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Geometric lattice models and irrational
conformal field theories

Abstract:

In this thesis we study several aspects of two-dimensional lattice models of statistical physics
with non-unitary features. This bottom-up approach, starting from discrete lattice models,
is helpful to understand the features of the associated conformal field theories. They are non-
unitary and often irrational, logarithmic or even non-compact. First, we study the problem
of the entanglement entropy in non-unitary spin chains and its interpretation in loop models.
We discuss the role of the effective central charge, a relevant quantity to study the next
problems in this thesis. We then address two problems related to the Chalker-Coddington
model, an infinite-dimensional supersymmetric chain important for the study of the plateau
transition in the integer quantum Hall effect. Since the model has an infinite number of
degrees of freedom, it has been proposed to study it with a series of truncations. We present
new results based on this approach and extend this methodology to the case of Brownian
motion in its supersymmetric formulation. Next, a new model is proposed to interpolate
between class A and class C. The Chalker-Coddington model is a particular realisation of
class A whereas class C, describing the physics of the spin quantum Hall effect, can be
related to a model of percolation. This interpolating model provides an example of a RG-
flow between a non-compact CFT and compact one. The last part of this thesis deals with the
problem of classifying observables in lattice models with discrete symmetries. The process
is illustrated on the Potts model and its symmetry under the group of permutations and
previous results are extended for non-scalar operators. This approach is important to study
indecomposability of non-unitary models and can be used to study models such as percolation
in higher dimensions.
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Modèles géométriques sur réseau et théories
conformes irrationnelles

Résumé :

Dans cette thèse nous étudions différents aspects des modèles critiques non-unitaires de
physique statistique en deux dimensions. Notre approche, partant de modèles discrets sur
le réseau, permet d’en apprendre plus sur les théories conformes associées. Celles-ci sont
non-unitaires et souvent irrationnelles, logarithmiques ou encore non-compactes. Pour com-
mencer, le problème de l’entropie d’intrication dans des chaînes de spin non-unitaires et son
interprétation dans les modèles de boucles sont considérés. Le rôle de la charge centrale ef-
fective, une quantité pertinente pour étudier aussi d’autres problèmes de ce manuscrit, y est
discuté. Ensuite, nous regardons deux problèmes liés au modèle de Chalker-Coddington, une
chaîne de spin supersymétrique de dimension infinie, importante pour l’étude de la transition
entre plateaux dans l’effet Hall quantique entier. Puisque ce modèle a un nombre infini de
degrés de liberté, il a été proposé de considérer une série de troncations. Nous présentons
de nouveaux résultats basés sur cette approche et développons cette méthode dans le cadre
du mouvement Brownien dans sa formulation supersymétrique. Ensuite, un nouveau modèle
est proposé pour interpoler la classe A et la classe C de l’effet Hall quantique. Le modèle de
Chalker-Coddington est une réalisation particulière de la classe A tandis que la classe C, qui
décrit la physique de l’effet Hall quantique de spin, est relié à un modèle de percolation. Ce
modèle donne un exemple de flot sous l’action du groupe de renormalisation entre une théorie
conforme compacte et non-compacte. La dernière partie de cette thèse discute la classification
des observables sur réseau avec une symétrie discrète. Le processus est illustré sur le modèle
de Potts avec sa symétrie sous l’action du groupe des permutations et des résultats déjà
connus sont étendus au cas des opérateurs non-scalaires. Cette approche est importante dans
l’étude de l’indécomposabilité des modèles non-unitaires et peut être utilisée pour étudier la
percolation en dimension supérieure.

3



Remerciements
Je voudrais commencer par remercier les deux rapporteurs, Ilya Gruzberg et Paul Fendley,
d’avoir accepté la pénible tâche de relire mon manuscript ainsi que les examinateurs, Jean-
Bernard Zuber, Olalla Castro-Alvaredo et Benoit Estienne. Je vous suis très reconnaissant
d’avoir accepté d’être dans le comité de thèse et d’avoir fait le déplacement, parfois de loin,
pour ma soutenance.

Je tiens ensuite à remercier mes deux directeurs de thèse, Jesper et Hubert, qui m’ont
apporté leur soutien indéfectible tout au long de ces années. Vos conseils et réflexions ont
été inestimables. Jesper, je garderai un excellent souvenir de nos longues discussions sur des
sujets très variés. Hubert, merci beaucoup pour ta grande aide lors de la recherche de postdoc
et tes encouragements.

Je voudrais remercier toutes les autres personnes qui ont croisé mon chemin scientifique
ces dernières années. J’ai eu la chance de discuter et travailler avec les anciens thésards de
Jesper et Hubert, en particulier Romain Vasseur, Éric Vernier, Yacine Ikhlef et Roberto Bon-
desan. Je profite de ce paragraphe pour remercier de nouveau Ilya Gruzberg pour son accueil
lors de ma visite à Columbus, pour ce qu’il m’a enseigné lors de nos discussions scientifiques
et pour nos discussions musicales. J’en profite pour remercier mes deux collaborateurs chi-
nois, Youjin Deng et Xiaojun Tan ainsi que tous les chercheurs du LPT et de l’IPhT avec
qui j’ai pu discuter. Je remercie les différents organisateurs des écoles de physique théorique
auxquelles j’ai participé à Florence, Cargèse et Gand mais aussi les organisateurs de l’école
Ecoclim à Orsay. Lors de mes voyages pour ma recherche de postdoc, j’ai eu la chance d’être
accueilli dans différents laboratoires, merci en particulier à Frank Verstraete, Pasquale Cala-
brese, Ignacio Cirac et Norbert Schuch.

Merci aux membres du personnel administratif de l’ENS et de l’IPhT, en particulier
Viviane Sébille, Sandrine Patacchini, Laure Sauboy, Sylvie Zaffanella, Loïc Bervas et Em-
manuelle de Laborderie. Enfin merci à tous les thésards et postdocs que j’ai croisé, tout
particulièrement à Niall, Etienne, Jonathan, Jerome, Thibault, Kemal, Benoit, Anna, Tho-
mas, Séverin, Pierre, Santiago, Miguel, Michal, Thiago, Yifei et Linnéa.

Merci ensuite à ma famille, qui n’a jamais douté de l’intérêt de mon travail malgré mon
manque de pédagogie pour leur expliquer mon sujet de thèse. La soutenance n’aurait pas pu
être la même sans l’aide précieuse de ma mère pour la préparation du pot en plus de son
soutien constant. Il ne serait pas correct d’oublier de remercier Jean-Christophe, qui a eu
depuis le début l’honnêteté de ne pas faire semblant de s’intéresser à mon sujet de thèse mais
sans qui ces quatre années n’auraient pas été aussi drôles. J’ai eu le grand privilège d’habiter
près de ma soeur Stéphanie. Nos discussions durant cette période ont suscité de nombreuses
interrogations et m’ont certainement changé définitivement. Merci à Claude également pour
nos discussions très variées, ses réponses à mes questions d’informatique un peu futiles et ses
quelques relectures de dernières minutes.

4



J’ai eu le plaisir de vivre, la première année, au A6 de Montrouge, merci à Salim, Quen-
tin, Paul, Jean, Charles, Benjamin, Simon, Axel et Chloé. Ces années à Paris n’auraient pas
non plus été les mêmes sans Les Concerts d’Athalie, j’ai eu le privilège d’avoir été dirigé
par Léonard qui m’a fait confiance pour jouer La Traviata jusqu’en Chine. Merci également
à mes amis physiciens de l’ENS, Frédéric, Louis et Florence. Je remercie également Wei et
Raphaël pour leurs "informations sûres" sans oublier Marine et nos parties de Gloomhaven.
Merci enfin à mes camarades de prépa Tarik, Quentin, Adrien ainsi qu’à Bill et Emmanuel.

Mes derniers remerciements vont à Orianne, qui a eu le courage de lire l’intégralité du
manuscrit et pour son soutien sans faille au quotidien.

Je termine par une digression sur l’empreinte carbone due à mes différents voyages dans
le cadre de cette thèse. J’ai cumulé un total de presque 20000 kilomètres effectués en avion,
ce qui correspond à environ 6 tonnes d’émissions de CO2 (d’autres gaz à effet de serre sont à
prendre en compte). A titre de comparaison, limiter l’augmentation de température à 1.5-2
degrés demande de ne pas dépasser un total d’environ 2 tonnes de CO2 par habitant et par
an. Mes déplacements professionnels correspondent donc déjà à environ 70 − 80% de mon
capital carbone.

5



Contents
1 Introduction to non-unitary critical phenomena 9

1.1 Universality and CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 The quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Geometric systems and polymers . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Non-unitary features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Non-unitary representations of the Viraso algebra and negative confor-

mal dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Indecomposability and logarithmic correlators . . . . . . . . . . . . . 16
1.4.4 Irrationality and non-compactness . . . . . . . . . . . . . . . . . . . . 17
1.4.5 PT symmetry and RG-flow . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 The plan of this manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Entanglement in non-unitary critical systems 22
2.1 Entanglement entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Conformal field theory interpretation . . . . . . . . . . . . . . . . . . 24
2.1.3 The non-unitary case: first observations . . . . . . . . . . . . . . . . 27

2.2 The XXZ spin chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Loop model formulation . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 The six-vertex model and the XXZ Hamiltonian. . . . . . . . . . . . 30
2.2.4 Quantum group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Quantum group entanglement entropy . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Pedagogical example on 2 sites . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Entanglement in the loop model and Markov Trace . . . . . . . . . . 35
2.3.3 Definition of the quantum group entanglement entropy and motivations 37
2.3.4 A more complex example: 2M = 4 sites . . . . . . . . . . . . . . . . 39
2.3.5 Properties of the entropy . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 The scaling relation of the quantum group entanglement entropy . . . . . . . 43
2.4.1 A brief introduction to Coulomb Gas . . . . . . . . . . . . . . . . . . 44
2.4.2 The replica trick and the modified scaling relation . . . . . . . . . . . 44
2.4.3 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.1 Restricted Solid-on-Solid models . . . . . . . . . . . . . . . . . . . . . 47
2.5.2 A supersymmetric example . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.3 Entanglement entropy in the non-compact case . . . . . . . . . . . . 52

2.6 Comparisons and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6.1 Entanglement in non-unitary minimal models . . . . . . . . . . . . . 54
2.6.2 The null-vector conditions in the cyclic orbifold . . . . . . . . . . . . 54

6



3 Truncations of non-compact loop models 56
3.1 The Chalker-Coddington model . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Definition as a one-particle model . . . . . . . . . . . . . . . . . . . . 56
3.1.2 Supersymmetric formulation . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.3 The supersymmetric gl(2|2) spin chain . . . . . . . . . . . . . . . . . 61
3.1.4 Exact results and critical exponents . . . . . . . . . . . . . . . . . . . 62

3.2 The first truncation as a loop model . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.1 Truncations as a loop model: the case M = 1 . . . . . . . . . . . . . 64
3.2.2 An integrable deformation . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.5 A word on the dense phase . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.6 Lattice observables in the network model . . . . . . . . . . . . . . . . 79

3.3 Higher truncations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.1 The second truncation . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.2 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.3 Preliminary numerical results . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Truncations of the Brownian motion . . . . . . . . . . . . . . . . . . . . . . 86
3.4.1 Brownian motion as a supersymmetric spin chain . . . . . . . . . . . 88
3.4.2 Equivalence between oriented/unoriented lattice . . . . . . . . . . . . 89
3.4.3 The first truncation: self-avoiding walks . . . . . . . . . . . . . . . . 92
3.4.4 Hamiltonian limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.5 Symmetries in the continuum limit . . . . . . . . . . . . . . . . . . . 95
3.4.6 Higher truncation of the Brownian motion . . . . . . . . . . . . . . . 98
3.4.7 The multicritical point of the second truncation . . . . . . . . . . . . 99

4 A flow between class A and class C 102
4.1 Lattice model interpolating between class A and class C . . . . . . . . . . . 102

4.1.1 The Spin Quantum Hall Effect as a network model . . . . . . . . . . 103
4.1.2 Second quantisation and the Hamiltonian limit . . . . . . . . . . . . . 105
4.1.3 Choosing an interpolation . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1.4 Loop formulation of the model . . . . . . . . . . . . . . . . . . . . . . 109
4.1.5 Percolation as a two-colours loop model . . . . . . . . . . . . . . . . . 111

4.2 The untruncated model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.1 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.2 Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Truncations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.1 The phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.3 The dense phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.3.4 Critical exponents of the critical dilute phase . . . . . . . . . . . . . . 126

7



5 Operators in the Potts model 130
5.1 Observables in the Q-state Potts model . . . . . . . . . . . . . . . . . . . . . 130

5.1.1 Potts model and Fortuin-Kasteleyn clusters . . . . . . . . . . . . . . 131
5.1.2 Definitions and representation theory of SQ . . . . . . . . . . . . . . 131
5.1.3 Observables of one spin . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1.4 Observables of two spins . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.1.5 Procedure for general representations . . . . . . . . . . . . . . . . . . 141
5.1.6 Internal structure and LCFT . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2.1 Symmetric observables of two spins . . . . . . . . . . . . . . . . . . . 147
5.2.2 Anti-symmetric observables of two spins . . . . . . . . . . . . . . . . 147
5.2.3 Observables with mixed symmetry: [Q− 3, 2, 1] . . . . . . . . . . . . 149
5.2.4 Generic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Physical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.1 Primal and secondary operators . . . . . . . . . . . . . . . . . . . . . 151
5.3.2 Critical exponents on a cylinder . . . . . . . . . . . . . . . . . . . . . 151
5.3.3 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.3.4 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4 Logarithmic correlations in 3D percolation . . . . . . . . . . . . . . . . . . . 158

Conclusion 160

8



1 Introduction to non-unitary critical phenomena

1.1 Universality and CFT

Many interesting problems in physics involve a large number of degrees of freedom and are
effectively described by a quantum field theory. The continuum limit of a generic system
is described by a massive field theory, where correlation functions decay exponentially with
a characteristic correlation length ξ. However, at some particular values of the physical
parameters, a model can become critical and its correlation functions decay algebraically.
The field theory description becomes massless and scale invariant. The two-point function
of a local observable O(~x) has the following behaviour

〈O(~x)O(~y)〉 ∼ A

|~x− ~y|2∆O
, (1.1)

where ~x and ~y are positions such that |~x− ~y| is much larger than any microscopic scale, A is
an amplitude and ∆O is the conformal dimension associated with O. The set of conformal
dimensions, or critical exponents, is universal. In other words, the physical properties of the
system at large scale do not depend on the microscopic details but rather on qualitative prop-
erties such as symmetries or the dimension. The form of the correlation function (1.1) comes
from the underlying global symmetry that all critical systems share: scale invariance. In two
dimensions, the classification of scale invariant quantum field theory is strongly constrained
since, in most cases, systems are even invariant under local conformal transformations. These
transformations are functions preserving scale invariance locally such as translations, rota-
tions or dilatations. The general framework to describe critical systems is called Conformal
Field Theory (CFT) and was very successful after the pioneering work of Belavin, Polyakov
and Zamolodchikov [1]. In two dimensions, the conformal symmetry is infinite-dimensional
and encoded in the celebrated Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (1.2)

where c ∈ R is the central charge, an universal parameter. Classifying conformal field theories
is reduced to the study of representations of this algebra. This led to the very famous minimal
models [2, 3], among them can be found very important universality class such as the Ising
model, the tricritical Ising model and the 3-state Potts model.

The origin of universality can be understood with the Renormalisation Group (RG),
formulated by Wilson [4, 5]. Let us take a simple example and consider a square lattice
where each vertex is a small magnet (a spin). The RG procedure aims at describing the
system at a scale larger than the microscopic one. This is illustrated by the decimation
process. The large distance behaviour or correlation functions can be obtained by summing
over the interactions at small distance to obtain an effective description, only describing the
physics at a larger scale. In the square lattice of magnets, this is obtained by grouping
together spins in the same vicinity and averaging over the local magnetisation. The process
is iterative and at each step a new Hamiltonian is obtained. It defines a flow in the space
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of coupling constants called renormalisation group flow. A critical theory is a scale invariant
fixed point of the RG-flow. Conformal field theory’s main goal is to provide a description of
fixed points under the action of the RG. It is thus not always useful to study two different
models if they, in the end, flow toward the same fixed point. The aim of the RG procedure
is to map the space of Hamiltonian and classify the different universality classes.

Despite many breakthroughs in statistical physics, condensed matter or string theory
that came from conformal field theory, the description of many complex systems remains
mysterious. In this thesis, we are interested in irrational non-unitary conformal field theories
and their lattice discretisations. Contrary to the unitarity case, many new properties make
this task intricate. Since this thesis is primarily concerned with non-unitary models, we start
by describing two examples of such models: the plateau transition in the quantum Hall effect
in section 1.2 and polymer models in section 1.3. Several specific properties of non-unitary
models, relevant for this thesis, are then presented section 1.4.

1.2 The quantum Hall effect

The integer quantum Hall effect is a phenomenon observed in a two-dimensional gas of
electrons subject to a strong magnetic field perpendicular to the sample (see figure 1.1a). In
the classical Hall effect the electrons, driven by the current, are deviated by the magnetic
field, thus creating a transverse current.

(a) (b)

Figure 1.1 – On the left: Experimental setup to measure the Hall effect. A current goes
through a piece of metal subject to a perpendicular magnetic field B. A resulting voltage
VH is measured in the transverse direction. On the right: resistance of a piece of metal as
a function of the amplitude of the magnetic field B. We observe a quantised resistance with
plateaux. The figures are taken from [6]

The transverse resistance ρxy reads

ρxy =
B

en
, (1.3)
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where B is the amplitude of the magnetic field, e is the electric charge and n the density of the
cloud of electrons. In 1980, Von Klitzing discovered experimentally the (integer) quantum
Hall effect [7]. In a regime of very strong magnetic field and low temperature, the transverse
resistance develops plateaux at the particular values

ρxy =
1

n

h

e2
, (1.4)

where n is an integer called filling factor and h the Planck constant. Under a change of the
magnetic field B, the resistance forms plateaux as illustrated in figure 1.1b. The existence
of the plateau can be understood by considering the Hamiltonian HL of a single electron in
a two-dimensional space with a perpendicular magnetic field

HL =
1

2m

(
~p+ e ~A

)2

, (1.5)

where the vector potential ~A is chosen in the Landau gauge ~A = (0, Bx, 0) and ~p is the
momentum. The energies of eigenfunctions are called Landau levels and labelled by an
integer n

En = ~ωB
(
n+

1

2

)
, (1.6)

where ωB = |e|B/m is the cyclotron frequency. Each electron in a Landau band is delocalised.
The Landau levels have an enormous degeneracy N , identical for each level,

N =
S

2πl2B
(1.7)

proportional to the area S of the sample. Surprisingly the quantisation (1.4), one of the most
accurately measured universal phenomena, needs an other key component to be explained:
disorder. In practice the Hamiltonian reads

H = HL + V (~x) (1.8)

where V is a random potential created by the disorder. As a consequence, in a sample of
metal with impurities, the Landau levels widen and can even overlap (see figure 1.2a).
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ρ(E)

E

(a) (b)

Figure 1.2 – Spectrum of the system with E the energy and ρ(E) the density. On the left:
In a pure system the (non-interactings) electrons fill the Landau bands that have a huge
degeneracy. All states are delocalised. On the right: in the presence of disorder the bands
widen and states are localised except near the original Landau levels.

The electrons fill the vacant eigenstates up to a certain level called Fermi level. States
between two Landau levels are localised around extrema of V , hence they do not contribute
to the conductivity. However, eigenstates with the energy of a Landau level are delocalised
and provide a current. Notice that the degeneracy, and so the density of the bands, can
be changed by varying the magnetic field. This affects the Fermi level. As a consequence,
jumps are observed whenever the Fermi level crosses the middle of a Landau band, creating
a sudden change in the conductivity. This simplistic explanation gives a picture of what
happens but does not explain why the jumps are exactly multiples of h/e2. We refer to good
reviews such as [8] for more details.

The presence of plateaux, and the amplitude of the jumps are perfectly understood.
However, the physics at the transition [9] remains mysterious. This plateau transition is
believed to be described by a second order phase transition where the localisation length ξ
of a wave function at the Fermi energy E diverges as it comes close to a Landau energy En

ξ ∝ 1

|E − En|ν
. (1.9)

The critical exponent ν, called the localisation length exponent, is independent of the Landau
band index n. Its value has been the subject of many investigations over the years. Experi-
mental works report a value close to ν = 2.38, using a heterostructure GaAs-AlGaAs [10,11].
A lattice model was proposed by Chalker and Coddington in 1988 [12] to study the critical
properties of the transition. Recent numerical simulations report an exponent ν in the range
2.55−2.6 [13–17]. Many exacts approaches were proposed such as: conformal restriction [18],
non-linear σ model description [19].

There exists a second kind of plateau transition called spin quantum Hall effect (SQHE)
[20,21]. It is the analog of the IQHE but charge transport is replaced by spin transport. The
spin Hall conductance measures the spin current created in the system by a spatially varying
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Zeeman magnetic field. The spin conductivity σxy is defined by

jzx = σxy

(
−dBz(y)

dy

)
(1.10)

with jx the spin current in the direction x and Bz the Zeeman field perpendicular to the
sample in the direction z. The role of the electric field in the IQHE is played by the derivative
of the Zeeman field.

The IQHE and SQHE plateau transitions are quantum systems in a two dimensional
space. Therefore the field theory describing the system can naturally be expected to be a
2+1D quantum or a 3D Euclidean field theory. However it is possible to take advantage that
electrons are not interacting to reduce the problem to a 1+1D quantum or 2D Euclidean field
theory. This is explained in an example later in this manuscript. Therefore all the machinery
of conformal field theory in two dimensions can be applied to this phase transition. From
the point of view of quantum mechanics the system is perfectly unitary. However we are left
with one difficulty to overcome, the presence of disorder. Conformal field theory describes
long range features and correlation functions averaged over the random potential. The two
possibilities to deal with this complication are the replica trick and the supersymmetric
method [22–25]. Later in this thesis, the second one is explored. However using those methods
to deal with the disorder breaks the unitarity of the model. The conformal field theory
obtained is a textbook case exhibiting many non-unitary features. A lattice regularisation
of this universality class, known as the Chalker-Coddington model, gives a description in
terms of a network model. The main difficulty comes from its supersymmetric formulation,
where each site (in a 1D quantum chain) has an infinite dimensional representation of the
superalgebra gl(2|2). The model is said to be non-compact since, even in finite-size, there is
an infinite number of degrees of freedom. It is thus a rich laboratory to develop the formalism
of non-unitary conformal field theory.

1.3 Geometric systems and polymers

Many geometrical models in two dimensional statistical physics are described by a non-
unitary conformal field theory. In many cases, it can be traced back to the non-local nature
of the objects of interest. For example, a typical observable in percolation [26, 27], a system
of uncorrelated bonds, is the probability of having two given sites in the same cluster (see
figure 1.3a). This probability defines a correlation function that cannot be described in a
unitary conformal field theory. In many cases, the apparent non-locality of the model can
be replaced with a perfectly local description where some Boltzmann weights are negative
or complex [28]. One of the most famous example is the relation between the Potts model
described in terms of Fortuin-Kasteleyn clusters [29], the 6-vertex model and loop models.
Many other geometrical models have a loop representation [30,31]
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(a) (b)

Figure 1.3 – On the left: typical configuration of percolation on a two-dimensional square
lattice. At criticality, the objects considered are clusters that propagate on long distances.
A single cluster is drawn in red. On the right: a typical path of a self-avoiding walk.

Polymers models are also an interesting class with rich and diverse behaviours. They
describe very long chains made of monomers that interact with each other. This family of
systems has many connections with quantum systems, especially supersymmetric spin chains
[32]. Geometrically, a polymer does not close on itself and can be seen as the Feynman path
of bosons and fermions [33]. The connections between loop models and quantum mechanical
models are not restricted to polymers models, see for instance [34] for an application to
topological phases and quasiparticles in 2 + 1 dimensions. A famous example of a polymer
model is the self-avoiding walks (SAWs) (see figure 1.3b) where two monomers cannot be on
the same edge, corresponding to the O(n) model [35] in the limit n → 0 [36]. Its study is
very closely related to the problem of the plateau transition in the quantum Hall effect. We
will observe that the geometric description of the plateau transitions are in fact close to a
polymer system. In particular, an interesting problem is to study two interacting oriented
self-avoiding walks on a square lattice [37].

An additional aspect of polymer models is particularly intriguing. The phase diagram
of the O(n = 0) model has been studied for a while [38, 39]. There exists an interesting
tri-critical line where two points are exactly solvable. The first, found by Blöte and Nienhuis
and called point θBN , is an interesting non-compact conformal field theory. On the other
hand, the point θDS was studied by Duplantier and Saleur [40] and found to correspond to
percolation, a compact conformal field theory. The behaviour of the O(n) models between
those two points is still not understood. It remains an important point to study the RG-
flow between those two universality classes. It would provide an interesting example of a
non-unitary RG-flow between two c = 0 theories.
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1.4 Non-unitary features

In this subsection, several features of non-unitary models are presented. We will focus on
interesting properties, relevant to the models studied in the context of this thesis.

1.4.1 General considerations

Let us first start with general considerations. A non-unitary model is described by a transfer
matrix T in its two-dimensional description or by a one-dimensional quantum Hamiltonian
H. Both are, in general, related by what is called the anisotropic limit, where the contin-
uum limit in the 2d system is taken only in one spatial direction labelled as time. In a
classical model, non-unitarity can usually be detected if the local Boltzmann weights of some
configurations are negative or complex. Indeed the Osterwalder-Schrader reconstruction the-
orem [41] states that if the Euclidean correlators satisfy the condition of reflection positivity
then the quantum field theory is unitary. In general it is not satisfied if Boltzmann weights
are not positive or if correlators involve non-local objects. For many systems, there exists a
way to trade the apparent non-locality for the non-positivity of the local weights. An exam-
ple is provided in the second chapter where the identification between the loop model based
on the Temperley-Lieb algebra [42, 43] and the 6-vertex model is detailed. For the quantum
system, the Hamiltonian is non-Hermitian

H† 6= H. (1.11)

In practice, having negative or complex weights leads to some difficulties in a numerical
approach. Moreover, even though a non-Hermitian Hamiltonian can be disconcerting or even
considered non physical, it is a very natural object in statistical physics.

1.4.2 Non-unitary representations of the Viraso algebra and negative conformal
dimensions

One of the most unnerving property of non-unitary systems is the possibility of having
negative conformal weights. Naively, a two-point correlator (1.1) with hO < 0 diverges as the
distance between the points grows. Of course this is very strange and, a priori, non physical.
The resolution of this apparent issue comes from the precise relation between a lattice model,
where a real correlation is measured, and the conformal field theory. Indeed, the conformal
vacuum |0〉 is assumed to exist and to satisfy the following contraints

Ln|0〉 = 0, n > −1, (1.12)

exactly as for a harmonic oscillator. In fact, the conformal vacuum is not the actual ground
state of the system since there is a state with a lower energy. Eigenvalues of the dilatation
operator L0 correspond to the energies and, in the radial quantization, L0 satisfies

L0|0〉 = 0, L0|hmin〉 = hmin|hmin〉. (1.13)
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for hmin < 0. As a consequence, a two-point function in the quantized language reads

〈hmin|φ(0)φ(r)|hmin〉 (1.14)

where the expectation value of the operators is computed in the actual ground state and
not the conformal vacuum. It leads to correlation functions that decay effectively with the
distance. Nevertheless, the inner structure of CFT is profoundly modified by the non-unitary
representation of the Virasoro algebra. Note that the free energy of the system and its finite-
size corrections do not provide anymore a measure of the central charge as expected by the
usual formula [44]

fL0 = Lf∞ −
πc

6L
+ o(L−1), (1.15)

but instead

fL0 = Lf∞ −
πceff
6L

+ o(L−1) (1.16)

where f∞ is the bulk free energy and ceff is called the effective central charge and in many
cases is explicitly ceff = c− 24hmin [45].

1.4.3 Indecomposability and logarithmic correlators

The loss of unitarity permits a CFT to be indecomposable. Logarithmic conformal field
theories have a non-diagonalisable dilatation operator L0 [46]. As an example, if it contains
a Jordan cell of rank 2

L0 =

(
∆ 1
0 ∆

)
. (1.17)

then there exists two fields φ and ψ, with the correlation functions

〈ψ(0)ψ(r)〉 = 0, (1.18)

〈ψ(0)φ(r)〉 =
b

z2∆
, (1.19)

〈φ(0)φ(r)〉 = −2b log r

z2∆
. (1.20)

The quantity b is universal and called indecomposability parameter. Note that the normal-
isation in (1.18) is already fixed and it is impossible to simply renormalise φ to change b.
Since the pioneering work of Gurarie [47], LCFT has become a very active subject [48] and
much progress has been made thanks to the study of indecomposable algebras [49, 50]. The
structure of the logarithmic correlation functions can involve higher ranks of Jordan cells,
making the study of the conformal field theory much more challenging. The representation is,
in the bulk case, believed to be wild [51], meaning that a given theory can contain arbitrary
large Jordan cells. Of course, an indecomposable representation of the Virasoro algebra is
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also non-unitary. Logarithmic conformal field theories are not simple curiosities with a few
scarce examples. Many non-unitary models are indecomposable and it is believed that not
being a LCFT is the exception rather than the rule. In particular, all non-trivial theories
at c = 0 must be logarithmic, this is known as the c → 0 catastrophe [52]. Singularities
appear in the operator product expansions due to the collision of k (k being the rank of the
resulting Jordan cell) conformal dimensions in certain limits. These divergences can be fixed
by introducing logarithmic partners that mix in a Jordan cell as in (1.17). In the case of
c = 0 theories, a vanishing central charge implies that the stress energy tensor must have a
logarithmic partner. The set of correlations (1.18) is satisfied with ψ replaced by the energy
momentum tensor T and φ by its logarithmic partner t. The indecomposability parameter
is believed to be universal and its value is known in many cases. For example b = −5/8
for dilute critical polymers and b = 5/6 for percolation. The logarithmic structure and the
value of b can be extracted even in finite size by using the Hamiltonian or the transfer ma-
trix [53,54]. It is, however, hard to extract them directly because it requires large sizes and is
subject to a slow convergence even for the most simple cases. In many cases, the logarithmic
structure of LCFT can be studied as a limit of ordinary (non-unitary but not indecompos-
able) CFTs. This was realised first by Cardy [55, 56] when he proposed a mechanism to
explain the appearance of logarithmic terms. Whenever, in a certain limit, two conformal
fields collide (have the same conformal dimension), a resonance phenomenon happens and a
log is produced in a correlation function. Those ideas, particularly powerful in the presence
of additional symmetries, were applied successfully to the Potts model (in its formulation in
terms of percolating clusters) [57, 58] and to the plateau transition in the integer quantum
Hall effect [59].

1.4.4 Irrationality and non-compactness

The systematic characterisation of many CFTs is often made possible thanks to the ratio-
nality of the theories [60, Chapter 3]. A 2D conformal field theory is rational if it possesses
a finite number of primary fields of some extended algebra thus simplifying drastically the
analysis. The most famous examples of rational conformal field theories are the minimal
models [1]. Conversely, irrational conformal field theories have an infinite number of primary
fields and, because of their complexity, many aspects are not perfectly understood. On the
lattice, many geometrical models are discrete regularisations of non-rational CFTs and are
used to study them. For instance, most well-known logarithmic conformal field theories are
non-rational (see [61] for an exception). Some irrational CFTs are called quasi-rational [62]
if they are described by an infinite number of fusion rules but any fusion of two representa-
tions decomposes on a finite sum of representations. Particular extreme cases of irrational
models are the non-compact CFTs (see below) for which the set of primary fields is not even
countable.

Many interesting systems have an infinite number of degrees of freedom and are called
non-compact. A very simple example is the Brownian motion where each edge can be visited
an arbitrary number of times. It is also the case for the supersymmetric formulation of the
Chalker-Coddington model describing the plateau transition in the IQHE. In the continuum,
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a theory is said to be non-compact if described by a field living in a non-compact space. As
an example, the Brownian motion is described [63], by a bosonic field φ with free Euclidean
action

S =

∫
d2x (∇φ)2 . (1.21)

The field φ lives on the real axis, which is non-compact. In practice, these theories have a
continuum of critical exponents, whereas in usual CFT, the set of conformal dimensions is
discrete. The consequence on the lattice are very important. Given a lattice observable O, it
can usually be written as a sum over primary operators and their descendants. In the case of
a continuum of fields this sum becomes naturally an integral. As a consequence, a two-point
function has the form

〈O(0)O(r)〉lattice =

∫ ∞
x=0

dxρ(x)r−2∆0+x2 (1.22)

where ρ plays the role of a non-universal density and ∆0 is the smallest conformal dimension
appearing in the decomposition of O on conformal fields. This is very different to what is
observed for compact theories where the largest contribution dominates all the subleading
terms. Here, for large distances r, the correlation functions have logarithmic corrections

〈O(0)O(r)〉lattice ∼ r−2∆0(log r)αρ (1.23)

where αρ depends on the precise behaviour of ρ in the vicinity of x = 0. Let us emphasize
that the logarithmic part in the correlation function has a quite different origin than the
one encountered in logarithmic conformal field theory. It comes from the lattice discretisa-
tion whereas, for LCFTs, the logarithm correlation functions are intrinsic properties of the
continuum.

A few years ago, it was realised that a non-compact continuum limit can be obtained from
the thermodynamic limit of a compact lattice model. It is far from obvious that a model with
a finite number of degrees of freedom can flow toward a non-compact fixed point. The first
instance of this observation was in a paper [64] of Jacobsen, Read and Saleur where, in the
supersymmetric formulation of self-avoiding walks, they introduced the possibility of having
loop crossing. The critical point involves non compact bosonic fields despite the apparent
compactness of the model on the lattice. The same situation was later found in many models
such as the antiferromagnetic Potts model (and the staggered six-vertex model) [65], a pair
of coupled Potts models [66] or a(2)

N−1 spin chains [67, 68]. Non-compact continuum limits
are maybe more common than what was previously thought and not constrained to curious
non-unitary and non-physical models. An additional example is the θBN point of polymers
related to the black hole theory SL(2,R)/U(1) [69].

As mentioned earlier, many systems of great interest are already non-compact (infinite-
dimensional) on the lattice. It is natural to hope that they can be studied using truncations
[37] where maybe the perturbation introduced is not relevant in the RG picture. Indeed,
compact lattice models are much more convenient from the point of view of numerics and
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exact methods (integrability). In general, the truncation changes of course the universality
class but the untruncated model could still be approached by a series of successive truncations.
In the case of the Brownian motion, this procedure is very easy to understand. Let us take a
Brownian path with the additional constraint that an edge can be visited at most k times. All
configurations of the usual Brownian motion are recovered in the limit k →∞ but the nature
of the model at finite k is far from being obvious. Note that the case of k = 1 is actually
well known since it corresponds to self-avoiding walks, a particular point of the O(n) model
discussed previously. The case of the Brownian motion is interesting since the untruncated
model is already known.

The situation is extremely different in the case of the plateau transition in the Integer
quantum Hall effect. Very few exact results were found for its CFT and critical exponents
remain unknown. This program of truncations was partially proposed by Marston and Tsai
[70]. They considered hard on-site truncations and approached the IQHE transition with a
series of non-critical truncations. This idea was pushed further in the recent work of Ikhlef,
Fendley and Cardy [37] where they proposed to define a series of critical truncations. The
first one was studied and found to be in a different universality class than the full theory.
Nevertheless, some aspects are related to the real plateau transition and, in particular, it is
non-compact in the continuum. We would like to push this program further and understand
the relation between a full non-compact model and its compact (in terms of the lattice degrees
of freedom) truncations.

1.4.5 PT symmetry and RG-flow

The Hermiticity of a Hamiltonian is not a necessary condition to have a valid quantum
system. However, it is required that the spectrum is real [71]. The class of quasi-Hermitian
Hamiltonians are non-Hermitian operators such that an invertible operator η exists and
satisfies

ηH = H∗η. (1.24)

This property ensures that H is Hermitian with respect to the inner product

〈u|v〉η ≡ 〈u|η|v〉. (1.25)

The Hamiltonian can be transformed to a Hermitian operator η1/2Hη−1/2. Note that such
maps are usually hard to find. The quasi-Hermiticity property ensures that the spectrum of
H is real. An important criterion to determine if a Hamiltonian is quasi-Hermitian is the
PT -symmetry. Let us first give some definitions and consider a spin chain of length L with
an on-site basis |i〉, i = 1, ..., d. The space reversal operator P is linear and acts on the
Hilbert space H = V ⊗L as

P |i1, ..., iL〉 = |iL, . . . , i1〉. (1.26)

The time reversal operator T acts as the identity

T |i1, ..., iL〉 = |i1, . . . , iL〉 (1.27)
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but is an antilinear operator. It means that any matrix operator M is transformed under the
action of T as

TMT = M∗, (1.28)

with M∗ the conjugate operator of M . A Hamiltonian H is said to be PT-symmetric if

[PT,H] = 0. (1.29)

This criterion is not exactly sufficient to obtain real spectra, the eigenstates of the Hamilto-
nian also need to be PT -invariant. This criterion is very useful in the context of the XXZ
spin chain and its loop representation [72,73] and many non-Hermitian systems are described
by a PT -symmetric Hamiltonian.

This extra symmetry permits the extension of several results obtained in unitary con-
formal field theory. In particular, a version of the celebrated c-theorem, found in 1986 by
Zamolodchikov [74], exists for PT -invariant Hamiltonian [75]. We first recall the classical
result in unitary CFT. The c-theorem states that, along an RG-flow, there exists a scaling
function c(s) that decreases monotonically. At a fixed point, c(s) corresponds to the central
charge of the universality class. In other words, an RG flow between two universality classes
always goes towards the theory with the smallest central charge. This very famous result is
true only in the unitary case. Different versions of this theorem exist and the function c(s)
is interpreted as a measurement of the number of degrees of freedom at a given scale s. Note
that equivalent results exist in higher dimension where the irreversibility of the flow is not
measured by c. Whether a similar theorem exists in the non-unitary case is an important
question. The breaking of unitarity allows a flow with increasing c(s).

A version of this theorem was recently proposed by Castro-Alvaredo, Doyon and Ravanini
in [75]. The generalisation of the c -theorem [75] to this class of models shows that the
irreversibility of the flow is measured by the effective central charge, mentioned earlier in
1.4.2. This important result shows that this quantity is important from a physical point of
view and a proper way to quantify the number of degrees of freedom.

1.5 The plan of this manuscript

In the second chapter, based on [76], the concept of entanglement entropy in non-unitary
CFTs is discussed. Ideas coming from quantum information have radically changed our
understanding of quantum systems. The entanglement entropy has many applications in
condensed matter and statistical physics. However, most of results are derived for unitary
systems where probabilities and norms are well-defined and the non-unitary case remained
unexplored until the last few years. After discussing the relation between conformal field
theory and quantum information theory we propose a new approach. The concept of quan-
tum group entanglement entropy is discussed and motivated by symmetries and geometrical
considerations. A link with loop models is established and a geometric way of computing
entanglement directly within this formalism is given. Our main toy model is the Potts model
in its vertex representation related to the Uqsl(2) invariant XXZ chain. The quantum group
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entanglement entropy distinguishes the role of the central charge and the effective central
charge. The proposed approach is then applied to different systems such as the Restricted
Solid-on-Solid models or the supersymmetric spin chain sl(2|1).

The third chapter, based on [77], discusses the truncations of the Chalker-Coddington
model. The beginning presents the network model and the first truncation introduced and
studied by Ikhlef, Fendley and Cardy. They considered in their paper an integrable deforma-
tion of this model in order to use usual techniques of integrability. The equivalence between
the integrable deformation and the first truncation is not obvious. We study their similarities
and differences. A generalisation of the procedure to higher levels of truncation is then given.
In parallel, a similar work is done for the Brownian motion to gain some insight about the
phenomenology of this approach.

In the fourth chapter, we propose to study a flow between class A and class C in the
plateau transition of the Hall effect. Even though they describe different physical quantities,
the two classes are formally very close in terms of their lattice description. Despite their
similarities, class C is solvable and found to be related to percolation. We take advantage
of the network formalism to propose a model with a RG-flow between the two universality
classes. The direction of the flow is studied numerically and the symmetries discussed. The
advantage of our approach is to be easily generalised to describe the flow between class C and
all the truncations of the Chalker-Coddington model. In particular, it is a good playground
to understand flows in non-unitary models and extension of the c-theorem of Zamolodchikov.

