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Résumé étendu en français

Débris spatiaux, rentrée atmosphérique et risque au sol

Depuis le lancement de Sputnik-1 le 4 octobre 1957, les activités spatiales ont provoqué la mise
en orbite d’un grand nombre d’objets. Si certains sont des satellites actifs et cruciaux pour les
activités humaines y compris au sol, la grande majorité sont des objets non contrôlés et inutilisés,
typiquement issus d’étages supérieurs de fusées, de satellites en fin de vie ou de fragments créés
par érosion ou collision. Ces objets sont appelés débris spatiaux et définis par l’Agence spatiale
européenne (ESA) comme "tous les objets non fonctionnels créés par l’homme, y compris leurs
fragments et éléments, en orbite terrestre ou qui rentrent dans l’atmosphère terrestre" [14]. Les
débris spatiaux font généralement référence à des objets envoyés par l’homme et excluent les
météorites et autres types de corps célestes.

Prolifération de débris dans l’environnement spatial

Dans les premières années de la conquête spatiale, la plupart des débris spatiaux étaient des corps
de fusée situés sur l’orbite terrestre basse (LEO). Le problème de la gestion des débris spatiaux
s’est posé pour la première fois dans les années soixante-dix et quatre-vingt en raison d’une série
d’explosions de corps de satellites et d’étages de fusée. En 1978, en particulier, l’explosion de
Syncom-3 dans l’orbite geostationnaire (GEO) a donné naissance aux premières directives de
réduction des débris spatiaux proposées dans [15].

Depuis les années soixante-dix, les tests anti-SATellite (ASAT) ont également contribué de
manière significative à l’augmentation du nombre de fragments. La première arme antisatellite
rapportée a été testée en 1968 lorsque Cosmos-249 est entré en collision volontairement avec
Cosmos 248. Plus récemment, la Chine a effectué un test de missiles ASAT sur un satellite
météorologique chinois FY-1D. Le test réussi a abouti à la création d’un nuage de débris de 2000
fragments de plus de 1 cm ainsi que d’un nombre de particules beaucoup plus important.

Selon le rapport annuel sur l’environnement spatial de l’ESA 2018 [16], plus de 20 000 objets
catalogués gravitent autour de la Terre, mais seulement 20 % d’entre eux sont des satellites
actifs. Le reste est constitué de débris spatiaux générés notamment par la fragmentation d’objets
spatiaux (collision ou explosion). Ils peuvent être des corps de fusée comprenant des étages
orbitaux complets de lanceurs, de moteurs ou de carénages.

L’évolution du nombre d’objets catalogués ne reflète pas exactement l’augmentation réelle
des débris spatiaux, car tous les débris créés ne sont pas systématiquement détectés. Le nombre
de débris spatiaux non catalogués compris entre 1 et 10 cm est estimé à environ 500 000, tandis
que le nombre d’objets de moins de 1 cm dépasse probablement la dizaine de millions [17].

xix
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La rentrée atmosphérique

Le principal processus d’élimination de débris est la rentrée atmosphérique [18]. Même à des
altitudes voisines de 2000 km, l’atmosphère résiduelle diminue encore la vitesse de l’objet spatial
et finit par conduire à une rentrée. Le processus peut être prolongé en fonction du coefficient de
traînée et de l’altitude de l’objet. Par exemple, un satellite espion à 200 km rentrera en quelques
jours, et la Station spatiale internationale (ISS) devrait rentrer dans les six mois (400 km) sans
reboost, tandis que le télescope Hubble reviendrait au bout de dix ans. À 825 km, la rentrée
dure plus de cent ans et, dans l’orbit géostationnaire (GEO), il dépasse les millions d’années
[1, 6]. En 2017, 178 événements de rentrée ont été détectés, représentant une masse de 77,5
tonnes, dont 85% proviennent de morceaux de fusées.

Une rentrée est le retour d’un objet de l’espace extra-atmosphérique où la traînée atmo-
sphérique est négligeable vers les couches les plus denses de l’atmosphère jusqu’à l’arrivée au
sol ou la destruction complète. Ce type de rentrées est dit destructrice, car on s’attend à ce
que l’objet soit fragmenté et partiellement voire totalement consommé, à la fin de la rentrée,
par opposition aux rentrées habitées des navettes Soyouz, par exemple. Deux types de rentrées
destructrices sont possibles : la rentrée incontrôlée (ou naturelle) se produit lorsqu’un objet
inutilisé quitte peu à peu son orbite d’origine en raison de la traînée atmosphérique résiduelle et
sans aucune action humaine. Au contraire, la rentrée contrôlée est déclenchée par une ultime
manœuvre pour désorbiter l’objet vers une région spécifique de la Terre. On note que l’objet n’est
contrôlé que lors de la manœuvre initiale de désorbitation, le reste de la rentrée est totalement
incontrôlé. La trajectoire de rentrée peut être décomposée en quatre grandes phases :

• La trajectoire de la haute atmosphère (120 km à 90 km) : pendant cette partie de la
rentrée, l’atmosphère est environ un million de fois moins dense qu’au niveau de la mer.
Les forces aérodynamiques sont limitées et l’orientation de l’objet reste stable. Le régime
de vol est hypersonique dans un flux raréfié.

• La trajectoire avant la fragmentation (90 km d’altitude jusqu’à la fragmentation) : au
cours de cette phase, les effets de l’atmosphère deviennent de plus en plus importants,
notamment les efforts aérodynamiques et aérothermiques.

• La fragmentation : à un moment donné de la trajectoire, l’objet se fragmente. Les
observations optiques de la navette spatiale Columbia, des rentrées dans l’ATV ou de la
station spatiale MIR suggèrent que la fragmentation de l’objet n’est pas une fragmentation
soudaine, mais une cascade de ruptures. Après la séquence de fragmentation, les fragments
provenant de l’objet initial continuent de tomber sur Terre.

• La survivabilité : à ce stade, plus aucune fragmentation n’est attendue, mais chaque
fragment est ralenti et ablaté en fonction de sa forme et de la composition du matériau.
Certains fragments se désintègrent complètement tandis que d’autres survivent et atteignent
le sol. À environ 20 km d’altitude, les fragments survivants tombent en chute libre à une
vitesse subsonique en fonction de leurs propriétés aérodynamiques. En fonction des points
d’impact des fragments, il est possible de calculer la probabilité de faire des victimes et
leur nombre attendu.

À l’exception d’événements catastrophiques tels que la navette spatiale Columbia, la probabil-
ité d’être percuté par un débris est extrêmement faible par rapport à d’autres sources de risque.
Dans [19], le risque est estimé à 10−12 par an, à comparer avec la probabilité d’être frappé par la
foudre (10−7) ou d’avoir un accident ménager (10−5) [1]. Cependant ce risque est réel et amené
à croître avec l’augmentation du nombre de débris spatiaux
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Risque au sol

À présent, il n’existe pas de traité international régulant la gestion des débris spatiaux et leur
retombée sur Terre. Les agences spatiales telles que la NASA ou bien ESA ont formulé des règles
de bonne conduite, et la loi française du 3 juin 2008 impose d’estimer le risque au sol lié au
lanceur qui retombe sur Terre. Dans le cas d’une rentrée contrôlée, la zone d’impact de l’objet
ne doit chevaucher les eaux territoriales d’aucun État [20]. En outre, la probabilité maximale de
victimes doit être maintenue au-dessous de 2× 10−5 [21]. Pour les rentrées non contrôlées, la
probabilité de perte humaine doit être inférieure à 10 −4 [21]. Une note technique démontrant la
conformité de la mission spatiale à la réglementation française doit être présentée avant tout
lancement. Elle doit inclure en particulier une estimation robuste du risque au sol lors de la
rentrée.

Le calcul du risque lors de la retombée d’objets spatiaux passe par des simulations numériques
qui prédisent la trajectoire de rentrée, l’effort aérodynamique, le comportement de la structure
de l’objet et des échanges de chaleur. Les simulations numériques font appel à des modèles
mathématiques qui approximent les phénomènes physiques. Pour une rentrée atmosphérique, ce
type de calcul est complexe et couteux, notamment parce qu’il fait appel à un vaste panel de
modèles physiques et solveurs associés.

Dans ce travail nous prédisons la retombé d’un objet en construisant un système de solveurs,
c’est à dire un ensemble de solveurs où chacun résout un aspect spécifique de la physique. Nous
nous intéressons en particulier aux systèmes de solveurs dirigés. Un système de solveurs est
dit dirigé s’il n’y a pas de couplage fort entre les solveurs. La sortie d’un solveur peut devenir
l’entrée d’un autre solveur mais la sortie de ce dernier (ou d’autres solveurs qui en dépendent)
ne peut devenir l’entrée du premier solveur. Ce type de résolution à la fois modulaire et flexible
permet de construire et de résoudre efficacement des problèmes multiphysiques.

La grande limitation des simulations numériques est l’inexactitude des solutions calculées.
Qu’elles proviennent d’une résolution d’un modèle erroné ou bien d’une méconnaissance des
conditions de rentrée, les incertitudes sont omniprésentes dans les simulations numériques de
retombée d’étages. Dans ce travail nous proposons d’étudier, de modéliser et de propager les
incertitudes associées à un modèle de rentrée d’objets spatiaux. Une difficulté majeure de la
propagation des incertitudes est le coût de calcul. La propagation d’incertitudes induit un grand
coût de calcul et d’appel aux solveurs, en particulier si le nombre d’incertitudes est élevé. En
général, le coût de calcul de propagation d’incertitudes augmente exponentiellement avec le
nombre de dimensions selon le principe de "fléau de la dimension".

Enjeux

L’estimation du risque repose nécessairement sur la simulation numérique des phénomènes
complexes associés à la rentrée, et plus spécifiquement sur des modèles numériques multi-
physiques (structure, aérodynamique, trajectoire, chimie). La physique impliquée dans ce
problème est variée, complexe à modéliser, et reste parfois même incomprise. Les incertitudes
sont nombreuses ; pourtant, le risque de victimes estimé doit être rapide à calculer, robuste
et fiable pour assurer des opérations spatiales sûres et durables. Pour combler le fossé entre
les techniques actuelles et une estimation rapide et robuste du risque au sol, les défis suivants
doivent être abordés :

• Améliorer la fiabilité des modèles numériques d’interaction fluide-structure.
La simulation numérique des phénomènes d’interaction fluide-structure et gaz-surface
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le long de la trajectoire est essentielle pour prédire les forces agissant sur la surface de
l’objet, le transfert d’énergie, puis fragmentation potentielle de l’objet. Du point de
vue de la modélisation, ce phénomène est extrêmement riche et il n’existe que peu de
données pour calibrer correctement les modèles. De plus, une simulation haute fidélité
sur toute la trajectoire est très couteuse. Une approche classique consiste à utiliser des
modèles simplifiés, moins couteux mais qui induisent des sources d’erreurs supplémentaires.
Considérant les sources d’incertitudes déjà existantes (provenant de la physique et des
modèles) et l’erreur de modèle introduite par la simplification des modèles, il est clair
qu’une évaluation de la fiabilité de la prédiction numérique est primordiale pour améliorer
la fiabilité de nos prédictions du risque humain.

• Améliorer la robustesse des prédictions de fragmentation. Le processus de frag-
mentation a des conséquences critiques sur l’aérodynamique de l’objet et le reste de la
trajectoire, mais il s’agit également du phénomène le moins bien compris et du plus complexe
à modéliser. La fragmentation est définie comme la rupture de l’objet en deux fragments
ou plus et correspond aux résultats combinés d’un flux de chaleur intense, d’efforts aérody-
namiques ou même de l’explosion d’un réservoir ou d’une batterie. Modéliser avec précision
ces phénomènes et leurs interactions est extrêmement délicat. Les modèles de rupture
les plus avancés modélisent uniquement les aspects thermiques et utilisent parfois des
critères simples pour modéliser l’effort aérodynamique. Ces phénomènes sont également
en concurrence : l’échauffement local de l’objet peut conduire à un affaiblissement local
de la structure, alors que la charge aérodynamique peut entraîner un flambage global.
Déterminer lequel se produira en premier est extrêmement difficile, mais aura également
des conséquences critiques sur le reste de la rentrée.

• Modéliser et propager les incertitudes à travers un solveur à un coût de calcul
raisonnable. Les simulateurs de rentrée d’objets spatiaux sont affectés par des incertitudes
qui doivent être identifiées, modélisées et propagées via le simulateur pour obtenir une
estimation robuste du risque. Cette estimation doit être effectuée à un coût de calcul limité,
excluant ainsi les méthodes d’échantillonnage classiques. Actuellement, les incertitudes ne
sont pas systématiquement prises en compte lors de la prévision de la réentrée d’objets spa-
tiaux en raison du coût prohibitif des méthodes standard de quantification des incertitudes
utilisées avec des problèmes de physique complexes tels que celui-ci.

• Identifier les incertitudes qui affectent le plus le risque estimé au sol. L’identification
des paramètres ou des erreurs de modèle qui génèrent le plus d’incertitudes dans le modèle
est cruciale pour travailler à la réduction des incertitudes dans la prévision et à l’amélioration
de la fiabilité des modèles.

Contributions de la thèse

En réponse à une partie des enjeux mentionnés, nous illustrons les actions développées.

• Construction d’un solveur numérique pour la prédiction de la rentrée: Nous
proposons deux systèmes originaux de solveurs pour prédire la rentrée contrôlée ou non
d’objets spatiaux. Comparés au logiciel de rentrée existant, les modèles construits incluent
naturellement l’incertitude dans les prévisions de fragmentation. De plus, les solveurs sont
interfacés et couplés dans un cadre unifié pour permettre des lancements automatiques et
parallèles sans action de la part de l’utilisateur. Les deux simulateurs présentent différents
niveaux de fidélité.
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• Proposition de modèles de fragmentation sous incertitudes: Nous examinons
les modèles disponibles pour prédire la réentrée d’un objet spatial, nous abordons les
sources d’incertitude et les erreurs dans les modèles. Sur la base de cette discussion,
nous développons deux modèles de fragmentation tenant compte des incertitudes de la
modélisation de la rupture.

• Développement d’outils efficaces de propagation des incertitudes pour les sys-
tèmes de solveurs : Nous présentons deux solutions originales pour propager les incerti-
tudes dans le système de solveurs et les prédicteurs de rentrée. i) Premièrement, on introduit
une méthode pour construire efficacement des modèles de substitution pour des systèmes de
solveurs dirigés. Le cadre comprend également des stratégies d’apprentissage actif efficaces
pour améliorer la performance du modèle de substitution. Le cadre développé est général
et peut s’appliquer à un grand nombre de problèmes industriels. ii) Deuxièmement, on
présente une nouvelle formulation de l’évaluation de la survie des fragments qui permet de
construire des modèles de substitution et d’effectuer un apprentissage actif.

• Caractérisation des sources d’incertitudes dans le système de solveur : Nous
étudions les modèles disponibles pour prédire la rentrée d’un objet, et nous identifions
les sources d’incertitudes et les erreurs dans les modèles. Nous proposons ensuite de les
modéliser en tant que variables aléatoires et d’étudier leur influence sur un problème de
rentrée d’un étage supérieur. Nous effectuons une analyse de la sensibilité de la sortie du
modèle aux entrées incertaines. Nous sommes en mesure de classer les dizaines d’incertitudes
en fonction de leur influence sur les incertitudes des quantités d’intérêts (par exemple le
risque au sol) et de formuler des recommandations pour réduire ces dernières.

• Preuve de concept des outils de quantification d’incertitude développés avec
application au simulateur de rentrée moyenne fidélité pour prédire la rentrée
d’un étage supérieur sous incertitude. Nous développons un outil logiciel de prédiction
de rentrée sous incertitude, en combinant les différentes contributions de ce travail : les
simulateurs de rentrée avec le modèle de rupture probabiliste et les modèles de substitution.
L’outil logiciel est utilisé pour effectuer une analyse physique des incertitudes sur la base
d’une analyse de sensibilité rigoureuse et d’une estimation robuste de la quantité d’intérêt
(conditions de vol, de rupture, risque au sol). Cette analyse est effectuée à un coût de
calcul très raisonnable.

Les résultats principaux obtenus sont détaillés dans les paragraphes suivants.

Construction d’un simulateur de rentrée et identification des in-
certitudes

Nous construisons un système de solveur pour prédire la retombée d’un objet spatial. L’objectif
est de construire un outil qui prédise la rentrée complète et qui puisse fournir une estimation
du risque au sol. Il doit être simple d’utilisation, robuste et facilement automatisable pour être
couplé avec des méthodes de quantification d’incertitudes.

Le simulateur construit est composé de cinq à six solveurs développés par le CNES et
ArianeGroup et fonctionne ainsi :

1. À 120 km d’altitude, les conditions de vol de l’objet (vitesse, position) sont soit données
par l’utilisateur (rentrée contrôlée), soit calculées par le solveur de désorbitation.



xxiv RÉSUMÉ ÉTENDU EN FRANÇAIS

2. Les coefficients aérodynamiques associés à la géométrie de l’objet sont calculés par un
solveur aérodynamique (ARPEGE). Afin d’éviter d’appeler le solveur aérodynamique à
chaque pas de temps de la trajectoire, des tables aérodynamiques sont générées. Les tables
sont fonction de l’altitude de l’objet (orientation), du nombre de Mach et du nombre de
Knudsen.

3. Dans l’étape suivante, le solveur de trajectoire BL43 avec 3 degrés de liberté est couplé
à un module thermique (hérité d’ADRYANS V4) et au modèle d’atmosphère MSIS-00
pour calculer la trajectoire de l’objet (avant toute fragmentation). La trajectoire inclut la
vitesse, la position, la masse et la température de l’objet, qui sont ensuite nécessaires pour
calculer les conditions de fragmentation.

4. L’outil de fragmentation utilise l’évolution de la température et la trajectoire pour calculer
les conditions de vol lors de la fragmentation et la libération des fragments. En ce qui
concerne les modèles orientés objet, la forme et les caractéristiques des fragments lors de
la rupture sont précalculées par des experts à l’ aide de simulations numériques sur des
modèles avancés.

5. Étant données les conditions de libération de chaque fragment (vitesse, position, tem-
pérature) et ses caractéristiques (composition du matériau, forme, dimension, mouvement
d’attitude), sa trajectoire, sa température et sa masse sont calculées. Deux cas peuvent
être observés. Soit le fragment disparaît dans l’atmosphère, soit il survit et s’écrase au sol.
Dans ce dernier cas, le solveur renvoie l’emplacement de l’impact (latitude et longitude), la
masse résiduelle, la vitesse et l’aire meurtrie.

6. Pour les fragments survivants, le solveur d’estimation du risque calcule le risque humain.

Le couplage de codes écrits dans des langages de programmation différents a requis l’ implé-
mentation d’un cadre général écrit en python pour permettre l’interfaçage et l’appel en parallèle
des solveurs.

Dans la littérature, il existe deux classes principales de prédicteur de rentrée. Les modèles
orientés objet et les modèles orientés engin. La fragmentation est modélisée de manière simpliste
en supposant une altitude fixe de fragmentation. La fragmentation de l’objet suit une approche
parent-enfant : à la fragmentation, l’objet parent disparait et relâche les objets enfants. Les outils
orientés engin utilisent une modélisation de l’objet plus détaillée et des modèles aérodynamiques
plus avancés. La fragmentation est aussi directement simulée en étudiant la rupture de la
structure de l’engin au cours de la trajectoire.

Comparé à des codes orientés objets tels que DEBRISK (CNES) ou DRAMA (ESA), notre
modèle de fragmentation est capable de prendre en compte les incertitudes engendrées par
l’absence de modélisation fine de la structure de l’objet et de sa fragmentation. Comparé à des
approches orientées engins, notre modèle prends une approche plus simple dans la modélisation
thermique (à la fois pour la réponse thermique de l’objet et la modélisation des échanges
thermiques). Néanmoins il peut être plus facilement couplé à des approches de propagations des
incertitudes.
Dans ce chapitre, nous identifions aussi les sources d’incertitudes majeures à travers deux classes
d’incertitudes : les erreurs de modèles et les méconnaissances du scénario. Les erreurs de
modèles proviennent notamment des modèles aérodynamiques simplifés tels que la loi de Newton
modifiée, ou bien de corrélations pour les modèles thermiques, ou des interactions gaz-surface
non modélisées. Les incertitudes dues à la méconnaissance de la situation sont par exemple les
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conditions initiales, les propriétés de l’atmosphère, les caractéristiques des matériaux ou bien
une connaissance partielle de la géométrie de l’objet.

Développement d’une méthode de propagation des incertitudes
dans des systèmes de solveurs dirigés

Nous avons développé des méthodes basées sur des systèmes de processus gaussiens SoGP comme
modèle de substitution de systèmes de solveurs dirigés. Dans notre approche, chaque solveur du
système est approximé par un processus gaussien (GP). Le SoGP résulte de la composition de
ces GP.

Nous avons analysé aussi plusieurs stratégies de générations de plan d’entrainement, certaines
étant a priori (sans connaissance préalable du système) alors que d’autres reposent sur des
méthodes d’apprentissage actif. Les méthodes d’apprentissage actif développées tentent de
construire des plans d’entrainement adaptés à la structure du système de solveurs. Elles se
fondent sur la distribution prédictive générée par le SoGP. Ces approches dépendent d’une
décomposition de la variance prédictive de la sortie du SoGP en contribution des GPs. Cette
décomposition, développée pour ce travail, permet d’identifier les GP qui sont les moins fiables
dans la prédiction globale et de les améliorer de manière ciblée. Nous déclinons trois méthodes
d’apprentissage actif pour SoGP utilisant le principe de variance prédictive maximale et la
décomposition de variance. La méthode la plus parcimonieuse propose des points d’entrainement
au GP le moins fiable et à l’endroit où il est le moins fiable (c.a.d. au maximum de contribution
à la variance du SoGP).

Les performances du SoGP sont comparées à une approximation de l’ensemble du système de
processus gaussien par un unique GP. Pour tous les tests, à la fois sur des fonctions analytiques
ou des cas physiques, le SoGP présente des résultats bien meilleurs. Ces bons résultats de la part
du SoGP par rapport à une méthode de GP unique viennent notamment de son expressivité
accrue conférée par la composition de plusieurs GP, mais aussi de sa capacité à inclure, dans son
plan d’entrainement les grandeurs intermédiaires.

De plus ces résultats sont encore significativement améliorés lorsque les méthodes d’apprentissage
actif sont employées, en particulier si la dimension des solveurs est moyenne ou réduite. Pour des
cas à hautes dimensions (' 15) la performance des méthodes d’apprentissage actif se détériore,
notamment à cause du critère d’enrichissement fondé sur le principe de la variance prédictive
maximale. Il est à noter cependant que nos tests n’ont pas observé une perte en performance
de l’approche SoGPen elle-même, même en haute dimension, mais seulement des stratégies
d’enrichissement.

Prédiction sous incertitudes de la fragmentation d’un étage supérieur

Mise en place du problème

Nous utilisons le cadre SoGP couplé avec le modèle de rentrée proposé pour établir des prévisions
fiables concernant la rentrée d’un étage supérieur depuis une orbite de transfert vers l’orbite
Géostationnaire (GTO). La rentrée de l’objet est contrôlée, c’est-à-dire que l’objet exécute une
manœuvre de désorbitation pour quitter la GTO et rentre dans l’atmosphère dans une région
ciblée. Ce cas présente un intérêt particulier pour ArianeGroup et est donc étudié en profondeur.
L’objectif est de fournir une estimation robuste des conditions de fragmentation, d’identifier les
contributions de chaque incertitude aux conditions de fragmentation et d’étudier les distributions
des grandeurs clés telles que la température de l’objet ou le flux thermique. Les incertitudes
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d’entrée sont les éléments orbitaux de l’orbite initiale, les paramètres de désorbitation, les
paramètres du modèle d’atmosphère (activité solaire, instant de rentrée, activité géomagnétique),
les propriétés matériaux de l’objet et deux paramètres issus du modèle de fragmentation.

Construction du modèle de substitution pour la propagation d’incertitudes

Les incertitudes sont ensuite propagées pour reconstruire plusieurs quantités d’intérêt telles
que les conditions de vol de l’objet lors de la fragmentation, la température de l’objet et le
flux de chaleur convectif. Pour ce faire, un SoGP est construit et validé en le comparant à une
approximation par un GP unique. Dans ce cas haute dimension (28 incertitudes), le SoGP
présente une erreur d’approximation 5 à 10 fois meilleure. Cette étude confirme l’intérêt du
cadre SoGP pour mener des études de propagation d’incertitude à moindre coût.

Resultats

Grâce au SoGP, une étude de propagation d’incertitude est réalisée. Nous étudions les conditions
de vol de l’objet lorsque celui-ci se fragmente (position et vitesse) ainsi que l’évolution des
incertitudes sur la position, vitesse, température et flux thermique le long de la trajectoire
de l’objet. On constate notamment une forte augmentation de celles-ci entre 90 km et la
fragmentation.

Le SoGP permet aussi de réaliser une analyse de sensibilité fondée sur la décomposition de
variance des quantités d’intérêt qui aurait autrement été extrêmement coûteuse à réaliser. Cette
analyse de sensibilité, effectuée sur les conditions de vol au moment de la fragmentation et sur les
caractéristiques thermiques de l’objet le long de la trajectoire, permet de bien identifier l’influence
de chacune des vingt-huit incertitudes sur la précision des prédictions. On observe par exemple
que les incertitudes liées à l’atmosphère influencent principalement la trajectoire de l’objet à
haute altitude et deviennent ensuite négligeables. De manière générale, les incertitudes les plus
influentes sont les conditions de désorbitations et les paramètres du modèle de fragmentation.
En particulier, l’incertitude générée par le modèle de fragmentation représente plus de 80 % de la
variance de la vitesse de l’objet lors de la fragmentation. Cette analyse de sensibilité est précieuse
pour orienter les futurs développements du modèle de rentrée, en identifiant les paramètres et
modèles les plus influents et en permettant de négliger les incertitudes sur les paramètres non
influents.

Construction d’un modèle de substitution pour prédire la survie
d’un objet spatial

Formulation du problème

Nous visons à compléter l’analyse des incertitudes et à construire un modèle de substitution
de l’étape de survie des fragments générés par la fragmentation de l’objet initial. Après la
fragmentation de l’objet, les fragments sont libérés et s’exposent au flux externe en retombant
sur Terre. Dans certains cas, les fragments peuvent être entièrement ablatés et disparaitre dans
l’atmosphère en fonction de la composition du matériau et de la quantité d’énergie qu’ils reçoivent
de l’écoulement.

Dans d’autres cas, le fragment survit à la rentrée et s’écrase sur Terre. Dans le modèle de
rentrée proposé, le solveur de calcul de survie évalue si le fragment atteint le sol et, le cas échéant
calcule l’emplacement de l’impact. Si le fragment brule dans l’atmosphère, le nombre moyen de
victime associé est nul. S’il atteint le sol, le module de calcul de risque évalue le nombre moyen
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de victimes en fonction de la taille de l’objet et de la densité de population au point d’impact.
A priori, le nombre moyen de victime est une fonction discontinue des incertitudes et ainsi la
construction d’un modèle de substitution peut s’avérer complexe.

Nous proposons également une nouvelle approche de modèle de substitution pour approximer
le solveur de survie et calculer le nombre de victimes moyen. Nous assimilons la correspondance
entre le nombre de victimes et les incertitudes d’entrée, à la composition d’un classificateur qui
évalue la capacité de survie d’un fragment, et d’une fonction continue qui relie les incertitudes
d’entrée aux emplacements de l’impact si l’objet survit. Cela permet de construire un modèle
de substitution pour prévoir le nombre moyen de victimes et d’approximer efficacement la
discontinuité du risque.

Modèle de substitution utilisé

Cette formulation permet de construire un modèle de substitution à l’aide de GP utilisés comme
un classifieur et d’une régression par processus gaussiens. L’utilisation de GP permet de calculer
la variance prédictive du modèle de substitution et d’en déduire des stratégies d’apprentissage
actif visant à réduire l’erreur sur le risque prédit. Notamment, nous montrons que la variance de
prédiction peut être décomposée en contributions de la part du classifieur ou bien de la régression.
Nous proposons une stratégie d’apprentissage actif fondée sur la variance prédictive du modèle.
Cette stratégie a l’originalité d’être intrinsèquement aléatoire. Au lieu de proposer des points là
où la variance de prédictions est maximale (ce qui est très inefficace dans le cas de classifieur), ou
bien de se baser sur une estimation de la réduction espérée de la variance, le plan d’entrainement
est enrichi par des points tirés selon une distribution dont la pdf est proportionnelle à la variance
prédictive. Cette approche permet à la fois de d’améliorer les prédictions dans les régions où la
prédiction est incertaine sans se focaliser exclusivement sur les maxima qui sont situés le long de
la frontière de classification.

Cette approche est testée sur un cas analytique en faisant varier la distribution de population
et donc le risque au sol. Dans tous les cas, les méthodes d’apprentissage actifs offrent une
amélioration significative par rapport à un plan d’entrainement généré aléatoirement. Ce constat
est confirmé avec un test réaliste de la rétombée d’un débris sur des îles imaginaires dans le
pacifique.

Application à la prédiction de la retombée controlée d’un étage
superieur et calcul du risque

Mise en place du problème

Les modèles de substitutions développés auparavant sont couplés avec le simulateur de rentrée
pour quantifier les incertitudes lors de la retombée sur Terre d’un étage supérieur de fusée. On
complète l’étude ici avec la prédiction de la survie des fragments générés après la fragmentation
et leur point d’impact ainsi que le risque humain associé.

Le modèle numérique comprend la désorbitation de l’objet, le calcul de trajectoire jusqu’à sa
fragmentation, le calcul des conditions de fragmentations avec le modèle probabiliste, le calcul de
la survie des fragments, la détermination des points d’impact des fragments survivants et enfin
le calcul du risque au sol.

En plus du caractère aléatoire du modèle de fragmentation, un nombre conséquent (38)
d’incertitudes sont considérées. On inclut notamment les incertitudes sur l’orbite initiale, les
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conditions de désorbitation, les caractéristiques du matériau de l’étage, les paramètres du modèle
de fragmentation, les entrées du modèle atmosphérique et les caractéristiques des matériaux
constituants les fragments. Afin de propager ces incertitudes efficacement nous couplons le
modèle de substitution utilisé pour prédire les conditions de fragmentation avec le modèle de
substitution conçu pour prédire la survie des débris issus de la fragmentation.

Construction des modèles de substitution

Nous construisons un modèle de substitution afin de pouvoir approximer l’ensemble du simu-
lateur de rentrée. Sachant que nous avons déjà construit un modèle de substitution jusqu’à la
fragmentation, il suffit d’en construire un supplémentaire pour prédire la survie de chacun des
fragments ainsi le risque associé

La construction des modèles de substitution nécessite quelques précautions par rapport
aux méthodes développées précédemment pour prédire la survie des fragments. Pour certains
fragments, il n’a pas pu être observé de situation où l’objet atteignait le sol parmi les points du
plan d’entrainement. Bien que cela ne prouve pas que le fragment n’atteigne jamais le sol, nous
négligeons ces fragments dans notre analyse du risque. Des tests de validations s’appuyant sur
un très grand nombre d’échantillons confirment que l’erreur induite est acceptable.

Pour les fragments qui ont une probabilité non nulle d’arriver au sol, un modèle de substitution
du solveur de survie, construit avec un classifieur et une régression par GP a été appris. Il
convient de noter qu’un modèle de substitution est appris pour chaque fragment.

De plus, puisque l’objet retombe dans l’océan Pacifique, le risque de perte humaine est nul
(selon les modèles de population). Ainsi la mise en place de stratégies d’apprentissage actif
permettant d’améliorer la prédiction du risque n’ont pas d’intérêt dans ce cas particulier. À la
place nous adaptons la méthode pour améliorer la prédiction de l’aire meurtrie (casualty area) qui
correspond à la surface projetée du débris augmentée de la surface d’un humain debout. L’aire
meurtrie quantifie la dangerosité d’un objet indépendamment de la densité de population. Les
procédures d’apprentissage actif permettent de gagner une précision significative pour l’ensemble
des débris par rapport au plan d’expérience initial.

La précision des modèles de substitution est quantifiée sur un échantillon de validation.
L’erreur sur les prédictions de survie est de l’ordre de 10−3 pour l’ensemble des débris tandis que
l’erreur de prédiction sur la position d’impact peut atteindre un kilomètre sur la surface de la
Terre. Cette erreur est à comparer avec les 260 000 km2 couverts par les distributions d’impact.

Résultats

À l’aide des modèles de substitution, nous calculons : les probabilités de survie pour chaque
fragment, les distributions d’impact en cas de survie et la distribution de la surface meurtrie
totale. Nous effectuons aussi une analyse de sensibilité pour mesurer l’influence des incertitudes
d’entrée sur l’incertitude sur la surface meurtrie. Nous montrons que les incertitudes dominantes
sont liées aux paramètres du modèles de fragmentation, aux conditions de désorbitation et
dans une moindre mesure aux incertitudes sur les caractéristiques des matériaux, notamment
l’émissivité. Cette étude réalisée sur un cas réel de quantification du risque sous incertitudes
lors de la retombée d’un étage supérieur démontre l’intérêt de nos méthodes de substitution de
modèle pour propager les incertitudes à un coût de calcul raisonnable.



Chapter 1

The Space Debris Issue

In this chapter, we discuss the impact of the space debris population on future space activities
and human ground assets. We briefly present the policies established by space agencies and states
to regulate the space debris proliferation phenomenon and discuss how these regulations rely on
numerical simulation for the predicting the on-ground human risk during a space object reentry.
In this chapter, we illustrate the significant challenges that should be tackled to robustly estimate
the on-ground risk and describe the main objectives and contributions of this thesis.

1.1 Historical considerations on space debris

Since the launch of Sputnik-1 on October 4th 1957, human space activities have generated a
large number of objects that are currently orbiting around the Earth. While some are active
satellites crucial for man on-ground activities, the vast majority are inertial objects typically
coming from defunct rocket upper stages, end-of-life satellites or fragments created by erosion
or collision. Those objects are called space debris and defined by the European Space Agency
(ESA) as "all non-functional, human-made objects, including fragments and elements thereof,
in Earth orbit or re-entering into Earth’s atmosphere" [14]. Space debris commonly refers to
human-made objects and excludes meteorites and other types of celestial bodies.

Figure 1.1: Evolution of the number of launches per launch year (source : [1])

1
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When Sputnik-1, the first human-made satellite, was launched, the Semiorka rocket stage
and a protective fairing were also on the same orbit. In total, Sputnik only represented 1.3 % of
the overall mass, around 6,700 kg. In the following years, most of the space debris population
was composed of rocket bodies located on the Low Earth Orbit (LEO). The problem of space
debris management arose for the first time in the seventies and the eighties due to a sequence of
satellite and rocket body explosions. In particular, in 1978, the blast of Syncom-3 in GEO led to
the first space debris mitigation guidelines proposed in [15].

In the same years, Kessler and Cour-Palais theorized the formation of a debris belt around
the Earth [18]. This debris belt could be self-sustained or even grow due to in-orbit collisions,
even with no further launches [22]. The first accidental known collision occurred between the
satellite Cerise and a fragment of an Ariane 1 rocket body [1] in 1996. As predicted by Kessler,
each collision creates a vast amount of debris. A recent example of collision occurred in 2009
between Iridium 33 (USA) and Cosmos-2251 at a relative velocity of 11km/s resulting in the
creation of thousands of debris [23].
Since the seventies, Anti-SATellite (ASAT) tests have also been a significant contributor to the
increase in the number of fragments. The first reported anti-satellite weapon was tested in 1968
when Cosmos-249 collided on purpose into Cosmos 248. Other ASAT tests followed with for
instance the destruction of the Solwind P78-1 destroyed with an ASAT missile. More recently
China conducted a ASAT missile test on a Chinese weather satellite FY-1D. The successful test
resulted in the creation of a debris cloud of 2000 fragments larger than 1cm and possibly a much
larger number of particles.

Figure 1.2: Evolution of the mass of catalogued objects by object type source: ESA DISCO tool
[2]

In Fig. 1.1, the number of launches per year since 1957 are represented. Within the first
ten years, the number of space launches reached a plateau from the early seventies to the early
nineties. The number of launches then decreased mostly due to the collapse of the USSR in
1991. In Figs. 1.3 and 1.2, we observe that the number of cataloged objects and their mass
increased linearly before early 2000, but the trend is now quadratic or faster. This trend is even
more noticeable when considering Fig. 1.3 that shows the evolution of the number of space
debris since 1960. Here the trend seems to be linear for the number of payload objects or rocket
body, but the number of fragments follows a much faster increase, mostly due to sequences of
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catastrophic collisions and satellite destruction between 2000-2010. Note that part of the rise
in the number of cataloged objects can also be explained by the improved tracking capabilities
of the community. The total number of fragmentation debris (rocket fragmentation debris and
payload fragmentation debris) is now much higher than the number of payload objects in orbit.

Figure 1.3: Evolution of the number of catalogued objects by object type (source: ESA DISCO
tool [2])

1.2 Space debris issue
In this section, we depict the current and future state of the space debris population and the
consequences for space activities and human populations.

1.2.1 Current situation

According to ESA 2018 annual space environment report [16], over 20 000 cataloged objects
are orbiting around the Earth, but only 20 % are payload and active satellites. The rest is
space debris. The debris can be generated by operating space objects (astronaut tools or optical
instrument covers) or after a fragmentation (collision or explosion). Around 40 % of cataloged
debris is associated with payloads or former satellites while 27 % is rocket bodies or derived from
rocket bodies.

The majority of the objects is in LEO, that is at an altitude below 2000km, and only 10
% are in Medium Earth Orbit (MEO) or Extended Geosynchronous Orbit (EGO). The most
populated orbits are the Geosynchronous Transfer Orbit (GTO) and LEO and to a lesser extent
the GEO [16]. Even within the LEO, the space debris typically originates from end-of-life satel-
lites and is concentrated around 1500 km and 800 km while debris in GTO is mostly rocket bodies.

In 2017, the total number of additional cataloged objects increased by 10 % corresponding to
a newly added mass of 558 tons [16], among which 60 % were operating satellites. Hence, most
of the newly added mass comes from operating objects, but in term of the number of objects,
the operating objects represent only 25 % of the total number of newly cataloged objects while
the rest is space debris. More than half of the newly added space objects are in LEO orbit. The
number of objects is on the rise mostly due to the proliferation of small payloads (below 10kg)
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that have a limited impact on the mass increase. In 2017, 4 breakups have been detected in
GEO and EGO inducing an additional 23 catalogued objects.

The number of cataloged objects does not directly reflect the actual increase in space debris
first because existing debris can be detected and because newly generated debris may remain
undetected. The number of uncatalogued space debris between 1 and 10 cm is extrapolated
around 500 000 while the number of objects smaller than 1cm probably exceeds tens of millions
[17].
The main debris "sink" is space object reentry [18]. Even at altitudes around 2000 km, the
atmosphere still reduces the space object velocity and eventually leads to a reentry. The process
can be prolonged depending on the object drag coefficient and altitude. For instance, a spy
satellite at 200 km reenters in a matter of days, the International Space Station (ISS) is expected
to reenter within six months (400 km) without reboosting while the Hubble telescope would
return after ten years. At 825 km, the reentry time is over a hundred years and in GEO it is
over a million years [1, 6]. In 2017, 178 reentry events were detected, representing a reentering
mass of 77.5 tons. Around 85 % of this mass came from rocket bodies.

1.2.2 Future evolution of the space debris population

Making a quantitative prediction of the space debris population evolution is extraordinarily
challenging and subject to uncertainties [24, 25] but studies agree that in a business-as-usual
scenario, the number of debris in LEO will proliferate exponentially mostly due to collision
cascade [18, 1, 26, 27, 28, 29]. This trend may be alleviated if the future space missions comply
with international guidelines [30]. The number of space objects in LEO may also be affected
by the new actors in the space industry. The cost of rocket launches reduced significantly, and
satellites are more and more used for new applications. In general, cheaper and smaller satellites
are expected to be launched in LEO orbit in the future. Projects such as OneWeb, Starlink from
SpaceX require mega constellations of satellites. As a consequence, the number of space debris is
expected to increase by 100 % in the LEO region, between 700-1200 km [31].

The increase in the number of satellites also induces a change of paradigm for satellite
manufacturers that need to mass produce satellites cheaper with a larger failure tolerance. In
such cases, constellations may worsen the space debris problem, especially in the upper LEO. In
[32], the authors show that a high disposal rate of end-of-life satellites is vital to maintaining a
sustainable space environment. In the future, if the launch of massive constellations is confirmed,
strict compliance with the existing guidelines will become a necessary condition to maintain a
safe and accessible near-Earth space environment.

1.2.3 Consequences for near-Earth space activities

The sharp increase in the number of space debris especially in LEO brings additional risk and
constraints for current and future space missions [33]. The collision probability is directly related
to the amount of space debris in a given orbit. We can identify two types of in-orbit collisions:
micro collisions or catastrophic collisions.

Micro collisions are collisions between micro debris (1 mm) and large debris and depend on
the impact location, incidence, and relative velocity. Solar panels are the most exposed parts of
a space object. The micro collision risk is mitigated with protective layers as for pressurized
modules of the ISS.

Catastrophic collisions concern objects that are larger than 10 cm. In this case, the collision
most likely results in the destruction of the spacecraft and the creation of additional debris.
Catastrophic collisions are avoided by maneuvering the operating space object.
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1.2.4 Consequences on Earth

The vast majority of human-made space objects are doomed to reenter on Earth. A reentry
event is the return of an object from outer space where the atmospheric drag is negligible, to
denser layers of the atmosphere until ground impact or complete ablation. This type of reentries
is said to be destructive as the object is expected to be fragmented and burnt when reaching
the ground by opposition to inhabited reentries from Soyouz capsules for instance. Two types
of destructive reentries are possible: uncontrolled and controlled reentry. The uncontrolled
(or natural) reentry happens when a non-operating object has been decaying from its original
orbit due to residual atmospheric drag and without any human action. A controlled re-entry is
triggered by an ultimate maneuver to deorbit the object toward a specific region on Earth. Note
that the object is only controlled during the initial deorbiting maneuver, the rest of the reentry
is completely uncontrolled.

On average one or two objects reenter on Earth everyday [6]. Occasionally, large objects such
as rocket upper stages, large satellites, space stations reenter with masses exceeding several tons
and cross-sections above 100m2 [6]. In this case, they can damage human assets, injure or kill
someone, primarily if the reentry is not controlled. During a reentry, most of the object kinetic
energy is converted into internal energy leading to fragmentation and ablation of the object such
that small object may disintegrate completely before reaching the ground. For large objects,
however, numerical studies and observations have shown that a significant part may reach the
ground and present a hazard for human populations [34, 35, 36, 37, 38, 39]. The survivability
of a fragment is its ability to survive to reentry (i.e., to reach to ground). On the ground, the
impact velocity can reach several dozens of meters per seconds of objects weighing up to 100
kg. For the Delta II, second stage reentry in 1997 over Texas, a 250 kg stainless steel tank was
recovered near a farm [40]. In 2000, the same object reentered over Cape Town South Africa.
For both reentries, the same kind of debris (pressure spheres and tanks ) were recovered, leading
to think that for each of 280 Delta II second stage launched until 2002, the same kind of debris
impacted the ground [6]. In general, most of the surviving debris are not recovered as they land
in an empty area or water. Even if the object falls over water and causes no damage upon impact,
floating debris (propulsion tanks, pressure vessels) may be a hazard for ships or assets [41].

The casualty probability of heavily depends on the type of reentry. For instance, it is
estimated that the controlled reentry of the MIR station (23 March 2001) had an almost 0
casualty probability because the reentry occurred over the Pacific ocean [6] whereas the Columbia
shuttle reentry had an estimated casualty probability around 20 % [6]. The Columbia space
shuttle reentered on February 1st 2003 after a thermal system failure. The disintegration of the
shuttle has been observed, and around 84 000 fragments were recovered (corresponding to 39 %
of the initial shuttle mass) [42].

Except for catastrophic event such as the Columbia space shuttle, the personal probability of
being hit is extremely low compared to other sources of risk. In [19], the risk is estimated at
10−12 per year to compare to the probability of being struck by lightning (10−7) or having a
home accident (10−5) [1].

The second source of damage due to space object reentry is environmental. It concerns
military satellites containing radioactive material (Radioisotope Thermo-electric Generator RTGs)
used in LEO and GEO until 1976. Most of the RTGs are currently in LEO orbit where their
life expectancy is about several hundreds of years. The RTG is made of radioactive plutonium
238Pu which half-life time is around 24 000 years. Some RTG have already accidentally reentered
for instance in 1964 after a launcher failure [1]. A military satellite RORSAT containing 30 kg
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of radioactive uranium also accidentally landed on Canadian ground in 1977, leading to the
first activation of the "UN liability convention" [6]. The reentry of space object raises other
ecological concerns as residual propellant tanks and composite pressure spheres may damage
natural habitat. Alloys such as Beryllium are considered as hazardous for local ecosystems [41].

1.3 Mitigation strategies and regulations

The proliferation of space debris calls for international regulations to protect future space activity.
As of today, no international treaty aiming at reducing the number of space debris exists. On
a state level, France has for example legislated for the regulations of spatial operations (Law
no 2008-518 of the third of June 2008), and guidelines (soft laws) are suggested by several
international agencies (NASA, ESA). Current international treaties, however, make states and
International Governmental Organisations IGOs liable for their space activities in terms of
human risk. They are free to carry space activities, but they are responsible for damages caused
by the objects they launch as long as they exist and regardless of the ownership. Their liability
is absolute and automatic without financial limit for injuries caused on the ground or to in-flight
aircrafts [43].

While international laws are still pending to mitigate space debris proliferation, international
guidelines have been under discussion since the ’80s. In early 2000 the Inter-Agency Space Debris
Coordination Committee (IADC) published the IADC Space Debris Mitigation Guidelines that
served as the baseline for the UN Space Debris Mitigation Guidelines. In parallel, space agencies
have been working toward technical requirements to meet those guidelines. Standards are defined
in the ESA ADMIN/IPOL [30] to reduce the multiplication of space debris and ensure safer
space activity for human populations. The objectives are to remove end-of-life satellites, bring
down the in-orbit breakup risk, define protected regions and quantify the risk upon re-entry. The
guidelines define protected areas such as the GEO and LEO or the Lagrange points that have
particular economic and scientific value. Objects orbiting near the GEO ring or that may drift
to GEO have to be re-orbited to a graveyard orbit 300 km above the GEO ring or 550 km below,
or to heliocentric orbits [30]. End-of-life space objects should be passivated to avoid in-orbit
breakups. Passivation includes emptying propellant tanks and discharging batteries [30].

Any object in LEO should reenter the Earth within 25 years [30] with limited on-ground
risk. Different risk metrics characterize the on-ground risk. The casualty (or fatality) risk is the
expected number of victim associated with the reentry of a space object. The casualty probability
is the probability that the reentry kills at least one person. The casualty risk should be below
10−4 for a natural reentry according to the ESA guideline [30]. The second set of risk measures
are the Declared Re-entry Area (DRA) and the Safety Re-entry Area (SRA). The DRA "should
delimit the area where the debris should be enclosed with a probability of 99 %" while the SRA
"should delimit the area where the debris should be enclosed with a probability of 99.999 %" [30].

The future launcher Ariane 6 will be compliant with the French Space Operation Act (FSOA)
and ESA guidelines [20, 44]. This procedure includes the rocket stage passivation, its disposal
mission, and re-entry. Furthermore, the on-ground risk associated with the reentering object
will be quantified. In the case of a controlled re-entry, the SRA should not overlap with any
territorial waters, of any states [20] and the maximum casualty probability should be kept below
2× 10−5 [21]. For uncontrolled re-entries, the casualty probability should be below 10−4 [21]. A
technical note demonstrating the compliance of the space mission to the French regulation have
to be presented before any launch. In particular, it should include a robust estimation of the
on-ground risk upon reentry.
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1.4 Computer simulation for the on-ground risk estimation

The calculation of the on-ground risk as defined in [30, 21, 20] have to be performed a priori
and before the object launch. According to [20, 44], it includes the estimation of the casualty
risk, the casualty probability, the SRA and the DRA. Observation campaigns are too rare and
expensive to provide a robust approach for predicting the risk. Hence the calculation of the risk
has to rely on computer simulations. Computer simulations reproduce the reentry of a given
space object using mathematical models that are solved numerically. The casualty risk, for
instance, depends on the population distribution and the object impact location. The impact
location is computed using numerical models that simulate the object reentry from its initial
orbit to the ground impact.

Simulating the reentry of a space object is a complex task because it is a multi-physics
problem. During a typical reentry, the space object leaves its initial orbit and decays to fall
back on Earth. As its altitude decreases, the atmosphere slows down the object and heats its
surface. The object usually breaks up into fragments that disintegrate in the atmosphere or
reach the ground. Simulating this sequence of events is challenging because the phenomena
involved are various. The simulation of the object orbital trajectory is utterly different from the
simulation of the object trajectory in the denser regions of the atmosphere. Several mathematical
models ranging from orbital mechanics, fluid mechanics, fluid-structure interaction or gas-surface
interaction have to be coupled to predict the complete object reentry. The resolution of those
models can be complicated to implement and computationally expensive to solve.

A practical solution to this complexity is to build a system of solvers. A system of solvers is
a set of interdependent solvers, connected by coupling variables that are at the same time inputs
of one solver and output of another one. In a system of solvers, each solver solves a specific
aspect of the physics. One solver computes the orbital trajectory while another calculates the
aerodynamic efforts. This approach permits to divide a complex problem into subsystems that
can be managed by dedicated teams of experts in each domain. This approach still comes with
a significant software development cost to interface the solvers and build a coherent, complete
reentry simulator. A large panel of numerical models has been developed by space agencies
(CNES, ESA, NASA) to predict a given reentry scenario and assess the risk associated. The
models will be reviewed in details in Chapter 2. Most of the space object reentry simulators do
not simulate the entire reentry event from the initial object orbit to the ground impact. Instead,
the engineers have to launch a set of solvers manually and manage the interface between the
solvers.

