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A B S T R A C T

In the context of complex industrial systems and civil infrastructures, taking
into account uncertainties during the design process has received much
attention in the last decades. Although there is significant progress in
modelling such systems, there are always discrepancies between ideal
in-silico designed systems and real-world manufactured ones.

Starting from a realistic computational model that reproduces the behaviour
of an engineering system, uncertainty quantification aims at modelling the
various sources of uncertainty (including natural variability and lack of
knowledge) affecting its input parameters as well as propagating these
uncertainties to the response quantities of interest (e.g. performance indi-
cators). Due to the high-fidelity and related computational costs of such
models, the use of Monte Carlo methods for uncertainty quantification is
often not a viable solution. To overcome this limitation, the use of surrogate
models has become well established. A surrogate model is an analytical
function that provides an accurate approximation of a computational model,
based on a limited number of runs of the simulator at selected values of
the input parameters and an appropriate learning algorithm.

In this thesis, the focus is the application of modern uncertainty quantifica-
tion techniques in the presence of a large number, up to several thousands,
of system parameters. As the dimensionality of the input space increases,
the performance of surrogate modelling methods decreases, an issue that is
known as curse of dimensionality. Furthermore, we approach the problem
from a purely data-driven perspective, i.e. the entire analysis needs to be
conducted based only a limited number of observations and little to no
assumptions about the inner workings of the system. This scenario has
high practical relevance, e.g. due to complex workflows involving vari-
ous software packages to simulate a system or real-world applications for
which only measurements of the input parameters and model responses
are available. However such data-driven approaches introduce additional
challenges related to the (unknown) stochastic properties of the input space.
To quantify those, one typically resorts to well-known inference techniques
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(discussed in Chapter 2), but such methodologies also suffer from the curse
of dimensionality.

To enable data-driven uncertainty quantification in high-dimensional input
spaces, we propose a combination of machine learning techniques for data
compression and state-of-the-art surrogate modelling introduced by the
uncertainty quantification community. The first fundamental ingredient,
dimensionality reduction, is discussed in Chapter 3. Through a literature
review on the rather broad topic of dimensionality reduction, we highlight
the strengths and weaknesses of various techniques as well as their area of
application.

The second fundamental ingredient, surrogate modelling, is discussed in
Chapter 4. Beyond a general formulation, focus is given on two state-of-the-
art techniques, namely Kriging and polynomial chaos expansions, that are
used throughout this thesis.

A novel methodology for enabling surrogate modelling in high dimensional
spaces is introduced in Chapter 5. The proposed algorithm couples the input
compression and surrogate modelling steps in such a way that the resulting
performance of the surrogate is optimal. Furthermore we demonstrate its
consistently superior performance on several benchmark applications (in
terms of the predictive accuracy of the surrogate), compared to traditional
approaches that treat dimensionality reduction and surrogate modelling as
two disjoint steps.

In Chapter 6, we propose a workflow for data-driven uncertainty quan-
tification in high dimensional spaces, which is the ultimate goal of the
thesis. The proposed workflow capitalises on the findings of the previous
Chapters. Having access to a compressed space of manageable size and a
surrogate, we show how one can eventually calculate statistical properties
of the quantities of interest, such as their moments, quantiles and even their
full probability distribution function. After applying this methodology on
benchmark applications, we demonstrate that this workflow can lead to
improved estimates of the uncertainty of the quantities of interest, especially
in the extreme value regions.

Finally, in Chapter 7 we show how the methods presented in this thesis can
be applied to a realistic engineering application related to the structural
health monitoring of wind turbines. The goal is to estimate the fatigue
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accumulation and peak loads, as well as their uncertainty, on various
components of a wind turbine, given the inflow wind speed over 10 minute
time intervals. We do so by processing a limited amount of observations
that are generated by specialised software.

This manuscript introduces new techniques that enable uncertainty quan-
tification in a wide class of problems for which it was initially not possible.
This has strong practical implications considering the numerous relevant
problems nowadays in e.g. structural health monitoring, earthquake engi-
neering, weather forecasting, hydrogeology and control engineering, where
the input space is high-dimensional (e.g. time series or image inputs). The
new methodology and our findings are summarised in Chapter 8, along
with suggestions for future research on this topic.

-
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Z U S A M M E N FA S S U N G

Die Berücksichtigung von Ungewissheiten im Designprozess von komple-
xen industriellen Systemen und ziviler Infrastruktur hat in den letzten
Jahrzehnten viel Beachtung gefunden. Trotz des beträchtlichen Fortschritts
im Modellieren solcher Systeme gibt es immer Diskrepanzen zwischen den
idealen, in-silico entwickelten Systemen und ihren Realisierungen.

Ausgehend von einem genauen Computermodell, das das Verhalten ei-
nes technischen Systems simuliert, zielt die sogenannte Ungewissheits-
quantifizierung darauf ab, die verschiedenen Ungewissheitsquellen der
Eingabeparameter, zu denen auch Unkenntnis und natürliche Variabilität
der Parameter gehören, zu modellieren sowie die Fortpflanzung dieser
Ungewissheiten in die Ergebnisse des Computermodells zu untersuchen
(z.B. durch die Auswertung von Leistungsindikatoren). Wegen der hohen
Genauigkeit und dem damit verbundenen Rechenaufwand ist die Verwen-
dung von Monte Carlo-Methoden für Ungewissheitsquantifizierung oft
nicht möglich. Eine bekannte Methode, diese Einschränkung zu umgehen,
ist die Verwendung sogenannter Ersatzmodelle. Ein Ersatzmodell ist eine
analytische Funktion, die ein Computermodell präzise annähert, indem
eine begrenzte Anzahl von Durchläufen dieses Computermodells an aus-
gewählten Eingabewerten und ein geeigneter Lernalgorithmus verwendet
werden.

Der Fokus dieser Arbeit liegt auf der Anwendung moderner Verfahren zur
Ungewissheitsquantifizierung auf Computermodelle mit einer sehr hohen
Anzahl (d.h., bis zu mehreren tausenden) von Eingabeparametern. Mit
steigender Dimensionalität des Eingaberaums sinkt die Leistung der Ersatz-
modellverfahren. Dieses Phänomen ist bekannt als Fluch der Dimensionalität
(engl. curse of dimensionality). Ausserdem wählen wir einen rein datenbasier-
ten Ansatz, d.h., die gesamte Analyse wird basierend auf einer begrenzten
Anzahl von Beobachtungen und wenigen bis gar keinen Annahmen über
die innere Funktionsweise des Systems ausgeführt. Dieses Szenario ist von
hoher praktischer Relevanz, z.B. wenn für die Simulation eines Systems ein
komplexer Arbeitsablauf mit mehreren Softwareprogrammen nötig ist, oder
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wenn in praktischen Anwendungen nur Messungen der Eingabeparameter
und der zugehörigen Modellantworten verfügbar sind. Solche datenbasier-
ten Ansätze bringen jedoch zusätzliche Herausforderungen mit sich, die
mit den (unbekannten) Eigenschaften des Eingaberaums zusammenhängen.
Um diese zu quantifizieren, wird üblicherweise auf bekannte Inferenzme-
thoden zurückgegriffen (siehe Kapitel 2), welche allerdings auch vom Fluch
der Dimensionalität betroffen sind.

Um die datenbasierte Ungewissheitsquantifizierung in hochdimensionalen
Eingaberäumen zu ermöglichen, schlagen wir eine Kombination von Verfah-
ren des maschinellen Lernens für Datenkompression und von modernsten
Ersatzmodellverfahren der Ungewissheitsquantifizierung vor. Der erste
wesentliche Bestandteil unseres Ansatzes, Dimensionsreduktion, wird in
Kapitel 3 behandelt. Durch eine Literaturübersicht des recht umfangreichen
Feldes der Dimensionsreduktion zeigen wir die Stärken und Schwächen
sowie die Anwendungsbereiche verschiedener Methoden auf.

Die zweite wesentliche Zutat, Ersatzmodellierung, wird in Kapitel 4 behan-
delt. Über die allgemeine Formulierung hinaus liegt hier der Fokus auf den
zwei Verfahren Kriging und sogenannten ‘̀Polynomial Chaos Expansions’́,
die in dieser Arbeit verwendet werden.

Eine neue Methodik für Ersatzmodellierung in hochdimensionalen Räumen
wird in Kapitel 5 eingeführt. Der vorgeschlagene Algorithmus kombiniert
die Kompression der Eingabedaten und die Ersatzmodellierung auf eine
Weise, die die Leistung des resultierenden Ersatzmodells optimiert. Ausser-
dem demonstrieren wir, dass unser Algorithmus verglichen mit herkömm-
lichen Verfahren, welche Dimensionsreduktion und Ersatzmodellierung als
zwei separate Schritte ansehen, auf mehreren Benchmarkanwendungen eine
durchweg überlegene Leistung zeigt (bezüglich der Vorhersagegenauigkeit
des resultierenden Ersatzmodells).

In Kapitel 6 schlagen wir einen Arbeitsablauf für datenbasierte Ungewiss-
heitsquantifizierung in hochdimensionalen Räumen vor, welcher den Kern
dieser Arbeit darstellt. Dieser Arbeitsablauf baut auf den Ergebnissen der
vorhergehenden Kapitel auf. Die Verfügbarkeit eines komprimierten Raums
von überschaubarer Grösse und eines Ersatzmodells erlaubt uns die Berech-
nung statistischer Eigenschaften der Zielgrössen, wie z.B. ihrer Momente,
Quantile und sogar ihrer kompletten Wahrscheinlichkeitsverteilungen. Wir
wenden diese Methodik auf Benchmarkanwendungen an und weisen nach,
x



dass sie besonders in den Extremwertregionen zu verbesserten Abschätzun-
gen der Zielgrössen führen kann.

Schliesslich zeigen wir in Kapitel 7, wie die Methoden, die in dieser Ar-
beit vorgestellt werden, auf ein realistisches ingenieurwissenschaftliches
Problem, nämlich auf die Überwachung des strukturellen Zustandes von
Windkraftanlagen, angewendet werden können. Das Ziel ist die Abschät-
zung von Ermüdungsakkumulation und Spitzenbelastungen sowie deren
Ungewissheiten für verschiedene Komponenten der Windkraftanlage ba-
sierend auf Messungen der Windgeschwindigkeit in Zeitabschnitten von
jeweils 10 Minuten. Dazu verarbeiten wir eine begrenzte Anzahl an Beob-
achtungen, die von spezialisierter Software generiert werden.

Diese Dissertation führt neue Verfahren ein, welche die Ungewissheitsquan-
tifizierung für eine umfangreiche Klasse von Problemen ermöglichen, für
die dies vorher nicht möglich war. Für die Praxis ist dies hochrelevant,
da viele heute relevante Probleme in Bereichen wie der Überwachung
von strukturellen Zuständen von Bauwerken, des Erdbebensicheren Bau-
ens, der Wettervorhersage, der Hydrogeologie und der Regelungstechnik
einen hochdimensionalen Eingaberaum (beispielsweise von Zeitreihen oder
Bildern) aufweisen. Die neue Methodik und unsere Erkenntnisse sowie
Vorschläge für zukünftige Forschung zu diesem Thema werden in Kapitel
8 zusammengefasst.
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1
I N T R O D U C T I O N

1.1 context

Mathematical models lie at the foundation of our scientific understanding
of the world. Scientists who try to understand a physical phenomenon,
use models to describe it through an idealised representation that is ex-
pressed by a set of equations that are then validated through experimental
observations. Historically, such models have helped scientists understand
and formulate the fundamental laws of physics (e.g. gravitation, optics,
electromagnetism, etc.).

In the 20th century, digital computers led to the emergence of numerical
simulations, that in turn allow researchers and practitioners to describe
physical phenomena with higher-fidelity models, by solving more com-
plex underlying equations. Over the past decades, in particular, there has
been an exponential increase in the computational and storage capacity
of computers due to the exponential increase of the transistor counts in
microprocessors (Koomey et al., 2011). Consequently, computer simulations
have become nowadays an irreplaceable tool for designing engineering
systems (e.g. vehicles, bridges, nuclear power plants, etc.), monitoring them
(e.g. structural health monitoring, decision making in autonomous vehicles,
etc.) and making predictions (e.g. meteorology, stock market, etc.) with ever
increasing accuracy.

However, regardless of its level of fidelity, a computational model un-
avoidably represents an approximation of the underlying real-world phe-
nomenon. This can be attributed to different sources of inaccuracy, de-
pending on the application: (i) there exists no closed-form solution of
the underlying problem leading to approximate solvers (e.g. finite ele-
ment solvers) that introduce numerical and discretisation errors, (ii) not
all parameters affecting the underlying process are taken into account (e.g.
over-simplification of the underlying physics), (iii) the values of the model
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2 1 introduction

parameters may not be known perfectly (e.g. incomplete information on
the boundary conditions). Such inaccuracies in engineering models may
lead to poor designs, or predictions that can potentially lead to serious
consequences in terms of casualties or financial losses. To mitigate this risk
during the design process of engineering systems, it is therefore critical to
take into account the inaccuracies of the computational model as well as
the uncertainty on its input parameters. Indeed, this has received much
attention in the last two decades, thus giving rise to a new research field
called uncertainty quantification. Starting from a realistic computational
model that reproduces the behaviour of the system under consideration, un-
certainty quantification aims at modelling the various sources of uncertainty
that affect its input parameters, as well as propagating these uncertainties
to the response quantities of interest (e.g. performance indicators).

The aforementioned radical increase in computing and storage capacity
gave also rise to another trend: starting from the 90’s a shift is observed in
the interest of some communities (e.g. machine learning) from knowledge-
driven to data-driven methodologies for constructing models (Vapnik, 1998).
Such approximate models are inferred in a non-intrusive fashion, i.e. based
only on the available data without assuming any prior knowledge on the
inner workings of the system. Data-driven approaches have become increas-
ingly popular until today due to their flexibility and the large volumes of
data that are at our disposal, which may describe highly complex relation-
ships that cannot be expressed in terms of fundamental principles from
physics and maths (e.g. face/handwriting recognition, sentiment analysis
and natural language understanding in general, etc.). From a historical
perspective, it is worth pointing out that the recent success of such meth-
ods within the machine learning community can be attributed more to
the radical increase in the computing and storage capacity and less to the
novelty of the learning algorithms (Krizhevsky et al., 2012; Goodfellow
et al., 2016).

Together with the increased volume of data their detail and resolution
also increased e.g. due to more accurate sensors combined with high band-
width transmission and storage of their readings. To put it in a quantitative
perspective, the maximum dimension of a dataset in the UCI repository
(Dheeru and Karra Taniskidou, 2017) has evolved from 102 in the 90’s to
481 in the 2000’s and approximately 3.2 million in the 2010’s. The common
occurrence of high dimensional data in modern engineering applications
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poses challenges but also opportunities to understand and predict the be-
haviour of highly complex systems. The ingredients to adequately handle
such problems are available. The machine learning community has devised
techniques to effectively compress and model such systems but such tech-
niques typically do not take into account uncertainties. The latter is not true
for uncertainty quantification techniques that provide robust methodologies
to model such systems and handle uncertainty but suffer from high di-
mensionality. This thesis explores ways to bridge this gap between the two
communities and enable uncertainty quantification in high-dimensional
data-driven problems.

1.2 general framework for uncertainty quantification

Uncertainty quantification (UQ) aims at taking into account the uncertain-
ties in the parameters of the model of a physical system and at studying
their impact onto the system response. It is an inter-disciplinary field that
lies at the intersection between physics (e.g. civil and mechanical engineer-
ing) and applied mathematics (e.g. statistics, probability theory, computer
simulation).

A well-established approach for the representation and solution of an
uncertainty quantification problem is presented next (de Rocquigny, 2006a,b;
Sudret, 2007). The rationale is that any such problem can be represented by
a combination of four elements (steps), as sketched in Figure 1.1:

• Step A: definition of the computational model of the physical system.
This is a rather broad step that may refer to an analytical function
in its simplest form, or an entire workflow that may contain various
levels of computer simulations and even physical experiments. In
general, the computational model maps a set of input parameters to
one or more quantities of interest (QoI), often referred to as model
responses (or outputs).

• Step B: quantification of the sources of uncertainty. This step entails
the identification of the input parameters that are uncertain and their
description within a probabilistic context. A variety of modelling
choices is available, including probability distributions, random fields,
intervals and imprecise probabilities.
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Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

Figure 1.1: The framework considered for dealing with uncertainty quantification
problems.

• Step C: uncertainty propagation. This step refers to the quantification
of the uncertainty in the QoI by propagating the uncertainty of the
input parameters through the computational model. Depending on
the question at hand, this step may refer to the computation of various
metrics such as the mean or higher-order moments, failure probability,
quantiles or even the full probability distribution of the QoI.

• Step C’: iterative updating of the sources of uncertainty. This step may
refer to several techniques used to update the information available
on the sources of uncertainty identified in Step B after uncertainty
propagation. Examples include sensitivity analysis, which can quantify
the contribution of each input variable to the model response, or
Bayesian inference, which can reduce the uncertainty in the input
parameters when experimental observations are available.

One important consideration is that propagating the uncertainties (Step C)
may require thousands or even millions of runs of the computational model
(see e.g. Monte Carlo methods, Ripley, 2009). This can lead to computation-
ally intractable problems, especially considering that modern high-fidelity
models may require several hours to execute for a single set of input pa-
rameters. A powerful class of techniques used in the recent literature to
solve this problem is based on computationally inexpensive surrogate models
(Sudret, 2007; Eldred et al., 2016). A surrogate model (also known as meta-
model) is an analytical function that provides an accurate approximation of
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a computational model, based on a limited number of runs of the simulator
at selected values of the input parameters (the so-called experimental design)
and some learning algorithm. An additional benefit of using surrogate
models is that they are often non-intrusive, i.e. their construction only de-
pends on the experimental design without requiring access to the model
itself.

1.3 problem statement

Modern engineering applications are considered that simulate complex pro-
cesses depending on a large number of input parameters. Typical examples
are simulators that depend on spatial/temporal inputs. As an example,
high-fidelity wind-turbine simulators take time series of simulated wind
speed as inputs in order to predict QoI’s such as loads on substructures
(e.g. blades) and fatigue. Furthermore, the computational model is often
a black box, i.e. only the input parameters and the model responses are
available. The internal workings of the computational model are not accessi-
ble. This can be due, e.g. to complex workflows involving various software
packages to simulate a system or real-world applications where only mea-
surements of the input parameters and model responses are available. The
focus of this thesis is such data-driven applications with high-dimensional
inputs. Dealing with uncertainties in such systems introduces multiple
challenges.

When the joint probability distribution of the input variables is unknown, as
in data-driven applications, it can sometimes be estimated by fitting complex
probabilistic models (Torre et al., 2018). Although there are well-established
approaches for fitting distributions to existing data, this task becomes non-
trivial when the number of input variables is large (i.e. O(102 − 104)). In
addition, the number of unknown distribution parameters can be too large
to be inferred from the limited amount of samples in the available data set
(leading to an under-determined problem).

Even in the case where an adequate probabilistic input model is available,
obtaining the corresponding model responses can pose a major challenge,
given that the true model is either not available or is computationally too
expensive to directly perform Monte Carlo simulation. In such cases, the
underlying model is substituted by a surrogate. In high dimension, however,
the performance of surrogate models decreases, while the cost of computing
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and storing them increases. This is a well-known issue known as the curse
of dimensionality (Verleysen and François, 2005). The surrogate computation
may even be intractable when the number of input parameters is O(103) or
larger.

1.4 objectives and outline of the thesis

The goal of this Ph.D. thesis is to propose new algorithms that enable data-
driven uncertainty quantification for engineering systems characterised by
a large number of input variables. This goal is detailed by the following
objectives:

(i) Enable surrogate modelling in problems with high-dimensional inputs

(ii) Use state-of-the art surrogate modelling and dimensionality reduction
techniques

(iii) Apply the proposed approach to a variety of benchmark problems

(iv) Show the relevance of the proposed methodology for realistic engi-
neering problems

In order to address the objectives, the thesis is organised in eight chapters
including this introduction.

Chapter 2 introduces the standard methodology for quantifying the sources
of uncertainty. In particular, the notion of random variables and random
vectors is introduced. For random vectors, the general case of dependence
is addressed using the copula formalism.

To deal with high-dimensional surrogate modelling, dimensionality re-
duction is explored in Chapter 3. It contains a comprehensive review of
state-of-the-art dimensionality reduction techniques. Starting from linear
mappings of the high-dimensional space to a lower-dimensional one, addi-
tional focus is given to their non-linear extensions. These transformations
have been successfully used in applications related to supervised learning,
visualisation and image de-noising.

The second ingredient for high-dimensional surrogate modelling, is dis-
cussed in Chapter 4, which focuses on classical surrogate modelling tech-
niques. Two state-of-the-art methods are discussed in detail, namely Gaus-
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sian process modelling (also known as Kriging) and polynomial chaos
expansions. Both methods are suitable for data-driven applications but
suffer from the curse of dimensionality.

A novel algorithm for performing high-dimensional surrogate modelling is
proposed in Chapter 5. It is based on a non-intrusive combination of the
previously presented ingredients (dimensionality reduction and surrogate
modelling) in a way that the compressed input space achieves optimal
surrogate model performance. The performance of the proposed methodol-
ogy is compared against traditional approaches that sequentially perform
dimensionality reduction and surrogate modelling on a set of benchmark
applications.

Chapter 6 capitalises on the results of Chapter 5 and showcases the full
framework for high-dimensional, data-driven uncertainty propagation. Hav-
ing access to a compressed input space and a surrogate model allows one
to first fit a probabilistic model, in the compressed input space, and then
perform forward uncertainty propagation using standard techniques.

In Chapter 7 the proposed framework is applied to a realistic engineering
problem. The system under consideration is a model of a wind turbine.
The input parameters of the model are time series of realistic wind speeds
that were generated using the TurbSim software (Jonkman, 2009). The
wind speed time series are fed to an aero-servo-elastic simulator, called
OpenFAST (Jonkman, 2013), that calculates the QoI corresponding to fatigue
damage of various components of the wind turbine. Based on a limited
set of available simulation samples, the proposed methodology is used to
compute a surrogate model on a compressed input space that predicts the
fatigue loads given a new wind-speed-over-time recording.

Chapter 8 finally provides an overview of the new methodology and results
obtained during the Ph.D. work as well as suggestions for future research on
the topic of data-driven uncertainty quantification in high dimension.
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2
P R O B A B I L I S T I C I N P U T M O D E L S

2.1 introduction

The identification and modelling of the sources of uncertainty of a system
is a crucial step within any uncertainty quantification workflow. In a proba-
bilistic setting, the uncertain model parameters are represented by random
variables. Having multiple uncertain parameters, which may present a non-
trivial dependence structure, leads to the introduction of random vectors.
Within a data-driven context, no prior knowledge is assumed about those
representations. Therefore, they need to be inferred from a limited number
of observations. These fundamental concepts from probability theory are
briefly discussed in the following sections, focusing on the formalism and
the tools that will be used in later chapters of the thesis.

2.2 random variables

2.2.1 Definitions

Random variables are variables whose values depend on the outcome of
random phenomena. More formally, a random variable X is a mapping
X : Ω→ DX , where Ω is the set of all possible outcomes of a phenomenon
and DX ⊆ R the domain of X. When DX is a discrete (resp. continuous) set,
the variable is called discrete (resp. continuous). The cumulative distribution
function (CDF) of a random variable, denoted by FX(x) is defined as:

FX(x) def
= P (X ≤ x) . (2.1)

It is a monotonically increasing function bounded in the [0, 1] interval that
completely defines the random variable.

Another function that is commonly used in probability theory is related
to the probability of X taking a specific value, in the discrete case, or X

11
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falling within an infinitely small range of values in the continuous case.
For discrete random variables, the probability mass function is defined
as:

pi
def
= P

(
X = x(i)

)
, (2.2)

for a discrete domain DX =
{

x(i), i ∈N
}

. For continuous random variables,
the probability density function (PDF) is defined as:

fX(x) def
= lim

h→0, h>0

P (x ≤ X ≤ x + h)
h

(2.3)

(a) Probability mass function (discrete r.v.) (b) Cumulative density function (discrete r.v.)

(c) Probability density function (continuous
r.v.)

(d) Cumulative density function (continuous
r.v.)

Figure 2.1: Examples of probability measures for discrete and continuous random
variables.
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The CDF is directly connected to the probability mass/density function of
a random variable. In the discrete case, the CDF reads:

FX(x) =
N

∑
i=1

pi 1{x≥x(i)}(x), (2.4)

where 1{x≥α} is the indicator function, defined by:

1{x≥α}
def
=

{
1 , if x ≥ α

0 , otherwise
. (2.5)

In the continuous case, the CDF reads:

FX(x) =
∫ x

−∞
fX(x)dx ⇔ fX(x) =

dFX(x)
dx

. (2.6)

In Figure 2.1 a number of visualisations of the aforementioned probability
measures is given. The first row corresponds to an example of a discrete
random variable and its probability mass function (Figure 2.1a) and CDF
visualisation (Figure 2.1b). The second row corresponds to similar plots
(PDF in Figure 2.1c and CDF in Figure 2.1d) of a continuous random
variable instead.

The statistical moments of a function (in this case the PDF of X) are often
used to summarise the statistics of X, by providing quantitative measures
of the shape of fX(x). The n-th moment (resp. centred moment) of X is
defined as:

E [Xn]
def
=
∫

DX

xn fX(x)dx, (2.7)

E
[
(X− µX)

n] def
=
∫

DX
(x− µX)

n fX(x)dx, (2.8)

where
µX = E [X] =

∫

DX

x fX(x)dx (2.9)
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is the mean or expected value of X, that corresponds to the 1st moment.
Other commonly used measures are the variance, standard deviation and
coefficient of variation of X, that are defined as follows:

Var [X] = E
[
(X− µX)

2
]

, (2.10)

σX =
√

Var [X] , (2.11)

CVX =
σX
µX

. (2.12)

The covariance of two random variables X, Y provides a measure of the
joint variability between them and is defined as:

Cov [X, Y] = E [(X− µX) (Y− µY)] . (2.13)

The magnitude of the covariance is not easy to interpret because it depends
on the variance of each random variable. Hence, a normalised version can
be used instead, called the Pearson correlation coefficient:

ρ =
Cov [X, Y]

σX σY
, (2.14)

that is bounded in [−1, 1].

2.2.2 Univariate distribution example

For continuous random variables (the focus in this thesis), numerous distri-
butions are commonly used in engineering applications. One such example
is given by Gaussian (or normal) distributions, denoted by X ∼ N

(
µ, σ2).

They are fully characterised by two parameters, namely their mean, µ, and
standard deviation, σ (or equivalently the variance σ2).

The standard normal distribution is defined as a Gaussian distribution with
µ = 0 and σ = 1. Its PDF reads:

φ(x) =
1√
2π

e−x2/2, (2.15)
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and its CDF is implicitly given by (based on Eq. (2.6)):

Φ(x) =
∫ x

−∞

1√
2π

e−x2/2dx. (2.16)

The PDF and CDF of any Gaussian random variable X ∼ N
(
µ, σ2) can be

calculated by:

fX(x) =
1
σ

φ

(
x− µ

σ

)
, (2.17)

and

FX(x) = Φ
(

x− µ

σ

)
, (2.18)

respectively.

2.3 random vectors

2.3.1 Definitions

A real-valued random vector X refers to a mapping X : Ω → DX ⊆ RM,
where M is the size of the vector. Random vectors correspond to a collec-
tion of M random variables, i.e. X = {X1, . . . , XM}. They are completely
specified by their joint CDF that reads:

FX(x) = P (X1 ≤ x1, . . . , Xn ≤ xn) . (2.19)

Similarly to Eq. (2.6), the joint PDF of X reads:

fX(x) =
∂MFX(x)

∂x1 · . . . · ∂xM
. (2.20)

The marginal distribution of a component Xi is obtained by integrating the
joint PDF over the remaining components:

fXi (xi) =
∫

D˜i
X

fX(x)dx˜i , (2.21)

whereD˜i
X is the subset ofDX where xi is fixed and dx˜i = dx1 · · · dxi−1dxi+1 ·

· · dxM.
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When dealing with random vectors, the concept of dependency plays a
critical role. The components of X = {X1, . . . , XM} are considered mutually
independent if and only if:

FX(x) =
M

∏
i=1

FXi (xi), (2.22)

and equivalently, fX(x) = ∏M
i=1 fXi (xi).

2.3.2 Multivariate distribution example

Gaussian random vectors are commonly used in the engineering practice.
They are the multivariate extension of Gaussian random variables that were
introduced in the previous section. A Gaussian random vector denoted by
X ∼ N (µX,C) is completely defined by its mean value vector µX and its
covariance matrix C though the following joint PDF:

fX(x) = (2π)−M/2 (detC)−1/2 exp
[
−1

2
(x− µX)

>C−1 (x− µX)

]
. (2.23)

The mean vector of X contains the expected value of each component, i.e.
µX =

{
µX1 , . . . , µXM

}
. The covariance matrix of X is a square, symmetric

and positive definite matrix of size M×M with elements:

Ci,j = Cov
[
Xi, Xj

]
. (2.24)

2.3.3 Copulas

To deal with dependency in a structured manner, we adopt here the copula
formalism (Nelsen, 2006). At the basis of this approach lies Sklar’s theorem
(Sklar, 1959) which states that for any multivariate CDF FX there exists a
copula C such that:

FX(x) = C
(

FX1(x1), . . . , FXM (xM)
)

, (2.25)

where FXi (xi) denotes the marginal CDF of Xi. In probabilistic terms, C
is a joint cumulative distribution of an M-dimensional random vector
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(a) Independence copula (b) Gaussian copula

Figure 2.2: Comparison between samples of 2D random vectors with identical
marginal distributions and different copulas.

on the unit cube [0, 1]M with uniform marginals. Therefore, the copula
C provides a link between the joint and marginal CDF’s. Moreover, it
does not depend on the marginal distributions and purely describes the
statistical interactions among the components of X. The copula formalism is
particularly appealing in engineering applications because it allows one to
reason with marginal distributions and dependence separately, each having
a clear physical meaning.

The joint PDF of X can be expressed using the copula formalism analogously
to Eq. (2.25) as follows:

fX(x) = c
(

FX1(x1), . . . , FXM (xM)
) M

∏
i=1

fXi (xi), (2.26)

where c(·) is the copula density function that is defined as:

c(u1, . . . , uM)
def
=

∂MC(u1, . . . , uM)

∂u1 · · · ∂uM
. (2.27)

The case of mutual independence among the random variables can be mod-
elled using the independent copula, often denoted as C⊥, which reads:

C⊥(u) =
M

∏
i=1

ui . (2.28)
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According to this copula definition, it is clear that independence as specified
in Eq. (2.22) follows from Eq. (2.25) and Eq. (2.28).

Arguably the best-known copula in engineering (Nataf, 1962; Lebrun and
Dutfoy, 2009) is the Gaussian copula that reads:

C(u) = ΦR
(

Φ−1(u1), . . . , Φ−1(uM)
)

, (2.29)

where ΦR denotes the joint CDF of a multivariate Gaussian distribution
with zero mean and covariance matrix equal to the correlation matrix R
that reads:

R =
[
ρij
]

i, j = 1, . . . , M, (2.30)

and Φ−1 denotes the univariate standard normal inverse CDF. It can be
shown that a random vector specified by a Gaussian copula with correlation
matrix R and Gaussian marginal distributions with means µ1, . . . , µM and
standard deviations σ1, . . . , σM is equivalent to a multivariate Gaussian
random vector with mean vector µ = [µ1, . . . , µM] and covariance matrix
with elements Cij = ρijσiσj.

A comparison between samples from a 2D random vector with identical
marginal distributions and different dependency type is shown in Figure 2.2.
In Figure 2.2a the independence copula is used and as a consequence the
samples are evenly scattered. In Figure 2.2b a Gaussian copula is used
with ρ = 0.8, that results in samples with strong (positive) correlation
between X1 and X2. Notice that some extreme regions, e.g. X1, X2 > 2 are
more densely covered in the latter case. This highlights the importance of
dependence in uncertainty quantification: neglecting it (which may occur
in the engineering practice) may lead to poor decisions, due to e.g. under-
estimating the probability of occurrence of an extreme event (Torre et al.,
2018).

Various parametric copula families have been proposed in the literature
along with techniques for combining those and achieving more elaborate
dependence structures (see e.g. Nelsen, 2006; Joe, 2015).

2.4 data-driven inference

The focus of this thesis is given to data-driven approaches for estimating
the joint distribution FX(x) of a random variable X, given only a dataset
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X =
{

x(1), . . . , x(N)
}

and no additional knowledge about the probabilistic
model of X.

From Eq. (2.25) it follows that the estimation of the unknown joint CDF
FX(x) can be decomposed into two separate problems: (i) estimation of
the marginal distributions FX1(x1), . . . , FXM (xM), and, (ii) estimation of the
copula function.

2.4.1 Inference of the marginal distributions

Thanks to the copula formalism, fitting each marginal distribution can
be done independently from the others, hence we consider here a single
random variable X without loss of generality. There exist numerous ap-
proaches for estimating the distribution of X (see e.g. Bishop, 2006; Ang and
Tang, 2007), that can be broadly classified into two classes: (i) parametric
techniques that assume a specific distribution family and then estimate the
most likely values of their parameters, and, (ii) non-parametric techniques
that make few assumptions about the underlying distribution instead. The
latter are typically more appealing in data-driven applications where one
may not be able to assume one specific distribution over some other a priori.
A non-parametric inference technique is mainly used in this work that is
called kernel density estimation or kernel smoothing (Rosenblatt, 1956; Parzen,
1962).

The kernel density estimate f̂ of the unknown PDF f reads:

f̂X(x) =
1

N h

N

∑
i=1

κ

(
x− x(i)

h

)
, (2.31)

where κ(·) denotes the kernel function and h an unknown parameter called
the bandwidth that is inferred from the samples in X . This approach con-
structs the unknown PDF by summing N elementary kernel functions, each
centred in one of the samples of X . Different kernels may be preferred
depending on the modes (peaks) and skewness of the density function.
The kernel bandwidth is a free parameter that exhibits a strong influence
on the resulting estimate. Its value can be determined using empirical or
closed-form solutions depending on the kernel that is used. For more infor-
mation on the topic of kernel and bandwidth selection see e.g. Silverman
(2018).
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2.4.2 Copula inference

The second part of fitting an unknown joint distribution of X refers to the
copula inference. Recall from Eq. (2.26) that the joint PDF is expressed
as:

fX(x; ζ) = c
(

FX1(x1), . . . , FXM (xM); ζ
) M

∏
i=1

fXi (xi), (2.32)

where ζ refers to the unknown copula parameters. A typical approach for
inferring the values of ζ is the maximum-likelihood method. The likelihood of
a PDF fX(x; ζ) given X is defined as follows:

L (ζ) =
N

∏
i=1

fX(x(i); ζ) =
N

∏
i=1

c
(

FX1(x(i)1 ), . . . , FXM (x(i)M ); ζ
) M

∏
j=1

fXj(x(i)j ).