In the fifth and last chapter, following the articles [78, 79], we use the Fortuin-Kasteleyn
formulation of the Q-state Potts model, a generalisation of the concept of percolation clus-
ters, to study non-local observables. This approach, following the original work of Cardy,
uses the underlying discrete symmetry SQ to classify the operator content of the theory.
This is in particular very interesting from the point of view of indecomposability and pro-
vides very practical examples of logarithmic correlation functions in a model. Moreover, the
nature of the observables is related to the irrationality of the theory, a common feature of
non-unitary minimal models. Our contribution to this topic is the extension of the previous
analysis to a large new class of observables. Previous works were focused on operators trans-
forming purely symmetricaly under the action of the symmetric group. The classification is
extended to any representation of the group of permutations and provides lattice definition
of non-scalar operators. In two dimensions, a connection is made with conformal field theory
and the representation of the Jones-Temperley-Lieb algebra. In particular, the conformal
dimensions and the spins of many observables are identified exactly. This is satisfied nu-
merically using Monte-Carlo simulations for percolation and transfer matrix diagonalisation.
The present approach is however not limited to two dimensions. The same analysis holds
in three dimensions where the same classification is relevant. Of course, obtaining exactly
the conformal dimensions is out of reach. Nevertheless, it is possible to predict the presence
of Jordan cells in any dimension. This formalism is very promising to study Logarithmic
Conformal Field theory in d > 2.
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2 Entanglement in non-unitary critical systems
Ideas coming from both quantum information theory and field theory have profoundly af-
fected our understanding of quantum systems at criticality. Let us consider a partition of
a quantum system into two parts A and B. The quantity called entanglement entropy SA
(or equivalently SB) is a measurement of the entanglement between A and B. It has many
physical implications and, in particular, important consequences in numerical simulations.
Methods such as DMRG or more generally tensor networks [80,81] were developed thanks to
the improving understanding of entanglement. They are now applied to strongly correlated
systems with great success.

For non-critical (gapped) systems, the entanglement entropy satisfies the so called area
law [82–85]

SA ∼ kArea(∂A) (2.1)

where k is non-universal. In other words, the entanglement entropy grows as the size of
the boundary between A and B. Indeed, in a gapped system, correlation functions decay
exponentially. As a consequence, on a lattice, a site in A and a site in B are entangled only if
they are close to each other. Globally, the entanglement between A and B is located near their
boundary and thus SA grows with the size of ∂A. Of course, in the case of critical (gapless)
systems, this simple argument breaks down. Critical systems have long-range correlation
functions that decay only algebraically. Therefore, the area law is not satisfied anymore. It
was found [86, 87], in the case of 1 + 1D critical systems where A in an interval of length L
in a infinite system, that

SA ∼
c

3
log

L

a
, L� a (2.2)

where a is a lattice cutoff and c the central charge of the associated CFT. This scaling
relation involves a universal quantity and opens many possible connections between quantum
information and conformal field theory [88, 89]. It is a very natural question to ask whether
this result holds for non-unitary systems. Different approaches [90] have been investigated in
order to derive (2.2). In several cases [91,92], it is expected for non-unitary systems to have
a modified scaling relation of the form

SA ∼
ceff
3

log
L

a
(2.3)

where ceff is the effective central charge.
In this chapter, this result is revisited in practical examples. The focus of the discussion

is on systems with quantum group invariance or supergroup symmetry. In particular, the
XXZ spin chain with open boundary condition is considered with its quantum group Uqsl(2)
invariance [93]. The first section introduces basic concepts and recalls the definition of entan-
glement entropy as well as its interpretation in conformal field theory. The XXZ spin chain
is then briefly presented in 2.2. Its physical relevance as a description of the Potts model is
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discussed and its correspondence with a loop model is detailed. The third section 2.3 intro-
duces a new quantity, called quantum group entanglement entropy. This concept, motivated
by the loop model, is shown to have interesting properties and simple illustrations are given.
The derivation of the scaling law within our framework is then presented using Coulomb gas
techniques. Other problems can be addressed using this approach, in particular, results for
RSOS models, supersymmetric spin chains or non-compact models are all derived. Lastly,
the similarities and differences between this work and other approaches are discussed.

2.1 Entanglement entropy

2.1.1 Definitions

Consider a quantum system described by a density matrix ρ. In this chapter, only pure
quantum states (associated to a normalised ket |ψ〉) are considered hence the density matrix
is simply

ρ = |ψ〉〈ψ|. (2.4)

The state |ψ〉 lives in a Hilbert space H. Let us assume H to be a direct product of two
subspaces HA and HB

H = HA ⊗HB. (2.5)

The reduced density matrix ρA is defined as the partial trace of ρ, over the degrees of freedom
in B,

ρA = TrB ρ. (2.6)

The entanglement entropy, or von Neumann entropy, is defined by

SA = −TrA (ρA log ρA) . (2.7)

This quantity measures effectively how much the subsystem A is entangled with the subsys-
tem B. In particular, when the ket is a product of a state |ψA〉 ∈ HA and a state |ψB〉 ∈ HB

then

SA = SB = 0 if |ψ〉 = |ψA〉 ⊗ |ψB〉. (2.8)

Other measures of entanglement are possible. In particular, the Rényi entropies

S
(N)
A =

1

1−N
log TrA

(
ρNA
)

(2.9)

are a generalisation of the von Neumann entropy. Indeed the definition (2.7) is recovered
in the limit N → 1. Note that the entanglement entropy (or more generally the Rényi
entropies) is not a good measurement of the entanglement in the case of mixed states. For
instance, when ρ is not the density matrix of a pure state, S(N)

A = S
(N)
B is not satisfied. Other
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measurements of the entanglement, such as the entanglement negativity, are also interesting.
It provides, for instance, a measure of the entanglement between two disjoint parts of a
system. This chapter focuses on the von Neumann entropy (and more generally the Rényi
entropies) and extensions to other measurements of the entanglement are not considered in
this work.

2.1.2 Conformal field theory interpretation

Let us first give a brief presentation of some connections between the entanglement entropy
and conformal field theory, following the ideas of Calabrese and Cardy [94]. In order to
provide a connection between the entanglement entropy and conformal field theory, let us
consider a 1 + 1D quantum system at finite inverse temperature β = 1/T described by a
Hamiltonian H. Its density matrix reads

ρ =
1

Z
e−βH (2.10)

with Z = Tr
(
e−βH

)
the partition function, appearing here to ensure the right normalisation

Tr ρ = 1. Given two states |φ〉, |φ′〉, the matrix element ρ(φ, φ′) = 〈φ|ρ|φ′〉 is the overlap
between φ and φ′ after a propagation, in imaginary time evolution, at a time τ = β. It can
be represented by the picture 2.1a.

ϕ

ϕ'

β

(a)

ϕA

ϕA'

(b)

Figure 2.1 – The left figure shows the diagrammatic representation of an element of matrix
ρ(φ, φ′). The horizontal (resp. vertical) direction corresponds to the spatial (resp. time)
space. At finite temperature, the density matrix ρ connects two states by a slice of the
quantum system of height β. The right figure (b) shows a picture representing the reduced
density matrix when the subsystem A is a single interval. The two dashed line of left picture
are stitched together except along A.

The trace operation corresponds, in this picture, to sewing the two dashed edges in figure
2.1a. Thus the partition function is indeed a cylinder of circumference β. The picture for
the partial trace is very similar. A partial trace over the subsystem B is diagrammatically
obtained by only stitching together the part of the dashed lines of figure 2.1a in B. In the
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case where A is an interval, there is a cut in the middle of the cylinder 2.1b. The resulting
operator, ρA, connects quantum states of HA. At zero temperature for a cylinder of infinite
length, the circumference becomes infinite and we obtain a full plane with a cut in the middle.
Note that, in the case of a non-Hermitian Hamiltonian, the mapping between the density
matrix and its path integral picture is of course still valid for the density matrix (2.10).
However the limit at zero temperature is not simply ρ = |0〉〈0|, with |0〉 the ground state,
but

ρ = |0R〉〈0L| (2.11)

where we distinguish right and left ground states. Let us disregard this issue for now and
consider the case of a Hermitian Hamiltonian with |0〉 ≡ |0R〉 = |0L〉. It is now possible to
give a path integral formulation of the entanglement entropy. The idea, known as the replica
trick, is to consider the Rényi entropy for integer N . The object Tr ρNA can be computed by
considering N copies of the system where each copy is connected to an other on one side of
the cut. A picture is given in the case N = 2 figure 2.2.

Figure 2.2 – Riemann surface with 2 replicas. The two blue planes are infinite and are stitched
together at their cut. Periodic boundary condition is enforced by the trace therefore the two
red lines are identified.

The quantity Tr ρNA corresponds (up to a normalisation factor) to the partition function
ZN on a N -sheeted Riemann surface. The normalisation factor for each ρA is the simple
partition function Z1 on a single plane. Therefore we are left with the quantity

TrA ρ
N
A =

ZN
ZN

1

(2.12)
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to compute. This analysis is valid for all integer values of N > 1 and the von Neumann
entropy can be derived by considering the analytic continuation in the limit N → 1

SA = − lim
N→1

∂N log

(
ZN
ZN

1

)
. (2.13)

In the following, the concept of twist fields is briefly presented. The goal of this section
is not to provide a detailed mathematical description of this object and of the cyclic orbifold
but to show that computing the partition function on a N -sheeted Riemann surface can be
re-expressed as a correlation function of some operators. In particular, the derivation of the
conformal dimension of the twist field using Ward identities is not recalled since a different
approach using Coulomb gas methods is presented later in this chapter. The simple case
of a cut corresponding to a single interval [u, v] is considered. Let us take a very general
Lagrangian L[ϕ](x, τ) for a field ϕ. The Lagrangian on the Riemann surface with N replicas
reads

ZN =

∫
CN

N∏
i=1

dϕi e
−
∫

dxdτ(
∑N
i=1 L[ϕi](x,τ)) (2.14)

where the N fields {φi} are coupled by the conditions

ϕi(x, 0
+) = ϕi+1(x, 0−), x ∈ [u, v], i = 1, . . . , N (2.15)

that are included in the definition of the domain CN . This condition encodes the continuity
of the fields in the vicinity of the cuts. This condition on the integral domain can be re-
expressed using two fields TN and T̃N , called twist fields [95], acting respectively at the branch
points of the cut. The partition function is now a two-point function where the condition on
the integral domain is dropped

ZN =

∫ N∏
i=1

dϕiTN(u)T̃N(v) e−
∫

dxdτ(
∑N
i=1 L[ϕi](x,τ)) . (2.16)

Therefore the task is now to compute the two-point function

ZN
ZN

= 〈TN(u)T̃N(v)〉 (2.17)

where the conformal dimension of the twist field is left to be determined exactly. In general,
this can be done by considering the conformal mapping

z →
(
z − u
z − v

)1/N

(2.18)

that transforms the N -sheeted Riemann surface to a plane (the N cuts are mapped toward
infinite lines going from the origin to the infinity). The conformal dimension hTN is computed
using Ward identities, it was found that

hTN =
c

24

(
N − 1

N

)
(2.19)
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where c is the central charge of the original conformal field theory. The scaling of the
entanglement entropy can now be derived since

TrA ρ
N
A =

ZN
ZN

1

∝ `−4hTN (2.20)

with ` = |u − v| being the length of the cut. Computing the Rényi entropies (2.9) is now
straightforward

S
(N)
A =

1

1−N
log TrA ρ

N
A ∼

(N + 1)c

6N
log `/a (2.21)

with a a microscopic cut-off. The von Neumann entropy is derived by the analytic continu-
ation for real N and taking the limit N → 1

SA ∼
c

3
log `/a. (2.22)

2.1.3 The non-unitary case: first observations

The naive extension to non-unitary case is now discussed. Before considering a specific model,
we discuss the apparent issues with the scaling (2.22) and review some results found in the
literature.

First, as it was hinted earlier, the definition of the density matrix must distinguish between
right and left eigenvectors. Indeed, the field theory interpretation holds only if it is possible to
write the density matrix as the zero temperature limit of the evolution operator in imaginary
time. This definition may seem curious from the point of view of pure quantum information.
Indeed the von Neumann entropy measures the entanglement within a given quantum state
and it is, a priori, acceptable to study a naive entropy where ρ = |0R〉〈0R|.

A second apparent difference comes from the prefactor of the scaling law (2.22). In a
unitary CFT, a non trivial theory has a strictly positive central charge hence equation (2.22)
is in a perfect agreement with the fact that the von Neumann entropy is a positive quantity.
However in a non-unitary system, the central charge can be zero or negative. The simplest
cases of such systems are the non-unitary minimal models. A famous member of this class
of model is the Yang-Lee model [96, 97] with c = −22/5. The minimal modelsM(p, p′) are
a series of conformal field theories with a finite number of primary fields with integer p and
p′ coprime such that 2 ≤ p < p′. The central charge is given by

c = 1− 6(p− p′)2

pp′
(2.23)

and the conformal weights are

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
, 1 ≤ r ≤ p′ − 1, 1 ≤ s ≤ p− 1. (2.24)
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In the non-minimal series |p−p′| > 1, it is important to notice that their conformal spectrum
contains a negative conformal weight. The smallest conformal weight hmin is given by

hmin =
1− (p− p′)2

4pp′
< 0. (2.25)

Therefore, the ground-state of the theory is no longer the conformal vacuum. The par-
tition function (on a N -sheeted Riemann surface) interpretation as a two points correlation
function (2.17) is thus a little bit more subtle. The so-called effective central charge can be
defined

ceff = c− 24hmin = 1− 6

pp′
(2.26)

which is positive. This universal quantity appears for instance in the scaling of the energy
per unit of length on a cylinder of circumference L [45]

E = −vSπceff
24L

. (2.27)

The scaling of the entanglement entropy was found to hold if c is replaced by ceff within the
framework of RSOS models [98]. The goal of this chapter is to revisit this problem in a more
general case. In particular we are not restricted to non-unitary minimal models. Connections
with loop models are going to be detailed. The twist field analysis in particular is going to
be connected to a Coulomb gas analysis.

2.2 The XXZ spin chain

The Potts model is introduced in this section. Its mappings to a loop model and a vertex
model are discussed. We show explicitly the connection between both and derive the quan-
tum Hamiltonian associated. The XXZ Hamiltonian is recovered with Hermiticity breaking
boundary terms. It is symmetric under the action of the quantum group Uqsl(2), a deforma-
tion of sl(2).

2.2.1 Potts model

The Q-state Potts model is a lattice model of interacting spins. Considering a graph G =
(V,E) with vertex set V and edge set E. To each vertex i ∈ V we associate a spin σi that
can take Q possible states, σi = 1, 2, . . . , Q. The interaction between two spins, σi and σj,
linked by an edge (ij) ∈ E, adds a contribution −Kδσi,σj to the total energy of the system,
where δ is the Kronecker symbol. Hence the partition function is

Z =
∑
{σ}

∏
(i,j)∈E

eKδσi,σj , (2.28)

where {σ} ≡ {σi}i∈V denotes all the possible spin configurations of the system. Let us
emphasise that for now we do not make any particular assumptions about the graph G,
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neither about the regularity of the lattice, nor about the number of dimensions d into which
it can be embedded.

The above partition function can be expanded in terms of the Fortuin-Kasteleyn (FK) clus-
ters [29]. Since the interaction energy between two spins has only two possible values, we use
the identity eKδσi,σj = 1 + vδσi,σj , with v = eK − 1, to transform the product over the edges
into a sum over subsets A ⊆ E of edges. A connected component of the subgraph (V,A) is
called an FK cluster. Then, by performing the sum over {σ}, we arrive at

Z =
∑
A⊆E

Qk(A)v|A| , (2.29)

where k(A) denotes the number of connected components in the subgraph (V,A) with |A|
edges.

We notice that all the spins within a same FK cluster take the same spin value. However,
the spins of two different clusters are independent; in particular they may take the same
value even if the two clusters are adjacent.

Thanks to the formulation (2.29) of theQ-state Potts model, the definition of the partition
function can now be extended to real values of Q. This makes it possible to approach physical
situations (for which Q is a non-negative integer) via a limiting procedure. The models of
main interest stand at Q = 0 (spanning trees and forests), Q = 1 (percolation) and Q = 2
(Ising model). For Q < 2 they have non-trivial critical points for 2 ≤ d ≤ 6 [99, 100]. In
d = 2, the model on a regular square lattice can be mapped to a 6-vertex model [101] and is
critical for 0 ≤ Q ≤ 4 [102].

2.2.2 Loop model formulation

We now study the Potts model in d = 2 on a square lattice with open boundary conditions.
Starting from its formulation in terms of clusters (2.29), a loop model is obtained by drawing
the surroundings (inner and outer) on the medial graph for each cluster. This is illustrated
figure 2.3 on an arbitrary configuration.

More precisely, the partition function (2.29) can be written, using topological identities,
as

Z = Q|V |/2
∑
A⊆E

Q`(A)/2

(
v√
Q

)|A|
(2.30)

where `(A) is the number of closed loops. On a square lattice, the isotropic critical point of
the Potts model is obtained at v =

√
Q simplifying again the partition function which, up to

an overall factor, is

Z =
∑
A⊆E

n`(A) (2.31)

with n =
√
Q the loop fugacity. Still on a square lattice, it is convenient to write the transfer

matrix and the Hamiltonian in terms of the Temperley-Lieb (TL) algebra [42]. For M
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Figure 2.3 – Typical configuration of FK-clusters on a square lattice. The inner and outer
boundaries of each cluster form loops on the medial graph.

integer and q a complex number of modulus 1, the TL algebra TLq,2M has 2M −1 generators
{ei}i=1,...,2M−1 satisfying the relations

[ei, ej] = 0, |i− j| ≥ 2, (2.32)
e2
i = n ei, (2.33)

eiei±1ei = ei (2.34)

with n = q+ q−1. It has a diagrammatic interpretation allowing a direct connection with the
loop configurations of the Potts model. The generator ei is represented by the diagram

ei = ... ...

i i+ 1

. (2.35)

Multiplication of words in the algebra is done by stacking the diagrams. Two diagrams are
identical if the connectivities are the same. Each time a closed loop is generated, it is removed
and a weight n is produced.

2.2.3 The six-vertex model and the XXZ Hamiltonian.

The last useful representation of the Potts model needed in this chapter is the 6-vertex model
and its XXZ quantum Hamiltonian. Writing the loop fugacity n as the sum of two conjugate

30



complex numbers, n = eiγ + e−iγ with q = eiγ, leads to an interesting mapping with oriented
loops. An un-oriented loop is the superposition of the two orientations

n

=

q

+

q−1

. (2.36)

The non-local fugacity of loops can be traded for a local complex weight: a loop turning of
an angle ±π/2 at a vertex gets a local weight e±iγ/4. At a vertex on the medial square lattice,
6 configurations of arrows are possible due to the conservation of incoming/outgoing arrows.
They are given figure 2.4 and generate the 6-vertex model.

ω1 ω2 ω3 ω4 ω5 ω6

Figure 2.4 – Vertices of the six-vertex model.

The weights obtained by the mapping with the loop models are given by

ω1, . . . , ω6 = 1, 1, x, x, eiγ/2 +x e−iγ/2, e−iγ/2 +x eiγ/2 . (2.37)

These weights are obtained by drawing all local loop configurations possible with the orien-
tation of the arrows. The parameter x measures the anisotropy in the system (see [42] for
details) and is useful to derive the quantum Hamiltonian. The decomposition of the vertices
ω1 and ω5 are given below as examples.

ω1

=

eiγ/4× e−iγ/4

,

ω5

=

x e−iγ/4× e−iγ/4

+

eiγ/4× eiγ/4

(2.38)

This reformulation as a vertex model provides a local description where each edge is
associated with a two-dimensional vector space V = {|↑〉, |↓〉}. The transfer matrix T for a
system of size 2M with open boundary conditions is

T =
M−1∏
i=1

(1 + xe2i+1)
M∏
i=1

(1 + xe2i) (2.39)
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where ei are complex matrices acting on site i and i+ 1. Let σx,y,zi be Pauli matrices acting
on space i, the element ei is

ei = −1

2

[
σxi σ

x
i+1 + σyi σ

y
i+1 +

q + q−1

2
(σzi σ

z
i+1 − 1) +

q − q−1

2
(σzi − σzi+1)

]
. (2.40)

In the basis |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 it reads explicitly

ei =


0 0 0 0
0 q −1 0
0 −1 q−1 0
0 0 0 0

 (2.41)

As the notation suggests, these operators satisfy the Temperley-Lieb relations. The anisotropic
limit is obtained by considering x→ 0. The 1 + 1D quantum Hamiltonian H associated with
this 6-vertex model is obtained from the expansion of the transfer matrix around x = 0.

T = 1− xH +O(x2) (2.42)

which gives

H = −
L−1∑
i=1

ei. (2.43)

This Hamiltonian can be written in terms of Pauli matrices

HXXZ =
1

2

L−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

q + q−1

2
σzi σ

z
i+1

)
+
q − q−1

2
(σz1 − σzL) (2.44)

up to a constant term. The famous XXZ Hamiltonian can be recognised with anisotropy
parameter ∆ = (q + q−1)/2. Note that, despite its name, ∆ is not related at all to the
parameter x measuring the anisotropy in the two dimensional lattice description. The only
difference with the usual unitary XXZ chain comes from the boundary term. It breaks the
Hermiticity of the Hamiltonian but is very important in terms of symmetry since it ensures
the commutation of H with the generators of the quantum group Uqsl(2) [93].

2.2.4 Quantum group

As mentioned, the Hamiltonian (2.43) is symmetric under the action of the quantum group
Uqsl(2). This symmetry is essential in the relation between the spin 1

2
representation of the

XXZ spin chain and the loop model. In particular, for q root of unity, the representation
theory of Uqsl(2) plays an important role in the analysis of indecomposability.

The generators of sl(2), S± and Sz, satisfy the relations[
S+, S−

]
= 2Sz, [Sz, S±] = ±S±. (2.45)
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This algebra is the symmetry of the XXX spin chain. The XXZ is a generalisation of this
Heisenberg model, the symmetry now being encoded in the quantum-group Uqsl(2), a quan-
tum deformation of sl(2). The generators satisfy the relations[

S+, S−
]

=
q2Sz − q−2Sz

q − q−1
,

[
Sz, S±

]
= ±S±. (2.46)

The usual sl(2) algebra is restored in the limit q → 1. The quantum group can be seen as the
universal enveloping algebra of sl(2). In the spin 1/2 representation, the above generators
have the form [93]

Sz =
1

2

∑
i

σzi (2.47)

S+ =
1

2

∑
i

qσ
z
1/2⊗...⊗qσzi−1/2⊗σ+

i ⊗q−σ
z
i+1/2⊗...⊗q−σz2M/2 (2.48)

S− =
1

2

∑
i

qσ
z
1/2⊗...⊗qσzi−1/2⊗σ−i ⊗q−σ

z
i+1/2⊗...⊗q−σz2M/2 (2.49)

and commutes with the XXZ Hamiltonian [HXXZ, S
+,−,z] = 0. Note that quantum groups

play an important role in the search of integrable model [103]. Interactions, encoded in
the R-matrix satisfying Yang-Baxter equations, can be constructed from its representation
theory [104].

2.3 Quantum group entanglement entropy

This first section presents our approach to the entanglement entropy in the XXZ model.
A new quantity, called quantum group entanglement entropy is introduced. This choice is
first motivated by a simple case on two sites for the vertex model. The same calculations
are performed in the loop model. In particular, it is shown that the entanglement entropy
has a straightforward interpretation with loop connectivities. General definitions are then
given and motivated by the correspondance between the two representations. Then a more
complex example on four sites is detailed. In the end of the section, a few properties of
this modified entanglement entropy are given. First we show that the definition respects the
Uqsl(2) symmetry of the model and discuss the several required properties of an entropy.

2.3.1 Pedagogical example on 2 sites

Let us start the discussion with the simple example of 2M = 2 spin, for pedagogical purposes.
The XXZ Hamiltonian is H = −e1, with e1 the unique TL generator given equation (2.41).
The parameter q = eiγ is chosen such that γ ∈ [0, π/2[, leading to a positive loop fugacity
n = 2 cos γ. In the sector of zero magnetisation, there are 2 distinct eigenenergies E0 =
−(q + q−1) = −n and E1 = 0. The right ground state, defined as H|0R〉 = E0|0R〉 reads

|0R〉 =
1√
2

(q−1/2| ↑↓〉 − q1/2| ↓↑〉). (2.50)
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In this section, we use the (standard) convention that complex numbers are conjugated when
calculating the bra associated with a given ket. Therefore |0R〉 is normalized: 〈0R|0R〉 = 1.
We assume for now that the density matrix is

ρ = |0R〉〈0R| =
1

2


0 0 0 0
0 1 −q−1 0
0 −q 1 0
0 0 0 0

 . (2.51)

It is, of course, correctly normalized. Taking subsystem A as the left spin and subsystem B
as the right spin, the resulting reduced density operator ρA is

ρA =
1

2

(
1 0
0 1

)
. (2.52)

It leads to a von Neumann entropy (2.7) equal to

SA = log 2 (2.53)

where the entropy of a 1
2
-spin singlet is recognised. This result is obviously independent

of q and identical to the well known result for the XXX case, where the non-Hermiticity
problem disappears. However the behaviour of the entanglement is expected to change when
the central charge is varied. Since the universality class is a function of q, this simple
computation on two sites is not particularly representative. It turns out that for larger
systems, the entropy has a weak dependence on q that disappears in the scaling limit.

An alternative definition is now proposed, motivated by the symmetries of the Hamilto-
nian and its loop model representation. First, as mentioned earlier, the HamiltonianH = −e1

is not Hermitian. To make the connection with conformal field theory, the distinction be-
tween right and left eigenvectors is required. They are defined by H|ER〉 = E|ER〉 and
〈EL|H = E〈EL| (corresponding to H†|EL〉 = E|EL〉 since the energies E are all real). The
two eigenvectors in the sector of zero magnetisation (Sz = 0) are

|0R〉 =
1√

q + q−1

(
q−1/2| ↑↓〉 − q1/2| ↓↑〉

)
(2.54)

|1R〉 =
1√

q + q−1

(
q1/2| ↑↓〉+ q−1/2| ↓↑〉

)
(2.55)

where |0R〉 denotes the right eigenstate associated with the lowest energy E0 and |1R〉 the
right eigenstate associated with excitation E1. Similarly the left eigenstates are

|0L〉 =
1√

q + q−1

(
q1/2| ↑↓〉 − q−1/2| ↓↑〉

)
(2.56)

|1L〉 =
1√

q + q−1

(
q−1/2| ↑↓〉+ q1/2| ↓↑〉

)
. (2.57)
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The right and left states are carefully normalized such that

〈iL|iR〉 = 1, 〈iL|jR〉 = 0, i 6= j. (2.58)

With this choice, the Hamiltonian takes the simple form

H =
∑
i=0,1

Ei|iR〉〈iL|. (2.59)

Note that 〈0R|1R〉 6= 0. A projector on an eigenstate can only be built using left and right
eigenstates. The proper density operator is now defined as

ρ̃ ≡ |0R〉〈0L| =
1

q + q−1


0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0

 (2.60)

To proceed, let us take the following definition for the reduced density matrix

ρ̃A = TrB
(
q−σ

z
2 ρ̃
)

=
1

q + q−1

(
1 0
0 1

)
. (2.61)

The use of a modified trace is justified in the next sections with geometrical as well as
quantum group theoretic considerations. This property is explicitly discussed later in this
section. The operator ρ̃A is normalized for the modified trace: TrA

(
ρ̃Aq

σz1
)

= 1. We now
define the entanglement as

S̃A = −TrA
(
qσ

z
1 ρ̃A ln ρ̃A

)
= ln(q + q−1). (2.62)

This entropy value is potentially more appealing than (2.53): not only it depends on q, it
involves also explicitly the combination n = q + q−1, which is the quantum dimension of the
spin 1/2 representation of Uqsl(2).

2.3.2 Entanglement in the loop model and Markov Trace

The same analysis is possible in the loop formalism. On L = 2 sites, the Hamiltonian is
again given by the only TL generator, which diagrammatically reads

H = −e1 = − . (2.63)

In loop models, the equivalent of a quantum state is called a link state. It is a non-crossing
link pattern where sites are connected by pairs. In fact, a link between two sites represents
the formation of a singlet. There are different kinds of link states and it is possible to have
defects if a site is not connected in a pair. In the following, only the sector with zero defects
(equivalently the sector with zero magnetisation in the vertex model) is considered because
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it contains the ground state. For L = 2 there is only one link state |1〉 with zero defect
corresponding to an arc connecting the two sites

|1〉 =
1√
n

. (2.64)

In the loop formalism, a bra is obtained from a ket by flipping and stacking the two drawings.
The scalar product is obtained by gluing the diagrams and counting the number of closed
loops. For instance, it is straightforward that |1〉 is well normalized.

〈1|1〉 =
1

n
= 1 (2.65)

Moreover, |1〉 is the ground state of the Hamiltonian (2.63) since H|1〉 = −n|1〉

H|1〉 = −e1|1〉 = − 1√
n

= −n 1√
n

(2.66)

Of couse the connection with equations (2.54) and (2.56) comes from HXXZ being a projector
on the Uqsl(2) singlet. The loop model provides a compact way to describe the action of the
Hamiltonian annihilating and creating Uqsl(2) singlets.

The density matrix, given by ρ = |1〉〈1|, reads in terms of diagrams

ρ =
1

n
=

1

n
e1 (2.67)

where equation (2.60) can be recognised. The next task, computing the reduced density
matrix, involves the (partial) trace operator. For loop models, tracing is performed by
connecting the top and the bottom of a diagram. The resulting number of closed loops gives
the value of the trace. It is called the Markov trace (MTr) and for any diagram u it is formaly

MTr(u) = u . (2.68)

Note that this definition is consistent with the calculation of a scalar product where the
link states are glued together (illustrated equation (2.65)). The Markov trace ensures, on a
cylinder, that every closed loop has a weight n. The partial Markov trace is defined similarly
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by connecting only certain sites. The reduced density matrix ρA, obtained by taking the
Markov trace over the second site (2.67) reads

ρA = MTr2(ρ) =
1

n
=

1

n
. (2.69)

A single line in a diagram acts as the identity. The equation (2.61) is thus recognised. The
computation to obtain the von Neumann entropy is straightforward, given that the usual
trace is replaced by the Markov trace.

SA = −MTrA ρA log ρA = − 1

n
log

1

n
× = log n (2.70)

The result found in the last subsection, for the XXZ spin chain, is recovered. The key
ingredient is to count the number of loops formed by the trace with the right fugacity n.

2.3.3 Definition of the quantum group entanglement entropy and motivations

The general definition for the modified entanglement entropy in the XXZ spin chain is now
discussed. For a chain, with open boundary conditions and L sites, let us consider a subsystem
A made of M neighbour spins. Its complement B is made of two parts, BL on the left and
BR on the right, so that B = BL ∪BR and H = HBL

⊗HA⊗HBR
. The right and left ground

states are distinguished so the density matrix ρ reads

ρ̃ = |0R〉〈0L|, (2.71)

with |0R〉 and 〈0L| the right and left ground states. The modified reduced density ρ̃A matrix
is defined as

ρ̃A = TrB q
2SzBL

−2SzBR ρ̃ (2.72)

where SzBL
= 1

2

∑
i∈BL

σzi and SzBR
= 1

2

∑
i∈BR

σzi are the magnetisations in the respective
subsystems. The Quantum Group Entanglement Entropy, or QG EE, is defined by

S̃A = −Tr q2SzA ρ̃A log ρ̃A. (2.73)

The phases ensure that all loops, in the mapping to the geometrical representation, have
the right fugacity. On a N -sheeted Riemann surface, a loop can propagate on the successive
replicas and close on itself without being contractible. This is also the case on a cylinder.
The figure 2.5a shows an example of configuration.
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(a) (b)

Figure 2.5 – On the left: a non-contractible loop on a cylinder. In the vertex formulation, if
no twist is added, this loop gets a weight ñ = 2 instead of n. The right figure show a similar
situation on the N = 2-sheeted Riemann surface. A non contractible loop of this form does
two full turns and get a weight ñ = 2 cos 2γ instead of n.

A loop winding around the periodic direction of the cylinder can be decomposed into
two oriented loops. Since they are not globally turning to close on themselves, they do not
acquire the phase q or q−1 but simply 1. In the end the loop fugacity is wrongly counted as
ñ = 1 + 1 = 2. On the Riemann surface with N replicas, an oriented loop can wind around a
branch point and form a closed loop after a turning of an angle ±2πN . In the vertex model,
these oriented loops get a weight q±N and the un-oriented loop a fugacity 2 cosNγ. Ensuring
that all loops have the same weight is exactly the role of the Markov Trace. The twist in the
trace of the vertex model plays this role. The geometrical definition in terms of loops is thus
very natural. The QG EE can be computed exactly in the loop model. Taking ρ = |0〉〈0| as
the density matrix of the system, the reduced density matrix is

ρA = MTrB ρ (2.74)

and the entanglement entropy is simply

SA = −MTrA ρA log ρA (2.75)

or for general Rényi entropies

S
(N)
A = − 1

N − 1
log MTrA ρ

N
A . (2.76)

Another important property of the definition (2.72) is that it respects the symmetry of
the quantum group restricted on the subsystem A. This is developed further later in this
section.
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2.3.4 A more complex example: 2M = 4 sites

As a more complicated example for the loop entanglement entropy, we propose to perform
the computation of entanglement in the case of 2M = 4 sites. The two possible link states
with zero defects are.

|1〉 = , |2〉 = (2.77)

The hamiltonian H = −e1−e2−e3 has the following ground state |0〉 = 1
N (α|1〉+ |2〉), where

N 2 = n2α2 + 2nα + n2 and α = (n+
√
n2 + 8)/2. The density matrix ρ is

ρ =
1

N 2

(
α2 + α + α +

)
.

Consider first a bipartition in which A is the first site, and B the remainder. Take the
partial Markov trace over the three last sites, the reduced density operator is

ρA =
1

N 2
(α2n+ 2α + n) =

1

n
. (2.78)

This leads to S̃A = log n, the same result found for 2M = 2 spins.
Next, let us take A as the first two sites and compute the entanglement at the middle of

the system. We trace the density operator over the two last sites:

ρA =
1

N 2

(
+ (α2n+ 2α)

)
=

1

N 2

(
I + (α2n+ 2α)e1

)
. (2.79)

The logarithm of the operator ρA must be computed. The identity

exp(a e1) = 1 +
1

n
(exp(an)− 1)e1, (2.80)

where e1 = , can be demonstrated by expanding the exponential. It follows

log ρA = − logN 2 I +
2

n
log(1 + αn)e1 . (2.81)

and thus we can compute ρA log ρA.

ρA log ρA = − logN 2

N 2
+
(− logN 2

N 2
(α2n+ 2α) +

2

nN 2
log(1 + αn)

+
2

N 2
(α2n+ 2α) log(1 + αn)

)
. (2.82)
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Tracing over A finally leads to

SA = −MTrA ρA log ρA =
n2 logN 2

N 2
− n

(− logN 2

N 2
(α2n+ 2α)

+
2

nN 2
log(1 + αn) +

2

N 2
(α2n+ 2α) log(1 + αn)

)
= −(1 + αn)2

N 2
log(1 + αn)2 + logN 2 . (2.83)

This expression coincides with the result obtained by using the modified trace in the vertex
model. Note also that this results agrees with the computations done in the Potts spin
representation for Q = n2 integer, not presented in this thesis [76].

For larger M it is hard to compute this final partial trace directly, since the form of
log ρA will be substantially more complicated than (2.81). A much more convenient option
is to recall that gluing corresponding sites on top and bottom of any word in the TL algebra
means technically to take the so-called Markov trace MTr. This in turn can be resolved as
follows

MTr =
∑
j

[2j + 1]q TrVj , (2.84)

where TrVj is the usual matrix trace over the (standard) module Vj with 2j defect lines, and
[k]q = qk−q−k

q−q−1 are q-deformed numbers such that the loop weight n = [2]q = q + q−1.
In the simple 2M = 4 case considered above, A has just two sites so that V0 and V1 are

both one-dimensional with bases { } and { } respectively. Thus we have the matrices

ρA|V0 =

[
1

N 2
(1 + n (α2n+ 2α))

]
, ρA|V1 =

[
1

N 2

]
and

MTrA ρA log ρA = TrV0 ρA log ρA

+ (n2 − 1) TrV1 ρA log ρA . (2.85)

We find in the end

MTrA ρA log ρA =
(1 + αn)2

N2
log

(1 + αn)2

N 2

+ (n2 − 1)
1

N 2
log

1

N 2
, (2.86)

which is the same as (2.83) after simplification.
Similar computations were made for L = 6 sites, for all choices of the bipartition A ∪B,

finding again perfect agreement between the results from the loop model (with the Markov
trace) and the vertex model (with the modified trace).
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2.3.5 Properties of the entropy

In this subsection, two properties of the entanglement entropy are discussed. First the
reduced density matrix ρA, with the twist in the trace, is found to have the right symmetries
with respect to the action of the quantum group restricted to the subsystem A. The second
interesting property is the expected relation S̃A = S̃B that holds with our definition.

Commutation with Uqsl(2) generators The definition of the quantum group entangle-
ment entropy S̃A relies on the use of a deformed trace where a twist q−2SzB is inserted under
the usual trace symbol. To ensure that the resulting reduced density operator ρ̃A makes sense
in the quantum group formalism, it must commute with the generators of Uqsl(2).

The Hamiltonian commutes with the following generators:

Sz =
1

2

∑
i

σzi (2.87)

S+ =
1

2

∑
i

qσ
z
1/2⊗...⊗qσzi−1/2⊗σ+

i ⊗q−σ
z
i+1/2⊗...⊗q−σz2M/2 (2.88)

S− =
1

2

∑
i

qσ
z
1/2⊗...⊗qσzi−1/2⊗σ−i ⊗q−σ

z
i+1/2⊗...⊗q−σz2M/2 (2.89)

The generators and the Hamiltonian share the same right and left eigenvectors. As a conse-
quence they commute with the density operator ρ̃

[Sα, ρ̃] = 0, ρ̃ = |0R〉〈0L| . (2.90)

We split the spin chain in two parts A, B and define the reduced density operator ρ̃A using
a twisted trace over the part B. We consider the case where A is in the middle of the chain
between BL and BR, so that B = BL ∪BR and H = HBL

⊗HA ⊗HBR
. Thus

ρ̃A = TrB q
2SzBL

−2SzBR ρ̃ , with SzB =
∑
i∈B

σzi . (2.91)

Let us check that the generators of Uqsl(2) on the subsystem A commute with the reduced
density operator ρ̃A. We have the following relations:

Sz = SzBL
⊗ 1A ⊗ 1BR

+ 1BL
⊗ SzA ⊗ 1BR

+ 1BL
⊗ 1A ⊗ SzBR

, (2.92)

S± = S±BL
q
−SzA−S

z
BR +q

SzBLS±Aq
−SzBR +q

SzBL
+SzAS±BR

.

Consider first SzA:

SzA ρ̃A = TrB

(
SzAq

2SzBL
−2SzBR ρ̃

)
(2.93)

= TrB

(
(Sz − SzBL

− SzBR
)q

2SzBL
−2SzBR ρ̃

)
.
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Obviously SzBL
, SzBR

, SzA and Sz commute. Since Sz also commutes with ρ̃:

SzA ρ̃A = TrB

(
q

2SzBL
−2SzBR ρ̃Sz

)
− TrB

(
q

2SzBL
−2SzBR ρ̃SzBL

)
− TrB

(
q

2SzBL
−2SzBL ρ̃SzBL

)
.

