Adaptive grid refinement is the technique of locally dividing the cells of an initial grid during a simulation, in order to produce a fine grid that is adapted to the problem being solved. In computational fluid dynamics, adaptive refinement has already been studied for a long time. However, the method can only reach its full potential if it is combined with all the other capabilities of modern flow solvers, to obtain unprecedented accuracy and efficiency for the simulation of complex, realistic flows.

This work concerns the development of such a solver with adaptivity. It studies the requirements for the adaptation method coming from the need to simulate complex physics and geometries, to be usable in daily academic and industrial practice, and to allow development over a long time. The work describes the grid refinement method implemented in the incompressible multifluid Navier-Stokes solver ISIS-CFD and describes how the design of the method has been shaped by these requirements.

The refinement kernel which performs the actual mesh modification must be flexible, easy to maintain, and efficient for parallel computation. This has been achieved with a modular design of the algorithms, where cells and faces are refined separately, while cells are treated one by one, producing a correct grid after the adaptation of each cell. The resulting double work is considered as an acceptable price to pay for the simplification of the algorithm. To limit the number of cells created for three-dimensional simulations, refinement is performed anisotropically: cells can be divided in one or more directions separately. For good mesh quality, even the undoing of previous refinements must be performed anisotropically.

The refinement criterion is the part of the algorithm which decides where the mesh will be refined. In a refinement method that evolves over a long time and that is applied to a wide range of problems, it must be easy to implement different criteria. This, and the need to control anisotropic refinement, motivated the choice of metric tensors as a framework for the refinement criteria: fields of 3×3 symmetric tensors, whose eigenvalues and eigenvectors in each position indicate the locally desired cell size in different directions. Such real-valued criteria can be computed separately from the rest of the refinement algorithm, which makes it easy to change the criterion without modifying anything else.

Since grid refinement acts directly on the local truncation errors, it makes sense to base refinement criteria on a truncation error estimation. However, this quantity cannot direct anisotropic refinement. Furthermore, a user is often interested in a part of the solution only, so it is not necessary to have a small error everywhere. Hessian matrices are adopted as anisotropic criteria with an aspect of truncation error indication. Flexibility for users is obtained by basing the Hessians on the pressure for wave-dominated flows, and on pressure plus velocity when the wake flow is important. The smoothness of the criteria is presented as an essential factor for the quality of the mesh and hence, of the solution.

For practical application of adaptive refinement, straightforward user guidelines are essential. A good test for these guidelines is scripting, i.e. automatic setup of computations. Scripted computations with free-surface based refinement are shown to be possible today, while suggestions are presented to simplify the use of Hessian-based refinement criteria, among others by non-dimensionalising the criteria.

Error estimation is an important companion to adaptive refinement, to ensure that ever more complex simulations remain reliable. For goal-oriented error estimation, potential pitfalls in the numerical implementation of discrete and continuous adjoints for incompressible Navier-Stokes are discussed. Furthermore, a new technique of performing grid convergence studies using adaptive refinement is presented. Due to its simplicity and robustness, this technique can be preferable to goal-oriented methods.

To show that the presented grid refinement method fulfills its main purposes of improving physical analysis, simplifying computations, and working together with the other components of ISIS-CFD, several series of computations are presented. This work ends with a reflection on the future of adaptive simulation. User experience translated into adaptive algorithms can control other aspects of the simulation besides the mesh. The results is a solver of which adaptivity forms the heart, guiding it to optimal performance for complex flow simulation.

1

Preface

Adaptive grid refinement has been the centre of my research since my arrival at Ecole Centrale de Nantes in 2007, as well as a vital element of my earlier works. There are many different approaches to adaptation and several ways to solve each question of algorithm design. As such, a grid adaptation method depends in many aspects on the design philosophy adopted by the developer. Questions of philosophy are difficult to discuss in research papers and yet, the ultimate success of an adaptation method may depend on the right design strategy.

This text presents mine. It is my personal opinion, based on eleven years of research experience. Furthermore, it shows the reader the questions which all developers of adaptation techniques must answer, whether or not they come to the same conclusions as I did. As such, I hope that this thesis 1 can help others who work on adaptive refinement or those who wish to enter in this field.

As a vision on grid adaptation development, I intend this document to be complete, as well as accessible to readers with different experience levels. Thus, for expert readers, parts of chapters 4 and 5 for example will not come as a surprise. When I include existing ideas in this document, it means that I consider these ideas to be of fundamental importance.

First of all, I wish to express my thanks to the members of the committee, who have graciously accepted to devote their time and their expertise for evaluating this work, whose questions and comments improved this report, and whose suggestions inspired me for future work. I am honoured by their effort.

Just like a refinement method is useless without a flow solver, my work would be impossible and devoid of sense without the constant help from my colleagues, and without the collaboration which makes each of us achieve more than we could ever do alone. I thank them for accepting me as a partner in the adventure that is ISIS-CFD.

Many more people contributed to our grid adaptation method. Alexander Hay provided an initial framework in his 2004 thesis. Other Ph.D. and M.Sc. students, armed with enthousiasm and patience, accepted to work with the code under development and made it better and easier to use. NUMECA Int. believed in adaptation from the beginning and their constant requests and hard work over the years have guided me in making the code more robust and more powerful. FINE/Marine customers have adopted the grid adaptation and spotted weaknesses or suggested improvements. I am thankful for their contributions.

Simulations in this work used the HPC resources of CINES and IDRIS under allocations made by GENCI (Grand Equipement National de Calcul Intensif), which is gratefully acknowledged.

Nantes, November 2019 Jeroen Wackers

Introduction

Adaptive simulation for numerical fluid dynamics, in the form of grid deformation or refinement, is an old technique. Famous examples such as the works by Berger [START_REF] Berger | Local adaptive mesh refinement for shock hydrodynamics[END_REF][START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF] have been published since the 1980s or before. However, the work on such methods is far from finished. NASA's CFD Vision 2030 [START_REF] Slotnick | CFD vision 2030 study: A path to revolutionary computational aerosciences[END_REF] underlines the complexity and the difficulty of today's adaptive simulation, but mentions adaptivity as a key point for development. In the flow solver of the future, this adaptivity is no longer a goal in itself but part of a whole, one of the components working together in order to bring simulation to unprecedented levels of complexity, flexibility, and power.

The objective of my research is to work toward such a solver-with-adaptivity by creating adaptation methods which are reliable and powerful enough for consistent performance in complex flow simulation. The search for these methods is the subject of this report.

The need for adaptivity in current simulation

In numerical simulation of complex flows, there are currently two trends which make adaptive techniques highly attractive and even a necessity. First of all, the growing accent on multiphysics computation and the ever increasing computational power available today imply that physically realistic simulations of complex flows become possible. Thus, numerical solutions, which provide detailed local flow information, are made available as a physical analysis instrument for these flows. This opens the way to greater knowledge of physics and physical models for complex flows. However, as the complexity of the problems increases, it becomes more and more difficult to control numerical errors since there is no way that even an expert user can know in advance how fine a grid is needed in order to produce a good solution. But without acceptable numerical errors, physical analysis is impossible since it is not known if observed phenomena are physical in nature or related to numerical error. Thus, adaptive simulation which can reduce and control numerical error, becomes essential for physical analysis.

And second, the use of Navier-Stokes based simulation is getting accepted in many branches of industry. This simulation is most effective if the computations can be performed by people who are experts in the interpretation of the results, such as designers, rather than by experts in the simulations themselves. Furthermore, the industry generally needs large batches of similar computations in order to compare different designs, which favours automatisation of the computations. Thus, for the industry, the simplification of the computational setup is crucial. A good automatic adaptation technique removes from the user the responsibility of manually adjusting the solver and the mesh to each different flow. Therefore, adaptive techniques can extend the domain of application for numerical simulation in industry.

Grid refinement mission statement

The adaptivity discussed in the remainder of this report is adaptive grid refinement. The main requirement for a solver-with-refinement is to fulfill the above-defined dual role of extending the domain of reliable computations through the optimal application of computational resources, and of simplifying complex simulations. Furthermore, it must be robust enough to withstand an industrial environment. To provide optimal performance in all situations, in my opinion the grid refinement method needs to have the following capacities:

1. The method must be flexible, it should be usable with only minor parameter changes for steady and unsteady flows, external and internal flows, monofluid and free-surface flows, etc. It is too complicated to maintain different tools for different situations and flexibility is the best guarantee that a method will remain useful when new types of applications are introduced in the future.

2. The quality of the refined meshes in terms of cell shapes and regularity of the cell sizes, or any other measure which is relevant to the flow solver being used and the problems being solved, must be as good as grids produced by existing non-adaptive mesh generators. The quality of the mesh has a direct influence on the precision of the solution so for accurate results, having a suitable mesh for the solver is at least as important as having fine cells.

3. Refinement must be anisotropic: the size of the cells should be controlled individually in each cell dimension and cells which are much smaller in one direction than in the others must be accepted. Almost all types of flows have structures which are flat or elongated; to capture these on finer and finer meshes is prohibitively expensive using only square cells.

4. Grid refinement has to be parallel and scalable at least up to several hundreds of processors so that it does not become a bottleneck in the solver. Communication between processors should be used with care, major global operations are to be avoided at all cost.

5. User-friendliness: a computation with grid refinement should be easier to perform than one without refinement.

6. The method must be easily maintainable and adaptable to new developments. A flow solver evolves continuously, so the solver-with-refinement reaches its full potential only if the refinement method can be adapted to each new development. To be relevant in an academic setting, the refinement must be accessible for development by students.

These principles form the basis of the grid adaptation method which I created for ISIS-CFD, the Navier-Stokes solver developed in our research group at the LHEEA lab of CNRS and Centrale Nantes. This flow solver offers a range of features and has been improved and validated over the years on a wide range of hydrodynamics problems. The solver is commercialised since 2007 in collaboration with NUMECA Int. as part of the FINE/Marine simulation suite, which has gained acceptance as one of the leading CFD tools in marine hydrodynamics. The successful introduction of a general-purpose grid adaptation technique has given this solver a capacity that, at least for hydrodynamic simulation, is unique worldwide.

Outline of this report

My goal in the following chapters is to provide a series of essays on how the range of different requirements in section 1.2 shapes and influences the creation of an adaptive grid refinement method. Chapter 2 introduces the flow solver ISIS-CFD and shows how this existing solver imposes the outline of its grid refinement algorithm. Then chapter 3 discusses the technique for actually modifying an existing grid, highlighting some of the right and wrong choices that I made for this technique. Chapter 4 shows how anisotropy, i.e. the need to choose separately for each direction of a cell, influences the decision of which cells to refine. The link between the flow field and this choice is made through the refinement criterion. Chapter 5 asks if a unique refinement criterion can be found for all situations and what determines the choice of the criterion when taking into account both solution accuracy and ease of use. Finally, chapter 6 discusses error estimation and its synergy with adaptive refinement, while wondering if the most advanced error estimators are actually the most suitable.

The penultimate chapter 7 illustrates different applications of grid refinement with simulations that have been performed over the past ten years. The chapter highlights the role of grid refinement as a component of the complete flow solver, showing the physical analysis of complex flows which becomes possible through increased local grid resolution, the simplification of industrial simulation, and the potential of combining refinement with other advanced techniques. Finally, the chapter discusses the use of the method in teaching and for student work. In chapter 8, I conclude this report with my vision on the future of solving-with-adaptivity.

The grid refinement method in ISIS-CFD

The design of a grid refinement method depends not only on its required capacities, it is also influenced by the flow solver with which it will be used. The type of flow solver imposes the type of meshes that are used, the data structure for the storage of the mesh, and the strategy of refinement in one step or in many separate steps which is linked with the solver's iterative approach for the computation of a flow. If a refinement method is integrated in the flow solver (like ours is), then the link is often so close that the same refinement method cannot be transplanted to another solver.

This chapter provides the context for our adaptation method. The history of the flow solver ISIS-CFD is described in section 2.1, its face-based discretisation and advanced simulation techniques in section 2.2. Then section 2.3 treats the meshes which we use and their advantages for adaptive refinement. Finally, section 2.4 sketches an outline of the grid refinement technique, showing its links with the flow solver.

History and development of ISIS-CFD

In the 1980s and 1990s, the group which was then known as DMN (Numerical Modelling Division) at the LMF (Fluid Mechanics Laboratory), Ecole Centrale de Nantes / CNRS, developed Navier-Stokes simulation methods which were implemented in solvers such as the blockstructured code HORUS (developed by Ganbo Deng and Michel Visonneau) and the elementbased unstructured solver ATON (Patrick Queutey, joined by Emmanuel Guilmineau). In that period, the group innovated for example with the use of anisotropic RANS turbulence models to simulate vortical ship wakes [START_REF] Deng | Comparison of explicit algebraic stress models and secondorder turbulence closures for steady flows around ships[END_REF].

At the initiative of Michel Visonneau who had become the leader of the group in 1995, a new face-based unstructured finite-volume solver was created in 1999 with the intention of bringing everyone's work together in one code. This solver was named ISIS. For the simulation of free-surface flows, a surface capturing approach following Onno Ubbink [START_REF] Ubbink | Numerical predictions of two fluid systems with sharp interfaces[END_REF] was chosen; this breakthrough capability was first demonstrated in 2001 [START_REF] Deng | Capture et suivi d'interfaces d'écoulements de fluides visqueux incompressibles non miscibles[END_REF]. Other major developments include the computation of body motion with a unified implementation of mesh motion and mesh deformation, introduced by Alban Leroyer who stayed with the group after defending his Ph.D. thesis [START_REF] Leroyer | Etude du couplage écoulement/mouvement pour des corps solides ou à déformation imposée par résolution des équations de Navier-Stokes. Contribution à la modélisation numérique de la cavitation[END_REF] in 2004.

The code reached maturity through its use in various European projects such as EFFORT (2001)(2002)(2003)(2004), VIRTUE (2004VIRTUE (-2007)), FLOODSTAND (2009)(2010)(2011)(2012) and STREAMLINE (2010)(2011)(2012)(2013). Starting from 2006, the solver whose name was changed to ISIS-CFD has been commercialised through a collaboration with NUMECA International, as part of the FINE/Marine computing suite which also contains the mesh generator Hexpress and the visualisation software CFView. FINE/Marine is currently being used by about 200 industrial and academic users worldwide. Since 2010, a commercialisation agreement has also been signed with the Nantesbased startup HydrOcean and its successor, Nextflow Software.

Automatic grid refinement was envisaged in ISIS-CFD from the start and was one of the motivations for the face-based framework. Adaptation and error estimation were first studied in the group by Alexander Hay who defended his Ph.D. thesis in 2004 [START_REF] Hay | Etude de stratégies d'estimation d'erreur numérique et d'adaptation locale de maillages non-structurés pour les équations de Navier-Stokes en moyenne de Reynolds[END_REF]. Hay's work confirmed the tremendous potential of the grid adaptation technique [START_REF] Hay | H-adaptive Navier-Stokes simulations of free-surface flows around moving bodies[END_REF][START_REF] Hay | Computation of three-dimensional free-surface flows with an automatic adaptive mesh refinement and coarsening strategy[END_REF]. However, his method required many modifications in the heart of the code, so his branch diverged from the main version of ISIS-CFD and was discontinued after his departure. My mission on arriving at LMF in 2007 was to restart the development of grid refinement. While deciding to rewrite the coding from scratch to achieve a complete separation between the refinement and the main solver, I conserved many of Hay's ideas on data structure, refinement technique, and anisotropy. The first operational version of the new refinement method was available in 2009.

The grid refinement method in ISIS-CFD In 2012 the laboratory changed its name to LHEEA (Laboratory for Hydrodynamics, Energetics, Atmospheric Environment) and the group became DSPM (Dynamics of Marine Propulsion Systems) while Patrick Queutey took on the group leadership. In 2016, the group name was changed again to METHRIC (Methods for simulating Turbulent Incompressible Flows at High Reynolds numbers, and Coupling). The innovation in ISIS-CFD, and in its grid refinement, continues as before.

The flow solver

ISIS-CFD is an incompressible unsteady Reynolds-averaged Navier-Stokes solver for multifluid flow. The solver is based on the finite-volume method to build the spatial discretisation of the transport equations. The velocity field is obtained from the momentum conservation equations and the pressure field is extracted from the mass conservation constraint transformed into a pressure equation. These equations are similar to the Rhie and Chow SIMPLE method [START_REF] Rhie | A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation[END_REF], but have been adapted for flows with discontinuous density fields. Free-surface flow is simulated with a mixture flow approach: the water surface is captured with a conservation equation for the volume fraction of water, discretised with specific compressive discretisation schemes in order to keep the interface as sharp as possible. ISIS-CFD computes both steady and unsteady freesurface flows with a time integration technique; for steady monofluid flow, both segregated and coupled steady solvers are available. A detailed description of the solver is given by [START_REF] Duvigneau | On the role played by turbulence closures in hull shape optimization at model and full scale[END_REF] and [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF]. Information on the interface-capturing scheme can also be found in [START_REF] Wackers | Free-surface viscous flow solution methods for ship hydrodynamics[END_REF].

The unstructured discretisation is face-based: fluxes are computed face by face, the reconstructions of the cell-centred state variables to the face centres are made with interpolations that use the two cells next to a face and their neighbour cells without a-priori assumptions about the cell topologies. And while the linearised systems used to solve the momentum and pressure equations are formulated in the cell-centred unknowns, these systems are constructed by summing the contributions of the faces to each cell. Thus, no cell topology assumptions are made anywhere, which means that cells with any number of arbitrarily shaped faces are accepted.

The method features sophisticated turbulence models, such as the anisotropic EASM model [START_REF] Deng | Comparison of explicit algebraic stress models and secondorder turbulence closures for steady flows around ships[END_REF][START_REF] Duvigneau | On the role played by turbulence closures in hull shape optimization at model and full scale[END_REF] and DES models [START_REF] Guilmineau | Numerical simulation with a DES approach for automotive flows[END_REF]. 6 DOF motion for simulated ships [START_REF] Leroyer | Numerical methods for RANSE simulations of a self-propelled fish-like body[END_REF] is combined with grid deformation in order to allow the ships to move. Other recent developments include cavitation models [START_REF] Perali | Improvement of the Sauer cavitation model based on the simplified Rayleigh-Plesset equation[END_REF]. Sliding interfaces and overset meshes have been introduced to allow a part of the mesh to move within the rest [START_REF] Queutey | Sliding grids and adaptive grid refinement for RANS simulation of ship-propeller interaction[END_REF][START_REF] Visonneau | Sliding grids and adaptive grid refinement applied to ship hydrodynamics[END_REF], these are used among others to simulate propellers, rudders and ships crossing. Ship propellers can also be taken into account through the coupling with a panel code for propeller flow.

