion of a word, we analyzed the effects of features using partial effects7. In the
following plots the blue line represents the prediction made by the model. The
magenta line represents the LOESS (locally estimated scatterplot smoothing) non
parametric-regression smooth of the points, that displays the relationship between
the variables89. Finally, the magenta points represent residuals, i.e. the difference
between the observed value and the value predicted by the model (Fox and Hong,
2003; Gries, 2013).

We observed similar effects of the features for all 3 corpora. Figure 6.7 display
the partial effects of the cosine similarity score of the nearest neighbor of a word
for a randomly sampled multi-linear regression model trained on ACL10. We see
that words having a higher nearest neighbor similarity score display less variation.
On the contrary, when the similarity score is lower, the variation is higher. It
seems logical that a very close neighbor remains stable from one model to another.
However this is not a systematic behavior since some words having very close
neighbors display a high variability.

7Using the R package effect (Fox and Hong, 2003).
8https://en.wikipedia.org/wiki/Local_regression
9https://en.wikipedia.org/wiki/Scatterplot_smoothing

10Partial effects for PLOS and the BNC models can be found Appendices E and F.
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Figure 6.7: Partial effects of the nearest neighbor cosine similarity for a randomly
sampled multi-linear regression model trained on ACL.

Figure 6.8: Partial effects of POS for a randomly sampled multi-linear regression
model trained on ACL.
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For POS, figure 6.8 confirms that proper nouns (nnp) have a higher variation
than other categories, along with nouns on a smaller scale. No differences could
be found among other categories.

As we can see on figure 6.9, the norm of the vector is negatively correlated
to variation: word with vectors distant from the origin show less variation. This
effect was confirmed but less clear for the ACL models. This phenomenon has to
be further examined as is the overall geometry of word embeddings vector space.
E.g., Mimno and Thompson (2017) have shown that embeddings trained using
word2vec Skip-Gram are not evenly dispersed through the semantic space.

The effect of frequency is visible figure 6.10. The predictability of the variation
is actually not linear as we saw in section 6.2.1. Words having very low or very
high frequency are more affected by variation than words in the mid-frequency
range. This partly infirms the common knowledge that embeddings of more fre-
quent words are of better quality. We actually found a number of frequent words
displaying instability in each corpus (e.g. gene and protein in PLOS, language in
ACL and make in BNC etc.).
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Figure 6.9: Partial effects of the L2-norm for a randomly sampled multi-linear
regression model trained on ACL.

Figure 6.10: Partial effects of frequency for a randomly sampled multi-linear
regression model trained on ACL.

124



6.4. Predicting variation

The degree of polysemy of a word also has a slight effect on the predictability
of the variation of a word as we can see on figure 6.11. The more polysemic a
word is, the more likely its variation score is to be high. We expected this effect
to be more obvious and we only observed a slight effect. This could be due to the
resource we used but it could also be because we computed polysemy as something
external to the corpus when in reality we should have computed it according to the
different senses used in the corpus to reflect real usage. This would be especially
important for specialized corpora.

As for the entropy, we observed for ACL and the BNC, that words having higher
entropy with their contexts display more variation. Concerning these two last
features (polysemy and entropy) experiments confirm that distributional semantics
has more difficulty in representing the meaning of words that appear in scattered
contexts.
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Figure 6.11: Partial effects of polysemy for a randomly sampled multi-linear
regression model trained on ACL.

Figure 6.12: Partial effects of entropy for a randomly sampled multi-linear re-
gression model trained on ACL.
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6.4.3 Other approaches to the prediction of stability
Concurrently to the research we conducted on the prediction of the variation, an-
other study was done by Wendlandt et al. (2018) to investigate factors influencing
the instability of word embeddings trained using different techniques: models cre-
ated using PPMI, word embeddings trained using word2vec and word embeddings
trained using GloVe. The authors define stability as the overlap of the 10 nearest
neighbors in a DSM space. First, they examined the relation between stability and
frequency. They observed that high frequency words are the most stable and that
mid-frequency words are more impacted by instability. This is different from what
we observed in section 6.2.1. However this difference could be the result of the
different number of nearest neighbors considered11. Moreover, our observations
were limited to a subset of POS while Wendlandt et al. (2018) examined all POS.

