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Résumé

Des méthodes d’énergie adaptées permettent d’obtenir la localisation spatiale, ’extinction en temps
fini et la propriété de temps d’attente de solutions d’équations aux dérivées partielles. Ces trois types
de propriétés sont ainsi regroupés car les méthodes mathématiques pour y parvenir sont tres proches.
Les travaux présentés dans une grande partie de cette habilitation a diriger des recherches concernent
les deux premieres propriétés que l'on applique & des équations de Schrodinger (stationnaires et
d’évolution) avec un terme d’amortissement. Tout d’abord, des théorémes d’existence et/ou d’unicité
sont démontrés. Puis, une étude qualitative des solutions est effectuée : phénomene de localisation,
pour ’équation stationnaire et extinction en temps fini, pour ’équation d’évolution.

Une partie plus mince concerne la stabilisation en temps infinie de solutions des équations des ondes et
des poutres a l'aide, également, d’un terme d’amortissement. Ce dernier permet d’obtenir I’extinction
en temps infinie des solutions. On commence par établir une inégalité généralisée de Holder. Puis, a
I’aide de celle-ci, on donne la vitesse de convergence de I’énergie associée a chaque solution.

Une autre partie traite de I’étude d’un systeme gradient du second ordre. Ici encore, un terme d’amor-
tissement est présent impliquant, sous des hypotheses adéquats, I’extinction en temps infinie des solu-
tions. En déformant ’énergie totale du systeme et en utilisant I'inégalité de Kurdyka-Lojasiewicz, on
montre que ce systeme gradient amorti du second ordre et les systéemes quasi-gradients sont de méme
nature. Par ailleurs, on donne les vitesses de convergence des solutions.

Dans une derniére partie, on s’intéresse a 1’équation de Schrodinger dont la non-linéarité est critique
pour la masse. On montre a I’aide d’une inégalité améliorée de Strichartz que, pres du temps d’explo-

sion, la masse de la solution se concentre dans une boule de rayon nulle.

Mots-clés : équation amortie, systeme dynamique dissipatif, systeme gradient, méthode d’énergie, so-
lution & support compact, extinction en temps fini/infini, comportement asymptotique, stabilisation,
existence globale, unicité, solution auto-semblable, explosion en temps fini, inégalité généralisée de

Holder, inégalité de Kurdyka-Lojasiewicz, inégalité améliorée de Strichartz.

Key words : damped equation, dissipative dynamical systems, gradient systems, inertial systems,
compactly supported solution, finite time extinction, asymptotic behavior, stabilization, global exis-
tence, uniqueness, self-similar solution, finite time blow-up, generalized Holder’s inequality, Kurdyka-

Lojasiewicz inequality, generalized Strichartz’s estimate
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Introduction

Chapitres 16 : Etudes spatiale et asymptotique pour des équa-
tions de Schrédinger non-linéaires amorties ([24, 25, 26, 27, 28,

; 20]

Dans ces chapitres, on s’intéresse a des équations de Schrodinger avec un terme d’amortissement :

0

ia—? + Au+ alu| =™y = f(t,x), dans R x Q,

ur =0, dans R x T, (1)
u(0) = up, dans ,

pour I'équation d’évolution, et

{iAu+a|u|(1m)u+bu = F, dans (, @

ur =0, sur I,

pour I’équation stationnaire. Ici, (a,b) € C?, 0 < m < 1, Q C RY est un ouvert et les termes sources
f et F, et la donnée initiale ug sont choisis dans un espace adéquat. Le but est de savoir s’il existe
des solutions & support compact ou bien qui s’annulent en temps fini.

Chapitre 1 : Estimation et localisation du support pour I’équation
stationnaire

Ce chapitre concerne I’équation (2). Des hypotheses sont faites pour obtenir I'existence et 'unicité de
solution. On peut les formuler de la maniere géométrique suivante.

Hypothése d’Existence 1. Soit (a,b) € C2. Alors [a,b] NR_ x i{0} = 0.
Hypotheéses d’Unicité 2. Soit (a,b) € C2. Alors a # 0, Re(a) > 0 et s >0".

Formulées ainsi, I’hypothese d’unicité implique I’hypothese d’existence. Les résultats principaux de ce
chapitre peuvent s’énoncer ainsi (Théorémes 1.4.1 et 1.5.2).

—
1. ou de fagon équivalente, |mes(@, b )| < 5 rad.
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Théoréme 3. Soient Q C RY un ouvert non vide et 0 < m < 1. Si le couple (a,b) satisfait I’Hypothése
d’Existence 1, avec éventuellement b = 0, alors pour n’importe quel F € L™ (©;C), l’équation (2)
admet au moins une solution u € H(2) N L™Y(Q). Si de plus I’Hypothése d’Unicité 2 est vérifiée

alors la solution est unique.

L’existence s’obtient de la fagon suivante. On commence par obtenir des estimations a priori. On
approxime ensuite 1’équation avec une suite de non-linéarités tronquées a ’aide du Théoreme de point
fixe de Schauder, puis on passe a la limite. L’unicité s’obtient en disant que, en gros, la non-linéarité
est la différentielle d’une fonction convexe et est donc monotone. Concernant la compacité du support
des solutions, le résultat est celui ci-dessous (Théoremes 1.3.5 et 1.3.6).

Théoréme 4. Soient Q@ C RN un ouvert non vide, 0 < m < 1 et (a,b) satisfaisant I’Hypothése
d’Existence 1, avec éventuellement b = 0.

m+1

1. Soient F € L™ w (C) et u € HF(Q) N L™H(Q) une solution quelconque de (2). Si F est
a support compact et si ||FHLL+1(Q) est suffisamment petite alors u est & support compact et
suppu C €.

2. Soient F € LP(RYN;C), pour un p € [1,00], et u € HY(RN) N L™THRYN) une solution quelconque
de (2). Si F' est a support compact alors u est & support compacte.

La démonstration du Théoreme 4 est pour le moins technique et repose sur une méthode d’énergie. Elle
fait appel, entre autres, & une inégalité de trace-interpolation (voir (1.7.12)). A Iaide des Théorémes 3
et 4, on peut construire des solutions & support compact en espace pour I’équation (1) de la fagon
suivante. Soient @ € C tel que a € Ry, b € RY, 0 <m < let F € Lmﬁtl(RN;(C). Soient alors
ug € HYRY) N L™*TH(RY) une solution de (2) donnée par le Théoreme 3, avec —a, au lieu de a et
—F, au lieu de F. On pose pour tout t € R, f(t) = Fe'® et u(t) = upel®. Alors on vérifie aisément
que u € C°(R; HY(RV) N L™+1(RY)) est une solution de (1) pour un tel f. Le Théoréme 4 donne

alors le résultat suivant.

Corollaire 5. Avec les hypothéses et notations ci-dessus, si F' est a support compact alors pour tout

t € R, suppu(t) = supp F.

Chapitre 2 : Existence de solutions faibles pour des équations
de Schrodinger stationnaires amorties

A ce stade, deux choses sont insatisfaisantes :

— le résultat de compacité pour les solutions de 1’équation d’évolution est trop restrictif (Corol-
laire 5),

— I’hypothese F' € L™+ est moins naturelle et plus restrictive que 'hypothése F' € L? (au moins
lorsque || est de mesure finie car dans ce cas, et puisque 0 < m < 1, LL#(Q) C L3(Q)).

Pour ce dernier point, le choix est d’établir des résultats analogues au Chapitre 1, avec F' € L? (quitte
a exclure la valeur b = 0) et d’y inclure la condition de Neumann homogene au bord. On s’intéresse
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donc également a,

—iAu + alu|"O"™y 4 bu = F, dans Q,
ou 0 3)

— = sur I
ov|r ’

Evidemment, on considérera systématiquement dans ce cas que 'ouvert € est borné et de classe C*.

Concernant le premier point, I'idée est de se concentrer sur les solutions auto-semblables. En effet,
établir un résultat de compacité en espace des solutions pour 1'équation (1) est a ce jour encore trop
difficile. D’ou le choix de regarder d’abord les solutions auto-semblables car on peut se ramener a
une équation stationnaire de la fagon (bien connue) suivante. Pour des raison d’homogénéité, f doit
vérifier,

YA >0, f(t,2) = A" Tom f(A%L, Az), (4)

pour tout ¢ > 0 et presque tout x € RY. Des solutions auto-semblables u de (1) sont des solutions qui
s’écrivent sous la forme,

~

u(t,z) = t=m U (\2) , (5

pour tout ¢ > 0 et presque tout € RY, ou le profil U est solution de,

i

AU — a|U[" =m0y - U+ %x.VU: —f(1).

1—-m

. s . _il=l? NI
En effectuant le changement (également trés connu) d’inconnue g(x) = U(x)e ' "5, on se ramene a

I’étude de,

N1—-m)+4 1 =2
~Ag—alg|~t Mg —i——— T "y |z]2g=—f(1)e s 6
g — alg| T 16l =—f(L)e ; (6)
que l'on peut généraliser sous la forme,

—Av +alo|" ™y 4+ b + V20 = H, (7)

ou V est un potentiel réel et ¢ est un nombre complexe. En adaptant la démonstration du Théoréme 3,
on obtient les résultats suivants (Théoremes 2.2.1, 2.2.4, 2.2.8, et 2.2.10).

Théoréme 6. Soient Q@ C RN un ouvert non vide et 0 < m < 1. Si le couple (a,b) satisfait I’Hypothése
d’Existence 1 alors pour n’importe quel F € L?(2;C), les équations (2) et (3) admettent au moins
une solution uw € H' () N L™TY(Q). Si de plus I’Hypothése d’Unicité 2 est vérifiée alors la solution
est unique.

Théoréme 7. Soient Q@ C RN un ouvert non vide, V.€ L¥(Q;R), 0 < m < 1 et a, b et c des
nombres complezes tels que Im(a) < 0, Im(b) < 0 et Im(c) < 0. Alors pour n’importe quel H €
L2(Q; C), Uéquation (7) admet au moins une solution v € H(Q)N L™ (Q), avec Dirichlet homogéne
ou Neumann homogéne comme condition au bord. Si de plus I’Hypothése d’Unicité 2 est vérifiée et

a.7 > 0 alors la solution est unique.
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Théoreme 8. Soient les hypotheses et notations du Théoréme 6. On suppose que F est a support
compact. Si l'une des conditions ci-dessous est satisfaite alors n’importe quelle solution u est a support
compact et suppu C €.

1. Q =RV,
2. we Hy(Q) et ||F|lL2q) est suffisamment petite.

Ju
3. L’Hypothese d’Unicité 2 est vérifiée, o =0 et [|[F|[12(q) est suffisamment petite.
vir

Le résultat suivant permet d’obtenir des solutions pour I’équation (2), sans restrictions sur a, & laide
de I'inégalité de Poincaré,

Vu € Hy (), |lullz2() < CelVullL2()- (8)
qui est valable des que €2 est de mesure finie.

Théoréme 9. Soient Q C RN un ouvert non vide de mesure finie, 0 < m < 1 et (a,b) € C2. Si
b € R* alors on suppose de plus que bC3 > —1, ot Cp est la meilleure constante dans (8). Alors
pour n’importe quel F € L*(Q;C), I’équation (2) admet au moins une solution u € H}(Q). Si de plus

UHypothese d’Unicité 2 est vérifiée alors la solution est unique.

Chapitre 3 : Méthode d’énergie affinée pour la localisation du
support de solutions d’équations de Schrodinger non-linéaires
amorties

Bien que cités sous une forme globale, les théorémes de localisation spatiale sont des résultats locaux.
Ils se démontrent avec une méthode d’énergie issue du livre de Antontsev, Diaz et Shmarev [11].
Cette méthode est treés bien adaptée pour les équations scalaires et les systémes mais elle s’avere
inapplicable, en tous les cas telle quelle, pour les équations complexes, méme si celles-ci sont vues
comme des systemes d’équations scalaires en séparant la partie réelle de la partie imaginaire. Plutot
que d’adapter la méthode a chaque type d’équation comme cela est fait dans le Chapitre 1, le but
est d’établir un critéere qui engendrerait le phénomeéne de localisation voulu. Le résultat est alors le
suivant (Théoreme 3.2.1) et s’obtient en affinant la méthode initiale de [11].

Théoréme 10. Soit 0 < m < 1. Alors il existe une constante C = C(N, m) > 0 ayant la propriété
suivante: soient ©o € RV, po>0etue Hﬁ)c (B(xo, po)). Si l’on peut trouver des constantes L, M > 0
telle que pour presque tout p € (0, py),

IVl 2 (8 ao.p0) + PN (g ) < M

/ V.~ 4y , (9)
S(zo,p) |£L’ - ‘TO‘

alors

U|B(20,pmax) = 05



Introduction v

ot
Vo= |ph—CM? L {py~" 1}
Pmax = | Po max q 1, 72 maxypfq

X min {E(pO)W(T) max{b(po)* ™, b(po)" "} }
1] 27 — (1+m) . ’

TG(mgrl
et,
E(po) = IVullZa (5agpyy 2000) = N7 (g,
k=2014+m)+N1-m), v=35>2,
21— (14+m) 2(1—17) 1—-m
== 1 =27 - .
v(7) A €(0,1), p(r) o (1) = 5 iy v(r) >0

pour tout T € (TH, 1] .

Outre la difficulté de montrer qu'une solution vérifie (9), il convient également de controler les
différentes normes de celle-ci pour éviter que le rayon ppax soit nul. Ceci explique les hypotheses
de petitesse sur F' du Chapitre 1.

Chapitre 4 : Solutions auto-semblables

Nous avons maintenant les outils nécessaires pour construire des solutions auto-semblables a support
compact. On montre que, sous des hypotheses adéquats, si g est une solution de (6) alors elle vérifie (9).
En appliquant alors les Théorémes 7 et 10 on obtient le résultat suivant (Théoréeme 4.1.2).

Théoréme 11. Soient 0 < m < 1, a € C tel queIm(a) > 0 et f € C((0,00); L*(RY)) satisfaisant (4).
On suppose également que supp f(1) est compact. Si || f(1)[|2@n) est suffisamment petite alors il existe
une solution auto-semblable (c’est-a-dire satisfaisant (5)),

u € C((0,00); H*(RN)) N C*((0,00); H'(RN)) N C2((0, 00); L*(RY)),

de (1) telle que pour tout t > 0, supp u(t) est compact.

Chapitres 5 et 6 : Extinction en temps fini pour des solutions
d’équations de Schrodinger non-linéaires amorties

Dans ces deux chapitres, on étudie 'extinction en temps fini des solutions de (1). L’idée, qui est
particulierement simple et semble étre due & Carles et Gallo [73] 2, et Carles et Ozawa [55] %, est la

suivante. Pour fixer les idées, supposons que f = 0 dans (1). Si I'on multiplie I’équation (1) par iu,

que 'on integre par parties et que 'on prend la partie réelle, il vient alors :

5 3 @122 + Im(a)|[u®)| 7o = 0. (10)

2. dans le cas d’une variété compacte sans bord.
3. dans le cas de 'espace entier avec N < 2.
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Il bien clair que si 'on veut avoir extinction en temps fini alors nécessairement, Im(a) > 0. On utilise
ensuite I'inégalité de Gagliardo-Nirenberg suivante :

2% 1 (7n,+1e)(1—8)
a2 < Nu®mellu@lge ™ (11)

ot 0, € (0,1) est une constante connue. Ainsi, si la solution u est uniformément bornée dans H* alors
on déduit de (10)—(11),

y +Cy° <0,

avec 0 = T’QLT?, ot y(t) = ||u(t)||3.. Apres intégration, on obtient alors le comportement asymptotique

de w suivant les valeurs de 0.

e Si§ < 1alors y(t)' =% < (y(0)'=% — Ct), et u ’annule au plus tard au temps T, = C~y(0)'~°.

e Si ¢ =1 alors y(t) < y(0)e .

e Sid > 1 alors y(t)°~1 < y(0)°~ (1 +Ct)~ L.
Ainsi pour obtenir extinction en temps fini, on doit avoir § < 1 ce qui s’avere étre équivalent a la
dimension N = 1 lorsque la solution en temps est dans H'. Si 'on veut augmenter en dimension
d’espace, la solution doit étre alors plus réguliere, disons uniformément bornée dans H2. Dans ce cas,
0 < 1 lorsque N < 3. Etant donnée la non-linéarité, il n’est pas raisonnable d’espérer obtenir des
solutions plus régulieres que H?2, ce qui limite le résultat d’extinction en temps fini, tout du moins
pour cette méthode, aux dimensions d’espace 1, 2 et 3.

Concernant I'existence de solutions, on utilise la théorie des opérateurs maximaux monotones dans
L. La monotonie de 'opérateur Au = —iAu — ialu|~(' =™y, avec en gros D(A) = H? N H}, repose
sur 'inégalité,

Re (-ia/(|u|m—1u— |v|m_1v)(u—v)dx) >0. (12)

On voit alors apparaitre alors une compétition entre les parties réelles et imaginaires de a et de
J (Jul™ tu—|v|™ 1) (u="v)dz. Ce probleme peut étre réglé en utilisant un résultat de Liskevich and
Perel'muter [132] (Lemme 6.4.3) ce qui réduit le choix pour a a,

aeC(m) ™ {z € C; 2¢/mIm(z) > (1 — m)|Re(z)|}. (13)

L’existence de solutions est alors réduit a la surjectivité de 'opérateur I + A. La méthode differe selon

que l'on est dans un domaine borné ou dans tout ’espace.

Chapitre 5 : Le cas des domaines bornés

Lorsque €2 est borné la non-linéarité vérifie |u|™ € L (Q) < L2(2) et I'on se retrouve dans I'espace
de Popérateur. La surjectivité de I'opérateur I + A s’obtient alors par une méthode de perturbation.

On peut ainsi prolonger les résultats de Carles and Gallo [53] (Théorémes 5.4.3, 5.4.4 et 5.4.5).

Théoréme 12. Soient Q un ouvert borné régulier de RN, 0 <m < 1, a € C(m) \ {0} et

f € Ly ([0,00); L*(Q)).
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Alors pour tout ug € L?(2), il existe une unique solution,

u € C([0,00); L2(Q)) N W5t ([0,00); H2()),

loc
de (1). De plus, on a les résultats suivants.
1. Si de plus f € WH((0,00); HY () et siug € HS () alors,
u € Cyp([0,00); Hy (2)) N W ([0, 00); H~1(Q2)).
2. Si de plus f € WH1((0,00); L2(Q)) et si ug € H*(Q) N H(Q) alors,
u € Cy ([0, 00); Hy (2)) N Cy ([0,00); HH () N L ((0, 00); H*(€2)) N W ((0, 00); L*(€)).

Concernant Pextinction en temps fini, nous avons le résultat suivant (Théoréme 5.3.2).

Théoréme 13. Soient Q2 un ouvert borné régulier de RN avec N <3,0<m < 1, a € C(m) \ {0},
f e Wh((0,00); L2(2)) et ug € HE(S2). Supposons que l'une des conditions ci-dessous soit satisfaite.

1. N=1cet feWh((0,00); H}(2)).
2. up € H*(Q) N H(Q).

Soit u Vunique solution de (1). S’il existe Ty > 0 tel que pour presque tout t > T,

alors il existe un temps fini Ty = Ty pour lequel,
)] L2(0) = 0.

pour tout t > T,. De plus, sous des hypothéses supplémentaires de décroissance de || f(t)||12(q) sur
Uintervalle [0, Tp], on a Ty = Tp.

Chapitre 6 : Le cas de tout 1’espace

Pour monter que R(I+A) = L?(RY), on procéde comme suit. On doit montrer que les solutions de (2)
sont dans H2(R™), ce qui revient & dire que Au € L?(R") ou, de facon équivalente, que u € L>™(R™).
On commence par établir des estimations a priori fines des solutions (voir les Lemmes 6.4.2 et 6.4.4,
ainsi que les figures p.111). Ensuite, on construit des solutions & support compact grace au Théoréme 6
et au point 2 du Théoréme 4. Un argument de densité permet alors de conclure. On peut ainsi prolonger
les résultats de Carles and Ozawa [55] (Théoremes 6.2.4, 6.2.6 et 6.2.7).

Théoréme 14. Soient 0 < m < 1, a € C(m) et
1 € Lhe(10,00): L2(2).
Alors pour tout ug € L?>(RY), il existe une unique solution,
u e C([0,00); L2(RY)) n W ([0,00); H2(RN) + L= (RY)),

de (1). De plus, on a les résultats suivants.
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1. Si de plus f € WH1((0,00); HY(RYN)) et si ug € H' (RY) alors,
u € Cyp([0,00); HHRN)) nWE((0,00); H-H(RN) 4 L (RV)).
2. Si de plus f € WH((0,00); L2(RY)) et si ug € H*(RY) alors,
u € Cy([0,00); H'(RY)) N L ((0, 00); H*(RN) N L2™(RNY)) n W ((0, 00); L*(RY)).
Concernant I'extinction en temps fini, nous avons le résultat suivant (Théoreme 6.3.1).

Théoréme 15. Avec a € C(m), le Théoréme 13 est valable pour Q = RN,

Chapitre 7 : Stabilisation de solutions d’équations amorties

([30])

Considérons 1’équation des ondes amortie suivante :

e (t, ) — Ugy (8, ) + a(x)ue(t,z) =0, avec (t,x) € (0,00) x (0,1),
u(t,0) =wu(t,1) =0, avec t € [0, 00),
w(0,z) = u®(z), u (0, 2) = ul(z), avec z € (0,1),

ot a € L*(0,1) est positive presque partout dans (0,1). L’énergie associée a la solution est,

1
B(t) = 5 (Ilhue® 220, + e ® 01 )

et 'espace fonctionnel associée a cette énergie est H}(0,1) x L2(0,1). Il est facile de voir que lorsque
le terme d’amortissement est absent (a = 0) alors I’énergie est constante, et que lorsque celui-ci est
présent alors ’énergie décroit. Par ailleurs, on sait également montrer que si, pour une constante ag >
0, on a a > agp, presque partout sur un sous-ensemble I C (0,1) de mesure non nulle, alors ’énergie
tend vers 0 (Haraux [95]). Ce terme permet donc de stabiliser ’énergie des solutions. Supposons

maintenant que I'on soit capable d’établir I’inégalité d’observabilité suivante :
E(0) — E(T) = CE(0),

pour un temps T° > 0 et une constante C' > 0. Alors il est bien connu que dans ce cas, on a la
décroissance exponentielle des solutions,

Vt >0, E(t) < CE(0)e,

pour des constantes C,w > 0.

Considérons maintenant ’équation des ondes avec un amortissement plus faible,
Utt — Uz + Oque(t,a) =0, (t,2) € (0,00) x (0,1), (14)
ou a € (0,1). L’inégalité d’observabilité que I'on peut obtenir est alors,

E(0) — E(T) > CE_(0), (15)
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ou F_ est une énergie faible, dans le sens ou F_ < F. L’idée est de prendre les données initiales dans
un espace plus réguliers, typiquement dans [H2(0,1) N H}(0,1)] x HE(0,1). On a alors I’énergie forte
associée Ey et E_(0) < E(0) < E4(0). On aimerait donc interpoler E(0) entre E_(0) et E,(0) &
I’aide d’un inégalité généralisée de Holder du type,

<o () * (5wy)

de laquelle on obtiendrait,

1
B(0)2~" < E_(0). (16)
v (%)
De (15) et (16), on aurait alors,
E(0)p! L C(E(0) — B(T)).

E.(0)
v (%)
De 14, on serait capable d’obtenir la vitesse de convergence (Ammari and Tucsnak [3]),

C
L
(%L)

Des lors que @ etW peuvent étre déterminées, la vitesse est explicite.

Vt >0, E(t) < ) ||(U07Ul)”?ﬂ(o,an(}(o,l)-

Les énergies faibles et fortes sont reliées a 1’énergie d’origine par des poids w; et wo. On fait les
hypothéses suivantes. Soient (§2,.7, ) un espace mesuré et wi,wy : @ — [0,00) deux poids p—
mesurables. On suppose qu’il existe deux fonctions concaves ®,¥ : R, — Ry telles que pour
presque tout x € Q,

D (w1 () W (wa(a)) > 1. (17)
A T'aide de Dinégalité de Jensen, on peut alors démontrer le résultat suivant (Théoreme 7.2.1).

Théoréme 16. Avec les hypothéses et notations ci-dessus, on a pour tout 0 < p < oo et toute fonction

feLP(Q,T,u) non nulle,

/ FPandp / | Pand
£ |l

1<o | 2 :
||f||LP(Q,9,M) ”f”LP(Q,?,M)

; (18)

deés lors que f € LP(Q), T ,widp) N LP(Q, T, wadp).

Dans les applications, Q = [1,400), p est la mesure de Lebesgue et les poids vérifient, entre autres,
des hypotheses de convexité. On peut alors montrer l'existence de fonctions ® et ¥ satisfaisant (18)
(Théoreme 7.2.2 et Lemme 7.2.6).



Théoréme 17. Soient wy,wy : [1,400) — [0,00) deux poids convexes. On suppose que wi est
strictement décroissante avec lim wi(t) = 0, et que wq est strictement croissante avec lim wo(t) =
t—4oc0 t—+4oco

+00. On pose,

et,
1
d=— et U= w;l.
Alors, ®,9 : Ry — Ry sont des fonctions concaves qui vérifient l'inégalité (17). En particulier, ®
et U satisfont inégalité (18).

La vitesse de convergence des solutions de (14) est connue pour a € S, o § est un sous-ensemble
distinct de (0,1) N Q°, et ce résultat est di Jaffard, Tucsnak and Zuazua [110, Theorem 3.3]). A
Paide de la méthode ci-dessus, on étend ces résultats & (0,1) N Q° (Propositions 7.4.2.3 et 7.4.3.4, et
Théorémes 7.4.3.5 et 7.4.3.7), ce qui est optimal puisqu’il est connu que pour (0,1) N Q, il existe des
solutions dont I’énergie ne tend pas vers 0.

Chapitre 8 : Sur des systémes gradients amortis ([22, 21])

Dans le chapitre, on souhaite étudier le comportement asymptotique des solutions d’un systéme gra-
dient amorti du type “boule pesante”,

u’(t) +yu'(t) + VG(u(t)) =0, t€R,. (19)
On aimerait également faire le lien entre ce systéme et les systemes quasi-gradients,
u'(t) + F(u(t)) =0, t € Ry, (20)

qui sont a priori de nature totalement différente. Ici, v > 0 et G € C?(RY;R). On rappelle que
le systeme (20) est dit quasi-gradient sur un sous-ensemble fermé I' de RY, 'l existe une fonction
différentiable E : RY — R et a > 0 tels que,

(VE(u),F(u)) 2 a||[VE(u)|| | F(uw)||, pour tout u € T, (21)
aitENT =F1({0}) N T, (22)
ou crit E désigne I’ensemble des points critiques de F.

Le premier outil est I'inégalité de Kurdyka-Lojasiewicz ([133, , 124]). On dit alors que G est une
fonction KL en u € RY §'il existe une fonction concave ¢ : [0,79) — R, dite désingularisante, telle
que ¢(0) =0, ¢ € C([0,79)) N CL(0,70), ¢’ > 0 sur (0,79) et

[V(polG(.) = G@))(u)| > 1,

pour tout w dans un voisinage de u. Par exemple, les fonctions analytiques sont des fonctions KL.
L’hypotheése KL permet d’assurer la convergence des solutions bornées des systeémes gradients (c’est-
a~dire (20) avec F' = VE). En fait, on a le méme résultat pour les systémes quasi-gradients, comme

le montre le résultat suivant (Théoréeme 8.3.1.2).
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Théoréeme 18. Soit F : RY — RN une fonction localement Lipschitzienne définissant un champ de
vecteurs quasi-gradient différentiable E sur RY. On suppose que E est une fonction KL. Soit u une
solution de (20). Alors,

1. ou bien ||Ju(t)|| 12 0,

2. ou bien u converge vers un point singulier u., de F' lorsque t — oco.

Dans ce dernier cas, on a également v’ € L*((0,00); RY), o/ (t) 12290 et

Ve 20, u(t) ~ uecl) < ~o(B(u(t) ~ Blue)),

pour n’importe quelle fonction désingularisante ¢ de E en us, 0t « est la constante dans (21).

Par ailleurs, les fonctions désingularisantes ont une vitesse d’explosion minimale & ’origine (Proposi-
tion 8.2.1.3 et Lemme 8.2.2.1).

Lemme 19. Soit G : RN — R une fonction analytique telle que G(0) = 0, VG(0) = 0 et 0 n’est pas
dans Uintérieur int crit G de ’ensemble des points critiques de G. Puisque G est analytique, elle est
KL. Soit alors @ une fonction désingularisante. Alors, il existe deux constantes c,e > 0 telles que,

¢'(t) > 7 (23)

pour tout t € (0,¢).
Pour G € C?(RY;R), on définit F : RN x RN — RY par
F(u,v) = (—v, yv+ VG(u)).
Alors le systeme (19) est équivalent a
U@)+F(U(t) =0, teRy, avec U= (u,v).
Et finalement, en déformant ’énergie totale Er(u,v) X 2[[v]I* + G(u) du systeme (19), il s’avere

que les systémes gradients du second ordre sont des systémes quasi-gradients (Propositions 8.3.3.1
et 8.3.3.3).

Proposition 20. Soient G € C?(RY;R) et v > 0. Pour chaque A\ > 0, on définit I’énergie déformée
Ex € CL(RYN x RM;R) par

Ex(u,v) = Ep(u,v) + M(VG(u),v),

ou (., .) désigne le produit scalaire dans RYN. Alors pour chaque R > 0, il existe Ao > 0 satisfaisant
la propriété suivante. Pour tout X € (0, \o], il existe o > 0 tel que

(Ver(u,v), F(u,v)) = a[VEx(u, )| |F (u, v)], (24)
pour tout (u,v) € B(0, R) x RY. De plus,
crit € N (B(0, R) x RY) = F~1({0}) N (B(0,R) x RY) (25)

pour tout X € [0, Ag].
Enfin, si ¢ vérifiant (23) désingularise G en u € crit G alors ¢ désingularise £\ en (4, 0), pour tout
A > 0 suffisamment petit.
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Ainsi, grace au Théoreme 18 et la Proposition 20, nous sommes en mesure de déterminer la vitesse
de convergence des solutions (Théoréme 4.1.2). Par ailleurs, ces résultats étendent ceux de Haraux et
Jendoubi [97].

Théoréme 21. Soient G € C*(RY;R) et (up,ujy) € RN x RY. Soit u € C?([0,00); RY) l'unique
solution de (19) telle que (u(0),u’(0)) = (ug,up). On suppose que l'on a les hypothéses ci-dessous.

1. La trajectoire de u est bornée: sup ||u(t)|| < co.
>0

2. G est une fonction KL et chaque fonction désingularisante vérifie (23).
Alors on a les résultats suivants.
1. v € LM((0,00);RY), w” € L((0,00); RY) et u converge vers un point critique us de G.

2. Soit ¢ désingularisant G en us. Alors il existe une constante ¢ > 0 telle que pour tout t > 0,
[u(t) — ool < cv(t),

ou v est solution de,

avec v(0) > 0.

Chapitre 9 : Phénomene de concentration de masse pour I’équation
de Schrédinger non-linéaire dans le cas critique ([32])

Dans ce chapitre, on s’intéresse au comportement des solutions de I’équation (1) dans le cas critique
pour la masse. On montre que si le temps d’existence est fini alors un phénomene de concentration

de masse se produit. Plus précisément, on a le résultat suivant (Théoréme 9.1.1).
4
Théoréme 22. Soient a € R\ {0}, m =1+ i f=0,uy € LA RY)\ {0} et

2(N+2) 2(N+2)
N

u € C((=Tmins Trmax); L2 (RM) N Ly ™ (= Tmins Tinax); L

loc

RY)),

Punique solution mazimale de (1) telle que u(0) = ug. Il existe € = (||ug|| 2, N, |a|) > 0 satisfaisant

la propriété suivante. St Tinax < 00 alors

limsup sup / ) lu(t, z)|*dx > e.
t M Tmax c€RN JB(c,(Tmax—1)2)

On un résultat analogue lorsque Ty < o0.

Le Théoréeme 22 a été établi dans le cas particulier de la dimension N = 2 par Bourgain [12]. Sa
démonstration repose sur une inégalité de Strichartz plus fine démontrée en dimension 2 par Moyua,
Vargas and Vega [139]. Pour démontrer le Théoréme 22, on commence donc par généraliser I'inégalité
améliorée de Strichartz pour n’importe quelle dimension (Théoreme 9.1.2). L’outil majeur pour y

parvenir est une inégalité de restriction bilinéaire due & Tao [166] (Théoreme 9.2.1).
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) N . .
Pour chaque j € Z, on recouvre RY de cubes dyadiques 77 = T[] [km277, (kn + 1)279), ot k =
m=1

(ki,...,kn) € ZN. On pose : fg(x) = f]lT (). Soient 1 < p, ¢ < oo. On définit 'espace suivant :

Xpa = {F € Lo®Y): Ifllx,., < oo},

ol
1
q
yz»
0 = | D257 D Ay
JEL kezZN
On vérifie que (X,,4, - [|x,,) est bien un espace de Banach. L’inégalité améliorée de Strichartz est

la suivante (Théoremes 9.1.2 et 9.1.4).

(N+2)

Théoréme 23. Soient g = et 1l <p <2 tels que %ﬁ’; + % < 1. Pour chaque fonction g telle

que g € Xpq 0ouge Xpgq, on a
ITC)gllLagen+1) < Cmin {lglx, ,, 19]lx,., } (26)
ot C = C(N,p). De plus, L>(RY) — X, , avec L*(RY) # X,, ,. Finalement, il existe p € (O, %) tel

que pour tout g € L*(RN), on ait

I17C)gllpa@y+y < C
(G, k)EZXZN

w
sup 9i % (2— p)/ G(¢ |pd§1 HgH}:z’E{N) Cllgll L2 (RN)s (27)

ot C' = C(N,p) et p= pu(N,p).

Ensuite, grosso modo, grace a (27), on se rameéne & étudier le comportement d’un nombre fini de
solutions de I’équation libre de Schrodinger  (Lemmes 9.3.1 et 9.3.3) et ’'on démontre le Théoréme 22.

4. c’est-a-dire (1) avec a = 0, et toujours f = 0.
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Chapitre 1

Localizing Estimates of the Support
of Solutions of some Nonlinear
Schrodinger Equations — The
Stationary Case

with JESUS ILDEFONSO Diaz*

Abstract

The main goal of this paper is to study the nature of the support of the solution of suitable nonlinear
Schrédinger equations, mainly the compactness of the support and its spatial localization. This question
touches the very foundations underlying the derivation of the Schrédinger equation, since it is well-known a
solution of a linear Schrodinger equation perturbed by a regular potential never vanishes on a set of positive
measure. A fact, which reflects the impossibility of locating the particle. Here we shall prove that if the
perturbation involves suitable singular nonlinear terms then the support of the solution is a compact set,
and so any estimate on its spatial localization implies very rich information on places not accessible by the
particle. Our results are obtained by the application of certain energy methods which connect the compactness
of the support with the local vanishing of a suitable “energy function” which satisfies a nonlinear differential
inequality with an exponent less than one. The results improve and extend a previous short presentation by
the authors published in 2006.

1.1 Introduction

This paper deals with the study of the following stationary nonlinear Schrédinger equation (SNLS)
with a complex singular potential

—iAu + alu|"" "™y 4 bu = F(z), in Q. (1.1.1)

Here, Q C RY is an open subset, 0 < m < 1, and (a, b) € C2. The interest of the consideration of this
stationary problem is motivated not only in order to study the asymptotic states, when ¢t — oo, of
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Plaza de las Ciencias, 3, 28040 Madrid, Spain, e-mail : ildefonso_diaz@mat.ucm.es
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Key Words : nonlinear Schrédinger equation, compact support, energy method
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2 Localizing Estimates of the Support for the stationary Nonlinear Schrodinger Equation

the solutions of the associated evolution problem but also by the study of the so called standing waves
of the evolution problem (1.1.2) below, with b € iR in (1.1.1). Indeed, choosing arbitrarily b € iR
in (1.1.1) and setting for any (t,7) € R x Q, ¢(t,z) = u(z)eb, if u is a solution to (1.1.1) then ¢ is
a solution to

0
iZ2 L Ap+ ia|p| 1™ = iF(z)e®, in R x Q,

ot

Ploo =0, on R x 99, (1.1.2)

©(0) =u, in Q.

The main goal of this paper is to study the nature of the support of the solution of (1.1.1) : mainly
its compactness and localization. Let us mention that, in our opinion, this question touches the very
foundations of the derivation of the Schrodinger equation. Indeed, one of the main modifications in-
troduced by Quantum Mechanics, with respect Classical Mechanics, is the impossibility to localize
the state (position and velocity) of a particle. The solution wu(t,z) is related to the probability of
finding the position and momentum of particle (see, e.g. the presentation made in the text book by
Strauss [163]. It is well-known that in most of the different versions of the Schrodinger equations the
corresponding solution never vanishes on a subset positive measure of the domain, which reflects the
impossibility of localizing the particle as mentioned above. This is the case, for instance, in case of
the linear Schrédinger equation and also for some nonlinear versions where the linear equation is per-
turbed by a nonlinear regular potential (see, for instance, the monographs of Sulem and Sulem [165]
and Cazenave [57]).

The main goal of this work is to show that if the linear Schrodinger equation is perturbed with sui-
table singular nonlinear potentials, then the support of the solution becomes a compact set and so any
estimate on its spatial localization implies very rich information on places which can not be occupied
by the particle.

We point out that complex potentials with certain types of singularities arise in many different situa-
tions (see, for instance, in Brezis and Kato [17], LeMesurier [127] and Liskevitch and Stollmann [131],
and the references therein). We also refer the reader to the survey Belmonte-Beitia [33] in which the
author supplying many references to this type of equation and many other contexts such as : semicon-
ductors, nonlinear optics, Bose-Einstein condensation, plasma physics, molecular dynamics. Special
mention is paid in this paper to the so-called Gross-Pitaevskii (corresponding to b # 0).

In this paper, we improve some of our previous results, outlined briefly in Bégout and Diaz [21].
Moreover, we include here new estimates and generalizations. We are aware of very few other results
in the literature dealing with the support of solutions of nonlinear Schrédinger equations. For ins-
tance, Rosenau and Schochet [155] propose a (one-dimensional) quasilinear Schrodinger equation in
order to get solutions with compact support for each ¢ fixed. That equation and the techniques used
in that paper are very different from the ones in the present work. Analogously, in a paper dated
from 2008 ([116]), Kashdan and Rosenau consider the question of the existence (with some numerical
experiments) of some special solutions : an one-dimensional travelling wave solution of soliton type
u(t,z) = A(z — At) exp (i(€(z — At) 4+ wt)), for the special case of @ = iy (in problem (1.1.2)) and
m € (0,1). They also consider the two-dimensional case (now with changing propagation directions).
A nonlinear term (of cubic type) is added in their equation. Those interesting results are independent
of our study which also applies in the presence of some additional nonlinear terms as in the above
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mentioned reference.

A more restricted point of view was taken in the paper by Carles and Gallo [53] where the authors
prove finite time stabilization for a linear Schrodinger equations perturbed with a suitable singular
nonlinear potential. In their setting, they also prove some kind of compactness of the support of the
solution by means of a different energy method, but in their case the compactness occurs merely in
time and not in the spatial coordinates.

We also point out that different propagation effects have been intensively studied in the literature,
but most of them are related to singularities, spectral and other properties (see, for instance, Jen-
sen [115]). The question of the compactness of the support considered here is of very different nature.
In order to present our results, we shall start by indicating some very special cases which are conse-
quences of more technical results stated later (see Theorem 1.2.1 below).

Theorem 1.1.1. Let0 < m < 1, leta € R\{0} and letb € R, b > 0. Let F € LMTH(RN) with compact
support. Then there erists a unique weak solution w € H*(RN) N L™+ (RYN) (see Definition 1.2.3
below) of the problem

—iAu + au|" "™y + ibu = F(x), in RY.
In addition, w is compactly supported.

Theorem 1.1.2. Let Q C RY be a nonempty open subset, let 0 < m < 1, let a € R\ {0} and let
beR, b>0. Let F € LmTJrl(Q) with compact support. Assume that F is small enough in LmTH(Q)
Then there ezists a unique weak solution w € Hg(Q) N L™T1(Q) (see Definition 1.2.3 below) of the

problem

{—iAu + alu|~ "™y +ibu = F(x), in Q,

Upo = 0, on o09.
In addition, w is compactly supported in €.

We emphasize that no sign assumption has been made on a in the precedent statements. Much more
general versions of our results are presented in the next section where we also include a detailed
explanation of the notations used in this paper.

1.2 Notations and general versions of the main results

Before stating our main results we shall indicate here some of the notations used throughout. Bold
symbols are used for complex mathematics objets. For a real number r, v, = max{0, r} is the positive
part of r. We write i = —1. We denote by Z the conjugate of the complex number z, by Re(z)
its real part and by Im(z) its imaginary part. For 1 < p < oo, p’ is the conjugate of p defined by
%—&— 1% = 1. Let j, k € Z with j < k. We then write [, k] = [, k] NZ. We denote by 9 the boundary of
a nonempty subset Q C RN, Q its closure, Q¢ = RY \ Q) its complement and w € §2 means that w C
and that w is a compact subset of RV. For an open subset  C RY, the usual Lebesgue and Sobolev
spaces are respectively denoted by LP()) = LP(Q;C) and W™P(Q) = W™P((Q;C) (1 < p <
and m € N), H™(Q) = W™2(Q;C), Hy*(Q) = W™ (Q;C) is the closure of 2(Q) = 2(Q;C)
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under the H™-norm, and H~™ () is its topological dual. H}(Q) = {u € H'(Q);suppu € Q}.
C(Q)=C%0N) = C(C) = C%;C) is the space of continuous functions from (2 to C. For k € N,
C*(Q) = C*(; C) is the space of functions lying in C(£2;C) and having all derivatives of order lesser

or equal than k belonging to C(;C). For 0 < a < 1 and k € Ny % NU{0}, Che () = Cclho9;0) =
{u € Ck(Q;C);Vw e Q, Y. HZ(DPu) < —l—oo} , where HY(u) =  sup % The Lapla-
|Bl=k {(a:,y)egj2
TFY

N
cian in Q is written A = > %. For a functional space E C L (Q;C), we denote by Epaq the

loc
j=1 %
space of functions f € E such that f is spherically symmetric. For a Banach space F, we denote by
E* its topological dual and by (., .)g+ g € R the E* — E duality product. In particular, for any
T € LP (Q) and ¢ € LP(Q) with 1 < p < oo, (T, ) o y = Re [ T(z)¢(z)dz. For zg € RN
Q

(2),LP(©
and r > 0, we denote by B(zg,7) = {# € RY; |z — x| < r} the open ball of RV of center xy and
radius 7, by S(zo,7) = {z € RY; |z — z¢| = r} its boundary and by B(zg,r) = B(xo,7) U S(x0,7)
its closure. We also use the notation Bq(zg,r) = QN B(xg,r). As usual, we denote by C auxiliary
positive constants, and sometimes, for positive parameters aq, ..., a,, write C(ay, ..., a,) to indicate
that the constant C' continuously depends only on aq, ..., a, (this convention also holds for constants
which are not denoted by “C”).

Let us return to equation (1.1.2). Note that no boundary condition is imposed since all the compact
support results (which are due to Theorem 1.2.1 below) rest on the notion of local solution (De-
finition 1.2.3 below). If Q # R¥, boundary conditions are necessary for establishing existence and
uniqueness of global solutions of (1.1.1). For the purpose of clarity, we shall consider the Dirichlet

case,
Ujpn = 0, on 6(2, (121)

rather than Neumann boundary condition, mixed boundary condition or another one. The choice of
the boundary condition is motivated by the integration by parts relation (Au,v) = —(Vu, Vv).

Compactness, existence and uniqueness results will follow from assumptions on (a,b) € C? stated
below. Define the following subsets

A =C\{z € C;Re(z) =0 and Im(z) < 0},

B=AU{0}.

Existence assumption. Let (a,b) € C? satisfy

Re(a)Re(b) > 0,

(a,b) e AxB and or (1.2.2)

Re(b)

Re(a)Re(b) < 0 and Im(b) > )Im(a).

e(a
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Uniqueness assumption. Let (a,b) € C? satisfy
a #0 and Re(ab) >0,
Im(a) >0 and or (1.2.3)

a=0 and becB.

For a geometric explanation of these hypotheses, see Section 1.6. For (a,b) € C? satisfying (1.2.2), it
will be convenient to introduce the following constants. Let 4 > 0 be an arbitrarily chosen parameter.

_ |[Re(a)| + |Im(a)| + ¢

A(0) Re(a)| , if Re(a) # 0, (1.2.4)
_ [Re(®)| + Tm(b)| .. o
= Re(b)| , if Re(b) # 0, (1.2.5)
4, if Im(a) < 0 and Re(a)Re(b) >0,
|Re(a)|, if Im(a) =0, Im(b) > 0 and Re(a)Re(b) > 0,
L= Im(a) if Im(a) >0 and Im(b) >0, (1.2.6)
Re(a) .
Im(a) — Re(b) Im(b), otherwise,

max {A(6), B}, if Im(a) <0, Im(b) <0 and Re(a)Re(b) >0,
A(9), if Im(a) < 0, Im(b) > 0 and Re(a)Re(b) >0,
M= (1.2.7)
2 if Im(a) > 0, Im(b) >0 and (Im(a) >0 or Re(a)Re(b) > 0),
B if (Im(a) >0 and Im(b) < 0) or Re(a)Re(b) < 0.

Under hypothesis (1.2.2), one easily checks that A(d), B, L and M are well defined and positive. The
parameter § may seem very mysterious but, actually, it is not. In order to obtain the crucial estimate
(1.7.7), we apply Lemma 1.7.3 to (1.7.8) and (1.7.9). The hard case Im(a) < 0 can be treated in

the following way. If Re(a)Re(b) > 0 then we add the assumption Im(b) > E’:((Z)) Im(a). But when

Re(a)Re(b) < 0, if we do not want make an additional assumption on a and b, we have to introduce
m+1

) . ‘ R AR D)
(played by C5 in Lemma 1.7.3). If we do not introduce this parameter (that is, if we choose § = 0)

a positive parameter § in order to obtain a positive coefficient L = L(4) in front of |u|

then we get L = 0 in (1.7.7) and we loose the effect of the nonlinearity (see Cases 5 and 6 in the proof
of Lemma 1.7.3).

Numerical computations of stationary solutions are done in Bégout and Torri [31], while the evolution
case and self-similar solutions are studied in Bégout and Diaz [23, 20], respectively. In this paper, we
prove the results stated in Bégout and Diaz [24] and add some generalizations. This paper is concerned
with the propagation of the support of F' to the solution u, and all these results are a consequence of
the following theorem.
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Theorem 1.2.1. Let @ C RY be a nonempty open subset, let 0 < m < 1, let (a,b) € C? sa-
tisfying (1.2.2), let L > 0 be given by (1.2.6) and let M > 0 be given by (1.2.7). There exists
C = C(N,m) > 0 satisfying the following property. Let F € L, (), let u € H}, () be any local

weak solutwn of (1.1.1) (see Definition 1.2.3 below), let xg € Q and let pg > 0. If pg > dist(xg, ONQ)
then assume further that w € H(Q). If F |y (20.p0) = 0 then w|pg (s, pmae) = 0, where

1
oo = (pg — CMQmax{l,B}maX {pgﬂ’l}

E(po)” ™) max{b(po)"™, b(po)" 7}
A (e }); (12

X  min
TG(m+1

and where for any T € (mT'H, 1] ,

m 27— (14+m
E(00) = IVl ooy P00) = ks () = B € (0,1),
p(r) =20, n(r) = 52 —~(7) >0, k=2(1+m)+ N(1-m),
V= miﬂ > 2.

Remark 1.2.2. If the solution is too “large”, it may happen that pp.x = 0 and so the above result is
not consistent. A sufficient condition to observe a localizing effect is that the solution is small enough,
in a suitable sense. We give two results in this direction. The first one (Theorem 1.3.3) pertains to
the size of the solution, while the second one is concerned with the size of the external source F
(Theorem 1.3.5), which seems to be more natural. In addition, Theorem 1.3.5 says where the support
of the solutions is localized with respect to the support of the external source F'.

Now, we state the precise notion of solution.

Definition 1.2.3. Let @ C RY be an open subset, let (a,b) € C2,let 0 < m < 1 and let F € L{ ().
We say that w is a local weak solution of (1.1.1) if w € Hit () and if u is a solution of (1.1.1) in

2'(Q), that is

(—iAu + alu|” " ™Mu + bu, @) g1 ) a0) = (F )97 @),2(9); (1.2.9)

for any ¢ € 2(Q).

We say that u is a global weak solution of (1.1.1) and (1.2.1) if u is a local weak solution of (1.1.1)
and if furthermore w € HJ () N L™+1(Q).

Let z € C\ {0}. Since ||z|‘(1_m)z’ = |z|™, it is understood that |\z|‘(1_m)z = 0 when z = 0.

Remark 1.2.4. Here are some comments about Definition 1.2.3.

1. For a global weak solution u of (1.1.1) and (1.2.1), the boundary condition ujsq = 0 is included
in the assumption u € Hg (©2). On the contrary, the notion of local weak solution does not

consider any boundary condition.

1

+
2. When u is a local weak solution of (1.1.1), we have Vu € L2 (Q), a|lu|~ =™ wu € L, )7 (Q) and

loc
bu € L2 (). Then Au € L}, _(Q) and equation (1.1.1) makes sense in Lj. _(£2). Furthermore,
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Lo (Q)CL2

loc loc

() and 2(9) is dense in H2(2). It follows from Sobolev’s embedding that if
u is a local weak solution of (1.1.1) then

Re/iVu(x).de + Re/ (a|u(m)\_(1_m)u(:ﬂ) + bu(x)) @(r)da

Q Q

:Re/F(a:)@dx, (1.2.10)

for any ¢ € HX(Q) with either supp ¢ N suppF =Qor F e LloC (Q), for some 1 < p < oo if
N=11<p<xif N=2orl<p<
admissible value.

3. In the same way, by density of 2(Q) in HZ(£2) N L™T1(Q) N LP(), for any 1 < p < oo, and in
H}(Q) N L™T1(Q), if u is a global weak solution of (1.1.1) and (1.2.1) then (1.2.10) holds for
any ¢ € H}(Q) N L™ () with either suppe Nsupp F =0 or ¢ € LP(Q2) and F € L721(Q),
for some 1 < p < oo. In particular, if p is as in 2. of this remark with additionally p > m+1, then
in view of Hj(Q) N L™*1(Q) < LP(Q), equation (1.1.1) makes sense in H~(Q) + L% ()
and (1.2.10) holds for any ¢ € Hj(Q) N L™T1(Q).

N 2, if N > 3. For example, p = m + 1 is always an

1.3 Spatial localization property

Theorem 1.3.1. Let Q C RY be a nonempty open subset, let 0 < m < 1 and let (a,b) € C? satisfying
(1.2.2). Let F € LmTH(Q) let w € HE_(Q) be any local weak solution of (1.1.1) (Definition 1.2.3),

loc

let zg € Q and let py > 0. If p1 > dist(zg, 0Q) then assume further that w € Hy(Q). Then there exist

E, >0 and e, > 0 satisfying the following property. Let py € (0,p1). If ||VuHL2 (Ba(zo.p)) < E, and

V,D € (Ovpl) HFH 7¥n+1 < &(P* Po)g_, (131)
(Ba(zo,p))

w > N + 2, then wpg(zy,p,) = 0. In other words, with the notation of

Theorem 1.2.1, pmax = po-

where p =

Remark 1.3.2. We may estimate F, and ¢, as
po L
E* - E ) s Ty A N? 9
(uLm+1<B<m oy P 23 Nom)

po L
< Ut (Ban )y A Nm)’

where L > 0 and M > 0 are given by (1.2.4) and (1.2.7), respectively. The dependence on § means
that for any value § small enough, F, and ¢, are bounded from below.

Note that p = ﬁ’ where + is the function defined in Theorem 1.2.1.

Theorem 1.3.3. Let Q@ C RY be a nonempty open subset, let 0 < m < 1, let (a,b) € C? sa-
tisfying (1.2.2), let L > 0 be given by (1.2.6) and let M > 0 be given by (1.2.7). There exists
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C = C(N,m) > 0 satisfying the following property. Let F € Li. (), let w € H () be any lo-
cal weak solution of (1.1.1) (Definition 1.2.3), let xg € Q and let po > 0. If 2py > dist(zg, Q) then
assume further that w € Hy(Q). Finally, suppose F|p,(z,2p0) = 0, el gty

of the two estimates (1.3.2) or (1.3.3) below is satisfied.

20,2p0)) <1 and one

2(1—m) 1 v—1
v _2 . 2 .
”vu”LZ(kBQ(onpo)) <C(2"-1)(1—m)M ?min {1,L }mln{2,p0} 00, (1.3.2)
IVl 2 (g o 200 < 1
2s(m+1) 9 5 1 v—1 (133)
k v — . . -
||u||Lm+1(BQ(x0,2pU)) <C@2"-1)(1—m—25)M2min{1,L }mln{z,po} 00,

for some s € (07 me) , where the constants k > v > 2 are given in Theorem 1.2.1. Then w g

0.

x0,00)

Remark 1.3.4. Note that in estimate (1.3.2), M = %, where p > N +2 is given in Theorem 1.3.1.

Theorem 1.3.5. Let Q@ C RY be a nonempty open subset, let 0 < m < 1, let (a,b) € C? satisfying
(1.2.2), let L > 0 be given by (1.2.6) and let M > 0 be given by (1.2.7). Then for any € > 0,
there exists 8o = 0p(e, N, m, L, M) > O satisfying the following property. Let F € LmTH(Q) and let
u € H}(Q)NL™(Q) be any global weak solution of (1.1.1) and (1.2.1). If supp F is a compact set
and if ||F||LT"T+1(Q) < 6o then suppu C QN O(e), where O(e) is the open bounded set

O(e)={z e R"; Gy esupp F such that |z —y| <e}.
In particular, if € > 0 is small enough then suppu C O(e) C Q.

We see that localization effect occurs under some smallness condition, either on the solution w (Theo-
rem 1.3.3) or on the external source F' (Theorem 1.3.5). When ) = RY, the phenomenon is simpler
since localization effect is always observed, without any condition of the size, neither on the solution
nor on the external source, as show the following result.

Theorem 1.3.6. Let 0 < m < 1, let (a,b) € C? satisfying (1.2.2), let F € LP(RYN), for some
1 <p<oo, and let u € HY(RY) N L™ (RY) be any global weak solution of (1.1.1). If supp F is a

compact set then supp u is also compact.

1.4 Existence and smoothness

In this section, we give an existence result of solutions for equation (1.1.1) (Theorem 1.4.1), some a
priori bounds for the solutions of equation (1.1.1) (Theorem 1.4.4), which will be useful to establish
our existence result, and a smoothness result for equation (1.1.1) (Proposition 1.4.5).

Theorem 1.4.1. Let Q C RY be a nonempty open subset, let 0 < m < 1, let (a,b) € C? satisfying
(1.2.2) and let F € L (Q). Then equations (1.1.1) and (1.2.1) admits at least one global weak
solution w € HE(Q) N L™TY(Q). Furthermore, the following properties hold for any global weak
solution u (except Property 3))
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o m+1
1) we W, ™ (Q).
2) Let a € (0,m]. If F € CR%(Q) then u € CEE ().

3) If @ = {z e RY; r <|z| < R}, for some —0o < r < ry < R < +oo, and if F is spheri-
cally symmetric then there exists a spherically symmetric global weak solution u € H&(Q) N
L™TY(Q) of (1.1.1) and (1.2.1). For N = 1, this means that if F is an even (respectively, an

odd) function on Q = (=R, —r)U(r, R) then u is also an even (respectively, an odd) function.

Remark 1.4.2. Assume F' is spherically symmetric. Since we do not know, in general, if we have
uniqueness of the solution, we are not able to show that any solution is radially symmetric. For a
uniqueness result, see Theorem 1.5.2 below.

Remark 1.4.3. Assume [Q] < co. There exists € = £(N) > 0 such that for any (a,b) € C2,0 <m < 1
and F € L2(Q), if |b||Q¥ < ¢ then equations (1.1.1) and (1.2.1) admits at least one global weak
solution u € Hj (). In addition, u € HZ (). Finally, Properties 2) and 3) of Theorem 1.4.1 hold.
For more details, see Bégout and Torri [31].

Theorem 1.4.4. Let Q C RY be a nonempty open subset, let 0 < m < 1, let (a,b) € C? satisfying
(1.2.2), let L > 0 be given by (1.2.6), let M > 0 be given by (1.2.7) and let F € LmTJrl(Q) Let
u € H}(Q)NL™F(Q) be any global weak solution of (1.1.1) and (1.2.1). Then we have the following
estimates.

mi1
IVullzzq) + 1wl fmis g, < Mol | . (1.4.1)
. s(mt1)
Il ol < O (1401 VIR (1.42)
where My = M (TM) max {1,%2}, 0= %, My = Mo(1 4 M) and C = C(N,m).

Proposition 1.4.5. Let a € C, let 0 < m < 1, let V € L] (;C), for any 1 < r < oo, let

F e L] _(9;C) and, for somee >0, let u € Lllote(Q C) (u € L. (9;C) suffices if V € L2, (Q;C))
be a solution to
—Au+Vu+alu~ "™y = F(z), in 2'(Q). (1.4.3)

Let 1 < g < oo and suppose u € LI (Q). Then the following regularity results hold.
1) If for some p € [g,00), F € LE, (Q) then u € W,2P(Q).
2) Let o€ (0,m]. If (F,V) € CX(Q) x CRX(Q) then u € C2(Q).

loc

Remark 1.4.6. Since 0 < m < 1 and u € L, (2), one has Ll’gc(Q) C L (Q) and so |u| =™y €
Ll

L (). In addition, from Hélder’s inequality Vu € Li () and it follows that Au € L (). In

loc

conclusion, equation (1.4.3) makes senses in L. ().

Remark 1.4.7. We only state a local smoothness result since we are interested by compactly sup-
ported solutions. In this case, global smoothness is immediate. Nevertheless, one may wonder what
happens when a solution is not compactly supported. We use the notation of Proposition 1.4.5 and



10 Localizing Estimates of the Support for the stationary Nonlinear Schrodinger Equation

assume further that €2 is bounded ' and has a C™! boundary. Let the assumptions of Proposition 1.4.5
be fulfilled and let u € LI(2), for some 1 < g < oo, be a solution to (1.4.3) such that ujpo = 0 in the

sense of the trace 2.

1. If for some p € [g,00), F € LP(Q) and V € L"(Q), Vr € (1,00), then u € W2P(Q) N Wy P (Q).
Indeed, recalling that if for some 1 < p < oo, a function v € LP({2) satisfies Av € LP(2) and
V9o = 0 in the sense of the trace? then v € W2P(Q)NWa'P(Q) (Grisvard [93], Corollary 2.5.2.2
p.131). We then apply the bootstrap method of the proof of Proposition 1.4.5 to prove the result,
where we use the embedding L"(£2) < L*(£2), which holds for any r > s (since {2 is bounded)
and the global regularity result of Grisvard [93] (Corollary 2.5.2.2 p.131) in place of a local
regularity result (Cazenave [58], Proposition 4.1.2 p.101-102).

2. Let a € (0,m]. If Q has a C?* boundary and (F, V) € C%%(Q) x C%*(Q) then u € C%*(Q)N
Co(Q) 3. Indeed, it follows from the above remark that w € W2N+1(Q) N H}(Q) and by
Sobolev’s embedding, u € C%1(€). Setting

f=F() —Vu- a|u|7(1*m)u,

it then follow from equation (1.4.3) and estimate (1.8.5) below that f € C%*(Q). Let v € C &f

C?(Q) N Cp(9) be a solution to
—Aw = f, (1.4.4)

given by Gilbarg and Trudinger [90], Theorem 6.14 p.107. Since u € H}(Q) is also a solution
to (1.4.4), uniqueness for equation (1.4.4) holds in Hj(€2) (Lax-Milgram’s Theorem) and C C
H}(Q), we conclude that uw = v and so u € C.

We end this section by giving a result for the evolution equation (in a particular case).

Corollary 1.4.8. Let 0 < m < 1, let (A, b) € C x R satisfying X # 0 and b > 0. If Im(X\) = 0 then
assume further Re(X\) < 0. Finally, let F € C%™(RY) be compactly supported. Then there exists a
solution u € C™ (R; C2™(RN)) to

0 .
ia—’l; + Au+ Au| "™y = F(z)el’, in R x RY, (1.4.5)
u(0) = ¢, in RV,
given by
V(t,z) € R x RN, u(t,z) = p(x)e', (1.4.6)

1. Actually, assumptions on €2 we use in this remark are 9 bounded and || < co. But these two conditions imply
that Q is bounded.

2. Let T : u — {’yu,’yg—’u‘} be the trace function defined on 2(Q), let 1 < p < oo and let Xp(Q) = {u IS
LP(Q);Au € LP(Q)}. By density of 2(Q) in Xp(Q2), T has a continuous and linear extension from Xp(Q) into

W_%’p(aﬂ) X W_l_%’p(aﬂ) (Hormander [107], Theorem 2 p.503 ; Lions and Magenes [129], Lemma 2.2 and Theo-
rem 2.1 p.147; Lions and Magenes [130], Propositions 9.1, Proposition 9.2 and Theorem 9.1 p.82; Grisvard [93], p.54).
Since u € L9(), it follows from equation (1.4.3) and Holder’s inequality that uw € Xp(Q2), for any 1 < p < ¢. Then
“ujgn = 0 in the sense of the trace” makes sense and means that yu = 0.

3. For k € Ngand 0 < a < 1, CH»*(Q) = {u € Ck(Q;C); ¥ HZ(DPu) < +00} C Wk2(Q) (since Q is
1Bl=k

bounded) and Co(R2) = {u € C(Q);Vz € 9Q, u(z) = 0}.
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2,m

where ¢ € Cg, (RN) is a solution compactly supported of
—Ap — A ™o+ bp = —F(x), in R, (1.4.7)

given by Theorem 1.4.1. Furthermore, for any t € R, supp u(t) is compact.

1.5 Uniqueness

Theorem 1.5.1. Let Q@ C RY be a nonempty open subset, let 0 < m < 1, let (a,b) € C?\ {(0,0)}
satisfying (1.2.3) and let Fy,Fy € Li (Q) be such that Fy — Fp € L?(). Let uq,u2 € Hy(Q) N

L™FY(Q) be two global weak solutions of

—iAug + aluq | " uy + buy = Fy(z), in Q, (1.5.1)
—iAug + a|us| " ™ugy + bugy = Fy(z), in 9, (1.5.2)

respectively. We have the following estimates.

|a|b) | Fy — F2||L2(Q), if a #0 and Re (ag) > 0,

Uy — U < ——
[ua 2||L2(Q) Re(a

) (1.5.3)
lur — uz|[p2q) < %HFl — Fa|| 2o ifa=0,

where by = [Re(b)|, if Re(b) # 0 and by = Im(b), if Re(b) = 0. If a # 0 and Re (ab) = 0 then assume
further that wy,ug € L (). Then there exists a positive constant C = C(N,m) such that

1-m
[wsllLo (o) + luzllL= (@)

|a|

s _U2HL2(Q) < C( | F1 _F2||L2(Q)- (1.5.4)
Theorem 1.5.2. Let Q@ C RY be a nonempty open subset, let 0 < m < 1, let (a,b) € C? satisfying
(1.2.3) and let F € L{, (). Then equations (1.1.1) and (1.2.1) admit at most one global weak solution

w e HYQ) N LmHL(Q).

Corollary 1.5.3. Let Q C RY be a nonempty open subset, let 0 < m < 1, let (a,b) € A xB satisfying
(1.2.3) and let F € LmTH(Q) Then equations (1.1.1) and (1.2.1) admit a unique global weak solution
w € H}(Q) N L™FY(Q). Furthermore, this solution satisfies Properties 1) — 3) of Theorem 1.4.1.

Corollary 1.5.4. Let Q C RY be a nonempty open subset, let 0 < m < 1 and let (a,b) € C? satisfying
(1.2.3). Then the problem

—iAu + alu|" "™y + bu =0, in Q,
u € H}(Q)n L™ (Q),
has for unique solution u = 0.

Corollary 1.5.5. Let 0 < m < 1, let (a,b) € A x B satisfying (1.2.3) and let F € C%™(RY)
be compactly supported. Then there exists a unique solution u € C’g’m(RN) of (1.1.1) and (1.2.1)
compactly supported. If furthermore F' is spherically symmetric then u is also spherically symmetric.
For N = 1, this means that if F is an even (respectively, an odd) function then u is also an even
(respectively, an odd) function.
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1.6 Pictures

In this section, we give some geometric interpretation of the values of @ and b. For convenience, we
repeat the hypotheses (1.2.2) and (1.2.3). We recall that,

A=C\{z € C;Re(z) =0 and Im(z) < 0},
B=AU{0}.

For existence of solutions to problem (1.1.1) and (1.2.1), we suppose (a, b) € C? satisfies

Re(a)Re(b) > 0,

(a,b) c AxB and or (1.6.1)
Re(a)Re(b) < 0 and Im(b) > ;{S((? Im(a),
while for uniqueness, we assume
a # 0 and Re(ab) >0,
Im(a) >0 and or (1.6.2)

a=0 and beB.

Existence. Condition (1.6.1) may easily be interpreted in this way : if b # 0 the one requires that
[a,b] N & = 0, where A is the geometric representation of A°. See Figures 1.1 and 1.2 below.

Uniqueness. The second condition of (1.6.2) is trivial. Indeed, b can be chosen anywhere in the
complex plane, except on the half-axis where Im(z) < 0. Let us consider the first condition. We first
choose a € C\ {0} such that Im(a) > 0, and we choose b with respect to a. We see a and b as vectors

of R2. Then we write, @ = Re(a) , T = Re(b) and we have
Im(a) Im(b)

Re (ab) = Re(a)Re(b) + Im(a)Im(b) = 7.0 , (1.6.3)

where . denotes the scalar product between two vectors of R2. Then the condition Re (aE) > 0is

equivalent to ’4(7, Z})‘ < grad (see Figure 1.3 below).