Meshes and adaptation type

The solver is mostly used with unstructured hexahedral grids generated by the Hexpress grid generator which is also part of FINE/Marine. The grid in figure 1 shows the typical features of such meshes: several semi-structured regions, with body-fitted boundary grids near the walls in order to ensure the best possible grid quality in the boundary. The grid consists purely of hexahedral cells, with mesh size variations obtained by placing one large cell next to two or four smaller neighbour cells. Due to its face-based nature, the ISIS-CFD solver treats these grids just the same as any other type of mesh. With these meshes, good solution accuracy due to the semi-structured parts and the body-fitted boundary meshes is combined with the flexibility to mesh complex geometries.

The type of mesh imposes the type of grid adaptation. With unstructured pure hexahedral meshes, the natural grid adaptation method is grid refinement by division of the cells (see for example [START_REF] Ceze | Anisotropic hp-adaptation framework for functional prediction[END_REF][START_REF] Ganesh | A local truncation error based adaptive framework for finite volume compressible flow solvers[END_REF][START_REF] Leicht | Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations[END_REF][START_REF] Karlsson | Implementation of anisotropic mesh refinement in OpenFOAM[END_REF][START_REF] Toosi | Anisotropic grid-adaptation in large eddy simulations[END_REF]). Computations start on a coarse grid, generated here with Hexpress, then the grid is refined by cutting some cells into smaller hexahedral cells. These cells can be cut again to create even smaller cells, etc. Figure 2 shows an example of a coarse original grid and an adapted mesh created from it.

This choice is natural, because the original grids themselves are also constructed through division of coarser cells into finer ones. Thus, adaptively refined grids are of the same type as standard grids, which means that the ISIS-CFD flow solver can use them without modifications. This reduces the coupling between the refinement method and the flow solver, which greatly simplifies the implementation of the refinement method and also increases its maintainability (requirement 6 in section 1.2). A second advantage is the straightforward incorporation of anisotropic refinement (requirement 3) since a hexahedron can be cut individually along its three directions, resulting in either 2, 4, or 8 smaller cells. Examples of anisotropic refinement can be seen in figure 2 around the water surface. Also, if the quality of the original mesh is good (in terms of orthogonality etc.), this quality is preserved in the refined meshes, since the refined cells have approximately the same shape as the original large cells. This helps to satisfy requirement 2. And finally, refinement through cell division is relatively fast.

However, a disadvantage of refinement by division is that anisotropically refined cells cannot be rotated, so the mesh cannot be aligned with flow features that are diagonal to the grid directions. This forces a return to isotropic refinement, which is inefficient. (Fortunately, the main discontinuous feature in hydrodynamic flow simulation, the free surface, is often aligned with a grid direction.) Furthermore, cells can only be divided in powers of two, which reduces the fine control over the cell size.

As one sees, these aspects come from the use of unstructured hexahedral meshes and both advantages and disadvantages are different for other types of meshes. For example, if the meshes of choice are tetrahedral, then division of cells must at least be combined with edge swapping and similar operations to ensure a good grid quality, while it is sometimes considered advantageous to completely regenerate the refined grid. Thus, a refinement step can be expensive. However, precise control over the cell sizes is possible and anisotropic cells can be oriented along diagonal flow features [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF]. As a second example, if a solver was developed for structured hexahedral meshes, then the right choice for adaptive refinement may be to use nested blocks of cells [START_REF] Van Der Plas | Local Grid Refinement for Free-Surface Flow Simulations[END_REF]. The greater number of cells compared to unstructured hexahedral refinement is compensated by the accuracy gained on block-structured meshes. This confirms the influence of the mesh type on the choice of the refinement technique.

Refinement method

Grid refinement is an alternation between iterations to solve the flow, and grid adaptation steps. For some techniques, the flow is fully solved between each grid adaptation step. This automatically implies a small number of such steps. Also, since flow features in general evolve and move when they are resolved on a finer grid, refinement should be applied in a large buffer zone around the flow features of interest to take into account their displacement once the grid is refined. This approach is particularly advantageous when the grid refinement is expensive, for example when a complete remeshing is performed.

We have chosen a second approach where the grid is adapted often, without waiting for the flow solution to finish on each mesh. Thus, the grid is changed continuously as the solution evolves, which is possible because refinement by division is relatively cheap. In each refinement step, new cells must be refined if the features of interest have moved, while previous refinements of other cells may be undone in positions which the features of interest have left. For such an approach, the derefinement of previously refined cells is a necessity. A significant advantage is, that the same refinement approach can be used for steady and unsteady flow.

In the ISIS-CFD solver, both unsteady and steady free-surface flows are computed by time marching. For the mesh refinement, after a given number of time steps (usually 25 for steady and quasi-steady flows and 2-4 for highly unsteady flows), the grid is adapted to the current solution, after which the time integration continues until the grid is adapted again. An individual grid adaptation step is structured as follows:

-The refinement criterion is computed. This criterion is a real-valued field variable evaluated in the cell centres, which is computed in some way from the flow field. In our metric context, the criterion in each cell is a tensor (see chapter 4).

-In a separate step, the refinement decision is taken. Based on the values of the criterion in the cells, each cell is flagged for refinement or derefinement in one or more directions. This decision process is separated from the criterion computation to keep it the same for all possible criteria.

-The derefinement of previously refined cells which are no longer needed is performed.

-The mesh is redistributed over the processors in the case of a computation in parallel. The ParMetis graph partitioner [START_REF] Karypis | Parallel multilevel k-way partitioning scheme for irregular graphs[END_REF] is used to compute the new balanced distribution of the cells over the processors; different weights are applied to the cells in order to take into account that certain cells will still be refined later on. Then the cells with their connectivity and state are moved to their new processors. This step is performed between the derefinement and refinement step since the total number of cells is at its smallest here.

-Cells are refined by dividing them into smaller cells (chapter 3 discusses technical details).

When the procedure is finished, the time integration continues. In one adaptation step, the cells can only be refined or derefined once, so many adaptation cycles are needed if the grid is to be refined strongly. This is one of the reasons to call the refinement procedure often.

For physically steady flows, this procedure eventually converges (typically after 40-50 refinement cycles). If the refinement criterion indicates that the grid is well adapted to the flow and the flow solution itself has converged, then the refinement procedure will no longer modify the mesh. Thus, the flow and the mesh converge together.

The actual refinement algorithm comprises the techniques to transform the existing grid into the new refined grid through refinement or derefinement of individual cells, as well as the data structure used to store the refined mesh and the refinement history. These subjects are discussed only summarily in modern literature, being considered too technical and un-scientific by most authors (and reviewers!). However, it is the technical grid refinement algorithm which imposes the possibilities and the limitations of the refinement method. For systematic use in complex simulation and to facilitate long-term future development, the proper choice of the refinement algorithm can make the difference between failure and success of a grid refinement method.

The principles of the algorithm must be chosen before the code is actually written, so decisions made right at the beginning of the development have a lasting impact on the usefulness of the code. Therefore, refinement algorithms require careful consideration from any developer and, in my opinion, merit scientific discussion.

Within the context of the ISIS-CFD flow solver as sketched in chapter 2, the general principles of section 1.2 can be translated in more precise requirements for the grid refinement algorithm, which have to be taken into account for the design of the method:

-Flexibility (requirement 1) implies derefinement, i.e. undoing previously created divisions of cells, which is necessary for unsteady simulation. Derefinement also improves the quality and efficiency of grids for steady flow, since the position of flow features may change when the grid is refined (otherwise, there would be no need to refine!), which requires the refined cells to follow the flow.

-Anisotropic grid refinement (requirement 3) is the capacity too divide a cell in one or two directions only, as well as in all its directions. This is mandatory for three-dimensional computations with refinement around thin flow structures. Also, anisotropy is needed to refine original grids which have been created themselves through anisotropic adaptation (such as the ones produced by Hexpress). These arguments are presented in detail in [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF].

-Parallel computation (requirement 4) is a significant constraint, which influences every aspect of the method. It is useful to create each algorithm in parallel right away, rather than trying to parallelise algorithms developed for single-processor computation.

-Maintainability (requirement 6) and flexibility (requirement 1) favour a minimal interaction between the refinement subroutines and the remainder of the flow solver. No modifications to the existing solver were accepted to accomodate grid refinement. This purely software-related principle has greatly facilitated the use of grid refinement with other functionalities developed separately (see section 7.3).

-The established practice for the flow solver ISIS-CFD requires the use of unstructured grids, to work with original meshes from grid generators such as Hexpress. This allows the refinement of grids around complex geometries and permits us to keep the existing workflow for computations.

Rather than describing our entire grid refinement algorithm following these principles, I will give three examples in sections 3.1, 3.2 and 3.3 which illustrate the type of decisions to be made when starting the algorithm development. The first two of those choices, I still consider to be right. The last proved to be a serious mistake. . . The final section 3.4 discusses the main open problem for our adaptive grid generation.

Modular refinement techniques

Refining a single cell into smaller cells involves creating locations in the computer memory to store the information about the new small cells, to transfer the flow state and position information from the old cell to the new ones, and to adjust the pointers to faces, nodes, and neighbour cells, not only for the new cells but also for the neighbours. The complexity of this task depends on the number of possible topologies which a cell and its neighbours can have: the higher the number of possibilities, the more complex the algorithm has to be.

Therefore, the use of unstructured hexahedral grids, the anisotropic refinement, and the parallel computation all increase the complexity, since they multiply the possible divisions of the cell, the existing and future divisions of its faces, etc. To be able to develop an algorithm, it was decided as much as possible to separate the refinement in small operations which are relatively independent, such that the complexity of each step remains limited. If needed, computationally inefficient operations and coding limitations were accepted to reach this goal.

Finishing each cell Our grid refinement is performed cell by cell. It was decided, when refining a cell, to completely update the pointers between this cell and its neighbour cells and faces, regardless of whether these neighbours are to be refined later on (in which case the newly adjusted pointers have to be redone). After the refinement of each individual cell, the total system of pointers forms a valid mesh.

The advantage of this procedure is that neighbours which are to be refined and neighbours which remain, can be treated in the same way. Apart from the aforementioned double work, a disadvantage is that an order of refinement is imposed: if a cell has a face which is divided in several small faces, then this cell must be refined before its small neighbours can be refined. Otherwise, a face divided two times would be created which is forbidden in the code. It was considered that the added complexity due to this limitation is less than the complexity gained by not considering the refinement status of neighbours.

Separate treatment of cells, faces, edges In the algorithm, the refinement of cells is separated from the refinement of faces. When a cell is divided, the cell refinement routine calls a face routine for each of the faces, indicating the minimum required division for the face due to the refinement of the cell; the face refinement routine returns the pointers to the requested faces. No other information is exchanged.

Internally, the face refinement routine distinguishes the case when a face must actually be refined by the creation of new small faces, and the case when the required small faces already exist, but it does not need to inform the cell refinement routine about this. The same separation is made for the refinement of a face and its edges, where the face does not need to know how many nodes are located on an edge.

Although this modular approach has created its coding difficulties, it has stood the test of time.

The resulting grid refinement algorithm is maintainable, it has been through several major modifications in some of its parts and the code is converging to a robust stable state. Therefore, it is an approach which I still would recommend.

Parallel implementation

For the domain decomposition approach used in ISIS-CFD, the cells of the mesh are divided into blocks assigned to each processor. The faces between cells in different blocks exist as interface faces in both blocks. This decomposition must be taken into account for all steps of the refinement algorithm (section 2.4). The load balancing was already described in that section. Here, the parallel implementation aspects of the other steps are discussed.

Refinement criterion

The criterion is a real-valued field computed from the flow (chapter 4). To ensure the continuity of the cell sizes over the interfaces between blocks, the criterion itself must be continuous over the interfaces. However, the refinement criterion is computed from the flow field (chapter 5), so if the flow varies smoothly over the interfaces, the same will be true for the criterion. If spatial derivatives of the flow variables must be evaluated to compute the criteria, then these can often be obtained with the same parallelised algorithms that are used in the main flow solver.

Refinement decision

The decision step is the choice of which cells to refine, based on the criterion. This step is iterative, since cells may be refined because their neighbour cells require refinement. The decision process was implemented strictly as a communication between cells and faces: refinement of a cell may imply the refinement of certains of its faces, and vice versa. Thanks to this choice, parallelisation is achieved by exchanging periodically (once the decision in each block has converged) the refinement decisions of the interface faces. The decision process in each block is then restarted until global convergence is obtained. Since most existing communications also use the exchange of data on the interface faces, this choice is natural.

Refinement and derefinement If the sequential algorithm (described above) of refining cells one by one were implemented in parallel, all modifications of an interface face would have to be communicated at once to the neighbouring block, stopping all refinement in this block until the communication is finished. Rather than implementing these interruption mechanisms, it was decided to perform the refinement and derefinement independently in each block, while requiring that the independent refinement of the interface faces is identical in the two blocks.

This choice is not obvious, since it increases the complexity of the algorithm compared to a purely sequential version. A random example: the order of the nodes in the faces must be the same if an interface face in one block is divided directly in four (horizontally and vertically), and in the other block in two (horizontally), then once more in two (vertically), since this situation can appear. . . However, I expect that an algorithm with synchronisation of the operations on the faces would be even more complex.

Directional derefinement

In the original grid refinement algorithm of 2007, refinement was anisotropic but derefinement was only treated in an isotropic way: it implied the complete undoing of a refinement step. If a cell was divided in eight, the eight cells had to be derefined back into one. My reasoning for this was that derefinement is less important for the quality of the solution than refinement, because refinement is needed to capture the flow while derefinement only serves to gain back unnecessary cells. I also supposed that excessively refined cells would always be derefined eventually, when the right situation presented itself. Both of these ideas proved to be wrong.

In fact, for simulations containing thin flow structures such as a free surface, isotropic derefinement does not work because cells refined initially in different directions often need to remain refined in at least one direction. A typical example is a travelling wave with grid refinement around the free surface. When the wave passes, the free surface is curved so the grid is refined both in horizontal and in vertical direction. Then after the wave has passed and the free surface has returned to its rest state, the vertical refinement must remain in place. However, with isotropic derefinement, the horizontal refinement cannot be removed either. This leads to large clusters of unnecessary fine cells which remain in place indefinitely.

A simple test case which shows the problem of isotropic derefinement particularly well is the refinement around a free surface at rest. When the original grid contains no specific refinement at the free surface, it has varying cell sizes at the surface position (figure 3a): the grid near a solid wall is much finer than elsewhere. Thus, the discontinuity in the volume fraction on this grid is thinner near solid walls than far away, which means that its top and bottom are inclined! This leads to horizontal refinement of cells. At the end of the initialisation, when the vertical cell sizes around the surface have become equal due to the automatic refinement, this horizontal refinement is no longer required (figure 3b). However, with isotropic derefinement it cannot go away because the vertical refinement must remain in place (figure 3c). Experience with refined grids shows that irregularly distributed fine cells such as in figure 3c may actually deteriorate the precision of the solution, since the finite-volume discretisation used in ISIS-CFD [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF] is more accurate on regular grids. Therefore, both for reasons of efficiency and for accuracy, it is necessary to remove previous refinements in one direction only (in figure 3 the horizontal direction).

a) Y Z -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 -0.2 -0.1 0 0.1 b) Y Z -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 -0.2 -0.1 0 0.1 c) Y Z -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 -0.2 -0.1 0 0.1
The difficulty with retroactively developing this directional derefinement is that our original data structure for storing the history of the refinement is not adapted for this. Rather, this history is stored as a family tree of cells, with each refined cell having a 'mother' pointer towards the cell that was divided and a 'sister' pointer to one of the other refined cells, forming a loop (see [START_REF] Hay | Etude de stratégies d'estimation d'erreur numérique et d'adaptation locale de maillages non-structurés pour les équations de Navier-Stokes en moyenne de Reynolds[END_REF]). Of course this structure does not preserve the relative position of the fine cells and does not support derefining a group of sister cells otherwise than back into a single cell; it is not possible, for example, to change a cell divided in four into one divided in two. Therefore, the solution which we implemented to perform directional derefinement consists of a double modification (after the fact) of the refinement history:

-Should the evaluation of the refinement criterion indicate that a given cell which was refined in multiple directions, can be derefined in one of those directions, then the mother and sister pointers of the fine cells are modified such that the fine cells appear to be formed by anisotropic refinement of the original cells in all directions except the one which can be derefined, followed by refinement of these intermediate cells only in this direction. Knowing this 'revised' history, the original isotropic derefinement algorithm can then perform the directional derefinement.

-If this procedure is to function efficiently, the active refined cells must be divided as much as possible in multiple directions so the directional derefinement algorithm has a choice; this is achieved by iteratively adjusting the refinement history after each refinement step, such that the fine cells appear to be created first by anisotropic refinement, followed by isotropic refinement.

If I had thought in 2007 of using a cell family tree that preserves the directionality of the refinement, then such a frankly complicated procedure would not have been necessary. However, the implementation was a necessity: the excellent quality obtained recently for heavily refined meshes such as the Series 60 in drift condition (figure 9d in chapter 5) would not have been possible without directional derefinement.

Grid smoothing

Our grid refinement technique is becoming a mature technology, which consistently produces good results over a large range of different problems (see chapter 7). I think that further improvement is only needed in one domain: the smoothness of the mesh, which is currently very good -for adaptive refinement. However, to get the best possible performance of the solver, the refined grids should be just as good as the original ones produced by an external grid generator (requirement 2 in section 1.2).

A major component of the grid quality is the smooth variation in cell sizes. A grid should have cells of the same size lying next to each other as much as possible, without spurious small groups of finer cells appearing. As is shown in section 5.2, this is mainly assured by the refinement criterion: a smooth criterion leads to a smooth mesh.

The main development which still needs to be done is the introduction of mesh smoothing through deformation. In the current algorithm, except for the cells at the walls which are fitted to the surface geometry, the refined cells remain in the position of the original cell. Thus, the cells within an original cell are well aligned, but at the border between two original cells the face normals are not aligned with the lines between the face and cell centres, which reduces the precision of the solution. Figure 4 gives an example; the mesh in this figure is good, but it can be made better. . . Deformation of the refined mesh could be introduced in order to reduce these misalignments. If the nodes of the mesh can be displaced ever so slightly, the worst misalignments could be much improved. For example, node displacement can be obtained through an elastic analogy, treating the cells as rubber cubes which try to obtain a perfect rectangular shape. Other requirements can also be introduced as springs, for example a penalty could be imposed for nodes moving too much. Examples of such techniques have been proposed for example by [START_REF] Kim | A multiobjective mesh optimization framework for mesh quality improvement and mesh untangling[END_REF]. In my opinion, it is interesting to study these techniques in order to achieve the perfect quality mesh.

The refinement criterion is a real field variable whose values determine the cells which will be refined or derefined (section 2.4). A general-purpose grid refinement method needs several refinement criteria based on various physical aspects of the flow, so users can select the criterion that is best suited to their wishes. To fit these different criteria into the same refinement method, one needs to define a criterion principle, a 'mold' in which all criteria fit and which ensures their compatibility with the rest of the algorithm, before actually developing criteria.

