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diplôme d’
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Preamble

It is not useless to recall to a reader not aware of all the subtleties of the french system what the
“Habilitation à Diriger les Recherches” (HDR) stands for.

The HDR – litterally, habilitation to lead research – is a french national diploma which gives its
beneficiary the right (i) to officially supervise PhD students and (ii) to apply to professor-like
positions. The HDR diploma can only be delivered by a french university to a candidate who has
convinced an habilitation committee (HC) of his high-level scientific value, through an original
research activity, an autonomous scientific strategy and the capacity to guide younger researchers.

The HDR manuscript is one of the media – the other being the oral defense – used by the candidate
to convince the HC.

This HDR manuscript is made of 4 chapters:
— Chapter I presents my Curriculum Vitæ. It includes most of the elements of an admin-

istrative file which has already been successfully evaluated by a local committe of the
Grenoble Alpes University. Because the chapter is only informative and doesn’t have to
be re-evaluated by the members of the HC, it is written in french.

— Chapter II presents a summary of my research activity. I made the choice to write this
chapter as a digest of the articles I co-authored and of some unpublished work which either
stimulated my mind in early years, or still require some more time to be analyzed but are
worth being discussed.

— Chapter III presents some research perspectives for the next five years.
— Chapter IV is a collection of my scientific publications in the last decade. This makes a

huge chapter (more than 250 pages!), which should only be consulted for details about a
result presented in chapter II.
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Chapitre I

Curriculum vitæ

Nom : CHALJUB CHAR
Prénom : Emmanuel Orlando
Date de Naissance : 09/02/1971
Situation familiale : marié, 2 enfants
Grade : physicien adjoint
Etablissement d’affectation : Observatoire des Sciences de l’Univers de Grenoble
Unité de recherche d’appartenance : Institut des Sciences de la Terre (UMR 5275)

I.1 Formation

1994 : DEA d’Analyse Numérique, Paris VI.
2000 : Thèse de doctorat,� Modélisation numérique de la propagation des ondes sismiques en

géométrie sphérique : application à la sismologie globale �, sous la direction d’A. Tarantola
et J.-P. Vilotte, Institut de Physique du Globe de Paris.

I.2 Déroulement de carrière

2000-2002 : Hess fellow , Dep. of Geosciences, Université de Princeton, NJ, USA.
2002-2004 : Post-doctorant CNRS au Laboratoire de Géophysique Interne et Tectonophy-

sique, équipe � Ondes et Structure Interne du Globe �.
2005-présent : Physicien Adjoint à ISTerre, équipe � Risques �, devenue � Géophysique des

Risques et de l’Environnement �.

I.3 Synthèse du parcours scientifique

Issu d’une formation de mathématiques appliquées, j’ai découvert la géophysique à l’Institut de
Physique du Globe de Paris grâce à Albert Tarantola qui m’a proposé successivement deux stages
de master, puis un sujet de thèse (associé à un financement du ministère). Mon travail de thèse a
été consacré au développement de méthodes numériques de simulation de la propagation des ondes
sismiques à l’échelle du globe. Après avoir développé un programme en différences finies pour
simuler la propagation des ondes SH dans des modèles axisymétriques du manteau terrestre, j’ai
contribué, sous la direction de Jean-Pierre Vilotte, au développement de la méthode des éléments
spectraux pour la sismologie globale. J’ai poursuivi ce travail lors mon séjour post-doctoral à
l’université de Princeton, grâce au financement de la Hess fellowship, pour inclure notamment les
effets de la redistribution des masses pour les ondes élastiques à très longue période. Sur les conseils
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de Bernard Valette, j’ai ensuite effectué un séjour post-doctoral (probablement le premier financé
par le CNRS) au LGIT à Grenoble au sein de l’équipe � Ondes et Structures �, pendant lequel
je me suis peu à peu intéressé à l’estimation de l’aléa sismique et à la propagation des ondes en
milieu fortement hétérogène.

Depuis 2005, j’occupe un poste de Physicien Adjoint à l’OSUG et mon activité de recherche à
ISTerre, au sein de l’équipe � Risques � puis � Géophysique Risques Environnement �, a princi-
palement concerné l’estimation des mouvements sismiques, à la fois par une approche déterministe
de simulation numérique, et empirique, en lien avec ma tâche de service de responsable du réseau
accélérométrique nord-alpin (2005-2012). A l’occasion du IIIème symposium de l’ESG (Effects of
Surface Geology on earthquake motion) organisé à Grenoble en 2006, j’ai démarré un travail de
vérification des codes de calcul tridimensionnel du mouvement sismique dans le contexte de vallées
alpines. J’ai poursuivi cet effort dans le cadre du projet international E2VP (Euroseistest Verifi-
cation and Validation Project) dans le contexte du bassin sédimentaire mygdonien. Ces travaux,
publiés entre 2010 et 2015, ont contribué à une meilleure compréhension de l’incertitude épistémique
associée à la prédiction numérique des mouvements sismiques ; ils ont également permis de mettre
au point des procédures robustes de construction de maillages et de modèles de vitesse associés
pour les simulations numériques basées sur la méthode des éléments spectraux. Une fois identifié le
domaine de validité de ces outils numériques, j’ai pu m’intéresser d’une part à la quantification de
la variabilité des mouvements sismiques, par l’utilisation intensive de la simulation numérique, et à
la validation des prédictions numériques, par la confrontation avec les enregistrements de mouve-
ments faibles. J’ai également contribué, par le calcul simplifié de la réponse des ouvrages, à l’étude
des interactions entre sol et structures (immeubles, barrages, digues).

Au cours de ces dix dernières années de recherche, j’ai eu la chance de pouvoir co-encadrer deux
chercheurs post-doctorants et sept étudiants en thèse, dont trois sont en cours en 2016.

Par ailleurs, mes travaux utilisant intensivement les plateformes de calcul et de traitement hautes
performances, j’ai été associé dès 2008 au pilotage du Service Commun de Calcul Intensif de
l’OSUG. Et depuis 2009, on m’a confié la responsabilité du mésocentre de calcul de l’université de
Grenoble, CIMENT. Cette activité est officiellement reconnue par la commission CNAP comme
ma tâche de service depuis 2012.

I.4 Responsabilités scientifiques et collectives

2005-2012 : Responsable scientifique du réseau accélérométrique permanent des Alpes.
2008-présent : Responsable scientifique du Service Commun de Calcul Intensif de l’OSUG.
2009-présent : Responsable scientifique du mésocentre de calcul grenoblois CIMENT (Calcul

Intensif, Modélisation, Expérimentation Numérique et Technologique, structure fédérative
UJF-INP, 2 IR affectés).

2010-2012 : Membre du comité national de coordination des mésocentres de calcul.
2011-présent : Membre du comité de pilotage MaiMoSiNE (Maison de la Modélisation et de

la Simulation, Nanosciences, Environnement).
2011-présent : Membre du comité de pilotage du projet Equipex Equip@Meso.
2013-2015 : Membre du comité de pilotage de l’informatique scientifique de l’Université Jo-

seph Fourier, Grenoble.

I.5 Rayonnement

— Co-éditeur des comptes rendus du � Third International Symposium on the Effects of Surface
Geology on Seismic Motion �, LCPC éditions, Vol.1 (2006), Vol. 2 (2009).

— Expertise (2-4/an) pour les revues : Geophys. J. Int., Bull. Seismol. Soc. Am., PAGeoph,
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I.5. Rayonnement 6/361

Int. J. Num. Meth. Eng., CR-mécanique, Earthquake Spectra.
— Expertise projets : Swiss NSF (2009).
— Expert GENCI comité thématique � Astrophysique et Géophysique � (2010-présent).
— Chercheur invité (2009, 2010) à l’ITSAK (Thessalonique, Grèce) dans le cadre du TOK

(Transfer of Knowledge, Marie Curie projet ITSAK-GR).
— Co-organisateur avec S. Day (UC San Diego) et P. Moczo (U. Bratislava) d’une session de

sismologie numérique à la SSA (2010, 2012, 2015, 2016).
— 2 participations à des jurys de thèse en tant qu’examinateur.
— 2 participations à des comités de recrutement de mâıtre de conférences.

I.5.1 Encadrement de la recherche

I.5.1.0.1 Stages de master
B Soline Hallier, � Etude numérique des résonances 2D des vallées Alpines �, M1, 2005.
B Julie Verbecke (co-encadrement C. Cornou), � Analyse des effets de site dans la vallée de

Grenoble �, M1, 2006. J. V. a effectué une thèse à ETHZ, deux postdocs (Lamont, IPGP)
et travaille à la CGG.

B Julien Converset (co-encadrement L. Margerin), � Mesures de l’amplification dans la coda
des ondes sismiques �, M1, 2006. J. C. a effectué une thèse à Géoazur et travaille maintenant
chez Schlumberger.

B Laetitia Honoré, � Etude numérique des résonances 3D des vallées Alpines �, M1, 2007.
L. H. a effectué une thèse à Géoazur et est actuellement en post-doc au CEA Cadarache.

B Soline Hallier (co-encadrement M. Bouchon) : � L’effet de bord de bassin pendant le séisme
de Kobe �, M2, 2006.

B Christel Marchica (filière maths applis), � Simulation numérique de la propagation des ondes
sismiques par une méthode d’éléments spectraux non-conformes �, M1 (2011) et M2 (2012).

B Alexandre Hoffmann (filière maths applis), � Implémentation d’un solveur pour la simulation
numérique de la redistribution des masses en sismologie globale longue-période �, M2, 2014.
A. H. est désormais en thèse en maths applis.

B Niels Hollard, � Développement de GMPE synthétiques et quantification des incertitudes �,
M2, 2015.

I.5.1.0.2 Thèses de doctorat
B Soline Hallier (co-encadrement M. Bouchon, ISTerre) : � Etude des mouvements forts en

champ proche �, 2006-2009, MESR. Abandon, 1 publication, reconversion professionnelle de
S. H. actuellement embauchée par la société BULL S.A., dans le département ‘benchmark
pour le calcul haute performance’.

B Javed Iqbal (co-encadrement P.-Y. Bard, ISTerre) : � Contribution à l’analyse des effets
macroscopiques de l’interaction sol-structure par modélisation simplifiée en éléments spec-
traux �, 2008-2014, financement SFERE, soutenue le 8 Décembre 2014. J. I. est retourné
travailler au Pakistan.

B Nizar Moussatat (co-encadrement L. Baillet, ISTerre) : � Simulation numérique de la dy-
namique de la rupture et mouvement du sol �, 2009-2012, MESR. N. M. a abandonné pour
raisons personnelles.

B Afifa Imtiaz (co-encadrement C. Cornou & P.-Y. Bard, ISTerre) : � Champ d’ondes, varia-
bilité spatiale, et cohérence des mouvements sismiques : effets en champ proche et en vallée
alluviale �, 2011-2014, financement du projet NERA (EU-FP7). Soutenue le 6 Janvier
2015. Félicitations du jury. A. I. a été recrutée au BRGM en 2015.

B Christel Marchica (co-encadrement, B. Valette, ISTerre) : � Modélisation et simulation
numérique en sismologie �, 2012-2016, bourse handicap CNRS.
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I.6. Activités d’enseignement 7/361

B Eleni Koufoudi (co-encadrement F. Dufour, 3SR) : � Analysis of spatial variability of seismic
ground motion and application to the dynamic response of hydraulic dams �, 2014-2017,
financement EDF, chaire d’excellence industrielle Pereniti.

B Capucine Durand (co-encadrement P.-Y. Bard et F. Renalier [GéophyConsult]) : � Ré-
ponse sismique de digues et barrages en remblai : influence des caractéristiques du sol de
fondation �, 2015-2018, financement CIFRE (EDF, CNRS).

I.5.1.0.3 Chercheurs post-doctorants
B Seiji Tsuno, 2005-2007 : � Analyse expérimentale et numérique de la réponse sismique de la

vallée de Grenoble �. S. T. est chercheur au Railway Technical Institute, Tokyo, Japon.
B Emeline Maufroy, 2011-2015 : � Vérification et validation des prédictions numériques de la

réponse sismique du bassin mygdonien. Etude de la variabilité des effets source-site �.

I.6 Activités d’enseignement

Entre mon recrutement en 2005 et 2012, j’ai toujours effectué la totalité de mon service d’ensei-
gnement, qui se composait de l’encadrement du stage de géosciences marines de Villefranche/mer
au niveau master 1 (et master 2 pendant 2 ans), de l’enseignement des méthodes numériques pour
l’évaluation du mouvement sismique dans le cadre du master international MEEES (Master in
Earthquake Engineering and Engineering Seismology), et de l’animation d’un module atelier en
modélisation numérique au niveau master 2 qui implique l’encadrement pendant 3 mois de 1 à
5 étudiants par an. En 2012, j’ai transmis la responsabilité du stage de Villefranche/mer et fait
jouer une décharge de 20 heures d’enseignement, qui m’avait été accordée depuis 2009 par la vice-
présidence de l’UJF au titre de mon investissement dans le domaine du calcul intensif à l’échelle
de l’Université.

Le volume de mes activités d’enseignement est le suivant :
B � Stage de géosciences marines de Villefranche/mer �, 2005-2011, responsabilité au niveau

Master 1, 36 heures ETD/an.
B � Stage de géosciences marines de Villefranche/mer �, 2006-2008, encadrement au niveau

Master 2P, 30 heures ETD/an.
B � Méthodes numériques pour l’estimation du mouvement sismique �, 2005-2015, niveau

Master 2 (MEEES et M2R), 20 à 25 heures ETD/an.
B � Atelier modélisation numérique �, 2009-2015, encadrement et responsabilité pendant 2

ans, niveau Master 2, 6 à 22 heures ETD/an (2 heures cours + 4 heures par étudiant
encadré).
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I.7 Bibliographie

Code couleurs :
B Chercheur post-doctorant en collaboration directe
B Etudiant en thèse co-encadré
B Etudiant en thèse en collaboration
B Etudiant en master co-encadré

I.7.1 Articles

1. Maufroy, E., Chaljub, E., Theodoulidis, N. P., Roumelioti, Z., Hollender, F., Bard, P.-Y.,
de Martin, F., Guyonnet-Benaize, C., & Margerin, L., 2017. Source-related variability of site
response in the Mygdonian basin (Greece) from accelerometric recordings and 3D numerical
simulations, Bull. Seismol. Soc. Am..

2. Kristek, J., Moczo, P., Chaljub, E., & Kristekova, M., 2017. An orthorhombic repre-
sentation of a heterogeneous medium for the finite-difference modelling of seismic wave
propagation, Geophys. J. Int., 208, 1250–1264.

3. Cruz-Atienza, V. M., Tago, J., Sanabria-Gómez, J. D., Chaljub, E., Etienne, V., Virieux,
J., & Quintanar, L., 2016. Long duration of ground motion in the paradigmatic valley of
Mexico, Scientific Reports, 6, 38807.

4. Maufroy, E., Chaljub, E., Hollender, F., Bard, P.-Y., Kristek, J., Moczo, P., Martin,
F. D., Theodoulidis, N., Manakou, M., Guyonnet-Benaize, C., Hollard, N., & Pitilakis, K.,
2016. 3D numerical simulation and ground motion prediction : Verification, validation and
beyond – Lessons from the E2VP project, Soil. Dyn. Earthq. Eng., 91, 53–71.

5. Blanc, E., Komatitsch, D., Chaljub, E., Lombard, B., & Xie, Z., 2016. Highly-accurate
stability-preserving optimization of the zener viscoelastic model, with application to wave
propagation in the presence of strong attenuation, Geophys. J. Int., 205, 427–439.

6. Chaljub, E., Maufroy, E., Moczo, P., Kristek, J., Hollender, F., Bard, P.-Y., Priolo, E.,
Klin, P., de Martin, F., Zhang, Z., Zhang, W., & Chen, X., 2015. 3-D numerical simulations
of earthquake ground motion in sedimentary basins : testing accuracy through stringent
models, Geophys. J. Int., 201(1), 90–111.

7. Imtiaz, A., Causse, M., Chaljub, E., & Cotton, F., 2015. Is Ground-Motion Variability
Distance Dependent ? Insight from Finite-Source Rupture Simulations, Bull. Seismol. Soc.
Am..

8. Maufroy, E., Chaljub, E., Hollender, F., Bard, P.-Y., Kristek, J., Moczo, P., Klin, P.,
Priolo, E., Iwaki, A., Iwata, T., Etienne, V., De Martin, F., Manakou, M., Theodoulidis,
N., & Pitilakis, K., 2015. Earthquale ground motion in the Mygdonian basin, Greece : the
E2VP verification and validation of 3D numerical simulations up to 4 Hz, Bull. Seismol.
Soc. Am..

9. Moczo, P., Kristek, J., Galis, M., Chaljub, E., & Etienne, V., 2011. 3-D finite-difference,
finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their ac-
curacy with respect to P-wave to S-wave speed ratio, Geophys. J. Int., 187, 1645–1667.

10. Souriau, A., Chaljub, E., Cornou, C., Margerin, L., Calvet, M., Maury, J., Wathelet, M.,
Grimaud, F., Ponsolles, C., Pequegnat, C., Langlais, M., & Guéguen, P., 2011. Multimethod
characterization of the french-pyrenean valley of Bagneres-de-Bigorre for seismic-hazard
evaluation : Observations and models, Bull. Seismol. Soc. Am., 101(4), 1912–1937.

11. Chaljub, E., Moczo, P., Tsuno, S., Bard, P.-Y., Kristek, J., Kaser, M., Stupazzini, M., &
Kristekova, M., 2010. Quantitative comparison of four numerical predictions of 3D ground
motion in the Grenoble valley, France, Bull. Seismol. Soc. Am., 100(4), 1427–1455.
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12. Etienne, V., Chaljub, E., Virieux, J., & Glinsky, N., 2010. An hp-adaptive discontinuous
Galerkin finite-element method for 3-D elastic wave modelling, Geophys. J. Int., 183(2),
941–962.

13. Causse, M., Chaljub, E., Cotton, F., Cornou, C., & Bard, P.-Y., 2009. New approach
for coupling k- 2 and empirical Green’s functions : application to the blind prediction of
broad-band ground motion in the Grenoble basin, Geophys. J. Int., 179(3), 1627–1644.

14. Hallier, S., Chaljub, E., Bouchon, M., & Sekiguchi, H., 2008. Revisiting the basin-edge
effect at Kobe during the 1995 Hyogo-Ken Nanbu earthquake, Pure Appl. Geophys., 165,
1751–1760.

15. Chaljub, E. & Valette, B., 2004. Spectral element modelling of three-dimensional wave
propagation in a self-gravitating Earth with an arbitrarily stratified outer core, Geophys. J.
Int., 158, 131–141.

16. Chaljub, E., Capdeville, Y., & Vilotte, J.-P., 2003. Solving elastodynamics in a fluid-solid
heterogeneous sphere : a parallel spectral element approximation on non-conforming grids,
J. Comput. Phys., 187(2), 457–491.

17. Capdeville, Y., Chaljub, E., Vilotte, J.-P., & Montagner, J.-P., 2003. Coupling the spectral
element method with a modal solution for elastic wave propagation in global Earth models,
Geophys. J. Int., 152, 34–67.

18. Chaljub, E. & Tarantola, A., 1997. Sensitivity of SS precursors to topography on the
upper-mantle 660-km discontinuity, Geophys. Res. Lett., 24(21), 2613–2616.

I.7.2 Ouvrages et Chapitres d’Ouvrages

1. Moczo, P., Kristek, J., & Gális, M., 2014. The Finite-difference Modelling of Earthquake
Motions : Waves and Ruptures, Cambridge University Press, With contributions by M.
kristekova, E. Chaljub, M. Käser, P. Klin and C. Pelties.

2. Virieux, J., Etienne, V., Cruz-Atienza, V., Brossier, R., Chaljub, E., Coutant, O., Ga-
rambois, S., Mercerat, D., Prieux, V., Operto, S., Ribodetti, A., & Tago, J., 2012. Modelling
Seismic Wave Propagation for Geophysical Imaging, in Seismic Waves - Research and Ana-
lysis, pp. 253–304, Chap.13, Masaki Kanao.

3. Chaljub, E., Komatitsch, D., Vilotte, J.-P., Capdeville, Y., Valette, B., & Festa, G., 2007.
Spectral element analysis in seismology, in Advances in Wave Propagation in Heterogeneous
Media, Advances in Geophysics, vol. 48, pp. 365–419, eds WU, R.-S. & Maupin, V., Elsevier
Academic Press.

4. Chaljub, E., 2000. Modélisation numérique de la propagation d’ondes sismiques en géométrie
sphérique : application à la sismologie globale (Numerical modeling of the propagation of seis-
mic waves in spherical geometry : application to global seismology), Ph.D. thesis, Université
Paris VII Denis Diderot, Paris, France, in French.

I.7.3 Actes de Congrès

1. Maufroy, E., Chaljub, E., Hollender, F., Bard, P.-Y., Kristek, J., Moczo, P., de Martin,
F., Theodoulidis, N., Manakou, M., Guyonnet-Benaize, C., Pitilakis, K., & Hollard, N.,
2015. Validating the numerical simulation approach for ground motion prediction : General
framework and latest lessons from the E2VP project, in Proceedings of the 6th International
Conference on Earthquake Geotechnical Engineering , paper 452.

2. Iqbal, J., Chaljub, E., Guéguen, P., & Bard, P.-Y., 2012. Soil-structure interaction simu-
lations of 2D & 3-D block model with spectral element methods, in Proceedings of the 15th
world conference on Earthquake Engineering , Lisboa, Portugal.
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Chapter II

Summary of research activity

II.1 Introduction

My research activity in the last 10 years has been dedicated to the estimation of Earthquake Ground
Motions (EGM) with physics-based numerical methods. There are at least two obvious reasons for
a seismologist to try to estimate EGM. The first one is to better understand and hopefully explain,
the causes of the damages of past earthquakes. The second one is to help the society to better
anticipate the motions that would affect the ground and the structures for future earthquakes that
have been given a non-zero probability to occur. In the field of computational seismology, the first
motivation has been central in the development of numerical methods in the last forty years, very
often triggered by the occurrence of destructive earthquakes, whereas the second only appears now
as a possibly affordable challenge to tackle, thank to the advent of mature numerical methods and
codes, combined with continuously increasing computational resources.

However, as nicely stated in the research program of the Southern California Earthquake Center
for the next five years (2017-2022), “Earthquakes are confoundingly simple in their gross statistical
features but amazingly complex as individual events”. EGM are indeed the consequences of a
unique combination of complex individual processes: the source rupture, the propagation of seismic
waves in the heterogeneous crust, and the response of sites with highly contrasted local geology.
Understanding and modelling how each of those ingredients contribute to shape EGM, is thus a
necessary step to build a prediction for future events.

In this chapter, I present my contributions to the numerical estimation of EGM in realistic frequency
bands and when complex site effects occur. Some important topics, such as rupture dynamics or
non-linear soil response, are not covered because I did not contribute to them. Other aspects which
correspond to ongoing studies, such as the modeling of soil-structure interaction are not presented
either. The chapter starts with a brief classification of the numerical methods which have been
applied to the estimation of EGM in the last forty years. Then, the results of two long-term
collaborative studies dedicated to verification, that is, the estimation of the epistemic uncertainty of
3D numerical simulations of EGM, are presented. Validation examples of 3D numerical simulations
in realistic situations, corresponding to very different seismic contexts and levels of knowledge
about the site conditions, follow. They illustrate the difficulty to apply fully deterministic physics-
based models to predict EGM, given the level of uncertainty on their input parameters. Those
results illustrate the reason why current predictions of EGM in seismic hazard analyses still rely on
empirical methods, so-called Ground Motion Prediction Equations (GMPE) (see e.g. Douglas &
Edwards (2016) for a recent review). The chapter closes with a summary of results obtained from
a series of parametric studies, which quantify the dependence of EGM to variations of the source
and site parameters and make the link with the estimation of the aleatory variability of GMPE.
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II.2 Development and verification of numerical methods for de-
terministic prediction of EGM

II.2.1 Preamble

Many methods have been developed in the last forty years to evaluate EGM. They have been
classified in Table II.1 following their ability to deal with realistic propagation media and seismic
sources. The most general methods, i.e. which can in principle handle realistic seismic sources
and arbitrary three-dimensional propagation media, fall into the category of grid-based (some
would say brute-force) methods that compute approximate solutions to the wave equation at all
discrete positions in space and time. Even though they were introduced in early years (one of the
first review paper on the application of the FDM to the elastic wave equation was published by
Boore (1972) and the applicability of the time domain FEM to seismological problems was studied
in (Smith 1975)), grid-based methods were logically superseded during more than two decades,
i.e. before the advent of the computational era 1, by the first set of methods described in Table
II.1. Those rely on simplifying assumptions (e.g. plane wave excitation, periodic or piece-wise
homogeneous propagation medium) but also on a deeper knowledge, or intuition, of the properties
of the solutions to the wave equation (Weyl integral for plane wave decomposition, representation
theorems, Rayleigh ansatz) which made them applicable to realistic situations and frequency bands.
The DWM has been used extensively in source studies, and the Aki-Larner method and BIEM
mainly to (lithological and topographical) site effect studies.

Note that the existence of easily accessible computer codes implementing each method (as illus-
trated in Table II.1) serves as an indicator of the vitality of their current use in the seismological
community: codes implementing the DWM are quite widespread whereas implementations of the
Aki-Larner method or even of BIEM have not survived the computational era, at least in seismol-
ogy 2. The present situation is quite clear for an average user who wants to compute EGM for its
own research: either a 1D medium approximation is reasonable, and then any code implementing
the DWM will make the job on his personal computer, or it is not and a code implementing a
grid-based method in 2D or 3D will have to be used and ran on a dedicated high performance
computing (HPC) platform, the size of which will depend on the frequency band adressed and the
size of the physical domain 3.

The job of a developer has also pretty much changed over the years. The time when a single
researcher would develop a computer program that would be used by an entire community is gone,
as well as the time when a PhD student would spend years to develop a computer program from
scratch 4. Open-source codes are now being developped and maintained by large collaborative
groups, formed by numerical seismologists, software engineers and HPC experts. The most ad-
vanced of those codes are often installed on the most powerful HPC platforms, and some of them
even serve as benchmark to choose the platforms of the next generation.

But, as will be seen in the next section, this formidable improvement in computational performance
does not necessarily ease the implementation of those 3D codes and it does not either prevent the
solutions they compute to be sometimes wrong.

1. I arbitrarily chose the beginning of the computational era to be 2003, when two seismological codes were
granted Gordon Bell awards at the Supercomputing conference (Komatitsch et al. 2003; Akcelik et al. 2003).

2. Boundary Element Methods and codes are more widespread in other disciplines as illustrated by the existence
of community repositories.

3. The computational power follows the prediction of Moore’s law and increases by a factor of two every 14
months. Nowadays’ laptop computers offer about the same computational power than the biggest machine worlwide
twenty years ago!

4. I personally experienced this life during my PhD and contributed to the development of the SEM at the global
scale with my own code. But all my simulation results presented in this manuscript have been obtained with the
open-source code specfem implementing the SEM at the local scale.
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Table II.1. Rough classification of numerical methods applied to EGM estimation in the last 40 years.

The acronyms are as follows. DWM: Discrete Wavenumber Method, BIEM: Boundary Integral Equation

Method, FDM: Finite-Difference Method, FEM: Finite Element Method, PSM: Pseudo-Spectral Method,

SEM: Spectral Element Method, DGM: Discontinuous Galerkin Method. PW stands for plane wave, F

for force and DC for double-couple. An asterisk means that the access to a code is subject to eligibility

conditions. A question mark reflects a lack of information at the time the text was written. Note that a

maximum of 3 references has been arbitrarily set to the list of available codes.

Method Medium Source Reference Available codes

DWM 1D F+DC Bouchon (2003) axitra, hisada, cps
Aki-Larner few interfaces PW Bard & Bouchon (1980a,b) ?

BIEM piece-wise homog. F+DC Manolis et al. (2017) ?

FDM 3D F+DC Moczo et al. (2014) fdsim3d, sw4, openswpc
FEM 3D F+DC Bao et al. (1998) hercules?

PSM 3D F+DC Klin et al. (2010) ?
SEM 3D F+DC Chaljub et al. (2007) specfem3D, speed, efispec
DGM 3D F+DC Dumbser & Kaeser (2006) seissol, nexd

II.2.2 Verification

The development of a numerical method to estimate EGM and its implementation in a computer
code comes naturally with the need for verification. Following Moczo et al. (2014) and Maufroy
et al. (2015), I define the process of verification as “the demonstration of the consistency of the
numerical method with the original mathematical–physical problem defined by the controlling
equation, constitutive law, and initial and boundary conditions; and the quantitative analysis of
its accuracy”. In practice, each article referring to a new numerical development comes with
an application to one or a few canonical situations where a reference solution exists. Analytical
solutions served as early references: e.g. the Green function due to a force located at the surface of
an elastic half-space (Lamb 1904), the solution of the buried line source problem in an elastic half-
space (Garvin 1956) or the scattering of a plane SH wave by a semi-cylindrical canyon (Trifunac
1972), soon replaced by solutions produced with the DWM for layered visco-elastic propagation
media (e.g. Day et al. (2001)). From there, one would have expected that a new method would
become the reference for arbitrarily heterogeneous 2D or 3D media, and most of the developers
would secretly hope that their method should be that reference.

The reality proved to be more complex, as illustrated by the results of a number of comparative
exercises (Day et al. 2003, 2005) and of blind prediction tests organized in the seismological com-
munity: Turkey Flat in the Parkfield area, central California in 1989-1990 (e.g. Cramer (1995)),
Ashigara Valley in the Kanagawa Prefecture, SW of Tokyo, Japan in 1992 (e.g. Bard (1994)), Os-
aka basin, Japan in 1998 (Kawase & Iwata (1998)). The main lesson that should be learned from
those experiences is that each method has its advantages and disadvantages that often depend on
a particular application. In other words, none of these methods can be chosen as the universally
best (in terms of accuracy and computational efficiency) method for all important problems. One
logical consequence and particular aspect of this situation is that, depending on a particular model
of the medium, it might be not trivial to reach satisfactory agreement between solutions obtained
by different methods.

My first motivation when I started to work on the topic of EGM estimation was to better under-
stand the origin of the misfits between different numerical results. My interest was obvious: the
problem was difficult and I wanted to be sure that the results I was obtaining with the spectral
element method at the local scale were physically sound. I was lucky that the third edition of the
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international symposium on the Effects of Surface Geology (ESG) on seismic motion was organized
in Grenoble in 2006, just one year after I was recruited at the LGIT (Laboratoire de Géophysique
Interne et Tectonophysique, now ISTerre). I was indeed soon enrolled in the design of a compari-
son exercise (Chaljub et al. 2009), without realizing that this would be the beginning of almost a
decade of research work dedicated to verification studies, the results of which are summarized in
the next sections.

II.2.2.1 Grenoble ESG2006

The ESG2006 symposium gave the opportunity to design a comparison exercise for numerical
prediction of EGM in the context of alpine valleys, which was (and still is) quite a different target
than large sedimentary basins considered in previous ESG exercises (Osaka basin in 1998 after the
Kobe earthquake) or in the SCEC long-term comparison exercise (e.g. Los Angeles basin). The
small spatial dimensions of the valley allowed to increase the frequency content up to 4 Hz, well
beyond existing exercises, while the alpine context required to account for the effects of pronounced
topographical variations. The project was ambitious: A series of imposed exercises featuring 2
weak motion events and 2 strong motion scenarios (see Fig. II.1) and a free-style exercise where
the effect of a M6 event had to be predicted at one location in the valley together with an estimation
of the uncertainty of the prediction. The set of exercises, which was improperly referred to as a
“benchmark” 5, was tackled by 14 different teams providing 18 contributions, among which 9 3D
predictions. The first results were quite disappointing, and because we had not anticipated that
iterations would be needed to reach a decent agreement, they were presented “as is” at the ESG
conference, triggering a few lazzi in the audience. As an example, Fig. II.2 shows the improvement
of 3 solutions (that were among the closest in the initial round) after additional comparisons and
investigation for implementation errors. It took a few more years of volunteer-based collaboration
between 4 teams (Seiji Tsuno, Pierre-Yves Bard and myself in Grenoble, Peter Moczo and Jozef
Kristek in Bratislava, Martin Käeser in Munich and Marco Stupazzini in Milano) to publish a
quantitative analysis of the results obtained with 4 3D codes implementing 3 different methods
(FDM, SEM and DGM) (Chaljub et al. 2010). The interested reader will find the article presenting
the full results of this verification analysis in section IV.2 p. 170. In what follows, I briefly highlight
some of those results as well as some lessons learned from the exercise.

As an example, Fig. II.3 shows the PGV maps that were obtained by the four groups for one of the
strong motion case. The level of agreement was judged at that time to be satisfactory 6, given the
complexity of the considered scenario (including finite fault effects and complex geometry of the
sediment-bedrock interface). The remaining differences were attributed to the inherent complexity
of the spatial distribution of peak values of ground velocity, which were shown to involve some
interferences with late surface arrivals diffracted off the edges of the valley (in particular in the
southeastern part of the valley where the largest values of PGV are reached).

Finally, the effect of surface topography on EGM could be investigated by 3 of the 4 teams.
As shown in Fig. II.4, the overall effect was consistently predicted by all methods (and essentially
located at rock sites for this source-valley configuration), even though more detailed numerical work
would be needed to fully understand the differences in the predicted amplification/de-amplification
values.

Those optimistic conclusions were balanced by the quite disappointing level of agreement reached
for the supposedly simpler (at least in terms of source complexity) weak motion cases as shown in
Fig. II.5. In spite of a more limited time devoted to the analysis of those cases, it was agreed that
the main sources of differences between the numerical results were related to (i) the higher frequency

5. A benchmark has the much narrower meaning of comparing the performance of different codes to produce an
already known solution with a given level of accuracy.

6. The article is often cited as an evidence of the maturity of 3D numerical simulation for EGM evaluation.
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Figure II.1. Distribution of sources and receivers for numerical predictions of EGM in the valley of

Grenoble as proposed during the ESG 2006 symposium. Four imposed exercises were proposed: two weak

motion cases (W1 and W2) corresponding to past local events and two strong motion cases (S1 and S2)

corresponding to extreme scenarios. After Chaljub et al. (2009).

content of the simulations and (ii) to differences in the approximation of intrinsic attenuation in
one of the codes implementing the SEM.

Overall, the ESG2006 exercise was useful to illustrate the level-of-practice in numerical predictions
of EGM and it helped to recall a few obvious statements, such that 3D simulation was far from
being a press-button approach 7, or that the same numerical method (for example here SEM)
implemented in different codes following different discretization strategies (for mesh design or
realization of intrinsic attenuation) could lead to quite different results. It was also useful to test and
improve some quantitative measures of the fit between time series: Anderson’s engineering criteria
(Anderson 2004) and the time-frequency misfits developed by the Bratislava team (Kristeková et al.
2006; Kristeková et al. 2009).

The main frustration stemmed from the lack of time to understand the origin of the quite large
differences observed in the higher frequency band ([2-4] Hz), but it actually rooted the motivation
to pursue a more methodological work on the verification of EGM simulations.

7. Ten years after, the statement is still essentially true.
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Figure II.2. Illustration of the reduction of misfit between numerical predictions due to the correction

of implementation errors by participants between two stages of the ESG comparison exercise. After Tsuno

et al. (2009).

Figure II.3. Comparison of peak ground velocity maps in the Grenoble valley computed up to 2 Hz for a

strong motion scenario by 4 different codes implementing 3 different numerical methods (FDM, SEM, DGM)

and neglecting the surface topography. After Chaljub et al. (2010).
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Figure II.4. Comparison of the effect of surface topography around the Grenoble valley computed up to

2 Hz for a strong motion scenario by 3 different codes implementing 2 different numerical methods (SEM,

DGM). Red colors indicate amplification (PGV ratios with respect to a calculation with the same code in a

flat model) and blue colors stand for de-amplification. After Chaljub et al. (2010).
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Figure II.5. Comparison of ground velocity computed up to 4 Hz for a weak motion event by 4 dif-

ferent codes implementing 3 different numerical methods (FDM, SEM, DGM) and neglecting the surface

topography. After Chaljub et al. (2010).
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II.2.2.2 Volvi E2VP

The opportunity to extend the verification effort came soon, in 2008, with the advent of the Eu-
roseistest Verification and Validation Project (E2VP), funded by the Cashima project (supported
by the French nuclear agency [CEA] in Cadarache and the Lau-Langevin Institute [ILL] in Greno-
ble) and organized jointly by ISTerre in Grenoble, CEA in Cadarache, ITSAK and the Aristotle
University in Thessaloniki. The first objective of E2VP (the first of the two ’V’) was indeed to
evaluate the accuracy of the most-advanced numerical methods for EGM evaluation when applied
to realistic 3D models. A large number of teams (from Europe, Japan and the USA) implementing
a large panel of numerical methods (FDM, FEM, SEM, PSM, DGM) was recruited and, based
upon the Grenoble experience, an efficient working group strategy was adopted relying on frequent
meetings to evaluate and discuss current results and decide about performing more iterations or
designing new test cases.

The target of E2VP was chosen in the central part of the Mygdonian basin, close to the Volvi
lake in the epicentral area of the M6.5 event that struck Thessaloniki on June 20, 1978. The
choice was motivated by the idea to capitalize on the results of previous European projects which
constrained the geological structure of the basin and to exploit the recordings of the Euroseistest
accelerometric network in the validation phase of the project (see section II.3). Fig. II.6 shows
the geometry of the three-layer velocity model that was designed at the beginning of the project,
based on the work of Manakou (2007) and Manakou et al. (2010). The geometrical complexity of
the model stems from: the asymmetry between the slopes of the northern (gentle) and southern
(sharp) basin edges, typical of graben-like basins, the saddle-point shape of the basin around the
Euroseistest accelerometric array, and the large, uncorrelated variations of the thicknesses of the
different sedimentary units filling the basin.

The numerical challenge was to compute the response of the basin for frequencies up to 4 Hz,
i.e. more than 5 times the fundamental resonance frequency in the center of the basin (and ten
times the one in the westernmost part), accounting for the large (up to 7.5) VP /VS ratios in the first
sedimentary layers. Based upon the Grenoble experience, only point-like sources were considered.

After (months of) careful comparisons of the different predictions in visco-elastic and purely elastic
media, a clear conclusion was drawn: the agreement between solutions was quantified to be very
good to excellent for primary, mainly body-wave arrivals but would systematically degrade for late,
surface wave arrivals diffracted at basin edges. Despite numerous iterations and improvements in
the resolution of individual contributions, the large misfits related to late arrivals remained. A
decisive observation was that the level of agreement for late phases would increase significantly in
smoother velocity models (e.g. replacing the globally discontinuous piece-wise homogeneous original
model by a globally continuous, piece-wise linear model), as shown in Fig. II.7.

Surprisingly, the (sometimes large) amplitude and phase differences seen for late arrivals between
individual numerical solutions do not seem to affect the spatial distribution of peak ground motion
even in the elastic regime where peak values may be attained at quite late times. This is illustrated
in Fig. II.8, which shows some “stripes” of peak values corresponding to the paths taken by low
velocity, large amplitude, Airy phases of surface waves diffracted off the northern basin edge. The
locations and the level of amplitude of those stripes is shown to depend largely on the position
of the source (here the source is located below the basin), and more importantly to decrease and
almost vanish in the center of the basin when more realistic, visco-elastic simulations are considered
(the peak values are then carried by earlier arrivals). They are nonetheless indicative of the spatial
variability of EGM that can be expected in sedimentary basins close to complexly shaped edges,
and the fact that even “not fully converged” numerical solutions can successfully predict their
occurrence is certainly a message of hope for future studies.

It took another set of verification exercises (on canonical cases with existing reference solutions) to
fully understand the impact of the roughness of the velocity model on the accuracy of numerical
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Figure II.6. Maps of sediment thickness of the three-layers velocity model of the Volvi basin used in the

first phase of E2VP. The top left figure shows the location of receiver lines that were considered to compare

numerical prediction of EGM. After Kristek et al. (2016).

prediction of EGM. The main results of these analyses are briefly recalled here. The reader is
referred to Chaljub et al. (2015) and Kristek et al. (2016) for details.

In short, the main difficulty of the 3-layers velocity model shown in Fig. II.6 stems from its internal
discontinuities, i.e. from variations of material properties which have an infinite spatial frequency
spectrum. Since any grid-based numerical method has a limited spatial resolution to realize the
discrete representation of a continuous model, the main question is to understand how the unre-
solved spatial scales are represented at the discrete level. Any error (for example aliasing) in the
discrete representation of the high spatial frequencies will be the source of numerical inaccuracy.
The resulting numerical error will also depend on the type of the simulated seismic waves: body
waves that travel only a few times across the discontinuities will not be affected as much as sur-
face waves which propagate along them and are continuously sensitive to the incorrect numerical
representation of the interfaces.

This is illustrated in Fig. II.9 which corresponds to a careless implementation of the SEM, where
one of the discontinuities of the model does not coincide with a boundary between spectral elements.
In this particular case, the physical discontinuities are approximated within the spectral elements
by high-order polynomials, giving rise to an undesired Gibbs effect. The effect of this crude
approximation on the ground velocity computed after a few kilometers of horizontal propagation
is shown on the right part of Fig. II.9. The deviation from the reference solution (in black)
is spectacular. On the contrary, quasi vertically incident body waves computed with the same
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approximation (left part of the figure) are not too severely affected (a small phase shift is clearly
seen, which can be related to only a few percents of inaccuracy in the fundamental resonance
frequency).

The discontinuities are in fact a particular case because a number of numerical methods (FEM,
SEM, DGM) have the remarkable property to accurately account for them as long as they coincide
with element’s boundaries. This is not the case for the FDM, and their developers have been facing
the issue of the discrete representation of the physical interfaces for a long time. For example Moczo
et al. (2002) proposed to define an isotropic equivalent medium at the discrete level, by replacing
elastic moduli in the vicinity of an interface by their volume harmonic average and mass densities
by their volume arithmetic average. This corresponds to applying an approximate solution to the
homogenization (or up-scaling) of an elastic medium. The general solution is a fully anisotropic
medium (see e.g. Guillot et al. (2010); Capdeville et al. (2010)), which sometimes simplifies as
noted by Backus (1962) who established that the long wavelength approximation of a stack of
isotropic layers was a vertically transverse isotropic medium where the anisotropic parameters had
to be defined by harmonic or arithmetic averages.

The set of canonical cases defined in Chaljub et al. (2015) helped to understand that the approx-
imation of an isotropic equivalent medium proposed in (Moczo et al. 2002) was not sufficient to
produce accurate results when surface waves propagating along the interfaces were involved. This
motivated the development of a new, still approximate but anisotropic (orthorhombic), definition
of the equivalent medium to be used at the discrete level (Moczo et al. 2014; Kristek et al. 2016).
The comparison of the FDM results obtained with the old (isotropic) and new (anisotropic) equiv-
alent media are represented in Fig. II.10 for a slightly modified version of the original three-layer
velocity model of E2VP (the modification is such that the solution produced with the SEM can be
considered as a reference). The results clearly show the gain of using the orthorhombic equivalent
medium and suggest that this solution to the up-scaling problem, although approximate, can be
considered as accurate enough for the numerical estimation of EGM in realistic situations.

These conclusions have important practical consequences for numerical estimation of EGM. They
were stated in (Chaljub et al. 2015) and are reproduced here: “ Whenever small-scale, or localized,
strong variations of the material parameters have to be considered in the sediments, e.g. based on
firm geological, geotechnical or geophysical evidence, an effective medium relevant for the chosen
frequency range should be used. Depending on the degree of knowledge of the model heterogeneity
and on the desired level of accuracy of the predictions, the effective media can be defined by
procedures of increasing complexity. In the common situation where the level of uncertainty in
the model (including the presence of interfaces) is large, a simple volume arithmetic average of the
densities and slownesses, or a volume arithmetic average of the densities and harmonic average of
the elastic moduli, should be used to provide an isotropic effective medium ready for numerical
simulations. In all other situations, an up-scaling procedure should be adopted to design an
anisotropic effective medium, either by solving a homogenization problem as suggested by Guillot
et al. (2010) and Capdeville et al. (2010), or by following the explicit approach proposed by Moczo
et al. (2014) and Kristek et al. (2016) based on the orthorhombic averaging. ”

These recommendations were of course followed in the second phase of E2VP (2012-2014), during
which a new model of the whole Mygdonian basin was built under the leadership of Fabrice Hol-
lender (Maufroy et al. 2016) and served as a basis for sensitivity studies and quantification of the
variability of EGM (see section II.3.3, p. 44).
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Figure II.7. Comparison of horizontal ground velocity computed in the center of the Volvi basin by

various numerical methods. The top figure compares the elastic response of the discontinuous model shown

in Fig. II.6, and the bottom figure shows the elastic predictions in a smoother, globally continuous velocity

model. The vertical dashed line indicates a rough separation between body and surface waves arrivals. After

Maufroy et al. (2015).
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Figure II.8. Comparison of peak ground velocity maps obtained after computing the elastic response of

the discontinuous velocity model shown in Fig. II.6 by two codes implementing the DGM (left) and the SEM

(right) (respectively 3D09 and 3D02 in Fig. II.7). Despite significant differences in amplitude and arrival

times of individual late phases, the distribution of peaks values are remarkably consistent. After Etienne

et al. (2010).

Figure II.9. After Chaljub et al. (2015).
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Figure II.10. Envelope and phase goodness-of-fit (right) between synthetic seismograms computed with

the SEM and the FDM along three profiles of receivers shown in Fig. II.6. The properties of the discrete

equivalent model in the FDM are computed in each FD cell (left) by taking volume average of the material

parameters, either isotropic (HAR) or anisotropic (ORT). The SEM solution computed with homogeneous

properties in each element has been taken as a reference. After Kristek et al. (2016).
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II.2.3 Contributions to the development of numerical methods for EGM esti-
mation

Although most of my research was dedicated to the application of numerical methods to the
estimation of EGM, I contributed to a few studies dealing with the development or the numerical
analysis of numerical methods.

In the course of the verification work done in the Mygdonian basin, we analyzed the performances
of state-of-the-art numerical methods to account for large VP /VS ratios, as found in soft, water-
saturated sediments (see Moczo et al. (2011) and section IV.1, p. 112). The originality of the article
was to compute the total error (whereas most of analysis of numerical methods are limited to the
estimation of the dispersion error) and to provide a common framework to analyze very different
numerical schemes. The results revealed that the best method in terms of accuracy and insensitivity
to the VP /VS ratio was a finite difference formulation and that the differences in performance of the
spectral element method with this best method did not depend on the VP /VS ratio. Overall, the
differences found among the analyzed methods were not large enough to explain the discrepancies
observed between the different numerical predictions of the response of the Mygdonian basin (as
confirmed a posteriori by the results shown in Figure II.10 which account for large VP /VS ratios).

The second contribution, which is described in Blanc et al. (2016) (see section IV.1, p. 125), deals
with the implementation of attenuation in time-dependent numerical methods. The motivation of
the study arose in the course of an comprehensive parametric study of 2D site effects (see section
II.3.3.1, p. 44), where some configurations with very low Q values were found to be unstable
numerically. The origin of the instability was related to the computation of the input parameters
(frequencies and participation coefficients of the relaxation mechanisms) of the generalized Zener
viscoelastic model. The article introduces a new method, based upon a nonlinear inversion of
those parameters, which is shown to be always stable and more computationally efficient. It is now
implemented in the open-source code specfem3d implementing the spectral element method.
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II.3 Validation and beyond: sensitivity analyses and variability of
EGM prediction

II.3.1 Motivation

Once computationally efficient methods for EGM estimation have been developed and implemented
into well verified numerical codes, they should be tested against observations in order to better
understand how the individual ingredients of an earthquake (source, path and site) combine to
produce a unique distribution of ground motions. Following Maufroy et al. (2015), I refer to this
process as validation, that is, “as the demonstration of the capability of the theoretical model
(i.e. the mathematical–physical model and its numerical approximation) to predict and reproduce
observations”. The validation process is a real challenge which has to be faced with limited or
uncertain information (e.g. sparse earthquake recordings, insufficient knowledge of the propagation
media, source location errors). In this context, the main talent for a seismologist is probably the
ability to formulate well-posed questions that will not remain unanswered, and for a numerical
seismologist to preserve the available computational power from useless calculations.

Keeping those preliminary remarks in mind, the validation approach should proceed as follows:
First, the distance between observations and synthetic predictions has to be measured, which in
particular requires to choose meaningful EGM parameters and to define an objective measure
of the misfit. Second, the input parameters (geometrical, mechanical) controlling this distance
have to be identified and their relative importance have to be evaluated, for example through
sensitivity analyses. Third, the level of knowledge of the most important input parameters should
be improved, for example through additional geophysical surveys and/or seismological or geological
analyses. Eventually, the process should be iterated until a satisfactory level of agreement between
observations and numerical predictions has been reached. Needless to say, this is a long lasting,
site-dependent process the last steps of which are rarely, not to say never, achieved.

II.3.2 Validation studies

There are many reasons that can lead to choose a particular site to learn something about EGM:
the level of hazard and risk of the site, the occurrence of past damaging earthquakes, the quality of
existing seismological instrumentation, the quantity of available earthquake recordings, the level of
knowledge (geological, geotechnical, geophysical) of the underground structure, the ease to access
the site for additional measurements, the opportunity to get funding . . .

In the following subsections, I briefly present my contributions to the validation of numerical
estimation of EGM in frequency ranges of engineering interest and for a few sites corresponding
to very different sets of the above conditions. Rather than a strict chronological order, I tried to
gather those studies by increasing complexity of the scientific questions asked and, hopefully for
the reader, by increasing interest of the answers provided.

II.3.2.1 Grenoble valley

In addition to be located “in the backyard” of any researcher working at ISTerre, there are many
reasons that make the Grenoble valley a local site of great seismological interest. Indeed, although
it is located in a moderate seismicity area (Thouvenot et al. 2003), it has been the target of
many studies (e.g. Lebrun et al. (2002); Cornou et al. (2003)), most of them focusing on 3D
site effects – and leaded by Grenoble seismologists. It has also been instrumented through the
years with a few temporary velocimetric arrays and, since 1999, it has been hosting a part of the
french permanent accelerometric network, in particular a vertical antenna located at the so-called
Montbonnot borehole with 3 sensors distributed from the surface to the bedrock at 535 m depth.
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Figure II.11. Left: bird’s-eye view of the ‘Y’-shaped Grenoble valley showing the locations of the velocimet-

ric sensors of the 2005 experiment (red crosses) and of the accelerometric stations of the french permanent

network (yellow flags). The epicentre of the M2.8 (sismalp local magnitude) Laffrey event (2005/10/01)

is shown by the red star and the location of the Montbonnot site by the yellow triangle. The epicentral

distance is about 25 km. Right: low-pass (≤ 2 Hz) filtered time series of ground velocity recorded by two

collocated instruments at the Montbonnot site. The red trace corresponds to the time integration of the

signal recorded by an accelerometer operating in triggered mode, and the black to the signal recorded by a

broad-band velocimeter with continuous acquisition.

My interest in the validation work on the Grenoble valley started within the curse of the sismovalp
European project and during the organization of the ESG 2006 symposium (see section II.2.2.1).
The first motivation to compare observed and synthetic ground motions in the Grenoble valley is
obviously related to complex site effects. The basic question was to know whether 3D simulations
accounting for (i) the geometrical complexity of the surface and of the bedrock-sediment interface
(obtained by inverting gravimetric measurements by Vallon (1999)) and (ii) a simple velocity model
for the post-glacial sediments in the valley, were able to reproduce the level of amplification and
the characteristics of recorded ground motions. In particular, one local event 8 recorded by a dense
temporary velocimetric array deployed in 2005 (Cornou et al. 2009) shows unexpected duration
of ground motion (see Figure II.11). The duration of low-frequency (≤ 2 Hz) ground velocity is
such that the decay of energy was not captured by the permanent accelerometers which were not
operating in continuous mode at that time. Thank to the deployment of the temporary array of
velocimeters, the low-frequency duration recorded at the Montbonnot site was shown to exceed 80
s, quite a large value for such weak (local magnitude M ' 3), local (epicentral distance D ' 25
km) event. The comparison with the ground velocity computed with the spectral element method
(Chaljub 2009) using the ESG2006 propagation model shows a spectacular difference (see Figure
II.12): while the amplitude of the computed ground velocity is comparable to the observed one,
there is almost one order of magnitude between the respective durations! The severe underestima-
tion of duration in the synthetics stems from the definition of the absorption used in the ESG2006
model. The shear quality factor was indeed assumed to be constant with depth and frequency.
Its value, QS = 20, was taken to be half the QP value found by Cornou (2002) when analyzing
the amplitude of explosive shots recorded at the Montbonnot site when the borehole was drilled
(those crosshole measures, although done for P waves at much higher frequency [20 Hz] showed no
dependence of QP with depth).

In order to reconcile the synthetic and observed durations, a few numerical experiments were

8. which was used as the weak event W2 in the ESG2006 “benchmark”.
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Figure II.12. Comparison of observed (red) and synthetic (black) EW component of ground velocity at

the Montbonnot surface site. Both signals have been band-pass filtered between 0.5 Hz and 1.5 Hz.

performed, either consisting in increasing the shear quality factor with depth, or decreasing the
shear wave velocity in the shallow part of the valley. Both effects are indeed expected to lengthen
duration, either by decreasing the amplitude decay of late arrivals, in particular local surface waves,
or by slowing them down. The effect of decreasing the absorption at depth is shown in Figure II.13.
Setting the QS value to 80 for depth larger than 50 m is shown to increase the duration of the
synthetics by a factor 3-4; the observed duration can be reproduced for deep (larger than 50 m) QS

values reaching 200. Those values of the transition depth (H=50m) and of the deep QS values may
seem quite unrealistic, but in fact there is a trade-off between those two quantities: considering
for example a shallower transition depth (H=20m) and a lower deep QS value (100) also allows to
match the observed duration. This suggests that the fundamental mode of local surface waves (of
Love and Rayleigh type) diffracted off the valley edges may contribute significantly to the duration
in the synthetics, but the composition of the wavefield was not investigated further at that time.

The last series of numerical experiments consisted in changing the shallower velocity values. One
result is shown in Figure II.14. It corresponds to the case where a low-velocity layer is added to
one of the previous models that already reproduced the observed duration. Instead of using the
ESG2006 VS model (which starts with a surface value of 300 m.s−1 and decays as the square root
of depth), a constant VS value of 200 m.s−1 is set in the first 50 m of the subsurface. Contrary
to what could be expected, the overall duration is not strongly affected by this severe change of
the velocity model. A strong amplification (corresponding to the fundamental resonance [at 1 Hz]
of the additional low-velocity layer) is clearly seen in the first seconds of the signal, but it does
not contribute significantly to the lengthening of ground motion duration. Those results suggests
that local surface waves contribute the most to the lengthening of GM duration, and that there
is a trade-off for those waves between the velocity and absorption values. In the case where a
low-velocity layer is added to the model, the fundamental mode of surface waves is trapped into
the layer and therefore damped more efficiently. The duration in this case is probably controlled
by surface wave overtones, which are sensitive to the deeper, less attenuating parts of the valley.
This effect, which can only be suggested here, is analyzed in more detail for the valley of Mexico
in section II.3.2.2, p. 32.
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Figure II.13. EW component of ground velocity at the Montbonnot surface site for different models of

attenuation in the valley. The recorded motion is the blue trace. The green trace corresponds to the black

trace in Figure II.12. The red and black traces are obtained by increasing the QS value for depth larger than

50 m, to QS = 80 and QS = 200, respectively. The last, purple, trace corresponds to the results obtained

for an increase of QS = 100 for depth larger than 20 m.

Those preliminary (and still unpublished) results illustrate the difficulty of the validation process
when applied to realistic frequencies for which the parameters that control the EGM characteristics
are either poorly constrained or known with a spatial resolution much lower than what would be
needed. They were also characteristic of the more and more commonly faced situation where the
limiting factor, that prevents to deepen our understanding of EGM through numerical experiments,
is not related to available computational resources (the calculations presented here were not even
challenging 10 years ago) but rather to the lack of knowledge of the input parameters needed to feed
the numerical simulation codes. Much efforts have been devoted since that time to characterize the
Grenoble valley model, in particular to map the shear velocity fluctuations in the shallower part
(first tens of meters) of the valley, shaped by the complex river dynamics history. They should
make possible in the next years to revisit the questions that were addressed in this section. In
particular, explaining the duration of EGM in the Grenoble valley would require to analyze more
systematically the largest possible set of earthquake recordings, to quantify the duration of EGM
and the lengthening of duration with respect to outcrop and downhole references, to evaluate the
influence of shallow heterogeneities inside the valley, as well as the importance of scattering outside
of the valley, and to test possible correlations between shear wave velocities and quality factors (as
a first step before to be able to map the absorption in the valley).
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Figure II.14. EW component of ground velocity at the Montbonnot surface site for different velocity

models in the valley. The recorded motion is the blue trace. The black trace is the same as the black trace

in Figure II.13. The red trace is obtained after adding a 50 m thick low velocity layer to the model used to

produce the black trace.
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II.3.2.2 Mexico basin

The large damages which affected the city of Mexico during the 1985 Michoacán earthquake and
the related human losses will remain in the seismological history as a dramatic evidence of the
importance of local site effects. Many studies were conducted by the seismological and engineering
communities to properly understand how the source, path and site effects shaped the particular
EGM in the valley of Mexico, resulting in formidable amplifications in some frequency bands
(reaching 500 around 0.3 Hz and 0.5 Hz) and huge durations (more than 3 minutes reported in the
ancient lake-bed zone where the largest damages occurred). Despite those numerous contributions,
the origin and physical causes of the duration of EGM in the valley of Mexico is still debated, and
none of the many published studies succeeded to model the recorded durations. The main reason
for the lack of consensus is certainly related to the challenge of modeling the source process in
the subduction zone, the propagation effects along such a long path and such extreme site effects.
Even the studies focusing only on site effects provided a very scattered set of estimations of the
local contribution to the lengthening of duration of EGM.

As any seismologist working to understand site effects, my interest for the Mexico-Michóacan
earthquake of 1985 had been triggered for a long time. But it is only through a collaboration
with Vı́ctor Cruz-Atienza and Josué Tago at UNAM and Jean Virieux in Grenoble, through the
development of the viscoelastic part of their Discontinuous Galerkin code, that we decided to revisit
the subject based upon 3D numerical experiments. The results of this validation work are briefly
summarized hereafter, the full article reporting the study can be found in section IV.3 p. 240.

The main motivation of the study is to estimate the contribution of local site effects to the duration
of EGM in the valley of Mexico through (i) the analysis of the recordings of a local earthquake
by an array of broadband velocimeters recently deployed in the valley, and (ii) the design of a 3D
model of the valley which allows numerical simulations of EGM for frequencies up to 1 Hz. The
setting of the study is recalled in Figure II.15. The figure features the sediment thicknesses in
the valley, as derived from extensive H/V measurements, the location of the epicenter of a local,
shallow (4 km depth) M3.4 event that occurred in December of 2014, the locations of the array of
broadband velocimeters and of instrumented boreholes which were used to measure the amplitude
decay with depth of late, surface wave arrivals.

Despite the large size of the model and the extreme mechanical properties in the lake-bed zone of
the valley (see the bottom Table in Figure II.15) the 3D simulation of EGM in the valley of Mexico
for local events represents an affordable numerical effort for frequencies less than 1 Hz, once the
access to typical university computational resources is granted 9.

A key result of the article is shown in Figure II.16, which compares observed ground velocities
recorded for a local, shallow event to their synthetic counterparts. First, the recordings show large
durations in the lake-bed zone, with harmonic beating in the long coda around 0.3 Hz that was
thought to be typical of subduction events. Second, unlike previous 2D simulations which discarded
the excitation of local surface waves to explain the duration in the valley, the 3D simulations succeed
in predicting the observed EGM duration.

Furthermore, by comparing the average amplitude decay with depth of the late arrivals responsible
for the large duration around 0.3 Hz and 0.5 Hz, it is clearly shown (see Figure II.17) that in the
presence of attenuation, the long lasting seismic energy is systematically transported in the basin
by higher modes of surface waves, as suggested by Shapiro et al. (2001). The fundamental mode
of Rayleigh and Love surface waves, when it is excited, is systematically damped by the very high
absorption in the first clay layers of the lake-bed zone. The global patterns of average amplification
and lengthening of duration are shown in Figures II.17-b and II.17-d. The amplification pattern
is quite complex and shows two ring-like zones of large amplification, located at the edges of the

9. Each viscoelastic simulation performed in the study required 24 hours of elapsed time on 512 modern CPU
cores with at least 2Gb of RAM each.
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Figure II.15. Topographic setting of Mexico City and the valley of Mexico. The red star is the local M3.4

event analyzed in the article and the green stars correspond to the locations of vertical forces applied at the

free surface in the 3D simulations. The values of velocity, mass density and attenuation used in the model

are given in the Table. After Cruz-Atienza et al. (2016).

external basin and at those of the deeper basin. Those ring-like, or belt-like, patterns probably
correspond to zones where surface waves overtones interfere with incoming body waves, a kind of
generalization of the physical process proposed by Kawase (1996) to explain the damage distribution
caused by the 1995 Kobe earthquake. The interferences would also explain the general trend of
anti-correlation observed between the amplification and lengthening of duration maps.

Finally, the reason why those 3D simulations succeed in reproducing the duration of EGM where
previous 2D simulations failed is, I believe, due to the combined effect of (i) accounting for a
more realistic basin geometry and (ii) considering shallow and surface sources which excite a richer
incoming seismic wavefield than considered in older 2D studies. In particular, it is shown in the
article that a non-negligible part of incoming fundamental mode of surface waves gets converted
(transduced) into local surface waves overtones propagating in the basin. In the case of distant
subduction earthquakes, which generate a lot of surface waves and crustal phases towards the
valley of Mexico, this conversion effect is also expected to occur and to favor both amplification
and lengthening of duration into the basin.
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Figure II.16. Left: observed horizontal ground velocity filtered in different frequency bands for the M3.4

event which epicentre is shown in Figure II.15. Right: observed Vs simulated durations of the strong shaking

phase for frequencies below 1 Hz. After Cruz-Atienza et al. (2016).

34/361 HDR E. Chaljub



II.3. Validation and beyond 35/361

Figure II.17. (a,c) Comparison between observed (black dots) and average synthetic eigenfunctions (elastic

in blue, viscoelastic in red) at two sites of interest in the basin and two different frequencies. (b) Average

horizontal Fourier amplification at 0.5 Hz for the set of 8 surface forces. (d) Average strong shaking duration

below 1 Hz for the set of 8 surface forces. After Cruz-Atienza et al. (2016).
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II.3.2.3 Bagnères de Bigorre valley

The French Pyrenees are among the most seismically active regions of the, overall moderately
active, french metropolitan area, with numerous destructive historical earthquakes in the central
part of the range during the last centuries. The active zone being located “in the backyard” of our
colleagues from the Toulouse Observatory, their enthusiastic leader, A. Souriau, easily convinced a
group of young researchers working on seismic risk to join them and apply all available methods
to estimate the seismic hazard in the small valley surrounding the city of Bagnères-de-Bigorre.

The idea was to deploy a seismological network for two years, to analyze the recordings of local
earthquakes in order to track local site effects, then to apply and combine a series of characterization
(H/V ratios and ellipticity of Rayleigh waves from microtremors or earthquake recordings, MASW
active measurements) and prediction methods (among which 3D numerical simulation) to model
the observations. The article presenting the obtained results can be found p. 192 in section IV.3.
I hereafter summarize my contribution, related to 3D numerical simulation, to this study.

The challenge for numerical simulation, again, was not related to the size of the required compu-
tational resources, but to the level of knowledge on the substructure of the valley, which, using
Bayesian inversion nomenclature, would probably correspond to the state of null a priori infor-
mation. Nevertheless, a simple 3D model of the valley was elaborated: the basin structure was
defined by a single layer with 150 m thickness, the contours of which were chosen based on local
elevation and slope of the surface. A constant shear wave velocity, VS = 600 m. s−1 was used in
the layer, resulting in a fundamental resonance frequency of 1 Hz, consistent with the observed
values. The seismic response of this model, computed up to 8 Hz and characterized by the peak
ground acceleration (PGA), to a vertically incident, plane, shear wave with different polarization
is shown in Figure II.18. The effects of surface topography are clearly identified: mountain ranges
with east-west (resp. north-south) orientation get amplified when the polarization of the incoming
plane wave is along the north-south (resp. east-west) direction. When the model of the valley is
considered, the overall level of PGA is increased within the basin, the main amplifications being
located close to the basin edges. This is a clear evidence of the so-called “basin-edge effect”, as
identified by Kawase (1996) and due to the interference between the incoming shear body wave and
the surface waves diffracted off the basin edges. Given the particular orientation of the Bagnères-
de-Bigorre valley (mainly north-south), and the nature of the interfering surface waves (Rayleigh
or Love) following the polarization of the incoming plane wave, the effect occurs at different dis-
tances from the basin’s edges. Another interesting pattern to note is the apparent de-amplification
just outside of the valley, close to the edges of the basin, which is caused by a shadowing effect
by the basin. This is clearly seen on the individual traces shown in Figure II.19. This pattern
was also observed in the recorded and simulated response of the basin to a real event located 15
km southeast of the valley, as shown in Figure II.20 (in this case the shadow effect is expected to
be even more pronounced close to the western side of the valley, given the southeastern azimuth
of incoming seismic energy). Finally, the simulations were useful to estimate the effect of surface
topography at the rock station BBAR. The simulated effect was indeed shown to be much lower
than observed, suggesting a local complex velocity structure beneath that station, preventing it to
be used as reference for the estimation of site effects in the valley.

Overall, and despite the interest of the study, the conclusions of the Bagnères-de-Bigorre experience
as to the contribution of numerical simulation to better understand EGM were quite limited because
of the sparsity of available earthquake recordings and the low level of knowledge of the geometrical
and mechanical properties of the site.
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Figure II.18. Maps of peak ground acceleration computed for a plane, vertically incident shear wave

beneath the Bagnères-de-Bigorre valley. The linear viscoelastic calculations include either the sole effect of

surface topography (a,c), or the combined effect of surface topography and of a sediment filled basin (b,d).

The incident plane wave is polarized either along the north-south (a,b) or east-west (c,d) direction. The

color scale is arbitrary. After Souriau et al. (2011).
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Figure II.19. Synthetic ground accelerations computed for a vertically incident plane wave with north-

south polarization at a few stations which locations are indicated between parentheses. The calculations

account for the sole effect of surface topography (a), or the combined effect of surface topography and of a

sediment filled basin (b). After Souriau et al. (2011).

Figure II.20. Comparison of low-pass filtered (f≤ 5 Hz) observed (a) and synthetic (b) ground accelerations

for a local M3.9 event located about 15 km from the centre of the valley. The total size of the time window

is 7 s. After Souriau et al. (2011).
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II.3.2.4 Mygdonian basin

Most of the previous studies only partially addressed the different steps of the validation process,
as defined in section II.3.1. In particular, the evaluation of the differences between observed and
simulated EGM was often restricted to visual inspection, and the origin of the misfits was, at best,
only conjectured and never quantified. To go beyond those necessary but frustrating experiences,
the choice of an optimal site – in terms of level of seismicity, quantity and quality of earthquake
recordings and level of knowledge of the propagation medium between sources and stations – was
mandatory. In the course of the Cashima project (see section II.2.2.2, p. 20), the Euroseistest site,
in the central part of the Mygdonian basin, close to Thessaloniki, was elected as the best, among
European sites for validation purpose.

Figure II.21. Surface map of the central part of the Mygdonian basin, showing the accelerometric stations

of the Euroseistest array (red triangles) and the epicentral locations of six local seismic events (beach-balls)

which were used for the first stage of the validation process. After Maufroy et al. (2015).

It was therefore chosen as the target of a long-standing validation study, which followed a two-
stages evolution: In the first phase, a set of 6 local events (see Figure II.21) was considered
and the recordings of those events by the accelerometric stations of the Euroseistest array were
compared to numerical predictions in the original 3-layers model of the basin presented in Figure
II.6. Second, a new, larger, homogenized velocity model of the Mygdonian basin was built from a
reanalysis of available geological, geotechnical and geophysical data and a larger set of 19 events
was selected, based on the availability of high-quality accelerometric recordings and reliability of
source parameters (focal mechanism and hypocentral location) as shown in Figure II.22. The model
construction was leaded by Fabrice Hollender, and the work on sources and recordings was done
in collaboration with Anastasia Kiratzi and Zafeiria Roumelioti (Aristotle University) and Nikos
Theodoulidis (ITSAK). The results of the first phase were reported by Maufroy et al. (2015) (see
section IV.3, p. 219), and those of the second phase by Maufroy et al. (2016) (see section IV.4,
p. 312). Some of the most noticeable achievements of this validation study are briefly summarized
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in what follows.

Figure II.22. Left: surface map of the whole model of the Mygdonian basin showing the epicentral locations

of the 19 events considered in the second phase of the E2VP validation study. Right: geometrical differences

between the velocity models used in the first and second phase of E2VP. After Maufroy et al. (2016).

The validation criteria were based on the selection of 5 ground motion parameters, which were
proposed to (and accepted by) a panel of recognized experts in earthquake engineering and engi-
neering seismology. For each of the 5 parameters (the PGA measured below 4 Hz, the spectral
accelerations around 2 Hz and around 0.5 Hz, the cumulative absolute velocity, and the relative
significant duration), a signed misfit value, measured in percents can be given, as shown in Figure
II.23 for one of the 6 events of the first phase. Thank to those criteria, it was possible to quantify
the distance between synthetics and observations using a meaningful metric, and to compare this
distance to the epistemic uncertainty, i. e. with the distance between synthetics obtained by dif-
ferent numerical methods (see Figure II.24). The overall conclusion follows the expectation: the
distance between synthetics is systematically, and significantly, smaller than the distance between
any of the synthetics to the observations. This is certainly the gain of the in-depth verification work
done on the synthetics. What is also apparent, and reassuring, is that the most similar numerical
predictions also correspond to the smaller distances to the observations (Figure II.24-a).

Once the distance between observations and numerical predictions has been measured, the next
challenge is to estimate the relative contributions of the source errors (location, magnitude, focal
mechanism) and of the model errors to this distance. A first attempt to identify the source and
model contributions is presented in Figures II.24-b and II.24-c, which respectively show the average
misfits obtained at the central TST station (which corresponds to the location with the higher
level of knowledge of the underground structure in the Mygdonian basin) and the average misfits
computed for the most energetic (and hopefully best characterized) event among the 6 considered
in the first phase. The misfits are seen to be slightly below the average in both situations, but it was
demonstrated later in the second phase that those trends were not statistically robust (Maufroy
et al. 2016). In particular, it was shown after relocation that the hypocentre of the most energetic
event of the first catalog was in fact poorly known (the hypocentral location error for this local
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event was of the same order as the distance to the centre of the Euroseistest array!).

Figure II.23. Values of misfit between synthetics and recordings for one of the six local events (the

epicentre of which is indicated by the black star in the top left figure) retained in the first validation phase

of E2VP. The misfit values, in percents, are positive (resp. negative) whenever the synthetics overestimate

(resp. underestimate) the real values. After Maufroy et al. (2015).

To go one step further and infer the contribution of the model error to the total misfit, one has to
minimize the source error. This can be done by quantifying how errors on the source parameters
“propagate” to the ground motion parameters (see for example section II.3.3.2), then restricting
the validation approach to the recordings that correspond to those sources that minimize the
propagation of the error. Another possibility is to compare relative, “source-independent” ground
motion parameters. This approach was tested at the central TST station by forming the synthetic
transfer function between the downhole and surface receivers and by convolving it with the real
input signal at the downhole. The obtained time series, referred to as “hybrid”, are shown to provide
a better fit than the full synthetics to the observed ground motion parameters, whatever the set
of events analyzed and the basin model considered (see Figure II.25-a, and Table 5 in Maufroy
et al. (2016)). A closer look at the signed misfit values (Figure II.25-b) indicates that the hybrid
synthetics tend to systematically underestimate the observed amplitudes (looking at the parameters
C1-C4 which are sensitive to amplitude) and overestimate the observed durations (looking only at
parameter C5). This suggests that the basin model considered in the first phase of E2VP tends to
underestimate the observed amplification at TST (see also the direct comparison of downhole-to-
surface transfer functions in Figure 13 of Maufroy et al. (2015)) and to overestimate the lengthening
of duration. The new basin model considered in the second phase was shown to provide a globally
better fit of the hybrid synthetics to the observations at TST (see the signed misfits given in Table 5
in Maufroy et al. (2016)), but this time to overestimate both the amplification and the lengthening
of duration. Finally, the fact that in both models, the full synthetics are shown to overestimate
the observed amplitudes and to underestimate the observed durations respectively suggests that
the magnitudes of the local events could be systematically overestimated in the seismic catalogs,
and that the level of heterogeneity in the model of the bedrock should be increased in order to
produce more scattering along the path from the sources to the site. This last suggestion is also
supported by the direct comparison of the duration sensitive parameter C5 at the rock sites of
the accelerometric array (see Table 4 in Maufroy et al. (2016)). Those conclusions call for another
iteration of the validation process at the Volvi site, but no volunteers have been found yet to
perform this time-consuming task.
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Figure II.24. Comparison of average absolute misfit values between different numerical predictions (blue

circles) and between individual predictions and recordings (yellow, red and purple) for different sets of

sources and real stations or receivers: (a) all events and stations/receivers ; (b) all events at the central

surface station ; (c) one event at all stations/receivers. After Maufroy et al. (2015).

As a final remark, I would like to point out the tremendous amount of work that still needs to
be done in order to be able to fit observed ground motions in realistic configurations and for
frequencies of seismological and engineering interest. This is illustrated by the global, averaged
over all events, values of misfits reported in Table 5 of Maufroy et al. (2016) and reproduced in
Figure II.26, which are of the order of 100 %. But this somehow disappointing statement must be
balanced by the quite good overall fit to the downhole-to-surface transfer function at the centre of
the Mygdonian basin. It should also not prevent to use numerical simulation to better understand
the origin of such differences to the observed EGM, as this will be illustrated in the next sections.
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Figure II.25. Comparison of averaged absolute (left) and signed (right) misfit values for the full (circles)

and hybrid (squares) synthetics. After Maufroy et al. (2015).

Figure II.26. Values of horizontal misfits for the five engineering parameters C1-C5 between the actual

recordings at central soil site TST0 and their numerical (full or hybrid) predictions. The AVERAGE values

correspond to an average over the 16 events that were recorded both at TST0 (surface) and TST5 (downhole).

Adapted from Maufroy et al. (2015).
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II.3.3 Understanding EGM variability

Even though physics-based numerical models have been shown in previous sections to be far from
reproducing the observed EGM in realistic configurations and frequency bands, they do provide
a powerful experimental framework to better understand and quantify the variability of EGM.
Variability of EGM is usually understood in the context of Ground Motion Prediction Equations
(GMPE) as the uncertainty related to the empirical prediction of a given ground motion intensity
parameter obtained by averaging a statistically significant number of earthquake recordings corre-
sponding to close-by values of magnitude and distance to the source. By variability, I understand
here the variation of the output EGM that results from the variation of individual components of
the physics-based model. This may also be referred to as sensitivity. To assess the uncertainty of
the prediction of EGM by a physics-based model is therefore a two-step process: first, the variabil-
ity (or sensitivity) to the individual components of the model have to be understood and quantified
through a deterministic process; and second it has to be “convolved” with the uncertainty, resulting
from lack of knowledge or from aleatory variability, of the values of the components of the model.

In what follows, I present a few contributions, either restricted to sensitivity analysis of EGM, or
encompassing the estimation of the uncertainty of the prediction of EGM. Those studies are usually
the most demanding in terms of computational resources since they require to explore the space
of input parameters to the physics-based model, which may be large. However, the computational
effort can be minimized when studying the sensitivity of EGM to source parameters. In this case
indeed, a single propagation medium is considered and the heavy simulations can be restricted to the
computation of its unit response (to a point source or a plane wave), the final results being obtained
after a cost-less convolution phase. Whenever Green’s functions are required for a small number
of receivers and a large number of sources, the use of reciprocity can further reduce the number of
computations needed by switching the role of sources and receivers. This is the main reason why
source-related variability studies can be performed in three-dimensional realistic configurations,
whereas site-related variability studies (which require to vary the propagation media) are usually
restricted to 2D geometries.