To predict stability the authors chose several properties related to a word (POS,
polysemy, number of syllables), to the corpus (2 different corpora, raw frequency,
vocabulary size, overlap of vocabulary between corpora) and to the algorithm used
to train embeddings (window size and min-count). They trained a ridge regression
(Hoerl and Kennard, 1970) to predict the stability of a word across 2 models. These
2 models were not necessarily trained using the same techniques, parameters and
corpus. As a consequence their results are different from the observations we made
in the previous sections.

Similarly to what we observed, they found that the POS of a word is one of
the factors playing an important role on stability. They observed that numerals,
verbs and determiners are the most stable while punctuation marks, adpositions
and particles are the most unstable. They also observed that frequency is not a
major factor in the prediction of stability.

In this section, we were able to further investigate the stability of words through
several features related to a word, the corpus it appears in and the model trained.
We observed that the cosine score of the nearest neighbor of a word explains partly
the stability of a word with top nearest neighbors having a high cosine score being
more likely to remain stable across runs. Confirming observations we made before,
the POS of a word also has an impact on the word stability, with proper nouns
being more unstable.

Naumann et al. (2018) and Frassinelli et al. (2017) have investigated the con-
texts of concrete and abstract words. We got curious about the influence of the
degree of concreteness of a word on its stability. As a consequence we decided to
investigate this additional feature. However, we solely focused on nouns because
they are easier to qualify (Frassinelli et al., 2017). As a consequence, to avoid
interactions with other features and get direct insights about the influence of con-

11We observed the 25 nearest neighbors of each word
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creteness, we decided to examine this feature by itself rather than integrating it
in a prediction model.

6.5 Confronting concreteness to noun stability
Words’ concreteness has been studied in cognitive science and psycholinguistics and
numerous studies have focused on the way concrete nouns are processed (Naumann
et al., 2018). In the Context Availability Theory (Schwanenflugel and Shoben,
1983), meaning comes from the possibility to associate a context to a concept
and it has been shown that this is more challenging for abstract than concrete
concepts (Naumann et al., 2018). Quantitative investigations of similarities and
differences between concrete and abstract words contexts have been conducted in
the context of distributional semantics (Frassinelli et al., 2017). It was found that
distributionally similar words have similar concreteness ratings, i.e. concrete words
have concrete nearest neighbors. It was also shown that the contexts of concrete
words tend to have various concreteness scores while abstract words clearly prefer
contexts words that are abstract. We wanted to use this information to investigate
the role of concreteness on neighbor variation and examine if concrete nouns are
less affected by instability than abstract nouns.

6.5.1 Concreteness and neighbors variation
To measure the degree of concreteness of words, we used the resource developed by
Brysbaert et al. (2014) presented in section 2.2.2.4. In the following experiments,
we only considered nouns since they are easier to qualify in terms of concreteness
and abstractness (Frassinelli et al., 2017). The resource contains 14592 nouns that
have an average concreteness score of 3.53 (± 1.02). For each corpus we only con-
sidered the words that existed in the resource, i.e. 8796 nouns for the BNC, 5288
nouns for PLOS and 3899 nouns for ACL. We computed the average concreteness
score of nouns for each corpus. This resulted in an average concreteness score of
3.48 for the BNC (± 1.02), 3.28 for ACL (± 1.01) and 3.47 for PLOS (± 0.98).
For the BNC and PLOS, nouns have a mean concreteness score close to the mean
concreteness score of the resource. However, we notice that nouns in ACL are
more abstract. This can be explained by the nature of the corpus which is made
of scientific papers mostly dealing with training algorithms and NLP systems.

Our first analysis was made to confirm Frassinelli et al. (2017) result stating
that distributionally similar words have similar degrees of concreteness. To test
this hypothesis we selected the 1000 most concrete (mean concreteness of 4.88, ±
0.07) and the 1000 most abstract nouns (mean concreteness of 1.88, ± 0.21) in
the BNC. For each noun, we computed the average concreteness score of nearest
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neighbors that were nouns amongst its 25 nearest neighbors. The neighbors of
the most concrete nouns have an average concreteness score of 4.6 and the nearest
neighbors of abstract nouns have an average concreteness score of 2.37 meaning
that distributionally similar words do have similar concreteness scores as stated
by Frassinelli et al. (2017). For example, the noun lemon (concreteness score of 5,
which is the maximum score) has very concrete nearest neighbors that are other
fruits, vegetables or food item: onion (4.86), clove (4.42), almond (4.71) etc. On
the contrary the very abstract noun spirituality (1.07) has abstract neighbors:
theology (1.93), mysticism (1.86), religion (1.71) etc.