For usability in practice and the capacity to evolve with future developments in ISIS-CFD, the following specific demands are formulated for the criterion principle:

-It must be possible to implement criteria based on many different flow properties and computational procedures (generality, requirement 1 in section 1.2),

-The criteria must control anisotropic grid refinement, so they need to impose different cell sizes in different directions (requirement 3), -Easy development of new criteria by people who do not know the details of the refinement algorithm, notably by students (maintainability, requirement 6), -To help with the development of criteria, the relation between the criterion values and the resulting adapted mesh must be straightforward.

Section 4.1 examines different criterion principles and evaluates their suitability in terms of these objectives. Based on this analysis, metric tensors are chosen; section 4.2 describes the fundamentals of these criteria. Finally, section 4.3 shows a practical example of metric tensor criteria and the refinement which they produce. The objective of the chapter is both to motivate the choice of metric tensors and to introduce their basics, as a background for the discussion of specific criteria in the next chapter.

Types of criteria

Refinement criteria take the form of one or more real variables computed in each cell; based on the values of these variables it is decided which cells will be refined or derefined. Refinement criteria can be divided in two classes. The first one contains criteria whose values diminish as the cells become finer, the objective of the refinement with these criteria is to obtain the same value of the criterion in all cells. Typical examples of this class are criteria which estimate the local truncation error in each cell. A special type of criteria within this class are the jump criteria, where the criterion in each cell is based on the difference between a (flow) variable in a cell and in its neighbour cells. Grid refinement will reduce these jumps for smooth flow, so the objective of the jump criteria is to refine where the jumps are largest.

The second class of criteria are those where the value of the criterion is a measure for the target size of the refined cells. Here, the objective of the refinement is to produce a grid whose cell sizes are inversely proportional to the criterion value, which is not supposed to vary as the grid is refined. Gradient criteria form a simple example of this group: the larger the gradient of a certain quantity, the smaller the refined cells should be. When the grid is refined, the gradient converges to a non-zero field, it is not continuously reduced as the cells become finer and finer.

The criteria in the first group, apart from the jump indicators, are inherently isotropic. A large value of the criterion indicates that the cell has to be refined, but it does not show in which direction. Thus, for anisotropic refinement, the criterion is often combined with a separate direction indicator [START_REF] Ganesh | A local truncation error based adaptive framework for finite volume compressible flow solvers[END_REF]. For the implementation of new criteria, one has to make sure that the criterion is reduced when the cells become smaller. This is the natural behaviour of truncation error indicators, but it may be difficult to achieve for other types of criteria. Also, the criterion is not continuous: its values in neighbour cells of different sizes may be completely different. Therefore, exchanging the criterion between neighbour cells for smoothing (section 5.2) is impossible. This lack of generality, combined with the difficulty of implementing anisotropic criteria, made me decide against the use of this class.

Jump criteria are attractive because of their extreme simplicity, which makes them easy to implement and cheap to compute. Moreover, they are naturally anisotropic, since neighbour cells are present in different directions; a cell can be refined in a given direction if the jump with the neighbours in this direction is large. And finally, these criteria are intuitive and straightforward to implement. For these reasons, grid refinement in OpenFOAM for example is often based on jump indicators [START_REF] Karlsson | Implementation of anisotropic mesh refinement in OpenFOAM[END_REF]. My only objection to these criteria is their lack of generality. Basically, jump indicators are gradient criteria since the refined cell sizes are inversely proportional to the gradient of the field from which the differences are computed. Thus, the only possible criteria are those where the required cell sizes can be expressed as the gradient of a scalar. This excludes for example most truncation error estimators, since the truncation error is generally not proportional to the gradients of the flow quantities. Therefore, despite its attractive qualities, I decided to abandon also this class of criteria.

Criteria whose value indicates the target cell sizes are general and easy to exchange. The refinement criterion is a field variable whose values specify directly what the grid should look like. Therefore, any field can be a refinement criterion and the only information that has to be passed from the criterion computation to the rest of the refinement procedure is this field. The refinement algorithm remains identical for all different criteria. Full control over anisotropic refinement is obtained by using metric tensors as criteria (see the next subsection). And finally, the development and modification of refinement criteria is straightforward (several criteria have been successfully developed by master students, see section 7.4). The main disadvantage of these criteria is their cost: tensor criteria require storage for six real fields and their computation and evaluation contain numerous manipulations of 3 × 3 matrices (see [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF][START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF] for details), which makes them computationally expensive, especially compared to the straightforward jump criteria. Another disadvantage is that jump-type criteria, which implicitly make use of the grid for directional refinement, cannot be used. However, in this case the advantages of modularity outweigh the disadvantages so this approach was selected.

Criteria based on metric tensors

The use of metric tensors as a refinement criterion was first developed for the generation and refinement of unstructured tetrahedral meshes. The concept was introduced by George, Hecht, and Vallet [START_REF] George | Creation of internal points in Voronoi's type method. Control adaptation[END_REF], building on earlier work by Peraire et al. [START_REF] Peraire | Adaptive remeshing for compressible flow computations[END_REF], and further developed for example in [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF][START_REF] George | Delaunay Triangulation and Meshing -Application to Finite Elements[END_REF][START_REF] Loseille | Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows[END_REF]. It is also a useful and flexible framework for the anisotropic refinement of unstructured hexahedral meshes. This subsection first defines the group of cell-size indicating criteria (introduced above) in its simplest, scalar setting and then explains how this principle can be extended to tensor criteria.

For the scalar formulation, let us suppose that a continuous, strictly positive function h(x) is given for x in the computational domain Ω. This function can be interpreted as a specification of the cell sizes in a mesh: if a cell is placed in x, it should have a size h(x). A mesh generator or grid refinement technique can use this information to create an actual mesh, where the size of each cell corresponds as closely as possible to the value of h in the cell centre. Such a mesh can be seen as a 'discretisation' of h and analogously, the function h(x) is the continuous equivalent of a mesh. In practice, h is specified implicitly through a refinement criterion c(x) by imposing that:

h(x)c(x) = T r , (1)
where T r is a constant. Because of this formulation, a grid constructed from h(x) becomes a uniform grid under the geometric transformation c(x) x ← x. This is a useful property for the mesh generation.

For anisotropic criteria, a way is needed to specify different cell sizes in different directions. Therefore, instead of a scalar, the criterion C(x) is a 3 × 3 symmetric positive definite matrix and the grid is required to be uniform after the transformation C(x) x ← x. Thus, if C has non-equal eigenvalues, the resulting grid will have different cell sizes in different directions.

To control grid adaptation, the refinement of the cells is decided as follows. Let the criterion tensors C i in each cell i be given. From the cell sizes d i,j (j = 1, 2, 3) which for hexahedra are the vectors between the opposing face centres in the three cell directions j, transformed cell sizes are computed as:

di,j = C i d i,j . (2)
The objective of the grid refinement is then to create a grid which is uniform under the transformation, which implies that:

dj = T r ∀i, j, (3)
In the refinement procedure, this is obtained by refining a cell in the direction j when:

dj ≥ T r , (4)
while a previously refined group of cells can be derefined in the direction j if:

dj ≤ T r /d, (5)
for all cells in the group. d is chosen slightly larger than 2, to prevent cells being alternately derefined and re-refined (because di,j doubles when cells are derefined). Since the procedure only uses the vectors d i,j to characterise a cell, it can be used for all shapes and sizes of cells.

As desired, the tensors C are direct specifications of the desired cell sizes: in a converged refined grid, the cell sizes are inversely proportional to the magnitude of the C. The entire procedure of transformation, refinement decision and anisotropic refinement is illustrated in figure 5. Transformed space.

Transformation Refinement decision

Refinement

Original grid. Refined grid. Cell Ω and unit circle (reference) in the physical space, deformed cell Ω and deformed circle after application of the transformation C, refinement decisions to create a uniform grid in the deformed space, and the resulting anisotropically refined grid. The transformed mesh is not really constructed; in practice the transformed space is only used to compute di,j .

The 'threshold' T r is the single degree of freedom in the refinement process and corresponds to a global specification of the fineness of the grid. For the same refinement criterion, the smaller T r the finer the mesh will be. The description above is specific for the division-based refinement of hexahedra. The metric criterion however only intervenes through the definition of the modified length scale [START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF], which means that the same approach can be used in any mesh adaptation procedure based in some way on length scales for its cells or elements. This is the reason why the metric tensor concept could be transformed in a straightforward manner from tetrahedral to hexahedral refinement.

Examples of metric-based refinement

To clarify the metric-based refinement principle, a simple example is given. Steady free-surface flow is computed in a two-dimensional channel with a hydrofoil placed at an angle below the surface. This is the well-known test case presented by Duncan [START_REF] Duncan | The breaking and non-breaking wave resistance of a two-dimensional hydrofoil[END_REF], see [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF] for the computational conditions. Anisotropic grid refinement is performed with a refinement criterion that reacts both to the free surface and to the second derivatives of the pressure (this criterion will be discussed in section 5.1).

Figures 6a-c show the different components of the refinement criterion, which in two dimensions takes the form:

C = C xx C xy C xy C yy . (6)
The refined mesh in figure 6d has fine cells around the leading edge of the hydrofoil and at the position of the free surface (which slopes down over the foil and has a first wave crest behind the trailing edge). The refinement criterion around the surface is much larger in C yy than in C xx , which means that directional refinement is requested with cells that are smallest in vertical direction. The component C xx is only large where the slope of the surface is diagonal and indeed, there is more horizontal refinement in these positions. Contrary to the free-surface region, the requested refinement around the foil and below the water surface coming from the pressure-based criterion is isotropic: C yy and C xx are roughly equal. As a result, the refined cells are square. The component C xy indicates regions where the eigenvalues of the criterion are not aligned with the coordinate axes. This appears notably where the free surface is inclined. Ideally, refined cells here must be placed at an angle with respect to the coordinate axes. Thus, tetrahedral mesh generators rotate their elements [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF], but this is not possible with our cell-division algorithm (see section 2.3).

Figure 7 shows the effect of changing the threshold or the refinement criterion. Between figures 7a and 7b, the threshold T r is reduced by a factor 2. As explained in section 4.1 the criterion does not change much, it only varies a little due to the grid-convergence of the solution: as the grid is refined, the criterion converges to the one computed from the exact solution. The mesh on the other hand is twice as fine. The shape of the zones with fine cells is the same in the two grids, which indicates that the cells in every position are twice finer in the grid of 7b than in 7a. This is in agreement with equation 3.

In figure 7c, the refinement criterion is changed. It is modified to include also the second derivatives of the velocity (see section 5.1.2). The values of the criterion around the free surface do not change with respect to figure 7a, but the new criterion reacts strongly to the wake of the hydrofoil. As a result, the grid around the surface also remains similar but the mesh now contains refinement around the wake: the shape of the zones with fine cells has changed.

In conclusion: the choice of the criterion indicates what aspect of the solution is important for the user, the threshold imposes the global mesh density and thus both the accuracy and the cost of the computation. Together, these two choices determine the refined mesh. With the framework for the refinement criteria established, this chapter discusses the actual development of criteria. The refinement criterion is of major importance in a grid refinement method, since it is the 'intelligent' part of the procedure, which ensures that the grid is refined where it is needed for the flow being simulated. And also, it is the best way to assure the quality of the grid: a smooth criterion automatically leads to a smooth grid.

Judging the merit of a criterion is more delicate than judging a grid refinement algorithm. The latter either works or does not work, but 'good' and 'bad' criteria both produce refined meshes; the difficulty is in knowing which of the meshes is better than the others. Section 5.1 studies the choice of the refinement criterion: on what physical variables must it be based, how is it derived from these variables? The mesh quality and the relation between refinement criteria and mesh smoothness is treated in section 5.2. The chapter ends (section 5.3) with the question if intelligent user intervention is always needed for choosing and tuning refinement criteria, or if procedures exist which a user can follow in blind faith.

Choosing a refinement criterion

The metric-tensor framework does not impose how the criterion tensors are computed from the flow field. The criterion ultimately determines the success of the refinement method, since only the right choice of the refinement criterion leads to meshes that provide accurate solutions with a minimum number of cells. I believe that the best refinement criterion depends on the flow being computed, so a single ideal criterion does not exist. However, general principles exist for the construction of good criteria. This section investigates these principles.

What basis for the criterion?

Intentions of the user However, considering only the truncation error is not enough. Many authors have used grid adaptation to equidistribute the truncation error over the grid, but the resulting solutions may not correspond to what a user wants to see, especially since they do not even provide a uniform solution error (this error is probably larger downstream since it is convected with the flow). Furthermore, users rarely need a solution that is accurate everywhere, since they are usually interested only in a particular aspect of the flow. Thus, for a good criterion, some weighting of the truncation error must be introduced in the criterion to show where this error is of importance for the desired result.

Unfortunately, what a user wants to see is difficult to formulate in mathematical terms. "To study the evolution of the wave field" or "to see the flow in the plane of a propeller" cannot be written as equations. This implies an uncertainty in the choice of the refinement criterion, since it is hard to define the ideal criterion, if it is not known exactly what elements of the flow it should emphasize. Also, a skilled designer can interpret an unforeseen flow phenomenon as an indication of a flaw in a design under study, so it may be important for a simulation to show flow features that were not expected. Therefore, it is both difficult and risky to develop a criterion that is tailor-made for a single question about a flow.

In conclusion, a good criterion takes into account the truncation error as the source of numerical errors and adapts the flow to what the user wants to see, with some margin of safety. Given this situation, it is unlikely that one ideal criterion can be identified; the design of the criterion is to a certain level a matter of taste. The special case where the desired output quantity can be formulated exactly to establish the perfect weighting of the truncation error is treated in section 6.1 on adjoint methods.

Hessian matrices

An added complication for the creation of anisotropic refinement criteria is the need to provide the criterion in tensor form. The truncation error itself is a scalar so even if an estimation for this error is found, it cannot be used directly as a refinement criterion. In many grid refinement methods, the criterion is therefore based in some form on the Hessian tensor of second spatial derivatives which, being a tensor, can be used as a basis for metric:

H(q) =   (q) xx (q) xy (q) xz (q) xy (q) yy (q) yz (q) xz (q) yz (q) zz   . (7)
The Hessian matrix is related to the truncation error, because a grid created with the Hessian of a quantity minimizes the interpolation error of this quantity on the grid, as shown for example by George & Borouchaki [START_REF] George | Delaunay Triangulation and Meshing -Application to Finite Elements[END_REF], Venditti & Darmofal [START_REF] Venditti | Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows[END_REF], and Alauzet et al. [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF]. However, other arguments can also be found in the literature, which link this matrix to an error estimation. Jasak [START_REF] Jasak | Error analysis and estimation for the Finite Volume method with applications to fluid flows[END_REF] argues that the solution in a standard finite-volume discretisation consists of piecewise linear functions and that the error in the solution is therefore proportional to the second derivatives. Toosi and Larsson [START_REF] Toosi | Anisotropic grid-adaptation in large eddy simulations[END_REF] link the Hessian to directional filtering in Large Eddy Simulation.

In my own earlier work [START_REF] Wackers | A simple and efficient space-time adaptive grid technique for unsteady compressible flows[END_REF], for systems of nonlinear equations, the following heuristic argument was proposed: in finite-volume discretisations using first-order upwind reconstructions of the state quantities from the cell centres to the faces, the discretisation error is known to be proportional to the second derivative of the solution. For second-order limited reconstruction, this 'first-order character' of the error is probably conserved. Therefore, the tensor of second derivatives is related to the discretisation error.

In practice, the application of the Hessian criterion by different authors shows consistently good results, which is a supplementary argument to validate its choice.

Pressure Hessian In the literature, Hessian criteria are based on several quantities. As an example, for compressible Euler flow [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF] use the Hessian of the Mach number, [START_REF] Majewski | Anisotropic adaptation for flow simulations in complex geometries[END_REF] use the magnitude of the velocity. We initially based our criteria on the Hessian of the pressure [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF][START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF], a variable which reacts to most features of incompressible flow with the exception of boundary layers. In a boundary layer the flow varies strongly in space so a Hessian based on velocity terms would produce a fine adapted grid here. However, for an attached boundary layer, the position and the necessary grid density are well-known. Therefore, in order to have the smoothest grids possible in the boundary layer, it was preferred to generate a fine boundary layer grid in the original mesh and let the grid adaptation generate the fine grid in the rest of the flow. The pressure, which is nearly constant over the thickness of a boundary layer, is therefore the obvious choice as a criterion variable.

The pressure Hessian criterion is computed as:

C p = H(p) α , (8
)
where H is the Hessian operator and the absolute value • corresponds to a matrix having the same eigenvectors as the original one and the absolute values of its eigenvalues. In the same way, the power α of a matrix is obtained by taking its eigenvalues to the power α while keeping the eigenvectors. Usually α = 1 2 since the truncation error is proportional to the mesh size squared for second-order discretisations.

The pressure Hessian is well suited for the simulation of flows with waves and for the computation of free-surface interaction with immersed bodies [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF]. However, it cannot react to boundary layer separation and it does not react to shear-type flows and viscous wakes either (figure 7a). While the resolution of vortical wakes is reasonable [START_REF] Larsson | A Workshop on Numerical Ship Hydrodynamics[END_REF], the criterion is not able to resolve the velocity defect in the wake of an airfoil. It is therefore limited in its application.

Flux-component criterion For a more general criterion, we wanted to get closer to a truncation error estimator. In finite-volume discretisations, a part of the truncation error comes from the error in the fluxes, which is related to the interpolations of the different state variables (pressure, velocity, turbulent viscosity, and the volume fraction) from the cell centres to the faces. With Hessians as approximations of the interpolation errors, a criterion could be built from the Hessians of all the flow variables, weighted the way they appear in the fluxes. To simplify, only the convective and pressure part of the flux are considered and the turbulence modelling is ignored. Furthermore, instead of considering all the different products of velocity terms which appear in the fluxes, a common weight ρV is assigned to all the velocity Hessians, where V = √ u 2 + v 2 + w 2 . Thus, the criterion becomes:

C f c = max H(p) , ρV H(u) , ρV H(v) , ρV H(w) α . (9)
The maximum of two tensors is computed using the approximative procedure defined by [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF].

Results with this criterion (section 7.1.2, see also figure 7c) show that it produces excellent simulations of wake flows, with wakes that are well resolved and conserved over a long distance. However, this precision comes at a price: the resolution of the wake increases the total number of cells significantly. Furthermore, the detailed resolution of the far wake may not be necessary for applications like the evaluation of forces on a body. Is the 'more general' criterion therefore just as limited in its application as its predecessor? For the moment, this is an open question.

