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Sommaire en Français

La science qui s’intéresse aux scénarios des origines de la vie (Origins of Life, ou tout court OOL),
cherche à expliquer l’émergence d’une biosphère à partir de matière abiotique. Ce processus est
appelé «abiogenèse», mais son fonctionnement n’est pas clair. Pour mieux comprendre l’abiogenèse,
les chercheurs en OOL combinent des connaissances de divers domaines, tels que la biologie, la
chimie, la géologie, la physique, l’astronomie, l’histoire des sciences et bien d’autres. Certaines de
ces idées ont conduit à la formulation de scénarios prébiotiques : spéculation sur le lieu, la chimie
et les mécanismes physiques de l’abiogenèse.

Dans cette thèse, nous introduisons des cadres rigoureux, pour l’étude systématique des aspects
physiques de l’abiogenèse. Ces cadres s’appuient sur des connaissances récentes en thermody-
namique hors équilibre, en réseaux de réactions chimiques et sélection sur plusieurs niveaux. Ils
soulignent la cohérence thermodynamique et la structure fondamentale de la chimie. Nous identi-
fions des contraintes importantes sur les scénarios ainsi que de nouveaux mécanismes d’émergence
et d’évolution en chimie et au-delà.

Le plan de la thèse est le suivant :
dans le chapitre 1, une introduction critique au domaine des origines de la vie est donnée,

soulignant i) ce que nous pouvons raisonnablement considérer comme connu, ii) ce que supposent
les scénarios populaires et iii) les développements historiques qui ont façonné la pensée actuelle.

i) Si la vie est originaire de la terre, notre géologie contraint les éléments chimique qu’elle
pourrait utiliser et sa fenêtre temporelle. La terre est considérée comme ayant 4,5 milliards d’années,
tandis que des fossiles attribués à la vie microbienne (microfossiles) ont été trouvés remontant à
environ 3,8 milliards ans. Une théorie scientifique sur ce qui se passe entre les deux ne devrait pas
être en contradiction avec la thermodynamique, les lois de conservation, la cinétique et la réactivité
chimiques ou d’autres aspects établis de la chimie et de la physique modernes. Ces contraintes
constituent la base des résultats qui seront dérivés dans nos cadres.

ii) Au-delà de ce qui est considéré comme «connu», les scénarios actuels nécessitent des
hypothèses supplémentaires, notamment sur «ce qui peut et ne peut pas se produire dans l’évolution
chimique», «quels produits chimiques sont arrivés en premier» et «où la vie a commencé».

La famille des scénarios du monde de l’ARN considère les polymères génétiques comme
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indispensables pour établir une progression semblable à l’évolution. Comme pour le scénario
Oparin-Haldane pour les protéines, il est souvent postulé que des événements très rares ont fourni les
espèces clé pour déclencher l’abiogenèse, comme une réplicase d’ARN à base d’ARN, et beaucoup
considèrent que l’abiogenèse commence par l’ARN. Au sein de la communauté mondiale de l’ARN,
toutes ces hypothèses sont remises en question : certains considèrent l’AXN précédant l’ARN
thermodynamiquement plus favorable, d’autres qu’une réplicase à base d’ARN est invraisemblable
et voient plutôt l’ARN évoluer à travers des réseaux catalytiques.

Le scénario du monde fer-soufre est une description détaillée d’une transition d’une chimie
adsorbée sur des minéraux (par exemple la pyrite), vers des bicouches superficielles lipophiles, qui
se détachent finalement pour former des protocoles. Le scénario considère une chaîne déterministe
de changements chimiques maintenue par l’autocatalyse, avec une arrivée tardive de la génétique.
La chimie utilise des espèces rencontrées dans la biochimie moderne, mais les utilise de différentes
manières pour la chimie de surface. Le scénario est souvent placé dans des évents hydrothermaux
acides. D’autres scénarios «métaboliques» changent dans certains de ces détails : certains démarrent
directement avec des protocoles. D’autres considèrent qu’un scénario plus parcimonieux peut être
formulé dans des évents hydrothermaux alcalins. Tous décrivent l’abiogenèse comme un processus
de réorientation des biomolécules existantes vers de nouvelles utilisations.

Les scénarios du monde lipidique, suggérés par des modèles informatiques comme GARD
de Lancet et al, soulignent que des états de composition distincts (composomes), maintenus
par autocatalyse, peuvent servir de précurseur d’un génome. Il est supposé qu’une abondance
d’amphiphiles distincts ont été créés prébiotiquement, et que l’évolution chimique était initialement
due à l’assemblage non-covalent et à la division des micelles ou des vésicules.

Une hypothèse commune qui est partagée entre les scénarios est que certains éléments de la
vie existante devaient être là dès le départ (X-first). Cela peut par exemple être un génome (genes-
first), un métabolisme (metabolism-first) analogue au métabolisme moderne ou un compartiment
amphiphile (compartments-first, lipids-first). Plus généralement, la vie est expliquée en termes
de biomolécules existantes, mais les approches diffèrent dans leur hypothèse quant à celles qui
devaient venir en premier. Ces hypothèses sont clairement contradictoires : elles ne peuvent pas
être vraies en même temps. Tout au long de l’histoire de la recherche OOL, l’hypothèse de la
biochimie d’abord a été remise en question à plusieurs reprises. Étant donné le grand espace de
structures possibles occupé par la matière non biochimique, il est possible que ce qui est arrivé en
premier n’ait même pas encore été proposé.

Plus généralement, les suggestions sur le début de la vie conduisent à des dilemmes ou à des
multilemmes. Les dilemmes bien connus sont l’ARN d’abord contre les peptides d’abord et le
métabolisme d’abord contre la génétique d’abord et la vie a commencé dans les étangs contre les
évents hydrothermaux. Bien que de tels dilemmes facilitent la communication, il convient de garder
à l’esprit qu’ils sont tous de fausses dichotomies : la littérature suggère beaucoup plus de deux
réponses pour chaque problème, et il est fort possible que les bonnes réponses n’aient pas encore
été proposées. Cela est illustré par le fait que de nouvelles réponses à ces questions sont proposées
à ce jour.

Les visions modernes de la recherche Origines de la vie sont fortement marquées par l’histoire
du domaine, dont nous rappellerons une petite partie. L’idée que les formes de vie modernes
se forment spontanément (génération spontanée) a été réfutée de manière convaincante par L.
Pasteur. Oparin a estimé que l’abiogenèse aurait dû se produire au moins une fois, mais de manière
non triviale. Sur la base d’idées sur la terre et l’atmosphère primitives, Oparin (et plus tard,
Haldane) considérait les océans comme un «bouillon prébiotique», dans lequel les oligopeptides
s’accumulaient pour finalement former des protocoles et répliquer des peptides. Certaines autres
idées influentes se sont concentrées sur l’imitation de différentes propriétés réalistes par la chimie
physique, telles que les jardins chimiques de Leduc et le protoplasme d’Herrera.
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Lorsque les acides aminés ont été trouvés dans la simulation Urey et Millers d’un bouillon
prébiotique, alimenté par une atmosphère sous une décharge électrique, la théorie du bouillon
prébiotique est devenue l’image dominante et est rapidement devenue une partie des programmes
scolaires. Avec l’avènement de la génétique, l’idée de l’ARN agissant à la fois comme catalyseur
et génome a commencé à être envisagée, afin de résoudre une énigme de «la génétique d’abord
contre les enzymes d’abord». Dans les années 80, une telle activité catalytique a été trouvée. Un
éditorial très influent de Gilbert en 1986 a suggéré un scénario axé sur l’ARN, et le terme monde
d’ARN a été inventé, qui est rapidement devenu une idée dominante.

Les jardins chimiques ont connu une résurgence avec la découverte de grands champs de
monts hydrothermales. En tant que source généreuse d’énergie libre et de produits chimiques, les
sources hydrothermaux ont conduit à l’épanouissement de scénarios métaboliques, ce qui conduirait
au dilemme apparent du métabolisme d’abord contre la génétique d’abord. Une autre influence
majeure fut le livre de Gold, paru en 1992 : «The Deep Hot Biosphere», suggérant que la vie aurait
émergé sur une terre Hadéenne, à plusieurs kilomètres sous la surface. Après, la vie a été retrouvée
à de grandes profondeurs, et de nouvelles explorations de ses revendications sont activement en
cours.

Une publication de 1996 d’un fossile biogénique potentiel de Mars dans la météorite ALH84001
a conduit à une augmentation de la recherche en exobiologie, un nouvel institut d’astrobiologie
et la réintégration des programmes d’exploration sur Mars. Des recherches ultérieures suggèrent
que les signatures réalistes d’ALH84001 pourraient également être générées par des processus
abiotiques. Cependant, il a fourni un tremplin pour que l’exobiologie devienne un domaine majeur
en OOL. L’échantillon d’idées présenté ici illustre le fait que la recherche OOL est dispersée
autour de différentes idées. En effet, des études bibliométriques exhaustives trouvent de grandes
sous-communautés en OOL, dont certaines se connaissent ou se citent à peine, les «microfossiles et
témoignages de la vie sur la terre primitive» étant les plus déconnectés. Les disciplines scientifiques
qui composent ces communautés se révèlent très différentes. La pluridisciplinarité inhérente à la
recherche en OOL pose des défis, car les chercheurs maîtrisent rarement toutes les disciplines qui
contribuent à la recherche en OOL. Les programmes de recherche en OOL lancent aujourd’hui
des initiatives pour combler les principales lacunes dans les connaissances et les attitudes disci-
plinaires. Une majorité d’auteurs en OOL ont écrit et continuent d’écrire que la compréhension
de la thermodynamique hors équilibre est essentielle. Paradoxalement, la plupart de ces auteurs
pensent qu’il n’y a actuellement aucun cadre théorique pour cela, malgré son développement actif
depuis plus de 40 ans. Un objectif important de ce manuscrit est d’utiliser et de vulgariser la
thermodynamique hors équilibre et la thermodynamique stochastique comme un outil pour obtenir
un aperçu fondamental des problèmes en OOL.

Dans le chapitre 2, nous passons en revue le formalisme de la matrice stoechiométrique pour les
réseaux chimiques, qui permet d’analyser les aspects topologiques et thermodynamiques généraux
des systèmes chimiques avec un nombre arbitraire de réactions et de réactifs. La théorie est illustrée
en pensant au chimiste expérimental, en se concentrant sur des exemples et des situations chimiques.
Pour notre approche, nous introduisons quelques conventions à motivation chimique, qui seront
fructueuses dans la dérivation des résultats dans les chapitres suivants.

Une matrice stœchiométrique contient les changements stœchiométriques du nombre de réactifs
dans toutes les réactions d’un réseau de réactions. Son contenu peut également être représenté plus
visuellement, par exemple via des hypergraphes ou des graphes bipartites. De telles représentations
deviennent rapidement impraticables avec l’augmentation de la taille du réseau. Une représentation
plus pratique (graphiques simples) peut être faite avec une matrice d’incidence, qui relie des
«complexes», des collections d’espèces chimiques qui réagissent ensemble dans une réaction.

En traitant de la thermodynamique, il est souhaitable qu’il existe une inversion bien définie des
transitions microscopiques pertinentes. Par conséquent, une première convention sera que toute
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réaction chimique décrite est définie dans les deux sens. Une deuxième convention sera qu’une étape
de réaction implique au plus deux espèces distinctes (par exemple des complexes, des molécules)
à la fois. Une réaction d’ordre supérieur peut toujours être décomposée en étapes impliquant au
plus deux molécules. Enfin, nous introduisons une convention appelée «non-ambiguïté», ce qui
signifie qu’au sein d’une étape de réaction, une espèce n’est pas à la fois un réactif et un produit.
Ces conventions ne limitent en rien la chimie que nous pouvons décrire, mais elles nous obligent à
inclure suffisamment d’étapes pour le faire. Une conséquence est que la matrice stœchiométrique
contient désormais des coefficients stœchiométriques au lieu de changements dans le nombre de
réactifs, ce qui signifie qu’il ne peut correspondre qu’à un seul réseau. Ce sera déterminant pour
révéler certains motifs.

Les propriétés topologiques d’un réseau chimique sont contenus dans ses sous-espaces fonda-
mentaux. L’espace nul droit (noyau) correspond à des combinaisons de réactions qui laissent le
système inchangé, appelées cycles. L’espace nul gauche (cokernel) de la matrice stœchiométrique
décrit les quantités conservées : combinaisons linéaires d’espèces inchangées par les réactions
chimiques dans le système. Nous distinguons deux types : i) lois de conservation de type masse,
dans lesquelles tous les coefficients sont positifs (par exemple nombre d’atomes de carbone), ii) lois
de conservation mixtes, dans lesquelles une différence est conservée (par exemple charge totale).
Le nombre de cycles indépendants et de lois de conservation est lié au nombre de réactions et
d’espèces par le théorème de nullité de rang.

Pour inspecter certains aspects chimiques d’un réseau, il s’avérera indispensable d’étudier
les sous-réseaux. Nous décrivons une approche systématique pour ce faire en utilisant des sous-
matrices, obtenues en supprimant des lignes et/ou des colonnes de la matrice d’origine. Une
telle opération peut par exemple être utilisée pour étudier l’effet des chimiostats, qui fixent la
concentration d’un composé par échange avec un réservoir. Cela permet de «retirer» le composé de
la description efficace et un seul chimiostat enfreint nécessairement une loi de conservation au sein
du système.

Une simple réaction en chaîne ou à un mécanisme de réaction de Michaelis-Menten, donne une
bonne impression sur ce que font ces concepts. Les catalyseurs de ces schémas ont leur propre loi
de conservation de type masse. Lorsqu’elles sont étudiées en isolément, dans une sous-matrice, un
nouveau cycle émerge, correspondant exactement au cycle catalytique. Cette idée est précisée en
Ch.5 et Ch.6, où le cadre est appliqué pour étudier la catalyse et l’autocatalyse en général.

Dans le chapitre 3, quelques aspects thermodynamiques des réseaux chimiques ouverts sont
examinés. Un point clé que nous souhaitons illustrer est qu’un réseau chimique peut être ouvert
de différentes manières. Les détails de l’ouverture d’un système à un environnement sont d’une
importance cruciale pour son comportement, ce qui est illustré par le traitement des chimiostats
simples et des chimiostats composites, un réacteur CSTR, un transfert en série et des compartiments
à couplage osmotique. Ouvrir un système chimique par une de ces manières le soumet à une
dynamique et à des lois de conservation très distinctes.

Le chimiostat thermodynamique idéal décrit l’échange d’une espèce chimique avec un grand
bain qui, en raison d’un échange rapide, fixe son potentiel chimique et les fluctuations de concentra-
tion. Dans ce cas, il peut être vu comme un réservoir infini séparé du système par une membrane
parfaitement spécifique échangeant des molécules uniques. Dans la pratique expérimentale, le
rôle d’un «bain» peut être rempli par des composés au sein du système qui servent de tampon
(chimiostats homogènes), dont la capacité est intrinsèquement limitée par la taille du système. Un
bain peut également être dû à des composés dans d’autres phases (chimiostat externe), comme une
phase fluide, des précipités, des gaz, etc. Souvent, le potentiel chimique des espèces réservoirs
est couplé à d’autres espèces, conduisant à un chimiostat composite (par exemple ions dissous
en équilibre avec leur sel). De tels chimiostats fixent les produits de concentrations au lieu de
concentrations individuelles, ce qui signifie que les espèces chimiques considérées comme des
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«aliments» ne sont plus indépendantes. Nous montrons que dans l’annexe que les chimiostats
thermodynamiques nécessitent un traitement plus détaillé en thermodynamique stochastique et
impliquent une loi de zéros modifiée pour l’échange de quantités entières conservées (par exemple
des atomes).

Dans un réacteur à cuve à agitation continue (Continuously stirred tank reactor, CSTR), un
mélange chimique entre et sort d’un réacteur bien agité. L’écoulement de sortie sert de voie
de dégradation inhérente, et il peut être inclus dans la matrice stoechiométrique en tant que tel
(Cependant, il s’agit d’un écoulement de liquide macroscopique. Une interprétation microscopique
comme pour les réactions réversibles ne s’applique donc pas). Sous l’action de cette dégradation,
toutes les lois de conservation du réseau sont brisées.

Cependant, de manière asymptotique (c’est-à-dire pour t→∞), l’équilibre entre les flux entrants
et sortants conduit à des contraintes de déséquilibre similaires à celles des lois de conservation pour
le système fermé : la masse qui entre en équilibre la masse qui sort, et un écoulement stationnaire
obéit aux lois de conservation d’un réacteur fermé. Lorsque l’écoulement est rapide par rapport
à la chimie, la composition chimique du CSTR peut rester loin de l’équilibre. Lorsque la chimie
dépasse fortement le débit, le CSTR se rapproche du comportement d’un réacteur fermé. Une
démonstration claire de ce fait peut être fournie en termes de chimie des polymères en étudiant les
distributions de longueur.

Une manière similaire d’ouvrir le système consiste à transférer à plusieurs reprises une fraction
f du mélange réactionnel vers un approvisionnement en produits chimiques frais, après un temps
∆t s’est écoulé. Ce transfert en série est souvent utilisé comme simulation expérimentale d’un
CSTR qui est plus facile à configurer et est parfois décrit comme équivalent. Nous montrons que le
temps de séjour effectif τe f f = ∆t/(1− f ) devient équivalent au temps de séjour τ dans un CSTR,
dans la limite où ∆t→ 0, qui est quand f → 1.

Il existe donc une analogie étroite entre le CSTR et le transfert série. Cependant, le transfert
sériel expérimental n’est généralement pas effectué dans les limites ∆t→ 0, f → 1, ce qui est un
régime très peu pratique pour travailler. La modélisation détaillée et les arguments de l’échelle de
temps montrent que, même en dehors de cette limite, un bon accord entre la composition du CSTR
et la composition du transfert en série peut souvent encore être atteint.

Enfin, nous examinons les compartiments couplés par osmose (gouttelettes), qui peuvent
échanger des petites molécules (dont leur solvant) par diffusion. Ces systèmes sont ouverts et
peuvent croître et se diviser. Cependant, pour croître et se diviser de manière persistante, les
gradients appropriés doivent être maintenus. Pour deux situations simples (échange avec un
réservoir, échange avec une gouttelette voisine régulièrement rafraîchie), nous considérons un
certain nombre de situations pour maintenir un tel gradient, pour croître et se diviser de façon
persistante.

Lorsque les gouttelettes ont une chimie identique, il est facilement démontré que les gradients
s’annulent rapidement, ce qui signifie qu’un cycle de division de croissance conduira finalement
à l’élimination totale de la gouttelette. Lorsqu’une gouttelette a une chimie distincte, elle doit
avoir des composés distincts. Nous pouvons alors imaginer qu’une chimie distincte se produise
parce que ces composés : I. sont consommés dans une réaction distincte. II. sont des catalyseurs
qui ne se forment pas (allocatalyse). III. Sont des catalyseurs qui se forment (autocatalyse). Les
considérations de droit de la conservation montrent que I et II sont exclus. L’autocatalyse, cependant,
peut maintenir un cycle de croissance-division avec un seul voisin ou réservoir. Cette conclusion
est illustrée par un modèle de jouet pour la réaction de Formose dans un système de gouttelettes
couplées, ce qui conduit à une récurrence de Poincaré stable.

Dans le chapitre 4, le concept de l’information en thermodynamique est discuté d’une manière
chimiquement explicite. Le concept d’information a semé la confusion dans la littérature OOL,
notamment parce qu’il est souvent confondu avec des codes (génétiques). Pour démontrer le
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caractère thermodynamique explicite des informations, nous commençons par une discussion sur le
«paradoxe de Gibbs» et le niveau de description. Par la suite, nous montrons comment l’information
peut être rendue très concrète en chimie : nous montrons comment un moteur d’information
macroscopique peut extraire le travail de la racémisation d’énantiomères purs. De la même manière,
des protocoles peuvent être conçus pour convertir de manière réversible (∆S = 0) des énantiomères
purs de leur image miroir. L’annexe développe une discussion sur la thermodynamique hors
équilibre et les réseaux de réactions qui distinguent deux produits (tels que deux énantiomères).

Le paradoxe de Gibbs est une expérience de pensée, dans laquelle deux gaz sont autorisés
à mélanger. Si les gaz sont distincts, défaire ce mélange requiert une certain quantité de travail.
Si les gaz sont les mêmes, alors aucune différence significative n’a été introduite par le mélange,
et il suffit de réintroduire une partition au milieu. Car Gibbs a commencé avec une expression
qui exigeait également du travail pour séparer deux gaz équivalents, une paradoxe est apparu. Le
paradoxe a été résolu en ajoutant une contribution manquante à l’expression que nous identifierions
aujourd’hui avec une entropie de mélange ou l’information.

En mécanique statistique, le mélange d’entropie découle immédiatement de considérations
combinatoires, en considérant la dégénérescence des états due aux permutations. Cette dégénéres-
cence est dans l’œil du spectateur, c’est-à-dire que le détail du niveau de description détermine si
les états sont traités de manière équivalente. Les colloïdes en dispersion ne sont pratiquement pas
atomiquement identiques, et les macromolécules n’ont pas la même composition isotopique. Dans
la plupart des cas, notre description est trop grossière pour tenir compte de ces aspects : en mé-
canique statistique, l’entropie de mélange découle immédiatement de considérations combinatoires,
en considérant la dégénérescence des états due aux permutations. Cette dégénérescence est dans
l’œil du spectateur, c’est-à-dire que le détail du niveau de description détermine si les états sont
traités de manière équivalente. Les colloïdes en dispersion ne sont pratiquement pas atomiquement
identiques, et les macromolécules n’ont pas la même composition isotopique. Dans la plupart des
cas, notre description est trop grossière pour tenir compte de ces aspects. Notre fonction d’entropie
ne tient alors tout simplement pas compte de ces détails : alors notre fonction d’entropie ne les
contient pas.

Cadré comme tel, le paradoxe de Gibbs n’est pas un paradoxe. Il s’agit d’un exemple macro-
scopique de perte d’information, en faisant passer le système vers un état mixte qui est plus probable.
Si nous avions choisi une description moins détaillée, ce changement entropique serait impercepti-
ble. Il est cependant très réel et nous pouvons l’utiliser pour extraire le travail et vice versa. À cette
fin, nous décrivons un moteur d’information macroscopique, qui exploite la configuration d’une
molécule chirale.

Nous commençons par une première chambre (I) remplie de molécules de gaz pur d’une
configuration (S). Une membrane laisse passer les molécules S jusqu’à une deuxième chambre (II),
qui est initialement contractée. Un catalyseur de racémisation y interconvertit S et son image miroir
R. A l’équilibre, cela conduit à doubler la pression dans la chambre II. Les deux chambres ont des
pistons mobiles qui sont couplés et via un protocole réversible, l’entropie de mélange complète due
à la racémisation peut être extraite sous forme de travail (par contact avec un bain de chaleur) de
ces pistons.

Lors du couplage avec un second bain de chaleur, un moteur peut être construit, analogue à
un moteur Carnot, mais où l’expansion du volume isotherme a été remplacée par la racémisation
isotherme. Par conséquent, l’efficacité Carnot est récupérée. Alternativement, l’espèce chirale peut
être utilisée comme ‘carburant non-combustible’ et le racémate comme gaz d’échappement. Nous
montrons qu’un moteur autonome à quatre chambres peut être construit de cette façon, couplé à
des réservoirs d’énantiomères.

Enfin, nous décrivons une configuration à trois chambres, avec une membrane spécifique S,
un catalyseur de racémisation et une membrane spécifique R, avec des pistons mobiles à chaque
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extrémité. Grâce à un fonctionnement quasi-statique, ces pistons permettent la conversion réversible
de R pur en S. pur. Ceci est strictement interdit dans un seul compartiment, où le mélange d’entropie
conduit à un seul minimum d’énergie libre. Ici, chaque compartiment conserve une composition
fixe, seule la taille est modifiée.

En annexe, nous examinons les structures de réseaux chimiques qui améliorent la synthèse
d’un composé, en ajoutant des réactions irréversibles ou des échanges dynamiques (réversibles).
Plusieurs réseaux importants sont discutés en détail. La dichotomie classique entre un produit
cinétique ou un produit thermodynamique ne vaut que pour le plus simple des réseaux, et la chimie
des systèmes découvre rapidement de nouvelles stratégies élégantes pour pousser les réactions vers
de nouveaux extrêmes en termes d’efficacité. La simplicité de ces réseaux chimiques correcteurs
d’erreurs (certains n’impliquent qu’une seule réaction supplémentaire) est provocatrice : les réseaux
fonctionnels abiotiques peuvent être considérablement plus répandus que ce qui est actuellement
considéré et il sera instructif d’en tenir compte dans la conceptualisation de l’évolution chimique.

Dans le chapitre 5, l’élucidation stoechiométrique de l’allocatalyse et de l’autocatalyse est
développée. Le point de départ est la définition officielle IUPAC de la catalyse et de l’autocatalyse.
Ensuite, différentes formes de catalyse sont illustrées à titre d’illustration. Par la suite, nous
montrons comment les propriétés définies au chapitre 2 comme la non-ambiguïté permettent une
caractérisation générale. Cela permet, pour la première fois, d’identifier ces caractéristiques (c’est-
à-dire les motifs de réseau catalytique) dans les réseaux de réaction en général, grâce à l’utilisation
de techniques sous-matricielles. Nous montrons également que l’échange entre compartiments
peut conduire à l’émergence de nouveaux types de cycles autocatalytiques impossibles pour des
compartiments uniques : l’autocatalyse par multiples compartiments.

Il existe différentes définitions contradictoires de la catalyse dans la littérature OOL et dans
les ontologies numériques. Pour obtenir des résultats qui se rapportent à la chimie, nos définitions
doivent correspondre à leur utilisation correcte en chimie. Cela implique d’utiliser la définition
de catalyseur recommandée par l’IUPAC : «Une substance qui augmente la vitesse d’une réaction
(nette) sans modifier le changement d’énergie standard de Gibbs dans la réaction; le processus
est appelé catalyse. Le catalyseur est à la fois un réactif et un produit de la réaction (catalysé).
Les mots catalyseur et catalyse ne doivent pas être utilisés lorsque la substance ajoutée réduit la
vitesse de réaction (voir inhibiteur). La catalyse peut être classée comme catalyse homogène, dans
laquelle une seule phase est impliquée, et catalyse hétérogène, dans laquelle la réaction se produit
à ou près d’une interface entre les phases. La catalyse provoquée par l’un des produits d’une
réaction (nette) est appelée autocatalyse. La catalyse provoquée par un groupe sur une molécule de
réactif elle-même est appelée catalyse intramoléculaire. Le terme catalyse est également souvent
utilisé lorsque la substance est consommée dans la réaction (par exemple : hydrolyse catalysée
par une base d’esters). Strictement, une telle substance devrait être appelée un activateur. » Nous
voyons que l’autocatalyse est une forme particulière de catalyse, dans laquelle le catalyseur se
produit lui-même. Dans ce qui suit, il sera important de faire la distinction entre les catalyseurs
qui se forment eux-mêmes et ceux qui aident uniquement à former d’autres espèces. La cohérence
lexicologique nous oblige à désigner ce processus sous le nom d’allocatalyse.

Un exemple classique d’allocatalyse est une réaction catalytique en une seule étape comme S+
E−−⇀↽−− E+P. Puisque nous exigeons la non-ambiguïté par convention, des étapes supplémentaires
doivent être introduites, ce qui conduit à un mécanisme de type Michaelis-Menten. Cependant,
fournir la stœchiométrie ne suffit pas : la définition de l’IUPAC spécifie qu’une accélération de la
vitesse doit se produire. Un composé peut accélérer les réactifs à une température (et donc être un
catalyseur) et les piéger à une autre (et donc être un inhibiteur); un composé n’est pas un catalyseur
en soi, mais seulement dans un contexte donné.

Contrairement à certaines autres définitions, la définition de l’IUPAC ne nécessite pas le retour
du «catalyseur d’origine», une nouvelle copie est également valide. Cela signifie que les étapes
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de propagation dans les réactions en chaîne sont également des exemples de catalyse. Nous
pouvons également construire un cycle catalytique en couplant une réaction autocatalytique avant
et arrière. Un tel schéma obéit à la définition de l’IUPAC de la catalyse, mais est clairement d’un
caractère différent de l’allocatalyse sans autocatalyse : il ne vient pas avec une voie inhérente à
l’accumulation ou à la dégradation. Comme nous le verrons plus loin, de tels cas peuvent être
supprimés en exigeant que l’allocatalyseur ait une loi de conservation de type massique.

Une propriété clé pour identifier les motifs catalytiques dans les sous-matrices se révélera
être l’absence de réactions vides ( /0), ou ‘autonomie’. Formulé positivement, nous exigeons que
chaque réaction ait au moins un réactif et au moins un produit. Cette propriété capture qu’un cycle
catalytique (dans les deux sens) ne peut se produire que sous réserve de la présence d’un catalyseur,
et qu’un tel catalyseur est consommé pour former d’autres catalyseurs et est finalement formé à
nouveau à partir d’un autre catalyseur. Le concept d’autonomie est lié au concept de siphon, dans
un cadre différent, où il s’est avéré être une caractéristique clé pour une définition particulière
(non-IUPAC) de la catalyse.

Nous pouvons formaliser les exigences stoechiométriques pour l’allocatalyse, en définissant
l’allocatalyse stoechiométrique :

Un ensemble de substances {Xk} qui permettent une transformation d’autres espèces, sans
consommation ou production nette de ces substances. La transformation se produit à travers un
cycle avec le vecteur de réaction ccc∗, qui conduit à une conversion nette des espèces externes Y
(∀ i, j Xi 6= Yj). Cela conduit à une réaction globale

∑
k

n̄(+)
k Xk +∑

l
n(+)

l Yl
ccc∗−−⇀↽−−
−ccc∗

∑
k

n̄(−)k Xk +∑
l

n(−)l Yl, (1)

Contraint par

∑
k

n(+)
k Yk

ccc∗−−⇀↽−−
−ccc∗

∑
k

n(−)k Yk, n(+)
j 6= n(−)j , (2)

∑
k

n̄(+)
k Xk

ccc∗−−⇀↽−−
−ccc∗

∑
k

n̄(−)k Xk, n̄(+)
j = n̄(−)j . (3)

Les réactions utilisées dans pmbc∗ respectent une loi de conservation de masse L∗ pour la population
d’allocatalyseurs :

L∗ = ∑
k

akXk, ∀k ak ≥ 1. (4)

Où, par la conservation de masse, nous choisissons d’exclure les compositions de réactions autocat-
alytiques comme forme d’allocatalyse.

Nous pouvons les regrouper dans une caractérisation d’une «sous-matrice allocatalytique» :
Une sous-matrice ννν∗ qui est i) autonome, ii) admet un cycle émergent ccc∗ impliquant toutes les
espèces et réactions dans ννν∗, et iii) admet une loi de conservation de masse L∗ contenant tous les
éléments internes est une sous-matrice allocatalytique. ccc∗ est un cycle allocatalytique, et toutes les
espèces xccc∗ sont des catalyseurs.

Un bilan de réaction pour une réaction autocatalytique peut contenir des réactifs, des déchets et
des allocatalyseurs supplémentaires (par exemple des cofacteurs). Une caractéristique distinctive
est que les autocatalyseurs, par définition, peuvent augmenter en nombre. Il existe donc un
combinaison de réactions qui conduit à la production nette de tous les autocatalyseurs (vecteur de
droite de la matrice qui donne une vecteur strictement positive). Nous appelons la reproduction
stoechiométriquement réalisable (SFR), la propriété qu’une sous-matrice est i) autonome, ii)
monobloc, iii) il existe un combinaison de réactions qui produit toutes les espèces décrit par la
matrice.
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Une propriété plus forte, une autocatalyse stœchiométriquement réalisable (SFA), se produit
lorsqu’en plus du SFR, la production nette de chaque espèce implique également la consommation
de chaque espèce. Pour SFR, il peut y avoir d’espèces qui ne contribuent pas à l’autocatalyse.
SFA nécessite la participation (par consommation) de chaque espèce. À la fin du chapitre, nous
démontrons qu’un réseau SFR qui n’est pas SFA peut toujours être réduit davantage à un réseau
SFR plus petit. Le plus petit SFR doit au moins être carré de taille 2 et doit également être SFA. Un
SFA avec des lois de conservation mixtes admet toujours un sous-réseau SFR plus petit. Comme
les cycles peuvent être supprimés librement et que toutes les lois de conservation disparaissent
lors de la réduction du réseau, il résulte du théorème de la nullité de rang que les matrices SFA
irréductibles sont inversibles. Cependant, être inversible et SFA n’implique pas d’irréductibilité.

Cette approche décrit l’autocatalyse et l’allocatalyse comme on le trouve dans la littérature
chimique dans un seul cadre théorique. En approfondissant l’analogie entre les processus d’échange
(évaporation, diffusion, etc.) et les réactions, les réseaux autocatalytiques devraient également
émerger dans un contexte multicompartimental. Un exemple simple est fourni par un réseau qui
envoie une molécule B à la phase II, pour aller chercher une espèce BC, formant BCB. À son
retour dans la phase I, BC est à nouveau libéré et converti en un autre B, ce qui donne deux B pour
récupérer plus de BC.

Cette chimie ne devient autocatalytique qu’en présence de plusieurs compartiments, dans
lequel BC peut être abondant dans l’un (comme nourriture / chimiostat) et rare dans l’autre
compartiment (en assumant le rôle d’autocatalyseur). Ces rôles s’excluent mutuellement dans un
seul compartiment. Plus généralement, de nouveaux cycles autocatalytiques sont à prévoir du fait
du couplage entre compartiments chimiquement distincts, car ils admettent le couplage de réactions
chimiques avec des exigences incompatibles (pH, potentiel redox, état, etc.). Ces conditions sont
courantes en écologie, par ex. pour les organismes pratiquant l’alimentation croisée (syntrophie).

Le nombre de motifs autocatalytiques est strictement supérieur lorsqu’un système est couplé à
l’environnement. Que cela se manifeste d’avantage est dépendant du contexte.‘

Nous pouvons faire la distinction entre l’autocatalyse solitaire, impliquant des réactions di-
rectes qui ne sont que de premier ordre en termes d’autocatalyseur, et l’autocatalyse jointe, où
les autocatalyseurs doivent rencontrer d’autres autocatalyseurs. Les deux sont communs, mais ils
diffèrent sensiblement dans leur comportement. Les autocatalyseurs solitaires peuvent se multi-
plier et atteindre des nombres macroscopiques, à partir d’une seule espèce. Les autocatalyseurs
jointes doivent surmonter une concentration seuil telle que les rencontres d’autocatalyseurs soient
suffisamment courantes, ce qui peut conduire à des bistabilités, comme en témoigne la réaction
termoléculaire de Schlögl. Thermodynamiquement, l’autocatalyse solitaire devrait être favorisée
dans un premier temps, en raison de sa contribution favorable à l’entropie de mélange.

Dans le chapitre 6, le concept d’évolution chimique (parfois appelé évolution «pré-darwinienne»)
est discuté, un processus hypothétique qui a servi pendant plus d’un siècle de deus ex machina de
scénarios d’origines de vie pour expliquer comment les molécules simples progressent progres-
sivement. est devenu plus complexe. Nous passons en revue certains aspects des ensembles RAF,
GARD, et un modèle pour un métabolisme évolutif, qui reposent tous sur l’autocatalyse. Ensuite,
nous dérivons lorsque les perturbations d’une seule molécule entraînent des changements durables
dans un réacteur, ce qui donne des réseaux autocatalytiques de premier ordre. En utilisant la théorie
des processus de branchement, nous dérivons des expressions analytiques pour la probabilité qu’un
nouvel autocatalyseur forme avec succès une grande population stable, la «fixation». Nous exam-
inons ensuite les aspects de cette forme d ’«évolution» autocatalytique et avançons les obstacles
les plus courants rencontrés dans l’évolution chimique et ses modèles et esquissons une évolution
vers une synthèse de l’évolution chimique. Une première extension du corpus d’idées en évolution
chimique est l’autocatalyse multicompartimentale, pour laquelle nous étudions la probabilité de
fixation dans une variété d’environnements et de contextes. Nous montrons notamment que des
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mécanismes bien connus de coopération en écologie peuvent être en jeu.
L’évolution chimique a été définie, redéfinie et laissée indéfinie pendant plus d’un siècle.

C. Malaterre distingue deux traditions intellectuelles : une approche descriptive «historique» et
des tentatives théoriques pour définir son fonctionnement. Un tel concept est considéré comme
nécessaire par certains, car l’émergence de mécanismes complexes de la vie (comme le génome)
peut alors s’expliquer par un processus évolutif. En pratique, ceci est traité par des modèles avec
une certaine chimie autocatalytique.

Les ensembles autocatalytiques (ou ensembles RAF) décrivent des types particuliers de sys-
tèmes autocatalytiques, dans différentes espèces de catalyseurs qui se catalysent mutuellement la
formation. La théorie fait une distinction entre la catalyse et les réactions, et un ensemble RAF
nécessite que chaque réaction soit catalysée. On constate aisément que cela implique un niveau
de détail particulier pour la description : on ne peut pas décrire les étapes de réaction en catalyse,
car une telle description de mécanisme introduirait des réactions non catalysées. Une prédiction
de scénario faite dans le contexte de la théorie de la RAF, est que lorsqu’un mélange chimique
devient suffisamment diversifié (par exemple, 106 sortes de molécules alimentaires différents), il
doit y avoir des motifs autocatalytiques. Un tel situation est généralement considéré en termes de
copolymères.

Le modèle GARD prend en compte les collectifs d’espèces réciproquement allocatalytiques.
En règle générale, le terme GARD est utilisé comme un toto pro pars pour désigner l’amphiphile
GARD, dans lequel les amphiphiles catalysent leur incorporation mutuelle dans une micelle
ou une vésicule. Si l’autocatalyse ainsi induite est suffisamment forte et spécifique, et que le
nombre de types d’amphiphiles est important, il peut y avoir un nombre considérable d’attracteurs
distincts pour la composition du système (composome). Dans le même temps, une augmentation
du nombre d’espèces entraîne un bruit intrinsèque plus élevé lors de l’incorporation. Une diversité
d’amphiphiles trop importante peut alors empêcher la transmission stable d’un composome à
travers plusieurs cycles de croissance et de division. Une idée fausse persistante au sujet des
composomes est que leur contenu d’information est caractérisé par le nombre de compositions
moléculaires possibles. La nature fluctuante de la composition rend cette mesure thermodynamique
problématique. En utilisant la théorie du chapitre 4, il est montré que le nombre d’attracteurs peut
avoir une interprétation thermodynamique de l’information rigoureux.

Une autre idée, lancée par King, était que la chimie autocatalytique conduit à plus de chimie
autocatalytique, et a discuté de la notion d’une fidélité de réaction seuil pour l’autocatalyse pour sur-
vivre, aujourd’hui connu comme le «seuil de décroissance». Un travail ultérieur de Bagley, Farmer
et Fontana a modélisé le déclenchement de réactions autocatalytiques, qui à leur tour modifieraient
le mélange de réactifs et conduiraient à de nouveaux motifs autocatalytiques à déclencher, décorant
ainsi de manière autocatalytique un “ métabolisme ” par évolution autocatalytique. Ce que toutes
ces idées d’évolution chimique ont en commun, c’est l’autocatalyse.

Nous proposons l’expérience de pensée suivante : Supposons un grand (disons, N = O(1023)
CSTR dans un état d’équilibre hors d’équilibre. La composition est légèrement perturbée par
l’arrivée d’une seule espèce, et nous nous demandons si cela peut avoir des conséquences macro-
scopiques. Nous constatons que seule l’autocatalyse peut entraîner des changements macro-
scopiques dans la composition. Nous en déduisons ensuite une description en termes d’espèces
rares et abondantes. Le nouvel autocatalyseur est rare, tout comme les autres dans son cycle auto-
catalytique, ce qui signifie que leurs rencontres mutuelles peuvent (initialement) être négligées. Il
s’ensuit que les réactions directes dans le cycle autocatalytique doivent toutes être de premier ordre
dans un autocatalyseur, et qu’il existe au moins une étape de fragmentation, qui est nécessairement
irréversible.

La probabilité de fixation est maintenant obtenu à partir des probabilités de terminer avec
succès les cycles, qui pour un seul chemin cyclique peuvent être refondus dans un processus de



19

naissance et de mort, avec une probabilité de naissance correspondant à la probabilité de terminer
avec succès le cycle autocatalytique. Lorsque plusieurs chemins cycliques sont impliqués, nous
utilisons des probabilités de chemin pour construire les «statistiques de naissance» pour un seul
autocatalyseur : le nombre de copies de lui-même qu’il générera efficacement. Ensuite, trouver la
probabilité de fixation est trouvé en mappant le problème sur un processus de branchement. Cela
permet d’étudier l’effet de la structure du réseau sur la survie. Par exemple, une branche interne,
représentant un cycle allocatalytique, peut fortement stabiliser la survie. Puisque la survie diminue
avec l’intensité des réactions secondaires, qui sont irréversibles, la sélection autocatalytique a une
tendance à choisir contre une dissipation ‘inutile’.

Le modèle d’évolution autocatalytique à réacteur unique est fortement analogue à l’évolution
du métabolisme de Farmer et al. Cependant, ces processus ne sont pas considérée comme une
évolution chimique suffisamment convaincant pour l’abiogenèse. Nous considérons quatre prin-
cipaux obstacles rencontrés dans les théories de l’évolution chimique : I. Variation et rareté de
l’autocatalyse : il n’est pas clair qu’il y aura suffisamment d’autocatalyse dans un réacteur unique
pour avoir des trajectoires d’évolution contingentes.

II. Réactions secondaires, états de piégeage, complexes inactifs : la solution populaire consistant
à mettre de nombreux composants différents dans la même solution est un moyen évident d’obtenir
plus de motifs autocatalytiques. Orgel et Szathmàry ont soutenu que c’est une recette pour
un désastre : cela conduit à une augmentation spectaculaire des réactions secondaires, ce qui
empêcherait les motifs de se développer réellement, ce qui découle également de notre calcul de
la probabilité de fixation. Les exigences contradictoires d’existence (grand nombre d’espèces) et
de survie (petit nombre d’espèces) ont mené au concept de la «paradoxe de la spécificité». III.
Graphes de réseaux chimiques et modélisation : de nombreuses approches reposent sur une chimie
artificielle formulés en termes de graphes aléatoires. En pratique, la chimie est loin d’aléatoire, elle
est très structurée : les acides réagissent avec les bases, les agents oxydants réagissent avec les
agents réducteurs, etc. Souvent, une réaction donnera des espèces moins réactives et plus faible
énergétiquement, comme les acides et les bases conjugués faibles. IV. Restrictions de modèle et
restrictions de scénario : les scénarios prébiotiques ont tendance à se concentrer sur un seul type de
molécule et un seul type de mécanisme (par exemple GARD). Cependant, la plupart des molécules
et des mécanismes n’impliquent pas que d’autres molécules et mécanismes soient exclus. La levée
des restrictions inutiles est une étape nécessaire vers une synthèse de l’évolution chimique, qui
considère tous les mécanismes qui peuvent se produire.

Le problème de fixation pour l’autocatalyse à plusieurs compartiments dépend fortement de la
géométrie. Si un composé doit diffuser dans les deux sens entre un petit compartiment et un grand
milieu environnant, il peut «se dégrader efficacement», simplement parce que les trajectoires de
diffusion ne reviennent pas toujours à l’origine (en particulier en 3D), ou le font de manière trop
lentement (comparé à d’autres processus de dégradation).

Pour augmenter la probabilité de fixation, nous considérons : i) le confinement spatial : les
espèces restent déclenchées dans un volume fini, ce qui rend le retour considérablement plus
probable ii) la coopération : lorsque plusieurs compartiments sont présents qui effectuent la même
réaction, un autocatalyseur n’a pas besoin de revenir à son compartiment d’origine : il lui suffit
d’atteindre l’un d’entre eux. iii) Structure du réseau : certains réseaux autocatalytiques sont plus
résistants à la dégradation, tels que les réseaux qui effectuent une allocatalyse dans un compartiment,
pour générer de nouvelles molécules qui récupèrent plus d’allocatalyseurs. Toutes ces solutions ont
un équivalent en écologie microbienne, comme dans les biofilms pour confiner le matériel ou les
communautés microbiennes qui libèrent des sidérophores pour trouver Fe3+.

Dans le chapitre 7, nous considérons un certain nombre de mécanismes hors équilibre qui
génèrent de longs polymères, tels que la recombinaison couplée à l’échange de réservoir, l’adsorption
et la chimie de la ligature chimiquement dirigée et discutons de l’heuristique et des arguments
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physiques pour comprendre certaines des distributions de longueur de polymère typiques que
nous pouvons rencontrer dans la littérature. Nous déduisons des limites thermodynamiques pour
des scénarios prébiotiques basés sur des copolymères et considérons les conséquences de ces
restrictions. Notre discussion est largement tirée de deux publications publiées, une publication en
préparation, une mémoire de M2 et des travaux en cours.

Les réactions de recombinaison sont intéressantes en OOL : elles fournissent un moyen dy-
namique d’explorer de nombreuses séquences de copolymères différentes et de générer de longues
espèces, sans nécessiter d’activation. Nous étudions ces réactions en utilisant la thermodynamique
hors équilibre et la thermodynamique stochastique. En suivant les espèces au niveau de la séquence,
le taux de production d’entropie est divisé en une contribution pour l’énergie libre standard, le
désordre dans la distribution de tailles et le désordre dans les distributions de séquences à l’intérieur
de chaque taille donnée. En principe, ces contributions peuvent être couplées, ce qui permettrait un
contrôle thermodynamique sur la séquence et/ou la longueur. Un tel couplage apparait notamment
due à des effets de taille fini. La distribution de la longueur à l’équilibre est exponentielle, également
lorsque des interactions plus proches voisins sont introduites. Enfin, nous dérivons des temps de
relaxation pour la séquence et la longueur, constatant que la relaxation de séquence est soit aussi
rapide que la relaxation de longueur, soit considérablement plus lente, selon le mécanisme de
recombinaison.

En utilisant le formalisme de la matrice stoechiométrique, nous étudions les réactions de recom-
binaison et de ligature dans un système ouvert, qui échange certaines séquences de copolymères avec
un environnement. Via l’introduction d’une notation de séquence, cela permet l’étude topologique
de réseaux de polymères de dimension infinie, à partir desquels nous dérivons des lois de conserva-
tion et des cycles dépendants de la séquence. Celles-ci changent considérablement en fonction du
mécanisme de réaction. Pour certaines concentrations dans les réservoirs, un état de croissance
perpétuelle de polymère induit par recombinaison est atteint. Dans cet état, de gros oligomères
pénètrent dans le système à partir d’un réservoir et se recombinent pour former un polymère plus
gros et un petit oligomère, dont ce dernier se déplace à nouveau vers un réservoir. Lorsqu’une
taille maximale est imposée et en l’absence de paysage énergétique, cela donne une distribution
exponentielle croissante.

Les minéraux forment une partie considérable de la recherche OOL, et pour les ARN, il a
été démontré que les minéraux peuvent protéger contre la dégradation et favoriser la synthèse
des monomères et la ligation de l’ARN activé. Dans une étude conjointe avec les laboratoires
de D. Baum et N. Lehman, on constate expérimentalement qu’à partir de populations d’ARN
en solution, c’est préférentiellement de l’ARN de grande taille qui s’adsorbe sur une surface
minérale. On obtient un modèle minimal pour expliquer cette observation, en commençant par
étudier d’abord l’adsorption par multiples sites en 1D, puis en l’étendant ensuite en 2D. Cette
extension est largement capturée par un changement de paramètres pour le modèle 1D. On constate
que les oligomères plus petits sont favorisés par une forme d’entropie de mélange et les oligomères
plus grands par l’énergie libre d’adsorption. Pour obtenir une adsorption appréciable, cette dernière
contribution ne peut pas être trop faible. Si l’adsorption est importante, nous nous attendons donc à
un enrichissement exponentiel d’oligomères plus gros.

De nombreux scénarios pour les origines de la vie partagent une étape clé : la ligature des
premiers monomères par des moyens abiotiques. Nous revisitons une grande classe de ces scénarios,
impliquant l’utilisation de modèles de Ligature-Fragmentation, en incluant explicitement l’étape
d’activation chimique qui est normalement laissée implicite. La distribution de tailles de polymères
à en état stationnaire de ce modèle de Activation -Ligature-Fragmentation (ALF) peut être exprimée
en termes de deux quantités sans dimension : le rapport de ligature et le rapport d’activation, qui
quantifient les taux relatifs d’activation et de ligature par rapport à l’hydrolyse. Dans les régimes
limitatifs, une seule de ces quantités est caractéristique. En raison de l’absence d’équilibre, la
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catalyse peut modifier la distribution de taille à l’état stationnaire. Cependant, cela doit concerner
une étape de limitation de débit, par ex. lorsque l’activation est l’étape la plus lente, l’accélération de
la ligature par l’ajout d’une ligature assistée par matrice n’entraîne pas une nouvelle augmentation
de la longueur moyenne du polymère. D’un autre côté, le pliage et l’hybridation deviennent plus
efficaces pour augmenter la taille des polymères dans ce régime.

L’inclusion de l’étape d’activation permet également d’utiliser la thermodynamique hors équili-
bre pour faire des déclarations générales, indépendantes du modèle, par ex. en ce qui concerne
la dissipation. À partir de la dissipation pour effectuer un cycle ALF en état stationnaire, nous
trouvons un coût thermodynamique minimale associé à l’exploration de séquences, indépendam-
ment de la catalyse. Ce coût est une propriété de la chimie d’activation et est absent pour les
schémas de réaction non dissipatifs qui effectuent une telle exploration, tels que les réactions de
recombinaison. Nous illustrons comment ce coût fournit des limites quantitatives sur une grande
famille de scénarios prébiotiques qui impliquent la génération dissipative de séquences aléatoires
jusqu’à ce qu’une séquence rare soit trouvée.

Il existe un compromis entre l’énergie, le temps de recherche et la complexité des struc-
tures recherchées. En utilisant les distributions connues des structures secondaires et des limites
supérieures pour les flux d’énergie planétaire, nous constatons que la thermodynamique empêche
cette recherche aléatoire dissipative - souvent invoquée - de trouver les structures très complexes
qu’elle est supposé trouver. Cependant, d’autres stratégies de recherche plus efficaces sont actuelle-
ment envisagées, telles que la réplication sans enzyme.

De nombreuses distributions de taille se retrouvent souvent dans la littérature, lorsque l’on
considère les polymères et leur formation dans diverses circonstances. Pour obtenir une intuition
pour les distributions de longueur en équilibre et hors équilibre, nous considérons quelques équations
cinétiques typiques pour diverses situations invoquées en OOL et leurs solutions approximatives.
Sans décoration (par exemple paysage énergétique), une seule exponentielle est la distribution de
longueur d’équilibre. Hors équilibre, une deuxième échelle de temps (dégradation modifiée due au
pliage, ligature assistée par modèle) pour les espèces plus longues conduit approximativement à
une distribution à deux exponentielles. L’argument peut être répété pour obtenir des distributions
multi-exponentielles. Des lois de puissance ont été obtenues, lorsque des processus sont ajoutés
qui sont proportionnel au longueur de manière différente que les processus déjà présents. Par
exemple, dans un CSTR, une dégradation uniforme se produit en raison de l’écoulement, tandis que
la dégradation hydrolytique est proportionnelle à la longueur. Si la dégradation uniforme domine,
la distribution atteint asymptotiquement une loi de puissance.

En évaluant une grande variété de situations, nous montrons qu’il existe de nombreuses voies
vers des polymères longs, en exploitant diverses stratégies hors équilibre. Cependant, d’après
l’analyse thermodynamique de l’exploration des séquences, nous constatons que l’image «longs
polymères = polymérase = vie» n’est pas satisfaisante. En conséquence, nous pouvons souhaiter
reconsidérer le rôle des polymères dans les scénarios OOL, et quelles exigences nous invoquons
sur leur longueur et leur séquence. Une considération instructive est qu’avant les gènes, les
polymères et les oligomères auraient déjà pu être utiles, mais avec des exigences moins strictes sur la
longueur et la séquence. Par exemple, certaines familles de séquences tripeptidiques peuvent s’auto-
organiser avec le fer pour former des catalyseurs fonctionnels de ferrédoxine. Par condensation de
polyélectrolytes, les polymères peuvent former des coacervats, des compartiments liquides sans
membrane avec des propriétés très distinctes de l’eau. Nous soutenons que des scénarios plus
progressifs devraient être formulés, en considérant les fonctions initiales pour les polymères, qui
apparaissent plus facilement, avant d’insister sur les fonctions nécessitant des séquences longues
spécifiques.

Dans chapitre 8, nous étudions la dynamique de compartimentation transitoire pour les popula-
tions moléculaires. Dans la littérature OOL, les compartiments sont maintenant principalement
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considérés comme intéressants pour deux raisons : i) un potentiel d’accumulation locale de produits
chimiques prébiotiquement pertinents et ii) une sélection à plusieurs niveaux. Notre discussion
se concentrera sur ce dernier, avec une synthèse basée sur deux articles publiés, suivie de travaux
en cours (à savoir une sous-section sur la coopération induite par le bruit et une section sur la
catastrophe de complexation).

Les destins des molécules compartimentés peuvent être alignés par des mécanismes de sélection
agissant sur les compartiments et son contenu. Une population moléculaire qui favorise la survie de
son compartiment peut ainsi devenir plus abondante. Cela peut se produire grâce à des mécanismes
de coopération entre les molécules, favorisant des compositions qui ne survivraient en solution, par
un processus de sélection sur multiples échelles.

Un mode similaire de sélection (group selection) se trouve dans la division cellulaire, comme
illustré par le modèle de correction stochastique. Ces mécanismes ont été considérés comme un
moyen important de sauver les populations de réplicases des parasites formés par les erreurs de
réplication, et donc la maintenance des informations. Bien que ces réplicases appartiennent à des
branches de scénarios très spécifiques, ce mode de sélection de groupes est un mécanisme bien plus
général. Un mécanisme très similaire (mais utilisant l’incorporation catalytique des amphiphiles)
agit dans le modèle GARD.

Un autre mécanisme récemment proposé et testé expérimentalement est la compartimentation
transitoire, dans laquelle les (sous) populations sont encapsulées, cultivées, sélectionnées et libérées,
et le cycle peut être répété. Car le compartiment n’est plus divisé en deux mais détruit après
un cycle, les molécules enfermées ne sont plus contraintes à leur multiplication par un cycle de
réplication. Ils peuvent ainsi se multiplier par des facteurs bien supérieurs à 2 (dans les expériences
: 106).

Nous développons un formalisme pour la compartimentation transitoire qui prend en compte
les statistiques de compartimentation et de croissance, et l’illustrons pour des espèces concurrentes
à croissance indépendante. Les réplicateurs fonctionnels (dans l’expérience : ribozymes) peuvent
être stabilisés par la sélection et un diagramme de phase pour le cas de ribozyme-parasite est obtenu
en fonction de la taille de l’inoculum et de la croissance relative. En modifiant la fonction fitness
1D, nous pouvons traiter le cas de la coopération. En ajoutant des mutations déterministes au
modèle, la dimension du modèle est augmentée d’une unité et il est démontré que les compartiments
transitoires peuvent surmonter les catastrophes d’erreur.

En passant d’un petit nombre de réplicateurs à une grande population, le bruit dans le taux
de réplication est amplifié de façon exponentielle, ce qui peut entraîner des fluctuations géantes
dans la composition finale de la population. En utilisant la théorie des processus de branchement,
nous dérivons le bruit dans la composition de la population pour les réplicateurs concurrents en
fonction des taux de réplication et des longueurs de polymère. Étant donné la sélection rigoureuse
de la composition que nous pouvons imposer dans la compartimentation transitoire, des gains
de fitness considérables peuvent être réalisés en réduisant le bruit de composition. Les réseaux
autocatalytiques à petites molécules, qui comportent généralement une étape ou peu d’étapes de
limitation de débit, subiraient de grandes fluctuations. Les polymères, en revanche, peuvent réduire
fortement leur bruit de composition : une incorporation successive de monomères (comme dans la
réplication de modèle) peut conduire à une distribution du temps d’attente très étroite. En utilisant
la théorie des processus de branchement, nous montrons que cela conduit à une réduction du bruit
de composition. Comme la sélection agit sur la composition, le mode de réplication peut avoir
de forts effets de fitness en raison de la réduction du bruit. Cela pourrait favoriser l’apparition de
polymérases.

Lorsqu’une réplicase peut copier des réplicases, mais aussi des parasites, les choses deviennent
plus délicates. Si la polymérisation limite la vitesse, la formation d’un complexe réplicase-parasite
empêche la réplicase impliquée de copier d’autres réplicases. La théorie des processus de branche-



ment ne peut plus être utilisée ici : les populations interagissent et ne peuvent donc pas être
traitées comme indépendantes dans le théorème de renouvellement. Cependant, en regardant les
simulations et les trajectoires de réplication possibles, il devient clair que le traitement typique avec
des modèles d’action de masse à 2 espèces devient très inapproprié : de tels modèles ne tiennent
pas compte du fait que les molécules sont séquestrées dans des complexes. Dans un traitement plus
détaillé, les parasites deviennent considérablement plus dangereux : ils se copient intrinsèquement
plus rapidement (même s’ils ont la même longueur que la réplicase) et s’ils s’accumulent, ils
peuvent rapidement occuper toutes les réplicases disponibles. Dans une telle situation, une réplicase
fraîchement libérée rencontrera rapidement un autre parasite pour former un complexe avec (la
réplication est à limitation de vitesse, donc la complexation est relativement rapide), et rencontrer
une autre réplicase libre devient un événement de plus en plus rare. Nous appelons une telle prise
de contrôle une «catastrophe de complexation». La prise en compte d’une telle catastrophe introduit
de nouvelles contraintes importantes sur l’émergence et l’évolution des polymérases.

Dans Chapitre 9, un nouveau quasi-scénario est formulé, basé sur les résultats des chapitres
précédents. Le scenario a pour but d’être provocateur, et souligne qu’il y a encore beaucoup de
place pour de nouvelles idées et scénarios en OOL.

Il a été suggéré, le plus récemment par Krishnamurthy, que l’abiogenèse pourrait être un
processus pour lequel notre biochimie n’est qu’un résultat particulier parmi d’autres. Notre scénario
est adapté à cette philosophie et spécule sur les mécanismes qui entrent en jeu dans un tel processus.

Le scénario considère des réseaux chimiques hors d’équilibre à multiples compartiments, avec
des barrières de transport. L’évolution autocatalytique déclenche une modification permanente
dans les propriétés de transport et la chimie, modifiant l’auto-tri (self-sorting) et conduisant à de
nouvelles innovations au niveau du réseau (comme la résolution cinétique dynamique ou diverses
formes de relecture). De plus, de nouvelles phases (compartiments), interfaces et agrégats se
forment et renforcent la complexification.

Par construction, le scénario devient de plus en plus tiré par les cheveux : à mesure que nous
nous déplaçons au-delà des molécules uniques vers des structures d’ordre supérieur, un nombre
croissant de nouveaux phénomènes émergents peuvent apparaître. Traiter ces étapes avancées avec
rigueur nécessite de nouveaux cadres et connaissances, qui devraient probablement provenir de la
chimie des systèmes dans le futur proche.

Le point principal reste inchangé : nous soutenons qu’une variété de mécanismes autocataly-
tiques, parmi lesquels l’autocatalyse à plusieurs compartiments, a fourni une évolution chimique
à caractère écologique, qui a commencé à former de nouveaux compartiments et à modifier
l’environnement. À son tour, cela a favorisé la sélection à plusieurs niveaux des populations
moléculaires, des compartiments avec un contenu particulier (par exemple des réseaux de correction
d’erreurs) et des collections d’ordre supérieur de ceux-ci. Ces compartiments dépendaient de voies
catalytiques à plusieurs compartiments pour leur formation et des structures d’ordre supérieur ont
émergé pour favoriser ces voies. Ainsi, de nouvelles couches de sélection ont été introduites et de
nouvelles pressions de sélection ont commencé à agir. Cela devait de plus en plus être résolu par des
chimies flexibles et évolutives, et a abouti à une course aux armements évolutive vers l’évolutivité,
produisant des systèmes de plus en plus semblable du vivant.
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1. Introduction to the Origins of Life

τούτου μὲν τοῦ ἀνθρώπου ἐγὼ σοφώτερός εἰμι· κινδυνεύει μὲν γὰρ ἡμῶν οὐδέτερος οὐδὲν καλὸν κἀγαθὸν

εἰδέναι, ἀλλ᾿ οὗτος μὲν οἴεταί τι εἰδέναι οὐκ εἰδώς, ἐγὼ δέ, ὥσπερ οὖν οὐκ οἶδα, οὐδὲ οἴομαι· ἔοικα γοῦν

τούτου γε σμικρῷ τινι αὐτῷ τούτῳ σοφώτερος εἶναι, ὅτι ἃ μὴ οἶδα οὐδὲ οἴομαι εἰδέναι.

— Σωκρἀτης

I am wiser than this man, for neither of us appears to know anything great and good; but he fancies he knows
something, although he knows nothing; whereas I, as I do not know anything, so I do not fancy I do. In this trifling
particular, then, I appear to be wiser than he, because I do not fancy I know what I do not know.

— Sokrates

This chapter is an informal introduction to the science that concerns itself with scenarios for
the origins of life (OOL). The need for such an introduction comes from the rich heterogeneity of
disciplines and perspectives in the field, too numerous to be covered here. In doing so, we provide
some of the baggage to justify the work in following chapters. We hope to provide the reader with
an appreciation and some context for the questions that are addressed in different branches of OOL.
We also hope to provide handles in the critical interpretation of the literature and its corresponding
press statements.

Specifically, we will discuss the folowing things:
i) What we know absolutely and what we often assume: One can learn and practice a branch

of science because there are general principles and truths that pertain to that discipline. These
thruths and principles provide an important sanity check in the elaboration of scenario and their
mechanisms.

To make progress, scenarios need to make simplifying assumptions and disregard some details.
Often this happens implicitly, due to thinking by analogy, and we only identify assumptions when
we see how things can be different. Some typical assumptions in popular prebiotic scenarios will
be identified and discussed.
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ii) Popular perspectives and scenarios in origins of life and how they shifted: Origins of life
(OOL) addresses a plethora of questions with some common themes. These questions bear the mark
of history: scientific paradigms have shifted dramatically over the years, often due to milestone
discoveries. Such developments may well repeat themselves in the foreseeable future.

iii) Communities and multidisciplinarity: OOL is composed of numerous large subcommunities
that do not have full knowledge of each other’s science and practices. These subcommunities have
very different compositions of scientific disciplines, which is reflected in different assumptions and
scenarios, but also methods and practices. Origins of Life Initiatives are now actively mapping
out these differences through bibliometric studies, and organize conferences to bridge disciplinary
gaps, to come to a stronger collective effort.

In Sec. 1.1, constraints on prebiotic scenarios are discussed. Constraints follow from ‘estab-
lished facts’ (e.g. 2nd law of thermodynamics) that, to the best of our knowledge, are robust. In Sec.
1.2, common assumptions in the literature are discussed, in the context of their corresponding sce-
narios. Contrary to constraints, assumptions are not established facts and many of the assumptions
made in OOL will, by necessity, conflict with each other.

Most of the current prebiotic scenarios and research questions are a product of major discoveries,
leading to paradigm shifts and fragmentation. This is further discussed in Sec. 1.3. In Sec. 1.4, we
will discuss some of the research that quantifies and addresses the multidisciplinary issues in the
field. Finally, in Sec. 1.5, we lay out what the contribution is of the manuscript in the big picture of
OOL research and summarize chapter by chapter what will be discussed.

1.1 Constraints on the Origins of Life

Research in the field of Origins of Life (OOL) assumes that life came forth from abiotic matter.
What is largely unknown is where this happened, which abiotic matter was involved, what physical
chemical mechanisms came into play and through which different stages prelife proceeded. While
the exact system of interest is presently unknown, it is commonly considered that one starts
with a soup of simple chemicals. What these chemicals subsequently do must initially lack the
sophistication of biochemistry, whose emergence it tries to explain. Phenomena of prebiotic interest
are thought to emerge from an interplay between chemistry, physical chemistry, and geology. This
places us in a privileged position to study history: established facts from different fields of natural
sciences strongly constrain the narrative.

Such constraints may not fully allow us to establish what happened, but they allow to establish
what did not happen. Scenarios that break mass conservation, violate the second law, invoke
nonexistent chemistry or rely on exploiting ultra-rare elements must be amended until such problems
are addressed. Many results in origins of life come in the form of positve results, sometimes
accompanied by new scenarios. This allows us to accumulate plenty of incriminating evidence
pointing towards potential scenarios responsible for life. For a focused investigation, we also need
to be able to narrow down the number of suspects: we wish to provide an alibi for the majority of
alternative scenarios and mechanisms.

In the following, important constraints imposed by different fields are discussed. The list is by
no means exhaustive and the distinction by field is somewhat arbitrary. Nevertheless, it gives an
insight into arguments brought forth by corresponding scientific communities, and ones that are
sometimes overlooked by other ones.



1.1 Constraints on the Origins of Life 33

1.1.1 Chemical Constraints
• Conservation of atoms and isotopes: A chemical reaction conserves all atoms and isotopes

involved in its process. It is a particular form of local mass conservation∗.
• Concentrations govern reaction times: An elementary bimolecular reaction has a rate propor-

tional to local reactant concentrations, following from the probability of random encounter
of molecules. Concentrations can reach from moles to single molecules per unit volume,
creating strong separations of relevant timescales. The rate of a reaction is bounded by the
rate at which reactants can meet, which microscopically can be identified with diffusion rates.
• Chemical reaction steps are, a priori, unimolecular or bimolecular: ‘Ternary reactions’ can

always be considered as a succession of fast and slow bimolecular reactions, sometimes
proceeding through activated, noncovalent complexes.
• Stability and degradation: Molecules of interest are degraded on their particular timescale by

an environment, e.g. due to hydrolysis, thermolysis and radiation. An important example is
DNA, which is stable on a human timescale, but prone to enzymatic degradation on longer
timescales. Willerslev et al observe a practical limit[1] for recovering bacterial DNA between
400ka and 1.5Ma.
• Reactivity and reaction networks: A considerable part of chemistry is dedicated to under-

standing which species react with each other, and why. From this, some clear patterns
emerge: acids react with bases, yielding weaker conjugate acids and conjugate bases. Ox-
idizing agents react with reducing agents to yield weaker oxidizing and reducing agents.
Nucleophiles react on electron poor sites, electrophiles react on electron-rich sites. Sterically
hindered (bulky, impenetrable) reaction sites react slower than their more readily accessible
counterpart. A much-used framework that aims to capture reactivity trends in simple rules is
HSAB (hard-soft acid-base) theory. Chemical reaction rules have also been formalized in
computer languages, to generate extensive reaction networks upon repeated application of
known reaction pathways. Large chemical networks of real reactions are highly constrained
by what actual chemistry does. Approximating such a network as a random graph typically
leads to absurd chemistry, only very particular chemical systems seem well-suited for such
an approach.

1.1.2 Physical Constraints
• Conservation laws: Mass-energy, charge, linear momentum, angular momentum and proba-

bility are some quantities that are often considered as conserved in the universe. For most
systems, a number of approximate conserved quantities emerge. We often can treat mass
conservation and energy conservation as separate conservation laws. The network structure
in chemical networks conserves certain combinations of reactants. Such conservation laws
place absolute bounds on what a prebiotic scenario can do: it can expend the energy there is,
it can mobilize the matter that is provided, but not more.
• Thermodynamics: A physically realizable process must obey the laws of thermodynamics,

as well as the extensions to nonequilibrium thermodynamics.† By being in accord with these
laws, we get equilibrium constants and constraints on kinetic rate constants (detailed balance).
A reaction vessel that relaxes to equilibrium reaches a unique macroscopic steady-state and
subsequently produces no more entropy. A reaction vessel that stays out of equilibrium (e.g.
by a replenishing influx of resources for the further production of entropy) may reach various
nonequilibrium steady states and produce a host of other behaviors, which must again obey

∗Implicitly, we are considering that nuclear reactions do not fall under the umbrella of chemical reactions. Whether
this is a proper classification is an issue of semantics and not relevant for the overall point.
†Unfortunately, many scientists still think thermodynamics only has something to say about equilibrium, despite over

40 years of nonequilibrium thermodynamics.
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clear constraints.

1.1.3 Geological Constraints
• Composition: The chemistry that takes place on a given site is dictated by the chemical

composition of that environment. In geological records, much can be learned about local
compositions from a long time ago, as well as more global trends, such as the atmospheric
composition. The composition of the atmosphere has changed considerably over geological
timescales. Scenarios for the origins of life normally start over 4 billion of years ago, in a
time where the atmosphere was largely deprived of oxygen.
• (Bio)geochemical cycles: The chemical composition of the earth is essentially fixed. If

important elements leave the (prebiotic) biosphere too quickly, it is of vital importance that
such a loss is counterbalanced by a replenishment from elsewhere. Ultimately, this must lead
to a cycling of elements through the lithosphere, atmosphere and hydrosphere in a roughly
balanced fashion.
• Age of the earth: For a historical overview of the issue see [2]. Radiological dating of lead

samples on earth compared to the isotopic composition of lead in iron meteorites (suggested
by Houtermans [3]) has led to the current estimate of 4.54±0.05 Ga as the age of the earth.
For scenarios relying on abiogenesis on earth, this provides a constraint on the timescales
that can be invoked.
• Microfossils: Microfossils are fossilized remains of microscopic size. The dating of fos-

silized remains of microorganisms fixes a time before which such life must have emerged.
Microfossils are the object of some controversy[4]: there are abiotic processes that make
very similar pseudofossils. To make convincing microfossil claims, it is therefore instructive
to use several lines of evidence‡.

1.1.4 Biological Constraints
• The endpoint of abiogenesis on earth: A scenario for the origins of life on earth must be

consistent with modern biology as an endpoint. Chemically, this must be consistent with all
presently known organisms using similar homochiral building blocks, genetic machinery and
metabolic pathways. All currently known organisms are composed of one or more cells and
use water as a solvent.

1.1.5 Other constraints
Many other constraints exist that can be considered to have the status of a fact or be close to it. For
example, results from molecular phylogenetics are providing a more detailed picture of evolutionary
history, providing clues of what aspects of life can be considered more ‘ancient’.

The purpose of this section is not to be exhaustive, but rather to illustrate that there are several
things we already know with great certainty. The insights in this highly incomplete list come from
different scientific disciplines and underlines that OOL is a multidisciplinary effort. The list also
provides a contrast with the upcoming section, where we consider some common assumptions in
different branches of OOL.

1.2 Assumptions in the origins of life
Origins of life research is rife with domain-specific assumptions. Of course, making some assump-
tions is necessary if we want to make progress. Nevertheless, we should be aware that they are

‡An example of this is provided by Sugitani et al[5]. Their samples were covered with relatively uniform layers of
carbon with a distinct C-13 isotope abundance, dated to be 3.43 Ga old. The isotopic composition of surrounding pyrite
crystals (S-33, S-34) was also distinct and they were interpreted as metabolic byproducts.
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being made. Many assumptions derive from current paradigms and from our limits of imagining
things differently. The paradigms in origins of life have shifted and diverged many times in history
(see Sec. 1.3). This has repeatedly been a consequence of new observations, experiments and
occasionally theoretical considerations. Major paradigm shifts will likely happen again. It is
therefore instructive to inspect some assumptions that are commonly made. In this section, some
common assumptions that are explicit or implicit in the literature will be listed and marked in the
following way:
• Assumption.

In doing so, we hope to provide some structural guidance in understanding the arguments of
different schools of thought in OOL. We will also highlight what are the limits of some of these
assumptions.

1.2.1 Chemical Evolution
Chemical evolution is a hypothetical form of evolution that is thought by many to precede modern
Darwinian evolution involving genomes. It has been given many different definitions and mecha-
nistic interpretations [6]. There is presently no consensus on what chemical evolution is or how
it works, even less so a ‘modern synthesis’ of prebiotic chemical evolution. This vagueness and
historical baggage leads some to avoid the term entirely.

Given the complexity of the genetic machinery, it seems that even a minimalistic protogenetic
replication system is too complex to arise spontaneously. It is then speculated that a more rudimen-
tary chemical process is at play, with some form of ‘memory’ and means of further progression.
Concretely, such a memory is proposed to come in the form of self-replication, through various
forms of autocatalysis.

Some commonly entertained assumptions concerning chemical evolution are the following:
• Chemical Evolution must be Darwinian Evolution
• Chemical Evolution implies polymers
• Chemical Evolution requires replicating compartments (e.g. protocells)
• Autocatalysis is exceedingly rare outside biochemistry
There are early models and speculations of chemical evolution that don’t need these assumptions,

and a number of upcoming chapters are devoted to this point. A model in Ch.8 strongly relaxes
the first assumption. In Ch.5 and Ch.6 it is demonstrated that, to acquire the properties often
invoked in chemical evolution, chemical systems can be constructed that do not require any of these
assumptions.

1.2.2 RNA World Hypothesis
Speculations on the origins of the genetic code due to an early role of polynucleotides began at
the end of the 60’s, with a book by Woese [7] and papers by Crick [8] and Orgel [9]. Back then,
mRNA, tRNA and rRNA had been discovered, highlighting the versatile use of RNA, but it was
considered that it had no further catalytic role. An important element of these speculations was
the consideration that RNA could have played such a role in an earlier stage. E.g. concerning the
ribozyme, Crick notes we cannot help feeling that the more significant reason for rRNA and tRNA
is that they were part of the primitive machinery for protein synthesis.

The discovery that RNA still performs catalytic tasks in extant biochemistry came highly unex-
pected. In a 1986 editorial article, W. Gilbert (known for Maxam-Gilbert sequencing [10]) coined
the term ‘RNA world’, and speculated on the start of evolution as a soup of RNA molecules that
would catalytically assemble themselves from a nucleotide soup, exploit recombination (‘molecular
sex’ [11]) and mutations to explore new functions and to adapt to new niches. After the discovery
of catalytic RNAs the RNA world hypothesis quickly rose to prominence. Modern formulations
are numerous and diverse, insisting on particular details, mechanisms, or impossibilities [12]. A
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well-known formulation of the scenario by Joyce and Orgel is known as ” the Molecular Biologists’
Dream”, of which Orgel formulated a less radical version in 2004:

First we suppose that nucleoside bases and sugars were formed by prebiotic reactions on
the primitive Earth and/or brought to the Earth in meteorites, comets, etc. Next, nucleotides
were formed from prebiotic bases, sugars, and inorganic phosphates or polyphosphates, and they
accumulated in an adequately pure state in some special little “pool.” A mineral catalyst at the
bottom of the pool—for example, montmorillonite—then catalyzed the formation of long single-
stranded polynucleotides, some of which were then converted to complementary double strands by
template-directed synthesis. In this way a library of double-stranded RNAs accumulated on the
primitive Earth. We suppose that among the double-stranded RNAs there was at least one that on
melting yielded a (single-stranded) ribozyme capable of copying itself and its complement. Copying
the complement would then have produced a second ribozyme molecule, and then repeated copying
of the ribozyme and its complement would have led to an exponentially growing population. In
this scenario this is where natural selection takes over. Darwin suggested that all life is descended
from one or a few simple organisms that evolved on the Earth long ago. According to the more
radical scenario of the Molecular Biologists’ Dream, the whole biosphere descends from one or a
few replicating polynucleotides that formed on the primitive Earth about four billion years ago

Figure 1.1: A typical scenario of the RNA world hypothesis. Drawing inspired by Refs. [13]
and [14]. In Joyce’s timeline, the first stage corresponds to prebiotic chemistry (4.2-4.0 Ga). A
second stage (implicit in Joyce’s timeline, which merges it with prebiotic chemistry, explicit in
many other works RNA world research) invokes prebiotic activation chemistry, template-assisted
ligation and other mechanisms to convert prebiotic monomers to increasingly polymerized and
activated species[15, 13, 16]. Some of these species acquire functional folds (4.0 Ga for pre-RNA
species) and support a transition to an RNA world (3.8 Ga, here represented by an RNA-based
RNA polymerase, as in Joyce’s timeline).

Various stages of such a world have been placed on a very influential origins of life timeline,
proposed by G.F. Joyce [14]. On this timeline, Joyce reserves three periods for abiogenesis:
i) prebiotic chemistry (4.2-4.0 Ga), a period that he argued would serve to form the activated
biomonomers, which later on would be proficient enough to polymerize and form ii) a pre-RNA
world (4.0 Ga) of alternative genetic polymeric species, which would later on be overtaken entirely
by iii) the RNA world (3.8 Ga), where RNA becomes the genetic molecule. Some of these
conceptual transitions have been drawn in Fig. 1.1. What is often lost in translation, is that the
timeline is a ‘best guess’ for something that is itself a hypothesis. The details of a potential RNA
world are still under heavy debate. If it turns out there was something reminiscent of Joyce’s stage
iii), then that does not tell us how we got there. Joyce’s argument for stage ii), genetic pre-RNA
polymers, is the exact same argument Orgel gave in 1968 [9], namely that only genetic polymers
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have the capacity to perform effective enough evolution to get anywhere in early abiogenesis. A
central debate in OOL is whether that is true or not.

It is hard to overstate the influence of the RNA world hypothesis on our thinking about the
origins of life, having even entered some high school biology textbooks. The picture of prebiotic
chemistry being the process that activates monomers to form genetic polymers as soon as possible
is paradigmatic to this day within some OOL communities. A lot of experimental and theoretical
RNA world research has been aimed at finding chemical pathways that fit this exact picture. The
synthesis, activation and (sufficient) polymerization of RNA or XNA’s is considered as one of the
key challenges in the field and some to consider such a transition as the start of life.

Many proposals for where life started have coevolved with the RNA world hypothesis. Publi-
cations discuss in length how a particular environment helps RNA to form, such as for the fairly
recent Mica-first scenario [17], how it can accumulate, such as in a pore with a temperature gradient
[18], or be stabilized against degradation, as happens due to low temperature in the vicinity of ice
[19], and so forth.

If an environment is inhospitable towards RNA, it is considered a less plausible candidate
for life’s origin. For example, Lepper et al. recently reported the hydrolysis rate of cytosine for
‘Deep-Sea Black Smoker’ conditions [20], noting Our results on the stability of cytosine point away
from a high-temperature/high-pressure origin-of-life scenario in favor of a low-temperature/low
pressure environment for the emergence of the first RNA-based life forms.

Joyce’s timeline proposes an elegant answer to the question: “how can chemistry evolve to
something complex, by the most direct means possible?”. It does, however, need to overcome
the initial problem of forming functional polymeric replicators, which is considered to be an
extremely rare event. A similar argument was considered for peptides in various instances of the
Oparin-Haldane hypothesis, which by a rare event would form self-replicating peptides. It has often
been reiterated that prelife is rare and takes long to form, due to the extremely rare events needed
to set things in motion. This is, in fact, an assumption, whose popularity goes hand in hand with
the presence of such rare events in the RNA world hypothesis and the Oparin-Haldane hypothesis
[21]. While often stated as a trivial and intuitive fact, we have no proof that extremely rare events
are inherent to abiogenesis or not. At present, there is no substantial evidence that rules out fast
abiogenesis, or a slow abiogenesis as a succession of many fast steps.

Let us now explicitly list some popular assumptions that have been entertained in the field
• There was an RNA world preceding the DNA/protein world
• The transition from prebiotic chemistry to an RNA world can be understood in terms of RNA
• A major stage in the origins of life timeline is the polymerization of nucleotides
• A major stage in the origins of life timeline is the formation of RNA-based RNA replicases
• Starting prelife is a slow process requiring very rare events
• (chemical) Evolution implies self-replicating polymers
• There are sufficiently proficient and short RNA-based RNA replicases that can form abioti-

cally
Orgel notes that not everyone agrees on what an RNA world is [12]. He also notes (together with

G. Joyce) that it is first and foremost a hypothesis of a precursor world for extant biology [22]: It
should be emphasized that the existence of an RNA world as a precursor of our DNA/protein world
is a hypothesis. The RNA world is regularly presented as a historical fact, for which the details of
the molecular biochemist’s dream simply need some more tinkering. This trend is reflected in the
choice of manuscript titles, introductions and overall presentation. For example, in ‘Origin of the
RNA world: The fate of nucleobases in warm little ponds’ [23], the significance statement opens
with: There are currently two competing hypotheses for the site at which an RNA world emerged:
hydrothermal vents in the deep ocean and warm little ponds.

Within communities working on RNA world scenarios, some of the other assumptions in the list
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cause discomfort. The abiotic formation and ligation of RNA is far from trivial for thermodynamic
and kinetic reasons, which is but one of the obstacles for making RNA-based replicases. The
following assumptions, entertained by some, are a direct consequence of this
• There was a pre-RNA world, e.g. an XNA world
• There was no RNA-based replicase
• Chemical evolution implies copolymer sequences
• RNA evolved through cross-catalytic networks
Almost 50 years ago, it was speculated that RNA might have catalytic capacities [7, 8, 9].

This suspicion has now been overwhelmingly confirmed. A 2007 Review [24] already listed 27
reactions for which RNA catalysis had been demonstrated. Nevertheless, we are nowhere near a
ribozyme that can maintain a genome in the way it is presented in the corresponding scenarios. In a
2012 perspective called “the eightfold path to non-enzymatic RNA replication” [25], J.W. Szostak
identified eight “major problems” that stand in the way of RNA replication in protocell vesicles,
namely: 1. Low regiospecificity in polymerization, 2. RNA duplexes stay complexed (too high
Tm), 3. Low copying fidelity 4. Low copying rate 5. Unsuitable RNA reactivation chemistry 6.
Degradation of RNA and precipitation of fatty acids by divalent metal ions 7. Primers cannot enter
the vesicle 8. RNA strands reanneal too fast. The perspective was nevertheless very optimistic, as
mechanisms and chemistries were being proposed to individually attack each of these problems
and many more have been proposed since.

Of particular interest is a recently reported ribozyme from P. Holliger’s lab, that links triplet
building blocks instead of monomers [26]. Concentrated triplet building blocks (here promoted
by a eutectic water-ice phase that also slows degradation) can bind strongly enough to unfold a
ribozyme and this was used to synthesize five segments of the catalytic subunit, which were then
partially linked into two fragments that self-assemble to form a new functional subunit. The triplets
also served as a primer and permitted addition in both directions, with higher copying fidelity than
observed for mononucleotide polymerase ribozymes.

Given the large variety of roles played by RNA, it seems only reasonable to suspect it has played
a major role in the course of chemical evolution. Whether that role came early on is unknown. It is
(at present) unclear if there was a stage that was so dominated by RNA that we can feel comfortable
calling it an RNA world, but clues from molecular phylogeny favor a major role for RNA. The use
of triplets and dividing ribozymes in fragments [27] are proving to be fruitful strategies, that start
to blur the lines between the replicase approach and the chemical networks approach.

1.2.3 Iron-Sulfur world and metabolic perspectives

The more recent iron-sulfur world (scenarios often come with a ‘world’ suffix to distinguish
themselves) was formulated by G. Wächtershäuser in 1988 [28] and further ideas were developed
in upcoming years, including a proposal for a prebiotic metabolic cycle [29, 30]. In his 1988 paper
“Before Enzymes and Templates: Theory of Surface Metabolism”, the hypothesis of a ‘surface
metabolism’ was developed. In this work, of which some key aspects will be summarized here,
Wächtershauser describes a process, in which a mineral surface is in contact with a flowing bulk
phase (similar to a mineral surface in a CSTR). Of particular interest are mineral surfaces that
develop positive surface charges, such as pyrite (FeS), which can largely be attributed to divalent
metal ions (of which are mentioned Fe +

2 ,Mg +
2 ,Mn +

2 ,Ca +
2 and Zn +

2 ). These ions can attach and
detach, providing species with variable surface lifetimes.

By the action of certain organic molecules, these metal ions can coordinate to stick more
effectively to the surface, yielding longer-living species (e.g. phosphate groups are particularly
proficient at bonding to positive surface charges). More generally, surface-bound ions may bind
a variety of ligands, which endow the resulting complex with various interesting properties. Of
key importance is the catalytic repertoire afforded by these surface bound metal-ligand complexes,
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which produce new ligands, that in turn form new catalytic complexes. Such a process can then
lead to series of complexes synthesizing each-other’s ligands. By the appropriate combination of
catalyzed pathways, cross-catalytic networks emerge (which are autocatalytic overall, see Fig. 1.2) .
These networks constitute a ‘surface organism’ or surface metabolism, a molecular layer that feeds
on the bulk flow and spreads out in two dimensions.

+

Figure 1.2: An illustration of Wächtershausers autocatalytic evolution mechanism: cross-catalytic
ligand production. Metal ions and reactants are flown in, leading to metal adsorption and association
with ligands. When the rare purple square species is formed, a new catalytic complex can be formed,
which in turn can synthesize the ligands for other catalysts that produce each other’s ligands, leading
to overall autocatalysis.

In doing so, the layer spread to new surfaces, thereby encountering new environments. Such
environments were suggested to lead to new manifestations of the surface organism, but also
to be occasionally too hostile, leading to extinction. In turn, the surface organism modifies the
environment, by locally modifying the surface and the release of products in the bulk.

Among the proposed compounds that modify the environments, are surfactants. It was suggested
that the lipid biosynthesis pathway using isoprenoid phosphates could be mediated by a surface,
thereby accumulating an increasing amount of lipophilic material on the surface, which started
out as hydrophilic. Since detachment is largely mediated by hydrolysis and protonation, lipophilic
patches can considerably increase the lifetime of many species, by locally expelling water. In
such an environment (essentially a hydrophobic solvent), new reactions can take place, and e.g.
condensation equilibria are considerably shifted, which were argued to lead to di- and triphosphates.

With a sufficient accumulation of surfactants, crowding expels lipids to the bulk and to the
water lipid interface, to form a double layer, where hydrolysis may cleave of phosphates to yield
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an asymmetric double lipid layer §. The initially hydrophilic surface is now largely covered in
hydrophobic double layers, with small hydrophilic patches. By the subsequent envelopment of
these patches, water droplets covered by a membrane are formed, which are subsequently released
as vesicles with a built-in metabolism in its double layer (see Fig. 1.3). From here on, metabolic
evolution could continue and gradually build up other biological structures. Wächtershäuser’s

Figure 1.3: An illustration of some steps in Wächtershauser’s scenario[28]. After a series of auto-
catalytic evolution steps, lipid synthesis takes off, forming lipophilic islands among the hydrophilic
surface metabolism, enabling new chemistry and locally displacing equilibria. The growth of the
lipophilic phase (dark grey) leads to small hydrophilic islands (light blue), which are subsequently
covered by an asymmetric lipid bilayer and detach to form protocells.

approach is characterized by attention to detail in extant biochemical pathways, which he attempts to
deduce from a surface-bound state. This is done with the clear reservations that should accompany
a prebiotic scenario:

The proposed models are grossly simplified and deficient and at best in need of drastic revision
and improvement. It would be preposterous to assume that, with this first attempt, the true historic
chain of events could be reinvented

An interesting feature of Wächtershäuser’s chain of event is that they are gradual, it supposes an
absence of rare events. It is supposed that there is a clear trajectory that is set by thermodynamics
and kinetics, that can be considered deterministic. The molecules that are invoked are (partly)
justified by their context, with phosphate being a prime example of a key species, responsible for
gluing the surface metabolism together and facilitating its later detachment through phospholipids.
Its extant central role in biology (e.g. as an energy carrier) is described as ‘windfall’, a pleasant
surprise.

The molecular detail of description of Wächtershäuser’s work has provided a number of
interesting predictions, that are in principle testable. Using iron-sulfur chemistry, interesting
experimental results have been advanced by Wächtershäuser and colleagues, such as an (Fe,Ni)S-
dependent CO-driven peptide cycle [31]. What is still missing, however, is strong experimental
evidence for metabolic evolution. In the words of Orgel [32] The demonstration of the existence of
a complex, nonenzymatic metabolic cycle, such as the reverse citric acid, would be a major step
in research on the origin of life, while demonstration of an evolving family of such cycles would
transform the subject. Providing such evidence is a daunting experimental challenge. It is thought
to require the monitoring of a large diversity of a priori unknown chemical species. Addressing this
point is only now starting to seem feasible [33] with the introduction of non-targeted analytical
methods with unprecedented resolution[34], such as Ultrahigh-resolution ion cyclotron resonance

§Wächtershauser argued that this explained the asymmetric nature of cell membranes today, with nonionic surfactants
being most abundant on the outside
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mass spectrometry (FT-ICR-MS).
There are some clear assumptions in the work. By being very explicit, Wächtershäuser aims to

provide a testable scientific theory along criteria laid out by the Philosopher K. Popper. Of course,
every extra detail is an extra element that could be ‘wrong’, and we will not go into all of them. Let
us here just make some of the broader assumptions explicit:
• Prelife started on surfaces
• Prelife starts with autocatalytic evolution
• Autocatalytic surface evolution is proficient enough to provide all transitions until a genetic

mechanism takes over
• Autocatalytic surface evolution is a deterministic process without rare events
• Protocells are an early invention
• Prelife relies on FeS chemistry
• Prebiotic surface chemistry mimics extant biochemical pathways
• We can conceive abiogenesis as a process that repurposes extant biomolecules to their modern

use
The final two assumptions allow to formulate an elegant, gradual trajectory to extant biochem-

istry. At the same time, it does so while only requiring a small number of extra ingredients. This
makes for a theory with considerable explanatory power, and many testable elements.

Here, two delicate points come up. One point comes from the alkaline hydrothermal vents
community[35], which criticizes the lack of CO2 sequestration, which is a central to modern
biology. Since metabolic evolution is a central feature of the hypothesis, a transition towards CO2
use can be argued to follow from a metabolic takeover[36]. Sojo et al argue, however, that CO2
sequestration should be considered from the start, as it would provide a more continuous trajectory.

Another delicate point comes up with the latter two assumptions. Let us paraphrase Krishna-
murthy’s critique[37]: our extant biochemistry may not be the unique destiny of prebiotic chemistry,
and extant biochemistry may not give adequate information on prebiotic chemistry and its evolution.
This argument is equally valid for surface chemistry: abiogenesis may have involved a plethora of
intermediate stages, structures and chemistries that we do not find back in modern biochemistry.

When we try to connect a set of well-known states, such as in cladistic approaches, we look
for the most parsimonious trajectory to connect them. What is problematic for prebiotic scenarios
in general, is that the starting point and its intermediate stages are largely unknown. The concept
of parsimony becomes blurred by our ignorance of the states we need to connect and how that
happens. In fact, we neither know how much intermediate states we need to consider, nor how
much time they have to transition (if that is even an appropriate way to conceptualize the problem).

Presently, abiogenesis reaching unicellular life is attributed a timeframe of several hundreds
of millions of years. To appreciate if that is ample time or not, we will need to wait until we
understand the mechanisms and timescales of the problem. At that point, more robust arguments
can be built on parsimony.

Some complementary metabolic perspectives
Other authors have expressed views that are often grouped as ‘metabolic’ or ‘metabolism-first’,
insisting in particular on continuity[35]. The works of H. Morowitz and E. Smith underline the
importance of nonequilibrium systems, in which free energy gradients fuel cycles [38]. These ‘more
organized’ nonequilibrium states may in turn organize further to yield ever more ordered processes
and new pathways to dissipate free energy. In [39] “The Origin and Nature of Life on Earth: The
Emergence of the Fourth Geosphere” it is argued that life can be seen as a manifestation of an
inherent self-organizing drive towards the increasing dissipation of free energy. This interesting and
provocative view is supplied with ample nuance, since one should not conflate entropy production
with life. Indeed, from early[38] on, Morowitz has warned against the uncritical use of entropy
production as an organizing tendency, highlighting that we should consider that a large variety of
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mechanisms, dynamics and kinetics come into play.
In his monograph ‘Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis’ [38],

Morowitz discusses in length the conditions, constraints and clues that would inform a prebiotic
scenario. In conclusion, a scenario is proposed, with the reservations that fit such a proposal:

The best we can do at this stage is to write a scenario in accordance with the known laws of
science and consistent with our knowledge of the geological history of the Earth. Of course, the
problem is that there are many possible scenarios within the broad constraints that have just been
outlined. I opt for the most plausible one, with a caveat that plausibility is in the eye of the beholder.

Morowitz proposes that organic matter was brought in by meteors, comets, and solar winds,
which in turn formed more complex molecules by the action of sparks, lightning, radioactivity
and UV. Some of these compounds were amphiphilic, leading to colloidal species, which under
environmental agitation formed the first vesicles.

Within these vesicles, compositional differences could develop and chromophores in vesicles
would absorb visible and near-UV light to form polarized species, which would generate trans-
membrane potentials and be coupled to chemical reactions and transmembrane transport. These
protocells develop, in a subsequent step, a self-sustaining metabolism based on phosphates, CO2
and exchangeable two-proton carriers (AH2). Morowitz then states that a self-sustaining protocell
requires the synthesis of (1) amphiphiles, (2) chromophores and (3) energy transduction molecules.

In a subsequent stage, Morowitz hypothesizes that prebiotic amino acids and peptides could
“absorb unto the surface of the protocell membrane and have specific catalytic functions”. These
amino acids were thought to cross-catalyze, leading to a net autocatalysis that would change the
rate of growth of vesicles. By competition between protocells containing different autocatalytic
networks, a basis for Darwinian evolution is set. Morowitz envisions the production of a genetic
code as a late event, first in the form of RNA, then transitioning towards DNA.

In his 1992 scenario, Morowitz goes into considerably less molecular detail than Wächter-
shauser, but some clear analogies can still be drawn. Both scenarios see the formation of vesicular
protocells as a key step and invoke an early self-sufficient metabolism. Early chemical evolution is
described in terms of autocatalytic metabolic networks.

A clear difference is that Wächtershauser explicitly starts with autocatalytic evolution as the
mechanism that supplies the necessary chemical ingredients for subsequent transitions. This
evolution can be thought of as a form of ‘chemical evolution’, in which the notion of an ‘individual’
is initially absent. Morowitz only considers an evolution in the more classical Darwinian sense,
operating between compartments.

In later work with E. Smith, the origins of life is conceptualized as a series of phase transitions,
with an emphasis on the ecological and geochemical nature of these events. They advance the
caveat that the details of these transitions may be blurred and not all transitions may be captured by
their present work. Their mechanistic scenario is captured very succinctly in the abstract of chapter
6 in of their book[39]

The first carbon fixation was mineral hosted. Feedbacks, initially via cofactors and later via
oligomer catalysis, lifted core metabolism ‘’off the rocks”. The emerging identity of the biosphere
reflected the growth of autonomy as much as of chemical invention. Passage to an oligomer phase
corresponding to the ‘’RNA World” was a complex and heterogeneous transition, which transpired,
and froze into place, in an already ordered organisynthetic context. We propose that cellularization
occurred relatively late, and relied on functions of oligomers established in a mineral-hosted
environment. The emergence of ribosomal translation originated in two parallel worlds of iron-
RNA condensation-catalysis and template-directed ligation, which came together to form the first
translation apparatus from mRNA to peptides. The refinement of translation fidelity, together
with more precise RNA or DNA replication, ushered in the era of vertical descent along lines first
appreciated by Carl Woese. Even in the era of evolution of effectively modern cells, many of the



1.2 Assumptions in the origins of life 43

major transitions have been determined by biogeochemical reorganizations.
Particular attention is dedicated in the works of Morowitz and Smith to the metabolic structure

of modern life, and how it can be retraced to a prebiotic rTCA cycle. In order to provide a continuous
account from prebiotic chemistry to modern life, this is a desirable property and is motivated by a
similar philosophy that drives Wächtershäusers attempts to connect extant pathways to prebiotic
environments. Illustrative is the following statement[39]: ... explaining how bicarbonate addition
entered biochemistry will be a crucial problem for any metabolism-first theory that purports to
account for the selection of the biosynthetic precursors in life as we know it.

In terms of assumptions, Smith and Morowitz share many assumptions with Wächtershäuser,
and their perspectives can be regarded as complementary. A distinctive feature is the focus on
modern metabolism. Some notable assumptions are:
• Prelife relied on an early rTCA metabolism.
• The origins of life can be captured as succession of a large number of phase transitions
• A prebiotic scenario can be formulated, by figuring out how modern metabolic tasks were

performed prebiotically.
The assumption can be questioned, again, by Krishnamurthy’s point. The fact that modern

metabolism seems to be quite universal speaks volumes about its success. However, that does not
require it to be an early invention, a large number of (evolutionarily) relevant developments may
have preceded it. All modern organisms also use DNA and RNA, whose modern use is one of the
latest transitions in the Smith-Morowitz scenario. Here, the term metabolism-first seems to refer
strictly to an early metabolism with strong ressemblance to a modern one.

If abiogenesis can be considered as a succession of a large number of phase transitions, many
of which Smith and Morowitz claimed not to have found yet [39], we may wonder if a large number
of them may precede the invention and dominance of the rTCA metabolism. At that point, we can
reconsider the meaning of metabolism-first, but also the priority of “the selection of the biosynthetic
precursors in life as we know it”, which, again, may be a selection that was not set in stone from
the start.

Computational metabolic models

An early idea on metabolism, adsorption and phase transitions can be found in F. Dyson’s 1985
work ‘Origins of Life’ [40], in which a toy model is proposed for amino-acid adsorption on a
membrane in a system small enough to exhibit large fluctuations in molecular populations. Dyson
proposes a bistability, with a default state of some adsorbed monomers (‘dead’) and a second more
active state, with the jump process to the active state being called ‘the origins of life’. At first glance,
the model does not seem ‘chemically realistic’. It was praised for its provocative elegance: it treats
the problem as a low dimensional toy model with a single phase transition. The Morowitz-Smith
scenario insists on many distinct phase transitions on different scales and provides more chemically
explicit arguments. In a revised version of Dyson’s book [40], Dyson makes the case that his model
can be seen in a larger tradition chemically explicit metabolic computer models that yield similar
results. What sets his model apart is that it is a low-dimensional description solved by pen and
paper.

Of particular prominence in computational metabolic models, is the GARD (Graded Auto-
catalysis Replication Domain) model[41], whose main proponents are D. Segré and D. Lancet.
The model follows the dynamic evolution of species, described by a population vector nnn. In a
deterministic description (the dynamics is actually treated stochastically), the population evolution
is presented by the authors as:
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The equation can capture a variety of networks, and was upon introduction applied on a network
of activated monomers (exchanged with an environment) forming dimers that can cross-catalyze
each other’s formation (see Fig. 1.4), which is characterized by cross-catalysis term βi j. These are
placed within exponentially growing vesicles that divide.

II

I

Figure 1.4: A simple illustration of a catalytic incorporation pathway. The red hollow head group
complexes the square purple one, thereby facilitating the entry of the surfactant in the assembly.

Later formulations of GARD have merged the description of a compartment and autocatalysis:
Eq. 1.1 then describes populations of different surfactants that can cross-catalyze each other’s
incorporation in a micelle[42] (see Fig. 1.4), that divides upon reaching a critical size (see Fig. 1.5).

For a large diversity of surfactants, different nonequilibrium compositions may be stabilized
by strong enough cross-catalysis. These distinct attractors and their vicinity is referred to as
a composomes, by analogy to a genome, as different compositions can correspond to different
chemistries, which may be selected for. The number of surfactants needed to form a micelle ( 100)
allows for fluctuations in population composition, facilitating transitions from one composition to
another, similar to F. Dyson’s model.

k
i
+

β 
i j

Figure 1.5: An illustration of amphiphile-GARD in a micelle. Incorporation continues until a
critical size is achieved, after which two smaller micelles are formed among which the amphiphiles
are partitioned. Illustration inspired by a particularly clear representation in Ref. [43].

A criticism that is raised is that the fluctuations may in fact be too large [44] to lead to a
meaningful genotype and phenotype on an evolutionary timescale, while simultaneously admitting
a relatively narrow space of states. By writing the model in terms of a master equation, they found
that a stationary population composition of all compositions was quickly achieved, precluding
further open-ended evolution. They then argued that such a critique is expected to hold for other
proposals of autocatalytic evolution: If (and what a big IF) there can be in the same environment
distinct, organizationally different, alternative autocatalytic cycles/networks, as imagined for
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example by Gánti and Wächtershäuser, then these can also compete with each other and undergo
some Darwinian evolution. But, even if such systems exist(-ed), they would in all probability have
limited heredity only and thus could not undergo open-ended evolution.

Lancet et al. point out that the appearance of composomes depends not only on the appropriate
strength of cross-catalysis, but also the diversity of the amphiphiles in the reservoir, and that
fluctuations can be tempered by formulating GARD for larger structures than micelles, such as
vesicles, which can consist of 106 surfactants. The latter can admit a larger amphiphile diversity
and can have more stable attractors ¶. Furthermore, it is advanced that versions of GARD have
been formulated that remain open ended for quite some time. It is expected that more elaborate
versions containing covalent chemistry and a metabolism, MGARD[45], will do even better.

Lancet et al see the origins of life as starting with cross-catalytic assembly of lipids. Their
‘protocells’ start with surface incorporation, like in the Smith-Morowitz scenario and Wächter-
shauser’s proposal, but has evolutionary characteristics reminiscent of Morowitz’s 1992 scenario. It
is imagined that such surfaces evolve and may at a later stage incorporate new chemistry in them,
e.g. due to the arrival of peptides. It differs considerably from the Smith-Morowitz position, by
not insisting on an early establishment of modern metabolism and highlighting the informational
aspect of a composome as analogue of a genome. Nevertheless, GARD has often been classified as
a metabolic theory.

