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Résumé

La thése couvre certains aspects de la théorie des représentations de 1’algébre de Brauer
murée B, (J) et son analogue quantique.

Dans ce texte, le corps est supposé étre le corps C des nombres complexes. L’algébre
de Brauer murée B, 4(d) est une algébre unitaire associative définie pour tous 6 € C. La
dimension de cette algébre est (r + s)!. Il s’agit d’une algébre de diagramme engendré par
des diagrammes «murésy particuliers, définis comme suit. Soit p = p up¥ et pf, = pdupd
deux ensembles, chacun composé de r + s nceuds alignés horizontalement sur le plan. Les
noeuds de I'ensemble pf{s sont placés sous les nceuds de 'ensemble pyo et un mur vertical
sépare les premiers 7 nceuds p* ( p?) dans la ligne supérieure (inférieure) des derniers noeuds
s p¥ (p?). Un diagramme murée d est une bijection entre I’ensemble Drs Y pff,s et visualisé en
placant les segments entre les points correspondants de la maniére suivante :

L. les segments reliant les nceuds entre py; et pis ne traversent pas le mur (nous les
appelons lignes de propagation),

2. les segments reliant les nceuds entre pl, et pt, et entre p¢ et p¢  traversent le mur
(nous les appelons arcs).

Le produit de deux éléments de base dod; est obtenu en placant d; au-dessus de ds et en
identifiant les nceuds de la ligne supérieure de d, avec les noeuds correspondants dans la ligne
inférieure de d;. Soit ¢ le nombre de boucles fermées ainsi obtenues. Le produit d;dy est
donné par 6° fois le diagramme résultant avec boucles omises.

Les diagrammes murés suivants représentent les générateurs s; (la ligne pointillée verticale
représente le mur):

§; 1= >< { E I ) I1<i<r+s,

1 1 1+ 1 r r+1 7r+s
AN
Sy 1=
N

1 r r+1 r+s



Cette algébre peut étre définie par des générateurs s;, 1 < ¢ < r+ s et des rélations suivantes

=1, 1#mr,
:687‘7

$iSi418i = Sit18iSiv1, G,1+1#,

S

SO ST

S

SiSj = §;8; if ‘Z —]’ > 1,
SySr+1Sr = Sy,
SrSr418r—18rSr—1 = SrSr418r-15rSr41,

Sr—18rSr41Sr—18r = Sr418rSr418r—15r-

Dans le premier chapitre de la thése, nous construisons la forme normale 8, ; pour ’algébre
B, s (0) - un ensemble de mondmes de base (mots) dans les générateurs s;. Pour construire
I’ensemble B, ;, nous introduisons une modification “ordonnée” du fameux lemme du diamant
de Bergman [B], & savoir, nous présentons un ensemble de régles qui, étant appliquées dans
un certain ordre, permet de réduire tout monoéme dans les générateurs a un élément de B, ;.

On note &% I'ensemble des mots sous forme normale [1,1 —4]...[r — 1,7 — 1 — i,_4]
avec —1 < iy < 1,...,—1 <i,_; <r—1 pour le groupe symétrique &,, et &% 'ensemble
des mots sous forme normale [r+ 1+ j,_1,7+1]...[r+s—1+j;,r+s—1]avec =1 < j; <
1,...,—1<js-1 <s—1pour G,.

On note ngs) I’ensemble des mots
[r+d1,7— 1] [r +to,7 — ja] ... [r +ip, 7 — jf]

avec 0 <1y <ip <...<ip<sandr > j; > jp>...> jr = 0. Par convention, @&3 = {1}.
Dans cette notation, I’ensemble B, ; se décompose comme

min(r,s)
B, = U gB(f)’ on BY = gk,
f=0

Nous appliquons ensuite la forme normale pour calculer la fonction génératrice du nombre
de mots avec une longueur minimale donnée. Soit 1, le nombre de mots de longueur ¢ in
B, et Fro(q) =D, q¢* la fonction de génération correspondante. Nous avons

Fos(q) = (r+ S)q! )

o (m),:=1+q+q¢*>+---+¢™ ! désigne le nombre quantique m.
Soit A = (A1, Ag, ... ) une partition; Aj, Ag, ... sont des entiers non négatifs, A\ = Ao > .. ..
Soit |\ = Z \;. A chaque partition A, nous associons son diagramme de Young - un tableau
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de lignes de boites justifiées & gauche contenant des A; boites dans la ligne supérieure, des Ay
boites dans la deuxiéme ligne, etc. Une bipartition est une paire de partitions XA = (AL, A\fF).
On note A I'ensemble de toutes les bipartitions. Pour chaque entier 0 < f < min(r, s), nous
fixons

min(r,s)
Ao f) ={Ar =X e A r = [Mf| =s—[NF|=f}, et A= U A s(f).
f=0

Les modules simples de B, (d) sont indexés par des éléments de l'ensemble A, ¢ (voir
[CDDM]). Le module indexé par Ay est désigné par C, s(Ay).

Nous décrivons les modules de cellule en termes d’idéaux a gauche dans B, (6). A savoir,
nous utilisons la forme normale pour construire une base de 'idéal annihilateur d’un vecteur
particulier vy dans un module.

Soit A, une sous-algébre de B, (9) générée par (sq,...,S,-1). Nous avons la tour de
sous-algébres suivante:

C=AcAicAyc---cA,s=B,(9). (0.1)

Par convention, Ag ~ C et A; ~ C. Dans le régime semi-simple, la restriction, déterminée
dans [CDDM], de tout module simple de A, & A,_; est sans multiplicité. En itérant les
restrictions, une décomposition canonique d’un module simple de B, (d) en une somme
directe d’espaces vectoriels unidimensionnels peut étre obtenue. Les restrictions définissent
le diagramme de Bratteli (le graphe de branchement de la tour (0.1)). Chaque chemin T
remontant dans la tour depuis le module unique de Ay vers A représente un vecteur de base
vr dans le module étiqueté par une paire de diagrammes .

Il s’avére que les vecteurs v sont des vecteurs propres des éléments dits de Jucys-Murphy
(construits pour le groupe symétrique dans [Ju| et [Mu]) z;,

zivp =cj(T)vp , j=1,...,1r+s.

Les valeurs propres ¢;(T) sont liées au contenu des cellules des diagrammes de Young. La
sous-algébre générée par les éléments x1,..., 2., est une sous-algébre commutative maxi-
male de B, 4(0) appelée parfois sous-algebre de Gelfand-Zetlin.

Une procédure de fusion donne une construction de la famille maximale d’idempotents
orthogonaux minimaux par paire dans ’algébre et, par conséquent, fournit un moyen de
comprendre les bases dans les représentations irréductibles de 'algébre B, 4(d). La procédure
de fusion (pour le groupe symétrique) trouve son origine dans le travail de Jucys [Ju|, voir
aussi [Ch, Na, GP|. Molev [Mo] a proposé une version simplifiée de cette construction pour
le groupe symétrique impliquant des évaluations consécutives. Plus tard, les analogues de
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cette procédure de fusion simplifiée ont été suggérés pour ’algébre de Hecke, I'algebre de
Brauer, les algebres cyclotomiques de Hecke et Brauer, les algébres Birman - Murakami -
Wenzl, etc. En tant que deuxiéme résultat principal du premier chapitre, nous construisons
la procédure de fusion pour I'algébre de Brauer murée.

Considérons la fonction rationnelle, dans les variables uq, ..., u,, avec des valeurs dans
'algeébre de Brauer murée B, 4(0):

\Pr,s = Dr,s Gr és 3

ol
Dyoi= [ dij(ui+uy)
I<isr
r+l<js<n
et

S, = H s —uy) , 6, = H sij(ti = ;) -

I<i<y<r r+l<i<j<n
Les produits dans les définitions de D, 5, &, et 6055 sont calculés dans l'ordre lexicographique
sur les paires (i, 7) (c’est-a-dire, (i1, j1) précéde (ig, jo) si iy < iz Ou i; = ig €t j; < ja).

Soit T = (MA@, .. A™) AW = X\ ¢ A, s, un A-tableau standard décrivant un chemin
dans le diagramme de Bratteli pour l'algébre de Brauer murée B, ;(0). Nous définissons la

fonction rationnelle dans les variables uq, ..., u,:
n 2
i [ S50 [T e
T = : 7
L )2 —
im1 i de(i) 1<j<i<r (us u]) 1
or
r<j<i<n

ou la fonction € est définie par
. 0if j<r,
(j) = L
1if j>r.

et par souci de concision, nous avons noté ¢; = ¢;(T), i =1,...,n.

Nous fixons
Ur(ug, ... uy) =270 V,5 .

Theorem 0.1 L’idempotent primitif Er, correspondant au standard X -tableau T, est trouvé
par les évaluations consécutives

ET = \I/T(Ul,. o ,Un)’

ui=cq }u2=cz e |un=cn '
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Les premiéres études de 'algébre de Brauer murée B, ,(0) ont été motivées par l'intérét
pour les généralisations de la dualité de Schur-Weyl pour le groupe GLs(C). Pour 6 € N,
la dualité relie les actions mutuellement commutatives de B, () et GLs(C) sur le produit
tensoriel mixte V& ® (V*)® de la représentation naturelle et son dual pour GLs(C). Le
super analogue de cette dualité entre 1’algébre de Brauer et la superalgebre de Lie g¢(M|N)
a été étudié dans [BS|. La deuxiéme partie de la thése est consacrée a la dualité quantique de
Schur-Weyl entre l'algebre de Brauer murée quantique ¢B,,,, et 'algébre de Hopf U,s¢(2|1)
chaque fois que ¢ n’est pas une racine de 'unité.

Nous étudions le produit tensoriel mixte 3®™ ®§®n des représentations fondamentales
tridimensionnelles de 'algebre de Hopf U,s¢(2|1). Lun des principaux résultats du deux-
iéme chapitre consiste a établir des formules explicites pour la décomposition des produits
tensoriels de tout module de U,s¢(2|1) simple ou projectif avec les modules générateurs 3
et 3. Le centralisateur de U,sf(2|1) sur le produit tensoriel mixte est un quotient X, ,, de
I’algébre de Brauer murée quantique ¢B,, .

En appliquant en partie les méthodes développées dans [CD] pour trouver des nombres
de décomposition pour l'algébre de Brauer murée, nous décrivons explicitement la structure
des modules projectifs sur X, ,,. Les algébres de Brauer murées quantiques forment une tour
infinie. Nous calculons les foncteurs de restriction correspondants sur des modules simples
et projectifs sur X, ,. En raison de ces résultats, nous obtenons un autre résultat important
du deuxiéme chapitre de la thése consistant & décomposer le produit tensoriel mixte en un
bimodule sur X, ,, & U,s¢(2[1).



Introduction

The dissertation covers some aspects of representation theory of the walled Brauer algebra
B, (9) and its quantum analogue.

In this text the ground field is assumed to be the field C of complex numbers. The
walled Brauer algebra B, ;(0) is an associative unital (r + s)!-dimensional algebra defined for
all 9 € C. It is a diagram algebra spanned by particular ‘walled’ diagrams. This algebra can
be defined in terms of generators s;, 1 < i < r+ s, obeying certain relations, see Section 1.1.
In the first Chapter of the dissertation we construct the normal form 9B, ; for B, ; (§) — a set of
basis monomials (words) in generators s;. To construct the set B, ; we introduce an ‘ordered’
modification of the so-called Bergman’s diamond lemma [B], namely, we present a set of rules
which, being applied in a certain order, allows to reduce any monomial in generators to an
element from B, ;. We then apply the normal form to calculate the generating function for
the numbers of words with a given minimal length.

Representation theory of the walled Brauer algebra is well understood. In [CDDM] it
was shown that cell modules arising from a certain cellular algebra structure on B, () are
labeled by pairs A = (AL, Af) of Young diagrams. The criterion for semisimplicity of B, ¢(d)
was also established there.

We describe the cell modules in terms of left ideals in B, (). Namely, we utilize the
normal form to construct a basis of the annihilator ideal of a particular vector vy in a module.

Let A, be a subalgebra of B, (d) generated by (si,...,s,-1). We have the following
tower of subalgebras:

C=AcAcAyc---cA,s=B,(9). (0.1)

By convention, Ag ~ C and A; ~ C. In the semisimple regime the restriction, deter-
mined in [CDDM], of any simple module of A, to A,_; is multiplicity-free. By iterating
the restrictions, a canonical decomposition of a simple B, ;(d)-module into a direct sum of
one-dimensional vector spaces can be obtained. The restrictions define the Bratteli diagram
(the branching graph of the tower (0.1)). Each path T' going upwards in the diagram from
the unique Ap-module to A represents a basis vector vy in the module labeled by a pair A
of diagrams.



It turns out that the vectors vy are eigenvectors of the so-called Jucys-Murphy elements
(constructed for the symmetric group in [Ju] and [Mu]) z;,

zivp =c;(T)vp, j=1,...,7r +s.

The eigenvalues ¢;(T") are related to the contents of cells of Young diagrams. The subalgebra
generated by the elements xy, . .., 2,4 is a maximal commutative subalgebra of B, ;(J) called
sometimes the Gelfand-Zetlin subalgebra.

A fusion procedure gives a construction of a maximal family of pairwise orthogonal min-
imal idempotents in the algebra, and therefore, provides a way to understand bases in the
irreducible representations of the algebra B, s(6). The fusion procedure (for the symmetric
group) originates in the work of Jucys [Ju], see also the subsequent works [Ch, Na, GP].
A simplified version of this construction for the symmetric group involving the consecutive
evaluations was suggested by Molev [Mo]. Later the analogues of this simplified fusion pro-
cedure were suggested for the Hecke algebra, Brauer algebra, cyclotomic Hecke and Brauer
algebras, Birman—Murakami—Wenzl algebras etc (see Section 1.5.2 for references). As a sec-
ond main result of the first Chapter we construct the fusion procedure for the walled Brauer
algebra and show that all primitive idempotents for B, , (§) can be found by evaluating a
rational function in several variables

— )
Ur+s=Cr+s

‘I’T(’U,l, ceey ’U,TJFS)’u]:c] ’ugzcg e

where ¢; are the contents of T.

The first studies of the walled Brauer algebra B, () were motivated by interest in gen-
eralizations of the Schur-Weyl duality for the group GLs(C). For 6 € N, the duality relates
mutually commuting actions of B, 4(6) and GLs(C) on the mixed tensor product V& ®(V*)®*
of the natural representation and its dual for GLs(C). The super analogue of this duality
between the walled Brauer algebra and the Lie superalgebra gf/(M|N) was studied in [BS].
The second part of the dissertation is devoted to the quantum Schur-Weyl duality between
the quantum walled Brauer algebra ¢B,, ,, and the Hopf algebra U,s¢(2|1) whenever ¢ is not
a root of unity.

We study the mixed tensor product 3™ ® 3%" of three-dimensional fundamental rep-
resentations of the Hopf algebra U,s¢(2|1). One of the main results of the second Chapter
consists in the establishing of the explicit formulae for the decomposition of tensor products
of any simple or any projective U,sf(2|1)-module with the generating modules 3 and 3. The
centralizer of U,sl(2|1) on the mixed tensor product is a quotient X,,, of the quantum
walled Brauer algebra ¢B,, ..

By applying in part the methods developed in [CD] for finding decomposition numbers
for the walled Brauer algebra, we explicitly describe the structure of projective modules



over X,,,. The quantum walled Brauer algebras form an infinite tower. We calculate the

corresponding restriction functors on simple and projective modules over X,,,. Due to

these results we obtain another important outcome of the second Chapter of the dissertation

consisting in decomposing the mixed tensor product as a bimodule over X, ,, X U,s¢(2|1).
The dissertation is based on works [BO, BGO, BTS].
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Chapter 1

Walled Brauer algebra

In the first Chapter we discuss the walled Brauer algebra B, (J) and its representation
theory. In Section 1.2 we construct the normal form B, of the walled Brauer algebra
by the reduction algorithm using a modification of the Bergman’s diamond lemma [B]. In
Section 1.3 we recall a diagrammatic presentation of the walled Brauer algebra and explain
the constructions of the cell basis and the Gelfand-Zetlin basis in modules. We construct a
basis of the annihilator ideal of a particular vector vy in a module. In Section 1.4 we recall
the construction of Jucys-Murphy elements. In Section 1.5 we prove a second result of the
Chapter consisting in two fusion procedures for the walled Brauer algebra. It gives a way
to construct a complete system of primitive pairwise orthogonal idempotents by consecutive
evaluations of a rational function with values in the algebra.

1.1 Definition

The walled Brauer algebra B, ;(0) is an associative unital (r+s)!-dimensional algebra* defined
for all 0 € C. It is generated by elements s;, i = 1...r + s — 1, with the following defining

*According to [NV]: “The history of the definition of this algebra is as follows. Turaev [T] was the first
to define it by a presentation; he also pointed out to the second author that it is (r + s)!-dimensional and
resembles the group algebra of the symmetric group. The walled Brauer algebra was independently defined
in [Ko].”



relations (see, e.g., [BS, JK])

st=1, i#m, (1.1)

s2 = §s,, (1.2)

8i8i415; = Si415i8ip1, G4+ 1#r, (1.3)

sisj = sjs;if i — j| > 1, (1.4)

SpSp+18r = Sy, (1.5)
5pSp418r—157Sp—1 = SpSp418r—1575r41, (1.6)
Sr—18rSr41Sr—1Sr = Sr418rSr4+15r—15r- (1 7)

Note that the elements s; with 1 <i <r (r <i <r + s) generate symmetric group algebra
C6, (C6,). As aresult, B, (0) contains B, (0) = CS, and By (6) = CS, as commuting
subalgebras, together generating C [S, x &,].