The special case of free-surface flows

Simulation of flows with a free water surface requires not only the resolution of the Navier-Stokes equations but also of the convection equation which indicates the volume fraction of the water (see section 2.2). The solution of this equation is a numerical discontinuity, spread out over the thickness of two or three cells. This means that it is sensitive to the mesh: on a twice finer mesh the interface becomes twice thinner. On a transition from coarse to fine cells the interface is perturbed so for a good solution, the mesh must be regular. In the ideal case, all the cells at the surface should have the same size in the direction normal to the surface.

Since the position of the surface is in general not known in advance, the fine grid at the surface can be created with grid adaptation. As seen above, the criterion used to specify this grid must be regular. Therefore, we chose the simplest free-surface criterion possible: the criterion is non-zero whenever the volume fraction α is neither 0 nor 1 (see [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF][START_REF] Wackers | Adaptive grid refinement for ISIS-CFD[END_REF]). Directional refinement normal to the surface is obtained by computing the normal direction to the surface as the gradient of a field α A which corresponds to α, smoothed out by averaging over a cell and its neighbours a given number of times. The criterion is derived from vectors v in each cell which are unit vectors in this normal direction:

C s = v ⊗ v if 0.1 ≤ α A ≤ 0.9, 0 otherwise. (10
)
Using the smoothed field guarantees that the normals are well defined and also that the mesh is refined in a certain zone around the surface to create a margin of safety. This criterion gives meshes with uniform cell sizes, since the eigenvalues of the criterion tensor are either 0 or 1, so the desired cell size is either equal to the threshold T r (see equation 4) or no refinement whatsoever is demanded. Furthermore, with some stretching of the imagination, the criterion can be interpreted as a truncation error estimator: away from the water-air interface, α is constant so the truncation error in the convection equation is zero. By indicating the surface, the refinement criterion therefore shows the only zone with a non-zero truncation error!

The free-surface criterion only refines at the surface. Therefore, it should either be used with fine original grids (see section 7.1.1) or combined with a Hessian criterion. The combined criterion, which requires the extrapolation of the Hessian criterion through the free-surface position to remove the effects of the pressure gradient jump at the surface, is discussed in detail in [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF]. A similar approach using level sets for the surface capturing has been presented by Guégan et al. [START_REF] Guégan | An L ∞ -L p mesh-adaptive method for computing unsteady bi-fluid flows[END_REF].

Criterion post-treatment

A particular advantage of metric criteria is, that the refinement criterion can be post-treated to enforce certain desirable properties of the mesh. We use for example the limiting of the metric eigenvalues with a maximum value, in order to impose a minimum cell size below which the mesh cannot be refined. Furthermore, criteria can be put to zero near the outflow boundary to obtain a coarse grid for flow damping. In boundary layers, due to the difficulty of evaluating Hessians very close to the wall, the criterion is extrapolated over a few cells towards the wall.

A final protective measure [START_REF] Wackers | Using grid adaptation to understand ship flow instability[END_REF] is applied in the decision stage, to conserve the column-layer structure of boundary layers (figure 1): refinement normal to the wall may be forbidden, to preserve the number of layers (this is mostly used with free-surface refinement) and in all cases, the refinement in the wall-parallel directions is made the same throughout a column, to preserve the columns.

Smooth criteria and smooth meshes

The truncation error depends on the cell size and diminishes when these sizes are reduced. However, a 'secondary' effect may be just as important: for finite-volume discretisations like the one in ISIS-CFD, the accuracy depends on the regularity of the mesh and second-order precision is only obtained in structured parts of the grid. Where large and small cells lie next to each other, the accuracy of the discretisation is reduced. Thus, grid refinement diminishes the truncation error through the creation of finer cells (section 5.1.1) but increases this error in some places by introducing coarse -fine cell interfaces. This is acceptable, since all unstructured hexahedral meshes have these interfaces (figure 1). However, to produce accurate solutions, the refinement criterion must limit the number of coarse-fine cell transitions. This requirement of mesh smoothness, already discussed in section 3.4, is just as important for a good criterion as the right choice of the zones to be refined. An irregular mesh, even if it is much finer than the original mesh, could reduce the precision of the solution. Figure 8 gives an example of an irregular mesh. This is the surface grid of a simulation performed for the Gothenburg 2010 workshop, using the pressure Hessian criterion (section 5.1.2). While these computations were a success due to the better grid quality elsewhere (notably away from the hull), the mesh in this detail is particularly irregular: spots of undesired fine cells appear where the original Hexpress grid has diagonally oriented cells, while the refinement near the centreline changes from coarse to fine constantly. These and similar results led us to study the smoothness of Hessian criteria in detail.

Smooth Hessians Computing the Hessian matrix, which requires the evaluation of second spatial derivatives on unstructured meshes, is not an easy task. On grids where many cells have twice larger or smaller neighbours, consistent discretisations of second-order derivatives are hard to obtain. In [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF] we show that least-squares fitting of a second-order polynomial through the values in a cell and its neighbours, then computing the second derivatives of this polynomial, leads to a first-order accurate evaluation of the Hessian on any mesh. Second-order accuracy requires third-order polynomials fitted through the cell, its neighbours and neighbours' neighbours. This evaluation is costly, it may take up half of the work for a grid adaptation step.

For pressure Hessians, such an accurate evaluation is not even useful since the pressure computed by ISIS-CFD and similar finite-volume solvers does not have well-defined second-order derivatives. In [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF] we demonstrate that the Laplace operator used to compute the pressure is locally inconsistent when the cell sizes vary. This does not deteriorate the solution but it introduces O(h 2) oscillations in the pressure. These result in O(1) errors in the criterion, i.e. the errors are of the same order as the Hessian itself, which creates irregular grids of bad quality such as the refinement spots in figure 8.

Is it useful to smooth the pressure before computing the Hessian, in order to remove the oscillations? Typical Laplace smoothers for unstructured grids are of the same type as the operator in the pressure equation, so they introduce O(h 2) oscillations themselves! Therefore, smoothing the pressure does not improve the criterion. Smoothing the Hessian after its computation brings no improvement either, since the O(1) oscillations are of the same order as the solution itself so when the errors have been smoothed, the solution has disappeared as well. This problem is solved by evaluating the Hessian in two steps. Initially, the first derivatives are computed. These contain O(h) wiggles which can be removed effectively by smoothing. The derivatives of this smoothed gradient give a smooth Hessian (see [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF]).

While smoothing is essential for the pressure Hessian, it may or may not be desirable for other refinement criteria. A smoother criterion results in a smoother mesh with fewer variations in the cell size, which improves the solution. However, smoothing deforms the refinement criterion and it reduces peaks which occur for example in vortex cores. Thus, excessive smoothing diminishes the ability of the criterion to capture the solution. And smoothing is not always necessary: the velocity Hessians in the flux-component criterion (section 5.1.2) are not smoothed and the grids they produce in wakes are of excellent quality, as shown below. Thus, smoothing must always be used sparingly, and with care.

The oscillations in the pressure are not really the fault of the refinement criterion. If a more accurate discretisation for the pressure equation can be found, then a non-smoothed pressure Hessian should give good results. Working on such a discretisation is therefore an interesting option, not only for the refinement criterion but also for improving the solution itself.

The evolution of mesh quality To illustrate the evolution of our refined mesh quality and to emphasize the importance of working on refinement criterion smoothness, four examples of adapted meshes are shown in figure 9. Each one but the last has been taken from earlier publications and each represents the state of the art at that time.

Figure 9a is a mesh created with the very first pressure Hessian criterion, which uses leastsquares fitting of second-order polynomials. The criterion detects the main features of the flow but there is a lot of irregularity. The next figure, 9b, shows refinement with the free-surface criterion and the same pressure Hessian. The improved mesh quality comes from the experience gained in choosing the meshing parameters, and from a technique called conditional refinement which made the refinement of a cell dependent on the criterion in the neighbour cells. This technique, abandoned when smoothed criteria were introduced, created larger zones of cells with the same size. However, some small irregularities remain, for example below the surface, just above the centre of the image.

Figure 9c marks the introduction of the smoothed pressure Hessian, combined here with a free surface criterion. The image, a cut alongside a ship, shows the bow wave (left) and stern wave (right). The mesh quality below the surface is excellent, cells of the same size all lie together in large zones without any spurious appearance of a few finer cells. However, too much refinement is found at the water surface like in figure 9b, mainly because the directional derefinement had not yet been introduced.

Finally, figure 9d shows a mesh made with the flux-component Hessian. The centre of the figure contains the wake behind a ship in drift, the right shows a weak vortex that was created below the stern and convected to the side. Smoothing is only applied to the pressure, while the refinement in this wake comes mainly from the velocity derivatives. This confirms that the velocity solution is smooth in itself. The variation of the cell sizes is regular and smooth transitions from square cells to anisotropic refinement are observed. This is due to the introduction of the velocity criterion, since the pressure Hessian tends to favour isotropic refinement as shown in the previous images.

Is this the end of the improvements? I think that the mesh quality shown in figure 9d is

The scriptable criterion?

nearly optimum. The main remaining challenge is to get a perfect mesh in the regions close to solid walls.

The scriptable criterion?

The objective of automatic grid refinement is not only to obtain better solutions with fewer cells, but also to make life easier for the user. Ideally, a computation with grid refinement ought to be simpler to perform than one without.

The best measure for the usability of a method is the scripting test: can a computation be set up and run successfully by a computer script, without any human intervention? Computerised operation of a flow solver requires clear user guidelines which do not require any intelligent assessment of the case to be computed. For grid refinement, this concerns especially the refinement criterion, which frequently had to be 'tuned' for each test case in classical refinement methods. In my opinion, the following properties are required of a scriptable refinement method:

1. The refinement criterion must have a sufficiently wide range of applicability, since the computer cannot analyse each test case to see if a different criterion is needed.

2. All the parameters of the criterion (notably the threshold T r) must come with simple, clear rules which provide the right settings straight away (no trial and error!)

3. The creation of the original mesh must be straightforward.

These rules apply equally well to the needs of inexperienced users as to computer scripts. Thus, the study of scriptability has an impact on the overall user-friendliness of the grid refinement.

The free-surface script As an example, a refinement procedure is shown which I consider scriptable and which has indeed been implemented in scripts both at NUMECA and by ourselves (see section 7.2.2 about the META project). This procedure concerns the use of the free-surface criterion (section 5.1.3) for the computation of steady flow around ships, to ensure that the free surface is well captured even in the case of strong waves. Its technical details are provided here to give an impression of their complexity.

-The original Hexpress mesh needs refinement as required around the ship hull, plus a refinement surface at the undisturbed free surface position with a target size in Z-direction of L/500 (where L is the length of the ship). To this surface, a refinement box is added from about 0.1L in front of the ship to 0.2L behind the stern and 0.3L to the sides, with a height proportional to 1 2 ρV 2 in order to capture the waves near the hull. Its target cell size is L/500 in Z as well.

-For the adaptation, the threshold is T r = 1.3 • L/1000 in order to have cells that are refined once.

-The procedure is suitable for all steady ship flow cases including drift conditions and simulations with free ship positioning.

The guidelines for the original mesh are very similar to those for computations without grid refinement and of equal complexity. For standard geometries, these meshes can be created automatically. The refinement itself is straightforward and the applicability of this procedure is large; therefore, it satisfies all criteria for being scripted. While the procedure is simple, years of computation setups 'by hand' were needed to develop the confidence that it can indeed be used for all the cases stated above. This confidence finally allowed us to proceed with automatic computations.

Grid refinement with the free-surface criterion simplifies computations, because it becomes less important to know in advance the position of the surface. As long as the velocity field associated with the waves is resolved on the original mesh, grid refinement can add the freesurface grid to make the wave system well resolved. Thus, computations with strong waves or with a dynamic ship position different from its position at rest become easier. However, the procedure still requires an original grid which resolves the flow around the hull, as well as a correct choice for the height of the refinement box.

Scripting combined Hessian criteria Creating the original grid for free-surface flow computation becomes easier when a combined free surface -Hessian criterion is used (section 5.1.3), since such a criterion can generate the grid needed to capture both the waves and the ship wake. Thus, it requires neither a fine original grid on the hull nor initial free-surface refinement. What would be needed in order to script such a computation? The original grid generation is simple, it just needs to correctly represent the geometry, so this is not a major concern except for very complex geometries. The applicability of the procedure is larger than with the free-surface criterion, because the original grid has less requirements. The only major question is the threshold T r , for which no straightforward choice is available, contrary to the free surface criterion where T r directly represents the cell size at the surface.

Thus, scripting requires a procedure for choosing T r . In [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF] we provide an initial answer. The first step is to choose a particular way of weighting the free-surface and Hessian criteria in the computation of the combined criterion: only the Hessian is weighted with a factor c. The criterion becomes:

C c = max (C s , c C p) . (11)
As a result, the combined criterion has the same order of magnitude as the free-surface criterion C s , so the rules for choosing T r developed for this criterion can be used. Furthermore, T r still indicates the cell size at the surface. However, the weighting c has to be chosen. Since the free-surface criterion is non-dimensional, it makes sense to formulate also c in terms of non-dimensional quantities. Thus we define:

c = c L 2 1 2 ρ ∞ V 2 ∞ a , (12)
where L is a reference length, ρ ∞ and V ∞ are the farfield density and velocity. The quantity c is non-dimensional, which means that guidelines for this parameter are not dependent on the scale of the flow, but only on the non-dimensional quantities which characterise it. Furthermore, a test in [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF] indicated for a slender ship advancing in calm water at moderate speeds, that c could be chosen independent of the Froude number F r and the Reynolds number Re.

I expect that the future of scripting Hessian and combined criteria will see simple guidelines for classes of computations, such as slender ships, fast ships, ships in waves, etc. This limits the types of cases for which a script can be used, but I expect that the classes will prove to be sufficiently large that this is acceptable in practice. For instance, recent tests have shown that slender ships and slender airfoils can be simulated with the same settings. Like for the free-surface criterion, the guidelines required to script Hessian criteria will probably emerge gradually, based on years of experience.

Grid refinement and error estimation go hand in hand. Adaptive refinement directly influences the discretisation error (section 5.1.1), so it is logical to base refinement criteria on an estimation of this error. Also, grid adaptation is developed because for complex flows, manually creating grids which ensure a certain error margin is impossible (section 1.1). But if the user cannot estimate the numerical error, computations with adaptive refinement are unreliable unless this error is estimated automatically. Thus, the CFD Vision 2030 [START_REF] Slotnick | CFD vision 2030 study: A path to revolutionary computational aerosciences[END_REF] mentions error estimation as a bottleneck for refinement.

My work on adaptive methods includes studies of two totally different error estimators, which are analysed and compared in this chapter. Section 6.1 describes adjoint-based goal-oriented error estimation for hydrodynamic flows and discusses some of the pitfalls which I encountered when applying this method. Then section 6.2 introduces the idea of performing grid convergence studies and Richardson extrapolation using adaptive refinement. Finally, section 6.3 compares both approaches and highlights their suitability for different kinds of problems.

The adjoint solution and its difficulties

In today's research, most error estimation is goal-oriented: its objective is to compute the error in a quantity of interest derived from the solution, such as the force on a body or an integral over part of the flow domain. Error estimation using adjoint equations has reached a high level of maturity for structural mechanics, with a sound theoretical basis and practically usable error estimators. For aerodynamics, this is more difficult due to the nonlinear and convective nature of the equations, although successful error estimations are reported in the pioneering works [START_REF] Venditti | Grid adaptation for functional outputs: application to two-dimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows[END_REF]. Goal-oriented mesh refinement is brought to a high level by [START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF][START_REF] Belme | Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows[END_REF][START_REF] Loseille | Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations[END_REF]. For marine hydrodynamics, adjoint-based grid refinement and shape optimisation are achieved by [START_REF] Springer | Simulation-based shape optimisation of an offshore supply vessel[END_REF][START_REF] Stück | Adjoint Navier-Stokes Methods for Hydrodynamic Shape Optimisation[END_REF].

Adjoint-based error estimation for hydrodynamics in our group has been the subject of Dima Valizadeh's Ph.D. thesis [START_REF] Valizadeh | Développement et analyse d'un opérateur adjoint discret pour les équations de Navier-Stokes stationnaire à faible nombre de Reynolds[END_REF] and further studies by myself. Both projects led to numerous numerical difficulties. After an introduction of adjoint equations which shows that both discrete and continuous adjoints can be derived in a similar fashion from the error in the quantity of interest, this section will focus on these numerical issues with the hope that it can help others to circumvent the pitfalls which we encountered.

Deriving adjoint equations

In the literature, the same adjoint equations are derived in many different ways. I chose these derivations, inspired by Giles & Pierce [START_REF] Giles | Improved lift and drag estimates using adjoint Euler equations[END_REF][START_REF] Pierce | Adjoint recovery of superconvergent functionals from PDE approximations[END_REF], Venditti & Darmofal [START_REF] Venditti | Grid adaptation for functional outputs: application to two-dimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows[END_REF], and Hartmann & Houston [START_REF] Hartmann | Error estimation and adaptive mesh refinement for aerodynamic flows[END_REF], as the most easily accessible.

The discrete adjoint Let a system of equations N (u) = 0 be discretised as N h (ū h) = 0, with a solution ūh and solution error ē = ūhū. The bars denote vectors with values in all the points of the mesh; ūh is the numerical solution, while ū represents the exact solution u projected on the mesh.

Let J h (ū h) be a discretised output functional on the solution, i.e. a scalar parameter computed from ūh , which is the quantity of interest indicated above. We wish to know the error in J h because it is computed from ūh instead of ū. If this error is small, linearisation is allowed2 :

J h (ū h) -J h (ū) ≈ ḡ • ē. (13
)
The vector ḡ is the linearisation of

J h around ūh , ḡ = [∂J h ∂ ū1 , ∂J h ∂ ū2 , . . . ∂J h ∂ ūn].
The error in J h cannot be evaluated using [START_REF] Duvigneau | On the role played by turbulence closures in hull shape optimization at model and full scale[END_REF], because ū (and thus the solution error ē) is unknown. It would be easier to compute the error in J h from the local truncation errors, as these can be estimated. Thus, one searches a weighting zh of the truncation errors which gives the same results as ḡ in [START_REF] Duvigneau | On the role played by turbulence closures in hull shape optimization at model and full scale[END_REF]:

zh • (N h (ū h) -N h (ū)) = ḡ • ē. (14
)
If a zh dependent on ūh but independent of ē can be found somehow, such that (14) holds ∀ē, then this zh is called the discrete adjoint solution.

A system of equations for the discrete adjoint is derived from a linearisation of

N h around ūh , N h (ū h + δū) ≈ N h (ū h) + L h δū, which implies that zh • (N h (ū h) -N h (ū)) ≈ zh • L h (ū h -ū) = zh • L h ē. Thus, (14) holds when zh • L h ē = L T h zh • ē = ḡ • ē ∀ē, which gives the discrete adjoint system: L T h zh = ḡ. (15
)
For me, the key to understanding this procedure was the realisation that the adjoint is defined by (14) as a way to compute a goal-oriented error estimation from the truncation error rather than the solution error, but that this expression in itself does not show how to obtain zh , it is more a specifiction of what the adjoint should do. Extra work is needed to transform (14) into [START_REF] Eça | Reply to comment on "A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF], from which the adjoint can actually be computed.

