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Abstract

RÉSUMÉ :
Cette thèse est consacrée à l’estimation du canal pour les réseaux de relais sans-fil utilisant le protocole
amplify-and-forward lorsqu’un codage espace-temps distribué cohérent est effectué au niveau des relais
pour permettre de bénéficier d’une diversité coopérative. Le réseau considéré est constitué de plusieurs
relais distribués entre une source et une destination. Etant donné les contraintes pratiques pour acqué-
rir l’état entier du canal de transmission, nous considérons le cas où nous disposons seulement d’un état
partiel du canal. Dans ce cas, quand on effectue une estimation du canal basée uniquement sur des sym-
boles pilotes, le récepteur aura des performances limitées puisque le nombre de ces pilotes doit être réduit
au minimum pour des raisons d’efficacité énergétique du réseau. Pour pallier à ce problème, nous propo-
sons d’utiliser une estimation semi-aveugle basée sur l’algorithme expectation maximization (EM). Dans un
premier temps, nous considérons le codage espace-temps orthogonal au niveau des relais et une détection
basée sur la minimisation de l’erreur quadratique moyenne. Après avoir étudié l’estimateur basé sur la for-
mulation classique d’EM, nous proposons une version modifiée d’EM qui permet d’obtenir une estimation
non-biaisée. Nous montrons l’intérêt de cette approche notamment pour les modulations d’ordre relati-
vement élevé. Ensuite, dans un deuxième temps, nous considérons le cas de codage espace-temps non-
orthogonal aux relais et proposons d’utiliser un récepteur itératif qui combine l’estimation semi-aveugle
du canal et la détection basée sur l’annulation en parallèle des interférences entre-relais. Nous montrons
l’avantage de cette technique par rapport à l’approche classique. Enfin, pour les conditions d’évanouis-
sements rapides, au lieu d’utiliser une estimation semi-aveugle, nous proposons d’utiliser un schéma de
détection amélioré qui prend en compte les erreurs d’estimation de canal et réduit l’impact de l’incertitude
sur l’état du canal sur les performances du récepteur.

MOTS-CLÉS : Réseau de relais sans-fil, diversité coopérative, codage espace-temps distribué, connaissance
partielle du canal, estimation semi-aveugle du canal, détection itérative.

ABSTRACT :
This thesis considers channel estimation in amplify-and-forward wireless relay networks when coherent
distributed space-time block coding (DSTBC) is performed at the relays in the aim of benefiting from dis-
tributed diversity. The studied network consists in one source and one destination node, and several relay
nodes distributed between them. Given the practical limitations to acquire full channel state information
(CSI), we consider the case where only partial CSI is available at the destination node. Here, for the case
of pilot-only-based channel estimation, we explain the limited receiver performance when pilot overhead
should be kept to a minimum for the reasons of network energy efficiency. To overcome this problem, we
firstly propose to use semi-blind (SB) channel estimation based on the expectation maximization (EM) al-
gorithm. At a first step, we consider orthogonal DSTBC at the relays and minimum mean-square-error si-
gnal detection at the destination. In this case, starting by the classical formulation of EM for our system
(that we call CB-EM for Classical Biased EM), we further propose a modified implementation of EM in view
of obtaining an unbiased channel estimate at the receiver. We show the interest of the proposed scheme,
called UL-EM (standing for Unbiased Linearly-combined EM), especially for relatively large signal constel-
lations. At a second step, we consider non-orthogonal DSTBC at the relays, and propose to use an iterative
CB-EM-based channel estimation and parallel interference cancelation for signal detection. This scheme
allows an important performance improvement, as compared to the classical scheme. Finally, for the case
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of relatively fast fading conditions, instead of using SB estimation, we propose to use an improved signal
detection scheme that takes the channel estimation errors into account and reduces the impact of channel
uncertainty on the receiver performance. We illustrate the interest of this scheme for relatively large signal
constellations.

KEY WORDS : Wireless relay network (WRN), cooperative diversity, distributed space-time block coding
(DSTBC), partial channel knowledge, semi-blind channel estimation, iterative signal detection.
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Notations and Parameters

Notations

E{.} expected value of random variable

(.)∗ Complex conjugate

(.)t Vector or matrix transpose

(.)† Vector or matrix Hermitian transpose

||.|| Frobenius norm operator

diag{.} Diagonal matrix

ℜ{.} Real part operator

ℑ{.} Imaginary part operator

Var{.} Variance of random variable

∏
Interleaving operator

⊗ Kronecker product

I R Identity matrix of dimension R ×R

0R All-zero matrix of dimension R ×R

Ki (.) Modified Bessel function of second kind and i -order

N (µ,σ2) Gaussian (normal) distribution with mean µ and variance σ2

C N (µ,σ2) Complex circular Gaussian (normal) distribution with mean µ and variance σ2
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Parameters

Ti Number of channel-uses in i -th hop

R Number of relay nodes

q1 Transmit power allocated to the source

q2 Transmit power allocated to each relay

q Total transmit power of the whole network during each channel-use

c Weighting factor at each relay

Nd Number of data symbol blocks per frame

Np Number of pilot blocks per frame

Ns Total number of symbol blocks per frame

Ep Pilot power

Eb Averaged received energy per information bit

N0 Noise unilateral power spectral density





List of Acronyms

ADC Analog-to-Digital Convertor

AF Amplify-and-Forward

APP A Posteriori Probability

BICM Bit-Interleaved Coded Modulation

BER Bit-Error-Rate

CSI Channel State Information

CB-EM Classical Biased Expectation-Maximization

DemAF Demodulate-And-Forward

DF Decode-and-Forward

DSTBC Distributed Space-Time Block Coding

EXIT EXtrinsic Information Transfer

EM Expectation Maximization

FER Frame-Error-Rate

IRI Inter-Relay Interference

IID Independent Identically Distributed

LB Lower Bound
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LLR Log-Likelihood Ratio

LS Least Squares

LMMSE Linear Minimum Mean-Square-Error

MAC Media Access Control

MAP Maximum A Posteriori

MI Mutual Information

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

NRNSC Non-Recursive Non-Systematic Convolutional

OFDM Orthogonal Frequency-Division Multiplexing

OFDMA Orthogonal Frequency-Division Multiple Access

PIC Parallel Interference Cancelation

PDF Probability Density Function

PO Pilot Only

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QOSTBC Quasi-Orthogonal Space-Time Block Coding

RV Random Variable

SB Semi-Blind

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

SP Set-Partition
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Resumé étendu

Avec les progrès récents dans les domaines de communications sans-fil, microélectronique et

micromécanique, on est aujourd’hui capable de déployer des capteurs multifonctionnels, de faible

coût, de basse consommation et de petite taille. Ces capteurs qui peuvent communiquer entre

eux sur de courtes distances, contiennent des composantes de capteur, de traitement du signal

et de transmission. Un réseau de capteurs est constitué d’un grand nombre de capteurs, appelés

souvent les nœuds du réseau, qui sont déployés massivement à l’intérieur ou autour d’un phéno-

mène à observer. La plupart du temps, ces réseaux sont ad hoc, c’est à dire que l’on n’a pas besoin

de déterminer ou de corriger la position des nœuds. Autrement dit, les capteurs sont distribués

de manière aléatoire, parfois même dans les terrains inaccessibles ou sur les reliefs afin d’étudier

les phénomènes météorologiques, par exemple. Ceci nécessite que le réseau de capteurs puisse

s’organiser automatiquement pour récolter les informations et les transmettre vers les points de

collecte.

Les applications potentielles pour les réseaux de capteurs sont nombreuses. Elles concernent

par exemple, le domaine de la santé, les applications militaires, la surveillance ou monitoring du

territoire ou de ressources, ou même des applications à domicile. Par exemple, dans le domaine

de la santé, on peut évoquer la surveillance des patients ou encore l’assistance des patients inva-

lides. Dans le domaine militaire, on peut parler des systèmes de surveillance, ciblage, reconnais-

sance, mais aussi les systèmes de collecte d’information pour les centres de commandement et de

contrôle. On peut également parler des applications industrielles tel que le contrôle de qualité des

produits, ou du monitoring des zones touchées par des catastrophes naturelles.

Les réseaux de capteurs constituent une des technologies clefs du siècle. Cependant, il reste

encore de nombreux problèmes à résoudre, notamment en ce qui concerne la mise en place de ces

réseaux. Les contraintes pratiques reviennent à des particularités de ces réseaux, et notamment

les limitations sur les ressources spectrale, énergétique et calcul numérique au niveau de chaque

nœud.

Comme dans la plupart des systèmes de communication sans-fil, les réseaux de capteurs sont

soumis à des évanouissements (fading) du canal. Pour réduire l’effet du fading sur la qualité de

transmission de données dans un réseau, il faut recourir à des techniques dites de diversité, qui

permettent au récepteur de recevoir plusieurs copies du signal affectées différemment par l’effet
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du canal sans-fil. Cependant, les techniques classiques de diversité ne peuvent pas être utilisées

pour résoudre le problème considéré dans cette thèse en raison des contraintes fortes sur la taille

des nœuds et leur coût. Par exemple, il n’est souvent pas pratique d’installer plusieurs antennes au

niveau de chaque nœud. Pour remédier à ce problème, les techniques de diversité dites coopéra-

tives ou distribuées sont employées dans les réseaux de capteurs. Ainsi, les nœuds coopèrent entre

eux pour apporter de la diversité spatiale. En d’autres termes, la diversité coopérative est un lien de

communication multi-antennes virtuelles établi entre le nœud source et le nœud destinataire. Un

cas simple des réseaux coopératifs sont les réseaux de relai. Ainsi, plusieurs nœuds ont la charge

d’amplifier le signal reçu de la source et de le retransmettre vers le nœud destinataire. Nous nous

intéressons dans cette thèse à ce type de réseau. Plus précisément, nous considérons un réseau de

plusieurs relais distribués entre une source et une destination La transmission de données se fait

en deux phases : premièrement, la source transmet les données vers les relais ; ensuite, dans une

deuxième phase, les relais amplifient les signaux reçus et les transmettent vers la destination tan-

dis que la source reste inactive. Ce fonctionnement correspond à la stratégie de coopération AF

(pour Amplify-and-Forward) entre les relais. L’avantage de cette stratégie est que les relais n’ont

pas besoin de connaitre l’état du canal, ce qui simplifie le protocole de transmission, réduit aussi

les délais de transmission et la consommation d’énergie du réseau.

Afin d’apporter une diversité coopérative au niveau de la destination, outre l’amplification

des signaux reçus par la source, les relais font souvent un traitement sur ces signaux qui consiste à

effectuer un codage espace-temps en bloc distribué (DSTBC pour Distributed Space-Time Block

Coding). Les schémas DSTBC qui sont souvent utilisés sont de type cohérent, c’est-à-dire que pour

la détection du signal au récepteur, on a besoin de connaître l’état du canal de transmission. Ceci

est classiquement fait à l’aide des séquences dites d’apprentissage (ou pilotes) qui sont envoyées

fréquemment par la source. Le nœud destinataire peut alors mettre à jour l’état du canal en se

basant sur ces séquences qui lui sont a priori connues. Cependant, l’état du canal ne peut pas

être parfaitement connu et on n’est pas à l’abri des erreurs d’estimation du canal qui affectent

les performances du récepteur. Une solution simple pour réduire ces erreurs est d’augmenter le

nombre et la puissance des pilotes. Cette solution a évidemment pour conséquence de détériorer

les efficacités énergétique et spectrale du réseau.

Nous nous intéressons justement dans cette thèse à l’étude de l’impact des erreurs d’estima-

tion du canal sur les performances d’un réseau de relai décrit ci-dessus, et notamment à la propo-

sition des solutions efficaces pour améliorer la qualité d’estimation du canal. Tout d’abord, dans

le Chapitre 2 nous présentons brièvement un état de l’art sur les réseaux de capteurs et nous nous

intéressons plus particulièrement à l’efficacité énergétique d’un réseau de capteurs.

Ensuite, nous précisons dans le Chapitre 3, le cadre de notre étude et aussi les hypothèses gé-

nérales sur lesquelles nous nous basons dans le reste de ce manuscrit. Nous expliquons en détail

les aspects de coopération entre les nœuds et le codage DSTBC. Nous présentons également la

formulation de notre système de transmission et décrivons les différentes approches de détection

du signal et d’estimation du canal. De plus, une analyse détaillée des performances d’un réseau
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de relais est présentée en étudiant les différentes méthodes de détection et d’estimation de canal.

Même si ce chapitre peut paraître un peu long, les sujets abordés sont d’importance cruciale pour

suivre les discussions dans les chapitres suivants. En effet, une bonne partie des résultats présen-

tés telle que la comparaison détaillée des différents schémas de détection et d’estimation de canal,

bien qu’introductifs, font partie des contributions de cette thèse.

Ensuite, dans le Chapitre 4, nous nous intéressons à l’aspect d’estimation du canal et propo-

sons un schéma d’estimation semi-aveugle basé sur l’algorithme EM (Expectation Maximization)

pour améliorer l’estimation du canal tout en gardant le nombre de symboles pilotes au minimum.

Nous nous concentrons alors sur les schémas de codage DSTBC orthogonaux. Nous présentons

d’abord un estimateur basé sur la formulation classique d’EM, que nous appelons CB-EM (pour

Classical Biased EM) et l’implémentons dans un récepteur itératif avec le décodeur du canal. Nous

montrons à l’aide des simulations de Monte Carlo l’amélioration des performances qu’on peut

obtenir grâce à cette technique. Nous expliquons ensuite par une analyse plus détaillée que cet

estimateur est biaisé et proposons une version modifiée de la formulation d’EM pour réduire le

biais et obtenir de meilleures performances. L’approche proposée consiste à séparer les estimées

du canal obtenues à base des symboles pilotes et de données, et à utiliser une combinaison li-

néaire des deux qui minimise la variance des erreurs d’estimation du canal. Nous montrons que le

schéma d’estimation obtenu, appelé UL-EM (pour Unbiased Linearly-combined EM) permet une

amélioration significative des performances du récepteur dans le cas des constellations du signal

de taille relativement grande.

Nous traitons ensuite le cas du codage DSTBC non-orthogonaux dans le Chapitre 5 où nous

proposons d’utiliser un schéma de récepteur itératif qui effectue une annulation parallèle des in-

terférences et la combine avec l’estimation du canal basée sur l’approche CB-EM. Nous montrons

le gain en rapport signal-sur-bruit (RSB) en utilisant cette approche, par rapport à la détection

simple MMSE (Minimum Mean-Square Error). Ce gain est surtout important pour les constella-

tions de tailles relativement grandes. Nous analysons aussi la convergence du récepteur à l’aide

des diagrammes EXIT (EXtrinsic Information Transfer).

Nous nous intéressons dans le Chapitre 6 aux conditions d’évanouissements relativement ra-

pides du canal. Dans ces conditions, il serait difficile d’implémenter en temps-réel les approches

semi-aveugles d’estimation du canal. De plus, il est primordial dans ces condition de réduire au

minimum le nombre des symboles pilotes et leur puissance. Ceci peut être le cas dans les réseaux

ad-hoc mobiles telle que la téléphonie mobile. Dans ces conditions, pour réduire l’impact de l’in-

certitude sur l’état du canal sur les performances du système, nous proposons une méthode amé-

liorée de détection du canal qui prend en compte les erreurs d’estimation de canal. Nous mon-

trons que l’approche proposée conduit à une amélioration significative des performances du ré-

cepteur pour le cas des constellations du signal de grande taille. Aussi, le gain en RSB devient plus

important pour les puissances faibles des pilotes.

Dans le Chapitre 7 nous donnons nos conclusions relatives aux travaux réalisés au cours de
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cette thèse ainsi que les principales perspectives que nous envisageons.



CHAPTER
1 General Introduction

1.1 Wireless sensor networks : merits and challenges

Wireless sensor networks (WSNs) are considered as one of the key technologies of the 21st

century as they provide exceptional opportunities for monitoring and controlling homes, cities,

and the environment [3, 4]. A WSN combines inexpensive, yet, smart devices that are usually de-

ployed in large numbers. These devices, called “sensor nodes,” include multiple onboard sensors

and computation and communication units, and are networked through wireless links and pro-

bably the Internet. Thanks to the recent advances in microelectronics, micromechanics, and wire-

less communications, it is now possible to deploy multifunctional, low cost, low power consump-

tion, and small size sensors. Potential applications of WSNs include environmental and structure

monitoring, natural disaster prediction, homeland and physical security, healthcare, traffic sur-

veillance, industrial and manufacturing automation, video surveillance, military sensing, home

appliances and entertainment, etc.

The main advantages of wireless over wired sensor networks are the reduced deployment cost,

ubiquity, and the property of self-reconfiguration. Instead of deploying a large quantity of wire

routed through protective conduit, we simply need to place a small device at each sensing point

[5], which drastically reduces the installation costs. Also, WSNs use low-cost embedded devices

for a wide range of applications and do not rely on any pre-existing infrastructure [5]. This is in

contrast to the existing cell phone, WiMAX or WiFi networks, which rely on the pre-deployment of

extensive infrastructure support.

WSNs also have the ability to dynamically adapt to changing environment. As a matter of fact,

sensor nodes are generally distributed randomly, and there is no need to determine or correct

their position. Sometimes, they are deployed in inaccessible areas or on relief for studying the

meteorological conditions, for example. This necessitates the automatic self-organization of the

sensor nodes to collect information and to transmit it to the data fusion points [4, 1]. This is done

thanks to the networking capability that fundamentally differentiates a WSN from a mere collec-

tion of sensors, by enabling cooperation, coordination, and collaboration among the nodes [3, 6].

In some WSNs, the nodes do not communicate with a nearby base station, but rather communi-

cate with their local peers, which needs efficient algorithms for data aggregation, ad hoc routing,
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and distributed signal processing [5, 7].