The GARD scenario as formulated in e.g. Ref. [42, 45] comes with some clear assumptions
• Prelife started with lipid protocells.
• A prebiotic environment provided many thousands of different types of amphiphiles.
• These amphiphiles were sufficiently numerous and catalytically competent to yield stable

composomes capable of open-ended evolution for a sufficient time.
• Diversity in lipid composition is enough to scaffold further transitions.
• Early chemical evolution occurred exclusively due to competition between composomes that

assemble noncovalently.
Not all of these assumptions are necessary for a GARD-based scenario. Dimer GARD and

MGARD show that covalent reactions work in GARD as well. If we can suppose an abundance of
thousands of different amphiphiles, it seems surprising (and unnecessary) that the same soup is so
impoverished in other compounds that covalent chemistry is effectively forbidden.

Simultaneously, other proposed forms of autocatalytic evolution (e.g. ligand decoration [28],
nucleation of simple autocatalytic cycles [46], compartmentalized autocatalytic sets [47]) are
excluded, as well as other chemistries and compartment types. This exclusion places the full
burden of early chemical evolution on amphiphiles. While that makes the scenario more elegant
to formulate and simulate, it places a lot of nontrivial requirements on lipids. This critique is not
unique to GARD: any scenario that emphasizes the action of a single type of chemical species, a
single type of compartment or a single type of environment risks the needless exclusion of other
factors that are inadvertently there. These are most plausibly relevant and helpful to the scenario.

Different meanings of metabolism-first and metabolic theories
Amphiphile GARD has a replicating surface that uses exactly the compounds in the reservoir. It is
what it eats, and thereby needs no further chemical processing (i.e. metabolism) of the food. The
characterization of amphiphile-GARD (which is often what is referred to when GARD is discussed)
as a metabolic or metabolism-first theory is therefore inadequate on the scale of the replicating unit
(micelles, vesicles, etc.), although Lancet et al. note that such a label has been used for GARD [45]
by some authors. Dimer-GARD, MGARD and other formulations with some covalent chemical
modifications can perfectly well be considered as metabolic. If we do not limit scenarios to a pure

¶One should expect a trade-off here between the number of attractor states and their stability (lifetime), since one
requires more stability and cross-catalysis, the other less. To the best of our knowledge, this tradeoff has not been
assessed quantitatively.
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amphiphile-GARD starting point, one can consider GARD scenarios that are metabolic from the
start.

We may wonder how we should interpret the label ‘metabolic’: genetic polymer scenarios
use covalent chemistry to copy their material, just like any other scenario. In practice, the terms
’metabolic scenario’ and ’metabolism-first’ are regularly used to underline a self-sufficient chemistry
in the absence of genetic polymers, which seems a bit more general than one might with for (non-
genetic would be more appropriate).

Some link metabolic scenarios exclusively to an early prebiotic rTCA cycle, like in the Smith-
Morowitz case, by analogy to modern metabolism. Such an interpretation is frequently found in
‘metabolism-first vs genetics-first’ debates and provides a relatively clear position that can be argued
for or against. However, it does not capture what some of the literature is now calling ‘metabolic
scenarios’. Many objections that are advanced against metabolism-first refer only to a subset of
those scenarios.

A systems-level perspective
An important general critique on metabolic scenarios, is their apparent lack of transfer of hereditary
information and evolution. It is important to appreciate that all metabolic models discussed in this
section do perpetuate and replicate their nonequilibrium state, at least approximately. Unfortunately,
information is often conflated with ‘a genetic copolymer sequence’. Composomes and autocatalytic
sets are but some examples of alternative means of information transfer. Whether the evolutionary
potential of these mechanisms is sufficiently open-ended is a very different question. It is far from
obvious that any of these mechanisms alone (GARD, catalyst decoration, evolving autocatalytic
sets) can deliver on such a large promise.

At the same time, none of these proposed autocatalytic mechanisms requires the exclusion of
other ones. It may be fruitful to approach the problem of abiogenesis from a systems perspective, as
elucidated by Ruiz-mirazo et al[48]. Their perspective invites us to consider how these mechanisms
may operate simultaneously and construct more general ‘hybrid’ scenarios. Such an approach
would allow to relax most of the strong assumptions that are tied to any individual approach.

More provocatively, it lays bare that there may be many other relevant mechanisms, that one
would not consider in a scenario based on one isolated mechanism or compound. In Ch.5 and
Ch.6, we will demonstrate that there are many more autocatalytic mechanisms that have not been
considered yet, and in Ch.8 we consider another type of evolutionary compartment dynamics that
does not require lipids or cell division. In Ch.9 we consider how autocatalytic feedbacks can operate
on higher-order cross-catalytic structures. All of these mechanisms can be bundled to bolster a
systems-level scenario with strong evolutionary capacities. It may be practical to avoid labelling
such a scenario as ‘metabolic’ and insist more on its ‘autocatalytic’ aspects instead.

1.2.4 X-first
Various authors advocate that a certain ingredient or aspect is so essential to life, that it must have
been there ‘first’, from ‘the start’ of abiogenesis. Let us list here but some of them:
• Lipids first [42]
• RNA first [49, 9, 8, 7] (recently extended with viruses first [50])
• Peptides first [21, 51]

There is no reason to think that these are our only choices. Increasingly, a systems vision is
emerging in which it is admitted that collectives of molecules can be more than the sum of their
parts [48]. For example, peptides can confer considerable protection against hydrolysis to RNA
molecules, leading some to consider they had to tag along from the beginning [52].

We should also entertain the option that not every molecule that was relevant for the origins of
life, is still present today. Cairns-Smith made this argument by the analogy with a scaffold, and
argued that clays could play this role [53]. Recently, it has been proposed that the space between
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mica sheets may provide a breeding pool for RNA and other molecules [17]. The following
assumptions rely on species that are not extant biomolecules:
• Mica first [17]
• Minerals first [53, 28]
• XNA (e.g. PNA) first [54]
Some authors have focused on particular features that were ‘first’ when a certain object emerged,

e.g. for the composition of the membranes of protocells one can consider
• terpenes first [55, 28]
• lipids first [45, 42]
Given i) the large space of imaginable chemicals and the completely different environment that

constituted the ancient earth, ii) the increasing number of new proposals of things that came first, it
is plausible that nothing proposed so far actually ‘came first’.

1.2.5 Apparent dilemma’s and multilemma’s

Origins of life research has advanced various scenarios, that are not always mutually compatible.
This happens in particular when the suffix ‘-first’ is introduced: not everything can come first. A
dilemma that is popular today in certain communities of OOL concerns where life started:
• (pre)Life started in ponds vs hydrothermal vents

This dilemma is consistently repeated in science communication, where new arguments for either
proposition are presented as a major advance. It should be kept in mind that numerous other
environments have been proposed, even recently. A more complete list would be:
• (pre)life started between mica sheets vs wet rock pores vs on crystals vs deep under the

surface of the earth vs ponds vs natural radioactive reactors vs silica compartments vs ponds
vs hydrothermal vents vs etc.

A small number of dilemma’s advanced in the literature are given here:
• RNA-first[49, 14] vs peptides first[21, 51]
• Metabolism-first[28, 38] vs genetics-first [49, 14]
RNA-first vs peptides first is highly likely to be a false dichotomy: perhaps neither was

there from the start. Whether metabolism-first vs genetics-first is a true dilemma depends on
our interpretation of ‘metabolism-first’. If it only refers to an early rTCA cycle, then we are
ignoring many scenarios. Unless we can justify why all other alternatives can be ignored, this alone
immediately makes the dilemma a false dichotomy.

This way of presenting the problem, pervasive in popular accounts, but also in academic works,
gives the false suggestion that there are no alternatives. Thereby a vast amount of scholarship is
obscured, and logical fallacies are promoted (e.g. an argument against RNA world is suggested to
imply metabolism-first, and vice versa).

If metabolism is interpreted in its broadest literature use, where even amphiphile-GARD is
considered metabolic, then the dilemma essentially seems to condense to ‘genetics-first or not’.

In arguing for a clay scenario, Cairns-Smith advances the following illustrative quote from a
Sherlock Holmes story in his work: It is an old maxim of mine that when you have excluded the
impossible, whatever remains, however improbable, must be the truth.

This statement seems logical taken at face value, but there is a crucial hidden assumption:
• Of all the options we have considered so far, at least one of them is ‘the truth’

As time proceeds, more options are advanced, and this assumption becomes more likely to be true.
For most of our multilemma’s, however, we do not know if we have reached a point where this
starts to become a reasonable assumption, especially since new ideas are still coming in.
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1.2.6 Prebiotic Plausibility
The term ‘prebiotically plausible’ is mainly used in prebiotic chemistry, often to indicate that a
chemical synthesis or process is in accord with geochemical or astrophysical lines of evidence. In
particular, this means that we can make the following assumption
• the required substrates can reasonably be argued to have been present, sufficiently abundant

and to encounter circumstances that admit the process under consideration.
In his criteria for what would constitute ‘prebiotic plausibility’, Orgel argued that it required
chemistry that occurs in water [12].

What can be considered prebiotically plausible has changed considerably over time. The
Urey-Miller experiment used an atmospheric composition (CH4,NH3,H2O,H2) that, at the time of
the experiment, was considered prebiotically plausible by many and was part of Oparin’s argument
for prebiotic amino acids. In later years, evidence accumulated that ammonia and methane may not
have been abundant atmospheric constituents, thus stripping the original experiment of its prebiotic
plausibility status. Later versions of the experiment have addressed this critique using N2 and
CO2.‖

‘Prebiotically plausible’ is, at least presently, not a perennial label. The term has recently
received strong criticism [57] for a much more pressing problem: authors have increasingly started
applying the label in a loose fashion. Benner illustrates the problem with the case of HCN and
its derivatives, key ingredient in many prebiotic chemical synthetic schemes: ... the prebiotic
plausibility of HCN, the other molecules, and adenine long ago vanished as Earth-made species,
even though literature too voluminous to cite here continues to assume otherwise.

Some authors address this point by considering meteorites carrying HCN and derivatives as
sources[58]. While Benner considers that meteorites provide insufficient material to maintain
prebiotic synthesis of e.g. RNA, he notes that iron-rich meteorites may have have transiently
(perhaps for 100 million years) endowed the crust with enough material to reduce the atmosphere
for a considerable time. This would then have provided an abundant, transient source of HCN and
its derivatives. Benner notes:

The planetary model may be evaluated under its own standards-of-proof, and will rise or fall
based on criteria quite independent of criteria that are used to evaluate chemical models. Nothing
is ever proven in science. However, a network of models, each subject to independent test in their
own fields, makes the big picture more, shall we say, plausible.

Wrap-up
We have seen a considerable number of strong assumptions that come up in OOL research. By
construction, many of these assumptions can only be true if other assumptions in the field are false.
Demonstrating which ones are false is therefore of great interest, it allows to focus our attention on
the most promising directions.

Making explicit what is sometimes taken for granted is a useful exercise. Prebiotic scenarios
are rich in strong assumptions, some of which get conflated with facts. Upon reading the OOL
literature, one gets the impression that a lot more is known about the origins of life than is truly the
case.

It is in this instance where this chapter’s opening quote by Socrates rings particularly true.
There are many things that are still unknown, and we should treat them as such. To say we have
considered all possibilities, requires an exhaustive demonstration that there are indeed no other
options. A hunch or a clue can be an instructive guide for further research. Promoting assumptions
and hunches to facts, however, is an academic faux pas that slows down the scientific process.

‖The experiment has been repeated using different atmospheric compositions in contact with different water mixtures.
When N2 and CO2 were used instead of ammonia and methane, the experiment synthesizes appreciable amounts of
amino acids as well. This was only recently recognized, because the simultaneous formation nitrites lead to amino acid
degradation, unless these nitrites are sequestered. This was done using ferrous ion[56].
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1.3 Paradigms and Paradigm shifts in Origins of Life Research

Concepts and practices considered pertinent to a scientific question are not fixed in time. For
age-old questions like abiogenesis, the paradigm has shifted on many occasions. Kuhn argues that
such shifts of the scientific paradigm occur through revolutions, for example when general relativity
replaced Newtonian gravity[59]. Structurally, this is reminiscent of Gould’s evolutionary theory of
punctuated equilibrium[60], which divides evolution in short periods of rapid evolution and long
periods of slow evolution (‘equilibrium’).

The scientific perspective regarding abiogenesis has shifted considerably over time. Develop-
ments in microscopy, (micro)biology, (bio)chemistry, geology and other fields provided major new
ways to look at the problem. In this section, a number of points of view are considered along with
the scientific milestones that preceded them. Not all points of view covered were equally dominant,
but all are well-known schools of thought.

This exposé is far from exhaustive, it serves merely to demonstrate something: prebiotic
scenarios are products of their time.

Pasteurization

It has long been believed that macroscopic life formed spontaneously, e.g. from mud or food. This
pervasive ‘generatio spontanea’-perspective was dismantled progressively. A series of rigorous
experiments by L. Pasteur are widely regarded as the proof that laid the theory to rest for good.
In Oparin’s work “origin of life”,[21] an extensive discussion is provided on these developments.
Oparin notes that Pasteur’s insight that life does not form spontaneously was necessary, but perhaps
somewhat extreme. Abiogenesis would require such an event to have occurred at least once.

Oparin-Haldane Hypothesis

The prebiotic broth theory states that a mix of organic chemicals, formed by all sorts of geological
activity, concentrated in protocells (coacervates), where they started forming oligopeptides, until
eventually a large self-replicating peptide was assembled. It was arguably one of the first attempts
to provide a serious chemical account of life’s origins[21].

The Urey-Miller experiment and the prebiotic soup

The Ur-soup theory rose considerably in prominence after S. Miller’s discovery of amino acid
formed by reaction of a reducing atmosphere under electric discharge. The discovery led to a
Nobel prize and the Ur-soup theory became part of many high-school history and science textbooks.
Although the prebiotic atmosphere model Miller followed was accepted in his day, later insights
suggest that the atmosphere would have a very different composition. Many chemists in OOL
today consider the experiment as historically significant for marking the starting point of prebiotic
chemistry. The quantities of prebiotic chemicals produced this way, however, are deemed small and
the field has largely moved to other chemical sources, such as meteorites.

Genetics

Discovered one year before Miller’s well-known experiment, the discovery of DNA started rapidly
unveiling new ideas on templates and replication. At the end of the 60s, DNA and RNA started
to be considered as an alternative for the self-replicating enzyme in the Oparin-Haldane scenario,
starting the first speculations on an early polynucleotide world [7, 8, 9].

Ribozymes and RNA world

The idea of an RNA world has been entertained with some caution at the end of the 60’s[7, 8, 9],
relying on a speculation that certain shapes of RNA might possess some catalytic activity, but that
modern life stopped using RNA for catalytic purposes. To everyone’s surprise, it was not only
found that catalytic RNA exists, but also that organisms still use catalytic RNA today.
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In a 1986 editorial article discussing the recent publications on catalytic RNA, Gilbert raised
speculations akin to those entertained in the 60’s. In his article, he coined the term RNA World[49],
denoting a time where RNA would be performing both catalysis and genetic tasks.

The RNA-World scenario rapidly established dominance after increasing experimental proof
for catalytic ribozymes was found. The scenario has entered biology textbooks and much scholarly
work can be found that explicitly assumes an RNA World existed.

Martian Meteorite ALH84001
In 1996, the publication of ‘Search for Past Life on Mars: Possible Relic Biogenic Activity in
Martian Meteorite ALH84001’ [61] stirred the scientific community. This meteorite, thought to
come from Mars, displayed lifelike morphologies under an electron microscope. Polyaromatic
hydrocarbons were found, as well as carbonate globules containing magnetite and iron sulfides.
These were interpreted as likely Martian microbe fossils.

The discovery was quickly picked up by president Bill Clinton’s science advisor ∗∗. Within a
week of the publication of the article, a press statement was released, in which it was made clear that
Mars exploration and the search for life would become a top priority. In 1995, NASA’s exobiology
research was expected to be largely discontinued, and its nexus at the Nasa Ames Research Center
was expected to close down [62]. The sudden Mars hype in 1996 drastically changed exobiology’s
fortune. A new astrobiology institute was founded, and Ames suddenly saw its funding increased
to 5M dollars per year, which got bumped up to 15M in 2000. It also led to the reinstatement of
Mars exploration programs.

Today, not many believe that ALH84001 contained Martian microbes. Extensive research
suggests that the biogenic signatures and morphologies can also plausibly be generated by abiotic
processes [63].

Chemical gardens and hydrothermal vents
Chemical gardens are growing semipermeable inorganic structures with a liquid interior. They
acquire water by osmosis, which increases the pressure on the permeable walls. When the pressure
becomes too high, the structure tears locally and the tear quickly reacts via displacement reactions,
leading to further growth of the structure [64].

Chemical gardens were popularized at the beginning of the 20th century by Leduc in his treatise
‘The mechanism of life’, in which he opposed vitalism and argued that lifelike processes such as
growth and development follow from inorganic chemistry and osmosis. Although popular at first,
chemical gardens lost favor in OOL quickly with the advent of genetics. Renewed interest had to
wait for the end of the century. With the discovery of hydrothermal vents, chemical gardens were
suddenly promoted to an important geological phenomenon. Hydrothermal vents have become
a popular environment for prebiotic scenarios, especially in conjunction with Wächtershäuser’s
iron-sulfur world[28] and related metabolic theories.

Gold’s Deep Rock hypothesis
In 1992, Thomas Gold wrote an influential paper called ‘The Deep Hot Biosphere’ [65], in which it
was argued that life should extend to many kilometers deep under the surface of the earth. Since
radioactivity and temperature gradients constantly maintain gradients of reactive chemicals, no
photosynthesis is needed. Well-adapted hyperthermophiles could then be expected at great depths,
which Gold estimated to be 5-10 km for a temperature limit of 110−150◦C

Gold argued that an origin of life may well have occurred in deep, porous rock, since chemotro-
phy requires much less sophistication than photosynthesis. Inspired by astrophysical observations
such as alkane lakes, Gold had developed a theory that coal and oil reservoirs on earth need not be
biogenic, which he supported with apparently anomalous compositions of these reservoirs. The

∗∗see: https://www2.jpl.nasa.gov/snc/clinton.html
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upward percolation of hydrogen, water, methane, higher alkanes and other fluids were argued to
maintain nonequilibrium steady states that formed the breeding grounds for life. These ideas were
developed in more detail in his book, also titled ‘The Deep hot Biosphere’.

Gold’s claims of life at great depths have been confirmed, and are still extensively being
explored[66]. New geological processes have been discovered that generate H2 and CH4 as well
as other important metabolites. The debate concerning mantle-sourced hydrocarbons has largely
settled, with evidence suggesting that this is only a minor source of hydrocarbons. Whether the
subsurface microbiome is endemic remains an open question. The subsurface is still relevant for
prebiotic scenarios, although the focus is on hydrothermal vents.

1.4 Interdisciplinarity and origins of life communities
An exhaustive bibliometric study [67] found that the field consists of large subcommunities, some
of which hardly know or cite each other, with ‘microfossils and evidence of life on the early earth’
being the most disconnected. The disciplinary makeups of these communities are very different.
For example, RNA-world related research is largely populated by life scientists. Geologists are
more abundant in other branches of research, e.g. hydrothermal vents, microfossils and minerals.

Increasingly, origins of life programs are acknowledging the challenges inherent to the multi-
disciplinarity of the field. Researchers can simply not be expected to be well-versed in all relevant
(insofar as we know which ones are relevant) branches of biology, chemistry, physics, mathematics,
philosophy, and so forth. This problem was assessed and (partly) addressed in an Astrobiology
winter school on knowledge and attitudes, of which a report [68] aptly summarizes this situation

Even though astrophysics, geology, and biology are all natural sciences, they approach problems
unique to their fields, with different tools and techniques, idiosyncratic jargon and different
meanings of common terms, and even different philosophies about what constitutes good science.
The central questions of astrobiology require interdisciplinary integration: a process of learning the
research questions in fields other than your own, their jargon and essential theories, and a respect
for the way that science is conducted in these sister fields (Boix Mansilla et al., 2016). These
collaborations are slow to occur. For example, a bibliometric analysis of 1210 papers produced by
scientists affiliated with the NAI between 2008 and 2012 revealed that 34.5 % of papers published
were described by two or more Web of Science journal categories; but the two largest category
clusters, Astronomy & Astrophysics and Geochemistry & Geophysics, had no links in common
(Taskin and Aydinoglu, 2015).

This traditional divide between the sciences has a direct effect on the quality of publications in
origins of life. On the one hand, a multidisciplinary work must live up to the standards and scrutiny
of all the fields it involves. At the same time, it must strive to communicate its findings to a broad
readership of different disciplines. These are nontrivial challenges with a common root. From their
questionnaire among students in astrobiology programs, Burnam-fink et al note [68] measurable
gaps in fundamental knowledge:

The communication gaps between researchers in these fields are sometimes stark. Fundamental
yet specialized knowledge may not be covered in undergraduate scientific requirements and not
learned as students specialize in graduate school. Astronomers may not know that photosynthesis
can occur that does not produce O2 (Kulp et al., 2008). Geophysicists may not be aware that
astronomers observe stellar abundance ratios to differ by factors of 2 from the Sun’s (Suda et
al., 2008). Biologists may not be aware that, even in the best-case scenario, astronomers will
only observe exoplanets on a single pixel of a detector, and that disk-integrated atmospheres and
surfaces are all that can be observed (Stone et al., 2015).

In the context of this manuscript, we find it important to point to a number of simultaneous
developments in the literature, where authors from various fields (e.g. prebiotic chemistry [69],
theoretical biology [70] and complexity [71].) are explicitly addressing aspects of nonequilibrium
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thermodynamics and arguing for extensions. The theories they are suggesting to be in need of
extension, however, are either equilibrium thermodynamics or the linear regime of nonequilibrium
thermodynamics treated by Prigogine. While these works provide interesting insights in their own
right, some of the questions they raise are already understood quite well and are captured by quanti-
tative theoretical frameworks. Nonequilbrium thermodynamics and stochastic thermodynamics
have made tremendous progress in the last 40 years. This should be seen as a wake-up call to
researchers working in stochastic and nonequilibrium thermodynamics.

This trend has been noticed by other authors. Smith and Morowitz [39] made a similar
observation in 2016, when confronted with the concept of dynamic kinetic stability: The view that
life must have emerged through a sequence of stages, that the intermediate stages must have been
incrementally stable, and that the stability is essentially a process stability of self-regeneration, is
being expressed more widely and more explicitly among origins researchers from many backgrounds.
Our effort in Chapter 7 and Chapter 8 has been to show that the conceptual foundations (and a
considerable body of technique) for such a theory exist and that these grow continuously out of the
thermodynamics that accounts for our hierarchy of matter.

A recent article pointed towards similar tendencies in nanotechnology and supramolecular
chemistry[72], highlighting that different authors have started using the lingo of nonequilibrium
systems in a divergent and confusing manner. The article also dispelled the still commonly
perpetuated myth that thermodynamics can only be used for equilibrium systems, by explicitly
highlighting some of the theoretical nonequilibrium frameworks. A particular illustration was
given of open chemical networks and the efficiency of nonequilibrium energy storage by chemical
synthesis. A call by the editors of Nature Nanotechnology[73] prompted a rigorous theoretical
article on that exact problem soon after, by some of the theoreticians responsible for that framework
[74]. These are encouraging developments, indicative of a renewed dialogue.

We wish to further promote this dialogue, by reiterating the message. Nonequilibrium thermody-
namics is now a quite mature field, being taught in university courses to scientists and engineers[75].
The younger field of stochastic thermodynamics has made great strides in recent decades, accom-
panied with convincing experimental verifications [76]. We encourage further efforts to extend
thermodynamics out of equilibrium towards new directions. These efforts would benefit - like any
other scientific venture - from fruitful exchanges with the existing body of knowledge.

To provide support for such a development, the first chapters in this manuscript are dedicated to
the introduction of some key concepts in nonequilibrium thermodynamics and chemical networks,
in a way that is adapted to chemists: networks are illustrated, examples are given in terms of
real chemistry, and some key concepts (e.g. chemostats) are extended towards their more typical
experimental situations.

In the critical reading of OOL research, it is instructive to bear in mind the academic background
of authors in relation to the claims they make. This manuscript is no exception: the author is first
and foremost a chemist and a physicist, and the most convincing claims we hope to advance in this
work pertain to these disciplines.

1.5 Summary of the content of this manuscript

In the preceding sections, a quick introduction has been given to origins of life as a field, illustrated
by some of its intellectual history and the challenges of such a multidisciplinary venture. The goal
here is not to be exhaustive, but to provide instructions on how one should interpret the literature
and make explicit some of the key assumptions that underly popular scenarios for the origins of life.

We thereby lay the groundwork to interpret the results of the chapters that are to follow. The
intellectual contribution of this manuscript to the field concerned with the origins of life can be
considered the following:
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i) We analyze in detail some new mechanisms of prebiotic relevance, such as a recently
proposed form of multilevel selection: transient compartmentalization. We also consider new
nonequilibrium mechanisms for the prebiotic formation of long polymers, and derive an abundant
new form of multicompartment autocatalysis. This new form of autocatalysis leads to elegant
ecological mechanisms of autocatalytic evolution. Furthermore, we find new chemical networks
for highly efficient synthesis that can rival kinetic proofreading. We also find a new fundamental
parasite problem, called a complexation catastrophe.
ii) We introduce theoretical tools and frameworks for the study of origins-of-life problems.
These are derived from nonequilibrium thermodynamics, the theory of branching processes and
chemical networks. Our framework for autocatalytic evolution generalizes existing approaches
(GARD, autocatalytic sets, CESSPOOL, etc.), but also opens new vistas by its general applicability
to new mechanisms (multicompartment autocatalysis). By this generalization and expansion,
evolution without genes becomes considerably more powerful, general and plausible.

The framework for transient compartmentalization permits to assess a large variety of scenarios
in great statistical detail with a low-dimensional approach. Our general nonequilibrium analysis of
ligation-hydrolysis-activation cycles puts thermodynamic bounds on dissipative sequence explo-
ration, which rigorously rules out prebiotic scenarios that rely on chemically fueling the search for
sequences that are too rare.

iii) We provide a provocative new prebiotic scenario, that relies on general mechanisms,
not extant biochemistry. The scenario is grounded on the structure of autocatalytic evolution and
other general mechanisms found in this manuscript and in systems chemistry. It takes the ideas
of R. Krishnamurthy (‘extant biochemistry as a destination, not destiny’) and systems chemistry
(‘organizing molecules to be more than the sum of their parts’) as guiding principles, while insisting
on gradual transitions. In doing so, we avoid the most assumptions that other scenarios make. In
this approach, chemical actors can be found a posteriori, following from their suitability for the
various essential qualities that are needed on a systems-level for autocatalytic evolution.

With a wealth of new mechanisms at our disposal, it becomes possible to envisage an increasing
degree of chemical organization due to small incremental steps (and setbacks). The systems-level
view of autocatalytic evolution highlights the wide range of prebiotic functions that molecules can
play to become indispensable. Such insights provide a rationale for their introduction, which is
indispensable when we wish to connect extant biochemistry to earlier stages of abiogenesis.

1.5.1 Summary of chapters

In this manuscript, we hope to contribute to the field in a number of ways.
In Chapter 2, we will introduce chemical networks, drawing largely on results from the

Feinberg group, the Esposito group and others. We illustrate these frameworks with systems closely
familiar to the experimental chemist, to make concepts such as cycles, conservation laws and
deficiency intuitive for a wider audience. The framework is also reformulated for phase transfer
and diffusion. We show that, to maintain the original structure of the theory, a kinetic description is
best given in terms of molecule numbers instead of concentrations.

In the analysis of real chemical systems, interesting subtleties come up that require us to
delve deeply into the exact meaning of (allo)catalysis, autocatalysis and chain reactions (which are
explored further in Chapter 5), and their associated chemical network structures. Often, a description
of a chemical network is highly coarse-grained, for very practical reasons. The network properties
that characterize these networks are then made implicit. The net stoichiometry of reactions in a
network, given by the stoichiometric matrix, may correspond to different net stoichiometries of
forward and backward steps. In a formalism with reversible reactions, this generally requires two
separate matrices of coefficients for an unambiguous characterization.

New results and tools are introduced to adequately treat chemical networks in general. Notably,
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we show that chemical networks can always be described on a level of detail that leads to an
unambiguous representation (nonambiguity), which we can build up from reversible unimolecular
and bimolecular reaction steps.

In Chapter 3, thermodynamic aspects of open chemical networks are considered. A key point
we wish to illustrate, is that a chemical network can be open in a variety of different ways. The
details of how a system is opened up to an environment are of crucial importance to its behavior,
which is illustrated by the treatment of simple chemostats and composite chemostats, a CSTR
reactor, serial transfer and osmotically coupled compartments. Placing a chemical system in any of
these ways subjects it to very distinct dynamics and conservation laws.

The ideal thermodynamic chemostat describes exchange of a chemical species with a large
bath, which due to rapid exchange fixes its chemical potential and concentration fluctuations.
Conceptually, an ideal bath may be seen as an infinite reservoir that is separated from the system
by a perfectly specific membrane. In experimental practice, the role of a ‘bath’ can be fulfilled
by compounds within the system that serve as a buffer (homogeneous chemostats), but this has
clear limitations in size. A bath can also be due to compounds in other phases (external chemostat),
such as a nonmixing fluid phase, precipitates, gases, etc. Often, the chemical potential of reservoir
species is coupled, leading to a composite chemostat (e.g. dissolved ions in equilibrium with
their salt). Such chemostats fix products of concentrations instead of individual concentrations,
which means chemical species considered as ‘food’ are no longer independent. We also show how
thermodynamic chemostats require a more detailed treatment in stochastic thermodynamics and
imply a modified zeroth law for the exchanged of conserved integer quantities (e.g. atoms).

For CSTR systems, a chemical mixture is flown in and out of a well-stirred reactor. The
outflow serves as an inherent degradation pathway and under its action all conservation laws of
the network are broken. Asymptotically, however, the balance of influx and outflux lead to similar
nonequilibrium constraints as the conservation laws for the closed system, which fixes the mass of
the reactor contents and strongly constrains its possible behaviors. A similar way of opening the
system is transferring a fraction of the reaction mixture to a fresh chemical supply repeatedly. This
serial transfer is often used as an easy experimental simulation of a CSTR and we show in what
limit they become equivalent and under what circumstances they start to differ.

Finally, we look at osmotically coupled compartments (droplets), which may exchange other
small molecules via diffusion. Such systems are open and can grow and divide. However, to
persistently grow and divide, the appropriate gradients need to be maintained. We show for two
simple situations (exchange with a reservoir, exchange with a regularly refreshed neighbor droplet),
that this requires autocatalysis.

In Chapter 4, the concept of information in thermodynamics is discussed in a chemically
explicit way. The concept of information has caused considerable confusion, notably because it has
often been conflated with (genetic) codes. To demonstrate the explicit thermodynamic character
of information, it is shown (using equilibrium thermodynamics) how a macroscopic information
engine can extract work from the racemization of pure enantiomers, in addition to some other
examples. In origins of life and chemical synthesis, we are often interested in the reverse of this
protocol: creating pure substances.

In the final part of the chapter, we look at chemical network structures that improve the synthesis
of a compound, by adding irreversible reactions or dynamic (reversible) interchange. A prominent
example from biology is formed by networks that perform kinetic proofreading, but there are many
other networks, some not described before in the literature, with very different tradeoffs.

Several important networks are discussed in detail. The classical dichotomy between a kinetic
product or a thermodynamic product holds only for the simplest of networks, and systems chemistry
is rapidly uncovering elegant new strategies to push reactions to new extremes in efficiency. The
simplicity of these error-correcting chemical networks (some involve only one extra reaction)
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is provocative: abiotic functional networks may be considerably more prevalent than currently
considered and it will be instructive to take this into account in conceptualizing chemical evolution.

In Chapter 5, allocatalysis, autocatalysis are defined in rigorous stoichiometric terms for
chemical networks. This is made possible by imposing the properties derived in chapter 2, such
as nonambiguity. This allows, for the first time, to readily identify these features for chemical
networks in general, through the use of submatrix techniques. We also show that exchange between
compartments can lead to emergent new types of autocatalytic cycles that are impossible for single
compartments.

In Chapter 6, the concept of chemical evolution is discussed, a hypothetical mechanism that
has served for over a century as the deus ex machina of origins-of-life scenarios to explain how
simple molecules gradually became more complex.

Some of these models and theories from the literature are reviewed and some confusion in the
literature is cleared up by pointing out some critical assumptions on the level of coars-graining.
Then, it is shown that these different approaches to autocatalysis can be unified in the framework of
stoichiometric autocatalysis.

We then proceed by rederiving a literature model for an evolving metabolism in a CSTR, based
on structural features of reaction networks. This derivation leads to a more general model, with a
larger diversity of autocatalytic cycles.

The probability of triggering an autocatalytic cycle that subsequently survives is shown to
correspond to a survival probability in the theory of branching processes. Some ‘evolutionary
tradeoffs’ for autocatalytic evolution in a CSTR are discussed.

We then consider the multicompartment case of the evolutionary model. Under a variety of
circumstances, the equations simplify to those found for a CSTR. Survival now depends on the
presence and composition of other compartments in the environment. Collectively, they may
stabilize pathways that would not be viable otherwise. Autocatalytic evolutionary trade-offs for
such systems are detailed.

In Chapter 7, we consider a number of nonequilibrium mechanisms that generate long poly-
mers, such as recombination coupled with reservoir exchange, adsorption, and chemically driven
ligation chemistry and discuss some heuristics and physical arguments to understand some of the
typical polymer length distributions we can encounter in the literature. Our treatment of reversible
recombination in closed systems is largely drawn from its corresponding publication in Ref. [77]. A
discussion of length-dependence in RNA adsorption on mineral surfaces is based on our theoretical
analysis in Ref. [78] (see in particular the Supp. Matt.). The original publication provides a broader
perspective, supported with further experiments.

We also look at the mechanisms which allow polymers to acquire new sequences, such as
activation ligation fragmentation cycles or recombination reactions. By finding the explicit thermo-
dynamic cost of forming new sequences in a steady state, we find lower bounds for the typical free
energy dissipated in the time needed to find a sequence. Many prebiotic scenarios rely on forming
rare long polymers with special sequences. They form a key motivation to search for prebiotic
mechanisms that form and enrich large polymers, so that large special sequences are more likely to
appear.

Using our bound for dissipative sequence exploration, we can test the thermodynamic feasibility
of such scenarios. Dissipatively finding one or more ‘long, functional sequences’ at random is
generally a scenario that verges on the impossible, even under the most favorable circumstances
that are physically possible.

The demonstrable problems with sequence search scenarios invites us to think deeper on the
prebiotic role of polymers and sequence evolution. We propose a broader outlook on the potential
roles of polymers in the origins of life, noting that many interesting properties do not require long
specific sequences.
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In Chapter 8, we study transient compartmentalization dynamics for molecular populations.
In prebiotic scenarios, compartments are now mainly considered of interest for two reasons: i) the
concentration of prebiotically relevant chemicals and ii) multilevel selection. Our discussion will
focus on the latter. The contents of Ch. 8 are a synthesis of a published paper[79] and a preprint
[80] in submission, and ongoing work (namely a subsection on noise-induced cooperation and a
section on the complexation catastrophe).

By compartmentalizing molecules, the fates of molecules can be aligned by selection mech-
anisms acting on compartments and their populations. A molecular population that favors the
survival of its compartment may thereby become more abundant. This can happen through coopera-
tive mechanisms among molecules, favoring compositions that would not survive in a bulk phase
through a process of group selection.

A similar mode of group selection is found in cell division, as exemplified by the stochastic
corrector model[81]. Such mechanisms have been considered as an important means of saving repli-
case populations from parasites formed by replication errors, and thereby information maintenance.
While replicases pertain to highly specific branches of scenarios, the mode of group selection
proposed is a scenario-independent mechanism. A very similar group selection mechanism (but
using cross-catalytic incorporation instead of template replication) is used in amphiphile-GARD.

Another recently proposed and experimentally tested mechanism (to which Szathmary con-
tributed as well), is transient compartmentalization, in which (sub)populations are encapsulated,
grown, selected and released, after which the cycle can be repeated. As the compartment is no
longer divided in two but is destroyed after one cycle, the enclosed molecules are no longer con-
strained in their multiplication by a replication cycle. They can thus multiply by factors much larger
than 2 (in the experiments 106 was used).

We derive a formalism for transient compartmentalization which considers the statistics of
compartmentalization and growth, and illustrate it for competing independently growing species.
Functional replicators (in the experiment: ribozymes) can be stabilized by selection and a phase
diagram for this ribozyme-parasite case is derived as function of inoculum size and relative growth.
By changing the 1D fitness function, we can treat the case of cooperation. By adding deterministic
mutations to the model, the dimension of the model is increased by one, and it is shown that
transient compartments can overcome error catastrophes.

In growing from of a small number of replicators to a large population, noise in the rate of
replication is exponentially amplified, which can lead to giant fluctuations in the final population
composition. Using the theory of branching processes, we derive the noise in population composi-
tion for competing replicators as a function of replication rates and polymer lengths. Given the harsh
selection on composition that we can impose in transient compartmentalization, considerable fitness
gains can be realized in reducing compositional noise. Small-molecule autocatalytic networks,
which typically have around one rate-limiting step, would suffer large fluctuations. Polymers, on
the other hand, can strongly reduce their compositional noise: the successive incorporation of
monomers can lead to a highly peaked waiting time distribution.

When a replicase copies itself, but also parasites, things become more delicate. If polymerization
is rate-limiting, then the formation of a replicase-parasite complex prevents the replicase involved
from copying other replicases. The theory of branching processes can no longer be used here,
because the populations are interacting and can thus not be treated as independent in the renewal
theorem. However, by looking at simulations and the possible replication trajectories, it becomes
clear that the typical treatment with 2-species mass-action models becomes highly inappropriate:
such models do not take into account that molecules are sequestered in complexes. In a more
detailed treatment, parasites become dramatically more dangerous: they inherently copy faster
(even if they have the same length as the replicase) and if they accumulate they can quickly occupy
all available replicases. In such a situation, a freshly released replicase will rapidly encounter
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another parasite to form a complex with (replication is rate-limiting, so complexation is relatively
quick), and encountering another free replicase becomes an increasingly rare event. We refer to
such a takeover as a ‘complexation catastrophe’.

In Chapter 9, a new scenario is formulated, based on the results of the previous chapters. The
purpose if the scenario is to be provocative, we highlight that there is still plenty of room for new
ideas and scenarios.

It has been suggested that abiogenesis may be a process for which our biochemistry is only one
particular outcome. Our scenario is tailored to this philosophy and speculates on the mechanisms
that come into play in such a process.

The scenario considers an out-of-equilibrium multicompartment chemical network with trans-
port barriers. Autocatalytic evolution triggers permanent modification of transport and chemistry,
modifying the self-sorting and leading to new network-level innovations (like dynamic kinetic
resolution or various forms of proofreading).

By construction, the scenario becomes increasingly far-fetched: as we move beyond single
molecules to higher-order structures, a lot of things can happen. It will be interesting to see how
these advanced stages can be treated with rigor.

The main point remains unchanged: we argue that a variety of autocatalytic mechanisms,
among which multicompartment autocatalysis, provided an ecological chemical evolution, that
started assembling new compartments and modifying the environment. This in turn promoted
multilevel selection of molecular populations and compartments with particular contents (e.g. error-
correcting networks). These compartments depended on multicompartment catalytic pathways for
their formation and higher-order structures emerged to favor these pathways. Thereby, new layers
of selection were introduced, and new selection pressures started to act. This increasingly had to be
addressed by flexible, evolvable chemistries, and culminated in an evolutionary arms race towards
evolvability.
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2. Chemical networks: the Stoichiometric matrix

In this chapter, the stoichiometric matrix formalism for chemical networks will be introduced
and placed in a broader context. This approach was pioneered in the 60s[1, 2]. The conventions
and terminology will largely follow those introduced in recent years by the Esposito group, that
is building towards a general overarching framework of nonequilibrium thermodynamics and
stochastic thermodynamics. For an excellent introduction to the formalism and its application to
nonequilibrium thermodynamics in chemical networks, see Refs [3] and [4]. For its implementation
in stochastic thermodynamics, see Ref[5]. We also refer to M. Feinberg’s impressive compendium
(Ref.[2]) of over 50 years of work on chemical reaction networks, offering a broad perspective on
its foundations and the particular networks seen in biochemistry (see also [6]).

It is hard to overstate the importance of making the study of chemical networks systematic
and general and many results in upcoming chapters are a consequence of the availability of this
framework. In this Chapter, we will also introduce some extensions of our own. A publication is in
preparation based on the contents of these extensions.

In Sec. 2.2, we will show that any chemical network can be described in sufficient detail, using
reactions that are at most bimolecular, to yield a stoichiometric matrix that is unique. In Sec. 2.3.2
we discuss the description of multicompartment systems and diffusion, which points to the need
for treating particle numbers instead of concentrations, even for macroscopic systems. In Sec. 2.4,
we introduce the notion of a reaction vector and its reaction coefficients. We provide a distinction
between mass-like conservation laws and mixed conservation laws. In Sec. 2.5.2 we will introduce
the powerful tool of submatrices to the framework. Implicitly, such a tool is already in use for
chemostatting, in which reactants are removed from the description of the system. The submatrix
approach also allows to remove reactions, which will prove to be an essential tool in upcoming
chapters.

In providing these extensions, we also cover their interpretation for the strongly related frame-
work by the Feinberg group, where reacting species are bundled in ‘chemical complexes’ (See also
‘Foundations of Chemical Reaction Network Theory’ [2]).
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2.1 The Stoichiometric Matrix

The stoichiometric matrix ν describes the stoichiometry of all chemical reactions in a reaction
network[1]. The sign of νki indicates whether a species k is consumed (-) or produced (+) by
performing reaction i in forward direction. Its absolute magnitude νki provides the stoichiometric
factor, such that we have a net reaction

∑
k

ν
(+)
ki Zk −−⇀↽−− ∑

k
ν
(−)
ki Zk. (2.1)

where the stoichiometric coefficient νki is given by a consumption matrix ν
(−)
ki and a production

matrix ν
(+)
ki

νki = ν
(−)
ki −ν

(+)
ki . (2.2)

As an illustration, let us look at a triple of simple bimolecular reactions: i) the formation of an
imine and water from ammonia with an aldehyde and ii) acid-base reaction between ammonia and
water to form ammonium ion and hydroxide ion iii) acid-base reaction between two molecules of
water to form hydroxide and hydronium ions

1 2 3 (2.3)

ννν =

CH3CHO

NH3

CH3CHNH

H2O

NH +
4

OH−

H3O+



−1 0 0
−1 −1 0
1 0 0
1 −1 −2
0 1 0
0 1 1
0 0 1


CH3CHO+NH3

1−−⇀↽−− CH3CHNH+H2O

NH3 +H2O
2−−⇀↽−− NH +

4 +OH−

2 H2O
3−−⇀↽−− OH−+H3O+

It is often instructive to draw reaction networks as graphs. This can e.g. be in the form of a directed
hypergraph, where reactants are nodes linked by directed edges linked to multiple nodes. Often,
one uses arrows in directed hypergraphs to link two sets of nodes and explicitly describe a preferred
direction (see Sec. 3.2.3 for examples of such hypergraphs).

Here, we do not wish to imply that a reaction proceeds occurs in only one direction, and instead
separate the links between nodes by a single piece of line, as shown in Fig. 2.1a. Such a hypergraph
is consistent with any particular choice of a reaction direction taken in the stoichiometric matrix, it
is a ‘coarse-grained’ representation of them. By adding arrows, a particular choice of signs for ννν

can be made explicit.
In Fig. 2.1a, a representation of the hypergraph for network (2.4) is provided. Another common

practice is the use of bipartite graphs, with one type of nodes corresponding to reactions, and
another type to reactants, which are linked by edges that indicate their participation. It is a particular
instance of a petri net. These graphs can be constructed from the same stoichiometric matrix ννν

and are often equivalent to the hypergraph. However, if a stoichiometric coefficient of 2 or more
appears in ννν , this information remains implicit in a directed graph, as can be seen for reaction 3
in Fig. 2.1b. To make this information explicit, one can replace the directed graph by a directed
multigraph, in which pairs of nodes can be linked by more than one edge.

2.1.1 The incidence matrix

Another common way to draw a reaction network [2] is to draw a simple graph with nodes
corresponding to pairs of reactants or products, called complexes. Such a simple graph is shown in
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Figure 2.1: a) ‘coarse-grained’ directed hypergraph representation. Chemical species occurring on
the same side of the reaction are joined on the same side of the edge. A reactant that occurs twice
is joined by a fork-shaped edge (2 H2O in reaction 3). b) bipartite simple graph representation.
Square nodes represent a reaction. Circular nodes represent chemical species. Species that react
together join the reaction node on the same side. Numbers in both graphs correspond to reactions
as enumerated in the stoichiometric matrix.

Fig. 2.2 for network (2.4). The latter reposes on a different framework, with transitions between
complexes encoded in an incidence matrix ∂∂∂ .

1 2 3 (2.4)

∂∂∂ =

CH3CHO+NH3

CH3CHNH+H2O

H2O+NH3

OH−+NH +
4

H2O+H2O

OH−+H3O+



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1

 (2.5)

This incidence matrix can directly be obtained from the stoichiometric matrix [7], but the
converse is not true: the stoichiometric matrix ννν contains more detailed information than the
incidence matrix ∂∂∂ . It is only because explicit labels have been provided for the nodes that we can
cross-identify our examples. Polettini et al make this cross-identification explicit, by the relation

ννν =
∂Y
∂X

∂∂∂ . (2.6)

Here,
(

∂Y
∂X

)
i j

quantifies the stoichiometric contribution of species Xi in complex Yj.

If we would not have specified the content of these complexes, the incidence matrix given by ∂∂∂

in Eq. (2.5) could equally well represent the following set of unimolecular reactions

A
1−−⇀↽−− B, C

2−−⇀↽−− D, E
3−−⇀↽−− F, (2.7)

as well as many other combinations. The shift to an elegant description in terms of simple graphs
comes at the cost of a reduction in explicit detail.

The complexes used as nodes in Fig. 2.2 should not be confused with a complex in the
chemical sense, which refers to a single species, often denoted within brackets. Such species



66 Chapter 2. Chemical networks: the Stoichiometric matrix

CH
3
CHO

NH
3

CH
3
CHNH

H
2
O NH

3

H
2
O

NH
4

+

OH
-

H
2
O

H
2
O

H
3
O
+

OH
-

1 2 3

Figure 2.2: Reaction network as a simple graph linking complexes.

form the cornerstone of coordination chemistry, with metal-ligand complexes like [Cu(NH3)6]
2+,

but they are also found in many other branches of chemistry. Chemical complexes need not be
stable isolable species. They can be theoretical, transient species, such as an encounter complex
[AB], A+B−−⇀↽−− [AB], or activated complex close to or at a transition state OH−+CH2BrCH3→
[HO−CH2CH3−Br]−→ Br−+CH2(OH)CH3. In the remainder of this text, a complex will refer
to a complex in the chemical sense, unless strictly indicated otherwise.

The most suitable choice for drawing a reaction network as a graph depends on context and
network size. Hypergraphs rapidly become hard to read due to their large number of interconnected
nodes and overlapping edges when drawn on a flat plane.

Complexes, on the other hand, yield disjoint simple graphs or connected components, e.g. in
Fig. 2.2 there are three connected components. Such networks are considerably easier to draw.
The properties we will investigate in this text mostly require a description of networks with more
detail than such graphs permit. Consequently, we will require the use of a stoichiometric matrix ννν ,
illustrated by hypergraphs when it is instructive to highlight small motifs.

2.2 Conventions

In the chemical networks that will be discussed in upcoming sections, we will at all times assume
that reactions are ‘reversible’ in the chemical sense: a well-defined reverse reaction exists, that is
the exact opposite of the forward reaction in all molecular populations.

In the mathematical literature, a network in which all reverse reactions exist is referred to as a
‘reversible chemical network’. Whether a reaction does appreciably occur in both directions is a
question of kinetics and thermodynamics. To have a complete description of entropy production,
it is necessary to describe all reverse reactions, no matter how rare they are. To monitor species
concentrations, however, such rare reactions become redundant. Consequently, we may use the
notation

A→ B, (2.8)

to denote a reaction that has a well-defined reverse reaction in the thermodynamic sense, but which
occurs rarely enough to neglect it in its kinetic description.

The stoichiometric matrix and Chemical Reaction Networks can be extended in various ways
that may no more pertain to chemistry, but capture similar constraints of transformations in a system.
The input-output model in economics uses an object sometimes referred to as a Leontief∗ matrix[8],
which captures the interdependence of industrial production. In stochastic thermodynamics, the
formalism has been generalized by having a matrix characterizes the exchange of other conserved
quantities such as energy between discrete levels [9].

For our purposes, it will be important to respect the constraints set by chemistry, and describe
that chemistry in sufficient detail. In doing so, useful properties emerge that are general to chemistry.
In principle, one could relax this structure to non-chemical situations, e.g. by using noninteger
stoichiometries or by not conserving atoms. This generality comes at a cost: we lose some of the
defining features of chemistry.

∗Leontief was awarded the Nobel Prize in economics for his work on this approach in 1973.
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To provide a clear illustration of what the structural constraints in chemistry lead to, we will
need a description that is sufficiently precise to exploit it. As will become more clear as we progress,
this requires us to have conventions that make the framework unambiguous and universal. To this
end, we will introduce two conventions that our reaction networks will respect: i) reaction steps
involve at most two species, ii) every chemical species involved in a reaction does so either as a
reactant or as a product (nonambiguity).

2.2.1 Unimolecular and bimolecular reactions
Our first convention states that at most two species react in either sense. This means that the
stoichiometric coefficients ν

(+)
ki ,ν

(−)
ki of reaction i can sum to at most two species

∀i ∑
k

ν
(+)
ki ≤ 2, ∑

k
ν
(−)
ki ≤ 2. (2.9)

Physically, this corresponds to the fact that one can always decompose a reaction in many substeps
involving at most two reactants[10, 11]. True ‘termolecular’ collisions are rare, and a termolecular
transition state can be considered as arising from sequential bimolecular steps to yield the same
dynamics.

As an example, consider the formation of a bromonium from an alkene, whose kinetics
sometimes correspond to a termolecular reaction[12, 13]

Br2 +R1R2C−−CR3R4
CCl4−−⇀↽−− R1R2CBrCBrR3R4 (2.10)

d[R1R2CBrCBrR3R4]

dt
= k[Br2]

2[R1R2C−−CR3R4] (2.11)

Intuitively, such a rate law could be thought of as a ‘three-body’ collision process. However, the
same rate law can be built up from a series of bimolecular reactions, as is observed by detailed
kinetic studies. A reaction mechanism for the latter situation is given in Fig. 2.3
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Figure 2.3: An example of a termolecular process, composed of biomolecular substeps.

Since the first step is fast, we can assume local equilibrium, to write

[R1R2C−−CR3R4 ·Br2] = K[R1R2C−−CR3R4][Br2], (2.12)

Where K is an equilibrium constant. In turn, this can be injected in the rate equation Eq. (2.11) to
give

d[R1R2CBrCBrR3R4]

dt
= k′[Br2][R1R2C−−CR3R4 ·Br2] = k′K[Br2]

2[R1R2C−−CR3R4]. (2.13)

Which means the termolecular rate constant can be written in terms of a bimolecular rate constant
and an equilibrium constant k = k′K.
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In practice, one can always decompose higher order reactions in unimolecular and bimolecular
steps with an appropriate separation of timescales. If one wishes to do this in a rigorous manner to
describe genuine chemical species, detailed mechanistic and numerical studies may be required.
Such studies have recently revealed an important new class of termolecular reactions, which are
important in e.g. combustion [14]. In these reactions, a collision complex is formed by two
molecules, which subsequently encounters a radical species. The IUPAC gold book† refers to a
collision complex as [15]: An ensemble formed by two reaction partners for which the distance is
the sum of their van der Waals radii. As such it constitutes a subclass of the species indicated as
encounter complex. New techniques to uncover reaction mechanisms are still being elaborated, e.g.
by monitoring the response to small temperature oscillations[16] .

In general, we can construct reaction networks from second-order reactions involving complexes
to reproduce the kinetics of higher order reactions. In the end, experiments will tell what the most
realistic choice for those reactions is.

2.2.2 Nonambiguity
It is important to underline that a stoichiometric matrix ννν can represent different reaction networks,
since Eq. (2.2) admits multiple solutions for ννν(+) and ννν(−), even when constrained by Eq. (2.9). In
upcoming sections, it will be very useful if a reaction network is uniquely defined by ννν .

Definition 2.2.1 — Nonambiguity. A stoichiometric matrix ννν respects nonambiguity, if for
each reaction i the equation

νki = ν
(−)
ki −ν

(+)
ki (2.14)

has one unique solution for ν
(−)
ki ,ν

(+)
ki , which means

∀k, i ν
(−)
ki ν

(+)
ki = 0. (2.15)

Without loss of generality, the ambiguity in Eq. (2.2) can be removed, by introducing the
condition given in Eq. (2.15), which implies that every chemical species involved in a reaction does
so either as a reactant or as a product. With this constraint we can still represent every chemical
reaction network we could represent before, but some reactions need to be described in more
detailed substeps to verify Eq. (2.15).

Situations that generally require modification due to Eq. (2.15) are simplified equations for
autocatalysis, catalysis and chain reactions. Let us first consider a simple catalytic reaction between
an enzyme E and a substrate S, to yield a product P

S+E−−⇀↽−− P+E. (2.16)

For enzyme catalysis, we can write an enzyme-substrate complex ES and enzyme-product complex
EP, to observe a typical enzymatic reaction network

E+P−−⇀↽−− ES, ES−−⇀↽−− EP, EP−−⇀↽−− E+P. (2.17)

A prototypical model equation for autocatalysis has a molecule B convert a ‘food’ molecule A to
another copy of B

A+B
1−−⇀↽−− 2B. (2.18)

†The correct and unambiguous use of terminology in chemistry is promoted by the international union of pure and
applied chemistry (IUPAC), which publishes a variety of colored reference books. The blue book, for example, contains
the IUPAC nomenclature rules for organic compounds. The Gold book is a compendium of chemical terminology,
consultable online at https://goldbook.iupac.org/
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In the absence of other food or waste, this reaction constitutes a net isomerization from A to B,
which in an uncatalyzed fashion would take the form

A
2−−⇀↽−− B. (2.19)

In a stoichiometric matrix ννν , both pathways lead to the same entries

1 2 (2.20)

ννν =
A

B

(
−1 −1
1 1

)
A+B−−⇀↽−− 2B

A−−⇀↽−− B.

This is an example of ambiguity due to Eq. (2.2). These pathways can be distinguished, by a
decomposition in nonambiguous reaction steps. For autocatalysis, we can extend our description,
by including a reaction intermediate, e.g. an encounter complex [AB] or a transition-state complex.
We can then write a two-step process

A+B−−⇀↽−− [AB], [AB]−−⇀↽−− 2B. (2.21)

Physically, such a decomposition makes it possible to distinguish between reaction-limited and
diffusion-limited reactions. In addition, it means that no single reaction step is catalyzed or
autocatalytic: only collections of reaction steps are. This seemingly small distinction has useful
consequences: nonambiguity makes chain reactions and (auto)catalysis an explicit property of the
network topology. This will be discussed in detail in the upcoming sections.

2.3 Stoichiometric Matrix and dynamics

2.3.1 Mass-action for a well-mixed reactor
Let us denote by ck the concentration of a species Zk, such that

ck =
nk

V
(2.22)

where nk is the number of molecules of Zk and V the reactor volume. According to the mass
action law, the reaction rates are proportional to the concentrations of all the species entering in the
reaction. It is convenient to make the distinction between the forward and backward reactions so
that for a reaction i we can define rates w±i

w±i = k±i ∏
k

(ck

c0

)ν
(±)
ki

, (2.23)

where k±i are the rate constants, ν
(±)
ki the indices of the stoichiometric matrix as defined in Eq. (2.1)

and c0 the standard concentration of one mole per liter. The net rate of the reaction is given by

wi = w+i−w−i. (2.24)

We shall assume all reactions to be reversible, which means that for all i, k±i > 0, a condition which
is needed for a thermodynamically consistent description.

The kinetic rate equations can now be rewritten in matrix form as follows:

dc
dt

= ννν ·w, (2.25)
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2.3.2 Mass-action for communicating multicompartment systems

When a system is composed of subsystems with different volumes (e.g. two coupled, well-mixed
reactors), exchange between the subvolumes can equally well be treated as a chemical reaction (an
observation that was also made for the complex networks framework[2]), e.g.

AI −−⇀↽−− AII, (2.26)

which can be modeled as a first-order process with corresponding exchange rates

w+ = k+

(
cI

A
c0

)
, (2.27)

w− = k−

(
cII

A
c0

)
. (2.28)

The rates w± have dimension [mol/m3 · s]. Let us introduce the molecular rates of A transport
between I and II, in dimensions [mol/s]

w′+ = w+V I, (2.29)

w′− = w−V II. (2.30)

Denoting w′ = w′+−w′−, it follows that

dcI
A

dt
= −w′

V I =−
w+V I−w−V II

V I , (2.31)

dcII
A

dt
=

w′

V II =
w+V I−w−V II

V I . (2.32)

For reactions within a single reactor, such volume contributions cancel, reducing the system
to Eq. (2.25). In a multicompartment setup, we can have V I 6= V II , leading to a general form
that is not compatible with Eq. (2.25). A similar situation occurs for surface reactions and a
number of more complex transport mechanism (e.g. by symporters or antiporters), as well as other
multi-compartment or multi-phase situations, e.g. evaporation or crystallization.

For such situations, it is then convenient to replace concentrations ck with numbers of molecules
nk, and use molecular rates w′i, so that the defining equations of mass-action become

w′±i = k′±i ∏
k

nν
(±)
ki

k , (2.33)

dn
dt

= ννν ·w′, (2.34)

where k′±i are rate constants containing all volume (or surface) dependence. Note that the number
of molecules nk is described in a deterministic continuum limit. For small numbers of molecules,
(2.34) needs to be replaced by its master equation[5] analogue.

2.3.3 Diffusion

When reactions are not slow enough with respect to diffusion, the approximation of a well-mixed
homogeneous system breaks down. Then, we can model kinetics with a reaction-diffusion equation,
which takes the form

dc(xxx)
dt

= ννν ·w(xxx)+DDD ·∆ccc(xxx), (2.35)
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where DDD = (D1, ...,Ds) is a vector of diffusion constants for the species Z1 to Zs, xxx is a position
vector and ∆ is the Laplacian operator

∆c(xxx) =
d

∑
i=1

∂ 2c(xxx)
∂x2

i
, (2.36)

with d the dimension of the space. Numerically, calculation of such a Laplacian on a lattice
proceeds by taking a stencil of points surrounding xxx. A popular, low order approximation is to take
the nearest neighbors, which for 2D (xxx = (x,y)) yields

∂ 2c(x,y)
∂x2 =

c(x+h,y)+ c(x−h,y)−2c(x,y)
h2 +

1
12

∂ 4c(x,y)
∂x4 h2 +O(h4), (2.37)

∂ 2c(x,y)
∂y2 =

c(x,y+h)+ c(x,y−h)−2c(x,y)
h2 +

1
12

∂ 4c(x,y)
∂y4 h2 +O(h4). (2.38)

(2.39)

Provided the higher-order gradients are small and h is chosen adequately, the Laplacian is well-
approximated by its nearest neighbors. For each dimension, the first order term can be decomposed
in two difference terms corresponding to unimolecular reactions like (2.26), since

c(x+h,y)+ c(x−h,y)−2c(x,y)
h2 =

c(x+h,y)− c(x,y)
h2 +

c(x−h,y)− c(x,y)
h2 . (2.40)

If we label each reactant with its local discretized box location, e.g. Ax,y, we can model diffusion
by local reactions of the form

Ax,y −−⇀↽−− Ax+h,y (2.41)

with molecular rates

w′+ = k′+nAx,y =
D
h2 nAx,y , (2.42)

w′− = k′−nAx+h,y =
D
h2 nAx+h,y . (2.43)

For an N by N grid, and a chemistry involving s species, we can consequently construct an
extended stoichiometric matrix, ννν∗. While there are only s chemically distinct compounds, we
have now labelled them by the box in the grid they occupy, ννν∗ contains N2s species. For periodic
boundary conditions, we have rN2 chemical reactions (r per box) and 2dN2s transport reactions.
The reaction-diffusion equation then simplifies to

dc′

dt
= ννν∗ ·w (2.44)

where c′c′c′ = (...,cccx,y,cccx+h,y, ...)
T is a concentration vector containing the concentrations of each

discretized box. This generalizes what was found in the multicompartment case: a coarse-grained
diffusion process can reasonably be treated on the same footing as a chemical process, dynamically
and topologically. In a master equation framework, treating reactions and diffusion on the same
footing is a very natural choice. In Refs. [17, 18, 19], the deterministic and master equation
approaches are combined and applied to the Schlögl[20] reaction (discussed in more detail in Sec.
5.5) for the study of the pattern formation.
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2.4 Properties and operations on reaction networks

By putting the stoichiometry of chemical reactions in a matrix, a number of important network
properties are unveiled, such as chemical cycles and conservation laws. Even more can be learned,
by considering submatrices of the network. Upon removing rows (species), affinities and broken
conservation laws[3] from contact with reservoirs are found. Upon removing reactions as well,
network submotifs can be made explicit. Doing so will reveal which structures are fundamentally
responsible for catalysis, chain-reactions and autocatalysis (see Sec. 5.3).

2.4.1 Reaction vectors
Definition 2.4.1 — Reaction vector. We will define a reaction vector ggg as linear combination
of reactions such that

ggg = (g1,g2, ...,gr). (2.45)

The change in the number of molecules of a chemical species Zi resulting from such a combina-
tion of reactions is

∆ni = (ννν ·ggg)i . (2.46)

Given a reaction vector ggg, the corresponding net chemical reaction takes the following form:

∑
k

n(+)
k Zk

ggg−−⇀↽−−−ggg ∑
k

n(−)k Zk, (2.47)

where the vector ggg (resp. −ggg) is used to explicitly denote the forward (resp. backward) direction.
To perform a single reaction i, ggg corresponds to ê̂êei, where ê̂êei is the ith unit vector:

ê̂êei · ê̂êe j = δi, j, (2.48)

with the Kronecker delta δi, j defined by

δi, j =

{
1 i = j
0 i 6= j

(2.49)

For example, taking the autocatalytic reaction 2 in Eq. (2.21), we can write(
∆nA
∆nB

)
= ννν · ê̂êe2 =

(
−1
1

)
. (2.50)

2.4.2 Overall reaction coefficients
We will now outline how the values of n(±)k in the reaction balance can be extracted from ννν .

For a reaction i proceeding forward gi times, we have ggg = giê̂êei. The coefficient of the net chem-
ical reaction (Eq. (2.47)) then verifies n(±)k (ggg) = (ννν(±) ·giê̂êei)k. Had we performed a tranformation
in the reverse sense, such that g′g′g′ = g′iê̂êei =−ggg, the coefficient of the reverse reaction would have to
be used:

n(±)k (g′g′g′) = (ννν(∓) ·giê̂êei)k = (ννν(∓) · |g′i|ê̂êei)k (2.51)

which more generally can be written as

n(±)k (g′g′g′) = (ννν(±sgn(g′i)) · |g′i|ê̂êei)k. (2.52)
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where

sgn(x) =


−1 x < 0
1 x > 0
0 x = 0

(2.53)

A coefficient for a more general reaction vector ggg = ∑i giê̂êei is then found by summing the compo-
nents of every reaction following Eq. (2.52)

n±k = ∑
i
(ννν(±sgn(gi)) · |gi|ê̂êei)k. (2.54)

If ∀i gi ≥ 0, this expression simplifies to

n±k = (ννν(±) ·ggg)k. (2.55)

In a reaction network where all reactions are reversible, our choice of the ‘forward’ and ‘backward’
reaction is arbitrary: exchanging the indices ν

(+)
ki ,ν

(−)
ki for all species k for a reaction i yields a

modified matrix ννν∗, that still encodes the exact same reaction network.
By the appropriate initial choice of directions for reactions, we can always construct a ννν� such

that ∀i g�i ≥ 0. To see this, we can construct a transformation for the pair ggg, ννν for which Eq. (2.55)
is true. We define

ggg� =PPP ·ggg
ννν� = νννPPP

, Pi j =

{
0 i 6= j
sgn(gi) i = j

, (2.56)

which guarantees g�i ≥ 0. By taking ννν� = νννPPP, we have ννν� ·ggg� = νννIII ·ggg, where we used that PPP2 = III
with III the identity matrix. Therefore, this particular choice of the stoichiometric matrix verifies

n±k = (ννν
(±)
� ·ggg�)k. (2.57)

This property will allow to make some upcoming expressions considerably more elegant. In
upcoming examples, we will choose the appropriate ννν� as a starting point, making this step implicit.

/0-reactions

If a reaction i has no reactant we have ∑k
(
ννν(+) · ê̂êei

)
k = 0. Similarly, if this reaction has no product,

we can write ∑i
(
ννν(−) · ê̂êei

)
k = 0. Physically, such reactions can correspond to an influx (resp.

dilution) in e.g. a CSTR. E.g. we can consider

/0
1−−⇀↽−− A, A

2−−⇀↽−− B, B
3−−⇀↽−− /0. (2.58)

where the empty set symbol ( /0) denotes the absence of chemical species. /0-reactions are easily
identified, since their corresponding columns are zero vectors in ννν(+) or ννν(−)

1 2 3 1 2 3

ννν
(+) =

A

B

(
0 1 0
0 0 1

)
, ννν

(−) =
A

B

(
1 0 0
0 1 0

)
. (2.59)

An important case when /0-reactions appear, discussed in Sec. 2.5.3, is when the description is
coarse-grained.
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2.4.3 Conservation laws
A conserved quantity

L≡ `̀̀ ·nnn, (2.60)

is a linear combination of species numbers, with `̀̀ a left nullvector of the stoichiometric matrix

`̀̀ ·ννν = 000T . (2.61)

This nullvector can be linked to L by considering that

dL
dt

= `̀̀ · dn
dt

= ` ·ννν ·www′ = 0 (2.62)

Such a conserved quantity constrains the chemical compositions that the system can attain. Indeed,
any reaction vector ggg must respect such a conservation law, since

`̀̀ ·∆nnn = `̀̀ · (ννν ·ggg) = 0. (2.63)

A particular class of reaction vectors are those that follow from the dynamic equations (kinetics).
The dimension of the nullspace is the number of linearly independent conservation laws, which

we denote by `

`= dim(ker(νT)) (2.64)

For a particular choice of linearly independent bases, the indexed nullvectors `̀̀(i) span the left
nullspace (cokernel) L of the stoichiometric matrix ννν

L = null(νT) = ker(νT), `̀̀(i) ∈L . (2.65)

Among such conservation laws, we can distinguish two kinds of conservation laws:
i) A mass-like conservation law follows from a left nullvector `̀̀+ with strictly nonnegative compo-
nents:

∀i, `+i ≥ 0. (2.66)

ii) A mixed conservation law follows from a left nullvector `̀̀� with positive and negative compo-
nents:

∃i, j (`�i > 0,and `�j < 0, i 6= j). (2.67)

For the stoichiometric matrix in Eq. (2.4), ` = 4. One possible choice of four independent
conservation laws is

L(1) = nNH3
+nNH +

4
+nCH3CHNH, (2.68)

L(2) = nH2O +nH3O+ +nOH−+nCH3CHO, (2.69)

L(3) = nCH3CHO +nCH3CHNH, (2.70)

L(4) = 4nCH3CHO +5nCH3CHNH +3nNH3
+4nNH +

4
+2nH2O +3nH3O+ +nOH− , (2.71)

which are all mass-like. Alternatively, we could have constructed a mixed conservation law by taking
some combination of the mass-like conservation laws. For example, by choosing L(�) = L(1)−L(2),
we can choose the quadruplet of conservation laws {L(1),L(�),L(3),L(4)}.

The distinction between mass-like conservation laws and mixed conservation laws may often
not be important, since one can construct one from the other. In upcomping chapters, however, we
will encounter situations where the distinction becomes essential. This can happen for subnetworks
or when `= 1.
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Mass-like conservation laws
Mass-like conservation laws are very natural in chemistry, since chemical reactions preserve every
atom and isotope‡. A chemical reaction rearranges the atoms and isotopes. Let us denote by χE

Z
the element-counting function, with E denoting an element or particular isotope and Z a chemical
species. For a glucose molecule, we can then count the number of carbon, hydrogen, oxygen and
xenon atoms:

χ
C
C6H12O6

= 6, χ
H
C6H12O6

= 12, χ
O
C6H12O6

= 6, χ
Xe
C6H12O6

= 0. (2.72)

The preservation of atoms and isotopes implies that we can write

∑
i

χ
E
Zi
(ννν ·ggg)i = 0 ∀ E. (2.73)

A closed chemical network without hidden reactions or species must therefore have a mass-like
conservation law `̀̀(+,E) for every element E, such that

`
(+,E)
i = χ

E
Zi
. (2.74)

This only yields a useful conservation law for the (few) elements that are actually present.
For Eq. (2.4), only four elements are present, Hydrogen (H), Carbon (C), Nitrogen (N) and

Oxygen (O), for which we can construct the conservation laws

LH = 4nCH3CHO +5nCH3CHNH +3nNH3
+4nNH +

4
+2nH2O +3nH3O+ +nOH− = L(4) (2.75)

LC = 2nCH3CHO +2nCH3CHNH =
1
2

L(3), (2.76)

LN = nNH3
+nNH +

4
+nCH3CHNH = L(1), (2.77)

LO = nH2O +nH3O+ +nOH−+nCH3CHO = L(2), (2.78)

which are all linearly independent. For most reaction networks, however, conservation laws
extracted from Eq. (2.74) will not all be linearly independent. When there are more elements than
linearly independent conservation laws (`), this is necessarily the case. For example, consider the
deprotonation of trichloroacetic acid in water

CCl3COOH+H2O−−⇀↽−− CCl3COO−+H3O+ (2.79)

whose stoichiometric matrix can be written ν = (−1,1,−1,1)T . The nullspace yields `= 3 linearly
independent conservation laws, whereas four elements are present.

Conservation laws for unimolecular reactions
A single, connected network containing only unimolecular reactions has a single, mass-like conser-
vation law. On the single-reaction level, this is intuitive, since for such a reaction

ν = (−1,1)T , A−−⇀↽−− B, (2.80)

the nullspace corresponds to solutions of ` ·ν = 0, and thus

−`A + `B = 0. (2.81)

The solution requires that `A = `B. we can extend this conclusion to any pair of species Zi,Zj linked
by a unimolecular reaction: `Zi

= `Zj
, leading to a mass-like conservation law `+ = (1,1, ...,1,1).

‡Of course, nuclear reactions such as 10B+n−−→ 7Li+α break such conservation laws. For them, a more general
treatment is required, which should provide interesting extensions to the framework.
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If there are n connected components (disjoint graphs) engaging only in unimolecular reactions, we
have n linearly independent conservation laws of the form `̀̀+ = (0, ...,0,1,1,1,1,0, ...,0). More
exactly, let us denote Ωk the set of species in the kth disjoint network, then a mass-like conservation
law for the kth network implies a nullvector `̀̀+,k such that

`+,k
i = δ

Ωk
Zi

(2.82)

Where

δ
Ωk
Zi

=

{
1 Zi ∈Ωk
0 Zi /∈Ωk

(2.83)

For a closed system, Eq. (2.73) implies that there must be at least one conservation law (`≥ 1).

Linkage classes
In the framework where complexes are used, with links described by an incidence matrix ∂∂∂ , a
reversible chemistry yields undirected graphs§. Following the terminology introduced by Feinberg,
each connected component (disjoint network) in such a graph is called a linkage class[2]. In Fig.
2.2 there are 3 linkage classes. Letting λ denote the number of linkage classes, we observe that

λ = dim
(
ker
(
∂

T
∂

T
∂

T )) . (2.84)

Structurally, the incidence matrix is equivalent to a stoichiometric matrix with only unimolecular
reactions. The left nullspace, spanned by solutions to

λλλ ·∂∂∂ = 0, (2.85)

will thus be equivalent to Eq. (2.82). Having again Ωk denote the set of complexes in the kth
linkage class, the coefficient λ

(k)
i of a complex Ci in the corresponding conservation law λλλ (k) is

λ
(k)
i = δ

Ωk
Ci

. (2.86)

In closed systems, linkage classes are strongly tied to conservation laws on the level of complexes.
Since a complex contains all chemical species involved in a reaction, a reaction between two
complexes respects the conservation of every element. Let us apply the element-counting function
on complexes, χE

Ci
, such that

χ
O
H2O+CH3CHO = 2, χ

C
H2O+CH3CHO = 2, χ

H
H2O+CH3CHO = 6. (2.87)

In a closed system, any reaction connecting a pair of complexes Ci,C j therefore satisfies

χ
E
Ci
= χ

E
Cj
∀ E, (2.88)

which can trivially be converted to the conservation law (2.86). Unlike the mass-like conservation
laws derived on the level of species, these laws on the level of complexes conserve all elements
simultaneously.

When comparing a complex network approach to a stoichiometric matrix approach, we may
not always find the same number of conservation laws. This is evidenced by Eq. (2.4), where we
have λ = 3 and `= 4. In that example, conservation laws were found for each individual element
in isolation, whereas a linkage class (2.88) requires the collective of all elements to be conserved.

Note that we do not need explicit knowledge of elements to find conservation laws, we only
need to consider the nullspace of the network. Reaction networks can be entirely symbolic without
reference to particular elements or composition. Such networks, however, still have to obey the
constraints imposed by chemistry, and tracking elements is an instructive way of finding and
understanding such constraints.

§relaxing the reversibility makes it a directed graph
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Mixed conservation laws

Since networks with only unimolecular reactions only have a mass-like conservation law, true mixed
conservation laws require bimolecular reactions to exist. On the single-reaction level, this becomes
clear by considering that a reaction A+B−−⇀↽−− C with ννν = (−1,−1,1)T , admits conservation laws
such that `̀̀ ·ννν = 0, therefore

`A + `B− `C = 0. (2.89)

This admits mass-like solutions (1,0,1), (0,1,1), (1,1,2). A possible mixed solution is (1,−1,0).
Denoting `� = (1,−1,0)T , we have a mixed conservation law

L = `�`�`� ·nnn = nA−nB. (2.90)

Since A and B can only be formed and consumed together, the network conserves their difference
in abundance.

One simple example where mixed conservation laws naturally appear is in the disproportionation
of an electrically neutral species, to form oppositely charged species. Let χ

+e
Zi

be the charge counting
function that returns the net (elementary) charge of a species. As an example, we can consider

χ
+e
PO 3−

4
=−3, χ

+e
H2O = 0, χ

+e
H3O+ = 1. (2.91)

For a closed chemical network, we require the conservation of net electrical charge

∑
i

χ
+e
Xi

(ννν ·ggg)i = 0. (2.92)

From which a conservation law L+e can be found. E.g. for deprotonation of CCl3COOH (Eq.
(2.79)) we have

L+e = nH3O+−nCCl3COO− (2.93)

2.4.4 Reaction Cycles

The term ‘cycle’ is used in chemistry to describe sequences of reactions that ‘loop around’. Such
reactions collectively describe catalysis, autocatalysis, metabolic pathways and other processes. In
the stoichiometric matrix framework, the term ‘cycle’ is used in a highly similar, but not equivalent
manner, to denote right nullvectors of the stoichiometric matrix. In the following sections, the
connection between the two will be made explicit.

The right nullspace of ννν , C , is spanned by cycles. A cycle ccc is a linear combinations of reactions
(c1,c2, ...,cr) that leaves the system unchanged

ννν ·ccc = 000 (2.94)

We denote the number of linearly independent cycles by c, which corresponds to the kernel
(nullspace) of the stoichiometric matrix

c = dim(C ) = dim(ker(ννν)) (2.95)

A cycle ccc is a particular instance of a reaction vector ggg, for which, as follows from Eq. (2.94),

∆ni = (ννν ·ccc)i = 0 ∀ i. (2.96)
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As an example, let us consider a more elaborate description of acid-base reactions of CCl3COOH
in water

1 2 3 (2.97)

ννν =

CCl3COOH

CCl3COO−

H2O

OH−

H3O+


−1 0 1
1 0 −1
−1 −2 −1
0 1 1
1 1 0


CCl3COOH+H2O

1−−⇀↽−− CCl3COO−+H3O+

2 H2O
2−−⇀↽−− OH−+H3O+

CCl3COO−+H2O
3−−⇀↽−− CCl3COOH+OH−

This network admits a cycle ccc = (1,−1,1), which corresponds to performing reaction 1 in forward
direction, reaction 2 in reverse, and reaction 3 forwards.

Cycles for complexes
For complexes, the notion of a cycle is often used in the graph-theoretical sense, where a sequence
of nodes (complexes) that finishes at the initial node is given. This requires the nodes to be part of
the same linkage class, and a complex cycle γγγ is in the nullspace of the incidence matrix ∂∂∂ , and
there are γ linearly independent complex cycles:

∂∂∂ ·γγγ = 0, γ = dim(ker(∂∂∂ )). (2.98)

For closed systems, the linkage class conserves the full elemental composition between complexes
(Eq. (2.88)), which puts an additional constraint on cycles with respect to those defined for a
stoichiometric matrix ννν . If we write the incidence matrix ∂∂∂ for Eq. (2.98), we find

1 2 3 (2.99)

∂∂∂ =

CCl3COOH+H2O

CCl3COO−+H3O+

2H2O

OH−+H3O+

CCl3COO−+H2O

CCl3COOH+OH−



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


CCl3COOH+H2O

1−−⇀↽−− CCl3COO−+H3O+

2 H2O
2−−⇀↽−− OH−+H3O+

CCl3COO−+H2O
3−−⇀↽−− CCl3COOH+OH−

which has more complexes than chemical species. Contrary to ννν , there is no cycle (γ = 0), since
the reactions that generate ccc are in different linkage classes.

Deficiency
The stoichiometric matrix ννν and incidence matrix ∂∂∂ share the same reactions. The nullspace
spanned by the reactions in ννν contains at least the nullspace of ∂∂∂ , as can also be inferred from Eq.
2.6.[7]. Equivalently [2, 3], we can write

dim(ker(ννν)) = c≥ dim(ker(∂∂∂ ) = γ. (2.100)

The difference in the number of cycles in these descriptions is called the deficiency δ

δ = c− γ = n. (2.101)

The deficiency is notably used in the deficiency zero theorem and the deficiency one theorem[2].
For reversible chemical reaction networks with δ = 0, the deficiency zero theorem states that the
concentrations of chemical species (whose dynamics is governed by mass-action kinetics) will
relax to a single fixed point.

The deficiency one theorem can be restated as follows: Consider a chemical reaction network,
with incidence matrix ∂∂∂ , stoichiometric matrix ννν , and a deficiency δ . Furthermore, consider the
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subnetworks obtained by taking the submatrices corresponding to all λ linkage classes ∂∂∂ 1, ...,∂∂∂ λ

and the corresponding stoichiometric submatrices ννν1, ...,νννλ , with deficiencies δi, i = 1, ...,λ . If
then, the following are true:
1. ∀ i δi ≤ 1,
2. ∑

λ
i=1 δi = δ ,

the concentrations of chemical species (whose dynamics is governed by mass-action kinetics) will
relax to a single fixed point.

While these theorems are highly informative, there are many simple systems for which the
theorems are inconclusive. As an example, in the system given by Eq. (2.99), individual linkage
classes admit no cycles, and neither do the corresponding submatrices ννν i, which means δi = 0 for
all i. Consequently,

λ

∑
i=1

δi = 0 < δ = 1, (2.102)

which means that we can apply neither the deficiency one nor the deficiency zero theorem. Never-
theless, we know that such a system should relax to a unique steady state, because a closed chemical
system in general admits a single minimum to its Gibbs free energy function.

2.5 Subspaces and submatrices
2.5.1 The four subspaces

Each s-by-r matrix A has four fundamental subspaces:
i) the column space or image (im(A) )
ii) the nullspace or kernel (null(A) or ker(A))
iii) the row space or coimage (im(AT))
iv) the left nullspace or cokernel (null(A) or ker(A)).

The rank nullity theorem relates the dimension of the domain to the dimension of the image
and the kernel (respectively called the rank and the nullity), :

rank(A)+nullity(A) = dim(im(A))+dim(ker(A)) = r, (2.103)

rank(AT)+nullity(AT) = dim(im(AT))+dim(ker(AT)) = s. (2.104)

Furthermore, we know that rank(A) = rank(AT). For a stoichiometric matrix ννν , we have related
the nullity to cycles and conservation laws:
c = nullity(ννν), with c the number of cycles,
`= nullity(νTνT

νT ), with ` the number of conservation laws,
Putting the aforementioned together, we obtain the fundamental theorem of linear algebra [3], that
is

r− c = s− `. (2.105)

Denoting by σ the number of linkage classes, a similar result applies to the incidence matrix ∂∂∂ ,

r− γ = σ −λ . (2.106)

Note that the two descriptions must have the same number of reactions r, but as shown in previous
examples, the number of species, cycles and conservation laws may differ between the two
approaches. Using Eq. (2.106), we can write the deficiency in its more common form

δ = σ −λ − (s− `)≥ 0, (2.107)

where s− ` is the stoichiometric subspace (rank), which quantifies the dimensionality of the
concentration space.
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An example for a discretized grid
Let us return to the discretized N by N grid from Sec. 2.3.3. Let us imagine such a grid with r
chemical reactions per box, s species and ms exchange reactions (diffusion) with neighbors (where
m is the number of neighbors). An illustration for N = 2 is given in Fig. 2.4, for a 2 by 2 grid, with
each cell in contact with m = 2 neighbors, a single reaction (r = 1), and s = 2 chemical species.
From Eq. (2.105), we then find for an N by N grid

c = N2(r+ms− s)+ `, (2.108)

where we note that the number of conservation laws ` is not altered by the discretization operation.
Denoting cN the number of cycles for an N by N grid, the number of cycles due to box partitioning
grows as

cN− c1 = (N2−1)(r+ms− s). (2.109)

Note that a cycle can be a trajectory that returns to its origin, e.g.

Ax,y→ Ax+h,y→ Ax+h,y+h→ Ax,y+h→ Ax,y. (2.110)

The cycle ccc1 in Fig. 2.4b is an example of such a cycle. A cycle can also contain a mixture of
reaction and displacement reactions, as exemplified by the cycle ccc2. The 4-cell network has one
chemical reaction per cell (r = 1), two neighbors (m = 2) and there are two possible chemical
species (s = 2). From Eq. (2.108) we then find c = 7 cycles.

a) b)

c
1

c
2

Figure 2.4: Reactions and transport in 4 linked cells. a) There are 8 exchange processes, 4 per
species. The purple and yellow species can isomerize to form each other. b) a pure displacement
cycle ccc1, and a mixed cycle ccc2.

In Ref. [21], cycles coupling displacement and chemistry were realized out-of-equilibrium. By
the application of patterned illumination, a reversible photoacid supplied protons in illuminated
regions, which would then undergo elaborate reaction-diffusion cycles by reacting with reactants in
other regions.

2.5.2 Submatrices
Consider a stoichiometric matrix ννν . Let [s] be the set of species indices, [s] = {1,2, ..,s} and let
[r] be the set of reaction indices [r] = {1,2, ..,r}, such that the rows of ννν are ννν = [sss1,sss2, ..,ssss]

T and
the columns ννν = [rrr1,rrr2, ..,rrrr]. Let us define x⊂ [s], z⊂ [r] as proper subsets of the indices, with
complements x̄ = [s]/x, z̄ = [r]/z.



2.5 Subspaces and submatrices 81

Definition 2.5.1 — Submatrix. A submatrix ννν∗ of ννν is a matrix obtained by removing rows
(species) and/or columns (reactions) from ννν . By convention, ννν is a submatrix of ννν .

We define ννν∗ = ννν(x|z) as a submatrix, constructed by removing all νki with k ∈ x and i ∈ z
from ννν (remove all species labeled by x and all reactions labeled by z). We define ννν∗ = ννν [x|z] as a
submatrix, containing only νki with k ∈ x and i ∈ z from ννν (retain species labeled by x and reactions
labeled by z). It follows that

ννν(x|z) = ννν [x̄|z̄] (2.111)

Eq. (2.112) illustrates ννν with two of its submatrices, with the red-colored matrix obtained by
removing the fourth row and third column, and the blue-colored matrix by removing the first two
rows and the first and last column:

ν1,1 ν1,2 ν1,3 ν1,4

ν2,1 ν2,2 ν2,3 ν2,4

ν3,1 ν3,2 ν3,3 ν3,4

ν4,1 ν4,2 ν4,3 ν4,4



 ννν(4|3)
.

ννν(1,2|1,4)
(2.112)

Translating the destructive convention to the constructive convention, we can write, ννν(4|3) =
ννν [1,2,3|1,2,4] (given in red) and ννν(1,2|1,4) = ννν [3,4|2,3] (shown in blue).

Submatrices associated with linkage classes play a central role in the deficiency one theorem.
Consider the following incidence matrix ∂∂∂ , whose two linkage classes can be extracted as separate
submatrices (respectively shown in red and blue)

−1 0 1 0
1 −1 0 0
0 1 −1 0
0 0 0 −1
0 0 0 1



 ∂∂∂ (4,5|4)
.

∂∂∂ [4,5|4]
(2.113)

Submatrices are also important for the modelling of species whose concentrations have been
fixed by chemostats (see Sec. 2.5.3). In a mass action framework, a rate k′nAnB depends on the
abundance of the involved species A and B. If a chemostat now fixes nB = n̄, we can write a rate
only in terms of A: k′nA, with k′ = kn̄ a pseudo-rate constant. We can therefore remove B from
our description. The stoichiometric matrix for this new network is obtained by removing the row
corresponding to B from the original matrix.

Let us denote by y ⊂ [s] the indices of chemostatted species and x ⊂ [s] and the indices of
internal species, such that ȳ = x. The internal submatrix νννX then verifies νννX = ννν [x|[r]] = ννν(y| /0).
The external submatrix νννY associated to chemostats is then νννY = ννν [y|[r]] = ννν(x| /0).

2.5.3 Chemostatting and subspaces
When a chemostat is introduced, we lower the number of species by 1: s′ = s−1. Polettini et al.
point out that [3] for νννX to be in accord with Eq. (2.105), either i) c′ = c+1, an ‘emergent cycle’ or
‘affinity’ is generated, or ii) `′ = `−1, a conservation law is broken. More explicitly, we can write

sY = c∗+ l×, (2.114)

with sY the number of chemostats, c∗ the number of emergent cycles and l× the number of broken
conservation laws.
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An emergent cycle ccc∗ inhabits the nullspace of νννX, but not of ννν and νννY

νννX ·ccc∗ = 0, (2.115)

νννY ·ccc∗ 6= 0. (2.116)

In a description without chemostats, ccc∗ is a reaction vector. Like any reaction vector, it must respect
the conservation laws of the full stoichiometric matrix ννν (Eq. (2.63)), and thus a conservation law
L, even if broken, still constrains the emergent cycle, since its corresponding `̀̀ imposes

`̀̀ · (ννν ·ccc∗) = 0. (2.117)

An emergent cycle requires more than a single chemostat¶, since Eq. (2.116) would then imply a
net accumulation or consumption of the chemostatted compound, with no compensation by the
system.

Indeed, emergent cycles require at least two chemostats[3]. On the level of reservoir species
{Y1, ...,Ys}, we can write a reaction balance similar to (2.47)

∑
k

n(+)
k Yk

ggg−−⇀↽−−−ggg ∑
k

n(−)k Yk. (2.118)

Similarly, we can write a balance in terms of internal species {X1, ...,Xs}

∑
k

ñ(+)
k Xk

ggg−−⇀↽−−−ggg ∑
k

ñ(−)k Xk. (2.119)

From Eq. (2.115) it follows that for an emergent cycle ccc∗ internal species are as much consumed as
they are produced

ñ(+)
k = ñ(−)k . (2.120)

The currents between reservoirs are constrained by the compositional constraints of chemistry
(Eq. (2.73)). For two chemostats Y1 and Y2, we find on the level of elements E that a current must
satisfy

n(+)
1 χ

E
Y1

= n(−)2 χ
E
Y2
∀ E. (2.121)

for n(+)
1 = n(−)2 , the pair of chemostats must either contain the same species or isomers of the

same species. If n(+)
1 6= n(−)2 , one can also imagine oligomers e.g. 3 dimers becoming 2 trimers,

(potentially accompanied by isomerization). For an arbitrary pair of chemical species, Eq. (2.121)
is typically not satisfied and the scenarios for currents afforded by two chemostats is fairly limited.
In practice, emergent cycles are expected to become prevalent when more chemostats come into
play, such that Eq. (2.73) can be satisfied more easily.

Example: HBr chain-reaction
We will now move to an illustration of emergent cycles and broken conservation laws. Let us
consider the chain reaction converting molecular bromine (Br2) and molecular hydrogen (H2) to
hydrobromic acid (HBr):

Br2
1−−⇀↽−− 2Br• (2.122)

Br•+H2
2−−⇀↽−− HBr+H• (2.123)

H•+Br2
3−−⇀↽−− HBr+Br• (2.124)
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Figure 2.5: A hypergraph for the HBR chain reaction.

A corresponding hypergraph is shown in Fig. 2.5: For this system, we can write the stoichiometric
matrix ννν

1 2 3

ννν =
.
.

ννν?

Br2

Br•

H2

H•

HBr

−1 0 0
2 −1 1
0 −1 0
0 1 −1
0 1 1




(2.125)

The full matrix ννν has r = 3, s = 5, ` = 2 and consequently (Eq. (2.105)), no cycles (c = 0).
Upon inspection of elements, we can directly make a natural choice for two linearly independent
conservation laws:

LH = 2nH2
+nHBr +nH• , LBr = 2nBr2

+nHBr +nBr• . (2.126)

Let us now consider the submatrix ν? = ν(1| /0) (shown in red) obtained by removing Br2. For this
submatrix, LBr is no longer a conservation law, and in total only one conservation law remains. If
we now also remove H2, we also lose the conservation law LH, and the reactions are now

/0
1−−⇀↽−− 2Br•, Br•

2−−⇀↽−− HBr+H•, H•
3−−⇀↽−− HBr+Br• (2.127)

For this system, we can write the stoichiometric matrix ν̃νν

1 2 3

ν̃νν =
.
.

ν̃νν?

Br•

H•

HBr

2 −1 1
0 1 −1
0 1 1




(2.128)

ν̃νν is a square matrix with no conservation laws and no cycles. However, if we now finally remove
HBr to yield ν̃νν? (shown in red), an emergent cycle ccc∗ = (0,1,1)T is generated, such that ν̃νν? ·ccc∗ = 000.
Returning to the original matrix ννν , the reaction vector ccc∗ yields

∆nnn = ννν ·c∗c∗c∗ = (−1,0,−1,0,2)T , (2.129)

¶here, we are implicitly considering a system that has no other thermodynamic forces applied to it. In Ref[22],
emergent cycles were elegantly introduced by introducing spatially localized photochemical reactions. As of yet, the
framework has not been extended to treat such a system.
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We can apply Eq. (2.118), to find the net reaction balance on the level of removed species (for
chemostats: reservoir species)

Br2 +H2
ccc∗−−⇀↽−−
−ccc∗

2HBr. (2.130)

In the chemostatted system, all of these compounds are chemostatted, and the emergent cycle will
generate a current between the reservoirs of Br2 +H2 and the reservoir of HBr. We can also derive
a more detailed reaction balance, using Eq. (2.54), which becomes

Br2 +H2 +Br•+H•
ccc∗−−⇀↽−−
−ccc∗

2HBr+Br•+H•. (2.131)

Here, we see that the radicals Br• and H• appear with the same nonzero stoichiometry on both
sides. The participation of radicals here mirrors that of a catalytic intermediate. On the atomic
level, however, the bromine radical Br• in (2.123) is replaced by a different one in (2.124). The
hydrogen radical H• is also constantly consumed and resupplied. Sometimes this distinction is
highlighted by the use of the word chain-reaction, at other times catalysis is used. To highlight
such atomic details, an atomic-level description of connectivity is needed, as displayed e.g. in
SMILES notation[23]. As noted at its inception[1], such a level of description goes beyond the
stoichiometric matrix framework.

2.5.4 Chemostatting and complexes

When we remove a species from the description, its associated complexes are modified as well.
E.g. if we have complexes C1 = {X1,X2} and C2 = {X2}, chemostatting X1 will make C1 and C2
the same complex. Since we want complex to be unique, we will perform a ‘merger’, by merging
C1 and C2 in a new complex Γ1, which performs the reactions that C1 and C2 are engaged in.

If the operation of chemostatting removes all species from a complex, we obtain an empty
complex Γ = { /0}. Such a complex is often used to model influx and outflux.

Chemostatting modifies the existing set of complexes. When this leads to the merger of
complexes, the number of removed complexes σ× corresponds to the number of mergers. Mergers
require chemostats, but the number of mergers can be more or less numerous than the number of
chemostats introduced.

σ
× ≥ 0, sy > 0, (2.132)

σ
× = 0, sy = 0. (2.133)

When complexes in different linkage classes are merged, their linkage classes are also merged: they
now form a single connected component.

Complex cycles can emerge, either by a single merger within an existing linkage class, or due
to multiple mergers with other linkage classes.

Fixing the number of reactions r′ = r, Eq. (2.106) yields

σ
× = λ

×+ γ
∗, (2.134)

with λ× the reduction in the number of linkage classes (number of merged linkage classes) and γ∗

the number of emergent cycles.
As an example, let us consider the chain reaction between H2 and Br2 to yield HBr in Eq.



2.5 Subspaces and submatrices 85

(2.125), with the following incidence matrix

1 2 3 (2.135)

∂∂∂ =

Br2

2Br•

Br•+H2

HBr+H•

H•+Br2

HBr+Br•



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


Br2

1−−⇀↽−− 2Br•

Br•+H2
2−−⇀↽−− HBr+H•

H•+Br2
3−−⇀↽−− HBr+Br•

For ∂∂∂ , we find λ = 3. Upon chemostatting Br2, the incidence matrix is not modified:

1 2 3 (2.136)

∂∂∂ =

/0

2Br•

Br•+H2

HBr+H•

H•

HBr+Br•



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


/0

1−−⇀↽−− 2Br•

Br•+H2
2−−⇀↽−− HBr+H•

H•
3−−⇀↽−− HBr+Br•

Let us now chemostat the species HBr, which then provides

1 2 3 (2.137)

∂̃̃∂̃∂ =

/0

2Br•

Br•+H2

H•

Br•


−1 0 0
1 0 0
0 −1 0
0 1 −1
0 0 1

 /0
1−−⇀↽−− 2Br•

Br•+H2
2−−⇀↽−− H•

3−−⇀↽−− Br•

In removing HBr and Br2 from the description, the complexes {HBr+H•} and {H•+Br2} both
are reduced to the complex {H•}, the distinct complexes merge into a single one. The complexes
were part of distinct linkage classes, which now form a single linkage class in which both the
second and third reaction are performed. We find σ× = λ× = 1.

Let us now remove H2, to find

1 2 3 (2.138)

∂?∂?∂? =

/0

2Br•

H•

Br•


−1 0 0
1 0 0
0 1 −1
0 −1 1

 /0
1−−⇀↽−− 2Br•

Br•
2−−⇀↽−− H•

3−−⇀↽−− Br•

The merger of the complexes {Br•+H2} and {Br•} now yields a complex cycle γγγ∗ = (0,1,1)T ,
such that ∂∂∂ ? ·γγγ∗ = 0, and we have σ× = 2, λ× = 1, γ∗ = 1.

Minimal number of chemostats for a cycle
Since we impose reactions to be at most bimolecular (Eq. (2.9)), complexes contain at most two
molecules. It can then be shown that in a full description (no hidden species) of a closed chemical
system (where no /0-complex can exist), the introduction of a first chemostat cannot merge two
elements in the same linkage class.

To show this, suppose that there exist two distinct complexes C1 and C2 that are merged after
chemostatting a species Z1. For a closed system, this can happen for the following situations:
i) C1 = {2Z1},C2 = {Z1},
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ii) C1 = {Z1,Z2},C2 = {Z2}.
In a closed system, linkage classes link complexes with the same elemental composition (Eq.
(2.88)). In both situation i) and ii), the compound in C2 is contained within C1, but C1 contains an
additional Z1 species. There are thus inherently more atoms composing C1 and thus its composition
must be distinct. It follows that C1 and C2 are not part of the same linkage class. We conclude that
connecting a first chemostat to a closed system cannot merge two elements within the same linkage
class.

To acquire a complex cycle from two separate linkage classes, two mergers are needed, one to
establish a single linkage class and a subsequent one to form a cycle. Starting with a closed system
and four distinct complexes C1,C2,C3,C4, this can be achieved for: C1 = {Z1},C2 = {Z2},C3 =
{Z1,Z1},C4 = {Z1,Z2}, provided Z1 is an isomer of Z2, such that there are two linkage classes.
Chemostatting Z1 then merges C1 with C3 in the complex { /0} and C2 with C4 to give {Z2}, to
establish a single linkage class with a complex cycle.

Of course, most reaction networks do not have this structure, and one should typically expect
more chemostats to be required to yield a complex cycle. For the stoichiometric matrix framework,
it was shown that at least two chemostats are needed to obtain an emergent cycle. A complex cycle
can be obtained with only one chemostat, which can be explained when we consider the deficiency

δ = c− γ ≥ 0. (2.139)

The complex cycle established by a single chemostat requires the ννν to already have this cycle from
the start. Since c≥ 1 it follows for the closed system that δ ≥ 1.

2.5.5 An alternative perspective to chemostatting: adding reactions
An alternative approach to chemostatting a species in ννν is to introduce a reversible exchange
reaction with a (simple) reservoir

A(reservoir)−−⇀↽−− A(system). (2.140)

Since the reservoir is considered stationary, we may simplify our description limiting it to system
species, leading to a reaction

/0−−⇀↽−− A. (2.141)

If such a reaction occurs on a much faster timescale than the other reactions (and provided the
solution is well-mixed), the species A acquires a fixed concentration and its dynamics become
equivalent to the former approach.

By adding a reaction r′ = r+1, and leaving the number of species untouched s′ = s, Eq. (2.105)
provides an equivalence between the number removed species sY and the number of reservoir
exchange reactions r∗

r∗ = `×+ c∗, (2.142)

which has the same interpretation as Eq. (2.114). Using this approach, a closed system is described
by a submatrix of an open system. When we remove species to introduce a chemostat, open systems
are described by submatrices of the closed system.

For complexes, { /0} must be introduced as a separate complex first. If we require reservoir
exchange processes to be unimolecular (e.g. simple diffusion), then adding reservoir exchange
reactions is different from removing species. E.g. if we introduce a reaction /0 −−⇀↽−− Z1, it will
be connected to the complex {Z1}, but not {Z1,X1}. Since many reactions of interest are not
unimolecular, this may often not be a productive way to introduce chemostats in the framework.
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With such exchange reactions, chemostatting no longer removes complexes, but establishes
new links between the { /0} complex and chemostatted species. When linkage classes are linked up
in this manner, they do so via the { /0} complex. Similarly, emergent cycles must pass through the
bridging { /0} complex.

2.6 Submatrices and removing reactions
We can also be interested in removing reactions from ννν . This is a useful venture when we are
looking for particular behaviors such as catalysis, chain reactions and autocatalysis, which are
properties of subnetworks, not of the total network. For our purposes, this operation will serve
as a mathematical tool to look under the hood and learn something about the network. Like for
chemostatting, however, there are physical situations where such submatrices are pertinent.

For example, adding or removing reactions as an operation describes the effect of adding
and removing catalytic species in a network. For a heterogeneous catalyst on a solid substrate,
it suffices to remove the substrate from the medium. The search for the controlled introduction,
activation, removal and modification of homogeneous catalysts in solution is an ongoing endeavor.
An interesting recent example makes uses of an optical protocol to convert a chiral enantioselective
catalyst to its mirror image[24]. Such developments highlight the diversity of new situations where
submatrices can come into play.

Let us again consider the fundamental theorem (2.105) and apply r′ = r− 1. Keeping the
number of species fixed (s′ = s), it follows that

c′− l′ = c− l−1. (2.143)

We either have i) a broken cycle c′ = c−1 or ii) an emergent conservation law l′ = l+1, such that

rY = c×+ `∗ (2.144)

with c× the number of broken cycles and `∗ the number of emergent conservation laws. It forms
the natural counterpart of Eq. (2.114). Since the complex networks share the same reactions, we
can perform an analogous operation while preserving the number of complexes σ , to find

rY = γ
×+λ

∗ (2.145)

With γ× the number of broken complex cycles and λ ∗ the number of emergent linkage classes. Such
an operation, however, should create no isolated complexes (complexes engaging in no reaction) to
ensure that one can properly use the framework.