Remark 1.6.1. Let (a,b) € C% Thanks to (1.6.3), the following assertions are equivalent.
1) (a,b) satisfies (1.6.1)—(1.6.2) (or (1.2.2)—(1.2.3)).
2) (a,b) € A x B satisfies (1.6.2) (or (1.2.3)).
3) ((a,b) satisfies (1.6.2)), (a ” o) and (Im(a) = Re(b) =0 = Im(b) > o).

In other words, when Im(a) # 0, uniqueness hypothesis (1.6.2) implies existence hypothesis (1.6.1)
(see Figure 1.4 below).
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Admissible values for a, chosen in first

Admissible values for b with respect to a

Admissible values for b with respect to a

FIGURE 1.1 — Existence, choice of b FIGURE 1.2 — Existence, choice of @ and b

Re(z)

Existence and uniqueness : admissible values for a

Admissible values for a, chosen in first
- Existence : admissible values for b with respect to a

Admissible values for b with respect to a

Uniqueness : admissible values for b with respect to a

FI1GURE 1.3 — Uniqueness FIGURE 1.4 — Uniqueness implies existence

1.7 Proofs of the localization properties

In this Section, we prove Theorems 1.2.1, 1.3.1, 1.3.3, 1.4.4, 1.3.5 and 1.3.6. We recall some useful

Gagliardo-Nirenberg’s and Young’s inequalities.

Proposition 1.7.1. Let Q C RY be a nonempty open subset and let 0 < p < 1. Then, there exists a
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positive constant C = C'(N) such that

N(1—p 2(1+p)
Yu € Hy(Q) N LPHH(Q), a2, < ClIVull iy Ay, ull 3 (1.7.1)
1 1 pt1 2pN (N+2)—p(N—2)
N+2 N+2
Vu € Hg(Q) N LHQ), [[ullbhs o) < ClIValpag, llul g g) . (1.7.2)

Note that C does not depend on Q.

Lemma 1.7.2. For any realx >0,y > 0, e >0 and p > 1, one has

1 ., 1
vy < el al + —e Pyl (1.7.3)
p b
Lemma 1.7.3. Let (a,b) € C? satisfying (1.2.2) and let Cy, Cy1, Ca, C3 be four nonnegative real

numbers satisfying

|C1 + Im( )CQ + Im Cg{ Co, (174)
|Re CQ + Re(b)O?,} < Co. (175)

Then one has
< C1+ LCy; < MCy, (176)

where the positive constants L and M are defined by (1.2.6) and (1.2.7), respectively.

Proof. We split the proof in 6 cases. Let § > 0.

Case 1. Im(a) > 0 and Im(b) > 0.

Then (1.7.6) follows from (1.7.4).

Case 2. Im(a) =0, Im(b) > 0 and Re(a)Re(b) >0

We compute (1.7.4) + sign(Re(a))(1.7.5) and then obtain (1.7.6).

Case 3. Im(a) > 0, Im(b) < 0 and Re(a)Re(d) >

We compute (1.7.4) + |;mglg§| (1.7.5) and then obtam (1 7.6).

Case 4. Re(a)Re(b) <

If Im(b) = 0 then (1.2. 2) implies Im( ) > 0, which falls into the scope of Case 1. So we may assume
Im(b) # 0. We compute (1.7.4) — = Ebg(l 7.5) and then obtain (1.7.6).

Case 5. Im(a) < 0, Im(b) > 0 and Re(a)Re(b) >0

We compute (1.7.4) + %(1 7.5) and then obtain (1.7.6).

Case 6. Im(a) < 0, Im(b) < 0 and Re(a)Re(b) > 0.

We compute (1.7.4) + max{%, Igﬁgggl } (1.7.5). We then obtain (1.7.6).

This ends the proof. O

Proof of Theorems 1.2.1 and 1.3.1. In order to establish our result in all cases of (1.2.2), we
will adopt the proofs of Theorem 2.1 p.12-18 and Theorem 3.2 p.28-30 of Antontsev, Diaz and
Shmarev [11], which has to be adapted. We denote by o the surface measure on a sphere, ps = po,
if we are concerned by Theorem 1.2.1 and ps = p1, if we are concerned by Theorem 1.3.1. Assume
we have either py < dist(zo,0Q) ( <= B(wo,p2) C Q) or py > dist(zg,d2). The remaining case
p2 = dist(z0,09) ( <= B(zo,p2) C Q and 9Q N S(zo, p2) # 0), will be treated at the end of
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the proof . If po > dist(zg,0€2), we have u € H} (). So we may define u € H}(Q U Bz, p2))
satisfying u|q € H}(Q), by setting & = u, in Q and @ = 0, in Q°N B(zg, p2). Then Vu = Vu, almost
everywhere in Q and Vu = 0, almost everywhere in Q°N B(zg, p2). Still if py > dist(zg, ), we denote
by F the extension of F by 0 in Q° N B(xg, p2). We now proceed with the proof in 7 steps.

Step 1. Let L and M be the constants defined by (1.2.6) and (1.2.7), respectively. For almost every

pE (O,PQ),

V3 5, + LI < MI(p) + MI(p), (1.7.7

B(xo0,p L™ (B(xop)

Tr — X

/ ava. do
S(zo,p) |$ - $0|
and J € L*(0, p2).

From Hoélder’s inequality, the above discussion and Sobolev’s embedding,

where I(p) =

and J(p) = / |F(z)a(z)|dz. Moreover, I € L*(0, ps)
B(zo,p)

HI”LI(O,pz) < ”"NL”iql(B(zo,m)) < 00,

111 Lo0 (0,00) S NF ot

L7m (B(zo,p2)) ||U||Lm+1(3(xoyp2)) < 0.

Let p € (0, p2) For any n € N, n > %, we define the cutoff function v, € W1H°(R) by

1, if [t| € [0,p— 2],
ViR, Ya(t) = n(p—t]), iflt|€ (p—21,p),
0, if [t] € [p, 00),

and we set for almost every x € QU B(zo,p2), ¥n(z) = ¥n(|z — zol)u(z). If py < dist(zo, )
then supp ¢n C B(wo,p) C Q and s0 ¢ € HL(Q). If py > dist(x, dN) then pp o € Hg(Q2) and
supp ¢n C QN B(xo, p). It follows from Definition 1.2.3 and Remark 1.2.4, 2. and 3., that ¢ = ipn|o
is an admissible test function and so

Re / nllz — o) (IVEI? — iafa™ — ibla?) dz
B(zo,p)
= —Re / o (|lz — mo\)ﬁVﬁ.ﬂdx +Im / (|2 — z0|) Fuda.
B(zo,p)

|z — 2o
B(zo,p)

4. For simplicity, we assume that 0Q # 0. Otherwise, we have @ = RY and we only have to treat the first case :

B(zo, p2) C Q.
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Introducing the spherical coordinates (r, o), we get

/ U (|lz — z0|) (IVa|* — ialu|™ " — iblul?) dz
B(zo,p)

p
= [Re n/ / uVu |7m0da dr | +Im / Un (|2 — o|) Fudz

x — x|
p> 1 \8o,r) B(ao.0)

<n

\m

I(r)dr + / (2 — zo)| P () (@) dr.

B(zo,p)

3=

o—
We now let n  oco. Using the Lebesgue’s dominated convergence Theorem and recalling that I €
L(0, p2), we obtain

1982 50+ (@@ IO 22, | <TG+ T). (178)
Proceeding as above with ¢ = n|q, we get
[Re(@) 1k ) + RO (50, | <10) + (). (1.7.9)

Then Step 1 follows from (1.7.8), (1.7.9) and Lemma 1.7.3.
Let us recall and introduce some notations. Let 7 € (m—ﬂ, 1} and let p € (0, p2). We set

E(p) = [Vl [ §=

b(p) = ot
(B(0.0))’ L™ (B(0.p))’ 2(1+m)
g = WEmENUm) ¢ (0.1), f= L 1) = 2= € 0,0),
u(r) = 2(1];"')7 n(t) = ﬁ —(r) > 0.

Step 2. E € WH1(0, p2), for a.e. p € (0, p2), E'(p) =

= IValZ2 (s, ) and

0< B(p) +b(p) < CLiME (p)* (E(p)? + p~0(p) mlﬂ)e b(p)

m+1

. (1.7.10)
S (B(20,0))

+ (2L, M) ||F)|

L

where C' = C(N, m) and L; = max {1, +}.

P
We have the identity E(p) = / (/ Vu|2da> dr. Since the mapping r — / \Va|?do
0 S(Io, )

:Eo ’I“
lies in L(0, p2), E is absolutely continuous on (0, p2). We then get the first part of the claim and we
only have to establish (1.7.10). Let p € (0, p2). It follows from Cauchy-Schwarz’s inequality that

~ ~ 1~
I(p) < IVl L2 (500, o)) 18l L2 (5(20.,p)) = E'(p)> 12| 2 (5(20,p))- (L.7.11)

We recall the interpolation-trace inequality (see Corollary 2.1 in Diaz and Véron [78]. Note there is a
misprint : § has to be replaced with —§).

||17||L2(S(zo,p)) <C (Hva’”Lz(B(zo,p)) + p_6|‘aHLm+1(B(a:0,p))) ||U| Lm+1(3(w0 o)’ (1.7.12)
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where C' = C'(N,m). Putting together (1.7.7), (1.7.11) and (1.7.12), we obtain,

1

B(p) +b(p) < CLiME (0)} (B(p)} + p~b(p) 77 ) b(p) 375 + Ly / |F(2)a(z)|dz. (1.7.13)

B(zo,p)
Applying Young’s inequality (Lemma 1.7.2) with « = ||F||L7(B( ) y = ||u||Lm+1(B(m0’p)),
1
€= (2723:\14) m and p =m + 1, we get
1
= = m 2Ly M\ ™ |~ mil 1
F(x)u(x)|de < F| + b(p), 1.7.14
[ @l < I () IR ) (1.7.14)
B(zo,p)

for any p € (0, p2). Putting together (1.7.13) and (1.7.14), we obtain (1.7.10). Hence Step 2.
Step 3. Let Cy be the constant in (1.7.10). For any 7 € (1] and for a.e. p € (0, p2),

CoLiME ()} (E(p)* + p~b(p) 7T ) b(p) 755

=

F(r)+1

< (K~ E () (B(p) +b(p) T, (17.15)

where K (1) = CL3M? max {p5~", 1} max{b(p2)"("), b(p2)"M} and C = C(N,m).
Let 7 € (m+ , ] and let p € (0, p2). A straightforward calculation yields

1 1 1—6
(E(0)2 +p7b(p) 757 ) b(p) 707
1 1—-6 1
= E(p)2b(p) T+ + p~°b(p) 7D
— E(p)%b(p)T(l—e)Kb(p)(1—7')(1—9)€ + p—ﬁb(p)%—&-T(l—@)@b(p)f—T(l—Q)f—%
< 2p~ max {ph, 1} Ka(r)¥ (B(p) + b(p)) #7177,
where K3 (1) = max{b(p2)*(™), b(p2)""}. Hence (1.7.15) with Ky (1) = 4C2L2 M2 K3 (7) max {pg’_l, 1} .
Step 4. For any 7 € (4L, 1] and for a.e. p € (0, p2),
A (1 (r)  ~ mADA=~(r)
0< E(p)' ") < Ki()p~TVE (p) + AL M) S B (1.7.16)
L™ m™ (B(wo,p))

Putting together (1.7.10) and (1.7.15), and applying again Young’s inequality (1.7.3) with p = ﬁ,

e = (y(r) + )*F o = (K (1)~ VE (p)* and y = (E(p) + () *F ", we obtain
E(p) +b(p)
< (Kimp eI E ()" (B +b0) ™5+ @Lad) 5 | FI s
(B(armp))
<c(m( o B () T + S (B(p) + b)) + (L)
(B(QJO,P))

where C' =
obtain

Levtt = = C(N,m). Changing, if needed, the constant C' in the definition of Ki(7), we

“m

B(p) +(p) < (Ks(m)o™ ¢ VB (p)) 7+ (4L M) F

<B<zo,p>>'
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Raising both sides of the above inequality to the power 1 —~(7) and recalling that (1 — ’y(T)) € (0,1),
we obtain (1.7.16).
Step 5. Let o € (0, po]. If E(cr) = 0 then u|p,(34,0) = 0.

From our hypothesis, £/ = 0 on (0, «). Furthermore, ||F||L7(B( ) = 0 (from assumption of
o,

Theorem 1.2.1 or (1.3.1)). It follows from Step 2 and continuity of b that b(cr) = 0. Hence Step 5
follows.

Step 6. Proof of Theorem 1.2.1.

Thus ps =

= 0. For any 7 € (1,1], set r(7)” = (pb’ - yiKl(T)E((’;U)W(T»
(z0,p0)) T +

and let ppax = Enaﬁ | ( ). Note that definition of pyax coincides with (1.2.8). Let 7 € ("H'l 1] .
TE(T,1

We claim that E(r(7)) = 0. Otherwise, E(r(7)) > 0 and so E > 0 on [r(7), po). From (1.7.16), one
has (we recall that v(7) — 1 < 0),

for a.e. p € (r(7), po), Ki(T)E' (p)E(p)" W~ = pr~ 1. (1.7.17)
We integrate this estimate between r(7) and py. We obtain
K
()
(7)

By definition of r(7), this gives E(r(7)) < 0. A contradiction, hence the claim. In particular, E(pmax) =

0. It follows from Step 5 that w|pg (2, pma) = 0, Which is the desired result. It remains to treat the
case where pg = dist(zq, Q). We proceed as follows. Let n € N, n > p—lo. We work on B (a:o, Po — %)
instead of B(zo, po) and apply the above result. Thus w4, n ) = 0, where pj,. is given by (1.2.8)
with pg — % in place of py. We then let n oo which leads to the result. This finishes the proof of
Theorem 1.2.1.

Step 7. Proof of Theorem 1.3.1.

We have ps = p1. Let v = v(1) and set for any p € [0, p1], F(p) = (4L1M)W ||F||ﬁ ,
wo,p
and K = K, (1)pg V. Let E, = (5 (p1 — po))W and ¢, = m (5%)" . Note that p = %
Assume now F(p;) < E,. Applying Step 4 with 7 = 1, one has for a.e. p € (pg, p1),
“KE(p) + B(p)' < F(p). (1.7.18)
Let define the function G by
1
Vp e 0.p1]. Glp) = (55— rm)) (1.7.19)
Then G(p1) = E,, G € C*([0, p1];R) (smce > 2) and G satisfies
Vp e [0, p1], —KG(p) + %G(p)lf7 0, (1.7.20)
E(p1) < G(p1). (1.7.21)

Finally and recalling that v = %, from our hypothesis (1.3.1) and (1.7.19), one has
P

1—v

Ype 0., Fo) < 5 (50— o)) T = 3Gl (1.7.22)
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Putting together (1.7.18), (1.7.22) and (1.7.20), one obtains

—KE'(p) + E(p)' ™" < —KG(p) + Gl(p)' ™, for ae. p € (po, p1)- (1.7.23)

Now, we claim that for any p € [pg, p1), E(p) < G(p). Indeed, if the claim does not hold, it follows
from (1.7.21) and continuity of E and G that there exist p, € (po, p1) and ¢ € (0, px — po] such that
E(ps) = G(ps), (1.7.24)

E(p) > G(p), Vp € (px — 6, ps)- (1.7.25)

It follows from (1.7.23) and (1.7.25) that for a.e. p € (px — 0, px), G'(p) < E'(p). But, with (1.7.24),
this implies that for any p € (px — 0, px), G(p) > E(p), which contradicts (1.7.25), hence the claim. It
follows that 0 < E(po) < G(po) = 0. We deduce with help of the Step 5 that w|p,(z,,p,) = 0, Which
is the desired result. It remains to treat the case where p; = dist(xg, Q). We proceed as follows.
Assume E(p1) < E,. Then there exists e > 0 small enough such that pg < p1 —e and E(p1) < E.(e),
where E,(¢) = (5% (p1 — po — 5)) . Since ¢, is a non increasing function of p;, we do not need to
change its definition. Estimates (1.7.18)—(1.7.23) holding with p; — € in place of py, it follows that
E(po) = 0 and we finish with the help of Step 5. This ends the proof of Theorem 1.3.1. O

Proof of Theorem 1.3.3. Let Cy = Co(N,m) be the constant in estimate (1.2.8) given by Theo-

rem 1.2.1. We then choose C' = Cy " in (1.3.2) and (1.3.3). Using the notations of Theorem 1.2.1 and

its proof, we define for any 7 € (mT'H 1]

r(r) = (o) = Cadr?maox {1, £ bma {2y, 1)

B 2p0)™) max{b(2pp) ™, b@ﬂo)”‘”})
+

21— (14+m)

and recall that ppa.x = Enafg ]T(T). Assume (1.3.2) holds. Then pmax = p1(1) = po and it follows
Te(m=,1
from (1.2.8) of Theorem 1.2.1 that b(pg) = 0. Now assume (1.3.3) holds. Since E(2pg) < 1, b(2pp) < 1
and 0 < p(7) < n(r) <1, for any 7 € ("H,1), it follows from definitions of p1 and ppax, that
max{(2po)" ", 1}
1—m—2s
By (1.2.8) of Theorem 1.2.1, b(po) = 0. This concludes the proof. O

Proaxe = P{(1—8) = (2p0)” — CoM® min{1, L*} b(2p0)" ) = pf.

Proof of Theorem 1.4.4. By Definition 1.2.3 and of Remark 1.2.4, 3., we can choose ¢ = iu and
@ = in (1.2.10). We then obtain,

V0l + (@)l g + T(®)]r]3m g = Im/Fﬁd%

Re(a) ks ) + Re(®) [l = Re / Fadz.
Q
Applying Lemma 1.7.3, these estimates yield,

IVl + Ll ) < M/|F| | da (1.7.26)
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We apply Young’s inequality (1.7.3) with x = |F|, y = |u|, e = ((77;2+7]\41)L)M7+1 and p = m + 1. With
(1.7.26), we get

1
L OMN\™ mia
2 s m—+1 m
IVl + 2l g < M (L ) 171

™m

from which we deduce (1.4.1). Finally, applying Gagliardo-Nirenberg’s inequality (1.7.1), with p = m,

and Young’s inequality (1.7.3), with p = W and € = 1, one obtains
o (N+2)—m(N—2) 2N (1—m) 4(1+m) ) .
44+N(1—m 44+N((1—m 44+N(1—m m
fulle T < OIVulan el S < € (173 0 + ol )
and finally
2 2 m+1 o+1

lull2z o) < C (IVuldag, + lullfit ) (1.7.27)

where § = % Estimate (1.4.2) then follows from (1.4.1) and (1.7.27). O

Proof of Theorem 1.3.5. Let C be the constant given by Theorem 1.3.3 and let ¢ > 0. Set
K = supp F and K(g) = O(e). We would like to apply Theorem 1.3.3 with pg = §. By (1.4.1) of Theo-
rem 1.4.4, there exists g = do(e, N, m, L, M) > 0 such that if ”F”LLH(Q) < do then [[uf|pm+1g) <1

and

2(1 m)

IVl 2, <C2727(2" = 1)(1 —m)M ~? min{1, L*} min{2, ¢}~ 'e. (1.7.28)

We recall that the distance between two closed sets A and B of RY with one of them compact is
defined by

dist(A, B) = i —
ist(A, B) (z,;}“gﬁxg'x Y|
and that
dist(A,B) >0 < ANB=0.

Let 2o € K(¢)°. Let y € B (29, ) and let 2 € K. By definition of K(¢), dist(/K(¢)¢, K) = . We then
have

. TG €
e =dist(K(e), K) < |mo — 2| < |zo —y[ + [y — 2] < 3t ly — z|.
Taking the minimum on (y, z) € B (zo, ) x K, we get

< dist (E (:Eo, %) ,K) ,

which means that B (zq,$) N K =0, for any 2y € K(g)°. By (1.7.28), u satisfies (1.3.2) with py = £
and we deduce that for any zy € K(¢)©, U0 B(xo,5) = 0 (Theorem 1.3.3). Let n € N. By compactness,

K (%)C N B(0,n) may be covered by a finite number of balls B (:ro, %) with zg € K(g)°. Thus for any
n €N, Y|onK () NBOn) = 0. It follows that u = 0 almost everywhere on
s :

U (QHK(785> mB(O,n)> QmK(?) .

neN
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This means that suppu C QN K (%) C QN O(e). Finally, since K is a compact set, ) is open and
K C Q, it follows that if ¢ is small enough then O(e) C 2. This ends the proof. O

Proof of Theorem 1.3.6. Let L, M and C be the constants given by (1.2.6), (1.2.7) and Theo-
rem 1.3.3, respectively. We would like to apply Theorem 1.3.3 with pg = 1. Since F' is compactly
supported and uw € HY(RM) N L™*+(RY), there exists R > 1 such that supp F € B(0, R — 1),

2(1—m)

[l gt (o5 ro1yy <1 and [Val| 2f o p 0 < c2'77(2" —1)(1 —m)M " *min{1, L?}.

Let o € RN be such that |zo| > R + 1. Then B(zo,2) Nsupp F = §) and, with help of the above
estimate, u satisfies (1.3.2) with pg = 1. It follows from Theorem 1.3.3 that w g4, 1) = 0. For each
integer n > 2, define the compact set C,, by

1 1
Cn:{xeRN;R—l—éhcéR—i—n—}.
n n

By compactness, C,, may be covered by a finite number of balls B(xg, 1), where R+1 < |zg] < R+1+n.
Thus for any n € N, u|¢, = 0. It follows that u = 0 almost everywhere on

U= {xGRN; 2| >R}.

n>2

Then suppu C B(0, R), which is the desired result. O

1.8 Proofs of the existence and smoothness results

In this Section, we prove Proposition 1.4.5, Theorem 1.4.1 and 1.4.8.
Proof of Proposition 1.4.5. By Remarks 1.4.6, equation (1.4.3) makes senses in L; _(€2).
Proof of Property 1). Let 1 < ¢ < p < co. Assume F € LY (Q) and u € L _(Q) is a solution

loc loc
to (1.4.3). For r € (1,00), r~ denotes any real in (1,7). Assume v € L] (), for some 1 < r < o0, is
a solution of (1.4.3). Tt follows that ||~ =)y € LE(Q) and since 0 < m < 1, LE (Q) C LT, .(2).
So by (1.4.3) and Hélder’s inequality, Vv € Li, () and so Av € L{Ein{r_’p}(ﬂ). Furthermore, if
for some 1 < r < oo, v € L], (2;C) and Av € L] _(£;C) then v € WIZO’Z(Q;(C) (see for instance
Cazenave [58], Proposition 4.1.2 p.101-102). We then have shown the following property. Let 1 < r <
0.
r 2,min{r~,p}
uwe Ll () = ue Wy, Q). (1.8.1)

Now, we proceed to the proof of Property 1) in 2 cases.

Case 1. (%<q<p) or (q<%andq<p< Njiqzq)‘

It follows from (1.8.1), applied with r = ¢, that u € w2 (). In one hand, if ¢ < & then

loc 2
W23 (Q) c LE (Q). Tt follows from (1.8.1) (applied with 7 = p) and Sobolev’s embedding that
u € LZF%(Q), for 6 € (0,1) small enough. On the other hand, if ¢ > Y then W22 () ¢ LEEH(Q).

So in both cases, u € LEF(€). Applying (1.8.1) with 7 = p + 4, we then obtain u € W2P(€).

loc
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Case 2. 1<g<p, g< X 2 and N 2q < p.
We recall that if 1 <r < 5 N then Sobolev’s embedding is

W2 (Q) c LY,

loc loc

(1.8.2)

1 2
(Q), for any 1< s < oo such that — > — — N
s

S| e

Since NN 5; < b, we may define the smallest integer ng > 2 such that 1 — 2% < %. We then set

1 el 2n
1 pEs g it ;= <0,
Pro T Z ifl - Ze s,

in order to have p < p,, < oo. Finally, define the ng real (pn)nefo,no—1] Py Po = ¢ and

1 2n
vne[0,ny—1]), —=—— —
[[ 0 H DPn po N’

It follows that for any n € [1,m0 — 1], ¢ < Pn-1 < Pn < P < Pny < 00 and
1 1 2

Vn € [1,ng]], — = - —. 1.8.3
[[ OH Pn Pn—1 N ( )

From (1.8.1)—(1.8.3) applied ng times (and recalling that p < p,, < 00), we then obtain u € W2 (Q).

loc
This ends the proof of Property 1).
Proof of Property 2). We recall the following Sobolev’s embedding and estimate.
WX (@) € Gl T () © Ol (1.8.4)
V(z1,22) € C2, ||z1| 0™ zy — |2a| "™ 25| < 5|21 — 2z2|™. (1.8.5)
Assume further that (F,V) € C&S(Q) X C&:‘(Q), for some a € (0,m]. In particular, V' € L§S ()
and by Property 1), u W2 N+1(Q). It follows from (1.8.4), (1.8.5) and (1.4.3) that |u|~(0~™u €
CY™(Q) and so Au € C’l(:)g( ). Thus w € CE%(Q) (Theorem 9.19 p.243-244 in Gilbarg and Tru-
dinger [90]). This concludes the proof of the proposition. O

Proof of Theorem 1.4.1. Let L and M be the constants given by (1.2.6) and (1.2.7), respectively.
We proceed in 4 steps.
Step 1. Let Q € RY be an open bounded subset and let g € L2(2). Then there exists a unique
solution u € H}(2) of

—Au = g, in L*(Q). (1.8.6)
Moreover, there exists a positive constant C' = C(|€2], N) such that

1(=2)""9l| g2 ) < Clgllz2(), Vg € L) (1.8.7)

In particular, the mapping (—A)~' : L?(Q) — HZ () is linear continuous.
Existence and uniqueness come from Lax-Milgram’s Theorem where the bounded coercive bilinear
form a on H}(Q) x H} () and the bounded linear functional L on H~1(2) are defined by

a(w,v) = Re / Vu(@).Vo(de and  (L,v) o g1 = Ro / w(z)g(@)dz,
Q
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respectively. Note that a is coercive due to Poincaré’s inequality. Taking the H~1 — H& duality
product of equation (1.8.6) with w and applying Poincaré’s inequality, we obtain estimate (1.8.7) and
so continuity of (—A)~1L.

Step 2. Let 2 C RY be an open bounded subset, let 0 < m < 1, let (a,b) € C? and let F € L%(Q).

For each ¢ € N, define fp = g¢ — iF', where

ialv|"0—my +ibv, if |v]| < ¥,

Yo € L*(Q), ge(v) = (1.8.8)

ialm % bt if ju] > £
|v] |v]

Then for any ¢ € N, there exists at least one solution ug € H(Q) of
—A'U,g = fe (Ug) y in Lz(Q)

It is clear that (fe)ren C C(L2(€2); L2(€2)). With the help of Step 1 and the continuous and compact
embedding % : H& () — L%*(), we may define a continuous and compact sequence of mappings
(Te)een of Hy () as follows. For any £ € N, set

i (—a)~t

T HHQ) S 129 B o HG(Q)
v — i(v)=v — fo(v) — (=A) " (fe)(v)

Let £ € N. Let C be the constant in (1.8.7) and set R = C(|a| + |b] + 1)<2£|Q\% + ||F||L2(Q)>. Let
v € H}(Q). It follows from (1.8.7) that

ITe@)ll @) = | (=8) 7 (F)@) | g3 ) < ClFe(0) 200y
< C(lal + o] + 1) (" + 191 +1|Fll2q) ) < R

Hence, T (H3() € By (0, R), where By (0,R) = {u € Hy(Q); [[ullgzq) < R} . In a nutshell,
Ty is a continuous and compact mapping from Hg(€2) into itself, EH(} (0, R) is a bounded, closed and
convex subset of Hj () and T (EHé (0, R)) C EH(% (0, R). By the Schauder’s fixed point Theorem,
T, admits at least one fixed point ug € By (0, R). Hence Step 2 follows.

Step 3. Let be the hypotheses of the theorem. Assume further that  is bounded. Then equa-

tion (1.1.1) admits at least one solution u € H ().
In other words, we have to solve

—Au = f(u), in L*(Q), (1.8.9)

where f = g — iF and for any v € L?(Q), g(v) = ia|v|~"™v 4 ibv. Let (F*)ren C 2(Q) be such
m+1
that F* 2™ 9 pand for any k € N, IF*, s ) < 2IF] s Let ge be defined by (18.5)

k—o0

and set for any (k, () € N2, f§ = gy — iF¥. For any (k, () € N, let uf € H}() be a solution of

—Aub = fo(uf), in L2(Q), (1.8.10)
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given by Step 2. We take the H—1 — H& duality product of equation (1.8.10) with “e first and i lul
second. Applying Lemma 1.7.3, we then get for any (k, /) € N2,

k m+1 m|,,k
||Vu£ ||L2(Q) + L||u£ ||Lm+1 {|u’“|<é}) + Lg ||u£ HLI({"U,?‘>@})

k k
M 1P (X g ) + X(jatioey) 2

Applying Young’s inequality (1.7.3) to the first term on the right-hand side and the Holder’s inequality
to the second term of the right-hand side, we arrive to the following estimate.

m+1 k m k
QHVueHlR )‘*‘LHueHLiH({luflg})+2||ue||L1({|u§|>z})(L€ - M| F ||L°°(Q))

2M N\ "
<M()|wwm1 <CIFI, (s
L () @)

For any k € N, there exists ¢, € N large enough such that L — M||F¥||pe(q) > 1. Moreover, Q
being bounded, we have L™+1(Q) — L(€). So (Vulzk)keN and (uek)kEN are bounded in L2(Q) and
L1(Q), respectively. It follows from Gagliardo-Nirenberg’s inequality (1.7.2) (applied with p = 1),
that (ufk) ken is also bounded in L2(€2) and so in Hj(Q). Finally, by Rellich-Kondrachov’s Theorem,
there exists a subsequence (ug(,))nen of (u,gck)kEN and h € L*(Q;R), such that

a.e. in Q
‘ucp(n)’ h, for any n € N, a.e. in €, (1.8.14)

By (1.8.13) and (1.8.14),

a.e. in

ng(n)( (n)>X{|u¢(n)|<¢(n)} n— 00 g(u)7
Vn € N, (u (P(n))( C(h™ +h) € LY(Q), ae. in Q.

It follows from the dominated convergence Theorem that

')
gcp(n)( Lp(n))x{‘u¢(n)‘<w }mg(u) (1.8.15)

In addition, by (1.8.12) and Hélder’s inequality,

Putting together (1.8.15) and (1.8.16), we obtain

m+1 2 n—o00
< o (el + [ ) 20

(1.8.16)

n
Jeo(n) (“‘Mn))x{\u:(n)\w(n)}

LY(9)

IR
o (Whn) ) 2 glu). (1.8.17)
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Since F™ "% F in LmTH(Q) — L1(Q), we deduce with help of (1.8.12) and (1.8.17) that

_2

Al %@) Au, (1.8.18)
L)

Fom) (U&n)) — = fw). (1.8.19)

By (1.8.10), we have for any n € N, —Aug = fom) (ug(n)), in L2?(Q). Estimates (1.8.18) and
(1.8.19) allow to pass in the limit in this equation in the sense of 2’(f2). This means that u € Hj ()
is a solution of (1.8.9) and since f(u) € L?(Q2), equation (1.8.9) makes sense in L?(Q).

Step 4. Conclusion. Under the hypotheses of the theorem, equation (1.1.1) admits at least one solution
u € H}(Q) N L™+1(Q) and Properties 1)-3) of the theorem hold.

For any n € N, we write Q,, = QN B(0,n). Let ng € N be large enough to have Q,,, # (). For each
n > ng, let u, € H& (©,) be any solution of (1.1.1) in €, given by Step 3, with the external source
F, = F|q,. We define u,, € H&(Q) by extending w, by 0 in Q N B(0,n)°. Then Vu, = Vuy,,
almost everywhere in ,, and Vu, = 0, almost everywhere in Q N B(0,n)°. It follows from (1.4.2)
of Theorem 1.4.4 that (up)nen is bounded in Hj(Q,) N L™T1((,), or equivalently, (wn)nen is
bounded in Hg () N L™T1(2). Up to a subsequence, that we still denote by (@ )nen, there exists

m+1
u € H}(Q)NL™T(Q) such that w,, — win H(Q), asn — oo, and u, L()> u. Let ¢ € 2(Q).
L@ LmT_H(Q)
Since w,, —== u, we have |, |~ "™, 12— |u|~(=™)y, and in particular
n— 00
li M) U, @) = —(=m) 1.8.2
T (@l 0 ) s = ol 0T s (1820

Recalling that uw € Hg(Q2) and w,, — w in H(2), as n — oo, we get with help of (1.8.20),

lim ((iViin, Vo) 120 2 + (@@l 0"t )

n—00 Tme (Q) L™t (Q)

+ <b’l/1,\7;, SD>L2(Q),L2(Q)) = <—1A’U, + CL|’U,|7 17m)u + bu>@/(9)7@(ﬂ). (1.8.21)

Let ny > ng be large enough to have supp ¢ C €,,. Using the basic properties of u, described as
above and the fact up is a solution of (1.1.1) in 2, we obtain for any n > n1, o, € Z(£2,) and

0= <*iAun + a|un|7(17m)un + buy, — Fy, ‘P|Qn>@’(ﬂn),@(9n)

_ /3 —(1—m)
= <1Vun, V((’DIQ'IL)>L2(Q"),L2(Q”) + <a|un\ m Uy, SDIQ">LMT+1(QH),L’”+1(QW)

+ (bun, QO\QW,>L2(Q,,L),L2(Q, )y <F""p‘Q”>LmT“(Qn),Lm+1(Q")

(1-m)
= {iVtn, Vo) 12(0), 12(0) + (altn]” n“"’“0>L’"T+1<Q),Lm+1m>

+ (buny, <P>L2(Q),L2(Q) —(F, <P> (Q) L)’

from which we deduce

(iVn, Vo) 12(q) L2(q) T e e ) m+1

L + (bun, ®)r2(0) L2(0)

m—+41
o) (0,L™H0) (1.8.22)
- P Lm+1

@, L™ (@)’
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for any n > ny. Passing to the limit in (1.8.22), we get with (1.8.21),
(—iAu + a|u|_(1_m)u +bu, 9) 9 ()90 = (F. 0o @),2(0) Ve € 2(Q),

which is the desired result. Properties 1) and 2) follow from Proposition 1.4.5. Finally, if F is spheri-
cally symmetric then u, obtained as a limit, is also spherically symmetric. Indeed, we replace all the
functional spaces E with E,,q and we follow the above proof step by step. For N = 1, this includes
the case where F' is an even function. Finally, if F' is an odd function, it is sufficient to work with the
space Eoqqa = {v € E; v is odd} in place of E. Hence Property 3). O

Proof of Corollary 1.4.8. Let the assumptions of the corollary be satisfied. Let a = —i\, b = ib and
G = —iF. Then (a,b) € A x B satisfies (1.2.2) and we may apply Theorem 1.4.1 and Theorem 1.3.6
to find a solution ¢ € Cﬁ’m(RN) of (1.1.1) compactly supported for such a, b and G. It follows that
@ is a solution to (1.4.7). A straightforward calculation show that w defined by (1.4.6) is a solution
to (1.4.5). This ends the proof. O

1.9 Proofs of the uniqueness results

In this Section, we prove Theorems 1.1.1, 1.1.2, 1.5.1 and 1.5.2, and Corollaries 1.5.3, 1.5.4 and 1.5.5.
Let 0 < m < 1. Set for any z € C, f(2) = |z|~*~")z, where it is understood that f(0) = 0. The
proof of Theorem 1.5.1 relies on the two following lemmas.

Lemma 1.9.1. Let 0 < m < 1. Then there exists a positive constant C' such that

|21 — 22/

V(z1,22) € C?, Re((f(zl) — f(22))(z1 — Zz)) > OW’

as soon as |z1| + |z2| > 0.

Proof. We denote by | . |2 the Euclidean norm in R?. From Lemma 4.10, p.264 of Diaz [73], there
exists a positive constant C' such that

X Y3
(X2 + [Y]2) =

(|X|;<1"”)X - |Y|;<1‘m>Y) (X-Y)>C

for any (X,Y) € R? x R? satisfying | X|o +|Y|2 > 0. We apply this lemma with X = < Eﬁgzlg > and
1

Y = ( iﬁg?g ) . Note that |X|s = |z1], |[Y|2 = |z2| and | X — Y|z = |21 — 22|. The result follows
2

from a direct calculation. O

Corollary 1.9.2. Let 0 <m < 1. Then,
Re((£(21) ~ f(22))(Z1 = 22)) > 0,

for any (z1, z2) € C2.

Proof. The result is clear if |z1| + |z2| = 0. Otherwise, apply Lemma 1.9.1. O
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Remark 1.9.3. Corollary 1.9.2 still holds for any m > 0 and can be directly obtained as follows.
The mapping f (considered as a function from R? onto R?) is the derivative of the convex function

F: R — R
m+41

(@,y) — @)

It follows that f is a monotone function (Proposition 5.5 p.25 of Ekeland and Temam [83]).

Lemma 1.9.4. Let Q C RY be an open subset, let 0 < m < 1, let (a,b) € C? satisfying (1.2.3) and
let Fy, F € Li, () be such that Fy — F» € L*(2). Let uy,us € Hg () NL™T1(Q) be two solutions
of (1.5.1) and (1.5.2), respectively. Then there exists a positive constant C = C (N, m) satisfying the
following property. If a # 0 then

2

dz + Re (ab) [lug — ’l,l,2H2Lz

Im(a)||Vuy — Vuz”i2 4 C’|a|2/ lui () —u (x|)

2(z)|
(Jur(@)] + uz(z)[)1 =™

< Re/E(Fl(x) — Fz(ac)) (ul(x) — uz(x))dx, (1.9.1)
Q

where w = {:17 € O lur(z)] + |uz(z)| > 0}. If a = 0 then

Re(b)||ur — u2||i2 = Re/ (Fi(z) — F2(2)) (u1(x) — uz(z))dz, (1.9.2)
Q

[Vur — Vus|2z + Im(b)|jug — uzl2 = Im/ (Fi(z) — Fa(2)) (u1(z) — uz(z))da. (1.9.3)
Q

Proof. Let u; and w2 be two solutions of (1.1.1) and (1.2.1) and set u = u; —ug and F = Fy — Fs.
Then u satisfies

m-41

—iAu+a(f(ur) — f(uz)) +bu=F, in H ' (Q)+ L = (Q). (1.9.4)

Assume a # 0. We take the H—1 + L% — H} n L™ duality product of (1.9.4) with au. We
obtain,

(@) [Vuls + |af* (F(ur) = F(uz)w) mpr |+ Re (D) [ulfs = @Fow)pa o (195)

L™

Applying Lemma 1.9.1, there exists a positive constant C' = C'(N, m) such that
|u(z)[?
|+ |uz(z)[)t =

dz. (1.9.6)

m

(f(ur) — f(u2)’u>Lm+1,Lm+1 z C/ (Jua ()

Then (1.9.1) follows from (1.9.5) and (1.9.6). We turn out the case a = 0. Taking the H 1 FLT

H} n L™ duality product of (1.9.4) with w and iu, one respectively obtains (1.9.2) and (1.9.3).
O

Proof of Theorem 1.5.1. Note that since (a,b) € C?\ {(0,0)} satisfies (1.2.3), if a = 0 and
Re(b) = 0 then one necessarily has Im(b) > 0. We apply estimates (1.9.1)—(1.9.3) of Lemma 1.9.4,
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according to the different cases, and Cauchy-Schwarz’s inequality. Estimates (1.5.3) and (1.5.4) follow.
O

Proof of Theorem 1.5.2. Let F € L (Q) and let uy,us € Hg () N L™ () be two solutions
of (1.1.1) and (1.2.1). By Lemma 1.9.4, (1.9.1)—(1.9.3) hold with F; — F» = 0. We first note that,
since uy — ug € Hy(Q), if [[Vuy — Vuzl/gz = 0 then uy — uz = 0, ae. in Q and uniqueness
holds. It follows from hypotheses (1.2.3) and Lemma 1.9.4 that one necessarily has ||u; — uz| 2 =0,

=y da, where w = {2 € Q;|u(x)| + |uz(2)| > 0}. Those

w1 —usz|?
z)[+|uz (z)

[Vur — V|2 = 0 or [
three cases imply that ulw: Uz, a.e. in ). This finishes the proof of the theorem. O
Proof of Corollary 1.5.3. Apply Theorem 1.4.1, Theorem 1.5.2 and Remark 1.6.1.

Proof of Corollary 1.5.4. By uniqueness (Theorem 1.5.2), u = 0 is the unique solution.

Proof of Corollary 1.5.5. Apply Theorem 1.3.6, Theorem 1.4.1, Proposition 1.4.5, Theorem 1.5.2
and Remark 1.6.1.

O
Proof of Theorem 1.1.1. Apply Theorem 1.3.6 and Corollary 1.5.3. O
O

Proof of Theorem 1.1.2. Apply Theorem 1.3.5 and Corollary 1.5.3.
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Existence of weak solutions to some
stationary Schrodinger equations
with singular nonlinearity

with JESUS ILDEFONSO Diaz*

Abstract

We prove some existence (and sometimes also uniqueness) of solutions to some stationary equations as-
sociated to the complex Schrodinger operator under the presence of a singular nonlinear term. Among other
new facts, with respect some previous results in the literature for such type of nonlinear potential terms, we
include the case in which the spatial domain is possibly unbounded (something which is connected with some
previous localization results by the authors), the presence of possible non-local terms at the equation, the case
of boundary conditions different to the Dirichlet ones and, finally, the proof of the existence of solutions when
the right-hand side term of the equation is beyond the usual L2-space.

2.1 Introduction

This paper is concerned by existence of solutions for two kinds of equations related to the complex

Schrodinger operator,

—Au+ alu|~Y ™y + bu = F, in L*(Q), (2.1.1)
—Au + alu| ™y 4 bu + V2 = F, in L*(Q), (2.1.2)

with homogeneous Dirichlet boundary condition

ur =0, (2.1.3)
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or homogeneous Neumann boundary condition

ou

= =0, 2.1.4

ov|r ( )
where  is a subset of RY with boundary T', 0 < m < 1, (a,b,c) € C?> and V € L¥(Q;R) is a real
potential. Here and in what follows, when I is of class C', v denotes the outward unit normal vector

N
to I'. Moreover, A = ) 06722. is the Laplacian in .
j=1 7%

In Bégout and Diaz [25], the authors study the spatial localization property compactness of the sup-
port of solutions of equation (2.1.1) (see Theorems 1.3.1, 1.3.5, 1.3.6, 1.4.1, 1.4.4 and 1.5.2). Existence,
uniqueness and a priori bound are also established with the homogeneous Dirichlet boundary condi-
tion, F € LP(Q) (2 < p < o0) and (a,b) € C? satisfying assumptions (2.2.7) below. In this paper,
we give such existence and a priori bound results but for the weaker assumption F € L?(Q) (Theo-
rems 2.2.8 and 2.2.9) and also for some different hypotheses on (a,b) € C? (Theorems 2.2.1 and 2.2.3).
Additionally, we consider homogeneous Neumann boundary condition (Theorems 2.2.8 and 2.2.9).

In Bégout and Diaz [20], spatial localization property for the partial differential equation (2.1.2)
associated to self-similar solutions of the nonlinear Schrodinger equation

iy + Au = alu| "™y + f(t, ),
is studied.

In this paper, we prove existence of solutions with homogeneous Dirichlet or Neumann boundary
conditions (Theorems 2.2.4) and establish a priori bounds (Theorem 2.2.6), for both equations (2.1.1)
and (2.1.2) with any of both boundary conditions (2.1.3) or (2.1.4). We also show uniqueness (Theo-
rem 2.2.10) and regularity results (Theorem 2.2.12), under suitable additional conditions. We send
the reader to the long introduction of Bégout and Diaz [26] for many comments on the frameworks
in which the equation arises (Quantum Mechanics, Nonlinear Optics and Hydrodynamics) and their
connections with some other papers in the literature.

This paper is organized as follows. In the next section, we give results about existence, uniqueness,
regularity and a priori bounds for equations (2.1.1) and (2.1.2), with boundary conditions (2.1.3) or
(2.1.4), and notations are given in Section 2.3. Section 2.4, is devoted to the establishment of a priori
bounds for the different truncated nonlinearities of equations studied in this paper. In Section 2.5,
we prove the results given in Section 2.2. In Bégout and Diaz [25], localization property is studied for
equation (2.1.1). The results we give require, sometimes, the same assumptions on (a,b) € C? as in
Bégout and Diaz [25] but with a change of notation. See Comments 2.2.7 below for the motivation
of this change. In Section 2.6 we will show the existence of solutions to equation (2.1.2) for data in
a weighted subspace. Finally, in the last section, we state the principal results obtained in this paper
and give some applications. Existence of solutions for equation (2.1.2) is used in Bégout and Diaz [26]
while existence of solutions for equation (2.1.1) is used in Bégout and Diaz [27].

2.2 Main results

Here, we state the main results of this paper.
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Theorem 2.2.1 (Existence). Let Q an open subset of RN be such that |2 < oo and assume

0<m <1, (a,b) € C? and F € L?(Q). If Re(b) < 0 then assume further that Im(b) # 0 or

—% < Re(b), where Cp is the Poincaré’s constant in (2.4.1) below. Then there exists at least a
P

solution u € H}(Q) of (2.1.1). In addition, Symmetry Property 2.2.2 below holds.

Symmetry Property 2.2.2. If furthermore, for any R € SOn(R), RQ = Q and if F is spherically
symmetric then we may construct a solution which is additionally spherically symmetric. For N = 1,
this means that if F is an even (respectively, an odd) function then u is also an even (respectively, an
odd) function.

Theorem 2.2.3 (A priori bound). Let Q an open subset of RV be such that || < oo and assume
0 <m <1, (a,b) € C? and F € L?(Q). If Re(b) < 0 then assume further that Im(b) # 0 or
_C%, < Re(b), where Cp is the constant in (2.4.1) below. Let u € HE(2) be any solution to (2.1.1).
Then we have the following estimate.

lull ) < C,
where C = C(||F|| 20, [, |al, [b], N,m).

Theorem 2.2.4 (Existence). Let Q C RY be an open subset and assume V € L= (;R), 0 < m < 1,
(a,b,c) € C? is such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume further that
Im(a) < 0. Then we have the following result.

1) For any F € L*(Q), there exists at least a solution u € H}(Q) N L™T(Q) to (2.1.2).
2) If we assume furthermore that Q is bounded with a C' boundary then the conclusion 1) still

holds true with u € HY () and the boundary condition (2.1.4) instead of u € H} ().
If, in addition, V is spherically symmetric then Symmetry Property 2.2.2 holds.

Remark 2.2.5. Here are some comments about boundary condition.

1) If u € C(Q) and Q has not a C%! boundary, the condition u;r = 0 does not make sense (in
the sense of the trace) and, in this case, has to be understood as u € Hg ().

2) Assume that € is bounded and has a C1'! boundary. Let u € H'() be any solution to (2.1.2)

with the boundary condition (2.1.4). Then u € H?() and boundary condition %W =0
makes sense in the sense of the trace y(Vu.r) = 0. If, in addition, u € C*(Q) then obviously
for any x € T, g—;‘(m) = 0. Indeed, since u € H'(Q2), Au € L*(Q) and (2.1.2) makes sense

almost everywhere in ), we have ~ (%) cH = (T") and by Green’s formula,

Re!vu($)~wdm B <'y (ZZ) ’W(U)>Hé(r),H5(F)

+Re/f(u(x))@d:z: :Re/F(z)@dx, (2.2.1)
Q

Q

for any v € H'(Q), where fu) = alu|~"""™u + bu + ¢V ?u. (see Lemma 4.1, Theorem 4.2
and Corollary 4.1, p.155, in Lions and Magenes [129] and (1,5,3,10) in Grisvard [93], p.62).
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This implies that

ou
vy <> ,’y(v)> . . =0, (2.2.2)
< v Ho3(0),HE (1)

for any v € H'(Q). Let w € H=(T'). Let v € H'(Q) be such that ~(v) = w (Theorem 1.5.1.3,
p.38, in Grisvard [93]). We then deduce from (2.2.2) that,

Yw e H*(T), <7 (gu),w> ) . =0
v H™2(T),H2(T)

and so fy(g—q;) = 0. But also u € L*() and Au € L*(Q2). It follows that u € H?(Q)

(Proposition 2.5.2.3, p.131, in Grisvard [93]). Hence the result.

Theorem 2.2.6 (A priori bound). Let Q C RY be an open subset, let V€ L= (Q;R), let0 < m < 1,
let (a,b,c) € C3 be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume
further that Tm(a) < 0. Let F € L*(Q) and let u € HY () be any solution to (2.1.2) with boundary
condition (2.1.3) or (2.1.4)1. Then we have the following estimate.

a3y + Il g < MV Iy + DI 20y,
where M = M (]al, |b], ||)-

Comments 2.2.7. In the context of the paper of Bégout and Diaz [25], we can establish an existence
result with the homogeneous Neumann boundary condition (instead of the homogeneous Dirichlet
condition) and F' € L*(12) (instead of F' € L= (2)). In Bégout and Diaz [25], we introduced the set,

A= C\ {z € C;Re(z) = 0 and Im(z) < 0},

and assumed that (a,b) € C? satisfies,
Re(@)Re(b) > 0,
(@,b) € AxA and or (2.2.3)

Re(@)Re(3) < 0 and Tm(p) > 2o

with possibly b= 0, and we worked with
—iAu+ alu|~ ™y 4 by = F.

Nevertheless, to maintain a closer notation to many applied works in the literature (see, e.g., the
introduction of Bégout and Diaz [26]), we do not work any more with this equation but with,

—Au+ alu|~ ™y 4+ bu = F,

1. for which we additionally assume that Q has a C' boundary.
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and b # 0. This means that we chose, a = ia, b =iband F = iF. Then assumptions on (a,b) are

changed by the fact that for z = iz,

Re(z) = Re(—iz2) = Im(2), (2.2.4)
Im(z) = Im(—i2) = —Re(2). (2.2.5)

It follows that the set A and (2.2.3) become,

A =C)\{z € C;Re(z) <0 and Im(z) = 0}, (2.2.6)

Im(a)Im(b) > 0,

(a,b) € Ax A and or (2.2.7)

Im(a)Im(b) <0 and Re(b) >
Obviously,
((E,~) € A x A satisfies (223)) = ((a, b) € A x A satisfies (2.2.7)).

Assumptions (2.2.7) are made to prove the existence and the localization property of solutions to
equation (2.1.1). Now, we give some results about equation (2.1.1) when (a,b) € A x A satisfies
(2.2.7).

Theorem 2.2.8 (Existence). Let ) C RY be an open subset of RN | let 0 < m < 1 and let (a,b) € A®
satisfies (2.2.7).
1) For any F € L*(Q), there exists at least a solution u € HE(Q) N L™TH(Q) to

m+1

—Au+alu| ™y 4 bu = F, in L*(Q) + L% (Q). (2.2.8)

2) If we assume furthermore that ) is bounded with a C* boundary then the conclusion 1) still
holds true with w € HY () and the boundary condition (2.1.4) instead of u € H} ().

In addition, Symmetry Property 2.2.2 holds.
Theorem 2.2.9 (A priori bound). Let Q C RY be an open subset of RN, let 0 < m < 1 and let

(a,b) € A? satisfies (2.2.7). Let F € L*(Q) and let u € H(Q) N L™ 1(Q) be any solution to (2.2.8)
with boundary condition (2.1.3) or (2.1.4)'. Then we have the following estimate.

Hu”?{l(ﬂ) + [lul 7[7}:4}1(9) < MHFHQL?(Q)y

where M = M(lal,|b]).

Theorem 2.2.10 (Uniqueness). Let Q C RY be an open subset, let V € L2 (Q;R), let 0 < m < 1

loc
and let (a,b,c) € C? satisfies one of the three following conditions.

1) a # 0, Re(a) = 0, Re(ab) = 0 and Re(agc) > 0.
2) b#0, Re(b) =0, a = kb, for some k > 0 and Re(be) > 0.
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3) ¢#0, Re(c) =0, a = ke, for some k>0 and Re(be) > 0.
Let F € L (Q). If there exist two solutions ui,us € H'(Q) N L™(Q) of (2.1.2) with the same

loc

boundary condition (2.1.3) or (2.1.4)' such that Vuy,Vua € L%(Q) then u; = us.

Remark 2.2.11. Here are some comments about Theorems 2.2.1, 2.2.4, 2.2.8 and 2.2.10.

1) Assume F' is spherically symmetric. Since we do not know, in general, if we have uniqueness
of the solution, we are not able to show that any solution is radially symmetric.

2) In Theorem 1.5.2, uniqueness for equation

—iAu + au|" "™y 4 bu = F,
holds if @ # 0, Im(a) > 0 and Re(?i:) > 0. By (2.2.4)—(2.2.5), those assumptions are equi-
valent to 1) of Theorem 2.2.10 above for equation (2.1.1) (of course, ¢ = 0). It follows that
Theorem 2.2.10 above extends Theorem 1.5.2.

3) In 2) of the above theorem, if we want to make an analogy with 1), assumption a = kb, for
some k > 0 has to be replaced with Re(ab) > 0 and Im(ab) = 0. But,

(Re(ag) > 0 and Im(ab) = O) = (Hk >0/a= kb).
In the same way,
(Re(aé) > and Im(ac) = ()) = (Elk; >0/a = kc).

4) In the case of real solutions (with F' = 0 and (a,b,c) € R x R x {0}), it is well-known that
if b < 0 then it may appear multiplicity of solutions (once m € (0,1) and a > 0). For more
details, see Theorem 1 in Diaz and Hernandez [74].

Theorem 2.2.12 (Regularity). Let  C RY be an open subset, let V € LI (;C), for any 1 <r <

loc

00, let 0 < m < 1, let (a,b) € C% let F € L (Q), let 1 < ¢ < oo and let u € LL () be any local

loc loc

solution to
—Au+ alu|~Y ™y 4 Vu = F, in 2'(Q). (2.2.9)

Let ¢ < p < o0 and let a € (0, m].
1) If F e LP (Q) then u € W2P(Q). If (F,V) € C2*(Q) x C2*(Q) then u € C2*(Q).

) loc loc loc loc loc

2) Assume further that Q is bounded with a CY' boundary, F € LP(Q), V € L"(Q;C), for
any 1 < r < oo, u € L) and y(u) = 0. Then u € W*P(Q) N WP (Q). If (F,V) €
C%(Q) x C%*(Q) then u € C%*(2) N Cp(9).

3) Assume further that Q is bounded with a C*' boundary, F € LP(Q), V € L"(Q;C), for any

1<r<oo,u€ L) and v (%) = 0. Then u € W2P(Q). If (F,V) € C%*(Q) x C%*(Q)

then u € C*%(Q) and for any x € T, g—jj(x) =0.

Remark 2.2.13. Assume () is bounded and has a C1'! boundary. Let V. € () L"(£;C), 0 <
I<r<oo

m <1, (a,b) € C3, 1 < qg<p<oo, FeLP(Q) and let u € LI(2) be any solution to (2.2.9). Let
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T:u— {y(u),y (%)} be the trace function defined on 2(Q). By density of 2(Q) in Dy(A) def

{u € LYQ); Au € LY(Q)}, T has a linear and continuous extension from Dy(A) into W_%’Q(F) X
W_l_é’q(r) (Hérmander [107], Theorem 2 p.503; Lions and Magenes [129], Lemma 2.2 and Theo-
rem 2.1 p.147; Lions and Magenes [130], Propositions 9.1, Proposition 9.2 and Theorem 9.1 p.82;
Grisvard [93], p.54). Since u € L%(Q), it follows from equation (2.2.9) and Hélder’s inequality that
u € Dy(A), so that “y(u) =07 and “y (%) = 0” make sense.

The main difficulty to apply Theorem 2.2.12 is to show that such a solution of (2.2.9) verifies some
boundary condition. In the following result, we give a sufficient condition.

Proposition 2.2.14 (Regularity). Let Q be a bounded open subset of R™ with a C1'1 boundary, let
Ve LN(;C) (V € L?T¢(Q; C), for somee >0, if N =2 and V € L?>(Q;C) if N =1), let 0 <m < 1,
let a € C and let F € L*(9).

1) Let u € HE() be any solution to (2.2.9). Then u € H*(Q) and ~(u) = 0.
2) Let u € HY(Q) be any solution to (2.2.9) and (2.1.4). Then u € H*(Q) and v (2%) = 0.

Remark 2.2.15. Any solution given by Theorems 2.2.1, 2.2.4 or 2.2.8 belongs to H{

loc (Q) (Theo—
rem 2.2.12).

2.3 Notations

We indicate here some of the notations used throughout this paper which have not been defined
yet in the introduction (Section 2.1). We write i> = —1. We denote by Z the conjugate of the complex
number z, Re(z) its real part and Im(z) its imaginary part. For 1 < p < oo, p’ is the conjugate of p
defined by % + % = 1. The symbol Q always indicates a nonempty open subset of RY (bounded or
not) ; its closure is denoted by Q and its boundary by T'. For A € {Q;Q}, the space C(A) = C°(A)
is the set of continuous functions from A to C and C*(A) (k € N) is the space of functions lying in
C(A) and having all derivatives of order lesser or equal than k belonging to C(A). For 0 < oo < 1

and k € Ng & NuU {0}, cFo(Q) = {u eCHQ)VweQ, S HY(DPu) < +oo} , where H%(u) =
|Bl=k
sup Wﬁ?—iw The notation w € €2 means that w is a bounded open subset of RY and @ C Q. In
{(r,y)EwQ
TFy

the same way, C**(Q) = {u € Ck(Q); Y. H(DPu) < —l—oo} . The space Cp(2) consists of functions
|Bl=k
belonging to C'(Q2) and vanishing at the boundary ', 2(€) is the space of C'*° functions with compact
support and Z(Q) is the restriction to Q of functions lying in Z(RY). The trace function defined
on 2(9) is denoted by . For 1 < p < oo and m € N, the usual Lebesgue and Sobolev spaces are
respectively denoted by LP(2) and W™P(Q), WP (Q) is the closure of 2(Q) under the W™P-norm,
H™(Q) = W™2(Q) and H*(Q) = W™?(Q). For a Banach space E, its topological dual is denoted by
E* and (., .)p- p € Ris the E* — E duality product. In particular, for any T' € L¥' () and ¢ € L?(Q)
with 1 < p < 00, (T,9) 10 (), Lr() = ReéT(m)gp(x)dx. We write, W= (Q) = (WP (Q))" (p < o0)

and H~™(Q) = (H§"(2))” . Unless if specified, any function belonging in a functional space (W™? (),
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C*(9), etc) is supposed to be a complex-valued function (W™?(Q;C), C*(Q;C), etc). We denote by
SOx(R) the special orthogonal group of RY. Finally, we denote by C auxiliary positive constants,
and sometimes, for positive parameters aq, ..., a,, write C(aq,...,a,) to indicate that the constant
C' continuously depends only on as,...,a, (this convention also holds for constants which are not
denoted by “C”).

2.4 A priori estimates

The proofs of the existence theorems relies on a priori bounds, in order to truncate the nonlinearity
and pass to the limit. These bounds are formally obtained by multiplying the equation by @ and iu,
integrate by parts and by making some linear combinations with the obtained results. Now, we recall

the well-known Poincaré’s inequality. If |Q| < oo then,
Yu € H&(Q), ||UHL2(Q) < CPHVUHL2(Q)~ (241)

where Cp = Cp(|Q2|, N). We will frequently use Holder’s inequality in the following form. If || < co
and 0 < m < 1 then L*(Q) — L™T1(Q) and

Vu € L2(9), ullfith gy < 190 [l (2.4.2)
Finally, we recall the well-known Young’s inequality. For any real > 0, y > 0 and p > 0, one has
2
B~ 2 L oo
zy < -7 + ﬁy . (2.4.3)

Lemma 2.4.1. Let 2 an open subset of RY be such that || < oo, let w an open subset of RN be such
that w C Q, let 0 < m < 1, let (a,b) € C?, let o, 3> 0 and let F € L*(Q). Let u € H}(Q) satisfies

190130y + Re(a) (lullfith ) + allullza o)

+Re(b) (32 + Bllullzrn)) | < /Q Fuldz, (2.4.4)

[tm(a) (Il )+ allullzs oy ) + Tm) (lula) + Blulls e ) | < /Q [Pulde.  (2.4.5)

Here, w® = Q\ w. Assume that one of the three following assertions holds.
1) Re(b) = 0. If Re(a) < 0 and |w| < [ then assume further that o|lul|p: ey < ||u|\2”,j'+ll(wc).
2) Re(b) < 0 and Im(b) # 0. If |w| < [Q| then assume further that a|u| 1 (wey < Hu||7L";f+11(wc),
F € L*(9Q) and —alIm(a)| + g\Im(b)| > || F|poe (-
3) —Cp” < Re(b) < 0, where Cp is the constant in (2.4.1), aflullpi(we) < ||u\z1,ﬂ1(wc) and
5““||L1(wc) < ||“||2L2(wc)-

Then we have the following estimate.
lull g o) < C, (2.4.6)

where C' = C(||F|| r2(q), 1€, |al, |b], N, m).
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Remark 2.4.2. Obviously, if |w| = || then alu|p1 (e < Hu||TL”I+11(wC) and flul| L1 ey < ||u||L2 (we)-
Proof of Lemma 2.4.1. By Poincaré’s inequality (2.4.1), it is sufficient to establish

I9ull 2@y < CUIF 20 19, lal, 6], N, m). (2.4.7)
Moreover, it follows from (2.4.3) and (2.4.1) that for any u > 0,

1
/|Fu|dx P||F||L2 + 5 IVulZaqq. (2.4.8)

Finally, it follows from (2.4.2) and (2.4.1) that if alu|f1(we) < ||u||?rﬂ1(wc) then one has,

lall Tty o) + ol oy < ulloths g < ORI [Vl 75t (2.4.9)

We divide the proof in 3 steps.

Step 1. Proof of (2.4.7) with Assumption 1).

Assume hypothesis 1) holds true. If Re(a) > 0 then (2.4.7) follows from (2.4.4) and (2.4.8), while if
Re(a) < 0 we then deduce from (2.4.4), (2.4.8) and (2.4.9) that,

1—m m
(IVulzia, — IRe(@CE 101 F* ) [ Vulfh) < CRIFIE o)

Hence (2.4.7).
Step 2. Proof of (2.4.7) with Assumption 2).
As for Step 1, it follows from (2.4.5), (2.4.2), (2.4.3) and Hélder’s inequality that

1-m
Im(b)l(Ilulli%)+ﬂHUIIL1(wc>) < m(a)||9217= [full 75, + alm(a)][[ull 11 )

1 > IIm( )

|
+ m” 122y + —5llu HLZ(W) + 1F )| oo ey llull 21 (we) -

Recalling that when |w| < |Q|, —a|Im(a)| + g\lm(bﬂ > ||F|| (), the above estimate yields

1
m—+1 2
(IIm( Ml 2y — 2/m(a) ) [ull 75,y + BImOB)[[[ull 1 (we) < |Im(b)|IIFIILz<w)- (2.4.10)
If [T ()| [[ull 272y — 2[Tm(a)]|Q] "= < 1 then
not.
||u||L2(w) < C(HF”LZ(Q)v |Q‘7 ‘a|7 |b|7m) =" (o, (2'4'11)

and it follows from (2.4.5), (2.4.2), (2.4.11) and Holder’s inequality that,
(BITm(b)] - aftm(@)]) o2 ey < C(Co) + IF N ey Il
B
< (o) + (G Im()] - altm(@] ) 2o
so that,

Blull s ey < CUIF 2209, 1€, Jal, bl ) "2 €. (24.12)
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7n,

But if |Im(b)H|u||;(T)) —2|Im(a )||Q| > 1 then (2.4.11) and (2.4.12) come from (2.4.10).

Finally, by (2.4.4), (2.4.8), (2.4.9), (2.4.11) and (2.4.12), one obtains

m . C3 1
IVl < [Re(a)|CEt|0] 2 IVl 7l + C(Co, C1) + fIIF\\%z(m + §HWH%2(Q>'

It follows that (HVU’HL2(Q )HVUH'L";('SZ C+C3 ||F||L2 ()» from which we easily deduce (2.4.7).
Step 3. Proof of (2.4.7) with Assumption 3).
By Assumption 3), (2.4.1), (2.4.3) and (2.4.9)

m CQ MQ
Vulim)<0||w||L2+(g)+(|Re<b>|c§ Qﬂz)uwnm P ),

where C' = C(|9|, |a|, N, m). We then deduce,

o2 N
((1- Reics - 52 ) 19l - ©) 19l < 1P
Since [Re(b)| < Cp?, there exists pio > 0 such that Cs ety |Re(b)|C3 — CP > 0. For such a py,
O
(CQHWHLm ) IVul[fsih) < M F|132 g, from which (2.4.7) follows. 0

Corollary 2.4.3. Let (Q,)nen @ sequence of open subsets of RN be such that sup|Q,| < oo, let
neN
0<m <1, let (a,b) € C* and let (Fp)nen C L>=(y,) be such that sup || F,||12(q,) < 0o. If Re(b) <0
neN

then assume further that Im(b) # 0 or —gz < Re(b), where Cp is the constant in (2.4.1). Let
P

(u}) (n,pyenz C HY(Q,) be a sequence satisfying
Vn €N, VL eN, —Au} + fi(up) = Fy, in L*(,), (2.4.13)
where for any £ € N,
alu] =y 4 bu, if fu] < 0
Yu € L2(Qy,), fo(u) = u (2.4.14)

alm b if |ul > L
|u |ul

Then there exists a diagonal extraction (“Z(n)) of (uy)n,eyen2 such that the following estimate
neN
holds.