Automatic differentiation Discrete adjoint solvers are often created with automatic differentiation (AD) of the primal solver. For example, Dima Valizadeh's thesis [START_REF] Valizadeh | Développement et analyse d'un opérateur adjoint discret pour les équations de Navier-Stokes stationnaire à faible nombre de Reynolds[END_REF] describes adjoints for the incompressible Navier-Stokes equations created with the TAPENADE software from INRIA [START_REF] Hascoët | TAPENADE 2.1 user's guide[END_REF]. Since AD is concerned with software rather than partial differential equations, the notion of 'adjoint' as used in the AD literature is not necessarily the discrete adjoint defined above. Still, AD can be used to compute discrete adjoints, which is discussed here. Let a computer program be written symbolically as Y = P(X), with its input variables grouped in the vector X and its output in Y. In the so-called inverse mode, AD constructs a derived program which computes the gradient (or adjoint) of P. A scalar functional on the output is defined as W • Y and the gradient Q is the vector of derivatives of this quantity with respect to the components of X:

Q = ∂(W • Y) ∂X . (16)
This quantity corresponds to the discrete adjoint [START_REF] Eça | Reply to comment on "A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF] only in special cases. Dima Valizadeh investigated two procedures, which he calls DI (Implicit Differentiation) and DPE (Differentiation of Explicit Parts). For DI, P must be a complete solver for J h , i.e. it solves N h (v) = r with a non-zero right-hand side r, then computes J h (v). Thus, P = J h N -1 h with input X = r and (scalar) output Y = J h (v). Furthermore, we set W = 1. Then the gradient becomes:

Q = ∂(J h (v)) ∂r . (17
)
Since the functional J h (ū h) (with N h (ū h) = 0) is independent of r, it can be subtracted from the numerator. Substituting the definition of the discrete adjoint (14) then gives:

∂ (J h (v)) ∂r = ∂ (J h (v) -J h (ū h)) ∂r = ∂ (z h • (N h (v) -N h (ū h))) ∂r = ∂ (z h • r) ∂r = zh .
Thus, the derived program directly produces Q = zh . The DPE procedure uses AD only to evaluate the image L T h zh in [START_REF] Eça | Reply to comment on "A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF]. The resulting code is inserted in a matrix-free conjugate gradient solver [START_REF] Frayss | A set of GMRES routines for real and complex arithmetics on high performance computers[END_REF], which uses the image to solve for zh .

The required code is obtained by choosing r = N h (v) for P, with input X = v and output Y = r. The weight W = zh for a given value of zh . If v ≈ ūh , linearisation of N h (v) is allowed. Since ūh is independent of v, it can then be shown that the desired gradient is produced:

∂ (z h • r) ∂v = ∂ (z h • (N h (ū h) + L h (v -ūh)) ∂v = ∂ (z h • L h v) ∂v = ∂ L T h zh • v ∂v = L T h zh .
The continuous adjoint system In parallel with the above work on discrete adjoints, we investigated continuous adjoints, where the primal system is modified before discretisation to yield a system of continuous PDE's for the adjoint solution. This system is then discretised with the same techniques as the primal system [START_REF] Pierce | Adjoint recovery of superconvergent functionals from PDE approximations[END_REF][START_REF] Stück | Adjoint Navier-Stokes Methods for Hydrodynamic Shape Optimisation[END_REF][START_REF] Wackers | Towards goal-adaptive simulation in ship hydrodynamics[END_REF].

Let u be the solution of N (u) = 0 and u h a numerical approximation. Both are now considered as continuous vector functions defined on the computational domain. Furthermore, let J(u) be a continuous functional. For the RANS system of equations, N (u) = 0 is:

[u i u j + pδ i,j -µ ((u i) j + (u j) i)] j = 0, (18a
) (u j) j = 0, (18b)
with u i the velocity components, p the pressure, µ the (variable) viscosity coming from a turbulence model, and δ the Kronecker delta function. The Einstein summation convention is used, indices outside brackets denote differentiation. For these equations, u = [u 1 , u 2 , u 3 , p] T . Like in [START_REF] Duvigneau | On the role played by turbulence closures in hull shape optimization at model and full scale[END_REF], the error in J(u h) becomes after linearisation:

J(ū h) -J(ū) ≈ (g, e) Ω + (g ∂Ω , Ce) ∂Ω . (19)
g is the linearisation of J around u, g = [∂J ∂u 1 , ∂J ∂u 2 , ∂J ∂u 3 , ∂J ∂p]. (•, •) Ω denotes an inner product, integrated over the flow domain. In the same way, (•, •) ∂Ω is an inner product integrated over the boundary and g ∂Ω is the linearisation of J at the boundary. Since J on the boundary may depend on derivatives of u (this is the case for forces), the linear operator Cu is used to produce a vector which contains both u and its appropriate derivatives. For a functional defined on the boundary such as a force, g is zero; for a volume integral g ∂Ω is zero. The adjoint solution is defined as in (14):

(z, N (ū h) -N (ū)) Ω = (g, e) Ω + (g ∂Ω , Ce) ∂Ω .

A system of equations for the adjoint z can be found as follows:

• Construct a linearisation L of N and substitute it in the left-hand side of (20): (z, N (ū h)-

N (ū)) Ω ≈ (z, L(ū h -ū)) Ω = (z, Le) Ω .
• Reorder and rework this expression using integration by parts, such that all the linear operators work on z and e becomes isolated. This leads to a new linear system L * and boundary operator L * ∂Ω such that (z, Le) Ω = (L * z, e) Ω + (L * ∂Ω z, Ce) ∂Ω , where the last term contains the boundary terms of the integration by parts.

• Given this expression, (20) holds when L * z = g. This is the adjoint system of equations.

Furthermore, L * ∂Ω z • Ce = g ∂Ω • Ce is required on the boundary, which produces boundary conditions on z for those terms of Ce which are not zero due to a boundary condition on C ū.

For the RANS equations, the adjoint system reads: A point to consider is that the exact adjoint z has to be approximated with a numerical adjoint z h obtained by discretising [START_REF] Giles | Improved lift and drag estimates using adjoint Euler equations[END_REF]. This introduces a supplementary error term in [START_REF] George | Creation of internal points in Voronoi's type method. Control adaptation[END_REF], which can be approximated under certain conditions [START_REF] Pierce | Adjoint recovery of superconvergent functionals from PDE approximations[END_REF][START_REF] Venditti | Grid adaptation for functional outputs: application to two-dimensional inviscid flows[END_REF].

-u i (z j) i -u i (z i) j + (z p) j -µ ((z i) j + (z j) i) j = g j , (21a)
(z j) j = g p , (21b)

Numerical complications

Memory use for the DI discrete adjoint For programs created with AD, the gradient is computed by moving backwards through the primal program P, differentiating each operation. To differentiate the nonlinear parts, the state of the primal computation at each instant is needed so it must be either recomputed or stored. For the DI approach, where the primal program contains a solver for N h (ū h) = 0, this implies storing the solution at every iteration of the flow solver. Even if the data are stored to disk, the memory consumption is considerable. This meant that we could apply DI only to relatively small problems. Furthermore, since the gradient is computed backwards, it is solved with a primal solution which becomes less and less accurate with each iteration of the gradient solver.

INRIA identified and corrected this issue [START_REF] Taftaf | Adjoints of fixed-point iterations[END_REF]. Gradient computations for fixed-point iterations can now be based only on the final converged state of the primal problem, reducing memory requirements and increasing the accuracy.

Preconditioning the DPE The matrix-free solver [START_REF] Frayss | A set of GMRES routines for real and complex arithmetics on high performance computers[END_REF] chosen to resolve [START_REF] Eça | Reply to comment on "A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF] for the DPE approach proved to be very sensitive to the preconditioning. Dima Valizadeh proposed the idea of applying the transpose of the approximate linear system, used to solve iteratively the nonlinear primal problem, as a preconditioner for the adjoint solver. This choice is highly effective.

Pressure outflow boundary conditions

The incompressible Navier-Stokes equations can be solved with imposed velocities on all boundaries and no pressure boundary condition, as long as the total net flux into the domain is zero. In this case, the pressure is determined up to a constant.

Depending on the functional, the adjoint equations may have different boundary conditions, or a source term in the continuity equation (21b). Thus, the net adjoint flux is not necessarily zero, even when the primal flux is zero. Furthermore, the adjoint equations are not conservative so numerical errors change the net flux. Thus, contrary to the primal system, in most cases the adjoint requires an imposed pressure boundary condition to have a solution.

Dima Valizadeh reported significant convergence difficulties for his adjoints. In retrospect, I think that the absence of pressure boundary conditions in his simulations contributed to these difficulties, although this was not mentioned in his thesis. Since the automatic differentiation acts on the finished programs, the mathematics of the adjoint problem are addressed in a blackbox way. This made it difficult to detect the issue of the pressure boundaries in his work.

Finite-volume discretisation of the adjoint RANS equations An advantage of the continuous adjoint (21) is that this system is similar to the primal system [START_REF] Ganesh | A local truncation error based adaptive framework for finite volume compressible flow solvers[END_REF]. Thus, we discretised it with a finite-volume technique and a segregated Rhie & Chow method [START_REF] Wackers | Towards goal-adaptive simulation in ship hydrodynamics[END_REF]. Apart from the need to reverse the upwind discretisations because the adjoint flow direction is backwards (see figures 11 and 10), most terms are treated like for the primal solver.

All the difficulty of discretising the adjoint is concentrated in the term -u i (z i) j , which makes these equations impossible to write in conservative form. As a source term which depends on the gradient of the solution (z i) j , this term is sensitive to small errors in the solution and easily causes instability. Since the term -u i (z i) j originates from the linearisation of the mass fluxes which have central discretisations in the primal system, we found that the adjoint gradients in -u i (z i) j also require a central discretisation for the adjoint to be stable. The same approach is proposed by [START_REF] Stück | Adjoint Navier-Stokes Methods for Hydrodynamic Shape Optimisation[END_REF].

However, the adjoint system remains difficult to solve and instable in many situations. This may be a problem of the solution procedure, rather than the discretisation. The primal system is conservative, which is helpful for solving it: once the sum of the fluxes in each cell approaches zero, the errors in the velocity cannot really grow anymore, they only move from cell to cell. Thus, solvers using imperfect linearisation and underrelaxation are sufficient to solve the system. For the adjoint however, the term -u i (z i) j in a cell can grow uncontrollably as long as the solution is not converged. Therefore, it may be necessary to change to a more powerful solution method which is better adapted to the source terms.

Estimating residuals With the adjoint solution known, equations (14) or (20) can be used to estimate the error in J(u h) or even to improve the approximation by subtracting the error estimation from the computed value of J. Besides the adjoint solution, the residuals N (u h) must be computed, the result of applying the exact RANS equations to the approximate numerical solution. (In [START_REF] Eça | A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF], the truncation error N h (ū) ≈ -N (u h)). Since the exact equations cannot be used with a discrete solution, they are approximated with a higher-order accurate discretisation3 . This does not produce the exact residual, but the difference is minor if the new discretisation is at least an order more accurate than the existing one.

Since the higher-order discretisations are not solved but only used to evaluate the residual N (ū h), they do not have to be stable. Therefore, a wide range of choices is possible. We used a finite-volume discretisation, similar to [START_REF] Hay | Error estimation using the error transport equation for finitevolume methods and arbitrary meshes[END_REF]. Using least-squares fits of third-order polynomials, fluxes are reconstructed in the face centres and the nodes. These fluxes are then integrated over the faces with third-order quadrature rules. Accurate reconstruction requires using the information from more cells than just the neighbours: figure 12a andb show the stencils that we use for the reconstructions in nodes and faces. The weak point of these large stencils is their behaviour near curved walls for high Reynolds numbers. From the resulting stretched and curved stencils (figure 12c), it is difficult to extract derivatives in the wall-normal direction. In this image, the cells are so thin that the distance in wall-normal direction is greater between wall-parallel (left-right) neighbour cells than between wall-normal neighbours (up-down). Thus, the wall-normal variation of least-squares fitted polynomials takes into account more the curvature of the wall than the actual wall-normal variation of the function. Therefore, the errors in the residuals for the first layer of cells on the wall are hundreds of times bigger than in all the other cells.

It may be possible to alleviate this problem, for example by interpolations which take into account the boundary layer structure. Also, other techniques than least-squares interpolation can be used. For example, Venditti & Darmofal [START_REF] Venditti | Grid adaptation for functional outputs: application to two-dimensional inviscid flows[END_REF] interpolate the solution to a finer grid in each cell and evaluate the residual on this fine mesh. However, all high-order accurate residual evaluations need more information than the standard discretisation that uses only a cell and its neighbours, so they rely one way or the other on larger stencils. This means that the problem of near-wall curved cells may always be present. Furthermore, the residuals themselves are large in the boundary layer, so an error estimation cannot be reliable unless the problem of computing residuals in the boundary layer is completely solved.

Numerical test of the error estimation

The performance of our adjoint error estimation is analysed in [START_REF] Wackers | Towards goal-adaptive simulation in ship hydrodynamics[END_REF] with two 2D wing cases: laminar flow around the NACA 0012 profile at Re = 1000 and turbulent flow around the Nakayama B profile [START_REF] Nakayama | Characteristics of the flow around conventional and supercritical airfoils[END_REF] at Re = 1.2 • 10 6 , both with 4 o angle of attack. The drag is used as functional and the computed values are corrected with the estimated error in order to improve the estimate. Computations have been performed on unstructured Hexpress and structured grids.

Computed and corrected functional values are given in figure 13. These figures show that for the laminar case, the predictions are reasonable. The functional is improved for the structured grids, while for unstructured grids the error estimation is of the right order. For the turbulent case, the estimation on coarse meshes cannot be used but on fine meshes, the structured-grid solution is improved while the order of the error estimate is correct on unstructured grids (although the sign is wrong).

This indicates that the residual estimation for high Reynolds numbers is indeed the weak part of the procedure. And while the principle of the error correction is confirmed, our procedure is too unreliable for the moment to be used in practice.

Grid convergence studies using adaptivity

An alternative to adjoint-based error estimation are grid convergence studies, which extrapolate numerical errors from a series of computations on coarse to fine grids. Our recent work [START_REF] Wackers | Using grid adaptation to understand ship flow instability[END_REF] shows how adaptive grid refinement can simplify the use of this error estimation method.

Grid convergence studies are based on Richardson extrapolation, which uses the difference between solutions on coarse and fine grids to estimate the solution on an infinitely fine grid, i.e. the solution without numerical error. Most practically used techniques of verification in numerical hydrodynamics are based on this approach [START_REF] Celik | Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[END_REF][START_REF] Eça | A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF][START_REF] Stern | Comprehensive approach to verification and validation of CFD simulations -Part 1: methodology and procedures[END_REF][START_REF] Wilson | Comprehensive approach to verification and validation of CFD simulations -Part 2: application for Rans simulation of a cargo/container ship[END_REF]. For extrapolation towards the grid-independent solution, grid convergence studies require computations on different meshes for which the local truncation errors have the same spatial distribution and vary proportionally to a single global mesh size parameter (see for example [START_REF] Eça | A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF][START_REF] Wilson | Comprehensive approach to verification and validation of CFD simulations -Part 2: application for Rans simulation of a cargo/container ship[END_REF]). Since truncation errors depend on the shapes and orientations of the cells as well as on their size, this puts two requirements on the meshes:

1. The ratio of the cell sizes between two meshes must be constant throughout the mesh, 2. In any given position, the meshes need to have cells of similar shape and orientation.

These criteria are relatively easy to fulfill on structured meshes. For unstructured meshes, this is more difficult since the grid generation algorithms were never intended to create series of grids. It is hard to obtain fine cells in the same zones for all meshes if the algorithm gives no direct control over the position of the fine cells. Also, a user can rarely control the cell orientations explicitly. In practice, this difficulty to use unstructured grids makes it hard to perform grid convergence studies for complex flows.

Adaptive refinement with metric-based criteria (chapter 4) solves this problem. Thanks to the use of metric tensors, the threshold T r globally specifies the fineness of the grid: the cell size everywhere is proportional to T r (equation (3)) if the refinement criterion remains constant as the mesh is refined. This is the case for any refinement criterion which is based only on the flow; the Hessian criteria are an example. Furthermore, if the refined grids are created by cell division, the refined cells conserve the shape and orientation of the cells in the original grid, so two meshes refined from the same original grid have similar cell shapes. Thus, the two requirements given above are satisfied. This means that series of geometrically similar meshes can be created by starting from the same original grid and simply varying T r . Tests in [START_REF] Wackers | Using grid adaptation to understand ship flow instability[END_REF] show that the resulting meshes indeed provide meaningful uncertainty estimations. Figures 14 and15 give an example for the KVLCC2 tanker (figure 11) in straight-ahead towed condition. Figure 14 shows the meshes in the propeller plane located at the aftship, for four different thresholds. Globally, the positions of fine cells are very similar between the meshes, notably in the finely resolved shear layers around the main vortex. Some exceptions are noted at the outside of the thick boundary layer. Here, the cell size decreases more than linearly with T r because the refinement criterion is not constant, it is better resolved on fine meshes. Since all these meshes were created from the same original grid, the cell orientations are identical; notably the position of the boundary layer grid is the same on all meshes.

The convergence of the drag is shown in figure 15a. Numerical uncertainties for the three finest meshes are estimated with the procedure of Eça & Hoekstra [START_REF] Eça | A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF]; the uncertainty on each mesh is computed using that mesh and all the coarser ones, but no finer meshes. Thus, the computation on the finest (10.2M cells) and the second (5.0M cells) meshes show that the uncertainty estimate on the third mesh (1.3M cells) is already good, since the three intervals overlap. On the finest mesh, the uncertainty is 1.69%. The axial flow field (figure 15b) converges quickly and the solutions on the two finest meshes are almost identical. This means that the observed difference with the experiments is due entirely to modelling (and measurement) errors, which is essential information for the study of turbulence models. Thus, adaptive refinement produces usable series of grids for convergence studies with a simple procedure. The approach is not limited to our own adaptation method, since it relies only on the basic properties of metric-based grid adaptation. It is also applicable to unstructured tetrahedral grids, because anisotropic tetrahedral grid generators often orient the cells along the eigenvectors of the metric tensors [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows[END_REF], which produces consistent cell orientations between coarse and fine grids. Thus, creating grid series with adaptive refinement is a promising technique which may open up grid convergence studies, and the resulting awareness of numerical error, to practical everyday use.

Comparison of error estimation techniques

The two error estimation methods described here are so different that none of the two can be superior in all situations. Nevertheless, a comparison highlights the strong points of each method and helps in the choice of the right error estimation technique for a specific application.