For the two last terms a cyclic permutation under the trace is performed. We can now sum
all terms and this proves [SzA, ρ̃A] = 0. Next the same is done for S+

A :

S+
A ρ̃A = TrB

(
S+
A ρ̃ q

2SzBL
−2SzBR

)
= TrB

(
(q
−SzBL

+SzBRS+ − q−S
z
A−S

z
BLS+

BL

−qS
z
A+SzBRS+

BR
)ρ̃q

2SzBL
−2SzBR

)
≡ (1)− (2)− (3) . (2.94)

The first term (1) of the right-hand side reads

(1) = TrB

(
q
−SzBL

+SzBRS+ρ̃q
2SzBL

−2SzBR

)
= TrB

(
q

2SzBL
−2SzBR ρ̃S+q

−SzBL
+SzBR

)
thanks to the cyclic permutation under the trace and the commutation of ρ̃ and S+. We
then deal with the second term (2) involving S+

BL
:

(2) = TrB

(
q
−SzA−S

z
BLS+

BL
ρ̃q

2SzBL
−2SzBR

)
= TrB

(
S+
BL
q−S

z
A ρ̃q

SzBL
−2SzBR

)
= TrB

(
q
−Sz+SzBR

+SzBL ρ̃q
SzBL
−2SzBRS+

BL

)
= TrB

(
q
−SzBR

+SzBL ρ̃q
−Sz+SzBLS+

BL

)
= TrB

(
q
−2SzBR

+2SzBL ρ̃S+
BL
q
−SzA−S

z
BL

)
,

thanks to cyclic permutations of the operators over the subsystem B, the commutation of Sz
with ρ̃ and the commutation of SzBL

with SzA and SzBR
. Similarly for the term (3) involving

S+
BR

:

(3) = TrB
(
q
SzA+SzBRS+

BR
ρ̃q

2SzBL
−2SzBR

)
= TrB

(
q
−2SzBR

+2SzBL ρ̃S+
BR
q
SzA+SzBR

)
.

By regrouping the terms we find the desired property S+
A ρ̃A = ρ̃AS

+
A . A very similar compu-

tation can be done for S−A .

42



S̃A = S̃B for the QG EE. A meaningful entanglement entropy must satisfy, at the very
least, the symmetry property SA = SB, meaning that subsystem A is as entangled with B, as
B with A. We now show that this is the case for the quantum group entanglement entropy.
Let us consider the case q ∈ R. The proof is then simple and can be extended by analytic
continuation to complex q. In this case the Hamiltonian is symmetric, and |0〉 ≡ |0R〉 = |0L〉.
We again divide our system in two pieces A and B with a cut in the middle (for more
complicated cuts the argument is similar) and write the state in the following way:

|0〉 =
∑
i,j

ψi,j|i〉A|j〉B . (2.95)

The bases |i〉A and |j〉B can be chosen such that they have a well-defined magnetization. As
a consequence, since the groundstate |0〉 is in the zero-magnetization sector, we can define
those bases such that the matrix ψi,j is block-diagonal and where each block correspond to a
sector of A and B with a well-defined magnetization. A singular value decomposition (SVD)
is performed, leading to the Schmidt decomposition

|0〉 =
∑
α

sα|α〉A|α〉B , (2.96)

where |α〉A and |α〉B are eigenvectors of SA and SB; they form orthonormal bases of A and
B. The density matrix ρ̃ is

ρ̃ =
∑
α,α′

sαsα′ |α〉A|α〉B〈α′|A〈α′|B . (2.97)

The reduced density matrices ρ̃A and ρ̃B read

ρ̃A = TrB q
−2SB ρ̃ =

∑
α

s2
αq
−2SαB |α〉A〈α|A ,

ρ̃B = TrA q
−2SA ρ̃ =

∑
α

s2
αq

2SαA|α〉B〈α|B .

Since the ground state is in the S = 0 sector q2SαA = q−2SαB and thus the two reduced density
operators have the same spectra and define the same entropy. This proves the statement
S̃A = S̃B in the case of a cut in the middle of the system.

2.4 The scaling relation of the quantum group entanglement en-
tropy

This section presents the derivation of the scaling relation for the quantum group entangle-
ment entropy. We start with a brief reminder on Coulomb gas and the computation of the
scaling law of the entanglement is performed in this formalism. The quantum group entan-
glement entropy is shown to behave as expected in unitary conformal field theory with the
true central charge. Numerical analysis using DMRG is given at the end of this section.
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2.4.1 A brief introduction to Coulomb Gas

The Coulomb gas approach is useful to describe the continuum limit of two-dimensional loop
models [28,31,105]. In particular, it is particularly powerful to describe systems such as the
Potts model (like in this chapter) or the O(n) model. Suppose the system is on a cylinder, the
Coulomb gas method describes a soup of oriented loops, that are level lines of a compactified
height field. In the continuum, it is described by a field φ(x) with the action

S =
g

4π

∫
d2x (∇φ)2 . (2.98)

which is the Euclidean action of a free compactified boson φ(x) + 2π = φ(x). The parameter
g controls the rigidity of the height surface and is related to the loop fugacity by

n = −2 cosπg. (2.99)

The central charge of this theory is simply c = 1. In this formalism, the non-contractible
loops encircling the cylinder do not have the fugacity n. This is solved by introducing an
electric background charge at both infinite ends of the cylinder, which introduces a term in
the action of the form

SB =
ie0

4π

∫
d2xφ(x)R(x) (2.100)

where R is the scalar curvature. On a cylinder, it takes the simple form SB = ie0(φ(x,∞)−
φ(x,−∞) where the charges are located at both infinite ends of the cylinder. On the lattice it
creates a twist similar to what has been described in different geometries earlier. The central
charge of the twisted theory is

c = 1− 6e2
0

g
(2.101)

with e0 = 1− g.

2.4.2 The replica trick and the modified scaling relation

We now claim that for the critical quantum group invariant XXZ chain with Hamiltonian
H = −

∑
ei, the Rényi and Von-Neumann entropies scale as expected in a conformal field

theory, with the true central charge. The simplest argument for this relies on a field theoretic
analysis. We follow the Cardy and Calabrese [94] replica calculation extended to the non
unitary case, the density operator is ρ̃ = |0R〉〈0L|.

With N replicas in the Coulomb Gas formalism, there are N bosonic fields φ1, . . . φN . An
essential complication arises because of the cut: the loops winding N times around one of
the extremities should still have weight n, while, due to the collection of phases gathered in
the winding, the complex Boltzmann weights conspire to give them the weight ñ = 2 cosNγ.
This issue was discussed earlier and a picture was given figure 2.5b. The problem of the non-
contractible loops fugacity can be repaired by the introduction of electric charges at the two
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extremities of the cut. In practice, in the field theory, vertex operators exp[iel,r(φ1+. . .+φN)]
are inserted at the left and right extremities of the cut. The charges el,r are respectively the
charges of the vertex operators inserted at the left and right of the cuts and are tuned
conveniently to compensate the extra phases. An oriented loop surrounding both extremities
first gathers a weight e±iπe0 due to the complex turning weights with a sign depending on
the orientation. The two vertex operators provide the additional weight e±iπ(el+er). The total
complex weight must satisfy

eiπ(e0+el+er) = eiπe0 or eiπ(e0+el+er) = e−iπe0 (2.102)

to give the correct loop fugacity. In addition, a loop that surrounds only one extremity of
the cut gets a weight

e±iel,rNπe±iNπe0 = e±iNπ(el,r+e0) (2.103)

which must also be set to e±iπe0 or e∓iπe0 . A solution to the condition (2.102) is to parametrise
the charges as follows

el = e− e0, er = −e− e0 (2.104)

where e is a free parameter. The condition on equation (2.103) provides the value of e

e = e0/N (2.105)

and thus

el =
e0

N
− e0, er = −e0

N
− e0. (2.106)

To evaluate the partition function, the boundary conditions along the cut φj(e2iπz) = φj+1(z)
(j modN) must be implemented. To do so, combinations of the fields are formed such
that they obey twisted boundary conditions on the cut. For instance, with N = 2, the
combinations φ+ = φ1+φ2√

2
and φ− = φ1−φ2√

2
can be formed. While φ+ is uniquely defined (and

does not see the cut), φ− now is twisted, φ−(e2iπz) = −φ−(z). For arbitrary N , the field
φsym ≡ φ1+...+φN√

N
is symmetric, while the others are twisted by angles e2iπk/N , k = 1, . . . , N−1.

The k-th twist field in a complex bosonic theory is known to have the conformal weight [106]

hk/N =
1

2

k

N

(
1− k

N

)
. (2.107)

The partition function, for a cut of length `, is given by a combination of two-point functions
of those fields. We can write their contribution as Ztwist

N

Ztwist
N ∝ `−2xtwist (2.108)

with

xtwist =
N−1∑
k=1

hk/N =
1

12

(
N − 1

N

)
(2.109)
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The second contribution to the partition function comes from the insertion of vertex operators
at the ends of the cut. This term is not present for an untwisted theory, as in the continuum
limit of the XXX chain. The additional contribution Zcharge

N , corresponding to the two-point
function of vertex operators with charges el,r, reads

Zcharge
N ∝ `−2xcharge

N (2.110)

with

xchargeN = N
e2 − e2

0

2g
=
e2

0

2g

(
1

N
−N

)
. (2.111)

Gathering every term together provides the asymptotic behaviour of the partition function

ZN ∝ `−
1
6(N− 1

N )(1− 6e20
g

). (2.112)

Using that e0 = 1
x+1

and g = x
x+1

for the spin chain with q = eiπ/x+1, this gives us the Reny
entropies

S̃
(N)
L =

1

6

(
N − 1

N

)[
1− 6

x(x+ 1)

]
lnL (2.113)

and the entanglement entropy as

S̃L = S̃
(1)
L =

1

3

[
1− 6

x(x+ 1)

]
lnL (2.114)

hence establishing our claim, with the central charge given in (2.101).
We emphasize that the Uqsl(2) spin chain differs from the usual spin chain simply by the

presence of boundary terms. It is expected that the properties of the ordinary entanglement
should not be affected by these terms, and that the central charge obtained via the density
operator ρ = |0〉〈0| is c = 1, which one can consider in this case as the effective central charge
in the vertex representation [107].

2.4.3 Numerical analysis

Those predictions can be checked numerically. They are illustrated on the generic case
q = e2iπ/5 with central charge c = −3/5 figure 2.6. The ground state is obtained using matrix
product state methods. Of course the Hamiltonian being non-Hermitian, it is important
to be careful in the numerical scheme. As mentioned in the first chapter, one possibility is
simply to take a random state and evolve it in imaginary time. Of course the usual variational
approach does not work a priori. We are able to reach a length of 2M = 400 sites. First
the naive entropy, obtained by taking the usual trace and a density matrix involving only
the right ground state, is considered and shown to scale with ceff = 1. The quantum group
entanglement entropy is also computed and shown to scale with the real central charge c.
Lastly we show that, putting a twist to non-contractible loops such that their weight ñ is
ñ = 2 cosπ/5 leads to the effective central charge obtained in the RSOS model and non-
unitary minimal models. This connection with RSOS models is discussed more extensively
in the following.
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Figure 2.6 – Numerical EE for the non-unitary case (p,m) = (2, 4) (n = 2 cos 2π
5
), versus

the (normalised) length of the cut `/M , for a chain with M = 400 sites and open boundary
conditions. Green dots show the usual EE with the unmodified trace. Averaging over the
parity oscillations (solid curve) reveals the scaling with cXXZ = 1. Red dots show the N = 2
Rényi entropy, with the modified trace giving weight ñ = 2 cos π/5 to non-contractible loops;
this scales with ceff = 3/5. Blue dots again show S̃(2), but with ñ = n; the scaling then
involves the true central charge c = −3/5.

2.5 Extensions

In this section, the Coulomb gas approach is applied to several problems. First the case
of RSOS models, a lattice discretisation of minimal models, is discussed. The scaling of
the entanglement entropy is shown to involve the effective central charge of non-unitary
minimal models. A detailed analysis of the mapping between the RSOS model and the loop
model on the N -sheeted Riemann surface is given. Our approach can be easily generalised
to other kinds of system, in particular the simple case of the supersymmetric sl(2|1) chain
is presented. At the end of this section, some ideas and preliminary results are given in the
case of non-compact conformal field theories.

2.5.1 Restricted Solid-on-Solid models

The Restricted Solid-On-Solid models (RSOS) provide a discretisation of minimal models on
the lattice. This section presents the connection between the Coulomb Gas analysis for the
entanglement entropy and the case of minimal models. Before presenting our results we start
with a brief description of those systems.
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Figure 2.7 – Surface with N = 2 replicas. Black edges along the planes represent boundary
conditions (height fixed to hbdy). The top and bottom are identified. Non-contractible loops
always wind N times. Moreover, only the outermost loop (red here) sees the boundary
directly.

RSOS models are labelled by two parameters p and m+1 satisfying gcd(p,m+1) = 1 and
1 ≤ p ≤ m. It provides another representation of the TL algebra with n = 2 cos πp

m+1
[108,109].

The degrees of freedom in this model are heights at the corner of each face in a square lattice.
Each site i is associated a height hi. These heights live on a Dynkin diagram Am and have m
possible values hi = 1, . . . ,m. Two neighbouring sites i and j must have a height difference
of 1: |hi − hj| = 1. The weight of a face is

W

(
hk hj
hi hl

∣∣∣∣∣u
)

= u

hj

hl

hk

hi

= sin(λ− u)δhi,hj + sin(u)δhk,hl

√
ShiShj
Shk

(2.115)

where u is the spectral parameter, λ = pπ
m+1

the crossing parameter and Sh = sinhλ/ sinλ.
The right part of the interaction of equation (2.115), ei = δhi−1,hi+1

√
ShiSh′i/Shi−1

, satisfies
the Temperley-Lieb relations. Note that in the quantised formulation time is in the top-
right direction and ei acts on three heights hi−1, hi and hi+1. With the boundary conditions
h0 = hM = 1, the ground state |0〉 has the same energy as in the other representations. This
holds in the non-unitary cases p > 1, provided we resolve the square root as

√
ShiSh′i = Shi

when Shi = Sh′i < 0.
We discuss here in more details the correspondence between the RSOS and loop models

for the calculation of the Rényi entropies. For simplicity, only open boundary conditions are
considered with the boundary heights hbdy fixed to 1 and the cut is located at the edge of
the system (figure 2.7).

Loops surround clusters of constant height. When a loop makes a right (resp. left) turn
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by bouncing off a piece of a cluster, it gets a weight
√
Sa/Sb (resp.

√
Sb/Sa) where a and b

are the heights of the adjacent clusters (cluster of height b on the left, and a on the right).
The amplitude Sh is defined by

Sh =
sinhλ

sinλ
, (2.116)

with λ = pπ
m+1

. After summing over all possible heights, loops pick a weight

n = 2 cos
pπ

m+ 1
=
Sh−1 + Sh+1

Sh
(2.117)

if they are homotopic to a point. Let us consider the Rényi entropies for N > 1. In the
replica picture, the weight of loops on the N -sheeted surface, shown in figure 2.5b for N = 2,
must be carefully computed. The weight of a non-contractible (resp. contractible) loop on
this surface, surrounding a cluster of height of height h and surrounded by a cluster of height
h′, is (Sh′/Sh)

N (resp. Sh′/Sh), due to the 2πN winding of non-contractible loops; this must
finally be summed over all possible paths in the Dynkin diagram. For instance, consider the
case of figure 2.7, with N = 2 and two non-contractible loops. The first loop is the boundary
between a cluster of height hbdy = 1 on its left and h = 2 on its right. It picks up a factor
S2

2/S
2
1 . The second loop can either surround a cluster of height 1 or 3, therefore it gets a

factor (S2
3 + S2

1)/S2
2 .

In the general case, we consider heights living on the Am Dynkin diagram, and define the
following matrix

(ΛN)i,j = δ|i−j|,1 (Si/Sj)
N i, j = 1, . . . ,m. (2.118)

Thus, ΛN is the adjacency matrix with the non-contractible loop weights on N replicas. The
matrix element (Λk

N)hbdy,hk is the weight of the configuration with k non-contractible loops,
where the boundaries are fixed to hbdy and the last loop surrounds a cluster of height hk.
Since we sum over the height of the last cluster and we fix hbdy = 1, the full weight is
〈hfree|Λk

N |hbdy〉 where 〈hfree| = (1, . . . , 1) and |hbdy〉 = (1, 0, . . . , 0)T . The weight of a set of k
contractible loops is then

w =
m∑
i=1

〈hfree|λi〉〈λi|hbdy〉λki , (2.119)

where |λi〉 and 〈λi| are the right and left eigenvectors of ΛN associated to the eigenvalues λi,
for i = 1, . . . ,m.

We hence need to sum over sectors where the weight of non-contractible loops is given by
the different eigenvalues of ΛN . Notice that the characteristic polynomial depends only on the
products (ΛN)i,j (ΛN)j,i = 1 (expand by the minors of the first column). Therefore it remains
unchanged if ΛN is replaced by the usual adjacency matrix, with elements Λi,j = δ|i−j|,1. The
spectra of the adjacency matrices of Am Dynkin diagrams are {λk = 2 cos kπ

m+1
}k=1,...,m. The
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normalized eigenvectors of ΛN are found [110] as

|λk〉i =

√
2

m+ 1

(
sin ipπ

m+1

sin pπ
m+1

)N

sin

(
ikπ

m+ 1

)
,

〈λk|i =

√
2

m+ 1

(
sin ipπ

m+1

sin pπ
m+1

)−N
sin

(
ikπ

m+ 1

)
(2.120)

for i = 1, 2, . . . ,m. Finally, the RSOS partition function with N replicas and a boundary is
a sum of loop partition functions Z loop

N,k , where non-contractible loops get a weight λk, i.e.,
ZRSOS
N =

∑m
k=1 αkZ

loop
N,k . The prefactor αk can be computed from the eigenvectors of ΛN :

αk = 〈hfree|λk〉〈λk|hbdy〉 (2.121)

=
2

m+ 1

(
sin

hbdykπ

m+ 1

)1−N m∑
i=1

(
sin

ipπ

m+ 1

)N
sin

ikπ

m+ 1
.

The dominant contribution comes from non-contractible loop with the largest possible weight,
2 cos π

1+m
; this is because the corresponding sector is associated with the smallest electric

charge. In the limit where the system size goes to infinity we thus have ZRSOS
N ∼ α1Z

loop
1 . As

a consequence, the scaling of the entanglement entropy is dominated by the partition of the
loop model where non-contractible loops have the weight ñ = 2 cos π

1+m
. In the Coulomb gas

analysis, it can be enforced by choosing the electric charge

e =
e0

pN
. (2.122)

With this choice, the quantity ZN/ZN is not well normalized. This quantity in the limit N →
1 should be 1 but, because the electric charge e 6= e0 at N = 1, it is not the case anymore. The
partition function Z of the RSOS model on a single plane is not the simple limit limN→1 ZN .
It is chosen here to renormalize ZN by the formal limit Z1 = limN→1 ZN corresponding to a
single copy of the RSOS model with the charges. Doing the same computation, it is found
that now

ZN
ZN

1

∝ `
− 1

6
(N−1/N)

(
1− 6e20

p2g

)
(2.123)

and therefore

S
(N)
A ∼ N + 1

6N
ceff log ` (2.124)

with ceff = 1− 6e20
p2g

the effective central charge of non-unitary minimal model.
Let us discuss a last aspect of the RSOS models. The detailed coefficient αk depends on

the boundary condition imposed on the left of the system. For fixed height hbdy, the prefactor
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in (2.121) contributes a term ln
(

sin
hbdykπ

m+1

)
. Recall now the expression (see e.g. [111]) of the

Affleck-Ludwig entropy [112], we restrict here to the unitary case p = 1 for simplicity:

g1hbdy =

[
2

m(m+ 1)

]1/4
[

2
sin π

m

sin π
m+1

]1/2

sin
πhbdy

m+ 1

The hbdy dependence of the O(1) contribution to the Rényi entropy matches the (logarithm
of) the degeneracy factor g1hbdy . Meanwhile, it is well known that fixing the RSOS height
to hbdy corresponds to the boundary condition (hbdy = 1) in the above notation, while it
is also known that the conformal boundary condition contributes to the entanglement by a
factor O(1) which is precisely the logarithm of the degeneracy factor—the Affleck-Ludwig
entropy [112]. Our calculation thus reproduces this subtle aspect of the entanglement entropy
as well.

Note that, despite the relative freedom offered by the coefficients αk, there does not seem
to be any satisfactory way to concoct a boundary condition for which the leading term αk=1

cancels out for all N .

2.5.2 A supersymmetric example

Percolation and other problems with supersymmetry have Z = 1, hence c = 0, and the
entanglement entropy scales trivially. Having a quantity that distinguishes the many c = 0
universality classes would be very useful. We now show that, by carefully distinguishing left
and right eigenstates, and using traces instead of supertraces, one can modify the definition
of entanglement entropy to build such a quantity. This is illustrated by the sl(2|1) alternating
chain [113] which describes percolation hulls. This chain is encountered later in chapter 4
where the supersymmetric formalism is given. In the following, the focus of the discussion is
on the geometrical interpretation of this chain in terms of loops.

The sl(2|1) chain is a representation of the Temperley-Lieb model (2.32) with n = 1. The
Hilbert space H, for a chain of length 2M is

H =
(
V ⊗ V

)⊗M (2.125)

where V is the fundamental representation V = {|1〉, |2〉, |3〉}) of sl(2|1) and V its conjugate
V = {|1̄〉, |2̄〉, |3̄〉}. The states |1〉 and |2〉 are bosonic and |3〉 is fermionic and similarly
for V . A loop is given a fugacity corresponding to the supertrace on its internal degrees of
freedom. The supertrace STr(...) being simply Tr((−1)F ...) (F counts the number of fermion),
it gives a weight +1 to a bosonic loop and −1 to a fermionic loop. The loop fugacity is thus
n = 1 + 1− 1 = 1. The Hamiltonian on two sites is H = −e1 and reads

e1 = (|11̄〉+ |22̄〉+ |33̄〉) (〈11̄|+ 〈22̄|+ 〈33̄|) .

The eigenvectors are |0R〉 = |11̄〉+ |22̄〉+ |33̄〉 and 〈0L| = 〈11̄|+ 〈22̄|+ 〈33̄|. Note that, despite
its misleading appearance, H is not Hermitian because the state |3̄〉 has a negative norm:
〈3̄|3̄〉 = −1. The density operator is ρ̃ = e1 and satisfies STr ρ̃ ≡ Tr(−1)F ρ̃ = 1. In the
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same spirit as for quantum group entanglement entropy of the 6-vertex model, the entropy
is defined with the supertrace to give the weight n = 1 to all loops. The reduced density
operator is

ρ̃A = STrB ρ̃ = |1〉〈1|+ |2〉〈2|+ |3〉〈3| (2.126)

where A is the first site. We can compute the entanglement entropy and first remark that
STr ρ̃NA = 1 for all N . Therefore all Rényi entropies are trivial (SAN = 0) as expected for
percolation (c = 0). It is instead more interesting to consider the usual normal trace of
ρ̃A. It changes the normalisation to ensure Tr ρ̃A = 1. A straightforward computation shows
ρ̃NA = 1

3N
(|1〉〈1|+ |2〉〈2|+ |3〉〈3|) and thus S̃(N)

A = ln 3. This equals the quantum group Rényi
entanglement entropy with n = 3. This calculation carries over to arbitrary size. One finds
that S̃A = S̃A,` with weight n = 1, provided that non-contractible loops winding around one
cut end in the replica calculation get the modified weight ñ = 3 instead of n. We can then
use the Coulomb gas framework developed in the context of the non-unitary minimal models
to calculate the scaling behaviour. For percolation g = 2

3
(n = 1), and ñ = 2 cos πe0. It

follows that e0 is purely imaginary, in the end

S(N) ∼ N+1
6N

ceff logL (2.127)

with

ceff = 1 +
9

π2

(
log

3 +
√

5

2

)2

∼ 1.84464 . . . . (2.128)

.

2.5.3 Entanglement entropy in the non-compact case

The case of non-compact conformal field theories is also interesting from the entanglement
entropy point of view. The partition function on a N -sheeted Riemann surface is written as
a correlation function of twist fields

ZN
ZN

= 〈TN(0)T̃N(`)〉. (2.129)

Correlations on a lattice for non-compact models may involve a continuum of critical expo-
nents. Therefore it is expected, in some cases at least, that the two-points function of twist
fields, measured on a lattice, will have the form

〈TN(0)T̃N(`)〉 =

∫ ∞
x=0

dxρ(x)`−2∆TN+x (2.130)

where ∆TN is the conformal weight of the twist fields and ρ(x) plays the role of a density and
is non-universal. In the limit `→∞, the behaviour is dominated by a term of the form

〈TN(0)T̃N(`)〉 ∼ lim
`→∞

`−2∆TN log `αρ (2.131)
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where αρ depends on the precise behaviour of ρ in the vicinity of x = 0. As a consequence,
taking the logarithm of this correlation functions leads to a term log log ` in the entanglement
entropy. The prefactor seems, a priori, non-universal. It is possible to use our study of RSOS
models to observe this term. As an example of non-compact CFT we consider the c = 1
Liouville theory, which is obtained by taking the m→∞ limit of the unitary CFTs based on
the Am RSOS models [114]. Going back to the calculation in the preceding subsection, and
writing the contributions from all possible loop weights, we get the partition function for the
N -replica model in the form

ZN ∝ L−
1
6

(N− 1
N

)(1−6e20/g)

m∑
k=1

ck,NL
− e

2
0
g
k2−1
N , (2.132)

and

Z1 ∝
m∑
k=1

ck,1L
− e

2
0
g

(k2−1) . (2.133)

The coefficients ck,N are difficult to evaluate: they depend not only on the combinatorics of
the model, but also on the normalization in the continuum limit of the different insertions
of lattice vertex operators necessary to give the correct weights to non-contractbile loops.
Recall that e0 = 1

m+1
and g = m

m+1
. The limit m → ∞ is taken, following the construction

of [114]. To this end, we have to make an ansatz for the coefficients ck,N . Many comments
in the literature suggest that the dependency on N is negligible. Assume for extra simplicity
that the ck,N are essentially constant as a function of k (this is all up to a lattice-cutoff
power-law dependency, which we put in the L term). Replacing sums by integrals when m
is large, the partition function reads

ZN
ZN

1

∼ L−
1
6

(N− 1
N

)

∫∞
0

dxL−x
2/N(∫∞

0
dxL−x2

)N . (2.134)

Note that the integral is extended to infinity, while since obviously x ∝ k
m
, it looks like it

should run only up to x = 1. There are two reasons for this: one is that at large L the
behavior is dominated by the region in the vicinity of x = 0. The other is that we have in
fact neglected all the contributions occurring from electric charges (in the lattice derivation)
shifted by integers. Accepting (2.134) and after evaluating the Gaussian integrals, the result
reads

ZN
ZN

1

∼ L−
1
6

(N− 1
N

)(lnL)
N−1

2 . (2.135)

Note that there are in fact additional factors ofm cropping up when the sums (2.132)–(2.133)
are transformed into integrals. They will only affect the entanglement by O(1) terms, so we
have neglected them.

Finally, taking minus the derivative of (2.135) at N = 1 to get the entanglement entropy,
we obtain

S =
1

3
lnL− 1

2
ln(lnL) , (2.136)
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whereas for the Rényi entropy we get

S(N) =
N + 1

6N
lnL− 1

2
ln(lnL) . (2.137)

The argument hinges crucially on the absence of a non-trivial (power-law) dependency
of the ck,N on k. Since these coefficients depend, in part, on the correspondence between
lattice and continuum, this may well provide a non-universal contribution to the ln(lnL)
term. Other examples of log logL corrections were found in the case of a free boson [115,116]

2.6 Comparisons and conclusion

This chapter ends with a brief comparison to other works on this problem. We start by
discussing the first approach, by Bianchini and al.’s approach [91]. They studied the entan-
glement entropy for non-unitary minimal models and more generally PT -symmetric systems.
The work of Dupic and al. [117] is also interesting and can be compared with our approach.
Using null vector conditions they can compute precisely correlation functions of twist field
in the RSOS model.

2.6.1 Entanglement in non-unitary minimal models

In [91] Bianchini, Castro-Alvaredo, Doyon, Levi and Ravanini study the Rényi entanglement
entropy in general non unitary conformal field theories. In particular they focus on the
case where the ground state breaks conformal invariance. In others words, they assume the
existence of a negative conformal weight hmin < 0. The Rényi entropy is identified with the
correlation function of the twist field

Tr ρNA =
〈Tφ(0)T̃φ(`)〉
〈φ(0)φ(`)〉N

(2.138)

where φ is the field of dimension hmin < 0 and Tφ is the twist field associated to φ on the
N -sheeted Riemann surface. The main result is the modified scaling of the entanglement
entropy

SN ∼
ceff(N + 1)

6N
log ` (2.139)

with the usual form of the effective central charge ceff = c−24hmin. A particularly interesting
finding is that for logarithmic conformal field theory where the ground state is mixed in a
Jordan cell, an additional log log ` terms appear as a subleading factor of (2.139). Our results
are in agreement with this formula in the case of RSOS non-unitary minimal models for open
boundary conditions.

2.6.2 The null-vector conditions in the cyclic orbifold

A different approach was proposed by Dupic, Estienne and Ikhlef in a recent paper [117].
Similarly to the papers just mentioned, they also consider the case of rational non-unitary
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models and, for their lattice regularisation, the RSOS models. Null-vector conditions were
originally used to compute the conformal dimension of twist fields but they were able to
exploit them fully by computing entanglement entropies as four-point functions. Their results
involve much more complicated scaling behaviours than ours. The main restriction of their
approach is the limitation to rational CFTs and the computational cost to explicit four-
point functions. In particular, they study the Yang-Lee model and their definitions of the
entanglement entropies are not simple two-point functions. They consider a mapping of
higher power of the reduced density matrix, within the formalism of the orbifold, such that

Tr ρNA = 〈φ|Tφ(0)T̃φ|φ〉 (2.140)

where φ = φ⊗N . It is a non-trivial function of `. This result seems to be in apparent
contradiction with our work. However, there are several differences with the quantities we
considered. First in their paper they study the Rényi entropies with periodic boundary
conditions. This is an important distinction since our mapping between RSOS and the
loop model is done only in the open case. It is indeed more complicated to do the same
analysis if there are several types of non-contractible loops. Moreover, in our entropy in the
RSOS model, the boundary conditions correspond to the ones of the loop model, selecting
effectively the conformal vacuum for the state at infinity instead of |hmin〉. Thus we indeed
have a two-point functions and our analysis holds. However a difference remains. In the
section 2.5.1 on RSOS, the reduced density matrix was renormalized such that Tr q̃2SzAρA = 1
with q̃ the twist related to the weight of non-contractible loops. This normalisation factor
is important to take the analytic continuation of the Rényi entropies. In practice, it divides
the two-point functions of the twist field by the two-point function of φ in one replica such
as in equation (2.138). This is artificial and remains an important difference with the work
of Dupic, Estienne and Ikhlef where this renormalisation is not done.
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3 Truncations of non-compact loop models
This chapter presents our work on non-compact lattice models and the on-site truncation
approach. The first system considered here is the Chalker-Coddington model with its first
truncation introduced in [37]. We start with a short presentation of the Chalker-Coddington
model and its mapping to a supersymmetric model.

3.1 The Chalker-Coddington model

3.1.1 Definition as a one-particle model

The Chalker-Coddington model [12] is a network representation of the discrete time evolution
of a single-electronic wave function in a disordered potential subject to a transverse magnetic
field (for a review see [118]). An eigenstate has a non-zero wave function amplitude along
equipotential lines of the disordered potential. If the energy of this equipotential is lower
(resp. higher) than a certain threshold value the electron is trapped around a local minimum
(resp. extremum). In both cases, the state is localised and does not contribute to the con-
ductivity. Only at specific energies, close to the centre of Landau bands, the equipotentials
percolate and the wave function propagates in the entire system. Such a state is delocalised
and contributes to the electric current. It is possible to imagine a classical picture where
an electron drifts along an equipotential line because of the strong magnetic field. If two
equipotential lines are close enough to each other, the wave function can propagate by quan-
tum tunnelling. In the classical picture, an electron has a non-zero probability to go through
a small barrier of potential and jump between two equipotentials. The Chalker-Coddington
model is thus a model of quantum percolation.

Let us present the oriented network description of this model. The equipotential lines,
along which the magnetic field imposes a directed motion, are modeled by the edges of an
oriented square lattice. The vertices represent the saddle points where these lines are close
to each others and where quantum tunnelling occurs. Each face of the odd (resp. even)
sublattice is a minimum (resp. maximum) of the potential as seen in figure 3.1. Of course,
since the potential is random, the length of an edge connecting two saddle points is also a
random quantity and the network is drawn as a regular square lattice only for convenience.
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Figure 3.1 – Oriented lattice of the Chalker-Coddington model. Faces are extrema of the
random potential. Each edge represents an equipotential line linking two saddle points. An
electron, under the action of the strong magnetic field, always drifts in the clockwise direction
around maxima and anti-clockwise around minima.

In this model of non-interacting electrons the energy appears as a parameter whose tuning
allows to observe the plateau transition via the delocalisation of the wave function. The wave
function ψ of a single electron is discretised, each edge e is associated to a complex number
ψe. Thus ψ is the collection of all amplitudes

ψ = {ψe}e∈E (3.1)

with E the set of edges. Near a saddle point, see figure 3.2, the outgoing wave function
amplitudes ψ3 and ψ4 are related to the incoming amplitudes ψ1 and ψ2 by a scattering
matrix S (

ψ3

ψ4

)
= S.

(
ψ1

ψ2

)
(3.2)

where unitary evolution and conservation of probabilities impose S to be in SU(2). In
principle each vertex v can have a different scattering matrix Sv, but we assume that the
dynamic on all vertices of the even sublattice A (resp. odd sublattice B) is given by the
matrix SA (resp. SB). We can take, without any loss of generality, the following matrices

SS =

(
tS rS
−rS tS

)
(3.3)

where S = A,B and tA, tB, rA and rB are real amplitudes. Conservation of probability
imposes t2A + r2

A = 1 and t2B + r2
B = 1.
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ψ1

ψ2ψ3

ψ4

Figure 3.2 – Vertex in the Chalker-Coddington model. The two incoming amplitudes ψ1 and
ψ2 scatter and are related to ψ3 and ψ4 by a scattering matrix S. The possible oriented
trajectories of an electron are drawn.

Finally the disorder of the network is encoded on edges. When an electron moves along an
edge e, it acquires an Aharonov-Bohm phase φe that depends on the length le. Assuming that
le is much larger than the magnetic length lB =

√
~/|e|B, the phase φe is a random variable,

uniformly distributed between [0, 2π[. The propagation of the electron is thus characterised
by the unitary evolution

ψe ψ′e
e

(3.4)

with

ψ′e = eiφeψe. (3.5)

A time step t→ t+ 1 is encoded by the total evolution operator U

ψt+1 = Uψt (3.6)

with matrix element

Ue′,e = eiφeSe′,e. (3.7)

The amplitude Se′,e is the matrix element of the full scattering matrix

S =
⊗

vertex v

Sv (3.8)

with Sv = SA or Sv = SB depending on the sublattice. It acts on CNe where Ne is the
number of edges in the two-dimensional lattice. The system is critical for tA = tB and at the
isotropic point if tS = rS = 1/

√
2. Studying this model can be done by computing correlation

functions based on the Green’s function. The Green’s function is defined by

G(e2, e1, z) = 〈e2| (1− zU)−1 |e1〉 (3.9)
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with z a parameter related to the energy (z = 1 at criticality) and |e〉 is the state of CNe

associated to the edge e. The Green’s function is an important quantity involved in the
computation of physical observables.

The point conductance is an important physical observable measuring the transport prop-
erties of the system. By cutting two edges of a closed system, the transport properties are
measured by injecting a current at a point and draining at the other. It is discussed more
extensively in section 3.2.6. Let us state, for now, that the point contact conductance g,
between link e1 and a link e2, is defined as

g = |te1e2 |2 (3.10)

where te1e2 is the transmission amplitude

te1e2 = 〈e1|(1− U)−1|e2〉. (3.11)

Note that, to define the proper point conductance, from e2 to e1, the edges are cut open and
the action of the evolution operator becomes U|e1〉 = U †|e2〉 = 0. This is discussed more
precisely in 3.2.6. The quantity te1e2 is given by a sum over paths connecting the two edges
and is very similar to the Green’s function. Moreover, the point contact conductance is a
random quantity (it depends on all the phases φe), we thus average over disorder to get some
information about the statistics.

3.1.2 Supersymmetric formulation

The main quantity of interest here is |G|2, where the overline denotes the average over each
U(1) random phase. We here follow closely [37]. Let us start with the simple Green’s function
G(e2, e1, z). First let us associate a complex number b(e) to each edge e. The Green’s function
reads

G(e2, e1, z) =

∫
[Db] b∗(e2)b(e1) eSb∫

[Db] eSb
(3.12)

where the Gaussian measure is

Db =
∏
edge e

[
1

2π
db∗(e) db(e) e−b

∗(e)b(e)

]
(3.13)

and the action Sb is defined by

Sb = z
∑
e′,e

b∗(e′)Ue′,eb(e). (3.14)

The correspondence (3.12) can be simply seen by expanding the Green’s function in terms
of Feynman path γ from e1 to e2

G(e2, e1, z) =
∞∑
k=1

zk〈e2|Uk|e1〉 =
∑

γ(e2,e1)

Wγ(e2, e1, z) (3.15)
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with Wγ(e2, e1, z) the product of each weight of the form Ue′,e gathered along the path γ.
The computation of |G|2 = GG∗ is straithforward. We denote by b+ the bosonic variables
of the advanced Green’s function G(e2, e1, z) and by b− the bosonic variables of the retarded
Green’s function G(e2, e1, z)

∗, then

|G(e2, e1, z)|2 =

∫
[Db+] [Db−] b∗+(e2)b−(e2)b+(e1)b∗−(e2) e

Sb++S∗b−∫
[Db+] [Db−] e

Sb++S∗b−
. (3.16)

In order to progress, the average over disorder needs to be computed. However, the partition
function

Z =

∫
[Db+] [Db−] e

Sb++S∗b− (3.17)

is also dependent on the random U(1) phases at every edge. A computational method, known
as supersymmetric method, must be employed. Another possibility, known as the replica trick,
used in this thesis for the computation of the entanglement entropy, can also be used. This
was followed by Pruisken [119] and led to a description in terms of a sigma model with a field
living on the space limn→0 U(2n)/U(n)×U(n). In the following we follow the supersymmetric
approach. It consists in writing the inverse of the partition function (3.17) such that

1

Z
=

∫
[Df+] [Df−] e

Sf++S∗f− (3.18)

where f+ and f− are Grassmann (or equivalently fermionic) variables. We recall that two
fermionic variables anticommute f1f2 = −f2f1 and in particular f 2

1 = 0. The measure is
simply

Df =
∏
edge e

[
1

2π
df ∗(e) df(e) e−f

∗(e)f(e)

]
=
∏
edge e

[
1

2π
df ∗(e) df(e)(1− f ∗(e)f(e))

]
(3.19)

and the definition of the fermionic action Sf is very similar to the bosonic one

Sf = z
∑
e′,e

f ∗(e′)Ue′,ef(e). (3.20)

where complex conjugation for Grassmann variables is (f1f2)∗ = f ∗2 f
∗
1 . We now have

|G(e2, e1, z)|2 =

∫
[Db+] [Db−] [Df−] [Df+] b∗+(e2)b−(e2)b+(e1)b∗−(e2) e

Sb++S∗b−
+Sf++S∗f−(3.21)

thus Z = 1 and average over disorder can be performed. We thus compute

|G(e2, e1, z)|2 =

∫ ∏
e

[
dφe
2π

]
|G(e2, e1, z)|2 (3.22)
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by expanding the action in terms of Feynman paths. Considering a specific edge e, the con-
tribution of the integration over φe for a single term in the decomposition of the exponential
reads ∫ 2π

0

dφe
2π

eiφe(nb++nf+−nb−−nf− ) = δnb++nf+ ,nb−+nf−
(3.23)

where nc is the number of instances of the variable c on the edge e. In terms of trajectories,
nc is the number of times a Feymann path of a particle c goes through e. As a consequence,
the average over disorder selects only configurations where each edge carries the same number
of advanced and retarded particles.

3.1.3 The supersymmetric gl(2|2) spin chain

To proceed, it is convenient to introduce the formulation of the original model as a superspin
chain, corresponding to the second quantisation of the network model. In the following,
operators without a bar act on the states of even sites and operators with a bar on the states
of odd sites. The creation and annihilation operators satisfy the (anti) commutation relations

[
bα, b

†
β

]
=

{
fα, f

†
β

}
= δα,β , (3.24a)[

b̄α, b̄
†
β

]
= −

{
f̄α, f̄

†
β

}
= δα,β , (3.24b)

where α, β = +,−. All states can be obtained from the vacuum, denoted |0〉 on even sites
and |0̄〉 on odd sites, by the action of creation operators. The states for even sites are grouped
by quadruplet

|4n+ 1〉 =
1

n!