Vn € N,

U () HH&(Qn) <0,

where C = C (sup 1220y, 5up [2l, lal, B, N, m) |
neN neN
Proof. Choosing v} and iuy as test functions, we get
”VUZLH%Z(QH) + Re(a) (||u?||2”i+11({|un|<e}) + 0™ Juy ||L1 {Juy |>€}))

+ Re(b) (||u7|‘%2({\u?\<£}) Jr5”“?||L1({|u;f|>1z})> = Re/ Fyuyd,

n
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() (g 17 g <) + 1 e g 56
+1m(b) (1 acqguicen + O oo g ) =T | Fridfda,
for any (n,¢) € N2. We first note that,
Mgl qrup > < Mg Tt up =)

Y(n,f) € N?, (2.4.15)
gl qrupr>ey) < Mgz gup o)

For each n € N, we choose ¢(n) € N large enough to have p(n)!=™ > o IFn \|L<><‘>1<:1,Z))J|r\1m(a)l’ when

m(b) # 0 and ¢(n) =n, when Im(b) = 0. Thus for any n € N, as soon as Im(b) # 0, one has

m p(n)
1l 2o (@) < —(n)™ [Im(a)] + == [Im(b)]. (2.4.16)
With help of (2.4.15) and (2.4.16), we may apply Lemma 2.4.1 to U,y for each n € N, with
w={o € Quiluz, @] <}, a=pm)m and 5= o(n). o

Lemma 2.4.4. Let Q C RN be an open subset, let w an open subset of RY be such that w C €, let
m >0 and let (a,b,c) € C3 be such that Im(b) # 0. If Re(a) < 0 then assume further that Im(a) # 0.
Let a, B, R >0, let F € L*(Q) and let

b 2le a .
e {1’ H\‘IJ{I&‘ s \Ianigaﬂ } , if Re(a) <0
max{l,l"“‘ym;(f)?‘c‘}7 if Re(a) > 0

If |w| < |Q| then assume further that F € L>=(Q) and B > 2A||F|| =) + 1. Let u € H'(Q) satisfies

A:

zliil(w) + aHu”Ll(wC)>

IVulls ) + Re(a) (|lu

= (Iel + B2el) (Jlul 2 + Bllull o)) < /Q |Fuldz, (2.4.17)

tm(a)| (Il ) + allullz e ) + @) ([ul3ee) + Blullow ) < / |[Fuldz.  (24.18)
Then there exists a positive constant M = M(|al,|b|, |¢|) such that,
m+1

IVullZa () + o) + el 7ot ) + lull ey < MR+ DIIF 720 (2.4.19)

Proof. Let A be as in the lemma. We multiply (2.4.18) by A and sum the result to (2.4.17). This
yields,

IVul3ey + Ao (lullgithy ) + llullis e ) + lullfee) + Blull o < 24 /Q |Fulda,
where Ag = A|Im(a)| + Re(a). Applying Holder’s inequality and (2.4.3), we get
IV ul3aq + lal3a oy + Aollullfithy ) + Bl ey

1
<2AYF |z ull o ey + 247120y + S l1ullZe ),
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from which we deduce the result if |w| = |€2|. Now, suppose |w| < |€2|. The above estimate leads to,
IVullZs () + lullZs ) + Aollull T ) + (8 = 2401 Fl| 2= (@)) lullr we) < 442 Fll72(q),

from which we prove the lemma since § — 2A||F|| ) > 1. O

Lemma 2.4.5. Let (a,b) € A? satisfies (2.2.7). Then there exists 6, = ,(|al,|b]) € (0,1], L =
L(lal,|b]) and M = M(|al,|b]) satisfying the following property. If 6 € [0,d,] and Cy, Cy, Ca2, Cs3, Cy
are sixz nonnegative real numbers satisfying

|C1 + 6C2 + Re(a)Cs + (Re(b) — 6)Cy| < Co, (2.4.20)
|Im(a)Cs + Im(b)Cy4| < C, (2.4.21)

then
<O+ LCs+ LCy < MCy. (2.4.22)

Proof. We split the proof in 4 cases. Let v > 0 be small enough to be chosen later. Note that when
Im(a)Im(b) > 0 then estimate (2.4.21) can be rewritten as

Im(a)|Cs + [Im(b)|Cy < Co. (2.4.23)
Case 1. Re(a) > 0, Re(b) = 0 and Im(a)Im(b) = 0. We add (2.4.23) with (2.4.20) and obtain,
Cy + (Re(a) + [Im(a)]) Cs + (Re(b) — 8, + [Im(b)]) Cy < 2Cs.
Case 2. (Re(a) >0, Re(b) < 0 and Im(a)Im(b) > o) or (Im ) < o) Then,

Re(a)Im(b) — Re(b)Im(a) + yIm(a)

< [Re(®)] + Im(b)] +
Im(b) Co.

Gt [Tm ()|

C3+ (7 —6,)Cy

where we computed (2.4.20) — Rc(b()b)'y(Q 4.21).

Case 3. Re(a) < 0, Re(b) > 0 and Im(a)Im(b) > 0. By computing (2.4.20) — Re(a () ) 1(2.4.21), we get,

Re(b)Im(a) — Re(a)Im(b) +yIm(b) [Re(a)| + [Im(a)| + v
Tm(a) 50@\ @ "

C1+703+(

Case 4. Re(a) < 0, Re(b) < 0 and Im(a)lm(b) > 0. Note that since (a,b) € A? then necessarily

Im(a)Im(b) # 0. Thus, we can compute (2.4.20) + max { |P|”fr(na()a|;7, |P|~Ie$()gﬁ“/} (2.4.23) and obtain,

Ch +7Cs + (v — 6,)C4 < <|Re(a)| + [Im(a)| + 5, [Re(b)| + [Tm(b)| + 7) ‘.

Tm(a)| [Tm(b)|
In both cases, we may choose v > 0 small enough to have

Re(a)Im(b) — Re(b)Im(a) + yIm(a)
Im(b)

Re(b)Im(a) — Re(a)Im(b) + vIm(b)
Im(a)

>0, in Case 2,

>0, in Case 3.
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Then we choose 0 < &, < min {1,7, [Im(b)| + |Re(b)|} such that

Re(b)Im(a) — Re(a)Im(b) + +Im(b)
Im(a)

0y < , in Case 3.

This ends the proof. O

Corollary 2.4.6. Let 2 CRY be an open subset, let V € L= (;R), let 0 < m < 1 and let (a,b,c) €
C? be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume further that Im(a) < 0.
Let§ > 0. Let (F,)nen C L®(Q)NL*(Q) be bounded in L*() and let (u})(n 0enz € H(Q)NL™ ()
be a sequence satisfying

Vn €N, (2.4.24)
with boundary condition (2.1.3) or (2.1.4), where for any ¢ € N,

alu| =™y 4 (b — S)u + cV3u, if jul <,

e ZO) ) 2.4.25
(), fe(u) LV il > ( |

u
alm— + (b—8)¢
Jul Jul

|ul
For (2.1.4), Q is assumed to have a C* boundary. Then there exist M = M (||V || (o). |al, |b],|c|) and

a diagonal extraction (ug(n)>n€N of (u}})(n,eyenz for which,

w12 12 n mtl
Hvuw(n)Hm(Q) + ||u90(n)||L2({‘ug(n)‘<go(n)}) + ||UW(”)||L7:+1<{

ul <o })

ol (ffun, [5em))

for any n € N. The same is true if we replace the conditions on (a,b,c) by (a,b,c) € A x A x {0}
satisfies (2.2.7) and 6 < 0y, where 6, is given by Lemma 2.4.5. In this case, M = M(|al, |b]).

< Msup || Fy 1720,
neN

Proof. Choosing v} and iuy as test functions, we obtain

”VU?H%Q(Q) + Re(a) <||u?||fﬂl({|u;»|<e}) + EmHu?HLl({Iu}ZDZ}))

+ (Re(b) = V][00 (0 |Re(0)]) (||u?|\%z({\ug\<e}) +€||u2||L1({|u2L|>g})) < Re/QFn@dx, (2.4.26)

() (11 17 g <) + " e g > ) + Tm08) (162 132 g <oy + Ald s a5 )
+ Im(c) (HVUH%Q({W?KZ})) + €||V2u||L1({‘u?‘>g}))) = Im/QFanl’, (2.4.27)
for any (n, ) € N2, If (a,b,c) € A x A x {0} satisfies (2.2.7), then we obtain
190 130+ 0l 13y + Reea) (g IEb gy + N Nt o 50

+ (Re(b) - 9) (||U?H%2({\ug\<e}) +€||U2L||L1({|u;|>e})) = Re/QFanl’, (2.4.28)
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() (g 17 g <) + 1 e g 56

+mw@wmmm@wwwmwwmgzmém@m,@um

for any (n,f) € N2. For this last case, it follows from Lemma 2.4.5, Holder’s inequality and (2.4.3)
that

+1
AR ||W 172 ({up<ey) T Ljug H?erl

)
M? 9
+ (Lg - M||FHL°°(Q)) ||U?||L1({\u;|>é}) < EHF”L%Q)'

Then the result follows by choosing for each n € N, ¢(n) € N large enough to have Ly(n) —
M]||F|| () = 1. Now we turn out to the case (2.4.26)—(2.4.27). Let M and A be given by Lemma 2.4.4
with R = ||V L (q). For each n € N, let ¢(n) € N be large enough to have p(n) > 2A||F, | L~ ) + 1,
if jw| < |9 and p(n) = n, if |w| = |Q]. For each n € N, with help of (2.4.26) and (2.4.27), we
may apply Lemma 2.4.4 to u,, with w = {:E e ‘uw(n)( )‘ < gp(n)}, a=p(n)™m, = e(n)and

= ||V|| Lo (q)- Hence the result. O

2.5 Proofs of the main results

Proof of Theorem 2.2.12. Property 1) follows from Proposition 1.4.5 while Property 2) comes
from Remark 1.4.7. Tt remains to establish Property 3). Assume first that F € LP(Q)) and V €

N L"(R). It follows from the equation that for any ¢ € (0,¢ — 1), Au € L17¢(Q). We now
1<r<oo
recall an elliptic regularity result. If for some 1 < s < oo, u € L*(Q) satisfies Au € L*(£2) and

y(Vu.v) = 0 then u € W24(Q) (Proposition 2.5.2.3, p.131, in Grisvard [93]). Since for any ¢ € (0,g—1),
u, Au € L17¢(Q) and v(Vu.r) = 0 (by assumption), by following the bootstrap method of the proof
p-21-22 of Property 1) of Proposition 1.4.5, we obtain the result. Indeed, therein, it is sufficient to
apply the global regularity result in Grisvard [93] (Proposition 2.5.2.3, p.131) in place of the local
regularity result in Cazenave [58] (Proposition 4.1.2, p.101-102). Now, you turn out to the Holder
regularity. Assume F' € C%*(Q) and V € C%%(Q). By global smoothness property in W?2? proved
above, we know that u € W2N*1(Q) and v(Vu.v) = 0 in LVNTYT). It follows from the Sobolev’s
embedding, W2V +1(Q) < €1~ (Q) < C%1(Q), that for any 2 € T, Su(z) =0and ue COH(Q). A
straightforward calculation yields,

V(z,y) € 0, lu(@)] O™ u(z) — uly)] "™ u(y)| < 5lu(z) — uly)[™ < 5l —y|™

Setting, g = F — (a|u|~ =™y + (b — 1)u + cVu), we deduce that g € C%*(Q). Let v € C>*(Q) be
the unique solution to

{ Av+v=g, inQQ,

ov __
v 0 on F,

(see, for instance, Theorem 3.2 p.137 in Ladyzhenskaya and Ural’tseva [125]). It follows that u and
v are two H'-solutions of the above equations and since uniqueness holds in H'(Q) (Lax-Milgram’s
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Theorem), we deduce that u = v. Hence u € C%%(Q). This concludes the proof?. O

Proof of Proposition 2.2.14. We first establish Property 1). Since  has C%! boundary and
u € H}(Q), it follows that v(u) = 0. Moreover, Sobolev’s embedding and equation (2.2.9) imply
that Au € L?(2). We then obtain that u € H?(Q) (Grisvard [03], Corollary 2.5.2.2, p.131). Hence
Property 1). We turn out to Property 2). It follows from equation (2.2.9) that Au € L?(2), so that
(2.2.9) makes sense a.e. in Q. Then Property 2) comes from the arguments of 2) of Remark 2.2.5. O

Lemma 2.5.1. Let O C RV be a bounded open subset, let V€ L®(Q;C), let 0 < m < 1, let
(a,b,c) € C? and let F € L*(O). Let § € [0,1]. Then for any £ € N, there ezist a solution u} € H(O)
to

—Aug + Sug + folug) = F, in L*(0), (2.5.1)

with boundary condition (2.1.3) and a solution u € H'(O) to (2.5.1) with boundary condition (2.1.4)
(in this case, O is assumed to have a C' boundary and § > 0), where

alu| =y 4 (b — Su+ V3, if ful <4,
Yu e L2(Q), fi(u) =
(), Jatw) i+ (=8

If, in addition, V is spherically symmetric then Symmetry Property 2.2.2 holds.

2.5.2
LV il > L (2:5.2)

Jul |ul

Proof. We proceed with the proof in two steps. Let H = Hg(0O), in the homogeneous Dirichlet case,
and H = H'(0), in the homogeneous Neumann case. Let § € [0, 1] (with additionally § > 0 and I of
class C! if H = H'(0)). Step 1 below being obvious, we omit the proof.
Step 1. VG € L*(0), 3lu € H s.t. —Au+du = G. Moreover, Ja > 0s.t. VG € L*(0), [|[(-A + 6])_1G||H1(O) <
a||G||2(0). Finally, Symmetry Property 2.2.2 holds.
Step 2. Conclusion.
For each £ € N, we define g = — fy+ F € C(L?(O); L*(0)). With help of the continuous and compact
embedding i : H < L?(O) and Step 1, we may define a continuous and compact sequence of mappings
(Ty)een of H as follows. For any £ € N, set
TH S 120) & 120) AP g

u +— i(u)=u —  ge(u) — (—A + 6u) " (ge)(u)
Set p = 2a(|al + [b] + |c[ + 1) (<||VH2°°(Q) + 2) 00|z + ||FHL2(O)) . Let u € H. Tt follows that,

1T ()| o) = | (A +5I)_1(96)(U)HH1(@) < allge(u)llz2(0) < p-

Existence comes from the Schauder’s fixed point Theorem applied to T;. The Symmetry Property 2.2.2
is obtained by working in H,.q in place of H (and in Heyen and Hyqq for N = 1). O

2. More directly, we could have said that since u € W2N+1(Q), v(Vu.r) = 0 and Au € CO*(Q) (by the estimate of
the nonlinearity) then by Theorem 6.3.2.1, p.287, in Grisvard [93], u € C%(Q). But this theorem requires Q to have a
C?%1 boundary.
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Proof of Theorem 2.2.1. Let for any u € L*(Q), f(u) = alu|~*~™u + bu. Set Q,, = QN B(0,n).

, 12(@) .
Let (Gpn)nen C 2(Q) be such that G, — F. Let (ul)(n,z)ew

of (2.5.1) be given by Lemma 2.5.1 with O = Q,, ¢ = 0 = 0 and F,, = G,q,. We define 17? €
H}(Q) by extending u, by 0 in QN QS. We also denote by f; the extension by 0 of f; in QN Q.
of (1727) (n.0)eN? which is bounded

C H}(Q) a sequence of solutions

By Corollary 2.4.3, there exists a diagonal extraction (Jﬁv )
p(n) neN

in H}(Q). By reflexivity of H}(f2), Rellich-Kondrachov’s Theorem and converse of the dominated

2

convergence theorem, there exist u € Hg(Q2) and g € LE

(€; R) such that, up to a subsequence that

— g2 g . .

we still denote by (ug(n))nEN, ug(n) L::(O? u, ug(n) % u and ’ug(n) < g, a.e. in 2, By these
. r v a.e. in ral e m .
two last estimates, fy(n) (uw(n)) - f(u) and | f,n) (usa(n))‘ <C(g™ +g) € L .(Q), ae. in Q.
—— e~ 2
From the dominated convergence Theorem, f, () (“Z(n)) Llim) f(u). Let ¢ € 2(Q2). Let n, € N be
large enough to have supp ¢ C §,,,. We have by (2.5.1),
Vn > Ny <—1Aug(n) + f(p(n) (Ug(n)> - Fn7 ¢|Qn>@/(§2n)7@(Qn) =0

The above convergencies lead to,

(—Au+ f(u) = Fi9)a9),2(9)

(—u, Ap)gr(0),2(0) + (f(u) = FL9) 9/ 9),2(9)

= Jim (<0200 80) 0 8 (B () = Gnro) 0 i

n— 00

=0.

By density, we then obtain that u € H}(f2) is a solution to —Au + f(u) = F, in L*(Q). Finally, if
F is spherically symmetric then u (obtained as a limit of solutions given by Lemma 2.5.1) is also
spherically symmetric. For N = 1, this includes the case where F' is an even function. 0

Proof of Theorems 2.2.3 and 2.2.9. Choosing v and iu as test functions, we obtain
IV ul220) + Re(@)[[ull 75 ) + Re(®)[ul22(q) = Re /Q Fuds,

Im(a)||u|

w4 Tm() 22 = Im /Q Fadz.

Theorem 2.2.3 follows immediately from Lemma 2.4.1 applied with w = €, while Theorem 2.2.9 is a
consequence of Lemma 2.4.5 applied with § = 0 and (2.4.3). This ends the proof. O

Proof of Theorem 2.2.6. Choosing u and iu as test functions, we obtain

IVul|72 (o) + Re(a)

[ull it oy + (Re(8) = IRe() VI =y ) ull3(q) < / |Fuldz,
[ () [l gy + [1m(0) 1] 2 + () [[V |2 < / |Fuldz.

The theorem follows Lemma 2.4.4 applied with w = Q, R = ||V||c(q) and o = g = 0. O
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Proof of Theorems 2.2.4 and 2.2.8. We first assume that  is bounded. Let H = H{(f2), in the
homogeneous Dirichlet case, and H = H'(2), in the homogeneous Neumann case. Let 4, be given by

Lemma 2.4.5 and let for any u € L?(Q), f(u) = alu|~ "™ utbutcV?u (with ¢ = 0 in the case of Theo-

rem 2.2.8). Let (Fy,)nen C 2(92) be such that F, #) F. Let (u )( ene

tions of (2.5.1) be given by Lemma 2.5.1 with O = Q 5 = 1 for Theorem 2.2.4, 6 = J, for Theorem 2.2.8

and such F;,. By Corollary 2.4.6, there exists a diagonal extraction (“Z(n))
neN

is bounded in W(Q) N H'(Q). Let 1 < p < 2 be such that W(Q) < LP(Q2). Then (ug(n)) .
ne

is bounded in W1?(Q) and there exist u € W'?(Q) N H'(Q) and g € LP(;R) such that, up to

a subsequence that we still denote by (ug(n)) . un  EE, u, Vull,y — Vuin (LQW(Q))N, as
ne

#(n) oo

C H a sequence of solu-

of (u?) (n.0)eN? which

n < . n . . 2
ULy | < g5 a.e.in  and <u¢(n)]l{ @,(n>|<<P }>n€N is bounded in L*(Q),

e(n) e

where the last estimate comes from Corollary 2.4.6. By these three last estimates and Fatou’s Lemma,
a.e. in Q .

u € L*(Q), fom) (UZ(n)) —— f(u) = buand ‘ftp(n) (“Z(n))‘ < C(g™ +g) € LP(Q), a.e. in Q. Tt

follows that u € H'(f2). From the dominated convergence Theorem, f¢(n)< (n)) L (Q flu) = du.

Consider the Dirichlet boundary condition. We recall a Gagliardo-Nirenberg’s 1nequahty
vw € Hy(Q), w725 < Cllwll7: o) Vwllzz g,

where C = C(N). In particular, C' does not depend on €. Since (“Z(n)) N C H}(Q) is bounded
ne

in WhH(Q) N HY(Q), it follow from the above Gagliardo-Nirenberg’s inequality that (ug(n)) . is
ne
bounded in H{(£2), so that u € H} (). Now, we show that u € H is a solution. Let mg € N be large

enough to have H™(Q) < LP (Q). Let v € 2(Q), if H = H} () and let v € H™(Q), if H = H'(Q).
By (2.5.1), we have for any n € N,

<vuﬁa(”)’ Vv >L2(Q),LZ(Q) + <6uW(n) + fﬁa(ﬂ) (uip(n)) 7U>LP(Q)7LP'(Q)
— (Fn,v)r2Q),22() = 0. (2.5.3)

Above convergencies lead to allow us to pass in the limit in (2.5.3) and by density of 2(Q) in HJ ()
and density of H™ () in H(£) (see, for instance, Corollary 9.8, p.277, in Brezis [11]), it follows that

Vo € H, (Vu, Vo) r2(a) r2(0) + (f(u),v)12(0),22(0) = (F, V) 12(9),12(0)-

This finishes the proof of the existence for 2 bounded. Approximating €2 by an exhaustive sequence
of bounded sets (2N B(0,n)),,cx >
proof of Theorem 2.2.1. The symmetry property also follows as in the proof of Theorem 2.2.1. O

the case Q2 unbounded can be treated in the same way as in the

Proof of Theorem 2.2.10. Let uj,us € H'(Q) N L™T1(Q) be two solutions of (2.1.2) such that
Vauy, Vug € L2(Q). We set u = uy — ug, f(v) = |[v|~0"™v and g(v) = af(v) + bv + ¢V?v. From
Lemma 1.9.1, there exists a positive constant C' such that,

w1 (2) — ua(2)?
Cw/ ( IE de < (f(u1) — f(u2),u1 — u2> m+1 (2.5.4)

|u1($)| + |U2(l‘> -m m (Q),Lm+1(Q)’
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where w = {x € O Juy ()] + Juz(x)] > 0}. We have that u satisfies —Au+ g(u1) —g(uz) = 0. Choosing
v = au as a test function, we get

+ Re(ab)||u||22 + Re (ag) ||Vul|32 = 0.

Re(a)[|Vull72 + lal®(f(u1) = f(uz),u1 — u2)  mes

m [m+1

It follows from the above estimate and (2.5.4) that,

2 p—
dz 4 Re(ab)||ul|%: + Re (a?) ||Vul/2: <0,

|1 (z) — ua()
|

2()]
(|U1 (37)| + ‘Ug(l') )1—7n

Re(a)|| V|22 + C’|a|2/

which yields Property 1). Properties 2) and 3) follow in the same way. O

Remark 2.5.2. It is not hard to adapt the above proof to find other criteria of uniqueness.

2.6 On the existence of solutions of the Dirichlet problem for
data beyond L?(92)

In this section we shall indicate how some of the precedent results of this paper can be extended
to some data F which are not in L?(2) but in the more general Hilbert space L?(£2;%), where
d(z) = dist(z,T") and « € (0, 1).

In order to justify the associated notion of solution, we start by assuming that a function u solves

equation

—Au+ f(u)=F, in Q, (2.6.1)

with the Dirichlet boundary condition (2.1.3), ujr = 0, and we multiply (formally) by v(z)d(z), with
v € H{(;6) (the weighted Sobolev space associated to the weight §%(x)), we integrate by parts (by
Green’s formula) and we take the real part. Then we get,

Re/Vu.Wéadx—I—Re/ﬁVu.Vé‘“dx+Re/f(u)550‘dx = Re/FE(SD‘dx. (2.6.2)
! Q ! Q

To give a meaning to the condition (2.6.2), we must assume that

F e L*(9;6%), (2.6.3)

where ||F||25,0. 0 = F(2)?6%(x dz, and to include in the definition of solution the conditions
12(0;6)
Q

u € Hy(Q;6%) and f(u) € L*(Q;6%). (2.6.4)

The justification of the second term in (2.6.2) is far to be trivial and requires the use of a version of
the following Hardy type inequality,

/ ()26~ (2)dz < C / IVo(2)|26°(2)da, (2.6.5)
Q Q
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which holds for some constant C' independent of v, for any v € H}(2; %) once we assume that

Q is a bounded open subset of RYY with Lipschitz boundary (2.6.6)
(see, e.g., Kufner [121] and also Drébek, Kufner and Nicolosi [79], Kufner and Opic [122], Kufner and
Sinding [123] and Necas [141]). Notice that under (2.6.6), we know that § € W1>°(Q) and so

N T
‘ Jrvuvsas =| [ 6590). (57707 dal < all Vol [Vl asin el <
Q Q

by Cauchy-Schwarz’s inequality and (2.6.5).

Definition 2.6.1. Assumed (2.6.3), (2.6.6) and a € (0,1), we say that u € HZ(;6%) is a solution
of (2.6.1) and (2.1.3) in H}(€;d%) if (2.6.4) holds and the integral condition (2.6.2) holds for any
v € HE(Q;0%).

Remark 2.6.2. Notice that H3(Q;6%) < L*(Q) (by the Hardy’s inequality (2.6.5) and (2.6.6)).
Moreover, since

57 ¢ LY(Q), for any s € (0,1), (2.6.7)

we know (Drébek, Kufner and Nicolosi [79], p.30) that

2s
s+1°

Hy(9;0%) < WhP<(Q), with p, =

Remark 2.6.3. Obviously, there are many functions F such that F' € L2(Q; %)\ L?(Q) (for instance,
if F(x) ~ ﬁ, for some 8 > 0, then F € L*(9;6), if 8 < 25 but F ¢ L*(Q), once 8 > 3. This
fact is crucial when the nonlinear term f(u) involves a singular term of the form as in (2.1.2) but with
m € (—1,0) (see Diaz, Herndndez and Rakotoson [75] for the real case).

Remark 2.6.4. We point out that in most of the papers dealing with weighted solutions of semili-
near equations, the notion of solution is not justified in this way but merely by replacing the Laplace
operator by a bilinear form which becomes coercive on the space H3(€;0%). The second integral
term in (2.6.2) is not mentioned (since, formally, the multiplication of the equation is merely by

v € HE (S 60‘)) but then it is quite complicated to justify that such alternative solutions satisfy the

2
loc

pde equation (2.1.2) when they are assumed, additionally, that Au € L; (2). We also mention now
(although it is a completely different approach) the notion of L'(£;§)-very weak solution developed
recently for many scalars semilinear equations : see, e.g., Brezis, Cazenave, Martel and Ramiandri-

soa [16], Diaz and Rakotoson [77] and the references therein).

By using exactly the same a priori estimates, but now adapted to the space H{(£2;6%), we get the
following result.

Theorem 2.6.5. Let Q be a bounded open subset with Lipschitz boundary, V € L>®(;R), 0 < a < 1,
0<m <1, (a,b,c) € C as in Theorem 2.2.4 and let F € L*(Q;6%). Then we have the following
result.
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1) There exists at least a solution u € Hg(Q;6%) to (2.1.2). Furthermore, any such solution
belongs to HE ().
2) If, in addition, we assume the conditions of Theorem 2.2.10, this solution is unique in the

class of H}(Q;6%)-solutions.

Remark 2.6.6. In the proof of the a priori estimates, it is useful to replace the weighted function
0 by a more smooth function having the same behavior near I'. This is the case, for instance of the

first eigenfunction ; of the Laplace operator,

7A()01 = )\1()01, in Q,
p1r =0, on I

It is well-known that ¢; € W (Q) N Wy (Q) and that C16(z) < ¢1(x) < C2d(z), for any = € Q,
for some positive constants Cy and Cs, independent of x. Now, with this new weighted function, it is
easy to see that the second term in (2.6.2) does not play any important role since, for instance, when

taking v = u as test function, we get that

Re/uVu Veide = - /V|u\2 Vide = —f/|u| Aptd

A «
=O”/|u|2so do + A1) /|u\ oV 2z > 0.

2.7 Conclusions

In this section, we summarize the results obtained in Section 2.2 and give some applications.

The next result comes from Theorems 2.2.1, 2.2.3 and 2.2.10.

Theorem 2.7.1. Let Q an open subset of RN be such that || < oo and assume 0 < m < 1,

(a,b) € C? and F € L?*(Q). Assume that Re(b) > —éor Im(b) # 0, where Cp is the Poincaré’s
P

constant in (2.4.1). Then there exists at least a solution u € HZ () to

—Au+ a|u| "™y 4 bu = F, in L*(Q). (2.7.1)

%
Furthermore, [lullg1) < C([F|z20), €, |al, [b], N,m). Finally, if d.b > 0 then the solution is

unique.

_)
In tge above theorem, the complex numbers a and b are seen as vectors @ and b of R2. Consequently,
@. b denotes the scalar product between these vectors of R2.

The novelty of Theorem 2.7.1 is about the range of (a,b) : we obtain existence of solution with, for
instance, (a,b) € R_ x (—¢,0), with € > 0 small enough, or (a,b) = (—1 41, —1 — i). Recall that, up
to today, existence was an open question when (a,b) € R_ xR_ or [a,b]NR_ xi{0} # @ (Bégout and
Diaz [25]). Knowing that for such (a,b) equation (2.7.1) admits solutions, it would be interesting if,
whether or not, solutions with compact support exist, as in Bégout and Diaz [25].

By Theorems 2.2.4, 2.2.6 and 2.2.10, we get the following result.
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Theorem 2.7.2. Let Q C RY be a bounded open subset, let 0 < m < 1 and let (a,b,c) € C3 be
such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. For any F € L?(R0), there exists at least a solution
u € HY(Q) to
—Au+ alu|~ ™y 4+ bu + clzPu = F, in L*(), (2.7.2)

with boundary condition (2.1.3) or (2.1.4)'. Furthermore,

lullzrr.@y < Clal, [bl, le)) (B + DI F | 220,

_)

where B(0, R) D Q. Finally, if d.b >0 and . @ >0 then the solution is unique.
Since, now, we are able to show that equation (2.7.2) admits solutions, we can study the propagation
support phenomena. Indeed, we can show that, under some suitable conditions, there exists a self-
similar solution u to

iy + Au = alu| =™y + f(t,x), in RV,
such that for any ¢ > 0, suppu(t) is compact (see Bégout and Diaz [27]).

Now, we turn out to equation (2.7.1) by extending some results found in Bégout and Diaz [25]. These
results are due to Theorems 2.2.8, 2.2.9 and 2.2.10.

Theorem 2.7.3. Let Q C RYN be an open subset of RN, let 0 < m < 1 and let (a,b) € A? satis-
fies (2.2.7). For any F € L%(Q), there exists at least a solution uw € H'(Q) N L™ (Q) to

m+1

—Au+alul ™y 4 bu = F, in L*(Q) + L™ (Q), (2.7.3)

with boundary condition (2.1.3) or (2.1.4)* (in this last case, Q is assumed bounded). Furthermore,

[ullF () + el oty o) < Mlal, B)IIF1Z2(q)-

_)
Finally, if d. b >0 then the solution is unique.

When || < oo, Theorem 2.7.3 is an improvement of Theorem 1.4.1, since we may choose F' € L?(),
m+1 m+1

instead of F € L™= (Q) and that L™= (Q) € L?(2). In addition, this existence result extends to the
homogeneous Neumann boundary condition. In this context, we may show three kinds of new results,

under assumptions of Theorem 2.7.3.

o If O = RY and if F € L?(R") has compact support then equation (2.7.3) admits solutions and
any solution is compactly supported.

o If [[F'[| L2(q) is small enough and if F' has compact support then equation (2.7.3) admits solutions
with the homogeneous Dirichlet boundary condition and any solution is compactly supported in 2.

o If ||F|| p2(q) is small enough, if 7? > 0 and if F' has compact support then equation (2.7.3)
admits a unique solution with the homogeneous Neumann boundary condition and, in fact, this
solution is compactly supported in (2.
For more details, see Bégout and Diaz [27]. Finally, in Section 2.6 we extended our techniques of
proofs to the case in which the datum F' is very singular near the boundary of € but still is in some
weighted Lebesgue space (see Theorem 2.6.5).
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Chapitre 3

A sharper energy method for the
localization of the support to some
stationary Schrodinger equations
with a singular nonlinearity

with JESUS ILDEFONSO DiAz*

Abstract

We prove the compactness of the support of the solution of some stationary Schrédinger equations with a
singular nonlinear order term. We present here a sharper version of some energy methods previously used in
the literature and, in particular, by the authors.

3.1 Introduction

Since the beginnings of the eighties of the last century, it is already well-known that the absence of the
maximum principle for the case of systems and higher order nonlinear partial differential equations
was one of the main motivations of the introduction of suitable energy methods allowing to conclude
the compactness of the support of their solutions (see, e.g., the presentation made in the monograph

Antontsev, Diaz and Shmarev [11]).

The application of such type of methods to the case of nonlinear Schrédinger equations with a singular
zero order term required some important improvements of the method. That was the main object of

the previous author’s papers of Bégout and Diaz [241, 25].

The main goal of this new paper is to present a sharper version of the mentioned method potentially
able to be applied to many other problems related to this type of Schrédinger equations such as
the study of self-similar solutions, case of Neumann boundary conditions, presence of nonlocal terms
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(such as, for instance, in Hartree-Fock theory : Cazenave [57]), etc., which can not be treated with the
mere technique presented in Bégout and Diaz [24, 25]. As a matter of fact, the concrete application of
this sharper energy method to the concrete case of self-similar solutions of the evolution Schrodinger
problem requires many additional arguments justifying the special structure of those solutions, reason
why we decided to present it in a separated work (Bégout and Diaz [26]). We send the reader to
Bégout and Diaz [26] for a long description of the important role of the compactness of the solution
in this context and for many other references related to this qualitative property of the solution.

This paper is organized as follows. Below, we give some notations which will be used throughout
this paper. In Section 3.2, we give the precise “localization” estimates which imply a solution of a
partial differential equation to be compactly supported (scc Theorems 3.2.1 and 3.2.2, and especially

estimates (3.2.1) and (323)) In Section 3.3, we give a tool which permits, from a solution of some
partial differential equation, to establish the “localization” estimate (Theorem 3.3.1). The results of
these two sections are proved in Section 3.4. In Bégout and Diaz [25], localization property is studied
for the complex-valued equation

—Au+ alu|~ ™y 4 bu = F, in Q. (3.1.1)

We also study this property here, but with a change of notation (see Remark 3.5.1 below for the
motivation of this change). Section 3.5 is devoted to the study of the localization property of the
solutions of equation (3.1.1), in the same spirit as Bégout and Diaz [25], but with the homogeneous
Neumann boundary condition instead of the homogeneous Dirichlet boundary condition (compare
Theorem 3.5.6 below with Theorem 1.3.5). Finally, at the end of the paper, we treat equation (3.1.1)
with the homogeneous Dirichlet boundary condition (Remark 3.5.8). We state the same results as in
Bégout and Diaz [25], but with now the weaker assumption F € L%(Q).

Before ending this section, we shall indicate here some of the notations used throughout. We write

i2 = —1. We denote by Z the conjugate of the complex number z. For 1 < p < 0o, p’ is the conjugate
of p defined by % + z% = 1. For j,k € Z with j < k, [j,k] = [j,k] N Z. We denote by I' the

boundary of a nonempty subset 2 C RN and Q¢ = RV \ Q its complement. Unless if specified,
any function lying in a functional space (Lp (Q), Wm™P(Q), etc) is supposed to be a complex-valued
function (LP(Q; C), wmr(Q;C), etc). For a Banach space F, we denote by E* its topological dual
and by (., .)g g € R the E* — E duality product. In particular, for any T' € L*' (Q) and ¢ € L?(Q)

with 1 < p < oo, (T, <P>LP’(Q),LP(Q) = Re [ T(x)p(z)dz. As usual, we denote by C auxiliary positive
Q

constants, and sometimes, for positive parameters aq, ..., a,, write C(aq, ..., a,) to indicate that the
constant C' continuously depends only on aq,...,a, (this convention also holds for constants which
are not denoted by “C”).

3.2 From suitable local inequalities to the vanishing of the
involved complex functions on some small ball

In this section, we establish some results improving the presentation of some energy methods of
Antontsev, Diaz and Shmarev [11] which allow to prove localization properties of solutions of a
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general class of nonlinear partial differential equations (Section 3.5, Remark 3.5.8 below and Bégout
and Diaz [26]). In contrast to the presentation in Bégout and Diaz [25] (see e.g. Theorem 1.1.1), the
following statement does not need any information on the second order equation but it will merely
use a suitable balance between the total local energy (diffusion + absorption local energies) and the
local boundary flux. This will be crucial for the applicability of the method to cases for which the
techniques of Bégout and Diaz [24, 25] can not be applied.

Theorem 3.2.1. Assume 0 < m < 1 and let N € N. Then there exists C = C(N,m) satisfying the
following property: let zo € RN, pg > 0 and u € H (B(a:o,po)). If there exist L > 0 and M > 0 such
that for almost every p € (0, po),

IVl 72(Bag,py) + Ll <M

T Bl (3.2.1)

— I — Xy
/ uVu. dol|,
S(zo,p) |£L’ - ‘TO‘

then U\ B(zo, pmax) = 0, where

v v 1 v
Pl = <p0 — CMQmax{l,LQ}max{pO 171}

~(7) w(T) n(T)
TE(7n+1 1] 27_ — (1 + m) i
and where,
E(po) = Hqu%Q(B(zo,po))’ b(pO) - ||uH”lT/L’:‘;31 B(mg po))
21 — (1 +m) 2(1—7') 1—m
= 1 = —— _— .
y(7) k €(0,1), u(r) ()= T m Y(T) >0
for any T € (mTH, 1] .

Here and in what follows, ;. = max{0,r} denotes the positive part of the real number r. For 2o € RY
and r > 0, B(zg,r) is the open ball of RV of center zo and radius r, S(zg,r) is its boundary and
B(wg,7) is its closure. Finally, o is the surface measure on a sphere. A sharper estimate, in the same
line of extension of the applicability of the techniques of Bégout and Diaz [24, 25] indicated before,
can be obtained under some additional assumption on F.

Theorem 3.2.2. Let 0 <m < 1, z9 € RN, py > py > 0, F € L*(B(wg,p1)) and u € H (B(xo,p1)).
If there exist L > 0 and M > 0 such that for almost every p € (0, p1),

IVUllZ2 (B0 + L||U||Ej+11(3(mo,p)) + Ll[ullZ2(B(zo.0))

<M / Wi —% o —I—/ |F(z)u(z)|dz |, (3.2.3)
S(wo,p) |z — ol B(zo,p)

then there exist E, > 0 and €, > 0 satisfying the following property: if ||Vu|\2L2(B(mO o)) < E, and

||F||%2(B(a:g,p)) < E*((p - p0)+>p7 Vp € (Oap1)7 (324)
2(14m)+N(1—m)

where p = =——————> then u|p(sy,p,) = 0. In other words, with the notation of Theorem 3.2.1,

Pmax = PO-
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Remark 3.2.3. We may estimate F, and e, as

_ -1 po L
B = B, (Il oyt 2o o)

-1 Po L
Ex — Ex (||u||Lm+l(B(ZL’o,p1))7 Ea M,N7 m) .

The dependence on % means that if 6 goes to 0 then F, and e, may be very large. Note that p = ﬁ,
where 7 is the function defined in Theorem 3.2.1.

Remark 3.2.4. Note that by Cauchy-Schwarz’s inequality, the right-hand side in (3.2.1) belongs to
Li ([0, p0); R) and so is defined almost everywhere in (0, pg). Consequently, by Hélder’s inequality,
the right-hand side in (3.2.3) is defined almost everywhere in (0, p1).

3.3 A general framework of applications related to the Schrodin-
ger operator

The following result will be applied later to many concrete equations associated to the Schrodinger
operator.

Theorem 3.3.1. Let Q C RY be a nonempty open subset of RN, let g € Q, let pg > 0, let 1 <
DlseesPryy Qs Gny < 00, let F € LL (Q) be such that FlonB(xo,po) € LQ(Q N B(xo,po)) and let

loc

ny

fec| ey L@

k=1 j=1

Letu € HL () NLY (Q)NLE

loc

(Q), for any (j, k) € [1,n1] x [1,n2], be any solution to the complex-
valued equation

—Au+ f(u) = F, in 2'(Q). (3.3.1)
If po > dist(x,T') then assume further that

feC L(9);
k=1

1
L¥(Q) |, ue Hy(Q),
j=1
UIQNB(x0,p0) € Lpi (Q n B(l‘o, PO)) N L% (Q N B(a)‘(), ,0(3))7
for any (7. k) € [L,m] x [1,ms]. Set for every p € [0, o),

r — X

/ wVa. do
QNS(zo,p) |.’L‘ - 330‘

w(p) :/ WV o, Ine(p) = Re(w(p)), Tum(p) = Im(w(p)). (3.3.3)
QNS(zo,p)

I(p) =

= |F(z)u(w)]de, (3.3.2)
QNB(zo,p)

| — o
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Then we have,

Iv J7 IRe;IIm S C([O,,Oo),R), (334)

IVl @open +Re | [ fuds | =Re| [ F@u@ds | + (o). (339

QNB(z0.p) QNB(z0.p)

Im / fwudz | =Im / F(z)u(z)dz | + Im(p), (3.3.6)
QNB(zo,p) QNB(zo,p)
for any p € [0, po).

Remark 3.3.2. One easily sees that if py < dist(xg,I") then I, J, Ige, Itm € C([0, po]; R).

Example 3.3.3. We give some functions f for which Theorem 3.3.1 applies.

1) Typically, we apply Theorem 3.3.1 to
f(u) = alu|~" "™y + bu + Vu,

with (a,b) € C?, V € L2 (Q) and 0 < m < 1. One easily checks that,

loc

m+1

f €0 (Lhe@NLE (i L) + Ligy ().

loc loc

If in addition, V' € L>°(Q) then one also has,

fec (L?(Q) A L™ HQ); L2(Q) + L5 (Q)) .

Let z € C\ {0}. Since |\z|f(1’m)z| = |z[™, it is understood in the above example that
||z|’(17m)z‘ =0 when z = 0.
2) Hartree-Fock type equations. Let V € LP(RY;R) + L>(RY;R), with min {1, §} < p <

oo and let W € LY(RY;R) + L= (RY;R), with min {1, §'} < ¢ < co. Set r = pzfpl, 5= ;‘_—1,

E=L*RY)n L*RY)n L"(RY) N L*(RY),
flw) = Vu+ (W uf*)u,
for any u € H'(RV). Then H'(R"Y) <+ E with dense embedding and, by density of Z(R¥)
in spaces L™(RY), for any m € [1, ), we have
E* = L*(RY) + L3 (RY) + L (RN) + L* (RN),
fe C’(E; E*),
fecCc(H (RY);H 1 (RY)).

See Cazenave [57] (Proposition 1.1.3, Proposition 3.2.2, Remark 3.2.3, Proposition 3.2.9,
Remark 3.2.10 and Example 3.2.11).
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3.4 Proofs of the main results

Before proceeding to the proof of Theorems 3.2.1 and 3.2.2, we recall the well-known Young’s inequa-
lity. For any real z > 0, y > 0, A > 1 and € > 0, one has

1 v
xy < — Y N gt —I—XE ’\. (3.4.1)

Proof of Theorems 3.2.1 and 3.2.2. We write p, = po, for the proof of Theorem 3.2.1 and p, = p1,
for the proof of Theorem 3.2.2. Let us introduce some notations. Let p € (0, p.). We set

E(p) = ||vu||%2(3(x0’p)), b(p) = ||UHT77TJ}1(B(@0,p))7 alp) = ||u||2L2(B(zo,p))v

g = LEmENG=m) ¢ (g,1), ¢ p—

_ 1
— 0(1+m)> 2(14+m) "

We may assume that u € H'(B(zg,p)). Indeed, the case u € H}. (B(zo,ps)) can be treated by
following the method in Bégout and Diaz [25] (see the end of Step 6, p.18, for Theorem 3.2.1 and the
end of Step 7, p.19, for Theorem 3.2.2. We now proceed with the proof in 3 steps.

Step 1. E € WbH1(0, p,), for a.e. p € (0,p4), E'(p) = ”VUH%%S(%,p)) and

1
b a(r)+1
2

Blp) +b(p) < 5 (Ka(r)p™ VB ()" (B(p) + (o)

where K1 () = C(N,m)L?M? max {p? =1, 1} max{b(p.)"), b(p,)" "} and L; = max {1, +
By the first lines of Step 2, p.16, we only have to show (3.4.2). Let p € (0, p). We have to slightly

+(LAMPIIFNL (5o, (3:4:2)

modify the proof of Bégout and Diaz [25]. Indeed, since F' € L?, we need of the term ||u|%.. We have,
— T — X 1
/ uVu. Cdo| < E'(p) 2 ||ull L2 (s(x0.p))» (3.4.3)
S(zo,p) |JI - .130|
_ 0 _
el 22 5(a0,p1) < CON,m) (VU L2(B o 00) + 0 NullLmts (Bao,on) Nullimss ag ) (3:44)

See (1.7.11)—(1.7.12). Putting together (3.2.1) (for Theorem 3.2.1), (3.2.3) (for Theorem 3.2.2), (3.4.3)
and (3.4.4), we obtain,

E(p) +b(p) + ra(p)
< CLIME'(p)? (E(p)% +p—5b(p)#+1)ab( )aFt 4 Ly M / Yu(w)|dz, (3.4.5)
B(zo,p)

where k = 0, in the case of Theorem 3.2.1 and where k = 1, in the case of Theorem 3.2.2. In the case
of Theorem 3.2.2, we apply (3.4.1) with x = |F|, y = |u|, A =2 and € = /L1 M, and we get

/ |F(z)u(z)|de <

B(zo,p)

L1 1
P12 (50w T 5777 ST, M a(p), (3.4.6)

for any p € (0, px). Putting together (3.4.5) and (3.4.6), we obtain for both theorems, for a.e. p €
(Oa p*)7

1

) (o)

1 1 _ 1
B(p) +b(p) < CoLa ME ()% (E(p)* + p~"b(p) 7 F(LMPIF By (BAT)
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Let 7 € (mTH7 1] and let p € (0, px). A straightforward calculation yields

()% +p7%b(p) 757 ) b(p) 707
<m%<wﬂw+f%wwﬁﬂ

1 —r _ _ 11— —r(1— _1
(p 2b( )T(l G)Zb( )(1 )(1 9)€+p 6b(p)2+ (1 G)Zb(p)é (1-0)t—3
< 207" max {p}, 1} K3(r) (E(p) + b(p)) = 777",

where K3(r) = max{b(p,)*), b(p,)"}, since X7 = (1 — 7)(1 — )¢ and L7 = ¢ — r(1 — )¢ — 1.
Hence (3.4.2) follows from (3.4.7) and the above estimate with K1 (1) = 16C3 LI M2 K3 (1) max {p? ', 1},
since 260 = v — 1 and 6 (L + 7(1 — 9)¢) = HEL

Step 2. For any 7 € (4, 1] and for a.e. p € (0, p,),

0 < B(p)' ™) < Ky (1)p VB (p) + L M) O [ F|E )

Following Step 4, p.17, but with Young’s inequality (3.4.1) applied with z = 1 (Kl(T)p_(”_l)E’(p)) 2

y = (E(p) + b(p))ﬂ > , A= A1) = ﬁ and € = (1) = (y(1) + 1)ﬁ, Step 2 follows from the
estimates
E(p) +b(p)
1 (o 3 1 (r)+1
<3 (Kl(T)p ( 1)E’(p)) (E(p) +b(p))" % + (LiM)*||Fll (5000
C(r) "y = 1
< - (Ko™ B ) T+ 5(B() £ b)) + LMY IF e
<2 (K VEE) T + L b Ly M)?||F|}?
<3 (K (0)) 7 + 5B () +b(0) + (LMD F I3 5,1
M) —1 Ao A () -1 1 1. 1.0
C — X(T)—1 N o J 1x@H=1 —2X(n)—1 —92X(M)—-1
(N ==37 " < T(E (v(r) +1) <3 <3

Step 3. Conclusion.

Now, following from Step 5 to Step 7, p.18-19, where estimate (1.7.16) therein has to be replaced
with estimate of the above Step 2 and where the mapping p — F(p) has to be replaced with the
new function p — (2L, M)2(—7 ||F||2L(21 B“&O p))» We prove Theorems 3.2.1 and 3.2.2. This achieves
the proof. O

Proof of Theorem 3.3.1. If py > dist(xo,') then u € H}(Q). So we may extend u by 0 on
Q° N B(zo, po). Denoting u this extension, we have u € H{ (Q U B(xo,po)). We first consider the
case where py # dist(zg,T"). We deal with py = dist(zo,T") at the end of the proof. It follows that
J € O([0, po]; R) and by Cauchy-Schwarz’s inequality, I € L'(0, pg). Thus, I, J, IRe, Itm are defined
almost everywhere on (0, pg). It follows from (3.3.1) that,

(Vu, Vo) g @y,a0) + (f(u), 0) o @)200 = (F,0)o/@),20), (3.4.8)
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for any ¢ € 2(9Q). Let p € (0, po). For any n € N, n > %7 we define 1, € W (R; R) by

1, if [t| € [0,p— 2],
VEER, Pn(t) =< n(p—It]), iflt|e (p—1L.p),
0, if |t] € [p, 00),

and we set @, (7) = ¥, (|x — 20])u(z) and ¢, = Ppjq, for almost every x € QU B(xo, po). We easily
check that for any (j, k) € [1,n1] x [1,n2],

Pn|QNB(z0,p0) S H& (Q n B(xo,po)) N LPi (Q n B(xo,po)) N L9 (Q N B(x(hpo)),
(zn S H& (Q U B(xo,po)) N LPi (Q U B(xo,po)) N L (Q U B(l‘o,po)),
on € Hy(Q) N LPI(Q) N LI*(Q).

Then there exists (™) men C 2(Q) such that for any (n,m) € N2, supp o™ C QN B(zo, po) and

m Hy (QQNLPI (Q)NLY% (Q)

n
n oo Pns

for any (j,k) € [1,n1] x [1,n2]. Consequently, ¢ = ¢, are admissible test functions in (3.4.8). We
have,
(Vu, Veou) 12y r2i) = (Vi VEn) L2(QUB(0.90)).L2 (QUB(0.p0))
r — X

P
= / Un (|2 — 20])|VU[’dz — nRe / /Eva. do | dr|,
|z — o]

B(zo,p) p—L \S(zo,r)

where we introduced the spherical coordinates (r, o) at the last line. We now let n 7 co. Using the
Lebesgue’s dominated convergence Theorem and recalling that Iz, € L'((0, po); R), we obtain

Jim (Vi Vo) ) pag) = IVUllZ2 (@B o) — TRe(P)- (3.4.9)

= —Iin(p) and

Proceeding as above but also with ¢ =ip,, we get lim <Vu, iV(pn>L2 12
n—oo ’

lim (f(u), on)r+, 5 = Re(A(w)), lim (f(u),ign)r+p =Im(A(w)),

n—o00 N— 00
711520<F’ ¢n)r2,12 = Re(B(u)), nli_)rr;(}(F, ion)r2 2 = Im(B(u)).

ni

where E = ﬁ Li(Q), F = m LPi(Q)), A(u) = / f(u)udx and B(u) = / F(z)u(x)dz.

j=1 j=1 QNB(zo,p) QNB(zo,p)
Estimates (3.3.5) and (3.3.6) then follow from (3.4.9) and these five last estimates. Since all terms in
(3.3.5) and (3.3.6) are continuous on [0, po], except eventually Ir, and Iy, we deduce that I, and
Iy are continuous and (3.3.5) and (3.3.6) hold for any p € [0, po]. The case pg = dist(zo, ") follows
from the above proof applied with pj = po — % in place of pg and letting n * oc. O
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3.5 Application to the localization property to the case of
Neumann boundary conditions

In Bégout and Diaz [25], the authors study the localization property for equation (3.5.6) below with
the homogeneous Dirichlet boundary condition (see, for instance, Theorem 1.3.5). In Theorem 3.5.6
below, we show that the same property holds with the homogeneous Neumann boundary condition.
Before, we need to prove that solutions exist. This can be found in Bégout and Diaz [28]. Note that
from Bégout and Diaz [25] to this paper, there was a slight change of notation. See Remark 3.5.1

below.

Remark 3.5.1. In the context of the paper of Bégout and Diaz [25], we can establish an existence

result with the homogeneous Neumann boundary condition (instead of the homogeneous Dirichlet
m+1

condition) and F' € L?(2) (instead of F € L™= (£2)). In Bégout and Diaz [25], we introduced the set,

A=C\ {z € C;Re(z) = 0 and Im(z) < 0},

and assumed that (a,b) € C? satisfies,
Re(a@)Re(b) > 0,

(@b) e AxA and or (3.5.1)

Re(@)Re(b) < 0 and Im(b) > }I?SE,?)

Tm(a),

with possibly b= 0, and we worked with
—iAu+ aju|" ™y 4 bu = F.

But here in order to follow a closer notation with most of the works dealing with Schrodinger equations,

we do not work any more with this equation but with,
—Au+ au|~ ™y + bu = F,

and b # 0. This means that we choose, @ = ia, b = ib and F = iF. Then assumptions on (a,b) are
changed by the fact that for z = iz,

Re(z) = Re(—iz) = Im(2), (3.5.2)
Im(z) = Im(—iz) = —Re(2). (3.5.3)

It follows that the set A and (3.5.1) become,

A =C\ {7 € C;Re(z) < 0 and Im(z) = 0}, (3.5.4)

Im(a)Im(b) > 0,
(a,b) e Ax A and or (3.5.5)

Im@m@<OMMRﬁpﬁmwmmy
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Obviously,
((E,~) € C? satisfies (3.5.1)) — ((a,b) € C? satisfies (3.5.5)).
Assumptions (3.5.5) are made to prove the existence and the localization property of solutions to
—Au+ alu| "™y 4+ bu = F, in L*(Q). (3.5.6)
For uniqueness, the hypotheses are the following (Theorem 2.2.10).

Assumption 3.5.2 (Uniqueness). Assume that (a,b) € C? satisfies one of the two following condi-
tions.
1) a # 0, Re(a)

> 0 and Re(ab) > 0.
2) b#0, Re(b) 20

and a = kb, for some k > 0.

A geometric interpretation of (3.5.5) and 1) of Assumption 3.5.2 is given in Section 1.6 of Chapter 1,
modulus a rotation in the complex plane. Now, we give some results about equation (3.5.6) when
(a,b) € C? satisfies (3.5.5).

Corollary 3.5.3 (Neumann boundary conditions). Let Q) be a nonempty bounded open subset
of RN having a C' boundary, let v be the outward unit normal vector to T, let 0 < m < 1 and let
(a,b) € C? satisfies (3.5.5). For any F € L?(Q), there exists at least one solution u € H'(Q) to

—Au+ alu|~"™y + bu = F, in L2(Q),
ou 0 (3.5.7)

vr

If furthermore (a,b) satisfies Assumption 3.5.2 then the solution of (3.5.7) is unique. Let v € H*(Q)
be any solution to (3.5.7). Then v € HE (Q). In addition,

loc
(vl 1) < M| F|lz2(0), (3.5.8)

where M = M(|al, |b]). Finally, if for some o € (0,m], F € C2%(Q) then u € C2Y(9Q).

loc

Symmetry Property 3.5.4. If furthermore, for any R € SOn(R), RQ = Q and if F is spherically
symmetric then we may construct a solution which is additionally spherically symmetric. For N =1,
this means that if F is an even (respectively, an odd) function then u is also an even (respectively, an
odd) function.

Here and in what follows, SOn(R) denotes the special orthogonal group of RY.

Remark 3.5.5. One easily checks that if (a,b) € A? satisfies Re(a) > 0 and Re(ab) > 0 then
(a,b) € C? verifies (3.5.5). In this case, uniqueness assumptions imply existence assumptions.

Proof of Corollary 3.5.3 and Symmetry Property 3.5.4. The result comes from Chapter 2 :
Theorem 2.2.8 (existence and symmetry property), Theorem 2.2.10 (uniqueness), Theorem 2.2.9 (a
priori estimate (3.5.8)) and Theorem 2.2.12 (local smoothness). O

Concerning the support of solution of (3.5.7) we have :
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Theorem 3.5.6. Let Q be a nonempty bounded open subset of RN having a C' boundary, let 0 <
m < 1 and let (a,b) € C? satisfies (3.5.5). Then there exists e, > 0 such that for any 0 < € < &,, there
exists 0o = 0o(e, |al, b, N,m) > 0 satisfying the following property. Let F € L?(Q) and let u € H'(Q)
be a solution to (3.5.7). If uniqueness holds for the problem (3.5.7)', supp F' is a compact set and
|1 F |2y < do then suppu C K(g) C Q, where

K(e) = {x € RY; 3y € supp F such that |z —y| < 6},
which is compact.

The proof relies on the following lemma.

Lemma 3.5.7. Let Q C RN be a nonempty open subset of RN, let 0 < m < 1 and let (a,b) € C?
satisfies (3.5.5). Let F € L, () and let u € H}_(Q) be any solution to

loc

—Au+alu|~ Y™y +bu = F, in 7'(Q). (3.5.9)

Then there exist two positive constants L = L(|a|, |b]) and M = M(|al,|b|) satisfying the following
property. Let g € Q and p. > 0. If Flonp(s,,p,) € L2 (20 B(xo, pi)) then for any p € [0, p.),

||vu||2L2(QmB(gc0,p)) + LHU”TIL(QQB(%,,))) + LHUH%Z(QHB(:CO,,O))

<M / W L g, +/ \F(z)u(@)|dz |, (3.5.10)
QNS(zo,p) |$ - 'T0| QNB(zo,p)

where it is additionally assumed that u € H}(Q) if ps > dist(zo,T).

Proof. Let 29 € Q and let p, > 0. We set for every p € [0, py),

= L — X
/ uVu. do
QNS(xo,p) |z — o]

It follows from Theorem 3.3.1 that I, J € C([0, px);R) and

I(p) =

and J(p) = /Q e F@ue)de

Tvﬂl(mB(zo,p)) + Re(b)”u”%z(QOB(Io,p))‘ <I(p)+J(p), (3.5.11)

Im(a)]|u| zﬁi_jl(ﬂﬂB(wo,p)) + Im(b)”u”%Q(QOB(wo,p))’ <I(p) + J(p), (3.5.12)

”VUH%Q(QHB(rO,p)) + Re(a)|[u|

for any p € [0, p,). Estimate (3.5.10) then follows from (3.5.11), (3.5.12) and Lemma 2.4.5 with § = 0.
Hence the result. O

Proof of Theorem 3.5.6. Let F' € L*(Q) with supp F' C Q and let u € H!(Q2) a solution to (3.5.7)
be given by Theorem 3.5.3. Set K = supp F and

O(e) = {x € RY; 3y € K such that |z —y| < 5}.

Then K () = O(e). Let €, > 0 be small enough to have K (5e,) C Q and let € € (0,¢,]. Let L and M be
given by Lemma 3.5.7 applied with p, = 2¢. By Theorem 3.2.1 and estimate (3.5.8) in Theorem 3.5.3

1. which is the case, for instance, if (a,b) € C? satisfies Assumption 3.5.2.
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above, there exists oo = do(e, |al, [b|, N, m) > 0 such that if ||[F'||z2(q) < do then u|p(s, ) =0, for any
xo € Q such that B(xg,2e)NK = 0 and B(xo, 2¢) C 2. One easily sees that B(xzg,2¢)NK = (), for any
zo € K(26)° N K(3¢). We deduce that for any zo € K(2¢)° N K(3¢), 4|B(z,,e) = 0. By compactness,
there exist n € N and z1,...,z, € K(2¢)¢ N K(3¢) such that,

K()° N O(4e) U xj,s)CUB(mj,QE)CK(55)CQ.

Jj=1

It follows that u|g(z)eno(ae) = 0. Let us define u in €2 by,

~Ju, in O(2¢),
"o, i\ 0@

It follows that suppu C K(g) and u € H}(Q) is a solution to (3.5.7). By uniqueness assumption,
u = u so that suppu C K(g) C , which is the desired result. O

Remark 3.5.8. In Bégout and Diaz [25], the authors study existence, uniqueness, smoothness and
localization property for the equations (3.5.6) with an external source F' belonging to Lo (Q) with
0 < m <1 (see, for instance, Theorem 1.3.5). Below, we explain how the same results hold true with
the weaker assumption F € L2(Q). Indeed, when [ < oo and 0 < m < 1, L™ (Q) < L%(Q) and

L (Q) # L2(€2). Results of existence can be found in Bégout and Diaz [25] jointly to some others

additional results. Hypotheses on (a,b) € C? are the same as in Bégout and Diaz [25], except we have
to require b # 0. Note that from Bégout and Diaz [25] to the present paper, there was a change of
notation. See Remark 3.5.1 for precision. Throughout this remark, equation (3.5.6) with homogeneous
Dirichlet boundary condition are considered and F is always assumed to belong in L?(Q2) (instead
of LLH(Q) in Bégout and Diaz [25]) and assumptions on (a,b) are (3.5.5) and Assumption 3.5.2,
instead of (1.2.2) and (1.2.3).

Analogous results to Theorems 1.4.1, 1.4.4 and Corollary 1.5.3 can be easily adapted. Indeed, by
Theorems 2.2.8, 2.2.9, 2.2.10 and 2.2.12, these results hold but with u € H2 () and

Hu”Hl(Q + HuH?ﬁt}l @ S MHF”Lz(Q); (3.5.13)

mt1
instead of u € Wli’c ™ (), (1.4.1) and (1.4.2). Concerning the localization property, Theorems 1.3.1
and 1.3.5 still hold true but with F' € L?(2) and

Vp € (0,01), IF 1720080, < ex(p = P0)E, (3.5.14)

instead of (1.3.1). The proofs are essentially the same where we use Lemma 3.5.7 and (3.5.13) above
instead of (1.4.1). It follows that Theorems 1.1.1 and 1.1.2 can be easily adapted with the obvious
modifications.



Chapitre 4

Self-similar solutions with
compactly supported profile of
some nonlinear Schrodinger
equations
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Abstract

“Sharp localized” solutions (i.e. with compact support for each given time t) of a singular nonlinear
type Schrédinger equation in the whole space RY are constructed here under the assumption that they have
a self-similar structure. It requires the assumption that the external forcing term satisfies that f(t,x) =
tf(p72)/2F(t71/2:c) for some complex exponent p and for some profile function F' which is assumed to be
with compact support in RY. We show the existence of solutions of the form w(t, z) = tP/2U (t~'/%z), with a
profile U, which also has compact support in RY. The proof of the localization of the support of the profile
U uses some suitable energy method applied to the stationary problem satisfied by U after some unknown
transformation.

4.1 Introduction and main result
This paper deals with the study of “sharp localized” solutions of the nonlinear type Schrodinger
equation in the whole space RY,

0
ia—?+Au:a|u|’(1’m)u+f(t,:c), (4.1.1)
under the fundamental assumption m € (0,1) and for different choices of the complex coeflicient a.
N
Here we use the notation of bold symbols for complex mathematics entities, i* = —1 and A = > 88—;2
j=1°%

for the Laplacian in the variables x.
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64 Self-similar solutions with compactly supported profile

By the term “sharp localized solutions” we understand solutions which are more than merely the so
called “localized solutions” considered earlier by many authors. For instance, most of the “localized
type solutions” in the previous literature must vanish at infinity in an asymptotic way : |u(t,z)] — 0
as |z| — oco. They have been intensively studied mostly when some other structure property is added
to the solution. It is the case of the special solutions which receive also other names such as standing
waves, travelling waves, solitons, etc.

Here we are interested on solutions which have a sharper decay when |z| goes to infinity in the sense

that we will require the support of the function u(t, . ) to be a compact set of R, for any ¢ > 0.

We recall that equations of the type (4.1.1) arise in many different contexts : Nonlinear Optics, Quan-
tum Mechanics, Hydrodynamics, etc., and that, for instance, in Quantum Mechanics the main interest
concerns the case in which Re(a) > 0, Im(a) = 0 (here and in which follows Re(a) is the real part
of the complex number a and Im(a) is its imaginary part) and that in Nonlinear Optics the ¢ does
not represent time but the main scalar variable which appears in the propagation of the wave guide
direction (see Agrawal and Kivshar [3], p.7; Temam and Miranville [169], p.517). Sometimes equations
of the type (4.1.1) are named as Gross-Pitaevskii type of equations in honor of two famous papers by
those authors in 1961 (Gross [94] and Pitaevskif [149]). For some physical details and many references,
we send the reader to the general presentations made in the books Ablowitz, Prinari and Trubatch
[1], Cazenave [57] and Sulem and Sulem [165].

In most of the papers on equations of the type (4.1.1), it is assumed that m = 3 (the so called cubic
case). Nevertheless there are applications in which the general case m > 0 is of interest. For instance,
it is the case of the so called “non-Kerr type equations” arising in the study of optical solitons (see,
e.g., Agrawal and Kivshar [3], p.14 and following).

The case m € (0, 1) has been studied before by other authors but under different points of view : some
explicit self-similar solutions (the so called algebraic solitons) can be found in Polyanin and Zaitsev
[151] (see also Agrawal and Kivshar [3], p.33). We also mention here the series of interesting papers
by Rosenau and co-authors (Kashdan and Rosenau [116], Rosenau and Schuss [156]) in which “sharp
localized” solutions are also considered with other type of statements and methods.

We also mention that the case Re(a) > 0 (which corresponds to the dissipative case, also called
defocusing or repulsive case, when Im(a) = 0) must be well distinguished of the so called attractive
problem (or also focusing case) in which it is assumed that Re(a) < 0 (and Im(a) = 0). See, e.g.,
Ablowitz, Prinari and Trubatch [1], Cazenave [57], Sulem and Sulem [165] and their references).

The case of complex potentials with certain types of singularities, i.e. corresponding to the choice
Im(a) # 0, has been previously considered by several authors, and arises in many different situations
(see, for instance, Brezis and Kato [17], Carles and Gallo [53], LeMesurier [127], Liskevich and Stoll-
mann [131] and the references therein).

Here we assume that the datum f is not zero and represents some other physical magnitude which
may arise in the possible coupling with some different phenomenon : see the different chapters of Part
IV of the book Sulem and Sulem [165], the interaction phenomena between long waves and short
waves (Benney [34], Dias and Figueira [72], Urrea [177] and their references), etc.



Electron. J. Differential Equations 90 (2014) 1-15 65

Obviously, the property of the compactness of the support of u(t, . ) requires the assumption that
“the support” of the datum function f(t, .) is a compact set of R, for a.e. t > 0. Because of that,
the qualitative property we consider in this paper can be understood as a “finite speed of propagation
property” typical of linear wave equations. We point out that our treatment is very different than
other “propagation properties” studied previously in the literature for Schrédinger equations which
are formulated in terms of the spectrum of the solutions. See, e.g., the so called Anderson localization

(Anderson [9]), Jensen [115], etc.