Due to size, cost, and energy limitations, WSNs are subject to tight communication and com-

putation constraints. Especially, for battery-operated sensors, energy consumption is an impor-

tant design parameter because in many applications, replacing batteries may be difficult or im-

possible. Therefore, the network lifetime should be extended through the design of efficient net-

working and communication and signal processing methods.

1.2 Thesis objective

This thesis focuses on a special kind of cooperative WSNs, i.e., wireless relay networks (WRNs).

In such networks, some nodes are deployed in the environment and have the task of relaying the

transmitted signals from a source node towards a destination node. We consider the case of co-

herent signalling where we need to identify the transmission channel parameters for efficient si-

gnal detection at the destination node. This is an important task in time-varying wireless channels

subject to multipath fading. Considering the crucial need of network energy efficiency, we develop

appropriate channel estimation methods that allow a reduction of the amount of training signals

used for channel estimation, and try to make a trade-off between computational complexity and

performance.

After a state-of-the-art on the WSNs, we consider the special WRN explained above, and des-

cribe the signal transmission by taking into account node cooperation. Meanwhile, we discuss the

need to channel knowledge at the destination and explain how we can acquire this information in

practice. We then focus on the channel estimation by proposing to use a special semi-blind (SB)

estimation method, based on the expectation maximization (EM) algorithm, which consists of an

iterative method to obtain the channel state based on the maximum likelihood criterion. Semi-

blind estimation could be a solution to the problem of large pilot-overhead that helps avoid a

reduction in the network energy efficiency due to the transmission of training sequences. A consi-

derable part of the thesis concerns the adaptation of the EM-based estimation method to different

cooperation schemes between the relay nodes. As an alternative to SB channel estimation, we next

propose a detection scheme that takes into account the channel estimation errors and reduces

their impact on the system performance.

1.3 Thesis overview

The dissertation is composed of the following chapters.

Chapter 2 presents a general state-of-the-art on WSNs including the main characteristics, li-

mitations, and design challenges. We insist on the energy consumption issues in such networks

and explain the relationship between energy consumption and the different protocol layers. We

also describe the idea of cooperative communication and introduce the WRNs. Distributed space-
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time coding at the relay nodes in view of exploiting some distributed diversity is then presented.

Chapter 3 is devoted to the description of signal transmission in a typical WRN. We start by

describing the system model, and especially, specify the main assumptions that we make for later

use in the following chapters regarding channel fading statistics. Power allocation over network

nodes and DSTBC at the relay nodes are discussed in detail. Next, signal detection at the des-

tination and the need to channel estimation are discussed. Meanwhile, we explain that in most

cases, the destination can perform data detection based only on a partial channel state informa-

tion (CSI). The performance of different detection methods under full or partial CSI knowledge,

as well as different channel estimation techniques are then compared through the presentation of

some simulation results.

Chapter 4 considers SB channel estimation in WRNs based on the EM algorithm in order to

reduce considerably the amount of pilot overhead. Here, we focus on the case where orthogo-

nal DSTBCs are performed at the relays. We start by the classical formulation of EM and show

the considerable improvement that we achieve by this method when implemented in an iterative

receiver at the destination. We next show that this classical formulation provides a biased esti-

mate. To improve the quality of the channel estimate, we propose a modified EM formulation

that provides an unbiased estimate. This modified method, called UL-EM (for Unbiased Linearly-

combined EM) is shown to be advantageous, especially for relatively large signal constellations.

Chapter 5 studies SB channel estimation when a non-orthogonal DSTBC is employed at the

relays. In this case, in order to reduce the impact of inter-relay interferences on the receiver per-

formance, which originates from non-orthogonal DSTBC, we propose to perform parallel interfe-

rence cancelation (PIC) together with EM channel estimation. Additionally, we analyze the conver-

gence behavior of the iterative receiver by means of extrinsic information transfer (EXIT) charts.

Chapter 6 proposes an alternative to SB channel estimation to improve the receiver perfor-

mance at the presence of estimation errors. For this purpose, we focus on maximum a posteriori

(MAP) signal detection at the destination. We propose an improved detection rule that takes the

channel uncertainties into account. Compared to the classical mismatched detector that uses the

raw channel estimates in signal detection, the improved detector allows a significant performance

improvement for the case of relatively large signal constellations. Again, the EXIT chart tool is used

to investigate the receiver convergence behavior.

Finally, Chapter 7 concludes the thesis and gives some perspectives for future work.

1.4 Thesis contributions

In summary, the key contributions of this thesis are :

– Comparative study of different signal detection methods and different CSI knowledge condi-

tions at the destination.

– Developing an EM-based SB channel estimation method for the special WRN configuration
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considered in this thesis.

– Modifying the classical EM formulation in the aim of obtaining an unbiased channel esti-

mate and improved system performance.

– Adapting the SB estimator to the case of non-orthogonal DSTBC at the relays by performing

iterative PIC detection.

– Proposing an improved detection rule to the case of WRN using MAP signal detection at the

destination.
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CHAPTER
2 Wireless Sensor Networks,

State-of-the-Art

2.1 Overview of wireless sensor networks

Recent advances in micro-sensor technology has enabled the development of wireless sen-

sor networks (WSN) in a wide range of applications [1, 8, 9, 10]. For example, we can talk about

monitoring patients or assisting disabled persons in the health area ; surveillance, targeting, and

reconnaissance systems in military ; product quality control in industry ; and wildlife tracking and

forest monitoring [11].

A WSN consists of a large number of sensor nodes that are deployed around or inside an en-

vironment [3, 4]. A typical sensor node is a battery-operated device, which is able to establish a

relationship between the digital and the real world through a number of sensors. In order to mo-

nitor an environment, usually a large number of sensor nodes are required. These nodes exchange

information or transmit the collected data to a sink or destination node through wireless links.

The general scheme of a WSN is depicted in Figure 2.1. A number of sensor nodes are distri-

buted inside the field, and each node transmits the collected information to the destination node

(user) while probably cooperating with other nodes. Sensor nodes usually have a relatively simple

function and have a low energy capacity available. To establish a communication link between the

sensor field and the user, one or several sink nodes are needed to be deployed, as can be seen in

Figure 2.1. The collected information in the sensor field can be transmitted to the sink nodes via

the communication links among nodes and according to a routing protocol. Then, sink nodes may

retransmit the received information to the user through Internet or by means of a satellite link.

Depending on the mode of deployment, WSNs can be classified into two categories : structu-

red and unstructured WSNs [11]. In a structured WSN, sensor nodes are deployed in a prearranged

mode and on fixed positions. In this type of WSN, the number of sensor nodes is relatively small

and the distribution of nodes needs to be carefully designed. Moreover, each node has usually ex-

pensive units for reliable communication [11, 12, 13]. Generally, due to the small number of nodes,

the implementation complexity of a structured WSN is relatively low. On the other hand, in an un-

structured (also called ad hoc) WSN, a large number of sensor nodes are randomly distributed in
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Figure 2.1 — General block diagram of a WSN.

the field [14, 15]. Compared with the structured case, an unstructured WSN can easily be deployed

in remote geographic areas. Such a random deployment can be realized by dropping the sensor

nodes from an airplane, for example. Sometimes, they are deployed in inaccessible areas or on

relief for studying the meteorological conditions.

Due to this simple node deployment, unstructured networks have a wider application area

than the structured ones. Meanwhile, their management is much more complex. In particular,

such networks should have the possibility of automatic reconfigurability in the case of any change

in the network topology due to a failure or run-out of the battery of some nodes [7]. In summary,

some of the main practical limitations of WSNs are listed below.

– large number of sensor nodes ;

– dense deployment of sensor nodes that are prone to failure ;

– possibility of frequent change of network topology ;

– stringent constraints on the transmit power, computational capacity, and memory of sensor

nodes ;

– absence of global identification of sensor nodes to avoid large amount of overload ;

– need to work in extreme weather conditions.

2.2 Sensor nodes

Usually, each node incorporates a transceiver and there are strict constraints on the weight

and the size of each node, as well as on its computation, memory, and energy resources. Special

attention should hence be devoted in the design of each node to the signal processing tasks and

energy consumption.

2.2.1 Classification of sensor nodes

Depending on the application, sensor nodes can be classified into four categories : submote,

mote, supermote, and gateway devices. A submote sensor node is a basic sensing device in its lo-
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Figure 2.2 — General configuration of a sensor node.

west and simplest form and has a very limited energy capacity. Typically, it just transmits certain

information in the case of sensing an event. A mote sensor node has a slightly more complex struc-

ture, compared with the submote case. This device is the essential part in multihop communica-

tion, which means that, in addition to sensing, the mote node can be used as relay for receiving

information from other nodes and retransmitting it to another. However, due to its small structure,

its energy capacity is very limited. A supermote, on the other hand, has a much larger capacity for

data communication due to employing advanced signal processing equipments and a battery of

larger capacity. The most powerful node of a network is the gateway node that is usually used as

a sink node (see Figure 2.1). The gateway node firstly receives information from different paths by

lower level sensor devices and then retransmits it to the user after some pre-processing.

2.2.2 Sensor configuration

Generally, except submote devices, the other three kinds of sensor nodes should include the

four units of sensing, processing, transceiver, and power. Owing to the recent advances in microe-

lectronics, micromechanics, and wireless communications, it is now possible to deploy multifunc-

tional, low cost, low power consumption, and small size sensors. These sensor nodes are capable

to communicate between them in a cooperative manner and over relatively short distances. A ge-

neral configuration of such nodes is shown in Figure 2.2. We briefly describe these four units in the

following.

– The sensing unit : This is the functional part by which we establish a relationship between

analog and digital worlds. Generally, it consists of two functional modules : sensing and

analog-to-digital convertor (ADC). The analog information obtained from the environment

is passed to the processing unit after being converted to a digital signal by the ADC.

– The processing unit : The main functions of this unit are data storage and data processing.

In order to optimize the node’s power consumption, this unit usually works in one of four

modes of off, sleep, idle, and active.

– The transceiver unit : To reduce the implementation complexity, this unit is usually subject

to a half-duplex constraint. Moreover, considering the limitations on the node’s size and

power consumption, the transceiver unit is usually equipped to one single antenna for both

transmitting and receiving. When the node works as a transmitter, the output of processing

unit is transmitted to other nodes according to a routing protocol. On the other hand, when
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it is used as a receiver, the unit stores the received data from other nodes. Again for the

purposes of optimizing energy consumption, there are four operation modes for this unit :

transmit, receive, idle, and sleep [7].

– The power unit : This is the most important part of the node that is generally made up of bat-

teries of limited capacity. Obviously, the accomplishment of all of above-mentioned func-

tions depends on this unit. Note that when nodes are deployed in an inaccessible region,

recharging or replacing the battery is impractical. Consequently, energy efficient sensing,

processing, and transceiver design are of critical importance in order to extend the network

lifetime.

2.3 Energy consumption issues

Energy consumption is an important factor in the design of a WSN [16]. In fact, sensor nodes

rely on the capacity of their battery, and recharging batteries can be quite difficult, especially in ad

hoc networks. Therefore, maximizing the overall energy efficiency of a WSN is a critical challenge.

Depending on the rate of energy expenditure, energy consumption in a network can be clas-

sified into two factors : continuous and reporting energy consumption [3]. Continuous energy

consumption refers to the minimum energy required for maintaining a network during its lifetime

without any data transmission and reception. In general, it incorporates battery leakage and the

energy expended in the phases of sleep, sensing, and signal processing. On the other hand, re-

porting energy consumption is the amount of energy used for data collection and transmission

and depends on channel characteristics and network protocols. To reduce the reporting energy

consumption, we should improve the efficiency of transmission and reception.

2.3.1 Network lifetime

The network lifetime is defined as the duration from the moment of network distribution to

the moment it becomes out of work. Due to the network complexity, numerous possible events

can result in the network paralysis. For instance, certain sensor nodes may exhaust their energy,

or some nodes may be destroyed because of lightning, torrent, etc. The lifetime of a network is

mainly related to the expected wasted energy and the expected reporting energy. The expected

wasted energy is that consumed in a nonfunctional network, and the expected reporting energy is

that consumed by all nodes in a randomly chosen data collection scenario [3].

2.3.2 Energy consumption and protocol layers

As Figure 2.3 shows, like in any other communication system, the sensor network protocol

stack contains the following five layers : physical, data link, network, transport, and application

[1, 8, 11]. The design of each layer and the interaction between them affect the network energy

consumption.



2.3. ENERGY CONSUMPTION ISSUES 35

Figure 2.3 — The sensor network protocol stack (reproduced from [1]).

The first layer is known as the physical layer, which is used to design an adequate and robust

modulation, as well as transmission and reception schemes, while taking power consumption is-

sues into account. Notice that the transceiver power consumption also depends on the distance

from the source to the destination node. In the case of long distances between these nodes, the

physical layer should propose an energy efficient multihop strategy for saving energy.

The data link layer provides functional means to data transmission between nodes, and possi-

bly the correction of the errors that may occur in the physical layer. A sublayer of data link layer is

the medium access control (MAC) layer that provides addressing and channel access control me-

chanisms. Under the conditions of noisy environment and mobile nodes, the MAC layer should

minimize the energy waste originating from packet collisions, overhearing, excessive retransmis-

sions, control overheads, etc. [8, 11].

The network layer helps to design the data routing provided by the transport layer (see below).

To maximize the network power efficiency, sensor nodes should employ an optimal transmission

routing protocol [1]. In particular, when there are a large number of nodes located between the

source and the destination nodes, there are lots of possible routes can be chosen for communi-

cation. Energy efficient routes should then be chosen depending on the available energy of the

nodes and the required energy for data transmission over these routes.

The transport layer is responsible for maintaining the flow of data when the WSN application

requires it. Generally, a WSN is capable of tolerating a certain degree of packet loss which results

from packet collision, node failure, low quality communication link, etc. [11]. In order to preserve

the quality of service (QoS), data retransmission should be done for the lost packets. This, in turn,

requires more energy expenditure. So, the use of an efficient transport layer protocol is important

for energy saving.

Lastly, the application layer concerns the different applications that are set up according to the

sensing tasks.
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We notice from Figure 2.3 that in addition to the power management plane, the design of the

different protocol layers should take into consideration the mobility and task management. In

other words, we should reduce the overall network power consumption while satisfying the mobi-

lity and task requirements.

2.4 Design challenges of WSNs

There remain still many challenges ahead for WSNs, especially concerning the implementa-

tion aspects. A WSN should satisfy different design criteria depending on the specific application.

However, there are some design challenges that concern most of the WSNs [10]. We briefly intro-

duce two examples in the following.

2.4.1 Trade-off between communication and computation

Prior to data transmission, we could perform some pre-processing to reduce the volume of

collected data, e.g. by compressing the measurement information. In a larger scale, a so-called

cluster node could be in charge of the compression of data collected from different nodes in a

cluster, before transferring it to the sink node. This can reduce considerably the energy expended

for data transmission. However, some energy is required for performing the pre-processing and

data compression. The larger the number of nodes in a cluster is, the more considerable will be the

required energy for pre-processing. Therefore, to optimize power consumption, a tradeoff should

be considered between data transmission and pre-processing.

2.4.2 Connectivity and coverage in hostile environments

In some applications, the battery of some nodes may end up when they are deployed in cer-

tain wireless-unfriendly locations. Also, some nodes could experience temporary or permanent

hardware failure when the environmental conditions are changed, e.g. due to torrential rains, fire

hazards, etc. In order to eliminate the influence of such failures on the entire WSN function, it is

necessary to dimension the number of nodes and their communication ranges, and also to employ

an efficient routing protocol to ensure node connectivity and the coverage of the entire region.

2.5 Cooperative communication

2.5.1 Multipath fading

Like in most wireless communication systems, a sink node in a WSN receives signals arriving

from different propagation paths due to the existing scatterers/reflectors in the environment. The

received signals may add up constructively or destructively at the destination, which causes signal

fading. Multipath fading can considerably deteriorate the quality of data transmission. Depending
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on the channel coherence interval and the transmission rate, slow or fast fading conditions may

hold. In particular, quasi-static fading conditions hold when the channel coherence time is larger

than the frame size.

2.5.2 Cooperative diversity in WSNs

Fading has an important impact on the quality of data transmission and efficient diversity

techniques should be employed to reduce its destructive effect. By exploiting some kind of diver-

sity, e.g. in time, frequency, space, or polarization, a significant improvement in the system per-

formance can be obtained conditioned to the independence of the fading on the different signal

copies. Usually, the most efficient solution is to use multiple antennas at the transmitter and/or

at the receiver to average over channel fading [17, 18]. However, the classical diversity techniques

cannot be employed in a WSN due to the stringent constraints on the nodes’ size and cost. In par-

ticular, it is impractical to use multiple antennas at each sensor node. As a result, cooperative or

distributed diversity techniques are mostly employed in WSNs where nodes cooperate among each

other to exploit some amount of diversity [19, 20, 21, 22]. In other words, by cooperative diversity, a

virtual multi-antenna communication link is established between the source and the destination

nodes. Several cooperating schemes have been proposed in the literature so far. In [23], repetition-

coding is proposed that has a low implementation complexity at the expense of spectral efficiency.

A better spectral efficiency is obtained through the use of channel coding to obtain cooperation

diversity as proposed in [19, 24]. Most of the proposed techniques, however, consider the use of

some relay nodes to provide cooperative diversity. In these so-called wireless relay networks, the

relays cooperate among them in order to provide some distributed spatial diversity, as it is explai-

ned in the following section.

2.6 Wireless relay networks

A simple form of cooperative diversity networks is a wireless relay network (WRN) where some

nodes have the role of relaying the signal transmitted from a source node towards a destination

node [25, 26, 27, 28, 29]. In such networks, data transmission usually takes place in a multi-hop

manner. When more than one relay node participates in signal transmission, the relay nodes co-

operate with each other through the use of some kind of space-time coding in order to benefit

from distributed diversity. This is called distributed space-time coding.