Because we saw that instability was correlated to frequency, before testing the
relation between concreteness and variation we decided to check if concreteness and
frequency were correlated. Table 6.5 displays the number of nouns for which we
could retrieve a concreteness score in each corpus as well as the correlation between
frequency and variation, frequency and concreteness score and concreteness score
and variation.

Corpus Number Nouns with Correl. Correl. Correl.
of nouns concr. score freq-var freq-concr. var-concr.

ACL 5534 3899 -0.42 -0.12 +0.10
BNC 10266 8796 -0.15 +0.03 -0.16
PLOS 9751 5288 -0.26 -0.07 +0.01 (ns)

Table 6.5: Spearman correlation scores between frequency and variation, fre-
quency and degree of concreteness and variation and degree of concreteness. All
correlation scores are significant at the 0.05 level except for the one where ns is
indicated.

We do not observe the same behaviors for all corpora. In the BNC, a generic
corpus, abstract words have a clear tendency to vary more with a Spearman cor-
relation of -0.16. In the BNC, words such as kitchen, wife, sitting-room or grand-
mother are concrete and have a low variation score. These words correspond to
the clusters we identified in section 6.3.2. We also observed nouns like legacy,
realization, succession or coverage that are abstract and whose neighbors vary sig-
nificantly. They correspond to words that appear in many different contexts when
we observed variation in section 6.3.3.

Our observations were rather different for the specialized corpora. No effect
was visible in PLOS and the opposite effect was observed in ACL with a positive
correlation. Concrete words such as carrot, turtle, umbrella or horse vary a lot.
These words have a low frequency in the corpus (around 100 occurrences) and
correspond to words that are used in examples. This also explains the higher
negative correlation between concreteness and frequency in ACL. Abstract words
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in ACL correspond to words that are very stable across the different models, e.g.
recall and precision.

This difference in behavior observed between specialized and non-specialized
corpora is not surprising since we use a resource where concreteness was defined
as something you can experience through your senses. This raises questions con-
cerning the notion of concreteness and what it means for a word to be concrete
in a specialized corpus. It seems very important to consider the nature of the
corpus when performing this type of experiments and to take into consideration
that changing corpus equals to changing world. This question is especially crucial
when working in specialized domains where the quantity of available data might
be limited.

Regarding frequency, we had already observed a globally negative correlation
between frequency and variation. We also saw that the relation between variation
and frequency is not linear with words in very low or high frequency range having
a tendency to vary more than words in the mid-frequency range. As we can see
in table 6.5, we notice that the correlation between frequency and concreteness
is almost null for the BNC. However we observe a weak negative correlation for
ACL and PLOS with less frequent words being more concrete. This means that
frequency is not an indirect factor of the observed correlation between concreteness
and variation.

6.5.2 Concreteness as an indicator of neighbors stability
In section 6.3.1, we confirmed that stable words have stable neighbors. We then
wanted to see if stable neighbors are more concrete than unstable neighbors. To
do so, we only experimented with the BNC. For each noun, we retrieved the union
of its 25 nearest neighbors in the 5 models. Because we only retrieved concreteness
ratings for nouns, we only kept nearest neighbors that were nouns. We associated
the concreteness score from the resource to each of those nouns. For each neighbor,
we computed its cosine similarity with the target word as well as the absolute
difference between its degree of concreteness and the degree of concreteness of the
target word. We also computed the standard deviation of cosine scores across the
5 models.

We selected highly concrete nouns (nouns with a concreteness score above
4.2) and computed the Spearman correlation between the absolute difference of
concreteness and the standard deviation of cosines. We found that in 65% of the
cases where the correlation is significant the correlation is positive. This means
that when the concreteness score of a target word with one of its nearest neighbor
is very high, this neighbor is more likely to change from one model to another. E.g.,
we observed this phenomenon with the word telescope which has a concreteness
score of 5. Let’s look at two of its closest neighbors. Wavelength has a concreteness
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score of 3.35 and has an average cosine score of 0.67 with telescope. Lens has a
concreteness score of 4.64 and has an average cosine scores of 0.62. We notice
that both cosine scores are very similar. However the similarity score of telescope
with wavelength, which is more abstract, displays much more variation across the
5 models (0.013 against 0.005 for lens). This effect is less visible for more abstract
nouns.

6.6 Conclusion
The instability of nearest neighbors is a phenomenon that goes hand in hand
with the use of word embeddings trained using neural-based methods. In this
chapter, rather than trying to find solutions to avoid the instability phenomenon,
we proposed to embrace it and investigated it from a linguistic point of view on 3
different corpora (ACL, BNC and PLOS).