II.3.3.1 Site-related variability

As stated in the introduction of (Maufroy et al. 2017), the physical mechanisms causing site effects
have been known for a long time (see e.g. Bard & Bouchon (1980a,b) and Kawase (2003) for a
review): impedance contrasts between soft sediments and stiffer underlying, and possibly outcrop-
ping, bedrock cause the amplification and trapping of seismic energy into the soft zones and the
excitation of local surface waves at basins’ or valleys’ edges.

One of the most striking manifestation of site effect is the so-called basin edge effect, as labelled by
Kawase (1996), that is, the interference between shear body waves impinging a basin and surface
waves diffracted off the basin edges, which causes localized amplification of ground motion and
increased ground deformation (Moczo & Bard 1993). This effect has been evoked already in this
manuscript to explain the spatial patterns of EGM computed in the Bagnères-de-Bigorre valley
and in the Mexico basin. We also studied it numerically during the PhD work of Soline Hallier. In
particular, we looked at the influence of the geometry of the basin edge to the location and level of
amplification of the interference belt in different frequency bands (see Hallier et al. (2008), p. 270
in section IV.4). We found that the basin edge effect occurred in a wider frequency band than
previously reported and that it was enhanced in the case where the edge pends towards the basin,
as expected if the edge coincides with a thrust fault (see Figure II.27).

The fact that the geometry of the basin edge plays a non-negligible role in the magnitude of the
basin edge effect is not surprising and is related to the influence of the geometry on the efficiency of
the conversion of incoming body waves to induced local surface waves. This is apparent in Figure
II.28 which was obtained for a 2D canonical model of the central part of the Mygdonian basin,

44/361 HDR E. Chaljub



II.3. Validation and beyond 45/361

Figure II.27. Aggravation factors, defined as the ratio of peak ground velocity to a reference value

corresponding to a station located in the centre of the basin, computed in a model of the Kobe basin for

three geometries of the basin edge and different frequency bands. After Hallier et al. (2008).

where the influence of asymmetrical basin edges was studied. The presence of an edge with gentle
slope seems to increase the chances for an incoming body wave to reach the grazing incidence that
allow the generation of surface waves.

A more comprehensive study aiming at quantifying the sensitivity of EGM to geometrical and
mechanical parameters was conducted in the course of the NERA project. The amount of simu-
lations performed and of valley geometrical and mechanical properties is recalled in Figure II.29.
Almost 2 thousand calculations of impulse response to a vertically incident plane wave with SH
or SV polarization have been performed for frequencies up to 20 Hz and a time window of 60 s.
An example of such P − SV calculation for one of the largest valley is shown in Figure II.30. The
ground motions (translations and deformations) have been recorded at a large number (between
100 to 400) of receivers per simulation, resulting in one of the largest databank of synthetic results
which can be analyzed to better understand the contribution of site effects to EGM. A few results
are presented hereafter, but most of the work is still ongoing and unpublished.

The impulse responses were further convolved with a set of real accelerograms extracted from the
RESORCE collection (Akkar et al. 2014), and a few ground motion intensity parameters (GMIP)
were computed on the obtained time series. The same procedure was applied to 1D synthetics,
obtained from the same real accelerograms and from 1D impulse responses computed with the local
models below each receiver. Then, the comparison between 1D and 2D synthetics was quantified
through 2D/1D aggravation factors (AF) computed from each of the considered GMIP 10. An
example of such comparison is given in Figure II.31. It illustrates a general trend that the AF
depend on the GMIP: parameters related to energy (e. g Arias intensity or Cumulative Absolute
Velocity) result in larger aggravation values (up to 3-4) than high-frequency parameters (such as
PGA, FA, or ARMS [see their definition in the caption of Figure II.31]).

The influence of the geometry of the valley on the AF is found to be significant, as illustrated in
Figure II.32. For embanked valleys, the AF are found to be the largest in the centre of the valley

10. The reason to consider 2D/1D AF was motivated by the objective to propose a procedure to account for site
effects in the European seismic design code.
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Figure II.28. Seismic sections of horizontal ground velocity computed in a canonical model of the Myg-

donian basin with asymmetrical edges: a vertical southern edge and a northern edge with a gentle slope.

The northern edge is much more efficient to excite local surface waves, either Rayleigh (left) or Love (right),

towards the centre of the basin. After Chaljub et al. (2015).

because of constructive interferences between laterally propagating surface waves diffracted off the
two edges. Steep edge slopes show large, but localized effects whereas gentle slopes have significant
long-distance effects because of their higher efficiency to diffract local surface waves. It is worth to
note that for steep edges, the AF are usually lower than 1 above the edge, because the main effect
of the 2D edge is to deflect incoming energy towards the centre of the valley (which results in AF
larger than 1 at the beginning of the flat part of the valley), contrary to the 1D case where the
energy always propagates vertically.
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Figure II.29. Summary of canonical 2D valleys considered in the NERA project. Each valley is charac-

terized by its geometry (defined by the width (W) and height (H) of the valley and by the slopes of its two

edges, Left) and by its mechanical parameters (defined by 6 different 1D velocity models, Right). A total

of 1944 2D simulations for frequencies up to 20 Hz was performed for vertically incident SH and SV plane

waves.

Figure II.30. Example of horizontal ground velocity computed for a large (W=20 km), deep (H=1 km),

and soft (VS30=125 m/s) valley with gentle edge slope (10◦). Left: unfiltered values, Right: filtered values

below 1 Hz. The colors refer to the horizontal positions from valley edge (red) to valley centre (blue). The

receiver interdistance is 50 m.
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Figure II.31. Example of average aggravation factors computed for one valley model (W=2.5 km, H=250

m, slope=45◦, VS30
=125 m/s) and 6 different ground motion intensity parameters: IA=Arias Intensity,

CAV=cumulative average velocity, Fv=intermediate period (1 s) averaged amplification factor, Fa=short

period (0.1 s) averaged amplification factor, SI=spectral intensity averaged around 1s, arms=root mean

squared acceleration. The horizontal distance is normalized to the valley width.

Figure II.32. Effect of the slopes of the edges on the aggravation factor of the average amplification at 1 s,

Fv. The valley is defined as: W=1 km, H=250 m, VS30
=125 m/s. The slopes of the edges take the following

values: 10◦, 20◦, 45◦, 65◦. Note that some angle combinations correspond to asymmetrical valleys, whence

the asymmetry in the results.
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II.3.3.2 Source-related variability

Many published studies have been dedicated to the estimation of EGM in the vicinity of extended
faults, and have tried to understand how the physical characteristics of the rupture can shape the
ground motion. Given the challenge of assessing the parameters that drive the dynamics of the
rupture, most of them have adopted a kinematic description of the rupture, decomposing the fault
as a collection of sub-faults with constant properties (static slip, slip velocity, rise time). Then,
depending on the frequency band considered and on the geometrical and geological complexities
of the problem, the Green’s functions are computed by methods of increasing computational cost,
from discrete wavenumber methods to 3D grid-based methods.

I have contributed marginally to those topics, during the PhD theses of Mathieu Causse and of
Afifa Imtiaz. Two articles presenting those contributions (Causse et al. 2009; Imtiaz et al. 2015)
can be found in section IV.4, p. 281 and p. 299, respectively. In (Imtiaz et al. 2015), we have
shown, from simple 1D Green’s functions and available descriptions of past earthquake rupture
kinematics, that the rupture type (unilateral or bilateral) could affect significantly the so-called
within-event component of ground motion variability for distances up to a few tens of kilometers.

In (Causse et al. 2009), we have combined 3D numerical simulations of the response of the Grenoble
valley to the recordings a small (M3) local event (the one presented in Figure II.11, in section
II.3.2.1) to produce broad-band (0.1 Hz – 30 Hz) hybrid Green’s functions (HGF). Those HGF
have been summed according to a sophisticated model of the rupture process, consistent with a
classical k−2 model of the static slip distribution. The parameters of the rupture model are: the
K parameter, which controls the roughness of the static distribution of slip ; the location of the
nucleation point Xnuc ; and the rupture velocity, v. The effect of varying those 3 parameters
on the resulting ground velocity and acceleration is illustrated in Figure II.33. Finally, the three
parameters were given realistic probability density functions which were further sampled in order
to obtain the resulting distribution of ground motions for a M5.5 event at the locations where the
original small event was recorded. The median (and median ±σ) curves of the obtained horizontal
acceleration spectra at 9 stations in the Grenoble valley are represented in Figure II.34, together
with the corresponding EC8 design spectra. The figure shows that the design spectra are not
adapted to the stiff alpine rock and that they can be exceeded in several frequency bands on the
sediments.
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Figure II.33. Sensitivity of ground acceleration (left) and velocity (right) to variations (of ±σ) of the three

parameters controlling the rupture model: roughness (top), location of the nucleation point (middle) and

rupture velocity (bottom). After Causse et al. (2009).
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Figure II.34. Comparison of the distribution of EW spectral acceleration to EC8 spectra at 9 stations in

the Grenoble valley. After Causse et al. (2009).
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In (Maufroy et al. 2017, 2016), we investigated another aspect of source-related variability: the
dependence of site response to the location of point-like seismic sources. The target of the study
is the Mygdonian basin and the motivation was twofold: (i) investigate the sensitivity of different
markers of site response (amplification and lengthening of duration) to available source catalogs,
and (ii) better understand and quantify the sensitivity of ground motions to uncertain source
parameters.

In order to address those questions, a large databank of Green’s functions was constituted between
15 stations of the Euroseistest accelerometric array and three sets of point-like sources: A first
set (S1) formed by 16 events (out of the 19 of the validation phase) for which both downhole
and surface recordings were available at the central TST station, a second set (S2) where the
hypocentral position of each event of set S1 was moved by up to ± two kilometers in (x, y, z)
coordinates, resulting in 27 different possible locations within a 4 km edge cubic box, and a third
set (S3) consisting of 1260 positions uniformly distributed around the central TST station (see
Figure II.35).

Figure II.35. Surface map of the Mygdonian basin showing the epicenters of the 1260 sources (black

crosses) used to study the sensitivity of the site response to source locations. The pink dots correspond to

the epicentral locations of 52 local events. After Maufroy et al. (2016).

Figure II.36 shows the comparison between observed and synthetics of 3 measures of site response:
(i) amplification measured by standard spectral ratios (SSR) between the surface and downhole
sensors at the TST station, (ii) lengthening of duration (LOD) measured by the group delay
method for the same pair of sensors, and (iii) H/V ratios at the surface TST sensor. The figure
shows that amplification (as measured by SSR) and LOD are two complementary, anti-correlated
measures of the site response. The maximal ground motion durations are obtained at frequencies
where the amplification is the most variable, and are shown to be caused by the excitation of local
surface waves diffracted off the basin edges. A clear north-south asymmetry of both amplification
and lengthening of duration is reported in the synthetics, which stems from the non-isotropic
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excitation of local surface waves related to differences in the slopes of the basin edges. This effect
could only be suggested in the observed ground motions, due to insufficient number of available
recordings. The article by Maufroy et al. (2017) also investigated the influence of the choice of the
reference station on the amplification measured by SSR, and the sensitivity of the amplification
measured by SSR to the distribution of seismic sources. The largest variability of the measured
site amplification is found for northern and southern clusters of shallow and far events (see Figure
II.37).

Figure II.36. Observed (left) and synthetic (right) measures of site response: amplification measured by

surface-to-downhole spectral ratios at TST (top), lengthening of duration of horizontal motions (middle) and

H/V rations at the surface TST station. The blue (resp. red) curves correspond to the measures restricted

to northern (resp. southern) sources. Vertical dashed lines correspond to frequencies of maximal duration

and most variable amplification. After Maufroy et al. (2017).
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Figure II.37. Amplification at TST measured by surface-to-downhole SSR for different clusters of sources.

The median of the distribution for each cluster is indicated by the bold black line and the grey shaded area

corresponds to the values comprised between the 16th and 84th percentiles of the distribution. The cyan

curve is the 1D prediction, that is, the SSR computed for a vertically incident shear wave in the local 1D

model of the site. After Maufroy et al. (2017).
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The sensitivity of EGM to hypocentral locations was further investigated in Maufroy et al. (2016).
Figure II.38 shows how the spectral acceleration can be influenced by differences of a few km in
hypocentre location. The influence on EGM is clearly source-dependent, with a larger sensitivity
for shallow and close events compared to deep and far events, suggesting that the sensitivity is con-
trolled by a combination of incidence angle and hypocentral distance to the site. Figure II.39 also
shows that the sensitivity of EGM to uncertainties in the source position is site-independent and,
most interestingly, that the measure of amplification by surface-to-downhole SSR is almost inde-
pendent of the possible source location errors. This confirms the physical intuition that guided the
design of hybrid time series in the validation phase (see section II.3.2.4): the surface-to-downhole
transfer function is a robust measure of the site amplification, which may depend on the relative
position of the source to the site (as seen previously) but not on smaller location errors.

Finally, the databank of Green’s functions was exploited to produce a collection of synthetic seis-
mograms for the set of real seismic events shown with pink circles in Figure II.35. The synthetics
were then processed using an artificial neural network approach, following Derras et al. (2014), in
order to produce GMPE for a set of classical GM intensity parameters (PGV, PGA, acceleration
response spectra at different periods). Analyzing the uncertainty of the synthetic GMPE allows
to understand and estimate its components and hopefully helps to provide some strategies to re-
duce it. For example, it is quite an easy game to artificially introduce some errors in the source
catalog metadata (e. g. source location, or source magnitude) and estimate the resulting apparent
prediction uncertainty. The results obtained for source location errors comprised between ± 1 km
and ± 10 km, and source magnitude errors between ± 0.1 and ± 0.5 are shown in Figure II.40.
They are expressed in terms of the between-event variability, τ , and the within-event variability,
φ. As expected, only τ is affected by errors in the source parameters (because the error is the same
for all stations that “recorded” the event). The sensitivity of τ is far from being negligible: 25%
increase for a ± 3 km location error and a factor of 2 on τ for a magnitude error of ± 0.25. Those
estimates, which seem quite realistic (see the discussion in Maufroy et al. (2016)), emphasize the
usefulness of dense local networks to reduce source parameters errors for weak motion events.
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Figure II.38. Variability of the acceleration response spectrum at the surface TST station caused by

moving the hypocentre location of a few sources by at most ± 2 km in each direction of space. The colors

indicate the depth of the hypocentres, from deeper (blue) to shallower (red). After Maufroy et al. (2016).
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Figure II.39. Red squares: frequency-averaged variability of the acceleration response spectrum at TST

plotted as a function of the corresponding variability averaged over the 4 rock stations. Green dots: same for

the average of all stations at the sediments. Black crosses: frequency-averaged variability of the downhole-

to-surface transfer function at TST. After Maufroy et al. (2016).

Figure II.40. Influence of uncertainties related to source magnitude (left) and to hypocentre location

(right) on the between-event (top) and within-event (bottom) variability of synthetic GMPE. After Maufroy

et al. (2016).
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Chapter III

Perspectives

I hereafter present some research perspectives that should keep me busy in the next few years. They
rely on intensive use of numerical simulation in order to (i) keep improving methods to predict
EGM and understand its variability and (ii) develop methods to constrain the amplification and
attenuation of EGM based upon the exploitation of diffuse seismic wavefields.

III.1 Better understanding EGM, its variability and its impact
on man-made structures

My first perspective is naturally to pursue my effort to better understand and quantify how different
physical ingredients contribute to the observed complexity and variability of EGM and its impact
on structures. This will start with finalizing and/or extending the following studies:

1. The analysis of site-related variability of EGM based on the comprehensive databank of re-
sults produced during the NERA project (see section II.3.3.1). The same kind of parametric
studies is about to be launched in the context of the PhD thesis of Capucine Durand (whom
I am co-advising) in order to account for site-related variability on the seismic response of
rivers dams (see e.g. Durand et al. (2017)).

2. The analysis of the synthetic GMPE obtained for the Mygdonian basin (see section II.3.3.2)
in order (i) to quantify whether the within-event variability of EGM depends on the location
of the stations in the basin; (ii) to test the performance of different proxies of the site
condition (VS30 , f0) and (iii) to quantify how uncertainties on those proxies propagate to
apparent prediction uncertainty.

3. The analysis of site-city interaction, which was initiated during the PhD thesis of Javed
Iqbal, based upon simplified spectral element modeling of the buildings response with macro-
scopically equivalent blocks (Iqbal 2014).

4. The characterization of the spatial variability of EGM and its impact on the response of
arch dams, which has been initiated during the PhD work of Eleni Koufoudi (Koufoudi et al.
2017).

III.2 Exploiting the amplitude of H/V ratios in different wavefield
regimes

The prediction of EGM at a given site requires in particular to constrain the amplification due
to local geology as a function of frequency. This can be done in a full deterministic way by
characterizing experimentally the necessary input parameters that will further allow a numerical
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estimation of the amplification function (as was done for example during the E2VP project, see
section II.3.2.4). But, as stated previously, this is a long-lasting, costly process, which can certainly
not be deployed everywhere. Many studies (often motivated by operational needs) have adopted
alternate, approximate approaches to estimate site response, for example based on non-invasive
measures of seismic ambient noise. Among those, the H/V method has been successfully used for
decades in order to constrain the frequency range in which site amplification is expected to occur
(see Bard (1999) for a classical review article). Despite several attempts, the amplitude information
carried by the H/V ratios measured on microtremors could not be related to the amplification level
expected at a site. The main reason is that the H/V ratios depend strongly on the nature and
composition of the seismic noise wavefield, which is not always known.

The subject has been revitalized in recent years, when some authors applied to seismic noise
some concepts developed for diffuse seismic wavefields. In particular, assuming the equipartition
of seismic energy (Hennino et al. 2001; Margerin et al. 2009; Nakahara & Margerin 2011), it is
possible to predict the H/V ratios from the local velocity structure (Sánchez-Sesma et al. 2011),
and therefrom to invert the ratios in order to retrieve the local structure (see Kawase et al. (2011)
for an example of inversion of H/V ratios measured on earthquake coda, and Kawase et al. (2015)
for a discussion of the inversion of microtremors H/V ratios). However, the state of equipartition
is a particular consequence of the multiple scattering of seismic waves in heterogeneous media,
and is thought to be only partially reached (not to say generally not reached). A nice example of
equipartition is given in Figure III.1 for a local M4 Pyrenean earthquake recorded 40 km away from
the source (see the complete analysis in Souriau et al. (2011), given in section IV.3, p. 192). The
state of equipartition, which is precisely indicated by the stabilization of the H/V energy ratio, is
only reached for about a minute in the earthquake coda for the tiny frequency band (around 15
Hz) considered in the analysis. Outside from the equipartition window, and in particular in the
regime of seismic noise, the H/V energy ratio fluctuates by about one order of magnitude, which
questions the possibility to perform a stable measure and to relate it to the equipartition value.

But the challenge is worth to tackle and there is certainly a different approach to adopt than the
blind application of an elegant physical theory which validity conditions may not be met. I believe
in particular that numerical simulations can be useful because they allow to explore the large
variety of regimes of seismic energy partition that may be encountered in microtremors or seismic
coda. As an example, I would recall a situation of interest which has been studied in Maufroy
et al. (2017) and is illustrated in Figure III.2: the H/V ratios computed at the central TST station
of the Mygdonian basin for a set of deviatoric double-couple and explosive sources are compared
to the prediction of Kawase et al. (2011), which assumes that the incident wavefield consists of
vertically propagating plane waves in a regime of equipartition (in this case the H/V ratio is simply
obtained by forming the ratio of S to P transfer functions at the site). Although the proportion
of shear and explosive sources was adjusted to match the equipartition hypothesis, the measured
H/V ratios at the surface do not exactly follow the theoretical prediction. Additional simulations
will thus be needed to identify the origin of this particular difference (for example 3D effects or
differential attenuation between S and P wave modes, which are not accounted for in the reference
theoretical solution). Then, the analysis should be extended to the regime of seismic noise, by
comparing the prediction of full equipartition (which can be computed from 3D synthetics as done
in Matsushima et al. (2014)) with the H/V ratios computed for realistic distributions of surface
forces and of crustal and basin heterogeneities.

This part of my research perspectives can be seen as a revival, I would rather say an extension,
of some of the work done during the former sesame European project, and I will benefit from
the expertise of many investigators of that project (and now close collaborators) to tackle the
challenging questions raised above.
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Figure III.1. Illustration of the equipartition of energy in the coda of a local M4 event recorded on a rock

site outside of the Bagnères-de-Bigorre valley. The envelope of the seismogram is compared to that of the

noise (dashed line). The ratio of vertical to horizontal kinetic energies is shown to stabilize during 40 s, 4 s

after the S wave arrival. After Souriau et al. (2011).

III.3 Towards imaging absorption and scattering in different wave-
field regimes

There are at least two physical ingredients which control EGM and are in general poorly con-
strained: the absorption of seismic energy along the path from source to site, and the level of
scattering due to crustal heterogeneities. For example, the consequence of the lack of knowledge
about local absorption has been illustrated in the Grenoble valley by the inability to explain ob-
served ground motion duration (see section II.3.2.1), and the underestimation of synthetic EGM
duration at rock sites around the Mygdonian basin has been suggested to result from the absence
of crustal heterogeneities in the model of the bedrock used in the numerical simulations (see section
II.3.2.4).

Because both absorption and scattering combine to influence the attenuation and the duration of
EGM, their effects have to be separated, but the way to perform such separation has represented
a long-term challenge in seismology. It is only recently that, thanks to advances in the numerical
methods to solve the radiative transfer equation, Mayor et al. (2014); Margerin et al. (2016) have
succeeded in quantifying the coda waves sensitivity to spatial variations of absorption and scatter-
ing, and have developed a regional absorption tomography model of the Alps based on coda Qc

measurements for regional earthquakes (Mayor et al. 2016).

The application of the sensitivity kernels to image absorption and scattering in sufficiently seis-
mically active regions is an ongoing work by the group of L. Margerin in Toulouse, and we wish
to collaborate to evaluate the possibility to extend this new kind of tomography to regions of low
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Figure III.2. Left: H/V ratios measured on 3D synthetics at the central station of the Euroseistest array

for a distribution of sources consistent with a regime of equipartition of seismic energy between vertically

propagating body waves. In this regime, the H/V ratio is given by the magenta line, which is obtained by

the theoretical prediction of Kawase et al. (2011). Right: the H/V ratios are grouped into several clusters of

source back-azimuths. The differences suggest that the condition of equipartition is not met in the surface

synthetics. After Maufroy et al. (2017).

seismicity. In this case, the idea is to work with the coda of the Green’s functions reconstructed
from the correlations of seismic noise between neighbouring stations. This idea will be tested in
2D media thank to extensive numerical experiments. First, SH wave in unbounded heterogeneous
(described by von Kármán auto-correlation functions) viscoelastic media will be simulated in order
to understand the sensitivity of the Green’s functions retrieved by cross-correlation to the distri-
bution of the noise sources. Then, numerical sensitivity kernels will be constructed ab initio by
computing the noise wavefield for local modifications of the absorption/scattering properties. The
numerical experiments will then be extended to P−SV wave propagation in a half-space to account
for fluctuations in both S and P velocities, differential absorption between P and S waves, and
conversion between body and surface wave modes close to the free surface.

A full proposal presenting this part of my research perspectives is presented in the Annex V.1.
The proposal was rated as excellent by the French national research agency (ANR), who decided
therefore not to fund it.
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S U M M A R Y
We present a discontinuous Galerkin finite-element method (DG-FEM) formulation with
Convolutional Perfectly Matched Layer (CPML) absorbing boundary condition for 3-D elastic
seismic wave modelling. This method makes use of unstructured tetrahedral meshes locally
refined according to the medium properties (h-adaptivity), and of approximation orders that
can change from one element to another according to an adequate criterion (p-adaptivity).
These two features allow us to significantly reduce the computational cost of the simula-
tions. Moreover, we have designed an efficient CPML absorbing boundary condition, both
in terms of absorption and computational cost, by combining approximation orders in the
numerical domain. A quadratic interpolation is typically used in the medium to obtain
the required accuracy, while lower approximation orders are used in the CPMLs to reduce
the total computational cost and to obtain a well-balanced workload over the processors.
While the efficiency of DG-FEMs have been largely demonstrated for high approximation
orders, we favour the use of low approximation orders as they are more appropriate to the
applications we are interested in. In particular, we address the issues of seismic modelling
and seismic imaging in cases of complex geological structures that require a fine discretiza-
tion of the medium. We illustrate the efficiency of our approach within the framework of the
EUROSEISTEST verification and validation project, which is designed to compare high-
frequency (up to 4 Hz) numerical predictions of ground motion in the Volvi basin (Greece).
Through the tetrahedral meshing, we have achieved fine discretization of the basin, which
appears to be a sine qua non condition for accurate computation of surface waves diffracted
at the basin edges. We compare our results with predictions computed with the spectral ele-
ment method (SEM), and demonstrate that our method yields the same level of accuracy with
computation times of the same order of magnitude.

Key words: Surface waves and free oscillations; Site effects; Computational seismology;
Wave propagation.

1 I N T RO D U C T I O N

Over the last decades, simulations of wave propagation in complex
media have been efficiently tackled with finite-difference methods
(FDMs) and applied with success to numerous physical problems
(Graves 1996; Moczo et al. 2007). Nevertheless, FDMs suffer from
some critical issues that are inherent to the underlying Cartesian
grid, such as parasite diffractions in cases where the boundaries
have a complex topography. To reduce these artefacts, the discretiza-
tion should be fine enough to reduce the ‘stair-case’ effect at the
free surface. For instance, a second-order rotated FDM requires up
to 60 gridpoints per wavelength to compute an accurate seismic
wavefield in elastic media with a complex topography (Bohlen &

Saenger 2006). Such constraints on the discretization drastically
restrict the possible field of realistic applications. Some interesting
combinations of FDMs and finite-element methods (FEMs) might
overcome these limitations (Galis et al. 2008). The idea is to use
an unstructured FEM scheme to represent both the topography and
the shallow part of the medium, and to adopt for the rest of the
model a classical FDM regular grid. For the same reasons as the
issues related to the topography, uniform grids are not suitable for
highly heterogeneous media, since the grid size is determined by
the shortest wavelength. Except in some circumstances, like mixing
grids (Aoi & Fujiwara 1999) or using non uniform Cartesian grids
(Pitarka 1999) in the case of a low velocity layer, it is almost impos-
sible to locally adapt the grid size to the medium properties in the
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general case. From this point of view, FEMs are appealing, since
they can use unstructured grids or meshes. Due to ever-increasing
computational power, these kinds of methods have been the focus
of a lot of interest and have been used intensively in seismology
(Aagaard et al. 2001; Akcelik et al. 2003; Ichimura et al. 2007).
Usually, the approximation order remains low, due to the prohibitive
computational cost related to a non-diagonal mass matrix. However,
this high computational cost can be avoided by mass lumping, a stan-
dard technique that replaces the large linear system by a diagonal
matrix (Marfurt 1984; Chin-Joe-Kong et al. 1999). Another class of
FEMs that relies on the Gauss–Lobatto–Legendre quadrature points
has removed these limitations, and allows for spectral convergence
with high approximation orders. This high-order FEM, called the
spectral element method (SEM, Seriani & Priolo 1994; Komatitsch
& Vilotte 1998), has been applied to large-scale geological models,
up to the global scale (Chaljub et al. 2007; Komatitsch et al. 2008).
The major limitation of SEM is the exclusive use of hexahedral
meshes, which makes the design of an optimal mesh cumbersome
in contrast to the flexibility offered by tetrahedral meshes. With
tetrahedral meshes (Frey & George 2008), it is possible to fit almost
perfectly complex topographies or geological discontinuities and
the mesh width can be adapted locally to the medium properties
(h-adaptivity). The extension of the SEM to tetrahedral elements
represents ongoing work, while some studies have been done in two
dimensions on triangular meshes (Mercerat et al. 2006; Pasquetti
& Rapetti 2006). On the other hand, another kind of FEM has been
proven to give accurate results on tetrahedral meshes: the discon-
tinuous Galerkin finite-element method (DG-FEM) in combination
with the arbitrary high-order derivatives (ADER) time integration
(Dumbser & Käser 2006). Originally, DG-FEM was developed for
the neutron transport equation (Reed & Hill 1973). It has been
applied to a wide range of applications such as electromagnetics
(Cockburn et al. 2004), aeroacoustics (Toulopoulos & Ekaterinaris
2006) and plasma physics (Jacobs & Hesthaven 2006), just to cite
a few examples. This method relies on the exchange of numeri-
cal fluxes between adjacent elements. Contrary to classical FEMs,
no continuity of the basis functions is imposed between elements,
and therefore the method supports discontinuities in the seismic
wavefield, as in the case of a fluid–solid interface. In such cases,
the DG-FEM allows the same equation to be used for both the
elastic and the acoustic media, and it does not require any explicit
conditions on the interface (Käser & Dumbser 2008), which is, on
the contrary, mandatory for continuous formulations, like the SEM
(Chaljub et al. 2003). Moreover, the DG-FEM is completely local,
which means that elements do not share their nodal values, contrary
to conventional continuous FEM. Local operators make the method
suitable for parallelization and allow for the mixing of different
approximation orders (p-adaptivity).

However, in most studies, the DG-FEM is generally used with
high approximation orders. Here, we present a low-order DG-FEM
formulation with the convolutional perfectly matched layer (CPML)
absorbing boundary condition (Roden & Gedney 2000; Komatitsch
& Martin 2007) that is suitable for large-scale 3-D seismic wave
simulations. In this context, the DG-FEM provides major benefits.
Our approach relies intensively on the p-adaptivity. This last feature
is crucial for efficient simulations, in order to mitigate the effects
of the very small elements that are generally encountered in refined
tetrahedral meshes. Indeed, the p-adaptivity allows an optimized
time stepping to be achieved, by adapting the approximation or-
der according to the size of the elements and the properties of the
medium. The benefit of such a numerical scheme is particularly im-
portant with strongly heterogeneous media. Due to the mathematical

formulation we consider, the medium properties are assumed to be
constant per element. Therefore, meshes have to be designed in such
a way that this assumption is compatible with the expected accu-
racy. In particular, we address the issues of seismic modelling and
seismic imaging in complex media. In the first application, the dis-
cretization must be able to represent the geological structures fairly,
without oversampling, while in the second, the spatial resolution of
the imaging process puts constraints on the coarsest parametrization
of the medium. If we consider full waveform inversion (FWI) appli-
cations, the expected imaging resolution reaches half a wavelength,
as shown by Sirgue & Pratt (2004). Therefore, following the Shan-
non theorem, a minimum number of four points per wavelength is
required to obtain such accuracy. These reasons have motivated our
development of DG-FEM with low orders. In this study, we focus
on the quadratic interpolation, which yields a good compromise
between accuracy, discretization and computational cost.

This paper is structured as follows. In Section 2, we review in
detail the DG-FEM formulation, and introduce the concept of p-
adaptivity. The implementation of the method on distributed mem-
ory machines is discussed in Section 3. The source excitation and
two kinds of boundary conditions are explained in Section 4: the
free surface, and the absorbing boundary conditions. Special atten-
tion is paid to the latter with the detailed CPML formulation. The
efficiency of the CPML is demonstrated with validation tests that
in some cases reveal instabilities inside the absorbing layers. The
strategy for saving CPU time and memory with low-order CPML
is then presented. In Section 5, we study the convergence of the
method, and the ability to compute accurate surface waves when
a free surface is considered. The advantages of the hp-adaptivity
in the context of tetrahedral meshes are discussed in Section 6. Fi-
nally, in Section 7, we illustrate the efficiency of our method, with a
challenging seismological model, where the computation of surface
waves is critical for the prediction of site effects.

2 T H E D G - F E M F O R M U L AT I O N

2.1 Elastodynamic system

The equations governing particle velocity and stress in an isotropic
elastic medium, namely the elastodynamic system (Virieux 1986),
is a first-order hyperbolic system. Following the approach of
BenJemaa et al. (2009), the elastodynamic system can be written in
the following pseudo-conservative form

ρ∂t �v =
∑

θ∈{x,y,z}
∂θ (Mθ �σ ) + �f

�∂t �σ =
∑

θ∈{x,y,z}
∂θ (Nθ �v) + �∂t �σ0, (1)

with the definitions of the velocity and stress vectors as

�v = (vx vy vz)T

�σ = (τ τ ′ τ ′′ σxy σxz σyz)T , (2)

and

τ = 1

3
(σxx + σyy + σzz)

τ ′ = 1

3
(2σxx − σyy − σzz)

τ ′′ = 1

3
(−σxx + 2σyy − σzz).

(3)

Due to the change of variables defined in eq. (3), the right-hand
side of (1) does not include any terms that relate to the physical
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properties. Mθ and Nθ are constant real matrices (Appendix B). �
is a diagonal matrix given by

� = diag

(
3

3λ + 2μ
,

3

2μ
,

3

2μ
,

1

μ
,

1

μ
,

1

μ

)
,

where λ and μ are the Lamé parameters. Moreover, the diagonal-
ity of � is an essential point of our formulation since the inverse
of this matrix is required for the computation of the stress com-
ponents (eq. 1). The extension of the pseudo-conservative form
for the anisotropic or viscoelastic cases should be further analysed
since the change of variable may depend on the physical parameters
while the isotropic purely elastic case requires the simple global
change of variables as shown in this study. Finally, in eq. (1), ρ is
the medium density, while �f and �σ0 are the external forces and the
initial stresses, respectively.

2.2 Spatial discretization

As is usual with FEMs (Zienkiewicz et al. 2005), we want to ap-
proximate the solution of eq. (1) by means of polynomial basis
functions defined in volume elements. The spatial discretization is
carried out with non-overlapping and conforming tetrahedra. We
adopt the nodal form of the DG-FEM formulation (Hesthaven &
Warburton 2008), assuming that the stress and velocity vectors are
approximated in the tetrahedral elements as follows

�̂vi (�x, t) =
di∑

j=1

�vi j (�x j , t) ϕi j (�x)

�̂σi (�x, t) =
di∑

j=1

�σi j (�x j , t) ϕi j (�x), (4)

where i is the index of the element, �x is the spatial coordinates inside
the element, and t is the time. di is the number of nodes or degrees of
freedom (DOF) associated with the interpolating Lagrangian poly-
nomial basis function ϕij relative to the jth node located at position
�x j . The expressions of the Lagrangian basis functions are given
in Appendix A. �vi j and �σi j are the velocity and stress vectors, re-
spectively, evaluated at the jth node of the element. Although it is
not an intrinsic limitation, we have adopted here the same set of
basis functions for the interpolation of the velocity and the stress
components. In the following, the notation Pk refers to a spatial
discretization based on polynomial basis functions of degree k, and
a Pk element is a tetrahedron in which a Pk scheme is applied.
The number of DOF in a tetrahedral element is given by di =
(k + 1)(k + 2)(k + 3)/6. For instance, in a P0 element (Fig. 1a),

there is only one DOF (the stress and velocity are constant per ele-
ment), while in a P1 element (Fig. 1b), there are four DOF located
at the four vertices of the tetrahedron (the stress and velocity are
linearly interpolated). It is worth noting that the P0 scheme corre-
sponds to the case of the finite-volume method (BenJemaa et al.
2007, 2009; Brossier et al. 2008). For the quadratic approximation
order P2, one node is added at the middle of each edge of the
tetrahedron, leading to a total of 10 DOF per element (Fig. 1c).

The first step in the finite-element formulation is to obtain the
weak form of the elastodynamic system. To do so, we multiply
eq. (1) by a test function ϕir and integrate the system over the
volume of the element i. For the test function, we adopt the same
kind of function as used for the approximation of the solution. This
case corresponds to the standard Galerkin method and can be written
as

∫
Vi

ϕir ρ∂t �v dV =
∫

Vi

ϕir

∑
θ∈{x,y,z}

∂θ (Mθ �σ ) dV

∫
Vi

ϕir �∂t �σ dV =
∫

Vi

ϕir

∑
θ∈{x,y,z}

∂θ (Nθ �v) dV ∀r ∈ [1, di ],

(5)

where Vi is the volume of the tetrahedral element i. For the purpose
of clarity, we have omitted the external forces and stresses in (5).
Integration by parts of the right-hand side of (5) leads to

∫
Vi

ϕir ρ∂t �v dV = −
∫

Vi

∑
θ∈{x,y,z}

∂θϕir (Mθ �σ ) dV

+
∫

Si

ϕir

( ∑
θ∈{x,y,z}

Mθ nθ

)
�σ dS

∫
Vi

ϕir �∂t �σ dV = −
∫

Vi

∑
θ∈{x,y,z}

∂θϕir (Nθ �v) dV

+
∫

Si

ϕir

( ∑
θ∈{x,y,z}

Nθ nθ

)
�v dS, (6)

with Si as the surface of the element i, and �n = (nx , ny, nz)T as the
outward pointing unit normal vector with respect to the surface Si.
In the second term of the right-hand side of eq. (6), the fluxes of
the stress and velocity wavefields across the faces of the element
i appear. For evaluation of these fluxes, we adopt the centred flux
scheme for its non-dissipative property (Remaki 2000; BenJemaa
et al. 2009; Delcourte et al. 2009). Using eq. (4) and assuming con-
stant physical properties per element, eq. (6) can be approximated

Figure 1. (a) P0 element with one unique DOF. (b) P1 element with four DOF. (c) P2 element with 10 DOF.
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with

ρi

∫
Vi

ϕir ∂t �̂vi dV = −
∫

Vi

∑
θ∈{x,y,z}

∂θϕir (Mθ �̂σi ) dV

+ 1

2

∑
k∈Ni

∫
Sik

ϕir Pik( �̂σi + �̂σk) dS

�i

∫
Vi

ϕir ∂t �̂σi dV = −
∫

Vi

∑
θ∈{x,y,z}

∂θϕir (Nθ �̂vi ) dV

+ 1

2

∑
k∈Ni

∫
Sik

ϕir Qik(�̂vi + �̂vk) dS, (7)

with k ∈ Ni representing the elements k adjacent to the element i,
and Sik the face between elements i and k. P and Q are defined as
follows

Pik =
∑

θ∈{x,y,z}
nik θ Mθ

Qik =
∑

θ∈{x,y,z}
nik θ Nθ ,

where nik θ is the component along the θ axis of the unit vector
�nik of the face Sik that points from element i to element k. Eq. (7)
indicates that the computations of the stress and velocity wavefields
in one element require information from the directly neighbouring
elements. This illustrates clearly the local nature of DG-FEM. Using
the tensor product ⊗, we obtain the expression

ρi (I3 ⊗ Ki )∂t �vi = −
∑

θ∈{x,y,z}
(Mθ ⊗ Eiθ )�σi

+ 1

2

∑
k∈Ni

[
(Pik ⊗ Fik)�σi + (Pik ⊗ Gik)�σk

]

(�i ⊗ Ki )∂t �σi = −
∑

θ∈{x,y,z}
(Nθ ⊗ Eiθ )�vi

+ 1

2

∑
k∈Ni

[
(Qik ⊗ Fik)�vi + (Qik ⊗ Gik)�vk

]
, (8)

where I3 represents the identity matrix. In eq. (8), the vectors �vi

and �σi should be read as the collection of all nodal values of the
velocity and stress components in the element i. We now introduce
the mass matrix

(Ki )r j =
∫

Vi

ϕir ϕi j dV j, r ∈ [1, di ], (9)

the stiffness matrix

(Eiθ )r j =
∫

Vi

(∂θϕir ) ϕi j dV j, r ∈ [1, di ], (10)

with θ ∈ {x , y, z}, and the flux matrices

(Fik)r j =
∫

Sik

ϕir ϕi j dS j, r ∈ [1, di ] (11)

(Gik)r j =
∫

Sik

ϕir ϕk j dS r ∈ [1, di ] j ∈ [1, dk]. (12)

It is worth noting that in eq. (12), the DOF of elements i and k appear
(di and dk , respectively) indicating that the approximation orders
are totally decoupled from one element to another. Therefore, the
DG-FEM allows for varying approximation orders in the numerical
scheme. This feature is referred to as p-adaptivity. Moreover, given
an approximation order, these matrices are unique for all elements
(with a normalization according to the volume or surface of the

elements) and they can be computed before hand with appropriate
integration quadrature rules. The memory requirement is therefore
low, since only a collection of small matrices is needed according to
the possible combinations of approximation orders. The maximum
size of these matrices is (dmax × dmax) where dmax is the maximum
number of DOF per element and the number of matrices to store is
given by the square of the number of approximation orders mixed
in the numerical domain. Details regarding the computation of the
matrices are given in Appendix B. It should be mentioned that to
retrieve both the velocity and the stress components, eq. (8) requires
the computation of K−1

i , which can also be performed before hand.
Note that if we want to consider variations in the physical prop-

erties inside the elements, the pseudo-conservative form makes the
computation of flux much easier and computationally more efficient
than in the classical elastodynamic system. These properties come
from the fact that in the pseudo-conservative form, the physical
properties are located in the left-hand side of eq. (1). Therefore, no
modification of the stiffness and flux matrices nor additional terms
are needed in eq. (8) to take into account the variation of properties.
Only the mass matrix needs to be evaluated for each element and
for each physical property according to the expression

(Ki )r j =
∫

Vi

χi (�x) ϕir (�x) ϕi j (�x) dV j, r ∈ [1, di ], (13)

where χi (�x) represents the physical property (ρ i or one of the �i

components) varying inside the element.

2.3 Time discretization

For the time integration of eq. (8), we adopt a second-order explicit
leap-frog scheme that allows to compute alternatively the velocity
and the stress components between a half time step. Eq. (8) can be
written as

ρi (I3 ⊗ Ki )
�vi

n+ 1
2 − �vi

n− 1
2

�t
= −

∑
θ∈{x,y,z}

(Mθ ⊗ Eiθ )�σ n
i

+ 1

2

∑
k∈Ni

[
(Pik ⊗ Fik)�σ n

i + (Pik ⊗ Gik)�σ n
k

]

(�i ⊗ Ki )
�σi

n+1 − �σi
n

�t
= −

∑
θ∈{x,y,z}

(Nθ ⊗ Eiθ )�vn+ 1
2

i

+ 1

2

∑
k∈Ni

[
(Qik ⊗ Fik)�vn+ 1

2
i + (Qik ⊗ Gik)�vn+ 1

2
k

]
,

(14)

where the superscript n indicates the time step. We chose to apply
the definition of the time step as given by Käser et al. (2008), which
links the mesh width and time step as follows

�t < min
i

(
1

2ki + 1
· 2ri

VP i

)
, (15)

where ri is the radius of the sphere inscribed in the element indexed
by i , V Pi is the P-wave velocity in the element, and ki is the poly-
nomial degree used in the element. Eq. (15) is a heuristic stability
criterion that usually works well. However, there is no mathematical
proof for unstructured meshes that guarantees numerical stability.

3 C O M P U TAT I O NA L A S P E C T S

As mentioned in Section 2, the DG-FEM is a local method, and
therefore it is naturally suitable for parallel computing. In our im-
plementation, the parallelism relies on a domain-partitioning strat-
egy, assigning one subdomain to one CPU. This corresponds to the
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Figure 2. Speed-up observed when the number of MPI processes is in-
creased from 1 to 256 for modelling with a mesh of 1.8 million P2 elements.
The ideal speed-up is plotted with a dashed line, the observed speed-up with
a continuous line. These values were observed on a computing platform
with bi-processor quad core Opteron 2.3 GHz CPUs interconnected with
Infiniband at 20 Gb s−1.

single program mutiple data (SPMD) architecture, which means
that there is only one program and each CPU uses the same exe-
cutable to work on different parts of the 3-D mesh. Communication
between the subdomains is performed with the message passing
interface (MPI) parallel environment (Aoyama & Nakano 1999),
which allows for applications to run on distributed memory ma-
chines. For efficient load balancing among the CPUs, the mesh is
divided with the partitioner METIS (Karypis & Kumar 1998), to
balance the number of elements in the subdomains, and to minimize
the number of adjacent elements between the subdomains. These
two criteria are crucial for the efficiency of the parallelism on large-
scale numerical simulations. Fig. 2 shows the observed speed-up
(i.e. the ratio between the computation time with one CPU, and the
computation time with N CPUs) when the number of MPI processes
is increased from 1 to 256, for strong scaling calculations on a fixed
mesh of 1.8 million P2 elements. This figure shows good efficiency
of the parallelism, of around 80 per cent.

In our formulation, another key point is the time step, which is
common for all of the subdomains. The time step should satisfy
the stability condition given in eq. (15) for every element. Conse-
quently, the element with the smallest time step imposes its time

step on all of the subdomains. We should mention here a more elab-
orate approach with local time stepping (Dumbser et al. 2007) that
allows for elements to have their own time step independent of the
others. Nevertheless, the p-adaptivity offered by DG-FEM allows
mitigation of the computational burden resulting from the common
time step. This point is detailed in section 6. From a technical point
of view, we implemented the method in the FORTRAN 90 language
without the use of specific mathematical libraries like Basic Lin-
ear Algebra Subroutines (BLAS). Indeed, the matrix products in
the DG-FEM formulation involve relatively small matrices (typi-
cally 10 × 10 in P2). Therefore, we did not experience substantial
gains when calling mathematical libraries, as already observed by
Komatitsch et al. (2008) for SEM.

4 S O U RC E E XC I TAT I O N A N D
B O U N DA RY C O N D I T I O N S

We consider here the implementation of a point source in the DG-
FEM, and we detail two types of boundary conditions that are
generally encountered in seismic modelling: the free surface, and
the absorbing boundary conditions. Special attention is given to
the latter, based on the CPML (Drossaert & Giannopoulos 2007;
Komatitsch & Martin 2007). To our knowedge, this point has not
been studied intensely in a DG-FEM framework.

4.1 Source excitation

The excitation of a point source is projected onto the nodes of the
element that contains the source as follows

�sn
i = �ϕi (�xs)∑di

j=1 ϕi j (�xs)
∫

Vi
ϕi j (�x)dV

s(t), (16)

with �sn
i the nodal values vector associated to the excited component,

t = n�t, �xs the position of the point source and s(t) the source
function. Eq. (16) gives the source term that should be added to
the right-hand side of eq. (14) for the required components. It should
be noticed that this term is only applied to the element containing the
source. Depending on the approximation order, the spatial support of
the source varies. Fig. 3(a) shows that the support of a P0 element
is actually the whole volume of the element (represented on the
cross-section with a homogeneous white area). In this case, no
precise localization of the source inside the element is possible due
to the constant piecewise interpolation approximation. On the other
hand, in a P1 element (Fig. 3b), the spatial support of the source
is linear and allows for a rough localization of the source. In a P2

Figure 3. (a) Cross-section of the mesh near the source position, indicated with a yellow star in the xy plane. This view represents the spatial support of the
stress component in a P0 element containing the point source. (b) Same as (a) with a P1 element. (c) Same as (a) with a P2 element.
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element (Fig. 3c), the quadratic spatial support tends to resemble
the expected Dirac in space close to the source position. It should
be noted that the limitations concerning source localization also
apply to the solution extraction at the receivers, according to the
approximation order of the elements containing the receivers.

4.2 Free surface condition

For the element faces located on the free surface, we use an explicit
condition by changing the flux expression locally. This is carried out
with the concept of virtual elements, which are exactly symmetric to
the elements located on the free surface. Inside the virtual elements,
we impose a velocity wavefield that is identical to the wavefield of
the corresponding inner elements, and we impose an opposite stress
wavefield. As a result, the velocity is seen as continuous across the
free surface, while the stress is equal to zero on the faces related to
the free surface.

4.3 Absorbing boundary condition

For simulations in an infinite medium, an absorbing boundary con-
dition needs to be applied at the edges of the numerical model. An
efficient way to mimic such an infinite medium can be achieved
with PMLs, which was initially developed by Berenger (1994) for
electromagnetics, and adapted for elastodynamics by Chew & Liu
(1996). PMLs are anisotropic absorbing layers that are added at the
periphery of the numerical model. The classical PML formulation is
based on splitting of the elastodynamic equations. In the following,
we use a new kind of PML, known as CPML, which does not require
split terms. The CPML originated from Roden & Gedney (2000) for
electromagnetics and was applied by Komatitsch & Martin (2007)
and Drossaert & Giannopoulos (2007) to the elastodynamic system.
CPML is based on an idea of Kuzuoglu & Mittra (1996), who ob-
tained a strictly causal form of PML by adding some parameters in
the standard damping function of Berenger (1994), which enhanced
the absorption of waves arriving at the boundaries of the model with
grazing incidence angles.

4.3.1 CPML formulation

Inside the CPML, a damping function is applied only onto the spatial
derivative perpendicular to the boundary. In the CPML formulation,
the damping function is defined in the frequency domain as follows

sθ = κθ + dθ

αθ + iω
∀θ ∈ {x, y, z}, (17)

with angular frequency ω and coefficients κθ ≥ 1 and αθ ≥ 0. The
damping profile dθ varies from 0 at the entrance of the layer, up to
a maximum real value dθ max at the end (Collino & Tsogka 2001)
such that

dθ = dθ max

( δθ

Lcpml

)2

, (18)

and

dθ max = −3VP
log(Rcoeff )

2Lcpml
∀θ ∈ {x, y, z}, (19)

with δθ as the depth of the element barycentre inside the CPML,
Lcpml the thickness of the absorbing layer, and Rcoeff the theoretical
reflection coefficient. For all of the tests presented in the following,
we chose Rcoeff = 0.1 per cent. αθ is a coefficient that varies from a
maximum value (αθmax = π f0) at the entrance of the CPML, to zero

at its end. If κθ = 1 and αθ = 0, the classical PML formulation is
obtained. In the CPML, the spatial derivatives are replaced by

∂θ̃ → 1

κθ

∂θ + ζθ ∗ ∂θ ∀θ ∈ {x, y, z}, (20)

with

ζθ (t) = − dθ

κ2
θ

H (t)e−(dθ κθ +αθ )t ∀θ ∈ {x, y, z}, (21)

where H(t) denotes the Heaviside distribution. Roden & Gedney
(2000) have demonstrated that the time convolution in eq. (20) can
be performed in a recursive way using memory variables defined by

ψθ = ζθ ∗ ∂θ ∀θ ∈ {x, y, z}. (22)

ψθ represents a memory variable in the sense that it is updated at
each time step. Komatitsch & Martin (2007) showed that the term
κθ has a negligible effect on the absorbing abilities, and it can be
set to 1. If we take κθ = 1 and derive eq. (22) using eq. (21), we get

∂tψθ = −dθ ∂θ − (dθ + αθ )ψθ ∀θ ∈ {x, y, z}. (23)

We can introduce the memory variables into the initial elastody-
namic system of eq. (1) with the definition of vectors

�ψθ (�v) = [ψθ (vx ) ψθ (vy) ψθ (vz)]T

�ψθ (�σ ) = [ψθ (τ ) ψθ (τ ′) ψθ (τ ′′) ψθ (σxy) ψθ (σxz) ψθ (σyz)]T

∀θ ∈ {x, y, z}. (24)

If we apply the change of variables in eq. (20), eq. (1) becomes

ρ∂t �v =
∑

θ∈{x,y,z}
∂θ (Mθ �σ ) +

∑
θ∈{x,y,z}

Mθ
�ψθ (�σ )

�∂t �σ =
∑

θ∈{x,y,z}
∂θ (Nθ �v) +

∑
θ∈{x,y,z}

Nθ
�ψθ (�v). (25)

Eq. (25) is the initial elastodynamic system augmented by the mem-
ory variables on the right-hand side. In combination, another extra
system dealing with the memory variables is

∂t �ψθ (�σ ) = −dθ ∂θ (�σ ) − (dθ + αθ ) �ψθ (�σ )

∂t �ψθ (�v) = −dθ ∂θ (�v) − (dθ + αθ ) �ψθ (�v) ∀θ ∈ {x, y, z}. (26)

The collection of memory variables associated with each element
located in the CPMLs is made of 22 memory variables per DOF.
These variables correspond to the 22 spatial derivatives involved in
eq. (1). If we apply the DG-FEM formulation as presented in the
previous section to eqs (25) and (26), we get

ρi (I3 ⊗ Ki )
�vi

n+ 1
2 − �vi

n− 1
2

�t
= −

∑
θ∈{x,y,z}

(Mθ ⊗ Eiθ )�σ n
i

+ 1

2

∑
k∈Ni

[
(Pik ⊗ Fik)�σ n

i + (Pik ⊗ Gik)�σ n
k

]

+ (I3 ⊗ Ki )
∑

θ∈{x,y,z}
Mθ

�ψθ

(�σ n
i

)

(�i ⊗ Ki )
�σi

n+1 − �σi
n

�t
= −

∑
θ∈{x,y,z}

(Nθ ⊗ Eiθ )�vn+ 1
2

i

+ 1

2

∑
k∈Ni

[
(Qik ⊗ Fik)�vn+ 1

2
i + (Qik ⊗ Gik)�vn+ 1

2
k

]

+ (I3 ⊗ Ki )
∑

θ∈{x,y,z}
Nθ

�ψθ

(
�vn+ 1

2
i

)
,

(27)
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incombination with the memory variable system

(I3 ⊗ Ki )
�ψθ

(�σ n
i

) − �ψθ

(�σ n−1
i

)
�t

= di θ (I6 ⊗ Eiθ )�σ n−1
i

− di θ
1

2

∑
k∈Ni

nik θ

[
(I6 ⊗ Fik)�σ n−1

i + (I6 ⊗ Gik)�σ n−1
k

]
− (I3 ⊗ Ki )(di θ + αi θ ) �ψθ

(�σ n−1
i

)

(I3 ⊗ Ki )

�ψθ

(
�vn+ 1

2
i

)
− �ψθ

(
�vn− 1

2
i

)
�t

=
∑

θ∈{x,y,z}
di θ (I3 ⊗ Eiθ )�vn− 1

2
i

− di θ
1

2

∑
k∈Ni

nik θ

[
(I3 ⊗ Fik)�vn− 1

2
i + (I3 ⊗ Gik)�vn− 1

2
k

]

− (I3 ⊗ Ki )(di θ + αi θ ) �ψθ

(
�vn− 1

2
i

)
∀θ ∈ {x, y, z}. (28)

Eqs (27) and (28) indicate that p-adaptivity is also supported in the
CPMLs. At the end of the CPMLs, we apply a simple free surface
condition as explained in the previous section.

4.3.2 Validation tests

To validate the efficiency of the CPML, we present some simula-
tions of wave propagation in a homogeneous, isotropic and purely
elastic medium. The model size is 8 km × 8 km × 8 km, and the

medium properties are: VP = 4000 m s−1, VS = 2310 m s−1 and ρ =
2000 kg m−3. An explosive source is placed at coordinates (xs =
2000 m, ys = 2000 m, zs = 4000 m) and a line of receivers is
located at coordinates (3000 m ≤ xr ≤ 6000 m, yr = 2000 m,
zr = 4000 m) with 500 m between receivers. The conditions of the
tests are particularly severe, since the source and the receivers are
located close to the CPMLs (at a distance of 250 m), thus favour-
ing grazing waves. The source signature is a Ricker wavelet with
a dominant frequency of 3 Hz and a maximum frequency of about
7.5 Hz. Due to the explosive source, only P-wave is generated
and the minimum wavelength is about 533 m. The mesh contains
945 477 tedrahedra with an average edge of 175 m, making a dis-
cretization of about 3 elements per λmin. Figs 4(c) and (d) show
the results obtained with the P2 interpolation and CPMLs of 10-
elements width (Lcpml = 1750 m) at all edges of the model. With the
standard scale, no reflection can be seen from the CPMLs. When the
amplitude is magnified by a factor of 100, some spurious reflections
are visible. This observation is in agreement with the theoretical re-
flection coefficient (Rcoeff = 0.1 per cent) in eq. (19). Fig. 5(a)
allows to compare the seismograms computed with CPMLs of 10-
elements width and the seismograms computed in a larger model
without reflection in the time window.

As shown by Collino & Tsogka (2001), the thickness of the
absorbing layer plays an important role in the absorption efficiency.
In Figs 4(a) and (b), the same test was performed with CPMLs
of five-elements width (Lcpml = 875 m) at all edges of the model.

Figure 4. Snapshots at 1.6 s of the velocity component vx in the plane xy that contains the source location. CPMLs of five-elements width are applied at all
edges of the model. The modelling was carried out with P2 interpolation. White lines, the limits of the CPMLs; black cross, the position of the source. (a) Real
amplitude. (b) Amplitude magnified by a factor of 100. (c) and (d) Same as (a) and (b) with CPMLs of 10-elements width.
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Figure 5. (a) Seismograms of the velocity component vx. The amplitude of each seismogram is normalized. Black continuous line, numerical solution in large
model without reflection in the time window; dashed line, numerical solution with 10-elements width CPMLs; grey line, residuals magnified by a factor of 10.
(b) Same as (a) with 10-elements width M-CPMLs.

Compared to Figs 4(c) and (d), the amplitude of the reflections have
the same order of magnitude. Nevertheless, in the upper and left
parts of the model, some areas with a strong amplitude appear close
to the edges. These numerical instabilities arise at the outer edges
of the CPMLs, and they expand over the complete model during
the simulations. Instabilities of PML in long time simulations have
been studied in electromagnetics (Abarbanel et al. 2002; Bécache
et al. 2004). In the following, we present a numerical stability study
of CPML combined with DG-FEM for the elastodynamics. The
results are shown in Fig. 6, with snapshots at long times for CPMLs
of 5- and 10-elements widths. In these snapshots, the instabilities
arise at the four corners of the model (at 20 s for the 10-elements
width CPML). Tests with larger CPMLs (not shown) demonstrate
that when the CPML width is 20 elements, these instabilities do
not appear. Such instabilities were experienced by Meza-Fajardo &
Papageorgiou (2008) with standard PML, for an isotropic medium.
These authors proposed the application of an additional damping
in the PML, onto the directions parallel to the layer, leading to a
multiaxial PML (M-PML). Fig. 7 is equivalent to Fig. 6, instead
that 10 per cent of the damping profile defined in eq. (18) has been
added onto the directions parallel to the CPMLs (in the latter named
M-CPMLs). As a result, instabilities do not appear when the CPML
width is at least 10 elements while the efficiency of the absorption
is preserved as shown by Fig. 5(b) with similar residuals compared
to Fig. 5(a).

4.3.3 Saving computation time and memory

Table 1 gives the computation times for updating the velocity and
stress wavefields in one element for one time step, for different ap-
proximation orders, without or with the update of the CPML mem-
ory variables (i.e. elements located outside or inside the CPMLs).
These computation times illustrate the significant increase with re-
spect to the approximation order, and they allow an evaluation of the
additional costs of the CPML memory variables computation from
40 per cent to 60 per cent. The effects of this additionnal cost have
to be analysed in the context of a domain-partitioning strategy. As
introduced in Section 3, the mesh is divided into subdomains, using
a partitioner. Fig. 8(a) shows the layout of the subdomains that were

obtained with the partitioner METIS (Karypis & Kumar 1998) along
the xy plane used in the previous validation tests. The mesh was di-
vided into 32 partitions, although only a few of these are visible on
the cross-section in Fig. 8(a). We used an unweighted partitioning,
meaning that each partition contains approximately the same num-
ber of elements. The subdomains, partially located in the CPMLs,
contain different numbers of CPML elements. In large simulations,
some subdomains are totally located inside the CPMLs, and some
others outside the CPMLs. In such a case, the extra computation
costs of the subdomains located in the absorbing layers penalize
the whole simulation. Indeed, most of the subdomains spend 40–
60 per cent of the time just waiting for the subdomains located in
the CPMLs to complete the computations at each time step. For a
better load balancing, we propose to benefit from the p-adaptivity of
DG-FEM, using lower approximation orders in the CPMLs. Indeed,
inside the absorbing layers, we do not need a specific accuracy, and
consequently the approximation order can be decreased. Table 1 in-
dicates that such a mixed numerical scheme is advantageous, since
the computation time required for a P0 or P1 element located in
the CPML is shorter than the computation time of a standard P2

element. Fig. 8(b) shows the approximation order per element when
P1 is used in the CPMLs and P2 in the rest of the medium. We
should note here that the interface between these two areas is not
strictly aligned to a cartesian axis, and has some irregularities due
to the shape of the tetrahedra. Although it is possible to constrain
the alignment of the element faces parallel to the CPML limits, we
did not observe significant differences in the absorption efficiency
whether the faces are aligned or not.

Fig. 9(a) shows the seismograms computed when the modelling
was carried out with P2 inside the medium and P1 in the CPMLs.
Absorbing layers of 10-elements width are applied at all edges of
the model. For comparison, Fig. 9(b) shows the results obtained
with P0 in the CPMLs and P2 for the rest of the medium. In
this case, the spurious reflections have significant amplitudes. The
snaphots (not presented here) reveal a large number of artefacts
both in the CPMLs and in the medium. These artefacts make it
impossible to use these seismograms for practical applications. On
the other hand, the seismograms computed with the mixed scheme
P2/P1 show weak artefacts, and are reasonably comparable with the
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Figure 6. (a), (b) and (c) Snapshots of the velocity component vx in the plane xy that contains the source location at 10, 20 and 30 s, respectively. The amplitude
is plotted without any magnification factor. The modelling was carried out with P2 interpolation. CPMLs with five-elements width are applied at all edges
of the model. White lines, the limits of the CPMLs; black cross, the position of the source. (d), (e) and (f) Same as (a), (b) and (c), respectively, except with
CPMLs of 10-elements width.

seismograms obtained with complete P2 modelling (compare
Figs 9a and 5a). Therefore, taking into account that the compu-
tation time and the memory consumption of the P2/P1 simulation
are nearly half of those required with the full P2 modelling, we
can conclude that this mixed numerical scheme is of interest. It
should be noticed that it is possible to adopt a weighted partitioning
approach to overcome partly load balancing issues. Nevertheless,
it does not prevent from using our mixed scheme approach which
allows a significant reduction of the number of CPML memory vari-
ables. Actually, our strategy is totally compatible with a weighted
partitioning and the combination of both would be more efficient
than using only one of them. We should also stress that the saving in
CPU time and memory provided with this kind of low-cost absorb-
ing boundary condition is crucial for large 3-D simulations, and this
becomes a must in the context of 3-D seismic imaging applications
that require a lot of forward problems, such as FWI.

5 A C C U R A C Y O F D G - F E M W I T H
T E T R A H E D R A L M E S H E S

There are a variety of studies in the literature concerning the dis-
persive and dissipative properties of DG-FEM with reference to

wave-propagation problems. To cite but a few examples: Ainsworth
et al. (2006) provided a theoretical study for the 1-D case; Basabe
et al. (2008) analysed the effects of basis functions on 2-D periodic
and regular quadrilateral meshes; and Käser et al. (2008) discussed
the convergence of the DG-FEM combined with ADER time inte-
gration and 3-D tetrahedral meshes. More related to our particular
concern here, Delcourte et al. (2009) provided a convergence anal-
ysis of the DG-FEM with a centred flux scheme and tetrahedral
meshes for elastodynamics. They demonstrated the sensitivity of
the DG-FEM to the mesh quality, and they proved that the conver-
gence is limited by the second-order time integration we have used
in this study, despite the order of the basis function.

5.1 Convergence study

We present a convergence analysis of the DG-FEM P2, P1 and P0

schemes following the approach of Delcourte et al. (2009). The
analysis is based on the propagation of an eigenmode in a unit cube
with a free surface condition applied at all faces. The properties
of the cube are VP = 1 m s−1, VS = 0.5 m s−1 and ρ = 1 kg m−3.
According to these parameters, the solution of the eigenmode (1,1,1)
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Figure 7. (a), (b) and (c) Snapshots of the velocity component vx in the plane xy that contains the source location at 10, 20 and 30 s, respectively. The amplitude
is plotted without any magnification factor. The modelling was carried out with P2 interpolation. M-CPMLs with five-elements width and 10 per cent of the
damping profile added onto the directions parallel to the layer were applied at all edges of the model. White lines, the limits of the M-CPMLs; black cross, the
position of the source. (d), (e) and (f) Same as (a), (b) and (c), respectively, except with M-CPMLs of 10-elements width.

Table 1. Computation times for updating the velocity and stress wave-
fields in one element for one time step. These values correspond to average
computation times for a computing platform with bi-processor quad core
Opteron 2.3 GHz CPUs interconnected with Infiniband 20 at Gb s−1.

Approximation Element outside Element inside
order CPML (µs) CPML (µs)

P0 2.6 3.6
P1 5.0 8.3
P2 21.1 29.9

is given by

vx = cos(πx) [sin(πy) − sin(π z)] cos(�t)

vy = cos(πy) [sin(π z) − sin(πx)] cos(�t)

vz = cos(π z) [sin(πx) − sin(πy)] cos(�t)

σxx = −A sin(πx) [sin(πy) − sin(π z)] sin(�t)

σyy = −A sin(πy) [sin(π z) − sin(πx)] sin(�t)

σzz = −A sin(π z) [sin(πx) − sin(πy)] sin(�t)

σxy = σxz = σyz = 0,
(29)

where A = 1/
√

2 and � = π/
√

2. In order to assess the con-
vergence rate of the method, we made several tests with different
unstructured tetrahedral meshes with the characteristics summa-
rized in Table 2. The initial conditions are imposed at each node
of the elements by setting the velocities at t = 0 and the stresses
at t =�t/2 following eq. (29). We place a bunch of receivers ac-
cording to a cartesian grid that matches the size of the cube. The
spacing between receivers is 0.1 m, making a total number of 1331
receivers (11 × 11 × 11). At each receiver, a sinusoidal signal with
a period of T = 2

√
2s should be observed. This monochromatic

signal corresponds to the propagation of P-waves across the cube
that are continuously reflected at the cube faces. Consequently, we
can establish a relationship between the simulation time and the
propagated distance. In the Fig. 10(a), we present the normalized
rms error between the analytical and numerical solutions at t =
5T and at t = 50T , corresponding to a propagation of 5 and 50
wavelengths, respectively. We can observe that no convergence is
achieved with P0 while a second-order convergence is observed for
both P1 and P2 at t = 5T . As expected, an increase of the error
is seen at longer times, resulting from the accumulation of errors
with time iterations. At t = 50T , a second-order convergence is
still observed for P1 while the convergence of P2 becomes more

C© 2010 The Authors, GJI, 183, 941–962

Geophysical Journal International C© 2010 RAS



An hp-adaptive DG-FEM for 3-D seismic modelling 951

Figure 8. (a) Layout of the subdomains obtained with the partitioner METIS (Karypis & Kumar 1998) along the xy plane that contains the source location.
Grey lines, the limits of the CPMLs. The mesh was divided into 32 partitions, although only a few of these are visible on this cross-section. (b) View of the
approximation order per element along the same plane. Black, the P2 elements; white, the P1 elements.

Figure 9. (a) Seismograms of the velocity component vx. The amplitude of each seismogram is normalized. The modelling is done with P1 in the CPMLs
and P2 inside the medium. Black continuous line, numerical solution in large model without reflection in the time window; dashed line, numerical solution
with 10-elements width CPMLs; grey line, residuals magnified by a factor of 10. (b) Same as (a) except the modelling is done with P0 in the CPMLs and P2

inside the medium.

Table 2. Average edge length, minimum and maximum insphere radius and number of elements of the unstructured
tetrahedral meshes used for the convergence study.

Mesh 1 2 3 4 5 6

Average edge (m) 0.19 0.12 0.08 0.05 0.04 0.03
Min. insphere radius (m) 0.0203 0.0132 0.0078 0.0048 0.0030 0.0019
Max. insphere radius (m) 0.0486 0.0304 0.0211 0.0155 0.0117 0.0087
Number of elements 1561 5357 17 932 49 822 154 297 388 589

erratic. The seismograms of Figs 11(a) and (a) represent the vx com-
ponent observed at short and long times, respectively. These seis-
mograms have been recorded at the position (x = 0 m, y = 0 m, z =
0.5 m) with the mesh # 4. At short times, we can see a good match
between the numerical and analytical solutions for both P1 and P2

schemes. Concerning the P0 scheme, we can notice a strong distor-
tion of the sinusoidal signal with a apparent period that is shorter
than the analytical one. We can conclude that the P0 scheme does
not provide accurate results with unstructured tetrahedral meshes.

At long times, the agreement is still good for P2 (thus explaining
the slow convergence observed when using finer meshes) but we
can observe a strong delay for the P1 scheme. The delay is reduced
when using finer meshes as indicated by the convergence curve in
Fig. 10(a). In terms of precision and efficiency, the gain from the
P2 scheme compared with the P1 scheme can be evaluated from
Fig. 10(b). For the same level of precision, the computation time of
the P2 modelling is nearly two orders of magnitude lower than the
computation time of the P1 modelling.
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Figure 10. (a) Root mean square error between the analytical and numerical solutions versus the inverse of the maximum insphere radius r. Black dashed line,
the error against the P0 solution at t = 5T ; black continuous line, the error against P0 at t = 50T ; red dashed line, the error against the P1 solution at t = 5T ;
red continuous line, the error against P1 at t = 50T ; blue dashed line, the error against the P2 solution at t = 5T ; blue continuous line, the error against P2

at t = 50T ; grey curve, second-order slope. (b) Same as (a) except the root mean square error is plotted versus the elapsed computation time. The tests have
been performed with 32 CPUs on a computing platform with bi-processor quad core Opteron 2.3 GHz CPUs interconnected with Infiniband at 20 Gb s−1.

Figure 11. (a). Seismograms of velocity component vx computed with the P2, P1 and P0 schemes for t ∈ [0, 3 T ]. Continuous line, the DG-FEM solution;
dashed line, the analytical solution. (b) Same as (a) for t ∈ [47T , 50T ].

5.2 Accurate modelling of surface waves

Accurate modelling of surfaces wave is crucial for seismological
studies, such as for the prediction of site effects or FWI of land
seismic data, where the receivers are usually located on the free
surface. For simple geometries, some analytical solutions exist. The
propagation of waves along the surface of an elastic half space was
discussed by Lamb (1904) for a force located on the surface, and an
analytical solution was defined by Garvin (1956) for the buried line-
source problem. Nevertheless, in the case of complex topographies,
a numerical method needs to be used. For this, a method suitable
for unstructured meshes has major advantages. In the following,
for validation purposes, we consider a homogeneous, isotropic and
purely elastic medium with a planar free surface, and we adopt
the experimental set-up defined in the WP1_HHS1 test case of the
SPICE test code validation project (Moczo et al. 2005). The model
dimensions are 20 km × 20 km × 10 km in the directions x, y
and z, respectively. The physical properties are given by VP = 6000
m s−1, VS = 3464 m s−1 and ρ = 2700 kg m−3. The source is a point

dislocation with the only non-zero moment tensor component Mxy.
The moment-rate time history is given by

Mxy(t) = M0
t

T 2
exp

(
− t

T

)
,

with M0 = 1018 Nm and T = 0.1 s. Considering a maximum fre-
quency of 5 Hz, the minimum wavelength is 693 m. The source and
receiver locations are given in Table 3. The distance between the
source and the receivers varies from 1 to 16 λmin. We performed
the computation with the mixed scheme, with P2 elements in the
medium and P1 elements in the CPMLs. Absorbing layers were
applied at all edges of the model, except at the top, where a free
surface condition was used. Figs 12(a) and (b) allow a comparison
of the seismograms of the components vx and vz, respectively, ob-
tained with DG-FEM and with the reflectivity method (Bouchon
1981; Coutant 1989). All of these seismograms were filtered be-
tween 0.13 and 5 Hz. With an average mesh spacing of 3 elements
per wavelength, a good match is seen between the analytical and
numerical solutions for all of the traces. Exceptions are found for
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Table 3. Source and receiver locations for the planar free-surface
modelling.

Type X (m) Y (m) Z (m)

Source 0 0 –693
Receiver #1 0 693 0
Receiver #2 0 5543 0
Receiver #3 0 10 932 0
Receiver #4 490 490 0
Receiver #5 3919 3919 0
Receiver #6 7348 7348 0
Receiver #7 577 384 0
Receiver #8 4612 3075 0
Receiver #9 8647 5764 0

the component vz in traces #1, 2 and 3, where the DG-FEM fails to
reproduce strictly null signals, but exhibits weak residuals. These
residuals might be due to the spatial support of the source, which
does not coincide with a pure Dirac in space, as depicted in Fig. 3(c).

6 H P - A DA P T I V I T Y

6.1 Two-step refinement approach

One of the most interesting aspects of the DG-FEM is the possibil-
ity to mix approximation orders without any special efforts. This
feature relies on the local support of the basis functions, which are
discontinuous between the elements, as was introduced in Section 2,
and is referred to as p-adaptivity. When combined with mesh re-
finement, this method becomes hp-adaptive. As in the initial study
of Babuska & Suri (1990), hp-adaptive FEMs associated with a
posteriori error estimates have gained a lot of interest due to the
exponential rates of convergence seen with the correct combination
of h- and p- refinements. In the present study, we propose to define a
simple a priori error estimate to predict the required approximation
order for each element. Our approach is based on two major steps.
The first refers to the mesh construction, with the intention to build
a tetrahedral mesh that is locally adapted to the media properties.
Initially, a mesh is generated that roughly satisfies the discretization
required by the target approximation order. At the very beginning
of the procedure, the mesh can even be regular. Afterwards, the el-
ements are checked against the physical properties of the medium,

and the list of elements that need to be refined is used for the next
iteration. The process is repeated until the list of elements to refine
is empty. We used to build and refine our meshes with the tool
TETGEN (Si & Gärtner 2005) which allows to specify for each
element the maximum authorized volume. To compute the optimal
volume for each element, we usually define a maximum ratio be-
tween the insphere radius and the wavelength and then we evaluate
the corresponding volume of an equilateral tetrahedron. Given the
complexity of the medium to be discretized, tetrahedral mesh gen-
erators can produce ill-shaped tetrahedra even if quality criteria are
used. A common practice is to limit the aspect ratio, which is defined
by the ratio between the maximum side length and the minimum
height of the elements. Nevertheless, despite robust algorithms,
like the Delaunay refinement algorithm of Shewchuk (1998), some
almost flat elements can be present at the end of the refinement
process, which are known as slivers. Besides these slivers, another
critical phenomenon can occur where there are abrupt contrasts in
the physical properties. In these situations, the refinement algorithm
might not be able to perform the optimal discretization. This occurs
when the size of the elements cannot vary as fast as the medium
properties for geometrical reasons. In that case, some elements are
necessarily undersized. Consequently, the construction of an ideal
mesh is a difficult task, and a large range of element sizes is often
seen in constrained meshes. To mitigate the negative effects of the
badly sized elements, we propose to downgrade these elements with
lower approximation orders. This is done in the second step of our
refinement approach, which is devoted to the p-adaptivity.

6.2 Numerical results

Our intention here, is to illustrate the benefits of the p-adaptivity.
For that purpose, we consider the case of the eigenmode propa-
gation in the unit cube presented in Section 5.1 and introduce a
refined area in meshes #1, 2 and 3 in order to create artificially
a large range of element sizes. We obtain the new meshes #1′, 2′

and 3′ by defining a cubic zone of size 0.1 m × 0.1 m × 0.1 m
in the middle of the model where the average edge length is ten
times smaller than h, the average edge length in the surrounding
mesh. The characteristics of the meshes can be found in Table 4.
The ratio between the maximum and minimum insphere radius have
been significantly increased compared to the uniform meshes used

Figure 12. (a) Seismograms of the velocity component vx computed for the planar free-surface modelling of the SPICE test code validation project. Continuous
line, the analytical solution provided by the reflectivity method; dashed line, the DG-FEM solution. (b) Same as (a) with the component vz.
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Table 4. Minimum and maximum insphere radius and number of elements
of the unstructured tetrahedral meshes with a refined area.