(2.33)

The goal is to find such ζ̂ that maximises the likelihood function, i.e.

ζ̂ = arg max
Dζ

L (ζ) , (2.34)

or equivalently, the minimiser of negative log-likelihood:

ζ̂ = arg min
Dζ

− log (L (ζ)) , (2.35)

where Dζ is the domain of ζ. The rationale of this method is that by using
the appropriate ζ values, more samples from X will fall within more likely
regions (large PDF value) instead of less likely ones (small PDF value).
In the general case, there is no closed-form solution of Eq. (2.34) and
gradient-based or global optimisation methods are used for calculating ζ̂
instead.



3
D I M E N S I O N A L I T Y R E D U C T I O N

3.1 introduction

Nowadays, high dimensional data arise in various applications. That is,
the random variable X that quantifies some phenomenon lies in a space
DX ⊆ RM where M is large. Learning methods, such as surrogate mod-
elling, tend to under-perform when applied to high-dimensional spaces.
Furthermore, technical constraints apply to the storage and processing
of high dimensional data: as the data volume increases, compression be-
comes increasingly important. In order to handle such data adequately, its
dimensionality needs to be reduced.

In an abstract sense, dimensionality reduction (DR) refers to the parametric
mapping g : DX ⊆ RM → DZ ⊆ Rm of the form:

Z = g(X; w) , (3.1)

where w is the set of parameters associated with the mapping. Dimen-
sionality reduction occurs if m << M, i.e. if m = O

(
100−1) whereas

M = O
(
102−4). The nature and number of the parameters w depends on

the specific DR method under consideration.

Such transformations are motivated by the assumption that X lies on a man-
ifold with dimensionality m that is embedded within the M-dimensional
space. The specific value of m is in some applications referred to as the
“intrinsic dimension” (ID) of X (Fukunaga, 2013). From an information
theory perspective, the ID refers to the minimum number of scalar vari-
ables that is required to represent X without any loss w.r.t. an appropriate
information measure. In practice, the ID of X is often unknown. In such
cases, m becomes a parameter of dimensionality reduction, and it can either
be imposed, or inferred from available data by various approaches (see e.g.
Camastra (2003) for a comparative overview).

21
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A common aspect of all parametric DR methods is that for each choice
of the ID m, the remaining parameters w are estimated by minimising a
suitable error measure (also called loss function):

ŵ = arg min
Dw

J(w), (3.2)

where ŵ denotes the parameter estimate, Dw the feasible domain of w
and J(·) the error measure. The choice of error measure depends on the
specific application DR is used for. When the goal is direct compression of
a high dimensional input without information loss (a common situation in
image compression, telecommunications, etc.), a common choice of J(·) is
the so-called mean-squared reconstruction error, that reads:

J(w) = E

[∥∥∥X− X̂
∥∥∥

2
]

, (3.3)

where X̂ = g−1(Z, w′) denotes the reconstruction of X, calculated through
the inverse transform g−1 : DZ → DX. The parameters of the inverse
transform are denoted as w′ to highlight that in general they are different
from those of the forward transform g. Depending on the DR method, the
inverse transform may not exist and one can only settle for an approximate
solution (see e.g. Kwok and Tsang (2003)).

The focus in this thesis is data-driven dimensionality reduction. In such
cases the values of the parameters w are inferred based on the available data
(also known as experimental design) X =

{
x(1), . . . , x(N)

}
, i.e. Eq. (3.2) is

modified as follows:
ŵ = arg min

Dw
J(w;X ). (3.4)

Hence, considering for example the loss function in Eq. (3.3), its value is
approximated as follows within a data-driven context:

J(w) =
1
N

N

∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥

2
. (3.5)

A rich literature about dimensionality reduction techniques is available (see
e.g. Van Der Maaten et al. (2009)). This chapter describes in more detail a
selection of such techniques that have received wide attention within the
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machine learning community over the past decades. The review starts with
principal component analysis (PCA) in Section 3.2, a DR technique that
was conceived towards the end of the 19

th century and is still prevalent
today. PCA is linear which may result in limited compression capabilities
in realistic applications. Hence, non-linear techniques are introduced next,
starting from multidimensional scaling (MDS) in Section 3.3. The classical
MDS has limited application today but laid the foundation for widely
popular techniques such as Isomap which are also described. Kernel PCA
is presented next in Section 3.4. The importance of this technique lies in the
flexibility to elegantly perform potentially highly complex transformations
using the so-called kernel trick. In addition, a modern class of neural
networks suitable for DR is described in Section 3.5. Finally, Section 3.6
provides a comparison between the presented methods in terms of their
compressive performance on benchmark datasets.

3.2 principal component analysis

Principal Component Analysis (PCA) is a dimensionality reduction tech-
nique that aims at calculating a linear basis of DX with reduced dimension-
ality that preserves the sample variance (Pearson, 1901). Given an experi-
mental design X , the PCA algorithm is based on the eigen-decomposition
of the sample covariance matrix C:

C =
1
N
X̄>X̄ , (3.6)

of the form:
Cv(i) = λ(i)v(i) , i = 1, . . . , M , (3.7)

where X̄ denotes the centred (zero mean) experimental design, λ(i) denotes
each eigenvalue of C and v(i) the corresponding eigenvector.

Then the compressed samples are obtained by:

z = (x− µX) V , (3.8)

where µX is the sample mean of X evaluated on X and V is the M × m
collection of m eigenvectors of C with maximal eigenvalues. The compres-
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sion is achieved due to the selection of a set of m out of M eigenvectors.
Those eigenvectors are called the principal components of X because they
correspond to the reduced basis of X with maximal variance (see e.g. Bishop
(2006) for a proof).

Given z ∈ Rm, it is straightforward to obtain its reconstruction x̂ ∈ RM

by:

x̂ = z V T + µX. (3.9)

For a full rank covariance matrix C, the transformation in Eq. (3.9) is exact
when m = M.

There is a close relationship between PCA and the singular value decom-
position of X (see e.g. Murphy (2012)). Indeed, due to improved numerical
stability, the latter approach is typically preferred for calculating the eigen-
vectors and eigenvalues of C in practice.

Given that standard SVD algorithms have O
(

N3) computational complexity
(Knockaert et al., 1999), PCA may be infeasible for large sample sizes N.
In such cases, approximate methods can be used. Simple PCA provides
an iterative algorithm for estimating the principal components (Partridge
and Calvo, 1998) and other methods are approximating the singular value
decomposition of X using random projections (Rokhlin et al., 2009; Halko
et al., 2011).

Another popular extension of PCA is the so-called probabilistic PCA (PPCA).
It is based on the assumption that m latent (i.e. unobserved) variables
collected in z ∈ Rm are associated with x ∈ RM as follows (Tipping and
Bishop, 1999b):

X = WZ +µ+ ε , (3.10)

where the parameter vector µ allows this representation to have non-zero
mean and ε ∼ N

(
0, σ2I

)
is a zero-mean, multivariate Gaussian random

variable that represents the error (or noise) of the latent variable model.
Conventionally, the latent variables follow a standard normal distribution
(Z ∼ N (0, I)) leading, by virtue of Eq. (3.10), to Gaussian distributed
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observations X ∼ N
(
µ, W W> + σ2I

)
. The latent variable model parame-

ters can thus be determined by maximum likelihood (Tipping and Bishop,
1999b).

Such probabilistic formulation extends the capabilities of classical PCA
in certain aspects. Having access to a likelihood function allows one to
construct mixtures of PPCA’s, that may be beneficial in more complex
problems (Tipping and Bishop, 1999a). PPCA also enables the application of
iterative and computationally efficient expectation-maximisation algorithms
for performing PCA (Tipping and Bishop, 1999a,b). Finally it is noteworthy
to mention that PPCA generalises the concept of PCA by introducing a
Gaussian noise term. In fact, it can be shown that PPCA with σ = 0 is
equivalent to PCA (see e.g. Bishop (2006)).

3.3 multi-dimensional scaling

Multidimensional scaling (MDS) is a dimensionality reduction technique
that aims at minimising the dissimilarity of the samples between the
initial and reduced space. Given the high-dimensional samples X ={

x(1), . . . , x(N)
}

, their dissimilarity is quantified by the distance matrix:

{
D : dij = h

(
x(i), x(j)

)
, i, j = 1, . . . , N

}
, (3.11)

where h(·, ·) corresponds to a distance metric.

The goal of maintaining the dissimilarity of the samples in the reduced
space is expressed by a suitable loss function (also called stress function in
the MDS literature). There exist several types of MDS that mainly differ in
the stress function and the distance metric h(·, ·) that they use.

A classical variant of MDS is the so-called classical scaling where h(·, ·)
corresponds to the Euclidean distance and the loss function reads:

J(Z) =
N

∑
i,j=1

(
d2

ij − h
(

z(i), z(j)
)2
)

. (3.12)
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Classical scaling specifically looks for a linear mapping Z = XM that min-
imises J(Z). It can be shown that under these assumptions the minimum
of J(Z) in Eq. (3.12) is given by the eigendecomposition of the Gram matrix
K = XX> (see e.g. Cox and Cox (2000)). The entries of the Gram matrix K
can be calculated directly from D as follows (Cox and Cox, 2000):

kij = −
1
2

(
d2

ij −
1
n

N

∑
l=1

d2
jl +

1
n2

N

∑
l,k=1

d2
lk

)
. (3.13)

The optimal reduced space samples Z =
{

z(1), . . . , z(N)
}

are calculated
by:

Z = Λ1/2V , (3.14)

where V corresponds to the collection of the m eigenvectors with the maxi-
mal associated eigenvalues contained in Λ = diag (λ1, . . . , λm), obtained
from the eigen-decomposition of the gram matrix. There is a close con-
nection between classical scaling and PCA that is described in detail in
Williams (2002).

In contrast to classical scaling and PCA, different loss functions may lead to
a non-linear dimensionality reduction. A commonly used non-linear MDS
variant is based on using the Sammon loss function that reads:

JS(Z) =
1

∑N
i,j=1 dij

N

∑
i,j=1, i 6=j

(
dij − h

(
z(i), z(j)

))2

dij
(3.15)

The Sammon loss function differs from the one in Eq. (3.12) in that it puts
more emphasis on retaining distances that were originally small. In this case
there is no closed-form solution for calculating the minimiser of Eq. (3.15)
and Z is typically obtained by iterative methods based on gradient descent
(Cox and Cox, 2000; Sun et al., 2012).

The main area of application of MDS is the visualisation of multidimen-
sional data, but it can also be used for dimensionality reduction within
different contexts such as data compression. Nevertheless, this method has
some disadvantages that are discussed next. MDS does not provide an
inverse transformation DZ 7→ DX. In fact, the MDS algorithms that are used



3 .3 multi-dimensional scaling 27

in practice do not even consider the samples X but only their distance ma-
trix D. From a computational perspective, MDS scales poorly with respect
to the number of samples in X , having O(N3) computational complexity
and O(N2) memory requirements. In more complex applications where
the samples lie on a curved manifold, MDS using metric distance metrics
may show limited compressive performance. This is due to the potentially
large discrepancy between the Euclidean and geodesic distance1 between
the samples.

The drawbacks of MDS gave rise to several extensions that have been
extensively used in practice. Isomap is such an extension that attempts to
preserve the pairwise geodesic distances between samples instead of the
Euclidean one (Tenenbaum et al., 2000). This allows it to identify non-linear
manifolds more robustly. In Isomap, one first constructs a neighbourhood
graph in which every sample of X is connected to its k nearest neighbours.
Then the geodesic distance between each pair of samples is approximated
by the shortest path between them in the graph using standard shortest
path algorithms such as Dijkstra (1959) or Floyd (1962).

A major weakness of Isomap is related to its topological instability. This
issue, commonly referred to as short-circuiting, has motivated additional
methods that focus on the preservation of local properties of each sample
in X . In this case, if short-circuiting occurs, only a small subset of the
reduced space is affected. Locally linear embedding (Roweis and Saul, 2000)
and Laplacian eigenmaps (Belkin and Niyogi, 2002) belong to this class of
methods.

It is noteworthy to mention that MDS, and its variants that were discussed
so far, do not provide out-of-sample predictions, i.e. it is not possible to
obtain the mapping z′ of a new sample x′ (not contained in X ) without
recomputing the full reduced representation {Z , z′} from scratch. However,
various approaches for calculating approximate out-of-sample predictions
have been proposed in the literature, see e.g. Bengio et al. (2004); Strange
and Zwiggelaar (2011).

1 The geodesic or curvilinear distance between two samples lying on a manifold can be loosely
defined as the shortest path between them, measured over the manifold.
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3.4 kernel principal component analysis

Kernel PCA (KPCA) is the reformulation of PCA in a high-dimensional
space that is constructed using a kernel function (Schölkopf et al., 1998). A
kernel function applied on two elements x(i), x(j) ∈ Dx has the following
form:

κ
(

x(i), x(j)
)
= Φ

(
x(i)
)
·Φ
(

x(j)
)

, (3.16)

where Φ(·) is a function that performs the mapping Φ : Dx → H and H
is a Hilbert space, also known as feature space. Based on Eq. (3.16), the
so-called kernel trick is applied, which refers to the observation that, if the
access to H only takes place through inner products, then there is no need
to explicitly define Φ(·). The result of the inner product can be directly
calculated using κ(·, ·). Kernel PCA is a non-linear extension of PCA where
the kernel trick is used to perform PCA in H. The principal components
in H are obtained from the eigen-decomposition of the sample covariance
matrix CH, analogously to the PCA case in Eq. (3.6).

However, in KPCA the eigen-decomposition problem:

CHv(i) = λiv(i) , i = 1, . . . , N (3.17)

is intractable, since CH cannot in general be computed (H may be infinite-
dimensional). This problem is by-passed by observing that each eigenvector
belongs to the span of the samples Φ

(
x(1)

)
, . . . , Φ

(
x(N)

)
, therefore scalar

coefficients α
(i)
k exist, such that each eigenvector v(i) can be expressed as

the following linear combination (Schölkopf et al., 1998):

v(i) =
N

∑
k=1

α
(i)
k Φ

(
x(k)
)

, i = 1, . . . , N. (3.18)

Based on Eq. (3.18) it can be shown that the eigen-decomposition problem
in Eq. (3.17) can be cast as:

Kα(i) = λ(i)α(i) , i = 1, . . . , N , (3.19)

where K is the kernel matrix with elements:

Kij = κ
(

x(i), x(j)
)

. (3.20)
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As for the case of PCA, dimensionality reduction is achieved by only

retaining the first m principal axes
{

v(i) , i = 1, . . . , m
}

onto which X is
projected in order to calculate Z . Schölkopf et al. (1998) showed that Z can
be directly computed based only on the values of the eigenvector expansion
coefficients α

(i)
k and the kernel matrix K. The k-th component of the i-th

sample of Z , denoted by z(i)k is given by:

z(i)k = Φ
(

x(i)
)T

v(k) =
N

∑
j=1

α
(j)
k κ

(
x(i), x(j)

)
. (3.21)

The key ingredient of KPCA is arguably the kernel function κ. A list of
kernels that are used in this thesis is available in Table 3.1. In the context
of KPCA, the isotropic Gaussian kernel (also known as radial basis function
- RBF) is most often used instead of the anisotropic one by assuming the
same parameter value wk for all components of x. Polynomial kernels
provide a connection between KPCA and standard PCA, since KPCA using
a polynomial kernel with parameters w1 = 1, w2 = 0 and w3 = 1 is identical
to PCA. This is based on the observation that this kernel corresponds to
the identity mapping Φ(x) = x, hence the covariance matrix CH in the
feature space is identical to the covariance matrix C in the initial space
(Eq. (3.6)).

Table 3.1: A selection of kernels for KPCA.

Name Expression Parameters

Gaussian κ(x, x′; w) = exp

(
− 1

2 ∑M
k=1

1
w2

k

(
xk − x′k

)2

)
wk > 0 , k = 1, . . . , M

Polynomial κ(x, x′; w) =
(
w1xTx′ + w2

)w3 w1 > 0, w2 ≥ 0, w3 ∈N

Cosine κ(x, x′; w) =
x>x′

‖ x ‖‖ x′ ‖ -

From Eq. (3.21) it follows that Z can be expressed as Z = g(X ; w) where
w encompasses both the kernel parameters and the reduced space dimen-
sion m. In practice, the parameters w of KPCA are often manually tuned.
However, in this thesis two methods to infer their values in an algorith-
mic fashion are considered, each optimising with respect to a different
performance objective.
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The distance preservation method aims at optimising w in such a way that
the Euclidean distances between the samples are preserved between the
original and the feature space (Weinberger et al., 2004). This is expressed
by the following objective function:

Jdist(w;X ) =
N

∑
i,j=1

(
dij − δij

)2 , (3.22)

where
dij =

∥∥∥x(i) − x(j)
∥∥∥ , (3.23)

and
δij =

∥∥∥Φ(x(i), w)−Φ(x(j), w)
∥∥∥ . (3.24)

By expanding the norm expression in Eq. (3.24) it is straightforward to
show that:

δij =
√

Kii + Kjj − 2Kij, (3.25)

hence the value of δij is readily available from the kernel matrix K.

In contrast, the reconstruction error-based method aims at optimising w so
that the so-called pre-image, x̂ = g−1(z, w′), of z = g(x, w) approximates x
as close as possible (Alam and Fukumizu, 2014). This is expressed by the
following objective function:

Jrecon(w;X ) =
1
N

N

∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥

2
(3.26)

In contrast to PCA, calculating x̂ is non-trivial, an issue that is known as
the pre-image problem (see e.g. Kwok and Tsang (2003)). Within this thesis,
the approximate pre-image is determined using the method proposed
Weston et al. (2004) as adopted in practice by Pedregosa et al. (2011). After
performing the KPCA transform DX 7→ DZ, the (non-unique) pre-image
of a new point z is computed by kernel-ridge regression using a separate
kernel function κpre:

x̂ = βTl(z), (3.27)

where:
`(z) =

{
κpre(z, z(j)), j = 1, . . . , N

}
, (3.28)
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and β are the kernel-ridge regression coefficients. They are calculated as
follows:

β = (L+ rIN)
−1 X Lij =

{
κpre

(
z(i), z(j)

)
, i, j = 1, . . . , N

}
, (3.29)

where r is a regularisation parameter and IN is the N-dimensional identity
matrix. Following the approach in Pedregosa et al. (2011), we use for
simplicity the same kernel for the pre-image problem as for KPCA, i.e.
κpre (·, ·) is chosen equal to κ (·, ·).

Note that, in the unsupervised learning literature, the target dimension
m of the reduced space is not part of w, i.e. only the kernel parameters
are considered when minimising the objective function in Eq. (3.22) or
Eq. (3.26).

Kernel PCA has been applied successfully to problems such as face recog-
nition (Ming-Hsuan Yang and Kriegman, 2000), speech recognition (Lima
et al., 2003) and novelty detection (Hoffmann, 2007). A major weakness
of the method is that the kernel matrix size is proportional to N2 and it
needs to be stored in memory. Additionally the computational complexity
of KPCA is O(N3) so the method in its standard form does not scale well
with increasing sample size. Parameter tuning may also become an issue
depending on the kernel function that is used. Notice that the kernel selec-
tion may be included in the optimisation step, i.e. the kernel type can be
included in the parameter vector w.

KPCA can be characterized as a modular dimensionality reduction with
different behaviour depending on the kernel function that it uses. Gh-
odsi (2006) shows that MDS with Euclidean distance metric, Isomap and
other dimensionality reduction methods can be expressed as KPCA with a
particular kernel.

Several extensions of KPCA have been proposed for reducing its memory
requirements and computational complexity. For reducing the memory
requirements, Tipping (2001) suggests to apply KPCA by sparse projections
based on the approximation of the covariance matrix CH by a subset of
outer products of feature vectors. More recently, various techniques have
been proposed for performing KPCA in an iterative fashion so that the
method may be applied on a data stream where each sample of X is
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processed only once by the algorithm (Kuzmin and Warmuth, 2007; Günter
et al., 2007).

3.5 neural networks

Artificial neural networks (ANNs) stand for a group of methods the func-
tional form of which is represented by a graph that is vaguely inspired by
biological neural networks. They have seen rapid evolution from the first
introduction of their concept in McCulloch and Pitts (1943) to their recent
popular variants commonly used in deep learning (Goodfellow et al., 2016).
A general overview of ANNs is given next, before discussing in more detail
particular ANNs that are used for dimensionality reduction.

The main building block of any ANN is a node, also known as a neuron.
Edges, called weights, connect neurons with each other. Different types
of ANNs involve different types of neurons and weights that result in a
different behaviours.
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(a) An ANN node (neuron).
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(b) A feed-forward ANN with two hidden layers.

Figure 3.1: Graph representation of feed-forward ANNs.

A specific family of ANNs is mainly considered in this work, called feed-
forward neural networks or multilayer perceptrons. The main building block
of such ANN is the neuron depicted in Figure 3.1a. The neurons are
organised in groups, called layers. An example feed-forward ANN is shown
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in Figure 3.1b. Each neuron (node) i, that belongs to the layer k of the
network, performs the operation:

h(k)i = f

(
dk−1+1

∑
j=0

w(k)
i,j h(k−1)

j

)
, (3.30)

where h(k)i denotes the output value of the i-th neuron that belongs to the
k-th layer, dk−1 corresponds to the number of neurons in the (k− 1)-th layer,
w(k)

i,j ∈ R is the weight of the connection between the node i of the k-th
layer and the node j of the (k− 1)-th layer. The function f (·) in Eq. (3.30)
is called the activation function. It is a scalar function f : R→ R that often
belongs to the sigmoid family. Common choices of activation functions in
this class of ANNs are:

f (x) =
1

1 + e−x , (3.31)

or
f (x) = tanh(x) . (3.32)

In more recent applications, non-sigmoidal activation functions are also
used, such as the so-called rectified linear unit (ReLU) (Goodfellow et al.,
2016):

f (x) = max (0, x) . (3.33)

Consider an ANN such as the one in Figure 3.1b. A sample x is processed
first by the nodes in the input layer, which is the leftmost layer. The nodes of
that layer have no activation function, and only a single input corresponding
to a component of x. Based on Eq. (3.30), it is straightforward to see that

their output is the identity function, i.e.
{

h(0)i = xi , i = 1, . . . , M
}

. Each
node of the input layer is connected to all the nodes of the next layer, called
a hidden layer. An ANN can contain an arbitrary number of hidden layers.
The nodes of each layer are fully connected to all the nodes of the previous
one. Notice that in each layer there exists a special node, called the bias
unit and denoted by +1, that constantly outputs the value 1. It is useful
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in practice because it enables affine transformations to the output values
of each layer leading to improved performance (Hagan et al., 1996). The
final layer of the ANN is called the output layer. Its nodes differ from the
ones in the hidden layers only in terms of the activation function that is
used. In this example there is no activation function to the output layer
neurons.

The l-th output of the ANN in Figure 3.1b is calculated by forward propagation
that reads:

yl =
d2

∑
k=0

w(3)
l,k f

(
d1

∑
j=0

w(2)
k,j f

(
M

∑
i=0

w(1)
j,i xi

))
, l = 1, . . . , do , (3.34)

where do corresponds to the number of neurons in the output layer.

Clearly, such ANNs produce a non-linear input-output relationship. In fact,
it has been shown that feed-forward ANNs with a single hidden layer can
approximate any bounded, continuous functional input-output relationship
(Hornik et al., 1989; Leshno et al., 1993). However, the required hidden
layer nodes might tend to infinity. Various studies have concluded that by
introducing additional hidden layers the learning capacity of a feed-forward
ANN is improved more efficiently, (i.e. requires a smaller total number of
neurons) compared to the case of having a single hidden layer (Montufar
et al., 2014; Goodfellow et al., 2016).

In this work, the focus is given on specific feed-forward ANN architectures
that are used in the context of dimensionality reduction, called autoencoders.
An autoencoder with a single hidden layer is shown in Figure 3.2. Multiple
hidden layers may exist, that lead to the so-called stacked autoencoders. The
goal of an autoencoder is to learn the identity function, i.e. reproduce the
values of the input x in the output x̂. The number of nodes that correspond
to the encoding step are decreasing in each successive layer enforcing an
information bottleneck. The layers that follow the middle hidden layer form
the decoding step that perform the opposite operation: transforming back
the reduced representation of the input to the input itself. The middle layer
of the autoencoder, i.e. the bottleneck of the identity function that is learned,
forms the representation of the reduced space Z.
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Figure 3.2: An autoencoder with a single hidden layer.

The reduced space representation is of the form z = g(x; Wenc), where Wenc
corresponds to the collection of the weights in each layer up to the middle
one. For clarity, only the weights are considered as unknown parameters,
but in general the architecture of the autoencoder could also be included
(i.e. the number of layers and the number of nodes per layer). The unknown
parameters W are calibrated by minimising an objective function related to
the reconstruction error such as the following (Vapnik, 1998):

Jrecon(W;X ) =
1
2

N

∑
i=1

∥∥∥x(i) − x̂(W; x(i))
∥∥∥

2
, (3.35)

where W = {Wenc, Wdec} is the collection of all the weights of the ANN
(both the encoding and decoding parts) and x̂(W; x(i)) is the i-th output of
the network calculated by forward propagation, similarly to Eq. (3.34). In
ANN terminology, the minimisation of Jrecon(W;X ) is called training of the
ANN.

Although ANNs can be considered universal function approximators there
is a caveat. It may be theoretically guaranteed that a solution of Eq. (3.35)
exists but it can be challenging or even impossible to calculate it in practice.
Due to the non-linearity of the activation function f (·), the minimisation
of Eq. (3.35) is a non-convex optimization problem characterized by local
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minimas and flat regions. Various implementations of autoencoders include
different regularisation schemes aiming to improve the performance of the
optimizer.

The seminal paper by Hinton and Salakhutdinov (2006) that gave rise to
the deep learning concept suggests a pre-training procedure. This involves
an approximate, low-cost training of a binary representation of the ANN
that is called restricted Boltzmann machine. Sparse autoencoders refer to
variants that include a penalty term in Eq. (3.35) to enforce sparsity in the
output values of the hidden layer nodes (Boureau et al., 2008; Glorot et al.,
2011). Sparsity in the reduced space representation can be beneficial for
various reasons. For example, Hinton et al. (2006) showed that pre-training
an ANN to learn a sparsified representation resulted in a significantly
more efficient subsequent training of the same ANN for performing a
classification task. Moreover, in the context of pattern recognition in image
processing, Goodfellow et al. (2009) found that sparse autoencoders gave
rise to more invariant representations (compared to non-sparse ones), in the
sense that a subset of the representation elements were more insensitive to
input transformations such as translation or rotation of the camera.

Denoising autoencoders introduce noise corruption on the input samples
instead of adding a penalty term (Vincent et al., 2008; Chen et al., 2014). Con-
tractive autoencoders introduce a penalty term proportional to ‖ ∇x h(k)i ‖2,
forcing the model to learn a function with minimal sensitivity to small
variations in the value of x (Rifai et al., 2011).

In this chapter, the autoencoder implementation provided by the Matlab

software is used (MathWorks Inc., 2017). It considers an extended version
of Eq. (3.35) that reads:

Jrecon(W;X ) =
1
2

N

∑
i=1

∥∥∥x(i) − x̂(W; x(i))
∥∥∥

2
+ λsΩs(W) + λn ‖W‖ 2 , (3.36)

where Ωs is a sparsity regularisation term, ‖W‖ 2 is the L2-norm penalisa-
tion of the autoencoder’s weights and λs, λn serve as the respective weights
of each term. The L2 (or L1) -norm regularisation is a common practice in
regression problems, not just autoencoders, to avoid over-fitting (see e.g.
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Vapnik (1998)). The term Ωs enforces a constraint on the activation sparsity
of the hidden layer nodes. Activation sparsity refers to how often each node
activates (has non-zero value) over the training samples X . The sparsity
penalisation that is used in the Matlab autoencoder implementation is
based on the Kullback-Leibler divergence and reads (Olshausen and Field,
1997):

Ωs =
m

∑
i=1

KL(ρ||ρ̂i)
def
=

m

∑
i=1

ρ log
(

ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ

1− ρ̂i

)
, (3.37)

where ρ is a parameter that determines the desired average activation and,
in general, ρ̂

(k)
i corresponds to the average activation of the i-th neuron in

the k-th hidden layer:

ρ̂
(k)
i =

1
N

N

∑
j=1

h(k)i (x(j)) . (3.38)

In Eq. (3.37) only the middle hidden layer of the autoencoder is considered,
hence the layer index in Eq. (3.38) is dropped for notational clarity. Note that
this type of sparsity regularisation assumes a bounded activation function in
[0, 1]. This is true for the sigmoid function in Eq. (3.31) and straightforward
to extend for Eq. (3.32) by rescaling its output from [−1, 1] to [0, 1] but not
for ReLU activation (Eq. (3.33)) because it is unbounded.

Given the architecture of the autoencoder and the loss function, its weights
are calculated by minimising that loss function. Well-established algorithms
such as stochastic gradient descent (SGD) are used in practice, where the
network weights are updated based on the approximate gradient of the
objective function after processing a batch of the samples. For an overview
of modern optimisation algorithms that are used in the context of ANNs
see e.g. Goodfellow et al. (2016).

Autoencoders have been successfully used for dimensionality reduction
(Hinton and Salakhutdinov, 2006), image de-noising (Xie et al., 2012) and
as a pre-training tool of ANNs for classification problems (Rifai et al., 2011).
In addition, a popular variant in the context of image processing is the
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so-called convolutional autoencoders (Theis et al., 2017). Their architecture
differs from feed-forward ANNs and is based on convolution operations
in each layer (see e.g. Goodfellow et al. (2016)). The main drawback of
autoencoders is related to the tuning of numerous parameters, including
the structure of the network (number of layers, number of nodes per layer)
and the parameters of the optimisation algorithm. Although some heuristic
guidelines exist, such as those given in Hinton (2012), it is often non-trivial
and time consuming to tune them.

An appealing feature of this method is that its computational complex-
ity scales linearly with respect to the sample size N and the size of the
weight vector W. In addition, its memory requirements are low because
only the weight matrix needs to be stored. Finally, in contrast to the pre-
viously presented non-linear dimensionality reduction methods, a trained
autoencoder can easily provide the (approximate) inverse transformation
g−1 : DZ → DX by forward propagation from the middle hidden layer to
the output layer.

3.6 comparison of the methods on benchmark datasets

To showcase the dimensionality reduction methods that have been presented
so far, two benchmark datasets are considered, namely the twin peaks
(Figure 3.3a) and the Swiss roll dataset (Figure 3.3b). They are provided
for benchmarking purposes by the “Matlab Toolbox for Dimensionality
Reduction” by Van Der Maaten et al. (2009). In both cases the goal of
the comparison is to assess the information loss due to dimensionality
reduction. One measure for such assessment is the reconstruction error in
Eq. (3.5). However, due to the lack of inverse transform g−1 : DZ → DX for
some of the methods, a qualitative assessment also takes place by inspecting
the reduced space that is obtained by each of them.

In both datasets, X lies on a 2-dimensional manifold that is embedded
in the 3-dimensional space. Hence, each of the dimensionality reduction
approaches that were presented in the previous sections is used to compress
the input from 3 to 2 dimensions. Further comparisons are facilitated
by assigning to each sample in both datasets a binary label. This allows
one to observe how the neighbourhood of each sample is affected by the
dimensionality reduction step.
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Figure 3.3: The benchmark datasets.

Table 3.2: Selected parameters for each dimensionality reduction method used
to compress the twin peaks and Swiss roll dataset.

Method Parameters

Name Value

Twin peaks Swiss roll

PCA - - -
MDS Cost function Shammon (Eq. (3.15))
Isomap Num. of neighbours 12 12
Stacked au-
toencoder

Architecture (encoder) (30, 15, 5, 2)1 (30, 20, 10, 2)

Note: The decoder architecture is symmetric to the encoder’s
Regularisation As in Eq. (3.36)
λs (Eq. (3.36)) 0.1 0.1
ρ (Eq. (3.36)) 0.3 0.3
λn (Eq. (3.36)) 10−4 10−4

Activation function Sigmoid (Eq. (3.31)) in encoder
neurons and linear ( f (x) = x) in

decoder neurons
Kernel PCA Kernel type RBF Cosine

Kernel parameters σ = 0.001 -
r (Eq. (3.29)) 1 1

1 A compact way to describe the architecture of a feed-forward ANN is by using e.g. the notation
(a, b, c) when the ANN consists of three layers each having a number of nodes that is equal to



40 3 dimensionality reduction

Each dimensionality reduction technique is applied on N = 2, 000 samples
for each dataset, using the parameters reported in Table 3.2.
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Figure 3.4: Dimensionality reduction results on the twin peaks dataset.

The compressed spaces that were obtained by each method for the twin
peaks dataset are shown in Figure 3.4. At a first glance, the reduced space in
each case is remarkably different. The four highlighted peaks in the original
space are clearly maintained by MDS in Figure 3.4b and the autoencoder
in Figure 3.4d. In both cases a clear separation is shown between the
samples that belong to one of the peaks and the rest. Notice that such
representations can be useful e.g. for building a classifier between the two
regions. PCA in Figure 3.4a “unfolds” three out of the four peaks with two
overlapping in the half-plane z1 > 5. Finally, Isomap in Figure 3.4c and
Kernel PCA in Figure 3.4e separate the peak regions from the rest but show
significant overlaps. Depending how the compressed space is used later on,
this may or may not be a disadvantage. For example, a classifier between
the two regions could perform well on these spaces but in the context
of visualisation there is plenty of information lost regarding the relative
position of each sample with respect to its nearest neighbours.

a, b and c, respectively. The input layer can be excluded in this notation because the number
of nodes is clearly M (the dimensionality of the physical space).



3 .6 comparison of the methods on benchmark datasets 41

0 10 20 30

−10

0

10

z1

z 2

(a) PCA

−20 −10 0 10 20

−10

0

10

z1

z 2
(b) MDS

−40 −20 0 20 40 60

−20

0

20

z1

z 2

(c) Isomap

0 0.2 0.4 0.6
0

0.2

0.4

0.6

z1

z 2

(d) Autoencoder

−1 −0.5 0 0.5 1

−1

0

1

z1

z 2

(e) Kernel PCA

Figure 3.5: Dimensionality reduction results on the Swiss roll dataset.

The same comparison is conducted next on the Swiss roll dataset (Fig-
ure 3.5), that corresponds to an arguably more complex manifold. One
may quickly observe that there are significant differences in the quality of
the reduced space that each method provides compared to the previous
case. PCA (Figure 3.5a) and MDS (Figure 3.5b) show significant overlap
between non-neighbouring samples in the original space. Instead, Isomap
in Figure 3.5c provides the clearest separation of each region. However,
on the left boundary it can be observed that there exist some miss-placed
samples. This can be attributed to the main drawback of Isomap that was
discussed in Section 3.3, that is related to erroneous connections in the
graph.