Figure 2.4 shows the general scheme of a WRN [2]. It includes four kinds of sensor nodes, i.e.,

source nodes, cluster nodes, relay (cooperative) nodes, and a sink node. The sensor field is seg-

mented into several clusters, where each of them includes one cluster head node and a number of

source and relay nodes. Assume that the event happens in the field of the first cluster. At the begin-

ning, the source nodes firstly report the information to their cluster head node. Then, the cluster

head node transmits the information to the next cluster head node while using the relay nodes
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Figure 2.4 — General scheme of a WRN [2].

to exploit some cooperative diversity. After multiple hops between the clusters, the information is

received at the last cluster head node which is able to communicate it to the sink node.

As we will see, a much simpler network is considered in this thesis, comprised of one source

node, one destination node, and a number of relay nodes. For such a network, we consider dual-

hop data transmission, where in a first hop, data is transmitted from the source to the relays, and

then, in a second hop, the received signals are processed at the relays and retransmitted to the

destination. We will focus on this simple network configuration in the sequel.

2.6.1 Cooperation strategies

There are three main cooperation strategies regarding the data processing done at the relays

in the second hop : amplify-and-forward (AF) [30, 31, 32, 33], decode-and-forward (DF) [20, 21, 34,

35] and demodulate-and-forward (DemAF) [36, 37].

By the AF mode, the relay nodes just amplify the (noisy) received signal from the source node

(or a superior level cluster head) and then simply convey it to the destination node (or to a lower

level cluster head) [22, 30, 38]. The destination node firstly combines the received signal trans-

mitted from the relays and then makes a final decision on the transmitted data. Although noise is

amplified at the relays, the destination also receives several independently faded versions of the

signal and can make more reliable decisions on them. The advantage of the AF strategy is that the

relays have no requirement to the channel state information (CSI). So, this scheme is interesting

regarding power consumption and transmission delay considerations.

On the other hand, by the DF mode, the relay nodes firstly decode the received signal and
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then re-encode and forward it to the destination. This way, the noise can be greatly reduced at the

expense of complexity and power consumption at the relays. By the DF scheme, CSI is required

for signal detection at the relays, which increases their complexity and energy consumption, as

compared with the AF scheme. Also, we may suffer from erroneous data transmission from the

relays. It is shown in [39, 40] that the performance of AF outperforms that of DF when a direct

communication link between the source and the destination can be supported.

The so-called demodulate-and-forward (DemAF) is the another cooperation strategy which

has been proposed in [37, 38, 41]. By DemAF, the received signals at the relays are first demodu-

lated, and then remodulated to reconstruct the transmitted symbols before being sent to the des-

tination. This way, we can effectively eliminate the influence of noise amplification at the relays.

However, this comes at the expense of increased network’s energy consumption.

Throughout this thesis, we consider the amplify-and-forward cooperation strategy at the re-

lays.

2.6.2 Distributed space-time coding

For the purpose of node cooperation, the use of distributed space time block coding (DSTBC)

has extensively been studied in the literature (see for example [22, 27, 42, 43, 44, 45]). Depending

on whether the destination knows the CSI or not, there are three main types of DSTBC that can be

employed : non-coherent DSTBCs, differential DSTBCs, and coherent DSTBCs. For non-coherent

schemes, the destination does not know the CSI but knows the channel statistics [46, 47]. For co-

herent DSTBCs, the destination needs the CSI for signal detection that can be estimated through

using some training (pilot) symbols, for instance [28, 48]. Since coherent DSTBCs have less com-

plexity than their non-coherent counterparts, they are more widely used in WRNs [42, 48, 49].

When the destination has no knowledge of the channel from source to relays but knows the CSI of

the channel from the relays to the destination, a so-called partial coherent DSTBC is also propo-

sed in [50, 51]. The other choice is to use a differential DSTBC which requires neither the CSI nor

the channel statistics [27, 52, 53]. Although this latter solution simplifies the receiver (at the des-

tination) due to the linear decoding complexity, the code design is more difficult than coherent

DSTBCs [53]. Also, differential schemes suffer from a 3 dB loss in the detection signal-to-noise ra-

tio (SNR) compared to the coherent schemes.

2.7 Chapter summary

We provided a brief state-of-the-art on WSNs and the related potential problems and chal-

lenges. We explained the different applications of these networks and the classification of structu-

red and ad hoc networks. Special attention was devoted to energy consumption in WSNs and the

different factors that can play an important role in minimizing it. We then discussed the problem

of multipath fading and the techniques of cooperative diversity to mitigate the fading effect. A spe-
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cial and important type of cooperative networks, i.e., WRN, was then introduced and described.

In the following chapters, we will focus on a relatively simple configuration of AF WRNs where

a source node communicates with a destination node while benefiting from the cooperation of a

number of relay nodes. The general formulation of the transmission link, DSTBC signaling at the

relays, and signal transmission and detection will be considered in the next chapter.



CHAPTER
3 Signal Transmission in a

WRN Case Study

3.1 Introduction

After the general state-of-the-art on WSNs presented in Chapter 2, we specify in this chapter

the framework of this thesis on which the succeeding chapters are based on. We consider a simple

case of WRNs where two or more relay nodes are inserted between the source and the destina-

tion. The source node can be of submote or mote sensor type, and the relays and the destination

node can be of supermote or gateway type (see Chapter 2). Nodes are considered to be subject to a

half-duplex constraint due to hardware implementation limitations, and so, dual-hop data trans-

mission is performed. It means that the process of data transmission is divided into two steps. In

the first hop, data is transmitted from the source to the relays. Next, in the second hop, the recei-

ved signals are processed at the relays and retransmitted to the destination while the source node

remains idle. This transmission protocol is also called “listen-and-transmit” [42]. We describe the

signal transmission aspects in such a network by firstly explaining our main assumptions and the

formulation of signal transmission in Section 3.2. Signal detection at the destination is described

in Section 3.3 where we discuss the need to the partial CSI at the destination. Estimating this CSI

is considered in Section 3.6. Lastly, we provide some simulation results in Section 3.7 to study the

performances of different signal detection and channel estimation schemes.

3.2 Assumptions and system model

The block diagram of Figure 3.1 shows how data transmission takes place between the different

network nodes. We suppose that there is no direct transmission link between the source and the

destination and assume perfect time-synchronization among all nodes. Working in AF signaling

mode, the relays perform DSTBC coding on the received signals from the source before ampli-

fying and retransmitting them to the destination, while the source node remains idle. Remember

from Chapter 2 that the AF mode has the advantages of reduced transmission delay, complexity,

and power consumption at the relays [34, 43, 54]. We consider the bit-interleaved code modula-
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Figure 3.1 — Data transmission block diagram in a typical AF WRN.

Figure 3.2 — Block diagram of the BICM scheme at the source node.

tion (BICM) scheme [55] at the source node as depicted in Figure 3.2. This way, the information

bits are firstly encoded using a non-recursive non-systematic convolutional (NRNSC) code, and

then interleaved pseudo-randomly before bit-symbol mapping according to a signal modulation

scheme. We consider mostly the quadrature amplitude modulations (QAM) here. We denote the

modulation scheme by M-QAM, where M denotes the number of signal constellation points.

3.2.1 Network structure and definitions

Consider the WRN shown in Figure 3.3, which is composed of one source node, R relay nodes,

and one destination node. Let s = [s1 s2 ···sT1 ]t be a transmitted block of symbols from the source,

where (.)t denotes transposition and T1 corresponds in fact to the number of channel-uses in the

first hop. We consider power-normalized transmitted symbols and impose E{s†s} = T1, where (·)†

stands for the Hermitian operator and E{.} denotes the expected value. Upon the reception of

these signals, the relays amplify and retransmit them according to a DSTBC scheme, by which

Figure 3.3 — General scheme of the studied WRN : fi and gi represent fading coefficients corres-
ponding to the source-relays and relays-destination sub-channels, respectively.
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the received block of T1 signals is mapped to a block of T2 signals ; with T2 denoting the number

of channel-uses during the second hop. To have the same data rate in the source-to-relays and

relays-to-destination transmission steps, we set T1 = T2 = T .

Let r i (k) and t i (k) represent the received and the retransmitted signals at the i -th relay and

corresponding to the k-th block, respectively. The corresponding received block at the destina-

tion is denoted by y = [y1 y2 · · · yT ]t . Each symbol frame corresponds to Ns blocks of T symbols

each. We further denote the channel fading coefficient from the source to the i -th relay by fi , and

that from the i -th relay to the destination by gi , i = 1, ...,R . Without loss of generality, we consi-

der Rayleigh, frequency non-selective and independent identically-distributed (IID) fading for fi

and gi and model them by ∼C N (0,1), where C N (µ,σ2) represents a complex circular Gaussian

distribution of mean µ and variance σ2.

3.2.2 Power distribution over network nodes

Let q be the total transmit power of the whole network during each channel-use. Also, let q1

and q2 be the transmit power allocated to the source and to each relay, respectively. Optimal po-

wer distribution among the source and the relays for minimizing the pairwise error probability is

considered in [42, 44] where it is shown that the optimal solution is given by (3.1) for the case of

T1 < T2 :




q1 =
√

(q +T2/T1)(q +1)T2/T1 − (q +T2 / T1)

T2/T1 −1

q2 =
(q −q1)T1

R T2

(3.1)

For T1 = T2 which is the case we consider in this manuscript, the optimal power distribution solu-

tion becomes [42, 44] :

q1 =
q

2
, q2 =

q

2R
· (3.2)

Note that this solution also results in maximizing the expected value of the received SNR [42].

Also, note that by using this solution, we assume that we have equal power available at all the relay

nodes. Our formulation can be generalized to the case of different available powers at different

relays, however [56].

Considering the solution of (3.2), the transmitted symbols from the source and the relays should

be weighted accordingly. To do this, the transmitted symbols from the source are weighted by
p

q1

and those at the relays are weighted by a scalar c given below :

c =
√

q2

q1 +σ2
nr

, (3.3)

where σ2
nr is the variance of the additive noise at the relay nodes, assumed to be Gaussian-

distributed. Denoting the noise at i -th relay by nri , we consider nri ∼C N (0, σ2
nr ).
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3.3 Data transmission formulation

Remember the dual-hop transmission protocol from Section 3.2. Each frame of data symbols

(i.e., excluding pilots) is divided into Nd blocks of T symbols. After the first hop, upon the trans-

mission of a block of symbols, the received signal vector at the i -th relay, corresponding to the k-th

block, is :

r i (k)=p
q1 fi s(k)+nri (k) , i = 1,2, ...R , k = 1, ..., Nd , (3.4)

where the vectors are of size (T ×1). For the sake of notation simplicity, hereafter we will mostly

not indicate the block reference k . Next, in the second hop, at the relays, we perform DSTBC on

the received signals. Let C i of dimension (T ×T ) be the precoding matrix at the i -th relay. The

retransmitted (T ×1) vector t i from this relay is :

t i = c C i r (∗)
i , (3.5)

where ri
(∗) = ri

∗ if complex conjugation needs to be done on ri according to the DSTBC scheme,

and ri
(∗) = ri otherwise. Note that if we do not want to use such a notation, to provide a general

formulation for the received signal, we should separate the real and imaginary parts of the para-

meters, like in [42, 57, 58]. For the sake of notation simplicity, we do not adopt this approach in

this chapter. As we will see, in our study, we consider some classical DSTBCs ; we will simply spe-

cify the receiver formulation for them. Finally, the vector of received signals at the destination is

described as :

y =
R∑

i=1
gi t i +nd , (3.6)

where nd denotes the vector of the received noise. We denote the variance of its entries by σ2
d .

Using equations (3.4), (3.5), and (3.6), we have :

y =
R∑

i=1
c
p

q1 f (∗)
i gi︸ ︷︷ ︸

hi

C i s(∗)
︸ ︷︷ ︸

p i

+
R∑

i=1
c C i gi n(∗)

r i + nd

︸ ︷︷ ︸
z

. (3.7)

Here, we defined the (T × 1) vector p i = C i s(∗), the (T × 1) vector z as the vector of the total re-

ceived noise at the destination, and hi = f (∗)
i gi . For simplicity, we assume that we have the same

noise variance at the relays and at the destination and set σ2
nr = σ2

d = σ2. To write y in a vector

multiplication form, we also define the (R ×1) vector h and the (T ×R) matrix P as follows.

h =
[

f (∗)
1 g1 , f (∗)

2 g2 , . . . , f (∗)
R gR

]t
(3.8)

P =
[
C 1s(∗) , C 2s(∗), . . . ,C R s(∗)] (3.9)

Then,

y = c
p

q1 P h + z . (3.10)
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3.4 Node cooperation and DSTBC at the relays

In order to perform node cooperation, we consider the use of coherent DSTBC at the relays

that allows a simpler implementation and a better system performance (see Subsection 2.6.2). As

we will explain later in Section 3.6, for the case of performing coherent DSTBC at the relays, in

practice, we have to estimate the CSI at the destination by using some pilot (training) sequences.

In this manuscript, we focus on the cases of two and four relay nodes. The corresponding DSTBCs

are presented in the following.

3.4.1 Case of two relay nodes

For R = 2, the appropriate DSTBC at the relays is the famous Alamouti scheme [59]. For this

scheme, a received vector s = [s1, s2]t at the relays is mapped to the following transmission matrix :

P =
[

s1 −s∗2
s2 s∗1

]
. (3.11)

Note that for this scheme, which provides full rate and full diversity, we have T = 2. Matrix P can

also be written in the following form :

P =
[

C 1 s ,C 2 s∗
]

with C 1 =
[

1 0
0 1

]
, C 2 =

[
0 −1
1 0

]
(3.12)

Using the formulation of (3.10), vector h is given by :

h =
[

f1g1

f ∗
2 g2

]
. (3.13)

3.4.2 Case of four relay nodes

For R = 4, there is no orthogonal DSTBC scheme which can satisfy the conditions of full rate

and full diversity at the same time for the case of complex constellations [60]. Here, as an ortho-

gonal scheme, we use the full-rate time-switched Alamouti scheme [58] that we denote by TSw-Al

with T = R = 4. By this scheme, the received vector s =
[

s1 , s2 , s3 , s4
]t at the relays is mapped to

the following transmission matrix.

P =
p

2




s1 −s∗2 0 0

s2 s∗1 0 0

0 0 s3 −s∗4
0 0 s4 s∗3




(3.14)

Here, the factor
p

2 ensures the normalized transmit power from the relays. Performing TSw-Al on

the received signals at the relays turns to do Alamouti DSTBC alternatively on one pair of the relay

nodes, while turning the other pair off. Matrix P in this case can be written in the following form.

P =
[

C 1 s ,C 2 s∗ ,C 3 s ,C 4 s∗
]

, (3.15)
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where

C 1 =
p

2




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , C 2 =

p
2




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , C 3 =

p
2




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 , C 4 =

p
2




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


.

Also, according to the formulation of (3.10), we have :

h =
[

f1g1 , f ∗
2 g2 , f3g3 , f ∗

4 g4

]t
. (3.16)

Note that the precoding matrices C i are orthonormal but not unitary. The interest of the TSw-Al

scheme is that the complexity of the optimal detector at the receiver grows linearly with R .

On the other hand, if we want to use a unitary DSTBC matrix for the case of four relays in order

to be equitable between different relays and among different channel-uses, a good choice is the

full-rate quasi-orthogonal scheme with T = R = 4, proposed by Jafarkhani in [61]. For this scheme,

the vector s is mapped to the following transmission matrix.

P =




s1 −s∗2 −s∗3 s4

s2 s∗1 −s∗4 −s3

s3 −s∗4 s∗1 −s2

s4 s∗3 s∗2 s1




(3.17)

It can equivalently be written in the following form :

P =
[

C 1 s ,C 2 s∗ ,C 3 s∗ ,C 4 s
]

, s =
[

s1 , s2 , s3 , s4
]t

, (3.18)

where

C 1 = I 4, C 2 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , C 3 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 , C 4 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


.

Here, I 4 denotes as the identity matrix of dimension (4×4). Also,

h =
[

f1g1 , f ∗
2 g2 , f ∗

3 g3 , f4g4

]t
. (3.19)

We will denote this scheme by QOSTBC (QO standing for Quasi-Orthogonal), which exhibits par-

tial orthogonality (between rows 1 and 2, 1 and 3, 2 and 4, and 3 and 4). Note that optimal signal

detection at the destination is more computationally complex for this scheme than for TSw-Al.

3.5 Signal detection at the destination

Taking into account the BICM scheme used at the source, we perform soft signal demodula-

tion followed by soft channel decoding, which is a rather classical approach. The block diagram of
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Figure 3.4 — Signal detection and channel decoding at the destination.

the receiver at the destination is shown in Figure 3.4. For space-time decoding and signal demo-

dulation, we first perform minimum mean-square-error (MMSE) detection and then convert the

detected symbols to log-likelihood ratios (LLRs) [62]. These LLRs are next passed to the Max-Log-

MAP channel decoder [63] after being de-interleaved (the Π
−1 block). We will briefly provide in the

following details on the main blocks of the demodulator. For MMSE signal detection, we consider

two cases where full or partial CSI is available at the destination.

3.5.1 MMSE detection under full CSI

Consider the simple case of R = 2 and Alamouti DSTBC. Corresponding to each block of T = 2

symbols s = [s1, s2]t , MMSE detection results in the following equations :
{

ŝ1 = c
p

q1
(
h∗

1 y1 +h2 y∗
2

)
/(c2q1 h†h +σ2

z )

ŝ2 = c
p

q1
(
h∗

1 y2 −h2 y∗
1

)
/(c2q1 h†h +σ2

z )
(3.20)

where, for instance, ŝ1 stands for the detected signal corresponding to s1 and h1 is the first entry of

h. Also, the variance of the total received noise is defined as σ2
z = E{z †z}. Note that the MMSE for-

mulation does not make any assumption on the distribution of z [64]. To give a simple expression

for the detector, we propose to define the vectors y ′ = [y1 , y∗
2 ]t and s′ = [s1 , s∗2 ]t , and the matrix H

as follows [65].