Mesh 1′ 2′ 3′

Min. insphere radius (m) 0.0017 0.0010 0.0007
Max. insphere radius (m) 0.0425 0.0292 0.0198
Number of elements 6952 26 374 82 668

previously (compare with Table 2). The cross section of the mesh
#3′ in Fig. 13(a). allows to see the refined area in the center of the
model. For the p-adaptivity, we adopted the following criteria: if the
insphere radius is comprised between h/30 and h/10, the approxi-
mation order is downgraded to P1, and if the radius is smaller than
h/30, the approximation order is downgraded to P0. This strategy
is depicted in Fig. 14, where for each approximation order, the time
step evaluated with eq. (15) versus the insphere radius of one sin-
gle equilateral tetrahedron is shown. When applying these criteria,
the time step does not decrease uniformly according to the size
of the element. Instead, two jumps (Fig. 14, dashed line) allow the
time step to increase despite the reduction in the element size. These
jumps are due to the decrease in the approximation order from P2 to
P1, and from P1 to P0. According to the adopted criteria, we obtain
the distribution of approximation orders indicated in Table 5. The
number of downgraded elements is quite important and represent
for all meshes approximatively 60 per cent. Nevertheless, the down-
graded elements are mostly located in the vicinity of the refined area
as shown in Fig. 13(b) and represent in average only 3 per cent of
the volume of the model. Moreover, despite the fact that the P0

scheme does not provide accurate results, the introduction of such
elements allows a drastic increase of the time step by a factor of
five. The impact of the downgraded elements can be analysed with
Fig. 15(a) showing the normalized rms error between the analytical,
the P2 and the p-adaptive numerical solutions at t = 50T . Actually,
the p-adaptive scheme exhibits an error which is comparable to the
complete P2 modelling except for the mesh #3′, where we observe
a particular behavior of the P2 scheme with an increase of the error
despite the mesh spacing has been reduced. This indicates that a
large distribution of element sizes has an effect on the convergence
on the P2 scheme. On the contrary, the p-adaptive scheme seems

Figure 14. Time step versus the insphere radius of one single equilateral
tetrahedron computed with eq. (15), for different approximation orders.
Grey curve, P0; blue curve, P1; red curve, P2; dashed line, the p-adaptive
approach used for mesh #3′.

less sensitive and preserves the second-order convergence. From a
computational point of view, the benefit of the approach appears
in Fig. 15(b) where the error is represented versus the computa-
tion time. For the same computation time, the p-adaptive approach
shows a better misfit than the full P2 modelling, as indicated by
the position of the p-adaptive curve at the left of the P2 curve. The
hp-refinement provided by DG-FEM is particularly interesting in
the case of complex refined meshes where small elements are gen-
erally produced by tetrahedral mesh generators. The efficiency of
our approach in such cases is illustrated in the next section.

7 A P P L I C AT I O N T O C O M P L E X M E D I U M

We here demonstrate the potential of DG-FEM with hp-adaptivity
in a challenging seismological model, where the computation of
the surface waves is critical for the prediction of site effects. These
phenomena arise when the ground motion caused by an earthquake

Figure 13. (a) View of the mesh in the xy plane at z = 0.5 m, showing the size of the elements (insphere radius) in the mesh #3′. (b) Same as (a) with the
approximation order associated with each element. White, P2 elements; grey, P1 elements; black, P0 elements.
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Table 5. Number of elements per approximation orders and time steps for the complete P2 and the
p-adaptive modelling.

Nb P0 elements Nb P1 elements Nb P2 elements Time step

Full P2 scheme with mesh 1′ 0 0 6952 0.0006745
p-adaptive scheme with mesh 1′ 2520 1606 2826 0.0033372
Full P2 scheme with mesh 2′ 0 0 26 374 0.0004187
p-adaptive scheme with mesh 2′ 10 883 5849 9642 0.0020934
Full P2 scheme with mesh 3′ 0 0 82 668 0.0002737
p-adaptive scheme with mesh 3′ 34 176 17 483 31 009 0.0013687

Figure 15. (a) Root mean square error between the analytical and numerical solutions versus the inverse of the maximum insphere radius r at t = 50T . Blue
line, the error against the P2 solution; pink line, the error against the p-adaptive solution; grey curve, second-order slope. (b) Same as (a) except the root mean
square error is plotted versus the elapsed computation time. The tests have been performed with 32 CPUs on a computing platform with bi-processor quad
core Opteron 2.3 GHz CPUs interconnected with Infiniband at 20 Gb s−1.

is amplified by geological structures. Site effects can be related to a
sedimentary basin, like for the great earthquake in Mexico in 1985
(Campillo et al. 1989; Kawase 2003). The importance of site effects
and their study were the main motivation for setting-up worldwide
test sites. Here, we consider the EUROSEISTEST verification and
validation project (Chaljub et al. 2009), and address the issue of
modelling the ground motion in a basin structure. We compare the
results obtained with our method against results computed with
SEM.

7.1 Description of EUROSEISTEST verification
and validation project

The EUROSEISTEST verification and validation project refers to
the geological structure of the Mygdonian sedimentary basin about
30 km E–NE of the city of Thessaloniki (northern Greece). It
mainly consists of a sedimentary basin with extreme low veloci-
ties and a high Poisson ratio, embedded in high velocity bedrock.
The velocity structure of the area is well known along the central
section AB (Fig. 16b), following a large number of geophysical
and geotechnical measurements (Jongmans et al. 1998), surface
and borehole seismic prospecting, and electrical soundings and mi-
crotremor recordings. The 3-D structure in the whole graben was
then extrapolated from this central profile, taking into account infor-
mation from many single-point microtremor measurements, some
array microtremor recordings, one EW refraction profile, and old
deep boreholes drilled for water-exploration purposes (Raptakis
et al. 2005; Manakou et al. 2007). The sediment thickness indeed
increases both to the West and the East of the central profile, which

corresponds to a buried pass between two thicker subbasins. For the
verification part of the EUROSEISTEST project, a smooth vertical
gradient without any lateral variation was considered. Inside the
basin, the velocities vary with the depth as follows

VP = 1000 + 100
√

d

VS = 200 + 32
√

d,

where VP and VS are expressed in m s−1, and d is the depth in m.
Table 6 summarizes the properties of the EUROSEISTEST model.
The ratio between the maximum and minimum S-wave velocities
is 17.2. This high factor favours the use of unstructured meshes, as
a large range of different element sizes is expected. Indeed, small
elements are required in the basin area while larger ones can be used
in the bedrock. The size of the model is 16 km × 15 km × 8 km
in the directions x, y and z, respectively. M-CPMLs of 2 km width
are applied at all edges of the model, except at the top, where a free
surface condition is used. The model topography is flat. Figs 16(a)
and (b) show the P- and S-wave velocities, respectively, on the free
surface in the xy plane. In these figures, the complex shape of the
basin and the abrupt contrast of velocity at the basin border can be
seen. The source is located 5 km below the basin, and it acts as a
double-couple mechanism that represents a small earthquake with a
corner frequency of 4 Hz (Fig. 17). The epicentre is indicated with
a yellow star in Fig. 16(a). The minimum propagated wavelength is
50 m, and the largest dimension of the model is 320 λ. We consid-
ered seven receivers, as marked with numbered green triangles in
Fig. 16(a), at strategic positions of the true EUROSEISTEST array.
All of these receivers lie on the free surface, except receiver #7,
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Figure 16. (a) View of the mesh in the xy plane at z = 0 m, showing the P-wave velocity associated with each element in the EUROSEISTEST model.
Numbered green triangles, the receivers; yellow star, source epicentre. (b) Same with the S-wave velocity associated with each element. The position of the
cross-section AB is indicated by the white line.

Table 6. The properties of the geological structures of the EUROSEISTEST model.

P-wave velocity (m s−1) S-wave velocity (m s−1) Density Ratio VP / VS Max. depth

Basin 1000–3027 200–848 2100 kg m−3 5.00–3.57 411 m
Bedrock 4500–6144 2600–3444 2600–2755 kg m−3 1.73–1.78 8 km

Figure 17. (a) Moment-rate function of the source used for the EUROSEISTEST modelling. (b) Amplitude spectrum of the source.

which is buried at 197 m depth just above the source. Receivers #1
and #4 are located on the bedrock, and the others are located within
the basin area.

7.2 Numerical results

For the SEM calculations, the size of the computational domain
was 16.14 km × 29.31 km × 7.86 km, and local absorbing bound-
ary conditions were imposed at the lateral and bottom boundaries,
following Komatitsch & Vilotte (1998). The mesh is based on a
conforming layer-cake topology (Komatitsch et al. 2004) where the
elements are deformed to follow the sediment-bedrock interface,

except for depths shallower than a threshold value, which was set
to 80 m for the basin. For the elements close to the valley edges,
the sediment-bedrock discontinuity is approximated by assigning
different material values to the collocation points inside the ele-
ments. Note that because of the large P-wave velocity in the shallow
bedrock, the choice of the threshold depth directly controls the time
step authorized by the CFL stability condition, and therefore the
total CPU time of the simulation. For the DG-FEM calculations,
the size of the numerical model was 20.14 km × 19 km × 8 km in
the directions x, y and z, respectively, including M-CPMLs of 2 km
width at all edges of the model, except at the top, where a free-
surface condition was used. We adopted the two-step refinement
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Figure 18. (a) Cross-section AB of the mesh at the first iteration of the h-refinement showing the S-wave velocity associated with each element in the
EUROSEISTEST model. (b) Same as (a) at the second iteration of the h-refinement. (c) Same as (a) at the sixth and last iteration of the h-refinement.

Figure 19. (a) View of the mesh in the xy plane at z = 0 m, showing the size of the elements (insphere radius) in the EUROSEISTEST model. (b) Same as (a)
with the approximation order associated with each element. White, P2 elements; grey, P1 elements; black, P0 elements.

approach explained in the previous section. In the first step, we
built an ad hoc tetrahedral mesh with TETGEN. A total of six
mesh refinement iterations were required to reach an adaptive dis-
cretization of three elements per λS . Figs 18(a), (b) and (c) show the
distribution of the S-wave velocity in the cross-section AB for the
first, second and last iterations of the h-refinement process, respec-
tively. Due to the extremely low velocities in the basin, the automatic
refinement process produced very small elements, which resulted in
a fine and regular discretization of the basin shape. Fig. 19(a) shows
the size of the elements (insphere radius) on the free surface. As ex-
pected, smaller elements are found in the basin area rather than in the
bedrock. In this example, we have taken advantage of the tetrahedral
mesh refinement. Indeed, the volume of the basin represents 0.8 per
cent of the complete volume of the model and it contains 72 per cent
of the total number of mesh elements. In the second step, we made

use of p-adaptivity to reduce the number of time steps. We adopted
the following criteria: if the insphere radius is between λS/120
and λS/40, the approximation order is downgraded to P1, and if
the insphere radius is smaller than λS/120, the approximation is
downgraded to P0. While most of the tetrahedral elements are
adequate for P2, the badly sized elements are computed with lower
approximation orders. We end up with a mesh that contains in total
16.3 million elements and 131.0 million DOF. The approximation
orders are distributed as follows: 67.04 per cent P2 elements, 32.67
per cent P1 elements (with 28.66 per cent elements in the M-
CPMLs), and 0.29 per cent P0 elements. This strategy is shown
in Fig. 19(b), where the approximation order is shown for each
element located on the free surface. Almost all of the elements are
P2 elements, except for those with inappropriate sizes, which are
downgraded to P1 or to P0 in the worst cases. Indeed, the contact

C© 2010 The Authors, GJI, 183, 941–962

Geophysical Journal International C© 2010 RAS



958 V. Etienne et al.

Figure 20. (a) Seismograms of the component vx computed in the EUROSEISTEST model. Black line, with DG-FEM; red line, with SEM. (b) Same as (a)
with the component vz.

Table 7. Mesh statistics, computation time and memory allocation relative to the EUROSEISTEST modelling. the DG-FEM and SEM computations were
both performed with 18 bi-xeon Quadcore CPU IBM E5420 at 2.5 GHz (making a total of 144 cores).

Method Order Min. edge (m) Max. edge (m) Nb elem. Nb DOF Nb steps Nb CPUs Elapse time (hr) Memory (GB)

DG-FEM P2/P1/P0 2.5 399.8 16.3 × 106 131.0 × 106 122 565 144 52 ∼26
SEM P4 20.0 906.0 1.4 × 106 91.7 × 106 75 000 144 7 ∼25

between the basin and the bedrock produces a high velocity contrast
that is not ideally accommodated by the tetrahedra. Therefore, some
elements located in the bedrock have smaller sizes than expected,
and thus can be treated with lower approximation orders. These
latter are particularly visible in Fig. 19(b). Some P1 elements also
appear at the border in Fig. 19(b) where the M-CPMLs start.

The seismograms of the components vx and vz computed with
DG-FEM and with SEM are shown in Figs 20(a) and (b), respec-
tively. The fit between the DG-FEM and SEM solutions is almost
perfect for the vertical component vz, whatever the position of the
receivers, and even at long times. On the other hand, for the hori-
zontal component vx, good agreement is seen for short times, of up
to 6–7 s. At later times, some amplitude misfits are seen. Neverthe-
less, for all of the traces, the overall fit of the waveforms between
the two solutions is remarkable, which indicates that the same and
complex wave propagation phenomena are represented. Contrary to
the SEM, for the DG-FEM, constant physical properties per element
were assumed, given by the average of the properties at the four ver-
tices of the elements. Therefore, the amplitude misfits seen in the
DG-FEM seismograms might be the consequence of the approxi-
mations used in the model discretization, rather than the accuracy of
the numerical method itself. The statistics related to the DG-FEM
and SEM modelling are given in Table 7. Compared to DG-FEM,
the number of DOF used in the SEM modelling is 30 per cent lower,
and the number of time steps is nearly two-fold lower. Both of the
simulations were performed on the same computing platform with
18 bi-xeon Quadcore CPU IBM E5420 at 2.5 GHz (giving a total
of 144 cores). The methods required similar amounts of memory,
and to obtain 30 s of wave propagation, the computation time was
7 hr with SEM and 52 hr with DG-FEM. The computation time
per DOF and per step is on average 1.67 µs for DG-FEM, and
0.52 µs for SEM. Taking into account that the number of unknowns
per DOF is nine with DG-FEM (with first-order velocity–stress
formulation) and three with SEM (with second-order velocity for-
mulation), these two methods yield comparable computation times

per unknown. Therefore, the relative cost of the methods depends
mainly on the mesh characteristics. However, a detailed analysis is
required and goes beyond the scope of this study. We can expect,
that in more complicated cases (like a set of thin geological lay-
ers), the DG-FEM would be more efficient, due to the flexibility of
tetrahedral meshes. In the following, we present another compari-
son tool that allows for a study of the misfits on the complete free
surface of the model. An objective in earthquake engineering is to
predict the ground motion for a realistic scenario. The map of peak
ground velocity (PGV) provides a convenient representation that
shows the maximum value of the norm of the velocity vector for
each position on the free surface. PGV maps computed with 30 s of
seismic signals are shown in Fig. 21. The fit between the PGV map
computed with DG-FEM and the PGV map computed with SEM
is almost perfect. On these maps, the paths followed by energetic
bundles of surface waves can be seen. When they reach the basin
borders, these bundles are reflected and diffracted. This behaviour
can be be seen in the PGV map in the southeast part of the basin.

8 P E R S P E C T I V E S A N D C O N C LU S I O N S

We have proposed a DG-FEM with CPML absorbing boundary con-
dition that benefits most from hp-adaptivity combined with tetra-
hedral meshes. The gain obtained with this method in the context
of 3-D seismic elastic modelling is important when complex ge-
ological structures are considered, especially if the medium has
highly contrasting physical properties. In our approach, we favour
the use of low approximation orders which allows fine discretiza-
tion of the medium with piecewise constant properties per element.
From this point of view, an optimal compromise between precision,
computational cost and adequate discretization is achieved with the
P2 interpolation. For efficient reduction of the computation time,
CPMLs were designed with lower approximation orders and they
allowed a saving of between 40 and 60 per cent of CPU time on large
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Figure 21. (a) Peak ground velocity map computed for the EUROSEISTEST modelling with DG-FEM. Numbered white triangles, the receivers; yellow star,
the source epicentre. (b) Same as (a) computed with SEM.

clusters. Moreover, we mitigated the effects of ill-sized tetrahedral
elements by automatically choosing the appropriate approximation
order for each element, and hence we have kept the number of
time steps as low as possible. In our case, the so-called p-adaptivity
technique can reduce the number of time steps by a factor of five.
Consequently, when combined with the low-cost CPMLs, computa-
tion times are generally reduced by nearly one order of magnitude,
compared with the times observed with standard DG-FEM mod-
elling using a unique approximation order. The potential and the
perspectives concerning this method are numerous. For the limi-
tations of our formulation, we note the possibility of attributing
varying physical properties inside the elements. This would release
the discretization constraint and would allow the use of higher ap-
proximation orders, thus reducing the number of elements and the
computational cost of the simulations. For completeness, we note
another possible means of releasing the discretization constraint,
with non-conforming meshing, although the expected gain does not
appear as crucial in the case of tetrahedral meshes as it is with hex-
ahedral meshes. Apart from these possible evolutions, we intend to
include viscoelastic rheologies (Käser et al. 2007) and to apply the
method to realistic problems requiring appropriate discretizations
of geological structures and/or large material contrasts. Due to the
discontinuous nature of the method, rupture mechanisms, like earth-
quake dynamic rupture, might be modelled (BenJemaa et al. 2007,
2009; de la Puente et al. 2009). This method can also be applied to
seismic modelling in cases of complex topographies, or be used as
a forward modelling tool for FWI techniques (Tarantola 1987; Pratt
et al. 1998).
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Dumbser, M. & Käser, M., 2006. An arbitrary high order discontinuous
Galerkin method for elastic waves on unstructured meshes II: the three-
dimensional isotropic case, Geophys. J. Int., 167(1), 319–336.
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Käser, M. & Dumbser, M., 2008. A highly accurate discontinuous Galerkin
method for complex interfaces between solids and moving fluids, Geo-
physics, 73(3), 23–35.
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A P P E N D I X A : L A G R A N G I A N B A S I S F U N C T I O N S

For the definition of the Lagrangian basis functions, the barycentric or tetrahedral coordinates (ζ 1, ζ 2, ζ 3, ζ 4) that are linked to the cartesian
coordinates (x , y, z) are defined inside an element as follows:⎛
⎜⎜⎜⎝

1

x

y

z

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ζ1

ζ2

ζ3

ζ4

⎞
⎟⎟⎟⎠ ,

where (xj, yj, zj) are the coordinates of the jth node of the element. Then, the Lagrangian basis functions can be defined with a linear
combination of the tetrahedral coordinates depending on the approximation order. Following the node numbering convention given in Fig. 1,
these functions are given by for the P0 interpolation

ϕ1 = 1,

for the P1 interpolation

ϕ1 = ζ1 ϕ2 = ζ2 ϕ3 = ζ3 ϕ4 = ζ4,

and for the P2 interpolation

ϕ1 = (2ζ1 − 1)ζ1 ϕ2 = (2ζ2 − 1)ζ2 ϕ3 = (2ζ3 − 1)ζ3 ϕ4 = (2ζ4 − 1)ζ4

ϕ5 = 4ζ1ζ2 ϕ6 = 4ζ1ζ3 ϕ7 = 4ζ1ζ4 ϕ8 = 4ζ3ζ2 ϕ9 = 4ζ3ζ4 ϕ10 = 4ζ2ζ4.

A P P E N D I X B : M AT R I C E S U S E D I N T H E D G - F E M F O R M U L AT I O N

Mθ and Nθ are constant real matrices defined by

Mx =

⎛
⎜⎝ 1 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎞
⎟⎠ Nx =

⎛
⎜⎝ 1 2 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎞
⎟⎠

T

My =

⎛
⎜⎝ 0 0 0 1 0 0

1 0 1 0 0 0

0 0 0 0 0 1

⎞
⎟⎠ Ny =

⎛
⎜⎝ 0 0 0 1 0 0

1 −1 2 0 0 0

0 0 0 0 0 1

⎞
⎟⎠

T

Mz =

⎛
⎜⎝ 0 0 0 0 1 0

0 0 0 0 0 1

1 −1 −1 0 0 0

⎞
⎟⎠ Nz =

⎛
⎜⎝ 0 0 0 0 1 0

0 0 0 0 0 1

1 −1 −1 0 0 0

⎞
⎟⎠

T

.

For Pk , with k ≤ 2, the volume integral in eqs (9) and (10) can be computed with the 11 Gauss points integration rule for tetrahedra (Keast
1986) and the surface integral in eqs (11) and (12) can be computed with the six Gauss points integration rule for triangles (Dunavant 1985).
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Below, we give the expression of the matrices relevant for P1 elements following the node numbering convention given in Fig. 1(b).

Ki = voli

20

⎛
⎜⎜⎜⎝

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

⎞
⎟⎟⎟⎠ , (B1)

with voli as the volume of element i.

Eiθ = 1

12

⎛
⎜⎜⎜⎝

Si1ni1θ
Si1ni1θ

Si1ni1θ
Si1ni1θ

Si2ni2θ
Si2ni2θ

Si2ni2θ
Si2ni2θ

Si3ni3θ
Si3ni3θ

Si3ni3θ
Si3ni3θ

Si4ni4θ
Si4ni4θ

Si4ni4θ
Si4ni4θ

⎞
⎟⎟⎟⎠ ∀θ ∈ {x, y, z}, (B2)

with Sik the surface of the face opposite to the kth node of element i and �nik = (nikx , niky , nikz )T as the outward pointing unit normal vector
with respect to the surface Sik . For the computation of the flux matrices, we adopt a specific node numbering scheme. First, the neighbour
element k is given by the node number of element i which is not shared between elements i and k. For instance, in Fig. 1(b), the neighbour
element k = 1 is the element sharing the face (234) of element i. Second, the neighbour element nodes share the same node numbers
of element i on the common face. Therefore, the opposite nodes of element i and k have also the same number. With this node numbering
scheme, Fik and Gik are identical when both elements are P1. We use this property to perform an efficient computation of the flux. In that
case, we get

Fi1 = Si1

12

⎛
⎜⎜⎜⎝

0 0 0 0

0 2 1 1

0 1 2 1

0 1 1 2

⎞
⎟⎟⎟⎠ Fi2 = Si2

12

⎛
⎜⎜⎜⎝

2 0 1 1

0 0 0 0

1 0 2 1

1 0 1 2

⎞
⎟⎟⎟⎠

Fi3 = Si3

12

⎛
⎜⎜⎜⎝

2 1 0 1

1 2 0 1

0 0 0 0

1 1 0 2

⎞
⎟⎟⎟⎠ Fi4 = Si4

12

⎛
⎜⎜⎜⎝

2 1 1 0

1 2 1 0

1 1 2 0

0 0 0 0

⎞
⎟⎟⎟⎠ .

(B3)
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S U M M A R Y
We analyse 13 3-D numerical time-domain explicit schemes for modelling seismic wave
propagation and earthquake motion for their behaviour with a varying P-wave to S-wave
speed ratio (VP/VS). The second-order schemes include three finite-difference, three finite-
element and one discontinuous-Galerkin schemes. The fourth-order schemes include three
finite-difference and two spectral-element schemes. All schemes are second-order in time.
We assume a uniform cubic grid/mesh and present all schemes in a unified form. We assume
plane S-wave propagation in an unbounded homogeneous isotropic elastic medium. We define
relative local errors of the schemes in amplitude and the vector difference in one time step and
normalize them for a unit time. We also define the equivalent spatial sampling ratio as a ratio
at which the maximum relative error is equal to the reference maximum error. We present
results of the extensive numerical analysis.

We theoretically (i) show how a numerical scheme sees the P and S waves if the VP/VS

ratio increases, (ii) show the structure of the errors in amplitude and the vector difference and
(iii) compare the schemes in terms of the truncation errors of the discrete approximations to
the second mixed and non-mixed spatial derivatives.

We find that four of the tested schemes have errors in amplitude almost independent on
the VP/VS ratio.

The homogeneity of the approximations to the second mixed and non-mixed spatial
derivatives in terms of the coefficients of the leading terms of their truncation errors as well
as the absolute values of the coefficients are key factors for the behaviour of the schemes with
increasing VP/VS ratio.

The dependence of the errors in the vector difference on the VP/VS ratio should be
accounted for by a proper (sufficiently dense) spatial sampling.

Key words Numerical approximations and analysis; Computational seismology; Theoretical
seismology.

1 I N T RO D U C T I O N

When numerically modelling seismic wave propagation and earthquake ground motion in a local or regional scale, we often consider a finite
volume of the Earth. Typically, the volume has a shape of a cuboid (a rectangular parallelepiped) with the top face representing a flat free surface
and other faces representing transparent boundaries or planes of symmetry. In a more realistic case, the free Earth’s surface has a non-planar
topography. The medium inside is often considered a heterogeneous isotropic viscoelastic continuum. If we cover the computational domain
by a space–time grid of points or elements, then the overall accuracy of the numerical modelling for the given space–time discretization and
source–receiver configuration may depend on some or all of the following factors:
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(1) accuracy in
(i) a homogeneous medium (VP/VS—P-wave to S-wave speed ratio)
(ii) a smoothly spatially varying medium (spatial variability of material parameters)

(2) accuracy at
(i) a material interface (geometry, continuity of displacement and traction)
(ii) a free surface (geometry, zero traction)

(3) accuracy of
(i) a grid boundary (transparency or symmetry)
(ii) simulation of source (location, mechanism, time function)
(iii) incorporation of attenuation (frequency dependence, spatial variability)

Articles presenting numerical methods or schemes usually include and some of them focus first of all on the stability and grid dispersion
in an unbounded homogeneous medium. This is fundamental and necessary. Not all articles sufficiently address the other factors determining
the overall accuracy of the numerical modelling. Surprisingly enough, the least attention has been paid to the accuracy with respect to the
VP/VS ratio.

At the same time, in surface sediments, and mainly in sedimentary basins and valleys, the ratio VP/VS is often as large as five or more (e.g.
larger than 10 in the unconsolidated lake sediments in Ciudad de México). Recent numerical-modelling exercises focused on the deep Alpine
sediment valley beneath Grenoble, France and the sedimentary Mygdonian Basin near Thessaloniki, Greece (e.g. Chaljub et al. 2010a,b;
Moczo et al. 2010a), also confirm the necessity to account for large VP/VS ratios with sufficient accuracy.

Moczo et al. (2010b) investigated accuracy of four finite-difference (FD) and three finite-element (FE) schemes with respect to the VP/VS

ratio. Their investigation was restricted to the basic second-order 2-D schemes. They aimed to identify and select the very basic inherent
aspects of the schemes responsible for their behaviour with respect to the varying VP/VS ratio, and to compare different schemes at the
most fundamental level. They indicated that consistency in approximating first spatial derivatives and, consequently, the second mixed and
non-mixed spatial derivatives appears to be the key factor for the behaviour of a scheme with respect to the VP/VS ratio.

Moczo et al. (2010b) introduced the problem of the accuracy with respect to the VP/VS ratio in sufficient extent and detail. Therefore,
we do not repeat here the extensive introduction and rather refer readers to the latter paper.

In this paper, we focus on investigating the accuracy of 3-D time-domain explicit numerical schemes of second-order in time and second-
and fourth-order in space with respect to the VP/VS ratio in an unbounded homogeneous medium. We include schemes based on the FD, FE,
spectral-element (SE) and discontinuous-Galerkin (DG) methods.

We present all the investigated schemes in a unified form and define (full) local errors in one time integration step. Because different
schemes use different time steps (according to appropriate stability conditions), we normalize the errors with respect to time. Consequently,
we can directly compare numerically evaluated errors of different schemes. We perform extensive numerical analysis for wide ranges of
values of the VP/VS ratio and spatial sampling ratio, and for the entire range of directions of propagation with respect to the spatial grid.
We analyse and interpret the numerical results in terms of the inherent structures of the numerical schemes. We eventually develop general
conclusions on the accuracy of the numerical schemes with respect to the VP/VS ratio and on the numerical efficiency of the schemes in
practical applications.

2 E Q UAT I O N S O F M O T I O N F O R A H O M O G E N E O U S M E D I U M

Consider a Cartesian coordinate system (x, y, z) and an unbounded homogeneous perfectly elastic isotropic medium. Let ρ denote density, λ

and μ Lamé elastic moduli, α = [(λ + 2μ)/ρ]1/2 and β = (μ/ρ)1/2 P-wave and S-wave speeds (i.e. VP and VS). Let displacement components
u i ; i ∈ {x, y, z} and stress-tensor components σ i j ; i, j ∈ {x, y, z} be functions of the spatial coordinates and time t . Denote

ϕ,ζ = ∂ϕ

∂ζ
; ϕ ∈ {u i , σ i j } , i, j ∈ {x, y, z}, ζ ∈ {t, x, y, z} . (1)

We will consider two strong forms of the equation of motion without the body force term. The displacement-stress (DS) formulation of the
equation of motion is

ρux,t t = σxx,x + σxy,y + σxz,z

ρuy,t t = σyy,y + σyz,z + σyx,x

ρuz,t t = σzz,z + σzx,x + σzy,y (2)

σxx = (λ + 2μ)ux,x + λuy,y + λuz,z

σyy = (λ + 2μ)uy,y + λuz,z + λux,x

σzz = (λ + 2μ)uz,z + λux,x + λuy,y

σxy = μ (ux,y + uy,x )

σyz = μ (uy,z + uz,y)

σzx = μ (uz,x + ux,z). (3)
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The displacement (D) formulation is

ρux,t t = (λ + 2μ)ux,xx + λ (uy,yx + uz,zx ) + μ (ux,yy + uy,xy + uz,xz + ux,zz)

ρuy,t t = (λ + 2μ)uy,yy + λ (uz,zy + ux,xy) + μ (uy,zz + uz,yz + ux,yx + uy,xx )

ρuz,t t = (λ + 2μ)uz,zz + λ (ux,xz + uy,yz) + μ (uz,xx + ux,zx + uy,zy + uz,yy). (4)

Eqs (4) can be written as

ux,t t = α2(ux,xx + uy,yx + uz,zx ) + β2 (ux,yy − uy,yx + ux,zz − uz,zx )

uy,t t = α2(uy,yy + uz,zy + ux,xy) + β2 (uy,zz − uz,zy + uy,xx − ux,xy)

uz,t t = α2(uz,zz + ux,xz + uy,yz) + β2 (uz,xx − ux,xz + uz,yy − uy,yz). (5)

The weak form of the equation of motion (e.g. Zienkiewicz & Taylor 1989; Hughes 2000; Moczo et al. 2007a) is∫



w (ρ u i ,t t ) d
 +
∫




w,k σ i k d
 −
∫

�N

w h i d� = 0, (6)

where 
 is a volume of a medium with boundary �, h i is a prescribed traction on part �N of boundary � and the equations have to be satisfied
for all possible choices of weight functions w.

3 N U M E R I C A L S C H E M E S

Several numerical methods can be used to solve the strong-form and weak-form equations of motion. The analysis by Moczo et al. (2010b)
was restricted to the basic 2-D second-order FD and FE schemes. Here, we investigate 13 3-D time-domain numerical schemes of second-
and fourth-order in space based on four important numerical methods—FD, FE, DG and SE methods. We use three uniform spatial grids in
the FD schemes—conventional, partly-staggered and staggered (Fig. 1a). The other schemes are constructed on the mesh of uniform cubic
elements. The elements considered for the FE and SE schemes are illustrated in Figs 1(b) and (c), respectively. All schemes are explicit and
second-order accurate in time. The choice of the explicit schemes well reflects the fact that the explicit schemes are strongly dominant in recent
numerical modelling of seismic wave propagation and earthquake ground motion. The same is true about the second-order accuracy in time.
The powerful and sophisticated ADER-DG method (Arbitrary high-order DERivative Discontinuous Galerkin, for details see Section 3.3)
makes a significant exception. We do not include possible ADER-DG of higher order because so far they have been developed for tetrahedral
grids, and the higher order in time would have no comparison among the other schemes.

Given the variety of methods, grids, approximation orders and integrations in elements, we have to introduce easy-to-follow acronyms
to be used throughout the paper.

An acronym of each investigated scheme starts with two letters indicating a method. FD stands for the finite-difference method. Similarly,
FE, DG or SE indicate the finite-element, discontinuous-Galerkin or spectral-element method, respectively.

The FD schemes differ from each other by the equation formulation, grid and order of approximation. D indicates the displacement
formulation, DS the displacement-stress formulation. CG indicates conventional grid, PSG partly-staggered grid, and SG staggered grid. 2
or 4 indicates the second- or fourth-order approximation in space. The lower-case ‘a’ or ‘b’ indicates one of two variants of the fourth-order
approximation. The acronyms of the six considered schemes are FD D CG 2, FD DS PSG 2, FD DS SG 2, FD D CG 4a, FD D CG 4b and
FD DS SG 4.

All three of the FE schemes considered solve the weak-form of the equation of motion on the mesh of uniform cubic elements and
are second-order accurate in space. The schemes differ in the integration applied within an element. Consequently, the method indicator is
followed by the indicator of the integration. L8, G1 or G8 indicates Lobatto 8-point, Gauss 1-point or Gauss 8-point integration, respectively.
The acronyms of the three considered schemes are FE L8, FE G1 and FE G8.

In the case of the DG schemes, we explicitly indicate the polynomial degree of the basis functions, P0 or P1, and the centred flux, CF,
to clearly distinguish the schemes from a large variety of possible DG schemes. The acronyms are DG P0 CF and DG P1 CF.

The order of approximation is explicitly indicated for two SE schemes. Indicators cn and vn then distinguish the central node and vertex
node. The acronyms are SE 4 cn and SE 4 vn.

The acronyms and essential characteristics of all 13 considered numerical schemes are given in Fig. 2.

3.1 The finite-difference schemes

Reviews of the FD schemes on the conventional, partly-staggered and staggered grids, including original references, can be found, for
example, in extensive texts by Moczo et al. (2007a,b).

3.1.1 FD D CG 2, FD D CG 4a, FD D CG 4b

FD D CG 2, the second-order FD scheme solving the strong-form equation of motion for displacement on the conventional grid, is obtained if
derivatives in eqs (5) are replaced using standard second-order centred FD formulae approximating second non-mixed and mixed derivatives.

C© 2011 The Authors, GJI, 187, 1645–1667
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Figure 1. (a) Spatial grids for the FD schemes considered in this study. Left-hand panel: conventional grid-–all displacement components are located at each
grid point (position). Centre panel: partly-staggered grid—all displacement components share the same grid points whereas all stress-tensor components share
other grid points. Right-hand panel: staggered grid—each of the quantities has its own grid position except the normal stress-tensor components sharing one
grid position. (b) The cubic element used for the FE schemes. The nodal points are represented by empty circles. The integration points used in the Gauss
8-point, Gauss 1-point and Lobatto 8-point integrations are represented by crosses. The integration points in the Gauss 8-point integration define vertices of
a centred cube with the edge equal to 2h/

√
3. The positions of the other integration points are obvious. (c) The cubic element used for the SE schemes. The

nodal points are also the integration points. The vertex and central nodes are explicitly indicated by empty circles. For the positions of the nodal points we refer
to Chaljub et al. (2007).

On the conventional grid, we can find several fourth-order approximations to the second non-mixed and mixed spatial derivatives.
Therefore, we include two different approximations to the second non-mixed and mixed spatial derivatives and, thus, two different schemes.
Based on the indication found by Moczo et al. (2010b), we constructed one scheme with the minimum possible equal coefficients of the
leading terms of the truncation errors for the mixed and non-mixed derivatives—FD D CG 4a. The other scheme, FD D CG 4b, has the
minimum possible spatial stencil and a relatively large difference between values of coefficients of the leading terms of the truncation errors.
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Figure 1. (Continued.)

3.1.2 FD DS SG 2, FD DS SG 4

FD DS SG 2 is obtained in the following way: The second time derivatives in eqs (2) are replaced using the standard second-order centred FD
formula approximating the second derivative. The first spatial derivatives of the stress-tensor components in eqs (2) are replaced using the
standard second-order centred FD formula approximating the first derivative. Then, all discrete stress-tensor components on the right-hand
side (r.h.s.) of the obtained schemes are replaced by their FD approximations. The approximations are obtained from eqs (3), in which the first
derivatives are replaced using the standard second-order centred FD formula approximating the first derivative. In the resulting final scheme
only displacement components appear. This is important to note, given the fact that the scheme solves the DS formulation of the equation of
motion on the staggered grid. Note that this type of scheme is also called the parsimonious scheme.

FD DS SG 4 is obtained in the same way except that fourth-order FD approximations are used to replace the first spatial derivatives of
the stress-tensor and displacement components.

3.1.3 FD DS PSG 2

For comparison with FD D CG 2 and FD DS SG 2, we also include the second-order scheme solving the DS formulation of the equation
of motion on the partly-staggered grid. The scheme is obtained in the same way as FD S SG 2 except that the FD approximations are more
complicated. The complication is due to the fact that the stress-tensor components are displaced from the displacement components by a
half-grid spacing in all three Cartesian directions (see Fig. 1). For example, in approximating the x-derivative of the stress-tensor component
at a grid position of the displacement component, the required values of the stress-tensor components are obtained as arithmetic averages of
the values at four stress-tensor component grid positions in the corresponding yz-grid planes.

We do not include the velocity–stress (VS) staggered grid schemes. They differ from the FD DS SG schemes only in approximating
time derivatives. They approximate second spatial derivatives of the particle-velocity components (in the resulting final schemes) in the same
way as the FD DS SG schemes approximate the second spatial derivatives of the displacement components. Moczo et al. (2010b) showed
that the difference between the behaviours of the corresponding 2-D schemes with respect to the VP/VS ratio due to different time derivatives
is negligible. Conclusions for the FD VS SG schemes related to the approximations to the spatial derivatives are the same as those for the FD
DS SG schemes.
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Figure 2. Acronyms and essential characteristics of the investigated numerical schemes. Although the FE, DG and SE schemes are constructed on the uniform
mesh of cubic elements, we use the term conventional grid also for these schemes because, effectively, all displacement components are located at each node,
and stress-tensor components are not explicitly treated. ‘order’ in the rightmost column means the order of approximation in space.

3.2 The finite-element schemes

Detailed expositions of the FE method can be found, for example, in books by Zienkiewicz & Taylor (1989), Ottosen & Petersson (1992),
Hughes (2000), Belytschko et al. (2000) and Reddy (2006). For the FE modelling of seismic wave propagation see, for example, Bielak et al.
(2003), Ma & Liu (2006), Moczo et al. (2007a) and Galis et al. (2008).

We consider a uniform mesh of cubic elements with eight nodes in vertices and with tri-linear basis functions. Given this, we can get
different final FE schemes by considering different volume integrations within an element. The standard full Gauss 8-point integration leads
to scheme FE G8. Because the mesh is uniform and medium is homogeneous, the integration is exact. The reduced 8-point Lobatto integration
leads to scheme FE L8. Eventually, the application of the simplest possible reduced 1-point Gauss integration leads to scheme FE G1. All the
three situations are illustrated in Fig. 1(b).

In the case of the homogeneous medium, uniform FD grids with cubic cells, and mesh of cubic elements, the FE L8 scheme is exactly
the same as FD D CG 2, and FE G1 is exactly the same as FD DS PSG 2. Because these are important equalities, we highlight them (for
reader’s convenience) in the explicit symbolic equations

FE L8 = FD D CG 2

FE G1 = FD DS PSG 2. (7)

3.3 The discontinuous-Galerkin scheme

The DG method (e.g. Hesthaven & Warburton 2008) is a discontinuous FE method. Contrary to the classical FE method, no continuity of
the basis functions is imposed between elements. Instead, the concept of a numerical flux, taken from the framework of the finite-volume
(FV) method (LeVeque 2002) is used for exchanging quantities (e.g. displacements) between elements. Therefore, the DG method supports
discontinuities in the seismic wavefield, and provides interesting features for dynamic rupture modelling or wave propagation modelling when
high contrasts of the medium properties have to be considered. The DG method has been applied to seismology rather recently (Dumbser &
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Käser 2006; Käser & Dumbser 2006; Dumbser et al. 2007; Käser et al. 2007, 2008; de la Puente et al. 2007, 2008; De Basabe et al. 2008;
de la Puente 2008; Delcourte et al. 2009). A wide range of the DG schemes can be obtained depending on the choice of the basis functions
(modal or nodal basis functions), the type of flux (upwind or centred flux) or the numerical scheme used for the time integration. Here, we
consider a nodal DG scheme with the centred flux (Etienne et al. 2010) and we restrict to two of the simplest formulations. The first scheme,
DG P0 CF (P0 indicating the zero polynomial of the basis functions, CF centred flux), assumes a uniform representation of wavefields inside
the elements (only one constant basis function is used). The second scheme, DG P1 CF, assumes a linear representation of the wavefields
inside the elements (via tri-linear basis functions and 8-point Gauss integration). For the homogeneous medium, uniform mesh of cubic
elements and the second-order time integration we have the following identities:

DG P0 CF = FV P0 CF = FE L8 = FD D CG 2

DG P1 CF = FE G8. (8)

Note that in the case of the homogeneous medium, the numerical flux mimics the continuities of quantities and thus leads to direct
relation to the classical FE schemes. We may also explicitly emphasize the equivalence of DG P0 CF and FV P0 CF.

3.4 The spectral-element schemes

The power of the SE method to numerically model seismic wave propagation is now well evident from many applications and publications.
For details on the method, we refer to the original papers by Komatitsch & Vilotte (1998) and Komatitsch & Tromp (1999) as well as to the
comprehensive reviews by Komatitsch et al. (2005) and Chaljub et al. (2007).

The SE method is a special kind of the FE method that relies on the use of a high-order polynomial basis function. Although in the other
investigated schemes, one and the same formula is applied to update a displacement-vector component at all grid positions, in the SE scheme
it is necessary to distinguish different schemes for different nodes even in the cubic element. In this paper, we restrict to two representative
nodes—the vertex node and the central node. Consequently, we distinguish two schemes—SE 4 cn for the central node and SE 4 vn for the
vertex node. The element with the central and vertex nodes is illustrated in Fig. 1(c).

We may also mention the choice of the fourth order. The spectral element calculations in elastodynamics use polynomial orders between
3 and 8. This range of values allows benefiting from the low level of numerical dispersion of the spectral methods (De Basabe & Sen 2007;
Seriani & Oliveira 2008) while preventing the use of too severe CFL constraints (due to the quadratic stretching of the grid points near the
element edges). The fourth order is, therefore, among the best choices in terms of accuracy and computational costs.

3.5 Unified representation of the numerical schemes

All 13 numerical schemes can be represented in a unified form. Define the VP/VS ratio r :

r = α
/
β. (9)

Throughout the text, r and VP/VS , α and VP, and β and V S will be used interchangeably. Let h be a grid spacing in each of the three Cartesian
directions and �t be a time step. Let U m

ξ = U m
ξ (I, K , L) be a discrete approximation to uξ (I h, K h, Lh, m�t) = uξ (xI , yK , zL , tm);

ξ ∈ {x, y, z}. Each numerical scheme can be then written as (compare with eqs (5))

U m+1
x = 2 U m

x − U m−1
x

+ (�t)2 β2
{

r 2
(
Dxx

[
U m

x

] + Dyx

[
U m

y

] + Dzx

[
U m

z

] )
+ Dyy

[
U m

x

] − Dyx

[
U m

y

] + Dzz

[
U m

x

] − Dzx

[
U m

z

]}
U m+1

y = 2 U m
y − U m−1

y

+ (�t)2 β2
{

r 2
(
Dyy

[
U m

y

] + Dzy

[
U m

z

] + Dxy

[
U m

x

] )
+ Dzz

[
U m

y

] − Dzy

[
U m

z

] + Dxx

[
U m

y

] − Dxy

[
U m

x

]}
U m+1

z = 2 U m
z − U m−1

z

+ (�t)2 β2
{

r 2
(
Dzz

[
U m

z

] + Dxz

[
U m

x

] + Dyz

[
U m

y

])
+ Dxx

[
U m

z

] − Dxz

[
U m

x

] + Dyy

[
U m

z

] − Dyz

[
U m

y

]}
. (10)

The numerical schemes differ from each other by the difference operators Dξξ and Dξη ; ξ, η ∈ {x, y, z} for approximating second non-mixed
and mixed spatial derivatives. Here, we explicitly present Dxx and Dzx operators. The other operators can be easily obtained by the even
permutation of the Cartesian indices.

In the set of the considered 13 numerical schemes, we can recognize two types of non-mixed operators. The first type can be expressed
as

Dxx [� (I, K , L)] = 1

h2

J∑
j=0

wxx
j

[
�

(
I − � j , K , L

) + �
(
I + � j , K , L

)]
. (11)
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Table 1. Grid positions for the Dxx operators defined by eq. (11).

� j
Dscheme

xx
j = 0 j = 1 j = 2 j = 3 j = 4

D FD D CG 2
xx

D FE L8
xx

D DG P0 CF
xx

0 1

D FD DS SG 2
xx 0 1

D FD D CG 4a
xx 0 1 2 3

D FD D CG 4b
xx 0 1 2

D FD DS SG 4
xx 0 1 2 3

D SE 4 cn
xx 0

√
12/7 2

D SE 4 vn
xx 0 2 − √

12/7 2 2 + √
12/7 4

Table 2. Weight coefficients for the Dxx operators defined by eq. (11).

576 wxx
jDscheme

xx
j = 0 j = 1 j = 2 j = 3 j = 4

D FD D CG 2
xx

D FE L8
xx

D DG P0 CF
xx

−576 576

D FD DS SG 2
xx −576 576

D FD D CG 4a
xx −400 288 144 −32

D FD D CG 4b
xx −720 768 −48

D FD DS SG 4
xx −730 783 −54 1

D SE 4 cn
xx −480 588 −108

D SE 4 vn
xx −2520 294(5 + √

21) −384 294(5 − √
21) –36

Here � represents a displacement component. According to eq. (11), operators of different schemes may differ from each other by the
number of the grid positions at which displacement components are used for the approximation and the weight coefficients of the considered
displacement component at those grid positions. The grid positions and weight coefficients are given in Tables 1 and 2, respectively.

The second type can be expressed as

Dxx [� (I, K , L)] = 1

h2

L+1∑
l=L−1

K+1∑
k=K−1

αxx
l−L+2, k−K+2 D FD D CG 2

xx � (I, k, l). (12)

The weight coefficients are given in Table 3.
Note that the grid spacing h represents the average spacing between the nodes in the SE schemes. We may emphasize that we consider

the exact SEM schemes with no assumption of the regular grid spacing. The average grid spacing h is introduced just to make it possible to
directly compare the SE schemes with the other schemes in terms of the spatial sampling ratio. The average grid spacing thus only means
how many grid points of the SEM element are used to sample the S wavelength.

Similarly, we can recognize two types of the mixed operators. The first type can be expressed as

Dzx [�(I, K , L)] = 1

h2

N∑
n=1

N∑
j=1

wzx
n j [ �(I + � j , K , L + �n) − �(I + � j , K , L − �n)

−�(I − � j , K , L + �n) + �(I − � j , K , L − �n) ].
(13)

The grid positions and weight coefficients are given in Tables 4 and 5, respectively.
The second type can be expressed as

Dzx [� (I, K , L)] = 1

h2

K+1∑
k=K−1

αzx
k−K+2 D FD D CG 2

zx � (I, k, L). (14)

The weight coefficients are given in Table 6.

3.6 Truncation errors of the discrete spatial operators

The truncation error, the difference between the discrete approximation to a derivative and the exact derivative, is an important characteristic
of accuracy of the discrete approximation. The lowest power of the argument increment (here, the grid spacing h) determines the order of
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Table 3. Weight coefficients for the
Dxx operators defined by eq. (12).

Dscheme
xx αxx

D FD DS PSG 2
xx

D FE G1
xx

1

16

⎡
⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎦

D FE G8
xx

D DG P1 CF
xx

1

36

⎡
⎢⎣

1 4 1

4 16 4

1 4 1

⎤
⎥⎦

Table 4. Grid positions for the Dzx operators defined by eq. (13).

� j , �n
Dscheme

zx
j, n = 1 j, n = 2 j, n = 3 j, n = 4

D FD D CG 2
zx

D FE L8
zx

D DG P0 CF
zx

1

D FD DS SG 2
zx 1/2

D FD D CG 4a
zx 1 2

D FD D CG 4b
zx 1 2

D FD DS SG 4
zx 1/2 3/2

D SE 4 cn
zx

√
12/7 2

D SE 4 vn
zx 2 − √

12/7 2 2 + √
12/7 4

accuracy of the discrete approximation. The coefficients of terms in the truncation error are also important. Table (A1) of the Appendix gives
the leading and first higher terms of the truncation errors of all operators defined by eqs (11)–(14). We will discuss the truncation errors in
the analysis and interpretation of the numerical results.

4 L O C A L E R RO R O F T H E N U M E R I C A L S C H E M E S

4.1 Concept of the local error

To evaluate accuracy of the numerical schemes, we define a local error of a numerical scheme. First, we can symbolically express all schemes
in a unified form

U m+1
ξ (I, K , L) = numerical scheme {U m−1, U m}, (15)

or, equivalently,

Uξ (I, K , L , t + �t) = numerical scheme {U (t − �t) , U (t)} . (16)

Here, ξ ∈ {x, y, z} and U (t − �t) and U (t) represent displacement components at relevant grid positions around (I, K , L) at times t − �t
and t , respectively. Define a numerical solution in one time step as

U N
ξ (I, K , L , t + �t) = numerical scheme {U E (t − �t) , U E (t)}, (17)

where the upper index N indicates the numerical solution and the upper index E indicates an exact value. Thus, if we know the exact value of
displacement at any time, we can define and calculate a relative local error in amplitude as

εRel
ampl =

(
�tref

�t

)2 ∣∣∣∣ AN − AE

AE

∣∣∣∣ . (18)

Here, AN is the amplitude of the numerical solution (modulus of the displacement vector) in one time step and AE is the exact amplitude—both
evaluated at time t + �t . Because different numerical schemes use different time steps �t , we have to normalize the error for a unit time.
Because the time derivative is approximated by the second-order FD formula, we have to normalize with the square of �t . The division of
the relative error by (�t)2, however, artificially increases the value of the error. This can be compensated, for example, by multiplication by
some time step value taken as a reference. We specify this later.

In their analysis of the 2-D second-order FD and FE schemes, Moczo et al. (2010b) also defined the relative error in the direction of
the displacement vector (or error in polarization or angle). The 3-D problem involves three displacement-vector components and two angles.
This considerably complicates the quantification of the polarization error and direct comparison of their values with the values of the error
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Table 5. Weight coefficients for the Dzx operators defined by eq. (13).

Dscheme
zx wzx

D FD D CG 2
zx

D FE L8
zx

D DG P0 CF
zx

1

4

D FD DS SG 2
zx 1

D FD D CG 4a
zx

1

576

[
256 −32

−32 4

]

D FD D CG 4b
zx

1

576

[
240 −24

−24 0

]

D FD DS SG 4
zx

1

576

[
729 −27

−27 1

]

D SE 4 cn
zx

1

768

[
343 −21

√
21

−21
√

21 27

]

D SE 4 vn
zx

1

1152

⎡
⎢⎢⎢⎢⎢⎣

343(5 + √
21) −112(7 + √

21) 686 −21(7 + √
21)

−112(7 + √
21) 512 −112(7 − √

21) 96

686 −112(7 − √
21) 343(5 − √

21) −21(7 − √
21)

−21(7 + √
21) 96 −21(7 − √

21) 18

⎤
⎥⎥⎥⎥⎥⎦

Table 6. Weight coefficients for
the Dzx operators defined by
eq. (14).

Dscheme
zx αzx

D FD DS PSG 2
zx

D FE G1
zx

1

4
[ 1 2 1 ]

D FE G8
zx

D DG P1 CF
zx

1

6
[ 1 4 1 ]

in amplitude. Therefore, instead of defining errors analogous to the error used by Moczo et al. (2010b), we define the error in the vector
difference as

εRel
vdiff =

(
�tre f

�t

)2 1

AE

[(
U N

x − U E
x

)2 + (
U N

y − U E
y

)2 + (
U N

z − U E
z

)2]1/2
. (19)

This absolute value of the vector difference between the numerically calculated displacement vector and the exact displacement vector
comprises both errors in amplitude and polarization in one reasonable value. This value can be directly compared with the error in amplitude.

4.2 Note on the local error and grid dispersion

It is clear that the local error in amplitude, as defined by eq. (18), quantifies, how the exact amplitude changes in one time step due to
inaccuracy of a numerical scheme.

In an analysis of stability the problem is different: one investigates condition for propagation of a harmonic plane wave by a numerical
scheme in a discrete grid in a stable manner. For example, Moczo et al. (2000) investigated condition for propagation of a plane harmonic
wave with a constant amplitude by the fourth-order DS staggered grid FD scheme. They obtained the standard stability condition and the
grid-dispersion relation. The price for propagating the harmonic plane wave with the constant amplitude in a discrete grid is a grid velocity
that differs from the true velocity, and the difference depends on the size of the grid spacing.

4.3 The exact solution-–a harmonic plane S wave in an unbounded homogeneous medium

It is reasonable to consider a harmonic plane S wave propagating in an unbounded homogeneous elastic isotropic medium as the exact
solution in definitions of the local errors. We will consider a harmonic plane S wave polarized in a vertical plane determined by the z-axis
and wavenumber vector �k. The displacement components are

uξ (x, y, z, t ; ω ; ϕ, δ) = Aξ Et E x E y Ez ; ξ ∈ {x, y, z} , (20)
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Figure 3. Cartesian coordinate system, angles ϕ and δ for defining a direction of propagation, displacement vector and displacement components of the plane
S wave.

where

Et = exp [−iω t]

E x = exp [ikx x] E y = exp
[
iky y

]
Ez = exp [ikz z]

kx = k cos ϕ sin δ ky = k sin ϕ sin δ kz = k cos δ

Ax = A cos ϕ cos δ Ay = A sin ϕ cos δ Az = −A sin δ

k = ω/β , 0 ≤ δ ≤ π , 0 ≤ ϕ ≤ 2 π, (21)

ω is the angular frequency, k = |�k| is the wavenumber, δ is the angle between the positive z-axis and the wavenumber vector �k (the direction
of propagation), ϕ is the angle between the positive x-axis and the vertical plane determined by the z-axis and wavenumber vector �k (Fig. 3).
Note that i in the arguments of the exponential function denotes the imaginary unit throughout the entire text. Otherwise, i will be used to
indicate a Cartesian component of the displacement vector or spatial coordinate.

It is known from the numerical experience that modelling of the P wave poses a minor problem compared to the modelling of the S wave
if the modelling comprises both waves. Later, we explain why it is so.

4.4 Evaluation of the exact and numerical values of displacement in a grid

Let h and λ be the grid spacing and wavelength, respectively. The spatial sampling ratio s is defined as

s = h
/
λ. (22)

Then

k = ω
/
β = 2πs

/
h, (23)

kx h = 2πs cos ϕ sin δ , kyh = 2πs sin ϕ sin δ , kzh = 2πs cos δ, (24)

ω = 2πsβ
/

h. (25)

Considering the stability condition for any of the numerical schemes in the form

�t ≤ � (h, α, β) (26)

and the stability ratio p

p = �t
/
� , p ≤ 1, (27)

the time step can be expressed as

�t = p � (h, α, β) . (28)

(Note that the stability parameter sometimes is defined as p = �t α/h.)
Without loss of generality, consider for simplicity

xI = 0 , yK = 0 , zL = 0 , tm = 0. (29)

Then the errors are evaluated at

xI = 0 , yK = 0 , zL = 0 , tm+1 = �t. (30)

The real exact displacement at this space–time grid position is [see eqs (20) and (21)]

Re
{

uξ (0, 0, 0, �t)
} = Aξ cos ω�t (31)
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Table 7. Quantities entering the numerical schemes and formulas for the errors.

ω � t � t β/h � t

FD D CG 2

FE L8

DG P0 CF

2πp s
1

(1 + r2)1/2

p

(1 + r2)1/2
p

s

(1 + r2)1/2

λ

β

FD DS PSG 2

FE G1

FE G8

DG P1 CF

2πp s
1

r

p

r
p

s

r

λ

β

FD DS SG 2 2π
1√
3

p s
1

r

1√
3

p
1

r

1√
3

p
s

r

λ

β

FD D CG 4a

FD D CG 4b
2π0.7p s

1

(1 + r2)1/2
0.7

p

(1 + r2)1/2
0.7p

s

(1 + r2)1/2

λ

β

FD DS SG 4 2π
6

7
√

3
p s

1

r

6

7
√

3
p

1

r

6

7
√

3
p

s

r

λ

β

SE 4 cn, vn 2π0.55

(
1

2
−

√
3

28

)
p s

1

r
0.55

(
1

2
−

√
3

28

)
p

r
0.55

(
1

2
−

√
3

28

)
p

s

r

λ

β

and

AE =
[
(Ax cos ω�t)2 + (

Ay cos ω�t
)2 + (Az cos ω�t)2

]1/2
= A |cos ω�t | . (32)

The exact values of (complex) displacements entering the r.h.s. of schemes (10) are evaluated as

U m−1
ξ (I, K , L)

= uξ (0, 0, 0, t = −�t ; ω ; ϕ, δ)

= Aξ exp [+iω �t]

U m
ξ (I, K , L)

= uξ (0, 0, 0, t = 0 ; ω ; ϕ, δ)

= Aξ

U m
ξ (I + �I , K + �K , L + �L )

= uξ (h �I , h �K , h �L , t = 0 ; ω ; ϕ, δ)

= Aξ exp [+ikx h �I ] exp[+ikyh �K ] exp [+ikzh �L ] . (33)

The grid-index increments �I , �K and �L depend on a numerical scheme. Quantities kx h, kyh and kzh are given by eq. (24).
It is clear from schemes (10) and definitions of the difference operators (11)–(14) that each scheme effectively includes the second

power of quantity � t β/h. Quantities ω � t , � t β/h and � t entering the numerical schemes and formulae for the errors are summarized in
Table 7.

U m+1
x , U m+1

y and U m+1
z , evaluated at (I, K , L), are obtained using schemes (10). Then

AN =
([

Re
{
U m+1

x

}]2 + [
Re

{
U m+1

y

}]2 + [
Re

{
U m+1

z

}]2
)1/2

. (34)

In principle, we can take any of the time steps as the reference time step � tref appearing in formulae (18) and (19) for the errors. As a
reasonable choice we consider

� tref = �t for FD DS SG 4 ; p = 0.9, s = 1/6, r = 1.42. (35)

The argument for the choice is: as it will be clear from the numerical calculations, scheme FD DS SG 4 is least sensitive to increasing
VP/VS ratio r , s = 1

6 is the most common choice for the spatial sampling ratio in the numerical modelling of earthquake motion in surface
sedimentary basins using the fourth-order staggered-grid FD scheme, r = 1.42 is taken in this article instead of the exact minimum value
r = √

2.
Note that the time steps in Table 7 include factor sλ

β
. It could be replaced by h

β
but in both cases the time steps include explicitly the

S-wave speed β in addition to the VP/VS ratio r . Because, however, the errors (18) and (19) include ratio ( � tref
�t )2 the explicit presence of λ

and β is removed from the errors. Consequently, apart from the absolute quantities ϕ and δ (angles determining the direction of propagation),
errors εRel

ampl and εRel
vdiff depend only on relative dimensionless quantities—the spatial sampling ratio s, stability ratio p and the VP/VS ratio r .
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Figure 4. Relative local errors in amplitude for the plane S waves propagating in all directions of the xz-plane (angle ϕ = 0◦, top panel) and in the vertical
plane of the body diagonal (angle ϕ = 45◦, bottom panel). The errors are calculated for the stability ratio p = 0.9, the spatial sampling ratio s corresponding
to 12 and 6 grid spacings per wavelength in the second- and fourth-order schemes, respectively, and three values of the VP/VS ratio r : 1.42, 5 and 10. In each
graph, the innermost circle (black thick solid) of the scale grid corresponds to the zero error.

5 N U M E R I C A L R E S U LT S

5.1 Relative local errors in amplitude for plane S waves propagating in any direction in the xz-plane and vertical plane of
the body diagonal

Because the medium is isotropic, it is enough to look at the errors of the schemes for waves propagating in all directions in two planes-–for
example, the xz-plane and the vertical plane determined by the z-axis and body diagonal.

Fig. 4 shows the relative local errors in amplitude, see definition eq. (18), of all numerical schemes for the plane S waves as functions
of direction of propagation in the xz-plane (angle ϕ = 0◦; top panel) and in the vertical plane of the body diagonal (angle ϕ = 45◦; bottom
panel), that is for all angles δ in both planes. The errors are calculated for the stability ratio p = 0.9. The values of the spatial sampling
ratio s correspond to 12 and 6 grid spacings per wavelength in the second- and fourth-order schemes, respectively. These spatial samplings
are common in the numerical modelling of the earthquake ground motion in sedimentary basins (later, we investigate the error as a function
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of s). Recall that in the SE schemes, the grid spacing h represents the average spacing between the nodes to directly compare the SE schemes
with the other schemes in terms of the spatial sampling ratio.

The errors were calculated for three values of the VP/VS ratio r : 1.42, 5 and 10. The speed ratio r = 1.42 represents the minimum
possible value of the VP/VS ratio r (the exact value being

√
2), r = 5 is a common value in surface sediments, mainly under the water level,

and r = 10, though relatively large, certainly is not the maximum possible value in the unconsolidated surface water-saturated sediments.
Practically taken, r ≥ 5 often have to be accounted for in the numerical modelling of seismic motion in sedimentary basins and valleys.

The thin broken line separates the second- and fourth-order schemes. Within these two parts of the figure, the spatial arrangement of the
schemes roughly reflects sensitivity and thus inaccuracy of the schemes with respect to the varying VP/VS ratio r . The least sensitive schemes
are placed on the left-hand side (l.h.s.).

The figure indicates that the staggered-grid schemes FD DS SG 2 and FD DS SG 4 are both least sensitive and most accurate in the
range of the considered VP/VS ratio values. Close to them is the partly-staggered-grid scheme FD DS PSG 2 = FE G1. The fourth-order
conventional-grid scheme FD D CG 4a comes out as a surprise given the well-known poor behaviour of the most classical conventional-grid
scheme FD D CG 2. An immediate notion from comparing FD D CG 4a with FD D CG 4b is that the sensitivity and accuracy with respect to
the VP/VS ratio r is not dominantly linked to the order of the schemes. An important conclusion also comes from comparison of the three FE
schemes. They differ from each other only by the integration within the element but their behaviours with respect to the varying VP/VS ratio
r differ considerably. The two SE schemes also appear sensitive to the increasing VP/VS ratio r and surprisingly inaccurate for VP/VS equal to
5 and 10.

5.2 Relative local errors in the vector difference for plane S waves propagating in any direction in the xz-plane and vertical
plane of the body diagonal

The arrangement of Fig. 5 is the same as that of Fig. 4 but Fig. 5 shows the relative errors in the vector difference, see definition eq. (19). The
striking difference between Figs 4 and 5 is that for each scheme the error in the vector difference clearly depends on the VP/VS ratio r . This
difference is the most apparent with the four schemes, FD DS SG 4, FD DS SG 2, FD DS PSG 2 = FE G1 and FD D CG 4a, which were
most accurate and least sensitive to the increasing r in terms of the relative error in amplitude. Still, however, the maximum errors of FD DS
SG 4 and FD DS SG 2 are smaller than the errors of the other schemes—as in the case of the relative errors in amplitude.

Recall that the relative local error in the vector difference comprises the errors in individual components and, thus, also the error in
polarization (difference between the true and numerical directions of the displacement vector). This means that the difference between errors
in Fig. 5 and errors in Fig. 4 is due to the polarization errors. Clearly, the polarization errors of each scheme depend on the VP/VS ratio r .

5.3 Equivalent spatial sampling for the errors in amplitude and the vector difference

Because the errors shown in Figs 4 and 5 were calculated for the commonly used values of the spatial sampling ratio s, they have only
indicative meaning. To quantitatively compare the accuracy of the schemes with respect to varying VP/VS ratio r , we proceed as follows. We
choose a reference maximum error as the maximum relative error in amplitude of FD DS SG 4 for r = 10 and s = 1/6. This error is equal to
0.00112. For each individual numerical scheme, we then calculate an equivalent spatial sampling ratio sequiv as a function of r . The equivalent
spatial sampling ratio sequiv is defined as a ratio at which the maximum relative error of the scheme is equal to the reference maximum error.
The maximum relative error is determined as maximum of errors calculated for angles ϕ ∈ [0, 90]◦ and δ ∈ [0, 90]◦ with angle increment of
0.5◦. We find the equivalent spatial-sampling ratio based on the relative error in amplitude and the equivalent spatial-sampling ratio based on
the relative error in the vector difference.

Fig. 6(a) shows the 1/sequiv(r ) curves based on the relative error in amplitude for all the investigated schemes (recall that 1/sequiv is equal
to the number of the grid spacings per wavelength). The left-hand panel shows the curves for the stability ratio p = 0.3, the right-hand panel
for p = 0.9. The solid lines are used for the fourth-order schemes, the dashed lines for the second-order schemes.

The curves for the two values of the stability ratio differ from each other only negligibly. Small differences can be seen only for the
lowest values of r .

At first sight, we realize that the curves are consistent with the indicative Fig. 4. FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS
PSG 2 = FE G1 make one distinct group of schemes. The equivalent sampling ratios of these schemes only little depend on the VP/VS ratio r .

FD D CG 4b, SE 4 cn, SE 4 vn, FE G8 = DG P1 CF and FD D CG 2 = FE L8 = DG P0 CF make the other distinct group of schemes
whose equivalent spatial sampling ratios considerably change with increasing VP/VS ratio r . Among the schemes of the second group, we can
distinguish the subgroup of the FD D CG 4b, SE 4 cn and SE 4 vn schemes, distinct FE G8 = DG P1 CF, and, finally, the worst FD D CG 2
= FE L8 = DG P0 CF.

Fig. 6(b) shows the 1/sequiv(r ) curves based on the relative error in the vector difference. As indicated by Fig. 5 the 1/sequiv increase with
increasing r for each scheme.

Fig. 6 clearly shows that, in terms of the equivalent spatial sampling, FD DS SG 4 is more accurate and more efficient than the other
schemes for media with r > 2.

Table 8 lists the 1/sequiv values for p = 0.9 and three values of the VP/VS ratio r—1.42, 5 and 10.
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Figure 5. The same as Fig. 4 but for the errors in the vector difference.

5.4 Essential summary of the numerical results

The relative local error in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG 2 = FE G1 is almost independent
on the VP/VS ratio r . However, the error in the vector difference increases with increasing VP/VS ratio. This can be explained only by the
dependence of the polarization errors of all schemes on the VP/VS ratio. The dependence of the error in the vector difference on the VP/VS

ratio has to be accounted for by a proper spatial sampling.
FD D CG 2 = FE L8 = DG P0 CF is the most sensitive to increasing VP/VS ratio and for VP/VS > 2 requires considerably denser spatial

sampling than any other scheme.
The maximum errors in the vector difference of schemes FD DS SG 2, FE G8 = DG P1 CF and FD DS PSG 2 = FE G1 increase with

the increasing VP/VS ratio in the same way. Schemes FD DS PSG 2 = FE G1 and FE G8 = DG P1 CF require denser spatial sampling than
FD DS SG 2 to achieve the same accuracy.

The maximum errors in the vector difference of all fourth-order schemes increase for VP/VS > 3 in the same way. Schemes FD D CG
4a, FD D CG 4b, SE 4 cn and SE 4 vn require denser spatial sampling than FD DS SG 4 to achieve the same accuracy.

The fourth-order schemes are for VP/VS > 3 less sensitive to increasing VP/VS ratio than the second-order schemes.
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Figure 6. The 1/sequiv(r ) curves. The equivalent spatial sampling ratio sequiv is defined as a ratio at which the maximum absolute value of the relative error of
the scheme is equal to the reference maximum error. The chosen reference maximum error, 0.00112, is equal to the maximum relative error in amplitude of
FD DS SG 4 for the VP/VS ratio r = 10 and spatial sampling ratio s = 1/6. The left-hand panel shows the curves for the stability ratio p = 0.3, the right-hand
panel for p = 0.9.

Table 8. The 1/sequiv values for the stability ratio p = 0.9 and reference maximum error equal to 0.00112.
Boldface indicates schemes for which the 1/sequiv based on the relative error in amplitude varies with the VP/VS

ratio r only negligibly.

VP/VS

ratio r
FD DS
SG 4

FD D
CG 4a

FD DS
SG 2

FD D
CG 4b

SE
4 cn

FD DS
PSG 2 =
FE G1

SE
4 vn

FE G8 =
DG

P1 CF

FD D
CG 2 =
FE L8 =

DG
P0 CF

1/sequiv based on the relative error in amplitude

1.42 5.3 8.8 16.6 7.8 6.6 25.6 5.5 17.7 15.4
5 5.9 9.7 17.7 14.0 14.4 26.9 18.0 38.7 75.4
10 6.0 9.7 17.8 19.7 20.4 27.1 26.2 85.3 153.5

1/sequiv based on the relative error in the vector difference

1.42 5.3 8.8 16.6 7.8 6.6 25.6 5.5 20.4 15.4
5 8.1 13.1 33.3 14.0 14.4 47.5 18.0 45.6 76.3
10 11.5 18.7 67.3 19.8 20.5 97.5 26.2 97.0 162.1

6 A NA LY S I S A N D I N T E R P R E TAT I O N O F T H E N U M E R I C A L R E S U LT S

6.1 How does the equation of motion see the S and P waves?

Recall the equation of motion (5) in the concise form

ui,t t = α2u j, j i + β2( ui, j j − u j, j i ). (36)

The S wave is solenoidal, that is, div �u = u j, j = 0. Consequently, in the case of the S wave, we have

u j, j i = 0, ui, j j − u j, j i = 1

β2
ui,t t . (37)
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The P wave is irrotational, that is, rot �u = 0 or εk j i ui, j = 0, where εk j i is the Levi-Civita symbol. Consequently, in the case of the P wave it
is

u j, j i = 1

α2
ui,t t , ui, j j − u j, j i = 0. (38)

6.2 How does a numerical scheme see the S and P waves?

A numerical scheme solving equation of motion (36) can be written in the form

D A{ui,t t } ≈ α2 D A{u j, j i } + β2 D A{ ui, j j − u j, j i }, (39)

where D A means a discrete approximation. Eq. (39) is, in fact, a concise symbolic form of eqs (10). A discrete approximation to any operator
in general can be expressed as a sum of the exact differential operator and a truncation error (for which we will use symbol T r E). Eq. (39)
can be written as

ui,t t + T r E{ui,t t } ≈ α2( u j, j i + T r E{u j, j i } ) + β2( ui, j j − u j, j i + T r E{ ui, j j − u j, j i } ). (40)

6.2.1 The case of the harmonic plane S wave

Considering the first of eqs (37), equality uS
i,t t = −ω2uS

i , and the fact that each second spatial derivative of a displacement-vector component
is proportional to −ω2uS

i /β
2, eq. (40) can be rewritten as

(
1 + error t S

i

) (−ω2u S
i

) ≈ α2
(

0 + errorαS
i

) −ω2uS
i

β2
+ β2

(
1 + error βS

i

) −ω2uS
i

β2
(41)

and

uS
i ≈

(
r 2 errorαS

i + 1 + error βS
i − error t S

i

)
uS

i . (42)

Note that the double-index summation rule does not apply to index i from eqs (41)–(57).
The error terms

errorαS
i = β2 T r E

{
uS

j, j i

}
−ω2 uS

i

, error βS
i = β2 T r E

{
uS

i, j j − uS
j, j i

}
−ω2 uS

i

(43)

do not depend on r . The error term error t S
i does depend on r

error t S
i = T r E

{
uS

i,t t

}
−ω2 uS

i

= c1
1

r 2
+ c2

1

r 4
+ · · · (44)

Coefficients cl ; l = 1, 2, . . . do not depend on r . Note that the series in powers of 1
r2 is due to the second-order approximation to the second

time derivative. The squares of the time step, (�t)2, are expressed using 1
r2 .

6.2.2 The case of the harmonic plane P wave

Considering the second of eqs (38), equality u P
i,t t = −ω2u P

i , and the fact that each second spatial derivative of a displacement-vector
component is proportional to −ω2u P

i /α2, eq. (40) can be rewritten as

(
1 + error t P

i

) (−ω2u P
i

) ≈ α2
(

1 + errorαP
i

) −ω2u P
i

α2
+ β2

(
0 + errorβ P

i

) −ω2u P
i

α2
(45)

and

u P
i ≈

(
1 + errorαP

i + 1

r 2
errorβ P

i − error t P
i

)
u P

i . (46)

Analogously to the error terms in eqs (43), errorαP
i and errorβ P

i do not depend on r . The dependence of error t P
i on r is analogous to that of

error t S
i in eq. (44).

6.2.3 Comparison

We see the important difference between eq. (42) for the S wave and eq. (46) for the P wave: In the case of the S wave, term r 2error αS
i

increases with increasing VP/VS ratio r , whereas in the case of the P wave, term 1
r2 errorβ P

i decreases with increasing VP/VS ratio r . This is
why a large value of the VP/VS ratio r does not pose a problem for the P wave.

Because we restrict our investigation to the S wave, in the following section, we will omit the explicit indication of the S wave in the
displacement-vector components and error terms.
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6.3 Structure of the relative errors in amplitude and vector difference

Recall eq. (39)

D A{ui,t t } ≈ α2 D A{u j, j i } + β2 D A{ ui, j j − u j, j i }. (47)

The investigated numerical schemes differ from each other by the approximations on the r.h.s. They share the same approximation to the
second time derivative

D A{ui,t t } ≈ (
um+1

i − 2um
i + um−1

i

) 1

(�t)2
. (48)

After substituting D A{ui,t t } in eq. (47) by approximation (48), we can get the scheme for the numerical displacement component at the time
level m + 1 in the form
Num+1

i = 2um
i − um−1

i + (�t)2
(
α2 D A{u j, j i } + β2 D A{ ui, j j − u j, j i } )

. (49)

Recalling the concept of the local error, eqs (15)–(19), we distinguish the numerical value, labelled N, on the l.h.s., from the exact values of
the displacement components on the r.h.s. (not labelled). Subtracting um+1

i from both sides of eq. (49), dividing the equation by (�t)2 and
using eq. (48), we get(

Num+1
i − um+1

i

) 1

(�t)2
= −D A{ui,t t } + α2 D A{u j, j i } + β2 D A{ ui, j j − u j, j i }. (50)

Each of the discrete approximations on the r.h.s. can be replaced by the sum of the exact operator and truncation error. Then(
Num+1

i − um+1
i

) 1

(�t)2
= −ui,t t + α2u j, j i + β2( ui, j j − u j, j i )

− T r E{ui,t t } + α2T r E{u j, j i } + β2T r E{ ui, j j − u j, j i }. (51)

The sum of the first three terms on the r.h.s. is equal to zero, see eq. (36), and thus(
Num+1

i − um+1
i

) 1

(�t)2
= −T r E{ui,t t } + α2T r E{u j, j i } + β2T r E{ ui, j j − u j, j i }. (52)

Considering eqs (43) and (44), the case of the harmonic plane S wave,(
Num+1

i − um+1
i

) 1

(�t)2
=

(
error t S

i − r 2errorαS
i − error βS

i

)
ω2u i . (53)

Referring to definition (19) of the error in the vector difference and eq. (32), we can consider an auxiliary error-component term

ε̃i, vdiff =
(

Num+1
i − um+1

i

)
AE

1

(�t)2

=
(

error t S
i − r 2errorαS

i − error βS
i

) ω2u i

|A cos ω �t | .
(54)

Referring now to definition (18) of the error in amplitude and eq. (32), we can rearrange eq. (54) and consider an auxiliary error-component
term

ε̃i, ampl =
Num+1

i

AE

1

(�t)2

=
(

error t S
i − r 2errorαS

i − error βS
i

) ω2u i

|A cos ω �t | + um+1
i

|A cos ω �t |
1

(�t)2
. (55)

Accounting for eqs (20) and (21), we have

um+1
i = ui (t + �t) = exp [−i ω �t] ui (t) . (56)

Consequently,

ε̃ i , ampl =
Num+1

i

AE

1

(�t)2

=
(

error t S
i − r 2errorαS

i − error βS
i + exp [−i ω �t]

(ω �t)2

)
ω2u i

|A cos ω �t | .
(57)

The errors in the vector difference (19) and amplitude (18) can be then written as

εRel
vdiff = (�tref )

2 [
ε̃ 2

x, vdiff + ε̃ 2
y, vdiff + ε̃ 2

z, vdiff

] 1/2
(58)

and

εRel
ampl = (�tref )

2
∣∣∣ [ε̃ 2

x, ampl + ε̃ 2
y, ampl + ε̃ 2

z, ampl

] 1/2 − 1
∣∣∣ . (59)

Although the auxiliary error-component terms eqs (54) and (57) do not quantitatively represent the entire values of the relative errors in
amplitude and the vector difference, they indicate where the difference between the error in amplitude and error in the vector difference comes
from. The r.h.s of eqs (54) and (57) differ by the fourth term in the parenthesis in eq. (57). The absolute value of this term is proportional to
r 2, see Table 7. The fact that the errors in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG 2 = FE G1 are
almost independent on r is likely related to the interaction of the second and fourth terms, as they are both proportional to r 2.
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6.4 Truncation errors of the discrete approximations to the second non-mixed and mixed spatial derivatives

It is also reasonable to look at the truncation errors of the discrete approximations to the second non-mixed and mixed spatial derivatives.
The leading and first higher terms of the truncation errors of the second- and fourth-order operators are listed in Table A1 in Appendix. Here,
we compare coefficients of these terms.