2.6.1 Chain Reactions
The chain reaction system in (2.125) is supplied with an initiation reaction

Br2
1−−⇀↽−− 2Br•, (2.146)

which provides the first radicals to perform the reaction. Alternatively (and often the case), such
a reaction may not be inherent to the chemistry, and the initiation must be performed with other
species (e.g. a free radical initiator). At the heart of this chain reaction is that it regenerates its
intermediates from the reactant pool while converting Br2 +H2 to 2HBr

Br•+H2
2−−⇀↽−− HBr+H•, H•+Br2

3−−⇀↽−− HBr+Br•. (2.147)

Via the emergent cycle ccc∗ = (0,1,1), which yields the detailed reaction (using Eq. (2.54))

Br2 +H2 +Br•+H•
ccc∗−−⇀↽−−
−ccc∗

2HBr+Br•+H•. (2.148)
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Note that in our framework, we can clearly distinguish this cycle from a single reaction. The
nonambiguity condition (Eq. (2.15)) forbids a species to fulfill the role of both a reactant and a
product in a single reaction. A transformation can thus only acquire the functional form of Eq.
(5.10) by being composed of at least two different reactions, which is also the minimal requirement
for a cycle.

A characteristic of a chain reaction is that it maintains itself by regenerating its intermediates.
Consequently, the reactions involved in the chain reaction must satisfy a conservation law that
ensure these species are maintained. To see this, consider the submatrix without initiation reaction
and only radical species, ν̄νν = ννν(1|1,3,5) (shown in red)

1 2 3

ννν =
.
.

ν̄νν

Br2

Br•

H2

H•

HBr

−1 0 0
2 −1 1
0 −1 0
0 1 −1
0 1 1




(2.149)

The submatrix ν̄νν admits an emergent cycle ccc∗ = (1,1)T , and has an emergent conservation law
l∗ = (1,1). The same result is found on the level of complexes, since the unimolecular species and
reaction yield the equivalent incidence matrix

2 3 (2.150)

∂̄∂∂ =
Br•

H•

(
−1 1
1 −1

)
, (2.151)

which means ccc∗ is also a complex cycle γγγ∗. Now, let us add the reaction 1, which in the absence of
Br2 behaves like a bimolecular reservoir exchange

/0−−⇀↽−− 2Br•. (2.152)

The resulting stoichiometric matrix is then

1 2 3 (2.153)

ν̄νν◦ =
Br•

H•

(
2 −1 1
0 1 −1

)
(2.154)

By adding the initiation reaction 1, the conservation `∗ is broken and the emergent cycle now takes
the form ccc∗ = (0,1,1)T . A key property of the chain-reaction, mass-like conservation of the reactive
species, has been obscured by extending the network. In Ch. 5 we will return to this property, when
we define the concept of stoichiometric allocatalysis.

2.6.2 Catalysis
Colloquially speaking, catalysts are chemical compounds, which accelerate a chemical reaction
while not being consumed themselves in the overall reaction. The various steps in this process form
a catalytic cycle. Let us here investigate what that looks like.

It is common to represent a catalytic cycle by its net reaction in the sense of Eq. (2.47). For
instance, if there is a single catalyst E, substrate S and product P, standard shorthand notations for
such a catalytic cycle are:

S+E −−⇀↽−− E+P, (2.155)

S
E−−⇀↽−− P. (2.156)
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These notations are ambiguous on the level of the stoichiometric matrix, since Eq. (2.15) is not
satisfied. In order to remove the ambiguity, we turn to a more detailed description with a catalytic
pathway and an uncatalyzed reaction

1 2 3 (2.157)

ννν =

S

P

E

ES

EP


−1 0 0
0 0 1
−1 0 1
1 −1 0
0 1 −1


S+E

1−−⇀↽−− ES

ES
2−−⇀↽−− EP

EP
3−−⇀↽−− E+P

Now, this stoichiometric matrix verifies Eq. (2.15).
A convenient reduced description can be obtained by removing the chemical species S and P

from ννν to obtain νννX :

1 2 3

νννX =
E

ES

EP

−1 0 1
1 −1 0
0 1 −1

 . (2.158)

In the present case, this leads to the emergent cycle ccc∗ = (1,1,1)T . This cycle corresponds to the
net reaction

S+E+ES+EP
c∗c∗c∗−−⇀↽−−
−c∗c∗c∗

E+ES+EP+P, (2.159)

which is built from the stoichiometric matrix ννν .
In terms of the stoichiometric matrix νννX , (resp. νννY ), we can use Eqs. (2.118) and (2.119) to

obtain the net reactions

E+ES+EP
c∗c∗c∗−−⇀↽−−
−c∗c∗c∗

E+ES+EP, (2.160)

S
c∗c∗c∗−−⇀↽−−
−c∗c∗c∗

P. (2.161)

We can now distinguish between the single reaction (2.161) and the composition of reactions in Eq.
(2.160). For an arbitrary catalytic cycle, the net reaction should contain catalytic species (E,ES,EP
in our example) with the same coefficients on the reactant and product side.

Catalysis maintains its catalytic species in their cyclic conversion and accelerates a reaction
(Eq. (2.161)). This implies that we can associate a subnetwork with catalysis, that has a mass-like
conservation law lll+ for its catalytic species and an emergent cycle ccc∗ that leaves those species
unchanged, while performing the net reaction.

For ννν in Eq. (2.158), this is achieved by removing non-catalytic species S and P, and removing
the non-catalytic reaction 4, such that ννν? = ννν(4,1,2), which gives the matrix

1 2 3

ννν? =
E

ES

EP

−1 0 1
1 −1 0
0 1 −1

 . (2.162)

which has an emergent cycle ccc∗ = (1,1,1)T and emergent conservation law `̀̀∗ = (1,1,1). The
functional form of the conservation law `̀̀∗ directly reveals that we should find the analogous
structure for the complexes, since the incidence matrix verifies ∂∂∂ ? = ννν?. For catalysis by a single
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Figure 2.6: A minimalist scheme for a passive nonlinear transport enzyme catalyzing the reaction
2AI −−⇀↽−− 2AR.

catalytic species, we should generally expect that it can be identified by a square matrix with an
emergent cycle ccc∗ = (`̀̀∗)T , for the exact same reason that we can often draw enzymatic cycles as
a simple graph (see Fig. 2.6). On the level of the catalyst, reactions simply link various catalytic
intermediates or enzyme states, the catalyst hops from one state or intermediate to another. Some
authors take this single-catalyst picture as a requirement in their definition of catalysis [25].

In such a picture, the subnetwork of internal catalytic species would only contain unimolecular
reactions. This is indeed a very common situation. One can, however, imagine catalytic cycles that
do not obey this structure, e.g. because the catalytic cycle contains a bimolecular reaction between
two catalytic intermediates.

A catalytic stoichiometric matrix ννν? with ccc∗ = (`̀̀∗)T has the interesting property that its
transpose νννT

? is also a catalytic stoichiometric matrix. Alternatively, one can interpret νννT
? as a dual

to ννν , where the the columns correspond to species, and rows indicate for a given reaction to which
species they are linked. A right nullvector then plays the role of a conservation law, and a left
nullvector plays the role of a cycle. Since ccc∗ = (`̀̀∗)T , these still remain the same.
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3. Thermodynamic aspects of open networks

In Origins of Life, one of the few things all scenarios agree on is that systems we consider relevant
to abiogenesis are open chemical systems out of equilibrium. Such chemical systems are not
confined a minimum free energy state, they can be multistable[1, 2, 3], exhibit chaos [4, 5, 6, 7],
form spatial patterns [8, 9, 10], proofread synthesis products [11, 12, 13, 3, 14], make persistent
copies of information-carrying molecules [15, 16] and so forth. It is important to realize, however,
that there are various ways to have an open (sub)system and these are not equivalent. In this section,
we will cover some common examples of open systems.

In experimental setting, we can e.g. introduce chemostats (e.g. buffers, reservoirs), continuously
stirred tank reactors (CSTR) or serial transfer to make our subsystem of interest open to matter
exchange. It is important to realize that these are fundamentally different ways of opening a system
and the exact way a system is opened has important consequences for the system behavior. To give
but some examples: Polymer length distributions are strongly affected by the presence and nature
of a dilution process. The same is true for chemical evolution, cooperation and the nucleation
of autocatalytic cycles. Conservation laws are absent in a flow reactor, but a fixed mass-influx
balanced by an outflux yields a somewhat related set of constraints. For chemostats, conservation
laws are much more flexible, leading e.g. to unbalanced growth phases (See Ref.[17] and Sec.
7.3.3). Serial transfer has all the conservation laws of a closed system, right until the next transfer.

A growing and dividing cell can live and interact with complex environments, in a manner that
is not exactly described as any single one of these. Indeed, a spatially heterogeneous environment
may have local patches behaving like chemostats, areas with rapid flows, zones subject to periodic
changes (tides, waves, day-night cycles of evaporation) and this environment will over time be
modified by the chemistry subject to these ways of opening the system.

In discussions of prebiotic chemistry in open systems, it is therefore important to specify how
we open the system and understand what that choice entails and what limitations it introduces. A
number of interesting results in the field can be understood much more readily by having such a
perspective [18, 19]. To that aim, this section will discuss chemostats (Sec. 3.1), CSTRs (3.2),
serial transfer (Sec. 3.3) and coupled growing compartments (Sec. 3.4). The sections on CSTRs
and serial transfer (Sec. 3.2, 3.3) are largely based on Ref. [20], which can be read for a more
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detailed discussion. Following experiments in the LBC lab, a publication is in preparation, of which
Sec. 3.4 and Appendix 10.2 provide some of the underpinnings.

3.1 Chemostats
3.1.1 Thermodynamic Chemostats

We define a thermodynamic chemostat∗ as a large equilibrium bath of a chemical species that can
be exchanged with the system. Physically, such baths can typically be thought to exchange a species
A according to a stoichiometric process

Asystem −−⇀↽−− Abath. (3.1)

By equilibration of the exchange process, the corresponding ∆µ vanishes

∆µ = µ
bath
A −µ

system
A = 0, (3.2)

and thus µbath
A = µ

system
A . The bath then fixes the chemical potential of A in the system. For dilute

solutions, this chemical potential is considered a function of concentration of the form

µA = µ
◦
A + kbT lnxA, (3.3)

which then fixes the molar fraction xbath
A = xsystem

A . This allows for the very practical interpretation
that a chemostat fixes a concentration or molar fraction[21], in the way a thermostat fixes a
temperature. These are more intuitive quantities to work with and this approximation will be
adopted throughout this manuscript.

More generally, however, µ can depend on other factors, such as the ionic strength of the solvent.
Consequently, if the system has a different ionic strength than the chemostat, or in some other
way has its chemical potential altered, we still expect Eq. 3.1 to hold, although now xbath

A 6= xsystem
A .

What remains fixed is the chemical potential.
Another remark that should be considered, is that the origin of the coupling between a system

and its chemostat may be more elaborate than a simple unimolecular exchange with a bath. For
example, consider a typical antiporter and symporter, whose transport catalysis is described by a
reaction vector ggg:

Asystem +Bbath ggg−−⇀↽−−−ggg
Abath +Bsystem, ∆µ = ln

(
xbath

a xsystem
b

xsystem
a xbath

b

)
, (3.4)

Asystem +Bsystem ggg−−⇀↽−−−ggg
Abath +Bbath, ∆µ = ln

(
xsystem

a xsystem
b

xbath
a xbath

b

)
. (3.5)

The equilibration of a single exchange process introduces one constraint, and as such for ∆µ = 0
we respectively equilibrate the product

xbath
a xsystem

b = xsystem
a xbath

b , (3.6)

for an antiporter, and

xsystem
a xsystem

b = xbath
a xbath

b . (3.7)

∗A thermodynamic chemostat should not be confused with a biochemical reactor containing growing microorganisms,
also commonly called a chemostat. In this reactor, fresh medium and sterile air is supplied in a stirred microbial culture.
The influx is compensated by an equal outflux of this mix. Such a reactor corresponds to what we will call a CSTR, and
the term chemostat will from hereon be reserved to designate chemical baths.
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for a symporter.
Unless a second constraint is introduced (e.g. another linearly independent transport process

involving A and/or B), we generally have xsystem
A 6= xbath

A , xsystem
B 6= xbath

B . Discrete conserved
quantities like atomic matter present a rich variety of constraints in their networks, that distinguishes
them from a continuous quantity like temperature.

This behavior is not restricted to transport enzymes. Many chemical species may not exchange
by themselves, but only by engaging with other species. For example, metal ions in water are not
expected to dissolve well in oil, hindering their exchange with another water phase. Some metal ion
complexes (e.g. acetates or diacetyl complexes) however, dissolve quite well, enabling cotransport
of the anionic ligands and the metal.

Transport enzymes may exchange an integer multiple of a compound at a time, some species
may form soluble dimers that exchange well. These chemostats do not impose the same type of
constraints as process (3.1), and this has direct consequences on the validity of the zeroth law of
thermodynamics. A detailed discussion is provided in Appendix10.1.

3.1.2 Statistical aspects of chemostats
As a first exploration of chemostats, let us consider a large box, containing m equally sized
compartments, linked through small holes (see Fig. 3.1). The compartments contain a chemical
species A, either as a gas or a dilute solution. Interactions are considered negligible and the number
of particles that can be contained in a compartment is unconstrained. The timescale of mixing τmix

within the boxes is much faster than the timescale of exchange through holes τex, such that we can
consider the exchange between boxes as exchange between perfectly mixed reactors. Now, let us

I II

a. b.

Figure 3.1: a) A large box with m = 36 equally sized partitions. b) exchange between two partitions

label the number of A molecules in compartment i as ni
A, and let total number of A molecules be

NA

NA = ∑
i

ni
A. (3.8)

For noninteracting A molecules, the degeneracy of a particular configuration (see also Sec. 4.1.1)
nnn = {n1

A,n
2
A, ...,n

m
A} is then a multinomial

z(nnn) =
(

NA

n1
A,n

2
A, ...,n

m
A

)
=

NA!
Πm

i=1ni
A!

(3.9)

and the total number of states Z is

Z = ∑
nnn

z(nnn) = mNA . (3.10)



96 Chapter 3. Thermodynamic aspects of open networks

The probability for a particular configuration nnn follows a multinomial law

p(nnn) =
(

NA

n1
A,n

2
A, ...,n

m
A

)(
1
m

)n1
A

...

(
1
m

)nm
A

=
z(nnn)

Z
(3.11)

The probability to observe n1
A = k then becomes

p(n1
A = k) = ∑

n2
A,....,n

m
A

(NA
k

)( NA−k
n2

A,...,n
m
A

)
Z

=

(
NA

k

)
(m−1)NA−k

mNA
. (3.12)

This quantity is normalized as expected

NA

∑
k=0

p(n1
A = k) =

(
m−1

m

)NA NA

∑
k=0

(
NA

k

)
(m−1)−k = 1. (3.13)

Introducing D =
(m−1

m

)−NA , we can then write the average

〈n1
A〉=

1
D

NA

∑
k=0

k
(

NA

k

)
(m−1)−k =

1
D

NA

∑
k=1

NA

(
NA−1
k−1

)
(m−1)−k, (3.14)

where we used that NA
(NA−1

k−1

)
= k
(NA

k

)
and that the k = 0 contribution is 0. Introducing k′ = k−1,

we can now write

〈n1
A〉=

1
D

NA

m−1

NA−1

∑
k′=0

(
NA−1

k′

)
(m−1)−k′ =

NA

m
, (3.15)

where we used the same sum as in the normalization (3.13). We will refer to this average using the
shorthand quantity

λ =
NA

m
, (3.16)

which has the interpretation of mean number of A species per compartment.
Let us now consider a bimolecular process that can occur within a cell, of the form

2A−−⇀↽−− A2. (3.17)

This reaction is slow with respect to mixing and exchange and proceeds with a forward rate

R ∝ nA(nA−1) (3.18)

The average rate of the forward reaction is then 〈n1
A(n

1
A−1)〉, which is found to be

〈n1
A(n

1
A−1)〉 =

1
D

NA

∑
k=0

k(k−1)
(

NA

k

)
(m−1)−k (3.19)

=
NA(NA−1)
D(m−1)2

NA−2

∑
k′=0

(
NA−2

k

)
(m−1)−k′ =

NA(NA−1)
m2 .

Or in terms of λ :

〈Ropen〉 ∝ λ
2− λ

m
. (3.20)
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Had we taken a single, closed compartment with exactly the same number λ of molecules, we
would have found a rate

〈Rclose〉 ∝ λ (λ −1), (3.21)

which is strictly smaller for m > 1. When higher moments than the mean come into play, the
different statistics for open and closed systems come to expression. Here, this is reflected in the
reaction rates.

For small λ , Ropen can become considerably larger than Rclose. In particular, when λ = 1, the
closed system will proceed at a zero rate, but the open system will still spend some time in states
with k ≥ 2.

We are typically interested in baths of chemicals that are ‘infinite’ with respect to the subsystem:
NA,m → ∞. In this regime, the ongoing injection or reception of large quantities of A will
correspond to minor relative changes in the number of molecules in the bath, since the bath size is
m−1 times larger than the subsystem. Let us denote the mth falling factorial as

(N)m = N(N−1)(N−2)...(N−m+1). (3.22)

The number of A molecules in a given compartment (Eq. (3.12)) is then described by a Poisson
distribution, since

lim
NA,m→∞

(NA)k

k!

(
1− λ

NA

)NA−k

mk =
λ k exp(−λ )

k!
, (3.23)

where we use the limit

e−x = lim
n→∞

(
1− x

n

)n
. (3.24)

In this regime, we can neglect 1
m corrections. And it is readily found that higher order propensities

verify

〈(N)m〉= λ
m. (3.25)

3.1.3 Examples of real chemostats
Chemostats are an important theoretical tool in thermodynamics, forming the chemical analogue of
a thermostat. These chemical reservoirs are as diverse as chemistry itself, the ‘ideal’ chemostat
drawn in Fig. 3.1 is a poor representation of the chemostats we encounter in practice. Partitions
with large holes will in principle exchange (hence: chemostat) everything, whereas one is often
interested in chemostatting only a subset of components. Here, we will provide a more general
picture of what we should call chemostats.

Chemostat, reservoir, or bath can be used interchangeably to designate an abundant source of
certain chemicals. Such a source of chemicals can be in a different phase, solvent or form, than
encountered in the system, which leads to a considerably variety of ways in which chemostats arise,
as illustrated by Fig. 3.2.

Homogeneous chemostats, buffers
Let us first consider homogeneous chemical chemostats, which means chemostats established by
certain abundant buffer compounds present in the volume of the system. For example, when a
large concentration of acetic acid is present with an equally large concentration of acetate ion at
concentration c̄, ‘free’ protons in the solution are chemostatted by the reaction

CH3COOH+H2O−−⇀↽−− CH3COO−+H3O+. (3.26)
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Where H3O+ is a simplified notation for a variety of water-proton complexes. The equilibrium
constant of this process is expressed with water absorbed in the constant:

KA =
cCH3COO−cH3O+

cCH3COO−
= 1.754 ·10−5Mol/L. (3.27)

Since we chose cCH3COO− = cCH3COOH = c̄, we have

cH3O+ = KA. (3.28)

Now, suppose a reaction with a base B consumes the free protons according to a reaction

B+H3O+ −−⇀↽−− BH++H2O. (3.29)

Let this base irreversibly consume cBH+ protons, and let us consider the (approximate) conservation
laws for protons and for the acetic acid acetate pair

L1 = cBH+ + cCH3COOH + cH3O+ (3.30)

L2 = cCH3COOH + cCH3COO− = 2c̄. (3.31)

We can now use these values to solve Eq. (3.27) for H3O+ with the removed protons

cH3O+ = KA
c̄− cBH+

c̄+ cBH+
. (3.32)

We can speak of a chemostat, when this addition of base hardly affects cH3O+ , which means there
are a lot more protons in the reservoir than are consumed by the system, which requires c̄� cBH+ .
In that regime, we can linearize Eq. (3.32)

cH3O+ ≈ KA

(
1− cBH+

c̄

)2
≈ KA

(
1−2

cBH+

c̄

)
. (3.33)

As long as c̄� cBH+ , the pH =− logcH3O+ is maintained at a very stable level. In biology, this is of
key importance. Although the volume of e.g. an E. Coli cell typically contains ≈ 80−100 protons
[22] they are rapidly exchanged with millions of weakly acidic and basic groups, thus preventing
large fluctuations and storing a considerably quantity of protons in buffering organic acids.

Another example of an important homogeneous chemostat in biology is glutathione (GSH) and
its dimer (GSSG), which forms a reservoir for the extraction or donation of electrons. These are
important, e.g. to form or break disulfide bonds in peptides, but also to break down reactive oxygen
species[22]

2GSH+RSSR′ −−⇀↽−− GSSG+RSH+R′SH. (3.34)

In principle, any appropriately chosen equilibrium reaction can function as a homogeneous chemo-
stat for a compound. To have a high buffering capacity, this equilibrium should disfavor the
compound, so that the chemostat is abundant and can withstand large fluctuations in the compound
consumption/production.

An inherent limitation to homogeneous chemostats is that the buffering capacity is bounded
by system size. As a consequence, the consumption of chemostatted compounds of interest is
limited to this size. In addition, chemostatting species at a high concentration comes at the cost of
decreasing their buffering capacity.

Growing and replicating systems have material requirements that are not covered by homoge-
neous chemostats. In fact, many of their homogeneous chemostats, needed for proper functioning,
need to be replicated and replenished as well. To satisfy these material requirements, contact with
external reservoirs is required. These reservoirs are not inherently limited by the system that feeds
on it, which provides an essential distinction.



3.1 Chemostats 99

External reservoirs
In Fig. 3.2, a number of external reservoirs are considered. The compound of interest can e.g. be a
gas dissolving in a solvent, adsorbing on a surface, or dissociating to enter a metal. It can also be a
solid, e.g. a salt with a solubility product Ksp or a precipitate of a compound with a solubility Ks.
The external reservoir may also be a similar phase, separated by a pore, air, a membrane, a different
solvent, etc. In these situations, it is very natural to have ‘composite chemostats’, which we define
below.

Definition 3.1.1 — Composite Chemostat. A composite chemostat is a chemostat that ex-
changes multiple species with the system in a stoichiometrically coupled fashion

/0−−⇀↽−− ∑
k

n(−)k Xk, (3.35)

thereby fixing the combined chemical potential µ̄ of these species in the system:

µ̄ = ∑
k

n(−)k µk (3.36)

Composite chemostats can exchange reactants like symporters and antiporters do in biology.
However, considerably more prevalent and primitive examples exist. As an example of a symporter,
a mineral like AgCl can slightly dissolve in the form of Ag+ and Cl−

Ag++Cl− −−⇀↽−− AgCl↓ (3.37)

The AgCl salt can be of arbitrary size and function as a chemostat, fixing the chemical potentials
through

µAg+ +µCl− = µAgCl, (3.38)

kbT lnxAg+xCl− =−∆µ
◦. (3.39)

Note that there is no molar fraction term for AgCl, which is in a separate solid phase. Eq. (3.39) is
often tabulated as a solubility product, with a constant Ksp

xAg+xCl− = Ksp = exp(−β∆µ
◦). (3.40)

At equilibrium, the product of Ag+ and Cl− fractions does not exceed Ksp, and any excess precipi-
tates to form AgCl. AgCl therefore acts as a reservoir with a symporter coupling. Since salts have,
by definition, cations balanced by anions, their capacity as symporter reservoirs is a general feature.

It is important to consider that composite chemostats do not fix a single concentration. This has
consequences for the dynamics of a system: a disproportionate consumption of Cl− will increase
the abundance of Ag+ and lower that of Cl−, which means we cannot neglect the dynamics of
‘food’ from the environment.

In practical situations, one can often get a composite chemostat to mimic a simple one, by
making a species that is not consumed abundant. An example of this is given by the homogeneous
chemostat (3.26) for H3O+, where a high concentration of CH3COO− was provided to yield an
approximate simple chemostat.

Ions also provide common examples for antiporter reactions. Ion-exchange resins and charged
soil particles can initially be loaded with a certain set of ions, which are subsequently displaced by
other ones, often with a higher affinity, leading to effective reactions such as

Ca2+(system)+Mg2+(bath) −−⇀↽−− Ca2+(bath)+Mg2+(system), (3.41)

2Al3+(system)+3Mg2+(bath) −−⇀↽−− 2Al3+(bath)+3Mg2+(system). (3.42)
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a. b.

c. d.

Figure 3.2: Examples of chemostatted systems: a) Gaseous formaldehyde CH2O exchanging with
dissolved formaldehyde, which reversibly incorporates water H2O to form gem-diol CH2(OH)2.
b) H2 adsorbs on metal surface, splits in atoms. H atoms enter the metal, and enter the bottom
compartment after forming H2 again. c) Na+ and Cl− ions, precipitating to form NaCl. d) Exchange
of particles between a reservoir and a compartment through a pore.

which respectively chemostat the quantities xCa2+/xMg2+ and x2
Al3+

/x3
Mg2+ .

Another common reservoir for a solution is the gas phase that typically covers it, e.g. the
reaction

O2(aq)−−⇀↽−− O2(g). (3.43)

Whose equilibrium is characterized by Henry’s law constant Hcp

cO2

pO2

= Hcp = 1.2 ·10−5mol/m3Pa. (3.44)

Such reactions are important in atmospheric chemistry where a wide variety of conventions have
been used for expressing equilibria of the form (3.43), depending on a preference for units. In
the very extensive compilation by R. Sander [23], these are discussed in detail and converted to a
common Hcp.

To assess the buffering capacity of a gas, it is instructive to express it in the form NO2(g)/NO2(aq).
Suppose we have a fixed container with size V =Vsystem +Vreservoir. Using the ideal gas, law, we
then have at equilibrium:

NO2(aq)/NO2(g) =
Vsystem

Vreservoir

Hcp

RT
. (3.45)

Which must be complemented with the conservation law

LO2
= NO2(aq)+NO2(g), (3.46)

To find the actual amounts of O2.
Values of Hcp vary dramatically as a function of molecular size, charge, and functional groups,

and when interpreting a literature value of Hcp, one should keep in mind the dynamic equilibria
that affect it. For formaldehyde (Fig. 3.2), values around Hcp = 32 have been reported, but also
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Hcp = 0.028−0.042. The former is surprisingly high for such a small aldehyde, compared to the
slightly larger acetaldehyde (CH3CHO) with a reported value[23] of Hcp = 0.13.

However, formaldehyde readily performs hydration to form a much less volatile gem-diol:

H2CO+H2O−−⇀↽−− CH2(OH)2, (3.47)

and over 99.9% of formaldehyde takes this form[24]. The higher value of Hcp = 32 can now readily
be understood as a coarse-grained equilibrium constant for p(H2CO)/(cH2CO + cCH2(OH)2

). For
acetaldehyde, only around 50% is found in a gem-diol form[24].

Another common situation where caution is required is for organic acids and bases. Ammonia
NH3 is in equilibrium with its protonated ammonium form NH +

4

NH3 +H3O+ −−⇀↽−− NH +
4 +H2O. (3.48)

As can be expected from common experience, ammonia is very volatile:

cNH3

pNH3

= Hcp(NH3) = 5.9 ·10−1mol/m3Pa. (3.49)

For most ionic compounds, the equilibrium is drastically shifted to the aqueous solution and it
is typical to completely neglect their evaporation. The fact that an ammonia solution at low pH
is odorless is a testament to this fact. A similar situation occurs with acetic acid (Hcp = 40),
which loses its characteristic vinegar smell at high pH, because the reaction (3.26) is shifted to the
nonvolatile acetate CH3COO−. It should be kept in mind that many reported Henry’s law constants
are effective constants, measured at a particular pH and subject to dynamic equilibria.

The present discussion covered a small portion of all the thermodynamic chemostats that
can be found. In Appendix 10.1, we will develop their treatment in more detail using stochastic
thermodynamics. In doing so, we show that some formulations of the zeroth law of thermodynamics
can be broken for conserved integer quantities. We then propose a formulation which is not broken.

3.2 Continuously stirred tank reactor (CSTR)
A CSTR (Continuously stirred tank reactor) is a reactor containing a well-stirred solution, in which
new reactants are supplied by a constant flow, while the solution volume is kept constant by a
compensating outflow [25, 26, 27, 28, 29]. To better distinguish it from a batch reactor that is
closed but stirred, it is sometimes referred to as a CFSTR (continuous-flow stirred tank reactor) to
underline that there is a constant flow. In keeping with convention, the more commonly used term
CSTR will be employed here. The contents of this section, and the following one on serial transfer,
are largely a reproduction of earlier published work that can be found in Ref. [20].

3.2.1 Kinetic equations of the CSTR
Continuous-flow stirred tank reactors are open reactors with a continuous feed of reactants and
an outflow in order to keep the volume constant inside the reactor (see Fig. 3.3). The reactants
are pumped into the reactor at given controlled concentrations ck,in. The solution in the reactor is
stirred well so that the concentrations of the different species can be supposed to remain uniform
inside the volume of the reactor. In order to establish the evolution equations of the concentrations
in the CSTR, we use the balance equations of the concentrations ck in the flow:

∂tck +∇∇∇ · (ckv+ jk) = ∑
i

νkiwi , (3.50)

expressed in terms of the fluid velocity v, the diffusive current density of species k given by Fick’s
law jk =−Dk∇∇∇ck, the stoichiometric coefficient νki of species k in the reaction i, and the rate wi
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of reaction i. The different species are passively advected by the turbulent velocity field v of the
flow. By stirring, the concentrations rapidly become uniform so that the Fickian diffusive current
densities are soon negligible jk ' 0. Integrating the balance equation (Eq. (3.50)) over the volume
V of the reactor, we find∫

V
∂t ck dV +

∫
∂V

ckv ·dA =
∫

V
∑

i
νkiwi dV , (3.51)

where dA is the surface element of integration on the border ∂V of the volume V . The surface
integral has contributions from the inflow tube of species k entering with concentration ck,in and the
outflow tube where the species k exits at the uniform concentration ck resulting from stirring:∫

∂V
ckv ·dA =

∫
∂Vk,in

ckv ·dA+
∫

∂Vout

ckv ·dA . (3.52)

Since the concentrations can be supposed to be uniform at entry and exit, we get∫
∂V

ckv ·dA =−φk,in ck,in +φout ck (3.53)

in terms of the ingoing flux φk,in =
∫

∂Vk,in
v ·dA of the solution in the tube bringing species k into

the reactor and the exit flux φout =
∫

∂Vout
v ·dA of the stirred solution. These fluxes are in units of

m3 per second, and depend on the section areas of the injection and exit tubes. The volume of the
solution inside the reactor being preserved, we have that φout = ∑k φk,in. Since the concentrations
are uniform inside the reactor, Eq. (3.51) divided by the volume V becomes

dck

dt
= ∑

i
νki wi +

1
τ
(ck0− ck) , (3.54)

where τ ≡V/φout is the mean residence time of the species inside the reactor, and

ck0 ≡
φk,in

φout
ck,in (3.55)

are the injected concentrations of reactants reported to the whole volume. Both the residence time
τ and the injected concentrations ck0 are control parameters.

The evolution equations for the concentrations form a set of ordinary differential equations,
which are typically nonlinear. In the limit where the residence time becomes very long, the last
term of Eq. (3.54) becomes negligible and we recover the kinetic equations in a closed reactor,
the so-called batch reactor, [29] in which case the concentrations will sooner or later reach their
equilibrium value. In the other limit where the residence time is very short, the last term dominates
so that the concentrations remain nearly equal to their value at injection: ck ' ck0. In between, the
concentrations may manifest a rich variety of different stationary, oscillatory, or chaotic behaviors
in some autocatalytic or cross-catalytic reaction networks[26, 27, 4, 28, 29].

3.2.2 Thermodynamics of a CSTR
A typical CSTR is functioning under atmospheric pressure and at room temperature if the reactions
are not too exothermic. Under these conditions, the relevant thermodynamic potential is Gibbs’
free energy G. We assume local thermodynamic equilibrium for every element of the solution and
consider the free energy density:

gV = ∑
k

µk ck , (3.56)
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Figure 3.3: Schematic representation of a continuous-flow stirred tank reactor (CSTR). The dashed
line depicts a fictitious surface delimiting the volume V of the reactor.

where µk is the chemical potential of species k.
Using Eq. (3.56) together with Gibbs’ fundamental relation per unit volume

dgV =−sV dT +dP+∑
k

µkdck , (3.57)

where sV is the entropy density, T the temperature, and P the pressure, one obtains the Gibbs-Duhem
relation

sV dT −dP+∑
k

ckdµk = 0 . (3.58)

Using Eq. (3.58) under isothermal and isobaric conditions, one finds that

∑
k

ckdµk = 0. (3.59)

Since the solution is well stirred, it is quasi homogeneous in the bulk of the tank, and the time
evolution of the Gibbs free energy follows that of the concentrations of the various species. Using
Eqs. (3.56)-(3.59), one obtains

dgV

dt
= ∑

k
µk

dck

dt
, (3.60)

Now, using Eq. (3.54) for the concentrations, the time evolution of the free energy density then
becomes

dgV

dt
= ∑

ki
µkνkiwi +

1
τ

∑
k

µk (ck0− ck) . (3.61)

According to the mass action law,[28] the reaction rates are proportional to the concentrations
of all the species entering in the reaction. It is convenient to make the distinction between the
forward and reversed reactions so that

w±i = k±i ∏
k

(ck

c0

)ν
(±)
ki

, (3.62)
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where k±i are the rate constants, ν
(±)
ki the numbers of molecules entering the forward or the reversed

reaction, and c0 the standard concentration of one mole per liter. The stoichiometric coefficient is
thus given by νki = ν

(−)
ki −ν

(+)
ki , while wi = w+i−w−i. In a dilute solution, the chemical potentials

of the solute species are given by µk = µ0
k +RT ln(ck/c0) where R is the molar gas constant. Now,

the ratio of the rate constants is related to the standard free energy of the reaction according to

k+i

k−i
= exp

(
−∑

k

µ0
k νki

RT

)
. (3.63)

The entropy production rate of the reactions is given by

σ = − 1
T ∑

ki
µkνkiwi,

= R∑
i
(w+i−w−i) ln

w+i

w−i
≥ 0 , (3.64)

which is always non-negative.
Now, combining Eq. (3.64) with Eq. (3.61), the time evolution of the free energy density

becomes

dgV

dt
=−T σ +

1
τ
(γ0−gV ) , (3.65)

where we have introduced the following quantity

γ0 = ∑
k

µk ck0. (3.66)

In a closed reactor where τ is infinite, the free energy will decrease towards its minimal value.
However, in an open reactor where τ is finite, the free energy does not need to reach its minimal
value. In this regard, nonequilibrium stationary, oscillatory, or chaotic regimes can be sustained in
an open reactor [30, 28].

The term (γ0−gV )/τ in Eq. (3.65) has no definite sign, except in a stationary state where it is
equal to the dissipation produced by the chemical reactions and therefore must be positive. In this
case, it is sufficient to know the Gibbs free energies of incoming and outgoing chemical species in
order to know the dissipation associated with chemical reactions within the reactor.

3.2.3 General properties of reaction networks in a CSTR
Let us now look at reaction networks in a CSTR, using the formalism introduced in Ch.2.

The equations (Eq.3.54) ruling the time evolution of the concentrations can be rewritten in
matrix form as follows:

dc
dt

= ννν ·w+
1
τ
(c0− c) , (3.67)

In terms of the s-dimensional vectors c and c0 of concentrations and injected concentrations, the
r×s matrix ννν of stoichiometric coefficients, and the r-dimensional vector of reaction rates w, where
s is the number of species and r the number of reactions in the network.

In the limit τ → ∞, resupply and dilution are too slow to be noticable compared to other
processes and we we recover the case of a closed reactor [31, 21].

In a stationary state, we have ννν ·w = 0, implying that w can be decomposed in the basis of
right null eigenvectors eγ , which are called cycles: w = ∑γ wγeγ .
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Let us now come back to the rank of the stoichiometric matrix, which for a closed reactor was
shown to verify

rank(ννν) = r− c = s− l , (3.68)

where c = dimker(ννν) is the number of cycles, and l = dim coker(ννν) the number of conserved
quantities.

In general, a conservation L law can be written as

L≡ `̀̀ ·n , (3.69)

When there is only a single reactor with fixed volume V , we can instead write a conservation law L′

in terms of concentrations c

L′ ≡ `̀̀ · c , (3.70)

with a vector `̀̀ such that

`̀̀ ·ννν = 0 . (3.71)

In an open reactor where τ is finite, such quantities are no longer conserved. Instead, they converge
asymptotically towards their value defined for the injected concentrations:

L0 = `̀̀ · c0 . (3.72)

Indeed, applying the vector `̀̀ to Eq. (3.67), we find that

dL
dt

=
1
τ
(L0−L) , (3.73)

the solution of which is given by

L(t) = L(0)e−t/τ +L0

(
1− e−t/τ

)
. (3.74)

It is important to emphasize that all conservation laws are broken in a CSTR. However, long-term
behavior is constrained by the CSTR counterpart of a conservation law L0 (Eq. (3.74)), provided
the reactor keeps being fed with the same composition c0.

We can also recover this result using a full stoichiometric matrix ννν ′ of the CSTR. In this matrix,
the reaction network also includes the reactions corresponding to influx and outflux of each of s
species. Since our description does not capture what happens outside the confines of the reactor,
we can write reactions of the form

/0−−→ A (3.75)

for influx, and

A−−→ /0 (3.76)

for outflux. Since we are presently not concerned with the details of whether /0 corresponds to the
influx or the outflux, we will in the present approach model these reactions as†:

/0−−⇀↽−− A. (3.77)

†For a more complete thermodynamic description one may wish to treat these separately
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Since all s species can flow out of the reactor, there are s such reactions, with rates (c0− c)/τ .
Thus, the total number of reactions becomes r′ = r+s. The matrix of stoichiometric coefficients

can now be extended towards a r′× s matrix with r′ = r+ s. This means that the new stoichiometric
matrix of the CSTR reads

ννν
′ = (ννν ,III) , (3.78)

where III is the identity matrix s× s. Therefore Eq. (3.67) becomes

dc
dt

= ννν
′ ·w′, (3.79)

with the flow rate w′ = (w, w̃)T a column matrix of dimension 1× r′ with w̃ = (c0− c)/τ .
In an open reactor, we also get

rank(ννν ′) = r′−dimker(ννν ′) = s−dimcoker(ννν ′) . (3.80)

The number of conserved quantities is now equal to zero l′ = dimcoker(ννν ′) = 0 so that the number
of cycles is equal to the number of reactions in the original network: c′= dimker(ννν ′) = r. Therefore,
there are

c′− c = r− c = s− l (3.81)

cycles of the open network that were not already present in the corresponding closed network. For
chemostatted systems, such cycles have been called emergent cycles [21, 31], (See also Sec. 2.5.3).

Here, we choose to call these cycles external cycles, because they involve the flow rates w̃ which
are specific to the CSTR. The other cycles are called internal. A general cycle c′ can be split into
network components and flow components as c′ = (c, c̃)T. This cycle obeys ννν ′ · c′ = ννν · c+ c̃ = 0.
Here we can make the distinction between internal cycles cγ previously defined for the network of
the closed reactor which are such that ννν · cγ = 0 and c̃γ = 0; and external cycles cα which are such
that

c̃α =−ννν · cα 6= 0. (3.82)

As far as the thermodynamic description of the system is concerned, Eq. (3.65) becomes

dgV

dt
= ∑

ki
µkν

′
kiw
′
i , (3.83)

within the framework of the extended network. In a stationary state, the entropy production rate of
Eq. (3.64) may be rewritten as:

σ = − 1
T

µµµ ·ννν ·w =− 1
T ∑

λ

wλ µµµ ·ννν · cλ ,

= − 1
T ∑

α

wα µµµ ·ννν · cα ,

=
1
T ∑

α

wα µµµ · c̃α ≥ 0. (3.84)

This shows that in this case the entropy production rate can be written as a sum of contributions
from external cycles denoted with the index α only. A similar property was reported in the case of
chemostatted systems. [21, 31]

Note that σ is the entropy production due to chemical reactions. In a CSTR, there can be
other significant sources of entropy production, such as the dissipative stirring and mixing entropy
between inlet and outlet.

Let us now move to two illustrative examples of the above framework. The first example is
a network of small size taken from Ref.[21], and the second one is a larger network describing
polymers with a mass-exchange process taken from Ref.[17].
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Example with a finite network

The set of reactions in the first example (taken from [31]) are

A+B
1−−⇀↽−− C, w1 = k+1[A][B]− k−1[C], (3.85)

C
2−−⇀↽−− B+D, w2 = k+2[C]− k−2[B][D], (3.86)

B+D
3−−⇀↽−− E, w3 = k+3[B][D]− k−3[E], (3.87)

E
4−−⇀↽−− A+B, w4 = k+4[E]− k−4[A][B]. (3.88)

The stoichiometry matrix of this network is then

ννν =


−1 0 0 1
−1 1 −1 1

1 −1 0 0
0 1 −1 0
0 0 1 −1

 , (3.89)

and the corresponding hypergraph is shown in Fig. 3.4.

E

C

A

B

D

Figure 3.4: Hypergraph of the closed chemical network (3.85)-(3.88).

As shown in Ref. [21], this network has l = 2 conserved quantities L1 = [B]+ [C]+ [E] and
L2 = [A]+[C]+[D]+[E]. There is only one cycle (c = 1), with a null right eigenvector (1,1,1,1)T.

For the open reactor network, the stoichiometric matrix ννν ′ is obtained from Eq. (3.78), to give

ννν
′ =


−1 0 0 1 1 0 0 0 0
−1 1 −1 1 0 1 0 0 0

1 −1 0 0 0 0 1 0 0
0 1 −1 0 0 0 0 1 0
0 0 1 −1 0 0 0 0 1

 , (3.90)

which has rank 5, c′ = 4 cycles and l′ = 0 conserved quantities. By opening the reactor, the
dimension of the space of cycles has thus been increased by s− l = 3 consistent with Eq. (3.81).

A particular cycle decomposition we can now choose is the old cycle c1 =(1,1,1,1,0,0,0,0,0)T

and c2 =(1,1,0,0,1,0,0,−1,0)T, c3 =(0,1,1,0,0,0,1,0,−1)T, and c4 =(0,0,1,1,−1,0,0,1,0)T.
The new cycles are represented in Fig. 3.5. This representation makes it clear that hypergraphs
depicting the new cycles of the open network are built from the hypergraph of the closed network by
removing some reactions and chemical species. Then the remaining pieces are connected together
using a special symbol φ , which is introduced for this purpose and which describes new reaction
pathways involving the exterior of the CSTR.

We note that the hypergraphs in Figs. 3.4 and 3.5 depend on the reaction network, but not on
the concentration values of the involved species.
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Figure 3.5: Hypergraphs of the three new cycles in the open version of the chemical network
represented in Fig. 3.4. Here (a), (b) and (c) correspond to the cycles c2, c3 and c4 respectively.
Note the appearance of the symbol φ which is a notation for new reactions involving the inflow and
outflow of the CSTR.

Example with an infinite network
We now move to a more complex reaction network, namely the model of polymers undergoing a
mass-exchange process taken from Ref. [17]. In this model, two polymers of with n and m repeating
units exchange a single monomer unit, through the reaction

(n)+(m)
κ−−⇀↽−− (n+1)+(m−1), for n≥ 1, m≥ 2. (3.91)

In an open reactor, the kinetic equations can be written in the form:

dck

dt
=

1
2 ∑

n≥1,m≥2
νk,nm wnm +

1
τ
(ck,0− ck) for k ≥ 1, (3.92)

with the stoichiometric coefficients νk,nm = δk,n+1+δk,m−1−δk,n−δk,m and the rates wnm = κcncm−
κcn+1cm−1 obeying the mass action law.

In the closed reactor (τ = ∞), this network has two conserved quantities: the total concentration
C ≡ ∑

∞
k=1 ck and the total number of monomeric units M = ∑

∞
k=1 k ck. In the open reactor, these

quantities are no longer conserved because they obey the equations

dC
dt

=
1
τ
(C0−C) , (3.93)

dM
dt

=
1
τ
(M0−M) , (3.94)

so that they converge asymptotically in time towards their value C0 or M0 fixed by the inlet
concentrations.

Although the reaction network is infinite, it can be truncated by considering a finite number
s of species. This is not a problem, since one can choose s to be arbitrarily large, whereas finite
residence times and mass place clear constraints on the largest species that can be observed in
the reaction mixture. The dynamics will then be fully captured by a finite-dimensional reaction
network.

The reactions and the cycles can be enumerated using the list of all the reactions:

1+2−−⇀↽−− 2+1 , 2+3−−⇀↽−− 3+2 , 3+4−−⇀↽−− 4+3 , . . .

1+3−−⇀↽−− 2+2 , 2+4−−⇀↽−− 3+3 , . . .

1+4−−⇀↽−− 2+3 , . . .
... (3.95)
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In the closed reactor, the number of reactions involving s species is thus equal to

r =
1
2

s(s−1) . (3.96)

Since there are l = 2 conserved quantities in the closed reactor, Eq. (3.68) thus shows that the
number of cycles is equal to

c = r− s+2 =
1
2
(s−1)(s−2)+1 . (3.97)

Accordingly, these numbers are increasing quadratically with the number s of species.
In the open reactor, the reactions include the rates w̃k = (ck0− ck)/τ due to the flow so that the

number of reactions involving s species is now given by

r′ = r+ s =
1
2

s(s+1) . (3.98)

There are no conserved quantities l′ = 0 and the number of cycles is here equal to

c′ = c+ s−2 = r =
1
2

s(s−1) . (3.99)

Therefore, opening the reactor only adds a number of new cycles s−2 that is increasing linearly
with the number of species, while the total number of cycles of the open system is increasing
quadratically with the number of species.
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Figure 3.6: Stationary distributions of the oligomer concentrations {ck} for the mass-exchange
process with the rate constant κ = 1 in a CSTR with the injection of monomers and 10-mers at the
inlet concentrations c1,0 = 1 and c10,0 = 2 for different values of the residence time τ . If τ = ∞, the
reactor is closed and the stationary distribution is the equilibrium one (open squares). If τ is finite,
the reactor is open and out of equilibrium (filled symbols).

In the CSTR, all the concentrations remain bounded in time. This rules out the possibility to
observe an “unbalanced phase”, such as the unbounded growth phase reported in Ref.[17] (see
also Sec. 7.3.3) in a variant of this mass-exchange model, which was driven out-of-equilibrium by
chemostats fixing the concentrations of polymers of certain lengths. In that model, the total concen-
tration c increased linearly in time and the total number of monomers M increased quadratically. In
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contrast, in a CSTR both quantities remain bounded in time, a property which follows generally
from Eq. (3.73).

In Fig. 3.6, we show the stationary distribution of concentrations in a CSTR for different
values of the residence time τ by injecting monomers at the concentration c1,0 and oligomers of
length l = 10 at the concentration c10,0. The kinetic equations are integrated with a Runge-Kutta
algorithm of orders 4 and 5 with variable steps from the initial distribution ck(0) = exp(−k2/2).
The distribution is plotted after a time interval t = 1000 if τ = ∞,0.1,1,10, after t = 10000 if
τ = 100, and after t = 50000 if τ = 1000, when stationarity is numerically reached. If τ = ∞, the
reactor is closed so that the concentrations reach their equilibrium exponential distribution

ck,eq =
C(0)2

M(0)

[
1− C(0)

M(0)

]k−1

, (3.100)

determined by the initial values of the two invariant quantities C(0)= 0.7533 and M(0)= 0.9119, so
that ck,eq = 3.58×0.174k. In contrast, under nonequilibrium conditions if τ is finite, the distribution
deviates from being purely exponential and it even becomes bimodal with peaks at k = 1 and k = 10
if the open reactor is strongly out of equilibrium with a small enough residence time τ . Nevertheless,
the distribution is always exponential beyond the largest injected concentration c10,0 (see Appendix
A in Ref. [20] for an extended discussion). In the open reactor, the distribution no longer depends
on the initial conditions but on the values of the injected concentrations.

3.3 Serial Transfer
Now, we consider the dynamics of the reaction network in a typical serial transfer (Fig. 3.7. )
experiment.[32] Serial transfer shows strong similarities with a CSTR, in that the reactor contents
are diluted and refreshed with a new solution of well-defined content. Experimentally, it is easier to
set up a serial transfer experiment then a CSTR since transferring a volume fraction can be done
manually using only a pipette. Consequently, serial transfer is often chosen as a practical substitute
for a CSTR. An important aim of this section is to see how far the analogy goes.

3.3.1 Time evolution of the concentrations
At every transfer, a fraction f of the solution volume V is transferred to another closed reactor
already containing a fresh solution of volume (1− f )V with reactants at the concentrations ck0 as
illustrated in Fig. 3.7.

f V

(1−f )V

......

Figure 3.7: Schematic representation of a serial transfer experiment in which a volume fV of
the solution of interest (green) is transferred repeatedly into a fresh solutions of volume (1− f )V
(blue).

Let T be the time interval between two transfers. During this time interval, the reactor is closed
so that the concentrations evolve according to

dc
dt

= ννν ·w . (3.101)
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Let c(nT −0) be the concentrations just before the previous transfer. The concentrations just after
the transfer and stirring are thus given by

c(nT +0) = (1− f )c0 + f c(nT −0) . (3.102)

Thereafter, the concentrations evolves according to

c(t) = c(nT +0)+
∫ t

nT
ννν ·w

[
c(t ′)

]
dt ′ (3.103)

with nT +0 < t < nT +T −0. The concentrations just before the next transfer are thus given by

c(nT +T −0) = (1− f )c0 + f c(nT −0)+
∫ (n+1)T

nT
ννν ·w [c(t)] dt , (3.104)

which defines a mapping cn+1 =ΦΦΦ(cn) from cn ≡ c(nT −0) to cn+1 ≡ c(nT +T −0). A similar
mapping can be obtained for the concentrations after the transfers.

Let us consider the case where transfers are repeated every time interval T = ∆t, which is
taken to be short enough with respect to the timescale τr of the fastest reactions in ννν . Under
this condition, we can linearize the integral in Eq. (3.104) and we get the approximate ordinary
differential equations:

∆c
∆t
' 1− f

∆t
(c0− cn)+ννν ·w [(1− f )c0 + f cn] , (3.105)

where ∆c = cn+1− cn. Introducing the effective residence time

τ ≡ ∆t
1− f

, (3.106)

we recover in the limit ∆t→ 0 the kinetic equations of the concentrations in a CSTR:

dc
dt

= ννν ·w(c)+
1
τ
(c0− c) . (3.107)

If f = 1−T /τ in the limit T → 0, an experiment of serial transfers between closed reactors is
thus similar to an experiment in a CSTR. Therefore, similar nonequilibrium regimes are expected
in both experiments under comparable conditions.

The analogy between CSTR and serial transfer works best when transfer occurs on a much faster
timescale than chemistry. Since the object of interest is the reacting chemical system, experiments
typically deviate from that limit, such that the system actually gets to consume the reactants that
are refreshed. We will show however, that through Eq. (3.106) closely analogous behaviors are still
found when reactions are not too slow with respect to transfer.

3.3.2 Thermodynamic Aspects of Serial Transfer
Let us follow Gibbs’ free energy during the time evolution. Before the transfer at time nT , the free
energy density of the solution in the volume V is gV [c(nT −0)]. After the transfer of the volume
fV of solution into the volume (1− f )V of fresh solution and the mixing of both, the free energy
density becomes gV [ f c(nT −0)+(1− f )c0]. Thereafter, the free energy density changes in time
since the concentrations evolve according to Eq. (3.101) in the closed reactor. At the end of the
time interval nT < t < nT +T , the free energy density has thus become

gV [c(nT +T −0)] = gV [ f c(nT −0)+(1− f )c0]+
∫ (n+1)T

nT
dt ġV [c(t)] , (3.108)
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where ġV = µµµ ·ννν ·w is the time derivative of the free energy in the closed reactor given by Eq. (3.61)
with τ = ∞. The process repeats itself at every time interval.

In the limit where T = ∆t→ 0 with f = 1−∆t/τ , using the same notation cn ≡ c(nT −0) as
above, Eq. (3.108) becomes

gV (cn+1) = gV

[
cn +

∆t
τ
(c0− cn)

]
+∆t µµµ(cn) ·ννν ·w(cn)+O(∆t2) . (3.109)

Since µµµ = ∂gV/∂c, the previous equation becomes

gV (cn+1) = gV (cn)+
∆t
τ

µµµ(cn) · (c0− cn)+∆t µµµ(cn) ·ννν ·w(cn)+O(∆t2) . (3.110)

In the limit ∆t→ 0, we thus find the differential equation

dgV

dt
= µµµ(c) ·ννν ·w(c)+

1
τ

µµµ(c) · (c0− c) , (3.111)

which is the same as Eq. (3.61) for the time evolution of the free energy in the CSTR.
In the limit ∆t→ 0, there is thus equivalence between the dynamics in the CSTR and the time

evolution in a serial transfer experiment.

3.3.3 General properties of the reaction network in serial transfers
The considerations of Sec. 3.2.3 extends to reaction networks in serial transfers between closed
reactors. Here, a stationary state corresponds to a fixed point cn = c∗ = ΦΦΦ(c∗) of the mapping
defined by Eq. (3.104).

As in the case of the CSTR, conserved quantities of the closed network, namely quantities of
the form L = `̀̀ · c are no longer conserved in the open reactor. Instead, their dynamics follows a
simple relaxation equation

L(nT +T −0) = (1− f )L0 + f L(nT −0) , (3.112)

which is the counterpart of Eq. (3.73). At the fixed point where the conserved quantity is such that
L(nT +T +0) = L(nT +0) = L∗, this quantity equals the quantity L0, which is the conserved
quantity of the closed network evaluated at the injected concentration and which was introduced in
Eq. (3.72).

Furthermore, the fixed point c∗ should satisfy the same condition

ννν
′ ·w′ = 0 , (3.113)

as in Subsec. 3.2.3 in terms of the same stoichiometric matrix (3.78), which was introduced to
characterize the CSTR. Note however that now w′ is replaced by w′ = (〈w〉, w̃)T with the time
average of the reaction rates over the time interval between the transfers

〈w〉= 1
T

∫ (n+1)T

nT
w [c(t)] dt , (3.114)

which has the same value between every transfer because the process repeats itself from the point
fixed cn = c∗, and

w̃ =
1− f
T

(c0− c∗) . (3.115)

Therefore, Eq. (3.80) applies here as well and the number of conserved quantities is equal to zero.
The rates can be decomposed as w′ = ∑λ w′

λ
e′

λ
onto the c′ = dimker(ννν ′) right null eigenvectors of

the matrix ννν ′, which define the cycles, as in Subsec. 3.2.3.
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Illustrative example
Here, we illustrate the correspondence between the serial transfers and CSTR dynamics using the
mass-exchange model introduced above. The conditions of operation of the reactors are the same
as in Fig. 3.6, namely monomers are injected at the concentration c1,0 = 1 and oligomers of length
l = 10 at the concentration c10,0 = 2, and again a rate constant κ = 1 is chosen. The main difference
is that now the reactor is evolving by serial transfers instead of the CSTR dynamics. The kinetic
equations have been integrated using the integrator odeint, which is available in SciPython. The
precision of this integrator is fixed to 10−5, which is the same as that used in Fig. 3.6. The length
distributions of the oligomers have been observed at the time 1000T −0, at which we find that the
distributions have reached stationarity. In Fig. 3.8, simulations of serial transfers have been carried
out keeping the time T fixed while varying f . As expected in this case, the length distribution
approaches the equilibrium exponential distribution in the limit f → 1, since the residence time
introduced in Eq. (3.106) becomes infinite.

−
0

(a)

−
0

(b)

Figure 3.8: Concentrations ck of oligomers versus their length k probed at the time 1000T − 0
after a thousand serial transfers with fixed parameters (a) T = 1 and (b) T = 0.1 and for various
values of f . Symbols correspond to f = 0.01 (downward red triangles), f = 0.1 (yellow diamonds),
f = 0.5 (magenta squares), f = 0.9 (green stars), and black crosses represent the equilibrium
distribution.

In order to test more precisely the convergence towards the CSTR dynamics, we have varied
in Fig. 3.9 the parameters ( f ,T ) while keeping the residence time τeff = τ constant either at the
value 1 or 0.1. Polymer molecules are equally reactive in this model, for which we can write a
reaction timescale τr, corresponding to the typical waiting time to encounter any other polymer. If
we consider donation of mass and reception of mass as different reactions (due to the abundance of
monomers, abstraction of mass is initially slow), we can then write for the former

τr =
1

κC
. (3.116)

Since C = c1,0 + c10,0 = 3, we find τr = 1/3, which is situated between the two residence times
being assessed, and explains the clear differences in overlap between Fig.3.9a and Fig.b.

The length distributions of the oligomers have been observed at the time 1000T −0. These
plots indeed confirm that, in this system, a convergence towards the CSTR is obtained when f → 1,
which is equivalent to T → 0 since the residence time τ is kept constant.

In general, the state of the reactor following serial transfers with arbitrary parameters ( f ,T )
can differ substantially from the predictions of the CSTR. However, if the parameters ( f ,T ) are
chosen according to Eq. (3.106) and the time of observation is not too long, as shown in Fig. 3.9, the
behavior resulting from serial transfers can be quite close to that observed by the CSTR dynamics
even when the parameter f is varied in a large range from 0.001 to 0.99.
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−
0

(a)

−
0

(b)

Figure 3.9: Concentrations ck of oligomers versus their length k probed at the time 1000T − 0
after a thousand serial transfers corresponding to varying (T , f ) parameters at fixed residence
time (a) τeff = 1 or (b) τeff = 0.1. Symbols correspond to f = 0.01 (downward red triangles),
f = 0.1 (yellow diamonds), f = 0.5 (magenta squares), f = 0.9 (green stars), but now black crosses
represent the length distribution predicted by the CSTR dynamics.

3.4 Osmotically coupled growing compartments
Of particular interest in origins of life are replicating compartments such as protocells. Compart-
ments offer many advantages, such as chemically distinct environments (Ch. 5,6) and multilevel
selection (Ch. 8) which make them desirable entities. However, making a copy of compartment
and its contents is not trivial, especially if the ingredients one has are simple reactions and basic
physical chemistry.

As part of an ongoing experimental work “Natural selection of compartmentalized autocatalytic
chemical reactions”‡ (in collaboration with Heng Lu, Cyrille Jeancolas, Philippe Pelupessy, Fabien
Ferrage, Éstanislau Guilherme, Gabrielle Woronoff, Rebecca Turk Macleod, Ludovic Jullien, Eörs
Szathmary, Andrew Griffths and Philippe Nghe), this section considers a replication process, where
a compartment grows through osmosis and diffusive exchange with an environment, after which it
is split in two (see Fig. 3.10). Experimentally, the splitting occurs through shear forces. As we will
show, repeating such a process indefinitely requires autocatalysis, which is experimentally achieved
through the formose reaction, which is detailed in Appendix 10.2.

3.4.1 Exchange process between compartments
Suppose we have a compartment I of volume V I, and molecule numbers given by {nI

1,n
I
2, ...,n

I
s},

leading to molecular fractions

xI
i =

nI
i

∑
s
j=1 nI

j
. (3.117)

During a time τ , compartment I is placed in contact with an environment, which is either i) a
compartment II with a volume V II, molecule numbers given by nII

i and molecular fractions xII
i or

ii) a large reservoir acting as a chemostat, with fixed molecular fractions x̄i. The contact happens
only through diffusion, across an oil phase or membrane separating the two compartments. On
the timescale τ , this diffusion process is selective: one only observes the exchange of sufficiently
mobile species (e.g. metal ions do not exchange, whereas small uncharged molecules do). At the
end of the time τ , compartment I is split in two equal volumes with the same composition

V I→ V I

2
, xxxI→ xxxI (3.118)

‡manuscript in preparation
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Figure 3.10: Illustration of the droplet growth-division cycle.

One of these split compartments is then taken, and assigned to be the new compartment I. This
compartment is then again placed in contact with the environment. If the environment was
compartment II, this compartment is replaced by a new one with the exact same initial conditions
as occurred in the previous round.

The environments have the same solvent as compartment I, which we assume is always
exchanged. Compartments with the same molecules have the same local chemical reaction network
νννr and thus exhibit the same chemistry. Distinct chemistry directly implies the presence of distinct
species, as elaborated upon in Sec.2.2.2 on representations in chemical networks.

By this, it is meant that pathways and catalysts are not hidden and subject to the nonambiguity
condition (∀i, j ν

+
i j ν
−
i j = 0, Eq. (2.15) in Sec. 2.2.2). For example, if the following reaction can

take place in compartment I

SI −−⇀↽−− PI, (3.119)

than this (within our framework) points to an inherent capacity of S to be converted to P, and the
equivalent reaction must exist in compartment II

SII −−⇀↽−− PII. (3.120)

However, if compartment I contains a catalyst E, a transformation

SI +EI 1−−⇀↽−− ESI, (3.121)

ESI 2−−⇀↽−− EPI, (3.122)

EPI 3−−⇀↽−− EI +PI, (3.123)

can take place. If compartment II contains S but not E, this reaction pathway is unique to I. Although
I and II may be highly similar (e.g. same solvent), their chemistry may be described by different
chemical networks. In our treatment, we impose that any distinction between these networks must
be justified through the chemical composition. In doing so, we can address the question whether
these differences in local chemistry can be maintained.

3.4.2 Periodic solutions
During the time that the two compartments are in contact, they are described by reaction-diffusion
equations. During this period, the combination of compartments forms a closed system, for which



116 Chapter 3. Thermodynamic aspects of open networks

we can write a Lyapunov function:

S = kb ∑
i

nI
i ln

nI
i

∑ j nI
j
+ kb ∑

i
nII

i ln
nII

i

∑ j nII
j
−∑

i
nI

i
µ◦i
T
−∑

i
nII

i
µ◦i
T
, (3.124)

where we have neglected the contribution of the oil phase, for which the contribution of dissolved
substances at any given time is negligible. The Lyapunov function we have chosen is the entropy,
for which Ṡ ≥ 0 and for which Ṡ = 0 if and only if the total system has reached its unique fixed
point. In general, systems with a Lyapunov function do not have time-periodic solutions[33].

However, at the end of time τ , we split the droplet and place it in contact with a new compart-
ment. It is this driving that makes it possible to have periodic solutions. Let us write the vector ζζζ ,
which contains the molar fractions and volume corresponding to droplet I. During the first stage of
the protocol, reactions and exchange occur during a time τ− = τ− ε , where ε is arbitrarily small,
such that

ζζζ (t) =


xI

1(t)
...

xI
s(t)

V (t)

→


xI
1(t + τ−)

...
xI

s(t + τ−)
V (t + τ−)

 (3.125)

For the subsequent division, we then have

ζζζ (t + τ) =


xI

1(t + τ)
...

xI
s(t + τ)

V (t + τ)

=


xI

1(t + τ−)
...

xI
s(t + τ−)

V (t + τ−)/2

= P(ζζζ (t)). (3.126)

The function P(ζζζ (t)) is a Poincaré map. Here, it takes ζζζ (t) as an argument and returns the vector
ζζζ (t + τ) that would be obtained upon integrating the corresponding dynamical system for a time
τ−, followed by splitting. The simplest periodic orbit that can be obtained in this way, follows the
map

ζζζ (t + τ) = P(ζζζ (t)), (3.127)

which implies
xI

1(t)
...

xI
s(t)

V (t)

=


xI

1(t + τ)
...

xI
s(t + τ)

V (t + τ−)/2

 . (3.128)

While the volume doubles, the chemical composition at the end is exactly that of the start (provided
the division is exactly symmetric). This implies that the quantity of every species has doubled after
τ− has elapsed

∀i, nI
i(t + τ

−) = 2nI
i(t). (3.129)

Let us now consider what this means for conservation laws and autocatalysis.
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3.4.3 Conservation laws under recurrence
Let us consider the stoichiometric submatrix ν̄̄ν̄ν , containing the chemical species in compartment I
that do not exchange. In particular, we will consider the case where left nullspace of ν̄̄ν̄ν is nonempty,
such that there is at least one conservation law L. When at the end of the round compartment I splits
in two, so do the abundances of conserved species: L→ L/2. Upon the nth repetition, L→ L/2n,
and soon after L→ 0. Since then

L = ∑
i

ai nI
i = 0, (3.130)

it follows that all species obeying a mass-like conservation law must become absent from the
system

∀i,ai > 0, nI
i = 0. (3.131)

for a conservation law that is not mass-like, e.g. of the form L = nI
A− nI

B, species do not need
to become absent to respect Eq. (3.72). These species are still subject to dilution, however, so a
persistent presence of these species will require a process that resupplies them while respecting the
constraints imposed by L.

3.4.4 Growth due to one source with identical chemistry
To assess different growth regimes, it will be instructive to study our system in a situation where τ

is long enough to reach equilibrium for the processes deemed fast enough to be described by ννν . A
compartment grows because it receives an influx of solvent and possibly building blocks:

AI −−⇀↽−− AII. (3.132)

This exchange will equilibrate molar fractions between compartments, for those species that are

,

I II

,

Figure 3.11: Illustration of two droplets with the same chemistry.

i) exchanged, or ii) formed only from exchanged species. Here, we explicitly suppose that both
compartments have the same chemical networks for this subset (for now, we exclude the case that
e.g. I has a catalyst that II does not). Denoting Ω the set of such species, the system will ultimately
tend to the equilibria

∀i ∈Ω, µ
I
i = µ

II
i , (3.133)

which for ideal solutions (which we will assume henceforth) corresponds to

∀i ∈Ω, xI
i = xII

i . (3.134)
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This follows directly from the entropy S under the constraints of the two-compartment network
[34]. Species that are not in Ω still contribute to the osmotic pressure. We denote their collective
fractions as x̄I, x̄II, and have the balance equations

∑
i=1

xI
i = 1− x̄I, ∑

i=1
xII

i = 1− x̄II. (3.135)

If the Eqs. (3.134) is satisfied, this balance is automatically satisfied as well: x̄I = x̄II. This is
achieved by changing the compartment sizes (the number of molecules in a compartment). Since
x̄I cannot be formed from exchanged species alone, it is not resupplied, and over the course of
several divisions x̄I→ 0. Knowing that I loses these compounds, we can now consider the following
scenarios:

i) Droplet II retains a permanent fraction of nonexchanging compounds: x̄II 6= 0. This may
happen because II is a large reservoir, or because we constantly renew the neighbor droplet II.
Since, x̄I→ 0, we have x̄II 6= x̄I and Eq. (3.134) can no longer be satisfied. The equilibrium solution
is to absorb all matter in compartment II.

ii) Droplet II has no nonexchanging compounds x̄II = 0, and is a large reservoir. If this is true,
then Eq. (3.134) will be satisfied at all times once x̄I = 0. Since no further gradients will then exist,
growth is arrested, and compartment I vanishes upon subsequent divisions V → ...→V/2n→ ...→
0.

iii) Droplet II has no nonexchanging compounds x̄II = 0 and is a neighbor droplet. In this case
having two droplets or a single one is equally valid for the Lyapunov function provided.

Clearly, the final situation is counterintuitive. This is because we have so far allowed ourselves
to neglect the effect of surface tension. At the scale of these droplets (100 pL), the contribution of
surface tension is small with respect to other entropic contributions (such as the ∑xI

i lnxI
i ). However,

when all other contributions cancel out, the growth mechanism becomes Ostwald ripening.
We conclude that two compartments undergoing the same chemistry and allowed to relax

to equilibrium before compartment I is divided, will not yield persistent growth-division cycles
for I. This may not come as a surprise, but making it explicit provides two directions to look
further: i) choosing τ such that division happens before equilibrium and ii) having chemically
distinct compartments. The interest of the former strategy is illustrated in Chapter 8 on transient
compartmentalization.

3.4.5 Growth due to one source with different chemistry
Provided we have the same solvent and a set of common compounds in I and II, a distinct chemistry
in compartment I acting on the common compounds implies that there are compounds in I that
afford this pathway. These compounds are not present in II.

We can strictly consider three ways in which these distinct compounds afford a distinct chemistry
when acting on an exchanged compound S:

i) they are solely consumed as reactants. Supposing an exchanged compound S and a unique
compound X, such a reaction would e.g. be

S+X−−⇀↽−− Y+Z. (3.136)

ii) they act as allocatalysts. converting species in Ω to new species. Supposing an exchanged
compound S and a unique compound E, this would e.g. afford the reactions forming a unique
nonexchanging compound P

S+E−−⇀↽−− ES−−⇀↽−− EP−−⇀↽−− P+E. (3.137)

iii) they are autocatalyst, species that facilitate the formation of new species. See Ch. 5 for an
elaborate discussion on autocatalysis. Let us here just say that by some combination of steps, an
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autocatalytic species consuming the exchanged product is regenerated. Let us e.g. consider the Toy
Formose reaction, with C1 the exchanging species

C1 +C2 −−⇀↽−− C3, (3.138)

C1 +C3 −−⇀↽−− C4, (3.139)

C4 −−⇀↽−− 2C2. (3.140)

If the distinct chemistry arises from i) and ii), but not iii), then the chemistry can be considered
transient: the species that afford this pathway are not synthesized (if they were, we would have
autocatalysis, see Ch. 5.). The reactants that afford i) and the catalyst that afford ii) do not exchange
(which is the feature that makes the chemistry in I distinct). As a set of distinct species, they
are neither formed (which would require autocatalysis) nor degraded (which would be reverse
autocatalysis or exchange, both ruled out). Consequently, they are subject to conservation laws L
(for catalysts, this is shown explicitly in Ch. 5).

,

I II

Figure 3.12: Illustration of two droplets exchanging C1. In compartment I, the Toy Formose
reaction is enabled. Dark blue squares: C1, double purple squares: C2, triple pink squares: C3,
quadruple red squares C4.

Consequently, upon repeated division these species vanish, along with their associated conser-
vation laws, after which the pathway is removed. It follows that persistent chemical distinctness in
the presence of one similar neighbor compartment or reservoir is ruled out, except for autocatalysis.

Let us now consider the equilibrium question for autocatalysis. As long as I is chemically
distinct, it will utilize a certain portion of exchanged species to form nonexchanging autocatalysts
and their derivatives. Upon repeated division, the molar fraction x̄I will be entirely dominated by
these species. Equilibrium will occur when the autocatalytic network fraction compensates the
nonexchanging fraction in II: x̄I = x̄II. For an infinite reservoir, this point may never come, since
x̄I can be resupplied indefinitely. For a neighbor compartment, such a point must exist due to the
finite mass.

In general, we require compartment I to have a different composition, to maintain the gradients
to grow it. We therefore require compartment I to be sufficiently chemically distinct from II.

3.4.6 Some illustrative examples
The following situations yield compartments capable of growth, but not persistence.

A salty compartment
A compartment containing nonexchanging compounds (e.g. a salt) and solvent is placed in contact
with a reservoir or droplet containing (potentially different) nonexchanging salts and solvent. If
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initially, x̄I(0)> x̄II(0) solvent will flow to compartment I, lowering x̄I. After a time τ−, we have
x̄I(τ−)≥ x̄II(τ−), where equality corresponds to equilibrium. After division, a new compartment I,

I

Figure 3.13: Illustration of two ‘salty’ droplets exchanging solvent.

with x̄I(τ)< x̄I(0) is generated and placed in contact with a new droplet II or the same reservoir,
such that x̄II(τ) = x̄II(0). Upon repeated iteration, the osmotic pressure difference decreases

x̄I(0)− x̄II(0)> x̄I(τ)− x̄II(τ)> ... (3.141)

Until x̄I(0) = x̄II(0). At this point, there is no gradient and thus solvent flow. This process fails to
respect the recurrence (3.128) for the volume variable V , and the compartment I will vanish upon
repeated division.

A catalytically active compartment
Suppose a compartment containing a catalyst E that converts exchanging species S to immobile
products P. The chemistry is given by Eqs.(3.121), (3.122) and (3.123), and has a mass-like
conservation law L1 governing catalyst abundance, and a mass-like conservation law L2 following
substrate to product

L1 = nI
E +nI

ES +nI
EP, (3.142)

L2 = nI
S +nI

ES +nI
EP +nI

P. (3.143)

Because we freely exchange S with the environment, our system only retains the conservation law

,

I II

Figure 3.14: Illustration of two droplets exchanging reactant S (blue square), with compartment I
having a catalyst E (red hexagon) to convert S to product P (purple squares).

L1. Upon repeatedly dividing in two, L1 = 0, and from Eq. (3.72) it follows that at that point, no
catalyst will remain. The growth due to the osmotic pressure exerted by E,ES,EP and P (which
exists due to the catalysis afforded by E) is therefore not persistent.
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Polymer growth in a compartment

Let us now consider compartment I with N polymer strands of various lengths l, but at least l ≥ 2.
Monomers M are exchanged with the environment, and can be added to the polymer

[l]+M−−⇀↽−− [l +1], (3.144)

Since we have furthermore assumed a fixed number of growing polymer strands, and no way to

,

I II

Figure 3.15: Illustration of two droplets exchanging monomer M, with compartment I having
growing polymers that can incorporate M.

generate new ones, we have a conservation law

L =
∞

∑
l=2

nI
[l] = N. (3.145)

The number of growing strands N will decrease upon successive divisions N→ ...→ N/2n→ ...→
0. Afterwards, there is no chemistry to make I distinct, gradients will vanish, and compartment I
will disappear by further division.

3.4.7 Limit cycles

The linear stability of an orbit ζζζ ∗ can be tested, by introducing a perturbation εεε around a periodic
orbit ζζζ ∗ such that

ζζζ
∗+εεε(t + τ) = P(ζζζ ∗+εεε(t))≈ P(ζζζ )+ [DP(ζζζ )]εεε(t) (3.146)

Here, DP(ζζζ ∗) is the linearized poincaré map around ζζζ ∗. Stability of the orbit ζζζ ∗ then requires the
perturbation to dampen out

|DP(ζζζ )|< 1. (3.147)

Typically, the function P(ζζζ ) can not be solved analytically and must be evaluated numerically, and
similarly for the linearized Poincaré map[33].
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Figure 3.16: Plots for two growth scenarios. Blue: Periodic volume growth for an autocatalytic
reaction droplet, which splits at the end of a round, after being fed by a ‘feeder’ droplet. Red:
instead of propagating the ‘Winner’ droplet after round 1, we propagate the feeder, which acquires
some of the autocatalytic compounds of the winner. Afterwards it is placed in contact with a new
feeder droplet every round and it starts to converge to a winner state.
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Figure 3.17: C1 concentration as a function of C2 concentration from t = 0 to 20τ , for the ‘winner’
compartment (blue) and a ‘feeder’ compartment (red). Both converge to the same limit cycle.

For the toy formose model, a stable limit cycle was obtained by simulating the protocol outlined
in Appendix 10.2.
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4. Information in chemical networks

In this section, we will illustrate the concept of information in the context of statistical physics,
nonequilibrium thermodynamics and chemical networks. The notion of information has a prominent
role in all Origins of Life research communities, but it is given a variety of meanings.

In chemistry, an intuitive understanding is often employed to communicate concepts and
explain chemical systems. Currently, a correct ‘chemical intuition’ is lacking for information,
nonequilibrium thermodynamics and large chemical networks. We hope to improve on this situation,
by providing examples and thought experiments to connect them.

We will start (Sec. 4.1) with a short historical introduction to information, the Gibbs paradox
and the role of coarse-graining in statistical physics and kinetics. The interest of reviewing these is
pedagogical, a number of misconceptions concerning information in origins of life and chemistry
can be readily cleared up when these concepts are made clear from the start. We deem it instructive
to repeat these concepts before moving to the sections in which we present our own results.

By showing how a single-molecule information to work convertor can be scaled up to macro-
scopic size (Sec. 4.2), we show how molecular degrees of freedom and mixing entropy can be
exploited to extract work. We also show how one can achieve dissipation-free full conversion of
enantiomers to their mirror image. In doing so, these notions acquire a clear thermodynamic inter-
pretation. Our convertors can be incorporated in a heat engine, or coupled to enantiomer reservoirs
to make a two-stroke engine that continuously extracts work by racemizing enantiomers4.1.

In chemistry, we are typically interested in the reverse problem: introducing work to acquire a
desired compound with high purity. In Sec. 10.3 we will first consider this problem on the level of
single reactions, where we can distinguish between kinetic and thermodynamic products, which
introduce fundamental limits on the purity we can achieve. We can go beyond these fundamental
limits, when additional reactions come into play. We will review some interesting examples of
existing error-correcting networks, and also consider some new ones. Each network has its own
characteristic tradeoffs, which affect e.g. the complexity, processing time, dissipation and yield of
the process.
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Figure 4.1: Using information as a fuel. Inspired by an original drawing by Luca Peliti

4.1 Some notions of information
Information theory was born with Claude Shannon’s analysis of fundamental limits to transmission
of a message through a channel in a paper titled ‘A mathematical theory of communication’[1]. In
the paper, a message is a sequence of symbols, encoded by bits, which is sent through a channel that
can be noisy. A fundamental quantity introduced in the work was the entropy H, which averages
over the logarithmic probabilities of messages

H =−∑
i

pi log2 pi. (4.1)

By choosing a logarithmic base of 2, the information content of a message could be quantified, in
terms of bits. In this measure, transitioning from total ignorance to full certainty that a system is
in a state i, an information − log2 pi is acquired. On average, an information equal to Eq. (4.1) is
acquired by obtaining full knowledge of a state or a message. In this sense, Information quantifies
a ‘surprise value’. If pi is close to 1, little is learned, since it was close to certain anyway.

When messages are sent through a channel with finite capacity (bits/second), they are encoded
by a sequence of symbols, which in turn can be encoded by a sequence of bits. For an optimal
transfer of information per bit (and per symbol), messages carrying little information should be
as short as possible (since they will be sent very often) and messages rich in information can be
longer. Shannon’s paper showed that optimal codes exist to achieve this, in noiseless channels and
in noisy ones.

The average number of bits needed per symbol (for lossless transmission, independent symbols),
is also quantified by an entropy H on the level of a single symbol, with pi the probability for this
symbol to be i. E.g. consider we wish to learn the content of a string of length N, composed of
an alphabet of n symbols that have equal probability of occurring, s.t. ∀i pi = 1/n. If we were to
arbitrarily generate such a string, we would come up with the same one with a probability

p =

(
1
n

)N

. (4.2)

The information we acquire by learning what the content of the string is, is Nlog2n bits.
A link with thermodynamic entropy was given in a very punctual manner: The form of H will

be recognized as that of entropy as defined in certain formulations of statistical mechanics where
pi is the probability of a system being in cell i of its phase space.
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Information theory (back then: communication theory) quickly caught on, also outside of
electrical engineering. Biologists, physicists, psychologists, economists and practitioners of other
disciplines started using concepts from the theory. In his 1956 paper ‘the bandwagon’ [2], Shannon
remarked that some moderation was in order In the first place, workers in other fields should realize
that the basic results of the subject are aimed in a very specific direction, a direction that is not
necessarily relevant to such fields as psychology, economics, and other social sciences. Indeed, the
hard core of information theory is, essentially, a branch of mathematics, a strictly deductive system.
A thorough understanding of the mathematical foundation and its communication application is
surely a prerequisite to other applications.

Indeed, we should be careful not to confuse information in the entropic sense with the colloquial
uses of the term information. In the latter case, one considers information as something that must
be pertinent. Information theory makes no such value statements, it attempts to find fundamental
limits to the transmission of encoded messages, whether they have meaning or not.

4.1.1 Information and the Gibbs Paradox
The Gibbs paradox is, like many ‘paradoxes’, only an apparent one. It becomes paradoxical when
one takes an incomplete starting point in the derivation of thermodynamics. Gibbs showed that
such an incomplete starting point could be the expression for the entropy of an ideal gas [3], which
did not consider permutations between molecules. Starting from the ideal gas law, and supposing
variations in energy ε proportional to temperature, Gibbs writes

pV = aT, (4.3)

ε = cT +E (4.4)

with a, c and E constants and V a volume. Eliminating pressure p and temperature T for the total
differential of dε , it is found that

dε =
ε−E

c
dη− a

V
ε−E

c
dV, (4.5)

where η is an entropy. Gibbs then rewrites the expression and integrates, to ultimately yield an
expression for the entropy of the form

S =−c log
ε−E

c
+η−a logV. (4.6)

Gibbs then considered a thought experiment of initially separated gases mixing by diffusion, which
is often paraphrased in the following manner: There are two chambers filled with gas, I and
II, maintained at identical pressure p and with respective volumes V I and V II. The gases have
corresponding entropies SI and SII. An extensive total entropy S for the two chambers that follows
Eq. (4.6) is then

S = SI +SII = mIaI logV I +mIIaII logV II. (4.7)

Where m is a measure of quantity (e.g. mass, but Gibbs underlines that one chooses dimensions on
a case by case basis) and a an entropic prefactor as found in Eq. (4.6). Via the ideal gas law, m and
a are related, here given by

ma =
pV
2T

. (4.8)

Let us now open a little door connecting the chambers and let them reach equilibrium. Choosing
V II =V I and V =V I +V II, Gibbs noted that this led to an entropy change

∆S = mIaI logV +mIIaII logV −mIaI log
V
2
+mIIaII log

V
2
= (mIaI +mIIaII) log2. (4.9)
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Such that

∆S =
pV
2T

. (4.10)

Noting that this entropic increase was not accompanied by an increase in energy, Gibbs pointed out
the act of undoing the mixing could be linked to energetic transformations: When we say that when
two different gases mix by diffusion, as we have supposed, the energy of the whole remains constant,
and the entropy receives a certain increase, we mean that the gases could be separated and brought
to the same volume and temperature which they had at first by means of certain changes in external
bodies, for example, by the passage of a certain amount of heat from a warmer to a colder body.

The apparent paradox was introduced when the gases that mixed were of the same nature,
‘indistinguishable’, such that the mixed state was equivalent to the unmixed one and should therefore
not provide an entropy change if Eq. (4.9) was applied. It was then pointed out that the paradox was
easily averted, by adding a new contribution to the entropy balance. Denoting the new expression
S′, this corresponded to

S′ = S−∑
i

ni lnni. (4.11)

The mixing paradox is first and foremost a thought experiment to find a consistent functional form
for entropy in classical thermodynamics. Once this form is found, it ceases to be a paradox. As
will be reviewed in the next section, this functional form has a straightforward interpretation in
statistical mechanics.

The Gibbs Paradox in statistical mechanics
In statistical mechanics, the additional term in Eq. (4.11) has a combinatorial origin. For a given
system state with molecular occupations nnn = {n1,n2, ...,ns}, and total number of molecules

N = ∑
i

ni, (4.12)

we can attribute a degeneracy z(nnn), corresponding to permutations among molecules of the same
type

z(nnn) =
N!

Πini!
. (4.13)

This degeneracy is first and foremost a choice of convenience to describe macrostates. Alternatively,
we could have insisted on treating every species separately, and indicate the position of the jth
particle of type i by its corresponding index of a volume cell, given by xi, j, such that a system state
is characterized by the vectors nnn,xxx and the probability of a state by p(nnn,xxx).

However, if our model makes no meaningful distinction between species of the same type, other
than fixing labels, we automatically have a permutation symmetry ∀i xi, j↔ xi,k, such that

p(nnn,{x1,1, ...,xi, j,xi, j+1, ...,xs,ms}) = p(nnn,{x1,1, ...,xi, j+1,xi, j, ...,xs,ms}) (4.14)

Furthermore, no volume cell is privileged, from which it follows that ∀i,k xi, j↔ x′i, j, where x′ is an
arbitrary different volume cell

p(nnn,{x1,1, ...,xi, j,xi, j+1, ...,xs,ms}) = p(nnn,{x1,1, ...,x′i, j,xi, j+1, ...,xs,ms}) (4.15)

Let us now consider this collection of particles being partitioned in small volume cells that compose
two large compartments of size V I and V II. If we disregard symmetries and there are no interactions
or chemical transformations, then any valid configuration vector nnn,xxx is equally probable. We
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describe equally probable microstates. In classical thermodynamics, maximum entropy is equated
with the most likely macrostate, for which this level of detail must be considered in a more coarse-
grained manner. For example, if we enquire about a macroscopic observable, such as the average
number of particles of type 1 that are in compartment II, we need to consider

[nII
1 ] =

s

∑
i=1

mi

∑
si=1

∑
xi∈{V I,V II}

χ
V II

xi
p(nnn,{x1,1, ...,xi, j,xi, j+1, ...,xs,ms}), (4.16)

where χV II

xi
is an indicator function that is zero for every volume cell outside of V II

χ
V II

xi
=

{
0 xi /∈V II

1 xi ∈V II (4.17)

Using the symmetries (4.14) and (4.15), this simplifies to

[nII
1 ] = n1

V II

V I +V II . (4.18)

Alternatively, we could have absorbed the symmetries directly in our description and opted for a
more coarse-grained probability distribution, p(nnnI,nnnII),

p(nnnI,nnnII) =
N!

ΠinI
i!n

II
i !

(
V I

v

)nI(
V II

v

)nII

p(nnn,xxx), (4.19)

with v volume of a volume cell. Unlike our former microstates, the coarse-grained states are not
equally probable. For a large system (N→ ∞) a small subset of coarse-grained states (nI,II

i ≈ [nI,II
i ])

will come to dominate the distribution. Naturally, a system in an arbitrary microstate will, on
average, be drawn towards the occupation of these most abundant coarse-grained states. In
information terms, it will move to the ‘least surprising’ configurations and maximize the entropy.

The operation of coarse-graining similar states thus provides us with an entropy that operates in
accord with classical thermodynamics. The degeneracy Ω(nnn) is sometimes wrongly thought (and
taught) to be a direct consequence of quantum mechanics, but more generally it can be shown that
the origin is a specific choice of coarse-graining [4]. Particularly striking is the example of colloidal
dispersions [5], where arguably no two colloids are the same on the atomic level. However, the
level of description of colloid thermodynamics normally is not concerned with such details. In
such a description, colloids judged to be sufficiently similar (e.g. occurring within a size interval of
[r,r+δ r]) are binned as phenomenologically equivalent species. Within the ensuing description,
we then have an exchange symmetry (4.14) between these species.

Coarse graining in kinetics
An example more pertinent to chemical networks comes when considering chemical kinetics.
Suppose we have a reaction

2A−−⇀↽−− B+C, (4.20)

taking the system from the microstate nnn= {nA,nB,nC} to nnn′= {nA−2,nB+1,nC+1}, by a reaction
that follows mass-action kinetics. In a Master equation framework, detailed balance imposes that
the transition rates W between a pair of such states verifies

Wnnn→nnn′

Wnnn′→nnn
=

z(nnn′)
z(nnn′)

exp(−β∆µ
◦) (4.21)
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Injecting

z(nnn) =
N!

nA!nB!nC!
, z(nnn) =

N!
nA!nB!nC!

(4.22)

this becomes

Wnnn→nnn′

Wnnn′→nnn
=

nA(nA−1)
(nB +1)(nC +1)

exp(−β∆µ
◦) . (4.23)

The degeneracy ratio z(nnn′)/z(nnn′) elegantly mirrors the reaction propensities used in a typical
mean-field description of kinetics

dnA

dt
= k+nA(nA−1)− k−nBnC, (4.24)

where volume dependencies are absorbed in the rate constants k+,k−.
Coarse graining is an essential part of a thermodynamic and kinetic description. By extension,

both descriptions may make similar approximations with respect to species similarity. In practice,
even molecules that are considered ‘the same’ can vary considerably in isotopic composition:
1.07% of carbon atoms is a 13C isotope, 0.368% of nitrogen atoms is 15N, 0.205% of oxygen is
18O, 4.29% of sulfur is 34S, 24.22% of chlorine is 37Cl and so forth.

It is not always appropriate to disregard the presence of such isotopes, especially when their
abundance is artificially increased. Heavier isotopes can slow down reactions, which is especially
pronounced for light atoms like hydrogen when being substituted by deuterium. For rate limiting
steps involving the displacement of hydrogen (e.g. proton abstraction H+, hydride shift H−), their
replacement by deuterium (D) can decrease the rate by a factor 2 to 10. When a reaction proceeds
by tunneling, the retardation can amount to a factor of 50, as recently observed for the hydride
shift in the formose reaction [6]. This phenomenon is known as the kinetic isotope effect and it is
an important tool in the elucidation of reaction mechanisms. Isotopes can also shift equilibrium
constants: the dimerization constant for hydrated formaldehyde was found to be 1.4 times higher in
D2O compared to H2O[7].

Framed in this way, the Gibbs paradox is no paradox, but a macroscopic example of informa-
tion loss in thermodynamics[4]: by mixing, particles lose their correlation with their initial half
compartment. The mixing of distinct gases is irreversible and thereby yields an entropy production.
This may happen to many degrees of freedom that escape our notice in a coarse-grained description
(e.g. racemization of molecules, interconversion of molecular configurations).

To see how the Gibbs paradox fits in the bigger picture of heat, work and information, Sec. 4.2
describes a scalable information engine that extracts work from chiral molecules in a controlled
fashion, by erasing their initial configuration. In the current literature, information processing in
thermodynamics is often interpreted on the scale of single molecules or colloids[8, 9, 10, 11]. The
machine we propose can equally well be treated in this regime, where it is a single-molecule engine
that creates a strong correlation between particle position and a degenerate particle state, which is
then exploited to extract work. By increasing the number of particles, a natural quantity to treat
the problem becomes the mixing entropy. This raises a semantic issue in the field of stochastic
thermodynamics, since we normally do not speak of macroscopic engines as information engines.

4.2 Macroscopic information engines
To make some notions of information more intuitive, we describe here a macroscopic system
that reversibly erases the information of a chiral state S of an asymmetric molecule with a single
stereocenter. This erasure happens through a racemization reaction: S −−⇀↽−− R, where R is the
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S R
a) b)

Figure 4.2: a) a membrane that only lets S (blue) through. b) Racemization catalyst (dark blue bars)
enables the reaction S−−⇀↽−− R.

mirror image of S. By coupling this reaction to a membrane exchange process for S, we are able to
generate a pressure difference, which we exploit to extract work from a heat bath. The principal
components for our machine are: (i) An enantiospecific membrane, which lets only one enantiomer
pass through, and (ii) a racemization catalyst, which enables the reaction S−−⇀↽−− R (see Fig.4.2).
From which we construct the system depicted in Fig. (4.4).

4.2.1 The single-molecule case
Let us first develop an intuition for a single-molecule case, illustrated in Fig. 4.3. There, we have
two pistons that contain a single-molecule gas between two compartments separated by a membrane
that only lets S through. A racemization catalyst, only present in compartment II, performs the
reaction S−−⇀↽−− R. The whole system is in contact with a thermal bath (not shown) maintained at a
temperature T .

The timescale of the racemization reaction is much faster than membrane exchange, which
means that if the molecule is in compartment II, we will no longer know if it is in the S or R state
(which are equally likely, since for enantiomers in an isotropic environment we have µ◦S = µ◦R).
The molecule will on average spend the same time in either state, and we can treat the molecule as
being in a ‘mixed S / R state’.

Since only the S enantiomer can cross the membrane, the typical residence time of a mixed-state
molecule is twice that of a pure S species. Consequently, the species will spend more time exerting
pressure on the piston in chamber II than in I. As we will demonstrate more precisely in the rest of
the next sections, this pressure asymmetry can be used to extract a work that exactly compensates
the information loss due to racemization.

As a single-molecule information-to-energy converter, the device is reminiscent of Szilard’s
engine[8]. In Szilard’s engine, information on the particles position is exploited by the introduction
of a partition and the subsequent extraction of work. Ouldridge, Brittain and ten Wolde[12] have
rephrased Szilard’s original argument for the functioning of the engine in terms of nonequilibrium
thermodynamics: such a process requires the introduction of a correlation between the particle
position and other degrees of freedom that intervene in the process. A more mechanistic view of
where this correlation comes from is often left implicit, one often treats it as a black box colloquially
referred to as a ‘demon’.

In our example in Fig. 4.3, the correlation processes are made explicit: when a molecule passes
from compartment II to I, it must be in the S state, and thereafter remain in this state. This creates a
correlation between chiral purity and location. When entering compartment II, contact with the
catalyst rapidly correlates the position with the mixed state S/R. Unlike the Szilard engine, we are
not dependent on one measurement followed by an extraction (or in case of a faulty measurement:
a loss). Instead, we can go back and forth between these correlated states many times, to gradually
extract a work of kT ln2 from the heat bath.

In principle, we can extend Szilard’s engine to N molecules and have it extract work when
all molecules are thought to be in one half of the room. However, observing such a state (which
has a probability weight of (1/2)N) in finite time becomes rapidly unfeasible with growing N.
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I II I II

a) b)

Figure 4.3: An illustration of the single-molecule case. a) a pure S state (blue) is indicative of
residence in compartment I. b) a mixed S / R state (due to rapid interconversion) corresponds to
residence in compartment II. The correlation between chiral state and position is mediated through
the selective membrane and racemization catalyst.

Our continuous protocol in Fig. 4.3, on the other hand, is scalable: we can extract work from
racemization for multiple species in parallel, as shown in Fig. 4.4. In the next section, we will
make this thermodynamically explicit.

I II

1-y y

Figure 4.4: A scaled-up information-to-work converter.

4.2.2 Extraction Protocol
Let us now describe an isochoric protocol for the extraction of work from racemization, in which
the pistons are moved in concerted fashion. We start with two compartments (labeled I and II in Fig.
4.4), separated by an enantiospecific membrane, which is specific to S. A racemization catalyst,
only present in compartment II, performs the reaction S−−⇀↽−− R. At the start of our protocol, II is
fully compressed and I contains only S. During the protocol, II expands and I is compressed.

For our isochoric protocol, the total volume, V0, is constant

V I +V II =V0, (4.25)

where V I,V II are compartment volumes of compartment I and II respectively. Wherever appropriate,
we will specify compartment with an upper index I, II. Similarly, we can define pI, pII as the total
compartment pressures which verify

pI = pI
S, (4.26)

pII = pII
S + pII

R. (4.27)

where pS denotes a partial pressure. We can now define the chemical potential of a species j as

µ j = µ
◦
j + ln

(
p j

p◦

)
. (4.28)

Here, µ◦j is a standard free energy of formation at reference pressure p◦. The protocol is
performed quasistatically, such that membrane exchange of S reaches equilibrium: µ I

S = µ II
S , and

from (4.28) it follows that

pI
S = pII

S . (4.29)
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By definition, any pair of enantiomers has the same free energy of formation: µ◦S = µ◦R. When the
racemization reaction reaches chemical equilibrium, we obtain µ II

S = µ II
R and therefore

pII
S = pII

R. (4.30)

Substituting Eqs. (4.30) and (4.29) in Eqs. (4.26) and (4.27), we obtain

pII = 2pI. (4.31)

As all our processes conserve the total number of molecules N, we have

nI
S +nII

S +nII
R = N, (4.32)

where n j denotes the number of molecules of type j. Using the ideal gas law: pV = nkbT , we can
write

nI
S

V I =
nII

S
V II =

nII
R

V II . (4.33)

We now parametrize the piston displacement using y, (with 0≤ y≤ 1), such that

V I = V0(1− y), (4.34)

V II = V0y. (4.35)

Plugging (4.35) in (4.33), we obtain

nI
S = nII

S
1− y

y
. (4.36)

If we now apply Eq. (4.32), we arrive at the expressions

nI
S = N

1− y
1+ y

, (4.37)

nII
S = N

y
1+ y

. (4.38)

This allows to obtain the pressure as function of y, from which we calculate work extraction during
the entire protocol. For compartment I, we write:

pI(y) = pI
S =

kbT nI
S

V0(1− y)
=

kbT N
V0(1+ y)

. (4.39)

The work applied on the system is expressed as

W =−
∫

I,II
pdV =−

∫
pIIdV II−

∫
pIdV I =

∫
(pI− pII)dV II, (4.40)

where we have used the fact that dV I =−dV II, since the protocol is isochoric. The net work applied
is then

W =
∫ 1

0
(pI(y)− pII(y))V0dy =−kbT N

V0

∫ 1

0

dy
1+ y

= −kbT N ln(1+ y)|10 =−kbT N ln2. (4.41)

Where we have used Eqs. (4.39) and (4.31). As the applied work is negative, there is a net extraction
of kbT N ln2 of racemization work in the reversible erasure of the configuration.
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4.2.3 Information erasure
The racemization leads to a loss of information with regard to the chiral state of a given molecule,
which can now be either an S or R enantiomer with equal probability. Let PS(y) denote the
probability for a particle to be in state S when the protocol is at y. We can then express the change
of information between y = 0 and y = 1 as

∆I = kb

(
PS(1) ln

PS(1)
PS(0)

+PR(1) ln
PR(1)
PS(0)

)
=−kb ln2 (4.42)

Generally, the extractable work from information obeys

Wextr ≤ T ∆I, (4.43)

which in our example becomes an equality due to quasi-state assumption.

4.2.4 Macroscopic engines
A heat-information engine
In order to make an engine, we can introduce a second heat bath at temperature T ∗. We can then
define the following cyclic protocol : I) Let y go from 0 to 1 at T (performing S→ S+R). II)
adiabatically expand the gas, until it reaches a temperature T ∗ III) Let y go from 1 to 0 at T ∗. IV)
adiabatically compress the gas, until it reaches a temperature T . This protocol yields a heat engine
reminiscent of a Carnot engine where isothermal volume expansion has been replaced by isothermal
information erasure. In step I), a work

WI→II = kbT N ln2 (4.44)

is extracted. Since the internal energy U does not change, it follows from the first law of thermody-
namics that a heat

QI→II =−kbT N ln2 (4.45)

flows into the system from the heat bath. In a Carnot engine, the corresponding operation would be
isothermal expansion of a volume V to 2V

W =
∫ 2V

V
PdV =

∫ 2V

V
kbT N

dV
V

= kbT N ln2. (4.46)

The isothermal expansion step is analogous to the racemization step, as it increases the number of
system configurations and thus increases our ignorance of the position of a particle. Doubling the
volume or racemizing an asymmetric molecule are fundamentally doing the same thing.

In the subsequent adiabatic expansion, the gas is expanded until a temperature T ∗ is reached.
No heat leaves the system, dQ = 0. It follows from the first law (dU = dQ+dW ) that the energy
change that accompanies this cooling is fully converted to work

dW = dU, (4.47)

such that

dU = NcV dT =
cV

kb
d(PV ), W =

∫ Vf

V0

PdV = NcV (T ∗−T ). (4.48)

Where cv is the molecular heat capacity at constant volume, defined by

cv =
1
N

(
dU
dT

)
N,V

. (4.49)
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Let us denote by α = cV/kb, after which we inject the results in the first law to yield

−(α +1)PdV = αV dP. (4.50)

Dividing by PV and integrating leads to

ln
(

Pf

Pi

)
=−α +1

α
ln
(

Vf

Vi
,

)
(4.51)

from which it automatically follows that

PV γ = cte (4.52)

with γ = α+1
α

. Using PiV
γ

i = PfV
γ

f , we find

W =
∫ Vf

Vi

Pi

(
Vi

V

)γ

dV =−αNkbTi

((
Vf

Vi

)1−γ

−1

)
(4.53)

Equating Eq. (4.53) to Eq. (4.48) then allows to extract the pressure-temperature relation for this
protocol

T = Ti

(
P
Pi

) γ−1
γ

. (4.54)

Subsequently, in step III), we couple the system to a heat bath at temperature T ∗, in which we
isothermally reverse the racemization, which is followed by an injection of work that flows directly
back to the heat bath

WIII→IV = −kbT ∗N ln2, (4.55)

QIII→IV = kbT ∗N ln2. (4.56)

In the final step, the system is adiabatically compressed, until a temperature T is acquired. This is
the exact reverse of step II),

WIV→I =−Ncv(T ∗−T ). (4.57)

Since WII→III +WIV→I = 0, step II) and IV) lead to no net work extraction. From the heat QI→II
extracted in step I), the net work extracted is WI→II +WIII→IV. The overall energy balance for the
cycle is

QI→II =WI→II +WIII→IV +QIII→IV. (4.58)

The efficiency η = (WI→II +WIII→IV)/QI→II then yields the form

η = 1− T ∗

T
. (4.59)

An autonomous information engine
Alternatively, one can employ S directly as a fuel. This then requires an engine that takes in S
and releases S + R as exhaust (while being in contact with a heat bath). This can be done in a
controlled fashion, by exchange with reservoirs of S and S+R. In Fig. 4.5, a constant-volume
protocol is illustrated in which two converters are coupled. Provided the pressure in the S reservoir
is slightly higher than in the S+R reservoir, the engine can run autonomously at constant volume
and temperature.
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Figure 4.5: A macroscopic information engine harvesting work from reservoirs. A constant-volume
intake of S from a reservoir by one converter is accompanied by the expulsion of S+P in another
reservoir. Work extraction from racemization is accompanied by resetting the piston position of the
other compartment. After two steps, the system finds itself in an equivalent, mirrored state and the
converters exchange roles.

One should keep in mind, however, that the released energy per molecule is very small. A
readily available source of chiral fuel is ibuprofen (a simple molecule with one stereocenter) (206.29
g/mol), a 200 mg tablet contains ≈ 1 mmol stereocenters, which can be converted to W ≈ 1.7 J.
The energy density per kg ibuprofen due to stereocenters is then 0.0084 MJ/kg, compared to 48
MJ/kg for diesel due to combustion∗. This discrepancy is to be expected: During combustion, a
large number of new, stable bonds are formed. Chemical bonds can provide energies around 100kT
whereas stereocenters can provide at most kT ln2.

4.2.5 Thermodynamically reversible chemical reactions
In the following, we use a slightly modified version of the racemization engine to reversibly perform
a chemical transformation of one pure enantiomer to another. Interestingly, this allows us to make
‘thermodynamically reversible’ chemical reactions. For a regular chemical reaction (constant
volume, pressure) the free energy function G has a single minimum, which corresponds to chemical
equilibrium. In a multicompartment system with movable walls, (see Fig.4.6) this no longer needs
to be true, as the system can be set up such that mixing entropy (or equivalently: information loss)
is compensated or even absent.