The algebra B, 4(0) admits an anti-automorphism ¢, which acts as identity on the gener-
ators,

u(si)=s;i, u(d)=d, (zy) = tly)(x) . (1.8)

1.2 Normal form and reduction algorithm

Monomials in generators s;, 1 < ¢ < r + s, whose lengths cannot be reduced by any compo-
sition of relations (1.1)-(1.7) will be referred to as minimal words. It may happen that an
element of the algebra B, s (0) can be represented by several monomials of the same length
in view of relations (1.3), (1.4), (1.6), (1.7) which do not affect monomial lengths.

In this Section we shall consider bases of the algebra B, ; (¢) consisting of elements which
can be represented by minimal words. By a normal form for the algebra B, s (0) we mean a
basis of B, (¢) and a unique choice of a word representing each basis element.

To construct a normal form we make use of Bergman’s diamond lemma [B]. Let EA37,78
denote the monoid freely generated by elements $;, 1 < i < r + s. Let also §m<5> denote
the monoid freely generated by elements $;, 1 < ¢ < r + s, and a central element 5. For a
subset & of B,qb we denote by €(5) the subset of B, (6 consisting of words d’e for e € &
and 7 =0,1,2,... R

We propose a reduction system R, a set of words B,, < B, and an algorithm ¢y :
§H<5> — 9B,.,(0) transforming any given monomial to a particular reduced form. We show
that the image of B, ; under the natural map

CB,.u(8) = B,a(0) , 8> 50,00, (2.9)



forms a basis of the algebra B, s (0).

Reduction system R is constituted by ordered pairs p = (w,,w/

p
§r,s, w, # 1, and wj, € %,,78<5>; such a pair is written as w, — wj, and understood as
the substitution instruction, or reduction: the instruction, applied to a word e, chooses a
subword, equal to the lhs and replaces it by the rhs. A monomial is called irreducible if no
reduction can be applied to it.

Reductions can be subject to ambiguities meaning that more than one instruction from
R can be applicable to a given monomial. All ambiguities are analyzed in terms of the
following two elementary ones [B]. If vivo = w, and vovs = w,, where vy, vq,vs # 1, for some
p, T € R one faces an alternative of transforming vyvovs either into W:,v3 or into v;w/.. This
is called an overlap ambiguity of R. If vo = w, and vivovz = w,, where v; # 1 or v3 # 1, one
can transform vyvyvs either into V1W2,V3 or into w/.. This is referred to as inclusion ambiguity.
An ambiguity of QR is said to be resolvable when there exist reductions ¢y, ps such that
P1(Wv3) = pa(viw;) in case of an overlap and ¢ (viw,va) = @a(w;) in case of an inclusion.

) of monomials w, €

For generators §;, 1 <i <r + s, denote the word §,5,1...5, € EABT’S (I1<g<p<r+s)
by [p, ¢], and set [¢ — 1, ¢] = 1 by definition.

Proposition 1.2.1 Let R be the following reduction system

1, i#m, (2.10)
8,8 — &8y, j—i> 1, (2.11)

Sir18i . BimiBist — SiBis1bi. . Giy, i<rT—1,0<j <4, (2.12)
8i8iqj .- 8i415i = Siqj ... 8i4158i41, 1>1, 1 <j<r+s—i, (2.13)

82— 05, (2.14)

SrBrot . Gribe — Sr_g. . p_ibyy 1 (2.15)
Br8ris - Brs1be — BrBrrs . Bz, 1 (2.16)
[r+j,r—i]lr+j,7] = S-alr+j—1,r—d|[r+4,r] (2.17)
[r,r —id|[r +j,r — ] = [r,r —d][r + 7,7 — i+ 1]841, (2.18)

Then
(i) All ambiguities of R are resolvable.
(ii) The factor-algebra of the monoid algebra CB, (§) by the ideal generated by the elements

w, —w,, for p ranging through the set of instructions, and o— 0, is isomorphic to the walled
Brauer algebra B, 5 (9).

Proof. (i) We start by turning defining relations for B, ; () (1.1)-(1.7) into the following



set Ry of instructions

82 1, i#m,

‘§j§i — §i§j> j —1> 1,
8i415i8i41 — 8i8i118;, 1 <r —1,
8i8i418i = 8i118;8i41, 1> T,

52— 08y,

SrSr+18r — Sy,
Sp418rSr—1Sr4+1Sr = Spr—15rSr—1Sr4+15r,

SrSr—18r+15rSr—1 = SrSr—1Sr4+15rSr+1,

which is a subset Rg < R. It is straightforward to check that the reduction system R
is free from inclusion ambiguities while overlap ambiguities are not resolvable unless one
inductively extends Ry to the reduction system PR. The latter is subject only to overlap
ambiguities as well. Resolvability of these ambiguities can be verified by a successive check
considering first all ambiguities of (2.10) with (2.11)-(2.18) then all ambiguities of (2.11)
with (2.12)-(2.18) etc.

The assertion (ii) follows since the instructions from R are consequences of the instruc-
tions from Ry. =

To guarantee that a reduction system R leads to a set of irreducible words in a fi-
nite number of steps, Theorem 1.2 [B] assumes the existence of a partial order < on the
set of free monomials such that: i) w; < wy implies uw;v < uwyv for all u,v, ii) < is
compatible with R in a sense that w, < w, for each instruction w, — w/, iii) any chain
Vi > Vo > ... terminates. For the system R such order does not exist. Indeed, assume that
it does. Applying the rule (2.18) to the monomial $,8,_18,418,5,-15-5,-15,415, we arrive at
5487184415787 415787_187115,, SO we must have

SrSr—18r+18rSr415rSr—18r+15r < SpSr—1Sr415rSr—15rSr—1Sr4+157. (219)
Then, by applying (2.17) to the result, one gets the opposite relation
SrSr—18r+18rSr—15rSr—18r+18r < SpSr—1Sr4+15rSr415rSr—1Sr+15r, (220)

which is a contradiction. This example shows that some sequences of instructions from R
do not terminate so the reduction system fR, directly understood, does not lead to a normal
form. We shall not investigate the question about the existence of another reduction system
compatible with a certain order. Instead, we will present a trick allowing to construct a
well-defined algorithm @g which uses precisely the reduction system PR. Namely we will
specify the order of applying the rules from fA.

9



For that purpose we split R = R’ UR”, with R’ constituted by instructions (2.10)-(2.16)
and R” — by (2.17), (2.18). For the set 2R’ a partial order <, satisfying conditions i)-iii), on
@Tvs does exist; it is described in Appendix A. Therefore, the reduction system R’ leads to a
set of irreducible words B} | and gives a well-defined algorithm g : EABTS<(§> - %;S(S). To
describe the words from B; , we first note that instructions (2.10)-(2.13) move generators of
S, (respectively, &) to the left (respectively, to the right) and arrange them into a certain
normal form (it is of no importance at the moment and will be specified later). With this in
hand, it is a straightforward exercise to check that B, is constituted by monomials of the

form
Ulsensif

le,---,jf = Wy, [7’ + il,r —]1] [7” + iQ,T —jg] e [T’ + if,?" —]f] WpR (221)
where wy, € 6, and wi € &, are in a normal form, r > i, >0, s > j; >0, s > 1a,...,15 > 1,
> j1,...,jf—1 =1and 0 < f < min(r,s).

Clearly, the instructions from SR” do not preserve the set B; . We specify the algorithm
ooy of applying the reductions from R” to the monomials w € B; .. Assume, for a monomial
w of the form (2.21) with f > 2, that the set {ji,...,j} is not strictly decreasing. Then
there exists the maximal value kK = 1... f — 1 such that ji < jgi1. The word w contains
a subword [r,r — ji| [r + ixs+1,7 — jx] and we apply the instruction (2.18) to it, obtaining
[r,r — k] [ + tks1,7 — Jk + 1] §.41. Reductions of this kind (call them 1)) break the structure
(2.21), ¥(w) ¢ By .. It is straightforward to check that w and pg o ¥(w) € B} have the
same f, while, for the word g o 1(w), the maximal &/ = 1...f — 1 such that jp < jpi1
(if exists) is less than k. Iterating this procedure, we arrive at the word which has the form
(2.21) with j; > jo > ... > j;y = 0 and thus is irreducible with respect to the union of 2’
and (2.18). As soon as the ordering in j’s is achieved, we start to apply, in a similar way,
the instruction (2.17) to arrive at the ordering 0 < i; < iy < ... < iy of i’s (now we look for
the minimal [ = 1... f — 1 such that 4,_1 > i,.

Our final algorithm (g is the composition of the algorithm ¢w, and the algorithm g,

PR = Pon © Py
We have established the following Proposition.

Proposition 1.2.2 The set B, s of irreducible words with respect to the algorithm px con-

sists of the monomials Wﬁx of the form (2.21) with 0 < 43 < iy < ... < iy < s and

r>j1>Jo>...>j;=0.
Lemma 1.2.3 The set B, contains (r + s)! elements.

Proof. The set of monomials with a given f is in bijection with the product of the set of
subsets of cardinality f in a set of cardinality r by the set of subsets of cardinality f in a

10



set of cardinality s, so

min(r,s)
#B,, = rlsl (

£=0

>(;>=(T+s)!. (2.22)

Lemma 1.2.4 The image of the set B, s under the map (2.9) forms a basis in B, 5 (9).

~ ®»

Proof. By construction, the images of the words from ‘B, ; are linearly independent. The
assertion follows, since the cardinality of ‘B, ; coincides, by Lemma 1.2.4, with the dimension
of B,s(0). m

Multiplication in B, s (J) is expressed in terms of the basis monomials vi,ve € B, as
on(viva) € B, . Left multiplication by generators s; ¢n(s;v), s;,v € B, , is presented in
Appendix B.

Note that the Lemma 1.2.4 holds for any choice of normal forms for w, € &, and wp € G..
The ones we consider in this work are obtained via the reduction system 9. We denote by
&L the set of words in normal form [1,1 —dy]...[r — 1,7 — 1 —d,_4] with —1 < i) <

1,...,—1<i,; <7 —1 for the symmetric group &,, and by &% the set of words in normal
form [r+14jsq,7+1]...[r+s—14j,r+s—1]with—-1<j<1,...,-1<js1<s—1
for &,.

We denote by ’D&Q be the set of words
[r+ 0,7 — ji] [r + da, 7 — Ja] .. [ + i, — Jy] (2.23)

With 0 <ip <iy<...<if<sandr>j; >jo>...>j; = 0. Weset D% = {1}.
In this notation the set B, ; decomposes as

min(r,s

)
B..= |J B, where BY) = &'D)S]. (2.24)
f=0

Let vy be the number of words of length ¢ in B, ; and F, s (q) = >, v q¢* the corresponding
generating function.

Lemma 1.2.5 We have
Fos(q) = (r+s)!, (2.25)

where (m), :=1+q+¢*+ -+ ¢! denotes the quantum number m.

11



Proof. The generating function for the numbers of words of given length F, s (¢q) for B,
has the factorized form

Frs(q) = Fr (q) Frs (9) Fi (q) (2.26)
where F, (q) (respectively, F (q)) are generating functions for &% (respectively, &%), while
F, . (q) is a generating function for Uy, D). The length of the word (2.23) is f + 2 tat D0 b
so the generating function F) ; (¢q) is easily found using, e.g., Theorem 6.1 in [KC],

w3 (5),(5),- (7)),

. : b . : . .
by the g-Vandermonde identity. Here ( at > = (ol o the g-binomial coefficient,
q

b aqlby!
ag! = 1,2,...a,. The rest follows. m
Abusing notation we will denote by the symbol B, ; the image of the set B, ; in the
algebra B, 5 (0). As well, we will denote the word s,s,_1 ... s, by the symbol [p, ¢].

Remark. It appears that the normal form (2.24) is also appropriate for the g-deformed
walled Brauer algebra ¢B, ;. In [KM] the basis of ¢B, s analogous to (2.24) was introduced
for a specific value of § and generalized to all values in [H].

1.3 Modules over B, (d)

1.3.1 Diagrammatical description of B, (¢)

Aside from the definition of B, s () as a factor-algebra of @hs, there is also a convenient
graphical presentation for a basis of B, s (¢) in terms of the so-called walled diagrams, which
are defined as follows. Let p;, = p; U p§ and pis = p? U p? be two sets, each consisting of
r + s nodes aligned horizontally on the plane. The nodes in the set pis are placed under
the nodes in the set p;; and a vertical wall separates the first  nodes p; (p?) in the upper
(lower) row from the last s nodes p* (p?). A walled diagram d is a bijection between the
set pr s U pﬁs and visualised by placing the edges between the corresponding points in the

following way:

1. edges connecting nodes between p;; and piS do not cross the wall (we call them prop-
agating lines),

2. edges connecting nodes between py; and p;; and between pfis and pfis cross the wall
(we call them arcs).

12



Let 6 be a complex parameter. As a vector space, the walled Brauer algebra B, (d) is
identified with the C-linear span of the walled diagrams. The product of two basis elements
dod; is obtained by placing d; above dy and identifying the nodes of the top row of dy with
the corresponding nodes in the bottom row of dy. Let ¢ be the number of closed loops so
obtained. The product d;d, is given by §* times the resulting diagram with loops omitted.

The following walled diagrams represent the generators s; (the vertical dotted line rep-
resents the wall):

S; 1= >< k { { ) I1<i<r+s,

1 1 1+ 1 r r+1 7r+s
(3.27)
N
| |2
VRN
1 r r+1 r+s

1.3.2 B, (6)-modules

Modules over B, (9), induced from simple modules over C [&, x &,] < B, 5 (0), are referred
to as cell modules [CDDM]. In this section we describe the cell modules in terms of left ideals
in B, 5 (0). Namely we calculate the annihilator ideal of a particular vector in a module.
Let A = (Mg, Ag,...) be a partition; Aj, A9, ... are non-negative integers, A\; = Ao > ....
Let |\ = Z Ai. To each partition A\ we associate its Young diagram — a left-justified array
i>1
of rows of boxes containing A\; boxes in the top row, Ay boxes in the second row, etc. A
bipartition is a pair of partitions X = (AL, \®). We denote by A the set of all bipartitions.
For each integer 0 < f < min(r, s), we set

min(r,s)
Ar,S(f) = {)‘f = ()\ﬁﬂ/\?) €A ‘ r—= ’)\‘?’ =85— ’/\?’ = f}, and A = U AT,S(f)-
£=0
(3.28)

Simple B, s (0)-modules are indexed by elements of the set A, s (see [CDDM]). The module
indexed by Ay is denoted by C, ().

Standard tableaux tJL» (respectively, t?) of the shape )\f (respectively, )\]1?) parameterize
basis vectors |t§> (respectively, |t?>) of the Specht module S(A}) (respectively, S(Af))
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over &, ; (respectively, &, ;). Choose subsets I' = {a},...,a}} = {1,...,r} and | =
{ar,...,ar} < {r+1,...,r + s} and an isomorphism " — [ between them. There is a basis
of the module C, 5(Af) with the basis vectors

=1, 15, ). (3.29)

Vectors (3.29) admit a graphical presentation in terms of the so-called ‘partial one-row’
diagrams [CDDM], see Fig. 1.1.

2]
Bl

(2—>11,4—>8,6—>9),;)2[,[1|2[>: M ‘,

Figure 1.1: an example of a vector for Bg5(0).

Extending the terminology for the walled diagrams, we call lines, starting at tableaux,
‘propagating lines’ of the partial one-row diagram; other lines will of course be called ‘arcs’.

We shall define the action of the algebra B, s (§) on the vector space C,. s(Af). To this end,
it is sufficient to define the action of a walled diagram d from B, s (d) on a partial one-row
diagram vy with f arcs. Place d under vy and identify the nodes of vy with the corresponding
nodes in the top row of d. This is not necessarily a partial one-row diagram: two propagating
lines might start to form an arc. In this case the result of action is zero. Otherwise, let ¢
be the number of closed loops obtained after the above identification. Omitting the loops
we obtain some one-row diagram by. The diagram by may also contain intersections of
propagating lines. We numerate the propagating lines of vy by 1,...r — f on the left of
the wall and by 1,...s — f on the right. Let 7, and 7 be permutations of 1,...r — f and
1,...s — f respectively such that the application of m;mg to the propagating lines’ ends of
v; gives by. The result of the action of d on vy is the combination of the partial one-row
diagrams obtained from by by forgetting the intersections of propagating lines and writing
out the result of the action 7, ’t]%> and 7p ‘t?> on the vectors of the modules S(A\}) and
S(AR).

Consider the following vector in the module C; ;(Ay)

vp=lr—>r+lLr=1->r+2...r—f+1-r+f), 7 i), (3.30)

where 7 and f are filled with numbers 1...7 — f and 1...s — f, respectively, in natural
order reading down the column from left to right (for an example, see Fig. 1.2).
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1[3]
D)

(4—9,5—>8,6—7), % 3L|1|2l>=

Figure 1.2: the vector vs for Bg 5(9)

Consider the set Shf_ﬁf c &L (respectively, Sh?s_f < &) of words [1 + iy, 1][2 +
i0,2] ... [r—f+i—y,r— f] with =1 <4y < iy < -+ < i,y < f (vespectively, [r+1+j7, 7+
...[r+ f+j,r+ f] with =1 < j; <--- < j; < s— f). The elements of the set Shf_f’f
(respectively, Sh;f:fsf ) represent (r — f, f)-shuffles (respectively, (f,s — f)-shuffles).

Let 67 < & (respectively, &7 = G¥) be a subset of all monomials in &) which include
only generators s,_si1,...,s,_1 (respectively, s,41,...,8.47-1) for f > 0. We suppose &} =
{1} and &§ = {1}. In other words, the elements of &% (respectively, &) are permutations
of the nodes {r — f +1,...,7} (respectively, {r + 1,...,r + f}).

Let ©f with f > 0 denote the following set of permutations from &, x &,:

©; = Shl ;  &7Sh, ;. (3.31)

It is straightforward to see that the cardinality of ©; is < ; > ( ; ) fl.