(
b†+b

†
−

)n
f †+f

†
−|0〉 (3.25a)

|4n+ 2〉 =
1√

n!(n+ 1)!

(
b†+b

†
−

)n
b†+f

†
−|0〉 (3.25b)

|4n+ 3〉 =
1√

n!(n+ 1)!

(
b†+b

†
−

)n
b†−f

†
+|0〉 (3.25c)

|4n+ 4〉 =
1

(n+ 1)!

(
b†+b

†
−

)n+1

|0〉 (3.25d)

with n ∈ N and for odd sites

|4n+ 1〉 =
1

n!

(
b̄†+b̄

†
−

)n
f̄ †+f̄

†
−|0〉 (3.26a)

|4n+ 2〉 =
1√

n!(n+ 1)!

(
b̄†+b̄

†
−

)n
b̄†+f̄

†
−|0〉 (3.26b)

|4n+ 3〉 =
1√

n!(n+ 1)!

(
b̄†+b̄

†
−

)n
b̄†−f̄

†
+|0〉 (3.26c)

|4n+ 4〉 =
1

(n+ 1)!

(
b̄†+b̄

†
−

)n+1

|0〉 (3.26d)
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Note that fermionic states on odd sites have norm squared equal to −1, as a consequence
of the anti-commutation relation for barred fermionic generators. All states in (3.25) and
(3.26) satisfy the constraint that comes from averaging over the U(1) disorder

b†+b+ + f †+f+ = b†−b− + f †−f−, or b̄†+b̄+ − f̄ †+f̄+ = b̄†−b̄− − f̄
†
−f̄−. (3.27)

The transfer matrix at a node of the sublattice A reads

R =
(
P ⊗ P̄

)
eztA(b†+b̄

†
++f†+f̄

†
+)+ztA(b†−b̄

†
−+f†−f̄

†
−)(zrA)(b

†
+b++f†+f++b†−b−+f†−f−)

×(zrA)(b̄
†
+b̄+−f̄

†
+f̄++b̄†−b̄−−f̄

†
−f̄−)eztA(b̄+b++f̄+f+)+ztA(b̄−b−+f̄−f−) (P ⊗ P̄) (3.28)

The operators P/P̄ project out states that do not respect the constraints (3.27). The minus
sign, in the anti-commutation relation of the fermions on odd sites (3.24b), is unusual but
important to ensure that closed fermionic paths have the weight −1. Indeed creation and
annihilation of a pair of fermions by the transfer matrix reads

〈0, 0̄|f̄ff †f̄ †|0, 0̄〉 = −1, with |0, 0̄〉 = |0〉 ⊗ |0̄〉. (3.29)

3.1.4 Exact results and critical exponents

In the continuum, educated guesses led to the description with the action of a sigma model.
The field Q lives on a supersymmetric space U(1, 1|2)/U(1|1)⊗U(1|1). This target space can
be decomposed as the product between a non-compact hyperboloid and a compact sphere.
The action reads

S =
1

16g2
σ

∫
d2z STr (∂µQ∂µQ)− θ

16π

∫
d2zεµν STr (Q∂µQ∂νQ) (3.30)

with gσ and θ some parameters. This action has a topological term, responsible for the
criticality of the system in presence of disorder (see [120] for a review).

An important aspect of the problem, where many results were found, is to characterise
the multifractal spectrum [121] of the Hall transition [122,123]. In this context, it is done by
studying the moments |ψ(r)|2q of a critical wavefunction. They follow the scaling law

Ld|ψ(r)|2q ∼ L−τq (3.31)

with τq ≡ d(q − 1) + ∆q and L the lattice size. The dimensions ∆q have been extensively
studied and exact results were found based on symmetries [124, 125]. This is connected
to a recent approach where lattice observables are studied carefully and the exponent was
conjectured to be purely parabolic

∆q = Xq(1− q) (3.32)

with X = 1/4 [126]. The interpretation of the observables in [126, 127] and the quantized
models studied in this chapter are discussed section 3.2.6. However, the study of the mul-
tifractal spectrum does not give access to the critical exponent ν. More recently, Zirnbauer
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proposed in [128] to describe the plateau transition in the IQHE as a deformed Gl(1|1)n=4

Wess-Zumino-Witten model. The exponent ν predicted is ν = ∞ and thus, this approach
remains at odds with all simulations of this exponent. It is nevertheless not incompatible in
the case of an RG-flow converging very slowly towards the fixed point. Very large system
sizes would show an increasing exponent ν.

Note also that, to describe the universality class of the IQHE transition, it has been
hinted that the disorder of the lattice may be an important qualitative property. In a recent
paper [129], the authors studied a network model with a randomised lattice structure and
found an exponent ν slightly different, in a better agreement with experience.

Nevertheless, a complete solution to the Chalker-Coddington model remains to be found
despite the subject being a very active topic of research. The first reason this model resisted
attempts to solve it comes from the infinite-dimensional on-site gl(2|2) representations. It is
not always clear how to apply, in general, ideas of integrability to this kind of space. Moreover,
the gl(2|2) super-spin chain is presumably not integrable [19, 130]. Of course, an approach
directly in the continuum is possible. However, it is hard to narrow down the possibilities
to a small set of candidates. The non-unitarity, indecomposability and irrationality of the
theory makes this task much harder than in the unitary case. Different approaches must be
considered, such as on-site truncations.

3.2 The first truncation as a loop model

The presence of an infinite number of local degrees of freedom makes the model very hard
to tackle analytically or numerically. It is a natural idea to investigate instead truncations
obtained by restricting the number of states on a given edge. Following Ikhlef et al. [37]
we define the truncation at level M by keeping only configurations such that the number of
particles on an edge for each type (+,−) is less or equal to M . The original network model is
known to be critical for z = 1 but the truncated model at this value is gapped, and criticality
is restored only in the limit M →∞. However it is possible to increase the particle fugacity
z such that the model becomes critical for finite M . We assume in the rest of the chapter
that z is real.

The original idea of studying such truncations comes from a work of Marston and Tsai [70].
Using DMRG techniques, the authors argued that the successive truncations of the gl(2|2)
Hamiltonian model defined by keeping 1 + 4M states at each site were not critical. However,
they showed that the gap in the spectrum goes to 0 asM →∞ and thus criticality is restored
in the limit of large order of truncations. However, no attempt was made to tune parameters
of the Hamiltonian in order to study these models as a series of critical models. This idea
was first discussed in the work of Ikhlef et al. [37], where they tuned the particle fugacity z
of the first truncation to restore criticality.

In the following, the first truncation is discussed. We start with a review of its construction
and the integrable deformation of Ikhlef, Fendley and Cardy. The symmetries are discussed
extensively and their spectrum compared. Then some comments are made on the physics of
the dense phase and possible connections with lattice observables are considered.
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3.2.1 Truncations as a loop model: the case M = 1

The interpretation of the Chalker-Coddington model as a two-color loop model applies nat-
urally to its truncations. We look into the case M = 1, already considered in [37]. Since
the truncations preserve the symmetry between bosons and fermions, each closed path has
weight n = 1 + (−1) = 0.

Let us expand the partition function

Z =

∫ ∏
e

[
dφe
2π

]
[Db+] [Db−] e

Sb++S∗b−
+Sf++S∗f− (3.33)

with terms involving the following combination of variables

Γσe2←e1 = (b∗σ(e2)bσ(e1) + f ∗σ(e2)fσ(e1)) (3.34)

where σ = +,−. Since we have at most 1 particle of each color per site, the expansion of the
partition function in terms of the functions Γ defines paths on the oriented lattice. If there
is a closed path (a loop), the weight of the configuration vanishes. Indeed

Γσe1←eNΓσeN←eN−1
. . .Γσe3←e2Γ

σ
e2←e1 = b∗σ(e1)

(
N∏
i=2

(bσ(ei)b
∗
σ(ei))

)
bσ(e1) (3.35)

+f ∗σ(e1)

(
N∏
i=2

(fσ(ei)f
∗
σ(ei))

)
fσ(e1) (3.36)

where we wrote only terms with a non-zero contribution after the integration over the inner
edges. When performing the integration over bosonic and fermionic variables, we find the
weight 1 + (−1) = 0 because of the anti-commutation of fσ(e1) with f ∗σ(e1). Note that the
following relation is true∫

e2

[Dbσ(e2)] [Dfσ(e2)] Γσe3←e2Γ
σ
e2←e1 = Γσe3←e1 (3.37)

so it is obvious that expanding the partition function in terms of these functions Γ is exactly
the same as keeping track of the connectivities of a loop model. We now derive the weight
of the different vertices. We drop the index σ since the colors interact only by having the
same number of strands of either colour at each edge. It suffices to derive the weights for one
flavour as the final interaction is a tensor product of the tiles for each colour that respects
the constraints. For a vertex

1

23

4 (3.38)
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we have the decomposition

eSb+Sv = exp

(∑
i=1,2

∑
j=3,4

b∗(ej)Si,jb(ei)

)
exp

(∑
i=1,2

∑
j=3,4

f ∗(ej)Si,jf(ei)

)

= exp

(∑
i=1,2

∑
j=3,4

Si,j (b∗(ej)b(ei) + f ∗(ej)f(ei))

)

= exp

(∑
i=1,2

∑
j=3,4

Si,jΓej←ei

)
= 1 +

∑
i=1,2

∑
j=3,4

Si,jΓej←ei + S13S24Γe3←e1Γe4←e2 + S14S23Γe4←e1Γe3←e2 (3.39)

where the terms, in the expansion of the last line, with more than one particle per site
have been dropped. The first contribution with weight 1 corresponds to the following empty
diagram

1

. (3.40)

The contribution
∑

i=1,2

∑
j=3,4 Si,jΓej←ei gives the 4 following diagrams (with their weights)

zt −zr zt zr

(3.41)

and the two last contributions are

z2t2 −z2r2

. (3.42)

The R-matrix encoding the local Boltzmann weights at each vertex is given by the product
of the interaction for each type (+/−) that we draw using two colours. The disorder average
adds the constraint that an edge is either empty or carrying two paths, one of each colour.

R = + z2t2
(

+

)
+ z2r2

(
+

)
−z4t2r2

(
+

)
+ z4t4 + z4r4 . (3.43)
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The monomer fugacity z has to be tuned in order for the model to be critical: an empty edge
has therefore a weight 1, and an edge with a pair of strands has a weight z2. In the M = 1
truncated model the critical value zC of z is not known exactly but was estimated numerically
to zC ' 1.03 > 1 in [37]. The natural interpretation is that restricting the occupation number
on each edge is compensated by weighting occupied edges with a fugacity z > 1.

In the following, the generalised watermelon operators are considered. In a loop model,
a conformal dimension x` measures the propagation of ` lines between two neighbourhoods.
In practice, it corresponds to the critical exponent obtained by considering a transfer matrix
sector propagating ` through-lines. In the first truncation, we thus defined the watermelon
exponents x`1,`2 propagating `1 red lines and `2 blue lines.

3.2.2 An integrable deformation

As discussed in [37], it is possible to slightly modify the truncated model to make it inte-
grable. This makes the use of Bethe ansatz calculations possible, hence allowing a much
more accurate and complete identification of the continuum limit. The question is however
whether the required “slight” modification matters, and in particular whether it changes the
universality class. As shown in [37], the integrable model involves the addition of two tiles
where the strands can go straight, with a corresponding integrable Ř matrix

Ř(ϕ) = t(ϕ) + u1(ϕ)

(
+

)
+ u2(ϕ)

(
+

)
+ v(ϕ)

(
+

)
+ x(ϕ)

(
+

)
+ w1(ϕ) + w2(ϕ)

(3.44)

Here the weights are

t(ϕ) = − cos (2ϕ− 3θ)− cos 5θ + cos 3θ + cos θ (3.45a)
u1(ϕ) = −2 sin 2θ sin (ϕ− 3θ) (3.45b)
u2(ϕ) = 2 sin 2θ sinϕ (3.45c)
v(ϕ) = −2 sin 2θϕ sin (ϕ− 3θ) (3.45d)
x(ϕ) = 2 sinϕ sin (ϕ− 3θ) (3.45e)
w1(ϕ) = 2 sin (ϕ− 2θ) sin (ϕ− 3θ) (3.45f)
w2(ϕ) = 2 sinϕ sin (ϕ− θ) (3.45g)

n = −2 cos 2θ . (3.45h)

The weights (3.45) contain an extra parameter θ, allowing to consider loops with a non-zero
fugacity n in the range |n| ≤ 2. The model relevant for the quantum Hall effect is retrieved
in the end by setting n = 0 for θ = 3π

4
.

The question of the equivalence between the first truncation of the Chalker-Coddington
model and this integrable modification is not obvious. This is due in large part to the fact
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Figure 3.3 – Structure of the Hilbert space on a given edge. The first panel (a) represents the
possible states corresponding to the quantum numbers nB and nF . The vector space can be
divided in quartet of states with an identical number of particles.The second and third panels
((b) and (c)) shows the action of F+ and F− within the first quartet (thus corresponding to
the first truncation).

that, in the integrable model, the loops can go straight, a fact which is incompatible with the
underlying orientation of the original Chalker-Coddington model. It is easier to understand
what this means, and how this might affect the universality class, by thinking in terms of
symmetries.

Using the Bethe ansatz equations, critical exponents of this integrable model can be
obtained analytically [77]. In particular, the watermelon exponents, propagating `1 strands
of the first colour and `2 strands of the second colour, are

x`1,`2,s =
`2

1 + `2
2

16
− 1

4
+ s2, `1, `2 6= 0, s > 0 (3.46)

with s a positive real number describing the continuum of critical exponents above a sector
with x`1,`2,0 at the bottom.

3.2.3 Symmetries

The truncation at level M only keeps the first 1 + 4M states of (3.25) and (3.26). Note that,
since after this truncation we need to tune the value of z to make the model critical, the
operator P (resp. P̄) gets modified in such a way that for every state in (3.25) (resp. (3.26)),
it gives a weight zN where N = nB + nF is the number of bosons and fermions in the state,
0 ≤ N ≤ 2M .

In the untruncated case (and thus z = 1), the transfer matrix (3.28) has gl(2|2) symmetry.
It is convenient in what follows to represent the Hilbert space on a given edge as in figure 3.3.
The state at the origin is the vacuum, while the “quartets” correspond to successive values
of n in (3.25) or (3.26), with the corresponding value of N = nB + nF = 2n+ 2.
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The four Cartans of gl(2|2) correspond essentially to the numbers of bosons/fermions of
type ±:

Cartan =

{
b+b

†
+ −

1

2
, f+f

†
+ −

1

2
,−b−b†− −

1

2
, f−f

†
− −

1

2

}
. (3.47)

The other generators of this algebra can be conveniently encoded in matrix form as

J =


b+b

†
+ − 1

2
b+f

†
+ b+b− b+f−

f+b
†
+ f+f

†
+ − 1

2
f+b− f+f−

−b†−b
†
+ −b†−f

†
+ −b−b†− − 1

2
−b†−f−

f †−b
†
+ f †−f

†
+ f †−b− f−f

†
− − 1

2

 . (3.48)

We see that some of these generators change the total number of particles: on the diagram
they would move between different quartets, i.e. different values of n. The first non-trivial
truncation is obtained by restricting to the first five states on a given edge, i.e., the vacuum
and the first quartet (n = 1).

In order to discuss the symmetries of the resulting model we introduce some notion about
the gl(1|1) symmetry. It is easy to see that if we denote the particle numbers as

b†+b+ + f †+f+ = N+ (3.49a)
b†−b− + f †−f− = N− (3.49b)

the new fermion operators defined as

F+ ≡ f+b
†
+ , F †+ = b+f

†
+ , (3.50a)

F− ≡ b†−f− , F †− = f †−b− (3.50b)

obey

{F+, F
†
+} = N+ , (3.51a)

{F−, F †−} = N− . (3.51b)

These are well known to be gl(1|1) commutation relations. And of course the F (†)
± generators

are part of the gl(2|2) symmetry: the matrix elements J1,2 and J2,1 in (3.48) reproduce
the fermionic generators (3.50a) of gl(1|1)+, while J3,4 and J4,3 reproduce the generators
(3.50b) of gl(1|1)−. Therefore we see that each quartet in figure 3.3 can be interpreted as
the tensor product of a pair of two-dimensional representations of gl(1|1)+× gl(1|1)−, where
each of the gl(1|1) acts on a given colour (±). In our model moreover, N+ = N−, so the two
representations are isomorphic.

This is all for one type of edge. Of course, for the other edges, we have the barred
generators, with the conjugate action

{F̄+, F̄
†
+} = −N̄+

{F̄−, F̄ †−} = −N̄− (3.52)
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which correspond to another (conjugate) pair of two-dimensional representations.
Restricting to N+ = N− = 1 (i.e., N = 2) gives the first non-trivial truncation. We

see that it retains the gl(1|1)+ × gl(1|1)− symmetry discussed above, here acting on the
tensor product (V ⊗ V ∗)⊗L, with the five-dimensional representations V = 1 ⊕ (�+ ⊗ �−)
for even sites and V ∗ = 1 ⊕ (�̄− ⊗ �̄+) for odd sites. We have here denoted the two-
dimensional representations of gl(1|1) simply by �, �̄, without reference to the number N ,
as representations with different values of N± 6= 0 are isomorphic.

For higher truncations, the symmetry is the same and acts again on a direct sum of the
identity and products of pairs of two-dimensional representations. Note that a key feature of
the untruncated model is that the different quartets and the singlet are all related by action
of gl(2|2) generators: this extra symmetry disappears in the truncations.

The presence of V and V ∗ modules is a consequence of the underlying orientation of
the Chalker-Coddington (CC) lattice. In geometrical terms, the arrows on the lattice edges
define a unique orientation for all the loops.

A key feature of the integrable modification introduced in [37] is that it allows vertices
which are not consistent with the CC orientation any more. This is a priori a dangerous
manoeuver, since it breaks an underlying symmetry of the original (truncated as well as
non-truncated) model.

To understand more precisely the link between lattice orientation and symmetry breaking,
it is useful to consider a simpler version of the problem where only one colour of loop would
be allowed. The model consistent with the orientation of the CC lattice would then be a
model of dilute self-avoiding loops on an oriented lattice. This model was studied in [131],
where it was called the dilute oriented loop model. A typical configuration of loops within
this model is shown in figure 3.4.

Figure 3.4 – A configuration of the dilute oriented loop model.

The modified model corresponding to this one-colour toy model would then be, by analogy,
the ordinary dilute loop model on the square lattice. This modification can be made integrable
by making an appropriate choice of the vertex weights.

We now discuss (following [131]) a path-integral description of the one-colour model for n
integer. In the oriented case, this is obtained by associating with every edge an n-dimensional
complex vector ~z subject to |~z|2 = 1. Consider a vertex such as the one shown in the first
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diagram in figure 3.5. A term ~z†A · ~zB will correspond to the arc drawn as in the second
diagram in this figure.

A

B C

D A

B C

D A

B C

D

Figure 3.5 – Examples of interactions at a vertex. The left panel shows an oriented vertex
with no arc, corresponding to the identity in the action. The panel in the middle has an
arc going from the edge B to the edge A corresponding in the action to the term (~z†A · ~zB).
The third panel on the right shows an other configuration with two colours coming from
(~z†A · ~zB)(~z†C · ~zD)(~w†A · ~wD)(~w†C · ~wB)

The convention is now that we go around a loop by following the arrows, and we take the
dagger (†) vector for the half edge exiting a given vertex, and the non-dagger vector for the
half-edge entering the vertex. Each of ~z and ~z† appears once, due to the definition of loops.
It is then possible to express the partition function of the dilute oriented loop model as

Z ∝
∫ ∏

edges e

d~ze e
−S . (3.53)

The corresponding action S contains a total of seven terms: in addition to the identity it
contains terms of the form (~z†A ·~zB)(~z†C ·~zD) and (~z†A ·~zD)(~z†C ·~zD), as well as (~z†A ·~zB), (~z†C ·~zD),
(~z†A · ~zD) and (~z†C · ~zD). The loop diagrams corresponding to two of these terms are shown in
the first two panels of Figure 3.5. This model has obviously U(n) symmetry. Indeed, once
the partition function is expanded in terms of loops, a local change of phase ~ze → eiφe~ze does
not change Z. As a matter of fact, the model is closely related to the sigma model on the
complex projective space CP n−1 = U(n)/U(n− 1)× U(1).

Of course this definition works only for n a positive integer. It can be extended to the
case n = 0 we are interested in after replacing U(0) by the appropriate supergroup U(p|p),
with p ≥ 1 integer. The simplest choice is obviously U(1|1).

It is possible to use, instead of a Euclidian version involving complex vectors, a transfer
matrix or Hamiltonian version or the oriented one-colour model. In this case, one needs to
put on every edge the direct sum of the trivial and the fundamental representation for one
orientation of gl(1|1), and the direct sum of the trivial and the conjugate fundamental for
the other. In other words, the “Hilbert space” is (V ⊗ V ∗)⊗L, with V = 1⊕� for even sites
and V ∗ = 1⊕ �̄ for odd sites.

Like the unmodified model, the modified one admits a different path-integral description
where every edge now carries a real n-dimensional vector ~u. This is because loop pieces can
connect either bonds of the CC lattice with compatible orientation, or bonds with opposite
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orientations, like those going straight through a vertex. This is only possible if the vectors
are self-conjugate. One can then write a model with a similar kind of action, involving
instead products of the type (~uA · ~uB)(~uC · ~uD). The possibility of going straight through a
vertex will lead to two new interactions, (~uA · ~uC) and (~uB · ~uD), so that the expansion over
loops now gives a total of nine diagrams, in accordance with [38]. The model has now O(n)
symmetry. Note that it is also possible to add an interaction of the form (~uA · ~uC)(~uB · ~uD)
that allows crossing at vertices without breaking this symmetry. Once the partition function
is expanded in terms of loops, a local change of sign ~ue → −~ue does not change the result.
When n = 0, O(0) can be given sense using an orthosymplectic supergroup, the smallest of
which is OSp(2|2).

Going from the oriented to the non-oriented model therefore breaks the symmetry from
U(n) to O(n), or, in the case n = 0, from U(2|2) down to OSp(2|2). In general, such
explicit symmetry-breaking does change the universality class. It was shown for instance
in [131], that, while the non-oriented model is in the universality class of O(n) criticality,
the oriented model is in fact in the universality class of O(2n). While these two universality
classes are different for general n, they coincide—remarkably—for n = 0. The corresponding
“self-avoiding walk” universality class is indeed extremely robust: not only is it insensitive
to the lattice orientation, it is also known to be unaffected by the introduction of crossing
vertices (giving rise to what is called self-avoiding trails [132]), which remains compatible
with O(n) symmetry.

The symmetry analysis of the first truncation of the Chalker-Coddington model is very
similar. In the Euclidian version, what we need now are two independent complex vectors,
~z and ~w, on each edge. Interactions are simple, but laborious to write down. For instance a
diagram such as the third one in figure 3.5 corresponds to (~z†A ·~zB)(~z†C ·~zD)(~w†A · ~wD)(~w†C · ~wB).
The symmetry is obviously U(n)×U(n)×Z2, the Z2 corresponding to the symmetry between
the two types of vectors (colours). In terms of spin chain, the Hilbert space for n = 0 is

H =
(
(1⊕ (�+ ⊗�−))⊗ (1⊕ (�− ⊗�+))

)⊗L (3.54)

where �+,�− are now fundamental (2p-dimensional) representations of U(p|p), and the total
symmetry is now U(p|p) × U(p|p) × Z2. It is then clear that the modification of this two-
colour model has lower symmetry, O(n) × O(n) × Z2. For n = 0 this becomes OSp(2|2) ×
OSp(2|2)× Z2.

While we lose symmetry when we modify the model, interestingly, at its critical point,
the modified truncation exhibits another kind of symmetry which is expected in the genuine,
untruncated model, but would disappear in the first truncation per se. This symmetry can
be seen qualitatively as relating the state with empty edges to the state with occupied edges,
and is part of a Uqso(5) symmetry (see [77]), with q = i for the point n = 0.

The guess that the modified and unmodified truncated models are in the same universality
class can of course be investigated numerically. This will be done in section 3.2.4 below.

Interestingly, we will find later on that the universality class of the modified truncated
model is formally the same as the one of another model which does respect the symmetry of
the CC lattice: the a(2)

3 integrable model , which admits a loop formulation with the following
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interaction:

Ř =

(
+

)
+ λc

(
+

)
(3.55)

The situation is however a bit subtle because integrable models can in general admit sev-
eral different regimes, corresponding to different ranges of the “crossing parameter”, denoted
θ in (3.45)). The critical exponents depend analytically on θ within a given regime, but
distinct regimes are in general not related by analytical continuation. Therefore each regime
gives rise to a different universality class.

The regime of the a(2)
3 which is of interest for us is the so-called regime III. This regime,

however, does not include the value n = 0 of the loop fugacity. Formally, however, the
continuation of regime III for this model up to n = 0 would give the same universality class
as the one we shall find for the modified truncated model. This justifies a posteriori that the
modification does not affect the continuum limit significantly. Indeed, we will also find later
that the continuum limit of the modified truncated model exhibits a U(n|n)× U(n|n) × Z2

symmetry in the continuum limit. In many ways, the truncated loop model is a "dilution" of
the model in [66,133]. Like in the case of ordinary (single) loops, the dilution may change the
relationship between the bare parameters and the field theories describing their continuum
limit, but the two regimes are qualitatively very similar.

As a last remark, we note that, while the original truncated model can, after a gauge
transformation, be formulated purely in terms of positive Boltzmann weights, the modified
truncated model involves some negative Boltzmann weights. This feature is however shared
by higher truncations. It is not clear to what extent it is “unphysical”.

3.2.4 Comparison

We finally turn to a numerical comparison of the exponents in the modified and unmodified
truncated model. Conformal dimensions and the critical parameter zC can be studied using
the ground state and excited states of the transfer matrix. Denoting by ΛL

`1,`2
the largest

eigenvalue of the sector (`1, `2) propagating `1 red strands and `2 blue strands, we define
approximations of the associated dimension x`1,`2(L, z) by

x`1,`2(L, z) = − L

2π
log

Λ`1,`2(L, z)

Λ0(L, z)
, (3.56)

where Λ0(L, z) is simply the largest eigenvalue. The critical parameter zC can be obtained
using “phenomenological renormalisation” [37] as the limit L→∞ of the series zC(L,L+ 2)
solution of x2,2(L, z) = x2,2(L + 2, z). An estimate of x`1,`2 finally follows, either using for
any L the extrapolated value of zC found from phenomenological renormalization for the x2,2

exponent, or using phenomenological renormalization size by size for the given exponent x`1,`2 .
In the case of the integrable model things are simpler since the critical point is exactly known.
The truncated model is not integrable, and due to the large Hilbert space (of dimension 5L in
the supersymmetric representation) only small sizes are reached using exact diagonalization.
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Figure 3.6 – Estimate of dimensions x`1,`2(L) = − L
2π

log λi/λ0 in even sectors for the truncated
and integrable models. Each colour refers to a different (`1, `2) sector that propagates `1 red
strands and `2 blue strands. Eigenvalues of the diagonal-to-diagonal transfer matrix are
computed using exact diagonalisation. The dots are estimates obtained from the integrable
model. Triangles are obtained by considering the truncated unmodified model with a loop
fugacity z fixed to the estimated critical point zC = 1.032. Dashed coloured lines are the
exact dimensions corresponding to the watermelon exponents x`1,`2 (3.46). Gray lines are
polynomial fits of order 2 over the 3 or 4 last data points for each exponent.
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Figure 3.6 shows numerical estimates in several sectors for the unmodified truncated
model as well as the modified integrable one, up to size L = 14. It is clear that despite
strong finite-size corrections (expected to be logarithmic, see below) the two models seem to
have the same dimensions not only for the thermal state corresponding to the sector (2, 2)
but also for higher excitations with even number of lines.

Meanwhile, we see that, while the integrable model has different dimensions for operators
inserting an odd number of loop strands, these operators in the unmodified truncated model
seem to have the same dimensions as operators in the even sectors (cf Figure 3.7). Similar
features have been encountered sometimes in the past [69,134].
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Figure 3.7 – Estimate of dimensions x`1,`2(L) = − L
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log λi/λ0 in odd sectors for the truncated
and integrable models. Eigenvalues of the diagonal-to-diagonal transfer matrix are computed
using exact diagonalisation. The dots are estimates obtained from the integrable model.
Triangles are obtained by considering the truncated unmodified model with a loop fugacity
z fixed to the estimated critical point zC = 1.032. Dashed coloured lines are the exact
dimensions corresponding to the watermelon exponents. The propagation of (1, 1) lines
corresponds to the purple colour in the integrable model and red colour in the truncated
model. The propagation of (3, 3) lines corresponds to the orange colour in the integrable
model and blue colour in the truncated model. Gray lines are polynomial fits of order 2
over the 3 or 4 last data points for each exponent. It seems that the sectors (1, 1) and (3, 3)
converge toward the exponent (2, 2) and (4, 4) in the truncated unmodified model—with
values 1

4
and 7

4
respectively.
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3.2.5 A word on the dense phase

When z is increased beyond zC ∼ 1.032, the system stays critical but the physics—like in the
ordinary self-avoiding walk case [135]—is very different and the model is in a new universality
class. The ground state is no longer a state of dilute polymers but becomes dense. The largest
eigenvalue of the vacuum sector is no longer 1 and does not contain the vacuum. The new
ground state corresponds to the energy of the sector (2, 2). Numerical data show that as
soon as we go higher than zC , the system has a unique phase with central charge c = −4
(figure 3.8). This can be understood in the limit z → ∞. The R-matrix in this limit is
greatly simplified and corresponds to two decoupled dense polymers (one for each colour).
In particular, it reads

R =
(

−
)
⊗
(

−
)

(3.57)

at the isotropic point, where we kept separated the two colours for clarity and to emphasize
that the system is decoupled. Note that the minus sign can be switched (indeed in the
Temperley-Lieb algebra, the relations between the generators ei are also satisfied by −ei if
the loop weight is vanishing.)

The central charge is hence twice the central charge of one dense polymer, 2×(−2) = −4.
Watermelon exponents for dense polymers are

xD` =
`2

16
− 1

4
. (3.58)

Since in the z →∞ limit the blue and red degrees of freedom are independent, the exponents
in this limit are obtained simply by summing the dense values for each of the two colours.
So for instance for the (`1 = 4, `2 = 4) operator we have x44 = 2 xD4 = 3

2
, a result we have

checked numerically (Figure 3.9).
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Figure 3.8 – Estimate of the central charge for successive sizes as a function of the fugacity z.
Using two sizes L and L+ 2 at fixed z we obtain an estimate of c(L,L+ 2) that converges as
L increases. The model seems to have c = −4 for all z higher than the critical value zC . The
ground state that we use comes from the sector with zero magnetization. The eigenvalue is
exactly the same as for the sector propagating (2, 2) loops.
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Figure 3.9 – Estimate of the exponent x4,4 corresponding to the propagation of (4, 4) through-
lines. It converges toward the value 3/2. The dimension is twice the value expected in the
dense polymer model because of the two colours.
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3.2.6 Lattice observables in the network model

In this subsection we recall some aspects of the network observables constructed in [126,127].
Let U be the discrete-time evolution operator of a single-electronic wave function on the
Chalker-Coddington network:

U =
⊗

edge e
Ue

⊗
vertex v

Uv . (3.59)

The observables of [126,127] are defined by introducing a set of point-contacts ck, k = 1, . . . r,
which amount to cut edges open at which current can enter or exit the system. They are
encoded by the projector

Q =
∏
k

(1− |ck〉〈ck|) = 1−
r∑

k=1

|ck〉〈ck| , (3.60)

such that the stationary wave function (“scattering state”) associated with current injected
at the point contact ck reads

|ψck〉 = QU(1−QU)|ck〉 . (3.61)

Let ri, i = 1, . . . ` be a set of observation points lying in the bulk of the system, that is,
distinct from the point-contacts. In this framework the observables of Bondesan et al. are
then defined as

Z1,q = E
(
|ψck(ri)|2q

)
Z`,q = E


∣∣∣∣∣∣∣
ψc1(r1) . . . ψc1(r`)

...
...

ψc`(r1) . . . ψc`(r`)

∣∣∣∣∣∣∣
2q , (3.62)

where E(. . .) is used here to denote the average over disorder.
Following the construction of [126, 127], the observables Z`,q are expected to become

pure-scaling ones in a continuum limit of the network model which takes the contact and
observation regions to single points, namely ck → c and rk → r while r and c remain distinct:

Z`,q ∼ |r− c|−2X`q(`−q) , (3.63)

with X ' 1/4. A particular case is that of Z1,1, which is shown to be trivial:

Z1,1 = 1 . (3.64)

It is easy to relate these observables to the geometric formulation used in this chapter.
Proceeding as in section 3.1.2, the amplitudes ψck(ri) ≡ 〈ri|ψck〉 can be decomposed as
a sum over (advanced) Feynman paths starting at ck and ending at rk while avoiding all
point-contacts,

ψck(ri) =
∑

ω:ck→ri

W (ω) , (3.65)
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where the statistical weights W (ω) collects all phases accumulated by the path ω at the
visited edges as well as the weight coming from scattering at vertices. Similarly, the complex
conjugate ψck(ri)

∗ is written as a sum over retarded Feynman paths ω̄ starting at rk and
ending at ck , with weight W (ω̄)∗. From there, a geometrical interpretation can be given to
the observables (3.62), when q ≡ n is an integer. For instance, let us take the case of only
one contact point c and one observation point r,

Z1,n = E
(
|ψc|2(q=n)

)
=

∑
ω1,...,ωn:c→r

∑
ω̄1,...,ω̄n:r→ c

∏
e

δ

(
n∑
i=1

ne(ωi)−
n∑
i=1

ne(ω̄i)

)
×W ′(ω1) . . .W ′(ωn)W ′(ω̄1)∗ . . .W ′(ω̄n)∗ , (3.66)

where ne(ω) is the number of times ω visits and the weightsW ′ correspond toW with random
phases removed. The observable Z1,1 for instance is given by a sum over configurations of one
advanced (resp. one retarded) path going from r to c (resp. from c to r) with the constraint
that the path never visits the edge c except at the end (resp. at the beginning). Similarly,
for higher values of q = n an integer, we get q paths (in advanced/retarded pairs) relating r
to c with the constraint that each of these paths visits c only once.

We note that instead of Z1,q, one can also define another observable involving two contact
points c1 and c2

Z̃1,q = E
(
|ψc1(c2)|2q

)
. (3.67)

The geometric interpretation of Z̃1,q now involves q paths (in advanced /retarded pairs)
relating points c1 and c2 with the constraint that these paths pass only once through c1 and
c2. This is in contrast with Z1,q where c2 is replaced by an observation point r2, where the
paths can pass an arbitrary number of times.

It was argued in [122] that the behaviour of Z̃1,q for |q| ≥ 1/2 is

Z̃1,q = Γ(q)−2

∫ ∞
0

|Γ (q − 1/2− iλ/2)|r−2xλµ(λ) dλ (3.68)

with µ(λ) = λ
2

tanh πλ
2
. Unlike Z1,q, this is not a pure-scaling variable. At large distances,

for all q ≥ 1/2 the integral is dominated by the contribution of the same scaling dimension
xλ=0 = X/4 corresponding to p = 0 and q = 1/2 in [126].

In the first truncation, edges can be occupied at most once. Watermelon observables
involve ` paths (coming in advanced/retarded pairs), and their two-point functions are es-
sentially truncated versions of Z1,q or Z̃1,q with q = `—it is not clear which.1 Since for
watermelons q ≥ 1, the interpretation in terms of Z̃1,q would lead to exponents at the bot-
tom of the continuum, while we find the watermelon exponents in the discrete part of the

1The paths in the watermelon observables start and finish at neighbouring points instead of exactly at
the same point, but this does not affect the scaling behaviour.
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spectrum, the interpretation in terms of Z1,q seems more natural.2 For higher truncations,
a difference between contact points and observation points can be introduced in the lattice
model: for instance for Z1,1 it is possible, for the second and higher truncations, to impose
that the paths go only once on the contact-edges, while they can go once or more over the
observation edges. This, however, does not seem to make much difference: in all cases, the
correlation function is dominated by the x1,1 dimension, and we do not know how to build
objects corresponding to different Z1,1 and Z̃1,1.

3.3 Higher truncations

In the following, the definition of higher truncations is presented. We start with the instruc-
tive case M = 2 before giving a proper generalisation. Some preliminary numerical results
are presented.

3.3.1 The second truncation

Higher truncations are now discussed with the results of some numerical studies. In the
following we use the combination of variables

Γσe2←e1 = (b∗σ(e2)bσ(e1) + f ∗σ(e2)fσ(e1)) (3.69)

where e2 and e1 are edges. This term geometrically represents a loop of colour σ going from
e1 to e2.

We start with the second truncation M = 2. Each edge can carry at most 2 strands
of each colour. The partition function is expanded in terms of the functions Γ representing
connectivities. The interaction is still the tensor product of individual tiles respecting the
constraint of having the same number of strands per colour at every edge. The interaction,
at a vertex

1

23

4

(3.70)

for one colour is

eS
+
v = exp

(∑
j=1,2

∑
i=3,4

Si,jΓ+
ei←ej

)
, (3.71)

where i and j refer to the number of the edges in the vertex (3.70). We expand this expression
such that only terms with at most 2 strands on each ei and ej are kept. The exponential

2Note however that the value x1,1 = 1
4 for Z11 is precisely at the bottom of the continuum! But this is

not the case for higher values of q.
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is developed to fourth order in S to get all contributions and all terms are represented by
diagrams. First the contribution of order 0 and the four ones of order 1, that also appear in
the first truncation, have the weights

1 t −r t r

. (3.72)

At order 2 are present the tiles where the same path is picked twice in the expansion

t2

2
r2

2
t2

2
r2

2

(3.73)

but also the tiles with two distinct paths. They come with an extra factor 2 cancelling the
one from the expansion of the exponential function:

tr tr −tr −tr t2 −r2

. (3.74)

At third order in S, there are four contributions with a path picked twice:

t3

2
− r3

2
t3

2
r3

2

(3.75)

and four with 3 different paths:

t2r −tr2 −t2r −tr2

. (3.76)

Finally, at fourth order, we find

t4

4
r4

4 −t2r2

. (3.77)
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Notice that in all cases the weight is divided by a symmetry factor of p! each time that p
strands propagate in parallel. The diagrammatic gluing of two tiles must now be discussed.
While it is not ambiguous for the first truncation, it is important to specify the right way of
forming connectivities with several strands. In the path integral representation, gluing two
edges with one strand corresponds to the following integration∫

[Db(e2)] [Df(e2)] Γσe3←e2Γ
σ
e2←e1 = Γσe3←e1 (3.78)

which is exactly what is expected in the original loop model. Gluing one strand going from
e1 to e2 to one strand going from e2 to e3 gives one strand between e1 and e3. For a pair of
strands, the integration reads∫

[Db(e2)] [Df(e2)] ΓeB1
←e2ΓeB2

←e2Γe2←eA1
Γe2←eA2

= ΓeB1
←eA1

ΓeB2
←eA2

+ ΓeB2
←eA1

ΓeB1
←eA2

.(3.79)

In the loop model this corresponds to gluing a pair of double strands together in the two
possible ways.

eA1

eA2

eB1

eB2

=
eA1

eA2

eB1

eB2

+
eA1

eA2

eB2

eB1

(3.80)

The loop model is then not strictly planar: two strands can intersect. Closed loops still have
a vanishing weight. For instance the following gluing, represented diagrammatically, gives a
non-zero trivial contribution:

= + = (3.81)

The full R-matrix is then given by

R = + t2 ⊗ + r2 ⊗ + t2 ⊗ + r2 ⊗ +
t4

4
⊗

+
r4

4
⊗ +

t4

4
⊗ +

r4

4
⊗ + t2r2 ⊗ + t2r2 ⊗

+t2r2 ⊗ + t2r2 ⊗ +

(
t2 − r2

)
⊗
(
t2 − r2

)

+

(
t3

2
− tr2

)
⊗
(
t3

2
− tr2

)
+

(
−
r3

2
+ t2r

)
⊗
(
−
r3

2
+ t2r

)

+

(
t3

2
− tr2

)
⊗
(
t3

2
− tr2

)
+

(
r3

2
− t2r

)
⊗
(
r3

2
− t2r

)

+

(
t4

4
+
r4

4
− r2t2

)
⊗
(
t4

4
+
r4

4
− r2t2

)
,

where we have kept separated the two colours for clarity. Note that we did not include the
extra parameter z corresponding to the loop fugacity. It is however direct to generalise the
R-matrix for z 6= 1 by considering the transformation r → zr, t→ zt.
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3.3.2 Generalisation

The generalisation of the above procedure for all M is obtained as follows. The M -th trun-
cation is obtained by expanding eSv using the functions Γ to the order 2M in S. Directly
in the loop model, the weight of a tile can be computed in the following way. Denote by kij
the number of strands joining the edge i and j of the following vertex (here the arrows are
irrelevant)

1

23

4

(3.82)

The weight w of a loop tile (with one colour) T is given by

w(T ) =
(−1)k14

k13!k14!k23!k24!
tk13+k24rk14+k23 . (3.83)

Moreover, gluing two edges together with n strands is done by summing over the n! permu-
tations. The R-matrix of the model is obtained in the end by taking the tensor product of
tiles from each colour that have the same number of strands at each edge.