The setup in Fig.4.6 contains three compartments (labeled I, II and III). I and II are in contact
through an enantiospecific membrane for S, II and III through an enantiospecific membrane for S.

∗In the early days of the automobile, both fuel and medicine were bought at the pharmacy. The former however, came
in 10 L cans.
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I II III

1-y y

Figure 4.6: Ideal purification setup. The middle compartment (II) contains a racemization catalyst
and is in contact with I through an S-specific membrane and with III through an R-specific
membrane.

A pressure p is exerted by both pistons. By making the same assumptions as in the former section
(equilibrium of diffusion, racemization equilibrium), we have

µ
I
S = µ

II
S = µ

II
R = µ

III
R . (4.60)

Then, from Eq. (4.28) it immediately follows that

pII = 2pI = 2pIII. (4.61)

For an isochoric protocol, upon shifting y by ∆y, compartment II remains unaltered. In doing so, a
net transfer between I and III takes place: ∆nI

S =−∆nIII
R . Note that, in this chemical transformation,

no actual mixing has taken place, we have reduced the quantity of a gas of pure S (while maintaining
the same pressure, (4.61)) and increased by that same quantity a gas of pure R.

The accompanying free energy change is: ∆G = ∆nI
Sµ◦S +∆nIII

R µ◦R = 0. Since we can keep the
reaction contained in an arbitrarily small ‘racemization zone’ (here: chamber II), we can reversibly
achieve any desired conversion y while expending negligible amounts of energy.

At present, the perfectly selective membranes invoked here are hardly feasible for most simple
compounds, but more convoluted strategies to achieve the same (e.g. enantioselective modification
due to enzymes at an interface to solubilize a desired enantiomer in a liquid membrane) have
been developed. An important new dissipative technique to perform such separations is Viedma
ripening[13], where autocatalytic feedback in crystal growth and redissolution (due to grinding)
coupled with racemization in solution leads to the rapid accumulation of highly enantiopure crystals.

4.2.6 Liquid-phase racemization
The racemization engine can also be realized with liquid solutions instead of gases. Such a device
is shown in Fig. 4.7. We will now proceed with a general proof, showing that such a setup can
be used to reversibly extract the full work corresponding to the transformation. Suppose we have
sI +1 different species in the leftmost compartment, whose number of molecules we will denote
by nnnI: {nI

0,n
I
1,n

I
2, ..,n

I
k, ..,n

I
sI}, where the solvent has the label 0. These molecules can all cross

the membrane. We will furthermore suppose there is a catalytic species in compartment II, which
allows for sII− sI other species to form through reactions of some or all of the former sI +1 species.
These sII new species cannot pass through the membrane and thus only exist in compartment II.

The stoichiometry of the chemistry is encoded in the stoichiometry matrix ννν , which was
introduced in chapter 2 (See also Refs. [14, 15, 16, 17]). An entry νik in the matrix provides a
sign and an integer, which corresponds to the number of molecules of type k converted (negative
sign) or produced (positive sign), when reaction i is performed once. Molecules that are not
involved in reaction i have a zero entry. We will denote the number of molecules in compartment
II by: {nII

0 ,n
II
1 ,n

II
2 , ..,n

II
k , ..,n

II
sII}. During our quasistatic process, the exchange process equilibrates
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I II

1-y y

p⁰+ΠI p⁰+ΠII

Figure 4.7: Setup for a liquid-phase racemization engine. Applied pressures are indicated next to
the corresponding pistons.

permeable species k = {0, ..,sI} between compartments, the chemistry equilibrates species within
compartment II:

µ
I
k = µ

II
k , 0≤ k ≤ sI, (4.62)

∑
k

νikµ
II
k = 0, ∀i. (4.63)

We let the pressures ΠI,ΠII (seef Fig. 4.7) be equal to the osmotic pressures of ideal mixtures in
compartment I and II, respectively

Π
I =

kbT
v0

ln

(
1−∑

k 6=0
xI

k

)
=

kbT
v0

ln(xI
0), (4.64)

Π
II =

kbT
v0

ln

(
1−∑

k 6=0
xII

k

)
=

kbT
v0

ln(xII
0 ). (4.65)

Where v0 is the volume of a solvent molecule. The protocol consists of starting with a filled
compartment I, which occupies a volume V0, and an empty compartment II. By applying an
infinitesimal overpressure d p on top of p◦+ΠI, we displace a very small volume dV from I to II,
after which we adjust ΠI and ΠII to the new compositions according to

Π
II(V II +dV ) = Π

II(V II)+

(
dΠII

dV

)
T

dV = Π
II(V II)+

kbT
vs

(
d ln(xII

s )

dV

)
T

dV. (4.66)

Let F I,F II be the Helmholtz free energy of compartment I and II, respectively. Their differentials
are of the following form

dF j =−(p0 +Π
j)dV −S jdT +∑

k
µ

j
k dN j

k (4.67)

Where j ∈ {I, II}. For isothermal operation, the change in Helmholtz free energy for a small
displacement dV can be written as

dF =

(
d(F II−F I)

dV

)
T

dV. (4.68)

The negative sign comes from the fact that compartment I is compressed, whereas II is expanded.
The differential can be written as(

dF I

dV

)
T
=−(p0 +Π

I)+∑
k

µ
I
k

(
dNI

k
dV

)
T
, (4.69)
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which directly leads to

dF = (ΠI−Π
II)dV −∑

k
µ

I
k

(
dNI

k
dV

)
T

dV +∑
k

µ
II
k

(
dNII

k
dV

)
T

dV. (4.70)

We will now inspect the chemical potential terms in more detail, and demonstrate that they vanish.
Let us define ξ i

y′ as the net number of times we performed reaction i (forward minus backward)
since the beginning of the protocol (y = 0) up to the point y = y′. For a given species k, the
summation ∑i νikξ i

y′ provides the net number of species k produced by all reactions throughout this
protocol.

Where NI,NII are the number of particles in compartment I and II respectively. For any given
species k in compartment II, we can write a mass balance of the form [accumulation] = [influx] +
[production/consumption by reaction], such that(

dNII
k

dV

)
T

dV =−
(

dNI
k

dV

)
T

dV +∑
i

νikdξ
i
y. (4.71)

Which allows us to decompose the final term of Eq. (4.70)

∑
k

µ
II
k

(
dNII

k
dV

)
T

dV = ∑
k
−µ

II
k

(
dNI

k
dV

)
T

dV +∑
k

µ
II
k ∑

i
νkidξ

i
y. (4.72)

We can rewrite the latter contribution to find

∑
i

dξ
i
y ∑

k
νikµ

II
k = 0, (4.73)

which vanishes due to Chemical Equilibrium, as stated in Eq. (4.62). This reduces Eq. (4.72) to

∑
k

µ
II
k

(
dNII

k
dV

)
T

dV =−∑
k

µ
II
k

(
dNI

k
dV

)
T

dV. (4.74)

For the m species not in I, no exchange takes place, so(
dNI

k
dV

)
T

dV = 0, k > l, (4.75)

while for the other species we can apply Eq. (4.62). All chemical contributions cancel and we are
left with

dF =
(
Π

I(V0−V )−Π
II(V )

)
dV, (4.76)

which leads to:

∆F =
∫ V0

0

(
dF
dV

)
T

dV =
∫ V0

0

(
Π

I(V0−V )−Π
II(V )

)
dV =W. (4.77)

Therefore, the work corresponds to the total Helmholtz free energy change and the protocol is
reversible. The maximum extractable work can also be identified with the Gibbs free energy change
for the process, which is:

∆G = T ∆I +∑
k

µ
◦
k ∆nk +V0

(
Π

II(V0)−Π
I(V0)

)
=−T ∆Stot . (4.78)

If the total number of solute and solvent molecules remains unchanged, x0 is unaltered. Then from
Eq. (4.65) we find that the pressure term cancels. For the racemization reaction, ∆µ◦ = 0, and so
the only remaining term is related to the first term ∆I.
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4.2.7 Final remarks
We have demonstrated that mixing entropy (’information’) and energy can be harvested reversibly, in
a general sense. An interesting consequence is that chemical processes could be made considerably
more efficient: neither the heat production (or consumption) nor the mixing entropy intrinsic to
chemistry need to induce losses, provided we use a multicompartment protocol such that ∆S = 0. Of
course, the fact that we wish to perform the protocol with a certain speed and in a certain (forward)
direction is accompanied by its own production of entropy (A contribution that is typically not
considered in classical equilibrium thermodynamics). This raises provocative questions: can one
define a thermodynamic efficiency for a chemical transformation? And how efficient can chemistry
realistically be made?

The setup is reminiscent of the one used in pressure-retarded osmosis [18], which is used to
harvest mixing entropy generated by the salinity gradient of fresh water and sea water. Our setup,
however, is focused on exploiting molecular degrees of freedom, not concentration differences.
Technologically, it encounters very similar limitations: membranes and other transport barriers may
often not be selective enough to efficiently extract work from information and vice versa. Other
sources of dissipation, such as fluid flows, may lead to further losses.

Such limitations underline the need for an understanding in terms of nonequilibrium thermody-
namics. In particular when the goal is the purification or production of a desired compound, rather
than energy production, dissipative strategies become of great interest, as is showcased in Ref[19].
In biology, dissipative proofreading strategies are ubiquitous. What is especially striking about
these strategies, is that they can be understood in terms of relatively simple chemical networks.
Indeed, some of the major recent advances in chemical purification techniques rely on moving
beyond the limits imposed by a single chemical reaction, where even a passive second reaction may
already lead to dramatic improvements. In Appendix 10.3, we illustrate this point further.
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5. Allocatalysis, Autocatalysis and Stoichiometry

In this chapter, we will formally introduce the familiar concepts of catalysis and autocatalysis
in their colloquial use, their strict chemical use and subsequently show their connection with
elementary reactions and cycles. Our focus here will be on the structural network features, and not
kinetics. For a complementary perspective on kinetic aspects of autocatalysis, see Ref. [1].

In Sec.5.1, we describe the properties of autocatalysis and catalysis in terms of elementary
reactions that are unambiguous: the whole network can be inferred from the stoichiometric matrix
alone. In characterizing these properties in reaction networks, we will introduce the notion of
stoichiometric allocatalysis and stoichiometric autocatalysis, which we make as consistent as
possible with IUPAC definitions. At the end of the chapter we provide more rigorous proof for
these findings.

The framework also admits other stoichiometric processes, such as molecular exchange pro-
cesses between different phases and compartments, e.g. due to partitioning, diffusion or evaporation.
This gives rise to new emergent types of multicompartment autocatalysis (Sec. 5.4), which are
reminiscent of ecological phenomena (e.g. mutualism, syntrophy, parasitism). In Chapter 6, we
will extend these notions to chemical evolution.

In Sec. 5.6 we discuss some thermodynamic aspects of autocatalysis. Autocatalytic reactions
that can be nucleated by single molecules almost surely imply a spontaneous process. Autocatalytic
reactions with a threshold (bistabilities) are considerably less spontaneous.

Finally, in Sec. 5.8 we consider a case where self-replication is frustrated, due to the use of a
composite chemostat.

5.1 Catalysis and Generalized Catalysis in chemistry

A short definition often employed for a catalyst, is ‘a chemical compound which accelerates a
chemical reaction while not being consumed itself’. To be more precise, let us here provide the
exact entry for ‘catalyst’ from the IUPAC Gold book [2]:
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Definition 5.1.1 — Catalyst. “A substance that increases the rate of a reaction without modify-
ing the overall standard Gibbs energy change in the reaction; the process is called catalysis. The
catalyst is both a reactant and product of the reaction. The words catalyst and catalysis should
not be used when the added substance reduces the rate of reaction (see inhibitor). Catalysis can
be classified as homogeneous catalysis, in which only one phase is involved, and heterogeneous
catalysis, in which the reaction occurs at or near an interface between phases. Catalysis brought
about by one of the products of a reaction is called autocatalysis. Catalysis brought about by
a group on a reactant molecule itself is called intramolecular catalysis. The term catalysis is
also often used when the substance is consumed in the reaction (for example: base-catalysed
hydrolysis of esters). Strictly, such a substance should be called an activator.”

The distinction between catalysts that produce themselves and those that do not will turn out to
be essential. We will distinguish between them by introducing the following terms

Definition 5.1.2 — Autocatalyst. A catalyst that performs autocatalysis, i.e. it is a catalyst
that can be produced in excess in an autocatalytic cycle.

Definition 5.1.3 — Allocatalyst. A catalyst that does not perform autocatalysis (nor ’reverse
autocatalysis’), performing an allocatalytic cycle does not lead to an overall change in the
corresponding allocatalyst population.

5.1.1 Typical allocatalysis
If there is a single catalyst E, substrate S and product P, standard shorthand notations for the
catalyzed reaction are:

S+E −−⇀↽−− E+P, (5.1)

S
E−−⇀↽−− P. (5.2)

Of these two, only Eq. (5.1) makes explicit that E is a product and a reactant, which is required.
Both of these shorthand reactions are ambiguous on the level of the stoichiometric matrix, since
Eq. (2.15) (nonambiguity condition) is not satisfied. In order to remove the ambiguity, we turn to
a more detailed description with a catalytic cycle described by steps 1 to 3 and, to compare, an
uncatalyzed pathway given by the fourth reaction.

1 2 3 4 (5.3)

ννν =

S

P

E

ES

EP


−1 0 0 −1
0 0 1 1
−1 0 1 0
1 −1 0 0
0 1 −1 0


S+E

1−−⇀↽−− ES

ES
2−−⇀↽−− EP

EP
3−−⇀↽−− E+P

S
4−−⇀↽−− P

This stoichiometric matrix verifies nonambiguity (Eq. (2.15)).
A convenient reduced description can be obtained by removing the chemical species S and P

from ννν to obtain νννX :

1 2 3 4

νννX =
E

ES

EP

−1 0 1 0
1 −1 0 0
0 1 −1 0

 . (5.4)

In the present case, this leads to the emergent cycle ccc∗ = (1,1,1,0)T as defined in Eq. (2.116). This
cycle corresponds to the following net reaction

S+E+ES+EP
c∗c∗c∗−−⇀↽−−
−c∗c∗c∗

E+ES+EP+P, (5.5)
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which is built from the stoichiometric matrix ννν .
In terms of the stoichiometric matrix νννX , (resp. νννY ), we obtain the net reactions

E+ES+EP
c∗c∗c∗−−⇀↽−−
−c∗c∗c∗

E+ES+EP, (5.6)

S
c∗c∗c∗−−⇀↽−−
−c∗c∗c∗

P. (5.7)

We can now distinguish between the elementary reaction 4 in Eq. (5.4) and the nonelementary
net reaction in Eq. (5.7). For an arbitrary catalytic cycle, the net reaction should contain catalytic
species (E,ES,EP in our example) with the same coefficients on the reactant and product side.

Catalysis, inhibition and temperature cycling
In treating the stereotypical case of allocatalysis in (5.3), we implicitly suppose, by the use of the
word catalysis, that the (catalytic) cycle ccc∗ leads to a rate enhancement for S−−⇀↽−− P with respect to
a system performing only the uncatalyzed reaction.

In general, this is not true for any choice of rate constants in (5.3). For example, if k+2 < k+4
or k+3 < k+4 , with the index denoting the reaction number in (5.3), the species E will slow down
the reaction. If k+2 < k+4 , this happens by trapping reagent S in a less reactive state. If k+3 < k+4 ,
the product is trapped in the EP complex. The latter situation is very common in nonenzymatic
template-assisted RNA chemistry: when binding to a template is too strong, detachment becomes a
rate-limiting step.

To escape more rapidly from such a bound state, the complex EP can be heated (For nucleotide
polymers we wish to increase the temperature above the ‘melting temperature’ [3]). By applying
temperature-cycling protocols with a cycling time shorter than 1/k+1 , a net increase in the reaction
rate can be achieved. It is not clear from definition 5.1.1. whether we can extend the notion of a
catalyst to such active protocols, but doing so may be problematic∗.

We see that the notion of ‘catalysis’ is somewhat subtle: there are ways to accelerate reactions
that we may not call catalysis and a species that is a catalyst for one set of conditions, may be an
inhibitor in another. We will now move our discussion to another subtle situation: chain reactions.

Chain reactions
A chain reaction is a reaction that maintains itself, by consuming and resupplying its active
compounds. The first active compounds of such a reaction need to be supplied through an initiation
reaction, such as

Br2
1−−⇀↽−− 2Br•, (5.8)

for (2.125), where such an initiation can be stimulated by radiation.
In that same example, we converted Br2 +H2 to 2HBr

Br•+H2
2−−⇀↽−− HBr+H•, H•+Br2

3−−⇀↽−− HBr+Br•. (5.9)

For which the overall reaction becomes

Br2 +H2 +Br•+H•
ccc∗−−⇀↽−−
−ccc∗

2HBr+Br•+H•. (5.10)

By following the atoms, it is clear that the ‘active species’ is replenished, but we do not recover
the original ‘active species’. We are often assuming that at the end of a catalytic cycle, we are
∗EP does not change the overall ∆◦G, but changing the temperature does. 5.1.1 only discusses the action of the

catalyst on ∆◦G. A temperature-cycling protocol can convert more S molecules to P than a constant-temperature
equilibration, due to kinetic trapping in either the EP complex or dissociated species. This pumping action is distinct
from the passive accelerating a reaction S−−⇀↽−− P, which will halt at equilibrium.
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recovering the original catalyst species we started with. The IUPAC definition makes no mention
of this property, it only requires the catalyst to be a reactant and a product. In this sense, chain
reactions are a form of catalysis (A point well-understood in e.g. atmospheric chemistry). In our
example, Br•, H• are allocatalysts.

Topologically, this is more intuitive: by looking at a hypergraph or stoichiometric matrix, we
can not tell whether we are recovering the original catalyst or making a new one (for this, atom
mapping is typically required, e.g. SMILES notation[4]).

Let us now finally move to a final subtle example of catalysis: a composition of a forward and a
backward autocatalytic reaction.

Interlinked autocatalytic reactions
The following minimal example obeys the definition of a catalyst given above, but that a chemist
might reluctantly name as such. Starting with a catalyst E, a substrate S is, in the first two steps,
converted to another copy of E. Subsequently, E forms a dimer, after which a product P and a single
E is released:

S+E
1−−⇀↽−− ES (5.11)

ES
2−−⇀↽−− 2E (5.12)

2E
3−−⇀↽−− E2 (5.13)

E2
4−−⇀↽−− E+P (5.14)

We can write the stoichiometric matrix ννν for this system

1 2 3 4 (5.15)

ννν =

S

P

E

ES

E2


−1 0 0 0
0 0 0 1
−1 2 −2 1
1 −1 0 0
0 0 1 −1


S+E

1−−⇀↽−− ES

ES
2−−⇀↽−− 2E

2E
3−−⇀↽−− E2

E2
4−−⇀↽−− E+P

For which we can now take a submatrix ννν∗ by removing substrate S and product P

1 2 3 4 (5.16)

ννν
∗ =

E

ES

E2

−1 2 −2 1
1 −1 0 0
0 0 1 −1


E

1−−⇀↽−− ES

ES
2−−⇀↽−− 2E

2E
3−−⇀↽−− E2

E2
4−−⇀↽−− E

The submatrix ννν∗ which admits a right nullvector ccc∗= (1,1,1,1)T , corresponding to the net reaction

S
ccc∗−−⇀↽−−
−ccc∗

P. (5.17)

Note that reactions like 1 and 4 allow to arbitrarily increase or reduce the catalyst population. What
is striking is that we cannot write a catalytic cycle for this system without such reactions. This has
the following cause: although we use E to convert S to P, E is not an allocatalyst.

As will be shown with more rigor in upcoming sections, this system is composed of two
autocatalytic reactions (1+2 and 3+4), which admit no mass-like conservation laws (L(+)) for
catalytic species (here, E, E2 and ES ). The lack of such a conservation law allows autocatalysts to
accumulate or degrade through their own catalysis.
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Allocatalysts on the other hand, are characterized by an unchanging abundance. The linear
constraint that forbids such accumulation is exactly the mass-like conservation law, which in
example Eq. (5.3) is the sum

L(+) = nE +nES +nEP, (5.18)

corresponding to a left nullvector l(+) = (0,0,1,1,1).
The cycle given by 5.11-5.14 is an example of an allocatalytic cycle, which is mediated by

autocatalysts.
We will now turn to the implementation of catalysis in the stoichiometric matrix framework.

5.1.2 Autonomy and Siphons
Let us start by introducing an important property, which we will call autonomy:

Definition 5.1.4 — Autonomy. In a reversible chemical network, a stoichiometric (sub)matrix
ννν is autonomous, if it contains no /0-reactions, which are of the form

∑
i

νi, jXi −−⇀↽−− /0 (5.19)

This property can easily be verified in a stoichiometric matrix ννν: ννν∗ has no zero columns in ννν
(+)
∗

and ννν
(−)
∗ . If nonambiguity is respected (∀k, i ν

(−)
ki ν

(+)
ki = 0, Eq. (2.15)), it also means that columns

in ννν must have positive and negative entries.
A fully described reaction network ννν in a closed system conserves elements and isotopes and

thus cannot have /0-reactions. Such a network is always autonomous. /0-reactions arise from a
description of a subsystem that exchanges matter, either with an outside environment (e.g. external
chemostats or CSTR fluxes), or by forming chemical species not described by ννν (e.g. homogeneous
chemostats, buffers, species not taken in consideration for the description).

The concept of autonomy is closely related to the concept a siphon in Chemical reaction
networks (CRNs).

Definition 5.1.5 — Siphon. A Siphon Σ is a subset Σ ⊂S of all species S, which for each
reaction that has a species in Σ as a product, has at least one of its reactants in Σ[5]

In this definition, a reaction can be irreversible in a mathematical sense: the reverse reaction does
not exist. For a reversible CRN, a reverse reaction does exist, and the siphon definition must apply
to the forward and backward direction. A reaction must then imply both one or more products and
one or more reactants from Σ (siphon reactions), or none at all (external reactions).

Consider a reversible chemical system, with a particular subset of interest Σ⊂S which is a
siphon. Letting xΣ ⊂ [s] be the species indices of siphon species and rΣ ⊂ [r] the reaction indices of
siphon reactions, the submatrix ννν [xΣ|rΣ] contains only the siphon Σ with its siphon reactions, which
thus excludes /0-reactions. ννν [xΣ|rΣ] is therefore autonomous. The siphon property was proven to be
a defining feature of various interpretations of catalysis and autocatalysis [5, 6, 7]. While these
definitions differ from our definitions and those maintained by IUPAC, we find that this property is
a robust feature, whose analogue is autonomy in our framework.

There are some intuitive arguments for why autonomy is such a central property. The capacity
to perform allo- and autocatalysis is conditional on the presence of our species of interest. We
cannot catalyze a reaction pathway if the corresponding allocatalyst is absent. We cannot perform
autocatalysis if there is no autocatalyst to begin with. An /0-reaction like /0→ A takes place
regardless of our system contents. Within our framework, we can treat multiple compartments
and environments, and the symbol /0 is reserved for unaltered components that are left out of the
description. Since no feedback operates on such components, their absence is a natural tennet of
autonomy.
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In the next section, we will introduce the concept of ‘stoichiometric allocatalysis’, which uses
as its input only the structure of a nonambiguous reaction network (stoichiometry). The concept
bundles various nuances that one may or may not wish to call catalysis under a common name
(hence our insistence on consistency with the IUPAC definition). The interest of doing so is that
the stoichiometric framework treats these different nuances as equivalent. In addition, for most of
our purposes (in particular, prebiotic scenarios) we should avoid limiting our scope without proper
justification.

In a number of practical situations, however, we do have a proper justification: we may know
our system rather well and wish to model some of the fluxes. Our requirements for stoichiometric
allocatalysis requires a rather detailed description, which is the price we have to pay for the
nonambiguity condition. For many purposes this degree of detail is unwanted. In Ref. [8] a
thermodynamically consistent coarse-graining procedure is outlined that complements our approach,
allowing to make the step back to a pragmatic level of description for modelling.

5.1.3 Stoichiometric Allocatalysis
Let us now formalize what has been discussed in the former sections, by introducing a concept we
will call ‘stoichiometric allocatalysis’. In short, a stoichiometric allocatalyst is a substance that
affords a pathway to convert other substances, without the net formation or consumption of itself.
Let us now provide a slightly more detailed definition:

Definition 5.1.6 — Stoichiometric Allocatalysts. A set of substances {Xk} that afford a
transformation of other species, without the net consumption or production these substances.
The transformation occurs through a cycle with reaction vector ccc∗, that leads to net conversion
of external Y-species (∀ i, j Xi 6= Yj). This leads to an overall reaction

∑
k

n̄(+)
k Xk +∑

l
n(+)

l Yl
ccc∗−−⇀↽−−
−ccc∗

∑
k

n̄(−)k Xk +∑
l

n(−)l Yl, (5.20)

Constrained by

∑
k

n(+)
k Yk

ccc∗−−⇀↽−−
−ccc∗

∑
k

n(−)k Yk, n(+)
j 6= n(−)j , (5.21)

∑
k

n̄(+)
k Xk

ccc∗−−⇀↽−−
−ccc∗

∑
k

n̄(−)k Xk, n̄(+)
j = n̄(−)j . (5.22)

The reactions used in ccc∗ respect a mass-like conservation law L∗ for the allocatalyst population:

L∗ = ∑
k

akXk, ∀k ak ≥ 1. (5.23)

Due to the mass-like conservation law L∗, no composition of reactions used in ccc∗ allow for the net
degradation or accumulation of allocatalysts.

Note that a species is either internal or external: ∀ i, j Xi 6= Yj. This clear separation between
internal catalytic species and external reactants and products is stressed by the ‘allo’ (other) prefix,
and it is this feature that separates allocatalysis from autocatalysis.

As pointed out before, if reactions in the catalytic cycle do not permit to accumulate or
degrade more of the species in the ensemble of catalytic internal species, the concentration space
is constrained by a conservation law L∗. We have chosen to use this as a defining feature of
stoichiometric allocatalysis, thus making an explicit choice to exclude compositions of autocatalytic
reactions.

Formally, we can bundle these requirements to describe a submatrix containing only allocata-
lysts and a set of reactions that compose one catalytic cycle ccc∗. We will refer to such a submatrix as
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an allocatalytic submatrix

Definition 5.1.7 — Allocatalytic submatrix. A submatrix ννν∗ = ννν([xccc∗ |rccc∗ ]) that is i) au-
tonomous, ii) admits an emergent cycle ccc∗ involving all species and reactions in ννν∗, and
iii) admits a mass-like conservation law L∗ containing all internal species, is an allocatalytic
submatrix. ccc∗ is an allocatalytic cycle, and all species xccc∗ are catalysts.

In our examples, such as Eq. (5.4), an allocatalytic submatrix was obtained by removing substrates
and products from the description.

Note that we have lifted an important requirement for catalysis in our definition: acceleration
is no longer required, only a new path for the reaction. This is a pragmatic choice: to know if a
reaction network performs stoichiometric allocatalysis, a nonambiguous ννν provides all necessary
information. Whether it accelerates the reaction under particular reaction conditions and whether
it is a chain-reaction or not requires more detailed information. Stoichiometric allocatalysis is a
purely stoichiometric criterion.

In practice, it is specified when a system is autocatalytic. When one speaks of catalysis it
concerns allocatalysis. We have adopted this same practice throughout this manuscript: if a process
is referred to as catalysis, it is implied that it concerns generalized allocatalysis unless clearly stated
otherwise.

5.1.4 Example: catalysis of intercompartment exchange
Amino acids bear polar and charged endgroups and have great difficulty traversing phospholipid
membranes. Stillwell [9] added an aldehyde (RCO), with which the amino group (RNH2) was
thought to form an imine (RNCR) through the reaction

RNH2 +RCO−−⇀↽−− RNCR+H2O, (5.24)

which traverses the membrane more easily. A model for such a is given by the stoichiometric matrix
ννν

1 2 3 4 5

ννν =

RCOI

RNH2
I

RNCRI

H2OI

RCOII

RNH2
II

RNCRII

H2OII



1 −1 0 0 0
0 −1 0 0 0
0 1 0 −1 0
0 1 −1 0 0
−1 0 0 0 1
0 0 0 0 1
0 0 0 1 −1
0 0 1 0 −1


(5.25)

When we remove RNH2
I and RNH2

II, the resulting matrix ν̄̄ν̄ν = ννν(2,6| /0) is autonomous (Fig.
5.1), revealing an emergent cycle ccc∗1 = (1,1,1,1,1)T . From Eq. (2.54) we find the corresponding
net transport reaction

RNH2
I ccc∗1−−⇀↽−−
−ccc∗1

RNH2
II. (5.26)

We find two conservation laws, which we write as a differential conservation law L1 and a mass-like
conservation law L2

L1 = nH2OI−nRNCRI +nH2OII−nRNCRII , (5.27)

L2 = nRCOI +nRNCRI +nRCOII +nRNCRII . (5.28)
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RCOI

R’NH
2

I

R’NCRI

RCOII

R’NCRII

R’NH
2
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II
IV

V

e
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1

Figure 5.1: Hypergraph for Stillwell’s experiment, reaction labels correspond to order of appearance
in ννν . A forward catalytic cycle ccc∗1 corresponds to a net transport reaction RNH2

I→RNH2
II. Circular

nodes correspond to catalysts, square nodes to external species.

L1 corresponds to the fact that H2O and RNCR are formed and consumed in pairs. L2 corresponds
to RCO being a catalyst preserved in the cycle. Note that we could also have chosen a mass-like
conservation law for all internal species. Introducing

L∗ = 2nRCOI +nRNCRI +nH2OI +2nRCOII +nRNCRII +nH2OII .

We find that L∗ = 2L2−L1.
Note that ν̄̄ν̄ν is autonomous, has an emergent cycle (ccc∗1) that uses all reactions and internal

species, and a mass-like conservation law L∗ containing all internal species. It is therefore an
allocatalytic submatrix.

In addition, we can also remove water (H2OI,H2OII), and its associated reaction 3, to obtain
ννν∗ = ν̄̄ν̄ν(3,6|3)

1 2 3 4

ννν
∗ =

RCOI

RNCRI

RCOII

RNCRII


1 −1 0 0
0 1 −1 0
−1 0 0 1
0 0 1 −1

 (5.29)

We have `= 1,c = 1. The remaining conservation law corresponds to L2 in Eq. (5.28), the cycle is
a new emergent cycle ccc∗2 = (1,1,1,1)T , with Eq. (2.54) yielding the net reaction

H2NRI +H2OII ccc∗2−−⇀↽−−
−ccc∗2

H2NRII +H2OI. (5.30)

The aldehyde then functions as an antiporter. Like ν̄̄ν̄ν , ννν∗ is an allocatalytic submatrix, but for
corresponding to a different catalyzed reaction ((5.30)).

If we now remove RCOI, the resulting subnetwork is no longer autonomous, as reactions I and
II become /0-reactions

RCOII −−⇀↽−− /0, /0−−⇀↽−− RNCRI. (5.31)

This system has no more conservation laws. According to Eq. (2.54) the cycle ccc∗2 = (1,1,1,1)T

now verifies

H2NRI +H2OII +RCOI ccc∗2−−⇀↽−−
−ccc∗2

RCOI +H2NRII +H2OI (5.32)

which highlights that RCOI functions as a catalyst in the pathway. The same applies to all other
species in ν̄̄ν̄ν∗, e.g. if we also remove RNCRII we have

H2NRI +H2OII +RCOI +RNCRII ccc∗2−−⇀↽−−
−ccc∗2

RCOI +RNCRII +H2NRII +H2OI. (5.33)
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5.2 Stoichiometric Autocatalysis in chemistry
In chemistry, an autocatalytic reaction refers to a net reaction that forms one or more product(s) that
accelerate the reaction. In the IUPAC definition of catalysis, autocatalysis is specified as: “Catalysis
brought about by one of the products of a reaction is called autocatalysis.” To explain what
autocatalysis is, one often uses the most minimal example, which is a cooperative isomerization
reaction of the form

A+B−−⇀↽−− 2B. (5.34)

In Sec. 2.2.2 we showed that this example can be rewritten in a form that verifies nonambiguity,
by considering two dissolved species that initially approach each other, forming an ‘encounter
complex’ [AB], with the encounter complex subsequently undergoing the reaction:

A+B−−⇀↽−− [AB], (5.35)

[AB]−−⇀↽−− 2B. (5.36)

More generally, we can write a reaction balance for an autocatalytic reaction vector ΓΓΓ, which is of
the form

Food +nAA+nBB+ ...
+ΓΓΓ−−⇀↽−−
−ΓΓΓ

Waste+mAA+mBB+ ... , mXi
> nXi

≥ 1, (5.37)

where ‘Food’ and ‘Waste’ are unspecified other compounds that are consumed or produced. For
autocatalysts, stoichiometric coefficients are given. In reaction (5.34), A is the ‘Food’, and there is
no waste.

For a species to be considered an autocatalyst: it must participate in the reaction (nXi
≥ 1) and

yield more copies of itself (mXi
> nXi

). We can be a bit more precise, by stipulating that there may
also be allocatalysts {Ek} involved in the overall reaction†, leading to a reaction balance of the
form

Food+∑
k

n(+)
k Xk+∑

j
n̄(+)

j E j
+ΓΓΓ−−⇀↽−−
−ΓΓΓ

Waste+∑
k

n(−)k Xk+∑
j

n̄(−)j E j, n̄(+)
k = n̄(−)k , n(+)

k > n(−)k ≥ 1.

(5.38)

In our upcoming discussions, such involvement of allocatalysts is often left implicit, since our
methodology will involve removing species that are not autocatalysts from the description. In doing
so, allocatalysts are treated on the same footing as food and waste.

5.3 Self-Replication and autocatalysis
In this section we provide stoichiometric criteria for a network to display self-replication and
autocatalysis. Whether such behavior will manifest itself depends on kinetic parameters and
concentrations, which will be treated in Ch.6.

5.3.1 Stoichiometrically Feasible Reproduction (SFR)
Let us start with the property of self-reproduction, which loosely means: a set of species reproduce
themself, and possibly some other species. A more technical, stoichiometric property that we will
be using quite often is the following:

†An experimentally important example is Mg2+, which is used in many RNA networks and the formose reaction
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Definition 5.3.1 — Stoichiometrically Feasible Reproduction (SFR). A stoichiometric sub-
matrix ν̄̄ν̄ν admits Stoichiometrically Feasible Reproduction (SFR), if and only if i) ν̄̄ν̄ν is au-
tonomous, ii) single-block and iii) there exists a reaction vector ΓΓΓ = (Γ1,Γ2, ..,Γr) ∈ Zr, such
that

∀i ∈ {1, ..,s} ∆ni = (ν̄̄ν̄ν ·ΓΓΓ)i ≥ 1. (5.39)

In other words, there is a combination of reactions that simultaneously yields at least one copy of
each species in ν̄̄ν̄ν in a nontrivial manner (without /0-reactions).

Let us consider the example of an autonomous, single-block submatrix ν̄̄ν̄ν that is invertible. We
denote ν̄̄ν̄ν−1 = (ggg(1), ..,ggg(s)), such that

ν̄̄ν̄νν̄̄ν̄ν
−1 = III, ν̄̄ν̄ν ·ggg(i) = êeei (5.40)

where III is the identity matrix and êeei is the ith unit vector. A reaction vector ggg(i) verifies

∆n j = (ν̄̄ν̄ν ·ggg(i)) j = δi j =

{
0 i 6= j
1 i = j

(5.41)

with δi j the Kronecker delta symbol. ν̄̄ν̄ν is full-rank: its linearly independent replication cycles ggg(i)

span all s dimensions of concentration space.
In principle, ggg(i) may contain fractional reactions, which leads us to define the scaled reaction

vector ḡ̄ḡg(i) = miggg(i), where mi > 0 is some constant such that ḡ̄ḡg(i) ∈ Zr. It follows that ΓΓΓ = ∑i ḡ̄ḡg(i)

obeys Eq. (5.39), meaning an autonomous, single-block submatrix that is invertible is guaranteed
to admit SFR.

For a noninvertible matrix that admits SFR, conservation laws are constrained: the replication
vector ΓΓΓ requires a conservation law `̀̀ to obey

`̀̀ · (ν̄̄ν̄ν ·ΓΓΓ) = ∑
i
`i∆ni = 0. (5.42)

Eq. (5.42) does not admit mass-like conservation laws `̀̀+, since neither `+i nor ∆ni can have
negative entries. It follows that SFR can only allow differential conservation laws `̀̀±. Since the
full stoichiometric matrix ννν always has mass-like conservation laws, it cannot be SFR. From the
perspective of a marginal observer seeing only ν̄̄ν̄ν , an SFR breaks mass conservation. This happens
by converting outside matter (‘food’) to copies of species within the subnetwork ν̄̄ν̄ν .

5.3.2 Stoichiometrically Feasible Autocatalysis (SFA)
Definition 5.3.2 — Stoichiometrically Feasible Autocatalysis (SFA). A stoichiometric sub-
matrix ννν� admits Stoichiometrically Feasible Autocatalysis (SFA), if, in addition to admitting
SFR, it also verifies

∀i ∈ {1, ..,s} (ννν
(−)
� ·ΓΓΓ�)i ≥ 1, (5.43)

where ννν
(−)
� ,ΓΓΓ� are constructed such that ∀i Γ�i ≥ 0.

In this definition, ννν
(−)
� ,ΓΓΓ� are constructed according to Eq. (2.56), such that ∀i Γ�i ≥ 0.

Writing the net chemical equation for ΓΓΓ� allows us to recover the standard chemical interpre-
tation of autocatalysis. Limiting our scope to species in ννν�, Eq. (5.38) provides a net reaction

∑
i

(
ννν
(−)
� ·ΓΓΓ�

)
i
Xi −−→ ∑

i

(
ννν
(+)
� ·ΓΓΓ�

)
i
.Xi (5.44)
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I

IIIII

C
1

gC2

Figure 5.2: The minimal formose reaction. Upon removing C1, we obtain replication cycles.
Arrows illustrate the replication cycle gggC2 . Circular nodes contain autocatalysts. Square nodes
contain external (food) species.

In which each species increases in number (SFR)

∀i
(

ννν
(+)
� ·ΓΓΓ�−ννν

(−)
� ·ΓΓΓ�

)
i
≥ 1, (5.45)

and each species participates: ∀i (ννν(−)
� ·ΓΓΓ�)i ≥ 1. The simplest example of autocatalysis according

to Eq. (5.44) is the net reaction

X−−→ 2X. (5.46)

In the upcoming sections, examples will be provided to demonstrate these concepts.

5.3.3 Example: formose
As an example, we first consider the Toy Formose reaction, described by

1 2 3

ννν =

C1

C2

C3

C4


−1 −1 0
−1 0 2
1 −1 0
0 1 −1

 C1 +C2
1−−⇀↽−− C3

C1 +C3
2−−⇀↽−− C4

C4
3−−⇀↽−− 2C2

(5.47)

Upon chemostatting C1 (see Fig. 5.3), we obtain an autonomous submatrix ν̄̄ν̄ν

1 2 3

ν̄̄ν̄ν =
C2

C3

C4

−1 0 2
1 −1 0
0 1 −1

 C2
1−−⇀↽−− C3

C3
2−−⇀↽−− C4

C4
3−−⇀↽−− 2C2

(5.48)

Which is single-block and admits an inverse

ν̄̄ν̄ν
−1 =

1
2
3

1 2 2
1 1 2
1 1 1

= (gggC2 ,gggC3 ,gggC4). (5.49)

The columns of ν̄̄ν̄ν−1 correspond to reaction vectors, whose application yields one net copy of the
corresponding molecule, e.g. ∆ni = (ν̄̄ν̄ν ·ggg(i))i = 1. This is illustrated for C2 in Fig. 5.3, ν̄̄ν̄ν ·gggC2 .

Since all vectors in ν̄̄ν̄ν−1 = (gggC2 ,gggC3 ,gggC4), are positive, we can directly use expression Eq. (2.47)
for ν̄̄ν̄ν to write overall reactions:

gggC2 : C2 +C3 +C4 −−→ 2C2 +C3 +C4 (5.50)

gggC3 : 2C2 +C3 +C4 −−→ 2C2 +2C3 +C4

gggC4 : 2C2 +2C3 +C4 −−→ 2C2 +2C3 +2C4
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A particular feature of formose is that every species intervenes in its own replication cycle ggg(i). In
upcoming examples, we show that this is generally not the case. We can construct ΓΓΓ = gggC2 +gggC3 +
gggC4 , which leads to the overall reaction

ΓΓΓ : 5C2 +4C3 +3C4 −−→ 6C2 +5C3 +4C4. (5.51)

Since this reaction is autocatalytic for each species, ν̄̄ν̄ν admits SFA. Furthermore, ν̄̄ν̄ν admits no
smaller SFA submatrices, which means it is also an autocatalytic core.

If we remove C2, such that X = (C3,C4)
T, Y = (C1,C2)

T, the replication cycle gggC2 becomes
an emergent cycle

ννν =

(
νννY

νννX

)
, νννX ·gggC2 = 000. (5.52)

Using νννY in Eq. (2.54) yields a commonly used representation for this autocatalytic cycle

2C1 +C2 −−→ 2C2. (5.53)

Note that νννX is neither autonomous (2 /0-reactions) nor invertible (o = 1).

5.3.4 Example: decorated formose
Let us now consider a decorated formose reaction, in which an extra reaction C3 −−⇀↽−− D3 has been
introduced

1 2 3 4

ννν =

C1

C2

C3

D3

C4


−1 −1 0 0
−1 0 2 0
1 −1 0 −1
0 0 0 1
0 1 −1 0

 . (5.54)

ννν now admits two autonomous and invertible submatrices: ν̄̄ν̄ν from Eq. (5.48), and ννν∗, obtained by
removing C1

1 2 3 4

ννν∗ =

C2

C3

D3

C4


−1 0 2 0
1 −1 0 −1
0 0 0 1
0 1 −1 0

 . (5.55)

The inverse now contains a new replication cycle

ννν
−1
∗ =

1
2
3
4


1 2 2 2
1 1 1 2
1 1 1 1
0 0 1 0

= (gggC2 ,gggC3 ,gggD3 ,gggC4). (5.56)

gggD3 = (2,1,1,1)T is the sole replication cycle which uses the added reaction, and D3 only ever
occurs as a product

gggD3 : 2C2 +2C3 +C4 −−→ 2C2 +2C3 +C4 +D3. (5.57)

If we now consider ΓΓΓ = gggC2 +gggC3 +gggD3 +gggC4 , we no longer obtain an autocatalytic form

ΓΓΓ : 7C2 +6C3 +4C4 −−→ 8C2 +7C3 +5C4 +D3. (5.58)
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g

I

IIIII

IV

D
3

Figure 5.3: A decorated Toy Formose reaction given by the submatrix ννν∗, obtained by removing
C1. The replication cycle gggD3 is illustrated in blue. In this network, only species C2,C3 and C4 are
autocatalysts.

It follows that ν̄̄ν̄ν∗ admits SFR, but not SFA.
Let us now remove D3 to turn gggD3 into an emergent cycle. Let us then construct νY from the

rows of C1 and D3. From Eq. (2.54), the net reaction is then

3C1 −−→ D3, (5.59)

in which D3 is only a product, which reaffirms that gggD3 is not part of the autocatalytic core.

5.3.5 Example: Cross-catalytic autocatalysis
When autocatalysis is achieved through cross-catalysis or catalysis, some column vectors of ν̄̄ν̄ν−1

will correspond to simpler emergent cycles. The smallest autocatalytic cycles will be composite
cycles. As an example, let us consider the network in Fig. 5.4. Upon removing Y1 and Y2, the
internal network is described by

1 2 3 4

ν̄̄ν̄ν =

X1

X2

X3

X4


−1 0 0 1
1 0 1 −1
1 −1 1 0
0 1 −1 0

 (5.60)

The submatrix ν̄̄ν̄ν is invertible, autonomous and single-block with

ν̄̄ν̄ν
−1 =

1
2
3
4


0 0 1 1
1 1 0 1
1 1 0 0
1 0 1 1

= (gggX1 ,gggX2 ,gggX3 ,gggX4), (5.61)

Contrary to formose, these replication cycles do not involve their own species:

gggX1 : X2 +X3 +X4 −−→ X1 +X2 +X3 +X4

gggX2 : X3 +X4 −−→ X2 +X3 +X4 (5.62)

gggX3 : X1 +X2 −−→ X1 +X2 +X3

gggX4 : X1 +X2 +X3 −−→ X1 +X2 +X3 +X4.

If we take ΓΓΓ = gggX1 +gggX2 +gggX3 +gggX4 , Eq. (2.54) yields a collectively autocatalytic reaction

2X1 +3X2 +3X3 +2X4 −−→ 3X1 +4X2 +4X3 +3X4. (5.63)

We can construct two catalytic submatrices

1 4 2 3

ννν12 =
X1

X2

(
−1 1
1 −1

)
, ννν34 =

X3

X4

(
−1 1
1 −1

)
(5.64)
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Figure 5.4: An autocatalytic network, through two crossed allocatalytic cycles. Circular nodes
contain autocatalysts, square nodes contain external (food) species.

which are autonomous and admit a mass-like conservation law `̀̀ = (1,1). The emergent cycle
eee∗ = (1,1)T is a catalytic cycle, composed of the same reactions as gggX2 (resp. gggX3) for ννν12 (resp.
ννν34). Catalyzed reactions are then found to be

Y2 −−→ X2

Y1 −−→ X3 (5.65)

Within the context of their allocatalytic submatrices ννν12 and ννν34, the internal species are allocata-
lysts. In the autocatalytic matrix ν̄νν , however, they cease to be allocatalysts and are autocatalysts
instead.

If we make a composition ggg∗ = gggX2 +gggX3 , both X2 and X3 take an autocatalytic role in the
internal reaction as expressed by Eq. (2.57) for ν̄̄ν̄ν

ggg∗ : X1 +X2 +X3 +X4 −−→ X1 +2X2 +2X3 +X4 (5.66)

If we only consider reproduced autocatalytic species and consumed reactants, we obtain a more
conventional representation:

ggg∗ : Y1 +Y2 +X2 +X3 −−→ 2X2 +2X3. (5.67)

5.4 Multicompartment autocatalysis

In practice, a system can be composed of many different environments with different local
chemistries and compositions, performing selective exchange among each other. In terms of
stoichiometry and reaction network topology, catalysis of a reaction or catalysis of transport obey
the same criteria. Since we have now established what such criteria are for autocatalysis, we
can swiftly conclude that there exists an entire new class of autocatalytic processes that rely on
physical chemical processes other than pure chemistry, such as evaporation, permeation, adsorption,
absorption, partitioning etc. In Fig. 5.5, some environments are depicted that lead to specific
exchange. In this section, this novel type of autocatalysis will be illustrated by examples.

Transport between environments allow for new types of autocatalytic cycles. For example,
the system in Fig. 5.6 can display autocatalysis, because the transport catalyst B imports its own
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Figure 5.5: Examples of environments: i) a vesicle with a semipermeable membrane, ii) a hol-
low solid with small pores, iii) a mineral surface displaying selective adsorption, iv) a metal
incorporating single atoms from gas molecules.

starting material BC. Its full stoichiometric matrix ννν is given by

1 2 3 4 5

ννν =

BCI

BI

[BCB]I

DI

DCI

BCII

BII

[BCB]II



0 0 1 −1 0
0 0 1 1 −1
0 1 −1 0 0
0 0 0 −1 0
0 0 0 1 0
−1 0 0 0 0
−1 0 0 0 1
1 −1 0 0 0


(5.68)

By removing BCII, DI and DCI, we obtain an autonomous network, described by the invertible
matrix ν̄̄ν̄ν

[BCB]I

BI

DI

[BCB]II

BCII

BII

gB
I

IIII

Figure 5.6: A reaction network exhibiting autocatalytic exchange. A transport barrier (dashed
brown line) divides two environments. An autocatalytic submatrix is obtained by removing BCII,
DI, DCI. Arrows illustrate replication cycle gggBI

.
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1 2 3 4 5

ν̄̄ν̄ν =

BCI

BI

[BCB]I

BII

[BCB]II


0 0 1 −1 0
0 0 1 1 −1
0 1 −1 0 0
−1 0 0 0 1
1 −1 0 0 0

 . (5.69)

The resulting ν̄̄ν̄ν is invertible, autonomous and single-block. Since it admits no further submatrix
with these properties, it is also the autocatalytic core, with replication cycles given by

ν̄̄ν̄ν
−1 =

111
222
333
444
555


1 1 2 1 2
1 1 2 1 1
1 1 1 1 1
1 1 1 1 1
0 1 2 2 2

 (5.70)

Where ν̄̄ν̄ν−1 = (gggBCI
,gggBI

,ggg[BCB]I ,gggBII
,ggg[BCB]II). gggBCI

corresponds to a catalytic cycle, the other
replication cycles are autocatalytic in themselves.

5.4.1 Autocatalysis as an emergent phenomenon

Let us now solely consider the chemistry in the left compartment in Fig. 5.6, whose full matrix ννν I
is given by

3 4

ννν I =

BCI

BI

[BCB]I

DI

DCI


1 −1
1 1
−1 0
0 −1
0 1

 (5.71)

A network with r = 2 can only admit an SFR if there is at least one stoichiometric coefficient
νki = 2 (see proof in Appendix ). It follows that ννν I cannot perform autocatalysis by itself.

This demonstrates that single-pot chemistry that is not autocatalytic may well become auto-
catalytic in the presence of exchange. This form of autocatalysis is precluded in other approaches
(discussed in detail Ch. 6) such as autocatalytic sets [10, 11], where all nutrients (the ‘food set’) are
locally chemostatted and ipso facto abundant.

As considered in Sec. 3.1 and our example of facilitated transport 5.1.4, it may be useful to
extend these notions beyond the single compartment: a system may acquire its nutrients through
chemically mediated exchange processes.
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Figure 5.7: a) Illustration of the chemical network from 5.6 in a closed system. b) Illustration of
the same chemical system, but with a selective exchange process through a membrane. Only the
latter system can display autocatalysis.

a. b.

Figure 5.8: a) Graph for the chemical network from 5.6 in the closed system. b) Graph of the same
chemical system, but with exchange reactions compartments (separated by dashed line).

In our example in Fig. 5.6, autocatalysis is an emergent property of chemical separation and
cooperative transport. The transport barrier allows BC to play the role of chemostatted food in the
form of BCII and the role of a rare internal autocatalyst in the form of BCI.

Topologically speaking, there is strictly more autocatalysis when a system is open to an
environment, since adding more reactions and exchange processes cannot alter the fact that existing
ones admit SFA or not, this is a property of a submatrix. Whether more or less autocatalysis will
manifest itself is a question of kinetics.

5.4.2 Multicompartment autocatalysis and its analogues

Many environments in contact can share common autocatalytic components. E.g. we can have a
pair of vesicles (see Fig. 5.5) in a solution of BC, which yields the network in Fig. 5.9. Having
more compartments accelerates the transport reactions and compartment chemistries necessary for
an autocatalytic cycle, improving autocatalysis overall. Fig. 5.9 can be seen as an autocatalytic
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analogue of mutualism to exploit a nutrient BC. In microbial ecology, analogues modes of
cooperation are found, e.g. the secretion of degradative enzymes and carrier molecules (e.g.
siderophores, chalkophores) by different organisms liberates nutrients that diffuse to many different
beneficiaries.

[BCB]I

BI

[BCB]II

BII

gB
I

gB
III

[BCB]III

BCIII

BIII

Figure 5.9: Autocatalytic transport for multiple compartments. Transport barriers (brown dotted
lines) separate compartments I and III. The species DI,DCI,BCII,DIII,DCIII have been removed.

AI

BI

AII

BII

gB
I

AIII

BIII

DI

EI

FIII
CI

Figure 5.10: Autocatalytic transport with two different compartments I and III.

A more elaborate multicompartment cycle is given in Fig. 5.10. Here, environment I and
III can e.g. be vesicles with different internal chemistries, allowing for overall autocatalysis.
This is the autocatalytic analogue of (obligate) syntrophy, which in biology represents nutritional
interdependence, e.g. between microbia crossfeeding essential metabolites.

5.5 Solitary and joint autocatalysis
So far, our examples have focused on autocatalytic cycles in which autocatalysts only react with
species in the environment, and not with other autocatalysts. A number of interesting phenomena
take place when we consider autocatalytic cycles that involve autocatalysts that react with other
autocatalysts. In this section, we will introduce a formal distinction between these fundamentally
different network structures, referring to the former as solitary autocatalysis and the latter as joint
autocatalysis. We will then illustrate how this distinction provides an interpretation for some
properties of a well-known example of joint autocatalysis.

Let us start by defining our two categories of autocatalysis

Definition 5.5.1 — Solitary Autocatalysis. A form of autocatalysis, in which all forward
reaction steps involve a single autocatalyst.

A characteristic example is provided by Toy formose (Appendix 10.2), where upon removal of the
environment (food) species C1 from our description, we obtain

C2 −−→ C3 −−→ C4 −−→ 2C2. (5.72)
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Every forward reaction in Eq. (5.72) involves a single autocatalyst. Note that this cannot be true in
the reverse sense: the production of more autocatalysts (through autocatalysis) requires at least one
reaction that produces two autocatalysts.

We are now in a position to define joint autocatalysis

Definition 5.5.2 — joint Autocatalysis. A form of autocatalysis, in which at least one forward
reaction step involves more than one autocatalyst.

Using our convention that reactions are at most bimolecular, let us consider a population of
autocatalysts {X1, ..,Xs}. Joint autocatalysis then means that in their autocatalytic cycle, there will
be at least one forward reaction step of the form

Xk +Xl→ .. (5.73)

where k can be equal to l. If the network contains one step of the form Eq. (5.73), there must be at
least two reactions that produce two autocatalysts to ensure net accumulation. An example of this
is seen in Fig. 5.11.

A minimal example of joint autocatalysis was given by Schlögl[12], through a termolecular
reaction

2X+B
1−−⇀↽−− 3X, (5.74)

with B a species provided by a reservoir. We will now develop a version of this reaction in terms of
bimolecular reactions that verifies nonambiguity.

Nonambiguity for Schlögls termolecular reaction
Oftentimes, reaction(5.74) is referred to as a termolecular reaction, which has led some to consider
it as a purely hypothetical example. As discussed in Sec. 2.2, termolecular reactions can generally
be seen as a succession of smaller, bimolecular steps in which intermediate complexes are formed.
In Refs. [13, 14] it was shown how the termolecular reaction could be written and treated in
terms of two bimolecular reactions. This system did not verify nonambiguity, however. To make
such reactions amenable to study within the framework introduced in this chapter, we will need a
different decomposition.

For reaction (5.74), we can construct a decomposition with at most bimolecular reactions which
also verifies nonambiguity (Eq. (2.15)), by writing

X+B
1α−−⇀↽−− BX, (5.75)

BX+X
1β−−⇀↽−− X3, (5.76)

X3
1γ−−⇀↽−− X2 +X, (5.77)

X2
1δ−−⇀↽−− 2X. (5.78)

if reaction 1β is a sufficiently slow rate-limiting step, 1α , 1γ , 1δ will rapidly establish local
equilibrium, characterized by equilibrium constants

K1α =
[BX]

[X][B]
, K1γ =

[X3]

[X2][X]
, K1δ =

[X2]

[X]2
. (5.79)

For the rate of reaction 1β we then have

R1β = k+1β
[BX][X]− k−1β

[X3] = k+1β
K1α [B][X]2− k−1β

K1γK1δ [X]3. (5.80)

Provided [X]� [X2], [X3], [BX], Eq. (5.74) provides a satisfactory simplification of the more
detailed network given by reactions (5.75) to (5.78).
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The more detailed reaction network is now fit for analysis within our framework, since it now
satisfies nonambiguity (Eq. (2.15)) and all reactions are at most bimolecular (Eq. (2.9)). The
stoichiometric matrix for this network is

1α 1β 1γ 1δ

ννν =

X

BX

X3

X2

B


−1 −1 1 2 −1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
−1 0 0 0 0

 . (5.81)

Let us now proceed by taking a submatrix where the reservoir species B is removed, sr = {5}. This
generates an autonomous submatrix ννν∗ = ννν(5|5)

1α 1β 1γ 1δ

ννν∗ =

X

BX

X3

X2


−1 −1 1 2
1 −1 0 0
0 1 −1 0
0 0 1 −1

 . (5.82)

Which is a square, full-rank matrix. Since it is also autonomous, it immediately follows that it
admits SFR and by extension (see Sec. 5.7) SFA and that it is capable of autocatalysis.

X
3BX

X

1a

X
2

1b

1g

1dgX

Figure 5.11: Hypergraph corresponding to ννν∗. The replication cycle gggX is illustrated in green. The
forward reaction 1β makes this network an example of joint autocatalysis. The consumption of two
autocatalysts in 1β is compensated by the production of two autocatalysts in 1γ and 1δ .

Since ννν is full-rank, replication cycles ggg can be found for each component individually by the
inverse ν̄̄ν̄ν−1 = (gggX,gggBX,gggX3 ,gggX2). Here ν̄̄ν̄ν−1 is

ν̄̄ν̄ν
−1 =

1α

1β

1γ

1δ


1 2 3 2
1 1 3 2
1 1 2 2
1 1 2 1

 (5.83)

Interestingly, ννν∗ contains two submatrices ννν ,ννν that also admit SFA, but with autocatalytic
cycles performed in opposite directions. The first one is obtained by removing X2 and reaction 1δ

ννν = ννν∗(4|4), the second one is obtained by removing BX and reaction 1α , ννν = ννν∗(2|1)

ννν =
X

BX

X3

−1 −1 1
1 −1 0
0 1 −1

 , ννν =
X

X3

X2

−1 1 2
1 −1 0
0 1 −1

 , (5.84)
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which have inverses

ν̄̄ν̄ν
−1 =

1α

1β

1γ

−1 0 −1
−1 −1 −1
−1 −1 −2

 , ν̄̄ν̄ν
−1 =

1β

1γ

1δ

1
2

3
2 1

1
2

1
2 1

1
2

1
2 0

 . (5.85)

From the sign change between the inverses, it is directly clear that the replication cycles in ν̄̄ν̄ν
−1 are

performed in the opposite direction (see Fig. 5.12)

X
3BX
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1g
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1g

1d

a. b.

gX

Figure 5.12: Hypergraphs corresponding to a) ννν and b) ννν . The replication cycles gggX (illustrated
in green) run in opposite directions.

Now that we have established how joint autocatalysis can be treated within the framework, let
us look at an interesting property that can come with bimolecular reactions between autocatalysts.

Thresholds and bistability
In solitary autocatalysis, a reaction can start from a single autocatalyst molecule. For joint auto-
catalysis, this ceases to be true: there need to be enough autocatalysts such that they can plausibly
meet. Let us now consider adding an irreversible degradation reaction

2X+B
k+1−−⇀↽−−
k−1

3X, (5.86)

X
k+2−−→ /0, (5.87)

where k+1 ,k
−
1 ,k

+
2 are rate constants. The reservoir species B is maintained at a fixed concentration

[B]. Let us now examine the kinetic equation for [X]

d[X]

dt
= k+1 [X]2[B]− k−1 [X]3− k+2 [X]. (5.88)

At steady-state, [X] is found from the third-order polynomial equation, which admits the solutions

[X] = 0 ∨ [X]−=
k+1 [B]−

√
(k+1 [B])2−4k−1 k+2

2k−1
∨ [X]+ =

k+1 [B]+
√
(k+1 [B])2−4k−1 k+2

2k−1
(5.89)

To have any chance of accumulating in the face of degradation, [X] must be sufficiently abundant,
we thus expect the fixed point [X] = 0 to be inherently stable. This can be confirmed from its linear
stability to a small perturbation ε

d[X]

dt
= k+1 ε

2[B]− k−1 ε
3− k+2 ε. (5.90)

The leading order contribution −k+2 ε < 0 confirms that such a reaction cannot be started with a
small amount of autocatalysts. For (k+1 [B])

2 > 4k−1 k+2 , [X]− and [X]+ are physical solutions. Since
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[X]+ > [X]− and because 0 is a stable fixed point, [X]− is an unstable fixed point and [X]+ is again
a stable fixed point. When (k+1 [B])

2 < 4k−1 k+2 , the only fixed point is 0.
From physical considerations, we may expect such behavior to be typical for joint autocatalysis

in the presence of degradation. The characteristic encounter of two autocatalysts (5.73) stabi-
lizes a state without autocatalysts. For the right combination of parameters and concentrations,
autocatalysis is no longer outpaced by degradation and the autocatalytic process can be maintained.

Schlögl’s termolecular reaction is typically combined with a second reservoir, to fix the concen-
tration of a molecule A that interconverts to X. This leads to the reaction network:

2X+B
k+1−−⇀↽−−
k−1

3X, (5.91)

X
k+2−−⇀↽−−
k−2

A. (5.92)

Our choice for a degradation reaction can be recast in this tradition, if we set [A] = 0. If we consider
the quantity corresponding to equilibrium of: X −−⇀↽−− A, i.e.

[X]∗ =
k−2
k+2

[A]. (5.93)

The kinetic term due to formation of X from a reservoir species can be incorporated in a weakened
degradation rate for concentrations above [X]∗

d[X]

dt
= k+1 [X]2[B]− k−1 [X]3− k+2 ([X]− [X]∗). (5.94)

Note that when [A]> 0, [X] = 0 ceases to be a fixed point. There exist parameter ranges for rate
constants and [A], [B] for which a state with abundant autocatalysts is the only fixed point[12, 15].

Schlögl’s reaction network[12] has been studied as a minimal model for bistability [15, 16] and
pattern formation[17, 18, 19] in chemistry. Upon adding a third reaction, the Brusselator network is
obtained, which can exhibit oscillations[20, 21].

5.6 Thermodynamic spontaneity and autocatalysis

We will now consider the spontaneity for autocatalytic reactions, i.e. we will consider whether
∆G < 0. A recent analysis discussed the question of spontaneity[22], but considered only the role
of the standard free energy of formation. Here, we will show that the disorder term can provide an
important contribution to ∆G as well.

We will ask the question of spontaneity for ‘triggering’ autocatalysis, i.e. perturbing a system
such that a i) previously inactive or i) poorly active autocatalytic cycle reinforces itself. For this
analysis, we will distinguish between i) solitary autocatalysis and ii) joint autocatalysis. The critical
difference between these two is that the former starts from a single autocatalyst, whereas the latter
involves the presence of a critical mass of autocatalysts.

5.6.1 Spontaneity of solitary autocatalysis
As an example of the first case, we will consider the Toy Formose reaction network in a CSTR with
a steady influx of C1 and H2O. The reaction C1 +C1→ C2 does not take place. However, when a
first molecule of C2, C3 or C4 enters, the autocatalytic cycle can directly be triggered. In particular
at the start, such a cycle should be extremely favorable, since abundant molecules are turned to rare
ones.
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Consider our first C2 molecule, which performs the net reaction 2C1 +C2 −−→ 2C2. The
associated free energy change of the system is then

∆Gcycle = µ
◦
C2
−2µ

◦
C1
+ kT ln

(NC2
+1)NT

NC1
(NC1

−1)
(5.95)

Where NT = NC1
+ NC2

+ NC3
+ NC4

+ NH2O. The latter term corresponds to disorder, and is
reminiscent of a mixing entropy. If we have e.g. 1 Moles of C1 and 55 Moles of H2O, the latter
term would yield −50kT for the first cycle. Consequently, the nucleation of autocatalytic cycles is
favored by thermodynamics, even if ∆µ◦ is not favorable to such a reaction.

Various authors have claimed that autocatalysis requires ∆µ◦ < 0, and some have claimed that
this must even be true for every single reaction step. From Eq. (5.95) it follows that this is too strict
a requirement, the disorder contribution can compensate an unfavorable ∆µ◦. The step C4 −−→ 2C2
in formose is a case in point where ∆µ◦ > 0. Due to the disorder contribution, triggering solitary
autocatalysis is quite generally expected to be thermodynamically spontaneous. Whether triggering
will be successful (see Ch.6) will largely be a question of kinetics‡.

5.6.2 Spontaneity of joint autocatalysis
For joint autocatalysis, the argument is a bit different, since we cannot trigger the reaction with a
single molecule: multiple autocatalysts must be capable of meeting each other appreciably to finish
the autocatalytic cycle. The rate at which this must occur is set by the timescales of competing
processes such as degradation.

As an example, let us take Schlögl’s termolecular reaction,

2X+B
gggX

−−⇀↽−−
−gggX

3X. (5.96)

with B a chemostatted species. Let N∗X be the abundance of X where encounters are numerous
enough to compete with other processes like degradation.

If we now perform an autocatalytic cycle, such that N′X = N∗X +1, the associated free energy
change is

∆Gcycle = µ
◦
X−µ

◦
B + kT ln

N∗X +1
NB

. (5.97)

For this reaction to be competitive, the forward reaction must at least be as fast as degradation (but
this is not enough, as explained in Sec. 5.5). When the rate of forward reaction and degradation
(which we assume unimolecular) are equal, we find k+N2

XNB = k /0NX, which means that N∗X ∝
1
τ
.

At this point, the abundance of X will far exceed the single-molecule limit N∗X� 1, making
its disorder contribution weaker than for solitary autocatalysis. The contribution of ∆µ◦ will then
become more important in determining the spontaneity of autocatalysis.

5.7 SFR, SFA and autocatalysis

Let us start by reiterating the conventions that a stoichiometric matrix ννν must respect in our
framework. First, reactions are decomposed in steps that are at most bimolecular

∀i ∑
k

ν
(+)
ki ≤ 2, ∑

k
ν
(−)
ki ≤ 2. (5.98)

‡Of course, if ∆µ◦ becomes too large, the kinetics will in turn be prohibitively slow.
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Second, a species involved in a reaction step is either a reactant or a product, but never both

∀k, i ν
(−)
ki ν

(+)
ki = 0, (5.99)

which we refer to as nonambiguity.
Let ννν be a stoichiometric matrix that performs Stoichiometrically Feasible Reproduction (SFR).

SFR implies that ννν is autonomous: every reaction has one or more reactants and one or more
products. Furthermore, there exists a reaction vector ΓΓΓ, s.t. ∀i,(ννν ·ΓΓΓ)i ≥ 1, which is equivalent to
stating that there exists an overall reaction

nAA+nBB+ ...
+ΓΓΓ−−⇀↽−−
−ΓΓΓ

mAA+mBB+ ... , ∀ i mXi
> nXi

≥ 0. (5.100)

A network that is SFA, comes with a slightly stronger requirement:

nAA+nBB+ ...
+ΓΓΓ−−⇀↽−−
−ΓΓΓ

mAA+mBB+ ... , ∀ i mXi
> nXi

≥ 1. (5.101)

Throughout these notes, we will maintain the convention that ΓΓΓi ≥ 1, which can always be
achieved by the appropriate choice of sign for reactions in ννν . Since those reactions are reversible,
the choice of their sign is arbitrary. By construction, a positive entry on the left of eqs. (5.100) and
(5.101) corresponds to consumption, with the consumption and production for Xi being

ni = (ννν+ ·ΓΓΓ)i, mi = (ννν− ·ΓΓΓ)i. (5.102)

It follows directly that SFA implies every species is both consumed and produced. Eq. (2.15)
shows that a reaction cannot both consume and produce the same species. In SFA, any species Xi is
consumed by at least one reaction, and at least produced by one different reaction.

All cycles can be removed
Let us recall that the rank of ννν corresponds to the number of reactions minus cycles:

rank(ν) = r− c. (5.103)

A reaction network that has cycles (c > 0) has, by definition, more reactions than necessary to span
its concentration space whose dimension is rank(ν). As noted in Sec. 2.6, the removal of a reaction
has one of the following two consequences: i) removal of a cycle c′ = c−1. ii) generation of a
conservation law l′ = l + 1. As long as c > 0, one can always remove a reaction that is part of
the reaction vector ccc of a cycle, to make that cycle impossible. It follows that we can remove any
excess cycles by removing the appropriate surplus reactions, to yield a network with c = 0. In the
rest of this section, we will always consider that the network has been pruned in this fashion, so
that we can rapidly find the necessary irreducible submatrices for the rest of our demonstration.

SFR not SFA implies reducibility
Let us now consider a network that performs SFR but not SFA. Eqs. (5.100) and (5.101) allow for
this situation, if a choice of ΓΓΓ yields nXk = 0 for at least one species Xk. The species Xk is then only
produced. For any reaction r, we distinguish between two ways in which this can happen: O1) Xk
is the only product. O2) Xk is produced along with another molecule. in Fig. 5.13 these reactions
are illustrated.

Let us now consider removing Xk from our description. This operation transforms an O1-
reaction to an /0-reaction. An O2-reaction will still have another product. Letting rO1 be the set of
indices for O1 reactions in which Xk engages, it follows that the submatrix from which Xk and rO1
are removed, ννν∗ = ννν(k|rO1), is autonomous.
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Figure 5.13: Illustration of all possible O1 reactions and O2 reactions for Xk allowed by Eq. (5.98).

Upon removal of rO1, the overall reaction balance (eq. (5.100)) is modified. Since we have only
touched on reactions that produce Xk, all other species are still produced upon the removal of rO1
from ΓΓΓ

m∗X j
= mX j ≥ nX j ≥ 0, j 6= k. (5.104)

Which guarantees that the submatrix ννν∗ = ννν(k|rO1) admits SFR. It follows that a network that is
SFR but not SFA is reducible to a smaller network that is SFR.

Autonomy requires that O1-reactions have reactants and products. If rO1 is nonempty, the
removal of reactions lead to a corresponding decrease of consumed reactants: ∃ j 6= k,n∗X j

< nX j .

The smallest SFR networks
In an SFR network, all species are produced, but not all species are consumed. Autonomy requires
that there are no /0-reactions, which means that at least some species must also be consumed. Eq.
(5.99) then implies that an SFR network must have at least two reactions. Let us now consider these
smallest networks for which r = 2.

Eq. (5.98) only allows a species to be consumed/produced with stoichiometry 1 or 2. We
require all species to be produced and at least one to be consumed as well. r = 2 then implies there
is a species Xk s.t. nk = 1, mk = 2, which is achieved by two separate reactions. Two reactions can
produce at most 4 species, so at most two other species than Xk can be produced for r = 2. An SFR
with r = 2 must have 2≤ s≤ 3.

For s = 3, there are two distinct SFRs to consider:

ννν1 =

−1 2
1 −1
1 −1

 , ννν2 =

−1 2
1 −1
1 0

 (5.105)

Where ννν1 admits SFA, and ννν2 does not. However, the submatrix afforded by removing the third
row, ννν2(3| /0), does.

For s = 2, all SFRs are SFA:

ννν3 =

(
−1 2
1 −1

)
, ννν4 =

(
−1 2
2 −1

)
, ννν5 =

(
−1 2
2 −2

)
(5.106)

SFR implies SFA
By our reduction operation, a network that performs SFR but not SFA becomes a smaller subnetwork
that again admits SFR, and may or may not admit SFA. This procedure removes one species at



168 Chapter 5. Allocatalysis, Autocatalysis and Stoichiometry

a time, while guaranteeing that this operation yields a network that is autonomous and admits
SFR. When this procedure encounters SFA, the protocol can no longer be applied. The reduction
operation is guaranteed to find an SFA at some point, since sufficiently reduced networks can only
be SFA (s = 2,r = 2).

SFA and reducibility

A stoichiometric matrix ννν that admits SFA may in turn contain smaller submatrices that are also
SFA. In particular, SFA allows a network to have mixed conservation laws `̀̀�, s.t. `̀̀� ·ννν = 0. In
an SFA, such a conservation law requires there to be at least two bimolecular steps, such that
molecules are formed and consumed together. We will now demonstrate the following: a matrix ννν

that admits SFA and with a mixed conservation law `̀̀� can be reduced to a submatrix that admits
an SFR. This is achieved by removing a species consumed in a bimolecular reaction.

Having removed all cycles (c = 0), it follows that s−`= r. Let us now consider the bimolecular
consumption reactions involving two distinct species.If there are r′ of such bimolecular consumption
reactions, the other r− r′ consume only one type of species. Since we require that every species
must be consumed at least once, we require at least s− r′ reactions.

Upon removing a species Xk, any O1 reactions that form Xk must be removed to preserve
autonomy, any O2 reactions that form Xk remain untouched. In principle, Xk can also be consumed
by O1 reactions in the forward sense. We will now show that for SFA with bimolecular consumption,
there must exist a species Xk that is not consumed by such reactions.

Let us first consider the converse: every species in bimolecular consumption reactions is also
consumed by forward O1 reactions. Then every species is involved in at least one O1 reaction,
meaning r ≥ s+ r′. Equating this to s− `, with ` > 0, we run into a contradiction. In the presence
of a mixed conservation law, there must therefore be a species engaged in a forward O2 reaction
that does not engage in forward O1 reactions, as before, let us construct a submatrix ννν∗ = ννν(k|rO1).
Upon the removal of rO1 from ΓΓΓ, all non-Xk species are still produced in equal amount

m∗X j
= mX j ≥ nX j ≥ 0, j 6= k. (5.107)

Which guarantees that the submatrix ννν∗ = ννν(Xk|rO1) admits SFR. SFA with a mixed conservation
law thus implies reducibility to a smaller SFR.

Further reductions

SFR implies reducibility to a smaller network that performs SFA. SFA with mixed conservation
laws implies reducibility to a smaller network that performs SFR. Upon repetition of the derived
procedures, we must then end up with a network that i) performs SFA and ii) has no mixed
conservation laws.

By definition, SFR and SFA exclude mass-like conservation laws `̀̀+. Furthermore, we can
trivially remove the appropriate reactions to get rid of cycles, to span the same concentration space.
Then, `= 0 and c = 0. Applying the fundamental theorem of linear algebra

s− `= r− c, (5.108)

we are left with s = r, a full-rank square matrix. It follows that a network that performs SFR must
contain an autonomous and invertible submatrix that only performs SFA.

SFR not SFA implies reducibility. For an invertible SFA, reducibility can still occur. As
evidenced by the Schlögl network (Sec. 5.5), an invertible SFA network can still have submatrices
that are themselves SFA and invertible. These submatrices were obtained by removing a redundant
reactant and a corresponding O1 reaction that this generates.
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5.8 Autocatalysis and frustrated amplification: composite chemostats
Autocatalysis tends to be portrayed as the action of a set of actively accumulating autocatalysts,
feeding on an abundant food supply, which often takes the form of a chemostat. In our character-
ization of SFR and SFA, we have implicitly supposed that if food comes from chemostats, such
chemostats are ‘simple’. For composite chemostats, some particular behavior can occur, on which
we will elaborate in this section with an example that can perform autocatalysis through simple
chemostats and ‘frustrated amplification’ through composite chemostats.

As discussed in Sec. 3.1, a chemostat can either be simple

/0−−⇀↽−− A, (5.109)

thereby fixing the chemical potential (and thereby concentration) of A, or it can be composite:

/0−−⇀↽−− A+B, (5.110)

which fixes the combined chemical potential, and thereby a product of concentrations (e.g. a
solubility product) xAxB. When such a nonlinearity is in place, feedbacks can occur on the level of
the food: the consumption of A will lead to an accumulation of B.

Let us illustrate this by a literature example using molecular cages [23, 24], which reversibly
traps a carbodiimide (DCC) in a cage C, according to a reaction

[DCC : C]−−⇀↽−− C+DCC. (5.111)

The reactant DCC reacts with a carboxylic acid moiety RCO2H, to form a reactive intermediate X

DCC+RCO2H−−⇀↽−− X. (5.112)

Subsequently, this intermediate X can react with an amine moiety RNH2 to yield an amide product
P and a urea moiety DCU:

X+RNH2 −−⇀↽−− P+DCU. (5.113)

These species form more stable complexes with the cage

C+DCU −−⇀↽−− [DCU : C], (5.114)

C+P −−⇀↽−− [P : C]. (5.115)

In Ref. [24, 23], a displacement process was considered to be the dominant contribution to the
exchange of caged species (the lifetime of the release by the cage being estimated at 107s):

[DCC : C]+DCU −−⇀↽−− [DCU : C]+DCC, (5.116)

[DCC : C]+P −−⇀↽−− [P : C]+DCC. (5.117)

Overall, a caged species [DCC : C] liberates C, which reacts to form two better guest species DCU
and P, which subsequently liberate 2DCC for their cages, leading to an overall balance consistent
with stoichiometric autocatalysis for the species DCC

DCC+RCO2H+RNH2 +2[DCC : C]−−⇀↽−− 2DCC+[P : C]+ [DCU : C] (5.118)

Notice that, with the appropriate rates and separations of timescales (which may not be the case
here), such a process can also be afforded without a displacement reaction, but rather a composition
of exchanges with the cage.

In the next sections, we will show that this alternative situation requires a different approach, as
we need to consider the feedback on a composite chemostat of empty cages and reactant.
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With displacement reaction

Let us first consider the displacement pathway, by constructing a stoichiometric matrix ννν

1 2 3 4 5

ννν =

[DCC:C]

C

DCC

RCO2H

X

RNH2

P

DCU

[P:C]

[DCU:C]



−1 0 0 −1 −1
1 0 0 0 0
1 −1 0 1 1
0 −1 0 0 0
0 1 −1 0 0
0 0 −1 0 0
0 0 1 −1 0
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1



[DCC : C]−−⇀↽−− C+DCC
DCC+RCO2H−−⇀↽−− X
X+RNH2 −−⇀↽−− P+DCU

[DCC : C]+P−−⇀↽−− [P : C]+DCC
[DCC : C]+DCU−−⇀↽−− [DCU : C]+DCC

(5.119)

We can construct an autocatalytic submatrix ννν∗, by removing DCC : C],C,RCO2H,RNH2, [P :
C], [DCU : C, and the initial release reaction, to yield the considerably smaller submatrix

1 2 3 4

ννν
∗ =

DCC

X

P

DCU


−1 0 1 1
1 −1 0 0
0 1 −1 0
0 1 0 −1


DCC−−⇀↽−− X

X−−⇀↽−− P+DCU
P−−⇀↽−− DCC

DCU−−⇀↽−− DCC

(5.120)

Note that ννν∗ is invertible and autonomous. From the hypergraph of the subnetwork (Fig. 5.14) it
also becomes directly apparent that it is an irreducible example of an SFA.

X

DCU

P
DCC

Figure 5.14: Molecular cages performing autocatalysis.
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Passive exchange
Let us now consider a situation where we can stoichiometrically still obtain (5.123), but where the
feedback occurs on the level of a composite chemostat.

1 2 3 4 5

ννν =

[DCC:C]

C

DCC

RCO2H

X

RNH2

P

DCU

[P:C]

[DCU:C]



−1 0 0 0 0
1 0 0 1 1
1 −1 0 0 0
0 −1 0 0 0
0 1 −1 0 0
0 0 −1 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 −1 0
0 0 0 0 −1



[DCC : C]−−⇀↽−− C+DCC
DCC+RCO2H−−⇀↽−− X

X+RNH2 −−⇀↽−− P+DCU
[P : C]−−⇀↽−− C+P

[DCU : C]−−⇀↽−− C+DCU

(5.121)

Contrary to stoichiometric autocatalysis derived before, ννν admits no SFA submatrix. What happens
in this network is fundamentally different: a dynamic equilibrium

[DCC : C]−−⇀↽−− C+DCC (5.122)

is shifted, by the consumption of C by P and DCU. If this dynamic equilibrium is the fastest
reaction and [DCC : C] is abundant, then the product xCxDCC remains fixed. One xDCC is consumed
for every two C in the transformation ggg = (1,1,1,−1,−1), leading to a participation balance

2[DCC : C]+DCC+2C + X+RCO2H+RNH2 +DCU+P
ggg−−⇀↽−−−ggg

(5.123)

2DCC + 2C+X+DCU+P+[P : C]+ [DCU : C].

Coupled with rapid equilibration of (5.122), C will decrease in abundance, and DCC will increase.
If the consumption of DCC or X is rate-limiting, such a feedback has an accelerating effect. Upon
this acceleration, other reactions become limiting, which is either the mass injection by the chemost
(Eq. (5.122)) or reaction with the cages. These reactions are not accelerated by the feedback in
place and a linear regime is entered.

An instructive alternative perspective, is consider what would happen if DCC would not form a
complex with cage C, and instead both species were abundantly present, or resupplied by chemostats
(e.g. DCCI −−⇀↽−− DCCII). We can then remove C, DCC and reaction (5.122) from our description,
to yield a subnetwork:

1 2 3 4

ννν =

RCO2H

X

RNH2

P

DCU

[P:C]

[DCU:C]



−1 0 0 0
1 −1 0 0
0 −1 0 0
0 1 1 0
0 1 0 1
0 0 −1 0
0 0 0 −1


RCO2H−−⇀↽−− X

X+RNH2 −−⇀↽−− P+DCU
[P : C]−−⇀↽−− P

[DCU : C]−−⇀↽−− DCU

(5.124)

The subnetwork has no emergent cycles and admits a mass-like conservation law

L+ = nRCO2H +nRNH2
+nX +nP +nDCU +n[P:C]+[DCU : C], (5.125)
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meaning it is neither an allocatalytic nor autocatalytic matrix. In the original scheme, RNH2 and
RCO2H were food sources as well. Removing them would break autonomy, since this would yield
a reaction:

/0−−⇀↽−− X. (5.126)

If we were to consider X as abundant as well (due to a chemostatting via RCO2H and DCC), a
bimolecular /0 reaction is obtained

/0−−⇀↽−− P+DCU. (5.127)

again, autonomy is not preserved.

Frustrated amplification and bimolecular /0-reactions
If we wish to characterize such ‘frustrated amplification’ in terms of a submatrix, we can no longer
use the SFA criterion. The dual role of food and feedback in Eq. (5.122) leads to a bimolecular
/0-reaction, if we remove [DCC : C] from the description:

/0−−⇀↽−− C+DCC. (5.128)

Similarly, we can turn the consumption of C in bimolecular /0-reactions:

C+P−−⇀↽−− /0, (5.129)

C+DCU−−⇀↽−− /0. (5.130)

Contrary to unimolecular /0 reactions, which are a trivial means of breaking mass-conservation that
are not prone to feedback, bimolecular /0 reactions can be acted upon. Let us now define a property
to formalize this:

Definition 5.8.1 — Pseudoautonomy. A stoichiometric submatrix ννν∗ is pseudo-autonomous,
if it contains bimolecular /0-reactions, but no unimolecular /0-reactions.

Using this definition, a network is either autonomous, pseudoautonomous, or neither.
If we now consider [DCC : C],RCO2H and RNH2 as ‘food’ and [P : C], [DCU : C] as ‘waste’,

we can write a stoichiometric submatrix

1 2 3 4 5

ν̃̃ν̃ν =

C

DCC

X

P

DCU


1 0 0 −1 −1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 1 0 −1


/0−−⇀↽−− C+DCC

DCC−−⇀↽−− X
X−−⇀↽−− P+DCU

/0−−⇀↽−− C+P
/0−−⇀↽−− C+DCU

(5.131)

which is pseudoautonomous and has no mass-like conservation laws. Moreover, ν̃̃ν̃ν is invertible

C DCC X P DCU

ν̃̃ν̃ν
−1 =

1
2
3
4
5


−1 2 2 1 1
−1 1 2 1 1
−1 1 1 1 1
−1 1 1 0 1
−1 1 1 1 0

 (5.132)

The replication vectors ν̃̃ν̃ν−1 = (gggC,gggDCC,gggX,gggP,gggDCU) now elegantly capture how the replication
of C is misaligned with the replication rest of the network. With respect to the other species,
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C performs its reactions in the opposite sense. The replication vectors are linearly independent,
so formally we can write a reaction vector ΓΓΓ = gggC +gggDCC +gggX +gggP +gggDCU that replicates each
species. In practice, we do not expect the species to replicate collectively, as detailed in the
preceding sections.

We may wonder why this frustration of self-replication happens for this system, but not for the
closely similar autocatalytic network. In the autocatalytic network, displacement reactions of the
form

[DCC : C]+P−−⇀↽−− [P : C]+DCC, (5.133)

yield the same result as the composition of a decomplexation and a complexation reaction in the
chemical amplification network

[DCC : C]−−⇀↽−− C+DCC, (5.134)

C+P−−⇀↽−− [P : C]. (5.135)

The critical difference comes with the introduction of the dynamic species C. On the one hand, C
plays the role of food that must be abundant enough to not limit the reaction rate. On the other hand,
C is coupled to species DCC, which is intended to accumulate autocatalytically, and thus requires
C to rapidly diminish in abundance. In the autocatalytic network, this problem is sidestepped by
not having C as a substrate in the first place, but directly reacting with [DCC : C].
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6. Autocatalytic Chemical Evolution

In extant biochemistry, evolution has become close to synonymous with genes. An illustrative quote
comes from a joint paper between proponents and skeptics of niche construction as an extension of
evolution[1]: evolutionary processes are those that change gene frequencies.

In origins of life and prebiotic chemistry, we are faced with the problem that we do not have
‘genes’ to begin with. To account for biological evolution today, many feel that there must be a
selection process that mimics evolution, starting from prebiotic chemistry. In prebiotic chemistry,
‘chemical evolution’ refers to an evolution-like process operating on prebiotic molecules, with
definitions varying strongly from author to author [2]. Many authors have speculated on what
such an evolution may look like and how similar it must be to modern Darwinian evolution.
Unfortunately, no satisfactory description of chemical evolution has been proposed, and some
argue that a pre-Darwinian evolution process is implausible[3]: .. the concept of “pre-Darwinian
evolution” appears questionable, in particular because it is unlikely if not impossible that any
evolution in complexity over time may work without multiplication and heritability allowing the
emergence of genetically and ecologically diverse lineages on which natural selection may operate..

In this section, we first discuss some particular attempts to address this question, notably
GARD[4, 5, 6], autocatalytic sets of polymers[7, 8, 9, 10] and an evolving autocatalytic metabolism
in a single reactor [11]. A common feature of these models is autocatalysis, but they all use the
phenonemon in a different way. These models insist on particular chemical systems and network
structures, which provides an elegant approach for studying a particular mechanism.

In the formulation of scenarios, however, we should reconsider how closely we are tied to the
restrictions of these models. These restrictions are first and foremost a means of making the model
practical and tractable. Such considerations provide little justification to restrict a prebiotic scenario
to one type of chemistry or autocatalytic mechanism.

As was shown in the last chapter, we have not even considered all types of autocatalysis yet.
In addition, there is considerable confusion on what we should call autocatalysis[12, 13]. Here,
we will address these issues, by showing how autocatalytic mechanisms in the literature fit in
the general picture of stoichiometric autocatalysis. By uniting them in a common language and
framework, we hope to pave the way for a more united treatment of the phenomena that some refer
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to as ‘chemical evolution’.
The need for such a treatment is echoed by a clear impasse in OOL: the apparent implausibility

of kickstarting a form of genetic evolution directly is an important motivation to look for forms
of chemical evolution. Simultaneously, no other autocatalytic evolution mechanism convincingly
provides enough evolutionary capacity by itself[14, 15, 16, 8, 3].

It is hoped that the present discussion may provide a fresh starting point in an overall effort
towards a synthesis of chemical evolution. A first extension to this effort will be considered in
Chapter 8, where a small number of multilevel selection mechanisms (as found in GARD and the
stochastic corrector) is discussed and analyzed in detail.

Starting from a stoichiometric matrix with nonambiguous elementary reactions, we study the
conditions for the nucleation and survival of new autocatalytic cycles in terms of microscopic rates.
In doing so, we obtain a more rigorous description of the evolving autocatalytic metabolism, of
which GARD and autocatalytic sets are particular examples. Subsequently, we introduce multiple
environments and molecular transport processes. For all of this, we can use the framework of
stoichiometric autocatalysis introduced in the last chapter.

In doing so, autocatalytic multicompartment cycles radically increase evolvability: we must
now not consider a single evolving reactor doing pure chemistry, but an extensive ecosystem
of chemically distinct microenvironments performing selective exchange. This may provide the
combinatorial diversity to enforce further evolvability, while simultaneously keeping the local
chemistries sufficiently clean.

The viability of multicompartment autocatalysis hinges on efficient and selective exchange
between different compartments. It becomes advantageous for these compartments to be close, to
be numerous, and even to be connected.

6.1 Chemical Evolution

As a concept, a notion of ‘chemical evolution’ has emerged a number of times over the last 100
years. C. Malaterre observes that the concept really started to gain traction[2] after its discussion
by Melvin Calvin in “chemical evolution and the Origin of Life”[17]. Malaterre distinguishes
two academic approaches that have been taken to chemical evolution: a ‘historical’ descriptive
approach and theoretical attempts to truly define the process. Indeed, chemical evolution is the
staple deux-ex-machina that is invoked to bring prebiotic scenarios to their biotic conclusion.

Chemical evolution has been defined many times over to fit particular scenarios or models. At
present, there is no universally accepted definition. However, the different attempts at discussing
such a process all revolve around molecules achieving increasingly elaborate states of organization
in an evolution-like manner.

In the following, some models for chemical evolution will be discussed. While they are all
quite different in context (focusing on particular types of molecules, networks and reactor settings)
and somewhat limited in their scope, they show a key similarity: every single one of them performs
stoichiometric autocatalysis.

One open question that is currently the object of active research[18] is to see how the cross-
catalytic growth in GARD and autocatalysis in autocatalytic sets are related. As we will show, they
are both examples of coarse-grained reaction networks, and imposing nonambiguity shows that
they are both autocatalytic in the same stoichiometric sense.

6.1.1 Autocatalytic sets
Autocatalytic sets were pioneered by S. Kauffman in 1971[19]. At the time, responses were mixed:
a remark by a disinterested chemist led him to abandon the line of research for over a decade[18].
Later, the work was picked up again, and was extended along several lines, notably by Kauffman[7],
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W. Hordijk and M. Steel[9, 10] and has notably been explored in models for polymerization by Giri
et al [20] and gene-free evolution by Vasas et al. [8].

Hordijk and Steel placed the autocatalytic sets framework on more rigorous mathematical
footing and provide the following definition for what constitutes an autocatalytic set[9, 10, 12],
which we will repeat here:

Definition 6.1.1 — Autocatalytic set (RAF set). An autocatalytic set (or RAF set) is a set of
reactions r ∈R, that is:
1. F-generated (F): all reactants consumed by reactions r ∈R are part of the food set f or can
be made directly from it, using only reactions in R.
2. Reflexively autocatalytic (RA): each reaction r ∈R is catalyzed by at least one species, that
is part of the food set f or can be made directly from it using only reactions in R.

Note that not every reaction network that exhibits autocatalysis is an autocatalytic set. As
pointed out by W. Hordijk, Toy Formose is not an autocatalytic set, because not every reaction is
catalyzed[12], it is only an autocatalytic cycle. The converse, however, is true: every autocatalytic
set is a reaction network that exhibits autocatalysis (or at least stoichiometric autocatalysis).

Our stoichiometric matrix framework differs from the RAF framework, by having only reactions,
from which catalysis follows by their network motif. In RAF sets there is an explicit distinction
between reactions and catalysis. As noted in Sec. 2.2, we can always decompose a reaction in
more steps, and catalysis itself must occur in cycles composed of two or more steps. Catalysis
will not act on every substep of this cycle (e.g. the diffusive approach of reactants or various steps
in the reaction mechanism), so such decompositions are best avoided in RAF sets to satisfy the
RA-condition.

Coarse-grained networks in autocatalytic sets
In terms of dynamics, a catalyst in a RAF set should accelerate the rate-limiting step in a series
of bundled reaction steps bundled in a single reaction r ∈R. Kauffman made an observation of a
similar kind [18], noting that some biochemical reactions (in E. Coli the number seems to be 3) are
entirely uncatalyzed, they are rapid enough on their own. The appropriate choice of reactions and
species to model a system under such coarse-graining can depend on the system composition, at
certain concentrations other substeps may become limiting.

This coarse-graining must be done with care. If we were to fuse the 3 reactions in the Toy
Formose model (Fig. 6.1), one ends up with a single net reaction

2C1
C2−−→ C2, (6.1)

which is catalyzed by C2.
In this single-reaction model, Toy Formose is a RAF. For real formose, the single-reaction

approximation can be quite appropriate for the C2 −−→ C3 −−→ C4 −−→ 2C2 pathway, when
fragmentation of C4 is the rate-limiting step. An increase in C2 will rapidly lead to a corresponding
increase in C4, and hence increase the rate. To have this as a rate-limiting step, C1, divalent metal
ions and base need to be sufficiently abundant. Hordijk notes that real formose does not form more
metal ions and that this prevents it from being a RAF.

Strictly speaking, this situation can be circumvented, if we allow the divalent metal ions to be
part of the food set f . Such an intervention would not alter the definition of the RAF set and seems
to be allowed within the framework. At any rate, Toy Formose does not suffer from this objection
(since it is purely hypothetical) and it can have a representation in which it is a RAF and one where
it is not. The separation of timescales dictates whether calling it a RAF is appropriate.

As shown in Fig. 6.1, whether an autocatalytic network (here: Toy Formose) is a RAF critically
depends on the level of description. By decomposing Toy Formose in smaller reaction steps, we
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move from an overall autocatalytic cycle to a mechanistic description of its substeps (A more
realistic description of genuine formose would require even more more substeps, involving hydride
shifts, deprotonation by catalytic base, etc.[21, 22]).
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Figure 6.1: Two representations of the formose network using bipartite graphs. Dotted arrows
signify catalysis, bold arrows map reactants to a reaction (stoichiometry not shown) a) a detailed,
three-reaction Toy Formose. No reaction is catalyzed, not a RAF. b) a coarse-grained, single-
reaction Toy Formose. The product catalyzes its own formation and forms a RAF.

Although we can describe the smallest autocatalytic cycle in Toy Formose as a RAF, the more
general statement that formose is not an example of a RAF is also correct. To see this, we need
to consider that in true formose there are more autocatalytic cycles, e.g. via C5, which can split
according to C5 −−→ C2 +C3, and C6 via C6 −−→ C2 +C4 and C6 −−→ C3 +C3. To convert
C2 −−→ C3 −−→ C4 −−→ 2C2 to a RAF, we had to remove C3 and C4. To describe higher-order
cycles as RAFs, we need these species in our description.

Abundance and polymer scenarios

An important question in RAF theory and for autocatalysis in general concerns the abundance of
autocatalytic networks. Kauffman recalls that some of his key results for autocatalytic sets was
inspired[18] by a Erdös-Rényi graphs[23]. These are random graphs, constructed by randomly
connecting pairs of nodes with an independent probability p for each edge. As such graphs grow in
size, the probability that they contain a cyclic subgraph grows rapidly.

By making random graphs for catalysts promoting the formation of other catalysts, Kauffman
showed that large enough networks of catalysts and food molecules are expected to contain
autocatalytic sets. The value of p is not expected to be very large: if we mix some arbitrary catalysts
we should indeed be very surprised to see them catalyze each other’s formation. Kauffman argues
for values of p around 10−5−10−6. It is then necessary to have a high number (O(1/p)) of nodes
(catalysts) to achieve appreciable connectivity.

Such a high number of nodes implies a highly diverse chemical mixture. In practice, scenarios
with autocatalytic sets achieve such diversity by being formulated in terms of cross-catalytic
networks of copolymers [7]. Some work has also been done on random graphs with links that
show some extra structure, e.g. due to a complementarity rule in RNA, which has led to similar
results[24]. A recent formulation of the model considers placing such autocatalytic sets in dividing
coacervate compartments [8].

6.1.2 GARD

GARD stands for graded autocatalysis replication domain, and was originally introduced by Segré
et al in 1998[4]. It is commonly presented as a model for amphiphile assemblies (e.g. micelles)
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with a composition nnn = {n1, ...,ns}, that follow an evolution equation

dni

dt
=
(
k+i ρiN− k−i ni

)(
1+

1
N

s

∑
j=1

βi jn j

)
. (6.2)

The surfaces are in contact with a reservoir, that contains species Zi at concentration ρi and that
can enter the surface, which has an area proportional to N. The incorporation happens with a base
rate of k+i , but can be facilitated by other amphiphiles, for which the catalytic rate enhancement is
characterized by βi j.

A special ingredient in GARD is the division process, which splits a mature surface in two new
ones, after achieving a maximal size Nmax. A typical order of magnitude used in simulations is
Nmax = 100, which is a typical order of magnitude encountered for micelles. The new compartments
are roughly equally sized partitions of the original mixture. The cross-catalytic network structure
can introduce multiple (stable) attractors for the system composition in the growth-division process.
Such a compositional attractor has been called a ‘composome’, or a compositional genome.

Composomes and Information
In principle, there are

Ω =

(
N + s−1

N

)
(6.3)

possible compositions for a size N. On several occasions, lnΩ has been considered as a measure
of the information in the composition. In the sense defined in Chapter 3, this can be given a
thermodynamic interpretation: we can take a highly specific composition nnn and extract work from
randomizing that composition with an appropriate engine. If all these compositions have the same
free energy, a process can be constructed that yields kT lnΩ.

This also makes clear what the limits are of such an interpretation: the micelle composition
nnn is strongly fluctuating and a stable composome state cannot be defined with single-molecule
precision. Indeed, a composome is characterized by a compositional attractor and its vicinity[6].
Let us consider a protocol (analogous to Sec. 4.2) that extracts work by reversibly letting one stable
composome interconvert between all possible Ncomp stable composomes. If these composomes
occupy the same volumes of phase space, it directly follows that we can extract a work of at most
kT lnNcomp.

In the GARD scenario, we do not aim to extract the maximum work from a composition, we aim
to produce a set of distinct stable states. We see, however, that these ideas can be made analogous.
Both in the thermodynamic sense and in the evolutionary sense, the natural quantity to study is the
number of attractors Ncomp. The number of such attractors is much smaller[16, 6] than Ω. In this
sense, the analogy between the number of copolymer sequences and Ω is less appropriate, since
copolymer sequences do not exhibit the inherent fluctuations that GARD assemblies do∗.

Provided the compositional noise due to division and growth is sufficiently small, certain
compositions can be stabilized. For Nmax = 100, noise in inoculation and incorporation is expected
to be considerable, especially with a large diversity of amphiphiles. In addition, if incorporation
of amphiphiles is a memoryless process, it is expected to yield high noise, unless considerable
differences in rate enhancement βi j are in place to compensate for it (see also Sec. 8.4, for a
discussion of noise in growth).

This has formed the object of some criticism: the inherently high noise (especially for s� 1)
makes compositions unstable, hampering particular compositions to act on timescales deemed

∗Letting mmm denote the number of monomer types and L the polymer length, we can in principle construct an engine
that extracts a work equal to kT lnmL per polymer, by interconverting between all other possible sequences.
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necessary for evolutionary processes[25]. If in addition only a small number of attractors exists,
these states will be rapidly explored and a stable steady-state. The latter was shown explicitly
by the Perron-Frobenius theorem on the level of populations of attractor states. Lancet et al. [6]
argue that other objects such as vesicles could be imagined, with much larger values of Nmax > 106

(indeed, this is considered as an alternative path towards protocells[3]). Such a regime makes it
very computationally intensive to study the model numerically, if the same scheme is adopted as
used for Nmax = 100.

Autocatalysis in GARD
In GARD, the parameters βi j are phenomenological parameters informed by datasets on lipid
systems, where surface area, charge, ability to form complexes with neighboring molecules and
intrinsic curvature[6] were used to infer typical values for βi j.

II

I

Figure 6.2: A catalytic incorporation mechanism: the red telephone amphiphile forms a complex
with the purple square amphiphile, which mediates its incorporation in a micelle or vesicle.

A simple stoichiometric mechanism leading exactly to Eq. (6.2) can be found by considering
what can give rise to a linear contribution for cross-catalysis. Let us consider amphiphiles A1 and A2,
which can be in the micelle or reservoir, labelled I and II (see Fig. 6.2). To catalyze incorporation
of the other, a complex is formed with a reservoir species, and subsequent dissociation takes place
in the micelle

AI
1 +AII

2 −−⇀↽−− [A1A2]
I −−⇀↽−− AI

1 +AI
2, (6.4)

AI
2 +AII

1 −−⇀↽−− [A2A1]
I −−⇀↽−− AI

1 +AI
2. (6.5)

A simple model for this was proposed in Sec. 5.3.5, and a corresponding graph for GARD is
shown here in Fig. 6.3. As shown in Sec. 5.3.5, removing the reservoir amphiphiles from the

Figure 6.3: An autocatalytic network of co-assembling amphiphiles. Amphiphiles in square nodes
are reservoir species, those in circular nodes represent amphiphiles in a micelle or membrane.

stoichiometric matrix ννν yields an invertible and autonomous matrix that admits SFA.
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A question that has been raised is to which degree RAF-sets and GARD are connected[18,
6]. As outlined before, being a RAF or not depends critically on the level of description. Let us
coarse-grain the exchange reactions, by removing the species [A1A2]

I and [A2A1]
I:

AI
1 +AII

2 −−⇀↽−− AI
1 +AI

2, (6.6)

AI
2 +AII

1 −−⇀↽−− AI
1 +AI

2, (6.7)

which in alternative notation is written as

AII
2

AI
1−−⇀↽−− AI

2, (6.8)

AII
1

AI
2−−⇀↽−− AI

1, (6.9)

with the superscript indicating catalysis. Upon performing this coarse-graining operation, this
minimal example turns into a RAF-set.