While we could not explain all the observed instability through the different
factors we examined, we were able to identify patterns in the variation that help
us better understanding this phenomenon. We saw that mid-frequency words are
less impacted by variation and that words varying the most were low and high
frequency words. We also found that proper nouns had a tendency to vary more
in all three corpora, whether they correspond to names or acronyms.

We were also able to identify semantic zones that remain stable across trainings.
We found that these semantic clusters are very similar across corpora (specific
localized contexts, closed classes of co-hyponyms and transdisciplinary scientific
lexicon). Because we observed patterns for words varying the most for all 3 corpora,
we decided to investigate the instability by training multiple linear regressions to
investigate the impact of each features on the prediction of the (in)stability. The
features we examined were intrinsic to the word (POS and polysemy), to the
corpus (frequency and entropy) and to the model (L2-norm and nearest neighbor
similarity score). We found that the nearest neighbor similarity score was the most
important feature when predicting the variation of a word’s nearest neighbors. We
were also surprised to observe that the POS of a word has an important impact
when predicting the instability of a word.

Finally, we investigated the stability using a more subtle feature, the degree
of concreteness of words. We specifically focused on nouns and confirmed that
concrete words tend to have concrete neighbors. We also observed that for concrete
nouns, concrete neighbors are less likely to change across runs.
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Conclusion and perspectives

Contributions
Despite advances in the techniques proposed to train word embeddings, the eval-
uation of these dense semantic representations of words remains a challenging
problem, and it is difficult to find and apply the appropriate evaluation method.
In this PhD thesis, we proposed to evaluate word embeddings differently by in-
corporating qualitative aspects to the evaluation process. We proposed a method
that allows to compare what changes in the neighborhoods of words across pairs of
models, without relying on any external resource. Because the proposed method is
resource independent, our method suffers less bias than traditional methods used
to evaluate models, such as intrinsic evaluation datasets.

The methodology process we presented provides both a global overview of what
changes across models, by computing an average variation score of all words for
a pair of models, as well as a local overview by providing an average variation
score per word. The variation scores are easy to compute, to use and to interpret,
giving immediate feedback on what changes across models. A high variation score
for a given word indicates an important change in the neighborhood of that word,
while a low variation score indicates that the neighbors remained the same across
the compared models. While intrinsic datasets present the advantage of rapidly
detecting if a model is sane (scores that are low would indicate a problem with
the current model), their coverage is rather limited with the evaluation of only
a few hundreds of different words. Contrary to intrinsic datasets, the proposed
method is not limited to a subset of the vocabulary. We must acknowledge that
using it by itself does not allow to detect if a model has a problem nor does it gives
information about which model is “better” when there are important differences.
However, the method we proposed is directed towards exploring what changes
across models rather than judging if these changes are good or bad. Another
interesting aspect of this method is that it guides towards elements that can lead
to further exploration.

We used this method to conduct different investigations on models trained us-
ing word2vec. In chapter 4, we compared nearest neighbors of words across models
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trained with different hyperparameters. We were able to detect variations across
models that were not captured by intrinsic datasets. Moreover, this comparison
allowed us to observe that some hyperparameters have more impact than others
when training models with word2vec by completely disrupting the neighborhoods
in the lexical space. We decided to explore these changes through two straight-
forward factors, the frequency of a word and its POS. These two factors gave us
interesting insights about the variation across models. E.g. we found that words
with a low or high frequency are more impacted by neighbors’ variation, their
neighbors are more likely to change across models. The observed effect of POS
was less important but we did notice that proper nouns have a tendency to vary
more. We were also able to manually identify regularities across words presenting
the most and the least variation.

Because word2vec is a neural-based method, it is impacted by instability prob-
lems and semantic representations change across trainings done with the same
hyperparameters. As a consequence, we could not completely understand the
variation observed in chapter 4 without assessing the inherent instability of word
embeddings. In chapter 5, we explained the instability phenomenon and measured
its amplitude on three different corpora, to ensure that the measured variation was
not an indirect effect of the corpus used for training. We observed that the vari-
ation of nearest neighbors across models trained with the same hyperparameters
was lower than what we had measured for models trained with different hyper-
parameters. However, it was not negligible and it seemed highly important to
examine this phenomenon. As a consequence, in chapter 6, we decided to try to
shed light on this phenomenon by investigating it through different factors that
could help understanding it better. We were able to detect that not all words are
impacted the same by instability, with some words varying more than others. We
also identified clusters corresponding to semantic zones that remain stable across
training for all three corpora. We also observed recurring patterns for words highly
impacted by variation (polysemous words, generic adjectives etc.). Finally, we ex-
plored the variation with using several features intrinsic to a word, the corpus
used for training and the models, to get a better understanding of the instability
phenomenon. We found that these features help us explaining the (in)stability of
some words.