3.3.3 Preliminary numerical results

The full Chalker-Coddington model is critical if z is equal to the special value zC = 1. The
modification of the critical parameter to zC ∼ 1.032 in the first truncation (M = 1) changes
the symmetries to gl(1|1)⊗gl(1|1) instead of the full gl(2|2) algebra. This observation remains
true in the higher truncations. For instance in the second truncation (M = 2), the critical
value of z is approximatively zC ∼ 1.014 which again breaks the symmetries between the
vacuum and the bosons/fermions. We expect that for the full series of truncated models, the
critical value of the parameter z stays strictly greater than 1 and converge to 1 for M →∞.
As a consequence, the symmetry of the Chalker-Coddington model is only recovered in the
limit of M →∞.

We can then investigate the value of the dimension corresponding to the first excited state
in the sector of the vacuum. As observed by Ikhlef et al. [37], the energy of the first excited
state corresponds to the sector propagating two strands of each colour. This property remains
true for higher truncations. We can track the evolution of its associated critical dimension;
see Figure 3.10. While it is hard to carry out the numerics for higher truncations and large
size, it looks like the dimension decreases as the level of truncation increases.
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Figure 3.10 – Estimate of dimensions of x2,2 as a function of z in the first four truncations with
periodic boundary conditions. The dotted line represents the scaling dimension x2,2 = 1/4,
the exact value in the first truncation. The crosses are the intersections between successive
sizes and define, via the phenomenological renormalisation scheme, series converging toward
the conformal dimensions.
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3.4 Truncations of the Brownian motion

In this section, the supersymmetric approach for the Brownian motion is proposed. This
model has many properties in common with the Chalker-Coddington model. It is useful
to study a different example of this truncation approach to understand qualitatively the
connections between a model and its truncations. The transfer matrix and Hamiltonian
are written in terms of a boson and a fermion, providing a one-colour version of the model
previously discussed.

We recall a couple of classical results. Consider the discrete Laplacian on the square
lattice with ∆ii = 4 and ∆ij = −1 if i 6= j are neighbors, 0 otherwise. The expansion for the
Green’s function is (here m2 stands for m2Id)

(m2 −∆)−1
ij =

∑
ω:i→j

(
1

4 +m2

)|ω|
(3.84)

where the sum runs over all random walks connecting i to j, and |ω| is the length of the walk
- that is, the number of sites visited, each counted with their multiplicity3. There is a similar
expansion for the “partition function”

1

Det(m2 −∆)
= (4 +m2)−N exp

(∑
ω

(4 +m2)−|ω|

)
. (3.85)

Here ω denotes configurations of random loops, with the convention that loops equivalent up
to a cyclic permutation of their visited sites are counted only once. N is the total number
of sites of the lattice. We see that (3.85) generates a set of possible overlapping and self-
intersecting loops somewhat analogous to what one gets in the expansions for the O(n) loop
model. Once drawn as a succession of steps (ik, ik+1), a loop is counted twice in (3.85) because
it can be obtained by clockwise or counterclockwise propagation.

Note that the results (3.84,3.85) do not depend on the topology of the lattice: they hold
in particular if the system is on a torus. In this case, loops can be contractible, or wrap
around the torus.

A result akin to (3.85) holds for the determinant itself [136]

Det(m2 −∆) =
∑
F

(m2)|F | (3.86)

where the sum runs over rooted spanning forests and |F | is the number of trees in a partic-
ular forest. This expression of the determinant is related, in the following supersymmetric
approach, to the fermionic part of the partition function.

We now consider the square lattice, and associate with every vertex i a pair of complex
bosonic variables bi, b∗i as well as pair of Grassmann variables fi, f ∗i . Result of Gaussian

3If we think of the walk as a series of steps (i1, i2), (i2, i3), . . . (iN−1, iN ), the number of times a given i is
visited is the number of occurrences of ij = i. A single site i is considered as a walk of length one.
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integration gives immediately:∫ ∏
i

[db∗i dbi]

2π
exp

[
−
∑
i,j

b∗i (m
2δij −∆ij)bj

]
=

1

Det(m2 −∆)
(3.87)

as well as ∫ ∏
i

[df ∗i dfi] exp

[
−
∑
i,j

f̄i(m
2δij −∆ij)fj

]
= Det(m2 −∆) (3.88)

The propagator in (3.84) can be obtained as

(m2 −∆)−1
kl =

∫
b∗kbl

∏
i

[db∗i dbi]

2π
exp

[
−
∑

i,j b
∗
i (m

2δij −∆ij)bj

]
∫ ∏

i
[db∗i dbi]

2π
exp

[
−
∑

i,j b
∗
i (m

2δij −∆ij)bj

] (3.89)

Using the fermionic integral, it can also be written without denominators in a “supersym-
metric” formulation:

(m2−∆)−1
kl =

∫
b∗kbl

∏
i

[db∗i dbi]

2π
[df ∗i dfi] exp

[
−
∑
i,j

b∗i (m
2δij −∆ij)bj −

∑
i,j

f ∗i (m2δij −∆ij)fj

]
(3.90)

Writing the Boltzmann weight in (3.90) as the exponential of the action e−A, the action in
(3.90) is invariant under global OSP (2/2) symmetry, where OSP (2/2) is the group preserving
the form b∗b+ f ∗f [137]. The straightforward continuum limit of the action is

A =

∫
d2z
[
b∗(m2 −∆)b+ f ∗(m2 −∆)f

]
(3.91)

where now the fields depend on z, z̄ and ∆ = 4∂∂̄. Field theory (3.91) is made of two
non-compact bosons and a pair of symplectic fermions. The theory becomes conformal after
m2 → 0. The corresponding total central charge is c = 2 − 2 = 0, as expected since the
partition function is equal to unity.

In the following, the quantised supersymmetric description of the Brownian motion is
discussed. We show that the oriented Brownian motion is in fact equivalent to a Brownian
motion on an un-oriented square lattice. The truncations are discussed, starting with the
first one which corresponds to a model of self-avoiding walks. This model is shown to have a
symmetry osp(2|2), restored in the continuum limit. Numerical results on higher truncations
are presented. There is a strong crossover where critical exponents change with the order
of truncation. However higher truncations seem to, at large size, flow ultimately to the
universality class of the self-avoiding walks. It is possible to add, in the action of the second
truncation, a new interaction such that a multicritical point is reached.
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3.4.1 Brownian motion as a supersymmetric spin chain

The partition function of the Brownian system on a square lattice is

Z =

∫
[Db] [Df ] exp

∑
ei→ej

b(ej)
∗Sej ,eib(ei) + f(ej)

∗Sej ,eif(ei)

 (3.92)

where the matrix S is

SS =

(
TS RS

RS TS

)
(3.93)

with S = A,B depending on the sublattice. The parameters TS and RS, related by TS+RS =
1, correspond to the probability of a trajectory to turn right or left on the sublattice S. We
follow the approach presented in section 3.1.2 and write the second quantisation using bosonic
and fermionic oscillators. The transfer matrix acts on

(
V ⊗ V

)⊗L. The space V is the infinite
dimensional space with the states

|2n+ 1〉 =
1√

(n+ 1)!

(
b†
)n+1 |0〉 (3.94)

|2n+ 2〉 =
1√
n!

(
b†
)n
f †|0〉 (3.95)

with n ∈ N plus |0〉 the vacuum state. The operators f † and b† satisfy the usual commutation
relations

[
b, b†

]
= 1,

{
f, f †

}
= 1. The space V is its dual with the doublets

|2n+ 1〉 =
1√

(n+ 1)!

(
b
†
)n+1

|0〉 (3.96)

|2n+ 2〉 =
1√
n!

(
b
†
)n
f
†|0〉 (3.97)

(n ∈ N) plus |0〉 the vacuum state. The operators f † and b† satisfy the commutation relations[
b, b
†
]

= 1,
{
f, f

†
}

= −1. The transfer matrix at a node of the sublattice A is the operator

R : V ⊗ V → V ⊗ V encoding the weights of the interaction:

R = eTA(b†b
†
+f†f

†
)Rb†b+f†f+b

†
b−f†f

A eTA(bb+ff). (3.98)

A similar operator is obtained for the sublattice B. Note that the isotropic point is RS =
TS = 1/2.

Hamiltonian: The Hamiltonian is obtained in the anisotropic limit TA → 0 with RA =
1− TA, RB = RA and TB = TA. The interaction is expanded, the Hamiltonian between two
sites Hnode is defined by

R ∼TA→0 1− TAHnode (3.99)
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where

Hnode = −b†b† − f †f † − bb− ff + b†b+ f †f + b
†
b− f †f (3.100)

hence the full Hamiltonian can be written

H = −
∑
i

[
b†ib
†
i+1 + bibi+1 + f †i f

†
i+1 + fi+1fi − b†ibi − (−1)if †i fi − b

†
i+1bi+1 − (−1)i+1f †i+1fi+1

]
(3.101)

with
[
bi, b

†
j

]
= δi,j and

{
fi, f

†
j

}
= (−1)iδi,j.

Supersymmetric truncations: The truncation procedure is similar to the Chalker-Coddington
case. TheM -th truncation is obtained by restricting the on-site spaces V and V to states with
at most M particles (the 2M + 1 first ones). A parameter z is introduced to counterbalance
the removal of states with a higher particle number.

R(M) =
(
PM ⊗ PM

)
ezTA(b†b

†
+f†f

†
)(zRA)b

†b+f†f+b
†
b−f†fezTA(bb+ff)

(
PM ⊗ PM

)
. (3.102)

with PM and PM the projectors over the 2M + 1 states of V and V . The Hamiltonian limit
is obtained in the joint limit TA → 0, z → 1. The precise relation between TA and z on the
critical line is unknown. Nevertheless, a formal parametrisation z(TA) is considered. The
Hamiltonian has an additional term

H
(M)
node = Hnode + αM

(
b†b+ f †f + b

†
b− f †f

)
(3.103)

with αM an unknown amplitude that must be fine-tuned to recover the gapless regime. The
contribution Hnode is given in the above equation (3.100) and the on-site truncation of the
Hilbert space is implicit.

3.4.2 Equivalence between oriented/unoriented lattice

In this subsection, the equivalence between a Brownian path on an oriented lattice and on
an unoriented lattice is shown at the isotropic point Sei,ej = S = 1/2 if ej → ei. This
shows explicitly that the model possesses an osp(2|2) symmetry despite the orientation of
the lattice. The bosonic partition function for the Brownian motion on the oriented lattice
is

Z =

∫ (∏
e

[Db(e)]

)
exp

∑
ei→ej

b∗(ei)Sei,ejb(ej)

 . (3.104)

where we recall that the integration measure for the complex bosonic variables is∫
[Db(e)] (. . .) =

1

2π

∫
db(e) db(e)∗e−b(e)

∗b(e)(. . .). (3.105)
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The partition function is first rewritten in terms of bosons at the vertices (and not the edges).
Let us consider one vertex v:

1

23

4

(3.106)

Its contribution to the action eSv is

eSv = eS(b
∗
3+b∗4)(b1+b2) (3.107)

where in this equation and the rest of the section, we write be to denote the variable b(e)
for the sake of lighter notation. It can be rewritten, by introducing a new complex bosonic
variable bv,

eSv =

∫
[Dbv]e

S(b∗3+b∗4)bv+b∗v(b1+b2). (3.108)

This identity comes from the following calculation

eSv =

∫
[Dbv]e

S(b∗3+b∗4)bv+b∗v(b1+b2) (3.109)

=
1

π

∫
dbv db∗ve

−b∗vbv
∞∑

n,m=0

Sn

n!m!
(b∗v)

m(bv)
n(b∗3 + b∗4)n(b1 + b2)m (3.110)

=
∞∑
n=0

Sn

(n!)2
(b∗3 + b∗4)n(b1 + b2)n

1

π

∫
dbv db∗ve

−b∗vbv(b∗vbv)
n (3.111)

=
∞∑
n=0

Sn

n!
(b∗3 + b∗4)n(b1 + b2)n (3.112)

= eS(b∗3+b∗4)(b1+b2). (3.113)

The next step is to integrate the edge contributions. Let us consider e, an edge going from
v1 to v2, its contribution is ∫

[Dbe]e
Sb∗ebv1+b∗v2be = eSb

∗
v2
bv1 . (3.114)

We now integrate over all the variables of one sub-lattice. Consider a vertex

1

23

4

v (3.115)
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where 1, 2, 3 and 4 are its four neighbour vertices. Integrating over the variable bv, b∗v, we get
the following contribution:

eSv =

∫
[Dbv]e

S(b∗3+b∗4)bv+Sb∗v(b1+b2) (3.116)

= eS
2(b∗3+b∗4)(b1+b2). (3.117)

Hence there is an effective interaction eS
2b∗3b1 between the vertices 1 and 3. Similarly the

partial integration over the vertex w at the left of 1 and 3

1

23

4

vw (3.118)

provides an effective interaction eS2b∗1b3 . In the end the partition function can be written over
a square lattice (corresponding to a sublattice of the original L lattice).

Z =

∫ (∏
v

[Dbv]

)
exp

 ∑
(i,j) neighbors

S2(b∗i bj + b∗jbi)

 (3.119)

where
∏

v is a product over all vertices of the square lattice. The exact same transformation
can be done with the supersymmetric partition function. The identity (3.107) holds for its
fermionic counterpart:

eS(f
∗
3 +f∗4 )(f1+f2) =

∫
[Dfv]e

S(f∗3 +f∗4 )fv+f∗v (f1+f2). (3.120)

Then again, the integration over the odd sub-lattice provides an effective interaction between
the vertices of the even sub-lattice. The supersymmetric partition function is

ZSUSY =

∫ (∏
v

[Dbv][Dfv]

)
exp

 ∑
(i,j) neighbors

S2(b∗i bj + b∗jbi + f ∗i fj + f ∗j fi)

 (3.121)

Equation (3.119) shows that this model, where loops have a weight 1 on an unoriented lattice
with an on-site fugacity S, is equivalent to a loop model on an un-oriented square lattice,
with a loop weight 2 and a monomer fugacity S2. Note that this mapping works only at the
isotropic point. A similar correspondence is found in the context of the O(n) model [131]
where no exact mapping exists. The Gaussian description of the present model allows us to
explicitly show this equivalence.
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3.4.3 The first truncation: self-avoiding walks

The transfer matrix of the first truncation is directly obtained from the loop interpretation
of the path integral. We follow the procedure described in section 3.3.1 to obtain a loop
model. Let us keep the subset of trajectories where each link is visited at most once. As
in the Chalker-Coddington truncations, a new parameter z, corresponding to the fugacity of
one monomer, is introduced to obtain a critical point. The vertices of the loop model, at the
isotropic point, are

1 z z z z z2 z2

(3.122)

and each closed loop has a weight 0. This model is a particular case of the O(n) model with
n = 0 [38]. It is expected to be critical for a value z = zc and in the universality class of
self-avoiding walks. Using the transfer matrix formalism, the conformal dimensions of some
well-known operators are extracted in finite-size. The smallest gap in the spectrum is used
to determine the critical parameter zc via phenomenological renormalisation. The sequence
{zc(L)}L∈2N is defined as the series of solutions of

ξL(zc(L))

L
=
ξL+2(zc(L))

L+ 2
, ξL(z) = − log

Λ1(z)

Λ0

(3.123)

where ξL is the (un-normalized) correlation length of the system of size L, Λ1 the second
largest eigenvalue of the transfer matrix and Λ0 the largest eigenvalue of the transfer matrix
(which is always 1 in the dilute case because of supersymmetry). Two sequences are obtained:
{zc(L)}L∈2N converging towards zc and {x1(L, zc(L))}L∈2N with

x1(L, z) = − 1

2πL
log Λ1(z) (3.124)

converging towards the conformal dimension of the 1-leg watermelon operator. The first
terms of this sequence are computed numerically, see Figure 3.11. The estimated critical
parameter zc = 0.5774 is used to compute other critical exponents. Examples for x2 and x3

are also reported Figure 3.11 and are in good agreement with the exact known values of the
watermelon dimensions

x` =
9`2 − 4

96
. (3.125)

Despite a good agreement with CFT predictions, the finite-size scaling corrections are quite
severe. In the case of the integrable point of the O(n) mode, the convergence is much
faster. Indeed integrable models have infinitely more conserved quantities and the finite-size
corrections are expected to be smaller. Moreover the unknown exact value of the critical
parameter zC makes it harder to obtain precise estimates with small sizes.
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Figure 3.11 – Numerical estimates of the `-leg watermelon exponents for ` = 1, 2, 3 in the
case of oriented self-avoiding walks for a periodic system of size L. The exact values are
x1 = 5/48, x2 = 2/3 and x3 = 77/48. Our results are in very good agreement with these
predictions.

3.4.4 Hamiltonian limit

In this subsection, the Hamiltonian of the first truncation is numerically studied. The two-
sites interaction is

H
(1)
node = Hnode + α1

(
b†b+ f †f + b

†
b− f †f

)
(3.126)

and the boundary conditions are chosen such that f †2N+1 = (−1)N+1f †1 and f2N+1 = (−1)N+1f1.
It is gapless for an unknown value α = αc. Because of supersymmetry, at the critical dilute
point, the ground state E0 satisfies exactly E0 = 0. Hence the finite-size corrections formula
to the i-th excited state reads

Ei =
2πvS
L

xi + o

(
1

L

)
(3.127)

where Xi is the conformal dimension corresponding to the i-th state (or operator in the state-
operator correspondence) and vS is the velocity of sound. The parameter vS is first measured
and then the spectrum is shown to be corresponding to the O(n) model in the limit n→ 0.

A model with conformal symmetry possesses, in the sector of the identity operator, a
state associated with L−1I with conformal weights (h, h̃) = (1, 0), thus x = h + h̃ = 1.
This state can be found by looking at transfer matrix eigenstates with pseudo-momentum
±1 corresponding to operators with conformal spin |h − h̃| = 1. After having identified the
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corresponding state, phenomenological renormalisation is used to obtain estimates of αc and
vS (see Figure 3.12).
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Figure 3.12 – Evolution of vS(L, α) = L
2π
E1(L, α) where E1(L, α) is the energy of the states

corresponding to (h, h̃) = (1, 0) (at α = αc), in a system of size L. The crossing point, where
the estimated vS does not depend on L, gives estimates of the critical value of α and the
sound velocity at that point.

Using a second order polynomial fit as a function of 1/L, the estimates vS ≈ 2.213 . . . and
αc ≈ 0.5577 . . . are found (see figure 3.12). These values, together with equation (3.127), are
useful to compute scaling dimensions. Numerical results are in a very good agreement with
the expected dimensions of the self-avoiding walks. Figure 3.13 presents numerical estimates
for the watermelon exponents x`. The 2-leg watermelon operator, corresponding to the
propagation of two distinct self-avoiding walks on the cylinder, can be defined in two ways.
The two brownian paths can move on sites with the same or distinct parity. This difference
is non-trivial since our model is oriented. We thus denote by the subscript e and o if a path
is created on an even or odd site. For instance the exponent xee is the 2-leg watermelon
exponent with 2 walks on sites with the same parity and xee the 2-leg watermelon exponent
with 2 walks on sites with different parities. Of course xee = xoo and xeo = xoe.
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Figure 3.13 – Finite-size scaling of different exponents as a function of 1/L. Exact value
are the expected dimensions of self-avoiding walks. The exponents are obtained in the
Hamiltonian formulation of the first truncation with the parameters vS ≈ 2.213 . . . and
αc ≈ 0.5577 . . ..

3.4.5 Symmetries in the continuum limit

The truncation procedure breaks the osp(2|2) symmetry of the original model down to the
gl(1|1) symmetry (the analysis is very similar to what have been done section 3.2.3 for the
Chalker-Coddington model). As a result, the transfer matrix (or equivalently the Hamilto-
nian) only commutes with gl(1|1). In finite size, the degeneracies of the model are therefore
those of gl(1|1): levels occur only with multiplicities 1, 2, 4. Futhermore, we have seen numer-
ically that the critical exponents are those of ordinary self-avoiding walks, which are described
by the critical point of the O(n) model for n = 0. The value n = 0 can be made sense of
using a supersymmetric description, where SAWs appear as the critical point of an OSp(2|2)
symmetric Φ4 field theory. On the lattice, the SAW universality class can be obtained with
an osp(2|2) spin chain carrying the fundamental, four-dimensional representation on every
site. In other words, we find that the critical properties of our gl(1|1) model are the same as
those of an osp(2|2) model. In fact, the symmetry is enhanced in the continuum limit. We
believe that the generating function of (scaled) levels for our gl(1|1) model in the continuum
coincides with the generating function of the osp(2|2) spin chain considered in [113]. To
define the generating functions we take the transfer matrix or Hamiltonian and calculate the
object

Zgl(1|1) = Tr qL
(L)
0 q̄L̄

(L)
0 (3.128)
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where q, q̄ are formal parameters, and L(L)
0 (resp. L̄(L)

0 ) are the lattice approximations of the
L0, L̄0 generators, whose eigenvalues are obtained from diagonalization of the Hamiltonian
(or logarithm of the transfer matrix) and lattice momentum as in (3.127). Note that we
take the trace and not the supertrace. This means that, when decomposing the space onto
representations of gl(1|1), the multiplicities will be given by dimensions of the representations
(the superdimensions all vanish except for the trivial representation).

The identity with h = h̄ = 0 comes with multiplicity one in (3.128), as it does in the
osp(2|2) model of [113]. The one-leg operator comes with multiplicity 2 + 2 = 4 due to the
degeneracy between the exponents xe and xo even in finite size. This is the same multiplicity
as in the osp(2|2) model, where it corresponds to the dimension of the fundamental repre-
sentation. Next, we find that, although the exponents xee and xeo are different in finite size,
they become equal as L → ∞, as illustrated on figure 3.13. Since each of these exponents
comes with a multiplicity 4 in the gl(1|1) model, this means the two-leg operator appear in
the spectrum with a degeneracy of 8 in the continuum limit, just like for the osp(2|2) model
in [113].

After checking on low-lying levels the emergence of the osp(2|2) spectrum in the continuum
limit, we can also give an argument for the symmetry restoration by focussing on large
conformal weights instead. It is well known indeed that in a unitary conformal field theory
the density of states at high values of the dimension x = h+h̄ is related with the central charge
through the formula D(x) ∼ exp

(
4π
√

cx
12

)
, a result that follows from modular invariance [3].

In the case of a theory with supergroup symmetry, one has to be a bit careful with this
argument. The density of states being obtained by counting with the trace (and not the
supertrace), its asymptotic behavior will come from the effective central charge obtained
from the ground state energy for a system where loops wrapping around the cylinder will
come with fugacity 2 (the dimension of the modules V, V ). Measurements of this central
charge are reported in figure 3.14.
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Figure 3.14 – Central charge obtained for the first truncation with twisted boundary condi-
tions. Fermions are twisted by a phase exp(±i(φ + π)) depending on the orientation of the
edge. Anti-symmetric boundary conditions are obtained at φ = π. The graph shows that
the extracted value of the central charge corresponds to the one obtained in the O(n) model
where non-contractible loops have a fugacity ñ = 2+2 cos(π+φ). The central charge is given
by a Coulomb gas analysis c(φ) = 1 + (4/π2)ArcCosh2(ñ(φ)/2). Thus the effective central
charge (φ = π) is obtained by giving non-contractible loops a weight ñ = 4 in the Coulomb
gas analysis. On the oriented lattice, at φ = π, non contractible loops have a weight 2.
This is again a consequence of the restoration of the osp(2|2) symmetry. The model on the
oriented lattice is equivalent to the O(2n) model [131].

They converge to the same value one would get for the osp(2|2) model of [113]. In this
model indeed, the asymptotic density of states is controlled by the effective central charge
obtained from the ground state energy where non-contractible loops have fugacity 4 - the
dimension of the fundamental osp(2|2) representation. This central charge can be calculated
using Coulomb gas techniques for a twisted free boson. The coupling constant of this boson is
g = 3

2
. For a fugacity ñ = 2 cos πe, the effective central charge will be ceff = 1− 6e2

g
= 1−4e2.

We recover c = 0 for ñ = 0, the usual fugacity in the O(n = 0) model. Setting ñ = 4 gives

ceff = 1 +
4

π2
ArcCosh22 ≈ 1.70292 (3.129)

The coincidence of the effective central charge in the two models shows their densities of
states are identical at large values of the dimension x. Combined with the results in the limit
of low dimensions this strongly suggests the two models are in the same universality class.
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3.4.6 Higher truncation of the Brownian motion

We believe that the second (and presumably, the higher) truncations is, when unmodified, in
the universality class of the first truncation. This is expected if we think of the truncations
as some sort of short range repulsion: it is a well known [138] fact that pretty much any
kind of repulsion drives random walks into the universality class of ordinary self-avoiding
walks (SAWs). This fact can easily be interpreted in the Landau-Ginzburg and ε expansion
approach. Consider theories with O(n) symmetry and action

A =

∫
d2x

[
1

2
(∂µ~Φ)2 + V (~Φ2)

]
(3.130)

where ~φ has n components, and V is an even potential

V (~Φ2) =
k+1∑
p=1

gp~Φ
2p (3.131)

Following [36], the formal limit n→ 0 in (3.130) provides a description of interacting polymers
in dimension D: as seen earlier in this section, the limit can be avoided if one extends the
formalism to supergroups. Note that in this description the length of the polymers is not fixed:
rather, (3.130) corresponds to a grand canonical ensemble, where lengths are summed over,
with the appropriate fugacity for monomers. The Gaussian fixed point (V = 0) corresponds
to critical random walks: changing the fugacity of monomers corresponds to adding a mass
term (g2 > 0 in (3.131)). The Gaussian fixed point is unstable in dimensions D < 4.
A short range repulsive interaction translates into some potential V (~Φ2), and, for generic
coefficients, a critical point is reached when the amplitude of the Φ2 term vanishes. The
resulting universality class is determined by the remaining leading Φ4 interaction. For a
given order of truncation, the observed exponents will thus eventually converge to those of
SAWs as the size of the system is increased.

It is nonetheless also clear that important crossover effects must be expected. After all,
the critical untruncated model is described by the free theory. It is thus natural to expect
that for a high (but finite) order of truncation, the coefficients of the potential V will be
skewed towards the higher powers ~φ2p for small sizes. In other words, we expect the observed
exponents to get closer to those of Brownian motion when the order of truncation is increased
at fixed system size. It is not known how the crossover between system size and order of
truncation is happening precisely. Nevertheless, it seems reasonable to think of the truncated
models as some kind of asymptotic approximation.

For small sizes, we can diagonalise the transfer matrix and look at the gap in the vacuum
sector for different levels of truncation. For each level of truncation, using phenomenological
renormalisation since we do not know the associated critical parameter zC (that of course
depends on the level of truncation), we obtain a sequence {xeo(k, L)}L∈2N converging towards
the exponent of the k-th truncation. Results can be found in figure 3.15. It seems at first
that different truncations belong to different universality classes where xeo corresponds to
the Flory exponent 2/(k+ 2). However only very small systems are accessible through exact
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diagonalisation. This is due to the very large vector space that we obtain as k increases
(the dimension is (1 + 2k)L). Numerical evidence, for other exponents and in a more general
setting that will be presented in the next section, suggests that the naive higher levels of
truncation are subject to severe finite-size scaling and belong to the universality class of
self-avoiding walks.
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Figure 3.15 – Exponent xeo for different sizes and level of truncations. The exponents seems
for small sizes to converge toward the values x = 2/(k + 2) corresponding to the Flory
exponents.

3.4.7 The multicritical point of the second truncation

Additional interactions can be introduced in the second truncation. In the original model,
an edge with n particles has a weight zn (with z = 1/2 for the critical theory) or equivalently
the presence of n particles in a state corresponds simply to a term of the form e−nε in the
action. In the second truncation, we introduce µ, a parameter that changes the fugacity of
an edge carrying two particles. A link with zero (resp. one and two) particle has a weight
1 (resp. z and µz2). For µ < 1, this interaction is a repulsion of two polymers on the same
edge whereas, for µ > 1, it corresponds to an attraction. The phase diagram of this model
can be investigated numerically and is given Figure 3.16.

High values of z and µ correspond to a critical phase where polymers fill the lattice. The
ground state is no longer given by the physical supersymmetric vacuum with Λ0 = 1. This
phase is described by dense polymers with c = −2. For small values of z and µ, the system
is in a dilute phase and not critical. In between, there is a critical line of critical dilute
polymers. The nature of the critical line can be studied by looking at certain exponents.
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Figure 3.16 – Phase diagram of the second truncation in the (µ, z) plane. The non-critical
dilute regime is separated from the dense regime by a critical line. The universality class
on this line is the self-avoiding walks except at some particular point corresponding to a
multicritical model. The dotted line represents a first order transition.

Let us study the 1-leg watermelon exponent x1. It is defined as the ground state of
the sector propagating one polymer. In terms of supersymmetric particles, it corresponds
to the propagation of one boson or fermion. The exact value for self-avoiding walks is
x1 = 5/48. Using again the phenomenological renormalisation procedure, the critical value
of zc and exponent X1 are extracted for successive sizes. Numerical results obtained with
exact diagonalisation of the isotropic row-to-row transfer matrix can be found Figure 3.17.

In the domain µ < 1.5, the evolution of the conformal dimension becomes flatter as the
size L increases. Extrapolations are compatible with a value of the conformal dimension near
5/48 (the dotted straight line). In the range 1.5 < µ < 2.15, the convergence is not very good.
However the extent of this domain seems to shrink as the system size increases. There is a
very peculiar point near µ ∼ 2.15 where all curves are crossing. Such a behaviour suggests
strongly the existence of a multicritical point. It is known that approaching a multicritical
point can lead to important finite-size effects explaining the bad estimates of the critical
exponent for 1.5 < µ < 2.15. Using three consecutive sizes we can measure the successive
crossings:

L = 4, 6, 8 L = 6, 8, 10 L = 8, 10, 12 L =∞
µc 2.15201... 2.166144... 2.167705... 2.15...
x1 0.126728... 0.128409... 0.128658... 0.127...

. (3.132)

Numerical data suggest strongly that x1 = 1/8. Several difficulties are encountered to provide
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Figure 3.17 – 1-leg watermelon exponents xe on the critical line. Numerical data are obtained
by exact diagonalisation of the transfer matrix in the row-to-row geometry and periodic
boundary conditions. Each curve is drawn using two consecutive sizes with phenomenological
renormalisation. The µ = 0 point describes usual self-avoiding walks and the successive
measured exponents converge toward the black line x1 = 5/48.

better estimates. First, very few sizes are available for exact diagonalisation because of the
large Hilbert space of our model (5L). Moreover, small sizes are severely affected by finite-
size effects where quantities are not even monotonic. The multicritical point is localised
approximatively at the parameters (z, µ) = (0.4287, 2.165) and conformal dimensions can be
estimated for higher watermelon operators.

L = 4 L = 6 L = 8 L = 10
xee 0.2863... 0.3027... 0.31286... 0.31583
xeo 0.1583... 0.1455... 0.1399... ...

. (3.133)

This table shows the values of the two possible 2-leg watermelon exponents at the multicritical
point for small sizes. An important observation is that xee and xeo do not seem to correspond
to the same dimension in the CFT, xee 6= xeo in the thermodynamic limit, contrary to what
we observed the self-avoiding walks. This is problematic since, if this multicritical model
is better approximation of the full untruncated theory, then we expect that the symmetry
between odd and even sites is restored in the continuum since it is the case for the brownian
motion (and the self-avoiding walks).
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4 A flow between class A and class C
In the previous chapter, we studied several aspects of the Chalker-Coddington model [12]
and its truncations, relevant to the plateau transition in the integer quantum Hall effect. In
this section the possibility of having a lattice model describing the flow between two different
theories of the quantum Hall effect is discussed. In the Anderson localisation [139], Atland
and Zirnbauer identified ten symmetry classes [140] corresponding to distinct sets of random
matrices. In these ten classes, several can have a plateau transition in two dimensions and
this chapter focusses on two of them. The Chalker-Coddington model is in the class A where
disorder is encoded in U(N) matrices (N = 1 in this model). The goal of this chapter is to
start the study of a renormalisation-group flow between class A and the so-called class C.

The class C describes the physics of the plateau transition in the spin quantum Hall effect
mentioned in the first chapter. This transition is very similar to the plateau transition in
class A where the charge current is replaced by a spin current. On a lattice, its network model
is similar to the Chalker-Coddington model but the wave function has two components: on
for each state of a 1/2 spin (↑,↓). Moreover the disorder comes from random SU(2) matrices
[20, 21] instead of the random U(1) phase of class A. In general, class C is characterised by
Sp2N matrices that becomes simply SU(2) for N = 1.

Class C was found to be related to a well-known phenomena: percolation. In a letter [141],
Gruzberg, Ludwig and Read identified several critical exponents of this network model with
the ones of percolation thanks to a mapping to an sl(2|1) supersymmetric spin chain. It led
to many exact results [23, 142, 143] since many properties (exponents, logarithmic features)
of percolation are known. Perturbations around the fixed point of class C have already been
studied [144] but here a different approach is proposed. The existence of an RG-flow between
class A and class C is interesting from the point of view of field theory because the continuum
limit of the Chalker-Coddington model involves non-compact fields whereas percolation has
a discrete spectrum. It is tempting to think that, by studying class A as a perturbation of
class C, we can learn something about the Chalker-Coddington model.

This chapter starts by a brief review of the class C network model and shows that its
form is very close to the Chalker-Coddington model introduced in section 3.1.1. Different
approaches to interpolate between the two universality classes are discussed. One of them
is chosen because of its simple lattice interpretation and similarities with the truncations
introduced in the last chapter 3.3. After discussing the symmetries, we show that our model
is defined as a two-colour loop model with a new operator mixing colours. The evolution of
the critical exponents ν is studied along the interpolating critical line directly in the network
model formulation using Lyapunov exponents. At the end of the chapter, a similar analysis
is done for the interpolation between the first truncation of the Chalker-Coddington model
and class C.

4.1 Lattice model interpolating between class A and class C

The first task is to find a model interpolating between the two universality classes. We are
going to take advantage of their similarities as network models. This section first introduces
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the network in class C describing the plateau transition in the spin quantum Hall. Next the
second quantisation and its Hamiltonian limit, leading to the sl(2|1) supersymmetric spin
chain, are presented. Different options are then discussed to define an interpolating model on
the lattice. We choose an approach that interpolates the measure over the disorder such that
the correlation functions can reproduce the ones of class A and class C. At the end of this
section, the interpretation in terms of a loop model is discussed. In particular our approach
leads to a formulation of percolation as a dilute loop model with two colours.

4.1.1 The Spin Quantum Hall Effect as a network model

The network model describing the plateau transition in the spin quantum Hall effect is defined
on an oriented lattice exactly as in the Chalker-Coddington model discussed in section 3.1.1.
The wave function ψ is discrete and each edge e carries a doublet

ψe = (ψe,↑, ψe,↓) ∈ C2 (4.1)

corresponding to the up and down spin states. Time evolution involves two parts. First there
is an operator propagating the state along the edges. The class C is characterised by random
SU(2) matrices (instead of the simple U(1) phases in the Chalker-Coddington model) hence(

ψ′e,↑
ψ′e,↓

)
= U.

(
ψe,↑
ψe,↓

)
, U ∈ SU(2) (4.2)

which is mixing the up and down components. The natural measure over the SU(2) group is
the Haar measure. To be precise, consider a unit vector ~n ∈ S2, an angle α ∈ [0, π[ and the
SU(2) matrix defined by U = cosα + i sinα(~σ.~n) where ~σ = (σx, σy, σz) encodes the Pauli
matrices. The Haar measure νSU(2) is defined by

dνSU(2) =
2

π
sin2 α dα d~n. (4.3)

The second part of the time evolution operator corresponds to the scattering of the wave
function at vertices. It is now given by two scattering matrices, one for each spin component.

SP = SP,↑ ⊕ SP,↓, SP,σ =

(
rP,σ tP,σ
−tP,σ rP,σ

)
(4.4)

where P = A,B depending whether we consider even or odd sublattices. The amplitudes
satisfy r2

P,σ + t2P,σ = 1 and the model is critical when

tA,↑ = tA,↓ = tB,↑ = tB,↓. (4.5)

The primary object of interest is the Green’s function

G(e2, e1, z) = 〈e2| (1− zU)−1 |e1〉 (4.6)
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that is now a 2×2 matrix since each edge has two channels. The parameter z plays the same
role as in the previous chapter, the model is critical for z = 1. The Green’s function can be
expanded in terms of Feynman paths leading to a formulation in terms of Gaussian variables.
The process is identical here except that there are now two types of particles: ↑ and ↓. To
compute the conductance ¯|G|2, we need a priori to introduce advanced and retarded Green’s
functions. In the end there are twice as many variables as in the Chalker-Coddington case.

At this point, it is important to use a simplification and realise that conductance can be
computed in an easier way. The transmission matrix t is

tσ1,σ2 = 〈e2, σ2| (1− zU)−1 |e1, σ1〉 (4.7)

and the conductance reads

g =
∑
σ1,σ2

|tσ1,σ2 |2 = Tr(tt†) (4.8)

Indeed advanced and retarded Green’s functions are related by so called particle-hole sym-
metry and the point conductance is thus

g = 2Det(t). (4.9)

This property comes from the evolution operator being a linear combination of SU(2)
matrices. It is not the case for the conductance in the Chalker-Coddington model since
random matrices are in U(1). Let us now give the path integral description for the spin
quantum Hall effect. The supersymmetric method is used and the Green’s functions can be
expanded in terms of Feynman paths to obtain

G(e2, e1, z) =

∫
[Db↑,↓] [Df↑,↓] bL,↑(e2)b∗L,↑(e1)b∗L,↓(e2)bL,↓(e1)eSb,↓+Sf,↓+Sb,↓+Sf,↓ (4.10)

where b•,• are usual complex variables and f•,• are complex Grassman variables. Note that
this time, to separate explicitly the edge contributions from the vertex contributions, variables
with the indice R (resp. L) is associated to the beginning (resp. end) of an oriented edge.
The Gaussian measure is∫

[Db↑,↓] [Df↑,↓] (...) =

∫ ∏
edge e
X∈R,L
σ∈{↑,↓}

db∗X,σ(e)dbX,σ(e)
1

2π
e−b

∗
X,σ(e)bX,σ(e)

∏
edge e
X∈R,L
σ∈{↑,↓}

df ∗X,σ(e)dfX,σ(e)e−f
∗
X,σ(e)fX,σ(e) (4.11)

and the action for bosons

Sb = z
∑
edge e

∑
σ1,σ2

b∗L,σ1(e) (Ue)σ1,σ2 bR,σ2(e) +
∑
σ

∑
vertex v

∑
j→i
v

b∗R,σ(ei)SijbL,σ(ej) (4.12)
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where σ1, σ2 ∈ {↑, ↓}.
Averaging an edge e over the disorder gives a factor ψSQHE

e :

ψSQHE
e ≡

∫
SU(2)

dνSU(2) exp
(
z
∑

σ1,σ2
b∗L,σ1(e) (Ue)σ1,σ2 bR,σ2(e)

+z
∑

σ1,σ2
f ∗L,σ1(e) (Ue)σ1,σ2 fR,σ2(e)

)
(4.13)

The exact computation of this integral shows that only 3 states can propagate on an edge

ψSQHE
e = 1 +

z2

2

(
b∗L,↑(e)f

∗
L,↓(e)− b∗L,↓(e)f ∗L,↑(e)

)
(bR,↑(e)fR,↓(e)− bR,↓(e)fR,↑(e))

+z2f ∗L,↑(e)f
∗
L,↓(e)fR,↑(e)fL,↓(e). (4.14)

In other words, the edge is either not visited, visited by an anti-symmetric pair of bo-
son/fermion or a pair of fermions. This is a very important simplification compared to what
has been obtained for the Chalker-Coddington model since there are only a finite number of
states on each edge. It corresponds effectively to an on-site truncation of the model.