The set © contains those and only those permutations, from &, x &,, of the nodes
of the partial one-row diagram corresponding to the vector vy which do not permute the
propagating lines of the diagram. Thus © produces all possible subsets " and [ of cardinality
f and isomorphisms I’ — [ as in (3.29), i.e.

Oy ={|l' > L,i7,17)}. (3.32)
Let E% (respectively, Ejf”) be the set of all permutations of {1,...,r — f} (respectively,
{r+f+1,...,r + s}) such that O'Lf% and aRf? reproduce all possible standard tableaux.
Let X be the set constituted by permutations o = o o with o, € ¥} and oz € Xf. In
particular, #%; = dim S(A}) dim S(AF).

We introduced the sets ©7 and ¥ in order to generate vectors (3.29) with all possible
standard tableaux. Namely, define the set X; of permutations from &, x &,

Xy =073 (3.33)
Lemma 1.3.3 The set of vectors Xyvs forms a basis of Cy.s(Af). We have

dim Cys(Af) = #X; = ( ; > ( ; ) F1 dim S(AF) dim S(AF). (3.34)
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1.3.4 Annihilator ideal

We proceed by describing the ideal annihilating the vector vy € C; 5(Ay). The basis B, ; will
be convenient for that purpose. We associate to any monomial

t=[r+i,r—j][r+isr—jo]...[r+ipr—j]e DY) (3.35)

the element
©(@) = [+ vy — ) [+ inr — o) [+ g+ 1], (3.36)

We denote by ’}57({;) the image of the set ’D,(nf?,

OY) i~ {=(r) | s DY)

In words, to construct elements in @7(0’;) we delete the ends [r,r — j¢| of the monomials in
o).

Note that 0 < 4; < iy < ... <iy <rand s> j > jo > ... > j; = 0 for an element
;e@fa{g) s00<i <ig<...<iyf<rands>j >j,>...>js1 >0 for the element
(3.36).

We define the product of an element
n=1[r+i,r—j]...[r+ipr+1]edY)
and the monomial [r,r — k], k = 0, to be

oS —gl g =k A G >k
h+[r,r — k] '_{ %} otherwise .

We introduce the sets B -
Bl =D, t =1...min(r, s). (3.37)

7,8

We describe the basis of the annihilator ideal of the vector v in three steps.

Part 1. Let us introduce the following sets of elements of the algebra B, ; (9):

U (o =il +ir + 17 = 0) (3.38)
U™ =it L+ 17 1), (3.39)
U™ =il i 17 1) (3.40)
[rr = f1[r+ fir+ 17" (3.41)
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The elements (3.38)-(3.41) annihilate the vector v¢ which is clear from the following schematic
representation in terms of partial one-row diagrams:

VRN

N

Let T% < ShR,S_ sS 2 be a subset of all monomials in &% which include only generators
Syths - - - Srss—1. For brevity denote by [r + 1]® for i = 1... f the set of words

[r+1+k,r+1]...[r+i+k,r+1], 0<k <s—1,...,0<k <s—i. (3.42)

We set [r +1]©@ = {1}.

17



We construct the following sets (¢ = 1...min(r, s)) of elements of the algebra B, s (0):

Y- f-1 ; i i

B« (b —illr + 119 = 0) T3, (3.43)
= min(f,s—1)—1 . s ;

B, ([r,r = i][r + 1] = 1) T3, (3.44)
= min(f,r—1) T . . i ;

23,‘2 % Ui:1 LJ]_:H1 ([r,] —i|[r + 1]]( 1) _ 1) Tfﬂ7 (3.45)
B« [rr = [l + DT (3.46)

A direct inspection shows that the elements (3.43)-(3.46) annihilate the vector vy since the
elements (3.38)-(3.41) do.

Part 2 Consider the set {s,; —s,—;, i = 1,..., f —1}. The elements of this set annihilate
the vector vy, see figure below

Given a word x in &f\{1} let s,,; be its leftmost generator (i = 1... f —1). Denote by x,
the element of the algebra B, ; (§) obtained by replacing the letter s,.; in the word x by the

combination (s,.; — s,—;). Define the set @]}3 constituted by elements x., x € Gf\{1}. The
elements of the set h
0,6, %, (3.47)

annihilate the vector vy as well.

Part 3 We recall some results from [P]. Let S(A) be the Specht module for the symmetric
group &,, for some n. Consider the vector in S()\) corresponding to the tableau f filled
with numbers 1...n in natural order reading down the column from left to right. The
annihilator ideal of £ is the left ideal generated by the Garnir elements and 1 + 7 where 7
are transpositions in the column stabiliser of the tableau.

Denote gf (respectively, g?) a basis of the annihilator ideal of the vector th% in S ()\JLC)
(respectively, £ in S ()\?)) The following elements of the algebra B, 5 (9)

& D)shi,_; &faf, (3.48)
0;6F (a7=f v Zfaf v gfaf) . (3.49)

annihilate the vector vy because they annihilate £7 and £ff.
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Let Ay be the union of all sets (3.43)-(3.46), (3.47), (3.48), (3.49). The following Lemma
holds.

Lemma 1.3.5 The set Ay is a basis of annihilator ideal of the vector vy,
#Ar =dimB, 4 (0) — dim C, 5(Af). (3.50)

Proof. First let us show that the sets (3.43)-(3.46) and (3.48) are linearly independent. For
that purpose consider the ‘higher’ terms in (3.43)-(3.45):

B (- i][[r +1]9) 1ie2, (3.51)
%Tt . Umln(fs 1)— 7" r— Z] IIT' + 1]](i+1)) T?}-'rQ’ (352)
- min(f,r—1) . . i i

B0 -UD UL (nd—  0) 0 (353)

Let
V= B (=il 119) T

so that the set in (3.51) is the union of sets M;, i = 0,1,..., f — 1. Similarly, let
M(2 %(t # ([r,r —i|[r + 1]](i+1)) Tif_,_Q’
and | |
=B U] o ([r,j — [r + 1109) T3

The union of sets Mi(l), MZ-(Q) and M, ®) for fixed i (0<i<f)is

%ﬁg « [ryr — 1] ([[r + 1]](i)T§c+2 U [r+ 1]](”1)1'?2 U (U[[r + 1]](’“_1)1“’;*1))

= %5’2 « [ryr — ] T;, t=1...min(r,s). (3.54)

For i = f there are no sets (3.51) and (3.52); the union of M}l) and the set (3.46) is, similarly
0 (3.54): i

%T’g [r,r— f]Ty, t=1...min(r,s). (3.55)
It follows from the definition of %,(2 that the union of the expressions (3.54) fori =0... f—1
and (3.55) forms a subset Gfi‘DgT} < B}, thus the expressions (3.54) fori =0... f—1and
(3.55) are linearly independent. Moreover, we have, by construction, Y% = ShRﬁf s
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The union of the expressions (3.48), (3.54) and (3.55) over ¢t = 1...min(r,s) and ¢ =
0...f will be denoted by B. Since, by [P], the elements of gf (respectively, g¥) and ¥}
(respectively, Xf) together form a basis in &, (respectively, &), we conclude that B is
a linearly independent set. The same is true for the expressions (3.43)-(3.46) and (3.48).
Indeed, each element in (3.43)-(3.45) is a combination of two monomials: the first one is a
minimal word and contains more letters s, than the second. The number of occurrences of the
letter s, in a word defines a filtration on the algebra B, ; (§). Assume that the expressions
(3.43)-(3.46) and (3.48) are not linearly independent. Choose then a shortest non-trivial
linear dependency. The coefficients of the words containing the maximal number of letters
s, are zero (because these are the ones from B) contradicting to the minimality of length of
of dependency.

Each expression (3.47) is a sum of two words from the set © fG?Z #, one containing more
generators from & than the other. This implies the linear independence of the set (3.47).

Next, we move to showing that the union of the sets (3.47) and (3.49) is linearly inde-
pendent. First, note that replacing in the expressions (3.47) the elements from @? by their
pullbacks from &7\ {1} we obtain a set A" whose union with the expressions (3.49) is disjoint
and equals (O;&%,) \Xy. The set ©;6F%; is a basis in C[&, x &,]. Therefore the union
of the sets A and (3.49) is linearly independent. The argument appealing to the length,
defined by the number of generators from &, completes the proof of the linear independence
of union of the sets (3.47) and (3.49).

The expressions from the sets (3.47) and (3.49) do not contain generators s, and therefore
the whole set Ay is linearly independent.

To calculate # Ay, note that:

a) #B = (r + s)! — rls! because B = B, ,\B\",

b) the cardinality of the union of the sets (3.47) and (3.49) is rls! — dim C, s(Ay) (see
Lemma 1.3.3).

As a result, we arrive at the correct cardinality for the annihilator ideal #A = dim B, ; (¢) —
dim Cr,s(Af)- ]

Lemmas 1.3.3 and 1.3.5 together provide a constructive proof of the following Theorem.

Theorem 1.3.6 Fiz a B, (§)-module C, (As). Let Af and Xy be the sets given in lemmas
1.8.8 and 1.3.5. Then the union Ay U Xy is a basis of the algebra B, 5 (9).

1.3.7 Gelfand-Zetlin basis

The walled Brauer algebra B, 4(9) is semisimple if and only if one of the following conditions
holds ([CDDM], Theorem 6.3):
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r=0ors=0,

0¢Z,

|0] >7r+s—2,

d=0and (r,s) e {(1,2),(1,3),(2,1),(3,1)}.
In this section we assume that § is generic, that is, the walled Brauer algebra is semisimple.

Let A, be the subalgebra in the algebra B, () generated by the walled diagrams non-
trivial only at the first u sites of the sets p;, and pf’s (that is, to the right of the u-th
site the diagram has only vertical segments). For u < r, the algebra A, is isomorphic to
B.o(6) = C[S,] while for r < u < r + s the algebra A, is isomorphic to B, , (). The
algebras A,, 0 < u < r + s, form an ascending chain of algebras

C=AcAc...cAi;=B.09). (3.56)

Let Cy,(A) be a A,-module. We have (see [CDDM)])

Resy*  Cu(A) =~ P Cumr(p) (3.57)

where the sum runs over all bipartitions p such that A is obtained from g by
e adding a box to the first diagram in the bipartition g when 1 < u < 7}

e adding a box to the second diagram or by removing a box from the first diagram when
r+l<u<r+s.

The formula (3.57) represents the branching rules for B, ; (§) and defines the corresponding
Bratelli diagram. Here is the figure showing the Bratteli diagram for the chain on the
example of the walled Brauer algebra Bs »(9).
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/(.’g)\ /(.7.)
(2, 2) (o,@)\ /(o,@)
CIN%)) (2.2)
\(oo,o) (00, 00)
\(“7.>
Figure 1.3: Bratteli diagram
Define a standard walled A-tableau as a sequence T = (A(O), ceey )\(N’s)) of bipartitions

such that A© = (@, @), AU = X and for each k = 1,...,r + s the bipartition A® is
obtained from A*#~1) by the rules described above. Thus, T represents a path in the Bratteli
diagram of the algebra B, ;(0).

We say that r + s is the length of T. We write U /7 T if the standard walled tableau U
of length r + s — 1 is obtained by removing the last entry AU*) from the sequence T. We
shall denote by Ty the set of all standard walled A-tableaux.

Since the branching rules for the Bratteli diagram are simple, we obtain a canonical
decomposition of a simple B, 5 (§)-module C; ;(A) into a direct sum of simple Ap-module, i.e.
1-dimensional subspaces

Cr,s()\) = @VT,
T

where the sum runs over all standard walled A-tableaux. Choose an arbitrary non-zero
vector vy € V. The vectors {vr}, T' € Ty, form a basis of C, s(A), called the Gelfand-Zetlin
basis of Cy5(A).

To each standard walled tableau T" we attach its sequence of contents (c1(T), ..., ¢ +s(T)),

where
ex(T)=j—1i (3.58)

if 1 <k <rand A® is obtained from A*~Y by adding a box (,7) to the first diagram in
the bipartition,

a(T) = =(j — 1) (3.59)
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if k =r+1and A® is obtained from A*~Y by removing a box (i,7) from the first diagram,
()= —1i)+06 (3.60)

if k=7 +1 and A® is obtained from A*~Y by adding a box (i, 7) to the second diagram.
It is convenient to decorate the Bratteli diagram, writing at each edge of the path T the
corresponding content, as shown below on our example of the algebra Bs 2 (9).

Figure 1.4: Paths and contents

Clearly, a path T' can be reconstructed from its sequence of contents.

We encode the sequence T of bipartitions in the following way. We first associate to
the sequence T' three Young diagrams \'(T'), v(T') and \"(T) such that v(T') < N(T). The
diagram X (7T) := /\g) is the left diagram in the bipartition A, The diagram v(T) := )\(LHS)
is the left final diagram and the diagram \'(T) := )\gH) is the right final diagram in the
bipartition A", We call

Dy := [X(T), v(T), N(T)]

the triple diagram corresponding to the path T

Next, we fill the boxes of the diagrams X' (T"), \"(T") and the set-theoretical difference
N(T)\v(T). Exactly as for the symmetric group, the boxes of the diagram \'(T') are filled

with numbers 1,...,r, representing the order in which the boxes were added in the se-
quence ()\g)), . ,)\(LT)). The boxes of the union (N(T')\v(T')) L A"(T) are filled with numbers
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r—+1,...,7 + s in the order in which the boxes were removed or added in the sequence
()\(’”’1), R )\(“’s)). The resulting filling we call the standard triple tableau Wr correspond-
ing to the path 7'

It is straightforward to see that the correspondence between the set of all paths and the
set of all standard triple tableaux is one to one.

We visualize the standard triple tableau by putting the numbers corresponding to the
filling of A'(T) in the upper left corner of boxes and the numbers corresponding to the filling
of N(T')\v(T) in the lower right corners. This should be clear on the following example of a
path for the algebra Bj5(9).

Example 1.3.7.1 For the sequence T

2.9). (9. (@.9). @ 9. [F0). o). Gmo). o). CH)

the corresponding triple diagram is [(2,1), (1), (2,1)] and the standard triple tableau Wr is

[;726‘, ;1 5\]

The contents of boxes in the sets N (T"), N(T)\v(T') and \’(T) are calculated according
to the formulas (3.58), (3.59) and (3.60) respectively. The content of the box occupied by

the number j in the standard triple diagram corresponding to a path 7" will be denoted by
Cj (T)

1.4 Jucys—Murphy elements

For convenience in the following two sections we denote the generator s, by d.

The Jucys-Murphy elements for the walled Brauer algebras are adapted to the chain
(3.56).

Let s;, wherel <t <k <rorr+l1<i<k <r+s,andd;;, wherel <i <r <k <r+s,
denote the following walled diagrams:

Sik =

1 7 k r r+1 r+s
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Sik =
1 r r+1 4 k r+s
1 1 r r+1 k r+s

In particular, s; = s;,41, 1 <i<rorr<i<r+s,d=d 1.
In terms of generators, the elements s; ; and d; ; can be written as
Sik = SiSit1 - .- Sk—25k—15k—2 - - - Si+15i,
di,k = 5iSi41 -+ Sr—15k—15k—2 - Sp41dSpi1 ... Sk_2Sk_187—1 ... Si+15; -

The Jucys-Murphy elements for the walled Brauer algebra are (see [BS, SS, JK]):

k—1
D sik ifl<k<r,
i=1
T = . . (4.61)
D digt+ D sint+d ifk=r41.
i=1 i=r+1

In [JK] it was proved that for each k € Z>( the element

o 4ok ap (S e+ )
belongs to the center of B, (9).

One checks that the element z; commutes with any element of the subalgebra Ag_1, see
(3.56). This implies that the elements 1,. .., .1, of B, () pairwise commute. Moreover,
it follows from the representation theory of the walled Brauer algebras that the subalgebra
generated by the elements x4, ...,z is a maximal commutative subalgebra of the algebra
B,s(9). It is called the Gelfand-Zetlin subalgebra of B, ; ().

It turns out that the vectors vy introduced in (1.3.7) are eigenvectors for the Jucys-
Murphy element z;, j = 1,...,7 4+ s and the eigenvalues are precisely the contents,

l’jVTZCj(T)VT,j=].,...,7"+$.
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1.5 Orthogonal primitive idempotents

1.5.1 Algebraic background

We remind some basic results from the theory of semisimple finite demensional algebras (for
a brief introduction see [OP]). Let A(K) be a finite-dimensional unital associative algebra
over a field K. Consider the regular left A-module A,.,. Suppose A, decomposes into a
direct sum of left A-modules M;, i =1,...,k,

k
Areg = P M.
i=1
The subspaces M; c A are left ideals of A. The corresponding decomposition of unit element

of Ayeq is
k

1= Z €; where e; € M;. (5.62)
i=1
It follows that e;e; = d;;¢; and the elements {e;};_; form the set of mutually orthogonal
idempotents in A. We have

k
Areg = @ Aei.
i=1

Thus, there is the one-to-one correspondence between the decompositions of the regular
module 4,., into a direct sum of submodules and the resolutions of the unit element of the
algebra A into a sum of mutually orthogonal idempotents.

The module M; is indecomposable if and only if the corresponding idempotent cannot
be resolved into a sum of nontrivial mutually orthogonal idempotents. An idempotent pos-
sessing this property is called ‘primitive idempotent’.

Further, we recall some standard facts valid in the situation when the branching rules
are simple and the vectors vy are common eigenvectors of a set of elements generating a
maximal commutative subalgebra.