There exists some similarity between the compressed space obtained by the
autoencoder in Figure 3.5d and kernel PCA in Figure 3.5e in the sense that
both retained the spiral shape of the Swiss roll which, however, is irrelevant
to the true 2D manifold. Kernel PCA provides clear separation between
the different regions near the origin, but some spurious neighbourhoods
are introduced towards the boundaries of the manifold. On the contrary,
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the autoencoder produced a space with significant overlaps of different
regions.

The qualitative comparison between the methods indicated that (i) there
is no “Jack of all trades” and each one may produce significantly different
results depending on the problem, and, (ii) depending on the context (e.g.
visualisation, classification) the preferred method may vary.

It is of interest to further compare each dimensionality reduction approach
based on their ability to reconstruct the original samples from the com-
pressed ones. In this comparison, MDS and its variant, Isomap, are omitted
because they do not provide an inverse transformation. The other methods
are compared as follows: for each dataset (twin peaks, Swiss roll) a set of
2, 000 samples is randomly generated and used for calibration. Then a vali-
dation set Xv =

{
x(1)v , . . . , x(Nv)

v

}
with Nv = 10, 000 samples is randomly

generated to evaluate the normalised empirical reconstruction error that
reads:

ε̂recon =
1
M

M

∑
i=1

∑Nv
j=1

(
x(j)

v,i − x̂(i)j

)2

∑Nv
j=1

(
x(j)

v,i − µ̂v,i

)2 , (3.39)

where x(j)
v,i denotes the i− th component of the validation set sample x(j)

v ,

x̂(i)j the corresponding component of the reconstructed sample and µ̂v,i the
sample mean of the i-th component of x evaluated on the validation set.
The training and validation samples are generated at random 10 times in
order to observe how ε̂recon varies using the same configuration for each
dimensionality reduction method as reported in Table 3.2.

In Figure 3.6 a comparison between the reconstruction error that each
method achieves is made using box plots. Each box provides summary
statistics of the reconstruction error that was achieved by each method
over the 10 repetitions. The central mark indicates the median and the
bottom and top edges indicate the 25th and 75th percentiles, respectively.
The whiskers correspond to 1.5 times the inter-quartile range centered on
the median. The box plots in Figure 3.6a and Figure 3.6b correspond to
the results that were obtained on the twin peaks and the Swiss roll dataset
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Figure 3.6: Reconstruction error comparison.

respectively. At a first glance, PCA consistently outperformed the others in
both datasets both in terms of the reconstruction error achieved, as well as
the robustness of the results over different repetitions. Autoencoders follow
with slightly reduced but comparable performance to PCA and somewhat
less robust on the Swiss roll dataset. However, due to the numerous pa-
rameters involved in the tuning process of an autoencoder, it is impossible
to guarantee that this the best performance that they can achieve. Finally,
kernel PCA showed the worst performance for both datasets and by a signif-
icant margin in the Swiss roll case. This can be attributed to the pre-image
problem and the approximate nature of the inverse transformation that was
discussed in Section 3.4.

3.7 conclusion

High-dimensional data often occur in practice and need to be compressed
before further processing. To deal with such data, the concept of dimension-
ality reduction was introduced in this chapter. There exists a broad spectrum
of relevant applications, such as data visualisation, general purpose data
compression and image de-noising. Various parametric dimensionality re-
duction techniques have been presented each with its own strengths and
weaknesses. Regardless of the specificity of each method, it was shown that
they can be expressed as a transform g : DX → DZ of the form Z = g(X; w)
where the parameters w of the transform are inferred from the available
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data X within a data-driven context. Selecting a suitable method depends
on a number of factors including the complexity of the problem, the num-
ber of available samples and most importantly the end-goal (visualisation,
compression, classification, etc.).

In the next chapters, dimensionality reduction will be optimally combined
with surrogate modelling. This new type of application differs from the
various usage scenarios presented above and will be described in all details
in Chapter 5.



4
S U R R O G AT E M O D E L L I N G

4.1 introduction

In the context of uncertainty quantification (UQ), the physical or compu-
tational model of a system can be seen as a black-box that performs the
mapping:

Y =M(X), (4.1)

where X is a random vector that parametrises the uncertainty of the input
parameters (e.g. through a joint probability density function) and Y is
the corresponding random vector of model responses. One of the main
applications of UQ is to propagate the uncertainties from X to Y through
the modelM. Direct methods based on Monte-Carlo simulation can easily
require that the computational model is run thousands to millions of
times for different realisations x of the input random vector X. However,
most models that are used in applied sciences and engineering (e.g. high-
resolution finite element models) can have high computational costs per
model run. As a consequence, they cannot be used directly. To alleviate the
associated computational burden, surrogate models have become a staple
tool in all types of uncertainty quantification applications.

A surrogate model M̂ is a computationally inexpensive approximation of
the true model of the form:

M(X) = M̂(X;θ) + ε, (4.2)

where θ is a set of parameters that characterise the surrogate model and ε
refers to an error term. The parameters θ are inferred (typically through
some form of optimisation process) from a limited set of runs of the original

model X =
{

x(1), . . . , x(N)
}

, called the experimental design. As an example,
θ denotes the set of coefficients to compute in the case of a truncated
polynomial chaos expansion, or the set of parameters of both the trend and

45
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the covariance kernel in case of Gaussian process modelling. Throughout
the rest of the chapter, the output of the modelM is considered scalar, i.e.
y =M(x) ∈ R.

Popular surrogate modelling techniques include Gaussian process mod-
elling (also known as Kriging) and regression (Sacks et al., 1989; Rasmussen
and Williams, 2006), polynomial chaos expansions (Ghanem and Spanos,
1991; Xiu and Karniadakis, 2002; Xiu, 2010), low-rank tensor approxima-
tions (Chevreuil et al., 2015; Konakli and Sudret, 2016b), and support vector
regression (Vapnik, 1995).

In this thesis we focus on two techniques, namely Kriging and polynomial
chaos expansions that are presented next, in Section 4.2 and Section 4.3,
respectively. This is followed by a discussion in Section 4.4 on the error
measures that are commonly used to assess the performance of a surro-
gate, regardless of its type. Finally, we showcase the behaviour of Kriging
and polynomial chaos expansions on a benchmark application in Sec-
tion 4.5.

4.2 kriging

Kriging is a meta-modelling technique which assumes that the true model
response is a realisation of a Gaussian process, described by the following
equation (Santner et al., 2003):

MK(x) = β> f (x) + σ2Z(x, ω) (4.3)

where β> f (x) is the mean value of the Gaussian process, also called
trend, σ2 is the Gaussian process variance and Z(x, ω) is a zero-mean,
unit-variance Gaussian process. This process is fully characterised by the
auto-correlation function between two sample points R(x, x′;θ). The hyper-
parameters θ associated with the correlation function R(·;θ) are typically
unknown and need to be estimated from the available observations.

Having specified the trend and the correlation function parameters it is
possible to obtain an arbitrary number of realisations of the so-called prior
Gaussian process (see Figure 4.1a). In the context of metamodelling the goal
is to calculate a predictionMK(x) for a new point x, given an experimental



4 .2 kriging 47

0 5 10 15
-20

-15

-10

-5

0

5

10

15

20

(a) Prior

0 5 10 15
-15

-10

-5

0

5

10

15

20

(b) Posterior

Figure 4.1: Realisations of a prior and posterior Gaussian process. The Gaussian
process mean in each case is denoted by a black line.

design X =
{

x(1), . . . , x(N)
}

of size N and the corresponding (noise-free)

model responses y = {y(1) =M(x(1)), . . . , y(N) =M(x(N))}>. A Kriging
metamodel (a.k.a. Kriging predictor) provides such predictions based on
the properties of the so-called posterior Gaussian process conditioned on the
available data (see Figure 4.1b).

The Kriging prediction on x corresponds to a random variate Ŷ(x) ∼
N
(
µŶ(x), σŶ(x)

)
, therefore the approximation of the computational model

that is obtained is essentially an infinite family of such models. Each of those
models is a realisation (or sample) of the posterior Gaussian process. In
practice, the mean response is used (see Eq. (4.8)) as the Kriging surrogate,
while its variance (see Eq. (4.9)) is often interpreted as a measure of the
prediction uncertainty. The equations for calculating the mean and variance
of a universal Kriging predictor are given next.

The Gaussian assumption states that the vector formed by the true model
responses, y, and the prediction, Ŷ(x), has a joint Gaussian distribution
defined by:

{
Ŷ(x)

y

}
∼ NN+1

({
f>(x)β

Fβ

}
, σ2

{
1 r>(x)
r(x) R

})
(4.4)
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where F is the information matrix of generic terms:

Fij = f j(x(i)) , i = 1, . . . , N, j = 1, . . . , P, (4.5)

r(x) is the vector of cross-correlations between the prediction point x and
each one of the observations whose terms read:

ri(x) = R(x, x(i);θ), i = 1, . . . , N. (4.6)

R is the correlation matrix given by:

Rij = R(x(i), x(j);θ), i, j = 1, . . . , N. (4.7)

The mean and variance of the Gaussian random variate Ŷ(x) (a.k.a. mean
and variance of the Kriging predictor) can be calculated based on the best
linear unbiased predictor properties (Santner et al., 2003):

µŶ(x) = f (x)>β + r(x)>R−1 (y− Fβ) , (4.8)

σ2
Ŷ
(x) = σ2

(
1− r>(x)R−1r(x) + u>(x)(F>R−1F)−1u(x)

)
, (4.9)

where:
β =

(
F>R−1F

)−1
F>R−1y , (4.10)

is the generalised least-squares estimate of the underlying regression prob-
lem and

u(x) = F>R−1r(x)− f (x). (4.11)

It is important to note that the Kriging model interpolates the data, i.e.:

µŶ(x) =M(x), σ2
Ŷ
(x) = 0, ∀ x ∈ X . (4.12)

Once µŶ(x) and σ2
Ŷ
(x) are available, confidence bounds on predictions can

be derived by observing that:

P
[
Ŷ(x) ≤ t

]
= Φ

(
t− µŶ(x)

σŶ(x)

)
, (4.13)
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where Φ(·) denotes the Gaussian cumulative distribution function. Based
on Eq. (4.13) the confidence intervals on the predictor can be calculated
by:

Ŷ(x) ∈
[
µŶ(x)−Φ−1

(
1− α

2

)
σŶ(x) , µŶ(x) + Φ−1

(
1− α

2

)
σŶ(x)

]
,

(4.14)
and can be interpreted as the interval within which the Kriging prediction
falls with probability 1− α.

The equations that were derived for the best linear unbiased Kriging pre-
dictor assumed that the covariance function σ2R(·;θ) is known. In practice
however, the family and other properties of the correlation function need to
be selected a priori. The hyperparameters θ, the regression coefficients β
and the variance σ2 need to be estimated based on the available experimen-
tal design. This involves solving an optimisation problem that is further
discussed in Section 4.2.3. The resulting best linear unbiased predictors are
called empirical in Santner et al. (2003) because they typically result from
empirical choice of various Kriging parameters that are further discussed
in Sections 4.2.1 - 4.2.3.

4.2.1 Trend

The trend refers to the mean of the Gaussian process, i.e. the β> f (x) term
in Eq. (4.3). Using a non-zero trend is optional but it is often preferred in
practice (see e.g. Rasmussen and Williams (2006); Schöbi et al. (2015)). Note
that the mean of the Kriging predictor in Eq. (4.8) is not confined to be zero
when the trend is zero.

In the literature, it is customary to distinguish between Kriging metamodels
depending on the type of trend they use (Stein, 1999; Santner et al., 2003;
Rasmussen and Williams, 2006). The most general and flexible formulation
is universal Kriging, which assumes that the trend is composed of a sum of
P arbitrary functions fk(x), i.e.

β>f (x) =
P

∑
k=1

βk fk(x). (4.15)

Some of the most commonly used trends for universal Kriging are given for
reference in Table 4.1. Simple Kriging assumes that the trend has a known
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constant value, i.e. P = 1, f1(x) = 1 and β1 is known. In Ordinary Kriging
the trend has a constant but unknown value, i.e. P = 1, f1(x) = 1 and β1 is
unknown.

Table 4.1: Formulas of the most commonly used Kriging trends.
Trend Formula
constant (ordinary Kriging) β0

linear β0 +
M
∑

i=1
βixi

quadratic β0 +
M
∑

i=1
βixi + ΣM

i=1ΣM
j=1βijxixj

4.2.2 Correlation function

The correlation function (also called kernel in the literature, or covariance
function if it includes the Gaussian process variance σ2) is a crucial ingre-
dient for a Kriging metamodel, since it contains the assumptions about
the function that is being approximated. An arbitrary function of (x, x′)
is in general not a valid correlation function. In order to be admissible, it
has to be chosen in the set of positive definite kernels. However, checking
for positive definiteness of a kernel can be a challenging task. Therefore
it is usually the case in practice to select families of kernels known to be
positive definite and to estimate their parameters based on the available
experimental design and model responses (see Section 4.2.3).

A usual assumption is to consider kernels that depend only on the quantity
h = ‖x− x′‖ which are called stationary. A list of stationary kernels com-
monly used in the literature can be found in Table 4.2. Different correlation
families result in different levels of smoothness for the associated Gaussian
processes, as depicted in Figure 4.2 (Rasmussen and Williams, 2006).

In case of multidimensional inputs (M > 1), it is common practice to obtain
admissible kernels as functions of one-dimensional correlation families as
the ones in Table 4.2. Two standard approaches in the literature are the
separable correlation type (Sacks et al., 1989):

R(x, x′; θ) =
M

∏
i=1

R(xi, x′i , θi) , (4.16)
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Table 4.2: Commonly used correlation families.

Name Formula

Linear R(h; θ) = max
(

0, 1− |h|θ
)

Exponential R(h; θ) = exp
(
− |h|θ

)

Matérn 3/2 R(h; θ) =
(

1 +
√

3|h|
θ

)
exp

(
−
√

3|h|
θ

)

Matérn 5/2 R(h; θ) =
(

1 +
√

5|h|
θ + 5h2

3θ2

)
exp

(
−
√

5|h|
θ

)

Gaussian (squared exponential) R(h; θ) = exp
(
−∑M

i=1

(
h
θ

)2
)
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Figure 4.2: Realisations of Gaussian processes, characterised by various correla-
tion families and the same length-scale (θ) value.

and the ellipsoidal type (Rasmussen and Williams, 2006):

R(x, x′; θ) = R(h) , h =

√√√√ M

∑
i=1

(
xi − x′i

θi

)2

. (4.17)

Although typically θ ∈ RM this is not necessarily true in the general
case, since the number of components of θ that correspond to each input
dimension may vary. In the current stage, it is assumed however that one
element of θ is used per dimension for notational clarity.

In certain scenarios (e.g. based on prior knowledge), isotropic correlation
functions can be used for multidimensional inputs. In that case the same
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correlation function parameters θi ≡ θ are used for each input dimension
i = 1, . . . , M in Eq. (4.16) and Eq. (4.17).

4.2.3 Estimating the hyperparameters

In most practical applications of Kriging surrogate modelling, the hyper-
parameters θ are estimated given an experimental design X and model
responses y. Maximum likelihood and cross-validation are the most commonly
used methods for doing so and further discussed next.

The maximum likelihood approach aims at finding the set of parameters
β, θ, σ2 such that the likelihood of the observations y = {M(x1), . . . ,M(xN)}>
is maximal. Since y follows a multivariate Gaussian distribution, the likeli-
hood function reads:

L(y | β, σ2, θ) =
det(R)−1/2

(2πσ2)N/2 exp
[
− 1

2σ2 (y− Fβ)>R−1(y− Fβ)

]
. (4.18)

For any given value of θ, the maximisation of the likelihood w.r.t. β and
σ2 is a convex quadratic programming problem. Consequently, it admits
closed form generalized least-squares estimates of β and σ2 (for proof and
more details see e.g. Santner et al. (2003)):

β = β(θ) =
(

F>R−1F
)−1

F>R−1y , (4.19)

σ2 = σ2(θ) =
1
N

(y− Fβ)> R−1 (y− Fβ) . (4.20)

The value of the hyperparameters θ is calculated by solving the optimisation
problem:

θ = arg min
Dθ

(
− log L(y | β, σ2, θ)

)
. (4.21)

Based on Eqs (4.18) - (4.20) the optimisation problem in Eq. (4.21) can be
written as follows:
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θ = arg min
Dθ

(
1
2

log(det(R)) +
N
2

log(2πσ2) +
N
2

)
. (4.22)

The cross-validation method (also known as K-fold cross-validation) is based

instead on partitioning the whole set of observations S def
= {X , y} into K

mutually exclusive and collectively exhaustive subsets {Sk , k = 1, . . . , K}
such that

Si ∩ Sj = ∅ , ∀(i 6= j) ∈ {1, . . . , K}2 and
K⋃

k=1

Sk = S . (4.23)

The k-th set of cross-validated predictions is obtained by calculating the
Kriging predictor using all the subsets but the k-th one and evaluating its
predictions on that specific k-th fold that was left apart. The leave-one-out
cross-validation procedure corresponds to the special case that the number
of classes is equal to the number of observations (K = N).

In the latter case the objective function is (Santner et al., 2003; Bachoc,
2013):

θ = arg min
Dθ

K

∑
i=1

(
M(x(i))− µŶ,(−i)(x(i))

)2
, (4.24)

where µŶ,(−i)(x(i)) is the mean Kriging predictor that was calculated using

S \
{

x(i), y(i)
}

, evaluated at x(i). Notice that for the case of leave-one-out
cross-validation, i is an index but in the general case i is a vector of indices.
Calculating the objective function in Eq. (4.24) would require the calculation
of K Kriging surrogates. The computational requirements for performing
this operation can be significantly reduced as shown in Dubrule (1983), since
an analytical expression of the objective function of Eq. (4.24) is available
based on a single Kriging model built with S .

The estimate of σ2 is calculated as follows (Cressie, 1993; Bachoc, 2013):
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σ2 = σ2(θ) =
1
K

K

∑
i=1

(
M(x(i))− µŶ,(−i)(x(i))

)2

σ2
Ŷ,(−i)

(x(i))
, (4.25)

where σ2
Ŷ,(−i)

(x(i)) denotes the variance of a Kriging predictor that was

calculated using S \
{

x(i), y(i)
}

, evaluated at point x(i). When i is a set of
indices, the division and the squared operations in Eq. (4.25) are performed
element-wise.

In this work we mainly use cross-validation for estimating the correlation
parameters instead of the maximum likelihood method. This is motivated
by the comparative study in Bachoc (2013) between those. The CV method
is expected to perform better in cases that the correlation family of the
Kriging surrogate is not identical to the one of the true model. This is a
common occurrence in engineering practice, especially within a data-driven
context which is the focus of this thesis.

Numerically solving the optimisation problems described in Eq. (4.22)
(maximum likelihood case) or Eq. (4.24) (cross-validation case) relies on
either local (e.g. gradient-based) or global (e.g. evolutionary) algorithms.
On the one hand, local methods tend to converge faster and require fewer
objective function evaluations than their global counterparts. On the other
hand, the existence of flat regions and multiple local minima, especially for
larger input dimension, can lead gradient methods to poor performance
when compared to global methods. It is common practice to combine both
strategies sequentially to improve global optimisation results with a final
local search (which is also known as hybrid methods).

4.3 polynomial chaos expansions

4.3.1 Definition

Polynomial chaos expansions (PCE) represent a class of surrogate models
that has seen widespread use in the context of uncertainty quantification
due to their flexibility and efficiency. Consider that X ∈ RM is a random
vector with independent components described by the joint PDF fX and
that the model output Y in Eq. (4.1) has finite variance. Then the polynomial
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chaos expansion of M(X) is given by (Ghanem and Spanos, 1991; Soize
and Ghanem, 2004):

Y =M(X) = ∑
α∈NM

θαΨα(X) (4.26)

where the Ψα(X) are multivariate polynomials orthonormal with respect
to fX , α ∈ NM is a multi-index that identifies the components of the
multivariate polynomials Ψα and the θα ∈ R are the corresponding coeffi-
cients.

To construct the polynomial basis Ψα(X) in Eq. (4.30) we start from a set of
univariate orthonormal polynomials φ

(i)
k (xi) which satisfy:

〈
φ
(i)
j , φ

(i)
k

〉
def
=
∫

DXi

φ
(i)
j (xi)φ

(i)
k (xi) fXi (xi)dxi = δjk (4.27)

where i identifies the input variable w.r.t. which they are orthogonal, as well
as the corresponding polynomial family, j and k the corresponding poly-
nomial degree, fXi (xi) is the ith-input marginal distribution and δjk is the
Kronecker symbol. Note that this definition of inner product can be inter-
preted as the expectation value of the product of the multiplicands:

〈
φ
(i)
j , φ

(i)
k

〉
= EXi

[
φ
(i)
j (xi) φ

(i)
k (xi)

]
. (4.28)

Table 4.3: List of classical univariate polynomial families common in polynomial
chaos expansion applications (Sudret, 2007).

Type of variable Distribution Orthogonal polynomials ψk(x)

Uniform 1]−1,1[(x)/2 Legendre Pk(x) Pk(x)/
√

1
2k+1

Gaussian 1√
2π

e−x2/2 Hermite Hek (x) Hek (x)/
√

k!

Gamma xa e−x 1R+ (x) Laguerre La
k(x) La

k(x)/
√

Γ(k+a+1)
k!

Beta 1]−1,1[(x) (1−x)a(1+x)b

B(a) B(b) Jacobi Ja,b
k (x) Ja,b

k (x)/Ja,b,k

J2
a,b,k = 2a+b+1

2k+a+b+1
Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)
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The multivariate polynomials Ψα(X) are then assembled as the tensor
product of their univariate counterparts:

Ψα(x) def
=

M

∏
i=1

φ
(i)
αi (xi) . (4.29)

For standard distributions, the associated families of orthogonal polyno-
mials are well-known (Xiu and Karniadakis, 2002). Such cases are shown
in Table 4.3. Moreover, it is possible to construct polynomials orthogonal
w.r.t. any distribution by means of Gram-Schmidt orthonormalisation, a.k.a.
Stieltjes procedure for polynomials (Gautschi, 2004).

4.3.2 Truncation schemes

In practice, the series in Eq. (4.26) is truncated to a finite sum, by introducing
the truncated polynomial chaos expansion:

M(X) ≈ M̂(X) = ∑
α∈A

θαΨα(X) ≡ θ>Ψ(x) , (4.30)

where A ⊂NM is the set of selected multi-indices of multivariate polyno-
mials.

A typical truncation scheme consists in selecting multivariate polynomials
up to a total degree p, i.e.:

A =
{

α ∈NM : ‖α‖1 ≤ p
}

, (4.31)

where ‖α‖1 = ∑M
i=1 αi. However, the corresponding number of terms in

the truncated series rapidly increases with M, giving rise to the “curse of
dimensionality”.

To limit the number of basis terms that include higher-order interactions
between input variables, which are usually less significant, Blatman (2009)
proposed the use of a hyperbolic truncation scheme, which is adopted in
this work. In the latter, the set of retained multi-indices is defined as:

A =
{

α ∈NM : ‖ α ‖q≤ p
}

, (4.32)
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Figure 4.3: Visualisation of the hyperbolic truncation scheme for varying values
of the polynomial degree p and the q value of the q-norm in Eq. (4.33).

with:

‖ α ‖q=

(
M

∑
i=1

α
q
i

)1/q

, 0 < q ≤ 1 , (4.33)

where 0 < q ≤ 1 is a parameter and p is the maximal total degree of the
retained polynomials. Based on Eq. (4.33), lower values of q correspond
to a smaller number of interaction terms in the PCE basis. Notice that for
q = 1 the hyperbolic truncation scheme is identical to the standard one
in Eq. (4.31) and for q → 0, the expansion becomes additive, i.e. a sum of
univariate functions in the Xi’s.

Figure 4.3 visualises the hyperbolic truncation scheme, considering a two-
dimensional space (M = 2) and varying values of q (constant in each row)
and p (constant in each column). In each panel, corresponding to different
q and p values, the retained indices in A are the ones that fall on the curve
or lie below it. Overall, this scheme includes all the high-degree terms in
each variable, but favours the rejection of higher order interaction terms as
q decreases.
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4.3.3 Calculation of the PCE coefficients

Having specified the truncated polynomial basis terms, calibrating a PCE
surrogate refers to the calculation of the expansion coefficients θα, α ∈
A ⊂NM in Eq. (4.30). We focus on non-intrusive methods to achieve this,
i.e. by processing the samples {X ,Y}. Such techniques can be categorised
into three groups: (i) projection (Keese and Matthies, 2005; Le Maître et al.,
2002; Ghiocel and Ghanem, 2002), (ii) stochastic collocation (Xiu and Karni-
adakis, 2002; Xiu and Hesthaven, 2005), and (iii) least-square minimisation
(Berveiller et al., 2006; Blatman and Sudret, 2010, 2011; Chkifa et al., 2015)
which is the focus in this thesis.

The common aspect in least-square minimisation techniques, is that they
calculate θ by minimising the expectation of the least-squares residual
(Berveiller et al., 2006):

θ̂ = arg min
θ∈RnA

E

[(
θTΨ(X)−Y

)2
]

, (4.34)

where the expected value is approximated in practice by:

θ̂ = arg min
θ∈RnA

1
N

N

∑
i=1

(
∑
α∈A

θαψα(x(i))− y(i)
)2

. (4.35)

A direct solution of Eq. (4.35) is given by Ordinary Least-Squares (OLS).
Given the samples {X ,Y}, the OLS solution of Eq. (4.34) reads:

θ̂ = (ATA)−1 ATY , (4.36)

where

Aij = Ψj

(
x(i)
)

, i = 1, . . . , N , j = 0, . . . , P− 1 , (4.37)

is the so-called experimental (or information) matrix.

In applied science problems, only low order interactions between the input
variables tend to be important. This is a common occurrence known as
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sparsity-of-effects principle (Wu and Hamada, 2000). Truncation schemes such
as the hyperbolic truncation in Eq. (4.33) assist in producing sparse PCEs.
A complementary strategy to favour sparsity in high dimension is based on
a regularised version of the least-squares problem in Eq. (4.35):

θ̂ = arg min
θ∈RnA

1
N

N

∑
i=1

(
∑
α∈A

θαψα(x(i))− y(i)
)2

+ λ ‖θ‖1 . (4.38)

The regularisation term ‖θ‖1 = ∑α∈A |θα| penalises non-sparse solutions
with a magnitude that is controlled by the regularisation coefficient λ. Sev-
eral algorithms exist that solve the minimisation problem in Eq. (4.38), in-
cluding least absolute shrinkage and selection operator (LASSO, Tibshirani,
1996), forward stage-wise regression (Hastie et al., 2007) and least-angle re-
gression (LAR, Efron et al. (2004)). In this work we adopt the LAR algorithm
implementation that is proposed by Blatman and Sudret (2011).

4.3.4 Dealing with arbitrary probabilistic input spaces

Although the general formulation of PCE in Eq. (4.26) assumes indepen-
dent random input variables, it is possible to extend it to more complex
cases where the independence assumption does not hold or no standard
polynomials are defined for the marginal distributions of X. There exists an
isoprobabilistic transformation T of X ∼ fX(x) such that:

Z = T (X), X = T −1(Z) , (4.39)

where Z is a random vector with independent components distributed
according to one of the distributions in Table 4.3. Hence, we can rewrite
Eq. (4.26) as follows:

Y =M(X) = ∑
α∈NM

θα Ψα(T (X)) . (4.40)

This also allows to use any type of orthonormal polynomial with any type
of input marginals at the cost of an additional transform. However, this
type of transform can be highly non-linear, which may lead to reduced
accuracy of the truncated PCE. This is relevant especially when transform-
ing between distributions with compact and non-compact support (e.g.
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uniform to Gaussian). The topic of the isoprobabilistic transformation, and
its implementation when the dependence is described using the copula
formalism, is further discussed in Section 6.2.3.

4.4 error measures

The calculation of any surrogate model is typically followed by the assess-
ment of its predictive performance. Several error measures are available
to provide such a quantitative assessment. Arguably the most well-known
accuracy measure for most surrogates is the relative generalisation error
εgen that reads:

εgen = E

[(
Y− M̂(X;θ)

)2
]

/Var [Y] . (4.41)

This error measure (or, more precisely, one of its estimators) is also the ideal
objective function for the optimisation process involved in the calibration of
the surrogate parameters θ. In most practical situations, however, it is not
possible to calculate εgen analytically. An estimator ε̂gen of this error can be
computed by comparing the true and surrogate model responses evaluated

at a sufficiently large validation set Xv =
{

x(1), . . . , x(Nv)
}

of size Nv:

ε̂gen =
∑Nv

i=1

(
M(x(i))− M̂(x(i))

)2

∑Nv
i=1

(
M(x(i))− µ̂Y

)2 , (4.42)

where µ̂Y = 1
N ∑Nv

i=1M(x(i)) is the sample mean of the validation set re-
sponses and M̂(x(i)) is used in place of M̂(x(i);θ) to simplify the nota-
tion.

In data-driven applications, or when the computational model is expensive

to evaluate, only a single set S def
= {X ,Y} is often available. The entire

set is therefore used for calculating the surrogate parameters. Estimating
the generalisation error by means of Eq. (4.42) on the same set, however,
corresponds to computing the so-called empirical error, which is prone to
underestimate drastically the true generalisation error, due to the overfitting
phenomenon. In such cases, a fair approximation of ε̂gen can be obtained
by means of cross-validation (CV) techniques (see e.g. Hastie et al., 2001).
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In k-fold CV, S is randomly partitioned into k mutually exclusive and
collectively exhaustive sets Si of approximately equal size:

Si ∩ Sj = ∅ , ∀(i 6= j) ∈ {1, . . . , k}2 and
k⋃

i=1

Si = S . (4.43)

The k-fold cross-validation error εCV reads:

εCV =
∑k

i=1 ∑x∈Si

(
M(x)− M̂S\Si (x)

)2

∑x∈S (M(x)− µ̂Y)
2 , (4.44)

where M̂S
S\Si

denotes the surrogate model that is calculated using S ex-
cluding Si. The bias of the generalisation error estimator is expected to be
minimal in the extreme case of leave-one-out (LOO) cross-validation (Arlot
and Celisse, 2010), which corresponds to N−fold cross validation. The LOO
error εLOO is calculated as in Eq. (4.44) after substituting the set Si by the

singleton
{

x(i)
}

(i.e. k = N):

εLOO =
∑N

i=1

(
M(x(i))− M̂\i(x(i))

)2

∑N
i=1
(
M(x(i))− µ̂Y

)2 , (4.45)

where the termM\i(x(i)), denotes the surrogate built from the set S\
{

x(i)
}

,

evaluated at x(i). The calculation of εLOO seems to be computationally
expensive, because it seems to require the evaluation of N surrogates, but it
does not require any additional run of the full computational model. As for
Kriging (see Section 4.2.3), Blatman and Sudret (2011) show that the εLOO in
Eq. (4.45) of a polynomial chaos expansion (calculated using least-squares
minimisation) can be evaluated in closed form from a single surrogate M̂PC

as follows:
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Figure 4.4: The Branin-Hoo function visualised in 2D (left) and 3D (right).

εLOO =
N

∑
i=1

(
M(x(i))− M̂PC(x(i))

1− hi

)2/ N

∑
i=1

(
M(x(i))− µ̂Y

)2
, (4.46)

where hi is the ith component of the vector given by:

h = diag
(

A(ATA)−1 AT
)

, (4.47)

and A is the experimental matrix in Eq. (4.37).

4.5 visualisation

In order to visualise the general behaviour of Kriging and PCE, consider
that the computational model is the Branin-Hoo function. It reads (Forrester
et al., 2008):

M(x) = a
(

x2 − bx2
1 + cx1 − r2

)2
+ s (1− t) cos(x1) + s , (4.48)

where X ∈ R2 and some standard values of the parameters are used, namely
a = 1, b = 5.1(4π2), c = 5/π, r = 6, s = 10 and t = 1/(8π). The input
random variables are considered independent and uniformly distributed:
X1 ∼ U (−5, 10), X2 ∼ U (0, 15). A visualisation of the Branin-Hoo function
is shown in Figure 4.4.
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(a) Kriging residual (b) PCE residual

Figure 4.5: Graphical comparison of the residual |M(X)− M̂(X)| using either a
Kriging or a PCE surrogate.

The goal is to construct a surrogate using each technique based on a
limited number of observations and compare the resulting performance.
The surrogates are deployed using the UQLab software framework (Marelli
and Sudret, 2014) and their implementation therein using the respective
modules (Marelli and Sudret, 2018; Lataniotis et al., 2018).

The Kriging surrogate is constructed using an ellipsoidal correlation func-
tion (see Eq. (4.17)) that uses the Matérn 5/2 family (see Table 4.2). We
perform ordinary Kriging, i.e. the trend in Eq. (4.3) reduces to a single
unknown β0. The hyperparameters are estimated by minimising the CV
objective function in Eq. (4.24) using a hybrid genetic algorithm.

Next, we construct a sparse PCE with maximal polynomial degree p = 10
using the degree-adaptive LARS algorithm. In both cases the same dataset
S with N = 15 random samples is used to calibrate the surrogate. An
additional set Sv = {Xv,Yv} that corresponds to the observations on a
50× 50 regular grid of the input domain (2, 500 samples in total) is used
for validation purposes.

Figure 4.5 showcases the residual |M(X)− M̂(X)| evaluated on Sv, where
M̂(X) corresponds to the Kriging (resp. PCE) surrogate in Figure 4.5a (resp.
Figure 4.5b). The experimental design is also shown as red dots. In addition,
the value of different error measures related to the predictive performance
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of each surrogate are listed in Table 4.4. The LOO error εLOO, is calculated
on the experimental design as described in Eq. (4.45). The generalisation
error ε̂gen is estimated from the validation set instead (Eq. (4.42)).

Table 4.4: Error measures of the Kriging and PCE surrogate of the Branin Hoo
function (experimental design of size 15).

Error measure Kriging PCE
ε loo 0.0808 0.0709

ε̂gen 0.1252 0.1061

At a first glance, both techniques show comparable performance based
on the prediction error estimators in Table 4.4 but there are some notable
differences between the residual landscape of each method. Overall, we
observe that the Kriging surrogate achieves low residual values especially
in the vicinity of the experimental design samples. This is indeed expected
due to its interpolating property. Although the PCE surrogate shows in-
creased residual values around some of the experimental design samples, it
achieves a lower generalisation error, as seen from its estimator ε̂gen. The
improvement of the PCE compared to Kriging becomes more significant in
regions outside the given observations, i.e. when extrapolating.