4.1.2 Second quantisation and the Hamiltonian limit

The quantised description of the model is given by a transfer matrix [25]. Similarly to the
Chalker-Coddington model, the node transfer matrix is

TA, node =
∏
σ=↑,↓
a=b,f

eta
†
σ ā
†
σra

†
σaσ+(−1)|a|ā†σ āσe−tāσaσ (4.15)

for the even sublattice A and

TB, node =
∏
σ=↑,↓
a=b,f

etā
†
σa
†
σra

†
σaσ+(−1)|a|ā†σ āσe−taσ āσ (4.16)

in the case of the odd sublattice. The operators b↑, b↓, b̄↑, b̄↓, f↑, f↓, f̄↑, f̄↓ (plus their Hermitian
conjuguates) are harmonic oscillators satisfying[

bσ1 , b
†
σ2

]
=
{
fσ1 , f

†
σ2

}
=
[
b̄σ1 , b̄

†
σ2

]
= −

{
f̄σ1 , f̄

†
σ2

}
= δσ1,σ2 , σ1, σ2 ∈ {↑, ↓}. (4.17)

The minus sign in front of the fermions on the odd sublattice is needed to set the weight of
closed Feynman paths to zero. This is perfectly analogous to what is done in section 3.1.1.
The node transfer matrix encodes the scattering at vertices. The average over the SU(2)
disorder is a projector on the following two subspaces

V3 =

{
|0〉, 1√

2

(
b†↑f
†
↓ − f

†
↑b
†
↓

)
|0〉, f †↑f

†
↓ |0〉

}
(4.18)

at an even site and

V3̄ =

{
|0〉, 1√

2

(
b̄†↑f̄
†
↓ − f̄

†
↑ b̄
†
↓

)
|0〉, f̄ †↑ f̄

†
↓ |0〉

}
(4.19)
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at an odd site. The sets V3 and V3̄ correspond respectively to the sl(2|1) fundamental
representation and its conjuguate. Later in section 4.2.1, the symmetries will be described
more precisely. Let us write P3 and P3̄ for the projectors on these two spaces. The node
transfer matrices RP=A,B that include edge contributions read

RA = (P3 ⊗ P3̄) · TA, node · (P3 ⊗ P3̄)

RB = (P3̄ ⊗ P3) · TB, node · (P3̄ ⊗ P3) (4.20)

They are 9× 9 matrices thanks to the on-site truncation, much more convenient than the
infinite dimensional ones in class A. The transfer matrix T on a strip of length 2N is given
by

T =
N−2∏
i=0

RB,2i+1

N−1∏
i=0

RA,2i (4.21)

in the diagonal-to-diagonal geometry. Periodic boundary conditions can also be considered
and will be used in later in this chapter. The associated quantum Hamiltonian is obtained
by taking the continuum limit of the system in the time direction. We take the anisotropic
limit t → 0. The amplitude r is related to t by r =

√
1− t2 and in the Hamiltonian H is

defined by

T = 1− t2HC + o(t2). (4.22)

where

HC =
L−2∑
i=0

(
4∑

a=1

gaS
a
i S

a
i+1 + (−1)j

8∑
a=5

gaS
a
i S

a
i+1

)
(4.23)

with {ga} = {2,−2, 1, 1,−2,−2, 2, 2} and

S1 = b†+b+ + b†−b− + 1 S2 = b†+f+ + f †−f− + 1 (4.24)

S3 = 2f †+f
†
− S4 = 2f+f− (4.25)

S5 = (b†+f
†
− − b

†
−f
†
+) S6 = (b+f− − b−f+) (4.26)

S7 = (b†+f+ − b†−f−) S8 = (b+f
†
+ − b−f

†
−) (4.27)

4.1.3 Choosing an interpolation

Different approaches are possible in order to obtain a crossover between class A and class
C. This section discusses successively different options. The option that we shall choose is
motivated by the possibility to use our knowledge about truncations and especially the first
truncations of the Chalker-Coddington model.
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The first idea is to introduce a uniform Zeeman field in the network model of class C. It
would break the global spin-rotation symmetry and split the SQH transition into two class
A transitions. This can be done by taking tP,↑ 6= tP,↓. Two perturbations are introduced, ∆
and ε, the parameters of the network models are given by

tA,↑ = t(1 + ε+ ∆), tA,↓ = t(1 + ε−∆)

tB,↑ = t(1− ε+ ∆), tB,↓ = t(1− ε−∆) (4.28)

with t = 1/
√

2. The parameter ∆ is breaking the spin-rotation symmetry by changing the
parameters for each spin value in different ways. The parameter ε has already been introduced
and corresponds to a staggering of the lattice.

A simple perturbation ∆ 6= 0, ε = 0 is relevant and leads the system to a non-critical
phase. Nevertheless it is possible to couple this ∆-perturbation with the ε term in a specific
way ε = ±f(∆) such that we obtain a crossover with a class A transition [20]. It turns out
this approach has a few drawbacks. First the inter-dependence between ε and ∆ is not known
exactly and must be determined numerically such that the system stays critical. Moreover,
since we have in mind to use the truncation approach for this problem, it is important to
obtain a model as close as possible the Chalker-Coddington model. Here, since the spin-
rotation symmetry is broken, we need to introduce advanced and retarded variables of the
up and down spin components. This process leads to a description with twice as many
variables.

A second option, proposed by Tsai [145], is to work directly in the Hamiltonian language
and consider the operator

H = HA + gHC = HA + gPsl(2|1) · HA · Psl(2|1) (4.29)

where Psl(2|1) is the product of each local projector on the fundamentals of sl(2|1) and g is
an amplitude which perturbs the gl(2|2) Hamiltonian with the sl(2|1) Casimir. This approach
is more convenient since it interpolates between the two usual Hamiltonians, taking advantage
of their similar generators.

In the following, a new approach inspired by this last option is presented. It is very
convenient to have the possibility to work either in the Hamiltonian limit or directly in a 2D
system. However it is not obvious which 2D transfer matrix corresponds to the Hamiltonian
(4.29). The rest of this section focusses on exhibiting a flow between the network models.
The resulting Hamiltonian description is discussed later.

Let us first write ↑ and ↓ with + and − as indices to emphasise the similarities with
the quantity |G(e2, e1, z)|2 computed in the last chapter (equation (3.10)) for the Chalker-
Coddington model. The physical nature of those indices are very different since in the
former case they correspond to the spin components and in the latter case they correspond
to advanced and retarded particles. Nevertheless, the correlation functions have exactly the
same form given the following change of variables in the Chalker-Coddington correlation
functions
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Φ :


bX,+ → bX,+ b∗X,+ → b∗X,+
bX,− → b∗X,− b∗X,− → bX,−
fX,+ → fX,+ f ∗X,+ → f ∗X,+
fX,− → f ∗X,− f ∗X,− → −fX,−

(4.30)

The only difference comes from the set of random matrices. In other words, replacing the
random SU(2) matrices with the Haar measure by diagonal matrices diag(eiφ, e−iφ) where φ
is a uniform random variable in the interval [0, 2π[, gives exactly the correlation functions of
the Chalker-Coddington model. Formally it corresponds to having a measure νU(1) such that

dνU(1) ∝ δ(n2
z − 1) dα d~n (4.31)

up to the overall normalisation constant.
If the Haar measure of SU(2) is deformed continuously such that νU(1) is obtained then

we have a model that describes either the correlation functions in class A or class C. There
is no obvious (physical) way to do it thus a linear interpolation between the two measures is
chosen for convenience. The measure dν(µ) is defined as the composite measure

dν(µ) = (1− µ) dνU(1) + µ dνSU(2) (4.32)

reproducing class A (resp. class C) for µ = 0 (resp. µ = 1). On each edge of the lattice,
there is a probability µ of having a SU(2) matrix (drawn from the Haar measure) and a
probability (1 − µ) to have a matrix drawn using νU(1). In the gaussian formulation of the
model, averaging over disorder leads simply to

ψe(µ) ≡
∫
SU(2)

dν(µ)ez
∑
σ1,σ2

b∗L,σ1
(e)(Ue)σ1,σ2

bR,σ2 (e) = (1− µ)ψIe + µψSe . (4.33)

The equation (4.33) shows that on each edge any state can propagate like in the Chalker-
Coddington model with a probability (1 − µ) or there is an on-site truncation to the three
sl(2|1) states with probability µ. The node transfer matrix encoding the behaviour of the
scattering at vertices is not modified in our description. The equation (4.33) can be directly
translated as an operator on every edge in the second quantisation formalism. Each edge
carries an operator

P(µ) = (1− µ)I + µP3 (4.34)

on even sites and

P̄(µ) = (1− µ)Ī + µP3̄ (4.35)

on odd sites, where I and Ī are the projector on the gl(2|2) modules. The transfer matrix is
effectively given by

T =
N−2∏
i=0

RB,2i+1(µ)
N−1∏
i=0

RA,2i(µ) (4.36)
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with

RA =
(
P(µ)⊗ P̄(µ)

)
. TA, node

RB =
(
P̄(µ)⊗ P(µ)

)
. TB, node (4.37)

where the action of the projectors can act before and after the node contribution if one
takes the square root of the operator P(µ). This form is extremely similar to what has been
done in the last chapter when the on-site Hilbert space is softly truncated. The Hamiltonian
description is obtained by taking an anisotropic limit t→ 0. At order 0 the transfer matrix
must become the identity thus the operator P(µ) must tends towards the identity. The
only non trivial contribution to the Hamiltonian coming from the operators P(µ) is a term
proportional to the sl(2|1) projector. As a consequence the interpolating model is expected
to be described by the following Hamiltonian

H = HA + g

(
N−1∑
i=0

P2i
3 +

N−2∑
i=0

P2i+1
3̄

)
(4.38)

since the vertex contribution is unchanged. This Hamiltonian shares some similarities with
(4.29) since it has the same symmetries. The role of the second term is similar because it
favorises the states in V3 and V3̄.

4.1.4 Loop formulation of the model

On one hand, the Chalker-Coddington model is known to have a loop formulation that we
fully described in the last chapter. It is a two-colour dilute loop model with loop fugacity
equal to zero. On the other hand, percolation is described by dense loops of fugacity one as
discussed in the introductory chapter. The model defined in the last section can be mapped
exactly to the Chalker-Coddington model at µ = 0 and percolation at µ = 1. Its description,
at any value of µ, in terms of loops is thus interesting. Let us rewrite the edge contribution
(4.33) in the gaussian representation:

ψe(µ) = 1 + (1− µ)z2
(
b∗L,+bR,+ + f ∗L,+fR,+

) (
b∗L,−bR,− + f ∗L,−fR,−

)
+µ

z2

2

(
b∗L,+f

∗
L,− − b∗L,−f ∗L,+

)
(bR,+fR,+ − bR,−fR,+)

+µz2f ∗L,+f
∗
L,−fR,−fL,− + (1− µ)(higher states)

= 1 +
(

1− µ

2

)
z2
(
b∗L,+bR,+ + f ∗L,+fR,+

) (
b∗L,−bR,− + f ∗L,−fR,−

)
−µ

2
z2
(
b∗L,+bR,− + f ∗L,+fR,−

) (
b∗L,−bR,+ + f ∗L,−fR,+

)
+(1− µ)(higher states) (4.39)

where (higher states) represents all the states with more than two particles. The first term of
(4.39) is the weight associated with an empty edge. The second term takes into account the
propagation of a pair of each type (+,−) on an edge. The third one is new, it switches the
flavours (+,−) of the pair. Replacing types of particles by colours, the loop interpretation is
as follows:
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• an empty edge has a weight 1,

• a pair of strands simply propagates with a weight (1− µ/2),

• a pair of strands has their colours exchanged with a weight −µ/2

• and more than one pair propagate with a weight (1− µ).

For the first truncation, this is represented by the following operator:

= +
(

1− µ

2

)
− µ

2
(4.40)

The following drawing provides an example of a typical configuration.

Figure 4.1 – Typical configuration of the interpolating loop model at µ > 0. Edge can carry
an arbitrary number of pair of strands but for simplicity here we restricted it to one. Strands
can have their colour switched at an edge.

The weight of a closed loop, independently of the number of colours switches along it, is
still zero because of supersymmetry.

= 0 (4.41)

Note that it is it a highly inefficient way to simulate a percolation system (µ = 1) since
the number of configurations is very high. In fact it is somewhat surprising that percolation
in this loop representation requires a larger Hilbert space whereas it is much simpler in the
supersymmetric formulation.

For higher truncations or the full, untruncated model, the situation is very similar. The
operator on the edge is identical to (4.40) for states with a pair of paths and is (1 − µ)
times the identity when there are two or more pair of paths going through the edge. It is
interesting to consider the spin quantum Hall case µ = 1 since it should eventually correspond
to the percolation loop model [141]. This description provides a surprising formulation of
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percolation as a two-colours dilute loop model with vanishing loop fugacity whereas in its
usual formulation using the Temperley-Lieb algebra, it is a dense one colour-loop model with
loop fugacity one.

In the following, we change the parametrisation of µ and use µ → 1 − (1 − µ)4. Indeed,
we observe that in the vicinity of µ = 1, at least four perturbations must be inserted on
the lattice to obtain a non-trivial contribution, otherwise the states out of the 3-dimensional
representation of sl(2|1) are annihilated immediately. As a consequence, with the natural
parametrisation of µ, all physical quantities have their first three derivatives vanishing at
µ = 1. The above parametrisation distributes the interesting crossover region on the whole
range 0 < µ < 1.

4.1.5 Percolation as a two-colours loop model

In this section, the interpretation of percolation as a two-colours loop model is discussed. For
µ = 1, the edge operator is

= +
1

2
− 1

2
. (4.42)

An edge is either empty or carries a pair of strands with an antisymmetric exchange of
colour. Note that this operator is a projector as expected since it represents the action of P3

or P3̄ in the quantised formulation. In the rest of this section, µ is assumed to be equal to
1 and for simplicity the operator P(µ) is not drawn on the tiles. For instance the following
equation is true

= . (4.43)

Each time two tiles are glued together it is important to remember that colours are antisym-
metrized. The tiles of the model can be grouped into 3 operators

I = + + + (4.44)

E = + + + (4.45)

K = + + + (4.46)
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where I is the identity. The transfer matrix at a node can be written in the following form

Tnode = r2I + t2E− t2r2K (4.47)

which at the isotropic point simply gives

Tnode =
1

2
I +

1

2
E− 1

4
K. (4.48)

In the anisotropic limit t→ 0, the Hamiltonian H can be computed:

H = −
2N∑
i=0

(Ei −Ki). (4.49)

Let us first discuss the nature of the operators E and K. The first operator, as the notation
suggests, is a Temperley-Lieb generator. It satisfies in particular the relations

E

E

E =

E

E

E and
E

E

= E (4.50)

where the black line just acts as the identity. The generators {Ei} are thus Temperley-
Lieb generators with loop fugacity 1. Notice that this mapping between a dilute loop model
with fugacity n and a dense loop model of fugacity n + 1 is very similar to what happens
with the θDS point [146]. Empty edges can be interpreted as strands with loop fugacity 1
because of a symmetry between the vacuum and the particles.

Let us now discuss a little bit the nature of the operator K. A quick computation shows
that K, like E, is a projector.

K

K

= K (4.51)

Moreover K and E are orthogonal

K

E

=

E

K

= 0. (4.52)
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The interpretation of the operators E and K within the sl(2|1) algebra can be studied in the
alternated spin chain (4.21). In this representation, it can be computed that K, acting on
V3 ⊗ V3̄, is exactly K = 0. Indeed the Hilbert space is

H = (V3 ⊗ V3̄)⊗N (4.53)

and the tensor product of the fundamental representation of sl(2|1) with its conjuguate is

V3 ⊗ V3̄ = {0} ⊕ {0, 1}. (4.54)

The Temperley-Lieb generator is known to project on the singlet state of the tensor product.
It is not surprising to find that K = 0 since, in the tensor product (4.54), there are not
much room for a projector on another sl(2|1) representation. Thus the Hamiltonian (4.53) is
effectively reduced to the well-known form

H = −
2N∑
i=0

Ei. (4.55)

Obviously the action of K is no trivial in terms of loops. The spectrum of the loop model
can be computed exactly in finite-size and compared with the sl(2|1) alternated spin chain.
The spectrum of the supersymmetric spin chain is found to be included in the spectrum of
the loop model. However there are additional eigenvalues in the loop transfer matrix that
are related to the non-trivial action of K in terms of connectivities.

The rest of this section does not aim at providing an exhaustive study of the role of K.
However we show that the additional spectrum and role of K can be understood in terms
of higher representations of sl(2|1). The idea is to change the quantisation scheme of the
loop model and associate more types of particle to an edge. In the fundamental sl(2|1)
representation we have on even sites the states{

|0〉, εσ1,σ2a†σ1b
†
σ2
|0〉 a, b = f, b

}
(4.56)

where εσ1,σ2 is the anti-symmetric tensor. A possibility is to double the number of particles
on an edge. Two types of bosons and fermions are introduced b1, b2, f 1, f 2 with the usual
commutation relations. The antisymmetrization of the colours reduces the 1 + 4 × 4 = 17
dimensional vector space to a space V9 of dimension 9 with the states

|0〉 = |vacuum〉

|1〉 = f 1
+
†
f 1
−
†|0〉 |2〉 =

1√
2

(
f 1

+
†
f 2
−
†

+ f 2
+
†
f 1
−
†
)
|0〉

|3〉 = f 2
+
†
f 2
−
†|0〉 |4〉 =

1√
2

(
b1

+
†
b2
−
† − b2

+
†
b1
−
†
)
|0〉

|5〉 =
1√
2

(
b1

+
†
f 1
−
† − f 1

+
†
b1
−
†
)
|0〉 |6〉 =

1√
2

(
b1

+
†
f 2
−
† − f 2

+
†
b1
−
†
)
|0〉

|7〉 =
1√
2

(
b2

+
†
f 1
−
† − f 1

+
†
b2
−
†
)
|0〉 |8〉 =

1√
2

(
b2

+
†
f 2
−
† − f 2

+
†
b2
−
†
)
|0〉
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Similarly on odd sites ({f iσ, f
i

σ

†
} = −1), the vector space V9̄ is:

|0〉 = |vacuum〉

|1〉 = f 1
+
†
f 1
−
†|0〉 |2〉 =

1√
2

(
f

1

+

†
f

2

−
†

+ f
2

+

†
f

1

−
†
)
|0〉

|3〉 = f
2

+

†
f

2

−
†
|0〉 |4〉 =

1√
2

(
b

1

+

†
b

2

−
†
− b2

+

†
b

1

−
†
)
|0〉

|5〉 =
1√
2

(
b

1

+

†
f

1

−
†
− f 1

+

†
b

1

−
†
)
|0〉 |6〉 =

1√
2

(
b

1

+

†
f

2

−
†
− f 2

+

†
b

1

−
†
)
|0〉

|7〉 =
1√
2

(
b

2

+

†
f

1

−
†
− f 1

+

†
b

2

−
†
)
|0〉 |8〉 =

1√
2

(
b

2

+

†
f

2

−
†
− f 2

+

†
b

2

−
†
)
|0〉.

The following operators B, Qz, Q+, Q−, V +, V −, W+, W− satisfy the (anti)commutation
relations of sl(2|1).

B =
nb1 − nb2

2
Q3 =

nf1 − nf2
2

Q− = f 2
σ
†
f 1
σ Q+ = f 1

σ
†
f 2
σ

V + =
1√
2

(
α b1

σ
†
f 2
σ + f 1

σ
†
b2
σ

)
V − =

1√
2

(
−b1

σ
†
f 1
σ + f 2

σ
†
b2
σ

)
W+ =

1√
2

(
f 1
σ
†
b1
σ + b2

σ
†
f 2
σ

)
W− =

1√
2

(
f 2
σ
†
b1
σ − b2

σ
†
f 1
σ

)
where the summation over the colours (+ and −) is implicit. For instance:

f 2
σ
†
f 1
σ ≡ f 2

+
†
f 1

+ + f 2
−
†
f 1
− (4.57)

The quantities α, β, and b are free parameters. Changing the values of α and β leads to an
equivalent representation of sl(2|1). The generators are also defined on odd sites

B = −
n
b
1 − n

b
2

2
Q

3
= −

n
f
1 − n

f
2

2

Q
−

= f
1

σ

†
f

2

σ Q
+

= f
2

σ

†
f

1

σ

V
+

= − 1√
2

(
f

2

σ

†
b

1

σ + b
2

σ

†
f

1

σ

)
V
−

=
1√
2

(
f

1

σ

†
b

1

σ −
1− b
2β

b
2

σ

†
f

2

σ

)
W

+
= − 1√

2

(
b

1

σ

†
f

1

σ + β f
2

σ

†
b

2

σ

)
W
−

=
1√
2

(
−b1

σ

†
f

2

σ + β f
1

σ

†
b

2

σ

)
The on-site vector space is the direct sum of the trivial representation (the vacuum) and the
typical irreducible representation {0, 1}: V = 1 ⊕ {0, 1} In the following the notation used
for representation of sl(2|1) is taken from [147]. The transfer matrix at a node is acting on
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the tensor product V ⊗ V ∗. From the representation theory of sl(2|1) the decomposition is
found to be

V9 ⊗ V9̄ = 1⊕ {0, 1} ⊕ {0, 1} ⊕ {0, 1} ⊗ {0, 1} (4.58)

where we have, for general representations {b, 1} {−b, 1}:

{b, 1} ⊗ {−b, 1} = {0, 2} ⊕ {0, 1} ⊕ {0, 1} ⊕
{

1

2
,
3

2

}
⊕
{
−1

2
,
3

2

}
⊕
{

0,−1

2
,
1

2
, 0

}
(4.59)

involving a not fully reducible nontypical representation. The operator E corresponding to
a Temperley-Lieb generator is still a projector over a singlet state. The operator K is a
projector on a space of dimension 48. Numerical analysis shows that it projects a state on
the representation:

{0, 2} ⊕ {0, 1} ⊕
{

1

2
,
3

2

}
⊕
{
−1

2
,
3

2

}
(4.60)

Because of the previous interpretation of the operators E and K as projectors over subrep-
resentations, it is clear that the transfer matrix at one node (4.47) preserves the sl(2|1)-
symmetry. If J is a generator defined above and J its dual counterpart:[

J + J, Tnode
]

= 0 (4.61)

This supersymmetric model reproduces indeed some of the additional eigenvalues of the
loop transfer matrix. They could be related to eigenvalues with certain inner symmetries
between strands in the loop model. A similar construction is studied in a different context
chapter 5 for the Potts model where observables acting on N clusters are classified in terms
of representation of the symmetric group with N elements.

4.2 The untruncated model

This section discusses the nature of the lattice model in the untruncated case. Because
of the edge operator P(µ) ((4.34),(4.35)), the vector space is effectively infinite-dimensional
except at µ = 1 where only 3 states per edge survive. As a consequence, we cannot rely
on exact diagonalisation or DMRG techniques. Instead we use directly the network model
and extract Lyapunov exponents. Before doing so, the symmetries along the interpolating
line (0 ≤ µ ≤ 1) are first discussed. Then evidence of a flow towards class C is given and
discussed.

4.2.1 Symmetries

Let us start the discussion by summarising the symmetry algebra at each end of the critical
line. For the Chalker-Coddington model at µ = 0, as discussed more extensively in section
3.2.3, the model has a gl(2|2) symmetry. The generators are encoded in the following matrix
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J =


b+b

†
+ − 1

2
b+f

†
+ b+b− b+f−

f+b
†
+ f+f

†
+ − 1

2
f+b− f+f−

−b†−b
†
+ −b†−f

†
+ −b−b†− − 1

2
−b†−f−

f †−b
†
+ f †−f

†
+ f †−b− f−f

†
− − 1

2

 . (4.62)

for even sites. There are four conserved quantities, one for each particle type. In the net-
work model, the randomness is introduced by the U(1) phases or equivalently, as explained
previously, by matrices Ue of the form

Ue =

(
eiφe 0
0 e−iφe

)
(4.63)

where the first channel corresponds to advanced particles and the second one to retarded
particles. On the other hand, at the Spin Quantum Hall end (µ = 1), the transfer matrix
has additional projectors on all edges. Hence only the generators (3.48) that commute with
the projector P3 are going to be symmetries of the model. For even sites the generators are

B =
1

2

(
b†+b+ + b†−b− + 1

)
Qz =

1

2

(
f †+f+ + f †−f− − 1

)
(4.64)

Q+ = f †+f
†
− Q− = f−f+ (4.65)

V + =
1√
2

(
b†+f

†
− − b

†
−f
†
+

)
W− = (V +)† (4.66)

V − = − 1√
2

(
b†+f+ + b†−f−

)
W+ = −(V −)† (4.67)

and they are of course linear combination of the gl(2|2) ones. In other words, the sl(2|1)
symmetry is a subalgebra of gl(2|2). The bosonic generators satisfy[

B,Q3
]

= 0, (4.68)[
B,Q±

]
= 0, (4.69)[

Q+, Q−
]

= 2Qz, (4.70)[
Qz, Q±

]
= ±Q±, (4.71)

the fermionic generators have the following anti-commutation relations{
V +, V −

}
=
{
W+,W−} = 0 (4.72){

V ±,W±} = ±Q± (4.73){
V ±,W∓} = ±B −Qz (4.74)
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and finally [
Qz, V ±

]
= ±1

2
V ± (4.75)[

Qz,W±] = ±1

2
W± (4.76)[

Q±, V ±
]

=
[
Q±,W±] = 0 (4.77)[

Q±, V ∓
]

= V ± (4.78)[
Q±,W∓] = W± (4.79)

. In principle the gl(2|2) module can even be decomposed over sl(2|1) representations:

V =

{
1

2

}
+

⊕
{

1

2
,
1

2

}
⊕
{

3

2
,
1

2

}
⊕ . . . . (4.80)

For generic µ, the generators of the symmetry have to commute with

P(µ) = (1− µ)Pgl(2|2) + µP3. (4.81)

The generators of sl(2|1) still commute with the transfer matrix thus this symmetry is never
broken. This also can be understood from the point of view of the network model. In
principle, the universality class can change with the set of random matrices. For any value
of µ, the matrices are always in SU(2). Even at the Chalker-Coddington point the matrix
(4.63) is in SU(2) but only a small subset of this group is covered by the measure (only
diagonal matrices). Therefore at the point µ = 0, class C is not expected to describe the
behaviour of the model. It is natural to expect the following behaviour.

IQHE SQHE

µ = 0 µ = 1 (4.82)

4.2.2 Lyapunov exponents

Because of the infinite-dimensional Hilbert space at generic values of µ, it is not possible to
use exact diagonalisation or other methods to study numerically the model. The only possible
simulation is to use the random network model and Lyapunov exponents. In this section,
numerical simulations are presented and estimate of the exponents ν along the critical line
is given.

In the network model, a transfer matrix is a random object and average over disorder is
done by taking a very long system. The widths considered are 2N = 4, 8, 16, 32, 64. Given
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a collection of random transfer matrices {Ti, i = 1, . . . , L} where L is typically of order
L = 107−108, two quantities are defined

T =
L∏
i=1

Ti, Ω = log
(
T †T

)
. (4.83)

The matrix T is the transfer matrix on the full cylinder and Ω is a Hermitian matrix with
pairs of eigenvalues {λ1, . . . , λN ,−λN , . . . , λ1}. The smallest positive Lyapunov exponent is
denoted γ and defined as the quantity

γ = lim
L→∞

λN
2L

(4.84)

which converges for large values of system length. In practice, this quantity cannot be
computed directly because of a loss of precision due to round-off error. In order to properly
simulate the system, it must decomposed in small slices using QR-factorisations. This section
does not enter into the detail of the numerical scheme and we refer to [148] for an extensive
discussion. The quantity ΓN = γ/N is believed to obey a universal scaling law of the form

ΓN = F
(
N1/ν(x− xc)

)
(4.85)

where F is unknown. In practice, in order to get more precise results, one needs to take into
account less relevant fields. The form of the scaling law considered is then

ΓN = F
(
N1/νu0(x), Nyu1(x)

)
(4.86)

where u0 and u1 are the relevant and irrelevant scaling variables and y is related to the
irrelevant field with y < 0. To get a precise estimate of ν, it is very important to determine F
using ΓN with many successive widths. However, because the focus of the study is to observe
the RG-flow as N increases, it is not the strategy adopted here. It is more convenient to
use two successive sizes to obtain an effective exponent νN(µ). Its evolution as N increases
shows the direction of the flow.

Let us now give a few details about the numerical scheme used. Systems of width 2N =
4, 8, 16, 32, 64 are considered. Numerical estimates of ΓN(x) are computed for different values
of µ. The behaviour of ΓN(x) around x = 0 is fitted with a polynomial P of the form
P (x) = a0 + a2

2
x2 + a4

24
x4. Typically we choose the range of x to be |x| < 0.1 to avoid

contributions of higher order. The second derivative of ΓN , a2, can be used to extract an
estimate for ν. Deriving twice the scaling formula and evaluating it in x = 0 gives

Γ′′N(0) = N2/νF ′′(0) (4.87)

and thus, using two sizes N , 2N :

νN = 2× log 2

log Γ′′N(0)/Γ′′2N(0)
. (4.88)
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Figure 4.2 – Estimates of νN for sizes N = 2, 4, 8, 16 as a function of µ. The limit at µ = 0
is the value of the Chalker-Coddington model around ν = 2.6 [13] whereas the value at the
percolation end µ = 1 is known exactly to be ν = 4/3. In order to obtain those estimates,
equation (4.88) is used with two successive sizes. The second derivative of ΓN around x = 0
is obtained by a fit of the form ΓN(x) ∼ A + Bx2 + Cx4 for x < 0.15. Each Lyapunov
exponent is computed by diagonalising the transfer matrix on a strip of length 108. It has
been reported elsewhere [148] that one should use smaller values of x (|x| < 0.05) in order to
increase the precision of the fit but with the length considered here, the results already show
the direction of the flow.
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It is possible to use two successive sizes N and N + 1 but, as N becomes large, this scheme
produces some instabilities since the term log(N/(N + 1)) and the denominator tend to zero.
The exact value for percolation is ν = 4/3. Indeed, we know that the thermal perturbation
is associated with the two-hull operator of dimension X2 = 5/4 and the scaling relation is
X = 2−1/ν. On the contrary, the exact value at the Hall point is unknown, many numerical
simulations report a value in the range [2.5 − 2.6]. Results are given Figure 4.2 and are
discussed in the next section.

From the Lyapunov exponents, additional information can be extracted to understand the
perturbation around the spin quantum Hall point at µ = 1. The exponent νµ is introduced
to describe the behaviour of the universal function

Γ(1− δµ) = Fµ(δµL1/νµ). (4.89)

In the case of an irrelevant perturbation, the exponent νµ is negative. Moreover, since the
perturbation is of order O(δµ4) in the action, we can expect a scaling relation between Xµ,
its associated conformal dimension, and νµ of the form

Xµ = 2− 4

νµ
. (4.90)

The hull-exponents of percolation are recalled to be

Xk =
4k2 − 1

12
(4.91)

and the two first irrelevant dimensions are X3 = 35/12 and X4 = 21/4. If equation
(4.90) holds then the possibles associated values for νµ are respectively −48/11 ∼ −4.36
or −16/13 ∼ −1.23. We find a good collapse of the curve for the first value as can be seen
in the figure 4.3.
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Figure 4.3 – Evolution of the smallest Lyapunov exponent of the transfer matrix along the
pertubation µ. Because of the important finite-size corrections at µ = 0 for successives sizes
we decided to plot the difference between ∆γ = Γ(µ)−Γ(µ = 1) such that all curves starts at
the origin. The perturbation axis is rescaled by a size-dependent factor N1/νµ . The curves are
supposed to collapse for some value of νµ. Here we chose to use the conjecture νµ = −48/11
corresponding to the operatorX3. This value provides a relatively good collapse of the curves.
The error bars are estimated in the network model as 3 times the dispersion of each value of
the lyapunov exponents. Each point correspond to a simulation on a cylinder of length 108.
The curve for the smallest size N = 2 has been discarded since it was subject to enormous
finite-size corrections for small perturbation of µ.
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This result that the percolation point is indeed stable and the perturbation along the
critical line zc(µ) is associated to the 3-hull operator.

4.3 Truncations

Truncating the model has the advantage of reproducing the series of models discussed in
the last chapter at the end point µ = 0. In particular, the first truncation provides an
interpolating model between class C and the first truncation of the Chalker-Coddington
model. Therefore, it is natural to study this flow since we have a better understanding of
the continuum limit of the truncated model. Predictions about the direction of the flow
are far from being obvious because truncating the model already breaks several symmetries
and, in particular, the sl(2|1) sub-algebra of the gl(2|2) symmetry for µ < 1. Notice that
the model at µ = 1 is actually not modified by a hard truncation since it has already an
on-site truncation to three states in the supersymmetric formalism. On the contrary, in the
original model the space at each edge is infinite-dimensional, hence the truncation affects it
in a non-trivial way.

Working with truncations instead of the full model has several advantages. It is for
instance possible to use numerical methods such as exact diagonalisation (or more advanced
methods like matrix product state). First of all, the phase diagram has to be determined in
terms of the parameter (µ, z).

This section is structured as follows. First the phase diagram is obtained numerically
thanks to a phenomenological renormalisation scheme. The parameter z have to be rein-
troduced in order to reach critical points. This part is very much analogous to what has
been shown in the section 3.3 for the second truncation of the brownian motion. Then the
symmetries of the critical model are discussed. In particular, contrary to the untruncated
model, it appears that the sl(2|1) symmetry is broken in finite-size for µ < 1. We also discuss
the nature of the dense phase, obtained for high fugacity z. Later, numerical evidence for
the direction of the flow is given by studying the critical exponents.

4.3.1 The phase diagram

The parameter z, corresponding to the fugacity of monomers, is reintroduced as in the
last chapter. The model is already known to be critical at two points (µ, z) = (1, 1) and
(µ, z) ∼ (0, 1.032). The first critical point corresponds to the class C universality class
discussed above and the second is the critical first truncation of the Chalker-Coddington
model. Actually, a critical line between those two points can be parametrised by a function
zC(µ). A numerical estimate can be obtained by phenomenological renormalisation using the
first gap in the transfer matrix spectrum. A good alternative, chosen here, is to use the gap
between the groundstate of the periodic transfer matrix and the groundstate of the transfer
matrix with anti-periodic boundary conditions. This latter state, useful for determining the
effective central charge ceff, is easily computed and converges nicely. There are two types of
boundary conditions on a cylinder. The first one, called simply periodic boundary condition,
wraps the system on a cylinder by taking care that closed non-contractible loops get the
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right fugacity zero. The second one uses an anti-periodic condition for the fermions which,
in practice, gives a weight 2 to non-contractible loops. For a cylinder of width 2N the two
sets of conditions are

• periodic boundary conditions:

bσ,2N = bσ,0 and fσ,2N = −(−1)Nfσ,0 (4.92)

• anti-periodic boundary conditions:

bσ,2N = bσ,0 and fσ,2N = (−1)N .fσ,0 (4.93)

For most physical purposes, we are interested in the usual periodic boundary conditions
but quantities such as the effective central charge also has a high physical interest. The phase
diagram obtained is drawn Figure 4.4.
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Figure 4.4 – Phase diagram for the lattice model. The critical line zC(µ) is obtained using
phenomenological renormalisation for a system on a cylinder and describes the dilute critical
phase at c = 0. On the end point at the right the model describes percolation whereas on
the far left the system describes the first truncation of the Chalker-Coddington model. The
domain below the critical line is a dilute non-critical phase. Above, the phase is critical but
in a different universality class where the lattice is filled with loops.

In particular it is clear that indeed zC(µ = 1) = 1 for percolation and we recover the
estimate for zC in the first truncation of the Chalker-Coddington model zC(µ = 0) ∼ 1.032.
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All the domain under the line zC(µ) is a non-critical dilute phase and is not discussed here. As
already partially discussed in the last chapter, the domain above zC(µ) is dense and critical.
It has already been shown in section 3.2.5 that, at µ = 0, this dense phase is composed of
two dense polymers with central charge c = −4. The section 4.3.3 discuss in details the
universality class at generic values of µ.

4.3.2 Symmetries

The symmetries of the first truncation of the Chalker-Coddington model are discussed ex-
tensively in the section 3.2.3. It was found that for µ = 0 the model has a gl(1|1)+×gl(1|1)−
symmetry in finite-size. The edges carry a five-dimensional representations of this algebra,

V5 = 1⊕ (�+ ⊗�−) (4.94)

for even sites and

V5̄ = 1⊕ (�̄− ⊗ �̄+) (4.95)

for odd sites. For simplicity, the following discussion focusses on an even site, the analysis
about odd sites is perfectly similar. The generators of gl(1|1)σ are

Nσ = nFσ = f †σfσ, ψ+
σ = f †σbσ, ψ−σ = b†σfσ. (4.96)

For values of µ > 0, an interaction between + and − generators appears. This interdepen-
dence, coming from the P3 projector in the edge contribution, can be interpreted with loops.
Indeed the model at µ > 0 is not made of two independent polymers since the mixing of
colours allows a polymer to go through the same edge twice. As a consequence it is expected
that the symmetry algebra is no longer two independent copies of gl(1|1) but only one. The
generators of the symmetry on a site are

N = N+ +N−, ψ+ = ψ+
+ + ψ+

−, ψ− = ψ−+ + ψ−− (4.97)

for even sites and the odd sites generators have a similar expressions. Moreover the on-site
Hilbert space is now decomposed as

V5 = 1⊕ 〈2, 1〉 ⊕ 〈2, 2〉 (4.98)

in terms of representation of gl(1|1). Thus the symmetry algebra for 0 < µ < 1 is indeed
reduced to gl(1|1).

The situation is very different for µ = 1. The model is described by the an alternating
supersymmetric sl(2|1) spin chain. The critical parameter z is known exactly to be z = 1
(independently of the order of truncation). As a consequence, the action of the transfer
matrix allows a symmetry between particle states and the vacuum encoded in the generators
Q+, Q−, V + and W− of (4.64). The sl(2|1) actually contains one copy of gl(1|1). Indeed
the generator N can be related to Qz in (4.64), ψ+ to V − and ψ− to W+, all up to trivial
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normalisations and shifts. It is important to notice that the gl(1|1) symmetry in the range
0 < µ < 1 is actually precisely the gl(1|1) sub-algebra of sl(2|1) at µ = 1.

Let us summarise the symmetry content of the model. Starting from µ = 1 and z = 1,
with a sl(2|1) symmetry, the system is perturbed along zC(µ). This perturbation breaks, in
finite-size, the relations encoded in sl(2|1) between the vacuum and particle states. Hence
only gl(1|1) is left, mixing the fermions and bosons together. On the other end of the critical
line, at µ = 0, the symmetry between the vacuum state and the particles is already broken
since zC > 1 (it is also broken by the truncation). Therefore, from the original gl(2|1)
symmetry, only the sub-algebra gl(1|1)+ × gl(1|1)− is left and, as the system is perturbed
along zC(µ), the two gl(1|1) copies are coupled and leaving only gl(1|1).

1st trunc CC Class C?

µ = 0

gl(1|1)+ ⊗ gl(1|1)−

µ = 1

sl(2|1)

gl(1|1)

(4.99)

From the point of view of symmetries, it is perfectly reasonable to expect that the model,
in the regime 0 < µ < 1, has a distinct universality class. However, it is also possible that
symmetries are restored in the continuum limit. In particular, the case of the self-avoiding
walks model of the last section provides an example of a symmetry between the vaccum and
particle states restored in the continuum. If this is the case, a flow towards class C in the
regime 0 < µ < 1 is again expected.