Since the vectors vy, T € Ty, form a basis of C,4(\), we have the complete set {Er}
of primitive idempotents in Mat(C, s(X)); the operator Ep is the projector on the one-
dimensional subspace Vr along the subspace of codimension one spanned by the vectors vy,
T" € TA\\{T'}. The primitive idempotent Er, corresponding to the vector vy, satisfies

v Br =FEraxy=c(T)Er, t=1,...,r+s. (5.63)

Consider the standard walled tableau U = ()\(0), .. .,)\(”571)); recall that we assume
that s > 0.
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For a Young diagram A we let
A(X) be the set of all addable cells

and
R(\) the set of all removable cells

Let o € R(v(U)) u A(N"(U)) be the box of Wr occupied by the number r + s. By
construction, we have

(Tyss —a1) ... (Tpys — ag)

(crs(T) = ar) - (crre(T) — ar)

Er = Ey : (5.64)

where aq, ..., a, are the contents of all boxes in <R(V(U)) U A(X’(U)))\{a}.

The elements {Er} for T a standard walled A-tableau, X € A, 5, form a complete set of
pairwise orthogonal primitive idempotents for B, 5(9).

The relation (5.64) can be written in the form

Br = Byt s : (5.65)

U = Tpyslu=crys

where u is a complex variable. Indeed, the actions of the right hand sides of (5.64) and
(5.65) on the vectors vy, T € T, coincide.

Given a standard walled tableau U = (A® ... AT**71) we have
Ey= ), Er. (5.66)
T:U /T

1.5.2 Fusion procedure for the walled Brauer algebra

A fusion procedure gives a construction of the maximal family of pairwise orthogonal minimal
idempotents in the algebra.

The fusion procedure (for the symmetric group) originates in the work of Jucys [19], see
also the subsequent works [Ch, Na, GP]. A simplified version of the fusion procedure for the
symmetric group involving the consecutive evaluation was suggested by Molev in [Mo|. Later
the analogues of this simplified fusion procedure were suggested for the Hecke algebra [IMOs],
for the Brauer algebra [IM, IMO], for the complex reflection groups of type G(m, 1,n), for
the cyclotomic Hecke algebras [OP1, OP2], for the cyclotomic Brauer algebras [C], for the
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Birman-Murakami-Wenzl algebras [IMO2]. In [OP3] this fusion procedure was applied for
the calculation of weights of certain Markov traces on the cyclotomic Hecke algebras.

The fusion procedure is closely related with the inductive approach to the representation
theory of towers of algebras, see [OV] for the symmetric groups, and the generalizations for
the Hecke algebra [IO], for the cyclotomic Hecke algebra [OP4], complex reflection groups
[OP5] and Brauer algebras [I02].

Spectral parameters
To shorten the formulation of our results it is convenient to introduce the following function
on the set {1,...,7 + s}
_ 0if j<r,
e(j) = L (5.67)
1if j>r.
Denote, for i # j,

sij(u) =1— S;’j if e(i) +¢e(j) is even ,
dij . . N
dij(u) =1— U’J if e(i) +¢e(j) is odd .

Let w; ;(u) be, depending on &(i) + &(j), either s;;(u) or d; ;(u). If the indices 4,7, k, are
pairwise distinct then

w; (W) wy (v) = wig(v)w; ;(u) (5.68)
We have
u? —1
sij(w)sij(—u) = 2 (5.69)
and
dij(u)di (0 —u) = 1. (5.70)

The functions s; ;(u) satisfy the Yang-Baxter equation with the spectral parameter
sij(w)s;k(u +v)s;k(v) = sjk(v)Sik(u +v)s;(u) , (5.71)

with pairwise distinct indices 1, j, k.

Additionally, we have (i # j # k # 1)
dji(u)dy,i(u—0)s;k(v) = s;5(V)dgi(u—v)d;i(u) , (5.72)
and

d;ij(u)si (0 —u—v)dy j(v) = dij(v)$;x(0 —u —v)d; j(u) . (5.73)
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Remark. Equations (5.71), (5.72) and (5.73) can be elegantly written in a uniform manner.
Let

gm0 D) e

d;ij(0/2 —u) if (i) +e(j) isodd .
Then

UNJW' (u)u?z,k(u + ’U)?I)j’k(’l}) = wj'7k(’U)7J)i7k(U + U)’LZ},"]‘ (u)

whenever ¢ # j # k # 1.

First fusion procedure

The original fusion procedure for the Brauer algebra was given in [IM]. In this section we
formulate its analogue for the walled Brauer algebra.

In what follows we let

n=r-+s.
Consider the rational function, in variables w4, ..., u,, with values in the walled Brauer
algebra B, 4(9):
V,,:=D,:6,8,, (5.74)
where
Dr,s = H dm(ui + Uj)
1<i<sr
r+l<j<n
and

67« = H S,‘,j(ui - Uj) s és = H si,j(ui — ’LLJ') . (575)

I<i<j<r rl<i<j<n
The products in the definitions of D, ;, &, and és are calculated in the lexicographical order
on the pairs (i, 7) (that is, (i1, j1) precedes (i, j2) if iy < iy or i1 =iy and j; < ja).

Let T = ()\(0), e )\(")), AP = e A, 5, be a standard walled A-tableau describing a
path in the Bratteli diagram for the walled Brauer algebra B, ;(6). We define the rational
function in the variables uq, ..., u,:

o U — ¢ (u; — uj)?
ari=]] =l 11 a1 (5.76)

i=1 1<j<i<sr
r<j<i<n

where the function ¢ is defined by (5.67), and for brevity we denoted ¢; = ¢;(T), i =1,...,n.
Set
Ur(ug, ... uy) =20V, 5. (5.77)
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Theorem 1.5.3 The primitive idempotent Er, corresponding to the standard walled A-
tableau T, is found by the consecutive evaluations

ET = ‘I’T(ul,...,un)‘

ui=cy ’ug:cz e ‘un:cn :

Example 1.5.3.1 Forr =s =2, let T be the standard walled tableau corresponding to the
contents sequence (0,—1,1,0), see Figure 1.4. We have

dy 3 dy 4 d day
(0 =\ o) =) - R
( 7“27“3;”4) < U3> < u4> < u2+U3> ( u2—|—U4>
(2)52)
U9 Uz — Ug

This expression has singularities at uz = —us or uy = 0. However in the process of the
consecutive evaluations of the product of W(uy,us, ug, uy) with the prefactor z(uy, ug, ug, uy)
the singularities cancel and we find

1
25(6 — 1)

ET = (1—81) -dslsgd- (1—51) .

Remark. The function

H d; j(u; + uj) H S, (w; — uy) (5.78)

1<i<j<n 1<i<j<n

for the Brauer algebra B,,(0) was suggested in [Na2]. Note that the function W, ,, defined
in (5.74), can be obtained by dropping in the expression (5.78) factors corresponding to the
diagrams which do not exist in the walled Brauer algebra. Thus the function V¥, ; makes
sense in the Brauer algebra B,,(0) and the consecutive evaluations of the product zr - U, ,
give rise to certain idempotents of the Brauer algebra B, (d). It would be interesting to
understand the representation-theoretic/combinatorial meaning of these idempotents.

Reformulation of Theorem 1.5.3

As we already stressed, we are interested in the fusion procedure only after the wall crossing
so we shall accordingly change the notation. A standard walled A-tableau T = (A® ..., A9,
AU+ — X will be denoted by T = (T,, ATV . A0+9)) where T, = (A, ..., A1) is the
standard Young tableau of shape A'(T"). We fix the tableau 7" till the end of Section and set

C; = C; (T)
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For j such that r + s> 7 > r let

D]l = dm-(ur + Uj)dr_l,j(ur_l + UJ) e dl,j(ul + ILJ)

and
3 ot

J ]|u1=61...

= dr,j(cr + Uj)drfl,j(crfl + u]-) A dl,j(cl + Uj) .

Uy =Cyr

The symbol * (it appeared already in (5.74)) over a letter signifies that we are dealing with
a rational function which depends only on the variables u,,1,. .., up,.

With the help of the equalities (5.72), one finds

D, S, = 6,08, 00,,... 0.

n

The fusion procedure of [Mo] for the symmetric group says that the primitive idempotent
E7. corresponding to the standard tableau T, of the symmetric group S, is obtained by the
consecutive evaluations

o= (1150 - T a5t )

i=1 1<j<igr i ur=ci ur=cyp
The part of the prefactor 27, see (5.76), which corresponds to the after-wall tail (..., AT+D, . AC+9)
of the tableau T, is the rational function in the variables w1, ..., Uy,:
n 2
o U; — C; (UZ — Uj)
a=]] <N w1
i1 Wi g r<j<i<n (ui —uj)? =1
Let now
Uz ( )= Er ot 0b,... 006
n;Ty Up41y -0y Up) - T Vr41VYr42 - - - Uy O
and

\iT(ur-ﬁ-la s ,Un) = 5T ’ \i}n;Tr(uT-‘rla s 7un) .

We reformulate Theorem 1.5.3 in the following way: the idempotent Er is found by the
consecutive evaluations

Er = \ijT(ur-&-la e ,Un)

Upp1=Cri1 |un:Cn
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Proof of Theorem 1.5.3

We repeat that we assume that s > 0 because before crossing the wall our formulas reproduce
the formulas for the symmetric groups from [Mo].

We shall often write d; ;(u,v) and s; ;(u,v) instead of d; j(u + v) and s; j(u — v).

We rewrite the function VU, s, defined by (5.74), in the form adapted to the consecutive
evaluations. Let

wn = dr,n(ur; un) e dl,n(“l; un) : 3r+1,n(ur+17 un) e Sn—l,n(un—la un) . (579)

Lemma 1.5.4 We have
\I/'r,s = \I/'r,sfl : wn .

Proof. Clearly, D, s = D, s_1-dyn(u1,uy) - .. dyp(ur, u,). The Yang-Baxter equations (5.72)
imply the identity

dip(ur, ) oy (U, ) - Sy = S - dyy (U, U)o dy (U, Uy,)

The well-known equality és = és—l Sy (Urg1, Un) - .« Sp—1.n(Un—1, u,) and the commuta-
tivity relation

dr,n(“ra Un) cee dl,n(ula un) ! 63—1 = 65—1 ! dr,n(uh un) cee dl,n(ula un) )
complete the proof. m

We first analyze what happens when we cross the wall.

Lemma 1.5.5 Let U be a standard walled tableau for the algebra B, (0), that is, for the
symmetric group S,. The following identity holds in the walled Brauer algebra B, 1(9):

w—0+ T,
EU . d17r+1(w — Cl) e dMH(w - CT) = - ol ' EU s (580)

w

where ¢; = ¢;(U), i =1,...,r.

Proof. The proof is by induction in r. The induction base, for the algebra Bj;(0), is
straightforward.

Let W " U. By the recursive construction of the primitive idempotents for the sym-
metric group in [Mo] (which is exactly the ‘before the wall’ part of our formula), we have

EU = b(U) EW ’ Sl,r(cla U) cee ST‘—l,T(CT—lv U)’v:cr
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with some rational function b(v); its precise expression is not important at the moment. Let
€ =s1.(c1,v) ... 8—1,(¢,—1,v). The Yang-Baxter equations (5.72) imply that
- d1,r+1(w - 01) cee dr—l,r-ﬁ-l(w - Cr—l) : dr,r+1<w - U)
= dr,r+1(w - U) : dl,r+1(w - 01) cee drfl,erl(w - crfl) £

Since
EW dr,r+1<w - U) = dr,r+1(w - U) EW )

we can write the left hand side of (5.80) in the form

b(v)dr,r+1(w - U) EW : dl,rJrl(w - Cl) s dr,177«+1(w - Cr71> : é‘v:cr .

The diagrams with the vertical line connecting the r-th upper and lower points linearly

span the subalgebra A in B,.;(4), isomorphic to B,_;1(d). Thus we can use the induction
hypothesis and write

W—dy sy — - —dr
By -diyi(w—c1)...di_ypi1(w—crq) = Lrtl ” rlrtl Eyw
Now,
W—dyp1 — - —dy
d7'77»+1(w _ ’U) . 1,r+1 r—1,r+1
w
_ w — dl,?"+1 - dr—l,r+1 N dm"+1 ! (w - d1,7"+1 - dr—l,r+1)
w w(w — v)
_ w — dl,r+1 - dr—17r+1 N dr,r+1 ) (w —S1p T T Sr—l,'r’)
w w(w — v)
_ w — dl,?“-‘rl - dr—l,r’+1 _ dr,r+1 . (w - xr)
w w(w —v)

w— 0+ Tri1 dr,r+1 i (U B xr)

w w(w —v)

Here in the second equality we used the formula d, ,11d;j,+1 = drpi15,-

We have

b(U) dT‘,T+1 : (U B xr)

w(v —w)

dr,r-‘rl : (U B xr)

.EW.é-"UZCT = U}(U*U})

: EU|v:c7~ )

so we are done since z,. Ey = ¢, Ey. ®
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Lemma 1.5.6 Let U be a standard walled tableau for the algebra B, s_1(0) with s > 0. Then

U — T,

EU’(n_ u—29 '

Ey | (5.81)

where (, is the following rational function in the variable wu:
Cn = Sn—l‘n(ua Cn—l) CIE ST+1,n(ua CT+1> : dl,n(6 —u, 701) e dr,n((S —u, 767")
with ¢; = ¢;(U), i=1,...,n—1.

Proof. We employ the induction on s. The induction base, for s = 1 is the formula (5.80).
Let W /7 U. We have Ey = EyEw. Thus

EU : Cn = EUEW ' Sn—l,n(uv Cn—l)c;l = EU : Sn—l,n(ua Cn—l) . EW ' CTIL )
where
C’r/z = Sn—2,n(u) Cn—Z) cee Sr+1,n(u7 CT‘+1) ' dl,n((s —u, _Cl) .- ~dr7n(5 —u, _CT) .

The diagrams with the vertical line connecting the (n — 1)-st upper and lower points linearly
span the subalgebra A’ in B, 4(J), isomorphic to B, ;_1(d). By the induction assumption,

where

u — (5 - dl,n - dr,n + 57‘+1,n + o+ 5n72,n)
Pn = .
u—20
So,
EU ' Cn = EU : Sn—lm(ua Cn—l) : EW *Pn = EUEW : Sn—l,n(uv Cn—l)pn
= EU : Snfl,n(u; Cnfl)pn .
Now,
Sn—1,n Sn—1,n
Sn—l,n(uycn—l)pn = (1 - 1’> Pn = Pn — 717[% . (582)
U — Cp—1 U — Cp—1
Since

U Tp + Sn1n
P u—20
we rewrite the right hand side of the formula (5.82) in the form

U — Tp-1

and Sn—1nPn = — < Sn—1n >
u—20

U— Ty + Sp_1p 1 U — Tp_1

u—0 U—cCpqy u—=06 "



u—2x 1 U — Ty
= n+ 1_7n1 Sn—1,n »
U—20 u—20 U — Cp_q

which completes the proof since Eyx,_1 = ¢,_1Ey. ®

We define the following rational function in the variable u = wu,,:

where ), is defined in (5.79).

Lemma 1.5.7 The following identity holds:

n—1
Byl = 420 I1 (1— ! )EU“_C”. (5.83)

u—cp 2 (u—¢;)? u— T,
Proof. The formula (5.83) is obtained from the formula (5.81) by using the equalities (5.69)
and (5.70). m
Proof of Theorem 1.5.3. Clearly,

n—1

T 7  Un—Cp (u; — un)2
2r = zyz;; where z7 = H —_— 5.84

v V', =6 el (u; —up)?—1 (584)

Thus,
_ T U
‘;[JT(UI’ te 7ur+s)|u1:01 |u2:02 o lup=en (ZU|u1:cl ,,,,, un_lzcn_lEUd)”) |un:cn
U — Cp,
= EUU _ xn |Un:Cn = ET

by (5.65). =

Second fusion procedure

Our second fusion procedure resembles the fusion procedure of [IMO] for the Brauer algebra.

Modified baxterized elements. Let i be an indeterminate. It will be convenient to use
also the following modified functions:

Si,' . . . .
si(uh) =1+ - —-if e(i) +e(j) is even
, d; ) ‘ N
di j(u;h) =1+ m if (i) +¢e(j) is odd .
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In virtue of the equalities (5.71), we have

855w )8 (u = v; h)sj(v) = sj0(v)sg(u — 03 h)s; 5 (us )
in virtue of the equalities (5.72),

dj (v h)dy ;(u + v; h)sjr(u) = sju(u)dy ;(u+ v; h)d; (vs h)
and, in virtue of the equalities (5.73),

di g (u)8; (u = v; h)dy (v h) = di ;(v; h)sg (= w5 h)d; g (u) -
In the sequel we omit the symbol & in the notation for brevity.

Second fusion procedure. We shall formulate the results in the notation introduced for
the first fusion procedure.

We define several more rational functions, in variables u, 1, ..., u,, with values in the
algebra B, 4(9). First, for j such that r +s > j > r let
OjT = dy j(er —uy)dy (e — ) ... d) (e —uy) .
Next, let ) )
Ay 1= 0}y dhpn.. 04, A =000, 0]
Finally, let
q/n;Tr,h(urJrl’ ey un) = ETTQ[;“,S 6/3 Q«LT,S 65 y
\Ijn;Tr,h (U'r+17 cee 7un) = ET,-Q[T,S 6; Ql;n,s Ss,
where &, is defined in (5.75) and
S = H 85 5 (ui +uy) .
r+1<i<j<r+s

The prefactor Zp we replace with the following rational function in the variables t, 1, .. ., Uy,:

n

S = LI UL
ZTsh H (u; — 0)(u; + ¢; — h) H (—uy)—1° (5.85)

1=r+1 r<j<i<n
Set ) i
\IlT;h(ur+17 cee 7un) = ET;h ' ‘I/n;Tr,h(urJrla ey un) ;
\I/T;h(u,u,_l, e ,Un) = ZD’T;h . \I/n;Tmh(urH, ey un) .
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Proposition 1.5.8 The primitive idempotent Er, corresponding to the standard walled X-
tableau T, is found by any of the consecutive evaluations

ET = \i’T;h(u’r‘+1a ey Un) Ursi=cry1 " }un:Cn (586)

or

Er = g (tpsq, . . ) (5.87)

Upgp1=Crgp1 lup=cn °

Remark. The fusion procedure of Theorem 1.5.3 is the limit, as h tends to infinity, of the
second fusion procedure, given in Proposition 1.5.8.