By proposing an alternative to information in copolymer sequences, GARD is often associated
with ‘metabolism first’ and ‘lipids first’ scenarios. As a model, Eq. (6.2) can perfectly well
apply to other molecular collectives, as was shown for e.g. amino acids [4]. Experimentally,
composomes of cross-catalytic RNA have been realized by Vaidya et al[26]. This experimental
system was fed with fresh solution containing RNA fragments, buffer and Mg2+, the latter of which
is indispensable for the proper functioning of the ribozymes formed. In a description without Mg2+

(whose complexation and release is typically rapid compared to the other reactions, so such a
coarse-graining can be justified), this system can be shown to form a RAF set.

6.1.3 Evolving Metabolism: sequentially decorated autocatalysis
A more general, abstract approach to chemical evolution, was the consideration of some arbitrary
chemistry, being sequentially decorated, through autocatalysis. Such an idea was proposed in
the works of King [27], where, by a deduction through twelve progressive steps, conditions were
outlined to have autocatalytic pathways.

Similar to our framework, King imposes reactions to be at most bimolecular. The networks
King considers are formulated in terms of ‘recycling’ species, fed by reactants that are not part
of the description (which would be the food set f in RAF-theory and chemostatted species in
our framework). A production of ‘waste’ molecules was not considered, but they can be trivially
removed by chemostatting as well.

Subsequently, King reasons in terms of the number of reactants consumed and products
produced by individual reactions acting on recycling species. Starting from a branching reaction
(converting one species to two), the trajectories of the two products back to that reaction can be
traced. King argues that such a pathway will either lead to i) bimolecular rejoining and hence 0 net
molecules ii) unimolecular rejoining, and hence 1 net new molecule.

King also considered the specificity of reactions and their effect on the final viability of the cycle.
This is an important consideration that should receive our full attention: chemical reactions can
provide autocatalysis, but they can also break it. King exemplifies this idea via a cyclic autocatalytic
reaction, reminiscent of an n-step Toy Formose:

Z1
1−−→ ...

n−1−−→ Zn
n−−→ 2Z1. (6.10)

A successfull cycle converts Z1 to 2 Z1. If any intermediate Zk (1 ≤ k ≤ n) is broken down
prematurely by a side-reaction, then a net conversion Z1 to /0 is performed. A net accumulation
requires that on average, a Z1 molecule yields more than one Z1 molecule, which requires that
cycles are successful at least half of the time.
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King notes that if in every step i a fraction ζi is lost due to side reactions, the product of survival
probabilities (1−ζi) must then verify

n

∏
i=1

(1−ζi)>
1
2
, (6.11)

for which King argued that, regardless of the distribution of selectivities, a smaller n is generally
more like to yield viable autocatalysis.

Similar in spirit is a work by Bagley, Farmer and Fontana [11], which starts from an autocatalytic
network where compositional fluctuations can trigger new autocatalytic reactions. The rare species
that are not part of the network form ‘the shadow’. Reactions in the shadow are represented
by simple graphs and concern only ‘rare’ species, the ‘parent’ species (food) supplied by the
autocatalytic network remain implicit.

By using simple graphs, the possible autocatalytic networks is considerably reduced, and
replication becomes implicit. It has the advantage of leading to elegant reactions of the form Eq.
(6.10). Together, these reactions model a birth-death process, for which a master equation was
written, and solved for t→ ∞.

In turn, finding the extinction probability provided an efficient means of simulating ‘chemical
evolution’. When an autocatalytic molecule is generated, a random number generator indicates
whether the cycle goes extinct or not, based on the extinction probability. It is then not necessary to
run a stochastic simulation for the whole fixation process.

Another instructive model was proposed[28] and further developed[29, 30] by Jain and Krishna
and revolved around a collective of species interacting through catalysis, which is represented by
a graph. The evolution of such graphs involved the removal of the least fit node, followed by the
introduction of a new node, which is randomly connected to the existing network.

6.1.4 A common thread: Autocatalysis
In the struggle for existence, effective reproduction is essential. For chemical networks, the same
can be said, as the components that shape a successful chemistry must be maintained in the face of
degradation and dilution. Moreover, for the network to spread to new places, its components must
be multiplied beyond the numbers required for maintenance.

Based on the general definition for autocatalysis from stoichiometry, as introduced in the
last section, this reproduction (if it can be captured in stoichiometric terms) inherently requires
autocatalysis: the characteristic that a subset of chemicals converts food to make new chemicals,
among which themselves, implies autocatalysis.

An intuitive way to see this, is to consider the following thought experiment, illustrated in Fig.
6.4. A CSTR reactor receives a constant influx of a certain chemical mixture, and the composition
has reached a steady-state. Now, the mixture is perturbed by the occurrence of a rare molecule
Z, which can be an impurity in the feed or a rare reaction product. Let us now wonder what can
happen, given a residence time of τ . If i) Z is inert, the steady state does not change, and after τ ,
Z has left. If ii) Z reacts with other reactants in the mixture, it is converted to new compounds,
which are each lost on a typical timescale τ . If iii) Z is (or is converted to) a catalyst that acts on the
species present in the CSTR, it can introduce a considerable amount of new species during a time τ ,
after which it disappears. The species that were produced could in turn be any combination of i),
ii), iii), but will disappear after τ . However, when any of these species is a copy of Z, hence, when
Z is an autocatalyst (in the sense defined in Ch. 5), Z and its derivates can persist. Autocatalysis
can alter the steady-state of the reactor by a small chemical perturbation, whereas other network
patterns cannot.

This thought experiment is closely related to the evolving metabolism model of Bagley et al[11],
where chemical evolution was envisaged as occurring in a large autocatalytic protometabolism,
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Figure 6.4: A CSTR responding to a chemical perturbation: the introduction of a rare molecule
(pink hexagon). a) the rare molecule is consumed, forming a green square. b) the rare molecule
performs allocatalysis, converting black circles to yellow ellipsoids. c) The rare molecule performs
autocatalysis. a) and b) cannot persist in the face of reactor outflow and over time the CSTR reverts
to the its original state. Autocatalysis however (c), can compensate for this degradation and be
maintained.

which was sequentially decorated by new autocatalytic reactions.

6.2 Section: single-pot autocatalytic evolution

In this section, we will derive ‘chemical evolution’ in a single reactor, analogous to the model by
Bagley et al[11], from the stoichiometric matrix. By considering how single-molecule perturbations
can be amplified, we derive the autocatalytic network structures that can be triggered.

In elaborating this model, we get at the heart of the evolvability issue: Does chemistry itself
have sufficient autocatalytic potential to ‘evolve’ in such a homogeneous single-reactor context?
Part of the answer will come by looking at the requirements on the stoichiometric matrix for
nucleating further autocatalysis, which we make explicit here.

6.2.1 Reactor setup
We start with a well-stirred CSTR reactor at steady-state, recieving a constant influx of chemical
species denoted by a set YYY = {Y1, ...,YsY

}. These species can react, and the species that are
not flown in but are present in appreciable amount are called internal species XXX = {X1, ...,XsX

}.
Furthermore, we consider a list of species WWW = {W1, ...,WsW

} that, on average, are absent, but that
may occasionally be present due to a rare reaction or impurities in the feed. For most Wk, we can
then write:

NWk = 0, (6.12)

and for any particular Wj that is present as a perturbation at a time t, we will consider

NWj = O(1). (6.13)
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Most W -species exist transiently. They are then converted back to an X or Y species, or will be
inert. Some components, however, may be part of an autocatalytic network that can be nucleated by
a single molecule. If such a network successfully increases the abundance of W and other members
of the autocatalytic cycle, they cease to be rare. We can now extend the vector of X-species† with
the vector www:

XXX ′ = {XXX ,www}. (6.14)

The components www∈WWW are removed from WWW . The new reaction network may in turn form a number
of new rare species, described by the set WWW+, such that

WWW ′ = {WWW/www,WWW+}. (6.15)

If we suppose such events to be sufficiently far and few between in time, we can describe these
events as going from steady-state to steady state (provided the system does indeed relax to a steady
state).

Stoichiometric matrix decomposition
We can decompose the stoichiometric matrix ννν in three submatrices

ννν =

νννY

νννX

νννW

 , (6.16)

where the splitting allows to distinguish between ‘food’ (YYY ) internal chemistry X, and ‘rare chem-
istry’ (WWW ). Macroscopic phenomena, entropy production and the steady state follow from reactions
in νννY and νννX . In this interpretation, ‘Chemical evolution’ is the incorporation of rare species WWW in
XXX .

A chemical reaction can involve species from different sets, e.g.

Xi +Wj −−⇀↽−−Wk. (6.17)

However, such reactions should be in accord with the fact that a species Wk is typically absent. The
following reaction

Xi +Yj −−⇀↽−−Wk, (6.18)

yields a rare species, which is only consistent if the reaction is sufficiently disfavored (e.g. due to
a high barrier or low concentrations), so that the species indeed remains rare. Let us now look at
nucleation of autocatalytic cycles in νννW .

Reactions in the space of rare species
Let us start by interpreting various types of reactions we can encounter in νννW .

First of all, there can be /0-reactions, that arise from the decomposition. Denoting by ZZZ = {XXX ,YYY},
these reactions are of the form

∑
i

ν
Z
i jZi −−⇀↽−− ∑

i
ν

W
i j Wi. (6.19)

Taking only the perspective of WWW , we then have

/0−−⇀↽−− ∑
i

ν
W
i j Wi. (6.20)

†In principle, this modification may also make certain species in X disappear, but this is a lot more difficult and will
not be pursued.
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These reactions yield rare species in WWW from nonrare species in ZZZ. This is consistent with Eq. (6.13)
if the reaction is sufficiently disfavored and thus rarely occurs in practice (e.g. due to a high barrier
or low concentrations). Such /0-reactions can be considered degradation pathways for a species WWW ,
and performing them in reverse provides the occasional Wk.

Subsequently, there are effective unimolecular reactions. Unlike unimolecular reactions in ννν ,
such reactions may involve species in ZZZ as reaction partners, which gives three possibilities for
unimolecular reactions

Wh −−⇀↽−− Wj, (6.21)

Wh +Zi −−⇀↽−− Wj, (6.22)

Wh +Zi −−⇀↽−− Wj +Zk, (6.23)

which within νννW reduces to Eq. (6.21).
Finally, there are bimolecular reactions. Let us first consider effective branching reactions,

which are

Wh −−⇀↽−−Wj +Wk, Wh +Zi −−⇀↽−−Wj +Wk, (6.24)

which within νννW reduces to Eq. (6.25). Note that also this includes the case where j = k:

Wh −−⇀↽−− 2Wj. (6.25)

Since species in WWW are absent on average, the reverse reaction is much less probable, thereby
strongly favoring such reaction to go forward.

In a thermodynamic sense, this can be readily captured by

∆G = ∆µ
◦+ kT ln

(NWj
+1)(NWk

+1)

NT (NWh
−1)

, ∆G = ∆µ
◦+ kT ln

(NWj
+)(NWk

+1)

NZi
(NWh

−1)
, (6.26)

which for the former becomes kT lnNT , with NT the total number of molecules in the system. In
the latter case, we find kT lnNZi , which only makes the reaction reversible in the regime where NZi

is sufficiently small.
We can thus consider these reactions as irreversible

Wh −−→Wj +Wk. (6.27)

Finally, there can be reactions of the form

Wh +Wi −−⇀↽−−Wj +Wk. (6.28)

Due to the rarity of species in WWW , these reactions are kinetically improbable.

Autocatalytic Network Construction
Due to the low abundance of species in WWW , the building blocks for an autocatalytic network are
strongly reduced. Their composition is limited to unimolecular forward reactions as given by
Eqs. (6.21)-(6.23). This means that the networks we will construct will correspond to solitary
autocatalysis (see Ch.5).

In terms of the stoichiometric submatrix for WWW , Eqs. (6.21)-(6.23) imply

ν
W
i j =−δs,i +δp,i, (6.29)

where s is the index of a substrate and p the index of a product, such that for reaction j, we have

Ws −−⇀↽−−Wp. (6.30)
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Furthermore, we have irreversible branching reactions, given by Eq. 6.25, which in the stoichiomet-
ric matrix take the form

ν
W
i j =−δs,i +δp,i +δp′,i. (6.31)

where p can be equal to p′.
Any sequence of unimolecular reactions will preserve the exact number of molecules. Such

reactions have a mass-like conservation law lll+. To establish autocatalysis in W , we therefore need
at least one irreversible branching reaction. The simplest networks obtained by having a single
braching step are shown in Fig. 6.5.

...

...

...

...

a. b.

W*

gW*

W*

...

...

Figure 6.5: The two simplest autocatalytic network motifs containing only rare species, obtained
either by a) producing 2 W∗ at the end of the cycle, or b) by producing 2 different products upon
branching, which at some point are converted to the same species W∗. The replication cycle gggW∗ is
drawn for both networks.

6.3 Conditions for survival of autocatalytic networks

Whether an autocatalytic reaction can be maintained after the introduction of the first autocatalyst(s)
(as in Fig. 6.4) is a statistical question involving kinetic competition between degradation and
reproduction. In this section, this problem will be treated explicitly for some autocatalytic network
motifs. From microscopic rates, the probability to finish (parts of) autocatalytic cycle along the
graph can be found. From these probabilities a survival (fixation) probability can be found, through
the appropriate mapping to a stochastic processes. For a single cyclic path (Sec. 6.3), this can be
mapped to a birth-death process, which was also treated by Bagley et al.[11]. In Sec. 6.3 we show
that more general cases can be mapped to a branching process. The two cases treated here (Fig.
6.5) are only the simplest cases. The branching process approach is generally applicable, however,
as shown in Sec. 6.5.

A single cyclic path: path probability
Let us consider the simplest autocatalytic networks, which have one branching reaction, by starting
with the class of networks given by Fig. 6.5a. When a first molecule is introduced in such a network,
e.g. An in Fig. 6.6, it will need to go through intermediates A1 to An−1 before finally producing
two copies of An. This also happens in Toy Formose:

C2 −−→ C3 −−→ C4 −−→ 2C2. (6.32)

Provided the reaction and degradation steps are memoryless‡, such a process can be modeled as a
Markov process. The fragmentation reaction An−1 −−→ 2An is irreversible, as are all degradation
processes. In principle, other steps can be reversible. For the nucleation of the (Toy) formose

‡Which we strive to achieve by making steps elementary and nonambiguous
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Figure 6.6: a) a three-membered forked branching network, illustrated by the Toy Formose reaction.
b) Illustration of the replication path, which is successful with probability pc, a central quantity in
the birth-death process (see Fig. 6.7) c) General representation of a Forked Branching network with
n members. Effective rate constants have been added for degradation and irreversible progression.

reaction, reactions can initially be considered irreversible to a good approximation (but with
∆µ◦ > 0 for the fragmentation).

Let us now study the case where all steps are irreversible. At any intermediate As, one can
transition to As+1 or /0. Let p+s be the relative probability of successfully transitioning to As+1, and
p−s for degradation, such that 1 = p+s + p−s . The relative probabilities of the two outcomes follow
from effective rate constants

p+s =
k+s

k+s + k−s
, (6.33)

p−s =
k−s

k+s + k−s
. (6.34)

The probability to successfully finish a cycle, pc, is the probability of going through all steps
without degradation

pc =
n

∏
s=1

p+s =
n

∏
s=1

k+s
k+s + k−s

. (6.35)

For more elaborate network structures and reversible reactions, the expression for pc becomes more
complicated, but can still be expressed in terms of microscopic rates.

A single cyclic path: birth-death process
Let us now focus on the particular case where we start with a single A1 autocatalyst. With
probability pc, the autocatalyst produces a copy of itself, providing two species starting again in
state A1, we will designate this transition from a state A1 to 2A1 by a process

A1
pc−−→ 2A1 (6.36)

Alternatively, A1 or some intermediate Ak is degraded along the way (with probability 1− pc). We
will write the combination of all these processes as a net transition to a state /0, through a process

A1
1−pc−−−→ /0 (6.37)
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The overall process can be then be represented as

/0
1−pc←−−− A1

pc−−→ 2A1. (6.38)

We will refer to process (6.36) as a birth, and eqref (6.37) as a death.

p
c

p
c

p
c

1-p
c

1-p
c

1-p
c

1-p
c

...0 1 2 3

Figure 6.7: Survival of the network follows a 1D random walk or birth-death process, with birth
probability pc, corresponding to successful replication as shown in Fig. 6.6b. Nodes count the
number of species Nm.

With every birth, the autocatalyst population increases by 1, with every death, it decreases by 1.
We can now write a birth-death process[31] (see also Fig. 6.7)

Nm = Nm−1 +Xm−1−1, (6.39)

Where Nm denotes the population size after m repetitions of the process, for an initial condition
of only A1 species N0 = NA1

(which will be further generalized afterwards). Xm−1 is a random
variable, and Xm−1 = 0 with probability 1− pc and Xm−1 = 2 with probability pc.

Note that we are not modeling the actual kinetics, but exploiting a statistical property due to
solitary autocatalysis: autocatalysts only react with the environment. This gives us independent
trials for the process (6.38), which must give an extinction probability consistent with detailed
stochastic kinetics, which we demonstrate in Sec. 6.5.

We start with N0 = 1. Let us denote dm as the total probability that the population has gone
extinct, after m iterations. After one iteration, we either have N1 = 0 or N1 = 2, the latter of which
independently go extinct with probability d2

m−1. This then gives

dm = (1− pc)+ pcd2
m−1. (6.40)

Since dm increases monotonically and is bounded from above by 1, it must converge in the limit
m→ ∞ to a limit we will call d

lim
m→∞

dm = d (6.41)

The extinction probability for m→ ∞ then becomes a quadratic equation in d, with solutions

d = 1 ∨ d =
1− pc

pc
. (6.42)

We find the fixation probability as the probability to not go extinct Pf ix = 1−d, such that

Pf ix =

{
0, pc ≤ 1

2 ,

2− 1
pc
, pc ≥ 1

2 ,
(6.43)

This result captures the survival in terms of microscopic rates, and was also found by Bagley et
al.[11]. Extinction must becomes deterministic for pc <

1
2 , where a population decays exponentially.
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If we start from n A1 species, the fixation probability Pf ix,nA1
is the probability that not all of

them go extinct: Pf ix,n = 1−dn, hence

Pf ix,nA1
=

{
0, pc ≤ 1

2 ,

1− (1− 1
pc
)n, pc ≥ 1

2 ,
(6.44)

If we started from an initial state Ak instead of A1, we can write a success rate pc,k

pc,k =
n

∏
s=k

p+s =
n

∏
s=k

k+s
k+s + k−s

. (6.45)

This headstart may increase the success rate of the first round: pc,k ≥ pc,1 = pc, after which two A1
are generated. Starting from a single Ak, we thus find a fixation probability

Pf ix,Ak
= pc,kPf ix,2A1

. (6.46)

Note that single-cycle network could have been more elaborate, e.g. with reversible reactions (see
Sec. 6.5) and extra nodes that transiently deviate from the path. In such a case, we obtain a different
expression for pc. Its subsequent mapping to a birth-death process is unaltered, however. Let us
now move to a situation that is described by a branching process.

Two cyclic paths: path probabilities
We will now study networks of the type described by Fig. 6.8a. Here the key fragmentation step
produces two different autocatalysts, according to a reaction step

An −−→ B1 +C1. (6.47)

Through subsequent reaction steps, B1 and C1 can again become An

B1 −−⇀↽−− ...−−⇀↽−− Bn −−⇀↽−− A1 −−⇀↽−− ...−−⇀↽−− An, (6.48)

C1 −−⇀↽−− ...−−⇀↽−− Cn −−⇀↽−− A1 −−⇀↽−− ...−−⇀↽−− An. (6.49)

At some point, the path for B and C crosses at A1. Fig. 6.8a shows simple example of this,
encountered in formose, where C5 produces C2 and C3. Here, the path for B is of length zero (that
is: B1 = A1). We will now study the case where all forward reactions are irreversible, but our
final result will turn out to be more general. When forward reactions are irreversible, we can write
probabilities in the form of Eq. (6.35) for successful trajectories:
pA : A1 −−→ ...−−→ B1 +C1,
pB : B1 −−→ ...−−→ A1,
pC : C1 −−→ ...−−→ A1,
which are given by

pA =
n

∏
s=1

k+s
k+s + k−s

, pB =
n

∏
s=1

κ+
s

κ
+
s +κ

−
s
, pC =

n

∏
s=1

k‘+
s

k‘+
s + k‘−

s
. (6.50)

Let us now take perspective of a B1 species, which with a probability pA pB completes a cycle, to
return a B1 and C1 species

B1
pA pB−−−→ B1 +C1. (6.51)

Viewed in isolation, B1 has then performed an allocatalytic cycle to produce C1. Only C1 can make
new B1 species, through

C1
pA pC−−−→ B1 +C1. (6.52)
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Figure 6.8: a) an example of a network with two branches. Since the common endpoint of the B
and C branch is C3, pB = 1. b) schematic representation of the three trajectories that constitute
the autocatalytic cycle, with their associated success probabilities. c) General representation of an
autocatalytic cycle with two branches. Effective microscopic rate constants have been added for
degradation and irreversible progression.

Let us denote PB
n the probability that a B1 molecule performs n successful cycles and is subsequently

lost, leading to a net C1 production of

B1
PB

n−−→ nC1, (6.53)

where PB
n follows from the number of successful trials of process (6.51) before degradation, which

thus follows the geometric distribution

PB
n = (pA pB)

n(1− pA pB). (6.54)

By the same argument, we can denote PC
n the probability that a C1 molecule performs n successful

cycles and is subsequently being lost, leading to a net result of

C1
PC

n−−→ nB1. (6.55)

Again, we can write

PC
n = (pA pC)

n(1− pA pC). (6.56)

Now, we can combine these two, by considering the combination of a B1 producing s C1 molecules,
and each C1 producing, respectively, n1,n2, ..,ns B1 molecules:

B1 −−→ s C1 −−→ (n1 + ...+ns)B1. (6.57)

This can be written as an overall process that generates n new B1 molecules, from a single B1

B1
PB

n−−→ nB1. (6.58)
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The distribution PB
n for Eq. (6.58) is then derived by considering all possible realizations of

process (6.57):

PB
n =

∞

∑
s=0

PB
s

∞

∑
n1,...,ns

s

∏
k=0

PC
nk

δ
n
n1+...+ns

(6.59)

Upon substitution of Eqs. (6.54) and PNC1, we find

PB
n = (1− pA pB)

∞

∑
s=1

(pA pB)
s(1− pA pC)

s(pA pC)
n
(

n+ s−1
n

)
, n≥ 1 (6.60)

PB
0 = (1− pA pB)

∞

∑
s=0

(pA pB)
s(1− pA pC)

s =
1− pA pB

1− pA pB(1− pA pC)
(6.61)

Using the identity

∞

∑
k=0

xk
(

k+n
n

)
=

1
(1− x)n+1 , (6.62)

we can simplify PB
n to

PB
n =

pA pB(1− pA pB)(1− pA pC)

(1− pA pB(1− pA pC))

(
pA pC

1− pA pB(1− pA pC)

)n

. (6.63)

For further use, let us introduce the shorthand notation

PB
n = βα

n, n≥ 1 (6.64)

PB
0 = 1−β

α

1−α
, (6.65)

with

α =
pA pC

1− pA pB(1− pA pC)
, β =

pA pB(1− pA pB)(1− pA pC)

(1− pA pB(1− pA pC))
. (6.66)

Notice that we only need two variables: πB = pA pB and πC = pA pC, which mark the respective
probabilities for a B1 and C1 molecule to finish their cycle. In terms of these probabilities, we find
a more generally applicable from of Eq. (6.63). For our present purposes it will be fruitful to not
make this substitution, as we will be interested in the effect of pA.

We now have the distribution that is needed to construct a branching process.

Two cyclic paths: branching process
Let us now compare the process (6.38) to the process (6.58). We see that the single cyclic path is a
particular of Eq. (6.58), where there can only be 0 or 2 descendants. The more general case, where
there can be n according PB

n , is generally not amenable to analysis as a birth-death process, but
rather makes use of the theory of branching processes, for which a single step is shown in Fig. 6.9.

Let us now study a population of autocatalysts according to such a process. Let Nm denote the
number of autocatalysts after m repetitions of Eq. (6.58), where we start with only B1 molecules:
N0 = NB1,0. The stochastic process can be written as

Nm+1 = Nm +Xm−1, (6.67)

Where Xm is a random variable drawn from PB
n .
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......

0 1 n

Figure 6.9: In a branching process, the number of descendants n is drawn from a distribution PB
n ,

such that Nm+1 = Nm +n−1 with probability PB
n . Starting at N0 = 1, the population goes extinct

in the next round with probability PB
0 .

To find the extinction probability, we can again use the total probability theorem[31] as we
also used for Eq. 6.68. Let us again denote dm the probability of extinction, starting from a single
species B1 (N0 = 1), m steps from now. In terms of dm−1, we can then write

dm = PB
0 +PB

1 dm−1 +PB
2 d2

m−1 + ...=
∞

∑
i=0

PB
k dk

m−1. (6.68)

where every term counts the contribution to extinction if k descendants are spawned in the first
round, which collectively go extinct in the next m−1 rounds with probability dk

m−1. Recalling that
dm→ d for m→ ∞ (Eq. (6.41)), we find

d =
∞

∑
i=0

PB
k dk = 1−β

α

1−α
+

∞

∑
k=0

β (αd)k. (6.69)

which reduces to

d = 1−β
α

1−α
−β

αd
1−αd

. (6.70)

Eq. (6.70) can be solved to give either d = 1, or

d =
β

α−1
+

1
α

(6.71)

The fixation probability again verifies Pf ix = 1−d. Let us now move to an example where Pf ix can
be expressed in terms of only α .

Example
As an illustration, let us consider the simple network given by Fig. 6.10. For irreversible reactions,
the probabilities to successfully traverse the path’s A and B are respectively:

pA =
n

∏
s=1

k+s
k+s + k−s

, pB =
κ
+
1

κ
+
1 +κ

−
1

κ
+
2

κ
+
2 +κ

−
2
. (6.72)

Let us denote PA
n the probability of acquiring n new A1 species from a single A1 species

A1 −−→ nA1 (6.73)

This is due to successful production of B1 species and their subsequent conversion to A1. As shown
in Sec. 6.3 we then find

PA
n = (pA pB)

n(1− pA)
∞

∑
j=0

(pA(1− pB))
j
(

n+ j
j

)
. (6.74)
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Figure 6.10: a) two paths with corresponding success probabilities. b) General case, with n states.
Effective microscopic rate constants have been added for degradation and irreversible progression.

This expression simplifies to

PA
n =

(
pA pB

1− pA(1− pA)

)n 1− pB

1− pA(1− pB)
= (1−α)αn (6.75)

As in Sec.6.3, we now define a branching process for Nm, starting only with molecules of A1

Nm+1 = Nm +Xn,m−1 (6.76)

where Xn,m is a random variable drawn from PA
n . Again, applying Eq. (6.69), we find for the

extinction probability d

d = (1−α)
∞

∑
k=0

(αd)k =
1−α

1−αd
. (6.77)

Which admits the solution d = 1 and

d =
1
α
−1, (6.78)

which leads to a fixation probability

Pf ix =

{
1−d = 2− 1

α
, α ≥ 1

2 ,

0, α < 1
2 ,

(6.79)

Here, the parameter α plays the role that pc plays in the network of Fig. (6.7), but it is composed
of two path probabilities

α =
pA pB

1− pA(1− pB)
. (6.80)

The fixation probability Pf ix is traced in Fig. 6.11 for both cases.
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Figure 6.11: Comparison of Pf ix for left) single-cycle networks such as Fig.(6.6) and right) networks
with two cyclic branches as in Fig. (6.10). For comparison, pc is traced on both axes for the single-
cycle. For two cyclic branches, a low value of pB can be compensated by a high value of pA, but
not vice versa.

The effect of pA is quite different from that of pB, as can be seen in Fig. 6.11. When pB = 1,
survival of the double cycle network (Fig. 6.10) become equivalent to that of the single cycle
network (Fig. 6.6).

In contrast, when when pA → 1, the double-cycle network reaches deterministic fixation
(Pf ix → 1), provided pB > 0. A high value of pB ensures that B1 will likely end up becoming
A1, whereas a high value of pA guarantees that A1 will typically produce a large amount of B1
molecules before perishing, in an effective reaction (see Sec. 6.3)

A1→ nB1. (6.81)

Here, n is an exponentially distributed random variable, with an average

〈n〉= pA/(1− pA). (6.82)

Since 〈n〉 can be much larger than 2, generation of a new A1 molecule from 〈n〉 B1 can proceed at
much lower rates of success pB, since more attempts can be made. Indeed, the threshold at which
Pf ix becomes nonzero (α = 1/2) corresponds to pB = (1− pA)/pA, which is the point where on
average one molecule is propagated: pB〈n〉= 1.

This criterion confirms the picture also put forward by King[27] and Bagley et al.[11], a
molecule should on average leave more than a single copy of itself. The ease at which this proceeds,
however, is dependent on the network structure, as illustrated by our double cycle example network
(Fig. 6.10). King’s survival criterion Eq. (6.11) (also regularly put forward by others, e.g. [11, 16])
is not generally applicable, because the autocatalytic survival problem cannot generally be mapped
to a birth-death process. As shown here, the problem can be treated more generally as a branching
processes.

6.3.1 Selection of autocatalytic networks
The fixation probability of an autocatalytic cycle diminishes rapidly with an increased rate of side
reactions, favoring species with few and slow side reactions.

In a CSTR, reactions need not only be specific, but also rapid with respect to outflow. A high
specificity is thus no guarantee for survival, the reaction must outpace the outflow.

The network structure itself is instrumental in stabilizing survival. As demonstrated in Sec. 6.3,
networks with multiple branches can improve their fixation rate by having an efficient branch that
compensates for a less efficient one.
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Dissipation and selection
Decorating a reaction network with further autocatalytic cycles is (typically) expected to lead
to a network that increasingly dissipates free energy as the network introduces more and more
autocatalytic cycles. At the same time, by the fact that nonspecific (having considerable side
reactions) autocatalytic cycles are inherently very dissipative, there may be indirect selection
against strong dissipation. A cycle that is specific lacks this inherent dissipation from side reactions,
but it may still be strongly dissipative by its own chemistry. We can thus argue that there is a
rudimentary selection for efficiency and against squandering resources.

In the works of Smith and Morowitz[32], chemical complexity is mentioned as a means of
dissipating free energy: More fundamentally, the formation of chemical complexity can be a means
to the dissipation of free energy, not only indirectly through complex life but plausibly even in early
geochemistry. In their book, Smith and Morowitz explain well what they mean exactly by that and
what the limits are of this statement. This is with good reason, because linking entropy production
directly to life has proven fertile ground for misinterpretation.

By being far from equilibrium chemical systems can display impressive features, that require
dissipation to fuel them. Increasingly, dissipation has been presented as a desirable feature in
its own right, with more dissipation being considered better. We should be careful with such
interpretations: free energy is a precious resource that can be expended (dissipated) only once. A
most excellent source of dissipation is the direct degradation of energy-rich molecules. On the level
of the cell and chemical networks, squandering resources is clearly not a viable strategy. Putting
them to good use to be competitive, however, definitely is.

The same is true for an autocatalytic network that is being decorated: maximizing dissipation is
not an ‘objective’ in itself. However, gradual evolution of a chemical network (or life itself) will
lead the system to steadily tap into new resources that fuel new innovations. This may be expected
to increase dissipation in the long run.

Triggering bistabilities in autocatalysis
So far, we have focused on autocatalytic networks that can be triggered by single-molecule
perturbations. As shown in Sec. 5.5, this does not encompass all autocatalytic systems: some
reactions require reactants to pass a concentration threshold, as was illustrated for the termolecular
reaction in the Schlögl reaction[33], which performs a net reaction

2X+E
ggg−−⇀↽−−−ggg

3X. (6.83)

Our criteria for triggering via rare autocatalysts (Eq. (6.13)) exclude triggering such reactions as
perturbations of a steady-state. We may then wonder: can such reactions still have an effect in the
CSTR model?

While we may not trigger such reactions by single-molecule perturbations, we may trigger
them when large changes occur, such as when a new autocatalytic cycle is successfully triggered.
Such an event will macroscopically alter the system composition, and the system may thereby
accumulate enough autocatalysts that react with other autocatalysts as in Eq. 6.83. Such reactions
are thus not excluded, but their incorporation follows a different mechanism.

6.4 Common obstacles in chemical evolution
In the last section, we derived a model similar to the ‘evolving metabolic network’ by Bagley et
al[11]. Starting from the stoichiometric matrix and chemical considerations, we found that we can
recover their model from microscopic considerations and extend it to other autocatalytic networks.
Now that the model is formulated in a larger framework, it is more readily amenable to further
extension.
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Nevertheless, we should readily understand that the theory of the ‘evolving metabolic network’
is presently not considered as a dominant motif in abiogenesis. There are some good chemical
reasons for this, most of which also apply to the GARD model, RAF-sets of polymers and other
approaches. Let us here consider four important obstacles that these theories must overcome.

I. Variation and the rarity of autocatalysis

At present, autocatalysis does not seem to be an abundant chemical property. Consequently, it is not
evident that there is enough autocatalysis to produce chemical networks that progressively nucleate
new autocatalytic cycles. If we want evolutionary trajectories that are contingent, autocatalysis
must become an even more abundant property.

In evolutionary terms, a lack of autocatalysis can be compared to a lack of variation. By
extension, we must wonder if such a mode of evolution can be open-ended on the timescale of
interest [25].

II. More species: Side reactions, trapping states, inactive complexes

A popular solution to the rarity of autocatalysis[7] is the addition of ever more random compounds
to the mix. This intuition[18] is based on Erdös-Renyi graphs [23], where random graphs will, at a
sufficient size and connectivity, form cyclic graphs. A diverse mixture will have many different
reactions, some of which correspond to autocatalysis. By subsequent network decorations, a
network will generate more diversity, thus laying the ground for future autocatalytic cycles [11].

Of course, the formation of cycles is just one consequence of an explosive growth in the number
of reactions. In particular, more components also facilitate side reactions, as argued by Orgel[34]
and treated in detail by Szathmary[35]. Side reactions are but one issue: molecules may bundle in
kinetically trapped inactive states, a common occurrence when complementarity comes into play.
In addition, to accommodate more components in a reaction volume, individual concentrations
must decrease, which drastically reduces reaction rates. In the present model, such contributions
will quickly reduce any fixation probability Pf ix to 0.

Accommodating more types of species reduces the concentration at which each species can be
present. Volume conservation guarantees this, but in a CSTR more strict conservation on the total
mass influx applies as well[36]. Such progressive dilution of reactants decreases reaction rates. In a
CSTR with a fixed residence time τr, this sequential decoration of networks would make overly
diverse networks progressively less fit in the face of fixed degradation.

III. Chemical networks graphs and modeling

Traditionally, modelling approaches in the field have relied on artificial chemistry that equate to
random graphs. Indeed, in Ref. [11] but also for example GARD and RAF-sets, the evolving
metabolism is simulated using such assumptions for chemical networks.

In practice, chemistry is highly structured. Hard nucleophiles react with hard electrophiles, soft
nucleophiles react with soft electrophiles (HSAB theory). Acids react with bases, oxidizing agents
react with reducing agents, and so forth. The result of such reactions is normally weaker acids,
weaker bases and overall less reactive species [37, 38].

We can study reactions, because particular functional groups and elements perform those
reactions (relatively) systematically. In this sense, random graphs are often a poor proxy for
chemistry: they lack this deeply correlated structure. Their interpretation and justification requires
great care. For the GARD system, this challenge has been acknowledged: efforts are made to
understand and justify the rates in the model [6].

Accounting for reactivity, conservation laws and other structural features of chemical networks
remains an outstanding challenge.
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IV. Model restrictions vs scenario restrictions

Many prebiotic scenarios insist on one type of autocatalytic evolution, mediated by a very narrow
subset of possible chemistries. E.g. autocatalysis for lipids-first, RNA-world, peptides or RAF sets
of polymers. It is by no means evident that we can assign such a key role to one type of molecule,
neither from biology nor from chemistry.

A whole list of chemical evolution mechanisms in the literature have been argued not to be
competent enough to provide the evolutionary potential for abiogenesis [3]. A hidden assumption
in this analysis, however, is that all these mechanisms are mutually exclusive and have to do all of
abiogenesis by themselves. That is indeed a large task for mechanisms that have all been criticized
for their limited evolvability.

As shown in Sec.5.4, other stoichiometric processes such as evaporation, diffusion, partitioning
can be the building blocks of autocatalytic cycles not accessible to pure chemistry. The systems
of interest in origins of life are inherently open and communicating with an environment. This is
not simply an argument in favor of multicompartment autocatalysis, it is an argument in favor of a
vibrant mix of autocatalytic mechanisms. Needlessly reducing our scope to one mechanism and
chemistry is paradoxical in view of obstacle I, the rarity of autocatalysis. The evolutionary challenge
we wish to address would rather require us to widen our scope of compounds and mechanisms.

Towards a synthesis of chemical evolution

To come to a more complete description of chemical evolution, these and many other obstacles
must be taken into consideration. In an attempt to provide a more complete description of chemical
evolution, let us therefore consider removing some assumptions. In particular, we consider the
following:
i) We do not impose a particular chemistry of interest.
ii) Our system need not be a CSTR
iii) Our system is part of a larger environment, with stoichiometric processes that describe its
exchange.

For such a general system, we can, again, use a stoichiometric matrix formalism, in which
we now also specify the local environment of a reactant. In such a formalism, a compound can
simultaneously be a rare reactant in one compartment and an abundant reactant in another.

6.5 Spatial autocatalysis and fixation

The essential extension we have provided, is the introduction of more environments/compartments.
Let us now consider how this changes our perspective on autocatalysis and chemical evolution, by
explicitly considering the role of space in fixation.

Let us again consider the autocatalytic network described by Figs 5.7 and 5.6, which is described
by the reactions

BII +BCII −−⇀↽−− [BCB]II, (6.84)

[BCB]II −−⇀↽−− [BCB]I, (6.85)

[BCB]I −−⇀↽−− BI +BCI, (6.86)

DI +BCI −−⇀↽−− BI +DCI, (6.87)

BI −−⇀↽−− BII. (6.88)

Let us now consider a situation where compartment I is a small compartment that can exchange B
and BCB with a spatially extended phase II. In Fig. 6.12, the corresponding autocatalytic network
is drawn in terms of rare autocatalysts.
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I II

a) b)

I

II

Figure 6.12: a) An illustration of spatial autocatalysis for reaction network given by Eqs (6.84)-
(6.88). Orange and green arrows correspond to the A and B path, as discussed in Sec. 6.3. b) Phase
I is a small compartment, e.g. a vesicle. Phase II is a spatially extended environment, e.g. a bulk
volume phase. Completing the A path (orange) requires a return to phase I. Lattice sites are not
drawn to scale.

Let us consider that compounds displace only by diffusion. As can be seen in 6.12b, an important
step in the autocatalysis is then the return to the original compartment. As the dimension of phase
II increases, returning will become a more time-consuming process, which makes degradation
processes in phase II particularly detrimental. Even in the absence of degradation reactions, there
can be ‘effective degradation’ by diffusion: a fraction of species may never diffuse back (e.g. for a
discrete random walk on a cubic lattice (d = 3), the probability to return to the origin is 34 %. In
our example, conditions are a bit milder: compartment I is much larger than a lattice site.).

We see that there are some inherent problems that may come up when an autocatalytic cycle
involves exchange between different phases. Our example system will have difficulty sustaining
autocatalysis, especially in the presence of degradation reactions. We will now discuss three
solutions by which the fixation of such a multicompartment autocatalytic cycle can be improved: i)
Spatial confinement, ii) Cooperation, iii) Network structure. Interestingly, all of these example can
be argued to have a counterpart in biology, which will be discussed in Sec (6.5.4).

6.5.1 Spatial confinement

By confining compartment I in a small enough surrounding space, excursions of diverging length
and time are excluded. Let us here consider the case of a compartment confined in a small cavity,
with weak coupling to an outside environment, as shown by Fig. 6.13.

a) b)

I

II

I
II

Figure 6.13: Two examples of a confined compartment I. a) Diffusion is limited to a small lattice
due to physical impediments, leading to more rapid return. ‘Effective degradation’ by diffusion
may still exist by escape of the confined phase II, which can happen here by diffusion past the red
lattice sites. b) A well-mixed CSTR fluid II in contact with compartment I forms the well-mixed
counterpart, of a).

In the spatial autocatalytic cycle (Fig. 6.12a), the environment introduces degradation pathways
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for B and [BCB], through

BII −−⇀↽−− /0, (6.89)

[BCB]II −−⇀↽−− /0. (6.90)

We will study this system with mean-field model, appropriate when exchange between I and II is
slow.

When species displace by diffusion, well-mixed situations can occur, when spatial relaxation
of gradients occurs on a faster timescale τmix ∝ L2/D than exchange (τex) between I and II. For
our present discussion, we will consider the well-mixed CSTR limit (Fig. 6.13b) of a confined
autocatalytic reaction. We can then use a coarse-grained description for degradation, by only
specifying the phase (I, II) in which a species resides

BII κ /0

−−→ /0, [BCB]II κ /0

−−→ /0. (6.91)

Degradation rates in II follow the mean residence time τr: k /0 = k /0 = 1/τr (Sec. 3.2).
Similarly, a well-mixed description can be made for exchange between I and II

BI κ
+
B−−⇀↽−−

κ
−
B

BII, [BCB]I
κ
+
[BCB]−−−→

κ
−
[BCB]

[BCB]II. (6.92)

Supposing I and II are similar environments (same solvent, etc.), detailed balance requires that
κ
+
B /κ

−
B =V II/V I and κ

+
[BCB]/κ

−
[BCB] =V II/V I.

Finally, we have the chemical reactions

BI +BCI −−⇀↽−− [BCB]I, BII +BCII −−⇀↽−− [BCB]II, DI +BCI −−⇀↽−− BI +DCI. (6.93)

Removing abundant species (DI,BCII), and rare waste products (DCI) from the description, we find
an effective description

[BCB]I
kI
[BCB]−−−→ BI +BCI, BII kII

B−−−⇀↽−−−
kII
[BCB]

[BCB]II, BCI kI
BC−−→ BI. (6.94)

With the inclusion of the volumes we can then write the relevant transition rates w on the level of
single molecules, which for compartment I yields

wBI→BII = κ
+
B , w[BCB]I→[BCB]II = κ

+
[BCB], w[BCB]I→BI = kI

[BCB], wBCI→BI = kI
BC. (6.95)

Analogously, we find for phase II

wBII→BI = κ
−
B , w[BCB]II→[BCB]I = κ

−
[BCB], wBII→[BCB]II = kII

B, w[BCB]II→BII = kII
[BCB], (6.96)

and for the degradation process we write

wBII→ /0 = w[BCB]II→ /0 = k /0. (6.97)

We can now return to our stochastic models for the survival of autocatalytic cycles derived in
Sec.6.3, applied to the network given in Fig. 6.12a.

Supposing NI
D,N

II
[BCB]� 1, and initially NI

[BCB] = NI
B = NI

BC = NI
DC = NII

[BCB] = NII
B = 0, reac-

tions III and IV in Fig. 5.6 are (initially) irreversible.
BCI converts to B with no intervention of side reactions and no reverse reactions. The fixation

probability Pf ix can then be found from the probability that a BI successfully traverses, incorporates
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BC to become [BCB], and returns to irreversibly form 2BI. Denoting this probability with pB, the
fixation probability follows directly from Eq. (6.44).

Pf ix =

{
0, pB ≤ 1

2 ,

2− 1
pB
, pB ≥ 1

2 ,
(6.98)

Note however, that B and [BCB] can go back and forth between I and II, and interconvert reversibly
in phase II, which needs to be taken into account for determining pB. Noting that there is no
degradation pathway for BI and that it can only transit to BII, we can ignore it in our calculation
and consider the total success of all trajectories starting from BII:

pB = p++1

∞

∑
k=0

(p+−2 p++1 + p++2 p+−3)
k p++2 p++3 =

p++1 p++2 p++3

1− (p+−2 p++1 + p+2+p+3−)
(6.99)

where p++k is the probability to successfully advance forward from node k to k+1, and p+−k the
probability to successfully return from k to k−1. Nodes have the following correspondence with
compounds 1: BII, 2: [BCB]II, 3: [BCB]I. We can express p++k in terms of transition rates w

p+1+ =
wBII→[BCB]II

wBII→[BCB]II +wBII→ /0
(6.100)

p+1− =
w[BCB]II→BII

w[BCB]II→BII +w[BCB]II→ /0 +w[BCB]II→[BCB]I
(6.101)

p+2+ =
w[BCB]II→[BCB]I

w[BCB]II→BII +w[BCB]II→ /0 +w[BCB]II→[BCB]I
(6.102)

p+2− =
w[BCB]I→[BCB]II

w[BCB]I→[BCB]II +w[BCB]I→BI
(6.103)

p+3+ =
w[BCB]I→BI

w[BCB]I→[BCB]II +w[BCB]I→BI
(6.104)

In Fig 6.14, some trajectories are shown for this process, which was modeled using Gillespie’s
Algorithm[39].

We follow the populations for 10000 transitions. By following the fraction of nonextinct
populations as a function of time, it was checked that this yields satisfactory convergence towards
the fixation probability Pf ix, which agrees well with the analytical result (Eq. 6.99) as shown in Fig.
6.15.

6.5.2 Cooperation

In Fig. 6.12, fixation of an autocatalytic cycle requires a freshly formed [BCB] compound to return
to its original compartment. If there are multiple compartments with a similar composition, as
shown in Fig. 6.16, this requirement can be relaxed: when a released B molecule forms [BCB], it
can enter any other compartment, to yield an overall production of B. In Ch.5, we also considered
an analogous example where the coupling of two chemically distinct compartments can lead to
autocatalysis, similar to syntrophy in ecology. These considerations are reminiscent of a model by
Lemarchand and Jullien [40] using autocatalytically assembling vesicles which exhibit chemically
mediated ecological behavior.
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Dimensionless time (t/τ)
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B

Figure 6.14: 12 stochastic trajectories for NB =NBI +NBII +N[BCB]I +N[BCB]II , starting with NBII = 1,
V I =V II = 1.0 and setting other concentrations of B-species to 0. Rate constants are κ

+
B = κ

−
B = 1.0,

κ
+
[BCB] = κ

−
[BCB] = 0.5, kI

[BCB] = kII
[BCB] = 10.0, kI

B = 10.0 , kII
B = 10.0, kI

BC = 100.0, k /0 = 0.15. A
trajectory consists of 10000 subsequent transitions, unless NB reaches 0 before. Note that only 2
trajectories reach an exponential growth regime, black dots mark the points where the other 10
trajectories go extinct. Time is rendered dimensionless by τ = 1/κ

+
B .

I

III

Figure 6.16: Spatial autocatalysis can be mediated by two compartments performing the same
chemistry. A compartment recovers autocatalysts released by its neighbor. In its absence, some
of these autocatalysts would likely diffuse away or degrade. Now, they are put to use to further
enhance the autocatalytic cycle in Fig. 6.12a. This provides the basis for cooperation.

Cooperation in the well-mixed limit
In a well-mixed volume II with N compartments of volume V I, the number of exchange processes
between II and I are N times more numerous than for the single-compartment case. We can then
rewrite the transition rate for transferring to a compartment of type I as

w[BCB]II→[BCB]I = Nκ
−
[BCB], wBII→BI = Nκ

−
B . (6.105)

amounting to a net increase in uptake.
The competing degradation processes, occurring with rates k /0

B,k
/0
[BCB], are left untouched by the

increase in compartments. Consequently, the losses incurred due to degradation are reduced with
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Figure 6.15: Fixation probability Pf ix as function of degradation rate k /0, for N compartments. Other
parameters remain fixed at values specified under Fig. 6.14. Lines correspond to the exact solution
(Eq. 6.99), each circular dot corresponds to simulations as specified under Fig. 6.14, in which
fixation was approximated by survival after 10000 transitions.

respect to the single-compartment case, since the relative probability to go from [BCB]II to [BCB]I

is now increased, leading to a higher success rate pB (Eq. (6.99)).
In Fig. 6.15, the exact expression for pB is traced for N = 2 and N = 10, and compared with

numerical simulations.

Cooperation without mixing

The ideal mixing approximation may not always be appropriate. In this section, we will instead
advance a more general statistical argument.

Let us consider diffusion from a compartment α to a compartment β , with an absorbing
boundary condition. This process is successfulwith a probability pα→β = pe. The compound returns
to α without going through β with probability pα→α = pr. With probability p /0 = 1− pr− pe it
diffuses away to infinity or is degraded. If V α =V β and the environment is isotropic, the reverse
trajectories from β to α are equally likely, pα→β = pβ→α = pe.

A particle going from volume α to volume β , will only subsequently return to α with probability
pe. Considering returns from β to β , the total probability of returning to α becomes

p̄c = pc + p2
e

∞

∑
k=0

pk
c = pc +

p2
e

1− pc
. (6.106)

If α is the only reactive compartment, p̄c must become larger than 1/2 to have any chance of viable
autocatalysis. If β is reactive as well, the probability π to end up either in α or in β is

π = pc + pe = p̄c + pe

(
1− pe

1− pc

)
(6.107)

Let us now consider we have N equidistant compartments. Initially, N−1 compartments can be
reached, each with probability pN

e . A final return step can only be to the original compartment,
happening with probability pN

e , while in the meantime the particle can move around between the
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N−1 other compartments. We can then write

p̄N
c = pN

c +(N−1)(pN
e )

2
∞

∑
k=0

(pN
c +(N−2)pN

e ) = pN
c +

(N−1)(pN
e )

2

1− pN
c +(N−2)pN

e
, (6.108)

π
N = pN

c +(N−1)pN
e = p̄N

c +(N−1)pN
e

(
1− pN

e

1− pN
c − (N−2)pN

e

)
(6.109)

where pN
c is now a return probability without traversing any of the other N−1 compartments, and

pN
e the probability of going to another compartment without passing through any compartments.

Using the total probability

pN
c +(N−1)pN

e + pN
/0 = 1, (6.110)

we then obtain

p̄N
c = pN

c +(N−1)pN
e

pN
e

pN
e + pN

/0
, (6.111)

π
N = pN

c +(N−1)pN
e = p̄N

c +(N−1)pN
e

(
pN

/0

pN
e + pN

/0

)
. (6.112)

Since πN > p̄N
c , it follows that having reactive neighboring droplets is strictly better.

We can write an approximate correspondence between pe and pN
e , by considering all indirect

trajectories through the N−2 nodes that do not touch α and β

pe ≈ pN
e +(pN

e )
2

∞

∑
k=0

(N−2)(pN
e )

k = pN
e + pN

e
pN

e

1− (N−2)pN
e
. (6.113)

Eq. (6.113) can be rearranged to give a quadratic equation

(N−1)(pN
e )

2− [(N−2)pe +1]pN
e + pe = 0, (6.114)

of its two solutions, the physical one corresponding to our model is

pN
e =

(N−2)pe +1+
√
(N−2)2 p2

e−2(N−1)pe +1
2(N−1)

. (6.115)

In the absence of transport boundaries and for uniform degradation, such a correspondence becomes
exact, and pN

e is well approximated by pe, as long as pN
e and (N−2)pN

e are not too large. Under
those same approximations, p̄N

c = p̄c, so that we can directly compare the

π
N−π = (N−1)pN

e

(
pN

/0

pN
e + pN

/0

)
− pe

(
p /0

pe + p /0

)
(6.116)

Let pN
e = ε , where 0 < ε � 1. From Eq. (6.115) it follows pN

e → pe. By Eq. (6.108), we have
pN

c → pc. From total probability (Eq. (6.110)) we then have pN
/0 → p /0, s.t.

π
N−π = (N−2)ε

(
p /0

ε + p /0

)
. (6.117)

To leading order, capture increases linearly with the number of surrounding compartments. This
increase in capture can make autocatalysis viable that would not survive for a single compartment.
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6.5.3 Network robustness against loss
So far, our solutions focused on environmental effects that could improve the survival of the BCB
model reaction. Another factor we can consider for improvement is the reaction network itself: by
being appropriately structured, the network dependence on the successful return of autocatalysts
can be drastically lowered.

An instructive consideration is to avoid having a molecule that has to fetch itself, and instead
have the molecule fetch an allocatalyst that can act within the compartment. A simple model we can
construct for this situation uses a species F, to fetch a precatalyst P. Taken back to the compartment,
P irreversibly reacts with reservoir species D, to form a catalyst C that converts a reservoir species
X to more F.

FI −−⇀↽−− FII, FII +P −−⇀↽−− FPII, (6.118)

FPII −−⇀↽−− FPI, FPI −−⇀↽−− FI +PI, (6.119)

FII −−→ /0, FPII −−→ /0, (6.120)

PI +DI −−→ CI, CI −−→ /0, (6.121)

CI +XI −−⇀↽−− CXI, CXI −−⇀↽−− CI +FI. (6.122)

This leads to a network reminiscent of the simple network in Fig. 5.4, in which a composition of
two allocatalytic reactions yields an autocatalytic reaction. This type of autocatalytic network motif
is characteristic for GARD[6].

Let pC denote the probability of a successful catalytic cycle for C, which corresponds to
binding X and then producing one F molecule. The probability of an unsuccessful cycle (1− pC),
corresponds to degradation of C.

Let PC
n be the probability to perform a successful catalytic cycle n times, followed by degrada-

tion. Such a process yields a geometric distribution

PC
n = (1− pC)pn

C (6.123)

Typically, a C molecule produces pC/(1− pC) F molecules before being lost to degradation.
Let us denote pF the probability that an F molecule successfully performs a fetch cycle,

irreversibly releasing P (due to the low abundances of PI and FI , the rate of their reverse reactions
can be considered negligible), which is then converted to C. The probability of fetching n catalysts
in this way, is then

PF
n = (1− pF)pn

F, (6.124)

which is of the exact same functional form as Eq. (6.123): both describe catalytic processes
(fetching or direct production) competing with degradation.

Taken together, we can define PC
n , the probability that a catalyst C yields n new catalysts C,

through the fetch molecules (transport catalyst) F it produced.

PC
n =

∞

∑
s=0

PC
s

∞

∑
n1,...,ns

s

∏
k=0

PF
nk

δ
n
n1+...+ns

(6.125)

The resulting expression was derived for a more general case in Sec. 6.3. Taking pA = 1 in that
derivation, we directly obtain:

PC
n = βα

n, n≥ 1 (6.126)

PC
0 = 1−β

α

1−α
. (6.127)
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with

α =
pF

1− pC(1− pF)
, β =

pC(1− pC)(1− pF)

1− pC(1− pF)
. (6.128)

We can then use the probability to go extinct within m rounds, dm, as defined in Eq. (6.68), which
in the limit m→ ∞ converges to d, and for which it was shown that

d =
β

α−1
+

1
α

(6.129)

which here simplifies to

d =
1− pC

pF
(6.130)

At the threshold for guaranteed extinction, d = 1, we then have

pF = 1− pC (6.131)

An F molecule will on average have provided pF/(1− pF) catalyst molecules, before degrading.
Similarly, a catalyst will have provided pC/(1− pC) fetch molecules F.

Overcoming extinction then requires that the fetch molecules F generated by one species of C,
bring back (on average) more than one catalayst C:

pF pC

(1− pF)(1− pC)
> 1. (6.132)

Indeed, plugging in the threshold (Eq. (6.131)) for extinction pF = 1− pC, a catalyst will replace
itself, on average, with exactly one new catalyst. The fixation probability Pf ix is then

Pf ix =

{
1−d = pF+pC−1

pF
, pF + pC ≥ 1,

0, pF + pC < 1,
(6.133)

The key point here is that to reach fixation, the internal catalyst C can compensate for excessive
degradation of F, and vice versa. While the spatial diffusion of F may be perilous due to fluxes,
diffusion and external degradation, the chemical milieu can be quite accommodating to C, thus
ensuring it will produce a large amount of F before being lost.

6.5.4 Biological examples
In biology, all of the aforementioned phenomenology can be found. (Micro)organisms actively
pursue nutrients, which may be poorly accessible at first.

A first example is Fe3+. Iron is an essential nutrient, forming part of several key enzymes, such
as ferredoxins used in oxidative phosphorylation. At pH 7, most Fe3+ forms a precipitate, and
equilibrium concentrations are 10−18M which makes it a key limiting nutrient[41]. Since its role is
catalytic (Iron is essential to reach metabolic closure), the rationale of Sec 6.5.3. applies: as long as
we are careful with the catalytic iron we have, we can sacrifice considerable resources to procure
more. This is evident, when looking at the rich diversity of siderophores (literally: iron-carriers)
that have evolved to capture extra iron[41].

Siderophores are relatively simple molecules, found particularly with microbia (e.g. fungi,
bacteria), but some plants also excrete them (phytosiderophores). Over 300 siderophores have
been identified [41], and some bacteria are capable of exploiting siderophores of other species
(xenosiderophores). In the simple cooperation model in Sec. 6.5.2, it became clear that excretion of
transport catalysts improves autocatalysis and nutrient acquisition on the collective level. Biological
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agents may regulate themselves to deviate from such behavior. Siderophores have been the object
of sociobiological and behavioral studies, to assess if producers of siderophores are being exploited
by non-producers [42]. While some proof is found for such behavior, it should be remarked that
this exploitation is not very detrimental to producers: siderophores that have moved far enough to
be ‘stolen’, are typically too far away to appreciably diffuse back[41]. In addition, siderophores are
relatively simple, small molecules, expected to have a low unit cost in metabolic terms.

Another important strategy, confinement, is especially important when valuable compounds
are excreted. Decomposers (e.g. in the soil) have the arduous task to degrade a whole pastiche of
inert biopolymer bonds (e.g. cellulose, lignin [43]), to penetrate towards more nutritious and easily
degradable material. The degradation of these bonds requires highly specialized large proteins.
Given the cost of producing such proteins, it is important that such a protein sticks around as long as
possible. One confinement strategy to achieve this is by making ecto-enzymes: enzymes anchored
to the surface.

More generally, degradation of nutritious polymers may occur extracellularly, outside of the
surface, followed by the import the nutrients. To make sure degradation enzymes stick around,
they can be trapped in polymer matrices characteristic of biofilms, which contain sites with a high
affinity for these enzymes. In such a matrix, nutrients can flow through and are extracellularly
digested, a sort of ‘inverse fishnet’.

Exceptionally elegant cases of confinement are found for syntrophic (cross-feeding) organisms.
The efficient coupling of syntrophic metabolism requires the organisms involved to exchange
each other’s nutrients at a minimal loss, which makes simple secretion a suboptimal solution. A
considerable leap in efficiency is made, when a physical substrate confines these flows. Geobacter
is known [44] to produce conductive wires to transport electrons to its partner. Other bacteria have
been observed to build tubulin structures filled with ubiquinones, allowing for rapid hopping of
electrons.

Varahan et al showed[45] that isogenic cells in yeast colonies can form specialized cell groups
when exposed to low levels of glucose, with one group becoming gluconeogenic cells providing tre-
halose, which is consumed by cells utilizing a high pentose phosphate pathway. These metabolically
complementary states are spatially organized and are a key to understanding its further propagation.
It is suggested that such a resource strategy may maximize spatial expansion.

6.5.5 An afterthought

In this chapter and Ch.5, we have established a link between network structure and the forms
of catalysis it can inhabit. These findings were then used to give a microscopic derivation of
‘autocatalytic chemical evolution’, along the lines of King [27] and Bagley et al[11]. We hope that
this has opened new vistas for understanding autocatalysis and chemical evolution.

Work on prebiotic chemical evolution has thus far focused on single-pot chemistry. A notable
exception to this trend is a work by Lemarchand and Jullien [40], in which autocatalytically assem-
bling micelles and vesicles are considered, which can display all sorts of ecological interactions
mediated by simple chemical reactions. We anticipate that such multicompartment considerations
provides a rich

Our framework for stoichiometric autocatalysis provides a possible solution to a number of
problems in chemical evolution: it does not require the autocatalysis to be formulated for a small
subset of species, e.g. lipids, catalytic copolymers or for one environment. We may equally well
consider a puddle, a rock pore, a slab of metal, a mineral surface, a contained gas, or all of them
combined.

This makes autocatalysis a much less rare property. Autocatalysis forms the cornerstone of all
proposed mechanisms in prebiotic chemical evolution. In any scenario, reducing the abundance
of autocatalysis is something that should be done with great care. An interesting future direction



6.5 Spatial autocatalysis and fixation 207

will be the further exploration of physical-chemical feedback mechanisms, to see what kind of
feedbacks go beyond a stoichiometric description.

The problem of rare autocatalysis has previously only been considered in the single-pot context.
In this situation, it was proposed that the problem can be overcome by having a large diversity of
compounds. Insofar as stoichiometric autocatalysis is concerned, a large molecular diversity is
indeed ideal to give an abundance of autocatalytic network motifs. As considered in this chapter,
an equally essential problem is the question of viability: can an autocatalytic motif actually see the
light of day?

Piling up all these diverse compounds in the same phase comes with clear drawbacks. These
compounds can do many more things than forming autocatalytic sets: we should expect that
catalysis of degradation, side-reactions and formation of trapping complexes grows much more
rapidly. Such effects will quickly make many autocatalytic cycles unviable[16, 8]. This seems to
lead to a paradox: either we have i) abundant autocatalytic motifs, but they are not viable, or we
have ii) hospitable conditions for autocatalysis, but lack the diversity to make that property emerge.

It is this paradox that multicompartment may attempt to address. Spatially extended multi-
compartment systems can accommodate many innovations and autocatalytic cycles. On a local
level, however, the chemical diversity can be maintained at levels that are hospitable enough for
autocatalysis. As noted in Ch. 5, there is inherently a larger space of autocatalytic reactions for the
same set of compounds if we consider they can also selectively move to other, chemically distinct
environments.

In multicompartment autocatalysis, innovations are not localized in one reactor. If locally no
new autocatalytic cycles can be triggered, there is still a panoply of alternative locations where this
may happen. Thereby, it sidesteps the obstacles that render a single diverse soup unviable. On the
other hand, it still possesses the combinatorial diversity that motivated the single-pot approach.

Mechanistically, it was shown that autocatalysis leads to richer behavior than foreseen, with
cooperation, syntrophy and parasitism emerging from small chemical networks. Such behavior
suggests that the multicompartment approach may yield higher-order features which can be studied
through the lens of ecology. Structurally, such a network evolution may be very different from
the classical view of ‘competing, self-replicating molecules’. Multicompartment networks can be
tightly interlinked in their chemistry, interactions and survival. It is not clear whether a conception
of individual evolving replicators that compete is an appropriate way of viewing such a system.

Insight in evolution often requires an appreciation of tradeoffs, an idea of the vulnerabilities
that shape the fitness landscape, and what innovations overcome them. In Sec.8.4 and Ch.9, some
simple ones have been considered. Network structure is an important determinant for the survival of
an autocatalytic network. Confinement and collaboration are robust strategies that confer viability
to networks, which may in turn provide fertile ground for new innovations.
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7. Prebiotic Polymerization Scenarios

7.1 Prebiotic Polymer Scenarios

A recurring element in origins-of-life scenarios is that, sooner or later, a repertoire of functional
polymers is formed. The RNA-world hypothesis, for example, proposes that RNA molecules were
one of the first functional polymers, by exploiting their capacities for catalysis and information
storage [1, 2]. In particular, the ligation of monomers to form polymers (polymerization) is an
activity that some of such functional polymers are thought to have. Similar hypotheses exist for
e.g. amino acids [3, 4, 5] and XNA’s [6, 7, 8, 9]. The scope can be widened a little further
when considering Krishnamurthy’s view that today’s biochemistry may have been selected from
many prebiotic precursors that have not been preserved[10]. An interesting alternative form of
information storage was proposed by D.Segré et al. [11], where autocatalysis and the population
composition of lipid membranes is proposed as a means of information storage. This idea has seen
implementation in an RNA-polymer system [12].

In those polymer scenarios, one generally wishes functional polymers to provide: i) a catalytic
repertoire, ii) heredity and iii) evolvability. Condition i) seems to be readily fulfilled by DNA [13],
RNA [14] and various XNAs [15] as well as oligopeptides. Condition ii) however, is far from
trivial: making persistent copies of long polymer sequences without proofreading mechanisms and
polymerases seems to be out of the question. At the same time, even rudimentary polymerases are
prohibitively long, making them unlikely to appear in a random polymer pool and, without error
correction machinery or multilevel selection[16, 17] hard to maintain (Eigen’s Paradox) [18]. For
evolvability to come into play, this heredity seems to be an essential requirement.

Since heredity is such a central issue, scenarios often introduce new strategies to make this
property emerge. Many of these strategies boil down to either of the following two situations:
i) the generation of wider length distributions, with the hope of finding functional machinery to
obtain heredity, such as a polymerase [19, 20, 21, 22],
ii) a chemistry promoting the replication of particular subsets of sequence space (e.g. in reflexively
autocatalytic networks [4, 23, 24]).

It is important to appreciate that these are nontrivial things to achieve and subsequently evolve,
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especially from a simple starting point. The idea that the origins of life required extremely rare
events to yield sufficiently functional self-replicating objects can be traced back to the ideas of
Oparin and Haldane [3], who imagined that a rare peptide had to emerge. With the discovery of
DNA, concepts like sequence complementarity and templates made its entry. With the discovery of
RNA ribozymes, a species was identified that has, in principle, the ingredients to facilitate catalysis
and self-replication [1]. This self-replication and catalysis is not trivial however, it is postulated to
require complex functional species. Like the Oparin-Haldane scenario, RNA and other polymer
scenarios envision that a long time must pass in which prebiotic chemistry accumulates monomers
and chemical activation capacities with which it starts forming (quasi-)random polymer species.
Eventually (Joyce’s timeline suggests it takes up to 200 million years [25]), such a process is
thought to lead to the supposedly long and complex functional species that provide the transit to
e.g. a pre-RNA world and evolution of self-replicating polymer sequences.

Such prebiotic polymer scenarios have obvious thermodynamic challenges to overcome: for
many biomonomers of interest, polymerization is thermodynamically disfavored. The repeated
assembly of a small subset of sequences goes strongly against the entropic drive to erase this
information by making sequences as random as possible. With the framework of nonequilibrium
thermodynamics and stochastic thermodynamics, these thermodynamic aspects can now be captured.
Free energy and material resources are inherently limited, providing clear constraints on what a
scenario can do, and how much of it can be done.

In the upcoming sections, various aspects of polymers, length distributions, sequence space and
nonequilibrium thermodynamics will be discussed. In Sec. 7.2 we will build up a framework for
recombination of polymers in closed systems, providing a thermodynamic description of sequence
and length distributions. The contents of this section are published in Ref. [26] and we will largely
follow the lines of the original publication.

In Sec. 7.3, recombination reactions are opened to exchange with reservoirs, leading to
nonequilibrium regimes in which efficient net polymerization can be achieved. In Sec. 7.4, a joint
published work (Ref. [27]) with the groups of D. Baum and N. Lehman is discussed, in which
experiments with RNA adsorption on mineral surfaces are described by a toy model with multisite
adsorption. Contrary to what has been argued in the literature, we show that minerals preferentially
adsorb larger polymers, which provides another pathway to the acquisition of longer polymers.

In Sec. 7.5, we provide a thermodynamically explicit description of some common prebiotic
polymer scenarios using ligation, fragmentation and activation. The key step of activation is
needed to have a thermodynamically consistent description, and the relative strengths of ligation,
activation and fragmentation can lead to ligation-limited and activation-limited regimes. A large
class of models in the literature are shown to work in a strongly ligation-limited regime. The
framework quantifies the rate of generation of random sequences for every length for arbitrary
polymer distributions and links it to the entropy production for this process. Coupled with the
length distribution, we can then establish a mean time and free energy cost for finding a particular
species, providing an absolute lower bound on random dissipative searching through sequence
space, irrespective of e.g. catalysis, and this leads to a tradeoff between dissipation rate, time and
the complexity of a species.

7.2 Recombination of polymers in closed systems

In this section, we will study some properties of ‘recombination’ reactions. The technical discus-
sions will largely follow Ref. [26], which can be consulted for further detail.
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7.2.1 Recombination reactions
The reactions referred to as recombinations are depicted in Fig 7.1. In the first mechanism, two
polymer chains are interchanged, and we refer to it as ‘chain exchange’. It is equivalent to
‘metathesis’ in synthetic organic chemistry, with examples such as disulfide metathesis and olefin
metathesis. The latter has become such a valuable tool for chemists that it was awarded the 2005
Nobel Prize in Chemistry.[28]

Figure 7.1: Representation of Attack-Exchange reaction: ωAωB +ωC −−→←−− ωCωB +ωA for the case
that two monomer types are present: m = 2.

The second scheme, ‘attack-exchange’ involves one reactant picking up the group to be trans-
ferred from the other. Such a reaction is preceded by a ‘trans-’ prefix in synthetic chemistry (e.g.
transesterification, transamination, transamidation, etc.). These reactions are key players in dynamic
covalent chemistry and are applied in novel materials, such as vitrimers[29, 30], which combine the
properties of thermosets and thermoharders. Modern biology employs transesterification in splicing
pathways in which terminal hydroxyl groups attack phosphodiesters[31](see Fig. 7.2).

Figure 7.2: Representation of Chain-Exchange reaction: ωAωB +ωCωD −−→←−− ωAωD +ωCωB.

7.2.2 In prebiotic scenarios
In RNA, a plethora of pathways have been laid bare for recombination of small strands [32], in
the absence of any enzyme. Such reactions do not require an energy source or abundant monomer
supplies and they are sequence-selective. Such reactions may be quite slow[33].

A synthetic ribozyme catalyzing transesterification, Azoarcus ribozyme, was developed [34],
of which a version was developed that could be cut in pieces that self-assemble in an active,
noncovalent complex. This noncovalent complex can in turn recombine bonds in other noncovalent
complexes to yield a covalent complex (plus small strands as leaving groups). By changing sequence
specificities, cooperative RNA networks were assembled [12].
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It has also been argued that such reactions may have provided ‘sexual evolution’ of genetic
polymers very early on[35]. In modern genetics, crossing over of genetic material in chromosomes
is a more elaborate version of this, whereas template-directed polymerization is more similar to
asexual cloning.

7.2.3 A note on notation
In the following, it will be advantageous to introduce a specific notation to describe the evolution
of sequences according to these reactions. Monomer sequences are considered to be directional, as
in the case of nucleic acids which have a distinct 5’ and 3’ end. Two subsequent sequences will be
noted using a product notation ωω ′ = ω1ω2...ωlω

′
1ω ′2...ω

′
l′ , which is used for the addition of two

chains. An inverse sequence is defined as a sequence that is removed, either from the front or from
the back, by placing the inverse either in front or on the back of a sequence. ωω ′−1 = ω1ω2...ωq.
We define a length operator as |.|, which counts the number of elements in a sequence.

With this notation, the Attack-Exchange may be written:

ωAωB +ωC −−→←−− ωCωB +ωA, (7.1)

In a framework of mass-action kinetics for a single well-mixed reactor (Sec. SUBSEC: mas-
sacwellmix), reaction rates can be written as:

wωAωB
ωC

= kωAωB
ωC

cωAωBcωC , (7.2)

wωCωB
ωA

= kωCωB
ωA

cωCωBcωA , (7.3)

where w is the reaction rate and k the corresponding rate constant, which can, in principle, be
sequence dependent. The concentration cω = Nω/V is the number of polymers of sequence ω , Nω ,
per unit of volume V . In anticipation of the link we will establish with a microscopic fluctuating
description, Nω is used as a mean-field abundance, in contrast with the true number of molecules
nω used in the rest of the manuscript.

Similarly, the Chain-Exchange reaction drawn in Fig. 7.2 can be written as:

ωAωB +ωCωD −−→←−− ωCωB +ωAωD, (7.4)

to which we attribute mass-action rates:

wωAωB
ωCωD

= kωAωB
ωCωD

cωAωBcωCωD

wωAωD
ωCωB

= kωAωD
ωCωB

cωAωDcωCωB .
(7.5)

When the forward and backward rate constants kωAωB
ωCωD and kωAωD

ωCωB are equal, the transformation is
not accompanied by a net change in standard free energy ∆G◦.

An important constraint for both reactions of Eq. (7.1) and Eq. (7.4) is that we exclude the
formation of any species of zero length. This means that the total number of chains N = ∑Ω NΩ

is a conserved quantity for both dynamics. In other words, there is a minimum length of chains
lmin = 2 for Chain-Exchange reactions while lmin = 1 for Attack-Exchange reactions. In addition,
in both exchange reactions, the first monomer is never displaced, which leads to a conservation law
for the composition of the first monomer. For Chain-exchange, such a law also exists for terminal
monomers, because they always remain in a terminal position.

7.2.4 Equilibrium Thermodynamics of Recombination in closed systems
In the following sections, a thermodynamic framework will be developed to describe the dynamics
of a polymer mixture undergoing Chain-Exchange reactions in a closed system. The calculations for
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the Attack-Exchange reaction are equivalent in spirit, and any differences between their descriptions
will be elaborated on when they come up.

We assume that the mixture contains m different monomer types {0,1,2...m}, with m > 1 so
that polymer sequences can be defined. In our modeling of recombination thermodynamics, we do
not explicitly describe the solvent. As will be shown, this is appropriate because recombination
preserves the total number of chains: N = ∑Ω NΩ. In Sec. 7.5, hydrolysis reactions in irreversible
polymerization will be considered, which requires an explicit description of the solvent. The case
of reversible polymerization was treated in Ref. [36].

We define the polymer fraction of a sequence Ω as:

yΩ =
NΩ

N
, (7.6)

which obeys the normalization condition ∑Ω yΩ = 1. We assume that the solution is sufficiently
ideal and thus the chemical potentials of all present species follow the form:

µΩ = µ
◦
Ω + kBT lnyΩ, (7.7)

where T is the temperature. The enthalpy of the polymers in solution can be expressed in terms of
their standard free enthalpies h◦

Ω
as

H = ∑
Ω

NΩ h◦Ω. (7.8)

Likewise, the entropy can be defined in this manner,

S = ∑
Ω

NΩ(s◦Ω− kB lnyΩ), (7.9)

where s◦
Ω

represents the internal contribution of the entropy associated with other degrees of freedom
different from Ω and not described here. We will also use the system entropy per chain S defined
as:

S =
S
N

= ∑
Ω

yΩ(s◦Ω− kB lnyΩ), (7.10)

Let us define G = H−T S as the Gibbs free energy. Using µΩ = hΩ−T sΩ, we find

G = ∑
Ω

NΩµΩ = ∑
Ω

NΩ(µ
◦
Ω− kBT lnyΩ). (7.11)

In the remainder of this section we set kB = 1 to simplify the notation.

7.2.5 Non-equilibrium Thermodynamics of Recombination in Closed Systems
Let us now consider the non-equilibrium description of recombination. The kinetic rate equation
for the concentration of chains with sequence Ω is:

ṄΩ = ∑
ωA=Ωω

−1
B

∑
ωC

∑
ωD

[
wωAωD

ωCωB
−wωAωB

ωCωD

]
. (7.12)

The kinetic constant can depend on the exact sequences and on the sites of splitting. The Chain-
Exchange reaction exchanges chemical bonds between subsequences of nonzero length. As such,
the set of subsequences we consider cannot be empty (ω 6= /0) and a total sequence is at least of
length 2. For convenience, we choose to make this instruction implicit.
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The second term is equivalent to the back reaction of the first term. When summing over all
possible sequences Ω, the first sequence sum turns into a sum over subsequences ωA and ωB (all
distinct ordered pairs (ωA,ωB) are generated):

∑
Ω

∑
ωA=Ωω

−1
B

= ∑
ωA

∑
ωB

, (7.13)

which generates the symmetry ∑Ω ṄΩ =−∑Ω ṄΩ. This of course implies again the conservation
of the number of chains ∑Ω ṄΩ = 0. The entropy production rate Σ of an ensemble of chemical
reactions, assumed to be elementary (there should be no hidden chemical reactions) takes the form
[37]):

Σ = ∑
k
(w+

k −w−k ) ln
(

w+
k

w−k

)
≥ 0, (7.14)

where w+
k ,w

−
k are respectively forward and backward reaction rates of the kth reaction. In the

specific case of Chain-Exchange reactions, this becomes:

Σ =
1
4 ∑

Λ

[
wωAωD

ωCωB
−wωAωB

ωCωD

]
ln
(

wωAωB
ωCωD

wωAωD
ωCωB

)
, (7.15)

where the sum is carried out over Λ, which represents an arbitrary set of four sequences of the
form {ωA,ωB,ωC,ωD}. The factor 4 can be understood as the cardinal of a discrete group G acting
on elements of Λ. This group contains the following 4 elements: G = {I,χ,π,ρ}, where I is
the identity, χ presents the exchange ωA→ ωC, π the exchange ωB→ ωD, and ρ the combined
exchange ωA→ ωC and ωB→ ωD. Similarly, for Attack-Exchange the relevant group H contains
instead the elements: H = {I,χ}. Since the cardinal of H is 2 instead of 4 for G , the equivalent
of equation (7.15) for Attack-Exchange should contain a factor 2 in the place of the factor 4. In
Sec. 7.3.1, such symmetry considerations will be derived more generally, using the stoichiometric
matrix formalism.

Detailed balance should hold at equilibrium, which provides the following relation:

kωAωB
ωCωD

yeq
ωAωByeq

ωCωD = kωAωD
ωCωB

yeq
ωAωDyeq

ωCωB . (7.16)

Then, the condition ∆µ = 0 with the detailed balance condition (7.16) leads to:

T ln
(

yeq
ωAωByeq

ωCωD

yeq
ωCωByeq

ωAωD

)
=−∆µ

◦
ωAωB,ωCωD

= µ
◦
ωAωD

+µ
◦
ωCωB
−µ

◦
ωCωD

−µ
◦
ωAωB

. (7.17)

Combining this relation with detailed balance (7.16), one obtains:

T ln
(

kωCωD
ωAωB

kωAωD
ωCωB

)
=−∆µ

◦
ωAωB,ωCωD

. (7.18)

When the forward and backward rates are equal, the reaction is neutral in terms of free energy
∆µ◦ = 0. This means standard entropy and enthalpy compensate each other, since ∆h◦ = T ∆s◦.

If we now calculate the time evolution of the enthalpy H, we obtain:

dH
dt

= ∑
Λ

[
wωAωD

ωCωB
−wωAωB

ωCωD

]
h◦ωAωB

=
1
4 ∑

Λ

[
wωAωD

ωCωB
−wωAωB

ωCωD

]
∆h◦ωAωB,ωCωD

, (7.19)

where we used the symmetry group G to write the evolution in single-reaction enthalpy changes:

∆h◦ωAωB,ωCωD
= h◦ωAωB

+h◦ωCωD
−h◦ωAωD

−h◦ωCωB
. (7.20)
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Similarly, for the entropy we obtain:

dS
dt

=
1
4 ∑

Λ

[
wωAωD

ωCωB
−wωAωB

ωCωD

][
∆s◦ωAωB,ωCωD

− ln
(

yωAωByωCωD

yωAωDyωCωB

)]
. (7.21)

We can combine the equations (7.17), (7.19) and (7.21) to get:

dG
dt

=
T
4 ∑

Λ

[
wωAωB

ωCωD
−wωAωD

ωCωB

]
ln
(

yωCωByωAωDyeq
ωAωByeq

ωCωD

yeq
ωCωByeq

ωAωDyωAωByωCωD

)
(7.22)

Using detailed balance (7.16) into Eq (7.22), one recovers the previous expression defined in
Eq (7.15) for the entropy production rate Σ:

− 1
T

dG
dt

= Σ =−∑
Ω

ṄΩ ln
(

NΩ

Neq
Ω

)
≥ 0. (7.23)

Since G = H−T S, this equation is equivalent to Ṡ = Σ+ Ḣ/T , which expresses the second law
of thermodynamics for a closed system. As expected, the heat released by the system into the
environment Q is the change of enthalpy Q = ∆H. Equation (7.23) is important to guarantee that
the chemical system reaches a unique equilibrium state on long times [36].

7.2.6 Decomposition of the entropy production
Here, we split the entropy production of the polymer mixture into two contributions, where the first
one represents the contribution of the various polymer lengths, while the second one represents that
of their sequences. Using Eqs. (7.6), (7.23), we can rewrite the entropy production rate Σ in terms
of polymer fractions:

Σ = −N
d
dt ∑

Ω

yΩ ln
(

yΩ

yeq
Ω

)
=−N

d
dt ∑

Ω

yΩ

(
µ◦

Ω

T
+ lnyΩ

)
. (7.24)

Since the polymer fractions yΩ for all sequences Ω are normalized, yΩ can be interpreted as the
probability to observe a chain of sequence Ω when a polymer is drawn at random from the mixture.
Furthermore, since the polymer of sequence Ω has only one possible length, namely l = |Ω|, that
probability to observe a polymer with sequence Ω can be denoted equivalently PΩ,l(t) because the
length is a redundant variable.

At any time t, we have therefore the identification

yΩ(t) = PΩ,l(t). (7.25)

To proceed, we then factorize PΩ,l(t) in the following way:

PΩ,l(t) = Yl(t) Ul,Ω(t), (7.26)

with Yl(t) the probability distribution of polymer length at time t, and Ul,Ω(t) the conditional
probability distribution of the sequence, conditional on the length l. The distributions Yl and Ul,Ω
are normalized: ∑l Yl(t) = 1, and ∑ΩUl,Ω(t) = 1 provided the sum is restricted to all chains which
have a length l.

Using Eqs. (7.24)-(7.26), we deduce a splitting of the entropy production rate into three
contributions:

Σ = −N
d
dt

[
∑

l
Yl lnYl +∑

Ω,l
YlUl,Ω lnUl,Ω +∑

Ω,l
YlUl,Ω

µ◦
Ω

T

]
. (7.27)

The various terms in this decomposition are:
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• The first term: ∑l Yl lnYl represents the disorder in the length distribution Yl (or length
entropy).
• The second term: ∑Ω,l YlUl,Ω lnUl,Ω represents the disorder in the distribution of sequences

(or sequence entropy). Importantly, this term is weighted by the length distribution Yl and
therefore introduces a coupling between length and sequence distributions. As a result,
one expects that the dominant contribution to this sequence entropy will come from short
sequences.
• The final contribution: ∑Ω,l YlUl,Ω µ◦

Ω
/T comes from the standard free energy change of

each species. If we choose µ◦
Ω

such that our reactions are energetically neutral: ∆µ◦ =
µ◦ωAωB

+µ◦ωCωD
−µ◦ωCωB

−µ◦ωAωD
= 0, this term vanishes.

The latter term can be split further into two using µ◦ = h◦− T s◦. Two terms will appear,
∑Ω,l YlUl,Ω h◦

Ω
, which corresponds to the heat exchanged with the surrounding medium and

∑Ω,l YlUl,Ω s◦
Ω

which corresponds to an internal entropy contribution to Σ.
In the work of Andrieux and Gaspard [38], a sequence decomposition of entropy production

was performed to model the thermodynamics of copolymerization of a single polymer. The single
polymer grows by monomer addition, leading rapidly to steady-state growth statistics with only a
small contribution to the entropy production.

Eq. (7.26) is similar in spirit, but it applies to ensembles of polymers performing recombination.
There is no overall growth and here the length distribution is an important part of the entropy
production.

Given an initial distribution Y I
l ,U

I
l,Ω and final distribution Y F

l ,UF
l,Ω, the total entropy production

per chain ∆Stot in that transformation follows by integrating (7.27).

∆Stot =∑
l

(
Y I

l lnY I
l −Y F

l lnY F
l

)
+∑

Ω,l

(
Y I

l U I
l,Ω lnU I

l,Ω−Y F
l UF

l,Ω lnUF
l,Ω

)
+∑

Ω,l

(
Y I

l U I
l,Ω−Y F

l UF
l,Ω

)
µ◦

Ω

T
.

(7.28)

For arbitrary distributions, this can be interpreted as the integration of the entropy during a time-
dependent protocol connecting them, or a particular kinetic realization.

7.2.7 Stochastic Thermodynamics Framework

The previous section relied on mass action laws and kinetic rate equations, which are appropriate in
the thermodynamic limit when the number of chains N→ ∞. In a small system where fluctuations
matter, a different approach is needed based on Stochastic Thermodynamics [39, 40, 41]. We define
a state n = {nΩ1 ,nΩ2 ,nΩ3 .....}, as a vector containing the numbers of each polymer (distinguished
by their sequence and length) present in the system. The probability to be in a given state n, P(n),
obeys a master equation [42] :

dP(n)
dt

= ∑
n′
[Wn′→nP(n′)−Wn→n′P(n)], (7.29)

where Wn→n′ is the transition rate to jump from n to n′. Given the size of the sequence space
and the corresponding reaction network, this equation quickly becomes analytically intractable.
Nevertheless, we can derive some useful results from it.

It is important to appreciate that the states n have an internal degeneracy z(n), which follows
from all the allowed permutations among species in that state:

z(n) =
N!

nΩ1!nΩ2!..nΩn!...
=

N!
∏Ω(nΩ!)

. (7.30)
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Fundamentally, this is a necessary procedure of coarse-graining[43] to acquire the entropy that is
convenient for our description (see also Sec. 4.1.1), in which we treat the same types of molecules
as indistinguishable.

The analogues of the ensemble averaged number of polymers of sequence Ω, NΩ and of the
entropy S introduced in the previous section are the stochastic particle number nΩ and the stochastic
entropy s. The connection between the two descriptions is that:

NΩ = 〈nΩ〉, (7.31)

S = 〈s〉, (7.32)

where the average is taken with respect to the distribution P(n). Now, the expression of the
stochastic entropy s is [44]

s(n) =− lnP(n)+ lnz(n)+ s◦(n), (7.33)

where the first term on the right hand side gives after averaging over the distribution of n the
Shannon entropy of that distribution, the second term is the contribution of the degeneracy while
the last term is internal entropy coming from non-described molecular degrees of freedom. The
precise definition of that last term is

s◦(n) = ∑
Ω

nΩs◦Ω, (7.34)

in terms of s◦
Ω

, the intensive standard entropy of formation introduced in Eq. (7.10).
Assuming the reaction n→ n′ is elementary (i.e. the two vectors differ by only one recombina-

tion reaction among two of their components), the detailed balance condition is:

Wn→n′

Wn′→n
=

z(n′)
z(n)

exp(−β∆µ
◦), (7.35)

where β = 1/T and ∆µ◦ is the chemical potential difference of the elementary exchange reaction
introduced in the previous section. We recall that the latter may be split into ∆µ◦ = ∆h◦−T ∆s◦.

In the absence of degeneracy, the ratio lnWn→n′/Wn′→n would correspond to the stochastic heat
transferred from the system to the reservoir during that transition. However, in present case, due to
the degeneracy, the correct definition of the stochastic heat, δq is:

−βδq = ln
Wn→n′

Wn′→n
− ln

z(n′)
z(n)

−∆s◦, (7.36)

Using (7.35) and (7.36), it follows immediately that:

δq = ∆h◦. (7.37)

When summing (7.37) over all transitions, we obtain the total heat q(t) exchanged with the heat
bath, at time t, in the form of a sum over all past events index by j:

q(t) = ∑
j

δq j, (7.38)

According to the second law of Stochastic Thermodynamics [41, 40], the total entropy production
on this trajectory is:

∆stot = ∆s+∆sm, (7.39)
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where ∆s is the change of system entropy between the final and initial states and ∆sm the change in
medium entropy. The latter is fundamentally associated to the heat defined above by ∆sm =−βq.

Given Eq. (7.33), the difference of system entropy is:

∆s = ln
P(nI)

P(nF)
+ ln

z(nF)

z(nI)
+ s◦(nF)− s◦(nI), (7.40)

which when combined with Eqs. (7.34)-(7.36), leads to the expected central result that the total
entropy production is the ratio of the probability of forward paths to that of backward paths:

∆stot = ln
P(nI) WnI→n1 ...WnF−1→nF

P(nF) Wn1→nI ...WnF→nF−1
. (7.41)

The contribution due to degeneracy can be further split as

1
N

ln
z(nF)

z(nI)
=

1
N

ln
∏Ω nI

Ω
!

∏Ω nF
Ω

!
= ∆sL +∆sω , (7.42)

with ∆sL the length entropy per chain and ∆sω the weighted sequence entropy per chain of a finite
system:

∆sL =
1
N

ln
∏l nI

l !
∏l nF

l !
(7.43)

∆sω =
1
N

ln
∏Ω nI

Ω
!

∏Ω nF
Ω

!
− 1

N
ln

∏l nI
l !

∏l nF
l !
, (7.44)

7.2.8 Connection to the macroscopic approach
Let us now check how the stochastic and deterministic approaches are connected. We assume
that there is no distribution of the initial condition, P(nI) = 1. This simplifies the first term in the
change of stochastic system entropy in Eq. (7.40), since lnP(nI) = 0. In order to evaluate P(nF),
let us assume that the system has reached equilibrium at the final time. For a macroscopic system,
that probability distribution takes the equilibrium form ∗:

P(nF) = z(nF)∏
Ω

(yΩ)
nF

Ω , (7.45)

where we have used the definition of the degeneracy factor in Eq. (7.30) and the conservation law
of the number of chains ∑Ω nΩ = N. To make the connection with the macroscopic description, we
can show that the polymer fractions yΩ previously defined in Eq. (7.6), must also be the ensemble
average of nΩ divided by N:

yΩ =
〈nF

Ω
〉

N
, (7.46)

where the average is taken with respect to the equilibrium distribution of Eq. (7.45). Now, by
reporting Eq. (7.45) into Eq. (7.33), one finds

s(nF) =−∑
Ω

nF
Ω lnyΩ + s◦(nF). (7.47)

When this expression is averaged over the equilibrium distribution of Eq. (7.45), one recovers
using Eqs. (7.31) and (7.34) the familiar expression of the entropy introduced in the equilibrium
thermodynamics section, namely Eq. (7.9).
∗Of course, the distribution only pertains to states nF that are accessible within the scope of the conservation laws on

sequences and chains
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Let us discuss the connection to the macroscopic approach for the separate contributions of
length and sequence. We start by using Stirling’s approximation in Eq. (7.44), lnn! = n lnn−n+
O(lnn). In this limit, one recovers the expected contributions to the entropy:

∆sL ≈∑
l

[
nI

l
N

ln
nI

l
N
−

nF
l

N
ln

nF
l

N

]
,

∆sω ≈∑
l,Ω

[
nI

Ω

N
ln

nI
Ω

N
−

nF
Ω

N
ln

nF
Ω

N

]
−∆sL.

(7.48)

In the thermodynamic limit, the probability distribution of nΩ becomes peaked around the value
〈nΩ〉 = NΩ. By replacing nΩ by NΩ and nl by Nl and using the definitions: NΩ = NYlUl,Ω and
Nl = NYl , in Eq. (7.48), one recovers precisely the first two terms in (7.28). In this limit, the nΩ

becomes deterministic, therefore, the first term in Eq. (7.40) becomes negligible.
Finally, we note that the heat per polymer is:

q
N

= ∑
l,Ω

[
Y F

l UF
l,Ω−Y I

l U I
l,Ω

]
h◦Ω. (7.49)

while the internal entropy part is similarly

S 0 = ∑
l,Ω

[
Y F

l UF
l,Ω−Y I

l U I
l,Ω

]
s◦Ω. (7.50)

By combining Eqs. (7.48),(7.49) and (7.50), we see that we recover all the terms in the entropy
production of Eq. (7.28) obtained in the macroscopic approach.

7.2.9 Equilibrium Length Distributions
Let us now study the length distribution at equilibrium for some simple systems. We define Nl the
number of polymers of length l, such that Yl = Nl/N. We will first consider an example where
reactions are neutral, and then an example with nearest-neighbor interactions.

Neutral reactions
We consider all reactions to be neutral: kωAωB,ωCωD = kωAωD,ωCωB . Consequently, there is no energy
landscape, and relaxation will be purely entropic.

We have two separate conservation law for the number of chains: ∑
∞
l=lmin

Nl = N and for the
number of monomers (mass conservation): ∑

∞
l=lmin

lNl = M, with lmin the length of the shortest
possible species. Now, detailed balance imposes NlANlB = NlC NlD with lA + lB = lC + lD, which
leads to an exponential length distribution: Nl = A(B)l−lmin , where A and B are constants depending
on the mechanism. Solving the algebraic equations for Nl for Chain-Exchange where lmin = 2
yields:

N =
A

1−B
, M =−AB2(B−2)

B2(1−B)2 =
A(B−2)
(1−B)2 , (7.51)

from which we find:

A =

(
N

M
N −1

)
, B =

(
M
N −2
M
N −1

)
. (7.52)

We thus have an expression for Y eq
l :

Y eq
l =

1
M
N −1

(
M
N −2
M
N −1

)l−2

. (7.53)
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For Attack-Exchange, lmin = 1 and a similar calculation leads to:

Y eq
l =

N
M

(
1− N

M

)l−1

. (7.54)

Such exponential length distributions were already obtained long ago by Flory [45], [46] in their
pioneering work on reversible polymerization. These equilibrium distributions also hold when the
polymers contain different types of monomers (i.e. when m 6= 1).

Entropically, the number of allowed permutation operations on mobile monomers is not affected
by the relaxation of the length distribution, which means the length distribution can freely tend to
maximum disorder allowed by its conservation laws. This may no longer be the case when there is
an energy function attached to the polymer sequences.

Nonneutral reactions with nearest neighbor interactions

Let us now consider a simple example of an energy landscape. We assign standard free energies to
bonds as a function of the monomers that are held together by them. We denote with ñω the total
number of bonds ω among polymers in the system, where ω is a (sub)sequence of length 2 (e.g.
01). This number is:

ñω = ∑
ωA,ωB

nωAωωB . (7.55)

When only two monomer types are present, the only relevant exchange reaction at the level of
bonds is:

ωA00ωB +ωC11ωD −−→←−− ωC10ωB +ωA01ωD, (7.56)

since the other reactions do not change bond composition.
Let us introduce the standard chemical potential of the various bonds: µ̃◦00, µ̃◦01, µ̃◦10 and µ̃◦11.

Then the forward rate of reaction (7.56) is k+ ∼ exp(−β (µ̃◦00 + µ̃◦11)) while the backward rate is
k− ∼ exp(−β (µ̃◦01 + µ̃◦10)). The detailed balance condition imposes

ñeq
00 ñeq

11

ñeq
01 ñeq

10
=

k−

k+
= exp(−β∆µ̃

◦), (7.57)

in terms of the standard chemical potential change ∆µ̃◦ = µ̃◦01 + µ̃◦10− µ̃◦00− µ̃◦11.
Let us consider a symmetric initial condition, in the relative amount of subsequences 00 and 11,

including terminal and initial positions. Since the only relevant reaction is given by Eq. 7.56, this
symmetry will persist and we will have ñ00 = ñ11 and ñ01 = ñ10 at all times. As a result, Eq. (7.57)
simplifies into:

ñeq
00

ñeq
01

= exp
(
−β∆µ̃◦

2

)
. (7.58)

The free energy of the system can be written in terms of: (i) entropy of the length distribution
(ii) standard free energy of the subsequences (iii) entropy of the subsequence distribution. Since (i)
is not coupled to (ii) and (iii), we can maximize (i) independently. Consequently, we obtain the
same length distribution as in the energetically neutral case: (7.53).

An explicit expression of the equilibrium sequence distribution for given length: Ueq
l,Ω can be

found from the following argument. A given sequence Ω has an energy eΩ corresponding to its
bond composition. We define nB as the number of bonds of the type 00 and 11 in Ω. Therefore:
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eΩ = nB∆µ̃◦/2. There are 2
(l−1

nB

)
different sequences of length l with nB of such bonds. We thus

find for Ueq
l,Ω:

Ueq
l,Ω =

exp(−βeΩ)

∑
l−1
nB=0 2

(l−1
nB

)
exp
(
−βnB∆µ̃◦

2

) ,
=

exp(−βeΩ)

2
(

1+ exp
(
−β∆µ̃◦

2

))l−1 . (7.59)

[For less symmetric cases or more complex energy landscapes, Y eq
l can deviate from an

exponential. For example, let us consider a case in which i) the first and last monomer are 1, mobile
monomers are 0 and ii) 01 and 10 bonds are strongly disfavored −β∆µ̃◦� 1. To minimize energy,
we then expect a large number of 11 sequences and a small number of 100...0001 sequences.]

7.2.10 Relaxation kinetics
In this system, a number of timescales are at play, as shown in Table 7.2:
(i) the mean reaction time is 1/k,
(ii) the waiting time τr is the time it takes to perform the next chemical reaction. It follows from
considering the combined rate of all possible pathways. For attack-exchange, a polymer terminus
reacts with a bond. Since there are N termini and M−N bonds, τr = 1/k(M−N)N.
(iii) The relaxation time of the length, τl , follows from the detailed kinetic rate equations for number
of polymers of length l, Nl . It can be shown that the Nl can be written as a sum of exponentially
decaying perturbations, for which the slowest decays on a timescale τl .
(iv) The characteristic time for sequence relaxation, τω , is defined as the longest relaxation time for
subsequences of length 2 or larger. In the next section, calculations are provided for the expression
of τl and τω given in Table 7.2.

Reaction τr τl τω

Attack-
Exchange

1
kN(M−N)

1
kM

1
kN

Chain-
Exchange

2
k(M−N)2

1
k(M−N)

1
k(M−N)

Table 7.1: Expressions of the various relaxation times: τr waiting time for a reaction to occur, τl
relaxation time of the length, τω relaxation time of the sequence.

Length Relaxation
We now derive the characteristic time of length relaxation, first for Chain-Exchange, then for
Attack-Exchange. The amount of species of length l: Nl , evolves according to:

dNl

dt
= k ∑

lA+lB=l

∞

∑
lC,lD

[NlA+lDNlC+lB−NlA+lBNlC+lD ] (7.60)

= k
∞

∑
lC,lD

l−1

∑
lB=1

NlD+l−lBNlC+lB− k(l−1)Nl

∞

∑
lx=2

(lx−1)Nlx

= k
l−1

∑
lB=1

(
N−

l−lB

∑
lx=2

Nlx

)(
N−

lB

∑
ly=2

Nly

)
− k(l−1)(M−N)Nl.
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Therefore, the homogeneous equation takes the form:

dNl

dt
= k(l−1)N2− k(l−1)(M−N)Nl, (7.61)

which admits the solution:

Nl =
N2

M−N
+
(

NI
l −

N2

M−N

)
exp(−k(l−1)(M−N)t), (7.62)

Note that the exponential in the homogeneous solution is proportional to l−1. The highest
possible order of additional terms introduced in the particular solution is l−2. These arise from
terms such as

Nl−lBNlB ∝ exp(−k(l− lB−1)(M−N)t)exp(−k(lB−1)(M−N)t) = exp(−k(l−2)(M−N)t)

(7.63)

We therefore have no resonant terms for any Nl , and Eq. 7.60 admits solutions of the form:

Nl = A0,l +
l

∑
n=2

An,l exp(−k(n−1)(M−N)t), (7.64)

where A0,l and An,l are constants depending on initial concentrations of all species.
This expression confirms that the slowest relaxation time of the length for Chain-Exchange

reaction is τl = 1/(k(M−N)) as given in Table 7.2.
For Attack-Exchange, the kinetic equation for Nl is:

dNl

dt
= k

∞

∑
lA,lB=1

[NlANl+lB−NlA+lBNl]+ k
l−1

∑
lA

∞

∑
lB=1

[NlANlB+l−lA−NlNlB ] (7.65)

= k[N(N−
l−1

∑
lB=1

NlB)+
l−1

∑
lB

Nl−lB(N−
lB

∑
lx=1

Nlx)− (M+N(l−1))Nl] (7.66)

Upon solving the homogeneous equations, the general solution for every Nl can be written as :

Nl = A0,l +
l

∑
n=1

An,l exp(−k(M+N(l−1))t) (7.67)

For which the relaxation time is: τl =
1

kM .

Length Relaxation in a CSTR
For a CSTR, the contribution of influx and outflux is directly taken into account via the term
(N◦l −Nl)/τ , where N◦l is the number of polymers in the inflowing solution. For Chain-Exchange,
this gives us the equation:

dNl

dt
= k

l−1

∑
lB=1

(
N−

l−lB

∑
lx=2

Nlx

)(
N−

lB

∑
ly=2

Nly

)
− k(l−1)(M−N)Nl +

1
τ
(N◦l −Nl). (7.68)

As before, we can first solve the homogeneous equation, and the equation can be solved by solving
a hierarchy of equations. The homogeneous equation is

dNl

dt
= k(l−1)N2 +

1
τ

N◦l −
(

k(l−1)(M−N)+
1
τ

)
Nl, (7.69)
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for which we can write the solution

Nl =
k(l−1)N2 + 1

τ
N◦l

k(l−1)(M−N)+ 1
τ

+

(
NI

l −
k(l−1)N2 + 1

τ
N◦l

k(l−1)(M−N)+ 1
τ

)
exp
(
−
(

k(l−1)(M−N)+
1
τ

)
t
)
.

(7.70)

Where NI
l is the initial number of polymers of length l. The particular solution therefore has the

form

Nl = A0,l +
l

∑
n=2

An,l exp
(
−
(

k(l−1)(M−N)+
1
τ

)
t
)
, (7.71)

For l=2, the homogeneous solution is the full solution. Compared to the closed system, the
relaxation timescale τl for is reduced to τl = 1/(k(M−N)+1/τ).

For Attack-Exchange, the modified equation becomes

dNl

dt
= k

[
N

(
N−

l−1

∑
lB=1

NlB

)
+

l−1

∑
lB

Nl−lB

(
N−

lB

∑
lx=1

Nlx

)]
+

1
τ

N◦l −
(

k(M+N(l−1))+
1
τ

)
Nl.