H = c
p

q1

[
h1 −h2

h∗
2 h∗

1

]
(3.21)

Then, MMSE detection for s ′ gives :

ŝ′ =
(

H †H +σ2
z I R

)−1
H † y ′ . (3.22)

Obviously, having calculated ŝ′, we can obtain ŝ, the estimate of s. Similarly, for the case of R = 4

with TSw-Al DSTBC, we propose to define the vectors y ′ = [y1 , y∗
2 , y∗

3 , y4]t and s′ = [s1 , s∗2 , s∗3 , s4]t ,

and the matrix H as follows.

H = c
√

2q1




h1 −h2 0 0

h∗
2 h∗

1 0 0

0 0 h∗
3 −h∗

4

0 0 h4 h3




(3.23)
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Then, the MMSE detector for s ′ is given by (3.22). For the case of R = 4 with QOSTBC at the relays,

we can still formulate the MMSE detector as in (3.22) using the following definition for H :

H = c
p

q1




h1 −h2 −h3 h4

h∗
2 h∗

1 −h∗
4 −h∗

3

h∗
3 −h∗

4 h∗
1 −h∗

2

h4 h3 h2 h1




(3.24)

The same definitions of y ′ and s ′ as for TSw-Al apply to this case and ŝ ′ is given by (3.22). Note that

MMSE detection is not optimal for this last scheme. Assuming that gi are known at the destination,

which is true if we have full CSI (i.e., known fi and gi ), from (3.7) we have :

σ2
z = T σ2

(
1+c2

R∑

i=1
|gi |2

)
(3.25)

Under available full CSI, z in (3.7) is Gaussian distributed. Under these conditions, the MMSE de-

tector for the Alamouti (R = 2) and TSw-Al (R = 4) schemes is equivalent to the optimal maximum

likelihood (ML) detector.

3.5.2 MMSE detection under partial CSI

In order that the destination can estimate gi , the relays should send some pilots independently

from the source. Alternatively, they could estimate fi and transmit them to the destination. Both

solutions increase the transmission protocol complexity, energy consumption at the relays, and

the overall data-rate loss. As we will explain in Section 3.6, we can obtain an estimation of the vec-

tor h at the destination ; what we will refer to as partial CSI. Meanwhile, we cannot obtain σ2
z from

(3.25) as gi are unknown. Also, z cannot be modeled by a Gaussian random process. Assuming

Rayleigh fading conditions, gi are Gaussian and hence in (3.7), we have the product of two Gaus-

sian random variables (RVs) which is not Gaussian distributed. To calculate σ2
z , similar to what is

proposed by [66] for the case of ML detection, we approximate zi with a Gaussian RV ẑi verifying

the following conditions :

E{ẑi } = E{zi } = 0 and Var{ẑi } =Var{zi }, (3.26)

where Var{.} denotes variance. We will refer to this method as “Gaussian approximation.” Then,

the variance σ2
z is replaced by :

σ2
ẑ = T σ2

(
1+c2

R∑

i=1
σ2

g i

)
=Tσ2(1+c2R), (3.27)

where the second equality holds because we assumed normalized channel coefficients.

A so-called “enhanced Gaussian approximation” has also been proposed [67] by which zi is ap-

proximated by a Gaussian RV z̃i satisfying the following conditions :

E{z̃i } =E{zi } = 0 and Var{z̃i } = Var{zi |ĥ}. (3.28)
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Consequently, the variance σ2
z is replaced by :

σ2
z̃ = T σ2

(
1+c2

R∑

i=1
G(ĥi )

)
, G(ĥi ) =

‖ĥi‖K1(2‖ĥi‖)

K0(2‖ĥi‖)
. (3.29)

Here, ‖.‖ is the Frobenius norm, and K0(.) and K1(.) denote the modified Bessel functions of the

second kind and zero- and first-order, respectively.

3.5.3 LLR calculation

LLR calculation on the detected symbols ŝ is again done assuming Gaussian z . Consider the

example of QPSK modulation and R = 2 with Alamouti DSTBC for instance. Having obtained ŝ1 by

MMSE detection, the expression of LLR on the bit b1 corresponding to the real part of s1 is given

by [58] :

LLR1 = log
exp

(
− (ŝ1ℜ−α

p
2/2)2

σ2
ζ

)

exp

(
− (ŝ1ℜ+α

p
2/2)2

σ2
ζ

) =
2α

p
2 ŝ1ℜ

σ2
ζ

(3.30)

where ŝ1ℜ denotes the real part of ŝ1, and

α=
c2q1‖h‖2

c2q1‖h‖2 +σ2
z

, σ2
ζ =

c2q1‖h‖2

(
c2q1‖h‖2 +σ2

z

)2
(3.31)

After simplification, we obtain :

LLR1 = 2
p

2 ŝ1ℜ (c2q1‖h‖2 +σ2
z ), (3.32)

and σ2
z is replaced by σ2

ẑ
or σ2

z̃ , calculated from (3.27) or (3.29), respectively.

3.5.4 ML signal detection

The interest of MMSE detection is that it is a relatively low complexity scheme. In order to

see the practical interest of this detector in our context, we also consider the optimal maximum

likelihood (ML) detector, adapted to the block diagram of Fig. 3.4. In other words, we use the ML

criterion to detect the transmitted symbols ŝ, and then, convert it to the LLRs on its constituting

bits. 1 We intend to compare the performances of the two detection methods for different DSTBC

schemes and see the interest of MMSE detection. (This is done later in Section 3.7.)

According to the ML algorithm, we should maximize the likelihood function p(y |h, s) to obtain

the ML-detected symbol vector ŝML. Equivalently, we consider the likelihood p(y ′|h, s ′) and obtain

ŝ′ML, where y ′ and s′ were defined previously in Subsection 3.5.1. Assuming perfect full CSI and

Gaussian noise at the receiver, ŝ ′ML can be calculated as follows [68] :

ŝ ′ML = arg min
s ′

{
DML(s ′, y ′,h)

}
, (3.33)

1. The general formulation of the ML soft demodulator will be later given in Chapter 6.
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where the metric DML is calculated from the likelihood function p(y ′|h, s′) :

DML(s ′, y ′,h) =− log p(y ′|h, s ′). (3.34)

Assuming Gaussian noise at the receiver, we can show that DML is related to the Euclidean distance

between y ′ and H s′ :

DML(s ′, y ′,h) =T log(πσ2
z )+

‖y ′−H s ′‖2

σ2
z

. (3.35)

Note that for ML detection under full CSI, we use (3.35), where we calculate the parameter σ2
z from

(3.25). Under partial CSI knowledge, we calculate it using (3.27) or (3.29) based on the approxima-

tion method that we consider.

3.6 Channel estimation

As we noticed from the previous section, since we use coherent DSTBC at the relays, we need

to estimate the CSI at the destination based on some pilot symbols, before proceeding to data

detection. Two protocols can be used for pilot transmission in AF cooperative relay networks. In

the first protocol, firstly, the source transmits the pilot signals to the relays. Then, during a second

phase, the relays retransmit the corresponding received signals to the destination one by one in a

time-division multiple access (TDMA) mode [48]. In the second protocol, that we consider in this

manuscript, DSTBC is performed on the pilots in the same way as on the data symbols in order

to benefit from distributed space diversity [56]. To obtain the same channel estimation quality,

the TDMA protocol needs more channel-uses to be devoted to pilot transmission, especially for

increased number of relays. In other words, by performing DSTBC on the pilots, we obtain a better

channel estimate or, equivalently, we suffer from less data-rate loss for the same quality of channel

estimate. Note that for both methods, as we will see later, we do not obtain full CSI but a partial CSI

estimate (see Subsection 3.5.2). We explain in the following two methods for channel estimation

based only on pilot symbols : the least squares (LS) and the linear MMSE (LMMSE) estimators.

3.6.1 LS channel estimation

We consider equal power allocation among pilot and data symbols in the two transmission

hops. Our study can be generalized to the case of optimal power allocation, however [69]. Consider

the (T ×1) vector s0 of BPSK-modulated pilot symbols transmitted from the source. Denoting the

corresponding received vector at the destination by y 0, from (3.10) we have :

y0 = c
p

q1P 0 h + z 0, (3.36)

where z 0 is the received noise vector, and the (T ×R) matrix P 0 corresponds to distributed space-

time processing on s0 at the relays :

P 0 =
[

C 1 s(∗)
0 , C 2 s(∗)

0 , . . . , C R s(∗)
0

]
. (3.37)
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If we consider Np (identical) blocks of T pilot symbols, the LS channel estimate solution gives [70] :

ĥ
p
LS =

1

c
p

q1Np

(
P †

0P 0

)−1 Np∑

k=1

P †
0 y0(k) . (3.38)

The optimal solution (in the sense of minimizing the variance of estimation errors) is obtained for

diagonal P †
0P 0. This is the case when orthogonal DSTBC is done at the relays, whatever s0. For

R = 2 with Alamouti and R = 4 with TSw-Al, we just set s0 = [1 1]t and s0 = [1 1 1 1]t , respectively.

For R = 4 and QOSTBC at the relays, we can still use s0 = [1 1 1 1]t that results in diagonal P †
0P 0.

Notice that (3.38) does not coincide with the ML estimate as z 0 is not Gaussian. (We do not consi-

der ML estimation here due to its high computational complexity in our case.)

3.6.2 LMMSE channel estimation

Let us also consider the MMSE estimation solution. In contrast to the LS solution that assumes

a given realization of h (that is, considers h as deterministic), the MMSE solution minimizes the

variance of estimation errors by considering the random channel and by taking its statistics into

account. Instead of MMSE, we consider here the LMMSE solution that is simpler to implement,

given the non-Gaussian noise z 0 in our case. Note that the LMMSE solution is equivalent to MMSE

for Gaussian noise [64]. It can be shown that :

ĥ
p
LMMSE =

1

c
p

q1Np

(
P †

0C−1
z 0

P 0 +C−1
h

)−1
Np∑

k=1
P †

0 C−1
z 0

y 0(k) , (3.39)

where C h of dimension (R ×R) and C z 0 of dimension (T ×T ) are the covariance matrices of the

channel and z0, respectively. Given that z0 is white, and considering an IID and normalized chan-

nel for our WRN, i.e., taking C h = I R , we can simplify (3.39) as follows.

ĥ
p
LMMSE =

1

c
p

q1Np

(
P †

0P 0 +σ2
z I R

)−1 Np∑

k=1
P †

0 y 0(k) (3.40)

3.7 Performance study through numerical results

In this section, we present some simulation results to evaluate the performance of the consi-

dered WRN case studies for different data detection and channel estimation methods described

before. Performance evaluation is done in terms of the average bit-error-rate (BER) versus SNR

that is considered in the form of Eb/N0. Here, Eb is the average received energy per information

bit at the destination, and N0 is the unilateral power spectral density of the noise.

3.7.1 Simulation parameters

Regarding the BICM scheme used at the source, we consider the use of the rate 1/2 NRNSC

channel code of constraint length 3 defined in octal form by (5,7)8, as well as pseudo-random
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Figure 3.5 — Performance comparisons between ML and MMSE detection under perfect full CSI,
Np = 1, QPSK modulation and (5,7)8 channel code.

bit interleaving. The interleaver size, which is also the number of encoded bits per frame, is set

to Nb = 128. Gray mapped QPSK and 16-QAM modulations are considered for data symbols.

Also, normalized channel coefficients are considered according to the Rayleigh IID quasi-static

fading model. By the quasi-static fading model, the channel coefficients remain constant during

the transmission of Ns blocks of symbols, and they change to new independent values form one

frame to next.

3.7.2 ML versus MMSE detection under full CSI

Firstly, let us compare ML and MMSE signal detection methods under the assumption of per-

fect available full CSI at the receiver. We have presented the BER performance curves in Figure 3.5.

Note that for the case of orthogonal DSTBC, ML is equivalent to MMSE detection. The difference

of the two detectors is for the case of non-orthogonal QOSTBC for R = 4, where ML detection

provides an interesting performance improvement, compared with the MMSE method. For ins-

tance, at a target BER of 10−4, the SNR improvement is about 1.4 dB. In fact, here, ML takes its

advantage over MMSE detection because of treating the inter-relay interference (IRI) due to the

non-orthogonal DSTBC structure.

In the following, however, we will focus on the MMSE detection, even for the case of R = 4 with

QOSTBC. The reason is the lower computational complexity of the MMSE detector, especially for

increased signal constellation size.
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Figure 3.6 — Performance comparisons between full and partial CSI obtained at the destination,
MMSE signal detection, Np = 1, QPSK modulation and (5,7)8 channel code.

3.7.3 Performance comparison under perfect full or partial CSI

Considering MMSE detection at the receiver, let us compare the BER performance under per-

fect full and partial channel knowledge for the three case studies. Results are shown in Figure 3.6.

In fact, we have the same performance for Alamouti and TSw-Al DSTBCs for R = 2 and 4. In fact for

these orthogonal schemes, σ2
z does not depend on h, and hence, we have the same performance

for full and partial CSI. For instance, for the Alamouti scheme, this can be seen from (3.20) and

(3.32) ; the term (c2q1 h†h +σ2
z ) cancels out in the calculated LLRs and thus, they do not depend

on σ2
z . This is not the case for R = 4 with QOSTBC, however. For this case, we notice from Figure 3.6

an improvement of about 1 dB in Eb/N0 at BER= 10−5 when full CSI is available at the destination.

3.7.4 Gaussian versus enhanced Gaussian approximation under perfect partial CSI

Let us now consider the comparison between Gaussian and enhanced Gaussian approxima-

tions for the received noise at the destination (see Subsection 3.5.2). The corresponding BER per-

formances are presented in Figures 3.7 and 3.8 for the cases of QPSK and 16-QAM modulations,

respectively. From the discussions of the previous subsection, it can be deduced that this approxi-

mation does not have any impact on the performance for the case of orthogonal DSTBCs. For

QOSTBC, we have a negligible improvement by using the enhanced Gaussian approximation for

the case of QPSK modulation. The improvement is a little more important for 16-QAM modula-



54 CHAPTER 3. SIGNAL TRANSMISSION IN A WRN CASE STUDY

0 5 10 15 20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
(dB)

B
E

R

 

 

Alamouti, Gaussian or Enhanced
TSw−Al, Gaussian or Enhanced
QOSTBC, Gaussian
QOSTBC, Enhanced

Figure 3.7 — Performance comparisons between Gaussian and enhanced Gaussian approximation,
MMSE detection under perfect partial CSI, QPSK modulation and (5,7)8 channel code.
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Figure 3.8 — Performance comparisons between Gaussian and enhanced Gaussian approximation,
MMSE detection under perfect partial CSI, 16-QAM modulation and (5,7)8 channel code.

tion. 2 In the sequel, we consider the simple Gaussian approximation for the receiver noise.

2. We will explain later in Chapter 5 that when IRI cancelation is performed in the case of QOSTBC, the enhanced
Gaussian approximation becomes interesting.
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Figure 3.9 — Performance comparisons between LS and LMMSE, Np = 1, QPSK modulation and
(5,7)8 channel code.

3.7.5 LS versus LMMSE channel estimation

We have compared the performances of LS and LMMSE estimation methods in Figure 3.9. We

notice that the two estimation methods have almost the same performance. Therefore, we will

consider hereafter the LS method which has a lower computational complexity.

3.7.6 LS estimation for different numbers of pilot blocks

Now, considering MMSE detection, Gaussian approximation for the received noise, and LS

channel estimation, we compare the receiver performance for different numbers of pilot blocks.

Results are shown in Figures 3.10 and 3.11 for the considered orthogonal and non-orthogonal

DSTBCs, respectively. As reference, we have also presented the performance for the case of perfect

partial CSI at the destination. Note that the number of channel-uses devoted to pilot transmission

equals to Np T . As we have fixed the total encoded bits per frame to Nb = 128, for the case of QPSK

modulation, we have Ns = 32 and Ns = 16 blocks, for R = 2 and R = 4, respectively. Thus, for the

two considered cases of Np = 1 and 3, the percentage of the transmission rate devoted to pilots,

i.e., Np /Ns , equals 3.125% and 9.375%, respectively, for R = 2. This pilot overhead equals respecti-

vely 6.25% and 18.75% for R = 4. Assuming a target BER of 10−4, for instance, from Figure 3.10 we

notice that the improvement in Eb/N0 by increasing Np from 1 to 3, is about 2.3 dB and 2.7 dB for

Alamouti and TSw-Al schemes, respectively. However, even with a considerable pilot overhead, we

are still relatively far from the performance with perfect CSI. For the case of R = 4 with QOSTBC,

the performance for Np = 3 is closer to the perfect CSI case, compared to the TSw-Al scheme. This
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Figure 3.10 — LS pilot-only-based channel estimation with MMSE signal detection for orthogonal
DSTBC. Np is the number of pilot blocks per frame, QPSK modulation, (5,7)8 channel code.
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Figure 3.11 — LS pilot-only-based channel estimation with MMSE signal detection for QOSTBC. Np
is the number of pilot blocks per frame, QPSK modulation, (5,7)8 channel code.

is due to the fact that QOSTBC benefits from more diversity gain than the latter scheme. Overall,

we can deduce that increasing the number of pilot blocks is not an efficient solution to improve

the performance, and moreover, this results in a larger data transmission rate loss. That is why we

are going to consider semi-blind channel estimation in the next chapter.
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3.8 Chapter conclusion

In this chapter, we considered the AF cooperative relay networks and specified the general

assumptions and system model that we will use in the next chapters. Assuming equal available

power at the all relay nodes and considering optimal power distribution over network nodes, we

presented the data transmission formulation, related in particular to DSTBC at the relays. We ex-

plained that using the special DSTBC schemes that we presented, i.e., Alamouti [59], TSw-Al [58],

and QOSTBC [61], we can perform signal detection at the destination based on partial CSI know-

ledge. This property, reduces considerably the network complexity and power consumption. We

also compared the ML and MMSE detection methods, the two approximations concerning the re-

ceived noise at the destination, and LS and LMMSE channel estimation based on pilot symbols,

through some simulation results.