Proof of Proposition 1.5.8

1. We prove the assertion (5.86). Some gymnastics, a la in the Proof of Lemma 1.5.4, with
the baxterized elements leads to the recursion

Vorh = Yoo11,h SanTa% IL .

Here
§b— S 1 (Un—1 + Un) 8y, g (Un—o + Un) .8y g, (Ursr + Uy)
and
81 = st (Ursr + ) Sryom (Upra + U)o Sn1n (U1 + Uy)
As before, it suffices to analyze the last evaluation . ‘u e . Extracting the factors contain-
ing u, in the prefactor Zr.,, see (5.85), we see that we have to prove that for U T the

evaluation of the expression

Ur4+1=Cr41,y---sUn—1=Cn—1

ZU P By - X, with j{;:( lD/TD# L)

at u, = ¢, is equal to Fr. Here 2} is defined in (5.84) and z! is the following rational
function in u,:

" Up —h + 0
g = —— .
Up + ¢, —h
Lemma 1.5.6 implies that
oy h—u, —x,
EU'( a )|Ur+1 CralyUn—1=Cn—1 h—w —& Ey

By the fusion procedure of Theorem 1.5.3, the evaluation of the expression
By - (O}ls

n) ‘u7‘+1=C7‘+11---1un71=cn71

at u, = ¢, equals Fr, and x,Er = ¢, FEr, so we are done.
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2. It is straightforward to see that the Jucys—Murphy elements are stable with respect to
the anti-involution ¢ defined in (1.8). Therefore the idempotents Er are stable with respect
to ¢ as well. However, we have the identity

L (q]n;Tmh) = \Ijn;Tr,h

which implies the assertion (5.87). m
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Chapter 2

Schur-Weyl duality between Uqsl(2|1)
and quantum walled Brauer algebra

qu,n

The classical Schur-Weyl duality relates the representations of the general linear group with
the representations of the symmetric group. It asserts that the actions of the general linear
group G = GL,(C) and the symmetric group &,, on the tensor space V™ with V = C®"
satisfy the bicentralizer property, i.e. Endg (V®™) is generated by the action of G' and corre-
spondingly, Endg(V®™) is generated by the action of &,,. There exist many generalizations
of this duality to subgroups of G (e.g., orthogonal, symplectic groups, and Levi subgroups)
and respective algebras related with the group algebra of the symmetric group (e.g., Brauer
algebras and Ariki-Koike algebras) along with deformations of these algebras. Generally,
the phrase “Schur—-Weyl duality” has come to point out such a bicentralizer property for two
algebras acting on some module.

One such generalization is the mixed tensor space V& ® (V*)® where V is the natural
representation of GLs(C) and V* is its dual. The centralizer algebra is the walled Brauer
algebra B, 4(9), 6 € N. It was shown by [T, Ko, BCHLLS] that mixed tensor space satisfies
Schur-Weyl duality under the action of GLs(C) and B, 4(¢).

The super analogue of the mixed Schur-Weyl duality was studied in [BS]. Let V' and
V* be a natural representation and its dual for gfy;n(C) then there is induced surjective
homomorphism

UM B, (0) = Endg (V" @ (V*)®)™,

where 0 = M — N. It is an isomorphism if and only if  + s < (M + 1)(N + 1).
The mixed Schur-Weyl duality for the complex general linear Lie superalgebra gli(M, N)
and subalgebra of walled Brauer algebra B, (M — N) was discussed in [SM].
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In [KM] it was introduced a one-parameter deformation B, , (d, ¢) of the walled Brauer
algebra and proved Schur—Weyl duality where the general linear group is replaced by the
generic quantum group Ug(q)(gl,)-

In this Chapter we study a mixed tensor product 3™ ®§®n of the three-dimensional
fundamental representations of the Hopf algebra U,s¢(2|1), whenever ¢ is not a root of
unity. In Section 2.1 we give the definition of Uysf(2]1) and describe the construction of
modules. In Section 2.2 we obtain formulas for decomposition of tensor products of any
simple and projective Uysf(2|1)-module with the generating modules 3 and 3. We show that
the centralizer of Uys¢(2|1) on the mixed tensor product is the quotient X, ,, of the quantum
walled Brauer algebra gB3,,,. We recall the definition of the quantum walled Brauer algebra
in Section 2.3.1 and discuss the construction of the cell modules in Section 2.3.3. In Section
2.4 we give explicit structure of projective modules over X,, ,,. The walled Brauer algebras
form an infinite tower. We calculate the corresponding restriction functors on simple and
projective modules over X,, ,. This result forms a crucial step in decomposition of the mixed
tensor product as a bimodule over X, ,,Xlys¢(2|1). Finally, in Section 2.5 we give an explicit
bimodule structure for all m,n.

2.1 The Hopf algebra Uysl(2|1)

The quantized universal enveloping algebras are an important class of quantum groups.
A quantum algebra %,g associated with the algebra ¢ is a deformation of the universal
enveloping algebra % [g] of g endowed with a structure of a Hopf algebra.

2.1.1 Definition of Uysl(2|1)

The quantum superalgebras Uy,s¢(2|1) and U,gl(2|1), i.e., quantum algebras associated with
a Lie superalgebras s¢(2|1) and ¢gf(2|1), were studied in [PT, PSV, Z, KV].

The Hopf algebra U,s¢(2|1) is a free unital associative algebra generated by k, K, E, F', B,
C and the relations listed below. We choose the generators adapted to the Hopf subalgebra
structure Uysl(2|1) o U,gl(2) > Uysl(2) (we extensively use these subalgebras while working
with Uys¢(2|1)-modules in the sequel). The Hopf subalgebra Uysf(2) in Uysf(2]1) is generated
as an associative algebra by E, K, and F' with the relations

—2 K-K! 2
KF = q*FK, EF—FEzF, KE = ¢?FK. (1.1)

The larger algebra U,g¢(2) contains an additional generator k satisfying the relations

kF = qFk, kE =q 'Fk, kK =Kk. (1.2)
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We call the generators F, F', K and k bosonic. There are two additional generators B and
C, which extend U,g¢(2) to Uysl(2|1); we will call them fermionic, or simply fermions. The
relations that involve the fermions B and C' are
kB=—-Bk, KB=gqBK, kC=-Ck KC=q'CK,
k—k1
B* =0, BC-CB = _— . C* =0,
FC—-CF =0, BE — EB =0,
FFB—|[2|FBF + BFF =0, EEC - [2|ECE+ CEE =0,

qn _ q—n
—1

where [n] = =— is a g-integer.
The Hopf-algebra structure of U,s¢(2|1) (the coproduct, the antipode, and the counit) is

given by

AF)=FR1+K'®F, AE)=EQK+1QFE, (1.4)
K :

)
AB)=B®1+k'®B, (C)=CRk+1®C,
S(B)=—-kB, S(F)=-KF, S(C)=-Ck™', S(E)=-FEK' (1.5)
€¢(B)=0, €(F)=0, €C)=0, €&)=0,
with k£ and K being group-like.

2.1.2 Simple U,;s¢(2|1)-modules

Every finite-dimensional irreducible module over the Lie superalgebra sf(n|l) can be de-
formed into an irreducible module over Uy,sl(n|l), see [PT]. The Lie superalgebras sf(n|1)
belong to the class of the simple complex Lie superalgebras, classified by Kac [K1]-[K3].
Following his terminology we use notations ”typical” and "atypical” to classify Ugsf(2|1)-
modules (see also [J]).

In the sequel we use notations from [ST|. We consider a subcategory of Ugsl(2|1)-
modules with k eigenvalues of the form g™ for n € Z. The subcategory is closed under
tensor products. The simple finite-dimensional Uysf(2|1)-modules can be labeled as (see
[ST] and references therein)

ZeP a,f=4+1, s=1, rel. (1.7)
The module Zg’f contains a unique heighest-weight vector |a, s, 5,7, such that
Ela, s, B8,r)y =0, Cla,s, 8,1y =0, (1.8)
Kla,s, 8,15 = ag* a,s, B, (1.9)
kle, s, B,1)5 = B |a, s, B, 1)y (1.10)
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The eigenvalues of the generators K and k£ when acting on the highest weight vector are
parametrized by the pairs (o, s) and (f, r) respectively. Therefore, Uys¢(2|1)-modules are
parametrized by («, s, 5, r) uniquely. It is convenient to use this parametrization because
the dimensions of the modules and some its structural features become dependent only on s
and r. The structure of the modules will be explained in more detail in the next subsection.
For a pictorial explanation of the notations for vectors in the module see Figure 2.1.

The modules have dimensions

2s—1, r=0,
dim 2%’ =<{2s+1, r=s, (1.11)
4s, r#0,s.

The modules with r = 0 and r = s are atypical, and others are typical. The trivial module
corresponds to Z{;", see (1.7).

We note that there are four nonisomorphic modules in each dimension, which differ only
in the sign of the Cartan generators action. There are four one-dimensional modules and

only one of them is trivial.

2.1.3  Uqgsl(2|1)-action on simple modules

Each U,s((2|1)-module decomposes into a direct sum of simple U, g¢(2)-modules X%?, where

s,

o, B =+, s> 1,r € Z. Their dimensions are dim X%? = s. Eigenvalues of generators K

and k on the highest weight vector in the module Xs‘fr’é are ag®~! and Bq " respectively.
We describe (following [ST]) the action of Uysf(2]|1) on its simple modules explicitly,

using the basis adapted to the decomposition into U,g¢(2)-modules. The examples of each

type of modules are shown in the Figure 2.1.
Atypical modules with r = 0, 22y

As Uygl(2)-modules, these modules decompose as
ZW =X e (1.12)

and we choose a basis in Z% in accordance with this decomposition, as

(|a,s,ﬁ, 0y, € Xg(’)ﬂ) <|OZ,S,5,0>$ € X:—@ﬁl) -

s .
0<n<s—1 0os<m<s—2

The fermionic generators relate these two types of vectors as

B‘a787570>: = —[’I/L:HO[,S,B,O>:_1, C’OC,S,B,O>;: = /3’05737670>(r_n+1'
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Figure 2.1: LEFT: An atypical module ZS’bB (with s = 5). Each vertical column is a Uygl(2)-
module Xg;ﬁ in (1.12). The top state is |a, s; 8,05 and the bottom, |a, s; 5,0 ;. MIDDLE: An
atypical module Zsofjf (with s = 4). Each vertical column is a Uyg¢(2)-module in (1.13). The top
state is |a, s; B, s);” and the bottom, |a, s; 5, s);”. RIGHT: The typical module zgfﬁ (s = 4). Each
column is a Uyg¢(2)-module in (1.14). The directions in which the generators map are common
for both modules.

Atypical modules with s =r, Z¢/

The modules decompose as
zl = xfeoxl, (1.13)

and we choose a basis in Z% accordingly, as

«— a,B — a,—f3
(‘Oé, S, /87 $>n € Xs,s )Og’l’lSS*l ’ (’057 S, 67 5>m € Xs+1,s>0<m<
The fermions act between these two sets of basis vectors as

B|Od,8,6, S>; = [8 - n]|0&,876, 5>;7 C|Oé,$,ﬁ,8>; = 6|O&,S,ﬁ,8>;.
Typical modules (r # 0, s)
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The modules decompose as

Zﬁ;”@:/"’sﬂ,‘;ﬂ@?\ﬁlf@?fa’u 1@Xaﬁ (1.14)

s,r—1

and we choose the basis in Z%° as

(|Oé,8,ﬁ,7”>7)0<j<3_17 (|a’s’ﬁ’T>7Tn)O<m<s’
(I, B:7%) peneszr (10588707 ) ocjasr

The fermions act on these vectors as

Bla,s, 8,15 = Sla,s, 8,04y + B a,s, 8,1,

B‘Oé,S,,B,7">7Tn = [ ]’Oé75767’r.>m—17 C‘Oé,S,,B,T’>In = |0578767 r>(;w
B‘CM,S,,B,T},L = /6[ ][n+l—s]|a S ﬂ7r>n_)7 C‘O[ S /87T>ln = /B[T_S]‘a787ﬁvr>:+la
Cla,s, 8,7 = lass, B,k + By s, 8,00

2.1.4 Ext! spaces for atypical modules

For two modules Z; and Z,, we define Ext'(Z,, Z1) as a linear space with basis identified
with nontrivial short exact sequences

O"Z]*’Z]@ZQ"ZQ"O.

modulo a certain equivalence relation [M].

The groups Ext' vanish for the typical U,sf(2|1)-modules. For the atypical modules,
the Ext'(Z, Z,) group is at most 1-dimensional. Whenever Ext!(Z;, Z,) is nontrivial, we
describe the algebra action in terms of generators: the action of a Uysf(2|1)-generator A on
Z; B 2, is given by

pA = PEL?) =+ €A7

where pff) is the direct sum of actions of U,s¢(2|1)-generators on the simple modules and

Ea= fil’zg . Z1 — Z, are linear maps.

We list the &4 maps in terms of the bases introduced above. The formulas can be
somewhat uniformized by adopting the following convention for the 1-dimensional modules
Zﬁbﬁﬁz we denote this module also by Z&bﬁ, with a basis vector |a, 0, 3,0)y” = |, 1, =3, 0)%
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(and, formally, with |, 0, 5,0, =0, m # 0). We then have

Ext' (287, 2000) = (b1}, B0 loys, 8,00, — —[s —m]a, s + 1,—5,0;,,

(821) §B:‘a737ﬁ70>;:’_)[S_m_l]‘a73+1a_/370>7_r;7
Ext (280, Z200) = {esn}, ot la,s, 8,00, — [a,s —1,=B,0),,
(522) gc:|a>5a670>;'_>|aa5*1a*570>;3
Eth(Zsoff,Zg_’;i_l) = {Bsfl}v B : ‘04 S,B,S>; = *[m]|a>5 —1,-8,5s— 1>:1717
(s=1) &g ilays, Bys) — [mlla,s — 1, —=B,s — 1),
Eth(ngvZ?-ﬁg-&-l) = {ES-H}v fC : ’Oé, Sﬂﬁvs>:1 — |O(7S + 17 _575 + 1>:H_1,
(820) 50:’CM,S,ﬁ,S>;:’_)|a,8+1,—ﬁ73+1>;:+1-

2.1.5 Projective Uys/(2|1)-modules

There are two types of projective Uys¢(2|1)-modules.

Simple projective modules

All simple typical modules described in 2.1.3 are projective.

Projective covers of atypical modules

We use the notation Rfoﬁ and R‘;f for projective covers of Z¢ 65 and Zﬁjf (where, as before,
a,f = +1 and s > 1). We describe the projective covers in terms of Loewy graphs. The
reconstruction of the U,s¢(2|1)-action on a projective module from its Loewy graph is de-
scribed in detail in [ST, Sec. 6]. The action p4(v) of a generator A on a vector v has three
parts:
pa(v) = o) () + c()€av) + na(w),

where p(:)(y) is the action of A in the irreducible subquotient, &4 is determined in 2.1.4, and
for the map na we give explicit formulas after each Loewy graph (whenever 7,4 is nonzero).
Here ¢(v) are some coefficients depending on a pair of simple subquotients in the projective
module in question. We write them on edges in Loewy graphs (see [ST] for a detailed
explanation).

It is convenient to distinguish between two series and two exceptional cases of projective
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covers. The first series is RS 0, § = 2, with the Loewy graph

Zz2y (1.15)
~[s —y ~[s]
2550 20
N A
Z;ff

where
B : |OZ7 S, /67 O><77A g *5[”“0&7 S, 57 O>T?71V'
Here v2 denotes the vector v from the top subquotient, and vy denotes vector v from the

bottom subquotient.
The second series is R%?, s > 2, with the Loewy graph

$,8 7

zef (1.16)
o
Zsa-;—l s+1 Zs ls 1
zyy

and with
ne e, s, B,s),78 — |a,s, 8,805 v

The two exceptional cases are Rf and R1 1, with the respective Loewy graphs

/\ "\

o,— a, a,B
Z, o ZQ,Q A 0

\/ A

zyy

(1.17)
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These modules have dimensions

dmR>f =8s—4, s>1,

S,

dim RSy =8s+4, s>1,
: B
dim RYy =

2.2 The mixed tensor product
We study the mixed tensor product
T = 3" @ 3%, (2.18)

where 3 = ley’f "and 3 = 2217’& are two three-dimensional simple Uys¢(2|1)-modules with
the following structure

Do Do (2.19)
3= 1o 3= Do’
DT DT
We are interested in decomposing .7, , as a bimodule over Uysl(2|1) and its centralizer 2, .