Denote the truncation errors of the operators for the mixed and non-mixed derivatives as T r E{Dzx } and T r E{Dxx }, respectively. Define
ratios for each scheme

C LT = coeff . of the leading term of T r E {Dzx}
coeff . of the leading term of T r E {Dxx}

C k H T = coeff . of the k-th higher term of T r E {Dzx}
coeff . of the k-th higher term of T r E {Dxx} ; k = 1, 2, 3, . . . (60)

C LT and C1 H T are shown in Fig. 7. Fig. 7(a) includes the four schemes for which the errors in amplitude are almost independent on the VP/VS

ratio r , Fig. 7(b) includes all other schemes. All the four schemes in Fig. 7(a) have C LT = 1. It is easy to find that schemes FD DS SG 4, FD
DS SG 2 and FD DS PSG 2 = FE G1 have also Ck H T = 1. On the other hand, none of schemes in Fig. 7(b) has C LT or C 1H T equal to 1.

Let c2
2 and c2

4 be coefficients of the leading term and first higher term of T r E{Dxx } or T r E{Dzx } of the second-order FD DS SG 2
operators. The upper index indicates the second-order, the lower index the power of the grid spacing h. Similarly, let c4

4 and c4
6 be coefficients of

the leading term and first higher term of T r E{Dxx } or T r E{Dzx } of the fourth-order FD DS SG 4 operators. Fig. 7 shows the corresponding
coefficients of other second-order operators as multiples of c2

2 and c2
4. Similarly, the figure also shows coefficients of other fourth-order

operators as multiples of c4
4 and c4

6.

In general, for the schemes of the same order (that is either second or fourth) for given C LT or C 1H T the errors in amplitude and the
vector difference increase with increasing absolute values of coefficients of terms in the truncation errors. This can be well seen in the case
of schemes FD DS SG 2 and FD DS PSG 2 = FE G1 and schemes SE 4 cn and SE 4 vn. In both comparisons, the C LT or C 1H T ratios are
the same for the compared schemes but the coefficients of terms in the truncation errors are different.

It is interesting to compare FD DS SG 4 and FD D CG 4a. Although they have different C 1H T , the ratio of the coefficients of the leading
terms (7.1, see Fig. 7a) well quantifies the difference in their errors (see Fig. 6).

7 C O N C LU S I O N S

We considered an unbounded homogeneous isotropic elastic medium and uniform cubic grid, and analysed 13 3-D time-domain explicit
numerical schemes of the second-order in time for modelling seismic wave propagation and earthquake motion for their behaviour with a
varying P-wave to S-wave speed ratio (VP/VS or r ).

The schemes of the second-order in space are:

FD D CG 2—finite-difference displacement conventional grid
FD DS PSG 2—finite-difference displacement-stress partly-staggered grid
FD DS SG 2—finite-difference displacement-stress staggered grid
FE L8—finite-element Lobatto 8-integration points
FE G1—finite-element Gauss 1-integration point
FE G8—finite-element Gauss 8-integration points
DG P0 CF—discontinuous-Galerkin polynomial order zero centred-flux
DG P1 CF—discontinuous-Galerkin polynomial order one centred -flux

The schemes of the fourth-order in space are:

FD D CG 4a—finite-difference displacement conventional grid variant a
FD D CG 4b—finite-difference displacement conventional grid variant b
FD DS SG 4—finite-difference displacement-stress staggered grid
SE 4 cn—spectral-element central node
SE 4 vn—spectral-element vertex node.

We wrote all schemes in the unified form. Some of the schemes are equivalent

FD D CG 2 = FE L8 = DG P0 CF
FD DS PSG 2 = FE G1
FE G8 = DG P1 CF.

We defined the numerical solution as the displacement vector at time level m + 1 obtained from the numerical scheme entered by the
exact values of displacement of the plane S wave at time levels m − 1 and m. We defined the relative local error in amplitude and the relative
local error in the vector difference based on the difference between the numerical solution and the exact solution. Because different schemes
use different time steps, we normalized the errors for a unit time.
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Figure 7. Comparison of coefficients of the leading and the first higher terms of the truncation errors T r E{Dxx } and T r E{Dzx }. (a) schemes with the error
in amplitude almost independent on the VP/VS ratio r . (b) schemes with the error in amplitude dependent on the VP/VS ratio r .
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We also defined the equivalent spatial sampling ratio as a ratio at which the maximum relative error of the scheme is equal to the
reference maximum error.

The numerical evaluations of the errors and equivalent spatial sampling ratios led to the following conclusions:
The relative local error in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG 2 = FE G1 is almost

independent on the VP/VS ratio. The error in the vector difference increases with increasing VP/VS ratio. This can be explained only by the
dependence of the polarization errors of all schemes on the VP/VS ratio.

FD D CG 2 = FE L8 = DG P0 CF is the most sensitive to the increasing VP/VS ratio and for VP/VS > 2 requires considerably denser
spatial sampling than any other scheme.

The maximum errors in the vector difference of the second-order schemes FD DS SG 2, FE G8 = DG P1 CF and FD DS PSG 2 = FE
G1 increase with the increasing VP/VS ratio in the same way. Schemes FD DS PSG 2 = FE G1 and FE G8 = DG P1 CF require denser spatial
sampling than FD DS SG 2 to achieve the same accuracy.

The maximum errors in the vector difference of all the fourth-order schemes increase with the increasing VP/VS ratio for VP/VS > 3 in
the same way. Schemes FD D CG 4a, FD D CG 4b, SE 4 cn and SE 4 vn require denser spatial sampling than FD DS SG 4 to achieve the
same accuracy.

The fourth-order schemes are for VP/VS > 3 less sensitive to the increasing VP/VS ratio than the second-order schemes.
We theoretically showed how a numerical scheme sees the P wave and S wave if the VP/VS ratio increases. In this study, we show that

the increasing VP/VS ratio does not pose a problem for a scheme to model the P wave.
We also showed the structure of the errors in amplitude and the vector difference.
We compared the schemes in terms of the truncation errors of the discrete approximations to the second mixed and non-mixed spatial

derivatives. The most important finding is this: Schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG 2 = FE G1 with the errors
in amplitude almost independent on the VP/VS ratio have the same coefficients of the leading terms of the truncation errors of approximations
to the second mixed and non-mixed spatial derivatives. None of the other schemes have those coefficients equal.

Scheme FD DS SG 2 with the smallest errors among the second-order schemes and scheme FD DS SG 4 with the smallest errors among
the fourth-order schemes have the same coefficients also at each higher term of the truncation errors of approximations to the second mixed
and non-mixed spatial derivatives. The absolute values of the coefficients are smaller than the absolute values of coefficients of the truncation
errors of the other schemes.

The general theoretical conclusion based on the investigation of the 13 numerical schemes is that the homogeneity of the approximations
to the second mixed and non-mixed spatial derivatives in terms of the coefficients of the leading terms of their truncation errors as well as the
absolute values of the coefficients are key factors for the behaviour of the numerical schemes with increasing VP/VS ratio.

The practical conclusion for the existing numerical schemes is that the dependence of the errors in the vector difference on the VP/VS

ratio should be accounted for by a proper (sufficiently dense) spatial sampling. We quantified the proper sampling with respect to the local
errors in amplitude and in the vector difference.
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A P P E N D I X

Table A1. The leading and first higher terms of the truncation errors of the non-mixed and mixed spatial operators defined by eqs (11)–(14). Part a:
second-order operators, part b: fourth-order operators.

Operator Truncation error × 20160

Part (a)

D FD D CG 2
xx

D FE L8
xx

D DG P0 CF
xx

1680 �(4,0,0) h2

+ 56 �(6,0,0) h4

D FD D CG 2
zx

D FE L8
zx

D DG P0 CF
zx

6720

(
1

2
�(1,0,3) + 1

2
�(3,0,1)

)
h2

+ 896

(
3

16
�(1,0,5) + 10

16
�(3,0,3) + 3

16
�(5,0,1)

)
h4

D FD DS PSG 2
xx

D FE G1
xx

11760

(
3

7
�(2,0,2) + 1

7
�(4,0,0) + 3

7
�(2,2,0)

)
h2

+ 2996

(
1

107

(
2�(6,0,0) + 15�(4,2,0) + 15�(4,0,2) + 15�(2,4,0) + 45�(2,2,2) + 15�(2,0,4)

))
h4

D FD DS PSG 2
zx

D FE G1
zx

11760

(
2

7
�(1,0,3) + 3

7
�(1,2,1) + 2

7
�(3,0,1)

)
h2

+ 2996

(
1

107

(
6�(1,0,5) + 30�(1,2,3) + 15�(1,4,1) + 20�(3,0,3) + 30�(3,2,1) + 6�(5,0,1)

))
h4
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Table A1. (Continued.)

Operator Truncation error × 20160

D FD DS SG 2
xx

1680 �(4,0,0) h2

+ 56 �(6,0,0) h4

D FD DS SG 2
zx

1680

(
1

2
�(1,0,3) + 1

2
�(3,0,1)

)
h2

+ 56

(
3

16
�(1,0,5) + 10

16
�(3,0,3) + 3

16
�(5,0,1)

)
h4

D FE G8
xx

D DG P1 CF
xx

8400

(
2

5
�(2,0,2) + 1

5
�(4,0,0) + 2

5
�(2,2,0)

)
h2

+ 1736

(
1

31

(
�(6,0,0) + 5�(4,2,0) + 5�(4,0,2) + 5�(2,4,0) + 10�(2,2,2) + 5�(2,0,4)

))
h4

D FE G8
zx

D DG P1 CF
zx

10080

(
1

3
�(1,0,3) + 1

3
�(1,2,1) + 1

3
�(3,0,1)

)
h2

+ 2996

(
1

41

(
3�(1,0,5) + 10�(1,2,3) + 5�(1,4,1) + 10�(3,0,3) + 10�(3,2,1) + 3�(5,0,1)

))
h4

Part (b)

D FD D CG 4a
xx

− 1344 �(6,0,0) h4

− 300 �(8,0,0) h6

D FD D CG 4a
zx

− 1344

(
1

2
�(1,0,5) + 1

2
�(5,0,1)

)
h4

− 160

(
1

2
�(1,0,7) + 1

2
�(7,0,1)

)
h6

D FD D CG 4b
xx

− 224 �(6,0,0) h4

− 20 �(8,0,0) h6

D FD D CG 4b
zx

− 1904

(
6

17
�(1,0,5) + 5

17
�(3,0,3) + 6

17
�(5,0,1)

)
h4

− 440

(
4

22
�(1,0,7) + 7

22
�(3,0,5) + 7

22
�(5,0,3) + 4

22
�(7,0,1)

)
h6

D FD DS SG 4
xx

− 189 �(6,0,0) h4

− 45

4
�(8,0,0) h6

D FD DS SG 4
zx

− 189

(
1

2
�(1,0,5) + 1

2
�(5,0,1)

)
h4

− 45

4

(
1

2
�(1,0,7) + 1

2
�(7,0,1)

)
h6

D SE 4 cn
xx

− 384 �(6,0,0) h4

− 1920

49
�(8,0,0) h6

D SE 4 cn
zx

− 2304

(
1

2
�(1,0,5) + 1

2
�(5,0,1)

)
h4

− 15 360

49

(
1

2
�(1,0,7) + 1

2
�(7,0,1)

)
h6

D SE 4 vn
xx

− 1 024 �(6,0,0) h4

− 58 880

49
�(8,0,0) h6

D SE 4 vn
zx

− 6144

(
1

2
�(1,0,5) + 1

2
�(5,0,1)

)
h4

− 471 040

49

(
1

2
�(1,0,7) + 1

2
�(7,0,1)

)
h6
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S U M M A R Y
This paper concerns the numerical modelling of time-domain mechanical waves in viscoelastic
media based on a generalized Zener model. To do so, classically in the literature relaxation
mechanisms are introduced, resulting in a set of the so-called memory variables and thus in
large computational arrays that need to be stored. A challenge is thus to accurately mimic
a given attenuation law using a minimal set of relaxation mechanisms. For this purpose, we
replace the classical linear approach of Emmerich & Korn with a nonlinear optimization
approach with constraints of positivity. We show that this technique is more accurate than
the linear approach. Moreover, it ensures that physically meaningful relaxation times that
always honour the constraint of decay of total energy with time are obtained. As a result, these
relaxation times can always be used in a stable way in a modelling algorithm, even in the case
of very strong attenuation for which the classical linear approach may provide some negative
and thus unusable coefficients.

Key words: Numerical solutions; Numerical approximations and analysis; Body waves;
Seismic attenuation; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Taking dissipation mechanisms, that is, viscoacoustic or viscoelastic
behaviour into account is often important in fields that involve
acoustic or elastic wave propagation. This has led to significant
research effort for instance in seismology, seismic wave propagation
and imaging in the oil and gas industry, non-destructive industrial
evaluation based on ultrasonic waves, or medical imaging. A large
number of articles can be found in the literature about modelling
of viscoelastic media characterized by their quality factor Q, with
recent reviews available for instance in Petersson & Sjögreen (2012)
and Carcione (2014). Of particular interest is the case of a Q factor
that is constant over a wide range of frequencies because that is
observed in many cases of practical interest (see e.g. Liu et al.
1976; Dahlen & Tromp 1998; Komatitsch & Tromp 1999).

In pioneering work, Liu et al. (1976) demonstrated that a finite
and constant quality factor can be modelled by superimposing N
standard linear solid (SLS) damping mechanisms. Day & Minster
(1984) developed a Padé approximant of the viscoelastic modulus
for time-domain wave propagation simulations. Emmerich & Korn
(1987) then showed that the rheological model of a generalized

Maxwell body can be used to represent the rational approximation
of the viscoelastic modulus and developed a linear least-squares
technique to compute the coefficients of the rational approximation
involved (i.e. the points and weights that are needed in the case
of time-domain simulations) in an optimized fashion. This latter
work has resulted in an improved approximation of a viscoelastic
solid having a given quality factor Q and has become the classical
way of representing such a material. It has been used in numer-
ous subsequent articles, for example, Carcione et al. (1988a,b),
Kristek & Moczo (2003), Komatitsch et al. (2004), Moczo &
Kristek (2005), Käser et al. (2007), Martin & Komatitsch (2009),
Savage et al. (2010), Lombard & Piraux (2011), Dhemaied et al.
(2011) and Petersson & Sjögreen (2012). It is also worth mentioning
that Moczo & Kristek (2005) proved the equivalence between the
different rheological models mentioned previously, as also analysed
by Cao & Yin (2014). Because of this equivalence, in what follows
for simplicity we will call it the Zener model and will mostly refer
to the formulation of Carcione (2014) for that model.

In the context of time-domain simulations, these methods
are often expensive in terms of memory storage when imple-
mented numerically because they require the use of the so-called

C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 427
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memory variables that need to be stored and marched in time (see
e.g. Moczo & Kristek 2005; Carcione 2014). To alleviate this, Day
(1998), Day & Bradley (2001), Graves & Day (2003) and van Driel
& Nissen-Meyer (2014) have suggested spreading the relaxation
mechanisms and thus the related memory variables over adjacent
grid points, using a single mechanism per grid point and trying to
get a good approximation of the damping behaviour in average over
a local volume, in particular when attenuation is weak (van Driel &
Nissen-Meyer 2014). However, there are open questions regarding
the overall accuracy of such an approach, in particular when prop-
agating waves over a large number of wavelengths, which is very
often the case in practice. Kristek & Moczo (2003) have also pointed
out the fact that the presence of discontinuities, that is, of interfaces
in the material model under study, can lead to inaccuracies in this
spreading technique.

In practice, the Zener model requires fitting Q(ω) over a range of
angular frequencies [ωmin , ωmax ], which implies determining a set
of N points and N weights. As mentioned above, this is classically
done based on the linear approach of Emmerich & Korn (1987), in
which one sets the N points and then optimizes and solves for the N
weights. Casula & Carcione (1992) have proposed an approxima-
tion to simplify the way of computing the weights, in particular in
the case of low-loss solids. However, two important drawbacks can
appear with this technique. First, the accuracy of the approach can
be relatively poor, that is, the error compared with the real constant
Q can be large when the frequency range under study is large and/or
when the number of relaxation mechanisms N used is small. This
amounts to introducing a physical modelling error, independent of
the numerical error induced in addition by the chosen numerical
scheme. Second, some weights can be negative because the lin-
ear approach of Emmerich & Korn (1987) does not enforce their
positivity. This is particularly true when attenuation is strong (say
Q < 20 or so), which is a case that can occur for instance in site
effect and earthquake hazard assessment studies (poorly consoli-
dated sediments), in soil-structure interaction studies where values
of the critical damping ratio ξ = 1

2Q larger than 5 per cent are often
considered in the structures, as well as in non-destructive industrial
testing or medical imaging. In such a case the physical and also
mathematical constraint of decay of total energy with time can be
broken, as we will see in Section 2, and using such negative weights
can make wave propagation modelling algorithms become unstable.
Peyrusse et al. (2014) pointed out the problem of negative weights
in the approach of Emmerich & Korn (1987) and proposed to im-
pose their positivity in the inversion, as also addressed by Withers
et al. (2015). However, they did not invert jointly for the points and
weights and found that their approach was at best as accurate as that
of Emmerich & Korn (1987).

Alternative approaches exist to represent viscoelastic damping
mechanisms and to compute their coefficients. For instance, Xu &
McMechan (1998) used simulated annealing to find the weights of
the Zener body, the relaxation times being evenly distributed in loga-
rithmic scale over N points in the band of angular frequencies. Russo
& Zollo (2003) developed an analytical approach for optimization
of the relaxation times; however, they used a less general relaxation
function by assigning the same ratio of relaxed and unrelaxed mod-
uli to all Zener bodies, and they did not introduce the positivity of
the weights as a constraint. Liu & Archuleta (2006) used a simulated
annealing approach to compute the relaxation points and weights for
only two extreme values of the quality factor, Q = 5 and Q = 5000,
and proposed a regression methodology to derive the coefficients
for intermediate values of Q. However, they also did not impose the
positivity of the weights as a constraint and their approximation of

the Q values is limited to a 5 per cent accuracy. Furthermore, their
expression of the viscoelastic modulus is different from the classical
one of, for example, Moczo & Kristek (2005), Lombard & Piraux
(2011), Petersson & Sjögreen (2012) and Carcione (2014). Bielak
et al. (2011) introduced an internal friction model with optimized
memory efficiency based on a Kelvin–Voigt body put in parallel
with two Maxwell bodies and managed to mimic an almost con-
stant Q quality factor over two decades in frequency. Other attempts
at improving the coefficient optimization process can be found in
the literature: Robertsson et al. (1994) and Robertsson (1996) de-
veloped a quasi-analytical approach, but an important limitation is
that it is valid only when Q is large; Asvadurov et al. (2004) min-
imized the error in L∞ norm in an elegant way, but their approach
is quite involved and, more importantly, valid for a constant Q
only.

In this paper, our goal is thus to develop a nonlinear optimiza-
tion technique that (i) will be significantly more accurate than the
classical approach of Emmerich & Korn (1987) and (ii) will al-
ways lead to physically meaningful relaxation times that honour
the constraint of decay of total energy with time, by enforcing the
positivity of all the coefficients obtained, including in the case of
strong attenuation, thus ensuring stable simulations. Compared to
Emmerich & Korn (1987) we will not set the points but rather solve
and optimize for them jointly with the weights, imposing strict
positivity as a constraint in the process. Instead of solving for N un-
knowns, we will thus solve for 2N unknowns. Having more degrees
of freedom to solve for, we will be able to significantly improve
the accuracy of the approximation. This strategy has successfully
been used in other fields such as viscoelastic models in solid me-
chanics (Rekik & Brenner 2011) and high-frequency poroelasticity
(Blanc et al. 2013). To some extent, this idea has some similari-
ties with switching from Newton–Cotes (trapezoidal, Simpson...)
quadrature to Gauss quadrature in numerical integration in order
to get a more accurate integration rule by determining optimized
points and weights instead of weights only. The methodology that
we will introduce is independent of the numerical scheme used to
solve the wave equation in time, that is, it is general and can be
used in numerical techniques as diverse as finite differences, fi-
nite elements, spectral elements, discontinuous Galerkin, etc. The
coefficients are computed once and for all in a preprocessing step.

The paper is organized as follows: in Section 2.1, we briefly recall
some elementary notions about viscoelasticity and discuss the decay
of total energy with time. In Section 2.2, we recall the approach of
Emmerich & Korn (1987) and reformulate it within our framework.
In Section 2.3, we introduce the nonlinear optimization approach
that will allow us to define the new methodology. In Section 3, we
perform numerical experiments to show the dispersion and quality
factor curves obtained, which illustrates the improved accuracy of
the results. Finally, in Section 4, we perform a numerical experiment
for 3-D wave propagation in a tabular medium, which confirms the
robustness and the improved accuracy of the nonlinear optimization
approach.

2 P H Y S I C A L M O D E L L I N G

As mentioned above, viscoelastic models are widely used in the
case of the propagation of acoustic or seismic waves in dissipative
media, among other applications. The 2-D or 3-D linear viscoelastic
wave equation then writes:

ρ
∂2u

∂t2
= ∇ · σ + f , (1)
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where ρ is the distribution of density and u denotes the displacement
field produced by the source f. The symmetric stress tensor σ is
linearly related to the strain tensor ε = 1

2 (∇u + (∇u)T ) by Hooke’s
law, which in an elastic, anisotropic linear solid may be written in
the form

σ = c : ε , (2)

where the colon denotes a double tensor contraction operation. The
elastic properties of the medium are determined by the fourth-
order elastic tensor c, which in an isotropic medium is cijk� =
λδijδk� + μ(δikδj� + δi�˜δjk), where δ is the Kronecker delta symbol
and λ and μ are the two Lamé parameters, related to the pres-
sure and shear wave celerities and to density by μ = ρ c2

s and
λ = ρ c2

p − 2μ. In an attenuating medium, Hooke’s law (2) needs
to be modified such that the stress is determined by the entire strain
history:

σ (t) =
∫ t

−∞

∂

∂t
c(t − t ′) : ε(t ′) dt ′ . (3)

In the 1-D case without attenuation this reduces to

ρ
∂2u

∂t2
= ∂σ

∂x
+ f

ε = ∂u

∂x
σ = (λ + 2 μ)ε (4)

with scalar unknowns, and in an attenuating medium Hooke’s law
becomes

σ (t) =
∫ t

−∞

∂

∂t
(λ(t − t ′) + 2 μ(t − t ′)) ε(t ′) dt ′ . (5)

2.1 Constitutive law

Let us briefly recall elementary notions about viscoelasticity in
1-D. In higher spatial dimensions, the discussion below is then
straightforwardly applied to the compressional and shear relax-
ation functions, respectively. The reader is referred, for example, to
Carcione (2014) for a detailed presentation. The integro-differential
expression of 1-D linear viscoelasticity writes

σ = ψ ∗ ∂ε

∂t
, (6)

where ∗ denotes time convolution. The relaxation function of the
Zener model writes

ψ(t) = Er

⎛
⎜⎝1 − 1

N

N∑
�=1

(
1 − τε�

τσ�

)
e
− t

τσ�

⎞
⎟⎠ H (t), (7)

where Er is the relaxed modulus, N is the number of relaxation
mechanisms, τ ε� and τ σ� are relaxation times and H is the Heaviside
step function. It is worth mentioning that the 1/N factor in eq. (7) is
not present in earlier publications (Liu et al. 1976; Carcione et al.
1988a,b). This has been changed in Carcione (2001) and Moczo
& Kristek (2005) as well as in many subsequent publications. The
model with the 1/N factor is physically more meaningful because
the model without it cannot be represented by mechanical elements,
since it requires a spring with negative constant (Casula & Carcione
1992); but calculations not shown here demonstrate that these two
ways of expressing the Zener model are equivalent. Another issue

that is sometimes found in the literature is that waves speed up
instead of slowing down when attenuation is turned on because the
reference used is the relaxed state instead of the more traditional
unrelaxed state (e.g. in Carcione 1993).

At t = 0, the relaxation function (7) is equal to the unrelaxed
modulus Eu

Eu = 1

N

N∑
�=1

τε�

τσ�

Er . (8)

As time increases, ψ decreases monotonically from Eu to Er, and
as frequency increases, the phase velocity increases monotonically
from c0 to c∞ defined by

c0 =
√

Er

ρ
, c∞ =

√
Eu

ρ
. (9)

Instead of writing the constitutive law as a convolution product (6),
one can equivalently use the differential form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ =
N∑

�=1

σ�,

σ� + τσ�

∂σ�

∂t
= Er�

(
ε + τε�

∂ε

∂t

)
, � = 1, . . . , N ,

Er� = Er

N
.

(10)

This form is useful to prove the decay of energy (Bécache et al.
2004).

Property 1. Let us define

E = E1 + E2 + E3, (11)

with

E1 = 1

2

∫
R

ρ v2 dx,

E2 = 1

2

∫
R

Er

(
∂u

∂x

)2

dx,

E3 = 1

2

N∑
�=1

∫
R

τσ�

Er� (τε� − τσ�)

(
σ� − Er�

∂u

∂x

)2

dx, (12)

where v = ∂u
∂t is velocity and ρ is density. E1 corresponds to the

kinetic energy, E2 to the elastic potential energy in the relaxed state
and E3 to the sum of the inelastic potential energies. The total energy
E then obeys

dE
dt

= −
N∑

�=1

∫
R

1

Er� (τε� − τσ�)

(
σ� − Er�

∂u

∂x

)2

dx . (13)

To prove (13), the conservation of momentum in eq. (4) combined
with system (10) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂v

∂t
= ∂σ

∂x
, (14a)

σ =
N∑

�=1

σ�, (14b)

σ� + τσ�

∂σ�

∂t
= Er�

(
∂u

∂x
+ τε�

∂v

∂x

)
, � = 1, . . . , N . (14c)
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Let us multiply eq. (14a) by v and integrate by parts:∫
R

ρ v
∂v

∂t
dx +

∫
R

∂v

∂x
σ dx = 0. (15)

We can then transform the stress σ into σ � thanks to eq. (14b)∫
R

ρ v
∂v

∂t
dx +

N∑
�=1

∫
R

∂v

∂x
σ� dx = 0, (16)

and split the resulting equation into two terms:∫
R

(
ρ v

∂v

∂t
+ Er

∂u

∂x

∂

∂t

(
∂u

∂x

))
︸ ︷︷ ︸

1

dx

+
N∑

�=1

∫
R

(
σ� − Er�

∂u

∂x

)
∂v

∂x︸ ︷︷ ︸
2

dx = 0. (17)

Eq. (14c) then yields

σ� − Er�

∂u

∂x
+ τσ�

∂

∂t

(
σ� − Er�

∂u

∂x

)
= Er� (τε� − τσ�)

∂v

∂x
,

(18)

and thus

∂v

∂x
= 1

Er� (τε� − τσ�)

(
σ� − Er�

∂u

∂x
+ τσ�

∂

∂t

(
σ� − Er�

∂u

∂x

))
.

(19)

Injecting eq. (19) into 2 in eq. (17) and using straightforward
algebra recovers eq. (13).

An important remark follows from Property 1: if τ ε� > τσ� > 0
∀� then E in eq. (11) is a definite-positive quadratic form, and

dE
dt

< 0 . (20)

The condition τ ε� > τσ� > 0 ∀� is therefore a sufficient condition
to obtain a decreasing total energy. It is worth mentioning that
we have not shown that it is necessary in the mathematical sense
because we cannot exclude that there can be cases in which the
sum in eq. (13) remains positive even if some of the coefficients
are negative. In higher spatial dimensions a similar energy analysis
can be performed; computations are slightly more involved but the
conclusion is unchanged (Bécache et al. 2004). Let us also mention
that a standard linear solid in which τ σ > τε instead of τ ε > τσ is
sometimes called an anti-Zener body (Mainardi 2010). Such a body
is non-causal, that is, its energy in the unrelaxed state is smaller
than its energy in the relaxed state; This means that one of its two
springs has a negative modulus.

2.2 Linear optimization

The relaxation function of the generalized Zener model involves
2 N + 1 parameters. The relaxed modulus Er can be deduced from
the phase velocity at zero frequency (eq. 9). Determination of the
relaxation times τ ε� and τ σ� is more involved. The most classical
approach originates in the work of Emmerich & Korn (1987), which
we are going to briefly recall. For the sake of simplicity, we perform
the calculations with new unknowns:

κ� = 1

N

(
τε�

τσ�

− 1

)
, θ� = 1

τσ�

, (21)

from which the original coefficients can be recovered using

τε� = 1 + N κ�

θ�

, τσ� = 1

θ�

. (22)

These coefficients will also be useful in future sections because
imposing τ ε� > τσ� > 0 ∀� simply means imposing κ� > 0 and
θ� > 0. The viscoelasticity modulus M = F( ∂�

∂t ), where F is the
Fourier transform in time, is deduced from (7):

M(ω) = Er

(
1 + i ω

N∑
�=1

κ�

θ� + i ω

)
. (23)

We determine the relaxed modulus Er so that the phase veloc-
ity of the Zener model equals cr at a given reference frequency
fr: c(ωr) ≡ cr, with ωr = 2 π fr. The wavenumber is

k =
(

ρ ω2

M(ω)

)1/2

=
√

ρ

Er
ω

(
1 +

N∑
�=1

κ�

θ� + iω

)−1/2

. (24)

Denoting �(k) the real part of k, the phase velocity is

c(ω) = ω

�(k)
=

√
Er

ρ
F(ω), (25)

with

F(ω) = 1/�
⎧⎨
⎩

(
1 +

N∑
�=1

κ�

θ� + iω

)−1/2
⎫⎬
⎭ . (26)

The requirement c(ωr) ≡ cr is then reached by taking

Er = ρ c2
r

F(ωr )
. (27)

The quality factor Q is defined as the ratio of the imaginary part to
the real part of M. Its reciprocal writes

Q−1(ω) =

N∑
�=1

ω θ� κ�

θ 2
� + ω2

1 +
N∑

�=1

ω2 κ�

θ 2
� + ω2

. (28)

The main idea in Emmerich & Korn (1987) is then to minimize the
distance between Q−1(ω) and a given Q−1

ref (ω) in a band of angular
frequencies [ωmin , ωmax ], which of course depends on the spectrum
of the source under study, that is, on the frequency content of the
data or experiment that one wants to model. For this purpose in
Emmerich & Korn (1987) the relaxation frequencies θ� are evenly
distributed over N points in logarithmic scale

θ� = ωmin

(
ωmax

ωmin

) �−1
N−1

, � = 1, . . . , N , (29)

in the band of angular frequencies [ωmin , ωmax ]. The coefficients κ�

are then obtained by identifying the reciprocal of the quality factor
(28) with a given Q−1

ref (ω). From eq. (28), one obtains the set of
equations

N∑
�=1

ωk

(
θ� − ωk Q−1

ref (ωk)
)

θ 2
� + ω2

k

κ� = Q−1
ref (ωk), k = 1, . . . , K , (30)

where the angular frequencies are distributed linearly on a logarith-
mic scale of K points

ωk = ωmin

(
ωmax

ωmin

) k−1
K−1

, k = 1, . . . , K . (31)
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If K = N, one obtains a square linear system. The choice K =
2 N − 1 is often made (Groby & Tsogka 2006), leading to an over-
determined system. Nothing in this method prevents from obtaining
negative values κ� < 0 when solving eq. (30), yielding τ ε� < τσ� via
eq. (22), which is unsuitable both physically and mathematically as
mentioned in Property 1. In practice, this can (and does) happen in
particular when N is large, typically N ≥ 5 or so, as we will see in
Section 3.

Emmerich & Korn (1987) suggest that ωk/ωk − 1 should be chosen
equal to about 10 in practice, however, such a choice is not always
convenient or even possible in all situations because it means that
when the number of mechanisms N is large then the total bandwidth
should be extremely large (10N − 1), while in some situations in order
to improve accuracy one wants to have standard linear solids that
are located much closer to one another and be able to increase N to
improve the accuracy of the approximation without having to use a
large distance ωk/ωk − 1 
 10 between two mechanisms. Also, from
a mathematical point of view imposing that ωk/ωk − 1 be around
10 does not automatically ensure the positivity of the coefficients
obtained; if positivity is not imposed explicitly as a constraint, there
is no particular mathematical reason for it to be ensured in practice.

2.3 Optimization with constraints

Let us introduce the objective function

J ({κ�, θ�} ; N , K )

=
K∑

k=1

(
N∑

�=1

ωk Qref (ωk)
(
θ� − ωk Q−1

ref (ωk)
)

θ 2
� + ω2

k

κ� − 1

)2

. (32)

Minimizing eq. (32) with respect to the κ� only recovers the Em-
merich & Korn (1987) expressions (30). Here we propose to min-
imize eq. (32) in terms of both variables, imposing decay of total
energy with time as in eq. (20), that is, imposing τ ε� > τσ� > 0 ∀�,
which in turn means imposing the positivity constraints κ� > 0 and
θ� > 0. We introduce the additional constraint θ� < θmax in order
to avoid too large values of θ�, which could result in stiff equations
and thus in numerical instabilities in the time-marching of memory
variables (Blanc et al. 2013).

These 3N constraints are relaxed by setting κ� = κ
′2
� and θ� = θ

′2
�

and solving the following problem with only N constraints:

min J
{κ ′

�
,θ ′

�
}

(
{κ ′2

� , θ ′2
� } ; N , K

)
, with θ ′2

� ≤ θmax for � = 1, . . . , N .

(33)

As problem (33) is nonlinear and non-quadratic with respect to
abscissas θ ′

�, to solve it we resort to the SolvOpt algorithm (Kappel
& Kuntsevich 2000; Rekik & Brenner 2011), which is based on
the iterative Shor’s method (Shor 1985). As starting values for
that iterative optimization technique we use the values κ

′(0)
� and

θ
′(0)
� obtained based on the Emmerich & Korn (1987) procedure

(29)–(30) (even if some of them are negative, since our nonlinear
optimization procedure will then ensure positivity).

To determine the 2N coefficients κ ′
� and θ ′

�, the minimal number
of relaxation frequencies is K = 2N. In practice, we have observed
better accuracy when taking the larger value K = 4N. The angular
frequencies ωk are chosen evenly spaced in logarithmic scale over
the optimization band [ωmin , ωmax ], as in the linear approach, and
thus eq. (31) remains valid.

3 N U M E R I C A L VA L I DAT I O N
O F T H E A P P ROA C H

3.1 Approximation and coefficients obtained

Let us illustrate the improved accuracy of the approximation ob-
tained as well as the fact that the coefficients κ� and θ� obtained are
always positive. To do so, let us perform several numerical exper-
iments with different numbers of relaxation mechanisms N. Opti-
mization is performed over K = 4 N angular frequencies ωk (31), as
explained in Section 2.3. We set the lower and upper bounds of the
angular frequency range to

ωmin = ωc/10, ωmax = 10 ωc, (34)

where ωc = 2 π fc is the dominant angular frequency of the source.
We first take a constant quality factor Qref = 5 and a dominant

frequency of the source fc = 1.5 Hz. Fig. 1 shows the exact value
of Q−1

ref and the numerical approximation (28) obtained using opti-
mization based on N = 2 to N = 7 relaxation mechanisms in the
angular frequency band [ωmin , ωmax ]. In the interval of optimization,
the linear approach of Emmerich & Korn (1987) yields oscillations
whereas the nonlinear optimization with constraints gives a curve
that is almost constant and fits the exact value very well.

The numerical values of the coefficients κ� and θ� obtained with
N = 6 are given in Table 1. The κ5 weight is negative in the linear
Emmerich & Korn (1987) procedure, which could lead to unstable
results if used in a numerical simulation, as illustrated in Section 4,
because the set of coefficients does not necessarily honour the con-
straint of decay of energy with time of eq. (20).

To evaluate the effect of the optimization more quantitatively, it
is useful to introduce the following quantities:

(1) uQ
ex the unknown exact solution of the model with a truly con-

stant Qref factor, which obeys a fractional-order partial differential
equation (Carcione et al. 2002);

(2) uZ
ex the unknown exact solution of the Zener model approxi-

mation of that constant Qref, which obeys a standard partial differ-
ential equation with memory variables;

(3) uZ
num the known numerical solution of the partial differen-

tial equation with memory variables, obtained using the numerical
scheme selected to solve the wave eq. (1).

The triangular inequality then yields the total error

εt = ||uQ
ex − uZ

num|| ≤ ||uQ
ex − uZ

ex||︸ ︷︷ ︸
εm

+ ||uZ
ex − uZ

num||︸ ︷︷ ︸
εn

, (35)

in which εn is the numerical error due to discretization. That error
depends on the numerical scheme chosen to discretize the wave

Table 1. Coefficients of eq. (21) obtained when resorting to (a) the method
of Emmerich & Korn (1987) and (b) nonlinear optimization with constraints,
for a quality factor Q = 5 modelled with N = 6 relaxation mechanisms. One
can note that one gets a negative weight for � = 5 in the case of the linear
approach of Emmerich & Korn (1987).

(a) κ� θ� (b) κ� θ�

� = 1 +2.81 10−1 1.50 10−1 � = 1 +2.93 10−1 9.18 10−2

� = 2 +1.29 10−1 3.77 10−1 � = 2 +1.92 10−1 3.57 10−1

� = 3 +1.07 10−1 9.46 10−1 � = 3 +2.00 10−1 1.01 100

� = 4 +3.54 10−1 2.38 100 � = 4 +2.26 10−1 2.75 100

� = 5 −1.00 10−1 5.97 100 � = 5 +2.84 10−1 7.75 100

� = 6 +7.85 10−1 1.50 101 � = 6 +7.39 10−1 3.38 101
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N = 6 N = 7
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Figure 1. Reciprocal of the quality factor when using a Zener approximation with N = 2 (upper left) to N = 7 (bottom right) relaxation mechanisms based on
the linear approach of Emmerich & Korn (1987) (red line) and nonlinear optimization (blue line). The vertical dotted lines denote the interval of optimization
[fmin , fmax ]. The horizontal axis is in logarithmic scale.

equation and can be analysed using standard numerical analysis
tools (which is classical in the literature and out of the scope of this
paper). Here we focus on the physical modelling error εm, which is
related to the quality of the optimization process:

εm ∼ ||Q−1
ref (ω) − Q−1(ω)||2 (36)

in the interval of optimization. Values of εm for Qref = 5 and various
values of the number of relaxation mechanisms N are given in
Table 2. With N = 6 we get εm = 1.21 per cent in the case of
Emmerich & Korn (1987) and εm = 0.0156 per cent in the case of
nonlinear optimization with constraints. When making the number
of relaxation mechanisms N vary from 2 to 6 we get the relative
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Optimization of the Zener viscoelastic model 433

Table 2. Relative physical modelling error (36) in the case of the linear
approach of Emmerich & Korn (1987) and in the case of nonlinear opti-
mization, when making the number of relaxation mechanisms vary from
N = 2 to N = 7. Nonlinear optimization always leads to more accurate
results.

N Linear optimization Nonlinear optimization

2 εm = 34.2 per cent εm = 10.7 per cent
3 εm = 3.08 per cent εm = 2.17 per cent
4 εm = 1.99 per cent εm = 0.42 per cent
5 εm = 1.49 per cent εm = 0.08 per cent
6 εm = 1.21 per cent εm = 0.0156 per cent
7 εm = 0.86 per cent εm = 0.0030 per cent

errors of Table 2. For N = 2 we get improvement, for N = 3 the
difference is less pronounced but then for N ≥ 4 the difference
becomes significant again. These errors are displayed in Fig. 2.
When nonlinear optimization is used the error keeps decaying in a
very significant fashion, while in the case of the linear approach of
Emmerich & Korn (1987) it does not.

Let us illustrate the effect of the physical modelling error εm

on time-domain results of 1-D wave propagation. The only lin-
ear and causal model of viscoelasticity having a constant quality
factor Q was introduced by Kjartansson (1979). We compare the
exact solution for the velocity obtained with that truly constant Q
model (uQ

ex), which is the reference solution, with the exact solution
obtained with the Zener model approximation of that constant Q
(uZ

ex). These exact solutions are computed semi-analytically based
on Fourier synthesis. Details about how to compute the solution in
the case of the Zener model can be found in appendix D of Favrie
et al. (2015). We consider a homogeneous 1-D domain extending
from xmin = −5000 m to xmax = +5000 m. The constant density is
ρ = 2000 kg m−3, the reference frequency is fr = 1.5 Hz and the
celerity at that frequency is cr = 2000 m s−1. The source is a Ricker
wavelet force with dominant frequency fc = fr located at x = 0.
Fig. 3 shows the time history of velocity recorded at two receivers
r1 and r2 located in xr1 = 1000 m and xr2 = 3000 m, respectively.
Since dispersion is a cumulative effect, as expected the errors are
more pronounced after a larger distance of propagation. In the case
of linear optimization a visible error remains even when using N = 4
relaxation mechanisms; on the contrary an almost perfect agreement

is obtained if nonlinear optimization is used with N = 4 relaxation
mechanisms.

3.2 Dispersion curves

The dispersion of the Kjartansson (1979) model is

c(ω) = cr

(
ω

ωr

) 1
π arctan 1

Q

. (37)

An important remark from eq. (37) is that one can see that the phase
velocity of this model is not bounded at infinite frequency, contrary
to that of the Zener model. A consequence is that in such a model the
reference velocity needs to be given at a finite frequency, it cannot
be an unrelaxed value at infinite frequency as in the Zener model.

Fig. 4 compares the phase velocities of the Zener model (ob-
tained with the two methods of optimization) with the reference
phase velocity of the Kjartansson (1979) model. The parameters
used are cr = 2000 m s−1, fr = 1.5 Hz and Q = 5. The optimization
is performed in the frequency range [fc/10, 10fc], where fc = fr.
The choice fr = fc is natural, it amounts to choosing the dominant
frequency of the source as the reference frequency. For N = 2 relax-
ation mechanisms, the linear optimization largely overestimates the
phase velocity of the Zener model (a), whereas nonlinear optimiza-
tion underestimates the phase velocity of the Zener model at f > fc

(b). For N = 4, a good agreement is observed between the Zener
model and the Kjartansson (1979) model if nonlinear optimization
is used (b).

3.3 Case of a non-constant Q factor

We now select a varying quality factor (e.g. Dahlen & Tromp 1998)

Q(ω) = Q0

(
ω

ω0

)−α

, (38)

with Q0 = 20, f0 = 1.5 Hz, ω0 = 2π f0 and α = 0.1. Since the
exponent is negative, this leads to 1/Q increasing with frequency,
that is, to higher attenuation at higher frequency. As in Fig. 1 for the
case of a constant Q, in Fig. 5 we show the exact value of Q−1(ω)
and the numerical approximation (28) obtained using optimization
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Figure 2. Value of the objective function of eq. (32) as a function of frequency, using a Zener approximation with N = 2 (green curve), N = 4 (blue curve) and
N = 6 (red curve) relaxation mechanisms, with the linear approach of Emmerich & Korn (1987) (left) and with nonlinear optimization (right). The vertical
dotted lines denote the interval of optimization [fmin , fmax ]. Both axes are in logarithmic scale. Note that the vertical logarithmic scale has about twice more
decades on the right figure than on the left figure, that is, the error levels are very significantly different.
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Figure 3. Time history of velocity recorded at receivers r1 (top) and r2 (bottom), comparing the exact solution of the Kjartansson (1979) model (red curve)
to the exact solution of the Zener model obtained with linear optimization (left row) and with nonlinear optimization (right row), for N = 2 (green curve) and
N = 4 (blue curve) relaxation mechanisms.
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Figure 4. Dispersion curves obtained with linear optimization (a) and with nonlinear optimization (b) in the case of the Kjartansson (1979) model (red curve),
the Zener model with N = 2 relaxation mechanisms (green curve) and the Zener model with N = 4 relaxation mechanisms (blue curve). The solid vertical
line indicates the reference frequency fr = 1.5 Hz. The vertical dotted lines denote the frequency range [fc/10, 10fc] in which optimization is performed. The
horizontal line denotes the celerity c(fr) = 2000 m s−1 on which all the models are locked, that is, where they are by definition identical.
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Figure 5. Same as Fig. 1 but for a non-constant quality factor Q(ω) = Q0( ω
ω0

)−α , with Q0 = 20, f0 = 1.5 Hz, ω0 = 2π f0 and α = 0.1.

based on N = 2 to N = 7 relaxation mechanisms in the angular fre-
quency band [ωmin , ωmax ]. In the interval of optimization, the linear
approach of Emmerich & Korn (1987) yields more oscillations than
the result obtained with the nonlinear optimization approach with
constraints.

4 VA L I DAT I O N F O R 3 - D WAV E
P RO PA G AT I O N I N A L AY E R - C A K E
M E D I U M

In Section 3, we have illustrated how the choice of the relaxation
times in the Zener model affects the accuracy of time domain
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Table 3. Layered viscoelastic model used in the validation examples of
Section 4. The Li, i = 1. . . 3 refer to the sedimentary layers and B to the
surrounding bedrock. h stands for layer thickness, VS, VP, QS, QP stand for
S and P seismic velocities and quality factors and ρ stands for mass density.

h (m) VP (m s−1) VS (m s−1) ρ (kg m−3) QP QS

L1 17.3 1500 200 2100 40 20
L2 72.5 1800 350 2100 70 35
L3 115.6 2500 650 2200 130 65
B – 4500 2600 2600 ∞ ∞

solutions of the viscoelastic wave equation in a homogeneous
medium. Let us now turn to a more realistic example of 3-D prop-
agation in a tabular medium with strong contrasts in viscoelastic
properties. For this purpose, we consider the viscoelastic medium
described in Table 3. The elastic version of this model was used by
Chaljub et al. (2015) to study the accuracy of numerical predictions
of earthquake ground motion in the Mygdonian basin in northern
Greece. The model consists in a stiff elastic half-space overlaid
by three sedimentary layers with lower seismic impedances, which
cause large amplification of earthquake ground motion (the so-
called site effects). The shear quality factors in the sediments are
approximated by a simple, frequency-independent scaling from the
shear velocities, QS = VS/10, as done in site effect studies in the
(general) situation in which no other constraints on intrinsic at-
tenuation can be used; the P quality factors are defined by QP =
2 QS.

The viscoelastic medium is excited by a double-couple point
source with a vertical strike-slip focal mechanism. The source is
set at 80 m depth in order to excite high-frequency surface waves
propagating within the sedimentary layers. In realistic cases, those
surface waves would be generated locally by conversion of incom-
ing body waves at strong lateral heterogeneities located close to
the surface (for example at basin edges) and would contribute to

the amplification and duration lengthening of ground motion. The
source time function is a step with a rising time τ = 0.1 s. It radiates
a far-field displacement with a flat spectrum up to 1 Hz and gradual
decay between 1 Hz and 10 Hz.

The computations are performed with the AXITRA software
package (Coutant 1989), which implements a discrete wavenumber
method (Bouchon 1981). As in Section 3, we compute the solutions
for the truly constant Q model of Kjartansson (1979), and for Zener
models with different numbers of mechanisms, whose relaxation
times are obtained based either on linear or nonlinear optimization.
We use a reference frequency fr = 1 Hz and solve for the relaxation
times of the Zener models in the two-decade frequency range [fr/10,
10fr].

Fig. 6(a) shows 25 s of horizontal ground acceleration computed
at 4-km epicentral distance for the truly constant Q model (black
line) and for the Zener models with N = 3 mechanisms and re-
laxation times inverted using linear (red line) or nonlinear (blue
line) optimization. Note that the overall agreement between traces
is quite good even for late surface waves, mainly because anchoring
the dispersion of the different models at the reference frequency has
the effect of minimizing phase misfit. The differences in amplitude
can be analysed by comparing Fourier amplitude spectra (Fig. 6b).
The solutions of the Zener models either underpredict (around fr =
1 Hz) or overpredict (around 2.5 Hz) the amplitude of the constant Q
solution, as expected from Fig. 1. The maximum differences reach
about 10 per cent around the dominant, reference frequency. A more
precise measure is to quantify time–frequency misfits, or goodness-
of-fit scores as proposed by Kristeková et al. (2009). When ap-
plied to very similar signals, the envelope (resp. phase) misfits or
goodness-of-fit scores mainly reflect the differences or similarities
in amplitude (resp. phase) between the traces. In Fig. 6c, we plot
the envelope goodness-of-fit scores as a function of time. Each
goodness-of-fit value g(t) corresponds to a frequency average over
the range [0.2–5 Hz] of the envelope time–frequency misfit, m(t),
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Figure 6. (a) Time evolution of horizontal ground acceleration in cm s−2 at 4-km epicentral distance for a constant Q model (black line) and for the Zener
model with N = 3 relaxation mechanisms obtained based on linear (red) or nonlinear (blue) optimization. (b) Corresponding Fourier amplitude spectra. (c)
Time evolution of the envelope goodness-of-fit with respect to the reference solution of the constant Q model.
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Figure 7. Same as Fig. 6 but using N = 4 relaxation mechanisms.

Table 4. Average envelope (E) and phase (P) goodness-of-fits of horizontal
ground acceleration for the Zener viscoelastic models with relaxation times
obtained based on linear and nonlinear optimization.

N Linear optimization Nonlinear optimization

3 E = 9.36 P = 9.76 E = 9.57 P = 9.82
4 E = 9.64 P = 9.88 E = 9.84 P = 9.93
6 E = 9.83 P = 9.90 E = 9.90 P = 9.95
10 E = 9.89 P = 9.94 E = 9.90 P = 9.96

which is further scaled to a score between 0 (no fit) and 10 (perfect
fit) based on the nonlinear mapping g(t) = 10 exp [−m(t)]. The fig-
ure shows that nonlinear optimization of the relaxation times in the
Zener model always yields a more accurate approximation of the
constant Q model, even for N = 3.

From the analysis of Fig. 1, we expect that this trend should
be even more pronounced if we increase the number of relaxation
mechanisms. This is indeed the case for the results obtained with
N = 4 relaxation mechanisms, which are shown in Fig. 7: the im-
provement of the prediction of the Zener model with nonlinear opti-
mized relaxation times is clearly seen, both in the Fourier amplitude
spectra and in the time evolution of the goodness-of-fit scores.

The global (i.e. time- and frequency-averaged) phase and enve-
lope goodness-of-fit scores are given in Table 4 for N = 3, 4, 6,
10. They confirm (i) that the phase misfits are negligible after the
adjustment of the physical dispersion at the reference frequency and
(ii) that for N ≥ 4 mechanisms, the solution of the Zener model with
nonlinear optimization of the relaxation times matches the solution
of the constant Q model almost perfectly, whereas N ≥ 6 mecha-
nisms are needed to obtain the same accuracy when the relaxation
times are computed based on classical linear optimization.

5 C O N C LU S I O N S A N D F U T U R E W O R K

We have developed a nonlinear methodology based on the SolvOpt
algorithm of Kappel & Kuntsevich (2000) to optimize the coef-

ficients of the Zener viscoelastic model that is significantly more
accurate, for a given number of relaxation mechanisms, than the
classical linear approach of Emmerich & Korn (1987), or equiv-
alently that can reach similar accuracy for a smaller number of
relaxation mechanisms. The approach also ensures the positivity of
the coefficients obtained, thus always honouring the constraint of
decay of total energy with time and resulting in a stable algorithm
when used in viscoelasticity applications, even in the case of very
strong attenuation. We have illustrated the improved accuracy ob-
tained based on several numerical experiments, first for a simple
wave pulse propagating in a homogeneous 1-D medium with strong
attenuation and then for a more realistic 3-D wavefield propagating
in a stratified medium with large contrasts in seismic velocities and
attenuation.

In future work, we plan to extend our applications of this tech-
nique to fitting a non-constant Q(ω) profile; such an extension could
be useful, for example, for non-destructive testing or in ocean acous-
tics. Since the approach used is not specific to the Zener model, we
also plan to apply it to other, more complex or less classical models,
which may even involve fractional derivatives (e.g. Zhu & Carcione
2014); in viscoelasticity, one can think of the Andrade model (e.g.
Ben Jazia et al. 2014), the fractional Kelvin–Voigt model (Caputo
1967) or the fractional Zener model (Nasholm & Holm 2013), and in
poroelasticity of the widely used model based on the Biot–Johnson–
Koplik–Dashen theory (e.g. Blanc et al. 2013).

Our SEISMIC_CPML finite-difference and SPECFEM spectral-
element software packages are available open source at geodynam-
ics.org; they both include our implementation of the SolvOpt tech-
nique presented in this paper.
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S U M M A R Y
The possibility of applying one explicit finite-difference (FD) scheme to all interior grid
points (points not lying on a grid border) no matter what their positions are with respect to the
material interface is one of the key factors of the computational efficiency of the FD modelling.
Smooth or discontinuous heterogeneity of the medium is accounted for only by values of the
effective grid moduli and densities. Accuracy of modelling thus very much depends on how
these effective grid parameters are evaluated. We present an orthorhombic representation
of a heterogeneous medium for the FD modelling. We numerically demonstrate its superior
accuracy. Compared to the harmonic-averaging representation the orthorhombic representation
is more accurate mainly in the case of strong surface waves that are especially important in
local surface sedimentary basins. The orthorhombic representation is applicable to modelling
seismic wave propagation and earthquake motion in isotropic models with material interfaces
and smooth heterogeneities using velocity–stress, displacement–stress and displacement FD
schemes on staggered, partly staggered, Lebedev and collocated grids.

Key words: Numerical approximations and analysis; Earthquake ground motions; Compu-
tational seismology; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Sufficiently realistic models are necessary for numerical modelling
of seismic wave propagation as well as for prediction of earthquake
ground motion especially in local surface sedimentary structures
capable to produce anomalous earthquake motion. The realistic
physical model has to be sufficiently accurately and efficiently rep-
resented by discrete grid models in the (spatial) domain numerical
methods such as the finite-difference (FD) methods.

Models of the Earth’s interior and surface geological struc-
tures have to include layers/blocks of different materials. Inside
a layer/block, material parameters (P and S wave speeds, density,
P and S wave quality factors) may change continuously. The ma-
terial parameters may change discontinuously at a contact of two
layers/blocks. In local surface sedimentary structures the ratio of
the S wave speeds in the bedrock and sediments commonly reaches
values considerably larger than 2, and even 10 is not exceptional.
Large velocity contrasts at material interfaces can dominantly con-
tribute to forming seismic wave propagation. It is therefore obvious
that accuracy of representation of the interfaces in the discrete grid
model considerably affects the overall accuracy of the numerical
modelling.

Recent FD schemes represent a large variety of approaches with
considerable differences in accuracy and computational efficiency

in realistic models with large velocity contrasts and complex ge-
ometry of material interfaces. This is mainly due to a level of
(in)consistency of the various discrete representations of the in-
terfaces with the boundary conditions at the interfaces. Let us note
that the FD schemes also differ in accuracy in models with large
P-wave to S-wave speed ratio; see Moczo et al. (2010, 2011).

At the welded material interface the displacement or particle-
velocity and traction vectors are continuous. Consequently, a dis-
crete representation of a welded material interface in a grid should
sufficiently well approximate the boundary conditions.

One possible approach is to apply different FD schemes to
different grid points: a FD scheme for the smoothly heteroge-
neous medium to the grid points away of the interface, and spe-
cific FD schemes to the grid points at and near (this depends
on the stencil) the interface. The latter schemes have to be ob-
tained by a proper incorporation of the boundary conditions at the
interface. Such approach has been called homogeneous. Clearly,
the schemes are specific for a particular geometry of the inter-
face. Whereas feasible for simple interface geometry, the appli-
cation of the homogeneous approach to non-planar interfaces is
difficult and therefore has been considered impractical. In any
case, the approach requires stable and sufficiently accurate FD
approximation of the boundary conditions which is not a trivial
problem.
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In the alternative heterogeneous approach only one FD scheme is
used for all interior grid points (points not lying on boundaries of a
grid) no matter what their positions are with respect to the material
interface. The presence of the interface is accounted for only by
values of effective material parameters assigned to grid positions.
Therefore, the heterogeneous approach has been commonly applied
to incorporate both continuous and discontinuous heterogeneities
of medium.

If a FD scheme should be applicable to any interior grid point,
it should approximate equation of motion and stress–strain relation
(SSR) valid for both the smoothly heterogeneous medium and inter-
face. In other words, for finding a FD scheme applicable to the grid
points at, near and away of the material interface we need SSR for a
point at the interface that would (i) have the same form as SSR for
a point in a smooth medium and (ii) be consistent with the interface
boundary conditions.

SSR (Hooke’s law) for a smooth isotropic elastic medium may
be written in the matrix form

�σ = E�ε, (1)

where the stress vector, strain vector and elasticity matrix are,
respectively,

�σ ≡ [
σxx , σyy, σzz, σxy, σyz, σzx

]T
,

�ε ≡ [
εxx , εyy, εzz, εxy, εyz, εzx

]T
(2)

E ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0

λ λ + 2μ λ 0 0 0

λ λ λ + 2μ 0 0 0

0 0 0 2μ 0 0

0 0 0 0 2μ 0

0 0 0 0 0 2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

(The defined quantities do not correspond to Voigt notation. This
aspect is not important in the article.) Thus we need SSR for a point
at an interface which has the same form as Hooke’s law (1) for the
considered stress and strain vectors. Although Backus (1962) and
Schoenberg & Muir (1989) addressed the problem of the equivalent
medium consistent with the interface boundary condition, and Muir
et al. (1992) explicitly pointed out its relation to the FD schemes, ap-
parently this fundamental task had not attracted sufficient attention
of developers of FD schemes for several decades until the article by
Moczo et al. (2002). They suggested a simplified approach for the
(2,4) staggered-grid schemes: an effective grid elastic modulus at
the grid position of the stress-tensor component evaluated as a vol-
ume integral harmonic average of the modulus within a volume of
the grid cell centred at the grid position. Numerical tests confirmed
that the scheme was more accurate than the staggered-grid schemes
presented earlier. The historical overview can be found in the book
by Moczo et al. (2014).

The SCEC (Southern California Earthquake Center) code com-
parative exercise (Day et al. 2003 and also Bielak et al. 2010) as
well as the ESG2006 (ESG – Effects of Surface Geology 2006) in-
ternational comparative exercise for a typical deep Alpine Grenoble
valley, France (Chaljub et al. 2006; Tsuno et al. 2006; Chaljub et al.
2010) clearly demonstrated that it had been far from trivial to reach
satisfactory level of agreement among numerical predictions by dif-
ferent methods and, specifically among predictions by different FD
schemes. In the ESG2006 only four predictions reached a reason-
able level of agreement, the FD predictions based on approach by

Moczo et al. (2002) among them. See the article by Chaljub et al.
(2010) for details.

The direct impulse for developing a new discrete representation
of material interface came from the quantitative iterative analysis of
numerical predictions in the unprecedented international compara-
tive E2VP exercise (E2VP – Euroseistest Verification and Validation
Project 2008–2012; Chaljub et al. 2015; Maufroy et al. 2015) for
the shallow sedimentary Mygdonian basin, Greece. The iterative
analysis eventually included a set of complex realistic models and
a set of related canonical models. The stringent canonical models
made it possible to identify insufficient accuracy in the FD mod-
elling of strong surface waves along horizontal interface with large
velocity contrast. This is understandable—the harmonic averaging
is strictly accurate only in 1-D problem. In the previous reported
modelling studies the approximate discrete representation by Moczo
et al. (2002) based on volume harmonic averaging proved suffi-
ciently accurate. The reason was that the simulated wavefields were
not so strongly dominated by surface waves propagating along hor-
izontal material interfaces.

Let us eventually mention the general alternative homogenization
approach for effective representation of medium heterogeneity de-
veloped by Capdeville and his colleagues (e.g. Capdeville & Marigo
2007; Capdeville et al. 2013).

For treating material heterogeneity in the spectral-element, dis-
continuous Galerkin, and pseudospectral methods we refer to the
articles by Chaljub et al. (2010, 2015) and relevant chapters in the
book by Moczo et al. (2014). These references are also relevant for
the FD method.

First we explain SSR for a point at the planar material interface
parallel to a Cartesian coordinate plane. We present an alterna-
tive (as compared to Moczo et al. 2002) derivation that makes it
possible to identify the resulting effective discrete representation
in relation to continuous and discontinuous field quantities. The
derivation provides the necessary basis for the new representation.
Then we consider shear and normal stress-tensor components in a
heterogeneous cell. We present and discuss effective representation
of a heterogeneous grid cell based on orthorhombic averaging. We
demonstrate the accuracy of the representation by numerical tests.

2 T H E S S R F O R A P L A NA R M AT E R I A L
I N T E R FA C E

Consider a planar welded interface parallel to a Cartesian coordi-
nate plane. Continuity of displacement implies continuity of three
strain-tensor components, and continuity of traction implies conti-
nuity of three stress-tensor components across the interface. Fig. 1
summarizes continuous and discontinuous stress- and strain-tensor
components for the three Cartesian orientations. In the following
sections we analyse the shear and normal stresses in terms of dis-
continuous and continuous components.

2.1 Shear stress-tensor components at an interface
perpendicular to the x-axis

Discontinuous shear stress-tensor component. For the two half-
spaces (indicated by the − and + superscripts) in a welded contact
we can write in general

σ−
yz = 2μ−εyz

σ+
yz = 2μ+εyz . (4)
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interface perpendicular to the

x  axis y  axis z  axis 

continuous discontinuous continuous discontinuous continuous discontinuous

xxσ xxε yyσ yyε zzσ zzε

xyσ xyε yzσ yzε zxσ zxε

zxσ zxε xyσ xyε yzσ yzε

yyε yyσ zzε zzσ xxε xxσ

zzε zzσ xxε xxσ yyε yyσ

yzε yzσ zxε zxσ xyε xyσ

Figure 1. Continuous and discontinuous stress- and strain-tensor components for the three Cartesian orientations of a material interface.

Considering continuity of εyz and an arithmetic average 〈σyz〉x of
the stress-tensor components at the interface,

〈σyz〉x ≡ 1
2

(
σ−

yz + σ+
yz

)
, (5)

the summation of eq. (4) leads to SSR

〈σyz〉x = 2〈μ〉xεyz, (6)

with the arithmetic average of the shear moduli

〈μ〉x ≡ 1
2

(
μ− + μ+)

. (7)

Continuous stress-tensor components. For example, for σxy we
may write

σxy = 2μ−ε−
xy

σxy = 2μ+ε+
xy (8)

or

1

μ− σxy = 2ε−
xy

1

μ+ σxy = 2ε+
xy . (9)

Considering continuity of σxy and an arithmetic average 〈εxy〉x at
the interface,

〈εxy〉x ≡ 1
2

(
ε−

xy + ε+
xy

)
(10)

the summation of eq. (9) leads to SSR

σxy = 2 〈μ〉H x 〈εxy〉x (11)

with the harmonic average of the shear moduli

〈μ〉H x ≡ 2
1

μ− + 1
μ+

. (12)

Analogously we obtain a relation for σzx . The relations for the
shear stress-tensor components at the interface perpendicular to the
x-axis are then

σxy = 2〈μ〉H x 〈εxy〉x

〈σyz〉x = 2〈μ〉xεyz

σzx = 2〈μ〉H x 〈εzx 〉x . (13)

Partial summary. SSRs for the shear stress-tensor components at
the interface perpendicular to the x-axis:

(1) Continuity of εyz and the arithmetic averaging of the dis-
continuous σyz imply the arithmetic averaging of the shear moduli,
〈μ〉x .

(2) Continuity of σxy (or σzx ) and the arithmetic averaging of
the discontinuous εxy (or εzx ) imply the harmonic averaging of the
shear moduli, 〈μ〉H x .

(3) SSRs (13) have the same forms as SSRs for a point in a
smooth medium and are consistent with the interface boundary
conditions.

2.2 Normal stress-tensor components at an interface
perpendicular to the x-axis

SSRs in a smooth medium are:

σxx = Mεxx + λεyy + λεzz

σyy = λεxx + Mεyy + λεzz

σzz = λεxx + λεyy + Mεzz . (14)

Here

M ≡ λ + 2μ (15)

For two half-spaces in contact we may write

σxx = M− ε−
xx + λ−εyy + λ−εzz

σxx = M+ ε+
xx + λ+εyy + λ+εzz (16)

σ−
yy = λ−ε−

xx + M−εyy + λ−εzz

σ+
yy = λ+ε+

xx + M+εyy + λ+εzz (17)

σ−
zz = λ−ε−

xx + λ−εyy + M− εzz

σ+
zz = λ+ε+

xx + λ+εyy + M+ εzz . (18)

Continuous stress-tensor component. Because the interface is
perpendicular to the x-axis, relations for σxx are simpler for averag-
ing compared to σyy and σzz : they include only one discontinuous
quantity – εxx . Relations (16) may be written as

ε−
xx = 1

M− σxx − λ−

M− εyy − λ−

M− εzz

ε+
xx = 1

M+ σxx − λ+

M+ εyy − λ+

M+ εzz . (19)
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Continuity of σxx , εyy and εzz , and the arithmetic averaging of
ε−

xx and ε+
xx lead to

〈εxx 〉x = [〈M〉H x
]−1

σxx −
〈

λ

M

〉x

εyy −
〈

λ

M

〉x

εzz (20)

and

σxx = 〈M〉H x 〈εxx 〉x +
〈

λ

M

〉x

〈M〉H xεyy +
〈

λ

M

〉x

〈M〉H xεzz . (21)

Discontinuous stress-tensor component. Consider, for example,
σyy . It is clear from eq. (17) that before we average σ−

yy and σ+
yy , we

have to express ε−
xx and ε+

xx using continuous field quantities. Using
(19) in (17) we obtain

σ−
yy = λ−

M− σxx +
(

M− − λ− λ−

M−

)
εyy +

(
λ− − λ− λ−

M−

)
εzz

σ+
yy = λ+

M+ σxx +
(

M+ − λ+ λ+

M+

)
εyy +

(
λ+ − λ+ λ+

M+

)
εzz .

(22)

Continuity of σxx , εyy and εzz , and the arithmetic averaging of
σ−

yy and σ+
yy give

〈σyy〉x =
〈

λ

M

〉x

σxx +
[
〈M〉x −

〈
λ2

M

〉x]
εyy

+
[
〈λ〉x −

〈
λ2

M

〉x]
εzz . (23)

Substituting the r.h.s. of eq. (21) for σxx gives the sought SSR

〈
σyy

〉x =
〈

λ

M

〉x

〈M〉H x 〈εxx 〉

+
{

〈M〉x −
〈
λ2

M

〉x

+
[〈

λ

M

〉x]2

〈M〉H x

}
εyy

+
{

〈 λ 〉x −
〈
λ2

M

〉x

+
[〈

λ

M

〉x]2

〈M〉H x

}
εzz . (24)

Analogously we easily obtain

〈σzz〉x =
〈

λ

M

〉x

〈M〉H x 〈εxx 〉

+
{

〈λ〉x −
〈
λ2

M

〉x

+
[〈

λ

M

〉x]2

〈M〉H x

}
εyy

+
{

〈M〉x −
〈
λ2

M

〉x

+
[〈

λ

M

〉x]2

〈M〉H x

}
εzz . (25)

Partial summary. SSRs for the normal stress-tensor components
at the interface perpendicular to the x-axis:

(1) Continuity of σxx , εyy and εzz , and the arithmetic averaging
of the discontinuous εxx imply two averaged elastic coefficients,
〈M〉H x and 〈 λ

M 〉x 〈M〉H x .
(2) Continuity of εyy and εzz , and the averaging of discontinu-

ous σyy and εxx (or σzz and εxx ) imply 〈 λ

M 〉x 〈M〉H x and two more

averaged elastic coefficients: 〈 λ 〉x − 〈 λ2

M 〉x + [〈 λ

M 〉x
]2〈M〉H x and

〈M〉x − 〈 λ2

M 〉x + [〈 λ

M 〉x
]2〈M〉H x .

(3) Considering the averaged elastic coefficients, stress- and
strain-tensor components, SSRs (21), (24) and (25) have the same
forms as SSRs for a point in a smooth medium and are consistent
with the interface boundary conditions.

2.3 Elasticity matrices for interfaces perpendicular
to the coordinate axes

Define

A ξ = 〈M〉Hξ

B ξ =
〈

λ

M

〉ξ

〈M〉Hξ

C ξ = 〈M〉ξ −
〈
λ2

M

〉ξ

+
[〈

λ

M

〉ξ
]2

〈M〉Hξ

D ξ = 〈λ〉ξ −
〈
λ2

M

〉ξ

+
[〈

λ

M

〉ξ
]2

〈M〉Hξ , (26)

where ξ ∈ {x, y, z}. Then SSRs (13), (21), (24) and (25) for a point
at the interface perpendicular to the x-axis may be concisely written
as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx〈
σyy

〉x
〈σzz〉x

σxy

〈σyz〉x

σzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax Bx Bx 0 0 0

Bx C x Dx 0 0 0

Bx Dx C x 0 0 0

0 0 0 2〈μ〉H x 0 0

0 0 0 0 2〈μ〉x 0

0 0 0 0 0 2〈μ〉H x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈εxx 〉x

εyy

εzz

〈εxy〉x

εyz

〈εzx 〉x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

For the interface perpendicular to the y-axis it is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈σxx 〉y

σyy

〈σzz〉y

σxy

σyz

〈σzx 〉y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C y B y Dy 0 0 0

B y Ay B y 0 0 0

Dy B y C y 0 0 0

0 0 0 2〈μ〉H y 0 0

0 0 0 0 2〈μ〉H y 0

0 0 0 0 0 2〈μ〉y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx

〈εyy〉y

εzz

〈εxy〉y

〈εyz〉y

εzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

and for the interface perpendicular to the z-axis⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈σxx 〉z

〈σyy〉z

σzz

〈σxy〉z

σyz

σzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cz Dz Bz 0 0 0

Dz Cz Bz 0 0 0

Bz Bz Az 0 0 0

0 0 0 2〈μ〉z 0 0

0 0 0 0 2〈μ〉H z 0

0 0 0 0 0 2〈μ〉H z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

〈εzz〉z

εxy

〈εyz〉z

〈εzx 〉z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(29)

2.4 Elasticity matrix for an interface—interpretation

Transversely isotropic medium. Any of the matrix relations (27),
(28) and (29) has the same form as the matrix relation for a point in
a smooth medium, see eq. (1), with nine non-zero elements (consid-
ering the symmetry of the matrix). Matrix in any of relations (27),
(28) and (29) may be considered the elasticity matrix of an averaged
medium representing contact of two materials and consistent with
the boundary conditions at the welded material interface.

Matrix in eq. (1) has only 2 independent non-zero elements (e.g.
2μ and λ + 2μ) because it represents an isotropic medium. Matrix
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for an averaged medium has 5 independent non-zero elements, for
example, A ξ , B ξ , C ξ , 2〈μ〉Hξ and 2〈μ〉ξ considering that D ξ =
C ξ − 2〈μ〉ξ . This means that the averaged medium is transversely
isotropic with the axis of symmetry perpendicular to the interface.

Why is the averaged medium representing contact of two isotropic
media at a planar interface transversely isotropic? SSRs for the con-
tinuous shear stress-tensor components need the harmonic average
〈μ〉Hξ whereas the relation for the discontinuous shear stress-tensor
component needs the arithmetic average 〈μ〉ξ . It is then clear that
relations for the normal stress-tensor components at the interface
need other independent coefficients—increasing thus the total num-
ber of coefficients: the continuous normal stress-tensor component
needs 2 more independent coefficients, and the discontinuous nor-
mal stress-tensor components need, in addition to the latter 2 co-
efficients, also the 5th independent coefficient. The transversely
isotropic medium is understandable: if it cannot be isotropic then
there is no reason why it should not have the axial symmetry about
the axis perpendicular to the interface.

Meaning of the harmonic averages. Consider, for example, a
planar interface perpendicular to the z-axis and a 1-D problem with
a wave propagating in the direction of the z-axis. Propagation of the
plane P wave in any of two half-spaces is described by

ρ
∂2uz

∂t2
= ∂σzz

∂z
, σzz = (λ + 2μ)

∂uz

∂z
= (λ + 2μ) εzz . (30)

Propagation of the plane S wave in any of two half-spaces is
described by

ρ
∂2ux

∂t2
= ∂σzx

∂z
, σzx = μ

∂ux

∂z
= 2μεzx (31)

if the wave is polarized in the x direction, and by

ρ
∂2uy

∂t2
= ∂σzy

∂z
, σzy = μ

∂uy

∂z
= 2μεzy (32)

if the wave is polarized in the y direction. SSRs at the interface are
then for the three cases:

σzz = 〈λ + 2μ〉H z〈εzz〉z, (33)

σzx = 2〈μ〉H z〈εzx 〉z, (34)

σzy = 2〈μ〉H z〈εzy〉z . (35)

These SSRs for the welded interface and the matrix for the av-
eraged transversely isotropic medium representing contact of two
materials and consistent with the boundary conditions at the welded
material interface were presented by Moczo et al. (2002) using a
matrix formalism. In this section we (i) presented an alternative
derivation which explicitly shows all relations between the continu-
ous and discontinuous field quantities on one hand and the effective
averaged elastic coefficients on the other hand, (ii) showed matrices
(27)–(29) necessary for explanation of the orthorhombic averaging
and (iii) explained structure of the elasticity matrix for the averaged
transversely isotropic medium.

2.5 Planar interface in a general orientation

Assume such an interface in the Cartesian coordinate system xyz.
The interface is parallel to one of the coordinate planes in some ro-
tated system x ′ y′z′. The elasticity matrix in the rotated system has
nine non-zero elements from which 5 are independent. If we trans-
form SSR from x ′ y′z′ into xyz, the transformed elasticity matrix

has 5 independent elements (the transformation does not change
the physics of the interface) but has all 21 (considering the ma-
trix symmetry) elements non-zero. This means that all strain-tensor
components are necessary for calculating each stress-tensor com-
ponent at a point of the interface.

2.6 Non-planar interface

A non-planar smooth surface may be locally approximated by a
planar interface tangential to the surface at a given point. There
are two options: (1) Calculate 21 non-zero elastic coefficients for
each grid point and store them in memory during the entire FD time-
integration. (2) Store only 2 + 2 elastic coefficients (2 per medium in
contact) and 2 angles (specifying orientation of an approximating
tangential planar interface) for each grid point and calculate the
elasticity matrix at each time step at each grid point. It is clear
that we face either considerably increased memory requirement or
considerably increased computing time.

2.7 A simple computational compromise—harmonic
averaging

Given the situation described, Moczo et al. (2002) suggested the
computational compromise: an effective grid elastic modulus at a
given grid position is evaluated as the volume integral harmonic
average over a grid cell centred at that grid position. Consequently,
an interface between two isotropic media is represented by a har-
monically averaged isotropic medium. The advantageous aspect of
the approach is that the effective grid moduli are directly applicable,
for example, to the standard velocity-stress FD scheme—they do
not change the structure and number of arithmetic operations in the
FD scheme.

2.8 Structure of the equation of motion in relation to a
planar interface

Consider a planar interface between two homogeneous elastic half-
spaces perpendicular to the z-axis. Fig. 2 shows the structure of
the equation of motion with respect to the stress-tensor components
continuous and discontinuous across the interface. The continuous
stress-tensor components are in blue, the discontinuous ones are
in red. The colour frames on the right-hand sides of the equations
indicate parts relevant for different wavefield configurations.

In any of the three simplest 1-D problems with waves propagating
in the ±z direction, that is, 1-D P-wave, 1-D S-wave polarized in the
y direction and 1-D S-wave polarized in the x direction (indicated
by the violet frames), only one continuous stress-tensor component
is involved. As shown in Section 2.4, the harmonic averaging of
elastic moduli is exact in any of the three simplest 1-D problems.

The 2-D SH problem (green frames) involves one continuous and
one discontinuous shear stress-tensor components. The harmonic
averaging is exact for the continuous component whereas it is only
approximate for the discontinuous one.

The 2-D P-SV problem (brown frames) involves one continuous
shear stress-tensor component, one continuous normal stress-tensor
component and one discontinuous normal stress-tensor component.
The harmonic averaging is exact for the continuous shear stress-
tensor component whereas it is only approximate for the two others.

In the 3-D problem the harmonic averaging is exact for two
continuous shear stress-tensor components whereas it is only ap-
proximate for the four others.
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Figure 2. Structure of the equation of motion illustrating relation of the continuous and discontinuous stress-tensor components to effective medium averaging.