Perspectives
While we were not able to completely explain the instability of word embeddings
trained using word2vec, we provided a qualitative analysis of the phenomenon,
using linguistic features to understand word embeddings better. Several directions
could be followed to continue this work. First, it would be interesting to confirm
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that the experiments made in this thesis are not biased by the size of the corpus
used to train models since we used 3 corpora of about the same size (100 million
words). We started to conduct experiments with a larger corpus, UMBC, a web-
based corpus constituted of about 3 billion words (Han et al., 2013). Preliminary
results showed that the same amount of nearest neighbors variation was observed
when training models using the same hyperparameters, proving that the amount
of variation is not related to the size of the corpora we used. However, it would be
interesting to see if we are able to identify similar semantic clusters for this corpus
than the one observed for the BNC, ACL and PLOS.

The measure we used to quantify nearest neighbors variation does not take the
rank of neighbors into account. While this made the presented measure compu-
tationally efficient, it would be interesting to investigate how the rank is related
to the variation of nearest neighbors. Similarly, it would be interesting to get a
closer look at the density of neighborhoods and see if neighborhoods that are more
compact correspond to the semantic stable zones we observed in chapter 6.

Finally, we started to investigate more sophisticated linguistic features such as
concreteness which correspond to more subtle characteristics of words. We would
like to observe the impact of the degree of concreteness of words differently, by
grouping words using several features (e.g. very concrete words that are very
frequent, very concrete words that are rare etc.) to see if the observed behaviors
are different.

While using neural-based word embeddings to perform qualitative studies is at
your own risk, we do not necessarily advise against it. However, in view of the
observations made about the instability phenomenon, we think it is necessary to
acknowledge it. While the analyses can be validated by making observations across
models trained with the same hyperparameters, being aware of the phenomenon
and referring to it is already a big step. We find it reassuring that we were able
to identify features that help defining semantic zones across models and corpora
that are more or less impacted by instability. Understanding the tools used for
linguistic analyses is crucial because it helps validating the observed phenomena.
Moreover, a better comprehension of these models means being able to identify if
a phenomenon is the result of a random process or if it is the result of a linguis-
tic phenomenon that is worth investigating. Finally, it seems important to keep
investigating and questioning models, even the best performing ones, by adopting
a linguistic point of view as it leads to a better understanding and use of these
models and to better science.
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Appendix A

Words varying the least - ACL

Word Mean var. across models
jj#51st 0
nn#decline 0
nnp#buch 0
nnp#g. 0
jj#50th 0
nn#boldface 0
nn#recall 0
vb#observe 0
nnp#1a 0
nnp#arda 0
nnp#10a 0
jj#53rd 0
nnp#5c 0
nnp#6b 0
nn#precision 0
jj#49th 0
vb#describe 0
jj#tree-to-string 0
nnp#12a 0
nnp#6a 0
vb#try 0
nnp#fmeasure 0
nnp#52nd 0
nnp#1b 0
nnp#1d 0
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Appendix A. Words varying the least - ACL

Word Mean var. across models
nnp#uso 0
nnp#f-score 0
nn#t-test 0
nn#reliability 0
nn#foram 0
nnp#4-9 0
nnp#2c 0
nnp#f1 0.016
nnp#9a 0.016
nnp#n-grams 0.016
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Appendix B

Words varying the least - PLOS

Word Mean var. across models
nnp #bis-tris 0
jj #100-fold 0
nn #rt-pcr 0
nnp #maldi 0
nn #2-fold 0
nnp #june 0
nnp #october 0
jj #one-way 0
nn #two-fold 0
rb #firstly 0
nnp #colistin 0
nn #np-40 0
nnp #puromycin 0
nn #polyacrylamide 0
jj #8th 0
jj #2-fold 0
rb #moreover 0
nnp #table 0
nnp #modified 0
rb #tenfold 0
nn #mean-sd 0
nnp #berthold 0
nnp #tris-buffered 0
jj #three-fold 0
nnp #g418 0
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Appendix B. Words varying the least - PLOS