4.6 conclusion

Surrogate models are characterised by their ability to emulate complex
computational models based on a relatively small set of model runs used
for training and by their inexpensive evaluation. This makes them an
appealing tool not only for substituting a computational model that is
costly to run but also within data-driven applications where no such model
is available.

Regardless of their specificity, surrogate models can be summarised as
a function of the form Y = M̂ (X;θ), where θ denotes their parameters.
Calculating (or calibrating) a surrogate refers to the estimation of θ. It
corresponds to the minimiser of an objective function which is typically an
estimator of the generalisation error of the surrogate.

Two surrogate modelling techniques that are used extensively in this thesis,
namely Kriging and polynomial chaos expansions, were described in more
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detail. Finally, we showcased their performance in a benchmark problem
and highlighted some key differences between them.





5
S U R R O G AT E M O D E L L I N G W I T H H I G H - D I M E N S I O N A L
I N P U T S

5.1 introduction

Surrogate models have become staple tools in the arsenal of uncertainty
quantification, thanks to their versatility, ease of deployment and high-
performance. Parametrising and training a surrogate model, however, can
become harder or even intractable as the number of input parameters
increases, a well known problem often referred to as curse of dimensionality
(see e.g. Verleysen and François, 2005).

For the sake of clarity, in the following we will classify high-dimensional
inputs in two broad categories, depending on their characteristics: unstruc-
tured and structured. Unstructured inputs are characterised by the lack of
an intrinsic ordering, and they are commonly identified with the so-called
“model parameters”, e.g. point loads on mechanical models, or resistance
values in electrical circuit models. Structured inputs, on the other hand, are
characterised by the existence of a natural ordering and/or a distance func-
tion (i.e. they show strong correlation across some physically meaningful
set of coordinates), as it is typical for time-series or space-variant quantities.
Boundary conditions in complex simulations that rely on discretisation
grids, e.g. time-dependent excitations at grid nodes, often belong to this
second class. In most practical applications, unstructured inputs range in
dimension in the order O(100−2), while structured inputs tend to be in the
order O(102−6).

Several strategies have been explored in the literature to deal with high
dimensional problems for surrogate modelling (SM). A common approach
in dealing with unstructured inputs is input variable selection, which
consists in identifying the “most important” inputs according to some
sensitivity measure, see e.g. Iooss and Lemaître (2015a), and simply ignoring
the others (e.g. by setting them to their nominal value).

67
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In the context of kernel-based emulators (e.g. Kriging or support vector
machines), some attention has been devoted to the use of simple isotropic
kernels (Djolonga et al., 2013), or to the design of specific kernels for high-
dimensional input vectors, sometimes including deep learning techniques
(e.g., Lawrence, 2005; Durrande et al., 2012; Wilson et al., 2016).

The more general concept of dimensionality reduction (DR) is applied in more
complex scenarios, which essentially consists in mapping the input space
into a suitable lower dimensional space using an appropriate transformation
(see Chapter 3 for a more detailed introduction). The latter approach is
considered in this work due to its applicability to cases for which variable
selection seems inadequate or insufficient (e.g. in the presence of structured
inputs).

In the current literature, a two-step approach is often followed for dealing
with such problems: first, the input dimension is reduced; then, the surro-
gate model is constructed directly in the reduced space. The dimensionality
reduction step is therefore based on an unsupervised objective, i.e. an ob-
jective that only takes into account the input observations. Examples of
unsupervised objectives include the minimisation of the input reconstruc-
tion error (see e.g. autoencoders in Section 3.5), maximisation of the sample
variance (in PCA, Section 3.2), maximisation of statistical independence
(Hyvärinen and Oja, 1997), and preservation of the distances between the
observations (such as MDS and variants presented in Section 3.3). While in
principle attractive due to their straightforward implementation, unsuper-
vised approaches for dimensionality reduction may be suboptimal in this
context, because the input-output map of the reduced representation may
exhibit a complex topology unsuitable for surrogate modelling (Wahlström
et al., 2015; Calandra et al., 2016).

To deal with this issue, various supervised techniques have been proposed,
in the sense that the objective of the input compression somehow takes into
account the model response. One such approach that has received attention
recently is based on the so-called active subspaces concept (Constantine et al.,
2014). Various methods that belong to this category provide a linear trans-
formation of the high dimensional input space into a reduced space that
is characterised by maximal variability w.r.t. the model output. However,
active subspaces methods often require the availability of the model gradi-
ent w.r.t. the input parameters, a limiting factor in data-driven scenarios
where such information is not available and needs to be approximated (For-
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nasier et al., 2012). Moreover, the numerical computation of the gradient
may be infeasible for problems that involve structured inputs such as time
series or multidimensional maps with O(102−6) components. Yang et al.
(2018) propose a technique to compress the input space for more efficient
application of polynomial chaos expansions with Hermite polynomials.
This work is closely tied to a specific surrogate modelling technique and
assumes certain statistical properties of the input space (Gaussian random
variables), with the possibility however to expand this method to other
input distributions.

Other data-driven supervised DR techniques have been proposed in the
literature, which are dependent on the properties of a specific combination
of either DR or SM techniques. Hinton and Salakhutdinov (2006) employ
multi-layer neural networks for both the DR and the SM steps. Specifically,
an unsupervised objective based on the reconstruction error is followed by
a generalisation performance objective that aims at fine tuning the network
weights with respect to a measure of the surrogate modelling error. Similar
approaches have been proposed with other combinations of methods. In
Damianou and Lawrence (2013), the same idea is extended by using stacked
Gaussian processes instead of multilayer neural networks. In Huang et al.
(2015); Calandra et al. (2016) this approach is extended by combining neural
networks with Gaussian processes within a Bayesian framework.

All these methods demonstrate that supervised approaches yield a signifi-
cant accuracy advantage over the unsupervised ones, as the final goal of the
supervised learner (i.e. surrogate model accuracy) matches the final goal
of high-dimensional surrogate modelling in the first place. However, this
increased accuracy comes at the cost of restricting the applicability of such
methods to specific combinations of DR and SM techniques.

In this chapter, we propose a novel method for performing dimensionality
reduction together with surrogate modelling, which we name (perhaps
with a lack of creative flair) DRSM. The aim of this method is to capitalise
on the performance gains of supervised DR, while maintaining maximum
flexibility in terms of both DR and SM methodologies. Recognising that
different communities, applications and researchers have in general access
to one or two preferred techniques for either DR or SM, the proposed
approach is fully non-intrusive, i.e. both the DR and the SM stages are
considered as black boxes under very general conditions. The novelty lies
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in the way the two stages are coupled into a single problem, for which
dedicated solvers are proposed.

This chapter is structured as follows: as a motivation for the proposed
approach, in Section 5.2 the classical approach of sequentially applying DR
and SM is investigated on a set of benchmark datasets from the machine
learning community. The core framework underlying DRSM is then intro-
duced in Section 5.3. Finally, in Section 5.4 the effectiveness of DRSM is
analysed on several benchmark applications including both unstructured
and structured inputs.

5.2 motivation - preliminary study

During the preliminary stages of this work, the classical sequential appli-
cation of DR and SM was first considered. The idea was that by using
state-of-the-art DR techniques instead of classical ones, such as PCA, the
performance of the surrogate may increase together with the potential
improvement in the input compression. The goal of this section is to sum-
marise the findings of this preliminary study after formally introducing the
problem.

Consider the experimental design S = {X ,Y} that consists of the observa-
tions X =

{
x(i) ∈ X ⊆ RM , i = 1, . . . , N

}
and the corresponding, scalar,

model responses Y =
{
M
(

x(1)
)

, . . . ,M
(

x(N)
)}

and assume that it is
the only available information about the model under investigation. More-
over, the dimensionality of the input space is high, i.e. M is large, say
O
(
102−4). The goal is to calculate a surrogate that serves as an approxima-

tion of the real model solely based on the available samples. This is a key
ingredient for subsequent analyses in the context of UQ, as will be further
discussed in Chapter 6.

To distinguish between various computational schemes, we denote from
now on by M̂|X ,Y a surrogate model whose parameters θ are calculated
from the experimental design X and associated model response Y . Due
to the high input dimensionality, a surrogate M̂|X ,Y may lead to poor
generalisation performance or it may not even be computationally tractable.
To reduce the dimensionality, the class of DR methods was introduced in
Chapter 3. A DR transformation, expressed by Z = g(X ; w), can provide a
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compressed experimental design, i.e. z(i) ∈ Rm , i = 1, . . . , N with m� M.
The surrogate M̂|Z ,Y becomes tractable if m is sufficiently small.

The sequential application of DR and SM is presented next. It simply refers
to a two-stage approach, where the DR transformation X→ Z is calculated
first, followed by the calculation of the surrogate M̂|Z ,Y . As discussed in
Section 3.1, performing DR corresponds to finding the optimal parameters
w of the mapping Z = g(X; w). Their optimal value ŵ is determined by
minimising a loss function. For usual compression goals, focus is given to a
specific loss function that quantifies the compressive performance of g(·)
by means of the reconstruction error, which reads:

{
ŵ, ŵ′

}
= arg min

Dw
`(w;X ) = E

[∥∥∥X− X̂
∥∥∥

2
]

, (5.1)

where X̂ = g−1(Z, w′) denotes the reconstruction of X, calculated through
the inverse transform g−1 : Z → X. In Eq. (5.1), the general case is con-
sidered where the parameters associated to g(·) and g−1(·) differ (see e.g.
KPCA in Section 3.4).

Calculating the surrogate M̂(Z;θ) refers to the calibration of its hyperpa-
rameters θ based on a performance measure such as the generalisation
error (see Section 4.4):

θ̂ = arg min
Dθ

ε̂gen(θ;S) = arg min
Dθ

E

[(
Y− M̂(Z;θ)

)2
]

/Var [Y] . (5.2)

The sequential application of DR and SM is investigated by examining the
relationship between the compressive performance of DR and the result-
ing generalisation performance of the SM. Within this setting, various DR
techniques are combined with Kriging (Section 4.2) on a set of benchmark
datasets. These datasets were obtained by the UCI Machine Learning Repos-
itory (Dheeru and Karra Taniskidou, 2017) and have served as benchmarks
by several authors in the context of metamodelling. Due to the lack of
knowledge regarding the intrinsic dimension, in each case the size of the
compressed space was set to roughly the half of the initial one.
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We consider the DR techniques from Chapter 3 that provide an inverse
transformation g−1, namely PCA (Section 3.2), kernel PCA (Section 3.4)
and autoencoders (Section 3.5). The input space is compressed from M to
m dimensions for each dataset reported in Table 5.1.

Each dataset is split into two mutually exclusive sets: the experimental
design S that is used for calibrating the DR and SM parameters and the
validation set Sv = {Xv,Yv}, consisting of Nv samples that is used to calcu-
late the performance metrics. The performance of the input compression is
evaluated based on the scaled reconstruction error:

ε̂recon =
1
M

M

∑
i=1

∑Nv
j=1

(
x(j)

v,i − x̂(i)j

)2

∑Nv
j=1

(
x(j)

v,i − µ̂v,i

)2 , (5.3)

where x(j)
v,i denotes the i− th component of the validation set sample x(j)

v ,

x̂(i)j the corresponding component of the reconstructed sample and µ̂v,i

the sample mean of the i-th component of x evaluated on Xv. This is a
scaled version of the estimator of the reconstruction error in Eq. (5.1). The
performance of the Kriging surrogate M̂|Z ,Y is evaluated based on the
estimator of the generalisation error in Eq. (5.2):

ε̂gen =
∑Nv

i=1

(
M(z(i)v )− M̂(z(i)v )

)2

∑Nv
i=1

(
M(z(i)v )− µ̂y,v

)2 , (5.4)

where M(z(i)v ) simply corresponds to the i-th sample of Yv, M̂(z(i)v ) is
the output of the surrogate evaluated on the i-th sample of Zv = g(Xv; ŵ)
and µ̂y,v denotes the sample mean of Yv. To evaluate the robustness of the
results, the same process is repeated 100 times, each corresponding to a
different random split of the dataset into S and Sv resulting to different
values of ε̂recon and ε̂gen from Eq. (5.3) and Eq. (5.4), respectively.

The comparison between the input compression and surrogate performance
is conducted by comparing their summary statistics in Table 5.1 as well as
inspecting their scatter in Figure 5.1.
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Table 5.1: Results on sequential application of DR and SM on machine learning
benchmark datasets

DR method M m N Nv ε̂recon ε̂gen

µ̂ σ̂ µ̂ σ̂

Car mileage dataset

PCA
6 3 314 78

0.0447 0.0055 0.5767 0.5888
Kernel PCA 0.1535 0.0148 0.3841 0.1488
Stacked autoencoder 0.1468 0.0188 0.5786 0.3198

Boston housing dataset

PCA
13 6 456 50

0.1753 0.0208 0.3536 0.3439
Kernel PCA 1.0234 1.8610 0.2976 0.1181
Stacked autoencoder 0.1561 0.0237 0.3772 0.1629
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Figure 5.1: Comparison between compression and surrogate model perfor-
mance using various dimensionality reduction techniques on various
datasets.

On the car mileage dataset, PCA achieved the best compressive performance
with a mean reconstruction error that is more than an order of magnitude
smaller than those obtained by the other methods. However, the best surro-
gate performance, in terms of the mean generalisation error, was achieved
by KPCA, even though it achieved the worst compressive performance.
On the housing dataset, non-linear DR techniques can achieve improved
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compression compared to PCA, although KPCA shows higher variability,
and therefore a poor overall performance over the 100 repetitions. At the
same time, the surrogate model performance is comparable in all three
cases regardless of the input compression technique.

Overall, from the summary statistics of the reconstruction and generalisa-
tion performance metrics in Table 5.1 it is not possible to identify a pattern
of dependence or correlation. This is further highlighted by observing their
scatter in Figures 5.1a and 5.1b for the car mileage and housing dataset,
respectively. There is no clear dependence between the quality of the input
compression and the performance of the surrogate.

This can be attributed to the fact that by performing the input compression
X → Z, the mapping Z → Y may become less suitable for surrogate
modelling regardless of the quality of the compression. However, within
the context of this work, the goal is to achieve an optimally performing
surrogate. Hence, typical performance measures used for compression such
as the reconstruction error, seem unsuitable in this context since they do not
take into account the smoothness of the mapping Z→ Y which is critical
in terms of the performance of any surrogate modelling technique. This
observation motivates the proposed original approach for combining DR
and SM that is presented in the next section.

5.3 non-intrusive supervised learning : the proposed drsm

approach

5.3.1 Introduction

Consider the setting introduced in Section 5.2, where an experimental de-
sign S = {X ,Y} is available and X is characterised by large dimensionality.
Hence, DR is performed and the surrogate M̂|Z ,Y is computed. The poten-
tial of M̂|Z ,Y to achieve satisfactory generalisation performance depends
on (i) the learning capacity of the surrogate itself and (ii) the assumption
that the input-output map X 7→ Y can be sufficiently well approximated
by a smaller set of features via the transformation g(·). This discussion
focuses on the latter and assumes that the learning capacity of the surrogate
is adequate. In case of unstructured inputs, the importance of each input
variable may vary depending on the output of interest. In case of structured
inputs, there is typically high correlation between the input components.
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Hence, in both families of problems a low-dimensional representation may
often approximate well the input-output map.

5.3.2 Problem statement

The goal of DRSM is to optimise the parameters w of the compression
scheme so that the auxiliary variables Z = g(X; w) are suitable to achieve
an overall accurate surrogate. Notice that w typically includes the size of
the reduced space, m, provided that it is not known a priori. The general
formulation of this problem reads:

{
ŵ, θ̂

}
= arg min

w∈Dw,θ∈Dθ
`
(
M(·),M̂ (g(·; w),θ)

)
, (5.5)

where ` denotes the loss function that quantifies the generalisation per-
formance of the surrogate. In practice, if a validation set is available, `
corresponds to a generalisation error estimator like the one in Eq. (4.42). In
the absence of a validation set, then either the LOO estimator in Eq. (4.45)
or its k-fold CV counterpart in Eq. (4.44) are used instead. In the following,
it is assumed that a validation set is not available and the generalisation
error is estimated by the LOO error, hence ` is substituted by the εLOO
expression in Eq. (4.45).

5.3.3 Nested optimisation

The proposed approach for solving Eq. (5.5), is related to the concept of block-
coordinate descent (Bertsekas, 1999). During optimisation, the parameters w
and θ are updated in an alternating fashion. One of the main reasons for this
choice is that the optimisation steps of both DR and SM techniques are often
tuned ad-hoc to optimise their performance. Examples include sparse linear
regression for polynomial chaos expansions (Blatman and Sudret, 2011), or
quadratic programming for support vector machines for regression (Vapnik,
1995). A single joint optimisation, albeit potentially yielding accurate results,
would require the definition of complex constraints on the different sets
of parameters w and θ, which would be problem- and surrogate-model-
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dependent. Therefore, the problem in Eq. (5.5) is expressed as a nested-
optimisation problem. The outer loop optimisation reads:

ŵ = arg min
w∈Dw

εLOO(w; θ̂(w),X ,Y), (5.6)

where εLOO denotes the LOO error (Eq. (4.45)) of the surrogate M̂(z; w,X ,Y)
evaluated at {X ,Y} and θ̂(w) denotes the optimal parameters of M̂ for
that particular w value. The term θ̂(w) is calculated by solving the inner
loop optimisation problem:

θ̂(w) = arg min
θ∈Dθ

εLOO(θ; w,X ,Y). (5.7)

The nested optimisation approach to DRSM comes with costs and benefits.
On the one hand, each objective function evaluation of the outer-loop
optimisation becomes increasingly costly w.r.t. the number of samples in
the experimental design and the complexity of the surrogate model. On the
other hand, the search space in each optimisation step can be significantly
smaller, compared to the joint approach, due to the reduced number of
optimisation variables. Moreover, this nested optimisation approach enables
DRSM to be entirely non-intrusive. Off-the-shelf well-known surrogate
modelling methods can be used to solve Eq. (5.7).

Albeit non-intrusive and having a relatively low dimension, the inner
optimisation in Eq. (5.7) is in general the driving cost of DRSM. Indeed,
calculating the parameters of a single high-resolution modern surrogate may
require anywhere between a few seconds and several minutes. To reduce
the related computational cost, it is often possible to solve proxy surrogate
problems, i.e. using simplified surrogates that, while not being as accurate
as their full counterparts, are computationally cheaper to calibrate. Once
the nested optimisation problem above is solved, a high-accuracy surrogate
M̂(z; ŵ,X ,Y) is computed, on the resulting optimally compressed input
space.

In case of kernel-based surrogates, such as Kriging, the low-accuracy prox-
ies can be obtained by prematurely stopping the optimisation in the inner
loop in Eq. (5.7) and/or by using isotropic kernels. For calculating the final
high-accuracy Kriging surrogate, a high-computational budget optimisation
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is performed instead, combined with the use of an anisotropic correlation
family. The introduction of anisotropy is expected to improve the generali-
sation performance of the metamodel, as shown for instance in the study
by Moustapha et al. (2018).

In case of polynomial chaos expansions, the proxy PCE surrogates assume
uniformly distributed and independent input variables in Z. The PCE coef-
ficients are computed by solving Eq. (4.34) using the ordinary least squares
method (Berveiller et al., 2006). To calculate the PCE coefficients of the final,
high-accuracy, surrogate M̂(g(x; ŵ)), the distributions of the input vari-
ables are fitted using kernel-smoothing, while retaining the independence
assumption, motivated by the results in Torre et al. (2019). In addition, a
sparse solution is obtained by solving the optimisation problem in Eq. (4.34)
using least angle regression (Blatman and Sudret, 2011) instead of ordinary
least squares.

5.4 applications using kpca , kriging and pce surrogates

5.4.1 Introduction

The performance of DRSM is evaluated on the following applications: (i) an
artificial analytic function with 20 unstructured inputs and approximately
known intrinsic dimension, (ii) a realistic electrical engineering model
with 80 unstructured inputs and unknown intrinsic dimension and, (iii) a
heat diffusion model with 16, 000 structured inputs and unknown intrinsic
dimension.

For each benchmark application, DRSM is applied using KPCA for compres-
sion together with Kriging or polynomial chaos expansions for surrogate
modelling. The surrogate performance is then compared, in terms of gener-
alisation error, to the sequential application of unsupervised dimensionality
reduction followed by surrogate modelling. To improve readability, various
details regarding the implementation of the optimisation algorithms and
the surrogate models calibration are omitted from the main text and given
in Appendix C.1 instead. All the surrogate modelling tasks were carried
out using the Matlab-based uncertainty quantification software UQLab

(Marelli and Sudret, 2014, 2018; Lataniotis et al., 2018).
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5.4.2 Sobol’ function

The Sobol’ function (also known as g-function) is commonly used as a
benchmark in the context of uncertainty quantification. It reads:

Y =
M

∏
i=1

|4Xi − 2|+ ci
1 + ci

, (5.8)

where X = {X1, . . . , XM} are independent random variables uniformly
distributed in the interval [0, 1] and c = {c1, . . . , cM}T are non-negative
constants. In this application, we chose M = 20 and the constants c given
by Konakli and Sudret (2016a); Kersaudy et al. (2015):

c = {1, 2, 5, 10, 20, 50, 100, 500, 500, . . . , 500}T. (5.9)

It is straightforward to see that the effect of each input variable Xi to the
output Y is inversely proportional to the value of ci. In other words, a
small (resp. large) value of ci results in a high (resp. low) contribution of
Xi to the variance of Y. For the given values of the constants c, one would
expect that, roughly, the first 4 to 6 variables can provide a compressed
representation of X with minimal information loss regarding the input-
output relationship.

To showcase the performance of DRSM, an experimental design X , con-
sisting of 800 samples, is generated by Latin Hypercube sampling of the
input distribution (McKay et al., 1979). Based on the samples in X and the
corresponding model responses Y , several combinations of KPCA, Kriging
and PCE are tested within the DRSM framework. An additional set of 105

validation samples {Xv,Yv} is generated for evaluating the performance of
the final surrogates.

The first analysis consists in comparing the generalisation performance as a
function of the compressed input dimension m for Kriging and PCE models
combined with KPCA with different kernels. Because of the availability of
a validation set, the performance of the LOO error estimator in Eq. (4.45) is
also assessed by comparing it with the true validation error in Eq. (4.41).
Figures 5.2a and 5.2b show the LOO error estimator of the final surrogate
model when using Kriging and PCE, respectively.
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Table 5.2: Sobol’ function: optimal DRSM configurations for Kriging- and PCE-
based surrogate models

SM method KPCA kernel m̂ εLOO ε̂gen

Kriging Anisotropic Gaussian 6 0.0704 0.0830

PCE Anisotropic Gaussian 6 0.0096 0.0083

In each panel the different curves correspond to different KPCA kernels,
namely polynomial kernel and isotropic (resp. anisotropic) Gaussian (see
Table 3.1). Figures 5.2c and 5.2d show the corresponding validation error
on the validation set for the same scenarios. At a first glance, it is clear that
the top and bottom figures are remarkably similar, both in their trends and
in absolute value. Therefore, it is concluded that on this application εLOO is
a good measure of the generalisation error εgen. This is an important obser-
vation, because in the general case a validation set is not always available,
while εLOO (or the related k-fold cross validation) can always be calculated.
Moreover, the intrinsic dimension identified by all the best DR-SM com-
binations is equal to m̂ = 6, which is a reasonable estimate based on the
values of the constants ci in Eq. (5.9). Indeed the total Sobol’ indices of the
6 first parameters are equal to {0.6037, 0.2683, 0.0671, 0.0200, 0.0055, 0.0010}
and for the rest are in the order of 10−4.

The DRSM algorithm identifies the anisotropic Gaussian kernel as the
best KPCA kernel to be used in conjunction with both Kriging and PCE.
However, the performance of PCE is significantly better in terms of gen-
eralisation error. The optimal parameters for each case (Kriging and PCE)
are highlighted by a black dot in Figure 5.2, and their numerical values are
reported in Table 5.2.

Subsequently, the performance of DRSM is compared against an unsu-
pervised approach, in which dimensionality reduction is carried out first,
before applying surrogate modelling. To facilitate a meaningful comparison
between the various methods, the reduced dimension and the optimal
KPCA kernel as determined by the first analysis (see Table 5.2) are used.
The results are summarised in Figure 5.3, while the corresponding list of
tested configurations for both DRSM and the sequential DR-SM is given in
Table 5.3.

The experimental design consists of 800 samples. The performance of
each method is evaluated in terms of the generalisation error of the final
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(a) Kriging - LOO error (b) PCE - LOO error

(c) Kriging - Validation error (d) PCE - Validation error

Figure 5.2: Error estimates of the DRSM surrogate as a function of the reduced
space dimension. Kernel PCA is used with isotropic (resp.anisotropic)
Gaussian as well as polynomial kernels.

surrogate M̂(z) evaluated on a validation set {Xv,Yv =M(Xv)} with 105

samples. To evaluate the robustness of the results, this process is repeated
10 times, each corresponding to a different set X , drawn at random from X
using the Latin Hypercube sampling method. On the left (resp. right) panel,
a Kriging (resp. PCE) surrogate is calculated using one of the methods in
Table 5.3. Each box plot in Figure 5.3 provides summary statistics of the
generalisation error that was achieved by each configuration over the 10
repetitions. The central mark indicates the median, and the bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively.
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Table 5.3: Different setups considered for evaluating the final surrogate model
performance after using each of them for dimensionality reduction.

Dim. reduction Parameter tuning objective Abbreviation
Kernel PCA εLOO of Kriging (KG) or PCE surrogate (Eq. (5.6)) DRSM
Kernel PCA Reconstruction error (Eq. (3.26)) KPCA-RECON
Kernel PCA Pairwise distance preservation (Eq. (3.22)) KPCA-DIST
PCA - PCA

The whiskers extend to the most extreme data points up to 1.5 times the
inter-quartile range above or below the box edges.

(a) Kriging (b) Polynomial chaos expansions

Figure 5.3: Sobol’ function: estimates of the generalisation error.

The DRSM approach consistently shows superior performance compared
to the unsupervised approaches. This performance improvement becomes
more apparent in the case of PCE surrogate modelling, where the average
validation error over the 10 repetitions is reduced by almost two orders of
magnitude compared to the other methods.

Due to the analytical nature of the model under consideration, we further
evaluate the DRSM-based input compression by means of how the most
important input variables are mapped to the reduced space. We adopt the
total Sobol’ sensitivity indices as a rigorous measure of the importance of
each input variable. Sobol’ sensitivity analysis is a form of global sensitivity
analysis based on decomposing the variance of the model output into con-
tributions that can be directly attributed to inputs or sets of inputs (Sobol’,
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(a) Total Sobol’ indices (b) m = 3 (c) m = 4 (d) m = 5 (e) m = 6

Figure 5.4: Sobol’ function: visualisation of the sample-based Spearman correla-
tion coefficient (absolute value) between the model inputs X and the
reduced space inputs Z.

1993). The total Sobol’ sensitivity index of an input variable Xi, denoted by
STot

i ∈ [0, 1], quantifies the total effect of Xi on the variance of Y. In this par-
ticular example, the total Sobol’ indices can be analytically derived (Saltelli
et al., 2000). Their values are shown for reference in Figure 5.4a.

It is clear from Eq. (5.8) and Eq. (5.9) that all 20 input variables contribute
to the output variability, i.e. the intrinsic dimension of the problem is 20.
However, the contribution of each input component quickly diminishes with
larger values of ci (see Figure 5.4a in which the values of the 20 total Sobol’
indices are plotted, in logarithmic scale, as horizontal bars). Compressing
the inputs in this problem is expected to lead to a mapping where those
first few input components have the largest contribution.

In Figure 5.4 the features in the reduced space Z are compared against the
original inputs X. The rationale behind this heuristic analysis is simple:
if the features obtained by DRSM are correctly identified, they should
depend mostly on the same variables identified as important in the Sobol’
analysis in Figure 5.4a. A simple measure of dependence between the
reduced space components {zi , i = 1, . . . , m} and the initial input space
components {xi , i = 1, . . . , M} is provided by the metric |ρ (zi, xi)|, where
ρ denotes the Spearman correlation coefficient.
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Figures 5.4b - 5.4e represent graphically the quantity |ρ (zi, xi)| for the best
surrogate identified in Table 5.2, namely a PCE coupled with KPCA using
an anisotropic Gaussian kernel, evaluated on the validation set {Xv,Yv}.
Each figure corresponds to a different selection of reduced space dimension
m. Figure 5.4 clearly shows that (i) each zi correlates strongly with a specific
xi, (ii) the zi’s correlate with the m “most important” xi’s, and, (iii) the
larger m value leads to the discovery of a new input zi that correlates with
the next “most important” component of x.

5.4.3 Electrical resistor network

Figure 5.5: The resistor networks application example

The electrical resistor network in Figure 5.5 (Jakeman et al., 2015) is consid-
ered next. It contains 80 resistances of uncertain ohmage (model inputs),
that are independent and uniformly distributed, and it is driven by a voltage
source providing a known potential V0. The output of interest is the voltage
V at the node shown in Figure 5.5. A single set of 1, 000 experimental design
samples and model responses is available, courtesy of J. Jakeman (Sandia
National Laboratories).

As in the previous section, the goal of the first analysis is to determine
the generalisation performance of the DRSM surrogate as a function of the
reduced space dimension m when KPCA is combined with either Kriging
or PCE. In addition, the accuracy of the LOO error in Eq. (4.45) is compared
to the validation error in Eq. (4.42). The samples are randomly split into
500 pairs {X ,Y} used during the DRSM calibration and 500 pairs {Xv,Yv}
used for validation.

Figures 5.6a and 5.6b show the LOO error estimator of the final surrogate
model (Kriging or PCE), evaluated on {X ,Y}, whereas Figures 5.6c and
5.6d show the validation error of the surrogate, evaluated on {Xv,Yv}. In
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(a) Kriging - LOO error (b) PCE - LOO error

(c) Kriging - Validation error (d) PCE - Validation error

Figure 5.6: Electrical resistor networks: error estimates of the DRSM surrogate
as a function of the reduced dimension. Kernel PCA is used with
anisotropic (resp. isotropic) Gaussian as well as polynomial kernels.

each panel, each curve corresponds to a different KPCA kernel, namely
anisotropic or isotropic Gaussian, and polynomial. Finally, the optimal
configuration for each SM method is illustrated by a black dot. Similarly
to the Sobol’ function, the use of an anisotropic kernel in KPCA results in
significantly reduced generalisation error. Indeed this is expected from a
physical standpoint. The effect of the resistors on the voltage V will decay
with distance (in terms of the number of preceding resistors) from V, which
implies anisotropy in terms of the effect of each input variable to the output.
As in the previous application example, the LOO error in Figures 5.6a and
5.6b provides a reliable proxy of the generalisation error in Figures 5.6c and
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Table 5.4: Resistor networks: optimal DRSM configurations for Kriging and PCE
surrogate models

SM method KPCA kernel m̂ εLOO ε̂gen

Kriging Anisotropic Gaussian 24 2.000e-04 2.402e-04

PCE Anisotropic Gaussian 32 3.621e-05 3.249e-05

(a) Kriging (b) Polynomial chaos expansions

Figure 5.7: Electrical resistor networks: estimates of the generalisation error.

5.6d and the same optimal parameters are identified w.r.t. the two error
measures. The optimal DRSM configuration for each surrogate model is
given in Table 5.4.

Next, the performance of DRSM is compared to unsupervised approaches
considering the setups in Table 5.3. The results of this comparative study
are given in Figure 5.7 using box plots. They are obtained by the repeated
random selection of 500 samples from the available 1, 000, leading to 10
separate surrogate models for each case. The performance of each method
is determined by means of the ε̂gen of the final surrogate M̂(z) evaluated
on the validation set {Xv,Yv =M(Xv)}, that corresponds to the remaining
500 samples of each split. Hence, each box-plot provides summary statistics
of the validation error over the different splits. Each of the setups is tested
both for Kriging (Figure 5.7a) and PCE surrogates (Figure 5.7b). In this
application example, the DRSM-based surrogates outperform the others by
several orders of magnitude in both cases (Kriging, PCE). This highlights
the difference between the unsupervised and supervised compression:
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(a) SRC coefficients (b) m = 2 (c) m = 4 (d) m = 8 (e) m = 16

Figure 5.8: Electrical resistor networks: visualisation of the sample-based Spear-
man correlation coefficient (absolute value) between the model inputs
X and the reduced space inputs Z.

compressing the input using only the information in X appears inefficient
when followed by surrogate modelling.

Finally, we investigate how the reduced variables Z correlate with the
input variables X in Figure 5.8. In contrast to the previous example, there
is limited knowledge about the computational model, thus we proceed
by approximating the importance of each input variable in the physical
space using a sensitivity measure called standardised regression coefficients,
denoted by SRC (initially introduced by Helton et al., 1985; used the UQLab
implementation described in Marelli et al., 2019). The SRC are computed
by first approximatingM (X) by a linear model:

M (X) ≈ β0 +
M

∑
i=1

βiXi , (5.10)

where the coefficients β = {β0, . . . , βM} are estimated by ordinary least-
squares:

β̂ =
(
X>X

)−1
X>Y . (5.11)
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The SRC indices are then defined as:

SRCi =
β̂ σ̂Xi

σ̂Y
, i = 1, . . . , M , (5.12)

where σ̂i denotes the sample-based standard deviation of Xi and σ̂Y the
sample-based standard deviation of Y. In Figure 5.8a we plot the squared
SRC indices due to the property: ∑M

i=1 SRC2
i = 1 and because in this analysis

we are not interested in the sign of each SRCi but only in its magnitude 1. In-
deed variables X1, X2, X41 and X42 are expected to have the most significant
contribution to the output variance because, as was previously pointed out,
the effect of each resistor decays as the distance from V increases. Similarly
to case of the Sobol’ function, Figures 5.8b - 5.8e represent graphically the
quantity |ρ (zi, xi) |, where ρ denotes the Spearman correlation coefficient,
each panel corresponding to a reduced space of different dimension. In
each case, we used the DRSM algorithm to calculate the parameters of the
KPCA (anisotropic Gaussian) kernel which is coupled with a PCE surrogate,
because this setup performed best in Table 5.4. Interestingly we observe that
as the dimensionality of the reduced space, m, increases, the most important
variables Xi are always captured by at least one Zi, and the additional Zi’s
either correlate with the next more important input variable or correlate
with multiple Xi’s when m = 8 or larger.

Further examination of those results in combination with the PCE prediction
error results in Figures 5.6b and 5.6d, shows that for m ≤ 4, a steep decline
in the PCE generalisation error is observed because for each m value in
that range, new features are discovered, each being important for the
prediction of the model response because it corresponds to one of the
Xi’s with i ∈ {1, 2, 41, 42}. For 4 < m ≤ 32 the PCE still improves but
in a reduced rate because the additional Zi’s indeed introduce further
meaningful information about Y. Although the rest of the Xi’s with i /∈
{1, 2, 41, 42} are less important in terms of their SRC indices, they still affect
the value of the model response.