Stringent numerical tests (Moczo et al. 2002; Chaljub et al. 2015)
show that the harmonic averaging of moduli for all stress-tensor
components is surprisingly accurate except the case when the wave-
field is dominated by surface wave propagating along the contrast
interface. The analysis of the stringent tests that involve dominant
surface waves propagating in the horizontal direction along the
strong-contrast interface (within the verification phase of the E2VP
project, Chaljub et al. 2015) led us to improve the way of represent-
ing the material interface by an averaged medium. We present the
new method in the following sections.

3 S S R F O R A J O I N T P O I N T O F E I G H T
C U B E S – S E Q U E N T I A L AV E R A G I N G

Consider a joint grid point of eight grid cells. In a simple rep-
resentation of a heterogeneous medium material of each cell is
homogeneous while different from materials of the other cells. It
is important to find an effective material grid parameter represent-
ing heterogeneity of the medium around that grid point. There is,
however, a more important reason for considering the canonical
situation of a joint point of eight cubes. Consider non-planar inter-
faces inside a grid cell. Then we can think of dividing the cell into
homogeneous subcells and approximating the non-planar interfaces
by a staircase interfaces separating homogeneous subcells.

Figure 3. Illustration of interfaces separating eight infinitely large cubes
in contact. Each cube is assumed elastic and homogeneous. In general, the
cubes differ from each other by values of elastic moduli and density.

3.1 Shear stress-tensor components

Consider a configuration in Fig. 3: eight homogeneous elastic in-
finitely large cubes in contact. The cubes may differ from each other
by values of moduli. With reference to eq. (11) let us write SSRs for
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σxy at each of eight planar interfaces perpendicular to the horizontal
Cartesian directions:

σ 12
xy = 2〈μ〉H x,12 〈εxy〉x,12, σ 34

xy = 2〈μ〉H x,34 〈εxy〉x,34

σ 13
xy = 2〈μ〉H y,13 〈εxy〉y,13, σ 24

xy = 2〈μ〉H y,24 〈εxy〉y,24 (36)

and

σ 56
xy = 2〈μ〉H x,56 〈εxy〉x,56, σ 78

xy = 2〈μ〉H x,78 〈εxy〉x,78

σ 57
xy = 2〈μ〉H y,57 〈εxy〉y,57, σ 68

xy = 2〈μ〉H y,68 〈εxy〉y,68. (37)

Here the superscripts indicate the interface—for example, 12 in-
dicates the interface between cubes 1 and 2. Considering averaging
along joint contact lines of the four upper and lower cubes (the four
horizontal contact lines in Fig. 3), respectively, and continuity of
σxy in any horizontal direction (Fig. 1), we define σ−

xy and σ+
xy :

σ−
xy ≡ σ 12

xy = σ 34
xy = σ 13

xy = σ 24
xy

σ+
xy ≡ σ 56

xy = σ 78
xy = σ 57

xy = σ 68
xy . (38)

Then averaging of moduli and strains in relations (36) and (37),
respectively, leads to

σ−
xy = 2 〈μ〉H xy,− 〈εxy〉xy,−

σ+
xy = 2 〈μ〉H xy,+ 〈εxy〉xy,+,

(39)

where

〈μ〉H xy,− = 4

[
1

〈μ〉H x,12
+ 1

〈μ〉H x,34
+ 1

〈μ〉H y,13
+ 1

〈μ〉H y,24

]−1

〈μ〉H xy,+ = 4

[
1

〈μ〉H x,56
+ 1

〈μ〉H x,78
+ 1

〈μ〉H y,57 + 1

〈μ〉H y,68

]−1

(40)

and

〈εxy〉xy,− = 1

4

( 〈εxy〉x,12 + 〈εxy〉x,34 + 〈εxy〉y,13 + 〈εxy〉y,24
)

〈εxy〉xy,+ = 1

4

( 〈εxy〉x,56 + 〈εxy〉x,78 + 〈εxy〉y,57 + 〈εxy〉y,68
)
. (41)

Considering averaging at a joint point of eight cubes and conti-
nuity of εxy in the z direction, we define

〈εxy〉xy ≡ 〈εxy〉xy,− = 〈εxy〉xy,+ . (42)

Defining also

〈σxy〉z ≡ 1

2

(
σ−

xy + σ+
xy

)
(43)

and

〈〈μ〉H xy
〉z = 1

2

(〈μ〉H xy,− + 〈μ〉H xy,+)
(44)

we finally obtain from (39) SSR for the joint point of eight cubes:

〈σxy〉z = 2
〈〈μ〉H xy

〉z 〈εxy〉xy . (45)

We have obtained this relation by averaging first in the horizontal
directions x and y, and then averaging in the z direction. We may try
also the opposite way: averaging first in the z direction and then in
the horizontal directions.

With reference to eq. (6), consider therefore, instead of eqs (36)
and (37), the following relations for the four interfaces perpendic-

ular to the z-axis:

〈σxy〉z,15 = 2〈μ〉z,15 ε15
xy, 〈σxy〉z,26 = 2 〈μ〉z,26 ε26

xy

〈σxy〉z,37 = 2〈μ〉z,37 ε37
xy, 〈σxy〉z,48 = 2 〈μ〉z,48 ε48

xy . (46)

Consider now interfaces perpendicular to the x- and y-axes. Be-
cause σxy is continuous in both x and y directions, we may define

〈σxy〉z ≡ 〈σxy〉z,15 = 〈σxy〉z,26 = 〈σxy〉z,37 = 〈σxy〉z,48. (47)

Then averaging of moduli and strains in relations (46) in the x
and y directions, respectively, leads to

〈σxy〉z = 4

[
1

〈μ〉z,15
+ 1

〈μ〉z,26

]−1 1

2

(
ε15

xy + ε26
xy

)

〈σxy〉z = 4

[
1

〈μ〉z,37
+ 1

〈μ〉z,48

]−1 1

2

(
ε37

xy + ε48
xy

)
(48)

and

〈σxy〉z = 4

[
1

〈μ〉z,15
+ 1

〈μ〉z,37

]−1 1

2

(
ε15

xy + ε37
xy

)

〈σxy〉z = 4

[
1

〈μ〉z,26
+ 1

〈μ〉z,48

]−1 1

2

(
ε26

xy + ε48
xy

)
(49)

Summation of the four relations (48) and (49) eventually leads to

〈σxy〉z = 2 〈〈μ〉z〉H xy〈εxy〉xy, (50)

where 〈〈μ〉z〉H xy denotes the harmonic average of the four harmonic
averages in relations (48) and (49), and 〈εxy〉xy denotes the arith-
metic average of the four arithmetic averages of strain in relations
(48) and (49).

It is obvious from comparison of relations (45) and (50) that
the order of averaging leads to relations with differently averaged
moduli. At the same time, we immediately see two common features
of both averages, 〈μH xy〉z and 〈〈μ〉z〉H xy : (1) continuity of σxy in the
x and y directions implies the harmonic averaging in both directions,
(2) discontinuity of σxy in the z direction implies the arithmetic
averaging in that direction. Both obtained SSRs are just different
approximations and it is difficult to say which one is better. We
may use, however, an additional criterion to choose one of them.
Consider, for example, one of cubes representing a liquid or vacuum.
Then the corresponding harmonic average 〈μ〉H xy would give a zero
average value for the four cubes. This would be not the case with the
arithmetic averaging applied first. Consequently we choose relation
(50). In summary, all SSRs are

〈σxy〉z = 2 〈〈μ〉z〉H xy〈εxy〉xy

〈σyz〉x = 2 〈〈μ〉x 〉H yz〈εyz〉yz

〈σzx 〉y = 2 〈〈μ〉y〉H zx 〈εzx 〉zx . (51)

Important property of the averaged moduli. Consider a 3-D grid
cell and evaluation of the average moduli over the volume of the cell.
Assume, for example, that the grid cell contains only one interface
perpendicular to the x-axis. Then relations (51) reduce to

σxy = 2 〈μ〉H x 〈εxy〉x

〈σyz〉x = 2 〈μ〉xεyz

σzx = 2 〈μ〉H x 〈εzx 〉x (52)

that is to SSRs for the transversely isotropic medium—see eq. (27).
Analogously, relations (51) reduce to relations for the transversely
isotropic medium with the axis of symmetry parallel with the y- or
z-axis for an interface perpendicular to the y- or z-axis, respectively.
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3.2 Normal stress-tensor components

Formal averaging of the normal stress-tensor components at the
joint point of eight homogeneous cubes (Fig. 3) is considerably
more complicated and rather lengthy. Therefore we just outline
essential aspects.

We may start, for example, with SSRs (27) at the interfaces per-
pendicular to the x-axis and average them first at the interfaces
perpendicular to the y-axis. It is the simplest to start with SSR for
σyy , that is, 〈σyy〉x (〈εxx 〉x , εyy, εzz). Because only εyy from the four
field quantities in the relation is discontinuous across the interface
perpendicular to the y-axis, the averaging can be achieved by aver-
aging the relation εyy(〈εxx 〉x , εzz, 〈σyy〉x ). The result of the av-
eraging is 〈εyy〉y(〈εxx 〉x , εzz, 〈σyy〉x ) from which we obtain the
sought SSR for 〈σyy〉x at the interface perpendicular to the y-axis:
〈σyy〉x (〈εxx 〉x , 〈εyy〉y, εzz).

We may continue with σxx . In SSR for σxx at the interface per-
pendicular to the x-axis, σxx (〈εxx 〉x , εyy, εzz), two quantities are
discontinuous across the interface perpendicular to the y-axis: σxx

and εyy . Therefore, before we average σxx at the interface, we
must express εyy from SSR 〈σyy〉x (〈εxx 〉x , εyy, εzz) at the inter-
face perpendicular to the x-axis. We obtain σxx (〈εxx 〉x , εzz, 〈σyy〉x ).
Because 〈εxx 〉x , εzz, 〈σyy〉x are continuous across the interface per-
pendicular to the y-axis, we may average σxx . The result of averag-
ing is 〈σxx 〉y(〈εxx 〉x , εzz, 〈σyy〉x ). In this relation we express 〈σyy〉x

from relation for σyy at the interface perpendicular to the y-axis,
〈σyy〉x (〈εxx 〉x , 〈εyy〉y, εzz), and eventually obtain SSR at the inter-
face perpendicular to the y-axis: 〈σxx 〉y(〈εxx 〉x , 〈εyy〉y, εzz).

Analogously we could continue with σzz . Having SSRs for the
normal stress-tensor components averaged across the interfaces per-
pendicular to the x- and y-axes, we could then continue with aver-
aging across the interface perpendicular to the z-axis.

It is obvious, however, that we could start the averaging proce-
dure from SSRs (28) for the interfaces perpendicular to the y-axis,
continue with averaging across the interfaces perpendicular to the
z-axis and finish with averaging across the interfaces perpendicular
to the x-axis. Eventually and alternatively, the order of averaging
might be z → x → y.

The problem, indicated already by averaging the shear stress-
tensor components, is that the three different sequences of averaging
(that is, x → y → z, y → z → x andz → x → y) give three
different averaged moduli in SSRs for the joint point of eight cubes.
This is not acceptable because the averaged medium should not
depend on the order of averaging. The three different results are
consequence of the fact that such averaging is not rigorous and
justified. It is just approximate.

4 D E C I S I O N O N AV E R A G I N G I N T H E
C E L L V O LU M E : T H E O RT H O R H O M B I C
M E D I U M

It is obvious that we are facing two problems: (1) We do not
want to have 21 non-zero coefficients in the elasticity matrix (see
Sections 2.5 and 2.6). That would considerably decrease computa-
tional efficiency. (2) The sequential averaging (Sections 3.1 and 3.2)
is not applicable. In this situation we have to decide how to average
medium in order to obtain sufficiently accurate and computationally
efficient representation of a material interface.

It is reasonable to impose two requirements in this decision-
making:

(1) Keeping the number of non-zero coefficients in the elasticity
matrix the same as for the isotropic or transversely isotropic media,

that is, nine (considering the matrix symmetry). This means that the
averaged medium would neither change the structure of calculating
stress-tensor components nor increase the number of arithmetic
operations.

(2) If a grid cell contains a planar interface (between two homo-
geneous materials) perpendicular to the ξ -axis, then the averaged
medium in the cell is the transversely isotropic medium with axis
of symmetry parallel to the ξ -axis.

Consequently, the elasticity matrix should have the following
general form:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�x λxy λzx 0 0 0

λxy �y λyz 0 0 0

λzx λyz �z 0 0 0

0 0 0 2μxy 0 0

0 0 0 0 2μyz 0

0 0 0 0 0 2μzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53)

As we explained in Section 3.1 we can take eq. (51) for the shear
stress-tensor components:

μxy = 〈〈μ〉z〉H xy

μyz = 〈〈μ〉x 〉H yz

μzx = 〈〈μ〉y〉H zx
. (54)

With the normal stress-tensor components it is more compli-
cated. For finding a solution, it is instructive and helpful to see
the coefficients for transversely isotropic media representing the
planar interfaces perpendicular to the coordinate axes at once. We
show them in Fig. 4. According to the 2nd requirement, for ex-
ample, �x has to give 〈M〉H x or 〈M − λ2

M 〉y + [〈 λ

M 〉y
]2〈M〉H y or

〈M − λ2

M 〉z + [〈 λ

M 〉z
]2〈M〉H z if the grid cell contains interface per-

pendicular to the x- or y- or z-axis, respectively. Analogous re-
quirements apply to the other �ξ and λξ η coefficients. All these
requirements are met by the following averages:

�x =
〈 〈

M − λ2

M

〉yz

+
[〈

λ

M

〉yz]2

〈M〉H yz

〉H x

�y =
〈 〈

M − λ2

M

〉zx

+
[〈

λ

M

〉zx]2

〈M〉H zx

〉H y

�z =
〈 〈

M − λ2

M

〉xy

+
[〈

λ

M

〉xy]2

〈M〉H xy

〉H z

(55)

and

λxy =
〈〈

M − λ2

M

〉z

+
[〈

λ

M

〉z]2

〈M〉H z

〉H xy

×
〈 〈

λ − λ2

M

〉z + [〈
λ

M

〉z]2〈M〉H z〈
M − λ2

M

〉z + [〈
λ

M

〉z]2〈M〉H z

〉xy

(56)

λyz =
〈〈

M − λ2

M

〉x

+
[〈

λ

M

〉x]2

〈M〉H x

〉H yz

×
〈 〈

λ − λ2

M

〉x + [〈
λ

M

〉x]2〈M〉H x〈
M − λ2

M

〉x + [〈
λ

M

〉x]2〈M〉H x

〉yz

(57)
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Figure 4. Coefficients for the normal stress-tensor components in the transversely isotropic media representing the planar interfaces perpendicular to the
coordinate axes. Colours help to distinguish different averaged moduli.

λzx =
〈〈

M − λ2

M

〉y

+
[〈

λ

M

〉y]2

〈M〉H y

〉H zx

×
〈 〈

λ − λ2

M

〉y + [〈
λ

M

〉y]2〈M〉H y〈
M − λ2

M

〉y + [〈
λ

M

〉y]2〈M〉H y

〉zx

(58)

Each average applies to a volume of the grid cell h × h × h centred
at a position of the stress-tensor component. We see that the nine
coefficients are independent. This means that the averaged medium
has an orthorhombic anisotropy with three axes of symmetry that
are identical with coordinate axes.

5 N U M E R I C A L V E R I F I C AT I O N

Because the developed discrete representation is approximate it is
necessary to test it numerically by comparing the FD seismograms
with seismograms obtained using independent verified methods.
Whereas for a 1-D model it is possible to use the very accurate
semianalytical discrete-wavenumber method (DWM), for 2-D and
3-D models we can only use an approximate but sufficiently ac-
curate numerical method. We have chosen the spectral-element

method (SEM). Tests for 1-D and 2-D models were performed
and published—we will just briefly mention the substantial aspects.
In this article we present 3-D tests.

5.1 1-D models

Moczo et al. (2014) and Chaljub et al. (2015) presented numeri-
cal tests for a set of canonical 1-D models. One model, denoted
as Can2, consists of three horizontal homogeneous elastic isotropic
layers over half-space. The model represents the vertical profile
beneath the TST seismic station in the Mygdonian basin near Thes-
saloniki in Greece. A 3-D wavefield is generated by a single vertical
force at the free surface and a point double-couple (DC) source in
the half-space—in order to include both intensive surface and body
waves. The simulations are performed for frequencies up to 4 Hz.
The other model, Can3, is a modification of Can2: there are ver-
tical constant gradients of material parameters in the layers. The
reference solutions are obtained using two DWN codes - Axitra
(Bouchon 1981; Coutant 1989) for the DC source and the code
developed by Hisada (1994, 1995) for the surface force. The FD
seismograms are obtained for four alternative representations: LOC
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Figure 5. Illustrative detail of the reference SEM model. Different colours represent different homogeneous materials. Element faces exactly follow interfaces.
This specific feature makes it possible for SEM to produce sufficiently accurate seismograms. Exactly the same model is considered in the FD simulation.

– local (point) values of the elastic moduli and density, ARI – vol-
ume arithmetic averages of moduli and volume arithmetic averages
of density evaluated using numerical integration over a grid cell
centred at the grid position of the modulus or density, HAR – vol-
ume harmonic averages of moduli and volume arithmetic averages
of density, and ORT – volume effective coefficients corresponding
to the orthorhombic averaged medium. The level of agreement be-
tween the FD and DWN seismograms in phase and amplitude is
quantified using the time-frequency phase and envelope goodness-
of-fit (GOF) criteria (Kristekova et al. 2009). The orthorhombic
representation yields the best results.

5.2 2-D model

Testing the orthorhombic representation in a 2-D model is much
more complicated. Moczo et al. (2014) and Chaljub et al. (2015)
used a 2-D model representing a simplified NS profile of the Mygdo-
nian basin going through the TST seismic station and 3-D wavefield
due the point DC source in the half-space. They compared the HAR
and ORT FD seismograms with seismograms simulated by the Flo-
rent De Martin’s SEM code efispec (De Martin 2011). Accuracy
of the SEM solution is strongly determined by discretization of the
wedge-type Northern margin of the basin. Florent De Martin devel-
oped an extremely fine SEM mesh following all material interfaces
(though obviously relative, the minimum size of the element is only
0.5 m in simulation up to 4 Hz and minimum S-wave speed of
200 m s−1). Consequently, the SEM simulation was computation-
ally extremely demanding. It provided, however, the best feasible
reference solution for testing the orthorhombic discretization. The
ORT representation yields FD seismograms that are in excellent
agreement with the SEM reference seismograms. The HAR repre-
sentation yields FD seismograms that are in excellent agreement
with the SEM seismograms except at receivers where the motion
is dominated by surface waves propagating along the horizontal
interfaces.

5.3 3-D model

The approach applied in testing the orthorhombic representation
in 2-D was not feasible in 3-D due to extreme computational time
and memory requirements. In order to obtain a sufficiently accurate
reference SEM seismograms, we developed a special model. In the
available realistic 3-D model of the Mygdonian basin we modified

geometry of material interfaces so that the element faces can ex-
actly follow interfaces. This means that the SEM simulation exactly
accounts for the geometry of material interfaces and consequently
the SEM seismograms are adequately accurate. Fig. 5 illustrates the
SEM mesh. Contact of elements with different colours is a material
interface. There are 5 interfaces in the figure showing a detail of the
basin edge.

The original model of the Mygdonian basin is shown in Fig. 6.
The upper left-hand panel shows margins of the sedimentary basin
at the flat free surface, four horizontal profiles of receivers at the free
surface and position of the vertical profile of receivers in the central
part of the basin. The FD and SEM seismograms are compared
along the receiver profiles.

Material parameters of the model are shown in Fig. 7.
The wavefield is generated by a DC point source located at a

depth of 5 km. The source time function is shown in Fig. 8. The
slip-rate time function is defined as a low-pass filtered Gaussian
pulse. The slip is obtained by integration of the slip rate.

The reference SEM seismograms were computed using the
SPECFEM3D code developed by Komatitsch and Tromp (e.g.
Komatitsch & Tromp 1999; Tromp et al. 2008; Peter et al. 2011).
The FDM seismograms were computed using the FDSim3D code
(Kristek & Moczo 2014; Moczo et al. 2014). Figs 9 and 10 summa-
rize the SEM and FDM computational parameters.

We calculated the ORT FD seismograms using two spatially dis-
continuous grids. The size of the fine-grid spacing is 10 m in the
first grid and 7 m in the second grid. As in the 1-D and 2-D mod-
els, it is reasonable to compare the ORT FD seismograms not only
with the reference SEM seismograms but also with HAR FD seis-
mograms. The HAR seismograms were also calculated using the
two discontinuous grids. Fig. 11 shows the envelope and phase
GOFs (goodness-of-fit) between the reference SEM seismograms
and FDM seismograms along the western, central and eastern re-
ceiver profiles. Each curve represents GOF between the SEM and
respective FD seismograms. GOFs are calculated for the entire
30-s window in the frequency range [0.1, 5] Hz from the arithmetic
average of the single-valued misfits evaluated separately for each
component (Kristekova et al. 2009). Fig. 12 shows the envelope and
phase GOFs for the middle and vertical receiver profiles. Recall that
GOF = 10 means the perfect agreement.

Overall for a given discrete representation (ORT or HAR) the
GOF values for the 7-m grid spacing are larger than the GOF values
for the 10-m grid spacing. This means that, for a given discrete
representation, the FD seismograms for the smaller size of the grid
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Figure 6. Geometry of the original 3-D model of the Mygdonian basin. Upper left-hand panel: margins of the sedimentary basin at the flat free surface, four
horizontal profiles of receivers at the free surface and position of the vertical profile of receivers (v) in the central part of the basin. Upper right-hand panel:
interface between the uppermost and middle sedimentary layers. Lower left-hand panel: interface between the middle and bottom sedimentary layers. Lower
right-hand panel: interface between the bottom sedimentary layer and bedrock.

Layer 
SV PV ρ

(m/s) (m/s) (kg/m3) 

1 200 1500 2100 

2 350 1800 2200 

3 650 2500 2200 

Bedrock 2600 4500 2600 

Figure 7. Material parameters of the 3-D model of the Mygdonian basin.

spacing are closer to the SEM seismograms compared to the FD
seismograms for the larger size of the grid spacing. This is what
one expects.

The more important is comparison of the two discrete represen-
tations. Overall for a given spatial grid the phase GOF values for the
ORT discrete representation are significantly larger than the phase
GOF values for the HAR representation. In other words, the ORT
FD seismograms are significantly closer in phase to the SEM seis-
mograms than the HAR FD seismograms are. The improvement in
terms of the envelope GOFs due to the ORT representation com-
pared to the HAR representation is considerable although not as
significant as in the phase GOFs.

It is also interesting and important to compare the HAR 7-m
FD seismograms with the ORT 10-m FD seismograms. Despite the
larger grid spacing the ORT 10-m FD seismograms are significantly

more accurate in phase than the HAR 7-m FD seismograms. They
are comparably-to-slightly-more accurate in envelope.

Fig. 13 shows seismograms for receiver 166 at the middle profile.
The phase GOF values between the four FD seismograms and the
reference SEM seismogram at this receiver range approximately
from 3.5 to 9. Although we look at just one receiver, the relatively
large range of the GOF values makes it possible to reasonably illus-
trate differences in seismograms corresponding to different GOF
values.

6 A C C U R A C Y A N D E F F I C I E N C Y O F
T H E O RT H O R H O M B I C
R E P R E S E N TAT I O N A N D F D
M O D E L L I N G

Recall Fig. 5 illustrating an important aspect of the SEM modelling.
It is natural to cover the spatial computational domain with elements
of different shapes and sizes. Consequently, it is possible for SEM to
follow geometry of a material interface piece-wise by element faces.
This is significant for accuracy of the SEM modelling but, at the
same time, can considerably increase the number of elements e.g.
in the case of a wedge of a sedimentary layer. In fact, this aspect led
to the computationally very much demanding 2-D model developed
by Florent De Martin (Section 5.2) as well as to the necessity to
adjust geometry of material interfaces in the reference 3-D model
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Figure 8. The source time function. Left-hand panel: slip, centre: slip rate, right-hand panel: Fourier amplitude spectrum of the slip rate.

computational domain 16.14 km x 29.31 km x 7.86 km

number of elements 1 751 040 

polynomial degree N=4 (5 GLL points per direction)

number of points 
(each counted once)

115 605 072 

vertical horizontal

(upper) fine mesh 

element size 2.5-7.5 m 50 m 

average grid spacing 0.62-1.87 m 12.5 m 

minimum grid spacing 0.43-1.30 m 8.63 m 

(lower) coarse mesh 

element size 860 m 200 m 

average grid spacing 215 m 50 m 

minimum grid spacing 148.50 m 34.53 m 

time step 0.0001 s 

time window 30 s 

note: minimum grid spacing = 0.691 % of average gridsize for N=4 

Figure 9. Computational parameters of the SEM simulation. GLL means Gauss–Lobatto–Legendre.

  FDM 10 m FDM 7 m 

fine 
grid 

size 
1585 x 1475 x 
59 

2113 x 2113 x 84 

grid spacing 10 m 7 m 

PML zone 55 grid planes 55 grid planes 

coarse 
grid 

size 145 x 135 x 140 193 x 193 x 200 

grid spacing 110 m 77 m 

PML zone 5 grid planes 5 grid planes 

time step 0.001 s 0.0007 s 

time window 30 s 30 s 

Figure 10. Computational parameters of the FDM simulations with the
10-m and 7-m grid spacings.

of the Mygdonian basin for verification in this study. Obviously, the
smaller size of an element, the smaller size of the time step and,
consequently, the larger number of time levels to be computed.

The FD modelling is computationally most efficient on the uni-
form grid and in the heterogeneous formulation. The latter means
that one FD scheme is applied to all grid points except those form-

ing a border of the grid. The use of one scheme everywhere means
that both smooth and discontinuous heterogeneity has to be ac-
counted for by effective values of moduli and density at respective
grid points. An effective grid modulus is evaluated numerically as a
volume orthorhombic average in a grid cell centred at the grid po-
sition of the corresponding stress-tensor component. An effective
density is evaluated numerically as a volume arithmetic average in
a grid cell centred at the grid position of the corresponding particle-
velocity component. The geometry as well as material properties
on both sides of the interface are accounted for by the effective
grid moduli and densities. In other words, in a chosen spatial grid,
geometry of an interface may be arbitrary. For a given frequency
range, change of interface geometry neither requires a new grid, nor
changed computational demands. This is the significant advantage
of the FD modelling. We illustrate this advantage in Fig. 14.

Note that the size of the FD grid cell should not be directly com-
pared with the size of the SEM element. A SEM element for a given
polynomial degree includes certain number of the GLL integration
points per direction. For example, in the reference SEM calculation
the polynomial degree is 4 and thus the number of GLL points per
direction is 5. Therefore, for computational efficiency it is reason-
able to compare the total number of the FD grid points with the
total number of the GLL points. Usually, in the case of local surface
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Figure 11. The envelope and phase GOFs (goodness-of-fit) between the reference SEM seismograms and FDM seismograms along the western, central and
eastern receiver profiles. The FDM seismograms were obtained using the orthorhombic (ORT) and harmonic (HAR) averaging for the 10-m and 7-m grid
spacings.

Figure 12. The envelope and phase GOFs (goodness-of-fit) between the reference SEM seismograms and FDM seismograms along the middle profile and
vertical profile. The FDM seismograms were obtained using the orthorhombic (ORT) and harmonic (HAR) averaging for the 10-m and 7-m grid spacings.
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Figure 13. Comparison of the four FD seismograms with the reference SEM seismogram for receiver 166 at the middle profile.

Figure 14. Illustration of the FD grid and material interfaces—a detail
of one vertical grid plane crossing the sediment layers in the Mygdonian
basin model. Assuming a proper evaluation of the effective grid moduli and
densities at grid points there is no need for the grid to be conformable with
interfaces.

sedimentary structures with flat free surface, the application of a
FD discontinuous spatial grid and effective grid moduli is compu-
tationally more efficient than the application of SEM for a given
frequency range and level of accuracy. The SEM computational re-
quirements should be decreased if the orthorhombic representation
is applied and interfaces are not followed by element faces.

7 C O N C LU S I O N S

We presented derivation of the stress–strain relation for a point
at a planar interface between two homogeneous half-spaces. The
derivation is an alternative to the matrix derivation by Moczo et al.
(2002). Contrary to that the presented derivation makes it possible
to interpret the obtained average elastic moduli with respect to
continuous and discontinuous stress- and strain-tensor components.

We showed that the approach applicable to the planar interface
is not applicable to the joint point of eight homogeneous infinitely
large cubes. The average moduli depend on the sequence of aver-
aging (that is, x → y → z, y → z → x and z → x → y). This is not
acceptable because the averaged medium should not depend on the
order of averaging.

We have developed a new orthorhombic representation of mate-
rial heterogeneity. Heterogeneity of the medium in a FD cell is rep-

resented by an averaged medium with an orthorhombic anisotropy
with three axes of symmetry that are identical with the coordinate
axes. An effective grid modulus is evaluated numerically as a vol-
ume orthorhombic average in a grid cell centred at the grid position
of the corresponding stress-tensor component.

We numerically tested the orthorhombic representation for a com-
plex 3-D model of the Mygdonian sedimentary basin. We compared
the FD seismograms with seismograms calculated using the spectral
element method (SEM). For achieving sufficient accuracy of the ref-
erence SEM solution, we modified geometry of material interfaces
so that the element faces exactly follow interfaces. For quantita-
tive comparison of the FD and SEM seismograms we evaluated
goodness-of-fit in envelope and phase.

The performed numerical tests show that the orthorhombic
representation is more accurate than that developed by Moczo
et al. (2002). As demonstrated by tests for 1-D and 2-D mod-
els, the orthorhombic representation is more accurate mainly
for strong surface waves propagating along horizontal material
interfaces.

The orthorhombic representation is applicable to modelling seis-
mic wave propagation and earthquake motion in isotropic models
with material interfaces and smooth heterogeneities using velocity-
stress, displacement-stress and displacement FD schemes on stag-
gered, partly staggered, Lebedev and collocated grids.
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Quantitative Comparison of Four Numerical Predictions of 3D Ground

Motion in the Grenoble Valley, France

by Emmanuel Chaljub, Peter Moczo, Seiji Tsuno, Pierre-Yves Bard,* Jozef Kristek,
Martin Käser, Marco Stupazzini, and Miriam Kristekova

Abstract This article documents a comparative exercise for numerical simulation of
ground motion, addressing the seismic response of the Grenoble site, a typical Alpine
valley with complex 3D geometry and large velocity contrasts. Predictions up to 2 Hz
were asked for four different structure wave-field configurations (point source and
extended source, with and without surface topography). This effort is part of a larger
exercise organized for the third international symposium on the effects of surface
geology (ESG 2006), the complete results of which are reported elsewhere (Tsuno et al.,
2009).

While initial, blind computations significantly differed from one another, a
remarkable fit was obtained after correcting for some nonmethodological errors for
four 3D methods: the arbitrary high-order derivative discontinuous Galerkin method
(ADER-DGM), the velocity-stress finite-difference scheme on an arbitrary discontinu-
ous staggered grid (FDM), and two implementations of the spectral-element method
(SEM1 and SEM2). Their basic formulation is briefly recalled, and their implementation
for the Grenoble Valley and the corresponding requirements in terms of computer
resources are detailed.

Besides a visual inspection of PGV maps, more refined, quantitative comparisons
based on time-frequency analysis greatly help in understanding the origin of differ-
ences, with a special emphasis on phase misfit. The match is found excellent below
1 Hz, and gradually deteriorates for increasing frequency, reflecting differences in
meshing strategy, numerical dispersion, and implementation of damping properties.

While the numerical prediction of ground motion cannot yet be considered a
mature, push-button approach, the good agreement reached by four participants indi-
cates that, when used properly, numerical simulation is actually able to handle correctly
wave radiation from extended sources in complex 3D media. The main recommenda-
tion to obtain reliable numerical predictions of earthquake ground motion is to use
at least two different but comparably accurate methods, for instance the present formu-
lations and implementations of the FDM, SEM, and ADER-DGM.

Introduction

The very fact that a large part of the world’s populations
lives in earthquake-prone areas implies that seismologists
must predict earthquake ground motion during potential fu-
ture earthquakes, no matter whether they can or cannot timely
predict earthquake occurrence. Prediction of the earthquake
motion at a site of interest is extremely important for design-
ing new buildings and reinforcing existing ones, as well as for
undertaking actions that could help mitigate losses during
future earthquakes.

Theory and numerical simulation are irreplaceable tools
in the earthquake ground-motion research, mainly for two
reasons. Considering the present-day limitations of direct
controlled physical experiments in seismology, it is extre-
mely difficult to scale laboratory experiments to real struc-
tures. Moreover, in most cases, there is a drastic lack of
earthquake recordings at the sites of interest.

Given the present state of our knowledge of the processes
and structures that form earthquake groundmotion, and, at the
same time, capabilities of modern seismic arrays, realistic 3D
computational models have to include nonplanar interfaces
between layers, gradients in velocity, density, and quality

*Also at Laboratoire Central des Ponts-et-Chaussées, 58 Bd Lefebvre,
75732, Paris Cedex 15, France.
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factors inside layers, and often free-surface topography. In
particular, the rheology of the medium has to allow for real-
istic broadband attenuation. Realistic strong ground-motion
simulations should also account for nonlinear behavior in soft
soils, which will, however, be neglected here for the sake of
simplicity.

Only approximate computational methods are able to
account for the structural complexity of the realistic models.
The most important aspects of each method are accuracy and
computational efficiency (in terms of computer memory and
time). These two aspects are in most cases contradictory. A
reasonable balance between the accuracy and computational
efficiency in case of complex realistic structures made the
numerical modeling methods dominant among all approxi-
mate methods.

A number of different numerical modeling methods
have been developed within the last few decades. Each meth-
od has its advantages and disadvantages that often depend on
the particular application. Therefore, it is very unlikely that
one of the existing or recently developed numerical modeling
methods can be systematically and simultaneously the most
accurate and the most efficient for all important medium
wave-field configurations.

In general, a sufficiently high level of agreement or suf-
ficiently small level of misfit between data and theoretical
prediction can be considered a confirmation of a theoretical
model of an investigated process. In particular, the agreement
between recorded and numerically predicted earthquake
motion can be considered an ultimate criterion for capability
of seismologists to simulate earthquake ground motion. A
procedure of evaluating the capability of the theoretical mod-
el to describe the reality can be called validation. Clearly, in
the validation it is necessary to understand what is a reason-
able level of agreement. Given the complexity and inevitable
uncertainty of realistic models (earthquake source and mate-
rial structure), this is not a simple problem. Certainly, first
we have to be sure that the numerical simulation method
and its implementation in the computer code are correct.
A procedure of evaluating the capability of the method to
solve the elastodynamic equations with initial and boundary
conditions can be called verification. Without the method
verification, it is impossible to properly evaluate the level
of agreement between recorded and simulated motions.
Consequently, verification of the recent numerical modeling
methods for complex realistic models is an important task.

The importance of the objective comparison, verifica-
tion, and validation of the numerical modeling methods is
evidenced by different initiatives. On one hand, the Southern
California Earthquake Center (SCEC) has recently organized
3D numerical simulation code validation projects for wave
propagation (Day et al., 2003) and dynamic rupture simula-
tions (Harris et al., 2009). The goal was to validate and
compare 3D earthquake simulation methods, and foster their
application by the engineering community. On the other
hand the EU FP6 SPICE project (Seismic Wave Propagation
and Imaging in Complex Media: A European Network,

www.spice‑rtn.org, 2004–2007) aimed at development of
computational tools for seismic wave propagation, earth-
quake motion, and seismic imaging. SPICE has established
an open Internet-based digital library (Gallovic et al., 2007;
www.spice-rtn.org/library), which comprises computer
codes, training materials, simulation exercises, and an inter-
active web interface for code validation (Moczo et al., 2006;
www.nuquake.eu/SPICECVal/). The main goal of the SPICE
Code Validation is to provide an open long-term basis for
possible tests and comparisons of the numerical methods
and codes for the seismic wave propagation and earthquake
motion simulations. The objective evaluation of accuracy
and comparison is facilitated using the time-frequency misfit
criteria (Kristekova et al., 2006) interactively applicable to a
solution one wants to compare with any of the previously
uploaded solutions.

In parallel, real sites and realistic models were prime
targets of the blind prediction tests in framework of three
international symposia on the effects of surface geology
(ESG) in Odawara, Japan (1992), Yokohama, Japan (1998),
and Grenoble, France (2006). The ESG 2006 symposium
provided an excellent opportunity to focus on numerical
modeling of earthquake motion in the Grenoble Valley for
local weak and moderate earthquakes. The Grenoble Valley
is a very interesting and typical deep Alpine sediment-filled
structure. The Grenoble urban area, mostly built over the
sedimentary area, gathers a significant population (around
500,000), a number of high-tech and/or sensitive industrial
facilities, and educational and research institutions. There-
fore, despite an only moderate regional seismic hazard (with
known historical events hardly reaching magnitude 6) and
considerable broadband site effects, Lebrun et al. (2001)
raised the concern about the seismic risk in such Alpine
valley configurations, which are also met in different other
areas within the European Alps, and in other mountainous
areas with embanked valleys filled with young, postglacial
lacustrine sediments.

Our article presents results of a multi-institution project
and an unprecedented comparison of very different and
important methods applied to a structurally complex model
of a real site. The scope of our article is not to benchmark
computer codes that solve a well-referenced problem with a
known analytical solution. Rather, our article considers a
realistic 3D problem for which we do not have a reference
solution. There is no objective way of defining an absolute
level of accuracy for the different predictions of the seismic
response of the Grenoble Valley.

The applied methods have been developed by various
teams in different institutions using different computer
facilities. It was not technically feasible to perform presented
simulations on the same computer. It is important to realize
that the use of the same computer is of marginal importance
compared with the main aspect of the article.

The scope and goal of our article match those of the
SCEC code validation project that targeted the Los Angeles
basin to demonstrate the reachable level of agreement among
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the leading U.S. modeling teams. Our article has a similar
goal; in addition, it considers awider set of numericalmethods
and a significantly higher maximum frequency.

Compared with the Los Angeles basin, the modeling of
the Grenoble Valley is complicated by the relatively large
velocity contrast and the complex interface geometry. The
level of the reached agreement was not possible to anticipate
and thus is not trivial.

Structurally complex models of real sedimentary valleys
pose great challenges. Even though there have been a number
of attempts at validation, the agreement between synthetics
and data remains far from satisfactory, except for very low
frequencies, say <0:1 Hz. This is because one cannot isolate
the validity of the simulation from that of other factors, such
as the material model, including possible nonlinearities, and
the source description. One common way to reduce the
influence of these factors is to use small earthquakes, whose
rupture can be modeled as a point source.

Given the model complexity and methodological differ-
ences among the applied methods, we found a surprisingly
good level of agreement for four of the submitted predictions
obtained by different teams: Käser et al. (2006) used the
arbitrary high-order derivative discontinuous Galerkin meth-
od (ADER-DGM), Chaljub (2009) used the spectral-element
method (SEM), Kristek et al. (2009) used the finite-difference
method (FDM), and Stupazzini (2009) and Stupazzini et al.
(2009) used another implementation of the SEM. The ADER-
DGM, FDM, and SEM differ both in the basic formulations
of the equations of motion and boundary conditions, and the
way they construct discrete models and the resulting systems
of algebraic equations. They also differ in the required com-
putermemory and time.At the same time these threemethods,
together with the finite-element method (FEM), are at present
the most powerful numerical modeling methods for earth-
quake ground motion. Whereas the FDM and FEM have a
relatively long tradition, the SEM has been used since the
early 1990s; ADER-DGM has been elaborated and applied
to seismology rather recently. Despite this relatively long
tradition of the FDM and FEM, they are still being developed
in terms of accuracy and efficiency, and it is reasonable to
expect considerable improvements.

In this article we first present the structural model of the
Grenoble Valley and definition of the numerical simulations.
In the next section we briefly introduce the ADER-DGM,
FDM, and SEM. Computational aspects of the simulations
for the Grenoble Valley are then discussed. The main part
of the article presents comparison of the numerical results
obtained with the ADER-DGM, FDM, and two implementa-
tions of the SEM. We conclude with main lessons learned and
recommendations for future blind predictions and bench-
mark tests.

Structural Model of the Grenoble Valley

Grenoble is settled on Quaternary fluvial and postglacial
deposits at the junction of three large valleys of the French

external Alps (Fig. 1), surrounded by three mountain ranges.
This junction mimics the letter Y (the so-called Grenoble Y),
with three legs:

1. The northeastern branch of the Y is the N30°–40° trend-
ing Grésivaudan Valley, extending about 60 km upstream
along the Isère River.

2. The northwestern branch is the N150° trending, Cluse-
de-l’Isère Valley, extending from Grenoble to Moirans
(about 20 km), where the Isère River flows to the
northwest.

3. The southern branch follows the Drac River, flowing
from the south and arriving in a small plain about 15 km
upstream of Grenoble.

The three massifs delineated by these valleys are the
Belledonne crystalline massif to the east and two subalpine
foothills consisting of sedimentary rocks (limestone) to the
north (Chartreuse) and the southwest (Vercors). These foot-
hills were formed when the Alpine shortening displaced the
sedimentary cover to the northwest, forming folds and related
thrusts (7 to 5 m.y. B.P.) and uplifted the crystalline basement
(5 m.y. B.P.) to the east of the study area (Belledonne massif).

The IsèreValley (from upper Grésivaudan to downstream
Cluse-de-l’Isère) therefore extends for about 110 km from
Albertville in the northwest to Rovonwest of theVercorsmas-
sif; it is 3 to 5 km wide and quasi-flat, with slowly decreasing
altitudes (330 m in Albertville, 211 m in Grenoble, 180 m in
Rovon). The surrounding mountains exhibit, however, a
pronounced topography with maximum elevations slightly
above 2000 m in Vercors and Chartreuse and above 3000 m
in the Belledonne massif. As explained by Gamond et al.

Figure 1. Situation map of the Grenoble area in the French
Alps, showing the Y-shaped Grenoble Valley surrounded by the
Vercors and Chartreuse limestone massifs with maximal elevation
of 2000 m, and the crystalline Belledonne chain where elevation
reaches 3000 m. GMB1 indicates the location of the Montbonnot
borehole (see text).
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(2009), this course runs along several hundred meters deep
paleovalley carved in the Mesozoic sedimentary cover of the
Alpine foothills. The northeast-southwest GrésivaudanValley
was dug by erosion around 5 m.y. B.P. through the tributaries
of the paleo-Isère River, while the northwest-southeast
Cluse-de-l’Isère was carved by epigenesis between 5 and
2 m.y. B.P. when the foothills were uplifted.

Its present morphology presents asymmetrical inclined
sides and longitudinal moraines typical of glacial valleys.
During the last glacial-interglacial cycles, as all valleys in the
western Alps, it was successively eroded and overdeepened
by thick Alpine glaciers (Isère glacier, local glaciers of the
Belledonne massif, Drac-Romanche glacier) feeding large
ice lobes at the piedmont and then filled essentially by lake
sediments as glaciers were melting and retreating higher up
in the catchments during warm phases. In the IsèreValley,
both proglacial and deltaic lacustrine sediments completely
filled an up to 900 m deep and 100 km long fjordlike basin
during the last deglaciation, while only a thin, fluvial
sequence formed during our interglacial period (Chapron
et al., 2009).

Despite the relatively good mechanical characteristics of
these quaternary deposits, the large impedance contrast with
the embedding rocks, together with the large embankment
ratio, cause huge amplifications as observed by Lebrun et al.
(2001), Cornou et al. (2003a, 2003b), and Cornou et al.
(2009). A series of geotechnical and geophysical investiga-
tions has thus been carried out in theGrenoble area to improve
the knowledge of the underground structure. A summary of
these investigations can be found in the series of dedicated
articles included in Volume 2 of the ESG 2006 proceedings
(Chapron et al., 2009; Cornou et al., 2009; Dietrich et al.,
2009;Gamond et al., 2009;Guéguen et al., 2009; Jerram et al.,
2009;Ménard, Blein, Fournier et al., 2009; Ménard, Dietrich,
Vallon et al. 2009) and in Guéguen et al. (2007). Their
primary focus was to constrain the deep structure responsible
for the low-frequency effects; once this objective was met, a
secondary objective was assigned to better understand the
shallow structure controlling the higher-frequency amplifica-
tion and its short-wavelength lateral variations. Because the
ESG 2006 numerical simulations were limited to a 2 Hz max-
imum frequency, only the deep underground structure and
large-scale geometry and topography are presented here.

The first deep investigations consisted in several hun-
dreds of gravimetric measurements that allowed constraining
the geometry of the sediment/bedrock interface and indicat-
ing a large thickness close to 1 km in the deepest part (Vallon,
1999). This information was checked and calibrated through
the drilling of one deep borehole in the Grésivaudan Valley
(the Montbonnot GMB1 site in Fig. 1, now instrumented
with three accelerometers at the surface, GL-42 m, and
GL-550 m), which reached the bedrock at a depth of 535 m,
very close to the expectations from the gravimetric survey.
Above a thin (4 m thick) glacial till, the post-Würm filling
sequence consists in 520 meters of monotonous lacustrine
sandy-silty formations corresponding to the postglacial lake,

and ends with 15 meters of sandy-pebbly alluvium deposited
when the presently working Isère fluviatile regime started
again (Nicoud et al., 2002).

As described by Chapron et al. (2009), Dietrich et al.
(2009) and Ménard, Dietrich, Vallon et al. (2009), the nature
of this postglacial sedimentary infill has also been documen-
ted by a set of seismic reflection profiles acquired both on
land in the Isère Valley and in large valley lakes, such as
the Le Bourget Lake 50 km to the north of Grenoble. All
highlight very thick, rather homogeneous quaternary depos-
its with nonnegligible P- and S-wave velocity gradients. All
these measurements have been complemented by several
hundreds of microtremor measurements processed with the
H/V technique (Guéguen et al., 2007, 2009), which consis-
tently exhibit a low-frequency peak (usually between 0.3 and
0.5 Hz) associated with the thick lacustrine filling, and in
some parts, a second higher frequency peak (ranging from
2 to 5–6 Hz).

In summary, the main conclusions of all these deep
investigations are:

• 20 km of seismic reflection profiles at different cross sec-
tions along the Isère Valley, together with the information
collected in the borehole drilled near Grenoble and reach-
ing the sediment-bedrock, allowed us to calibrate or con-
firm the information provided by gravimetric surveys and
background noise H/V measurements on distribution of the
sediment thickness in the valley.

• The bottom of the valley is marked by an irregular topo-
graphy. The bottom of the Isère Valley shows a great vari-
ety of shapes: flat bottom, wide open V-shape, V-shape
interlocked in a larger U-shaped valley. At some places,
there exist underground substratum highs, such as a hillock
(probably of tithonic age) that could be identified just south
of the Grenoble downtown (see Fig. 2).

• The depth of the substratum increases downstream the
Isère River from about 200 m in the upper Grésivaudan,
500 m in the lower Grésivaudan, and more than 800 m
in the Cluse of Grenoble.

• The seismic velocities are roughly laterally homogeneous
at depths larger than 20–40 m, in line with the filling of the
valley by the postglacial lacustrine deposits.

• The P- and S-wave velocity distributions within the sedi-
ments are characterized by moderate to strong vertical
gradients, with the VP=VS ratio varying between 6 near
the surface and 2.7 at several hundred meters depth.

Given the limitation of our numerical simulation exer-
cise to an upper frequency of 2 Hz, we thus considered a
simple depth-varying sediment velocity model derived from
the deep borehole measurements. The valley model is thus
described by two main components:

• A 3D geometry consisting of a free-surface topography and
a sediment-basement interface.

• Sediment and bedrock velocity models exhibiting only a
1D depth dependence.
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The geometry of the surface topography is shown in
Figure 1, and the underground topography is depicted in
Figure 2. The velocity model is detailed in Table 1. This
model is still distant from the reality, especially for the shal-
low part. It constitutes, however, a good starting model that is
able to reproduce the main features of the low-frequency
response, and it is complex enough to enable a meaningful
comparison between different numerical methods.

The quality factor values were chosen infinite in the un-
derlying bedrock. The bedrock is very stiff and the computa-
tions are performed only for local, shallow sources, so that
crustal damping effects may be thought negligible in a first
step. The quality factor was taken slightly larger than that
actually measured in the Montbonnot borehole (QP � 35,
see Cornou, 2002), but these measurements were obtained
at higher frequencies (several tens of Hertz); higher Q values
are needed to reproduce the observed low-frequency duration
within the valley (Chaljub, 2009).

Selected Earthquakes

Various active tectonic features such as basement thrusts
and strike-slip faults have been described in this part of the
Alps (Thouvenot et al., 2003, 2009). However, the known
history reports only moderate earthquakes with intensities
reaching VIII on the Medvedev, Sponheuer, and Karnik
(MSK) scale, and estimated magnitudes between M 5 and
M 6. The last significant earthquake in the Grenoble immedi-
ate surroundings was an M 5.3 earthquake that occurred in
Corrençon (Vercors, about 30 km to the southwest of Gre-
noble) in 1962, which caused some chimney falls in the city.

The densification of the seismic monitoring networks
undertaken in the late 1980s revealed some clear, previously
unsuspected seismic alignments. In particular, the Belle-
donne Border Fault (BBF) has been identified as the most
active of these new features: it consists of a 50 to 70 km long,
northeast-southwest trending segment, characterized by

Figure 2. Map of sediment thickness in the Grenoble Valley showing 40 receivers (R01 to R40) used in the simulations. Contour lines
every 100 m are shown; the bold black line indicates the points where the sediment thickness equals 50 m. The positions of the point source
W1 and extended source S1 are shown in red. Red boxes indicate particular receivers for which a detailed comparison is shown further in the
article. Receiver R06 corresponds to the GMB1 location in Figure 1.

Table 1
Mechanical Parameters for the Grenoble Valley Model

Unit Thickness Unit Mass (kg=m3) S-Wave Velocity β (m=sec) P-Wave Velocity α (m=sec) Quality Factor QS Quality Factor QP

Sediments Up to 1000 m 2140� 0:125z* 300� 19
p
z 1450� 1:2z 50 37.5 α2=β2

Bedrock 0–3 km 2720 3200 5600 ∞ ∞
3–27 km 2720 3430 5920 ∞ ∞
27–35 km 2920 3810 6600 ∞ ∞
>35 m 3320 4450 8000 ∞ ∞

*z refers to depth expressed in meters.
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many small earthquakes exhibiting a right-lateral strike-slip
motion consistent with an east–west compressive tectonic
environment. Such a segment could therefore easily accom-
modate an M 6 event, with recurrence rates, however, well
beyond the 500- to 1000-year historic period. This fault runs
indeed east of and parallel to the northeast branch of the Y,
with a distance of approximately 5–7 km from the eastern
edge of the Isère–Grésivaudan Valley.

Because several recordings could be obtained at differ-
ent sites from a small magnitude event on this fault near the
village of Lancey in 2003, it was decided to simulate the
ground motion for two earthquakes (Chaljub et al., 2009):

• A real, weak one, called W1, corresponding to this 2003
event. This event had a moment magnitudeM 2.9, and was
assumed to be a point source with a 45° strike angle and a
90° dip angle, located at a 3 km depth. (There is, however, a
significant uncertainty on the depth estimate, which could
be up to 8 km).

• A hypothetical, stronger event (S1), corresponding to an
M 6 event rupturing the Belledonne Border Fault along
a segment centered at the W1 hypocenter. The fault length
and width were assumed to be 9 and 4.5 km, respectively.
A very simple (and, indeed, somewhat pessimistic and
unrealistic) kinematics was assumed. The rupture nucle-
ates at the fault center, propagates circularly with a rupture
velocity equal to 2:8 km=sec, and stops abruptly when
it reaches the boundary of the rectangular fault area. In
addition, the slip distribution is flat (i.e., constant slip over
the whole ruptured area). Such a fault mechanism gener-
ates very strong stopping phases, especially as the rupture
is very shallow: the resulting ground-motion values are
thus unrealistically high, and should be taken with much
caution if applied to hazard estimates. Such a scenario
nevertheless constitutes a good case for a comparison
between different numerical methods, because it includes
very strong pulses with high directivity.

For both cases, the source function was defined as

s�t� � 0:5�1� erf�4�t � 2τ�=τ ��; (1)

where τ is the rise time chosen to provide an average slip
velocity on the fault plane equal to 1 m=sec. It was thus
taken equal to 0.03 sec for the weak event (W1) case, and to
1.16 sec for the strong event case (S1).

The ground motion from each of these events was com-
puted at a series of 40 receivers displayed in Figure 2 (some
of them corresponding to the location of a few seismological
or accelerometric stations that recorded the M 2.9, 2003
Lancey earthquake). Most of these receivers are located at
the surface, but two are located at depth and correspond to
the Montbonnot downhole sensors (receiver R06 corre-
sponds to the GMB1 location in Fig. 1). Receivers R01, R04,
and R33 to R40 are located on rock outcrops, whereas all the
others are located within the valley.

The simulation exercise proposed for the ESG 2006
symposium also included another set of twin events (W2,
S2), located 20 km to the south of Grenoble, corresponding
to a conjugate strike-slip fault with a west-northwest–
east-southeast strike. A more complete description of the
simulation exercise can be found in Chaljub et al. (2009)
and Tsuno et al. (2009). In the present article, however, only
the (W1, S1) set of events is considered.

Fourteen different groups from eight countries contribu-
ted to the ESG 2006 comparison, providing a total of 18
prediction sets; three groups used the empirical Green’s func-
tion technique for the few receivers collocated with strong
motion stations, two used a 1D (horizontal layering) approach
for the borehole site, three modeled the response of a 2D
cross section, and seven addressed the 3D problem, out of
which three could account for the effects of both underground
and surface topography. The numerical schemes used for 3D
contributions belong to the finite-difference, spectral-element
and discontinuous-Galerkin finite-element methods. Four
participants whose 3D predictions were surprisingly close
updated their results after the ESG meeting, after correcting
some nonmethodological errors (evidenced by comparing to
other predictions) in preparation of the numerical simulations.
Only the results from the corrected predictions are considered
here. Further details on all other methods and results can be
found in Tsuno et al. (2009).

Computational Methods

3D Fourth-Order Velocity-Stress Finite-Difference
Scheme on an Arbitrary Discontinuous
Staggered Grid

Although the FDM has been used in seismology since the
late 1960s, its elaboration for the structurally complex media
is certainly far from being completed. Recent elaboration of
the staggered-grid schemes for viscoelastic media with mate-
rial interfaces as well as the development of the optimally
accurate schemes are two examples soundly indicating that
the best times of the finite-difference modeling are still ahead
of us. Because we do not have space here for more details, we
refer to the recent comprehensive review (Moczo, Robertsson,
Eisner, 2007) and monograph (Moczo et al., 2007).

For the numerical simulations we used a 3D fourth-order
velocity-stress finite-difference scheme on an arbitrary dis-
continuous staggered grid. A complete theory can be found
in articles byMoczo et al. (2002, 2004), Kristek et al. (2002),
Kristek and Moczo (2003), and Moczo and Kristek (2005).
Here we restrict our focus to the essential aspects of the
simulation method.

The scheme solves the equation of motion and Hooke’s
law for viscoelastic medium with rheology of the generalized
Maxwell body,

ρ _vi � σij;j �fi; (2)

and
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_ξijl � ωlξ
ij
l � ωl _εij; l � 1;…; 4: (4)

Here, in a Cartesian coordinate system �x1; x2; x3�, ρ�xi�;
i∈f1; 2; 3g, is density; κ�xi� and μ�xi� unrelaxed (elastic)
bulk and shear moduli; Yκ

l and Yμ
l anelastic coefficients;

~u�xi; t� displacement vector; t time; ~f�xi; t� body force per
unit volume; σij�xk; t�, εij�xk; t�, i, j, and k∈f1; 2; 3g stress
and strain tensors; ξijl material-independent anelastic func-
tions; and ωl relaxation angular frequencies. Summation con-
vention does not apply to index l. The anelastic coefficients
are obtained from

Yκ
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3
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l

���
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3
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�
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l � Yβ

l ; l � 1;…; 4; (5)

where α and β are elastic (corresponding to the unrelaxed
moduli) P- and S-wave velocities, and anelastic coefficients
Yα
l and Yβ

l are obtained from the desired/measured quality
factor values

Q�1
ν � ~ωk� �

Xn
l�1

ωl ~ωk � ω2
l Q

�1
ν � ~ωk�

ω2
l � ~ω2

k

Yν
l ;

k � 1;…; 7; ν∈fα; βg: (6)

The schemes for solving the equation of motion and time
derivative of Hooke’s law have the same structure as standard
fourth-order velocity staggered-grid schemes. The accuracy
of our scheme is determined by how we treat smooth material
heterogeneity and material discontinuity. The effective grid
density for a corresponding particle velocity component is
evaluated as an integral volume arithmetic average of density
inside a grid cell centered at the grid position of the corre-
sponding particle velocity component; for example

ρAI;J�1=2;K�1=2 �
1

h3

Z
xI�1=2

xI�1=2

Z
yJ�1

yJ

Z
zK�1

zK

ρdxdydz: (7)

The effective grid, unrelaxed bulk, and shear moduli are
evaluated as integral volume harmonic averages of moduli in
respective grid cells centered at grid positions of the stress-
tensor components; for example

κHI�1=2;J�1=2;K�1=2 �
�
1

h3

Z
xI�1

xI

Z
yJ�1

yJ

Z
zK�1

zK

1

κ
dxdydz

��1
:

(8)

The integrals are evaluated numerically, and the grid cell can
contain a material discontinuity. The anelastic coefficients Yκ

l

and Yμ
l are determined as follows: An average viscoelastic

modulus in the frequency domain is numerically determined

for a cell as an integral harmonic average. A corresponding
quality factor is then determined from the averaged visco-
elastic modulus at specified frequencies. Equation (6) for the
bulk and shear moduli is then used to determine average
anelastic functions. A coarse spatial distribution of the anelas-
tic functions is applied in order to reduce the memory
requirements.

The free surface is simulated using the AFDA technique
(Kristek et al., 2002; Moczo et al., 2004).

If the near-surface sedimentary body with lower seismic
wavevelocities is covered by a fine spatial grid and underlying
stiffer bedrock with larger velocities is covered by a coarser
spatial grid, the number of grid points and, consequently, the
computer memory and time requirements are significantly
reduced compared with the uniform grid. In order to make
such a combined (or discontinuous) spatial grid efficient,
the ratio of the size of the spatial grid spacing in the coarser
grid and that in the finer grid should correspond to the ratio of
the shear-wave velocities in the stiffer bedrock and softer
sediments. Therefore, Kristek et al. (2009) and Moczo et al.
(2007) developed an algorithm that enables us to adjust a dis-
continuous spatial grid accordingly except that, due to the
structure of the staggered grid, the ratio of the spatial grid spa-
cings in the coarser and finer grids has to be an odd number. In
other words, depending on the model of medium, we can
choose a1∶1 (uniform) grid, or 1∶3; 1∶5;… discontinuous grid.
The grid is illustrated in Figure 3. A Fortran 95 computer code
3DFD_VS has been developed for performing the finite-
difference scheme. PML absorbing boundary conditions
are implemented. The code is MPI parallelized (see the Data
and Resources section for details).

3D Spectral-Element Method

The spectral-element method (SEM) has been introduced
quite recently for seismological applications (Seriani and
Priolo, 1991, 1994; Faccioli et al., 1997; Komatitsch and Vi-
lotte, 1998). The SEM is a special kind of the finite-element
method (FEM) that relies on the use of a high-order spectral
polynomial basis. Like the FEM, the SEM can naturally han-
dle media with complex geometries, including surface topo-
graphy and nonplanar interfaces, and it allows local mesh
refinement to account for variations in seismic wavelengths.
Moreover, compared with the traditional low-order FEM,
the high-order spectral basis yields very accurate results by
minimizing numerical dispersion and numerical anisotropy
(Seriani and Oliveira, 2007; de Basabe and Sen, 2007). In
practice, polynomial orders N � 4 to N � 8 are used and
provide sufficiently accurate results for both body and sur-
face waves, as soon as 5 to 6 points are used to sample the
seismic wavelengths.

In the classical SEM, as in the two implementations
presented hereafter, the choice of the element shapes, poly-
nomial basis, and numerical integration rule relies on tensor-
ization, that is, on separation of variables. The advantage is
the possibility to increase significantly the computational
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Figure 3. Avertical grid plane in the arbitrary discontinuous spatial staggered grid in the case of the coarser-to-finer spatial grid spacing
equal to 3. The interior grid positions of the finer grid: green, 4th-order FD scheme; blue, 2nd-order FD scheme; yellow, bicubic interpolation.
The interior grid positions of the coarser grid: red, 4th-order FD scheme. The red-circumscribed green positions define the boundary of the
coarser grid.
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efficiency by (1) leading to a diagonal mass matrix, allowing
fully explicit schemes to be used for time evolution; and
(2) decreasing the computational cost of the internal forces.
The drawback is the restriction of the geometry of spectral
elements to quadrangles in 2D and to hexahedra in 3D. Recall
indeed that in order to account properly for discontinuities in
elastic parameters, the spectral elements must not intersect
the physical interfaces. This condition is not always easy
to account for in a hexahedra-based SEM, for example, near
valley or basin edges. Extensions of the SEM to 2D meshes of
triangular elements have been proposed recently at the price
of either losing the diagonal character of the mass matrix
(Mercerat et al., 2005) or decreasing the spectral accuracy
(Komatitsch et al., 2001).

Review papers presenting the numerous developments
of the SEM for global or regional seismology applications
can be found in Komatitsch et al. (2005) and Chaljub et al.
(2007). Here, we briefly recall the key features of the SEM
discretization.

Through the principle of virtual work, the dynamic
equilibrium problem for the medium Ω can be stated in the
following weak or variational form: find u � u�x; t�, displa-
cement vector, such that ∀t∈�0; T�

∂2

∂t2
Z
Ω
ρu · vdΩ�

Z
Ω
σij�u�εij�v�dΩ

�
Z
ΓN

t · vdΓ�
Z
Ω
f · vdΩ;

i; j � 1…d for all v; (9)

where t is time, ρ � ρ�x� the material density, σij the stress-
tensor, εij the infinitesimal strain tensor, f � f �x; t� the
known body force distribution, t � t�x; t� the vector of
external traction prescribed onΓN , and v � v�x� is the generic
function (candidate to represent admissible displacements).
Note that the free-surface condition is obtained implicitly,
or naturally, in the weak formulation. The stress and strain
tensors in (9) are related to the displacement by Hooke’s
law (3).

An appropriate numerical solution of (9) can be
achieved through discretization in the space and time
domain. Herein, the latter is done via finite differences; the
best trade-off in terms of accuracy, stability, and computa-
tional complexity is obtained using the explicit second-
order leapfrog scheme (LF2-LF2) (Maggio and Quarteroni,
1994) that must satisfy the well-known Courant-Friedrichs-
Lewy (CFL) stability condition.

The spatial discretization is based upon the Galerkin
approximation to equation (9). It starts with a decomposition
of the computational domain Ω into a family of nonover-
lapping, unstructured quadrilaterals Ωk (or hexahedra in 3D).
Each element Ωk is obtained by a regular mapping of a ref-
erence element Ωref (the unit square ��1;�1�2 in 2D and the
unit cube ��1;�1�3 in 3D). Then, admissible displacements
are approximated by polynomials of degree N on each
element. This writes formally

XK
k�1

∂2

∂t2
Z
Ωk

ρu�i�N · v�i�dΩ�
XK
k�1

Z
Ωk

σlm�u�i�N �εlm�v�i�N �dΩ

�
XK
k�1

Z
Γ�k�
N

t�i�v�i�dΓN �
XK
k�1

Z
Ωk

f�i�v�i�dΩ; (10)

where uN and vN denote the approximations of u and v, and
u�i�N , v�i�N , t�i�N , f�i� the scalar components of the vectors uN , vN ,
t and f . Note that equation (10) implicitly assumes that the
displacements are globally continuous, but the material prop-
erties can be discontinuous across elements.

The integrals in (10) are evaluated numerically by a
high-order quadrature formula based on the Gauss-Lobatto-
Legendre (GLL) points (Davis and Rabinowitz, 1984; Canuto
et al., 1988). The polynomials used to approximate the dis-
placements are then defined as the shape functions of the
GLL points. Thanks to this particular choice, the SEM inherits
the exponential accuracy of spectral methods in space: for
problems with sufficiently smooth exact solution u, the
numerical solution uN obtained in the SEM converges more
rapidly than those based upon the classical FEM. This prop-
erty is known as spectral accuracy in the literature, and the
convergence of the spectral methods is referred to as expo-
nential or geometrical, as opposed to the algebraic conver-
gence of the classical FEM. Note that this does not hold
for the numerical realization of the free-surface condition:
the convergence of numerical traction toward the prescribed
traction is only algebraical (Deville et al., 2002). For the
wave propagation applications, the numerical accuracy is
more properly assessed by the analysis of numerical disper-
sion, which has been shown recently to be optimal for the
SEM (Seriani and Oliveira, 2007; de Basabe and Sen, 2007).

Assembling the elementary contributions to account for
the continuity of displacements, equation (10) can be written
as a global system of ordinary differential equations in time,

�M� �U�t� � �K�U�t� � F�t� � T�t�; (11)

where vectors F and T stem from the contributions of
the external forces and applied tractions, U stores the displa-
cement values uN�x; t� at the GLL nodes, and �M� and �K�
denote the mass and the stiffness matrices, respectively. An
important consequence of the choice of the polynomial basis
is that the mass matrix is diagonal, which, as stated pre-
viously, allows for the use of fully explicit finite-difference
schemes for the time evolution.

In the following we will present two different implemen-
tations of the SEM. In the first SEM-based code, hereafter
referred to as SEM1, viscoelasticity is accounted for using
a superposition of the standard linear solids (SLS; Liu et al.,
1976), which are implemented via memory variables (see
Chaljub et al., 2007, and references therein). Note that a
parallel superposition of the SLS is also called the general-
ized Zener body. Also note that the rheology of the general-
ized Zener body is equivalent to that of the generalized
Maxwell body as shown byMoczo and Kristek (2005). Thus,
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the rheology in the SEM1 is equivalent to that implemented in
the FD and ADER-DGMmethods described in the article. The
Lysmer and Kuhlemeyer (1969) absorbing boundary condi-
tions are applied. (See the Data and Resources section for
details on the SEM1 software package.)

In the second implementation, hereafter referred to as
SEM2, the viscoelastic behavior is implemented with a fre-
quency linear dependent quality factor, implying that all
frequency components are equally attenuated (Faccioli et al.,
1997). Kosloff and Kosloff (1986) showed that this can be
easily obtained by replacing the inertia term into the wave
equation with an ad hoc expression. The absorbing bound-
aries are implemented following Stacey’s (1988) first-order
P3 paraxial conditions. A more detailed description of the
software package adopted for the SEM2 simulation can be
found in Stupazzini et al. (2009) (also see the Data and Re-
sources section for details on the SEM2 software).

3D Velocity-Stress Discontinuous Galerkin Scheme
with ADER-Time Integration of Unstructured
Tetrahedral Meshes

The proposed numerical method combines a dis-
continuous Galerkin (DG) finite-element scheme with a
time-integration technique using Arbitrarily high-order
DERivatives (ADER) in order to solve the governing PDEwith
arbitrarily high approximation order in time and space. The
system of the 3D seismic wave equations formulated in
velocity-stress leads to a hyperbolic system of the form

∂Qp

∂t � Apq

∂Qq

∂ξ � Bpq

∂Qq

∂η � Cpq

∂Qq

∂ζ � EpqQq� Sp;

(12)

where the vector Q of unknowns contains the six stress and
the three velocity components. The Jacobian matrices A, B,
and C include the material values and can include aniso-
tropic, viscoelastic, or poroelastic material properties as
explained in detail in Dumbser and Käser (2006), Käser et al.
(2007), de la Puente et al. (2007) and (2008). The viscoelastic
medium and the attenuation is defined by rheology of the
GMB-EK, the same as described in the section on the
finite-difference method. Furthermore, the reactive source
term E is necessary, if viscoelastic attenuation is considered,
and S is an external source term accommodating force of mo-
ment tensor sources. In the discontinuous Galerkin approach,
the solution is approximated inside each tetrahedral element
by a linear combination of space-dependent polynomial
basis functions and time-dependent degrees of freedom as
expressed through

�Qh�p�ξ; η; ζ; t� � Q̂pl�t�Φl�ξ; η; ζ�; (13)

where the basis functions Φl form an orthogonal modal basis
and are defined on the canonical reference tetrahedron. Note
that there are no integration points necessary, because the

basis is a modal basis and not a nodal basis as typically used
in the SEM.

As the fully detailed derivation of the numerical scheme
would go beyond the scope of this article, we refer to the
previous work of Käser and Dumbser (2006) and Dumbser
and Käser (2006) for a detailed mathematical formulation of
the discontinuous Galerkin method. The unique property of
the ADER-DGM scheme is, that the time accuracy of the
scheme is automatically coupled to the space accuracy deter-
mined by the degree of approximation polynomials used in
equation (13). This is due to the ADER time-integration
approach (Titarev and Toro, 2002), where the fundamental
idea is to expand the solution of equation (12) via a Taylor
series in time

Qp�ξ; η; ζ; t� �
XN
k�0

tk

k!

∂k

∂tk Qp�ξ; η; ζ; 0�; (14)

where we then replace all time derivatives in equation (14) by
space derivatives using the governing PDE in equation (12).
It can be shown that the k-th time derivative can be expressed
recursively as

∂k

∂tk Qp � ��1�k
�
Apq

∂
∂ξ � Bpq

∂
∂η� Cpq

∂
∂ζ

�
k

Qq

� Epq

∂k�1

∂tk�1 Qp �
∂k�1

∂tk�1 Sp: (15)

Using equations (13) and (15) in (14), the Taylor series
expansion only depends on space derivatives of the basis
functions Φl and lower order time derivatives of the source
terms. The resulting expression for the degrees of freedom
can be integrated in time analytically as shown in detail
by Dumbser and Käser (2006) or Käser et al. (2007).
Therefore, this new approach, termed ADER-DG method,
provides arbitrarily high-order approximation in space and
time depends on the degree of the used basis polynomials
Φl in equation (13) and the corresponding order of the time
Taylor series chosen in equation (14).

Once the high-order time-integrated degrees of freedom
are computed, the evolution of the numerical solution in time
is calculated via local stiffness and flux terms (Dumbser and
Käser, 2006). Especially, the flux computations contribute as
the major part with more than 80% to the overall computa-
tional cost. A numerical flux out of the element and a numer-
ical flux into the element have to be calculated for each
element boundary, that is, triangular surface, for each tetra-
hedral element. Each flux computation requires a multiplica-
tion of two matrices F and Q of the sizes:

size of F: (number of degrees of freedom) × (number of
degrees of freedom) and

size of Q: (number of degrees of freedom) × (number of
variables in the system).

The stiffness terms, however, are relatively cheap as
only one matrix-matrix-multiplication of the same computa-
tional complexity has to be carried out. Nevertheless, all
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operations use only local data, that is, data from the element
itself and its direct neighbor sharing a common element
boundary. Due to this local character of the numerical
scheme, a number of different optimization approaches have
been developed (Dumbser et al., 2007) to enhance computa-
tional efficiency, in particular for parallel computing.

pτ -Adaptation. In most applications, the computational
domain is larger than a particular zone of interest. Therefore,
a large number of elements is needed to discretize the entire
geometry of the model. However, high-order accuracy might
only be required in a relatively small portion of the computa-
tional domain, which makes it desirable to choose the accu-
racy adaptively in space. With the ADER-DG approach, it is
possible to vary the degree p of the approximation polyno-
mials Φl in equation (13) from one element to the other. Due
to the direct coupling of the time and space accuracy via the
ADER approach, the scheme automatically becomes adaptive
in time accuracy, which is referred to as pτ -adaptation.

Local Timestepping. Geometrically complex computa-
tional domains or spatial resolution requirements often lead
to meshes with small or possibly degenerate elements. The
timestep for explicit numerical schemes is determined by
the ratio of the mesh size h of the smallest element and the
corresponding maximum wave speed in this element. For
global timestepping schemes, all elements are updated with
this extremely restrictive timestep length, leading to a large
amount of iterations. With the ADER approach, time accurate
local timestepping can be used, so that each element is
updated by its own, optimal timestep. An element can be
updated to the next time level if its actual time level and
its local timestep Δt fulfill the condition with respect to all
neighboring tetrahedrons n,

t�Δt ≤ min�tn �Δtn�: (16)

Information exchange between elements across interfaces
appears when numerical fluxes are calculated. These fluxes
depend on the length of the local time interval over which a
flux is integrated and the corresponding element is evolved in
time. Therefore, when the update criterion (16) is fulfilled for
an element, the flux between the element itself and its neigh-
bor n has to be computed over the local time interval:

τn � �max�t; tn�;min�t�Δt; tn �Δtn��: (17)

This can reduce the overall amount of flux calculations
dramatically because only the small elements have to be up-
dated frequently according to their small timestep lengths. A
full description of the pτ -adaptation and local timestepping
of the ADER-DG scheme is given by Dumbser et al. (2007).

Grouped Mesh Partitioning. For large-scale applications
it is essential to design a parallel code for supercomputing
facilities, where load balancing is an important issue.

However, if pτ -adaptivity and especially local timestepping
are applied, the partitioning is sophisticated because a sub-
domain can have different polynomial orders and timestep
lengths. We split the computational domain into zones that
usually contain geometrical or geological entities that are
meshed individually. Then, each of these zones is partitioned
separately into subdomains of equal numbers of elements,
which now include tetrahedral elements with roughly the
same sizes and orders of accuracy. Finally, each processor
receives a subdomain from each zone and therefore gets a
similar computational load. In Figure 4a we show a partition
of the full tetrahedral mesh used for the Grenoble model,
where each subdomain is color-coded. In Figure 4b we show
the grouped partitioning used to improve load balance.

Figure 4. (a) Partitioning of an unstructured tetrahedral discre-
tization of the Grenoble model. (b) Separate subdomains that con-
tain a balanced number of small and large tetrahedrons from
different zones are given to each processor, as indicated by the same
color, to optimize the load balance.
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Comparison of Computational Aspects in Modeling
Earthquake Motion in Grenoble Basin

3D Fourth-Order Velocity-Stress Finite-Difference
Scheme on an Arbitrary Discontinuous
Staggered Grid

Space-Time Grid. The computational domain is a rectan-
gular parallelepiped covered by a discontinuous staggered
grid. The upper part of the model with a sedimentary body,
1125 m thick, is covered by a finer grid with a grid spacing of
25 m. The finer grid is made of 1321 × 1431 × 45 grid cells.
The lower part of the model, covering a major part of the
bedrock, 8125 m thick, is covered by a coarser grid with
a grid spacing of 125 m. The coarser grid is made of 265 ×
287 × 65 grid cells. The coarser grid is overlapping 187.5 m
of the finer grid. The 1∶5 discontinuous spatial grid means
87% reduction in the total number of grid cells compared to
the uniform grid with a grid spacing of 25 m (approximately
90 mil. of grid cells in the discontinuous grid instead of
700 mil. of grid cells in the uniform grid). Fifty and ten grid
spacings are grid thicknesses of the PML boundary regions in
the finer and coarser grids, respectively. The timestep is
0.0022 sec. The used spatial grid means that the simulation
should be sufficiently accurate up to 2.5 Hz.

Material Heterogeneity and Attenuation. The true model
geometry of the material interfaces as well as the smooth
material heterogeneity inside the sedimentary body are
accounted for in the evaluation of the effective material elas-
tic and anelastic grid parameters grid using relations (5)–(8)
and the approach described therein. We can note that the
scheme using the integral volume harmonic averages of
the moduli and integral volume arithmetic average of density,
evaluated for each cell centered at a relevant grid position, is
capable to sense the true position of the material interfaces
within the cell.

The constant Q�ω� law is simulated using the rheology
of the generalized Maxwell body. The so-called coarse grid
graining is applied in the spatial discretization of the anelas-
tic coefficients and functions. The Q values are specified at

four frequencies: 0:07 Hz, 0.225 Hz, 0.71 Hz, and 2.25 Hz.
This should accurately cover the frequency range of 0.04 to
4 Hz. The P- and S-wave velocities are specified at a fre-
quency of 1 Hz.