Computer simulations depend on mathematical models that are approximations of the
phenomena we wish to reproduce. For instance, some phenomena such as the object breakup are
still partially understood and therefore poorly modeled. Those approximations are necessary
to maintain the computational cost and model complexity to a reasonable level, but they also
introduce errors in the risk calculation. The errors associated with the computer simulations are
discussed in details in Chapters 2 and 4. They can either come from the mathematical model
that does not account for all the aspects of the physical problem, or from an inaccurate resolution
of the mathematical model.

Additionally, the simulations are affected by other sources of uncertainties due to a lack of
knowledge of the scenario. The initial conditions of the object reentry, for instance, may be
partially known. These uncertainties and model errors need to be included in the simulation
process to make robust predictions, especially for critical problems such as computing the
on-ground risk. For this reason, the space agency guidelines suggest using statistical measures of
the risk such as the DRA and SRA to account for the model errors and our lack of knowledge.
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1.5 Uncertainty quantification and on-ground risk assessment
We refer here to Uncertainty Quantification UQ as the ensemble of methods permitting to
estimate the influence of uncertainties in computer simulations and to quantify the variability of
the numerical predictions due to the system uncertainty. UQ methods usually require numerous
calls of the solvers under investigation and therefore are computationally demanding.

Some previous studies have investigated the influence of uncertainties in the on-ground risk
[45, 46, 47, 48, 38, 49]. In [48], a simple parametric study has been performed to assess the
importance of uncertainties on the on-ground risk. Each uncertainty is perturbed by a given offset
from its nominal value, and the change in the estimated on-ground risk is measured. Three cases
are considered: a satellite uncontrolled reentry, a Delta II type reentry and a satellite controlled
reentry. In [50, 51, 52] efficient statistical methods are proposed to include uncertainties in the
estimation of fallout regions. In [49], a Polynomial Chaos approach is used to propagate model
parameters uncertainties through the solver. The use of a polynomial surrogate model allows for
cutting down the computational cost of propagating uncertainties, compared to Monte Carlo
approaches. However, they considered only a limited number of uncertainties, since getting
a good polynomial approximation often requires a large number of runs to get convergence
especially in high dimensions. In [38], a Monte Carlo (MC) and a Polynomial Chaos Expansion
(PCE) approaches are used to propagate the uncertainties in the initial orbit characteristics
(semi-major axis, right ascension of ascending node and the argument perigee) of a CubeSat and
a standard satellite. The uncertainties are modeled as random variables allowing to compute
the Sobol sensitivity indices and moments distributions. Unfortunately, the results are not
entirely converged with the Monte Carlo approach (500 samples used) and for the PCE method
[38] provides no error estimates associated with the surrogate model. Moreover, only a limited
number of uncertainties could be considered due to the computational cost of one SCARAB
evaluation.

While the analysis performed in [48, 38, 49] illustrate the significant influence of uncertainties
in the risk predictions, they also lack efficient uncertainty propagation tools to accurately
quantify the uncertainties in the on-ground risk and perform global sensitivity analysis. A
primary objective of the thesis is to develop efficient UQ methods, specially adapted to the
propagation of uncertainty in systems of solvers, and the calculation of the risk of human losses.

1.6 Challenges and objectives of this work
As mentioned before, laws and guidelines impose several technical constraints to space operators
for controlling the reentry of space objects and providing a precise estimation of the on-ground
risk associated with each reentry event.

The estimation of the risk necessarily relies on computer simulations of the complex phenomena
associated with the reentry and more specifically, on multi-physics numerical models (structural,
aerodynamics, trajectory, chemistry). The physics involved in this problem are various, complex,
and even sometimes only partially understood. Uncertainties are numerous. And yet, the
estimated on-ground risk must be fast to compute, robust and reliable to ensure safe and
sustainable space operations. Some of the main challenges to tackle are the following:

1. Assess the reliability of the numerical models: The numerical simulation of the
fluid-structure and gas-surface interaction phenomena in combination with the trajectory
evolution is essential to predict the forces acting on the object, the energy transfer, and the
potential fragmentation of the object. From a modeling point of view, this phenomenon is
extremely rich, and only little data exist for properly calibrating the models. Additionally, a
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high-fidelity simulation during the whole trajectory is extremely computationally demanding.
A classical approach is to use simplified models, which induce additional sources of errors.
Considering the numerous sources of uncertainties coming from the model approximations,
a reliability assessment of the numerical prediction is primary to trust the estimation of
the risk.

2. Enhance robustness of the breakup models: The fragmentation process has critical
consequences on the object aerodynamics and the rest of the trajectory but is also the least
understood phenomenon and the most complex to predict. The breakup is defined as the
fragmentation of the object into two or more fragments and is the combined results of intense
heat flux, aerodynamic efforts, and tank or battery explosion. Accurately modeling those
phenomena and their interactions is exceptionally challenging. Even the most advanced
breakup models solely model the thermal aspects and sometimes employ basic criteria to
model the aerodynamic load effects. The breakup model defines the number of fragments
and their characteristics. It has a foremost influence on the predicted on-ground risk.

3. Model and propagate uncertainties in reentry predictions at a reasonable com-
putational cost: Space object reentry simulators are affected by uncertainties that have
to be identified, modeled and propagated through the simulator to obtain a robust esti-
mation of the risk. This estimation should be performed at limited computational cost,
thus avoiding classical sampling methods. Currently, uncertainties are not considered
systematically when predicting space object reentry due to the prohibitive cost of standard
uncertainty quantification methods used with multi-physics problems like this one.

4. Identify the uncertainties that affect the most the estimated on-ground risk:
Identifying the parameters or model errors that induce the most uncertainties in the model
is crucial to work on reducing the uncertainties in the prediction and improve the model
reliability.

In this thesis, we propose several contributions that provide partial answers to these challenges:

• Construct a numerical model for reentry prediction: In this work, we propose two
reentry simulators. The first one is presented in Chapter 3 while the second one is presented
in the Appendix. The simulators can simulate the entire object reentry event by coupling
several solvers together into systems of solvers. Moreover, the solvers are interfaced and
coupled in a unique framework to allow automatic, parallel launches from a single user.

• Proposal of breakup models under uncertainty: We propose a novel approach to
model breakup. We model it as a random event to account for our inability to accurately
simulate the complex sequence of events that lead to breakup and fragment release. Two
breakup models are developed, one for each reentry simulator.

• Develop efficient uncertainty propagation tools for Systems of Solvers : We
present two original solutions to propagate the uncertainties in the system of solvers and
reentry simulators: i) An original framework for efficiently constructing surrogate models
of systems of solvers (see Chapter 4). The framework also includes efficient active learning
strategies to improve the performance of the surrogate model adaptively. The framework
developed is general and can be applied to a large set of industrial problems. ii) A novel
formulation of the fragment survivability that permits to construct surrogate models. We
view the survivability assessment as the joint prediction of a classifier and a continuous
function. We derive an original surrogate model strategy assisted with an active learning
strategy to derive the on-ground risk distribution efficiently.
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• Characterization of the sources of uncertainties in the SoS: In chapter 2, we
investigate the models available to predict the reentry of a space object, and we identify the
sources of uncertainties and the errors in the models. We then propose to model them as
random variables and to study their influence on a complete upper stage reentry problem.
We carry an analysis of the model output sensitivity to the uncertain inputs. We are able
to rank dozens of uncertainties according to their influence on the output uncertainties
and to formulate recommendations for reducing the output uncertainties.

• Proof-of-concept of the developed UQ tools with application to a reentry simu-
lator for predicting the reentry of an upper stage under uncertainty: We develop
a software tool for reentry prediction under uncertainty, combining the different contri-
butions of this work: the reentry simulator proposed in Chapter 3 with the probabilistic
breakup model, and the surrogate modeling strategies. The software tool is applied to
perform a physical analysis of the uncertainties based on rigorous sensitivity analysis and
the robust estimation of the quantity of interest (breakup flight conditions, on-ground risk).
This analysis is performed at a very reasonable computational cost.

1.7 Outline

Chapter 2 In this chapter, we present the physical context of this work. We review in details
the main flow properties (hypersonic, high enthalpy), the gas surface interaction phenomena, the
heat flux, the ablation phenomena, and atmosphere characteristics.

Chapter 3 In this chapter, we build a reentry simulator using models developed by ArianeGroup
(AG). It is composed of several heterogeneous solvers that had to be included in a common
framework. We provide some details about the integration of several solvers into a general python
framework that minimizes the user interventions. This interface permits parallel launches in view
of performing uncertainty quantification. We then critically investigate the main assumptions
used in object reentry models and explain how they can induce prediction errors. We use
this discussion to expose an overview of the uncertainties involved in the prediction of a space
object reentry. We discriminate two classes of uncertainties: the model errors and the scenario
uncertainties.

Chapter 4 This chapter introduces the uncertainty quantification methodology. First, we
review the existing uncertainty quantification methods and in particular surrogate modeling
approaches and design of experiment strategies. Second, we present a new approach for construct-
ing a surrogate model of a directed system of solver where each solver is approximated with a
Gaussian Process (GP). The surrogate model is a system of Gaussian Processes (SoGP), and like
a Gaussian Process, it spans a predictive distribution of the output. We show how the predictive
variance of the SoGP can be decomposed into contributions from each of the composing GPs.
This decomposition is then used to propose three different active learning strategies adapted
for SoGP. One of the active learning strategies can identify the least reliable GP of the SoGP
and to suggest points for improving the quality of the prediction. The performance of the SoGP
framework is compared to a single GP on several analytical test functions and a simplified reentry
problem.

Chapter 5 In this chapter, we apply the SoGP framework to construct a surrogate model of
the simulator developed in Chapter 3. The SoGP is used to predict the breakup flight conditions
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(position and velocity of the object). We show the advantage of using the SoGP framework from
Chapter 4 on a full-scale industrial problem as it outperforms the single GP by one order of
magnitude. Based on the constructed surrogate model, we demonstrate the advantage of using a
probabilistic breakup model for performing robust reentry predictions. We can include a large
number of uncertainties (28) and to perform a sensitivity analysis at minimal computational
cost using the SoGP framework.

Chapter 6 This chapter proposes a new surrogate model construction strategy adapted to
the survivability prediction of the fragment. The output of the survivability solver is composite
and cannot be approximated well by a GP and hence by the SoGP framework. In this chapter,
we propose an original formulation of the survivability problem and build a surrogate model
composed of a classifier and a GP. Furthermore, we suggest an active learning strategy based on
the predictive variance of the constructed surrogate model. The performance of the surrogate
model and the active learning strategy are tested on several analytical cases and a preliminary
reentry problem with a single fragment.

Chapter 7 Based on Chapters 4 and 6, we can construct a surrogate model for the entire
reentry simulator. We combine the SoGP framework from Chapter 4 with the survivability
surrogate model from Chapter 6 to build a surrogate model of the reentry simulator to estimate
the on-ground risk under uncertainty. The excellent performance of the surrogate model strategies
permits to include several dozens of uncertainties in the analysis and to perform a thorough
sensitivity analysis of the entire system.

Chapter 8 In this final chapter, we summarize the findings of this work and formulate possible
future developments based on the results of this work.

Appendices In Appendix A, we present in details the ArianeGroup solvers used in the reentry
simulator presented in Chapter 3. In Appendix B, we propose a higher fidelity simulator compared
to the simulator constructed in this study. It features better modeling of the object thermal
response to the external flow and a more advanced probabilistic breakup model. A synthetic
comparison between the two models in a deterministic setting is also proposed.
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Chapter 2

Space Object Reentry

In this chapter, we illustrate the main physical phenomena that occur during the reentry of a space
object. Furthermore, we provide different definitions of risk according to the main guidelines.

2.1 Some definitions
A reentry event is the return of an object from outer space where the atmospheric drag is
negligible to denser layers of the atmosphere until landing or complete ablation. By convention,
the reentry usually begins at an arbitrary altitude 120 km where the atmospheric density is
around 10 million times smaller than the sea level atmosphere density. The objects considered
in this work are non operating, human-made space objects such as rocket bodies or satellites
but do not concern inhabited flights. This type of reentry is denoted as destructive as the
object is expected to be fragmented and burnt. Two types of destructive reentries are possible:
uncontrolled and controlled reentry. The uncontrolled reentry happens when a non-operating
object has been decaying from its original orbit due to residual atmospheric drag. A controlled
re-entry is triggered by an ultimate maneuver to deorbit the object toward a specific region on
Earth. In the case of a controlled reentry, the French Space Operation Act requires that the
SRA do not impinge upon any territorial water or lands and that the casualty probability and
the expected number of victims be lower than 2× 10−5. In the case of an uncontrolled reentry,
it must stay below 10−4. [44, 21]

Whether the reentry is controlled or not, a reentry event can be decomposed into the following
sequence of events (see Fig. 2.1).

• Upper atmosphere trajectory (120 km -90 km altitude): During this part of the reentry, the
atmosphere is around a million times less dense than at sea level. The aerodynamic forces
are limited, and the object orientation remains stable. The flight regime is hypersonic in a
rarefied flow.

• Pre-breakup trajectory (90 km altitude until breakup): During this phase, the atmosphere
effects become more and more important such as the object starts tumbling and is heated
by convective, reactive and radiative heat flux.

• Breakup or fragmentation: At some point in the trajectory the object will certainly break
up. Optical observations of the Columbia space shuttle, ATV reentries or the MIR space
station reentry suggest that the object fragmentation is not a single catastrophic event but
a sequential breakup cascade. After the sequence of breakups, the fragments originating
from the initial object keep falling back to Earth.

13
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Figure 2.1: Simplified representation of an upper stage reentry.

• Survivability: At this point, no further breakup is expected, but each fragment is slowed
down and ablated depending on its shape and material composition. Some of the fragments
completely disintegrate while some of them survive and reach the ground. Around 20
km, the surviving fragments experience a free fall at subsonic velocity depending on their
aerodynamic properties. Depending on the impact locations of the fragments, the expected
number of victims and the probability of having a casualty can be computed.

This chapter describes the main physical phenomena occurring during a reentry (Section 2.2).
Then, definitions of risk are illustrated in Section 2.3.

2.2 A multi-physics problem
We briefly illustrate here why the reentry of a space object is a multiphysics phenomenon. We
introduce the atmospheric model, and then we describe several aspects of the reentry of a space
object in terms of aerodynamics, gas-surface interactions, structural thermomechanical response,
and object breakup.

2.2.1 The role of the Atmosphere

The atmosphere composition plays an essential role in the estimation of the aerodynamic forces.
Its characteristics vary drastically depending on the altitude. The mean pressure and density
decrease with altitude while the temperature follows more complex variation due to sunlight
absorption in the stratosphere ( 15 to 50 km) and the thermosphere (above 80 km ). In Fig. 2.2,
the variations of temperature, pressure, and density are represented. The Earth atmosphere is
decomposed into four layers. The troposphere (0 to 15km), the stratosphere ( 15 to 50 km), the
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Figure 2.2: Atmosphere characteristics (from [3]

mesosphere (50 to 80km), the thermosphere ( 80 km to 1000 km) and the exosphere (1000 to 10
000 km).

In the exosphere, the molecules follow ballistic trajectories, and in the thermosphere, the free
molecular flow ranges from several meters to kilometers. The atmosphere does not only depend
on altitude but also on solar activity, season and time of the day. In the troposphere, the air is
turbulent and strong wind effects can significantly affect the trajectory of fragments that, at this
point of their reentry, have subsonic velocities.

The thermosphere and exosphere are highly turbulent and complicated to model because of
their sensitivity to solar activity and Earth geomagnetic activity. In the case of uncontrolled
reentry, the space object may remain several hours or days in the thermosphere before re-entering
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on Earth. Variations in the density profile influence the drag force and in turn the trajectory.
Hence the variability of the atmosphere can have a significant influence on the re-entry window.
At lower altitudes, the density profile also affects the convective heat flux and in turn the object
survivability.

Several atmosphere models have been developed to model the atmosphere. The first one,
US62, uses an exponential pressure variation model and models air like a perfect gas [53]. The
model has been improved in US76 and MSIS-2000 [54]. In its latest version, MSIS-2000 includes
seasonal variation, hour variation, solar activity, geomagnetic activity, and location. Compared to
earlier versions, MSIS-2000 present significant differences for altitude above 120 km. Nevertheless,
it does not include any wind modeling that can significantly affect the trajectory below 20 km
altitude.

2.2.2 Aerodynamics

From initial reentry conditions to ground impact, a space object goes through a large set of
different flow regimes that affect its aerodynamics and heat transfer with the atmosphere. In
this section, we discuss the different flow regimes. We investigate in particular three flow charac-
teristics: the flow regime characterized by the Knudsen number, the speed regime characterized
by the Mach number, and the dynamic behavior described by the Reynolds number.

Density flow regime

At 120 km altitude where the space object reentry begins, the atmospheric density is a million
time lower than at sea level where reentry ends. When the density is extremely low, the air
cannot be seen as a continuous medium since the distance between molecules becomes comparable
to the space object size. The Knudsen number is defined as:

Kn = λ

L
(2.1)

where λ is the molecular mean free path which is the average distance a molecule travels between
two collisions, and L is the object characteristic length. The Knudsen number allows to define
three regimes:

• The free molecular flow is defined for Kn > 1. In this case, the gas density is so low that
only a limited number of molecules impinge upon the surface of the space debris. Classical
fluid mechanics models cannot be directly applied. On the other hand, results from gas
kinetic theory can be used to compute the aerodynamic force and heat transfer [55].

• The rarefied flow or transition regime is commonly defined between Kn < 1 and Kn > 0.03
[4]. As for the free molecular flow, the continuity assumptions are not valid. The rarefied
flow is characterized by slip conditions the surface of the space object. The flow velocity at
the vehicle surface, for instance, is not 0. Similarly, the flow temperature at the object
surface is not equal to the surface object temperature. In general, the Navier-Stokes
equations from the continuum regime are not valid. Instead, the Boltzmann equation has
to be solved. In the special case where Kn < 0.2, the Navier-Stokes equations can be
applied with specific slip conditions at the object surface. [4]

• The continuum flow is defined for Kn < 0.03. In this regime, the continuum assumptions
are valid, and the Navier-Stokes equations can be used to characterize the flow.
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Figure 2.3: Velocity-altitude map with superimposed lines of constant Mach number [4]

The speed regime

The different flow regimes are characterized by the Mach number M :

M = v

c
, (2.2)

where v is the free-stream velocity and c is the speed of sound. The Mach is the square root of
the ratio between the flow kinetic energy and the flow internal energy. Depending on the Mach
number the following regimes can be identified :

• Hypersonic flow: conventionally defined for Mach numbers above five although some
hypersonic flow characteristics can be observed at lower Mach numbers. The hypersonic
flow is encountered at the early stages of the re-entry.

• Supersonic flow: the supersonic flow is faster than the speed of sound and characterized by
the creation of a shock in front of the object (Mach numbers between 1 and 5).

• Subsonic flow: for Mach number below 1. During reentry, the subsonic flow is observed
toward the end at low altitudes and after the main object fragmentation.

The evolution of the Mach number and change in the flow regime along a re-entry trajectory are
presented in Fig. 2.3. During reentry, the hypersonic regime is dominating from 120 km to 50
km and often after breakups usually occur during the hypersonic flow phase. In the rest of this
paragraph, we give an overview of the main characteristics of hypersonic flows.

Hypersonic flows [4] feature five significant characteristics, which are described in the following:

1. Thin shock layer For hypersonic flights, the shock layer between the object and the
shock reduces in thickness. For oblique shocks, the flow density increases with the Mach
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Figure 2.4: Measured drag coefficient for a sphere and a cone-cylinder [5]

number such that the mass flow is concentrated over a smaller volume when flow becomes
hypersonic. [4]

2. Mach number independence Hypersonic flow characteristics are independent of the
Mach number, as shown in [4] at the limit M −→∞ the flow governing equations become
independent of the Mach number. In the case of a space object reentry, for hypersonic
flight, the aerodynamic forces are independent of M . This trend is observed experimentally
in Fig 2.4. Note that the Mach independence regime is reached at different rates depending
on the object shape. For blunt bodies, the Mach number independence regime is reached
for relatively lower Mach numbers than for sharp bodies. See for instance the difference
between the sphere and the cone-cylinder on Fig. 2.4.

3. Viscous boundary layer As discussed earlier, hypersonic flows have high kinetic energy
that is converted into gas internal energy in the boundary layer. This conversion is called
viscous dissipation. This effect leads to an increase in the boundary layer temperature and
the gas viscosity increases and in turn it thickens the boundary layer. In particular, we
have that the boundary layer thickness scales as [4] :

δ ∝ M2
∞√
Rex

(2.3)

where M∞ is the freestream Mach number and Rex is the local Reynolds. In hypersonic
flow M∞ becomes large and so does δ. The increased boundary layer changes the pressure
distribution and the aerodynamic forces that apply to the space object. In some cases, the
boundary layer and the shock layer may have a similar size.

4. Reacting boundary layer As discussed in the previous paragraph, at the shock, the
kinetic flow energy is converted into gas internal energy, namely vibrational and rotational
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energy. The flow temperature increases and effects specific to high energy gases can be
observed. The specific heats become functions of temperature and the specific heat ratio γ
is not constant. The increase in vibrational energy leads to molecular dissociations into
atoms, ions, and electrons. At 800 K molecular vibrational modes start being excited.
At sea level, Dioxygen dissociates as soon as 2000 K and is completely dissociated at
4000K. For Nitrogen, it is entirely dissociated at 9000K. At 9000K, molecular ionization
can occur. Figure 2.5 summarizes the velocity and altitudes for which air molecules will be
decomposed.
The flow right after the shock is not at equilibrium. While rotational and translational
equilibrium is usually reached within a few collisions, vibrational equilibrium is reached
after the order of 100 000 collisions [6]. The vibrational relaxation time depends on the
number of collisions a molecule experiences in the shock layer. It depends on the flow field
velocity and density.
We define the vibrational relaxation time τvib as the time to reach equilibrium after crossing
the shock and τres the time a molecule resides in the shock layer, three regimes can be
defined. If τvib � τres, the flow is vibrationally frozen, that is the flow vibrational energy
remains constant after the shock. This case can be encountered at the early stage of the
reentry when the flow density is low. If τvib ∼ τres, the flow is not at equilibrium, the
vibrational energy varies in space and depends on the particle type [56]. If τvib � τres,
the flow is at equilibrium. The vibrational temperature is the same as the translational
temperature. Similar remarks can be formulated for the chemical reaction time τch. After
the shock, the molecules are decomposed into atoms and ions that recombine in the shock
and boundary layer. If τch � τres, then the flow is chemically frozen, the flow chemical
composition remains constant in the shock layer. Almost no molecular recombination takes
place in the shock layer except possibly at the surface of the body. If τch ∼ τres, flow is
out of equilibrium and the molecular composition varies in space. If τch � τres, the shock
layer can be considered at local chemical equilibrium and the gas state equation gives the
chemical composition.
In the boundary layer, the gas composition is also affected by the catalytic properties of
the object surface that accelerates the molecular recombination rate at the object surface.
Finally for very high temperature flows around 10 000 K (Apollo 11 reentry was about 11
000 K at Mach 36 [4]), the radiation emitted and absorbed by the gas become non-negligible
and locally affects the flow energy [56].

Dynamic flow regime

The Reynolds number characterizes the dynamic regime of the flow:

Re = ρv∞Lref
µ

(2.4)

where ρ is the fluid density, v∞ is the free stream velocity, Lref is the object reference length,
and µ is the dynamic viscosity. The Reynolds number is the ratio between the inertia forces
and the viscous forces. Depending on the Reynolds number, the flow regime can be laminar or
turbulent. A turbulent flow features "random variations with time and space" (Hinze 1975) [57],
it is inherently three dimensional and time-dependent. The space length scales of variation of
turbulent flows can be extremely small. Fig. 2.6 shows the turbulent wake trail of a bullet at
Mach 1.5. During a space object reentry, the object usually experiences substantial changes in
the Reynolds number.
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Figure 2.5: Molecular dissociation, vibrational excitation and ionization function of altitude and
velocity from [4].

Figure 2.6: Photography of a bullet moving at Mach 1.5 (source NASA)

As shown in Fig. 2.7, the early stage of a reentry features high Mach numbers and low
Reynolds number where a viscous boundary layer is likely to be observed. At lower altitudes, the
flow transitions to a turbulent, flow. As an illustration, Fig. 2.7 shows the transition from laminar
to turbulent for a 10-meter object at Reynolds equal to 106. The laminar flow at the leading
edge of the object transitions into a turbulent further as it moves downstream. The transition to
turbulence in hypersonic is still not perfectly understood. It depends on the transition Reynolds
number that in turn depends on a large number of flow parameters [4]. Among them, the
Mach number at the outer edge of the boundary layer (Me). Studies found that the transition
Reynolds number increases with the Mach number for Me > 4, implying greater flow stability
for hypersonic flows than for slower flow. Other key parameters such as the angle of attack, the
environment, the wall temperature, and the object geometry also affect the turbulent transition
[4].
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Figure 2.7: Reynolds number evolution with reentry trajectories. (from [4] )

2.2.3 Gas-surface interactions

In this section, we look at the interaction between the gas and the object surface. As previously
discussed, viscous dissipation in the boundary layer can lead to very high gas temperature,
molecular dissociation, gas radiation, and wall radiation. As a result, the gas interacts with
the object surface through molecular recombination, convective heat transfer, radiation, and
ablation. All those interactions consist of exchanges of energy or mass.

• Convective heat flux The convective heat flux corresponds to the heat exchange between
the hot gas and the cold surface, due to temperature differences. The convective heat flux
depends primarily on the enthalpy difference, the flow density and dynamic behavior of
the flow.

• Wall radiative heat flux The radiative heat flux comes from the object surface or the
shock layer. A black body radiates energy following the Boltzmann law:

qr = εσT 4, (2.5)

where ε is the body emissivity, σ the Stefan-Boltzmann constant and T the body tempera-
ture. This effect is called radiative cooling. It is all the more important that the object
temperature is high. For high fusion temperature materials such as titanium, the radiative
heat flux may become a major cooling effect, leading to the survivability of the object.
The gas in the shock layer also radiates energy. This effect depends on the gas composition
and temperature. The radiative gas effect becomes non-negligible at around 10 000 K.
In radiative flows, the flow exchanges energy with other flow regions or the body. This
phenomenon creates complex coupling effects between fluid elements [4] depending on the
gas properties. If the gas is transparent, it radiates energy but does not absorb it. On
the contrary, self-absorbing gas emits and absorbs radiation. Gas radiative heat flux is
significant for high-speed reentries above 10 km/s and large objects (around 5 m) [4]. For
the Apollo reentry, estimations showed that the gas radiation heat flux accounted for 30 %
of the total received heat flux.
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Figure 2.8: Schematic representation of the surface catalysis phenomenon for three types of
materials : fully catalytic, partially catalytic and non catalytic

• Molecular recombination
The sudden conversion of the flow kinetic energy into internal energy leads to the molecular
decomposition of air molecules into nitrogen and oxygen atoms. The object surface can act
as a catalytic medium facilitating molecular exothermic recombination. The energy released
by the molecular recombination occurring at the surface of the space object contributes to
the heat flux transferred to the object. See Fig. 2.8.
The molecular recombination rate depends on the catalytic properties of the material.
Materials such as quartz are assumed to be non-catalytic. The probability of observing
molecular recombinations between two impinging atoms is extremely low [58].On the
contrary, fully catalytic materials feature a recombination probability close to one. Silver
is often considered as a fully catalytic material [58]. In between, the partially catalytic
materials have a recombination probability significantly lower than one, which is the case
for most materials used in space object reentry. Note that the material catalytic property
changes during the reentry as the surface chemical composition varies over time due to
ablation and oxidation. The molecular recombination heat flux also strongly depends on
the chemical composition in the boundary layer, if the flow is frozen and most of the atoms
do not recombine in the boundary layer, more recombination reactions take place at the
surface. If the flow is at equilibrium, depending on the flow enthalpy, pressure and density,
a significant number of atoms may have already recombined when reaching the object
surface.

• Surface oxydation
In addition to molecular recombination, the material itself may react with the oxygen
atoms into exothermic oxidation reactions that release energy at the surface of the object.
In Fig. 2.9 the surface of titanium oxide obtained in the PROMES furnace is represented.
The oxidation reaction rate depends on the surface regularity and the flow conditions [6]
and if an oxide layer is already formed.

2.2.4 Structural and material behavior upon reentry

Space objects are composed of various components with very different materials. The material
composition of a space object depends on its primary purpose ( observation, broadcast, scientific
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Figure 2.9: Oxidized surface titanium (from [6] )

experiment, propulsion). The composition and the structure of a reentering object have a
significant influence on the object thermal response and the breakups. In this section, we focus
on two types of materials with very different characteristics and behaviors: the metal alloys
and the composite materials that tend to be used more and more for their reduced weight and
excellent mechanical properties.

Metals and alloys A solid-state metal or alloy has a crystalline structure. That is its atoms
are arranged in a highly organized microscopic structure that repeats itself in all directions of
space. The compact organization and well-organized structure of the metal ensure its structural
stability while flaws in the crystal affect its thermal and mechanical properties [6].

Aluminum and Titanium are the most used materials in the aerospace industry. Aluminum
alloys are used for large structures such as upper stage tanks and satellite buses. They offer
a good compromise between weight and strength. They are also characterized by low fusion
temperature and tend to disintegrate completely upon reentry. Titanium is used for joints
between aluminum plates or parts exposed to intense heat flux and pressure such as pressure
spheres or gas chambers and nozzles. Titanium alloys have a better mechanical and buckling
resistance up to 750 K than aluminum but remain likely to fail at the welding between two
parts [6]. More recent designs use new materials such as Beryllium that has excellent mechanical
properties and low weight but it remains costly and toxic. [6]

Concerning the behaviour for high-temperature flow, the surface of an alloy can
catalyze molecular recombinations of nitrogen atoms, oxygen atoms, and electrons. The heat
released by the exothermic reactions directly contributes to the heat transfer from the gas to the
material. The heat transfer due to molecular recombination depends on the chemical composition
of the flow at the surface and microscopic structure at the surface of the object. In addition to
molecular recombination, oxidation reactions can occur. The reaction involves an oxygen atom
and metal atoms or oxide and yields an oxide. Not only this exothermic reaction significantly
contributes to the heat transfer from the gas to the object, but it also changes the material
properties at the surface such as emissivity, fusion temperature, and catalytic properties. The
formation of alumina at the surface of an aluminum material changes the melting point from 800
K to 2345 K. In [59], the emissivity of the titanium is shown to increase from 0.2 to 0.8 when
oxidized in air plasma. A oxidized titanium plate is represented in Fig. 2.9. The formation of
oxide is usually solely located at the surface on a thin layer, but the increased fusion temperature
and emissivity can affect the radiated heat flux.

Under a high enthalpy flow, the material is subject to ablation. For metals, it is generally
assumed that when the surface of the object reaches fusion temperature, the melted matter is
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Figure 2.10: Schematic representation of interface phenomena between a high enthalpy flow and
a metallic material

swept by the flow. Formation of the oxide layer complexifies the phenomena. The oxide fusion
temperature is much higher than the metal fusion temperature, and in some case, the metal
under the oxide layer may melt before the oxide layer reaches fusion temperature [8]. In [6], the
titanium oxide layer observed in 2.9 is non-protective, it does not prevent further oxidation and
it even facilitate ablation [6] while for aluminum it creates a protective skin of alumina with
very different material characteristics (emissivity, fusion temperature, etc.) [8]. In this case, the
ablation metal of the metal may be delayed depending on the aerodynamic forces.

Composite materials A composite material is composed of at least two non-miscible materials
with different mechanical and physical properties. Contrary to alloys, composite materials remain
heterogeneous at the microscopic scale. They are typically composed of a reinforcement that
makes the frame and a matrix that surrounds the reinforcement material (see Fig. 2.11). The
reinforcement material defines the mechanical properties of the material. The reinforcement is
usually made of fibers (metal, glass or polymers) that can be positioned all in the same direction
or randomly. Common types of fibers are carbon fibers. Their fibers have excellent resistance
to traction but not to compression [6]. The matrix is a soft component made of silicon (for
instance), enriched with additives (for instance rubber). Ceramic matrix composite CMC are
primary choices for thermal protection material. CMC have a high resistance to thermal and
mechanical loads. Carbon fiber reinforced polymer CFRP have been recently used in aerospace
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Figure 2.11: Composition of a composite material from [7]

applications. Its main advantages are a very low weight coupled with high mechanical resistance
of the fiber. Composite materials are extensively used in tanks, pressure tanks in satellites and
upper stages (see Fig. 2.13).

Concerning the behaviour for high-temperature flow, composite materials can act
as a catalytic surface for molecular recombination that contributes to the received heat flux.
Additionally, the response to ablation differs from the alloys. The composite material can be
decomposed into three distinct zones. The virgin zone, the pyrolyze zone, and the char zone.
Initially, only the virgin zone is present. The flow heat flux leads to an increase in temperature
until 500K-600K. At this temperature, the pyrolyze reactions start. The pyrolyze corresponds to
the decomposition of the resin filling into a gas. It yields the following effects [60]:

• This endothermic reaction acts as a heat sink that protects deeper layers of the material.

• The pyrolyze reaction also creates outgassing that blocks the incoming flow and reduces
the convective heat flux .

• The pyrolyze zone becomes porous without the resin and broader as the heat diffuses in
the material and the temperature increases.

In the char zone, when the temperature increases, the carbon residual can be oxidized by
impinging oxygen atoms or molecules. As for the metal, this reaction generates additional heat
flux. The carbon atoms may also react with the silicate fibers at a temperature around 1300
K. The changes in the chemical composition of the composite material significantly affect their
thermal and mechanical properties. The ablation process for the composite materials such CFRP
are still not well understood whether the material is sublimated or if the char zone becomes
too fragile and it is swept by the flow. It is generally accepted that charred materials in CFRP
start being sublimated around 3000 K, a temperature that is rarely reached during space debris
reentries [6]. Hence, the ablation phenomena are most certainly due to the erosion of the char
zone [60].

2.2.5 Breakup analysis

Breakups are almost sure events during a reentry. In [61], two types of breakups can be identified:
the low energy breakup and the high energy breakup. Low energy breakups almost always
take place, they are due to the structural failure of the object while the high energy breakups
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Figure 2.12: Schematic representation of interface phenomena between a high enthalpy flow and
a composite material

(a) before reentry

(b) after reentry

Figure 2.13: Example of a cylinder tank made of CFRP composite material before and after
rentry (source [8])

are caused by explosions due to battery burst, propellant leaks, and reactions in air or tank
explosions. In the following, we give a description of upper stages and satellites. We then detail
the breakup phenomena.
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Figure 2.14: Ariane 5 ME upper stage (source : ESA)

Space object structural composition

An upper stage is the last stage in a staged rocket such as Ariane 5 and 6. It brings the payload
as close as possible to its destination orbit. A simplified representation of the upper stage used in
Ariane 5 ME is represented in Fig. 2.14. Most of the volume of the upper stage contains two tanks
with the oxidizer and propellant. They are included in an aluminum structure assembled with
titanium screws and flanked with thermal protection. The main components of the propulsion
system are the turbopumps, the combustion chamber, the nozzle, and the pressure spheres.
Those components are designed to withstand extreme temperature and pressure conditions and
are mostly built in titanium or composite materials (CFRP). The electronic system is composed
of batteries, power unit, and electronics which material composition is complex. The payload
adapting system is responsible for carrying and releasing the payload. In the case of several
satellites to send, the SYLDA (weighing around 500 kg) allows accommodating two satellites.

The shape and size of satellites vary according to their mission. Small satellites are typically
cubes. The payload and components necessary for the functioning of the satellite (batteries,
thermal control systems, data handling systems, etc.) are fixed to the walls. Additionally, solar
panels are installed to ensure the power supply. The satellite is equipped with reaction wheels
and a propulsion system (thrusters) to monitor the attitude and orbit. For larger satellites (GEO
telecommunication satellites for instance) the structural integrity ensured by a central beam. In
some cases, the beam is reinforced and also used as a tank. Most of the components are built in
aluminum alloys although tanks are usually reinforced with CFRP or titanium.

Low energy breakups Low energy breakups are very likely to take place during the reentry
of a space object. It is the separation of two components due to joint failure, welding failure or
the fracture of an element. The mechanisms leading to breakup are extraordinarily diverse and
still not well understood. Moreover, the observation of space object breakup is scarce and mostly
qualitative insights from experts are available. Three major causes of low energy breakups can
be identified: the thermal load, the aerodynamic load, and the inertial load. The three reasons
are usually intricately coupled such as the modeling and simulation of breakup is exceptionally
complex.

The thermal load corresponds to the energy brought by the flow that weakens the structure
and makes it more likely to break or buckle due to the aerodynamic or inertial loads. The thermal
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load may also cause material dilation in regions where the heat flux is high (near the stagnation
point, edges or regions where the boundary layer thickness reduces). The material dilation adds
extreme and localized constraints that may lead to a breakup in weak regions (wielding, joints).
Finally, the thermal load may lead to the fusion of joints between two components and their
separation.

The aerodynamic load corresponds to the aerodynamic forces that may lead to separation and
buckling of the structure. Buckling is all the more likely to happen that the material temperature
may be close to its fusion temperature. The aerodynamic forces are dominating on low ballistic
coefficients such as solar panels, that are known to fragment early ( around 100-90 km) during a
reentry. The inertial load is due to the attitude motion of the object. In the case of an upper
stage, the inertial load can be substantial due to the sloshing of the liquid fuel or oxidizer and
the location of the center of mass at the rear.

High energy breakups High energy breakups come from internal vehicle explosions caused
by battery failure, propellant leakage or tank explosion. Owing to the lack of experimental
observations, the understanding of high energy breakups remains limited. On September 28th
2008, the ATV 1 Jules Verne, responsible for the supply of the ISS performed a controlled,
destructive reentry over the Pacific ocean that was thoroughly observed. A representation of the
ATV is given in 2.15. It is composed of a docking system, pressurized module, control equipment
and a propulsion system (gas mixing chamber, tanks, pressurization spheres, etc.). The objective
of the observation campaign was to better understand the breakup of a reentering space object
and the propagation of fragments. The first observed breakup happened at 74 km altitude [62]
and probably originated from the propulsion system [10]. Before that, a flare was observed but is
not identified in [10]. Half a minute after the main explosion, a second explosion is seen. During
the same period, fragments are generated in the front face of the ATV, probably coming from the
the protective shields and the docking adapter. Subsequent fragment separations are observed,
but the breakup cause (low energy breakup or high energy breakup) is not elucidated in [10].
In Fig. 2.16, a picture from [10] of the ATV fragments is shown. The object fragmentation is
usually a sequence of element separations and explosion over a minute time interval.
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Figure 2.15: ATV main components (source [9])
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Figure 2.16: snapshot of the ATV Jules Verne reentry (source [10])
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2.3 On-ground risk assessment
In the event of space debris reentry, the international guidelines define several risk metrics. The
first one is the on-ground risk characterized by the probability of making at least one victim
(Pv) and the expected number of victims Ev for a given reentry scenario. The model used to
compute this risk is defined in [63] and has been implemented in [64] with minor differences.
The second type of metrics are the Declared Re-entry Area (DRA) and the Safety Re-entry Area
(SRA) defined in Chapter 1 and in [30]. Finally, the casualty area is the third type of metrics
computed by space object reentry simulators.

2.3.1 Casualty area

The casualty area is the "equivalent impact area that lead a casualty if a person is struck by a
piece of fragment" originating from the initial reentering space object [30]. Mathematically the
casualty area for fragment k, Ac,k, is defined as :

Ac,k = (
√
Af,k +

√
Ah)2 (2.6)

where Af, k is the average projected area of the fragment surviving reentry and Ah is the
cross-section of a standing human, taken equal to 0.36m2 in [30]. The projected area for simple
shapes is given in [63] and reported in table 2.1. A graphical representation of the casualty area
is given in Fig. 2.17. The total casualty area associated with a reentry event is defined as :

Ac =
n∑
k=1

Ac,k (2.7)

with n the number of surviving fragments. The casualty area defines a level of hazard for each
reentry, independently of the impact location and population density.

2.3.2 Expected number of casualty

The calculation of the expected number of casualty is proposed in [63] and implemented in
[64]. The world population is modelled with a Poisson point process with density parameter
λ(x, y) where x and y are longitude and latitude. The density parameter λ(x, y) is given by
the world population model (gpw v4 [65]). For a given reentry, we denote (x1, y1, ...xn, yn) the
impact points of the surviving fragments 1 to n with casualty areas Ai,1,... Ac,n. We introduce
the casualty factor ck that is the probability that someone is killed knowing that it is hit by
fragment k (i.e., it stands in the casualty area). According to [64], it depends on the kinetic
energy of the object and the degree of protection of the population. In [63], it is recommended
to consider unprotected population and therefore ck(ξ) = 1 if the impact kinetic energy is higher
than 15J and ck = 0 otherwise. Note that the model ELECTRA uses a more refined model

Shape Surface
Sphere radius R πR2

Box of dimensions L > W > H LW
Plaque with L > W LW
Cylinder with radius R and length L max( πR2,2LR)

Table 2.1: reference area for different debris shapes
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Figure 2.17: Casualty area definition

for ck depending on the population location [64]. Casualty areas are small with respect to the
population density resolution. Hence λ(x, y) is constant over the casualty area. We also assume
that the fragments have disjoint impact areas. Under these assumptions and the Poisson point
process model, the expected number of victims is

Ev =
n∑
k=1

Ac,kckλ(xk, yk) (2.8)

And the probability of having at least one victim is

Pv = 1− exp(−Ev) (2.9)

Since the Ev is expected to be extremely small (on the order of 10−4), we get that

Pv ' Ev (2.10)

The casualty area metric is usually preferred to the expected number of victims as the risk
estimation model is elementary and can solely be used as a certification tool. A significant
advantage of the expected number of victims is that it takes into account the location of the
impact. With the casualty area metric, a large object falling in the Pacific ocean is more
problematic than a smaller object falling over a densely populated region. The casualty area is
equivalent to computing the expected number of victims with a uniform density population.

2.3.3 Impact zones

The DRA and SRA defined in the guideline rely on a probability distribution of the impact
location in terms of longitude and latitude from one fragment. Denoting (X1, . . . Xn) the vector
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of joint distributions of the surviving fragment impact longitudes and latitudes. The Xi are by
definition valued in [−180, 180]× [−90, 90]. The DRA is the area of the set ADRA such that

P (∩ni=1Xi ∈ ADRA) ≥ 1− 10−4 (2.11)

while the SRA is the area of the set ASRA such that

P (∩ni=1Xi ∈ ASRA) ≥ 1− 10−5. (2.12)

This definition is extremely fuzzy as there are a many possible ADRA and ASRA that satisfy Eqs.
(2.11) or (2.12). In particular, if no constraint is added on the size of the impact zone it can be
made extremely large by adding regions with zero impact probabilities. One possible restriction
is to impose that the ground area covered by ADRA and ASRA be the smallest possible.

A rigorous solution to the impact zone determination problem has been proposed in [66] in
the case of a unique fragment. In that case the number of candidates for the ADRA and ASRA
can be reduced by considering minimum volume sets (MVS) only. This option is proposed by [66]
to compute the fallback area of a launcher. In the unique fragment case, the joint distribution
of impact longitudes and latitudes is denoted X. The quantity ADRA is a minimum volume of
level 1− 10−4 if and only if

ADRA ∈ P([−180, 180]× [−90, 90]) such as P (X ∈ ADRA) ≥ 1− 10−4

and ∀B ∈ P([−180, 180]× [−90, 90]) such as P (X ∈ B) ≥ 1− 10−4, L(ADRA) ≤ L(B)
(2.13)

where P([−180, 180] × [−90, 90]) is the set of partitions of [−180, 180] × [−90, 90], L is the
Lebesgue measure (here the area of the sets). Hence, a MVS is a smallest set in terms of area
such that P (X ∈ ADRA) ≥ 1− 10−4. A priori, there are still a large number of possible MVS for
a given probability level depending on the pdf of X. Moreover, finding a minimum volume set
can be challenging. Fortunately, under regularity assumptions on the pdf, there exist a minimum
volume set that is defined as a level of the pdf [67] . The idea is used in [66] where the authors
compute the pdf in order to compute the level set. In their case, they consider extreme quantile
and therefore need to have accurate estimates of the tails of the pdf. This approach has been
implemented in [68, 50, 52] to compute fall back regions associated with a launcher failure.

In the general case where several fragment impact the Earth surface, the ideas presented in
[66] do not apply. For space object reentry predictions with multiple fragments, state-of-the-art
analysis use parametrized shapes for the impact zone such as rectangles or ellipsis [69] to propose
an impact zone.

2.4 Conclusion
In this chapter, we describe the physics involved in the destructive re-entry of a human-made
space object. The flow characteristics feature a diversity of phenomena, from the rarefied
hypersonic flows to subsonic continuum flows. In the hypersonic flow conditions, the flow in the
shock layer has converted its high kinetic energy into internal energy, leading to an increase of
the flow enthalpy and even the molecular decomposition of air molecules. This high enthalpy
induces intense convective flux and complex gas-surface interaction phenomena as molecular
recombination, surface oxidation. The energy received by the object combined with the intense
aerodynamic and inertial load leads to the fragmentation (low energy or high energy) of the object.
A large panel of events can trigger breakup: joint or welding failure, structure buckling, epoxy
glue melting or tank explosions. Depending on the type of breakups, the resulting fragments
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will be extremely different in terms of mass and geometry. Hence, the breakup has a primary
influence on the on-ground risk.

Lastly, we characterize the on-ground metrics proposed in the space agency guidelines. We
identify three types of risk metrics: the expected number of victims, the casualty area and the
impact zones that we define as the smallest zone such as the probability that a fragment falls
outside of that zone is below a certain threshold.



Chapter 3

Reentry Simulations : Tools and
Uncertainties

In this chapter, we illustrate the tools used to simulate the reentry of a space object and identify
the uncertainties associated.
After reviewing the existing models available in the literature, we construct a reentry simulator
constructed to peedict the controlled or uncontrolled reentry of a space object. This simulator
can also be defined as a System of Solvers (SoS), which will be further discussed in Chapter
4. Despite using several heterogeneous solvers, we build a simulator requiring minimal user
interactions, mostly focused on the definition of the initial/operating conditions and the scenario
of interest. Minimizing the user interactions is necessary to perform Uncertainty Quantification
efficiently, demanding otherwise the user to run one-by-one all the multiple simulations.
In this chapter, as the second contribution, we also identify the primary sources of uncertainty
associated with object reentry modeling.

In the first section, we introduce the main two classes of reentry tools : the spacecraft-oriented
and object-oriented models. In the second section, we present the reentry simulator constructed
for this work. The level of fidelity is intermediate between object-oriented models and spacecraft-
oriented models but with a probabilistic breakup model. Note that a higher fidelity model has
also been developed in this work based on recent model improvements from AG. Since it is not
employed in the uncertainty analysis of this work, we report it in Appendix B.

3.1 Review of object reentry simulators

There are two major classes of reentry simulators : the object-oriented and the spacecraft-oriented
models.

In object-oriented tools, the spacecraft breakup is modeled with a parent-child approach.
At a user-defined breakup altitude, the main (parent) object disappears and releases the child
fragments. See Fig. 3.1. When a child object is released, it inherits its parent object state vector
(position and velocity). A fragment is characterized by its geometry, dimensions, mass, attitude
motion, and material. The shape and attitude motion of the object have to be selected from
a limited choice of simple shapes (box,cylinder,cone, etc. ). At each time step, the simulator
computes the aerodynamic forces and heat flux and derives the object position, temperature
and ablation rate. The simulator finally returns the impact locations of the surviving fragments.
The functional representation of a generic object-oriented model is represented in figure 3.1.
Examples of object-oriented reentry tools are DEBRISK and ELECTRA from CNES, DRAMA

35
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Figure 3.1: Schematic representation of object-oriented solvers.

from ESA, DAS and ORSAT from NASA, ORSAT-J from JAXA and SAPAR from South Corea
space agency.

The spacecraft-oriented codes utilize more complex models compared to object-oriented codes.
The significant difference is the spacecraft geometry representation. In spacecraft-oriented codes,
the object is accurately represented in terms of geometry and mass distribution by a mesh and
not with predefined shapes as in object-oriented models. Consequently, aerodynamic efforts and
thermal loads can be computed more accurately. Moreover, spacecraft-oriented models feature
six Degree of Freedom (DoF) trajectory solvers whereas object-oriented models do not solve for
the object attitude motion. Finally, the breakup prediction is also significantly improved as it is
not triggered at a given altitude but estimated using the thermal and structural responses of the
space object to thermal and aerodynamic loads. Example of spacecraft-oriented simulators are
PAMPERO from CNES, FAST/MUSIC from ONERA and SCARAB from HTG.

AG, in collaboration with CNES, developed a set of solvers for modeling the trajectory,
aerodynamic loads and heat transfer that are used here to construct the reentry simulator.

In this section, we present more in-depth the object-oriented and spacecraft-oriented models
and show how the solvers developed by AG compare to those models. In particular, we focus on
the geometry modeling, the trajectory calculation, the aerothermal models, breakup models, and
ablation models. Note that specific details for each solver are provided in Appendix A.

3.1.1 Geometry modeling

In object-oriented models, the child objects are necessarily modeled with predefined shapes
(sphere, flat plate, cylinder or box) with a given motion attitude. For a given shape, dimension
and attitude motion the aerodynamic coefficients are pre-computed and implemented in the
solver. The Chinese space agency code, DRAPS, proposes a large number of objects and attitude
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Figure 3.2: Representation Beppo-SAx (from [11])

motion (15 different geometries and 51 attitude motions) [6], but for other codes the choice
usually is more limited.