1 Note that this type of variance decomposition is meaningful only in cases where the input
variables are uncorrelated, which is indeed the case in this application. When this assump-
tion holds, the total variance of the model is given by (approximately, due to the linear
approximation of computational model):

σ̂2
Y =

M

∑
i=1

β2
i σ2

Xi
.
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5.4.4 2D diffusion

This last application consists of a 2-dimensional stationary heat diffusion
problem. The problem is defined in a square domain, D = [−0.5, 0.5]×
[−0.5, 0.5], where the temperature field T(v), v ∈ D is the solution of the
elliptic partial differential equation:

−∇ · (d(v)∇T(v)) = 500 IA(v), (5.13)

with boundary conditions T = 0 on the top boundary and∇T ·n = 0 on the
left, right and bottom boundaries, where n denotes the vector normal to the
boundary. In Eq. (5.13), A corresponds to a square domain (see Figure 5.9)
and IA is the indicator function equal to 1 if v ∈ A and 0 otherwise. The
diffusion coefficient d(v) is a lognormal random field defined by:

d(v) = exp (ad + bd g(v)) , (5.14)

where g(v) is a Gaussian random field and the parameters ad, bd are
such that the mean and standard deviation of d are µd = 1 and σd = 0.3
respectively. The random field is characterised by a Gaussian correlation

function R(v, v′) = exp
(
−‖v− v′‖2 /`2

)
, with ` = 0.2. The output of

interest is the average temperature in the square domain B within D (see
Figure 5.9).

To solve Eq. (5.13), the Gaussian random field g(v) is first discretised
using the expansion optimal linear estimation (EOLE) method (Li and
Der Kiureghian, 1993). Consider a grid in D with nodes {v1, . . . ,vn}.
By retaining the first p terms in the EOLE series, g(v) is approximated
by:

ĝ(v) =
p

∑
i=1

ξi√
l(i)

(
φ(i)

)>
Cvv(v), (5.15)

where
{

ξ1, . . . , ξp
}

are independent standard normal random vari-

ables, Cvv is a vector with elements C(k)
vv = R(v,vk) for k = 1, . . . , n

and
{(

l(i),φ(i)
)

, i = 1, . . . , n
}

are the eigenvalues and eigenvectors of

the correlation matrix Cvv with elements C(i,j)
vv = R(vi,vj) for i, j =

1, . . . , n.
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(a) Finite element mesh (b) Single realisation of the
input diffusion coefficient
random field

(c) Corresponding tempera-
ture (delta) distribution

Figure 5.9: 2D heat diffusion problem: illustration of the model input and output.

Table 5.5: 2D diffusion: optimal DRSM configurations for Kriging- and PCE-
based surrogate models

SM method KPCA kernel m̂ ŵ (Table 3.1) εLOO ε̂gen

ŵ1 ŵ2 ŵ3

Kriging Polynomial 20 131.3681 112.0040 1 0.0205 0.0216
PCE Polynomial 20 17.5225 15.1853 1 0.0340 0.0356

The underlying deterministic problem is solved with an in-house finite-
element analysis code developed in Matlab. The mesh shown in Figure 5.9a
consists of 16, 000 triangular T3 elements. Figure 5.9b shows a realisation
of the diffusion coefficient random field which corresponds to the input
of the model. The corresponding model output, shown in Figure 5.9c, is
the mean temperature in the highlighted square region B. Each realisation
of the diffusion coefficient random field is discretised over the mesh in
Figure 5.9a. In the following analysis, the system is treated as a black-
box, i.e. the discretised heat diffusion coefficient, obtained using Eq. (5.15)
with p = 20 terms, is treated as a high-dimensional input (M = 16, 000)
and the average temperature in square B as the scalar model output. A
single set of 500 experimental design samples and model responses is
available. This example mimics a realistic scenario in which various maps
of spatially varying parameters measured on a regular grid, are input to a
computational model that analyses some performance of the system.

As in the previous application examples, the goal of the first analysis
is to determine the optimal DRSM configuration in terms of the KPCA
kernel and the reduced space dimension, as well as test the effectiveness
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(a) Kriging - LOO error (b) PCE - LOO error

(c) Kriging - Validation error (d) PCE - Validation error

Figure 5.10: 2D heat diffusion problem: Error estimates of the DRSM surrogate
as a function of the reduced space dimension. Kernel PCA is used
with isotropic Gaussian and polynomial kernels.
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(a) Kriging (b) Polynomial chaos expansions

Figure 5.11: 2D heat diffusion problem: estimates of the generalisation error.

of the LOO error as a proxy of the validation error. In this analysis, the
available samples are randomly split into 300 pairs to be used during the
DRSM optimisation and 200 pairs to be used for validation. The results
are shown in Figure 5.10. Figures 5.10a and 5.10b show the LOO error
estimator of the final Kriging (resp. PCE) surrogate, evaluated on {X ,Y},
whereas Figures 5.10c and 5.10d show the validation error of the surrogate
evaluated on {Xv,Yv}. Each curve corresponds to a specific type of KPCA
kernel, namely isotropic Gaussian and polynomial (see Table 3.1), and a
specific surrogate, namely Kriging and PCE. We omitted the anisotropic
Gaussian kernel for KPCA which is intractable due to the large input
dimensionality.

A similar convergence behaviour is observed between Kriging- and PCE-
based DRSM. The corresponding optimal parameter values are highlighted
in Figure 5.10 and their numerical values are reported in Table 5.5. The
linear polynomial kernel performs best in both cases and leads to the same
reduced space dimension m̂ = 20. This significantly low dimension can be
interpreted by Eq. (5.15). The heat diffusion coefficient, although 16, 000-
dimensional, is a non-linear combination of p independent standard normal
random variables. Moreover, the LOO and validation error curves show
similar behaviour both in terms of their trend and their absolute value.
Hence, the LOO error served as a reliable proxy of the validation error, as
was observed in the previous application examples too.
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In the subsequent analysis we compare the performance of the DRSM
approach against other sequential approaches listed in Table 5.3. To test
each setup, we repeat the calculation process 10 times. In each case the 500
available samples are split randomly into 300 samples for calculating the
surrogate and 200 samples for validation. The optimal KPCA kernel that
was determined by DRSM is used in all methods that involve KPCA. Also,
for the sake of comparison, the same reduced space dimension m̂ = 20 is
assumed for all methods.

The results of this comparative study are given in Figure 5.11 using box plots
to provide summary statistics of the validation error over the different splits
of the samples. In case of Kriging surrogate modelling, DRSM consistently
provides superior results compared to the other methods. Notice that
KPCA with linear kernel is equivalent to PCA on a scaled version of the
experimental design with scaling factor

√
w1 (see Appendix A.1 for more

details). The Kriging surrogates, in contrast to the PCE ones, are affected
by this scaling. This also explains the performance improvement compared
to the case of PCA-based DR. In case of PCE surrogate modelling, the
performance improvement gained by DRSM is marginal compared to PCA
and KPCA with distance preservation- based tuning of w.

Overall, DRSM consistently provides more accurate or at least compara-
ble results compared to the other approaches. The main difference with a
standard UQ setting in which the thermal conductivity is supposed to be
sampled from a random field with known properties, is that the proposed
DRSM methodology is purely data-driven, i.e. it would be applied identi-
cally in a case when the input maps are given without knowledge about
the underlying random process.

Possible applications of this approach can be found in the field of hydroge-
ology. Nowadays, it is possible to sample complex permeability maps of the
underground based on higher-order statistics (i.e. not only mean value and
autocorrelation functions). The resulting maps, however, are obtained in a
sample-based format, and serve as an input of a Darcy-type groundwater
flow modelling code. The above mentioned machinery tested on the heat
transfer problem is readily available for such applications.
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5.5 conclusion

Surrogate modelling is a key ingredient of modern uncertainty quantifica-
tion. Due to the detrimental effects of high input dimensionality on most
surrogate modelling techniques, the input space needs to be compressed
to make such problems tractable. In this chapter a novel approach for ef-
fectively combining dimensionality reduction with surrogate modelling,
called DRSM, was proposed. DRSM consists of three steps: (i) the DR and
SM parameters are calculated by solving a nested optimisation problem,
where only low-accuracy surrogates are considered to reduce the associated
computational cost, (ii) the optimal configuration parameters, including
the dimension of the reduced space, are estimated based on the surrogate
model performance, and, (iii) a final high-accuracy surrogate is calculated
using the optimal values of all the aforementioned parameters.

The performance of DRSM was compared on three different benchmark
problems of varying complexity against the classical approach of tuning the
dimensionality reduction and surrogate modelling parameters sequentially.
DRSM consistently showed superior performance compared to the others
in all the benchmark applications.

The novelty of the proposed methodology lies in its non-intrusive way of
combining dimensionality reduction and surrogate modelling. This allows
for the combination of various techniques without the need of tweaking
the dedicated optimisation algorithms on which each of them capitalises.
A practical implication of the non-intrusiveness of DRSM is that off-the-
shelf surrogate modelling methods (or even software) with sophisticated
calibration algorithms can be directly used within this framework.

The focus was given to data-driven scenarios where only a limited set of
observations and model responses is available. We demonstrated that the
leave-one-out cross-validation error of the surrogate models can serve as
a reliable proxy for estimating the generalisation error in order to tune
the DR parameters, but also to assess the overall accuracy of the resulting
surrogate.

In application-driven scenarios, when the goal is to obtain a surrogate
with optimal performance (regardless of its type) for a specific problem,
the proposed approach can be extended by including the surrogate type
itself as one of the DRSM optimisation parameters in Eq. (5.5). However,
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special care is needed for the choice of the error metric used during the
DRSM optimisation in this case, because the cross-validation-based error
estimations by different surrogates may have different levels of bias (see e.g.
Tibshirani and Tibshirani, 2009).



6
U N C E RTA I N T Y P R O PA G AT I O N I N H I G H - D I M E N S I O N A L
S Y S T E M S

6.1 introduction

Uncertainty propagation stands for the quantification of the uncertainty
in the response of a system, modelled by a function M : RM → R, due
to the uncertainty in its input parameters. The uncertainties in the input
parameters are modelled by a random input vector X, with probability
density function fX. Consequently, the response of the system Y =M (X)
is also a random variable.

Uncertainty propagation ideally refers to the characterisation of the full
probabilistic content of Y, i.e. the exact knowledge of its PDF fY. However,
it is typically not possible to get the analytic formulation of fY in practice.
Instead, various methods exist to get the approximate statistics of Y that can
be broadly classified into three categories (Sudret, 2007): (i) second moment
methods that deal with computing the mean and variance of the model
response (or even higher order moments), (ii) structural reliability methods
that try to determine the probability of extreme events by investigating
the tails of the response PDF (Ditlevsen and Madsen, 1996; Melchers, 1999;
Lemaire, 2009), and, (iii) methods that approximate the entire fY. Monte
Carlo simulation is arguably the most well-known approach to achieve this.
Alternative methods include spectral methods, that represent the complete
response in an intrinsic way by using suitable tools of functional analysis
(see polynomial chaos expansions in Section 4.3), or surrogate model-based
methods.

The focus in this chapter is the approximation of the response PDF fY
by Monte Carlo simulation. There are multiple challenges involved in
applying even this fundamental technique in high-dimensional data-driven
contexts. The accurate approximation of the output distribution may require
several thousands or even millions of model evaluations, depending on

95



96 6 uncertainty propagation in high-dimensional systems

the accuracy required. However, in data-driven applications neither the
computational model of the system, nor a probabilistic model of its inputs
are available, but rather only a limited set of realisations of the input
parameters (experimental design) and the corresponding model responses.
This is a challenging scenario, especially when high input dimensionality is
considered.

When the joint probability distribution of the input variables is unknown, as
in data-driven applications, it is traditionally estimated by fitting complex
probabilistic models. Although there are well-established approaches for
fitting distributions to existing data, this task becomes non-trivial when
the number of input variables is large (i.e. O

(
102 − 104)). In addition,

the number of unknown distribution parameters can be too large to be
inferred from the limited amount of samples in the available data set (under-
determined problem). Even in the case that an adequate probabilistic input
model is available, obtaining the corresponding model responses can pose
a major challenge given that the true model is either not available or is
computationally too expensive to be used to directly perform Monte Carlo
simulation.

Efforts in high-dimensional uncertainty propagation are scarce, but this
research topic becomes increasingly popular in recent years. When ordered
inputs are considered, a somewhat richer literature is available. A typical
workflow involves the use of global sensitivity analysis methods to select
the subset of the input variables that mainly drive the output uncertainty
(Iooss and Lemaître, 2015a). However, those methods typically suffer from
the curse of dimensionality and it becomes challenging to apply them in
O
(
102)-dimensional spaces (see e.g. Sheikholeslami et al., 2019). For sparse

problems, spectral techniques have been used for sensitivity and reliabil-
ity analysis in O

(
102) dimensions using adaptive schemes to construct a

sparse basis (Blatman and Sudret, 2011; Konakli et al., 2016; Deman et al.,
2016; Zhang et al., 2017). For structured inputs, Soize and Ghanem (2017)
propose a workflow for enabling polynomial chaos expansions-based un-
certainty propagation in high dimensions using diffusion maps. Tripathy
et al. (2016) propose a Gaussian process formulation with a built-in input
compression scheme using active subspaces. The focus of that work was
the surrogate model construction; standard Monte Carlo was then used for
uncertainty propagation. Finally, within the context of deep-learning, Abde-
laziz et al. (2015) propose approximation schemes that enable Monte Carlo-
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based uncertainty propagation in deep neural networks while assuming
Gaussian-distributed inputs, with focus on automated speech recognition
applications.

In this chapter, we propose a novel method for high-dimensional uncertainty
propagation by Monte Carlo simulation in data-driven contexts, capable
to deal with both structured and unstructured inputs. The methodology
capitalises on the DRSM algorithm introduced in Chapter 5. Using DRSM,
the input space is compressed into a dimensionality that makes the inference
of its probabilistic representation feasible. The general framework for data-
driven uncertainty quantification proposed by Torre et al. (2018) is adopted,
in order to deal with dependency structures in the reduced input space
(potentially highly complex) using vine copula inference. This technique
enables the generation of an arbitrary number of artificial input samples that
accurately mimic the statistics of the experimental design. This approach
is available even in the absence of a computational model, because DRSM
also provides an optimal surrogate that operates in the compressed space.
Having access to a surrogate model and due to its low computational cost,
an arbitrarily large number of artificial output samples can be generated.
The novelty of this methodology is twofold: (i) a novel input compression
scheme is utilised, and, (ii) a novel technique for data-driven uncertainty
quantification using vine copulas is adopted.

This chapter is structured as follows. In Section 6.2 an overview of the
proposed methodology is given first, followed by a detailed description
of each of its ingredients in Sections 6.2.1 to 6.2.4. Finally, in Section 6.3
the performance of this methodology is evaluated on several benchmark
applications of increasing complexity.

6.2 overview of the proposed methodology

Consider the experimental design S = {X ,Y} that consists of the ob-
servations of the unknown, high dimensional input random vector X ={

x(i) ∈ X ⊆ RM , i = 1, . . . , N
}

and the corresponding, scalar, model re-

sponses Y =
{
M
(

x(1)
)

, . . . ,M
(

x(N)
)}

. We consider the case that it is
the only available information about the phenomenon under investigation.
Moreover, the dimensionality of the input space is high, i.e. M ∼ 102−4.
The goal is to the estimate statistics of the response variable Y = M(X)
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1

3

4

2

Figure 6.1: Overview of the proposed methodology for high-dimensional uncer-
tainty propagation by reduced dimension resampling (RDR).

solely based on the available samples. Those statistics may include the full
response PDF fY as well as summary statistics (moments and quantiles).
We propose a methodology, called reduced dimension resampling (RDR) that
consists in the four steps shown in Figure 6.1:

1. Application of the DRSM algorithm to the dataset S : (i) the input
space X is compressed in the reduced space Z, and, (ii) a surrogate
model that operates in the compressed input space is calibrated

2. The joint PDF f̂Z of the reduced input vector Z is estimated based on
the compressed experimental design

3. A large number of artificial samples Z ′ from ∼ f̂Z(z) is generated

4. The statistics of Y are inferred from the samples Y ′ = M̂ (Z ′)

Each step is discussed in more detail in Sections 6.2.1 to 6.2.4, respec-
tively.

6.2.1 Joint input compression and surrogate modelling

Recall that the DRSM algorithm, introduced in Section 5.3, refers to the
solution of the optimisation problem:
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{
ŵ, θ̂

}
= arg min

w∈Dw,θ∈Dθ
`
(
M(·),M̂ (g(·; w),θ)

)
, (6.1)

where w denotes the parameters of the dimensionality reduction transfor-
mation g : X → Z, θ the parameters of the surrogate M̂ and `(·) the loss
function that quantifies the generalisation performance of the resulting
surrogate.

After solving the optimisation problem in Eq. (6.1), both the input com-

pression scheme g (·; ŵ) and the surrogate M̂
(
·; θ̂
)

are available. For more
details on the associated computational challenges and solution strategies,
please see Section 5.3.

6.2.2 Probabilistic input model inference in the compressed space

After performing DRSM, a compressed experimental design is available,
Z = g (X ; ŵ) as well as the transform g(·). Provided that the dimension m
of the reduced space is sufficiently small, it is likely tractable to estimate
fZ from a computational perspective. Although computationally tractable,
such input model can be quite complex. Based on some elementary concepts
from probability theory, notice that:

fZ(z) =
∂

∂z1
. . .

∂

∂zm
FZ(z) (6.2)

=
∂

∂z1
. . .

∂

∂zm

∫

{x∈DX|g(x)≤z}
fX(x)dz . (6.3)

Based on Eq. (6.3), even for a simple fX, the expression of fZ can be signifi-
cantly different (and complex) when a non-linear dimensionality reduction
g(·) is used.

As discussed in Section 2.3.3, by virtue of Sklar’s theorem any joint PDF can
be expressed as a combination of its marginal distributions and a suitable
copula that encapsulates the covariance structure:

fZ(z; ζ) = c
(

FZ1(z1), . . . , FZm(zm); ζ
) m

∏
i=1

fZi (zi), (6.4)
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where c(·) denotes the copula density, FZi (resp. fZi ) the marginal CDF
(resp. PDF) of the i-th component of Z and ζ the copula parameters. Hence,
the approximation f̂Z(z) of fZ(z) can be obtained by solving two separate
inference problems, one for the marginal distributions and one for the
copula. Various techniques can be used to estimate the marginal CDF’s
FZi . In this work, we use a non-parametric technique called kernel density
estimation, described in more detail in Section 2.4.1.

Although a copula c(·) exists that satisfies Eq. (6.4), it is typically unknown
in practice. In addition, when the dimension of Z (m) grows, it becomes
increasingly difficult to describe pair-wise and higher-order dependencies
(Torre et al., 2018). The work in Bedford et al. (2002); Torre et al. (2018)
is adopted here to tackle this problem, that is based on specific copula
constructions named vine copulas. Vine copulas describe the multivariate
dependency in a random vector via products of simpler 2-copulas, i.e.
copulas that describe the dependency between two conditional random
variables. One challenge in this approach is that there is a significant number
of possible pair-copula constructions. For example Aas et al. (2009) show
that there are 240 different constructions for a five-dimensional density.
Bedford et al. (2002) introduced the concept of regular vines that refer to
an organised construction using a graphical model. In this work, we adopt
one particular class of such a construction called canonical or C-vines, due
to its flexibility and to the availability of data-driven inference strategies. A
C-vine copula density is expressed as:

c(u) =
M−1

∏
j=1

M−j

∏
i=1

cj,j+i|{1, ... ,j−1}
(

uj|{1, ... ,j−1}, uj+i|{1, ... ,j−1}
)

, (6.5)

where ui = FZi (zi) and ui|A = FZi |ZA(zi|zA) with A a general subset
A ⊂ {1, . . . , m}. For example, the C-vine density for a 4-dimensional
random vector reads:

c(u) = c1,2 c1,3 c1,4 c2,3|1 c2,4|1 c3,4|1,2. (6.6)

A shorthand notation is used in Eq. (6.6) with ci,j|A corresponding to

ci,j|A
(

ui|A, uj|A
)

. In this work, the pair copulas that are used to construct
the C-vines and their associated parameters are listed in Table 6.1.
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Name C(u, v; ζ) Parameter range

Independence uv
Clayton (u−ζ + v−ζ − 1)−1/ζ ζ > 0

Frank −1
ζ

log
(

1− e−ζ − (1− e−ζu)(1− e−ζv)

1− e−ζ

)
ζ ∈ R\{0}

Gaussian Φ2;ζ

(
Φ−1(u), Φ−1(v)

)
(a) ζ ∈ (−1, 1)

Gumbel exp
(
−((− log u)ζ + (− log v)ζ)1/ζ

)
ζ ∈ [1,+ inf)

t- t2;ν,ζ

(
t−1
ν (u), t−1

ν (v)
)

(b) ν > 1, ζ ∈ (−1, 1)

Table 6.1: Pair copulas considered in this work.

Fitting the C-vine entails three steps: (i) selecting the order of the ui compo-
nents in Eq. (6.5), (ii) selecting the parametric family for each pair copula,
and, (iii) calculating the copula parameters ζ. Based on Torre et al. (2018),
the algorithm by Aas et al. (2009) is used to solve step (i) first, which uses
a heuristic approach to order Zi in such a way that pairs

(
Zi, Zj

)
with

the strongest dependence are captured first. Then steps (ii) and (iii) are
solved together by an iterative procedure. The pair copulas and their pa-
rameters are picked in such a way that the likelihood is maximised (see
Section 2.4.2 for more details). Due to the complexity of the subject, a more
detailed discussion about the strategies employed to identify the proper
copula structure, as well as the specific numerical techniques to enable it
are outside the scope of this work. For more details, the reader is referred
to Aas et al. (2009); Torre et al. (2018). The numerical computations were
performed within the UQLab framework, through the upcoming Statistical
Inference toolbox (Torre et al., 2019).

6.2.3 Generation of artificial input samples

The goal of this step is to generate a sufficiently large number of Z samples
based on the joint distribution f̂Z(z) inferred in the previous step. Various
routines are available nowadays for generating random samples from the
independent unit hypercube, i.e. U ∼ U

(
[0, 1]m

)
. Such samples can be

transformed in such a way that they follow other joint distributions using
isoprobabilistic transformations (Lebrun and Dutfoy, 2009).
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Consider first the special case of Z having independent components. Having
access to the marginal distributions FZ1 , . . . , FZm (and their inverses) from
the previous step, then the isoprobabilistic transform is carried out simply
by:

Z =
{

F−1
Z1

(U1), . . . , F−1
Zm

(Um)
}

. (6.7)

A general approach for generating samples in the presence of dependence
is the inverse Rosenblatt transform (Rosenblatt, 1952). Starting again from
the uniformly distributed random vector U , the components of Z can be
calculated as follows:

Z1 = U1 (6.8)

Z2 = F−1
2|1 (U2|Z1) (6.9)

Z3 = F−1
3|1,2 (U3|Z1, Z2) (6.10)

. . . = . . .

Zm = F−1
m|1,, ... ,m−1 (Um|Z1, . . . , Zm−1) (6.11)

where F−1
m|1,, ... ,m−1 (Um|Z1, . . . , Zm−1) is the cumulative distribution of the

random variable Um|Z1, . . . , Zm−1. Although it may be challenging to cal-
culate the conditional CDFs in the general case, Aas et al. (2009) provide an
algorithm to compute the Rosenblatt transform and its inverse when the
joint CDF of Z is described by a C-vine copula. In fact, C-vines provide an
ideal framework for Rosenblatt transform because they allow the calculation
of the conditional CDF’s analytically.

6.2.4 Estimation of the output statistics

Starting from the artificial samples in the reduced space Z ′ that were gen-
erated in the previous step, and using the surrogate that was obtained after
the application of the DRSM algorithm in the first step, the corresponding

model responses are calculated as Y ′ = M̂
(
Z ′; θ̂

)
.

Using Y ′ we estimate the full response PDF, as well as its (empirical)
mean, variance and quantiles. The underlying theory for such estimators is
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standard in statistics textbooks, but a summary is given in Appendix A.3
for completeness.

6.3 application examples

To evaluate the performance of the proposed methodology for high di-
mensional uncertainty propagation problems, we revisit the benchmark
applications from the previous chapter: (i) the Sobol’ function, a commonly
used benchmark function in the uncertainty quantification community, (ii)
a realistic electrical engineering model with 80 unstructured inputs and,
(iii) a heat diffusion model with 16, 000 structured inputs.

In each case, the first step of applying DRSM (briefly recalled in Sec-
tion 6.2.1) was already addressed in the previous chapter. The best per-
forming surrogate (Kriging or polynomial chaos expansion) is used along
with the optimal input compression parameters for kernel PCA. The subse-
quent steps are followed as described in Sections 6.2.2 to 6.2.4. We consider
that the only available information about each system is a limited set S
with O

(
102) samples. For benchmarking purposes, in each case an addi-

tional validation set of samples with size O
(
105−7) is available, denoted

by {Xv,Yv}. The validation set is considered sufficiently large to allow
for the accurate estimation of the reference statistics of Y for validation
purposes. To improve the readability of our findings, some detailed plots
are omitted from the sections that follow and are shown in Appendix C.2
instead.

The implementation of the proposed approach took place in Matlab and
capitalised on various modules of the UQLab software framework (Marelli
and Sudret, 2014). In particular, the estimation of the probabilistic input
model and the generation of additional artificial samples were based on the
input and inference module (Lataniotis et al., 2019; Torre et al., 2019), while
the surrogate models (polynomial chaos expansions and Kriging) were
deployed using the corresponding UQLab modules (Marelli and Sudret,
2018; Lataniotis et al., 2018).

6.3.1 Sobol’ function

Recall the definition of Sobol’ function from Eq. (5.8):
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Y =
M

∏
i=1

|4Xi − 2|+ ci
1 + ci

, (6.12)

where the input random variable lies in the 20-dimensional unit hypercube,

i.e. X ∼ U
(
[0, 1]M

)
with M = 20 and the values of the constants c =

{c1, . . . , cM}> are given in Eq. (5.9).

To showcase the performance of the proposed methodology, we estimate
the statistics of Y using only a limited number of samples of {X ,Y} and
without assuming any prior knowledge about the model, using the four
step approach described in Section 6.2. Starting from the DRSM analy-
sis performed in Section 5.4.2, we adopt the top performing setup from
Table 5.2 for the subsequent calculations. This setup corresponds to com-
pressing the input space from M = 20 to m = 6 dimensions using kernel
PCA with an anisotropic Gaussian kernel and using a polynomial chaos
expansions-based surrogate.

By capitalising on our findings in Figure 5.4, uniform distributions are
used to model the marginals fZi , i = 1, . . . , m. As a reminder, it was
observed that each Zi , i = 1, . . . , m strongly correlates with a specific
Xi , i = 1, . . . , 6 which is uniformly distributed. A Gaussian copula is used
to model the near-negligible dependencies in Z, for simplicity. After fitting
the input model, 107 artificial samples Z ′ are generated and fed to the PCE
surrogate to obtain the corresponding responses Ŷ ′. Those responses will be
used to estimate various statistics of Y. The entire workflow is repeated for
different sizes of the experimental design: N ∈ {100, 200, 400, 800}. For the
sake of comparison, reference values of the output statistics are calculated
using a validation set {Xv,Yv} with 107 samples that are generated using
the true input and computational model.

The goal of the first analysis is to benchmark the proposed methodology
in terms of the approximation quality of the output PDF, fY. The findings
are summarised in Figure 6.2. Figures 6.2a and 6.2b show a graphical com-
parison between the reference PDF and the one estimated by the proposed
approach using an experimental design of varied size, in linear and loga-
rithmic scale, respectively. In all cases, the PDFs are estimated using the
kernel density estimation method on the Yv samples for the validation
set and on Y ′ for the approximate ones. The kernel-density-based esti-
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(a) Vertical axis in linear scale

(b) Vertical axis in logarithmic scale

Figure 6.2: Sobol function: comparison between the response PDF approxima-
tions using either true or artificial samples.

mates are obtained using a Gaussian kernel and the optimal bandwidth
proposed by Silverman (2018). Finally, Figures 6.2a and 6.2b show the his-
togram that corresponds to the responses of the largest experimental design
(N = 800).

The improvement in the PDF approximation by RDR when using N = 800
compared to using N = 100 samples, appears to be significant. Considering
the former case, the lower tail of the distribution has been captured in
a satisfactory degree in contrast to the upper tail region, where some
deviation is observed. This discrepancy can be attributed to three factors: (i)
the lossy compression from M to m dimensions, (ii) the approximate nature
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Figure 6.3: Sobol function: Jensen-Shannon divergence of fY estimates w.r.t. the
validation samples.

of the surrogate model, and, (iii) the approximation error in the inference
of fZ.

An additional quantitative evaluation of the fY estimates by RDR is shown
in Figure 6.3. The approximate Jensen-Shannon (JS) divergence (Lin, 1991)
is used to measure the difference between various PDF estimates and
the reference one (see Appendix A.2 for more details). It is based on the
Kullback-Leibler divergence with some notable differences, including that
it always has a finite value and it is symmetric. The JS divergence values
are non-trivial to interpret in an absolute sense but allow one to make com-
parisons between different estimates of the reference distribution.

The different curves in Figure 6.3 correspond to the JS divergence value
that is obtained by estimating fY in one of the following ways: (i) by using
directly the available samples Y with varying sample size (blue curve), (ii)
by using the samples Y ′ that are generated using the proposed approach
trained on the experimental design of varying size (orange curve), and, (iii)
by using the samples M̂(g(Xv; ŵ); θ̂), i.e. using the validation set instead
of re-sampling (green curve).

At a first glance, the proposed approach improves the estimates of fY
compared to simply using the experimental design. This improvement
becomes more significant as the number of available samples increases.
Notice that the distance of the green curve from the origin is due to the
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(a) Mean (b) Variance

Figure 6.4: Sobol’ function: estimates of the output mean and variance.

input compression and the surrogate model error, i.e. due to the discrepancy
betweenM(Xv) and M̂(g(Xv; ŵ); θ̂). Hence, the vertical distance between
the orange and green curve is related to the probabilistic input model
approximation error.

Subsequently, the proposed methodology is evaluated in terms of calculat-
ing various summary statistics of Y. In Figure 6.4 the mean (Figure 6.4a)
and variance (Figure 6.4b) estimates are compared to their reference values
inferred from the validation set, using an experimental design of varying
size. In each panel, along with the reference value of the respective moment
(red curve), the following moment estimates are plotted: (ii) the one ob-
tained by M̂(g(Xv; ŵ); θ̂) (green curve), (ii) the experimental-design-based
estimate (blue curve), (iii) a shaded area indicating the 95% confidence
interval on the experimental-design-based estimates based on Eq. (A.17),
and (iv) and estimates obtained by Y ′ that is generated using the proposed
methodology. Overall, using either Y , or Y ′ gives comparable results, both
in the mean and variance calculations. The resampling scheme seems to
be typically introducing additional error, that may be minimal (variance,
N = 400), with one exception (mean, N = 400) where it reduces the error
introduced by the input compression and the surrogate.

The evaluation of the summary statistics is further expanded to the empir-
ical quantiles in Figure 6.5. Using either Y or Y ′, the values of Q̂(α) are
compared against the reference Q(α) for α ∈ [1/ (Nv + 1) , Nv/ (Nv + 1)]
sampled over a regular grid with 100 points, where Nv corresponds to
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(a) N = 100 (b) N = 800

Figure 6.5: Sobol’ function: quantile estimates comparison.

the number of samples in the validation set. The results corresponding to
N = 100 (resp. N = 800) are shown in Figure 6.5a (resp. Figure 6.5b). The
quantiles evaluated from Y appear to fluctuate around the reference values
and show a significant deviation in the upper tail region. Both issues can be
attributed to the limited number of samples. Using the artificial Y ′ samples
results in a smoother curve with comparable error for the most part, but
significant improvement is observed in both tails for both cases of N = 100
and N = 800. Overall, using Y ′ appears to enrich the limited samples in Y
in such a way that the information about the statistics of Y is preserved or
improved, especially in the extreme quantile regions.

6.3.2 Electrical resistor network

The model of an electrical resistor network, described in Section 5.4.3, is
considered next. The input X is an 80-dimensional random vector related
to the ohmage of the network resistors and the output corresponds to the
voltage at a specific location. In this example, fitting an 80-dimensional
probabilistic input model is challenging, especially when dependencies
need to be properly taken into account.

As in the previous section, the proposed RDR approach is showcased
for varying size of the experimental design N ∈ {100, 200, 400, 800}. An
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(a) Vertical axis in linear scale

(b) Vertical axis in logarithmic scale

Figure 6.6: Resistor networks: comparison between the output PDF approxima-
tions using either true or artificial samples.

available validation set {Xv, Yv} with 105 samples is used to determine
the reference values of the output statistics. The input compression and
surrogate model parameters are adopted from the top performing setup
given in Table 5.4, namely kernel-PCA- based dimensionality reduction
with m = 32 and an anisotropic Gaussian kernel, and a polynomial-chaos-
expansion- based surrogate.

The goal of the first analysis is to evaluate the output PDF estimate that
is obtained by RDR. Figures 6.6a and 6.6b show a graphical comparison
between the reference PDF from Yv and the one estimated from the artificial
output samples Y ′, using either a linear or logarithmic scale on the vertical
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Figure 6.7: Resistor networks: Jensen-Shannon divergence of fY estimates w.r.t.
the validation samples.

axis. Kernel density estimation with a Gaussian kernel is used in all cases to
visualise the output PDF. A histogram of the given samples Y is also shown,
considering the case N = 800. At a first glance, a significant improvement
in f̂Y is observed when more samples are available, as expected. When
N = 800, the lower tail of the distribution is captured accurately, but a
non-negligible discrepancy between f̂Y and fY is observed for Y values
approximately larger than 90 (volts).

In Figure 6.7 the overall fit of the output PDF is evaluated by means of
the Jensen-Shannon divergence JS( f̂Y|| fY) which is approximated using
either the given samples Y (blue curve), the artificial samples Y ′ (orange
curve), or M̂(g(Xv; ŵ); θ̂), that use directly the validation set Xv bypassing
the input model fitting and resampling steps (green curve). The overall fit
using the proposed methodology improves by approximately one order of
magnitude for all experimental design sizes compared to the one obtained
by directly using the experimental design. Having perfect knowledge about
the fZ shows the potential of further improving f̂Y by about two additional
orders of magnitude in terms of the JS divergence.