As a necessary first step, we decompose tensor products of relevant Uysf(2]1)-modules with
the fundamental modules Z7' 7 and Zy s,

Theorem 2.2.1 Tensor products Z®Zf‘,’1ﬁ, where Z ranges the atypical and typical simple
modules and their projective covers, decompose as follows:

a1,B1 az,B2 _ zo12,—P12 a12,812
Z0 Q2T =20+ 277, s =22,
a1,B1 az,fo _ zai12,—f12 a12,612
Zs,s ®Zl,1 - Zs+1,s+1 + Zs,s+1 ’ 5= 17
a12,—B12 a12,—B12 _
7€’5+1,O + 2571771 ) r= 717
1,81 ag,Ba a12,—B12 a12,—B12 _
Zs’r ®ZLI = Rsfl,sfl + ZSH’S , r=s—1, s=2
a12,B12 a12,—B12 a12,—B12 .
Zs,rH + 2,90+ Zsfl,r otherwise,
and
a1,B1 az,B2 _ poi2,—f12 12,812 a12,—B12 a12,—B12
Y ZLl = Rsfl,() + 223,1 + 257171 + Zs+1,1 , §=3,
1,81 az,B2 _ poaiz,—f12 12,812 ai2,—B12 a12,—B12
RS’; ® Zl,l - R8+1,8+1 + 2Zs,s-ﬁ-l + Zs—l,s + Zs+1,s+2 ;5= 27
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where we write a9 = 1o and Bia = [15s.
The exceptional cases are listed below:

Otlﬁl ® Za27ﬂ2 Zalz,ﬁn’
20 & 23" = RE
p Rzl = ﬁ;ﬁff“ + 250 =10, 1,
Ralﬂl ® 273 = Ry O 42zt 4 Zg e
R?,b’ﬁ '® Zﬁ?’ﬁ P= R 20 4 2,
Ry @ 237 = Ry 4 ozpphe 4z,

The tensor products Z ® ZS’OB decompose as:

011,61 ®ZO¢2,52 Zoqzﬁlz + 2701_121,5_1127

s+1,0 s
a1,ﬂ1 az,ﬁz _ za12,812 12,812
Zs,s ®ZQ,O - Z —1,5—1 + Zs+1,s ’
Rau, B12 Zg—?l’[flz? r=1, s>9
Zﬁ;’ﬁl ®Z§%’52 _ Ralg, Pra 4 Zmzﬁlz r=s+1,
a12,512 a1z, ﬁlz 12,012 .
Zs+1,r + Zs,r_1 + 25_1’7,_1, otherwise,
and
a s ag, a12, a12, « , a12,—
151 @Z 2,82 _ Rsflf)m +QZ 12 512 +Z 12,—B12 +Z 1227_112’ s> 3,
a1,B1 062752 _ poaz,fiz2 04127512 0412,*512 a12,—B12
,R’s,s7 ® ZQ,O - Rs—l,s—l + QZs-ﬁ-l s s+2,5+1 + Zs,s—l ’ 5= 2.

The exceptional cases are:

Zlai(l)aﬁl ®Z;%752 _ 22627ﬂ12>

Zloﬁaﬂl ®Z§%’52 _ 236277512 + Z;iz’ﬁm,

Zi;ﬁl ® Zz%ﬂz _ Ral%_ﬁlQ

Zal,ﬁl 2012,52 Zoqz’ B12 Za12,512 0.1.2

® 2,0 2r ’ r# ) Ly 4y

Ral,ﬁl ®Z§%,52 _ Rgi)z,ﬁlz + 2210j£2iﬁ12 + Z;tl—zi_ﬁlzv

Rfilo:ﬁl ®Z§%’B2 _ Rgc,lozﬂlz + Zloflfi_ﬁm + Z;ﬁz,ﬁm?

Rillﬁl ®Z§%ﬂ2 _ Rtilozﬁﬂm + 22%112,512 + Z?tigﬁﬂlz.

emark. ollows, in particular, that the set of simple modules an eir projective covers

R k. It foll particular, that the set of pl dul d their project
is closed under tensor product decompositions.
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Proof. We discuss two cases: Z217' @ Zfﬁ’ﬁz and Z?;_Bll ® Zfﬁ’ﬁQ. Other cases are similar.

We consider the Uysl(2[1)-modules in the left-hand side of the tensor product as U, g¢(2)-
modules (as explained in 2.1.3) and calculate their tensor product using the results from [BGT].
For the tensor product Zgyﬁl ® Zfﬁ’ﬁz, we have

Zg;& ®Zfﬁ”82 — (Xsa’;,m e Xgaji,_gﬁl) ® <X113€,52 = X;f’_&) (2'20)
= X @ ALY @ XN @ AN @ X I @ A,

Decomposition (2.20) contains six U, g¢(2)-modules. Taking into account that a typical mod-
ule contains four U,g¢(2)-summands and an atypical one contains two, the module in (2.20)
can be the direct sum of either three atypical Uysl(2|1)-modules or one typical and one
atypical module. Explicitly writing the decompositions of possible Uys¢(2|1)-modules shows
that there exists only one Uys¢(2|1)-module that has the decomposition (2.20). The second

and the fifth summands can be combined into Zjﬁ;f}? and the other four summands give

22202 Thus, we have

a1,81 az,f2 _ za12,—f12 12,612
Zs,s ®Zl,l *Zs+1,s+1 ®Zs,s+1 :

We next consider the product Z2% ® z 2% The U,g¢(2)-decomposition is

s,s—1

znfie i - (al exsiexn et e (e x ) 221

s,5—1 S$,5—2

_ yoa2,P12 a12,— P12 a12,—B12 12,812 a12,—B12 12,012
_Xs,s @ Xs+1,s C—B X —1,s—1 @ Xs,s—l @ XS-‘rl,S @ X +2,s

S S

a12,812 a12,—fB12 a,— 12,812 a12,812 a12,—B12
@ Xs,s—l @ Xs-‘rl,s—l @ Xs—l,s—l (_D Xs,s—l (_D Xs—2,s—2 C—B X, —1,5—2

S

Because Zf;_ﬁll is a projective simple module (see 2.1.5), the decomposition of Zg;_ﬂll ® Zy 2,02
involves only projective modules, which, as we recall from 2.1.5, consist of all typical sim-
ple modules and the R®?. There are several Ugsf(2|1)-modules that have the U,gl(2)-

S,
decomposition (2.21), but only one of them is projective.* Thus, we have

Zoél,ﬁll ® 21013,52 _ Ra1217—,3112 o Zoélzl,—ﬁm

5,5— s s—1,5— s+1,s .

The cases RZ})’B '®Z7 252 and R QZT 2% are worked out similarly. We consider U,g/(2)-
decompositions of both tensorands and calculate tensor products of U,g¢(2)-modules. This
gives a long direct sum of simple and projective U, g¢(2)-modules that each time are combined
uniquely into a sum of projective Uysl(2[1)-modules. m

*For example, the direct sum of simple Ugsf(2|1)-modules 22;‘:121’7;512 ® 221202 @ Z?jé:fizQ ® Z:ﬁ’,gﬁlz
is compatible with the U,g¢(2)-decomposition (2.21), but is not a projective Uys¢(2|1)-module.
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Remark. Decomposition of all tensor products of finite dimensional s¢(2|1)-representations
into their indecomposable building blocks was found in [GQS].

2.2.2 The centralizer of U;s/(2|1) on the mixed tensor product

We calculate decomposition of .7, ,, iteratively using Theorem 2.2.1. The multiplicities of
indecomposable Uysf(2]1)-modules are dimensions of 2, ,-modules, which we discuss below.

We fix bases in the 3 and 3 modules in accordance with 2.1.3 and introduce a shorthand
notation for them:

fl = ‘171?_171>(0_7 f2 = ‘1717_171>0_)7 f3 = |1717_17 1>1_)7
v =11,2;1,0)57, v =1,2;1,0)7, vy =11,2;1,0)5 .

In the tensor products of two Uysl(2|1)-modules, we then have the operators
7:3®3—3®3, £:303—3R®3, h:303—3R®3,

that commute with U,s¢(2]1) and given explicitly by

®fi fi®fs fi®fs
g: | o®fi fo®fr for®fs|—
[®fi [s®fr f3®f3
g QN —q ' L®f —q ' fs® fi
(@1 f—qg'fi®f —f2® f2 —q ' fs® f2 ],
(@210 /i®fi (2 -1)iEQf—q'fa®fs —fQf

i®u fi®ku fi®us 1 0 0
E: | L@u L®v: o@us|— (0 —q 0] (@fi®vi+qf@v2— f3®v3),
f3®@v1 fsQua f3@us 0 0 1

and

V1 ®U v ®Uy v QU3
h:|ve®v 12QU2 V,Qus |—
v3® U1 V3@V U3 X Uz
g n®u (2= ®u— g 'v®u (-1 ®us—q lus®@u
—q 1 @ vy —Uy ® Uy (=1 ®vs — ¢ 3@ vy
—q v ®us —q vy @ s —v3 ® U3
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On 7, ., we define the operators

9;=18  ®legele -®L (2.22)
m—j—1 n+j—1

hi=1®  ®1h®1® @1, (2.23)
m+i—1 n—i—1

=10 RlAERVIQ @1, (2.24)
m—1 n—1

These operators represent the generators of a quantum walled Brauer algebra. We have the
following Theorem

Theorem 2.2.3 The generators g, &, h (2.22)-(2.24) satisfy the qB,,, relations with the
parameters

7= 71)
§=q2 (2.25)
0 =—q2

Proof. Straightforward verification. m

Remark. By choice of normalization in matrices, the parameters v and ¢ can be changed,
however the relation

)
0=— 2.26
: (2:26)

remains invariant. This relation means that we consider a degenerate case in which the
algebra becomes non-semisimple as we discuss below.

Corollary 2.2.4 The endomorphism algebra of Uyst(2|1)-module F,, ,, is isomorphic to the
quotient of the algebra oB,, ,, with special parameters (2.25).

One can consider an algebra U,s¢(M|N) for arbitrary positive integers M and N. Let
V and V* be fundamental representation of Uys¢(M|N) and its dual. We let 2N denote
the algebra of endomorphisms of U,s¢(M|N) on mixed tensor product V*®™ ®V®" As was
shown in [SM] (see also [SM2, BS]) there is a surjective homomorphism

YN By = =16 = q 2,0 = —g 2NV 2N (2.27)

Here the parameter q is the same as in the algebra Uys¢(M|N).

We note that for NV = 0 the algebra 3{"]1” 0 is semisimple and ker \I/M Y contains the whole
radical of o3, ,, see [HJ.

In entire work we consider only the case M = 2, N = 1 and use the notation Z,,,, for

2,1
Loin:
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2.3 Quantum walled Brauer algebra

2.3.1 Definition

The algebra gB,, ,, is an associative unital algebra generated by g;, &, h;, where 1 <i <m—1
and 1 < j <n — 1, presented graphically by the following diagrams

. / o .
Z AN A

m 1+1 4 1 1 n

X
& =
N

m 1 1 n
h; := X 1=1 n—1
AR / ) - 4 ) -

m 1 1 1 1+ 1 n

and relations (see [ST2, L, H, KM])

gihj = h;gi,
(9 =g —=0) =0, (hj =7)(h; =) =0,
9i9; = 9;9i, |1 —j|>1, hih; = hjh;, |i —j| > 1,
9i9i+19i = Y9i+19i9i+1, hihiyihi = higihihiga,

ce - Lo
v+46

653915:5, ghléa:éa,
éagz:gz(gd, 2<z<m—1, (gdh]:hjg, 2<]<n—1,
Eqihi (g1 — ) =0, (g1 — h1)Eqh '€ = 0.

These relations involve complex parameters 7, §, and 6, and we sometimes use the notation
dBinn(7, 0, 0) for the algebra, although one parameter can be eliminated from the relations by
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renormalizing the generators. We write the relations in the present form for more convenient
comparison with different choices in literature.
We use the following statement (see [E]) in the next subsection

Proposition 2.3.2 There is an anti-involution o on dB,,,, which fizes all generators &, g;
and hj, 1<g<m-—-1landl <h;<n-—1.

We define 9i; = 9i-19i—2---3j, hi’j = hihiJrl . hjfl and éai’j = gl_’zthl(gangh;ll For
i < min(m,n) we denote &; = &; ;.

Remark. The one-parameter walled Brauer algebra discussed in previous section can be
considered as a classical limit of quantum walled Brauer algebra oB,,,. To get this limit
from the algebra with relations listed above we can do the following. By renormalization of
generators, parameter v can be set to v = —1. We introduce a complex parameter r:

—

so that the relation reads && = —%é" . Then we consider the limit § — 1. The dependent

on parameters algebra relations become

g =hi =1,
EE = —r6.

2.3.3 Cell modules
Algebraic background
We recall the definition of cellular algebras from [GL].

Definition. Let A be an R-algebra, where R is a commutative ring containing the multi-
plicative identity 1. Fix a partially ordered set A = (A,>) and for each A € A let T'(\) be a
finite set. Finally, fix Cs € A for all A€ A and s,te T'()).

Then the triple (A, T,C) is a cell datum for A if:

a) {Cs | e A and s,te T'(\)} is an R-basis for A;

b) the R-linear map * : A — A determined by (Cy)* = Cl, for all A € A and for all
s,t € T'(\) is an anti-involution of A;
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c) forall A\e A, s,te T(\) and a € A there exist scalars ry(a) € R such that

Cya = Z rw(a)Cy (mod A™),
ueT'(\)

where A”* = R-span{Cy, | p > X and u,v € T(u1)}. Furthermore, each scalar ry,(a) is
independent of s.

An algebra A is a cellular algebra if it has a cell datum. We call {Cy
a cellular basis of A.

s,te (M), Ae A}

Construction of the basis

Quantum walled Brauer algebra g, ,, is a cellular algebra ([E, RS]). It was shown in [E]
that each cellular basis for the tensor product of Iwahori-Hecke algebras H,,(q) ® H,(q) gives
rise to a cellular structure on gB,,,. We discuss the construction of the cell basis of module
following [RS]. Without loss of generality we use parameters of algebra given in [RS], it can
be bring to the form used in present work.

Consider the Iwahori-Hecke algebra H,, with generators ¢i, ..., ¢»_1 and the Symmetric
group &,, with generators si,...,8,-1. Let g, = ¢;, ... g;, where w = s;, ...s;, is a word
in Symmetric group with minimal length.

Let &,, x &,, be the product of &, and &,,. We use s; (respectively, s¥) to denote
generators in &, (respectively, G,,). For convenience, we denote s; ; = s;_1S;_2...5;, @ > j
and s;; = 8iSiy1.. .85, 1 < j (similarly for s¥;). We have the following statement [E]

k

Lemma 2.3.3.1 Fiz m,n € Z7° and f € N with f < min(m,n). Let &; be a subgroup
of &, x &,, generated by s;s¥, 1 <i < f—1. Then @jﬁw is a complete set of right coset

representatives for G,y x &5 x &,_5 in &, x &, where
D = A813,555, 51080, |k <k, 1 <y <ig < -+ < jip <mj. (3.28)

For each d € 9/, ,, we define gz hy;; ... g1 b1,

Let A = (A1, A2,..., Aq) be a partition and A(n) be the set of all partitions of n. A(n) is
the poset with the following partial order: we set A < p for A\, p e A(n) if 2221 Aj < 23'21 1
for all possible ¢ < d. We write A < p if A < pand A # p.

For each Young diagram associated with partition A € A(n) we define a A-tableau. The
Symmetric group acts on a A-tableau s by permuting its entries. We denote by t* a tableau
obtained from A by adding 1,...,n from left to right along the rows. We write w = d(s) if

thw = s.
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Given a A € A(n), let &, be the row stabilizer of t*. Define ny = Y s (—¢)') gy, where
l[(w) is the length of w.

Let X = (AL, A%) be a bipartition and A be the set of all bipartitions as in Section 1.3.2.
For each integer 0 < f < min(m,n), we set

A (F) = {(£,X) [ A€ A, m — [N = n — [NF| = f}, (3.29)

where |\| is the sum of elements of a partition, and

min(m,n)

U A (3.30)

We say that (f, A) > (I, u) if either f > 7 or f = r and A> p in the sense A“U0) > ;L) We
write (f,A) > (I, p) if (f,A) > (I, ) and (f,A) # (I, u). Then A,,, is a poset.
For A € A/ we define * = (&, ") where "™ is defined as described above. Let

m,n

TN be the set of standard AXF)-tableau then .754(\) = T5(\F) x Fstd(\R), If
s, te 95“1()\) with s = (51,52) and t = (tl,fz) we define

st = 0(Gd(s1) N(s2) AL ARG () P() (3.31)
The anti-involution ¢ is given in proposition 2.3.2.

Let ,937{“1 be the two-sided ideal of qB,,,, generated by &/ = & ... &;. Let 33%%’)‘) be the
two-sided ideal of gB,y, ,, generated by 2/ and all ny with s, t e .7*"(u) and (f, u)>(f, A).
Define

B> Z A=)
(fp)>(£,X)
Thus, we have all building blocks to formulate the following proposition [RS]
Proposition 2.3.4 Suppose (f, ) € Ayn. We have

a) SE(f,A) is a right By, ,-module if SE(f, X) is the submodule of B=YN />IN spanned
by {6 npsga + BN | (5,d) € TUN) x D], .}

b) SE(f, ) is a left @B n-module if SE(f,A) is the submodule of =YX />N spanned
by {0(9a) 6 nng + BZUN | (5,d) € TH4N) x D], .}

By [GL] every simple gB3,, ,-module arises in a unique way as the simple head of some cell
module.

The results of the next Chapter are based on the following Conjecture

Conjecture 1 Representation categories of the algebra oB,, , with generic values of param-

1) . . . .
eter S and of the (classical) walled Brauer algebra are equivalent as abelian categories.

55



Properties of ¢B,, ,-modules arising from quasi-hereditary structure of the quan-
tum walled Brauer algebra

In [RS] it was mentioned that the quantum walled Brauer algebra 3, ,, with generic values of
parameters % is quasi-hereditary with standard modules S, ,,(X), with simple heads D,,, ,(X)

and projective covers P, ().
Given the set of all bipartitions A,, , we define a partial order on A, ,, by setting A < p
if deg(A) < deg(p). The decomposition multiplicity

[Sm,n (A) Dy ()]

is zero unless A < p.

From quasi-hereditary structure of g, ,, it follows that each projective module P, ,,(X)
has a filtration by standard modules. We denote the multiplicity of a given standard S, ,,(A)
in such filtration as

d/\,u = (Pm,n()‘) : Sm,n(y'))
By Brauer-Humphreys reciprocity we have

dap = [Sm,n(ﬂ> : Dm,n()‘ﬂ

In [CD] the decomposition numbers dy, for the classical walled Brauer algebra were
determined using so-called cap diagrams. Without specifying any details we implicitly use
these results in this Chapter.

2.4 Modules over Z,,,

The results of this section are based on the Conjecture 1 and the Conjecture 2

Conjecture 2 The algebra 2., , is quasi-hereditary.