On the other hand, spacecraft-oriented models do not use simplified shapes. Instead, the
space object is represented by a mesh. In Fig. 3.2, a representation of the satellite BeppoSAX by
SCARAB is shown. The geometry modeling tools also define connections between the components
where the spacecraft may break up.

In the solvers developed by AG, the modeling of the object geometry is object-oriented
for the aerothermal and thermal calculation but is spacecraft-oriented for the aerodynamic
calculations. In other words, the object is approximated with simple shapes for computing the
thermal response of the object but it is accurately modeled with a mesh for computing the
aerodynamic efforts.

3.1.2 Trajectory modeling

The motion equations for a reentering space object are:

d2XXX

dt2
= Ae +Ac +Ag + FaeroFaeroFaero

m
, (3.1)

I · dΩ
ΩΩ
dt

= MaeroMaeroMaero −ΩΩΩ ∧ (I ·ΩΩΩ), (3.2)

where X is the position of the object in the Earth-centered inertial frame, Ag is the gravita-
tional acceleration from the Earth, the Sun and the Moon, Ae the centrifugal acceleration and
Ac the Coriolis acceleration. The term FaeroFaeroFaero represents the aerodynamic forces. The quantity
ΩΩΩ is the instantaneous rotation vector expressed in the engine inertial frame. The variable I
is the inertia matrix associated with the object in the engine inertial frame. The term MaeroMaeroMaero

represents the moment induced by the aerodynamic forces
Most object-oriented models use a 3 Degree of Freedom (DoF) trajectory model. In other words,
they only solve Eq. (3.1) and do not consider the object attitude motion. The spacecraft-oriented
tools, on the other hand, solve for both Eqs. (3.1) and (3.2).
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AG develops its own in-house trajectory solver (BL43) that may be used in a 3 or 6 DoF
setting in which case Eqs. (3.1) and (3.2) are solved. Details are provided in Appendix A.

3.1.3 Case of controlled reentries : deorbiting modeling

Most reentry models are designed to simulate uncontrolled reentries. In general, the simulation
starts at an altitude of 120 km. Before that, the trajectory is computed by a dedicated orbit
propagator, such as STELA from CNES [70] for instance.

In this work, we are also interested in controlled reentries where the object is purposely
ejected from its original orbit to permit fast and relatively precise reentry. To simulate the initial
deorbiting manoeuver, AG developed the solver CARINE which is an orbit propagator that
computes trajectories after a deorbiting manoeuver is performed. It takes as input the orbital
elements of the initial orbit and the deorbiting characteristics: namely the deorbiting time tboost,
the retro boost amplitude Aboost and the boost orientation characterized by two angles, i.e. αboost
and βboost. The new orbit characteristics are evaluated, and the orbit propagated until the object
reaches 120 km of altitude. The model is less expensive than state-of-the-art orbit propagator
such as STELA, but it is only valid for short time propagation, typically a deorbiting trajectory.

3.1.4 Aerodynamic modeling

To solve for Eqs. (3.1) and (3.2), we need to estimate FaeroFaeroFaero and MaeroMaeroMaero
1. Most reentry tools

(object-oriented and spacecraft-oriented) are based on the same set of assumptions. Three flow
regimes are considered :

• In the free molecular flow, FAST and PAMPERO use Eq. 7.58 from the reference book
[71] to get the local pressure and Eq. 7.61 in [71] to get the local shear stress. SCARAB
uses similar results from the Schaaf-Chambre theory (see [72] ch 6 ). The local pressure
and shear stress are then integrated over the object surface.

• In the continuum hypersonic regime, the local pressure is computed using the modified
Newton law [4]. Besides, the shear tensor is set to zero which is reasonable for blunt bodies
in hypersonic flows. The modified Newton law is valid for hypersonic flows and blunt
bodies but becomes inaccurate for slender shapes and flow regimes below M < 4.

• For rarefied flows, the aerodynamic efforts are defined as a weighted sum of the aerodynamic
efforts in the free molecular flow and the continuum regimes. The weights (also called
bridging functions) are valued between 0 and 1 and depend on the Knudsen number.

While the same general aerodynamic models are used in the spacecraft-oriented and object-
oriented approaches, they yield significantly different results on complex geometries. First, the
calculation of the aerodynamic effort is more accurate in the case of the spacecraft-oriented
approach (due to more refined geometry modeling). Second, some parameters such as the
bridging functions differ in each code. In SCARAB and PAMPERO, for instance, the bridging
functions are optimized according to experimental data [73, 74].

AG and CNES collaborated to develop the aerodynamic solver ARPEGE following a
spacecraft-oriented approach. A surface mesh represents the object. ARPEGE uses the same
set of assumptions as most solvers: Newton modified method for continuum hypersonic flows,

1Although MaeroMaeroMaero is only evaluated in the case of spacecraft-oriented models
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Figure 3.3: Representation of the heat flux applied to a cell.

bridging function in the rarefied flow and analytical expressions (eq. 7.88,7.89 from [55]) for the
free molecular flow. More details are provided in Appendix A.

3.1.5 Thermal modeling

In this section, we discuss the differences in the object thermal response modeling for the
object-oriented and the spacecraft-oriented approaches.

In the object-oriented models, only the parent object is exposed to the flow while the child
objects are protected and are not included in the calculation of the thermal response of the
model [75]. Moreover, a 0D thermal is usually used, such that the object temperature is assumed
to be uniform. On the other hand, spacecraft-oriented tools use 3D finite element models to
compute the thermal response of the object [6, 74], such that the spacecraft temperature field
can be derived, and the conductive heat flux between parts of the object modeled. Hence, the
energy conservation equations are not identical for the two approaches. For the object-oriented
models, the energy conservation for the entire parent object is given by :

mobcp
dTob
dt

= Sqaero (3.3)

where Tob is the object temperature, mob its mass, S its surface, cp the material heat capacity
and qaero the aerothermal heatflux. For the space-oriented models, the energy conservation for a
given cell is (see Fig. 3.3 ):

cpρvc
dTc
dt

= sextqaero + sintqcond (3.4)

where Tc is the cell temperature, vc is the cell volume, sext the surface of the cell exposed to the
flow and sint the internal surface of the cell (not exposed to the flow). The quantity qcond is the
conductive heat flux model with Fourier’s law [74, 6].

The aerothermal heat flux qaero is not modeled identically in object-oriented and spacecraft-
oriented models. In object-oriented models, it is the sum of the convective heat flux, the radiative
heat flux and for some models, the oxidation heat flux [75] :

• The convective heat flux qconv corresponds to the energy transfer induced by forced
convection in the flow. The specific formulations of the convective heat flux are different for
every software. In all cases, they rely on correlations and simplified heat flux formulations
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from [76, 77, 78] in the continuum regime and the reference books [55] and [71] in the
free molecular flow regime. In the rarefied flow regime, the heat fluxes are derived using
bridging functions between the continuum flow and the free molecular flow expressions.

• The oxidation heat flux comes from the oxidation of the material in contact with dissociated
oxygen atoms. The exothermic oxidation reactions generate additional energy absorbed by
the material.

• The radiative heat flux corresponds to the re-radiation of the wall to the gas and the
gas emission that occurs in the shock layer. In DEBRISK, the gas radiative heat flux is
neglected while it is included in recent versions of ORSAT [79].

Spacecraft-oriented models also use analytical expressions that are usually improved with high
fidelity calculations or high enthalpy experiments. The tool SCARAB for instance, also considers
the heat flux from the pyrolysis reactions and outgassing cooling effects [60] for composite
materials and FAST uses specific formulae to compute the gas radiative heat flux [6].

AG developed several models in collaboration with CNES to compute the aerothermal load
and the object response. The tool ADRYANS V4 (described in details in Appendix A) follows
an object-oriented approach: the object temperature is assumed to be uniform, and only the
radiative and convective heat flux are modeled. Moreover, the spacecraft is approximated with
simple shapes to compute the convective heat flux using simplified formulae. A parent-child
approach is also selected, the object is modeled with a shell of mass mshell containing all the
fragments to be released at breakup. The shell protects the fagments from the flow. Note that
AG also developed more advanced thermal models that are used in a second reentry simulator
presented in the Appendix B.

3.1.6 Ablation modeling

As the object receives energy, it gets ablated by the flow. For metal alloys, it is generally assumed
that the ablation process starts when the object surface reaches fusion temperature. The energy
brought by the flow then serves to melt the material that is then swept by the flow.

For metal alloys, object-oriented and spacecraft-oriented models follow this approach but with
a significant difference coming from the thermal model [75, 6, 80, 73]. For object-oriented models,
the ablation starts when the entire object mass reaches fusion temperature (since a uniform
temperature model is used). In the 3D thermal models implemented in spacecraft-oriented tools,
the ablation process may start at the surface of the object before the internal cells reach fusion
temperature as the conductive heat flux is generally lower than the convective flux. Consequently,
the ablation process starts earlier with spacecraft-oriented models than with object-oriented
models. Moreover, the ablation may be localized in spacecraft-oriented models whereas it takes
place uniformly in object-oriented models.

On the other hand, for composite materials such as CFRPs, this approach leads to wrong
survivability predictions [39]. In SCARAB, an improved model for composite materials is pro-
posed [60]. Two additional heat flux sources are modeled in the case of composite materials: the
pyrolysis reaction heat flux and the pyrolysis gas cooling [60]. The pyrolysis heat flux is a heat
sink in the local energy balance equation owing to the endothermic pyrolysis reactions [60]. The
gas cooling effect comes from the exhaust of pyrolysis gas that cools down the char region. In
[60], the convective heat flux reduction induced by the pyrolysis outgassing 2 is also modeled. In

2 Also called blocking effect
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[39], the authors show the advantage of using this formulation compared to a metal ablation
model for CFRP. This formulation, however, adds a significant number of parameters that have
to be fitted. To the best of our knowledge, only SCARAB features a specific model to account
for the ablation of composite materials.

The AG/CNES tool ADRYANS V4 uses a purely object-oriented approach, only valid for
metal alloys.

3.1.7 Breakup modeling

To predict breakup, one needs to predict the object breakup chronology (there are usually several
breakups during a reentry) and the properties of the generated fragments (shape, mass, material,
temperature). The breakup is extremely simply modeled for object-oriented models: a set of
precomputed fragments is usually released at a specific altitude chosen by the user [75]. Note
that DRAPS uses thermal criteria to trigger breakup instead of a fixed altitude [81].

Spacecraft-oriented models, on the other hand, directly model the separation of the fragments
from the original object. In SCARAB, the breakup is modeled using thermal and structural
criteria. In earlier versions of SCARAB (1.5) [73], the separation of elements is triggered by the
breakup of specified joints between two components. The structure breakup occurs when the
stress computed at a joint reaches a certain threshold. The thermal breakup is detected when
the joint between two parts melts.

Note that SCARAB has been equipped with a module to model tank failures during the
ATV reentry study [9], but the model does not account for potential high energy breakups that
can occur due to propellant leakage.

After each breakup, two or more fragments are generated. In general, one of them is the
primary object while the others are small detached fragments that rarely experience further
fragmentation [11]. After release, the pieces are usually modeled independently except for FAST
that models the aerodynamic interactions between fragments [6].

In PAMPERO, the aerothermal response is coupled with the finite element code ASTER
(developed by the company EDF) to perform the mechanical stress analysis [82]. To the best
of our knowledge, no published work exists on the reentry of a complete space object with
PAMPERO.

Additional breakup models have been proposed for high energy breakup in [61] using Bayesian
failure network models. The proposed model is purely statistical and fitted on expert opinions
and advanced opinion elicitation methods [61]. To the best of our knowledge, it is also the only
model for high energy breakup during reentry. In [83], a probabilistic approach to fragment
release is also proposed.

Since 2016, ArianeGroup engineers have been developing a breakup simulator. The objective
is to compute the mechanical and thermal responses of an entire spacecraft to the hypersonic
reentry flow along the trajectory to derive the breakup mechanisms. The solver is currently
still being developed, and hence we propose here alternative models to simulate breakup. These
models are presented in Section 3.2.2 and B.1.3.
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3.1.8 Comparison results between object-oriented and spacecraft-oriented
models

Object-oriented and spacecraft-oriented models have been compared in several studies [84, 85]. In
[84], DAS (object-oriented) and SCARAB (spacecraft-oriented) are compared in their predictions
of the casualty area, the residual mass, and the number of fragments reaching the ground.

The primary difference between DAS and SCARAB is the modeling of breakup and the
generation of fragments. For DAS, a user-defined set of fragments is released at a user-defined
breakup altitude. For SCARAB, the fragment characteristics and the release altitudes are
computed by the model. In [84], the number and characteristics of the fragments for DAS are
fixed, but the breakup altitude is varied from 58km to 98km. In all cases, the casualty area
predicted by DAS is always lower than for SCARAB, even at low altitude (below 68 km) for
which all the fragments survive. This study illustrates the consequences on the on-ground risk of
the simplifying assumptions implemented object-oriented models.

In [86], the discrepancies in the impact location predictions between SESAM 3.1 (object-
oriented) and SCARAB are investigated. As for DAS, the results in terms of ground impact risk,
casualty area and impact location are significantly different, mostly due to the fixed breakup
altitude, the initial fragment temperature and the fragment list that are chosen a priori by the
user in SESAM 3.1.

In this section, we proposed an overview of the existing solutions to predict the reentry of
a space object by establishing two main classes of models with different levels of fidelity. Not
all reentry tools fall into one for those categories. As a example, we mention the software SAM
[87, 88] developed by Fluid Gravity and Belstead as an interesting mix of both classes of models.

3.2 Construction of the full system of solvers for reentry

In this section, we describe the system of solvers for reentry prediction constructed during my
PhD. The requirements for this tool are the following ones:

• The tool should provide an estimation of the ground risk, casualty area and in a probabilistic
setting, the SRA and the DRA for a given reentry scenario.

• The tool should be fast and flexible. Hence the computational cost should remain within a
few hours and require minimal user intervention.

• The tool should be robust to be used for Uncertainty Quantification (UQ) purposes. Then,
the codes should run with any combination of parameters within the uncertainty ranges. We
have performed rigorous testings of the in-house codes to check their stability to uncertain
conditions.

• The tool should include a breakup model since the breakup solver from AG was not
available.

We provide here a general description of the reentry prediction tool. Then, we detail the
models that we developed, in particular, a breakup model and a risk estimation solver.
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Figure 3.4: Functional representation of the medium fidelity simulator for controlled reentries

3.2.1 General description

Our simulator uses six or five solvers depending on whether the reentry is controlled or not. The
details of the solvers developed by AG are given in the appendix A. A functional description of the
simulator is given in Fig. 3.4 for the controlled and uncontrolled case. The two scenarios differ in
their initial conditions. In the controlled case, the simulation starts at the deorbiting manoeuver
while for the uncontrolled case, the reentry starts when the object crosses the arbitrary altitude
of 120 km. Following figure 3.4 the simulator features the following steps:

1. At 120 km of altitude, the flight conditions of the object (velocity, position) are either
given by the user (uncontrolled reentry) or computed by the deorbiting solver. In the case
of controlled reentry, the deorbiting solver takes as inputs the initial conditions (initial
orbit element, deorbiting maneuver characteristics) and returns the position and velocity
of the object at 120 km altitude.

2. The aerodynamic coefficients associated with the object geometry are computed by the
aerodynamic solver (ARPEGE). Tables are generated to avoid calling the aerodynamic solver
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at every time step of the trajectory. They depend on the object attitude (orientation),the
Mach number and the Knudsen number

3. The BL43 trajectory solver used in a 3 DoF setting is coupled with the thermal module
ADRYANS V4 and the atmosphere model MSIS-2000 to compute the trajectory of the
object (before any breakup). The model returns the object velocity, position, mass and
temperature that are then necessary to compute the breakup conditions.

4. The breakup solver uses the temperature evolution along the trajectory and the trajectory
to compute the breakup conditions and fragment release. As for the object-oriented models,
the characteristics of the fragment to be released after the breakup, are precomputed by
experts and high-fidelity simulations.

5. Given the fragment release conditions (velocity, position, temperature) and characteris-
tics (material composition, shape, dimension, attitude motion) the fragment trajectory,
temperature, and mass are computed. Two cases can be observed. Either the fragment
disintegrates in the atmosphere, or it survives and impacts the ground. In the latter case,
the solver returns the impact location (latitude and longitude), the residual mass, velocity,
and casualty area.

6. For the surviving fragments, the risk estimation solver computes the human risk.

Note that we developed also a second reentry simulator. It features a more accurate breakup
model and more advanced models for the heat flux calculation, the object thermal response and
trajectory calculation. Since it has not been used with the uncertainty quantification tools, we
have provided more details about this solver in Appendix B.

3.2.2 Breakup model

The trajectory solver BL43 coupled with the thermal module ADRYANS V4 computes the
object position, velocity, mass and temperature (XXX(t),VVV (t),mshell(t),T (t)). The breakup module
directly uses those quantities to compute the object flight conditions (position XXXbreakup and
velocity VVV breakup) at breakup. This model follows a parent-child approach for object-oriented
models. The parent object is the object shell with mass mshell that contains and protects the
fragments from the flow. The shell is approximated with a simple shape: cylinders for upper
stages, boxes for satellites etc. At breakup, the parent object disappears and releases all the
fragments at once or sequentially.

The particularity of this approach, compared to object-oriented models, is that the breakup
solver is probabilistic and that the random breakup conditions depend on the flight history and
not solely on a priori considerations. With this approach, we aim at including the uncertainties
due to the extreme complexity of the physical phenomena.

The model constructs a random distribution of the breakup time. We define the breakup
time distribution Tfrag as:

Tfrag = U(tinit, tend), (3.5)

where U denotes a uniform distribution and tinit and tend are the lower and upper bounds of
the time interval in which the breakup is bound to happen. The quantities tinit and tend are
computed using thermal criteria detailed in the following.

As the space object flies through denser and denser layers of the atmosphere, its temperature
increases and its strength decreases until it reaches its fusion temperature. As the temperature
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increases, the shell protecting the internal structure can fail before reaching fusion temperature
due to the aerodynamic forces and the degraded structural performance [37]. Therefore, we
assume that breakup can start as early as when the shell temperature reaches Tfrag with
Tfrag < Tfus. Mathematically, tinit is defined as:

T (tinit) = Tfrag, (3.6)

where Tfrag is a model parameter. It depends on the material and the reentry conditions.
When the temperature reaches fusion temperature, the material starts being ablated by the

flow. Once most of the shell has been ablated, it is safe to say that the breakup has already
occurred. Hence, we define tend, the latest time for which breakup can occur, as the time where
a certain mass proportion of the shell pabl has been ablated. As for Tfrag, pabl is an uncalibrated
model parameter. For a given pabl, tend is obtained by solving the following equation:

mshell(tend) = mshell(0)pabl, (3.7)

where mshell(0) is the initial mass of the object shell.

Recalling thatXXX(t) and VVV (t) are the position and velocity of the object at time t, the breakup
position, defined as XXXbreakup, is given by:

XXXbreakup = XXX(Tfrag). (3.8)

Moreover, the breakup velocity, defined as Vbreakup, is given by

VVV breakup = VVV (Tfrag). (3.9)

Note that after the breakup, the user-defined fragments are released with the initial conditions
(XXXbreakup,VVV breakup). Since Tfrag is a random variable,XXXbreakup and VVV breakup are random variables
too. To make a prediction, one needs to generate a sample denoted tfrag from Tfrag and the
predicted breakup conditions are XXX(tfrag) and VVV (tfrag).

Discussion of the breakup distribution

The breakup distribution can be modified to include more a priori information about the breakup
or even to model several breakups. For instance, instead of using a uniform distribution that
represents a complete lack of knowledge about the breakup time between tinit and tend, one could
use more informative distributions such as the beta distribution with suited a, b parameters
based on a priori object structure analysis. Moreover, for simplicity, the model assumes that
there is only one breakup time although there are usually several breakups and fragment releases
along the trajectory. This assumption, however, can be removed by considering distinct release
times for each fragment. We define T ifrag = U(tinit, tend) the breakup time distribution associated
with fragment i. The joint distribution of (T ifrag) can be chosen independent (each fragment
is released independently from the others). On the other hand,if a chronology of the fragment
release is available such that we know that

T 1
frag < T 2

frag < . . . T nfrag, (3.10)

then a more informative breakup distribution can be used. Note however that the trajectory
cannot be easily updated as fragments are released along the trajectory, although the object
properties (mass, shape, inertia matrix etc.) are modified.
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3.2.3 Risk estimation solver

A risk reentry solver is also implemented to complete the reentry simulator. It implements the
equations described in Chapter 2 for computing the casualty area according to [30]. The casualty
areas are computed using Table 2.1. The on-ground risk is computed using Eqs. (2.8), (2.9),
and the NASA database GWP v4 [65] for the population density.

3.2.4 Assumptions of the proposed system of solvers for reentry

The major assumptions used here are:

• The trajectory is solved in a 3 DoF setting;

• The object temperature is uniform and heat flux calculations rely on simple correlations
for simple shapes (box, cylinder);

• The breakup solver is based on an object-oriented approach but it introduces a stochastic
feature that improves the robustness of the prediction. The disadvantage of this model
is that it introduces two extra parameters Tfrag and pabl that cannot be easily estimated
due to the lack of experimental results and the significant bias introduced by the thermal
model.

As a comparison with existing reentry simulators, this simulator is close to object-oriented models
but with the particularity of not having a fixed but a random breakup altitude that depends on
the amount of energy received along the trajectory.

3.3 Implementation of the system of solvers

We tackled several challenges for the implementation of the system of solvers:

• The construction of an interface between codes that were written by different teams over
long time periods using different programming languages and conventions;

• The automation and parallelization of the launches to make the simulator easy to use and
automatic;

• The assessment of the accuracy of the solution.

We provide some details about the different actions in the following.

The python wrappers

Python wrappers are developed to build a unified framework in which the different solvers could
be coupled. The objective was to provide the same input types and outputs independently on
the structure of the solver. As the number of inputs could be significant, the dictionary structure
was selected for the input and output communication. The wrapper task was to write the inputs
in the input files, launch the executable and read the outputs in the output files. Improvements
were added throughout this work to facilitate the use of the wrappers. Moreover, pre-processing
and post-processing functions were implemented to allow the transparent use of data frames
(from python package Pandas) in the case of large sample sizes. The used wrappers allowed
to perform test efficiently and modify the system of solver while keeping a modular structure
transparent to the user.
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Figure 3.5: Representation of the upper stage for the medium fidelity model

Parallel launches

Based on the python framework built, the parallelization was first attempted using a distributed
memory framework such as MPI. This option was not possible due to an incompatibility between
the MPI-for-python module and the cluster architecture used for this work. Finally, the shared
memory framework was selected although it could only run on a single node.

Convergence tests

For each solver, a certain number of tests had to be run to verify the accuracy of the results. The
first class of tests assessed the numerical error due to the integration time step in the trajectory
solvers coupled with the thermal module ADRYANS V4. Initially, the trajectory solver had an
automatic time step adaptation method, but it did not consider the error in the thermal quantities
such as temperature and mass loss. This induced large errors in the thermal quantities and
sometimes even wrong predictions regarding the survivability of a fragment. For each piece, rig-
orous time step convergence tests were performed to verify the accuracy of the numerical methods.

The convergence of the mesh used to compute the aerodynamic coefficients with ARPEGE
has also been tested. For example, in the case of an upper stage rocket represented in Fig. 3.5,
three meshes with increasing resolution were tested. The calculated relative error between the
coefficients with the three meshes was usually below 0.1 % and hence much lower than the
uncertainties in the aerodynamic model. These tests were not only necessary for the application of
UQ methods, but it also allowed detecting weaknesses in the codes and increasing the robustness
of the implementation.

3.4 Reentry simulations in a deterministic scenario

We propose to test here the implementation of the simulator developed in this work and presented
in the previous section. This test concerns the controlled reentry from a GTO orbit (see Table
3.1 for the orbit characteristics), which is the reference test-case used overall in this work. The
space object is an upper stage represented in Fig. 3.5.

The upper stage is mostly composed of aluminium and weighs 7000 kg (see Table 3.1). The
shell susceptible to be ablated weighs 3000 kg and is made of aluminium. For the breakup
prediction, the parameter Tfrag (see definition Eq. (3.6)) is set to 600K and pabl (see definition
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Table 3.1: Case description

Variable Value
Internal mass 4000 kg
Shell mass 3000 kg
Material composing the shell Aluminium
Dimensions diameter 4.5 m , length (with nozzle) 7 m
Initial orbit apogee 35× 103 [km]
Initial orbit perigee 254 [km]
Initial orbit inclination 10 [deg]
Initial orbit ascending node longitude −135 [deg]
Initial orbit perigee argument 130 [deg]
Initial orbit true anomaly 43 [deg]
Tfrag 600 [K]
pabl 90 %

Eq. (3.7)) to 90 %. For simplicity, we consider a deterministic breakup time at tend−tinit
2 . Upon

breakup, the precomputed fragments are released simultaneously. There are 29 types of fragments
in total (see table 3.2), some are identical (for instance the pressure spheres) and hence fall
exactly at the same location if released at the same time. The fragments are made of aluminium
(75 %), stainless steel (5 %), titanium (10 %) and Inconel (10 %). There are globally 100
fragments released at breakup.

This reentry scenario is extensively studied in this work, in particular in Chapter 5 and 7
where uncertainties are included. For now we restrict ourselves to the deterministic simulation.

The model predicts a reentry at 9800 m/s at 120 km altitude. The fragmentation occurs 82.2
seconds after the beginning of the reentry around 64 km of altitude at 9400 m/s (almost Mach
32). The velocity and altitude evolution are represented in Figs. 3.6 and 3.7. Out of the 100
fragments only the four pressure sphere, the nozzle with the combustion chamber and a payload
adaptor survive. The fragments fall into the Pacific ocean at several hundred-kilometer distances
from each other, mostly due to the ballistic coefficient differences between the fragments (see
Fig. 3.8). Overall, the total mass that reaches the ground is around 675 kg (less than 10% of the
original mass). The impact velocities are subsonic (34 m/s for the spheres and up to 110 m/s for
the nozzle and combustion chamber).

The simulator used in this deterministic setting offers little advantage compared to existing
object-oriented reentry models. The breakup model is relevant only if used in a probabilistic
setting that it would require a large number of fragment trajectory simulations. Moreover, the
breakup model is not the only uncertainty in the model. As shown in the next section, there are
several sources of uncertainties that should be identified and quantified.
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Id Number Name
1 4 Payload adapter rings
2 1 Payload adapter
3 4 Cone
4 4 Equipments plate
5 3 Equipment bay structure 1
6 3 Equipment bay structure 2
7 4 Payload adapter Ring
8 4 Equipment bay structure 3
9 4 LH2 tank upper skirt 1
10 4 LH2 tank upper skirt 2
11 8 LH2 upper dome
12 4 Equipment bay structure 4
13 3 LH2 tank cylinder
14 4 LH2 tank lower skirt
15 4 LH2 tank ring
16 8 LH2 tank lower dome
17 3 Lox tank lower dome
18 3 Lox tank upper dome
19 2 Cold Gas Reacting System
20 8 Engine Thrust Frame 1
21 1 Engine Thrust Frame 2
22 1 Engine Thrust Frame 3
23 3 LH2 feedlines
24 3 LOX feedlines
25 4 Helium spheres
26 1 Combustion chamber
27 3 Power unit
28 1 Turbopump 1
29 1 Turbopump 2

Table 3.2: List of fragments
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Figure 3.6: Time evolution of the upper stage altitude until breakup

Figure 3.7: Time evolution of the upper stage velocity until breakup. The velocity increase is
due to the low atmosphere drag above 100 and the gravity
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Figure 3.8: Impact location from (West to East) the pressure spheres (one impact point), the
payload adaptor and the combustion chamber with nozzle
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3.5 Uncertainty characterization

Despite a considerable effort from the community, even the most accurate models presented in
this work use simplifying assumptions that reduce the reliability of their predictions. Those
mismodeling errors induce uncertainties in the risk metrics (DRA,SRA, on-ground risk or casualty
area). Moreover, the lack of knowledge of the reentry scenario ( the position of the vehicle, the
material composition or the mass) also affects the prediction reliability. We illustrate here two
main sources of uncertainties.

3.5.1 Model errors and uncertainties

The solvers presented here feature different level of complexity depending on whether they are
object-oriented or spacecraft-oriented solvers. In this section, we discuss the main model errors
in both the spacecraft-oriented and object-oriented solvers. We also consider the differences
between the object-oriented and spacecraft-oriented solvers and how the assumptions made
by object-oriented solver significantly bias the risk estimation compared to spacecraft-oriented
solvers.

Aerodynamic and aerothermal models

Most reentry solvers described in this work share similarities in their aerodynamic and aerothermal
models. For the continuum flow, the modified Newton law is systematically used, even for complex,
sharp shapes or supersonic flows with M < 4.

For simple shapes such as spheres, cylinders and flat plates [6, 12, 75], the agreement with
high fidelity CFD models usually are very good for the drag coefficients and pressure distribution.

For sharp cones, FAST (ONERA) presents discrepancies with experimental results (around
10%) due to the contribution of shear forces [6] which are neglected in FAST (and most reentry
simulators). Also, the sharp cone features a detached shock for large angles of attacks and
potentially a subsonic region that is not modeled in the Newton law [6]. This example illustrates
the error induced when applying the Newton law to sharp objects and arbitrary orientations.

Similarly, in the free molecular flow regime, the surface pressure and drag coefficient are well
estimated for simple shapes [12, 80], but in the rarefied regime, the results are usually inferior.
Recall that in the rarefied regime, all models use bridging functions to interpolate the results
from the free molecular and continuum regime. The use of bridging functions simplifies the
model but introduces additional errors.

Heat flux calculations are usually more challenging to evaluate. For spheres in the hypersonic
continuum regime, the agreement is typically good [12] but large errors observed for plate plates
(between 50 and 100 %) due to the mismodeling of the side faces of the plate. Also for the sphere,
significant errors are observed in the rarefied flow regime (up to 42 % for PAMPERO and 30 %
for SCARAB) [12] where bridging functions are used to estimate the heat flux.

In [80, 6], the spacecraft-oriented models are tested and compared with high fidelity simulations
for more complex shapes. In the case of a tube, the drag coefficient is off by around 27 %
compared to high fidelity calculations due to elliptical effects at the trailing edges of the front
face and shock-shock interactions in the inner face of the tube. Those effects also induce a
significant error in the heat flux (around 50 %). Similar discrepancies are observed with a hollow
sphere in the hypersonic continuum regime as the Newton modified law is valid for concave
objects. As a consequence, the front face pressure field is entirely off with the Newton method.
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Figure 3.9: Photography of the Atmospheric Reentry Vehicle at ESA ESTEC

Figure 3.10: Representation of the PRE-X (from [12] )

Similar tests were performed on the Atmospheric Reentry Demonstrator (ARD) for which
high fidelity calculations and experimental measurements are available. The ARD is a reentry
capsule represented in Fig. 3.9. The ARD was tested in the continuum regime (altitude 65 km)
at Mach 24. The spacecraft-oriented codes are in good agreement with the experimental and
high fidelity results with a maximum error of 5 % at the stagnation pressure coefficient and less
than 10% for the stagnation point heat flux. These good results come from the simple geometry
and convex shape of the front face of the ARD.

The second full-scale test is the PRE-X represented in Fig. 3.10. In the stagnation point
area and the underneath flat surface, the PAMPERO and FAST are in good agreement with the
CFD calculations. The main differences are observed near the flats fixed at a deflection angle of
15 degrees where the pressures increases and the heat flux reduces due to a flow compression.
As for simple objects, the spacecraft-oriented model performance heavily depends on the local
geometry of the spacecraft. If the object is convex with smooth angles, the results are satisfying.

From the test cases presented significant errors in the aerodynamic and aerothermal models
come from:

• The bridging functions used in the rarefied flow regime (especially for the heat flux);

• The sharp edge objects for which the modified Newton law is not valid;

• The trailing edge elliptic phenomena;

• The treatment of hidden surfaces with Newton method;
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• Application of the Newton law on concave surfaces ;

• Subsonic flow in recirculation zones.

Object modeling

In state-of-the-art spacecraft-oriented model, a mesh with a given mass distribution represents
the spacecraft. While the error in the mass of the object can be made extremely small [11], the
inertia matrix and the center of mass location may be wrong. All the details of the spacecraft
electrical components cannot be modeled accurately. In [11], the battery weight is compensated
by a thicker wall to obtain the right total mass, but the difference in mass distribution may
induce significant differences in the inertia moments and the object attitude motion. Similarly,
the liquids in the tanks are modeled as solids such as sloshing effects are neglected. All these
approximations modify the object attitude motion, trajectory and received heat flux.

Breakup modeling

Although breakup models in spacecraft-oriented software are more advanced than object-oriented
models, they are still subject to mismodeling errors. Regarding low energy breakups, the
use of fully coupled 3D finite element solvers for the thermal and mechanical response of the
object to aerodynamic and thermal load is costly in terms of computational cost and engineer
time. In practice, SCARAB often models breakup solely using a thermal model, by triggering
fragmentation when the joint between two components melts. This approach neglects breakups
entailed by aerodynamic loads. Besides, the criterion is also questionable since the joint may
break before it reaches fusion temperature such that SCARAB may underestimate the breakup
altitude in these cases. Experimental studies show that metals are significantly weakened when
their temperature increases such that they are more likely to break before melting [89, 90]. More
advanced mechanical models could be used as in PAMPERO, but they are costly to use, and as
for lower fidelity models they cannot be compared to experimental results that are extremely
rare and complex to interpret [10]. High energy breakups are usually neglected in space object
reentry simulations. As a consequence, the shape of the fragments and the altitudes at which
they are released is subject to uncertainties.

Material modeling, surface effects

Hypersonic flows are characterized by reacting boundary layers, but this aspect is partially
considered in reentry tools. The molecular recombination of atoms at the surface of the object
is not modeled although it contributes significantly to the convective heat flux. The oxidation
reactions are also only modeled as a contribution to the heat flux, but the alteration of the
surface properties are not taken into account. Numerous studies have shown that the material
properties are heavily modified when the object is oxidized [91, 59, 8, 6]. The emissivity of metal
such as titanium tends to increase when oxidized [59, 6]. The alumina created by oxidation of
aluminum has a fusion temperature around 2300 K whereas aluminum is approximately 800 K.
As a consequence the surface temperature of an aluminum object covered with alumina can reach
1100 K and radiate heat efficiently [8]. Consequently, the survivability of this object increases
compared to models predictions [8]. For titanium, different observations are formulated in [6].
According to the author, the oxide layer contributes to a faster ablation of the material.

For the composite materials, SCARAB features a model for the ablation of composites, but
it requires a large number of ill-calibrated parameters (erosion rate, pyrolysis gas heat capacity)
and the ablative process of composite materials is still not well understood.
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Human risk estimation model

The distribution of human population used in ELECTRA, for instance, is based on the GWP [65]
maps established by NASA and has a limited resolution as it assumes a zero population density
in the ocean neglecting commercial ship roads. This fact may be an issue as specific zones in the
Pacific ocean are targeted for the controlled reentry of space objects as they feature a minimum
on-ground risk according to the GWP maps. Finally, some predictions have to be performed for
reentries in 20 years from now, the extrapolation of current data to future population density is
undoubtedly affected by uncertainties.

Object-oriented model errors

Based on the discussion in section 3.1.8 and the work from [84, 86], the main modeling errors
from object-oriented models are :

• The single breakup altitude: the results from SCARAB have shown that the breakup is not
a single event but that fragments are released sequentially over an altitude range around
95 km for the solar panels and down from 45 to 80 km for the main body [86, 84]. In the
case of a satellite reentry, ref. [86] shows that the fragment release is relatively uniform
except for the solar panels. Hence the assumption that all the object should be released at
once is far from higher fidelity simulations and observations (ARD Jules Verne reentry).

• The fixed breakup altitude: in object-oriented models, the breakup altitude is fixed and
chosen independently of the reentry trajectory. Besides, it seems that the canonical altitude
of 78 km is too high to provide a reliable estimate of the casualty area [84].

• The fragment temperature at breakup: the typical fragment release temperature is usually
set to 300 K for conservative estimates assuming no heat transfer between the parent body
and the child components. As shown in [86], the fragment temperature is certainly much
higher due to internal radiative and conductive heat flux.

• The precomputed list of fragments: it is expected that the shapes of the fragments
depend on the aerodynamic and thermal loads received by the object before fragmentation.
Depending on the reentry conditions, the fragment geometries change.

• The simple shape models: the object-oriented codes use predefined simple shapes with given
motion attitude. When comparing ORSAT and SCARAB on simple shapes, similar results
were found [85] because the aerodynamic and aerothermal models are similar. However, in
a more realistic case where a complete spacecraft with an arbitrary shape is considered,
significant differences between spacecraft-oriented and object-oriented solvers are observed
in terms of impact location [86]. This remark applies to satellites and upper stages. The
influence of the heat flux has not been quantified in [86, 84] but it is reasonable to assume
that the simple shape models also significantly biases the heat flux predictions.

3.5.2 Uncertainties on model parameters and operating conditions

The second source of uncertainties comes from the particular object situation and is independent
of the model errors and uncertainties presented in the previous paragraphs. This second source
of uncertainties concerns the model parameters and operating conditions.
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Atmosphere variations

The turbulent atmosphere features abrupt density changes in high altitude (above 100 km) and
unpredictable winds in low altitudes where the fragments fall at subsonic speed. In the most
advanced atmosphere model used in space object reentry simulators (MSIS-2000), the average
atmosphere characteristics (density pressure temperature) are computed for a given time, position,
solar activity, and Earth geomagnetic activity that may not be known for a given reentry scenario.

Object position and attitude motion

In general, the exact attitude motion and position of a reentering space object is not entirely
known especially for uncontrolled reentries. In the latter case, even the time of reentry is
estimated with uncertainties beyond an orbit. The orbit decay usually takes up to dozens of
years before reentry. Meanwhile, the object position determination typically relies on noisy
on-ground observations [92, 93] and complex long term orbit propagation simulations subject to
uncertainties [25].

For controlled destructive reentries, the uncertainties are usually much lower depending on
the knowledge of the original orbit and the accuracy of the deorbiting maneuver.

Material characteristics

A broad range of material characteristics is used in both spacecraft-oriented and object-oriented
models. The material characteristics are measured experimentally, and therefore their value is
naturally subject to uncertainty. In the case of the fusion temperature, the thermal conductivity,
the thermal dilatation coefficient and the emissivity, the measurement procedure is standard, and
the results are accurate. On the other hand, the CFRP recession rate or the wall catalytic effects
on molecular recombination are much more complicated to reconstruct [94, 95]. The material
structural properties (buckling limit, the transition from elasticity to plasticity) are also rarely
known at extreme temperatures typically observed during a reentry.

Partial knowledge of the spacecraft

In the case of an uncontrolled reentry, the exact material composition, mass and geometry of the
object may be unknown. Uncontrolled reentries concern space objects that have been decaying
for years and therefore, they may have gone through collisions, in-orbit explosions, and in-orbit
breakup that modify the object geometry. Moreover, if the design is protected, the internal
structure is also unknown as well as the material used in the construction. The state of the tanks
is also subject to uncertainties as the quantity of liquid propellant inside may be unknown. This
uncertainty affects the center of mass position and total mass.

3.6 Conclusion
In this chapter, we construct a system of solvers for the reentry using solvers developed by
ArianeGroup and CNES. It features a probabilistic breakup model accounting for the extreme
complexity of the breakups that could not be resolved with the resources and models available.
The system of solvers is implemented in a python framework that offers great modularity and
flexibility.

Compared to the existing models presented in this chapter, the simulator uses object-oriented
type models but includes a more advanced breakup model that offers improved robustness
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compared to models with fixed breakup altitudes. The drawback is that the breakup model
should be coupled with a large number of Monte Carlo runs to be reliable and it would be
expensive without dedicated UP methods.

As any reentry simulation tool, the reentry simulator presented in this chapter suffers from
uncertainties and model errors. We identified the primary sources of uncertainties found in both
object-oriented and spacecraft-oriented models. The uncertainties come from the simplified heat
flux and aerodynamic models, the unknown initial conditions or the atmosphere fluctuations for
instance.

Uncertainty analysis has been performed in the literature, but they are based on simple
sensitivity analysis methods or a limited number of Monte Carlo samples. It is, therefore, crucial
to find efficient ways to include uncertainties to our model and use the probabilistic breakup
model. In the next chapter dedicated methods for propagating uncertainties in directed systems
of solvers are proposed.
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Chapter 4

Uncertainty Propagation Framework
for Systems of Solvers

In the first part of this chapter, we present a traditional mathematical framework used for
Uncertainty Quantification and standard tools associated. In the second part, we propose an
original framework for uncertainty propagation in directed systems of solvers as the one constructed
in Chapter 3. The contributions of this chapter are

• A novel framework to construct surrogate models for a system of solvers using Gaussian
Processes.

• Dedicated design of experiment techniques for systems of solvers including active learning
strategies

The tests run at the end of the chapter highlight the advantage of the approach compared to state
of the art methods.

4.1 Introduction to uncertainty quantification

In this section, we introduce a few general concepts in uncertainty quantification related to
our problem : how to model uncertainty? what is uncertainty propagation and why is it
computationally expensive?

4.1.1 Uncertainty modeling

In space object reentry predictions as for many engineering problems, the Quantities of Interest
QoI are defined as the physical quantities we want to estimate to address an engineering problem.
The QoI are obtained through the evaluation of numerical models that depend on a set of
inputs. In an uncertainty quantification problem, the computation of the QoI can be affected
by uncertainties coming from three different sources: noisy experimental data, unknown model
parameters, and model errors. Model errors come either from the inaccurate resolution of the
equations associated with the model (numerical errors) or the inadequacy of the model with
the physics. In the case of space object reentry, examples of noisy data can be for instance the
space object observations before its reentry. Examples of unknown input parameters are the
atmosphere model parameters such as the solar flux. The model numerical errors have been
assessed in Chapter 3 during the verification step and include mesh approximation errors or time
integration errors. Examples of numerical inadequacies are for instance the use of the Newton

59
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law for subsonic flows as discussed in Chapter 3.

In this work, the uncertainties are modeled as random variables. This approach is classical
for uncertainty quantification problems although it may not necessarily be adapted for all kind
of uncertainties. Uncertainties are canonically classified into two groups [96] : the aleatory
and the epistemic uncertainties. The aleatory uncertainties are naturally modeled as random
variables since they measure the intrinsic variability of a quantity that cannot be reduced or
controlled. In our case, they could be the random variations of the atmosphere density or
the solar flux induced by changing solar activity. Epistemic (or reducible) uncertainties are
related to a lack of knowledge. They arise from assumptions in the models, unknown initial
conditions or uncalibrated model parameters. The frontier between aleatory and epistemic
uncertainties is sometimes fuzzy and subjective [97]. Modeling epistemic uncertainties as random
variables is more controversial. Alternative approaches propose to model epistemic uncertainties
as intervals, fuzzy sets [98] or imprecise probabilities [99, 100]. In this work, we follow a Bayesian
interpretation of probability as a degree of belief. This interpretation proposed by De Finetti is
extensively presented in [101]. Hence in this work, probability distributions are used to model
both aleatory and epistemic uncertainties.

Figure 4.1: Uncertainty propagation framework to derive the QoI distribution from the uncertain
model inputs

We will consider a numerical model M that generates a mapping between the uncertain
variables ξξξ and the QoI q ( see fig.4.1 ). The ξξξ are defined on the probability triplet (Θ,F , ν)
where Θ is the set of outcomes , F is the sigma field associated and ν is the probability measure
induced by the random vector ξξξ. We define the probability density associated with ξξξ, pξ. The
random vector ξξξ is valued in the input space Ω of dimension d. In this work, Ω is a subset of
Rd. The quantity q is valued in R. We denote f : Ω 7→ R the mapping representing M , between
the uncertain inputs ξ and the QoI q. We further assume that f(ξ) has a finite second moment,
hence ∫

Ω
f(ξ)2p(ξ)dξ <∞ (4.1)

and f lives in the L2 Space L2(Θ,F , ν) equipped with the inner product generated by the
expectation operator : ∫

Ω
f1(ξ)f2(ξ)p(ξ)dξ. (4.2)
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The objectives of Uncertainty Propagation (UP) are to derive the distribution of q through
its moments, to compute probabilities associated with q (for instance in reliability problems)
and to perform sensitivity analysis.

4.1.2 Uncertainty propagation methods

There are two broad classes of UP methods: the intrusive methods and the non-intrusive ones.
The non-intrusive methods consider the model M as a black box and aim at propagating the
input uncertainties without any modification of the numerical methods implemented in M .
Consequently, non-intrusive methods are flexible and can be used on any black box type model.
On the contrary, intrusive methods require a reformulation of the model equations. Non-intrusive
methods are generally selected in industrial applications for their flexibility and the possibility
to run the multiple calls of M in parallel. The main drawback of most non-intrusive methods
is that the number of calls to M scales exponentially with the number of independent random
inputs [102]. If M is an expensive industrial solver, this undesirable property referred to as the
curse of dimensionality [103] may become problematic. Most works realized in non-intrusive UP
aims at mitigating the curse of dimensionality.

The first class of non-intrusive methods to propagate uncertainties are sampling methods.
The sampling approaches are straightforward to implement, robust to non-smooth models and
their convergence rate is usually independent of the input dimension. The major drawback of
standard Monte Carlo approaches is that the estimator error typically scales as 1/√neval where
neval is the number of solver evaluations. In industrial cases, where the resolution of M may be
costly, higher convergence rates are needed. Improved sampling strategies such as Quasi Monte
Carlo QMC [104] and Latin Hypercube Sampling LHS [105] have been developed to accelerate the
convergence rate. The general idea behind improved sampling methods is to improve the coverage
of the input space and minimize the discrepancy. Asymptotically, LHS achieves the same error
convergence rate as MC but with a smaller constant for additive problems [106] while QMC er-
ror converges with an improved rate of log(neval)d/neval [102] depending on the input dimension d.

The second class of methods is the spectral approaches. Although spectral methods can
be intrusive or non-intrusive, in this review, we focus on non-intrusive methods. A thorough
review of intrusive methods can be found in [102]. A popular non-intrusive spectral approach is
the Polynomial Chaos Expansion PCE for independent inputs. This approach aims at approxi-
mating the QoI with a (finite) expansion of a polynomial basis orthogonal with respect to the
input probability measure [102, 107]. The idea was first introduced by [108] for Gaussian input
distributions and extended to a large number of common probability laws by [107] such that
generalized PCE can be constructed on arbitrary independent input distributions using the Askey
scheme [107] or numerical methods such Gram-Schmidt algorithm or the Stieltjes procedure
[109]. A review of methods to compute the coefficients of this expansion can be found in [102].
In particular collocation methods, non-intrusive spectral projections [110, 111], and regression
methods [112] have been proposed. The PCE methods perform well for smooth problems and
present a spectral error convergence rate with respect to the polynomial degree p in the L2 norm
[113]. The convergence rate depends strongly on the model smoothness, and for non-smooth
problems ( discontinuities), Gibbs phenomenon may appear [113]. As for most non-intrusive
methods, the PCE suffer from the curse of dimensionality in the estimation of the coefficients
and the number of coefficients to consider.

The third class of non-intrusive uncertainty propagation approaches are based on surrogate
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models. As sampling methods are too costly to be used with expensive physical models, one
approach is first to build a cheap approximation (also called surrogate model or metamodel) of
the model M represented by the mapping f and then to use standard Monte Carlo estimators
to derive the statistics of interest of q. Hence, the objective is to build a mapping f̂ : Ω 7→ R
such that f̂ is a good approximation of f . Qualifying the performance of f̂ as a surrogate model
depends on the statistic of q one wants to reconstruct. One classical approach is to look at the
distance between f̂ and f in the L2 norm induced by the inner product in Eq. (4.2). A good
surrogate model should be constructed upon on a limited number of solver evaluations called
training points and should accurately emulate the model mapping f . The generalized regressions
are standard surrogate modeling constructions that minimize the squared error between a linear
combination of a given functional basis and f at the training points [114]. Examples of functional
bases are polynomials or radial basis functions [114]. For high dimensional cases, sparse methods
such as lasso or ridge regression allow reducing the number of coefficients in the regression using
regularization [114]. Sparse regression methods have been successfully applied to uncertainty
propagation in [112, 115]. Alternatively, Neural Networks [116] are also gaining interest from
the UQ community [117, 118]. Non-parametric approaches such as Kriging [119] also called
Gaussian Processes [120] have also become popular for uncertainty quantification problems
[121, 122, 123] and the contributions on this work rely on this type of constructions. A more
in-depth presentation of Gaussian Processes can be found in paragraph 4.1.4. The PCE methods
mentioned in the previous paragraph can also be considered as surrogate model approaches as
the constructed polynomial is an approximation of the mapping f . As for most non-intrusive
methods, the performance of the surrogate model is highly dependant on the input dimensionality.
For this reason dimensionality reduction methods have been proposed in [124, 125, 126].

The performance of the surrogate model is highly dependent on the quality of the training
set. The design of experiments is a complex task with intensive ongoing research aiming at
selecting the optimal training samples to provide the best approximation of f . In paragraph
4.1.5, we review classical approaches to obtain good designs of experiments.