Word Mean var. across models
vb #abolish 0
nn #sem 0
rb #furthermore 0
jj #ninth 0
rb #overall 0.016
jj #10-fold 0.016
jj #2-tailed 0.016
nnp #96-well 0.016
nnp #difco 0.016
nnp #hygromycin 0.016
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Appendix C

Words varying the most - ACL

Word Mean var. across models
nnp #ment 0.504
nnp #lowe 0.496
jj #inclusive 0.468
nnp #steve 0.46
nnp #finn 0.456
nn #gem 0.448
nnp #foo 0.444
nnp #hand 0.444
nnp #joyce 0.444
nnp #meet 0.444
nnp #lang 0.44
nnp #cbs 0.44
nn #cd 0.436
nnp #irvine 0.432
nnp #pd 0.432
nn #ment 0.432
nnp #scs 0.432
nn #tor 0.428
nnp #jay 0.428
nn #genotype 0.424
nn #may 0.424
nnp #dps 0.424
jj #to 0.42
nnp #ivan 0.42
nn #pack 0.416
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Appendix C. Words varying the most - ACL

Word Mean var. across models
nnp #alt 0.416
nn #pre 0.416
nnp #generalize 0.412
nnp #organ 0.412
nnp #just 0.412
nnp #general 0.408
nnp #lines 0.408
nn #tions 0.408
nnp #equivalence 0.408
nnp #tex 0.404
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Appendix D

Words varying the most - PLOS

Word Mean var. across models
nnp #era 0.604
nnp #hsr 0.596
nnp #ae 0.588
nnp #phi 0.576
nnp #pcb 0.552
nnp #dmc 0.548
nnp #cnm 0.548
nnp #pra 0.548
nnp #cvm 0.544
nnp #dot 0.54
nnp #car 0.54
nn #pt 0.536
nnp #arp 0.532
nnp #qm 0.524
nnp #ppf 0.524
nn #ip 0.52
nnp #gra 0.516
nnp #rcs 0.516
nnp #sh 0.512
nnp #mgd 0.512
nnp #zp 0.512
nnp #sps 0.512
nnp #pic 0.512
nnp #tlp 0.508
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Appendix D. Words varying the most - PLOS

Word Mean var. across models
nnp #acd 0.508
nnp #pmps 0.508
nnp #ahr 0.508
nnp #gml 0.504
nnp #aip 0.504
nnp #sls 0.504
nn #si 0.5
nnp #an 0.5
nnp #tg2 0.5
nnp #px 0.5
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Appendix E

Partial effects for a randomly
sampled model trained on PLOS

Figure E.1: Partial effects of nearest neighbor cosine similarity for a randomly
sampled multi-linear regression model trained on PLOS.
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Appendix E. Partial effects for a randomly sampled model trained on
PLOS

Figure E.2: Partial effects of the POS for a randomly sampled multi-linear regres-
sion model trained on PLOS.

Figure E.3: Partial effects of the L2-norm for a randomly sampled multi-linear
regression model trained on PLOS.
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Figure E.4: Partial effects of frequency for a randomly sampled multi-linear re-
gression model trained on PLOS.

Figure E.5: Partial effects of polysemy for a randomly sampled multi-linear re-
gression model trained on PLOS.
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Appendix E. Partial effects for a randomly sampled model trained on
PLOS

Figure E.6: Partial effects of the entropy for a randomly sampled multi-linear
regression model trained on PLOS.
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Appendix F

Partial effects for a randomly
sampled model trained on the
BNC

Figure F.1: Partial effects of nearest neighbor cosine similarity for a randomly
sampled multi-linear regression model trained on the BNC.
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Appendix F. Partial effects for a randomly sampled model trained on the
BNC

Figure F.2: Partial effects of the POS for a randomly sampled multi-linear regres-
sion model trained on the BNC.

Figure F.3: Partial effects of the L2-norm for a randomly sampled multi-linear
regression model trained on the BNC.
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Figure F.4: Partial effects of frequency for a randomly sampled multi-linear re-
gression model trained on the BNC.

Figure F.5: Partial effects of polysemy for a randomly sampled multi-linear regres-
sion model trained on the BNC.
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Appendix F. Partial effects for a randomly sampled model trained on the
BNC

Figure F.6: Partial effects of the entropy for a randomly sampled multi-linear
regression model trained on the BNC.
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