One of the main reasons of the study of “sharp localized” solutions arises from the fact that, if we
assume for the moment f = 0, then

%|u\2 + divJ = 2Im(a)|u|™ ",

where

7 def (uVu — @Vu) = —2Re(i@ Vu),

(@ denotes the conjugate of the complex function u) and so we get (at least formally) that

1d

337 L, [uta) s = (o) / u(t, 2) ™ da.

RN

Notice that if Im(a) # 0 then there is no mass conservation. For instance, this is the case studied by
Carles and Gallo [53] where they prove that actually the solution vanishes after a finite time, once that

€ (0,1). More generally, it is easy to see that the two following conservation laws hold, once a € R
and f = 0:if u(t) € HY(RY) N L™F(RY) then we have the mass conservation & ||u(t )||L2(RN =
moreover, if u(t) € H2(RY)N L2™(RY) then u(t) € L™ (RY) and we have conservation of energy
4 E(u(t)) =0, where

()7

E(u( )) *HV’U,( )HL2 (RN) +— Lm-‘,—l(RN)'

m + 1
Indeed, in the first case, Au(t) € H™Y(RY) and |u(t)|"0"™u(t) € LMT-H(RN). It follows from
the equation (4.1.1) that oul) ¢ =Y (RN) 4+ L™+ (RY) and since (H(RYN)N L™+ (RV))"

HYRN) + LT(RN), it follows that we may take the duality product of equation (4.1.1) with
iu(t), from which the mass conservation follows. In the same way, since u(t) € LZ(R™) N LZ™(RY)
and 0 < m < 1, we get that u(t) € L™T1(RY). We also easily have that Au(t) € LZ(RY) and
lu(t)| == u(t) € L2(RY). It follows from the equation (4.1.1) that &git) € L%(RY) and so we may

take the duality product of equation (4.1.1) with ‘%ggt) , from which the conservation of energy follows.

Like in the pioneering study by Schrodinger, the condition Im(a) = 0 implies that |u|? represents a
probability density, and so the study of “sharp localized solutions” becomes very relevant (recall the
Heisenberg Uncertainty Principle). As we will show here (sequel of previous papers by the authors,
Bégout and Diaz [24, 25]), if m € (0,1), under suitable conditions on the coeflicient a (for instance
for Re(a) > 0 and Im(a) = 0), it is possible to get some estimates on the support of solutions u(t, x)
2

showing that the probability |u(t, z)|? to localize a particle is zero outside of a compact set of RY.
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The natural structure for searching self-similar solutions is based on the transformation A — wy,
where for A > 0, p € C and u € C((0,00); L{ (RY)), we define

loc

ux(t,x) = A"Pu(N\*t, \x), Vt > 0, for a.e. v € RY. (4.1.2)

Recall that since p € C then AP & ePInA = cRe(p) InAgilm(p)InX — \Re(p)ilm(P)In A 41 that |\P| =

ARe(P)  Our main assumption on the datum f is that
f(t, ) = AP £(\%t Az), YA > 0, (4.1.3)

for some p € C, for any ¢ > 0 and almost every € RY, or equivalently, that

flt,x) =t"=F (\2) : (4.1.4)

for any ¢ > 0 and almost every x € RY, where F' = f(1). It is easy to build functions f satisfying

(4.1.3). Indeed, for any given function F, we define f by (4.1.4). Then f(1) = F and f satisfies

(4.1.3). Finally, if we assume Re(p) = 12— then a direct calculation show that if u is a solution

to (4.1.1) then for any A > 0, uy is also a solution to (4.1.1), and conversely.

We easily check that if u satisfies the invariance property u = uy, for any A > 0, then

u(t,z) = 50U (jg) : (4.1.5)

for any ¢ > 0 and almost every x € R, where U = u(1). Thus, we arrive to the following notion :

Definition 4.1.1. Let 0 < m < 1, let f € C((0,00); LE (RY)) satisfies (4.1.3) and let p € C be

loc
such that Re(p) = 2. A solution u of (4.1.1) is said to be self-similar if u € C((0,00); L (RN))

and if for any A > 0, ux = u, where u) is defined by (4.1.2). In this cases, u(1) is called the profile
of u and is denoted by U.

It follows from equation (4.1.1) and (4.1.5) that U satisfies
i

2
in 2'(RV), where F = f(1). Conversely, if U € L2

2 (RY) verifies (4.1.6), in 2’(R"), then the function
u defined by (4.1.5) belongs to C((0,00); LZ .(RY)) and is a self-similar solution to (4.1.1), where f

loc

~AU + a|U|" ™y - %U +22.VU = —F, (4.1.6)

is defined by (4.1.4) and satisfies (4.1.3). It is useful to introduce the unknown transformation

g(z) =U(z)e 5. (4.1.7)
Then for any m € R, p € C and U € LE (RY), U is a solution to (4.1.6) in 2'(R") if and only if
g € L2 (RY) is a solution to
N +2 1 12
~Ag +alg|" Mg —i Z Pg- glt°9 = ~Fe 5, (4.1.8)

in 2'(RY). It will be convenient to study (4.1.8) instead of (4.1.6). Indeed, formally, if we multiply
(4.1.8) by 4g or *ig, integrate by parts and take the real part, one obtains some positive or negative
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quantities. But the same method applied to (4.1.6) gives (at least directly) nothing because of the
term iz.VU.

Notice that if p € C is such that Re(p) = 12~ and if f € C((0,00); L*(RY)) and satisfies (4.1.3)
with f(tg) compactly supported for some to > 0, then it follows from (4.1.3) that for any ¢ > 0,
supp f(¢) is compact. Moreover, from (4.1.5), if w is a self-similar solution of (4.1.1) and if suppU
is compact then for any ¢ > 0, supp u(t) is compact. As a matter of fact, it is enough to have that
u(tp) is compactly supported for some t; > 0 to have that w satisfies (4.1.9) below and supp w(t)
is compact, for any t > 0. Indeed, U = u(1) satisfies (4.1.6) and by (4.1.5), supp U and supp u(t)
are compact for any ¢t > 0. Let g be defined by (4.1.7). Then g is a solution compactly supported
to (4.1.8) and it follows the results of Section 4.3 below that g € HZ(RY). By (4.1.7), we obtain that

U € H2(R") and we deduce easily from (4.1.5) that w satisfies (4.1.9).

The main result of this paper is the following.

Theorem 4.1.2. Let 0 < m < 1, let a € C be such that Im(a) < 0. If Re(a) < 0 then assume
further that Im(a) < 0. Let p € C be such that Re(p) = 12— and let f € C((0,00); L*(RY))

satisfying (4.1.3). Assume also that supp f(1) is compact.

L Af|F (D)l 2@y s small enough then there exists a self-similar solution
u € C((0,00); H*(RY)) N C*((0,00); HY(RY)) N CZ%((0, 00); L*(RY)) (4.1.9)

to (4.1.1) such that for any t > 0, suppu(t) is compact. In particular, w is a strong solution
and verifies (4.1.1) for any t > 0 in L2(RY), and so almost everywhere in RY.

2. Let R > 0. For any € > 0, there exists o = do(R, ¢, |al,|p|, N,m) > 0 satisfying the following
property: if supp f(1) € B(0,R) and if [F(Dll 2y < do then the profile U of the solution
obtained above verifies suppU C K(¢) C B(0, R + ¢), where

K(e) = {x € RY; 3y € supp f(1) such that |z — y| < 5},

which is compact.

3. Let Ry > 0. Assume now further that Re(a) > 0, Im(a) = 0 and

4Im(p) + 24/4Im?(p) + 2 > RZ.

Then the solution is unique in the set of functions C((O, o0); L? (RN)) whose profile V' satisfies
suppV C B(0, Ry).

In contrast with many other papers on self-similar solutions of equations dealing with exponents
m > 1 (see Cazenave and Weissler [61, 62, 63] and their references), in this paper we do not prescribe
any initial data «(0) to (4.1.1) since we are only interested on any solution w(t) by an external source
f(t) compactly supported. Moreover, we point out that if u € C([0,00); L9(RY)) is a self-similar
solution to (4.1.1), for some 0 < ¢ < oo, then necessarily ©(0) = 0. Indeed, with help of (4.1.5), we
easily show that U € LI(RY) and that for any ¢ > 0, |lu(t)| ers) = T2 |U||Lany, implying
necessarily that «(0) = 0. On the other hand, notice that if u € C([0,00); Z'(RY)) is a self-similar
solution to (4.1.1) then one cannot expect to have u(0) € LI(RY), unless u(0) = 0. Indeed, we would
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2 N
have ux(0) = u(0) in LI(RY) and for any A > 0, [|u(0)||ga@y) = /\m+7||u(0)||Lq(RN) and again
we deduce that necessarily u(0) = 0. More generally, the set of functions w satisfying the invariance
property,

def

YA >0, for ae. 2 € RN, ur(z) = AN Pu(\z) = u(x),

and lying in LI(RY) is reduced to 0.

In the special case of self-similar solution, the above arguments show that if f = 0, a € R and
u € C((0,00); L2(RY)) then necessarily u(t) = 0, for any ¢ > 0. Indeed, if u € C((0,00); L2(R"))
is a self-similar solution to (4.1.1) then its profile U belongs to L2(RY) and u € C?((0;00) x RY)
(see Section 4.3 below). So for any ¢ > 0, we can multiply the above equation by —iwu(t), integrate by
parts over RY and take the real part. We then deduce the mass conservation, %Hu(t)HiZ(RN) =0,

which yields with the above identity,
1N
U 2yy = lu(®)l p2@yy = tTm U L2 &),

for any ¢ > 0. Hence the result. As a matter of fact, if £ € {0, 1,2} and if u € C((0,00); HY(RY)) is a
self-similar solution to (4.1.1) then one easily deduces from (4.1.5) that actually }{I{l} (@)l ey = 0.

We also mention here that our treatment of sharp localized solutions has some indirect connections
with the study of the “unique continuation property”. Indeed, we are showing that this property does
not hold when m € (0,1), in contrast to the case of linear and other type of nonlinear Schrédinger
equations (see, e.g., Kenig, Ponce and Vega [118], Urrea [177]).

The paper is organized as follows. In the next section, we introduce some notations and give general
versions of the main results (Theorems 4.2.3 and 4.2.5). In Section 4.3, we recall some existence,
uniqueness, a priori bound and smoothness results of solutions to equation (4.1.8) associated to the
evolution equation (4.1.1). Finally, Section 4.4 is devoted to the proofs of the mentioned results, which
we carry out by improving some energy methods presented in Antontsev, Diaz and Shmarev [11].

4.2 Notations and general versions of the main result

Before stating our main results, we will indicate here some of the notations used throughout. For
1 < p < oo, p' is the conjugate of p defined by % + i = 1. We denote by Q the closure of a nonempty
subset Q2 C RY and by Q¢ = RV \ Q its complement. We note w € € to mean that @ C 2 and that
@ is a compact subset of RY. Unless if specified, any function lying in a functional space (Lp (Q),
W™P(Q), etc) is supposed to be a complex-valued function (LP(Q;C), W™P(2;C), etc). For a
functional space E C Llloc(Q; C), we denote by E. = {f € E;supp f € Q} For a Banach space E,

we denote by E* its topological dual and by (., .)g+ g € R the E* — E duality product. In particular,

for any T € LP' (Q) and ¢ € LP(Q) with 1 < p < oo, (T, ) = Re [ T(z)¢(z)dz. For
)

LP (Q),LP(Q)
2o € RN and r > 0, we denote by B(xg,r) the open ball of RV of center zg and radius 7, by S(zo,r)

its boundary and by B(zg,r) its closure. As usual, we denote by C auxiliary positive constants,

and sometimes, for positive parameters aq, ..., a,, write C(aq,...,a,) to indicate that the constant
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C' continuously depends only on ai,...,a, (this convention also holds for constants which are not
denoted by “C”).

Now, we state the precise notion of solution.

Definition 4.2.1. Let Q be a nonempty bounded open subset of RV let (a,b,c) € C3,let 0 < m < 1
and let G € LL _(Q).

loc
1. We say that g is a local very weak solution to
—Ag+a|g|_(1_m)g+bg+cx.Vg =G, (4.2.1)

in 7'(Q), if g € L2 _(Q) and if

loc
(9, —Ap) 9 (),2(0 + (H(9), ¢) 2 @),2©) = (G, P)a©),29)> (4.2.2)
for any ¢ € 2(12), where

H(h) = alh|"""™h + bh + cz.Vh, (4.2.3)

2
loc

for any h € LZ (Q). If, in addition, g € L2?(Q) then we say that g is a global very weak solution

to (4.2.1).
2. We say that g is a local weak solution to (4.2.1) in 2'(Q), if g € H () and if

(Vg,Vola )20 + (H(9), P) o 9),20) = (G, ) 29),29), (4.2.4)

for any ¢ € 2(Q), where H € C(L?

loc

(Q); Z'(Q2)) is defined by (4.2.3).
3. We say that g is a local weak solution to
—Ag+alg|~""™g+bg + clz’g = G, (4.2.5)

in 2'(Q), if g € HL

loc

(Q) and if g satisfies (4.2.4), for any ¢ € 2(Q), where
H(h) = alh|"*"™h + bh + c|z|*h, (4.2.6)
for any h € HL ().
4. Assume further that G € L2(f2). We say that g is a global weak solution to (4.2.1) and
gr =0, (4.2.7)
in L?(Q), if g € H}(Q) and if

<V97V”>L2(Q),L2(Q) + <H(g)vv>L2(Q),L2(Q) = <G7U>L2(Q),L2(Q)» (4.2.8)

for any v € H}(R), where H € C(H*(Q2); L*()) is defined by (4.2.3). Note that Ag € L*(12),
so that equation (4.2.1) makes sense in L?(£2) and almost everywhere in .

5. Assume further that G € L?(Q). We say that g is a global weak solution to (4.2.5) and (4.2.7), in
L?(Q), if g € H3(Q) and if g satisfies (4.2.8), for any v € H}((2), where H € C(L?(Q2); L3(Q2))
is defined by (4.2.6). Note that Ag € L?(f2), so that equation (4.2.5) makes sense in L?({2) and

almost everywhere in Q.
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In the above definition, I' denotes the boundary of Q and C(Q) = C°() is the space of complex-
valued functions which are defined and continuous over Q. Obviously, for k € N, C¥(Q) denotes the

space of complex-valued functions lying in C(€2) and having all derivatives of order lesser or equal
than & belonging to C(Q).

Remark 4.2.2. Here are some comments about Definition 4.2.1.

1. Note that in Definition 4.2.1, any global weak solution is a local weak and a global very weak

solution, and any local weak or global very weak solution is a local very weak solution.

2. Assume that Q has a C%! boundary. Let g € H*(£2). Then boundary condition gjr = 0 makes
sense in the sense of the trace v(g) = 0. Thus, it is well-known that g € H2 () if and only if
~(g) = 0. If furthermore 2 has a C'*! boundary and if g € C(Q) N Hg (L) then for any z € T,
g(x) = 0 (Theorem 9.17, p.288, in Brezis [11]). Finally, if g ¢ C(Q) and Q has not a C%!
boundary, the condition gr=20 does not make sense and, in this case, has to be understood as
g € H}(Q).

3. Let 0 < m < 1 and let z € C\{0}. Since Hz\_(l_m)z’ = |z|™, it is understood in Definition 4.2.1
that ||z[~*=™ 2| = 0 when z = 0.

The main results of this section are the two following theorems implying, as a special case, the
statement of Theorem 4.1.2.

Theorem 4.2.3. Let Q C B(0,R) be a nonempty bounded open subset of RN let 0 < m < 1, let
(a,b,c) € C? be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume further
that Im(a) < 0. Then there exist three positive constants C' = C(N,m), L = L(R, |al,|p|, N,m) and
M = M(R,|al|,|p|, N,m) satisfying the following property: let G € Ly, _(Q), let g € HL () be any

local weak solution to (4.2.5), let zg € Q and let pg > 0. If po > dist(zo,I") then assume further that

g € H}(Q). Assume now that GlanB(zo.p0) = 0. Then gionp(zg prax) = 05 where

Zo,

1
oo = (plo’ — C'MQmax{l,B}maX {pgﬂ’l}

< min {E<po>”<”max{b(pow“%b(po)“ﬂ}}) L (429
1] N

re(mL, 21 — (1 +m)
where
E(po) = V9132 @npmopyy  20P0) = 1907w 0 5 nopory
k=2(1+m)+ N(1—m), v=kE>2
and where
1 =T ¢ 0.1), )= KD, iy = 12 () >0

for any T € (mT'H, 1] .

Here and in what follows, r; = max{0,r} denotes the positive part of the real number 7.
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Remark 4.2.4. If the solution is too “large”, it may happen that pp.x = 0 and so the above result is
not consistent. A sufficient condition to observe a localizing effect is that the solution is small enough,
in a suitable sense. We give below a sufficient condition on the data a € C, p € C and G to have
Panase > 0.

Theorem 4.2.5. Let Q C B(0,R) be a nonempty bounded open subset of RN, let 0 < m < 1, let
(a,b,c) € C? be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume further
that Im(a) < 0. Let G € Li (), let g € H () be any local weak solution to (4.2.5), let zg € Q

and let py > 0. If p1 > dist(zo,T') then assume further that g € H} (). Then there exist two positive
constants E, > 0 and €, > 0 satisfying the following property: let pg € (0,p1) and assume that

2
va||L2(QﬁB(zo,p1)) < E, and

vp S (Ovpl)y HG”QLz(QﬂB(wo,p)) g 5*(0— po);i, (4210)
wherep = W Then gi0nB(zg,pe) = 0- In other words (with the notation of Theorem 4.2.3),
Pmax = L0-

Remark 4.2.6. We may estimate F, and ¢, as

po L
E* - E* (ng+1 (B(zo pl))7p11 p17M7N7m) )

po L
Ex = Ex (g|Lm+1 (B(z0,p1))’ P1 "M’ N m>
1

where L > 0 and M > 0 are given by Theorem 4.2.3. The dependence on § means that if § goes
to 0 then F, and e, may be very large. Note that p = ﬁ, where ~y is the function defined in
Theorem 4.2.3.

4.3 Existence, uniqueness and smoothness

We recall the following results which are taken from other works by the authors (Bégout and
Diaz [28], Theorems 2.2.4, 2.2.6 and 2.2.12). Let Q C B(0, R) be a nonempty bounded open subset
of RV let 0 < m < 1 and let (a,b,c) € C® be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If
Re(a) < 0 then assume further that Im(a) < 0. For any G € L2(f2), there exists at least one global
weak solution g € H}(Q) N HZ (Q) to (4.2.5) and (4.2.7). Moreover, if Q has a C'! boundary then
g € H%(Q). Finally,

191l £y < Mo(R? + 1[G 12 (g (4.3.1)
where Mo = My(|al, |bl,|c|). Finally, if U belongs to LZ () with U a local very weak solution to
—~AU +a|U|"""™U + bU +icz.VU = F, in 2'(Q),
(with any (a,b,c) € CxCxR) then U € HZ

1 o(92). Indeed, by the unknown transformation described

at the beginning of Section 4.4 below, we are brought back to the study of the smoothness of solutions
to equation,

cN |z

EI
~ag+algl g+ (51D ) g - Slafg = Fe 7/ (@),
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for which the above smoothness result applies. Concerning the uniqueness of solutions, we have the

following result.

Theorem 4.3.1 (Uniqueness). Let Q C RY be a nonempty open subset let 0 < m < 1, let (a, b, c) €
R x C x R be such that a > 0, Re(b) = 0 and ¢ > 0. Then for any F € L%(f2), equation

—AU —ia|U|""™U —ibU +ica.VU = F, in 2'(Q),
admits at most one global very weak solution compact with support U & Lg (Q).

Proof. Let Uy,U, € L3(2) be two global very weak solutions both compactly supported to the

lC

above equation. By the results above, one has Uy, U, € H2( ). Setting g1 = Uie™ and g2 =

. 12
Uze*w%, a straightforward calculation shows that (see also the beginning of Section 4.4 below)
91,92 € H2(Q) satisfy

~Ag+alg|"""™g+bg+eV?g=F, in LZ(Q),

where @ = —ia, b = —i b+, c= 7%7 V(z) = |z| and F = Fe-ic"1- Note that,

a+£0, Re(@) =0,

=z N 1
Re(ab):Re alb+ S = aRe(b) + —acN > 0,
2 2
2
= ac o
Re (a c) = TRG(I) =
It follows from 1) of Theorem 2.2.10 that g1 = g2 and hence, Uy = Us. O

Remark 4.3.2. Notice that uniqueness for self-similar solution is relied to uniqueness for (4.1.8).
Using Theorem 2.2.10, we can show that the uniqueness of self-similar solutions to equation (4.1.1)
holds in the class of functions C((0,00); L2(RY)) when, for instance, Re(a) = 0 and Im(a) < 0
(Theorem 4.3.1). These hypotheses are the same as in Carles and Gallo [53]. We point out that it seems
possible to adapt the uniqueness method of Theorem 2.2.10 to obtain other criteria of uniqueness.

Remark 4.3.3. In the proof of uniqueness of Theorem 4.1.2, we will use the Poincaré’s inequa-
lity (4.4.9). This estimate can be improved in several ways. For instance, for any zo € RY and any
R > 0, we have
2R
||u||L2(B(m0,R)) HVU’HL2(B (x0,R))> (4.3.2)

™
which is substantially better than (4.4.9), since % < 1 < /2. Actually, (4.3.2) holds for any u €
H*'(B(zo, R)) such that

B(ZL’Q,R)
2

8xj8xk

more details.

and

€ L>=(B(wo, R)), for any (j,k) € [1, N] x [1, N]. See Payne and Weinberger [I15] for
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4.4 Proofs of the localization properties

We start by pointing out that if O C RY is a nonempty open subset and if 0 < m < 1, we have
the following property : let U € H.L (£2) be a local weak solution to

—AU + a|U|""™U + bU + icz.VU = F(z), in 2'(Q),

2
|z]

(Q). Setting g(z) = U(x)e 2, for almost every x € Q,
(Q) is a local weak solution to

for some (a,b,c) € CxCxRand F € L{__
it follows that g € H}

loc

—(1—m) -CN 02 2 —icﬁ . /
—Ag + alg] g+ b—17 g-— Zm g=F(z)e7'“ 3, in 2'(0).

Conversely, if g € H () is a local weak solution to
—Ag +alg|”""™Mg + bg — *|zg = G(x), in 7'(Q),

2
ioc(£2), then setting U(x) = g(;v)e‘cT‘7 for almost every
z €, it follows that U € H} () is a local weak solution to

for some (a,b,c) € C x C xR and G € L} icl?

. x 2
AU + a|U["0"™U + (b + ieN)U + 2ice.VU = G(z)el*™ ", in 2'(Q).
The proof of Theorems 4.2.3 and 4.2.5 follows the main structure of application of the energy methods
introduced to the study of free boundary (see, e.g., the general presentation made in the monograph
Antontsev, Diaz and Shmarev [11]). In both cases, the conclusions follow quite easily once it is obtained
a general differential inequality for the local energy E(p) of the type

E(p)” < Cp~PE'(p) + K(p — po)%, (4.4.1)

for some positive constants C, § and w with K = 0, in case of Theorem 4.2.3 and K > 0 small enough,
in case of Theorem 4.2.5. The key estimate which leads to desired local behaviour is that the exponent
« arising in (4.4.1) satisfies that « € (0,1).

Although the main steps to prove (4.4.1) follow the same steps already indicated in the monograph
Antontsev, Diaz and Shmarev [11], it turns out that the concrete case of the systems of scalar equations
generated by the Schrodinger operator does not fulfill the assumptions imposed in Antontsev, Diaz
and Shmarev [11] for the case of systems of nonlinear equations. The extension of the method which
applied to the system associated to the complex Schrédinger operator is far to be trivial and it was
the main object of Bégout and Diaz [25]. Unfortunately, the extension of the method presented in
Bégout and Diaz [25] is not enough to be applied to the fundamental equation of the present paper
(i.e. (4.1.8) or (4.2.5)) mainly due to the presence of the source term —c?|z|?g. A sharper version
of the energy method, also applicable to a different type of nonlinear complex Schrédinger type
equations (for instance containing a Hartree-Fock type nonlocal term), was developed in Bégout and
Diaz [27], where the applicability of the energy method was reduced to prove a certain local energy
balance. Such a local balance will be proved here in the following lemma. Thanks to that, the proofs
of Theorems 4.2.3 and 4.2.5 are then a corollary of Theorems 3.2.1 and 3.2.2.
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Lemma 4.4.1. Let Q C B(0,R) be a nonempty bounded open subset of RN let 0 < m < 1, let
(a,b,c) € C? be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume further
that Im(a) < 0. Let G € L () and let g € HL () be any local weak solution to (4.2.5). Then
there exist two positive constants L = L(R,|al, |bl,|c|) and M = M (R, |al,|b|,|c|) such that for any
xo € Q and any p. > 0, if GionB(0,p,) € L? (Q N B(xo,p*)) then we have

m—+1 2
”VQHL? (QNB(z0,p)) + L||g| L™+ (QNB(z0,p)) LHg||L2(QﬁB(107p))

=M / gVg.— hdo + / G(z)g(z)|dz |, (4.4.2)
QNS(zo,p) |z — 0| QNB(z0,p)

for every p € [0, p), where it is additionally assumed that g € HE(Y) if p. > dist(zo, ).

Proof. Let zp € Q and let p, > 0. Let o be the surface measure on a sphere and set for every
p €0, ps),

I(p) =

— T — X
/ 0Vg. 2" 4ol J(p) :/ G(2)g(2)|d,
QNS(zo,p) |Q;‘ - 1'0| QNB(zo,p)

wp) = [ g9 do Tulp) = Re(w(p). Tinp) = Im(u(p).
QNS(zo,p) |.’L' ‘Tol

It follows from Theorem 3.3.1 that I, J, Ire, Iim € C([0, p+); R) and that,

2 m+1 2
||ngL2(QﬁB(x07p)) + Re(a)llg| L™+1(QNB(z0,p)) + Re(b)HgHLZ(QmB(%W))

+ Re(€)[[1219]22 0 ng ) = re(0) + Re / Gl . (443)
QNB(zo,p)

m(a)”g”?;il(mm%,p)) + Im(b)HgHiz(QmB(zo’p)) + Im(c)|| |x‘g||i2(gm3(m0,p))

= Itm(p) +1Im / G(x)g(z)dx |, (4.4.4)
QNB(zo,p)

for any p € [0, p,). From these estimates, we obtain

HVQH%}(B(IO,,,)) + Re( )||g| ?I-lu (B(z0.p)) + Re(b)”glliﬁ(g(zo )

+Re(O)||21911 72 p(ay o | < L(p) + T (p), (4.4.5)

(@G o+ TOOI1Z 050y + 10121l 2 5, ) < T(0) + T (p), (4:4.6)

for any p € [0,p4). Let A > 1 to be chosen later. We multiply (4.4.6) by A and sum the result
with (4.4.5). This leads to,

2 m+1 2
”VQHL?(B(;EO’p)) + Ai1llg] L™+ (B(20,p)) + A2||g||L2(B (z0.,p))

+ Re(c)|||z|g]l3 2 (Brop)) S 2A(I(p) + J(p)), (4.4.7)
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where

Re(a), if Re(a) > 0,
A =
Allm(a)| — |[Re(a)|, if Re(a) <0,

= A|[Im(b)| — |Re(b)].
But (4.4.7) yields,

19912 30 ) + AN o) + (A2 = BRRE(@DIS12050s, ) < 24(1(0) + () (44.8)

We choose A = A(R, |al, |b],]|c|) large enough to have A[Im(a)| — |Re(a)| > 1 (when Re(a) < 0) and
Az — R*|Re(c)| = 1. Then (4.4.2) comes from (4.4.8) with L = min {A4;,1} and M = 2A. Note that
L = L(R,|al,|bl,|c|) and M = M(R, |al, |b|, |c|). This concludes the proof. O

Remark 4.4.2. When p, < dist(zo,I') and G € L?

loc

without the technical Theorem 3.3.1. Indeed, it follows from Proposition 1.4.5 that g € H2

loc

(©), one may easily obtain (4.4.3)—(4.4.4)

(€2), so
that equation (4.2.5) makes sense in L2 (Q) and almost everywhere in Q. Thus, if p, < dist(z,T")
then g\p (4, .p) € H?(B(z0,p)) and (4.4.3) (respectively, (4.4.4)) is obtained by multiplying (4.2.5) by

g (respectively, by ig), integrating by parts over B(x, p) and taking the real part.

Proof of Theorem 4.2.3. By Lemma 4.4.1, u satisfies (3.2.1). The result then comes from Theo-
rem 3.2.1. O

Proof of Theorem 4.2.5. By Lemma 4.4.1, u satisfies (3.2.3). The result then comes from Theo-

rem 3.2.2. O
Proof of Theorem 4.1.2. Let R > 0. Let € > 0 and let f € C((0,00); L*(R")) satibfying (4.1.3)
and supp f( ) C B(0,R). Let My be the constant in (4.3.1). Let b = N+2p, c=—1; and G =
—f(1)e~1"5~. Note that Im(a) < 0, Im(b) = — Mt < 0 and Tm(c) = 0. In addition, if Re(a) < 0

then Im(a) < 0. It follows that the existence result of Section 4.3 applies to equation (4.1.8) : let
g € H}(B(0,2R + 2¢)) N H3(B(0,2R + 2¢)) be such a solution to (4.1.8) and (4.2.7). We apply
Theorem 4.2.3 with pg = 2¢. By (4.3.1), there exists dg = do(R, ¢, |al, |b], ||, N,m) > 0 such that if
[F(Dll2ry < do then pmax > €. Set K = supp f(1) = supp G. Let 2o € K(2¢)° N B(0,2R + 2¢).
Let y € B(xo,2¢) and let z € K. By definition of K (2¢), dist(K(2¢)¢, K) = 2e. We then have

2e = dist(K(26)¢, K) < |zo — 2| < |wo —y| + |y — 2| <2+ |y — 2|.

It follows that for any z € K, |y — 2| > 0, so that y ¢ K. This means that B(zg,2¢) N K = (), for any
xo € K(2¢)N B(0,2R + 2¢). By Theorem 4.2.3 we deduce that for any zo € K(2¢)¢ N B(0,2R + 2¢),
9|B(zy.e) = 0. By compactness, K(g)¢ N B(0,2R + 2¢) may be covered by a finite number of sets
B(xo,e) N B(0,2R + 2¢) with zg € K(2¢). It follows that g|x(.)cnp(0,2r+2:) = 0- This means that
suppg C K(g) C B(0,2R + 2¢). We then extend g by 0 outside of B(0,2R + 2¢). Thus, g € H2(RY)
is a solution to (4.1.8) in RY. Now, let U = gei% and let for any t > 0, u(t) = t3U (W) It
follows that supp U = suppg C K(¢), U € H?(R") and U is a solution to (4.1.6) in RY. By (4.1.5),
u verifies (4.1.9) and is a solution to (4.1.1) in (0,00) x RY with u(1) = U compactly supported in
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K(g). By Definition 4.1.1, u is self-similar and still by (4.1.5), supp w(t) is compact for any t > 0.
Hence Properties 1 and 2. It remains to show Property 3. Let Ry > 0 and assume further that
Re(a) > 0, Im(a) = 0 and 0 < RZ < 4Im(p) + 24/4Im*(p) + 2. Let uq,uz2 € C((0,00); L2(RY))
be two solutions to (4.1.1) whose profile Uy, U satisfy supp U,supp V' C B(0, Ry). By Section 4.3,
U1,Us € H2(RY). For j € {1,2}, let g; = Uje’i%. It follows that g, and go belong to HZ(RY),
are compactly supported in B(0, Ry) and satisfy the same equation (4.1.8). Let g = g1 — g» and set
for any h € L2(RY), H(h) = |h|~(*=™h. It follows that,

—Ag+a(H(g1) — H(g2)) — i Z 2P

1
qg— 1—6|:c\zg =0, ae. in RV.

Multiplying this equation by g, integrating by parts over RY and taking the real part, we get

N +2p 1
Vgl + alH(ar) - Higa)as - g2)s2 2 - R (i 0 ) gl ~ - lals

1 1
= |Vgliz + alH(g1) — H(g2) g1 — g2) 12 12 + 5Tm(p)llgll7= — 75 I - Il

We recall the following refined Poincaré’s inequality (Bégout and Torri [31]).
1 2 2 2
Vu € Hy (B(0, Ro)), [[ullz2(50.8,) < 2R01VUllL2500.5,)) (4.4.9)

If follows from (4.4.9) and Lemma 1.9.1 that there exists a positive constant C' such that,

1 1 R |91($) —gz(fU)|2
5+ 31 —°> 22+C/ dz <0,
<2R3 2P =T ) lgllz= +Ca f e o Fga @

where w = {x € Q;lg1(z)| + |g2(z)| > 0}. But,

L R S
o R
orz T2 W TG T 16R2

(—RG + 8Im(p)Rg +8) > 0,

when

0 < R? < 4Im(p) + 21/4Im?(p) + 2.

It follows that g1 = g2 which implies that Uy = Uz and for any t > 0, u;(t) = u2(t). This ends the
proof. O
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Finite time extinction for the
strongly damped nonlinear
Schrodinger equation in bounded
domains
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Abstract

We prove the finite time extinction property (u(t) =0 on Q for any ¢ > T, for some T, > 0) for solutions
of the nonlinear Schrédinger problem iu; +Au+a|u| =™ u = f(¢, ), on a bounded domain Q of RY, N < 3,
a € C with Im(a) > 0 (the damping case) and under the crucial assumptions 0 < m < 1 and the dominating
condition 2v/mIm(a) > (1—m)|Re(a)|. We use an energy method as well as several a priori estimates to prove
the main conclusion. The presence of the non-Lipschitz nonlinear term in the equation introduces a lack of
regularity of the solution requiring a study of the existence and uniqueness of solutions satisfying the equation
in some different senses according to the regularity assumed on the data.

5.1 Introduction

This paper deals with the finite time extinction property of solutions of the nonlinear Schrédinger

problem

0
il + Au+ alu| =™y = f(t,2), in (0,00) x €,

ot
u(®)r =0, on (0,00) x T, (5.1.1)
U(O) = Uy, in Q7

when, roughly speaking, we assume that N < 3,

a € C with Im(a) >0, (5.1.2)
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and
0<m< L (5.1.3)

We start by pointing out that this finite time extinction property (u(t) = 0 on € for any t > T, for
some T, > 0) represents, clearly, the most opposite property to the famous Max Born result on the

conservation of the mass
lu(t)||2() = lluollL2(q), for any t >0,

which arises (when f = 0) in the linear case (and more generally if Im(a) = 0 : see Proposition 5.2.3
below) and which allows the probabilistic understanding of the complex wave solution (¢, z) in the
context of the applications of the linear Schrodinger equation in Quantum Mechanics. It is well known
that the presence of a damping term (5.1.2) makes the equation irreversible with respect the time.

We also recall that the Schrodinger equation in presence of a nonlinear term in the equation (as, e.g.,
problem (5.1.1) when a € C and a # 0) arises in many other different contexts as, e.g., Nonlinear
Optics, Hydrodynamics, etc., and that those other contexts, for instance in Nonlinear Optics, the
variable ¢ does not represent time but the main scalar spacial variable which appears in the propagation
of the waveguide direction (see e.g. Agrawal and Kivshar [3], Sulem and Sulem [165], Shi, Xu, Yang,
Yang and Yin [158] and its many references).

As a matter of fact, the nonlinear Schrédinger equation under condition (5.1.2) is referred in the

literature as the damped case and it was intensively studied since the middle of the past century

under different additional conditions (but most of them for m > 1) (see, e.g., Nelson [112], Pozzi [152],
Bardos and Brezis [17], Lions [128], Kato [117], Brezis and Kato [17], Vladimirov [179], Tsutsumi [171],
Temam and Miranville [169], Kita and Shimomura [120], Carles and Gallo [53], Carles and Ozawa [55]
and Hayashi, Li and Naumkin [104], among others).

In our above formulation we assume that a € C and thus a possible, non-dominant non-dissipative
nonlinear term may coexists with the damping term (i.e., we allow Re(a) # 0). Nevertheless, our main
result on the finite time extinction for |2 < oo requires the dominating condition

2vmIm(a) > (1 — m)[Re(a),

as well as the assumption (5.1.3) on a strong damping.

We also recall that in most of the papers on the nonlinear equation (5.1.1) it is assumed that m = 3
(the so called cubic case). Nevertheless there are several applications in which the general case m > 0
is of interest. For instance, it is the case of the so called non-Kerr type equations arising in the study
of optical solitons (see, e.g., [3]). For some other physical details and many references, we refer the
reader to the general presentations made in the books [3] and [165]. Some other references concerning
the case m € (0,1) are quoted in our previous paper Bégout and Diaz [26]. We also mention that
the spacial localization phenomenon (solutions with support u(¢, . ) being a compact, when  is
unbounded) requires a different balance between the damping and non-damping components (mainly
with Im(a) > 0) of the nonlinear term alu|™ tu (see [25, 26, 27]).

In spite of the large amount of papers devoted to the existence and uniqueness results of nonlinear
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Schrédinger equations with a damping term only very few of them allowed the consideration of a
strong damping term (i.e. condition (5.1.3)). This is the reason why we presented here some new
results on the general theory of the existence, uniqueness and regularity of solutions of the strongly
damped Schrédinger equation improving several previous papers in the literature (see, e.g. Carles and
Gallo [53], Lions [128], Brezis and Cazenave [15] and Vrabie [181]) which are needed for the study of

the finite time extinction property.

Since the comparison principle does not apply to our problem, the main tool to prove the finite time
extinction property is a suitable energy method in the spirit of the collection of energy methods quoted
in the monograph Antontsev, Diaz and Shmarev [11]. Nevertheless, the adaptation to the nonlinear
Schrédinger equation requires some new estimates and also a sharper study of the ordinary differential
inequality satisfied by the mass. We start by giving, in Section 5.2, a semi-abstract result (which is
proved in Section 5.5) in which the finite time extinction property is derived under a general regularity
condition on the solution. The presence of the non-Lipschitz nonlinear term in the equation introduces
a lack of regularity of the solution (in contrast to the case in which m > 1) and so we shall devote
Section 5.4 to present a separated study of the existence and uniqueness of solutions satisfying the
equation in some different sense according to the regularity assumed on the data. To this purpose, we
use mainly some monotonicity methods, jointly with suitable regularizations and passing to the limit,
improving previous results in the literature. Section 5.3 concerns the finite time extinction and the
asymptotic behavior of the solution. The proofs of the results of Sections 5.3 and 5.4 are presented in
Sections 5.7 and 5.6, respectively. An Appendix (p.201), collecting some technical auxiliary results, is

also presented for the convenience of the reader.

We point out that in our formulation it may arise a non-homogeneous term (on which we assume a
finite time extinction Tp) and that, surprisingly enough, under some critical decay to zero of f(¢, .)
at t = Ty, we can conclude that the corresponding solution u also vanishes after the same time ¢ = T}
(see Theorem 5.2.1 part 2). Our energy method allows us also to get some large time decay estimates
in some cases, always under the presence of a damping term, in which the conditions on the finite
time extinction property fails (see Theorems 5.3.5 and 5.3.6 below). See Shimomura [159] for a related

result with m =1+ %

We mention that it seems possible to apply the techniques of this paper to the consideration of some
other complex-valued nonlinear equations such as the Gross-Pitaevskii equations, the Hartree-Fock
equations, and the Ginzburg-Landau equations (see, e.g., Bégout and Diaz [28], Antontsev, Dias and

Figueira [10], Okazawa and Yokota [1417] and its many references).

Finally, we collect here some notations which will be used along with this paper. We let No = NU{0}.
Let t € R. Then ¢, = max{t,0} is the positive part of t. We denote by Z the conjugate of the complex
number z, by Re(z) its real part and by Im(z) its imaginary part. For 1 < p < oo, p’ is the conjugate
of p defined by % + ﬁ = 1. We write I' the boundary of a subset Q C RY. Unless if specified, all
functions are complex-valued (H'(Q2) = H'(Q;C), etc). The notations LP(Q) (p € (0,00]), WkP(€Q),
WEP(Q), H*(Q), HE(Q) (p € [1,00], k € N), W52 (Q) and H*(Q) (p € [1,0), k € N) refer as
the usual well known different Lebesgue, Sobolev and Hilbert spaces and their topological dual. By
convention of notation, W?(Q) = W?(Q) = LP(2). For a Banach space X, we denote by X* its

topological dual and by (., .)x+ x € R the X* — X duality product. In particular, for any T' € Lp,(Q)
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and ¢ € LP(Q) with 1 < p < 00, (T,¢) 1/ (), 1r(0) = Re Jo T(2)¢(x)dz. The scalar product in L2(2)

between two functions u,v is, (u,v)2(0) = Re [, u(x)v(x)dz. For a Banach space X and p € [1,00],
u € LE _([0,00); X) means that v € LY ((0,00); X) and for any T > 0, ujo,r) € L?((0,7); X). In

loc loc

the same way, u € Wl’p([O,oo);X) means that u € L

low loc([0, 00); X), u is absolutely continuous over

([0, 00); X). For a real x,
[x] denotes its integer part. As usual, we denote by C auxiliary positive constants, and sometimes, for

[0,00) (so it has a derivative v’ almost everywhere on (0,00)) and v’ € L}, |

positive parameters ay, ..., a,, write as C(aq,...,a,) to indicate that the constant C' depends only
on aiy,...,a, and that this dependence is continuous (we will use this convention for constants which

are not denoted merely by “C”).

5.2 A semi-abstract result for finite time extinction

We consider the following nonlinear Schrodinger equation.

i% + Au+ alu| =™y = f(t,z), in (0,00) x €, (5.2.1)
u(t))r =0, on (0,00) x T, (5.2.2)
u(0) = uo, in £, (5.2.3)

The next result proves the finite time extinction of solutions (in some cases even in the same time in
which the source f(¢,x) vanishes) under suitable “regularity” conditions on the solution (this is the
reason why we denote as “semi-abstract” such a framework). In the following sections we shall obtain
sufficient conditions implying that such a framework holds.

Theorem 5.2.1. Let Q C RN be an open subset, 0 < m < 1, a € C, f € L} ([0,00);L2(Q)) and

loc

up € L?(Q). Assume that u is any strong solution to (5.2.1)—(5.2.3) (see Definition 5.4.1 below) and
that,

u e L>((0,00); H5(R)), (5.2.4)

where £ = [%} + 1 (or HY(Q) instead of HE(Y), if Q is a half-space or if Q has a bounded C%*-
boundary). Then the following conclusions hold.

1) If there exists Ty > 0 such that,
for almost every t > Ty, f(t) =0, (5.2.5)

then there exists a finite time Ty > Ty such that,

vt 2 T, [Ju(t)| 20) = 0. (5.2.6)
Furthermore,
N(122'm,)
2tCan Hu”Loo((o,oo);Hf(Q)) A=m)@e-N)

S T -mee- Ny MTlee” 4T (5.2.7)

where Can = Can(N, m) is the constant in the inequality (5.5.6) below.
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2) There exist e, = .(Im(a), N,m) satisfying the following property. Let Ty > 0 and let Cgn be the

constant in (5.5.6). If,

ull 12 0 0):1¢ () < Im(@) O 8 (1= 6) To, (5.2.8)

and if for almost every t > 0,

26—1

Hf(t)||2L2(Q) 5*Hu”L = w é)voo);Hl(Q)) (TO - t)_ﬁ76 ) (5.2.9)

where 0 = W € (3,1), then (5.2.6) holds true with T, = T,.

Remark 5.2.2. Notice that § (1 —9) = (M*N)(lfm)((126@]\’”"1(%71\[)) nd 2=1 = 2(221 1\7;;2?2%;

The following result collects several very useful a priori estimates and some time differentiability

conditions.

Proposition 5.2.3. Let Q@ C RY be an open subset, 0 <m <1, a € C, f € L{ ([0, 00); L*()) and
ug € L?(Q). Assume that u is any weak solution to (5.2.1)~(5.2.3) (see Definition 5.4.1 below). Then

we have the following results.

u € Lt ([0, 00); L™ (), (5.2.10)
m—+1 1 2
(832 gy + Em(a) [ ot ey do > ) e

S

—l—Im//fox u(o,z)dxde, if Im(a) <0,

s (5.2.11)
m 1
S22 g + T /w NI o < 5 lu(s) e

S

+1Im // flo,z)u(o,x)dedo, if Im(a) >0,

for any t > s > 0. Finally, if u satisfies one of the conditions below then the map t — Hu(t)H%Q(Q)
belongs to VV&)‘;}([O7 00); R) and we have equality in (5.2.11).

a) u s a strong solution (see Definition 5.4.1 below),

b) 10 < oo,

c) m=1,

d) Im(a) = 0.

Remark 5.2.4. Here are some comments about Theorem 5.2.1.

1) Let f satisfies (5.2.5) and let u be a weak solution (see Definition 5.4.1 below). By (5.2.11) we
obtain that for any t > Ty,

[l 2(@) = l[w(To)ll L2y, if Tm(a) =0,

lu®llzsy > lu(To)ll @), i Im(a) < 0.
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It follows that in those cases the finite time extinction is not reachable. If m = 1 then we have,
thanks to Proposition 5.2.3,

Yt = Ty, [lu(t)|r2@) = [[w(To)|| L2 oye @10,

And again, there is no finite time extinction.

Let u be a weak solution of (5.2.1) (see Definition 5.4.1). It is obvious from the equation and 1)
of this remark that if v vanishes at a finite time T}, > 0 then necessarily f must satisfy (5.2.5)
(but not necessarily the decay condition (5.2.9)) and that necessarily Im(a) > 0 and m < 1. If, in
addition, |©2| < co then we have,

[u(Toll (&
> S CUNSSS, /5 (5.2.12)
(1= m)Im(a)0 =

Indeed, it follows from (5.2.5), Proposition 5.2.3 and Hoélder’s inequality that for almost every
t > T,

1d 1-m
5 @72 ) = ~Im(a)l[u®) |75 ) > ~Tm(a)| 2= [[u(t)l|7:{g),

that is, y' > 72Im(a)|Q|kTmymT+l, where y(.) = ||u(. )H%Z(Q). After integration we get,

1—m 1—m 1—m

y(®) 7 > (1) — (1 - m)im(@)|2 F* (¢ - T7)) .

for any t > Tp, since y > 0. Hence the result.

The proof of the finite time extinction of u strongly relies on Gagliardo-Nirenberg’s inequality
(Lemma 5.5.4 below), that is : for any v € H§(Q) N L™+1(Q) (or HY(Y) instead of HE(QY), if Q is
a half-space or if  has a bounded C%!-boundary),

(204 N)+m(20—N) il N(1—m)
||UHL2(Q) 2 gCGN”U”Lerl(Q)||v||H£(2;2) ) (5.2.13)

to get the ordinary differential inequality (5.5.11) below :

_ N(1-m)
Y (t) + 21m(a) Coy [ull po & oyerre(ay ¥ <O, 8> T, (5.2.14)

where § = GHMIREEN ) — g )2, ) and Can = Can(N,m,£). This holds thanks to
the non increasing property (5.2.11) of the mass (we recall that Im(a) > 0 is necessary to have
finite time extinction, by 1) of this remark). But this method fails if N > 2¢. Indeed, first of all,
Gagliardo-Nirenberg’s inequality imposes that 0 < m < 1. And as seen in 1) of this remark, finite
time extinction is not reachable for m = 1. So, assume that 0 < m < 1, (5.2.5) is fulfilled and
u satisfies (5.2.4), where the integer ¢ has to be chosen later. Then for any ¢ > 1, we may apply
Lemma 5.5.4 below, which is (5.2.13) with v = u(t), and we finally get (5.2.14). But if N is even
and ¢ = % then § = 1 and Lemma 5.5.1 below yield,

-1
lu(®)l L2 () < [w(To)||2@ye” ™ < =T, (5.2.15)
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for any ¢ > Ty, where C' = C(||ul| Lo ((0,00); 11 (02)), N, ™). In the same way, if 1 < £ < 5 then 0>1
and Lemma 5.5.1 below yield,

lu(To)l 22 ()

[u®)||L2(0) < . (5.2.16)

(1—m)(N—2¢) A—m) (N—20)
(1400 11 = m) (¥ = 20Tl oo ¢~ To))

for any t > Tp, where C' = C(||ul| Lo ((0,00): ¢ (02)), N, m), and again this estimate does not give
necessarily any finite time extinction result.

5.3 Finite time extinction and asymptotic behavior of solu-
tions

Most of the results in this paper hold under the structural assumptions below.

Assumption 5.3.1. We assume that  C RY is a nonempty subset, 0 < m < 1 and a € C with
Im(a) > 0. If m < 1 then we assume further that,

2y/mIm(a) > (1 —m)|Re(a)], (5.3.1)
|2 < oo. (5.3.2)

Theorem 5.3.2. Let Assumption 5.3.1 be fulfilled with N € {1,2,3} andm < 1. Let f € VVlicl ([O, 00); LQ(Q))7
up € HY(Q) and assume that one of the following hypotheses holds.
1) N =1 and f € W ([0, 00); HE®).
2) N € {1,2,3}, Q is bounded with a C*'-boundary and ug € H*(Q) N H} ().
Let u be the unique strong solution of (5.2.1)—~(5.2.3) (see Definition 5.4.1, Theorems 5.4.4 and 5.4.5
and Remark 5.4.6 below). Finally, assume that there exists Ty > 0 such that,

for almost every t > Ty, f(t) =0.

Then we have the following results.

a) There exists a finite time T, > Ty such that,
vt = T*, H’u,(t)HLz(Q) =0. (533)

Furthermore, T, satisfies the estimates (5.2.7) and (5.2.12).
b) There exists e, = e4(|al, ||, N, m) satisfying the following property. Let § be given in Property 2)

of Theorem 5.2.1. If f € W1((0,00); Hg(€2)),
1-m . )
(||U0||H1 ) T ||f\|L1((o,oo);Hg(Q))) <e,min{1,Tp}, if N =1,
1-m
(HUOHH?(Q) + ||fHW1 1((0 oo);Hé(Q))) < Ex min{l,To}, if N € {2,3},

and if for almost every t > 0,

25—1

1F )1 72) <ee(To—1) 77,

then (5.3.3) holds with T, = Ty.
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Remark 5.3.3. Notice that 2= = 215m if N € {1,2} and =L = 23Em if N =3,

Remark 5.3.4. Theorem 5.3.2 is an extension of the main result of Carles and Gallo [53] in the sense
that they obtain the same conclusion as in @) but under the additional conditions Re(a) =0, f =0
and without the lower bound for 7. As far as we know, the result in b) is new.

The following result gives some asymptotic decay estimates, for large time, for the case of higher
dimensions N > 4.

Theorem 5.3.5. Let Assumption 5.3.1 be fulfilled with N > 4 andm < 1. Let f € W,> 1([0 00); L2(Q2))

loc

and let ug € HE (). Assume further that f € W5 1([0 00); H§ () orug € H*(2) and that Q is boun-

loc

ded with a CY'-boundary. Let u be the unique strong solution of (5.2.1)—(5.2.3) (see Definition 5.4.1,
Theorems 5.4.4 and 5.4.5 and Remark 5.4.6 below). Finally, assume that there exists Ty > 0 such that

for almost every t > Ty, f(t) =0.

Then we have for any t > Ty,

1,
Hu( )HL2(Q) ||U(T0)||L2 Q)e Im(a) C7° (t To)7

if N =4 and up € H*(Q), and,
[u(To)ll 220

lu@)llL20) < CTa—
(1— m)(N 20) A=) (N=20)
<1+Im(a) C-1(1—m)(N — 2€)||U(TO)||L2(Q (tTo))

if N 25 orug € Hy(Q), where C = C(||ul| oo ((0,00); ¢ (02)) N 00).

Theorem 5.3.6. Let Assumption 5.3.1 be fulfilled, let f € Li. ([0,00); L*(2)), let ug € L*(Q) and
let u be the unique weak solution of (5.2.1)—(5.2.3) (see Definition 5.4.1 and Theorem 5.4.3 below). If

fe L((0,00); L*(%2)),
then,

Jim [Ju(t)l| o) =0,
for any p € (0,2] (withp =2, if m =1 and |Q| = 00).

Remark 5.3.7. Note that for m = 1 in Theorem 5.3.6, if the stronger assumption (5.2.5) holds then
we have,

vt > Ty, ||u(ﬁ)HL2(Q) = ||’U,(T())||L2(Q)€_Im(a)(t_To).

See 1) of Remark 5.2.4
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5.4 Existence and uniqueness of solutions

Here and after, we shall always identify L?(Q) with its topological dual. Let & C R be an open
subset, let 0 < m < 1 and let X = HN L™ (Q), where H = L*(Q) or H = H}(Q). It follows from
Lemma B.2 and 2) of Lemma B.4 below that,

m

X*=H*+L" (Q),

m+1

L ([0,00); X) N WL ([0, 00); X*) < C([0, 00); L2(Q)).

loc c

This justifies the notion of solution below (and it explains the sense in which the initial condition is
satisfied).

Definition 5.4.1. Let © C RY be an open subset, 0 < m < 1,a € C, f € L} ([0,00);L2(Q)) and

loc
up € L*(Q). Let us consider the following assertions.

m+1

m+l
1) we LF([0,00); HE(Q) N L™ Q) N Wi ™ ([0,00); H* + L™ (),

loc

2) For almost every ¢t > 0, Au(t) € H*.

3) w satisfies (5.2.1) in 2'((0,00) x Q).

4) u(0) = up.

We shall say that u is a strong solution if u is a H?-solution or a H}-solution. We shall say that u
is a H%-solution of (5.2.1)~(5.2.3) (respectively, a H-solution of (5.2.1)~(5.2.3)), if u satisfies the
Assertions 1)-4) with H = L?(Q) (respectively, with H = Hg(Q)).

We shall say that u is a L2-solution or simply a weak solution of (5.2.1)—(5.2.3) is there exists a pair,

(fastn)nen C Lib ([0, 00); L2(2)) x C ([0, 00); L*(£2)), (5.4.1)

such that for any n € N, u,, is a H2-solution of (5.2.1)—(5.2.2) where the right-hand side member of
(5.2.1) is fn, and if

1 T2 .72

L((0,T);L7(22)) £ and u, C([0,T];L* () u, (5.4.2)

n— oo n—oo

fn
for any 7' > 0.

Remark 5.4.2. Before making some comments on the above definition, it is useful to analyze some
peculiar properties which arise when € is unbounded. Let 0 < m < 1. Set for any z € C, g(z) =
|2|=(1=™) 2 (g(0) = 0) and let us define the mapping for any measurable function u : Q — C, which
we still denote by g, by g(u)(x) = g(u(x)). Let H = L?(Q) or H = Hg(2). It follows from (5.6.4)
below that,

m+1

g € C(L™(Q); L7 (R2)) and g is bounded on bounded sets. (5.4.3)

In particular, if |Q| < oo or if m = 1 then H}(Q) < L?(Q2) — L™T1(Q) with dense embedding and
thus, L™ () = L*(Q) — H~1(Q2). We then obtain,

g € C(L*(Q); L*(Q)) N C(H(Q2); H(2)) and g is bounded on bounded sets, (5.4.4)
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and Assertion 1) becomes,

w € LG (0.00): HY(©)) N W™ ((0.00): HY). (5.45)

loc loc

But if |2] = oo and m < 1 then the regularity (5.4.4) is not anymore valid. By Lemma B.2 below, we
have,

2(Q) = X < L™ (Q) with both dense embeddings, (5.4.6)

where X = H N L™ (Q). Tt follows that,

L5 (Q) = X* < 2'(Q). (5.4.7)
This gives with (5.4.3),
g € C(X; X™) and g is bounded on bounded sets. (5.4.8)

It follows from (5.4.3) and (5.4.6)—(5.4.8) that,

(g0 e = (9000} s 1y = Re [ alu)ods, (549
Q

for any u,v € X. Now, let us make some comments about Definition 5.4.1.

1) As seen at the beginning of this section, any strong or weak solution belongs to C([0,00); L?(Q2))
and Assertion 4) makes sense in L2().

2) It is obvious that a H2-solution is also a H}-solution and a weak solution. But it is not clear that
a Hi-solution is a weak solution, without assuming a continuous dependence of the solution with
respect to the initial data. Such a result will be established with the additional assumption (5.3.1)
on a (see Lemma 5.6.5 below).

3) If |Q| < oo or if m = 1 then it follows from (5.4.4), (5.4.5) and Assertion 2) that any H?-solution
(respectively, any Hg-solution) satisfies (5.2.1) in L?(Q) (respectively, in H~1(Q2)), for almost
every ¢t > 0. Note also that Assertion 2) of Definition 5.4.1 is not an additional assumption for the
H}-solutions.

4) If |Q] = oo and if m < 1 then it follows from (5.4.8) and Assertions 1) and 2) that any H2-solution
(respectively, any Hl-solution) satisfies (5.2.1) in L2(Q) + L™ () (respectively, in H~1() +
m+41

L7 (), for almost every ¢ > 0.

5) Assume that u is a weak solution. By Definition 5.4.1, there exists (fy, un)nen satisfying (5.4.1)—
(5.4.2) such that for any n € N, u,, is a H?-solution of (5.2.1)—(5.2.2) where the right-hand side of
(5.2.1) is f,. Applying (5.6.4)—(5.6.5) below, we deduce that for any T > 0,

C([0,T;H "~

2
Auy, @), A,

C([0,TI;L* ()
% g

g(un)

C([0,T): L (2))

g(un)

n—oo
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Now, we set : Y = HZ(2) N Lﬁ(ﬂ) By Lemma B.2 below, we have,

Y* = H™(Q) + L= (Q),
2(Q) = Y — HZ(Q), L*(Q), L%(Q) with dense embedding,

2

H2(Q),L*(Q), L™ (Q) — Y* — 2'(Q).

Using the above uniform convergences and (5.4.2), we deduce that,

0/°°<ig? + Au + ag(u), 90>Y*7Y Y(t)dt = 07)<f(t)’ @>Y*,Y¢(t)dt'

for any ¢ € Y and ¢ € 2((0,00); R).

As a conclusion, if u is a weak solution then u € VV&)C1 ([0,00); Y*) and it solves (5.2.1) in Y*, for
almost every ¢ > 0. In particular, u satisfies (5.2.1) in 2’((0,00) x Q). If, in addition, |Q| < co or
if m = 1 then we deduce from the above that u € Wl’l([07oo);H_2(Q)) and u solves (5.2.1) in

loc
H=2(Q), for almost every t > 0.

6) When m < 1 then except for Theorem 5.2.1 and Proposition 5.2.3, all the results of the following
Sections 5.2-5.4 will be stated with |Q| < co.

7) Notice that the boundary condition u(t);r = 0 is included in the assumption u(t) € H{ ().

Theorem 5.4.3 (Existence and uniqueness of L2-solutions). Let Assumption 5.3.1 be fulfilled
and let f € LL _([0,00); L*(Q)). Then for any ug € L*(Q), there exists a unique weak solution u to
(5.2.1)~(5.2.3). In addition, we have the following properties.

1) The map t — ||u(t)||%2(m belongs to Wlf)’cl([(), 00); R) and we have,

1d .
5 i@y + @)l ) = I [ £(t,2)aE2) do (5.4.10)
Q

for almost every t > 0.

2) Ifv is another weak solution of (5.2.1)~(5.2.2) with v(0) = vy € L*(Q) and h € L}, ([0, 00); L*(12)),
instead of f in (5.2.1) then,

lu(t) = o)l 2 < luls) = v(s)] 2@y + / 1£() = k(o) 2 do, (5.4.11)

foranyt>s>0.

Theorem 5.4.4 (Existence and uniqueness of Hj-solutions). Let Assumption 5.3.1 be fulfilled
and let f € Wl’l([O,oo);H&(Q)). Then for any ug € Hg(S2), there exists a unique Hg-solution u to

loc

(5.2.1)~(5.2.3). Furthermore, u is also a weak solution and satisfies the following properties.

1) ue C([0,00); L*(2)) N C*([0,00); H2(Q)) and u satisfies (5.2.1) in H2(Q), for any t > 0.
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2) u € Cy([0,00); H}()) nwl >2([0,00); H71(2)) and,

loc
u(t) = u(s)| L2y < M|t — 5|2, (5.4.12)

t
IVu(t)[[L2@) < [[Vuollz2 (o) +/ IV ()2 ds, (5.4.13)
0

for any t > s >0, where M? = 2l[wll oo ((s,0): 2 () 1t Loo (5,001 (2)) -
3) The map t —> ||u(t)||%2(m belongs to C*([0,00); R) and (5.4.10) holds for any t > 0.
4) If f € WHL((0,00); H3(2)) then we have,

u € L>((0,00); Hy (€2)) N WH>((0,00); H () N CL ([0, 00); H ().

Theorem 5.4.5 (Existence and uniqueness of H?2-solutions). Let Assumption 5.3.1 be fulfilled
and let f € VVli’Cl([O,oo);LQ(Q)). Then for any ug € HE(Q) with Aug € L3(R), there exists a unique
H?-solution u to (5.2.1)~(5.2.3). Furthermore, u satisfies the following properties.

1) uwe C([0,00); H} () N C([0,00); H1(Q)), u satisfies (5.2.1) in H~(), for any t > 0.

2) u € W ([0,00); L2(Q)), Au € L2, ([0,00); L*()) and,

lu(t) —u(s)llzz) < lluellpo((s,0;22 @)t — s, (5.4.14)
[Vu(t) = Vu(s)| L2y < M|t — s|2, (5.4.15)
t
||“t||L<x>((o 1);L2(Q) S < [[Aug + aluo|™ Hug — OIFZ) +/O ||f/(‘7)||L2(Q)dU, (5.4.16)
Jor any t > s >0, where M? = 2||ug|| Lo (5,002 () AW oo ((s,0):12(02)) -

3) The map t — ||u(t )||L2(Q) belongs to C’l([O,oo); R) and (5.4.10) holds for any t > 0.
4) If f € Wl’l((O,oo);LQ(Q)) then we have,

u € Oy ([0, 00); Hy (2)) N Gy ([0,00); H~H(R2)) N WH((0,00); L(2)),
Au € L ((0,00); L*(12)).

Remark 5.4.6. Let E = {u € H}(Q); Au € L2(Q)} with [[ul|l, = [|ull3. 2() T [1Au[|7 . We recall
that E C H2 () (Theorem 8.8, in Gilbarg and Trudinger [90]). If @ = RY then E = H2(RY) with
equivalent norms (by the Fourier transform and Plancherel’s formula), while if © is bounded and
T is of class CY! then E = H?(Q) N H}(Q) with equivalent norms (Theorem 8.12, in Gilbarg and
Trudinger [90] and Corollary 2.5.2.2, in Grisvard [93]). In order to get the equivalence of norms, we

may use the inequalities,
IVl 20y < llull e [Aull 20y < [lullfei) + | Aull7z), (5.4.17)
which hold for any subset Q C RY and any u € H2(Q) N H}(Q).

Remark 5.4.7. Since f € C([0,00); L*(©2)) (by 1) of Lemma B.4), estimate (5.4.16) with f(0) makes
sense.
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Remark 5.4.8. It follows from (5.4.11) and (5.4.13) that if N = 1 then the decay assumptions (5.2.8)
and (5.2.9) may be replaced with,

1-m

lwoll mr2 (o) + 11121 ((0,00); 12 () < e, min{1,T}},
0 0
25—1
IF 72 <ex(Te—1t) 77, (5.4.18)

for almost every t > 0, where v, = ,(Im(a), N,m). In the same way, it follows from (5.4.11), (5.4.13),
(5.4.16), Remark 5.4.6 and (5.2.1) that if N < 3 and € is bounded with a C**-boundary then (5.2.8)
may be replaced with,

1-m
(||u0||TIIIL2(Q + ”fHWl 1((0 oo Hl(Q))) < Ex min {1,T*},

and (5.2.9) with (5.4.18), where e, = ,(|al, |Q], N, m).

5.5 Proof of the semi-abstract result on the finite time ex-
tinction

The proof of Theorem 5.2.1 relies on the three following lemmas.
Lemma 5.5.1. Lety € Wli’cl([(), oo);R) with y > 0 over (0,00), 0 € R, a >0 and Ty > 0. If
Y+ 2ay° <0,

almost everywhere on (Tp,00), then we have,

1

(v(T0)= + 20(1 = 8)(Ty - t)):é, ifo <1,
y(t) <  y(To)e2=To), ifo=1,

y(To) — ifd>1,
(1+2a(6 — 1)y(Tp)o 1 (t — Tp))

for any t = Ty. In particular, if 6 < 1 then for any t > Ty, y(t) = 0 where,

1
T, < s———=y(To)' ° + Tp.

2a(1 —9)
Proof. The result follows by integration of the ordinary differential inequality over (Tp,t). O
The following lemma improves a similar result contained in Antontsev, Diaz and Shmarev [11] (Pro-

position 1.1).

Lemma 5.5.2. Lety € W," 1([0 00); R) with y = 0 over [0,00), 6 € (0,1), a, Ty > 0 and,

loc

ye = (ad’(1— 5))ﬁ : (5.5.1)
z, = (@b (1—08)Tp) T . (5.5.2)
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1f,
y(0) <z, (5.5.3)

and if for almost every t > 0,

)

Y (t) +ay(t)’ <y (To—t) 77, (5.5.4)
then for any t > Ty, y(t) = 0.
Proof. Set for any ¢ € [0, Tp], 2(t) = :10*T07117‘s (To — t)ﬁ . We have for almost every t € (0,Tp),
2(t) + az(t)’ = g (To — )77 2 3/ (£) + ay(t)’. (5.5.5)

We claim that for any ¢ € [0, Tp], y(t) < z(¢). If not, since by (5.5.3) 2(0) > y(0) and y and z are
continuous over [0,7p] (by 1) of Lemma B.4), there exist t, € [0,Ty) and € € (0,Tp — t,) such that
y(ts) = 2(ty) and y(t) > 2(t), for any t € (t4,t. + €). This leads with (5.5.5) to, ¥’ < 2/, almost
everywhere on (t4,t, + €). Integrating over (t,,t) for ¢ € (t4,t, + €), we obtain that y(t) < z(¢), for
any t € [t«,tx + €]. A contradiction. Hence the claim. In particular, y(7p) < 2(Tp) = 0. But from
(5.5.4), y is non increasing over (Tp,00). Hence the result, since y > 0 everywhere. O

Remark 5.5.3. Let us explain how we found y, and z, in Lemma 5.5.2. We look for a solution of
the ordinary differential inequality (5.5.4). Set for any x > 0,

Ve 20, flz)=(1- 5)_1T07ﬁ:1:5 (a(l = 0)Tp — 2'7%),
Wt € [0,Tol, =(t) = «Ty ©° (To — )T .
We want z(0) = = > y(0) to apply our proof. A straightforward calculation yields,
2 () + az(t)’ = f(x) (To — )77 .
We compute, argmax f(x) = x,, where z, is given by (5.5.2), and f(z+) = v, where y, is given by
(5.5.1). We thenzfl(l)oose x = z, in the definition of z and we obtain the condition (5.5.3).