4.1.3 Sensitivity analysis

Sensitivity analysis SA aims at estimating the influence of the uncertain input parameters on the
QoI. It can be useful to identify dominating uncertainties and discard non influential uncertainties.
In [127], it is defined as "The study of how uncertainty in the output of a model (numerical or
otherwise) can be apportioned to different sources of uncertainty in the model input". There are
two categories of SA : local SA and global SA. Local SA studies local variations of the model
output q with respect to the model inputs at fixed input locations. A classical local sensitivity
index is for instance the derivative of the model when defined. This approach however is often ill
adapted for UQ problems as the input quantities are not fixed but uncertain [127].
Global SA, on the other hand, quantifies the global influence of an input over its distribution
and the possible interactions between inputs. The screening approaches are classical engineering
methods for global SA. They study the variation of the output with respect to a discretization
of the input space. This approach is for instance used in the uncertainty study presented in [38].
The advantage of screening techniques is their low computational cost even with large number of
uncertain parameters. The main drawback is that they only provide qualitative results and often
neglect interactions. A review of classical sensitivity analysis methods is presented in [128]. In
this work, we use the Sobol indices [129, 127] based on the variance decomposition of the output
variance into each input contribution. They are defined as :

Si = V [E [q | ξi]]
V [q] (4.3)
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for the first order indices. The first order Sobol indices Vi accounts for the contribution of input
ξi to the variance of the output neglecting its interactions with other variables. The first order
Sobol indices do not account for the possible input interactions leading to extreme values of q
for instance. To account for interactions, second order sensitivity indices are defined as :

Si,j = V [E [q | ξi, ξj ]]− V [E [q | ξi]]− V [E [q | ξj ]]
V [q] . (4.4)

Similarly, higher order interaction indices can be constructed. They quantify the contribution to
variance of the interactions between groups of inputs. The Sobol indices are closely related to
the ANOVA variance decomposition of a function in the case of independent input distributions
[129]. In fact, we have that

d∑
i=1

∑
i1<···<is

Si1,...,is = 1. (4.5)

Computing all the sensitivity indices can be cumbersome. Instead the total sensitivity indices
defined as :

ST,i = E [V [q | ξ∼i]]
V [q] (4.6)

can be computed and they represent the contributions of ξi to the variance of the output including
the interaction with other variables. The vector ξ∼i corresponds to the vector of all entries of ξ
except ξi. It holds that Si ≤ ST,i. Compared to the first order indices, the total indices account
for the input influence including non additive effects.

The Sobol indices are popular tools in UQ problems, but they are usually expensive to
compute. If a Polynomial Chaos model is constructed can be derived they from the polynomial
coefficients [102]. They can also be evaluated with dedicated sampling methods [130, 131, 132].

The Sobol indices also suffer from several interpretation limitations. First, their interpretation
as sensitivity indices is only valid for independent input distributions. For dependent input
distributions, dedicated indices have been proposed in [133, 134]. Second, they are well suited
for univariate output models and do not generalize straightforwardly to multivariate cases [135].
Finally, they only depend on the analysis of variance, which is not a thorough measure of
uncertainty, as illustrated in [136, 137]. The Sobol indices measure the contribution of one input
(or group of inputs) to the deviation of q around its mean, and they are ill-suited when other
statistics of q (low probability, quantiles) are targeted.

Alternative indices have been proposed in the literature have been proposed using dissimilarity
measures between q and q|Xi that generalize the Sobol indices using moment independent measure
that lead more complete sensitivity assessments [138, 139, 140]. In [140], the computation of the
indices depends on the numerical evaluation of the conditional distribution ( for instance, using
kernel density estimation ) which is a challenging task in high dimensions. Alternatively, [141]
proposes multivariate sensitivity indices based on the CDF of q and present efficient estimators
associated. In [142], the authors also show that the sensitivity analysis should depend on the
quantity of interest : using Sobol indices when the QoI is actually a probability or a quantile of
Y is not optimal. Instead, [142] define contrast functions to construct better suited sensitivity
indices.

4.1.4 Gaussian process models

Gaussian Processes can be used as surrogate models. A Gaussian Process is a collection of
random variables such as any subset have a joint Gaussian distribution [120]. As a consequence, a
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GP is completely defined by its mean and covariance functions. For a stochastic process denoted
G indexed by xxx ∈ Rn the mean and covariance are defined as :

µ(xxx) = E [G(xxx)] (4.7)

and
k(xxx,xxx′) = E

[
(G(xxx)− µ(xxx))

(
G(xxx′)− µ(xxx′)

)]
(4.8)

hence, following the notation in [120], we denote the GP distribution GP(µ(xxx), k(xxx,xxx′)).

Regression with GPs

In machine learning and UQ, GP models are used as probabilistic approximations of generic
functions f : Ω ⊆ Rn 7→ Rm. Hence in this model, f is an unknown function viewed as a Gaussian
process G we seek to learn. For simplicity, we restrict the presentation to the case of scalar
functions f , that is, m = 1. Let X = {(xxxi, f(xxxi)), i = 1 . . . p} be the training set, we wish to
compute the distribution G(xxx∗)|G(xxx1) = f(xxx1) . . .G(xxxp) = f(xxxp) . In this work we assume that
the Gaussian process mean function is zero. Since the joint distribution (G(xxx∗),G(xxx1), . . .G(xxxp))
is Gaussian distributed with mean 0 and covariance(

k(xxx∗,xxx∗) kTX
kX KX

)
(4.9)

where kX (xxx) = (k(xxx∗,xxx1) · · · k(xxx∗,xxxp))T and KX i,j = k(xxxi,xxxj), then the conditional distribution
G(xxx∗)|f(xxx1) . . . f(xxxp) is Gaussian distributed with mean

µX (xxx∗) = kX (xxx∗)K−1
X fX , (4.10)

with fX = [f(xxx1) . . . f(xxxp)] and variance

σ2
X (xxx∗) = k(xxx∗,xxx∗)− kX (xxx∗)K−1

X kX (xxx∗)T . (4.11)

The posterior mean in Eq.(4.10) is the best prediction (in the mean squared sense) of f(xxx∗) based
on the observations we have. In fact, for the noise free construction above, we have µX (xxxp) = yp
for all xxxp ∈ X , hence the GP interpolates the training points. In some cases, the observations
may be noisy and instead of observing directly f(xxxi) we only have access to yi = f(xxxi) + ε with
ε being a zero mean Gaussian random variable with variance σ. In this case, the distribution
(G(xxx∗)|G(xxx1) = y1 − ε, . . .G(xxxp) = y1 − ε) is given by :

µX (xxx∗) = kX (xxx∗)(K + σ2I)−1
X yX , (4.12)

σ2
X (xxx∗) = k(xxx∗,xxx∗)− kX (xxx∗)(K + σ2I)−1

X kX (xxx∗)T , (4.13)

with yX = [y1 . . . yp]. Contrary to the noise free case, the noisy case equation (4.12) show that
the mean GP does not interpolate the observations.
In the previous equations, the mean function, also called prior mean is set to 0. In some studies
[143, 123], the mean function is defined as a regression over a set of basis functions:

µ(xxx) = h(xxx)Tβ (4.14)

where h(xxx) is a vector of basis functions (for instance polynomials) and β a vector of coefficients
that are inferred from the data. Details on how to incorporate basis functions to the GP prior
mean are given in [120]. In this work only zero prior mean functions are considered.



4.1. INTRODUCTION TO UNCERTAINTY QUANTIFICATION 65

Classification with GPs

In the previous paragraph, GP based surrogate models are constructed for continuous functions.
In some case, however, the output of the model M to approximate can be discrete. For instance,
in the simulator constructed in Chapter 3, the survivability solver returns a discrete output :
the fragment burnt up in the atmosphere or it survived. Using a continuous regression model is
clearly inappropriate to learn a surrogate model of the survivability solver. Instead, a classifier
is better suited. The machine learning community developed a vast number of techniques for
classification and the reader is referred to the reference books [116, 144] for a detailed review of
such techniques. In this paragraph we detail the use of Gaussian processes for binary classification.
One advantage of GPs in classification is the probabilistic interpretation of the prediction and
robustness of the predictions. In this section, we wish to learn a function C : Ω ⊂ Rn 7→ {0, 1}.

The GP classifier defines a membership probability π on Ω as the predicted probability that
C returns 1. The GP classifier membership probability is the composition of a sigmoid function
σ and a latent GP denoted l. The sigmoid function is a strictly increasing function that takes
the output of l as input and returns a value between 0 and 1. Classical sigmoid functions are the
probit function that is the cumulative distribution function (CDF) of a standard Gaussian and
the logistic function defined as :

σlog(z) = 1
1 + exp(−z) (4.15)

In this work, the probit function is preferred as we will see that it yields analytical expressions
for the predicted probability.

The idea behind this construction, is to turn a GP prediction valued in R into a probability
between 0 and 1. Hence the sigmoid σ needs to respect the point symmetry σ(x) = 1− σ(−x).
This approach carries ties with the Support Vector Machine (SVM) classifier coupled with the
probabilistic interpretation presented in [145]. Hence, a GP classifier defines a membership
probability π as :

π(x) = σ(l(xxx)). (4.16)
As l, π is a stochastic process but it is not Gaussian distributed due to the non linearity of σ.
The average membership probability is defined as :

π̄(x) =
∫
l
σ(l(xxx))p(l(xxx))dl. (4.17)

As for the regression model, we consider the set of observations X = (xxxi). Conditioned on π(xxxi),
an observation C(xxxi) is a realization of a Bernoulli trial with parameter π(xxxi).

We wish to compute the posterior distribution π̄X (xxx∗) defined as :

π̄X (xxx∗) =
∫
l∗
σ(l∗)p(l∗|X )dl∗. (4.18)

Where l∗|X = l(xxx∗)|X is a latent GP prediction at test location l∗. It is evaluated using :

p(l∗|X ) =
∫
p(l∗|X , l)p(l|X )dl, (4.19)

with l = (l(xxx1), . . . l(xxxm)). In the regression case, the predictive distribution l∗|X was obtained
analytically by conditioning over a series of Gaussian observations. In the classification case, it
is not the case since the observations are not Gaussian distributed. To see that, we apply Bayes
rule to get :

p(l|X ) =
∏m
i p(C(xxxi)|l(xxxi))p(l)

p(X ) , (4.20)
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assuming independent observations. While p(l(xxxi)) is Gaussian distributed, p(C(xxxi)|l(xxxi)) is a
Bernoulli. As a result, the estimation of the posterior of the Gaussian process p(l|X ) is not
analytically tractable. One approach to numerically evaluate (4.20) is to use Monte Carlo Markov
Chain MCMC. Alternatively, approximate methods such as the Laplace approximation [146] or
expectation propagation algorithms [147] are less expensive. Both the Laplace approximation
and expectation propagation rely on an approximation of the posterior defined in Eq. (4.20).
The Laplace approximation uses a Gaussian approximation of p(l|X ) with mean the quantity
arg maxl p(l|X ) and covariance, the Hessian of the negative log posterior (see [120] for implemen-
tation details). The expectation propagation approach is a general tool for deriving posterior
distributions that can be applied to approximate p(l|X ) [120].

In this work, the expectation propagation method implemented in [148] is used. Once the
posterior of the GP l is computed, the other difficulty is to estimate the integral in eq. (4.19). If
the probit function is chosen for σ the integral in eq. (4.19) can be solved analytically [120].

Once the posterior distribution is computed, the prediction (0 or 1) is based on the maximum
a posteriori. In particular, if π̄X (xxx∗) > 0.5 then we predict 1 and 0 otherwise.

Covariance functions

The covariance function plays a significant role in the prediction as it contains the prior knowledge
about the relationship between input points. A basic intuition is that input points that are
close from each other should yield similar results and this information should be encoded in
the covariance function. This notion is closely related to the function smoothness for instance.
In other words, the covariance function characterizes the amount of information that can be
extracted from previous observations to make predictions at unseen locations. The choice of
covariance function is hence crucial to encode the right a priori information concerning the
function we seek to learn in order to make the learning process more efficient. In this paragraph,
we review the main properties of kernels and standard kernels used in the literature.

A covariance function or kernel is a mapping from Ω × Ω to R, (xxx,xxx′) 7→ k(xxx,xxx′) that is
symmetric (k(xxx,xxx′) = k(xxx′,xxx)). In order to be a valid kernel, k(., .) must be positive semi-definite
[149]. Most kernels used for constructing surrogate models are stationary, therefore, they only
depend on the difference xxx− xxx′. When the kernel only depends on the distance between xxx and
xxx′ it is said to be isotropic.

As mentioned previously, the smoothness of the GP prediction is encoded in the covariance
function. For instance, a GP G with covariance function k(., .) is continuous ( in the mean square
sense) at location xxx if and only if k(., .) is continuous at (xxx,xxx). More generally, the derivability
of f is given by the derivability of the kernel. This property can guide in the choice of the right
kernel based on prior knowledge about the function smoothness.

The square exponential (SE) kernel for instance defined as

kSE(xxx,xxx′) = σc exp
(
−

d∑
i

(x′i − xi)2

l2i

)
(4.21)

is infinitely smooth and so is the GP associated. For time dependent processes, this property
is not necessarily a good thing [150] but for surrogate modelling, it is a classical choice. The
parameters σc and lll = (l1 . . . ln) are usually a priori unknown positive parameters, estimated
using the training data.
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Alternatively, the exponential (or Ornstein Uhlenbeck) kernel:

kE(xxx,xxx′) = σc exp
(
−

d∑
i

|x′i − xi|
li

)
(4.22)

is continuous but not derivable.
For intermediately smooth function, Stein reccommands using the Materń kernel [150] defined

as

k(xxx,xxx′) = σc
21−ν

Γ(ν)

d∏
i

(√
2ν |x

′
i − xi|
li

)ν
Kν

(√
2ν |x

′
i − xi|
li

)
(4.23)

with ν,l1, . . . , ln and σc positive parameters, and Kν is the modified Bessel function [120]. The
regularity of Materń kernels is related to the value of ν. The GP f is k times differentiable if and
only if ν > k. Usually half integer values of ν are selected since the kernel becomes the product of
a polynomial and an exponential. Note that the exponential kernel and the SE kernel are special
cases of the Matern kernel for ν = 1/2 and ν −→ ∞ The smoothness of the GP has a strong
influence on the samples. As an illustration, sample paths from exponential GP (continuous),
Matern kernel GPs with ν = 3/2 (once derivable) and SE kernel GP are represented on fig. 4.2,

Figure 4.2: Sample paths from GP constructed with three different kernels

All the kernels presented so far are defined with the hyper-parameters σc called the process
variance and the length scales lll = (l1 . . . ln). The values of the process variance and length scales
significantly change the behaviour of the GP. The length scales characterize the variability of the
GP with respect to the inputs. A short length scale in one input dimension implies that GP
is expected to have high variability in that direction. Furthermore, the amount of information
available from the neighbouring training points decreases with the length scale. When all the
length scales are equal, the kernel is isotropic. The parameter σc characterizes the amplitude of
the variations of a GP. In the case of noisy observations, a third parameter σ called observation
noise, quantifies our degree of confidence in the observations. While the regularity of the function
can be decided a priori based on prior knowledge of the function to approximate, the values of
σc, σ and lll are usually fitted to the data. In this work, the hyper parameters σc, σ and lll are
fitted using the marginal likelihood defined as :

log p(yyy|X ) = 1
2y
yy(K + σ2I)−1yyy − 1

2 log(det(K + σ2I)) + n

2 log(2π). (4.24)



68 CHAPTER 4. UNCERTAINTY PROPAGATION FRAMEWORK FOR SOS

where yyy = (f(x1) + ε1, . . . , f(xxxp) + εp). The dependency of log p(yyy|X ) in lll and σc comes from
K. In this work we choose the σ∗c , σ∗ and lll∗ that maximize log p(yyy|X ). The optimization is
performed using modified Newton methods and multiple restarts as the likelihood derivatives
can be computed analytically (see [120] for details).

Stationary kernels are standard choices in UQ, but non-stationary kernels can also be used.
Examples of non-stationary kernels are the polynomial kernels, Gibbs’ kernel or periodic kernels
(see [120] for details). Moreover, products and sums of valid covariance functions are valid
covariance functions. For many industrial applications, the predictive ability of the surrogate
model can be improved with the right choice of kernel. For additive functions of the form:

f(xxx) = c+
d∑
i=1

fi(xi) (4.25)

The selected kernel should also be additive such that the stochastic process associated is a linear
combination of independent one-dimensional Gaussian Processes. As suggested in [151], in this
work, we often use a sum of one-dimensional kernels for the additive part of the model plus a
full kernel to permit interactions between variables.

Eigenfunction decomposition of GPs

A Bayesian generalized linear regression model with Gaussian weights is a Gaussian Process by
construction but it turns out that GP regression can be interpreted as a Bayesian linear regression
and a possible regression basis are the kernel eigenfunctions [120]. A function φ : Ω 7→ R that
obeys the Fredholm integral equation :

λφ(xxx) =
∫

Ω
k(xxx′,xxx)φ(xxx′)dν(xxx) (4.26)

is an eigenfunction of k(., .) associated with the eigenvalue λ. In general there are infinitely many
eigenfunctions, otherwise the kernel is said to be degenerate. The eigenfunctions and eigenvalues
are labelled such that λ1 ≥ λ2 . . . . The Karhunen-Loéve expansion KLE is a series expansion
of a stochastic process into the eigenfunctions and eigenvalues of the kernel. The expansion is
exact such that for a GP G(xxx) with kernel function k(xxx′,xxx) we have :

G(xxx) = µ(xxx) +
∞∑
i=1

√
λiφi(xxx)ζi (4.27)

where (ζi)i>0 is a set of independent Gaussian variables with zero mean and unitary variance
and µ(xxx) the GP mean function. Note that the KLE is also defined for arbitrary second-order
stochastic processes but the distribution of the (ζi)i>0 is not necessarily Gaussian and independent.
The KLE can be truncated to approximate G with a finite sum of m terms:

G(xxx) ' µ(xxx) +
m∑
i=1

√
λiφi(xxx)ζi (4.28)

The truncated KLE is optimal with respect to the integrated mean square error and hence is
often used to represent a GP with only a limited number of parameters. Several methods for
computing the KLE of a stochastic process exist and are discussed in the review paper [152]
or the reference book [102]. A classical method used in this work consists in estimating the
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eigenfunctions and eigenvalues by approximating the integral in Eq. (4.26) with a quadrature
rule or Monte Carlo estimation [152]:

λiφi(xxx) ' 1
M

M∑
j=1

φi(xxxj)k(xxxj ,xxx) (4.29)

where (xxxj)1≤j≤M are Monte Carlo samples. Evaluating Eq. (4.29) at xxx = xxxj , Eq. (4.29) becomes
an eigenvalue problem

Kuuui = λ̃iuuui (4.30)

where Kl,k = k(xxxl,xxxk) and uuui =
√
M(φi(xxx1), . . . , φi(xxxM ))T and λ̃i = Mλi. Once Eq. (4.30) is

solved for uuui and λ̃i, λi and the (φi(xxxj))1≤j≤M can be derived. The φi can then be interpolated
between the (φi(xxxj))1≤j≤M using Nystrom method for instance [152].

Relationship with Kriging

Gaussian processes have been used in the geostatistics field for over half a century (see [153]) in
a non parametric regression method called Kriging (named after the pionner work of D. Krige
[154]). The Kriging main idea is to approximate the mapping f with a GP and a regression term
:

F (xxx) =
m∑
i

βihj(xxx) + Z(xxx) (4.31)

where (hj) are regression functions, (βj) are the weights associated and Z(xxx) a zero mean GP.
The objective is to build the best unbiased linear predictor of f based on the training set X .
The predictor is constructed by imposing the unbiasedness condition while minimizing the mean
square prediction error (see [119, 150] for detailed derivation). The Kriging predictor yields the
same results as the GP predictor we presented earlier, but the construction is different. Kriging
approaches have then been adapted to UP problems using sparse PCE [112, 123] or nested
polynomial [155] as regression functions.

4.1.5 Design of experiments

The performance of the GP surrogate model is closely related to the quality of the training set
X . In this section, we develop two classes of designs of experiments. The first class concerns
model-free designs where no a priori information concerning the function to approximate is
known. The second class includes active learning techniques also called model-based designs.

Model-free design of experiments

The space filling designs are model-free approaches that aim at optimizing the coverage of the
input space Ω ⊂ Rn with a finite set of points of Ω denoted X = (xxx1, . . . ,xxxn). A complete review
of space filling designs can be found in [156, 13], in this paragraph we introduce a limited number
of strategies. Most space filling designs are constructed in bounded spaces such as [0, 1]n, and in
this paragraph, unless stated otherwise Ω = [0, 1]n.

We define di,j(X ) = ‖xxxi − xxxj‖ where xxxj ,xxxi are elements of X . The maximin design criterion
is a DoE strategy that attempts to spread out the elements of X as much as possible. We define

QMm(X ) = min
i 6=j

di,j(X ). (4.32)
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A maximin optimal training set X ∗ maximizes the quantity QMm(X ∗). See on fig. 4.3 for an
illustration in the unit square. While the maximin design aims at maximizing the distance
between training points, the minimax design criterion aims at minimizing the distance between
any xxx in Ω and its closest point in X . We define :

QmM (X ) = max
xxx∈Ω

min
xxxi∈X

‖xxx− xxxi‖ (4.33)

A minimax design X ∗ minimizes the quantity QmM (X ∗). An example of minimax design is
given in fig. 4.3. The maximization of QMm and the minimization of QmM are not straightfor-
ward. Algorithms and numerical methods for implementing minimax and maximin methods
are presented in [156]. The maximin and minimax method main drawback is that they offer
no guaranty that projections on subspaces of Ω conserve the same property of large distance
between training points and optimal space coverage. To remedy this problem, Latin Hypercube
Sampling LHS can be used. Initially introduced by [157], LHS was initially designed for optimized
sampling but is now widely used in the design of experiments as its projection in one-dimensional
subspaces yields the optimal maximin design. For a given sample size, there a finite number
of possible LHS designs. This property led to interesting works trying to select the optimal
design for a given discrepancy criterion [158] or space filling design [159]. Note only the one
dimensional projections of the LHS are optimal space filling designs but carry no guaranty for
higher dimensional subspaces. In [160], orthogonal arrays based LHS are introduced to improve
the properties of space filling designs in higher subspaces.

Figure 4.3: Maximin design (left) and Minimax design (right) taken from [13]

The designs proposed earlier are well suited for hypercubes of Rd with finite support distri-
butions but their extension to infinite spaces such as Rd is not straightforward, especially when
the input distributions are not independent. In more complex cases where the distribution of
ξ is not defined analytically ( for instance in Data-driven uncertainty propagation), clustering
based approaches are effective approaches. They propose a space-filling criterion based on the
minimization of the distortion :

D(X ) =
∫

Ω
min
xxxi∈X

‖xxx− xxxi‖ pX(xxx)dxxx. (4.34)

In practice, the integral is evaluated with MC samples. This criterion is proposed by [161, 162, 163]
under the name of principal points and Fast Flexible space Filling design (FFF). It carries analogy
with vector quantization [164] and k-means clustering [116] that also aim at minimizing the
same distortion. Note the difference with the minimax criterion in eq. (4.33) that minimizes
the maximum of minxxxi∈X ‖xxx− xxxi‖ while FFF minimizes the average of minxxxi∈X ‖xxx− xxxi‖. In a
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sense, the minimax criterion is a worst case scenario criterion while FFF is an averaged criterion.
The main advantages of clustering based designs are that they can be used with dependent data
generated distributions with convex support. Finding the minimum of D(X ) is NP hard but
efficient heuristic approaches can be used to find a local minimum of the distortion. The most
classical ones are Lloyd’s algorithm [165] and Kohonen’s algorithm [166].

Active learning for regression problems

The design of experiment approaches presented in the previous paragraph are model free. They
make no assumptions regarding the structure of f . In this section, we present some classical
model-based design of experiment methods. Such approaches are referred to in the literature as
Active Learning AL or adaptive sampling. A natural way to include model information in the
construction of DoE is to rely on the GP framework presented earlier. Function characteristics
(smoothness, length scale, additivity ) can be encoded in the kernel or learned from previous
observations and used to construct training sample sets. We use the notation from the previous
paragraphs where G is a GP and X is the training set associated. The posterior distribution
is given by µX (xxx) from Eq. (4.10) and σX (xxx) from Eq. (4.11) at test location xxx ∈ Ω. Aside
from uncertainty propagation, active learning strategies have been developed in surrogate model
based optimization [167], reliability problems [168] although in this paragraph, we focus on AL
strategies for UP. An interesting review on AL methods can be found in [169].

The large set of AL methods for UP aims at minimizing L2 error defined as :

E =
(∫

Ω
(f(xxx)− µX (xxx))2 dxxx

)1/2
(4.35)

where f is the model and µX (xxx) the mean posterior of G. As f is unknown, the L2 error cannot
be evaluated directly. Instead, the predictive variance σ2(xxx) of the GP is used as a surrogate of
(f(xxx)− µX (xxx))2. Using the predictive variance as an estimate of the L2 error is the backbone
of most active learning strategies. In [170, 120], this approach is justified when computing the
average L2 error defined as

Eg(xxx) = E
[
(f(xxx)− µX (xxx)))2

]
. (4.36)

The average is computed over the unknown model f we seek to learn. In [170, 120], the
distribution of f is given by the GP prior distribution such that [120]

Eg(xxx) = σ2
X (xxx). (4.37)

In the rest of this presentation, we take for granted that the predictive variance is a reasonable
estimate of the L2 error. We introduce four classical AL criteria. The Maximum Mean Square
Predictive Error MMSPE, the Integrated Mean Square Predictive Error IMSPE based on reducing
the predictive mean square error and two other criteria based on information theory quantities,
namely the entropy and the mutual information.

The MMSPE criterion is a minimax approach defined as [171] :

QMMSPE(X ) = max
x∈Ω

σX (xxx) (4.38)

where the optimal training set X ∗ is such that :

X ∗ = arg min
X

QMMSPE(X ) (4.39)
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Finding the optimal training sample set solving Eq. 4.39 is a formidable task. It involves a
d× p-dimensional optimization with numerous local minima. Considering a finite set of potential
candidates can significantly reduce the computational burden. Numerical methods based on a
quasi-Newton optimization, exchange algorithms, and simulated annealing have been proposed
in[172, 173, 174, 175]. A second challenge raised by the resolution of Eq. (4.39) is related to the
kernel properties. The optimal training set depends on the kernel structure and hyper-parameters
that are usually estimated a posteriori, from the data. On the way to alleviate those difficulties
is to use sequential heuristics to obtain a suboptimal solution of (4.39). In [176], the author
proposes a sequential strategy based on the maximum entropy reduction. The sequence of
training samples is generated as follow. Define X p = {xxx1, . . . ,xxxp} the next training point xp+1 is
solution of

max
xxx∈Ω

σX p(xxx) (4.40)

Compared to (4.39), the optimization problem in Eq. (4.40) is only d-dimensional. Overall, the
procedure requires the resolution of p optimizations in d dimensions. Moreover, for practical
applications, the X is usually initialized with a model-free criterion (for instance LHS) and
is subsequently enriched with (4.40). One advantage of the method is that the kernel hyper-
parameters can be learned at each training point addition.

The MMSPE criterion in the Gaussian case is also called D-optimal and is equivalent to
entropy reduction approaches. Let consider an arbitrary discretization of Ω denoted V. The
differential entropy at unobserved locations ( V \ X ) conditioned on X is defined as [177] :

H (G(V \ X )|G(X )) =
∫
p (G(V \ X )|G(X )) log p (G(V \ X )|G(X )) dG(V \ X )dG(X ) (4.41)

where G(V \ X ) is the GP G evaluated at V \ X and G(X ) is the GP G evaluated at X .
Minimizing this quantity implies minimizing the uncertainty at unseen locations V \ X given
the seen locations. Since H (G(V \ X )|G(X )) = H (G(V))−H (G(X )), we see that minimizing
H (G(V \ X )|G(X )) is equivalent to maximizing H(G(X )). As for the MMSPE criterion, finding
arg maxX H(G(X )) is extremely challenging and sequential heuristics are usually preferred. For
a given X p = {xxx1, . . . ,xxxp} we define :

xxxp+1 = arg max
x∈V

H (G(xxx)|G(X p)) (4.42)

and since G is a GP, H (G(xxx)|G(X p)) = 1
2 log (2πeσpX (xxx)). Hence the optimization problems in

(4.40) and (4.42) are equivalent. The MMSPE criterion is relatively inexpensive to run in its
sequential form, but it tends to perform well only with low input dimension problems. Several
studies assert that the MMSPE tends to add training points on the boundaries of the domain to
spread out the training points as much as possible [177, 178, 179]. This property is amplified in
high dimensions such that the training points are located at the corners of Ω. This property
is detrimental for the GP performance as the training points near the domain boundary tend
to be less informative for unobserved locations [177]. This phenomenon already mentioned in
[177, 179, 180] was also observed in preliminary tests performed for this work.

In [171], an alternative criterion is proposed based on the Integrated Mean Square Predictive
Error (IMSPE). Instead of minimizing the maximum predictive error, the IMSPE active learner
aims at minimizing

QIMSPE(X ) =
∫

Ω
σX (xxx)dxxx (4.43)

such that the optimal training set for the IMSPE criterion is

X ∗ = arg min
X

QIMSPE(X ) (4.44)
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As for the MMSPE criterion, solving (4.44) is a challenging task and classical approaches consist
in finding the optimal X in a finite set of candidates. Several methods based on quadrature
integration of the truncated kernel [181] or quasi-Newton methods [178] have been proposed.
As for the MMSPE, a classical approach is to consider a sequential resolution of (4.44). The
sequential version of IMSPE is introduced in [182]. The general idea is to sequentially enrich the
training set with a sample that induces the largest integrated variance reduction. At iteration p,
the training set X p is to be enriched with the sample xp+1 solution of the optimization problem∫

Ω
σX p(xxx)− σX p∪{xxxp+1}(xxx)dxxx (4.45)

By construction σX p(xxx)− σX p∪{xxxp+1} is always positive and the value of f(xxxp+1) is not necessary
to compute σX p∪{xxxp+1}. Hence, the model does not have to be evaluated to solve this optimization
problem. In practice, the integral is approximated by MC sampling. A priori, evaluating Eq.
(4.45) scales as (O)(p3nMC) where nMC is the number of MC sample to evaluate the integral.
This computational cost can be significantly reduced to (O)(p3 + p2nMC) (see [183]). Numerical
experiment show that IMSPE based training sets do not select training points at the boundaries
of the domain and hence perform better [177, 180] than MMSPE. This improvement comes
with an increased computational cost when solving (4.45) instead of (4.40). An alternative
method to IMSPE based on Mutual Information (MI) have also been proposed in [177, 180].
This criterion is based on the mutual information between predictions at unobserved locations
and the observation :

I (G(V \ X ),G(X )) = H (G(V \ X ))−H (G(V \ X )|G(X )) (4.46)

Intuitively, the mutual information I quantifies the entropy reduction at the unobserved location
( hence at the location where one wants to make predictions) induced by the training set X .
Contrary to the entropy criterion that maximizes the entropy of the training set regardless of the
unobserved location predictions, the MI criterion seeks to maximize the amount of information
brought by X to unobserved locations. The optimal X ∗ for the MI criterion maximizes the
quantity I (G(V \ X ),G(X )). As always, maximizing I (G(V \ X ),G(X )) with respect to X is a
formidable task. Sequential suboptimal algorithms are proposed in [177] and improved in [180].
They yield equivalent or slightly better results than IMSPE and MMSPE in the experiments
performed by Krause et al. and Beck et al. [177, 180] but with a lower computational load.

4.1.5.1 Active learning for classification problems

Active learning classification problems have been extensively studied by the machine learning
community for text classification, user preference etc. A large panel of those active learning
strategies are presented in details in [144]. In this section, we only review a small subset of
classification methods that are of interest for our uncertainty propagation problem. Two main
classes of active learners can be identified : the likelihood criteria and the uncertainty criteria.
The uncertainty criteria interpret the classifier prediction at location xxx ∈ Ω as a Bernoulli
random variable C̃(xxx) with parameter π̄X (xxx). Uncertainty based criteria aim at minimizing the
conditional entropy at the unobserved locations is

H
(
C̃(V \ X )|C̃(X )

)
= H(C̃(V)−H(C̃(X )). (4.47)

As in the regression case, we see that minimizing H(C̃(V \ X )|C̃(X ) corresponds to maximizing
H(C̃(X )). In [184, 185] propose to reuse a sequential heuristic that consists in adding training
points where the prediction entropy is maximal. This approach however is not robust as the



74 CHAPTER 4. UNCERTAINTY PROPAGATION FRAMEWORK FOR SOS

prediction uncertainty is always maximal at the boundary between the two classes. To overcome
this issue [184] uses a finite pool of candidates from which the training samples are selected
to maximize X . Alternatively, [186] propose to add training points that provide the largest
expected reduction of an approximation of the validation error. Uncertainty based methods are
natural for discriminative classifier (as the GP classifier) and perform well in refining boundaries
but have limited exploratory abilities to detect new classes or regions [187]. They are also known
to perform poorly when the classes are non separable.

The other class of active learners for classification uses the classifier likelihood [188]. They are
particularly efficient for novelty detection (i.e. detecting new classes). More recent work suggest
using multiple criteria to detect and refine classes [187]. In this work a discriminative classifier is
used and the two classes are separable so that an uncertainty based criterion is preferred.

In this section, we introduced the standard methodology for uncertainty propagation, and we
discussed how uncertainties can be modeled and propagated efficiently. We focused on Gaussian
Process based surrogate models and dedicated approaches for the design of experiments. In
the rest of this chapter, we present an original approach for constructing surrogate models of
directed systems of solvers using GP.

4.2 Systems of solvers
Many engineering problems involve a multi-physics environment requiring the resolution of
multiple physical phenomena. The global solution to these problems is generally obtained by
coupling different solvers, each one devoted to a specific aspect of the problem. The simulator
presented in chapter 3 is a good example of industrial problems solved with multiple coupled
solvers. In chapter 3 the solvers used to perform rentry simulations are developed independently
by teams of experts on each aspect of the physics ( ARPEGE for aerothermodynamics, BL43 for
trajectory propagation, ADRYANS for thermal response . . . ). They are subsequently coupled
to form what we call in this work a system of solvers (SoS). Formally, we define a SoS as a set
of interdependent solvers. The SoS are constructed to create a mapping from a set of global
inputs to the quantity of interest also called global output. By construction, SoS form composite
structures where each solver use specific numerical methods to solve distinct aspects of the
physics at different computational cost and influence on the quantity of interest. In a SoS, the
solvers are connected through their local inputs and outputs : the input of a solver can either be
a global input of the SoS or an output of another solver. These network of dependencies requires
additional software development to build the interface and dependencies between each solver.

4.2.1 Directed systems of solvers

We say that a SoS is directed if the information can only be transferred forward in the system :
with respect to a particular solver, the outputs of its downstream solvers cannot be inputs of
any of its upstream solvers. On the contrary, in a strongly coupled SoS the inputs of a solver
can be the outputs of a downstream solver.

Without loss of generality, we shall restrict ourselves to the case of global scalar output in the
following. In this work, we restrict ourselves to the particular case of directed systems of solvers
where the solvers can be ordered along the upstream to downstream direction. Specifically,
an output of a solver can only be an input of a downstream solver, such that the information
(simulation results) flows in one direction only. Hence, all upstream solvers must have been run
before running the downstream ones. This restriction rules out the case of strongly coupled



4.2. SYSTEMS OF SOLVERS 75

solvers, which must be considered as a whole. The simulator constructed in the previous Chapter
3 is directed SoS as the trajectory module coupled with the thermal module are viewed as a
unique solver.

Fig 4.4 shows an example of a directed SoS. In the plot, the boxes labeled with letters
represent the constituting solvers; the arrows are used to represent the inputs (arrows coming
in) and outputs (arrows coming out) connecting the solvers. In this example, the solver E is
an upstream solver for the solvers F, G, I and J, and a downstream solver for A, B, C, and D.
We remark that the directed SoS could be also partitioned into non-overlapping blocks with
boundaries corresponding to computational barriers reflecting the structure of the system. Such
a block can be composed of a single or a set of solvers, with outputs of upstream blocks (or global
inputs) as inputs, and outputs being inputs of downstream blocks. A key point is that solvers
constituting a block can be run independently in parallel. The example depicted in Fig 4.4
illustrates the non-uniqueness of the partition of the SoS into blocks, which are represented by
the dashed lines rectangles in the figure. Indeed, the solver H, belonging with the solver E to
the third block, could have also been attached to the first or second blocks. In our framework,
we construct a surrogate model for each solver, such that the non-uniqueness of the block
decomposition is not a concern.

Figure 4.4: Example of directed SoS.

4.2.2 Uncertainty quantification for directed systems of solvers

The modular aspect of SoS makes them flexible and popular for industrial applications
involving complex systems. Nevertheless, the application of Uncertainty Quantification methods
presented in 4.1.2 to SoS is particularly challenging. First, systems of solvers commonly involve a
large number of uncertain inputs. This property generally challenges the efficiency of UQ methods
based on functional approximations. Second, a SoS is usually computationally expensive to run as
it requires the sequential run of several solvers. These two challenges can rule out the application
of standard UQ methods designed for single solvers. In this section, we propose an approach
that exploits the structure of the SoS to build a surrogate model of the SoS. Two approaches are
classically used in the industry to build surrogate models and quantify uncertainties in SoS: the
black box approach and the fragmented approach.

In the black-box approach, the SoS is seen as a whole, and the structure of the SoS along
with its internal solvers is not taken into account in the UQ analysis. A surrogate model is built
in order to create a direct mapping between the uncertain global inputs and the quantities of
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interest (global outputs). Within this approach, Polynomial Chaos expansions, GP models, low
rank approximations are possible alternatives to construct a global surrogate as mentioned in
section 4.1.2. One major drawback of these alternatives is their computational cost that can
dramatically increase with the number of (global) uncertain inputs, commonly referred to as
Curse of Dimensionality [103]. Further, these methods can be challenged by the highly non-linear
dependencies between the global inputs and outputs induced by the structure of the SoS.

An alternative approach called the fragmented approach in the following, consists of building
a surrogate model for each solver. In the fragmented approach, each surrogate relates the inputs
of a solver to its outputs, and a prediction of the global outputs is obtained by substituting
each solver with its surrogate model. This approach is common and particularly suited in
situations where the individual solvers are developed, maintained and run by distinct teams.
The fragmented approach has a clear advantage compared to the global black box approach
when the inputs dimensionality of each solver is lower than the dimensionality of the global
inputs. In this situation, it can be more effective to construct several low dimensional surrogate
models, rather than constructing a single high-dimensional global one, therefore mitigating
the curse of dimensionality. Besides, the individual solvers may exhibit simple mappings from
inputs to outputs, where their composition may yield complex dependencies. On the other hand,
the definition of the inputs probability measures to be used when constructing the individual
surrogates represents a significant drawback of the fragmented approach. The probability measure
of an input that is the output of an upstream solver is unknown a priori. One solution to
this issue consists in assuming an a priori distribution for these inputs. However, proposing
a distribution a priori is a difficult task: being too conservative (e.g. considering large input
ranges) can be detrimental to the overall efficiency, when disregarding possible input values can
result in large prediction errors. A possibility to overcome the difficulties in defining the input
distributions is to rely on training sets resulting from a global run of entire SoS corresponding to
a sample set of the global inputs. This approach ensures the consistency between the sample sets
of inputs for the individual solvers. However, this approach relies on the sequential nature of the
directed SoS and prevents the possibility of performing parallel runs of a solver and to focus the
computational resources on particular solvers demanding larger training sets to construct their
surrogate models.

Recently, systems of solvers have received interest from the UQ community trying to develop
efficient UQ methods for SoS. In [189], the authors proposed a method based on importance
sampling to decouple the uncertainty propagation process of individual solvers in order to gain
flexibility. Other recent works focused on adapting Global Polynomial Chaos (gPC) based
methods to SoS, with the challenge of deriving efficient quadrature rules on intermediate inputs
with unknown distributions. Using the structure of SoS, the authors of [190] proposed a
method for propagating uncertainty in a composite function by adapting the quadrature rule of
intermediate inputs in the SoS, thus limiting the number of quadrature points compared to a
global black box approach. This work used the recursive formula for orthogonal polynomials
and Lanczos algorithms. The same authors generalized this idea in [191] to a full SoS. Their
approach relies on Galerkin projection methods at intermediate layers of the SoS. By solving
an optimization problem, they proposed a quadrature rule for latent variables, regularized
in order to promote sparsity in the weights, thus reducing the number of quadrature points.
In [192], the authors tackled the problem of strongly coupled systems. Their main idea is that
the dimension of the coupling variables and the amount of information transferred from one
solver to another is not as high as the actual inputs dimensionality. Consequently, they use
Karhunen–Loève expansions to reduce the inputs space of each solver at each iteration, therefore
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lowering the computational cost, when propagating the uncertainty through the coupled system.
This idea further is used in [193], where a hybrid decomposition of the random output field
is proposed. This decomposition is used to construct surrogate models of a system of solvers
and perform a Bayesian optimization [194]. In [195], the authors proposed a framework for
uncertainty propagation for directed SoS. Their framework applies to intrusive and non-intrusive
methods such as Monte Carlo, non-intrusive polynomial chaos and Galerkin method. In [196]
the framework presented in [195] is generalized to non-directed systems. Their approach relies on
restriction and expansion operators adjusted to the dimension of the intermediate inputs. The
UQ methods rely on a global polynomial approximation but with quadrature rules adapted to
the local problems. Hence, the local quadrature rules are improved compared to the global black-
box approach. From a Bayesian perspective, the authors of [197] proposed a UQ propagation
framework in SoS for data assimilation in multiphysics problems.

Our approach tackles the problem from a different perspective. We introduce a new predictive
model called System of Gaussian Processes (SoGP) suitable for directed systems of solvers. In
our approach, a GP model is constructed for each solver of the SoS, and the global prediction is
built by propagating the GPs predictions. Our framework carries similarities with Deep Gaussian
Processes [198] and Multi-step ahead predictions [199], although the objectives and construction
differ in our framework. A similar framework for a two-solvers problem is presented in [200].
A significant contribution of our work is the formulation of suitable criteria to design efficient
adaptive training strategies. The key ideas are to simultaneously exploit the advantages of a
fragmented approach (low dimensionality, flexibility) when building the surrogate model of a
solver, with the use of global criteria to weight the importance of each solver on the global outputs
prediction error. Specifically, a decomposition of the SoGP prediction variance is presented. It
provides a ranking according to the GP model contribution to the global error that can be used
in order to enhance the overall predictive capabilities of the SoGP. This decomposition leads
to efficient training algorithms that identify the GP model that should be refined in order to
improve the prediction of the global outputs.

4.3 System of Gaussian processes
In Section 4.2.1, we discussed the structure of the SoS considered in this work; this structure is
now exploited to construct a system of Gaussian processes (SoGP) approximating the original
SoS. This results will serve as a basis to propose several estimates and decompositions of the
predictive variance, in Section 4.4, and derive adaptive sampling strategies in Section 4.5. The
SoGP considered in this work is obtained by substituting the solvers of a directed SoS with GP
models. The focus of the present section is to define the SoGP prediction, as resulting from the
composition of the GP models. The composition of GPs has been studied in machine learning
as the GP-based equivalent of Neural Networks (called Deep Gaussian Processes -DGP- [198]).
However, our SoGP case is different from the one usually considered in machine learning:

• there are no latent variables since all intermediate variables are observed (inputs and
outputs of the constitutive solvers),

• the GPs (layers) are derived from the SoS structure, and their definition is not left to the
user choice (each solver has a corresponding GP).

To illustrate the prediction of SoGP output, we consider the simple system consisting of just
two solvers as illustrated in Fig. 4.5. The two solvers (f1 and f2 respectively) are substituted
with two GPs (G1 and G2 respectively). Even in this simple situation, the prediction using the
SoGP is not unique; two possibilities can be readily proposed:
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• Given the global input x0 ∈ Rn, the best prediction of G1 (the mean µ1(x0)) can be used as
the input of G2 to retrieve its best prediction of the QoI. That is, for the SoGP of Fig. 4.5,

f2 ◦ f1(x0) ≈ µ2(µ1(x0)) = µ2 ◦ µ1(x0).

This approach is easily generalized to more complex SoGP and will be called the compo-
sition of the averages in the following. Note that we drop the bold letter notation to
differentiate vectors and their coordinates since from no on, we will only consider vectors.
We remark that this composition of averages provides a deterministic prediction of the
QoI, with no characterization of its uncertainty. However, it is clear that the manipulation
and propagation of deterministic values in the SoGP is computationally convenient.

• Alternatively, one can keep the whole Gaussian distribution of X1 = G1(x0) as the input
of G2, and defines the prediction as the resulting average, namely,

f2 ◦ f1(x0) ≈ E [G2 ◦G1(x0)] ,

where E [·] denotes the expectation operator. In the following, we call this approach the
averaged composition of GPs. In general, the full distribution of the prediction is
transmitted from a GP to the next, all along the SoGP. Note that in the case of the system
shown in Fig. 4.5 it comes

f2◦f1(x0) ≈ E [[G2 ◦G1(x0)] = 1√
2πσ2

1(x0)

∫
µ2(x1) exp

(
−(x1 − µ1(x0))2

2σ2
1(x0)

)
dx1. (4.48)

Figure 4.5: Example of 2 solvers directly chain and the corresponding SoGPs.

It is clear that, in general,

E [G2 ◦G1(x0)] 6= µ2 ◦ µ1(x0),

so that the composition of averages and the averaged composition of GPs are not equivalent.
While the composition of the averages is computationally the fastest and the easiest to implement,
the predictive distribution is lost because of the intermediate averaging of the GP outputs. On
the contrary, the averaged composition of GPs propagates the full predictive distribution through
the SoGP, therefore allowing to estimate the confidence in the predicted QoI. The main issue with
this second approach is that even for just two chained solvers, the distribution of G2 ◦G1(x0) is in
general not Gaussian [198, 199], preventing the derivation of explicit formulas (such as in (4.48))
for the corresponding prediction. The loss of Gaussianity when composing the GPs is due to
the nonlinear character of the mapping between the inputs and outputs of a GP model. It is
thus tempting to recover a Gaussian prediction using local linearizations of the GPs, around the
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inputs mean value, as proposed in [199]. For instance, the example would lead to the Gaussian
approximation of the composition

G2 ◦G1(x0) ≈ N(µ2(µ1(x0)), σ2
2 + |µ′2(µ1(x0))|2σ2

1(x0)),

where µ′2 is the derivative of µ2(x1), and N(µ, σ2) denotes the normal variable with mean µ and
variance σ2. We remark that the mean prediction for the linearized approach coincides with the
prediction using the composition of the averages. In fact, the linearization can be seen as an
approximated approach to propagate variances of the outputs along the SoGP and come-up with
a Gaussian prediction of the QoI. This idea is further exploited in section 4.4.

The distribution of the averaged composition of GPs prediction can also be recast in a (high
dimensional) integral of conditional probabilities. For instance, the case of the system with four
solvers shown in Fig. 4.6 leads to

p(x4|x0) =
∫
x1

∫
x2

∫
x3
p(x4, x3, x2, x1|x0)dx1dx2dx3 (4.49)

=
∫
x1

∫
x2

∫
x3
p(x4, x3, x2|x1)p(x1|x0)dx1dx2dx3 (4.50)

=
∫
x1

∫
x2

∫
x3
p(x4|x3)p(x3|x2)p(x2|x1)p(x1|x0)dx1dx2dx3. (4.51)

In the previous expressions, the elementary conditional densities p(xi|xi−1) are all Gaussian;
specifically

p(xi|xi−1) = 1√
2πσ2

i (xi−1)
exp

[
−(xi − µi(xi−1)2)

2σ2
i (xi−1)

]
. (4.52)

Figure 4.6: Example of SoGP (block view).

This expression of p(x4|x0) and the Gaussian nature of the conditional densities (4.52) show
that, in principle, one can accurately evaluate the averaged composition of GPs employing
tensorized Gaussian quadrature rules. However, the computational cost of tensorized quadrature
rules would increase exponentially with the number of chained GPs and inputs, limiting its
applicability to simple trivial systems. Sparse quadrature rules could be employed to estimate
at a reduced cost the high dimensional integrals, but we found more effective to proceed by
Monte Carlo sampling in the present work. Indeed Monte Carlo methods are insensitive to
dimensionality and can be easily applied to SoGPs with complex structures. Specifically, for
the example of Fig. 4.6, one generates randomly joint samples of (X1, X2, X3, X4), using the
elementary Gaussian conditional probabilities in (4.52), in order to estimate the averaged
composition of GPs prediction E [X4]. Note that these Monte Carlo samples can also be used to
estimate the variance and (non-Gaussian) density of any of the intermediate output Xi of the
SoGP, and assess their respective uncertainty as further discussed in the following.



80 CHAPTER 4. UNCERTAINTY PROPAGATION FRAMEWORK FOR SOS

4.4 Decomposition of the predictive variance

In this section, we present the decomposition of the prediction variance of a SoGP. For simplicity,
we restrict ourselves to the case of n Gaussian models Gi, directly chained one after the other,
with the output of Gi being the (only) input of Gi+1. We shall denote x0 ∈ Ω0 the global input
of G1. Further, to alleviate notational burden we shall consider that Gi : R 7→ R, although the
derivations below can be easily extended to more complex situations with higher dimensional
inputs and outputs (see also discussion in Section 4.4.3).

Our objective is to decompose the SoGP prediction variance into individual contributions Vi
related to the model Gi and rank the importance of the GP models in view of improving the
overall predictive capabilities of the SoGP. The decomposition of the SoGP prediction variance
is exploited in the next section to propose dedicated training strategies. In the following, we first
define the elements Vi of the decomposition (Section 4.4.1) and discuss their practical estimation
(Section 4.4.2). Two approximations of the estimator of Vi, differing in their computational cost
and accuracy, are subsequently proposed in Sections 4.4.2 and 4.4.2. Finally, we discuss the
decomposition of the variance in the case of directed SoGPs having more general structures in
Section 4.4.3.