Computation time At a first glance, grid convergence studies appear time-consuming, since they require at least three or four separate computations for each case. However, they estimate the numerical error on the finest grid. With respect to a simulation on this grid alone, only coarse-grid computations are added for the error estimation. If each computation takes half the time of the next finest one, then the total additional time for the error estimation is less than the computation time for the finest grid. Another apparently time-consuming job is the meshing and setup for each separate computation. However, with grid adaptation, adding a series of computations only requires changing the refinement threshold T r of the fine-grid simulation.

For adjoint-based error estimations, the added charge is the resolution of the adjoint equations, a problem of the same size as the primal system. If the primal system is linear, then the adjoint is the transpose of the primal system so its discretisation can be reused, which reduces the computation time. Nonlinear primal systems however require about as much work for the adjoint solution as for the primal one. Thus, surprisingly, the computation times for the two error estimation approaches are similar.

Implementation

The grid convergence approach is by far the easiest to implement. As noted in section 6.1.2, developing an adjoint solver for high-Reynolds RANS applications is not a simple task. On the other hand, once a metric-tensor based grid adaptation method is available for a given problem, then it is trivial to run this method with different thresholds to produce a series of grids. The difficulty is of course to create this adaptation method, but the same adaptation is needed for adjoints since it makes little sense to perform adjoint error estimation without adaptive refinement (see below). The possibility to use the error estimation without any specific development is one of the most important advantages of the grid convergence method.

Goal-orientedness An adjoint solver is not only an error estimator, it is part of a goaloriented approach to simulation: a computation is performed to estimate a global quantity of interest and all computational effort is directed to computing this quantity. As such, it is natural to integrate the adjoint solution in the refinement criterion, to create meshes which are optimised for the computation of the requested functional. Such goal-oriented refinement is highly effective for the efficient computation of the functional [START_REF] Venditti | Grid adaptation for functional outputs: application to two-dimensional inviscid flows[END_REF][START_REF] Venditti | Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows[END_REF] and it is the purpose of most adjoint error estimations in numerical fluid mechanics [START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF][START_REF] Fidkowski | Review of output-based error estimation and mesh adaptation in computational fluid dynamics[END_REF][START_REF] Hartmann | Error estimation and adaptive mesh refinement for aerodynamic flows[END_REF][START_REF] Loseille | Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations[END_REF]. Furthermore, adjoints allow geometric optimisation with respect to the functional [START_REF] Springer | Simulation-based shape optimisation of an offshore supply vessel[END_REF]. Thus, the quantity of interest is at the heart of the entire simulation.

Grid convergence, on the other hand, is a pure error estimation technique which does not modify the computations, so it does not improve the computation of the functional. As such, it is less advanced than adjoint-based methods. However, the flow solutions are accurate throughout the computational domain and can therefore be used to compute (and estimate the error for) any given functional, even those which are requested when the computation is already finished. This is not the case for the specialised adjoint-based solutions. Here, the specific needs of the simulation determine the right choice.

Accuracy

The main concern about the accuracy of both methods is that they are systematically used outside their theoretical zone of application, which is the range of asymptotic convergence. Meshes in this range are sufficiently fine that the error contains only one leadingorder term, which satisfies a linearisation of the original equations and converges as a power of the mesh size. The adjoint equations use a linearised system so they reproduce only this leading-order term. And while mesh convergence studies do not linearise the problem, the Richardson extrapolation which forms the basis of the error estimation supposes that the error has a power-law behaviour.

For modern complex problems, errors are never in the asymptotic range since the required meshes would be unreasonably fine. Thus, the error estimations may still work but they become less reliable. For adjoint methods, results like figure 13 are difficult to exploit since it cannot be known a priori when the estimations are good or bad. And while most of the current work on solution verification deals with using data outside the asymptotic range, the unyielding nature of the debate [START_REF] Eça | Reply to comment on "A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF][START_REF] Xing | Comment on "A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF] may be an indication that no ideal solution exists. Therefore, it is difficult to be sure that the error estimations are valid.

Still, my impression is that the grid convergence method is preferable, not because it is more accurate, but because it provides clear feedback when it is unreliable. Convergence plots for a quantity of interest show visually whether a power-law behaviour is obtained or not and leastsquares data fits [START_REF] Eça | A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF] provide a quantitative measure of their own accuracy. Thus, a careful user is warned when the data cannot be trusted, which makes the error estimation more reliable. Thus, as a pure error estimator, I consider that grid convergence studies are the best choice, due to their ease of application and their reliability. However, the gain in efficiency due to goal-oriented simulation makes adjoint-based error estimators also worth pursuing. And if both methods are available, grid convergence studies would logically be run on goal-oriented meshes. . . so choosing may not even be needed.

While the previous chapters discuss the principles underlying our refinement method, the purpose of this chapter is to show that the method actually works, that it fulfills the objectives of providing physical insight into complex flows (section 7.1), simplifying computational setup (section 7.2), and allowing easy combination with other computation techniques (section 7.3), as well as being accessible to students (section 7.4) and industry (section 7.5). Each section is illustrated with a summary of projects that have been undertaken in the years since my arrival at ECN and which rely in some degree on the mesh adaptation.

It is a policy of the METHRIC group to consider its production as joint work of the entire group, since our research depends on ISIS-CFD which is developed by us all. My reason to attach author names to the projects below is therefore not to designate these people as the sole authors of each work. Rather, I wish to show how the grid refinement method has gradually transcended the sphere of my own research and become an integral part of the work in our group, in research collaborations, and in the FINE/Marine users community.

Grid refinement gives physical insight

Free-surface dynamics

Capturing and understanding the dynamics of free-surface flows requires a good mesh resolution at the position of the water surface, as provided by the free-surface refinement criterion (section 5.1.3). The classical application for this criterion is the simulation of waves generated by a ship. Starting from an original mesh that is fine near the ship but not specifically refined in the farfield, grid adaptation produces an accurate representation of the entire wave field, that experienced naval architects can use to optimise the hull shape. Several of our FINE/Marine customers use this procedure. However, free-surface refinement is not limited to this application.

This section shows three projects that focus on free surface dynamics. The first is a classical free-surface simulation, while the second explores the more violent flow around objects impacting the free surface. The last case is an ongoing study of a particularly hard free-surface problem: ventilation, the aspiration of air below the surface. the simulations, the outrigger moves forward and downward into the water (figure 19). Typical results show that the impact can be divided in two periods: initially a high pressure is observed wherever the hull touches the water (figure 20a), then a strong and local pressure peak appears which runs forward as the hull enters further into the water (figure 20b). Like for the prism, grid adaptation is a major help in capturing this peak and therefore, in correctly representing the flow physics.

Work by Timothée Leboulleux (ENSTA Bretagne / ECN), JW -2017

Ventilating hydrofoil Ventilation, the aspiration of air below the surface on a body such as a propeller or a rudder is notoriously difficult to simulate. In many cases where ventilation is observed in experiments, it is not reproduced by computations. Harwood et al. [START_REF] Harwood | Experimental and numerical investigation of ventilation inception and washout mechanisms of a surfacepiercing hydrofoil[END_REF][START_REF] Harwood | Ventilated cavities on a surface-piercing hydrofoil at moderate Froude numbers: cavity formation, elimination and stability[END_REF] provide one possible explanation: they show experimentally that the flow around a surface-piercing vertical wing (hydrofoil) has bi-stable regimes, where a steady attached flow can change to a ventilated flow due to an external perturbation. Since simulated flow has no perturbations, the ventilated state will not be produced naturally by simulation. This could explain the absence of ventilation in some computations.

Part of the Master thesis work by Timothée Leboulleux was to see if bi-stable flow can be reproduced numerically. After initial simulations to establish the stable attached flow, he introduced a numerical perturbation in the form of a short lateral motion for the foil, to induce ventilation. The sideways motion was then stopped to see if the ventilated flow would stabilise or reattach to the foil surface. Adaptive grid refinement with the combined FCH criterion (section 5.1.2) was used to provide a good resolution of this complex flow, to make sure that numerical errors would not perturb the conclusions. At a Froude number 2.5 and angle of attack 13 o (figure 21), the bifurcation was indeed observed: the two images show stable flow in the same conditions! However, at 7 o angle of attack no stable ventilation was produced, although this was expected from the experiments. This shows that the basic physics underlying the bi-stable ventilation is present in our flow solver, but that the flow model may not predict the boundary layer separation perfectly. Another possibility is that some permanent unsteadiness in the inflow is required to conserve the ventilation. These questions will be investigated further.

Trailing vortices and separation

The flow around ships often contains vortices which separate from keels or regions of strong curvature on the hull. The most common of such structures are the separated flows on the aft body of the ship, which can be simulated reasonably well with RANS methods since the introduction of anisotropic turbulence models in the 1990s [START_REF] Deng | Comparison of explicit algebraic stress models and secondorder turbulence closures for steady flows around ships[END_REF]. In recent years, the interest of the simulation community has moved to forebody and bilge vortices which are created on the forward part of the hull, notably in drift conditions (combined forward and sideways motion) and are convected a long way in the vicinity of the hull.

One of the main questions for these studies is whether differences between computations and measurements are due to numerical inaccuracy or to the approximations made in the turbulence models. Grid adaptation creates locally fine grids which substantially reduce the numerical errors, so it can be a major help in answering this question. Delft-372 Catamaran The first simulation presented here gives an example of the accuracy which grid adaptation can provide for vortical flows. In the AVT-183 project on vortex onset and convection, the Delft catamaran in drift condition (sideways as well as forward motion) was simulated with the combined free-surface and smoothed pressure Hessian criterion, as well as the EASM turbulence model. Compared with a 20M cell fine reference grid, the wave pattern obtained with the adapted mesh has more detail (figure 22) even though this mesh contains only 6.6M cells. A cut plane (figure 23) shows that the trailing vortices are well predicted in comparison with measurements. The conclusion of the project partners was, that the simulation with grid refinement is better than the results obtained by IIHR (CFDShip-Iowa, DES, 50M cells) and INSEAN (χ-Navis, Spalart-Allmaras, 10M cells). This is among others due to the grid size in the vortex core, which is twice smaller than even the 50M cell grid used by IIHR.

Work by Emmanuel Guilmineau (CNRS / ECN) -2013-2014

Car simulation Even though the solver ISIS-CFD is mostly applied to marine flows, it is a general-purpose Navier-Stokes solver. Emmanuel Guilmineau uses the solver for his work on the simulation of road vehicles [START_REF] Guilmineau | Numerical simulations of flow around a realistic generic car model[END_REF][START_REF] Guilmineau | Numerical simulation with a DES approach for automotive flows[END_REF][START_REF] Guilmineau | CFD simulation with automatic mesh refinement for the flow around simplified car models[END_REF]. The aerodynamics of car-like bodies differ from the hydrodynamics of ships, since cars in general have bluff, sharply cut off aftbodies, which provoke massive separation. Furthermore, vortices separate from the angular parts of the forebody. These difficult flows were among the first to show us that the classical RANS turbulence models are insufficient in certain cases. In [START_REF] Guilmineau | Numerical simulations of flow around a realistic generic car model[END_REF], RANS simulations are presented with adaptive grid refinement and the pressure Hessian criterion for the DrivAer geometry, a generic German saloon car created by the university of Munich to provide an open-access example of a realistic car. Comparisons of results without and with grid refinement are shown in figure 24, for an original grid that is already quite fine. The wake of the rear-view mirror changes and stronger vortices are observed behind the wheels. Also, the wake is modified: figure 25 (left and middle) shows that the point of separation on the rear window moves aft due to the refinement and that a secondary vortex appears at the bottom of the recirculation zone. But globally the two simulations are similar so grid adaptation confirms the numerical accuracy of both simulations. However, the studies in [START_REF] Guilmineau | Numerical simulations of flow around a realistic generic car model[END_REF][START_REF] Guilmineau | Numerical simulation with a DES approach for automotive flows[END_REF] show that the separation zones are not well predicted compared to experiments. If the numerical accuracy is good, these difficulties must be due to the RANS turbulence model. And indeed, a hybrid RANS-LES model (Detached-Eddy Simulation, DES) produced results that are in better agreement with experiments. Figure 25 (right) shows that DES for the DrivAer model leads to a shorter recirculation zone with less secondary recirculation at the bottom. The combination of hybrid RANS-LES turbulence models with adaptive refinement is under study, but this combination is not straightforward; in the conclusion (chapter 8) I get back to this point.

The strange case of the Japan Bulk Carrier For the 2015 Tōkyō Workshop on Ship Hydrodynamics, the JBC testcase was introduced as an example of a modern ship with strong vortex shedding on the aftship. Initial simulations suggested that the case was straightforward. However, our pre-workshop RANS computations with adaptive grid refinement showed unsteady behaviour on the skeg which supports the propeller (figure 26). Since we feared that this unsteadiness came from the adaptation procedure, these results were not submitted with our contributions for the workshop [START_REF] Deng | Verification and validation of resistance and propulsion computation[END_REF]. However, the doubts about the observed unsteadiness led to additional computations for this geometry using DES [START_REF] Visonneau | Local and global assessment of the flow around the Japan Bulk Carrier with and without energy saving devices at model and full scale[END_REF]. And indeed, these simulations showed large-scale unsteady vortical structures which contribute to the turbulence kinetic energy. The level of TKE in these simulations was similar to experiments, while all RANS simulations submitted for the workshop underestimate the TKE by an order of magnitude. Since the DES simulations were performed without grid adaptation, I cannot claim any technical involvement in this discovery; still, the simulation in figure 26 marked its beginning.

A recent study [START_REF] Wackers | Using grid adaptation to understand ship flow instability[END_REF] with adaptive refinement explains why the unsteadiness was also observed with RANS. The wall law boundary conditions used in the first simulations underestimate the production of TKE near the walls, compared to wall-resolved RANS (figure 27). Therefore, the damping due to numerical viscosity decreases so any small perturbation can make the flow unstable. Thus, the grid adaptation did not create the unsteadiness, on the contrary it helped to understand the behaviour of the turbulence modelling. Hydrofoil-rudder interaction The 34th America's Cup (AC), held in San Francisco in September 2013, saw the introduction of foiling catamarans into mainstream sailing. The yachts developed for this competition have the capacity to 'fly' with their hulls out of the water, supported only by underwater wings called hydrofoils (figure 28). A significant number of the teams which compete in the AC use FINE/Marine, so it is important for us to simulate lifting hydrofoils. This was one of the motivations for starting a collaboration with the University of Bologna, where Alexandro Palmieri was responsible for a large part of the computations performed for the Italian team Luna Rossa in the 34th AC. The goal of our collaboration is to investigate the simulation of ship wakes using grid adaptation. Its ultimate objective is to simulate the interaction between a hydrofoil and the rudder which is typically placed about 10 chord lengths behind it. This requires the excellent capturing of the hydrofoil wake and its propagation over a long distance.

To test our ability to accurately simulate wakes, computations were performed on the Series 60 hull at 10 o drift, for which measurements of the wake are available from IIHR [START_REF] Longo | Effects of drift angle on model ship flow[END_REF]. Adaptively refined meshes with about 14M cells (see figure 9d) provide an excellent resolution of the details in the wake, as shown in figure 29 which contains all the details seen in the experiment, including the bow vortex visible to the right. The discrepancies between experiment and computations may be caused largely by the turbulence model, as indicated by the difference between the solutions using the EASM and k -ω SST model.

Grid refinement simplifies computations

Adaptive refinement has the potential to simplify meshing and thus to reduce the work load on the user. This requires not only a robust adaptation method, but also straightforward guidelines for its use which are developed through experience (section 5.3). Two examples are shown here, where grid refinement is specifically used to simplify the computational setup. A particularity of ships flying on lifting hydrofoils (as introduced above) is that the immersion depth of the ship varies over a large range; at the lowest position the hulls are in the water, while at maximum height the horizontal wings partially lift out of the water. As a result, in simulations with dynamic positioning it is not known beforehand where the free surface will be. The same is true for conventional fast hulls, which do not completely lift out of the water but whose dynamic equilibrium position is different from their position at rest (figure 30). Thus, the problem in simulating these ships is the meshing of the free surface. With traditional meshing, either an accurate prediction of the equilibrium position is required, or a large block of fine cells must be inserted that covers every possible location of the free surface. How- ever, if the fine grid around the surface is inserted with a free surface criterion or a combined surface -Hessian criterion, the original mesh can be made to capture only the hull so a significant simplification is achieved.

In [START_REF] Wackers | Hessian-based grid refinement for the simulation of surface-piercing hydrofoils[END_REF], a series of computations was performed on a simplified hydrofoil, simulated at two extreme immersion depths (figure 31). The original Hexpress grid was refined only around the foil, the free-surface mesh was created with the combined free surface -pressure Hessian criterion. The grid refinement provides a detailed view of the free surface, which is an important result since it would be unthinkable to compute such different flows on the same mesh without using grid refinement. On the other hand, the wake is not well resolved. This was the direct cause for the development of the flux-component Hessian criterion. The META script The objective of the project META was to develop a next-generation Velocity-Prediction Program (VPP), a tool which predicts the dynamic equilibrium position and the velocity of a sailing boat based on simplified models for the behaviour of its individual components: hull, sails, keel, rudder, etc. One of the developments at ECN concerns the generation of response surface models, which rapidly predict the forces a the hull in a given position by interpolating between the results of computations performed at different positions.

Scripting and automated computation

To create such a response surface, a large number of computations is performed on the same geometry, in different conditions of speed, drift angle, trim (forward-aft angle), sinkage (vertical position) and heel angle. FINE/Marine allows the computational setup to be automated using Python scripts, so this possibility was used to perform series of computations entirely without human intervention. Due to the possibly strong bow waves encountered in the simulations, it is hard to create original meshes that have fine cells at the position of the free surface unless large blocks of fine cells are used. However, this must be avoided at all cost because the large number of simulations to be performed requires rapid simulation and therefore small numbers of cells. It was therefore decided to capture the water surface with free-surface refinement (figure 32). Section 5.3 provides more details of the script. Since scriptability is a necessity for the widespread use of grid adaptation and since it constitutes a proof of maturity, I consider that these first scripted computations were a breakthrough as big as our very first computation with refinement. Surrogate models and optimisation The META script is employed again for the Ph.D. thesis of Patrick Ploé [START_REF] Ploé | Surrogate-based optimization of hydrofoil shapes using RANS simulations[END_REF], who studies the creation of response surface models for the forces on hydrofoils, as a function of speed and attitude, but also of geometrical parameters. These surrogate models can be used in a Velocity-Prediction Program or directly for shape optimisation. They use Gaussian processes to interpolate between the points in the series of RANS computations [START_REF] Ploé | Bayesian strategies for simulation-based optimisation and response surface creation using a single tool. Application to hydrofoil shape optimisation[END_REF].