Lemma 5.5.4 (Gagliardo-Nirenberg’s inequality). Let N € N, let Q C RN be an open subset,
let 0 < m <1 and let £ € N. Then for any v € H{(Q) N L™T1(Q),

(2¢+N)+m(2¢—N) mebl N(1—m
lollpeegy = < Cllolpsthgloll ey (5.5.6)

where C = C(m, ¢, N). If Q is a half-space or if Q has a bounded C%'-boundary then (5.5.6) holds for
any v € HY(Q).

Proof. See, for instance, Friedman [36], Theorem 9.3, for v € 2(RV) and so, by extension and density,
for v € H§(Q) N L™HH(Q). If Q is a half-space or if 2 has a bounded C%!-boundary then there exists
a linear extension operator E such that for any k € Ny and p € [1, 0],

E e LWk (Q), Whr(RY)),
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and Fu = u, almost everywhere in  (Stein [161], Theorem 5, §3.2, §3.3; Adams [2], Theorem 4.26;
see also Grisvard [93], Theorem 1.4.3.1). O

Proof of Proposition 5.2.3. Let the assumptions of the theorem be fulfilled. We first assume that
u is a strong solution. Let H be as in Definition 5.4.1 and let X = H N L™1(Q). By Definition 5.4.1,
we have (5.2.10) and by 3) and 4) of Remark 5.4.2, we can take the X* — X duality product with
iu. Estimate (5.2.11) with equality then follows from (5.4.9) and 1) of Lemma B.5. Now, assume that
u is a weak solution. Let (fp,)nen and (uy,)nen be as in Definition 5.4.1. According to the above, it
follows from Holder’s inequality that fu € L{, ([0, 00); L*(2)) and,

loc

n—oQ

frltn i (5.5.7)

m—+1
Lm+1(Q)dU

Oy + 1m(@) [ (o)

t
1
= 5||un(s)||%2(9) + Im // fulo, ) up(o, ) dzdo, (5.5.8)
sQ

forany n € Nand t > s > 0. If |Q| < oo or if m = 1 then for any T > 0, C([0,T]; L*(Q)) —
C([0,T]); L™T()) and then we are allowed to pass to the limit in (5.5.8) under the integral symbol.
We then get with (5.5.7) the desired result under the hypotheses b), c) or d). If |©2] = oo, m < 1 and
Im(a) > 0 then for any T > 0, C([0,T]; L*(Q)) — C([0, T]; L (Q)). By (5.5.8),

loc

t
1 m
3 lun @Iz 0 +Im(a)/IIUn(U)IIL%(mB(O,R))dO

t
1
< §Hun(s)H%2(Q) —|—Im// fnlo,x) up (o, 2) da do,
sQ

for any t > s > 0, R > 0 and n € N. Passing to the limit in n first and then in R then, we obtain
(5.2.10) and (5.2.11) with the help of the monotone convergence Theorem and (5.5.7). We proceed in
the same way if [Q] = oo, m < 1 and Im(a) < 0. O

Proof of Theorem 5.2.1. By (5.5.6) and Proposition 5.2.3, we have for almost every ¢ > 0,

(264 N)+m(2¢—N) N(1—m)
2¢
oo

Hu(t)HLQ(Q) ’ < CGN”U”L 2([(0’00);1{2(9))”“(t)”zlvjil(g)a

d m _
SO0 + 2@l ) = 2l [ F(t, 2yl ke
Q

It follows that,

d
&HU(t)H%m) +2a|u(t)|7q) < 2/|f(t,m)|\U(t,af)ldx, (5.5.9)

Q
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N(1—m)
for almost every ¢t > 0, where a = Im(a) GN||u||L:,O (0.00):Ht () B0 6 =
0O<m<land/{= [%} + 1, we have % < § < 1. Using the Young inequality,

20+ N 20—N .
%. Since

P

p/

p
Ty < =y,

p

with = || f(t)||z2(), v = l|[u(t)||lz2), p = 20 and € = (ad)25, one obtains with Cauchy-Schwarz’s

inequality,

20 —1 1 52
2/|f(t’$)||u(t7$)|d$< 5 (ad) =T F(O) gy + ellu®) ) (5.5.10)

Q

Finally, set for any ¢t > 0, y(t) = ||u(t)\|%2(m and let us prove Property 1). If f satisfies (5.2.5) then

(5.5.9) may be rewritten as,
Y (t) + 2ay(t)° <0, (5.5.11)

for almost every ¢t > Ty. We then conclude with the help of Lemma 5.5.1. Now assume that (5.2.8)—
(5.2.9) hold where the constant ¢, has to be determined later. We then have,

¥(0)' 0 < ad (1 —0)Ty, (5.5.12)
NA-—m) 1 251
1f(t )HL2(Q) €*||U’||Loo((2(f Oo);lj_i(z(ﬂ)) (TO - t)_,:ﬂ; ) (5.5.13)

where (5.5.12) is a consequence of (5.2.8) and (5.5.13) is nothing else but (5.2.9). Gathering together
(5.5.9), (5.5.10) and (5.5.13), one gets

26_ 1 & N(1—m) 1 5

(1) + ay(t) < == (m(@)Cahd) T T ull eyt (To — )

Choosing €, = (2§ — 1)’26671 (Irn(a)C’éI{IcS)ﬁ (1-9) 52&:;), one obtains,

_o
Y () +ay(t)’ <y (To—) 7.

for almost every ¢t > 0, where y, is given by (5.5.1). Notice that (5.5.12) is nothing else but (5.5.3).
We infer by Lemma 5.5.2 that y(¢) = 0, for any ¢ > Tp. O

5.6 Proofs of the existence and uniqueness theorems

Lemma 5.6.1. Let Assumption 5.3.1 be fulfilled. Let us define the following (nonlinear) operator on
L2(Q).
D(A) = {ueH&(Q), Au€L2(Q)}, )
(5.6.1
Vu € D(A), Au = —iAu — ialu|~ (=™,

Then A is a mazimal monotone operator on L*(2) (and so m-accretive) with domain dense.

The proof relies on the following lemmas.
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Lemma 5.6.2 ([132]). Let 0 < m < 1. Set for any z € C, g(z) = |2|~*=™2 (g(0) = 0). Then for
any (z1,22) € Cx C,

2vim |1 ((9(z1) = 9(z2)) (5= 22) )| < (1 = m)Re((9(21) — 9(22)) (51 = 22) ), (5.6.2)
l9(21) — g(22)] < 3|21 — 2™ (5.6.3)

Let Q C RY be an open subset. We define the mapping for any measurable function u : Q — C,
which we still denote by g, by g(u)(xz) = g(u(x)). Then for any p € [1,00),

g € C(LP(Q); L%(Q)) and g is bounded on bounded sets, (5.6.4)
g € C(L*(Q); L*(Q)) and g is bounded on bounded sets, if || < oo. (5.6.5)

Finally, let a € C with Im(a) > 0 satisfying (5.3.1). If (g(u) — g(v))(u—v) € L*(Q) then,

Re —ia/(g(u) —g()(u—wv)dx | > 0. (5.6.6)
Q

We may choose, for instance, u,v € L?(Q), if || < oo, or u,v € L™T1(Q), in the general case.
Proof. Estimate (5.6.2) is Lemma 2.2 of Liskevich and Perel'muter [132] while (1.2.7) comes from

Lemma B.1, implying (5.6.4) and (5.6.5). Finally, by (5.6.4), (5.6.5) and Holder’s inequality, we have
(9(u) — g(v)) (v =) € L}(Q), for any u,v as in the statement of the lemma and by (5.6.2),

Re —ia/ (9(u) — g(v))(u—v)dx

Q
= Im(a)Re/ (9(w) — g(v)) (w="v)dz + Re(a)Im/ (g(u) — g(v)) (u=)dz
Q Q

> (o) - IRefa) 52 ) Re / (9(w) — 9(0)) (T =0)da

= 0.
This ends the proof. O

Proof of Lemma 5.6.1. The density of the domain of the operator is obvious. Let g be as in
Lemma 5.6.2. It is well known that (—iA, D(A)) is a maximal monotone operator on L?(Q) (Propo-
sition 2.6.12 in Cazenave and Haraux [59]). In addition, if we define B on L?(Q) by Bu = —iag(u), it
follows from (5.6.4)—(5.6.6) that B € C(L?(2); L*(£2)) and

(Bu — Bv,u —v)r2(q) = Re fia/(g(u) —g(v))(u—wv)dz | >0,
Q

for any u,v € L?(£2). We then infer that A = —iA + B is a maximal monotone operator (Brezis [13],
Corollaries 2.5 and 2.7). O

To obtain (5.4.13), we need to regularize the nonlinearity in order to apply the V operator. We then
establish the next lemma.
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Lemma 5.6.3. Let Q C RY be an open subset, let 0 < m < 1, let a € C with Im(a) > 0 satisfying
(5.3.1) and let € € (0,1). Let for any u € L2(), g-(u) = (Jul® + &)~ 2" u. Finally, let g be as in
Lemma 5.6.2 and let D(A) be defined by (5.6.1). Then,

g. € C(L2(Q): L2(@) N C(H}(Q); H(9). (5.6.7)
VYu € D(A), Re ia/ga(u)fudx >0, (5.6.8)
Q
Yu € D(A) such that u™Au € L*(Q), Re ia/g(u)ﬂdx > 0. (5.6.9)
Q

Remark 5.6.4. If Q C RY is arbitrary, m = 1 and Im(a) > 0 then for any u € D(A),

Re (ia/ g(u)Audx) = Im(a)||Vu||2Lg(Q) > 0.
Q

In other words, one directly obtains (5.6.9).

Proof of Lemma 5.6.3. A straightforward calculation shows that for any € € (0,1),

|9¢ (1) = ge(v)] < Ce™ u — v,
Vge(u)] < Ce™![Vul.

It follows that if u € H}(Q) then g.(u) € H} () and (5.6.7) comes from the above estimates and the
partial converse of the dominated convergence Theorem (see, for instance, Brezis [14], Theorem 4.9).
Let us turn out to the proof of (5.6.8). Let u € D(A). It follows from (5.6.7) that we can take the
scalar product in L? between iag.(u) and Au. We then obtain,

Re ia/ga(u)ﬂdx = (lage(u), Au)r2(q) = —(1aVge (u), Vu) 2 (o)
Q

|Vul?(Ju]? + &) — (1 — )Re(uVu) uVu

= dz
(Jul* +¢) ="
2 _
_ /\Vu\ (Jul*+¢)—(1 7m)|Re(uVu)| dr — Re(a / (1 Re(uVu)BIvrjl(uVu)d
(Jul* +2) =" J (lul* +e)="
2
J (up+o=

dx

3—m

(lul* + &)=

3—m

(lul*+e)7="

m|Re(uVu)|? + [Im(uVu)|? dr — Re(a / (1 — m)Re(uVu).Im(uVu)
o)

where we used in the last equality the fact that, |Vu|?|ul? = [Re(uVu)[? + [Im(uVu)[?. To conclude,

it remains to show that,

(1 — m)|Re(a)| |Re(uVu)| Im(uVu)| < Im(a) (m|Re(uVu)|* + [Im(uVu)|?). (5.6.10)
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Using our assumption on a and the following Young inequality,

2
2|zy| < 6% + %,

with = = |[Re(uVu)|, y = |[Im(uVu)| and § = y/m, we obtain,

(1 — m)|Re(a)| |Re(uVa)| [Im(uVu)|
< 2v/m Im(a)[Re(uVa)| [Im(uVu)|

< vintnfa) (Vile(va) + )

< Im(a) (mRe(Vu)? + [Im(u¥u)P?)

a.e. on € a.c.

which is (5.6.10). Finally, since we have g.(u) T g(u) and |g-(u)] < |g(u)|, for any € > 0,
(5.6.9) is a consequence of (5.6.8) and the dominated convergence Theorem. O
Concerning the continuous dependence with respect to the data we have :

Lemma 5.6.5. Let Q C RY be an open subset, 0 < m < 1 and a € C with Im(a) > 0 satisfying (5.3.1).
Let X = L2(Q)N L™ Q) or X = H(Q) N L™FY(Q). Finally, let f1, f2 € L .([0,00); L?(Q2)) and let

loc

u,v € LY ([0,00); X) N Wl’p/([O,oo);X*),

loc loc

for some 1 < p < oco. If,
iy + Au + alu) "™y = fy,
i + Av + alo| ™y = f,,

in 2'((0,00) x Q), then u,v € C([0,00); L*(Q)) and

[u(®) = v(®)llz2 () < lluls) = v(s)lL2@) + / 1f1(0) = f2(0)]| 2 do, (5.6.11)

foranyt>s>0.
Proof. By Lemma B.2 and the dense embedding X < L2(2), we have L?(Q) — X* — 2'Q)) and
for any (z,y) € L*(Q) x X,

(z,9)12(0) = <xay>L2(Q),L2(Q) = (z,y)x* x- (5.6.12)

It follows from above and (5.4.8) that the equations in the lemma make sense in X* and we then
have,

i(u—v)e + Alu—v) + (ag(u) — ag(v)) = fi — fo, in X%,

almost everywhere on (0,00), where g is as in Lemma 5.6.2. Taking the X* — X duality product of
the above equation with i(u — v), it follows from 2) of Lemma B.4, 1) of Lemma B.5 and (5.6.12) that
u,v € C([0,00); L?(Q)), the mapping t — |[u(t) — v(t)|\%2(m belongs to VV“([O7 00); R) and,

loc
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almost everywhere on (0, 00). Applying (5.4.9), (5.6.6) and Cauchy-Schwarz’s inequality to the above,

one infers

1d 9

5&““( ) —v(. )||L2(Q) < |lfi = fallzzo llu — vl L2
almost everywhere on (0, 00). Integrating over (s, t), one obtains (5.6.11). O
Proof of Theorem 5.4.5. By Lemma 5.6.1 and Vrabie [181] (Theorem 1.7.1), there exists a unique

u € Wl’oo([O, 00); L?(Q)) satisfying u(t) € H§(Q), Au(t) € L*(Q) and (5.2.1) in L*(Q), for al-

loc

most every ¢ > 0, u(0) = up and (5.4.16). Then (5.4.14) comes from (5.4.16). It follows from 1) of
Lemma B.4, (5.6.4)—(5.6.5), (5.4.16), (5.4.17) and (5.2.1) that,

f€C([0,00); L* (1)), (5.6.13)
[u|] ==y € O([0, 00); L2()), (5.6.14)
Au € L% ([0,00); L*(9)), (5.6.15)

u € Li, ([0, 00); Hy (),
so that u is a H?-solution and u € C([0,00); H}(2)) (by 3) of Lemma B.4). So,

Au € C([0,00); H (). (5.6.16)
It then follows from (5.6.13), (5.6.14), (5.6.16) and (5.2.1) that,

u € C([0,00); H()).

By (5.4.17), (5.4.14) and (5.6.15), one obtains (5.4.15) and Properties 1) and 2) are proved. Property 3)
follows easily from Property 1), (B.3) and Proposition 5.2.3. Finally, Property 4) comes from (5.6.11),
(5.4.16), (5.4.17), (5.6.4), (5.6.5), the embedding 1) of Lemma B.4 and (5.2.1). This concludes the
proof of the theorem. O

Proof of Theorem 5.4.3. Existence comes from density of HZ(£2) x V[/'licl([(), 0); L3(Q)) in L3(Q) x
L. ([0,00); L*(£2)), Theorem 5.4.5, (5.6.11) and completeness of C([0,T]; L*(Q)), for any T > 0.
Property 1) comes from Proposition 5.2.3. Estimate (5.4.11) being stable by passing to the limit in
C([0,T]; L*(€2)) x L*((0,T); L3(2)), for any T > 0, it is sufficient to establish it for the H2-solutions.
This then comes from Lemma 5.6.5 and the uniqueness conclusion of the theorem follows. Finally,

Property 1) comes from Proposition 5.2.3. U

Proof of Theorem 5.4.4. The uniqueness of solutions comes from Lemma 5.6.5. Let f € Wli)j([o, o0); HE (Q))
1
and let ug € Hg(Q). Let (¢n)nen C HZ(Q) be such that ¢, @, up. Finally, let g be defined as
n—o0

in Lemma 5.6.2 and for each n € N, let u,, be the unique H2-solution of (5.2.1)—(5.2.2) such that
un (0) = @y, given by Theorem 5.4.5. By Lemma 5.6.5, we have for any T' > 0 and n,p € N,

T
lunlleqo,rie@) < lenllrzo) +/O £ ()|l 2 dt, (5.6.17)

[tn = tpl| oo ((0,00):22(2)) < [lon — @pllL2(0)
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It follows that for any T > 0, (up)nen is a Cauchy sequence in C([0,T]; L*(£2)). As a consequence,
and with (5.6.4)~(5.6.5), there exists u € C([0, 00); L*(€2)) such that for any 7' > 0,

C([0,T);L*())

Up ————— 1, (5.6.18)
g(u) € C([0,T]; L*(2)), (5.6.19)

C([0,T;L* ()
ey

n—oo

9(un) g9(uw). (5.6.20)

By definition, it follows from (5.6.18) that u is a weak solution of (5.2.1)—(5.2.3) (take f,, = f, for
any n € N). By 3) of Remark 5.4.2, we can take the L?-scalar product of (5.2.1) with —iAu,, and it
follows from (B.4) that for any n € N and almost every s > 0,

1d . = .
§&Hvun(5)‘|%2(ﬂ) + Re la/g(un(s))Aun(s)dx = (Vf(S),qun(S))LQ(Q),
Q
which gives with (5.6.9), Remark 5.6.4 and Cauchy-Schwarz’s inequality,

SV un(5) By < 19 Fu( 22000 V() 20
By integration, we obtain for any ¢ > 0 and any n € N,
IVun ()ll222) < IVenllrze) + /Ot IVf ()l L2(0)ds. (5.6.21)
By the Sobolev embedding 1) of Lemma B.4,
Wit (10, 00); L*()) < C([0, 00); L2(2)), (5.6.22)
(5.6.17), (5.6.20), (5.6.21) and (5.2.1), we infer that,
(un)nen is bounded in L™ ((0,T); Hy () NWH>((0,T); H~ (), (5.6.23)

for any T > 0. Applying Propositions 1.3.14 and 1.1.2 in Cazenave [57], it follows from (5.6.18) and
(5.6.23) that,

u € Cy([0,00); HE(Q)) N W52 ([0, 00); HH()), (5.6.24)
Au € C ([0,00); H (), (5.6.25)
un(t) = u(t), in HLQ), as n — oo, (5.6.26)
for any ¢ > 0. Since u is a weak solution, u solves (5.2.1) in H~2(Q), for almost every ¢t > 0 (Property 5)

of Remark 5.4.2). As a consequence, and with help of (5.6.19), (5.6.22) and (5.6.25), we have that
uy € C([0,00); H72(Q)) and u satisfies (5.2.1) in H~2(€2), for any ¢ > 0. We then infer with (5.6.24)
that u is a Hi-solution and Property 1) holds. Still by (5.6.24), we have for any ¢t > s > 0,

lu(t) = u(s)Zai) < 2lull oo (s eysmp @ lult) = uls)lla-1(0)
< 2l|ull oo ((s,0): 2 () 1t Loo (5001 () [T — 51,
which is (5.4.12). By (5.6.26), the weak lower semicontinuity of the norm and (5.6.21), one obtains
(5.4.13) and Property 2) is proved. Property 3) follows easily from Proposition 5.2.3 and the fact that

u, f € C([0,00); L2(Q)) and L?(Q) < L™*(Q). Finally, Property 4) comes from (5.4.11), (5.4.13),
(5.6.4), (5.6.5), 1) of Lemma B.4 and (5.2.1). This concludes the proof of the theorem. O
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5.7 Proofs of the finite time extinction property and asymp-
totic behavior theorems

Proof of Theorem 5.3.2. For the Property ), apply Theorems 5.4.4, 5.4.5, Remark 5.4.6 and
Theorem 5.2.1 (with £ = 1, if ug € H}(Q) and £ = 2, if ug € H?(Q) N H}(Q2)). We then obtain the
finite time extinction result and the upper bound on T,. The lower bound on T, comes from 2) of
Remark 5.2.4. Property b) comes from Remark 5.4.8. O

Proof of Theorem 5.3.5. By Theorems 5.4.4, 5.4.5 and Remark 5.4.6, u € L>((0,00); H(Q)),
where ¢ = 1, if ug € H3(Q) and ¢ = 2, if ug € H3(Q) N H} (). The result then comes from 3) of
Remark 5.2.4. O

Proof of Theorem 5.3.6. Let the assumptions of the theorem be fulfilled. We proceed to the proof
in two steps.
Step 1. Assume further that f € Z([0,00); L?(2)) and uo € HZ(L2). Then, tl'}m lu(t)||2(0) = 0.

It follows from uniqueness and Theorem 5.4.5 that u is a H?-solution and u € L™ ((0, 00); H§(£2)). Let
[0,T5] D supp f. By (5.4.10), %Hu(t)”%z)(m < 0, for any ¢t > Tp. It follows that tl}‘m lu(t)| L2 = ‘o,

for some £y € [0,00). If m = 1 then we have, one more time by (5.4.10), %Hu(t)”%g(m < —2Im(a)f3,
for any t > Ty. It follows that ¢y, = 0. Now, assume that m < 1 and suppose, by contradiction,
that £y # 0. Let ¢ € (2,00) with (N — 2)g < 2N. By Hoélder’s inequality and Sobolev’s embedding
H}(Q2) < L(Q), there exists 6 € (0,1) such that,

1-6

0. < £ < [[u®)ll 2y < Nl eyl 2ty < CllE |G 0522 s

for any t > Ty. We infer that, tian lu(t)||Lm+1(q) > 0, which implies with (5.4.10),
>To

d 2 . m—+1
14Oz () < —2Im(a) inf Jlu®)llL q) <0,

for any ¢t > Tj. As a consequence, tl}m llu(t)]|L2(q) = —oc, a contradiction.
oo

Step 2. Conclusion.
Let (¢n)nen C HZ(Q) and (fn)nen C 2([0,00); L2(£2)) be such that,

2 1 00): L2
o L ORI PR ((0,00);L2(%)) 7
n— 00 n—oo

For each n € N, let u,, the H?2-solution to (5.2.1)—(5.2.2), with f,, instead of f, be such that u, (0) = ¢,
given by Theorem 5.4.5. Let n € N. It follows from (5.4.11) that,

lu@)llr2@) < llu— unllLe(0,00):L2(2)) + [[un(t)l|L2(0)

< luo = @nllzz) + I1f = fallLr(0,00):22(9)) + 1un ()] 22(0),

for any t > 0. We get from Step 1,

lin;sup llu(®) 2() < lluo — @nllz2@) + IIf = fall L1 ((0,00):22(02))-
t oo
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Letting n " 0o, we obtain tli/m lu(t)||L2(q) = 0. Finally, the general case comes from the embedding
L?(Q) — LP(Q), which holds for any p € (0,2], as soon as |Q| < co. This concludes the proof. O
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Chapitre 6

Finite time extinction for a damped
nonlinear Schrodinger equation in
the whole space

Abstract
We consider a nonlinear Schrodinger equation set in the whole space with a single power of interaction
and an external source. We first establish existence and uniqueness of the solutions and then show, in low
space dimension, that the solutions vanish at a finite time. Under a smallness hypothesis of the initial data
and some suitable additional assumptions on the external source, we also show that we can choose the upper
bound on which time the solutions vanish.

6.1 Introduction and explanation of the method
Let us consider the following Schrédinger equation with a nonlinear damping term,
iug 4+ Au+ alu|/™ u = f(t,2), in (0,00) x Q, (6.1.1)

where Q C RY is an open subset,a € C,0 < m < 1 and f : (0,00) x Q2 — C measurable is an external
source. When a € R, m > 1 and f = 0, equation (6.1.1) has been intensively studied, especially with
) = RY (among which existence, uniqueness, blow-up, scattering theory, time decay). The literature
is too extensive to give an exhaustive list. See, for instance, the monographs of Cazenave [57], Sulem
and Sulem [165], Tao [167] and the references therein. The case a € C is more anecdotic. See, for
instance, Bardos and Brezis [17], Lions [128], Tsutsumi [171] and Shimomura [159]. Note that except

in [128], it is always assumed m > 1.

In this paper, we are looking for solutions which vanishes at a finite time. For many reasons, we
have to consider 0 < m < 1. When m = 1, existence is not hard to obtain, since the equation is
linear, while the finite time property is not possible (which is a direct consequence of (6.1.4)). To our
knowledge the first paper in this direction is due to Carles and Gallo [53] with a =1, f =0 and Q is a
compact manifold without boundary. To construct solutions, they regularize the nonlinearity and use
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a compactness method to pass in the limit. They prove the finite time extinction property for N < 3
including the case m = 0. More recently, Carles and Ozawa [55] obtain the existence, uniqueness
and finite time extinction for Q2 = R¥, a € iR, and f = 0. Due to the lack of compactness, they

restrict their study to N < 2 and add an harmonic confinement in (6.1.1) for some technical reasons.
1

2
smallness assumption of the initial data. In this paper, we work in the whole space and we remove of

For the finite time property with N = 2 they also restrict the range of m to [ 1) and make a
all these restrictions and extend the previous results to a large class of values of a (see, for instance,
Theorems 6.2.7 and 6.3.1). Indeed, we shall assume that the complex number « is in a cone of the

complex plane. More precisely,

aecmo@{zecmm@pn)wdzwmm@)>u_nmﬁq@@. (6.1.2)
The assumption that a belongs to the cone C'(m) was considered in a series of papers by Okazawa and
Yokota [145, , 147]. They studied the asymptotic behavior of the solutions to the complex Ginzburg-
Landau equation in a bounded domain with the assumption (6.1.2) and, sometimes, with m > 1. See
also Kita and Shimomura [120] and Hou, Jiang, Li and You [108] where (6.1.2) is assumed but with
(among others restrictive assumptions) m > 1. In all these papers, there is no finite time extinction
result. We would also like mention the (very complete) work of Antontsev, Dias and Figueira [10]

where they consider the complex Ginzburg-Landau equation,
e Muy — Au+ [u|™tu = f(t,2), in (0,00) x Q, (6.1.3)

where ) is bounded, 0 < m < 1 and —§ <~ < 5. In particular, e~ = +i. They show spatial locali-
zation, waiting time and finite time extinction properties. The case of equation (6.1.3) with a delayed
nonlocal perturbation is studied in the recent paper of Diaz, Padial, Tello and Tello [7(]. Finally,
Hayashi, Li and Naumkin [104] study time decay for a more classical Schrédinger equation (6.1.1) (a
satisfying (6.1.2), m > 1 and Q = RY).

In this paper, we are interested in the finite time extinction of the solution. Formally, this result is
not too hard to obtain (the method we explain below for the finite time extinction property is that
used in [53, 55, 29]). Suppose f = 0. It is well known that solutions that vanish in finite time do not
exist when m > 1 (at least when a € R). Indeed, multiplying (6.1.1) by iu, integrating by parts and
taking the real part, we obtain,

5 @Iz + Im(a) u(t)]

mrh =0. (6.1.4)

To expect a finite time extinction, the mass has to be non increasing and so Im(a) > 0. Now, since
m + 1 < 2, we may interpolate L? between L™*! and LP, for some p > 2, and control the LP-norm

by a Sobolev norm. Using a Gagliardo-Nirenberg’s inequality,

gm1 (mana-0y)

laI" < @I u® e ™ (6.1.5)

for some an explicit constant 6, € (0,1), if u is bounded in H* then putting together (6.1.4)—(6.1.5),
we arrive at the ordinary differential equation,

y' +Cy’ <0, (6.1.6)
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with 6 = Tthl, where y(t) = |Ju(t)||3.. By integration, we then obtain the asymptotic behavior of u
with respect to the value of 4.

e If § < 1 then y(¢)*° < (y(0)' =% — Ct), and so u vanishes before time T, = C~1y(0)! 9.

e If § = 1 then y(t) < y(0)e .

e If § > 1 then y(¢)°~' < y(0)°~ (1 + Ct)~ L.
As a consequence, a sufficient condition to have extinction in finite time is § < 1 which turns out to
be equivalent to N = 1 when £ = 1. To increase the space dimension, we assume that u is bounded in
H? and we deduce that § < 1 when N < 3. Theoretically, we can reach any space dimension if u is
bounded in H* for ¢ large enough (actually, if £ = [%] + 1, where [%] denotes the integer part of %;
see Theorem 5.2.1). But this is not reasonable due to the lack of regularity of the nonlinearity, which
is merely Holder continuous. A reachable goal is to obtain existence and boundedness of the solutions
in H2.
Now, we focus on the construction of a solution to (6.1.1) in RY with f = 0 (to fix ideas). First of
all, we would like to uniformly control ||u(t)||%,. Estimate (6.1.4) partially answers this question. For
[Vu(t)||?., we multiply (6.1.1) by iAu and take the real part. We get,

1d —
S SITu(t)2 + Re (o / ()™ Lu(t) Al da | = 0.
RN
We then expect to have,
Re ia/|u(t)\m_1u(t)Au(t)dx > 0. (6.1.7)
RN

Regularizing the nonlinearity, integrating by parts and passing to the limit, (6.1.7) can be proved under
assumption (6.1.2) (Lemma 6.4.4). Actually, we extended the method found in Carles and Gallo [53],
where the situation is simpler since a = i. Assume ©Q C RY. To construct a solution to (6.1.1), we use
theory of the maximal monotone operators in the Hilbert space L2. We then consider the operator,

Au = —iAu — ialu|™ tu, (6.1.8)

with the natural domain' D(A4) = {u € H}(Q);u™ € L*(Q) and Au € L?(2)}. Monotonicity relies
on the inequality,

Re —ia/ (Ju|™  u — |o|™ ) (u=v)dz | > 0. (6.1.9)
Q

Once (6.1.9) is proved, it remains to show that R(I + A) = L? (Theorem 6.4.1 and Corollary 6.4.5).
This means that for any F € L?, the equation

—iAu —ialu|™" 'u +u = F, (6.1.10)

admits a solution belonging to D(A). Existence, uniqueness, a priori estimates and smoothness of the
solutions of (6.1.10) for a large class of values of a (including (6.1.2)) have been intensively studied

1. Tt is natural in the sense that it is the smallest domain, in the sense of the inclusion, for which D(A) C L2.



104 Finite time extinction in the whole space

in the papers by Bégout and Diaz [25, 25]. The natural ® space to look for a solution is Hg N L™**.
When 2 is bounded with a smooth boundary, a bootstrap method yields u € H?(f2). Note that in
this case, the condition u™ € L2(2) is automatically verified since u™ € L (Q) < L2(Q) and then
u € D(A). Although this method works very well, we proposed another one in Bégout and Diaz [29] :
we make the sum of two monotone operators, where one of them is maximal monotone (—iA) and
the other one is continuous over L?(Q) (—ia|u|/™ 'u). A difficulty appears when Q is unbounded, say
Q = RY. In this case, we have D(A4) = H?(RY) N L*™(RY) and we have to show that a solution
u € HYRN)N L™ (RY) belongs to L*™(RY), or equivalently Au € L?(R™). Having (6.1.7) in mind,
a natural method would be to multiply (6.1.10) by —Awu and take the real part. But then we lose the
term ||Au||%2(RN). The original idea is to rotate a in the complex plane and stay in the cone C(m) to
still have (6.1.7) (see Lemma 6.4.2 and the picture p.111). If we can find b € C such that ab € C(m)
then multiplying (6.1.10) by —bAwu, integrating by parts and taking the real part, we arrive at,

T (B) | A2 g, + Re iab/|u\m—1umc1m + Re()[[ Va2 g, = —Re b/Fde

RN RN

We see that we must have Im(b) < 0 and so the rotation has to be made in the negative sense. So
we exclude the boundary of C(m) located in the first quarter complex plane.Hence Assumption 6.2.1.
Note that the sign of Re(b) has no importance since we already have an estimate in H(RY). Having
a priori estimates, we may construct a solution u € H2(RN) N L2™(RY) of (6.1.10) as a limit of
solutions with compact support. The existence of such solutions is provided in Bégout and Diaz [25]
(see also Bégout and Diaz [27]). To conclude the explanation of our method, we go back to the proof
of (6.1.9). When a = i, this is very simple since this estimate is equivalent to the monotonicity of the

m+1

derivative of the convex function defined on R? by, (z,y) — ﬁ(wQ + %)= (see Remark 1.9.3).
But when Re(a) # 0 then the imaginary part of the integral in (6.1.9) is still there. Fortunately,
this can be controlled by its real part under assumption (6.1.2) and a consequence of Liskevich and

Perel'muter [132] (Lemma 2.2).

Finally, we consider the limit cases m = 0 and m = 1 for the values of a. Since 11@0 C(m) = {0} x

i(0, 00), it seems that no extension of [53, 55] is possible. The other limit case lir/‘n1 C(m) =R x1i(0, 00)
m

is entirely treated in Bégout and Diaz [29] : existence, uniqueness and boundedness for any subset

QCRY.

We will use the following notations throughout this paper. We denote by Z the conjugate of the
complex number z, by Re(z) its real part and by Im(z) its imaginary part. Unless if specified, all
functions are complex-valued (H'(2) = H(Q;C), etc). For 1 < p < oo, p' is the conjugate of
p defined by % + ﬁ = 1. For a Banach space X, we denote by X* its topological dual and by
(., )x+x € R the X* — X duality product. In particular, for any T € L? (Q) and ¢ € LP(Q) with
1 <p <00, (T,9) 1w (), Lr(0) = Re Jo T(z)@(x)dz. The scalar product in L?(Q) between two func-
([0’ 00); X)
means that for any T > 0, ujo1) € L”((O,T);X). In the same way, we will use the notation

tions u, v is, (u,v)2(q) = Re [ u(x)v(z)dz. For a Banach space X and p € [1,00], u € L, _

u € Wi)’f ([0,00);X ) As usual, we denote by C auxiliary positive constants, and sometimes, for

2. Multiply (6.1.10) by iu and %, integrate by parts and take the real part.
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positive parameters ay,...,a,, write as C(aq,...,a,) to indicate that the constant C' depends only
on ai,...,a, and that dependence is continuous (we will use this convention for constants which are
not denoted by “C”).

This paper is organized as follows. In Section 6.2, we state the mains results about existence, unique-
ness and boundness for (6.1.1) (Theorem 6.2.4, 6.2.6 and 6.2.7). In Section 6.3, we give the results
about the finite time extinction property and the asymptotic behavior (Theorems 6.3.1, 6.3.4 and
6.3.5). The proofs of the existence, uniqueness and boundness are made in Section 6.4 while those of
the finite time extinction property and the asymptotic behavior are given in Section 6.5.

6.2 Existence and uniqueness of the solutions

Let 0 < m < 1,let a € C, let f € LL _([0,00); L*(RY)) and let ug € L*(RY). We consider the

loc

following nonlinear Schrodinger equation.

du

o TAu+ alu| =™y = f(t, ), in (0,00) x RV, (6.2.1)

i
u(0) = ug, in RY, (6.2.2)
The main results in this paper hold with the assumptions below.
Assumption 6.2.1. We assume that 0 < m < 1 and a € C satisfy,
2y/mIm(a) > (1 — m)|Re(a)). (6.2.3)
If Re(a) > 0 then we assume further that,
2v/mIm(a) > (1 —m)Re(a). (6.2.4)

Here and after, we shall always identify L?(RY) with its topological dual. Let 0 < m < 1 and let
X = HN L™ RY), where H = L*(RY) or H = H}(RY). We recall that (Lemmas B.2 and B.4),

m+1

X*=H*+ L= (RY), (6.2.5)

@(RN) — X LmH(RN) with both dense embeddings, (6.2.6)

L= RY) — X* — 2'(RV) with both dense embeddings, (6.2.7)
m+1

LI ([0, 00); X) n Wi ™ ([0,00); X*) < C([0, 00); L2(RY)). (6.2.8)

This justifies the notion of solution below (and especially 4)).

Definition 6.2.2. Let 0 <m < 1, let a € C, let f € L{_([0,00); L*(RY)) and let ug € L*(R"). Let

loc

us consider the following assertions.

1) we L ([0, 00); HYRN) N L™+ RN)) N W,

L ([0, 00); H* + L™ (RN)),

loc loc

2) For almost every ¢t > 0, Au(t) € H*.
3) w satisfies (6.2.1) in 2((0,00) x RY).
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4) u(0) = up.

We shall say that u is a strong solution if u is an H?-solution or an H'-solution. We shall say that u
is an H2-solution of (6.2.1)—(6.2.2) (respectively, an H'-solution of (6.2.1)=(6.2.2)), if u satisfies the
Assertions 1)—4) with H = L?(R") (respectively, with H = H'(R")).

We shall say that u is a L2-solution or a weak solution of (6.2.1)—(6.2.2) is there exists a pair,

(frs tn)nen C Lip ([0, 00); L*(RY)) x C([0, 00); L*(RY)), (6.2.9)

such that for any n € N, u,, is an H?-solution of (6.2.1) where the right-hand side of (6.2.1) is f,,

and if
1 2 N T2 N
ZUODBEY o, COTEREY) (6.2.10)

n— oo n—oo

fn
for any T' > 0, and if u satisfies (6.2.2).
mapping for any measurable function u : RN — C, which we still denote by g, by g(u)(x) = g(u(x)).

Let X be as in the beginning of this section (see (6.2.5)—(6.2.8)). From (6.2.6), (6.2.7) and the basic
estimate,

Remark 6.2.3. Let 0 < m < 1. Set for any z € C, g(z) = |2|~(=™z (g(0) = 0). We define the
(

Y(z1,22) € C?, |g(21) — g(22)| < Clz1 — 2o|™, (6.2.11)

we deduce easily that,
gE C’(LmH(RN); L (RN)) and ¢ is bounded on bounded sets, (6.2.12)
g € C(X;X™) and g is bounded on bounded sets. (6.2.13)

By (6.2.6)—(6.2.7) and (6.2.12)—(6.2.13), it follows that,

:Re/g(u)ﬁdx, (6.2.14)

RN

<g(u)7 U>X*,X = <g(u)7 U>Lm77il (RN),Lm+1(RN)

for any u,v € X. Now, let us collect some basic informations about the solutions.

1) Any strong or weak solution belongs to C'([0, 00); L?(R”)) and Assertion 4) makes sense in L*(RY)
(by (6.2.8)).

2) It is obvious that an H?2-solution is also an H!-solution and a weak solution. But it is not clear that
an H'-solution is a weak solution, without a continuous dependence of the solution with respect
to the initial data. Such a result will be established with the additional assumptions (6.2.3)—(6.2.4)
on a (see Lemma 6.4.6 below). Note also that Assertion 2) of Definition 6.2.2 is not an additional

assumption for the H!-solutions.
3) Any H?-solution (respectively, any H!-solution) satisfies (6.2.1) in L? (RN)—i—L% (RY) (respectively,

m+1

in H-Y(RN) + L™ (RY)), for almost every t > 0. Indeed, this is a direct consequence of Defini-
tion 6.2.2 and (6.2.13).
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4) If u is a weak solution then u € W,>! ([0,00); Y*) and it solves (6.2.1) in Y*, for almost every ¢ > 0,

loc
where Y = H2(RY) 0 L7 (RY) and Y* = H-2(RN) + L% (RY) < 2'(RY) (by Lemma B.2).
Indeed, using the notation of Definition 6.2.2 and (6.2.11), this comes from (6.2.10) and the uniform

convergences,

([0,T;H*(RY))

Au, < Au, (6.2.15)

n—oo

C(0,T);Lm (RN))

g(un)

for any T > 0. In particular, u solves (6.2.1) in 2’((0,00) x RY).

g(u), (6.2.16)

n—oo

Theorem 6.2.4 (Existence and uniqueness of L2-solutions). Let Assumption 6.2.1 be fulfilled
and let f € Li ([0,00); L*(RN)). Then for any ug € L*(RY), there exists a unique weak solution u

loc

to (6.2.1)=(6.2.2). In addition,

u € L ([0, 00); LT (RY)), (6.2.17)

loc

t t
1 1 —_—
SOy + (@) [ o) [t do < 510(6) Eaqamy + 1 [ [ £(0:0) 02 dod,
s s RN

(6.2.18)

for any t > s > 0. Finally, if v is a weak solution of (6.2.1) with v(0) = vo € L*(RY) and g €
Li ([0,00); L2(RY)) instead of f in (6.2.1) then,

loc

[u(t) = o)l L2@y) < lluls) = v(s)llL2@y) + / 1£(0) = 9(o)|2(@)do, (6.2.19)

foranyt > s> 0.

Remark 6.2.5. Let Assumption 6.2.1 be fulfilled. Let p € [m + 1,2). It follows from (6.2.18) and
Hélder’s and Young’s inequalities that if f € L*((0,00); L*(RY)) then,

u € L*((0,00); L*(RN)) N L™ ((0, 00); L™ HH(RY)).

By interpolation, we infer that for any p € [m + 1, 2),

p(l—m)
2—p

u € Cy([0,00); L*(RY)) N L ((0,00); LP(RM)). (6.2.20)

If, in addition, (¢,)nen € L2(RY), (fn)nen € L*((0,00); L*(RY)) and,

2N 1 r2/mN
oy DED L and f, OB E),
n— oo

f,

n—oo
then by (6.2.19), (6.2.20) and again by interpolation, we have for any p € (m + 1,2),

(0,000 L2 (¥ )AL 275 ((0,00);7 (BY))

n )
n—oo

where for each n € N, w,, is the weak solution of (6.2.1) with u,(0) = ¢, and f, instead of f.
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Theorem 6.2.6 (Existence and uniqueness of H-solutions). Let Assumption 6.2.1 be fulfilled
and let f € W2 1([0 00); HY(RY)). Then for any ug € H*(RY), there exists a unique H'-solution u

loc
0 (6.2.1)—(6.2.2). Furthermore, u is also a weak solution and satisfies the following properties.

1) ue C([0,00); LA(RN)) N C([0,00); Y*) and u satisfies (6.2.1) in Y*, for any t > 0, where Y* =
H™2(RN) + L= (RV).
2) u € Cy([0,00); HYRN)) N W5 ([0, 00); H-HRN) + L (RN)) and,

loc

t
IVa(t) 2@y < | Vuoll ey + / IV £(5) | 2 ds, (6.2.21)
0

for any t > 0.
3) The map t —> ||u(t)||iz(RN) belongs to Wﬁ;cl([o, 00); R) and we have,

1d - —
SOy + I@O 7 oy =T [ )l de, (6222

for almost every t > 0.

Theorem 6.2.7 (Existence and uniqueness of H?2-solutions). Let Assumption 6.2.1 be fulfilled

and let f € Wli’cl([O,oo);LQ(RN)). Then for any ug € H?(RN) N L*™(RY), there exists a unique

H?2-solution u to (6.2.1)~(6.2.2). Furthermore, u satisfies (6.2.1) in L2(RY), for almost every t > 0,

and the following properties.

1) u e C([0,00); HY(RN) n L™T(RN)) N C* ([0, 00); HH(RY) + L5
in H=Y(RY) —|—Lm+1( RMN), for any t > 0.

2) ue VVIO’C ([0, 00); L2(RY)) N L2, ([0, 00); H*(RY) N L*™(RY)) and,

loc

m+1

(RN)) and u satisfies (6.2.1)

lu®) = u(s)ll2@ny < luell zoo((s,0; 2@y )|t = sl, (6.2.23)
IVu(t) — Vu(s)| p2@n) < Mt — 5|2, (6.2.24)

t
[l oo (0,072 rv ) < 1 Auo + aluo™ T ug — f (0)||L2(RN)+/O 1" (0)lL2@®~ydo,  (6.2.25)

fO’f’ any t 2 S 2 O, where M2 = 2||ut||Loo((S7t);L2(RN)) |Au||Loo((S’t);L2(RN)).
3) The map t —> ||u(t)||iQ(RN) belongs to C'([0,00); R) and (6.2.22) holds for any t > 0.

4) If f € WH((0,00); L*(RY)) then we have,
u € Cy([0,00); HY(RY)) N L>((0, 00); H*(RN) N L>™(RN)) N Wh>((0, 00); L2(RY)).

Remark 6.2.8. It follows from Lemma B.4 below that f € C([0, 00); L*(R")) and so, estimate (6.2.25)

with f(0) makes sense.

Remark 6.2.9. We recall that if u € L2(RY) with Au € L2(RY) then u € H2(RY). Furthermore, if
||u||?{2,2(RN) = ||ul? 2(RN)+HAuHL2(RN then [|. || g2.2r~y and || || g2~y are equivalent norms. Indeed,
this us due to the Fourier transform and Plancherel’s formula. Finally, note that,

IVullZ2@ny < llull 2@y | Aull 2@y < [ullfe@yy + 1Au]Z2 @y, (6.2.26)

for any u € H?(RYN).
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Remark 6.2.10. Using a radically different method than the one we propose here, we may show
that all the results of this section remain valid if we replace R with an unbounded domain  # R¥.
This will be the subject of a future work.

6.3 Finite time extinction and asymptotic behavior

Following the method by Carles and Gallo [53] (also used by Carles and Ozawa [55]) and Bégout and
Diaz [29], we are able to prove the finite time extinction and asymptotic behavior results.

Theorem 6.3.1. Let Assumption 6.2.1 be fulfilled with N € {1,2,3}, let f € Wl’l((O,oo);LQ(RN)),
let ug € HY(RN) and assume that one of the following hypotheses holds.

1) N=1and f € WH'((0,00); H'(R)).

2) N €{1,2,3} and up € H*(RN) N L?>™(RY).

Let u be the unique strong solution of (6.2.1)—(6.2.2). Finally, assume that there exists Ty > 0 such
that,

for almost every t > Ty, f(t) =0.

Let £ be the exponant in ug € HY(RY). We have the following results.
a) There exists a finite time T, > Ty such that,

vt > T.,, Hu(t)HLz(RN) =0. (6.3.1)
Furthermore,
N(A-—m) (-—m)(2£=N)
C”“HLoo((o 00);HY(RN)) H“(T0)||L2(RN) + To, (6.3.2)

where C' = C(Im(a), N,m,¥).

(20+N)+m(2¢—N) c (%’ 1) )

b) There exists e, = e4(|al, N,m) satisfying the following property. Let 6 = 7

If f € WHE((0, 00); HY(RY)),

1—m . .
([luoll g vy + 1122 ((0,00); 2 (RN ))) 1L < e min {1,7Tp}, if N=1,

—m

(HUOH?ILQ(RN) + ||f‘|%1‘1((0700);H1(RN))) < E* min {17TO}7 ZfN E {2?3}7

and if for almost every t > 0,

25—1

1F 72 @ny < ex(To—1) 77, (6.3.3)

then (6.3.1) holds with T, = Ty.
Remark 6.3.2. If (N, () € {(1,1),(2,2)} then 2=} = 24E™ /i (N /) = (1,2) then 2=! 231(1*'3%
and if (N,¢) = (3,2) then —_ =23 m. Note that if N = 1 and uy € H3(RY) then there are two
possible choices for 25 5 in (() 3 3): 272 or 23:&3’%. Since for t near Ty, Ty —t < 1 then the choice

14+3m
3(1—-m) "

the less restrictive is that for which 215_ 61 is the smallest as possible, that is 2
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Remark 6.3.3. In the case of our nonlinearity, Theorem 6.3.1 is an improvement of the result of
Carles and Ozawa [55] in the sense they obtain the same conclusion as in a) but with a presence
harmonic confinement in (6.2.1), Re(a) = 0, f = 0, N € {1,2} and (ug € Hl(R) N.Z(H'Y(R))?),
if N =1and (uo € H*(R*) N .Z(H*(R?))?, |luor2(re) small enough and 1 < m < 1), if N = 2.
Additional nonlinearities are also considered in [55].

Theorem 6.3.4. Let Assumption 6.2.1 be fulfilled with N > 4, let f € W," 1([0 00); L2(RY)) and let

loc

uo € HY(RN). Suppose further that f € Wb 1([0 00); HY(R™)) or ug € H*(RN). Let u be the unique

loc

strong solution of (6.2.1)—(6.2.2). Finally, assume that there exists Ty > 0 such that,
for almost every t > Ty, f(t) =0.

Then we have for any t > Ty,

()]l p2@yy < [w(To)]| p2@yye” C¢T0),

if N =4 and up € H*(RY),

|w(To) | L2 vy

lu() || 2@y <
(1—m)(N—2¢) A—m)(N—=20)
(14 Ol ads - 10)
if N 25 orug € H'(RY), where C = C(|ull 1o ((0,00): ¢ (&), Im(a), N, m, £).

Theorem 6.3.5. Let Assumption 6.2.1 be fulfilled, let f € Li ([0,00); L2(RY)), let ug € L*(RY)
and let u be the unique weak solution of (6.2.1)—(6.2.2). If

fe LY((0,00); L2(RY)),
then,

tl}m [u(®)|| 2@y = 0.

6.4 Proofs of the existence and uniqueness theorems

Since we have to prove existence in the whole space, the method is radically different than that used
in Bégout and Diaz [29].

Theorem 6.4.1. Let Assumption 6.2.1 be fulfilled and let \,by > 0. Then for any F € L?>(RY), there

exists a unique solution u to,

u e H2(RN) N L2 (RN),

(6.4.1)
M — au|~ "™y —ibgu = F, in L*(RN).
In addition,
lullfre @y + 1l 7ot @y + 1l 75 @y < MIF|Zg@ny, (6.4.2)

3. F(H'(R)) — L>™(R) and .F(H?(R?)) < L2™(R2), for any § <m < L.
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where M = M(|a|, Arg(a), by, \). Furthermore, if F is compactly supported then so is u. Finally, let
G € L3(RN). If v is a solution to (6.4.1) with G instead of F then,

1
=l < 5o F = Cllzaqan) (6.4.3)

Here and after, Arg(a) € (0,7) denotes the principal value of the argument of a.
The proof of the theorem relies on the following lemmas.

Lemma 6.4.2. Let Assumption 6.2.1 be fulfilled. Then there exists b € C, with |b] = 1, satisfying the
following property.

Re(b) > 0 and Im(b) < 0, (6.4.4)

2v/mIm(ab) > (1 — m)Re(ab) > 0. (6.4.5)

In addition, b = b(Arg(a)). In particular, ab satisfies (6.2.3)~(6.2.4) of Assumption 6.2.1.

Proof. Let 0, = Arg(a) € (0,7), since Im(a) > 0. We look for b = e~ where 0 < §, < %.

Case 1 : Re(a) < 0.

If follows that, § < 6, < m. We choose 0, = 6, — 5. We then have ab = i|a| and the conclusion is
clear.

Case 2 : Re(a) > 0.

If follows that, 0 < 6, < % and by (6.2.4), one has

2
2v/msin(0,) > (1 —m)cos(6,) > 0. (6.4.6)

By continuity and (6.4.6), there exists 6, € (0,6,) such that,
2v/msin(0, — 60,) > (1 —m) cos(6, — ;) > 0. (6.4.7)
Then, 0 < 8, — 0, < %, ab = |a|e!(®=%) and again the conclusion is clear. O

We may summarize the proof of Lemma 6.4.2 with the picture below.

Im(z) Im(z)
_ 0, | ab a
0= lole | ;
Im(2)= 452 [Re(2)| Im(2)=452 [Re(2)|
—0,
+ +
1 1
0 +— —0 Re(z) 0 AR Re(z)
b=e 10 b= e 10
Op =0, — 5 0<6,<1
Case 1: Re(a) <0 Case 2 : Re(a) 20
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Lemma 6.4.3. Let 0 < m < 1. Set for any z € C, g(z) = |2/~ 2z (g(0) = 0). We define the
mapping for any measurable function u : RN — C, which we still denote by g, by g(u)(x) = g(u(x)).
Then for any p € [1,00),

g € C(LP(RN); L%(RN)) and g is bounded on bounded sets. (6.4.8)

Let a € C with Im(a) > 0 satisfying (6.2.3). Then (g(u) — g(v))(u—1v) € LY(RY) and,

Re —ia/ (9(u) — g(v))(u=0)dz | >0, (6.4.9)

for any u,v € L™ (RN),

Proof. Property (6.4.8) is an obvious consequence of (6.2.11) which implies the integrability property
in the lemma. By Lemma 2.2 of Liskevich and Perel’'muter [132], we have

2vim |l ((9(z1) — 9(z2)) (71 22) )| < (1 = m)Re((9(21) ~ 9(22)) (5= 22) ), (6.4.10)

for any (21, 22) € C%. Let u,v € L™ (RY). We have by (6.4.10),

Re —ia/ (9(v) — g(v))(u—v)dz

RN

= Im(a)Re/ (9(w) — g(v)) (w="v)dz + Re(a)Im/ (g(u) — g(v)) (u=)dz

RN RN

> <Im(a) ~ [Re(a)| -2 m) Re/ (9(u) = g(v)) (w=v)dz

The lemma is proved. O

Lemma 6.4.4 ([29]). Let 0 < m < 1 and let a € C with Im(a) > 0 satisfying (6.2.3). Let g be as in
Lemma 6.4.3. Then g(u)Au € L'(RY) and,

Re ia/g(u)ﬂdx 20, (6.4.11)

RN
for any u,v € HX(RYN) N L™ (RY).
Proof. See Lemma 5.6.3. U

Proof of Theorem 6.4.1. Let Assumption 6.2.1 be fulfilled, \,by > 0 and F € L?(R"). Let g be as

in Lemma 6.4.3. We want to solve,

m+1

—Mu —arg(u) —ibpu = F, in H 'RY)+ L (RY). (up)
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We proceed with the proof in five steps.
Step 1 : A first estimate. Let G € L2(RY). If u,v € H?

2 . RMNHYRN)NL™ T (RYN) are solutions
of (up) and (vg), respectively, then estimate (6.4.3) holds true.

We multiply by i, for ¢ € Z(RY), the equation satisfied by u — v, we integrate by parts and we take
the real part. By density of Z(RY) in HY(RY)NL™ ! (RY) and (6.4.8), (g(u)—g(v))(u—v) € L}(RY)

and we may choose ¢ = u — v. It follows that,

ARe —ia/ (g(u) — g(v)) (w=")dz | + bollu — v||2L2(RN) =—Im /(F - G)(u—v)de
- “ (6.4.12)

Estimate (6.4.3) then comes from (6.4.12), (6.4.9) and Cauchy-Schwarz’s inequality.
Step 2 : A second estimate. If u is a solution to (6.4.1) then u € L™ (RY) and satisfies (6.4.2).
Since 2m < m + 1 < 2, then L>™(RY) N L2(RY) ¢ L™*}(RY). By Theorem 2.2.9,

[ullFrr vy + lull Tt gy < M(lal, bo, M FlI72 ey (6.4.13)

Let b € C be given by Lemma 6.4.2. We multiply the equation in (6.4.1) by —ibAu, integrate by parts
and take the real part. We obtain,

_)\Im(b)HAuH%Q(RN)—l—/\Re iab/g(u)ﬂdx —|—b0Re(b)||Vu||%2(RN)

]RN
=1Im (b/ FAudx) . (6.4.14)
RN

By (6.4.5), we may apply Lemma 6.4.4. Using (6.4.4), (6.4.11) and applying Cauchy-Schwarz’s in-
equality in (6.4.14), one obtains,

1Al 22y < ~Ao [l gy, (6.4.15)

Alm(b)]

Now, since by Plancherel’s formula, ||“||H2(RN) < O]l p2rry < C||Aul| 2y, putting together
(6.4.13) and (6.4.15), one obtains (6.4.2).
Step 3 : Compactness of the solution. If supp F is compact and if u € H'(RY) N L™+ (RY) is
a solution to (up) then suppw is compact.
This comes from Theorem 1.3.6.
Step 4 : Existence and uniqueness. There exists a unique solution u € HZ_(RY) N HY(RY) N
L™ (RN) to (up).
By Theorem 2.2.8, equation (ur) admits a solution « € H*(RY) N L™+1(RY). By Proposition 1.4.5,
u € HY,

Step 5 : Conclusion.

(R™). Finally, by Step 1 this solution is unique.

Estimates (6.4.2)—(6.4.3), uniqueness and compactness property come from Steps 1-3, once the exis-
(RMYN HYRN) N L™+ (RY) the solution of (ur)

2 N
be given by Step 4. Let (F,)n,en C 2(RY) be such that F), TE) R Finally, for each n € N, denote
n—oo

tence of a solution to (6.4.1) is proved. Let u € H{

loc
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by u, the unique solution to (6.4.1), where the right-hand side is F,, instead of F' (Steps 4 and 3).
2 N
By Steps 1 and 2, (u,)nen is bounded in H2(RY) and u, EED, . Tt follows that u € H2(RY)

n—oo

and, from the equation in (6.4.1), g(u) € L?(R"). Hence u is a solution to (6.4.1). This concludes the
proof. O

Corollary 6.4.5. Let Assumption 6.2.1 be fulfilled. Let us define the following (nonlinear) operator
on L2(RY).

D(A) = H*(RY) N L*™(RY),
Vu € D(A), Au = —iAu — ialu|~ =™y,
Then A is maximal monotone on L?(RY™) (and so m-accretive) with dense domain.

Proof. The density is obvious. For any A > 0, I + AA is bijective from D(A) onto L*(RY) and
(I + MA)~! is a contraction (Theorem 6.4.1). It follows that A is maximal monotone (Brezis [13],
Proposition 2.2, p.23). O

Proof of Theorem 6.2.7. Let g be as in Lemma 6.4.3. We first recall that by 1) of Lemma B.4,
f € C([0,00); L*(RY)). (6.4.16)

By Corollary 6.4.5 and Barbu [16] (Theorem 2.2, p.131), there exists a unique u € Wli)’fo([O, 00); L2(RY))
satisfying u(t) € H2(RY) N L*™(RY) and (6.2.1) in L2(RY), for almost every ¢ > 0, u(0) = ug
and (6.2.25). This last estimate yields (6.2.23). Since u € Wb ([0,00); L2(RY)), it follows from
Lemma B.5 that the map M : t — %Hu(t)HQB(RN) belongs to W52 ([0,00);R) and M'(t) =
(u(t), ue (t))LQ(RN), for almost every ¢ > 0. Multiplying (6.2.1) by iu, integrating by parts over RV
and taking the real part, we obtain (6.2.22), for almost every ¢ > 0. We deduce easily from (6.2.22),
(6.4.16) and Holder’s inequality that u € LS ([0, 00); L™ (RY)). Multiplying again (6.2.1) by ,

integrating by parts and taking the real part, we get
IVu®)lZ2 @y < IRe(@) w7 gy + (lue(®)llz@yy + 1 )l z2@yy) w2 @),

loc

Let b € C be given by Lemma 6.4.2. We multiply (6.2.1) by iabg(u), integrate and take the real part.
We get,

for almost every t > 0. It follows that u € L{% ([0, 00); H(RY)). We infer that u is an H?-solution.

Re %/utg(u)dx +Re ﬂ/g(u)Audx

RN RN

+\a|2Re(E)Hg(u)H%2(RN):Re ﬂ/fg(u)dx . (6.4.17)
RN

By Lemma 6.4.2, we have (6.4.11). This implies,

WV
(=

Re ﬁ/g(u)Audm = Re iab/g(u)ﬂdx (6.4.18)

RN RN
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and (6.4.17) becomes,

allTm(B)] ]2, vy < / (e + )90 d, (6.4.19)

since Re(ib) = —Im(b) > 0, by (6.4.4). By Cauchy-Schwarz’s and Young’s inequalities, we get

Ialllm( )

. |
/ (o 33T < g+ e, + gl By (6.4.20)
Putting together (6.4.19) and (6.4.20), we arrive at,
2m 1 2
@) 720 mvy < [aP[m )2 (lue@®ll 2@y + 1 Ol L2@y))” (6.4.21)

for almost every ¢ > 0. Multiplying again (6.2.1) by ibAu, using (6.4.18) and proceeding as above, we

arrive at,

1
[Tm (b))

|Au(t) |2 ev) < (@l zzqem) + 1Ol @) (6.4.22)

for almost every ¢ > 0. By (6.4.16), (6.4.21), (6.4.22), Remark 6.2.9 and Hélder’s inequality (recalling
that 2m < m + 1 < 2), we obtain,

u € Lix. ([0,00); H*(RY)) N Lix ([0, 00); L*™(RY)), (6.4.23)
u € C([0,00); L*(RM)) N LS, (0, 00); L*™(RY)) < C([0, 00); L™ TH(RY)). (6.4.24)

Recalling that u € W™ ([0, 00); LA(RY)), by (6.4.23) and the embedding 3) of Lemma B.4, we have

loc

u € C([0,00); H'(RY)). We then deduce Property 1), with help of (6.2.13), (6.4.16) and (6.2.1).
With (6.2.26), (6.2.23) and (6.4.23), we get (6.2.24) and Property 2) is proved. Property 3) comes
from (6.2.22), (6.4.16) and (6.4.24). Finally, Property 4) follows easily from the embedding 1) of
Lemma B.4, Remarks 6.2.5 and 6.2.9, (6.2.25), (6.4.21) and (6.4.22). This concludes the proof of the
theorem. O

Lemma 6.4.6. Let Assumption 6.2.1 be fulfilled and f,g € L{ ([0,00); L*(RN)). If u and v are

strong solutions or weak solutions of

iy + Au + alu)] "™y = fy,
vy + Av + alo| ™y = £y,

respectively, then u,v € C([O, o0); L? (Q)) and

la(t) = o)l z2@) < luls) - v(s) 2 + / 1£1(0) = Fa(0)l| 2o (6.4.25)

foranyt > s> 0.
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Proof. Let X = H'(RV)N L™+ (RY) and let u, v be as in the lemma. Continuity comes from (6.2.8)
and Definition 6.2.2. Estimate (6.4.25) being stable by passing to the limit in C'([0,7]; L*(RY)) x
L'((0,T); L*(RN)), for any T > 0, it is sufficient to establish it for the H?2-solutions. And since
an H2-solution is an H' solution, we may assume that u,v are H! solution. Making the difference
between the two equations, it follows from 3) of Remark 6.2.3 that we can take the X* — X duality
product of the result with i(u — v). With help of (B.3) below, (6.2.14), (6.4.9) and Cauchy-Schwarz’s

inequality, we then arrive at,

SalluC) = v( e < I = fellz@llu = vliza),
almost everywhere on (0, 00). Integrating over (s,t), one obtains (6.4.25). O

Proof of Theorem 6.2.4. Existence, estimate (6.2.19) and uniqueness comes from density of
H2(RN) x WEL([0,00); L2(RN)) in L2(RN) x L. ([0, 00); L2(RN)), Theorem 6.2.7, Lemma 6.4.6 and

loc loc

completeness of C([0,T]; L*(RY)), for any T > 0. Finally, estimates (6.2.17)—(6.2.18) comes from
Proposition 5.2.3. This ends the proof of the theorem. O

Proof of Theorem 6.2.6. Uniqueness comes from Lemma 6.4.6. Let f € Wﬁ;j([o, o0); HY(RY)) and
1 N

let up € HY(RYN). Let (¢n)nen € Z(RY) be such that ¢, AR, ug. Finally, let g be defined as in
n— o0

Lemma 6.4.3 and for each n € N, let u,, the unique H?-solution of (6.2.1) such that u,(0) = ¢,, be
given by Theorem 6.2.7. By Lemma 6.4.6, we have for any 7' > 0 and n,p € N,

T
lunllc(o,r:L2@yy) < llonll 2@y +/0 £ )l 2@y dt, (6.4.26)
[[wn — U;DHLOO((O,oo);L2(RN)) < lon — <Pp||L2(1RN),

It follows that for any 7' > 0, (un)nen is a Cauchy sequence in C([0,7T]; L2(R”)). As a consequence,
there exists u € C([0, 00); L*(RY)) such that for any 7' > 0,

7 2/mN
u, COTLZEY) (6.4.27)

n—oo

By definition, it follows from (6.4.27) that u is a weak solution of (6.2.1)—(6.2.2). By Theorem 6.2.7,
we can take the L2-scalar product of (6.2.1) with —iAw,, and it follows from (B.4) that for any n € N

and almost every s > 0,

1d . ~ .
33 17O, + Re i [ () B | = (T7(5),190(5)) o
RN
which gives with (6.4.11) and Cauchy-Schwarz’s inequality,
1d
2dt
By integration, we obtain for any ¢ > 0 and any n € N,

IVun ()22 @y < IVF(S)ll 2@ [Vun(s)ll 2 @y)-

t
IVun(®)llz2n) < IVenllzgn + / IV £(5) | 2y ds. (6.4.28)
0
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By the Sobolev embedding 1) of Lemma B.4,
Wiee ([0, 00); L2 (RY)) < C/([0, 00); L*(RY)), (6.4.29)
(6.4.26), (6.4.28), (6.4.8) and (6.2.1), we infer that,
(Un)nen is bounded in L ((0,7); H*(RY)) n W' ((0,T); Z*), (6.4.30)

for any T > 0, where Z* = H-Y(RN) + L (RV) is the topological dual space of Z = H'(RN) N
Lﬁ(RN). Note that Z* is reflexive (Lemma B.2) and since H*(RY) < Z*, it follows from (6.4.27),
(6.4.30), (6.2.15) and Proposition 1.1.2, p.2, and (ii) of Remark 1.3.13, p.12, in Cazenave [57] that,

u € Cy ([0,00); HY(RN)) n WL ([0, 00); Z2*), (6.4.31)
Au € C ([0, 00); H*(RY)) , (6.4.32)
Un(t) — u(t), in HL(RY), as n — oo, (6.4.33)

for any t > 0. After integration of (6.2.22), we see with help of (6.4.26) that for any T' > 0, (uy,)nen is
bounded in L™ ((0,T); L™ (RY)) = L™+((0,T) x RY), which is reflexive. We infer with (6.4.27),

u e L ([0, 00); L™ THRY)). (6.4.34)

loc

By (6.4.29), (6.4.31), (6.4.34) and (6.2.1), it follows that u satisfies 1) of Definition 6.2.2 and then u
is an H'-solution. By 3) of Remark 6.2.3, we can take the X — X* duality product with iu, where
X = HYRN)n L™+ (RY). Applying Lemma B.5 and (6.2.14), Property 3) follows. Estimate (6.2.21)
comes from (6.4.33), (6.4.28) and the weak lower semicontinuity of the norm. Finally, smoothness of
the solution in Properties 1) and 2) follows easily from (6.4.29), (6.4.31), (6.4.32), (6.4.8) and the
equation (6.2.1). This concludes the proof of the theorem. O

6.5 Proofs of the finite time extinction and asymptotic beha-
vior theorems

Proof of Theorem 6.3.1. Apply Theorems 6.2.6, 6.2.7 and use the general theorem of finite time
extinction (Theorem 5.2.1 and Remark 5.4.8). Nevertheless, to make the proof more understandable,
we briefly explain how to obtain (6.3.1)—(6.3.2). Let £ = 1, if ug € H*(RY) and £ = 2, if ug € H*(RY).
Assume that for some Ty > 0, f(t) = 0, for almost every ¢ > Tj. It follows from Theorems 6.2.6, 6.2.7
and Remark 6.2.5 that u € LOC((O7 00); HK(RN)). We have by Gagliardo-Nirenberg’s inequality and
(6.2.22),

(204 N)+m (20— N N(1l-m mtl
[|lu(t) |L2>(RN)2IZ < O||u||Loo2(((0’oo);Hl(RN))HU( )||Lm+1 (RN)
d

aHu(t)H%Z(RN) + 2Im(a) [ u(t) |74 gy = 0,
for almost every t > Tj. It follows that,

y'(t) + Cy(1)’ <0, (6.5.1)
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for almost every ¢ > Ty, where y(t) = [lu(t)|72 v, and 0 = (QHN)ZZL(Q#N). By our assumption on

¢, we have ¢ € (0,1) if N < 3. Hence (6.3.1)—(6.3.2) by integration. O

Proof of Theorem 6.3.4. Let £ = 1, ifug € H'(RY) and ¢ = 2, if ug € H2(RY). By Theorems 6.2.6,
6.2.7 and Remark 6.2.5, u € LO"((O7 00); HE(RN)). Repeating the proof of Theorem 6.3.1, we obtain
obtain (6.5.1). According to the different cases as in the theorem, we have 6 = 1 or § > 1. The
results then follow by integration (see also (6.1.6) and the lines below). For more details, see 3) of
Remark 5.2.4. U

Proof of Theorem 6.3.5. By Remark 6.2.5, we may assume that f € 2([0,00); L*(R")) and

ug € H?(RN). Let [0,7p] D supp f. By (6.2.22), %Hu(t)HzB(RN) < 0, for any t > Tp. It follows that

tl}m lu()ll 2~y = Lo, for some £y € [0,00). Let ¢ € (2,00) with (N —2)g < 2N. By Holder’s
(oo}

inequality and Sobolev’s embedding H!(RY) < L4(RY), there exists # € (0,1) such that,

to < JJu(®) ]| L2y < [lu®)]|f [u®) ey < Cllu®)ll] llul 1=

0s L2(RN) S Lm+1(RN) La(RN) = Lm At (RN) I Loe ((0,00); HE(RN))?
for any ¢t > Ty. We get, still by (6.2.22),

42 gt
a”u(t)HLz(]RN) < =CY <0,

for any ¢t > Ty. Hence ¢y = 0. O
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Chapitre 7

A Generalized Interpolation
Inequality and its Application to

the Stabilization of Damped
Equations

with FERNANDO SORIA*

Abstract
In this paper, we establish a generalized Holder’s or interpolation inequality for weighted spaces in which
the weights are non-necessarily homogeneous. We apply it to the stabilization of some damped wave-like
evolution equations. This allows obtaining explicit decay rates for smooth solutions for more general classes
of damping operators. In particular, for 1 — d models, we can give an explicit decay estimate for pointwise
damping mechanisms supported on any strategic point.