We explained that for the case of orthogonal DSTBCs at the relays, partial CSI knowledge is suf-

ficient for optimal signal detection. Also, the statistics of the received noise do not affect the recei-

ver performance. When a non-orthogonal DSTBC like the QOSTBC scheme is employed, however,

full CSI knowledge takes its advantage over partial CSI. The performance degradation due to the

use of partial CSI remains acceptable, given the increased network complexity to acquire full CSI.

Moreover, the simple MMSE detection becomes suboptimal in this case, and also, the enhanced

Gaussian approximation for the received noise appears to be a better solution. Regarding chan-

nel estimation, the LS method was shown to be a better approach, compared to LMMSE-based

estimation.

Finally, we analyzed the performance improvement through increasing the number of pilots.

This improvement is obviously obtained at the expense of increased energy consumption needed

for pilot transmission, and also data rate reduction. We noticed that increasing the pilot overhead

is not a suitable solution as it does not result in a considerable receiver performance improvement.

For this reason, in the next chapter, we will consider semi-blind channel estimation, which is an

efficient solution to improve the channel estimate quality while requiring a low pilot overhead.





CHAPTER
4 EM-Based Semi-Blind

Channel Estimation

4.1 Introduction

In the previous chapter, we considered channel estimation based only on pilots. Obviously, the

strategy of increasing the number of pilots to obtain a better CSI at the receiver is not justified in

practice. In particular, as power consumption is a critical issue in sensor networks [71], [72], we

should minimize the number of pilots in order to reduce power consumption at the source and

the relays. We propose here to use semi-blind (SB) channel estimation based on the expectation-

maximization (EM) algorithm. The interest of EM is that the estimate converges to the ML solution.

Firstly, we present a simple formulation of this estimator implemented in an iterative receiver, and

show that with this approach, we can considerably reduce the pilot overhead while obtaining a

channel estimate of good quality. Afterwards, we propose a modification to the classical formu-

lation of EM in order to further improve the quality of channel estimate. For this, we propose to

combine appropriately the channel estimates obtained using pilots and data symbols separately

in view of obtaining an unbiased channel estimate. As we will show, this approach is particularly

interesting for modulations of relatively large constellation sizes.

We were inspired by a previous work on channel estimation for classical multiple-input

multiple-output (MIMO) systems [73, 74]. Compared to [73], our contributions reside in adap-

ting the formulation to the case of AF WRNs and considerations regarding the non-Gaussian noise

at the destination, estimator formulation by taking DSTBC at the relays into account, and the ex-

tension to the general QAM modulations ([73] considers simple spatial multiplexing at the trans-

mitter and QPSK modulation). SB estimation is obviously more computationally complex than the

estimation based only on pilots. We suppose that, in contrary to the source and the relay nodes,

we do not have stringent constraints on the energy, memory, and computational resources of the

destination node. Notice that, in this chapter, we consider only the case of employing orthogonal

DSTBC at the relays. EM-based channel estimation for the case of non-orthogonal DSTBC is left

to the next chapter.

The reminder of this chapter is organized as follows. The formulation of the classical EM-based

channel estimation is presented in Section 4.2. Then, we describe the idea behind the improved
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Figure 4.1 — Block diagram of the iterative channel estimator.

EM and its formulation in Section 4.3. Some simulation results are presented in Section 4.4 to com-

pare the performances of different channel estimation methods. Finally, Section 4.5 concludes the

chapter.

4.2 Classical EM-based channel estimation

In order to obtain a better channel estimate without suffering from a considerable loss in the

transmission data rate by increasing the pilot overhead, SB (also called data-aided) channel es-

timation appears to be an appropriate solution. This way, we make use of the data symbols in

addition to the pilots to improve the channel estimation quality. The scheme we propose here is

based on the EM algorithm [75] and is implemented in an iterative receiver (at the destination).

The block diagram of the receiver is shown in Figure 4.1. At the first iteration, for signal detection,

we use a primary pilot-only (PO) channel estimation, e.g. ĥ
p
LS from (3.38). After signal demodula-

tion and channel decoding, we use the LLRs at the output of the channel decoder to modify the

channel estimate based on EM. We should take into account the DSTBC processing at the relays

in the estimator formulation.

The ML-based EM algorithm consists of two steps [76, 77] :

– Expectation : calculating the expected likelihood function of (y ,P ) conditioned on the ob-

servation y , that we denote by the function Q ,

– Maximization : maximizing Q with respect to h.

At the first iteration, PO estimation is used to initialize EM. After the i -th iteration, we have :

Q =
Ns∑

k=1

|χ|∑
u=1

log
[

p
(

y(k)|h,P (k)= P u

)]
P

(
P (k)= P u

∣∣∣y(k), ĥ
i
)

, (4.1)

where k is the block time-reference, P u and P (k) are respectively the u-th possible and the actual

space-time precoded matrices from the relays corresponding to the block k , ĥ
i

is the estimated

channel at the i -th iteration, p
(

y(k)|h,P (k)= P u

)
is the probability density function (PDF) of y(k)

conditioned to h and P (k) = P u , and the probability P
(
P (k) = P u | y(k), ĥ

i )
is calculated using

the a posteriori probabilities (APP) at the decoder output. Also, χ is the cardinality of P of size
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|χ| = 2BT , that is, the set of all possible space-time precoded matrices from the relays, with B being

the number of bits per symbol. Since there is a one-to-one correspondence between a vector of

symbols su and its corresponding DSTBC-precoded matrix P u , we can denote this probability by

P
(
s(k)= su| y(k), ĥ

i )
. For notation simplicity, we further denote it by APPk (su | ĥ

i
).

To develop (4.1), we should take into account the distribution of y(k) given P u (or su) and h,

which reduces to the distribution of z from (3.10). However, as we consider only partial CSI at the

destination, z is not Gaussian, and as a result, obtaining a closed form expression for the estimator

is quite difficult. We propose to use again the simple Gaussian approximation for z (see Subsection

3.5.2), which results in :

Q =−
Ns∑

k=1

|χ|∑
u=1

log

[
2 log(σ2

ẑ )+
||y (k)−c

p
q1P uh||2

2σ2
ẑ

+κ

]
APPk (su|ĥ

i
) , (4.2)

where κ is a constant and σ2
ẑ

is calculated using (3.27). Now, to find the function that maximizes Q ,

we should differentiate it with respect to h. We hence obtain the estimation update for the (i +1)th

iteration :

ĥ
i+1 = RP y R−1

P , (4.3)

where

RP y = c
p

q1

Ns∑

k=1

|χ|∑
u=1

P †
u y(k)APPk (su |ĥ

i
), (4.4)

RP = c2q1

Ns∑

k=1

|χ|∑
u=1

P †
u P u APPk (su |ĥ

i
). (4.5)

Note that for notation simplicity, we indicate the iteration number only for ĥ. Similar to what

is proposed in [73], we simplify these equations whose computational complexity grows expo-

nentially with B and T . By this approach, using the decoder soft-outputs, we first calculate soft-

estimates of the transmitted symbols, s̃(k) :

s̃(k)=
|χ|∑

u=1
su APPk (su |ĥ

i
). (4.6)

Then, we construct the estimated space-time-coded matrices P̃ (k), and rewrite (4.4) :

R P y = c
p

q1

Ns∑

k=1

P̃
†
(k) y(k) . (4.7)

Separating pilots and data symbols, we can also write R P y in the following form :

RP y = c
p

q1

[
Np∑

k=1

P †
0 y 0(k) +

Ns∑

k=Np+1

P̃
†
(k) y(k)

]
, (4.8)

where we have used P 0(k) =P 0 since we use identical pilot blocks. Similarly, R P from (4.5) can be

written as follows.

R P = c2q1

[
Np∑

k=1

P †
0 P 0 +

Ns∑

k=Np+1

|χ|∑
u=1

P †
u P u APPk (su|ĥ

i
)

]
(4.9)
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The two terms in the brackets in (4.9) are diagonal matrices as we perform orthogonal DSTBC at

the relays. Then, RP can be simplified as :

R P = c2q1Np T I R +RPd , (4.10)

and the diagonal matrix RPd is :

R Pd = diag
(
ξ1, ...,ξR

)
= c2q1

Ns∑

k=Np+1

P̃ 2(k). (4.11)

P̃ 2(k) is a diagonal matrix specified below :

P̃ 2(k)=





( R∑

i=1
s̃2

i (k)
)

I R : for R = 2 with Alamouti

2 · diag
(
s̃2

1(k)+ s̃2
2(k) , s̃2

3(k)+ s̃2
4(k)

)
⊗ I 2 : for R = 4 with TSw-Al

(4.12)

Here, s̃2
i (k) denotes the soft-estimate of |si (k)|2 and⊗ is the Kronecker matrix product. For the case

of PSK modulations, we have s̃2
i (k)= 1, ξi = c2 q1 Nd T , and (4.10) simplifies to the following.

R P = c2q1NsT I R (4.13)

So, overall, we calculate in each iteration R P from (4.10) and R P y from (4.8), and update the chan-

nel estimate from (4.3). We will call this estimator CB-EM (CB standing for classical biased) be-

cause, as we explain in the following subsection, this classical EM formulation provides a biased

estimate of the channel.

4.3 Improving the classical EM-based estimator

Let us focus on R P y in (4.8) by replacing y and y0 from (3.10) and (3.36), respectively. We obtain
(see Appendix A) :

RP y = c2q1Np T I R︸ ︷︷ ︸
RP0

h +c
p

q1

Np∑

k=1
P †

0 z 0(k)

︸ ︷︷ ︸
η0

+c2q1

(
Ns∑

k=Np+1
P̃

†
(k)P (k)

)

︸ ︷︷ ︸
R
′
P

h +c
p

q1

Ns∑

k=Np+1
P̃

†
(k) z(k)

︸ ︷︷ ︸
η

= (RP0 +R
′
P )h +η0 +η,

(4.14)

where we have defined the matrices RP0 and R
′

P and the vectors η0 and η. Comparing (4.14)

with (4.10), we notice that (R P0 +R
′

P ) 6= R P , and hence, from (4.3), the obtained channel estimate

by using CB-EM is biased. This bias that affects the data detection part, is due to the difference

between P̃ 2 and P̃
†

P (corresponding to data symbols), or in other words, due to the difference

between s̃2
i and s̃∗i si , i = 1, ...,R . At very high SNR, however, we have s̃i ≈ si and s̃2

i ≈ s̃∗i si , and the

bias becomes negligible.

Our aim here is to propose a modified estimator in order to eliminate the bias and to improve

the channel estimation quality. One simple solution is to remove the bias by multiplying ĥ by the
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inverse of the matrix
[
(R P0 +R

′

P )R−1
P

]
. We propose here a more appropriate solution that results

in a better receiver performance. Let us consider separately the channel estimates based on pilots

and data symbols that we denote by ĥ
p

and ĥ
d

, respectively. Note that ĥ
p

is unbiased, in contrary

to ĥ
d

. Then, we can write :

ĥ
p = h +η

′
0 , ĥ

d =Λh +η
′ , (4.15)

where the entries of the matrix Λ of dimension (R ×R) are calculated as follows (see Appendix A).

λi j =Λ(i , j )=
1

ξi
R

′

P (i , j ) , i , j = 1, ...,R , (4.16)

and ξi are defined in (4.11). Also, we have defined the estimation noise vectors η
′
0 and η

′. Using

the definitions of η0 and η in (4.14), we have :

η
′
0 =

1

c2 q1 Np T
η0 , η

′
i =

1

ξi
η , i = 1, ...,R . (4.17)

Denoting the variance of the entries of η′
0 by σ2

η
′
0
, and that of η′

i by σ2
η
′
i
, it can be shown that :

σ2
η
′
0
=

σ2
ẑ

c2 q1 Np T
=β0σ

2
ẑ , σ2

η
′
i
=

R ′′
P (i , i )

ξ2
i

σ2
ẑ =βi σ

2
ẑ , (4.18)

where we have defined the following two coefficients :

β0 =
1

(c2 q1 Np T )
, βi =

R ′′
P (i , i )

ξ2
i

, (4.19)

and also defined the matrix R ′′
P as follows.

R ′′
P = c2q1

Ns∑

k=Np+1
P̃

†
(k)P̃ (k) (4.20)

On the other hand, given (4.16) and the definition of R ′
P in (4.14), we notice that for the orthogonal

DSTBC schemes, matrix Λ in (4.15) has the following property :

Ψ=Λ
†
Λ=diag

(
ψ1, ψ2, · · · ,ψR

)
. (4.21)

For instance, for R = 2 with the Alamouti scheme, from (3.11), we have ψ1 =ψ2 = |λ11|2 + |λ12|2.

Also, for R = 4 with TSw-Al, from (3.14), we have
{

ψ1 =ψ2 = |λ11|2 +|λ12|2

ψ3 =ψ4 = |λ33|2 +|λ34|2
(4.22)

Now, to obtain an unbiased estimator, we propose to look for an appropriate combination

of ĥ
p

and ĥ
d

. As a simple and low complexity solution, we consider each entry of ĥ as a linear

combination of the corresponding entries of ĥ
p

and ĥ
d

. To write this in a vector form, we define

two weight matrices A and B . Then, the unbiased channel estimate is given by :

ĥ = A ĥ
p +B ĥ

d
. (4.23)
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We determine the matrices A and B so as to minimize the estimation error variance while satis-

fying the condition of unbiased estimation, that is [78],

min
A, B

E
{
||Aη

′
0 +B η

′||2
}

, satisfying A +B Λ= I R . (4.24)

Notice that in [79], for the sake of simplicity and reducing the computational complexity of the es-

timator, we had approximated R ′
P with a diagonal matrix, assuming large enough Ns . As a result,

we had considered diagonal matrices for A and B . Here, however, we make no special assump-

tion on R ′
P nor on A and B . After some manipulations, we obtain the following optimized weight

matrices for the proposed linear combination.

A = I R −ΓΨ , B =ΓΛ
†, (4.25)

where Γ is an (R ×R) diagonal matrix with the diagonal entries given below.

γi i =Γ(i , i )=
β0

βi +β0ψi
, i = 1, ...,R . (4.26)

Remember that β0 and βi are obtained from (4.19) and ψi is defined in (4.21).

By further observation of (A.7) and (A.19) in Appendix A, we note that R ′
P is not diagonal ex-

cept when the detected symbols are exact (i.e., without any error). In order to further improve the

performance, we should eliminate the interference from its off-diagonal entries. Therefore, it is

rational that we directly set the off-diagonal entries to zero to simplify the estimator formulation.

We call the resulting estimation method “unbiased linearly-combined EM” and will denote it

by UL-EM. This solution has almost the same computational complexity of what proposed by [79]

but provides a better performance. The only remaining problem is to calculate λi j from (4.16). As,

obviously, we do not know P at the destination, we cannot calculate R
′

P from (4.14). To calculate

R
′

P , we propose to simply construct P from the hard estimates of the transmitted symbols using

the decoder soft outputs. Obviously, these hard estimates do not necessarily coincide with the

true transmitted symbols, and as we will see in the next section, this limits the performance of the

UL-EM method, especially for small constellations.

4.4 Performance comparison between CB-EM and UL-EM methods

We present in this section some numerical results to study the performance of the CB-EM and

UL-EM estimation methods for the cases of two and four relays. Performance evaluation is done

in terms of the average BER as a function of SNR.

4.4.1 Simulation parameters

At the transmitter, we consider pseudo-random interleaving and the rate 1/2 NRNSC code

(5,7)8 in the BICM scheme. Gray-mapped QPSK and 16-QAM modulations are considered. We
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consider the quasi-static, flat, Rayleigh, IID-fading channel model. We assume that each frame of

symbols corresponds to Ns T = 64 channel-uses. Also, to better illustrate the advantage of SB over

PO channel estimation, we use the minimum number of pilot blocks per frame of symbols, i.e.,

we set Np = 1. In the results that we present, we will indicate the number of processed iterations

at the receiver by IT. When we do not indicate it on the figures, it means that only one iteration is

processed.

4.4.2 Case of R = 2

We have compared the performances of different estimation methods in Figure 4.2 for the case

of R = 2, where the Alamouti DSTBC is performed at the relays, and QPSK modulation. For SB es-
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Figure 4.2 — Comparison of SB and PO channel estimation. R = 2 with Alamouti DSTBC, Ns T = 64,
Np = 1, QPSK modulation, (5,7)8 channel code. IT denotes iteration number.

timation methods, five receiver iterations are necessary to attain almost full receiver convergence.

The LS-based PO estimate is used at the first iteration to initialize the SB algorithms. We notice

an interesting performance improvement in Eb/N0 by SB estimation : it is about 1.5 dB at a tar-

get BER of 10−4. The UL-EM does not offer any advantage over CB-EM in this case, however. Note

that for increased frame size, the performance improvement by SB estimation methods becomes

more significant (see [79]). Also, the UL-EM takes its advantage over CB-EM for increased Ns . For

example, we have presented the receiver performance for Ns T = 256 in Figure 4.3 where we notice

a slight improvement in BER by using the UL-EM method.

Let us now consider the case of the relatively large constellation of 16-QAM. Performance

curves are shown in Figure 4.4. Here, for the cases of PO estimation and perfect CSI, we need

to process only two iterations. We notice that at BER= 10−4, CB-EM provides an improvement of

about 1 dB in SNR compared with PO estimation. Moreover, the UL-EM approach allows 0.7 dB
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Figure 4.3 — Comparison of SB and PO channel estimation. R = 2 with Alamouti DSTBC, Ns T = 256,
Np = 1, QPSK modulation, (5,7)8 channel code. IT denotes iteration number.

further improvement, compared to CB-EM.

To understand why the UL-EM method gives poor improvement for small constellations such

as QPSK, we should come back to the calculation of R
′

P that is required to update ĥ by this method.