This process of surrogate model creation is the highest level of automation that we have ever attempted. The parameters and geometry for each simulation are chosen adaptively to create the best surrogate model with the fewest number of computations. The hydrofoil geometries are created automatically with a purpose-built parametric modeller, while the computational setup is fully scripted. The computations themselves use adaptive refinement for the water surface a) b) c) and dynamic positioning to meet prescribed vertical and side forces. Figure 33 illustrates this with three simulations for hydrofoil shape optimisation. These three geometries were generated automatically by varying two design parameters. The vertical views show that the angles of attack are adjusted to obtain the same lift in each case.

Synergy

As stated in chapter 1, one of the reasons for the inclusion of grid refinement in a state-of-the-art flow solver is to allow it to work together with other advanced simulation techniques, increasing their capabilities and performance. This section gives three examples of how grid refinement supports and improves other computational methods.

Sliding grids and overset meshes

For the simulation of complex objects, it is often desired to have two parts of a body move with respect to each other. These movements are a challenge for meshing, since the mesh must follow the changing geometry. Two relative-motion techniques are available in ISIS-CFD; grid adaptation can be combined with both and plays an important support role for one of the two. Sliding interfaces To simulate subbodies that rotate with respect to a main body, such as the propellers behind a ship, a sliding interface technique was introduced in ISIS-CFD [START_REF] Queutey | Sliding grids and adaptive grid refinement for RANS simulation of ship-propeller interaction[END_REF][START_REF] Visonneau | Sliding grids and adaptive grid refinement applied to ship hydrodynamics[END_REF]. This technique allows a part of the grid to rotate within the rest of the grid, as shown in figure 34. The connections between the two parts of the grid are formed by special faces on the interface between the two grid domains, whose connections to neighbour faces in the other domain are continuously adjusted as the inner grid rotates. Using sliding interfaces with grid refinement is straightforward [START_REF] Queutey | Sliding grids and adaptive grid refinement for RANS simulation of ship-propeller interaction[END_REF] because these algorithms are developed such that they can basically ignore each other. The connections of the sliding interfaces are recomputed in each time step, so it does not matter that the grid is refined between the time steps, nor is it necessary to conserve the connection information when refining the mesh. The grid refinement itself treats the sliding interfaces as normal boundaries of the computational domain, refining the two grids independently and acting as if the connection is not there.

With the grid refinement ignoring the connection, the continuity of the cell size over the interface is obtained via the refinement criterion. Given our choice of refinement criteria whose value indicates the target cell size (section 4.1), it is sufficient to have a refinement criterion that is continuous over the interface, to obtain the continuity of the cell size. This is a useful consequence of this choice.

Figure 35 gives an illustration, a propeller located close to the water surface which ventilates (sucks down air) when it is set in motion. The test case is taken from the Ph.D. thesis of A. Califano [START_REF] Califano | Dynamic loads on marine propellers due to intermittent ventilation[END_REF] who studied it experimentally. The computation is performed with the freesurface criterion. As the simulation progresses, the water surface descends and eventually crosses the sliding interface before touching the propeller. As predicted, the cell sizes over the interface remain continuous.

Development by Ganbo Deng (CNRS / ECN), JW -2015

Simulation by Anastasia Zubova (NUMECA), 2017

Overset meshes More general motions than pure rotation can be obtained with overset meshing. Here, an overset part of the mesh moves freely over a background mesh. Interpolation between the domains is used as for sliding grids, but the choice of the interpolated faces is not fixed. Instead, the optimum interpolation location is recomputed every time step. Adaptive grid refinement is an essential component in our overset grid approach, to ensure the quality of the interpolation between the overset and background meshes. This interpolation depends on the relative size of the cells in these meshes, it works best when the cell sizes in each interpolation point are roughly equal in both meshes. For a fine overset mesh, this requires either a background mesh that is refined in every possible position of the overset domain, or adaptive refinement of the interpolation zone. To achieve this adaptation, a refinement criterion in each domain is "reverse-engineered" from the actual cell sizes, such that the eigenvectors and eigenvalues of C correspond to the cell directions d i,j (section 4.2). This criterion is then exchanged between the domains, smoothed [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF] and combined with the existing criterion if other refinement is desired beside the smoothing of the interpolation region. Thus, grid refinement ensures that the cell sizes are always similar where the solution is interpolated. Figure 36 shows an example of a catamaran that is freely moving in head waves. The resulting motion is treated with an overset mesh. Free-surface and overset continuity refinement are combined; the fine cells in the background mesh which assure the smooth transition to the overset cell size are created with adaptive refinement.

Cavitation

Work by Florent Lemoine (ENSTA Bretagne / ECN), JW -2012

Cavitation is the evaporation in water when the pressure drops below the local vapour pressure, followed by the recondensation of the vapour bubbles. This process appears in the lowest pressure regions of the flow, such as the propeller for a ship. Cavitation is often violent and can lead to performance reduction, excessive noise, and erosion of the propeller. Since cavitating flow contains vapour bubbles, it can be modelled with a two-fluid approach just like the water surface model in ISIS-CFD, to distinguish the water and its vapour. However, source terms are added in the volume fraction equation to account for the evaporation and condensation of vapour. In ISIS-CFD, several of such cavitation models are implemented [START_REF] Perali | Improvement of the Sauer cavitation model based on the simplified Rayleigh-Plesset equation[END_REF]. The volume fractions of air and vapour are treated separately in a three-fluid approach so that free-surface cavitating flows can be simulated.

The combination of cavitation with grid adaptation is once again relatively straightforward. It was only necessary to include the vapour fraction in the variables to be copied between old and refined cells and to develop the right refinement criterion.

The master thesis work of Florent Lemoine concerned the implementation and testing of refinement criteria for cavitating flows. Out of several options tested, he obtained the best results with a combined vapour fraction -pressure Hessian criterion. His results indicate that cavitating flows are very sensitive to the mesh density. A first test with the Merkle cavitation model on a two-dimensional NACA 0015 profile (figure 37) shows that sufficient refinement produces a thick cavitation bubble at the leading edge. Refining the mesh even more did not change this form, but on the non-refined original grid the bubble is much thinner and the reentrant jet of water below the bubble is more marked. Automatic grid refinement is the key to grid convergence here. A second case is the cavitating flow around the INSEAN E779A propeller in open water [START_REF] Pereira | Measurement and modelling of propeller cavitation in uniform inflow[END_REF], see also [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF]. For this case, grid refinement resolves the cavitating tip vortices and even the characteristic corkscrew-like rollup of the vortices observed in the experiments by CNR-INSEAN. Without using grid refinement, the tip vortices are not resolved at all. A comparison of different numerical solutions in [START_REF] Salvatore | Propeller cavitation modelling by CFD -Results from the VIRTUE 2008 Rome workshop[END_REF] shows that these do not resolve the tip vortices either. Grid adaptation is thus an essential element for creating and preserving the low-pressure vortex cores that generate the cavitating tip vortices. In automatic design optimisation, surrogate models (section 7.2.2) are used to reduce the cost of the optimisation. A limited number of designs is simulated and a surrogate model for the numerical simulation is created by interpolating between these points with a suitable technique. The optimisation is then performed over this cheap surrogate model.

The cost of this procedure can be further reduced through multi-fidelity metamodelling [START_REF] Pellegrini | Multi-fidelity adaptive global metamodel of expensive computer simulations[END_REF], which is studied at CNR-INM (the former INSEAN) in Rome. Here, most of the metamodel behaviour is based on relatively cheap, low-fidelity simulations, but these results are corrected with a few expensive high-fidelity simulations. The goal is to obtain a metamodel with the precision of the high-fidelity simulations and the cost of the low-fidelity ones. Different fidelities can be obtained using two separate solvers, such as RANS and potential flow codes. If only RANS is used, the accuracy and cost can be varied by using fine and coarse meshes.

Adaptive grid refinement provides coarse and fine meshes (section 6.2) and functions in a fully scripted optimisation chain (section 7.2.2). Therefore, it is a natural complement to multifidelity optimisation. This realisation sparked a collaboration between CNR-INM and CNRS/ECN.

A shape optimisation of the DTMB 5415 destroyer in calm water is presented in [START_REF] Wackers | Hull shape optimisation using multifidelity metamodels and adaptive grid refinement[END_REF]. Figure 39, taken from this publication, shows the principle of the multi-fidelity approach. A surrogate model for the drag as a function of two hull shape parameters is created, based on a large number of simulations on coarse meshes (figure 39a). In a few points, a fine-mesh simulation is also performed and a second surrogate model, for the difference between fine and coarse grids, is fitted through these points (figure 39b). The final surrogate model (figure 39c) is the sum of the low-fidelity and the difference model.

Figure 40 shows the result of the optimisation. With respect to the baseline geometry, the optimum shape has a bulge behind the bow which reduces the bow wave, and a narrower aftship that produces a smaller stern wave. The drag has been reduced by 4.9%. Of the 81 simulations performed in this optimisation, only 7 are high-fidelity computations (4.3M cell, 24 hour on a large workstation). The other computations require only 250k cells and 1.5 hour. This illustrates the power of the multifidelity approach.

Refinement and students

It is essential to engage students in academic research, since they can help to spread knowledge around the world and they bring life to a research group with enthousiasm and fresh ideas. As a consequence, I wanted the work on grid adaptation to be accessible to students. This section explains their role in the development of the method. The section discusses mainly students at M.Sc. level, who have made the most direct contribution to the development of the adaptive refinement method. The Ph.D. work of Dima Valizadeh on adjoint methods is mentioned in section 6.1, while the project of Patrick Ploé is described above (section 7.2.2). The work of Sajad Mozaffari on adaptation for DES will be discussed in chapter 8.

Criterion development Of all the elements in the grid refinement algorithm, the computation of the refinement criterion is the part that is most easily separated from the rest. This was done on purpose (section 4) so the development of refinement criteria can continue after the refinement / derefinement core had reached maturity. As a result, criterion development is easily accessible for student work, since the amount of coding is limited (a criterion comprises one subroutine in general, whose purpose is to compute the 6 components of a metric tensor in each cell) and since refinement criteria have been made accessible via dynamic libraries 4 .

Three refinement criteria were developed mainly by students. Zaib Ali (ECN / Erasmus Mundus) created gradient criteria in 2008. Khalid Ait Said (ECN / Erasmus Mundus) developed the first version of the pressure Hessian criterion in 2009, using least-squares fits of second-order polynomials. Florent Lemoine (ENSTA Bretagne) introduced vapour-fraction and combined criteria for cavitation in 2012, building on the existing combined criteria of that time. Their experience was that the concept of metric tensors is not easy to grasp but that the actual coding of refinement criteria can be learned in a few days. Moreover, they showed that the development and testing of a new criterion is possible for a talented and motivated student in a project of four to six months.

Validation and user guidelines Another area of research that is accessible to students is the testing of grid refinement techniques and the creation of user guidelines. This work is just as important as criterion development, since a criterion without clear guidelines is useless in practice. The work also improves the user-friendliness of the code itself, since most students are willing to point out those parts of the procedure which they find hard to use. The knowledge that industrial users will benefit from their efforts is a source of satisfaction for students.

For Zaib Ali, using the code was particularly difficult since the refinement at that time was run as an autonomous executable, separated from the main flow solver. His struggles as the first user of the refinement algorithm were invaluable, since he discovered many bugs in the course of his work. Adel Jebali (ENSTA Bretagne) applied the newly-developed combined refinement criteria in 2011 and was the first to point out the difficulty of choosing the proportion c for the pressure Hessian (equation 11). Finally, Mehdi Yazid (ENSTA Bretagne) studied the combined criterion with smoothed pressure Hessian as part of his work on irregular waves in 2014.

Physical analysis

As grid adaptation is becoming more powerful and reliable, it is now within students' reach to perform the heavy computations needed for the physical study of complex flows. In 2017, Timothée Leboulleux (ENSTA Bretagne) analysed the onset and development of ventilation on a vertical hydrofoil (section 7.1.1), while Ginevra Rubino (ECN / Erasmus Mundus) used grid adaptation extensively in the analysis of vortex shedding for the DTMB 5512 destroyer in sideslip conditions. Both projects produced adapted grids of close to 50 million cells. The simulations were not without problems, highlighting for example the improvements needed in the grid projection (see section 3.4). But eventually, both students' work advanced our knowledge of their respective subjects.

Classroom use Since 2012, I give 12 hours of lecture and practical training on grid refinement at ENSTA Bretagne. In this course, students discover the use of FINE/Marine and adaptive meshing for free-surface flow simulation. The free-surface capturing model (section 2.2) and the need for grid refinement, as well as the elements of the refinement technique (chapter 3) are easy to understand for most students. Metric criteria are more difficult to explain; concrete examples and hands-on experience with grid refinement proved to be the best way of learning this concept. The presentation of the metric criteria in chapter 4 is based on my experience at ENSTA Bretagne.

Thanks to the hard work of NUMECA, the FINE/Marine graphical interface is easy to use in a classroom setting. With half an hour of explanation, students can autonomously perform two-dimensional computations and experiment with refinement criteria, free-surface discretisation schemes, etc. The list of menus at the left of the screen is useful, since one can simply instruct students to click these menus one by one and to fill in what is needed, after which the computational setup is complete.

For this kind of session, one should not propose computations which run too quickly. In this age of instant gratification, it is a real experience for students to wait fifteen to thirty minutes for a computation to finish. This puts my remarks of week-long computations on big clusters, which always draw gasps of surprise, in perspective.

Application in industry

To finish this chapter, I discuss the use of grid adaptation in the industrial application of FINE/Marine. This short overview is based only on my own discussions with NUMECA and its customers, so it is necessarily approximative.

Adaptive refinement has been included in FINE/Marine since 2009. In those early years, although many clients tried the methodology, it was regularly used by only one or two. Starting from around 2013, the number of users slowly started to grow, but they remained a minority. However, a breakthrough occured during the last two or three years, since today the functionality seems to be used at least occasionally by almost half of our users.

A first major cause of this change is the increase in reliability. I spent much time from 2014 to 2017 on searching and fixing bugs, as well as implementing features that improve the robustness of the mesh adaptation. As a result, today the majority of the computations with adaptive refinement run without incident. This was not the case in the first years and clients told me that these reliability issues caused them to abandon their tests of the mesh adaptation.

A second major change is the emergence of applications for which mesh adaptation is essential, or provides a clearly visible gain in performance or simplicity. Overset meshing (section 7.3.1) is a first example. For this application, to ensure good interpolation in all situations, mesh refinement is a necessity. And furthermore, the adaptation is easy to perform, since overset refinement only requires to choose the frequency of the refinement. As a result, almost all overset simulations that clients perform today use adaptive refinement. Another example is free-surface capturing for fast ships and hydrofoils (section 7.2.1) which is greatly simplified by adaptive refinement around the free surface. And finally, refinement at the free surface to produce detailed wave patterns (section 7.1.1) is used more and more.

Related to this last evolution is a change in NUMECA's marketing of the adaptive meshing. While their communications have always pointed out grid adaptation as a unique feature, from about 2016 they started actively recommending adaptive refinement as the default choice for certain applications (notably overset meshing and fast ships). In my opinion, this is a major contribution to the increase in the widespread use of adaptive refinement.

My objective for the coming years is to increase the number of applications for which refinement is the default choice, and also to help Hessian-based refinement find its way to the industry. The time is right for this.

To conclude this report, I give my vision for the future of adaptive simulation such as I would like to create it. The first section concerns the outlook for the further development of our grid refinement technique in the next three to five years. Then, I sketch a more long-term view of what simulation in fluid dynamics could become if adaptivity is used to its maximum potential.

Future development for grid refinement

The grid refinement method developed for ISIS-CFD is a living code. While it currently fulfills the requirements of section 1.2 and produces good results, it has a lot of potential for further evolution.

Technique The grid refinement technique presented in chapter 2 and 3 is mature and has been in a reasonably stable state since the introduction of the directional derefinement. No major developments are foreseen except the inclusion of geometrical smoothing in order to reduce misalignment and thus to improve the mesh quality (section 3.4).

One of the best ways to increase the accuracy of solutions on refined grids would be to improve the misalignment corrections in the flux discretisations for ISIS-CFD. The reconstructions of the state variables from the cell centres to the faces use linear interpolation between the two neighbour cells. Supplementary terms are introduced to correct the reconstruction when the face centre is not on the line between the cell centres, or when one of the cell centres is further away from the face than the other [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF]. Currently, these corrections improve the solution but do not produce formal second-order accuracy on the transition between fine and coarse cells (section 5.2). Without directly going to higher-order discretisations, improved misalignment corrections could reduce the supplementary errors introduced by fine -coarse transitions and thus make computations on adaptively refined meshes even more attractive.

Refinement criteria Since the choice of a refinement criterion depends on the simulation (section 5.1), the development of refinement criteria has a certain ad-hoc nature, guided by the particular problems being studied at a given moment. It is therefore hard to make precise predictions about the future development of refinement criteria. Currently, the availability of both pressure and flux-component criteria provides flexibility, while the mesh quality obtained with the flux-component Hessian is as good as for non-adapted meshes. I believe that Hessian criteria, combined with a free-surface criterion if needed, provide a sound basis for grid refinement and will be retained also for future developments. In terms of criterion quality, the main remaining work is to obtain perfectly smooth criteria near solid walls.

As discussed in chapters 5.1 and 6, adjoint-based refinement criteria are not the ideal choice in every situation, but can be a very useful tool for specific cases. The difficulty with adjoint methods is that they are expensive, both in computational power and in development time, especially if the free surface and the turbulence models are taken into account. This is a subject that I would like to revisit, but not necessarily at the price of sacrificing other lines of research.

Automatic computation

The automatic setup of computations with grid refinement (section 5.3) is a long-term project, since automatic computation requires both a reliable refinement technique and years of experience with its use, to develop user guidelines which can be applied with confidence. While this subject is not very glamorous, it has a major influence on the capabilities of the grid refinement, since clear user guidelines are essential for opening up adaptive refinement to large-scale practical application. Furthermore, working on automated Outlook computation encourages the development of refinement algorithms which are easy to use, such as non-dimensional refinement criteria (section 5.3).

Grid adaptation increases the range of validity for a script by performing a part of the meshing. An important example is the simulation of free-surface flows with unpredictable positions of the free surface, such as the flows around fast ships and hydrofoils (section 7.2.1). Currently, such flows are often simulated with two distinct computations, where the first one is used only to approximate the dynamic equilibrium position. This position is then used to create the mesh for the second computation. Creating the free surface grid with refinement makes it possible to perform such simulations in only one computation, which is simpler, faster, and easier to automate.

Finally, the subject of refinement and automation is easily accessible and interesting for students. For these reasons, I envisage a central place in our research for this work in the following years.