4.4.1 Variance decomposition

For convenience, we set

Gj 7→i := Gi ◦ · · · ◦Gj , 1 ≤ j < i ≤ n, (4.53)
Gj 7→i := Gi, ifj = i, for1 ≤ i ≤ n. (4.54)

With this notation, the predictive variance associated to x0 ∈ Ω0 is V [G17→n(x0)]. To access the
contributions of different solvers onto the predictive variance, we define V17→i(x0) as variance of
the expected prediction conditioned on G17→i(x0), that is

V17→i(x0) := V [E [G17→n | G17→i(x0)]] , i = 1, . . . , n. (4.55)

The variance V17→i is interpreted as the variance in the (final) prediction of the global output
caused by the predictive variability of G17→i, that is the SoGP up to the i-th solver. Setting
V17→0(x0) := 0, we note that {V17→i}i=ni=0 forms an increasing sequence from V17→0(x0) := 0 to
V17→n(x0) = V [G17→n(x0)], such that V17→j(x0) ≤ V17→i(x0) for 0 ≤ j ≤ i ≤ n and ∀x0 ∈ Ω0.
Therefore, we define the predictive variance incurring to the Gi as

Vi(x0) := V17→i(x0)− V1 7→i−1(x0) ≥ 0, i = 1, . . . , n. (4.56)

Observing that E [E [G17→n | G17→i(x0)]] = E [G17→n(x0)], Eq. (4.55) becomes

V17→i(x0) = E
[
E [G17→n | G17→i(x0)]2

]
− E [G17→n(x0)]2 ,

and the expression of Vi can be recast to

Vi(x0) = V17→i(x0)− V17→i−1(x0)

= E
[
E [G1 7→n | G1 7→i(x0)]2

]
− E

[
E [G17→n | G17→i−1(x0)]2

]
, (4.57)

setting E [G17→n | G17→0(x0)] := µn ◦ . . . . . . µ1(x0).
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4.4.2 Practical estimation

In this section, we propose three numerical methods with different degree of accuracy and
computational cost for evaluating the terms of the variance decomposition.

Monte Carlo estimation

To estimate the partial variances Vi at a given x0 ∈ Ω0, one could consider computing first
the variances V17→i using (4.55), that is through the estimation of the variance of conditional
expectations. This approach would lead to a stratified Monte Carlo (MC) method with nested
loops on samples. Although the computations would involve low-cost SoGP evaluations, and
would not rely on the original solvers, the stratified MC is known to be inefficient in this
situation [130]. For computational efficiency, we propose to use an MC sampling strategy inspired
by [131]. In view of (4.57), the computation of the Vi(x0) amounts to the computation of
expected value of the squared conditional expectations E [G17→n | G17→i(x0)]2,called E17→i(x0)
hereafter. The expectation E17→i(x0) can be rewritten as:

E17→i(x0) = E [E [G17→n | G17→i(x0)]E [G17→n | G17→i(x0)]] , (4.58)

leading to the (unbiased) MC estimate

E17→i(x0) ≈ 1
M

M∑
j=1

YjY
′
j , (4.59)

where Yj , Y ′j are two independent random samples of Gi+17→n ◦Xj where Xj is a random sample
of G17→i(x0). The estimation of the E17→i for given x0 ∈ Ω0 can be performed in parallel for
different GP model i, and can eventually reuse samples Xj from one level i to another. Using
the same number M of samples for all the E17→i, and recycling samples, the estimation of the n
partial variance Vi has a computational cost of the order of O(Mn).

As we shall see later, the training strategy may require the evaluations of the partial variances
Vi(x0) at multiple input points x0 ∈ Ω0. In this case, the estimator in (4.59) may be too
expensive, in particular if the variance of E [G17→n | G17→i(x0)] is large and high accuracy on
E17→i(x0) is demanded. We then propose in the following two approximations of E17→i aiming at
reducing the computational cost of computing the Vi.

Composition of averages

Following the discussion of Section 4.3, the expected value of composed GP models can be
substituted with the composition of the averaged GP predictions. Specifically, we propose to use
the following approximation of the conditional average,

E [G17→n | G17→i(x0)] ≈ µi+17→n ◦G17→i(x0), (4.60)

where we have consistently denoted µj 7→i := µi ◦ · · · ◦ µj . Using this approximation in (4.57), the
contribution of Gi to the total variance is approximated through

Vi(x0) ≈ V̂i(x0) = E
[
(µi+17→n ◦G17→i(x0))2 − (µi 7→n ◦G17→i−1(x0))2

]
. (4.61)

Finally, letting Ê17→i(x0) = E
[
(µi+17→n ◦G17→i(x0))2

]
, we use the MC estimate

Ê17→i(x0) ≈ 1
M

M∑
j=1

(Yj)2, (4.62)
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where Yj are independent random samples of µi+17→n ◦ G17→i(x0). Compared to the previous
estimator, in (4.59), the composition of averages still calls for a full sampling of the whole SoGP
chain to get all the Vi at given x0. Relying on the composition of averages (µi 7→n) instead of the
composition of GP processes (Gi 7→n) reduces the computational cost by reducing the number
of random numbers to be generated and also by reducing, to some extent, the variance of the
estimator with possibly a lower sampling error in the MC estimate for fixed M .

Linearized approximation

The MC estimation of V̂i(x0) is still random and the sampling noise can cause problems when
solving for x0 the optimization problems associated to the training strategies introduced in
Section 4.5. These optimization problems are non-convex and their resolution requires a large
number of accurate evaluations of the V̂i at multiple x0. This fact has motivated the second
approximation of Vi(x0) that is both fast to estimate and free of sampling noise.

Starting from the expression of V17→i in (4.55), we first use (4.60) to obtain

V17→i(x0) ≈ V [µi+17→n ◦G17→i(x0)] . (4.63)

Relying on a local linearization, we have

V [µi+17→n ◦G17→i(x0)] ≈
(
µ′i+17→n(µ17→i(x0))

)2 V [G1 7→i(x0)] . (4.64)

The first order derivative of the composition of averages, µ′i+17→n, can be computed by chain
rule differentiation or more generally by finite difference formula. In addition, it is noted that
this derivative is considered at the composition of averages µ17→i(x0) rather than at E [G17→i(x0)]
in order to avoid having to estimate the average of the composition. At this point, Eq. (4.64)
provides an approximation of V17→i(x0), which, we recall, characterizes the variance induced
by the GP models up to Gi. To single-out the effect of Gi and approximate Vi(x0), we finally
consider

Vi(x0) ≈ Ṽi(x0) =
(
µ′i+17→n(µ17→i(x0))

)2
σ2
i (µ17→i−1(x0)) , (4.65)

where it is recalled that σ2
i is the predictive variance of Gi. By definition, this definition is

deterministic and does not call for any MC computations. Moreover, the approximation Ṽi(x0)
will be accurate provided that the prediction variances σ2

i are small. However, we stress that the
estimate will be used to select new training points and Gaussian models to be improved and
from this perspective, it needs not be necessarily very accurate.

4.4.3 Generalization

To close this section, we discuss the generalization of the proposed predictive variance decompo-
sition and its approximations above, in the case of more complex SoGP. First, the MC estimates
of Vi(x0) and V̂i(x0) can be readily extended to the case of chained vector-valued SoGP, provided
that the final prediction remains scalar, that is G17→n(x0) ∈ R. The linearized approximation
Ṽi(x0) can also be extended to more general chained SoGP, albeit the introduction of the gradient
of µi+17→n and the covariance matrix Σ2

i of the predictions of Gi.
In addition, one can extend the previous concepts of predictive variance decomposition to more

generic SoGP, that is not simply chained one, provided that it remains directed. Specifically,
V17→i becomes the variance of the expected final prediction conditioned all GP predictions
upstream of and including Gi, instead of G17→i. Identically, the composition of averages and the
linearized approximations can be derived for more general directed SoGP by substituting the GP
predictions Gj downstream of Gi with their averaged prediction µj . Note that introducing a tree
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representation of the SoGP (and SoS) may help to automate the set of GP models appearing
in the conditioning of the variance contribution of a specific GP model. An example of a not
simply chained SoS is provided in the result section below.

4.5 Training strategies

In this section, we discuss several strategies for the training of SoGPs. These adaptive training
strategies are based on the classical Maximum Mean Square Predictive Error (MMSPE) reduction,
which is extended to the SoGP case.

4.5.1 LHS training for SoGP

For simplicity, we consider as previously the case of n simply chained solvers, with real scalar
inputs and outputs, and global input x0 uniformly distributed in a bounded domain Ω0 ⊂ R.
We denote X0 = {x(l)

0 ∈ Ω0, l = 1, . . . ,m} a uniform sample set of m global input points; for
i = 1, . . . , n let Xi

.= fi(Xi−1) be the images of Xi−1 by the solver fi, such that reusing the
notation of the previous section

x
(l)
i = f17→i(x(l)

0 ), i = 1, . . . , n.

The Gaussian Process Gi, approximating fi : Ωi−1 7→ Ωi, can be constructed using the sample
sets Xi−1 and its image Xi by fi. Space-filling techniques, such as Latin Hypercube Sampling
(LHS) [157] and Sobol sequence [201], can be used to generate the driving sample set X0, with
very satisfying results [202]. The direct application of LHS on Ω0 will serve as a reference to be
contrasted with our sampling strategies proposed below. One advantage of considering sample
sets Xi that are the successive images X0, is that they implicitly follow the input distribution
induced by f17→i, without having to estimate the distribution of xi ∈ Ωi. As a result, different
regions of Ωi are sampled with a density of training points that reflects their importance. This is
a desirable property as it will enforce higher accuracy for the Gi in the regions where they are
likely to be queried.

4.5.2 Clustering based training for SoGP

The clustering based approaches presented in Section 4.1.5 are well suited for generating a priori
training set in the Ω1, . . .Ωn that may have arbitrary boundary and shape. Moreover the joint
distribution of the intermediate variables, denoted Xi, is not necessarily independent. Therefore,
clustering based approaches such as FFF are well suited for SoGP training set generation. The
main difficulty when applying clustering based methods is that the distortion defined in Eq.
(4.34) is generally approximated with a MC estimator :

D(Xi) = 1
N

N∑
j=1

min
xl∈Xi

∥∥∥xi,j − xl∥∥∥ , (4.66)

and hence a large number of samples (xi,j)j<N from Xi have to be generated. Except for i = 0
sampling fromXi requires evaluating all the solvers from f0 to fi−1 for a prohibitive computational
cost. Instead, we propose a sequential construction of the training sets X0, . . . ,Xn−1. First X0 is
generated using a LHS approach for instance. Based on X0, G0 is constructed and a large number
of samples of X0 are propagated using G0. The generated samples (x̂1,j)j<N are approximately
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distributed according X1 depending on the accuracy of G0. Using the samples (x̂1,j)j<N , the
distortion defined in Eq. (4.34) can be approximated as :

D̂(X1) = 1
N

N∑
j=1

min
xl∈X1

∥∥∥x̂1,j − xl
∥∥∥ . (4.67)

and the optimal training set X1 minimizing the approximated distortion D̂(X1) can be computed
using Lloyd’s algorithm. The solvers f1 is evaluated at X1, and G1 in trained using X1, f1(X1).
This procedure is repeated for Gi and Xi for i > 1 where Xi minimizes the approximated
distortion :

D̂(Xi) = 1
N

N∑
j=1

min
xl∈Xi

∥∥∥x̂i−1,j − xl
∥∥∥ , (4.68)

and (x̂i−1,j)j<N is the image of (x̂i−2,j)j<N by Gi−1. The procedure is summarized in algorithm 1.

Contrary to the previous section, the X0, . . . ,Xn−1 are not images of each others. The main
drawback of this clustering strategy is that the quality of the training set Xi depends on the
accuracy of Gi−1. Hence it is preferable to start with training sample sets large enough so that
the constructed GPs accurately reproduces the distribution for the intermediate variables. The
errors in the sample sets (x̂1,j)j<N are expected to increase with i since they are image of each
other through G0, . . .Gi. Moreover, the training sample set minimizing the sample set distortion
may not be in Ωi if for instance Ωi is not convex [163].

Algorithm 1 Clustering based Training for SoGP
1: procedure ClusteringTraining( X0, (x0,j)j<N )
2: for i = 0, . . . , n− 1 do
3: Train Gi with Xi and fi(Xi)
4: for j = 1, . . . , N do
5: x̂i+1,j = µi (x̂i,j)
6: Find optimal Xi+1 minimizing the approximated distortion in Eq. (4.68)
7: return {Xi=0,...,n−1}

The design of experiment approaches presented in the last two section are completely a priori
and may not be optimal, in particular for limited size sample set, with a dominant error in
regions that have not been sampled. In other words, an adaptive sampling of Ω0 can yield an
error lower than for an a priori LHS and for the same computational complexity measured by
the size of the samples set. In addition, adapting the input training set Xi to each Gaussian
Processes appears as a possible way to reduce the error while minimizing the computational
complexity, possibly by adapting the size of the samples sets associated to the construction of
the different GP models.

4.5.3 Maximum mean square prediction error for SoGP

Given the samples sets Xi, possibly not image of each others and having different sizes, of points
x

(l)
i ∈ Ωi, we denote

Q(X0, . . . ,Xn−1) = max
x0∈Ω0

V [G17→n(x0)] , (4.69)

where the GP model Gi is constructed using the training sets Xi−1 and its image fi(Xi−1). In
words, Q measures the maximum of the global prediction variance for x0 ∈ Ω, given the input
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samples sets of each GP model. The prediction variance is classically assumed to be representative
of the model error fi−Gi. Further, the selection of the samples sets Xi in order to minimize Q is
known in the literature as the Maximum Mean Square Prediction Error (MMSPE) criterion [171]
or the minimization of the Mean Square Error (MSE) of the Best Linear Predictor [119]. Clearly,
computing the (Xi)0≥i≥n−1 such that Q(X0, . . . ,Xn−1) is minimal is a very difficult task even
for fixed samples sets size, search over finite sets of candidates x(l)

i [203], or even reducing the
search space in Ω0 and imposing the samples sets to be the images of one to another.

4.5.4 Adaptive training strategies

Adaptive training strategies (or active learning methods) intend to approach the solution of the
optimal sampling problem in a greedy fashion, by progressively enriching the samples sets Xi.
They offer a cheaper greedy heuristic solution to a complex optimization problem. In the present
work, we do not aim to develop an original adaptive method, but rather to propose adaptations
of the MMSPE criterion-based method of [171] to systems of GP models. In the following, we
propose three different strategies. They are implemented and compared in the section 4.6. As a
side note, we remark that the prediction of a SoGP is non-Gaussian therefore, in general, the
minimization of the MMSPE criterion is not equivalent to entropy minimization.

4.5.4.1 Global Composition Criterion (GCC)

Following a greedy approach, we propose to select the input point x̃0 ∈ Ω0 presenting the highest
global predictive variance selected to seed the enrichment of the training sets. Specifically, the
seeding point is defined as

x̃0 := arg max
x∈Ω0

V [G17→n(x)] . (4.70)

We set X0 ← X0 ∪ {x̃0} and update the other input samples sets Xi ← Xi ∪ {µ17→i(x̃0)}, that is
using the successive composed averaged predictions applied to x̃. The update of the training
sets for the GCC strategy is outlined in Algorithm 2. In view of (4.70), we call the Global
Composition Criterion (GCC) this training strategy.

Algorithm 2 GCC: selection of new training points using the Global Composition Criterion.
1: procedure SelectGCC( {Gi=1,...,n} )
2: Find x̃0 ∈ Ω0 solution of (4.70)
3: for i = 0, . . . , n− 1 do
4: x̃i+1 = µi(x̃i)
5: return {x̃i=0,...,n−1}

Once the training sets Xi have been enriched, one can proceed with the update of the GP
models Gi using Xi−1 and its image by solver fi. The computational complexity of GCC thus
amounts to one resolution of all the solvers in the system, for every new training point seed
x̃. Note that defining the new training points by successive compositions of averages allows
parallelizing the computation of their images by fi. Defining instead x̃i+1 = fi(x̃i) at line 4 of
Algorithm 2 would result in a sequential update procedure as fi must be solved before proceeding
with its composition with the next solver fi+1. Furthermore, numerical tests have shown that
using the composition of exact images by fi has no significant impact on the efficiency of GCC.
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4.5.4.2 Local Contributions Criteria (LCC)

The strategy GCC is a direct adaption of the classical MMSPE criterion used to train individual
GP models. It misses the chain structure of the SoGP, which can incorporate solvers with very
different complexity and influence on the on the global output. As a result, areas of the GP
models with large predictions errors may not necessarily correspond to composed images of
a single area Ω0. Therefore, we propose here to select for each GP model Gi the input point
x̃i−1 ∈ Ω0 yielding the highest contribution Vi(x̃i−1). We recall that Vi is the contribution to the
global predictive variance of GP model Gi (see Section 4.4.1 and Eq. (4.56)). Specifically, we
consider

x̃i−1 = arg max
x∈Ω0

Vi(x), i = 1, . . . , n. (4.71)

Note that the search space for the x̃i is always Ω0. In the following, we call LCC the training
strategy based on Local Contribution Criteria in (4.71). Once the input points x̃i ∈ Ω have been
determined, we enrich the respective training sets through Xi ∪ {µ17→i(x̃i)} as underlined by the
procedure reported in Algorithm 3. Note that the training point added to Xi is determined
by a composition of averages, µ17→i(x̃i), and not using the composition of models, f17→i(x̃i), for
computational complexity reduction purposes.

Algorithm 3 LCC: selection of new training points using Local Contribution Criteria.
1: procedure SelectLCC({Gi=1,...,n})
2: for i = 1, . . . , n do
3: Find x̃∗ ∈ Ω0 solution of (4.71)
4: x̃i−1 = µ17→i−1(x̃∗)
5: return {x̃i=0,...,n−1}

Because the initial seed x̃i is changing from a GP model to another, the LCC strategy does not
generate enrichment points that are composed images of one another (neither by fi or µi), with
potentially a better reduction of the MMSPE criterion compared to GCC. Comparing further
GCC and LCC, updating the GP models for the two strategies has the same computational cost
that is one evaluation of every solver in the SoS to compute the image by fi of the new point added
to Xi−1. Finally, note that each seed x̃i in LCC calls for the resolution of a distinct optimization
problem (4.71), whose complexity is comparable to the unique optimization problem (4.70)
of GCC. However, these optimization problems in (4.71) can be carried out in parallel.

4.5.4.3 Single Model Selection (SMS)

The GCC and LCC strategies require the evaluation of all the solvers and update all the GP
models. In practice, especially for limited size sample sets (e.g. at the start of the adaptive
procedure), the MMSPE V [G17→n] can be dominated by the contributions Vi of few GP processes.
In this situation, enriching a single training set Xi, or less aggressively just a few of them may
constitute a more efficient strategy to focus the computational resources on the improvement of
selected GP models, disregarding the update of relatively more accurate ones. To this end, we
propose a strategy called Single Model Selection (SMS), which selects a pair of one seed point
and index of the GP the featuring the largest contribution to global predictive variance. The
pair solves the following optimization problem

(x̃, l̃) = arg max
x∈Ω0

i∈{1,...,n}

Vi(x). (4.72)
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Note again that the optimal point is sought in the global input domain Ω0, so we have to
propagate it to define the new training point of the selected model Gl̃ to be improved. As for
the other strategy, we enrich the input training set (and its image by fl̃) through Xl̃−1 ∪ {x̃l̃−1},
where the new training point is obtained by the composition of averages x̃l̃−1 := µ1 7→l̃−1(x̃). As
a result of the selection of a single model to be updated, the SMS strategy has training sets Xi
with variable sizes and, in contrast to the other strategies, only the selected GP model Gl̃ needs
be updated in SMS. Besides, because of possible large heterogeneities between solvers, it may be
interesting to account for the computational cost of solving fi when selecting the new training
point. To this end we extend the optimization problem (4.72) to

(x̃, l̃) = arg max
x∈Ω0

i∈{1,...,n}

Vi(x)− αCi, (4.73)

where Ci is an estimate of the computational cost of solver i and α > 0 a user defined constant.
The procedure for selecting points in SMS is outlined in Algorithm 4.

Algorithm 4 SMS: selection of a unique new training point by the Single Model Selection.
1: procedure SelectSMS( {Gi=1,...,n},α)
2: Find couple (x̃, l̃) solution of (4.73)
3: xl̃−1 = µ1 7→l̃−1(x̃)
4: return (xl̃−1, l̃)

We observe that the strategies presented above rely on training sets that are images of one to
another by the true solvers, at least partially (for the members of the initial sets). Ideally, one
would like to construct the surrogates without having to perform any computation of the full
SoS. A fully decoupled construction of the GP models associated to each solver would be possible
if their inputs range and distribution were known a priori. Without this knowledge, one can
instead adopt a sequential construction method where all upstream GP models are constructed
with sufficiently high precision to ensure a correct prediction of the outputs distribution by the
composition of averages. This distribution can then be substituted to the unknown distribution
of the inputs of the downstream solvers to proceed (sequentially) with the construct of their
GP models. Our estimates of prediction variance and error control strategy SMS, applied to
the prediction of the upstream solvers’ outputs, can be employed to that end. However, this
sequential construction is likely to result in a sub-optimal strategy, as it may consume resources
to obtain accurate intermediate GP models that have a weak impact on the prediction variance
of the terminal solver. Still, the sequential and fully decoupled approach just described may
present an interest when assembling the whole SoS is not possible: it can be used to generate an
initial coarse SoGP, which can be refined subsequently using one of our active learning strategies.

4.5.5 Training algorithm

The three strategies presented above are greedy and add a single training point per samples set
Xi (in all sets for GCC and LCC, in a single set for SMS) before updating the GP model(s). For
parallelization purposes, one may be interested in adding a batch of training points instead of a
single one, in order to run, in parallel, multiple evaluations of the model fi. In the following, we
denote Nadd the number of training points added at a time to reduce the prediction error of the
SoGP. The main difficulty in adding Nadd points at once is that the three strategies above rely
on optimization problems that will produce the same new training points unless the SoGP is
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updated. In other words, these strategies are sequential, and it is necessary to update the SoGP
for each new training point to obtain the next one.

We propose here to circumvent the sequential nature of the strategies by substituting the
evaluations of the models fi, at the new training points, with the current best predictions of the
corresponding Gi, that is using µi in place of fi. Doing so, one does not change the prediction
but locally reduces (in the neighborhood of the new training point) the predictive variance σi.
This reduction, in turn, affects the global predictive variance and its decomposition, such that
the next training points will be found at different locations. Algorithm 5 outlines the procedure
for adding a batch of Nadd new training points. The procedure uses one of the three selection
procedures (see line 5) to construct the enrichment X̃i of the initial training sets, while updating
the GP models Gi (see line 7) using the initial training points with their images by fi and the
enrichment points and their prediction with µi. Note that in the case of the SMS strategy, only
Gl̃ needs be updated and that one can keep the hyper-parameters of the GP models constant
during these updates to further reduce the computational load. The procedure in Algorithm 5
returns the enriched sets to train each model. To this end, the images by the solvers fi of
the Nadd new training points must be computed first, possibly in parallel, as sought by the
approach. Then, the GP models can be recomputed with the exact images and selection of the
hyper-parameters.

Algorithm 5 Training algorithm.
1: procedure SelectBatch({Gi=1,...,n}, {Xi=0,...,n−1}, Nadd, [,α])
2: for i = 0, . . . , n− 1 do
3: X̃i = ∅
4: for p = 0, . . . , Nadd do
5: {X̃i=0,...,n} ← {X̃i=0,...,n}∪ SelectStrategy({Gi=1,...,n}[, α]) )
6: for i = 1, . . . , n do
7: Update Gi using (Xi−1, fi(Xi−1)) and (X̃i−1, µi(X̃i−1))
8: return {(Xi ∪ X̃i)i=0,...,n}

As a final note, we observe that the optimization problems in (4.70)-(4.73) are nonconvex,
in general, and present many local optima as illustrated in see Section 4.6.2. Furthermore,
depending on the approximation of global predictive variance or contributions Vi considered, only
noisy evaluations of the objective functions may be available, such that appropriate optimization
procedures must be considered. Fortunately, the precise computation of the optimal points is
not critical to the efficiency of the training procedure, in particular when using a batch of points.
In the present work, we relied on genetic algorithms [204] to approximate the solutions of the
optimization problems (4.70)-(4.73).

4.6 Test problems

The proposed SoGP methodology is now applied on several test cases corresponding to different
types of SoS, in terms of dependencies and structure. It is then applied to a realistic engineering
system of solvers in the context of the space object reentry.

The first test case is a simple SoS with two chained solvers each having a single input. The
second test case consists of four solvers, with eight global inputs. The first three solvers are
independent and have a single output constituting the inputs of the last solver. The third
test case is composed of four solvers directly chained where a solver has for inputs the output
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of its upstream solver plus some global inputs (overall 16 global inputs). This structure is
representative of many systems of solvers used in industry.

In order to assess the accuracy and robustness of the proposed framework, a systematic
comparison is performed with a global GP constructed on the whole SoS considered as a black
box.

In particular, we compare the following methods:

• BB-LHS : a global GP is built on the whole SoS considered as a black-box, using a LHS-based
sampling;

• BB-MMSPE : a global GP is built on the whole SoS considered as a black-box, using the
MMSPE training strategy;

• SoGP-LHS : a SoGP is built, using a LHS-based sampling;

• SoGP-clustering: a SoGP is built, using a clustering based training set (described in Section
4.5.2) ;

• GCC, LCC or SMS : a SoGP is built, using the GCC, LCC or SMS training strategy
(described in Section 4.5), respectively.

In all cases, the performance of the method is evaluated by computing a normalized L2-error
norm on the global output approximation. Denoting y the exact SoS global output and ỹ its
approximation (using one of the proposed methods), the error is estimated using N independent
Monte Carlo samples of the global inputs, as follows:

Err2
L2 ≈

∑N
i=1 (ỹ(xi)− y(xi))2∑N

i=1 y(xi)2
, (4.74)

where the x1≤i≤N are independent Monte Carlo samples of the global inputs.
For each test case and method, the SoGP are initialized using an initial LHS set in the

global input space. In the case of the GCC, LCC, and SMS adaptive strategies, this initial LHS
set is progressively enriched adding a new batch of Nadd training points following the strategy
discussed in Section 4.5 (see also Algorithm 5). Also, to assess the influence of the random
generation of the initial LHS sample, the numerical experiments are repeated several times.
We report the errors by their values averaged over the repetitions, along with lower and upper
bounds corresponding to the best and the worst errors over the set of repetitions. Since the
number of repetitions never exceeds 10, the errors’ bounds shown are not precise estimates of the
errors statistics, but constitute a rough characterization of the methods’ variability. Table 4.1
summarizes the default parameters used in the numerical experiments: the initial LHS sample
size, batch size Nadd, and the number of repetitions used in the three test cases presented below.
In all cases, the inputs have independent uniform distributions. We also recall that the training
methods do not require the same number of SoS evaluations: the GCC and LCC methods require
the evaluation of the all solvers in the SoS, for each new training point, whereas the SMS only
requires only the evaluation of the selected solver.

4.6.1 Test case 1

This first test case consists in the composition of the two univariate functions f1 and f2 presented
in Fig. 4.7. These functions are defined as follows:

f1 : x 7→ exp
(√
x
)

sin(x) + 6 exp
(
−(x− 2)2

)
+ 5

2 exp
(
−3(x− 1)2

)
, (4.75)
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Test case initial LHS set size batch size Nadd number of repetitions
Test case 1 5 5 10
Test case 2 150 50 5
Test case 3 500 50 5

Table 4.1: Default parameters for the three test cases.

and
f2 : x 7→ sin(x) + 0.3× x× sin(3.4x+ 0.5) (4.76)

The global output is defined as f = f1 ◦ f2. The global input is uniformly distributed between 0
and 6.

(a) First solver f1(x) (b) Second solver f2(x) (c) SoS f1 ◦ f2(x)

Figure 4.7: SoS for the test case 1.

Figure 4.8 reports the results obtained for test case 1. We observe that the SoGP-based
approaches systematically achieve a lower error than the global (BB) approaches, by at least one
order of magnitude. Several remarks can explain this result. First, the SoGP-based approach is
applied to approximate relatively simple functions, f1 and f2, whereas the global approach works
on a much more complex function f1 ◦ f2, which features a highly multimodal behavior and a
plateau. As a consequence, intuitively, we can expect that the approximation of f1 ◦ f2 should
be more challenging than approximating f1 and f2 solely. In general, as long as the composing
functions are simpler than the final output, it is expected that a SoGP-based approach will
perform better. Second, in the global approach, a part of the information available in the training
set is not used because the evaluations of the first solver are not taken into account. As a general
remark, since the SoGP prediction is the composition of multiple GPs, it generally depends on
more hyperparameters, compared to the global approaches. Having more hyper-parameters to
learn could be detrimental to the computational complexity, but this drawback is compensated
by the improved approximation capabilities brought by the extended set of hyper-parameters
and the additional information brought by the intermediate variables.

The SoGP-LHS and SoGP-clustering are two model free approaches for SoGP training.
In this example the clustering based approach presents a clear advantage compared to the
SoGP-LHS as SoGP-clustering performs as well as the AL methods. Since there are only two
solvers in this case, the only difference between SoGP-LHS and SoGP-clustering comes from the
training set X2 used to learn f2, since in both cases X1 is generated with a LHS. This example
shows the clear advantage of a generating training set for each solver instead of propagating
an initial LHS. While the training samples in SoGP-LHS follow the input distribution of each
solver, the clustering training set offer a better coverage of the input space of f2. The good
performance of SoGP-clustering with respect to SoGP-LHS is directly related to the structure of
the SoS. In figure 4.9a are represented the errors induced by the second GP for the SoGP-LHS
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Figure 4.8: L2 error norm vs the number of training samples for test case 1.

(a) Error distribution induced by the second GP
trained with SoGP-LHS or SoGP-clustering training
obtained with 40 training samples

(b) Distributions of the training points for the second
GP compared to the second GP input distribution

Figure 4.9: Comparison of the training set generated by SoGP-LHS and SoGP-clustering

and SoGP-clustering training. The errors are represented in Ω2, the input space of f2. The
SoGP-clustering globally features a lower error than the SoGP-LHS except in a region near 0.
From figure 4.9b, we observe that this region is associated with high probability density. In this
case SoGP-LHS over samples high density region and performs locally very well in those regions
but lacks a good coverage of the domain.

Differences in performance between the global (BB) and the SoGP-based approaches are
even more significant for the adaptive strategies. Every adaptive technique formulated in a
SoGP-based framework yields better performances than the MMSPE-BB approach (which is
doing slightly better than the standard LHS-BB approach). Regarding the performance of the
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(a) First GP model (b) Second GP model

Figure 4.10: Estimates of the variance contributions V1 and V2 of the two GP models, at an
initial stage of the construction (involving a total of 25 training points): compared are the
linearized approximation (4.65), and the Monte Carlo estimates of (4.62) using 100 and 10,000
samples as indicated.

SMS method, we stress that it only requires one solver evaluation per additional training point
when the GCC and LCC methods require the evaluation of the whole SoS for each new training
point. As a consequence, the results reported in Fig. 4.8 should be cautiously interpreted since the
SMS method has a lower computational cost compared to the other methods. The computational
cost of the solvers must be considered for a fair comparison. For instance, assuming that the
two solvers have the same computational cost, the computational complexity of SMS is half
that of the GCC and LCC methods, and the SMS efficiency is comparable to the GCC and
LCC efficiencies. In fact, in this example, the SMS method focuses primarily on the second
solver and does not add many training points for learning the first solver which is much easier to
approximate.

4.6.2 Impact of predictive variance prediction

We take advantage of the simplicity of test case 1 to investigate the impact of different forms
proposed in Section 4.4.1 to approximate the contribution Vi of the GP models to the prediction
variance. Specifically, we compare the use of the MC estimates V1 and V2 given by (4.62) with
the approximation given by the linearized form in (4.65).

Figure 4.10 compares the MC estimate using 100 and 10,000 samples, with the corresponding
linearized estimate, for the contributions of the first 4.10a and second 4.10b GP models, at an
early stage of the construction with 25 training points selected with the criteria of SMS. For
the first model, we see that the MC and linearized approximations are in good agreement on
most of the input domain. The linearized form, however, is seen to significantly overestimate
the contribution to the variance in some area where it is the most significant. Regarding the
comparison between the two MC estimates, we remark that they generally agree satisfactorily,
except in some localized areas where the sampling noise is significant when only 100 samples are
used. Interestingly, the areas of the input space where the sampling noise is noticeable correspond
to the areas where the linearized form departs the most from the MC estimates. This finding
suggests that the linearized approximation cease to be accurate in places where the variance
structure calls for a higher sampling effort. Similar observations hold for the second model,
except that the linearized approximation now underestimates significantly the MC estimates
where it is the most subjected to the sampling noise.
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Naturally, one can expect the differences between the MC and the linearized estimates to
reduce as the prediction variances of the GP models decrease. Figure 4.11 confirms this expected
trend. It compares the previous estimates at a later stage of the construction, involving 85
training points. Note that for a fair comparison, all estimates use the same SoGP construction.
Compared to the previous case, the plots confirm that the differences are much less significant;
the convergence of the MC estimates also seems to have improved as much smaller differences
between the two MC sample set sizes are reported. Besides the lower magnitude and the
better agreement between the different estimates, a noticeable evolution between the plots of
Figures 4.10 and 4.11 is the sharp increase in the frequency content: the functions V1 and V2
are oscillatory with many zero. The complex structure of the contributions to the variance
highlights the existence of multiple local maximums that, as mentioned previously, calls for a
robust optimization procedure for the selection of the next training points.

(a) First GP model (b) Second GP model

Figure 4.11: Estimates of the variance contributions V1 and V2 of the two GP models, at an
initial stage of the construction (involving a total of 85 training points): compared are the
linearized approximation (4.65), and the Monte Carlo estimates of (4.62) using 100 and 10,000
samples as indicated.

To complete the analysis of the different estimates of the Vi, we provide in Figure 4.12 a
comparison of the resulting global surrogate errors, obtained for the same SMS strategy but
based on the different estimates. We see that, on this experiment, the method selected for the
estimation of the Vi has only a weak influence on the resulting surrogate errors, with differences
that are comparable to the variability bounds of the SMS method shown before in Figure 4.8.
We can conclude that the linearized estimate is quite robust, on this example, and should be
preferred because of its much lowest computational cost. The MC estimation constitutes a more
expensive approach, but it is perhaps safer, especially at the early stage of the construction when
the predictive variance is large. Regarding the MC estimate, the presented results suggest that
it is unnecessary to use a large number of MC samples. However, an optimization procedure
able to deal with noisy evaluations must be employed to determine the next training point. Such
procedure usually comes with a higher numerical cost, so that the overall interest of using the
MC estimate may be limited in practice.

4.6.3 Test case 2

In this test case, the SoS consists of three independent solvers, with independent global inputs,
and which scalar outputs are the inputs of the downstream solver. Overall, the SoS has four
solvers and eight global inputs as depicted in Fig. 4.13. As seen from the figure, the SoS of test
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Figure 4.12: L2 error norm vs. the number of training samples for Test-Case 1 using the
SMS criterion with the linearized approximation of the variance decomposition and the Monte
Carlo estimation obtained with 100 samples or 10,000 samples. All cases are initialized with the
same training set of 5 points.

Figure 4.13: SoS for test case 2.

case 2 has two blocks consisting of solvers 1-3 and solver 4, respectively. The individual solvers
are defined by the analytical functions below:

f1(x1, x2, x3) = sin(2x1x2) + x2
3, f2(x4, x5, x6) = 3x2

4x
2
5x6,

f3(x7, x8) = 2x7 + x3
8, f4(y1, y2, y3) = y1 + y2

1 sin(y2) cos(y3).

The global inputs have a uniform and independent distribution between 0 and 1.
The training strategies formulated in Section 4.5 are compared with an additional one.

Because of the SoS structure, two options are possible in the SMS strategy: i) to identify and
train the most unreliable solver (which is the original SMS technique); ii) to use SMS to identify
and train the most unreliable block (solvers 1-3, or solver 4). This last strategy is denoted in the
following as SMS-block. For this test case, we compare both approaches together. Figure 4.14
reports the errors of the different strategies on this test case. It shows that the SoGP-based
approaches outperform the global black-box approaches, with errors reduced by up to two orders
of magnitudes. We first observe that for the non adapted methods based on LHS, the simple
SoGP method (SoGP-LHS) does better than the global BB method (BB-LHS), with an error
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about 3 to 5 times less. The improvement is not as significant than in the previous test case.
The SoGP-clustering is the most efficient non adapted method with a error twice smaller than
the SoGP-LHS. In this case too, it is advantageous to improve the coverage of the input space of
f4. As for the first test case, the input distribution of f4 represented in figure 4.15 features high
density regions where the SoGP-LHS may be oversampling and may cover poorly less probable
regions. While putting more training points in high density regions is intuitively a good feature
for a training set, large errors in lower density regions may offset the good performance in high
density regions as we observed in this test case and the previous one.

Figure 4.14: L2 error norm vs the number of training samples for test case 2.

Figure 4.15: Marginal histograms of the outputs of solver 1, 2 and 3 (from left to right, in
arbitrary unit).

Focusing on the performances of the training strategies, we observe that the global MMSPE-
BB method performs particularly bad, on this test case, since it brings no improvement compared
to the non-adapted global BB-LHS approach. This effect is a well-known issue of MMSPE
adaptivity in high dimension since, as mentioned in [179, 177], the MMSPE tends to place
training points at the edge of the domain. This behavior deteriorates the performance of the
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global surrogate model when the inputs dimension is high. This issue appears to be significantly
mitigated for the SoGP methods with MMSPE-based adaptive strategies (GCC, LCC, and
SMS), owing to the reduced dimensionality of the individual GPs inputs. Compared to the
previous test case, the adapted strategies clearly outperform the non adapted SoGP approaches
(SoGP-LHS and SoGP-clustering). Concerning the relative performances of the SoGP-based
adaptive strategies (SMS, SMS-block, LCC, GCC), GCC and LCC yield similar performances.
This result is due to the SoS specific structure in which the last solver (f4) contributes the
most to the global predictive variance. As a consequence, the two methods end up selecting the
same enrichment point for the second block. Concerning the SMS-based strategies, SMS and
SMS-block perform identically because, again, the last solver is the hardest to learn. Looking
to Figure 4.14, where the errors are plotted as functions of the number of training samples,
SMS, and SMS-block methods seems to have slightly lower performance than the LCC and GCC
method, as this representation does not reveal differences in computational cost. In order to
highlight the gain in using SMS-based techniques, which are the most computationally effective
techniques for this test case, we report in Fig. 4.16 the L2 error with respect to the computational
cost, computed here as the number of calls to a solver (assuming implicitly that each solver has
the same evaluation cost).

Figure 4.16: L2 error norm vs the number of solvers evaluations for test case 2.

4.6.4 Influence of the training batch size Nadd

As discussed previously, the most effective training strategy should consist of adding one training
point at a time and run the SoS in a purely sequential manner, without thereby exploiting the
full potential of parallel computing. By setting Nadd > 1 in algorithm 5, it is possible to evaluate
in parallel a whole set of new training points for the same solver. It remains the question of
selecting the batch size Nadd offering the best trade-off between the cost reduction of the solver
evaluation, thanks to parallelism, and a less effective adaptation due to a non-optimal sequential
choice of the points. In this section, we investigate the influence of the training batch size on the
SoGP performance for the test cases 1 and 2, and using the LCC and SMS strategies respectively,
since they were found to be the most effective ones.

Figure 4.17a shows the convergence of the L2 error in test case 1 for different batch sizes
Nadd = 1, 5, 10 and 20, and the LCC method. Each experiment is repeated ten times. In this
cases, the asymptotic performance of the adaptive methods appears to be virtually insensitive to
Nadd, indicating that one can take advantage of the parallelism over multiple samples without
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affecting the convergence of the method. This conclusion is also valid for test case 2 when using
the SMS strategy with Nadd = 10 and 50, as shown in Fig. 4.17b. This later example also
indicates a slightly greater variability of the error with the initial LHS sample set.

(a) Test case 1 with LCC method (b) Test case 2 with SMS method

Figure 4.17: L2 error norm2 vs the number of training samples and for different batch size Nadd.
Test case and method as indicated.

In practical applications, one should select Nadd according to the computational budget
and the final number of training samples to be added. It should be as large as possible to
exploit parallel solvers evaluations, but not too large, especially in the first stages of the adaptive
procedure, to avoid amplifying the initial sample variability.

4.6.5 Test case 3

This test case consists of a SoS with 16 global inputs and four solvers organized as depicted in
Fig. 4.18. The first solver is a Sobol function [129] depending on five parameters, defined as
follows:

f1(x1, x2, x3, x4, x5) =
5∏

k=1
gk(xk), (4.77)

where gk(xk) = |4xk−2|+ak

1+ak
, a = (12, 2, 3, 4, 45).

The second solver is the Ishigami function [205] defined as:

f2(x1, x2, x3) = sin(x1) + a sin2(x2) + bx4
3 sin(x1), (4.78)

with a = 7 and b = 0.1. The input x1 of solver f2 is the output of the first solver, i.e. f1. The
other two solvers are products of polynomial functions and trigonometric functions, defined as
follows:

f3(x1, x2, x3, x4, x5, x6) = x2
2 arctan(1− x6) + x3x4x

3
5 + 3x1, (4.79)

where x1 of f3 is the output of the second solver, i.e. f2;

f4 = (x1, x2, x3, x4, x5) 7→ sin(x5)x4 + x1x2 + x3, (4.80)

where x1 of f4 is the output of the third solver, i.e. f3. The global inputs are uniformly and
independently distributed between 0 and 1.

This SoS differs from the previous ones since each solver has some global inputs in addition
to the output of the upstream solver. This structure is representative of many industrial SoS,
such as the one considered in the following section. Figures 4.19 and 4.20 presents the results
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Figure 4.18: Test case 3: cascade-like SoS structure with 16 global inputs and 4 solvers.

for this test case. Focusing on the errors as functions of the sample set size, shown in Fig. 4.19,
it is seen once more that the SoGP framework brings significant gain in accuracy over the global
black-box approaches (BB-LHS and BB-MMSPE). We again explain this gain by the relatively
lower dimensionality of individual solvers inputs, compared to the global SoS. Also, we remark
that the individual solvers are complex functions (in particular the Sobol and Ishigami functions)
that yield a very complex output when composed together.

In this test case, the accuracy gain of adaptive strategies is less significant than in the previous
test cases. In particular, the global BB-MMSPE performs very poorly with a stagnating error
after 1500 samples. As before, this behavior is expected in high dimensional problem [177], as
in the present test case. In contrast, the GCC, LCC and SMS strategies perform much better
than BB-MMSPE, although they have relatively high dimensional inputs. The dimensionality
translates into a slow decay of the error with the number of training samples. As in the
previous test cases, a fair comparison between SMS, GCC and LCC should consider the lower
computational cost of the SMS. This perspective can be appreciated from Fig. 4.20 which depicts
the error as a function of the number of calls to a solver, assuming again that all the solvers have
the same cost. The SMS is seen to yield the lowest error for a given computational cost. The
gain of SMS primarily comes from the identification of the most unreliable solver, here the Sobol
function, which is responsible for most of the predictive variance. As a consequence, focusing the
computational effort on this solver is very efficient and improves the performance of the whole
SoS. This example illustrates the interest in identifying the solver yielding the most of variance
in a SoS.

4.6.6 Preliminary test for space simulation

Before applying the framework to a full scale industrial problem, we take an intermediate step
and apply the SoGP framework to a "toy" reentry predictor developed by ArianeGroup. This
SoS is used to predict the trajectory of a reentering space object and consists of two solvers: i) an
upper atmosphere trajectory solver; ii) a three degree-of-freedom trajectory solver integrating a
thermal module that provides the temperature of the object [206]. The upper atmosphere solver
computes the trajectory from 120 km to 80 km of altitude, and the second solver propagates
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Figure 4.19: Errors vs training set size for the Cascade-like SoS

Figure 4.20: Errors vs number of calls to solvers for the Cascade-like SoS.

the trajectory from 80 km to 75 km. The output of the first solver is the object position and
velocity at an altitude of 80 km, which are the inputs to the second solver. The final quantity of
interest is the object temperature at 75 km of altitude, a quantity of interest for the estimation
of the breakup risk. We consider a spherical pressure tank as a reentering object.

The structure of the SoS is illustrated in Fig. 4.21, where the global inputs are also depicted.
These global inputs are the following: i) 6 inputs for the initial flight conditions (object initial
position and velocity); ii) 2 inputs for the atmospheric temperature and density in the upper
atmosphere; iii) 3 inputs for the material thermal and emissivity properties. In total, 11 global
inputs are considered and modeled as random variables with uniform distributions. In this SoS,
the two composing solvers present a very different complexity. The first one is an almost linear
mapping between the inputs and the outputs. It is therefore straightforward to learn. On the
contrary, the second solver displays a more complex behavior and is so harder to emulate. Finally,
we mention that the computational costs of the two solvers are different with an estimated
ratio of 43:7 between Solver 1 and Solver 2. At this point, the input uncertainty ranges and
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distributions are not of interest as the purpose of this test is to validate the approach on a test
case close to the real application.

Figure 4.21: SoS for the space object reentry simulation.

Three approaches are contrasted on this problem : the global BB-LHS, the non-adaptive
SoGP-LHS, and the adaptive SMS methods. The global BB-LHS and non-adaptive SoGP-LHS
methods are applied on four samples LHS sample sets of size 200, 300, 500 and 600 respectively,
while the SMS strategy is initialized with the LHS set of dimension 500 before selecting, in batch
of size Nadd = 10 new points, till an equivalent of 600 solver evaluations is reached.

The results are summarized in Fig. 4.22. The figure depicts the L2 error norm as a function
of the computational cost, reported as the number of solver evaluations scaled by their respective
relative costs (0.86 and 0.14 for the upstream and downstream solvers, respectively). In these
experiments, the error is estimated using an independent set of 1000 LHS points. Consistently
with the previous test cases, the SoGP-LHS performs better than the global BB-LHS method.
The improvement is explained by the number of inputs of the solvers which is less than the
dimensionality of the global inputs. Concerning the adaptive strategy, the SMS approach presents
an unusual behavior with an initial dramatic decrease in the error, until a computational cost
of around 520 (i.e. for a few adaptive batches). Beyond this point, the error decays at a much
slower rate, although it remains lower than for the other LHS-based methods. We explain
this behavior as follows. Initially, the SMS strategy adds sample points to improve exclusively
the second solver, which cost is only 14 % of the whole SoS chain. As a result, the SMS
performs exceptionally well during this phase. Subsequently, when the contribution of the two
solvers to the overall prediction variance is balanced between the two solvers, the advantage of
selecting a particular solver is less critical, and the limits of the MMSPE-based strategy in high
dimension [177, 179] become apparent with a stagnating error decay as a result.
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Figure 4.22: L2 error norm vs the computational cost for the space object reentry SoS.

4.7 Conclusion

In this chapter, we have proposed a framework for constructing a system of Gaussian Processes
(SoGP) approximating a directed system of solvers (SoS) having uncertain inputs. The SoGP
substitutes GP models to the solvers constituting the SoS. The prediction is then obtained from
the composition of the GP models. This contribution provides an efficient tool for propagating
uncertainties in the simulator we developed in Chapter 3.

We have demonstrated that this approach is potentially more efficient than the direct
construction of a global surrogate of the SoS, in particular when the SoS combines individual
solvers with low dimensional inputs and simple mappings from inputs to outputs. In these
situations, a reduction of orders of magnitudes in the L2 error norm can be achieved for the same
number of training samples. In addition, the SoGP construction involves an extended set of
hyperparameters (typically a set for each model, instead of a unique set for the global mapping
from the inputs to the outputs) with improved approximation capabilities as a result.

By design, our proposed SoGP is suited to parsimonious active learning strategies. The active
learning strategy is classically based on algorithms requiring a predictive error estimation. In
this work, the global predictive variance estimations of the SoGP is used to assess the precision
of the prediction. A formal decomposition of the global predictive variance is derived to identify
the contribution of each solver. Different approximations of the solver contributions have been
proposed to improve the computational efficiency. These estimates have been used to extend
the MMSPE-based adaptive algorithm, with improved performance compared to non-adaptive
strategies on several test-cases. Specifically, the three training strategies proposed (GCC, LCC,
and SMS) have yielded systematically better results, up to one order of magnitude error reduction,
compared to the non-adapted SoGP-based approach. In particular, the SMS strategy which
selects the specific solver with the highest contribution to the predictive variance is shown to be
computationally very effective, in particular when some GP models of the SoGP have a dominant
contribution to the prediction variance and low evaluation cost.

Numerical tests also revealed some limitations of the considered active learning strategies
which call for improvements in view of applications to engineering problems. These limitations
are not related to our SoGP framework but are rather generic to the MMSPE criteria and
its lack of robustness, in particular for high-dimensional inputs. Potential improvements of
this aspect could involve the extension of the solver (and training point) selection using the
integral prediction variance reduction criteria, which is known to constitute a more effective
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approach [177, 180]. This extension would, however, require additional developments to obtain
computable estimates of the solver contributions.

In the next chapter, the SoGP framework is used to efficiently propagate the uncertainties in
the reentry model constructed in the previous chapter.



Chapter 5

Uncertainty Analysis of Space
Object Breakup

In this chapter, we apply the framework introduced in Chapter 4 to the reentry of an upper stage
from its GTO orbit. The object reentry is controlled; that is, the object performs a deorbiting
maneuver to leave the GTO orbit and reenters the atmosphere in a targeted region. The objective
is to provide a robust estimate of the breakup conditions, to identify the contributions from each
uncertainty to the breakup conditions, and to study the statistic of critical quantities such as the
object temperature or the heat flux. In this chapter, the survivability of the fragments released
after the breakup is not considered. The main contributions of this chapter are :

• Successful test of the SoGP framework developed in chapter 4 on a full scale industrial
application;

• Demonstration of the interest of using a probabilistic model to predict the breakup;

• Accurate and rigorous propagation of a large number of uncertainties and identification of
the most influential uncertainties using sensitivity analysis.

5.1 Upper stage reentry from GTO orbit

In this section we present the numerical model, the main characteristic of the GTO reentry and
how the uncertainties are modelled for this problem.