The calculation of R
′

P was discussed at the last paragraph of Section 4.3, where we explained that

we use the hard-estimates of the transmitted symbols obtained from the soft-decoder outputs to

construct P . As a matter of fact, the poor performance of UL-EM arises from the possible errors

in these hard estimates. We have shown in the presented results the hypothetical BER curves that

are obtained if we use the exact transmitted symbols (i.e., the exact P ) in the calculation of R
′

P .

We denote this case by “UL-EM, Genie” and notice that it provides an interesting improvement

in the receiver performance. So, the limited performance improvement of UL-EM arises from this

implementation constraint. For larger constellation sizes, the performance is less affected by the

errors in this hard estimation, because it is done on a smaller “grid size” on the signal constellation

plane.

4.4.3 Case of R = 4

Let us now consider the case of four relays. The corresponding performance results are shown

in Figure 4.5 for the case of QPSK modulation. We notice that a substantial performance improve-

ment can be obtained through using SB estimation. For instance, at a BER of 10−4, we notice an

SNR gain of about 2.5 dB. Similar to the case of R = 2, the UL-EM does not allow any improvement,

compared to CB-EM. For the case of the 16-QAM modulation, results are shown in Figure 4.6,

where we notice an improvement of 1.6 dB in Eb/N0 at BER= 10−4 by using the CB-EM method,
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Figure 4.4 — Comparison of SB and PO channel estimation. R = 2 with Alamouti DSTBC, Ns T = 64,
Np = 1, 16-QAM modulation, (5,7)8 channel code. IT denotes iteration number.
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Figure 4.5 — Comparison of SB and PO channel estimation with TSw-Al. R = 4 with TSw-Al DSTBC,
Ns T = 64, Np = 1, QPSK modulation, (5,7)8 channel code. IT denotes iteration number.

compared to PO. Also, the UL-EM method allows about 0.85 dB SNR improvement over CB-EM.

Similar to the case of R = 2, we have shown the BER curves for the “UL-EM, Genie.” We notice

again that UL-EM suffers from the inaccuracy in the calculation of R ′
p .
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Figure 4.6 — Comparison of SB and PO channel estimation. R = 4 with TSw-Al DSTBC, Ns T = 64,
Np = 1, 16-QAM modulation, (5,7)8 channel code. IT denotes iteration number.

4.4.4 Estimation error variance

It is quite useful to study the evolution of the variance of estimation errors for PO and SB me-

thods. We have shown the curves of the mean square of estimation errors (MSE) versus Eb/N0 for

the case of R = 4 and 16-QAM modulation in Figure 4.7, for instance. As reference, we have also

presented the MSE curve corresponding to the hypothetical case where the receiver has perfect

knowledge of the transmitted data symbols. This curve is labeled LB (for Lower Bound) Figure 4.7

and can be used as a lower bound on the estimation MSE. We notice from this figure that the UL-

EM method gives a lower MSE than CB-EM. Moreover, at the high SNR (larger than 25 dB), both

the corresponding curves of CB-EM and UL-EM converge to the LB.

4.5 Chapter conclusion and discussions

We considered SB channel estimation for AF cooperative relay networks and orthogonal

DSTBC, based on the EM algorithm. We firstly considered the classical EM-based channel esti-

mation and provided the estimator formulation for the AF WRN system. We called this approach

CB-EM. Considering the two case studies of two and four relay nodes, we demonstrated through

simulations the interesting performance improvement that we obtain by SB estimation. This way,

by devoting few channel-uses to pilot transmission, and hence, minimizing the nodes′ energy

consumption and the pilot overhead, we can obtain a satisfying performance at the destination.

Performance improvement with SB estimation is more significant for a larger number of relays. In

fact, for a larger R , benefiting from more distributed diversity, we have a better detection perfor-

mance, and the contribution of the detected data symbols to channel estimation becomes more
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Figure 4.7 — Channel estimation MSE for SB and PO estimation methods. R = 4 with TSw-Al, Ns T =
64, Np = 1, 16-QAM modulation, (5,7)8 channel code.

beneficial. Also, more significant performance improvement is obtained for increased frame size.

We further showed that the CB-EM formulation provides a biased channel estimate and propo-

sed a modification to it, in order to obtain an unbiased estimate. We called this approach UL-EM.

Comparing the performances of CB-EM and UL-EM, we noticed that the latter is advantageous

for relatively large signal constellations. The inherent bias in the CB-EM estimate appears to be

penalizing in such cases. However, for the simple QPSK modulation case, we obtained negligible

performance improvement that does not justify the computational complexity of UL-EM. We sho-

wed that this is due to the difference between the transmitted symbols and their hard estimates

that we need in the implementation of UL-EM.

SB estimation is obviously more computationally complex than PO estimation. We assumed

that there are less stringent constraints on the energy and computational resources of the destina-

tion node, compared to the source and the relay nodes. The increased computational complexity

by SB estimation remains moderate and quite justified taking into account the significant achieved

performance improvement.





CHAPTER
5 Iterative Data Detection and

Channel Estimation for
Non-Orthogonal DSTBC at
Relays

5.1 Introduction

In the previous chapter, we considered the case of orthogonal DSTBC at the relays. The ad-

vantage of using orthogonal DSTBC is that the optimal decoder is of linear complexity. However,

except the Alamouti scheme for R = 2, other orthogonal schemes suffer from low rate or low diver-

sity gain, especially for the case of large number of relay nodes. For instance, the TSw-Al scheme

that we considered previously for R = 4 is of full rate but has a diversity gain of 2 only.

In order to obtain a high spectral efficiency with orthogonal DSTBCs for R > 2, relatively high

channel coding rates and/or large signal constellations should be used, which, in turn, increases

the receiver computational complexity and also requires a higher SNR for signal detection at the

receiver [58, 80, 81]. Non-orthogonal DSTBCs generally offer higher rates and diversity gains but

suffer from high receiver complexity if optimal decoding is to be performed at the receiver. On the

other hand, in such a case, suboptimal detectors like the MMSE detector suffer from inter-relay

interference (IRI) due to the non-orthogonal structure of the DSTBC (see Subsection 3.7.2). Here,

to circumvent this problem, we consider iterative soft parallel interference cancelation (PIC) at the

receiver together with soft channel decoding.

This idea of iterative processing by making use of channel coding gain has been applied to

several contexts in digital communications such as turbo decoding [82], channel equalization [83],

channel estimation [68, 84], time synchronization [85], multiuser detection [86], and especially

MIMO signal detection [58, 73, 74, 87, 88, 89, 90]. By this approach, as we will see in this chapter,

we consider the use of soft and hard estimated symbols (using the decoder soft outputs) in channel

estimation and soft-PIC signal detection.

In the rest of this chapter, we consider the case study of four relay nodes and the QOSTBC
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scheme at the relays, introduced previously in Subsection 3.4.2. We also consider SB channel es-

timation based on the CB-EM formulation to improve the channel estimate through iterations.

Moreover, we use the extrinsic information transfer (EXIT) charts to study the convergence of the

different iterative schemes.

The reminder of this chapter is organized as follows. Firstly, we reformulate in Section 5.2 the

data transmission link in order to provide general expressions for the PIC detector while taking into

account the DSTBC at the relays. The iterative soft-PIC detector is then described in Section 5.3.

Next, a brief introduction to EXIT chart tool is presented in Section 5.4. Some numerical results are

provided in Section 5.5 to study the performance of the proposed detection schemes, and Section

5.6 concludes the chapter.

5.2 Reformulation of data transmission

In contrast to the formulation presented in Section 3.3, here, in order to obtain a general for-

mulation for the received signal at the destination, we separate the real and imaginary parts of the

parameters, like in [42]. By adopting this rule, (3.5) can equivalently be rewritten in the following

form :

t i = c(Ai r i +B i r ∗
i ), (5.1)

Ai and B i are complex (T ×T ) DSTBC precoding matrices. We have :

[
t i ,ℜ
t i ,ℑ

]
= c

[
Ai ,ℜ+B i ,ℜ −Ai ,ℑ+B i ,ℑ
Ai ,ℑ+B i ,ℑ Ai ,ℜ−B i ,ℜ

]

︸ ︷︷ ︸
D i

[
r i ,ℜ
r i ,ℑ

]
, (5.2)

where, for instance, Ai ,ℜ and Ai ,ℑ denote the real and imaginary parts of Ai , respectively. For no-

tation simplicity, we also defined the matrix D i in (5.2). At the destination, we rewrite the received

vector :

y =
R∑

i=1
gi t i +nd . (5.3)

We further separate the real and imaginary parts of the signals in s and y , and define the vectors

S and Y of dimension (2T ×1) as follows.

S =
[

sℜ

sℑ

]
, Y =

[
yℜ
yℑ

]
. (5.4)

where, for instance, sℜ and sℑ denote the real and imaginary parts of s, respectively. Now, we

can write Y as a function of S by considering an equivalent channel matrix Heq of dimension

(2T ×2T ) :

Y = c
p

q1 Heq S +Z , (5.5)

Heq =
R∑

i=1

[
gi ,ℜ I T −gi ,ℑ I T

gi ,ℑ I T gi ,ℜ I T

]
D i

[
fi ,ℜ I T − fi ,ℑ I T

fi ,ℑ I T fi ,ℜ I T

]
, (5.6)
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Figure 5.1 — Block diagram of the receiver performing iterative symbol detection and channel esti-

mation. Blocks Π−1 and Π represent de-interleaving and interleaving, respectively.

where the vector Z is the total received noise at the destination :

Z =
[

nd ,ℜ
nd ,ℑ

]
+c

R∑

i=1

[
gi ,ℜI T −gi ,ℑI T

gi ,ℑI T gi ,ℜI T

]
D i

[
nr i ,ℜ
nr i ,ℑ

]
. (5.7)

In fact, Heq is composed of the real and imaginary parts of f (∗)
i gi . To study the performance of

the proposed methods, we consider the case study of R = 4 with the QOSTBC scheme [61] at the

relays, where the retransmitted signal matrix from the relays can be written as :

[ t 1 t 2 t 3 t 4 ] = c




r11 −r ∗
22 −r ∗

33 r44

r12 r ∗
21 −r ∗

34 −r43

r13 −r ∗
24 r ∗

31 −r42

r14 r ∗
23 r ∗

32 r41




. (5.8)

Here, ri j denotes the received signal at the i -th relay on the j -th time reference. Also, according to

the (5.1), we can obtain the precoding matrices Ai and B i as follows :

B 1 = A2 = A3 = B 4 = 04×4, (5.9)

A1 = I 4,B 2 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


,B 3 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


, A4 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


, (5.10)

and 04×4 denotes an all-zero matrix of size (4×4).

5.3 Signal detection and channel estimation at the destination

Now consider the general iterative receiver with PIC detection which is shown in Figure 5.1. We

use the LLRs at the output of the channel decoder at the previous iteration to improve the channel

estimate and data detection.
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5.3.1 First iteration

For signal detection, we should firstly know the CSI at the destination before data transmission.

In this chapter, we use the same scheme as the Section 4.2 for channel estimation. That means that,

we can obtain the CSI through sending some pilot sequences. Then, the LS channel estimation is :

ĥ =
1

c
p

q1Np

(
P †

0P 0

)−1 Np∑

k=1

P †
0 y0(k) . (5.11)

Having ĥ, we can obtain the estimate of the equivalent channel matrix Ĥeq. Next, we perform

the classical MMSE signal demodulation followed by LLR calculation on bits, and then pass the

LLRs to a Max-Log-MAP soft decoder (see [58] for details). Defining σ2
Z

= E{Z t
Z }, the detected

symbols Ŝ are :

Ŝ = c
p

q1�Heq
t
(
c2q1�Heq�Heq

t +σ2
Z

I 2T

)−1
Y (5.12)

As shown in Subsection 3.5.2, we can not directly calculate the σ2
Z

since we do not have full CSI

available. As explained in this Subsection, we should use the Gaussian or the enhanced Gaussian

approximation on Z . We have noticed that for the case of R = 4 with QOSTBC, the enhanced

Gaussian approximation provides a better performance of the iterative receiver than the simple

Gaussian approximation (results are not presented for the sake of brevity). Therefore, we consider

the former approximation and use the approximate variance σ2
Z̃

(given by (3.29)) in (5.12).

5.3.2 Succeeding iterations

5.3.2.1 Channel estimation

For the reason of computational complexity, here, we just take the SB estimator based on

the CB-EM formulation into account. Remember from Section 4.2 that after obtaining the soft

estimates of s̃, the channel estimate can be calculated using (4.3), (4.8), and (4.10). As a second SB

method, to reduce the receiver computational complexity, we propose here to use hard estimates

of symbols in channel estimation. At relatively high SNR, these hard estimates likely correspond

to the transmitted symbols and the resulting channel estimate would be of good accuracy.

Concerning the estimator formulation, ĥ is still given by (4.3), but in (4.8) and (4.10), s̃ and s̃2 will

correspond to hard estimates.

5.3.2.2 PIC detection for non-orthogonal DSTBC

Since for iterative SB channel estimation we calculate soft or hard estimates of the transmit-

ted data symbols, we propose to use them to reduce IRI and improve space-time decoding by

performing PIC detection [58, 91]. Let ĥp be the p-th column of �Heq, and �Heqp of dimension

(2T × (2T −1)) be �Heq with its p-th column removed. Also, let S̃ denote the hard/soft estimate

of S , and S̃p stand for S̃ with its p-th entry removed. In order to obtain the detected signal Ŝp
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(the p-th entry of Ŝ ), we perform soft interference cancelation on Y by subtracting from Y the

estimates of the (2T −1) other transmitted signals :

Ŷp = Y −�Heqp S̃p ; p = 1, 2 · · · 2T (5.13)

Then, we apply an MMSE filter Wp to Ŷp and obtain [91] :

Ŝp = W
t

p Ŷp , (5.14)

The filter coefficients W
t

p are given by :

W
t

p = c
p

q1 ĥt
p

(
c2q1 ĥp ĥt

p +Ω+σ2
Z

I 2T

)−1
, (5.15)

where

Ω = �Heqp

(
Θp − Θ̂p

)�Heq
t
p . (5.16)

The matrices Θp and Θ̂p are defined as follows :

Θp =E
{
SpS

†
p

}
≈diag

(
s̃2

1, · · · , �s2
p−1, �s2

p+1, · · · , s̃2
2T

)
, (5.17)

Θ̂p = E
{
ŜpŜp

†
}
≈ diag

(
s̃1

2, · · · , �sp−1
2, �sp+1

2, · · · , s̃2T
2) . (5.18)

Notice thatΘp and Θ̂p are not in fact diagonal [92]. However, we have approximated them in (5.17)

and (5.18) by diagonal matrices to simplify the calculations. We have verified that using this ap-

proximation has a negligible influence on the system performance. For the case of PSK modula-

tions, we have Θp = 1
2 I 2T−1.

5.4 EXIT chart analysis

To study the convergence of the iterative receiver, we consider the extrinsic-information trans-

fer (EXIT) charts which are a simple and efficient tool [93, 94]. They are based on the flow of the

extrinsic information exchanged between the soft-input soft-output (SISO) blocks in an iterative

scheme and give insight to the convergence behavior of the receiver. Here, we introduce briefly

this tool and refer the reader to the provided references for more details.

In the EXIT chart analysis, the LLRs input to a SISO block are assumed to be uncorrelated and

to follow a Gaussian distribution with its mean related to its variance [93]. Note that, these assump-

tions are not perfectly satisfied in practice. As a result, EXIT charts do not predict the convergence

behavior of the receiver exactly. In our iterative receiver, a posteriori (and not extrinsic) LLRs are

fed from the decoder to the soft-PIC detector. However, it is quite logical to consider the above-

mentioned assumptions for the a posteriori LLRs too.

Let us use the subscripts .A (for a priori) and .E (for extrinsic) to denote the variables at the in-

put and output of a SISO block, respectively. Note that for the soft-PIC detector, the subscript .E

corresponds to extrinsic LLRs, whereas for the decoder it corresponds to a posteriori LLRs. Also,
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let us denote by IA and IE, the mutual information (MI) at the input and output of a SISO block,

respectively. The EXIT chart is considered as the transfer function mapping the input informa-

tion IA ∈ [0,1] to the output information IE ∈ [0,1]. To obtain the EXIT curve, for each given IA,

we generate at the input of a SISO block, Gaussian distributed a priori LLRs with the appropriate

variance. The mutual information IE at the output of the module is then calculated by a histogram

estimation. The behavior of the iterative detector is determined by associating I DET
E ⇒ I DEC

A , and

inversely, I DEC
E ⇒ I DET

A , where the superscripts .DET and .DEC refer to the soft-PIC detector and the

channel decoder, respectively.

5.5 Simulation results

We present in this section some simulation results to study the performances of the proposed

schemes. We use the rate 1/2 NRNSC code (5,7)8, set the interleaver size to Nb = 128 bits, and

consider the minimum number of pilot blocks, i.e., Np = 1. Performance evaluation is done by

considering the frame error rate (FER) versus Eb/N0.

5.5.1 BER performance

Figure 5.2 contrasts the performances of different receivers when hard or soft estimates of sym-

bols are used. Here, “Pilot-only, MMSE” denotes the classical approach, “Iter-Est, MMSE” iterative

SB estimation with MMSE detection, “Iter-Est-Det” iterative estimation and PIC detection, and

“Iter-Det, Perf-CSI” iterative PIC under perfect CSI. Convergence of the iterative schemes is attai-

ned after about 4 iterations. We notice firstly a significant improvement by SB estimation compa-

red to the classical approach. If, in addition, interference cancelation is performed through ite-

rations, we achieve a substantial SNR gain and the performance is quite close to the perfect CSI

case. The interesting point is that, while having a lower computational complexity, the use of hard

estimates of symbols gives satisfying performance results.