7.1 Introduction

We are interested on a generalized Hélder’s or interpolation inequality, in order to establish explicit

decay rates for smooth solutions of damped wave-like equations with weak damping.

Let (Q, .7, 1) be a measure space and let w; and we be two p-measurable weights on Q. The problem

we address consists in finding suitable functions ® and ¥ such that

/ (@) (2)dp(z) / (@) w2 () dp()
10|22 vy | L2

I fllr 2,0 Ifllr 2,0

(7.1.1)

for any f € LY(Q, 7,p) N LY(Q, T, widp) N LY(Q, T, wadp).
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The case where the weights functions are homogeneous is well-known. Indeed, if wy(z) = |z|* and
wo(z) = |2|=? (a, B > 0), the classical Holder’s inequality gives

[ < ([ If(w)lx“dx)aiﬂ (f |f<x>|x5dx)ai", (7.1

where dz denotes the Lebesgue’s measure or, equivalently,

d -84

) /|f || dz /Qlf(x)llxl s
d d
1w JREETE

Obviously, (7.1.2) is a particular case of (7.1.1), in which the functions ® and ¥ are respectively
O(t) = to77 and U(t) = t757.

This paper is devoted to obtain a generalization of (7.1.2) for non-homogeneous weights. We are
typically interested in situations in which, for instance, w;(x) = e~1*| and wy(z) = |z|2. As we shall
see, if we are able to get an interpolation inequality of the form (7.1.1) in this case, we will be able to

give new explicit decay rates for damped 1 — d wave equations with pointwise damping.
Let us briefly illustrate the connection between these two issues.

Let a € L*(0,1) be a nonnegative and bounded damping potential and consider the damped wave
equation in one space dimension,
g (t, ) — Uge (8, ) + a(x)u(t,2) =0, for (¢,2) € (0,00) x (0,1),
u(t,0) =wu(t,1) =0, for te€[0,00), (7.1.3)
w(0,z) = u®(z), u(0,2) = ul(z), for =z € (0,1).

This system is well-posed. More precisely, for any initial data «® € Hg(0,1) and u! € L?(0,1), there
exists a unique solution in the class C([0,00); H}(0,1)) NC*([0, 00); L%(0,1)). The energy of solutions

1

B(t) = 5 (Ilhue®) 220, + e ® 2201 )

decreases along trajectories according to the dissipation law

1
/a Yug (¢, 2))?d. (7.1.4)
0

The decay rate of the energy depends on the efficiency of the damping term when absorbing the
energy of the system according to (7.1.4).

Using LaSalle’s invariance principle, it is easy to see that the energy of every solution tends to zero as
t — oo whenever the damping potential a satisfies for almost every x € I, a(x) > ag > 0, for some
constant ag > 0, where I C (0,1) is a set of positive measure (Haraux [95]). In the 1 — d case under
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consideration, in fact, one can even show that the energy of solutions tends to zero exponentially. To
prove this fact, it is sufficient to show that for some 7' > 0 and C' > 0 the following inequality holds

T1
C’//a Yug (t, 2)|?dadt, (7.1.5)

for every solution.

This inequality, which is often referred to as observability inequality, asserts that the damping mecha-
nism during a time interval (0,7T) suffices to capture a fraction of the total energy of all solutions.

Combining (7.1.4), (7.1.5) and the semigroup property, it is easy to see that the exponential decay
property holds, i.e. there exist C' > 0 and w > 0 such that

vVt >0, E(t) < CE(0)e™", (7.1.6)

for every solution.

In fact, to prove that (7.1.5) is fulfilled, one can use the fact that it is sufficient to prove it for the
solutions of the corresponding conservative systems (7.1.3) with a = 0. In that case, the inequality is
easy to get for T'= 2 using the Fourier decomposition of solutions.

Let us now consider a case where the control is supported simply on a point a € (0,1) through a

Dirac mass,
Ut — Ugg + 5aut(t7a) =0, (tax) € (07 OO) X (07 1)a (717)

with the same boundary conditions, initial data and energy as before. Here, §, denotes the Dirac mass

concentrated in a.

When the point a € Q, there are solutions of (7.1.7) that do not decay and for which the energy is
constant in time. This is due to the fact that rational points are nodal ones for the corresponding
Sturm-Liouville problem.

When o ¢ Q, LaSalle’s invariance principle allows proving that the energy of each solution tends to
zero as t — oo. However, in this case the exponential decay rate does not hold. This is due to the
fact that, even if a € Q, the damping term does not dissipative uniformly all the Fourier components
of the solutions. This can be easily seen when analyzing the analogue of (7.1.5). Indeed, there exists
a sequence of separate variable solutions of the conservativg problem (7.1.3) with a = 0 for which the

energy E(0) is of order one and the dissipated quantity, / |ug (t, a)|?dt, tends to zero. This sequence
0
can be built in separated variables, based on the sequence of eigenfunction sin(nz) such that sin(na)

tends to zero as n tends to infinity. The main difference with the case where the damping potential

1
> 0 is positive on a set of positive measure is that, in that case, H;f / a(z) sin’®(nz)dz > 0.
0

nzl

In view of this, one may only expect a weaker observability inequality to hold. A natural way of
proceeding in this case is to obtain a weakened version of (7.1.5) in which the energy F(0) in the
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left hand side is replaced by a weaker energy E_(0) which, roughly speaking, is the Fourier norm of
solutions with weights sin?(na). More precisely,

T
E_(0) < C/ lug(t,a)|*dt = —C(E(T) — E(0)). (7.1.8)

The problem is then how to derive an explicit decay rate for the energy F out of (7.1.8). First, we need
to assume some more regularity on the initial data, say, (u%,u!) € [H2(0,1) N HZ(0,1)] x H(0,1).
1

We denote by E the corresponding energy, E,(0) = & ||(u’, ul)|]

2
2 H2(0,1)xHa(0,1)"

In this way, we have three different energies with different degrees of strength : E, which is the
reference energy in which we are interested, E, which is finite because the initial data have been

taken to be smooth, and E_ which is the weaker energy the damping really damps out according to
(7.1.8).

Applying (7.1.1), one can deduce an interpolation inequality of the form

o (D)o (), w19

where ® and ¥ depend on the energies F; and E_ under consideration, E(0) being the strong norm

E.(0)= %“(“07“1)||?{2(0,1)XH3(0,1)' This clearly implies
E0)o | ——— | < E_(0), (7.1.10)
ges
which, together with the weak observability inequality (7.1.8) yields,
1
E0) ! | ——— C(E(0) — E(T)), (7.1.11)
N, <E+(0))
E(0)
which, together with the semigroup property yield (see Ammari and Tucsnak [8]),
vVt >0, E(t) < ¢ | (u®, ut)))? (7.1.12)
=z U, S . ) H2(0,1)x H1(0,1)" AL
p-1
(st)
Our method is closely of that one developed by Nicaise [143], in which the decay estimate of the

energy looks like (7.1.12) (see Section 5 in [143]). But unfortunately, his method cannot apply in this
paper because the damping term has to be more regular, in some sense, that one we consider (see

[143]).

Obviously, the decay rate in (7.1.12) depends on the behavior of the functions ¥ and ®. More preci-
sely, it depends on the behavior of ®(t) near ¢t = 0 and then of that of ¥~ at infinity. Therefore, in
order to determine the decay of solutions it is necessary to have a sharp description of the functions
® and V¥ entering in the interpolation inequality.
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The behavior of ® and ¥ depends on the energies F, E; and F_ under consideration. We recall that
E_ is given by the weak observability inequality (7.1.8). This is intimately related to the weakness
of the damping mechanism and no choice can be done at that level. By the contrary, there is some
liberty at the level of choosing E, since the initial data can be chosen to be as smooth as we like.
Obviously, one expects a faster decay rate for solutions when they are smoother. This is indeed the
case as our analysis shows. All this can be precisely quantified by the analysis of the functions ® and

U in the interpolation inequality.

How ® and ¥ depend on the energies £, and E_, in the general context of the interpolation inequality
(7.1.1), corresponds to analyzing how the functions ® and ¥ depend on the weight functions w; and
wo. This article is precisely devoted to prove a rather general version of (7.1.1) with a careful analysis
of the behavior of ® and W. This will allow us to get explicit decay rates not only for the model pro-
blem above of the 1 — d wave equation with pointwise damping but also for some other models that
we shall discuss below. In particular, we will be able to give explicit decay rates for the stabilization
of a beam by means of a piezoelectric actuators, a problem that was discussed by Tucsnak [173, ]
in the context of control.

There is an extensive literature concerning the stabilization of damped wave-like equations. But most
of it refers to the case where the damping term (linear or nonlinear one) is able to capture the whole
energy of the system (see, for instance, Haraux and Zuazua [103], Nicaise [143] and Zuazua [184]).
In these works, the multiplier method is implied, as a tool to quantify the amount of energy that
the dissipative mechanism is able to observe. But to apply this method, the damping term has to
be active in a large subset of the domain or of the boundary where the equation holds. Much less is
known when the damping term is located in a narrow set, like, for instance, pointwise dampers in one
space dimension. But, as we have shown above, the results one may expect in that setting need to
be necessarily of a weaker nature since in those situations the damping term is only able to absorb a
lower order energy. In particular, in this context, multiplier methods do not apply.

We focus mainly on the wave equation with a damping control concentrated on an interior point.
Some partial results of explicit decay rates already exist and can be found in Ammari, Henrot and
Tucsnak [5, 6], Jaffard, Tucsnak and Zuazua [110] and Tucsnak [175]. As explained above, our gene-
ralized interpolation inequality allows answering to this in much more generality. We will also address
the stabilization of Bernoulli-Euler beams with force and moment damping. For partial results of

explicit decay rates, see Ammari and Tucsnak [7].

This paper is organized as follows. In Section 7.2, we establish our generalized Holder’s inequality or
interpolation inequality (Theorems 7.2.1 and 7.2.2). In Section 7.3, we give a criterion of optimality
for Theorem 7.2.1 (Definition 7.3.3) and a sufficient condition to have optimality in our interpola-
tion inequality (Proposition 7.3.5). In Section 7.4, we apply these results to get explicit decay rates
for the damped wave (see (7.4.2.1)) with Dirichlet boundary condition and in Section 7.5 we briefly
explain how these results can be applied to the wave equation with mixed boundary condition (Sub-
section 7.5.1, equation (7.5.1.1)) and to some beam equations (Subsection 7.5.2, equation (7.5.2.1)).
The explicit decay rates are given. These results extend the previous ones by Ammari, Henrot and

Tucsnak [6], Ammari and Tucsnak [7] and Jaffard, Tucsnak and Zuazua [110].

We end this section by introducing some notations. For a real valued function f defined on an open
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interval I (respectively, (m,o0) for some m € R) and for a € 9 (respectively, a € {m,o0}), the
notation f(a) means gim f(t). For a € R, we denote by 4, the Dirac mass concentrated in a.
—a

tel

7.2 An interpolation inequality

Our analysis requires some elementary notions and results on convex functions.

Recall that if f : I — R is a convex function on an open interval I, then it is continuous, locally
absolutely continuous on I and it is of class C! almost everywhere. More precisely, there exists a finite

or countable set ' C I such that f is of class C! relatively to I \ A. In particular, for any t,s € I,
t

fi)y = f(s) = / f'(0)do. In addition, f’ is nondecreasing relatively to I \ N. Furthermore, f has
a left derivativesflf and a right derivative f! at each point of I and for any ¢,s € I such that s < ¢,
fir(s) < fl(s) < fi(t) < fl(t). For more details, see Niculescu and Persson [144] (Theorems 1.3.1 and
1.3.3, p.12, Proposition 3.4.2, p.87 and Theorem 3.7.3, p.96) and Rockafellar [153] (Corollary 10.1.1,
p-83, Theorem 10.4, p.86 and Theorem 25.3, p.244). Finally, we recall that f is a concave function if

—f is a convex function.

Let (2, 7, 1) be a measure space and let wy,wsy : @ — [0, 00) be two p—measurable weights. In order

to establish our generalized Holder’s inequality, we need the following hypotheses.

®: I} — [0,00) is a concave function, I; is an (7.2.1)
open interval and for a.e. x € Q, wy(z) € I, o
U : I — [0,00) is a concave function, I3 is an (7.29)
open interval and for a.e. © € Q, wa(x) € Is, o
for a.e. x € Q, 1 < (wq(x))V(wa(x)). (7.2.3)

Theorem 7.2.1. Let (,.7,p) be a measure space, wi,ws : Q@ — [0,00) be two p—measurable
weights and 0 < p < oco. If there exist two functions ® et U satisfying (7.2.1) — (7.2.3) then for any
feLP(Q,T,u), f#0, we have

/ FPundu / FPwndu
L |l

1< |2
||f||1£p(9,9,u) ”fHIJéP(Qﬂ,M)

7 (7.2.4)

as soon as LP(Q, T, widp) N LP(, T, wadp).

Obviously, one of the main issues to be clarified is whether there exist functions ® and ¥ satisfying
the requirements (7.2.1), (7.2.2) and (7.2.3). This, of course, depends on the properties that the
weight functions wy and wsy satisfy. Below we shall give sufficient conditions on the weights wy and wy
guaranteeing that ® and ¥ as above exist. This can be done by imposing some stronger conditions
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on the weight functions. More precisely, assume that Q = (m,o0) (for some m € R), du = dx is the
Lebesgue’s measure and

w1 : (m,00) — (0,w1(m)) is a convex and decreasing function and w;(cc) = 0, (7.2.5)
wa : (m,00) — (0,00) is a convex and increasing function and ws(c0) = oo, (7.2.6)
®: (0,wi(m)) — (0,00) is a concave and increasing function and ®(0) = 0, (7.2.7)

U : (wa(m),00) — (0,00) is a concave and increasing function and ¥(oo) = oo, (7.2.8)

Vit € (m,00), 1< ®(wy(t))T(wa(t)). (7.2.9)

Note that in (7.2.7), hypothesis ®(0) = 0 means that ® can be extended by continuity in 0 by 0.

The following result asserts that functions satisfying (7.2.7)—(7.2.9) (and so (7.2.1)—(7.2.3)) exist, if
the weights wy and wo verify the additional assumptions (7.2.5)—(7.2.6).

Theorem 7.2.2. Let m > 0 and let wy, we, be two weights satisfying (7.2.5) — (7.2.6). We define the
function ¢ by

w1 (t) .
t

Yt >m, o(t) =m (7.2.10)

Then the following assertions hold.

1. The function ® defined on [0,w1(m)) by ®(0) =0 and ®(t) = %(15)7 fort # 0, satisfies (7.2.7).
¥

2. The function U defined on (wz(m),00) by W(t) = w, *(t) satisfies (7.2.8).
3. For ® and U defined as above, estimate (7.2.9) holds.

Before proving Theorems 7.2.1-7.2.2, let us establish some preliminaries lemmas. The following result
being a direct consequence of the definition of convex functions, we omit the proof.

Lemma 7.2.3. Let I C R be an interval and let o : I — R be a function. Then ¢ is increasing and

1

concave on I if and only if ="' is increasing and convex on @(I).

The next lemma is the inverse version of the classical Jensen’s inequality (W. Rudin [157]).

Lemma 7.2.4 (Inverse Jensen’s inequality). Let (2,7 ,v) be a measure space such that v(2) = 1
and let —oo < a < b < +o00. Assume that

1) ¢: (a,b) — R is a concave function,

2) f € LY, 7,v) is such that for almost every x € Q, f(x) € (a,b).

Then o(f)4 € LY(Q, 7,v) and

/w(f)dvé @ Q/fdv : (7.2.11)

Q

Remark 7.2.5. Since ¢ is concave on (a,b), it is continuous and ¢ o f is a .7-measurable function.

Furthermore, ¢(f)y+ € L'(Q, Z7,v) so the left-hand side of (7.2.11) makes sense and / w(f)dv €
Q
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[—00, +00). Indeed, since ¢ is a concave function, it follows from the discussion at the beginning of
this section that for any ¢,s € (a,b), ¢(t) < ¢(s) + ¢y(s)(t — s). In particular,

o(f) < plto) + @y(to)(f —to), a.e. in Q, (7.2.12)
o(f)+ < lolto)l + leu(to) (1] + lto]) € L' (2, T, v),

where ty = / fdv. Integrating (7.2.12) over 2, we obtain (7.2.11). For more details, see Theorem 3.3
Q

p.62 in W. Rudin [157].

Now, we are in the conditions to prove Theorem 7.2.1.

Proof of Theorem 7.2.1. Let 0 < p < o0, let f € LP(Q, T, u) N LP(Q, T, widp) N LP(Q, T, wadpu),

f # 0, and let v be the measure defined by v = =
Hf”LIJ(Q T 1)

Lemma 7.2.4 with o1 = @, fi = wy, w2 = ¥ and fo = we. Then ®ow; € LY (N, 7 ,v), YVouw, €
LY(Q, 7,v) and it follows from (7.2.3), Cauchy-Schwarz’s inequality and (7.2.11) that

w. Then v(Q) = 1. We apply twice

2 2
- /ﬁdy < /@é(wl(x))w%(wz(x))du(x)
Q Q
< / B (wr (2))dv(z) / U (wa () dv(2)
Q Q

<o /w1(x)d1/(x) U /w (x)dv(z)
Q

[ 1 / fPwsdn
Q

T M i

Hence (7.2.4). O

The proof of Theorem 7.2.2 relies on the following lemma.

Lemma 7.2.6. Let m € [0,00), 0 < M < o0 and p € [1,00). Let f : (m,00) — (0, M) be a
nonincreasing function such that f(m) = M. Define the function ¢, on (m,o0) by

f(®)
1

If f is convez on (m,c0) then ¢, is convex on (m,00) and — is concave and increasing on (0, 2L) |
Pp

where we have used the notation -5 = 400 if m =0 and/or M = +oco. Furthermore, hm *l(t) =0.

Remark 7.2.7. If 0 < p < 1 then the conclusion of Lemma 7.2.6 may be false. Indeed, let ¢g € (p,1)
and set ¢ = q% > 1. We then choose f(t) =
decreasing on (0, c0). But for any ¢ > 0, "

tqo—p, t > 0. Then f and ¢, are obviously convex and

= (t) = t9. So that ¢, is not concave on (0, c0) since ¢ > 1.
P
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Remark 7.2.8. Let f : (m,00) — (0,00) be an application, where m € R. Assume that f is convex
on (m,o0) and that tliglo f(t) = 0. If f is nonincreasing on (m,oco) then it is in fact decreasing on
(m, ). Indeed, if f is not decreasing on (m,o0) then f(¢t) = f(a) > 0 for any ¢ € (a,b), for some
interval (a,b) C (m,o00). Since tlggo f(t) = 0, we necessarily have b < co. Then f' = 0 on (a,b)
and, by hypothesis tlgrolo f(t) = 0, this implies that f'(tg) < 0, for some ¢y € (b,00). This contradicts

hypothesis f is convex.

Proof of Lemma 7.2.6. Let ¢, be defined by (7.2.13) Note that ¢, : (m,00) — (0, 2%) being
0, 2L) — (m, 00) is well-defined, conti-

? mP

bijective, continuous and decreabing, it follows that <p; : (

’ mP

w; (O M ) — (0, %) is continuous and increasing, where we have used
the notation % = 400 if m = 0. The product of two positive and convex functions with the same
monotonicity being convex, it follows that the function t — % is convex and so ¢, is convex.
Moreover, hypothesis tl}rgo ©(t) = 0 implies that hm 1(t) = (. Since f is convex, according to the
basic properties on convex functions we recalled 1n the beginning of this section, there exists a se-
quence (an)nen C (m,o0) such that f is C* and f’ is nondecreasing relatively to (m,o0) \ N, with
N = U {a,}. Now, we proceed to the proof in 3 steps.

Step 1. Set for every t € (m,00) \ NV,

B(t) = —(f/ ()t — pf(H)) and  g(t) = . (7.2.14)

Then g is nonincreasing and nonnegative on (m, cco) \ N.

Indeed, let s,t € (m,00) \ N be such that s < ¢. Since f is convex, it follows from the discussion at
the beginning of this section that f(t) — f(s) < f/(t)(¢t — s). Using this estimate, p > 1 and again the
fact that f is nonincreasing and f’ is nondecreasing relatively to (m,o0) \ N, we obtain that

h(t) = h(s) = p(f(t) = f(s)) = (t = s)f'(t) = s(f'(t) = ['(5))

Consequently, h is is nonincreasing. Since it is nonnegative (because f is nonnegative and nonincrea-

sing), it follows that g is also nonincreasing and nonnegative relatively to (m, co) \ N.
1/t 1
Step 2. We claim that, for any ¢t > m, ¢,(t) = / g (s) ds.
0
Indeed, by (7.2.13)—(7.2.14), we have for every o € (m,c0) \ N,

f'(o)o? —pflo)o?~t  f'(o)o—pflo) _hio) 1 _ g(o)

—pp(0) = = o2p = oP+1 T op-1g2 g2

g(o)

2 do, which yields the desired result,

Then for any € > 0, o), € L'(m + &,00) and so ¢, (t) = /
t

by using the change of variables o = %
Step 3. Conclusion.

Let 1 be defined on (0, %) by (t) = Thus by Step 2, we have for any ¢ € (O7 %) ,

1
ep (1)
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Then 1~ is absolutely continuous and for almost every ¢ € (0, %) , (1/)_1)/ (t)=g (%) > 0. Since g
is nonincreasing relatively to (m o00) \ NV (Step 1), it follows that 1~ is increasing and convex on

(O, 7}1) By Lemma 7.2.3, w = sfl is increasing and concave on (O —) Hence the result. O

Proof of Theorem 7.2.2. Let ¢ be defined on (m, 0o0) by (7.2.10). By (7.2.5)—(7.2.6), ws is invertible
on (ws(m),00) and ¢ : (m,00) — (0,w1(m)) is a bijective and decreasing function. Then definition
of @ and ¥ makes sense.

Proof of 1-2. Assertion 1 is a direct consequence of Lemma 7.2.6 applied to f = mw; and assertion 2
comes from (7.2.6) and Lemma 7.2.3.

Proof of 3. By (7.2.10) and definition of ®, ®~* (1) = ¢(t) < w1 (t), for any ¢t > m. Since ¢ and w;
are both decreasing, this implies that

Vit € (0,01 (m)), B(t) = —— >
With the above estimate, we obtain that
Vit >m, ®(wi(t))¥(we(t)) = P(wi(t))t > ——— =1

Hence (7.2.9). This concludes the proof. O

We now give an example where the assumptions of Theorem 7.2.1 are satisfied. The weight functions
w1, we are of a particular form that arises naturally in applications : While w; tends to zero exponen-
tially at oo, wy grows as a polynomial function. This is a case that may not be covered by Holder’s
inequality. In the sequel, we compute explicitly the functions ® and ¥ for which the generalized

interpolation inequality holds.

Example 7.2.9. Let Q = RN \ B(0,1) and A > 1. We consider the weights defined on Q by
wi(x) = e~ 417l and wy(z) = |2|2. We define the interpolating functions ¥(t) = v/ (t > 0) and

0, if t=0,
vt € [0,e472], B(t) = 24

— if <eA2,
-t if 0<t<e

The hypotheses of Theorem 2.1 are satisfied since the weights w; and wsy and the interpolation functions
® and ¥ defined as above, satisfy the pointwise inequality (7.2.3) as it is immediate to check. Indeed,

for any z € ,
2Alz| 2|z

Plr@) W) = T 07 = T el =

since || > 1. Moreover, a straightforward calculation shows that ® is concave on [0,e472]. As a
consequence of Theorem 2.1 we obtain the following functional generalized interpolation inequality.
Let f € L?(Q;C) \ {0} be such that |.|f(.) € L*(Q;C). Then,

A
£l <2, | [ 15@)lalds | (7.2.15)
Q

A+In /|f )2e= Al dz
|f|| T2(0)
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In the same way, we have
A

1 & ’
> Z e—An|un|2
lellee ) 2=

for any u = (un)nen € £2(N;C) \ {0} such that (nu,)nen € ¢2(N;C). Note that one always has for
any A>1

(7.2.16)

lullezy < 24| D nPlun|?
n=1 A—1In (

/|f ‘2 7A|x|daj < €7A < eA 2
< T

and

ZefAn|un|2 2’

|“H62<N> n=1

(since e et 2 —= A> 1) so the above quantities takes their values in the domain of concavity
of . Tt follows that estimates (7.2.15) and (7.2.16) always make sense.

7.3 Optimality

It this section, we discuss the notion of optimality for the pairs of functions (®, V) satisfying the
interpolation inequalities above. We will also give sufficient conditions guaranteeing the pair is optimal.
Throughout this section, for simplicity, we assume that = (m,00) (for some m € R) and that
dp = dx is the Lebesgue’s measure. Before introducing the definition of optimality, we need the

following lemma.

Lemma 7.3.1. Let m € R and let w1, we, ® and U satisfy (7.2.5) — (7.2.9). Let 6 € (0,w1(m)] be
such that ®(9) = W’ if ¥ (we(m)) >0 and let § = +o0, if U (wa(m)) = 0. We define

I
" (s)

Then Hae w is a positive, increasing and continuous function on (0,9) and }gl(l) Haow(t) = 0. Further-

vVt € (0,5), H<1>7q;(t) = (731)

more,

1
vt € (0,0), 0 < ———— < Houw(l). (7.3.2)
wae 0wy~ (t) ’

Finally,

Hop(t) =27 <\Ij é)) , (7.3.3)

for any t € (0, Ho w(0)).

Remark 7.3.2. Note that such a § € (0,w;(m)] exists because of the continuity of ®.
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Assuming for the moment that Lemma 7.3.1 holds (we shall return to its proof later), the following
definition makes sense.

Definition 7.3.3. Let m € R and wy, wy, ® and V¥ satisfy (7.2.5)-(7.2.9). We say that (®, ¥) is an
optimal pair for the weights (w1, ws) if the function He v defined by (7.3.1) satisfies

0 1
Wa O W

Here and in the sequel, by He v 2 ———— we mean that there exist two constants C' > 0 and

W O W]
€ € (0,0) such that

vt € (0,2) L o eeiy < —C (7.3.5)
yE)y T 1T X X T g/ e
wrowi (1) T wpowr (1)

where § > 0 is given in Lemma 7.3.1.

In view of (7.3.2) when (7.3.4) holds, the function He ¢ (t) goes to 0 as ¢ \, 0 as rapidly as possible.
The pair (®, ¥) is then optimal in that sense. As we shall see in applications, this will yield the
optimal decay rate for the energy of solutions of damped wave-like equations.

Remark 7.3.4. It is important to note that the notion of optimal pair (®, ) depends on the weights
(w1, wz). On the other hand, given two weights w; and wy satisfying (7.2.5)—(7.2.6) and a pair (@, ¥)
satisfying (7.2.8)—(7.2.9), if ®~1 ( L ) is convex then the pair (®, V) is necessarily optimal with

Wows

respect to the weights w; and wsy, where we have chosen wy(t) = &1 (m) . Indeed, (7.2.5)—
(7.2.8) hold for (wy,ws, ®, ¥). Moreover,

1
U(wa(t))
and (7.2.9) is fulfilled. Finally, a straightforward calculation gives

def 1 1
How(t) = =

O(wr (1)) W (wa(t) = U(wa(t)) =1,

Hence (7.3.4).
Now we give a sufficient condition for the pair (®, ¥) to be optimal.

Proposition 7.3.5. Let m € R and let wy and ws be satisfying (7.2.5) — (7.2.6). Let 1 < p < 0o, and

set
V> wa(m),  Tp(t) = (wyl(t)? (7.3.6)
and

vt (0,wi(m)), ®p(t) = ———, (7.3.7)

together with ®,(0) = 0.

If — is concave on (0,wq(m)) then (®,, ¥,) constitutes an optimal pair for the weights (w1, ws).

(wih)?



J. Differential Equations 240(2) (2007) 324-356 131

On the other hand, the following Proposition guarantees that, once we have an optimal pair (®, ¥) it is
easy to build other optimal pairs. Of course, in practice, when applying the interpolation inequalities
to obtain decay rates for evolution equations, it is irrelevant whether one uses an optimal pair or
another since all of them, by definition, yield the same decay rates.

Proposition 7.3.6. Let m € R and let wy, wa, ® and ¥ be satisfying (7.2.5) — (7.2.7). Let 0 < p < oo,
let (0,9) be the interval of definition of How and let (0,0,) be the interval of definition of Hor wr
(see Lemma 7.3.1). Then

Vt € (O,inf{(5, 5p}), H(I)’\I/(t) = Haor wr (t)
In particular, if (®, V) is an optimal pair for the weights (w1,ws), then the same holds for (PP, UP).

Remark 7.3.7. In other words, Proposition 7.3.6 means that, from the point of view of the decay of
He w, the inequalities 1 < @(wq)¥(wq) and 1 < PP (wy)PP(ws), yield the same result.

Proof of Lemma 7.3.1. Let ® and ¥ be any functions satisfying (7.2.8)—(7.2.9) and ¢ > 0 be defined
as in Lemma 7.3.1. It follows from (7.2.5)—(7.2.9) and definition of ¢ that

1
Vi € (0,w1(m)), 1 < D)W (wy 0w (t)) and Vit € (0,5), 0< d(t) < T () < 400
2
We then have 1
Since ¥~! is increasing on (¥(wz(m)),00), this gives
— 1 def 1 _
Vt€0,5,0<\111< > < wyow; L(t),
( ) (I)(t) 7‘[@7\11@) 2 1 ( )
which yields (7.3.2). Properties of Hg ¢ follows easily from (7.2.7)—(7.2.8). O

Proof of Proposition 7.3.6. Let s € Hao ((0,6)) N Har,wr((0,0p)). Then we have,

Haov,wr(t) =5 — — Eq)pl(t)) =5 <« ()7} (q);@)) — é
— (I)pl(t) _ g (i) — ﬁ _y (i) = Heul)=s.
Hence the result. O

Proof of Proposition 7.3.5. Assume that hypotheses of Proposition 7.3.5 are satisfied. It follows
from Lemma 7.2.3 and (7.2.6) that ¥, satisfies (7.2.8). By (7.2.5) and the fact that 11 T is concave

Wy

on (0,wq(m)), the function @, defined as in (7.3.7) satisfies (7.2.7). By (7.3.6) and (7.3.7), (7.2.9) and
(7.3.4) are verified. Indeed, by Proposition 7.3.6,

~—
]

Ha,w, () = Hop gz (t) =

1 1 1

(TP Hwr (1) (W) Hwr ' (1) wrowt(t)
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This concludes the proof. O

1
Remark 7.3.8. Note that the hypothesis p > 1 in Proposition 7.3.5 is made to ensure that (w{l) P

1
is a concave function. So it follows from the above proof that, if 0 < p < 1 is such that (w; 1) P is
concave, then the conclusion of Proposition 7.3.5 still holds.

Remark 7.3.9. Proposition 7.3.6 shows the non uniqueness of the optimal pairs (®, ¥). One may
give other examples. Let m € R and let w; and wy be satisfying (7.2.5)—(7.2.6). Following the proof of

L__ is concave then the functions ¥ = Id and ® = L
w20ow; wa0w]

Proposition 7.3.5, we can show that if .

are an optimal pair of functions.

7.4 Application to the stabilization on the wave equation with
Dirichlet boundary condition

In this section, we give some applications of Section 7.2. We recover and extend the results of Ammari,
Henrot and Tucsnak [6], Ammari and Tucsnak [7] and Jaffard, Tucsnak and Zuazua [110]. We will
detail the first example (Subsection 7.4.2) and we will indicate how we proceed for the others equations
(for conciseness of the paper, we will not detail the proof, the method being very technical). We
apply our interpolation inequality to the stabilization of a wave equation with a damping control
concentrated on an interior point (Subsection 7.4.2) and to the stabilization of a Bernoulli-Euler
beam with a damping control concentrated in an interior point (Subsection 7.5.2).

7.4.1 Explanation of the method

To set the context, we introduce some notations and refer to Ammari and Tucsnak [3] for more details.
We consider u the solution of the following equation.

ug + Au+ BB*u; =0, (t,z) € (0,00) x I,
u(0,2) =u’(z), wel, (7.4.1.1)
ug(0,2) = ul(z), wel,

where A is a linear unbounded self-adjoint operator, B € L(U;D(A2)*), (U,| . |lv) is a complex

YasLEL

Hilbert space, D(Az) = D(A) "%, Julls = /{Au,u), D(AZ)* is the topological dual of the space
D(Az2), I = (0, L) is an interval of R and where the initial data (u°,u') are chosen in a Banach space
V x L2(I), in which equation (7.4.1.1) is well set. The associated energy E of u is given by

1 1
ve >0, B(u(®) = 5 (@l + 14200 (7.4.1.2)

and satisfies

VE s >0, Bu(t) — Blu(s)) = — / 1(B*u):(0)]|3do < 0. (7.4.1.3)
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Typically, V x L%(I) = D(Az) x L2(I) is the space for which the energy is well-defined and U = R.

But we need more regularity and we choose (u°,u') € D(A), where

0 Id
A= ( ~A -BB* )

Denote by (an)n>0 the sequence of the Fourier’s coefficient of u? and by (bn)n>0 the u' one. We also

consider v the solution of
vy +Av =0, (t,z)€ (0,00) %I,
v(0,2) =u’(z), xcl, (7.4.1.4)
v(0,7) = ul(x), zel

Depending of the spaces V and D(A) we have chosen, we obtain for (u",u') € D(A) x V,

1, ) 350y = ana + b2 )wa (n),

def

E(u(0)) = *H(u Uy xz2) = an n 00,

for some weight wo satisfying (7.2.6) and some p € [0, 00). Roughly speaking, in our examples, this
comes from the expansion of u° and u' in Fourier’s series and Parseval’s identity.

First, we show that there exist a time T" > 0, two constants C' > 0 and C; > 0 and a weight w;
satisfying (7.2.5), such that for any initial data (u®,u') € V x L2(I),

T T
[ izaczc [j@oolkas o Z n(a + B2 )or (n), (7.4.15)
0 0
where the last estimate comes from Ingham’s inequality (Ingham [109]). For a complete example, see

Lemmas 7.4.3.10 and 7.4.3.11.

Second, we define the weak energy E_ and the strong energy F as follow.

E,(0) = i nP (a2 + b2 )wa(n), (7.4.1.6)
n=0
— i nP(a2 + b2), (7.4.1.7)
E_(0) = Z nP (a2 + b2 )wi (n). (7.4.1.8)
n=0

Third, we show that there exist two functions ® and ¥ satisfying (7.2.7) and (7.2.8). From Theo-
rem 7.2.1, we have (7.2.4). Typically, we choose ®(t) = w‘#l(t) and U(t) = wy '(t), where @(t) = “’1,@
with p € {0,2,4}. From (7.2.4) and (7.4.1.6)—(7.4.1.8), we deduce that

-1 1 -1 E(0)
E_(0)> B0 ' [ ——— | = B(O)Hg , (7.4.1.9)
\IJ(EE%EJO))) o <E+(0)>
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where 7—[;’1\1, is defined by (7.3.3). Putting together (7.4.1.3), (7.4.1.5) and (7.4.1.9), we obtain

E(T) < E(0) — C1E(0)Hg Yy < E(0) > : (7.4.1.10)

See Lemma 7.4.3.12 for a complete example.

Fourth, we use (7.4.1.10), the semigroup property and the method of Ammari and Tucsnak [8] to
show that

1
Vt >0, BE(t) < CHow (m) 1w, u") [ B4y (7.4.1.11)

Their proof is based on an interpolation method. See Theorem 7.4.3.5 for a complete example.

7.4.2 Notations for the wave equation (7.4.2.1) with Dirichlet boundary
condition and known results

We consider a wave equation with a damping control concentrated on an interior point a € (0,1) with
homogenous Dirichlet boundary condition,
Ut — Uge + dqus(t,a) =0, (t,x) € (0,00) x (0,1),
u(0,z) = ul(z), us(0,2) = u'(z), z€(0,1), (7.4.2.1)
u(t,0) =u(t,1) =0 t€[0,00).
Let V4 = Hg(0,1). A direct calculation gives that for any u € Vi, |lullr2(0,1) < ||tz ll£2(0,1), SO We may
endow Vi of the norm [Jullv, = [|uz|l12(0,1), for any w € V4. Let X3 = V4 x L?(0,1),
d2
Y1 = (Hy(0,1) N H?*(0,a) N H?(a,1)) x Hj(0,1), D(A;)=H;(0,1)NH?*(0,1), A = 3
x

D) = {(u0) € i Thlan) - fhla) =v(@

with
s )y = a0 = lulro,my + lilrs ) + Holg 0.0
and let A; = ( ?4 I? ) . We define the energy FE; for u solution of equation (7.4.2.1) by
a1 —Uqa
1 2 2 1 2
vt >0, Br(u(®) = 5 (lue®lz ) + e ®)F20,)) = 510, @)l (7.42.2)

Well-posedness and regularity results
Let a € (0,1). We recall that for any (u’,u!) € Xj, there exists a unique solution (u,u;) €
C([0,00); X1) of (7.4.2.1). Moreover, u( . ,a) € H.

loc
in L2 .([0,00); H~1(0,1)). In addition, u satisfies the following energy estimate.

([0,00)). Thus equation (7.4.2.1) makes sense

YVt > 520, Er(u(t)) — Ev(u(s)) = — / lug (0, a)*do < 0. (7.4.2.3)
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If furthermore (u®,u') € D(A;) then (u,u;) € C([0,00); D(A1)). Finally, A; is m-dissipative with
domain dense in X; so that A; generates a semigroup of contractions (Si(t)):>0 on X; and on
D(A;), which means that

V(w,ut) € Xy, [l(u(t), w8l x, < 16, uh)llx,,
V(O ut) € DIA), [I(u(t), u(t) ey < 11 uh)llpeay), (7.4.2.4)

for any ¢t > 0. For more details, see for example Theorem 1.1 and Lemma 2.1 of Tucsnak [175] and

Proposition 2.1 of Ammari and Tucsnak [8]. We also recall that E4(u(t)) 1222900, or equivalently

Jlim (Ja(®)llv, + llue(®) 2 0,1)) =0,

if and only if
a ¢ Q. (7.4.2.5)

And if furthermore a satisfies (7.4.2.5) and if (u®, u') € D(A;) then we have the estimate

vt = 0, ||(U(t)vut(t))||X1 < Hsl(t)”L(D(Al);Xl)H(u07ul)”D(Al)’

with 75lim |S1()]l 2(p(ar);x1) = 0 (Proposition 1.1 of Tucsnak [175]). Finally, it follows from (7.4.2.2)~
—00
(7.4.2.3) that

Vt 2520, [[(ut), u()lx, < [(uls), uls))lx, - (7.4.2.6)

Our goal is to describe the decay rate of Eq(u(t)) as ¢ — oo, for any ¢ € (0,1) as soon as
t—>o0

Eq(u(t)) — 0, when the lack of observability occurs. By (7.4.2.5), this means that a ¢ Q.

Known decay
Now, we show that our method allows us to recover the known results (Jaffard, Tucsnak and Zua-
zua [110]). We recall the definition of an irrational algebraic number.

Definition 7.4.2.1. Let d € N, d > 2. An irrational number a is said to be algebraic of degree
d if there exists a minimal polynomial function P of degree d with rational coefficients such that
P(a) = 0. P is minimal in the sense that if @) is a polynomial function with rational coefficients such
that Q(a) = 0 then deg @ > deg P.

If @ is an irrational algebraic number of degree d then it follows from Liouville’s Theorem that there
exists a positive constant C' = C(d) such that for any (m,n) € Z x N,

a— %‘ > n%. This implies
that there exists a positive constant ¢; = ¢;1(d) such that

sin <(n + ;) 7ra> ’ > W (7.4.2.7)

C1

—— and
nd—1

Vn € N, |sin(nma)| >

Notation 7.4.2.2. We denote by S the set of all irrational numbers a € (0, 1) such that if [0, ay, ..., an, ...

is the expansion of a as a continued fraction, then (a,)nen is bounded.

Let us notice that S is obviously infinite and not countable and by classical results on Diophantine

approximation (see Cassals [56], p.120), A(S) = 0, where ) is the Lebesgue’s measure. Moreover, by
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Euler-Lagrange’s Theorem (see Lang [126], p.57), S contains the set of algebraic irrational numbers
a € (0,1) of degree 2. According to a classical result (see Tucsnak [175] and the references therein), if
a € S then estimates (7.4.2.7) hold with d = 2. Finally, for any ¢ > 0, there exist two A-measurable
sets I. C (0,1) and J. C (0,1) and a constant ¢z = ca(e) > 0 such that A\(I.) = A(J.) = 1 and such
that for any a € I. and any b € J_,

1
Vn € N, |sin(nma)| > nfis and  |sin <(n + 2) 7Tb) ’ > W (7.4.2.8)
Let us notice that by Roth’s Theorem (see Cassals [56], p.104), I. and J. contain all algebraic irrational
numbers of (0, 1). The following result is due to Jaffard, Tucsnak and Zuazua [110] (Theorem 3.3).

Proposition 7.4.2.3 ([110]). Let S be defined in Notation 7.4.2.2 and let for any t > 0, wa(t) = t2.
We have the following result.

1. Let a € S and set for any t > 0, wi(t) = ¢, where ¢1 is given by (7.4.2.7) with d = 2. Then
there exists a constant C = C(a) > 0 such that for any initial data (u®,u') € D(Ay), the

corresponding solution u of (7.4.2.1) verifies

C 1y\(12
Er(u(t)) < m”(uo,u NDar) (7.4.2.9)

for any t > 0. Furthermore, time decay in (7.4.2.9) is optimal in the sense of Definition 7.3.3.

2. Let ¢ > 0 and set for any t > 0, wi(t) = 7%=, where cz is given by (7.4.2.8). For almost
every a € (0,1) N Q°, there exists a constant C = C(a,e) > 0 such that for any initial data
(u®, u') € D(Ay), the corresponding solution u of (7.4.2.1) verifies

C
By (u(t) € ———— [, u") 3. (7.4.2.10)

(t+1)7+

for any t > 0. Furthermore, time decay in (7.4.2.10) is optimal in the sense of Definition 7.3.3.

7.4.3 New results

Before stating the main results, let us make the following definition.
Definition 7.4.3.1. We say that the functions (w1,ws,®, V) are an admissible quadruplet if the
following assertions hold.
1. The quadruplet (w1, ws, P, ¥) satisfies (7.2.5)—-(7.2.8) on (0,00) and (7.2.9) holds on (1, 00).
2. One of the two following conditions is satisfied.
1
(a) The function t — gH;’l\I, (t) is nondecreasing on (0, 1), where Hq?,l\y defined by (7.3.3) has
to verify He w((0,9)) D (0,1).
(b) For any t > 0, ®(t) = Clt% and ¥(t) = Cgté for some p > 1, ¢ > 1 and constants
Cy,Cy > 0. In particular, we have for any ¢ > 0, Ho w(t) = (C’lcgl)qt%.

In our applications, the weight w; comes from an oscillating function and it is not clear that it satisfies

(7.2.5). So we precise how we obtain such a weight.
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Lemma 7.4.3.2. Let —co < a < b < 00 and let € : [a,b) — (0,00) be a continuous function such
that lirtn/il?fa(t) = 0. Then there ezists a convex function ¢ € Cl([a,b);R) such that 0 < ¢ < € and

¢ <0 on [a,b).
Proof. Firstly, we note that we can find a positive function & € C!([a,b); R) such that 0 < & < ¢

and €’ < 0 on [a,b). So it is enough to consider & to be such a function. Secondly, up to a bijective

transformation conserving the convexity, we may assume that [a,b) = [0,1). Set
vVt € [0,1), f(t) = max{e'(s); 0 < s < t}.

Define ¢ by

Vit e [0,1), p(t) = —/f(s)ds and ¢(1) =0.

Since f is monotone and &’ is continuous, it follows that f € Cy([0,1);R). Then ¢ is well-defined,
¢ € Cp([0,1;R)NCL([0,1);R) and ¢’ = f on [0,1). Clearly, » > 0 and ¢’ < 0 on [0,1). In addition,
¢’ is nondecreasing so that ¢ is convex. Finally, for any o € [0,1), ¢'(0) > €'(0). Integrating this
expression on (t,1), for any ¢ € [0,1), and using that (1) = (1) = 0, we get ¢(¢) < &(¢). This

concludes the proof. O

Let (un)nen C (0,00) be such that li{ggfun = 0. Let € € C([0,00); R) be such that 0 < e(n) < up,
for any n € N. Let ¢ € C([0,00);R) be a decreasing and convex function such that for any ¢ > 0,
0 < ¢(t) < e(t) (which exists by Lemma 7.4.3.2) and consider C C [1,00) X [0,00) the closure
of the convex envelope of the set {(n,u,); n € N}. Finally, fix arbitrarily ¢ > 1. Then the set
Ce en ({t} x R) is nonempty, closed and Lemma 7.4.3.2 ensures that for any s; € R such that

(t,s¢) € Cy,
0 < p(t) < s¢.
So by compactness, we may define the function w; as
Vit > 1, wi(t) = min{ss; (¢, s:) € Ct} (7.4.3.1)

and extend w; as a decreasing, continuous and convex way on [0,1]. From the above discussion,
Lemma 7.4.3.2 and Remark 7.2.8, wy satisfies (7.2.5) with m = 0. This justifies the following definition.
Definition 7.4.3.3. Let (up)nen C (0, 00) such that lim inf u,, = 0. The function wy defined on [0, c0)
n—roo
by (7.4.3.1) is called the lower convex envelope of the sequence (up)nen.
In some sense, wy is the “nearest” convex and decreasing function of (uy)nen satisfying 0 < wi(n) <
Uy, for any n € N. It will be useful to consider the weights w; and ws defined as following. Let
a € (0,1)NQ°.
w is the lower convex envelope of the sequence (sin?(n7a)),en, (7.4.3.2)
Yt >0, wy(t) = t2 (7.4.3.3)
The following lemma shows that such definition for weights is consistent with the notion of admissible

quadruplet.
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Proposition 7.4.3.4. Let (uy)neny C (0,00) be such that liminfw, = 0, let wy be its lower convex
n— oo

envelope (Definition 7.4.3.2), let p > 1, let o € [0,1] and set for any t > 0, wa(t) = (¢t + a)P. Define

forany t > aP, U(t) = t5 —a and for any t >0,

wilt) and ®(t) = @_1(75).

Then the quadruplet (w1, wa, @, V) is admissible and for any t > 0,

p(t) =

1

o) = T T oy

Proof. By definition of wy, we and ¥, (7.2.5), (7.2.6) and (7.2.8) are satisfied. By Lemma 7.2.6 applied
to f = wy and with m = 0 and M = w(0), it follows that ® satisfies (7.2.7). Moreover, we easily
check that ® > —L7 on (0,w:i(1)]. As a consequence, (7.2.9) holds on [1,00), so that condition 1 of
Definition 7.4.3.1 is fulfilled. Finally, by Lemma 7.3.1 we have

def 1
Tt

Vt >0, Hou(t) =

vt € (0,a7P), H(t) Hyly(t) = (1 - at%)_p wi (t—% - a) ,
1

(o= 1(t) + )™

where we used the notation o = 400 if & = 0. It is clear that 7 is increasing on (0,a~?) D (0,1),
so that (2a) of Definition 7.4.3.1 holds and (wy,ws, ®, ¥) is an admissible quadruplet. O

The main results are the following.

Theorem 7.4.3.5. Let a € (0,1) N Q° and let wy and ws be defined by (7.4.3.2) — (7.4.3.3). Let ®
and U be two functions such that the quadruplet (wy,wq, ®, V) is admissible (Definition 7.4.3.1). Let
Ha,w be defined by (7.3.1). Then there exists a constant C = C(a) > 0 such that for any initial data
(u®,ul) € D(Ay), the corresponding solution u of (7.4.2.1) verifies

1
Vt >0, Ey(u(t)) < CHaw (t+1) 1(®, u) D,y (7.4.3.4)

if ® and U satisfy the hypothesis (2a) of Definition 7.4.3.1 and

C
Yt >0, Br(u(t) < ——[|(u®, uh) |5 415 7.4.3.5
1(u(t)) (t+1>;\|( ND(ay ( )
if for any t > 0, ®(t) = C’lt% and ¥(t) = CQt% for some p € [1,00), q¢ € [1,00) and constants
Cy,C3 > 0 (case (2b) of Definition 7.4.3.1).

Remark 7.4.3.6. At the light of estimate (7.4.3.4), it is clear that we would like to find some functions
® and U such that He w(t) goes to 0 as ¢t N\, 0 as rapidly as possible. This justifies Definition 7.3.3.
Moreover, Proposition 7.4.3.4 ensures that there exists a quadruplet of functions (wy,ws, ®, ¥) which

is admissible.

Concerning the explicit decay, the results are the following.
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Theorem 7.4.3.7. Let a € (0,1) NQ° and let wy be defined by (7.4.3.2). We set

w1 (t)
2

Vit >0, o(t) =

Then there exists a constant C = C(a) > 0 such that for any initial data (u®,u') € D(Ay), the
corresponding solution u of (7.4.2.1) satisfies

C

vt =0, [|(u(t), we(t)llvixr201) < 1(1>||(1f’,u1)||7>u11>-
o=

t+1
Remark 7.4.3.8. By Theorem 7.4.3.7, we are able to give the explicit decay of the energy for any
a € (0,1)NQ°. This completes the lack, since the decay was known for almost every a € (0,1) (Jaffard,
Tucsnak and Zuazua [110], Theorem 3.3).

Remark 7.4.3.9. It follows from Theorem 7.4.3.7 and Proposition 7.4.3.4 that for any (u®, u') €
D(A;), the corresponding solution u of (7.4.2.1) satisfies
1

0. ) s a0 < €0 (1

) 1 o,

for any ¢ > 0. In other words, decay of the energy directly depends on the behavior of the interpolation
function ® near 0.

Proof of Theorem 7.4.3.7. The result comes from Proposition 7.4.3.4 (applied with (up)nen =
(sin?(nma))nen, p = 2 and a = 0) and from (7.4.3.4) of Theorem 7.4.3.5. O

Proof of Proposition 7.4.2.3. Let S be defined in Notation 7.4.2.2.

Case of 1. Let a € S and let ¢; be the constant in (7.4.2.7) with d = 2.

Case of 2. Let € > 0, let I. C (0,1) be the set introduced after the Notation 7.4.2.2, let ¢y be the
constant in (7.4.2.8) and let a € I.

Preliminary. Let v > 0 and ¢ € {1,2}. We define on (0, 00) the following functions.

2 s ¢\ 2
) = iy W=tk s =2(5)" .

Let wo be defined by (7.4.3.3) and let Hq v be the corresponding functions given by (7.3.1). Then

t\ T
Vt > O, Hcp’\p(t) = 4 <2) .
&
Furthermore for any ¢ > 0, ®(wy(t))¥(w2(t)) > 1 and He w(t) = #*1(:&)
20w,
Proof of 1. Let v = 0 and ¢ = 1. The result follows by applying (7.4.3.5) of Theorem 7.4.3.5.
Proof of 2. Let v = ¢ and ¢ = 2. The result follows by applying (7.4.3.5) of Theorem 7.4.3.5. This

concludes the proof. O

Before proving Theorem 7.4.3.5, we need several results. Let us decompose the solution u as following.
For u solution of (7.4.2.1) with initial data (u®, u') € X1, we write

u(t,z) =v(t,z) + w(t, x), (7.4.3.6)
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for (t,x) € [0,00) x (0,1), where v is the unique solution of

Vit — Ugge = Oa (t,l‘) € (0700) X (0’ 1)7
=u(z), =
0.0) =), z€ .
ve(0,z) = u (z), =€ (

v(t,0) =v(t,1) =0, te0,00).

Then we have the well-known result (see for example Lemmas 4.1 and 5.3 of Ammari and Tucsnak [3]

for the proof).

Lemma 7.4.3.10. Let a € (0,1) and let T = 10. Then there exists a constant C1 = Ci(a) > 0
satisfying the following property. For any initial data (u®,u') € X1, the corresponding solutions u and
v of (7.4.2.1) and (7.4.3.7) satisfy

T T T
C1 /vf(t,a)dt < /uf(t, a)dt < 4/v§(t,a)dt.
0 0 0
Now, we decompose u’ € V; and u! € L?(0,1) as
u’(z) = Z ansin(nmz), u'(x) =7 Z nby, sin(nrz). (7.4.3.8)
n=0 n=0
We then have
0|2 1o~ o 0|2 ™ = 2 2 12 o 2
[|u ||L2(0,1) 9 Zam ||uz||L2(0,1) Y Zn U, u HL2(0,1) Y Z” by (7.4.3.9)
n=0 n=0 n=0

It follows that the solution v of (7.4.3.7) is defined by

Y(t,z) € R x (0,1), v(t,x) = i {(an cos(nmt) + by, sin(nwt)) sin(nwx)} . (7.4.3.10)

n=0

If furthermore (u°,u') € D(A;) x V4 then
0 2 0 2 7"40042 112 7740042
||uzzHL2(0,a) + ||uzzHL2(a,1) = ? Z?’L QAp s ||uz||L2(0,1) = 7 Zn bn (74311)
n=0 n=0

We have the following simple result.

Lemma 7.4.3.11. Leta € (0,1), let T = 10, let (u®,u') € X1 and let (an)nen € 2(N) and (by)nen €
¢%(N) be given by (7.4.3.8). Then

T oo
/vf(t, a)dt > 72 Z n?(a? + b2)sin?(nma), (7.4.3.12)
0

n=0

where v is the solution of (7.4.3.7) given by (7.4.3.10).
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Proof. Using (7.4.3.10), we have

/vtz(t, a)dt > 71-2/ (Z sin(nwa)(—nay, sin(nmt) + nby, cos(mrt))) dt

0 0 n=0

f7r2§ sin?(nma)(n?a? + n?b2),

where the last line comes from Parseval’s identity. Hence (7.4.3.12). O

Lemma 7.4.3.12. Let a € (0,1) NQ°, let T = 10, let wy be given by (7.4.3.2) and let wy be given by
(7.4.3.3). Let ® and ¥ be two functions such that the quadruplet (wq,ws, ®, V) satisfies hypothesis 1
of Definition 7.4.3.1 and such that Hae v ((0,5)) D (0,1). Then there ezists a constant Cy = C2(a) > 0
such that for any initial data (u®,u') € D(Ay),

0 ,.1y)2 2 0 1\|2 q/—1 ||(UO7U1)H%(1
I, = ) DI, > Collal ) B Ml | ooz ) (74813
’ D(A1)

where u is the solution of (7.4.2.1), and where ’H;}\I, is defined by (7.3.3).

Proof. By Proposition 7.4.3.4, ® and ¥ exist. We decompose u’ and u! as in (7.4.3.8). We write
Zn a2 4 b2)wi (n), (7.4.3.14)

where wy verifies 1 of Definition 7.4.3.1. By (7.4.2.3) and Lemmas 7.4.3.10 and 7.4.3.11, there exists
a constant Cy = C3(a) > 0 such that

I, M) 1%, = I(T), ue(T) Ik, = C2B-(0). (7.4.3.15)
Assume further that (u° u!) € D(A4;) x V1. We define
LR PSP
= > nt(al +b2). (7.4.3.16)
Putting together (7.4.3.16) and (7.4.3.11), we have that for any initial data (u°,u') € D(A;) x V4,

1
B (0) = 5 (ladell3e0.0) + Nulalaan + b 320y ) -
These estimates imply that
BE1(0) < [|(u®,ul) [ Bay)- (7.4.3.17)

Recall that by (7.4.2.2) and (7.4.3.9),

defl
Zn a2 +b2) f||( )%, (7.4.3.18)
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where we have set F(0) = E1(u(0)). Let © = (up)nen € £1(N;R) be defined by
vn €N, u, =n?(a2 +b3).

Then it follows from Theorem 7.2.1 (applied to the function f = u, with p = 1, the discrete measure
on P(N) and the weights wy and ws), (7.4.3.14) and (7.4.3.16)—(7.4.3.18) that

E_(0) H(Uovul)”%(/\l)
1@<|<u0,u1>n%ﬁ)@< W, )

which yields

1
. (1, uh) 34,
1w, uh)]%,

_ [, u)lI%,
E_(0) = [[(u®,u")1%, Haly <|(u07ul) '

BE_(0) > | (u® u)[%, @7

Then for any (u®,u') € D(A1) x V4,

L (7.4.3.19)
||D(.A1)

From (7.4.3.15) and (7.4.3.19), it follows that (7.4.3.13) holds for any (u’,u') € D(A4;) x V;. By
continuity of H;}\p and by density of D(A;) x V} in Y7 (which contains D(A;) and has the same norm
of D(Ay)), it follows that (7.4.3.13) holds for any (u®,u') € D(A;). Hence the result. O

Proof of Theorem 7.4.3.5. We follow the proof of Theorem 2.4 of Ammari and Tucsnak [8]. Let
T = 10. By Lemma 7.4.3.12, we have that

@ uh),
(), ue(M)%, < 1 a1k, — Coll(u®, u)|%, Ha (X :

H(UO7U1)H2@(AI)

This estimate remains valid in successive intervals [¢T, (¢ + 1)T]. So with (7.4.2.4), (7.4.2.6) and the
fact that 7'[;,1\1; is increasing (Lemma 7.3.1), we obtain that

1(u((+ D)T),ue (€ + DT, </ (u(€T), u (€T))II%,

—Co | (u(T), us(6T)) 1%, Ha <||(u((£ + )T, u (€ + 1)T))||§(1> |

2
||(U07U1)HD(A1)

(7.4.3.20)
for every ¢ € NU {0}.

Case 1. The functions ® and ¥ satisfy hypothesis (2a) of Definition 7.4.3.1.
Our expression (7.4.3.20) is the same that (4.16) in Ammari and Tucsnak [3] (with X x V = X;,

- llvixy: = || - lIpar), G = ’H;)l\l, and § = 1). The rest of the proof follows as in [3] (where (2a) of
Definition 7.4.3.1 is used). Then (7.4.3.4) follows.

Case 2. The functions ® and VU satisfy hypothesis (2b) of Definition 7.4.3.1.
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It follows that for any ¢ > 0, ’qu’l‘l,(t) = Cyt4. Using again (7.4.2.6) and the definition of 7—[;}1\1,,
(7.4.3.20) becomes

1(u((€+1)T),u (0 + DT)%, < (T, ur(0T))|%,
o, N D7), w0+ D)% (74.321)

22 ’
0, w34

for every £ € NU {0}. Our expression (7.4.3.21) is the same that (4.23) in Ammari and Tucsnak [8]
(with X x V' =X1, || [vixvs = - [p(a,) and 6 = ). The rest of the proof follows as in [5]. [

Remark 7.4.3.13. We are not able to apply directly Theorem 2.4 of Ammari and Tucsnak [8].

Indeed, in their theorem, the assumption (2.8) is

[ 0 1, w0y -0
v (¢, a)dt = COll(u”, )|V, « 120019 100, ) )
0

2
||V1><L2(O,1)

(where G = H;}\P) and we can only show the weaker estimate (by the inequalities of interpolation)

2
1, w1 s 2200,1
/ﬁm@a>cmww%aMWMG< Eaomanl B

/ [CXDIE

7.5 Others applications

7.5.1 Wave equation with mixed boundary condition

We consider a wave equation with a damping control concentrated on an interior point a € (0,1) with
a homogenous Dirichlet boundary condition at the left end and a homogenous Neumann boundary
condition at the right end,
U — Ugg + Ogue(t,a) =0, (t,2) € (0,00) x (0,1),
u(0,2) = u’(z), u(0,2) = u'(x), x€(0,1), (7.5.1.1)
u(t,0) = uy(t,1) =0, te0,00).
Notations for the wave equation (7.5.1.1) with homogenous mixed Dirichlet and Neu-

mann boundary condition
Let Vo = {ue H'(0,1); u(0) =0} . A direct calculation gives that for any u € Va, [Jullz201) <

lluzllz2(0,1), so we may endow V3 of the norm |[jully, = [uzllz2(0,1), for any u € Vi. Let Xy =
Vs x L2(0,1),
9 9 du
Yo=<ueVonH*0,a)NH*(a,1); a(l):O x Va,

2 du d?
D(A2) = u e Van H?(0,1); a(1):0 7 Agz_@,

du du

Do) = {(u.0) € Yas hlan) - Thla) =v(@)
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with
1w, 0) [ az) = 1w 0)3;, = Nl 2 (0,0) + el 2oy + 10l 0,1):

and let Ay = ( 5)4 I(; ) . We define the energy Es for u solution of equation (7.5.1.1) by
—4A2  —0q

(7.4.2.2).

Well-posedness and regularity results

Let a € (0,1). We recall that for any (u’,u') € Xs, there exists a unique solution (u,u;) €
C([0,00); X2) of (7.5.1.1). Moreover, u( . ,a) € H._([0,00)). Thus equation (7.5.1.1) makes sense
in L?

loc

([0,00); H71(0,1)). In addition, u satisfies the following energy estimate.
t
YVt > 520, Ey(u(t)) — Ex(u(s)) = — / lug (0, a)*do < 0. (7.5.1.2)

If furthermore (u®,u') € D(Az) then (u,u;) € C([0,00); D(Az2)). Finally, Ay is m-dissipative with
domain dense in X3 so that Az generates a semigroup of contractions (S2(t))i>0 on X2 and on
D(A3), which means that
V(u®u') € Xa, [I(u(t), us(t))]x, < [[(u®,u)]x,,
V(u®,u') € D(Ag), [|(u(t), us(t))llp(ar) < [, ul)]pan)s

for any ¢ > 0. For more details, see Proposition 1.1 and Section 3 p.223 of Ammari, Henrot and

Tucsnak [6]. We also recall that Es(u(t)) 12220, or equivalently

Jim (@)l + ue(®)lz20,0) = 0

if and only if
2p
2q—1’
And if furthermore a satisfies (7.5.1.3) and if (u”,u') € D(Az) then we have the estimate

V(p,q) e Nx N, a # (7.5.1.3)

V>0, [[(u(®), ue ()l x, < 1S2(0)llepianxa) | (@ uh) lpeas),
with tlg& 1S2(t)]| (D (42);x5) = O (Proposition 3.1 of Ammari, Henrot and Tucsnak [6]). Finally,
Jw >0, 3C = C(w) > 0 such that V(u u') € Xs,
Vt >0, Ex(u(t)) < Ce ' Ey(u(0))
if and only if

2p —1
a =

, for some (p,q) € NxN. (7.5.1.4)

See Theorem 1.2 of Ammari, Henrot and Tucsnak [6]. It follows from (7.4.2.2) and (7.5.1.2) that

Vt> 520, [[(u(t), u ()] x, < lI(uls), ui(s))llx,-

We are concerned by the decay rate of the energy Fa(u(t)) when it is not exponentially stable. In
particular, by (7.5.1.3) and (7.5.1.4) this implies that a € Q.