An in the previous application example, we proceed to evaluate the accuracy
of various summary statistics estimates. Figure 6.8 shows the sample-based
mean (Figure 6.8a) and variance (Figure 6.8b) convergence for varying
sample size. The reference values (red curve) are obtained by processing
Yv. Using M̂(g(Xv; ŵ); θ̂) (green curve), achieves highly accurate results
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(a) Mean (b) Variance

Figure 6.8: Resistor networks: estimates of the output mean and variance.

implying the error introduced by the input compression and surrogate mod-
elling is relatively small. As expected, additional error is introduced when
artificially generated samples are used instead (orange curve). However,
there seems to be no benefit (or loss) using those samples instead of the
given ones Y (blue curve) since both give comparable results.

(a) N = 100 (b) N = 800

Figure 6.9: Resistor networks: quantile estimates comparison.

The summary statistics evaluation continues in Figure 6.9 where we com-
pare the empirical quantiles from Y and Y ′ to the reference ones from
Yv. In particular, the values of Q̂(α) are compared against the reference
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Q(α) for α ∈ [1/ (Nv + 1) , Nv/ (Nv + 1)] sampled over a regular grid with
100 points. In Figure 6.9a (resp. Figure 6.9b) we use an experimental de-
sign of size N = 100 (resp. N = 800). Having access to more samples
clearly improves our knowledge about the quantiles of Y especially in the
tails, provided that the an adequate coverage of the input space has been
achieved by the sampler. The proposed methodology achieves smoother but
comparably accurate results when the sample size is too small. However,
as the experimental design size increases, using Y ′ provides an overall
improvement on the quantile estimates, especially in the extreme Y values
compared to using Y .

6.3.3 2D diffusion

The last application consists of the 2-dimensional stationary heat diffusion
model that is described in Section 5.4.4. From a black-box perspective, the
input corresponds to a 16, 000-dimensional random vector that contains the
values of the heat diffusion coefficient over different positions on the plate,
and the output corresponds to the mean temperature over a region of the
plate. As a reminder, the high dimensional input is obtained by discretising
the lognormal random field in Eq. (5.14) which describes the heat diffusion
coefficient value at any point on the plate.

High-dimensional uncertainty propagation is performed using the proposed
RDR methodology that results in the generation of 106 Y ′ samples that will
be used to estimate various statistics of Y. The top performing setup from
Table 5.5 is used, i.e. the compressed input space has dimension m = 20
and is calculated using kernel PCA with a polynomial kernel, while the
surrogate model of choice is Kriging. This process is repeated for varying
size of the {X ,Y} samples N ∈ {100, 200, 400, 800}. The reference values of
the Y statistics are inferred from a validation set with size Nv = 105.

As in the previous examples, the goal of the first analysis is to evaluate
the quality of the PDF estimator f̂Y that is obtained from Y ′ against the
reference PDF from the validation set. The results are shown in Figure 6.10.
In Figure 6.10a (resp. Figure 6.10b) a graphical comparison is made between
the reference PDF from Yv and its approximation by RDR for varying size
of the experimental design using a linear (resp. logarithmic) scale on the
vertical axis. In addition, the histogram of Y is shown from the sample
of size N = 800, i.e. the largest one that was used. The PDF curves were
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(a) Vertical axis in linear scale

(b) Vertical axis in logarithmic scale

Figure 6.10: 2D heat diffusion: comparison between the output PDF approxima-
tions using either true or artificial samples.

calculated using kernel density estimation with a Gaussian kernel on the
respective sample sets. At a first glance, already from N = 100 (which is a
significantly small size for this problem) the PDF approximation is close to
the reference, with further improvement when N = 800.

This comparison is quantified in Figure 6.11 by means of the Jensen-Shannon
divergence JS( f̂Y|| fY) which is approximated using either the given samples
Y (blue curve), the artificial samples Y ′ (orange curve), or M̂(g(Xv; ŵ); θ̂)
that use directly the validation set Xv and bypass the input model fitting and
resampling steps (green curve). Overall, using Y ′ results in a JS divergence
of approximately one order of magnitude smaller compared to using Y .
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Figure 6.11: 2D heat diffusion: Jensen-Shannon divergence of fY estimates w.r.t.
the validation samples.

(a) Mean (b) Variance

Figure 6.12: 2D heat diffusion: estimates of the output mean and variance.

Interestingly, the samples generated via the approximate probabilistic model
f̂Z result in an improvement on the Y PDF fit compared to M̂(g(Xv; ŵ); θ̂).
In other words, the probabilistic model fitting reduces the error instead of
accumulating it on top of the input compression and surrogate modelling
error. To understand why this happens, notice that the surrogate model
is expected to perform well only within the boundaries of Z = g(X ; ŵ).
Using the validation set, some samples of Zv = g(Xv; ŵ) are likely to fall
outside those boundaries, possibly leading to poor estimates of the output
value. This also explains the fact that the discrepancy between the orange
and green curve diminishes as N increases.
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(a) N = 200 (b) N = 800

Figure 6.13: 2D heat diffusion: quantile estimates comparison.

In the second analysis, the proposed methodology is evaluated in terms
of the quality of its mean and variance estimates. In Figure 6.4 the mean
(Figure 6.4a) and variance (Figure 6.4b) estimates are compared to their
reference values inferred from the validation set, using an experimental
design of varying size. In each panel, along with the reference value of the
respective moment (red curve), the following moment estimates are plotted:
(ii) the one obtained by M̂(g(Xv; ŵ); θ̂) (green curve), (ii) the experimental-
design-based estimate (blue curve), (iii) a shaded area indicating the 95%
confidence interval on the experimental-design-based estimates based on
Eq. (A.17), and (iv) the estimates obtained by Y ′ that is generated using
the proposed methodology. Regarding the mean, using Y ′ results to almost
identical values to the ones obtained by Y . The same cannot be said for the
variance estimates. Resampling introduces a larger error in the latter case
making the sample-based variance of Y ′ to deviate more significantly from
the reference value.

Finally, we evaluate the empirical quantiles that are obtained using the pro-
posed approach in Figure 6.13. Using either Y or Y ′, the values of Q̂(α) are
compared against the reference Q(α) for α ∈ [1/ (Nv + 1) , Nv/ (Nv + 1)]
sampled over a regular grid with 100 points. The results corresponding to
N = 200 (resp. N = 800) are shown in Figure 6.13a (resp. Figure 6.13b).
Overall, Y ′ provides an improvement on the accuracy of the empirical quan-
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tiles, sometimes more significant (see the entire curve when N = 200 and
the lower tail when N = 800) than others (higher tail when N = 800).

6.4 conclusion

Data-driven uncertainty propagation is an emerging research field, espe-
cially when a high-dimensional input space is considered. On the one hand,
“data-driven” refers to the limited knowledge about: (i) the equations that
drive an engineering system, and, (ii) the uncertainty of its input param-
eters. One often only has access to samples of the input parameters and
the corresponding model responses. On the other hand, the large number
of input parameters renders various state-of-the-art techniques in modern
uncertainty quantification non-applicable. This applies to the calculation of
surrogate and of probabilistic input models, both suffering from the curse
of dimensionality. In this chapter, we propose a workflow to overcome those
challenges by capitalising on the optimal input compression and surrogate
modelling scheme, DRSM, that was introduced in Chapter 5.

It was shown how one of the fundamental uncertainty propagation tech-
niques, Monte Carlo simulation, can be enabled on such challenging prob-
lems. Having access to a compressed representation of the input space
of manageable size, we used well-established techniques for resampling
from that input space. Either due to the nature of the problem or the non-
linearity of dimensionality reduction, the joint probability distribution of
the reduced input space may be quite complex. To that end, we adopted
the copula formalism to model the dependency structure of the inputs, and
in particular canonical vine copulas, because they allow for data-driven,
computationally efficient and scalable inference of their parameters.

The performance of the proposed methodology was evaluated on three
different benchmark problems of varying complexity. We demonstrated that
our knowledge about the output uncertainty improves when this method is
used compared to the one that is extracted from the experimental design.
This applies to the estimation of the overall shape of the output PDF as well
as its empirical quantiles. Furthermore, this improvement was observed
consistently in all the application examples and it was especially notable in
the extreme value regions.
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It is noteworthy to mention that this workflow can be modified to ac-
commodate other uncertainty propagation techniques. Having access to a
compressed input space of relatively small size, its probabilistic representa-
tion and a surrogate model, the problem becomes well-defined within the
the classical UQ framework.





7
E N G I N E E R I N G A P P L I C AT I O N : S T R U C T U R A L H E A LT H
M O N I T O R I N G O F A W I N D T U R B I N E S Y S T E M

7.1 introduction

Dealing with high-dimensional models is often the case nowadays in the
engineering practice. It is particularly common in structural health moni-
toring (SHM), where long series of sensor readings need to be processed
to asses the health state of a complex system in different time instances
(present or future). In this chapter, we are considering the problem of SHM
of wind turbines.

Sustainable means of energy production are becoming increasingly relevant
to offset the environmental impact of traditional means of energy produc-
tion. For example, the European Union (EU) has published a renewable
energy roadmap, according to which a mandatory target is set of 34%
renewable energy share by 2020, with wind energy supplying up to 14%
and the rest 20% provided by other sources such as hydro, biomass and
solar energy (Wilkes et al., 2011). Based on the response of the wind energy
industry, four years later the Energy Roadmap 2050 predicted that wind
energy could supply between 31.6% and 48.7% of Europe’s electricity (Eu-
ropean, commission, 2011). Wind turbines have been significantly refined in
terms of materials and the design of various sub-systems, but their lifecycle
management is still at its infancy based on the short life span of various
components and the lack of efficient operation and maintenance schemes.
The cost of the latter may in fact account for up to 25-30% of the total cost
per KWh over the lifetime of a wind turbine, or 75-90% of the investment
costs (Vachon, 2002).

Devising operation and maintenance strategies for wind turbine facilities
is in fact highly challenging. First, a wind turbine is subjected to diverse
operational loads. In addition, there is an inherent complexity to the system
itself, because it consists of several structural and mechanical components.

119
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These components are exposed to intensive load combinations such as wind
gusts, turbulence, sea waves and corrosive environments. Such diverse
loading may lead to various failure modes, e.g. due to structural damage,
collapse from turbine overspeed, resonances, or severe localised vibrations.
Consequently, such costly structures are designed to perform for a relatively
short lifespan of approximately 20− 25 years, as a compromise between
reliability and construction costs.

Applying modern SHM methodologies can provide significant benefits in
terms of safety, down-time and maintenance costs of wind turbines. From
this broad topic, the focus in this chapter is given on the development
of novel algorithms, primarily for data-driven estimation of the fatigue
accumulation and peak load in various system components. The importance
of such algorithms is paramount, since they can enable the prediction of the
residual fatigue lifetime of the components and their reliability. Considering
an operational wind turbine, having access to such information, would allow
the operators to minimise the down-time of the system and reduce the
frequency of sudden breakdowns, as well as the associated maintenance
and logistic costs (Agbayani, 2010; Grasse et al., 2011).

In an effort to mimic such a scenario, we first generate a set of realistic
inflow wind measurements. For each of those we compute the correspond-
ing indicators related the fatigue accumulation and peak loads on selected
components of a wind turbine using specialised simulation software. Hav-
ing access to a limited amount of such data, we showcase how the tools
introduced in the previous chapters can be deployed to tackle two funda-
mental challenges: (i) estimating the fatigue accumulation and peak loads
when the system is subjected to a new wind climate, and, (ii) quantifying
the uncertainty of such loads, which is the key-ingredient to estimate the
reliability of those components, i.e. how likely they are to fail in various
future time instances.

The chapter is structured as follows. In Section 7.2 we describe the system
under consideration and the methods and tools that we used to generate
a realistic dataset. The first challenge of devising fatigue accumulation
and peak load estimators is addressed in Section 7.3. Due to the high
dimensionality of the underlying problem, we deploy several compression
schemes that are tailored for this application and use the DRSM algorithm
introduced in Chapter 5 to calibrate the associated parameters. The second
challenge of quantifying the uncertainty of the quantities of interest is
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addressed in Section 7.4, by applying the reduced dimension resampling
technique that is presented in Chapter 6.

7.2 model description

7.2.1 Wind climate

An important aspect in wind turbine design is the wind conditions on the
particular site the system will be deployed onto. Due to the variability of
those conditions among different sites, so-called design classes have been
introduced to enable manufacturers to design generic wind turbines without
knowing the exact conditions of each particular site. They are specified by
the IEC 61400-1 standard. A wind turbine manufactured according to a
design class is considered viable to be installed on a site where the wind
conditions do not exceed the ones specified by this class.

Two basic parameters are involved in the specification of each design class:
(i) the reference wind speed Vre f , and, (ii) the turbulence intensity at wind
speed 15 m/s denoted by Ire f . According to the IEC 61400-1 standard, the
mean wind speed at the hub height, Vhub is assumed to follow a Rayleigh
distribution with CDF:

F(Vhub) = 1− exp

[
−π

(
Vhub
2Vave

)2
]

, (7.1)

with Vave chosen as:
Vave = 0.2Vre f . (7.2)

The values of each parameter for a specific class are listed in Table 7.1.
Based on the table, a design class e.g. I I IA corresponds to Vre f = 37.5 m/s
and Ire f = 16%. The reported design classes in Table 7.1 reflect common
conditions excluding offshore sites, as well as extreme wind climate that
is encountered during tropical storms such as hurricanes, cyclones and
typhoons.

In this work we consider wind climates of class I IB as it is standard for wind
turbine designs to be deployed in mainland and coastal Europe.

The TurbSim software is used to simulate the wind climate of the se-
lected I IB design class (Jonkman, 2009). TurbSim is a stochastic, full-
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Table 7.1: Parameter values for different wind turbine design classes.

Class I II III
Vre f (m/s) 50.0 42.5 37.5
A Ire f (%) 16
B Ire f (%) 14
C Ire f (%) 12

field, turbulent-wind simulator. It uses a statistical model (as opposed
to a physics-based model) to numerically simulate time series of three-
component wind-speed vectors at points in a two-dimensional vertical
rectangular grid that is fixed in space.

(a) The three components of the wind
speed vector

(b) A realisation of each wind compo-
nent

Figure 7.1: The wind velocity vector that is generated using TurbSim.

For simplicity, we consider a single measurement point of the wind velocity
vector, located at the rotor hub of the wind turbine (see Figure 7.1a). Hence,
the generated wind speed realisations consist of three time series, each
referring to one component of the wind velocity vector. The simulation time
of each realisation is 10 minutes and the sampling frequency is 20 Hz. An
example of such a realisation is shown in Figure 7.1b.
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Figure 7.2: A schematic representation of an upwind horizontal axis wind tur-
bine.

7.2.2 Wind turbine model

A specific design family of wind turbines is considered, namely upwind
horizontal axis wind turbines (HAWT), depicted in Figure 7.2. The upwind
HAWT structure mainly consists of three components: (i) the rotor with the
three attached blades, which is mounted to the hub via the pitch bearing
system that allows the blades to turn; (ii) the nacelle, which is attached to the
tower and performs the conversion of mechanical to electrical energy; (iii)
the yaw bearing system, that allows to adjust the rotor direction depending
on the wind flow vector.

During the operation of a wind turbine, the rotor is driven by the wind
energy. The low-speed shaft rotating with the rotor connects to the gear box,
which increases the rotation speed to the high-speed shaft. The generator
then produces electric energy from the kinematic power passed by the
high-speed shaft. In case of emergency, the brake can stop the rotor. The
nacelle contains a controller which determines how the turbine responds to
different wind conditions via the generator-torque, the blade-pitch and the
nacelle-yaw control, based on the wind climate measured by the attached
sensors. Considering the efficiency of energy production and the safety
requirements on energy production structures, a turbine starts to operate
at the so-called cut-in wind speed uin to avoid unstable power production,
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reaches its rated power production at the rated speed urat and stops working
at the cut-out speed uout.

In this work, we consider a baseline turbine that is commonly used due to its
resemblance with existing prototypes. It is known as 5 MW baseline turbine
with the characteristics specified in Table 7.2 (Jonkman et al., 2009).

Table 7.2: Specifications of the 5 MW baseline wind turbine.

Rating 5 MW
Rotor orientation, configuration Upwind, three blades
Control Variable speed, collective pitch
Drivetrain High speed, multiple stage gearbox
Rotor diameter 126 m
Hub diameter 3 m
Hub height 90 m
uin 3 m/s
urat 11.4 m/s
uout 25 m/s
Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm
Rated tip speed 80 m/s
Overhang, Shaft tilt, precone 5 m, 5o , 2.5o

Rotor mass 110, 000 kg
Nacelle mass 240, 000 kg
Tower mass 347, 000 kg

We use the OpenFAST simulation software (Jonkman, 2013) to calculate
the loads on various points of interest of the wind turbine, given the wind
velocity vector time-series generated with TurbSim. OpenFAST performs
an aero-servo-elastic simulation that entails several computational steps.
First, the aerodynamics sub-model converts the external wind fields to
loads on the structure which is represented by a finite element model. The
dynamic properties of the structure are determined based on the material
properties and the actions of the control system that depend on the wind
conditions at each time instance. The system response is then calculated
through structural and multi-body dynamics. Moreover, each response
interacts with the wind field and is taken into account for the consecutive
simulation step.
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7.2.3 Fatigue and damage equivalent loads

Wind turbines are dynamic systems exposed to aerodynamic loading and
quasi-periodic excitation from the rotor. Structural components typically
face O

(
108−9) load cycles over their lifetime, which roughly corresponds

to 20-25 years. Hence, they are particularly susceptible to fatigue dam-
age.

A wind turbine component is typically subject to several simultaneous
loads. However, only one of them is considered in the subsequent fatigue
analysis for simplicity. Consider a periodic load, e.g. moment, denoted by
M(t) and t is the time instance. First assume that the load is of the form
M(t) = A sin(ωt) with a fixed amplitude A and fixed cycle period 2π/ω.
One way to model the lifetime of the component when such a periodic
load is applied is based on the S-N or Wöhler curve (Suresh, 1998), which
assumes the following relationship:

log N(A) = log K−m log(A)⇔ N =
K

Am , (7.3)

where N(A) denotes the number of cycles until failure when a sinusoidal
load of amplitude A is applied, and the constants K and m depend on
the component’s material. In practice, the periodic load M(t) is more
complex in terms of its frequency spectrum rather than a single sinusoid.
However, the material model defined under the sinusoidal load assumption
in Eq. (7.3) can still be used by adopting the Palmgren-Miner rule (Miner,
1945; Kauzlarich, 1989). The idea is to calculate the accumulated damage
Dtot after NA cycles as follows:

Dtot =
NA

∑
i=1

ni
N(Ai)

(7.4)

=
NA

∑
i=1

ni
K

Am
i

(7.5)

=
NA

∑
i=1

ni Am
i

K
, (7.6)

where ni denotes the number of cycles that a periodic load with amplitude
Ai is applied. Notice that Eq. (7.3) was used to express the expected number
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of cycles N(Ai) when the load amplitude is Ai in Eq. (7.5). In practice Ai
and ni are obtained using rainflow counting (Rychlik, 1987; ASTM E1049-
85, 2017). The accumulated damage Dtot is used to determine whether
the component will fail given a load time-series, which is the case for
Dtot > 1.

In the context of wind turbines, the so-called damage equivalent load (DEL) is
commonly used to quantify the accumulated fatigue. The DEL corresponds
to the constant amplitude of a hypothetical periodic load that generates
the same damage level as the one obtained from Eq. (7.6) within Neq cycles.
This is expressed as follows:

Neq

N(DEL)
= Dtot =

NA

∑
i=1

ni Am
i

K
(7.7)

Neq
K

DELm
=

NA

∑
i=1

ni Am
i

K
(7.8)

DEL = m

√√√√NA

∑
i=1

ni Am
i

Neq
. (7.9)

7.2.4 Computational model summary

By wrapping up the various steps of the simulation process, we are consider-
ing the data-driven scenario of having access to an experimental design con-
taining wind speed realisations and the corresponding damage-equivalent
or extreme loads on various components of the turbine. In total, 5, 000 sam-
ples are available which correspond to approximately 35 days of continuous
inflow wind measurements.

In the simplest scenario, each of the input samples in X =
{

x(1), . . . , x(N)
}

corresponds to the u component of a 10-minutes time series wind speed
at hub height with sampling frequency of 20 Hz. The resulting random
input vector X ∈ RM has dimensionality M = 12, 000. When taking into
account all the components of the wind vector, the dimensionality of X is
tripled to M = 36, 000. The outputs of interest Y =M(X ) are calculated
based on post-processing the results of the aero-servo-elastic simulation of
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Table 7.3: The outputs of the wind turbine computational model.

Symbol Type Load
Y1 DEL Blade 1 flap-wise bending moment at root
Y2 DEL Fore-aft bending moment at tower top
Y3 Peak load Fore-aft bending moment at tower top

the baseline 5MW wind turbine using OpenFAST. The model response Y
consists of the three quantities of interest reported in Table 7.3.

7.3 data-driven fatigue and peak load predictors

7.3.1 Methodology

The goal in this section is to construct a surrogate model that provides
predictions of the quantities of interest in Table 7.3, as a function of 10

minute measurements of the wind speed at hub height. Although the
horizontal wind vector component u is expected to have the largest impact
on the resulting loads, it is worth investigating whether the predictive
performance of the resulting surrogate improves when all the wind vector
components are taken into account. This poses additional challenges in
terms of how to properly treat multiple structured inputs within a single
input vector.

The surrogate modelling technique of choice is sparse polynomial chaos
expansions (PCE), introduced in Section 4.3. The construction of such a
surrogate that operates on an input space of dimensionality O

(
104) is

prohibitive (see Section 5.1). Moreover, considering the quasi-periodicity
of the loads, one should avoid to operate directly on the time domain.
Instead, other representations, such as the frequency spectrum (Proakis
and Manolakis, 1996) of the inflow wind time series, may provide a more
compact and meaningful representation of the inputs with respect to the
outputs of interest (functions of the loads). Using machine learning termi-
nology, it is preferred to extract several features from the input time series
that are as informative and discriminative as possible, rather than directly
processing the raw input time-series.
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To do so, we propose a solution that is based on a compression scheme of
the form

g(X; w) = (gKPCA ◦ gTSFRESH) (X; w), (7.10)

where gKPCA refers to kernel PCA (KPCA see Section 3.4) and gTSFRESH
to a combination of several digital signal processing algorithms each ex-
tracting potentially meaningful, features out of the input time series using
the python package “Time Series Feature Extraction on basis of Scalable
Hypothesis tests”, abbreviated as tsfresh (Christ et al., 2018).

The transform gTSFRESH is of the form gTSFRESH(X) ={
A1(X), . . . , AMA(X)

}
, i.e. each feature Ai(X) corresponds to a dif-

ferent operation on X. In total, MA = 698 features are computed, each
corresponding to metrics such as summary statistics (mean, variance,
minimum/maximum value, etc.), Fourier and Ricker wavelet coefficients
(Ricker, 1944). The complete list of the extracted features can be found
in Appendix C.3. Note that the final number of features MA = 698
differs from the one listed in Table C.4 (788). A total of 90 features were
removed due to having zero variance, i.e. a constant value over the entire
dataset.

Note that feature extraction, such as gTSFRESH , may not fulfil the pur-
pose of dimensionality reduction adequately. In this application, indeed
MA < M but it is still challenging to construct a surrogate with MA = 698
inputs. Hence, we chose KPCA as a subsequent compression step (gKPCA in
Eq. (7.10)) to finally reduce the input space to a manageable size, O

(
100−1).

However, the introduction of the gTSFRESH transform has numerous ad-
vantages compared to the direct application of out-of-the-self compression
techniques, like KPCA, on X: (i) It provides statistically more significant
features of each input sample compared to the raw input components in
the time domain (Christ et al., 2018), (ii) the methodology is still applicable
in case of time series inputs of varying size, (iii) it improves the computa-
tional efficiency in further compression steps (increasingly important for
larger M), and, (iv) each input time series (structured) is transformed to an
unstructured vector making it straightforward to combine multiple such
inputs and/or also include separate unstructured ones.

Recall from Section 3.4 that the gKPCA transform in Eq. (7.10) is of
the form gKPCA(·; w), where w includes the kernel parameters (see Ta-
ble 3.1) and the, unknown, reduced space dimension m. The calibration
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of w is done using the DRSM algorithm that is described in Section 5.3,
which optimises them in such a way that the surrogate model perfor-
mance is optimal. DRSM is applied for each of the model responses
Y = {Y1, Y2, Y3} from Table 7.3, independently. Hence, a separate PCE

surrogate Yi = M̂(i)
(

Z;θ(i)
)

i = 1, . . . , 3 is computed for each of them.

The PCE of each output Yi differs as dictated by the parameters θ(i) that
correspond to the respective expansion coefficients (see Eq. (4.34)). The
same applies for the compression scheme Z = g(X; w(i)) i = 1, . . . , 3, i.e.
different KPCA parameters w(i) are calculated for each output Yi. Both
parameter vectors w(i) and θ(i) are jointly calibrated by minimising the
objective function in Eqs. (5.6) and (5.7).

We also consider a modified version of the compression scheme in Eq. (7.10),
that reads:

g(X; w) = (gKPCA ◦ gPCA ◦ gTSFRESH) (X; w), (7.11)

where gPCA corresponds to an intermediate dimensionality reduction step
using principal component analysis (PCA - see Section 3.2). The main mo-
tivation behind the addition of gPCA lies on the observation that several
features that gTSFRESH produces are highly correlated to each other (e.g.
the features that correspond to different coefficients of the discrete Fourier
transform in Table C.4). This is exploited by gPCA that produces an interme-
diate reduced space of size O

(
101−2) with uncorrelated components (for

proof of the decorrelation property of PCA see e.g. Bishop, 2006). The gKPCA
transform is still used at the end of the chain, with the added flexibility to
use anisotropic kernels (such as the Gaussian in Table 3.1). This is highly
challenging to do in the case of Eq. (7.10), because one kernel parameter
should be calibrated for each of the 698 (or 3× 698 if all wind components
are processed) features that gTSFRESH produces.

A sketch of the various compression schemes that are compared during the
DRSM phase of this study is shown in Figure 7.3, each denoted by a letter (A
to D). The compression steps are sketched as boxes connected with arrows
that indicate the order of each step and a number on top that refers to the
dimensionality of the variable that enters or exits each transform. In setups
A, B and C, a polynomial kernel is used in KPCA, whereas in setup D the
anisotropic Gaussian kernel is used instead. The DRSM algorithm is used to
tune only the KPCA parameters in each case, as well as the reduced space
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A

B

C

D

TSFRESH

KPCA

PCA

12,000

12,000 698

36,000

36,000 50

2,094

2,094

Figure 7.3: Illustration of the different setups that are used to compress the inflow
wind time series.

dimension m but not any parameters related the the gTSFRESH transform in
Eqs. (7.10) and (7.11) and the gPCA transform in Eq. (7.11). Setup A refers
to the simple case of directly applying KPCA compression in the time
domain representation of the horizontal wind component u. Setups B and
C correspond to the transformation in Eq. (7.10), considering either the u
component only (setup B) or all three of them (setup C). Finally, setup D
corresponds to the transformation in Eq. (7.11) and, similarly to setup C,
takes into account the full inflow wind vector.

7.3.2 Surrogate model performance evaluation

To evaluate the proposed methodology, the 5, 000 samples that are available,
are randomly split into the mutually exclusive sets {X ,Y} with N = 1, 000
samples used for calculating the surrogate (training set) and {Xv,Yv} with
Nv = 4, 000 samples, used for validation (validation set). In a practical
setting, where the end-goal would be to deploy the trained surrogates
one should use all the samples available for training them. This is further
motivated by our findings in Section 5.4 where the leave-one-out error
was consistently providing robust estimates of the generalisation error of
surrogates, hence there is no need for training and validation splits. The
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splitting of the data here is done purely for visualisation purposes (true
versus predicted responses).

The random splitting of the samples into the training and the validation set
is repeated 10 times. A simplifying assumption is made about the optimal
reduced space dimension m̂ being constant among the different splits. As
such, it is only estimated once (from the first split) whereas the rest of the
dimensionality reduction parameters are re-evaluated for each split. The
leave-one-out (LOO) error of the PCE surrogate (see Eq. (4.45)), denoted by
εLOO, is used to determine m̂ because it is considered a robust estimator of
the generalisation error.

The results of the m̂ calibration process for each of the compression setups
(A-D) and each of the model responses are shown in Table 7.4. Each group
of four rows corresponds to one of the responses, Y1 to Y3. For each group,
the DRSM algorithm is executed four times, each corresponding to the
calculation of the optimal m̂ and KPCA parameters using one of the four
compression setups. The reported value of εLOO is the minimum value
that was achieved with the respective compression setup using the m̂ value
listed next to it.

Table 7.4: Optimal reduced space dimension and corresponding leave-one-out
error of the PCE surrogate for each model output using various com-
pression setups.

Output Comp. setup m̂ εLOO

Y1

A 20 0.0325

B 25 0.0332

C 25 0.0233

D 25 0.0230

Y2

A 25 0.0576

B 25 0.0189

C 20 0.0207

D 10 0.0239

Y3

A 2 0.0759

B 10 0.1269

C 25 0.0675

D 20 0.0945

For each of the 10 splits, the PCE surrogate is evaluated in terms of its
predictive performance on the validation set, which serves as an estimator
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Figure 7.4: Generalisation error estimates for each model output using various
compression schemes.

of its generalisation error, hence denoted by ε̂gen. It reads (reminder of
Eq. (4.42)):

ε̂gen =
∑Nv

i=1

(
M(x(i))− M̂(x(i))

)2

∑Nv
i=1

(
M(x(i))− µ̂y

)2 ,

where µ̂y = 1
N ∑Nv

i=1M(x(i)) is the sample mean of the validation set re-
sponses and M̂(x(i)) is used in place of M̂(x(i);θ) to simplify the nota-
tion.

The value of ε̂gen of each surrogate over the 10 splits is visualised in Fig-
ure 7.4 using box plots. The central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points up to 1.5
times the inter-quartile range above or below the box edges. Any sample
beyond that range is considered an outlier and plotted as a single point.
The value of the mean ε̂gen that each method achieves over the 10 splits is
also given numerically in Table 7.5. Each box plot refers to the PCE that was
calculated on the reduced space obtained using each of the compression
setups that were previously described (see also Figure 7.3). The box plots
that correspond to each of the three model responses are grouped and in
each case their colour differs depending on the compression setup.

At a first glance, it is clear that different setups perform best depending on
which model response is considered. Regarding the DEL of the flap-wise
bending moment at the blade root (Y1), the horizontal component of the
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Table 7.5: Mean ε̂gen achieved by a PCE surrogate over 10 random splits of the
training and validation set using various compression setups. The
lowest value for each output is highlighted in bold.

Output A B C D
Y1 0.0315 0.0292 0.0276 0.0292

Y2 0.0551 0.0190 0.0212 0.0252

Y3 0.0497 0.0584 0.0506 0.0505

(a) DEL of flap-wise bending moment
at blade root (Y1)

(b) DEL of fore-aft bending
moment at tower top (Y2)

(c) Peak fore-aft bending mo-
ment at tower top (Y3)

Figure 7.5: Comparison between true and end predicted model responses (on
the validation set).

inflow wind vector is the main driver of the output value, but taking into
account the full vector (setups C and D) leads to a marginal improvement
of the generalization error in the order of 3− 7%. However, the additional
information of the v and w wind components seems to have no contribution
when the outputs Y2 and Y3 are considered instead, that correspond to
the DEL and peak load of the fore-aft bending moment at the tower top.
In both scenarios that a DEL is predicted (outputs Y1 and Y2), using the
multi-step compression setups (B, C and D) consistently leads to superior
results when compared to the setup A, that is directly applying KPCA on
the wind time series. This is not the case for Y3, where all setups show
comparable performance.

Finally, Figure 7.5 provides a visualisation of the predictive performance of
the best performing setup in Table 7.5 for each model response. Figure 7.5a
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(resp. Figure 7.5b and Figure 7.5c) contains a scatter plot of the true values
against the ones predicted by the PCE surrogate of the response Y1 (resp.
Y2 and Y3). For this comparison, only the samples of the validation set of
one of the 10 splits of the previous analysis are considered. In accordance
to the ε̂gen values in Table 7.5, the best predictor performance is achieved
for Y2 followed by Y1 and Y3. The DEL predictors (Y1 and Y2) appear
unbiased with consistent performance across different regions. The peak
load predictor (Y3) also appears unbiased for the most part with a slight
tendency to overestimate the damage in the lower tail region.

7.4 response pdf analysis

The loads applied to various components of a wind turbine are uncertain
due to the variability of the wind climate. Dealing with a high-dimensional
input space that consists of one or more time series, introduces numerous
challenges in quantifying those uncertainties. In this section, we showcase
how such analyses can be enabled using the reduced dimension resampling
(RDR) method proposed in Chapter 6, by approximating the full response
PDF using Monte Carlo simulation.

The problem setting is the same as in the previous section, i.e. there is a
limited number of observations {X ,Y} available, 5, 000 in total, and the
goal is to estimate the response PDF as accurately as possible. The first
step of the RDR approach (see Section 6.2.1), is to calculate the optimal
compression scheme as well as the surrogate (PCE in this case) that operates
in the reduced space, using the DRSM algorithm. This step has already
been covered in the previous section. Based on the performance evaluation
of the various compression setups in Table 7.5, we pick the best performing
one for each of the three responses and repeat the training process using
the entire dataset this time (instead of using only 1, 000 samples). Splitting
the samples in training and validation sets would not be as informative in
this case. Using such a small number of samples (O

(
103)) as a validation

set, i.e. to determine the reference values of the response statistics, could
lead to misleading results. ´

The next step is to approximate the joint PDF of the reduced space fZ (z).
This process is repeated three times, once for each model output, because
a different reduced space is determined for each of them. As discussed in
Section 6.2.2, this approximation decomposes to: (i) estimating the marginal
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distribution of each component Zi , i = 1, . . . , m using kernel smoothing,
and, (ii) fitting a canonical vine copula (C-vine) to model the dependency
structure. Having such a probabilistic input model enables the generation
of an arbitrary number of samples in the reduced space that mimics the
statistics of the experimental design (see Section 6.2.3).

Next, we estimate the full response PDF of each output of interest from
Table 7.3 using Monte Carlo simulation (see Section 6.2.4). This is achieved
with RDR by generating 106 artificial samples Z ′ ∼ f̂Z(z) and then com-
puting the corresponding model responses using the PCE surrogate. Out
of the four compression setups we used the one that results in the best
performing PCE for each output, highlighted in Table 7.5.

The response PDF estimates
{

fYi (yi) , i = 1, 2, 3
}

are visualised in Figure 7.6.
Figure 7.6a (resp. Figures 7.6b and 7.6c) contain the results for the output
Y1 (resp. Y2 and Y3). Each panel contains: (i) a histogram generated from
the available Y samples, (ii) a histogram generated from Ŷ = M̂(g(X )), i.e.
by compressing the experimental design and estimating the approximate
responses using the PCE surrogates, and, (iii) a curve that corresponds to
the kernel-smoothing-based estimate of fYi (yi) using the 106 samples that
were generated by RDR.