Consider now the case of 16-QAM modulation in Figure 5.3. Here, iterative channel estimation

without interference cancelation brings a small improvement compared to the PO estimation and

has practically no interest. Note that this is due to the poor performance of the MMSE detector in

this case, which means that there is little to be gained by improved channel estimation. For the

sake of comparison, we have also shown the FER curve corresponding to MMSE detection with

perfect CSI, which is very close to the result with iterative estimation. In fact, when performing

simple MMSE detection at the destination, the interference due to the non-orthogonal DSTBC

affects more considerably the receiver performance for larger signal constellations like 16-QAM.

Iterative SB estimation and PIC detection provides a significant improvement, however, while the

soft-estimate-based method being a little more advantageous.

For the sake of completeness, we have also shown in Figure 5.4 the FER curves versus the num-

ber of iterations for the case of soft-estimate based method. We notice that the most part of the im-
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Figure 5.2 — Contrasting receiver performances for QPSK modulation, (5,7)8 channel code, and
Np = 1. IT denotes iteration number.
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Figure 5.4 — Convergence of the receiver for QPSK and 16-QAM modulation cases. Soft-estimate
based method. (5,7)8 channel code, and Np = 1.

provement is obtained at the second iteration. Similar results are obtained if the hard-estimates of

symbols are used. That means that, for the reasons of complexity or latency, we may process only

two iterations and still benefit from a significant improvement in the receiver performance.

5.5.2 EXIT Chart performance

An important point is to see the convergence behavior of the iterative receivers. This can be

seen from Figure 5.5 where we have presented the EXIT charts of the detector and the channel de-

coder for the cases of QPSK, 16-QAM modulations with Eb/N0 = 17dB, when soft or hard estimates

of symbols are used. Note that the EXIT chart of the detector takes into account channel estima-

tion and DSTBC decoding. We have presented the corresponding curves for “Iter-Est, MMSE” and

“Iter-Est-Det” cases, as explained previously for Figures 5.2 and 5.3. At the first iteration, we start

from the point corresponding to the MMSE detector. We notice that we have similar convergence

behaviors when hard or soft estimates of symbols are used. Nevertheless, for perfect a priori in-

formation (I DET
A = 1), the EXIT curve of the detector with soft estimates lays above that with hard

estimates. Also, we notice that the performance of the receiver is affected more considerably for

16-QAM modulation when MMSE detection is performed without interference cancelation. This

validates the results of Figure 5.3.

5.6 Chapter conclusion and discussions

For the case of non-orthogonal DSTBC at the relays, we proposed to perform iterative PIC

detection and channel decoding at the receiver. The PIC detector was based on soft or hard esti-
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the soft-estimate-based receivers.

mates of the transmitted symbols, which are calculated using the channel decoder soft outputs.

Also, CB-EM channel estimation was used in order to improve the channel estimate and data de-

tection through iterations. We illustrated the performance improvement by the proposed method

compared to the classical approach of PO channel estimation and MMSE detection. In particu-

lar, taking the receiver computational complexity into account, we noticed that, for large signal

constellations, iterative estimation alone is not really interesting. The reason is that the IRI re-

sulting from non-orthogonal DSTBC at the relays affects more considerably the receiver perfor-

mance, compared to the simple case of QPSK. Iterative semi-blind channel estimation and PIC

detection, however, was shown to be an efficient solution to deal with the IRI.





CHAPTER
6 Improved Detection for AF

WRN with Imperfect
Channel Estimation

6.1 Introduction

In the previous chapters, we illustrated the need to CSI at the destination in AF WRNs when

coherent DSTBC is performed at the relays. As energy efficiency is an essential factor in WSNs [71],

we should also minimize the energy consumption due to pilot transmission [72]. This means that

we should minimize the number of pilots as well as their power, especially in relatively fast fading

conditions. However, this obviously results in an increase of the variance of channel estimation

errors and therefore in the performance degradation of the system. One solution is to perform SB

channel estimation, as it was the subject of the two previous chapters, and to make use of data

symbols in addition to pilots to improve the quality of the channel estimate. However, SB estima-

tion methods could be regarded to suffer from relatively high computational complexity, compa-

red to the simple PO channel estimation. This higher computational complexity of SB methods

becomes problematic in relatively fast fading conditions, where the realtime implementation of

the receiver may not be an easy task.

To deal with imperfect channel estimation, the suboptimal and classically-used approach

consists in using the channel estimate in the detector in the same way as if it was a perfect es-

timate. This approach, known as “mismatched” detection, can highly degrade the detection per-

formance when channel-estimation errors are important. Inspired by [68, 92, 95], we propose here

an “improved” detector to be used at the destination node that allows to reduce the impact of im-

perfect channel estimation on the overall system performance. We use the improved detection

method in an iterative receiver, which is an efficient technique when channel coding is employed.

To illustrate the performance improvement by the proposed method, without loss of generality,

we consider the special case of two relays and the conditions of fast fading. In other words, we

assume that the channel coefficients (following IID Rayleigh statistics, as considered in the pre-

vious chapters) change to new independent values for each block of T symbols. Unfortunately,

the idea of the improved detection, when applied to the MMSE detector provided only negligible
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performance improvement. It provides, however, significant improvement in the case of MAP si-

gnal detection. That is why we consider the MAP detector in this chapter.

This chapter is organized as follows. In Section 6.2, we briefly recall the signal transmission for-

mulation. MAP signal detection assuming available perfect CSI is presented in detail in Section 6.3.

Next, in Section 6.4, we consider signal detection under imperfect channel estimation, where after

introducing the classical mismatched detection, we describe our proposed improved detector and

its formulation. Some numerical results are then provided in Section 6.5 in order to compare the

performances of the mismatched and the improved detection approaches. Lastly, conclusions are

given in Section 6.6.

6.2 Data transmission formulation

For the sake of simplicity of formulation, we consider the special case of R = 2 with the Ala-

mouti DSTBC at the relays. The retransmitted signals from the relays are given by the following

matrix :

[ t 1 t 2 ] = c

[
r11 −r ∗

22

r12 r ∗
21

]
. (6.1)

To elaborate a general formulation for the receiver, we resort to the special formulation presented

in Section 5.2 in the previous chapter. Following (5.1), we have :

A1 = I 2, B 1 = 02×2, A2 = 02×2, B 2 =
[

0 −1
1 0

]
. (6.2)

Also,

Heq =




ℜ{h1} −ℜ{h2} −ℑ{h1} −ℑ{h2}

ℜ{h2} ℜ{h1} ℑ{h2} −ℑ{h1}

ℑ{h1} −ℑ{h2} ℜ{h1} ℜ{h2}

ℑ{h2} ℑ{h1} −ℜ{h2} ℜ{h1}




, (6.3)

where (see (3.7))

h =
[

h1

h2

]
=

[
f1 g1

f ∗
2 g2

]
. (6.4)

Consider now pilot-based channel estimation at the destination. In contrary to the data symbols

that are considered power-normalized, pilot symbols will be considered of power Ep . We consider

LS-based channel estimate given by (3.38) in Section 3.6. For the special case of R = 2 we define

the matrix Λ0 as follows.

Λ0 ,P †
0P 0 = ̺ I R ; ̺, T Np Ep (6.5)

Here, ̺ represents the total power of the transmitted pilots per frame of Ns DSTBC blocks. Let us

denote the vector of channel estimation error by E :

ĥ =h +E , (6.6)
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Figure 6.1 — Block diagram of the iterative receiver at the destination.

where

E =
1

c
p

q1̺
P †

0 z0. (6.7)

The covariance matrix of E is given by :

E{E †
E } =σ2

E
I R with σ2

E
=

σ2
z 0

c2q1̺
. (6.8)

6.3 Signal detection under perfect partial CSI

Let us first assume that the channel estimate is perfect. As it can be seen from the block dia-

gram of Figure 6.1, at the destination, we perform iterative soft signal demodulation and channel

decoding. We consider MAP demodulation and soft channel decoding based on the well-known

Max-Log-MAP algorithm [63]. For MAP demodulation, we calculate the LLRs on the transmitted

bits and then pass them to the soft-decoder after de-interleaving. We provide in the following de-

tails on the MAP demodulator formulation. Note that, as we will explain later in Section 6.5, ite-

rative detection does not always bring a performance improvement (e.g. for Gray mapped QPSK

modulation).

Remember the general formulation of (5.5) for the received signal Y . Let bm be the m-th (m =
1,2, ...,BT ) bit corresponding to the symbol vector S , and L(bm) be the LLR on bm at the output

of the demodulator. Given Heq (under the condition of available perfect partial CSI), L(bm) is

calculated as follows [92] :

L(bm)= log
P(bm = 1|Y ,Heq)

P(bm = 0|Y ,Heq)
, (6.9)

where P(bm |Y ,Heq) denotes the probability of transmission of bm given Y and Heq. To calcu-

late these probabilities, we define S as the set of all possibly-transmitted symbol vectors S . We

partition S into two subsets of Sm
0 and Sm

1 , for which bm equals 0 or 1, respectively. We also take

into account the a priori probabilities on each bit bn in these subsets which come from the soft

decoder (in the previous iteration), and denote them by P 0
dec(bn) and P 1

dec(bn). Note that, at the
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first iteration, there is no a priori information on these bits and P 0
dec(bn) and P 1

dec(bn) are set to

1/2.

Denoting the likelihood function by W (S ,Y ,Heq), we can develop (6.9) as follows.

L(bm)= log

∑

S ∈Sm
1

W (S ,Y ,Heq)
BT∏
n=1

n 6=m

P 1
dec

(
bn)

∑

S ∈Sm
0

W (S ,Y ,Heq)
BT∏
n=1

n 6=m

P 0
dec

(
bn)

(6.10)

We also define the ML metric D(S ,Y ,Heq) = − log
(
W (S ,Y ,Heq)

)
. Considering Gaussian ap-

proximation for Z , it can easily be shown that :

D(S ,Y ,Heq) = T log(πσ2
Z

) +
∣∣Y −HeqS

∣∣2

σ2
Z

, (6.11)

where σ2
Z

is approximated by σ2
Ẑ
= T (1+c2R)σ2.

6.4 Signal detection under imperfect partial CSI

6.4.1 Mismatched signal detection

In practice, we can never have perfect CSI at the destination and some channel estimation

errors are inevitable. The classical signal detection approach consists in using �Heq as if it was a

perfect estimate. This is referred to as mismatched detection. This way, for signal demodulation,

we replace Heq in (6.10) by �Heq. The resulting channel uncertainty degrades the system perfor-

mance [96], and the degradation can be quite important especially when a small number of pilots

is used or the pilot power is reduced in order to reduce the network power consumption.

6.4.2 Improved signal detection

In order to compensate partly the effect of channel estimation errors, we propose here an im-

proved detection rule that takes the channel estimation errors into account. This is based on a

Bayesian approach based on the a posteriori PDF of the perfect channel, conditioned on its esti-

mate. Inspired by the idea of [68, 92], we consider a modified likelihood function W̃ (S ,Y ,Heq)

such that :

W̃ (S ,Y ,Heq) = = E
Heq|�Heq

{
W (Y ,S ,Heq) | �Heq

}
(6.12)

=
∫

Heq∈R2T×2T

W (Y ,S ,Heq) p(Heq|�Heq) dHeq,

where R stands for the set of real numbers. In fact, the proposed modification consists in ave-

raging the likelihood function W over all realizations of the unknown channel Heq conditioned
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to its available estimate �Heq, by using the distribution p(Heq|�Heq). Then, maximizing W̃ will be

equivalent to minimizing a new metric D̃ that we aim to calculate :

D̃(S ,Y ,Heq) =− log
(
W̃ (S ,Y ,Heq)

)
. (6.13)

Note that this is in contrast to the mismatched detector which tries to minimize the metric D in

(6.11).

To calculate the new likelihood function W̃ , we need the posterior distribution of Heq condi-

tioned to �Heq, i.e., p(Heq|�Heq). To obtain this PDF, we have to consider some simplifying approxi-

mations. Let us denote the matrix of estimation errors of Heq by ε :

�Heq =Heq +ε. (6.14)

In fact, ε is not Gaussian distributed because, as we saw previously in (5.5), Z is not Gaussian.

Using (6.8) and taking the Gaussian approximation for Z into account from (3.27), we obtain the

covariance matrix of ε as follows.

Σε = E{εεt } =
σ2

Ẑ

c2q1̺
I 2T . (6.15)

As the second approximation, we assume that ε is Gaussian distributed. In other words, we ap-

proximate the PDF p(�Heq|Heq) by a Gaussian [97] :

p(�Heq|Heq) ≈N
(
Heq,Σε⊗ I 2T

)
. (6.16)

However, in (6.12) we need p(Heq|�Heq). In [92], Appendix I-A, a lemma is presented that permits

the derivation of p(Heq|�Heq) for the case of Gaussian Heq and �Heq (x1 and x2 in [92], respecti-

vely). In our case, none of these parameters is Gaussian. So, as the third approximation, we assume

that Heq is Gaussian distributed. Then, using the above-mentioned lemma and (6.16) we obtain :

p(Heq|�Heq) ≈N

(
Σ∆

�Heq, I 2T ⊗Σ∆Σε

)
, (6.17)

where

Σ∆ =ΣHeq(Σε+ΣHeq )−1 = δ I 2T , (6.18)

and

δ=
R

R +
σ2

Ẑ

c2q1̺

. (6.19)

Also,

ΣHeq = E{HeqH
t
eq} = R I 2T . (6.20)

We will later explain that these approximations have finally little impact on the receiver perfor-

mance. Since Σε and ΣHeq are diagonal, Σ∆ is also a diagonal matrix. Hence, (6.17) can be simpli-

fied as follows.

p(Heq|�Heq) ≈N

(
δ�Heq,δΣε⊗ I 2T

)
, (6.21)
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Now, using (6.12), (6.13), and (6.21), it can be shown that the modified MAP decision metric for the

improved detector is given by [97] :

D̃(S ,Y , �Heq)= T logπ(σ2
Ẑ
+δσ2

E
)+

∣∣∣Y −δ�HeqS

∣∣∣
2

σ2
Ẑ
+δσ2

E

. (6.22)

Remember that σ2
E

is given by (6.8). We should now replace W in (6.10) by exp(−D̃) for calculating

the LLRs on the transmitted bits. Note that when we have almost perfect CSI at the destination

(e.g. using a large number of pilots or increasing their power), δ is close to one, and the modified

metric D̃ reduces to the mismatched one. For increased estimation error variance (e.g. due to re-

duced number of pilots or decreasing their power), however, the modified demodulator provides

an improvement in the system performance, as we will show in the next section.

6.5 Numerical results

We present here some simulation results to study the performance of the proposed detector.

The system performance is evaluated as the average BER versus the SNR. We use the rate 1/2

NRNSC code (5,7)8 for channel coding and use the minimum number of pilot blocks for chan-

nel estimation, i.e., we set Np = 1. Also, Rayleigh fast fading conditions are considered and the

interleaver size is set to Nb = 128. Data and pilot symbols are taken from the same constellation

and, unless otherwise mentioned, pilots and data symbols are considered of the same power, i.e.,

Ep = 1. Depending on the modulation and the bit/symbol mapping, a maximum of five iterations

are processed at the destination to attain the receiver convergence.

6.5.1 BER performance

Let us first consider the case of QPSK modulation. For this case, iterative processing provides

performance improvement only in the case of set-partition (SP) bit/symbol (also called anti-Gray)

mapping [98]. Results of the mismatched and improved detection rules are shown in Figure 6.2. As

reference, we have also presented the performance curve with perfect CSI. We notice that we have

practically no improvement by using the modified detector. The improvement remains negligible

even if we reduce the pilots power Ep . As a matter of fact, since in the modified metric, the absolute

value of symbols intervenes, for a constant modulus modulation like QPSK, we have almost no

improvement in the receiver performance.

Let us now consider a non-constant modulus modulation like 16-QAM. We have contrasted

the performances of the two detectors in Figures 6.3 and 6.4 for the cases of Gray mapping and the

SP mapping proposed in [99], respectively. We notice an interesting performance improvement :

The SNR gain at BER= 10−5 is about 1.0 dB for both Gray and SP mappings. Note that the SNR

gain becomes more significant at lower BERs as the curves corresponding to the mismatched and
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Figure 6.2 — BER performance of improved and mismatched detectors. R = 2 with Alamouti DSTBC,
Np = 1. QPSK modulation with SP and Gray mappings. IT denotes iteration number.
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Figure 6.3 — BER performance of improved and mismatched detectors. R = 2 with Alamouti DSTBC,
Np = 1. 16-QAM modulation with Gray bit-symbol mapping. IT denotes iteration number.

improved detectors are diverging. However, we have limited the BER to 10−5 due to long Monte

Carlo simulation time involved.

Consider now the case of SP-mapped 64-QAM. The BER performances of the mismatched and

improved detectors are compared in Figure 6.5. The obtained gain is still more important in this
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Figure 6.4 — BER performance of improved and mismatched detectors. R = 2 with Alamouti DSTBC,
Np = 1. 16-QAM modulation with SP bit-symbol mapping. IT denotes iteration number.
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Figure 6.5 — BER performance of mismatched and improved detectors. R = 2 with Alamouti DSTBC,
Np = 1. 64-QAM modulation with SP mappings. IT denotes iteration number.

case ; we notice an SNR gain of about 2.0 dB at BER= 10−4. For larger constellations, the estima-

tion errors are more important, and result in a more considerable performance degradation of the

mismatched detector. The improved detector, in turn, provides more performance improvement.

In the previous results, we had set Ep = 1. Since we are considering fast fading conditions,
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Figure 6.6 — Gain in Eb /N0 as a function of pilots’ power Ep by using the improved detector. R = 2

with Alamouti DSTBC, Np = 1. 16-QAM modulation with Gray and SP mappings. BER=10−4. Results
correspond to the fifth receiver iteration.

we send one pilot block for each block of data symbols. It is highly desirable to reduce the pilots’

power Ep in such conditions in order to reduce the network’s power consumption. In such situa-

tions, the estimation errors will be more important and the proposed improved detector provides

more considerable performance gains. This can be seen from Figure 6.6, where we have presented

the SNR gain obtained by the improved detector with respect to the mismatched detector, as a

function of Ep , for the case of 16-QAM modulation and corresponding to BER= 10−4.