The main results are the following.
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Theorem 7.5.1.1. Let a € (0,1) N Q° and let wy be the lower convex envelope of the sequence

(o ((+3)))...

(Definition 7.4.3.3). Let wy be defined on [0,00) by wa(t) = (t+ %)2 Let @ and ¥ be two functions
such that the quadruplet (w1, wsz, @, ¥) is admissible (Definition 7.4.3.1). Let Ho w be defined by (7.3.1).
Then there exists a constant C = C(a) > 0 such that for any initial data (u®,u') € D(As), the
corresponding solution u of (7.5.1.1) verifies

1 0 ,,1\)2
> 0. Ba(ult) < CHos (g ) 1) bas

if ® and W satisfy the hypothesis (2a) of Definition 7.4.3.1 and

C

V>0, Ey(u(t)) < Gt Df

1, u) o (7.5.1.5)

if for any t > 0, ®(t) = C’lt% and ¥(t) = Cgt% for some p € [1,00), ¢ € [1,00) and constants
C1,C5 > 0 (case (2b) of Definition 7.4.3.1).

Proof. We write u’(z) = > ausin((n+ 3)7z) and ul(z) =7 > (n+ 1) bysin ((n+ 3) mz) and
n=0 n=0
we consider the solution v of (7.4.3.7) satisfying the same boundary condition as u. We follow the

method as for (7.4.2.1). Then from Ingham’s inequality (Ingham [109]) and the results of Ammari,
Henrot and Tucsnak [6] (Lemma 4.2 of [6] ; see also Lemma 2.5 of [6] and Lemma 4.1 of [8]), we obtain
for T' = 10,
T T - N .
/uf(t,a)dt > C(a)/v?(t, a)dt > C(a)r? Z (n + 2) (a? 4 b?) sin? (((n + 2) 7ra> .
0 n=0

0
Then we define

71_4 00 1 4 71'4 00 1 2
E(0) = e <n + 2) (a7 +b7) = T Z (n + 2) (a3, + b7 )wa(n),
=0

n=0

1 ? 2 9y def 1 0 ,1\(2
(an +67) = Sl u))ll,,

&
=

Il
IS
[]¢
N
3

_|_
N |

E_(0) = % 3 (n + ;)2 (a2 + b2)wi ().

The result follows from the discussion at the beginning of Section 7.4. O

Using Theorem 7.5.1.1 and Proposition 7.4.3.4 (applied with (uy,)nen = (sin2 ((n + %) Wa))neN ,p=2

and o = %) , we obtain the following result.

Theorem 7.5.1.2. Let a € (0,1) N Q° and let w1 and wo be defined as in Theorem 7.5.1.1. We set

w1 (t)
2

Vit >0, o(t) =
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Then there exists a constant C = C(a) > 0 such that for any initial data (u®,u') € D(As), the

corresponding solution u of (7.5.1.1) satisfies

C

vt 2> 0, [[(u(®), ue(t)llvexz2(0,1) < 1(1>||(u0,u1)ll7a(Az>-
o=

t+1

Remark 7.5.1.3. By Theorem 7.5.1.2, we are able to give the explicit decay of the energy for any
a € (0,1) N Q°. This completes the lack, since the decay was known for almost every a € (0,1), as
stated in Theorem 1.4 of Ammari, Henrot and Tucsnak [6]. In addition, with help of (7.5.1.5) of
Theorem 7.5.1.1, our method allows us to recover the results of that Theorem 1.4.

7.5.2 Bernoulli-Euler beam with a pointwise interior damping control

We consider a Bernoulli-Euler beam with a damping control concentrated in an interior point a €
(0, 1),
Ut + Ugzzx + 6aut(ta a) = O? (t,l‘) € (07 OO) X (07 1)’
u(0,z) = u®(x), wu(0,2) =u'(z), x€(0,1), (7.5.2.1)
w(t,0) = u(t, 1) = Upe(£,0) = uze(t,1) =0, ¢ € [0,00).
We also could have chosen the boundary condition

YVt =20, u(t,0) = uz(t, 1) = Uge (t,0) = Ugee(t,1) =0,

as in Ammari and Tucsnak [7]. But for conciseness of the paper, we do not consider this case.

Notations for the Bernoulli-Euler beam equation (7.5.2.1)

Let V3 = Hj(0,1) N H?(0,1). By Cauchy-Schwarz’s inequality, we have ||ull12(0,1) < [[tallr2(0,1) <
ltzell22(0,1), for any u € V3. So we may endow V3 of the norm |ullv, = [|tzz||£2(0,1), for any u € V3.
Let X5 = Vi x L2(0,1),

1 9 4 4 d%u d2u
d?u d?u d*
D(A3) = H}(0,1) N H*(0,1); —(0) = —(1) =0 Az = —
() = {ue HODAH 0.0 50 = TEm =0} 4=
d%u du dBu dBu
D(A3) = {(%’U) €Ys; @(GH = @(a—) and @(GH - @(a_) = U(a)} ;
with
1w, 0) [ aq) = 1w 0)I3, = Nl s 0,0) + Nl Fragany + I0ll20,1):
and let Az = ( ?4 I(; ) . We define the energy F3 for u solution of equation (7.5.2.1) by
—4A3  —Ua
1 2 2 1 2
v > 0, By(u(t) = 5 (Iue® e + e OliFan) = 510@u@®)lk,  (75.22)

Well-posedness and regularity results
We recall that for any (u”,u!) € X3, there exists a unique solution (u,u;) € C([0,00); X3) of (7.5.2.1).
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Moreover, u( . ,a) € H{ _([0,00)) and thus equation (7.5.2.1) makes sense in L2 ([0,00); H2). In
addition, u satisfies the following energy estimate.

Vt>s>0, Es(u(t)) — Es(u(s)) = — / lu¢ (0, a)|*do < 0. (7.5.2.3)

If furthermore (u®,u') € D(A3) then (u,ut) € C([0,00); D(A3)). Finally, Az is m-dissipative with
domain dense in X3 so that Az generates a semigroup of contractions (Ss(t));>0 on X3 and on
D(As), which means that

V(' u') € X, [[(u(t), ue())llxs < II(u’,u)llx,,
V(u®,u') € D(As), [I(u(t), ue(t)Ip(as) < (", ul)llpeay),

for any ¢ > 0. For more details, see for example Proposition 2.1 of Ammari and Tucsnak [3] ; Section 2
p.1161, Proposition 2.1 and Section 5 p.1173-1174 of Ammari and Tucsnak [7]. We also recall that
t—> o0

Es(u(t)) —— 0, or equivalently

Jim (lu@®llvs + llue(®)lz2(0,1)) = 0
if and only if
" 20. (7.5.2.4)

And if furthermore a satisfies (7.5.2.4) and if (u’,u') € D(Aj3) then we have the estimate

vt 20, [|(ut), ue(t)llx, < 1S3l £(p(as)ixs) |, uh)llpeay),

t
with tlim 1S3(t)]| (D (A3);x5) = O (Proposition 2.1 and Section 5 p.1174 of Ammari and Tucsnak [7]).
Finally, it follows from (7.5.2.2)—(7.5.2.3) that the following holds.

VE 2520, [[(u(t), ue (b))l xs < [I(uls), uels))]x;-

The goal is to establish the decay rate of FEs(u(t)) as ¢ — oo, for any a € (0,1) as soon as
Es(u(t)) I, 0, when the lack of observability occurs. In particular, by (7.5.2.4), this implies

that a ¢ Q.

Theorem 7.5.2.1. Leta € (0,1)NQC, let wy be the lower convex envelope of the sequence (sin?(nra))nen
(Definition 7.4.3.3) and let wy be defined on [0,00) by wo(t) = t*. Let ® and ¥ be two functions such
that the quadruplet (wq,ws, ®, V) is admissible (see Definition 7.4.3.1) and let How be defined by
(7.3.1). Then there exists a constant C = C(a) > 0 such that for any initial data (u°,u') € D(As3),
the corresponding solution u of (7.5.2.1) verifies

1 0, 1y\12
>0, Bau(t) < CHos (g ) 105 B

if ® and U satisfy the hypothesis (2a) of Definition 7.4.3.1 and
C

Yt >0, Es(u(t)) < ——[|(u®, u))||%, 41, 7.5.2.5
3(u(t)) (t+1)%H( NDas) ( )

if for any t > 0, ®(t) = Citr and U(t) = Cota for some p € [1,00), g € [1,00) and constants
Cy,C3 > 0 (case (20) of Definition 7.4.3.1).
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o0 o0

Proof. We write v’(z) = . a,sin(n7z) and ul(z) = 72 Z n2b, sin(nmr) and we consider the
n=0

solution v of V¢ + Vypre = 0, satisfying the same boundary Condltlon and having the same initial data

as u. We follow the method as for (7.4.2.1). From Ingham’s inequality (Ingham [109]) and Lemmas 3.3
and 5.1 of Ammari and Tucsnak [7] (see also Lemmas 4.1 and 5.7 of Ammari and Tucsnak [3]), we
obtain for T' = 10,

T T -
/u?(t, a)dt > C(a) /vf(t, a)dt > C(a) Z n*(a2 + b2) sin®(nrma).
0 0

n=0

Then we define

Zn az +b2) = Zn aZ 4 b2 wa(n),
of 1
Zn an +07) < S uh)

- % Z n*(a2 + b2 )wy (n).
n=0

The result follows from the discussion at the beginning of Section 7.4. 0

Using Theorem 7.5.2.1 and Proposition 7.4.3.4 (applied with (u,)neny = (sin?(n7a))pen, p = 4 and
a = 0), we obtain the following result.

Theorem 7.5.2.2. Let a € (0,1) NQ° and let wy and wo be defined as in Theorem 7.5.2.1. We set
wl(t)

t
Then there exists a constant C = C(a) > 0 such that for any initial data (u®,u') € D(As), the
solution u of (7.5.2.1) satisfies

YVt >0, o(t) =

C

()

Remark 7.5.2.3. By Theorem 7.5.2.2, we are able to give the explicit decay of the energy for any

vt 2> 0, [(u(®), ue(8)llvax 22 0,1) < (", u!)llpcay)-

a € (0,1)NQc. This completes the lack, since the decay was known for almost every a € (0,1) (Ammari
and Tucsnak [7], Theorem 2.2). In addition, with help of (7.5.2.5) of Theorem 7.5.2.1, our method
allows us to recover the decay of Theorem 2.2 in Ammari and Tucsnak [7].
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Chapitre 8

On damped second-order gradient
systems

with JEROME BOLTE* AND MOHAMED ALI JENDOUBI'

Abstract

Using small deformations of the total energy, as introduced in [97], we establish that damped second order
gradient systems

u’ (t) +qu' (t) + VG(u(t)) = 0,

may be viewed as quasi-gradient systems. In order to study the asymptotic behavior of these systems, we prove
that any (nontrivial) desingularizing function appearing in KL inequality satisfies ¢(s) > c4/s whenever the
original function is definable and C?. Variants to this result are given. These facts are used in turn to prove that
a desingularizing function of the potential G also desingularizes the total energy and its deformed versions. Our
approach brings forward several results interesting for their own sake : we provide an asymptotic alternative
for quasi-gradient systems, either a trajectory converges, or its norm tends to infinity. The convergence rates
are also analyzed by an original method based on a one-dimensional worst-case gradient system.

We conclude by establishing the convergence of solutions of damped second order systems in various cases
including the definable case. The real-analytic case is recovered and some results concerning convex functions
are also derived.

8.1 Introduction

8.1.1 A global view on previous results

In this paper, we develop some new tools for the asymptotic behavior as ¢ goes to infinity of solutions
uw: Ry — RY of the following second order system

u”(t) +yu'(t) + VG(u(t)) =0, teR,. (8.1.1.1)
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Here, v > 0 is a positive real number which can be seen as a damping coefficient, N > 1 is an integer
and G € C?(RY) is a real-valued function. In Mechanics, (8.1.1.1) models, among other problems,
the motion of an object subject to a force deriving from a potential G (e.g. gravity) and to a viscous
friction force —vyu'. In particular, the above may be seen as a qualitative model for the motion of a
material point subject to gravity, constrained to evolve on the graph of G and subject to a damping
force, further insights and results on this view may be found in [13, 50]. This type of dynamical system
has been the subject of several works in various fields and along different perspectives, one can quote
for instance [14] for Nonsmooth Mechanics, [18, 37] for recent advances in Optimization and [150] for

7 ? ]'

The aim of this work is to provide a deeper understanding of the asymptotic behavior of such a system

pioneer works on the topic, partial differential equations and related aspects [

and of the mechanisms behind the stabilization of trajectories at infinity (making each bounded orbit
approach some specific critical point). Such behaviors have been widely investigated for gradient
systems,

o' (t) + VG(u(t)) = 0,

for a long time now. The first decisive steps were made by Lojasiewicz for analytic functions through
the introduction of the so-called gradient inequality [134, ]. Many other works followed among
which two important contributions : [49] for convex functions and [124] for definable functions. Sur-
prisingly the asymptotic behavior of the companion dynamics (8.1.1.1) has only been “recently” ana-
lyzed. The motivation for studying (8.1.1.1) seems to come from three distinct fields PDEs, Mechanics
and Optimization. Out of the convex realm [135, 4], the seminal paper is probably [97]. Like many
of the works on gradient systems the main assumption, borrowed from Lojasiewicz original contri-
butions, is the analyticity of the function — or more precisely the fact that the function satisfies the
Lojasiewicz inequality. This work paved the way for many developments : convergence rates studies
[99], extension to partial differential equations [160, , , 98, , , 66, 85, 84, , 18], use of
various kind of dampings [64, (5] (see also [52, , 88, ]). Despite the huge amount of subsequent
works, some deep questions remained somehow unanswered ; in particular it is not clear to see :

— What are the exact connections between gradient systems and damped second-order gradient

systems ?
— Within these relationships, how central is the role of the properties/geometry of the potential
function G ¢

Before trying to provide some answers, we recall some fundamental notions related to these questions;
they will also constitute the main ingredients in our analysis of (8.1.1.1).
Quasi-gradient fields. The notion is natural and simple : a vector field V is called quasi-gradient
for a function L if it has the same singular point (as VL) and if the angle o between the field V
and the gradient VL remains acute and bounded away from 7/2. Proper definitions are recalled in
Section 8.3.1. Of course, such systems have a behavior which is very similar to those of gradient
systems (see Theorem 8.3.1.2). We refer to [19] and the references therein for further geometrical
insights on the topic.
Liapunov functions for damped second order gradient systems. The most striking common
point between (8.1.1.1) and gradient systems is that of a “natural” Liapunov function. In our case, it
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is given by the total energy, sum of the potential energy and the kinetic energy,
Lo
Br(u,v) = Gu) + 3 vl

The above is a Liapunov function in the phase space, more concretely

B (u(t), ' (1)

< (G0 + o)
e 0P

Contrary to what happens for classical gradient systems the vector field associated with (8.1.1.1) is
not strictly Lyapunov for Er : it obviously degenerates on the subspace [v = 0] (or [u' = 0]). The use
of Er is however at the heart of most results attached to this dynamical system.

KL functions. A KL function is a function whose values can be reparametrized in the neighborhood
of each of its critical point so that the resulting functions become sharp! ). More formally, G is
called KL on the slice of level lines [0 < G < 1] def {u € RN;0 < G(u) < ro}, if there exists
¢ € C°([0,79)) N C*(0,70) concave such that p(0) =0, ¢’ > 0 and

[V(poG)(u)|| =1, Yue[0<G <rg.

Proper definitions and local versions can be found in the next section. The above definition originates
in [40] and is based on the fundamental work of Kurdyka [124], where it was introduced in the
framework of o-minimal structure( ?) as a generalization of the famous Lojasiewicz inequality.

KL functions are central in the analysis of gradient systems, the readers are referred to [10] and the
references therein.

Desingularizing functions. The function appearing above, namely ¢, is called a desingularizing
function : the faster ¢’ tends to infinity at 0, the flatter is G around critical points. As opposed
to the Lojasiewicz gradient inequality, this behavior, in the o-minimal world, is not necessarily of a
“power-type”. Highly degenerate functions can be met, like for instance G(u) = exp (— 1/ p2(u)) where
p: RY — R is any real polynomial function. This class of functions belongs to the log-exp structure,
an o-minimal class that contains semi-algebraic sets and the graph of the exponential function [182].
Finally, observe that if it is obvious that ¢ might have an arbitrarily brutal behavior at 0, it is also
pretty clear that the smoothness of G is related to a lower-control of the behavior of ¢, for instance
we must have ¢’(0) = oo — which is not the case in general in the nonsmooth world (see e.g. [39]).

8.1.2 Main results

Several auxiliary theorems were necessary to establish our main result, we believe they are interesting
for their own sake. Here they are :

— An asymptotic alternative for quasi-gradient systems : either a trajectory converges or it escapes
to infinity,

— A general convergence rate result for the solutions of the gradient systems that brings forward

a worst-case gradient dynamical system in dimension one,

1. That is, the norms of its gradient remain bounded away from zero.
2. A far reaching concept that generalizes semi-algebraic or (globally) subanalytic classes of sets and functions.
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— Lower bounds for desingularizing functions of C? KL functions.

We are now in position to describe the strategy we followed in that paper for the asymptotic study
of the damped second order gradient system (8.1.1.1). Our method was naturally inspired by the
Liapunov function provided in [97].

1. First we show that Ep can be slightly and “semi-algebraically” (respectively, definably) deformed
into a smooth function E%ef, so that the gradient of the new energy VEquf makes an uniformly
acute angle with the vector field associated with (8.1.1.1) — this property only holds on bounded
sets of the phase space. The system (8.1.1.1) appears therefore as a quasi-gradient system for
Eget,

2. In a second step we establish/verify that the solutions of the quasi-gradient systems converge
whenever they originate from a KL function.

We also provide rates of convergence and we explain how they may be naturally and systema-
tically derived from a one-dimensional worst-case gradient dynamics.

At this stage it is possible to proceed abstractly to the proof of the convergence of solutions to
(8.1.1.1) in several cases. For instance the definable case : we simply have to use the fact that
E¢et is definable whenever G is, so it is a KL function and the conclusion follows.

Although direct and fast, this approach has an important drawback from a conceptual viewpoint
since it relies on a desingularizing function attached to an auxiliary function E$°f whose meaning
is unclear. Whatever perspectives we may adopt (Mechanics, Optimization, PDEs), an important
question is indeed to understand what happens when G is KL and how the desingularizing

function of G actually impacts the convergence of solutions to (8.1.1.1).
3. We answer to this question in the following way.

(a) We prove that desingularizing functions of C? definable functions have a lower bound.
Roughly speaking, we prove that for nontrivial critical points the desingularizing function

/
[

has the property ¢(s) = ¢y/s (or equivalently( ®) ¢'(s) > ﬁ)

(b) We establish that if ¢ is definable and desingularizing for G at @ then it is desingularizing
for both Er and ES! at (%, 0).

4. We conclude by combining previous results to obtain in particular the convergence of solutions
to (8.1.1.1) under definability assumptions. We also provide convergence rates that depend on
the desingularizing function of G, i.e. on the geometry of the potential.

We would like to point out and emphasize two facts that we think are of interest. First the property
©(s) = cy/s (see Lemma 8.2.2.1 below) is a new result and despite its “intuitive” aspect the proof is
nontrivial. We believe it has an interest in its own sake.

More related to our work is the fact that (in the definable case and in many other relevant cases)
our results show that the desingularizing function of GG is conditioning the asymptotic behavior of
solutions of the system. Within an Optimization perspective this means that the “complexity”, or at
least the convergence rate, of the dynamical system is entirely embodied in G when G is smooth. From
a mechanical viewpoint, stabilization at infinity is determined by the conditioning of G provided the

3. Recall that ¢ is definable.
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latter is smooth enough ; in other words the intuition that for large time behaviors, the potential has
a predominant effect on the system is correct — a fact which is of course related to the dissipation of

the kinetic energy at a “constant rate”.

Notation. The finite-dimensional space RY (N > 1) is endowed with the canonical scalar product
(., .) whose norm is denoted by || . |. The product space RY x R is endowed with the natural
product metric which we still denote by (., .). We also define for any @ € RY and r > 0, B(u,r) =
{u € RY;|lu — 1| < r}. When S is a subset of R its interior is denoted by int S and its closure by
S.If F : RV — R is a differentiable function, its gradient is denoted by VF. When F is a twice
differentiable function, its Hessian is denoted by V2F. The set of critical points of F is defined by

crit F = {u e RV, VF(u) = 0}.

This paper is organized as follows. In Section 8.2, we provide a lower bound for desingularizing function
of C? functions under various assumptions, like definability (Proposition 8.2.1.3 and Lemma 8.2.2.1).
In Section 8.3, we recall the behavior of a first order system having a quasi-gradient structure for
some KL function and we provide an asymptotic alternative (Theorem 8.3.1.2). In Theorem 8.3.2.4,
the convergence rate of any solution to a first order system having a quasi-gradient structure is proved
to be better than that of a one-dimensional worst-case gradient dynamics (various known results are
recovered in a transparent way). Finally, we establish that any function which desingularizes G in
(8.1.1.1) also desingularizes the total energy and various relevant deformation of the latter (Proposi-
tion 8.3.3.3). In Section 8.4, we study the asymptotic behavior of solutions to (8.1.1.1) (Theorem 8.4.1)
while in Section 8.5, we describe several consequences of our main results. Appendix (p.199) provides,

for the comfort of the reader, some elementary facts on o-minimal structures.

8.2 Structural results : lower bounds for desingularizing func-
tions of C? functions

To keep the reading smooth and easy, we will not formally define here o-minimal structure. The

definition is postponed in Appendix (p.199). Let us however recall, at this stage, that the simplest o-

minimal structure (containing the graph of the real product) is given by the class of real semi-algebraic
sets and functions. A semi-algebraic set is the finite union of sets of the form

{u eRY; p(u) =0, pi(u) < 0,Vi € I}, (8.2.1)
where I is a finite set and p, {p; }ics are real polynomial functions.

Let us recall a fundamental concept for dissipative dynamical systems of gradient type.

Definition 8.2.1 (Kurdyka-Lojasiewicz property and desingularizing function).
Let G : RY — R be a differentiable function.
(i) We shall say that G has the KL property at u € RN if there exist ro > 0, n > 0 and
v € C([0,r9); Ry) such that

1. ¢(0) =0, ¢ € C*((0,79); R;) concave and ¢’ positive on (0,rq),
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2. u€ B(u,n) = |G(u) — G(u)| < ro; and for each u € B(u,n), such that G(u) # G(u),
[V(polG(.) = G@))(w)|| > 1. (8.2.2)

Such a function ¢ is called a desingularizing function of G at @ on B(u,n).
(ii) The function G is called a KL function if it has the KL property at each of its points.

The following result is due to Lojasiewicz in its real-analytic version (see e.g. [133, ]), it was
generalized to o-minimal structures and considerably simplified by Kurdyka in [124] (see Appendix

p.199).

Theorem 8.2.2 (Kurdyka-Lojasiewicz inequality [124](")). Let O be an o-minimal structure
and let G € CH(RY;R) be a definable function. Then G is a KL function.

Remark 8.2.3. (a) Theorem 8.2.2 is of course trivial when @ ¢ crit G — take indeed, ¢(s) = cs where
c= HVlGﬁ and € > 0.

(b) Restrictions of real-analytic functions to compact sets included in their (open) domain belong to
the o-minimal structure of globally analytic sets [$2]. They are therefore KL functions (see indeed
Example A.2). In some o-minimal structures there are nontrivial functions for which all derivatives
vanish on some nonempty set, like G(u) = exp(—1/f2%(u)) where f # 0 is any smooth semi-algebraic
function achieving the value 0(°) (see also Example A.2). For these cases, ¢ is not of power-type —
as it is the case when G is semi-algebraic or real-analytic. Other types of functions satisfying the KL
property in various contexts are provided in [12] (see also Corollary 8.5.5).

(¢) Desingularizing functions of definable functions can be chosen to be definable, strictly concave and

C* (where k is arbitrary).
The following trivial notion is quite convenient.

Definition 8.2.4 (Trivial critical points). A critical point u of a differentiable function G : RY —
R is called trivial if u € int crit G. It is nontrivial otherwise. Observe that v is nontrivial if, and only
if, there exists u, —— u such that G(u,) # G(u), for any n € N.

When 7 is a trivial critical point of G, any concave function ¢ € C°([0,7)) N C*(0, 7o) such that
¢ > 0 and p(0) = 0 is desingularizing at .

An immediate consequence of the KL inequality is a local and strong version of Sard’s theorem.

Remark 8.2.5 (Local finiteness of critical values). Let G € C'(RY;R) and @ € R". Assume
that G satisfies the KL property at @ on B(w, ). Then

u € B(w,n) and VG(u) =0 = G(u) = G(u).

The simplest functions we can think of with respect to the behavior of the solutions to (8.1.1.1) are
given by functions with linear gradients, that is quadratic forms

G(u) = %(Au,u), u € RN, where A € .4y (R), AT = A.

4. See comments in Appendix A.
5. This function is definable in the log-exp structure of Wilkie [182].
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When A # 0, it is easy to establish directly that ¢(s) = l—i‘s (where X is a nonzero eigenvalue
with smallest absolute value) provides a desingularizing function. In the subsections to come, we show
that the best we can hope in general for a desingularizing function ¢ attached to a C? function G is
precisely a quantitative behavior of square-root type.

8.2.1 Lower bounds for desingularizing functions of potentials having a
simple critical point structure

Our first assumption, formally stated below, asserts that points having critical value must be critical
points. The assumption is rather strong in general but it will be complemented in the next section by
a far more general result for definable functions.

Let w € critG.
There exists n > 0 such that for any u € B(w, n), (8.2.1.1)
(Gu) =Gu) = wu e crit@).

Example 8.2.1.1. (a) When N =1 and G € C* is KL then assumption (8.2.1.1) holds.

[If the result does not hold then there exists a sequence (2, )nen such that x, 770 % and

G(zn) = G(u), (8.2.1.2)
G'(zn) # 0, (8.2.1.3)

for any n € N. Without loss of generality, we may assume that (z,)nen is monotone, say decreasing. From
(8.2.1.2)—(8.2.1.3) and Rolle’s Theorem, there exists a sequence (un)nen such that T,11 < Uy < Tn, G'(un) =
0, G(un) # G(u), for any n € N. Thus G(u») are critical values distinct from G(@) such that G(u.) — G(u);
this contradicts the local finiteness of critical values — see Remark 8.2.5.]

(b) Of course, the result in (a) cannot be extended to higher dimensions. Consider for instance
G:R* =R, Glu,u) =u? —u3,

which is obviously KL. One has VG(u) = 0 if, and only if, uw = 0, yet G(¢,—t) = 0 for any ¢ in R.
(c) If G is convex, (8.2.1.1) holds globally, i.e., with 7 = co. [This follows directly from the well-known
fact that G(u) = min G if, and only if, VG(u) = 0.]

Lemma 8.2.1.2 (Comparing values growth with gradients growth).
Let G € CEHRN;R) and u € crit G. Assume there exists € > 0 such that

loc
u € B(@,2¢) and G(u) = G(@) = u € crit G,
in other words (8.2.1.1) holds (with n = 2¢). Then there exists ¢ > 0 such that
|G (u) — G(@)| = || VG(u)]?, (8.2.1.4)
for any u € B(w,¢).

Proof. Working if necessary with é(u) = G(u) — G(u), we may assume, without loss of generality,
that G(u) = 0. Let us proceed in two steps.



156 On damped second-order gradient systems

Step 1. Let H € C*!(B(u,2¢);R) with @ € crit H and assume further that H > 0. We claim that
there exists ¢ > 0 such that

Yu € B(u,e), H(u) > c||VH(u)|? (8.2.1.5)

Denote by Ly the Lipschitz constant of VH on B(w,2¢), let Ly = max [[VH(u)|| and set L =
u€B(w,2¢)
L1 + Ls. Since,

(Li=0 or Ly=0) = VH|gme =0 = (8.2.1.5),

we may assume that Ly > 0 and Ly > 0. Let u € B(w, e). We have for any v € B(0, 2¢),
1
H(v)— H(u) = / (VH((1 = t)u+tv),v — u)dt
0
1
_ / (VH((1— tyu+ tv) — VH(u),v — u)dt + (VH(u),v — ),
0
so that for any v € B(0, 2¢),
L
‘H(v)—H(u) —(VH(u),v —u)| < 72||v—u||2. (8.2.1.6)

Note that || (u — £VH(u)) — 7 < |Ju— 7l + £||VH (u)|| < e + %+ < 22. By convexity, we infer that
[u,u — £VH(u)] C B(w,2e). It follows that v = v — £VH (u) is an admissible choice in (8.2.1.6).
Without loss of generality, we may assume that € < 1. This leads to

0< H(v) < Hu) — %HVH(u)HZ.

Whence the claim.

Step 2. Define for any u € B(%,2¢), H(u) = |G(u)|. Since (G(u) =0 = VG(u) = 0), we easily
deduce that H € Ci(B(u,2¢); R) and for any u € B(u, 2¢), VH (u) = sign (G(u))VG(u). Denote by
Ly the Lipschitz constant of VG on B(w, 2¢). We claim that,

IVH(u) = VH ()| < La[lu — vl, (8.2.1.7)

for any (u,v) € B(u, 2¢) x B(u,2¢). Let (u,v) € B(u,2¢) x B(u, 2¢). Estimate (8.2.1.7) being clear if
G(u)G(v) > 0, we may assume that G(u)G(v) < 0. By the Mean Value Theorem and the assumptions
on G, it follows that there exists t € (0, 1) such that for w = (1 —¢)u+tv, G(w) = 0 and VG(w) = 0.
We then infer,

IVH(u) ~ VH@)| = [VG(u) + VGW)| < VG ()] + VG ()]
— [VG() - VG(w)|| + VG (w) — VG(v)]
< Loflu = wl| + Lofjw — vl| = Lolu— v].

Hence (8.2.1.7). It follows that H € C'(B(u,2¢);R) and H satisfies the assumptions of Step 1.
Applying (8.2.1.5) to H, we get (8.2.1.4). This concludes the proof. O
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Proposition 8.2.1.3 (Lower bound for desingularizing functions). Let G € Cll.gg (RN;R) and
let w be a nontrivial critical point, i.e. w € crit G \ int crit G. Assume that G satisfies the KL property
at w and that assumption (8.2.1.1) holds at .

Then there exists f > 0 such that for any desingularizing function ¢ of G at ,

¢'(s) > —= (8.2.1.8)

for any small positive s.

Proof. We may assume G(u) = 0. Combining (8.2.2) and (8.2.1.4), we deduce that ¢'(|G(u)|) >

HVGl(u)H > ﬁ, for any v € B(w,e) such that G(u) # G(u) (Remark 8.2.5). Changing G into

—@ if necessary, there is no loss of generality to assume that there exists u, such that w, — @

with G(u,) > 0 (recall @ is a nontrivial critical point). Since G is continuous, this implies by a
connectedness argument that for some p there exists » > 0 such that ‘G (B (w, p))‘ D (0, 7). Using the
parametrization s € (0,7) we conclude that ¢'(s) > %, for any s sufficiently small. O

8.2.2 Lower bounds for desingularizing functions of definable C? functions

This part makes a strong use of definability arguments (these are recalled in the last section).

Lemma 8.2.2.1 (Lower bounds for desingularizing functions of C? definable functions).
Let G : Q — R be a C? definable function on an open subset Q > 0 of RN. We assume that 0 is a
nontrivial critical point' %) and that G(0) = 0.

Since G is definable it has the KL property ") that is, there exist n,79 > 0 and @ : [0,r70) — R as in
Definition 8.2.1 such that

IV (¢o|Gl)(w)l =1, (8.2.2.1)

for any w in B(0,n) such that G(u) # 0.
Then there exists ¢ > 0 such that

©'(s) (8.2.2.2)

> i
-k
so that ©(s) = 2¢v/s, for any small s > 0.

Proof. Let us outline the ideas of the proof : after a simple reduction step, we show that the squared
norm of a/the smallest gradient on a level line increases at most linearly with the function values. In
the second step, we show that this estimate is naturally linked to the increasing rate of ¢ itself and
to property (8.2.2.2). Let ¢ : [0,79) — R be any desingularizing function of G at 0 on B(0,7), as in
Definition 8.2.1.

Changing G in —G if necessary, we may assume by Definition 8.2.4, without loss of generality, that

there exists a sequence (uy,), such that u, —— 0 and G(u,) > 0, for any n € N. Let us proceed

6. Equivalently, we assume that there exists un, ———» 0 such that G(un) # 0.
7. See Theorem 8.2.2.
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with the proof in three steps.

Step 1. We first modify the function G as follows. Let p € C2(R™; [0, 1]) be a semi-algebraic function
such that

suppp C B(0,n) C €,
pz)=1,ifz e B(0,%).

Let us define G on RY by

p(u)G(u) + dist (u, B (0, g))s, if u e,

0, if u e RV \ Q.

It follows that G € C?(RYN;R), leaves the set of desingularizing functions at 0 unchanged, has compact

lower level sets and is definable in the same structure (recall Definition A.1 (iii)). Finally, we obviously
have,

up 22250 with G(uy,) >0, Vn € N. (8.2.2.3)

3

Without loss of generality, we may assume that n < 1 and rg < %&-. Let u € R \ B(0,7). One has,
~ 3 3 .3
G(u) = dist (u,B (0, g)) - <||u|| - g) > % > 1.
It follows that,
inf VG| = min [VG(u)|, Vr e (0,r). (8.2.2.4)
uw€B(0,n)N[G=r] u€[G=r]

Step 2. For r > 0, we introduce
. 1 ~ 9 N A
(P) ¥ (r) = min §||VG(u)|| ;ueRY Glu)=r;.

Since the set of critical values of a definable function is finite and since the level sets are compact,
we may choose, if necessary, rg so that ) > 0 on (0,7¢) (the fact that 0 is a nontrivial critical point
excludes the case when v vanishes around 0). If we denote by S(r) the nonempty compact set of
solutions to (P,), one easily sees that

S . (0,7"()) = RN,

is a definable point-to-set mapping — this follows by a straightforward use of quantifier elimination
(i.e., by the use of Definition A.1). Using the Definable Selection Lemma (Lemma A.4), one obtains
a definable curve u : (0,79) — R such that u(r) € S(r), for any 7 € (0,7p). Finally, using the
Monotonicity Lemma (Lemma A.3) repeatedly on the coordinates u; of u, one can shrink ro so that
w is actually in C*((0,70); RY).

Fix now r in (0,rg). Since r is noncritical the problem (P,) is qualified and we can apply Lagrange’s
Theorem for constrained problems. This yields the existence of a real multiplier A(r) such that

V2G (u(r)) VG (u(r)) — A(r)VG(u(r)) = 0, (8.2.2.5)
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with of course G(u(r)) = r.

Note that for any r € (0,79), Vé(u(r)) # 0 (as seen at the beginning of this step) so that A(r) is
an actual eigenvalue of VQG(’LL(T‘)). Since G is C2, the curve V2@(u(r)) is bounded in the space of
matrices 4y (R). Since eigenvalues depend continuously on operators, one deduces from the previous
remarks that there exists A > 0 such that

A < X, Vr € (0,70).

o~ ~

Multiplying (8.2.2.5) by u/(r) gives (V2G(u(r))VG(u(r)),u'(r)) = A(r)(VG(u(r)), v (r)), which is
nothing else than

1d ~ d ~

5 3 I VE@DI? = Mr) - Glu(r).
Since G(u(r)) = r, one has

1d, _~
53 IVG@)? =),

so after integration on [s,r] C (0,rg), one obtains

/S e

It follows that (||V@(u(r))||2) . is a Cauchy’s family, so that the limit ¢ of |[VG(u(s))|? as s
s>

n—oo

goes to zero exists in [0,00). We recall that by assumption (8.2.2.3), u,, —— 0, G(un) > 0 and
VG (un) 222 0. Now, setting 7, = G(uy), one has by definition of u(ry,), | VG (un)|| = |[VG(u(ry))|-
This implies that £ = 0 and as a consequence (8.2.2.6) yields

r,s—0

'||V@(u(r))||2 - ||V@(u(s))||2’ —2 <2 — 5| Z22% 0. (8.2.2.6)

1, ~ T _
5||VG(u(r))||2 = / A(m)dr < (8.2.2.7)
0
in other words
P(r) < Ar, ¥r e (0,7). (8.2.2.8)

Step 3. Let us now conclude. By KL inequality one has for any r € (0,79),

1
/
o(r) 2 ———, YueB0,n)N[G=r] (8.2.2.9)
IVG (W)
As a consequence, we can use (8.2.2.4) in (8.2.2.9) and the linear estimate (8.2.2.8) above to conclude
as follows :
1
el(r) = ~ p
inf {|VG(w)|: u € BO,m)N[C =]
_ 1
mm{uvé(u)n; welG= r}}
1
2
2(r)
> &
= \/;a
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_\ -1
for any r € (0,rg), with ¢ = (\/ 2/\) . Hence (8.2.2.2). O

Remark 8.2.6. (a) Note that if G ¢ C? then (8.2.2.2) does not hold. Indeed, take G(u) = u? and
©(s) = s3 as a (semi-algebraic) counter-example.

(b) When we omit the assumption that 0 is a nontrivial critical point, i.e. 0 € intcrit G, then G
vanishes in a neighborhood of 0. In that case, the result is not true in general since any concave
increasing function adequately regular is desingularizing for G. However a function ¢(s) = ¢4/s can
still be chosen as a desingularizing function.

Hence, for an arbitrary C? definable function, we can always assume that for any critical point, the

corresponding desingularizing function satisfies ©'(s) = cﬁ (locally for some positive constant c).

8.3 Damped second order gradient systems

8.3.1 Quasi-gradient structure and KL inequalities

Definition 8.3.1.1. Let I' be a nonempty closed subset of RY and let F : RY — R¥ be a locally
Lipschitz continuous mapping.
(i) We say that the first order system

u'(t) + F(u(t)) =0, t € Ry, (8.3.1.1)

has a quasi-gradient structure for E on T, if there exist a differentiable function F : RY — R
and ar = « > 0 such that

(angle condition) (VE(u), F(u)) > o|[VE(u)|| |[F(u)|, for any u €T, (8.3.1.2)
(rest-points equivalence) cit ENT =F'({0}) N T. (8.3.1.3)

(ii) Equivalently a vector field F' having the above properties is said to be quasi-gradient for E
on T

The following result involves classical material and ideas, yet, the fact that an asymptotic alternative
can be derived in this setting does not seem to be well-known (see however [12] in a discrete context).

Theorem 8.3.1.2 (Asymptotic alternative for quasi-gradient fields). Let F : RN — RY be a
locally Lipschitz mapping that defines a quasi-gradient vector field for E on RY, for some differentiable
function E : RN — R. Assume further that the function E is KL. Let u be any solution to (8.3.1.1).
Then,

(1) either Ju(t)] =22 oo,

(it) or u converges to a singular point us, of F as t — 0.
When (ii) holds then v’ € L*((0,00); RY) and v’ (t) 1229 0. Moreover, we have the following estimate,

e(E(u(t) = B(uc)), (8.3.1.4)

QI

l[u(t) = uooll <

where @ is a desingularizing function of E at us and « is the constant in (8.3.1.2).
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Proof. We assume that (i) does not hold, so there exist u., € R" and a sequence s,, /* oo such that
n—-o0o

u(sn) ——>% u,,. Note that by continuity of F, one has E(u(sn)) =5 E(ucs). Observe also that
from equation (8.3.1.1) and the angle condition (8.3.1.2), one has for any ¢ > 0,

CEou)t) = (VB@(), (1)
= ~(VE(u(t), F(u(1)
< ol VB 1Fu()]| (8315

and thus the mapping ¢t — E(u(t)) is nonincreasing, which implies

lim E(u(t)) = E(ux).

t—o0

Note that if E(u(f)) = E(us) for some #, one would have - (Eou)(t) = 0 for any ¢t > £, which would
in turn imply, by (8.3.1.5), that ||[VE(u(®))||||F (u(¢))| = 0, for any such ¢. In view of the rest point
equivalence (8.3.1.3), this would mean that F'(u(t)) = 0, hence by uniqueness of solution curves, that
u(t) = oo for any ¢ > 0. We can thus assume without loss of generality that

E(u(t)) > E(uss), Yt > 0. (8.3.1.6)

Let to > 0 be such that u(to) € B (ucc, 2) and ¢(E(u(to)) — F(ux)) € (0,5), where a > 0 is the
constant in (8.3.1.2) [in view of our preliminary comments and of the continuity of E such a ¢ exists].
By continuity of u, there exists 7 > 0 such that for any t € [to,to + 7), u(t) € B(uco,n). S0 we may
define T' € (to, o0] as

T = sup {t > to; Vs € [to, t), u(s) € B(uoo,n)}.

By (8.3.1.5), the Kurdyka-Lojasiewicz inequality (8.2.2) and equation (8.3.1.1), we have for any t €
(th T)7

- L oo (B() - Blux))) )
=~ ¢ (B(u(t) ~ Bluee) T (B ou)(1)
> a ¢! (B(u(t)) - E(us)) [VEu®) || | F(u®)]
= a|[F(u@®)][[[|V(po (B(.) = Buc)) (u(t)) |
allu (8)]]. (8.3.1.7)

It follows from the above estimate that

[lu(t) — u(to)] (8.3.1.8)

/ o (o)as < LEC) = Bluee))

N3

for any ¢ € (tg,T). We claim that T = co. Indeed, otherwise T' < oo and (8.3.1.8) applies with t =T
Hence,

[u(T) = wooll < [|u(T) — ulto) | + l[u(to) — ucoll <.
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Then u(T) € B(uso,n), which contradicts the definition of T. As a consequence the curve u’ belongs
to Lt ((to, 00); RN) by (8.3.1.8) and the curve u converges to us by Cauchy’s criterion. Finally since
0 must be a cluster point of u/ (recall indeed [;° [|u/(t)||d¢t < co and ' is uniformly continuous by
(8.3.1.1)), one must have F(uss) = 0. The announced estimate follows readily from (8.3.1.8) and the
fact that T' = oo. O

Corollary 8.3.1.3. Let F : RN — RY be locally Lipschitz continuous and assume that for any R > 0
the mapping F defines a quasi-gradient vector field for some differentiable function Er : RN — R
on B(0, R). Assume further that each of the functions Er is KL.

Let uw be any bounded solution to (8.3.1.1). Then u converges to a singular point us of F, u' is
integrable and converges to 0. In particular, if we take R > sup{||u(t)||; t e [0,00)}, we have the

following estimate,

() = wscll < = ( Er(ult) - En(ux)), (8.3.1.9)

—
ar
where ¢ is a desingularizing function of Er at us and ag is the constant in (8.3.1.2), for the ball
B(0, R).

Proof. Take R > sup {||u(t)|); t € [0,00)} and observe that the previous proof may be reproduced as
it is : just replace E by Eg. O

8.3.2 Convergence rate of quasi-gradient systems and worst-case dynamics
To simplify our presentation we consider first a proper gradient system :
W () + VE(u(t)) =0, (8.3.2.1)

where E : RY — R is a twice continuously differentiable KL function. We assume that u is bounded
S0, by virtue of our previous considerations, the curve converges to some critical point u., of E.
Observe that if us is a trivial critical point, one actually has u(0) = us and the asymptotic study is

trivial.

We thus assume u, to be nontrivial, and we denote by ¢ a desingularizing function of E at us,. We

set
Y=l

whose domain is denoted by [0, a), (with a € (0,00]) and we consider the one-dimensional worst-case

gradient dynamics (see [38]) :
V() +¢' (v(t) =0, v(0)=1ry € (0,a). (8.3.2.2)
We shall assume that

¢'(s) = 75 o (0,70), (8.3.2.3)
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which implies that solutions v to (8.3.2.2) are globally defined on [0, c0) and satisfy tli/m v(t) = 0 with

v(t) = vge= 0t for any t > 0 (and for some cq > 0). Uniqueness holds by concavity of . Finally, note
that if E is a C? definable function then ¢ can be chosen to be C?, strictly concave and satisfying
(8.3.2.3) (Remark 8.2.3 (c¢) and Lemma 8.2.2.1).

Radial functions and worst-case dynamics. A full justification of the terminology “worst-case
dynamics” is to be given further, but at this stage one can observe that F could be taken of the form

Erad(u) = 90_1(”“ — Usol|), With u € B(us,n) (1 > 0),

1

provided that ¢ =" is smooth enough. In that case ¢ is clearly desingularizing and the solutions of the

gradient system (8.3.2.1) are radial in the sense that they are of the form(®)
Uy — Uso

B P

(8.3.2.4)

where v is a solution to (8.3.2.2). In this case, the dynamics (8.3.2.2) exactly measures the convergence

rates for (8.3.2.1), since one has for any ¢ > 0 and any ug such that v(0) = |lug — veol|,
Eyaa(u(t)) = v(0(t)), (33.2.5)
Ju(t) — uco|l = v(2). (8.3.2.6)

We are about to see that this behavior in terms of convergence rate is actually the worst we can
expect.

Remark 8.3.2.1. (a) As can be seen below, the worst-case gradient system is introduced to measure
the rate of convergence of solutions for large ¢. Since nontrivial solutions to (8.3.2.2) have the same
asymptotic behavior (they are, indeed, all of the form v (t) = v(t+to) where tg is some real number),
the choice of the initial condition v(0) in (0,a) can be made arbitrarily.

(b) The above rewrites v/(t)¢’ (¢~ (v(t))) = —1. Thus if 1 denotes an antiderivative of ¢’ o ™!, one
has v(t) = p=(—t + ag) (where ag is a constant), for any ¢ > 0 large enough.

(c) In general, the explicit integration of such a system depends on the integrability properties of v
and on the fact that ¢’ o ¢~! admits an antiderivative in a closed form.

For instance if ¢(s) = (£)?, with ¢ > 0 and 6 € (0, 5) , then ¢(s) = cs? and

V(t) + 7 v(t) ™ =0, v(0)e(0,a).
Thus by integration
d —0 d —1420
T W= () =a

with ¢; > 0. As a consequence,
_ o
v(t) = (c2 + cit) %,

with ¢o > 0. When 6 =  one easily sees that v(t) = v(0) exp (—2ct) .

8. Just use the formula in (8.3.2.1).
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Theorem 8.3.2.2 (The worst-case rate and worst-case one-dimensional gradient dyna-
mics).

Let E € C*(RM;R) be a KL function, let u be a bounded solution to (8.3.2.1) and let us € crit E
satisfying u(t) 12 e (such a us, exists by Theorem 8.3.1.2). Then for any t large enough,

E(u(t)) — E(uco) < ¥ (v(1)), (8.3.2.7)
and
[|u(t) — ool < v(t), (8.3.2.8)
where v is a solution to (8.3.2.2).

Proof. Without loss of generality, we may assume that E(us) = 0. From the previous results, we
know that for any t > to, we have u(t) € B(uco,n) and E(u(t)) € (0,79), so that the KL inequality
gives (see Theorem 8.3.1.2 and (8.3.1.7)) :

%(%E(U))(t) > [l (1)]-

Set z(t) = E(u(t)). Since £ (Eou)(t) = —|ju/()||?, one has — 3 (¢ 0 2)(t) = \/—2/(t), or equivalently
2
¢ (2(t))77'(t) < —1.
Consider now the worst-case gradient system with initial condition v(to) = ¢(E(u(to))) and set
24(t) = ¥(v(t)) = p~L(v(t)), for t > to. The system (8.3.2.2) becomes ¢’ (z4(t))2 () + m =0,
ie., @' (2q(t))22)(t) = —1. If 1 is an antiderivative of ¢’> on (0,7), it is an increasing function and
one has

S 2)(1) = ¢! (:(0)2(1) < 1 = @' (za(0)24(0) = (1o 2a)(0)

and p(z(tg)) = u(za(to)). As a consequence, u(z(t)) < u(zq(t)), hence z(t) < z4(t) for any t > to,
which is exactly (8.3.2.7). Using (8.3.1.4), we conclude by observing that

[u(t) = uooll < @(E(u(t))) < ¢(za(t)) = v(t).

The theorem is proved. O

Remark 8.3.2.3. Observe that in the case of a desingularizing function of power type (see Re-
mark 8.3.2.1 (c)), we recover well-known estimates [99].

Theorem 8.3.2.4 (The worst-case one-dimensional gradient dynamics for quasi-gradient
systems).

Let F : RN — RN be a locally Lipschitz continuous mapping that defines a quasi-gradient vector
field for some function E € C2(RY;R) on B(0, R), for any R > 0. Assume further that the function
E is KL and that for any R > 0, there exists a positive constant b > 0 such that

IVE(u)|| <b[F ()], (8.3.2.9)
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for any u € B(0, R). Assume further that for a given initial data ug € RN the solution u to (8.3.1.1)
converges to some rest point u... Denote by ¢ some desingularizing function for E at .
Then there exist some constants c¢,d > 0,ty € R such that

[lu(t) — uool] < dv (ct +to), (8.3.2.10)
where v is a solution to (8.3.2.2).

Proof. Combining the techniques used in Theorems 8.3.1.2 and 8.3.2.2, the proof is almost identical
to that of Theorem 8.3.2.2. Without loss of generality, we may assume that F(us) = 0. We simply
need to check the following inequality which is itself a consequence of the assumption (8.3.2.9) applied
with R = sup [Ju(t)]].

>0

d :
—gEew(t) = —(t), VE(u(t)

< [F@O)IVE@))|

< b|F(u(t)?

< bl ()]
From (8.3.1.7) one has —& (9o E)(u(t)) > al[u’(t)]], for any ¢ sufficiently large. Setting 2(t) = E(u(t)),
one obtains — % (poz)(t) = % v/—2'(t). The conclusion follows as before by using a reparametrization
of (8.3.2.2). 0

Remark 8.3.2.5. Assumption (8.3.2.9) is of course necessary and simply means that the vector field
F drives solutions to their rest points at least “as fast as VE” (see also [67]).

8.3.3 Damped second order systems are quasi-gradient systems

As announced earlier our approach to the asymptotic behavior of damped second order gradient
system is based on the observation that (8.1.1.1) can be written as a system having a quasi-gradient
structure. For G € C2(RY;R), let us define F : RY x RV — RY by

F(u,v) = (—v, 7w+ VG(w)).
Then (8.1.1.1) is equivalent to
U'@)+F(U(t) =0, teRy, withU = (u,v). (8.3.3.1)

As explained in the introduction the total energy function Erp(u,v) = G(u) + i|[v[|? (sum of the
potential energy and the kinetic energy) is a Liapunov function for our dynamical system (8.1.1.1).

Formally
(VEr(u,v), F(u,v)) = v|lv]*.

From the above we see, that the damped system (8.1.1.1) is not quasi-gradient for Ep since one

obviously has a degeneracy phenomenon

(VEr(u,v),F(u,v)) =0 whenever v =0, (8.3.3.2)
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where in general VEr(u,v) # 0 and F(u,v) # 0.
The idea that follows consists in continuously deforming the level sets of Er, through a family of
functions :

ERY xRY — R with & = Ep (X denotes here a positive parameter),

so that the angle formed between each of the gradients of the resulting functions £y, A > 0 and the
vector F remains far away from 7/2. In other words we seek for functions making F a quasi-gradient
vector field.

Proposition 8.3.3.1 (The second order gradient systems are quasi-gradient systems). Let
G € C*(RY;R) and let v > 0. For XA > 0, define £, € C*(RY x RY;R) by

£, v) = <;||11||2 + G(u)) +MYG(u), v).

For any R > 0, there exists Ao > 0 satisfying the following property. For any A € (0, \o|, there exists
a > 0 such that

(VEN(u,v), F(u,0)) = a||[VE (u,v)| | F(u,v)|, (8.3.3.3)
for any (u,v) € B(0, R) x RN. Furthermore,
cit &y N (B(0,R) x RY) = F~1({0}) N (B(0,R) x RY) , (8.3.3.4)
for any X € [0, Ao).-

Proof. For each (u,v) € RY x RV, we have V&, (u,v) = (VG (u) + AV?G(u)v, v+ AVG(u)) . Let
R > 0 be given and let M = max {[|V>G(u)||; u € B(0, R)}. Choose Ay > 0 small enough to have

2
<M + 7 > Ao > 0.
Let A € (0, \o]. Then for any (u,v) € B(0, R) x RV, we obtain by Young’s inequality,
(Ve (u,0), Flu,v)) = [[ol]> = M{V2G(u)v, v) + A (VG (u),y0) + A [ VG (u)||?

5 (W—MAO—W) ol + 3 IV G2

ao ([0l + IVG(w)[?), (8.3.3.5)
where ay = min {*y — (M + 7;) Ao, g} > 0. Moreover,
1 1
IVEXN(w, v) || | F (u, v)|| < §IIV<9A(uw)II2 + §||J"(u,v)||2 < CO([[ol? + IVG(w)[1?). (8.3.3.6)

Combining (8.3.3.6) with (8.3.3.5), we deduce that the angle condition (8.3.3.3) is satisfied with

ao

a = Z. Finally, the rest point equivalence (8.3.3.4) follows from (8.3.3.5). O

Remark 8.3.3.2. Note that for A = 0, we recover the total energy Er(u,v) = E(u,v) = 1||v]?+G(u).
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The following result is of primary importance : roughly speaking it shows that functions which desin-
gularize the potential G at some critical point @, also desingularize the energy function Er and more
generally the family of deformed functions £, at the corresponding critical point (u,0). This result
implies in turn that the decay rate of the energy is essentially conditioned by the geometry of G as
one might expect from a mechanical or an intuitive perspective.

In the proposition below one needs the kinetic energy to be desingularized by . This explains our

main assumption.

Proposition 8.3.3.3 (Desingularizing functions of the energy). Let G € C*(RY;R), u € crit G
and assume that there exists a desingularizing function o € C* ((07 70); ]R+) of G atw on B(w,n) such
that ¢'(s) > =, for any s € (0, ).

Then there exist Ay > 0, 71 > 0 and ¢ > 0 such that

Hv (gp 0 % 6., ) — &, 0)|) (w,0)| = e, (8.3.3.7)

for any X € [0, A\1] and any (u,v) € B(w,n) x B(0,m1) such that Ex(u,v) # Ex(T,0).

Proof. By standard translation arguments, we may assume without loss of generality that G(w) =0
and @ = 0. Then £,(0,0) = 0 and (8.3.3.7) consists in showing that for some constant ¢ > 0,

C

1
r > ¢
. (2 |8A<u,v>|) > o

for any A € [0, A\1] and any (u,v) € B(0,71) x B(0,71) such that £, (u,v) # 0. Recall that 0 € crit G.
Let M = max{||V2G(u)H; u € E(O,n)} and define A\; = min {i , m} . We have,

IV )2 = [VG(u) + XV G ()] + Jo + AVG(w)
> VG + ol - M2 + Dol - 20| TG )
> (ol + 1V Gw)?), (5339
and in particular,

VG| < 21V, ), (5.3.3.9)
for any A € [0, \;] and any (u,v) € RY x RY. Let now (\,u,v) € [0, \1] x B(0,7) x RY be such that
Ex(u,v) # 0. Since ¢’ is nonincreasing, we have

¢ (51e301) 2 (Gl - w0l + 33w 0)])
> ¢ (max {|Ex(u, v) = Ex(u, 0)[, [Ex(w, 0)[}) . (8.3.3.10)

Let us first find a lower bound on ¢'(|€)(u,0)|). Observe that necessarily &y (u,0) = G(u) # 0. In
particular, VG(u) # 0 (Remark 8.2.5). We then have by (8.2.2) and (8.3.3.9), V& (u,v) # 0 and

1 1
2 .
VG|~ 2[|VEx(u, )|

¢ (1Ex(u, 0)]) = ' (|G (u)]) > (8.3.3.11)
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for any A € [0, \;] and any (u,v) € B(0,1) x RY such that £, (u,0) # 0.
Let us now estimate ¢'(|Ex(u,v) — Ex(u,0)]) in (8.3.3.10) under the assumption & (u,v) # Ex(u,0).
Cauchy-Schwarz’ inequality implies that for any A € [0, A1],

Ex(u,v) = Ex(w,0)] < 5 (ol + Auoll® + A VG (@)]P). (8.3.3.12)

DO =

Combining (8.3.3.12) with (8.3.3.8), we deduce that for any A € [0, \;] and any (u,v) € RY x RV,
160 (1, 0) — Ex(w,0)] < (14 M)|[VEx(u, )] (8.3.3.13)
By continuity of VG, there exists 11 € (0,7) such that
sup {(1 FADIVE(w, 0) [ (A u,v) € [0, A1] x B(0,71) x B(O,m)} < ro.

Using successively the fact that ¢’ is nonincreasing and ¢’(s) > %, it follows from (8.3.3.13) that if
(u,v) € B(0,m1) x B(0,m1) with Ey(u,v) # Ex(u,0) then VEy(u,v) # 0 and

/ / 2 C1
@ (IEx(u,v) = Ex(u, 0)]) = &' ((L+ M)IVEA(w, ) II°) 2 5577 (8.3.3.14)

( )2l )2 gl
where ¢; > 0 is a constant. Finally, inequalities (8.3.3.11) and (8.3.3.14) together with (8.3.3.10) yield
the existence of a constant ¢ > 0 such that for any A € [0, \;] and any (u,v) € B(0,n1) x B(0,m1)
such that &y (u,v) # 0, there holds V&, (u,v) # 0 and ¢’ (3]Ex(u,v)]) [[VEA(u,v)|| = ¢, which is the
desired result. O

8.4 Convergence results

Before providing our last results, we would like to recall to the reader that a bounded trajectory of
(8.1.1.1) may not converge to a single critical point; finite-dimensional counterexamples for N = 2
are provided in [14, 114], in each case the trajectory of (8.1.1.1) ends up circling indefinitely around
a disk.

We now proceed to establish a central result whose specialization to various settings will provide us
with several extensions of Haraux-Jendoubi’s initial work [97].

Theorem 8.4.1. Let G € C*(RY;R) and (ug,uy) € RN x RN be a set of initial conditions for
(8.1.1.1). Denote by u € C?([0,00);RY) the unique regular solution to (8.1.1.1) with initial data
(ug,up). Assume that the following holds.

1. (The trajectory is bounded) sup ||u(t)|| < co.
t>0
2. (Convergence to a critical point) G is a KL function. Each desingularizing function ¢

of G satisfies

¢'(s) = N (8.4.1)

for any s € (0,19), where § and 1y are positive constants (see Definition 8.2.1).
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Then,
(i) u' and u" belong to L' ((0, 00); RN) and in particular u converges to a single limit u, in crit G.
(ii) When u converges to u, we denote by ¢ the desingularizing function of G at us. One has the

following estimate
[u(t) — oo < cv(t),
where v is the solution of the worst-case gradient system
V() + (071 (v(1) = 0, v(0) > 0.

Proof of Theorem 8.4.1. Let G € C*(RY;R), let (ug, up) € RY x RY, let u € C?([0,00); RY) and
let w € RY. Set U(t) = (u(t),u'(t)), Up = (uo,uf) and U = (,0). Let F and let £ be defined as
in Subsection 8.3.1 and Proposition 8.3.3.1, respectively. Note that if % & crit G then U & crit £, and
¢(t) = ct desingularizes £y at U, for any A > 0 (Remark 8.2.3 (a) and (8.3.3.4)). Otherwise, @ € crit G
and we shall apply Proposition 8.3.3.3. Since sup,~ [|u(t)|| < oo, u”(t) + yu'(t) = A(t) where A is
bounded. Thus, u/(t) = u/(0)e™ 7" + fot exp(—7y(t — s))A(s)ds, and by a straightforward calculation,
sup,~g ||/ (t)|| < oco. It follows that sup,q[|U(t)|| < co. Let R = sup,- |[|[U(%)||. Let Ao > 0 and
0 < A1 < Ag be given by Propositions 8.3.3.1 and 8.3.3.3, respectively. Let us fix 0 < A\, < A; and
let a > 0 be given by Proposition 8.3.3.1 for such £,, and R. By Proposition 8.3.3.1, the first order

system
U'@®)+F(U(@) =0, teRy, (8.4.2)

has a quasi-gradient structure for £,, on B(0, R) (Definition 8.3.1.1). Finally, since G has the KL
property at u, £y, also has the KL property at U (Proposition 8.3.3.3). It follows that Theorem 8.3.1.2
applies to U, from which (¢) follows.

The estimate part of the proof of (ii) will follow from Theorem 8.3.2.4, if we establish that for any
R > 0, there exists b > 0 such that for any (u,v) € B(0, R) x B(0, R),
IVE, (u, v)|| < bl F (u, ).

First we observe that for each R > 0 and for any (u,v) € B(0, R) x B(0, R), there exists k1 > 0 such
that

IVEN, (u,0)|* < K (IVG@)[[* + [Jv]). (8.4.3)

This follows trivially by Cauchy-Schwarz’ inequality and the fact that V2G is continuous hence boun-
ded on bounded sets. Fix o > 0 and recall the inequality 2ab < o2a® + f;—z for all real numbers a, b.
By Cauchy-Schwarz’ inequality and the previous inequality
IFuo)l? = ol + v + VG(u)|?
L +)[ol* + IVG@)* = 2[lyv [ [VG(w)]|
1
@ +)[ol* + VG @)* — o®[lyo]|* — ;IIVG‘(U)II2

12) VG @)P.

g

WV

WV

(1= (= )l + (1-
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Choosing ¢ > 1 so that 1 — (02 — 1)72 > 0 yields ky > 0 such that [|[F(u,v)||* > ko(||VG(u)|?
[v][?), for any u,v in RY. Combining this last inequality with (8.4.3), we obtain [|[VEy, (u,v)]|?

%H}'(um)”{ for any (u,v) € B(0, R) x B(0, R). Hence the result.

O n +

Remark 8.4.2. (a) As announced previously convergence rates depend directly on the geometry of
G through .

(b) The fact that the length of the velocity curve v’ is finite suggests that highly oscillatory phenomena
are unlikely.

8.5 Consequences

In the following corollaries, the mapping Ry > ¢ — u(t) is a solution curve of (8.1.1.1).

Corollary 8.5.1 (Convergence theorem for real-analytic functions [97]). Assume that G :
RY — R is real-analytic and let u be a bounded solution to (8.1.1.1). Then we have the following
result.
(1) (u,u') has a finite length. In particular u converges to a critical point Uy .
(i) When u converges to uo, we denote by ¢(s) = cs® (with ¢ >0 and € (0,1]) the desingu-
larizing function of G at us, — the quantity 0 is the Lojasiewicz exponent associated with Uy .
One has the following estimates.
(@) [Ju(t) — uoo|| < et T2, with ¢ > 0, when 6 € (0,1).
(b) [Ju(t) — uoo|| < " exp(—c't), with ¢/, > 0, when § = 1.

Proof. The proof follows directly from the original Lojasiewicz inequality [134, 133] and the fact that
desingularizing functions for real-analytic functions are indeed of the form ¢(s) = cs with 6 € (0, 3].
Hence (8.2.1.8) holds and Theorem 8.4.1 applies, see also Remark 8.3.2.1 (c). O

Corollary 8.5.2 (Convergence theorem for definable functions). Let O be an o-minimal struc-
ture that contains the collection of semi-algebraic sets. Assume G : RN — R is C? and definable in
O. Let u be a bounded solution to (8.1.1.1). Then we have the following result.
(i) v andu” belong to L'((0,00); RY) and in particular u converges to a single limit us in crit G.
(it) When u converges to us we denote by p the desingularizing function of G at us. One has

the following estimate
[[u(t) — ol < cv(t),
where v is a solution of the worst-case gradient system
V'(8) + (¢71) (1) = 0, »(0) > 0.

Proof. G is a KL function by Kurdyka’s version of the Lojasiewicz inequality. The fact that ¢'(s) >

oSk

comes from Lemma 8.2.2.1. So, Theorem 8.4.1 applies.

Corollary 8.5.3 (Convergence theorem for the one-dimensional case [96]). Let G € C%(R;R)
and let u be a bounded solution to (8.1.1.1). Then u converges to a single point and we have the same

type of rate of convergence as in the previous corollary.
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Proof. We proceed as in [183]. Argue by contradiction and assume that w(ug, u(), the w-limit set of
(uo, ug), is not a singleton. Since w(ug,up) is connected in R, it is an interval and has a nonempty
interior. Take @ in the interior of w(ug, uj) The Lojasiewicz inequality trivially holds at @ for G = 0
with ¢(s) = /s (recall @ is interior). Apply then Theorem 8.4.1. O

Remark 8.5.4. In the one-dimensional case, convergence can be obtained with much more general

forms of damping, see [51].

Corollary 8.5.5 (Convergence theorem for convex functions satisfying growth conditions).

Let G € C?(RM;R) be a convex function such that
argmin G def {u € RY: G(u) = min G},

is nonempty (note that argmin G = crit G). Assume further that, for each minimizer x*, there exists
n > 0, such that G satisfies

Yu € B(z*,n), G(u) > min G + cdist(u, argmin G)", (8.5.1)

with r > 1 and ¢ > 0. Then the solution curve t — (u(t),u (t)) has a finite length. In particular u

converges to a minimizer us, of G ast goes to co.

Proof. A general result of Alvarez [1] ensures that « is bounded (and even converges). On the other
hand it has been shown in [10] that functions satisfying the growth assumption (8.5.1), also satisfy
the Lojasiewicz inequality with desingularizing functions of the form s — ¢s'~1/" with ¢ > 0.
Combining the previous arguments, the conclusion follows readily. O

Remark 8.5.6. An alternative and more general approach to establish that trajectories have a finite

length has been developed for convex functions in [135, 71].