(7.72)

Which admits a particular solution of the form

Nl = A0,l +
l

∑
n=1

An,l exp
(
−
(

k(M+N(l−1))+
1
τ

)
t
)
, (7.73)

which modifies the timescale of length relaxation to τl = 1/(kM+1/τ).

Sequence Relaxation
We will now consider the relaxation of the bond composition in the chain-exchange reaction. Let
us assume that the initial condition is symmetric with respect to the content of 0 and 1 monomers
in the pool. As a result, this symmetry will remain at all times, and we can introduce x and y
variables such that ñ00 = ñ11 = x and ñ01 = ñ10 = y. In the mean-field approximation, the evolution
of equations of these variables are

dx
dt

= k−y2− k+x2, (7.74)

dy
dt

= k+x2− k−y2, (7.75)

where k+ is a forward rate and k− a backward rate. By summing the two equations above, one
recovers the conservation law that the sum of x and y is constant. The constant is fixed by the initial
number of bonds: 2x+2y = M−N. Therefore, we end up with the equation:

dx
dt

= k−
(

M−N
2
− x
)2

− k+x2 (7.76)

For neutral reactions, k+ = k− = k, the equation simplifies into:

dx
dt

=−k

[
(M−N)x−

(
M−N

2

)2
]
. (7.77)

This linear ODE has a simple exponential as solution with the characteristic relaxation time
τω = 1/k(M−N), which was given in Table 7.2.
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Let us now extend the above results to the case that transitions are affected by an energy
landscape. We start with the detailed balance condition: k+ = k− exp(−β∆µ̃◦). We now go back
to Eq (7.76) when k− 6= k+. We obtain a nonlinear ODE of the form

dx
dt

= ax2 +bx+ c (7.78)

With a,b and c constants, given by:

a = k−− k+, b = k−(M−N), c = k−
(

M−N
2

)2

. (7.79)

We note that
√

b2−4ac =
√

k+k−(M−N)> 0. Therefore, we can make use of the integral:∫ t

0
dt =

∫ x(t)

x(0)

dx
ax2 +bx+ c

=
−2√

b2−4ac
tanh−1

(
2ax(t)+b√

b2−4ac

)
+C. (7.80)

Therefore, the solution is of the form:

x(t) ∝ tanh

[
−
√

b2−4ac
2

(t−C)

]
+D (7.81)

where C and D are constants. As tanh(t) = (1− exp(−2t))/(1+ exp(−2t), we can identify
1/
√

b2−4ac as a characteristic sequence relaxation time τω equal to:

τω =
exp
(
− β∆µ̃◦

2

)
k+(M−N)

, (7.82)

For Attack-Exchange, let us consider a system with 2 monomers. let us denote by [0],[1] the
concentration of terminal monomers and let us consider the bonds [00], [01], [10] and [11].

d[0]
dt

= −k[0]([10]+ [11])+ k[1]([01]+ [00]), (7.83)

d[1]
dt

= −k[1]([01]+ [00])+ k[0]([10]+ [11]), (7.84)

d[00]
dt

= −k[1][00]+ k[0][10], (7.85)

d[10]
dt

= −k[0][10]+ k[1][00], (7.86)

d[01]
dt

= −k[0][11]+ k[1][01], (7.87)

d[11]
dt

= −k[1][01]+ k[0][11]. (7.88)

There are a number of useful conserved quantities

N = [0]+ [1], (7.89)

n1 = [11]+ [10], (7.90)

n0 = [00]+ [01], (7.91)

M−N = [00]+ [01]+ [10]+ [11]. (7.92)

Which allows to write for the terminal monomer
d[0]
dt

= kNn0− k[0](M−N), (7.93)

d[1]
dt

= kNn1− k[1](M−N). (7.94)
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which have exact solutions

[0] =
(
[0]0−

n0N
M−N

)
exp(−k(M−N)t)+

n0N
M−N

(7.95)

[1] =
(
[1]0−

n1N
M−N

)
exp(−k(M−N)t)+

n1N
M−N

(7.96)

Where [0]0 and [1]0 denote the monomer concentration at t = 0.

d[00]− [10]
dt

=−kN([00]− [10])+ k([1]− [0])n0. (7.97)

7.3 Polymer recombination in open systems

In this section, copolymer systems are coupled to reservoirs with which they exchange copolymers
with particular monomer sequences. The exact composition of reservoirs has profound conse-
quences on conservation laws, chemical currents and growth. To study them systematically, we
will use the stoichiometry matrix formalism introduced in Ch.2 (see also Refs[47, 48]), combined
with the sequence notation introduced in Sec. 7.2.3.

7.3.1 Stoichiometric Matrices for Polymer Chemistries
Addition-Fragmentation
The Addition-Fragmentation reaction is a coupling reaction of the type [iii]+ [ jjj]−−→←−− [iii+ jjj]. It is
the most popular and straightforward reaction in models used to study origins-of-life scenarios
[49, 19, 20, 50, 51]. For RNA, this reaction is strongly unfavorable. As will be shown in Sec.
7.5, many theoretical models in the literature operate in regimes where reversible polymerization
is not appropriate for RNA, their dynamics implicitly requires a chemical regeneration step that
happens on a fast timescale to fuel an activated pathway. For other polymers (e.g. polyethene),
polymerization can be reversible, or even irreversible in the forward direction.

For the present discussion, we will consider the addition-fragmentation scheme without acti-
vation or modification for copolymer species. Given the reaction (ωAωB −−→←−− ωA +ωB), we can
write the following stoichiometric matrix:

ννν
Ω
ωA,ωB

=−δ
Ω
ωA
−δ

Ω
ωB

+δ
Ω
ωAωB

(7.98)

For the reaction between ωA,ωB, we then write the molecular current (or rate) :

JωAωB = k+ωA,ωB
nωAnωB− k−ωAωB

nωAωB (7.99)

The evolution equation for a species with sequence Ω is then:

ṅΩ = ∑
ωA,ωB

ν
Ω
ωAωB

JωAωB
(7.100)

Note that, alternatively, we could have used an Einstein summation convention for sequence space,
by the repeated ωAωB indices. Such a notation considerably shortens the upcoming equations. To
preserve a general coherence with other chapters, this convention is not adopted here, but equations
will be constructed such that this structure can be easily extracted.

The conservation laws that appear in this reaction can be found using the cokernel of the
stoichiometry matrix, which yields the following relation for `:

`
(k)
ωAωB− `

(k)
ωA = `

(k)
ωB . (7.101)
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Here, (k) is an index for the conservation law. Intuitively, we expect a conservation law for the total
amount of each monomer type X in the alphabet [m] = {1,2, .. j, ..m}, such that X ∈ [m]. To see
this, we introduce the counting function

χ
X
Ω ≡

|Ω|

∑
k=1

αδ
X
Ωk

, (7.102)

which compares all |Ω| monomers with X and counts the number of matches. We thus obtain
`
(X)
ω = αχX

ω , with α an arbitrary constant. We therefore have m independent conservation laws,
corresponding to the conservation of the total number of monomers for all the monomer types.

Attack-Exchange
This mode of exchange was introduced in Sec 7.2.1. It appears in splicing pathways of RNA and in
some prebiotic scenarios [35].

The reaction conserves the amount of chemical bonds, as well as their chemical nature. The
stoichiometry matrix for this reaction (ωAωB +ωC −−→←−− ωCωB +ωA) is

ννν
Ω
ωAωB,ωC

=−δ
Ω
ωAωB
−δ

Ω
ωC

+δ
Ω
ωCωB

+δ
Ω
ωA

(7.103)

and the current

JωAωB,ωC = k+ωAωB,ωC
nωAωBnωC − k−ωBωC,ωA

nωBωC nωA (7.104)

As shown in Sec. 7.2.5 , the symmetry group of the reaction is of order 2. νννΩ
ωAωB,ωC

admits exchange:
ωA↔ ωC and the identity operation: I, to yield the equivalent stoichiometry matrix. This means
we need a prefactor 1

2 to avoid overcounting in the kinetic equations

ṅΩ =
1
2 ∑

ωA,ωB,ωC

ννν
Ω
ωAωB,ωC

JωAωB,ωC (7.105)

To find the conservation laws, we examine the cokernel

`̀̀ ·ννν = 000 (7.106)

Which on the level of a single reaction yields the scalar equation

∑
Ω

`Ω ·νννΩ
ωAωB,ωC

= 0. (7.107)

From this relation follows that all conservation laws must solve

`
(k)
ωAωB− `

(k)
ωA = `

(k)
ωCωB− `

(k)
ωC , (7.108)

where k is an index designating the kth conservation law. Eq. (7.108) admits a first set of m
solutions of the form

`
(X,1)
Ω

= αδ
X
Ω1

(7.109)

with α an arbitrary constant. Here, the delta function compares the first monomer of the sequence,
Ω1, with the chosen monomer X ∈ [m]. This reflects the fact that the first monomer is conserved
in an Attack-Exchange reaction: there is no bond to break or exchange in front of the first monomer.
The superscript 1 after X indexes the solution in the set of solutions.
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There is a second set of m solutions for Eq. (7.108) of the form

χ
X
Ω =

|Ω|

∑
k=1

αδ
X
Ωk

(7.110)

which we first encountered for addition-fragmentation. We write it as `X,2
Ω

= αχX
Ω

. This corre-
sponds to mass conservation for each monomer type.

When all conservation laws for the first monomer in the sequence (`k,1) are taken together, we
obtain the conservation of the total number of chains

m

∑
X=1

`X,1
Ω

nΩ = N, (7.111)

where N denotes the total number of chains. The conservation of chains is thus a linearly dependent
conservation law that follows from m other ones we already have. Similarly, taking all `X,2 together,
we sum the masses of all polymers

m

∑
X=1

`
(X,2)
Ω

nΩ = M (7.112)

Therefore, the conservation of total mass † M is also a linearly dependent conservation law that
follows from m independent ones.

In total, there are 2m independent conservation laws. For m = 1, this reproduces a known result
for a monomer-exchange version of Attack-Exchange [52]: `(1) = α and `(2) = α|Ω| ).

Chain-Exchange
The Chain-Exchange reaction involves two chains, which exchange part of their chains (See also
Sec. 7.2.1), and is also known as metathesis. The number of bonds are conserved as well as the
chains. The energetics of the Chain-Exchange are therefore similar to Attack-Exchange. The
dynamics is quite different, however.

The stoichiometry matrix for this reaction (ωAωB +ωCωD −−→←−− ωAωD +ωCωB) is

ννν
Ω
ωAωB,ωCωD

=−δ
Ω
ωAωB
−δ

Ω
ωCωD

+δ
Ω
ωAωD

+δ
Ω
ωCωB

(7.113)

and the current corresponds to

JωAωB,ωCωD = kωAωB,ωCωDnωAωBnωCωD− kωAωD,ωCωBnωAωDnωCωB (7.114)

From the above we can infer that the symmetry group of the reaction is of order 4. We therefore
have a prefactor of 1

4 in the kinetic rate equation:

ṅΩ =
1
4 ∑

ωA,ωB,ωC,ωD

ννν
Ω
ωAωB,ωCωD

JωAωB,ωCωD (7.115)

Using the cokernel, as in (7.106), we find the equation

`
(k)
ωAωB− `

(k)
ωAωD = `

(k)
ωCωB− `

(k)
ωCωD . (7.116)

This equation shares two solutions with the Attack-Exchange reaction

`
(X,1)
Ω

= αδ
X
Ω1

, (7.117)

`
(X,2)
Ω

= αχ
X
Ω . (7.118)

†More exactly, the conservation monomers
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There is, however, an additional set of conservation laws that is unique to Chain-Exchange

`
(X,3)
Ω

= αδ
X
ΩF

. (7.119)

where ΩF = Ω|Ω|, the final monomer composing the chain Ω. In Chain-Exchange all terminal
monomers remain in terminal positions, which is the origin of this conservation law.

The conservation of terminal monomers also generates the conservation of N :

∑
Ω

m

∑
X=1

`
(X,3)
Ω

nΩ =
m

∑
X=1

`̀̀(X,3) ·nnn = N. (7.120)

This means that we do not have 3m, but 3m−1 independent conservation laws, as we can pick any
`(X,3) (or `(X,1) for that matter) and express it in terms of the rest. E.g. `(1,3) can then be written
as `(1,3) = ∑

m
X′=1 `

(X′,1)−∑
m
X=2 `

(X,3).

7.3.2 Open Chemical systems
In this section, the chemical system will be allowed to exchange matter with chemostats. As
discussed in Sec. 2.5 and 3.1, a chemostat is a reservoir that fixes the chemical potential of a
species, which can (often) be equated to fixing the concentration. As discussed in Sec. 2.5, the
stoichiometry matrix can be decomposed in an external chemostatted part νννY and an internal part
νννX , such that ννν = (νννY ,νννX)T . We have sX internal species and sY chemostats. The rank nullity
theorem s− `= r− c can now applied for every submatrix. No reactions were added or removed,
so the number of reactions r is unchanged. Decreasing the number of species[47] s by one should
therefore decrease the number of conservation laws ` by one, or increase the number of cycles c
by one. Equivalently, the number of chemostats sY corresponds to the number of affinities a and
broken conservation laws b

sY = a+b. (7.121)

If we add a new chemostat, and the chemical network allows a path (a sequence of reactions with
no local buildup or exhaustion) towards other chemostats already present, then chemical potentials
have been put in contact: a new affinity ensues. If a new chemostat does not have such a path, its
addition allows to inject matter in novel ways, which breaks a conservation law. The number of
conservation laws thus provides an upper bound for the amount of chemostats one can introduce
before currents are generated.

A current arising from chemostatting is associated with an emergent cycle ccc∗. Where ccc∗ is a
right nullvector for νννX , but not for νννY

ννν
X ·ccc∗ = 000 (7.122)

ννν
Y ·ccc∗ 6= 000 (7.123)

ccc∗ is a linear combination of chemical reactions that leads to no compositional change of the system
and a net exchange of matter between chemostats.

It has been shown, for a dynamics with the same conservation laws as Attack-Exchange[52]
and m = 1, that for sY ≤ 1, the system relaxes to equilibrium. For sY = 2, the system either i)
relaxes to equilibrium or ii) grows in unbounded fashion. For sY ≥ 3, the system either i) relaxes to
a nonequilibrium steady-state (NESS) or ii) grows in unbounded fashion.

For m > 1, we do not need to break all conservation laws to obtain a NESS. However, having
sY = `+1 ensures that a current arises. For Attack-Exchange and Chain-Exchange, the minimum
number of chemostats necessary to get a NESS is 3 for m = 1, but we will show that for higher
m this becomes 2 chemostats. We have a region for sY from 2 to ` in which both a NESS and
equilibrium are possible outcomes. Table 7.2 provides the bounds for the number of chemostats in
which both types of behavior can be observed
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Reaction sY,min l
Addition-Fragmentation 2 m
Attack-Exchange 2 2m
Chain-Exchange 2 3m-1

Table 7.2: bounds for chemostats to be either NESS or Equilibrium. If we have less than sY,min

chemostats we always have equilibrium, above sY,max we always obtain affinities.

Broken conservation laws and emergent cycles

We denote chemostatted species, with elements {ΩY}. We will use ΩX to explicitly denote non-
chemostatted species.

For Attack-Exchange, an emergent cycle (cωAωB,ωC ) is defined by:

1
2 ∑

ΩX

ν
ΩX
ωAωB,ωC

cωAωB,ωC = 0, (7.124)

1
2 ∑

ΩY

ν
ΩY
ωAωB,ωC

cωAωB,ωC 6= 0. (7.125)

Applying the conservation laws `(X,k)
ΩY

to the emergent cycle ccc∗, we find that the conservation law
still constrains overall currents

1
2 ∑

ωA,ωB,ωC,ΩY

`
(X,k)
ΩY

ν
ΩY
ωAωB,ωC

cωAωB,ωC = 0 (7.126)

Equation (7.126) shows that the emergent cycles obey all conservation laws. Let us denote

�ΩY = ∑
ωA,ωB,ωC

`
(X,k)
ΩY

ν
ΩY
ωAωB,ωC

cωAωB,ωC , (7.127)

This provides a method of finding the emergent cycles, using `
(X,1)
Ω

= αδX
Ω1

and l(X,2)
Ω

= αχX
Ω

,
emergent cycles arise as non-trivial solutions to Eq. (7.126). As an example, let us chemostat the
sequences 010 and 001, so that ΩY{010,001} and m = 2. This gives us:

δ
0
010�

010 +δ
0
001�

001 =�010 +�001 = 0

δ
1
010�

010 +δ
1
001�

001 = 0+0 = 0

χ
0
010�

010 +χ
0
001�

001 = 2�010 +2�001 = 0

χ
1
010�

010 +χ
1
001�

001 =�010 +�001 = 0

(7.128)

We see that a non-trivial solution appears:
{
�010,�001

}
= {1,−1}. As a consequence, we have an

independent affinity: a = 1, and one net broken conservation law: b = 1. We verify this by doing a
computer simulation of this system using Gillespie’s algorithm [53], choosing all rate constants
equal (the reactions can be considered neutral) and starting with an empty system in contact with
chemostats. The system reaches a steady-state, Figure 7.3 shows the constant injection and ejection
of sequences.
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0120

0201

∆N
0120
+1∆N

0120
-1

∆N
0201

∆N
0201

+1 -1

System

Steps (103)

∆N

0120

0201

Figure 7.3: left: schematic representation of two sequence reservoirs performing exchange with
the system. A bookkeeping of the net exchange is kept through the variables ∆N0120 and ∆N0201.
right: ∆N0120,∆N0201 in the steady state regime, as function of time, expressed in simulation steps
in Gillespie’s algorithm. Reservoirs are maintained at c̄0120 = 5, c̄0201 = 2.

As we inject sequences containing 0’s, 1’s, and having a 0 at their first position, we lose the
conservation laws `(0,1) = αδ 0

Ω1
, `(1,2) = αχ1

Ω
and `(0,2) = αχ0

Ω
. However, we obtain modified

(denoted with an asterisk) conservation laws, corresponding to the nullvectors

`
(0,2∗)
Ω

= α(χ0
Ω−χ

0
010), (7.129)

`
(1,2∗)
Ω

= α(χ1
Ω−χ

1
010). (7.130)

The corresponding conservation laws are:

L0∗ = M0−χ
0
010N = M0−2N, L1∗ = M1−χ

1
010N = M1−N, (7.131)

where L0∗ and L1∗ are constants, N the total number of chains, and MX the total amount of monomer
X in sequences. One might be tempted to also try this trick for l(0,1), which would yield:

`
(0,1∗)
Ω

= α(δ 0
Ω1
−δ

0
010) =−αδ

1
Ω1
≡ l(1,1), (7.132)

where we use that α is an arbitrary constant. We see that `(0,1) is no longer linearly independent.
We are only left with three linearly independent conservation laws: `(0,2∗), `(1,2∗) and `(1,1).

An example with 6 chemostats

Let us place an attack-exchange system in contact with the following reservoir species: Ωy =
{0,010,1,121,2,202}, chemostatted in the amounts c̄Ωy = [400,20,400,40,400,20] (These values
are chosen such that unbalanced growth does not occur, which will be detailed in the next section).
As can be verified with the algebra from the last section, these 6 species cannot give an emergent
cycle, despite being numerous and diverse in composition.

Figure 7.4 shows ∆N (the amount injected minus the amount ejected) for every species during
the simulation. We see that initially, the environment injects longer sequences and the system ejects
the shorter ones. This leads to more mass per chain. Clearly, the currents vanish. For emergent
cycles between chemostats, we would expect linear asymptotes as observed in Fig 7.3.
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∆N

0

010

1

121

2

202

Figure 7.4: Number of species injected minus ejected during simulation for an Attack-Exchange
reaction in contact with 6 chemostats. The system relaxes to an equilibrium.

An example with 7 chemostats
Let us now consider a system with 7 chemostatted species: Ωy = {00,0,010,1,121,2,202} where
we set the concentrations at c̄Ωy = [1,20,2,20,1,20,2]. As predicted, this number of chemostats
must yield at least one affinity. Upon inspecting the simulation result in Fig. 7.5, a net current is
indeed observed.

The species introduced allow for an emergent cycle which involves all 7 species: ccc∗ ={
ν00

γ ,ν0
γ ,ν

010
γ ,ν1

γ ,ν
121
γ ,ν2

γ ,ν
202
γ

}
= {−2,1,1,1,−1,−1,1}, which is the largest number of dif-

ferent species an emergent cycle can obtain for Attack-Exchange and m = 3. Written as an overall
reaction, the emergent cycle corresponds to

2 00+121+2
+ccc∗−−⇀↽−−
−ccc∗

0+010+1+202. (7.133)

∆N

0

010

1

121

2

202

00

Figure 7.5: Number of species injected minus ejected during simulation, 7 chemostat Atack-
exchange. The nonequilibrium steady state has an affinity corresponding to the net reaction7.133.

7.3.3 Net polymerization driven by reservoirs
So far, we have discussed systems reaching a steady-state, corresponding either to an equilibrium
state or a NESS. In a recent investigation of monomer exchange reactions [54], a regime has been
identified in which the system does not reach a steady state, but perpetually grows in time. In this
section, we will first discuss the sequenceless version of this phenomenon for the most easy case (2
chemostats). We recall that then, b = 2 and a = 0, we do not have emergent cycles.
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Sequenceless unbalanced growth
For a sequenceless exchange mechanism, we only consider length exchange

[i]+ [ j]−−⇀↽−− [i− k]+ [ j+ k] (7.134)

Assuming all rate constants equal, the following equation is satisfied when detailed balance holds:

NiN j = Ni−kN j+k (7.135)

Two of these abundances are fixed by the chemostats. We search for solution with the property
f (i) f ( j) = f (i−k) f ( j+k), which hints towards exponential functions, as exp(x)exp(y) = exp(x+
y) = exp(x−a)exp(x+a). Denoting the length of a species with k, the smallest length chemostatted
k1 and the largest length k2, the exponential solution under these constraints is found to be:

Nk = Nk1

(
Nk2

Nk1

) k−k1
k2−k1

. (7.136)

This distribution is controlled by the ratio Nk2/Nk1 . As long as Nk2/Nk1 < 1, we get a decreasing
exponential. As derived in Sec. 7.2.9, this is a very typical equilibrium distribution.

As soon as Nky2/Nky1 ≥ 1, however, we obtain an increasing exponential. In the absence of some
imposed cutoff length, such an equilibrium solution becomes unphysical: its realization requires an
infinite accumulation of mass.

This regime is referred to as the ‘unbalanced’ regime[54]. (7.136) ceases to be a physical
solution, and no finite-mass stationary solution can be found. The use of (7.136) is that it gives a
criterion, Nky2/Nky1 ≥ 1, for when this happens. When the system accumulates sufficient mass in its
volume, we can no longer treat it as an ideal dilute system, but would rather have to treat it using
e.g. Flory-Huggins solution theory[55, 45].

2 Chemostats, no monomer bias
We will now add different types of monomers to the mix. In terms of the length growth, we still
have aforementioned dynamics: [i]+ [ j] −−→←−− [i− k]+ [ j+ k]. The main difference comes from
the chemostats, which chemostat a sequence concentration. The concentration of all species of
the corresponding length, however, can become quite a bit larger. The conclusions and approach
of this section are general for all exchange mechanisms, here we will treat the Attack-Exchange
mechanism: ωAωB +ωC −−→←−− ωCωB +ωA. For detailed balance, we then have:

NωAωBNωC = NωANωCωB (7.137)

To illustrate the effect of sequence chemostats, we will study a simple example, where {ΩY} =
{0,010}. We recall that for Chain-Exchange reactions, the first monomer is conserved, the
monomers that come after it can be scrambled. In this example, the mobile sequence is 10. Every
time we inject 010, we inject one mobile 1 and one mobile 0. Now imagine the following sequence
of Attack-Exchange reactions

010+010−−→←−− 01010+0−−→←−− 0101+00−−→←−− 010+001. (7.138)

If the system reaches detailed balance, this means

N̄010N̄010 = N001N̄010, (7.139)

where N̄ω denotes a sequence with fixed concentration. Thus N̄010 = N001. Similarly, we have

001+010−−→←−− 0010+01−−→←−− 00+0110−−→←−− 000+011, (7.140)
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which leads to

N̄010N001 =
(
N̄010)2

= N011N000. (7.141)

As we have by no means biased 011 over 000 (equal rates, no energy landscape, equal injection of
mobile 0 and 1), by symmetry we require

N011 = N000 = N̄010. (7.142)

We have chemostatted one species of length 3 at N̄010, but the occupation of length 3 species
N3 = N000 +N001 +N010 +N011 = 4 N̄010. The only species of length one possible in the system is
0, the concentration of this length is not amplified: N1 = N̄0. This amplification can dramatically
lower the threshold for the transition to unbalanced. If the mobile sequence has equal abundance of
every monomer, the amplification becomes mL−1 for Attack-Exchange, where L−1 is the length of
the mobile sequence.

Using the same arguments as before, we find Eq. (7.136), on the level of sequences. For our
example, this gives:

NΩ = N̄0
(

N̄010

N̄0

) |Ω|−|0|
|010|−|0|

= N̄0
(

N̄010

N̄0

) |ω|−1
2

(7.143)

where |ω| denotes a sequence length, e.g. |010|= 3. To now go the level of chain lengths, we take
into account that a species of length k can have mk−1 different sequences (the first monomer is
fixed)

Nk = N̄0 mk−1
(

N̄010

N̄0

) k−|0|
|010|−|0|

= N̄0
(

m2 N̄010

N̄0

) k−1
2

= N̄0
(

4 N̄010

N̄0

) k−1
2

(7.144)

This detailed balance solution is very reminiscent of Eq 7.136. However, the effect of alternative
sequences provide an entropic amplification, which dramatically lowers the barrier for entering the
unbalanced regime. If the mobile sequences have no more than one of each monomer, we enter the

unbalanced regime for mk2−k1 N̄ω2
N̄ω1

≥ 1, where k2 and k1 are the lengths of sequences ω2 and ω1.
It should be stressed that Eq. (7.144) is not unphysical per se. If we introduce a maximum

length that species can attain by removing any chemistry leading to larger species, we are left with
a detailed-balance solution for a finite-sized system. This is illustrated in Fig 7.6 , showing the
stationary distribution of a Gillespie[53] simulation of the ΩY ∈ {0,010} system with a length
cutoff and which obeys (7.143).

N

length

Figure 7.6: Equilibrium polymer length distribution for an Attack-Exchange reaction with
chemostats set at ΩY = {0,010}. Polymers length cannot exceed 6 (hexamers), reservoir con-
centrations are c̄0 = 100, c̄010 = 60, which is sufficient for unbalanced growth.
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A system with a length cutoff can have a perfectly physical solution. When looking at its
dynamics, the polymer length distribution does not see its own cutoff on short timescales (provided
we start with small enough oligomers). On this timescale there is no distinction between the
dynamics of a system with a cutoff and a system without one. On longer timescales, they may no
longer be captured by the same approximations. The unbalanced regime without a cutoff has an
equilibrium state that is not described properly by the dilute ideal solution limit.

2 chemostats, biased monomer composition
To extend the entropic amplification to more general sequences, we need to take into account
the abundance of monomers within the chemostatted sequence. E.g, if we were to chemostat
000000010, a sequence rich in 1’s would be much more rare than a sequence rich in 0’s. We will
proceed by deriving a general formula, while illustrating it with a simple example.

Suppose we chemostat 0 and 0100 and have them perform the Attack-Exchange reaction. The
mobile sequence is 100, which contains more 0’s than 1’s. We can form 23 different sequences
of length 3 using 0’s and 1’. At equilibrium, only the abundance of a monomer is important
to determine the concentration of a sequence. Therefore 0100, 0010 and 0001 become equally
abundant. We will refer to a mobile sequence to designate the part of the sequence that can be
scrambled, as opposed to the first monomer that is fixed. E.g. in 0ω , ω is the mobile sequence and
0 is fixed. We find the concentration of all monomers, by assigning a probability pi of incorporation
to every monomer, and then factorize these to calculate the probability of a mobile sequence ω of
given length L.

pω =
ωL

∏
ω j=ω1

piδ
i
ω j
. (7.145)

This probability per monomer position is normalized (∑i pi = 1), and this also normalizes the
multinomial containing all mobile sequences of length L: (∑i pi)

L = 1, with pi =
χ i

ω̄

∑ j χ
j

ω̄

. For

example, the mobile sequence 100 gives us: p1 =
1

2+1 = 1
3 and p0 =

2
3 . If we were given a random

sequence from the population, the probability to observe 0110 out of all mobile sequences of length
3 (mobile sequence ω =110) would be p1 p1 p0 =

2
27 .

We now use that at equilibrium

N̄0100

N4
= p100 (7.146)

and thus:

N4 =
N̄0100

p100
=

27
4

N̄0100. (7.147)

The entropic amplification is now 27
4 . Let us denote the mobile sequence as: ω̃ , the entropic

amplification A0 becomes

A0 =
1

pω̃

=
(∑ j χ

j
ω̃
)L

∏i(χ
i
ω̃
)χ i

ω̃

=
|ω̃||ω̃|

∏i(χ
i
ω̃
)χ i

ω̃

. (7.148)

This reduces to a factor mm if ω̃ is composed of m distinct monomers that appear each 1 single
time. For m = 1, or empty sequences, A0 = 1.
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We can now write:

Nk = N0
(

A0
N̄0ω̃

N̄0

) k−1
|ω̃|

= N0

(
N̄0ω̃ |ω̃||ω̃|

N̄0 ∏i(χ
i
ω̃
)χ i

ω̃

) k−1
|ω̃|

(7.149)

N0ω = N|ω|+1 pω = N0

(
N̄0ω̄ |ω̄||ω̄|

N̄0 ∏i(χ
i
ω̄
)χ i

ω̄

) k−1
|ω̄|
(

∏i(χ
i
ω̄
)χ i

ω̄

|ω̄||ω̄|

)
(7.150)

In this simple treatment of unbalanced systems we chose 0 as the smallest sequence for computa-
tional convenience. The analytical treatment becomes a lot more laborious for longer sequences,
especially if the chemostats show biases towards different monomer types.

More chemostats
The above derivation of an unbalanced regime supposes a detailed-balance solution. Upon increase
of the number of chemostats, we may introduce affinities, which hamper the validity of detailed
balance. The analysis of such systems is more complicated, but the intuitions derived in the previous
sections remain valid: fixing larger lengths at higher amplitude makes the system unbalanced.

Unbalanced growth occurs because the smallest sequences are fixed, leaving the system little
freedom to store mass in small species. If we are to chemostat 0,101 (Attack-Exchange dynamics),
then this limitation does not present itself since mass can be stored in other sequences. We then
expect a balanced system.

Some implications
By opening systems up to an environment, interesting new nonequilibrium behavior becomes
accessible. Of particular interest is the observation that arbitrarily long polymers can be made
through exchange reactions, without the need of chemical activation. The generation of long
polymers is a key ingredient in many prebiotic scenarios, and coupling oligomer recombination to
reservoir exchange may provide an elegant means to polymerize species that inherently oppose
elongation, such as RNA.

7.4 Polymer Adsorption on Minerals
Minerals occupy an important place in the OOL literature and prebiotic polymer scenarios. Cairns-
Smith considered them as the first templates[56], Wächtershauser considered them as a substrate to
concentrate reactants for a surface metabolism[57] and the recent Mica-first scenario[58] highlights
how porous sheets may have supplied compartments. New pioneering experiments use serial
transfer of mineral particles to support an ecological mechanism of chemical evolution [59]. For
RNA, it has been shown that minerals can protect against degradation[60, 61], promote the synthesis
of building blocks[62, 63] and the ligation of activated RNA[64, 65].

In 1965, Bernardi reported[66] how hydroxyapatite could be used for the chromatographic
separation of RNA strands. In 1980, Gibbs, Lohrmann and Orgel[67] used the same mineral to se-
lectively adsorb the high molecular weight products of a template-directed synthesis polyadenylates,
and posited that mineral surfaces could play a major role in RNA world scenarios, by sequestering
long RNA and releasing small RNA for reactivation. Later studies have shown a more favorable
picture for adsorption of short oligomer species, partly owing to the fact that a surface can ac-
commodate more small species than large ones[68]. Since these works studied adsorption for
one polymer length at a time, however, they do not capture the effect of a mixture of polymers
competing for adsorption sites.

In this section, a simple toy model for adsorption of polymers from a polymer mixture on
mineral surfaces is considered. This model was derived to rationalize experimental results on
RNA adsorption and its temperature dependence for 5 different mineral species, in a joint study
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with the labs of D. Baum and N. Lehman. Some of these results are reproduced here for the
purpose of illustration. The corresponding publication (Ref. [27]) goes further, notably by showing
how recombination can be combined with mineral adsorption to promote the formation of large
polymers.

Figure 7.7: Figure taken from Ref. [27]. RNA adsorption on minerals as function of temperature.
The adsorption experiment was performed by incubating a mixture of 8−,12−,16−,20−,24−mer
fully random RNAs (0.6 µM each) and 0.2 mg apatite in 10 µl for 2h at 22C, 37C, or 48C. (A)
Concentration of each length RNA on the surfaces, normalized to the levels of a control reaction
performed at RT, in the absence of minerals. (B) An example of an analyzed gel image. Lanes 1,
no mineral, 22C; 2, + apatite, 22C; 3, + apatite, 37C; 4, + apatite, 48 C. (C) Selectivity of 24−mer
RNAs to 8−mers, calculated as the concentration of 24−mers relative to 8−mers. The selectivity
was set to 1 for the in absence of mineral. In all panels, the error bars indicate standard errors
(n = 3).

7.4.1 Adsorption of oligomers on a lattice
We first derive a model for the simultaneous adsorption of different oligomers on a 1D surface, to
obtain exact expressions for the surface fraction covered by each oligomer in a low-dimensional
case. We then consider some extensions of the model to higher dimensions for stiff and flexible
oligomers. These approaches to extend the dimension are derived from the works of Ramirez-Pastor
and colleagues [69, 70], where they have been applied to the case of a single adsorbent.

Adsorption on a line
We start by considering a large solution of RNA oligomers, each maintained at a fixed dimensionless
concentration c̄. In addition, the solution contains a mineral, with an exposed surface on which
oligomers can adsorb. We consider the exposed surface to have M adsorption sites, with a size
comparable to a single monomer. Correspondingly, to fully adsorb a k-mer, k adsorption sites need
to be occupied. For our purposes, the RNA solution contains 8−,12−,16−,20− and 24−mers,
and whenever we take a sum (i.e. ∑ ) it will denote a sum over these values. We will start the
simplest case, for which the surface can be modeled as a line, which is depicted in Fig. 7.8. Let
us denote with Nk the number of adsorbed RNA oligomers of length k. In total, these oligomers
occupy kNk mineral sites. Consequently, we find that the number of unoccupied mineral sites N/0
can be written as

N/0 = M−∑
i

iNi (7.151)
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Figure 7.8: A 1D mineral surface. Black squares represent empty sites, green and pink bars
represent oligomer types. Ω is given by the number of permutations among oligomers and empty
sites. The reversible adsorption of one pink oligomer replaces k empty sites.

We denote by W the number of empty mineral sites plus the number of adsorbed species

W = N/0 +∑
i

Ni (7.152)

A surface state is completely described by the exact sequence in which the surface bound molecules
and empty sites appear. The number of states is consequently given by all their possible permutations

Ω({Ni},M) =

(
W

N8,N12,N16,N20,N24,N/0

)
=

W !
N8!N12!N16!N20!N24!N/0!

(7.153)

We now introduce a reference standard free energy for a k-mer adsorbed on a mineral surface,
µ◦k,min, for which we expect that (most) thermodynamic contributions are either constant or linear
(free energy of formation, adsorption on k sites), especially since these are determined by the local
chemical environment which changes little along the oligomer. Our starting point is then an affine
function of k

µ
◦
k,min = a0 +a1k, (7.154)

where we suppose that a1 < 0. We write the canonical ensemble Q({Ni},M,T ) for a covered
mineral via

Q({Ni},M,T ) = Ω({Ni},M)exp

(
−β ∑

i
Niµ

◦
i,min

)
, (7.155)

where β = 1/kbT , with kb Boltzmann’s constant and T the absolute temperature. We can then
extract the Helmholtz free energy F by

βF({Ni},M,T ) =− lnQ({Ni},M,T ) =− lnΩ({Ni},M)+β ∑
i

Niµ
◦
i,min (7.156)

We can rewrite lnΩ({Ni},M) by performing a Stirling approximation lnN! = N lnN−N+O(lnN)

lnΩ(Ni,M) =W lnW −∑
i

Ni lnNi−N/0 lnN/0 (7.157)
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Eq. (7.157) can be rewritten to

lnΩ(Ni,M) =−∑
i

Ni ln
Ni

W
−N/0 ln

N/0

W
, (7.158)

which has the functional form of a mixing entropy (but taken relative to W instead of M), which
gives a clear interpretation of this object. Because the quantity W depends on the surface coverage,
it is more practical to define (7.159) relative to the fixed number of sites M. Let us therefore write

lnΩ(Ni,M) = W ln
W
M
−∑

i
Ni ln

Ni

M
−N/0 ln

N/0

M
,

= M

[
θW lnθW −∑

i

θi

i
ln

θi

i
−θ0 lnθ0

]
. (7.159)

Where we have introduced θk = kNk/M, (fraction of sites covered by k-mers), θ0 = N/0/M (fraction
of empty sites), θW =W/M (fraction of empty sites and oligomers). The θW lnθW term in Eq. (9)
is a consequence of multisite adsorption. We can now extract the chemical potential of adsorbed
polymers of length k, using

µk,min =

(
∂F
∂Nk

)
T,M,Ni 6=Nk

(7.160)

which after taking the appropriate derivatives affords the expression

µk,min = µ
◦
k,min + kbT

[
ln

θk

k
+(k−1) ln

θW

θ0
− lnθ0

]
(7.161)

If our mixture would contain only a single type of oligomer of length k, we recover the isotherm in
[69].

Let us now put our system in contact with a large solution of oligomers, maintained at a
dimensionless concentration c̄ = ck/c◦. Where c◦ is a standard concentration (1 M). The oligomers
in solution have a chemical potential

µk = µ
◦
k + kbT ln c̄ (7.162)

where µ◦k is a standard free energy of formation at concentration c◦. We consider µ◦k to be an affine
function of k

µ
◦
k = b0 +b1k (7.163)

A reversible adsorption process will lead to chemical equilibrium, at which point µk,min = µk . Let
us now substitute Eq. (13) in Eq. (11), and write

∆µ
∗
k,ads + kbT

[
ln

θk

k
+(k−1) ln

θW

θ0
− lnθ0

]
= 0 (7.164)

From Eqs. (7.154), (7.163), (7.162), it follows that ∆µ∗k,ads is again an affine function. We write

∆µ
∗
k,ads = ε +δk (7.165)

where ε = a0 + b0− kbT ln c̄ and δ = a1− b1. Eq. (7.164) then gives the equilibrium surface
coverage for k-mers

θk = k exp(−β (ε +δk))
(

θ0

θW

)k−1

θ0 (7.166)
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Let us define

rk =
θk/k

∑i θi/i
(7.167)

as the relative surface concentration of k-mers. The ratio of k-mers to j-mers is then

rk

r j
=

jθk

kθ j
=

(
θ0

θW

)k− j

exp(−βδ (k− j)). (7.168)

As W ≥ N/0, θ0/θW ≤ 1. If we consider k > j, we see that the entropic term
(

θ0
θW

)k− j
favors

shorter oligomers. This is to be expected, as smaller oligomers allow for more possible surface
configurations. Since δ < 0, the factor exp(−βδ (k− j)) favors longer oligomers. From Eq.
(7.168) we deduce that the relative concentrations of adsorbed oligomers follow an exponential
trend. We will now extend the model by relaxing the 1D assumption. Interestingly, this can largely
be taken account by simply shifting the constants ε and δ . Consequently, we can proceed with an
approximative model by using Eq. (7.167).

7.4.2 Extensions towards 2D
Connectivity ansatz

Figure 7.9: Reversible adsorption of two types of oligomers (pink and green) from bulk to mineral
surface. Associated with this transition is a free energy change ∆µ∗k,ads containing all contributions
other than mineral configurations.

As shown by Ramirez-Paster et al in Ref. [69], an effective way to describe stiff oligomers on a
2D lattice is by introducing a connectivity ansatz. Let c be the number of connections of a lattice
point (for a 2D square lattice: 4, on the line: 2). By supposing Ω scales with dimension c as in the
Flory model[45], the argument by Ramirez-Pastor et al leads to

Ω(M,{Ni},c)
Ω(M,{Ni},c′)

=

[
c−1
c′−1

]
∑i Ni(i−1)

. (7.169)

Note that Ref. [69] considered the adsorption of single type of oligomer, whereas Eq. (7.169)
concerns a mixture.

Performing our previous calculation and setting c′ = 2, we find for arbitrary c

µk,min,c = µk,min,2− kT (k−1) ln(c−1), (7.170)

which means we can incorporate it in ∆µ∗ads by defining

ε
′ = ε + kbT ln(c−1), (7.171)

δ
′ = δ + kbT ln(c−1). (7.172)
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2D: dilute lattice placements
Another extension, put forward in Ref. [70], is to study a dilute limit and consider the number
of ways an oligomer can be placed on a lattice. For stiff oligomers, which can only be placed on
square lattices, we can then consider every 1D placement and place them along all c/2 directions.
The microcanonical partition function then grows as:

Ω(M,N,c)
Ω(M,N,c′)

=
[ c

c′

]
∑i Ni

(7.173)

Which yields a constant correction to µk

µk,min,c = µk,min,2− kbT ln(c/2) (7.174)

It can be absorbed in the expression for ∆µ∗ads, by defining ε ′ = ε + kbT ln(c/2).
For dilute flexible oligomers, the number of single-oligomer configurations γ(c,k) is the

number of self-avoiding random walks of length k. On a square lattice, this quantity behaves as
γ(c,k) = ukkv, with u2d ≈ 2.62, v2d = 11/32. On a 3D lattice, we have v3d ≈ 0.16. The correction
for dilute systems is then

µk,min,4 = µk,min,2− kbT
[

k ln
(

u2d

u3d

)
+(v2d− v3d) lnk

]
. (7.175)

Just as with the connectivity ansatz, we can absorb a contribution proportional to k, since we can
write δ = δ ′− kbT lnu. The lnk contribution gives a new factor ( k

j )
v2d−v3d , and we now obtain

rk,c

r j,c
=

jθk

kθ j
=

(
θ0

θW

)k− j

exp(−βδ
′(k− j))

(
k
j

)v2d−v3d

(7.176)

However, since v2d − v3d ≈ 0.18, this contribution is relatively small, and we will neglect it in
our further derivation. Overall, we see that the extension of the model to 2D for stiff and flexible
polymers can be accounted for by shifting the parameters in the adsorption energy. In the subsequent
sections, we will solve the model for Eq. (7.166).

7.4.3 Solving for Θi

Since the solutions are expressed in terms of θ0/θW , we do not have a full solution. Expressed in
terms of θi, we find

θW = ∑
i

θi

i
+θ0 (7.177)

θ0 = 1−∑
i

θi (7.178)

We can then write

θW = ∑
i

exp(−β (ε +δ i))(θ0/θW )i−1
θ0 +θ0 (7.179)

Let us define ζ = θ0
θW

. From Eq. we then find

∑
i

exp(−β (ε +δ i))ζ i +ζ −1 = 0 (7.180)

Which is a nonlinear polynomial equation from which we need a real root ζ < 1. We can then
express θ0 as

θ0 =
1

1+∑i iexp(−β (ε +δ i))ζ i−1 , (7.181)

and thus we can numerically solve the system of equations by finding ζ .
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Figure 7.10: Distribution of adsorbed RNA on a mineral surface ε = 4kbT ∗,δ =−0.5kbT ∗,T ∗ =
293K.

7.4.4 Temperature dependence
It was observed [27] that the relative abundance of longer RNAs increases at higher temperature.
To investigate this effect, let us again consider the quantity rk/r j in Eq. (17) where k > j, and take
its derivative with respect to temperature T

d
(

rk
r j

)
dT

=

(
rk

r j

)[
δ −T dδ

dT
kbT 2 (k− j)+(k− j)

1
ζ

dζ

dT

]
. (7.182)

As δ and ε correspond to a Gibb’s free energy change, we can write them as enthalpies ∆hδ ,∆hε

and entropies ∆sδ ,∆sε

δ = ∆hδ −T ∆sδ , (7.183)

ε = ∆hε −T ∆sε , (7.184)

and thus

δ −T
dδ

dT
= ∆hδ . (7.185)

Taking the derivative with respect to T of Eq. (7.178), we find(
∑

i
exp(−β (ε +δ i)) i ζ

i−1 +1

)
dζ

dT
=−∑

i
exp(−β (ε +δ i))(∆hε + i∆hδ )/kbT 2

ζ
i, (7.186)

which can be rewritten give

dζ

dT
=

∆hδ

kbT 2 ζ − ∆hε

kbT 2 ∑i exp(−β (ε +δ i))ζ i

∑i exp(−β (ε +δ i)) i ζ i−1 +1
− ∆hδ

kbT 2 ζ (7.187)

Plugging this back in Eq. we then have

d
(

rk
r j

)
dT

=

(
rk

r j

)
(k− j)

 ∆hδ

kbT 2 − ∆hε

kbT 2
b

∑i exp(−β (ε +δ i))ζ i−1

∑i exp(−β (ε +δ i)) i ζ i−1 +1

 (7.188)
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Figure 7.11: Experimental time course of the change of RNA concentrations on mineral surfaces.
Adsorption experiment was performed by incubating a mixture of 8−,12−,16−,20−,24−mer
fully random RNAs (0.6 µM each) and 0.2 mg apatite in 10 µ l at 293K for 10 min, 30 min, or 120
min. The concentrations were determined by radioactivity of 32P-labeled RNA and normalized to
the levels of the control reaction (120 min) performed without minerals. Figure taken from Ref.
[27]

It follows that selectivity can increase with temperature, provided that the enthalpic contributions
obey

∆hδ −∆hε ∑
i

exp(−β (ε +δ i))ζ i−1 > 0 (7.189)
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Figure 7.12: ε = 3.4kbT ∗,∆ε =−11.5kbT ∗, δ =−0.8kbT ∗,∆δ =−2.5kbT ∗ = 293K

Example: consider Fig. 7.12 , for which ε = 3.4kbT ∗, δ = −0.8kbT ∗ and r24/r8 = 2.90.
Numerically, we find that selectivity would increase with T in this case if −0.884∆hε >−∆hδ . As
an illustration, let us choose ∆hε =−11.5kbT ∗, hδ =−2.5kbT ∗. Augmenting the temperature with
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∆T = 10K, we would then have

d
(

rk
r j

)
dT

∆T ≈ 0.072 ·10 = 0.72 (7.190)

Which corresponds well with the order of magnitude observed in the experiment depicted in Fig.
7.7.

The minimal model employed in this section provides a simple explanation why longer polymers
can adsorb preferentially with relative ease. By construction, it yields increasing exponential
distributions. In practice, distributions, such as in Fig. 7.7 can deviate from an exponential. An
equilibrium argument for such deviations can be found when nonaffine contributions are introduced,
such as interactions between adsorbed polymers.

Thermodynamic equilibrium may not always be an appropriate assumption for mineral ad-
sorption. For example, the phosphodiester bonds of RNA are degraded by hydrolysis, which
disproportionally acts on long polymers. On the timescale of the experiment, however, hydrolysis
was relatively slow and adsorption profiles measured after 10, 30 and 120 minutes showed little
change.

7.5 Activation, ligation and fragmentation
Many scenarios for the origins of life share a key step: the elongation of the first (bio)monomers
through abiotic means. In this section, we revisit a large class of these scenarios, involving the
use of ligation-fragmentation models, by explicitly including chemical activation. The steady state
polymer length distribution can be described with two dimensionless quantities, which quantify
the relative rates of activation and ligation with respect to hydrolysis. When activation is the
slowest step, the addition of template-assisted ligation does not lead to a further increase of the
average polymer length. On the other hand, folding and hybridization become more effective in
increasing the size of polymers in this regime. The inclusion of the activation step also makes it
possible to use nonequilibrium thermodynamics to make general, model-independent statements
about e.g. dissipation. In particular, we find that there is a minimum cost associated with sequence
exploration, irrespective of catalysis. This cost is a property of the activation chemistry and is
absent for nondissipative reaction schemes that perform such exploration, such as recombination
reactions. Our statements lead to a number of quantitative requirements for prebiotic scenarios and
novel plausibility criteria based on the second law of thermodynamics.

7.5.1 Chemical Activation
When a polymer is chemically activated, it contains a leaving group that favors a subsequent ligation.
Such group-transfer reactions are pivotal to life and are often considered to be essential to prebiotic
chemistry [71]. This should come as no surprise when one considers that the reversible assembly of
many biopolymers through condensation reactions is not favorable in water. For RNA, one typically
only needs to consider the reverse of condensation: hydrolysis, which degrades the polymer.

An important problem that a putative RNA world must solve is getting its monomers to poly-
merize, which modern biology achieves through chemical activation. Some proposed candidates for
a prebiotic activation in the case of RNA are triphosphate [63], 2’,3’-cyclic phosphate [72] (both
possibly generated by diamidophosphate [73]), 2-aminoimidazole [74], 2-methylimidazole [75].
The activation step generalizes these different schemes.

7.5.2 Model Setup
In this section, we will develop a general scheme for elongation in the presence of activation. The
model is composed of three reactions: i) activation, ii) ligation, iii) hydrolysis (fragmentation).
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Step i) is implicit in virtually all of the literature models. Wu and Higgs [21] dedicated attention to
activation in polymer models. In later work, this step became unnecessary for the problems under
consideration [22]. We wil show here that an explicit description of activation is quite valuable:
it allows to use nonequilibrium thermodynamics and places essential constraints on the prebiotic
conditions. We will refer to this scheme as activation-ligation-fragmentation (ALF).

Activation
We will denote an unactivated polymer of length n as n. To denote an activated species, we will
add an asterisk: n∗. When it is convenient to use a sum, we will use brackets for single species with
length n+m: [n+m].

The chemical activation step proceeds through the species XY, which transfers the activating
group Y to a polymer, as shown in Fig. 7.13

n+XY−−→←−− n∗+XH. (7.191)

Figure 7.13: Schematic picture of activation. Green triangles: activating group Y, blue hemisphere:
X.

Ligation
An activated polymer n∗ can perform one ligation reaction, at the expense of its activating group Y,
as shown in Fig. 7.14

n∗+m−−→←−− [n+m]+YOH, (7.192)

n∗+m∗ −−→←−− [n+m]∗+YOH. (7.193)

Figure 7.14: Schematic picture of ligation.

Fragmentation
As the solvent under consideration is typically water, condensation preferably runs in reverse for
most condensation polymers, and this gives hydrolysis (fragmentation, see Fig. 7.15).

[n+m]+H2O−−→←−− n+m, (7.194)

[n+m]∗+H2O−−→←−− n+m∗. (7.195)
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Figure 7.15: Schematic picture of hydrolysis. Gray circles: monomers (1), Red squares: oxygen
(O), white rectangles: hydrogen (H).

7.5.3 ALF Cycles

By putting the aforementioned reactions together, we can construct a cycle of subsequent activation,
ligation and hydrolysis (Fig. 7.16). After one such cycle, the net reaction we have performed is

XY+H2O−−→←−− HX+YOH (7.196)

In order to maintain a steady state polymer distribution, we need a constant influx of XY and H2O
and an outflux of HX and YOH, which can e.g. be achieved by chemostatting these compounds.
From the works of the group of M. Esposito [47, 76] we know that we can perform a cycle
decomposition to describe all steady state currents within a chemical system, where a cycle is a
collection of reactions that leaves the system unchanged (chemostatted species may be converted and
exchanged, however). For our present purposes, it suffices to note that at steady state, every ligation
is accompanied by a hydrolysis and an activation. In Appendix 10.4. the cycle decomposition is
discussed in more detail.

Figure 7.16: Schematic picture of an ALF cycle.

Kinetics and cycles

We introduce the following quantities:
ND

n ,N
A
n : number of unactivated, activated polymers of length n, respectively.

Nn: number of polymers of length n, such that Nn = ND
n +NA

n .
NXY,NH2O,NHX,NYOH: number of XY, H2O, HX, YOH molecules.
k+,k−: forward, backward rate constant respectively. We assume a fixed system volume V and
absorb all volume dependence in the rate constants. The net rates of the ligation reactions n∗+m
and n∗+m∗ become

Jn∗+m = k+ligNA
n ND

m − k−ligND
n+mNYOH, (7.197)

Jn∗+m∗ = k+ligNA
n NA

m− k−ligNA
n+mNYOH. (7.198)
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For hydrolysis reactions [n+m]→ n+m and [n+m]∗→ n+m∗ we have

J[n+m] = k+hydND
n+mNH2O− k−hydND

n ND
m , (7.199)

J[n+m]∗ = k+hydNA
n+mNH2O− k−hydND

n NA
m. (7.200)

Finally, for activation n→ n∗ we can write

Jn = k+actN
D
n NXY− k−actN

A
n NHX . (7.201)

Taking these reactions together, the time evolution of NA
n becomes

dNA
n

dt
= Jn + Jk∗+l∗δ

n
k+l + J[k+n]∗ek− J[k+l]∗δ

n
k+l

− Jn∗+kek− Jn∗+k∗ek− Jk∗+n∗ek, (7.202)

where any repeated index is summed according to the Einstein summation convention. Therefore,
we have

J[k+n]ek =
∞

∑
k=1

J[k+n], (7.203)

Jk∗+l∗δ
n
k+l = ∑

k+l=n
Jk∗+l∗ , (7.204)

in which we have introduced the Kronecker delta δ b
a , (δ b

a = 1 if a = b,δ b
a = 0 if a 6= b) and the unit

vector ek. For the time evolution of ND
n , we can write

dND
n

dt
=−Jn + Jk∗+lδ

n
k+l + J[k+n]ek + J[n+k]∗ek

+ J[n+k]ek− J[k+l]δ
n
k+l− Jk∗+nek. (7.205)

By combining Eq.(7.202) and (7.205), we obtain the rate of change in Nn. In doing so, we eliminate
the reactivation contribution Jn

dNn

dt
= [J[n+k] + J[k+n]+ J[n+k]∗+ J[k+n]∗ ]ek

+ [Jk∗+l + Jk∗+l∗ ]δ
n
k+l− [J[k+l]+ J[k+l]∗ ]δ

n
k+l

− [Jn∗+k + Jk∗+n + Jn∗+k∗+ Jk∗+n∗ ]ek (7.206)

7.5.4 Steady state currents and distributions
At steady state, the current across all cycles becomes fixed (see Appendix 10.4), as well as all
concentrations. A solution for (7.206) that verifies dNn/dt = 0 is

Jn∗+m∗+ Jn∗+m = J[n+m]∗+ J[n+m] , (7.207)

Upon substitution of Eq. (7.197)-(7.200), (7.207) becomes

k+ligNA
n Nm− k−ligNn+mNYOH = k+hydNn+mNH2O− k−hydND

n Nm

We can infer from Eq. (7.208), by choosing n = 1, that

Nm+1 =
( k−hydND

1 + k+ligNA
1

k+hydNH2O + k−ligNYOH

)
Nm. (7.208)

Via induction this immediately gives

Nm =
( k−hydND

1 + k+ligNA
1

k+hydNH2O + k−ligNYOH

)m−1
N1. (7.209)
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Evaluating Eq. (7.208) for m = 1, we obtain

Nn+1 =
( k−hydND

n + k+ligNA
n

k+hydNH2O + k−ligNYOH

)
N1. (7.210)

From which one can show that

ND
m =

( k−hydND
1 + k+ligNA

1

k+hydNH2O + k−ligNYOH

)m−1
ND

1 , (7.211)

NA
m =

( k−hydND
1 + k+ligNA

1

k+hydNH2O + k−ligNYOH

)m−1
NA

1 . (7.212)

Which implies that we can split Eq. (7.207) in two equations

Jn∗+m∗ = J[n+m]∗ , (7.213)

Jn∗+m = J[n+m]. (7.214)

If we plug Eqs. (7.213)-(7.214) in (7.202) for dNA
n /dt = 0, we obtain

Jn = [J[n+k]∗+ J[n+k]]ek. (7.215)

Steady-state distribution
The length distribution in ALF is exponential (see Eq. (7.210)), just as in (undecorated) ligation-
fragmentation models [19, 49, 20]. Now, we introduce M, the total number of monomer units in all
polymers: M = ∑n nNn and N, the total number of polymers: N = ∑n Nn. Using Eqs. (7.211) and
(7.212) one finds

N =
N1

1− k−hydND
1 +k+ligNA

1

k+hydNH2O+k−ligNYOH

, (7.216)

M =
N1(

1− k−hydND
1 +k+ligNA

1

k+hydNH2O+k−ligNYOH

)2 . (7.217)

For the total number of activated and unactivated polymers (NA,ND) one can find similar expres-
sions. Combining (7.216) and (7.217) we find the number of monomers

N1 =
N2

M
(7.218)

For activation of monomers, we use Eq. (7.215) for n = 1

k+actN
D
1 NXY − k−actN

A
1 NHX = k+hyd(N−N1)NH2O− k−hydND

1 N (7.219)

The activation of all species obeys

k+actN
DNXY − k−actN

ANHX = k+hyd(M−N)NH2O− k−hydNDN. (7.220)

Let us denote by α the fraction of activated species, such that

NA = Nα =
Mα

χ
, (7.221)

ND = N(1−α) =
M(1−α)

χ
. (7.222)
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We can then solve the full problem by finding α and χ , since

NA
n =

Mα

χ2

(
1− 1

χ

)n

(7.223)

ND
n =

M(1−α)

χ2

(
1− 1

χ

)n

(7.224)

From Eq. (7.220), we find that

k+act(1−α)NXY − k−actαNHX = k+hyd(χ−1)NH2O− k−hyd(1−α)
M
χ
. (7.225)

which upon rewriting gives

α =
k+actNXY + k+hyd(1−χ)NH2O + k−hyd

M
χ

k+actNXY + k−actNHX + k−hyd
M
χ

(7.226)

By combining Eqs. (7.216) and (7.217), we find

χ =
1

1−
k−hyd

M
χ
(1−α)+k+lig

M
χ

α

k+hydNH2O+k−ligNYOH

, (7.227)

from which we can extract α

α =
(k+hydNH2O + k−ligNYOH)(1−χ)+ k−hydM

(k−hyd− k+lig)M
. (7.228)

By combining Eqs. (7.226) and (7.228), χ can be found as the solution of a quadratic equation.

Strongly irreversible reactions
For our purposes, we are interested in the case where all forward reactions are much faster than
backward ones (as otherwise no appreciable elongation can be expected). In this limit, we can
neglect all k− terms for the kinetics (but not for the thermodynamics).

We will now transform the following quantities w.r.t. M: M→ mM,N→ nM,Nn→ nnM. We
can then introduce two dimensionless quantities, the ligation ratio rl and the activation ratio ra,
defined as

rl =
k+ligM

k+hydNH2O
(7.229)

ra =
k+actNXY

k+hydNH2O
(7.230)

In this limit, we solve the system of equations Eq. (7.216)-(7.220) and write the solution in terms
of dimensionless quantities

z =
rl− ra +

√
r2

a(4rl +1)+2rarl + r2
l

2rl(ra +1)
(7.231)

nA
1 =

ra(2rl +1)+ rl−
√

r2
a(4rl +1)+2rarl + r2

l

2r2
l (ra +1)

(7.232)

nD
1 =

1− (rl +1)nA
1

(ra +1)
(7.233)
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as z,nA
1 ,n

D
1 ≤ m = 1.0, all of these quantities take values in the interval [0,1]. The length distribu-

tions can then be written as

nA
n = nA

1 (rl nA
1 )

n−1, (7.234)

nD
n = nD

1 (rl nA
1 )

n−1, (7.235)

which is shown in Fig. 7.17 (see Appendix 10.4.1 for an assesment of the stability of this fixed
point).
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Figure 7.17: Length distribution for activated polymers (blue) and deactivated polymers (red),
obtained by simulation of the ODEs. Solid lines correspond to Eqs. (7.234) and (7.235). We chose
rl = 80, ra = 1.

Concatenation regimes
We define the degree of concatenation χ as χ = M/N = 1/n. From Eq. (7.231), one can find two
limiting regimes for χ:

rl � r2
a,χ → ra +1 (7.236)

r2
a � rl,χ →

√
rl (7.237)

Where Eq. (7.236) corresponds to an activation-limited regime, and Eq. (7.237) to a ligation-limited
regime. By plotting χ versus ra for various values of rl , these regimes become apparent: In Fig.7.18,
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Figure 7.18: Degree of concatenation χ as function of rl and ra.

the plateaus on the right correspond to the ligation-limited regime. In this regime, increasing the
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k+act or NXY has no effect on the polymer distribution. The sloped region left to the plateau is the
activation-limited regime. Ligation-Fragmentation models are in the former regime and therefore
their corresponding scenarios need to verify r2

a� rl . This means that we can write

k+actNXY >>
√

k+ligk+hydMNH2O (7.238)

At the crossover between the two regimes, when rl = r2
a, the activation ratio ζ = NA

1 /ND
1 approaches

1, as can be seen in Fig.7.19
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Figure 7.19: Activation ratio ζ , numbers on curves give the value of ligation ratio rl .

7.5.5 Recovery of ligation-fragmentation model
The ligation-fragmentation model uses the nonelementary reaction

[n+m]
ggg1−−⇀↽−−ggg2

n+m, (7.239)

where ggg1 denotes a reaction vector composed of a hydrolysis and a reactivation, and ggg2 a ligation.
In early work [21], this point was made clear, and the use of the reversible reaction arrow −−⇀↽−−
was chosen as a convenient shorthand due to dynamical similarity. In later work, this notation has
remained common, but its subtle interpretation has largely been lost in translation, leading to confu-
sion and thermodynamically inconsistent statements, e.g. by asserting equilibrium polymerization
for systems that explicitly require activation.

Since we are interested in sufficiently strong ligation and given that hydrolysis is strongly
irreversible, one normally has

k+ligNA
n Nm � k−ligNn+mNYOH, (7.240)

k+hydNn+mNH2O � k−hydND
n Nm, (7.241)

k+ligNA
n Nm ≈ k+hydNn+mNH2O. (7.242)

This means that the elongation and fragmentation are not guided by the same chemical reaction,
elongation is due to ligation whereas fragmentation is due to hydrolysis. This distinction is
important: if Eq. (7.239) were an elementary reaction, we would have equilibrium polymerization
obeying equilibrium thermodynamics. In our system, we have nonequilibrium polymerization
driven by chemical currents between reservoirs.

In the absence of such currents, we would have obtained an equilibrium state. This equilibrium
state is unique, and the acceleration of one reaction via catalysis cannot alter this equilibrium state.
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However, in a non-equilibrium steady state, the system is less constrained (e.g. detailed balance
can be broken), and the introduction of a catalyst can alter the steady-state.

Let us consider the three ALF reactions forming a cycle, such as shown in Fig. 7.20. For the
kinetics of such a system, backwards reactions can be neglected, and catalysis simply increases a
reaction rate. If activation is fast enough to be neglected, we end up with the Ligation-Fragmentation
scheme. Contrary to an equilibrium polymerization, it is composed of two separate irreversible
reactions, which can be catalyzed separately.

cat.

cat.

n* + m [n + m]

n + m

[n + m]n* + m

fast activation,

Irreversible reactions

[n + m]n* + m

n* + m [n + m]

n + m

>> ,

Figure 7.20: Schematic derivation of the ligation-fragmentation model and the effect of catalysis.
While catalysis would not alter the net degree of polymerization at equilibrium, the nonequilibrium
steady-state admits higher net degree of polymerization.

The main assumption is that activation (Eq. (7.191)) is rapid enough, such that Na→ N, (or
ζ � 1, see Fig.7.19). This is true in the ligation-limited regime, which implies that Eq.(7.238)
must hold. In prebiotic chemistry, accessing such a regime is far from trivial.

7.5.6 Nonequilibrium Thermodynamics

In this section we will derive thermodynamic costs for maintaining a length distribution at steady
state, regardless of its exact shape and underlying catalytic schemes.

Dissipation

We can define the total rates of every reaction type in forward (+) and backward (-) direction

R+
lig = k+ligNAN, (7.243)

R−lig = k−lig(M−N)NYOH , (7.244)

R+
hyd = k+hyd(M−N)NH2O, (7.245)

R−hyd = k−hydNDN, (7.246)

R+
act = k+actN

DNXY , (7.247)

R−act = k−actN
ANHY . (7.248)
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The entropy production for performing a single cycle (assuming the chemical reactions are elemen-
tary) can be written as [37]

∆Stot = k ln
(R+

ligR+
hydR+

reg

R−ligR−hydR−reg

)
(7.249)

= k ln
(k+ligk+hydk+reg

k−ligk−hydk−reg

)
+ k ln

( NXY NH2O

NYOHNHY

)
,

If we set ∆Stot = 0 (chemical equilibrium), then

ln
(k+ligk+hydk+act

k−ligk−hydk−act

)
= ln

(Neq
YOHNeq

HY

Neq
H2ONeq

XY

)
(7.250)

Which is the standard free energy change ∆G◦/kT of the net reaction (7.196). We typically
expect k+ >> k− for all reactions and ∆Stot >> 0. The latter is achieved by having chemostat
concentrations that are different from the equilibrium concentration. The free energy change per
cycle corresponds to T ∆Stot . At steady state, we need to have

R+
lig−R−lig = R+

hyd−R−hyd = R+
act −R−act (7.251)

Therefore, one finds the dissipation rate to be

Σ = (R+
hyd−R−hyd)∆Stot ≈ R+

hyd∆Stot . (7.252)

As R+
hyd scales with the number of chemical bonds M−N, we need to pay an energetic upkeep

cost of T ∆Stot for every chemical bond, on a timescale τhyd = 1/k+hydNH2O, in order to maintain the
steady state.

In general, at steady state, all dissipation can be expressed in terms of currents of chemostatted
species [47] by

Σ = ∑
k

Ik
µk

T
. (7.253)

Here, Ik is the current of chemostatted species k between the reservoir and the system and µk is
its chemical potential. In our process, it is the net reaction (7.196) for which we calculate this
dissipation. The influx rate I∗ of activating groups is balanced by the outflux of leaving groups,
such that we have

Σ =
I∗

T
(µHX +µYOH −µXY −µH2O) (7.254)

This result is independent of the exact process happening in our system and therefore it remains
valid regardless of the length distribution or the catalysis of certain steps. If all bonds are equally
prone to hydrolysis, the energy cost for maintenance depends only on the number of polymer bonds,
not the exact length distribution.

7.5.7 Exploration and the search for sequences
While one can safely assume a steady state distribution for the length, the sequence space available
is so large that many sequences are not present at all times. If a mixture contains ν types of
monomers, there are ν l polymer sequences of length l. Simultaneously, the length distribution
decreases exponentially as shown in Eq. (7.209), so that for any given system, we can find a cutoff
length l∗. At this cutoff length, the number of possible sequences is larger than the number of
polymer species of that length: ν l∗ > Nl∗ .
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An essential part of prebiotic polymer scenarios is that the sequence space is being ‘explored’:
the system composition of species longer than l∗ changes constantly. This ultimately may lead
to functional species being ‘found’ among explored sequences. Indeed, in a schematic sketch
for timeline of increasing ‘aliveness’, J. Sutherland considers ‘Energy-dissipative exploration of
macromolecular sequence and composition space’ as the process that precedes the first major
innovation and bump towards lifelike matter[77]. We will now make one example of a sequence
exploration process explicit and consider some of the things it can and cannot do.

Dissipative random search and its efficiency
A cycle of hydrolysis, activation and ligation forms a species that holds the potential of being a
sequence that was not encountered before. Let us now suppose that we repeat this process continue
until a specified sequence ω is found. Our strategy can then be called a ‘dissipative random search’,
with a cycle of hydrolysis, activation and ligation corresponding to an ‘attempt’ to sample this
sequence.

To sample a sequence ω , the species formed in the ligation reaction must have length |ω|. Many
cycles generate a species with l 6= |ω|, however. At steady state, polymers of a given length l are
replenished as fast as they are degraded (see Eq. (7.207)). The rate of sampling for length l, is then
the corresponding rate of hydrolysis (Rhyd

l ) of species of length l,

Jsamp
l = Rhyd

l . (7.255)

If the hydrolysis rate is proportional to the number of hydrolyzable bonds, this leads to

Jsamp
l = k+hyd(l−1)NlNH2O. (7.256)

Only a fraction of these reactions occur at l = |ω|. Let us denote this fraction εl

εl =
Jexp

l

R+
hyd

=
(l−1)Nl

M−N
. (7.257)

We can interpret εl as an efficiency for this sampling process, it characterizes the fraction of cycles
that are sampling the length of the target species.

This efficiency εl is a function of the polymer length distribution. Ideally, one would like to
have peaked distributions, as observed in a theoretical work on autocatalytic polymer sets [78],
such that εl → 1. For an exponential distribution, the optimal εl is obtained by having an average
length of l/2, for which εl ≈ 4/(e2l) (See appendix 10.4.2).

Trials to to find a sequence
Every time we sample a random sequence of length l = |ω|, we have a probability pω to encounter
our target species, and with probability (1− pω) we encounter another one. The number trials nl

a to
find ω among species of length |ω| is then distributed according to

Pω

nl
a
= pω(1− pω)

nl
a−1, nl

a ≥ 1 (7.258)

for which

〈nl
a〉=

1
pω

. (7.259)

Taking into account the efficiency εl , the average total number number of cycles perfomed, ncyc, is
then

ncyc =
〈nl

a〉
εl

(7.260)
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This calculation can be extended to more general cases, such as a search for any of a particular set
of sequences Ω = {ω1, ..,ωs}. If these sequences have the same length, we can use

pΩ =
s

∑
k=1

pωk (7.261)

for Eq. (7.258).
If these sequences occur at different lengths, we may consider the general exploration process

PΩ
na
= PΩ(1−PΩ)

na−1, na ≥ 1 (7.262)

where PΩ is the probability to find the elements in Ω among all possible lengths and sequences,
such that

Pω = pωYl (7.263)

with Yl = Nl/N the length fraction.
Let lΩ be the set containing the lengths of species in Ω. Using Eq. (7.261), we can express the

total number of attempts in terms of a parallel search in separate length categories:

ncyc =
1

PΩ

=
1

∑k∈lΩ
εk
〈nk

a〉
. (7.264)

Note that the present calculation makes no assumptions on the length distribution or sequence
distribution. We do, however, suppose that sampling events can be treated as sufficiently indepen-
dent.

A tradeoff between power, time and complexity
At steady state, the time tcyc taken to undergo ncyc cycles can be found from the rate of a single
cycle, which is equivalent to the total hydrolysis rate Rhyd

〈tcyc〉=
ncyc

Rhyd
. (7.265)

At steady state, the free energy dissipation associated with a single ALF cycle is equal to T ∆Stot ,
which means the free energy dissipation for ncyc cycles becomes

T ∆Scyc = ncycT ∆Stot . (7.266)

For a given steady state, we can thus attribute a typical cost for a search process of T ∆Scyc. If we
provide n copies of our system to perform the search in parallel, we hydrolyze n times faster, but
on average we still require ncyc independent trials. The search time will then verify

〈tcyc,n〉=
〈tcyc〉

n
. (7.267)

The total cost T ∆Scyc has remained unchanged, but more free energy must be expended per unit
time: a higher dissipation rate Σ (Eq. (7.253)) must be maintained.

Put together, we can write tcyc in entropic terms

〈tcyc〉=
ncyc∆Stot

Σ
. (7.268)

The average required number of cycles ncyc was shown to be the inverse of the probability PΩ of
randomly ‘finding’ one of the sequences ωk ∈Ω. We then find

〈tcyc〉=
∆Stot

PΩΣ
, (7.269)



7.5 Activation, ligation and fragmentation 257

which relates search time, dissipation rate and how ‘hard’ an object is to find. An important
determinant for how hard it is to find an object of a given length, is the efficiency εl . If all sequences
in Ω have the same length l , we can then write

〈tcyc〉=
∆Stot

pΩεl Σ
. (7.270)

For exponential length distributions that are optimal for searching l , we have εl ≈ 4/(e2l). A
null model for the probability pω to sample ω among species of length |ω| would weigh the the
contribution of each sequence by its monomer abundances as in Eq. (7.145). If each monomer is
equally abundant, this simplifies to the number of sequences

pω =
1

ν l
, (7.271)

where ν is the number of distinct monomers in the mixture.
Oftentimes, we are not looking for a particular sequence, but any of a large number of sequences

that fills a certain requirement. This requirement may e.g. be that a sequence has a certain secondary
structure. Let us denote �l the number of possible secondary structures of length l. In a work by
Schuster et al[79], �l was estimated for RNA through folding algorithms, which yielded a scaling

�l ≈ 1.4848l−3/21.8488l. (7.272)

Note that �l � 4l , the number of possible sequences drastically outnumbers the number of
secondary structures. It was further found that the frequency of these secondary structures is
distributed according to a generalized form of Zipf’s law:

f (x) = a(b+ x)−c, (7.273)

with x the rank of the secondary structure, and a,b and c fitting parameters.
From Eqs. (7.271),(7.272) and (7.273) it becomes clear that dissipative random search has

clear limitations. As l increases, the search for a particular sequence or secondary structure will
rapidly lead to escalating costs in terms of Eq. (7.270), even for an optimal efficiency εl . Within
a finite energy budget, a search may afford to look for specific small objects, or aspecific large
objects (i.e. it should accept an overwhelming variety of sequences and secondary structures).

A first application: thermodynamically forbidden scenarios
There are fundamental limitations (Eq. (7.270)) to what we can expect to find through random
ligations and fragmentations. We will now, through a deliberately naive calculation, establish an
upper bound for how hard dissipative random exploration may search with a planetary energy
budget. We stress that this naive bound is only useful to demonstrate an absurdity: if a scenario
invokes dissipative random exploration and comes anywhere near this upper bound, then its energy
requirements make it unfeasible.

Using todays total influx of solar energy, we find a planetwide power of P = 1.73 1017W . Let
us approximate T ∆Stot with the ∆µ◦ for the hydrolysis of RNA, 8.4 kT (taking O(10− 100)kT
one can repeat the argument for an arbitrary copolymer). Applying the full energy influx for
dissipative search, we have T Σ = P. Then, the total influx of solar energy would allow at most
for 3.16 1037/8.4 = 3.8 1036 trials per second. Per m2, this amounts to an upper bound of 3 1023

sequences.
Suppose now a scenario which includes dissipative random exploration, to yield a catalytic

species of length 200 (a number often evoked in RNA scenarios) with some very particular activity.
For simplicity, this activity will be attributed to a secondary structure, to which we ascribe an
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optimistic abundance of pΩ = 1/�200. Using an exponential length distribution that is tailored to
this particular length (1/ε200 ≈ 369), from Eq. (7.270), we find a value of 3.8 108y, slightly longer
than the 200 million years provided by the timeline in Ref. [25].

What is considerably harder still, is when a scenario requires more than one object to be formed,
especially if these objects need to meet each other. Producing an RNA-based replicase (of thought
to be longer than 200 nt long) plus its complementary strand (or another polymerase) requires two
prohibitively rare events, occurring in each other’s vicinity, in a timeframe that is short enough so
that hydrolysis may not have degraded either species yet.

By the generosity of the bound, we can qualify such scenarios as absurd. Note, however, that
this absurdity resides in our manner of acquiring complex objects, not in the objects themselves. It
highlights the need for a plausible trajectory towards complex species, a problem that inevitably
needs to be addressed when we wish to account for modern biopolymers.

Some other search strategies

Through multiple rounds of mutations, recombinations and selection, highly competent objects with
a desired function can be acquired (e.g. through in-vitro evolution). Such a strategy can gradually
perfect a large sequence, while only sampling a small part of the sequence space. An essential
problem for the origins of life is that such a process would seem to already require sophisticated
objects like a replicase and error-correction machinery (Eigen’s paradox[18]). An interesting
question is whether such tasks may be achieved without such machinery as proposed in Refs.[80,
81].

A provocative idea can be distilled from the findings of Ref. [82]: complex molecules today
may have started out short functional sequences as short as trimers. In Ref[82] thiol-containing
tripeptides react with Fe2+ under UV irradiation, to form an iron-sulfur cluster, which subsequently
is converted into a stable dodecapeptide complex functioning as a redox catalyst. Such clusters
are the defining feature of ferredoxins, which fulfill a key role metabolism. This suggestion still
requires use to come up with ways to complexify the sequence and subsequently maintain it, but it
sidesteps the challenge of finding a large functional sequence.

Another interesting strategy involves self-assembling functional objects from smaller sequences.
This was pioneered with the azoarcus ribozyme, a catalyst for recombination chemistry whose
fragments can self-assemble in a noncovalent complex, which subsequently links these fragments
through recombination (small oligomers are released in the linking of the fragments)[34, 12]. Such
an approach has recently been applied for the assembly of a ribozyme that catalyzes the ligation
of triplets [83]. As an origin for complex structures, such an approach requires that these smaller
sequences are formed abundantly and locally, so that self-assembly can occur (in spite of e.g.
degradation, misassembly, etc.).

These are only some of the ‘search strategies’ that may be imagined. The strategies may be
combined, along with other strategies such as dissipative random exploration. Nevertheless, these
considerations have not yet led to a convincing solution for the origins of complex sequences.
Although we do not yet understand through what mechanisms this will come to be, it is thought to
be part of prebiotic chemical evolution. What this latter term lacks in rigorous definition, it makes
up for in anticipation: it has long been expected that there are physical mechanisms that gradually
convert a soup of chemicals to a biosphere.

Dissipation-free exploration

The cycles produced by the ALF scheme couple sequence exploration to the expenditure of T ∆Stot .
This cost is fundamental to activation chemistry, but not to sequence exploration. As an example,
we can consider a recombination reaction

[n+k]+m−−→←−− [m+k]+n, (7.274)
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with 1 < k < n, which was treated in detail in Sec. 7.2.
Again, we will obtain an exponential length distribution. Here, the steady state corresponds

to equilibrium and it can be obtained for a closed system. The exact shape of the exponential
distribution is unique, and depends on M and N

Nl =
N2

M

(
1− N

M

)l−1

. (7.275)

For exchange reactions, M and N are conserved quantities. For ALF, only M is conserved, N
depends on the particular values of rl and ra. If both reactions happen in the same system, we will
retain the same steady state, but exploration will be amplified by a cost-free mechanism.

For a given energy budget, ALF reactions cannot explore better than the limits discussed in Sec.
7.5.6, even if new catalysts are formed in the process. Recombination reactions are decoupled from
such costs. If exploration would yield a species that catalyzes recombination, the system would
explore more sequences with the same energy budget. The potential of recombination for sequence
exploration has been explored by other authors [84, 85], but thermodynamic implications have been
less explicit.

7.5.8 Decorated ALF models
Our discussion used a rather simple model, in which no additional features like surfaces, folding,
templates etc. were introduced. As detailed in Sec. 7.5.5, our system is in a nonequilbrium steady
state, and as such modifications of certain rates can modify the exponential length distribution to
yield a different length distribution. Since such ingredients are an important part of many scenarios,
we will briefly touch on some qualitative aspects of ‘decorated ALF models’. For these decorated
models, we can no longer use our exact solutions from Sec. 7.5.4, but one can still introduce
dimensionless numbers rl and ra as measures of the relative strength of ligation and activation
processes. Since ligation-fragmentation models in the literature are equivalent to ALF if ra→ ∞, it
is instructive to see how these models respond to an activation-limited regime.

Template-assisted ligation
To illustrate the effect of template-assisted ligation, we use an adapted toy-model that captures
the main features from other models[49, 19]. Typically, some typical length scale l1 is chosen for
which templated ligation proceeds optimally. We will consider the ALF model, where species with
length l ≥ 6 or larger are considered to be templates, and species with length l ≥ 3 can engage in
template replication. We write the forward rate of this reaction as

R+
temp = k+T NT (NA−NA

1 −NA
2 )(N−N1−N2) (7.276)

where k+T is a rate constant and NT the number of templates as defined above: NT = ∑
∞
l=6 Nl .

The polymer length distribution in the ligation-limited regime resembles a double-exponential
distribution[49, 19]. In this nonequilibrium steady-state we cannot directly employ the results from
Sec. 7.2.9. However, if the system is in the activation-limited regime, it can be shown that Eq.
(7.236) still holds. For this, consider the ratio of the activation rate and the hydrolysis rate, which
can be written as

R+
act

R+
hyd

= ra
ND

M−N
. (7.277)

At steady state, we have R+
act = R+

hyd and in the activation-limited regime we have ND→ N, which
leads to

ra→ χ−1, (7.278)
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which implies that if activation becomes too slow with respect to ligation, templates cannot further
improve χ . This point is illustrated in Fig. 7.21, where χ − 1 is plotted for a system with and
without template-assisted ligation.

10-2 100 102 104

ra

10-2

10-1

100

101

χ−1
Activation- 
  limited

 Ligation- 
  limited

√
rl

ra

rl =10
2  + TAL
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2

Figure 7.21: χ−1 plotted against activation ratio, for a system with templated-assisted ligation
(TAL, k+T = 100), and a reference system with the same parameters but without templates. Dotted
lines correspond to asymptotes for the two regimes.

Polymer folding
One can also consider folding of polymers. E.g. when RNA is base-paired in a helical fashion,
bonds in the helix are better protected, which can reduce the rate of hydrolysis of this bond with a
factor of up to 10 [86, 87]. This effect enriches the steady-state concentration of species that are
more folded or hybridized, due to their slower hydrolysis. Some implications of this effect on the
sequence space have been considered theoretically for an open prebiotic reactor [51]. Folding is
associated with an interesting paradox in replication scenarios: folded species are good candidates
for potent catalysts but form poor templates. In Ref. [88] it was suggested that wobble pairs might
be a key ingredient to overcoming this obstacle. In the present case, we will only study the effect of
folding on χ , through the use of a heuristic toy model.

Let us denote the fraction of double-stranded nucleotides at steady-state with ρ and the hydrol-
ysis rate for dsRNA with k+hyd,F . Note that ρ is not a parameter like e.g. k+hyd , but an observable that
reaches a steady-state value for a given system state. Now, we can write for the hydrolysis rate

R+
hyd = (k+hyd(1−ρ)+ k+hyd,Fρ)(M−N), (7.279)

which can be recast in the form of the unmodified overall hydrolysis rate (Eq. (7.245)), if we define
a new effective hydrolysis rate constant k̄+hyd , such that

k̄+hyd = k+hyd(1−ρ)+ k̄+hyd,Fρ. (7.280)

Using this effective rate constant, we can write an effective ligation ratio and an effective activation
ratio

r̄l =
k+ligM

k̄+hydNH2O
= rl

k+hyd

k̄+hyd
, (7.281)

r̄a =
k+actNXY

k̄+hydNH2O
= ra

k+hyd

k̄+hyd
. (7.282)

Since the overall rates of activation and hydrolysis have the same form as before, Eq. (7.278) can
be derived in the same fashion as in Sec. 7.5.8 so that in the activation-limited regime we can write

χ−1→ r̄a. (7.283)
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Similarly, we can write the ratio of overall ligation and hydrolysis rates

R+
lig

R+
hyd

=
k+ligNAN

k̄+hydNH2O(M−N)
. (7.284)

At steady-state, R+
lig = R+

hyd and in the ligation-limited regime NA→ N, which yields

r̄lig =
M(M−N)

N2 = χ
2−χ (7.285)

which for large χ becomes equivalent to Eq. (7.237), as

χ →
√

r̄lig (7.286)

Since folding is assumed to slow down hydrolysis, we have that k̄+hyd ≤ k+hyd , so folding yields a
relative gain for the effective ligation ratio and activation ratio. As shown by Eqs. (7.281) and
(7.282), both are increased by the same factor k+hyd/k̄+hyd .

The scaling of χ is quite different however. In the activation-limited regime (Eq. (7.283)), the
increase in χ with respect to a nonfolding scenario is linear in k+hyd/k̄+hyd . In the ligation-limited

regime (Eq. (7.286)), the asymptotic scaling of χ is proportional to
√

k+hyd/k̄+hyd . Consequently, for
a given value of ρ , the gain in χ due to folding is larger when activation is slow.

The enrichment of folded species can also happen through energetic means, if the system is
allowed to explore sequences in a reversible fashion. This can e.g. be achieved through exchange
reactions as discussed in Sec. 7.5.7. If such exchange reactions are rapid with respect to ALF, we
approach a thermodynamic equilibrium distribution for folding. Then, folded species are enriched
according to the Boltzmann weight of their folding energy: exp

(
−∆G f old/kT

)
This increase in

dsRNA fraction ρ then decreases k̄+hyd , thus increasing the ratio k+hyd/k̄+hyd . Thus, exchange reactions
allow to increase the degree of concatenation χ , irrespective of the concatenation regime. This
conclusion is reminiscent of Ref. [84], where it was proposed that ‘distributions of lengths can shift
upwards through recombination’.

7.6 Some general aspects of length distributions
Some polymer length distributions are encountered particularly often in the OOL literature: the
exponential and (approximate) multi-exponential distribution. In this section, we will provide some
basic arguments that describe what kind of length distributions we should expect for some common
kinetic equations in polymer models.

Single Exponentials
As discussed in Sec. 7.2.9, an exponential distribution maximizes the entropy associated with a
length distribution. It Is the most random distribution of a finite number of elements, so one should
expect that a system naturally tends to move towards such a distribution. Another argument for
exponentials comes when we look at the evolution equations. E.g. for Chain exchange:

dNl

dt
= k ∑

lA+lB=l

∞

∑
lC,lD

[NlA+lDNlC+lB−NlA+lBNlC+lD ]. (7.287)

We see directly that the total length for the pairs involved is fixed. Therefore, a stationary solution
of the form

Nl = Aexp(−al), (7.288)
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with a > 0, is a very natural choice. Coupled with the conserved quantities

∑Nl = N, (7.289)

∑ lNl = M. (7.290)

This then provides a complete equilibrium solution. The same argument applies for Attack-
exchange, for which the kinetic equation is

dNl

dt
= k

∞

∑
lA,lB=1

[NlANl+lB−NlA+lBNl]+ k
l−1

∑
lA

∞

∑
lB=1

[NlANlB+l−lA−NlNlB ]. (7.291)

With the exception that l ≥ 2. For systems performing ligation-fragmentation, the most basic
description is an equation of the form

dNl

dt
=

l−1

∑
k=1

k+NkNl−k− k−(l−1)Nl−
∞

∑
k=1

[k+NlNk− k−Nl+k] (7.292)

Which is still solved by the exponential ansatz, but the we no longer have a conservation law for N,
only for M. The stationary solution of Eq. (7.292) provides an extra constraint:

k+A2 = k−A (7.293)

Which describe the thermodynamic contribution of binding vs fragmentation. An elegant approach
is to consider an equilibrium constant to form an n-mer

K =
Nn

Nn−1N1
=

k+

k−
(7.294)

From which an equilibrium solution can be found of the form

N1 =
(2KM−1)−

√
(2KM−1)2−4K2M2

2KB2M
, (7.295)

Nn = N1Kn−1. (7.296)

The degree of polymerization M/N that follows is a compromise between the configurational
freedom of having more species and the free energy contribution of binding them together. Since
our null model has a fixed binding energy (no length dependence), these bonds are expected to be
distributed as arbitrary as possible, which would yield an exponential.

In the ALF model, we must be more careful with the aforementioned arguments, as we are not
at equilibrium. However, for rapid activation, the equations do simplify to those of an equilibrium
polymerization, and an exponential steady-state solution is applicable. However, the object ‘K’
can no longer be interpreted as an equilibrium constant. In the theoretical treatment of ligation-
fragmentation in a thermal trap[20], the fast-reaction approximation implies that at any given height
the system has an exponential length distribution. As mentioned before, this result is derived for
dilute systems and leads to unphysical behavior when this condition is no longer verified. In Ref.
[20] a form of mass divergence was found in the dilute limit, referred to as an escalation, due to the
indefinite accumulation of external material. While this description will then no longer be able to
provide a correct description of the length distribution, its divergence provides a clear signature of
why that is.
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Multiple exponentials
In the search for longer polymers, one typically aims to do better than the single exponential. Many
models do this by considering a length-dependent mechanism that improves a production rate [19,
49] or reduces a degradation rate[51] starting at a certain length, such as templates or folding. What
happens in many of these ligation models then, boils down to the introduction of a second timescale,
which does not act below a threshold length l∗. An instructive set of equations is the following, in
which degradation is occurs at a rate k−1 for l < l∗:

dNl

dt
= k+

l−1

∑
k=1

NkNl−k− k−1 (l−1)Nl−
l∗−l

∑
k=1

[k+NlNk− k−1 Nl+k]−
∞

∑
k=l∗−l+1

[k+NlNk− k−2 Nl+k]

= k+
l−1

∑
k=1

NkNl−k− k−1 (l−1)Nl−
l∗−l

∑
k=1

[k+NlNk− k−1 Nl+k]−
∞

∑
k=l∗−l+1

[k+NlNk− k−1 Nl+k]

+ (k−2 − k−1 )(N−N∗) l < l∗ (7.297)

and is slowed down to a rate k−2 (e.g. due to folding) for l ≥ l∗

dNl

dt
= k+

l−1

∑
k=1

NkNl−k− k−2 (l−1)Nl−
∞

∑
k=1

[k+NlNk− k−2 Nl+k] l ≥ l∗ (7.298)

For l < l∗, the equation can be written as the ligation-fragmentation model with a correction
term. For l � l∗, we have the ligation fragmentation model, but with contributions up to Nl∗
modified by the first set of equations, and with increasing l, the relative contribution of terms up to
Nl∗ diminishes. Qualitatively, the length distribution resembles a double exponential, especially
asymptotically. Many length distributions in the literature (e.g. in Ref. [19, 49]] can be readily
understood as approximate double exponentials.

Power laws
Power laws are more exotic, but the equations that yield them are not. An instructive example is a
system with a dominant, length-independent degradation process, such as happens in a CSTR or if
a (highly mobile) degradative agent attacks polymers at their endpoints.‡ We can then consider an
equation of the form

dNl

dt
= k+

l−1

∑
k=1

NkNl−k− k /0Nl−
∞

∑
k=1

k+NlNk = k+
l−1

∑
k=1

NkNl−k− k′/0Nl (7.299)

Where k′/0 = Nk++ k /0. Let us furthermore chemostat a particular species, e.g. N1. Compared to
ligation-fragmentation, longer species are more favored, as the increasing prefactor (l−1) is now
absent. We should therefore expect the length distribution to fall of slower than an exponential.
Indeed, ansatz Eq. (7.288) is no longer valid. However, a modified ansatz

Nl = A f (l)exp(−al), (7.300)

can be used, which can be solved by obeying the constraints

k+A2 = k′/0A, (7.301)
l−1

∑
k=1

f (k) f (l− k) = f (l). (7.302)

‡I am indebted to Joachim H. Rosenberger and Tobias Göppel, who showed me their experimental results and
simulations, which prompted me to brush up this calculation.
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Eq. (7.302) can be related to the Catalan numbers, defined by

C0 = 1, Cn+1 =
n

∑
i=0

CiCn−i. (7.303)

From which we find that f (l) =Cl−1. The asymptotic growth of the Catalan numbers goes as

Cn ∼
4n

n3/2
√

π
(7.304)

Which means that asymptotically, Nl behaves as a power law

Nl+1 ∼
B

l3/2 exp(−bl). (7.305)

In deriving this expression, we supposed that degradation (e.g. by leaving the reactor) is faster
than e.g. the reverse of ligation or the forward fragmentation. Such a situation of irreversible
polymerization can occur in various instances, but we should bear in mind that the degradation does
not inherently ‘help’ to get longer polymers. In the regime where fragmentation can be neglected,
ligation fragmentation without extra degradation would have led to even longer polymers.

7.7 Polymer scenarios and the search for long polymers
We have discussed some new ways in which longer polymers can be assembled, through coupling
with reservoirs in new ways. This is but a small exposé of the options that have been proposed.

New approaches are showing that a large array of nonequilibrium situations can be imagined to
polymerize species that inherently have trouble doing so. While we have no proof that any of these
mechanisms were actively exploited in prebiotic chemistry, their steady increase in number makes
it increasingly conceivable that prebiotic polymers that do not spontaneously polymerize, may have
been provided early on.

Narratives for what prelife did with those polymers, however, either remain vague, or explicitly
use mechanisms that are demonstrably problematic from the point of view of thermodynamics,
chemistry and evolution. In this section, some of these concerns are discussed. We propose that we
should consider the early role of prebiotic polymers in terms of more simple, general behavior of
polymers, of which the coacervates afforded by polyelectrolyte condensation is taken as an example.
Like in modern evolution, we may need to consider a gradual progression, in which intermediate
features may have provided a scaffold that became redundant and was later discarded.

Fundamental concerns: implausible ingredients in polymer scenarios
Provided that some mechanism existed that made prebiotic polymers early on, we may then ask:
what happens then? As shown in Sec. 7.5.7, a dissipative random search to find a specific long
sequence is prohibitively expensive, so we may at best hope for something aspecific. The picture of
‘sequence exploration finding complex components’ remains invariably tempting, but at present no
solid mechanistic picture has been advanced to plausibly make this concrete.

We should equally well be careful with the view that chemical networks of polymer sequences
autocatalytically self-assemble, replicate and evolve as soon as diversity is large enough. As
outlined in Sec. 6.1.1, side reactions, degradation, trapping stapes, transport limitations and
other undesirable side-effects grow rapidly with increasing local diversity. The typical growth in
autocatalytic pathways is expected to be relatively meager compared to these contributions. In
this context, autocatalytic network motifs alone are not a guarantee for feasibility, since a growing
cumulative rate of side-reactions and degradation[89, 90] already leads to a precipitous drop in the
probability to finish any autocatalytic cycle. Experimentally, autocatalytic networks of polymers
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are made with an extremely narrow subset of long sequences. The prebiotic establishment of such a
specific food set is a fundamental problem in and off itself.

Our concerns with polymer scenarios seem considerable. We wish to formulate scenarios that
avoid too rare rare events or too high thermodynamic cost and that are in line with the chemical
principles that govern autocatalysis.

An example of a plausible ingredient: coacervates
These concerns only pertain to specific (polymer) mechanisms, not polymers themselves. The
prebiotic relevance of polymeric species should not hinge on the validity of a subset of ideas, but
on what polymers can bring to the table in general. A lot of interesting polymer behavior does not
require strict control over copolymer sequence.

As an example, charged polymers (such as RNA and peptides with ionizable side groups) can,
upon achieving a sufficient size and concentration, undergo a polyelectrolyte condensation, forming
liquid microcompartments called coacervates. The local environment in the droplet is considerably
different from a bulk water phase, as testified e.g. by partition coefficients and local catalytic activity
[91]. More and more of these droplets are now being identified in biological systems (e.g. Cajal
bodies[92], P-granules[93], Stress granules [94]), where they have been shown to perform various
various roles, such as localizing enzymatic reactions, amplifying signals, nucleating the growth of
acting filaments and storage of RNA and proteins[95]. In prebiotic scenarios, their interest was
evoked by Oparin[3] in the early 20th century. They are now garnering renewed interest, spurred
by rapid developments in biology and artificial coacervates. These coacervates are not limited to
the single polymer droplet case: in complex coacervates alternative morphologies are elaborated,
such as aggregates of micelles held together by a charged polymer [96].

Polyelectrolyte condensation is a phase change induced (roughly speaking) when a combination
of length, abundance and charge (due to polymers and small ions) overcome a critical threshold.
Complementary sequences may facilitate assembly and shift this threshold, but in absence of
sequence control coacervates remain accessible species. They play a role in various prebiotic sce-
narios [3, 97] and protocell models [91]. In our general framework for stoichiometric autocatalysis
(Sec. Ch.5), forming chemically distinct environments (such as coacervates) provides an elegant
pathway towards further autocatalytic evolution in a spatial setting (Sec. Ch.6). In this manner, a
more gradual chemical evolution can be formulated.

Coacervates are an example of the interesting features we may readily introduce in a prebiotic
polymer scenario. It is such features that justify our continued search for prebiotic polymerization.
In conceptualizing how biological sophistication arose (e.g. enzymes, genetic machinery, organelles,
cells), we may need a more detailed picture of plausible (and arguably, simpler) features that were
in place before. Features like coacervates may not only have preceded such sophistication, but quite
likely have enabled their formation.

Another interesting perspective comes from considering nonenzymatic, template-directed
ligation [98]. Leu et al showed that a template of either RNA,DNA or LNA, supplied with RNA
or DNA primers and activated nucleotides exhibit replication that strongly favors correct copying:
after incorrect incorporation further extension is slowed by a factor of 10-100, attributed to a lack
of cooperativity due to mismatch. Incorrect incorporation also favored more subsequent errors,
leading to more extensive sequence exploration. Such systems invite us to rethink the evolutionary
mechanisms that may act on copolymers, and reconsider what such systems really need. One
interesting addition might be the non-enzymatic backbone proofreading system by Mariani and
Sutherland[81].

7.7.1 Scaffolds and gradualism
For many, the key argument for an early (pre-)RNA world is the functional repertoire of catalytic
polymers and the prospect of digital evolution on heritable sequences, akin to modern evolution.
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The transmission of a heritable state, however, does not imply polymer sequences. By definition,
prebiotic chemistry does not do things the way life does it, and we strive to explain how they
gradually became identical.

A powerful concept to address this question is the notion of a scaffold, a supportive structure
necessary in the initial construction of e.g. a building, that is removed afterward. Cairns-Smith
used this analogy to argue how mineral surfaces could have had major roles in prebiotic chemistry,
that were readily abandoned in more advanced stages of prelife[56]. It is also a useful analogy in
explaining how evolution may produce large functional organs by small cumulative changes. For
such a process, we don’t want to take one large implausible leap, but rather small, gradual steps
that yield intermediates that are competent enough to preserve themselves (e.g. by conferring a
simple, but significant function).

Features for which polymers are invoked in prebiotic scenarios, are often achievable by small
molecules. Compartments can be made with relatively short surfactant (e.g. lipids, terpenes).
Catalysis can be performed by the smallest of ions. Proofreading is a network feature equally
accessible to small molecules. Species as small as glycolaldehyde have self-replication pathways.
Single amino acids can self-assemble with counterions, e.g. to form long fibrils [99].

Even prebiotic chemical evolution can be formulated plausibly and coherently in terms of mul-
ticompartment autocatalytic evolution (Ch.6). Certain modes of (multicompartment) autocatalysis
may be more readily performed by small molecules (Sec. 5.4). A scenario that requires such
functions from polymers can therefore rely on a rich collective of plausible, simple scaffolds, that
were eventually replaced.

An elegant recent example of a small gradualistic proposal came from S.S. Mansy’s group. By
having thiol-containing tripeptides react with Fe2+ under UV irradiation, an iron-sulfur cluster
was formed, complexed by four tripeptides. These tripeptides can subsequently ligate to form a
more stable dodecapeptide complex that functions as a redox catalyst. Today, such clusters are the
defining feature of enzymes referred to as ferredoxins, which play a key role metabolism. In Ref.
[82] it was proposed that such clusters may have formed early on to form the basis of an iron-sulfur
metabolism. The small length (trimers) of the peptides and the limited sequence requirements (at
least one cysteine), make it an attractive prebiotic species that is functional from the start. This
‘protoferredoxin’ requires neither sequence control nor long polymers, whereas modern ferredoxins
do. This then begs the question: can we start with a set of self-assembling functional species and
gradually have genetic polymers take over their production and evolution? And if so, through what
kind of stages can something like that plausibly come about?

Whether we owe our ferredoxins to such a chemistry or not should not distract us from the more
general point: impressive functional species may be readily accessible without being long or having
a particular fixed sequence. Their sequence need not be stored in genes and translated; the species
may assemble themselves (in the example: aided by UV radiation). Such mechanisms are part of the
daily routine in the young fields of supramolecular and dynamic combinatorial chemistry[100]. In
dynamic combinatorial chemistry, a large diversity of rapidly interconverting species is generated.
These species can subsequently be screened for a desired activity, e.g. by adding a preferred
substrate to bind to. Such a preferred binding leads to a strong and rapid accumulation of the
favorable complexed species, allowing for quick identification of small species with exceptional
activity. Such a simple mechanism may temporarily sidestep the thermodynamic challenges of
synthesizing long polymers with specific sequences, while still supplying exceptionally well-
adapted species and exploring new ones.
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8. Transient compartments

The chemical composition of organisms is considerably different from their environment. Transport
enzymes, carrier molecules [1, 2] (siderophores, ionophores, chalkophores), and vesicular secretion
allow required nutrients to be picked up from the environment. Inside the cell, sophisticated
molecular machinery is assembled from these nutrients, which are kept inside by virtue of cell
membranes and other compartments.

Together, this allows chemical reactions to be precise and proceed at required rates, to remove
waste from the system, to prevent side-reactions and to keep a metabolism thermodynamically
spontaneous. Were the contents of a cell simply mixed with an environment, it would lack the
precision, concentration and thermodynamic forces to remain viable. In fact, even mixing the
contents within a single cell may be disastrous: a cell itself is a pastiche of coacervates and cellular
compartments [3] with mutually incompatible chemistries, e.g. due to local pH, redox equilibria
and digestive activity.