Studying RANS turbulence modelling The refinement method is coming close to its envisaged performance. I therefore expect that the most interesting future work will come from its application and combination with other techniques. For example, grid refinement combined with convergence studies (section 6.2) can assure that numerical errors are small compared to modelling errors for the RANS simulation of complex flows. I hope that this capability will reinvigorate the study of RANS turbulence models. Today, these models are either discarded in favour of for example DES methods, or taken for granted even when this is not justified. With detailed study of turbulence production and destruction in complex flows, made possible through numerical accuracy, I think we can further improve RANS models and application techniques so they can provide a useful service in fluid simulation for the years to come.

Hybrid RANS-LES and grid refinement Turbulence models which combine RANS with Large-Eddy Simulation, such as DES, promise a larger range of applicability than pure RANS models but at a much higher cost in terms of computational effort. Therefore, large gains can be made by having a mesh that is optimal for the flow being simulated. This explains the interest of combining hybrid RANS-LES with automatic grid refinement. However, this combination is far from trivial since such turbulence models depend on the cell size, so the turbulence model changes when the mesh is refined! The Ph.D. work of Sajad Mozaffari concerns this combination (see [START_REF] Mozaffari | Unsteady flow over a smooth flat plate using DES[END_REF]). He studies the creation and destruction of resolved turbulence when the mesh is refined, or when the flow enters a coarser or finer part of the grid. In hybrid models, these transitions may imply the change from RANS to LES turbulence modelling or they change the turbulent length scale which can be resolved. Thus, it seems useful to exchange modelled and resolved turbulence, by artificially creating velocity perturbations when the mesh is refined. On the other hand, hybrid RANS-LES flow changes so rapidly that it may be necessary to base the adaptive refinement on averaged flow quantities, to limit the number of mesh changes and thus, the perturbations. These and similar questions, which form the basis for using hybrid RANS-LES models with adaptive refinement, will be adressed in Sajad Mozaffari's thesis.

Ice models Regarding other combinations, I am particularly interested in the use of immersed boundary methods. Using body-fitted grids for the main body with immersed boundaries to represent auxiliary mobile objects promises to combine the best features of both techniques: the efficiency and good turbulence representation of body-fitted meshes and the flexibility of immersed boundaries. To accurately capture mobile objects with immersed boundaries, grid adaptation is a necessity since blocks of fine cells covering all the possible positions of an object would be too expensive. Possible applications include active stabilisation fins, ships passing through water of variable depth, and locks or other mobile barriers.

A challenging application is the simulation of ice breakers: the ship is modelled with a body-fitted grid while the ice sheet and blocks are created through immersed boundaries. The required motion of the ice, which includes topology changes of the bodies (ice breaking), is so complicated that immersed boundaries are the ideal choice. There is potential for the application of such techniques, since ice breaker technology is vital for sea transport throughout the northern countries (Scandinavia, Russia etc.). Grid refinement is a supportive technique here, the main challenge is the modelling of ice dynamics and the creation of the immersed boundaries and the volume-of-solid field to represent the moving and breaking ice. However, these developments are only feasible because we have adaptive refinement.

Adaptivity as the heart of the solver

Ever since numerical simulation in fluid dynamics is applied in practice, 'black box' computation has created controversy. Some people believe that numerical methods can be applied without knowing how they work, others consider that knowledge of discretisations, solvers and errors is needed for a user to produce valid simulations.

I believe that today, this question should be considered from another angle. If numerical fluid dynamics is to become an everyday technique in all branches of engineering and design, and if research continues to push the boundaries of ever more complex simulation, then at a given moment simulations have to become black box. We cannot pretend to control the accuracy of the most complex simulations 'by hand', nor can we ask all engineers to devote a large part of their training to numerics. Therefore, the question is no longer whether black box computation is to be desired, but how we can make it possible.

For me, the key to black box simulation lies in adaptivity. An expert user chooses computational settings to be most suitable for each problem to be solved. Therefore, an automatic algorithm which analyses the flow problem to determine one or more settings, fulfills part of the expert user's role. Grid generation is an obvious example: with unstructured grid generators like Hexpress being controllable by Python scripts, meshes for series of similar flow problems can be generated without user intervention. Through judicious use of grid adaptation, these automatically generated grids become suitable for a wider range of flows since, for example, a free surface can be captured even if it is strongly deformed. Therefore, already today computations can be performed for which the user never sees the grid.

The same principle of local adaptivity can be applied to other aspects of the flow model. Notably, I believe that turbulence modelling should become adaptive. Large-Eddy Simulation can be considered as a locally varying turbulence model, since the minimum resolved scales are determined by the grid size. Hybrid RANS-LES has this aspect even more, since the turbulence model is typically switched to RANS for the near-wall cells and to LES for the outer flow. In both cases, the spatial variation of the turbulence model is rigidly imposed by the mesh. However, if a hybrid approach is used to create a turbulence model whose smallest resolved turbulent length scale may vary, independently of the mesh, from infinity (i.e. RANS) to the local cell size (LES), such a model can be locally adapted to the flow.

This provides a flexible and powerful turbulence modelling, since a large part of the turbulent scales can be resolved in regions where precision is essential (for example, near boundary layer separations) while in less important regions, all turbulence can be modelled. A possible adaptation criterion comes from local refiltering of the solution with a larger minimum length scale: if this does not change the turbulent dissipation, then the length scale in the turbulence model can be increased.

Figure 1 .

 1 Figure 1. Cut through an unstructured hexahedral mesh for a ship geometry, with a body-fitted boundary layer and a block of fine cells around the free surface.

Figure 2 .

 2 Figure 2. Original grid (left) and refined grid (right) for the 2D Duncan problem: a hydrofoil below the water surface. The position of the water surface can be seen in the refined grid.

Figure 3 .

 3 Figure 3. Initialisation of the free-surface refined grid from the original grid (a): with directional derefinement (b) and with only isotropic derefinement (c).

Figure 4 .

 4 Figure 4. Detail of a strongly refined mesh near an airfoil leading edge, showing the shape of the original cells still present in the refined grid.

d 1 Figure 5 .

 15 Figure

Figure 6 .

 6 Figure 6. Components of the criterion tensor: C xx (a), C yy (b), C xy (c), and the refined mesh (d) for the Duncan case with T r = 0.0025. The Y -direction is vertical, the flow is left to right. The water surface can be seen near the top of the images.

Figure 7 .

 7 Figure 7. The norm of C (defined as C 2 xx + C 2 yy + 2C 2 xy) and the refined mesh for three cases: T r = 0.005 (a), T r = 0.0025 (b), and T r = 0.005 with the flux-component criterion (c).

Figure 8 .

 8 Figure 8. Detail of the surface grid in a simulation of the DTMB 5512 destroyer, showing irregular refinement.

 60 X-cut, combined refinement with least-squares pressure Hessian, 2011 (M.Sc. thesis Adel Jebali). 60 Y -cut, combined refinement with smoothed pressure Hessian, 2013 (from [75]). d) Series 60 in drift, X-cut behind the hull, flux-component criterion, 2014 (collaboration UNIBO / ECN).

Figure 9 .

 9 Figure 9. Evolution of Hessian-based refinement.

Figure 10 .

 10 Figure 10. Flow around the Nakayama B airfoil: pressure, horizontal velocity, and z 1 for the drag functional.

Figure 11 .

 11 Figure 11. KVLCC2 tanker: adjoint z 1 for a functional which is the integral of the axial flow through the propeller disk.

Figure 12 .

 12 Figure 12. Stencils used in the residual estimation, for reconstruction in nodes (a) and face centres (b). Example of an actual stencil for a face touching a wall (c).

Figure 13 .

 13 Figure 13. Original and corrected drag functional for the NACA 0012 airfoil (a) and the Nakayama B airfoil (b).

Figure 14 .

 14 Figure 14. Meshes in the propeller plane of the KVLCC2, for T r = 2.0 (a), T r = 1.5 (b), T r = 1.0 (c), T r = 0.75 (d). The propeller plane is an X-cut at the right of the ship in figure 11.

Figure 15 .

 15 Figure 15. Grid convergence for the KVLCC2: drag (a) and axial velocity in the propeller plane (b).

Figure 16 .

 16 Figure 16. Solution on the refined and the non-refined original grid, for the Virtue Container ship at model scale (left). Comparison of the aftship flow on refined grids: model scale and full scale (right).

Figure 18 .

 18 Figure 18. Mesh and c i = 0.05 and 0.95 isolines for the falling prism at t = 0.0175s after initial impact, T r = 0.000825 (left). Pressure peak as a function of the time after initial impact, for three refinement thresholds T r (right). The pressure peak is compared with the asymptotic solution of Scolan et al.[START_REF] Scolan | Etude analytique et numérique de l'impact hydrodynamique sur des carènes dissymétriques[END_REF].

Figure 19 .

 19 Figure 19. View of Groupama 3 (photo by Yvan Zedda) and sketch of the outrigger orientation and motion during the impact simulation.

Figure 20 .

 20 Figure 20. Pressure on the aft bottom of the hull at two instants during impact. The view is from below, the bow is to the left in these images.

Figure 21 .

 21 Figure 21. Vertical hydrofoil at 13 o yaw and F r = 2.5, fully wetted state with trailing edge ventilation (top) and fully ventilated state (bottom). In this side view of the leeward (suction) side, the hydrofoil moves right to left.

NATO

 Advanced Vehicle Technology project AVT-183 Work by Emmanuel Guilmineau, Patrick Queutey, Michel Visonneau (CNRS / ECN) -2014

Figure 22 .

 22 Figure 22. Wave pattern for the Delft catamaran at 9 o of drift, comparison between the adapted mesh (left) and the fine reference mesh (right).

Figure 23 .

 23 Figure 23. Delft catamaran at 9 o of drift, axial velocity in the x/L = 0.3 plane. Comparison between experiments (left) and the adapted-mesh solution (right).

Figure 24 .

 24 Figure 24. DrivAer model, isosurface of the second invariant Q coloured by helicity, for low-Reynolds grids without (left) and with adaptation (right).

Figure 25 .

 25 Figure 25. Streamlines in the symmetry plane behind the DrivAer model, for the EASM model without (left) and with adaptation (centre), and for DES-SST without refinement (right).

Figure 26 .

 26 Figure 26. Unsteady RANS flow on the JBC aftship. Left: axial velocity contours at two different instants -Right: the corresponding refined mesh for the entire hull. The inset gives the position of the S4 cut shown in the two figures.

Figure 27 .

 27 Figure 27. Turbulence kinetic energy on the JBC aftship, showing insufficient turbulence intensity around position B for the wall law solution (WL, right) compared with a wall-resolved computation (LR, left).

Figure 28 .

 28 Figure 28. The 34th AC final was disputed between teams Emirates Team New Zealand (left, photo Gilles Martin-Raget) and Oracle Team USA (right, photo Abner Kingman).

Figure 29 .

 29 Figure 29. Axial velocity in the wake of the Series 60 at 10 o drift, comparison between experiments (a), the EASM (b) and k -ω SST (c) turbulence model.

7. 2 . 1

 21 Dynamic positioning of hydrofoils and fast ships Work by Emmanuel Guilmineau, Patrick Queutey (CNRS / ECN), JW -2014 Anna Mir (NUMECA) -2017

Figure 30 .

 30 Figure 30. Dynamic positioning of a fast monohull: estimated initial position (left) and converged equilibrium (right). The water surface is meshed with free-surface refinement. NUMECA benchmark for Eker Design.

Figure 31 .

 31 Figure 31. Refined meshes (left), free surface elevation (centre) and wake at 0.5 chords behind the foil (right) for a simplified hydrofoil with 0 o sideslip, for 0m immersion (a) and 2m immersion (b).

 Project META: Benjamin Muyl Design, Joven (Groupama Sailing Team), Streamline, Guillaume Verdier, ECN (2013-2016). Work by Patrick Ploé (Streamline / ECN), JW -2014-2016

Figure 32 .

 32 Figure 32. A result of the META script for a high-speed catamaran hull in drift condition. X-cut through the mesh (left) and water volume fraction on the hull (right).

 Work by Patrick Ploé (Streamline / ECN), JW -2017

Figure 33 .

 33 Figure 33. Three hydrofoil geometries created and simulated with the scripts of Patrick Ploé. The tip angle and junction radius are varied; the figures show the hydrodynamic pressure.

 European project STREAMLINE (2010-2013) Work by Patrick Queutey (CNRS / ECN), JW -2011

Figure 34 .

 34 Figure 34. Ship hull and rotating propeller, with the pressure field shown. The sliding interface is a cylinder, indicated by the white box.

Figure 35 .

 35 Figure 35. Ventilating propeller, the evolution of the mesh and the water surface position in the centreplane. (The mesh shown here is not the real mesh but a triangulated dual mesh used for cut plane visualisation. It is useful however for indicating the local grid density.)

Figure 36 .

 36 Figure 36. Overset continuity and free-surface refinement for the simulation of a catamaran in waves. The overset mesh is coloured blue, the background mesh is red. NUMECA benchmark for CoCo Yachts.

Figure 37 .

 37 Figure 37. Refined mesh (left) and cavitation volume fraction (centre) for the NACA 0015 profile simulated with combined cavitation fraction -pressure Hessian criterion, compared with a simulation without refinement (right).

Figure 38 .

 38 Figure 38. INSEAN E779A propeller simulated without (left) and with refinement (centre), compared with experiments (right) from CNR-INSEAN [51].

7. 3 . 3

 33 Multifidelity shape optimisationWork by Matteo Diez, Riccardo Pellegrini, Andrea Serani (CNR-INM), Charles-Edouard Jeanson (ENSTA Bretagne / ECN), Patrick Queutey, Michel Visonneau (CNRS / ECN), JW -2018

Figure 39 .Figure 40 .

 3940 Figure 39. Surrogate model for the low-fidelity response (a), the difference between low-and highfidelity(b), and the combined multi-fidelity (c) metamodel. The symbols indicate simulations, ∆: LF, : HF. The red is the computed optimum.

Truncation error In my opinion, any flow-derived refinement criterion should be based on an estimation of the truncation error. This is the error in the discretisation of the flow equations or to be precise, the result obtained when the exact continuous solution of the flow equations is substituted into the finite-volume discretisation of these equations. If the discretisation is consistent, then the truncation error is reduced when the mesh becomes finer. Thus, the direct effect of grid refinement is to modify the truncation error. In fact, the function of a grid refinement algorithm is to locally refine the mesh and the result of refining the mesh is the local reduction of the truncation error. For me, it is essential to take into account this causal relation in the refinement criterion.An alternative which seems attractive but which does not work, is to base the criterion on an estimation of the solution error (the difference between the exact and numerical solution), rather than the truncation error. The problem is that in a convection-driven flow, an error created upstream may be convected all the way through the flow field. Thus, even though the error downstream may be large, refinement downstream is not going to reduce this error since the flow is already perturbed when it arrives downstream.So-called 'feature-based' criteria which refine in the position of a significant flow feature are not ideal either. For example, there are criteria which indicate the core of a vortex, such as the λ 2 -criterion[START_REF] Jeong | On the identification of a vortex[END_REF]. These criteria do not take into account that the trajectory of the vortex is influenced by the flow outside, or that the vortex may be created in a region where the vorticity is not yet strong. Once again, one needs to consider the source of the numerical errors. This source is the error in the discretisation: the truncation error.

For the following discussion, the error created because J h itself is an approximate evaluation of the functional (like a numerical integration), is not taken into account. However, this error is not always small.

This is different from the finite element setting, where the error estimate is computed with a residual from the standard discretisation, but with a higher-order accurate adjoint solution.

A dynamic library is a subroutine compiled separately from a main executable, for which an interface exists in this main program. The link between the two is made at runtime. Since the source of ISIS-CFD is confidential due to the commercialisation in FINE/Marine, only compiled executables are available to students so the dynamic library, which a student can compile himself, is an easy way of getting access to a limited part of the code.

our grid refinement method. Towing tank measurements of the wave system in steady conditions, performed at the Hamburg Ship Model Basin HSVA, show a well-defined bow wave with a small secondary shoulder wave, as well as a semi-wetted transom with wave breaking just behind the hull. In simulations of this ship, even with a fine grid of 3.1M cells on the half domain, these waves were ill represented. We therefore decided to apply the newly developed grid refinement to the case. With only 25% more cells, the resolution of the waves improved dramatically: figures 16 and 17 (taken from [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF] which analyses this case in detail, see also the comparison paper [START_REF] Van Der Ploeg | Computation of scale effects in freesurface flows near a ship's transom[END_REF]) show that the simulated wave pattern with grid refinement contains many more details and is much closer to the experiments. By comparing the simulation of the ship model with one for a full-sized ship, a scale effect was observed: the breaking wave just behind the stern disappears for the full scale. This important physical effect is unobservable on non-refined grids.

Work by Alban Leroyer (ECN / CNRS), Yann Roux (K-Epsilon), Loïc Dorez (Groupama Sailing Team) and JW -2010

Impact pressure Some of the heaviest loadings on ships occur in impact situations, when the hull is lifted out of the water on a wave and then falls back, hitting the water violently. When a hull-like geometry with a rounded or V-shaped cross-section impacts the water surface, thin jets of water are ejected to the side. The highest pressure on the hull during the impact is concentrated in a point at the origin of these jets. To accurately capture this pressure peak which represents a singularity in the solution, automatic grid adaptation is ideal. However, this is a difficult case since the rapid movement of the water -air interface requires constant refinement and derefinement.

Computations on a two-dimensional prism falling into the water were published in [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF]. Two figures from this paper (figure 18) show the shape of the water surface on one side of the prism, as well as the evolution of the maximum pressure on the prism. The maximum pressure depends on the size of the cells at the surface (i.e. the threshold T r) and converges to an analytical solution as this size is reduced. The use of refinement for impact problems is therefore justified.

A subsequent study [START_REF] Roux | Slamming computation on the multihull Groupama 3[END_REF] was performed on one of the outriggers of the Groupama 3 offshore trimaran, which broke during a round-the-world record attempt. Since impact loads were considered as a probable cause of this accident, simulations were performed to study their effect. In

Outlook

To make sure that the minimum length scale required by the turbulence model can be resolved, the turbulence model adaptation has to be combined with adaptive grid refinement. The refinement serves a dual purpose: to ensure that the local truncation error is acceptable and to provide sufficient resolution for the turbulence model. The refinement criterion has to reflect this dual role, so it cannot be the same criterion as for the turbulence model. Similar adaptation strategies already exist for other aspects of the simulation. The local adaptation of the discretisation, p-refinement, is being used for finite-element and discontinuous Galerkin methods. Time steps adapted to the observed Courant number are available among others in ISIS-CFD. Scripted computation setup such as the FINE/Marine C-Wizard or our META script can be seen as automatic adaptation of the solver, while the surrogate model construction of Patrick Ploé makes the very choice of the simulations part of the adaptation. The basic principle of user experience, translated into adaptation algorithms, which continue to perform even when the computations become much too complicated for direct human control, can be applied to all aspects of the simulation. The result is a flow solver where automatic adaptivity forms the heart, guiding all components of the method to optimal performance. This is the flow solver of the future, to which I wish to contribute.