4.3.3 The dense phase

The identification of the dense phase is discussed here in the same way as in 3.2.5. In
this subsection the values of the parameters (µ, z) always satisfy z > zC(µ). As we cross the
threshold zC(µ) and enter into the dense phase, dominant configurations are filled with loops.
In terms of the Hamiltonian or the transfer matrix, the supersymmetric vacuum changes and
the largest eigenvalue Λ0 of the transfer matrix is no longer Λ0 = 1.

As discussed earlier, the dense phase of the first truncation of the Chalker Coddington
model µ = 0 is two decoupled dense polymers with central charge c = −4. Indeed the two
gl(1|1) copies are preserved and give one dense polymer each. Considering now the case
µ = 1 increasing z > zC(µ = 1) = 1 breaks the sl(2|1) symmetry to its gl(1|1) sub-algebra
as discussed already earlier. The dense phase is thus expected to be a simple dense polymer.
This situation is very similar to the case of the O(n = 0) model at the θDS point. The same
behaviour is expected from the regime 0 < µ < 1 since the sl(2|1) is already broken to the
same gl(1|1) symmetry. The loop model provides a nice picture of this phenomena. Since
two polymers with distinct colours can in fact be connected for µ > 0, a single polymer filling
the lattice by going through each edge twice is effectively obtained. To summarise, the dense
phase for µ > 0 is expected to be a unique dense polymer with central charge c = −2.
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A transfer matrix simulation is performed in order to obtain numerical estimate of the
central charge. The ground state energy per site is known to have universal finite-size cor-
rections

f0(L) = − 1

L
log(Λ0) = fbulk −

πc

6L2
+ o(L−2) (4.100)

where Λ0 is the largest eigenvalue of the transfer matrix and fbulk is a non-universal
constant. From this law we extract a series of values of c using two successives sizes and
obtain the figure 4.5.
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Figure 4.5 – Numerical estimation of the central charge in the dense phase along the critical
line. Each value is computed thanks to 2 successive lengths. We chose the value z = 1.1
for all value of µ but other values could have been chosen if z(µ) > zc(µ) is respected. The
central charge converges towards c = −4 for µ = 0 corresponding to two independent dense
polymers whereas c = −2 for µ > 0 corresponding to one dense polymer.

The action of the renormalisation group provides a flow going from the dense phase of the
Chalker-Coddington model first truncation towards the dense phase of the percolation. Note
that this is consistent with a ceff theorem since the effective central charge are related by
ceff(µ = 0) = 2ceff(µ = 1) > 0 hence ceff(µ) decreases along the RG flow. Similar observations
can also be made on critical exponents and the same conclusion are reached.

4.3.4 Critical exponents of the critical dilute phase

The focus of this section is to illustrate the direction of the RG-flow by looking at several
critical exponents. In the following the choice is made to look at the effective central charge
and a few conformal dimensions. Another option is to measure the critical exponent ν
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corresponding to a staggering of the lattice. However, it was found that for generic values
of µ, its value is hard to obtain precisely. We propose a few explanations. In the spin chain
formulation, using exact diagonalisation, we are restricted by the very large vector space of
dimension 5 per site. Moreover the critical line zC(µ) is not known exactly and if the value
is not precise enough, the system is perturbed by a relevant operator (corresponding to Xeo

as defined in the previous chapter). In practice, larger size of the system must be reached in
order to produce a reasonable estimate of ν.

Effective central charge. The first quantity to compute is the effective central charge.
It is obtained by measure the central charge of the system with anti-periodic boundary
conditions defined equation (4.93). The free energy per site f0,antiperiodic can be computed
from the largest eigenvalue of the transfer matrix Λ0,antiperiodic and its finite-size corrections
is

f0,antiperiodic(L) = − 1

L
log(Λ0,antiperiodic) = −πceff

6L2
+ o(L−2). (4.101)

The figure 4.6 shows the evolution of ceff measured with two successive sizes. Its predicted
value is ceff = 3 [77] for the first truncation of the Chalker-Coddington model. The numerical
estimate at µ = 0 is a little bit far from this prediction. Moreover the value for percolation
is exactly

ceff = 1 +
9

π2

(
log

3 +
√

5

2

)2

∼ 1.8446 . . . (4.102)

with excellent agreement with our data at µ = 1. We observe a crossover in the intermediate
regime. As L increases, the effective centrale charge forms a plateau in the regime µ > 0
at the percolation value. This observation provides further evidence of a flow from the first
truncation towards class C.

Vacuum sector. The periodic boundary conditions are now considered in the sector of the
supersymmetric groundstate. There are two gl(1|1) conserved charges

Qb =
N−1∑
i=0

n2i
b −

N−1∑
i=0

n̄2i+1
b Qf =

N−1∑
i=0

n2i
f −

N−1∑
i=0

n̄2i+1
f (4.103)

where njb (resp. n
j
f ) is the number of bosons (resp. fermions) on site j. The vaccum sector

is the one with Qb = Qf = 0. The first exponent Xt, corresponding to the creating of a pair
of loop arc, is not a good candidate to study naively the RG-flow. Indeed it is known for
percolation that Xt corresponds to the one hull exponent, Xk=1 of equation (4.91), giving
Xt = 1/4 whereas in the first truncation of the Chalker-Coddington model we also have
Xt = X2,2 = 1/4 as discussed in the last chapter.

Nevertheless it is interesting to look at the evolution of the degeneracies of Xt since we
know that the gl(1|1) symmetry is broken around µ = 0. If this symmetry is present in
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Figure 4.6 – Numerical estimate of the effective central charge for successive sizes. The values
are obtained using a phenomenological renormalisation scheme, determining effectively zC at
the same time. The dotted line is the exact value for percolation (4.102).

the continuum limit (in the case of a flow from class C towards the first truncation), the
degeneracies are expected to be restored by increasing the size of the system. In the figure
4.7, the first eigenvalue at µ = 0 is plotted and, moving along the critical line zC(µ), each
degeneracy is followed. Some eigenvalues diverges as the size increases providing an other
piece of evidence supporting a flow towards class C, as in the untruncated model.
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Figure 4.7 – Numerical estimate of the low-energy spectrum for successive sizes in the sector
(Qb, Qf ) = (0, 0). The plot are obtained by exact diagonalisation along the critical line zC(µ)
and only shows the eigenvalues that correspond to Xt around µ = 0. The degeneracies at the
first truncation of the Chalker-Coddington model are lifted and some states disappear under
the action of the RG-group by flowing to infinity.
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5 Operators in the Potts model
Logarithmic Conformal Field Theories (LCFTs) are characterised by having a non-diagonalisable
dilatation operator L0. This structure leads to logarithms in the correlations of the fields
that transform inside a Jordan cell of L0. Some features of the LCFTs can be understood
by taking a limiting procedure [149–151] through a continuous family of ordinary (i.e., not
indecomposable, but still non-unitary) CFT. If the model is subject to additional discrete
symmetries, insight on these logarithmic correlation functions is obtained by studying oper-
ators that transform irreducibly under this symmetry. In contradistinction to most of usual
techniques in CFT, this approach is not limited to two dimensions.

The Q-state Potts model is an interesting statistical physics system, since it contains
several important special cases, such as the Ising model (Q = 2), percolation (Q → 1), or
spanning trees and forests (Q → 0 limits) [99, 152–155]. This model is invariant under the
action of the discrete symmetric group SQ. Even though the original definition supposes
Q to be a positive integer, the partition function can be reformulated in terms of non-local
geometrical objects and analytically continued to Q real [29] in terms of an irrational model.
More details can be found in section 5.1 below. In two dimensions, the Potts model can
be solved exactly thanks to a mapping to a 6-vertex model [101] or an associated loop
model [42]. Very little is known about the field theory in higher dimensions. A first approach
to the logarithmic scale invariant theory for the Potts model has been proposed in [151],
and subsequently investigated more systematically in [156]. It successfully predicts Jordan
cells in the dilatation operator, independently of the dimension. Recently, progress has been
made to determine the general form of correlation functions and conformal blocks in any
dimension [157].

In this chapter we generalise the construction of [156] to classify local observables of
N spins that transform irreducibly under the action of the symmetric group, taking into
account the SQ symmetry and also the SN symmetry that describes the behaviour of the
observables under an exchange of the spins. Only observables symmetric under such exchange
were previously considered in [156], corresponding to a trivial action by SN and a zero
conformal spin. Here we consider arbitrary irreducible observables, including those with non-
zero conformal spin, in a more transparent group theoretical setup. The structure and the
correlation functions of this new class of observables is discussed. In particular, we underline
the consequences for bulk LCFT and identify the critical exponents in two dimensions.

5.1 Observables in the Q-state Potts model

The Q-state Potts model is a quite simple model of statistical physics with SQ symmetry,
which nevertheless conceals deep algebraic structures and a rich variety of critical behaviour.
It can be written in different representations, some of which are specific to two dimensions,
and others which hold in arbitrary dimensions. Among the latter, a very appealing choice
amounts to rewriting the partition function and correlation functions in terms of non-local
objects known as Fortuin-Kasteleyn clusters [29]. Each such cluster carries a Boltzmann
weight of Q, which immediately allows us to extend the definition of the model to non-
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integer Q. This is particularly useful in the LCFT context, because we can then access
particular indecomposable values of Q through a limiting procedure.

In the following, we first provide a brief review of the definition of the Potts model.
We then explain the construction of local observables within a particular representation of
SQ and discuss the structure relevant to LCFT. The previous results for scalar (spinless)
observables [156] are recovered within our new framework.

5.1.1 Potts model and Fortuin-Kasteleyn clusters

The Potts model and its Fortuin-Kasteleyn formulation were introduced in the section 2.2.1.
We are going to study the so-called N -cluster operators.4 Consider a small neighbourhood Di
containing N spins that belong to N distinct FK clusters. We are interested in the probability
that these N clusters extend to another similar neighbourhood Dj. A cluster-operator Oi—
which will be defined precisely below in a more appropriate notation—acts on the N spins
in Di so as to impose that they belong to distinct FK clusters. The clusters thus inserted at
Di are therefore obliged to propagate until they terminate at another cluster operator.5 The
probability of having N distinct clusters extending from Di to Dj can thus be related to the
two-point function 〈OiOj〉.

We shall see below that the N -cluster operator Oi are functions of the N Potts spins in Di.
It can therefore be represented explicitly as an N -component tensor (e.g., a vector for N = 1
and a matrix for N = 2) of coefficients that are algebraic functions of Q. The N-cluster
operators are strictly speaking observables. We also use the term operator here in a looser
sense, because in the continuum limit correlation functions of such observables correspond
to two-points functions of fields that, in a field-theory terminology, are called operators. For
that reason we shall often use the words operator, observable and tensor interchangeably in
the sequel.

The correlation functions in the Potts model at criticality involve power laws of the
distance between the small neighbourhoods considered. If Q takes the particular values
Q = 4 cos2(π/p) with p = 2, 3, . . . integer (these values are known as Beraha numbers) in
d = 2, or Q ∈ N in higher dimensions, we will find that these power laws are multiplied by
logarithms. In two dimensions, these logarithmic contributions have been fixed [47]. In [156],
all the tensors acting on an arbitrary number of spins and transforming according to a class
of irreducible representations of the symmetric group are constructed. More precisely, they
have computed the form of all possible tensors t(σ1, . . . , σN), acting on N spins, which are
irreducible under SQ and invariant under arbitrary permutations of the N spins σi.

4In d = 2, the N -cluster operators coincide with the 2N -leg watermelon (or fuseau) operators in the loop
model representation. However, this latter representation makes crucial use of planarity and duality, and
hence is not available in higher dimensions.

5The use of words such as “insert”, “propagate” and “terminate” does not imply that these clusters have
been equipped with a direction of any kind.
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5.1.2 Definitions and representation theory of SQ
The symmetric group Sn is the group of permutations of n objects. We would like to classify
the observable content of the Potts model in terms of representation of SQ. We need to con-
struct an observable of N spins, t(σ1, . . . , σN). Let us denote by L(N)

Q the space of Q× ...×Q︸ ︷︷ ︸
N

tensors. We decompose it in terms of the basis elements Oa1,a2,...,aN defined by

Oa1,a2,...,aN (σ1, σ2, . . . , σN) = δa1,σ1δa2,σ2 . . . δaN ,σN , (5.1)

where {ai} and {σi} are sets of integers between 1 and Q. A permutation p ∈ SQ has a
natural action on this basis:

p Oa1,a2,...,aN = Op(a1),p(a2),...,p(aN ) . (5.2)

We can also define the action of p̃, a permutation in SN , by

p̃ Oa1,a2,...,aN = Oap̃−1(1),ap̃−1(2),...,ap̃−1(N)
, (5.3)

which implies:

p̃ Oa1,a2,...,aN (σ1, . . . , σN) = Oa1,a2,...,aN (σp̃(1), . . . , σp̃(N)) . (5.4)

It is straightforward to show that if we act with p ∈ SQ and p̃ ∈ SN on a tensor, the order
does not matter because the transformations commute.

To make the presentation self-contained, we start by briefly recalling all the necessary
definitions and properties. We refer to [158] for more details. In the following, a permutation
is always represented by its decomposition in terms of cycles. A very convenient way to study
the representations of Sn is to use the bijection between irreducible representations and Young
diagrams. Let us consider a partition of the integer n, with k integers λi (

∑k
i=1 λi = n) that

we reorder such that λ1 ≥ λ2 ≥ · · · ≥ λk. We use the standard notation for Young diagrams,
where [λ1, λ2, . . .] denotes the diagram with λi boxes in the i’th row (counted from the top).
The normal Young tableau corresponding to a Young diagram is obtained by filling the n
boxes with the integers {1, 2, . . . , n}, so that the order is increasing in each row (read from
left to right) and in each column (read from top to bottom). We henceforth refer to rows
also as horizontal lines, and to columns as vertical lines. An arbitrary Young tableau is
obtained by acting with a permutation q on the numbers in the boxes of the normal tableau.
Therefore the quantities that refer to a particular Young tableau of shape λ will be denoted
with a superscript (q).

We now define a linear operator which will project a tensor in a certain irreducible repre-
sentation of the symmetric group. Given a Young tableau λ of size n boxes, let h(q)

λ (resp. v(q)
λ )

be the subset of permutations that leave invariant the set of numbers in each horizontal (resp.
vertical) line of the Young tableaux of shape λ and filled thanks to the permutation q. We
then define the symmetriser s(q)

λ , the anti-symmetriser a(q)
λ and the irreducible symmetriser

e
(q)
λ by

s
(q)
λ =

∑
h∈h(q)λ

h , a
(q)
λ =

∑
v∈v(q)λ

ε(v)v , e
(q)
λ = s

(q)
λ a

(q)
λ , (5.5)
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where ε(v) is the signature of the permutation v. The idea is the following: when we act
with the operator e(q)

λ on a set of indices, first all the indices in the same column are anti-
symmetrised, and then we symmetrise all the indices in the same row. Notice that the
quantity that we obtain is a priori not anti-symmetric in the indices that belong to the same
column, since s(q)

λ and a
(q)
λ do not commute. Examples of irreducible symmetrisers will be

given when we will construct the tensors. Finally, notice that

e
(q)
λ = qeλq

−1 , (5.6)

which is a relation that relates the irreducible symmetriser of any Young tableau of shape λ to
the irreducible symmetriser of the normal Young tableau of the same shape. The operator e(q)

λ

is a projector (if normalized correctly). In order to get an invariant subset of a vector space
(which will be our tensor space) that generates an irreducible representation, we act with e(q)

λ

on an arbitrary vector. All the other generators are obtained by acting with permutations
on this first generator. A very important fact is that if one changes the order of the numbers
appearing in the boxes of the diagram λ, we end up with an equivalent representation. Later
we will choose those numbers conveniently.

Let us finally recall the hook formula that gives the dimension dλ of an irreducible repre-
sentation λ of SQ:

dλ =
n!∏

(i,j)∈λ hλ(i, j)
, (5.7)

where the hook length hλ(i, j) of the box labelled (i, j) in the Young diagram λ is the number
of boxes to its right, plus the number of boxes below it, plus the box itself.

We are now ready to act with an irreducible symmetriser on the tensor space to obtain
a family of observables in an arbitrary representation of SQ. Let us summarise the “recipe”.
First we choose a Young diagram λQ of size Q. We consider a realisation of a Young tableau
filled with the permutation q and compute the irreducible symmetriser e(q)

λQ
. The action of

this operator on a tensor t gives us a generator e(q)
λQ
t of an invariant subspace VλQ . We get

all the generators of VλQ that transform with the SQ irreducible representation associated to
λQ by acting with some permutations:

VλQ =
{
p
(
e

(q)
λQ
t
)

: p ∈ SQ
}
. (5.8)

In the following, we review the simplest examples of this procedure, recovering some of
the results of [156], before generalising the method.

5.1.3 Observables of one spin

First we consider the tensor space L(1)
Q = {Oa : a = 1, . . . , Q} of observables functions of one

spin σ. In [151, 156], the authors decomposed this space in two tensors, namely the identity
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and the magnetisation. In their notation, these observables read

t(0,1)(σ) =

Q∑
a=1

δa,σ = 1 , (5.9)

t(1,1)
a (σ) = δa,σ − 1

Q
t(0,1) = δa,σ − 1

Q
. (5.10)

These expressions were found in [151,156] by imposing the constraint∑
a

t(1,1)
a = 0 . (5.11)

Below we shall rederive them (in our own notation), using a procedure that allows us to
consider more complicated cases later. To this end, we consider the irreducible symmetriser
e

(q)
λ for a given Young tableau λ. It is easy to see that only two Young diagrams give a
non-zero action: [Q] and [Q− 1, 1]. These diagrams are respectively associated to the trivial
and standard representations. Their respective dimensions (1 and Q − 1), as found from
(5.7), justifies the constraint (5.11).

Invariant tensor. The irreducible symmetriser for [Q] is

e[Q] =
∑
h∈SQ

h . (5.12)

Its action on any tensor Oa gives the invariant tensor t[Q]:

t[Q] ≡ 1
(Q−1)!

e[Q]Oa =

Q∑
i=1

Oi . (5.13)

The tensor acting on a spin σ is explicitly

t[Q](σ) = 1 , (5.14)

and so we have recovered (5.9).

Standard representation. Let us now move to a more interesting case with the Young
diagram [Q− 1, 1] and consider the following Young tableau

i1 i2 . . . iQ−1

a
(5.15)

with a a specific index (with a = 1, . . . , Q) and i1, . . . , iQ−1 arbitrary indices in order to fill
the Young tableau. The particular choice {ik} = {1, 2, . . . , a − 1, a + 1, . . . , Q} gives the
normal Young tableau for the given value of a. We will also denote by a the permutation
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that produces the particular tableau (5.15) from the corresponding normal Young tableau.
The corresponding irreducible symmetriser e(a)

λQ
is

e
(a)
λQ

=

 ∑
h∈h̃(a)λ

h

 (1− (i1, a)) , (5.16)

where h̃(a)
λ is the subset of permutations within SQ that leave the first line of the Young

tableau invariant or, in other words, the permutations leaving a invariant. Also, (i1, a)
denotes the transposition of the indices i1 and a. Acting on the basis element Oa we get

e
(a)
λQ
Oa =

 ∑
h∈h̃(a)λ

h

 (Oa −Oi1)

= (Q− 1)!Oa − (Q− 2)!

Q∑
i=1
i 6=a

Oi

= Q(Q− 2)!Oa − (Q− 2)!

Q∑
i=1

Oi . (5.17)

We define the normalised tensor t[Q−1,1]
a by

t[Q−1,1]
a = 1

Q(Q−2)!
e

(a)
λQ
Oa = Oa − 1

Q

Q∑
i=1

Oi = Oa − 1
Q
t[Q] . (5.18)

We can generate the whole family of tensors by acting with a permutation p ∈ SQ, but we
find that this family is just given by the previous formula for any a, because of (5.6). We
can satisfy that it has dimension Q− 1, because of the following identity

Q∑
a=1

t[Q−1,1]
a = 0 , (5.19)

which of course is nothing but (5.11) in our notation. The tensor acting on a spin σ is
explicitly

t[Q−1,1]
a (σ) = δa,σ − 1

Q
, (5.20)

so we have recovered also the magnetisation operator (5.10).
Summarising, the space L(1)

Q has been decomposed as a direct sum of two irreducible
representations of SQ:

L
(1)
Q = [Q]⊕ [Q− 1, 1] . (5.21)
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5.1.4 Observables of two spins

We next consider the space L(2)
Q of observable of 2 spins, σ1 and σ2. The subspace of L(2)

Q of
observables for which σ1 = σ2 reads {Oa,a : a = 1, . . . , Q} and is stable under the action of
SQ. It is isomorphic to L(1)

Q and can therefore be decomposed as the direct sum [Q]⊕[Q−1, 1],
as we have just seen. We thus consider henceforth only observables for which σ1 6= σ2.

In [156] the authors studied only the case of symmetric tensors, i.e., those satisfying
t(σ1, σ2) = t(σ2, σ1). They enforced constraints on the sum of coefficients to find three
irreducible tensors, which we first discuss using the notation of [156]. The first one, t(0,2), can
be identified with the energy operator. The second one, t(1,2)

a , has the same SQ symmetry
as the magnetisation operator. And the last tensor, t(2,2)

a,b , is the two-cluster operator. The
three tensors are found to have the following expressions [151,156]:

t(0,2)(σ1, σ2) = 1− δσ1,σ2 , (5.22)
t(1,2)
a (σ1, σ2) = t(1,1)

a (σ1) + t(1,1)
a (σ2) = δa,σ1 + δa,σ2 − 2

Q
, (5.23)

t
(2,2)
a,b (σ1, σ2) = δa,σ1δb,σ2 + δa,σ2δb,σ1

− 1
Q−2

(
t(1,2)
a (σ1, σ2) + t

(1,2)
b (σ1, σ2)

)
− 2

Q(Q−1)
t(0,2) , (5.24)

where we have omitted writing an overall factor (1− δσ1,σ2) multiplying the last two expres-
sions.

As in the previous section we now show how to recover these expression using Young pro-
jectors. We also extend the set of operators by considering tensors which are antisymmetric
under the permutation of the two spins, i.e., those satisfying t(σ1, σ2) = −t(σ2, σ1). To this
end, we first notice that any projector on a representation associated with a Young diagram
with more than two boxes below the first line is the null operator. We thus have to consider
the following diagrams: [Q], [Q− 1, 1], [Q− 2, 2] and [Q− 2, 1, 1].

Invariant tensor. Let us again first consider the case of [Q]. The space L(2)
Q contains an

additional invariant observable. When acting with e[Q] on the tensor Oa,b with a 6= b we find:

t[Q] ≡ 1
(Q−2)!

e[Q]Oa,b =

Q∑
i,j=1
i 6=j

Oi,j . (5.25)

In terms of the spins, σ1 and σ2, we have the expression

t[Q](σ1, σ2) = 1− δσ1,σ2 , (5.26)

and so we have recovered (5.22) in our own notation.
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Representation [Q−1, 1]. We now turn to the more interesting case of the Young diagram
[Q− 1, 1]. We consider once again the following Young tableau:

i1 i2 . . . iQ−1

a
(5.27)

One could act with the same e(a)
λQ

as before on an element of the type Oa,b:

e
(a)
λQ
Oa,iQ−1

=

 ∑
h∈h̃(a)λ

h

(Oa,iQ−1
−Oi1,iQ−1

)

= (Q− 2)!

Q∑
i=1
i 6=a

Oa,i − (Q− 3)!

Q∑
i,j=1
i 6=j 6=a

Oi,j

= (Q− 1)(Q− 3)!

Q∑
i=1
i 6=a

Oa,i + (Q− 3)!

Q∑
i=1
i 6=a

Oi,a − (Q− 3)!

Q∑
i,j=1
i 6=j

Oi,j .

We define the corresponding tensor t[Q−1,1],1
a :

t[Q−1,1],1
a ≡ 1

(Q−1)(Q−3)!
e

(a)
λQ
Oa,iQ−1

(5.28)

=

Q∑
i=1
i 6=a

Oa,i + 1
Q−1

Q∑
i=1
i 6=a

Oi,a − 1
Q−1

Q∑
i,j=1
i 6=j

Oi,j .

However, we could also consider the following non-equivalent operation and define t[Q−1,1],2
a :

t[Q−1,1],2
a ≡ 1

(Q−1)(Q−3)!
e

(a)
λQ
OiQ−1,a (5.29)

=

Q∑
i=1
i 6=a

Oi,a + 1
Q−1

Q∑
i=1
i 6=a

Oa,i − 1
Q−1

Q∑
i,j=1
i 6=j

Oi,j .

A problematic feature in the definitions (5.28)–(5.29) is that there is no manifest symmetry
upon exchanging the two spins, σ1 and σ2. It thus appears natural to classify the observables
acting also in terms of the group SN permuting the N spins. In the present case, with N = 2,
one possibility is to choose the symmetric representation [2] of S2 and define the observable
t
[Q−1,1],[2]
a :

t[Q−1,1],[2]
a ≡ Q−1

Q

(
t[Q−1,1],1
a + t[Q−1,1],2

a

)
(5.30)

=

Q∑
i=1
i 6=a

(Oi,a +Oa,i)− 2
Q

Q∑
i,j=1
i 6=j

Oi,j
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When expressed explicitly in terms of the spins, this observable reads

t[Q−1,1],[2]
a (σ1, σ2) =

{
δσ1,a + δσ2,a − 2

Q
for σ1 6= σ2 ,

0 for σ1 = σ2 .
(5.31)

This precisely coincides with (5.23), which was obtained in [151, 156] by imposing the sym-
metry between σ1 and σ2.

The other possibility is to choose the representation [1, 1] of S2 in which the two spins,
σ1 and σ2, are antisymmetric. We therefore define the corresponding normalised tensor
t
[Q−1,1],[1,1]
a :

t[Q−1,1],[1,1]
a ≡ Q−1

Q−2

(
t[Q−1,1],1
a − t[Q−1,1],2

a

)
(5.32)

=

Q∑
i=1
i 6=a

(Oi,a −Oa,i) .

In terms of the spins this observable reads simply:

t[Q−1,1],[1,1]
a (σ1, σ2) =

{
δσ1,a − δσ2,a for σ1 6= σ2 ,

0 for σ1 = σ2 .
(5.33)

This is our first example of a non-scalar observable (operator) that was not considered in the
previous work [156].

It is straightforward to satisfy that the subsets{
t[Q−1,1],[2]
a : a = 1, . . . , Q

}
(5.34)

and {
t[Q−1,1],[1,1]
a : a = 1, . . . , Q

}
(5.35)

are indeed stable under the action of SQ, and of dimension Q − 1. We can rewrite the
definition of both observables using an irreducible symmetriser of SN (here with N = 2) as

t[Q−1,1],λN
a = 1

N e
(a)
λQ
ẽ

(a)
λN
Oa,iQ−1

, (5.36)

where N is a normalisation constant. The operator ẽ(a)
λN

acts according to (5.3) and is the
irreducible symmetriser of the following Young tableau (depending on the two possible choices
of λN):

1 2 or
1

2
(5.37)
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Representation [Q− 2, 2]. We now construct the tensors with 2 symmetric indices acting
on 2 spins. This corresponds to the Young diagram λQ = [Q − 2, 2]. Let us consider the
following tableau

i1 i2 . . . iQ−2

a1 a2

(5.38)

where we again denote the permutation associated with this configuration by a. The irre-
ducible symmetriser is

e
(a)
[Q−2,2] =

 ∑
h∈h̃(a)λ

h

 (1 + (a1, a2)) (1− (i1, a1)) (1− (i2, a2)) , (5.39)

where h̃(a)
λ now denotes the subset of SQ consisting of all the permutations that leave a1 and

a2 invariant. To generate the tensor we act with the irreducible symmetriser on Oa1,a2 :

e
(a)
[Q−2,2]Oa1,a2 =

 ∑
h∈h(a)

λ

h

 (Oa1,a2 +Oa2,a1 −Oa1,i2 −Oa2,i2 −Oi1,a2 −Oi1,a1 + 2Oi1,i2)

= (Q− 2)! (Oa1,a2 +Oa2,a1)− (Q− 3)!

Q∑
i=1

i 6=a1,a2

(Oa1,i +Oa2,i +Oi,a2 +Oi,a1)

+2(Q− 4)!

Q∑
i,j=1
i 6=j

i,j 6=a1,a2

Oi,j .

To get a nice expression we need to complete each sum with the missing terms, leading us
to different prefactors. We normalise the resulting observable and define the corresponding
tensor t[Q−2,2]

a1,a2 . The end result is:

t[Q−2,2]
a1,a2

= Oa1,a2 +Oa2,a1 − 1
Q−2

 Q∑
i=1
i 6=a1

(Oa1,i +Oi,a1) +

Q∑
i=1
i 6=a2

(Oa2,i +Oi,a2)


+ 2

(Q−1)(Q−2)

Q∑
i,j=1
i 6=j

Oi,j . (5.40)

Note that despite of (5.38), this expression can be extended to any values a1, a2, provided
that a1 6= a2, by permuting the indices as required. The explicit expression of this tensor,
omitting an overall factor of (1− δσ1,σ2), is

t[Q−2,2]
a1,a2

(σ1, σ2) = δa1,σ1δa2,σ2 + δa2,σ1δa1,σ2
− 1
Q−2

(δa1,σ1 + δa1,σ2 + δa2,σ1 + δa2,σ2) + 2
(Q−1)(Q−2)

. (5.41)
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This coincides with (5.24), as first found in [151,156]. It is readily checked that the subspace{
t
[Q−2,2]
a1,a2 : 1 ≤ a1 6= a2 ≤ Q

}
has the correct dimension Q(Q − 3)/2, as given by the hook

formula (5.7) applied to the Young tableau [Q− 2, 2].
It should be stressed that to obtain (5.41) we did not specify any representation of S2

for the spins σ1 and σ2. Indeed, for this tensor the chosen representations of SQ and SN
are not independent: we cannot find observables with symmetric indices a1, a2 which are not
symmetric for the spins σ1, σ2 as well. In fact, the symmetry of the spins σ is partially or
totally dictated by the Young diagram λQ with the first line removed. The general result
about the relation between the SQ and SN symmetries will be stated below.

Observables with anti-symmetric indices. To complete the discussion of observables
of N = 2 spins, we finally consider the tensors with two anti-symmetric indices. They
correspond to the irreducible representation [Q−2, 1, 1]. Let us consider the following Young
tableau

i1 i2 . . . iQ−2

a1

a2

(5.42)

with its corresponding irreducible symmetriser:

e
(a)
[Q−2,1,1] =

 ∑
h∈h̃(a)λ

h

 (1− (i1, a1)− (i1, a2)− (a1, a2) + (i1, a1, a2) + (i1, a2, a1)) , (5.43)

where h̃(a)
λ denotes the subset of SQ consisting of all permutations that leave a1 and a2

invariant. We recall that we represent a permutation in terms of its cycles. Thus, for
instance, (a, b, c) is the permutation that cyclically permutes a, b and c and leaves invariant
all other elements. Acting on Oa1,a2 yields

e
(a)
[Q−2,1,1]Oa1,a2 = (Q− 2)! (Oa1,a2 −Oa2,a1)− (Q− 3)!

Q∑
i=1

i 6=a1,a2

(Oa1,i−Oi,a1 +Oi,a2−Oa2,i)

= Q(Q− 3)! (Oa1,a2 −Oa2,a1)

−(Q− 3)!

Q∑
i=1
i6=a1

(Oa1,i−Oi,a1)− (Q− 3)!

Q∑
i=1
i 6=a2

(Oi,a2−Oa2,i) .

We define the corresponding normalised observable t[Q−2,1,1]
a1,a2 :

t[Q−2,1,1]
a1,a2

= 1
Q(Q−3)!

e
(a)
[Q−2,1,1]Oa1,a2 (5.44)

= Oa1,a2 −Oa2,a1 − 1
Q

 Q∑
i=1
i 6=a1

(Oa1,i−Oi,a1) +

Q∑
i=1
i 6=a2

(Oi,a2−Oa2,i)

 .
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Omitting again the factor (1− δσ1,σ2), the explicit expression corresponding to (5.44) is

t[Q−2,1,1]
a1,a2

(σ1, σ2) = δσ1,a1δσ2,a2 − δσ1,a2δσ2,a1 − 1
Q

(δσ1,a1 − δσ1,a2 + δσ2,a2 − δσ2,a1) . (5.45)

Also in this case the representation of SQ here fully enforces the symmetry between the
spins. This is a consequence of the fact that the number of boxes under the first line of
[Q− 2, 1, 1] is 2 and equal to the number of spins.

Decomposition of L(2)
Q . In the end we have the following decomposition of observables of

2 spins:

L
(2)
Q = [Q]⊕ [Q− 1, 1]︸ ︷︷ ︸

L
(1)
Q

⊕[Q]⊕ [Q− 1, 1]︸ ︷︷ ︸
[2]

⊕ [Q− 1, 1]︸ ︷︷ ︸
[1,1]

⊕[Q− 2, 2]⊕ [Q− 2, 1, 1] . (5.46)

The total dimension is seen to be Q2, as it should. Two new observables were constructed,
namely t[Q−2,1,1]

a1,a2 and t[Q1,1],[1,1]
a . These observables were not discussed in [151,156], and omit-

ting their contribution to (5.46) would give the dimension Q(Q + 1)/2, corresponding to
the number of generators of symmetric Q × Q matrices. Similarly, the contribution of the
two new observables to the dimension is Q(Q − 1)/2, that is, the number of generators of
anti-symmetric Q×Q matrices.

5.1.5 Procedure for general representations

The case of observables of 2 spins in the representation [Q − 1, 1] highlighted the need of
taking into account the representation of the group SN that dictates the symmetries of the N
spins. We need to be careful when choosing a representation of SN because the representation
λQ already imposes symmetry constraints. We recall in particular the case [Q−2, 2] involving
2 spins, where the constructed tensor (5.41) automatically came out as being symmetric in
σ1 and σ2, whereas the tensor of representation [Q − 1, 1] acting on 2 spins did not impose
any S2 symmetry, which therefore needed to be subsequently imposed.

Let us consider now a Young diagram λQ containing Q − n boxes in the first row and a
total of n boxes in the remaining rows. From this diagram we are going to define a tensor
with n indices a1, . . . , an. We would like to define an observable of N spins. This is obviously
only possible if N ≥ n, since we need a sufficient number of spins to act upon.

Primal operator. If the condition n = N is satisfied, the symmetry of the spins σi is
entirely dictated by the Young diagram of shape λQ with the first row removed. In this case
we do not need to specify any λN representation. We shall call such an observable/operator
primal. We consider the Young tableau of shape λQ where we insert all of the indices
a1, . . . , aN in the boxes under the first row of λQ. This define a Young operator (irreducible
symmetriser) via (5.5). We impose that a1 6= a2 6= . . . 6= aN in order to avoid redundancy
with other representations, but we can relax this constraint in principle.
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We now define the tensor tλQa1,...,aN such that

tλQa1,...,aN =
1

N
e

(a)
λQ
Oa1,...,aN , (5.47)

where N is an overall normalisation factor. Of course the normalisation is not fixed by
representation theory and must be conveniently chosen (see later).

Secondary operator. If N > n, we need to specify as well the Young diagram λN that
fixes the SN representation. The corresponding observable/operator will be referred to as
secondary. In order to obtain a non-zero tensor, λN must obey a rule of consistency. Let us
denote by λ̃Q the Young diagram built from λQ by removing its first row. We need to have
the inclusion λ̃Q ⊆ λN , or, in other words, λ̃Q must be obtained by removing some boxes of
λN . We fix the representation of SN by acting with the corresponding projector ẽ(a)

λN
, as in

(5.36). In order to be coherent with the SQ representation we need to change the definition
of the latter projector with respect to (5.5). We take, only for the SN representation, the
following definition: ẽ(a)

λN
= a

(a)
λN
s

(a)
λN

, where we note that the order of symmetrisation and
anti-symmetrisation is now the opposite of that used in (5.5) (whence the tilde). Note that
for the previous case of S2 (5.36) the two choices are equivalent. The operator tλQ,λNa1,...,an is then
defined by

tλQ,λNa1,...,an
=

1

N
e

(a)
λQ
ẽ

(a)
λN
Oa1,...,an,b1,...,bN−n , (5.48)

where N is an overall normalisation factor and b1, . . . , bN−n is a set of unspecified indices.
Once again, the normalisation is not fixed by representation theory, but is conveniently chosen
so that the observable stays finite when Q goes to infinity. We impose that a1 6= a2 6= . . . 6=
an 6= b1 6= . . . 6= bN−n in order to avoid redundancy with other representations, but again we
can relax this constraint in principle.

We still need to specify the Young tableaux corresponding to the shapes λQ and λN .
First for λQ, we order a1, . . . , aN in the boxes strictly below the first row and place all the
remaining values (including the b’s) in the first row. The exact values of the b’s are not
important, since we symmetrise the indices which do not appear in the set {a1, . . . , an}.

Let us give an example with λQ = [Q− 3, 2, 1]. The tensors have 3 indices, a1, a2 and a3,
and the Young tableau has the form

. . .

a1 a2

a3

(5.49)

The tableau of shape λN must respect the inner symmetry between σ1, . . . , σn induced by
λQ. As previously discussed, the n first spins (among the N defining the tensor) have already
acquired a given symmetry, due to the action of λQ. To construct the tableau λN , we thus
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place the n first indices as if we were considering the previous tableau of SQ with its first
row removed, and we choose an arbitrary index for each of the remaining N − n boxes. For
instance, if we want to act on N = 5 spins with symmetry [3, 2] of SN with a tensor belonging
to the SQ representation [Q−3, 2, 1], we would have to choose a tableau of the following type

1 2

3
(5.50)

and put arbitrarily the indices 4 and 5 in the blank boxes.

Consistency between SQ and SN representations. Even though the symmetries SN
and SQ are different, they interact with each other and the two Young diagrams that we use
to define a tensor must somehow be compatible. Consider a tensor acting on N spins with a
given symmetry SN associated to a Young tableau λN . We take λQ to be a Young diagram
with Q boxes and define λ̃Q as the diagram obtained by removing the boxes in the first line
of λQ. A representation of SQ leads to a non-trivial result if λ̃Q can be obtained from λN by
removing at most one box in each column.

For instance consider the Young diagram λN = [2, 1]. The only possible representations
λQ ∈ SQ that are compatible with λN are [Q− 3, 2, 1], [Q− 2, 2], [Q− 2, 1, 1] and [Q− 1, 1].
There are no tensors in the representation [Q] since to obtain the corresponding λ̃Q = ∅ from
λN we would have to remove 2 boxes from its the first column.

This consistency criterion can be understood from the following observation. Consider
a pair of representations λN and λQ where λQ is not compatible with λN according to the
previous rule. We construct a tensor tλN ,λQ from the following definition:

tλQ,λN = eλQ ẽλNOa1,a2,...,aN . (5.51)

In general, ẽ is given by its definition in terms of the action of permutations of SN but if we
act first with ẽ we can write this operator in terms of permutations of SQ. We can interpret
ẽλN a sort of Young operator with a tableau of N boxes filled with the indices a1, . . . , aN
instead of the indices 1, . . . , N .

For the sake of illustration, we consider λN = [2, 2] and λQ = [Q − 2, 1, 1]. The tensor
reads

tλQ,λN = eλQ ẽλNOa1,a2,iQ−3,iQ−4
(5.52)

and we use the following tableaux

i1 i2 . . . iQ−2

a1

a2

1 3

2 4
(5.53)

143



for SQ and SN respectively. We can write ẽ as permutations of SQ with the operator associated
to

a1 iQ−3

a2 iQ−2

(5.54)

Of couse this tableau is not a Young tableaux corresponding to a representation of SQ, but
it defines an operator with permutations in a subgroup of SQ equivalent to S4.

Since λQ is not compatible with λN , there are 2 indices ai and aj that are anti-symmetrised
by ẽ but belong to the first line of the tableau defining eλQ (here iQ−3 and iQ−2). We consider
Q large enough, so that those indices are pushed by definition somewhere in the first row of
the tableau of shape λQ. This means that they are first antisymmetrised by ẽλN and then
symmetrised by eλQ . The result of these operations is exactly the null tensor, and hence
justifies the consistency rule.

It is obvious that the argument carries over to the general case. If λN contains a column
having at least two more boxes than λ̃Q, then the corresponding indices will be antisym-
metrised by ẽλN and symmetrised by eλQ , so that tλQ,λN = 0 in (5.51).