5.1.1 Numerical model

The simulator developed in chapter 3 is used for the initial stages of the simulation until the object
breaks up. The survivability of the fragments is not investigated in this chapter. A graphical
representation of the simulator is shown in Fig. 5.1. Recall that in the case of a controlled
reentry, the simulation starts with the deorbiting model. The deorbiting model takes as input
the initial orbit elements, the deorbiting boost characteristics (time, amplitude and orientation)
and returns the object flight conditions at 120 km of altitude. In parallel, the aerodynamic
solver (ARPEGE) generates the aerodynamic tables function of the object orientation, Mach
number and Knudsen number based on the object geometry represented in Fig. 5.2. Using the
aerodynamic tables and the flight conditions at 120 km, the trajectory solver BL43 coupled to the
thermal solver ADRYANS V4 is launched. It returns the object position, velocity, temperature
and mass evolution over time. This information is directly used by the probabilistic breakup
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Figure 5.1: Breakup simulator

model to return the breakup probability distribution. The probabilistic model described in
section 3.2.2 defines two epochs tinit and tend between which breakup can occur uniformly. To
define tinit and tend an object-oriented approach is chosen. The upper stage structure is composed
of a shell that is heated and the internal components that are release during the breakup. The
quantities tinit and tend depend on the shell temperature and the percentage of ablation.

We compute the flight conditions (position and velocity) at different times of the reentry
before and at breakup. We are also interested in the object temperature and the convective heat
flux.

5.1.2 Object description

In a GTO controlled reentry, the upper stage is deorbited from its equatorial GTO orbit. The
deorbiting maneuver consists of a final backward boost fired to slow down the upper stage and
make it fall back on Earth. Fig. 5.2 illustrates the upper stage external structure. It is mostly
composed of aluminum and weighs 7000 kg (see Table 5.1). The shell weights 3000 kg and is
made of aluminum. Recall that the mode ADRYANS V4 can only consider simplified shapes.
In this test, the upper stage is approximated with a cylinder to compute the heat flux. The
aerodynamic forces are computed using the full object geometry.
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Variable Value
Internal mass 4000 kg
Shell mass 3000 kg
Material composing the shell Aluminium
Dimensions diameter 4.5 m , length (with nozzle) 7 m

Table 5.1: Case description

Figure 5.2: Upper Stage mesh

5.2 Input uncertainties

In this study, we consider four primary sources of uncertainties: the material characteristics, the
initial flight conditions, the atmosphere model parameters, and the breakup model parameters,
for a global number of uncertainties of twenty (20). This list does not include the uncertainty
intrinsic to the breakup model. The list of uncertainties is summarized in table 5.2.

5.2.1 Material characteristics

The thermal module uses the fusion temperature (Tfus), the fusion enthalpy (Hfus), the emissivity
(ε) and density (ρM ). The material characteristics such as the density, the fusion temperature,
and the fusion enthalpy are directly measured and therefore are modeled as Gaussian variables
and reported in table 5.2. The emissivity uncertainty is more complex to model as it varies along
the trajectory. Studies have shown that the reacting flow alters the surface of the aluminum
shell during a reentry [6, 59, 8]. While the aluminum emissivity usually varies between 0.3
and 0.5 depending on the surface polishing, due to oxidation, it can reach 0.8. [59]. For this
reason, we consider a uniform distribution ranging from 0.3 to 0.8 for the emissivity uncertainty.
The influence of oxidation on the other material characteristic uncertainties is neglected. Since
the aluminium oxide layer is extremely thin, the mass of oxide is negligible compared to the
aluminum mass. Nevertheless, surface changes can significantly affect the object thermal response.
The aluminum oxide fusion temperature is much higher than for aluminum. Consequently the
radiative heat flux could be significantly underestimated as observed in [8].

5.2.2 Initial conditions

Initially, the upper stage is orbiting on a GTO orbit characterized by its apogee, perigee,
inclination, ascending node longitude, perigee argument and true anomaly. The upper stage
leaves its initial orbit by rotating and firing a final deorbiting boost using the main thruster.
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A deorbiting boost slope at 180 degrees yields a maximum velocity reduction. The deorbiting
maneuver conditions are not perfectly known for the following reasons:

• The orbit is not perfectly known, these uncertainties are reflected through independent
uniform uncertainties in the orbital elements.

• The deboost amplitude and direction is only partially known (uncertain quantity of
propellant, unknown object orientation before deorbiting, etc.); hence they are modeled as
uniform distributions.

5.2.3 Atmosphere model parameters

The atmosphere conditions (temperature, density, and pressure) are fluctuating quantities
depending on the time of the day, the day of the year, the solar activity or the Earth magnetic
activity that are a priori unknown in our case. The chosen atmosphere model (MSIS00 [54])
takes as inputs the time of the year in days, the time of the day, the solar activity or the Earth
geomagnetic index. We consider all those parameters as random variables. As the time of reentry
is unknown, we assume time distributions as uniform distributions over the year. We also model
the solar flux intensity and the Earth magnetic activity index as uniformly distributed random
variables which ranges are based on historical measurements [207] and reported in table 5.2.

5.2.4 Breakup model parameters

As mentioned in Chapter 3, our probabilistic breakup model uses two uncalibrated (i.e. not
estimated using experimental data) parameters Tfrag and pabl, defining tinit and tend. The quantity
Tfrag is the limiting temperature above which the object strength is too weak to withstand
aerodynamic forces. Necessarily, Tfrag is smaller than Tfus = 800K. Besides, experimental
studies found that the strength of aluminum greatly reduces as early as 400K [89, 37]. Many
events can trigger fragmentation: the object tumbling can create structural load leading to the
buckling of the structure. Local overheating can lead to the thermal dilatation of the material
and its buckling. Welding joints may also melt or weaken and fail.

The uniform temperature model used in ADRYANS V4 does not allow to account for the
temperature gradient in the upper stage structure that can lead to thermal breakup. It is also
not able to detect joints failure that can lead to a breakup. Moreover, the 3 degree of freedom
model does not allow to account for the aerodynamic load due to the object attitude motion and
the non-uniformity of the heat flux. To account for all the phenomena that cannot be modeled
by our physical model, we model Tfrag as an uncertain parameter. We consider that breakup can
occur as soon as the object temperature reaches 400 K depending on the aerodynamic loading or
local overheating. Hence Tfrag is a uniform random variable ranging from 400 K to 700 K.

Similarly, pabl is the minimum percentage of remaining mass such as the object is still intact.
As this quantity is not known a priori and since it depends on unmodeled breakup phenomena
mentioned before, in this work, pabl varies between 50 % and 70 % uniformly.

Although this work considers an unprecedented number of uncertainties, this list is by no
means exhaustive. A lot of physics discussed in Chapter 2 is neglected. Some physical aspects
such as the erratic attitude motion of the upper stage or complex hypersonic phenomena such as
shock interactions, wall chemistry, gas radiation could not be included in the uncertainty analysis
although they affect the aerodynamic coefficient and the heat flux. Some model inadequacies,
discussed in Chapter 3, are not modeled either: the error induced by the modified Newton
method for computing the aerodynamic coefficients, the heat flux correlation formulae, etc. While
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Variable Description Distribution
ρM material density N (2800., 10.) [kg/m3]
ε material emissivity U(0.3, 0.8)
Tfus fusion temperature N (873., 0.4) [K]
Hfus fusion enthalpy N (350, 3) [kJ/kg]
Aboost boost amplitude U(62, 67)
tboost boost time U(0, 5) [s]
αboost boost inclination U(178, 182) [deg]
βboost boost bearing U(−90, 90) [deg]
apo initial orbit apogee U(35e6, 35e6 + 35e3) [m]
per initial orbit perigee U(254000, 256540) [m]
inc initial orbit inclination U(10, 10.1) [deg]
anl initial orbit ascending node longitude U(−135,−134.9) [deg]
pa initial orbit perigee argument U(130, 130.01) [deg]
tan initial orbit true anomaly U(43, 43.01) [deg]
atmoday reentry day U [1, 365] [day]
atmohour reentry hour U [0, 23] [hour]
solarf solar flux U [65, 240]
ag magnetic index U [2, 75]
Tfrag fragmentation temperature U [400, 700] [K]
pabl ablation percentage U [0.5, 0.7]

Table 5.2: List of uncertainties

the model inadequacy indeed induces an error in the QoI, they are also extremely challenging
to model. Firstly, because they are usually unknown and have to be estimated quantitatively
with high fidelity models or experimental data. Secondly, because they typically have to be
represented with high dimensional models and therefore they could not be included in this study
already featuring twenty uncertainties.

5.3 Uncertainty propagation strategy

In this section, we construct a surrogate model to approximate the mapping between the un-
certainties ξ and the quantities of interest such as the flight conditions at breakup, the object
thermal characteristics at several altitudes or the flight conditions at tinit and tend. The surrogate
model will then be used to propagate the uncertainties in the system described in Fig. 5.1. Out
of the four solvers represented in Fig. 5.1 only two are approximated with a SoGP: the deorbiting
solver and the trajectory/thermal solver. The aerodynamic solver is solely used to construct
the aerodynamic coefficient table and does not depend on the input uncertainties ξ. Therefore
it is not included in the framework. The breakup solver is fully analytical and hence cheap to
evaluate. For this reason, including it into the SoGP presents no advantage.

Depending on the QoI we consider, the breakup solver is not always necessary. In section
5.4.4, for instance, we compute the convective heat flux at several altitudes. Hence, we do not
use the breakup solver. In this case, we can directly apply the SoGP framework to the deorbiting
solver composed with the trajectory solver.

On the other hand, when making the breakup predictions with the breakup solver, the
construction of a surrogate model is more complex. In this case, we need to build the mapping
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between the input uncertainties ξ and the object trajectory that is then used by the breakup
solver to derive the breakup conditions. For a given uncertainty value ξi, the resulting trajectory
is denoted (X(tj , ξi))j∈[0,m] for the position and (V (tj , ξi))j∈[0,m] for the velocity. The dimension
of (X(tj , ξi))j∈[0,m] maybe large, depending on the time sampling rate.

If we were to apply directly the SoGP framework to this problem, we would have to build
a SoGP with the order of m outputs. The computational burden of building this surrogate
model would be prohibitive. To overcome this difficulty, the trajectories are represented on a
reduced basis obtained with the Karhunen-Loéve Expansion presented in 4.1.4. We interpret the
(X(tj , ξi))i,j as the realizations of a stochastic process. The decomposition expresses the large
matrix (X(tj , ξi))i,j in a reduced basis such that :

(X(tj , ξi))i,j ' µ(tj) +
N∑
k=1

√
λkζk(ξi)φk(tj) (5.1)

where the φk are the eigenfunctions that depend on time only and (ζk)k the coefficients that
only depend on the uncertain inputs ξ. The (λk)k are the eigenvalues. Similar expressions are
obtained with (V (tj , ξi))j∈[0,m].

The breakup solver also requires the temperature evolution T (t) and the mass evolution m(t)
to compute tinit and tend. For the temperature evolution T (t) and the mass evolution m(t), the
KLE did not yield a good approximation due to their non stationary behaviors. The object mass
for instance is constant over time until its temperature reaches fusion temperature and then its
mass starts decreasing. This type of behaviors is not well capture by the KLE. To bypass this
problem, we modify the inputs of the breakup solver. Instead of providing the entire trajectory,
temperature and mass evolution, we directly provide the object trajectory between tinit and tend
to the breakup solver. It then samples uniformly along this fragment of trajectory to derive the
breakup conditions and does not need the mass and temperature evolution.

Since tinit and tend depend on ξ, all the fragment trajectories do not have the same duration.
Hence we proceed to a time scaling of each trajectory. As a consequence, with this time scaling,
the absolute breakup time information is lost but it is still possible to sample uniformly on this
modified time scale and recover the breakup distribution.

Finally, the surrogate model used to estimate the object trajectory is the composition of a
SoGP and a KLE. The construction of this surrogate model is detailed in algorithm 6 while the
evaluation step is given in 7. Note that the algorithms are written for the position, but the same
procedure applies for the velocity vector.

The slight drawback of this approach is in line 2 of algorithm 6 : by performing the time
rescaling, we loose the absolute time information. This is obvious in the evaluation step as
algorithm 7 returns X(t̃)t̃∈T̂ instead of X(t)t∈T . Nevertheless, this information loss has no
consequence on the breakup solver that can still sample at breakup time uniformly in T̂ instead
of T and get the same breakup flight condition distribution. Moreover, if needed, the time
scaling could also be learnt by the surrogate model

The advantage of this procedure is that we do not have to reconstruct the mass and
temperature evolutions that could not be easily approximated with a truncated KLE. The
accuracy of the surrogate model is quantified in section 5.4.1.
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Algorithm 6 Surrogate model construction procedure
1: procedure ConstructSurrogate( (ξi)i∈[1,n], (X(tj , ξi))i≤n,j≤m )
2: for i = 1, . . . , n do
3: Truncate the trajectory between tinit and tend : (X(t, ξi))t∈T , where T =

[tinit(ξi), tinit(ξi) + ∆t, . . . , tend(ξi)]
4: Construct the time rescaled trajectory

(
X̂(t̃)

)
t̃∈T̂

with t̃ = t−tinit
tend−tinit

and T̂ =
[0,∆t, . . . , 1]such that X̂(t̃) = X(t)

5: Rescale the trajectory with X̃(t̃, ξi) = X̂(t̃,ξi)−Xinit(ξi)
Xend(ξi)−Xinit(ξi)

6: Construct a KLE of the
(
X̃i(t̃m

)
i,m

using 4.1.4 and return the mean function µ, eigen-
functions (φk)k≤N and coefficients (ζk(ξi))k≤N,i≤n

7: Train a SoGP to learn the mapping between the ξi and the KLE coefficients (ζk(ξi))k,i
and the flight conditions at tinit and tend : Xinit(ξi) ,Xend(ξi)

8: return SoGP,(φk)k≤N ,µ

Algorithm 7 Surrogate model evaluation procedure
1: procedure EvalSurrogate( ξ, SoGP, (φk)k≤N , µ )
2: Evaluate the flight conditions at Xinit(ξ),Xend(ξ) and the KLE coefficients (ζk(ξ)) using

the SoGP
3: Reconstruct the reduced trajectory X̃(t̃) = µ(t̃) +

∑N
k=1
√
λkζk(ξ)φk(t̃)

4: Recover the unscaled trajectory X(t̃) = X(t̃)× (X(tend)−X(tinit)) +X(tinit)
5: return X(t̃)t̃∈T̂

5.4 Results

In this section, we present the results of the uncertainty propagation obtained with the surrogate
model proposed in section 5.3 after having quantified the errors in the surrogate model prediction.

5.4.1 Surrogate model convergence

An accurate surrogate model should be constructed and validated before being used to obtain
the distribution of the QoI. In this section, we perform an analysis of the convergence of the
SoGP strategy illustrated in this work. In particular, we compare the performance of the SoGP
and a single classical GP used as surrogate models. We illustrate the convergence of the upper
stage altitude computed at tinit. The L2 error is calculated using 500 validation samples and
normalized by the output standard deviation. Fig. 5.3 shows the evolution of the L2 error of the
two surrogates models trained with the same LHS training plans.

The results show that the SoGP framework outperforms the single GP by almost an order
of magnitude. Using 1000 training samples, the SoGP reaches an error of 0.1 % of the output
standard deviation. We observe a similar behavior for the predictions of other quantities of
interest presented in this work. This low level of error justifies the use of the SoGP as a surrogate
model of the system. Monte Carlo sampling technique can then be used with the SoGP to
compute the QoI statistics and distribution and carry out sensitivity analysis, at a negligible
computational cost.

To highlight the gain of building a surrogate model compared to standard Monte Carlo
approaches, Table 5.3 summarizes the results obtained when computing the mean and the variance
of the object altitude at tinit, using a fixed computational budget of 600 solver evaluations
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Figure 5.3: L2 error evolution for a SoGP and single GP (BB) surrogate model

Method altitude mean [m] error interval [m] altitude std [m] error interval [m]
Standard MC 71407 (300,299) 4455. (-207, 217)
Single GP 71400 (-10, +10) 4335 (-7,+7)
SoGP 71412 (-10, +10) 4328 (-7, +7)

Table 5.3: Estimation of the first two statistical moment altitude distribution at tinit using 600
SoS evaluations using Monte Carlo, a single GP trained on 600 samples using evaluated 500 000
times or a SoGP trained on 600 samples using evaluated 500 000 times.

representing a cost of around one hour of computation on 28 cores IntelXeon at 2.4 GHz. We
compare three different methods. i) The standard Monte Carlo approach that directly uses
the 600 samples to estimate the mean and variance. ii) The single GP and iii) the SoGP
use the 600 samples to build a surrogate model and then run the surrogate model with 500
000 samples at no additional computational cost. The 500 000 samples evaluated using the
surrogate models are then used to compute the mean and variance of the altitude. Additionally,
a Bayesian statistical error estimate [208] for each estimation is included in Table 5.3. Note
that the surrogate model-based approaches are orders of magnitudes more precise than the
standard Monte Carlo approach since many more samples (500 000 vs. 600) could be used with
the surrogate assisted strategies for the same computational budget.

When comparing two surrogate model-based approaches, the best indicator remains the L2
error computed on a validation set (Fig. 5.3). In the rest of this section, the results presented
are obtained using a SoGP trained with 600 evaluations.

For the breakup predictions, we assess the accuracy the surrogate model composed of the
truncated KLE and the SoGP In addition to the SoGP accuracy, we also assess the error induced
by the KLE over the trajectory computed by the trajectory and thermal solve The overall
absolute errors estimated on a validation set of 500 additional trajectories are reported in table
5.4 and are much smaller than the observed uncertainties. The error includes the contribution
from the expansion truncation, the SoGP error in the KLE coefficients and the approximate
estimation of the eigenvalues and eigenfunctions.
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Variable absolute error
Altitude[m] 20
longitude [deg] 0.02
latitude [deg] 0.002
Velocity [m/s] 0.9

Table 5.4: L2 absolute error averaged over the whole trajectory

5.4.2 Uncertain breakup range

As stated in Section 3.2.2 (see Eq. 3.5), tinit and tend are crucial times in the breakup prediction.
tinit represents the earliest moment at which breakup can occur and defines the lower bound

of the time interval where breakup occurs. Physically, at tinit, the upper stage reaches a critical
temperature for which the upper stage shell is weakened and may not resist to aerodynamic
forces.

tend is the other bound delimiting the time interval. At tend a significant portion of the upper
stage envelope has been ablated, and the chances that the upper stage is still intact are meagre.
As a consequence, we assume that breakup has occurred by that time.

5.4.2.1 tinit prediction

In this section, the objective is to compute the uncertainties in altitude, longitude, latitude and
velocity at tinit. In Table 5.5, the principal statistics of the distributions of altitude, longitude,
latitude and velocity at tinit are reported, namely, the mean, the standard deviation and different
quantiles at 0.5 % 2.5% 50 % 97.5 % and 99.5%. Quantiles are cut points in a distribution
delimiting intervals of same probability. They provide additional information about the shape
of the distribution compared to the mean and standard deviation, in particular, low and high
quantiles provide information about the tails of the distribution. The distribution of altitudes is
widespread since 99 % of the distribution (between the 0.5 % and 99.5 %) lies between 63km
and 81km with a mean and a median around 71km of altitude. The results show that breakup
cannot occur before 81km.

Note that studies considering the reentry of upper stage Delta II or Automated Transfer
Vehicle (ATV) use a breakup altitude at 78 km [75, 49] but most object-oriented software use
a reentry around 75-85 km [38]. Owing to the nature of GTO orbit, the slope at which the
upper stage reenters is high compared to typical reentry of LEO trajectories presented in [75, 49].
As a consequence, the breakup altitude can be lower than the standard 78 km value usually
selected for a LEO satellite reentry. Fig. 5.4 represents the probability density function of the
latitude (5.4a), of the altitude (5.4b), of the longitude (5.4c) and of the velocity (5.4d) at tinit.

Altitude [m] Longitude [deg] Latitude [deg] Velocity [m/s]
mean 71412 -171.97 8.627 9722.8
std 4327 1.3 0.129 81.9
0.5 % 63352 -174.84 8.26 9524.
2.5 % 64367 -174.29 8.35 9553.
50 % 70962 -172.05 8.64 9739
97.5 % 79804 -169.22 8.86 9828
99.5 % 81223 -168.37 8.91 9831

Table 5.5: Main statistics of the flight conditions at tinit
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(a) Latitude (b) Altitude

(c) Longitude (d) Velocity

Figure 5.4: Distributions at tinit

In Fig. 5.4b, the altitude distribution is skewed toward low altitudes. Due to the exponential
increase in the atmosphere density as altitude decreases, the received heat flux given and the
object temperature increase more rapidly at low altitudes than high altitudes. The convective
heat flux scales as the velocity to the cube such that the object velocity is a direct factor leading
to heat production and temperature increase. Hence high-velocity cases lead to high heat flux
and high altitudes at tinit. Consequently, there is a positive correlation between the velocity
and the altitude of tinit. The velocity distribution is also highly skewed toward high speeds that
correspond to cases where tinit is reached at high altitudes. Longitude and latitude distribu-
tions are relatively symmetrical although slightly skewed toward high latitudes and low longitudes.

Fig. 5.5 represents the first order Sobol indices for altitude, longitude, latitude and velocity.
For all four variables, the same inputs account for most of the variance while the majority of
the inputs have no significant influence on the output variance. The predominant variables
are Tfrag which is the temperature at tinit and the deorbiting maneuver uncertainties such as
the boost orientation and amplitude. The variance in altitude and velocity are mostly due to
Tfrag (respectively 89 % and 95%). The rest is due to the boost amplitude and orientation
uncertainties. For latitude and longitude, Tfrag explains only 10 % of the output variance while
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Figure 5.5: Sensitivity indices at tinit

most of the variance is due to the uncertainties associated with the deorbiting boost. Note
that the uncertainty in the apogee position has a significant influence in the longitude variance
only. Although relatively small, the reentry time affects the altitude at tinit. The atmosphere
density is dependant on the reentry time in particular at high altitude, and in turn, it changes
the convective heat flux.

5.4.2.2 tend prediction

The time tend is the latest time at which the object can breakup, therefore the object is very
likely to have fragmented before reaching tend. As for tinit, table 5.6 summarizes the distribution
characteristics of altitude, longitude, latitude and velocity at tend. The altitude distribution
ranges from 51780 to 65750 meters such that the support of the distribution is a bit smaller
than for tinit. As for the tinit case, the altitude pdf represented in Fig. 5.6b is slightly skewed
toward low altitudes. Concerning the velocity, the uncertainties have significantly increased since
the standard deviation is 81 m/s at tinit and 173 m/s at tend. The shape of the distribution
plotted in Fig. 5.6d is also very different for the two times. At tend, the PDF is much less skewed
but still positively correlated to the altitude. The uncertainties in longitude and latitude are
also larger at tend than at tinit as shown in Fig. 5.6a and 5.6c. Contrary to tinit, at tend, the
longitude and latitude are highly correlated with the velocity and the altitude. High velocity
cases are likely to lead to high altitude breakup than slower one. Finally note that the object
velocity remains extremely high even at altitudes as low as 50 km.

Figure 5.7 shows the first order Sobol sensitivity indices for the four quantities of interest at
tend, namely altitude, latitude, longitude and velocity. The deorbiting maneuvering uncertainties
are the predominant sources of uncertainties for all quantities of interest. In the case of velocity
(and altitude to a lesser extent), the uncertainty in the breakup model parameter pfrag explains
15 % and 2 % of the output variances. As for tinit, the uncertainties in the apogee position of the
initial orbit influences the longitude at tend. While the range of variation of pfrag is voluntarily
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Altitude [m] Longitude [deg] Latitude [deg] Velocity [m/s]
mean 56714. -169.35 8.37 8644.
std 2778. 1.45 0.16 173
0.5% 51782. -172.2 7.9 8247
2.5% 52466. -171.8 8.0 8323
50% 56289. -169.5 8.4 8637
97.5% 63260. -166.2 8.6 9001
99.5% 65750. -165.1 8.7 9097

Table 5.6: Main statistics of the flight conditions at tend

chosen very large (between 50 % and 70% of the shell mass) for robustness, its influence is still
secondary compared to the deorbiting uncertainties. This result contrasts with the sensitivity
results at tinit where most of the uncertainty comes from the uncalibrated Tfrag parameter model.
Note that the uncertainties in the material characteristics have a minor influence in the QoIs,
even at tend and despite the vast uncertainty range used to model the emissivity changes due to
surface oxidation. This result shows that the material characteristics are known well enough
compared to the other sources of uncertainties.

As expected, the altitude range breakup covered by our breakup model is widespread from
altitudes as high as 81km down to 52km. The sensitivity analysis showed that most of the
uncertainty in the estimation of the flight conditions for tinit and tend is mostly due to the poorly
calibrated breakup model parameters pabl and Tfrag, and the deorbiting manoeuvre uncertainties.
To improve the predictive ability of the model, the model parameters should be calibrated either
with experimental results or high fidelity simulations of the breakup.



5.4. RESULTS 115

(a) Latitude (b) Altitude

(c) Longitude (d) Velocity

Figure 5.6: Flight conditions distributions at tend

Figure 5.7: Sensitivity indices at tend
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Figure 5.8: Longitude distribution at 100km, 90km, 85km, 80km, 70km

5.4.3 Uncertainty evolution along the trajectory

In this section, we consider the evolution of the uncertainties in the position, velocity and thermal
properties of the upper stage along the trajectory where the breakup has a low probability of
occurring (i.e. before 70km). The objective is to understand better how the uncertainty in the
object position evolves with time. We consider several altitudes: 100km, 90km, 85km, 80km
and 70km. In each case, we observe the longitude, latitude, velocity, convective heat flux and
radiative heat flux.

Longitude In Fig. 5.8, the pdf for longitude at the altitudes of 100km, 90km, 85km, 80km
and 70 km are represented. While at 100km, the pdf is fairly symmetrical, it becomes larger
and more skewed as the object falls on Earth. The sensitivity analysis presented in Fig. 5.9
shows that the longitude exclusively depends on the deorbiting uncertainties (mostly the boost
orientation and the boost amplitude). While it is not surprising that the material characteristics
do not influence the position of the object before the breakup, it is interesting to observe that the
atmosphere uncertainties also have no influence on the longitude at any altitude. The sensitivity
indices vary with altitude significantly. The uncertainties in the initial orbit (apogee and perigee
positions) have a significant influence at high altitudes, but their influence reduces at lower
altitudes. Meanwhile, the impact of the deorbiting boost amplitude increases as the altitude
decreases.

Latitude Fig. 5.10 illustrates the pdfs of the object latitude for different altitudes. As for the
longitude, the distributions become wider and more skewed as the altitude decreases. Fig. 5.11
illustrates the sensitivity indices for the different altitudes. As for the longitude, most of the
uncertainty comes from the unknown deorbiting conditions. On the other hand, the initial orbit
uncertainties have a much smaller influence on the latitude than the longitude. Note that further
analysis showed that the first order Sobol indices decrease with the altitude, while higher order
interactions between the deorbiting boost orientation angles increase.
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Figure 5.9: Longitude sensitivity index at 100km, 90km, 85km, 80km, 70km

Figure 5.10: Latitude distribution at 100km, 90km, 85km, 80km, 70km

Velocity The reentry considered here is a high-speed reentry compared other human-made
object reentries. For instance reentries from LEO would be around 6.5 km/s to 7km/s while
this one is around 9.5 km/s. Fig. 5.12 represents the distributions of the velocity at different
altitudes. At 100km, the uncertainties in the velocity are very small as the distribution features
a standard deviation of 1.72 m/s and a mean value of 9833 m/s. As the object falls, the standard
deviation slightly increases from 1.8 m/s at 90 km to 2.2 m/s at 85km and then 3.9 m/s at 80
km. Note that the object mean velocity also increases between 100 km and 85 km from 9833
m/s to 9840 m/s. For this range of altitude, the atmospheric density is extremely low, and the
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Figure 5.11: Latitude sensitivity index at 100km, 90km, 85km, 80km, 70km

Figure 5.12: Velocity distribution at 100km, 90km, 85km, 80km, 70km

Earth gravity force is larger than the drag, resulting in an increase in velocity until an altitude
around 80 km where the object meets denser layers of the atmosphere and starts slowing down
due to atmospheric drag. At 70km, the object velocity reduces to 9717 m/s on average, but the
uncertainty greatly increases as shown in Fig. 5.12. We observe a highly skewed distribution
with a heavy tail toward low values around 9400 m/s.

The sensitivity indices presented in Fig. 5.13 are very different, depending on the altitude
considered. At 100km, the uncertainties in the apogee position of the initial orbit are predominant
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Figure 5.13: Velocity sensitivity index at 100km, 90km, 85km, 80km, 70km

with over 90 % of the altitude variance explained, but it plummets as the object reaches lower
altitudes to become negligible at 70km eventually. The uncertainties in the deorbiting maneuver
also gain in influence as the object falls back on Earth. One interesting exception is the deorbiting
boost amplitude that is nearly 0 at 85km. At this altitude, the object reaches its maximal
velocity due to the gravity acceleration and the thin atmosphere. Later, when the object meets
the denser layers of the atmosphere, the atmospheric uncertainties have more and more influence
on the velocity due to atmospheric drag. This effect is directly reflected in the sensitivity indices
of the time of reentry and to a lesser extent in the geomagnetic index and solar flux. Note that
the atmospheric density and temperature are particularly uncertain for high altitudes above 80
km but the become significantly smaller at lower altitudes [3]. For this reason, the influence of
the sources of uncertainties related to the atmosphere starts decreasing when reaching 70 km.
Note that at 70 km the first order Sobol indices only represent 70 % of the total variance. The
residual variance comes from higher-order interactions between the boost amplitude and the
boost orientation.

5.4.4 Uncertain thermal quantities

The uncertainties in the object temperature have a significant impact on our ability to accu-
rately predict breakup since the breakup model presented is exclusively based upon thermal
considerations. In this section, we focus on three significant quantities computed at different
altitudes of the trajectory of the upper stage, namely, the convective heat flux, the radiated heat
flux and the object temperature.

From 120 km to 70 km, the convective heat flux keeps increasing as the upper stage meets
denser and denser layers of the atmosphere. At 70 km it reaches 42 MW. Fig. 5.14 reports the
pdf of the convective heat flux distributions on a log scale. Although the distribution supports
seem to shrink as the altitude decreases due to the log scale, the standard deviation doubles
from a 364 kW at 100km to 670 kW at 70 km.
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Figure 5.14: Convective heatflux distributions at 100km, 90km, 85km, 80km, 70km

Figure 5.15: Convective heatflux sensitivity indices at 100km, 90km, 85km, 80km, 70km

The Sobol indices plotted in Fig. 5.15 show that most of the convective heat flux variance
comes from uncertain atmosphere model parameters, namely the solar flux, the Earth magnetic
index and the time of reentry. When the object is above 80km, the time of reentry accounts for
around 70-80 % variance while the rest is due to the Earth magnetic activity. At 70 km, the
uncertainties associated with the atmosphere, except the reentry day, lessen. Simultaneously, the
uncertainties in the deorbiting maneuver conditions become more and more dominant influencing,
in particular, the velocity of the object and therefore the convective heat flux.



5.4. RESULTS 121

Figure 5.16: Radiated heatflux distributions at 100km, 90km, 85km, 80km, 70km

The second heat flux contribution of ADRYANS V4 (see eq. A.7), is the radiated heat flux.
The heat radiated by the object is directly dependent on the temperature and the emissivity
of the object through Stefan Boltzmann law (Eq. 2.5). We report the pdf of the heat flux
radiated at different altitudes on a log scale in Fig. 5.16. As for the convective heat flux, it
increases as the altitude decreases. Note that it remains one order of magnitude smaller than
the convective heat flux at this state of the reentry. At 100km, the radiative heat flux dis-
tribution is almost uniform, but it shifts toward a more bell-shaped curve as the altitude decreases.

The sensitivity analysis results summarized in Fig. 5.17 show that most of the variance is
due to the emissivity variance. This influence is strong at 100km, and it diminishes with the
altitude to reach less than 40 % of the variance at 70 km. This observation is coherent with the
uniform-like shape of the distribution above 80 km since the emissivity, modeled as a uniform
distribution, is directly proportional to the heat flux (Eq. 2.5). The influence of the deorbiting
maneuver uncertainties become more and more important as the altitude decreases to reach a
total of 45 % at 70 km. The atmosphere uncertainties have limited influence in the radiated heat
flux around 90 km and they become completely negligible at 70km. At 80 km the first order
Sobol indices represent 80 % of the total variance. The rest is due to higher-order interactions
between the deorbiting boost orientation uncertainties αboost and βboost.

Figure 5.18 shows the evolution of the object temperature distribution at different altitudes.
The uncertainties increase as the object reaches lower altitudes. In fact, at 100 km of altitude, 95
% of the probability density lies between 307 and 315 K whereas at 80 km it ranges between 518
K and 677 K. Note that at this altitude, the distribution is skewed toward high temperatures.

The sensitivity analysis presented in Fig. 5.19 also changes with altitude. For high altitudes,
the time of reentry is the largest contributor to variance with more than 85 % of the variance
explained at 100km but its influence vanishes to only a few percents of the variance at 70 km. On
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Figure 5.17: Radiated heatflux sensitivity index at 100km, 90km, 85km, 80km, 70km

Figure 5.18: Object temperature distributions at 100km, 90km, 85km, 80km, 70km

the other hand, the uncertainties in the deorbiting boost become more and more important as the
object moves along the trajectory. Note the minimal influence of the initial orbit uncertainties
and in particular the perigee position. The uncertainty in the object emissivity does not influence
temperature for this portion of the trajectory although it dramatically affects the radiated heat
flux. This observation comes from the fact that the temperature increase is mostly due to the
convective heat flux that is one order of magnitude higher than the radiated heat flux.
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Figure 5.19: Object temperature sensitivity indices at 100km, 90km, 85km, 80km, 70km

5.4.5 Uncertain breakup conditions

The objectives of this work include deriving the flight conditions when breakup occurs. Those
quantities are of primary interest for survivability tools in order to compute the on-ground
risk. In this work, the breakup model bypasses complex and expensive computational models
and assumes it occurs at a random time tfrag between tinit and tend according to a uniform
distribution. There are therefore two sources of randomness in this model. The first one comes
from the input uncertainties ξ that characterize the distribution of tinit(ξ) and tend(ξ) presented
in Section 5.4.2.1 and 5.4.2.2. The second level of randomness comes into play when tfrag is
sampled from U(tinit(ξ), tend(ξ)) (see eq. 3.5). In other words

tfrag = tinit(ξ) + ufrag(tend(ξ)− tinit(ξ)) (5.2)

where ufrag is a uniform random variable between 0 and 1 that represents the second level of
uncertainty. To compare the influence of the probabilistic aspect of the model with the other
uncertainties, the random variable ufrag is viewed as a random input of the breakup model and
is included in the sensitivity analysis.

At breakup, the quantities of interest are the altitude, longitude, latitude and velocity (their
distributions are represented in Figs. 5.20a 5.20b, 5.20d and 5.20c). According to our model,
the breakup occurs at random between tinit and tend according to a uniform distribution. The
range of possible breakup goes from 50 km to more than 80 km. The most probable breakup
altitude is around 62km. Certain studies assume a constant breakup at 80-78 km of altitude
[49]. While this study confirms that, in the case of a GTO re-entry of a upper stage, a breakup
can take place at 80km, it is more likely to happen at lower altitudes. Note that the breakup
velocity is extremely high ranging from 8250 m/s to 9800 m/s, in comparison with the average
reentry velocity at 120 km of 9800 m/s. High-velocity breakups usually occur at high altitude
for reentries with relatively low slope while the low-velocity scenarii lead to breakups at lower
altitudes.
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(a) Altitude (b) Longitude

(c) Velocity (d) Latitude

Figure 5.20: Flight conditions distributions at breakup

Figure 5.21 summarizes the results of the sensitivity analysis. The main contributors to the
breakup conditions can be divided into two groups: the deorbiting conditions (Aboost,αboost,βboost)
and the breakup model parameters (Tfrag, pfrag and ufrag). Recall that ufrag represents the
uncertainty due to the random nature of the breakup model (see eq. 5.2). For the altitude and
velocity, the main contributors are ufrag and to a lesser extent Tfrag which triggers tinit. Hence,
the stochastic nature of the breakup model is the most significant contribution to the velocity
and altitude variance compared to the other uncertain inputs. Altogether, ufrag and tinit explain
almost 80 % of the variance in the altitude and more than 90 % of the velocity variance. For
those two variables, it is clear that the breakup model is responsible for most of the uncertainties
and that higher fidelity breakup models could reduce the uncertainties significantly. Regarding
the longitude and the latitude of the breakup, the analysis of variance shows that the breakup
model parameters account for 30% of variance while the rest comes from the deorbiting boost
orientation and amplitude. For longitude, a few percents of the variance come from uncertainties
in the apogee altitude of the initial orbit.



5.5. CONCLUSION 125

Figure 5.21: Sensitivity indices at breakup

5.5 Conclusion

In this work, we tackle the problem of predicting space object breakup. A probabilistic approach
is chosen to model the uncertainties. In particular, we have shaped two levels of uncertainty. In
the first one, a stochastic breakup model is proposed and implemented to predict the reentry of
an Upper Stage deorbited from a GTO orbit. The second level deals with a large number of
uncertain input model parameters. We supplement the simulator with uncertainty quantification
tools from chapter 4 that efficiently compute probability distributions of the breakup conditions
and other critical quantities at different reentry times at a reasonable computational cost. The
sensitivity analysis completes the uncertainty analysis with the identification of the most critical
uncertain variables. By simultaneously considering a large number of uncertainties, we can
compare the influence of each uncertainty on the output.

We have investigated the evolution of the uncertainties along the upper stage trajectory and
the breakup condition distributions. For the object longitude, the predominant uncertainties
are the initial orbit characteristics whereas the velocity, the longitude and the latitude are
mostly influenced by the deorbiting boost maneuver uncertainties. The material characteristic
uncertainties have a minor influence in this scenario showing that the material models are
relatively precise compared to other sources of uncertainties, despite the large uncertainty range
selected for the aluminium emissivity. This result is explained by the low contribution of radiative
heat flux to the total heat flux. Different results would be expected with materials with higher
fusion temperature. Regarding the breakup prediction, the analysis shows that for reentries
from a GTO orbit, the breakup occurs between 80 and 52 km. The variance-based sensitivity
analysis showed that the breakup model parameter uncertainties are responsible for most of the
uncertainties when computing the object flight conditions at breakup. This result suggests that
the breakup conditions could be more precisely known by calibrating the model on experiments
or refining the solver with high fidelity models.

The predictions could be improved by considering the high fidelity model presented in the
appendix B. The high fidelity model features a six degree of freedom trajectory solver to account
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for the object attitude motion and a more realistic model for the object thermal response. In the
next chapters, we focus on assessing the survivability of the fragments released after the breakup
using the survivability solver presented in Chapter 3



Chapter 6

Surrogate Modelling for Risk
Estimation

After the object breakup, the fragments are released. In some cases, the fragments may be
disintegrated entirely in the atmosphere depending on the material composition and the amount of
energy they receive from the external flow. In other cases, the fragments survive and impact the
Earth surface. The survivability solver assesses the object survivability and computes the impact
location if any. Based on the survivability solver output, several risk metrics can be derived: the
impact zones, the casualty area or the expected number of victims.
In this chapter, we propose a novel surrogate modeling approach to emulate the survivability
solver and predict the expected number of victims. The mapping between the number victims and
the input uncertainties is viewed as the composition of a classifier that assesses the survivability
of a fragment and a continuous function that maps the input uncertainties to the impact locations
if the object survives. This formulation permits to construct a surrogate model of the survivability
solver using a classifier and a GP. Additionally, an active learning method aiming at reducing
the estimated risk error is presented and tested on analytical tests and a toy reentry problem.
The contributions of this chapter are :

• A novel formulation of the survivability problem and the expected number of victims (section
6.1);

• A dedicated active learning strategy to reduce the estimated risk error (section 6.3);

• A series of analytical tests and a fragment reentry prediction test to validate the method
7.5.

6.1 Problem formulation

The space debris mitigation guidelines suggest several measures to protect human assets despite
the uncertainties associated with the prediction. The expected number of victims is a risk
metric that can be estimated from population density maps and the object impact location.
The guidelines define the on-ground risk as the expected number of victims, or the probability
of having at least one victim, with a threshold value typically set to 10−5 [30]. In this chapter,
we focus on the computation of an accurate estimation of the risk distribution considering the
system uncertainties.

We are interested in both outcomes of a survivability solver: state if the object survives
upon reentry and if it is the case, the impact location on the Earth surface. As in the previous
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chapters, ξ is the vector of random inputs, with values in Ω ⊂ Rn and probability density
function pξ. For a given input condition ξ, the solver returns the information disintegrated or not
disintegrated and in the latter case the impact location. In this work, we model the prediction
of the survivability solver as the output of two functions B and Y . We have B : Ω 7→ {0, 1} and
Y : Ωb ⊆ Ω 7→ Y where Ωb = {ξ ∈ Ω|B(ξ) = 1}. The function B assesses the survivability of the
space object for a given ξ: if the object burns it returns 0 otherwise it returns 1. Y is a mapping
between the input ξ and the impact location if the object survived. The graphical representation
of the model is given in Fig. 6.1. Hence the definition of Y depends on B. The output space
Y is the impact location space expressed in terms of longitudes and latitudes. Hence we have
Y ⊆ [−180, 180]× [−90, 90].

Figure 6.1: Graphical representation of the risk estimation.

To compute the risk, we define the hazard function H : Y 7→ R+. The hazard function
depends on the fragment casualty area and the human population density. The hazard function
is assumed to be finite on Y and continuously derivable. For a particular fragment, H depends
on the impact location only. Hence the risk for a given fragment is defined as R : Ω 7→ R+ :

R(ξ) =
{

0 if B(ξ) = 0 (the object burns up)
H(Y (ξ)) if B(ξ) = 1 (the object reaches the ground) . (6.1)

Recall that Y is not defined for ξ ∈ Ω such that B(ξ) = 0.
Ultimately, we are interested in computing the statistics of R(ξ) such as its expectation,

Eξ [R(ξ)], variance, Vξ [R(ξ)], or its quantiles. Monte Carlo methods can estimate these statistics,
but since each sample requires a solver evaluation, the computational burden may become
formidable, especially for low quantiles. A solution is to construct a surrogate model of R
with a limited number of solver evaluations. The surrogate can then be used in place of R to
generate Monte Carlo samples. In [49] for instance, they used a polynomial approximation of
the survivability solver to estimate the distribution of the impact location, while the survivability
distribution was not derived. Similarly, [52] proposes to use kriging surrogate models to estimate
the impact zone assuming that the object always survives upon reentry. However, to the best
of our knowledge, the construction of surrogate models that emulate the survivability solver
for both the survivability and the impact location remains an open problem. A priori, the risk
function R is discontinuous, and the polynomial or standard kriging based methods are ill-suited.

In this work, we propose an original approach that constructs a surrogate model suitable
to predict both the survivability and the impact location, and that can adequately address the
discontinuity in the risk response. The construction relies on the use of Gaussian Processes for
regression and classification. Our approach builds a surrogate model that accurately approximates
the expected number of victims as defined in Chapter 2. High levels of accuracy are achieved by
using an active learning method specifically designed to reduce the error in the risk estimation.
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In Section 6.2, we introduce our surrogate model construction strategy, in Section 6.3
we present our active learning strategy. Finally, in Section 6.4, we test the surrogate model
construction strategy on an analytical problem and a simple object reentry problem.

6.2 Surrogate model construction
In this section, we illustrate how to construct R̃, which is an approximation of R. We construct
two surrogate models of Y and B denoted as Ỹ and B̃. One critical point when building Ỹ is
the input space characterization. The function Y is defined on Ωb that depends on B. Since B is
an unknown function we wish to approximate, Ωb is also unknown. Instead, we propose to build
a surrogate model of an arbitrary extension of Y , Ŷ : Ω 7→ Y such that Ŷ (ξ) = Y (ξ) ∀ξ ∈ Ωb.
We further define

R̂(ξ) = H(Ŷ (ξ))B(ξ). (6.2)
Note that R̂(ξ) = R(ξ) ∀ξ ∈ Ω regardless of the values taken by Ŷ outside of Ωb. The value of
Ŷ outside of Ωb can be set to an arbitrary finite constant as it is multiplied by 0 outside Ωb.

We propose to build R̃ as an approximation of R̂. To do so, we construct a GP Ỹ and a GP
classifier B̃ (see section 4.1.4 ) surrogate models of Ŷ and B such as R̃ is defined as :

R̃(ξ) = H(Ỹ (ξ))B̃(ξ) (6.3)

This formulation presents several advantages. First, it is cheap to evaluate since the hazard
function H is algebraic and Ỹ (ξ) ,B̃(ξ) are GPs, therefore R̃ is also inexpensive. Second,
compared to a surrogate model that would directly try to learn R, the proposed formulation
bypasses the problem of building a surrogate model of a discontinuous function.

Note that one could construct a surrogate model of H ◦ Ŷ instead of just Ŷ . The resulting
approximation of the risk would not be more advantageous than ours in terms of evaluation
computational cost since the hazard function is purely algebraic. On the other hand, we believe
that our approximation would feature lower level of approximation error. The function H is
challenging to approximate because population density is extremely unevenly distributed. There
are empty regions (for instance oceans) where the population density is null and highly populated
regions (cities) where H is large. The function H is expected to have localized high-intensity
peaks and nearly flat responses otherwise. This behaviour makes the surrogate H ◦ Y unlikely to
perform well compared to a surrogate model of Ŷ . This is why we prefer to build a surrogate
model of Ŷ and directly use H.

We use Gaussian Processes (GP) for regression and classification to construct Ỹ and B̃ (see
section 4.1.4). We define XB and XY as two subsets of Ω, containing the input training samples
for B̃ and Ỹ . Note that XY ⊂ XB. Using the Ỹ and B̃ constructed, we obtain:

R̃(ξ) = H(Ỹ (ξ))B̃(ξ). (6.4)

As Ỹ and B̃ are stochastic, so is R̃. To make predictions, we define

R̃pred(ξ) = H(µY (ξ))× 1π̄(ξ)>0.5. (6.5)

The variance of R̃(ξ) is given by :

V
[
R̃(ξ)

]
= V

[
H(Ỹ (ξ))

]
E
[
B̃(ξ)2

]
+ E

[
H(f̃(ξ))

]2
V
[
B̃(ξ)

]
= V

[
H(Ỹ (ξ))

]
p(ξ) + E

[
H(Ỹ (ξ))

]2
(1− p(ξ))p(ξ) (6.6)

' ∇H(µY (ξ))ΣY (ξ)∇H(µY (ξ))T p(ξ) +H(µY (ξ))2(1− p(ξ))p(ξ), (6.7)
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The new variable p is the membership probability. It is estimated in two different ways that will
be explicated later. The first term in Eq. (6.6), denoted VY = V

[
H(Ỹ (ξ))

]
p(ξ), corresponds to

the variance induced by Ỹ used to predict the object impact location whereas the second term,
denoted VB = E

[
H(Ỹ (ξ))

]2
(1 − p(ξ))p(ξ) corresponds to the contribution to variance of the

classifier B̃. If V
[
R̃(ξ)

]
is interpreted as the uncertainty in the predicted risk, each of the terms

in eqs. 6.6 and 6.7 corresponds to the contributions from Ỹ and B̃.

As mentioned earlier, p can be evaluated in two different ways, depending on the sigmoid
function that is used in the GP classifier (see section 4.1.4). In this work, we consider the probit
function and the Heaviside function I(x) = 1x>0. We define:

p1(ξ) =
∫ 1

1 + exp(l(ξ))p(l)dl (6.8)

and
p2(ξ) =

∫
1l(ξ)>0p(l)dl = Φ

(
µl(ξ)
σl(ξ)

)
(6.9)

where Φ is the CDF of a standard Gaussian and l is the latent GP defined in section 4.1.4. With
p2, the predictions are harder than with p1. The two probabilities are implemented in Eq. (6.7)
and the resulting predicted variance are denoted

V1 = ∇H(µY (ξ))ΣY (ξ)∇H(µY (ξ))T p1(ξ) +H(µY (ξ))2(1− p1(ξ))p1(ξ) (6.10)

and
V2 = ∇H(µY (ξ))ΣY (ξ)∇H(µY (ξ))T p2(ξ) +H(µY (ξ))2(1− p2(ξ))p2(ξ). (6.11)

Note that the latent GP posterior is estimated using expectation propagation and a probit
function in both cases (see section 4.1.4 for details.

6.3 Risk-based active learning strategy
In this work, we propose an active learning criterion to improve both the classifier B̃ and Ỹ to
get a precise estimate of the ground risk R. We suppose to have already initial training sets
XY and XB and we wish to enrich with additional training samples. Using XY and XB, R̃(ξ) is
constructed. The objective is to minimize the integrated L2 error. To estimate the L2 error, we
use the predictive variance derived in Eq. (6.7). Hence the averaged L2 error is:

ε2 =
∫

Ω
V
[
R̃(ξ)

]
pξ(ξ)dξ. (6.12)

The objective is to add training points to reduce the quantity ε2. We define the training
distribution G valued in Ω with probability density distribution fG. We further define:

fG(ξ) = ZGV
[
R̃(ξ)

]
pξ(ξ), (6.13)

where ZG is a normalizing constant such that fG integrates to one over Ω. Additional training
samples are generated by sampling from G. Once samples have been added to XB and XY , R̃
should be updated. The number of samples to be added to XB and XY between two model
updates is problem dependent. The most accurate approach would be to update the model
R̃ and fG after every sample addition. However, in certain cases, the solver can be evaluated
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in parallel on k processes so that the computational cost of adding one or k points is simi-
lar to adding 1. In this case, it may be preferable to sample k points from fG between two updates.