When considering the origins of life, it is not clear what chemical processes we start with.
What is evident, however, is that such a process has constraints on concentrations, precision
of reactions and associated thermodynamic forces. In terms of current scenarios, this means
RNA/peptide/XNA/etc. worlds need abundant, chemically activated monomers, lipid world needs
abundant amphiphiles, iron-sulfur world needs abundant iron and sulfur. These compounds then
need to favorably engage in specific chemistry (and transport) and, in one way or another, perform
some replication process on which ‘chemical evolution’ acts. For this and other tasks, compartmen-
talization is a benefit.

In this section, we will start by considering why compartments and heterogeneous environ-
ments are ubiquitous in biology and what kinds of capacities may be pertinent for abiogenesis.
Subsequently, we will consider division in compartments and multilevel selection. For many, this is
a key reason to consider compartmentalization. Then, the model based on ‘transient compartmental-
ization’ is discussed in detail. The sections on ‘transient compartmentalization’ largely recapitulate
a work that is published in PRL[4] and another work in submission for which a preprint is available
on BioRxiv[5].

Inspired by these papers, the specific case of transient compartmentalization of a replicase has
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recently been studied by Laurent, Lacoste and Peliti, to appear in Life, and for which a preprint
is available[6]. In the final section of this chapter, this parasite problem will be revisited using a
stochastic description on the level of monomer incorporation and complex formation. This leads to
the elucidation of a new type of parasite-induced catastrophe.

8.1 Physical aspects of Compartments
8.1.1 A definition of a compartment

In its colloquial sense, a compartment is a closed impermeable space. The Cambridge Dictionary
describes a compartment as: a separate part of a piece of furniture, equipment, or a container with
a particular purpose. For our purposes, we do not need to be very strict with the property of being
closed, separate or impermeable, what we want to designate is: “a locally distinct physical-chemical
environment”. On the appropriate timescale of observation, this distinctness persists.

While separated in one way or another, a compartment may still be very similar to its surround-
ings. Consider a rock in contact with seawater, which has a little pore in it of length l. Let us
inject some dye Y in this pore and consider a situation where it only exchanges with the sea by
diffusion. In this situation, the characteristic timescale τ for concentration relaxation follows from
the geometry and the diffusion constant DY

τ =
l2

DY
. (8.1)

For a centimetric cylindrical pore filled with water and small dye molecules (D ∼ 10−5cm2/s),
this relaxation takes several days. If the contact area with the sea is small, the relaxation will
take considerably longer. Within this time, the cylindrical pore can maintain a meaningfully
different composition with respect to the surrounding seawater. For phenomena operating on shorter
timescales, such pores then provide locally distinct chemical environments or ‘compartments’.

In practice, we often think of compartments enclosed by membranes, or liquid droplets. Such
compartments may readily exchange some compounds while other ones (e.g. large polymers,
charged compounds) are barely exchanged at all.

8.1.2 Examples of compartments and their uses
In biochemistry, each biomolecule has its time and place, which can be enforced through the use of
compartments. Here, let us take a quick look at a small number of biological uses of compartments,
which come in very different sizes
• Storage and homeostasis: Many key compounds of interest to living systems are not externally

supplied in the form or concentration desired, and these conditions may change considerably
over time. Internally, however, concentrations can be controlled and regulated, by making
compartments in which essential compounds can be stored. As an example, glucans are
assembled in specialized compartments to form large polymeric reserves. This polymerization
happens passively, and small sugar moieties can be exchanged selectively[7]. The dynamic
equilibrium that ensues allows to retrieve sugar monomers when consumption outpaces
production, and store excess sugar when production is high.
• Protection: an organism inherently has a different chemical composition compared to its

environment, which can contain many toxic species or other inhospitable conditions. Con-
trolled exchange via pores, transport proteins and other machinery helps to keep some of
these risks at bay. Particular environments may be too inhospitable, a situation for which
some organisms have devised cryptobiotic strategies. In cryptobiosis, an organism enters
a state where metabolic processes are halted and a dormant state is entered. This happens
notably during dessiccation, and cryptobiosis is often accompanied by a contraction of shape
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and the introduction of an extra layer of insulation, such as akinetes (e.g. in cyanobacteria),
or cysts made out of chitin (e.g. rotifers) [8].
• Separating incompatible chemistries: within a cell, different chemical processes need to

be performed that can strongly interfere with each other, or have orthogonal requirements
for their chemical environments. Bacteria performing the anammox (anaerobic ammonium
oxidation) have specialized compartments where the overall conversion

NH +
4 +NO −

2 → N2 +2H2O (8.2)

powers the metabolism by the creation of a proton gradient. To maintain this gradient, and to
keep toxic intermediates like hydrazine contained[9], the compartment is sealed off with a
mix of highly specialized ladderane lipids, which let protons leak through around 10 times
slower than regular lipids. Plant nodules are an example where compartments can be used
to induce cooperation. In these nodules, nitrogen fixating bacteria are protected from the
high oxygen levels of air, which destroy their fragile nitrogenase machinery used to fixate
nitrogen, in an overall reaction that is often written as[10]:

N2 +16ATP+8e−+8H+ −−→ NH3 +H2 +16ADP+16Pi (8.3)

In fact, these bacteria do require minute amounts of oxygen, which is supplied and buffered at
low concentration by the Leghemoglobin enzyme. The plant also supplies energy in the form
of sugars, and notably receives fixated nitrogen species in exchange. Another macroscopic
example can be found in the bombardier beetle[11], which has separate glands producing
H2O2 and hydroquinone (C6H4O2). The beetle derives its name from its capacity to inject
these reactive chemicals in a compartment supplied with catalyst, to rapidly perform the
highly exothermic reaction

C6H4O2 +H2O2 −−→ C6H6O2 +H2O, (8.4)

the released heat evaporates the reaction mixture, generating a gas pressure used to propel a
hot mix of noxious chemicals at predators.

Compartments in Origins of Life
The large number of organelles, vesicles and coacervates found in living systems are a testament
to the successful exploitation of compartments on various scales. In the context of the origins of
life, compartments have been considered as important ever since Oparin[12], notably as a means to
locally concentrate the necessary prebiotic chemicals to high enough concentrations. Coacervates
of peptides and RNA are now actively being explored [13, 14] in origins of life and are increasingly
being proposed in prebiotic scenarios. Many other compartments have been advanced, such as rock
pores[15], aerosols[16], lipid vesicles [17, 18, 19], mica sheets [20], FeS compartments [21] and
mineral surfaces [22, 23] to name but a few.

Another key feature of compartmentalization, and the main object of this chapter, is the
formation of a separate chemical collective. Such a higher order organization can be identified as a
discrete entity on the compartment level. When compartments can show a difference in their rates
of survival or reproductive success, a layer of selection is introduced that is absent in bulk chemistry.
Such extra layer of selection provides an evolutionary platform that can stabilize coexistence and
cooperation[24, 25] on lower levels, thereby maintaining states that would not survive in bulk.

When thinking of compartments and multilevel selection in origins of life, we tend to consider
replicating entities akin to protocells. In the rest of this chapter, we will explore what happens
if we relax this assumption, by having chemical collectives be encapsulated and released by the
environment instead. In this picture, there is still multilevel selection, but discrete compartment-
level states do not propagate themselves directly.
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8.1.3 Mechanisms with compartments

In 1965, Spiegelman showed experimentally that RNA could be replicated by an enzyme called
Qβ RNA replicase, in the presence of free nucleotides and salt[26]. Interestingly, he noticed that
as the process is repeated, shorter and shorter RNA polymers appear, which he called parasites.
Typically, these parasites are nonfunctional molecules that replicate faster than the RNA polymers
introduced at the beginning of the experiment and that for this reason tend to dominate. Eventually,
a polymer of only 218 bases remained out of the original chain of 4500 bases, which became known
as Spiegelman’s monster.

In 1971, Eigen conceptualized this observation by showing that for a given accuracy of repli-
cation and relative fitness of parasites, there is a maximal genome length that can be maintained
without errors [27]. To improve the accuracy of replication, however, would require having a
functional replicase and/or error-correcting machinery. These are, to the best of our knowledge,
long (argued to be >200 nt for RNA, if they exist) species with specific sequences, which would
imply that such species only becomes viable above a certain threshold length.

This result leads to an interesting paradox: functional, viable replicators need to be copied
with high accuracy, which requires them to be long and with sufficient machinery to be accurate.
However, an evolutionary trajectory to acquire these capacities would already need that large degree
of accuracy.

This paradox and the associated error catastrophe due to parasites are now considered to be key
aspects[25, 28] of Origins of life research∗

In the eighties, an instructive theoretical solution to the parasite problem was proposed in
the form of the Stochastic corrector model, [24, 29] (see Fig 8.1) inspired by ideas of group
selection [30]. In the Stochastic corrector model, small groups of replicating molecules grow in
a deterministic way in compartments, to a fixed final size called the carrying capacity. Then, the
compartments are divided, and their content are stochastically partitioned between two daughter
compartments (in principle, the number of daughters can be varied).

Thanks to the variability introduced by this stochastic division, and to selection acting on
compartments, a coexistence is possible between replicators and parasites despite the difference in
their growth rates. The Stochastic corrector has also been considered to explain other evolutionary
processes, for example the emergence of large chromosomes at the expense of smaller genomes[25].

The efficiency of the stochastic corrector mechanism depends critically on the noise in the
inoculation, which is controlled by the carrying capacity. If the carrying capacity is large, the final
size before division is large. When division happens, fluctuations will be very small, and growth
will be essentially deterministic, leaving no variation for group selection to act on. On the other
end, if the final size is too small, division leads to giant fluctuations in the composition of offspring.
Frequently, this will lead to random loss of replicators and compositions that hamper survival [29].

Ultimately, if too small a fraction of daughter cells is viable, the dividing compartments
go extinct. If division yields, on average, n daughter cells, more than 1/n should survive, and
subsequently grow in size by a factor n. In the particular instance that n = 2, at least half of the
compartments need to be viable. This seemingly trivial fact is in fact an important consequence of
permanent encapsulation, which binds the fate of a compartment to its contents, and vice versa. It
paves the way for multilevel selection and the propagation of successful lineages, a prerequisite for
much of the options that evolution has to offer.

It is instructive to note that we are here interested in the selection mechanism of the stochastic
corrector, not its exact replication chemistry. Various instances of the GARD model [31, 32, 19]

∗Note that the issue of Eigen’s paradox is only a key question if such a situation occurred in the first place. It can
equally well be thought of as a thought experiment that demonstrates the absurdity of this situation, and a motivation
to find an alternative trajectory. Eigen’s error catastrophe, on the other hand, can be considered as a more universal
problem.
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Figure 8.1: A sketch of a) the stochastic corrector model, b) transient compartmentalization. Both
exhibit growth, selection and noisy inoculation of new compartments.

can have this division mechanism as well. In amphiphile-GARD, often taken as synonymous for
GARD, the replication of its components relies on cross-catalytic incorporation, whereas in the
stochastic corrector template replication is the mechanism of choice [33]. We hope that separate
terminology will be proposed that generalize this phenomenon, at present we will simply refer to
the growth-stochastic division-selection cycle as a stochastic corrector, irrespective of its chemistry.

A recently proposed mechanism, transient compartmentalization[34], is similar in spirit to the
stochastic corrector, with the twist that compartments are destroyed after one round. Transient
compartmentalization is schematically depicted in Fig. 8.1. It shares some important features with
the Stochastic corrector[24] model: there is noise in the inoculation step in which molecules from
a large pool are used to seed compartments, followed by growth. Then, selection is performed
on a compartment level. The essential difference comes with the mixing step, where the selected
compartments are removed and their contents mixed up, e.g. because of a process in the environment
with a characteristic timescale τcyc that sets the cycle frequency. It can also be an experimentally
controlled parameter, as was the case in the pioneering experiments[34] that inspired this chapter.

When replicating molecules are freed from their compartments, molecular replication is no
longer constrained by a cell cycle, which means copy numbers can be much larger (or smaller)
than double their initial number. Indeed, in Ref. [34], initial populations of RNA polymers were
of size n = O(1), which subsequently grew to N = O(106) copies. As long as the environment
supplies transient compartments, only a fraction larger than n/N needs to survive longer than τcyc

to maintain the population of replicating molecules. If the success of a compartment depends on its
contents (like for the stochastic corrector), group selection can act on transient compartments.

The composition of a compartment can enhance its reproductive success. For example some
compounds may stabilize a compartment (e.g. amino acids can stabilize lipid vesicles [35]),
chelate degradative catalysts (e.g. Mg2+ ions), buffer a desired chemical environment or improve
the influx of metabolites[36] (see also Sec. 5.4). The reverse can also be true: compounds
may destabilize a compartment, degrade metabolites, catalyze harmful side reactions, harness all
replication machinery and so forth. While this may lead to rich and complex phenomena, the effect
on survival can often be encoded by a low-dimensional composition-dependent fitness function
f (x̄). By deriving general results for large classes of fitness functions, we can learn something about
a large variety of scenarios. Another example of a study with general implications on transient
compartmentalization, quantified co-encapsulation effects in the context of directed evolution
experiments [37].

Transient compartmentalization is a mode of multilevel selection that captures several mecha-
nisms proposed in scenarios for the origins of life, based on various types of compartments (e.g.
lipid vesicles [38], pores [39, 40], inorganic compartments [41], coacervates [12, 42] or aerosols
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[16]) or various protocols of transient compartmentalization [43, 44]. Of particular interest here is
a recent experiment, in which small droplets containing RNA in a microfluidic device [34] were
used as compartments. In this experiment, a catalytic RNA was used as a proxy for a functional
species/ functional replicator in competition with a nonactive parasite. We have used this system as
a model to illustrate the theory of transient compartmentalization[4].

The related issue of cooperation between producers and non-producers has been discussed
before [45]. Spatial clustering can lead to similar effects as compartmentalization in favoring the
survival of cooperating replicators [46, 47]. These ideas were combined in a recent study of a
population of individuals growing in a large number of compartmentalized habitats, called demes
[48].

Simpler cells and plausibility

Overcoming error catastrophes has been an important motivation for studying compartment models,
but the utility of these models goes well beyond this problem: they describe the foundations of
multilevel selection. In formulating prebiotic scenarios and a synthesis of chemical evolution,
multilevel selection can be expected to fulfill a major role. Although traditionally these approaches
have focused on RNA replicase scenarios, the mathematical frameworks can also be extended to
other systems, as is exemplified by GARD.

The true merit of the stochastic corrector and transient compartmentalization is that these
models show interesting things about a ubiquitous unit in biology: the cell. Many of the character-
istic properties of a cell derive from sophisticated machinery. Whether early compartmentalized
replicators or protocells had all those properties is far from obvious.

Most eukaryotic cells partition their chromosomes among daughters. This property is facilitated
by mitotic spindles. A machinery employed by some bacteria involves the placement of a septum
in the middle of the cell, with a positioning informed by chemical gradients. This ensures that each
daughter receives one of two circular DNAs. The stochastic corrector demonstrates that such a
machinery, or indeed such a partitioning property, may not have been required from the start[25].
Their absence, however, introduces compositional noise that strongly affects the tolerated selection
pressures and overall survival. This compositional noise is a key ingredient in the evolutionary
tradeoffs that a stochastic corrector faces[29].

Ideally, a prebiotic scenario would allow to conceptualize most of chemical evolution as a
sequence of gradual steps. A sudden transition from e.g. naked genes[33] on a surface [49] to
encapsulated genes in dividing compartments is in this sense quite dramatic. Cell division requires
machinery or mechanisms, which may not have been there from the start (but see Ref.[50] for an
elegant proposal). In additions, the vesicles that are often proposed as protocells are impermeable
to the biomonomers (nucleotides, amino acids)[36, 51] that accompany such a scenario.

As a selection mechanism, it is very primitive compared to the stochastic corrector. Its use
is to enrich the pool in compounds that would replicate poorly in bulk. If those compounds are
copolymers with particular subsets of sequences (‘quasispecies’), such a mechanism can maintain
sequence information. The mixing step, however, precludes the existence of lineages, and erases
the information associated with the compartment composition. This is a key distinction with respect
to e.g. GARD or the stochastic corrector, which transmit their composome to the next generation.

This absence of composome transmission is compensated by the simplicity of the mechanism.
This simplicity requires less from the chemistry and the environment, making the mechanism
a plausible and general stepping stone towards the development of more sophisticated selection
mechanisms. In this sense, transient compartmentalization may have preceded cell-division†.

†Or it may not, a mechanism is not a proof, especially when other interesting mechanisms[52, 53] can be imagined.
See also Ch.9 for a complementary perspective: there can plausibly be a multitude of multilevel mechanisms operating
simultaneously.
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8.2 Transient Compartmentalization
Let us now introduce more formally the transient compartmentalization model for general replicat-
ing molecules in compartments exploiting a common resource. We start from a pool of molecules,
which contains a large number of two types of replicating molecules, which we call for simplicity
A and B. Let the fraction of A molecules in this pool be x. These molecules then seed a large
number of compartments, which is considered to be infinite. A given compartment will contain n
replicating molecules, out of which m will be of A type and the remaining ones of B type. Since
this number is small in comparison with the number of molecules of the initial pool, n is a random
variable drawn from a Poisson distribution of parameter λ , while the number m follows a binomial
distribution Bm(n,x). The resulting probability distribution for seeded compartments is then

Pλ (n,m,x) = Poisson(λ ,n)Bm(n,x). (8.5)

The replicating molecules A and B are involved in separate autocatalytic cycles, exploiting a
common resource C, yielding the simplified overall reactions

A+C
ggg1−−⇀↽−−−ggg1

2A+D, (8.6)

B+C
ggg2−−⇀↽−−−ggg2

2B+F, (8.7)

where D and F are product molecules. In principle, we can add other resources and products and
change the stoichiometry as long as we suppose C to be limiting and to reproduce autocatalytically.
Any necessary non-replicating molecules and catalysts are assumed to be present in sufficiently
large numbers in the compartments.

After seeding, the numbers of A molecules, m, and of B molecules, y, grow exponentially and
independently so that

m̄ = meαT , (8.8)

ȳ = (n−m)eγT , (8.9)

with T (m,n) the time which marks the end of the exponential growth phase, m̄ the number of A
molecules and ȳ the number of B molecules at time T . The autocatalytic reactions of Eq. (8.6)
eventually slow down, e.g. due to the exhaustion of a common resource C, or due to the saturation
of nonreplicating catalytic sites.

For simplicity, let us assume that the growth phase ends when N = m̄+ ȳ, where N is the same
constant for all compartments. Now, the final composition at this end time T is mainly controlled by
the ratio Λ = e(γ−α)T . Here, we do not describe the saturation which could be done more precisely
using the notion of carrying capacity [54]. In that case, the growth would be described by logistic
equations and the carrying capacity would be equal to N. Note that N can be many times larger
than n, due to the absence of a division step (which would impose N ≈ 2n). This means that a
smaller fraction (at least n/N) of compartments is enough to carry the functional molecules to the
next generation. For a dividing cell, on average at least half of its daughter compartments must
survive to avoid extinction of the population.

The fraction of A molecules at the end of growth phase can be well approximated as

x̄(n,m) =
m̄
N

=
m

nΛ− (Λ−1)m
. (8.10)

If B grows faster, we have γ > α , and thus Λ > 1, which is the regime considered in Ref. [4]. In
Sec 8.3, we also consider regimes in which γ < α .

We now implement selection at the compartment level. Selection can in general be described
by a selection function f (x̄)≥ 0. In our work, we have assumed that the selection function only
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depends on the final composition x̄ of the compartment. A natural choice for f is a monotonically
increasing function of x̄. As an example, we will use the sigmoidal function

f (x̄) = 0.5
(

1+ tanh
(

x̄− xth

xw

))
, (8.11)

where xth and xw are dimensionless parameters, which describe respectively a threshold in the
composition and the steepness of the function.

The compartments which have passed the selection step are then pooled together, forming a new
pool of molecules from which future compartments can be seeded. The fraction of A molecules, x′

of this new ensemble is the average of x̄ among the selected compartments

x′ =
〈x̄ f (x̄)〉
〈 f (x̄〉)

, (8.12)

which is equivalent‡ to

x′(λ ,x) =
∑n,m x̄(n,m) f (x̄(n,m))Pλ (n,x,m)

∑n,m f (x̄(n,m))Pλ (n,x,m)
. (8.13)

The transient compartmentalization cycle is then repeated, starting with the seeding of new compart-
ments from that pool of composition x′. The formula Eq. (8.13) can be generalized to compartments
with different final population sizes, by replacing the selection function with a modified selection
function f ′. Having N be the typical final size, we have for a compartment of final size N′ the
function

f ′(x̄) =
N′

N
f (x̄). (8.14)

Upon repetition of the protocol, the pool composition typically converges to a fixed point x∗,
which is a solution of

x = x′(λ ,x). (8.15)

The stability of the fixed point x∗ changes when

dx′

dx

∣∣∣∣
x=x∗

= 1. (8.16)

It is implicitly assumed that x′(x) is a sufficiently smooth function of x for this derivative to be
defined.

8.2.1 Application to ribozyme-parasite dynamics
The above model has been introduced in Ref. [4] to describe replication of RNA ribozymes (resp.
parasites) in compartments, which play the role of the A molecules (resp. B molecules). In this
case, in addition to the replicating molecules, a large amount of Qβ replication enzymes nQβ and
activated nucleotides nu (serving as C molecules) is supplied in each compartment with the same
concentration in each compartment. At the end of this growth phase, we have nQβ ≈ N = m̄+ ȳ,
at which point further growth is limited by the number of replication enzymes. After time T , the

‡Of course, a fixed λ is not generally appropriate, and a more general model should consider a recursion for λ ′ too.
This extension has been explored in Ref[6]. We can consider a fixed λ to arise from e.g. a carrying capacity in the
mixed pool, a dilution, osmotic equilibration or some other restoring force, or simply suppose that it changes slowly.
Alternatively, we may simply hope that we still learn something if we neglect this contribution.
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growth will be linear instead of exponential. At that point, the composition x (defined by the relative
fraction of ribozymes) no longer changes. The average number m̄ of ribozymes and ȳ of parasites
grow according to

m̄ = mexp(αT ),

ȳ = (n−m)exp(γT ),
(8.17)

where T denotes the time and α (resp. γ) denote the average growth rate of the ribozymes (resp.
parasites) during this exponential growth phase§. The relevant quantity for this dynamics is the
ratio of the number of daughters of one parasite molecule and that of the daughters of one ribozyme
molecule: Λ = exp((γ−α)T )). Note that Λ > 1 since γ > α .

The compartments are then selected according to a selection function f (x̄)≥ 0. In Ref. [34],
a measurement of the synthesis of a dye molecule by photodetection was used to accept or reject
compartments. This selection served as a proxy for a more general fitness effect due to catalytically
active RNA. A specific form which is compatible with [34] is the sigmoid function given by Eq.
(8.11) with xth = 0.25 and xw = 0.1.

Note that this function takes a small but non-zero value for x̄= 0, namely 0.5(1−tanh(xth/xw))=
0.0067, which represents the fitness of a pure parasite compartment. As a comparison with this
function and Ref.[55], we also studied a linear selection function with the same starting point

flin(x̄) = 0.0067+ x̄. (8.18)

Dynamical and asymptotic behavior

Instead of finding the steady state value of x, it is easier to evaluate ∆x = x′(λ ,x)−x as a function of
λ , which shows how the composition evolves over one round. The steady-state value corresponds
to the line ∆x = 0 separating negative values above from positive values below as shown in Fig. 8.4.

Figure 8.2: Contour plots of ∆x for four values of Λ = 1,2.5,4 and 1000 in the plane (x,λ ), with
red (resp. blue) regions corresponding to ∆x > 0 (resp. ∆x < 0).

§The exact time T at which a compartment enters the linear regime depends on its initial composition m,n. In practice,
we are often interested in N� m,n, where this dependence has a small effect on the results of the model, such that we
can use the same value of ΛΛΛ for all compartments, as demonstrated in detail in the Suppl. Mat. of Ref.[4].
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Figure 8.3: Left: Phase diagram of the transient compartmentalization dynamics with the linear
selection function flin(x̄) = 0.0067+ x̄ in the (λ ,Λ) plane. Right: idem with the sigmoidal selection
function f (x̄). Phases are R: pure Ribozyme, B: Bistable, C: Coexistence and P: pure Parasite.

We construct a phase diagram in the (λ ,Λ) plane, by numerically evaluating the bounds of
stability of the fixed point x = 0 from the condition:

∂x′

∂x

∣∣∣∣
x=0

= 1, (8.19)

and similarly for the other fixed point x = 1. In Fig. 8.3, a phase diagram is plotted for both f (x̄)
and flin(x̄) The phase diagram shows four distinct phases. In the orange (resp. light blue P region)
region R, the only stable fixed point is x = 1 (resp. x = 0). In the green region, x = 0 and x = 1
are both stable fixed points. The system converges towards one fixed point or the other depending
on the initial condition: for this reason, we call this region B for bistable. In the violet region,
x = 0 and x = 1 are both unstable fixed points, but there exists a third stable fixed point x∗ with
0 < x∗ < 1. We call this a coexistence region (C). All of these phases can be seen in Fig. 8.4.

The phase diagram is limited to four phases, because it is based on the evaluation of the stability
of two fixed points. Where it is implicitly assumed that we will have at most three fixed points at
the same time. This was found to be almost entirely valid, but small regions of the λ ,Λ plane were
found to have four fixed points, as shown in Fig. 8.4

Interestingly, the phase diagram for the linear function is very similar to the one for the
sigmoidal function. This is a general feature which we will exploit on multiple occasions, and it
follows from the asymptotes of the selection function. To this end, let us analyze some specific
limits for which the asymptotes of the phase diagram can be computed exactly. Let us consider
• λ � 1: bulk behavior
• Λ� 1: hard parasites
• Λ close to 1: soft parasites
For large λ , we can neglect the fluctuations of n, i.e. the total number of replicating molecules

(ribozymes plus parasites) in the seeded compartment. Indeed, n is Poisson distributed with
parameter λ , therefore Var(n)/λ 2 = 1/λ � 1. For large λ , Λ close to 1 and x close to 1 (resp. 0),
the most abundant compartments verify m = n or m = n−1 (resp. m = 0 or m = 1). By considering
only these compartments in the recursion relation, one finds that the condition of stability of the
fixed point x = 0 leads to

Λ = 1+
f ′(0)
f (0)λ

+O
( 1

λ 2

)
, (8.20)
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Figure 8.4: Contour plots of ∆x vs. x for Λ = 4 in the plane (x,λ ). Inset shows a blow-up of the
region near λ = 8, which exhibits features of both the bistable and coexistence regions.

for an arbitrary selection function and Λ' 1+19.86/λ for the selection function of Eq. ((8.11)).
This equation indeed characterizes the separation between the parasite and coexistence regime at
large λ in Fig. 8.3. A similar equation is found for the fixed point at x = 1

Λ = 1+
f ′(1)
f (1)λ

+O
( 1

λ 2

)
, (8.21)

yielding Λ' 1+6.1210−6/λ for this selection function for the separation between ribozyme and
coexistence regions. For Λ close enough to 1, we have a ribozyme phase. The asymptotes given by
(8.20) and (8.21) border the coexistence region in Fig. 8.3. This supports the observation that soft
parasites can coexist with ribozymes.

Let us now study the hard parasite limit, namely Λ� 1, and finite λ . In this regime, we only
need to consider three types of compartments: compartments made of pure ribozymes, such that
m = n 6= 0, compartments containing parasites, and empty compartments, i.e. such that n = 0. One
can introduce three inoculation probabilities for these cases pribo, ppara, and pzero. Using Eq. (8.5),
one finds

pribo =
∞

∑
n=1

xnλ n

n!
e−λ = (eλx−1)e−λ , (8.22)

pzero = e−λ , (8.23)

ppara = 1− pribo− pzero = 1− eλ (x−1). (8.24)

Let us assume that in compartments containing parasites, the parasites will overwhelm the ribozymes
x→ 0. Inserting these values in (8.13), we find

x′ =
pribo f (1)

pribo f (1)+ ppara f (0)
. (8.25)

Evaluating the fixed-point stability of x = 1 using (8.19), we find that the boundary value of λ

satisfies

λ f (0)eλ = (eλ −1) f (1), (8.26)
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for an arbitrary selection function. A similar calculation at the fixed point x = 0 leads to the other
vertical separation line given by

λ f (1) = (eλ −1) f (0). (8.27)

The solution of Eq. (8.26) (resp. Eq. (8.27)) is λ ' 149.41 (resp. λ ' 6.95) which compare well
with the vertical separation lines in Fig. 8.3.

Let us now consider what happens in the limit λ → ∞. For large λ , for Λ close to 1 and x
close to 1 (resp. 0), the most abundant compartments verify m = n or m = n−1 (resp. m = 0 or
m = 1). As λ is large, we can neglect fluctuations in n and we can take n = λ . We therefore
only look at the recursion for a typical compartment with n = λ , with a simplified notation
Pλ (n = λ ,x,m) = Pλ (x,m), where

Pλ (x,m) = Bm(λ ,x), (8.28)

obtaining

x′ =
f (1)Pλ (x,λ )+ x̄Pλ (x,λ −1) f (x̄)
f (1)Pλ (x,λ )+Pλ (x,λ −1) f (x̄)

, (8.29)

where

x̄ = x̄(λ ,λ −1) =
λ −1

λ +Λ−1
' 1− Λ

λ
. (8.30)

We have therefore

x′ =
xλ f (1)+λxλ−1(1− x)x̄ f (x̄)

xλ f (1)+λxλ−1 f (x̄)
=

x f (1)+λ (1− x)x̄ f (x̄)
x f (1)+λ (1− x) f (x̄)

. (8.31)

Taking the derivative with respect to x we obtain

dx′

dx
=

λ (1− x̄) f (1) f (x̄)
(x f (1)+λ (1− x) f (x̄))2 , (8.32)

which for x = 1 yields

dx′

dx

∣∣∣∣
x=1

=
λ (1− x̄) f (x̄)

f (1)
. (8.33)

Thus the boundary defined by the equation

dx′

dx

∣∣∣∣
x=1

= 1, (8.34)

is given by

Λ' 1+
f ′(1)
f (1)λ

= 1+6.1210−6/λ . (8.35)

Evaluating the stability around the fixed point x = 0 we obtain likewise

x′ =
λx(1− x)λ−1x̄ f (x̄)

(1− x)λ f (0)+λx(1− x)λ−1 f (x̄)
=

λxx̄ f (x̄)
(1− x) f (0)+λx f (x̄)

, (8.36)

where now x̄ is given by

x̄ = x̄(λ ,1) =
1

(λ −1)Λ+1
' 1

Λλ
. (8.37)
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Evaluating the derivative of x′(x) at x = 0 we obtain

dx′

dx

∣∣∣∣
x=0

=
λ x̄ f (x̄)

f (0)
. (8.38)

This gives the boundary as

Λ = 1+
f ′(0)
f (0)λ

= 1+19.8661/λ . (8.39)

In ref. [34] a comparison was made of the system behavior as a function of the number of
selection rounds in three possible protocols: (i) No compartments (bulk behavior), (ii) compartments
with no selection, (iii) compartments with selection. Such a comparison based on our theoretical
model is shown in Fig. 8.5 for parameter values corresponding to the coexistence region of Fig. 8.3.
As expected, the fraction of ribozymes decreases towards zero rapidly in case (i), and somewhat
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Figure 8.5: Evolution of the average ribozyme fraction x as function of the number of rounds for the
three protocols, namely (i) No compartments (bulk behavior), (ii) compartments with no selection,
(iii) compartments with selection. We choose λ = 5 and Λ = 10, corresponding to the coexistence
region of Fig. 8.3.

less quickly in case (ii). Only in case (iii) is it possible to maintain a non-zero ribozyme fraction on
long times. It is indeed observed that the ribozyme fraction eventually vanishes for protocols (i)
and (ii) in the experiment of Ref. [34]. In case (iii), a stabilizing decrease of the ribozyme fraction
towards coexistence is observed, which confirms the prediction in Ref. [34], where such a tendency
was observed, but could be monitored for 10 rounds. In figure 8.6 we show the behavior of the
distribution of the ribozyme fraction after the growth phase, i.e. x̄(n,m) (defined in Eq. (8.44)) as a
function of round number. The parameters are Λ = 5 and λ = 10, corresponding to the parasite
region, where the final state of the system is x = 0, and the initial condition is x = 0.999. Note that
the distribution of x̄(n,m) is discrete, since many values are not accessible in the allowed range of
n and m. At t = 0, it exhibits a sharp peak near x̄ = 1 coexisting with a broad peak at small values
of x̄. As time proceeds, the weight of the distribution shifts to the peak at small values of x̄, since in
this case selection is not sufficiently strong to favor the peak near x̄ = 1 and parasites eventually
take over.

Comparison to experiments
In addition to predicting the phase diagram associated with the long-time compositions reached
by this transient compartmentalization dynamics, our theoretical model makes also predictions
regarding the evolution of the ribozyme fraction as function of the round number, i.e. the number
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Figure 8.6: Evolution of the distributions of ribozyme fraction x̄(n,m) before and after selection at
different times. The chosen times are shown as red circles in the lower right panel, which represents
the evolution of the average fraction x as a function of the number of selection rounds.

Type Length (nt) 2 Td(s) Relative r Λ

Ribozyme 362 25.0 1.00 1
Parasite 1 245 20.7 1.21 13
Parasite 2 223 17.1 1.46 107
Parasite 3 129 14.6 1.71 473

Table 8.1: Lengths and doubling times for the parasites and ribozyme observed in Ref. [34], together
with their relative aggressivity mesured by their relative growth rate r, and the corresponding values
of Λ.

of completed cycles of compartmentalization. The model correctly reproduces that this fraction
quickly goes to zero as function of the round number in bulk, less quickly with compartmentalization
and no selection and even less quickly in the case of compartmentalization with selection. In the
latter case, a finite fraction can be maintained for an infinite number of rounds provided λ is
sufficiently small, corresponding to the coexistence region of the phase diagram.

In order to compare precisely the predictions of the model to the experiments of Ref. [34], it
is important to know the value of key parameters such as Λ. Table 8.1 reports the experimental
parameters measured in Ref. [34] for the ribozyme and three different parasites. The nucleotide
length, its doubling time (Td), its relative replication rate (r) from which we infer Λ in the final
column. The doubling time Td for the ribozyme is related to the growth rate α by Td = ln(2)/α ,
and similarly the doubling times of the parasites is Td = ln(2)/γ .

In the experiment, a typical compartment contains λ RNA molecules that can be ribozymes or
parasites, 2.6 ·106 molecules of Qβ replicase, and 1.0 ·1010 molecules of each NTP. Replication
takes place by complexation of RNA with Qβ replicase, which uses NTPs to make a complementary
copy. This copy is then itself replicated to reproduce the original. There is a large amount of
nucleotides, so that exponential growth of the target RNA proceeds until N ≈ nQβ . This large
quantity of enzymes also means that in practice, the noise due to fluctuations in the number of
enzymes should be very small. Starting from a single molecule, it takes nD = log2 nQβ = 21.4
doubling times to reach this regime. In a parasite-ribozyme mixture, we can estimate Λ using the
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relative r:

Λ =
2nD

2nD/r = 2nD(1− 1
r ). (8.40)

8.3 A modified model with deterministic mutations
In the deterministic model, we assume that a fraction µ of replicated ribozyme strands mutate into
parasites. Thus, the equations describing the evolution of m and y in the growth phase assumes the
form

ṁ = αm−µm = (α−µ)m (8.41)

ẏ = γy+µm,

which yields for the first equation

m̄ = me(α−µ)T , (8.42)

where m̄ is again the number of ribozymes at the end of the growth phase and m the value at the
initial time. Now substituting Eq. (8.42) into the equation for y, one finds

ȳ =
(

n−m+µm
e(α−γ−µ)T −1

α−µ− γ

)
eγT . (8.43)

The ratio between the number of daughters of one parasite molecule and the number of daughters
of a ribozyme molecule is now renormalized by the rate µ : Λ̄ = e(γ+µ−α)T = eµT Λ, where Λ is the
relative growth of parasites introduced previously in the mutation-free model.

The fraction of ribozymes at the end of the exponential phase is now given by

x̄(n,m) =
m̄
N

=
m

nΛ̄− (Λ̄−1)(1+δ )m
, (8.44)

where δ = µ/(α − µ − γ). We call δ the mutation ratio, which is a dimensionless measure of
mutation versus relative growth (competition). When δ → 0, we recover the mutation-free model,
if |δ | � 0 mutations become dominant.

Selected compartments are then pooled together, and the new average fraction of ribozymes
becomes x′(x,λ ,δ , Λ̄). Note that for nonzero mutation rate (µ > 0), x′ = 1 ceases to be a fixed
point in this deterministic approach, since parasites will always appear at sufficiently long times.
Therefore, the pure ribozyme (R) phase is no longer present in the phase diagram of fig. 8.7.

The fixed point x′ = 0 however is still present. If this fixed point is stable, we have a pure
parasite phase. If it is unstable, there is stable coexistence at a fixed composition. If more fixed
points appear, multiple stable compositions are in principle be possible.

8.3.1 The prolific parasites regime (Λ̄≥ 1)
Prolific parasites have a better bulk reproductive success than ribozymes, when Λ̄≥ 1, which is
equivalent to α ≤ µ + γ and δ < 0. In a mutation-free model, this would imply necessarily a faster
growth of parasites (α < γ), but in the present case, we could also allow for slower parasites as
compared to ribozymes (i.e. α > γ), provided parasites are aided by a sufficiently high mutation
rate µ .

The phase diagram is evaluated by testing the stability of the fixed point x′ = 0. We find an
asymptote behaving like 1/λ for large λ , and plateaus for small λ . The ends of these plateaus
locate in the limit δ → 0 at the position of the vertical line separating the ribozyme and bistable
phase in the original phase diagram.
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Figure 8.7: Phase diagram of the model with mutation in the case of prolific parasites. The selection
function is given in Eq. (8.11). Phases are colored for δ =−0.05, other separatrices are plotted for
various mutation strengths δ . The possible phases are coexistence (C), pure parasite (P).

Let us first derive the right asymptote in the λ � 1 limit. In this limit, we evaluate x′ by
considering compartments of size λ

x′ =
λxx̄ f (x̄)

(1− x) f (0)+λx f (x̄)
. (8.45)

The fixed point stability condition dx′/dx|x=0 = 1 leads to

dx′

dx

∣∣∣∣
x=0

=
λ x̄ f (x̄)

f (0)
. (8.46)

Upon substituting Eq. (8.44) evaluated at m = 1,n = λ and approximating f (x̄)≈ f (0)+ f ′(0)x̄,
(for λ � 1, x̄� 1) we find a quadratic equation for Λ̄, whose only physical solution (Λ̄≥ 1) is

Λ̄ =

λ −2δ −2+
√

λ

(
4 f ′(0)

f (0) +λ

)
2(λ −δ −1)

. (8.47)

Since we consider monotonically increasing selection functions, f ′(0)> 0. For λ �−δ , we find

Λ̄ = 1+
f ′(0)

f (0)(λ −δ −1)
≈ 1+

f ′(0)
f (0)λ

, (8.48)

which is the same expression as the one found in the mutation-free phase diagram [4]. This explains
why there is a single asymptote as µ is varied in the λ � 1 limit.

The plateaus extend to very low values of λ . We can find their location by considering only
compartments of size n = 1. In that case, the final compositions can be x̄(1,0) = 0 or

x̄(1,1) =
1

1+δ −δ Λ̄
. (8.49)
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Figure 8.8: Phase diagram in absence of selection function for prolific ribozymes (Λ̄≤ 1). Phases
are colored for δ = 0.05, separatrices are plotted for various mutation strengths δ . C: coexistence,
P: pure parasite.

We then have for the composition recursion

x′ =
xx̄ f (x̄)

(1− x) f (0)+ x f (x̄)
. (8.50)

Evaluating the derivative of x′(x), we find

x̄ f (x̄)
f (0)

= 1. (8.51)

Substituting (8.49), we find that the location of plateaus obeys the implicit equation

Λ̄ = 1+
f (0)− f (x̄)

f (0)δ
. (8.52)

8.3.2 The prolific ribozymes regime (Λ̄≤ 1)
We now consider the opposite case where parasites are less prolific than ribozymes. This means
α ≥ µ + γ and is equivalent to Λ̄ ≤ 1,δ > 0. This implies that α > γ (less aggressive parasites)
and is reminiscent of a quasipecies scenario in which a fit ribozyme successfully outcompetes its
parasites in bulk [27]. Since this can already happen in the absence of selection, we consider here
the case where there is no selection, i.e. f (x̄) = 1.

To analyze this regime we again assess the fixed point stability of x′ = 0. We locate numerically
the separatrix as shown in Fig 8.8. We obtain separatrices that for Λ̄→ 0 tend to a fixed value of λ .

Let us start by observing that when Λ̄→ 0, there are only two final compartment compositions
for nonempty compartments: x̄(n,0) = 0 or x̄(n,m) = 1/(1+δ ) for m > 0. We can now distinguish
between three initial compartment compositions: (i) only parasites, (ii) no parasites, no ribozymes,
and (iii) containing at least one ribozyme. Their associated seeding probabilities are:

ppara =
∞

∑
n=1

(1− x)nλ n

n!
e−λ = (eλ (1−x)−1)e−λ

pzero = e−λ (8.53)

pribo = 1− ppara− pzero = 1− e−λx



290 Chapter 8. Transient compartments

In that case, we can write the composition recursion equation as

x′ =
1

1+δ

pribo

ppara + pribo
, (8.54)

The condition dx′/dx|x=0 = 1 yields the expression

λ = (1+δ )(1− e−λ ), (8.55)

for the asymptote. For λ � 1, we can expand the exponential in (8.55), to obtain

λ =
2δ

1+δ
, (8.56)

which agrees very well with Fig 8.8.
Notice that here the coexistence phase is located to the right of the asymptotes, and the parasite

phase to the left, whereas in Fig 8.7 it is the other way around. An intuitive way to understand this
is to consider the limit λ → 0. In this limit, nonempty compartments start with either a parasite or a
ribozyme. The former will grow to a fully parasitic compartment, whereas the latter will contain
ribozymes plus some parasites acquired by mutations. Therefore, at low λ , the ribozyme’s capacity
to outgrow parasites (competition) cannot be exploited, leading to ribozyme extinction.

It is only when ribozymes and parasites are seeded together that the differential growth rate
becomes important, which becomes increasingly likely for higher λ . The phase boundaries in Fig.
8.10 mark the point where enough compartments engage in competition to allow for ribozyme
survival. The mutation strength δ compares mutation rate to competition. When δ → 0, there is
enough competition to ensure coexistence for all λ .

8.3.3 Error catastrophe
An error catastrophe corresponds to a situation where the accumulation of replication errors eventu-
ally causes the disappearance of ribozymes. Since there are only a parasite (P) and a coexistence
phase (C) in the model with mutations, the error catastrophe means that the coexistence region
shrinks at the benefit of the parasite phase as the mutation rate increases. One sees this effect in Fig.
8.10, which corresponds to the prolific parasites regime (Λ̄≥ 1) discussed above. In this figure, we
see a larger coexistence region in the small λ region, because there the compartmentalization is
efficient to purge parasites. As the mutation rate increases however, this region shrinks because the
compartmentalization fails to purge the more numerous parasites.

In Fig. 8.9, a particular example is provided where α and γ are fixed, such that Λ̄ is fixed, and
µ is varied. Since competition is fixed, we have µ ∝ δ . The resulting steady-state value x = x∗

then decreases monotonically with µ , and reaches x = 0 when crossing the phase boundary in Fig
8.10. For small values of λ , this boundary corresponds to the plateau region, for larger values,
this corresponds to the 1/λ asymptote. As can be seen in Fig 8.10, coexistence is stable for much
higher values of the mutation rate µ when the compartment size λ is small. This means that
compartmentalization with selection leads to a relaxed error threshold with respect to the bulk.

The error catastrophe was also studied in the absence of selection and was shown to be in the
prolific ribozymes regime (Λ̄≤ 1). In Fig. 8.11, an example of this case is shown, and there too,
we see that the steady-state value of the ribozyme fraction x∗ decreases as µ is increased, until it
reaches the phase boundary in Fig 8.12. In contrast to Fig. 8.9, where the error threshold decreases
as the size of compartments increases, the trend is just the opposite in Fig. 8.11, which is expected
since the role of ribozymes and parasites are exchanged here as compared to the prolific parasites
regime.

In the prolific parasites regime, Λ̄≤ 1 with selection, it is interesting to recast the error threshold
as a constraint on the length of a polymer to be copied accurately, as done in the original formulation
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a) b)

Figure 8.13: Phase diagram for selection function f (x̄) = 0.1+0.9sin(π x̄), in absence of mutation.
Dotted lines correspond to the phase boundary for λ → 0, in the presence of strong noise and weak
noise (see Sec. 8.4.8).

of the error threshold [27]. Let us introduce the error rate per nucleotide, ε . Then, for a sequence
of length L, we have α−µ = α(1− ε)L. Since ε � 1, it follows from this that µ = αεL. When
α ' γ , we have ln Λ̄ = αεLT . Using Eq. (8.52), we find that the condition to copy the polymer
accurately is

L≤ ln(s)
εαT

, (8.57)

where s = f (x̄)/ f (0) and αT/ ln2 is the number of generations. This criterium has a form similar
to the original error threshold [27], namely

L≤ ln(s′)
ε

, (8.58)

where s′ = α/γ represents the selective superiority of the ribozyme. In our model, the equivalent of
s′ is s which characterizes the compartment selection.

8.3.4 Cooperation
We can also consider a case in which two species, A and B, can cooperate. In such an instance, the
framework remains unchanged. To account for cooperation, (e.g. some metabolic task involving
both species), we can have the selection function take larger values when both species have similar
concentrations. Here, we consider the phase diagram obtained by the symmetric selection function
f (x̄) = 0.1+0.9sin(π x̄), for which we can evaluate the fixed point stability for x = 0 and x = 1,
resulting in Fig. 8.13 By symmetry of the selection function, any stationary system composition
x = x∗ observed for Λ = Λ∗ would have its mirror composition x = 1−x∗ for Λ = 1/Λ∗. for λ � 1,
we recover two asymptotes

Λ = 1+
f ′(0)
f (0)λ

Λ > 1, (8.59)

Λ = 1+
f ′(1)
f (1)λ

Λ < 1. (8.60)

where we note that f ′(0) =− f ′(1) for our choice of selection function. For the parasite scenario,
we had f ′(0), f ′(1)> 0. For cooperation, we also find a plateau for λ � 1. In this regime, most
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compartments start out empty (p0 = e−λ ), some with one strand (p1 = e−λ λ , and a small fraction
with two (p2 = e−λ λ 2/2). Since f (1) = f (0), the compartments with initial composition A, AA,
B and BB will all propagate with the same success, so any fixed point instability must arise from an
AB composition. Evaluating Eq. (8.13) in this regime, we find

x′ =
1

Λ+1 λ 2x(1− x) f
( 1

Λ+1

)
+(λx+ λ 2

2 x2) f (1)

λ 2x(1− x) f
( 1

Λ+1

)
+(λ + λ 2

2 (1−2x)) f (1)
(8.61)

where we have used f (0) = f (1) and x̄(2,1) = 1/(Λ+1). If we now solve dx′
dx

∣∣∣
x=0

= 1, we find
that

Λ =
2 f
( 1

Λ+1

)
− f (1)

f (1)
. (8.62)

Similarly, for dx′
dx

∣∣∣
x=1

= 1, we find

1
Λ

=
2 f
(

Λ

Λ+1

)
− f (1)

f (1)
, (8.63)

which we would also find from the symmetry x,Λ↔ 1− x,1/Λ. In Fig.8.13, these plateaus are
plotted. In Sec. 8.4.8, we derive how this plateau shifts to much higher values when noise is present
in the growth step. The dotted lines in Fig.8.13 illustrate the amplitude of this effect for λ → 0.

8.4 Noise in growth
For deterministic growth, given by Eqs. (8.8)-(8.9), fluctuations in the growth rates, denoted α for
A molecules and γ for the B molecules, have been neglected. In order to estimate the magnitude
and effect of fluctuations in the growth rates, we introduce in the next section a model for noisy
replication. In particular, we consider a replication enzyme that stochastically binds to a strand,
followed by the stochastic incorporation of L monomers. The model can either have i) a single
rate-limiting step or ii) L rate-limiting steps. Case i) corresponds to simple autocatalytic reactions,
or the rate-limiting binding of a replication enzyme. Case ii) corresponds to the rate-limiting
polymerization of a polymer of length L, via a multistep replication process. For L = 1, all these
descriptions become equivalent.

Importantly, this model assumes that the replicase, once bound, stays active until completion of
the copy of the template. The possibility that the replicase falls off the template before completion
of the copy is neglected. Similarly, any effects associated with the interaction of multiple replicases
on the same template are neglected. In fact, when the replicase falls off of its template, the copying
process is aborted and the shorter chain which has been produced in this way becomes a parasite.
We can therefore describe such a process as a mutation using the framework of the previous
section. To separate the effects due to mutations and noise clearly, we disregard from now on the
possibility of mutations, and we focus in the following on the description of the noise associated
with replication. Such a noise can stabilize the ribozyme phase at the expense of coexistence,
and the coexistence phase at the expense of the parasite phase. The noise of replication becomes
very small when the rate-limiting step is nucleotide incorporation, in which case one can use a
deterministic approach. In case of a single rate limiting step, we obtain giant fluctuations.

8.4.1 A minimal model for the replication process
The replication of a polymer strand A by a replicase E can be considered to proceed through two
stages. In the first stage, a strand A binds to a replicase E, to form a complex X0

A+E
κC−→ X0, (8.64)
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with the rate κC.
Subsequently, activated nucleotides X are incorporated in a stepwise fashion to the complemen-

tary strand. A complex of E and A with a complementary strand of length n will be denoted by Xn,
and the strand grows until the final length L is achieved, such that

Xn +X κ−→ Xn+1, 0≤ n≤ L−2 (8.65)

XL−1 +X κ−→ 2A, (8.66)

where for simplicity we have assumed the same rate κ for both reactions. Let us denote by t the
total time to yield 2A from A, which is the sum of the time associated with the step of complex
formation, tC and with the step of L nucleotide incorporations tL. We thus have

t = tC + tL, (8.67)

with tL = ∑
L
i=0 ti and ti the time for adding one monomer, which we assumed is distributed according

to

f (ti) = κe−κti . (8.68)

For simplicity, we choose a single value κ for all monomer additions. The time for the formation of
the complex, tC is similarly distributed according to

f (tC) = κCe−κCtC , (8.69)

where κC = 1/〈tC〉.
Let us denote the moment generating function of tC by MC(s) and similarly for tL by ML(s)

with :

MC(s) =
∫

∞

0
dtC exp(−stC) f (tC)

=
κC

s+κC
, (8.70)

ML(s) =
∫

∞

0
dtL exp(−stL) f (tL) =

L

∏
i=1

[∫ ∞

0
dti exp(−sti) f (ti)

]
=

(
κ

s+κ

)L

. (8.71)

From ML one obtains the distribution of replication time f (tL) by performing an inverse Laplace
transform:

f (tL) = L −1 [ML(s)] =
κLtL−1

L e−κtL

Γ(L)
, (8.72)

where L −1 represents the inverse Laplace transform. This equation shows that the replication time
distribution of one strand of length L follows a Gamma distribution [56]. For L = 1, Eq. (8.72)
becomes a simple exponential distribution, which is a memoryless distribution. This distribution
describes any process with a single rate-limiting step, such as simple autocatalysis or the binding of
the replicase.

For L > 1, this distribution has memory and the growth in the number of RNA strands can
no longer be described as a simple Markov process. Note that the Gamma distribution is peaked
around the mean value of tL, namely L/κ for L� 1. In this limit, the replication time has very
small fluctuations. This feature has recently been exploited to construct a single-molecule clock, in
which the dissociation of a molecular complex occurs after a well-controlled replication time[57].
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Figure 8.14: Waiting time variability σt/〈t〉 for various polymer lengths L, as a function of the ratio
of typical times for replication and complex formation

8.4.2 Coefficient of variation of the replication time
Let us now study the coefficient of variation of the full time t. For the simple replication model,
this includes the diffusion of the replicase and the replication step. The generating function of t is
clearly M(s) = MD(s)ML(s). Thus, the cumulant-generating function defined as K(s) = lnM(s),
yields the two moments of the distribution of t, namely the mean 〈t〉 and the variance σ2

t . We have

〈t〉= 〈tC〉+ 〈tL〉=
1

κC
+

L
κ
, (8.73)

σ
2
t = σ

2
C +σ

2
L =

1
κ2

C
+

L
κ2 . (8.74)

Thus the coefficient of variation of the replication time, namely σt/〈t〉 is given by

σt

〈t〉
=

√
1

κ2
C
+ L

κ2

1
κC

+ L
κ

. (8.75)

Fig 8.14 shows this quantity as function of the length L and of the ratio of the rates (κC/κ).
There are two regimes: on one hand, when L/κ � 1/κC, the time taken by the replication

step dominates over the time for the replicase to diffuse to its target. If in addition σ2
L � σ2

C, the
coefficient of variation of the time t scales as 1/

√
L and therefore becomes very small for long

strands. This power-law regime is indeed visible as plateaus in Fig 8.14 and we will refer to this as
the replication-limited regime.

On the other hand, when 1/κC� L/κ , the time to form a complex between the replicase and
its template dominates over the replication time. This regime has a large coefficient of variation
since σt ' 〈t〉 as also seen in Fig 8.14. In this regime, the replication time is governed by the
simple exponential distribution of Eq. (8.69). A simple autocatalytic reaction is governed by such a
distribution, which is also equivalent to a replication-limited situation with L = 1. We will refer to
this behavior as the diffusion-limited regime.

8.4.3 Phylogenetic noise due to asynchronous growth
In Fig. 8.15, phylogenetic trees are drawn for diffusion-limited and replication-limited growth. In
both cases, growth starts from a single parent strand and descendants are depicted as function of
their generation.

In this representation, the differences in the two growth regimes become very clear. In the
replication-limited regime, generations are synchronized: lineages spread over the same numbers
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a) b)

Figure 8.15: Phylogenetic trees, generations representation. a) diffusion-limited regime. b)
replication limited regime. The simulation ends when the population size has reached 128. The
horizontal axis corresponds to the generation number.

of generations. This happens because noise in replication time is small with respect to the typical
replication time: σt/〈t〉 � 1 (see Eq. (8.75)). Replication slowly desynchronizes by the accu-
mulation of noise over multiple generations. For two independent strains, generations become
desynchronized after about

√
L generations.

In contrast, in the diffusion-limited regime, fluctuations are of the order of the replication time:
σt/〈t〉= 1. In this memoryless case, each species is equally likely to perform the next replication
event, yielding a desynchronized growth behavior with large gaps in the phylogenetic tree.

These figures have been obtained by simulating the growth of a replicating mixture starting
from a single strand. The simulation follows k RNA-enzyme complexes, and for each the variable
nk measures the length of the growing complementary strand. For every nucleotide incorporation
event, a strand i is chosen with probability 1/k, after which its number of nucleotides is updated
from ni to ni +1. When ni +1 = L, we set ni = 0, we update k to k+1, and then we introduce an
extra strand variable nk+1 for the new strand. Both the replication-limited regime and the diffusion-
limited regime can be modeled using this simulation. In the latter case, we choose L = 1, which
corresponds to exponentially distributed replication times as in Eq. (8.69). This also describes the
case of simple autocatalysis.

8.4.4 Noise in population size due to growth
In sec 8.4.2, we have analyzed the noise associated with the replication of a single strand. Ultimately,
we wish to quantify the compositional variation of the final population. In order to do so, we turn to
the theory of branching processes with variable lifetimes taken randomly from a fixed distribution
[58]. As explained in Appendix 10.5, this framework describes theoretically a population that grows
exponentially starting from a single individual. In our molecular system, this single individual plays
the role of the single molecule present in the initial condition before the replication starts; while the
distribution of the lifetimes is the replication time distribution f (tL) obtained in Eq (8.72).

For tL� L/κ , we find that the average population (starting from a single individual) µ(1) scales
as µ(1)(t) = µ∗eαt , with a growth rate α ' κ ln(2)/L. The coefficient of variation of the population
size σ (1)/µ(1) is

σ (1)

µ(1) ≈
√

2ln(2)√
L

. (8.76)

The renewal theory on which these results are based, can be generalized to the case that there
are n individuals in the initial condition as shown in 10.5.1. The full solution is found by treating
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Figure 8.16: Coefficient of variation of the population size N as function of the initial population
size n. The results have been averaged over 2000 runs. The solid lines represent the theoretical
prediction: 1/

√
nL.

the n initial molecules as n independent subpopulations, which all start at size 1 and follow the
branching process described above and in 10.5. In that case, each subpopulation now has a mean
µ(1) = µ(n)/n and a standard deviation σ (1) ≈ µ(1)/

√
L. This then allows to write

σ
(n) ≈

√
nσ

(1) =
µ(1)
√

nL
. (8.77)

We show in Fig. 8.16 that the corresponding coefficient of variation, σ (n)/µ(n), agrees well with
simulations of the branching process. The 2000 simulation runs were stopped after a time t∗ such
that 〈N(t∗)〉 ' 5000.

8.4.5 Giant fluctuations in logistic growth of competing species
The problem of two species competing for the same resources has been studied in the literature and
offers a complementary perspective on the role of noise in a growing population, which has been
studied in the previous section. Let us consider two such species, which typically start with a few
individuals and then grow according to logistic noise. As shown in Ref. [54], when the carrying
capacity is reached, the number of each species is subject to giant fluctuations (the coefficient of
variation is of the order of unity) when the two species have similar growth rates. In the terminology
introduced in previous section, this model applies to the diffusion-limited regime (L→ 1, simple
autocatalysis), where a Markov description of the population dynamics is applicable.

Keeping the notations of the first section, we denote by n the initial number of molecules, which
splits into m ribozymes (or A autocatalysts) and y parasites (or B autocatalysts), and by N the final
number of molecules in the compartment. In the neutral case (α = γ), the moments of the number
of ribozymes m̄ are found to be [54] :

〈m̄〉 = N
m
n
, (8.78)

σm̄ =

√
my
n2

N(N−n)
n+1

, (8.79)

with again y = n−m. Since N remains fixed, σx̄ = σm̄/N. This means that

σx̄ ≈
1
n

√
my
n

(8.80)
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for N � n, which means that the noise in the composition depends primarily on the number of
individuals in the initial condition. Let us denote s = α/γ−1� 1, with s� 1 and ρ = ln(N/n).
In Ref. [54], it was shown that

σm̄

〈m̄〉
=

√
y

m(n+1)

(
1− ρsn(m+1)

(n+1)(n+2)

)
(8.81)

In general, the dynamics of the composition has a large variability for: (i) small compartments
(n ∼ O(1)), (ii) mixed compartments (m,y > 0), and for m ≈ y, (iii) comparable growth rates
(s→ 0).

Such a coefficient of variation is asymptotically constant on long times and the constant only
depends on the initial number of molecules. A similar scaling for the coefficient of variation holds
in a number of other physical situations, such as for the fluctuations in the number of protein
filaments formed in small volumes [59].

8.4.6 Noise for co-encapsulated growing populations
Let us now apply the results of the section 8.4.4 to analyze the effect of the growth noise on our
transient compartmentalization dynamics. Let us assume that the length of the ribozymes is Lα and
that of the parasites Lγ . For experimental values of these parameters we refer the reader to Table
8.1. In Sec. 8.2, we have defined m,y to be the initial number of ribozymes and parasites and m̄, ȳ
to be the final mean number of ribozymes and parasites at the end of the growth phase in a given
compartment. Using Eqs. (8.76)-(8.77), we obtain

σm̄

〈m̄〉
' 1√

Lαm
,

σȳ

〈ȳ〉
' 1√

Lγy
. (8.82)

Since the ribozyme fraction x̄ at the end of the exponential phase is given by x̄(n,m) = m̄/N
and N ' nQβ , the noise on x̄(n,m) takes the following form :

σx̄ =

√(
∂ x̄
∂ m̄

)2

σ2
m̄ +

(
∂ x̄
∂ ȳ

)2

σ2
ȳ ,

'

√(
ȳ

N2

)2 m̄2

mLα

+

(
−m̄
N2

)2 ȳ2

yLγ

, (8.83)

' x̄(1− x̄)

√(
1

mLα

+
1

yLγ

)
,

where we have used Eq. (8.77) with µm̄ = m̄,µȳ = ȳ. The factor x̄(1− x̄) is largest for x̄ = 1/2
and vanishes for pure parasite and pure ribozyme compartments, which means that this noise
can be neglected when Λ� 1 or Λ� 1. Note that if we choose α = γ (and thus x̄ = m/n), and
Lα = Lγ = 1, Eq. (8.83) becomes

σx̄ '
1
n

√
my
n

(8.84)

which is consistent with Eq. (8.80) which was found using a different formalism[54].
Eqs. (8.81) and (8.83) point to an interesting trade-off : the synchronization of growth rates

comes at the cost of greater compositional noise. To have a stable coexistence, growth rates should
not diverge too much. However, this also implies giant fluctuations in final composition. In the
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Figure 8.17: Standard deviation of the ribozyme fraction, σx̄, as predicted from simulations
(symbols), and compared with predictions from Eq. (8.83) (solid lines). For each initial composition
(m,n), 10000 simulations were performed until a time t∗ such that 〈N(t∗)〉 ' 5000 and by choosing
α/γ = Lγ/Lα .

presence of strong selection, noise will generate many unviable compositions, lowering the overall
survival of compartments [29].

This reduction in survival is particularly detrimental if a compartment splits into only two
daughter compartments [29]. To prevent extinction, at least half of the daughters should, on
average, survive. This puts a strong constraint on more advanced selection mechanisms, such as the
Stochastic corrector, for which growth noise can rapidly become more catastrophic than replication
errors. It will be instructive to refer to this phenomenon as a noise catastrophe.

In transient compartmentalization, only a much smaller fraction of the order of λ/N com-
partments need to survive. The RNA experiments[34] are indeed performed in this regime since
N ≈ O(106),λ = O(1)). As such, a noise catastrophe needs to be considerably more severe before
the molecules replicating in transient compartments go extinct.

By having multiple rate-limiting steps (L > 1), compositional noise is reduced. In this sense,
polymerization on a template as considered here is inherently functional: the noise suppression it
permits can increase the average compartment fitness. Noise suppression also increases evolvability,
by giving the system access to more efficient mechanisms of heritability.

Using the parameters of Table 8.1 and (8.76), we can quantify the level of noise in the number
of ribozymes or parasites in the RNA droplet experiment [34]. We find from this table that the
ribozyme size was L = 362, and that the experiment should be in the replication-limited regime
because the diffusion time scale should be approximately over 2 ·104 times smaller than replication
times of the order of 10s. The noise in composition should be maximal when we start with one
ribozyme and one parasite of equal length, and with α = γ , which on average gives x̄ = 1/2.
Consequently, the noise in composition is at most σx̄ ≈ 0.02. In such a case, our deterministic
approach used in [4] is applicable.

8.4.7 Phase diagram in the presence of weak noise

The growth equations given by Eqs. (8.8) and (8.9) are deterministic in nature, which means that
a given initial condition (n,m) yields a unique final composition x̄(n,m). In contrast to that in a
stochastic approach, a given n and m lead to many different trajectories, which means that x̄(n,m) is
a random variable with a probability distribution p(x̄(n,m)). Consequently, the ribozyme fraction
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Figure 8.18: Phase diagram for ribozyme-parasite scenario in presence of noise given by Eq. (8.83),
for Lα = Lγ = 3.

after one round is

x′ =
∑

n,m

∫ 1
0 dx̄x̄(n,m)p(x̄(n,m)) f (x̄)Pλ (n,x,m)

∑
n,m

∫ 1
0 dx̄p(x̄(n,m)) f (x̄)Pλ (n,x,m)

. (8.85)

This expression is computationally demanding to evaluate for λ � 1, but it can be simplified
significantly in the weak noise limit.

In order to construct a phase diagram in this limit, we simplify Eq. (8.85), by considering
p(x̄(n,m))≈N (x̄,σx̄), where N denotes a normal distribution with mean x̄ and standard deviation
defined by Eq. (8.83). From Eq. (8.83) we expect the effect of noise to be largest when λ ,L and Λ

are close to 1 (if Λ� 1, x̄→ 0). In Fig. 8.18, the original phase diagram from Ref. [4] is shown
together with the modified phase boundaries (dotted lines) due to the presence of Gaussian noise
using Eq. (8.85) for the case that Lα = Lγ = 3.

Given that the amplitude of this type of noise should rapidly diminish for larger L, and that
L∼ O(100) in the experiment, we expect our ribozyme-parasite scenario to be well-described by
a deterministic dynamics. We also see that the noise stabilizes the pure ribozyme phase (R) with
respect to the coexistence phase (C) because in the presence of noise, the R region has grown at
the expense of the C region. Similarly, the noise stabilizes the coexistence region (C) against the
parasite region (P).

8.4.8 Example: noise-induced cooperation

For the cooperation scenario, Eq. (8.85) can also be evaluated exactly in the limit λ � 1. As
an example of the effect of growth noise, we consider the complexation-limited regime for a
cooperation scenario, with a symmetric selection function f = 0.1+0.9sin(π x̄). In particular, we
are interested in the plateau regions for λ � 1. We start by considering Eq. (8.85), which obeys

x′ =
∫ 1

0 dx̄x̄λx(1− x) f (x̄)+(x+ λ

2 x2) f (1)∫ 1
0 dx̄λx(1− x) f (x̄)+(1+ λ

2 (1−2x)) f (1)
. (8.86)

Note that the AB compartment is the only compartment with a distribution of compositions final
compositions p(x̄), as the A,AA,B and BB compartments have a pure composition from the start.
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Using dx′
dx

∣∣∣
x=0

= 1, and the procedure outlined in Sec. 8.3.1, we find that the new upper plateau
must obey∫ 1

0
dx̄ x̄ f (x̄)p(x̄) =

f (1)
2

. (8.87)

To solve this equation, we use the method outlined in [54] to numerically find p(barx) for a given
relative rate of growth r = α/β and fixed final population N. From this, we find an r for which the
equation holds, and we subsequently find Λ from N and r. By symmetry, we can immediately find
the lower plateau at 1/Λ.

Both plateaus are plotted in the original phase diagram in Fig. 8.13.

8.5 Parasites and time allocation in replication
So far, we considered a parasite to be detrimental to the collective by lowering the overall fitness. A
type of parasite often explicitly considered in origins of life acts by hijacking a replication enzyme or
ribozyme to make more copies of itself, thus directing all resources to its own production. This then
leads to an overall lower overall production of the replication machinery and ultimately extinction.
It is this type of parasite that comes to prominence above Eigen’s original error threshold.

Such problems have in the past [27, 25, 28] been analyzed using ordinary differential equations.
Its multilevel selection in transient compartments was recently treated in Ref[6]. In these ODE
approaches, replication is treated as instantaneous.

When replication is rate-limiting, however, we need to consider that it is a composition of sub-
steps in which the strand-replicase complex incorporates monomers. These steps may individually
be instantaneous, but not collectively. In this replication-limited regime, the process has a waiting
time that becomes increasingly peaked as the strand length increases and during this time, the
replicase is occupied. This subtlety is lost in instantaneous ODE approximations.

In this section, we will explore how this seemingly small specification drastically affects the
dynamics. The capacity to occupy the replication machinery inhibits the production of competitors.
Here, we will show that this feature makes parasites far more detrimental to replicase survival than
one would infer from the typical ODEs used to study the problem.

8.5.1 Model Setup
We consider a replicase R which, upon meeting another replicase R, makes a new copy of the
replicase, such that for the event m→ m+1 (where m is a discrete number of replicases) there is a
transition rate

Wm→m+1 = αm(m−1), (8.88)

where α is a rate constant (we will absorb any volume dependence in rate constants). Let us also
consider a parasite P, which, upon meeting a replicase R, is copied, giving 2P. We then have

Wy→y+1 = γmy, (8.89)

where γ is a again a rate constant and y denotes the discrete number of parasites. In Fig. 8.19 these
processes are drawn schematically. Note that here, unlike the population dynamics in Refs.[4, 5],
parasites cannot grow when m = 0, they require the presence of a replicase.

Deterministic approach
For m,y� 1, we can write the set of ODEs, corresponding to a mass-action approach.

ṁ = αm(m−1), (8.90)

ẏ = γmy. (8.91)
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Figure 8.19: Schematic picture for replication of replicases (green hexagons) and parasites (yellow
squares), which first form complexes X, Y, and subsequently incorporate LR (resp. LP) monomers,
with a per monomer rate of κ . After a time κ/L, a copy has been formed. For a detailed description
on the monomer-incorporation level, see Sec. 8.4.4.

supposing m(0)> 1. Integrating (8.90) from 0 to t yields the solution

ln
(
(1−m(t))m(0)
m(t)(1−m(0))

)
= αt (8.92)

which can be rewritten to yield

m(t) =
1

1−
(

1− 1
m(0)

)
eαt

(8.93)

which blows up at finite time

τ =
1
α

ln
(

1− 1
m(0)

)
. (8.94)

Substituting this solution for (8.91) and supposing y(0)> 0 we find

ln
(

y(t)
y(0)

)
= γ

[
t− 1

α
ln
(
m(0)− (m(0)−1)eαt)] , (8.95)

which simplifies to

y(t) = y(0)eγtm(0)α/γ

 1

1−
(

1− 1
m(0)

)
eαt

γ/α

. (8.96)

As can be expected, both parasite and replicase blow up in finite time, the ratio γ/α quantifies the
relative degree of divergence.

8.5.2 Stochastic approach: variation of blow-up time
Let us again consider the process of m replicases, that copy upon collision (that is, collision is
rate-limiting, nucleotide incorporation is rapid). Suppose they meet in memoryless fashion, with an
exponentially distributed waiting time tm for the next collision, described by

p(tm) = αm(m−1)exp(αm(m−1)t) (8.97)

On average, to move from m to m+1 replicases, we then have

〈tm〉=
1

αm(m−1)
. (8.98)
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let 〈t〉 be the sum of these average waiting times, then

〈t〉=
∞

∑
m=m(0)

1
αm(m−1)

=
1

α(m(0)−1)
. (8.99)

where the final result follows from 1
m(m−1) =

1
m−1 −

1
m whose sum yields a telescoping series. For

m(0) = 2, we have 〈t〉= 1/α , which means that on average, a blowup occurs after 2〈t2〉 has elapsed.
The variance the exponential waiting time obeys

σ
2
tm =

1
α2m2(m−1)2 . (8.100)

The variance of the total waiting time is then

σ
2
t =

∞

∑
m=m(0)

1
α2m2(m−1)2 . (8.101)

For m(0) = 2, this yields σ2
t /〈t〉2 = (π2−9)/3≈ 0.29. leading to a coeficient of variation σt/〈t〉 ≈

0.54. This large variation is mainly due to the first step, as σ2
t2/〈t2〉

2 = 0.25.
A dominant effect of the first replication steps is also observed for exponential growth, which

was discussed in the last section and in Ref.[54]. We thus expect that a compositional behavior that
may deviate strongly from the deterministic Eq. (8.96). While the deterministic solution may be
finite up till a time τ (Eq. (8.94)), a significant fraction of stochastic trajecteries will already blow
up well before this time.

Clearly, we cannot expect such an accelerating encounter process to remain the rate-limiting
step. In the next section we will consider resource limitations as a solution to curb this effect.

8.5.3 Stochastic approach: population composition
When considering the composition of a replicase-parasite population, we generally try to avoid
cases with a blowup. In principle this can be done by considering a short enough time frame
such that Eqs. (8.90) (8.91) remain good approximations, but as shown in the previous section,
this approximation breaks down very fast and the actual growth dynamics can show considerable
variance in replication times.

A more common way to avoid blowups is to consider limitations, e.g. limiting resources. One
way this can be accounted for is by introducing a carrying capacity N in the growth rates, e.g.

Wm→m+1 = αm(m−1)
N−m− y

N
, (8.102)

Wy→y+1 = γmy
N−m− y

N
, (8.103)

which yields our former equations (8.88) and (8.89) for N� m,y.
Let us now consider a master-equation formalism, in which we use a population size n = m+ y

in favor of time, to describe a population which grows to its carrying capacity where n = N. We
can then write

Pm,n+1 = am−1
n Pm−1,n +bn−m−1

n Pm,n. (8.104)

Where am
n , denotes the probability to go from a state (n,m) to (n+ 1,m+ 1). Since the only

alternative replication course would be to go to (n+1,m), whose probability is denoted by bm
n , we

have by total probability

am
n +bm

n = 1. (8.105)
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From the transition rates defined by eqs. (8.102) and (8.103), we have

am
n =

W (n,m→ n+1,m)

W (n,m→ n+1,m)+W (n,m→ n,m+1)
(8.106)

From eqs. (8.102) and (8.103), we arrive at

am
n =

r(m−1)
n−1+(r−1)(m−1)

, (8.107)

bm
n =

n−m−1
n−1+(r−1)(m−1)

. (8.108)

where r = α/γ . If we now define m′ = m−1 and n′ = y+m′, our master equation exactly coincides
with the master equation proposed for memoryless growth of two species by B. Houchmandzadeh
[54]. Such a master equation was shown to exhibit giant fluctuations in the composition of the
population (see Sec. 8.4.5 for a complementary perspective). Consequently, the regime in which an
ODE approach can be considered (diffusion-limited growth) is inherently noisy. This aspect of the
composition dynamics is not captured the ODE approach.

While a carrying capacity curbs the blowup in finite time, its use in an ODE framework may be
insufficient to capture all important details. One important detail is that a typical replicase forms a
complex with the species it replicates. During this replication process, it is unavailable for other
species. This is not reflected in differential equations, which treat such a process as an enzymatic
process with a single rate-limiting step. Such an approximation is no longer appropriate in the
replication-limited growth regime. We will see that in this regime parasites become considerably
more detrimental.

8.5.4 Replication-limited growth

In the diffusion-limited regime, the hyperbolic growth accelerates so rapidly, that it takes a pair
of particles 〈t〉 = 2

κC
to reach a blow-up on average, which is twice the typical time of the first

encounter. Evidently, such a blow-up in finite time is unphysical: we cannot accelerate all processes
indefinitely nor supply the material for such growth. The problem stems from our approximations:
a variety of timescales can be fast when m(0) = 2 and may initially be neglected. However,
every subsequent encounter event occurs (m+ 2)/m times faster than the former, such that the
encounter rate rapidly outgrows the rate of all other relevant processes, after which it is no longer
the rate-limiting step.

In the former section, we discussed that resource depletion through a carrying capacity could
be introduced as such a limitation. Another way to account for this, is by considering that the
replication process consists of several steps, of which only the complexation step should accelerate.
For the minimal model for polymer replication discussed in Sec. 8.4, this corresponds to the
replication-limited regime.

We can extend our stochastic model for independently elongating replicators, to a model for
growing parasites and replicators. In the first step, a replicase R or a parasite P complexes with
another replicase R:

R+R κX−→ X0, P+R κY−→ Y0 (8.109)

with the rates κX, κY .
Subsequently, activated nucleotides X are incorporated in a stepwise fashion to the complemen-
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tary strand and the strand grows until the final length LR (resp. LP) is attained, such that

Xn +X κ−→ Xn+1, 0≤ n≤ LR−2 (8.110)

XL−1 +X κ−→ 3R, (8.111)

Yn +X κ−→ Yn+1, 0≤ n≤ LP−2 (8.112)

YL′−1 +X κ−→ 2P+R, (8.113)

An important difference with the deterministic model, is that replicases are occupied while they
perform their replication, which prevents them from copying other species during that time. In the
deterministic model and the the diffusion-limited regime, this memory effect is absent. The model
is reminiscent of the branching process discussed in Appendix 10.5. However, there are now two
growing and interacting populations which affect each other’s growth, which means we can no
longer apply the renewal theorem. This means that exact approaches from queueing theory cannot
be applied: the queues are not independent. A discussion on population statistics will, at this point,
be confined to numerical simulations of the process. However, the phenomenology can be well
understood in terms of simple analytical arguments, which will be discussed in detail. We hope this
problem may motivate new approaches to study interacting queues.

8.5.5 Complexation routes
To understand the fate of a replicator-parasite population, we must consider what kind of composi-
tions unbound species can occur, and how they respond to replication events. Let us denote NP,NR
the number of free parasites and replicases. If κX,κY� κ/LR,κ/LP, replicases will directly bind
to any available target upon their release. Let us now consider a number of population compositions,
{NR,NP}, and their response to the finishing of replication for X,Y complexes.

• {NR,NP}= {0,0}

3 +

Figure 8.20: Starting from X, we can only form X + R.

X→ 3R: {NR,NP}= {3,0}, which immediately leads to a new replicase complex X, NX +1,
and {NR,NP}= {3,0}

+ +2

Figure 8.21: Starting from Y, we can only form Y + P.

Y→ 2P+R: {NR,NP}= {1,2}, which can only be immediately followed by forming parasite
complex Y, NY +1 and {NR,NP}= {0,1}.

•{NR,NP}= {1,0}

X→ 3R: {NR,NP}= {4,0}, which immediately forms two new replicase complexes X, NX+2,
and {NR,NP}= {0,0}

Y→ 2P+R: {NR,NP}= {2,2}. New complexations can then take two routes:
i) Formation of a single replicase complex X, NX +1, {NR,NP}= {0,2}
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4 2+

Figure 8.22: Starting from X+R, we can only form 2X.

+

+

2 2+

2

2p
X

Figure 8.23: Starting from Y+R, we either form 2Y or X+2P.

ii) Formation of two parasite complexes Y, NY +2 {NR,NP}= {0,0} The relative probabilities of
these processes are given by the statistics of the formation a the first complex

pX =
κX

κX +2κY
, (8.114)

pY =
2κY

κX +2κY
. (8.115)

•{NR,NP}= {0,1}

+ +3+

Figure 8.24: Starting from X+P, we can only form X+Y.

X→ 3R: {NR,NP}= {3,1} leads to an X and Y complex, NX +1,NY +1, {N′R,N′P}= {0,0}

Y→ 2P+R: {NR,NP}= {1,3} leads to a Y complex NY +1, {N′R,N′P}= {0,2}

•{NR,NP}= {0,2},

X→ 3R: {NR,NP}= {3,2} leads either to:
i) an X and Y complex, NX +1,NY +1, {N′R,N′P}= {0,1}, or
ii) two Y complexes, NY +2 {N′R,N′P}= {1,0}, with a relative probability

pX,Y =
(κY)

2 +2κXκY

(κX +κY)2 (8.116)

p2Y =
κ2

Y
(κX +κY)2 . (8.117)

Y→ 2P+R: {NR,NP}= {1,4} forms a new Y complex NY +1 , {N′R,N′P}= {0,3}.

•{NR,NP}= {0,k}, k ≥ 3
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+3 2+ +

Figure 8.25: Starting from Y+P, we can only form Y+2P.

+ 3+2 2

+

2 +

+

p
2Y

Figure 8.26: Starting from X+2P, we can either form 2Y+R or Y+X+P

X→ 3R: {NR,NP}= {3,k} either leads to:
i) an X and Y complex, NX +1, NY +1 , {N′R,N′P}= {0,k−1}, or
ii) three Y complexes NY +3, {N′R,N′P}= {0,k−3}. With relative probabilities

pX,Y =
2κX

2κX + kκY
+

kκY

2κX + kκY

κX

κX +(k−1)κY
=

2(κ ′C)
2 +(3k−2)κ ′CκC

2(κ ′C)2 +(3k−2)κ ′CκC + k(k−1)κ2
C
,

p3Y =
kκC

2κ ′C + kκC

(k−1)κC

κ ′C +(k−1)κC
=

k(k−1)κ2
C

2(κ ′C)2 +(3k−2)κ ′CκC + k(k−1)κ2
C
. (8.118)

These complexation routes highlight how parasites are inherently competent at frustrating the
replication of R. In the case where complexation is strongly biased towards X, κX� κY (but still
κX,κY� κ/LR,κ/LP), this analysis simplifies greatly: after any event, replicase complexes are
formed until NR ≤ 1, after which parasite complexes are formed.

Growth regimes
As a first illustration, consider the case where we start with NP = 1, and a large population of
replication complexes NX� NP that are largely desynchronized. If X complexes finish in rapid
succession and assemble new X complexes, we can write a net process

2X
κ/LR−−−→ 3X. (8.119)

with κ/L the average waiting time. If a small population of parasites starts to grow, it will equally
well encounter its necessary replicases in rapid succession (NX� NP and replicases are produced
in odd amounts), and perform a net process

Y
κ/LP−−−→ 2Y. (8.120)

Neglecting the frustration of growth of R by the parasite on short timescales, we thus find doubling
times

τX =
LR ln2

κ ln3/2
≈ 1.71

LR

κ
, (8.121)

τY =
LP

κ
, (8.122)

which show that parasites are inherently advantaged, even if they are equally long LR = LP. This is
because a replicase occupies another replicase to replicate itself, meaning only half of replicases
can be replicating at a given time. Parasites do not hinder each other in this way. Here, replicase
growth can only match that of parasites that are considerably longer: LP > (ln(2)/ ln(3/2))L.
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+42 3+ +

Figure 8.27: Starting from Y+2P, we can only form Y+3P.

+ 3+k k

k-1+

k-33 +

+

p
3Y

Figure 8.28: Starting from X+k P, we either form 3Y+(k−3) P or X+Y+(k−1) P.

When parasites become abundant enough, replication events of R will no longer manage to
convert all their products to new X complexes, because the third R molecule will rapidly complex
with a parasite. If κX� NPκY, the first two R molecules will still proceed to form a complex X,
but the X population will no longer grow. In this regime, R molecules are produced at a constant
rate, since the net reaction becomes

X
κ/LR−−−→ X+R. (8.123)

As parasites do not produce R themselves, supply and production of R becomes the limiting factor.
Their growth is linear in supplied R and this supply itself also grows linearly due to Eq. (8.123).
Thus, the growth becomes quadratic instead of exponential.

If instead, κX = κY, abundant parasites will occupy all replicase molecules R to form themselves
via Y. Any remaining X will have little chance of yielding more X complexes after replication, as
the corresponding probability pX,Y (Eq. (8.118)) of such an event is now inversely proportional to
the free parasite population

pX,Y =
3

(NP +2)
. (8.124)

With no further production of R, the parasite population grows linearly.

8.5.6 Stochastic simulations
When we start with small numbers of parasites and replicases, the arguments from Sec. 8.5.5
do not capture all the phenomenology. To illustrate this, the system of equations (8.111)-(8.113)
was simulated using Gillespie’s algorithm[60] on the level of monomer incorporation, in the limit
κX,κY� κ/LR,κ/LP. Complexations are performed near instantly at the end of every replication,
with complexation probabilities as detailed in Sec. 8.5.5.

For an initial condition {N0
P ,N

0
R}= {1,2}, LP = LR = 10, 100000 simulations were performed,

with a fixed end time of τsim = ln(106/(N0
P +N0

R))/κ ln(2). The resulting distributions show a
considerable amount of fine structure, even in regions where sampling is high.

In all populations, parasites far outnumber replicases, which becomes more evident when we
plot the replicase fraction x̄, defined as

x̄ =
NR +NY +2NX

NR +NP +2NY +2NX
. (8.125)

This fraction counts all the fully assembled replicases and parasites, in free and complexed form.
As seen in Fig. 8.32, parasites are over 10 times more abundant than replicators.
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Figure 8.29: Histogram for total population size left) linear right) logarithmic, after τsim =
ln(106/(N0

P + N0
R))/κ ln(2) has elapsed, for {N0
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0
R} = {1,2}, LR = LP = 10, κX,κY �

κ/LR,κ/LP.
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Figure 8.30: Histogram for number of parasites in the population size left) linear right) logarith-
mic, after τsim = ln(106/(N0

P +N0
R))/κ ln(2) has elapsed, for {N0

P ,N
0
R} = {1,2}, LR = LP = 10,

κX,κY� κ/LR,κ/LP.

The Complexation Catastrophe and the Error Catastrophe
In Sec. 8.4.6, it was argued that complexation and polymerization could be beneficial, by ap-
proaching deterministic waiting times and thereby stabilizing synchronization. Here, we see that
such contributions can also be very beneficial to certain types of parasites often considered in the
literature[27]. It will be instructive to see how robust the conclusions from ODE models in the
literature are to this modification.

The complexation catastrophe is similar in spirit to an error catastrophe: parasites take over.
There is a fundamental difference however: a complexation catastrophe, once set in motion, cannot
be overcome by accurate replication. Such catastrophes warn us that maintaining replicating
polymers is not trivial and that our prebiotic scenarios are constrained, similar to how tradeoffs
constrain evolution. One strategy to address such catastrophes is to start off with a catastrophe-prone
self-replicating species, and subsequently consider selection mechanisms that help it overcome
catastrophes, such as transient compartments, a stochastic corrector [25] or spatial diffusion[28].

Another strategy would be to see if we can start off with self-replicating species that are less
prone to catastrophes from the start. To attenuate the complexation catastrophe, we can consider a
replicase R and an inactive complementary species R′, such that we can perform

R+R′→ 2R+R′, 2R→ 2R+R′, (8.126)

then templates R′ can hang around, and newly released replicases R have a chance to bind to more
templates instead of being sequestered directly by parasites. Given the template nature of DNA
and RNA, this model would be a more correct starting point. By opposing two templates to a
single-species model, a division of labor between the different templates realized, an effect also
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considered by[61, 28]. Takeuchi and Hogeweg considered that going from a pure RNA system to a
DNA-RNA system would stabilize a system against parasites. Many of these works are formulated
in a hypothetical prebiotic context where considerable sophistication is present (e.g. an RNA world
with genetic machinery and enzymes). However, catastrophes are expected to be relevant before
such sophistication came into play.

It will be interesting to see how systems chemistry provides new pathways to attack these
questions. Self-assembly, dynamic chemistry and self-sorting are but some of the features that may
allow us to come up with more gradual scenarios. Perhaps these chemical collectives went through
intermediate stages that were not prone to the catastrophes that have been invoked for an early
replicase. In this sense, catastrophes can be interpreted as constraints on evolutionary trajectories
derived from thought experiments, similar to how thermodynamics was further constrained by
thought experiments, e.g. on mixing [62] and information[63].
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9. A new mechanism-based scenario

In this final chapter, a new prebiotic scenario is proposed that recapitulates concepts introduced
in the previous chapters. The word ‘scenario’ is employed in the sense ‘a postulated sequence or
development of events’. In recent years, the word scenario is increasingly being used in the sense ‘a
specific geological environment’ (e.g. ponds, hydrothermal vents, deep rock compartments), with
a particular finding showing support for a particular environment. The present discussion makes
no explicit argument for any environment in particular, it makes an argument for a novel set of
mechanisms and transitions.

The outlined scenario is meant to be thought-provoking, we do not pretend that our present
work can give an accurate picture of abiogenesis. Our scenario attempts to explain a transition from
prebiotic chemistry to Darwinian evolution in terms of physical-chemical mechanisms. In particular,
it describes i) prebiotic chemistry undergoing multienvironment chemical evolution, ii) multilevel
selection through cross-catalytic formation of synthetic environments iii) a gradual transition
towards Darwinian evolution due to coencapsulation and cohabitation of synthetic environments
and their subsequent dynamics. The present scenario uses a collection of mechanisms introduced
and explored in our previous chapters. Whether these transitions actually happened and whether
they employed our particular set of mechanisms remains a speculation, like all prebiotic scenarios.

The starting point of these speculations, however, is different from other scenarios, which are
inspired by extant biochemistry. In this scenario, only physical-chemical processes are described,
some of which have not been proposed before. It is only in stage iii) that we postulate the gradual
introduction of cell division. Genetic machinery is never invoked and can be a very late invention.
Heredity and metabolism are an inherent consequence of generalized autocatalysis coupled with
reservoirs.

Gradualism
If chemical evolution is anything like modern evolution, we must consider its gradual nature. This
lesson is well understood when considering the postulated evolution of organs: a primitive eye
may come without cones and rods, thus limiting any detailed vision. However, such an organ may
already follow a circadian rhythm [1]. While its building instructions may be less convoluted, such
a primitive organ may still render itself indispensable.
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A similar idea comes from Cairns-Smith[2], who notes that an arcade of bricks is inherently
unstable when it is built up brick by brick, only the finished arcade is stable. In this final structure,
we do not see the pile of sand or some equivalent scaffold that permitted the construction in the
first place, as they are now removed.

In this vein we may also think of key molecules and structures in life. If genetic polymers have
such diverse and important tasks today, this can be thought to be the product of extensive chemical
evolution. This then begs the question: what did these molecules do before their promotion to such
important tasks? Many similar problems arise on a metabolic level, e.g. at what point can it be
functional to have phosphorylation?

As has been argued throughout this manuscript, molecules can do much simpler things that
render them indispensable: they may serve as donors or sinks of electrons and protons, be a fuel
or activating agent, perform allocatalysis or autocatalysis, mediate intercompartment exchange,
sequester and store compounds and synthesize new environments. To understand a molecule’s
incorporation in nature’s repertoire, we may not only consider what it does today, but also what it
did ‘before’. Wächtershäusers [3] scenario provides an illustrative example: phosphates are the
bread and butter of surface attachment and hydrophilicity.

We cannot and do not claim to understand where the extant biomolecules came from, but it is
hoped we have to provided instructive new ways to think about the problem.

9.1 A physical chemist’s dream

In analogy with a molecular biochemist’s dream[4], we formulate here a physical chemist’s dream.
It is an idealized, dreamt up trajectory of chemical evolution. Since we assume that most of
prebiotic chemistry is not preserved in extant biochemistry, our molecular actors are ipso facto
anonymous.

9.1.1 I: Towards an organized soup

Our story starts with a reactive chemical soup, externally resupplied with chemicals and thus
maintained far from equilibrium. The reactive soup was in contact with a heterogeneous envi-
ronment with transport barriers, leading automatically to dynamic self-sorting. The reactive soup
transformed this heterogeneous environment to a collection of chemically distinct subsoups in mi-
croenvironments. As a consequence of transport barriers and local chemistries, subsoups selectively
started to exchange compounds locally.

It is at this stage that autocatalytic chemical evolution make its first move: through the nucleation
of autocatalytic cycles, permanent modifications in local chemistries and transport are introduced,
which also modify the local self-sorting.

The seeds of these new chemistries spread, as certain autocatalytic species or precursors reach
new microenvironments further away. Most of this happens quite locally, due to diffusion. But
advection and convection make sure that molecules venture to more distant lands. Small species also
evaporate and spread over long distances, performing ‘prebiotic pollination’ of distant collectives
of soups.

New autocatalytic cycles lead to diversification in the globally available chemistries, while
local chemistries remain sufficiently specific∗ to remain functional. Some of the local† chemical
networks become more than the sum of their parts. Reactions start to proceed with degrees of
improvement beyond the single-reaction limit (e.g. by DKR, proofreading), and dynamically

∗There is a clear tradeoff between diversity and efficiency, due to side reactions.
†here, local pertains either to a single compartment or compartment and their not too distant neighbors, coupled by

exchange processes
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interconverting compounds start to form a variety of species, of which some are used for further
autocatalysis, error-correction and the assembly of higher-order structures.

All this leads to more diverse microenvironments, which in turn start the formation of new
‘synthetic’ environments e.g. new minerals by precipitation, new vesicles by surfactant production,
new microcompartments by local dissolution of a solid substrate, new coacervates by polyelectrolyte
synthesis, fibrils, sheets and other superstructures by the self-assembly of small molecules, complex
coacervates formed by polyelectrolytes and micelles, or by polyelectrolyte block copolymers.
The coupling of recombination and intercompartment exchange promotes the formation of long
oligomers and polymers, which form key building blocks for further synthetic compartments.

The new environments provide the occasion for a further diversification and new autocatalytic
cycles. By redirecting resources and promoting new pathways, other autocatalytic cycles lose their
viability. An evolutionary process of multicompartment autocatalysis weaves the reactive soup in
an intricate web of chemical and spatial currents.

9.1.2 II: Towards organized units of multilevel selection

With the introduction of multicompartment systems higher order selection mechanisms can make
their entry. The viability of different networks critically hinges on the continued occupation
of compartments. For synthetic ones, their continued production is of key importance as well.
Transient compartmentalization and protocell division (Ch.9) are some examples of the new forms of
multilevel selection that come into play. These selection forces steer compartmentalized chemistries
in new directions.

As our organized soup starts to create synthetic environments, a new level of selection is
introduced. We must now both consider i) the viability of the chemical network, and ii) the viability
of the synthetic environment.

Both viabilities are determined by the internal chemistry and the surrounding microenviron-
ments, and various synthetic environments compete for a common feedstock to produce their
building blocks. These building blocks are formed from an amalgamation of self-sorted chemistries
in different environments, that would quickly become incompatible in a single pot.

A large diversity of synthetic environments can harbor various chemistries, furnishing building
blocks for different compartments. In this sense, autocatalysis can be envisaged on the compartment
level, by a succession of environments making, assembling and recruiting each other’s building
blocks. For example, the hydrophobic core of a micelle provides an excellent environment to
perform (and catalyze, in the presence of acid) condensation chemistry[5]. Thereby, a polymer is
synthesized that upon entering the water phase is quickly protonated, forming a polyelectrolyte,
which in turn can dramatically enhance the local concentration of monomers [6] with respect to
the bulk phase. The charged polymer attracts amphiphile counterions, whose local concentration
templates their future incorporation in a micelle.

Cross-catalytic environments predisposed to be in each other’s vicinity had a great advantage, as
they could rapidly exchange material with minimal losses. Rudimentary forms of coencapsulation,
cohabitation, attachment, anchoring etc. started to make their marks, forming sticky multicom-
partment assemblies. These assemblies would spread locally by their continuing coassembly. On
longer distances, mechanical fracturing coupled with flow would displace part of the assembly.
These assemblies would show considerable spatial heterogeneity and undergo further autocatalytic
evolution, e.g. when encountering new environments. The multicompartment assembly would in
turn also be fertile ground for parasitic chemistries, compartments and assemblies, which do not aid
in spreading the initial multicompartment assembly, but consume its resources and products for their
own propagation. Their presence formed an important source for new pathways, innovations and
adaptations. It is in this stage of expansion, multilevel competition and innovation that evolutionary
arms races[7] can start to take off. Multicompartment assemblies that propagate more easily gain a
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distinct advantage. Rudimentary forms of ‘adaptative chemistry’ make their entrance: dynamic
combinatorial chemistries allow to explore a large set of options and flexibly redirect resources to
those that are consumed in a given local context (e.g. by the local autocatalytic networks or the
assembly of local structures).

This arms race, on a large scale, favored the capacity to adapt. Assemblies that could explore
more solutions would find ways to outpace and consume others. Systems displaying increased
capacities of evolution had an inherent advantage in this context, leading to an indirect selection
for evolvability itself. Gradually, dynamic chemistry in multicompartment autocatalysis started to
acquire favorable genetic characteristics. Transitioning to dividing multicompartment assemblies
(and ultimately cells) provided a powerful means of dispersal and parallelized the search for new
adaptations. This ultimately led to the modern dogma of biology.

9.1.3 Problems addressed, problems not addressed

Let us first reiterate, that the aforementioned is a scenario. It is inevitably short-sighted and limited
by the imagination of the author. It addresses perceived shortcomings of other scenarios, thereby
hoping to provide a marginal improvement on which future scenarios can be built.

Let us here consider some of the points we have tried to address
• Chemical Evolution: our framework for autocatalytic chemical evolution encompasses all

forms of autocatalysis (to our knowledge) that are described in the OOL literature. The
most important critiques on works on chemical evolution are: a lack of chemical realism
and a lack of open-ended evolution (is there enough autocatalysis to do this?). We share
this sentiment: successive autocatalysis of one particular type of chemistry on the scale of a
single compartment does not seem sufficiently open-ended.
Our framework (Ch.5, Ch.6) considers every chemical reaction and transport process as a
potential building block for a allocatalytic and autocatalytic cycles. In our scenario, more
layers of selection are introduced through multilevel selection (e.g. compartment division,
transient compartmentalization, Ch.8), and higher order feedback, like the synthesis of new
environments. We consider network motifs (App. 10.3) beyond the single reaction that may
yield improvements, such as proofreading and dynamic kinetic resolution, which in turn may
feed into selection on an ecological level.
The problem of ‘open-ended chemical evolution’ has thereby been considered from many
angles and with a focus on chemical realism. We are far from finished with this endeavor, new
functional networks and selection mechanisms are in the making, along with experiments to
back them up. We have not proven that our approach provides enough open-endedness, but
the combined force of all these perspectives may progressively bring that goal closer.
• Gradualism: Our tentative scenario proceeds by small steps, we do not invoke extremely rare

events. While their absence is not a logical necessity, we should perceive it as problematic to
include them if we can avoid it.
• Generality: Not a single reactant was made explicit, the scenario is mechanistic. Instead of

considering how we obtain a modern biomolecule, we look at the general structural motifs
that chemical reaction networks can exhibit. This is in line with the ideas expressed by
Krishnamurthy[8]: .. the experimental and conceptual approaches for understanding or
demonstrating the emergence of life’s processes on Earth could benefit from deliberately
ignoring the goal to exactly replicate extant life’s process in a prebiotic setting. We probably
do not know which molecules constituted prebiotic chemistry and pre-life. By looking at
the structure of chemical networks and chemical evolution, our approach aims to provide an
insight in spite of this ignorance.

Let us now make some aspects explicit, that better scenarios can improve on
• Chemical Candidates and environments: There is factual information about the composition
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and chemistry of the early earth. Geological and geochemical insights can provide important
inputs to constrain the scenario, its chemistry and its synthetic environments.
• Transitions: We have mentioned transitions, such as one from dynamic combinatorial

chemistry towards rudimentary genetics. This is a pure speculation, for which we have
not provided a more detailed trajectory, despite our suggestion for a gradual transition.
The ‘emergence of a code‘ remains one of the mysteries in the field, that is still lacking a
convincing mechanism that is in accord with chemistry, physics and evolution.
• Selection mechanisms: The compartment division and transient compartmentalization are

only two multilevel selection mechanisms. There may be an abundance of other multilevel
selection mechanisms. These mechanisms need to be found and thoroughly explored.
• Functional networks: Chemical network evolution has classically been considered in terms

of autocatalysis and the rate of autocatalytic cycles. Here, we have drawn attention to some
other things chemical networks can do, such as proofreading, dynamic kinetic resolution
and use dynamic combinatorial chemistry to find new solutions. Still, this only scratches the
surface of how chemical networks may affect chemical evolution in an ecological context,
where interactions become key. A systematic understanding of functional chemical networks
must emerge, to provide an appreciation of what molecules can and cannot do on the systems
level.

Figure 9.1: Some examples of synthetic environments: a coacervate formed by oppositely
charged polyelectrolytes, a core-shell particle made from diblock copolymers, micelles, a micelle-
polyelectrolyte complex coacervate, a complex coacervate with local phase separation (due to
triblock-copolymers), supramolecular fibrils and patches of modified mineral surface (surface
metabolisms)

Closing remarks: towards a systems-level view

The mindset of systems chemistry is to study emergent phenomena due to interacting molecular
components at different levels. It is in this spirit that we must consider this scenario, and in this
sense that we must assess: i) what a molecule can do, ii) what collectives of molecules can do and
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iii) what collectives of compartments and their contents can do‡.
Insights that address these fundamental questions will be a valuable advance in its own right.

How much the systems-level approach will teach us about the Origins of Life is unknown. Perhaps
our molecular ancestors are too far gone, obscured by molecular evolution[8]. This possibility
should not discourage us from looking for them: even if we may not find them, we may learn some
of the fundamental principles that brought us where we are today. Let us end with Oparin’s words,
which echo this optimism:

Se�qas, kogda podrobno izuqena vnutrenn�� organizaci� �ivyh suwestv, est~ vse
osnovani� sqitat~, qto my smo�em, rano ili pozdno, iskusstvenno vosproizvesti �tu
organizaci� i tem neposredstvenno pokazat~, qto �izn~ est~ ne qto inoe, kak osoba� forma
suwestvovani� materii.

— A.I. Oparin

Now that the internal organization of living things has been studied in detail, there is every reason to assume that,
sooner or later, we can artificially reproduce this organization and thereby directly show that life is nothing more
than a special form of existence of matter.

— A.I. Oparin
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10. Appendix

10.1 Appendix: Stochastic thermodynamics, the 0th law and currents

The thermodynamic chemostat is a key ingredient found in many models. As exhibited in Sec 3.1,
such chemostats are far from hypothetical. While it is often practical to fix a concentration without
further specification, it can be instructive to have a more detailed picture of what chemostatting is
and what it can and cannot do.

To further flesh out the concept of chemostats, this section will look at them from the viewpoint
of stochastic thermodynamics. To have chemostats that are in accord with the second law, we will
see that, in general, we cannot always equalize concentrations or chemical potentials. Instead, a
general chemostat will annul the net current, characterized by an equality of statistical moments of
numbers of molecules. Only a limited class of current propensities are consistent with this more
detailed description, and this constrains the transport of conserved quantities in general.

10.1.1 Two-particle exchange

Let us set up a simple, passive, two-particle transport process between a reservoir (R) and a system
(I), for the species A, described by a reaction vector ggg:

2AI ggg−−→←−−−ggg
2AR. (10.1)

Such a transport process can e.g. be accomplished by some particular enzyme, in which case it is a
catalytic cycle for which a more elaborate graph can be drawn (see Fig. 10.1). Another situation
in which this may happens is when a species A may traverse the barrier separating reservoir and
system only in its dimeric form A2

2AI −−⇀↽−− A I
2 −−⇀↽−− A R

2 −−⇀↽−− 2AR (10.2)

The next scheme presents a minimal example of a six-state enzyme transporting two particles at a
time, between a small compartment and a large reservoir:
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Figure 10.1: A minimalist scheme for a passive nonlinear transport enzyme transporting 2A at a
time between compartment I and large reservoir R. The dashed box provides a reference volume v
equal to the compartment size, such that the reservoir concentration of A is λ/v.