Treatment of the Kinematic Source. The finite kinematic
model of the rupturing surface is simulated using 1836 reg-
ularly distributed point double-couple sources over a fault
area 9 km × 4:5 km for the S1 event. Each point source is
simulated using a discrete system of body forces acting at
the grid positions centered at the grid position of the normal
stress-tensor component. All point sources have the same
focal parameters and source-time functions. The action of
the individual point sources in time is prescribed and corre-
sponds to the specified rupture velocity.

Accuracy versus Efficiency. All simulations were per-
formed on a small cluster of the Opteron 2.2 machines (6
CPUs, 10 GB RAM in total). The computational parameters
are given in Table 2.

3D Spectral-Element Method: The
SEM1 Implementation

Model Geometry and Mesh Generation. In the first imple-
mentation of the SEM, SEM1, a simple meshing strategy, as
proposed by Komatitsch et al. (2004), is adopted. The topol-
ogy of the mesh is that of a layer-cake model in which the
interfaces are deformed to follow, as much as possible, the
physical interfaces. This strategy has the advantage of being
easy to implement, but it also has some drawbacks. First,
the size of the elements does not vary horizontally, which
prevents the use of very large models as the ones that
would be needed to propagate the seismic wave field from
a distant earthquake to the Grenoble Valley. For the Grenoble
simulation, which considers only local sources, this point is
not critical; it has the nice consequence of providing a more
accurate discretization of the free-surface topography, which
is rather stiff in the Grenoble area (see Fig. 5). Second, the
sediment-bedrock interface is not accounted for at depths
shallower than about 350 m (see Fig. 6). The velocity

Table 2
Comparison of the Computational Parameters

Test Case
Number of Grid
Cells or Elements

Order in
Space/Time Timestep

Number of Central
Processing Units

Central Processing
Unit Time Memory

DSG Velocity-Stress FD

W1 Flat 90,009,370 4=2 0.0022 sec 6 ∼33 hr ∼10 GB
S1 Flat 90,009,370 4=2 0.0022 sec 6 ∼33 hr ∼10 GB

SEM1

W1 Flat 332,160 4=2 0.0005 sec 32 ∼9 hr ∼10 GB
S1 Topography 332,160 4=2 0.0005 sec 32 ∼9 hr ∼10 GB

SEM2

S1 Topography 216,972 3=2 0.0003 sec 63 ∼10 hr ∼18 GB
ADER-DG

W1, S1 Flat 870,613 5=5 0.0001 sec 510 ∼32 hr ∼50 GB
S1 Topography 1,259,721 5=5 0.0001 sec 510 ∼48 hr ∼70 GB
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contrasts near the valley edges are thus approximated by con-
tinuous variations using the polynomial basis within each
spectral element. Although not quantified, the error due to
this approximation is not expected to be too large because
the size of the near-surface elements close to the valley edges
is that of the smallest wavelength in the simulation (that is,
about 150 m for a 2 Hz calculation). The mesh is coarsened
with depth using the conforming strategy proposed by
Komatitsch et al. (2004) as shown in Figure 6. We use a
polynomial order N � 4 within each element. For calcula-
tions accurate for frequencies up to 2 Hz, the mesh contains
332,160 elements and 22,062,624 grid points.

Material Heterogeneity and Attenuation. For the attenua-
tion model provided in the ESG exercise, the generalized
Zener body with three relaxation mechanisms was used in
order to mimic a constant shear quality factor in the sedi-
ments within the frequency band (0.2 Hz–10 Hz). The refer-
ence frequency, which was not imposed, is chosen to be the
fundamental frequency of the Grenoble Valley, f0 � 0:3 Hz.
Time extrapolation was handled by a second-order explicit
Newmark finite-difference scheme, with an additional
Runge-Kutta scheme being used to march in time the mem-
ory variables needed to model viscoelasticity (see details in
Komatitsch and Tromp, 1999).

Treatment of the Kinematic Source. To model the strong
motion case S1, we considered a set of 1250 point sources
regularly distributed on the prescribed fault plane. Each point
source was assigned a moment magnitude M 2:9 and an
onset time consistent with the imposed rupture kinematics.

Accuracy versus Efficiency. All simulations were per-
formedon a cluster of 42 SUN-V40Znodes equippedwith four
AMD-Opteron 2.6 GHz processors, each having 8 GB RAM.
The computational parameters are summarized in Table 2.

3D Spectral-Element Method: The
SEM2 Implementation

Model Geometry and Mesh Generation. In the second
implementation of the SEM, SEM2, the meshing strategy
adopted aims at accounting for true positions of material
interfaces. This task was successfully solved thanks to the
software CUBIT, which incorporates a set of powerful and
advanced meshing schemes specifically developed to handle
the hexahedral unstructured meshing problem (see the Data
and Resources section for details). A thorough description of
the meshing strategy adopted to strictly account for the geo-
metry of the Grenoble Valley can be found in Stupazzini
(2009). The final mesh is depicted in Figure 7 and consists
of 216,972 elements, the size of which ranges from a mini-
mum of about 20 m (inside the alluvial valley) up to 900 m.
The mesh is designed to propagate frequencies up to 2 Hz
with N � 3 (5,659,551 nodes) and up to around 3 Hz with
N � 4 (13,300,892). A detailed zoom of a portion of the
computational domain is presented in Figure 8, showing
the strategy adopted to account for the discontinuity between
the soft soil and bedrock. The computational domain is sub-
divided into small chunks; each of them is sequentially
meshed starting from the alluvial basin down to the bedrock.

Material Heterogeneity and Attenuation. Inside the alluvial
deposit the smooth vertical variation is taken into
account assigning at each GLL point the mechanical prop-
erties evaluated according to the prescribed depth variation.
The layer stratification is considered in the bedrock. The
discontinuity between the soft soil and bedrock is strictly
accounted for as previously mentioned. With respect to the
constant quality factor model, frequencies smaller than 0.5 Hz
will be overdamped, whereas higher frequencies will be
enhanced in the alluvial deposits.

Figure 5. Surface view of the mesh of 192 × 160 elements used
in the SEM1 calculations. The colors indicate surface elevation.
The mesh contains 192 × 160 elements for 2 Hz calculations.
The length of the elements does not vary horizontally and is kept
smaller than 150 m. Each surface element contains 125 gridpoints
(not shown here).

Figure 6. View of the 3D mesh of elements used in the SEM1
calculations. Golden colors indicate elements that are entirely with-
in the bedrock, whereas blue colors stand for elements that intersect
the sediments. The bedrock-sediment interface is not accounted for
at depths shallower than 350 m, in particular for elements close to
valley edges. The mesh is coarsened with depth following a simple
conforming strategy proposed in (Komatitsch et al., 2004).
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Treatment of the Kinematic Source. The seismic source is
introduced through an appropriate distribution of the seismic
moment tensor density (Aki and Richards, 2002). To model
the strong motion case S1, we considered a set of 750 point
sources regularly distributed on the prescribed fault plane.

Accuracy versus Efficiency. The simulations were per-
formed on AMD Opteron 250 (64 bit single core 2.4 GHz)
with 2 GB RAM and 1000T Ethernet (Oeser et al., 2006).
The computational parameters are summarized in Table 2.

3D Velocity-Stress Discontinuous Galerkin Scheme
with ADER Time Integration of Unstructured
Tetrahedral Meshes

Model Geometry and Mesh Generation. The ADER-DG
method uses a tetrahedral mesh that accounts for the given
geometry of the internal and external boundaries. Both the
digital elevation model of the topography and the interface
between the basin structure and the bedrock are provided
on a regular grid with x-, y-, and z-coordinates, which is
imported into a CAD tool to construct parameterized surfaces.

These surfaces are then triangulated with an appropriate mesh
size, and finally the volumes between the surfaces are filled
with tetrahedral elements. Hereby the tetrahedral elements
are conformingly connected to the surface triangulations.
Furthermore, variable element sizes are chosen in order to
account for the variable seismic velocity structure. Therefore,
the edge lengths of the tetrahedral elements vary between
200 m inside the basin up to 5000 m at the bottom of the
model, smoothly growing with increasing distance from
the basin. Within the whole basin structure the mesh size
increases vertically up to 500 m at the bottom of the basin.

In order to capture the topography sufficiently accu-
rately the lateral growths factor along the free surface is
chosen to result in a maximum edge length of 1000 m at
the top lateral boundaries.

Material Heterogeneity and Attenuation. The smooth ver-
tical heterogeneities inside the basin and in the surrounding
bedrock are approximated in the ADER-DG approach by
piecewise constant material; that is, the material parameters
are evaluated at the barycenter of a tetrahedral element and
are then assumed to be constant within the volume covered
by the element. Similarly, theQ-factor for the viscoelastic ma-
terial properties inside the basin is evaluated at the barycenter.
The given wave velocities at that position are then assumed to
be given for a central frequency of 1 Hz within the absorption
band from 0.1 to 10 Hz. The frequency-independent constant
Q-law is approximated with three relaxation mechanisms
defined by a generalized Maxwell body.

Treatment of the Kinematic Source. The ADER-DG
method treats the source term in both cases (W1 and S1) as
a kinematic seismic source. Whereas the W1 case uses a
single, double-couple point source with given location and
source parameters, the S1 source is represented by 5000
aligned slip patches of a dimension of 90 m × 90 m to cover
the specified 9 km × 4:5 km fault surface. Each slip patch is
treated as a point source with the same parameters (strike,
dip, rake) and the same shape of the source time function
and possess different onset times as derived from the given
rupture velocity. Therefore, the resulting seismic wave field
is generated as a superposition of all individual slip patches.

Accuracy versus Efficiency. The simulations were per-
formed on Intel Itanium2Madison processors 1.6 GHz, 4 GB
RAM per node. The computational parameters are summa-
rized in Table 2.

Comparison of Numerical Predictions

Outline of the Comparison Method

Comparing numerical predictions of ground motion in a
realistic 3D application is not straightforward because no
reference solution is available, and each prediction may
come with its own errors, either intrinsic (due to the limita-

Figure 8. In order to account for the discontinuity between soft
soil and bedrock the computational domain is subdivided into small
chunks, each of them is sequentially meshed starting from the
alluvial basin down to the bedrock.

Figure 7. Three-dimensional view of the mesh used in the
SEM2 calculations. The mesh contains 216,972 elements, ranging
from 20 m (inside the alluvial basin) up to 900 m; for 2 Hz calcula-
tions N � 3 is sufficient. Different colors refer to different mechan-
ical properties.
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tions of the numerical method used) or case-dependent (due
to implementation and human errors). While it can be as-
sumed that intrinsic errors can be identified by a proper
knowledge of the numerical method being used, implemen-
tation errors need more user experience and often a complex
iterative process to be tracked and hopefully minimized.

Here we present the results of such comparison process
for the Grenoble Valley between four implementations of the
numerical techniques presented before: DGM based on the
discontinuous Galerkin method, FDM based on the finite-
difference method, and SEM1 and SEM2, two implementa-
tions of the spectral-element method. We carefully checked
that the presented numerical predictions are not affected by
technical mistakes in individual implementations and simu-
lations.

We compare the ground-motion predictions for the weak
and strong motion cases W1-FLAT and S1-FLAT, respec-
tively. The comparison includes a visual inspection of
ground acceleration at selected receivers and global maps
of peak ground velocity, as well as a quantitative analysis
based on two different measures introduced recently: the
goodness-of-fit score proposed by Anderson (2004), which
consists of an average of ground-motion indicators of com-
mon use in engineering seismology, and the misfit measure
proposed by Kristekova et al. (2006), which is based on the
time-frequency representation of the seismograms.

Finally, we present the results obtained for the strong
motion case S1-TOPO and compare the different predictions
of the effects of surface topography.

Peak Velocities

Figure 9 shows the global maps of PGV (i.e., the peak
values of the norm of the ground velocity vector) computed
for the strong case motion case S1-FLAT by the four codes:
DGM, FDM, SEM1, and SEM2.

Note the high level of ground motion for thisM 6 event,
especially in the eastern part of the valley. Lower values
would be obtained by choosing a more physical source kine-
matics (instead of the Haskell model considered here, which
produces a very strong directivity effect on the S wave) and
depth (the top of the fault for the S1 event is located only
750 m below sea level, or about 1.5 km below surface).
All maps show little correlation with the sediment thickness,
except near the receiver R21, where the low values of ground
velocity are consistent with the presence of steep bedrock
uplift (see Fig. 2). The strongest amplitudes occur in the
southeast part of the valley, with peak velocities exceeding
1:5 m=sec. These localized high values are caused by late
interferences of surface waves diffracted off the eastern edge
of the valley with surface waves backscattered off the bed-
rock uplift.

The PGVmaps computed by the four codes look remark-
ably similar. Subtle differences can be seen, for example, in
the source region where the patterns differ slightly. This
could indicate small differences in the implementations of

the extended source. Also, the level of the peak values
displayed by the FDM code seems systematically larger than
that of the other predictions. However, given the intrinsic
difficulty of comparing peak values, the level of agreement
shown in Figure 9 is found to be satisfactory.

Quantitative Comparison

Similarity Score and Misfit Measure. The issue of assess-
ing the reliability of numerical predictions of ground motion
has received renewed interest in recent years with the intro-
duction of new tools to quantify the fit, either between syn-
thetics and observations or between numerical predictions.

Anderson (2004) proposed a measure of the goodness-
of-fit between two seismograms that is based on the compar-
ison of 10 criteria that are commonly used in engineering
applications: Arias duration (criterion1, or C1), energy dura-
tion (C2), Arias integral (C3), energy integral (C4), peak
acceleration (C5), peak velocity (C6), peak displacement
(C7), response spectrum (C8), Fourier spectrum (C9), and
cross correlation (C10). These criteria are evaluated in
narrow frequency bands and scaled between 0 and 10. A
global average (between individual criteria and different
frequency bands) is then applied to end up with one number,
the so-called similarity score. Based on the systematic com-
parison of the horizontal components of recorded motions,
Anderson (2004) introduced the following verbal scale for
goodness-of-fit: a score below 4 is a poor fit, between 4
and 6 is a fair fit, between 6 and 8 is a good fit, and beyond
8 is an excellent fit.

Figure 10 shows an example of calculation of the simi-
larity between the predictions of the north–south ground
acceleration at the borehole receiver R06 for the S1-FLAT
case. Solution SEM1-FLAT is used as a reference for all mea-
surements, and only one frequency band, 0.1,2 Hz, is
considered. Figure 10 confirms the impression of good fit
from visual inspection of seismograms. It also shows that
the differences between predictions obtained by different
codes are smaller than the difference between predictions
obtained by the same code with and without including the
effect of surface topography (SEM1-FLAT and SEM1-TOPO).

Kristekova et al. (2006) proposed a measure of the misfit
between two seismograms,which relies on the time-frequency
representations of the signals. Their time-frequency misfit
measure (hereafter referred to as TF misfit measure or simply
TF misfit) allows separating amplitude (envelope) and phase
differences both in the time and frequency domains.

Figure 11 shows an example of application of the TF
misfit to the predictions of north–south ground acceleration
at R06 for the S1-FLAT case by the FDM and SEM1 codes.
The figure shows the time-frequency envelope (amplitude)
and phase misfits, respectively, denoted by TFEM and TFPM.
An average of the absolute values of TFEM and TFPM over
time and frequency results in single-valued estimations of the
envelope (EM) and of the phase (PM) misfits. A single,
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global score (denoted by EPM) is finally obtained by aver-
aging EM and PM.

Application to the S1-FLAT and W1-FLAT Cases. We
computed both the similarity score and the TF misfit for
all 40 receivers and all predictions, taking the SEM1 result
as a reference. We chose to use a single reference to alleviate
the task of computing the misfits for each pair of predictions.
Our analysis was performed for a time window 0,20.48 sec
(2048 samples with timestep Δt � 0:01 sec) for each
component of ground acceleration.

The correspondence between the similarity score and the
TF misfit is summarized in Figure 12. Each dot represents a
pair of measures evaluated at a single receiver, on a single
component of ground acceleration for one of the cases
S1-FLAT, S1-TOPO, or W1-FLAT. The figure shows a linear
trend between the results of the two measures, which is

particularly accurate for well-matching predictions. The level
of the excellent fit, defined by Anderson (2004) as the simi-
larity score above 8, corresponds to a TF misfit level below
0.4. The equation of the linear regression writes
�10-S� � 5M, where S and M stand for the similarity score
and TF misfit, respectively. Based on this equivalence, we
will hereafter represent the results of the comparison of nu-
merical predictions using the sole TF misfit measure.

We found no significant dependence of the TF misfit on
the ground-motion component considered: the mean differ-
ence (averaged over the 40 receivers) between different
single-component TF misfits does not exceed 0.04 (or 0.2
in terms of the similarity scores). We will therefore use a
unique misfit value at each receiver, referred to as the total
misfit, and defined as the arithmetic mean of the three indi-
vidual TF misfits computed for the X, Y, and Z components.

Figure 9. PGV maps obtained by the four codes (a) DGM, (b) FDM, (c) SEM1, (d) SEM2 for the strong motion case S1 without surface
topography (S1-FLAT). Receiver locations are indicated by the triangles. The X and Y labels denote distances (in km) in the local Lambert
coordinate system. The bold curve indicates the 50 m contour line in the sediment thickness map and the bold straight line shows the surface
projection of the fault for the S1 event.
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Figure 13 shows the TF misfits between the different
predictions of the S1-FLAT and W1-FLAT cases computed at
the 40 receivers in the frequency band 0.1–2 Hz. Each dot
corresponds to the total TF misfit averaged over the three
components of ground acceleration.

For the S1-FLAT case, the misfit between the different
predictions is almost everywhere lower than 0.4, which cor-
responds to the level of the excellent fit defined by Anderson
(2004). Note the high similarity between the predictions of
the FDM and SEM1 codes, despite the systematic amplitude
shift observed in Figure 9. This illustrates the importance of

Figure 11. Example of application of the TF misfit analysis to
the predictions of the NS ground acceleration at receiver R06 for the
S1-FLAT case. (a),(c) Panels show the time-frequency envelope
(TFEM) and phase (TFPM) misfits, respectively, taking the
SEM1 prediction as a reference. (b) Time series of acceleration
predicted by codes FDM (red) and SEM1 (black) are shown.
Single-valued envelope (EM) and phase (PM) misfits are obtained
by averaging the absolute values of TFEM and TFPM over time and
frequency. The total TF misfit is obtained by averaging the envelope
and phase misfits EM and PM.
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Figure 12. Comparison of results obtained with the TF misfit
(M) plotted against those using the similarity score (S). Both mea-
sures have been applied to the 3 components of the 40 receivers for
the benchmark cases S1-FLAT, S1-TOPO, and W1-FLAT. A global
linear trend (red line) with equation (10-S � 5M) is found.

-0.70
0.00
0.70
1.40 SEM1TOPO

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 D G M     

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 F D M     

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 S E M 2    

R 0 6 - N   

O

6 12 18 24 30

Time (s)Dec 31 (365), 1969 23:59:59.442

-0.70
0.00
0.70
1.40 S E M 1    

R 0 6 - N   

O

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Anderson criteria

77

88

99

10 10

Sc
or

e

DGM
FDM
SEM2
SEM1-TOPO

R06 NS component
Reference: SEM1-FLAT

(a) (b)

Figure 10. (a) Time series of the NS ground acceleration computed at receiver R06 by 4 different codes for the strong motion case
S1-FLAT: DGM (green), FDM (red), SEM1 (black), and SEM2 (blue). The topmost trace (orange curve) was computed by the code
SEM1 including surface topography (S1-TOPO). (b) Goodness-of-fit as measured by the 10 criteria proposed by Anderson (2004).
The SEM1-FLAT prediction is used as reference in each case. The dashed lines indicate the levels of the global similarity scores for each
prediction. Note that the fit between different predictions of the same simulation case (S1-FLAT) is better than the fit between predictions of
different simulation cases (S1-TOPO and S1-FLAT) by the same code (SEM1).
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using a quantitative misfit measure instead of a single
ground-motion parameter. Although the implementation of
the point source is expected to be much simpler, the level
of misfit is higher for the weak-motion case W1-FLAT than
for the strong-motion case S1-FLAT. This is related to the
larger high-frequency content of the W1 source, compared
with the S1 source, which challenges the numerical methods
at hand. Individual time series and amplitude spectra of the
three components of ground acceleration at receiver R02,
located in the center of the Grenoble Valley, are shown in
Figure 14 and Figure 15 for the S1-FLAT case and W1-FLAT
case, respectively.

Visual inspection of the traces and spectra confirms the
high similarity between the different predictions of the
S1-FLAT case, including at late arrival times, whereas larger
differences in amplitude and phase arise for the predictions
of the W1-FLAT case. Note in particular in Figure 15 the dif-
ferences in timing and amplitude between the predictions of
the diffracted Rayleigh wave arriving around 8 sec. Because
of the wider frequency content of the source, the weak
motion case also tends to highlight the differences in the
implementation of intrinsic attenuation as described in the
previous section (see, for example, the larger high-frequency
content of the SEM2 prediction compared with the others).

Figure 16 and Figure 17 show the results obtained for
the S1-FLAT case at two other locations: R06 (Montbonnot
borehole ground-level station) in the middle of the 2D profile
across the Grésivaudan Valley and R21 close to the steep
bedrock uplift (see Fig. 2). Note the high similarity between
all predictions at receiver R06 and the differences in ampli-
tude and phase that lead to the large misfit between SEM1
and DGM at R21. This last example (R21) is one of the only
cases where the level of misfit is surprisingly high in one
component only (Z).

The global TF misfit distributions displayed in Figure 13
do not show any particular dependence on either the soil con-
dition or the receiver location within the valley. The main
trend is a systematic increase of the misfit with increasing
distance to the source. This is expected because intrinsic

errors (e.g., numerical dispersion) or differences in physical
modeling (e.g., intrinsic attenuation) tend to accumulate with
time andwith the distance propagated. In the remainder of this
section, we will therefore represent the misfit as a function of
the source-receiver distance. The detail of the TF misfits in
terms of amplitude and phase is shown for the S1-FLAT case
in Figure 18. Both measures show the same pattern, with the
highest similarity being found between the FDM and SEM1
predictions. However, the phase misfit seems to be more
helpful in tracking differences between predictions. For
example, the amplitude misfit between DGM and SEM1 is
roughly identical to the one between SEM1 and SEM2, but
larger phase misfits are seen between SEM1 and SEM2. Note
also that the increase of the total TF misfit between FDM and
SEM1 predictions with distance only appears in the amplitude
(envelope) misfit, the difference in phase being roughly con-
stant for all 40 receivers.

To better understand the differences between numerical
predictions for the S1-FLAT case, we plot in Figure 19 the
amplitude and phase misfits computed in three frequency
bands: low-frequency (LF) 0.2,0.5 Hz; intermediate fre-
quency (IF) 0.5,1.0 Hz; and high-frequency (HF) 1.0,2.0 Hz.
Note that the LF band is roughly centered at the fundamental
frequency of the Grenoble Valley (around 0.3 Hz); the energy
radiated by the source in the S1-FLAT case decreases signifi-
cantly in the HF band, suggesting that the weight of the HF
misfit in the total TF misfit is weak. There is a global trend
for the TF misfits (amplitude and phase) to increase with
frequency. Therefore, it becomes more difficult at higher
frequencies to assume a linear dependence on the source-
receiver distance. This can be mainly explained by the fact
that intrinsic errors of each numerical method (in particular
numerical dispersion) increase with frequency.

We finally remark that there is a strong dependence of
the amplitude misfit between DGM and SEM1with frequency,
which results in large differences in the HF band. The TF
misfits computed for the W1-FLAT case (see Fig. 13) suggest
that these discrepancies become dominant when the high-
frequency content of the source is larger.
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Figure 13. (a) TF misfits computed for the S1-FLAT case and (b) for the W1-FLAT case, taking the SEM1 prediction as reference. Each
dot corresponds to the average of the 3 components of total misfit (average of envelope and phase) measured on the predictions of ground
acceleration at each receiver in the frequency band 0.1,2.0 Hz. Receivers R01, R04, R08, and R33–R40 are located on rock sites.
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Figure 14. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R02 by the
four different codes for the strong motion case S1-FLAT.
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Figure 15. Same as Figure 14 for the weak motion case W1-FLAT.
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Figure 16. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R06 by the
four different codes (DGM, FDM, SEM1, and SEM2) for the strong motion case S1-FLAT.
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Figure 17. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R21 by the
four different codes for the strong motion case S1-FLAT. Note the low similarity between the DGM and SEM1 predictions on the vertical
component.
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Figure 19. Same as Figure 18 for different frequency bands: (a),(b) 0.2,0.5 Hz; (c),(d) 0.5,1.0 Hz; and (e),(f) 1.0,2.0 Hz.
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Effect of Surface Topography

Three codes (DGM, SEM1, and SEM2) computed the
strong motion case S1-TOPO, which includes the effect of
surface topography. The PGVmaps obtained for the S1-TOPO
case are shown in Figure 20. Note the deformation of the
predicted patterns (compare with Fig. 9) close to the source
due to the presence of surface topography on top of the fault
plane. The overall distributions of peak values look quite
similar inside the valley, suggesting that the main differences
with respect to the S1-FLAT case occur on the rock sites. This
is only partly confirmed by Figure 21, which shows the maps
obtained by dividing the PGV by those obtained in the S1-
FLAT case. Noticeable differences are indeed observed in
the southwestern part of the valley, a region where strong
variations of the sediment thickness occur. The patterns

observed on the three maps of PGV ratios are quite consistent
outside of the valley: systematic amplification is found on
the mountain peaks (see, for example, receivers R33 and
R34 in the eastern Belledonne chain and receivers R39
and R40 in the northern Chartreuse massif), whereas
deamplification is found invalleys (see receiverR35). Seismic
motion on slopes is more complex because amplification or
deamplification can occur depending on the slope orientation
with respect to the seismic event (see the two flanks bordering
the Romanche Valley around receiver R35 at coordinates
X � 880 km, Y � 2015 km). Extreme and mean values of
amplification and deamplification are given in Table 3.

The average effect of surface topography inside the val-
ley, as measured by the ratio of the PGV, is found to be
negligible, but large differences in extreme values occur:
the maximal predicted amplifications vary significantly on

Figure 20. PGV maps obtained by three codes: (a) DGM, (c) SEM1, (d) SEM2 for the strong motion case S1-TOPO. (b) The map of
surface elevation is shown. Receiver locations are indicated by the triangles; the X and Y labels denote distances (in km) in the local Lambert
coordinate system. The bold curve indicates the 50 m contour line in the sediment thickness map; the bold straight line shows the surface
projection of the fault for the S1 event.
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rock sites and, more surprisingly, within the valley. This
could result from differences in the implementation of sur-
face topography, in the representation of velocity contrasts
near the valley edges, and in the design of the meshes for
the S1-FLAT and S1-TOPO cases.

Conclusions

The third international symposium on the effects of
surface geology in Grenoble, France (ESG 2006), provided

an excellent opportunity to focus the traditional blind predic-
tion experiment on numerical modeling of earthquake
motion in a typical deep Alpine sediment-filled structure,
the Grenoble Valley.

The Grenoble urban area gathers a significant popula-
tion of around 500,000, a number of high-tech and sensitive
industrial facilities, and educational and research institutions.
This and observed broadband site effects imply that the mod-
erate regional seismic activity poses a concern about the seis-
mic risk in the area. Moreover, similar conditions are also
met in other areas within the European Alps and in other
mountainous areas with embanked valleys filled with young,
postglacial lacustrine sediments. This specific area also
presents a further interest in relation to its relatively small
extent, which allows performing deterministic numerical
simulation up to higher frequencies than is usually consid-
ered in much wider areas such as the Los Angeles basin.

The present article reports partial results from this simu-
lation exercise for four structure wave-field configurations
that were specified for voluntary participants: W1-FLAT,
S1-FLAT, W1-TOPO, S1-TOPO, withW and Smeaning weak
and strong, FLAT and TOPO meaning geometry of the free
surface, respectively. The weak configurations comprised

Figure 21. Maps of ratios between the PGVobtained with the surface topography and PGVobtained for the flat free surface by the three
codes: (a) DGM, (c) SEM1, and (d) SEM2. (b) The map of surface elevation is shown. Receiver locations are indicated by the triangles and
the X and Y labels denote distances (in km) in the local Lambert coordinate system. The bold curve indicates the 50 m contour line in the
sediment thickness map and the bold straight line shows the surface projection of the fault for the S1 event.

Table 3
Extreme and Average Values of the Ratio of Peak
Ground Velocity Computed by the Codes DGM,

SEM1, and SEM2*

DGM SEM1 SEM2

Minimum ratio (valley) 0.447 0.549 0.133
Maximum ratio (valley) 2.255 1.641 3.599
Mean ratio (valley) 0.996 0.998 0.991
Minimum ratio (rock) 0.543 0.533 0.277
Maximum ratio (rock) 3.222 2.464 2.095

*With and without accounting for the effects of surface
topography.
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double-couple point sources, the strong ones finite kinematic
source models.

Fourteen groups from eight countries contributed to the
ESG 2006 comparison with at least one numerical method
and possibly different cases, providing a total of 18 predic-
tion sets; seven groups addressed the 3D problem, out of
which three could account for the effects of both under-
ground and surface topography. The numerical schemes used
for the 3D contributions belong to the finite-difference,
spectral-element, and discontinuous-Galerkin finite-element
methods. Four participants whose 3D predictions were sur-
prisingly close updated their results after the ESG meeting,
after correcting some nonmethodological errors (evidenced
by comparing to other predictions) in preparation of the
numerical simulations. Only the results from the corrected
predictions were considered here.

One of the main lessons of this comparative exercise
concerns the present capabilities of numerical simulation
and is indeed a lesson of modesty: all the submitted predic-
tions exhibit a very large variability. This variability confirms
that the numerical prediction of ground motion in general
certainly cannot be considered a mature, push-button ap-
proach, and the variability in direct uncorrected numerical
predictions can be significantly larger than the variability
associated with empirical predictions. This is also because
not all applied numerical codes implement the best metho-
dologically possible algorithms; some of the codes are not
yet bug free. Much care should be also given to an unambig-
uous definition of the input solicitation (input signal and/or
source kinematics). Not sufficiently elaborated numerical
predictions may yield wrong results and therefore will lead
to large mistrust from end users.

However, there is also another lesson, which is a lesson
of hope: the striking similarity between predictions by com-
pletely different numerical methods is a very encouraging
result. Despite the structural complexity, that is geometry
and relatively large velocity contrast at the sediment-
basement interface as well as smooth heterogeneity, and the
methodological differences among the simulation methods,
we found a surprisingly good level of agreement among four
of the submitted predictions obtained by the finite-difference
method (FDM), two implementations of the spectral-element
method (SEM1 and SEM2), and arbitrary high-order deriva-
tive, the discontinuous Galerkin method (ADER-DGM). It
clearly shows that, when used with caution, numerical simu-
lation is actually able to handle wave radiation correctly from
an extended source and their subsequent propagation in
complex 3D media.

The expression good agreement is not simply a matter of
subjective feeling. It indeed results from a detailed, quanti-
tative comparison between the four numerical predictions
using the misfit criteria proposed by Kristekova et al. (2006).
These misfit criteria are based on the time-frequency repre-
sentations of the signals and allow proper quantification and
characterization of disagreement between signals. This misfit
measurement is found to be consistent with the engineering-

oriented similarity score proposed by Anderson (2004).
Another instructive comparison was achieved by looking at
predicted PGV maps.

The main conclusions from the detailed comparison are
explained in the following list:

• The objective quantification of the mismatch between the
different predictions proves to be effective and useful. The
two different comparison tools used for quantification,
although very different, do provide very consistent results.
While Anderson’s engineering-based criteria are probably
enough for validating numerical predictions for end users,
more refined comparisons based on time-frequency analy-
sis greatly help in understanding the origin of differences.
In particular, the analysis of the phase misfit with the tech-
nique of Kristekova et al. (2006) proves very instructive in
identifying differences in propagation properties from one
numerical method to another, and thus in orienting further
investigations to refine computational tools.

• The match is found to be good at low frequencies (below
1 Hz) and to gradually deteriorate with increasing fre-
quency, as expected. The reasons for that could not be un-
ambiguously individualized, but may be related both to
differences in the numerical methods (numerical disper-
sion, implementation of damping) and differences in the
model implementation.

• An important component to explain the differences is cer-
tainly related to the meshing. While the applied finite-
difference scheme authorizes a good automatic accounting
for the details of the sediment-basement interface, different
strategies were used by the three other groups: some used a
rather coarse meshing that did not follow details of the
valley boundaries, especially at shallow depth, while some
others spent much time in refining the mesh. The 2 Hz
maximum frequency considered here is still too low to ac-
tually clearly identify the effects of the valley boundaries,
considering also the rather smooth velocity variation in the
sediments and the absence of shallow weathered layers in
the bedrock. This issue is presently investigated within the
framework of another numerical comparative exercise on
the Volvi–Euroseistest site in Greece, where both sedi-
ments and bedrock exhibit complex shallow structures
with inner interfaces between different units.

• The effects of free-surface topography were found signifi-
cant in elevated areas in the three surrounding mountain
ranges, but less important within the valley. However,
while they are negligible in the S1 case, they slightly in-
crease in theW1 case corresponding to higher predominant
frequencies. This result cannot therefore be extrapolated to
frequencies higher than 2 Hz, and the question is still open.

The comparison of the numerical predictions obtained
with the FDM, two implementations of the SEM, and ADER-
DGM indicates that each of these methods can be applied to
simulation of the earthquake motion in structurally complex
sediment-filled valleys with the flat free surface. In addition
to being methodologically relatively simpler than the SEM
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and ADER-DGM, the presented implementation of the FDM
can be computationally more efficient because the volume
harmonic averaging of moduli and volume arithmetic aver-
aging of density allows to account for irregular interfaces in
regular grids well-suited to parallel implementation, while
abrupt changes in the grid size are also allowed at the transi-
tion between sediments and much stiffer bedrock. In the case
of the presented predictions, the FDM needed approximately
65% of the computational time used by SEM, but obviously
the difference may depend on the used computer and on the
particular case under study. On the other hand, for the SEM
and ADER-DGM the incorporation of the nonplanar free sur-
face poses no methodological problem; thus, the methods
can be equally easily applied to both the flat and nonplanar
free surface. In general, it is far from easy and natural to
implement free-surface condition in the FDM. The applied
DSG Velocity-Stress FDM cannot account for the free-surface
topography. If the incorporation of the topography is inevi-
table, for example, at particular sites and at higher frequen-
cies, a hybrid combination with the finite-element method
(Galis et al., 2008) might be an alternative to the applied
DSG VS FDM.

We would like to stress two main conclusions based on
the ESG 2006 simulation exercise and the detailed compar-
ison of the four closest numerical predictions:

1. No single numerical modeling method can be consid-
ered as the best for all important medium wave-field config-
urations in both computational efficiency and accuracy.

2. Reliable predictions of the earthquake ground motion
in complex structures should be made using at least two
different but comparably accurate methods to enhance reli-
ability of the prediction. Our study indicates that the proper
formulations and implementations of the FDM, SEM, and
ADER-DGM can be applied.

Data and Resources

All data used in this article came from published sources
listed in the references. The Fortran 95 computer code for
performing the finite-difference scheme is available at www
.nuquake.eu/Computer_Codes/ (last accessed June, 2010).
A detailed description of the SEM1 software package can
be found at www.geodynamics.org/cig/software/packages/
seismo/specfem3d (last accessed June, 2010). A detailed
description of the software package adopted for the SEM2
simulation can be found at http://geoelse.stru.polimi.it (last
accessed June, 2010). The software CUBIT is available at
http://cubit.sandia.gov/ (last accessed June, 2010).
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S U M M A R Y
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian
basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from
the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are
modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth
velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the
1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly
dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-
spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations
of the finite-difference method (FDM-S and FDM-C) up to 4 Hz.

The accuracy of individual solutions and level of agreement between solutions vary with
type of seismic waves and depend on the smoothness of the velocity model. The level of
accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete
representation of the material interfaces (at which material parameters change discontinuously)
for the surface waves in the sharp models.

An improper discrete representation of the interfaces can cause inaccurate numerical mod-
elling of surface waves. For all the numerical methods considered, except SEM with mesh of
elements following the interfaces, a proper implementation of interfaces requires definition
of an effective medium consistent with the interface boundary conditions. An orthorhombic
effective medium is shown to significantly improve accuracy and preserve the computational
efficiency of modelling.

The conclusions drawn from the analysis of the results of the canonical cases greatly help
to explain differences between numerical predictions of ground motion in realistic models of
the Mygdonian basin.

We recommend that any numerical method and code that is intended for numerical prediction
of earthquake ground motion should be verified through stringent models that would make it
possible to test the most important aspects of accuracy.

Key words: Numerical solutions; Numerical approximations and analysis; Earthquake
ground motions; Site effects; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Seismologists must predict earthquake ground motion during po-
tential future earthquakes in densely populated areas and sites of
special importance. This is very important for land-use planning,

designing new buildings and reinforcing existing ones. It is also
very important for undertaking actions that could help mitigate
losses during future earthquakes.

Prediction of the earthquake ground motion for a site of interest
can be based on empirical approach if sufficient earthquake records
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at that site or at a sufficiently similar site are available. In most
cases, however, this is not so and seismologists face a drastic lack
of data. In such situations it is the theory and numerical simulations
that have to be applied for predicting the earthquake motion.

Structural and rheological complexity of the realistic models im-
ply that only approximate computational methods can be applied.
Among the approximate methods, the domain (in the spatial sense)
numerical-modelling methods are dominant due to relatively rea-
sonable balance between the accuracy and computational efficiency.
Some of the more widely used numerical-modelling methods are
the time-domain finite-difference, finite-element, Fourier pseudo-
spectral, spectral-element and discontinuous Galerkin methods.

Each method has its advantages and disadvantages that often
depend on a particular application. In other words, none of these
methods can be chosen as the universally best (in terms of accuracy
and computational efficiency) method for all important problems.
One logical consequence and particular aspect of this situation is
that, depending on a particular model of the medium, it might
be not trivial to reach satisfactory agreement between solutions
obtained by different methods. And indeed, this is the important
lesson learned from the dedicated international blind predictions
tests and comparative exercises for the Turkey Flat in the Parkfield
area, central California in 1989–1990 (e.g. Cramer 1995), Ashigara
Valley in the Kanagawa Prefecture, SW of Tokyo, Japan in 1992
(e.g. Bard 1994), Osaka basin, Japan in 1998 (Kawase & Iwata
1998), Grenoble valley in French Alps in 2006 (Chaljub et al. 2006,
2010) as well as from the Southern California Earthquake Center
(SCEC) code comparison (Day et al. 2001, 2003, 2005; Bielak et al.
2010).

The SCEC comparison included relatively simple models of a
homogeneous half-space and layer over half-space (Day et al. 2001),
and a realistic model of the San Fernando Valley and Los Angeles
Basin (Day et al. 2003, 2005). In the simple models the P- to S-wave
velocity ratio was as low as 1.73 and the S-wave velocity contrast
less than 1.5. Due to the material parameters and source position,
strong surface waves were not generated in the models. Bielak et al.
(2010) analysed results of verification for the ShakeOut scenario
earthquake for the realistic SCEC community velocity model and
frequency range [0.1, 0.5] Hz. They concluded that the independent
simulations were, given the complexity and size of the problem,
satisfactorily close. They attributed the observed differences mainly
to differences in discrete representations of the model heterogeneity
and models of attenuation.

The ESG2006 (Effects of Surface Geology 2006) exercise was
focused on the Grenoble valley in the French Alps (Chaljub et al.
2006, 2010). Compared with the Los Angeles basin, the modelling
of the Grenoble Valley is complicated by the larger P- to S-wave
velocity ratio, larger velocity contrast and the complex interface
geometry. The simulations were performed for the frequency range
[0.1, 2] Hz. Four teams reached a very good level of agreement up
to 1 Hz. The differences above 1 Hz were attributed to differences
in discrete representations of the model heterogeneity, numerical
dispersion and models of attenuation, that is, similar to reasons
found by Bielak et al. (2010).

The individual named reasons for differences in both compar-
isons for realistic models are probably correct but they were not re-
ally separated and quantified. In other words, none of the three com-
parisons (SCEC simple models, SCEC ShakeOut and ESG2006)
provides sufficient methodological basis for estimating accuracy of
individual numerical solutions and possible differences among in-
dependent numerical solutions for relatively simple but stringent
models or for other complex realistic models. This, however, is

an important aspect in relation to application of the numerical-
modelling methods in practical predictions.

Given the state-of-the-art in the numerical modelling of earth-
quake motion it was logical to develop a project focused on sys-
tematic and quantitative comparison of the most advanced numer-
ical methods. The Aristotle University of Thessaloniki, Greece,
the Cashima research project (supported by CEA—the French
Alternative Energies and Atomic Energy Commission, and the
Laue-Langevin Institute, ILL, Grenoble) and ISTerre at Joseph
Fourier University, Grenoble, France, jointly organized the Euro-
seistest Verification and Validation Project (E2VP) which aims at:
(i) evaluating accuracy of the current most advanced numerical
methods when applied to realistic 3-D models and (ii) quantitative
comparison of the recorded and numerically simulated earthquake
ground motion. E2VP thus includes both verification and valida-
tion (e.g. Bielak et al. 2010; Moczo et al. 2014). The E2VP target
site is the Mygdonian basin near Thessaloniki, Greece, the interna-
tional research and test site of many international seismological and
earthquake-engineering projects (for more on the site see Maufroy
et al. 2014).

In this paper, we address the verification part of E2VP. From the
originally 18 teams from around the world intended to participate,
eight teams contributed to the 3-D modelling over the whole dura-
tion of the first verification phase and four teams were able to reach
a satisfactory level of agreement for the complex 3-D models of the
Mygdonian basin [one team applied its finite-difference scheme,
one team Fourier pseudo-spectral scheme and two teams indepen-
dent implementations of the spectral-element method (SEM)].

Importantly and consistently with the previous comparative ef-
forts mentioned above, there were differences among individual
solutions by the four teams mainly in the configurations with strong
surface waves and at high frequencies—despite the effort to make
the individual discrete models as close as possible. The differences
led us to develop 4 canonical models derived from the realistic 3-D
model of the Mygdonian basin. Two models are 1-D, two models
are 2-D. Wavefields are in the all models 3-D. The solutions for the
canonical models were computed by the four original teams and
by a fifth team which applied the velocity–stress collocated-grid
finite-difference scheme.

The quantitative analysis of the results explains how the accuracy
of individual solutions and level of agreement between solutions
vary with the type of seismic waves and depend on the discretization
of the spatial variations of material parameters.

2 E U RO S E I S T E S T V E R I F I C AT I O N A N D
VA L I DAT I O N P RO J E C T

The target site of E2VP is the Mygdonian basin located in the
northeastern part of Greece, 30 km ENE from Thessaloniki, in the
epicentral area of the M6.4 seismic event which occurred on 1978
June 20 (e.g. Soufleris et al. 1982; Theodulidis et al. 2006). E2VP
focuses on the part of the basin between the Lagada and Volvi
lakes, a site which has been extensively investigated in several
European projects (e.g. Euroseistest, Euroseismod, Euroseisrisk,
ISMOD, ITSAK-GR; see http://euroseisdb.civil.auth.gr,
last accessed 16 January 2015) and monitored with a dense ac-
celerometric array since the mid-nineties. The project makes use
of a detailed 3-D model of the intralake basin zone (about 5 km
wide and 15 km long) based upon work by Manakou (2007) and
Manakou et al. (2010). The model consists of three sedimentary
layers with significant lateral variations in thickness as shown in
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92 E. Chaljub et al.

Figure 1. Thicknesses of the sedimentary layers of the Mygdonian basin’s velocity model used within the E2VP project. The red triangle denotes the position
of TST, the central station of the Euroseistest accelerometric array.

Table 1. Thicknesses (h) and material parameters (S and P seismic
velocities VS and VP, respectively, and mass density ρ) in the model
with three homogeneous layers used in E2VP. Li, i = 1. . . 3 denote
the sedimentary layers and H the surrounding bedrock.

h (m) VP (m s−1) VS (m s−1) ρ (kg m−3)

L1 17.3 1500 200 2100
L2 72.5 1800 350 2100
L3 115.6 2500 650 2200
H 1000 4500 2600 2600

Table 2. Same as Table 1 for the smooth, piecewise linear, three-
layer model used in E2VP.

h (m) VP (m s−1) VS (m s−1) ρ (kg m−3)

L1 17.3 [1500–1600] [200–250] 2100
L2 72.5 [1600–2200] [250–500] [2100–2130]
L3 115.6 [2200–2800] [500–900] [2130–2250]
H 1000 4500 2600 2600

Fig. 1. Note that the TST station at the centre of the Euroseistest
site is located at a saddle point, with the sedimentary thickness in-
creasing both eastward and westward, and decreasing towards the
edges of the basin. The central NS profile passing through TST
appears as a buried pass between two thicker sub-basins, the max-
imum thickness (about 400 m) being reached in the westernmost
one. Based upon this three-layer structure of the basin, two differ-
ent velocity models have been considered in E2VP: a piecewise
homogeneous model with physical interfaces within the sediments,
and a smooth, piecewise linear model without internal discontinu-

ities. The depth distribution of seismic velocities and mass densities
in each sedimentary layer and in the surrounding bedrock is given
for both models in Tables 1 and 2, respectively. The intrinsic attenu-
ation is modelled through a linear scaling of the quality factor with
shear wave velocity as QS = VS/10, neglecting the bulk attenuation,
Qκ = ∞.

Many different numerical methods were compared during the
verification phase of E2VP, to evaluate the epistemic uncertainty in
numerical prediction of earthquake ground motion in sedimentary
basins. Here we consider a subset of those methods which pro-
vided the most similar results: the velocity–stress finite-difference
method on the staggered grid (FDM-S), the Fourier pseudo-spectral
method (FPSM) and the Legendre SEM. They are are briefly de-
scribed in Section 4. The reader is referred to Maufroy et al. (2014)
for a presentation of the results obtained by a wider set of meth-
ods and codes, which allows to better appreciate the difficulty to
obtain acceptable levels of agreement in realistic 3-D verification
exercises.

In Fig. 2, we compare synthetics simulated at the TST station by
the three methods for frequencies up to 4 Hz for the viscoelastic
model with three homogeneous layers. The basin is excited by a
double-couple point source located at 3 km depth. The level of sim-
ilarity is excellent for the first arrivals (i.e. for t ≤ 5 s), which consist
mainly of body waves, and it decreases for late arrivals consisting
mostly of surface waves diffracted at the basin edges. In Fig. 3, we
compare synthetics for the elastic model with homogeneous layers.
The neglect of attenuation reveals significant differences in ampli-
tude and phase in the time window dominated by the local surface
waves, that is for t ≥ 6 s. Note that those differences remain even
after increasing the grid resolution used in each of the numerical

Figure 2. Comparison of predictions of the NS (left-hand panel) and vertical (right-hand panel) components of ground velocity at the central TST station
obtained by three different numerical methods: FDM-S (black), SEM (red) and FPSM (blue). The sedimentary basin is modelled with three homogeneous
viscoelastic layers of varying thicknesses described in Fig. 1 and Table 1.
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Figure 3. Same as Fig. 2 for the elastic model (neglecting intrinsic attenuation) with homogeneous layers. Note the good agreement on the first arrivals and
the differences in phase and amplitude for later arrivals (between t = 6 and 12 s).

Figure 4. Same as Fig. 3 for the smooth basin model of Table 2: no internal material discontinuities in sediments. Note the overall good agreement obtained,
even on late arrivals.

solutions. These results suggest that the epistemic uncertainty of
numerical prediction of earthquake ground motion may be large for
local surface waves. Several factors may contribute to this. They are
investigated and discussed later in the paper.

Another important observation is that the level of epistemic un-
certainty on the late arrivals was found smaller whenever a smooth
basin model was considered. This is illustrated in Fig. 4 where we
compare the predictions of the elastic response of the smooth piece-
wise linear model of Table 2. Despite the neglect of attenuation, the
level of fit is excellent on the whole wavefield.

3 C A N O N I C A L T E S T C A S E S

In order to better understand the origin of the differences between
numerical predictions of ground motion observed in the course of
E2VP, we designed a set of test cases with relevant characteristics.

We focus on the perfectly elastic models because we checked
that the differences between individual solutions were much larger
when attenuation was neglected. The verification of solutions in
the viscoelastic models is left for a further, second level analysis.
We may note that reaching a satisfactory level of agreement in the
elastic models represents a real numerical challenge.

In this paper, we present four test cases: two for which the velocity
model is varying only in the vertical direction (1-D geometry), and
two for which the velocity model is a simplified, 2-D cross-section
of the Mygdonian basin model (2-D geometry). For each geometry

(1-D or 2-D), two kinds of structural models were considered: one
model, referred to as sharp, with internal discontinuities of the ma-
terial parameters in the sedimentary part; and one model, referred
to as smooth, where the vertical variation of the material parame-
ters is continuous, piecewise linear within the sediments. The four
test cases are denoted as 1D-sharp, 1D-smooth, 2D-sharp and 2D-
smooth. The 3-D seismic wavefields include surface waves trapped
in the sediments: for models with 1-D geometry, the surface waves
are excited by a surface force, whereas they are spontaneously gen-
erated from the conversion of body waves at the basin edges for
models with 2-D geometry.

3.1 Models with 1-D geometry

The problem configuration for the test cases with 1-D geometry (1D-
sharp and 1D-smooth) is depicted in Fig. 5. The model consists of
three sedimentary layers overlying an elastic, homogeneous half-
space. The layer thicknesses, densities and seismic velocities for
the 1D-sharp and 1D-smooth models are given in Tables 1 and
2, respectively. The total sediment thickness is 205.4 m and the
fundamental resonance frequencies are f0 � 0.67 and �0.74 Hz
for the 1D-sharp and 1D-smooth models, respectively. Note that
although the 1D-smooth model was not designed to be a smooth
approximation of the 1D-sharp model, whence the difference in
the fundamental frequency, both models are consistent with the
geological and geophysical information gathered at the TST site.
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94 E. Chaljub et al.

Figure 5. Schematic representation (left: vertical cross-section, right: surface view) of the 3 layers (L1, L2, L3) over half-space (H) models used in the test
cases 1D-sharp and 1D-smooth. The values of thicknesses, densities and seismic velocities are given in Tables 1 and 2. The positions of the sources and surface
receivers are indicated with bold arrows and triangles, respectively. The beach ball at the epicentre indicates the focal mechanism of the double-couple point
source plotted. The distance between the receivers along the northern surface profile is 1 km.

Figure 6. Source time functions used in the test cases 1D-sharp and 1D-smooth. Left-hand panel: dimensionless time histories for the deep double-couple
source (red) and the surface force (blue). Right-hand panel: corresponding amplitude Fourier spectra.

The impact of the strategy used for constructing a geophysical model
on the level of epistemic uncertainty in the numerical prediction of
earthquake ground motion is discussed at the end of the paper.

A double-couple point source with strike φS, dip δS and rake λS is
set at 3 km depth. The focal mechanism is that of a vertical strike-slip
fault (δS = 90◦, λS = 0◦), rotated such that the horizontal coordinate
axes do not lie in any nodal plane of the radiation patterns for the P
or S waves: φS = 22.5◦. An additional vertical force is considered at
the free surface in order to excite Rayleigh surface waves trapped in
the sedimentary layers. Both sources act synchronously with the
time functions shown in Fig. 6. The source time function for the
surface force is a bandpass filtered Dirac pulse with almost no spec-
tral content beyond fmax = 4 Hz and a flat part in the band [0.3–3 Hz];
its integral is used to define the time history of the double-couple
source. The seismic moment of the double-couple source is set to
M0 = 1018 N.m and the amplitude of the surface force is multiplied
by a factor A = 5 × 1011 in order to obtain synthetic seismograms
with realistic ratios of body- to surface wave amplitudes.

3.1.1 Reference solutions

The reference solutions for the 1D-sharp and 1D-smooth cases were
computed with the discrete wavenumber method (DWM; Bouchon
1981, 2003): we used the axitra program (Coutant 1989) to com-
pute the wavefield generated by the deep double-couple source and

a code implementing Hisada’s asymptotic approximation at high
wavenumbers (Hisada 1995) to compute the wavefield generated by
the surface force.

Fig. 7 shows the synthetic seismograms computed at a few re-
ceivers located at the surface along the northern profile for the
1D-sharp case. The east–west component of ground velocity con-
sists only of SH body waves and shows a typical 1-D resonance
pattern at about 2.7 Hz, whereas the vertical component is dom-
inated by the propagation of strongly dispersed Rayleigh surface
waves. The time-frequency representation of the vertical ground
velocity at 4 km epicentral distance is shown in Fig. 8. It helps to
identify the contributions of the different Rayleigh modes to the
15 s long wave train recorded after 10 s: seismic phases arriving
between 12 and 16 s consist mainly of the high-frequency (≥2 Hz)
first higher mode, whereas phases arriving after 18 s are made of
the moderate- to low-frequency fundamental mode (≤3 Hz). Note
the large amplitude related to the arrival of the Airy phase of the
fundamental Rayleigh mode around 17 s, which is well predicted by
the analysis of the group velocity.

The surface seismograms for the 1D-smooth case are shown in
Fig. 9. Note that, compared to the 1D-sharp case, the high-frequency
resonance effect is less pronounced in the body wave part and that a
simpler surface wave dispersion pattern is observed on the vertical
component. Looking at the time-frequency representation of the
vertical ground velocity at 4 km epicentral distance (Fig. 10), one
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Figure 7. East–west (left-hand panel) and vertical (right-hand panel) components of ground velocity along the northern surface profile computed with the
discrete wavenumber method for the 1D-sharp model.

Figure 8. Time (bottom panel) and time-frequency (top panel) represen-
tations of the vertical ground velocity at 4 km epicentral distance for the
1D-sharp case. The background colours on the top image indicate the ampli-
tude of the seismic arrivals, from blue (small) to red (medium) and bordeaux
(large). The solid lines superimposed on the image indicate the theoretical
group arrival times of the fundamental (blue) and first higher (green) modes
of Rayleigh waves.

sees indeed that the fundamental and first higher modes of Rayleigh
waves are well separated in time, the fundamental mode being much
less dispersed than in the 1D-sharp case.

3.2 Models with 2-D geometry

The problem configuration for the test cases with 2-D geometry (2D-
sharp and 2D-smooth) is shown in Fig. 11. The model corresponds
to a 5-km-long valley bounded at one side by a vertical wall and
at the other side by a gentle slope, in order to mimic the geometry
of the north–south cross-section of the Mygdonian basin passing
through the central TST station (Fig. 1). The layering for the 2D-
sharp (resp. 2D-smooth) model is the same as that for the 1D-sharp
(resp. 1D-smooth) model, except close to the northern edge where
the thickness of each layer linearly decreases from its value given
in Table 1 (resp. Table 2) to zero over a distance of 1.5 km. The

resulting angle of the bedrock-sediment interface at the northern
boundary is about 8◦.

Both 2-D models are excited by the same deep double-couple
source used for the 1D-sharp and 1D-smooth cases. In these models,
contrary to the 1-D models, the surface waves (of Rayleigh and
Love type) are generated at the edges of the valley and trapped in
the sediments.

4 N U M E R I C A L M E T H O D S

The numerical solutions presented in this paper were obtained by
three kinds of numerical approximation in space: two velocity–
stress formulations of the finite-difference method – on the stag-
gered grid and on the collocated grid, the FPSM and the Legendre
SEM. Time evolution in all cases is solved by an explicit, condi-
tionally stable, finite-difference scheme. In what follows, we briefly
present each method and explain how it should be implemented to
provide an accurate solution to the canonical cases.

4.1 Legendre SEM

The SEM is a high-order finite-element approximation in which the
consistent choice of an orthogonal polynomial basis and of a Gauss
numerical quadrature allows to achieve the convergence properties
of spectral methods. In its early applications to seismology (Priolo
et al. 1994; Seriani & Priolo 1994), a set of Chebyshev polyno-
mials and Gauss–Chebyshev quadrature were used. Using instead
Legendre polynomials and Gauss–Legendre–Lobatto quadrature
yields SEM, which still holds the convergence rate of spectral meth-
ods while providing a diagonal mass matrix resulting in costless
implementation of explicit finite-difference schemes in time. The
Legendre formulation of the SEM was introduced in seismology by
Faccioli et al. (1997) and Komatitsch & Vilotte (1998), and is the
most widely used nowadays. It relies on the tensorization of the 1-D
SEM, and therefore on the use of quadrangles in 2-D and hexahe-
dras in 3-D. The reader is referred to Komatitsch et al. (2005) and
Chaljub et al. (2007) for review articles presenting the numerous
developments of SEM, and to Moczo et al. (2014, chapter 5, p. 76)
for a historical presentation and recent applications to seismic wave
propagation in sedimentary basins or alluvial valleys.
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Figure 9. East–west (left-hand panel) and vertical (right-hand panel) components of ground velocity along the northern surface profile computed with the
discrete wavenumber method for the 1D-smooth model.

Figure 10. Same as Fig. 8 for the 1D-smooth case.

In the finite-element method (FEM), and therefore in SEM, the
free-surface condition (and more generally the continuity of trac-
tion) is said to be a natural boundary condition because it is ac-
counted for in the weak form of the equations to be solved and
does not have to be explicitly enforced at the discrete level. This
allows surface topography to be accounted for in SEM, as long

as the variations of the free surface can be accurately represented
at the discrete level. No particular effort, or care, was therefore
needed when implementing the free-surface condition in SEM for
the canonical cases considered here, since they all deal with a flat
free surface.

Two kinds of material heterogeneities can be accounted for in
SEM: intra-element, continuous variations approximated by their
projection on the high degree (typically N ∈ [4 − 6]) local poly-
nomial bases, and inter-element discontinuities, thank to the FEM
functional framework. Note that the representation of small-scale
variations by the local spectral element polynomial bases is intrinsi-
cally limited. Trying to represent localized variations, for example
material discontinuities, can lead to aliasing effects and/or Gibbs
oscillations just like in the traditional spectral methods (e.g. Boyd
2001). However, practical situations occur where discontinuities
exist but can hardly be represented at the discrete level due to geo-
metrical complexity in the design of hexahedral meshes (e.g. when
large variations of interface elevation occur on small spatial scales)
or due to prohibitive computational cost to respect the Courant–
Friedrichs–Lewy (CFL) stability condition (e.g. close to the val-
ley or basin edges). Some approximate mesh design strategies are
sometimes adopted in those cases. In these strategies, the element
boundaries do not follow the shape of the material interfaces (they
do not coincide with the interfaces). We may use acronym ‘NF’ (not
following) for these strategies. In the remainder of the paper, the
performance of some NF strategies is evaluated and compared to

Figure 11. Schematic representation (left: vertical cross-section, right: surface view) of the valley model used in the test cases 2D-sharp and 2D-smooth. The
bottom and total widths are BW = 3.5 km and TW = 5 km, respectively, and the maximum sediment thickness is about 205 m. The location of the source is
indicated by the double-couple in the left figure and by the beach ball in the right one. The triangles along the western line (WL) and eastern line (EL) indicate
the receiver positions where numerical predictions are further compared.
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the optimal strategy, referred to as ‘F’ strategy, in which the ele-
ment boundaries follow the interfaces (i.e. material interfaces never
intersect the elements). Note that the spectral element meshes con-
sidered here are always geometrically conforming, that is such that
neighbouring elements share either a corner or an entire edge or
face.

Two open-source codes implementing SEM have been used in
this study: specfem3D (Peter et al. 2011) and efispec (De Martin
2011). Both codes implement the P1 paraxial formulation of Stacey
(1988) at the absorbing boundaries. We always used a polynomial
order N = 5 and, away from the interfaces, we imposed the size
of the spectral elements to be smaller than or equal to the local
minimum S wavelength. The results obtained with the two codes
are strictly similar when using the same mesh of elements. In the
remainder of the paper, the results obtained with specfem3D (resp.
efispec) will be referred to as SEM1 (resp. SEM2).

4.2 FPSM

The FPSM combines the optimal accuracy of the global spectral
differential operators with the simplicity of the spatial discretiza-
tion using a structured rectangular grid. The peculiarity of FPSM
consists in the evaluation of the spatial derivatives by means of a
multiplication in the wavenumber domain. Time evolution is usually
solved using non spectral approaches, as, for example the 2nd-order
explicit finite-difference scheme used in this paper. The transition
from the spatial domain to the wavenumber domain, and back, is
performed by means of the fast Fourier transform. Thanks to the
Nyquist sampling theorem, FPSM works with a relatively coarse
spatial sampling (Fornberg 1987), which represents a valuable ad-
vantage when solving 3-D problems.

On the other hand, the nature of the global differential opera-
tors implies that possible numerical artifacts are spread across the
whole space domain. There are two common sources of numerical
errors. One is the discontinuity of the fields that are being dif-
ferentiated, which produces singularity in the calculated wavefield
(Gibbs phenomenon). The other is the representation of material
discontinuities (interfaces): since FPSM solves the heterogeneous
formulation of the equation of motion, artefacts may be due to the
staircase approximation interfaces with sharp impedance contrast.
The free-surface condition—a typical feature of models used for
earthquake ground motion simulations—can be seen as an extreme
case of a sharp material interface and therefore is particularly chal-
lenging for FPSM.

The FPSM implementation used in this paper (Klin et al. 2010)
tackles the aforementioned problems in the following way. The
occurrence of Gibbs phenomenon is significantly reduced using
the Fourier differential operators on staggered grids (Őzdenvar &
McMechan 1996). The staircase approximation of the material inter-
faces is avoided using the volume harmonic averaging of the elas-
tic moduli and volume arithmetic averaging of density proposed
by Moczo et al. (2002). The free-surface boundary condition—
discontinuity of displacement and vanishing traction at the free
surface—is solved by the following approach: (1) before applying
the differential operator a linear function is subtracted from the
displacement field in order to remove its discontinuity at the free
surface, and it is added back after differentiation is performed; (2)
a stress imaging technique accomplishes the vanishing of the stress
field. In order to sample adequately the surface wave wavefield,
which features higher vertical-component wavenumbers close to the
free surface, the vertical spatial sampling step is gradually squeezed

towards surface. Finally, the wavefield absorption at lateral and bot-
tom boundaries of the computational domain is performed with
the convolutional perfectly matching layer (CPML; Komatitsch &
Martin 2007).

A more comprehensive review of FPSM and related discussions
can be found in Klin et al. (2010) and Moczo et al. (2014).

4.3 3-D (2-4) Velocity–stress finite-difference scheme on an
arbitrary discontinuous staggered grid (FDM-S)

Here we very briefly describe the finite-difference methodology that
has been developed based on several partial approaches starting
from the introduction of the staggered-grid schemes into seismol-
ogy (Madariaga 1976; Virieux 1984, 1986) up to developing the
orthorhombic effective grid modules (Moczo et al. 2014). Because
the description of the methodology below is very concise, we refer
for a complete theory to the book by Moczo et al. (2014).

The scheme solves the strong differential form of the equa-
tion of motion and time derivative of Hooke’s law for the vis-
coelastic medium with rheology of the generalized Maxwell body.
The schemes have the same structure as standard velocity–stress
staggered-grid schemes which are 2nd-order accurate in time and
4th-order accurate in space. The accuracy of the scheme in the
heterogeneous medium is mainly determined by the way how a
smooth material heterogeneity and material interface are repre-
sented by the effective material grid parameters. Two approaches
are applied in this study. The first one has been presented by Moczo
et al. (2002). The effective grid density is evaluated as an integral
volume arithmetic average of density inside a grid cell centred at
the grid position of the corresponding particle velocity component.
The effective grid unrelaxed bulk and shear moduli are evaluated
as integral volume harmonic averages of moduli in respective grid
cells centred at grid positions of the stress-tensor components. The
integrals are evaluated numerically and the grid cell can contain a
material interface. In the second approach, the effective averaged
medium has, in general, an orthorhombic anisotropy. If a material
interface is parallel to a Cartesian coordinate plane, the averaged
medium is transversely isotropic. The transverse anisotropy is the
correct representation of a planar material interface consistent with
the boundary conditions in the long wavelength approximation (as
shown originally by Backus (1962) and discussed also by Moczo
et al. (2002)). For a detailed exposition see chapter 9 of the book
by Moczo et al. (2014). The free surface is simulated using the
AFDA technique (Kristek et al. 2002; Moczo et al. 2004). The
non-reflecting boundaries of the spatial grid are simulated by us-
ing PML. For efficient modelling of earthquake motion in surface
sedimentary structures a spatially discontinuous staggered grid is
used. The stable algorithm of the discontinuous grid (Kristek et al.
2010) enables one to use the ratio between the bottom coarser grid
and upper finer grid as large as 25. For the computer codes we re-
fer to http://www.nuquake.eu/FDSim (last accessed 16 January
2015).

4.4 3-D Velocity–stress collocated-grid finite-difference
method (FDM-C)

The FDM-C (Zhang & Chen 2006; Zhang et al. 2012) solves
the first-order hyperbolic velocity–stress elastodynamic equa-
tions using finite-difference approximations with all the wavefield
components and model parameters defined at the same grid point.
Having quantities collocated, the method is well suited to utilize
curvilinear grids for solving elastodynamic equations in curvilinear
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coordinates. This makes it suitable for implementing irregular free
surface. The collocated grid is also a natural choice to simulate seis-
mic waves in a general anisotropic medium. A simple application
of the central differences on the collocated grid to approximate the
first-order derivative would lead to odd-even decoupling problem
as a grid-to-grid oscillation in the simulation results. Either a spa-
tial filtering or artificial damping would be necessary to suppress
the non-physical grid-to-grid oscillations. The FDM-C in this pa-
per uses the DRP/opt MacCormack scheme (Hixon 1998) with a
7-point stencil for one derivative. Usually the accuracy of a 7-point
stencil can reach 6th order. However, in the DRP MacCormack
scheme, two points are sacrificed to achieve optimal dispersion ac-
curacy by the dispersion-relation preserving (DRP) methodology
(Tam & Webb 1993), which results in an optimized 4th-order accu-
racy in terms of dispersion error. To get minimal dissipation error,
DRP/opt MacCormack of (Hixon 1998) optimizes the coefficients
of the DRP MacCormack at 8 points per wavelength and higher.
In the DRP/opt MacCormack scheme, the central spatial difference
operator is split into forward and backward one-sided difference
operators, which are alternately used in the 4th-order Runge-Kutta
time marching schemes. The one-sided operators introduce inherent
dissipation, which can damp the spurious short-wavelength numer-

ical (non-physical) waves to avoid the odd-even decoupling. The
central difference is recovered when the forward and backward dif-
ferences are added together. As we can use different operators in
three dimensions, there are in total eight biased different operators,
and they are used sequentially in an 8-steps cycle to get minimal
error. More details can be found in Zhang & Chen (2006) and Zhang
et al. (2012). The free-surface boundary condition on curvilinear
grids is implemented by the traction-imaging method (Zhang &
Chen 2006; Zhang et al. 2012) which antisymmetrically images the
traction components to the ghost points and is an extension of the
stress-imaging technique for the flat free surface. For a discrete rep-
resentation of material heterogeneity, the effective media approach
by Moczo et al. (2002) is adopted. The density at a point is evalu-
ated as the volume arithmetic average whereas λ and μ at a point
are calculated as the volume harmonic averages. PML is used as
the absorbing technique surrounding the lateral and bottom bound-
aries. If the grid is rectangular in the absorbing layers, the auxiliary
differential equations implementation of the complex frequency-
shifted PML (ADE CFS-PML; Zhang & Shen 2010) is used. If the
grid is curvilinear in the absorbing zones, a multi-axial extension
(ADE CFS-MPML) towards stable simulations on curvilinear grids
(Zhang et al. 2014) is applied.

Figure 12. East–west component of ground velocity along the northern surface profile computed for the 1D-sharp case by 4 different methods: (a) FDM-S;
(b) FDM-C; (c) SEM2-F; (d) FPSM. HAR indicates the harmonic averaging of the elastic moduli. Each of the seismograms (plotted in red) is superimposed
on the reference solution computed with DWM (in black). The numbers to the right of each trace correspond to the goodness-of-fit scores in envelope (labelled
to as ‘am’) and phase (labelled to as ‘ph’) with respect to the reference solution. A perfect match corresponds to a score of 10.
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Figure 13. Same as Fig. 12 for the vertical component of ground velocity.

5 R E S U LT S F O R 1 - D G E O M E T RY

5.1 1-D layered model with sharp interfaces

Fig. 12 shows the EW component of ground velocity along the
northern surface profile (Fig. 5) computed for the 1D-sharp case by
the four methods: FDM-S, FDM-C, FPSM and SEM2-F. Note that
in FDM-S, FDM-C and FPSM calculations, the volume harmonic
averaging of the elastic moduli and volume arithmetic averaging
of mass density proposed by Moczo et al. (2002) is used to ap-
proximate the physical interfaces of the 1D-sharp model, and that
the SEM2-F calculations are performed following the F strategy,
that is imposing that the interfaces of the model coincide with the
spectral elements’ boundaries. In FDM-S and FDM-C, the grid
spacing is 5 m, which corresponds to a minimum of 10 gridpoints
per S wavelength at the surface. The horizontal grid spacing is 20 m
for FPSM and 10 m in average for SEM2-F at the surface (i.e. the
horizontal size of the surface spectral elements is 50 m and the
polynomial order is N = 5). The vertical grid spacing increases in
FPSM from 3 m at the surface to 100 m in the bedrock. In SEM2-F
it is set in average to 3.46 m in the first layer and to 14.5 m in
the second layer. The spectral element mesh is further coarsened
twice with depth using a three-to-one elementary brick (e.g. Peter
et al. 2011), yielding an average horizontal and vertical resolution
of 90 m in the bedrock. Each numerical solution is superimposed on
the reference one–computed with DWM as detailed in Section 3.1.1.

The goodness-of-fit (GOF) in amplitude and phase between the two
solutions are also shown. The GOF values were obtained as

G = 10 exp(−|M |),

where M represents the time-frequency misfit in amplitude or phase
evaluated for the time-frequency window [0 − 30] s × [0 − 4] Hz.
G attains values from 0 (no fit) to 10 (perfect fit); see Kristeková
et al. (2009) for details. As expected from the spatial resolution
used and given the fact that the analysed traces contain only body
waves, the level of agreement obtained in Fig. 12 is excellent
with amplitude GOF values well above 9 for all solutions, and
with only FPSM exhibiting non-optimal phase GOF values, slightly
below 8.

The same comparison for the vertical component of ground ve-
locity is shown in Fig. 13. Except for the SEM2-F calculations,
clear differences in phase and amplitude are now seen in all the pre-
dicted surface wave trains. Whereas for the solutions computed with
FDM-S and FPSM the phase error seems to increase with frequency,
it looks more uniformly distributed for the FDM-C solution. The
overall GOF scores are, however, similar for the three solutions.
They are even slightly higher for the FDM-C solution which, sur-
prisingly, shows a minimal phase error on the high-frequency Airy
phase of the fundamental Rayleigh mode. Note that the GOF values
decrease with epicentral distance as expected from the accumulation
of error during propagation.
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Figure 14. East–west (left-hand panel) and vertical (right-hand panel) components of ground velocity computed for the 1D-sharp case using SEM1-NF.

The excellent fit obtained for SEM2-F is intrinsically related to
the correct discrete representation of the interfaces in the 1D-sharp
model by the F strategy. In Fig. 14, we present the results obtained
with SEM1 using a NF strategy, where instead of squeezing one

element in the first layer, L1, two spectral elements of the same
vertical size (= 44.9 m) are used to describe the first two layers, L1

and L2. Note that only the first physical interface is approximated
in this modified mesh, the other two still coincide with elements’

Figure 15. East–west component of ground velocity along the northern surface profile for the 1D-sharp case computed with FDM-S using different grid
spacings and definitions of the effective media: (a) harmonic averaging, 10 m; (b) harmonic averaging, 5 m; (c) orthorhombic averaging, 10 m; (d) orthorhombic
averaging, 5 m.
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Figure 16. Same as Fig. 15 for the vertical component of ground velocity.

boundaries (i.e. the vertical size of the elements is further adapted
to the thickness of the L3 layer). The effect on the accuracy of the
resulting numerical solution is tremendous. Apart from the direct S
wave, all the other arrivals are affected by large phase and amplitude
errors: the high-frequency 1-D resonance occurs at a slightly lower
frequency (around 2.5 Hz instead of 2.7 Hz) and the surface wave
dispersion pattern is completely different. This is not a straightfor-
ward matter of the vertical spatial resolution in terms of the number
of nodes per wavelength, but rather a problem of how the disconti-
nuity in the material parameters is represented at the discrete level
by the local spectral polynomial bases: everything happens as if we
had computed an accurate solution in a wrong discrete model. Note
that some of the inaccurate late arrivals in the SEM1-NF solution
(e.g. around 20 s at 1 km epicentral distance) are due to weak re-
flections off the western (not perfectly absorbing) boundary of the
computational domain, which was not as distant as in the mesh used
in computation of the reference SEM2-F solution. Those spurious
arrivals, however, contribute only marginally to the misfit with the
reference solution.

The sensitivity of the surface wave dispersion properties on the
discrete implementation of the model in SEM was reported by
Capdeville & Marigo (2008) in the context of global seismology. It
can be recast under the general issue, faced by any grid-based nu-
merical method, of how to represent spatial variations of the elastic
parameters which are smaller than the size of the numerical grid cell
(the extreme case being that of a material discontinuity). The main

challenge is to ‘up-scale’ the medium, that is to design an effective
medium which realizes a physically consistent, low-pass filtering
of the original model. Several up-scaling procedures have been de-
rived in the last years: Moczo et al. (2002) proposed to use the
volume harmonic average of the elastic moduli and arithmetic av-
erage of the mass density in the vicinity of a material discontinuity;
Fichtner & Igel (2008) presented a non-linear minimization ap-
proach to design smooth models which preserve the phase ve-
locities of a few target Love and Rayleigh modes; more re-
cently Capdeville et al. (2010a,b) and Guillot et al. (2010)
introduced a general numerical procedure to derive a fully
anisotropic effective model using the framework of the homoge-
nization theory; Moczo et al. (2014) extended their 2002 formu-
lation to a more general effective medium with the orthorhombic
anisotropy.

In Figs 15 and 16, we illustrate the performance of this new
orthorhombic effective medium for numerical solutions for the
1D-sharp case computed with FDM-S. Note that because the inter-
faces are horizontal, the anisotropy simplifies to the vertical trans-
verse isotropy, that is, the effective medium reduces to the one pre-
dicted by Backus (1962). For the seismograms consisting of body
waves crossing the discontinuities (Fig. 15), the two approaches
are comparable, the accuracy being controlled by the resolution of
the grid rather than by the choice of the effective medium. The
advantage of using the orthorhombic approach is much clearly seen
in Fig. 16, which involves Rayleigh waves propagating parallel to the
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Figure 17. East–west component of ground velocity along the northern surface profile computed for the 1D-smooth case by four different methods:
(a) FDM-S; (b) FDM-C; (c) SEM2-F; (d) FPSM.

discontinuities: the anisotropic solution computed with a grid spac-
ing of 10 m (Fig. 16c) outperforms the isotropic solution obtained
with a grid spacing twice smaller (Fig. 16b), having inaccuracy
only in the high-frequency Airy phase of the fundamental Rayleigh
mode. Further reducing the grid spacing to 5 m in the anisotropic
solution (Fig. 16d) allows to reach the same level of accuracy as
with SEM2-F.

Note that the applied number of grid points per wavelength in the
1D-sharp model may not be sufficient in other (velocity) models for
obtaining the same level of accuracy.

5.2 1-D gradient layer model

The numerical solutions for the 1D-smooth case computed with the
four methods (FDM-S, FDM-C, FPSM and SEM2-F) are shown in
Fig. 17 (EW component) and Fig. 18 (vertical component). Com-
pared to the 1D-sharp case, the level of goodness-of-fit with respect
to the reference solution is systematically increased for both body
and surface waves.

Most interestingly, the solution obtained with SEM1-NF, in which
the mesh design follows the NF strategy, is also sufficiently accu-
rate, as shown in Fig. 19. This is related to the ability of the poly-
nomial bases used in the shallow spectral elements to represent the
1D-smooth velocity model, which consists of a gentle kink—the

S velocity gradients in layers L1 and L2 are 2.89 and 3.45 s−1, re-
spectively. The comparison of the FDM-S solutions obtained with
different effective medium implementations and grid spacings is
shown in Fig. 20. The same conclusion drawn for the body waves in
the 1D-sharp model, that numerical accuracy was mostly controlled
by the resolution of the grid rather than by the choice of the effective
medium, now applies to the entire simulated wavefield.