2.4.1 Modules in the decomposition of the mixed tensor product

As a 2, I UGsC(2]1)-bimodule, the mixed tensor product 7, , decomposes into a direct
sum of indecomposable bimodules.

Definition 2.4.1.1 For non-negative integers p,q, a partition p is called a (p,q)-hook par-
tition if it doesn’t contain a box in the (p + 1,q + 1)-position, i.e. p,1 < q+ 1.
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Some examples of (2,1)-hook partitions are

Definition 2.4.1.2 (see [CW]) For non-negative integers p,q a bipartition XA = (A, \%) is
called a (p,q)-cross bipartition if there exist non-negative integers py, pa, qi,qo such that A&
is a (p1, q1)-hook partition, A is a (pa, q2)-hook partition and p1 +ps < p, @1 + g2 < q.

Some examples of (2, 1)-cross bipartitions are

[ [ ] ] [ ]
( ) LD o §%)

Let €1y, be the subset of all (2,1)-cross bipartitions in A,,,. Assuming the Conjecture 1
and applying the statements from [BS, CW] for M =2, N = 1, we have

Proposition 2.4.1.3 If A € €r,, then ker U2l acts as zero on D(X). The modules

m,n

D(X), X € €rppn give a complete set of simple 2y, n-modules.

Proposition 2.4.1.4 Each 2., ,-simple module D(X), X € €1y, occurs as a subquotient
in the bimodule decomposition of Ty, .

In the following we use notation a = |m — n|. For bipartitions from €7, , we introduce
the notation

for m>n
Afsl: (((I, 15)7(5»7 a>0, 0<s<n,
Bf = ((a,s),(1%), a>0, 1<s<min(a,n),
ng((8+1,a+1),(18+2))7 agsgn_Q, CL}O,
for m<n

A =AY = (T, 9),
1



We note that B¢ = A% and C9 = CU.
For given m, n we define a subset At,, ,, of bipartitions in €, , as

{A?0 < s < n} U{Ba|2 < min(a,n } U{C%a<s<n—-2}, m>n,
At = < {AS U {OO|0 <n-—2} U {CO|1 <n-—2}, m=n,
{A%0 < s < m} U{B“|2 < min(a,m)} J{C%a<s<m—2}, m<n.
(4.32)

We call these bipartitions atypical. If X € At,,,, we call corresponding modules S(A) and
D(A) atypical also.

We define the operation G from the set of a8, »-modules to the set of gB,, ,,-modules.
The operation G acts on the simple gB3,, ,-module by the formula

G (DX A") = DA% A, (4.33)

i.e. it changes left and right partitions in a bipartition. We note that GAZ = AZ, and
similarly for B¢, C'?. When applied to projective modules, the operation G acts on each
simple subquotient by the formula (4.33) and does not change the structure of the Loewy
graph. It is obvious that

KX AF] = G(K[AR ). (4.34)

The action of the algebra Z,,, on an arbitrary B, ,-module is not defined in general.
In particular, it is not defined on some gB,, ,-modules, that contain D(X'), X' ¢ €1,,,, as a
subquotient. For A € €r,,,, we define a standard module over 2, , (abusing notation we
use the same symbol S(A) for it) as a factor of corresponding standard g, ,-module S(A)
over all suquotients D(X') with X" ¢ €1, .

Similarly we denote by K () the projective cover for 2, ,-module S(X). This projective
cover is a subquotient of gB,,,, projective module K ().

Assuming the Conjecture 2 we use the results of [CD] and Proposition 2.4.1.3 to com-
pute decomposition numbers of 2, ,,. We write down the structure of the Loewy graphs for
Z'm.n-projective modules (analogously to the formulas (1.15)—(1.17) for Uysl(2|1)-projective
modules). These are oriented graphs where arrows mean the action of the algebra 2, ..
Vectors from the subquotient at the beginning of an arrow are mapped to the vectors in the
subquotient at the end of an arrow and (possibly) in the subquotients further the arrows. In-
vestigation of Ext! spaces for the algebra Zm.n and the detailed action of all 2, ,-generators
on projective modules are beyond the scope of present work. We have the following Theorem

Theorem 2.4.1.5 For A € €rypn, XA ¢ Atpn, the projective module over Z,,, coincides
with the simple module: K(X) = D(X). For A € At,,,,, we have the following structure of
projective modules over Zp, ,
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for m > n
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2 < s <min(a,n) — 1,
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D(CY)
D(C7 )
K(Ch ) D(C,l‘:g) :
D(Cl:h)
D(C773)
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for m=n
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o

D(C;)

Structure of projective modules K(ég),() < s<n—2 form=mn and all projective modules

form < mn can be obtained from this using the formula (4.34).

We note that the Loewy length of the projective modules coincide with the Loewy length

given in [He| (Corollary 4.2) taking into account the Theorem 8.19 in [BS].
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2.4.2 The restriction functors

There are two natural embeddings between quantum walled Brauer algebras (see [RS])

qufl,n g OBm,nv OBm,nfl g qu,n- (435)

The first embedding acts by identification of the corresponding generators &, g1, g2, . . . Gm—2,
hi, ho, ... h,_1. The second embedding acts by identification of the generators &, gl, 927 e Jmet,
hi,ha, ... hy—p. These two maps induce two restriction functors res;;™; | and res;;" from
the category of g8, »,-modules to the categories of q3,,_1,, and gB3,, ,,—1- -modules respectively.
Let add(u) be the set of boxes for a partition p, which can be added singly to p such
that the result 1+ is a partition. Let rem(u) be a set of boxes which can be removed from
w such that p/[7] is a partition.
In what follows the sign [+ denotes the non-direct sum of modules. Following [CDDM],
where the classical case g = 1 is considered, we have for modules over ¢B,,

Proposition 2.4.2.1 For A € Ay, ,(f) with n > 1 we have

res; 1 S(A) = H‘J S()‘Lv)‘R*D)’ for f =0,

m,n—1
Cerem(AR)
resy 1 S(A) = U SOE + 0, M) 1+ U U SAENE—),  for f>0.
[Jeadd(\L) Oerem(A\E)

This statement is valid for the algebra g, , with either generic or special parameters. For
oB,n,» with generic parameters all [+ become direct sums.

As a consequence of the previous statement and Proposition 2.4.1.3 we have for modules
over Zmn

Proposition 2.4.2.2 For A€ A, ,,(f) (€1 withn =1 we have

resmmo1SA) = @ SO -0), for f=0,
Cerem(AR)

resin ) S(A) = & SN +O AN W SsOEAT-D), for f>0.
DEadd(kL)7(AL+D:AR)E%7‘7VL,7L—1 DET’ET’!’L()\R)

We formulate the important Conjecture. Other statements 2.4.2.4 and 2.4.2.5 formulated
as theorems are based on this Conjecture.

Conjecture 2.4.2.3 Restriction for projective module K (X) over algebra %, is a sum of
projective modules.
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Theorem 2.4.2.4 Let X € At,, and n > 1 then the restrictions for projective modules
K(X) over the algebra %, are

| K(A?) = K(AT) @ Dl(a,1°7), ()] ©2D[(a, 1°), (s — 1)] @ D[(a, 1°™Y), (s — 2)],
2<s<n—-1, a=1,

re 8

resmn 1 K(A7) = K(AT) @ D[(a,1%), (D] @ +2D[(a, 1), &1 © D[(a,2), ()], a>2,n>2,
smn—1 K (A7) = K(A]) @ D[(1%), (D] @2D[(1%), @], n>2,
Smn1 K (A7) = D(ATH)) @2D[(a,17), (n — 1)] @ D[(a,1""), (n = 2)], n=>2,
Sm—1 K (A5) = K(AF") @ D[(a,1), 8], a>1, n=1,
Smon— 1K(A8) = K(4), n=>1,

reSmn_1 K(BY) = K(B*Y)Y@® D[(a,s + 1), (1*)]®2D[(a, s), (1*"1)] ® D[(a, s — 1), (1°2)],
2 < s <min(a,n) — 1,

sy K(B2) = K(B3) ©2D](a,0), 1) @ Dl(wa — 1), (1", 2<a<n—1,

resin_y K(BS) = D(B1) @2D|(a,n), (1" )] @ Dl(a,n = 1), (1" )], 2 < n < a,
resyn_1 K(C8) = K(CSTY @ D[(s +2,a+ 1), (1°)] @2D[(s + 1,a + 1), (I°" )@
@ D|[(s,a+1),(1%)], a+2<s<n—3,
resyn—1 K (C5) = (BZI%)@DD[(MZM1),(1“*2)]®D[( a),(1°M)], 2<a<n-3,
resmn_1 K(Chyy) = K(CI) @ D[(a+3,a+1),(1°7)]@2D[(a + 2,a+1),(1°"%)], a<n-—
resyn_1 K(Ch_y) = D(CiE3) @2D[(n — 1,a + 1), (1" )] @ D[(n — 2,a + 1), (1"7?)],
a<n—4,
resmmo1 K(Ch23) = D(Bp23) @2D[(n — 1,n —2),(1" )], n=>3,
res, o K(Ch23) = K(BZ1) @ D[(n —2,n-2),(1"°)], n=>3,
res,n_ K(C1) = K(B3) ® D[(3,2),(1°)] @ D[(1*), &], n =>4,
resyn_y K(C9) = K(A7) @ D[(2,1),(1*)]@ D[(1*),(1%)], n =3,
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@ D[(s +1), (a,1°)] @2D(s), (a,1°")] & D[(s — 1), (a,1°2)],

i@ D[(2), (e, )] @2D[(1), ()] ® D[(1%), (a,1)], a>2, m=>2
resi_ K(A%) = (Agnl)@w[( ), (a, 1" V@ D[(m—1),(a, 1™ )], m=>2, a>2,

man—1 K (A7,
resyn K(AY) = K(C_y) @ D[(s +1),(1°")] @2D((s), (1*)] @ D[(s — 1),(1*7 )], 2<s<m,
resn K(A) = D(C),_) ®2D[(m), (1™)] @ D[(m — 1), 1™ 1), m=>2,
resno K(A}) = K(CF) @ D[(2), (1°)] @2D[(1), (1)], m >2,
(

1
1) ]7
respon_1 K(A§) = K(A§™) @ D[(1), (@)], a>1, m=>1,

resz,n 1 K(Ba) K(Bg—l) ® D[(1°™Y), (a,5)] ® 2D[(1%), (a,s — 1)] ® D[(1°7Y), (a, s — 2)],
2 < s <min(a,m) — 1,

resn K(By) = K(Ci2)) ©2D[(1), (a,a = D] @ D[(1*7Y), (a,a—2)], 2<a<m—1,

Tes, 1 K(B”) = K(Bfn HYe2D[(1™), (a,m — 1] @ D[(1™ 1), (a,m —2)], 2<m<a,
reszn 1 K(Bm) = D(Bm H@2D[(1™), (m,m — )] @ D[(1™ ), (m,m — 2)], m =2,
resy, 1 K ( Ag) K(C‘;H) @ D[(1°7?), (s + 1,a + 1)] ®2D[(1°%?), (s,a + 1)]
@D[(ls“) (s—1l,a+1)], a+2<s<m-—3, ax=1,
respn_ K(C9) = K(AL,) ® D[(1°%%), (s + 1>1)]@2D[(15+2)7(8a D] @ D[(1""), (s = 1,1)],
2<s<m—3,
respn_1 K(C3) = K(Co) @ D[(1°7%), (a + L,a + D] @ D[(1%), (a,a—1)], 1<a<m-—3,
resir_ K(C2,,) = K(Cot) @ D[(1"™), (a + 2,a + 1)] @2D[(1a+3) (a+1,a+1)], 1<a<m-—4,
respn_ K(Ch o) = K(CoZh) @2D[(1™), (m — 2,a+ )] @ D[(1™"),(m = 3,a + 1)], 1<a<m-—4,
respn_1 K(CY) = K(A3) @ D[(1Y), (2, )] @2D[(1%), (1,1)], m >4,
respn 1 K(Ch,_5) = K(A}, ) ®2D[(1™), (m — 2, )] @ D[(1™"), (m = 3,1)], m >4,
respn_ K(Cn3) = K(Cpi=3) @ 2D[(1™), (m — 2,m — 2)], m > 4,
respn_ K(Cm23) = K(Cpz 3)@D[(1m 2, (m—2,m—3)], mz=3.
where we imply (0) = (1°) = & and (s,0) = (s).
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Proof. We discuss the case K(A%) for 2 < s <n — 1, a = 1. Other cases are similar. The
projective module K (A?) has a filtration by two atyplcal standard modules, so one can write
it as a non direct sum

K(AZ) = S(A%) [ S(Azy).

Applying the Proposition 2.4.2.2 one obtains the sum of simple and atypical standard
modules:

res; " K(AS) = reSmn 1 (Ag)b_‘JS AL ) =
= S(A [H Sl(a, 1), ()] |4 Sl(a, 19), (s = 1)]

L s(aeth) Us a,1%), (s = D] |4 S[(a, 1°71), (s = 2)].

In this sum only two modules are atypical, other modules are simple

resp | K(A?) = S(ATY |4 s(Az ) |4
D[(a,1°*"), ()] [ 2D[(a, 1), (s = DI D[(a, 1°7), (s = 2)].
These two atypical standard modules are glued uniquely into a projective module, thus
res;n o K (A7) = K(ATH) @ Dl(a, 1), (s)] © 2D[(a, 1), (s — 1)] ® D[(a, 1°7), (s = 2)].

[
To formulate the next theorem we introduce notation o’ = |m —n + 1|.

Theorem 2.4.2.5 Let X € Ay (f) (€ rimn for n = 1 then the restrictions for simple
modules D(X) over the algebra 2., are
for Xe Aty p:

= D(AT) @ D(a, 1), (s — 1],
_ D[(a,1"), (n —1)], 0>
Ag“), >0, n=0

( >

[ 1
=D(B“"HY®D [(ms),(ls 1)], 1<s<n-1, s<a,
- Dl )

(

a
=1, n=

) Y

)

(a,n),(1"7)], 1<n<a,
=DC"Y®D[(s+1,a+1), (1], a+1<s<n-3, a
resyn_1D(Co_y) = D[(n—1,a+ 1), (1” D], 0<a<n-3,

resm:n D(C*) = D(B*}), 0<a<n-—2

\%
=

a+1 )
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respt  D(AY) = DA @ D[(s), (a,1°" )], 1<s<m, a=>2
resynaD(AS) = D(AGT), a=1, m=>0,
resynoD(AY) = D(C_) @ D[(s), (1)), 1<s<m—1,
resna D(AL) = D[(m), (1™)], m > 1,
resyy 1 D( R = D(B™Y) ®D[(1°),(a,s —1)], 2<s<m, s<a,
reswr_ D(BS) = D(Ce=H) @ D[(1%), (a,a—1)], 2<a<m-—1,
resyn_1.D( 3m) = D[(1™), (m,m —1)], 1<m,
resyy 1 D( A;’) = D( A;l_l) (—BD[(15+2), (s,a+ 1)], a+1<s<m-2, a=1,
respn_ D(C2) = D(Ci™), 1<a<m-—2,
resin_ D(CY) = D(AL,) @ D[(1*3),(5,1)], 1<s<m—2
For A ¢ At,, ,, the exceptional cases are:
smr  D[(d,1°71),(s)] = K(AYY@® D[(d' + 1,1°7"),(s)], 1<s<n-—1, d>1,
smn_1D[(d’,s), ( 18+1 )| = K(BE)@D[(d +1,5),(1*"))], 1<s<d -1 s<n-2,
smm_1D[(s,a" + 1), (1°7%)] = K(C) ®D[(s,a' +2),(1°*?)], d+2<s<n-3,
Smmn—1 [(a+1a+ (1a+3)]_ K(Cy,,), d <n—4,
g D[(s), (@, 1)) = K(A%,) @ D(s), (@ ~ 11|, 0<s<m—1, o >2,
g D[(9). o ] K(AL) @ D[ 1),(0%3)], 1<s<m—1
s D[(1°7 ] — K(B° )@D[(lsfl),(a’— Ls)], 2<s<d-1, s<m,
e D177, ()] = K(BY), 1<d <m,
respn_1D[(1°), (S,CL +1)] = K(C") ®D[(1°),(s,d)], d+1<s<m-—1,
where we imply (0) = (1°) = & and (s,0) = (s).
For X\ ¢ At,,,, the general rule is:
for f=0
resy’ 1 D(A) = DL AR ),
Cerem(AR)
for f >0
respn 1 D(A) = P DN +O,NY@® P DO A -D).
Oeadd(AL), AL +TAR)EC m n—1 Oerem(AR)
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Proof. If A ¢ At,,,, then D(X) = S(A), and the proof follows from 2.4.2.2 similarly to the
proof of Theorem 2.4.2.4.

Now we consider A € At,, ,,. We discuss only D(A?) fora > 1, 1 < s < n— 1, other cases
are similar. We prove that

res D(A?) = D(A™) @ D[(a,1%), (s = 1)], a>1ls<n—1,

by induction on s. First, we prove the induction base for s = n — 1, then we check the
induction step from s to s — 1. The 2, ,-module S(A?) is simple: S(A%) = D(A%), so we
have from 2.4.2.2

resﬁz 1 D(A2) = resmn 1

S(42) = 8[(@.1"), (n = 1] = D[(a,1"), (n—1)].  (1.36)
According to 2.4.2.2 we have for s <n
w1 S(AY) = S(AY) @ D[ (a, 15, (s)] @ D[(a,1°), (s — 1)]. (4.37)

We write 2, ,-Specht modules as a non-direct sum S(A?) = D(A%) ) D(A%,,) for s < n.
The Z;,n_1-module S(A%T]) = D(A%*]), so from (4.37) for s = n — 1 we get

resﬁﬁ_l <D(Afl_1)H—JD(AfL)> = D(A*T) UD a,1m), n—l UD .1 h 2)]

Now having in mind (4.36) we get the induction base

I"GS

m,n—1

resin_ D(A%_,) = D(AT)) UD a, 1", (n = 2)].