Sampling from the distribution with non-normalized pdf is a well-studied problem. Two
classical ideas were tested in this work: the rejection sampling and the MCMC sampling [209].
The rejection sampling was eventually selected for its simplicity and robustness to multimodal
distributions.

In section 4.1.5, we observed that most AL strategies require the resolution of an optimization
problem (IMSPE, MMSPE, etc.). Our approach however is inherently stochastic and does not
require to solve an optimization problem. It is also well suited for classification problems. One
alternative we tested for this problem was to sequentially add training points where the predicted
variance was maximum. The issue with this approach is that the predictive variance is always
maximal along the classifier boundary, where the risk is maximum. As a result, the active learner
systematically added samples at the same location. This approach is not only inefficient for
reducing the error but it also creates numerical instabilities when training the GPs. By sampling
training points from G, we aim at finding a balance between sampling in very high uncertainty
regions that represent a small volume of Ω and less uncertain regions that represent a larger
volume in Ω. In our approach, we hope to sample in high uncertainty regions as long as the
probability weight in these regions is significant. Otherwise, the active learner will more likely
improve the prediction in less uncertain but more probable (or larger) regions.

6.4 Results

In this section, we assess the performance of the proposed approach for constructing an accurate
surrogate model of R on an analytical case and an atmospheric reentry test case. In the analytical
case, we consider three hazard functions featuring a uniform, unimodal and multimodal behavior.

In the uniform case, the hazard function is constant over Y such that the second term
in (6.6) is zero. As a consequence, the accuracy of the impact location predictor Ỹ does not
influence the accuracy in R̃. The problem reduces to a classification problem where the impact
location does not matter; only the survivability information affects the risk. The two other
hazard functions (unimodal and multi-modal hazard) vary in space. For those cases, the sec-
ond terms in Eq. (6.6) (or (6.7)) may dominate in regions where the hazard function varies rapidly.

For each hazard function, the following four training approaches are compared:

• The naive approach generates training samples using the distribution of ξ regardless of Ỹ
and B̃.

• The AL-Risk approach is a risk-based learning strategy where the active learner enriches the
initial training sets with samples with high predicted risk. More specifically the additional
training points are sampled from the random variable D which pdf is equal to:

fD(ξ) = ZDR̃pred(ξ)pξ(ξ) (6.14)

where ZD is a normalizing constant. This active learning strategy is similar to the strategy
presented in section 6.3. The difference is that the AL-Risk approach adds points where
the estimated risk is high and in section 6.3, samples are added where the predicted risk
variance is high.
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• The AL-Probit strategy is the active learning method presented in section 6.3 with the
variance estimate V

[
R̃(ξ)

]
= V1 (see Eq. (6.10)).

• The AL-Heaviside strategy is the active learning method presented in section 6.3 with the
variance estimate V

[
R̃(ξ)

]
= V2 (see Eq. (6.11)).

For the approaches proposed in this work (AL-Probit, AL-Heaviside), we test the influence
of adding several training samples at once to take advantage of the potential parallel evaluation
of a solver. The AL strategies proposed here depend on the current training set through the
predictive variance. However, assuming that the distribution remains almost unchanged with the
addition of a few training points, several training points could be added between two updates
of the predictive variance and the sampling distribution H. The advantage of using such an
approach is the possibility to run the expensive solver in parallel. To verify the influence of
adding several samples between two updates, we considered three cases. In the first case, the
predictive variance is updated at each additional training sample. In the second and third cases,
the predictive variance updated every 10 and 50 additional training samples, respectively. If not
stated otherwise, the numerical experiments are repeated ten times for the analytical 2D case
and the mean performance is reported.

The second test-case presented here deals with the risk associated with the reentry of a debris
over the Pacific ocean. The hazard function used in this case is multimodal, it corresponds to a
case where the object would fall over highly populated islands made up for this study.

In all cases, the error in the estimated risk is defined as :

Err =
√∫

Ω

(
R̃(ξi)−R(ξi)

)2
dpξ(ξ)dξ. (6.15)

It is then approximated with

Err =

√√√√ 1
Nv

Nv∑
i

(
R̃(ξi)−R(ξi)

)2
(6.16)

where (ξi)i≤Nv is the validation set sampled from ξ. For the analytical test Nv = 5, 000, 000
while for the application Nv = 100, 000

6.4.1 2D test case with several risk functions

In this test case, we consider two uncertain parameters, independent, uniformly distributed
between 0 and 1. In particular, we have Ω = [0, 1]2. Survivability mapping is defined as:

B : (ξ1, ξ2) −→
{

1 if f(ξ1, ξ2) = ξ2 − 0.05− 0.3 sin(0.1ξ1)− 0.3 cos(1.1ξ1) exp(−1.3ξ2
1) > 0

0 otherwise
(6.17)

The impact location mapping Y , defined on Ωb = {(ξ1, ξ2) ∈ Ω |b(ξ1, ξ2) = 1} is defined as :

Y : (ξ1, ξ2) −→
(

sin(4ξ2
1)ξ2

2 + exp(−ξ1) sin(ξ1) exp(−ξ1(1 + ξ1)), ξ2
1 + 1

(1 + exp(3ξ1ξ2))

)
,

(6.18)
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Figure 6.2: Representation of R and the survivability boundary associated to B (blue line) and
corresponding to f(ξ1, ξ2) = 0

Unimodal hazard function

The first test is performed with the unimodal hazard function defined as :

H : (y1, y2) ∈ F −→ exp
(
−15((y1 − 0.3)2 − (y1 − 0.3)(y2 − 0.4) + (y2 − 0.4)2)

)
. (6.19)

Using the definition of the risk function from Eq. 6.1, the risk is plotted in Fig. 6.2. For
clarity, the survivability boundary is represented. As expected, the risk is null on one side of the
boundary and varies on the other side depending on the risk value.

The evolution of the L2 error between the risk R and the estimated risk R̃ is presented in
Fig 6.3. The curves represent the results obtained with the naive, AL-Risk, AL-Probit and
AL-Heaviside approaches. The curves are the average prediction over ten realizations of the
experiment except for the naive approach for which 25 realizations were considered. The results
clearly illustrate the advantage of using one of the active learning strategy developed in this
work compared to a purely uniform strategy (denoted naive) or one based on the risk intensity.
To highlight the difference in performance, the AL-Risk and naive are tested with larger training
sets than active learning strategies (up to 1000 samples versus 350 samples for the AL-probit
and AL-Heaviside).

The AL-probit and AL-Heaviside strategies bring a significant error reduction with a much
higher convergence rate than the naive and AL-Risk approaches. From figure 6.3,we observe
that the AL-Heaviside is a bit more accurate than the AL-probit but the difference is limited. In
this test, the error in the risk comes from misclassified samples rather than error due to Ỹ . In
additional tests (not shown here), the risk is estimated using the exact value of Y instead of Ỹ
(R̃B = H(Y )B̃ instead of R̃). The quantity R̃B is the risk prediction if the GP regression were
exact. The use of RB instead of R̃ leads to a relative error reduction around 3 % confirming
that most of the error in the risk prediction comes from the classifier.

In Fig. 6.3, we study the influence of the batch size on the performance of the AL strategies.
The results for three batch sizes and the two strategies AL-Heaviside and AL-probit are presented.
To better observe the difference in performance due to the batch size, a large range of training
sample size is explored. Due to computational cost constraints, the experiments for the batch
size of 1 are only repeated twice and hence present a significant noise. While the asymptotic error
for a given AL method seems to be independent of the batch size, in the first iterations of the
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Figure 6.3: Evolution of the L2 error with the number of training points for the four different
training approaches (2D test, single mode hazard function).To highlight the difference in perfor-
mance, the AL-Risk and naive are tested with larger training sets than active learning strategies
(up to 1000 samples versus 350 samples for the for the AL-probit and AL-Heaviside).

Figure 6.4: Evolution of the L2 error the the AL-probit and AL-Heaviside strategies for different
batch sizes (1,10 or 50).

experiment, the 50 sample batch is outperformed by the other two methods. Beyond 700 samples,
the 50 sample batch finally reaches the same level of error as the other two approaches. The
difference between a batch of 1 and 10 are not clear due to the noise. It seems that the training
strategies trained with batch size 10 are slightly outperformed between 40 and 200 samples. This
test shows that the batch size choice is dictated by the number of training points to be added.
As a rule of thumb, the batch size should not be too large such that the computational budget is
depleted within a dozen iterations.

Training set distribution The AL advanced learning methods add training points according
to a distribution G defined in 6.3. In figure 6.5, the training set is represented (red dots and blue
stars) along with the function Y ◦H in the background and the classifying boundary of function
B in black. The training set represented by the red dots and the blue stars have been generated
using the AL-probit strategy. One part of the training sample set is uniformly sampled (40
points) and represents the initial training set. The rest of the training set (100 training points)
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Figure 6.5: Training set distribution using the sigmoid training strategy. The red dots are
surviving training points while the green stars are disintegrated samples. In the background
is represented the hazard function composed with Y . The black line is the classifier boundary
corresponding to f(ξ1, ξ2) = 0.

have been added in batches of size ten following the AL-probit strategy. The training points
added by the active learner are distributed in regions near the boundary between the two classes
defined by B and where the hazard function takes high values. This distribution was expected
since most of the error is due to misclassification. The first term in Eq. (6.16) is driving the
active learning strategy such that highly enriched regions are located near the boundary where
(p(1−p) is large)and where H is high. Note that the active learner does not try to learn precisely
the classifier boundary where the hazard function is low. This is a key feature of our active
learning criterion that focuses on risky regions where the prediction uncertainty is large.

Note the concentration of training points near the top left corner. In this region, the
membership probability of the GP classifier is significantly lower than one and is coupled with
high H values. Hence, the active learning proposes additional training samples in this region.
This undesirable behavior is not due to the active learning criterion itself but rather to a general
drawback of the GP for classification (and kernel methods in general) that have high predictive
uncertainties in corners where the training point density is necessarily lower.

Predictive error In this work, we use the variance of R̃ as a surrogate of the actual L2 error
between R̃ and R. In this paragraph, we assess the capability of the predictive variance to emulate
the actual error. The predictive variance should be able to capture the relative contribution to
error from the GP classifier and the GP regression. To verify that the contributions are correct
we define:

Ec(ξ) =
(
H(Ŷ (ξ))B̃(ξ)−R(ξ)

)2
(6.20)

that corresponds to the residual error when Ŷ is replaced by Ỹ and

Er(ξ) =
(
H(Ỹ (ξ))B(ξ)−R(ξ)

)2
(6.21)

that corresponds to the residual error when B is replaced by B̃. The quantity Ec measures the
error due to the classifier while Er measures the error due to the GP regression.
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For Ec to be well defined, Ŷ needs to be defined on Ω. For the purpose of the test, we define
:

Ŷ : (ξ1, ξ2) −→
(

sin(4ξ2
1)ξ2

2 + exp(−ξ1) sin(ξ1) exp(−ξ1(1 + ξ1)), ξ2
1 + 1

(1 + exp(3ξ1ξ2))

)
,

(6.22)
We have have that Ŷ = Y on Ωb. The two quantities are compared to the contributions to
predictive variance (VY and VB) in Figs. 6.6a, 6.6b, 6.6c and 6.6d. At first glance, the predictive
errors ratio is in line with the actual error estimate: the error due to the classifier is much larger
than the error due to the GP regression. Comparing 6.6a and 6.6c, we see that the actual error
due to classification is concentrated on the boundary solely. The predictive contribution VB
predicts high error rates in this region too, but also around (0,1) and (0.8,1). Those regions
correspond to high values of H and a membership probability significantly lower than one due
to the lack of samples near the edge of the domain.

Concerning the contribution to error due to regression ( Figs 6.6b and 6.6d), the most
problematic disagreement is located around (0,0). In this region, the object always burns, but the
membership probability remains strictly higher than zero, hence the term VY = V

[
H(Ỹ (ξ))

]
π̄(ξ)

is not null. Moreover, the hazard function varies rapidly in that region and Ỹ has high predictive
variance since Y is not defined in this region and there are therefore no training samples around.
Consequently V

[
H(Ỹ (ξ))

]
is large. This behavior is an undesirable consequence of trying to

build a surrogate model of R̂ (Eq. (6.2)) instead of R. Nevertheless, this error misprediction is
extremely small compared to the variance contribution of B̃.

Uniform hazard function

In this paragraph, we consider a uniform hazard function. In term of risk prediction, this case
is a simple classification problem where only the misclassification error matters. The accuracy
of Ỹ does not influence the result. The estimation of the predicted error V

[
R̃(ξ)

]
in Eq. (6.7)

accounts for this characteristic as the contribution to variance from the regression term is zero
due to ∇H = 0. The risk variance reduces to the second term that is the classical uncertainty
criterion used for classification weighted by the hazard function squared. In figure 6.9, the AL
strategies AL-probit and AL-Heaviside are tested against the naive approach. In this case, since
the risk is uniform, the naive and the AL-Risk approaches are the same and therefore AL-Risk
is not reported. As for the unimodal case, the AL-probit and AL-Heaviside outperform the
naive method while the AL-Heaviside approach seems to be performing a bit better than the
AL-probit.

We also test the influence of the batch training size on the error performance for the active
learning. Due to computational cost constraints, the batch size 1 case have been repeated only
twice and hence features a significant noise. As for the unimodal case, the 50 batch size training
strategies are outperformed for sample set smaller than 400 samples then perform as well as the
other strategies trained with smaller batch sizes.
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(a) Contribution from the classifier b̃ to predictive
variance

(b) Contribution from the GP f̃ to predictive variance

(c) Residual error due to the classifier (d) Residual error due to the regression

Figure 6.6: Comparison of the predicted contribution to error from the classifier ( 6.6a) and the
GP regression (6.6b) with Ec (6.6c) and Er (6.6d).

Figure 6.7: Evolution of the L2 error in the estimated with the number of training points for the
three different training approaches (2D test, uniform hazard function)
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Figure 6.8: Representation of H ◦Y and the survivability boundary associated with B (blue line)

Multi-modal hazard function

In this test, the hazard function is the sum of four Gaussian functions :

H : (y1, y2) ∈ Y −→ exp
(
−(500(y1 − 0.2)2 + 10(y1 − 0.2)(y2 − 0.9) + 500(y2 − 0.9)2)

)
+ exp

(
−(100(y1 − 0.2)2 − 10(y1 − 0.2)(y2 − 0.8) + 100(y2 − 0.9)2)

)
+ exp

(
−(100(y1 − 0.4)2 − 10(y1 − 0.4)(y2 − 0.6) + 100(y2 − 0.6)2)

)
+ exp

(
−(200(y1 − 0.1)2 + 200(y2 − 0.55)2)

)
. (6.23)

This multi-modal case is representative of a region with several highly populated areas ( for
instance cities). The function H ◦ Y is represented in Fig. 6.8 In this setup, the hazard function
varies rapidly.
As for the previous cases, different training strategies are compared: the naive and the AL-Risk
approaches against the AL-probit and AL-Heaviside approaches with batch size 10 and 50. In
this case, the batch size 1 is omitted as the trends are identical to the previous cases. The results
are summarized in Fig. 6.9. In this case, the AL-Risk and naive perform similarly and are
outperformed by the AL advanced methods. As in the previous case, the AL-Heaviside training
yields slightly better results than the AL-Probit training. In this case, the hazard function varies
rapidly over Y and the active learner adds training samples where hazard function gradient is
high or at the boundary of B̃ to reduce the error efficiently.

In Figs. 6.10a and 6.10b, the predictive variance used in the AL methods is compared to the
actual error. The predictive variance tends to agree with the true error qualitatively, except for
the lower left-hand corner where the true error is zero (the classifier accurately predicts complete
disintegration), but the predictive variance is not negligible. Consequently, the active learning
strategy tends to sample in this region although the actual error is already 0. This is obviously
an undesirable feature of our strategy. On the other hand, the active learning strategies also
efficiently sample additional points near the boundary where the risk is high (around (0.6,0.3) )
and in regions where the risk varies rapidly (the line segment (0.7,0.3) to (0.9,1.)). Note that in
this test, the overall contribution of Ỹ to the predicted error is not negligible compared to the
classifier contribution, especially in regions where the hazard function varies rapidly.
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Figure 6.9: Evolution of the L2 error in the estimated with the number of training points for the
three different training approaches (2D test, multi-modal hazard function)

(a) Predicted variance and training points (b) True squared error

Figure 6.10: Comparison between the predicted error ( 6.10a) and the actual error ( 6.10b). In
Fig. 6.10a the training samples are also represented. The red dots correspond to surviving debris
while the blue stars correspond to non surviving debris.

6.4.2 Preliminary test for the impact prediction of a space object fragment

The primary objective of this work is to develop efficient surrogate model strategies to propagate
uncertainties in a space object reentry problem. When a human-made space object reenters the
Earth, the combined effect of the thermal and aerodynamic loads leads to its breakup and the
generation of a fragment that may or may not reach the ground. In this test, we consider a debris
that has just been released after fragmentation, and we wish to estimate the risk it represents
for human assets. The fragment under consideration is an aluminum frame box issued after the
fragmentation of an upper stage. The fragment weighs 80 kg. The objective of this test is to
determine the risk associated with this fragment. We reuse the analysis from chapter 5. The
initial upper stage (not modeled here) is originally on an equatorial Geo Transfer Orbit (GTO)
such that the impact location is located in the Pacific ocean where the population density is null.
Hence we introduce an artificial human population density (fake highly populated islands) for
this test. The hazard function is represented on the globe in Fig. 6.11 along with a sample of
impact locations.
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Figure 6.11: Representation of the impact region with an artificial hazard function. The blue
dots correspond to impact locations.

We use the survivability solver of the simulator from section 3.2.1. It is the trajectory solver
BL43 coupled with the thermal module ADRYANS V4. The thermal module solves for the
aerodynamic heat flux and computes the resulting temperature increase and the ablation rate
along the trajectory. It takes as inputs the initial flight conditions, the material characteristics
and the object dimensions and weight. The solver is relatively expensive to run due to the strong
coupling between the trajectory solver and the thermal module that is run at each time step.
As described in the introduction such solver provides two types of information: whether the
object survives upon reentry; if it does, the impact location. The hazard function is then used to
compute the risk. In this test, it is defined as :

H(ylat, ylon) 7→ exp
(
−15.((ylat − 8.2)2 + (ylon + 168)2)

)
(6.24)

+ exp
(
−20((ylat − 8.1)2 − (ylat − 8.1)(ylon + 166) + (ylon + 166)2)

)
+ exp

(
−25((ylat − 8.6)2 − (ylat − 8.6)(ylon + 169) + (ylon + 169)2)

)
where ylat and ylon are the impact latitudes and longitudes.

In our problem, the fragment initial position, velocity and temperature are uncertain. The
exact release conditions are incredibly complicated to predict since they depend on the fragmen-
tation of the upper stage [37]. The initial position, and velocity uncertainties are modeled as a
multivariate Gaussian vector with mean and covariance calibrated on the results of Chapter 5.
The initial fragment temperature also depends on the flight history of the original upper stage
which is unknown. Hence, the initial fragment temperature is modeled as a uniform random
variable. The material characteristics such as fusion temperature, density, and fusion enthalpy
are Gaussian random variables obtained from an experimental measurement campaign. The
emissivity is modeled as a uniform random variable because it depends on the surface oxidation
that is uncertain. Overall there are 11 uncertainties to be propagated that are summarized in
table 6.1.

The initial flight conditions are samples from a multivariate Gaussian vector Φ with mean
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Quantity Distribution
Initial altitude multivariate Gaussian (see eqs. 6.25 and 6.26) [m]
Initial longitude multivariate Gaussian (see eqs. 6.25 and 6.26) [deg]
Initial latitude multivariate Gaussian (see eqs. 6.25 and 6.26) [deg]
Initial velocity norm multivariate Gaussian (see eqs. 6.25 and 6.26) [m/s]
Initial slope multivariate Gaussian (see eqs. 6.25 and 6.26) [deg]
Initial bearing multivariate Gaussian (see eqs. 6.25 and 6.26) [deg]
Initial object temperature U(400, 700) [K]
Aluminum fusion temperature N (873., 0.4) [K]
Aluminum fusion enthalpy N (350, 3) [kJ/kg]
Aluminum density N (2800., 10.) [kg/m3]
Aluminum emissivity U(0.3, 0.8)

Table 6.1: List of uncertainties associated with the survivability prediction of a space debris

and covariance:

µ =



63000
−170
8.5

9300
−2.9
95


(6.25)

Σ =



1.50× 107 2.62× 102 −40.5 9.26× 105 3.37× 102 57.4
2.62× 102 2.00 −0.18 −82.3 0.84 0.28
−40.5 −0.18 2.00× 10−2 7.37 −8.60× 10−2 −3.15× 10−2

9.26× 105 −82.3 7.37 6.7× 104 −23.8 −12.0
3.37× 102 0.84 −8.6× 10−2 −23.8 0.4 0.13

57.4 0.28 −3.15× 10−2 −12.0 0.13 5.0× 10−2


(6.26)

We use the approach presented in this work to build and train a surrogate model of the
solver efficiently and get an estimate of the risk. The surrogate model is constructed following
the strategy described in Section 6.3 where B̃ is built with a probit function and an anisotropic
square exponential covariance function. The GP Ỹ is also constructed using a zero mean
Gaussian Process with a square exponential anisotropic covariance function. The surrogate
model is initially trained with 500 samples sampled according to the input distributions. The
active learning strategy developed in section 6.3 is used to enrich the training set with 960
additional samples. As the solver can be run in parallel, the training samples are added by
batches of 48 samples. For comparison, the results obtained with randomly generated samples
are presented. The error evolution with the number of samples is shown in Fig. 6.12. The
error represented is the L1 norm computed using 100 000 validation samples. The L1 norm is
normalized by the mean risk such that a naive predictor that would predict a null risk would have
an error of 1. The results clearly demonstrate the advantage of using an active learning strategy
to improve the surrogate model. At 1500 training samples, the AL strategy is one order of
magnitude more accurate than the random training strategy and present a steeper converging rate.

As mentioned in the introduction, we are primarily interested in computing statistics of the
risk distribution such as the probability that the risk be above 10−5 (maximum level allowed by
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Figure 6.12: Evolution of the L1 norm error for our active learning method and the random
training one.

Quantity Reference Active Learning Naive MC error
P (R > 10−5) 0.18767 0.18772 0.18957 0.004
P (R > 0) 0.25390 0.25394 0.25667 0.004

Table 6.2: Comparison of the random and active learning methods when computing risk
probabilities compared to a reference. Note that the same Monte Carlo samples were used to
estimate the probabilities.

the mitigation guidelines) as the probability that the risk be non zero. In table 6.2, the numerical
values for P (R > 10−5) and P (R > 0) are estimated using the 100 000 validation samples as
a reference. Using the same input samples, the quantities P (R > 10−5) and P (R > 0) are
estimated with two surrogate models. The first one is trained with the 1460 samples proposed by
the active learning method while the other one is constructed with 1500 points randomly sampled
from the input distribution. The Monte Carlo error is given for reference. However, since the
same samples are used to compute the risk statistics for the three strategies, the difference of
results between the three methods does not come from the MC statistical noise. The results
show that the AL training set outperforms the naive training set by one order of magnitude.
Note however that the results obtained with the naive training strategy remain decent as the
error remains below the MC estimation error obtained with 100 000 samples.

6.5 Conclusion

In this chapter, we presented two original contributions for computing the statistical distribution
of the expected number of victims in the context of the space object reentry prediction under
uncertainties. The first one is the construction of a surrogate model of a discontinuous risk
function using a classifier and a regression. The second contribution is the derivation of active
learning strategies based on the surrogate model predictive variance. The combination of the
surrogate model coupled with the active learning methods showed to be efficient on analytical
test cases and numerical reentry prediction solver with a large number of uncertainties. The
precision gain of using an active learning method is around one order of magnitude compared to a
random training method and therefore justifies the use in a realistic reentry problem. In the next
Chapter, we will use this formulation to efficiently build a surrogate model of the survivability
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solver in the reentry simulator developed in Chapter 3.
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Chapter 7

Risk Assessment of the Reentry of a
Rocket Upper Stage

In this Chapter we study the controlled reentry of an upper stage under uncertainty with a
particular focus on the survivability of the fragments released after breakup. The propagation
of the uncertainties through the entire simulator relies on the coupling of the SoGP framework
developed in Chapter 4 and the surrogate model strategy presented in Chapter 6. This chapter
includes the calculation of the survival probability for each fragment, the impact location, the
expected risk, and the total casualty area. Compared to the study performed in Chapter 5, where
the analysis was limited to the upper stage breakup prediction, we simulate the entire reentry
under uncertainty, including the fragment trajectories until impact or complete demise.
The main contributions of this chapter are:

• A full-scale application of the SoGP framework coupled with the survivability surrogate
model;

• The rigorous and computationally efficient propagation of the uncertainties in a reentry
event from the initial orbital conditions to the ground impacts of the fragments. We use
the active learning strategies developed in the previous chapters. We are able to tailor the
computational budget depending on the required level of accuracy.

• Computation of the statistical distributions of the on-ground risk metrics and rigorous
sensitivity analysis to identify predominant uncertainties.

7.1 Problem definition

We consider the controlled reentry of an upper stage from a GTO orbit. When the deorbited
upper stage falls back on Earth, the aerothermal loads lead to its breakup (cf. Chapter 5). As
the object breaks up, fragments are released. The fragments are released at hypersonic velocities
(M > 5) at an altitude ranging from 50 to 80 km. As the fragments fall back, the atmospheric
density increases and induces an increase in the heat flux received by the fragments. Some
fragments burn up into the atmosphere due to the extreme thermal load. Others, typically made
of titanium or composite materials survive. Around 20 km altitude, most fragments are flying
in the subsonic regime so that the convective heat flux received by the fragment is null. The
object may even transfer heat to the flow if the object wall temperature is high. The surviving
fragments usually impact the ground at their free-fall velocity (around several dozen meters per
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second).

For this specific case chosen by AG, the expected number of casualty is null since the reentry
is controlled and designed to minimize the on-ground risk. Hence, for this study, the QoI are total
casualty area that characterizes the potential threat of a reentry independently of the reentry
location, the survival probability for each fragment and the impact distribution. Finally, we also
perform a sensitivity analysis of the casualty area uncertainty to identify the most influential
input uncertainties.

Object characteristics

The upper stage characteristics remain unchanged with respect to Chapter 5. In our breakup
model, the object fragments to be released upon breakup are defined by the user. The list of
fragments is the same as for the preliminary tests run in Chapter 3 and is reported in table 7.1.
Note that there are 29 types of fragments but certain types are repeated (there are 4 pressure
spheres for instance) and so the total number of fragment is 100. Due to the survivability model
limitations, the fragment shapes are constrained to a limited choice of predefined shape for which
the aerothermal loads and aerodynamic forces can be computed. For each type of fragments, the
user has to provide the dimensions, the shape, the attitude motion, and the material. Note that
some fragments share the same characteristics.

The user also has to provide the fragments release temperature Tinit. In this numerical
experiment, all the fragments are assumed to have the same release temperature. The fragment
characteristics (shape, material, and mass) are based on a priori structure analysis of a generic
upper stage performed by engineers at ArianeGroup. The fragments are composed of four types
of material: aluminum, stainless steel, titanium, and Inconel. Over 75 % of the total fragment
mass is aluminum which is the most fragile material.
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Id Number Name
1 4 Payload adapter rings
2 1 Payload adapter
3 4 Cone
4 4 Equipments plate
5 3 Equipment bay structure 1
6 3 Equipment bay structure 2
7 4 Payload adapter Ring
8 4 Equipment bay structure 3
9 4 LH2 tank upper skirt 1
10 4 LH2 tank upper skirt 2
11 8 LH2 upper dome
12 4 Equipment bay structure 4
13 3 LH2 tank cylinder
14 4 LH2 tank lower skirt
15 4 LH2 tank ring
16 8 LH2 tank lower dome
17 3 Lox tank lower dome
18 3 Lox tank upper dome
19 2 Cold Gas Reacting System
20 8 Engine Thrust Frame 1
21 1 Engine Thrust Frame 2
22 1 Engine Thrust Frame 3
23 3 LH2 feedlines
24 3 LOX feedlines
25 4 Helium spheres
26 1 Combustion chamber
27 3 Power unit
28 1 Turbopump 1
29 1 Turbopump 2

Table 7.1: List of fragments
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7.2 Numerical model
We use the model described in section 3.2.1 to simulate the object reentry. The prediction includes
the orbit propagation after the deorbiting boost, calculation of the pre-breakup trajectory and
the derivation of the breakup conditions. At breakup time, a set of pre-computed fragments
are released at once. The fragment initial velocity and position are given by the upper stage
flight conditions at breakup. After breakup, the trajectory, temperature and mass evolution are
computed for each fragment individually. The survivability solver calculates the trajectory and
mass evolution to determine whether the object survives to reentry (i.e., reaches the ground) and
the impact location if any. Hence, the survivability solver and the risk estimation solver have to
be run for each fragment. In Fig. 7.1, the system of solvers in use is represented. For clarity,
the survivability solver is repeated for each fragment to highlight the fact that each fragment
requires one call from the survivability solver.

Based on the survivability output, the casualty risk defined as the expected number of victims
can be computed using Eq. 2.8 from Chapter 2. As the object falls back on the ocean, the
expected number of casualty is null. While we are still interested in verifying that the expected
number of vitims remains negligible under the uncertainties considered, we are also interested in
computing the casualty area. The global casualty area is defined as :

A =
n∑
i

Ai,k1i,survi (7.1)

where 1i,survi equals 1 if the fragment i survives, 0 otherwise.
The casualty area quantifies the potential damage the fragments could cause if they were to

fall in a densely populated area.
In addition to the casualty risk and the casualty area, we also compute the impact positions.

The impact positions are given in terms of longitudes and latitudes by the survivability solver. The
true distances and area are computed using the elliptical Earth WGS84 model (World Geodetic
System 1984) and numerical routines from [210] to compute geodesic areas and distances.
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Figure 7.1: Numerical model for predicting the reentry of an upper stage from a GTO orbit.

7.3 Uncertainty characterization

The objective of this chapter is to perform an analysis of the model uncertainties. In this section,
we model a large number (38) of uncertainties to perform a complete reentry simulation. The
uncertainty modeling presented in Chapter 5 is employed in this Chapter. In particular, we
consider as uncertain quantities the initial conditions ( initial orbit characteristics, the deorbiting
boost conditions), the atmosphere model parameters, the object material characteristics, the
breakup model parameters, the fragment material characteristics, and the fragment release
temperature. The uncertainty distributions are summarized in table 7.2. In addition to the
uncertainties already considered in Chapter 5, we consider the fragment uncertain material
characteristics and the fragment release temperature. In the rest of the section, we detail the
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modeling of those additional uncertainties.

Material properties

For each material, we consider the emissivity, the density, the fusion temperature, and fusion
enthalpy. The emissivity is modeled as a uniform distribution to account for the oxidation layer
created by the high enthalpy reacting flow. For titanium, we define the range as [0.3, 0.8], based
on experimental results reported in [59]. For Inconel, the measurement campaign under high
enthalpy flow presented in [91] reports emissivity variations between 0.2 and 0.8 and even 0.9.
In this study, we consider that the Inconel emissivity varies between [0.2, 0.8]. For aluminum,
the same range of variation as for the upper stage shell is selected: [0.3, 0.8]. For stainless steel,
the emissivity is arbitrarily chosen between 0.6 and 0.8. The uncertainties associated with the
other material quantities are modeled as Gaussian random variables since they are measured
quantities.

Note that the aluminum fragment properties and the aluminum upper stage are modeled
with two sets of independent uncertainties. This approach is justified for two reasons. First, the
sensitivity analysis indices we use in this work (Sobol indices) are only valid for independent
random variables. By using two separate sets of uncertainties to model the upper stage material
characteristics and the aluminum fragment uncertainties, we can identify the contributions of
each set of properties to the casualty area variance. Secondly, the uncertainty in the material is
partially due to the manufacturing process, different for each fragment, and the flow exposure
which is different for the shell and the fragments.

Breakup model parameter Tinit

The breakup model uses a simplified representation of the upper stage. The object is divided
into an aluminum shell and the internal components. Before the breakup, the shell absorbs all
the energy transferred by the flow. The shell is assumed to have a uniform temperature. As
the internal components are not modeled in the thermal response, their release temperature is
unknown. Their release temperature depends on their exposure to the flow (the internal tank
component are not as exposed as the payload adapters for instance), the thermal conductivity
in the upper stage and internal radiative heat flux. All those aspects are not accounted for in
the thermal model in use. Hence we model the release temperature uncertainty as a uniform
random variable varying between the free stream temperature 300 K and 600 K. In theory, each
fragment should have a different release temperature. To maintain the number of uncertainties
to a reasonable level, we consider a single release temperature identical for all fragments.

Discussion

In addition to the uncertainties already included in the breakup analysis from chapter 5, we
also consider the uncertainties in the material characteristics of the fragments and the release
temperature. While we already model 38 uncertainties for this study, many other uncertainties
could have been included. The fragment characteristics (shape, size, and number) could be
modeled as uncertain variables. In theory, they depend on the breakup characteristics (low
energy or high energy, thermal or mechanical breakup, etc.), while in our model the fragment
characteristics are fixed and based on a priori considerations. The aerodynamic and thermal
loads are computed using simple models, and the trajectory is solved with a three DoF model
with a predefined attitude motion. Including those sources of uncertainty is beyond the scope
but would undoubtedly bring an interesting insight into the problem.
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Variable Description Category Distribution
ρM material density OMC N (2800., 10.) [kg/m3]
ε material emissivity OMC U(0.3, 0.8)
Tfus fusion temperature OMC N (873., 0.4) [K]
Hfus fusion enthalpy OMC N (350, 3) [kJ/kg]
Aboost boost amplitude IC U(62, 67)
tboost boost time IC U(0, 5) [s]
αboost boost inclination IC U(178, 182) [deg]
βboost boost bearing IC U(−90, 90) [deg]
apo initial orbit apogee IC U(35e6, 35e6 + 35e3) [m]
per initial orbit perigee IC U(254000, 256540) [m]
inc initial orbit inclination IC U(10, 10.1) [deg]
anl initial orbit ascending node longitude IC U(−135,−134.9) [deg]
pa initial orbit perigee argument IC U(130, 130.01) [deg]
tan initial orbit true anomaly IC U(43, 43.01) [deg]
atmoday reentry day AP U [1, 365] [day]
atmohour reentry hour AP U [0, 23] [hour]
solarf solar flux AP U [65, 240]
ag magnetic index AP U [2, 75]
Tfrag fragmentation temperature BP U [400, 700] [K]
pabl ablation percentage BP U [0.7, 0.9]
Tinit fragment release temperature BP U(300, 600) [K]
ρAL aluminum density FC N (2800., 10.) [kg/m3]
εAL aluminum emissivity FC U(0.3, 0.8)
Tfus,AL aluminum fusion temperature FC N (873., 0.4) [K]
Hfus,AL aluminum fusion enthalpy FC N (350, 3) [kJ/kg]
ρST stainless steel density FC N (2800., 10.) [kg/m3]
εST stainless steel emissivity FC U(0.3, 0.8)
Tfus,ST stainless steel fusion temperature FC N (873., 0.4) [K]
Hfus,ST stainless steel fusion enthalpy FC N (350, 3) [kJ/kg]
ρTI titanium density FC N (2800., 10.) [kg/m3]
εTI titanium emissivity FC U(0.3, 0.8)
Tfus,T I titanium fusion temperature FC N (873., 0.4) [K]
Hfus,T I titanium fusion enthalpy FC N (350, 3) [kJ/kg]
ρIN inconel density FC N (2800., 10.) [kg/m3]
εIN inconel emissivity FC U(0.3, 0.8)
Tfus,IN inconel fusion temperature FC N (873., 0.4) [K]
Hfus,IN inconel fusion enthalpy FC N (350, 3) [kJ/kg]

Table 7.2: List of uncertainties with their probability distribution. In the last but one column, the
uncertainty category is reported. IC : Initial Conditions, OMC : Object Material Characteristics,
AP : atmosphere parameters, FC : Fragment Characteristics. The category corresponds to labels
used in Figs 7.1 and 7.2.
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When computing the trajectory of the upper stage before fragmentation, the atmosphere
model parameters are considered as uncertain, but after fragmentation, we neglect the influence
of their uncertainties. This simplification acceptable because the variability of the atmosphere
properties (density, temperature, and pressure) is significantly reduced below 80 km [3]. On the
other hand, when the object velocity is subsonic, the wind effects may become noticeable. In
this study, the influence of winds is not considered.

7.4 Uncertainty propagation strategy
In this section, we build a global surrogate model used to propagate the uncertainties described
in 7.3 through the SoS describing the whole reentry and presented in 7.2. We also adapt the
active learning strategy developed in Chapter 6 to improve the accuracy of the predictions.

7.4.1 Surrogate model construction

We use the methods developed in Chapter 4 and Chapter 6 for constructing the surrogate model
of this SoS. The global surrogate model of the entire SoS is represented in Fig. 7.2. It is composed
of several surrogate models constructed independently. The first one is a SoGP composed with a
KLE that is used to predict the object breakup. The other surrogate models approximate the
survivability solver for each fragment. One surrogate model per fragment is constructed. In
the rest of this section, we detail the surrogate construction of the SoGP and the survivability
surrogate models.

For the upstream part of the SoS involving the breakup prediction, we reuse the procedures
presented in Chapters 4 and 5. A surrogate model composed of a SoGP and a KLE approximates
the deorbiting solver and the trajectory solver coupled with ADRYANS V4. It takes as inputs
the initial flight conditions (initial orbit and deorbiting characteristics), the atmosphere model
parameters and the object material characteristics, and it returns the object trajectory (position
and velocity) between tinit and tend that is then used by the breakup solver. The surrogate
model construction approach is identical to the one presented in Chapter 5. See Section 5.3
for the implementation details. The surrogate model relies on a truncated Karhunen-Loéve
Expansion (KLE) to represent the object trajectory on a reduced basis. A SoGP is then built
to approximate the mapping between the uncertain inputs ξ and the coefficients of the KLE.
The KLE is constructed using the procedure presented in section 4.1.4 using 600 trajectories.
The SoGP is also constructed using the same 600 simulator runs. The training sample set is
generated with a LHS sample.

For the downstream part of SoS including the risk estimation, each type of fragment (char-
acterized by the shape, size, mass, and material, defined in the previous section) is treated
independently in the simulator. Therefore, we construct a survivability surrogate model for each.
In total, 29 types of fragments have to be considered. The surrogate model construction follows
the strategy proposed in Chapter 6.

The input variables of the survivability solver are: the breakup flight conditions (position
and velocity) which are intermediate variables computed by the breakup solver, the fragment
characteristics (material emissivity, density, fusion temperature, fusion enthalpy), and the initial
fragment temperature that are global input variables.

The survivability solver is approximated with a GP classifier B̃i and a GP regression Ỹi
for each type fragment i. The classifier assesses the survivability of the fragment while the
GP regression computes the impact location if the object survives. In total, each survivability
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Figure 7.2: System of surrogate models used to build a global approximation of the simulator

surrogate model has 11 input dimensions. The initial training set contains 600 randomly sampled
points. In the intermediate variable space (i.e., the breakup flight conditions), the training points
are randomly sampled from a large dataset of points propagated by the complex SoGP-KLE and
breakup model. For the global input variables, a LHS strategy is used to generate the training
samples.

Out of the 29 types of fragments considered, a significant subset always burns up in the
atmosphere for all 600 training samples, and only one always reaches the ground. Just for six
fragments, we observe the two regimes: complete demise or ground impact. The rest either
always burnt up completely or survived (for all the 600 training samples). For the fragments
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that disintegrated in the atmosphere for all the 600 training samples, the risk is assumed to
be 0 for any input conditions, and therefore they are excluded from our risk estimation study.
This approach is not strictly conservative since having all the 600 samples disintegrated does
not ensure that the fragment always disintegrate for any input condition. Actually, for most
fragments, there is a non zero (although extremely low) probability that the object reaches the
ground. Computing this probability requires dedicated uncertainty quantification techniques
(see for instance [168, 211, 212, 213, 214]) that are out of the scope of this study.

7.4.2 Active Learning

We propose to enrich the training sample of the survivability surrogate model to improve the
prediction accuracy using the training strategy proposed in Chapter 6. We enrich each training
plans with an additional 432 samples.

The active learning strategy proposed in Chapter 6 is adapted to our application. There are
two differences with the framework proposed in Chapter 6. First, the upper stage fragments fall
into the Pacific ocean where the population density is null according to the population model in
use. In Chapter 6, we used the risk predictive variance to propose additional training samples.
The predicted risk variance for fragment k is :

V [Rsk] = V
[
H
(
Ỹk(ξ)

)]
pk(ξ) + E

[
H(Ỹk(ξ))

]2
(1− pk(ξ))pk(ξ). (7.2)

Then additional training samples were drawn from a distribution X on Ω with pdf proportional
to V [Rsk]. Recall that H is the hazard function. Since the population density is null, H = 0 in
our case, therefore this criterion becomes inadequate.

Instead we propose to improve our casualty area prediction given by

Ãk = Ac,k1B̃k(ξ)=1(ξ), (7.3)

where 1B̃k(ξ)=1(ξ) the indicator function of the set {ξ ∈ Ω|B̃k(ξ) = 1}. We propose to adapt the
active learning strategy proposed in Chapter 6 to the predictive variance associated with the
casualty area prediction is :

Vk = A2
c,k(1− pk(ξ))pk(ξ) (7.4)

This formulation is actually equivalent to the uniform density population case discussed in
Chapter 6 where the active learner focuses on the classification error. This feature is desirable
as the casualty area prediction depends on the fragment survivability only. It is zero if the
fragments burns up and Ac,k if the object reaches the ground. Note that we neglect the effects
of ablation on the fragment casualty area in [64].

The second difference with Chapter 6 is that we consider several fragments at once in this
study whereas in Chapter 6 we only considered single fragment case. In the case of several
fragment, the total casualty area is defined as

Ã =
N∑
k

Ac,k1B̃k(ξ)=1(ξ) (7.5)

Since there is one surrogate model for each fragment, the predictive variance associated with the
total casualty area is defined as:

V =
N∑
i

Vi (7.6)

Hence three possible variations of the training strategy presented in Chapter 6 are possible :
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• The next training sample ξ∗ is sampled from a distribution with pdf proportional to
V =

∑N
i Vi and all the R̃i are trained at location ξ∗. This strategy requires one evaluation

of the survivability solver for each fragment.

• For each fragment i, the next training sample ξ∗i is sampled from a distribution with pdf
proportional to Vi and the surrogate model R̃i is trained at location ξ∗i . This strategy
requires one evaluation of the survivability solver for each fragment.

• We first select the surrogate model we wish to train by sampling from a discrete distribution
valued in [1, 2, . . . , n] with weights V1/V, V2/V, . . . Vn/V . The sampled index is denoted j.
We then sample a new training sample ξ∗j from a distribution with pdf proportional to Vj
and the surrogate model R̃j is trained at location ξ∗j . In this approach, only one surrogate
model is trained at each iteration.

The third approach seems to be the most efficient, especially if one fragment is significantly
larger than the others. In that case, the active learner will more likely add a training sample
and improve the prediction of the fragment that has the largest influence on the total casualty
area prediction error and will avoid spending training samples on non-influential fragments.

The first and second approaches enrich the training sets of all the survivability surrogate
models regardless of the contribution of each fragment to the total casualty area predictive
variance. However, the second approach seems more advantageous as it can select different
training point location based on each surrogate model predictive uncertainty. In this study, the
second approach is selected because it proposes training samples adapted to each surrogate model
and we we wish to test the efficiency active learning strategy on each fragment. Furthermore,
the additional training samples are added by batches of 48 samples.

7.5 Results

In this section, we collect the main results of this study. We first assess the accuracy of the global
surrogate model composed of a SoGP and the survivability surrogate models. We then present
the results in terms of survivability probability of each fragment, casualty area, and impact zone.

7.5.1 Error assessment

In this section, we quantify the approximation error of the surrogate model constructed. The
validation error is computed using a validation set of 2400 samples denoted V = {ξv,1, . . . , ξv,n}
different from the training set used to train the surrogate model.

For the SoGP and the KLE used to emulate the deorbiting solver and the trajectory coupled
with the thermal solver, the error analysis is similar to the results presented in Chapter 5.
The l2 error is around 10−3 for the breakup conditions (position and velocity). The detailed
errors are reported in table 7.3. The l2 error is normalized by the standard deviation of the
breakup condition. This error comes from the KLE truncation, the approximate estimation of

altitude longitude latitude velocity slope bearing
l2 normalized error 0.003 0.002 0.003 0.003 0.002 0.002

Table 7.3: Surrogate model error at the breakup conditions. The mean square error is computed
using 2400 samples. It normalized by the standard deviation. This error includes the error
induced by the SoGP and the KLE.
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the eigenvalues and the eigenfunction of the decomposition, and the error induced by the SoGP
when predicting the KLE coefficients based on the uncertain inputs.

To assess the precision of the survivability surrogate model, we define two types of errors:
the survivability assessment error and impact location error. The survivability assessment error
defined for fragment j is:

Esa,j = 1
n

n∑
i=1
|Bj(ξv,1)− B̃j(ξv,1)| (7.7)

where Bj returns 1 if fragment j survives, 0 otherwise and B̃j returns 1 if the survivability surro-
gate model composed with the SoGP predict that the object survives, 0 otherwise. Furthermore,
we define the sample set Ij = {ξv,i ∈ V|B̃j(ξv,i) = 0 and Bj(ξv,i) = 0} and the impact location
error :

Eil,j = 1
|I|

∑
ξ∈I
|f(ξ)− f̃(ξ)| (7.8)

The impact location error is defined for surviving debris solely.

The Esa,j and Eil,j quantify the total surrogate model error due to the SoGP, the truncated
KLE and the survivability surrogate model for fragment k

In Figure 7.3, the Esa errors is represented for the six fragments that may either survive or
disintegrate completely depending on the input conditions. We plot the errors in function of
the number of training samples added with the active learning strategy. The additional training
samples reduce the survivability assessment error by at least a factor of five up to a factor of ten.
On the other hand, the impact error (not represented here) is not significantly reduced by the
additional training samples. This behavior is expected since the active learner focuses on the
GP classifier rather than the GP regression.

To summarize, the errors in the survivability assessment, the impact longitude, and latitude
are reported in table 7.4. The computed error includes the contribution from the SoGP, the
truncated KLE, and the survivability surrogate model. The errors are obtained with 2400
validation samples. For all fragments, survivability assessment error is well below 10−2 and
close to 10−3. Note that due to the limited number of validation samples and the level of
misclassification error we try to estimate, the error estimate is just an indication of the degree of
accuracy achieved by our surrogate model.

The impact location error depends strongly on the fragment considered. For instance, the
impact location of the combustion chamber features an error level above 0.01 degree. An error
of 0.01 degree corresponds approximately to an error of 1km on the Earth surface at the equator.
This error should be compared to the dispersion of the fragments that are around several hundred
kilometers.

Regarding the fragments for which all the training samples lead to complete disintegration,
we assumed that the fragments never reached the ground. An additional 100 000 samples were
generated and evaluated with the survivability solver to assess the validity of this assumption
and to quantify the associated error. Out of 29 types of fragments, 17 have been found to
systematically burnt up for all the 100 000 samples. The others have a probability of reaching
the ground significantly below 10−3. This error is below the survivability assessment error Esa
computed for the other fragments, and therefore it is acceptable to neglect them for this study.

7.5.2 Impact probability

For each fragment, we compute the probability that it reaches the ground. For a significant
number of fragments, this probability is set to 0 since none of the training samples reached the
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fragment error longitude [deg] error latitude [deg] error survivability [-]
Payload adapter 3.2e-03 3.8e-04 1.2e-3

Cold Gas Reacting System 3.9e-03 4.8e-04 2.5e-3
Engine Thrust Frame 3 5.5e-03 6.7e-04 2.5e-3

Helium spheres 8.4e-03 9.5e-04 0
Combustion chamber 6.6e-02 1.2e-02 1.7e-3

Turbopump 1 1.5e-02 2.1e-03 2.9e-3
Turbopump 2 4.7e-03 5.5e-04 3.7e-3

Table 7.4: Surrogate model error for the impact conditions (longitude,latitude, survivability)
after active learning. The mean square root absolute error is computed using 2400 validation
samples. It corresponds to the total error induced byt the SoGP, KLE and the survivability
surrogate model.

Figure 7.3: Evolution of the survivability assessment error function of the number of samples
added adaptively

ground. The survivability probabilities are reported in table 7.5.
Most of the fragments that burn up completely are aluminum fragments. The aluminum low

fusion temperature imposes a low radiative heat flux compared to other material. On the other
hand, the pressure spheres, the nozzle and the gas chamber are most likely to survive as they
are modeled with more robust materials such as titanium and inconel.

7.5.3 Impact location

In this section, we focus on the impact distribution generated by the surviving fragments. Some
fragments are identical (for instance the pressure spheres), in this case, we assume they fall in
the same location. The impact locations are indexed in terms of latitudes and longitudes. We
denote E the joint set of longitude and latitudes on Earth. Hence E = [−180, 180]× [−90, 90].
In figures 7.4a and 7.4b, the impact locations of the surviving fragments are represented. All
of them fall in the Pacific Ocean, South of the Hawaii archipelago and North of Washington
and Tabuaeran Islands. The area covered by the fragment impacts is approximately 260 000
km2. The impact distribution is elongated along one direction given by the initial orbit. The
dispersion of the impact point depends on the fragment considered. The most dispersed impacts
come from the nozzle that is the heaviest and largest fragment. The pressure sphere impacts are
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Id Number Name impact probability
1 4 Payload adapter rings 0
2 1 Payload adapter 0.505
3 4 Cone 0
4 4 Equipments plate 0
5 3 Equipment bay structure 1 0
6 3 Equipment bay structure 2 0
7 4 Payload adapter Ring 0
8 4 Equipment bay structure 3 0
9 4 LH2 tank upper skirt 1 0
10 4 LH2 tank upper skirt 2 0
11 8 LH2 upper dome 0
12 4 Equipment bay structure 4 0
13 3 LH2 tank cylinder 0
14 4 LH2 tank lower skirt 0
15 4 LH2 tank ring 0
16 8 LH2 tank lower dome 0
17 3 Lox tank lower dome 0
18 3 Lox tank upper dome 0
19 2 Cold Gas Reacting System 0.12
20 8 Engine Thrust Frame 1 0
21 1 Engine Thrust Frame 2 0
22 1 Engine Thrust Frame 3 0.045
23 3 LH2 feedlines 0
24 3 LOX feedlines 0
25 4 Helium spheres 1
26 1 Combustion chamber 0.95
27 3 Power unit 0
28 1 Turbopump 1 0.44
29 1 Turbopump 2 0.41

Table 7.5: Survival probability for each fragment
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(a) Impact location on spherical
Earth

(b) Zoom on the impact location

Figure 7.4: Impact location

also much more dispersed than the Engine Thrust Frame. In general, light fragments with low
survival probabilities feature small dispersions of their impact locations.