The estimates of fY1 (DEL of the flap-wise bending moment at the root of
blade 1), show significant differences depending on the samples that are
used. RDR identifies a bimodal distribution, whereas a trimodal distribution
is observed in the experimental design. Recall that the approximation error
of the response PDF by RDR is due to the input compression, surrogate
modelling and resampling steps. To obtain a qualitative estimate of the error
that is introduced by the input compression and the surrogate, we compare
the two histograms in Figure 7.6a, because any difference between them
is only due to those factors. The difference between the two histograms
does not seem large enough to justify the different shape of the RDR-based
estimate and the tri-modality is retained. This is an indicator that the
resampling error may be the main cause of this discrepancy. Regarding the
outputs Y2 and Y3, i.e. the DEL and peak of the bending moment at the top
of the tower, RDR shows a refined representation of the two modes of each
distribution. However, considering the Y2 PDF, the second mode that RDR
identifies is not clearly visible in the available samples.
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(a) DEL of flap-wise bending moment at blade root (Y1)

(b) DEL of fore-aft bending moment at tower top (Y2)

(c) Peak fore-aft bending moment at tower top (Y3)

Figure 7.6: Estimates of the PDF’s of the computational model responses.

The significant discrepancy between the experimental-design- and RDR-
based estimates of fY1 , motivates a further investigation to identify the cause.
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(a) Experimental design in reduced space

(b) Artificial samples by RDR

Figure 7.7: Scatter plots and marginal histograms of different samples in the
optimal reduced space for Y1. Only 3 out of the 20 components are
shown.

To test the accuracy of the reduced space resampling step, we compare the
scatter plots and marginal histograms of Z = g(X ), i.e. the representation of
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the experimental design in the reduced space, and of the artificial samples
Z ′. Out of the 20 components of the reduced space, in Figure 7.7 we
visualise a representative subset in terms of the dependency patterns that
we observe, with a focus on the more challenging ones. Each of the figures
contains 9 panels in a 3× 3 grid. The panel located in the i-th row and
j-th column, for i 6= j shows a scatter plot of the i-th versus the j-th
component of Z using either the Z samples (in Figure 7.7a) or the same
number of samples from Z ′ (in Figure 7.7b). The panels on the diagonal
(i = j) show the histogram of the respective component of Z instead.
At a first glance, the marginal distributions appear to be captured well,
especially for components Z1 and Z10. However, the dependency patterns
show significant discrepancy between the true and the artificial samples.
Considering the scatter plots of Z1 versus Z2, the training samples appear to
form clusters around numerous regions while other portions of the domain
are empty. This is a behaviour that cannot be captured with the copulas we
used and the artificial samples show a more even coverage of the domain
instead. Further investigation would be required to determine whether
evenly covering the domain is realistic, in terms of the wind climate that
corresponds to samples in various regions that are not covered by Z . In
addition, a dependency pattern like the one we observe between Z1 (or Z2)
and Z10 indicate some form of functional relationship that also cannot be
adequately captured by the copulas we used.

7.5 conclusion

A wind turbine is a highly challenging system to design and operate. On
the one hand, its static and dynamic behaviours are driven by widely
varying load conditions, such as the wind climate, the uncertainty of which
is non-trivial to quantify. On the other hand, quantities of interest such
as the moments or forces on critical components, show a complex non-
linear relationship with those loads, and therefore require aero-servo-elastic
simulators that are costly to run.

In this work we focus on the estimation of fatigue, by means of damage
equivalent loads, as well as peak loads on various components, given a
time series of the inflow wind vector. We approach the problem from a
purely data-driven perspective, where the entire analysis is based on a
limited set of observations. The main challenge lies in the construction of a
surrogate model given the high dimensionality of the input space (O

(
104)).
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We tackle this problem by compressing the input space using kernel PCA
in such a way that the attached PCE surrogate has optimal generalisation
performance.

Moreover, we expand this approach to more elaborate compression strate-
gies that involve the extraction of several hundreds of features from each
input time series. We also combine multiple input time series (in this case
the three wind speed vector components) in a single unstructured input.
The latter can either be directly processed by kernel PCA using a polynomial
kernel (or other isotropic ones) or be further compressed and de-correlated
using PCA, followed by kernel PCA with an anisotropic kernel.

Having access to such surrogates can be useful in various scenarios. For
example, during the design process, they can substitute the computationally
expensive aero-servo-elastic simulators after training them on a limited
number of samples. After deploying the wind turbine in the field, the
surrogate can also be used to process continuous inflow wind measurements
and estimate the fatigue accumulation on different components.

We further exploited the trained surrogates by proceeding to the quantifica-
tion of the uncertainty of the model responses (damage equivalent and peak
loads). This was achieved by performing Monte Carlo simulation using
the reduced dimension resampling technique, proposed in Chapter 6, that
results in estimates of the full response PDF. We showed that by doing so,
it is possible to obtain a refined representation of the PDFs compared to
simply processing the limited amount of response measurements at our
disposal. We also identified a limitation of the current approach, that is
given by complex dependency structures in the reduced space. Therefore,
the accuracy of this methodology strongly depends on the complexity of
reduced representation of the input space. This finding motivates extensions
of RDR that are further discussed in Section 8.2.

The proposed methodology can be directly applied to more complex scenar-
ios that involve more structured (time series) inputs, as well as unstructured
ones, by using the compression schemes in Eq. (7.10) or Eq. (7.11). It is note-
worthy that there are only a few parameters that need to be tuned manually,
related to the low- and high- fidelity surrogates the kernel of kernel PCA
and, optionally, the optimisation algorithm of DRSM. Considering that the
leave-one-out error of the surrogate provides a robust estimator of its gener-
alisation performance, one could essentially automate the entire parameter
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tuning process. To do so, simple grid search algorithms or more efficient
Bayesian optimisation ones (see e.g. Snoek et al., 2012) could be used for
finding the parameter set that minimises the leave-one-out error.

An extension to this work would be to capitalise on the estimated response
PDFs and calculate the probability of the fatigue accumulation on different
components exceeding the design limits in future time instances. Recall that
each sample corresponds to the DEL over a fixed time interval (10 minutes
in this work). Hence, failure in a specific future time instance corresponds
to the probability that a fixed number of samples drawn from the response
PDF, and properly summed to calculate the total DEL (see e.g. Berglind
et al. (2016)), result in a total DEL larger that the limit value. However, it is
important that the provided samples are representative of the wind climate
over all the seasons.
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C O N C L U S I O N S

8.1 summary

The present work aims to bridge the gap between the uncertainty quantifi-
cation and machine learning communities in order to enable uncertainty
quantification in engineering problems that present two characteristics: (i) a
high dimensional input space, and, (ii) a purely data-driven context, which
means that the system under investigation is only known through a limited
number of available observations, without the possibility of enriching the
existing dataset.

On the one hand, the machine learning community has proposed several
techniques for compressing high dimensional spaces for a variety of ap-
plications (e.g. data compression, visualisation, image de-noising) but they
typically do not take into account uncertainties. On the other hand, the un-
certainty quantification community has contributed several methodologies
for properly handling the underlying uncertainties, but they tend to scale
unfavourably or even become intractable as the input dimensionality in-
creases. In this thesis we tried to combine the "best of both worlds", by using
machine learning techniques for input compression and surrogate mod-
elling and uncertainty propagation techniques that have been developed
primarily by the uncertainty quantification community.

As a first step, we identified the state-of-the-art of the two fundamental
ingredients: dimensionality reduction and surrogate modelling in Chap-
ters 3 and 4, respectively. Chapter 3 provides a literature review on the
latest developments on dimensionality reduction techniques. The focus
was given primarily to non-linear techniques and their association to clas-
sical and mostly linear techniques, namely principal component analysis
and multidimensional scaling. Furthermore, we pointed out the strengths
and weaknesses of each method and concluded that selecting a suitable
dimensionality reduction method depends on several factors, such as the
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complexity of the problem and the type of application (e.g. visualisation,
data compression, image denoising).

In Chapter 4 we provided a review on the state-of-the-art in surrogate mod-
elling and introduced two particular techniques that are used throughout
this thesis, Gaussian process modelling (Kriging) and sparse polynomial
chaos expansions. Although both methods are well-established within the
field of uncertainty quantification, they suffer from the curse of dimension-
ality, i.e. cannot be directly applied to the high-dimensional problems that
are of interest in this thesis.

In Chapter 5 we present a novel methodology for enabling surrogate mod-
elling in problems with large input dimensionality. The proposed DRSM
algorithm couples the input compression and surrogate modelling steps in
such a way that the resulting performance of the surrogate model is optimal.
The novelty of this algorithm lies in how the two stages are coupled into
a single problem, for which dedicated solution strategies are proposed.
This type of coupling allows the combination of various dimensionality
reduction and surrogate modelling methods without having to tweak the
dedicated optimisation algorithms on which each of them capitalises.

The performance of DRSM was tested on benchmark problems and com-
pared against the classical approach of tuning the dimensionality reduction
and surrogate modelling parameters sequentially. For this purpose we
used kernel principal component analysis for dimensionality reduction
and tested both Kriging and polynomial chaos expansions for surrogate
modelling. The proposed DRSM methodology consistently showed superior
performance in all the benchmarks. Furthermore, we demonstrated that the
leave-one-out cross-validation error of the surrogate is a reliable estimator
of the generalisation error. As such, it can be used as an objective for tuning
the dimensionality reduction parameters, but also to assess the overall
accuracy of the resulting surrogate.

In Chapter 6 we propose a workflow for data-driven uncertainty propa-
gation in problems with high dimensional input spaces. In this emerging
research field, one has to deal with several challenges. On the one hand,
”data-driven“ refers to the limited knowledge about the inner workings
of the system under consideration, as well as the uncertainty of the input
parameters (no prescribed probabilistic models are available). A limited
set of input samples and the corresponding model responses is the only
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available information about the system. On the other hand, the high input
dimensionality renders various state-of-the-art uncertainty quantification
techniques for surrogate modelling and inference non-applicable.

The workflow that we propose, called reduced dimension resampling (RDR),
uses as a starting point the reduced space that we obtain by using the DRSM
algorithm. Having access to a compressed representation of the input space
of manageable size, we used well-established techniques for resampling
(briefly presented in Chapter 2). In addition, we adopted the copula for-
malism to model the dependency structure of the inputs, and in particular
canonical vine copulas, because they allow for data-driven, computationally
efficient and scalable inference of their parameters. Eventually, the response
PDF is estimated by Monte Carlo simulation, i.e. by propagating the newly
generated samples of the reduced input space through the surrogate model,
provided by DRSM. By using the proposed methodology on benchmark
applications, we demonstrated that RDR indeed improves our knowledge
about the output uncertainty in terms of the overall shape of the PDF and
its empirical quantiles.

Finally, in Chapter 7 we show how the methods presented in this thesis can
be applied in a realistic engineering application related to the structural
health monitoring of wind turbines. The goal is to estimate the fatigue
accumulation and peak loads, as well as their uncertainty, on various com-
ponents of a wind turbine, given the inflow wind speed over 10 minute time
intervals. We do so by processing a limited amount of observations that are
generated by specialised software. By applying the techniques introduced
in Chapter 5, we calculated polynomial chaos expansions surrogates that
operate on reduced input spaces of dimension 2− 25 whereas the physical
space is 36, 000-dimensional.

For this particular class of problems, where the input contains one or more
time series, we proposed several custom compression setups that involve a
feature extraction step before applying a standard compression algorithm
such as kernel PCA. The main motivation for working on features of the
input time series (from simple metrics to Fourier and wavelet coefficients)
is that they provide a more compact representation of the input space.
There are also practical advantages. Structured inputs are transformed to
unstructured, allowing us to easily combine features from multiple time
series in a single input vector. In addition, the same workflow is applicable
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even in cases where the length of the time series is not identical (e.g. due to
variation in the sampling frequency).

Furthermore, the uncertainty of the quantities of interest was quantified
using the RDR methodology introduced in Chapter 6. This led to a refined
representation of the response PDFs in most cases. In one case the proposed
methodology under-performed and the root cause was the dependency
structure of some components in the reduced space that could not be
adequately captured with copulas. Nevertheless, we showed how one
can anticipate for such errors even in the absence of a validation set by
inspecting the resampling and surrogate model performance.

Overall, this manuscript provides a new set of tools that enable the applica-
tion of uncertainty quantification techniques in a wide class of problems,
for which it was initially not possible. This has strong practical implications
considering the numerous relevant problems nowadays in e.g. structural
health monitoring, earthquake engineering, weather forecasting, hydrogeol-
ogy and control engineering, where the input space is high-dimensional
(e.g. time series or image inputs).

As a closing remark, the UQLab software framework played a crucial role
in the deployment of the proposed algorithms. Having a single framework
(as opposed to different methodologies provided by different packages even
in different programming languages) that allowed to plug-in various state-
of-the-art surrogate modelling and probabilistic model inference techniques
resulted in a significantly reduced development time. Moreover, having
access to highly computationally optimised routines for training each surro-
gate made the entire idea of DRSM feasible. It allowed to generate hundreds
or thousands of low-fidelity surrogates during each DRSM optimisation
within a feasible time frame of minutes to a few hours, depending on the
problem.

8.2 outlook

8.2.1 DRSM algorithm

Throughout this thesis we focused on high-dimensional input spaces. How-
ever, it is of practical interest to expand the proposed methodology to
high dimensional output spaces as well, e.g. for problems with time series
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responses. An additional compression step would be required then for the
output space. In principle, the DRSM algorithm could be directly applied
with slight modifications to also include the parameters of the output com-
pression scheme in the outer optimisation loop in Eq. (5.6). Nevertheless,
special care needs to be taken in the compression technique that we use
for the output space. In contrast to the case of compressing the input space
where the inverse transformation (from the reduced to the physical space)
was not required this is not true for the output compression, because we
would have to eventually map back the responses that the surrogate predicts
to the actual output space.

In this work we applied the concept of DRSM with techniques that become
computationally intractable in the presence of a large number of samples in
the experimental design (O

(
106) or more). This is rather a limitation of the

input compression and surrogate modelling techniques and not of DRSM.
Regarding the input compression scheme, autoencoders (presented in Sec-
tion 3.5) could be used instead of kernel PCA due to their low memory
requirements. Memory limitations also apply to the surrogate modelling
techniques presented in Chapter 4. One way around this issue is to ex-
ploit potential redundancies in the provided samples by first calculating
a surrogate using a small subset of them and then iteratively enrich the
experimental design only in regions where the observed error is large.
The key difference of the DRSM implementation in such problems is the
optimisation algorithm that should be used. Global optimisation or more
generally methods that require the processing of the entire dataset for each
objective function evaluation become computationally inefficient. Instead,
local (gradient-based) techniques should be preferred, such as stochastic
gradient descent, because they only process small batches of samples in
each iteration.

The concept of DRSM could be further exploited to deal with problems
to which classical surrogate modelling techniques can be applied with
no computational issues, but under-perform due to the complexity of the
input-output map. From a machine learning standpoint, techniques like
kernel PCA are still applicable in this setting for the purpose of feature
engineering, i.e. producing transformations of the input space that hopefully
make the input-output map less complex to model. No modifications of the
proposed algorithm are necessary to deal with this class of problems apart
from alleviating the constraint that the transformed input space has reduced
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dimension. On the contrary, one could allow for larger dimensions than the
physical space and let DRSM determine the optimal intrinsic dimensionality
value.

8.2.2 Uncertainty quantification in high dimensional input spaces

The methodology that was proposed in this thesis for uncertainty propaga-
tion in high-dimensional input spaces laid the ground work for numerous
future extensions. Having access to a surrogate model and a probabilis-
tic representation of the (reduced) input space, this challenging class of
problems can be approached using standard uncertainty quantification
techniques. For example, an extension of practical interest in engineering
applications is the calculation of the probability of failure of a system,
also known as reliability analysis (Ditlevsen and Madsen, 1996; Melchers,
1999).

The limitation of the reduced dimension resampling technique that we en-
countered in Section 7.4 reminisces our preliminary findings in Section 5.2.
Similar to the way that input compression may introduce a complex input-
output map, it may also result in a space with a complex joint PDF. A future
research direction would be to penalise a complex joint PDF during the
DRSM optimisation, using a suitable regularisation term in the outer loop
optimisation in Eq. (5.6). Alternatively, a new reduced space could be deter-
mined only for resampling purposes. In that case, dimensionality reduction
methods that provide an accurate inverse transform from the reduced to
the physical space should be preferred. According to this workflow, new
samples are drawn in this new reduced space, mapped back to the physical
space and then compressed again in the former reduced space that the
surrogate operates in order to finally calculate the model response estimates.
In both extensions, an open question is what quantitative criterion should
be used to describe the “goodness” of a space with respect to the complexity
of its joint PDF.
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T H E O R E T I C A L R E M A R K S

a.1 the relationship between pca and kpca with linear ker-
nel

Consider the PCA-based dimensionality reduction x ∈ RM 7→ z ∈ Rm. As
discussed in Section 3.2, z is calculated as follows:

z = xV , (A.1)

where V ∈ RM×m is the collection of the m eigenvectors of C = cov [X ]
and X ∈ RN×M is the experimental design. Compared to the more gen-
eral formulation in Eq. (3.8), in Eq. (A.1) we assume zero mean µX for
simplicity.

Next, consider the kernel PCA mapping x ∈ RM 7→ q ∈ Rm using the
linear kernel function:

κ
(
x,x′

)
= ax>x′ + b. (A.2)

It is straightforward to show that the following transformation is equivalent
to the linear kernel in Eq. (A.2):

Φ(x) =
{√

b,
√

a x1, . . . ,
√

a xM

}>
, (A.3)

because κ (x,x′) = Φ(x)>Φ(x′). A sample q in the reduced space is calcu-
lated as follows (see Section 3.4):

q = Φ(x)TVH, (A.4)
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where VH is the collection collection of m eigenvectors of CH = cov [Φ(X )].
Notice that in case of a = 1 and b = 0, from Eqs. (A.1), (A.4) follows that
z = q.

The covariance matrix CH can be expressed as:

CH =




0 . . . 0
... √

aC
0


 . (A.5)

Hence, excluding the eigenvector that corresponds to the zero eigenvalue,
it is straightforwards to show that

VH =

[
0 . . . 0

V

]
. (A.6)

Based on Eqs. (A.3) and (A.6), Eq. (A.4) can be written as follows:

q =
[√

b
√

a x>
] [0 . . . 0

V

]
(A.7)

=
√

ax>V (A.8)

=
√

az (from Eq. (A.1)) (A.9)

Therefore, the dimensionality reduction using kernel PCA with a linear
kernel provides a scaled version of standard PCA and the constant b has
no effect.
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a.2 estimating the similarity of probability distributions

using the jensen-shannon divergence

The Jensen-Shannon divergence of two continuous PDFs, p(x) and q(x),
reads (Lin, 1991):

JS(p ‖ q) =
1
2

KL(p ‖ 1
2
(p + q)) +

1
2

KL(q ‖ 1
2
(p + q)) , (A.10)

where KL(p ‖ q) denotes the Kullback-Leibler (KL) divergence that is de-
fined as follows:

KL(p ‖ q) =
∫ +∞

−∞
pX(x) log

(
pX(x)
qX(x)

)
dx. (A.11)

A sample-based approximation of the RHS of Eq. (A.11) is obtained
by:

KL(p ‖ q) ≈
nb

∑
i=1

p̃i log
(

p̃i
q̃i

)
, (A.12)

where p̃i (resp. q̃i) denotes normalised histogram value of the samples from
pX(x) (resp. qX(x)) on the i-th bin and nb denotes the number of bins. The
JS divergence is a similarity measure for probability distributions that is
based on the KL divergence with some notable differences, including that
it is symmetric (trivial to show that JS(p ‖ q) = JS(q ‖ p) from Eq. (A.10))
and it has always a finite value (see Lin, 1991 for proof).

a.3 empirical statistics estimators

The goal of this section is to outline standard techniques for calculating
the estimators of the mean, variance and quantiles of a random variable X
from the samples X . Those estimators are used by the reduced dimension
resampling technique as discussed in Section 6.2.4.

The moments of X can be approximated by their empirical estima-
tors:

µ̂X =
1
N

N

∑
i=1

x(i), (A.13)
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for the mean response, and:

σ̂2
X =

1
N − 1

N

∑
i=1

(
x(i) − µ̂X

)2
, (A.14)

for the variance of the response. Similar estimates can be calculated for
higher order moments. The Monte-Carlo-based moment estimates are es-
sentially random variables, that are asymptotically Gaussian-distributed
based on the central limit theorem. The variance of the mean and variance
estimator can be analytically determined as:

Var [µ̂X ] =
σ2

X
N

(A.15)

Var
[
σ̂2

X

]
=

σ4
X

N

(
κ − 3 +

2N
N − 1

)
(A.16)

where κ corresponds to the kurtosis of X, that is the 4-th standardised

moment, i.e. κ
def
= E

[(
X−µX

σX

)4
]

. Those quantities can be useful in practice

because they allow the calculation of confidence intervals on the estimated
values. Provided that N is sufficiently large, the 1− α confidence interval
on µ̂X reads:

µ̂X − uα/2 Var [µ̂X ] /
√

N − 1 ≤ µ ≤ µ̂X + uα/2 Var [µ̂X ] /
√

N − 1, (A.17)

where uα/2 = −Φ−1 (1− α/2). A similar expression to the one in Eq. (A.17)
can be used to calculate the confidence intervals on the variance estima-
tor.

One way of obtaining robust statistics of X, beyond moments, is to use the
empirical quantiles. The quantile Q(p) of a distribution is defined as:

Q(p) = F−1
X (p) = inf {x : FX(x) ≥ p} , (A.18)

where FX(x) denotes the CDF of X. In the absence of FX(x), one can
estimate empirical quantiles from the samples X . Let X̃ =

{
x[1], . . . , x[N]

}
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denote the ordered statistics of X , i.e. x[1] ≤ x[2] ≤ . . . ≤ x[N]. A plotting
position pi is attached to each sample x[i] , i = 1, . . . , N with value:

pi =
i

N + 1
, (A.19)

with the property Q̂(pi) = x[i], i.e. the empirical quantile of order pi is
the sample value x[i]. To compute empirical quantiles of other orders α ∈
[1/ (N + 1) , N/ (N + 1)] with α 6= pi , i = 1, . . . , N, linear interpolation is
used:

Q̂(α) = x[i] +
x[i+1] − x[i]

pi+1 − pi
α , (A.20)

after finding the index i such that pi < α < pi+1.





B
T H E G AU S S I A N P R O C E S S M O D E L L I N G M O D U L E I N
U Q L A B

b.1 introduction

Uncertainty quantification (UQ) through computer simulation is an inter-
disciplinary field that has seen a rapid growth in the last decades. Broadly
speaking, it aims at (i) identifying and quantifying the uncertainty in the
input parameters of numerical models of physical systems, and (ii) quanti-
tatively assessing its effect on the model responses. Such a general formu-
lation comprises a number of applications, including structural reliability
(Lemaire, 2009), sensitivity analysis (Saltelli et al., 2000), reliability-based
design optimisation (Tsompanakis et al., 2008) and Bayesian techniques
for calibration and validation of computer models (Dashti and Stuart,
2017).

Due to the high cost of repeatedly evaluating complex computational
models, analyses with classical sampling techniques such as Monte Carlo
simulation are often intractable. In this context, meta-modelling techniques
(also known as surrogate modelling) allow one to develop fast-to-evaluate
surrogate models from a limited collection of runs of the original computa-
tional model, referred to as the experimental design (Santner et al., 2003;
Fang et al., 2005; Forrester et al., 2008). Popular surrogate modelling tech-
niques include Kriging (Sacks et al., 1989), polynomial chaos expansions
(Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002) and support vector
regression (Vapnik, 1995).

Kriging is a surrogate modelling technique first conceived by Krige (1951)
in the field of geostatistics and later introduced for the design and analysis
of computer experiments by Sacks et al. (1989) and Welch et al. (1992). The
potential applications of Kriging in the context of uncertainty quantification
range from basic uncertainty propagation to reliability and sensitivity
analysis (Marrel et al., 2008; Echard et al., 2011; Iooss and Lemaître, 2015b;
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Le Gratiet et al., 2016). By exploiting the Gaussian properties of a Kriging
surrogate output, additional applications include adaptive, surrogate model-
based optimisation (see e.g.Moustapha et al. (2016)) and Bayesian calibration
of computer models (see e.g.Bachoc et al. (2014)). Although in its standard
form Kriging is a stochastic interpolation method, certain extensions have
been proposed for dealing with noisy observations. Such extensions have
been of particular interest to the machine learning community and they
are commonly referred to as Gaussian process regression (Rasmussen and
Williams, 2006).

A number of dedicated toolboxes are readily available for calculating Krig-
ing surrogate models. Of interest to this review is general purpose software
not targeted to specific Kriging applications, because they are typically
limited to two or three dimensional problems (see e.g.gslib (Deutsch et al.,
1992)). Within the R community one of the most comprehensive and well-
established Kriging packages is arguably DiceKriging, developed by the
DICE consortium (Roustant et al., 2012). This set of packages provides
Kriging meta-modelling as part of a framework for adaptive experimental
designs and Kriging-based optimisation based on the packages DiceDesign
and DiceOptim (Dupuy et al., 2015; Picheny et al., 2016). scikit-learn

provides a python-based, machine-learning-oriented implementation of
Gaussian processes for regression and classification (Pedregosa et al., 2011).
Alternatively, PyKriging (Paulson and Ragkousis, 2015) offers a Kriging tool-
box in python that offers basic functionality with focus on user-friendliness.
Gpy (GPy, 2012) offers a Gaussian process framework with focus on re-
gression and classification problems. Within the Matlab programming lan-
guage the first Kriging toolbox with widespread use was DACE (Lophaven
et al., 2002). DACE was later extended to ooDACE (Couckuyt et al., 2014),
an object-oriented Kriging implementation with a richer feature set. Small
Toolbox for Kriging (Bect et al., 2014) offers an alternative Kriging imple-
mentation that is mainly focused on providing a set of functions for Kriging
surrogate modelling and design of experiments. GPML (Rasmussen and
Nickisch, 2010) offers a library of functions that are directed towards Gaus-
sian processes for regression and classification in a machine learning context.
Finally, recent versions of Matlab (starting from R2015b) provide a rapidly
growing Gaussian process library for regression and classification.

Due to the variety of potential applications of Kriging, different toolboxes
tend to be focused on a specific user niche. There is limited availability
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of general purpose Kriging toolboxes that allow for seamless integration
within various UQ workflows ranging from e.g. basic uncertainty propa-
gation to reliability analysis and surrogate-model-based optimisation. To
this end, the Kriging toolbox presented here was developed as a module of
the general purpose UQ framework, UQLab ( Marelli and Sudret (2014),
www.uqlab.com). In addition, although most of the aforementioned tool-
boxes offer a significant set of configuration options, the support for fully
customisable Kriging is often limited or not easily accessible, which can be a
drawback in a research environment. Finally, the user experience may vary
from user-friendly to complex (especially to access the most advanced fea-
tures), often requiring a significant degree of programming knowledge. This
might be rather inconvenient for applied scientists and practitioners with
limited programming knowledge. The Gaussian process modelling module
(GP-module) in UQLab was developed with user-friendliness and custom-
asibility as its core features. This is showcased in the selected application
examples in Section B.3.

b.2 the uqlab gaussian process modelling module

b.2.1 The UQLab project

UQLab is a software framework developed by the Chair of Risk, Safety
and Uncertainty Quantification at ETH Zürich (Marelli and Sudret, 2014).
The goal of this project is to provide an uncertainty quantification tool
that is accessible also to a non-highly-IT trained scientific audience. Due
to the broadness of the UQ scope, a correspondingly general theoretical
framework is required. The theoretical backbone of the UQLab software lies
in the global uncertainty framework developed by Sudret (2007); De Roc-
quigny et al. (2008), sketched in Figure B.1a. According to this framework,
the solution of any UQ problem can generally be decomposed into the
following steps:

www.uqlab.com


156 b the gaussian process modelling module in uqlab

Step A Define the physical model and the quantities of interest for the
analysis. It is a deterministic representation of an arbitrarily
complex physical model, e.g. a finite element model in civil and
mechanical engineering. In this category also lie metamodels,
such as Kriging, since once they are calculated they can be
used as surrogates of the underlying “true” model.

Step B Identify and quantify the sources of uncertainty in the pa-
rameters of the system that serve as input for Step A. They
are represented by a set of random variables and their joint
probability density function (PDF).

Step C Propagate the uncertainties identified in Step B through the
computational model in Step A to characterise the uncertainty
in the model response. This type of analyses include moments
analysis, full PDF characterisation, rare events estimation, sen-
sitivity analysis, etc.

Step C’ Optionally, exploit the by-products of the analysis in Step C to
update the sources of uncertainty, e.g. by performing model
reduction based on sensitivity analysis.

These components introduce a clear semantic distinction between the el-
ements involved in any UQ problem: model, input and analysis. This
theoretical framework provides the ideal foundation for the development
of the information flow model in a multi-purpose UQ software.

At the core of UQLab lies a modular infrastructure that closely follows the
semantics previously described, graphically represented in Figure B.1b. The
three steps identified in Figure B.1a are directly mapped to core modules
in Figure B.1b: model corresponds to Step A (physical modelling, meta-
modeling), input to Step B (sources of uncertainty) and analysis to Step
C (uncertainty analysis). Within the UQLab framework, a module refers to
some particular functionality, e.g.the GP-module provides Kriging surro-
gate modelling. Each module extends the functionalities of one of the core
modules. It can be either self-contained or capitalise on other modules for
extended functionalities.

The real “actors” of a UQ problem are contained in the objects connected
to each of the core modules. A typical example of such objects would be
an input object that generates samples distributed according to arbitrary
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(a) The theoretical UQ framework based on which any UQ problem can be described.

(b) The modular structure of the UQLab framework. An arbitrary number of objects (Input,
Model, Analysis) can be connected at any stage of the UQ problem.

Figure B.1: An abstract illustration of the UQLab architecture (b) based on the
theoretical UQ framework in (a) by Sudret (2007).

PDFs, a model object that runs a complex FEM simulation, or an analysis

object that performs reliability analysis. The platform allows one to define
an arbitrary number of objects and select the desired ones at various stages
of the solution of a complex UQ problem.

UQLab first became freely available to the academic community on July
2015 as a beta version. On April 2017 the version 1.0 of UQLab was released.
Starting from version 1.0 all the scientific code of the software is open-
source (BSD license). By September 2017 around 1000 users have already
registered and used it.

b.2.2 The GP-module

Kriging is one of the metamodelling modules available in UQLab (Lataniotis
et al., 2018, 2019). Following the semantics described in the previous section,
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it is attached to the model core module. Although the GP-module itself can
be used by other modules, e.g.an analysis module performing reliability
analysis combining Kriging and Monte Carlo Simulation (AK-MCS) (Echard
et al., 2011; Marelli et al., 2019), the focus of this work is on the capabilities
of the GP-module itself.

An overview of the available features of the GP-module is given in Ta-
ble B.1. The GP-module incorporates the four ingredients identified in
Section 4.2:

• Trends: Universal Kriging trends are fully supported, including simple,
ordinary, or polynomial of arbitrary degree. In addition, custom basis
functions f (x) or a completely custom trend function may be specified

• Correlation functions: Standard correlation families from the literature
are readily available as well as the possibility of creating user-defined
ones. For multi-dimensional inputs ellipsoidal and separable corre-
lation functions can be used, allowing also for isotropic ones. Fully
user-specified correlation functions are also supported

• Estimation methods: Maximum likelihood (Eq. (4.22)) and cross-
validation (Eq. (4.24)) methods can be used for estimating the hyper-
parameters

• Optimisation methods: Matlab’s built-in local and global optimisation
methods are offered, namely BFGS and genetic algorithm as well as
genetic algorithm with BFGS refinement (hybrid).

In addition, various scaling operations are allowed for avoiding numerical
instabilities during the hyperparameters estimation. Such operations may
vary from simple zero-mean scaling to more advanced ones such as isoprob-
abilistic transformations by interfacing with other UQLab modules.

Following the general design principle of UQLab concerning user-
friendliness, all the possible configuration options have default values
pre-assigned to allow basic usage of the module with very few lines of code
(see Section B.3.1). A Matlab structure variable is used to specify a Kriging
configuration, called KOptions in the following sections.

To showcase the minimal working code for obtaining a Kriging surrogate
a simple application is considered. The experimental design consists of 8
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random samples in the [0, 15] interval and it is contained in the variable
XED. The “true” model is M(x) = x sin(x) and the corresponding model
responses are stored in the variable YED. The minimal code required for
obtaining a Kriging surrogate, given XED and YED is the following:

KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;

KOptions.ExpDesign.X = XED;

KOptions.ExpDesign.Y = YED;

myKriging = uq_createModel(KOptions);

The first line clarifies the type of UQLab object that is being requested.
Following the general UQ Framework in Figure B.1a a model object of
type ’Metamodel’ is created. The next line specifies the type of metamodel,
followed by the manual specification of the experimental design. Finally
the UQLab command uq_createModel is used in order to create a model

object using the configuration options in KOptions.

The resulting Kriging metamodel object myKriging contains all the required
information to compute the mean and variance of the Kriging predictor on
new test points (X). This can be done using the following command:

[meanY, varY] = uq_evalModel(myKriging, X);

where meanY corresponds to the mean and varY to the variance of the
Kriging predictor on the test points (see Eqs. (4.8), (4.9)).

Once the metamodel is created, a report of the main properties of the
Kriging surrogate model can be printed on screen by:

uq_print(myKriging);

%-------------- Kriging metamodel --------------%

Object Name: Model 1

Input Dimension: 1

Experimental Design

Sampling: User

X size: [8x1]

Y size: [8x1]
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Table B.1: List of features of the UQLab GP-module. The default values for each
property is in bold.

Feature Specification Value Description
Trend Simple A constant term specified by the user

(simple Kriging)
Ordinary A constant term estimated using

Eq. (4.10) (ordinary Kriging)
Polynomial basis The trend in Eq. (4.15) consists of

polynomial basis functions fk of ar-
bitrary degree

Custom basis The trend in Eq. (4.15) consists of
arbitrary functions fk

Custom trend Custom trend function that com-
putes F directly

Correlation Types Separable As described in Eq. (4.16). Both
isotropic and anisotropic variants
are supported.

Ellipsoidal As described in Eq. (4.17). Both
isotropic and anisotropic variants
are supported.