Acknowledgements. We are grateful to the referees for their very careful reading and their construc-

tive input.
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Chapitre 9

Mass concentration phenomena for
the L2-critical nonlinear
Schrodinger equation

with ANA VARGAS*

Abstract

In this paper, we show that any solution of the nonlinear Schrédinger equation iu; + Au + |u\%u =0,
which blows up in finite time, satisfies a mass concentration phenomena near the blow-up time. Our proof
is essentially based on the Bourgain’s one [12], which has established this result in the bidimensional spatial
case, and on a generalization of Strichartz’s inequality, where the bidimensional spatial case was proved by
Moyua, Vargas and Vega [139]. We also generalize to higher dimensions the results in Keraani [119] and Merle
and Vega [137].

9.1 Introduction and main results

Let v € R\ {0} and let 0 < a < #. It is well-known that for any ug € L?(R"), there exists a unique

maximal solution

4(a42)

4 € C((~Timin, Tonec)s LARY)) 0 Ly (=T, T ) L2 (RY)),

loc

of

ou RN
i— + Au + “u =0, t, S Tmins Timax )
18t u 4 ylu|“u (t,x) € ( ) % (9.1.1)

u(0) = ug, in RY,
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satisfying the conservation of charge, that is for any ¢ € (=Tmin, Tmax), [[u(t)||L2@~) = [Juol|L2@w)-
The solution u also satisfies the following Duhamel’s formula

Vt € (—Tmin, Tmax), w(t) =T (t)uo + i’y/(T(t — s){|u|“u})(s)ds, (9.1.2)

0

where we design by (7 (t)):cr the group of isometries (e"*);cg generated by iA on L?(RY; C). Moreo-

ver v is maximal in the following sense. If o < % then Tiax = Tinin = 00, if @ = 1‘\1[ and if T < 00
then
||uHL2(A]rV+2) (0 Toan)s L 252 vy = 00,
and if o = % and Tinin < oo then [jul| 2vi2) 2(N+2) = oo (see Cazenave and Weiss-
L™ N ((=Twmin, 0L~ N (RN))
ler [60] and Tsutsumi [172], also Cazenave [57], Corollary 4.6.5 and Section 4.7). Now, assume that

a = %. It is well-known that if ||ug||2 is small enough then Tiax = Tmin = 00, whereas if v > 0
then there exists some ug € LQ(RN) such that Tiax < 0o and T, < 0o. For example, it is sufficient
to choose ug = Ap, where ¢ € HY(RN) N L2(|z|?;dz), ¢ # 0, and where A > 0 is large enough
(Glassey [92], Vlasov, Petrischev and Talanov [180], Cazenave and Weissler [60]).

In the case v > 0, when blow-up in finite time occurs, a mass concentration phenomena was ob-
served near the blow-up time (see Theorem 2 in Merle and Tsutsumi [136] and Theorem 6.6.7 in
Cazenave [57]), under the conditions that ug € H'(RY) is spherically symmetric, N > 2 and v > 0.
Theorem 6.6.7 in Cazenave [57] asserts that if Tiyax < 0o for a solution u of equation (9.1.4) below,
then for any ¢ € (0, %) ,

liminf/ lu(t, z)[*dz > ||Q|3 ) (9.1.3)
. Tomax J B0, (Toax—t) 2 ) L2(RN)

where @ is the ground state, i.e. the unique positive solution of —AQ + Q = |Q\%Q (see Merle

and Tsutsumi [136], Tsutsumi [172]). The proof uses the conservation of energy and the compactness
property of radially symmetric functions lying in H'(R™). The spherical symmetry assumption was
relaxed by Nawa [140]; see also Hmidi and Keraani [105]. Later, it was proved that for data in H®,
for some s < 1, (9.1.3) holds. This was proved by Colliander, Raynor, Sulem and Wright [68] for
dimension 2, and extended by Tzirakis [176] to dimension 1 and by Visan and Zhang [178] to general
dimension.

In Bourgain [12], a mass concentration phenomena, estimate (9.1.5) below, is obtained for any ug €

L?(R?), v # 0, but in spatial dimension N = 2. Consider solutions of the following critical nonlinear
Schrédinger equation,

8u 4 [ R
i— + A Ny =0, (t,z) € Tmin, Tmax N7
i u+ylul|Nu =0, (t,z) € ( ) % (9.1.4)

u(0) = ug, in RY,

where v € R\ {0} is a given parameter. Bourgain showed, in the case N = 2 (see Theorem 1 in [12]),
that if u € C((—Tmin, Tmax); L2(R?)) is a solution of (9.1.4) with initial data ug € L?(R?) which



Trans. Amer. Math. Soc. 359(11) (2007) 5257-5282 175
blows-up in finite time Ty, < 00, then

limsup sup / X lu(t, z)|2dz > ¢, (9.1.5)
t/ Tmax c€RN J B(¢,C(Tmax—1)?)

where the constants C' and ¢ depend continuously and only on ||ug|| 2 and |7y|. The proof is based on
a refinement of Strichartz’s inequality for N = 2, due to Moyua, Vargas and Vega (see Theorem 4.2
and Lemma 4.4 in [139]).

Very recently, Keraani [119] showed for N € {1,2} that there is some dy > 0, such that, under the

same assumptions, if in addition |lug|z2 < v/28o then for any A(t) > 0 such that A(t) 1 e, 00,

lu(t, z)|*dx > 62. (9.1.6)

lim inf sup /

t/ Tmax ceRN J B(e, M) (Timax—t) 2)
Keraani’s proof uses a linear profile decomposition that was shown in dimension N = 2 by Merle
and Vega [137] and in dimension N = 1 by Carles and Keraani [54] (see Theorem 9.5.4 below for the
precise statement). The proofs of the decompositions are based on the above mentioned refinement
of Strichartz’s inequality by Moyua, Vargas and Vega and another one for the case N = 1 observed
by Carles and Keraani [54]. In this paper, we generalize the refinement of Strichartz’s inequality (see
Theorem 9.1.4 below) in order to establish the higher dimensional versions of all these results. Our
proofs (namely, those of Theorem 9.1.2 and Lemma 9.3.3) rely on the restriction theorems for parabo-
loids proved by Tao [166]. There is another minor technical point, because the Strichartz’s exponent

2]\17\,+4, is not a natural number when the dimension N > 3, except N = 4. We have to deal with this

little inconvenience which did not appeared in N € {1, 2}.

This paper is organized as follows. At the end of this section, we state the main results (Theorems 9.1.1
and 9.1.4) and give some notations which will be used throughout this paper. Section 9.2 is devo-
ted to the proof of the refinement of Strichartz’s inequality (Theorems 9.1.2-9.1.4). In Section 9.3,
we establish some preliminary results in order to prove a mass concentration result in Section 9.4
(Proposition 9.4.1). We prove Theorem 9.1.1 in Section 9.4. Finally, Section 9.5 is devoted to the
generalization to higher dimensions of the results by Keraani [119] and Merle and Vega [137].

Throughout this paper, we use the following notation. For 1 < p < oo, p’ denotes the conjugate of

p defined by % + i = 1; LP(RY) = LP(R¥Y;C) is the usual Lebesgue space. The Laplacian in RY

N
is written A = Y % and %‘ = wuy is the time derivative of the complex-valued function u. For
j=1 %

c € RN and R € (0,00), we denote by B(c,R) = {z € RY; |z — ¢| < R} the open ball of RY of

center ¢ and radius R. We design by C the set of half-closed cubes in RY. So 7 € C if and only
N

if there exist (a1,...,ay) € RY and R > 0 such that 7 = [] [aj,a; + R). The length of a side of
j=1

7 € C is written £(7) = R. Given A C RY, we denote by |A| its Lebesgue measure. Let j, k € N with

j < k. Then we denote [4, k] = [j, k] N N. We denote by F the Fourier transform in R defined by !

1. with this definition of the Fourier transform, | Ful|;2 = |F " ullp2 = |Jullp2, F1F = FF~1 =1d 2, Fluxv) =
FuFvand F~1(u*v) = FluF 1o,
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u(§) = Fu(§) = / e~ 28y (z)dx, and by F~! its inverse given by F~lu(z) = / Ty (€)dE.
RN RN

C are auxiliary positive constants and C(a1, ag,...,a,) indicates that the constant C' depends only

on positive parameters ai, as, ..., a, and that the dependence is continuous.

Finally, we recall the Strichartz’s estimates (Stein-Tomas Theorem) (see Stein [162], Strichartz [164]
and Tomas [170]). Let I C R be an interval, let o € I and let v € C. Set for any t € I,

®,(t) = ivy /t (T (t — ){|u|¥u})(s)ds. Then we have

||T( . )UoHLz(NN+2> (RXRN) < CO||U0||L2(RN)7 (9~1-7)

+4
||(I)u||L2(NN+2) (Ix ]RN) 1HU|| 2(N+2)( ><]RN)7 (9.1.8)

where Cy = Co(N) > 0 and C; = C1(N,|y]) > 0. For more details, see Ginibre and Velo [91]
(Lemma 3.1) and Cazenave and Weissler [60] (Lemma 3.1), also Cazenave [57] (Theorem 2.3.3). The
main results of this paper are the following.

Theorem 9.1.1. Let v € R\ {0}, let ug € L*(RN)\ {0} and let

2(N+2) 2(N+2)

w € C((—Trmins Trmax); PR™) N L ™ (= Tminy Tnax); L~ & (RY))

be the mazimal solution of (9.1.4) such that u(0) = ug. There exists e = &(||ugl|rz, N, |v|) > 0 satisfying
the following property. If Thax < 00 then

lim sup sup / ut,z))Pde > €
t /"Tmax c€RN JB(c,(Tmax—1)2)

and if Tin < 0o then

limsup sup / . lu(t, z)*dz > ¢
tN—Tmin c€RN J B(c,(Tmin+t)2)

By keeping track of the constants through the proofs, it can be shown that e = C(V, |v])|luo|| 2" for
some m > 0 (this was pointed out by Colliander). Notice that no hypothesis on the attractivity on
the nonlinearity (that is on the «’s sign), on the spatial dimension N and on the smoothness on the

initial data ug are made.

_ N ,
For each j € Z, we break up RY into dyadic cubes 7] = H (km277, (km + 1)277), where k =
et

(k1,...,ky) € ZN with ¢(r]) = 277, Define f](z) = fﬂrg(m). 1 <p<ooandlet 1 <g< oo We

define the space
Xpq = {f € LL.®Y); fllx,., < oo},

where

1fllx,, = | Do 2F 5 3 1AL ®N)

JEL kezZN
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Then (X, 4, - ||lx,.,) is a Banach space and the set of functions f € L>(R") with compact support

is dense in X, ; for the norm || . [|x, , -

We prove the following improvement of Strichartz’s (Stein—Tomas’s) inequality.

Theorem 9.1.2. Let ¢ = 2(1\1’\;”2) and 1 < p < 2 be such that 1% > %—ﬁé For every function g such

that g € Xp 4 or g € Xp g, we have
ITC)gllLagen+1) < Cmin {lglx, ,, 19]lx,., } (9.1.9)
where C' = C(N,p).

Theorem 9.1.3. Let ¢ > 2 and let 1 < p < 2. Then there exists p € (0, %) such that for every
function f € L2(RY), we have

1fllx,, <C

T m/ f(z pdx] 17132ty < Cll ). (9.1.10)
(j,k)EZXTZN

where C = C(p,q) and p = p(p,q). In particular, L*(RY) — X, ,. Moreover, L*(RY) # X
As a corollary we obtain the following improvement of Strichartz’s (Stein—Tomas’s) inequality.

Theorem 9.1.4. Let g = 2(N7]\;,-2) and let p < 2 be such that = > %r{‘é Then, there exists u € (O, %)

such that for every function g € L*(RY), we have

17C.)gllLa@v+ry < C

I
i N (9 _ ~
sup 2ﬂﬂ2pﬁ/,M@>mm]|mn;&&) Ollgllzz@s).  (9.1.11)
(j,k)EZXTZN T

where C' = C(N,p) and pn = p(N,p).

Remark 9.1.5 (See Bourgain [12], p.262-263). By Holder’s inequality, if 1 < p < 2 then for any
(4, k) € Z x ZN,

1/p
o |
l””“/ﬁ@%% <F2/m m]wpw>w%ommmy
Tk

for some 0 < 6 < 1. Therefore, it follows from our Strichartz’s refinement, Theorem 9.1.4, that the
following holds.

VM >0, 3n > 0 such that if [uo| 2 < M and [luollpy _ <n then Tiax = Tinin = o0,

2(N+2) 2(N+2)

(R; L=~ (RY)) and there
exists a scattering state in L?(R”). The same result holds if the condition |luo|| By . <1 is replaced
by

where u is the corresponding solution of (9.1.4). Furthermore, u € L™ ~

sup 2]%(2_”)/ lug(z)|Pdz < 7,
(4,k)EZXLN i

for a suitable 7.
Very recently, Rogers and Vargas [154] have proved, for the non—elliptic cubic Schrodinger equation

i0pu+ 02 u— 92 u+~lu|?v = 0 in dimension 2, some results analogous to Theorems 9.1.1, 9.1.2, 9.1.3
and 9.1.4.
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9.2 Strichartz’s refinement

|2 — .
We recall that T (t)g = K; x g, where K¢(z) = (4m't)_%el% and that K, (&) = e~ l€1*t Using that
for any g € L2(RY), T (t)g = F~1(K,g) we have,

(T(t)g)(x): /e2iw(m.£—2ﬂt|§|2)§(§)dg. (9.2.1)

RN

Let S = {(7,€) e R x RY; 7 = —27¢]2}, let do(|¢]?,£) = d€ and let f be defined on S by f(7,£) =
f(=2m[¢]?,€) = g(€). Then,

(T)g)(z) = /f(—27r|£\2,5)62”(”5_2”“32)(15

Y (9.2.2)
:// f(r, &m0 do(r,€) = F1(fdo)(t, z).
s
Our main tool will be the following bilinear restriction estimate proved by Tao [166]. We adapt the

statements to our notation using the equivalence (9.2.2).
Theorem 9.2.1 (Theorem 1.1 in [166]). Let Q, Q' be cubes of sidelength 1 in RN such that

min{d(z,y); r€Q, ye Q'} ~ 1

and let f, g functions respectively supported in Q and Q'. Then for any r > %—ﬁ’ and p = 2, we have

1T CITC)glr @y < CllFlleo@ Gl @
with a constant C' independent of f, g, Q and Q’.
By interpolation with the trivial estimate
ITCFTCgll sy < Clfll@ 8l @) < Cllflle@) 8]r@),
for any p > 1, one obtains the following result.

Theorem 9.2.2 ([166]). Let Q, Q' be cubes of sidelength 1 in RN such that

min{d(z,y); 1€ Q, y € Q'} ~ 1

and f, g functions respectively supported in Q and Q'. Then for any r > %—ﬁ and for all p such that
5 > %—ﬁ% we have

ITCHFTC)gllpr@yeay < Cllfllze @y 191 Lo ),
with a constant C' independent of f, g, @ and Q’.

By rescaling and taking r = %, we obtain the following.
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Corollary 9.2.3. Let 7, 7/ be cubes of sidelength 277 such that

min{d(z,y); z €1, y €T’} ~ 277

and f, g functions respectively supported in T and 7'. Then for r = NT and for any p such that
= > %*i‘f%, we have

ITCFTCglir ey < CEVF | fll o) 18] 2o ey,
with a constant C independent of f, g, T and 7'.

We will need to use the orthogonality of functions with disjoint support. More precisely, the following
lemma, a proof of which can be found, for instance, in Tao, Vargas, Vega [168], Lemma 6.1.

Lemma 9.2.4. Let (Ri)kez be a collection of rectangles in frequency space and ¢ > 0, such that the
dilates (14 c)Ry are almost disjoint (i.e. Y, L1 (140)r, < C), and suppose that (fi)rez is a collection
of functions whose Fourier transforms are supported on Ry. Then for all 1 < p < 0o, we have

1Y frlle@ny < C(N,c) (Z ||fk||i;(RN)> :

keZ kEZ
where p* = min(p, p’).

Proof of Theorem 9.1.2. We set r = 4 = % We first consider the case where g € X, ;. We can
assume that the support of g is contained in the unit square. The general result follows by scaling and
density. For each j € Z, we decompose R” into dyadic cubes le of sidelength 277. Given a dyadic
cube le we will say that it is the “parent” of the 2V dyadic cubes of sidelength 277~! contained in
it. We write le ~ Tg/ if T’z , T]z/ are not adjacent but have adjacent parents. For each j > 0, write
g= Zgi where Z}\i(ﬁ) = §1ng (¢). Denote by I' the diagonal of RN x RN, T' = {(z,z); = € RN}. We
have the following decomposition (of Whitney type) of RY x RV \ T (see Figure 9.1),

®Y<xRYN\T=) U lx7.

J kK T NTIZ,
Thus,

T(t)g(x) T(t)g(l’) _ / / €2i7T(z‘éizﬂ't‘6‘2)§(€)62iﬂ(m'n72ﬂtlnl2)/g\(n)dfdn

RN RN

_ZZ Z / / 2z7r x& 27t|€|? ) (5) 2171'(;57] 27rt|n|) ( )dﬁdn

k s
kil mixTl,

=>>. > TWaTMg

J k k‘l;T;ZNT)‘:,
(see also Tao, Vargas and Vega [168]). Thus,

1T (gl nveny = NT ()T (gllr@ry = 1D D TCIGT()Ghllr ).

i kK
J J

Ti W

~T
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BT
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FIGURE 9.1 - RN x RN

For each k = (ki,ka,...,kn), the support of the (N + 1)-dimensional Fourier transform of 7( . )gi
is contained in the set 7/ = {(—27|¢|?,€); € € 7{}. Hence the support of the Fourier transform of
T(.)glT(.)gl is contained in %,z + 7, = {(—2n(l¢? + |§'\2) E+¢&); €erl, ¢ €7} Using the
identity [¢]2+|¢'|*> = FIE+ &2+ 1] —&'|* we see that . + 71, is contained in the set H;, = {(a,b) €
RY xR: |a—279+1k| < C279, 272 < —|a|? — £ < 3N27%}. Note that,

SY S amecom

k k' T NTk/

Hence, the functions 7( . )g,T( . )g), are almost orthogonal in L2(RN+1). A similar orthogonality
condition was the key in the proof of the L*-boundedness of the Bochner-Riesz multipliers given by
Cérdoba [69], see also Tao, Vargas and Vega [168], and implicitly appears in Bourgain [11], Moyua,
Vargas and Vega [133, 139]. But we need something more, since we are not working in L? and we
want to apply Lemma 9.2.4. For M = 2[ln(N + 1)], we decompose each Tj into dyadic subcubes of
sidelength 277~M_ Consequently, we have a corresponding decomposition of ¢ x 71, and of RY xRY,
as follows : set D the family of multi-indices (m,m’, () € ZN X ZN x Z, so that, there exists some
T,ffM and ’7' M with 1, C TZ Mot T,f, M and TE M Tk, M (j =¢— M). Then,

RY xRVM)\T = UT x 7t

Hence,

ITC)gllZer @nry = 1TC)gT( gl

Lr(RN+1).

LT (RN+1) = [ Z T(. )gfnT( . )an/|
D

Notice that if (m,m/,£) € D, then the distance between 7/, and Tf;L/ is bigger than 27¢+M > N2—¢

and smaller than vV N2t We claim that there are rectangles Ry, ¢, and ¢ = ¢(N), so that

~0

TE X 7' ' C Ry and D5 Ly o)r < C(N). We postpone the proof of this claim to the end of

m,m/ e
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the proof. Assuming that it holds, and by Lemma 9.2.4, since r < 2, we have

3=

I ZT )9 | e @1y < C(N) lz ITC) g TC ) I ey
D

Now use Corollary 9.2.3 to estimate

DT g T )gfn’zr(RN+1)‘|
D

T

C(N,p) ZZ Z 2N g mll o &) 19 |2 vy

m m’;(m,m’ £)ED
Now, for each (m, ) there are at most 4V2M¥ indices m’ such that (m,m’,¢) € D. Hence,
1

ZZ S NG 1k ey | <

m’;(m,m’ ,£)ED

1

Z Z e A A

T
\\\\

\ 3
=, \\\ yz_nx
\\\\K

. £y
R N
: NI \
R 3 ,
\\ ',
\ ,/'/

FI1GURE 9.2 — Hm,m/,é C Rm,m/7g
We still have to justify the claim. Assume, for the sake of simplicity that
7t x 1t c {(z1,29,...,25) € RN Vj € [1, N], xj = 0}.

Then 7, x 7¢, is contained on a set Hy, e = {(a,b) € RN xR; a = (m+m/)27 " + v, v =
(v1,v2,++ ,uN), O < < 270 272EM g2 — L 3N272442MY | Consider the paraboloid
defined by —|al? — & = 2 242M  Take IT,, m/ ¢ to be the tangent hyperplane to this paraboloid at
the point of coordmates (ag,bo), with ag = (m + m’)27¢, by = —nlag|? — 272F2M (and passing
through that point). Consider also the point (aj,b;) with a1 = ag + (27¢F1, 271 . 27+1) and
by = —7|ay|? — 3N272/F2M Then, the rectangle Ry om0 18 defined as the only rectangle having a
face contained in that hyperplane and the points (ag, bo), and (a1, b1) as opposite vertices. Due to the
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convexity of paraboloids, it follows that H,, ;¢ C Rpom ¢ (see Figure 9.2). Moreover, one can also
see that, for small ¢ = ¢(N), (1+¢)Rpmmre C {(a,b); a = (m+m')27 +v, v = (v1,02,...,vn), Jvi|] <
C(N)27H1 C/(N)272602M  —[a2 — 2 < C7(N)2724+2M} | Therefore, we have >, Lator,, v,
C(N). Hence (9.1.9) in the case § € X, 4. Now, assume g € X, ;. By density, it is sufficient to
prove (9.1.9) for g € L?>(RY). By a straightforward calculation and the above result, we obtain that
ITCglzo@veny = ITC.) (F~19) llzavy < CONp)lglx, .- Hence (9.1.9). o

<

Proof of Theorem 9.1.3. Notice first, that the second inequality follows from Holder’s. By homoge-
neity, we can assume that || f||2g~vy = 1. Then, it suffices to show that for any function f € L?(R")
such that || f||2rvy =1,

1 [e%
P
< Clp.q) [supd 235" / 1P ,
jk -

where « = pupg and where u has to be determined. Take o and S such that % <p <1, p>%and
a+ g8 = q. Then,

RS

()

q q o

» ﬁ; »
() <fgere (o) b (1)
i ik i g K

We set © = ;‘—q =15 ¢ (O, %) . Hence, it is enough to show

&
Zzzf“ o (/ |f”> <C(p.a).

We split the sum,

sy
Syt ([ i)

ik

B
<oy s [ 7P
ZZ < i1 F1>21V/2)

o
+C zj%%”ﬂQ/ 7] L oA+ B),
;Xk: mN{If1<29N/2}

aq
P

where C = C(p, q). We study the first term. Set for each j € Z, i = JLg f|>2in/23. Then,

q

P

B
A= ZZ <2J’1§(2p) /,- fj|p>
i k Th
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Since Bq > 2, we also have ﬁ% > 1. Then,
Be Be
A< ZZQJ%(H;)/ | = ZQJ’%(Q*P)/ | fP
ik ] 3 RN
B3

< P QJ%(Q—P)
>

{5 | f|>290/2}

Since 2 —p > 0, we can sum the series and obtain

Be ]
A<C</IWW@”0 <c(/|ﬂ) <c
RN RN

by our assumption that || f||zz = 1. We now estimate B. Set for any j € Z, f; = fl{<2in/23. Then,

5
N 2-p
B:ZZQJz >2Baq (/] |fj|p>
ik T

We use Holder’s inequality with exponents % and ng

o We obtain,
B< 91 % 252 Ba (|924:2 )"
<M EE [ g (1))
Jj k Tk
_ ZZQJ‘%%%/ e (2 )
ik i
_ ZZQiN(l—ﬂ%)/ ‘fj|6q:ZQjN(1—B%)/ 15,1
ik i i RN

< Bq 9IN(1-B%)
RIS

{55 1f1<29N/2}

Since 1 — 34 < 0, we sum the series to obtain

B<c/'uWuW*®<c/ P <C,
RN RN

since || f||zz = 1.
We give an example to show that L?(RY) # X, ;. Let

1

e[ F[nfelF )"

f(x)

Then for any 1 < p <2 and any ¢ > 2, f € X,,, but f ¢ L*(RY). O

9.3 Preliminary results

In this and next section, we follow Bourgain’s arguments ([42]). We have to modify them in the proof
of Lemma 9.3.3, because the Strichartz’s exponent is not, in general, a natural number.
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Lemma 9.3.1. Let f € L2(RV)\{0}. Then for any ¢ > 0, such that ||T(~)fHLz(ng+z) ® > e, there

xRN)
exist No € N with No < C(||fllrz, Nye), (An)1<n<n, C (0,00) and (fr)1<n<n, C L2(RY) satisfying
the following properties.

1. ¥n € [1, No], supp?; C Tn, where 7, € C with £(7,) < C||f||22(RN)5"’An, and where the
constants C, ¢ and v are positive and depend only on N.

— _N
2. Vn € [[1 Noﬂ |fn‘ <An?

3. |\T()f - ZT Mal 202

RxRYN)
2 L 2 R e
4- ||f||L2(]RN) = ;1 ”f”HL?(]RN) + ”f - 21 f”HL2(]RN)'
The proof relies on the following lemma.

Lemma 9.3.2. Let g € L2(RY) and let € > 0 be such that ||[T(.)g|l 242 > €. Then there
LN (RxRY)

exist h € L2(RY) and A > 0 satisfying the following properties.

1. supph C 7, where 7 € C with ((1) < Cligllgznye™" A, and where the constants C, ¢ and v
depend only on N.

2. |h| < A

~% and A1 ®N) 2 C||g||;§(RN)sb, where the constants C, a and b depend only on N.

3. lg— h”%z(RN) = H9HL2(]RN) - ||hH%2(RN)-

Proof. We distinguish 3 cases.

Case 1. suppg C [~1,1]"V. Then the function h will also satisfy supph C 7 C [—1,1]¥
Let € > 0 and let g be as in Lemma 9.3.2 such that suppg C [~1,1]". It follows from Theorem 9.1.4
that

\ J 5 (2-p) ae)P
e<IITCIgll zopa o ony Cllgll 2 iy [ sup 277 /T,g 9(§)[Pdg

(j,k)€ZXZN

So there exist j € Z and T € C, with 7 C [-1,1]" and ¢(7) = 277, such that
[ a©rac = ciglizgh otz e, 931

_1
Let M = ((CHQHZZZZRI%’) 15)l —i% (2-p)- 1) ™", where C is the constant in (9.3.1). Then by Planche-
rel’s Theorem,

/ GO)Pde = M2 / G(6) P a2

m{lg|=M} T {lg|=M}

< Mp—2/|§‘p|§|2*pd§: Mp72||9||i2(RN)~ (9.3.2)
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It follows from (9.3.1)—(9.3.2) that

G(6)Pde = / G(e)Pde — / G(6)Pde
T{|g|<M} T T {|g|=M}
> (CllglltE gwye) #2795 @) — MP=2||g|1 3 v
e
> Cen2 %P ||g||L2 (&N)-

By Holder’s inequality and the above estimate, we get

1—pp

cetri¥emgLin < [ ogeores<| [ @] 1

m{lgl<M} T{lgl<M}
Since |7| = 277V we then obtain,
9 2(1*;@)
G()PE > Clgll 2 &%) = (9.3.3)
m{[gl<M}

Let h € L2(RY) be such that h= 9l n¢51<my and let A = M~*%. Then supph C 7 C [—1,1]" with
2u(2—p)+2

Ur) =277 = C||9||L12V€LH$V ») ¢~ ¥t A. So we have 1, and 2 follows from (9.3.3). Since h and § — h

have disjoint supports, 3 follows.

Case 2. suppg C [-M, MV for some M > 0. Then h will also satisfy supph C T C [~ M, MY

Let ¢ > 0 and let g be as in the Lemma 9.3.2 such that suppg C [~M, M|V for some M > 0. Let
g € L?>(RY) be such that g'(¢) = M%’g\(Mf) Then suppg’ C [~1,1]¥ and so we may apply the
Case 1 to g’. Thus there exist b’ € L*(RY), 7/ € C and A’ > 0 satisfying 1-3. We define h € L*(RY)
by h(€) = M~ %W (%) - Then ||gllz2@®~) = |9'l|L2@®~) and [[hl[p2@y) = [|F'|[L2@®y)- In particular,
second part of 2 holds for g and h. Setting 7 = M7’, it follows that supph C 7 C [-M, M)V and
7)) = M) < C||g||%2(RN)€”MA/. So h satisfies 1 with A = MA’. Finally, |h| < M~2 A" 2 =

A*%, which implies 2. Finally, 3 follows from the similar identity for g’ and .

Case 3. General case.
Let € > 0 and let g be as in the Lemma 9.3.2. For M > 0, we define ups € L2(RY) by uns = gl s, anpw
It follows from Strichartz’s estimate (9.1.7) and Plancherel’s Theorem that

— ~ M—c0
17C. ) (uar —9)HL2(1§V+2) (BXEN) < Clluar = gllp2@yy = Cllaar — gllp2@yy —— 0.

Then there exists My > 0 such that

€

. > —.

(7 )UMOHLW(RX]RN) >3
Setting go = uas,, we apply the Case 2 to go, obtaining h. Since [|go| 22~y < [|g]|22(rn), Properties 1
and 2 are clear for g and h. Also, Property 3 holds for g and h, again because the disjointness of

supports. This achieves the proof of the lemma. O
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Proof of Lemma 9.3.1. Let f € L?2(R™) \ {0} and let £ > 0 be such that

ITCHII, s

=€
(RxRN) ~

We apply Lemma 9.3.2 to f. Let h € L*>(RY), 7€ C,A>0,a =a(N) > 0,b=b(N) > 0,c=c(N) >0
and v = v(N) > 0 be given by Lemma 9.3.2. We set f; = h, ; = 7 and A; = A. By Lemma 9.3.2,

we have

U(r1) < C||fl|7267" Ax, (9.3.4)
1f = fillze = 102 = WfaliZes IF = fullgs = A8 and [Ifill7e = ClflIgee" (9.3.5)
Now, we may assume that
ITCAE =Tl g >

otherwise we set Ny = 1 and the proof is finished. So we may apply Lemma 9.3.2 to g = f — f1. Let
h € L2 RY), let 7 € C and let A > 0 be given by Lemma 9.3.2. We set fo = h, 7o = 7 and Ay = A.
By Lemma 9.3.2 and (9.3.5), we have

U1e) < C|f = fill7267"Ax < C||f]| 267" As, (9.3.6)
If = (fr+ f)l7 = If = fullZz = I fallZe = I£11Z2 = (1AllZe + 1 £21172), (9.3.7)
I fell72 = CIIf = fillz5e® = ClIfllze" (9.3.8)

We repeat the process as long as

k=1
17C)f = ZIT( : )fjHLW(RXRN) > e,
=
k-1
applying Lemma 9.3.2 to g = f — ij- Then, by (9.3.4)-(9.3.8), we obtain functions fi,..., f,
i=1

satisfying Properties 1 and 2 of Lemma 9.3.1 and

k k
1F =D fillze =122 = D Iiles (9-3.9)
j=1

=1
IfellZ2 = ClflI e’ (9.3.10)

for any k € [1,n], for some n > 2. From Strichartz’s estimate (9.1.7) and (9.3.9)—(9.3.10), we obtain

n

ITC = ST s

=1 (RXRN)

n——0oQ

<SONf = fillje <CUSIIL: = CnllflIp5e") == —cc.
j=1

So the process stops for some n < C(||f||L2, N, ). We set Ny = n and the proof is achieved. O
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Lemma 9.3.3. Let g € L?>(RY), let 7 € C, let A > 0 and let Cy > 0 be such that suppg C T,
(1) < CoA and |g] < A%, Let &o be the center of T. Then for any € > 0, there exist Ny € N with
N < C(N, 0076) and (Qn)1<n<N1 C R x RN with

X

Qu = {(t,2) ERxRY; t € I, and (z — 4nt&y) € Cn}, (9.3.11)
) ) . 1 , 1
where I, C R is an interval with |I,,| = yE and C,, € C with ¢(C,,) = 1 such that
N
2(N+2)
2(N+2)
[T | <

Ny
RN\ J Qn
1

n=

Notice that the functions f,, obtained in Lemma 9.3.1 satisfy the hypothesis of Lemma 9.3.3.

Proof of Lemma 9.3.3. We define ¢’ € L2(RN) by ¢/(¢') = A>§(&o + A€'). Then ||¢/||z> = gLz,
|gA’| < 1 and suppgA’ C [—%, %}N It follows from (9.2.1) applied to g’ that

(T(A%)g')(A(x — dmtgo))] = / (Al —tmte) 2w A%UE) G ()4

(- )"

where the last identity follows from the change of variables ( = &y + A¢. Setting

I A2
v =4%, (9.3.12)
' = Az — 4wt&y),

we then have

(T (t)g) ()| = A% [(T(t)g)()]. (9.3.13)
By (9.2.1),
(TOH@I = [ g, (9.3.14)
(9"
By (9.2.2) (with ¢/ in the place of g) and Corollary 1.2 of Tao [166], we obtain
179 || Lagrsryy < C(N, Q)||§IHLP(RN) = C(N, Q)HQA’HLP((,%’%)N)v (9.3.15)
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for any q > ((Zf,v:l)) and any p > 1 such that ¢ = 32p'. Let p’ = p/(N) € (1,2) be such that

2(N+3) N+2, 2(N+2)
< p < .
(N+1) N N
N+2 2(N +2
Thus g = ¢(N) = ; p < ( N+ ) and it follows from (9.3.15) that and Holder’s inequality that
Co Cy
/
I s < CONT o gy gy < 00| (- 2. 2) [ 191, (5™

so that
17(.)g | Laxryy < C(Co, N).
This estimate implies that for any A > 0,

IT(t)g' (o) 5 dt'da’
{7 )9’ I<A}
_ / IT(#)g ()| R 20 9qr dn’ < O(Co, NIAZR2 0.
{I7(C.)g’ <A}

So there exists A\g = \g(IV, Cp, €) € (0,1) small enough such that

2(N+2) 2(N+2)

T (t)g (") Adt'de’ < ¥, (9.3.16)

{7 )9’ I<2M0}

Since suppA’ c [-% S N and |[§ 1~ < 1, it follows from formula (9.2.1) that for any (¢',2') €
g 2 g

2
R x RY and any (¢/,2") € R x RV,
IT(#)g'(2") = T(t")g'(z")] < C(|t' = t"[ + 2" = 2"]),

where C' = C(Cy, N) > 1. So for such a constant, if (¢, 2") € {|T(.)g'| = 2\o} and if (¢, 2") € RxRY
is such that [t/ — ¢"| < 22 < L and |2/ — "] < % < % then |[T(#")g(z")| > Ao, that is (t’,2") €
{IT(.)d'| = Ao} So there eX1st a set R and a family ( T)TGR = (Jpr, K;)rer C R xRN, where J, C R

is a closed interval of center ¢' € R with |J,| = 2¢ and K, € C of center 2’/ € RV with ¢(K,) = 2¢
and (t',2") € {|T(.)g'| = 2Xo}, such that

V(r,s) € R x R with r # s, Int(P,) N Int(Ps) = 0, (9.3.17)

{IT()g'1 = 2x0} € [J P c{IT()d'| = Mol (9.3.18)

reR

where Int(P,) denotes the interior of the set P.. We set Ny = #R. It follows from (9.3.17)—(9.3.18)
and Strichartz’s estimate (9.1.7) that,

N+1
A\
N, (22
c
_2(N+42) 2(N+2) (N 2) 2(N+2)

<A Y ”T()g/” 2(N+2) <C)‘(; ”g”Lz )
L™~ (R

xRN)

= P | < HIT()g) = Mo}l

reR
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from which we deduce that N1 < oo and N1 < C(||gl/z2, N, Co, ). Actually, since our hypothesis
implies that ||g|lL2 < Cév/27 we can write also Ny < C(N,Cy,¢). For any n € [1,N1], let (tn,zy)
be the center of P,, let I,, C R be the interval of center 1'54"2 with |I,| = ﬁ, let I, = A%I,, let
C, € C of center %z, with {(C,) = %, let C}, = AC,, and let @, be defined by (9.3.11). Then

U P. c U (I x C.), which yields with (9.3.16) and (9.3.18),
1

n=1 n=
/ 1T (tg ()72 At de’ < 272 (9.3.19)
wren U (11x0)
n=1
By (9.3.13),
/ IT(8)g(2)] 5 dtde = AN+ / T ()9 (/)] "5 dt'da’
RN+1\ JE]_:JII Qn RN+1\ ][;11 Qn

But (t,z) € Q, < (t',2') € I/ x C/,, and so we deduce from the above estimate and (9.3.12) that

/ 1T (#)g(x)| 7> dtda = / 1T () g(a)) 2 dt' . (9.3.20)
Ny Ny
RNFIN U Qn RN+1\ | (I, xC1)
n=1 n=1
Putting together (9.3.19) and (9.3.20), we obtain the desired result. O

9.4 Mass concentration

Proposition 9.4.1. Let v € R\ {0}, let ug € L*(RN) \ {0} and let

2(N+2) 2(N+2)
N

u € C((_Tminu Tmax)? LQ(RN)) N L N ((_Tminv Tmax); L

loc

(RY))

be the mazimal solution of (9.1.4) such that u(0) = ug. Then there exists no = no(N, |v]) > 0 satisfying
the following properties. Let (To,T1) C (—Tmin, Tmax) be an interval and let

= [lull | 20vs2 P (9.4.1)
If n € (0,m0] then there exist tg € (T, T1) and ¢ € RN such that
lu(to)llz2(B(e,R)) = €5 (9.4.2)

where R = min {(T} —t0)2, (to —To)%} and € = &(||uo|| 2, N, 1) > 0.

Proof. Let v, ug, u and (Tp,T7) be as in the Proposition 9.4.1. Let n > 0 be as in (9.4.1). By (9.1.2),
we have

t

Yt € (—Twmin, Tmax), u(t) =T (t — To)u(To) + i'y/T (T(t— s){|u|%u})(s)ds (9.4.3)
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Setting for any ¢ € (—Twin, Tmax); Pu(t) = iy f;o (T(t — s){|u|~u})(s)ds and applying Strichartz’s
estimate (9.1.8), we get with (9.4.1)

N+4

+4
o, =Cin v, 944
| ||Lw((TO)T1)XRN) Crllull 3 L2 (xRN n ( )

where Cy = C1(N, |7]) > 1. For every a,b > 0, (a+b)* < C()(a® +b%), where C(a) =1if 0 <a <1
and C(a) =271 if a > 1. Let C; be such a constant for o = . We choose 19 = no(N, |7]) > 0 small

enough to have

16

2(201) ¥ Cond™® < 1. (9.4.5)

Assume that 1 < ng. We proceed in 3 steps.

Step 1. We show that, there exist fo € L2(RV), A > 0 and 7 € C of center & € R satisfying
supp fo C 7, €(7) < C(||uol|r2, N,n)A and |fo| < A=%, and there exist an interval I C R and K € C,
1
with |I| = —5 and {(K) = T such that for Q@ C R x RY defined by
Q={(t,x) e RxRY; t €I and (z — 4rt&) € K},

we have

2(N+2)

u(t, ) 2| T(t — To) fo(x)| ¥ dtdz > Cnp~ 7, (9.4.6)

((T(],Tl) XRN)QQ

where C' = C(|Jugl|2, N,n).
To prove this claim, we apply Lemma 9.3.1 to f = u(Tp) with g9 = n “¥*. Note that, by (9.4.1),
(9.4.3), (9.4.4), (9.4.5) and time translation, we have that

(T, T, >n/2 >
1T, s, = ITC =TT oy > 0/2 3 20
It follows from Hélder’s inequality (with p = 232 and p’ = ¥F2), (9.4.3)-(9.4.4) and Lemma 9.3.1
that
T No %+
/ lu(t, z)[? =) T To) fulz)| dtda
Ty RN n=1
||UH 2(N+2) ZT _TO )fn” 2(N+2)

((To,T1) % RN)

No
2<|T(-)U(TO)Z TC)fall 2

Nt4 18 2v+2) 1 2342
N

4
SO0+ M)V <OV N < =)
20,

((To,T1) xRN)

4
N

N+4
+ Cq||lu|] 5,
(]R RN) 1” |L2<NN+2)((TO,T1)><]RN)>
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The above estimate and (9.4.1) yield

4
No N
e / fu(t, )| < ) = S Tt~ To)fula )JrZTtTO ful@)|  dida
To RN n=1 n=1
1 2 2 N
<O | 5 S / lu(t, z) 2 ZTt—TO Fulz)| dtdz |,
To RN
which gives
N 1 2 2
/ lu(t, z) |2 Tt T fule)| drde > Lyt (9.4.7)

202

By Lemma 9.3.1 and conservation of charge, Ng < C(||uol|z2, N, n). It follows from (9.4.7) that there
exists ng € [1, No] such that

2(N+42)

/ la(t )2 [T (= Ty) fony ()] ¥ dtda > O 52 (9.4.8)

Ty RN

where C = C(||ugl|p2, N,n). Set A = A,,, 7 = Tp, and Cy = C(N)||u0||z(;v)eau(m, where we have
used the notations of Lemma 9.3.1. Let & € RY be the center of 7,,. We apply Lemma 9.3.3 to

N
9= fn, and g1 = (£) * n, where C is the constant in (9.4.8). It follows from Hélder’s inequality (with
p= % and p’ = %), (9.4.1) and Lemma 9.3.3 that

/ / ()2 [T (¢ — To) fg ()| dtd
((To,T1) xRN\ 911 Qn

TC ) fuall
L L

_ C 2w+2)
= 2 ’)7 .

The above estimate with (9.4.8) yield

2(N+2)

// fu(t, 2) 2 [T(t = Tp) fuo ()| ¥ dtd > Oy N, (9-4.9)
Ny
((To, T ) xRN )N( U Qn)
where C = C(||luo|lz2, N,n). By Lemma 9.3.3, N1 < C(|luo||r2, N,n). With (9.4.9), this implies that
there exists ny € [1, N1] such that
2(N+2)

// lalt, 2)[2 [T (= To) foy ()] ¥ dtda > O 2 N2, (9.4.10)

((To,Tl)XRN)ﬁin
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where C'= C(||ug||2, N, n). Hence we obtain the Step 1 claim with fo = fn,, [ = I,, K = C,, and
Q = in'
1 1
Step 2. We show that 1 < C(Th — Tp)> and sup ||T(t — To) foll Lo mrvy < CA?, where C =
teR
C(lluollzz, N,m).
By (9.2.1) and Step 1, [T (t — To) fo| < / |f0 )|d€ < <Az / 1d¢€ < CA* | which yields second part

of Step 2. Using this estimate, Step 1 and conservation of charge, we deduce

2(N+2)

oS 2 ¢ // lult, ) 21Tt — To) fola)| ¥ dadt

((To,T1) xRN)NQ

T
<o / / lu(t, 2)[2dzdt < CA2 / lu(t, 2)[2dzdt

((To,T1) xRN )NQ To RN
< CA2||’LL0HL2 T1 — T()).

Hence we obtain the Step 2 claim.

Step 3. Conclusion.

Let K € C, I and @ be as in Step 1, and let r/ = an(NN“), where C' is the constant of (9.4.10). Let
K(t) = K + 47téy and let k > 0 be small enough to be chosen later. It follows from Step 1, Step 2
and Hélder’s inequality (with p = & NE2 and p/ = %), that

v< [ P T - T s ddi
((To, T1)xRN)NQ

<T( = To) fol P / (/K(t) |u(t,x)2dw> dt

IN(To,T1)

< CA? / </ |u(t,x)|2dx> dt
K(t)

IN(To,Ty)

< CA? / (/ |u(t,x)|2dx> dt
K(t)

(T0+ S Ti—=h ,)
2

N+
—|—CA2 22 +2 / T / 1d a
||UH %((TO,TQXRN) ( Iﬂ[(To,TO‘f‘Z’g)U(Il '2"2,7 1)} ( K(t) ’

2 N

N\ VT2 1\ V2
< CA%1] sup / Ju(t, z)|?da + C A%y ¥52 <An) <A>
K (t)

teIﬂ(TO-i-%,Tl%)

2

<C sup / u(t, )|?de + Cr ™2y
t€Iﬁ<TO+W’ Ty — ) K(t)

where C' = C(||luo||r2, N,n). For such a C, let £ > 0 be small enough to have Cr™7 < 1. Then
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k = k(||uol| Lz, N,n) and

2(N+2)
N

sup / lu(t, z)|*dz > Cn )
Ty — 51 ) K(t)

’

tem(ToJr%

where C' = C(||lug||r2, N, n). So there exists tg € I N (Tg + ’fTZ/,Tl - %) such that

2(N+2)

/ lu(to, z)|*de > Cn~~ (9.4.11)
K(to)

1 N
where C' = C(||uo||r2, N,n). Since ¢(K(ty)) = T then K(to) is contained in a ball of radius \/—;

which yields

/ /

K
i<t0<Tl—

Furthermore, Ty + 12

K1)
A2

SIS

1 1
— < Cmin{(Th —t9)2, (to — Tp)

n 1, (9.4.12)

where C = C(||lug||2, N,n). Using this and Step 2, it follows that K(tp) can be covered by a finite
number (which depends only on ||ug||z2, N and 1) of balls of radius R = min {(Tl —to)2, (to — TO)%} .
Then, by (9.4.11), there is some ¢ € RY such that

[ Jutte,0)Pds > (luglia, Non) (9.4.13)
B(c,R)

This concludes the proof. O

Proof of Theorem 9.1.1. Let 7, ug and u be as in Theorem 9.1.1. Let 19 = no(N, |y]) > 0 be given
by Proposition 9.4.1. We apply Proposition 9.4.1 with n = ng. Let € = e(||luo||z2, N, |7]) > 0 be given

by Proposition 9.4.1. Assume that Tipax < 00. Then [Ju|| 2vi2) 2(N+2) = 00 and so there
L N ((07Tmax)§L N (RN))

exist

0:T1<T2<"'<Tn<Tn+1<"'<Tmax

such that

Vn € N, ||UHL2(N+2)

N ((Ty,Tot1) xRN) = To-

It follows from Proposition 9.4.1 that for each n € N, there exist ¢,, € RN, R, > 0and t,, € (Ty,, Tp41)
such that

Rn < min{(Tmax - tn)%a (Tmin + tn)%} and Hu(tn)”Lz(B(cn,Rn)) P> g,

for every n € N. The case Tyin < oo follows in the same way. Hence we have proved the result. O

9.5 Further Results

As a corollary of the previous results, we can generalize to higher dimensions the 2—dimensional results
proved by Merle and Vega [137] and the results proved by Keraani in [119] dimensions 1 and 2. We
state here the most interesting of them. We need first some notation.
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Definition 9.5.1. Let v € R\ {0}. We define dy as the supremum of § such that if

[uol[2 <6,

2(N+2) 2(N+2)

then (9.1.4) has a global solution u € C(R; L2RN))N L=+~ (R; L=~ (RY)).

We can prove the following result.
Theorem 9.5.2. Let v € R\ {0}, let ug € L2(RY) \ {0}, such that |Jug|| 2@~y < V260, and let

2(N+2) 2(N+2)

u € C((_Tminu Trnax); Lz(RN)) N L N ((_Tminv Tmax); LT (RN))

loc

be the mazimal solution of (9.1.4) such that u(0) = ug. Assume that Tyax < 00, and let A(t) > 0, such
that A(t) — 00 as t — Tiax. Then there ezists z(t) € RY such that,

liminf/
t/ Tmax J B(2(t), A(t) (Tomax—t) 2 )

If Tinin < 00 and A(t) — 00 as t — —Tyin then there exists x(t) € RN such that,

lu(t, z)|*dx > 2.

N

lu(t, z)|*dz > 53.

lim inf /

N Tmin J B (8), A (1) (Twin+1) 2)
The main ingredient in the proof of that theorem is a profile decomposition of the solutions of the
free Schrodinger equation. This decomposition was shown in the case N = 2 by Merle and Vega [137]
(see also Theorem 1.4 in [54]) and by Carles and Keraani [54] when N = 1. We generalize it to
higher dimensions thanks to the improved Strichartz estimate, Theorem 9.1.4. To describe it we need
a definition. We follow the notation of Carles and Keraani [54].

Definition 9.5.3. If IV = (pJ ] &) 27 ),en, 5 = 1,2,... is a family of sequences in (0,00) x R x

n’ n?

RY x RN, we say that it is an orthogonal family if for all j # k,
lim sup
n—oo
Theorem 9.5.4. Let (u,)nen be a bounded sequence in L*(RYN). Then, there exists a subsequence

Ph +7+ |th, — ty] + f%—fﬁ + f%ﬁ%ftﬁﬁﬁ
on Pl (ph)? s oh

Now, we can state the theorem about the linear profiles.

(that we name (uy,) for the sake of simplicity) that satisfies the following: there exists a family (¢7)jen
of functions in L*(RYN) and a family of pairwise orthogonal sequences T9 = (pJ, ] &1 2 )pen, 7 =

1,2,... such that
¢

T(un(z) =Y Hi(¢)(t,x) + wh(t, z),
j=1
where

J x) = O FT (4 ! T x
Hi(6)(t,) T(t)( T(~) <pn>N/2¢( . ))( )

with

: ¢
llnn1_>solip ||wn||L2(NN+2) - — 0 as {— o0.
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Moreover, for every £ > 1

4

unllZ2@ny = Y 167 172@n) + lwh (0172 @y +o0(1),
j=1

as n — OQ.

A similar result has been proved for wave equations by Bahouri and Gérard [15]. To prove Theo-
rem 9.5.4 one can follow Carles and Keraani (proof of Theorem 1.4) in [54]. It is observed in that
paper (Remark 3.5) that the result follows from the refined Strichartz’s estimate, our Theorem 9.1.4,

2(N+2) .
%maneven

once we overcome a technical issue, due to the fact that the Strichartz exponent
natural number when N € {1,2} (which covers the cases that the previous authors considered) but
not in higher dimensions (except N = 4). Thus, to complete the proof we only need the following

orthogonality result.
Lemma 9.5.5. For any M > 1,

2)

M
.
HZWWHWMM EWJHMM +o(l) as n— oo,
<

i= 1 ( N+1)

Proof. The proof if based on a well-known orthogonality property (see Gérard [89] and (3.47) in
Merle and Vega [137]) : if we have two orthogonal families I'* and I'?, and two functions in L2(RY),
¢! and ¢?, then

HH}L( )H2(¢2)H =o(l) as n— oco. (9.5.1)

@y

When N =1or N = 2, w is a natural number, so we can decompose the L% norm as a
product and, using (9.5.1), we obtain directly the lemma. In the higher dimensional case, write

HZWWmeﬁﬂZWWHZWW%

/ZZWWH%WZW

{jwwuzmw%zzﬂmwmwﬁﬁw%
J k#j

4+ B.

2\»

N+2 N+2

We estimate B using Holder’s inequality with exponents and ~5=,

[T me

<IHH )V Hi (6] HZWMMW,

Then, we use the orthogonality (9.5.1) and obtain B = o(1).
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About A, when N > 4 then % < 1 and therefore,
<Yy [
—Z/\Hf ) 2|HI (¢7)| % +ZZ/IHJ )P HL (6|
J L#]

The first term of the sum is

N+2)
Z [H7 (&)l iy

The second one is

S5 [ e H O

J t#]

We apply Hélder’s with exponents N—f2 and & +2 and bound the last sum by

S @I R 1 ) HA | P

J o g#e
which is o(1) by (9.5.1). This finishes the proof of the Lemma for N > 4.

When N = 3, then % = % > 1, which complicates a bit the argument. We write
Oy LN SV RESID S COIEES 95 99 O ALHCDREACIL AR
j 1 m L3 om

Using a similar argument as in the previous case, we show that the above integrals are o(1) except in

the case 7 = £ = m. This ends the proof of the lemma for N = 3. O
Proof of Theorem 9.5.2. To prove Theorem 9.5.2, one can follow the arguments given by Keraani
in [119]. Again one has to deal with the fact that i is not in general a natural number. Apart
from Lemma 9.5.5, we just need an elementary 1nequa11ty (see (1.10) in Gérard [39]) for the function
F(z) = |z|~z
¢ ¢
FQoUY) =Y PO <Y Y 17|05+,
=1 =1 i kA

Then, the arguments given by Keraani generalize to higher dimensions without difficulty, and prove
Theorem 9.5.2. O

Remark 9.5.6. As said in the beginning of this section, we generalize all the results of Keraani [119]
to higher dimension N. In particular, we display two of them.

1. There exists an initial data ug € L2(R™) with ||ug|/z2 = &0, for which the solution u of (9.1.4)
blows-up in finite time Ty ax-

2. Let u be a blow-up solution of (9.1.4) at finite time T,y with initial data wg, such that
luollz> < V2 80. Let (t,)nen be any time sequence such that t,, ——— Tyax. Then there exists a
subsequence of (t,)nen (still denoted by (¢,,)nen), which satisfies the following properties. There
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exist ¢ € L2(RN) with ||1||z2 = 6o, and a sequence (pn,&n, Zn)nen € (0,00) x RY x RY such
that
T L — )

n—0oo Tmax - tn

for some A > 0, and
5 12 N
pi €ty ppx + x,) — b in LE(RY),

as n —r Q.
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Appendix

A Some elements on o-minimal structures

Some references for o-minimal structures are [70, 82, , 80]. We only collect in this appendix the

elements that are necessary to follow our main developments.

Definition A.1 (o-minimal structure [70, Definition 1.5]). An o-minimal structure on (R, +, .)
is a sequence of Boolean algebras(?) O = {0, },en of subsets of R™ such that for each n € N,

(i) if A belongs to O,, then A x R and R x A belong to Oy,11;

(ii) if II : R**! — R" is the canonical projection onto R™ then for any A € 0,11, the set I1(A)
belongs to O,;

(iii) O, contains the family of real algebraic subsets of R™, that is, every set of the form
{x eR"; p(x) = 0},
where p : R — R is a real polynomial function ;
(iv) the elements of O, are exactly the finite unions of intervals and points.

Being given an o-minimal structure O, a set A C R is called definable (in O) if A € O,,. A mapping
F: D CR"™ — R™ is said to be definable in O if its graph is definable in ) as a subset of R x R™.
A point-to-set mapping

S:R" =3 R™,

maps each point z in R™ to a subset S(z) of R™. The domain of S, denoted by dom .S, is given by
the set of elements x in R™ such that S(x) is nonempty. The graph of S is defined by

graph § = {(x,y) eER"xR™ye S(x)}
As previously a point-to-set mapping is called definable (in O) if its graph is definable in R™ x R™.

Example A.2. (a) Semi-algebraic sets. The first and simplest example of o-minimal structure
is given by the class of semi-algebraic objects (see (8.2.1)). Tarski-Seidenberg principle (see [30])
asserts that linear projections of semi-algebraic sets are semi-algebraic sets, in other words item (ii)

2. Recall that a Boolean algebra is stable by finite union, finite intersection and contains the empty set and the total
space; here 0 € O, and R"™ € O,.
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of Definition A.1 holds for the class of semi-algebraic sets. The other items of the definition are easy
to establish.

(b) Globally subanalytic sets. There exists an o-minimal structure that contains semi-algebraic
sets and sets of the form {(z,t) € [-1,1]" x R; f(z) =t}, where f: [~1,1]" — R (n € N) is a real
analytic function that can be extended analytically on a neighborhood of the square [—1,1]™ — these
are sometimes called restricted analytic functions. This result is essentially due to Gabrielov [37]; sets
belonging to this structure are called globally subanalytic sets (see [31] and the references therein).
(c¢) Log-exp structure. There exists an o-minimal structure containing the globally subanalytic sets
and the graph of exp : R — R, see [31].

There are other results on o-minimal structures and the field is still very active, but the above examples
give a good idea of the power of the concept.

We now describe some stability /regularity results that we used in this paper.

Let O be an o-minimal structure on (R, +, . ).

Lemma A.3 (Monotonicity Lemma [82, Theorem4.1]). Let f : I C R — R be a definable
function and k € N. Then there exists a finite partition of I into p intervals Iy,...,Ip, such that f
restricted to each nontrivial interval I, j € {1,...,p}, is C* and either strictly monotone or constant.

Observe that some I; can be reduced to a singleton.

Lemma A.4 (Definable Selection Lemma [70]). Let S : R™ — R™ be a definable point-to-set
mapping. Then there exists a definable mapping F : dom S — R™ such that

F(z) € S(z), Yz € dom S.
We recall the following theorem as stated in Kurdyka’s original work [124].

Theorem A.5. Let Q) be a nonempty open bounded subset of R™ and f : Q@ — R a differentiable
definable function with f > 0 on Q. Then there exist ro > 0 and a continuous definable function
¢ :[0,70) = Ry such that p(0) =0, ¢ € C1(0,79) and ¢’ > 0 such that

IV (pof) (@)l =1, Ve e Q.

Remark A.6. Let us show how to recover the form of KL inequality given in Theorem 8.2.2.

We adopt the notation of Theorem 8.2.2. Fix u > 0. Apply first, the above result to G — G(u)
(respectively, to G(u)—G) on Qy = B(u, p)N[G—G(u) > 0] (respectively, on Qs = B(u, p)N[G(w)—G >
0]). This gives ¢7 : [0,71) — Ry and a2 : [0,72) — R, as in Kurdyka’s Theorem. Let us now build
a “global” ¢ as in Theorem 8.2.2. First recall that the derivative of a differentiable definable function
is definable in the same structure, see [70]. Set p(s) = (¢} — ¥5)(s). By definability, p is positive,
negative or null on an interval of the form (0, ¢). This yields the existence of r in (0, min{r;,r2}) such
that, for instance, ¢} > ¢ on (0,7). Set then ¢ = ¢1 and observe that

IV (pe|G(-) = G@)) (W) =1, Vu € B(0,n) \ [G # G(@)],

when 7 is sufficiently small.
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B Some useful estimates and results about Sobolev spaces
We set Ng = NU {0} and we use the convention, WP (RY) = LP(RY).
Lemma B.1. Let 0 < m < 1. Then we have for any (z1,22) € C x C,

21|72y — 20| Tz | < Bl21 — 2™, (B.1)

where |z|~1=™) 2 =0, if 2 = 0.

Proof. Let 0 < m < 1 (the case m = 1 being obvious). We proceed to the proof in four steps.

Step 1 :Vt, s >0, [t"™ —s™| < |t — s|™.

Let for z > 1, f(z) = (x —1)™ — (™ — 1). Then f’ > 0 on (1,00) and so f (£) > f(1) =0, for any
t > s > 0. Hence Step 1.

Step 2 : Va > 0, V0 € R, ‘a’” — amei9| < 2t-m ‘a —ae'?

m

We have for any 6 € R, |1 — el? o < 217" implying ’1 — el g 2t-m |1 —¢?™ | therefore Step 2.
. m
Step 3 : V(z1,22) € C\ {0} x C, ||z2| — ‘z—hzg‘ < 2™z — 2zo|™.
We have,
|z2| — 2| = ‘(|22| - lel> + (lel - 2122)‘
|21 |21 |21 |21

1 1
(2] — |z1]) + (|Z1|zl - |;|zQ)‘ < lz2] = o] + |21 — 22| < 2|21 — 2]
1 1

Hence Step 3.
Step 4 : Conclusion.
Let (z1,22) € C x C with 2129 # 0, otherwise there is nothing to prove.

‘|Zl|—(1—m)z1 _ |Z2|—(1—M)Z2‘ — |Z1|_(1_m)21|271 _ |22|—(1—m)z2£
21| |21
Z oz Steps 1 and 2 _ 1z
= ‘(|Zl|m—|22m)Jr <|22|m—|22m|;|22|> < |21 — 2™ + 217 |22|—\Z2|‘71H72|
1] [?2 1] |22
> Steps 3
= |2’1 — 22|m + gl-m ‘Z2| — |271|22 < 3‘21 — ZQIm
Z1
The lemma is proved. O

The next lemmas are, more or less, a repetition of the unpublished book of Brezis and Cazenave [45].

Lemma B.2. Let Q C RY be a nonempty open subset, let k,m € Ny and let 1 < p,q < co. Then
2(Q) — WEPQ) N WTY(Q) with dense embedding. In addition, WEP(Q) N WY(Q) is separable
and,

(WeP(Q) N W ()" = WR (Q) + W1 (Q) — 2'(Q). (B.2)
Finally, if p,q > 1 then WEP(Q)NW%(Q) and W' (Q) + W4 (Q) are reflezive and separable.

Proof. Set X = W P(Q) N W™*(Q). Without loss of generality, we may assume that p < ¢. It is
clear that 2(€2) < X. The equality in (B.2) comes from the density of 2(Q) in the spaces W' ()
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and Bergh and Lofstrom [35] (Lemma 2.3.1 and Theorem 2.7.1). Since for any j € Ny and r € [1, 00),
W= () — 2'(Q), we have by the equality in (B.2),

X* = {T € 2T =T, + Tv, (T1,T5) € W57 (Q) x W—m’q/(Q)} .

Let T € X* be such that (T, ¢)x+ x = 0, for any ¢ € 2(Q). It follows from above that for any
v € 29Q), (T,0)9@),20) = (T,¢)x+x = 0. Then T = 0 in 2'(Q2), hence in X*. We deduce that
2(Q) — X is dense (Brezis [11], Corollary 1.8) and so X* — 2'(Q). Now, let n > k 4+ m be large
enough to have W;"?(Q2) — X. Since this embedding is dense and W;""* () is separable, we infer that
X is separable. Finally, separability and reflexivity of the last part of the lemma present no difficulty
and follow easily from reflexivity and separability of the spaces W' (), (B.2) and Eberlein-Smulian’s
Theorem (Brezis [14], Theorem 3.19 and Corollary 3.27). O

Lemma B.3 ([15]). Let I C R be an open interval, let 1 < p,q < 0o and let X — Y be two Banach
spaces. Then 2(I; X) is dense in LP(I; X) N WY4(I;Y). Moreover, if Z is a Banach space such that
Z — X with dense embedding then 9(I; Z) is dense in LP(I; X) " WL4(I;Y).

Proof. We first construct a linear extension operator to bring back to the case I = R. The first
statement then follows from the standard procedure of truncation and regularization, while the second
statement comes from the density of 2(R;Z2) in C}(R; X), for the norm of C}(R; X). O

Lemma B.4. Let Q CRY be an open subset. We consider below the following Hilbert space D(A).
D(A) = {u € Hj(Q); Aue L*(Q)},
[ullBay = ||“||§15(Q) + [ AulF2 (),

for any uw € D(A). Let X be a Banach space, let I be an open interval and let 1 < p < oco. We have
the following results.

1) Wl’l(I;X) — C’b,u(T;X).
2) LP(I; X) N WL (I; X*) — Cu(I; L)), if X — L*(Q) with dense embedding.
3) LP(I; D(A)) n W' (I; L3(Q)) — Cy(T; Hi(Q)).

Lemma B.5. Let Q C RY be an open subset, let I be an open interval and let 1 < p < co. Fort € I
and u = u(t,z) € C, let us define (formally),

1 1
M(t) = 5”“@)”%2(9) and E(t) = §||VU(’5)H%2(Q)~

Let D(A) be the Hilbert space be defined in Lemma B.4 and let X — L?(Q2) be a Banach space with
dense embedding. We then have the following results.

1) Ifue LP(L; X) N WY (I; X*) or if u € WH(I; L2(2)) then M € WY(I;R) and,
(W) (1) . i e LX) AW (1 X7).
M(t) = ’ (B.3)
(u(t),u’(t))Lz(Q), if we Wh(I;L2(Q)),

for almost every t € 1.
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2) If u € LP(I; D(A)) N W' (I; L2(Q)) then E € WYL(I;R) and,

E'(t) = (— Au(t), /(1)) (B.4)

L2 (Q)?
for almost every t € 1.

Proof of Lemmas B.4 and B.5. The proof of the embedding W (I; X) < C o (I; X) is very
standard and we omit its proof. Now, assume that X < L2(Q2) with dense embedding. For any
ve L*(Q) and ¢ € X, let @,(¢) = (v,¢)12(q). Since X — L?(2), it is clear that ® € £(L*(Q); X*).
The embedding X — L?(Q) being dense, we easily show that ® is injective. Identifying ®, with v, it
follows that L?(Q) < X* and for any v € L*(Q) and ¢ € X,
<1)790>X*,X = <U790>L2(Q),L2(Q)~
In particular, if v € L2(Q) then (v,v) x+ x = [[v[|72(q)- We then note that M € C*(I;R), E € C'(I;R)
and,
t
M) = M(s) + [ (ulo).1(0)) . do (B.5)
t
E(t) = B(s) + / (— 2u(0),w(0)) 12 o (B.6)

for any t,s € I, as soon as u € Z(I; X), for (B.5) and u € 2(I; D(A)), for (B.6). Applying Holder’s
inequality in time and Young’s inequality, one obtains,

w122 ) < lluls)llx ()l + Ml Zo ) + 1170 7,505
IVu)lZ2i) < ()2l Au(s)lLz @) + AUl Lo 12y + 16170 1,295 (B.7)

for any t,s € I. Let (I,)nen C I be a increasing® sequence of open bounded intervals such that
Unen In = 1. Integrating in s and applying, one more time, Holder’s and Young’s inequalities, we
have,

2
Tl a2, =,y < (U 1al) (el oo + ldla rxey) s

for any n € N. Dividing by |I,|, letting n * oo and proceeding in the same way in (B.7), we arrive

at,
_1
||Uch(T;L2) < (L+[1]72) (HUHLP(I;X) + HUHWLI/(I;X*)) ) (B.8)
IVully .oy < (L4 1173) (el oaipeay + il 2)) (B.9)

with the convention |I|=% = 0, if |I| = co. Since X < X* and D(A) < L2(f), we prove Lemma B.4
by density with (B.8)—(B.9) (Lemma B.3). Finally, Lemma B.5 is a consequence of (B.5)—(B.6) and
Lemmas B.3-B.4. O

3. in the sense of the inclusion.
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