To assess the dispersion of the fragment impacts for a given set of uncertainty values ξ, we
can compute the average distance between each impact for a given reentry scenario. The average
impact distance is defined a :

Dimpact(ξ) = nsur(nsur − 1)
2

nsur∑
i=1

nsur∑
j=i+1

dgeo (xi(ξ), yi(ξ), xj(ξ), yj(ξ)) (7.9)

where dgeo is the geodesic distance and nsur is the number of surviving fragment (that depends
on ξ). The quantity Dimpact is a random variable as it depends on ξ. In Fig. 7.5, the distribution
of Dimpact is represented. The average distance between debris is most of the time between 120
km and 500 km.

7.5.4 Casualty area

The casualty area represents the potential danger for human populations if the impact location
had been an inhabited area. The casualty area depends on the dimension of the object and the
projected area of a standing adult. Strictly speaking, the object size reduces during the hypersonic
flight due to ablation and hence the casualty area changes. Following the recommendations
in [64], we compute the casualty area using the original dimensions of the fragment, which is
a more conservative approach. As a consequence, the casualty area merely takes a discrete
number of values depending on the surviving fragments. The distribution of the casualty areas
is represented in Fig. 7.6. The average casualty area is 26 m2. In a densely populated area
(5000 hab/km2), a casualty area of 26 m2 leads to an expected number of victims around 0.12.
At most, the casualty area can be 32 m2. In this case, if the fragments landed over a densely
populated area the calculated number of victims would be around 0.15. This maximum casualty
area is associated with situations where all eleven pieces that have non-zero survival probability
in table 7.5 reach the ground.

The average casualty area can be compared to the reentry of a Delta II upper stage performed
in [215] where a casualty area of 18 m2 is reported. However, the reentry conditions are very
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Figure 7.5: Distribution of the average distance between fragments

Figure 7.6: Distribution of the impact areas

different from our (LEO reentry in [215]) and the Delta II upper stage is also seven times lighter
than our upper stage. In the literature, the casualty of large satellites is around 30-70 m2

[60, 215]. The relatively small casualty area found in our case is mostly due to a large number
of fragments made of aluminum that disintegrate systematically and the limited number of
fragments. In particular, the propulsion unit could be modeled with a much larger number
of fragments resulting in a much larger casualty area. An interesting extension of this work
would be to model the uncertainties in the fragment characteristics (number, shape, material
composition).

As for the breakup predictions, we are also interested in the sensitivity of the predicted
casualty area to the uncertain inputs. In Fig. 7.7, the total Sobol indices for the casualty area
variance are reported. The total Sobol index represents the contribution to the casualty area
variance of a given input uncertainty. It includes all the contributions induced by the input
variable, including the contributions generated by interactions with other variables.
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Figure 7.7: Total Sobol indices for the predicted casualty area

We observe that the main input uncertainties are related to the breakup prediction, namely
the initial fragment temperature Tinit, the quantity ufrag,defined in 5.2 and Tfrag. The variable
ufrag parametrizes the probabilistic aspect of the breakup model. The variable Tfrag characterizes
the breakup time lower bound and hence influences the fragment initial position and velocity.
From chapter 5, we know that the ufrag and Tfrag affect the breakup flight conditions that in
turn affects the fragment survivability. The quantity Tinit is also crucial. Intuitively, it represents
the amount of energy the fragment received before being released. As expected, this quantity
strongly affects the survivability of the fragment as it significantly modifies the maximum amount
of energy the fragment can receive during their reentry before disintegrating completely.

All those uncertainties come from the poorly calibrated and oversimplified breakup model.
The variable ufrag represents our inability to predict the breakup within a given time interval
(see section 5.4.5, Eq. (5.2) and section 3.2.2 for the detailed presentation of the breakup model).
The uncertainty in Tfrag represents our inability to characterize this time interval well, while
the fragment release temperature Tinit embodies the uncertainty induced by the simple thermal
model used to compute the object thermal response. Recall that a uniform temperature model is
used to calculate the thermal response of the upper stage. With this model, it is merely possible
to derive a temperature interval for the released fragments.

The other set of relevant parameters are the deorbiting boost conditions. The deorbiting
boost characterizes the initial reentry conditions and consequently the breakup flight conditions.
High-velocity reentries with limited slope lead to high altitude fragmentation and reduced casualty
area while steep reentries lead to low breakup altitudes and large casualty areas.

The third group of influential variables is the fragment material uncertainties, in particular,
the aluminum and Inconel emissivity. Among all material characteristics, the emissivity is the
least known quantity due to the oxidation effects that alter the material surface properties during
the reentry. For this reason, the emissivity has more influence on the output than the other
material characteristics. The impact of the aluminum emissivity comes from the Engine Thrust
Frame 3 (ETF 3) that is a large aluminum object. Depending on the material emissivity, the
fragment may be able to cool down efficiently by radiation and survive. Since it is a large object,
it also contributes significantly to the casualty area. The same remark can be formulated for
Inconel fragments. Note that the atmosphere model parameters also have a minor influence
on the casualty area uncertainty as that they only affect the upper stage trajectory before the
breakup.
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7.6 Conclusion
In this chapter, we coupled several uncertainty propagation tools with the simulator developed
in Chapter 3 to provide robust estimates of the on-ground risk associated with the controlled
reentry of an upper stage from a GTO orbit. The simulation included the entire reentry event
from the deorbiting manoeuver to the impact of the surviving fragments. A rigorous uncertainty
quantification study was performed to derive robust estimates of the risk metrics as defined in the
ESA guidelines and the French space operation act. In this study, we considered 38 independent
uncertainties including the initial orbit elements, the deorbiting conditions, the atmosphere
model parameters, breakup model parameters, and material characteristic uncertainties. Given
this set of uncertainties, we derived the casualty area distribution. We performed a sensitivity
analysis of the casualty area based on the Sobol indices.

We constructed a global surrogate model of the reentry simulator. The construction relied
on two original surrogate modeling approaches developed in this work : the SoGP framework
(Chapter 4) and the risk estimation surrogate model (Chapter 6). The deorbiting solver and the
trajectory solver are approximated with a SoGP to learn the coefficients of a KLE decomposition
of the trajectory. We constructed a surrogate model for each fragment to predict the survivability
and impact location of each fragment. The active learning strategy developed in Chapter 6 have
been extended to the case of predictions with multiple fragments to improve the predictions in
the total casualty area. The surrogate model accuracy has been assessed with a validation set.
The error in the survivability assessment for the surviving fragment is around 10−3, and the
maximum error in the impact location is around 1km.

Based on the surrogate models, we computed the impact location and survival probability of
each fragment. Out of 29 types of pieces, only seven have a probability of reaching the ground
significantly larger than 0 (≥ 10−3) while the rest always disintegrate in the atmosphere. The
fragments the most likely to survive are the pressures sphere, nozzle and combustion chamber
in good agreement with on-ground observations. We computed the distribution of the casualty
area that is an indicator of the harm the object can cause when landing in a densely populated
region. Based on the sensitivity analysis, the most influential variables are the initial deorbiting
conditions and the breakup model parameters.

In this work, we considered a large number of uncertainties, but not all uncertainties were
included. For instance, the uncertainties in the aerodynamic models for the fragments or the
influence of winds have not been included for example. Moreover, the casualty area analysis
suggested that the number of fragments and their properties should be selected as uncertain.

The uncertainty quantification results of this chapter rely on surrogate models with minimal
L2 error. However, they are not well suited for computing rare events. The surrogate modeling
approaches could be adapted to compute low probability events accurately using importance
sampling and advanced active learning techniques [168, 211, 212, 213, 214].



Chapter 8

Conclusions and Perspectives

Space activities provide critical services for human economic activities such as communication
broadcasting or Earth observation. This growing interest in space led to a steady increase in the
number of in-orbit space object to the point where future space activities become compromised
by the in-orbit collision risk with space debris. International guidelines recommend that end-
of-life satellites reenter the Earth atmosphere within 25 years with a controlled on-ground risk.
Predicting the risk is extremely challenging as it relies on approximate models. Some phenomena,
such as for example fragmentation, cannot be described with trustworthy models. The predictions
performed with those models are unreliable due to the necessary approximations and assumptions
that alleviate the computational burden, but at the price of a bias in the result.

8.1 Conclusions
In this work, we proposed several contributions for improving the computation of the risk with
a space object reentry simulator. We worked on three main aspects: i) the construction of a
system of solvers using the reentry solvers of AG; ii) the development of several uncertainty
quantification methods tailored to the propagation of uncertainties through generic directed
systems of solvers and the computation of the on-ground risk distribution; iii) the application of
these methods to a realistic debris reentry scenario. By coupling the different UQ methods with
the reentry simulator, we were able to provide a prediction under uncertainty of the reentry of
an upper stage and to derive at a reasonable computational cost the on-ground risk statistics
and identify the most critical uncertainties using global sensitivity analysis.

We demonstrated the performance of the UQ techniques we developed on an industrial
problem. We illustrated the capability of our reentry tool to robustly compute the on-ground
risk associated with a space object reentry.

The main contributions are summarized here:

• We developed a reentry simulator based on several solvers from AG. We managed the model
complexity and multi-physics aspects by constructing a system of solvers. The simulator
is implemented in a flexible, user-friendly, parallel framework that automatically handles
interactions between solvers and facilitates the application of uncertainty quantification
strategies.

• We enhanced the predictive ability of the simulator with a probabilistic breakup model
that naturally handles the uncertainties induced by the extreme complexity of the object

163
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breakup.
Object-oriented models do not model the breakup and use a fixed breakup altitude. On the
other hand, spacecraft-oriented models couple finite element models, hypersonic flow models
and engineer expertise to predict the breakup. This higher level of accuracy comes with a
significant computational cost and user interaction that prohibits the use of uncertainty
propagation methods. For this reason, spacecraft-oriented models are usually used in a
deterministic setting with limited confidence in the result.
In this work, we propose a third, intermediate approach based on probabilistic modeling of
the breakup. We believe that an accurate breakup model is still hard to formulate and
therefore breakup models should not be deterministic. We applied this idea in this work
with a straightforward model of the breakup. We also developed a more complex model to
provide more realistic breakup predictions but still in a probabilistic setting (see Appendix
B).

• We proposed an efficient surrogate model strategy for directed systems of solvers. Systems
of solvers are widely used for industrial multi-physics problems but are complicated to
approximate due to their high input dimensions. We proposed to approximate a system
of solvers with a system of Gaussian processes where a GP approximates each solver of
the SoS. For all the numerical tests performed on analytical functions and real industrial
applications, our system of Gaussian process outperforms the single GP (black box)
approach systematically. Our method is more efficient than a black box approximation of
the SoS because it builds several surrogate models (one for each solver) that are usually
easier to learn that the entire system, especially if the input dimension of each solver is
smaller than the overall SoS input dimension.
Additionally, we showed that the SoGP could naturally generate parsimonious training sets.
We proposed a decomposition of the predictive variance of the SoGP into contributions
of each GP. Based on this decomposition, we proposed active learning strategies that can
enrich the training set of specific GPs based on their contributions to the SoGP predictive
variance. Numerical experiments clearly showed the advantage of using such active learning
strategies in particular for medium input dimension problems.

• We proposed an original formulation of the mapping between the uncertain inputs and
the estimated risk viewed as the joint prediction of a classifier and a continuous function.
This formulation led to the construction of a surrogate model using a GP classifier and
a GP regression. It permits to handle the survivability assessment and impact location
prediction in a unified way whereas state-of-the-art solutions only proposed surrogate
models for the impact location prediction. Additionally, active learning strategies based
on the predicted on-ground risk have been introduced to improve the surrogate model
accuracy. The proposed enrichment criterion naturally balances the error contributions
from the GP classifier and the GP regression. The numerical tests showed the significant
improvements observed when using the active learning strategies compared to randomly
selected training samples.

• We performed a rigorous uncertainty analysis of a reentering upper stage combining
the reentry simulator and the surrogate modeling tools developed in this work. We
illustrated the advantages of our SoGP framework and survivability surrogate model on a
full-scale multi-physics industrial problem by performing a on-ground risk prediction under
uncertainty with only a few hundred solver evaluations (i.e., a few hours of computation
on a single node).
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While performing this analysis, we were particularly careful in identifying and modeling
the uncertainties associated with the reentry of a space object.
The significant model errors we identified are the simplified analytical formulae to compute
the aerothermal loads especially and the breakup modeling. Experimental observations
suggest that the object breakup is a sequence of fragment release triggered by the combined
effects of aerodynamic efforts, thermal loads depending on the object trajectory and attitude
motion. On the other hand, object-oriented models generally feature a single breakup
event triggered at a fixed altitude independently of the object trajectory and motion. Even
spacecraft oriented software can only afford breakup model based on thermal criteria.
The second type of uncertainties is scenario uncertainties. Those uncertainties are associated
with the scenario at hand. They are the unknown initial conditions, the object characteristics
(mass, shape mass distribution, material composition), the turbulent atmosphere properties
and the material characteristics (thermal and structural properties).
While we could not include all those uncertainties in our uncertainty propagation, we
considered an unprecedented number of uncertainties (38) including the initial orbit
elements, the deorbiting boost characteristics, the atmosphere model parameters, the upper
stage material characteristics, the breakup model parameters including the fragment release
temperature, and the fragment material characteristics. We studied, in particular, the
evolution of the uncertainties along the trajectory before the breakup, the object flight
conditions at breakup, the casualty area, and the fragment impact locations. We also
performed a rigorous sensitivity analysis using Sobol indices. We observed that the breakup
flight condition uncertainties were mostly due to the breakup model uncertainties and
the deorbiting conditions while the atmosphere model uncertainties were secondary. The
sensitivity analysis of the casualty area also identified the deorbiting conditions and the
breakup model parameters as influential variables. This analysis suggests that the breakup
model should be improved or the deorbiting conditions better characterized if more precise
predictions were necessary.
The framework developed can readily be used for demonstrating the compliance of the
deorbiting manoeuver with respect to the French Space Operation Act with increased
robustness compared to existing deterministic reentry tools.

8.2 Perspectives
Basing on the work done, we propose here several research lines. The first one is based on the
system of Gaussian process framework while the others are oriented toward the reentry prediction
problem.

8.2.1 Developments of the SoGP framework

One essential contribution of this work is the introduction of a system of Gaussian processes for
emulating system of solvers. While showing promising results, our implementation of the SoGP
could be improved.

The active learning strategies based on the variance decomposition of the SoGP predictive
distribution showed promising results. Nevertheless, the active learning criteria based on
MMSPE showed weaknesses due to the MMSPE criterion itself. Further work could work on
implementing more efficient models such as the IMSPE criterion or the mutual information
criteria. Computationally efficient methods proposed in [183] for computing the IMSPE criterion
could be adapted to the SoGP framework using the variance decomposition.
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SoGPs can currently only approximate directed system of solvers without strong coupling
between solvers. A significant contribution would be to extend the SoGP framework to a strongly
coupled system of solvers.

The SoGP framework does not have to be used solely for uncertainty propagation purposes.
An exciting development would be to adapt it to optimization problems. Bayesian optimization
is an efficient approach derivative-free method for solving non-convex optimization problems
that relies on a probabilistic approximation of the functional to optimize to efficiently find the
optimum [216]. The SoGP framework seems well indicated for performing Bayesian optimization
in a system of solvers. The active learning criteria (called acquisition functions) such as expected
improvement [167], entropy search [217] etc. could be adapted to SoGPs and their variance
decomposition.

The second use of SoGP is for reliability engineering. For our application, we would be
interested in computing low probability events, but the constructed SoGP is not well suited for
such problems as it provides a global approximation of the reentry simulator. Future work could
focus on developing dedicated methods based on active learning to construct a SoGP trained
specifically to compute a given low probability event. For single GPs, many approaches have
been developed, but they need to be extended to SoGPs.

The surrogate model constructed in Chapter 7 to emulate the entire reentry simulator is
not a SoGP, hence we could not apply the results derived from Chapter 4 as for instance the
variance decomposition. One interesting development would be to extend this framework to a
larger class of surrogate models than GPs. It seems that as long as the solvers are approximated
by independent probabilistic surrogate models, the variance decomposition holds (and hence the
active learning strategies we developed), even is the surrogate model predictive distribution is
not Gaussian.

8.2.2 Improving the reentry predictions under uncertainties

We propose to improve the reentry simulator by refining the physical and statistical models of
the breakup solver and improving the uncertainty modeling.

We proposed to model breakup as a sequence of random events. We believe that this approach
has a high potential of offering reliable breakup models using more advanced physical models
and statistical modeling. A possible approach would be to model breakup as a probabilistic
fault tree [218] that spans a distribution of breakup scenarii, including sequential fragment
releases. In [61] a Bayesian failure tree is proposed, but it relies solely on a statistical model and
missed the physical models and uncertainty propagation tools developed in this work. Using the
framework developed in this work, one could build a probabilistic fault tree based on physical
models and if available, experimental data. This approach should aim not only at deriving the
fragment release distributions but also at considering uncertain fragment shapes and number.
We expect probabilistic breakup models to be more demanding in terms of computer resources
than deterministic ones. Hence we believe that a probabilistic breakup solver should be coupled
with efficient surrogate modeling approaches as we did in this work.

Some high fidelity models used in spacecraft oriented tools as the 6 DoF trajectory solver could
not be approximated with a GP due to the chaotic attitude motion of the upper stage during
the reentry. The object attitude motion and subsequently its trajectory are extremely sensitive
to even small variations in the initial conditions and aerodynamic moments. Constructing a
surrogate model is hence extremely challenging. One approach could be to try other families of
surrogate models such deep neural networks [219] or even a solver-free resolution of the trajectory
[220, 221, 118]. Alternatively, a multi-fidelity approach could be used by formulating the 6 DoF
trajectory as the 3 DoF trajectory plus a random perturbation to that needs to be characterized
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(time and space correlation, amplitude).
In Chapter 2 we acknowledged the importance of model errors in the aerodynamic and

thermal models, but they were not included in the uncertainty analyses we performed. One
approach would be to model the model errors with an additive Gaussian Process with a given
kernel and set of hyperparameters. The error level is a priori not constant ( the aerodynamic
calculations tend to be more accurate in the free molecular flow regime than in the rarefied
regime). Hence the GP would be non-stationary. Once the error modeled are calibrated, they
could be included in the system of solvers and the system of Gaussian processes. While the
construction of the SoGP should remain unchanged, the strategies for generating efficient training
sets would undoubtedly need to be revisited.

8.2.3 Detecting low survival probability fragments

Some fragments have very low survival probability, and training a classifier to predict survivability
in this case is extremely challenging. This problem is known as anomaly detection in the machine
learning community [144]. Sometimes, even being able to generate a training set with samples
from both classes is hard. Random sampling approaches can be extremely inefficient if the
survival probability is below 10−3. One approach to detecting survival efficiently would be to
build a SoGP predicting the demise altitude function of the random inputs and adding a training
sample where the predicted demise altitude is minimal. The intuition is that the fragment has
better chances of surviving where the predicted demise altitude is low. Preliminary results
showed promising results where sporadic survival cases could be detected using this simple
physical criterion.

8.2.4 Computing impact zones for multiple fragments

In chapter 2, we defined the impact zone as the smallest set in terms of the area containing a
given probability weight. In [66, 222], an elegant solution solution to this problem based on
minimum volume sets is proposed. However, the method described in [66] can only be used for a
single fragment case whereas in most reentries feature several fragments. We propose to directly
find the impact zone A as the solution of an area minimization problem with a constraint on
the probability weight contained in A. One could use shape optimization strategies [223] and
use efficient reliability techniques applied to the reentry simulator and our surrogate model to
efficiently compute the constraint.

8.2.5 Design for demise

Design for demise strategies aims at minimizing the on-ground risk by optimizing the object
characteristics (material, aerodynamic shape) and if possible the flight conditions. It can
be formulated as an optimization problem where the deorbiting conditions and the object
characteristics are optimized to minimize the on-ground risk. For now, design for demise usually
focuses on local solutions (demisable joints, epoxy glue) without a general view of the full reentry
problem. Based on this work, the reentry simulator and the surrogate model strategies developed
in this work could be reused in an optimization framework to find the upper stage characteristics
and deorbiting conditions that minimize the on-ground risk. By constructing a complete feedback
loop with our model, the design for demise solution could be rapidly numerically validated and
optimized.
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Appendix A

ArianeGroup solvers

In this section, we present the tools developed by ArianeGroup and the CNES and selected to
construct the reentry simulator presented in Chapter 3. In total four different solvers are used.

A.1 Deorbiting solver : CARINE
Most reentry models start with the object flight conditions at 120 km altitude. In this work, we
want to predict the reentry of an object from its initial orbit if it is deorbited in a controled way.
The deorbiting solver computes the object trajectory between the initial orbit and 120 km of
altitude. We use solver CARINE that is an orbit propagator that computes trajectories after a
deorbiting boost is released. It takes as input the orbital elements of the initial orbit and the
deorbiting characteristics. Namely the deorbiting time tboost, the retro boost amplitude Aboost
and the boost orientation orientation characterized by two angles, i.e. αboost and βboost. The
new orbit characteristics are evaluated, and the orbit propagated until the object reaches 120 km
of altitude. The model is less expensive than state-of-the-art orbit propagator such as STELA
from CNES [70] but it is only valid for short time propagation as for a deorbiting trajectory.

A.2 Aerodynamics/Aerothermal solve : ARPEGE
To solve for the aerothermal load applied to the spacecraft, the software ARPEGE has been
developed by ArianeGroup and CNES. It computes the aerodynamic forces, moments and
convective heat flux for a given object geometry, free stream conditions, object velocity and
attitude motion. For the aerodynamic forces and moments, the approach is similar spacecraft-
oriented models presented in chapter 3 where FaeroFaeroFaero and MaeroMaeroMaero are defined as :

FaeroFaeroFaero =
∫
S

(ppp+ τττ)dS (A.1)

MaeroMaeroMaero =
∫
S

(rrr × ppp+ rrr × τττ)dS (A.2)

where ppp is the local pressure, normal to the surface and τττ is the shear stress, tangent to the
surface. The solver uses a local panel method: the object is represented by a set of elementary
surface panels for which ppp and τττ are computed. The forces are obtained by integrating the
contributions from each panel.

The formulation of pressure and shear stress depends on the flow regime. Three flow regimes
are observed during a reentry: the free molecular flow, the rarefied flow, and the continuum flow.
The free molecular flow exists at high altitudes and low densities, where the molecular mean
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free path is comparable to the object size. In this regime, analytical expressions of the pressure
and shear stress hold using [55] (eq. 7.88-7.89) and injected in Eq. (A.1). In the continuum
hypersonic flow regime, the modified Newton law holds [4] for the pressure forces while the shear
stress is set to zero. The rarefied flow is the transition between the free molecular flow and the
continuum flow is computed using bridging functions designed by ArianeGroup.

ARPEGE returns the aerodynamic coefficients for forces and moments that can be collected
to build tables function of the Mach number , the Knudsen number and the object orientation.
In 3 degree of freedom setting, the aerodynamic coefficients are the drag coefficient CD, the
lift coefficient CL, the side force coefficient CY . The relationship between the aerodynamic
coefficients and the corresponding aerodynamic force is given by:

F∗ = 1
2ρ∞V

2
∞C∗Sref (A.3)

with ρ∞ and V∞ the free stream density and velocity, and Sref the object reference area chosen
by the user. The sufix ∗ denotes the indices of the drag,lift or side force coefficient. Note that
ARPEGE can also be used in a 6 DoF setting and compute the aerodynamic moments. In the
appendix, we propose a high fidelity reentry simulator with a 6 DoF resolution of the trajectory.

The solver ARPEGE is also able to reconstruct the flow characteristics in the shock layer
(enthalpy, pressure, viscosity) and to derive the convective heat flux from the fluid to the object.

A.3 Trajectory solver

The trajectory solver used in this work is BL43 developed by AG. It is a trajectory module for
reentry trajectories that we use between 120 km altitude to sea level. It can be used in 3 DoF or
6 DoF. In that case BL43 solves for :

d2XXX

dt2
= Ae +Ac +Ag + FaeroFaeroFaero

m
(A.4)

I · dΩ
ΩΩ
dt

= MaeroMaeroMaero −ΩΩΩ ∧ (I ·ΩΩΩ) (A.5)

The quantity Faero is reconstructed using aerodynamic coefficient tables provided by the
user and equation (A.3). The free stream density and velocity are computed using the MSIS00
atmosphere model. The free stream conditions computed by the atmosphere model depend
on the object position, the reentry time, solar activity and Earth geomagnetic index that
have to be provided. An option can also be activated to account for the wind effects in the
subsonic part of the trajectory. Given the initial position and velocity at 120 km and the
atmosphere model parameters, BL43 returns the trajectory of the object denoted by its position
and velocity vector X(t)X(t)X(t), V (t)V (t)V (t) in a 3 DoF setting and position, velocity Euler angles and
derivatives ((X(t)X(t)X(t),V (t)V (t)V (t),Θ(t)Θ(t)Θ(t),Θ̇(t)Θ̇(t)Θ̇(t)) in a 6 DoF setting.

A.4 Thermal solver : ADRYANS V4

ADRYANS V4 [206] is a thermal model used along a trajectory to compute the heat flux qaero.
It calculates the aerothermal heatflux and the temperature evolution along the trajectory. It is
also composed of an ablation module that compute the mass evolution along the trajectory. It is
developed by AG and CNES. The model assumes uniform object temperature and neglects metal
oxidation or molecular recombination at the surface of the object. The uniform temperature



A.4. THERMAL SOLVER : ADRYANS V4 173

assumption has been widely used in object-orientated software [75]. Hence, energy conservation
equation for the entire object yields:

mobcp
dTob
dt

= Sqaero + δPout (A.6)

where Tob is the object temperature, mob its mass,S its surface,cp the heat capacity, qaero the
aerothermal heatflux and δPout is the power loss due to ablation. In the rest of the paragraph,
we detail the calculation of qaero and δPout.

The aerothermal heat flux qaero is the sum of two contributions :

qaero = qconv + qrad, (A.7)

where qconv is the convective heat flux and qrad is the radiated heat flux. Compared to spacecraft
oriented models, the conductive heat flux and the oxidation heat flux are not modelled

To recover the averaged convective heat flux over the object, we simplify its geometry.
For upper stages, we use a cylinder shape, for satellites, a box shape. Then ADRYANS uses
correlation formulae close to [77] to relate the convective heat flux received by the object with
the heat flux at the stagnation point of a flat plate for which analytical formulations exists. For
instance, in the free molecular flow regime, the convective heat flux at the stagnation point of a
perpendicular flat plate is [77]:

q̇FMsp = αρ∞V
3
∞

2 (A.8)

where α is the accommodation coefficient, ρ∞ and V∞ are the free stream flow density and
velocity.

In continuous regime, at the stagnation point of a perpendicular flat plate, the Detra-Hidalgo
correlation gives [78]:

q̇contsp = C√
RN

(
V∞
Vc

)3.15 (ρ∞
ρs

)0.5
(A.9)

with ρs being the atmosphere density at sea level,Vc the circular orbit velocity and RN the object
nose radius. C is a numerical constant ( 11028× 104kg.s−3)

For the transitional regime the Matting bridging function is used [224]:

q̇rar = q̇cont
(

1− exp
(
− q̇

FM

q̇cont

))
. (A.10)

The radiative heat flux is computed using Stefan-Boltzmann law:

q̇rad = σε(T 4 − T 4
env) (A.11)

where σ is the Stefan Boltzmann constant, ε is the material emissivity, T is the temperature and
Tenv the environment temperature set to 4K. Note that the radiative gas effects in the shock
layer are neglected.

The ablation model implemented in ADRYANS V4 is similar to the object-oriented models.
When the Tob reaches fusion temperature, the energy brought by the flow melts a parts of the
object that are swept by the flow. Hence, we have

Pout = ṁobhfus (A.12)

where ṁob is the mass loss rate and hfus is material fusion enthalpy. Solving for mob and Tob in
(A.6), ADRYANS returns the object temperature and mass over time. Note that this approach
is only valid for metal alloys.
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Appendix B

High fidelity reentry simulator

In this section we present the high fidelity reentry predictor developed in this work. The reentry
predictor is based on recent developments of ArianeGroup models, namely ADRYANS V5.0.

B.1 General description
The model presented here was developed to remove some of the assumptions employed in the
reentry simulator developed in Chapter 3 that hereafter is referred as the medium fidelity simulator.
It is based on improvements in the models developed at ArianeGroup within particular ADRYANS
V5.0 and new features in ARPEGE to perform local the convective heat flux calculations for
arbitrary shape. The global predictor architecture shares similarities with the medium fidelity
model. It depends on whether the reentry is controlled or uncontrolled. The model architectures
are detailed in figure B.1. The major differences with the medium fidelity model are the trajectory
solver and the breakup simulator that are described in detail in the following sections. If the
reentry is controlled, then the orbit propagator model is called (see fig B.1). Otherwise, the
simulation starts at 120 km of altitude. The sequence of solver runs can be summarized as follow

1. If the reentry is controlled, the initial orbit and the deorbiting boost characteristics are
given to the deorbiting tool that computes the object flight conditions at 120 km.

2. The aerodynamic coefficients associated with the object geometry are computed by the
aerodynamic solver (ARPEGE). In order to avoid calling the aerodynamic solver at every
time step of the trajectory, tables are generated. The tables are a function of the object
attitude ( orientation), Mach number and Knudsen number.

3. The 6 DoF trajectory solver BL43 is used to compute the object trajectory.

4. The object position, velocity and attitude motion are used by ARPEGE to compute the
convective heat flux along the trajectory

5. The object position, velocity, attitude motion, and convective heat flux are given to
ADRYANS that computes the thermal response of the object

6. The breakup model uses the thermal response, the object position, and velocity to compute
the fragment release times and conditions.

7. Using the precomputed list of fragments and the breakup conditions, the survivability
solver (BL43 coupled with ADRYANS V4) assesses the survivability of the object and the
impact location of the surviving fragments
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In this model, the trajectory solves for the position and velocity but also for the attitude
motion in a 6 DoF setting. The trajectory solver is not coupled with ADRYANS in this module.
Instead, the trajectory ((X(t),V (t),Θ(t),Θ̇(t)) containing the position, velocity and the angular
orientation and angular velocity is used by the solver ARPEGE to compute the convective heat
flux for every cell of the mesh at every point the trajectory. Then, the thermal response from
ADRYANS V5 is performed using the convective heat flux calculated by ARPEGE. The thermal
response including the temperature profile, the ablation rate, density profile is transmitted to
the breakup solver in order to compute the breakup time. As for the medium fidelity model, the
breakup solver is probabilistic to account for the inevitable uncertainties in the breakup prediction.

In the following, we provide a detailed description of the solvers used in this high fidelity
simulator.

B.1.1 High fidelity thermal module (ADRYANS 5.0)

In 2017, an improved version of the thermal model of ADRYANS was developed. The main
improvements compared to 4.0, are the modelling of composite material and the modelling of
oxidation and conductive heat flux with a 1D model [206].

Material modelling The thermal module can account for complex material assembly with
multiple material layers connected with thin glue layers. Complex structures such as honeycomb
constructions can also be considered using an extensive material database based on experimental
campaigns. Moreover, advanced emissivity evolution models based on ground experiments are
included. They allow accounting for the emissivity changes due to the alteration of the material
from surface oxidation (see Chapter 2).

Heat flux modelling The total heat flux at the surface of the material can be decomposed
into

qtot = qconv + qrad,in − qrad,out + qoxi − qcond (B.1)

with

• qconv the convective heat flux ;

• qrad,in the incoming radiative heat flux ;

• qrad,out the heat flux radiated by the object ;

• qoxi the heat flux due to exothermic oxidation reaction occurring at the surface of the
object ;

• qcond the conductive heat flux.

Ablation modelling As in SCARAB, ADRYANS V5.0 proposes two distinct ablation models
for alloys and composite materials. For the alloys, the peeling strategy used in most software
(DEBRISK, SCARAB, FAST etc.) is applied. For composite materials a dedicated model is
proposed. The composite material model accounts for the material swelling, the pyrolysis cooling
reactions, blocking effects and material erosion.
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Figure B.1: Functional representation of the high fidelity simulator

B.1.2 Object geometry model

In this model, the object complex geometry is taken into account when computing aerother-
modynamic load. The aerodynamic coefficients and the convective heat flux are calculated by
ARPEGE based on the mesh representation of the object. Concerning the thermal response
of the object, the object geometry is simplified into zones that represent distinct parts of the
object. For each zone of the model, a 1D thermal response of the object is computed. The heat
exchanges between the zones are neglected. The geometry and size of the zone are selected by
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the user and depends on the material composition, object geometry and the regions likely to
break up. In the next section, we propose a possible zone division of an upper stage into 6 zones.

B.1.3 Break up model

As for the medium fidelity simulator, the breakup model is stochastic but with a more realistic
modeling of the breakup based on the computed thermal response. For each zone, we define
a zone failure time T if at which the object zone fails. A failure event includes welding failure,
structure buckling, joint melting, glue melting or object ablation. When the zone fails, the
fragments associated with this zone are released. As the thermal model is not sufficiently refined
to model the different type of possible failure mentioned as for instance the joint melting; or it
lacks a mechanical model to account for structure buckling, a probabilistic approach is selected.
To account for these simplifications, the random zone failure time T if is defined as :

T if = U(tiinit, tiend) (B.2)

where tiinit and tiend depend on the object trajectory and thermal response of the zone. They
define the time interval when the zone fails. The thermal response from ADRYANS V5.0 is
used to define at time interval where the zone can fail rather than trying to predict the exact
time and type of failure that may occur. This approach greatly simplifies the problem while
maintaining a certain robustness. The uniform distribution is selected as no further information
is available a priori. Depending on the trajectory and the attitude motion tiinit and tiend can
account for the separation of two layers, the melting of a joint or the erosion of a composite
that can trigger breakup. The quantities tiinit and tiend also depend on the geometry of the zone
and its initial mechanical constraints. They can be defined with a temperature threshold or
an ablation percentage. Using a user-defined list of fragments, the fragments associated with
each of the failed zone are released at the flight conditions X(T if ), V (T if ) and temperature T (T if ).
Compared to the medium fidelity approach, this model can model several breakup events and
accounts for more local phenomena depending on the mesh resolution.

As for the medium fidelity model, the distribution of T if can be modified to account for
additional a priori information or to accommodate a sequential release of the fragments. As in
the medium fidelity model, the tiinit and tiend are uncalibrated model parameters that should be
considered as uncertain.

B.1.4 A priori limitations of the high fidelity

Despite significant improvements in the models, the high fidelity simulator still makes strong
assumptions :

• The aerodynamic efforts are computed using the modified Newton law in the continuous
and bridging functions in the rarefied flow

• The convective heat flux is also computed using correlations at each local triangle and
simplified gas state equations.

• The thermal response of the object remains 1D in each zone and hence does not capture
2D and 3D effects.

• The breakup model does not predict the shape of the fragments and does not feature any
mechanical breakup modeling.
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• The object trajectory is not coupled with the breakup model. When a zone fails and the
fragments associated are released, the object properties (mass, aerodynamic, inertia matrix
and center of mass position ) are altered with consequences on the rest of the trajectory.
In this model, the changes of the object are neglected assuming that the time interval
between the first and the last breakup event is short ( a few seconds in practice) so that
the changes in the trajectory and heat flux are small.

B.2 Simulation with the high fidelity model

The test case used for the medium fidelity model is adapted to the high fidelity one. We consider
the controlled reentry of an upper stage from a GTO orbit. The mesh is slightly refined as the
pressure spheres are added at the rear (see fig B.2). The object surface is divided into zones
where the convective heat flux is computed with ARPEGE and then the thermal response of
the zone is computed using ADRYANS. The zones are represented in different colors in fig B.2.
Zone 1 corresponds to the front disk, zone 2 corresponds to the truncated cone behind. Zone
3 represents the main cylindrical body. Zone 4 corresponds to the rear planar disk. Zone 5
represents the pressure spheres and zone 6 is the nozzle. Zone 1 is made of composite carbon,
zone 2 is composed of a layer of composite carbon and a layer of aluminium. Zone 3 and 4 are
pure aluminium. The pressure spheres are made of titanium and carbon composite. The nozzle
is modelled with carbon composite.

In order to use the breakup model, we need to define failure time distribution to each zone
and to assign one or several zones to each fragments. Recall that the fragments are released
as soon as one of the associated failure zone fails. As in the medium fidelity model, there are
29 types of fragments presented in table B.1. The last column indicates the zone failure that
provokes the fragment release. For instance the first fragment 1 will be released as soon as zone 1,
2 or 3 has failed. The choice of the zone is based on the primary location of the fragment before
release. Note that the main body breakup (zone 3) provokes the release of all the fragments.
Once all the fragments have been released, no further breakups are expected. Out of the 6 zones,
only two are made of aluminum while the rest is made of titanium and composite carbon that
are much more resistant. Zones 5 and 6 corresponds to the pressure spheres and the nozzle that
are extremely resistant. For this reason, we assume that they cannot fail. For zone 1 made of
composite carbon, we assume the breakup can occur when the zone erosion starts. This means
the char zone becomes significantly large and subject to breakup. We have t1init : beginning of
zone 1 erosion. For t1end we take the time where a percentage p1

abl of the composite material is
eroded. The similar criteria are selected for zone 2, where t2init is defined as the beginning of the
erosion of the carbon composite layer after the aluminum layer has been ablated. The quantity
t2init is defined as the time necessary to obtain a percentage p2

abl of the composite material eroded.
For zone 3 ( the main body), breakup can occur after the temperature reaches a user fixed value
T 3
frag,init and before it reaches T 3

frag,end. Hence we have for t3init and t3end

T (t3init) = T 3
frag,init (B.3)

and
T (t3end) = T 3

frag,end (B.4)

For zone 4, the failure can occur when the zone internal temperature reaches T 4
frag,init and it

ends when the zone is ablated at a percentage p4
abl.
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Figure B.2: Upper stage used in the high fidelity model decomposed into zones : zone 1 in dark
blue, zone 2 in teal, zone 3 in green, zone 4 in orange, zone 5 in purple and zone 6 in white.

In this test, we selected p1
abl = 0.5,p2

abl = 0.7, T 3
frag,init = 500K, T 3

frag,end = 700K,T 4
frag,init =

500K and p4
abl = 0.9. As for the medium fidelity model, the zone failures occur at E

[
T i
]

=
tiend+tiinit

2 .
As for the medium fidelity model, the system of solvers predicts a reentry at 9800 m/s at

120 km altitude. The first fragmentation occurs at 68 seconds due to a failure in zone 4 (back
of the upper stage ) and a second breakup at 3 seconds after. During the first breakup at 64
km, the propulsion system fragments are released with among them the pressure spheres, the
nozzle and the turbo pumps. During the second breakup at 65 km altitude and Mach 30, the
rest of the fragments are released as the main body (zone 3 ) has failed. The velocity and
inclination of the original object are represented in fig B.3 and B.4 . Out of the 100 fragments
only the 4 pressure spheres, the nozzle with the combustion chamber, a payload adaptor and
the turbo pumps survive. The fragments fall in the Pacific ocean with significant impact differ-
ences with the medium fidelity simulator. In fig B.5, the impact location of the fragments are
represented. In particular the payload adapter, released during the second breakup event falls
at 170 deg West instead of 168 deg West in the medium fidelity model. Note that due to the
separate breakup events, the impact points are more scattered than for the medium fidelity model.

This primary test does not fully illustrate the capabilities of the simulator that is inherently
probabilistic and hence a large number of breakup events should be sampled to get a meaningful
representation of the impact location. This test is only preliminary and more realistic testing
should be performed.
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Id Number Name Zone
1 4 Payload adapter rings 1,2,3
2 1 Payload adapter 1,2,3
3 4 Cone 1,2,3
4 4 Equipments plate 1,2,3
5 3 Equipment bay structure 1 1,2,3
6 3 Equipment bay structure 2 1,2,3
7 4 Payload adapter Ring 1,2,3
8 4 Equipment bay structure 3 1,2,3
9 4 LH2 tank upper skirt 1 2,3
10 4 LH2 tank upper skirt 2 2,3
11 8 LH2 upper dome 2,3
12 4 Equipment bay structure 4 1,2,3
13 3 LH2 tank cylinder 2,3
14 4 LH2 tank lower skirt 2,3,4
15 4 LH2 tank ring 2,3,4
16 8 LH2 tank lower dome 3,4
17 3 Lox tank lower dome 3,4
18 3 Lox tank upper dome 3,4
19 2 Cold Gas Reacting System 3,4
20 8 Engine Thrust Frame 1 3,4
21 1 Engine Thrust Frame 2 3,4
22 1 Engine Thrust Frame 3 3,4
23 3 LH2 feedlines 3,4
24 3 LOX feedlines 3,4
25 4 Helium spheres 3,4,5
26 1 Combustion chamber 3,4,6
27 3 Power unit 3,4
28 1 Turbopump 1 3,4
29 1 Turbopump 2 3,4

Table B.1: List of fragments
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Figure B.3: Time evolution of the Upper Stage velocity before breakup

Figure B.4: Time evolution of the Upper Stage incidence before breakup

Figure B.5: Impact locations of the medium fidelity model and the high fidelity model.

B.3 Discussion of the two models

The medium fidelity and high fidelity model differ in the fragmentation and the object trajectory
before breakup. The high fidelity model uses a 6 DoF trajectory model whereas the medium
fidelity model uses a 3 DoF model. Depending on the object, the object attitude motion may
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be chaotic especially for objects that are not designed to perform reentry. In these cases, the
changing attitude may impact the object aerodynamics and the received heat flux. This in turn
affects the trajectory, the thermal response and the breakup.

The thermal response model of the high fidelity prediction is also more refined. First, instead
of using correlations from simple shape objects, the convective heat flux is computed for each
triangle of the mesh using ARPEGE. Based on those calculations, local thermal responses can be
computed for each user-defined zone. Third, within a zone, a 1D thermal response is computed
whereas the medium fidelity model makes a uniform temperature assumption.

These improvements directly impact the breakup predictions. Compared to the medium
fidelity model where the breakup could only be estimated using a uniform temperature model,
the high fidelity model can capture local behaviours depending on the definition of the zones.
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Titre : Estimation du risque humain lié à la retombée d’objets spatiaux sur Terre
Mots Clefs : Rentrée atmosphérique ; Quantification des Incertitudes ; Débris Spatiaux
Résumé : Les réglementations récentes imposent la rentrée dans l’atmosphère d’objects spatiaux artificiels en fin de vie et la
quantification du risque humain associé. Le calcul du risque repose sur des simulations numériques de la rentrée de l’objet. Ces simulations
multi-physiques utilisent des modèles mathématiques simplistes et se basent sur une connaissance imparfaite des conditions de rentrée.
Dans ce travail, nous proposons de nouvelles techniques de quantification d’incertitude pour améliorer la robustesse des prédictions
de rentrée. Dans un premier temps, un simulateur de rentrée est assemblé. La prédiction de la rentrée d’un objet étant un problème
multi-physique complexe, notre simulateur utilise un système de solveurs chaînés dans lequel chaque solveur simule une phase de la
rentrée avec sa physique particulière. Nous développons ensuite deux stratégies pour réaliser la propagation d’incertitude à faible cout
dans notre simulateur. Ces deux stratégies s’appuient sur des modèles de substitutions.
La première stratégie de substitution de modèle est une approche générique permettant d’approcher un système de solveurs chaînés
par un système de processus gaussiens (System of Gaussian Processes, SoGP). Cette approximation probabiliste est construite en
représentant chaque solveur (ou groupe de solveurs) par un processus gaussien (GP). Nous montrons que la variance prédictive du SoGP
est décomposable en contributions associées à chaque GP. Cette décomposition de la variance est ensuite exploitée pour concevoir des
stratégies d’apprentissage actif et générer des ensembles d’entrainement parcimonieux en renforçant l’apprentissage du GP le moins fiable.
La performance du SoGP est étudiée sur plusieurs cas analytiques et industriels. Dans toutes les situations considérées, le SoGP surpasse
les approches plus directes.
La seconde contribution de la thèse porte sur la construction de modèle de substitution pour la prédiction de la survie d’objets spatiaux.
Lors de la rentrée, un objet spatial se fragmente et génère des débris. Certains débris brulent dans l’atmosphère tandis que d’autres
atteignent le sol. Pour évaluer la survie d’un fragment, il faut déterminer s’il atteint le sol et, si c’est le cas, évaluer son point de chute et
le risque associé. Dans ce travail, on propose une formulation originale du problème de la survie pour calculer efficacement le risque avec
un modèle de substitution. Ce modèle de substitution repose sur la composition d’un classificateur et d’un processus gaussien. Le modèle
est entraîné à l’aide d’une stratégie d’apprentissage actif dédiée qui équilibre les contributions du classificateur et du GP à l’erreur de
prédiction de la survie, en proposant des plans d’entrainement adaptés.
Pour finir, les méthodes proposées dans la thèse sont appliquées à la simulation de la rentrée contrôlée d’un étage supérieur de fusée
et la survie des fragments qui en résulte. Un grand nombre d’incertitudes (38) sont prises en compte et propagées, comprenant les
caractéristiques de l’orbite initiale, les conditions de désorbitation, les propriétés du matériau de l’étage supérieur, les entrées du modèle
d’atmosphère et les propriétés des matériaux des fragments. De plus, un modèle probabiliste de fragmentation est utilisé pour prédire
de manière robuste la rupture de l’objet en tenant compte des incertitudes de modélisation. Les méthodes développées dans la thèse
permettent d’estimer à un coût de calcul raisonnable les statistiques des conditions de vol au moment de la fragmentation, la probabilité
de survie de chaque fragment et le risque humain associé. Une analyse de sensibilité globale montre que les incertitudes les plus influentes
sont liées au modèle de fragmentation et aux conditions de désorbitation. Cette étude démontre ainsi la capacité de notre simulateur à
produire une mesure robuste du risque au sol, sur un scénario de rentrée réaliste, et à un coût numérique acceptable.

Title : Reentry Prediction of Man-made Space Object under Uncertainties and on-ground Risk Assessment
Keys words : Atmosphere reentry ; Uncertainty Quantification ; Space Debris
Abstract : Recent regulations impose the re-entry of human-made end-of-life space object with a rigorous assessment of the risk for
human assets. The risk evaluation requires sequences of complex numerical simulations accounting for the multi-physics phenomena
occurring during the reentry of a space object, e.g., fluid-structure interactions and heat transfer. Further, these simulations are inaccurate
because they rely on overly simplified models and partial knowledge of the reentry conditions.
In this thesis, we propose novel uncertainty quantification techniques to deal with some of the uncertainties characterizing the problem
and apply them to predict the risk for human assets due to the reentry of a space object.
First, we construct a system of solvers to predict both the controlled or uncontrolled reentry of space objects. Compared to the existing
reentry software, our system naturally accommodates the uncertainty in the object breakup predictions. Moreover, the constitutive
solvers are interfaced and coupled within a framework that allows a single user to perform parallel runs of the full system.
Second, we present two original methods to propagate the uncertainties in reentry predictions using the system of solvers. First, we
construct a surrogate model approximating the directed systems of solvers, using a system of Gaussian Processes (SoGP). We build this
probabilistic surrogate by approximating each solver (or a group of solvers) of the directed system by a Gaussian Process (GP). We
show that the predictive variance of the SoGP is composed of individual contributions from each GP. We use this decomposition of the
variance decomposition to develop active learning strategies based on training datasets wich are enriched parsimoniously to improve the
prediction of the least reliable GP only. We assessed the performance of the SoGP on several analytical and industrial cases. The SoGP
coupled with active learning strategies yielded systematically significant improvements.
The second method aims at predicting the survivability of space objects. During a space reentry event, the object can break up and
generate fragments. Some fragments desintegrate in the atmosphere while others survive to the ground. Assessing the survivability of
a fragment implies determining whether it reaches the ground or not and if it does, the impact location and the risk associated. We
propose an original formulation of the survivability assessment problem to efficiently estimate the risk. The proposed method involves the
composition of a classifier (demise prediction) with a Gaussian Process (impact location prediction). Dedicated active learning strategies
are designed to balance the prediction errors of the classifier and GP and allocate training samples adequately.
Finally, we apply the methods developed in the thesis to the prediction of the controlled reentry of a rocket upper-stage. The problem
involves a large number of uncertainties (38), including the initial orbit properties, the deorbiting conditions, the upper stage material
characteristics, the atmosphere model parameters, and the fragment material uncertainties. Moreover, we use a probabilistic breakup
model for the object breakup to account for the model uncertainties. With our methods, we estimate at a reasonable computational
cost the statistics of the conditions at breakup, the survival probability of the fragments, the casualty area, and the human risk.
Global sensitivity analyses of the breakup conditions and casualty area provide a ranking of the most critical uncertainties. This study
demonstrates the capability of our surrogate simulator to produce a robust measure of on-ground risk for a realistic reentry scenario.
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