The comparison suggests that the material interface of the first
order (discontinuity of the first derivative only) does not produce
significant effective anisotropy.

6 R E S U LT S F O R 2 - D G E O M E T RY

We now consider more realistic canonical cases with a 2-D ge-
ometry. The aim of this section is to highlight how the discrete
representation of the model, in particular at valley edges, where
surface waves are generated, influences the accuracy of the numer-
ical prediction of earthquake ground motion.

6.1 2-D valley with sharp interfaces

We first consider the 2D-sharp model with geometry shown in
Fig. 11. The flat part corresponds to the three-layer-over-half-space
model 1D-sharp.
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Figure 18. Same as Fig. 17 for the vertical component of ground velocity.

Figure 19. East–west (left-hand panel) and vertical (right-hand panel) components of ground velocity for the 1D-smooth case computed with SEM1-NF.

Relying on the results for the 1D-sharp case, we consider as
a reference the solution computed with SEM2-F with the mesh
(shown in Fig. 21) designed following the F strategy. Because of
the deformation of the hexahedra close to the northern edge of the
valley, the distance between the grid points tends towards a very tiny
value, yielding an extremely severe CFL stability condition on the

time step. In such realistic situations, the F strategy can drastically
decrease the computational efficiency of SEM. In the remainder
of the paper, some alternative strategies are presented and their
efficiency is discussed.

The seismograms of the SEM2-F solution are shown in Fig. 22
for two horizontal components along two different surface profiles.

 by guest on February 11, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 



104 E. Chaljub et al.

Figure 20. Vertical component of ground velocity along the northern surface profile for the 1D-smooth case computed with FDM-S using different grid
spacings and definitions of the effective media: (a) harmonic averaging, 10 m; (b) harmonic averaging, 5 m; (c) orthorhombic averaging, 10 m; (d) orthorhombic
averaging, 5 m.

Figure 21. Spectral element mesh, designed following the F-strategy, used to compute a reference solution of the 2D-sharp case. The mesh consists of a 2-D
section of unstructured quadrilaterals which is further ‘sweeped’ along the direction transverse to the valley in order to define hexahedra. The mesh is further
coarsened in the horizontal and vertical directions, from the orange ‘shoe-box’ intermediate region to the outside green region.

Because the model has a 2-D geometry, the left seismic section is
dominated by the in-plane component of motion corresponding to
a pseudo-2-D P–SV case (the wavefield would be fully 2-D if it was
excited by a line of sources parallel to the axis of the valley) and the
right section by the out-of-plane component of motion correspond-
ing to a pseudo-2-D SH case. A clear asymmetry in the excitation
of surface waves is observed between the edges of the valley. At the
(northern) edge with the gentle slope, very energetic and strongly
dispersed Rayleigh and Love surface waves are generated, whereas

the surface wave trains generated at the vertical (southern) edge are
hardly seen. The red lines indicate the seismic traces that are used
as reference for comparing with the other numerical predictions.
They correspond to receivers located 1 km away from the edges of
the valley.

Fig. 23 shows the horizontal in-plane component of the ground
motion computed at the northern receiver by FDM-S, FDM-C,
FPSM and SEM1-BE. The numerical solutions were computed us-
ing the same spatial resolution as for the 1D-sharp case, except for
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Figure 22. Seismic sections of the north–south (left-hand panel) and east–west (right-hand panel) components of ground velocity along the western (left-hand
panel) and eastern (right-hand panel) profiles (Fig. 11) computed for the 2D-sharp case with SEM2-F. The distance is measured from the centre of the valley
and increases towards north. The left (resp. right) panel shows a strongly dispersed Rayleigh (resp. Love) wave train excited at the northern edge. Red traces
correspond to locations where the different numerical predictions are further compared (see text).

Figure 23. North–south component of ground velocity at a receiver along the western surface profile of Fig. 11, 1 km away from the northern edge, computed
for the 2D-sharp case by four teams using (a) FDM-S, (b) FPSM, (c) FDM-Cand (d) SEM1-BE. The SEM2-F solution is taken as a reference and is plotted
in black. The level of agreement between each solution and the reference is quantified by the time-frequency goodness-of-fit (GOF) in amplitude (top panel)
and phase (bottom panel). The colour scale indicates the level of GOF, from 7 to 10 (perfect fit). The average GOF is indicated on top of the time-frequency
subplots.
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Figure 24. Same as Fig. 23 at a receiver which is 1 km away from the southern edge of the valley.

FPSM where the vertical grid spacing varies from 7 m (instead of
3 m) at the surface to 84 m (instead of 100 m) in the bedrock. In the
SEM1-BE solution, the mesh is designed in the ‘best-effort’ (BE)
mode, which is a compromise between the F and NF strategies:
the boundaries of the elements follow the material interfaces only
when these are horizontal or vertical. This results in a ‘shoebox’
high-resolution mesh coinciding at the southern edge with the mesh
designed following the F strategy, but with elements intersected
by the material interfaces at the northern edge. Note that the BE
strategy makes it possible to increase the time step compared to
the F strategy, and consequently decrease the total CPU time of the
calculation, by a factor p � 13.

Each prediction in Fig. 23 is superimposed on the SEM2-F refer-
ence, and the time-frequency GOF (in amplitude and in phase) with
respect to the reference are shown as colour images. The agreement
with the reference is very good, even excellent in the first arrival,
around 2 s. Some discrepancies appear around 3 s, in the Rayleigh
waves generated at the nearby northern edge, for the FPSM solution
and more noticeably for the SEM1-BE solution which, among all
solutions, is the one that makes the crudest approximation of the
northern edge geometry. The level of GOF generally decreases with
time, except for the SEM1-BE solution because the BE strategy used
to design the mesh is optimal to accurately model the generation of
Rayleigh waves at the southern edge and their propagation along
the flat part of the valley.

In Fig. 24, we compare the same horizontal in-plane component
of ground motion but at the southern receiver. The agreement is very
good for the first 10 s of the seismogram which consists of body and
Rayleigh waves generated at the vertical southern edge. The level
of agreement considerably decreases for later arrivals consisting
of Rayleigh waves excited at the northern edge of the valley. The
best fit is obtained with the SEM1-BE solution, suggesting that the
error in the numerical modelling of the surface wave generation
at the northern edge is not increased by the propagation of the
surface waves towards the centre of the valley. For all the other
solutions, the numerical error accumulates during propagation of
the surface waves along the horizontal interfaces—as in the 1D-
sharp case. Note that the phase of the FDM-C solution seems again
optimally accurate for the most energetic Rayleigh surface wave
arrivals around 11 and 17 s, which probably correspond to Airy
phases.

In Fig. 25 we compare the horizontal in-plane component at the
southern receiver computed with FDM-S for different resolutions
and definitions of the effective medium. As in the 1D-sharp case,
the advantage of using the orthorhombic effective medium is clearly
seen on the late Rayleigh waves generated at the northern edge:
the GOF levels for the anisotropic solution computed with 10 m
grid spacing (Fig. 25c) are much higher than for the 5 m isotropic
solution (Fig. 25b). Halving the size of the grid in the anisotropic
solution (Fig. 25d) yields perfect match with the SEM2-F solution,
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Figure 25. Same as Fig. 24 for solutions computed with FDM-S using different grid spacings and definitions of the effective medium: (a) harmonic averaging,
10 m; (b) harmonic averaging, 5 m; (c) orthorhombic averaging, 10 m; (d) orthorhombic averaging, 5 m.

Figure 26. Seismic sections of the north–south (left-hand panel) and east–west (right-hand panel) components of ground velocity along the western (left-hand
panel) and eastern (right-hand panel) profiles (Fig. 11) computed with SEM2-BE for the 2D-smooth case. The distance is measured from the centre of the valley
and increases towards north. The left (resp. right) panel shows strong Rayleigh (resp. Love) wave trains excited at the northern edge. Red traces correspond to
locations where the different numerical predictions are further compared.
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Figure 27. North–south component of ground velocity at receivers along the western surface profile of Fig. 11, 1 km away from the northern (left-hand
panel) or southern (right-hand panel) edge, computed for the 2D-smooth case by three teams using (a–b) FDM-S, (c–d) FPSM, (e–f) FDM-C. The SEM2-BE
solution is taken as a reference and is plotted in black. The level of agreement between each solution and the reference is quantified by the time-frequency
goodness-of-fit (GOF) in amplitude (top panel) and phase (bottom panel). The colour scale indicates the level of GOF, from 7 to 10 (perfect fit). The average
GOF is indicated on top of the time-frequency subplots.

which provides an a posteriori justification for considering the latter
a reference.

The out-of-plane component (which mainly consists of SH
and Love waves) computed by FDM-S, FDM-C, FPSM and

SEM1-BE at the northern and southern receivers are shown in
Figs S1 and S2, respectively, and the FDM-S solutions computed
with different grid spacings and implementations of the effec-
tive medium are shown in Fig. S3. The same conclusions as for
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the in-plane component can be drawn and are thus not repeated
here.

6.2 2-D valley with gradient in sediments

Given the considerable cost to compute the solution of the 2D-
sharp case with SEM2-F, we consider instead the SEM2-BE solution
computed with the BE strategy as a reference. The seismograms of
the horizontal ground velocity, computed with SEM2-BE along the
two surface profiles of Fig. 11, are shown in Fig. 26. As for the
2D-sharp case, we observe a strong asymmetry in the spontaneous
generation of surfaces waves following the slope of the valley edge.
Note also that the surface waves, in particular Love waves, are
less dispersed than in the 2D-sharp case (compare with Fig. 22), as
expected from the analysis of the 1D-sharp and 1D-smooth solutions
(Figs 8 and 10).

Fig. 27 shows the horizontal component of the in-plane compo-
nent of the ground velocity computed at the northern and southern
receivers by FDM-S, FDM-C and FPSM, and their comparison with
the reference SEM2-BE solution. Note the excellent level of agree-
ment in the early part of the signals, including the Rayleigh waves
recorded at the northern receiver, and the overall good fit obtained
for the late Rayleigh waves (generated at the northern valley edge)
at the southern receiver.

The effect of varying the grid resolution and the definition of
the effective medium in the FDM-S solution is shown in Fig. S4.
Consistently with the analysis of the 1D-smooth results, we observe
only a slight increase of GOF with respect to the SEM2-BE solu-
tion when switching from the isotropic to the orthorhombic effective
medium, the accuracy being mainly controlled by the spatial reso-
lution of the grid. Note also that the SEM2-BE solution, although
not optimal, can be reasonably considered a reference. The tiny re-
maining difference between the 5 m orthorhombic FDM-S solution
and the SEM2-BE solution can be partly attributed to the fact that
the latter is not exact.

For the sake of completeness, we show in Fig. S5 the compari-
son of the horizontal out-of-plane component at the northern and
southern receivers. Similar conclusions can be drawn as for the in-
plane component: the overall level of agreement between solutions
is very good, even for some of the late Love wave arrivals. Finally,
in Fig. S6 we compare the predictions by FDM-S at the southern
receiver for different grid spacings and definitions of the effective
medium. We conclude again that due to the smoothness of the veloc-
ity model, the solution for the orthorhombic effective medium only
slightly differs from that obtained using the harmonic averaging
of moduli.

7 C O N C LU S I O N

In order to better understand the origin of differences between
3-D numerical predictions of earthquake ground motion in realistic
models of the Mygdonian basin, we have designed four canoni-
cal models and have compared several numerical solutions of the
four cases for frequencies up to 4 Hz. The solutions were computed
with the FPSM, the Legendre SEM and two formulations of the
finite-difference method (FDM-S and FDM-C).

The comparisons show that both the accuracy of individual solu-
tions and level of agreement between solutions vary with the type of
seismic waves and depend on the smoothness of the velocity model.
The level of accuracy is high for the body waves in the numerical
solutions for all the models considered, whereas it systematically
decreases in the sharp models for the surface waves. This is also

observed for the realistic models of the Mygdonian basin (Maufroy
et al. 2014).

The accuracy of the numerical solutions for the sharp models
is shown to depend strongly on the discrete representation of the
material interfaces (at which material parameters change discontin-
uously) inside the sediments. We have illustrated the dual nature
of the implementation of interfaces in SEM: solutions computed
with a mesh of elements whose boundaries follow the interfaces
(F strategy) are optimally accurate, whereas solutions computed
by approximating the discontinuities with the polynomial basis lo-
cal to the elements can be extremely inaccurate for surface waves
propagating along the interfaces. For all the numerical methods
considered, except SEM if the F strategy can be applied, a proper
implementation of interfaces requires the definition of an effective
medium consistent with the interface boundary conditions. We have
tested the efficiency of two explicit effective media: the isotropic
volume harmonic and arithmetic averaging of elastic moduli and
densities, respectively (Moczo et al. 2002), and its generalization to
an orthorhombic effective medium (Moczo et al. 2014). Our results
show that using the isotropic effective medium yields numerical
solutions of limited accuracy for surface waves. They also indicate
that reaching an acceptable accuracy by solely decreasing the size
of the numerical grid may be extremely computationally expensive.
Using instead the orthorhombic effective medium is shown to sig-
nificantly improve the accuracy of the solutions and to preserve the
computational efficiency of the methods.

The conclusions drawn from the analysis of the results of
the canonical cases greatly help to explain the origin of the
differences between numerical predictions of ground motion in
realistic models of the Mygdonian basin (Maufroy et al. 2014).
The persistent misfit between even the most similar solutions can
be fairly attributed to the differences in the discrete representa-
tion of the material interfaces in sediments: The SEM solution was
computed following the best-effort strategy in which the element
boundaries do not follow the interfaces for depths smaller than a
threshold value (the choice of which is the result of a compromise
between accuracy and computational efficiency); the FDM-S and
FPSM solutions used an isotropic effective medium with insuffi-
ciently small grid spacing (10 m for FDM-S and 7 m for FPSM,
respectively).

These results have important implications regarding the accuracy
of numerical prediction of earthquake ground motion in sedimen-
tary basins, in particular with respect to local surface waves which
play a critical role in the lengthening of ground motion duration and
local amplifications at the basins’ edges (e.g. Kawase 1996; Hallier
et al. 2008). An improper discrete representation of the interfaces
can cause considerably inaccurate numerical modelling of surface
waves. Therefore, preparation of the computational model needs
special care in this respect. Homogeneous layers within sediments
should not be artificially introduced.

Whenever small-scale, or localized, strong variations of the mate-
rial parameters have to be considered in the sediments, for example
based on firm geological, geotechnical or geophysical evidence, an
effective medium relevant for the chosen frequency range should be
used. Depending on the degree of knowledge of the model hetero-
geneity and on the desired level of accuracy of the predictions, the
effective media can be defined by procedures of increasing com-
plexity. In the common situation where the level of uncertainty in
the model (including the presence of interfaces) is large, a simple
volume arithmetic average of the densities and slownesses, or a vol-
ume arithmetic average of the densities and harmonic average of
the elastic moduli, should be used to provide an isotropic effective
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medium ready for numerical simulations. In all other situations,
an upscaling procedure should be adopted to design an anisotropic
effective medium, either by solving a homogenization problem as
suggested by Guillot et al. (2010) and Capdeville et al. (2010b), or
by following the explicit approach proposed by Moczo et al. (2014)
based on the orthorhombic averaging.

Finally, our results confirm that there is no single numerical-
modelling method that can be considered the best—in terms of
accuracy and computational efficiency—for all structure-wavefield
configurations. We recommend that any numerical method and code
that is intended to be applied for numerical prediction of earth-
quake ground motion should be verified through stringent mod-
els that would make it possible to test the most important aspects
of accuracy. We believe that the canonical cases presented in this
paper, and made freely available to the seismological community
(http://www.sismowine.org, last accessed 16 January 2015),
can serve this purpose.
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Additional Supporting Information may be found in the online ver-
sion of this article:

Figure S1. East–west component of ground velocity at a receiver
along the eastern surface profile of Fig. 11, 1 km away from the
northern edge, computed for the 2D-sharp case by (a) FDM-S, (b)
FPSM, (c) FDM-C, (d) SEM1-BE. The SEM2-F solution is taken as
a reference and is plotted in black. The level of agreement between
each solution and the reference is quantified by the time-frequency
goodness-of-fit (GOF) in amplitude (top panel) and phase (bottom
panel). The colour scale indicates the level of GOF, from 7 to 10
(perfect fit). The average GOF is indicated on top of the time-
frequency subplots.
Figure S2. Same as Fig. S1 at a receiver 1 km away from the
southern edge of the basin.
Figure S3. Same as Fig. S2 for solutions computed with FDM-S us-
ing different grid spacings and definitions of the effective medium:
(a) harmonic averaging, 10 m; (b) harmonic averaging, 5 m; (c)
orthorhombic averaging, 10 m; (d) orthorhombic averaging, 5 m.
Figure S4. North–south component of ground velocity at the south-
ern receiver for solutions computed with FDM-S using different
grid spacings and definitions of the effective medium: (a) harmonic
averaging, 10 m; (b) harmonic averaging, 5 m; (c) orthorhombic
averaging, 10 m; (d) orthorhombic averaging, 5 m. The level of
agreement between each solution and the reference is quantified by
the time-frequency goodness-of-fit (GOF) in amplitude (top panel)
and phase (bottom panel). The colour scale indicates the level of
GOF, from 7 to 10 (perfect fit). The average GOF is indicated on
top of the time-frequency subplots.
Figure S5. Same as Fig. 27 for the east–west component of ground
velocity at receivers along the eastern surface profile of Fig. 11,
1 km away from the northern (left-hand panel) or southern (right-
hand panel) edge.
Figure S6. Same as Fig. S4 for the east–west component of ground
velocity at the southern receiver. (http://gji.oxfordjournals.org/
lookup/suppl/doi:10.1093/gji/ggu472/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
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Multimethod Characterization of the French-Pyrenean Valley

of Bagnères-de-Bigorre for Seismic-Hazard Evaluation:

Observations and Models

by Annie Souriau, Emmanuel Chaljub, Cécile Cornou, Ludovic Margerin, Marie Calvet,
Julie Maury, Marc Wathelet, Franck Grimaud, Christian Ponsolles, Catherine Pequegnat,

Mickaël Langlais, and Philippe Guéguen

Abstract A narrow rectilinear valley in the French Pyrenees, affected in the past by
damaging earthquakes, has been chosen as a test site for soil response characteriza-
tion. The main purpose of this initiative was to compare experimental and numerical
approaches. A temporary network of 10 stations has been deployed along and across
the valley during two years; parallel various experiments have been conducted, in
particular ambient noise recording, and seismic profiles with active sources for struc-
ture determination at the 10 sites. Classical observables have been measured for site
amplification evaluation, such as spectral ratios of horizontal or vertical motions
between site and reference stations using direct S waves and S coda, and spectral
ratios between horizontal and vertical (H/V) motions at single stations using noise
and S-coda records. Vertical shear-velocity profiles at the stations have first been
obtained from a joint inversion of Rayleigh wave dispersion curves and ellipticity.
They have subsequently been used to model the H/V spectral ratios of noise data from
synthetic seismograms, the H/V ratio of S-coda waves based on equipartition theory,
and the 3D seismic response of the basin using the spectral element method. General
good agreement is found between simulations and observations. The 3D simulation
reveals that topography has a much lower contribution to site effects than sedimentary
filling, except at the narrow ridge crests. We find clear evidence of a basin edge effect,
with an increase of the amplitude of ground motion at some distance from the edge
inside the basin and a decrease immediately at the slope foot.

Online Material: Comparison of H=Href ratios, and maps of simulated PGVs and
PGDs.

Introduction

France is considered to be a country of moderate seis-
micity, if we exclude the French Antilles, where several
M > 6 events occurred during the last decade. At the histor-
ical timescale, however, the metropolitan territory has
experienced strong destructive events causing fatalities, in
particular in the Alps, in the Rhine graben, on the French
Riviera near Nice, and in the Pyrenees. If similar events were
to occur today, they would induce dramatic situations from
both human and economical points of view. For this reason,
the French government has devoted special effort to evaluate
and mitigate seismic risk in both metropolitan territory
and the Antilles, and to develop educational programs con-
cerning seismic risk. A six-year Earthquake Plan has been
decided by the Ministry of Ecology for the period 2005–

2010. In parallel, three urban centers have been selected as
pilot sites by the French Accelerometric Network for devel-
oping instrumentation and methods for seismic-hazard
evaluation: the city of Nice, built on complex geological
structures bordering the Mediterranean (Courboulex et al.,
2007; Bertrand et al., 2007); the city of Grenoble, located
at the convergence of two deep alpine valleys (LeBrun et al.,
2001; Cornou et al., 2003; Guéguen et al., 2007); and the
two cities of Lourdes and Bagnères-de-Bigorre in the central
Pyrenees (Dubos et al., 2003; Souriau et al., 2007). These
cities have either a dense permanent population or important
sites for tourism.

Wepresent the results obtained atBagnères-de-Bigorre in
the central Pyrenees. The choice of this sitewas firstmotivated
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by its proximity to the seismic sources, with a significant seis-
micity located less than 20 kmaway from the city.On the other
hand, the Bagnères Valley is nearly rectilinear, with a much
simpler geometry than that of the nearby city of Lourdes,
where several experiments had been previously conducted
(Dubos et al., 2003; Souriau et al., 2007). These conditions
are favorable to test different approaches of seismic-hazard
evaluation, based both on field experiments and on numerical
simulations, and to evaluate the performances and limitations
of the different methods.

For this purpose, a variety of experiments have been
conducted. In addition to the permanent accelerometric
observatory PYBB, a temporary network of 10 accelerometric
stations has been deployed along and across the valley. The
network operated during two years, thereby providing a
database of about 100 events with magnitudes ranging from
2.5 to 5.0. The data have been processed using classical meth-
ods such as H=Href and V=Vref (spectral ratio between the
horizontal or vertical signals recorded at one site and those
recorded at a reference station on rock), and H/V (ratio of
horizontal-to-vertical signals), which give an estimate of the
soil response to seismic excitation. In order to model the
observations, the structure beneath the stations has been char-
acterized from active surface wave methods. Based on the
obtained 1D-velocity profiles, numerical simulations of the
3D response of thevalley to various kinds of seismic excitation
have been performed and compared with the observations.

After a short description of the geological context, we
present a description of the experimental set-up and the data
processing. The various experimental approaches to the
evaluation of the site response are examined and discussed.
The results of 3D numerical simulations are used to elucidate
the role of topography and surface heterogeneity in observed
amplifications. Finally, we discuss the lessons that may be
drawn from these various results, not only for the seismic risk
in the Bagnères Valley, but also, from a general point of view,
for the performances and limitations of the different experi-
mental and numerical methods used.

Geological and Tectonic Context

The Pyrenees are an elongated range of mountains
extending about 400 km from the Atlantic to the Mediterra-
nean, resulting from the convergence of the Iberian and
Eurasian plates during the last 65 m.y., after a rifting episode
that opened a shallow sea between the two plates (Chouk-
roune, 1992). The limit between the two plates, the North
Pyrenean fault, is located at the northern foot of the range
on the French side. It coincides with a sharp Moho jump,
the Iberian crust being up to 20 km thicker than the Eurasian
one in the central Pyrenees (Hirn et al., 1980; ECORS
Pyrenees Team, 1988). The paleo-rift remains as a narrow
sedimentary zone north of the North Pyrenean fault (the
North Pyrenean zone). South of the North Pyrenean fault,
the Paleozoic axial zone contains the highest summits, which
reach a 3400 m height in the central part of the range.

The seismic activity is moderate, with about 600 events
located each year. It exhibits a general east–west trend, with a
greater occurrence of events in the western and central
Pyrenees and the presence of several clusters, one of them
being located south of Bagnères (Fig. 1). On average only
one or two events with M ≥ 5 occur every 10 years (Souriau
and Pauchet, 1998; Dubos et al., 2004; Rigo et al., 2005;
Sylvander et al., 2008).

The historical seismicity, well-documented back to the
fourteenth century (Lambert et al., 1996), reveals a maxi-
mum activity in the central part of the range on the French
side (Fig. 1), with about 25 events of intensity larger than VII
since the beginning of the seventeenth century (in the inten-
sity scale of Medvedev, Sponheuer, and Karnik). Parts of the
cities of Lourdes and Bagnères-de-Bigorre were destroyed in
1660 by an event of intensity IX that killed 30 people 17 km
southeast of Lourdes and 13 km southwest of Bagnères. Its
magnitude is estimated at 6.0–6.1 (Levret et al., 1994). Two
other events caused severe damage to these cities in 1750
(intensity VIII) and 1854 (intensity VII).

In a narrow flat valley in the North Pyrenean zone,
Bagnères stretches along the south-southeast–north-
northwest direction at an altitude of about 500meters (Fig. 2a).
The city is located along the Adour River, which runs to the
north-northwest. The Bagnères Valley is filled with fluvial
deposits, but imprints of the Quaternary glaciations are
visible on the border of the valley. During the Riss episode,
the limit of the glaciers was about 3 km north of Bagnères,
whereas the Würm glaciation stopped more uphill, 5 km
south of the city (Alimen, 1964). Therefore, glacial deposits
may be present beneath the fluvial deposits. Drillings per-
formed by theBureau deRecherchesGéologiques etMinières
in the valley detected blocks of glacial origin in the southern
part of the valley only, and sand and pebble at many places;
unfortunately, these drillings do not sample depths larger than
26 m and never reach the bedrock. Bagnères is built at a loca-
tion where the valley broadens and intercepts a wide crest
stretching to the northeast with a road accessing the valley.

Figure 1. Map of central Pyrenees, with instrumental and his-
torical seismicity, and the location of the pilot site at Bagnères-de-
Bigorre. NPF denotes the North Pyrenean fault, the boundary of the
Iberian and Eurasian plates.
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This crest is covered with Miocene–Pliocene clay and rises
150 m above the valley (Fig. 2b). It is interpreted as a paleo-
topography preserved between two basins that were affected
by a vigorous quaternary erosion (Babault et al., 2005). West
of the Adour Valley the mountain rises steeply to a height of
800–1000 m (Fig. 2a). The complex geological nature of the
rocks of these mountains, with numerous east–west oriented
faults, reflects the tormented history of the structures along the
North Pyrenean fault (Fig. 2b).

Bagnères is a small city of 8000 permanent inhabitants,
but it is an important tourist center with thermalism, moun-
tain activities, and hotel business induced by the proximity of
the pilgrimage city of Lourdes and the Pic-du-Midi astro-
nomical observatory. It also has some industrial activities

(electronics, high precision mechanics, cable factory, railway
industry, aeronautics). This economical context and the high
historical seismicity were additional reasons to choose this
city as a pilot site for seismic risk evaluation, an initiative
supported by the French Accelerometric Network.

The Temporary Network

Description of the Network and Data

A network of 10 accelerometers has been deployed in
Bagnères from November 2006 to November 2008 (Table 1),
in addition to the permanent station PYBB of the Réseau
Accélérométrique Permanent (RAP; Pequegnat et al., 2008).
Each station includes a three-component accelerometer

Figure 2. (a) Topographic map of the Adour Valley (from Institut Géographique National), with the location of the accelerometric
stations (red dots); (b) geological map of the Adour Valley with the city of Bagnères-de-Bigorre (Azambre et al., 1989). In (a) and
(b), the box delineates Fig. 2c; (c) topographic map of the valley, the location of the 10 temporary accelerometric stations, and the permanent
accelerometric observatory PYBB. Geological map caption in (b): (1) Paleozoic Ordovician (schist and sandstone), (2) Upper Trias (marls
and limestone), (3) Lias (breccias), (4) Dogger and Malm (dolomite, breccias, limestone), (5) Lower Albian (limestone, calcarenites),
(6) Mesozoic breccias with granite and gneiss elements, (7) Albian and Cenomanian black flysch, (8) Upper Cretaceous schistous marls,
(9) Miocene and Pliocene clay with pebbles, (10) Quaternary fluviatile sediments, (11) Migmatites, (12) Ophites, c- main erosion fans.
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Episensor ES-T from Kinemetrics and a Agecodagis Titan3
data logger with a sampling rate of 125 Hz. The recording is
continuous for the temporary stations and triggered for the
permanent station PYBB, based on a STA/LTA algorithm.
Seven of the temporary stations are aligned across the valley
(Fig. 2c), with two stations, BBMU and BBCM, at the edge
of the valley. The mean distance between these stations is
about 500 m. The three remaining stations are set up along
the valley axis. Three stations are installed on rock: BBAR,
BBMU, PYBB; the other ones are installed on soils.

Most of the stations are located on the floor inside small
size buildings of one to three stories or inside individual
houses; the resonance frequency of these buildings may be
typically of the order of 10 Hz or more (Goel and Chopra,
1998). Only BBAR and BBCM are located in more complex
buildings. The frequencies of interest for soil response range
from 0.1 to 20 Hz. Hence, the high-frequency spectrum may
possibly be perturbed by the resonance of the buildings. This
will be clarified later with the aid of horizontal-to-vertical
(H/V) ratio measurements. On the other hand, no high build-
ing can be found in the vicinity of our stations, the vibrations
of which could generate a signal perturbing our measure-
ments (Guéguen et al., 2000; Castellaro and Mulargia,
2010). The permanent accelerometer observatory PYBB is
installed inside a historical seismological observatory on a
pillar that is anchored to the rock and decoupled from the
nearby ground, as was usual practice in the early twentieth
century. The instrument and sampling rate are the same as for
the temporary network.

The earthquakes recorded by the temporary network are
extracted on the basis of the catalog provided by the Seismic
Survey Service of the Pyrenees. The catalog includes events
with magnitudes as low as 1.0. The accelerometric records
are validated and distributed by the Réseau Accélérométri-
que Permanent (RAP) in Grenoble. All data are high quality,
except the north component at the southernmost station
BBAS until May 2008, where technical problems have
been a posteriori detected. Figure 3 (black traces) shows
an example of accelerometric records for an M 4:3 event
located 13 km to the west-southwest of Bagnères. These

records reveal important variations in the amplitudes and
frequency content of the signals, depending on the location
of the station. The stations in the valley (BBCA, BBFI,
BBAS) recorded a large amplitude, high-frequency signal,

Table 1
Stations Used

Code Station Location Latitude (°N)* Longitude (°E)* Altitude (m)

BBAR Hospital (Arbizon) 43.0609 0.1431 630
BBMU Salies Museum 43.0627 0.1462 550
BBCA School (Carnot) 43.0638 0.1474 550
BBGA Social center (Gambetta) 43.0678 0.1516 545
BBBV Vacation center (Bonvouloir) 43.0688 0.1536 550
BBCM Senior center (Castelmouly) 43.0720 0.1588 555
BBHC Private house (Haut-de-la-Côte) 43.0786 0.1633 625
BBLL Private house (Lotissement de Laître) 43.0773 0.1426 545
BBFI Centre Laurent Fignon hotel 43.0558 0.1575 565
BBAS Private house (Asté) 43.0471 0.1615 600
PYBB Bagnères Observatory 43.0586 0.1489 560

*Coordinates in the WGS84 system.

Figure 3. Example of accelerometric records (in black) for the
15 November 2007 event of magnitude 4.3 located 13 km to the
west-southwest of Bagnères (east component). Station codes refer
to Figure 2c. Ground velocity is plotted in gray to make the low
frequencies more apparent. Note the strong variations in amplitude,
frequency content, and coda length.
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whereas the amplitude is low at the foot of the mountain
(BBMU). The signals at the stations on the flank of the valley
(BBAR, BBHC) have an important low frequency content
with a long coda, which appears still more prominent when
velocity signals are considered (Fig. 3, gray traces). Site
effects are thus very clear from these records, although it
is not possible at this stage to know what are the respective
contributions of topography and sedimentary filling.

Characterization of Soil Structure

A good knowledge of the structure beneath the stations
is essential for the interpretation of experimental results and
the design of numerical models. Active seismic measure-
ments, such as multichannel analyses of surface waves
(MASW; Park et al., 1999) were performed a few tens of
meters away from the temporary sites. The experiment con-
sisted in deploying linear profiles from 34.5 to 92 meters in
length (Table 2) equipped with 24 Mark Products 4.5 Hz
vertical geophones. The waves were generated with a ham-
mer blow on a metallic plate at various offsets from the last
geophones in both directions; this offset ranged from one to
several times the geophone interspacing. Rayleigh waves
dispersion curves for the fundamental and higher modes
obtained for each shot points were then processed to get aver-
age phase velocities with their confidence level (one standard
deviation). Table 2 summarizes the minimum and maximum
measured frequencies and wavelengths at each site. Because
very inconsistent phase velocities were obtained for different
shot points at BBCM, this site has been discarded.

The retrieval of the vertical profiles of shear-wave veloc-
ity is performed in two steps. First, fundamental and higher
mode Rayleigh waves are inverted using the conditional
neighborhood algorithm (Wathelet, 2008), as implemented
in the Geopsy package (see Data and Resources). Model
parameterization consisted of two or three uniform layers
overlaying a half-space, the bottom depth of each layer being
defined by a geometrical progression based on the wave-
length range, namely from half the minimum measured
wavelength to half the maximum measured wavelength. For
each site, 20,000 velocity models have been generated. From

this model ensemble, we randomly extracted 1000 models
having a misfit of 1. The misfit m is defined according to
the concept of acceptable solution (Lomax and Snieder,
1994); it has the value m � 1when the calculated dispersion
curve is completely inside the uncertainty bounds, and a
greater value outside. This allowed us to obtain an ensemble
of statistically acceptable models explaining the data within
their uncertainty bounds. Superficial shear-wave velocities
are varying from site to site (Fig. 4a). At most sites, however,
a velocity contrast is detected within the first 10 to 20 m
below the surface. This result is consistent with the electri-
cal and gravimeteric prospecting (Perrouty, 2008), which
revealed a thickness of quaternary sediments of about 15–
20 m close to BBAS, 25–30 m close to BBFI, and about 42 m
close to BBLL.

Deriving the velocity structure at larger depth, especially
down to bedrock depth, would require larger aperture acqui-
sition based on active techniques (MASW) or passive tech-
niques such as the frequency-wavenumber (f-k) method (Ca-
pon, 1969) or the spatial autocorrelation (SPAC) method
(Aki, 1957). Such deployments were not planed in the frame-
work of the present project. However, joint inversion of dis-
persion and H/V curves has shown its ability to better
constrain shear-wave velocity especially at large depths
(Fäh et al., 2001; Scherbaum et al., 2003; Parolai et al.,
2005; Arai and Tokimatsu, 2005), with a priori assumptions
on the energy partition of Rayleigh and Love waves in the
noise wave field, or on the ratio between horizontal and ver-
tical loading forces. In order to avoid such prior assumptions,
the ellipticity of Rayleigh waves has been measured directly
by applying a time-frequency analysis with continuous wa-
velet transform to the noise wave field (Fäh et al., 2009; Ho-
biger, 2011). This technique allows us to identify P-SV
wavelets in the signal, and ellipticity is estimated by comput-
ing the spectral ratio from these wavelets only. In general,
reliable measurements of the ellipticity are obtained for the
right flank of the ellipticity peak, which carries the most im-
portant information on the velocity structure in the intermedi-
ate to large depth range (Fäh et al., 2009). Ellipticites were
obtained at frequencies lower than those of dispersion curves
(Table 2), allowing us to extend the shear-wave velocity

Table 2
MASW Profile Characteristics

Profile
Length (m)

Minimum
Wavelength (m)

Maximum
Wavelength (m)

Minimim
Frequency (Hz)

Maximum
Frequency (Hz)

Ellipticity Frequency
Range (Hz)

BBFI 69 9.6 60 8.9 29.5 1.4–1.8
PYBB 57.5 3.6 55.3 15.1 44.9 10.7–14.2
BBAR 69 3.4 33.7 13.1 59 6.3–10.3
BBLL 92 5.7 45.3 12.9 49.2 1.4–1.7
BBGA 69 6.6 48.6 9.6 39.9 1.7–6.13
BBBV 57.5 11 61.3 11.7 28.1 1.5–2.4
BBCM 57.5 – – – – –
BBAS 92 7.3 73.8 13.1 40 –
BBCA 34.5 3.7 20 23 48.3 1.6–7
BBMU 34.5 3.8 34.7 16.1 48.2 –
BBHC 57.5 7.9 45.9 6.2 26.2 2.8–4.4
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profiles at larger depths. For the joint inversion of dispersion
and ellipticity, the global misfit was computed by summing
single misfit functions obtained from each dataset (ellipticity
and dispersion), datasets having similar weight. Weights are
indeed useless when considering misfits based on the accep-
table solution concept, for which each curve fits the data
within its uncertainty bounds with a misfit of one.

Model parameterization is the same as before, except for
a layer with linear velocity increase down to 400 m, which
has been added above the half-space. The inversion scheme

is also the same as before. Figure 5 illustrates the improve-
ment in S-velocity profile when ellipticity and dispersion
curves are jointly inverted. Approximate models of shear-
wave velocity may be derived from the surface down to about
200 m at most sites. Note, however, that when large fre-
quency gaps exist in the ellipticity and dispersion curves
measurements, the retrieved S-velocity profiles may be
biased at intermediate depths (Hobiger et al., 2010; Hobiger
2011). This is possibly the case at BBFI, BBLL, BBBV, and
BBCA sites.

Figure 4. Shear-wave velocity profiles obtained near the sites of the temporary stations from MASW experiments. (a) Inversion of
Rayleigh wave dispersion curves, the 1000 best models; (b) simultaneous inversion of dispersion curves and ellipticity (except at BBMU
and BBAS, obtained from dispersion curves alone, and BBCM, where no reliable model could be obtained). The thick lines show the mean
models; dashed lines delineate the limits of all acceptable models. The velocity profiles can be obtained at greater depth when ellipticity is
considered.
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Figure 4b displays the S-velocity profiles obtained in the
vicinity of the different temporary stations. At most sites, it
has been possible to invert simultaneously phase velocities
(fundamental mode and higher modes at a few sites) and
ellipticities. At BBMU and BBAS, no stable measurement
of ellipticity could be obtained, and the velocity profile is
derived from the fundamental Rayleigh wave dispersion
curve. The different velocity profiles reveal that, inside the
valley, the bedrock is reached at depths of about 100–150 m.
The sedimentary layer is thus very thin compared with that
observed in Alpine valleys, for example, up to about 1000 m
in the Grenoble basin (LeBrun et al., 2001). Moreover, no
large variation of the thickness of sediments is observed
along the valley. The most significant differences concern
the rather strong impedance contrast in the uppermost 20 m,
as already mentioned. For numerical modeling based on
spectral element method, the following generic S-velocity
1D-profile inside the valley has been derived:

VS�m=s� � 200� 100 × �z�1=2 for z � 0–25 m

VS�m=s� � 655� 1:7 × z for z � 25–150 m

VS�m=s� � 2200 m=s for z > 150 m �bedrock�; (1)

where z is depth in meters.
The three rock sites BBAR, BBMU, and PYBB display

rather different characteristics. BBMU appears as the stiffer
site, but the VS profile could not be retrieved below the
depth of 17 m. At BBAR and PYBB, the bedrock velocity

is retrieved with a very large uncertainty, with possible VS

values ranging from 1000 to 2500 m=s, thus compatible with
those (VS ∼ 2200 m=s) found in the middle of the valley,
even though the mean value (VS ∼ 1200 m=s) may suggest
a weathered or fractured bedrock. On the other hand, MASW
profiles at BBAR, BBMU, and near PYBB reveal the pre-
sence of a soft, thin layer at the surface that may amplify
the seismic motion at high frequency. However, this surficial
layer does not affect the signal at station PYBB, as the
instrument is set up on a pillar anchored in the bedrock. The
profile at BBHC reveals a thick, soft layer as expected from
the local geology, the station being installed on a crest of
Miocene and Pliocene sediments.

Experimental Site Effect Determination

Brief Description of the Methods

Three methods are commonly used to determine site
effects at one site. The first one is based on the computation
of the spectral ratios H=Href of the horizontal components for
local or regional events, at site i, and at a nearby reference
site located on bedrock without topography (Borcherdt,
1970). It assumes that the ground motion induced by the
earthquake is the same at the sediment-bedrock interface
at site i and beneath the surface at the reference site (after
correcting the free-surface effect). The H=Href ratio is thus
the transfer function of the sedimentary layers at site i. This

Figure 5. Example of determination of the 1D S-velocity profile from MASWexperiment, at site near BBFI. (a) Set of possible structures
determined from the phase velocity dispersion curves alone; the fit of the observations (in black) with the model predictions (in gray) is shown
in (b) for the dispersion curves (fundamental and first higher mode), and in (c) for the ellipticity of the fundamental mode; (d) structure
obtained from simultaneous inversion of phase velocities and ellipticity; comparison with observations is shown in (e) and (f). The
introduction of the ellipticity as an additional constraint allows us to retrieve the structure at greater depth.
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is valid only if source radiation and propagation effects can
be neglected, thus the distance between source and stations
must be large compared with the distance between sites. The
method is generally applied to S waves, which are very sen-
sitive to site conditions (in particular to the presence of soft
layers) and which are at the origin of most of the damages. It
may also be applied to the coda of earthquakes, which results
from the scattering of seismic waves in a large volume
around the ballistic path from source to station (Phillips and
Aki, 1986). In this case, the use of a reference station elim-
inates statistically most of the contributions of the structures
inside this volume. The main difficulty is generally to find a
good reference station. The method may also be applied to
the vertical component (V=Vref ), even though vertical accel-
eration is less important than horizontal acceleration for
seismic hazard.

The secondmethod relies on the ratio between horizontal
and vertical components of ambient noise at station i (H/V
method, Nakamura, 1989). Horizontal-to-vertical measure-
ment of noise is particularly popular because it does not
require earthquake recording; only a few tens of minutes of
noise record are necessary, and no reference station is neces-
sary. It is thus very easy to implement. However, it leads to
results that are sometimes difficult to interpret, because they
depend on the way the different components of noise are
amplified by the soil structure (Bard, 1999). Difficulties stem
from the complexity of ambient noise (which includes
Rayleigh waves, Love waves, and body waves) and from
its great variability in space and time (Bonnefoy-Claudet, Cot-
ton, and Bard, 2006). However, if high impedance contrasts
are present in soil structure, resonances in the uppermost
layers generate peaks in the H/V spectral ratios. For a single
homogeneous flat layer of thickness h and S-velocity VS

overlying a flat bedrock, a resonance peak is observed at
frequency f � VS=4h. The spectral ratio is more complex
if impedance contrasts are weak (Malischewsky and Scher-
baum, 2004) or if several layers are present. Generally, the
frequency of the main peak gives the fundamental resonance
frequency, but its amplitude is controlled by the proportion of
Love waves and generally underpredicts site amplification
(Picozzi et al., 2005; Bonnefoy-Claudet et al., 2008; Hagh-
shenas et al., 2008; Endrun, 2010). At rock site conditions
and in the absence of topography, H/V is close to unity in a
large frequency domain (Lachet and Bard, 1994; Bard, 1999).

The third method relies on the measurement of energy
partitioning of coda waves on horizontal and vertical compo-
nents (H/V-coda). This method was first proposed by
Lermo and Chávez-García (1993), who showed that the site
resonance frequency can be estimated by analyzing the H/V
ratio of shear waves and their early coda at a single station.
They found good agreement between H/V measurements
on S waves and the classical spectral ratio results. In a recent
study,Margerin et al. (2009) performed an analysis of H/V for
coda waves measured at the Pynion Flats observatory in
California. They showed that shallow low-velocity layers
have a clear impact on the frequency dependence of

the H/V ratio in the coda. Just as in the case of noise wave
fields, the H/V peakmay be related to the resonance frequency
of the structure.

The three methods described previously have been
applied to data collected at the temporary and permanent
stations. Moreover, systematic H/V measurements on noise
have been performed to evaluate soil response variability
through the whole city using CityShark™, an instrument
with a software package Geopsy especially adapted to record
urban noise (see Data and Resources; Chatelain et al., 2000;
Wathelet et al., 2008). CityShark is connected to a 3D-
Lenhartz velocimeter of period 5 s whose passband and
sensitivity are more adapted to record noise than acceler-
ometers. We first present the results for the methods that
do not require a reference station (H/V on noise and H/V on
S-wave coda), then those where a reference station is neces-
sary (H=Href on S wave and H=Href on S coda).

H/V on Noise: Results

This method is first considered because it may help to
define the reference station, in addition to the MASW results.
The processing of the data at the temporary stations follows
the procedure described in Souriau et al. (2007). The mean
H/V spectral ratio and its confidence level are computed from
30 noise records of 40 s each. The spectra are smoothed
using a moving average window whose width is 20% of the
central frequency, and the north (N) and east (E) spectra are
combined into a single horizontal spectrum according to
H � �jNj2 � jEj2�1=2, assuming the absence of phase coher-
ence between the two components. We have checked that,
despite the geometry of the valley, the north to vertical
(N/V) and the east to vertical (E/V) spectral ratios are nearly
identical. An experiment using the CityShark seismic station
has been conducted at the exact location of the temporary
stations. For these data, the software package Geopsy pro-
vides a quasi-automatic computation of H/V.

The Influence of the Instrument. Figure 6a shows the com-
parison between the results obtained from the accelerometers
and from the CityShark velocimeter at BBCA and BBCM.
For the accelerometric data, we selected one day (1 February
2008) where the microseismic noise is rather strong. The
CityShark experiment has been conducted during a day with
rather low microseismic noise. The results obtained at these
two stations are well representative of what is obtained at the
different stations: there is generally a good coherency of the
results at high frequency, but significant discrepancies may
be observed at low frequency. This may be explained by the
self-noise of the accelerometer compared with the noise level
(Strollo et al., 2008), a problem that is not encountered with
the CityShark velocimeter. It is illustrated in Figure 6b,
which shows the power spectral density of the ambient noise
with a clear peak due to the microseismic noise, superim-
posed on the accelerometer self-noise. The ambient noise
is lower than the instrument self-noise at frequencies lower
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than about 0.1 Hz. Even around 1 Hz the level of ambient
noise is sometimes only slightly above the instrumental
noise. Thus, our accelerometers are inappropriate to H/V
measurements. In what follows, we will thus consider only
the CityShark results.

Effect of the Buildings. As most stations are set up inside
buildings, it is useful to estimate the perturbations they
may induce on the records. Figure 6c shows H/V measure-
ments inside the building and immediately outside for a
few typical sites, obtained with the CityShark instrument.
BBAR and BBCM are located at one end of the basement
of recent concrete elongated buildings of 5–6 levels. A small

peak at 15 Hz is observed inside the building at BBAR, and at
11Hz atBBCM.The instrument ofBBMU is on the floor in an
old, massive stone building of three levels, which does not
generate any perturbation. The same conclusion holds at
BBBV, BBLL, which are inside individual houses. The spec-
tral ratio perturbation due to the buildings is thus limited to
the high-frequency domain of the spectrum, and it appears
significantly lower than the spectral ratio variations due to site
effects, except perhaps at BBCM. At PYBB, the location of
the instrument on a seismological pillar (which is supposed
to be anchored to the bedrock) clearly simplifies the site re-
sponse, as it removes the resonance of the uppermost layers.
This shows the efficiency of this observatory installation.

Figure 6. The horizontal-to-vertical spectral ratios on ambient noise. (a) Examples of results obtained at BBCA and BBCM with the
accelerometer of the temporary stations (gray), and with the velocimeter of the CityShark instrument (black). For clarity, the confidence level
(one standard deviation) is reported for the accelerometer only, it is similar for the velocimeter. (b) Comparison between the power spectral
density of the noise at BBCA and the self-noise of the accelerometer. The gray domain is bounded by the low-noise/high-noise curves of
Peterson (1993). (c) Influence of the buildings at a few sites. The horizontal-to-vertical ratio is shown in black (with 1σ-confidence level)
inside the building and in gray outside the building. (d) Horizontal-to-vertical ratio values with 1σ-confidence level obtained from CityShark
at the different stations. Stations denoted by an asterisk (*) are located on rock.

1920 A. Souriau et al.



Note that using a pillar at the reference station is equivalent to
replace soft soil by a stiff structure. It is thus very different
fromusing a reference station in a borehole,where downgoing
waves perturb the reference signal, which must be corrected
for this effect (Steidl et al., 1996; Assimaki et al., 2008).

Results at the Different Stations and Choice of the Reference
Station. Figure 6d shows the H/V spectral ratios obtained
from CityShark. For the choice of a reference station, we
are primarily concerned by the three stations located on rock,
BBAR, BBMU, PYBB. We observe a consistent peak at
4.5 Hz at BBAR, possibly due to a topographic effect,
and/or to a thin soft layer surface as observed from MASW
experiment. At BBMU and PYBB, the spectral ratios are
nearly flat and close to unity in the frequency range 0.3–
10 Hz. However, as noted in Figure 3, the amplitudes at
BBMU immediately at the slope foot are small compared
with those at other stations, suggesting a local topographic
or geological effect, as will be discussed later. We will thus
choose PYBB as a reference station, keeping in mind that a
small peak is present at 17 Hz. This permanent station has in
addition the advantage of being maintained at the standard of
an observatory, thereby ensuring high-quality data. Note that
some stations in the middle of the valley, located on soft
soils, have nearly flat H/V spectral ratios, probably because
of the absence of strong impedance contrast between stiff
sediments and bedrock, as will be discussed later. This illus-
trates the difficulty of choosing the reference station on the
sole basis of the H/V ratio if geological conditions are
ignored (Steidl et al., 1996; Cadet et al., 2010).

H/V Dense Measurements on Noise: Variability of Site
Effects in the Valley. Measurements of H/V spectral ratios
on noise are the simplest and least expensive way to have an
appraisal of the structure variability throughout the basin,
even though only the fundamental resonance frequency
could be obtained with this method. They are also of prac-
tical interest for risk mitigation, which was one of the
motivations of the pilot site experiment. Figure 7a shows the
CityShark sample points inside the Bagnères basin. They
consist of three transverse profiles and one profile along the
valley axis. The middle transverse profile and the profile
along the valley include the temporary stations.

The H/V spectral ratios are given in Figure 7b. There is
no straightforward feature coming out from these results; in
particular, it is not possible to draw a map of fundamental
resonance frequency, as is sometimes done (e.g., Parolai
et al., 2001; Souriau et al., 2007). Even if a change in the
noise composition from one measurement to another may
be responsible for some variability (due, for example, to the
traffic increase at some hours during the experiment), the
observed spectral variations mostly reflect the complexity of
the structures. In the northern profile where the valley is
broad, we observe low frequency peaks close to the valley
axis (sites 04, 05, 06), where the sedimentary filling is the
thickest. The profile along the valley reveals an important

variability of the resonance peaks, with frequency of about
1 Hz at sites 38–39 and about 7 Hz at sites 43–44. As for the
H=Href spectra, it may be due to the increase of sediment
thickness downward in the valley. The H/V signal shows
some complexity on the flanks of the valley, with sometimes
a spectral drop above 10 Hz (sites 02, 08, 09, 19, 24, 29).
This is not systematic (e.g., sites 14 and 32 at the foot of the
hill, which have a flat spectrum). Sites on the Miocene–
Pliocene crest east of the valley (sites 35, 36, 21, 22) exhibit
a broad, low frequency peak. We also note a great variability
for nearby stations (e.g., 24 and 25). This complexity shows
that the detailed geology and geometry of the valley may
play an important role at the frequencies we consider; local
topography and structures must be taken into account as
accurately as possible in the modeling.

H/V on Coda: Results

The S coda corresponds to the signal after the direct
S-wave arrival, due to wave scattering by crustal heterogene-
ities. At the distances we consider, the coda regime (defined
from energy equipartitioning) is reached only a few seconds
after the S arrival, as illustrated in Figure 8. Figure 8a shows a
local earthquake record (M 2.9) at station BBAR. Figure 8b
shows the typical slow decay of coda energy with time. Coda
duration largely exceeds the ballistic propagation time
between source and station, as a result of multiple scattering
from small-scale heterogeneities in the crust. Figure 8c illus-
trates the rapid stabilization of the H/V ratio in the coda,
typically only a few seconds after the direct shear-wave
arrival. This fact is characteristic of coda waves and has pre-
viously been reported by Hennino et al. (2001) and Margerin
et al. (2009). The return to the noise level is also very clear
from the energy analysis: H/Von noise shows very large fluc-
tuations compared with the coda (Fig. 8c).

H/V-coda has been measured on a selection of events at
distances larger than 10 km from Bagnères, and with mag-
nitudes larger than 2.5, to get enough energy in the coda
(Fig. 9a). The distribution of events around the city exhibits
a gap in azimuth to the north and the east (Fig. 1). Moreover,
the strong attenuation in the Pyrenees (Drouet et al., 2005)
limits the number of remote events that could be recorded.
We obtain a total of 83 events with epicentral distances,
depths, and magnitudes ranging from 12 to 212 km, 3 to
18 km, and 2.5 to 5.0, respectively (Fig. 9a).

For data processing, we selected an S-wave coda win-
dow starting 10 s after the S arrival, with a total duration
of 30 s. As for noise records, H/V is defined as the square
root of the ratio between the sum of the kinetic energies
on the two horizontal components and the kinetic energy
on the vertical component. The H/V ratio appears very repro-
ducible and shows little (if any) dependence on source loca-
tion. This stabilization of the energy ratio in the coda is
interpreted as the effect of mode mixing due to multiple scat-
tering. It results in a phenomenon known as equipartition
where all the propagation modes, both surface and body
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waves, get excited by equal energy (Margerin et al., 2009).
Results are given in Figure 9b, with 1σ confidence intervals
estimated from the variability of the spectra for the different
events.

There is overall agreement with H/Von noise, with peaks
at the same frequencies and amplitudes ranging roughly from
0.5 to 7. A steady decrease of the H/V ratio at high frequen-
cies (f > 17 Hz) is observed at some stations, whereas it is
not observed for noise measurements (e.g., BBBV, BBGA,
BBLL). This illustrates that at high frequencies, the wave
contents of noise and coda are significantly different.
However, the stability and reproducibility of H/V-coda is

advantageous over H/V on noise records, which may exhibit
large fluctuations.

H=Href and V=Vref on S Wave and on S Coda: Results

S Waves. This method has been applied to the same selec-
tion of events (Fig. 9a), with magnitudes larger than 2.5 that
ensure a good Sn ratio at low frequency and distances to the
network larger than 10 km for the reference station method to
be valid. S-wave arrivals have been handpicked. Awindow of
length l starting 0.5 s before S has been selected, l increasing
with epicentral distance D from l � 5 s (for D < 35 km) to
l � 15 s (for D > 100 km). The spectral ratios have been

Figure 7. (a) Map of selected sites for H/V measurements on noise with CityShark in the Bagnères Valley; (b) H/V spectral ratios
(numbers refer to the sampled locations).
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computed with the same procedure as for H/V (where V is
replaced by H at the reference station PYBB). We have first
processed independently the north and east components; it
shows that there is no variation of horizontal polarization
related to the basin north-northwest–south-southeast elonga-
tion (Ⓔ see Fig. S1, available in the electronic supplement to
this paper).

Figure 10a shows the H=Href spectral ratios obtained
after combining the two horizontal components, as well as
the V=Vref ratios. In most cases, H=Href and V=Vref have
peaks at the same frequencies and with similar amplitudes,
however, V=Vref is generally larger than H=Href at high
frequency. At a few stations (BBLL, BBAR, BBHC), the
V=Vref peak is slightly shifted toward high frequency com-
pared with the H=Href peak, as often observed (e.g., Dubos,
2003). From the H=Href ratios, two interesting results
emerge: (1) High ratios (up to 10) are obtained at BBAR
and BBHC on the flanks of the valley, even though one of
the stations (BBAR) is set up on rock. Note, however, that the
resonance frequencies are not the same, about 5 Hz at BBAR
and 2.5 Hz at BBHC (on thick soft sediments). By contrast,
the stations at the slope foot have smooth spectral ratios. This
suggests a possible topographic effect, with amplification at
the crest and flank, and amplitude decrease at the slope foot.
(2) The spectra of the stations along the valley are highly
variable, with a resonance frequency decreasing from south
(BBAS and BBFI) to north (BBLL). This corresponds to the
downhill increase of the sediment layer thickness, possibly
related to the front of the glaciers.

Coda Waves. For H=Href analysis in the coda, we retained
the same events and time windows as those used for H/V coda
(Fig. 9a). The coda window thus does not generally overlap
the window used for S-wave analysis, except for a few
remote events. Just as for the S wave ratio, the N=Nref and
E=Eref ratios are nearly identical (Ⓔ see Fig. S1c, available
in the electronic supplement to this paper), denoting the
absence of variation in horizontal polarization inside the net-
work. Figure 10b gives the H=Href spectra, which combines
the two horizontal components. They are remarkably consis-
tent with those obtained on S waves. The same conclusion
holds for V=Vref (in gray in Fig. 10b). The H=Href ratios
appear, however, slightly smoother and with smaller error
bars for coda waves than for S waves, as the result of stabi-
lization of energy partitioning in the coda.

Comparison of the Different Methods

Figure 10c shows the intercomparison of the spectral
ratios obtained with the different methods. The most promi-
nent feature is the significant difference between the H/V
ratios (on noise or coda waves) on one side and the H=Href

ratios (on S waves or coda waves) on the other side. H=Href

exhibits clear peaks at some stations (e.g., BBGA, BBAR)
whose amplitude is lower on H/V, sometimes with a nearly
constant H/V ratio over a large frequency range (BBMU,
BBGA, BBBV). By contrast, the low frequency ratios (for
f < 1–2 Hz) are similar.

These differences may hardly be ascribed to the refer-
ence station, which is set up on a pillar anchored to the rock
and whose H/V ratio is flat up to about 7 Hz. The H/V
amplitudes are controlled by the Rayleigh wave ellipticity
and by the presence of Love waves that affect the horizontal
components. Low H/V may have different origins. (1) Low
impedance contrasts between sediments and bedrock com-
bined with low-noise excitation level (Haghshenas et al.,
2008). This is probably the case in Bagnères, where rather
stiff sediments are overlaying a soft bedrock, leading to mod-
erate shear-wave velocity contrast. (2) Strong lateral varia-
tions of the underground structure, especially at sites close to
valley edge. In this case, additional lateral interferences of
edge-diffracted waves may be generated, which were not
present for simple 1D structures where only vertical interfer-
ences occur (Uebayashi, 2003; Hagshenas et al., 2008).
Differences observed between H=Href and H/V ratios at some
valley sites (BBLL, BBGA) may possibly be attributed to
locally diffracted surface waves as previously observed at
other sites (e.g., Cornou and Bard, 2003; Bindi et al., 2009).

We have shown the interest of H/Von ambient noise for
testing various properties of the sites, for choosing a refer-
ence station, and for determining rapidly site effect spatial
variability. The comparison of H/V and H=Href confirms that
H/V is at best able to give the fundamental resonance fre-
quency (e.g., at BBLL, BBHC), but that it may strongly
underestimate the amplification (Haghshenas et al., 2008),
and in some cases (BBGA) H/V may fail in estimating the

Figure 8. Illustration of equipartition energy in the coda
(diffusion regime). (a) Record of the 3 October 2007,ML 2:9 event,
located 38 km to the west of Bagnères (east component at BBAR);
(b) plot of the seismogram envelope and the mean noise level mea-
sured on the first 20 s of the record (dotted line); (c) ratio between
the kinetic energy of the vertical and horizontal components,
V2=H2, for the record filtered at 15 Hz. Note the stabilization of
the ratio between 40 s (i.e., only 4 s after the S-wave arrival)
and 100 s. After 100 s, the large fluctuations correspond to the
decay of the signal below the noise level.
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overall shape of site response (e.g., Cornou and Bard, 2003;
Bindi et al., 2009). If earthquakes may be easily recorded,
and if a reference station is available, H=Href on S coda gives
the most reliable and most stable results.

Numerical Models

The confrontation of experimental results with numeri-
cal simulations may help to understand the origin of ampli-
fication or amplitude decrease at some sites and to specify
the role of the various parameters (topography, soils, wave
field composition) in site response. Modeling will concern
the local response to seismic excitation at the temporary
stations, as well as the global response of the basin.

H/V Modeling with Synthetic Seismograms: A Test
of the 1D S-Velocity Profiles

As the S-velocity models in the vicinity of the temporary
stations are known from joint inversion of dispersion curves
and ellipticities, it is interesting to check the coherency
between these models and the observed H/V measurements

on noise records. Because the thickness of the soft layer is
small compared with the width of the basin, global resonance
of the whole basin is not expected to occur (Bard and Bou-
chon, 1985); a 1D-modeling relying on the S-velocity profile
beneath the station will be appropriate.

In traditional approaches, one considers the response of
a stack of plane layers to shear waves arriving at vertical inci-
dence beneath the structures (e.g., Stephenson et al., 2009).
A more realistic modeling may, however, be obtained using
the complete seismograms. Following Bonnefoy-Claudet,
Cornou, et al. (2006), synthetic noise of 13 minutes duration
is generated using the discrete wavenumber code developed
by Hisada (1994, 1995), which computes Green’s functions
due to point sources for viscoelastic horizontally stratified
media, using the reflectivity method. Green’s functions are
then convolved with different source time functions, and syn-
thetic seismograms obtained for each source are summed. In
this study, source time functions are approximated by surface
and subsurface forces, distributed randomly in space, direc-
tion (vertical or horizontal), amplitude, and time. The time
function is a delta-like signal with a flat spectrum between
0.2 and 20 Hz. Sources are located at 0.5 m depth and

Figure 9. (a) Map of events used for the determination of the H/V ratios on S-coda-waves and the H=Href ratios on S wave and S coda;
(b) H/V ratio on S coda (in black), with 1σ-confidence level. The H/V ratios on noise are reported in gray for comparison. Station codes with
an asterisk (*) correspond to locations on rock.
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distributed at distances ranging from 5 to 500 m away from
the site in order to ensure the excitation of the entire sedi-
mentary column. The modeling has been restricted to the
stations for which the structure is well constrained (Fig. 4b).
The S-velocity model used is the mean velocity structure

previously derived at each site down to the bedrock (at about
100–150 m depth), P velocity is twice S velocity, and QS

(respectively, QP) is varying from 15 (respectively, 20) for
surficial layers to 100 (respectively, 150) for the deepest
structure.

Figure 10. Spectral ratio of horizontal motion (black) and vertical motion (gray) with respect to a reference station (PYBB) (a) for S
waves, (b) for the coda of Swave. Events used are shown in Figure 9a. 1σ-confidence level is given for H=Href only, it is similar for V=Vref. In
(c) a comparison of the different methods is shown. Station codes with an asterisk (*) correspond to locations on rock.
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Figure 11 compares the results of the modeling with the
H/V spectra of the CityShark experiment obtained near the
temporary stations outside the buildings. The agreement
between observations and models is satisfying over a large
frequency range from 0.2 to 15 Hz. In particular, H/V
peak positions at low and high frequencies are rather well
retrieved, the high-frequency peak being controlled by the
surficial velocity structure. Moreover, the synthetic data do
not predict sharp H/V peaks, in agreement with the observa-
tions. They generally slightly overpredict the peak ampli-

tudes, suggesting either that the velocity contrasts in the
models are slightly stronger than in the real structures or that
the proportion between horizontal and vertical forces excita-
tion is not properly modeled.

Simulation of H/V for Coda Waves

Similar to the analysis performed with noise records, we
use the velocity models to calculate the theoretical H/V ratio
in the coda, neglecting the possible role of confinement due
to basin edges. In the framework of equipartition theory, we
write a modal decomposition of the coda wave field in terms
of eigenfunctions of the layered medium under the station.
The modal amplitudes are uncorrelated (complex) random
variables with zero mean and equal variance. Clearly, the true
medium under the station is only approximately layered and
also displays small-scale fluctutations superimposed on the
background structure. In loose terms, equipartition theory
says that, as far as average energetic quantities are con-
cerned, the true medium can be replaced by a laterally aver-
aged medium, and the coda wave field can be represented as
a sum of surface and body waves coming from all possible
azimuths. With these assumptions, we perform a summation
over all modes and compute the kinetic energy on each com-
ponent of the seismogram. Further details on the computa-
tional procedure can be found in Margerin (2009). Note that
there is no adjustable parameter in the theory. This is an
important difference with noise simulations, where the
amount of vertical and horizontal sources may be adjusted
to fit the data.

The outcome of the calculations is displayed in
Figure 12. In the 0.2–2 Hz frequency band, the agreement
between observations and data is satisfactory at most sta-
tions. The only notable exception is the station BBLL, which
shows a broad peak around 1 Hz. At frequencies higher than
2 Hz, the theoretical calculations may sometimes differ sig-
nificantly from the measurements. As an example, at BBCA,
the theory predicts a peak around 10 Hz, which is absent in
the data. At BBAS, the predicted peak is observed in the data
but with a smaller amplitude. This comparison validates the
gross features of the velocity structure as sensed by low
frequency waves. However, the finest details of the observed
H/V ratio in the coda are not reproduced by our calculations.
Some moderate site effects revealed by coda waves at
some stations (BBAR, BBLL, BBHC) are not easily modeled
with the available velocity profiles. It would be interesting to
adjust the local velocity structure to improve the fit between
data and theory. However, solving such an inverse problem
goes far beyond the goal of our study.

Modeling the 3D Response of the Valley
with the Spectral Element Method

In order to quantify the respective contributions of
surface topography and basin structure to the observed
amplifications, we performed 3D simulations of the response
of the Bagnères basin to various seismic excitations using the

Figure 11. (a) Modeling of the H/V spectral ratio at the
temporary stations from noise generated by summing synthetic
seismograms. Predicted ratios are in black; experimental spectra
of H/V on noise measured outside the buildings are in gray. Values
are given with one standard deviation confidence level (thin lines).
(b) The uppermost 40 m of the S-velocity models used (defined
down to 150 m); only stations with well-defined structure are
considered.
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spectral element method (SEM) (e.g., Komatitsch and Vilotte,
1998; Komatitsch and Tromp, 1999; Komatitsch et al., 2005;
Chaljub et al., 2007). If the 3D structure is known with suf-
ficient resolution, the SEM provides an efficient tool to model
the variability of the ground motion in space and time by
accurately accounting for the complexity of seismic wave
propagation in the presence of free-surface topography
and 3D heterogeneities, in particular mode conversion from
body to surface waves in sedimentary basins (e.g., Chaljub
et al., 2010), or from surface to body waves at a nonplanar
free-surface (Komatitsch and Vilotte, 1998). The associated
local effects on strong ground motion are of particular inter-
est for seismic risk evaluation.

The response of the structure is investigated in two
steps: (1) considering the topography alone and (2) consider-
ing both the topography and the filling of the valley by sedi-
ments. Two types of sources are investigated: (1) a vertically
incident plane shear wave with polarization either in the
north–south or east–west direction and (2) a realistic dou-
ble-couple point source with characteristics close to anM 3.9
event, which occurred on 3 May 2008 to the south-southeast
of Bagnères.

Structure Parametrization and Numerical Implementa-
tion. Figure 13a shows a 3D view of the computational
domain used for plane waves, the size of which is about
5 km in the vertical direction and 8 km × 11 km in the
east–west and north–south directions, respectively. With the
mean crustal structure beneath the Bagnères basin being
unknown, we adapted a model previously obtained at the
nearby city of Lourdes (Dubos et al., 2003; Table 3). The
model is made of homogeneous layers, except the topmost
layer, where we imposed a velocity and density gradient from
the surface down to 179 m above sea level (Table 3). The
base of the computational domain is the planar surface with
elevation z � �4451 m, and the free surface is given by a

digital elevation map (DEM) with spatial resolution 50 m.
Surface elevation inside the domain of computation varies
from about z � 430 m to the northwest to z � 1560 m to
the southwest. From the DEM, we define the surface imprint
of the quaternary sediments as the set of points for which the
elevation is less than 600 m, and the local slope does not
exceed 10% (see the red line showing the obtained basin
edge on Fig. 13b). This ad hoc criterion was adjusted in order
to have the basin edge separating the BBMU (rock) and
BBCA (soil) stations, but it was not possible to find a simple
proxy to also include the eastern station BBCM in the
sediments.

The basin structure is defined as a single layer with
uniform thickness h � 150 m, and homogeneous P and S
velocities, consistent with the results of the seismic profiles
(Table 3). The fundamental resonance frequency of this layer
is 1 Hz, in agreement with the observations. The structure of
the Miocene sedimentary crest to the east beneath BBHC is
not known well enough to be safely introduced in the model.
Thus, the comparison between simulations and observations
will disregard the eastern slope of the profile (BBCM and
BBHC). Throughout the model, the S wave quality factor
is chosen to be independent of frequency and to scale with
the shear-wave velocity as QS � VS=10 (VS in m=s).
Neglecting the bulk attenuation yields the definition of the
P-wave quality factor: QP � �3=4� × �VP=VS�2 ×QS.

The 3D computational domain for plane waves (Fig. 13a)
is discretized with a mesh of 284,256 spectral elements with
polynomial order N � 4, which results in 19,356,750 grid
points. The mesh is designed to sample the wavelengths with
a minimum of 5 grid points (i.e., we use at least one spectral
element per minimum wavelength), and it is coarsened with
depth following a simple conforming strategy as explained in
previous studies (Komatitsch et al., 2004; Chaljub et al.,
2007). The minimum element size in the basin is 75 m,
which results in accurate simulations for frequencies up to

Figure 12. Analysis of energy partitioning in the coda (from the H/V ratio) at the temporary stations. Observed ratios, with 1σ confidence
level are in gray. Results of simulations based on equipartition theory with both surface waves and body waves are in black. Structure not
available for modeling at BBCM.
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8 Hz. For each seismic excitation, we compute 30 s of
ground displacement, velocity, and acceleration at the 11
temporary and permanent stations (red triangles in Fig. 13b),
as well as at 315 virtual stations distributed on a regular grid
of size 500 m (yellow triangles in Fig. 13b). When a realistic
source is considered, the computational domain is extended
laterally and in depth in order to include the focus. The
computational domain is 12 km × 12 km × 17 km in the
vertical, east–west, and north–south directions, respectively
(Fig. 13b). It is discretized with the same grid spacing as the
computational domain used for plane waves, which results in
47,331,770 grid points.

The source time function is given by a low-pass filtered
Dirac pulse for plane wave excitation and by a low-pass fil-
tered Heaviside pulse for the realistic double-couple source.
In each case, the source does not radiate energy for frequen-
cies above 8 Hz, allowing us to compute maps of peak
ground displacement, velocity, and acceleration without hav-
ing to store the full time series at all the surface grid points.

Intrinsic attenuation is modeled using the rheology of
the generalized Zener body, which is equivalent to the super-
position of standard linear solids (Moczo et al., 2007) and
implemented through the introduction of memory variables
(see Chaljub et al., 2007, and references therein). We use
three relaxation mechanisms to model a constant Q in the
frequency range 0.5–8 Hz.

Absorbing boundary conditions are implemented using
a simple radiation equation (Lysmer and Kuhlemeyer, 1969;
Komatitsch and Vilotte, 1998). This is certainly not the best
performing technique, but it is known to be insensitive to
Poisson’s ratio, a useful property when the absorbing bound-
aries intersect the sedimentary layers (as is the case here for
the northern boundary of the computational domain).

Results for a Plane Wave. The seismic source consists in a
vertically incident plane S wave with particle displacement
polarized either in the north–south direction (thus, nearly
parallel to the valley axis) or in the east–west direction. This

Figure 13. Grid for the spectral element method computations. (a) 3D grid used for the vertically incident plane waves with the location
of the basin (in blue); (b) domain of investigation, the white box corresponds to (a); points at the surface indicate where the signal is com-
puted, on a regular grid with spacing 500 m (yellow triangles), and at the sites of the accelerometric stations (red triangles). The domain of
investigation is superimposed on the topography in (b). The sedimentary filling is located inside the red contour. The whole map corresponds
to the domain considered for modeling the realistic source, whose focal mechanism is plotted at its epicentral location.

Table 3
Model for Spectral Element Method Simulations

z (m) Above Sea Level VS (m=s) VP (m=s) Density (kg=m3)

Surface* 1000 1900 2000
179 to �251 2400 4500 2500
�251 to �851 3000 5400 3000
Below �851 3400 6000 3200
Sediments (h � 150 m)† 600 1500 2000

*There is a velocity gradient in the top layer from the surface down
to z � 179 m.

†This last line corresponds to the homogeneous sediment filling of
the basin.

1928 A. Souriau et al.



exercise is mostly academic, however, it may give an idea of
the response of the valley to a large remote event (for exam-
ple, from the south of Spain or from Catalonia), for which S
waves arrive with steep incidence beneath the Bagnères
basin. Figure 14 shows the maps of peak ground accelera-
tions (PGA) obtained for the two polarizations, when we con-
sider the topography alone (Fig. 14a,c) and when the basin
structure is added (Fig. 14b,d). [Ⓔ The equivalent maps for
peak ground velocities (PGV) and peak ground displacement
(PGD) are available in the electronic supplement to this
paper; see Figs. S2, S3.] In all maps, there is a contamination

of the values along the computational domain boundaries
caused by the poor performance of absorbing conditions for
vertically incident plane waves travelling at grazing inci-
dence along the lateral boundaries of the domain. Therefore,
we avoid interpreting peak values for locations closer than
about 2 km from the edges of the computational domain.

The simulations with topography alone clearly show
amplifications related to short wavelength crests. The ampli-
fications occur inside the east–west oriented structures for
incoming plane wave with north–south polarization and in
the north–south oriented structures for east–west polarization.

Figure 14. Peak ground acceleration for a plane S-wave incident beneath the structure, with topography alone (a,c) and with the basin
filled with sediments (b,d). The location of the basin is shown by a green line. The plane wave has either (a,b) a north–south polarization or (c,
d) an east–west polarization. Edge effects are observed along the border of the valley, with an amplitude increase (in red) and an amplitude
decrease (in blue) immediately outside. Scale is arbitrary. Numerical artefacts are observed at the border of the plots, over a width of
about 2 km.

Characterization of the French-Pyrenean Valley of Bagnères-de-Bigorre for Seismic-Hazard Evaluation 1929



The resonant structures have typically 200–300 m lateral
extension, and wave focusing occurs at the top of the crests,
whereas defocusing occurs on the slopes. This focusing–
defocusing effect iswell observed for PGA and PGV; it appears
smoother on PGD, as displacement representation favors
long wavelength signal (Ⓔ see Fig. S3a,c, available in the
electronic supplement to this paper). Figure 14a brings to light
the numerous east–west oriented structures related to the
Pyrenean tectonics (Ⓔ see Fig. S2a, available in the electronic
supplement to this paper). The PGA, PGV, and PGD inside the
Adour basin have medium values and do not exhibit signifi-
cant variations. We just note a small edge effect with an
amplitude increase at the border of the basin, followed by
a small amplitude decrease immediately at the mountain
foot. It is best observed on the synthetic signal (Fig. 15a, note
the small amplitude decrease at BBMU). This effect is more
visible for the east–west polarization (Fig. 14c), thanks to the
north–south orientation of the valley.

The introduction of the sedimentary layer completely
modifies the ground motion pattern, as it is seen on PGA
maps (Fig. 14b,d) and on time-series of ground accelerations
(Fig. 15b). Whatever the polarization of the incoming wave,
both the PGA and the duration of ground motion are seen to
increase within the basin (see stations BBCA, BBGA, BBBV
in Fig. 15b), as well as PGV and PGD. The most striking
feature in the basin is a clear increase, by a factor of 2–3,
of the PGA values close to the edges (but slightly offset from
the basin edge toward the basin axis), as shown for station
BBCA in Figure 15b. This is a manifestation of the so-called
basin edge effect, caused by the interference between the
incoming shear wave and surface waves diffracted off the
basin edge, and first invoked by Kawase (1996) to explain
the occurrence of the damage belt during the 1995 Kobe
event. The characteristics of the amplification zone and its
distance to the basin edge strongly depend on the basin
structure (in particular on the geometry of the edge, the thick-
nesses and velocities of the sedimentary layers) and on the
characteristics (in particular, the spectral content) of the
incoming signal (Kawase, 1996; Pitarka et al., 1998; Hallier
et al., 2008). Note, for example, that the maximum is not at
the same distance of the edge for north–south (Fig. 14b) and
east–west (Fig. 14d) polarization, an effect easier to observe
in the narrow uppermost basin to the south. In addition to the
amplification close to the basin edge, we note a systematic
PGA decrease immediately outside the basin, at the mountain
foot, as shown for station BBMU in Figure 15b (Ⓔ see also
Fig. S2b,d, available in the electronic supplement to this
paper). Such an amplitude decrease outside the narrow
amplified zone has been observed in other similar contexts,
for example, at Kobe (Pitarka et al., 1998; Hallier et al.,
2008) or in the Gubbio basin (Bindi et al., 2009). For the
north–south polarization, we also observe in the uppermost
basin north–south-oriented stripes distant one to another by
about 250 m (Fig. 14b), some amplitude variations resulting
likely from stationary resonant modes in the east–west direc-
tion. By contrast, the PGD inside the basin appears nearly

uniform, due to the prevalence of low frequencies in displa-
cement signal (Ⓔ see Fig. S3b,d, available in the electronic
supplement to this paper). The SEM thus allows us to obtain a
picture of the valley response with a great accuracy and to
understand the origin of most of the observed features.