5.1.6 Internal structure and LCFT

The structure of observables acting symmetrically on all their spins was initiated in [151] and
fully discussed in [156]. The logarithmic features of the LCFT that arise in the continuum
limit were studied by analysing how the divergences in the definition of the operators could
be removed by mixing operators of the same scaling limit into Jordan cells.

For instance, the 2-cluster operator with Young tableau [Q− 2, 2] acting on N = 2 spins
is ill-defined for particular values of Q, as witnessed by the poles on the right-hand side of
(5.41). The mechanism explaining the logarithmic nature of correlation functions cures those
divergences by mixing two operators [151,156]. For instance, (5.41) can be put into the form

t
[Q−2,2]
a,b = Oa1,a2 +Oa2,a1 − 1

Q−2

(
t[Q−1,1],[2]
a + t

[Q−1,1],[2]
b

)
− 2

Q(Q−1)
t[Q] , (5.55)

in which the operator is obtained from the basis elements (5.1) by subtracting off components
that belong to tensors with another symmetry. The equation (5.55) is ill-defined for perco-
lation (Q = 1) and this observation leads to the prediction that t[Q−2,2]

a,b is mixed with the
energy operator t[Q] (5.25) in a Jordan cell of the dilatation operator for the CFT describing
percolation.

In order to make further progress on the LCFT structure of the Potts model we need
to decompose all operators in a similar way. Consider a primal operator corresponding to a
Young diagram λQ. All the tensors that are subtracted are called in the following subtensors
and obey a simple rule. To be a subtensor (associated with a primal), its Young diagram
λ′Q must be obtained by removing boxes of λQ from the rows 2, 3, . . . and adding them to
the first row. In particular, the subtensors are secondary to the primal from which they are
subtracted. For example, in the case of λQ = [Q−3, 2, 1] all the Young diagram satisfying this
condition are [Q−2, 2], [Q−2, 1, 1] , [Q−1, 1] and [Q]. Moreover, if a subtensor corresponds
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to a diagram where two or more boxes were removed in the same column of λQ it would not
appear in the structure of the primal. In the example of λQ = [Q− 3, 2, 1], there is thus no
subtensor with the symmetry of λ′Q = [Q] because in order to go from λQ to λ′Q two boxes
must be removed from the first column. This requirement can be understood in terms of
anti-symmetrisation/symmetrisation in the associated Young operator, using an argument
similar to the one given in section 5.1.5.

The subtensors have the same λN symmetry as the primal from which they are subtracted.
Recall that we do not always need to express the λN symmetry explicitly; see (5.55) for an
example. In particular, for a primal operator, λN is simply obtained by removing the first
row of λQ.

The internal structure that generalises (5.55) can thus be written in the symbolic form

tλQ = (O)−
∑
λ′Q

1

AλQ,λ′Q(Q)
tλ
′
Q (5.56)

where the sum is over all the Young diagram satisfying the subtensor condition given above,
AλQ,λ′Q(Q) is a ratio of polynomials in Q, and (O) is a combination of basis elements (5.1)
that does not depend on Q and whose exact form dictated by the Young tableau λQ of the
primal operator.

The exact form of (O) and tλ
′
Q can be computed in terms of Young operators, but it is

actually not necessary to do those explicit computations in order to make LCFT predictions.
Rather, only the zeros of the functions AλQ,λ′Q(Q) are needed in order to understand the
mixing between operators.

For two Young diagrams λ1 = [λ1
0, λ

1
1, . . . , λ

1
N ] and λ2 = [λ2

0, λ
2
1, . . . , λ

2
N ], where λij denotes

the number of boxes6 in the (j + 1)-th row of λi, we conjecture that—up to a multiplicative
constant—the polynomial function Aλ1,λ2(Q) is

Aλ1,λ2(Q) ∝
N∏
i=1

(Q− n+ i− 1− λ2
i )!

(Q− n+ i− 1− λ1
i )!

(5.57)

The multiplicative constant depends on the normalisation convention that we use in our
definition (5.48).

The amount of evidence supporting the conjecture (5.57) will be discussed in section 5.2.4
below.

5.2 Correlation functions

We now compute the two-point functions of the observables that we constructed in section 5.1
from symmetry considerations. The dependence of the correlation functions on the tensorial
indices is fully determined by the irreducible representations of the group SQ. All the results

6We use the convention of padding with zeros. More precisely, if λi has n + 1 rows with n < N , we set
λij = 0 for j > n+ 1.
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will be related to the probability that two groups of spins, each comprising N spins, are
connected together by FK clusters in a particular way.

For the purpose of taking the continuum limit, and for the physical interpretation as
a two-point function to make sense, we imagine that each group of spins is confined to a
small neighbourhood on the lattice. It should nevertheless be stressed that this constraint
is completely irrelevant for the applicability of the representation theory. For simplicity, we
consider only observables that vanish if two spins are equal, and so an FK cluster can at
most contain one spin from each group.

Let us introduce the notation used all along this section. Consider a correlation function
of two observables, each of which acts on a group of N spins situated in a small neighbour-
hood, centered at two points in space, that we denote r1 and r2 respectively. The correla-
tions will involve the geometrical probability that some pairs of spins—always one from each
neighbourhood—are connected in an FK cluster. In order to represent such a probability we
draw two groups of N dots, the first group representing the spins σ(r1)

1 , . . . , σ
(r1)
N near r1, and

the other σ(r2)
1 , . . . , σ

(r2)
N near r2. We draw a line between one spin at r1 and one spin at r2 if

they belong to the same FK cluster. Of course two spins in the same neighbourhood cannot
be connected, since we consider exclusively observables that vanish if anyone of the N spins
acted upon coincide.

For instance, let us illustrate this with a tensor t(σ1, σ2, σ3) acting on N = 3 spins and its

two-point correlation function 〈t(r1)t(r2)〉. The symbol P
( )

denotes the probability of

the following situation: the spin σ(r1)
1 and the spin σ(r2)

2 are not connected to the four others
through an FK cluster, whereas σ(r1)

2 (resp. σ(r1)
3 ) and σ

(r2)
1 (resp. σ(r2)

3 ) are in the same
FK cluster. This geometrical dependence, of major importance for the physical system, will
depend on all the information concerning the lattice, in particular the number of dimensions
d in which it lives. Unfortunately, computing such a quantity exactly for very general cases
is out of reach,7 but thanks to representation theory, and later scale invariance, we are still
able to understand some features.

In order to compute the correlation function between two observables, we list all possible
connectivities and compute their respective amplitudes. The average is taken by summing
the explicit expressions of the product of observables over independent groups of spins. In
other words, if two spins are connected by an FK cluster, we set them equal, and the average
is taken by independently summing over the resulting set of FK clusters.

Our results comprise the two-point correlation functions found in [156], except that we
now extend the procedure to our new, non-scalar operators. We will find interesting properties
that do not appear when one considers only symmetric observables. On the other hand, [156]
discussed also some cases of three-point correlation functions—although this can also be done
in the present context, we have chosen to focus on two-point functions only.

7Exact expressions exist for simple cases in two dimensions, such as for the Ising model. But even this
is often restricted to specific regular lattices (such as the square lattice) with specific boundary conditions
(free, cylindrical, toroidal, etc). However, in d = 2, CFT can often predict the power-law asymptotic form
of such correlation functions, and this turns out to be universal (i.e., independent of lattice details). The
appearance of logarithms will be discussed below.
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Let us first investigate the simplest new case corresponding to an anti-symmetric tensor
acting on 2 spins. This example will also serve to illustrate the way in which correlation
functions are computed. We will then comment briefly on the case of tensors with mixed
symmetry (i.e., neither fully symmetric, nor fully anti-symmetric).

5.2.1 Symmetric observables of two spins

The two-point function of the 2-cluster operator was computed in [151,156]. We compute it
again here in order to illustrate the method and emphasise a particular feature. Let us thus
consider the average 〈

t[Q−2,2]
a1,a2

(σ1, σ2)t
[Q−2,2]
b1,b2

(σ3, σ4)
〉
. (5.58)

We first compute the amplitude over the probability that σ1 and σ3 are in the same cluster,
but that σ2 and σ4 are in distinct independent clusters. This probability is represented by

P
( )

. Its amplitude is

1
Q3

∑
σ1,σ2,σ4

t[Q−2,2]
a1,a2

(σ1, σ2)t
[Q−2,2]
b1,b2

(σ1, σ4) = 0 (5.59)

The computation is straightforward; one only needs to insert the expression (5.41) and re-
member that t[Q−2,2](σ1, σ2) = 0 when σ1 = σ2.8 Computing in the same way the amplitude
of each possible probability of having the 4 spins connected in any specific way, we see that

only two amplitude are non-zero. They correspond to the probabilities P
( )

and P
( )

.

They have the same amplitude, which is

1
Q2

∑
σ1,σ2

t[Q−2,2]
a1,a2

(σ1, σ2)t
[Q−2,2]
b1,b2

(σ1, σ2) =

2
Q2

(
δa1,b1δa2,b2 + δa1,b2δa2,b1 − 1

Q−2

(
δa1,b1 + δa2,b2 + δa1,b2 + δa2,b1

)
+ 2

(Q−2)(Q−1)

)
.

In the end the correlation function is〈
t[Q−2,2],[2]
a1,a2

(r1)t
[Q−2,2],[2]
b1,b2

(r2)
〉

= 2
Q2

(
δa1,b1δa2,b2 + δa1,b2δa2,b1

− 1
Q−2

(
δa1,b1 + δa2,b2 + δa1,b2 + δa2,b1

)
+ 2

(Q−2)(Q−1)

)(
P
( )

+ P
( ))

, (5.60)

where r1 and r2 are respectively the position of the neighbourhood of (σ1, σ2) and (σ3, σ4).

5.2.2 Anti-symmetric observables of two spins

Next consider the correlation function for a tensor with N = 2 spins in the symmetry
corresponding to the representation of SN given by the anti-symmetric Young tableau [1, 1].

8Alternatively, one simply notices that
∑
σ2
t
[Q−2,2]
a1,a2 (σ1, σ2) = 0.
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It can be computed using the same procedure as above. Note that in the decomposition
of t[Q−2,1,1],[1,1]

a,b given by (5.45) appears the subtensor t[Q−1,1],[1,1]
a given by (5.33); the latter

corresponds to a tensor in the standard representation, but acting on two anti-symmetric
spins.9 We also compute its correlation function for completeness. We find〈

t[Q−1,1],[1,1]a (r1)t
[Q−1,1],[1,1]
b (r2)

〉
= (5.61)

1
Q

(
δa,b − 1

Q

)(
2P

( )
− 2P

( )
+

(
P

( )
+ P

( )
− P

( )
− P

( )))
,〈

t[Q−2,1,1],[1,1]a1,a2 (r1)t
[Q−2,1,1],[1,1]
b1,b2

(r2)
〉

= (5.62)

8
Q2

(
δa1,b1δa2,b2 − δa1,b2δa2,b1 − 1

Q

(
δa1,b1 + δa2,b2 − δa1,b2 − δa2,b1

))(
P

( )
− P

( ))
,〈

t[Q−2,1,1],[1,1]a1,a2 (r1)t
[Q−1,1],[1,1]
b (r2)

〉
= 0 . (5.63)

Before commenting on this result, let us again explain carefully how we can compute these
quantities. Consider the two-point function

〈
t
[Q−2,1,1],[1,1]
a1,a2 (r1)t

[Q−2,1,1],[1,1]
b1,b2

(r2)
〉
of observables

whose expression was computed previously in (5.45):

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2) = δa1,σ1δa2,σ2 − δa1,σ2δa2,σ1 − 1
Q

(δa1,σ1 + δa2,σ2 − δa1,σ2 − δa2,σ1) .

When we compute the correlation function, three cases appear. First, supposing that the
spins around r1 are not connected to the spins around r2, the two-point function is propor-

tional to the probability P
( )

. The amplitude of this probability is obtained after averaging

the product of the two tensors summed independently over all the spins:10

1
Q2

∑
σ1,σ2

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2) 1
Q2

∑
σ3,σ4

t
[Q−2,1,1],[1,1]
b1,b2

(σ3, σ4) = 0 . (5.64)

The second case involves situations where a unique spin around r1 is connected to another

spin around r2. There are four such situations, related to P
( )

, P
( )

, P
( )

and P
( )

.

Let us illustrate the first case. In order to compute the amplitude of this probability appearing
in the correlation function, we need to consider the product

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2)t
[Q−2,1,1],[1,1]
b1,b2

(σ3, σ4), (5.65)

average independently over σ2 and σ4, and average over σ1 and σ3 with the constraint that
they are in the same FK cluster (whence σ1 = σ3). It follows that

1
Q3

∑
σ1,σ2,σ4

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2) t
[Q−2,1,1],[1,1]
b1,b2

(σ1, σ4) = 0 . (5.66)

9In this section we have set t[Q−2,1,1],[1,1]a,b ≡ t
[Q−2,1,1]
a,b , adding a superfluous [1, 1] to the general notation

for extra clarity.
10Alternatively, one simply notices that

∑
σ2
t
[Q−2,1,1],[1,1]
a1,a2 (σ1, σ2) = 0.
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The corresponding amplitude in (5.62) is thus zero. However, if we consider the two-point
correlation function involving two tensors t[Q−2,1],[1,1]

a as in (5.61), we find a non-trivial result
for that same amplitude:

1
Q3

∑
σ1,σ2,σ4

t[Q−1,1],[1,1]
a (σ1, σ2) t

[Q−1,1],[1,1]
b (σ1, σ4) = 1

Q

(
δa,b − 1

Q

)
. (5.67)

Finally, consider the case with two pairwise connections by FK clusters: P
( )

, P
( )

.

Averaging the tensor product over the spins with these constraints, we get
1
Q2

∑
σ1,σ2

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2) t
[Q−2,1,1],[1,1]
b1,b2

(σ1, σ2) =

8
Q2

(
δa1,b1δa2,b2 − δa1,b2δa2,b1 − 1

Q

(
δa1,b1 + δa2,b2 − δa1,b2 − δa2,b1

))
, (5.68)

or the same expression with the opposite sign if we permute σ1 and σ2 in one of the two
tensors. Performing a similar computation for the two-point function of t[Q−2,1],[1,1]

a completes
the proof of (5.61)–(5.62). The crossed correlator (5.63) of the two different tensors with
[1, 1] symmetry turns out to vanish identically.

We notice that an observable that corresponds to a representation of SQ having n tensorial
indices, involves only probabilities that have at least n FK clusters. This result is generally
true for any representation of SQ and SN (and was already noticed for the symmetric case
in [156]). In particular, when a tensor acts on the minimum number of spins (i.e., when
n = N), such as in (5.62), the result involves only probabilities with all the spins connected
in a certain FK configuration. In other words, primal tensors of rank N (i.e., with N tensor
indices) are precisely the N -cluster operators discussed in section 5.1.1, having a symmetry
given by the corresponding Young diagram λQ ∈ SQ.

The major difference between (5.62) and the correlation function (5.60) found for the
symmetric tensor with N = 2 [151, 156], is that the dominant term is not the probability to
get a cluster that expands from 0 to r, but a sub-leading contribution to that probability.
Indeed, the minus sign between the two FK diagrams cancels out the dominant power law
decay of the two-cluster operator, leaving only a much smaller correction term. A similar
situation will appear in the next section when we consider a mixed symmetry.

5.2.3 Observables with mixed symmetry: [Q− 3, 2, 1]

Briefly, and without giving the details of the computations, we present here the simplest case
of mixed symmetry, namely the representation of SQ [Q − 3, 2, 1] with λN = [2, 1]. After
computation we find 〈

t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−3,2,1],[2,1]
b1,b2,b3

(r2)
〉

=

9
Q3

(
δ3 + 1

2(Q−1)
δ2
s − 3

2(Q−3)
δ2
a + 1

(Q−1)(Q−3)
δ1
))

(5.69)

×
(

2 P
( )

+ P
( )

+ P
( )

− 2 P
( )

− P
( )

− P
( ))

,
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where δni is a short-hand notation for a sum of products of n Kronecker functions. The terms
δ3, δ2

s , δ2
a and δ1 involve respectively 6, 18, 8 and 9 terms.

Let us clarify the important features of this result. First, there is an overall (and rather
unimportant) constant which is not fixed by symmetry considerations. This multiplies a
factor containing an appropriate function of the tensor indices, and another factor which
is an appropriate linear combination of FK probabilities. These two factors are entirely
determined by the representation in which the tensor being considered lives. These factors
are seen to be more complicated than in the fully symmetric case (5.60) or the anti-symmetric
case (5.62). We notice that, as we have discussed before, since the considered tensor has an
SQ representation that is fully redundant with its SN representation (n = N), we only get
probabilities where all the spins at r1 are connected through FK clusters to another spin at

r2. In other words, there are no terms such as P
( )

or P
( )

, etc.

Again the mixed correlation functions of two observables, living in the same SN represen-
tation but with a different SQ symmetry, are exactly vanishing:〈

t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−2,2],[2,1]
b1,b2

(r2)
〉

= 0 ,〈
t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−2,1,1],[2,1]
b1,b2

(r2)
〉

= 0 ,〈
t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−1,1],[2,1]
b (r2)

〉
= 0 .

We can also compute the correlation functions involving the two other observables corre-
sponding to the SQ representations [Q− 3, 3] and [Q− 3, 1, 1, 1]. They again vanish:〈

t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−3,3],[3]
b1,b2,b3

(r2)
〉

= 0 ,〈
t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−3,1,1,1],[1,1,1]
b1,b2,b3

(r2)
〉

= 0 . (5.70)

Let us mention that in general the correlation function between two observables in the
same SQ representation but with a different λN Young tableaux is non-vanishing. When we
compute

〈
t
[Q−2,2],[2,1]
a1,a2 (r1)t

[Q−2,2],[3]
b1,b2

〉
we find a result with probabilities involving 2 propagating

FK clusters. On the other hand, the vanishing of correlation functions between field in
different SQ representations is consistent with general representation theoretical expectations.

5.2.4 Generic case

Considering the fact that (5.69) is the easiest two-point function of tensors with a mixed
symmetry, it is clear that other cases cannot easily be computed by hand. We have therefore
used exact symbolic computations in Mathematica extensively in order to construct the
tensors in higher representations and their corresponding two-point functions. In this way,
we have computed all tensor acting on up to N = 5 spins. We have extensive evidence for
the conjecture (5.57) since we are able to compute numerically the exact decomposition to
obtain the poles.
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For tensors corresponding to primal operators, the correlation function of two identical
fields is generically found to be composed of two factors, apart from the overall normalisa-
tion. The first factor depends on the tensor indices and is entirely fixed by the chosen SQ
representation. The second factor is a linear combination of probabilities that N distinct FK
clusters propagate from one neighbourhood to the other, and where the order of the cluster
end points depends also on the representation. This latter part depends on the specific lat-
tice, and the dimension d. Computing the decay of this linear combination of probabilities
determines the corresponding critical exponent, and is amenable to numerical work (see be-
low). The required linear combination can be obtained for generic λN very easily by acting
with the irreducible symmetriser ẽλN on cluster end points.

5.3 Physical interpretation

5.3.1 Primal and secondary operators

In d = 2 dimensions, operators in conformal field theories can be classified as primaries, quasi-
primaries and descendants, according to their covariance properties under (local) conformal
transformations. In d > 2, the conformal algebra is finite-dimensional and strictly speaking
operators are at most quasi-primaries. The operators that we labelled primal are believed to
correspond to primaries in d = 2 or quasi-primaries in d > 2. This interpretation is supported
by the vanishing two-point functions between two different primal operators. The operators
labelled as secondary will in general correspond to descendants or sub-leading operators in
d > 2.

There appears to be at least one exception to this general correspondence. The energy
operator corresponds [156] to the secondary tensor discussed in section 5.1.4, with λQ = [Q]
and λN = [2], which is a well-known to be a primary operator in d = 2 CFT.

5.3.2 Critical exponents on a cylinder

In this section we discuss the identification of the tensors constructed in section 5.1 with
conformal fields in d = 2 dimensions. The operators with n = N that we have dubbed primal
will be shown to correspond to primary fields in the sense of CFT. All the corresponding
scaling dimensions will be identified exactly. We shall also see that the d = 2 case conceals
a subtlety with respect to the case of arbitrary dimension, d > 2. Namely, depending on the
precise lattice regularisation used to define the FK probabilities, that enter into the two-point
correlators, it is in some cases possible to obtain different results for the critical exponents.

The key remark is that in d = 2, some configurations of connectivities between clusters
are not possible. Consider the usual situation with two small neighbourhoods, D1 and D2,
each containing N spins. We shall suppose each neighbourhood D to be a simply connected
domain, and the N marked points to reside at its boundary ∂D. On a given lattice, if the N
marked points cover the boundary of D sufficiently tightly, the FK cluster emanating from
some particular marked point i ∈ ∂D will be unable to enter the interior of D and exit it
in-between two other marked points, j and k. Thus, since clusters cannot cross each other
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in d = 2, this implies that the N marked FK clusters will only be able to permute cyclically
in the space outside D. In particular, the clusters cannot undergo arbitrary permutations.

To appreciate this remark, consider the specific example shown below, on the triangular
lattice. We take each of D1 and D2 to consist of the 3 vertices around an elementary triangle.
Consider now a pair of 3-cluster operators, O1 and O2:

It is clear that in this setup the probabilities P
( )

, P
( )

and P
( )

are exactly

0. This would not be the case in higher dimensions, since the clusters could cross freely to
realise arbitrary permutations, by “entering the third dimension”.

While this setup is relevant for numerical simulations of the Monte Carlo type, the same
conclusion applies to transfer matrix diagonalisations. Indeed, in the latter, the two bound-
aries, ∂D1 and ∂D2 are pushed to opposite extremites of an infinite cylinder, by means of a
conformal mapping. So also in this geometry, only cyclic permutations of the marked clusters
can be realised, because the clusters propagate from one cylinder extremity to the other and
can only interchange by winding around the periodic boundary condition.

In other words, the permutation group is not fully relevant in d = 2 dimensions. Therefore,
if we consider for instance the mixed Young diagram [Q−3, 2, 1], the corresponding two-point
function will only involve the following linear combination of probabilities:〈

t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−3,2,1],[2,1]
b1,b2,b3

(r2)
〉
∝
(

2 P
( )

− P
( )

− P
( ))

(5.71)

as opposed to (5.69) in the general case.
Following these observations, consider now an irreducible representation of SN . Within

the subgroup ZN , this is reducible and can be decomposed into a direct sum of irreducible
representations of ZN . The operators corresponding to each term in this decomposition
are well known, so we will obtain in particular an identification of the critical exponents of
our operators within d = 2 CFT. We recall that irreducible representations of ZN are all
of dimension 1 and labelled by an integer p, with 0 ≤ p ≤ N − 1, where the first cyclic
permutation is represented by exp

(
i2πp
N

)
.

A procedure for decomposing an irreducible representation of SN into representations of
ZN is given for a more general case in [159]. Given a Young diagram λN ∈ SN the procedure
in our case is the following:
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• List all the D standard Young tableaux corresponding to the Young diagram λN . Here,
D denotes the dimension of the irreducible representation corresponding to λN , which
can be computed from (5.7).

• Compute the index of each standard Young tableau. It is defined as the sum of the
descents of the Young tableau. A number i is a descent, if i+ 1 appears in a row strictly
below i in the tableau.

• Let p denote the index modulo N , so that it obeys −N
2
< p ≤ N

2
.

• Repeating this for all D standard Young tableaux, we obtain D such integers:
p1, p2, . . . , pD. An irreducible representation of SN restricted to the cyclic group ZN can
then be decomposed as follows:

λN = exp

(
i
2πp1

N

)
⊕ exp

(
i
2πp2

N

)
⊕ . . .⊕ exp

(
i
2πpD
N

)
. (5.72)

We call p/N the pseudo-momentum. The critical exponents of the operator within this
representation of ZN are known [113,160].

They can be written in terms of an extended Kac table [2] of conformal weights

hr,s =
(r(x+ 1)− sx)2 − 1

4x(x+ 1)
, (5.73)

with Kac labels (r, s) of the form (r, s) = (± p
N
, N), as follows:

∆p,N = h p
N
,N + h− p

N
,N =

N2(N2x2 − 1) + p2(x+ 1)2

2N2x(x+ 1)
, (5.74)

` = h− p
N
,N − h p

N
,N = p . (5.75)

Here ∆p,N denotes the scaling dimension, and ` is the conformal spin. The number of states
in the Potts model corresponds to the parameter x via

Q = 4 cos2

(
π

x+ 1

)
. (5.76)

In the end, the operator corresponding to the irreducible representation λN will have
a dominant scaling dimension corresponding to the smallest exponent in the set {∆|pi|,N},
where the pi correspond to the decomposition of λN restricted to the cyclic group ZN . Since
p→ ∆p,N is an increasing function for p positive, we find that the leading contribution comes
from the smallest absolute value of the p’s.

For instance, the representation of S2 with Young diagram [1, 1] is of dimension 1 and
has only one standard Young tableau:

1

2
(5.77)
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We find that p = 1, so the scaling dimension is ∆1,2 and its spin is ` = 1.
Let us give a slightly more complicated example, from S4, with the Young diagram [2, 2].

There are two standard tableaux:

1 2

3 4

1 3

2 4
(5.78)

We find p = 2 for the first tableau and p = 0 for the second. The dominant contribution
to the two-point function of the operator associated with this representation, in d = 2 CFT,
will have scaling dimension ∆0,4 and spin ` = 0. The scaling dimension ∆2,4, corresponding
to the first tableau, is a sub-leading exponent.

The only exception to this rule is for the case N = 1 where the magnetisation operator
is given by (r, s) = (1

2
, 0) instead of (r, s) = (0, 1) [156]. Indeed, the N -cluster operator

corresponds generically (i.e., for N > 1) to a 2N -leg watermelon operator in d = 2, but this
is not true for N = 1.

5.3.3 Numerics

Numerical checks of the analytically predicted critical exponents can be performed by using
several methods.

We first investigate the case of percolation, corresponding to Q = 1. Using Monte Carlo
simulations, we have studied the scaling behavior of the N = 2 two-points function of the
tensors t[Q−2,2] and t[Q−2,1,1]. The scaling dimensions of the associated fields are predicted
by (5.74) to be ∆s = 2h0,2 = 5/4 and ∆a = h1/2,2 + h−1/2,2 = 23/16 for the symmetric and
anti-symmetric tensor, respectively. The averaging was done over 108 configurations. The
results, shown in figure 5.1, are in good agreement with the exact values.

In order to measure the exponents for tensors of higher order, the transfer matrix for-
malism is helpful. By exact diagonalisation of transfer matrices on a cylinder, we are able to
extract the conformal data from finite-size scaling corrections to the free energies [161, 162].
We use the Fortuin-Kasteleyn cluster representation. The state for a row of L spins within
a time slice is encoded by specifying the way in which the spins are connected through the
(parts of) FK clusters constructed at previous times [162]. The transfer matrix adds a row
to the system. In order to take into account the non-local weight Q for each cluster, the
transfer matrix multiplies by the Boltzmann weight Q whenever it acts on the last (in the
time direction) spin of a cluster.

To compute interesting quantities, we place ourselves in sectors where N ≥ 1 clusters
are marked. The marked clusters are constrained to propagate at every step of the action
of the transfer matrix, so they cannot be left behind by the time evolution. This means
that N distinct clusters propagate from one end to the other of the cylinder. The case
N = 1 corresponds to the magnetisation, and the finite-size scaling of the free energy in this
sector provides an estimate of the magnetisation exponent. In general, we extract estimates
of critical exponents from the finite-size scaling of the largest eigenvalues in each sector,
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Figure 5.1 – Linear combination P = P1 ± P2, where P1 = P
( )

and P2 = P
( )

, of

probabilities for the propagation of N = 2 clusters in percolation (Q = 1, or x = 2) obtained
in Monte Carlo simulations. The quantity r is the distance between the two operators in
lattice spacing. The red plot corresponds to (5.60) and the blue plot to (5.62). The critical
exponents correspond to slopes 2∆0,2 = 5

2
= 2.5 and 2∆1,2 = 23

8
= 2.875. Numerically we

find 2∆0,2 = 2.54(8) and 2∆1,2 = 2.9(1).

following [161]. We have only considered the critical exponents of primaries (i.e., N = n)
where each marked spin is connected to a propagating cluster.

For a state with N marked clusters, the Young symmetriser acts on the labeling of the
clusters. This provides a state in the N -cluster sector of the transfer matrix with a well-
defined SQ symmetry. Since the Young symmetriser is idempotent and commutes with the
transfer matrix, we can avoid numerical instabilities by letting it act every time a row has
been added by the transfer matrix.

For instance, consider a state with N = 2 marked clusters, A and B, that we denote
symbolically as v = |X,X,A,B,X,X〉. The vector v corresponds to a state of width L = 6
sites, where the third and fourth spins belong respectively to the clusters marked A and B,
and the others are not specified in our notation (X). They can be initialised, for instance, so
that each X corresponds to a different unmarked cluster. The action of the anti-symmetriser
(5.44) gives the vector v = |X,X,A,B,X,X〉− |X,X,B,A,X,X〉 that generates a sector of
the transfer matrix.

The largest eigenvalue of each sector is then computed from a standard iterative scheme,
and we can extract the scaling dimension of the associated operator. We are able to extract
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very precise numerical data using this formalism. The numerical extrapolation for the critical
exponents, as function of Q, is shown in figure 5.2.
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Figure 5.2 – Critical exponents for the propagation of two anti-symmetric clusters, as a
function of Q. We computed all conformal dimensions corresponding to the propagation
of N = 1, 2, 3 FK-clusters. The lines are the theoretical values ∆p,N = hp/N,N + h−p/N,N
for N > 1 and ∆0,1 = 2h1/2,0 for the magnetisation operator. The points are the data
extrapolated from a numerical diagonalisation of the transfer matrix using finite-size scaling
on a cylinder. We observe a very good agreement, as long as we do not take Q too close
to 4. In the latter case the convergence is impeded by logarithmic terms appearing in the
finite-size corrections [163].

5.3.4 Spin

It is also possible to satisfy the predictions for the conformal spin in numerical simulations.
Let us consider, for instance, the two-point function corresponding to the tensor (5.44). From
the previous section, we expect that t[Q−2,1,1],[1,1]

a1,a2 corresponds, in d = 2 CFT, to a field of
spin 1. It acts on two sites in the same neighbourhood, whose relative orientation defines a
unit vector uµ, which corresponds to the direction of the vector going from the first to the
second site. The general correlation function of a vector field Oµ is predicted by conformal
invariance to be [164,165]

〈Oµ(x)Oν(y)〉 =
δµ,ν − 2 (x−y)µ(x−y)ν

(x−y)2

|x− y|2∆
. (5.79)
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We define also Ou = uµOµ. Thus, the correlation function evaluated at the points x = 0 and
y = (r, 0) reads

〈Ou1(x)Ou2(y)〉 = −cos(θ1 + θ2)

r2∆
, (5.80)

where u1 = (cos θ1, sin θ1) and u2 = (cos θ2, sin θ2).
It is readily shown that if we keep u1 and u2 fixed, and rotate x around y through an

angle θ, the above expression is multiplied by an angular factor cos 2θ. This last property is
amenable to numerical verification. Because of the lattice discretisation, it is in fact easier
to move one of the points, take the orientation fixed (figure 5.3), rather than to apply a
local rotation. Figure 5.4 shows that we can measure this rotation effect on the lattice using
Monte Carlo simulations.

Figure 5.3 – Rotations performed on the lattice to measure the spin of an operator acting
on N = 2 sites. Left panel : One operator acts on the two red sites. We measure the
correlation function with another operator (corresponding to the two blue sites) with Monte
Carlo simulations. We can move the right red dot around the other one to measure the spin
of the operator through the correlation function but this is very restricted by the lattice
discretisation (the usable positions are marked with a cross). A first solution to this issue is
to increase the distance between the two red sites (this is allowed if the two red points are
close enough compared to the distance with the blue sites). Right panel : A simpler solution
is to keep the relative orientation of each pair of sites fixed and move globally the blue sites
around the red ones. This rotation defines the angle θ. Those correlations are easier to
measure, since we are less affected by the lattice discretisation.
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Figure 5.4 – Linear combination P = P1 ± P2, where P1 = P
( )

and P2 = P
( )

, of

renormalised probabilities for the propagation of N = 2 clusters in percolation (Q = 1, or
x = 2). A rotations corresponding to the one described on the right panel of figure 5.3 is
performed and parametrized by θ. The red plot corresponds to (5.60) and the blue plot to
(5.62), whose angular dependence is proportional to 1 and cos 2θ, respectively.

5.4 Logarithmic correlations in 3D percolation

Since all our predictions are independent of the dimension, it is possible to satisfy the validity
of the logarithmic structure in 3D. For percolation, in the limit Q→ 1, the scaling dimensions
of the two-cluster operator and the local energy operator collide [57]. The classification of
the observables (these are scalars) leads to the prediction

F (r) =

P
( )

+ P
( )

+ P
( )

+ P
( )

+ P
( )

− P
( )2

P
( )

+ P
( ) ∼ δ log(r) (5.81)

where

δ = 2× lim
Q→1

∆2 −∆ε

Q− 1
, (5.82)

with ∆2 and ∆ε the conformal dimensions of the two-cluster and energy operators. In two
dimensions, the exact values are known

∆2 = 2h0,2, ∆ε = 2h2,1 (5.83)
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and δ = 2
√

3/π ∼ 1.1027 . . .. The quantity δ is proportional to the indecomposability param-
eter b in (1.18) and a universal quantity. In particular, it does not depend on the microscopic
details and has the same value for different lattices. The scaling (5.81) is predicted to be
true in higher dimensions and the formula (5.82) holds. Numerical evidence is presented in
figure 5.5.
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Figure 5.5 – Semi-log plot of the logarithmic correlation F (r) for 2D and 3D. The slopes of
the straight lines are universal, and the values are respectively 2

√
3/π and 1.53(3). Figure

taken from [79].

Obviously the exact conformal dimensions for percolation (and even less as a function of
Q) are only known for two dimensions. We can nonetheless give a rough estimate of δ from
(5.82) by using the numerical values ∆2 ≈ 2.243(2) and ∆ε ≈ 1.413(1) for the 3D Ising model
(Q = 2) [166, 167]. This gives δ ≈ 2(∆2(Q = 2) −∆ε(Q = 2)) = 1.66. The agreement with
δ(3D) is surprisingly good, showing that ∆2(Q) and ∆ε(Q) have little curvature (as in 2D).
This result is the first direct measurement of the indecomposability parameter for percolation
in higher dimension.

Note that the primal operators, at a given N , also have distinct dimensions in higher
dimensions. We thus have an infinite family of observables with new critical exponents in
3D. The dimensions are computed numerically (using Monte-Carlo simulations) in [79] up to
N = 4 in 2D and N = 3 in 3D.
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Conclusion
In this thesis, we investigated various aspects relevant to irrational non-unitary critical mod-
els. The nature of truncations for infinite-dimensional supersymmetric chains is discussed for
the plateau transition in the integer quantum Hall effect and the Brownian motion. The naive
second truncation of the latter is found to be in the universality class of self-avoiding walks.
Numerics hints at the same conclusion for all truncations and the Chalker-Coddington model
is expected to behave similarly. A strong crossover is observed for higher truncations where
critical exponents, for small sizes, seem to be in a different universality classes. Multicritical
points are found by fine-tuning various fugacities. In the Brownian motion, whether a series
of multicritical points, that are less and less stable under the RG, provides an asymptotic
description of the non-compact full theory is still an open question. These truncations are
also a good playground to observe RG-flow between c = 0 theories. We have given examples
of flows between the Chalker-Coddington model (and its first truncation) and class C (corre-
sponding to percolation). It is a first step in the investigation of flows between non-compact
and compact theories.

An important role is played by the effective central charge as a measurement of the
degrees of freedom. This quantity also appears in the context of entanglement. We have
generalised the definition of the entanglement entropy in the context of several non-unitary
models and have seen that the formalism of Coulomb gas can be applied successfully to
compute the entanglement entropy scaling in loop models. The examples in our work show
that, for the usual entanglement entropy, the effective central charge may dictate the amount
of entanglement in the model. It is of high interest for tensor network simulations that rely
on a low amount of entanglement in the encoded states.

Lastly, in the context of the Q-state Potts model, we have shown that the classification of
observables, using the discrete SQ symmetry, could be extended to non-scalar operators where
additional predictions for the logarithmic structure of the CFT are given. Remarkably, these
simple considerations, based on symmetry, remain valid in arbitrary dimension. We provided
the first evidence that percolation in three dimensions is a logarithmic conformal field theory.

The work presented in this manuscript opens many future possible directions of research.

• The entanglement entropy in the case of non-compact models is expected to behave
differently. This was shown in this thesis for a certain limit of the unitary minimal models
leading to a log log ` term as a sub-leading contribution. Of course this example cannot
be directly investigated numerically since RSOS models become infinite-dimensional in
this limit. Since very large sizes must be considered, it would be very interesting to
perform DMRG simulations for a simple non-compact model such as the staggered XXZ
spin chain (with bond dimension 2). It is related, in the continuum, to the black hole
CFT and is already quite well understood. In particular, it is not clear whether or
not the prefactor of the log log ` term is universal. Some results are already known
for a free boson where it is universal but this is maybe not the case with interactions.
New developments about non-compact theories with boundaries [168] are interesting for
practical reasons in tensor network simulations.
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• Our work on the entanglement entropy for non-unitary models was only valid for open
systems with a single cut. The generalisation to multiple cuts and periodic boundary
conditions is far from obvious. The quantum group symmetry is lost in the closed XXZ
spin chain. The trace cannot be modified easily to tune the fugacity of non-contractible
loops. Difficulties, in the definition of the twists, arise with multiple cuts since the topol-
ogy of the loops can be much more complicated. However, the generalisation for loop
models is straightforward since only the connectivities must be tracked down. Prelimi-
nary results shows that indeed, the loop representation is somehow more fundamental
and allows easily to perform computations on the entanglement. Note that loop dia-
grams are however no longer planar and generalisation of the Temperley-Lieb algebra
must be considered where crossings of strands is allowed.

• Some features of higher truncations for the Chalker-Coddington model and Brownian
motion remain mysterious. The precise characterisation of the crossover, as the order
of truncation increases, is not understood. In particular, it would be very interesting to
understand the nature of the multicritical points that these truncations approximate at
small sizes. For the second truncation of the Brownian motion, our work lacks a proper
understanding of the continuum limit. Good candidates exist such as a model from the
N = 2 supersymmetric minimal series. It is known to describe, in different limits, the
self-avoiding walks and a non-compact free field. Moreover It may be possible to find an
integrable deformation of the second truncation to compute exactly critical exponents.

• To continue our work on the flow between c = 0 theories, several problems must be
considered to complete our understanding of these systems. How non-compact degrees
of freedom behave precisely along the flow was not investigated in this thesis. Addition-
ally, the gl(2|2) spin chain, the first truncation of the Chalker-Coddington model and
percolation are all three logarithmic conformal field theories in the continuum limit. It
is thus very natural to study the flow also from the point of view of the indecomposable
structure of the theory. Lastly, we would like to obtain a description, in the continuum
limit, to understand how the free boson becomes compactified or massive along a flow
would be an interesting and important future prospect.

• The study of logarithmic conformal fields theories in higher dimensions could be con-
tinued. The Jordan cell for percolation between the energy operator and the two-leg
operator was studied but we predict such structure to appear for non-scalar operators
as well. The case of Ising (Q = 2) and trees and forests (Q = 0) are also possible future
directions. The percolation can also be studied in 4 and 5 dimensions.

• Lastly, since many of our models are quite hard to simulate because of their large Hilbert
space (especially for higher truncations), it seems important to develop better numerical
tools. We witnessed, in the last years, an increased interest in tensor network techniques.
Many of these methods cannot be applied to non-unitary spin chain since they rely on
variational principles only valid for Hermitian hamiltonians. It is possible to get around
these difficulties in some cases but the numerical scheme may be less efficient. However,
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a very efficient numerical method to simulate lattice models is called tensor network
renormalisation [169]. It performs very efficiently successive RG transformations in the
spirit of spin-blocking for the Ising model. In general, this method does not rely on the
positivity of Boltzmann weights and can easily be generalised to local interactions with
complex weights. A recent implementation, called Gilt-TNR [170], was proposed with
very impressive results. Applying these techniques to supersymmetric spin chains may
lead to an important improvement of numerical simulations for non-unitary models.
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