For both the system and the reservoir, we have two binding steps:

A+E −−→←−− EA (10.3)

A+EA −−→←−− EA2. (10.4)

And two steps where the enzyme switches its orientation between reservoir and system.

EI −−→←−− ER (10.5)

EAI
2
−−→←−− EAR

2 . (10.6)

It is the latter reaction that accounts for the net transfer of two particles. For simplicity ∗, we will
suppose that the energy landscape is perfectly symmetric with respect to facing the compartment or
reservoir

µ
◦
EI = µ

◦
ER = µ

◦
E, (10.7)

µ
◦
EAI = µ

◦
EAR = µ

◦
EA, (10.8)

µ
◦
EA I

2
= µ

◦
EA R

2
= µ

◦
EA2

(10.9)

Let us denote the total number of internal A molecules (roaming freely plus bound in EAI,EAI
2) as

NA. We can then define equilibrium constants for pairs of enzyme states

K1 =
PEAI

NAPEI
=

PEAR

λPER
= exp(−β (µ◦EA−µ

◦
E)), (10.10)

K2 =
PEAI

2

(NA−1)PEAI
=

PEAR
2

λPEAR
= exp(−β (µ◦EA−µ

◦
E)), (10.11)

K3 =
PEI

PER
= exp(−β (µ◦E−µ

◦
E)) = 1. (10.12)

Where we used for K2 that a first A is already bound in EAI, so only the remaining NA− 1 that
roam freely can bind to form EAII. Letting λ denote the abundance of A molecules per volume
unit v (corresponding to the region within the dotted lines Fig. 10.1) in the large reservoir (m� 1).
On the reservoir side, binding an A from the bath reduces the mean concentration to λ − 1

m . Since
we have m� 1, binding does not noticeable alter the reservoir concentration: λ − 1

m → λ .

∗This assumption can be relaxed for equivalent results
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A master equation model

Let us now suppose that the rate of the exchange reaction (10.6) is much slower than any other
transition, such that between subsequent transfers rapid equilibrium between the enzyme states is
established. Between such transfers, the number of A molecules in I (free or bound to the enzyme
facing I) NA is fixed. For the macrostate NA, the equilibrium occupation of microstates EA I

2 , EA R
2

becomes

PEAI
2

PEI +PEAI +PEAI
2
+PER +PEAR +PEAR

2

=
K1K2NA(NA−1)

2+K1(NA +λ )+K1K2(NA(NA−1)+λ 2)
, (10.13)

PEAR
2

PEI +PEAI +PEAI
2
+PER +PEAR +PEAR

2

=
K1K2λ 2

2+K1(NA +λ )+K1K2(NA(NA−1)+λ 2)
. (10.14)

Let us in addition suppose K1λ ,K2λ 2� 1, such that binding sites are vacant most of the time, such
that the equilibrium occupations approach

PEAI
2

=
K1K2NA(NA−1)

2
, (10.15)

PEAR
2

=
K1K2λ 2

2
. (10.16)

Where we have used the total probability PEI +PEAI +PEAI
2
+PER +PEAR +PEAR

2
= 1. Then, for a

given macrostate NA, we can define rates J for two-particle transport from I to R and from R to I as

JEAI
2→EAR

2
∝ NA(NA−1), (10.17)

JEAR
2→EAI

2
∝ λ

2. (10.18)

Where the first reaction corresponds to a transation from NA to NA−2 and the second to a transition
from NA to NA +2. We can then write a master equation to track the fluctuations of the population
of A in the internal compartment

dP(NA)

dt
= khλ

2[P(NA−2)−P(NA)
]

(10.19)

− kh
[
NA(NA−1)P(NA)− (NA +2)(NA +1)P(NA +2)

]
NA ≥ 2

dP(NA)

dt
= −khλ

2P(NA)+ kh(NA +2)(NA +1)P(NA +2) 0≤ NA ≤ 2 (10.20)

Where kh is a rate constant. The stationary equilbrium distribution of this equation is a generalization
of the Poisson distribution typically encountered for such equations

P(NA) =
λ NAC0

NA!
(10.21)

Where C0 is a normalization constant.

Normalization and moments of the distribution

Since we transport 2 particles at a time, NA mod 2 is constant. To characterize C0, we need to
distinguish between odd and even values for NA. For even NA, we have:

1
C0

=
∞

∑
n=0

λ 2n

2n!
= cosh(λ ) (10.22)
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Which yields, for the moments of NA:

〈Nm
A 〉 =

1
cosh(λ ) ∑

n

(2n)mλ 2n

2n!
(10.23)

=
(λ d

dλ
)m

cosh(λ ) ∑
n

λ 2n

2n!
=

(λ d
dλ

)m cosh(λ )
cosh(λ )

=
m

∑
n=1

λ
n(δ 1

n mod2 tanh(λ )+δ
0
n mod2)S(m,n)

where δ b
a is the Kronecker delta symbol, and S(m,n) denotes a Stirling number of the second kind,

which quantifies the number of ways m objects can be partitioned in n nonempty sets. The first two
moments are then

〈NA〉= λ tanh(λ ), 〈N2
A〉= λ

2 +λ tanh(λ ) (10.24)

For odd NA, we have:

1
C0

=
∞

∑
n=0

λ 2n+1

(2n+1)!
= sinh(λ ). (10.25)

Which yields different values for the moments of NA:

〈Nm
A 〉 =

1
sinh(λ ) ∑

n

(2n)mλ 2n

2n!
(10.26)

=
(λ d

dλ
)m

sinh(λ ) ∑
n

λ 2n

2n!
=

(λ d
dλ

)m sinh(λ )
sinh(λ )

=
m

∑
n=1

λ
n(δ 1

n mod2 coth(λ )+δ
0
n mod2)S(m,n).

With the first two moments being

〈NA〉= λ coth(λ ), 〈N2
A〉= λ

2 +λ coth(λ ) (10.27)

Interestingly, the odd and even systems have dissimilar moments of their respective distributions
for NA, despite being in contact with the same reservoir. For λ � 1, coth(λ )→ 1, tanh(λ )→ 1 and
thus these effects vanish. While the system was in contact with a chemostat of concentration λ/V ,
we clearly did not obtain the average concentration λ/V as concentration for our system. This is
due to the nonlinear coupling.

The reservoir influx J+R→I = khλ 2 needs to balance the system outflux J+I→R = kh〈N2
A〉−〈NA〉,

in order to establish equilibrium:

khλ
2 = kh ∑

NA

NA(NA−1)P(NA) = kh(〈N2
A〉−〈NA〉). (10.28)

Upon inspection, we see that this condition is verified using the moments for the ‘even’ and the ‘odd‘
compartment. Cancelling a net current is thus more fundamental than equalizing a concentration.

10.1.2 Coupled Compartments
Let us now take an odd compartment I and couple it to an even compartment II (see Fig. 10.2), with
both coupled to a reservoir. We suppose that reservoir exchange is rapid, and intercompartment
exchange is slow (e.g. due to a less efficient enzyme, or different enzyme abundances at the
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I II

R

E EE

Figure 10.2: Setup for transport between compartments I and II, both coupled with the same
reservoir R. Enzymes (E) given in green perform rapid exchange compared to the pink one in the
middle (κ � kh), which slowly exchanges 2A. On average, no net currents should establish since
there is no driving force.

contacts), such that molecular abundances follow Eq. (10.21). We furthermore suppose the same
current propensities for this coupling

J+I→II = κNI
A(N

I
A−1), (10.29)

J+II→I = κNII
A (NII

A −1). (10.30)

where κ � kh. Since we assume that transport between compartments is slow (κ � kh), we can
use the steady-state solutions for reservoir exchange to find the mean currents

〈J+I→II〉= κ〈NI
A(N

I
A−1)〉= κλ

2, (10.31)

〈J+II→I〉= κ〈NII
A (NII

A −1)〉= κλ
2. (10.32)

In this example where N mod 2 is preserved, exchange with a reservoir reaches equilibrium for an
even compartment and an odd compartment. At equilibrium, however, these compartments do not
have the same average concentration (see Eqs. (10.27) and (10.24)). In fact, if they did have the
same equilibrium concentration, the current 〈J+I→II〉−〈J

+
II→I〉 would not vanish. In the absence of a

driving force (both are connected to the same reservoir), this is in contradictation with the second
law, which precludes persistent currents at equilibrium.

One can define a ∆µ for the process, whose exponential vanishes on average. Let us define a
chemical potential for reservoir species of the form

µ̄ = µ
◦+ kbT lnλ , (10.33)

By equality of opposing currents between compartment and reservoir (Eq. (10.28)) and pairs of
compartments, it follows that

〈NI
A(N

I
A−1)〉exp(2β µ

◦) = 〈NII
A (NII

A −1)〉exp(2β µ
◦) = exp(2β µ̄) (10.34)

For the compartment, we can then introduce a chemical potential of the form

µ(NA) = µ
◦+ kbT lnNA, (10.35)

the rationale behind such a form is that it very naturally recovers the Gibbs free energy G in the
statistical sense for a state NA

G(NA) =
NA

∑
k=1

(µ◦+ kbT lnk) = NAµ
◦+ kbT lnNA!. (10.36)
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This expression then modifies Eq. (10.34) to

〈exp(β µ(NI
A)+β µ(NI

A−1))〉= 〈exp(β µ(NII
A )+β µ(NII

A −1))〉= exp(2β µ̄). (10.37)

Eq. (10.37) has a functional form reminiscent of a Jarzinsky equality[1], although its interpretation
is quite different.

The Jarzynski equality relates the statistics of the work W done in taking the system from state
α to β , to the Helmholtz free energy F of those states

〈exp(W )〉= exp(−β (F(α)−F(β ))), (10.38)

In Eq. (10.37), no work is extracted or injected and the relation is an equilibrium relation. Its
utility here is that it characterizes equilibrium, whereas more straightforward quantities do not. The
process does not equalize chemical potentials in the sense of a uniporter (Eq. (3.1)), since we know
from Eqs. (10.27), (10.24)) that

〈NI
A〉 6= 〈NII

A 〉 6= λ , (10.39)

and by taking into account Eq. (10.35) we see that an average chemical potential does not equalize
either

〈µ(NI
A)〉 6= 〈µ(NII

A )〉 6= µ̄. (10.40)

nor do the exponentials that one would obtain from (10.39)

〈exp(−β µ(NI
A))〉 6= 〈exp(−β µ(NII

A ))〉 6= λ , (10.41)

Introducing

∆µ
I = µ(NI

A)+µ(NI
A−1)−2µ̄, (10.42)

∆µ
II = µ(NII

A )+µ(NII
A −1)−2µ̄, (10.43)

∆µ
III = µ(NI

A)+µ(NI
A−1)−µ(NII

A )−µ(NII
A −1), (10.44)

we can write Eq. (10.41) in more compact form by pairing a compartment with another compartment
or a reservoir

〈exp(−β∆µ
I)〉= 〈exp(−β∆µ

II)〉= 〈exp(−β∆µ
III)〉= 1. (10.45)

While Eq. (10.38) pertains to the ∆F of one pair of states, the chemical relation Eq. (10.37) gives a
weighted average over all accessible pairs of NA, NA−2 states to find the quantity µ(NA)+µ(NA−
1), which is subsequently rewritten as a ∆µ on the level of the whole system.

Out of equilibrium
Let us now slightly modify the situation, by linking compartment I and II to different reservoirs with
chemical potentials µ̄ I, µ̄ II (Fig. 10.3), with bath concentrations λ I , λ II , respectively. Maintaining
that transport between reservoirs is much faster than transport between compartments (kh� κ), the
occupations are fixed by

kh〈NI
A(N

I
A−1)〉= kh(λ

I)2, (10.46)

kh〈NII
A (NII

A −1)〉= kh(λ
II)2. (10.47)

Maintaining the same current propensities for intercompartment transport, (Eqs. (10.29)-(10.30)),
we find a net transport rate

〈J+I→II〉−〈J
+
II→I〉= κ(〈NI

A(N
I
A−1)〉−〈NII

A (NII
A −1)〉) = κ((λ I)2− (λ II)2) (10.48)
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I II

R
II

E E

R
I

E

Figure 10.3: Setup for transport between reservoir RI and RII , through two coupled compartments.
Enzymes (E) given in green perform rapid exchange compared to the pink one in the middle
(κ � kh), which slowly exchanges 2A.

Taking the ratio of currents, we find a de Donder [2] form,

〈J+I→II〉
〈J+II→I〉

=
〈NI

A(N
I
A−1)〉

〈NII
A (NII

A −1〉
= exp(−2β (∆µ̄)), (10.49)

with an affinity of 2∆µ̄ , where ∆µ̄ = µ̄ I− µ̄ II . Written in terms of chemical potentials, we find

〈exp(−β [µ(NI
A)+µ(NI

A−1)−µ(NII
A )−µ(NII

A −1)])〉= exp(−2β∆µ̄). (10.50)

Due to rapid equilibration between reservoir and compartment, local equilibrium can be supposed
on intermediate timescales 1/kh� t� 1/κ ,

〈exp(−β∆µ
I)〉= 〈exp(−β∆µ

II)〉= 1. (10.51)

where

∆µ
I = µ(NI

A)+µ(NI
A−1)−2µ̄

I, (10.52)

∆µ
II = µ(NII

A )+µ(NII
A −1)−2µ̄

II. (10.53)

10.1.3 A link with the zeroth law of thermodynamics
The zeroth law of thermodynamics states that thermodynamic equilibrium between systems is a
transitive property. Its formulation typically focuses on the equilibrium in the exchange of energy,
thereby fixing the temperature, but this specification is typically unnecessary. Often, the zeroth law
is given as:

If a system A is in equilibrium with a system B and A is in equilibrium with C, then B is in
equilibrium with C. [3]

Where B is in equilibrium with C is often specified with ‘if B is brought in contact with C, no
further change occurs’.

A Macroscopic application of the zeroth law
Pippard[3] gives a useful argument for how the zeroth law implies the existence of an equation of
state, which we will give here in a more the generalized sense. The original argument holds that
contact between phases to introduces one constraint, as only transport of heat is considered, but in
principle it can be more.
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To establish this, Pippard considers three systems (A,B,C). These systems are in local equi-
librium within themselves, and the state is characterized by a set of n variables (xA

1 ,x
A
2 , . . . ), (e.g.

Volume, pressure, etc.). Now let us first consider placing two systems in contact via a diathermal
wall. These systems are not in equilibrium for any arbitrary choice of {xA

i }, {xC
i }, but fixing 2n−1

of them will lead the unspecified variable to adopt its equilibrium value upon relaxation by heat
flow. The condition for which the variables reach equilibrium are captured by an equation

F1(xA
1 , . . . ,x

A
n ,x

C
1 , . . . ,x

C
n ) = 0. (10.54)

Which we will rewrite for xC
1 as

xC
1 = f1(xA

1 , . . . ,x
A
n ,x

C
2 , . . . ,x

C
n ), (10.55)

By the exact same argument, equilibrium between B and C is captured by

F2(xB
1 , . . . ,x

B
n ,x

C
1 , . . . ,x

C
n ) = 0. (10.56)

From which we can again find xC
1

xC
1 = f2(xB

1 , . . . ,x
B
n ,x

C
2 , . . . ,x

C
n ). (10.57)

Which means that

f1(xA
1 , . . . ,x

A
n ,x

C
2 , . . . ,x

C
n ) = f2(xB

1 , . . . ,x
B
n ,x

C
2 , . . . ,x

C
n ). (10.58)

According to the zeroth law of thermodynamics stated before, we have now established equilibrium
between A and C as well, as if they were put in direct contact. Therefore, Eq. (10.58) must be
equivalent to

F3(xA
1 , . . . ,x

A
n ,x

B
1 , . . . ,x

B
n ) = 0 (10.59)

Which means the functional dependence in f1 and f2 on variables in C must be such that they cancel
each other out, e.g.

φ1(xA
1 , . . . ,x

A
n )ζ (x

C
2 , . . . ,x

C
n )+η(xC

2 , . . . ,x
C
n ) (10.60)

Then, we find that upon cancellation, we can write the equilibrium as a relation between two
functions of state φ1,φ2, as φ1,φ2 only depends on variables of their corresponding system,

φ1(xA
1 , . . . ,x

A
n ) = φ2(xB

1 , . . . ,x
B
n ). (10.61)

Extending this argument, for system C, we find

φ1(xA
1 , . . . ,x

A
n ) = φ2(xB

1 , . . . ,x
B
n ) = φ3(xC

1 , . . . ,x
C
n ). (10.62)

Which has the elegant property that it takes the same value for all systems at equilibrium, and for a
diathermal wall, φ can be identified with the quantity that we call temperature T . Strictly speaking,
equation (10.62) is valid for any function G(T ) that only depends on temperature. Since thermal
equilibrium implies that all temperatures are the same, the zeroth law has been rephrased as ‘all
diathermal walls are equivalent’ [4] or the more demeaning version ‘you can build a thermometer’.

While we repeated Pippard’s argument for the case of temperature, the argument could also
concern a different quantity. Let us now take systems A,B,C in contact with a heat bath at
temperature T . If we then establish a connection between A and C, e.g. by a movable diathermal
wall or a semipermeable membrane, we again have one variable that we cannot fix and whose value
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is set by equilibrium. Like for Eq. (10.54), we can write the condition for equilibrium as function
of the variables as

H1(xA
1 , . . . ,x

A
n ,x

C
1 , . . . ,x

C
n ) = 0. (10.63)

By pursuing Pippard’s line of reasoning outlined before, we find a property χ associated to the
quantity that is equalized

χ1(xA
1 , . . . ,x

A
n ) = χ2(xB

1 , . . . ,x
B
n ) = χ3(xC

1 , . . . ,x
C
n ). (10.64)

Now, the quantity χ is for example the chemical potential (selective membrane), or the pressure
(movable wall). However, we must be slightly more careful with a statement like ‘all diachemical’
walls are equivalent.

Let us first note that Pippard’s argument is rooted in classical thermodynamics and the line
of reasoning alludes to macroscopic systems for which we can neglect fluctuations. For small,
nanoscopic systems, some of our variables (e.g. local temperature, number of particles) become
fluctuating quantities, and expressions like Eq. (10.62) or Eq. (10.64) become true on average.
For example, in the ideal chemostat performing single-particle exchange, the average, fluctuating
concentration (Eq. (3.15) ) is equalized with that of the reservoir.

The zeroth law has recently been reinspected in a number of regimes beyond its typical perceived
validity. Pradhan, Amann and Seifert[5] showed that nonequilibrium-steady states of lattice gases
could be put in contact, to yield an approximate zeroth law. Bera et al [6] generalized laws of
thermodynamics from information theory, to address quantum-mechanical situations where strong
coupling with baths can exist. In such cases, the classical zeroth law does not suffice. In the
upcoming section, we will show that we do not need to be in a NESS or the quantum regime to
expect violations of certain formulations of the zeroth law. We present a case in this happens for
three coupled classical chemical systems at equilibrium.

Nonequivalent walls in classical thermodynamics
For integer quantities like the number of particles, there is another important difference: the number
of species transported dictates the equilibrium that is established. Let us consider three systems
(α,β ,γ), and let α be connected to β through an enzyme performing N mod 2 transport ( see Fig.
10.4). Furthermore, let β be connected to γ through an enzyme performing N mod 3 transport. In
the present case, a net equilibrium will be established between α , β and γ , where the transport fixes

〈Nα(Nα −1)〉 = 〈Nβ (Nβ −1)〉 (10.65)

〈Nβ (Nβ −1)(Nβ −2)〉 = 〈Nγ(Nγ −1)(Nγ −2)〉. (10.66)

Transport will preserve α’s mod 2 state and γ’s mod 3 state, while β will have a mod 1 state.
Although these systems establish an equilibrium by exchanging their common component, they
have distinct equilibrium states. A quick way to see this is by having one compartment e.g. (β ) be
considerably larger (or coupled with a reservoir fixing the concentration at λ ). Setting the size of α

and γ equal, we can write

P(Nα) =
λ Nα

Cα
0

Nα !
, P(Nβ ) =

λ
Nβ Cβ

0
Nβ !

. (10.67)

where Cα
0 is a mod 2 normalization constant and Cα

0 a mod 3 normalization constant. Let m =
Nγmodn, the normalization constant is then constructed by taking every nth term in the expression
of an exponential.

1
C0

=
∞

∑
k=0

λ nk+m

(nk+m)!
(10.68)
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For n = 1,2 this respectively yields the well-known exponential function and the hyperbolic
functions.

By the coupling of higher moments, the local equilibrium states are distinct and the average
abundances do not equalize

〈Nα〉 6= 〈Nβ 〉 6= 〈Nγ〉. (10.69)

Now, if α and γ would subsequently be connected (e.g. by a pore) to perform mod 1 transport, we
would suddenly fix

〈Nα〉= 〈Nγ〉. (10.70)

By this introduction, the populations of α (resp. γ) are no longer constrained by Nmod2 (resp.
Nmod3), instead putting them all at Nmod1. Let us now consider what modulo constraints are
preserved for different connections, also summarized in Fig. 10.4): connecting α to γ and γ to β

fixes

Nαmod1, Nβ mod3, Nγmod1 (10.71)

Whereas connecting α to β and β to γ fixes

Nαmod2, Nβ mod1, Nγmod3 (10.72)

And connecting A to β and α to γ fixes

Nαmod1, Nβ mod2, Nγmod1 (10.73)

It follows that not all diachemical walls are equivalent, and by extension the order in which we
connect systems matters. Any of the proposed configurations reaches equilibrium, they are simply
not the same equilibria. One may now wonder what it means for compartments that are not in direct
contact to be in equilibrium ‘with each other’. Macroscopically, it means that if we connect α to β

an β to γ , then connecting α to γ leads to no further change, as they are already in equilibrium.

3A

α

β

γ

2A

1A

α

β

γ

N mod2

N mod1

N mod3

α

β

γ

N mod2

N mod2

N mod1

α

β

γ

N mod1

N mod3

N mod1

α

β

γ

N mod1

N mod1

N mod1

Figure 10.4: Different equilibrium states achieved by connecting (indicated in orange) different
diachemical walls, transporting 1, 2, or 3 α simultaneously.

In our microscopic example, this ceases to be true if we have different types of diachemical
walls: to preserve the modulo constraints, the number of particles exchanged between α and γ must
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be a common divisor of 2 and 3. The smallest number of particles that we can transport between α

and γ is then 6, thereby fixing

〈(Nα)6〉= 〈(Nγ)6〉. (10.74)

Where we have used the falling factorial expression as defined in Eq. (3.22). With this choice
connecting α to β and β to γ is followed by no further change when α is connected to γ .

In this case however, connecting α to γ and γ to β fixes (see Fig. 10.5)

Nαmod6, Nβ mod3, Nγmod3 (10.75)

Whereas connecting α to β and β to γ fixes

Nαmod2, Nβ mod1, Nγmod3 (10.76)

And connecting α to β and α to γ fixes

Nαmod2, Nβ mod2, Nγmod6 (10.77)

3A
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γ
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γ

N mod2

N mod1

N mod3
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N mod2

N mod2

N mod6
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β

γ

N mod6

N mod3

N mod3

α

β

γ

N mod2

N mod1

N mod3

Figure 10.5: Different equilibrium states achieved by connecting (indicated in orange) different
diachemical walls, transporting 2, 3 or 6 A simultaneously.

For macroscopic systems, the differences that follow from this are minute. As was shown for
mod 2 systems, we have for even compartments 〈N〉 = λ tanh(λ ). Noting that tanh(λ ) can be
written as

tanh(λ ) = 1− 2
exp(2λ )+1

, (10.78)

we find that tanh(λ ) converges to 1 exponentially fast with growing λ , meaning corrections will
rapidly become so small that we will not be able to measure a deviation from a mod 1 state. This
argument is applicable to any Nmodn state (provided n� N).

For all practical purposes, a system can thus be large enough such that all diachemical walls
lead to indistinguishable changes and no further caution is needed when considering the zeroth law.
We can then comfortably return to using Pippard’s expression φ1(xA

1 , . . . ,x
A
n ) = φ2(xB

1 , . . . ,x
B
n ) =

φ3(xC
1 , . . . ,x

C
n ).. In stochastic thermodynamics, formulating the zeroth law becomes more delicate

for integer quantities.
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Let us first consider this: when we connect a system A to B and B to C, then connection A
to C only leads to no change if that connection does not alter the modulo states NAmodnA and
NCmodnC. Let us now introduce a connection between A and C that exchanges m particles at a
time. If mmodNA = 0 and mmodNC = 0, this maintains the original equilibrium state. In this sense
then, equilibrium between A and B and equilibrium between B and C implies equilibrium between
A and C. In Fig. 10.5, such a situation is given.

A subtlety that arises is that the appropriate contact through which A and C would already be at
equilibrium is hypothetical. Their actual exchange mechanisms or chemistries may be different.
While we may maintain that there is transitivity and equilibrium, it does not follow that putting
them in contact will maintain that equilibrium. Let us here suggest a formulation of the zeroth law
that attempts to capture this subtlety

A zeroth law for integer quantities: If a system A is in equilibrium with a system B and A is
in equilibrium with C, then B is in equilibrium with C for the appropriate subclass of contacts.

We here understand ‘the appropriate subclass of contacts’ as diachemical walls that impose the
appropriate modulo constraints and fix the appropriate statistical moments that govern exchange.
In the following section we will show that these two criteria are closely linked in general. We
show that arbitrary passive processes performing mod 2 exchange (between ideal systems) must
at least equalize the quantity N(N−1)/V 2. Most functional forms for current propensities do not
allow for such an equilibration. For passive processes, such current propensities are forbidden by
thermodynamics.

10.1.4 A black box performing mod 2 exchange
Suppose we have again have our reservoir coupled to a left and a right system L and R, but the
left and right systems are now coupled by a black box: a mysterious, ill-specified subsystem (see
10.6). The following properties are known for the black box: it passively transports particles and
preserves N mod 2. Its internal state structure can be completely different from E however.

L R? EE

Figure 10.6: Setup for transport between compartments L and R, through a ‘black box’ labellled
with an interrogation mark ‘?’. L and R are linked to a large reservoir. While the exact nature of the
black box is unknown, it is known that it transports 2A at a time and operates passively.

Let us first consider a black box with a left-to-right flux rate obeying some function JLR(NL),
where NL corresponds to the number of species A in the left compartment. We will refer to black
boxes that obey this rule as ‘simple’ black boxes (in anticipation of ‘complex’ black boxes, for
which currents do not only depend on concentrations in one compartment).

For a finite state space (finite number of possible NL populations), we can always expand JLR in
powers of NL, since we can supply a polynomial coefficient for every state so that a full exact fit is
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realized. The instantaneous flux rate in a given state NL is then

JLR(NL) = a0 +a1NL +a2N2
L + ...=

∞

∑
k=0

akNk
L (10.79)

where a0,a1,a2, ... are constants. Note that by introducing this flux rate, we are implicitly implying
an appropriate seperation of timescales, such that memory effects from the black box become
vanishingly small.

For a stationary probability distribution of NL, let us then write the average flux rate

〈JLR(NL)〉=
∞

∑
NL

∞

∑
i=0

aiNi
LP(NL) = a0 +a1〈NL〉+a2〈N2

L〉+ ... (10.80)

Similarly, we can define an instantaneous right-to-left flux rate JRL(NR), which averages to

〈JRL(NR)〉= b0 +b1〈NR〉+b2〈N2
R〉+ ... (10.81)

Let us now consider the case of empty compartments and reservoirs: in such a case there are no
particles to transport, and all fluxes should cancel, which means a0 = b0 = 0. In the limit where
transport between the reservoir and compartments is fast with respect to intercompartment transport,
the steady state particle number distributions correspond to those derived in Sec. 10.1.1. We
can therefore use Eqs. (10.26) and (10.23) to express the flux rates as powers of λ . If the left
compartment contains an even number of particles, we find

〈JLR〉=
∞

∑
n=0

λ
1+2n tanh(λ )

∞

∑
i=2n+1

S(i,2n+1)ai +
∞

∑
n=1

λ
2n

∞

∑
i=2n

S(i,2n)ai (10.82)

whereas for an odd (Nmod2 = 1) compartment, we have

〈JLR〉=
∞

∑
n=0

λ
1+2n coth(λ )

∞

∑
i=2n+1

S(i,2n+1)ai +
∞

∑
n=1

λ
2n

∞

∑
i=2n

S(i,2n)ai (10.83)

In stochastic thermodynamics, the second law requires that at equilibrium all currents vanish on
average. In our system, there is a reservoir, two compartments and a black box. However, no net
currents should be produced, since there is no affinity to do so (chemically, that would require
connecting to a second reservoir [7]). The second law thus implies that the coefficients must be such
that 〈JLR〉= 〈JRL〉 for any value of λ and any pair of mod 2 compartments (even-even, even-odd,
odd-even, odd-odd). For an odd-even pair, we can write for odd powers of λ that

∀m ∈ {1,3,5, ...} coth(λ )
∞

∑
i=m

S(i,m)ai = tanh(λ )
∞

∑
i=m

S(i,m)bi. (10.84)

Which can only be true regardless of λ if odd-power contributions vanish

∀m ∈ {1,3,5, ...}
∞

∑
i=m

S(i,m)ai =
∞

∑
i=m

S(i,m)bi = 0. (10.85)

Irrespective of the choice of mod 2 compartments, the even powers of λ verify
∞

∑
i=m

S(i,m)ai =
∞

∑
i=m

S(i,m)bi = γm ∀m ∈ {2,4,6, ...} (10.86)

Which means the mean flux in either direction can be written as

〈JLR〉= 〈JRL〉=
∞

∑
n=1

γ2nλ
2n (10.87)
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If the instantaneous flux rate has a finite number of coefficients M, we can write the matrix equation

SSS · (aaa−bbb) = 0 (10.88)

where SSS is an M×M matrix with entries S(i,m) that are the Stirling numbers of the second kind,
and aaa,bbb are vectors of the coefficients ai,bi. Since SSS is linearly independent, we have M coefficients
that are fixed by M constraints, which implies ai = bi. This means that the forward and backward
transport propensities are completely symmetric.

The constants verify the matrix equation

SSS ·aaa = γγγ (10.89)

where γγγ is a vector of γm values, which are 0 for odd m. The solutions for this matrix equation on
the Stirling numbers of the second kind, is a linear combination of vectors cccn of signed Stirling
numbers of the first kind c(n,k)

aaa =
M

∑
n=2

βncccn (10.90)

The signed Stirling numbers of the first kind occur e.g. in falling factorial expressions like
N(N−1)(N−2)(N−3), which can be expanded as

−6N +11N2−6N3 +N4 = c(4,1)N + c(4,2)N2 + c(4,3)N3 + c(4,4)N4 (10.91)

Substituting Eq. (10.90) in Eq. (10.79), the instantaneous current that preserves N mod 2 must
become

J(N) =
∞

∑
n=1

β2n(N)2n, (10.92)

where (N)m denotes a falling factorial N(N−1)....(N−m+1). In order to satisfy (10.87) irrespec-
tive of λ , we equalize the quantity 〈(N)m〉 (more completely: 〈(N)m〉/V m) for each nonzero entry
βm. This is in accord with the equilibrium criterion (10.37).

In conclusion, Nmod2 preserving transport is highly constrained. In this section we assumed
the outgoing current propensity can be written as a power law with a finite number of terms that
only depend on the internal concentration. Under these conditions, the current propensity is exactly
equal in either direction and must be written as a linear combination of even falling factorials of
particle numbers.

A similar proof can be written for transport preserving Nmodm, which leads to a current of the
form

J(N) =
∞

∑
n=1

βmn(N)mn. (10.93)

10.1.5 A mod 2 preserving complex black box
In the previous section we imagined a black box, where the outgoing transport of a compartment
was only a function of concentrations in that compartment. In principle, we can imagine this
transport to be affected by the system state of the other compartment. To illustrate this, imagine a
modified version of our transport enzyme, with an extra ‘gating’ binding step (see fig. 10.7).

Let us write the instantaneous current as a power law of particle numbers on both sides

JLR = a0,0 +a1,0NL +a0,1NR +a1,1NLNR +a2,0N2
L +a0,2N2

R +a1,1NLNR + ... (10.94)

=
∞

∑
i=0

∞

∑
j=0

ai, jNi
LN j

L (10.95)
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Physically, transport from left to right right requires the presence of particles in the left compartment.
The left-to-right current should thus vanish for NL = 0, which means

∀m a0,m = 0. (10.96)

Similarly, we can write

JRL = b0,0 +b1,0NL +b0,1NR +b1,1NLNR +b2,0N2
L +b0,2N2

R + ... (10.97)

=
∞

∑
i=0

∞

∑
j=0

bi, jNi
LN j

L (10.98)

where, due to the same argument, we have that

∀m bm,0 = 0. (10.99)

If the expansion has a finite number of terms such that its maximum power of λ is M, then we expect
the number of coefficients per side to scale as M(M+1)/2. For two even compartments in contact,
we have λ 2n and λ 2n tanh(λ )2 contributions for even powers and λ 2n+1 tanh(λ ) contributions for
odd powers, which results in 3M/2 constraints for even M (and 3(M− 1)/2+ 1 for odd M). If
M > 2, there are more coefficients than constraints and consequently there can be asymmetric
contributions to the black box current. This is somewhat reminiscent of Smulochovski’s trapdoor
[8], which supposedly can be opened from one side to facilitate transport in either direction. We
will now consider a trapdoor-like molecular machine.

Molecular Trapdoors
As a simple example of a molecular trapdoor, consider a transport enzyme E with a graph given by
Fig. 10.7

EA
3

I

EA
2

I

EA
3

R

EA
2

R

EAR

AI AR

ARAI

I R

EI

AI

EAI

Figure 10.7: A small molecular trapdoor network that performs mod 2 transport. A transport
process can only proceed if there is at least one A molecule in I, such that the state EAI can be
reached.

We suppose that each binding step is unfavorable, such that P(E)→ 1. Furthermore, we
suppose that the slowest step is the transition between two EA3 states, such that the master equation
reaches a stationary distribution. Finally, we suppose that the transition E→ EA→ EA2→ EA3 is



336 Chapter 10. Appendix

rapid with respect to particle exchange with the reservoir, but transition between two EA3 states is
slow. If timescales are separated in this way, we have an LR current

JLR = khNL(NL−1)(NL−2), (10.100)

and an RL current

JRL = khNLNR(NR−1). (10.101)

Using Eqs. (10.23) and (10.26) we can see that for any pair of odd and even mod 2 compartments,
we have no net current, as

〈JLR〉= 〈JRL〉. (10.102)

However, we do have a trapdoor mechanism, in the sense that no current can occur without the
initial binding of a particle in the left compartment. Let us now generalize this simplest of trapdoors,
by considering a black box which first requires binding by a particle in the left compartment,
according to

JLR = NL f (NL), (10.103)

JRL = NLg(NR). (10.104)

Let us now suppose we can write f and g as power laws

f (NL) = a0 +a1NL +a2N2
L + ... (10.105)

f (NR) = b0 +b1NR +b2N2
R + ... (10.106)

for which we can directly write b0 = 0 since RL transport cannot occur in absence of R particles.
If the left compartment is even, we can use (10.23) to write for the average LR-current

〈JLR〉 =
∞

∑
n=0

λ
1+2n tanh(λ )

∞

∑
i=2n+1

S(i,2n+1)ai−1 +
∞

∑
n=1

λ
2n

∞

∑
i=2n

S(i,2n)ai−1. (10.107)

If the right compartment is odd, we can use (10.26) and (10.23) to write for the RL-current

〈JRL〉 =
∞

∑
n=0

λ
2+2n

∞

∑
i=2n+1

S(i,2n+1)bi +
∞

∑
n=1

λ
2n+1 tanh(λ )

∞

∑
i=2n

S(i,2n)bi.

Similarly, if the right compartment is even, we can use (10.23) to write

〈JRL〉=
∞

∑
n=0

λ
2+2n tanh2(λ )

∞

∑
i=2n+1

S(i,2n+1)bi +
∞

∑
n=1

λ
2n+1 tanh(λ )

∞

∑
i=2n

S(i,2n)bi. (10.108)

If we now match odd powers of (10.107),(10.108) and (10.108) (to annul the current), we obtain a
vanishing coefficient for the first power λ 1

∞

∑
i=1

ai−1 = 0, (10.109)

and for higher powers λ 2n+1

∞

∑
i=2n+1

S(i,2n+1)ai−1 =
∞

∑
i=2n

S(i,2n)bi = γ2n+1, (10.110)
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where γ2n+1 is a constant. For even powers λ 2n, we obtain
∞

∑
i=2n

S(i,2n)ai−1 =
∞

∑
i=2n−1

S(i,2n−1)bi = 0. (10.111)

Let us again write eq. (10.89) for the modified vector aaa′=(a0,a1,a2, ...)
T and γγγ =(0,0,γ3,0,γ5, ..)

T ,
to obtain

SSS ·aaa′ = γγγ. (10.112)

For which we know that the solution can be written as

aaa′ =
M

∑
n=1

β2n+1ccc2n+1 (10.113)

Similarly, let us write for bbb = (b1,b2,b3, ...)
T and γγγ ′ = (0,γ3,0,γ5, ...) that

SSS ·bbb = γγγ
′. (10.114)

Then, it follows that

bbb =
M

∑
n=1

θ2nccc2n, (10.115)

where each θ2n is a constant, with the property

θ2n = β2n+1 (10.116)

Upon substitution in Eqs. (10.105) and (10.106) we obtain the general form for a mod 2 trapdoor

JLR = ∑
n=1

θ2n(NL)2n+1 (10.117)

JRL = ∑
n=1

θ2nNL(NR)2n (10.118)

By the exact same arguments, we can derive a similar result for a mod m trapdoor, which yields

JLR = ∑
n=1

θmn(NL)mn+1 (10.119)

JRL = ∑
n=1

θmnNL(NR)mn. (10.120)

We can generalize the trapdoor binding step to any particular sequence of binding events by L and
R particles to yield a binding step proportional to (NL)k(NR)l . Using the same derivation, it is then
found for a modm trapdoor, that

JLR = ∑
n=1

θmn(NL)mn+k(NR)l, (10.121)

JRL = ∑
n=1

θmn(NL)k(NR)mn+l. (10.122)

The most general mod m trapdoor that we can then describe is a linear combination of all binding
steps parametrized by k, l

JLR = ∑
n,k,l

θmn,k,l(NL)mn+k(NR)l, (10.123)

JRL = ∑
n,k,l

θmn,k,l(NL)k(NR)mn+l. (10.124)

Note that every LR term (NL)mn+k(NR)l is associated with an RL term (NL)k(NR)mn+l . This obser-
vation can be readily understood when one performs a cycle decomposition[9] on a simple enzyme
graph described by mass-action. However, the black box need not be an enzyme, it merely needs to
be an object with polynomial current propensities.
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A minimal argument
It should be stressed that we started with a ‘black box’. By applying the second law, all current
propensities of another form than Eq. (10.92) became forbidden. These current propensities follow
a falling-factorial form, which is encountered in mass-action descriptions of chemistry. This can be
understood when considering the Gibbs free energy change between any pair of states nnn, nnn′. This
may happen in an arbitrary and rather elaborate way. However, (in the absence of hidden reactions
and currents) the corresponding ∆G should still follow from Eq. (10.36). We must therefore expect
the current propensities to be of a functional form that respects

Jnnn→nnn′

Jnnn′→nnn
=

z(nnn′)
z(nnn)

exp(−∆G◦). (10.125)

This relation is true for all our examples, including the general asymmetric trapdoors (Eqs. (10.123),
(10.124)). A similar result can be derived hold for other discrete conserved quantities, and this
severely constrains the allowed functional forms of their currents.

In our derivation, we imposed a simplifying separation of timescales. A more complete
treatment of transport through a black box will need to address the question of timescales, especially
when perturbed from equilibrium. An interesting outlook will be to see how insights for black
boxes can be united with thermodynamically consistent formulations of mesoscopic transport built
up from a microscopic description[10, 11, 12].

10.2 Appendix: Toy Formose
Toy formose is a simplified scheme of a popular example of autocatalysis in the literature: the for-
mose reaction[13]. In the genuine formose reaction, formaldehyde CH2O (referred to as C1), reacts
in an aldol reaction with an enolate. Under basic conditions, glycolaldehyde OHCCH2OH (C2),
can be deprotonated to form such an enolate and subsequently react with C1 form glyceraldehyde

OHCCH2OH
OH−−−⇀↽−− OHCCHOH−, (10.126)

OHCCHOH−+H2CO −−⇀↽−− OHCCH(OH)CHOH−. (10.127)

Glyceraldehyde does not form a very suitable enolate, it has to convert to 1,3-dihydroxyacetone
(C3). It can do so by base-catalyzed tautomerization, but it was recently shown that the catalytic
amount of Ca2+ that is added facilitates a hydride shift[14, 15], which can be considerably faster

OHCCH(OH)CH2OH
Ca2+,OH−−−−−−−⇀↽−−−−−− HOH2CCOCH2OH (10.128)

In turn, C3 then reacts to form a tetrulose, which can interconvert to form an aldose (C4). This
aldose can, perform a base-catalyzed retro-aldol reaction, yielding two C2 molecules

OHCCH(OH)CH(OH)CH2OH
OH−−−⇀↽−− 2OHCCH2OH. (10.129)

If interconversion is fast, or if we do not seek a detailed description, we can write a simplified
scheme, which we will refer to as Toy Formose:

C1 +C2 −−⇀↽−− C3, (10.130)

C1 +C3 −−⇀↽−− C4, (10.131)

C4 −−⇀↽−− 2C2. (10.132)

Note that formaldehyde (C1) cannot form an enolate, which implies that pure C1 is not expected
to perform the formose reaction. In practice, C2 and other formose species are present as a trace
impurity in commercial formaldehyde [16].
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It is important to appreciate that Toy Formose is an idealization that is far removed from the
complex chemical network of typical formose reaction. First of all, the addition of C1 does not
stop at C4, further additions are possible, forming C5, C6, C7 etc. each with more stereoisomer
forms and tautomers. These larger species can also afford additional retro-aldol pathways, e.g. C6
may split in 2 C3, or C4 + C2.

We should also consider that reactive aldehyde groups in formose are often in a less reactive
gem-diol form, which rapidly equilibrates in water with base

CH2O+H2O−−⇀↽−− CH2(OH)2. (10.133)

Typically, 99.95% of C1 is in the gem-diol form, for larger aldehydes, the ratio gem-diol/aldehyde
is often around 20:1 [17]. Starting at C4, the aldehyde group is reversibly removed because
appreciable conversion occurs towards the cyclic form, e.g. erythrose is in a cyclic form 90 % of
the time. Typically, longer sugars have considerably stabilized cyclic forms (the aldehyde fraction
in glucose is estimated at 100 ppm [18]), whereas only the open form contains the carbonyl group
necessary to perform the retro-aldol reaction.

Furthermore, formaldehyde reversibly forms polymeric species, poly(oxymethylenes), a reac-
tion that is often represented as a dehydration of the gem-diol

2CH2(OH)2 −−⇀↽−− HOCH2OCH2OH+H2O, (10.134)

HO(CH2O)nH+CH2(OH)2 −−⇀↽−− HO(CH2O)n+1H+H2O. (10.135)

The reaction is catalyzed by base [19], which from a mechanistic viewpoint is easier to see of we
consider the base-catalyzed reaction with an aldehyde

[HO(CH2O)n]
−+CH2O−−⇀↽−− [HO(CH2O)n+1]

−. (10.136)

Such reactions can also form cyclic species, and larger species (e.g. C2) reversibly form dimers (in
fact, C2 is sold as a dimer) and oligomers by such pathways.

Formaldehyde and larger aldehydes also engage in the irreversible Cannizzaro reaction (like
the hydride shift in formose, this reaction is catalyzed by Ca2+)[17]. This reaction consumes an
aldehyde and another carbonyl species, along with base, to form an alkanoate and an alcohol. For
C1, we can e.g. write

CH2O+CH2(OH)2 +OH−→ HCOO−+H3COH+H2O, (10.137)

A visual indicator that the formose reaction has proceeded considerably , is the onset of a
‘yellowing point’, in which the initially colorless mixture obtains a yellow hue. This can be
interpreted as the formation of products with conjugated double bonds, which can happen due to
base-catalyzed dehydration,

RHOCHCHOHCHO OH−−−→ RCH−−COHCHO+H2O (10.138)

The combination of these dynamic equilibria and irreversible reactions make formose a very
interesting reaction to study. However, it performs poorly as a specific synthetic route to a single
product with high yield, and its prebiotic relevance has been questioned in the context of ribose
synthesis. In conceptual discussions on autocatalysis, formose is often represented as a simple
example of autocatalysis. Formose is ‘simple’, only in the sense that we can use small building
blocks (C1, C2), to acquire autocatalysis and that the simplest autocatalytic cycle can be condensed
to the elegant Toy Formose representation.

In practice, the aldol and retro-aldol reactions in formose generate a much wider diversity of
species, and the typical reaction conditions (high pH, catalytic Ca2+, in water) favor a rich amount
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of other reactions. To distinguish the hypothetical scheme (10.130)-(10.132) from the more realistic
network observed in practice, we will refer to the former as Toy Formose. Toy Formose is a useful
Toy model for the study of solitary autocatalytic reactions (Ch.5). We use the Toy model in several
chapters, notably to explore the effects of minor decorations of the network.

10.2.1 Exchange between coupled droplets

Let us now write a simple model for Toy Formose in droplets, that are coupled through diffusion.
For the chemical reactions in a droplet labeled i, we can write reaction rates

Ri
1+2 = k+1 Ni

C1Ni
C2/V i− k−1 Ni

C3, (10.139)

Ri
1+3 = k+1 Ni

C1Ni
C3/V i− k−1 Ni

C4, (10.140)

Ri
2+2 = k+2 Ni

C2Ni
C2/V i− k−2 Ni

C4. (10.141)

Where we attribute the same forward rate for the incorporation of C1 by C2 and C3. As noted before,
in genuine formose these species are in dynamic equilibrium between tautomers and hydrates,
which means effective rate constants for different steps can differ considerably† In our present
discussion of Toy Formose such effects are neglected.

Exchange between compartment i and j is only considered non-negligible for solvent (H2O),
C1 and C2

‡

Ji, j
C1 = PC1

(
Ni

C1/V i−N j
C1/V j

)
, (10.142)

Ji, j
C2 = PC2

(
Ni

C2/V i−N j
C2/V j

)
, (10.143)

Ji, j
H2O = PH2O

(
Ni

H2O/V i−N j
H2O/V j

)
. (10.144)

Where Pk denotes the permeability for a species k, which contains contributions for partition
equilibria, diffusion length and geometry to describe overall transfer between compartments. An
approximation that works much better than it should is

Pk ≈
DkKĀ

L
, Ā =

AIAII

AI +AII (10.145)

where Ai denotes the surface of compartment i. A thermodynamically consistent expression for
the exchange current should vanish when the chemical potentials are equal, and Ā is the simplest
geometrical correction that respects this constraint.§

The volume for a compartment i is

V i = ∑
k

Ni
kvk, (10.146)

where vk is the molar volume of a species k.
From which we can then write differential equations on the level of a pair of compartment I

†Experimental fitting of these parameters is currently under way. Performing these corrections is indispensable for a
comprehensive model of genuine formose.
‡This was found experimentally in exchange experiments in the LBC lab, which will be detailed in an upcoming

publication
§A more thorough treatment of the geometry and diffusion should take path integrals to account for all trajectories

between compartments and their weights.
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and II. For compartment I we then have

dNI
C1

dt
= −RI

1+2−RI
1+3− JI,II

C1 , (10.147)

dNI
C2

dt
= −RI

1+2−2RI
2+2− JI,II

C2 , (10.148)

dNI
C3

dt
= −RI

1+3 +RI
1+2, (10.149)

dNI
C4

dt
= RI

1+3 +RI
2+2, (10.150)

dNI
H2O

dt
= −JI,II

H2O. (10.151)

and similarly, for compartment II we have

dNII
C1

dt
= −RII

1+2−RII
1+3 + JI,II

C1 , (10.152)

dNII
C2

dt
= −RII

1+2−2RII
2+2 + JI,II

C2 , (10.153)

dNII
C3

dt
= −RII

1+3 +RII
1+2, (10.154)

dNII
C4

dt
= RII

1+3 +RII
2+2, (10.155)

dNII
H2O

dt
= JI,II

H2O. (10.156)

We study droplet exchange behavior by the following thought experiment: we start with a droplet I
and II, with initial volumes V I, V II, and initial molecule numbers NNNI(0),NNNII(0). After a time τ has
passed, droplet I is split (one of the split droplets is removed), and droplet II is replaced with a copy
of its initial state:

NNNI(τ+) =
NNNI(τ−)

2
, (10.157)

NNNII(τ+) = NNNII(0). (10.158)

in Sec. 3.4.7, (and repeated here) this protocol is performed using concentrationsCCC = {CC1,CC2,CC3,CC4,CH2O},
with CCCI = {3.0,0.2,0,0,48.2}, CCCII = {3.0,0.0,0,0,49.0}, and V I = 110pL, V II = 70pL.
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Figure 10.8: Periodic volume growth of an autocatalytic ‘winner’ compartment (red) and a ‘feeder’
compartment after one round of contact with a ‘winner’ (blue). Compartments are periodically
placed in contact with a new feeder compartment.
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Figure 10.9: C1 concentration as a function of C2 concentration from t = 0 to 20τ , for the ‘winner’
compartment (blue) and a ‘feeder’ compartment (red). Both converge to the same limit cycle.

Rates for the toy model were k+1 = 10.0min−1, k+2 = 5.0min−1, k−2 = 0.1min−1, PH2O =

0.66min−1, PC1
= 8.7, PC2

= 0.4min−1.¶

As can be seen by the blue line in Fig. 10.8 and 10.9, a droplet that starts out as a ‘feeder’
droplet, can be propagated in subsequent rounds to become a ‘winner’ droplet. This can be attributed
to the nonzero transport rate of C2, which ensures that the reaction can also take off in droplet II.

10.3 Appendix: Purification in chemical networks
In Ch.4, we provided a physical link between ‘information’ and chemical composition, by showing
how we can construct an engine that erases a pure enantiomer configuration to extract work. By
running in reverse, work can be injected to drive a chemical purification. Such processes are at the
heart of synthetic chemistry, where purifications are performed through a wide variety of processes.
Here, we will be interested in how purification can be achieved by the network itself.
¶values based on preliminary measurements of diffusive transport.
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The problem of classical synthetic limits will first be discussed on the level of a single reaction
competing with side reactions. Subsequently, we will consider how these limits can be overcome
on the level of a larger reaction network. Our objective is to give a small taste of the ways in which
these networks differ from a single reaction and why that is pertinent for abiogenesis.

The origins of life is often perceived as a synthetic challenge that is addressed on the single-
reaction level[20], with the notable exception of autocatalysis. A systems-level approach[21] is
expected to be transformative to this approach, as it has already been for other branches of chemistry
and industry.

10.3.1 The single-reaction case
Yield, purity, error
Suppose a synthesis step happens with a fractional yield

η =
N f inal

Nmax
, (10.159)

where N f inal is the final amount of product obtained, and Nmax the theoretical maximum obtainable,
based on stoichiometry. In chemistry, the chemical yield Y (%) is often expressed as a percentage

Y = η ·100%. (10.160)

There can be various contributions for having η < 1, such as i) competing side reactions consume the
substrate ii) thermodynamic conditions do not permit a complete conversion iii) insufficient reaction
time iv) kinetic trapping of intermediates. The latter is particularly problematic for self-assembly of
objects from a diversity of substrates, and has been referred to as a yield catastrophe[22]‖. In linear
synthesis, the product of one step is the reactant of the next step. After n steps of linear synthesis,
only a fraction

η
(n) = Π

n
i=1ηi (10.161)

of the starting material in step 1 is retained, underlining the need for a small number of efficient
synthesis steps. The objective is to obtain the right product in high yield, but also to minimize the
amount of undesirable side-products, which may be very detrimental.

In the following, we will consider the problem of forming the right product, from the viewpoint
of chemical networks. The simplest network we will consider is

R
1−−⇀↽−− S+X

2−−⇀↽−−W. (10.162)

Letting R denote the ‘right’ product, and W the ‘wrong’ product, we introduce the error fraction φ

as the fraction of the wrong product produced

φ =
NW

NW +NR
, (10.163)

which is expressed in terms of the total amount of W and R produced throughout the process.
In steady-state regimes, we can define a similar quantity, called the error rate ζ , which is the

ratio of [24] production rates, or chemical currents JW ,JR

ζ =
JW

JW + JR
, (10.164)

‖Such a catastrophe becomes most pronounced in small systems: unfinished species mutually trap each other’s scarce
building blocks. Such catastrophes highlight the need for error-correcting machinery and chaperones[23] to overcome
them.
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For long times or if the system starts in a steady-state regime, we can write ζ = φ , since NW → JW t
and NR→ JRt.

If the substrate S is completely consumed by these pathways, ζ can be related to the yield as
η = 1−φ . For stationary currents, we can then write a ‘rate yield’ ηJ based on the currents

ηJ = 1−ζ =
JR

JW + JR
. (10.165)

Thermodynamic control vs kinetic control
The reaction network (10.162) corresponds to a very common situation in chemistry, in which
two reactions compete for the consumption of a product. Oftentimes, these reactions may involve
the same reactants, leading to a different products (see Fig. 10.10). A substantial number of
named rules in chemistry dictate the preferential product in such a situation (e.g. Alder endo rule,
Hofmann’s rule, Zaitsev’s rule, Bredt’s rule, Woodward-Hoffmann rule, Markovnikov’s rule, etc.
[25, 17]).

For such a process, two limiting regimes can be identified: i) thermodynamic control, and ii)
kinetic control.

Thermodynamic control
Thermodynamic control corresponds to the situation where species are acquired in accord with their
Boltzmann weights, and thus follow their equilibrium constants. Supposing a solution of volume V
in a closed system at temperature T , we can write

NR = K′1(V )NSNX, NW = K′2(V )NSNX. (10.166)

where K′(V ) is an equilibrium constant in which all volume dependencies are absorbed. The ratio
of equilibrium constants then verifies

K′2
K′1

= exp(−β (µ◦R−µ
◦
W )), (10.167)

with µ◦R (resp. µ◦R the free energy of formation of R (resp. W), which is dominated by the
thermodynamically stable product. The error fraction is then

φ =
1

1+ exp(−β (µ◦R−µ◦W ))
. (10.168)

As long as µ◦W � µ◦R, thermodynamic control is desirable. This is, however, not generally the case
and often this regime may not provide the required level of purity.

Kinetic control
A reaction is under kinetic control, when its product composition is not determined by thermody-
namic stability, but the relative rates of product formation. For this to be efficient in the network
(10.162), products should not have the time to convert back to the reactant. This means reactions
should be sufficiently irreversible, such that the timescales of forward reactions and backwards
reactions are well-separated. We can then write for the rates of formation

dNR

dt
= k+R NXNS− k−R NR,

dNW

dt
= k+W NXNS− k−W NW. (10.169)

If the concentration of X is fixed (due to being buffered or overabundant), effective rate constants
can be defined κR = k+R NX, κW = k+W NX. The typical time for an S molecule to be converted to an
R (resp. W) is then τ

+
R = 1/κR (resp. τ

+
W = 1/κW ). Our reactions must occur on a shorter timescale

than its reverse reaction

τ
−
R � τ

+
R , τ

−
W � τ

+
W , (10.170)
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which changes the reaction scheme to a pair of irreversible reactions

R 1←−− S+X 2−−→W, (10.171)

provided the reaction is performed on a timescale τr � τ
−
R ,τ−W . In this limit, the error fraction

becomes

φ =
1

1+κR/κW
(10.172)

By changing temperature T , experimental timescale τr, or the concentration of X, our model
reaction can shift from thermodynamic control to kinetic control. The choice of reactants can be
adapted to access the desired regime. For example, the formation of an enolate by deprotonation
can occur swiftly with a small base, permitting the proton to go back-and-forth and the substrate to
be deprotonated at different sites. A large, sterically hindered base will deprotonate more slowly,
and will bias the most accessible deprotonation sites under kinetic control. In Fig 10.10 an example
of these two attacks is given.

Ph

O

Ph

O

Ph

O

N

Li

KH

Kinetic 

Product

Thermodynamic 

Product

Figure 10.10: A kinetic product (top) and a thermodynamic product (bottom), obtained by abstract-
ing a proton with a strong base. The proton that needs to be abstracted for the kinetic product is
easily accessible, whereas the proton for the thermodynamic product is not. A large, bulky base
(LDA, shown top right) almost exclusively gives the kinetic product (-70 C in THF). A small base,
H−, can access this proton to almost exclusively give the thermodynamic product (in THF).[26, 27,
17].

10.3.2 Kinetic discrimination
A closely related problem in kinetically controlled reactions is the discrimination between chem-
ically similar reactants by the same reaction pathway. A discrimination process of particular
prominence is the separation of two enantiomers via some asymmetric reaction pathway (e.g. via
a chiral catalyst or reactant). Such a process of separating enantiomers is referred to as ‘kinetic
resolution’ in the organic chemistry literature. Since enantiomers are similar in many regards,
their resolution is challenging and this provides an elegant starting point for the study of kinetic
discrimination.

Starting with a racemic mixture, consider the pair of reactions

D+X 1−−→ D∗, (10.173)

L+X 2−−→ L∗. (10.174)
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In the following, we will designate D∗ to be the desired product. To quantify the degree of
discrimination between the two substrates, we introduce the error factor χ

χ =
kL

k
=

kL

kL + kD
, (10.175)

where k is the sum of rate constants. Fixing the concentration of X, the abundances of D∗ and L∗

are the solution of first-order differential equations

ND∗ = N0
D(1− exp(−kDt)), (10.176)

NL∗ = N0
L(1− exp(−kLt)). (10.177)

With N0
D (N0

L) the initial amount of D (L). Let us from here on consider the case N0
D = N0

L. Injecting
these solutions in Eq. (10.163), the error fraction obeys

φ =
1− exp(kχt)

2− exp(kχt)− exp(k(1−χ)t)
. (10.178)

On short timescales, t� 1/kD, the exponentials can be approximated linearly as exp(x)≈ 1+ x, to
give

φ ≈ χ. (10.179)

The fractional yield η then becomes

η =
2− exp(−kDt))− exp(−kLt))

2
(10.180)

While the yield η progressively increases, the error fraction φ increases, because the exhaustion of
D slows down the desired reaction. Due to its much slower consumption of L, the side-reaction
forming L · is exhausted in a much later stage. For kinetic resolution, a delicate trade-off thus exists
between yield (Y) and purity and it quickly becomes imperative to have extremely low error factors,
e.g. through chiral organometallic complexes or enzymatic catalysis.

10.3.3 Chemical networks beyond the single reaction
Dynamic kinetic resolution
Dynamic kinetic resolution is a recent improvement on kinetic resolution [28], in which a fast
reaction is added that interconverts the products among which the discrimination is acting. For a
pair of enantiomers, this is a racemization reaction, which is a fairly easy reaction to catalyze. A
simplified reaction scheme is then

L∗ 1←−− L
rac−−⇀↽−− D 2−−→ D∗. (10.181)

The racemization reaction is the fastest reaction: krac� kD,kL. Since µ◦L = µ◦D, the racemization
reaction ensures that NL = ND. The reactants L and D can directly be mapped to the reactant S in
kinetic control, since the equations are equivalent:

dND∗

dt
= k+DNXND− k−DND,

dNL∗

dt
= k+L NXNL− k−L NL. (10.182)

it follows that DKR (10.181) is equivalent to kinetic control in the conversion of a single species
(10.171). For both, the error fraction does not depend on the yield, and obeys ζ = χ at all times
t > 0. In this sense, DKR is strictly better than kinetic resolution, for which the error fraction
increases over time. In addition the yield is strictly better: kinetic resolution can at most acquire all
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of the substance D to the desired substance D∗. In DKR, the other half consisting of L can now
also be converted to that substance.

This provides a first example of how a larger reaction networks can overcome the fundamental
limits of single reactions∗∗. Interestingly, this only required one extra reaction.

We will now turn to some examples of proofreading.

Degradative Proofreading
Our first instance of proofreading concerns the addition of a second reaction step, and a degradation
step

S 1a−−→ R∗ 1b−−→ R, R∗ 1x−−→ /0 (10.183)

S 2a−−→W∗ 2b−−→W, W∗ 2x−−→ /0 (10.184)

An S molecule goes through a first reaction step to yield either R∗ or W∗, yielding the production
currents

JR∗ = kR∗NS, (10.185)

JW ∗ = kW∗NS. (10.186)

From this, an error rate ζ1 = kW ∗/(kW ∗+kR∗) is obtained. In turn, an R∗ or W∗ molecule is subjected
to either a degradation

JR∗ /0 = k /0NR∗ , (10.187)

JW ∗ /0 = k /0NW ∗ , (10.188)

or a propagation to a final product,

JR = kRNR∗ , (10.189)

JW = kW NW ∗ . (10.190)

We can then write the dynamics for NR∗ ,NW∗ :

dNR∗

dt
= JR∗− JR∗ /0− JR,

dNW∗

dt
= JW∗− JW∗ /0− JW. (10.191)

Let us consider now a system where S is chemostatted at an abundance N̄S, such that NR∗ ,NW∗

reach a steady-state:

NR∗ =
kR∗NS

kR + k /0
, NW∗ =

kW∗NS

kW + k /0
(10.192)

The yield rate ζ (2) for the two reactions combined is then

ζ
(2) =

JW

JW + JR
=

kW
kW∗

kW+k /0

kW
kW∗

kW+k /0
+ kR

kR∗
kR+k /0

, (10.193)

for which we are interested in two limiting regimes:

ζ
(2) =

(
kW∗

kW∗+ kR∗

)
, k /0� kR,kW (10.194)

ζ
(2) =

(
kW kW∗

kW kW∗+ kRkR∗

)2

, k /0� kR,kW. (10.195)

∗∗Evidently, the racemization reaction should only act on substrates, and not on the products of the irreversible
reactions, otherwise the effect of kinetic resolution will be undone. Alternatively, one can remove the products from the
reactive phase rapidly after formation
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Interestingly, when degradation is considerable (Eq. (10.195)), the selectivity can increase. In
particular, if kRkR∗� kWkW∗, the latter regime approaches

ζ
(2)→ kW

kR

kW∗
kR∗

, (10.196)

which means the error is reduced by the product of two selectivities instead of one.
This principle can be repeated. For simplicity, let kW∗ = kW , kR∗ = kR. Let us now consider

another pair of reactions

R 1c−−→ R∗∗, (10.197)

W 2c−−→W∗ ∗ . (10.198)

which are again in competition with a degradation process occurring at a rate k /0. The yield rate for
the three reactions can then be shown to become

ζ
(3) =

JW
kW

kW+k /0

JW
kW

kW+k /0
+ JR

kR
kR+k /0

. (10.199)

which for k /0� kR� kW approaches

ζ
(3)→

(
kW

kR

)
. (10.200)

More generally, n−1 degradation steps then lead to

ζ
(n)→

(
kW

kR

)
. (10.201)

Such a process can in principle be repeated to reach an arbitrarily low error rate. Evidently,
however, there is another problem to consider: the fractional yield η will go down with every step,
especially if degradation is the dominant reaction. Indeed, the initial current JR∗ reduced by a
fraction kR/(k /0 + kR), leading the fractional yield η(n) to exponentially decrease

η
(n+1)/η

(n)→
(

kR

k /0 + kR

)
. (10.202)

There is thus a tradeoff between yield for purity. Let us here remark that the processes used here do
not need to be chemical reactions. Degradation can e.g. be achieved through dilution, and kinetic
selection can also take place for other processes[29]. In Ref. [30] for example, kinetic resolution
between ions is achieved when they traverse a pore, by their different diffusion constants.

Dissipative Recycling

Let us now turn to another simple network exploiting degradation to improve kinetic control and
which recovers material via recycling. Such a system was recently discovered in experiments
attempting to ligate RNA in stereoselective fashion in a prebiotic chemical setting [31]. An example
of such a network for the kinetic resolution is shown in Fig. 10.11.

An activated chemical species A∗ reacts with W, either to form the right product R, or the
wrong product W. The products can degrade, forming the nonactive species A. Subsequently, A
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A*

R W

A

+X
1 +X

1

-Y
1

-Y
1

+X
2

-Y
2

Figure 10.11: A schematic illustration of dissipative recycling. Forward cycle shown in green,
along with reservoir compounds consumed X1,X2 or released Y1,Y2.

must be reactivated to form A∗ and start the cycle anew

A∗+X1
R1−−⇀↽−− R, RR1 = k+R1NA∗NX1

− k−R1NR (10.203)

R
R2−−⇀↽−− A+Y1, RR2 = k+R2NR− k−R2NANY1

(10.204)

A+X2
A∗−−⇀↽−− A∗+Y2, RA∗ = k+A∗NANX2

− k−A∗NA∗NY2
(10.205)

A∗+X1
W1−−⇀↽−− W, RW1 = k+W1NA∗NX1

− k−W1NW (10.206)

W
W2−−⇀↽−− A+Y1, RW2 = k+W2NW− k−W2NANY1

(10.207)

This reaction network has to be supplied with reactants X1,X2 and produces waste products Y1,Y2
that are removed. This is achieved by exchange with chemostats, which fix their concentrations. At
steady state, we can then write

RR1 = RR2 , RW1 = RW2 , RA∗ = RR1 +RW1 . (10.208)

Let us decompose R in its forward part and backward part:

R = R+−R−, R+
R1

= k+R1
NA∗NX1

, R−R1
= k−R1

NR (10.209)

Choosing these concentrations such that all forward reactions are dominant: k+R1
� k−R1

, we can
write

k+R1
NA∗NX1

= k+R2
NR, (10.210)

k+W1
NA∗NX1

= k+W2
NW, (10.211)

k+A∗NANX2
= k+W2

NW + k+R2
NR. (10.212)

The conservation law NR +NA +NA∗+NW = N◦A can then be used to yield the steady-state concen-
trations of R and W

NR =
k+R1

NX1

k+R2

N◦A

1+
k+R1

NX1
k+R2

+
k+W1NX1

k+W2
+

k+R1
NX1

k+A∗NX2
+

k+W1
NX1

k+A∗NX2

, (10.213)

NW =
k+W1

NX1

k+W2

N◦A

1+
k+R1

NX1
k+R2

+
k+W1

NX1
k+W2

++
k+R1

NX1
k+A∗NX2

+
k+W1

NX1
k+A∗NX2

. (10.214)

The error rate is then

ζ =

k+W1
k+W2

k+R1
k+R2

+
k+W1
k+W2

=
1

1+
k+W2

k+R1
k+W1

k+R2

. (10.215)
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There are two reaction steps in which discrimination is possible. For the first, we can write the
hypothetical error for the processes under kinetic control

χ =
k+W1

k+R1
+ k+W1

, (10.216)

For the second, it would be erroneous to degrade the right product, and it is preferable to characterize
the error as

ρ =
k+R2

k+R2
+ k+W2

. (10.217)

The error rate can, again, go beyond the classical kinetically controlled regime, by the appropriate
combination of both processes. If χ � 1,ρ � 1, ζ → χρ , which is reminiscent of the χ2-regime
found for degradative proofreading.

Kinetic resolution through dissipative recycling

D D* DX
k+
D3
X
2

k+
D1
X
1

k+
D2

L L* LX
k+
L3
X
2

k+
L1
X
1

Figure 10.12: A schematic illustration of dissipative recycling for the resolution of enantiomers.

We can repeat this exercise for kinetic discrimination of two similar, uncoupled species (see
Fig. 10.12). Let us again consider a pair of enantiomers L and D, of which we desire to maximize
the production of DX. Let us write a system with a functionalization, degradation (e.g. hydrolysis)
and reactivation reaction

D∗+X1
D1−−⇀↽−− DX, RD1 = k+D1

ND∗NX1
− k−D1

NDX (10.218)

DX
D2−−⇀↽−− D+Y1, RD2 = k+D2

NDX− k−D2
NDNY1

(10.219)

D+X2
D3−−⇀↽−− D∗+Y2, RD3 = k+D3

NDNX2
− k−D3

ND∗NY2
. (10.220)

We define the analogous set of reactions for the L species

L∗+X1
L1−−⇀↽−− LX, RL1 = k+L1

NL∗NX1
− k−L1

NLX (10.221)

LX
L2−−⇀↽−− L+Y1, RL2 = k+L2

NLX− k−L2
NLNY1

(10.222)

L+X2
L3−−⇀↽−− L∗+Y2, RL3 = k+L3

NLNX2
− k−L3

NL∗NY2
. (10.223)

In the absence of racemization reactions, the system of equations to be solved for a steady state is
solved easily in the irreversible reaction regime explored before:

R+
D1

= R+
D2

= R+
D3
, R+

L1
= R+

L2
= R+

L3
. (10.224)

Using the conservation laws

NL◦ = NL +NLX +NL∗ , ND◦ = ND +NDX +ND∗ (10.225)
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We obtain

NDX = N◦D
κD3κD1

(κD1 +κD2)κD3 +κD2κD1

= N◦D
1

1+κD2/κD1 +κD2/κD3

, (10.226)

NLX = N◦L
κL3κL1

(κL1 +κL2)κL3 +κL2κL1

= N◦L
1

1+κL2/κL1 +κL2/κL3

. (10.227)

where κL1 = k+L1
NX1

, κL2 = k+L2
and κL3 = k+L3

NX2
. Similarly, κD1 = k+D1

NX1
, κD2 = k+D2

and κD3 =
k+D3

NX2
. Setting N◦L = N◦D, we obtain an error rate

ζ =
1+κD2/κD1 +κD2/κD3

2+κD2/κD1 +κD2/κD3 +κL2/κL3 +κL2/κL1

(10.228)

Although there are three reactions at which discrimination can take place, we no longer have the
product of three ratios of rates. This can be understood untuitively, when we consider the lifetimes
of molecules in their different forms:

τD1 =
1

κD1

, τD2 =
1

κD2

, τD3 =
1

κD3

, (10.229)

and idem for L molecules. The species of interest, DX, spends a typical time τD2 in that state before
being degraded to D. D then spends a typical time τD3 to be reactivated, and D∗ spends a time τD1

to be functionalized to D. From this argument, we find that D and L molecules respectively spend a
fraction

p(DX) =
τD2

τD1 + τD2 + τD3

, p(LX) =
τL2

τL1 + τL2 + τL3

, (10.230)

of their time as a DX, respectively LX, molecule. Noting that

ζ =
p(LX)

p(DX)+ p(LX)
=

τL2

τD2 + τL2

τD1 + τD2 + τD3

τD1 + τD2 + τD3 + τL1 + τL2 + τL3

, (10.231)

we see that the time occupation argument implies that reactivation and degradation play a similar
role, their contribution is additive. We obtain the following limiting regimes of interest

ζ → 1, κL2 � κL3 ,κL1 . κD2 � κD3 ,κD1 , (10.232)

ζ → τL2
τD2+τL2

τD1
τD1+τL1

, κL1 � κL3 ,κL2 . κD1 � κD3 ,κD2 , (10.233)

ζ → τL2
τD2+τL2

τD3
τD3+τL3

, κL3 � κL1 ,κL2 . κD3 � κD1 ,κD2 . (10.234)

Dissipative recycling can thus access regimes where the kinetic selectivity of two reactions is
exploited, without suffering degradation. Nevertheless, this selectivity does not come for free: the
reaction needs a fuel to do so.

Every sequence of reactions L1L2L3 or D1D2D3 is accompanied by the net transfer of X1X2 to
the system from a reservoir, conversion to Y1Y2, and their subsequent ejection in a reservoir

X1 +X2→ Y1 +Y2. (10.235)

The free energy change accompanying this process is

∆µ = µ
◦
Y1
+µ

◦
Y2
−µ

◦
X1
−µ

◦
X2
− kbT ln

NX1NX2

NY1NY2

= ∆µ
◦− kbT ln

NX1NX2

NY1NY2

. (10.236)

In our present evaluation, we have assumed that all reactions are irreversible, which means ∆µ� 0.
This is generally necessary to access to proofreading regimes. A detailed analysis of this tradeoff is
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beyond the scope of this discussion, the present objective is only to demonstrate how extra reactions
modify the limitations encountered in synthesis.

As a strategy to obtain DX, dissipative recycling has the drawback that reservoirs need to keep
feeding the reaction. ∆µ can be seen as a maintenance cost, that needs to be paid per D molecule
on a timescale τD = τD1+τD2+τD3. If the timescale τr of the experiment or physical process using
DX is much longer ( τr� τD), then this strategy quickly becomes very expensive.

The biological process of kinetic proofreading solves this problem by abstracting functionalized
molecules DX,LX from the mixture.

10.3.4 Kinetic Proofreading
Kinetic proofreading was pioneered by Hopfield [32] and subsequently expanded upon by Ninio [33]
as a branch of mechanisms to account for the high fidelity of biochemical reactions. These fidelities
could neither be explained in terms of thermodynamic control nor kinetic control. Moreover,
networks can have multiple proofreading steps, to accumulate selectivity. It was recently found that
tRNA [34] discrimination in bacteria utilizes at least two proofreading steps, and it is thought that
proofreading steps in biological networks often come in pairs.

D D* DX R
k+
D3
X
2

k+
D1
X
1

k+
R

k+
D2

L L* LX W
k+
L3
X
2

k+
L1
X
1

k+
W

Figure 10.13: Simplified representation of resolution by proofreading. Reactions are drawn as
irreversible.

The original Hopfield model can be otained by adding an irreversible propagation reaction to
the dissipative recycling scheme or a recycling path to the degradative proofreading scheme. Let us
here consider these decorations for a kinetic resolution process

D∗+X1
D1−−⇀↽−− DX, RD1 = k+D1

ND∗NX1
− k−D1

NDX, (10.237)

DX
R−−⇀↽−− R, RR = k+R NDX− k−R NR, (10.238)

DX
D2−−⇀↽−− D+Y1, RD2 = k+D2

NDX− k−D2
NDNY1

, (10.239)

D+X2
D3−−⇀↽−− D∗+Y2, RD3 = k+D3

NDNX2
− k−D3

ND∗NY2
, (10.240)

L∗+X1
L1−−⇀↽−− LX, RL1 = k+L1

NL∗NX1
− k−L1

NLX, (10.241)

DX
W−−⇀↽−− W, RW = k+WNDX− k−WNW, (10.242)

LX
L2−−⇀↽−− L+Y1, RL2 = k+L2

NLX− k−L2
NLNY1

, (10.243)

L+X2
L3−−⇀↽−− L∗+Y2, RL3 = k+L3

NLNX2
− k−L3

NL∗NY2
. (10.244)

For this proofreading scheme, we can write conservation laws for the two compounds we are
resolving

N◦D = ND +ND∗+NR +NDX, N◦L = NL +NL∗+NW +NLX. (10.245)
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Having the final propagation reaction be far slower than the rest of the reactions k+R � k+D1
,k+D2

,k+D3
,

we can use the steady-state solution for dissipative recycling for DX, LX.

NDX = (N◦D−NR)
κD1κD3

κD2κD3 +κD1κD3 +κD1κD2

, (10.246)

NLX = (N◦L−NW)
κL1κL3

κL2κL3 +κL1κL3 +κL1κL2

. (10.247)

The production rates of the right product R and wrong product W is then

R+
R = κRNDX, (10.248)

R+
W = κW NLX. (10.249)

From which we find

NDX = N◦D exp(−κRt)
κD1κD3

κD2κD3 +κD1κD3 +κD1κD2

, (10.250)

NLX = N◦L exp(−κW t)
κL1κL3

κL2κL3 +κL1κL3 +κL1κL2

. (10.251)

On short timescales, using N◦L = N◦D this gives an error fraction

ζ =
κW

κL1 κL3
κL2 κL3+κL1 κL3+κL1 κL2

κW
κL1 κL3

κL2 κL3+κL1 κL3+κL1 κL2
+κR

κD1 κD3
κD2 κD3+κD1 κD3+κD1 κD2

=
1

1+ κR
κW

κD1 κD3
κL1 κL3

κL2 κL3+κL1 κL3+κL1 κL2
κD2 κD3+κD1 κD3+κD1 κD2

,

(10.252)

which has a number of straightforward regimes

ζ → 1
1+ κRκD1κL2

κWκL1κD2

,
κL2κL3

κD2κD3
� κL2κL1

κD2κD1
,

κL1κL3

κD3κD1
, (10.253)

ζ → 1
1+ κRκL2κD3

κWκD2κL3

,
κL2κL1

κD2κD1
� κL1κL3

κD3κD1
,

κL2κL3

κD2κD3
, (10.254)

ζ → 1
1+ κR

κW

,
κL1κL3

κD3κD1
� κL2κL1

κD2κD1
,

κL2κL3

κD2κD3
. (10.255)

Two of the regimes identified here involve the ratios of three different rate constants, a considerable
improvement over the single ratio in simple kinetic resolution.

On longer timescales, we need to take into account the depletion of reactants and we can write

ζ =
1

1+ κD1κD3
κL1κL3

κL2κL3+κL1κL3+κL1κL2
κD2κD3+κD1κD3+κD1κD2

(1− exp((κR−κW)t))
(10.256)

As before, this error fraction will quickly rise when DX is being exhausted. If, however, a rapid
racemization reaction is introduced (see Fig. 10.14) that interconverts D and L,

D
rac−−⇀↽−− L (10.257)

the error fraction will remain stable at the fixed value given by Eq. (10.252), provided krac �
κL1 ,κL2 ,κL3 ,κD1 ,κD2 ,κD3 ,κW ,κR.

Since the only final products are R and W and everything is recycled, we can define a yield for
the current

ηR =
R+

R

R+
W +R+

R
= 1−ζ . (10.258)

Due to the recycling, the reduced error ζ also improves the yield of desired product. To reach this
optimal regime, k+R needs to be relatively slow, which means the system performs several dissipative
cycles, which work best in a strongly irreversible regime, which is discussed in detail in Ref. [24].
The exact behavior is shaped by delicate tradeoffs between speed, dissipation and accuracy.
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Figure 10.14: Simplified representation of dynamic kinetic resolution with proofreading. Apart
from racemization, reactions are drawn as irreversible.

Multiple proofreading steps
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Figure 10.15: A network performing two proofreading steps. In order to correct the error, an
incorrect species has to be brought all the way to D or L, here performed in a single step.

In Fig. 10.15 a two-step proofreading scheme is depicted. In the second step, a fraction χR

(resp. χW ) of the current JR (resp. JW ) is converted to a current of R′, JR′ (resp. W ′, JW ′)

JR′ =
k+R

k+R + k+D2
JR = χRJR, (10.259)

JW ′ =
k+W

k+W + k+L2
JW = χW JW . (10.260)

From this, we can write a steady-state error rate ζ (2) for two proofreading steps, using ζ (1) from
the scheme with one proofreading step

ζ
(2) =

JW ′

JR′+ JW ′
=

χW ζ (1)J
χR(1−ζ (1))J+χW ζ (1)J

. (10.261)

where J denotes a total flux

J = JR + JW . (10.262)

Let us now define ρ as the ratio of χW , χR

ρ =
χW

χR
, (10.263)

So that we can rewrite ζ (2) as

ζ
(2) =

ρζ (1)

1−ζ (1)+ρζ (1) = ζ
(1)

ζ
(1b) (10.264)
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Where ζ (1b) is an error rate for the second step.
By this extra proofreading step, we have reduced the error rate with a factor ζ (1b). For ζ (1)� 1,

ρ � 1, we have ζ (1b)→ ρ . Had we added n proofreading steps of this kind, we would improve the
resolution by a factor ρ every time, such that

ζ
(n+1)→ ζ

(1)
ρ

n. (10.265)

These extra steps come at a cost, however.
With extra steps comes an increase in processing time. The extra proofreading step sends a

fraction of 1−χR correct molecules back to the starting position, which means it takes on average
1/χR full attempts to reach R′. Letting τR be the typical time to finish the first proofreading step,
we then have a typical waiting time

τ
(2)
KPR =

τR

χR
+ τ
′
R. (10.266)

For n proofreading steps sending back 1−χR correct molecules, we have, roughly

τ
(n+1)
KPR

τ
(n)
KPR

≈ 1
χR

(10.267)

As the reactions are irreversible, we need to expend free energy to fuel every proofreading step,
which leads to escalating costs.

A detailed characterization of the tradeoff between accuracy, dissipation and processing speed
for various proofreading schemes was discussed by Rao and Peliti [24], to which we refer for a
more in-depth discussion. For our present purposes, it is important to know that this trade-off exists
and that it follows from a network structure that sends incorrect species back.

Towards repertoires of functional networks
The ways in which we do chemistry are changing. More elaborate chemical networks exploit
properties of molecular collectives, allowing to go beyond classical synthetic limits. By making
reactions dynamic (e.g. dynamic covalent and noncovalent chemistry), large libraries of intercon-
verting compounds can be generated, which can be screened and selected [35]. Such ensembles
can self-sort and self-assemble into functional structures such as molecular cages, self-healing
polymers and responsive materials [36]. By making kinetic resolution dynamic (DKR, e.g. through
a racemization catalyst[28]) or by abstracting a competing substrate by complexation (e.g. via
a molecular cage[37]), important limitations in yield, purity and efficiency are overcome. By
introducing degradation and regeneration steps, chemical products can be enriched and purified
in situ, used recently to abiotically enrich 5’-3’ over 5’-2’ bonds in RNA[31]. Since its inception
by Kondepudi et al, autocatalytic pathways became a topic of interest for origins-of-life questions
regarding chirality. Autocatalytic recycling in crystallization and redissolution (Viedma Ripening
[38]) is now employed on industrial scales to form enantiopure compounds[39], rapidly overturning
classical purifications of chiral drugs.

In biology, such unorthodox ways of doing chemistry are commonplace. Biological systems
exploit dynamic reactions to exchange and store sugars into compartmentalized polymers, acting as
a self-organized reservoir of sugar monomers [40]. In kinetic proofreading, kinetically controlled
intermediates are degraded[32, 33]. A second, slower reaction acting on these intermediates can
then exert another round of kinetic control. In nature, multiple error-correction steps are coupled
with selective enzymes, to achieve the high fidelities required for e.g. protein synthesis and genetic
replication[34, 41]. Sequential irreversible reactions introduce memory in waiting times, which is
exploited in chemical clocks, checkpoint control, and sensing[42, 43, 44].
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The present section has attempted to give a little taste for how small reaction networks lead to
interesting behavior. The building blocks for such networks are often counterintuitive: racemization
achieves the exact opposite of resolution, yet it can be exploited in DKR to improve the resolution.
Dissipatively converting product compounds back to substrates seems wasteful, but in proofreading
schemes it achieves error correction (Before proofreading was understood, such reactions were
indeed interpreted as wasteful side-reactions[32]).

For the Origins of Life and prebiotic chemistry, it is of the essence to get a firm understanding
of these subtleties. It may have taken a while for extant biomolecules and macromolecules to enter
into abiogenesis. Functional reaction networks, however, are far more general. They may have
been the bread and butter of abiogenesis, by providing some of the earliest plausible features that
chemical evolution could have selected for.

10.4 Dissipative sequence exploration: Cycle decomposition
To enumerate the number of independent cycles in a reaction network, one can use the corresponding
stoichiometry matrix [7, 45] to show that

r+ `= c+ s, (10.268)

where:
r: the number of possible reactions
`: the number of conservation laws
c: the number of independent cycles
s: the number of non-chemostatted species
We reiterate that a cycle is a linear combination of reactions that leaves the system unchanged. We
now introduce L, which denotes the largest number of monomers a polymer can contain. Let L
be arbitrarily large. Then, for even L, there are: L activation reactions, as there exist L types of
unactivated polymer.
3/4L2−1/2L ligation reactions, which is the number of unique pairs (n∗,m) and (n∗,m∗) we can
make (noting that (n∗,m∗) = (m∗,n∗)), for which n+m≤ L.
3/4L2−1/2L hydrolysis reactions, which is the number of unique pairs (n,m) and (n,m∗) we can
make, for which n+m≤ L.
For uneven L, we have 3/4L2−1/2L−1/4 ligation reactions and 3/4L−1/2L−1/4 hydrolysis
reactions. Thus: r = 3/2L2 for even L (resp. r = 3/2L2− 1/2 for uneven L). We only have
conservation of monomer units: l = 1. We have activated and unactived polymers up to length
L: s = 2L. This yields c = 3/2L2−2L+1 (resp c = 3/2L2−2L+1/2 for uneven). The smallest
cycles can be subdivided in three types:
I: n∗+m→ [n+m]→ n+m→ n∗+m
II: n∗+m∗→ [n+m]∗→ n+m∗→ n∗+m∗
III: n∗+m→ [n+m]→ [n+m]∗→ n∗+m
where each cycle can be identified with (j,n,m), where j ∈ {I, II, III}.We have compacted the
reaction notation by only including polymer species. For example, cycle (I,n,m) reads as: ligation
of n∗+m, followed by hydrolysis yielding n+m, followed by activation of n. Note that these
cycles are not all linearly independent, as we have

(I,n,m) = (I,m,n)− (II,m,n)− (III,m,n)+(II,n,m)+(III,n,m). ∀n 6= m (10.269)

Up to L = 3, these cycles describe the system completely. Starting at L = 4, we also see the
appearance of larger cycles of the form:
IV: n∗+m∗+k∗→ [n+m]∗+k∗→ [n+m+k]∗→ [n+k]∗+m→ n∗+m+k→ n∗+m∗+k→
n∗+m∗+k∗
For our purposes, the exact choice of linearly independent cycles is not important.
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Since activation increases the number of activated species by one and ligation decreases the
number of activated species by one, we need one ligation reaction per activation reaction to construct
a cycle. Similarly, ligation decreases the total number of species by one, and hydrolysis increases
the total number of species by one. It follows that any cycle we construct must contain 3n reactions,
with n of each type.

10.4.1 Stability of steady state solution
In order to assess the stability of the fixed point, we follow an approach similar to Ref. [24]. We
first define the Lyapunov function

L = ∑
n

NA
n ln

NA
n

N̄A
n
+∑

n
ND

n ln
ND

n

N̄D
n
+(N− N̄). (10.270)

where N̄A
n denotes the steady state concentration of n∗. This Lyapunov function has the time

derivative

dL
dt

= ∑
n

dNA
n

dt
ln

NA
n

N̄A
n
+∑

n

dND
n

dt
ln

ND
n

N̄D
n
, (10.271)

Let us now consider a small perturbation†† ε , either applied at n∗

NA
m = N̄A

m + εδ
n
m, (10.272)

or at n

ND
m = N̄D

m + εδ
n
m. (10.273)

Upon substitution, we obtain for n∗

dL
dt

= − ε2

N̄A
n
[k−actNXHN̄A

n + k−lig(n−1)NYOHN̄A
n

+ k−hydNDNA
n + k+lig(N̄

A
n + N̄n)

+ k+hyd(n−1)NH2O], (10.274)

and for n we obtain

dL
dt

= − ε2

N̄A
n
[k+actNXY N̄A

n + k−lig(n−1)NYOHN̄D
n

+ k−hyd(N +ND)ND
n + k+ligN̄A

+ k+hyd(n−1)NH2O]. (10.275)

Either way, L < 0, irrespective of the sign of ε , which ensures the stability of the fixed point.

10.4.2 Optimal Exploration fraction
Starting from an exponential length distribution, we can write

Nn = Qn−1N1, (10.276)

††For this argument to be more rigorous, we are implicitly assuming we introduced a chemostat such that N, M are
allowed to fluctuate. Alternatively, one can introduce multiple perturbations that collectively fix N, M, to arrive at the
same conclusion.
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where Q = 1−N/M parametrizes the steepness of the exponential. We can immediately write

N =
N1

1−Q
, (10.277)

M =
N1

(1−Q)2 . (10.278)

To quantify the number of cycles in which we explore a species of length n, we look at steady state
hydrolysis. Due to Kirchoffs law, this degradation equals the formation and thus exploration. As
we assume all bonds are equally prone to hydrolysis, we are interested in the fraction of the total
bonds that are present in species of length n

εn =
khyd(n−1)Nn

khyd(M−N)
=

(n−1)Qn−1

1
(1−Q)2 − 1

1−Q

. (10.279)

In order to maximize exploration, we need to find the Q that maximizes εn

dεn

dQ
= 0. (10.280)

Which can be shown to yield

Q =
n−2

n
. (10.281)

Upon substitution in Eq. (10.279) this yields

εn =
4(n−2)n−2(n−1)

nn . (10.282)

We note that

lim
n→∞

(
n−2

n

)n−2

= e2, (10.283)

so that for n� 1 we can write

εn ≈
4

e2n
. (10.284)

Although the length distribution decreases exponentially, we still obtain appreciable exploration,
as long as the distribution is sufficiently tailored to the desired length. For a given length n, this
ideally corresponds to a degree of concatenation of half that length

χ =
1

1−Q
=

n
2
. (10.285)

As an example, suppose we would wish to explore sequences of length 100. For an exponential
distribution, the ideal average length is then 50, and the fraction of cycles exploring this length is
ε100 ≈ 0.0054. If χ = 100 instead, we have ε100 ≈ 0.0037.

10.5 Appendix: Population-level noise from a single individual

Let us consider an age-dependent renewal process, in which the probability density of branching
at age t is given by f (t), and upon branching, the probability of having k offspring is given by
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φk (assumed to be age-independent for simplicity). We would like to evaluate the behavior of the
number N(t) of individuals at time t. Let us define the function h(s) by

h(s) =
∞

∑
k=0

φksk. (10.286)

We also define the generating function for the process N(t) by

G(s, t) =
∞

∑
k=0

pk(t)sk, (10.287)

where pk(t) is the probability that N(t) = k. We assume that pk(0) = δk1 = p0
k , i.e., that we start

from a single object. We can then evaluate pk(t) by adding the probability that no branching has
occurred between 0 and t, which is given by 1−

∫ t
0 dt f (t) = 1−F(t), with the effect of the first

branching at time u, such that 0 < u < t. We obtain

pk(t) = p0
k (1−F(t))+∑

l
φl

∫ t

0
du f (u) ∑

{ni}
δ

∑
`
i=1 ni,k

`

∏
i=1

pni(t−u). (10.288)

Multiplying by sk and summing, we obtain

G(s, t) = s(1−F(t))+
∫ t

0
du f (u) h(G(s, t−u)) . (10.289)

Taking the derivative with respect to s at s = 1, we obtain the following equation for the average
µ(t) = ∑k k pk(t):

µ(t) = 1−F(t)+m
∫ t

0
du µ(t−u) f (u), (10.290)

where m = h′(1) = ∑k kφk is the average number of daughters upon branching.
To solve this equation in the limit t→ ∞, let us multiply both sides by e−αt and take the limit.

Since limt→∞ F(t) = 1, we obtain

µ
∗ = lim

t→∞
µ(t)e−αt = lim

t→∞

∫
∞

0
du mµ(t−u) e−α(t−u)e−αu f (u)

= µ
∗m
∫

∞

0
du e−αu f (u).

(10.291)

This equation allows for a solution different from 0 and ∞ if α is chosen to satisfy

m
∫

∞

0
du e−αu f (u) = 1. (10.292)

Then, making use of a result by Smith [46], we obtain

1
µ∗

=
αm2

m−1

∫
∞

0
du ue−αu f (u). (10.293)

As a consequence, we have

µ(t)≈ µ
∗eαt . (10.294)

In the case we are considering we have

fL(t) =
1

Γ(L)
κ

LtL−1e−κt , (10.295)



360 Chapter 10. Appendix

and m = 2, which yields

α = κ(21/L−1)≈ κ ln2
L

, (10.296)

giving, as long as L� 1,

µ(t)≈ 2κt/L

2ln2
. (10.297)

We can use this framework to also evaluate higher moments of the population size, and from
that obtain the coefficient of variation of the population size which characterizes the amplitude of
the noise. Let us denote the second derivative of the generating function with respect to s by ζ

ζ (t) =
d2G(s, t)

d2s

∣∣∣∣
s=1

=
∞

∑
k=1

(k(k−1))pk(t). (10.298)

At large times, ζ (t)≈ ζ ∗e2αt . The variance of the population size σ2 follows from the standard
relation:

σ
2 = ζ +µ−µ

2 ' ζ −µ
2. (10.299)

For the specific case we are considering, we find

ζ
∗ =

2µ∗2

(2
L+1

L −1)L−2
. (10.300)

After extracting the leading contribution in the large L limit, we find:

σ

µ
≈
√

2ln(2)√
L

, (10.301)

which is numerically close to 1/
√

L since
√

2ln2 = 0.980..≈ 1.

10.5.1 Population-level noise from n individuals
If we start from n individuals rather than just one, we can write the probability to have k individuals
at time t, p(n)k (t), in terms of the subpopulations generated by n single individuals,

p(n)k (t) = ∑
{m1,...,mn}

δ∑ j m j,k

n

∏
j=1

p(1)m j (t). (10.302)

Here, p(1)k (t) denotes the probability of having a population size of k at time t, starting from one
individual, which was considered in 10.5. Note that we have added an additional superscript (1) to
the notation used in 10.5 to emphasize the initial condition. From this equation, the new generating
function follows :

G(n)(s, t) = [G(1)(s, t)]n. (10.303)

From this equation, we obtain the average,

µ
(n)(t) = nµ

(1)(t), (10.304)

which expresses the average with n initial strands in terms of the average with one initial strand.
For the second moment, we obtain

ζ
(n) = n(n−1)[µ(1)]2 +nζ

(1), (10.305)
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We can then extract σ (n) by using Eq. (10.299), which yields

[σ (n)]2 = n(n−1)[µ(1)]2 +nµ
(1)−n2[µ(1)]2 +nζ

(1) (10.306)

= nζ
(1)+nµ

(1)(1−µ
(1)).

Together with Eq. (10.304), this leads to

σ (n)

µ(n)
'
√

ζ (1)− [µ(1)]2
√

nµ(1) =
σ (1)
√

nµ(1) (10.307)

which is the coefficient of variation found previously for a single individual in the initial condition,
divided by

√
n as expected for the growth from independent individuals. This confirms the scaling

found in Eq. (8.77).
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RÉSUMÉ

Le domaine des Origines de la vie cherche à expliquer l’abiogenèse : comment la matière abiotique peut se transformer en vivant. Ces dernières décennies ont vu l’élaboration de

plusieurs scénarios prébiotiques : hypothèses sur la place, la chimie et les mécanismes physiques de l’abiogenèse. Dans cette thèse, nous introduisons des cadres rigoureux, pour

l’étude systématique des aspects physiques de l’abiogenèse. Ces cadres s’appuient sur des avancements en thermodynamique hors d’équilibre, réseaux de réactions chimiques et

sélection sur plusieurs niveaux. Ils soulignent la cohérence thermodynamique et la structure fondamentale de la chimie. Ch.1 donne une introduction critique au domaine des origines de

la vie, soulignant ce que nous savons, ce que les scénarios supposent et les développements historiques qui ont façonné la pensée actuelle. Ch.2 présente le cadre théorique des réseaux

chimiques. Nous élargissons le cadre avec de nouveaux outils et un critère pour une description universelle de la chimie : la non-ambiguïté. Ch.3 décrit des moyens pour rendre les réseaux

"ouverts" : chimiostats, CSTR, transfert en série, couplage diffusif aux compartiments. Le concept de chimiostat est étendu au "chimiostat composite", qui fixe une combinaison d’espèces.

Nous corrigeons la loi zéro de la thermodynamique, qui, en thermodynamique stochastique, peut être brisée pour les quantités entières conservées. Ch.4 illustre le concept d’information

dans les réseaux chimiques à l’aide d’un moteur qui extrait du travail en racémisant des énantiomères purs. On passe ensuite au procédé inverse : la purification des compositions.

On présente des réseaux qui améliorent la purification, avec différents compromis. Ch.5 présente la dérivation des critères universels pour la catalyse et l’autoréplication pour les

réseaux chimiques non-ambigus. L’échange entre phases et compartiments (diffusion, évaporation, etc.) conduit à l’émergence de nouvelles formes d’autocatalyse à compartiments

multiples. Nous passons en revue différents cadres théoriques pour l’évolution chimique en Ch.6. Ces cadres se concentrent sur des chimies et des structures de réseaux spécifiques, et

dépendent sensiblement du niveau de description. Ces approches peuvent être réunis et étendues, ils sont compris dans notre cadre général pour l’autocatalyse. On décrit des aspects

thermodynamiques et structuraux de l’évolution autocatalytique, qui se produit par des processus de branchement aux taux microscopiques. L’extension à l’autocatalyse à compartiments

multiples conduit à des comportements écologiques (syntrophie, parasitisme, coopération). Ch.7 étudie la formation de copolymères longes (par adsorption, recombinaison, ligature

chimiquement activé). On trouve les coûts thermodynamiques pour la génération dissipative des séquences aléatoires. Ceci introduit des bornes énergétiques sur les scénarios qui

reposent sur l’apparition des structures rares. Ch.8 présente un cadre statistique pour la compartimentation transitoire. Cette forme de sélection multi-niveaux n’a pas de lignées : un

compartiment survivant disparaît après sa croissance et sélection. Cela fait que son contenu peut être multiplié par plus qu’un facteur de 2 (expérimentalement : > 106). Ce mécanisme

s’est avéré capable de surmonter les invasions parasitaires, d’induire une coopération et d’abaisser les seuils d’erreur. Le bruit de composition suit de la cinétique de croissance. La

polymérisation peut réduire considérablement ce bruit, ce qui peut favoriser sa sélection. À ce niveau de description, les parasites donnent lieu à une nouvelle catastrophe lié à la

complexation. Ch.9 présente un nouveau scénario, fondé sur des mécanismes. Le scénario est basé sur la structure de la chimie, l’autocatalyse et sélection à plusieurs niveaux, mais ne

spécifie pas de molécules : elles peuvent être introduites a posteriori. Nous fournissons une base sur laquelle des scénarios rigoureux pour l’avenir peuvent être construits.

MOTS CLÉS

Thermodynamique, Information, Réseaux Chimiques, Origine de la Vie, Compartiments, Évolution Chimique.

ABSTRACT

The academic field of Origins of Life seeks to explain abiogenesis: how abiotic matter can be transformed to living systems. Recent decades have seen a substantial development of

prebiotic scenarios: hypotheses on the place, chemistry and physical mechanisms of abiogenesis. In this thesis, we introduce rigorous frameworks, for the systematic study of physical

aspects of abiogenesis. These frameworks build upon recent insights in nonequilibrium thermodynamics, chemical reaction networks and group selection. They stress thermodynamic

consistency and the fundamental structure of chemistry. In Ch.1, a critical introduction to the field of origins of life is given, highlighting what we truly know, what popular scenarios assume

and historical developments that have shaped the current thinking. In Ch.2, the theoretical framework of chemical networks is introduced. We extend the framework with new tools and a

criterion for a universal description of chemistry: nonambiguity. In Ch.3, we describe ways to make networks ‘open’: chemostats, CSTR, serial transfer, diffusive coupling to compartments.

The concept of chemostats is extended to ‘composite chemostats’, which chemostats combinations of species. We correct the zeroth law of thermodynamics, which is shown to be

violated for conserved integer quantities in stochastic thermodynamics. In Ch.4, we illustrate the concept of information in chemical networks, using a single-molecule information engine

that also works in the macroscropic limit, and that extracts work from the racemization of enantiomerically pure molecules. We then move to the opposite process: purifying compositions.

We illustrate a variety of chemical networks that achieve purification, and we discuss their tradeoffs. In Ch.5, we derive universal criteria for catalysis and self-replication for unambiguous

chemical networks. The addition of exchange processes between phases and compartments (diffusion, evaporation, partitioning etc.) leads to emergent new forms of multicompartment

autocatalysis. In Ch.6, we review the concept of chemical evolution and some of the frameworks developed for it. These frameworks focus on specific chemistries and network structures,

and we show that their interpretation critically hinges on the level of coarse graining. These approaches, often treated as mutually exclusive, are united, extended and encompassed by

our general framework for autocatalysis. We study structural and thermodynamic aspects of autocatalytic evolution in a single reactor, which occurs by branching processes built up from

microscopic rates. The extension to multicompartment autocatalysis leads to new emergent ecological behavior (syntrophy, parasitism), favoring cooperation and spatial confinement.

In Ch.7, we study the thermodynamics of making long polymers in various out-of-equilibrium situations (adsorption, recombination reactions, chemically activated ligation). We derive

thermodynamic costs for the dissipative generation of random copolymer sequences. This allows to place energetic bounds on scenarios that rely on the appearance of rare structures.

In Ch.8, we set up a statistical framework to study transient compartmentalization. This new form of multilevel selection has no lineages: surviving compartments vanish after growth and

selection, which means contents may multiply by more than a factor 2 (experimentally: > 106). This mechanism is shown capable of overcoming parasite invasions, induce cooperation

and lower error thresholds. Compositional noise is derived from growth kinetics. Polymerization can drastically decrease such noise, which can improve selection. On this level of

description, a new parasite catastrophe emerges: a complexation catastrophe. In Ch.9, we formulate a mechanism-based scenario. The scenario is based on the structural features of

chemistry, multicompartment autocatalysis and multi-level evolution, but does not specify any molecules: they can be introduced a posteriori. We provide a foundation on which rigorous

future scenarios can be built.
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