We also note that 2;,,-1 module S(A%*1) = D(A2*Y) |4 D(Af]) for s < n — 1, so from
(4.37) we get

S 1( (A% g DAz, ) = D(ATY [ DAL [ D[ (e, 1%), (s=1)] [ D[(a, 151), (5)],
and now the induction step is straightforward. m

Remark. The second restriction functor res)™ , can be calculated from the first one.
Actually

resp”, [ K(X) = Grespm_ | GK(X), (4.38)
res;" ,D(A) = Greszz \GD(A). (4.39)

We can also make generalization to the gB,, ,-modules.
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Conjecture 2.4.2.6 Consider the algebra gB,, ,, with special parameter 6 = —(—%)M_N for
M # N. Let X € Ay be an (M, N)-cross bipartition, then res, | D(X) contains only
subquotients D(X') for which X' € A, -1 is an (M, N)-cross bipartition.

In other words, the restriction functor for gB,, , with special parameters preserves the class of
all (M, N)-cross bipartitions. We note that the case M = N requires additional investigation.
In particular we have the next important consequence for M = 2, N = 1.

m,n

Conjecture 2.4.2.7 For A € €'y, ,, the restrictions res,;, D(X) for simple modules over

4B with 0 = % are explicitly given by the formulas from theorem 2.4.2.5 without any
changes.

This conjecture was directly checked for all ¢B3,, ,-modules whenever m + n < 8.

2.5 The mixed tensor product as a bimodule

We introduce new notations in order to simplify the formula for the bimodule decomposition.
We denote by 2, the simple Uys¢(2[1) modules:

> 1,(—1)?

zl, = ZH-(m") ;. r#0,

2_50 = Ztl-;-(li,o 17 t 2 0
We denote by 7@@’7 » the projective covers of atypical modules Zf, i

PP _ pL(=1)?
RO,T - Rr,r ;T2 17

pp  _ plL(=1)PT!
Rio=Rity » t20

Typical modules Zg ,» coincide with their projective covers, so we do not introduce any new
notation for them. We rewrite the formulas (1.15)—(1.17) in new notations:

20 Z3,
ﬁZO = 25:1{0 2'75:11,07 ﬁg,t = Zg;il Zg,;lp t=>1,
20 Z3,
(5.40)
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and the exeptional case is

Z8, (5.41)

Then the dimensions are:

dim Ry, =dimRf, =8 +4, >0,
dim R, = 8.

2.5.1 Bimodule decomposition

The bimodule is a direct sum of subbimodules

T = T @ Ty s (5.42)
where the T, part is the direct sum of simple 27, ,, X1 Uys{(2[1)-bimodules, and T3, is
an indecomposable 2., , X Ugs¢(2[1)-bimodule. Each subquotient in T}, ,, contains a typical
Uqst(2]1)-module and a typical 2, ,-module, and each subquotient in T}, contains an
atypical Uqsf(2[1)-module and an atypical 25, ,-module. We call T3, the semisimple part
and T7',, the atypical part.

Examples

Before giving a general formula for the decomposition of .7, ,, in Theorem 2.5.2, we illustrate
the structure of the semisimple part 7 with two examples. T} , has the structure

5 = @ DAt r) & 2707 (5.43)

t,r

For given m, n, we represent the sum in (5.43) as a table of bipartitions A, ,(¢,7) in coor-
dinates (¢,7). All parts of the sum outside the table vanish, and 0 in the table means that
the corresponding submodule in (5.43) vanishes.
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For m = 5 and n = 3, the table of bipartitions A5 3(¢, ) reads

]
r=s| 0 ﬁm) o |O oo | HHOD | arroomo
e (H,Bl ED]) o | HHD | aom | aaoH
r=s (E, B @D o | oD | ariop <D]]EH>
~| o [ fo || &0 | &7 !
1] 0 o | B 0 0
[ [ t=—2 [ t=—-1 TJt=0 t=1 [ t=2 [ t=3

For m = 4 and n = 4, the table of bipartitions A 4(¢,7) reads

=t |0 0 E,) @j,uuo HHUm | oo
=3 |0 0 (HDJ]) Hoo | aooo | aoHD
"=z EH}) o | Ho | amm | aoP <D]]jﬁj>
=1 | o o | OD mh @ij> @3ij>
r=0 0 0 0 0 0 0
r=-1 0 0 0 (E,E) 0 0
[ [ t=—1 [t=0] t=1 [ t=2 [ t=3 t=4

Decomposition formula

In the next Theorem, we give explicit formulas for the decomposition of .7, ,, for m > n; the
case m < n can be easily recovered from m > n using operation G interchanging m with n

%,m = Gﬂmmw

The operation is involutive, G2 = 1, and additive, G(X ®Y) = G(X) @ G(Y). It acts on
the indecomposable summands in the semisimple part 7};, , by the formula

A~

G

(5.44)

(DDA R 2, = (DDA BG(2L),
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where the action @(D [AF, /\RD is defined in (4.33) and
Gzl = 2P, (5.45)

When applied to the atypical part T2 | the operation G acts on each simple subquotient by

m,n’

the formula (5.44) and does not change the structure of the Loewy graph.

Theorem 2.5.2 The 2, X Uysl(2|1)-bimodule decomposition of Ty, ,, m = n, has the
form T =Ty, @ Ty, with the semisimple part

m>n
n at+s
T3, =@ @ D[(k,15759), (s)] R 2ot

e

m  s—a—1 B

® @ Dls), (k121 e
s=a+2 k=1
n—1min(s,n—s) . -

D[(17H4), (s, k)| = 274470, @

s=1 k=1

m—1 min(s,m—s) . .

D[(S,k), <ls+ _a)] ijajik#»a@
s=a+1 k=1,
k#a+1
5] a—k B
@D D[(s,k, 177, gl 251, L@

k=1 s=k

a—1 min(s,m—s) i -

© D Dllsk), ORI
s=|g]+1 k=l-s+a

m=n

LD
[\

T
||
—

V)
\'\/
—
&

—_

7
e
SN—
| S—

X

=4

ES

+

[a
@

D[(1°*%), (s, k)| ¥ 2555 @

s=2 k=2

m—1 min(s, m—s) i .
D[(s,k), (1) & 221,

s=1 k=2
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and the atypical part T is given by figures 2.2-2.6 in Appendiz C.

m,n

2.5.3 Verification

To check the decomposition formula for the bimodule we make two powerful verifications
using formulas for tensor product decompositions for Uys¢(2|1)-modules and restrictions for
Frnn-modules. We check that .7, ,,®3 coincides with reszﬁ“ Tmn+1 as Ugsl(2]1)-module in
the first verification and as %, ,-module in the second one. In order to do this we introduce
two Grothendieck (forgetful) functors P and Q.

We define the Grothendieck functor P on the category of Uysf(2[1)-modules which maps
an indecomposable module into a direct sum of its simple subquotients. The functor IP on
any Uysl(2|1)-module is known from 2.1.5. For example

PRy = 2200 ® 215, @ 27, 21,
PZ_£7 = gtljr? vpv tv T.

We define the other Grothendieck functor @ on the category of 2, ,-modules which maps
an indecomposable module into a direct sum of its simple subquotients. The functor Q on
any £, ,-module is known from 2.4.1.5. For example

QK (AY) = 2D(A}) ® D(AY) ® D(AL) @ D(CY), n>3,
QD(A) = D(N), Ym,n, A\
The functors P and @Q do not change semisimple part of the bimodule:
PT;, . =QT, . =1,

m,n’

because semisimple part is a direct sum of simple bimodules.

As Uysl(2|1)-module
The action of Q on the atypical part T, has the form
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m>n

QTglt,n = @D(‘Ag) ﬁg,a-&-s—l@
s=1

min(a,n)

@ DBHRR), 1P

s=2
n—2
PD(CYH R R, @

D(A) K 24 ,,

m—2

QT3,, = @ DICHWR'D
s=1
m—2 _
@ DICHRRL'®
s=0

D(AY) B Z5,-

We introduce the notation .7, , = Q.7,,,. The following relation must hold:
Tn @3 = Qresﬁ:ﬁ“ Tt 1- (5.46)

Because 7, has the form 7, = @ DK R @ DX Z, we can calculate 7, , ® 3 using
formulas from 2.2.1. Because 7, ,+1 contains as subquotients only modules D(\) for A €

G Tmmn+1, We can calculate res)n ! .7, 1 using formulas from 2.4.2.5, and then apply the
functor Q. We have checked the validity of relation (5.46) for all m,n whenever m+n < 25.

As Z,,, module

The action of P on the atypical part Tsfm has the form
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m>n

]P)T;Lt;n = @K(Ag) Zg,a+s—l@
s=1
min(a, n) B
K(B:> 2’75,(1—5-%1(—B

=2

w

n—2
@K(Cﬁ) Ziji,o
®D(A%) & 255!
(—DPTright,
where
0, n = 07
prose _ ) DBEZ L, 1<n<3,
N P A )
D(Cr(172) Zignfmfl,m % tl<mn
m=nzz?2
m—2 . _
BT, = @ K(C) R Z5'e
s=1
m—2 _
@ K(CHHE 25,
s=0
@ D(Ch o) & 2502,
®D(CY_,) K22,
m=n=1

PTY = D(A) 2‘370.

<m-—1,

We introduce the notation .7, ,, = P.7,,. The following relation must hold:

P (gm,n ®§) = TGSEZZH 9m,n+1~

Because 7, has the form ,, = D KX Z @ DX Z, we can calculate 7, , ® 3 using
formulas from 2.2.1. Because 7, ,,+1 contains as subquotients only modules K () and D(\)

m 2.4.2.5 and 2.4.2.4
and then apply the functor P. We have checked the validity of relation 5.47 for all m,n

for A € €1y 41, We can calculate resmﬁ“ Imm+1 using formulas fro

whenever m + n < 25.
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Appendix

N

A: partial order on B,

In the following section we introduce a partial order <« on the monoid /BT,S which is compatible
with SR’ (see Section 1.2). For generators §;, i = 1...7 4+ s — 1, and a word w € EABT,S we
will write §; € w (respectively, §; ¢ w) whenever §; is contained (respectively, not contained)
in w. The notation 7 (w) (respectively, mr(w)) stands for the substitution §; — 1 for all
generators with ¢ > r (respectively, i < r), where the unit element 1 stands for the empty
word. By definition, 7.(1) = mg(l) = 1. We denote by |w| the length of a monomial
W E gns, while |w|; denotes the number of occurrences of a generator §; in w. The notation
|w|z, (respectively, |w|g) stands for the number of generators §; € w with ¢ = 1...r — 1
(respectively, r + 1...7 + s — 1). By definition, |1| = |1|; = 1|, = |1|r = 0.

First, we introduce the following partial order « on the subset @m c @T,S constituted by
all monomials such that w = 7y (w)mg(w). Comparing the lengths of monomials u,v € ém,
we set |u|l, < |v|, = u<v, while |u];, = |v|, and |u|g < |v|g = u<v. In case |u| = |v| =
N > 0 and |ul, = |v| = N' > 0 we compare 7;(u) = 5;,...5, and 7,(v) = 5, ...5;,,
lexicographically from left to right: let £ = 1... N’ be the minimal number such that i, = j,
for all p < k and not for p = k. Then 7, < j, implies u«v. If such k does not exist, as well as
if N' =0, we compare Tg(u) = 8, ... 8m,, and Tr(V) = 3y, ...5,,, lexicographically from
right to left: let [ = 1... N” be the maximal number such that m, = n, for all ¢ > [ and not
for ¢ = 1. Then m; > n; implies u « v. Otherwise, u,v € ém are incomparable with respect
to «. ~

To compare u,v € B,.; (i.e. to check for presence in <1) one proceeds consecutively along
the following steps. If monomials u,v do not meet any condition at a given step, then one
moves to the next one.

i. Compare the lengths of monomials: |u| < |v| = u<v.

ii. If |u| = |v| then compare |u|, and |v|,: |u|, < |v|, = u<v.
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iii. Let |u] = |v|, |u], = |v|,. Compare u = §;, ...5;, and v = §j, ... §;, lexicographically
from left to right: let k = 1... N be the minimal number such that either iy, jpr < r
Or i, Jir > 1 OF iy = jir = 1 for all ¥’ < k and not for k' = k. If either i, < r < ji or
i <71 < j then u < v.

iv. If two monomials u and v are such that |u| = |v| and |u|, = |v|,, but comparison
by iii does not apply then u = ugS,u;8,...5.ug and v = vg§.vi$,...5.vyg where
Ug, .-, Ug,Vo,-..,vy do not contain s, and |uy|p = |[Valz = 0, |ualr = [Valr = 0
for all @« = 0...H. Then compare 77, (us)mr(Ua), 7L (Va)TR(Va) € ém with respect to
«: let &9 = 0...H be the minimal number such that 7 (ug)mr(ug), 7r(vs)Tr(VS)
are incomparable with respect to « for all < «g but not for 3 = «y. Then
TL(Uag ) TR(Uag) « TL(Vag ) TR(Va, ) implies u <t v.

B: multiplication by generators

In what follows we write down formulas for the left multiplication of elements from the
set B, by the generators s, € B, (6). Let [1,1 —q]...[r = 1,r =1 —¢._,] € &F
with -1 < ¢ < 1,...,-1 < ¢,-1 < r — 1. We will use a shorthand notation [...][r —
Lr—=1—gq]with[...] =[1,1—=q]...[r —2,7 — 2 — ¢,—2]. For the products of the form
[r+i,r—f+1—js...[r+ f—1+1i7,r—j1] we impose by default s — f > iy > --- >
in=0andr—f > jF>--- > j; = 0, unless else is specified. For brevity we do not write out
the well-known multiplication of the elements from &% (respectively, G#) by the generator
s; € 6, (respectively, s; € &,).

I I1<p<m
5 SLDUIEH — (s, &F) DY)6F

II. p=r, f>0:

a) GF is represented by [...] and i; = 0:

Spo [ Jmr—f+1—gfl.. [r+ f—1+ipr— 51| GF
:(5[...][r,r—f+1—jf]...[r+f—1+if,r—j1]65,

b) i, =0and ¢=0:

3T~[...][T—l,r—1—q][r,r—f+1—jf]...[r+f—1+z'f,r—j1]6§
=([...1'Ir=2r=1—=q) [r,r— f+1—jf]...[r+ f— L+ipr— 5] &F,
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c) s—fzipz--zipzlandr—f>q—f+1=24,=---25 =20

sr-[...][r—l,r—1—q][r+z’1,'r—f+1—jf]...[r+f—1+if,r—j1]63R
=[..Jrr—1—q|[r+i,r—f+1—gs]...[r+f—1+ipr—j] &

d —-1<g¢<jr+f-1lputigp=1)ands—f=i;=>--->i;>1

Sr'[...][T‘*1,’/’*1*(]][T+i1,Tff+1*jf]...[T+f*1+Z'f,7‘*j1]6§
=[..mr—=f+1—=g¢l[r+is,r—f+2—jsa]...
crt gt r—fHa+2—drgallr+ g+ 2+ i, r —f+q+3—jr_g2] ...
e f=1+inr =gl ([r+ f+ige—1r+ f+1]-65).
III. p=r, f=0and -1<g<r—1

s Qr—1,r—1—q|&% =1[...1[r,r — 1 —q] &%,
IV. r<p<r+f+ip
a) p=r+k+ig tpr1 > g

sp & r+k—1+ig,r—f+k—jip].. .68 =
&L r+k+ipr—f+k—jrp].. 6F

T E
b) p=’f’+k‘+ik,ik+1=iki

8p'67L,...[T+k—1+ik,T—f+k—jf_k+1]...6§=
(Gf'sr_k)...[T+k*1+Z'k,7'*f+k‘*jf_k+1]...6§.

V. p>r+f+ip
s, GLOU)EE = gLol) (s, &F).
C: atypical part of the bimodule

In this section we represent the structure of Loewy graph for the indecomposable bimodule
T2 . see 5.42. Detailed investigation of £, , action on these bimodules are beyound the

m,n’

78



scope of this work. See paper [GV], where the mixed tensor product of Uysl(2)-modules is
investigated for comparison.

In each vertex of the graph there is some subquotient D(\) Z_{f . The meaning of the
arrows is the same as in 2.4.1.5. On the figures the action of algebra U,s¢(2|1) is denoted
by solid lines, and the action of %, , is denoted by dash lines.

The subquotients connected by dash lines have the same U,s¢(2|1) module as a tensor
multiplier. The subquotients connected by solid lines have the same 2, module as a
tensor multiplier. To simplify the figures we omit 25, ,, multiplier where it does not cause
inconsistency. We also do not write symbol D each time, and write only A for simple module
D(\).

For example, the bimodule for T3, is

D(A3) 4 25, D(A}) B 25,
- - \
/ \ TLeeo / v _\ _
D(A3) & 255 D(A3) & 2, D(AD) K 25, D(Ag) K 25, D(A]) K 25
\ / - == _ __ \ |
DANEZE, (AR 2,
(5.48)
We use shorthand notation for T5%:
A3 25, AR 25, (5.49)
S o
_ / S v ,\x,
254 2012 D25, AR 25, 25,
"< |
\_2 »// - b \\\:_vl /
0,2 Zo1

We mark in red the subquotient where the figure has irregular form.
The structure of Tj2¢,, for the case 1 <n < 7 is shown in figure 2.2.
The case 3 + 1 < n < m — 2 is shown in figure 2.3.

The case n = mTH, n = 2 is shown in figure 2.4.
The case n = m — 1,n > 1 is shown in figure 2.5.
The case n = m,n = 2 is shown in figure 2.6.

Two exceptional cases are:

Tho = DAG) B 24,
T1at1 = D(Ag) Z&,o-
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