Lastly, we have verified that if we consider the (hypothetical) case of Gaussian channel and

Gaussian noise at the destination, we have the same order of improvement for the different mo-

dulations and mappings that we considered above. We can hence conclude that the simplifying

assumptions that we made in developing the new detector formulation have little impact on the

resulting performance.

6.5.2 Convergence analysis using EXIT charts

In order to better see the advantage of the proposed improved detection over mismatched de-

tection, we have presented the EXIT charts of the detectors in Figure 6.7 for the case of 16-QAM

modulation with SP bit/symbol mapping. We have considered two cases of power-normalized pi-

lots, i.e., Ep = 1, and Ep = 0.1. Remember that I DET
A and I DET

E denote the a priori MI at the input

of the detector and the extrinsic MI at its output, respectively. From Figure 6.7 we notice that the

difference of the EXIT curves corresponding to Ep = 1 is rather small. Moreover, the improved

detector takes its advantage only for I DET
A close to one. For Ep = 0.1, however, we notice the incon-

testable advantage of the improved detector over the mismatched one.
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Figure 6.7 — Comparison of EXIT curves for the improved and mismatched detectors. 16-QAM mo-
dulation with SP bit/symbol mapping. with Alamouti DSTBC, Np = 1, Eb /N0 = 25 dB for Ep = 1 and

Eb/N0 = 30 dB for Ep = 0.1.

6.6 Chapter conclusion and discussions

In order to extend the lifetime of a sensor network, we should minimize the power consump-

tion at its nodes. In relatively fast fading conditions, a considerable amount of network energy

is spent for pilot transmission in order to estimate the channel state at the destination. There-

fore, there is a high interest to reduce the number of pilots and their power as little as possible.

At the same time, given the rapidly time-varying channel conditions considered here, realtime

semi-blind channel estimation may be unfeasible in practice. We proposed in this chapter an im-

proved detection rule that allows interesting performance improvement over the classically-used

mismatched detection, while requiring acceptable computational complexity. We showed that the

proposed detector is of special interest for relatively large signal constellations and for relatively

low pilot powers.



CHAPTER
7 Conclusions and Perspective

7.1 Conclusions

There has been a huge amount of research on wireless sensor networks (WSNs) in the past few

years. WSNs are a key technology of the future. However, there remain still many challenges ahead

for them, especially concerning the implementation aspects of these networks. In particular, there

are several practical limitations concerning the physical layer of wireless links. We were interested

in this thesis in a special kind of cooperative WSNs, i.e., wireless relay networks (WRNs). Coopera-

tive networks are an efficient solution to the problem of time-varying multipath fading that we en-

counter in most wireless networks. When the WRN works in the amplify-and-forward (AF) mode,

we considered coherent signal detection at the destination and investigated deeply the channel

estimation, which is an important aspect in practice.

Starting by a general state-of-the-art on WSNs including the main characteristics, limitations,

and design challenges, in Chapter 2, we invoked the considerations relating to energy consump-

tion in WSNs and the role of the physical layer. We also focused on the idea of cooperative com-

munication and distributed space-time coding at the relay nodes in view of exploiting some dis-

tributed diversity.

In Chapter 3, we gave details on the special WRN that we consider in this thesis, and also spe-

cified our main assumptions regarding the transmission channel. We also presented the general

signal transmission model and formulation in our WRN. Then, after a comparison of the detection

techniques under full and partial channel state information (CSI), we considered channel estima-

tion based on the transmission of some training symbols. Through some simulation results, we

showed that for the case of non-orthogonal DSTBCs, we can suffer from a significant performance

degradation if we resort to the simple MMSE detection without any inter-relay interference can-

celation. Moreover, a somehow moderate performance degradation is noticed when we have only

partial CSI available at the destination (compared to the case where full CSI is available). For or-

thogonal DSTBCs, however, by the simple MMSE detector and partial CSI we can attain optimal

signal detection at the receiver. Furthermore, concerning partial CSI estimation based only on pi-

lots, we compared the LS and LMMSE schemes and showed that the two methods have almost

the same performance. We also studied the impact of the simplifying assumptions on the receiver
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noise, i.e., the Gaussian and enhanced Gaussian approximations, on the system performance and

noticed almost the same performance using both approximations. Finally, we showed the perfor-

mance loss due to sending too few pilots, and hinted the reader on the importance of using an

efficient channel estimation technique.

Assuming that we have loose constraints on the energy and computational resources at the

destination, we proposed in Chapter 4 to use a semi-blind (SB) channel estimation technique ba-

sed on the EM algorithm. SB estimation allows to use a smaller number of pilot symbols for chan-

nel estimation. Focusing on orthogonal DSTBC schemes at the relays, we firstly considered the

classical formulation of EM and called the resulting estimator CB-EM (for Classical Biased) and

showed that it can provide substantial performance improvement, compared to the case where

only pilots are used for channel estimation. We illustrated through simulation results that for a

larger number of relays and larger frame sizes, we obtain a more interesting performance impro-

vement. We then presented a more detailed analysis of CB-EM and showed that, albeit its relatively

good performance, it provides a biased channel estimate. Then, a modified formulation of EM

was developed that was called UL-EM (for Unbiased Linearly-combined EM). This new scheme

outperforms CB-EM for relatively large signal constellations. The comparison of the MSE of esti-

mation for the two SB schemes also showed the superiority of the UL-EM method. In the case of

relatively small signal constellations, however, UL-EM does not seem to be of any practical inter-

est.

Extending our results to the case of non-orthogonal DSTBCs in Chapter 5, we proposed to use

soft parallel interference cancelation for signal detection together with SB channel estimation at

the destination. This way, benefiting from the channel coding gain, we can reduce the inter-relay

interference and improve the channel estimation through processing a few iterations. We illustra-

ted the interest of this approach, especially for large signal constellations. Moreover, we presented

a simple formulation of the iterative receiver based on the hard-estimates of the transmitted sym-

bols, and showed that it makes a good compromise between complexity and performance.

Lastly, we generalized our study of channel estimation to the case of relatively fast fading chan-

nels in Chapter 6, where we explained that SB estimation may not be feasible for a real-time im-

plementation due to its computational complexity. We proposed an alternative solution in order

not to suffer from channel estimation errors as a result of reducing the number of pilots in such

cases. Focusing on MAP signal detection, we proposed a modified detector formulation that takes

into account the channel estimation errors while increasing slightly the receiver’s computational

complexity. This modified detection method was shown to provide an interesting performance

improvement for relatively large signal constellations.
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7.2 Perspectives

The objective of this thesis was to propose efficient channel estimation solutions for AF WRNs.

Meanwhile, the work presented in this thesis tried to establish a connection between the theoreti-

cal aspects, concerning signal detection and channel estimation, and the implementation aspects

of the proposed solutions. This research led to some theoretical results and opened the issue for

further investigations. We propose here some research directions for a future extension of this

work.

– Considering statistical modeling of channel fading, we limited our study to the case of IID

Rayleigh model. This can be considered as the worst case for fading statistics, concerning its

impact on the system performance. It is interesting to see the interest of the proposed chan-

nal estimation techniques in the case of correlated fading channel coefficients and/or for

other fading models like Ricean fading. Also, we assumed through our study that the channel

is frequency non-selective (flat). In most high data-rate communication systems, however,

the channel cannot be considered as flat. The proposed estimation techniques should be

adapted to such conditions. A particular case is when orthogonal frequency-division multi-

plexing (OFDM) is employed to simplify the channel equalization task at the receiver. In this

view, an interesting method seems to be that based on the basis expansion model [100] that

allows a reduction of the number of channel unknown parameters prior to channel estima-

tion [101]. A practical example is the case of mobile ad hoc networks, and more particularly,

the LTE (long-term evolution) standard [102]. In this fourth generation of mobile telephony,

the multiple-access technique used is the OFDMA (orthogonal frequency-division multiple

access). Note that applying the idea of WRNs to a cellular environment can be highly bene-

ficial in the case of strong shadowing effects such as inside buildings and tunnels [103], or at

the cell boundaries [104].

– The channel estimation techniques we proposed were well adapted to the AF signaling

mode. A future research axis could investigate the adaptation of such techniques to other

signaling modes. The extension of the network model to the case of multi-hop transmission

[105] could also be a future research subject. The case of a larger number of relay nodes and

the corresponding appropriate DSTBC schemes should also be investigated. Another pro-

mising approach is to use the estimated channel for sensor node selection processing for

the purposes of energy saving and lifetime maximization [106].

– Apart from channel estimation, an important practical aspect is the time synchronization.

We assumed through this manuscript that there is perfect time synchronization between the

source, relay, and destination nodes. It is of crucial importance to consider this issue and

to propose efficient synchronization methods adapted to the WRN context. One possible

solution is to use a delay-locked loop or some newly proposed schemes such as internal

model control [107].

– We considered in this work the use of cooperation diversity to mitigate the fading effect. No
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other diversity technique was considered in our study. Exploiting other possible diversity

techniques together with cooperative diversity appears to be an interesting idea. For ins-

tance, we can resort to polarization diversity techniques [62, 108, 109] combined with the

spatial diversity offered by node cooperation. Another potential solution is to equip all the

sensor nodes with multiple antennas. Coupling MIMO technology with a WRN can provide

additional degrees of freedom and can significantly improve the spectral and power efficien-

cies [110, 111, 112, 113, 114, 115]. Especially, by employing MIMO relay nodes, we can benefit

from an intra-node diversity and array gain at each relay [104]. The ideas of this thesis can

be applied to this context.

– Finally, the channel estimation solutions proposed in this thesis can also be promising for

the case of optical sensor networks in indoor or free-space applications [116, 117]. In par-

ticular, free-space optical communication systems suffer from channel turbulence in prac-

tice. User cooperation diversity can employed as a new form of spatial diversity when, due to

practical reasons, neither multiple lenses nor multiple laser beams can be used [118, 119]. In

such systems, channel estimation is required for most modulation schemes when optimal

signal detection is to be done at the receiver. Applying the proposed ideas in this thesis to

this context seems to be potentially interesting.



ANNEXE
A Details on the formulation

of UL-EM channel
estimation

According to the analysis of CB channel estimation, we note that the estimation is biased. In

order to obtain an unbiased channel estimation, we proposed the UL scheme in Chapter 5. In the

following, we consider the cases of two (and four) relays with Alamouti (and TSw-Al) DSTBC, and

we present the details on how to obtain the UL channel estimation.

A.1 Case of R = 2 with Alamouti DSTBC

According to (3.10) and (3.36), we can calculate R P y as follows :

R P y = c
p

q1

[
Np∑

k=1

P †
0 y 0(k)+

Ns∑

k=Np+1

P̃
†
(k)y(k)

]

= c
p

q1

[
Np∑

k=1

P †
0

(
c
p

q1P 0h + z 0(k)
)
+

Ns∑

k=Np+1

P̃ (k)†h + z(k)

]
. (A.1)

So, we obtain (4.14) which is rewritten below :

RP y = c2q1Np T I R︸ ︷︷ ︸
RP0

h +c
p

q1

Np∑

k=1
P †

0 z 0(k)

︸ ︷︷ ︸
η0

+c2q1

(
Ns∑

k=Np+1
P̃

†
(k)P (k)

)

︸ ︷︷ ︸
R
′
P

h +c
p

q1

Ns∑

k=Np+1
P̃

†
(k) z(k)

︸ ︷︷ ︸
η

= (RP0 +R
′
P )h +η0 +η.

(A.2)

We consider separately the channel estimates based on pilots and data symbols that we denote

by ĥ
p

and ĥ
d

, respectively. Then, we can write :

ĥ
p = h +η

′
0 , ĥ

d =Λh +η
′ , (A.3)

where

η
′
0 =

η0

R P0

, RP0 = c2q1Np T I R , (A.4)
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η
′ =

η

R Pd

, Λ=
R

′

P

R Pd

, (A.5)

R Pd = c2q1

Ns∑

k=Np+1

[∑R
i=1 s̃2

i (k) 0

0
∑R

i=1 s̃2
i (k)

]
= ξI 2 . (A.6)

Based on the property of the Alamouti DSTBC, R
′

P can be shown to be :

R
′

p = c2q1

Ns∑

k=Np+1

[
s̃∗1 (k) s̃∗2 (k)

−s̃2(k) s̃1(k)

][
s1(k) −s∗2 (k)

s2(k) s∗1 (k)

]

= c2q1

Ns∑

k=Np+1

[
s̃∗1 (k)s1(k)+ s̃∗2 (k)s2(k) −s̃∗1 (k)s∗2 (k)+ s̃∗2 (k)s∗1 (k)

−s̃∗2 (k)s1(k)+ s̃1(k)s2(k) s̃2(k)s∗2 (k)+ s̃1(k)s∗1 (k)

]

= c2q1

Ns∑

k=Np+1

[
λ11(k) −λ∗

21(k)

λ21(k) λ∗
11(k)

]
, (A.7)

So, using (A.5) and (A.7), we can write Λ as :

Λ=
[
λ11 λ12

λ21 λ22

]
=

c2q1

ξ

Ns∑

k=Np+1

[
λ11(k) −λ∗

21(k)

λ21(k) λ∗
11(k)

]
. (A.8)

We note that :

λ11 =λ∗
22, λ21 =−λ∗

12. (A.9)

To obtain an unbiased channel estimate, we should combine appropriately ĥp and ĥd . For this

purpose, we define two weight matrices A and B :

ĥ = A ĥ
p +B ĥ

d
. (A.10)

We determine the matrices A and B so as to minimize the channel estimation error variance and,

at the same time, to satisfy the condition of unbiased estimation. Let,

A =
[

a1 a2

a3 a4

]
,B =

[
b1 b2

b3 b4

]
. (A.11)

Optimizing channel estimation in (A.11) in the sense of minimum mean-square of estimation er-

rors gives :

min E
{
||Aη

′
0 +B η

′||2
}

, satisfying A +B Λ= I R . (A.12)

In other words, A and B should satisfy :





a∗
1λ

∗
11 +a∗

2λ
∗
21 +b∗

1 = 1

a∗
2λ11 −a∗

1λ21 +b∗
2 = 0

a∗
3λ

∗
11 +a∗

4λ
∗
21 +b∗

3 = 0

a∗
4λ11 +a∗

3λ21 +b∗
4 = 1

, (A.13)
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and

E
{
||Aη

′
0 +B η

′||2
}
= E

{
η

′† A† Aη
′+η

′†
0 B †Bη

′
0

}
(A.14)

Based on the definitions of β0 and βi of (4.19), we consider separately the two parts in the brackets

in (A.14) :

E
{
η

′† A† Aη
′
}
=βiσ

2
z

4∑

j=1
|a j |2, i = 1 or 2, (A.15)

and

E
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′†
0 B †Bη
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0

}
= β0σ

2
z
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|b j |2 (A.16)
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From (A.14), we calculate the derivative of E
{
||Aη

′
0 +B η

′||2
}

with respect to a∗
i :
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|λ11|2 +|λ21|2

)
−λ∗

21

]
= 0

∂E

{
||Aη

′
0+B η

′||2
}

∂a∗
3

=βi a3 +β0

[
a3

(
|λ11|2 +|λ21|2

)
+λ21

]
= 0

∂E

{
||Aη

′
0+B η

′||2
}

∂a∗
4

=βi a4 +β0

[
a4

(
|λ11|2 +|λ21|2

)
−λ11

]
= 0

(A.17)

Then based on (4.21) and (4.26), we can easily calculate the optimal weight matrices A and B as

given by (4.25).

A.2 Case of R = 4 with TSw-Al DSTBC

In the case of four relays with TSw-Al, we use the similar idea for calculating A and B . Firstly,

we get R P0 as (A.4) and R Pd as follows :

R Pd = 2c2q1

Ns∑

k=Np+1

diag
(
s̃2

1(k)+ s̃2
2(k), s̃2

3(k)+ s̃2
4(k)

)
⊗ I 2 (A.18)

= diag (ξ1,ξ2,ξ3,ξ4)
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In (A.18), we note that ξ1 = ξ2 and ξ3 = ξ4. Additionally, the R ′
P is :

R ′
P = 2c2q1

Ns∑

k=Np+1




λ11(k) λ12(k) 0 0

λ21(k) λ22(k) 0 0

0 0 λ33(k) λ34(k)

0 0 λ43(k) λ44(k)




. (A.19)

Based on (A.18) and (A.19), matrix Λ can be written as :

Λ=




λ11 λ12 0 0

λ21 λ22 0 0

0 0 λ33 λ34

0 0 λ43 λ44




, (A.20)

where 



λ11 =
2c2q1

ξ1

∑Ns

k=Np+1

[
s̃∗1 (k)s1(k)+ s̃∗2 (k)s2(k)

]

λ21 =
2c2q1

ξ1

∑Ns

k=Np+1

[
− s̃2(k)s1(k)+ s̃1(k)s2(k)

]

λ33 =
2c2q1

ξ3

∑Ns

k=Np+1

[
s̃∗3 (k)s3(k)+ s̃∗4 (k)s4(k)

]

λ43 =
2c2q1

ξ3

∑Ns

k=Np+1

[
− s̃4(k)s3(k)+ s̃3(k)s4(k)

]

(A.21)

and 


λ11 =λ∗

22, λ21 =−λ∗
12

λ33 =λ∗
44, λ43 =−λ∗

34

(A.22)

To impose unbiased channel estimation, we consider the following weight matrices A and B :

A =




a1 a2 0 0

a3 a4 0 0

0 0 a5 a6

0 0 a7 a8




, B =




b1 b2 0 0

b3 b4 0 0

0 0 b5 b6

0 0 b7 b8




(A.23)

Then, similar to the case of R = 2, the optimal weight functions can be calculated, resulting in

(4.25).
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