Custom Custom correlation function that
computes R directly

Families Commonly used All the correlation families reported
in Table 4.2 are available

Custom A custom correlation family can be
specified

Estimation ML Maximum-likelihood estimation (see
Eq. (4.22))

CV K-fold Cross-Validation method (see
Eq. (4.24)). Any K value is supported

Optimisation BFGS Gradient-based optimisation
method (Broyden-Fletcher-Goldfarb-
Shanno algorithm). Matlab built-in

GA Global optimisation method (genetic
algorithm). Matlab built-in

HGA Genetic algorithm optimisation with
BFGS refinement
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Trend

Type: ordinary

Degree: 0

Gaussian Process

Corr. Type: ellipsoidal(anisotropic)

Corr. family: matern-5_2

sigma^2: 4.787983e+01

Estimation method: Cross-Validation

Hyperparameters

theta: [ 0.00100 ]

Optim. method: Hybrid Genetic Algorithm

Leave-one-out error: 4.3698313e-01

%-----------------------------------------------%

It can be observed that the default values for the trend, correlation function,
estimation and optimisation method have been assigned (see Table B.1). A
visual representation of the metamodel can be obtained by:

uq_display(myKriging);

Note that the uq_display command can only be used for quickly visualising
Kriging surrogates when the inputs are one- or two-dimensional. The figure
produced by uq_display is shown in Figure B.2.

b.3 application examples

b.3.1 Basic example

The goal of this introductory example is to calculate a Kriging surrogate
of the Branin-Hoo function based on a limited set of observations. The
Branin-Hoo function reads (Forrester et al., 2008):

M(x) = a
(

x2 − bx2
1 + cx1 − r2

)2
+ s (1− t) cos(x1) + s , x ∈ R2. (B.1)
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Figure B.2: The output of uq_display of a Kriging model object having a one-
dimensional input.

Figure B.3: From left to right: the Branin-Hoo function (true model) followed by
the mean and variance of the Kriging predictor. The experimental
design is illustrated by red dots

Some standard values of the parameters are used, namely a = 1, b =
5.1(4π2), c = 5/π, r = 6, s = 10 and t = 1/(8π). The function is evaluated
on the square x1 ∈ [−5, 10], x2 ∈ [0, 15].

By taking advantage of the input and model modules of UQLab, the
experimental design and model responses that will be used for calculating
the surrogate can be generated with minimal effort. First, the probabilistic
input model and the true model are defined as follows:

% Start the UQLab framework

uqlab;

% Specify the probabilistic input model
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IOptions.Marginals(1).Type = ’Uniform’;

IOptions.Marginals(1).Parameters = [-5, 10];

IOptions.Marginals(2).Type = ’Uniform’;

IOptions.Marginals(2).Parameters = [0, 15];

myInput = uq_createInput(IOptions);

% Specify the computational model

MOptions.mString = [’(X(:,2) - 5.1/(2*pi)^2*X(:,1).^2 ...

+ 5/pi*X(:,1) - 6).^2’ ’+ 10*(1-1/(8*pi))*cos(X(:,1)) + 10’];

myModel = uq_createModel(MOptions);

Note that the model object of the Branin-Hoo function can be equally
coded in a Matlab m-file or written as a string (which is a useful feature
for simple demo functions only).

Next, the experimental design XED is generated along with the correspond-
ing true model responses YED. The Latin Hypercube Sampling (LHS) method
is used to obtain a space-filling experimental design of 15 samples (McKay
et al., 1979):

% Draw 15 samples using Latin Hypercube Sampling

XED = uq_getSample(15, ’LHS’);

% Calculate the corresponding model responses

YED = uq_evalModel(myModel, XED);

A Kriging surrogate model using the XED, YED variables can be created as
follows:

KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;

KOptions.ExpDesign.Sampling = ’user’;

KOptions.ExpDesign.X = XED;

KOptions.ExpDesign.Y = YED;

myKriging = uq_createModel(KOptions);

All the required ingredients for obtaining a Kriging surrogate are assigned
default values unless specified by the user (see Section B.2.2). The surrogate
that is obtained can be visually inspected by issuing the command:

uq_display(myKriging);
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The result of the uq_display command is shown in Figure B.3. The Krig-
ing surrogate myKriging can be used like any other model (e.g. myModel)
to calculate its response given a new sample of the input X using the
uq_evalModel function. For example, the mean predictor, meanY, of 100 sam-
ples generated by Monte Carlo sampling can be computed as follows:

X = uq_getSample(100);

meanY = uq_evalModel(myKriging, X);

More information can be extracted from the Kriging predictor using a
slightly different syntax. The following code:

[meanY, varY, covY] = uq_evalModel(myKriging, X);

allows to retrieve the 100 × 1 Kriging mean meanY, the 100 × 1 Kriging
variance varY and the 100× 100 full covariance matrix of the surrogate
model responses covY.

b.3.2 Hierarchical Kriging

To further illustrate the flexibility that can be achieved with the use of
arbitrary trend functions, a hierarchical Kriging application is showcased.
Hierarchical Kriging (Han et al., 2012) is one Kriging extension aiming to
fuse information from experimental designs related to different physical
models of different fidelity. This is achieved by first calculating a Kriging
surrogate using the low-fidelity observations and then using it as the
trend of the high-fidelity surrogate. This approach can be extended to
more fidelity levels in a similar fashion. A set of observations and model
responses is used that originates from aero-servo-elastic simulations of a
wind-turbine as presented in Abdallah et al. (2019). Given a set of input
parameters related to the wind flow, the output of interest is the maximal
bending moment at the blade root of a wind turbine.

Two types of simulators are available for estimating the maximal bending
moment given the wind conditions. A low-fidelity simulator can generate
estimates of the output with minimal computation time at the cost of
lower accuracy. On the other hand a high-fidelity simulator can more
accurately predict the maximal bending moment at a significantly higher
computational cost. In this example a total of 300 low-fidelity and 15 high-
fidelity simulations are available. First a Kriging surrogate is computed on



b .3 application examples 165

2000 4000 6000 8000
1000

2000

3000

4000

5000

6000

7000

8000

Low-fidelity Kriging 
 (RMSE = 0.552)

2000 4000 6000 8000
1000

2000

3000

4000

5000

6000

7000

8000

 

High-fidelity Kriging 
 (RMSE = 0.545)

2000 4000 6000 8000
1000

2000

3000

4000

5000

6000

7000

8000

 

Hierarchical Kriging 
 (RMSE = 0.174)

Figure B.4: Comparison of true model output (from high fidelity simulations)
versus various Kriging surrogates on a validation set of size 150.

the low-fidelity dataset that is contained in variables XED_LF, YED_LF as
follows:

% Create the low-fidelity surrogate

KOptions_LF.Type = ’Metamodel’;

KOptions_LF.MetaType = ’Kriging’;

KOptions_LF.ExpDesign.X = XED_LF;

KOptions_LF.ExpDesign.Y = YED_LF;

KOptions_LF.Corr.Family = ’Matern-3_2’;

myKriging_LF = uq_createModel(KOptions_LF);

Using the same configuration options, another Kriging surrogate is com-
puted using the high-fidelity dataset (XED_HF and YED_HF):

% Create the high-fidelity surrogate

KOptions_HF.Type = ’Metamodel’;

KOptions_HF.MetaType = ’Kriging’;

KOptions_HF.ExpDesign.X = XED_HF;

KOptions_HF.ExpDesign.Y = YED_HF;

KOptions_HF.Corr.Family = ’Matern-3_2’;

myKriging_HF = uq_createModel(KOptions_HF);

Now a hierarchical Kriging surrogate is computed which is trained on the
high-fidelity dataset but uses the low-fidelity Kriging surrogate (i.e.its mean
predictor) as trend:
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% Create the hierarchical Kriging surrogate

KOptions_Hier.Type = ’Metamodel’;

KOptions_Hier.MetaType = ’Kriging’;

KOptions_Hier.ExpDesign.X = XED_HF;

KOptions_Hier.ExpDesign.Y = YED_HF;

KOptions_Hier.Corr.Family = ’Matern-3_2’;

KOptions_Hier.Trend.Type = ’custom’;

KOptions_Hier.Trend.CustomF = @(x) uq_evalModel(myKriging_LF, x);

KOptions_Hier.Scaling = false;

myKriging_Hier = uq_createModel(KOptions_Hier);

The option KOptions_Hier.Scaling refers to the scaling of the input space
before computing the surrogate model. In case of hierarchical Kriging
scaling should be disabled because the low-fidelity surrogate is calculated
on the original data and needs to be used “as is”.

The performance of the different surrogate models is tested on a sepa-
rate validation set of 150 high-fidelity simulations that is contained in the
variables XVAL_HF and YVAL_HF. The output mean Kriging predictor on the
validation set is calculated as follows:

meanY_LF = uq_evalModel(myKriging_LF, XVAL_HF);

meanY_HF = uq_evalModel(myKriging_HF, XVAL_HF);

meanY_Hier = uq_evalModel(myKriging_Hier, XVAL_HF);

where meanY_LF, meanY_HF and meanY_Hier correspond to the low-fidelity,
high-fidelity and hierarchical Kriging predictors respectively.

In Figure B.4 a comparison of the true model output YVAL_HF versus the
mean Kriging predictors is made. In each case the Root Mean Square
Error (RMSE) is reported for quantifying the predictive performance of the
surrogate:

ERMSE =
1

NVar [Y]

N

∑
i=1

(
Y(i) − µ

(i)
Ŷ

)2
(B.2)

where Y denotes the true model outputs (in this case YVAL_HF), µŶ the
Kriging predictor mean (in this case variables meanY_LF, meanY_HF and
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meanY_Hier for each surrogate, respectively) and N the number of samples
in the validation set.

In this example, by taking advantage of the low-cost, low-fidelity obser-
vations, the hierarchical Kriging predictor achieves a 68% decrease of the
RMSE on the validation set compared to the Kriging model that was solely
based on the high-fidelity measurements. Moreover, by inspecting the mean
responses of each Kriging predictor in Figure B.4 it is clear that the hierar-
chical Kriging surrogate significantly reduces the prediction bias compared
to the low- and high-fidelity ones taken as standalone. As demonstrated by
this application, building a hierarchical Kriging surrogate model requires
minimal effort thanks to the customisability of the GP-module.

b.3.3 Kriging with custom correlation function

This example illustrates how the correlation function customisation capa-
bilities of the GP-module can be used to apply Kriging in a non-standard
setting.

Consider the discontinuous subsurface model given in Figure B.5, which
may represent the distribution of some soil property (e.g. porosity) in the
presence of a fault. The true model consists in two realisations of two
distinct random processes on the two regions A1 and A2 at the left and
right of the fault, respectively:

M(x) =

{
Z1(x, R(θ1)), x ∈ A1

Z2(x, R(θ2)), x ∈ A2
(B.3)

where x = {x1, x2} represents the spatial coordinates in the 2D do-
main, Z1 (resp. Z2) are realisations of a Gaussian process characterised
by a correlation function with length scales θ1 = {θ11, θ12} (resp. θ2 =
{θ21, θ22}).

A Kriging surrogate model will be calculated using the following correlation
function:
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Figure B.5: Graphical visualisation of the subsurface model. The unknowns
(length scales of each random field and the fault angle) are denoted
by red colour.

R(x, x′;θ) =





R(x, x′; θ̂1), (x, x′) ∈ A1 × A1

R(x, x′; θ̂2), (x, x′) ∈ A2 × A2

0 otherwise

(B.4)

where θ = {θ1,θ2, α}. There is a smooth dependence on x1, x2 within each
region, but no correlation between points that belong to different regions.
The boundary between the two regions is fully defined by the crack angle,
α, which is unknown and the fault location that is assumed to be known
({x1, x2} = {0.6, 1}). The goal here is to use Kriging to interpolate the
measurements taken at borehole locations A,B and C and estimate the
5 unknown parameters θ = {θ1,θ2, α}. The correlation function of each
region is the same, both in the true model and the Kriging surrogate, i.e.it
is assumed to be known. In particular, the correlation function is separable
Matérn 3/2 (see Eq. (4.16) and Table 4.2). The maximum-likelihood method
is selected for estimating θ. Due to the complexity of the underlying optimi-
sation problem a hybrid genetic algorithm with a relatively large population
size and maximum number of generations is selected.

A Matlab implementation of the correlation function in Eq. (B.4) is given
in Appendix B.5. This Matlab function is called my_eval_R in the following
code snippet.
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Figure B.6: From left to right: The true permeability of the soil, followed by the
mean and variance of the Kriging predictor. The experimental design
is illustrated by red dots.

The Kriging surrogate is created next, based on a limited set of observations
contained in the variables BoreholeLocations and BoreValues, which con-
tain the locations of the measurements along the boreholes and the value
of the desired property, respectively.

KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;

KOptions.ExpDesign.X = BoreholeLocations;

KOptions.ExpDesign.Y = BoreValues;

KOptions.Corr.Handle = @my_eval_R;

% Add upper and lower bounds on the optimization variables

BoundsL = [0.3 0.1 0.3 0.1 pi/6] ;

BoundsU = [0.9 0.5 0.9 0.5 5*pi/6] ;

KOptions.Optim.Bounds =[BoundsL ;BoundsU];

KOptions.Optim.Method = ’HGA’;

KOptions.Optim.HGA.nPop = 60;

KOptions.Optim.MaxIter = 50;

KOptions.EstimMethod = ’ML’;

KOptions.Scaling = False;

myKriging = uq_createModel(KOptions);

Once the Kriging metamodel has been computed, the mean and variance of
the Kriging predictor can be quickly visualised for 1D and 2D models using
the uq_display command, which produces a plot similar to Figure B.6,
except in a smaller domain determined by the range of the points in the ex-
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Parameter θ11 θ12 θ21 θ22 α

True value 0.600 0.250 0.900 0.350 1.309
Estimated value 0.310 0.271 0.310 0.374 1.342
Relative error (%) 48.3 8.2 65.6 6.9 2.5

Table B.2: Listing of the true and estimated correlation function parameters, θ,
for the Kriging surrogate of the subsurface model.

perimental design. A comparison between the true and the estimated values
of θ is given in Table B.2. As expected, the accuracy of the hyperparameters
estimation is low due to the limited dispersion of the experimental design.
The error of the length scale estimates along the x1 direction is consistently
larger due to the lack of samples along that direction. From a coding per-
spective, although the correlation function that is used is relatively complex,
it is straightforward to use in a Kriging surrogate once coded as a Matlab

function (by setting the KOptions.Corr.Handle value appropriately). More-
over, custom correlation functions are allowed to have an arbitrary number
of hyperparameters. The only requirement is that the optimisation bounds
(or initial value, depending on the optimisation method that is used) must
have the same length as the number of the hyperparameters.

b.4 summary and outlook

In this paper the GP-module of the UQLab software framework was pre-
sented. This UQLab module enables practitioners from various disciplines
to get started with Kriging metamodelling with minimal effort as was
illustrated in the introductory application in Section B.3.1. However, it
is also possible to access more advanced customisation, e.g. for research
purposes. This was showcased in Section B.3.2 where a hierarchical Kriging
metamodel was developed and in Section B.3.3 where a relatively complex,
non-stationary correlation function was used to solve a geostatistical inverse
problem. The GP-module is freely available to the academic community
since the first beta release of UQLab in July 2015.

Future improvements of the GP-module include offering support for noisy-
observations (a.k.a. Gaussian process regression) and providing built-in
optimisation tools to relax the current toolbox requirements of the GP-
module.
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In addition to the modules currently exploiting its functionality (Polynomial
Chaos-Kriging and Reliability analysis (Marelli et al., 2019; Schöbi et al.,
2019)), new UQLab modules that interface with the GP-module are currently
under active development. The upcoming random fields module will offer
several random field types (conditional and unconditional) together with
advanced sampling methodologies and will be interfaced with the GP-
module to offer trajectory resampling capabilities. The upcoming Reliability-
Based Design Optimisation (RBDO) module uses the surrogate modelling
capabilities of the GP-module for solving RBDO problems as described in
Moustapha et al. (2016).

b.5 kriging with custom correlation function : implementa-
tion details

The aim of this section is to provide some additional implementation details
on the application example in Section B.3.3, in terms of the Matlab code
involved. The correlation function described in Eq. (B.4) can be translated
to the following Matlab function:

function R = my_eval_R( x1,x2,theta,parameters )

xc = 0.6; % the x-location of the crack on the surface

yc = 1 ; % the y-location of the crack on the surface

length_scales_1 = theta(1:2);

length_scales_2 = theta(3:4);

crack_angle = theta(5) ;

% find the angles of each sample of x1

angles_x1 = acos( (xc - x1(:,1))./sqrt((x1(:,1) - xc).^2 + ...

(x1(:,2) - yc).^2 ) );

% find the indices of x1 that belong to first region

idx_x1_1 = angles_x1 <= crack_angle;

% find the indices of x1 that belong to second region

idx_x1_2 = ~idx_x1_1;

% find the angles of each sample of x2

angles_x2 = acos( (xc - x2(:,1))./sqrt((x2(:,1) - xc).^2 + ...

(x2(:,2) - yc).^2 ) );

% find the indices of x2 that belong to first region
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idx_x2_1 = angles_x2 <= crack_angle;

% find the indices of x2 that belong to second region

idx_x2_2 = ~idx_x2_1;

% set-up various correlation function options so that we can

% re-use the built-in UQLab function for evaluating R in each

% region

CorrOptions.Type = ’separable’;

CorrOptions.Family = ’Matern-3_2’;

CorrOptions.Isotropic = false;

CorrOptions.Nugget = 1e-2;

% initialize R matrix

R = zeros(size(x1,1), size(x2,1));

% Compute the R values in region 1

R(idx_x1_1,idx_x2_1) = uq_Kriging_eval_R( ...

x1(idx_x1_1,:), x2(idx_x2_1,:), length_scales_1, CorrOptions);

% Compute the R values in region 2

R(idx_x1_2,idx_x2_2) = uq_Kriging_eval_R( ...

x1(idx_x1_2,:), x2(idx_x2_2,:), length_scales_2, CorrOptions);

end

The provided code, although vectorised, is optimised for readability and
not performance. To that end, the internal function of the GP-module
uq_Kriging_eval_R is used for calculating the correlation function value in
each of the regions.
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E X T E N D E D R E S U LT S A N D I M P L E M E N TAT I O N
R E M A R K S

c.1 implementation details regarding the drsm applica-
tions

This section provides an extensive list of the configuration parameter values
that were used to produce the results in Section 5.4. Table C.1 lists the
configuration parameters of Kriging surrogate models whereas Table C.2 of
PCE ones. For each surrogate method a distinction is made, in terms of the
parameters used, between the proxy (i.e. low computational cost) surrogate
and the high-accuracy one. The proxy surrogates were used for solving
the nested optimisation problem of DRSM in Eqs. (5.6), (5.7). The same
configuration was used to calculate the high-accuracy surrogates regardless
of the input compression method (DRSM or disjoint PCA/KPCA).

The parameters of the DRSM-based optimisation are listed in Table C.3.
Note that, the exact same optimisation algorithm and parameters were used
for optimising w w.r.t. the KPCA reconstruction and point-wise distance
error in the method comparison box-plots. Note that the optimisation
constraints differ from the ones reported in Table C.3 when a polynomial
kernel is used in KPCA (see Table 3.1) for improved numerical stability
of the solver. On top of the box constraints reported in the table, that still
apply for w1 and w2, the variable w3 (degree) is constrained to integer
values 1 ≤ w3 ≤ 4 instead. In addition, the following non-linear constraint
is included:

w1xTx′ + w2 > 1. (C.1)

173
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Table C.1: The configuration of the Kriging surrogates that were calculated dur-
ing the various steps of DRSM for each application example.

Application Sobol’ function Resistor net-
works

2D diffusion

1. Proxy surrogate configuration
Trend constant (P =

0)
linear (P = 1) linear (P = 1)

Correlation family isotropic Matèrn (Table 4.2) with ν = 5/2
Estimation
method

Cross-validation (Eq. (4.24))

Optim. method Genetic algorithm (GA) with BFGS (gradient
based) refinement of final solution

Optim. contraints θ ∈ [0.01, 100]
Population size
(GA)

10

Max. iterations: 20 for both GA and BFGS
2. High-accuracy surrogate configuration. Only the parameters
that differ from the proxy surrogate configuration are listed
Correlation family anisotropic Matèrn with ν = 5/2
Population size
(GA)

20

Max. iterations: 50 for both GA and BFGS
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Table C.2: The configuration of the PCE surrogates that were calculated during
the various steps of DRSM for each application example

Application Sobol’ function Resistor net-
works

2D diffusion

1. Proxy surrogate configuration
Coeff. calculation
method

Ordinary least squares (Berveiller et al., 2006)

Univariate polyno-
mials family

Legendre

Hyperbolic trunca-
tion q (Blatman
and Sudret, 2010)

0.75 0.50 0.65

Polynomial degree
(adaptive search
range)

[1, 10] [1, 10] [1, 5]

2. High-accuracy surrogate configuration. Only the parameters
that differ from the proxy surrogate configuration are listed
Coeff. calculation
method

Hybrid least angle regression (Blatman and Su-
dret, 2011)

Univariate polyno-
mials family

Orthogonal to the probability density function
of the input variables that is estimated by
kernel-smoothing, using the Stieltjes procedure
(Gautschi, 2004)

Hyperbolic trunca-
tion q (Blatman
and Sudret, 2010)

0.75

Polynomial degree
(adaptive search
range)

[1, 15]
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Table C.3: Parameters of the DRSM optimisation algorithm

Application Sobol’ function Resistor net-
works

2D diffusion

Optim. method Genetic algorithm with BFGS (gradient based)
refinement of final solution

Optim. con-
straints

w ∈ [0.1, 300]

Population
size(GA):

20 for isotropic
KPCA ker-
nels, 80 for
anisotropic

20 for isotropic
KPCA ker-
nels, 100 for
anisotropic

20 (only
isotropic KPCA
kernels were
considered)

Max. iterations: 80 for both GA
and BFGS

150 for both GA
and BFGS

80 for both GA
and BFGS
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c.2 extended results on high-dimensional uncertainty prop-
agation

In the following sections we provide additional visualisations related to
the performance of the reduced dimension resampling technique, ap-
plied on the benchmark applications in Section 6.3. In Section C.2.1
(resp. Sections C.2.2 and C.2.3) two groups of plots are shown. The first
group provides a comparison between the true fY (inferred from the
validation set) and the approximate PDFs that where calculated by the
RDR technique using a varying number of experimental design samples
N ∈ {100, 200, 400, 800}. The second group of plots shows an extended
version of the quantile estimates by RDR discussed in Section 6.3.1 (resp.
Sections 6.3.2 and 6.3.3), including the N cases that were omitted from the
main text.
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c.2.1 Sobol function

(a) Vertical axis in linear scale

(b) Vertical axis in logarithmic scale

Figure C.1: Sobol function: comparison between the response PDF approximation
using either true or artificial samples by RDR, using an experimental
design of varying size.
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(a) N = 100 (b) N = 200

(c) N = 400 (d) N = 800

Figure C.2: Sobol function: quantile estimates comparison.
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c.2.2 Electrical resistor network

(a) Estimated PDF comparison

(b) Estimated PDF comparison (logarithmic scale)

Figure C.3: Resistor networks: comparison between the response PDF approx-
imation using either true or artificial samples by RDR, using an
experimental design of varying size.
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(a) N = 100 (b) N = 200

(c) N = 400 (d) N = 800

Figure C.4: Resistor networks: quantile estimates comparison.
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c.2.3 2D heat diffusion

(a) Estimated PDF comparison

(b) Estimated PDF comparison (logarithmic scale)

Figure C.5: 2D heat diffusion: comparison between the response PDF approx-
imation using either true or artificial samples by RDR, using an
experimental design of varying size.
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(a) N = 100 (b) N = 200

(c) N = 400 (d) N = 800

Figure C.6: 2D heat diffusion: quantile estimates comparison.

c.3 time series feature extraction using tsfresh

For the SHM application in Chapter 7, the python package TSFRESH was
used in some of the compression setups, as shown in Figure 7.3. It corre-
sponds to a transform of the form gTSFRESH(X) =

{
A1(X), . . . , AMA(X)

}
,

where each feature Ai(X) corresponds to a different operation on X. Notice
that feature extraction may not necessarily imply dimensionality reduction.
The main motivation of this step is not to compress the input space but
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to identify an alternative representation that makes it more suitable for
constructing a surrogate model.

The list of the extracted features is given in Table C.4. To understand the
exact expression of each Ai(X), this list should be used in conjunction to
the reference list provided by Christ et al. (2018). We adopt the naming
scheme of TSFRESH, where the name of each feature is constructed by
concatenating:

• The name of the feature extractor. This refers to one of the available
methods in tsfresh.feature_extraction.feature_calculators

• The name and value of each parameter supplied to the feature extrac-
tor (if any)

• The name of the attribute that the feature corresponds to. This is
only relevant for feature extractors that return more than one values
(attributes)

After calculating all the features listed below, a simple selection step takes
place. Only the ones with non-zero variance across the experimental de-
sign are retained. This results to using 698 features for each inflow wind
component (as shown in Figure 7.3) instead of 788.

Table C.4: The features extracted using TSFRESH.
Index Name

1 abs_energy

2 absolute_sum_of_changes

3 agg_autocorrelation__f_agg_"mean"

4 agg_autocorrelation__f_agg_"median"

5 agg_autocorrelation__f_agg_"var"

6 agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"intercept"

7 agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"rvalue"

8 agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"slope"

9 agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"stderr"

10 agg_linear_trend__f_agg_"max"__chunk_len_50__attr_"intercept"

11 agg_linear_trend__f_agg_"max"__chunk_len_50__attr_"rvalue"

12 agg_linear_trend__f_agg_"max"__chunk_len_50__attr_"slope"
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Table C.4: The features extracted using TSFRESH.
Index Name

13 agg_linear_trend__f_agg_"max"__chunk_len_50__attr_"stderr"

14 agg_linear_trend__f_agg_"max"__chunk_len_5__attr_"intercept"

15 agg_linear_trend__f_agg_"max"__chunk_len_5__attr_"rvalue"

16 agg_linear_trend__f_agg_"max"__chunk_len_5__attr_"slope"

17 agg_linear_trend__f_agg_"max"__chunk_len_5__attr_"stderr"

18 agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"intercept"

19 agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"rvalue"

20 agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"slope"

21 agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"stderr"

22 agg_linear_trend__f_agg_"mean"__chunk_len_50__attr_"intercept"

23 agg_linear_trend__f_agg_"mean"__chunk_len_50__attr_"rvalue"

24 agg_linear_trend__f_agg_"mean"__chunk_len_50__attr_"slope"

25 agg_linear_trend__f_agg_"mean"__chunk_len_50__attr_"stderr"

26 agg_linear_trend__f_agg_"mean"__chunk_len_5__attr_"intercept"

27 agg_linear_trend__f_agg_"mean"__chunk_len_5__attr_"rvalue"

28 agg_linear_trend__f_agg_"mean"__chunk_len_5__attr_"slope"

29 agg_linear_trend__f_agg_"mean"__chunk_len_5__attr_"stderr"

30 agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"intercept"

31 agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"rvalue"

32 agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"slope"

33 agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"stderr"

34 agg_linear_trend__f_agg_"min"__chunk_len_50__attr_"intercept"

35 agg_linear_trend__f_agg_"min"__chunk_len_50__attr_"rvalue"

36 agg_linear_trend__f_agg_"min"__chunk_len_50__attr_"slope"

37 agg_linear_trend__f_agg_"min"__chunk_len_50__attr_"stderr"

38 agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"intercept"

39 agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"rvalue"

40 agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"slope"

41 agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"stderr"

42 agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"intercept"

43 agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"rvalue"

44 agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"slope"

45 agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"stderr"
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Table C.4: The features extracted using TSFRESH.
Index Name

46 agg_linear_trend__f_agg_"var"__chunk_len_50__attr_"intercept"

47 agg_linear_trend__f_agg_"var"__chunk_len_50__attr_"rvalue"

48 agg_linear_trend__f_agg_"var"__chunk_len_50__attr_"slope"

49 agg_linear_trend__f_agg_"var"__chunk_len_50__attr_"stderr"

50 agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"intercept"

51 agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"rvalue"

52 agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"slope"

53 agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"stderr"

54 ar_coefficient__k_10__coeff_0

...
...

57 ar_coefficient__k_10__coeff_3

58 ar_coefficient__k_10__coeff_4

59 augmented_dickey_fuller__attr_"pvalue"

60 augmented_dickey_fuller__attr_"teststat"

61 augmented_dickey_fuller__attr_"usedlag"

62 autocorrelation__lag_0

...
...

71 autocorrelation__lag_9

72 binned_entropy__max_bins_10

73 c3__lag_1

74 c3__lag_2

75 c3__lag_3

76 change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.0

77 change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.2

78 change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.4

79 change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.6

80 change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.8

81 change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.0

82 change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.2

83 change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.4

84 change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.6

85 change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.8
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Table C.4: The features extracted using TSFRESH.
Index Name

86 change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0

87 change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.2

88 change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.4

89 change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.6

90 change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.8

91 change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.0

92 change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.2

93 change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.4

94 change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.6

95 change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.8

96 change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0

97 change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2

98 change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4

99 change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.6

100 change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.8

101 change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0

102 change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.2

103 change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.4

104 change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.6

105 change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.8

106 change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.0

107 change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2

108 change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.4

109 change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.6

110 change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.8

111 change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0

112 change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.2

113 change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4

114 change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.6

115 change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.8

116 change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0

117 change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.2

118 change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4
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Table C.4: The features extracted using TSFRESH.
Index Name

119 change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6

120 change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.8

121 change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0

122 change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2

123 change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4

124 change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.6

125 change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8

126 change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0

127 change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.2

128 change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.4

129 change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.6

130 change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.8

131 change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.0

132 change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2

133 change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.4

134 change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.6

135 change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.8

136 change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0

137 change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2

138 change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4

139 change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.6

140 change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.8

141 change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0

142 change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2

143 change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4

144 change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6

145 change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.8

146 change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0

147 change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2

148 change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4

149 change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6

150 change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.8

151 change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.0
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Table C.4: The features extracted using TSFRESH.
Index Name

152 change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.2

153 change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.4

154 change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.6

155 change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.8

156 change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0

157 change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2

158 change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.4

159 change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.6

160 change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.8

161 change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0

162 change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.2

163 change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4

164 change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.6

165 change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.8

166 change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0

167 change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2

168 change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4

169 change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6

170 change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.8

171 change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0

172 change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2

173 change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4

174 change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.6

175 change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8

176 cid_ce__normalize_False

177 cid_ce__normalize_True

178 count_above_mean

179 count_below_mean

180 cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_10

181 cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_2

182 cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_20

183 cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_5
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Table C.4: The features extracted using TSFRESH.
Index Name
...

...

239 cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_5

240 energy_ratio_by_chunks__num_segments_10__segment_focus_0

241 energy_ratio_by_chunks__num_segments_10__segment_focus_1

...
...

249 energy_ratio_by_chunks__num_segments_10__segment_focus_9

250 fft_aggregated__aggtype_"centroid"

251 fft_aggregated__aggtype_"kurtosis"

252 fft_aggregated__aggtype_"skew"

253 fft_aggregated__aggtype_"variance"

254 fft_coefficient__coeff_0__attr_"abs"

255 fft_coefficient__coeff_0__attr_"angle"

256 fft_coefficient__coeff_0__attr_"imag"

257 fft_coefficient__coeff_0__attr_"real"
...

...

650 fft_coefficient__coeff_99__attr_"abs"

651 fft_coefficient__coeff_99__attr_"angle"

652 fft_coefficient__coeff_99__attr_"imag"

653 fft_coefficient__coeff_99__attr_"real"

654 first_location_of_maximum

655 first_location_of_minimum

656 friedrich_coefficients__m_3__r_30__coeff_0

657 friedrich_coefficients__m_3__r_30__coeff_1

658 friedrich_coefficients__m_3__r_30__coeff_2

659 friedrich_coefficients__m_3__r_30__coeff_3

660 has_duplicate

661 has_duplicate_max

662 has_duplicate_min

663 index_mass_quantile__q_0.1
...

...

670 index_mass_quantile__q_0.9
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Table C.4: The features extracted using TSFRESH.
Index Name

671 kurtosis

672 large_standard_deviation__r_0.05

673 large_standard_deviation__r_0.1
...

...

690 large_standard_deviation__r_0.95

691 last_location_of_maximum

692 last_location_of_minimum

693 length

694 linear_trend__attr_"intercept"

695 linear_trend__attr_"pvalue"

696 linear_trend__attr_"rvalue"

697 linear_trend__attr_"slope"

698 linear_trend__attr_"stderr"

699 longest_strike_above_mean

700 longest_strike_below_mean

701 max_langevin_fixed_point__m_3__r_30

702 maximum

703 mean

704 mean_abs_change

705 mean_change

706 mean_second_derivative_central

707 median

708 minimum

709 number_crossing_m__m_-1

710 number_crossing_m__m_0

711 number_crossing_m__m_1

712 number_cwt_peaks__n_1

713 number_cwt_peaks__n_5

714 number_peaks__n_1

715 number_peaks__n_10

716 number_peaks__n_3

717 number_peaks__n_5
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Table C.4: The features extracted using TSFRESH.
Index Name

718 number_peaks__n_50

719 partial_autocorrelation__lag_0

720 partial_autocorrelation__lag_1

...
...

728 partial_autocorrelation__lag_9

729 percentage_of_reoccurring_datapoints_to_all_datapoints

730 percentage_of_reoccurring_values_to_all_values

731 quantile__q_0.1

732 quantile__q_0.2
...

...

738 quantile__q_0.9

739 range_count__max_1__min_-1

740 ratio_beyond_r_sigma__r_0.5

741 ratio_beyond_r_sigma__r_1

742 ratio_beyond_r_sigma__r_1.5

743 ratio_beyond_r_sigma__r_10

744 ratio_beyond_r_sigma__r_2

745 ratio_beyond_r_sigma__r_2.5

746 ratio_beyond_r_sigma__r_3

747 ratio_beyond_r_sigma__r_5

748 ratio_beyond_r_sigma__r_6

749 ratio_beyond_r_sigma__r_7

750 ratio_value_number_to_time_series_length

751 skewness

752 spkt_welch_density__coeff_2

753 spkt_welch_density__coeff_5

754 spkt_welch_density__coeff_8

755 standard_deviation

756 sum_of_reoccurring_data_points

757 sum_of_reoccurring_values

758 sum_values

759 symmetry_looking__r_0.0
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Table C.4: The features extracted using TSFRESH.
Index Name

760 symmetry_looking__r_0.05

...
...

778 symmetry_looking__r_0.95

779 time_reversal_asymmetry_statistic__lag_1

780 time_reversal_asymmetry_statistic__lag_2

781 time_reversal_asymmetry_statistic__lag_3

782 value_count__value_-inf

783 value_count__value_0

784 value_count__value_1

785 value_count__value_inf

786 value_count__value_nan

787 variance

788 variance_larger_than_standard_deviation
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