Results for a Realistic Source. Next we simulate the
response of the Bagnères basin to a local event close to
an M 3.9 event that occurred on 3 May 2008 and was well
recorded by all the stations of the temporary array. The dis-
tance of the epicenter to PYBB is about 13 km, and the focal
depth is 11 km. We used a double-couple point source with
the same focal mechanism as the real event (Fig. 13b), and
the source time function was defined as a low-pass filtered
step function. The displacement field radiated by the simu-
lated source has therefore a flat amplitude spectrum up to the
maximum frequency of 8 Hz.

Figure 16a,b shows the maps of PGA obtained from the
simulations with topography alone and with topography and
basin structure, respectively. Similar maps are obtained for
PGV and PGD (Ⓔ see Figs. S4a,b and S5a,b, respectively,
available in the electronic supplement to this paper).

Figure 15. Synthetic ground acceleration for a plane S-wave
incident beneath the stations, with north–south polarization. North
component at stations of the transverse profile, illustrating the
influence of the sediments. (a) Numerical results for topography
alone; (b) topography and basin filled with sediments. Note the
large amplitudes and long duration inside the basin (BBGA,
BBBV), the edge effect appearing as an amplitude decrease
immediately outside the basin (BBMU), and as an amplitude in-
crease at the border of the basin (BBCA).
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Maximal PGA values are around 0.4 g on rock sites close to
the source. These high values are mainly due to the use of a
source time function with corner frequency fc � 8 Hz,
instead of fc � 2 to 5 Hz for Pyrenean events of such mag-
nitude (Drouet et al., 2005). The PGAvalues should therefore
not be directly compared with the observations. In the
absence of sediments (Fig. 16a), the dominant pattern is
due to the combined effects of epicentral distance and radia-
tion pattern. Topographic effects with PGA increase at the
top of the crests and PGA decrease immediately below are
observed systematically along the narrow crests, in particular
to the east of the investigated area. No amplitude variation is
observed at the foot of the slopes bordering the basin. The
introduction of sediments (Fig. 16b) yields a general PGA
increase inside the basin, which is reinforced by the basin
edge effect, as well as a clear PGA decrease immediately
at the foot of the slopes. The same observations hold for
PGV and PGD. On the PGD map, we observe an asymmetry
of the basin edge effect, which appears stronger to the east
than to the west. It could be a consequence of the relative
S-wave incidence with respect to the dip angle of the struc-
tures sampled by the waves: the amplitude decreases if the
ray arrives parallel to the slope (Bouchon, 1973; Kawase and
Aki, 1990; Pedersen et al., 1994).

In order to better quantify the role of the sediments, the
spectral ratios obtained for the north–south and east–west
components from the simulations with and without sedi-
ments are given along three profiles across the valley and at
a few additional stations in the higher part of the basin
(Fig. 17, with location of the stations used in Fig. 16b).
The influence of the sediments almost disappears outside

the basin (e.g., at site 130 to the south). By contrast, a strong
amplification up to 8 is observed around 1 Hz in the valley.
We note the amplification due to the basin edge effect (site
219, for example) and a slight amplitude decrease at high
frequency at the foot of the slopes (e.g., at site 245), consis-
tent with the PGA maps. In the frequency range of the simu-
lations, the two horizontal components show similar results
outside the basin, with a ratio close to 1. Inside the basin, the
amplification is generally slightly larger on the east–west
component than on the north–south component, indicating
a small effect of the valley orientation.

Figure 18 compares the simulations with the observa-
tions at the temporary stations. It shows the recorded
east–west ground accelerations (Fig. 18a) and the synthetics
obtained with (Fig. 18b) and without (Fig. 18c) sediments.
The records have been low-pass filtered below 5 Hz, where
the displacement spectrum radiated by the source is sup-
posed to be flat (this filtering explains the disappearance
of the Pwave). As absolute amplitudes are not valid, the syn-
thetic records have been scaled to the observations by nor-
malizing the simulated signals to the observed one at the
reference station PYBB. It has also to be kept in mind that
the structures beneath the eastern flank (BBCM and BBHC)
could not be modeled. The comparison of simulated signals
with records is, however, of great interest to validate the
model and to understand the origin of the PGA values.

In the absence of sediments, the dominant feature in the
synthetic seismograms is the topographic effect. This is illus-
trated by the two lower traces in Figure 18c, BB102 being at
the top of the crest and BB101 in the valley (see their
locations in Fig. 16a). The amplification concerns not only

Figure 16. Peak ground acceleration computed for a double-couple point source close to that of the 3 May 2008 event (see location and
focal mechanism on Fig. 13b), in a structure with (a) topography alone and (b) topography and sedimentary filling in the basin. Because of the
high corner frequency, the absolute PGA values are unrealistic; only the PGA pattern can be analyzed (see text). Note in (a) the predominant
influence of radiation pattern on the distribution of PGA, in (b) the general increase of PGA inside the basin and the edge effect with an
increase of amplitude inside the basin and a decrease immediately outside. The virtual stations numbered in black correspond to sites
considered in Figures 17 and 18.
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the S wave, but also its coda, which is responsible for the
PGA value (unfortunately, there are no observations at these
sites). When sediments are added (Fig. 18b), the signal inside
the valley becomes more complex than in the absence of
sediments. The coda becomes very energetic and can be
responsible for the PGA value. By contrast, the direct S wave
is generally not significantly amplified. A clear amplitude
decrease related to basin edge effect is predicted and
observed at the base of the slope at BBMU (Fig. 18a,b). The
signal at BBAR remains difficult to explain, as the large
amplitude and complex S wave observed at this station are
poorly compatible with its location on rock. This suggests
either that the rock is strongly weathered (MASW profiles
show rather slow shallowest layers that are not modeled
here), or that strong wave scattering is induced by the very
complex geological nature of the slope, with many litholo-
gical contrasts (Fig. 2b) and caves due to karst erosion. The
characteristics of the record at the reference station PYBB
are, by contrast, in good agreement with rock site conditions.

Discussion and Conclusions

The Bagnères experiment has been conducted for two
reasons: (1) to test experimental and numerical methods
in a context that is relatively simple from the geometrical
and structural point of view (which thus permits a relatively
light instrumentation), (2) to infer some guidelines to miti-
gate the seismic hazard in the Bagnères Valley, which experi-
enced strong historical damaging events. The main interest of
a pilot site for seismic-hazard evaluation is to have control of
all the steps from observation to simulation. This implies the
deployment of appropriate experiments, specific analyses of
the shallow structure, a good understanding of the nature and
origin of the observed signals, and finally the confrontation

of the observations with numerical simulations. As shown
by previous studies, this approach may be very fruitful as
soon as a dense seismic array may be set up, for example,
the Euro-seistest site at Volvi in Greece (Chávez-García et al.,
2000; Manakou et al., 2010), or the San Jose site in
California (Hartzell et al., 2003; Hartzell et al., 2010), or the
Gubbio basin in central Italy (Bindi et al., 2009).

Classical semiempirical methods of site characterization
(H=Href and V=Vref on S waves and S coda, H/Von noise and
on S coda) have been implemented along and across the val-
ley. Both H=Href and H/V give a very local picture of the soil
response, as noted in previous studies (e.g., Stephenson et al.,
2009). Contrary to some other studies (e.g., Satoh et al.,
2001), we have not considered P-wave spectra, whose inter-
est for seismic risk is minor, nor H/Von S waves, which may
be strongly dependent on focal mechanisms. The systematic
analysis of the energy partitioning following the S wave
reveals that the equipartition regime is reached a few seconds
after the S arrival only (Fig. 8). As noted by Chávez-García
et al. (2002) and Cornou et al. (2003) in similar contexts
(narrow valleys in New Zealand and in the French Alps),
the small size of the basin implies that locally generated
surface waves appear quickly in the records, so that the direct
S-wave window is very short. Figure 10c, which summarizes
the experimental results, shows that H=Href ratios are very
similar for S wave and S coda. They give access to a broad
response spectrum at the sites, provided that a good reference
station could be found. This justifies the interest of these
spectra for seismic-hazard assessment. By contrast, the H/V
spectra on noise give at best the fundamental resonance fre-
quency without a reliable access to the amplification. The
horizontal-to-vertical ratio for S coda is somewhat similar
to H/Von noise (Fig. 9b), but it is more stable, due to energy

Figure 17. Influence of the sediments on the spectral ratios. Ratios between acceleration spectra obtained from numerical simulations,
with topography and sediments, and with topography alone, at selected points (see Fig. 16b), for the double-couple source.
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Figure 18. Comparison of the accelerometric records (a) with the synthetics obtained from the 3D-modeling of the valley with the
spectral element method. Numerical results for topography alone (c) and for a basin filled with a homogeneous layer of sediments (b).
For this last case, results at BBHC and BBCM are not valid (structure unknown). In each panel, the upper, lower, and gray traces correspond
to the transverse profile, the longitudinal profile, and the reference station PYBB, respectively. (c) Two synthetic records show the ampli-
fication at the top of a crest compared with the hill foot (see station locations and corresponding PGAs on Fig. 16a). The scale is the same for
all the traces in (b) and (c) and is normalized to the recorded S-wave amplitude at PYBB.
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equipartitioning in S coda, whereas noise content may vary
with time.

In the Bagnères Valley, the H=Href spectra reveal the
presence of resonance peaks with large amplifications (up
to 8) along the valley axis, with a frequency decrease down-
hill, which is well explained by the valley structure (Fig. 10a).
By contrast, H/V on noise appears very difficult to interpret,
because some stations with large H=Href amplifications give
a nearly flat H/V spectrum (e.g., BBGA on Fig. 10c). The
horizontal-to-vertical ratio on noise may, however, be useful
to detect rapid lateral variations in the soil response (Fig. 7),
which may sometimes vary drastically at the scale of a few
tens of meters only. In the Bagnères experiment, H/V has also
been used to detect a possible influence of the buildings
where the temporary stations were set up (Fig. 6c); in partic-
ular, it illustrates the advantage of the seismological pillar at
the PYBB observatory. The choice of this reference station
rather than BBMU is also a posteriori justified by the
3D-modeling that reveals an amplitude decrease at the basin
edge where BBMU is set up.

The determination of the structure is key to model the
basin response to seismic excitation. Thus, it was important
to retrieve the structure as deep and as accurately as possible.
The use of ellipticity together withwave dispersion, andwhen
possible the higher modes of surface waves, allowed us to
reach depths up to about 200 m with profiles of maximum
length 90 m, thereby providing a convenient experimental
method in mountainous regions or in urban contexts. The
S-velocity structure has been checked by modeling H/V spec-
tral ratios for noise and for S coda with two different, though
certainly related, modeling approaches (Figs. 11, 12). The
agreement between simulations and observed ratios is gener-
ally satisfying for noise in the whole frequency band, which
validates the MASW results. The results of the modeling for
coda waves are more contrasted and suggest that some
finer details of the local structure remain to be understood.

The 3D-simulations of the basin response using the spec-
tral element method are very informative, even though the
adopted structure is a somewhat simplified version of the real
one. A modeling at higher frequency would be necessary to
account for the finest details of the structure and of the source
spectrum but would require extensive geophysical measure-
ments (array noise techniques, noise correlation, active
refraction, and reflection seismics). Despite these limitations,
the success of the model is certainly due to the simplicity of
the geometry and structure of the basin, compared with other
sites (e.g., the Los Angeles basin, Komatitsch et al., 2004).
This justifies a posteriori the choice of this valley as a pilot
site. In particular, the simulations allowed us to study the
relative contributions of topography and sediments to site
effects which, from an experimental viewpoint, would only
be achievable by setting up very dense surface and borehole
instrumentation. In the Bagnères basin, the sedimentary
filling is clearly at the origin of the dominant contribution
(Figs. 14, 16). Significant topographic amplifications may,
however, be observed in some cases along the narrow crests

in the mountains; they depend on the wave polarity with
respect to crest direction (Fig. 14), a geometrical effect pre-
viously observed at other sites (e.g., Lovati et al., 2010;
Pischiutta et al., 2010). By contrast, no significant influence
of the valley orientation could be observed on peak ground
acceleration inside the basin (except some resonances in the
uppermost narrow valley, see Fig. 14b andⒺ Fig. S2b, avail-
able in the electronic supplement to this paper). This is
because the wavelengths considered are small with respect
to the size of the basin, whereas they are comparable to the
width of the topographic crests. The numerical simulations
also suggest that the high amplifications on the flanks of the
valley (close to 8 at BBHC and BBAR, Fig. 10) are probably
not of topographic origin, but an effect of local geological
characteristics.

The most prominent feature of the amplification maps,
as revealed by the 3D-modeling, is the basin edge effect,
which predicts an overamplification of the PGA by a factor
of about 2 in the basin at some distance of the mountain foot.
This distance is about 100–200 m for the moderate events we
considered, but could become larger for large magnitude
events that excite lower frequencies. A PGA decrease by a
factor of about 2 is also observed immediately at the edge
of the basin. These predictions are in general good agreement
with the observations. Note that without this modeling, it
would have been difficult to guess the origin of the very
low amplitudes at BBMU (Figs. 3, 18a). It is also interesting
to note that, at some stations, the PGA is not due to the
direct S wave, but to some energetic coda waves arriving a
few seconds later.

Important lessons had been drawn from previous studies
devoted to large earthquakes (such as Northridge in 1994 and
Kobe in 1995). In regions of moderate seismicity, a light
experiment similar to that conducted in Bagnères is an effi-
cient and nonexpensive way to analyze in a systematic way
the influence of different parameters describing the valley
response to seismic excitation. Our results are mostly based
on observations of local small to moderate events and on
simulations in a limited frequency range. It is likely that
large, regional earthquakes would reveal different soil re-
sponses, in particular at low frequency, some effects that
would require a much longer and heavier experiment to be
investigated. Our study shows, however, that numerical mod-
eling may offer now a good way to tackle such issues at
somewhat low cost.

Data and Resources

Accelerometric data are available at the Réseau Accél-
érométrique Permanent in Grenoble, France, on request, or at
http://www‑rap.obs.ujf‑grenoble.fr (last accessed March
2011). The topographic map is from the French Institut
Géographique National (Saint-Mandé, France); the geo-
logical map is from the Bureau de Recherches Géologiques
et Minières (Orléans, France). The spectral element simula-
tions were performed on the high-performance computing
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facilities of the Service Commun de Calcul Intensif de l’Ob-
servatoire de Grenoble for the plane wave cases. Simulations
for the realistic source were performed at the Commissariat à
l’Energie Atomique CCRT (GENCI project 2011046060).
They required 290 cores for calculation during 5.5 hours.
CityShark™, an instrument with a software package Geopsy
(http://www.geopsy.org, last accessed March 2011), was
used to measure the impact of urban noise on soil response
variability through the whole city of Bagnères (Chatelain
et al., 2000; Wathelet et al., 2008). Most of the figures in
this study have been drawn with the Generic Mapping Tool
software (Wessel and Smith, 1991).
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Earthquake Ground Motion in the Mygdonian Basin, Greece: The E2VP

Verification and Validation of 3D Numerical Simulation up to 4 Hz

by E. Maufroy, E. Chaljub, F. Hollender,* J. Kristek, P. Moczo, P. Klin, E. Priolo, A. Iwaki,†

T. Iwata, V. Etienne,‡ F. De Martin, N. P. Theodoulidis, M. Manakou, C. Guyonnet-Benaize,
K. Pitilakis, and P.-Y. Bard

Abstract In a low-seismicity context, the use of numerical simulations becomes
essential due to the lack of representative earthquakes for empirical approaches. The
goals of the EUROSEISTEST Verification and Validation Project (E2VP) are to pro-
vide (1) a quantitative analysis of accuracy of the current, most advanced numerical
methods applied to realistic 3D models of sedimentary basins (verification) and (2) a
quantitative comparison of the recorded ground motions with their numerical predic-
tions (validation). The target is the EUROSEISTEST site located within the Mygdo-
nian basin, Greece. The site is instrumented with surface and borehole accelerometers,
and a 3D model of the medium is available. The simulations are performed up to 4 Hz,
beyond the 0.7 Hz fundamental frequency, thus covering a frequency range at which
ground motion undergoes significant amplification. The discrete representation of
material heterogeneities, the attenuation model, the approximation of the free surface,
and nonreflecting boundaries are identified as the main sources of differences among
the numerical predictions. The predictions well reproduce some, but not all, features
of the actual site effect. The differences between real and predicted ground motions
have multiple origins: the accuracy of source parameters (location, hypocentral depth,
and focal mechanism), the uncertainties in the description of the geological medium
(damping, internal sediment layering structure, and shape of the sediment-basement
interface). Overall, the agreement reached among synthetics up to 4 Hz despite the
complexity of the basin model, with code-to-code differences much smaller than
predictions-to-observations differences, makes it possible to include the numerical
simulations in site-specific analysis in the 3D linear case and low-to-intermediate fre-
quency range.

Introduction: The EUROSEISTEST Verification and
Validation Project (E2VP)

The estimation of site effects within the framework of a
seismic-hazard study can involve different approaches, both
empirical and numerical. However, in the context of low or
moderate seismicity, the use of empirical approaches is dif-
ficult to implement due to the lack of representative earth-
quakes. Consequently, the application of numerical tools
becomes essential. During the last decades, an important ef-
fort has been dedicated to develop accurate and computation-
ally efficient numerical methods for predicting earthquake

ground motion in heterogeneous media, especially in 3D
(e.g., Moczo et al., 2014). Henceforth, the progress in meth-
ods and the increasing capability of computers make it tech-
nically feasible to calculate realistic seismograms for
frequencies of interest in seismic design applications (Ka-
wase and Matsushima, 1998; Day et al., 2001, 2003, 2005;
Satoh et al., 2001; Komatitsch et al., 2004; Bielak et al.,
2010; Chaljub et al., 2010).

However, before using the 3D ground-motion simula-
tion codes for civil engineering design purposes, it is neces-
sary to verify their accuracy and validate them for
sedimentary basins (as they represent a typical situation for
many important cities and critical facilities). Several
international blind prediction tests were designed to compare
numerical modeling methods and evaluate their capability to
model earthquake ground motion in surface sedimentary
structures. Beginning with the Turkey Flat, California
(Cramer, 1995), and Ashigara Valley, Japan (e.g., Bard,
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1992), blind tests focused on the effects of surface sediments;
these were followed by the more comprehensive comparison
exercises on the Osaka–Kobe basin area in Japan (Kawase
and Iwata, 1998) and on the southern California area within
the Southern California Earthquake Center (SCEC) frame-
work (Day et al., 2001, 2003, 2005; Bielak et al., 2010),
which also included the effects of extended sources and
regional propagation in the low-frequency range. The Effects
of Surface Geology 2006 (ESG2006) exercise focused on the
Grenoble valley in the French Alps (Chaljub et al., 2006,
2010; Tsuno et al., 2006) and revealed that 3D numerical
simulations were far from being a “press-button” tool.
Among the lessons learned in this exercise, one was espe-
cially important for practical applications: predictions of
the earthquake ground motion in complex geological struc-
tures should be made using at least two different but com-
parably accurate methods to enhance the reliability of the
predictions. This conclusion is consistent with the well-
known fact that no single method can indeed be considered
as the best for all relevant medium-wavefield configurations
(i.e., all important combinations of source characteristics and
underground structures), in terms of accuracy and computa-
tional efficiency.

The ESG2006 exercise included only the verification of
the numerical methods. We recall the concepts of verification
and validation (e.g., Moczo et al., 2014): verification of a
numerical method may be defined as the demonstration of
the consistency of the numerical method with the original
mathematical–physical problem defined by the controlling
equation, constitutive law, and initial and boundary condi-
tions. The quantitative analysis of accuracy should be a part
of the verification. Once the numerical method is analyzed
and verified for accuracy, it should be validated using obser-
vations. In general, the validation may be defined as the dem-
onstration of the capability of the theoretical model (i.e., the
mathematical–physical model and its numerical approxima-
tion) to predict and reproduce observations.

The main motivation of the EUROSEISTEST Verifica-
tion and Validation Project (E2VP) is a follow-up on this
series of comparative exercises, with an extension to the val-
idation part for the most advanced numerical modeling meth-
ods. E2VP is an international collaborative project (see
Table 1), organized jointly by: the Aristotle University of
Thessaloniki, Greece; the ITSAK (Institute of Engineering
Seismology and Earthquake Engineering of Thessaloniki),
Greece; the Cashima research project (supported by the
French Alternative Energies and Atomic Energy Commis-
sion [Commisariat à l’énergie atomique et aux énergies al-
ternatives, or CEA] and by the Laue-Langevin Institute [ILL],
Grenoble); and ISTerre at Grenoble Alpes University,
France. The E2VP target site is the Mygdonian basin near
Thessaloniki, Greece, which is the international research and
test site of many international seismological and earthquake-
engineering projects. To foster the use of linear 3D numerical
simulations in practical prediction, E2VP was designed to
(1) evaluate the accuracy of the current most-advanced

numerical methods when applied to realistic 3D models and
(2) provide an objective, quantitative comparison between
recorded earthquake ground motions and their numerical
predictions. Part of the results obtained in these efforts is pre-
sented here.

The article is accompanied by the methodological study
of Chaljub et al. (2015). It focuses on quantitative and quali-
tative analysis of accuracy (i.e., verification) of four numeri-
cal modeling methods in their application to stringent
canonical models directly related to the model of the Myg-
donian basin.

The Target Site: The Mygdonian Basin,
EUROSEISTEST, Greece

The first step of E2VP was to identify a suitable test site,
that is, a site coupling a good preexisting geological, geo-
physical, and geotechnical characterization with a sufficient
number of available recordings from adequately deployed
seismic stations. Such conditions are rarely fulfilled within the
Euro-Mediterranean area, and the selection process resulted in
decision for the EUROSEISTEST site, located 30 km east-
northeast of Thessaloniki, northeastern Greece (see Fig. 1).

The site is located at the center of the Mygdonian sedi-
mentary basin between the Volvi and Lagada lakes, in the
epicentral area of the magnitude 6.5 event that occurred in
1978 and damaged the city of Thessaloniki. The Mygdonian
basin has been extensively investigated within the framework
of various European projects (Pitilakis et al., 2009). A de-
tailed 3D model is available based on works by Manakou
et al. (2007, 2010). Dense instrumentation, including surface
accelerometers (Fig. 1) and a vertical array of six sensors
spread over a depth of about 200 m at the central TST site,
produced numerous accelerograms (Pitilakis et al., 2013).

The basin has been shaped by north–south extensive tec-
tonics, with east–west-trending normal faults on each side.
The velocity structure of the basin is well constrained along
the central north-northwest–south-southeast profile crossing

Table 1
Teams and Institutions Contributing to the 3D Numerical

Simulations of This Study

Institution Country Town
Team

Acronym

Comenius University of
Bratislava

Slovakia Bratislava CUB

Université Joseph Fourier France Grenoble UJF
Disaster Prevention Research
Institute, Kyoto University

Japan Kyoto DPRI

Istituto Nazionale di
Oceanografia e Geofisica
Sperimentale

Italy Trieste OGS

Université de Nice, Sophia
Antipolis

France Valbonne UNICE

Bureau de Recherches
Géologiques et Minières

France Orléans BRGM
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the central TST site, based on a large number of geophysical
and geotechnical measurements, surface and borehole seis-
mic prospecting, electrical soundings, and microtremor
recordings (Jongmans et al., 1998; Raptakis et al., 2000).
Along that profile, the sediment thickness reaches its maxi-
mum at the TST site (196 m), and the S-wave velocity (VS)
increases from 130 m=s at the surface to about 800 m=s at a
large depth. Because the velocity in the underlying bedrock
is 2600 m=s, the velocity contrast at the sediment–bedrock
interface is large. The 3D structure in the whole graben has
been extrapolated from the central profile, taking into
account information from many single-point microtremor
measurements, array microtremor recordings, one east–west
refraction profile, and old deep boreholes drilled for water
exploration purposes (Raptakis et al., 2005). The resulting
detailed 3D model of the basin (Manakou, 2007; Manakou
et al., 2007, 2010) is 5 km wide and 15 km long, with the
maximum sediment thickness reaching about 410 m. The
TST site resembles a saddle point, with the sediment thick-
ness increasing both eastward and westward, off the north-
northwest–south-southeast central profile, which actually
corresponds to a buried pass between two thicker sub-basins
(Fig. 1). The slope of the northern basin edge is much gentler
than the steep slope of the southern edge: the meshing of the
3D model thus requires specific attention and care, as the
diffraction on the longer northern basin edge is very efficient.
The whole area presents a rather smooth topography: a pre-

liminary sensitivity study indicated only negligible impacts
on ground motion (waveforms and engineering parameters),
and it was decided to not include the topography in the main
E2VP simulations. It was flattened, changing the elevation of
each interface but keeping unchanged the local thickness of
the various layers.

The mechanical properties of the 3D models are given in
Table 2. We used two different velocity models (A and B).
Realistic model A consists of three sediment layers with lat-
erally varying thicknesses, according to the propositions by
Manakou et al. (2007, 2010). Within these three layers, prop-
erties are constant (homogeneous). Model B keeps exactly
the same geometry but replaces the homogeneous layers with
increasing-velocity linear gradients to avoid any internal
velocity jumps within the sedimentary filling. Model B is
a smoothed version of model A and was designed only
for the verification purposes of this study. Outside the basin,
the crustal 1D velocity model of Papazachos (1998) has been
considered for the regional propagation. The attenuation is
assumed to be correctly represented by a frequency-indepen-
dent quality factor Q and a reference frequency of 1 Hz.

Some features of the models deserve a special mention
because of their impact on the difficulty of the numerical
simulations: (1) the simultaneous existence of a soft shallow
layer and of a high water table, with VS � 200 m=s and P-
wave–to–S-wave velocity ratio VP=VS � 7:5, and (2) a very
hard bedrock leading to large impedance contrast and effi-

Figure 1. (a,b) Location of the EUROSEISTEST site within the Mygdonian basin in northeastern Greece; (c) total sediment thickness in
the basin; thicknesses of (d) shallow layer 1 in the 3D model, (e) layer 2, and (f) deep layer 3 (see Table 2). Note the strong lateral variations
and the asymmetries between the northern and southern edges, as well as between the western and eastern sides. The location of the EURO-
SEISTEST accelerometric array is represented by the purple triangles. The central accelerometric site TST appears as a saddle point, with a
maximum of sediment thickness along a north–south profile and a minimum along an east–west profile.
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cient wave trapping. Model details were defined for a maxi-
mum simulation frequency of 4 Hz.

How to Objectively Quantify the Similarity between
Two Signals?

There are many ways to compare two seismograms in
the time or frequency domain: each depends on the quantities
to be compared (from the whole signal to selected engineer-
ing parameters) and on the method used to compute the
differences between quantities. Recently, Kristeková et al.
(2006, 2009) developed misfit criteria based on the time–
frequency (TF) representation of the seismic signals using
the continuous wavelet transform with the Morlet wavelet.
Provided the signals under comparison are not too different,
the TF misfit criteria are sensitive either to differences in
envelope (amplitude) or in phase. The TF misfit criteria
are therefore particularly well suited for the comparison of
numerical synthetics (computed for the same models with
different methods), and they allow a proper characterization
of the nature of the differences between seismograms.

As is well known, waveform differences between earth-
quake records and their numerical predictions can be relatively
large; however, an objective and quantitative way of compar-
ing signals is necessary. From an engineering viewpoint,
Anderson (2004) proposed characterizing the similarity be-
tween two seismograms by a goodness-of-fit (GOF) based
on 10 ground-motion parameters commonly used in earth-
quake engineering: the peak acceleration, peak velocity, peak
displacement, Arias intensity, the integral of squared velocity,
Fourier spectrum and acceleration response spectrum on a fre-
quency-by-frequency basis, the shape of the normalized inte-
grals of acceleration and velocity squared (Husid plots), and
the cross correlation. The investigated frequency range can be
split into narrow frequency subintervals to be evaluated sep-
arately. The agreement between the two compared seismo-
grams is quantified on each parameter by a GOF value
between 0 and 10, with 10 meaning perfect agreement. An-
derson (2004) also introduced the following verbal scale for
GOF: a score below 4 is a poor fit, a score of 4–6 is a fair fit, a
score of 6–8 is a good fit, and a score over 8 is an excellent fit.

The Anderson GOF may be considered a robust criterion for
comparing recordings with their numerical predictions.

Considering the somewhat redundant character of some
components of the original Anderson parameters, we restricted
our comparison in the present study to five parameters. Three of
them are representative of the signal amplitude in different fre-
quency bands: peak value of the acceleration time series (peak
ground acceleration [PGA], C1); spectral acceleration at inter-
mediate frequencies (around 2 Hz, C2); and spectral accelera-
tion at lower frequencies (around0.5Hz,C3).The other two are
representative of the total amount of energy contained in the
signal (cumulative absolute velocity [CAV], C4) and of the du-
ration (relative significant duration [RSD], C5). Arguments for
the selected characteristics and details on their computations
are provided in the Appendix. For these five ground-motion
parameters, the direct misfit between two signals is quantified
in percentage. The misfit value is positive when the prediction
overestimates the target (or reference) signal, and negative
when the prediction underestimates the target signal.

In this article, we also follow the GOF procedure by Kris-
teková et al. (2009) that describe the envelope and phase GOF
criteria based on the TF misfit criteria. Thus, we consider the
GOF as

GOF � 10 exp�−jMj�; �1�
in whichM represents a single-valued misfit in the envelope or
phase. GOF ranges from 0 (no fit) to 10 (perfect fit); further
details may be found in Kristeková et al. (2009): to summa-
rize, a GOF value of 8 corresponds to a misfit of 20%, and a
GOF value of 6 to a misfit of 50%. The TF-based GOF values
are considered only in the verification part of E2VP, as the
numerical predictions are sometimes too different from the ac-
tual recordings.

Verification: Cross-Comparisons between Various 3D
Numerical Predictions of Ground Motion in the

Mygdonian Basin

Several teams contributed to the verification phase of
E2VP. They used a variety of methods or implementations
of the same method: finite-difference method (FDM), Fourier

Table 2
Mechanical Properties of the Two 3D Models Used in the Present Study

Model Layer VS (m=s) VP (m=s) ρ (kg=m3) QS Qκ

Layered model A (constant properties within layers) 1 200 1500 2100 20 ∞
2 350 1800 2200 35 ∞
3 650 2500 2200 65 ∞

Smooth model B (linear increasing gradient within layers) 1 200–250 1500–1600 2100 20–25 ∞
2 250–500 1600–2200 2100–2130 25–50 ∞
3 500–900 2200–2800 2130–2250 50–90 ∞

Bedrock 2600 4500 2600 260 ∞
In layered model A, each layer has homogeneous properties but laterally varying thickness. Smooth model B is built with linear

velocity gradients and without any discontinuity within the sediments. Model B is designed only for verification purposes and is
therefore not used in the validation (model A being the realistic model). VS, S-wave velocity; VP, P-wave velocity; ρ, mass
density; QS, shear quality factor; and Qκ , bulk quality factor. The Q values are assumed to be frequency independent.
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pseudospectral method (FPSM), spectral-element method
(SEM), and discontinuous Galerkin method (DGM). Addi-
tional details on each method can be found in Tables 1 and 3.

In what follows, we compare the 3D ground-motion
simulations obtained with each code for a virtual Mw 1.3
event occurring beneath the Mygdonian basin, considering
both the layered model A and the smooth model B (Table 2).
A double-couple point source is assumed at 5 km depth be-
neath the TST central site (blue star in Fig. 2), with normal
faulting to match the typical regional focal mechanism (strike,
260°; dip, 40°; rake, −90°); the source time function is a Heav-
iside step function low-pass filtered below 3 Hz with a 10-pole
causal Butterworth filter. For each source-model configura-
tion, the teams were required to simulate 30 s of ground mo-
tion at 287 receivers (yellow triangles in Fig. 2). The required
frequency range up to 4 Hz was intended to cover the low-to-
intermediate frequencies at which ground motion is signifi-
cantly affected by the basin.

Layered Model with Attenuation

Figure 3a shows velocity seismograms at the central TST
site simulated by five teams for the layered model A, including
attenuation. Note the good agreement of all numerical predic-
tions at early arrivals (less than 6 s), especially on the vertical
component, and the large differences in phase and amplitude
at late arrivals. Some of those differences, in particular in the
amplitude of the later arrivals, are attributed to the fact that the
method of team 3D03 applies a frequency dependence ofQ: it
approximates the required model value only near the reference
frequency f0, and an almost linear increase of Q with fre-
quency is applied above f0, whereas other teams modeled
the required constant Q. Globally, the numerical predictions

by teams 3D01, 3D02, 3D04, and 3D11 are very close in
the whole time window.

Figures 4 and 5 show maps of the envelope and phase
GOFs (equation 1) evaluated at the virtual receivers for num-
erical predictions by teams 3D01, 3D02, 3D03, 3D04, and
3D11. The GOF values are evaluated in the 0.5–4.0 Hz fre-
quency range as the weighted average for the horizontal com-
ponents of the ground velocity in Figure 4 and for the vertical
component in Figure 5. “Weighted average” means that the
larger component is given a proportionally larger weight; such
a weighting was considered to avoid meaningless values cor-
responding to large relative differences on very weak compo-
nents (for instance on rock near the nodal planes). Each small
colored circle represents a value of GOF between numerical
predictions by two teams for the corresponding receiver. The
color scale ranges from an extremely poor fit (red) to an ex-
cellent fit (blue). The GOF maps are useful in tracking differ-
ences between numerical predictions. Table 4 summarizes
the weighted averages (with the same amplitude-dependent
weighting) of GOF evaluated for rock and soil (sedimentary)
sites for the investigated verification cases. Figure 4 and Ta-
ble 4 show that the results obtained by teams 3D01, 3D02,
3D04, and 3D11 for layered model Awith attenuation are the
most similar, with GOF values in the basin mostly comprised
between 6 and 8 (good fit). Outside the basin, the GOF values
rise above 8 (excellent fit) at the rock sites.

The smaller values of GOF between the 3D03 and other
synthetics are mainly due to the differently implemented at-
tenuation. The GOF values for the basin are mostly between 4
and 6 (fair fit) but fall under 4 for some central receivers. The
level of agreement is smaller for envelopes. This is under-
standable: the attenuation mostly affects the amplitudes of
the waveform.

Table 3
Applied 3D Methods Used by the EUROSEISTEST Verification and Validation Project (E2VP) Participants to This Study

Team and 3D
Acronyms Method Characterization Attenuation

Absorbing Boundary
Conditions References

CUB
3D01

FDM Finite difference, fourth-order velocity-stress volume
arithmetic and harmonic averages of density and
moduli, arbitrary discontinuous staggered grid

GZB 4 relaxation
mechanisms

CPML Kristek et al. (2002,
2010); Moczo et al.
(2002, 2004, 2014)

UJF
3D02

SEM Spectral element, Legendre fourth-order polynomial
Gauss–Lobatto–Legendre integration

GZB 3 relaxation
mechanisms

Stacey (1988) Chaljub et al. (2007);
Peter et al. (2011)

DPRI
3D03

FDM Finite difference, fourth-order velocity-stress
nonuniform staggered grid

linear Q�f �
f0 � 2 Hz,
Graves (1996)

Clayton and
Engquist (1977)
A1 + Cerjan

Pitarka (1999)

OGS
3D04

FPSM Fourier pseudospectral, vertically stretching
staggered grid

GZB 3 relaxation
mechanisms

CPML Klin et al. (2010)

UNICE
3D09

DGM Discontinuous Galerkin, velocity-stress second-order
Lagrangian polynomials with tetrahedral mesh and
homogeneous physical properties within elements

n.a. CPML Etienne et al. (2010)

BRGM
3D11

SEM Spectral element, Legendre fourth-order polynomial
Gauss–Lobatto–Legendre integration

Memory variables
with eight
relaxation
mechanisms

Stacey (1988)
paraxial P1
approximation

De Martin (2011)

All methods are second-order in time. GZB, generalized Zener body; CPML, convolutional perfectly matched layer (Martin and Komatitsch, 2009); n.a., not
applicable. See also Data and Resources.
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Layered Model without Attenuation

We next consider the case of the layered model A with-
out attenuation to remove the differences caused by the im-
plementation of attenuation. Consequently, the eventual
differences should be mainly due to the discrete representa-
tion of material heterogeneities, to the numerical dispersion,
and to spurious reflections from the boundaries of the
numerical grid. Especially, the discrete representation and
dispersion can considerably affect the solutions because lo-
cally generated surface waves propagate over relatively long
distances in the perfectly elastic medium. The velocity seis-
mograms at the central TST site simulated by the five teams
are shown in Figure 3b. Dispersive surface waves dominate
the waveforms. Large differences (in phase and amplitude)
are observed on late arrivals (after 6 s), corresponding partly
to surface waves diffracted off the valley edges and traveling
toward the center of the basin without being attenuated.

Figure 6 shows the maps of envelope and phase GOFs
(weighted average over the three components of ground veloc-
ity) between the numerical predictions by teams 3D01, 3D02,
3D03, 3D04, and 3D09. The overall level of GOFs is lower
compared to the case with attenuation (see also the average
GOF values for soil sites in Table 4). The general decrease of
fit between the numerical predictions is mainly due to the large
differences in late high-frequency arrivals, which are not
attenuated compared to the case with attenuation. The phase
GOF values are smaller than the amplitude GOFs: the numeri-
cal dispersion mostly affects the short-wavelength waves
traveling over long distances.

Smooth Model without Attenuation

Thepresenceofmaterial interfaces in sediments in the lay-
ered model A certainly affects the generation and propagation
of surface waves in sediments. The role of the material inter-
faces was pointed out by comparing the numerical predictions
for the layeredmodel Awith andwithout attenuation. It is thus
reasonable to include another comparison. The smooth model
B has the same geometry of interfaces within sediments as the
layeredmodelA,butmaterialparametersdonotchangeat these
interfaces. What changes at the interfaces is just the gradient
(see the mechanical properties in Table 2). This is achieved
by linear variations of parameters with depth inside layers.

Figure 3c shows the velocity seismograms at the central
site TST, simulated in the smooth model B by teams 3D01,
3D02, 3D04, and 3D09. The similarity of the seismograms,
including parts with surface-wave packets arriving at late
times, is striking. The maps of the GOF values for the available
predictions are shown in Figure 7, and the associated weighted
average GOFs are given in Table 4 (see above for theweighting
scheme). Compared to the GOFmaps in Figure 6 for the elastic
layered model A, it is clear that globally the GOF values for the
smooth model B are considerably higher (see also Table 4 for
the soil sites). Indeed, the GOF values obtained for the smooth
model B are mostly above 6 in the basin and often rise above
8, whereas GOF values for the layered model A are one level
lower (mostly above 4, often above 6, but almost all under 8).
It is also noteworthy that the GOF values for the elastic smooth
model B are larger than the GOF values for the layered model
Awith attenuation (compare Figs. 7 and 4). Material interfaces
at which material parameters change discontinuously are thus
clearly identified as one key factor that significantly affects the
accuracy of the 3D numerical simulations. In other words (and
from the optimistic viewpoint), it is not difficult to reach a very
good level of agreement for the sedimentary basin with
smooth variations of material parameters.

Discussion on the Comparison Criteria

Figure 8 displays the absolute values of misfits evaluated
for the selected engineering criteria (C1–C5; see the Appendix)
as a function of the GOF values evaluated according to equa-
tion (1) for the three basin models and for teams 3D01, 3D02,
3D04, 3D09, and 3D11.We can see a very satisfactory relation-

Figure 2. Detailed locations of the virtual central source (epicenter
at the blue star) and of the six local real events (beachballs with event
numbers) selected for the EUROSEISTESTVerification and Validation
Project (E2VP) validation exercise and recorded by the EUROSEIST-
ESTaccelerometric network (red triangles), superimposed to the virtual
receivers (yellow triangles) considered in the E2VP verification exer-
cise. The white line denotes the basin edge, and the black line is the
location where the sediment thickness equals 10 m. The background
color scale corresponds to the free-surface elevation.

6 E. Maufroy et al.

BSSA Early Edition



Figure 3. North–south (left) and vertical (right) components of synthetic ground velocity at central soil site TST, computed by four or five
different teams for a virtual central event in three cases: (a) the viscoelastic simulation in layered model A, the pure elastic simulation in
(b) the layered model A, and (c) the smooth model B. Most of the numerical predictions are consistent for the first 6 s, before the arrival of the
later phases, among which surface waves diffracted off the valley edges. Note that team 3D03 did not implement the requested constant-Q
viscoelastic rheology.
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ship between the misfits (except for criterion C5) and GOFs:
when a GOF decreases, the corresponding misfit increases. It
is also clear that in terms of C1–C5misfit criteria, the numerical
predictions by all teams for the three models are close: no misfit
exceeds 30% and most of them are below 20%. In particular,
the misfits for the smooth model B are clearly lower than the
misfits for the layered model A. We also see, as expected, a
clear difference between the rock and soil sites: the level of
agreement at the rock sites is significantly better (excellent in
the GOF verbal classification) than at the soil sites for all the
three models and for each criterion but C5.

The misfit for criterion C5 (RSD) correlates well with the
GOF at the soil sites (solid symbols in Fig. 8), but a different
trend appears at the rock sites (empty symbols in Fig. 8): the
C5 misfit indicates disagreement, whereas the corresponding
GOFs are all above 8 (excellent agreement). The higher C5
misfits at the rock sites are due to the fact that a small differ-

ence in duration between two signals gives a high misfit in
percentage if the duration of the target signal is short. For ex-
ample, the average signal durations in the elastic smooth
model B (green symbols in Fig. 8) are equal to 1.34 s (team
3D01) and 0.99 s (team 3D02) at rock sites, whereas they in-
crease to 18.07 s (3D01) and 18.29 s (3D02) at the soil sites.
The average differences in duration between the numerical
predictions of these two teams are equal to 0.36 s for the rock
sites and 0.68 s for the soil sites. These differences are of the
same order, but the relative misfits in percentage are higher at
the rock sites (18.8%) where the duration is short compared to
the longer duration at the soil sites (5.4% of misfit).

Based on these comparisons and analyses, we conclude
that the selected ground-motion characteristics C1–C5, which
are more relevant for earthquake-engineering purposes, make
a reasonable and acceptable alternative to the GOFs (equa-
tion 1) for comparing dissimilar waveforms. We will thus use

Figure 4. Locations of goodness-of-fit (GOF) values (following the GOF procedure by Kristeková et al., 2009) for the viscoelastic rheol-
ogy case in the layered model A of the Mygdonian basin. The scores are computed as the weighted average (see the Layered Model with
Attenuation section) over both horizontal components of ground velocity for five different numerical predictions (by teams 3D01, 3D02,
3D03, 3D04, and 3D11). The bottom left block of plots displays the envelope scores (ENV.); the upper right block displays the phase scores
(PHA.). Each colored dot corresponds to the envelope (amplitude) or phase GOF value computed in the whole frequency range (0–4 Hz) at the
corresponding virtual receiver. Score 0 (red) corresponds to a very poor fit between the two numerical predictions of two teams, whereas
score 10 (blue) corresponds to a perfect fit. The results of one team relative to the other teams are to be found on the line and column labeled
by the team 3D acronym.
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Figure 5. Same as Figure 4, but for the vertical component.

Table 4
Summary of Goodness-of-Fit (GOF) Values (Following the GOF Procedure by Kristeková

et al., 2009) Obtained for the Three Verification Cases Presented in This Article

Receivers at Rock Sites Receivers at Soil Sites

H component V component H component V component

Env. Ph. Env. Ph. Env. Ph. Env. Ph.

Layered model A, with Q 3D01–3D02 9.3 8.7 9.2 8.8 8.0 7.0 7.6 5.8
3D01–3D03 6.6 8.2 8.1 8.2 5.6 6.9 4.8 5.8
3D01–3D04 8.8 8.6 8.8 8.7 7.8 7.8 7.9 7.4
3D01–3D11 9.2 9.5 9.2 9.3 8.1 8.6 8.0 8.0

Layered model A, no Q 3D01–3D02 9.2 8.8 9.0 8.8 6.7 5.6 6.5 4.5
3D01–3D03 8.0 7.4 7.8 7.6 6.5 6.2 6.4 5.5
3D01–3D04 8.7 8.2 8.7 8.3 6.6 4.9 6.2 4.7
3D01–3D09 9.3 8.7 9.1 8.6 6.3 5.1 5.9 4.8

Smooth model B, no Q 3D01–3D02 9.6 9.6 9.3 9.5 8.2 8.4 8.2 8.6
3D01–3D04 9.6 9.6 9.4 9.6 8.0 8.2 8.2 8.0
3D01–3D09 9.6 9.6 9.3 9.4 7.8 7.4 7.6 7.1

The scores are given in envelope (Env.) and phase (Ph.) for each team relative to team 3D01. The values are
weighted averages computed either on 19 rock sites or on 268 soil sites (weighting individual GOF values by the
corresponding time–frequency amplitude to emphasize the GOF values of the most energetic points).
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them for the validation phase (next section) to quantitatively
compare recorded waveforms with their numerical predictions.

An Overall Evaluation

As already pointed out and clearly appearing in Figure 3,
the velocity seismograms obtained by different teams differ
from each other mostly for the layered model A without at-
tenuation (with the exception of the 3D03 solution for model
Awith attenuation, due to their different implementation of the
attenuation, as discussed previously). These differences
among synthetics are well reflected by GOFs based on the TF
misfits (equation 1). The selected (earthquake-engineering)
criteria, as expected, provide a robust and different view on
the level of agreement among the synthetics for the layered
model A with and without attenuation. The C4 (CAV) misfits
are relatively low for model A without attenuation, whereas
the C5 (RSD) misfits are relatively low for model A with at-
tenuation (see Fig. 8). The attenuation eventually improves
prediction of the signal duration in the basin sediments.

Overall, given the complexity of the Mygdonian basin
model, the level of similarity of all the 3D simulations up to
4 Hz (a rather high frequency with wavelengths as short as
50 m) is encouraging.

On the other hand, the verification phase of E2VP con-
firmed the previous experience of the ESG2006 comparative
exercise for the complex model of the Grenoble valley (Chal-
jub et al., 2010). Cross comparisons among methods and
iterations (to remove technical errors and possibly to improve
the method or code) are still necessary for a reliable numeri-
cal prediction of ground motion in complex models.

The discrete representation of continuous and discontinu-
ous material heterogeneity, the attenuation model, the approxi-
mation of the free surface, and nonreflecting boundaries are
identified as the main sources of differences among the
numerical methods and/or codes. All of those key elements
need proper implementation in the methods and codes for a
sufficiently accurate simulation of ground motion at sites atop
complex local sedimentary structures. A more detailed discus-

Figure 6. Same as Figure 4, but without attenuation. The scores are computed as the weighted average (see the Layered Model with
Attenuation section) over the three components of ground velocity for five different numerical predictions (by teams 3D01, 3D02, 3D03,
3D04, and 3D09).
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sion of these factors and the way to reduce the related code-to-
code differences are provided by Chaljub et al. (2015).

Implementation of attenuation into the 3D numerical
simulations has a complex impact on the accuracy of the
numerical predictions (e.g., compare the C4 and C5 misfits
in Fig. 8). Importantly, a proper attenuation model apparently
improves the level of agreement among different predictions
in the sedimentary basin, as waveforms are not dominated by
strong late arrivals of very dispersive surface waves.

Besides the attenuation, a smooth velocity distribution
inside sediments allows reaching significantly improved lev-
els of agreement among different predictions.

In conclusion of the verification phase, the encouraging
level of agreement among numerical predictions up to 4 Hz,
the subsequent identification of the factors affecting the accu-
racy of the simulations, and indications for correct handling of
those factors (Chaljub et al., 2015) support the use of the 3D
numerical modeling approach for predicting groundmotion, at
least in the linear, low-to-intermediate frequency range, and
provided it is performed wisely and carefully.

Validation: Comparison of 3D Numerical Predictions
with Earthquake Recordings in the Mygdonian Basin

The next phase in E2VP is the validation part, consisting
of a quantitative comparison between numerical predictions
and actual recordings in the frequency range up to 4 Hz. The

comparison was performed for six local weak-to-moderate
magnitude events, spanning various azimuths, hypocenter
depths, and distances. The earthquakes were recorded by the
local array of surface and borehole accelerometers (see Fig. 2
and Table 5). Importantly for the numerical simulations, the
hypocenters are located inside the 3D numerical box (as dis-
played in Fig. 2): the maximum size of this box was limited to
roughly 20 × 30 km2 to keep a reasonable computational time
while going up to 4 Hz. This limited size excluded a number
of more distant events with good signal-to-noise ratios, which
will be included in a later study considering the improving
capabilities of high-performance computers. Further require-
ments on the selected events were (1) available focal mecha-
nism and (2) a sufficient number of high-quality recordings by
the local seismic array. The synthetics to be compared with the
records are computed for the 3D viscoelastic layered model A
of the Mygdonian basin (Table 2).

Comparing Recordings and their Numerical
Predictions for Event Number 4

The acceleration time histories recorded from the closest
and largest event (number 4 in Fig. 2 and Table 5) are com-
pared with the numerical predictions computed by three dif-
ferent teams at three receivers: the TST surface site at the
center of the basin (soft soil, Fig. 9a), the TST 197 m deep
borehole receiver (rock condition, Fig. 9b), and the surface

Figure 7. Same as Figure 4, but for the smooth model B, without attenuation. The scores are computed as the weighted average (see the
Layered Model with Attenuation section) over the three components of ground velocity for four different numerical predictions (by teams
3D01, 3D02, 3D04, and 3D09).
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site W03 located westward (soft soil, Fig. 9c). The numerical
predictions look visually very similar to one another at each
of these three sites. The highest level of agreement between
recordings and numerical predictions is found on the north
component of the surface and borehole receivers at the TST
site, except for a slight time shift that is probably due to in-
accuracy in the hypocenter location. These cases (i.e., event 4
and the TST site) are surely the best results of the whole val-
idation exercise. At the opposite extreme, large discrepancies
between recordings and numerical predictions appear in the

waveforms at the W03 site, even if the maximum level of
amplitude is relatively well predicted and if the same event
is considered.

To have a global view of the agreement between record-
ings of the event 4 and their numerical predictions for all
recording sites, the horizontal components are compared
in terms of misfits on the E2VP criteria C1–C5 (Fig. 10).
The positive and negative misfit values, respectively, mean
over- and underestimation of 3D01’s prediction with respect
to the recordings. The misfit values are highly variable on the

Figure 8. Comparison of GOF values (following the GOF procedure by Kristeková et al., 2009) and horizontal absolute misfits obtained
on the E2VP evaluation criteria C1–C5 (see the Appendix), for the three verification cases presented in this article and differentiated here by
colors. The GOF values are computed as the weighted average over horizontal components of ground velocity in the envelope (top panels) and
in phase (bottom panels) for team 3D01 relative to team 3D02 (circles), team 3D04 (triangles) and teams 3D11/3D09 (squares), depending on
their availabilities. All values are weighted averages (weighting individual values by the corresponding time–frequency amplitude or target
parameter, for GOF and C1–C5, respectively, to emphasize the misfits for the most important points), computed either on 19 rock sites (open
symbols) or on 268 soil sites (solid symbols surrounded by an oval for each verification case).

Table 5
Characteristics of Six Selected Real Events that Occurred near the Mygdonian Basin, for which the

Recordings by the EUROSEISTEST Accelerometric Array are Compared to 3D Numerical Predictions

Event
Number

Date
(yyyy/mm/dd) (hh:mm:ss)

Magnitude
Mw Depth (km)

Hypocentral Distance
at Central Site TST (km) Strike (°) Dip (°) Rake (°)

2 2004/11/19 21:01:04 2.8 6.9 17.2 100 60 −50
4 2005/09/12 19:08:30 4.4 5.0 8.2 53 43 −127
5 2005/09/20 17:41:20 3.1 6.0 9.2 72 55 −113
6 2005/10/09 07:12:05 3.9 6.0 9.3 61 55 −115
7 2005/10/09 12:30:22 3.4 5.0 9.7 72 55 −113
8 2006/08/17 04:27:31 3.8 10.0 17.2 329 34 −64

See locations of epicenters in Figure 2. Event 8 was not recorded at central site TST.
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whole array: an almost perfect fit (∼0%) is achieved on a few
receivers, but some high misfits (greater than �100%) are
also observed. The misfit values are also highly variable from
one criterion to another. The visual comparison of recordings
with their numerical predictions (Fig. 9) indicates a good
level of agreement at the surface soil site TST (central
receiver in Fig. 10) and at the corresponding downhole sen-
sor at 197 m depth (the vertical array of five receivers below
TST is represented in Fig. 10 by a diagonal projection of
points at the surface). The level of agreement at the surface
soil site TST is indeed excellent (misfits closed to 0%) for
criteria C1, C2, and C4 (intermediate-to-high frequencies
and CAV intensity). The misfit value for C3 remains reason-
able (below 20%). As for C5, it was previously shown (see

the Discussion on the Comparison Criteria section) that the
duration criterion can lead to relatively strong misfits if the
duration of the seismic signal is short; it is precisely the case
at TST for close-event 4. The misfits shown in Figure 10 for
the borehole station also drop to a satisfactory level (absolute
values for all criteria are below 30%). On the contrary, the
recorded waveform and the numerical predictions at the
western site of the array are really different (Fig. 9c). It is note-
worthy that, even if the waveforms are different, the numerical
prediction is still able to reproduce some of the characteristics
of the ground motion: the fit at the western site is excellent for
C3 (low frequencies) and good for C4 (CAV intensity).

The highest misfits observed in Figure 10 are easily ex-
plainable. The amplitude of the ground motion at the eastern
soil site (far-right colored dot) is systematically overestimated
by the numerical prediction regardless of the frequency band
considered (criteria C1–C4). That receiver is the closest
receiver to the seismic source, and the numerical prediction
is thus especially impacted by even small uncertainties in
source characteristics (for instance, a slight error in the hypo-
center location). At the northern rock site, the numerical pre-
diction considerably underestimates amplitude of the recorded
waveform (regardless of frequency range; C1–C3) and inten-
sity (C4). The location of the station PRO, relative to the epi-
center of event 4, is close to the azimuth of the nodal planes of
the focal mechanism (see Fig. 2). Rapid spatial variations of
amplitude and intensity of the ground motion are expected for
such short distances from this azimuth: therefore, the numeri-
cal prediction at PRO for event 4 is highly sensitive to weak
uncertainties in the focal mechanism. The overprediction of
duration at this site is fully consistent with the underestimation
of the amplitude of the main signal, resulting in a Husid plot
spread over a larger time.

Comparing Verification and Validation Misfits for All
Six Events

Those misfit values show that the validation results are
very variable, even inside one event. A global overview of
the validation exercise allows comparing the level of agree-
ment between recordings and their numerical predictions to
the agreement reached among different synthetics. Figure 11a
gathers misfit values based on the E2VP criteria for the veri-
fication exercise (misfits between synthetics obtained by dif-
ferent teams; blue-tone dots) and for the validation exercise
(misfits between recordings and numerical predictions; red-
tone dots) at all receivers for the six selected events (Fig. 2
and Table 5). The averaging over all receivers was obtained
by (1) considering only absolute misfit values (L1 norm), so
as to not balance overprediction at some sites by underpre-
diction at others and (2) weighting the misfit value at each
receiver by the value of the corresponding parameter, so as
to emphasize the misfits for the most important points. An
overall misfit around 25% is observed for the verification,
whereas the misfit values are much higher for the validation
(around 80%).

Figure 9. North–south component of observed and numerically
predicted ground acceleration at (a) the central soil site TST at sur-
face, (b) the corresponding 197 m depth borehole station, and (c) the
west soil site W03, for theMw 4.4 real event in the northeast (event
4 in Fig. 2 and Table 5). Every time series is Butterworth filtered
between 0.5 and 4.0 Hz.
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Figure 11b provides a complementary comparison by
considering only one surface soil site (TST) for five events
(one of the six events was not recorded at TST). The veri-
fication misfits remain approximately at the same level
(around 25%), whereas the validation misfits are reduced
to approximately 60%. Finally, Figure 11c focuses on the
average misfit for the biggest event (event 4) at all receivers.
A reduction of the misfit values to about 10% is observed for
the verification and to about 40% for the validation. This syn-
thesis, shown in Figure 11, clearly demonstrates the robust-
ness of the statement that the smallest differences between
recordings and their numerical predictions are significantly
larger than the usual distances between simulations.

Discussion: Can We Identify the Origins of the
Validation Misfits?

The details of the waveforms are highly sensitive to the
source parameters (hypocenter location and focal mecha-
nism), to the shape of the sediment-basement interface,
and to the internal sediment layering of the basin. Each of
these items may affect the validation misfits. Are the misfits
due predominantly to inaccuracies in the description of the
sources and/or of the 3D model? Figure 12 shows maps of
the misfit values for criterion C4 (CAV) between actual re-
cordings and their numerical prediction by team 3D02 for
the six selected events in Figure 2 and Table 5. A first
assumption consists of assigning the origin of mismatch be-
tween recordings and their numerical predictions to the un-
certainties in source parameters. One could then expect that

the higher the magnitude, the lower the misfits because
larger-magnitude earthquakes are usually better character-
ized than low-magnitude earthquakes (for events moderate
enough to assume a point source). Figure 12 shows that the
best validation agreement is indeed obtained for the largest-
magnitude event (event 4,Mw 4.4). Nevertheless, the second
largest magnitude (event 6, Mw 3.9) produces the worst val-
idation results, whereas the two lowest-magnitude events
(event 2, Mw 2.8; event 5, Mw 3.1) produce the second best
results. Within our dataset (limited to few events), no clear
relation appears between the validation misfits and the mag-
nitude or the hypocentral distance of those earthquakes.

Another hypothesis is to relate the origin of misfits to the
uncertainties in the 3D distribution of the model properties.
Depending on the level of knowledge in the model, some
stations should systematically produce low misfits and good
validation results (where the model properties are accurately
defined), while other stations should systematically produce
strong misfits (where the model properties are poorly de-
fined), provided that the local response is predominantly
controlled by the local structure. Nothing similar can be ob-
served in Figure 12.

To remove (some of) the errors due to uncertainties in
source parameters and to focus on the prediction of the site
effect alone, Figure 13 evaluates the prediction of the Fourier
transfer function from the downhole sensor to the surface
sensor at the central vertical array TST. The instrumental
site-to-reference spectral ratio derived from the actual record-
ings of event 4 (gray line) is compared to those derived from

Figure 10. Maps of horizontal misfits on the E2VP evaluation criteria (see the How to Objectively Quantify the Similarity between Two
Signals? section) between the recordings of real event 4 (black star; see also Fig. 2 and Table 5) and its numerical 3D prediction by team
3D01. C1 is based upon peak ground acceleration (PGA), C2 upon elastic spectral acceleration ranging between 1.5 and 3.0 Hz, C3 upon
elastic spectral acceleration ranging between 0.375 and 0.750 Hz, C4 upon cumulative absolute velocity (CAV), and C5 upon 5%–95%
relative significant duration. Each colored dot corresponds to the misfit obtained at the corresponding real receiver, the vertical array at
TST being projected on the surface at the center of the map. Red/yellow tones are for overestimation of the numerical prediction compared
to the recordings; blue/green tones are for underestimation.
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3D synthetics (back lines). The frequencies at which ampli-
fication of ground motion occurs (around 0.75 Hz for the
fundamental peak, 1.7 and 2.8 Hz for overtones, and around
1.0 Hz probably due to the excitation of local surface waves)
are well reproduced in all synthetics. However, the ampli-
tudes of these different maxima are not all accurately pre-
dicted. The overtone at 2.8 Hz and the contribution of the
surface waves at 1 Hz are significantly underestimated. We
estimate that the numerical predictions have well reproduced
some features of the site effect, but not all.

Respective Influence of the Uncertainties in Source
and Model

To deepen the analysis of the actual capability to nu-
merically predict the site-effect component, synthetic time
histories that could both maximize the impact of the numeri-

cal estimate of the site-effect component and minimize the
effect of uncertainties in the source description are required.
Toward that goal, we compute hybrid time histories: the
complex synthetic spectral ratio between the surface and
downhole TST sensors, as derived from the numerical com-
putation (i.e., with both modulus and phase), is considered as
the borehole–surface transfer function and is thus multiplied
in the Fourier domain, with the actual signal recorded at the
downhole sensor. The inverse Fourier transform returns a hy-
brid time history in the sense that the input signal is a real
signal (integrating actual source parameters), whereas the
site-effect part is coming from the numerical predictions.
This way the effect of uncertainties in the source description
is somehow removed (we consider the sensitivity of the
transfer function to uncertainties in source parameters is very
weak as long as the precision on hypocenter location remains

Figure 11. Summary of horizontal absolute misfits obtained on the E2VP evaluation criteria C1–C5 for the verification and validation
exercises, considering different configurations: (a) average for the six selected events (Fig. 2 and Table 5) at all receivers; (b) average for the
five events recorded at the central soil site TST; (c) average for the biggest event (event 4) at all receivers. Synthetics-to-synthetics misfits
(verification, blue-tone dots) are compared to recordings-to-synthetics misfits (validation, warm-tone dots). The verification misfits in the left
panels are computed by taking into account either the real array (limited to 15 surface receivers; solid circles) or the complete virtual array
(287 receivers; crosses). A single value per array is obtained by calculating the weighted average of the absolute misfits over the considered
receivers, weighting each individual misfit by the corresponding target value of the ground-motion parameter (to decrease the importance of
weaker points).
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within a few kilometers; Chaljub et al., 2014). The E2VP
evaluation criteria are then applied between the actual
recordings and the hybrid time histories computed at the sur-
face soil site TST for five of the selected events (event 8 was
not recorded at TST) using the actual recordings at the down-
hole rock site and the numerical transfer function predicted

by three teams (3D01, 3D02, and 3D04). Figure 14 displays
the misfits obtained following this procedure and their com-
parison to the previous validation misfits obtained between
actual recordings and their fully numerical predictions. Fig-
ure 14a demonstrates that for all C1–C5 criteria, the absolute
misfit values obtained with hybrid signals are significantly
lower than the values obtained with fully numerical signals
(around 35% instead of 60%). Because hybrid signals may
be considered as free from effects of source uncertainties,
one may conclude that the origins of discrepancies between
actual recordings and their numerical predictions are likely to
be almost equally balanced between uncertainties in source
parameters and uncertainties in the 3D model description.

Figure 14b presents the same results with average
computed over signed misfit values (the � sign of the misfit
value respectively indicating over- or underestimation of the
target is kept; see the Appendix) and allows the process to be
extended one step further: fully numerical predictions exhibit
a trend to overestimate most parameters (C1–C4), whereas the
hybrid predictions exhibit an opposite trend to underestimate
the same parameters, in perfect agreement with the surface/
downhole spectral ratios displayed in Figure 13. This suggests
that: (1) In the present case, uncertainties in source description
tend to produce overestimation of the ground motion in the
E2VP validation exercise (that could be explained by an over-
estimation of the magnitude; for example, the signals used for
magnitude estimation could be insufficiently corrected for site
effects). (2) The site effect itself is globally underestimated at
the TST site. That global trend for underestimating the actual
amplification by all the 3D simulations at the TST site (it
could not be investigated at other sites, as there is no other

Figure 12. Locations of horizontal misfits for criterion C4 (CAV) between the real recordings of the six selected events (see Fig. 2 and
Table 5) and their numerical 3D predictions by team 3D02. Each colored dot corresponds to the misfit obtained at the corresponding real
receiver, the vertical array at TST being projected onto the surface at the center of the map. Red tones are for overestimation of the numerical
prediction compared to the recordings, blue tones are for underestimation.

Figure 13. Fourier spectral ratios at the central site TST, com-
puted between the surface receiver and the borehole receiver at
197 m depth for the average horizontal component recorded or nu-
merically predicted for theMw 4.4 event in the northeast (event 4 in
Fig. 2 and Table 5). The results are shown for three different numeri-
cal predictions (black lines), to be compared to the real data (gray
bold line). The spectral ratios from this event are representative of
the median spectral ratios computed for the five selected events re-
corded at TST.
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downhole sensor) could have several explanations: incorrect
estimates of damping (too large values), incorrect internal
sediment layering structure, overemphasis on the buried-pass
or saddle-point structure just underneath the TST site (which
would result in larger off-profile diffraction), or overestima-
tion of the hypocentral depth, resulting in too-weak excitation
of surface waves.

Conclusions

The participation of several computational teams from
various parts of the world, with expertise in advanced numeri-
cal codes, allowed achievement of several major accomplish-
ments in the verification and validation of 3D ground-motion
simulation codes. A very good similarity, quantified with an
objective scale, could be obtained among synthetics up to a
frequency of 4 Hz despite the relative complexity of 3D mod-
els, which witnesses the accuracy of the corresponding
numerical schemes. The existence of an excellent agreement
between several completely independent codes, with code-to-
code differences much smaller than predictions-to-observa-
tions differences, makes it possible and legitimate to include
the numerical simulation approach in the toolbox for site-spe-
cific ground-motion estimation, at least in the 3D linear case
and low-to-intermediate frequency range.

A careful verification exercise requires time, whereas a
careful validation exercise also requires high-quality data.
The most common outcome of the verification phase (sim-

ilarly to the conclusions of Chaljub et al., 2010) is that, with-
out iterations and cross checking, different codes are very
likely to provide significantly different results when applied
to the same case study. As an immediate conclusion, too fast
applications of 3D codes may yield wrong ground-motion
estimates, potentially resulting in increased mistrust in end
users. The lessons and experiences of E2VP draw attention
to the following recommendations for a wise and careful use
of such numerical simulation codes.

One should never be satisfied with only one computa-
tion from one single team, but should request several teams
(at least two) with different numerical schemes to perform
parallel computations of the same case. The corresponding
results then can be considered reliable only if they agree be-
yond some quantitative threshold; a GOF threshold of 7
seems a reasonable value and roughly corresponds to misfit
thresholds for the C1–C5 criteria within about 20%–25%.

Comparison of numerical predictions with actual data (in
situ earthquake recordings) is always useful. Having sensitive
in situ instrumentation (continuously recording broadband ve-
locimeters or accelerometers) proves to be invaluable for
checking the reliability of numerical simulation results, with
a special emphasis on vertical arrays, which allow the site-
effect component to be constrained. In addition to the avail-
ability of high-quality in situ recordings, the validation phase
showed the importance of completing such data with high-
quality metadata, concerning both the source parameters
and the site model. Even though the need for additional infor-

Figure 14. Average of (a) absolute misfit values and (b) signed misfit values obtained on the E2VP evaluation criteria C1–C5 for the five
events recorded and numerically predicted by teams 3D01, 3D02, and 3D04 at the central soil site TST. The actual recordings are compared to
fully numerical predictions (full circles) and to hybrid predictions (see the Respective Influence of the Uncertainties in Source and Model
section; empty squares).
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mation and complementary surveys can always be identified,
the site selected for the present project can be considered as
one of the best-known sites, at least in the Euro-Mediterranean
area. The results obtained here in terms of validation, and
comparison with actual recordings should thus be representa-
tive of the top-ranking sites in terms of site investigations.

Even in such a well-known site, the prediction of several
ground-motion parameters of engineering interest exhibits
average differences around 60%–80%, with a minimum of
30%–40% for the larger magnitude, probably best-known
event. Such values should be kept in mind when discussing
the effects of missing elements in the numerical approach
(e.g., nonlinearities). The gross characteristics of the amplifi-
cation at the valley center are satisfactorily reproduced by the
3D model, both in terms of spectral contents and signal du-
ration, although with a slight underestimation. In the present
case, the differences between recordings and numerical pre-
dictions appear to have an approximately balanced origin
shared between inaccuracies in source parameters (hypocenter
location, magnitude, and focal mechanism), and uncertainties
in the site model (geometry, velocity structure, and damping).
Interestingly, in the present case, the former are associated
with some overprediction of ground motion, whereas the latter
would underestimate the site amplification. Such observations
suggest a positive bias in magnitude estimates, which would
be consistent with an underestimation of site effects at most
observational stations. However, similar analyses on other
sites are required to indicate whether such observations can
be generalized or are specific to the considered site.

Two final comments concerning the validation phase are
worth consideration. The first is related to the small number of
candidate seismic events that could be considered (i.e., those
within the numerical box). This is indeed a typical situation for
moderate/weak seismicity areas. Future validation exercises
would certainly benefit from the possibility of including more
distant events, which implies either the increase of computing
capabilities or the use of hybrid numerical schemes coupling
computations at different scales (an excitation box).

The second comment deals with the consequences of
these results on the use of numerical simulation for ground-
motion prediction. In the case of a deterministic approach, a
scenario earthquake would be defined: all the uncertainties af-
fecting the validation and linked to source parameters (parti-
ally responsible for the large differences between recordings
and their numerical predictions) should therefore be left aside,
and only those linked to the propagation and site models
should be considered; however, for sources of finite extent,
an additional cause of variability should be taken into account
as the detailed rupture kinematics cannot be deterministically
predicted, but it should be tackled with some sensitivity study.
In the case of a probabilistic approach, the use of numerical
simulation would probably focus more on the determination
of the site amplification function than on massive simulations
with a wide range of source parameters (location and magni-
tude). Therefore, whatever the approach, the main focus is the
determination of the site amplification. Further investigations

of the validation of 3D numerical simulations should thus def-
initely favor the use of pairs of stations on the site of interest
and on relevant nearby reference, including local vertical ar-
rays, together with thorough geophysical and geotechnical
surveys to provide the required details of the underground
structure, not only for high frequencies and short wavelengths,
but also for some still badly known parameters, such as
material damping.

Data and Resources

Several numerical cases of the E2VP are made freely
available to the seismological community at http://www
.sismowine.org (last accessed February 2015). The real seis-
mograms used in this study can be obtained from the EURO-
SEISTEST strong ground-motion database and web portal at
http://euroseisdb.civil.auth.gr (last accessed June 2014; see
also Pitilakis et al., 2013). The spectral-element method
(SEM) meshes were designed using the commercial software
Cubit (https://cubit.sandia.gov; last accessed June 2014).
The synthetic seismograms from team 3D11 were computed
using the code EFISPEC3D (De Martin, 2011; http://
efispec.free.fr; last accessed January 2014).
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Appendix

The E2VP Ground-Motion Evaluation Criteria

To evaluate the extent of similarity between two mis-
matched signals within the EUROSEISTEST Verification
and Validation Project (E2VP), we elaborated comparisons
based on a series of complementary ground-motion parame-
ters, each one emphasizing a different characteristic of the
waveforms. To keep a reasonable number of parameters,
the E2VP evaluation criteria are restricted to five parameters
(three for amplitude/frequency content, one for energy, and
one for duration) chosen as followed: (1) C1, peak ground
acceleration (PGA); (2) C2, elastic spectral acceleration in in-
termediate frequencies, arithmetic average over 1.5–3.0 Hz;
(3) C3, elastic spectral acceleration in low frequencies, arith-
metic average over 0.375–0.750 Hz; (4) C4, cumulative abso-
lute velocity (CAV); and (5) C5, relative significant duration
(RSD) between 5% and 95% of the Arias intensity.

Criteria C1–C3 evaluate the amplitude of the signal in
different frequency bands. These different frequency bands
are chosen according to the observed characteristics of the
real signals at the center of the Mygdonian basin: the fre-
quency range evaluated by C3 includes the fundamental res-
onance frequency of the basin, whereas C2 covers the two
higher modes.

Criterion C4 is based on the CAV, which is defined as the
integral of the absolute value of the acceleration time series
(Electrical Power Research Institute [EPRI], 1988):

CAV �
Z

Dmax

0

ja�t�jdt; �A1�

in which ja�t�j is the absolute value of the acceleration time
series at time t and Dmax represents the total duration of the
time series. Anderson (2004) proposed the Arias intensity
and the energy integral as ground-motion parameters rep-
resentative of the signal’s intensity; both parameters are
computed from the square of the acceleration or velocity
time series. CAV is chosen as an alternative in the E2VP
evaluation procedure because this parameter is of the same
dimension as the three amplitude and frequency-content
criteria C1, C2, and C3, therefore giving misfit values of
the same order. CAV was found to be the instrumental intensity
measure that best correlates with the onset of structural dam-
age to engineered structures (EPRI, 1988; Campbell and Bo-
zorgnia, 2010).

The duration criterion C5 is based on the RSD, which is
defined as the time interval over which a specified amount of
energy is dissipated. One common measure of the significant
duration is the time interval between 5% and 95% of the
Arias intensity IA (Trifunac and Brady, 1975; Kempton and
Stewart, 2006):

IA �
�
π

2g

�Z
Dmax

0

a2�t�dt; �A2�

in which a�t� is the acceleration time history, g is the accel-
eration of gravity, and Dmax represents the total duration of
the time series. The 5%–95% RSD is chosen in the E2VP
evaluation procedure because it does not account for the tim-
ing of arrival of the different phases of energy. A slight time
shift is frequently encountered when comparing recordings
with their numerical predictions, possibly due to some mis-
location of the source or to uncertainties in the bedrock
velocity structure. That problem, easily identified by com-
paring arrival times at rock sites, does not affect the impact
of ground motion on structures and is therefore of a secon-
dary importance with respect to the E2VP purposes.

Prior to the computation of the misfits, the same
processing is performed on both time series to be compared.
They are cut to the same duration in time (generally to the
shorter length of the numerical prediction, or 30 s in the
present study). Both are band-pass filtered using a sixth-or-
der Butterworth filter with corner frequencies of 0.05 Hz and
of the maximum frequency available in the numerical predic-
tion (4 Hz in the present study).

The comparison of two signals involves a prediction (a
synthetic ground motion) being compared to the target, which
is either the corresponding real recording or another prediction
(eventually considered as a reference signal). The misfit δP
between the target and its prediction for one ground-motion
parameter P is therefore expressed in percentage of the target
parameter Ptarget with the logarithm formulation

δP �
��log�Ppred:=Ptarget�

log�2�

�
× 100: �A3�
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This calculation of the misfit δP gives symmetrical values for
under- or overestimation of the target value: δP is negative
when the prediction underestimates the target and positive
when the prediction overestimates the target.

In the E2VP evaluation procedure, the horizontal
components of the ground motion are handled differently,
depending on the considered ground-motion parameter. At
first, each parameter is estimated over distinct horizontal
components, giving two horizontal values per ground mo-
tion. Both C4 and C5 are based on the integral of the accel-
eration time series; therefore, the two horizontal values of the
corresponding parameter (CAV and RSD) are directly added
together prior to the comparison. Concerning C1–C3, the
horizontal components of the target signal are systematically
rotated, ranging from 0° to 355°, with an angle increment of
5°, to determine the rotation of components that maximizes
the value of the considered parameter. This systematic explo-
ration is performed on the acceleration time series for C1 and
on the elastic spectral acceleration for C2 and C3. Once the
maximizing rotation angle is determined, the same rotation is
applied to the predictive signal. The comparison finally oc-
curs on the horizontal component rotated to maximize the
value of the target parameter.
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Long Duration of Ground Motion in 
the Paradigmatic Valley of Mexico
V. M. Cruz-Atienza1, J. Tago2, J. D. Sanabria-Gómez3, E. Chaljub4,5, V. Etienne6, J. Virieux4,5 & 
L. Quintanar1

Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site 
effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground 
motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, 
where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán 
earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional 
dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away 
the city. By means of high performance computational modeling we show that, despite the highly 
dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the 
valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response 
of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration 
of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, 
respectively, which are two frequencies with the largest observed amplification. This conclusion 
contradicts what has been previously stated from observational and modeling investigations, where 
the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in 
Mexico City.

The seismic response of the Valley of Mexico has been for many years a paradigmatic study case in earthquake 
seismology and engineering. After the devastation of Mexico City (MC) in 1985, when more than 15,000 peo-
ple died due to a magnitude 8.0 earthquake beneath the coast of Michoacán, more than 450 km away from the 
city, scientists have attempted to explain site effects such as the extraordinary amplification of seismic waves 
and the extremely long duration of ground motion in the sedimentary basin where most of the city is located 
(Fig. 1). Amplification of ground motion due to local soil conditions is a well-known phenomenon. In the Valley 
of Mexico, spectral amplification for subduction earthquakes (i.e., with epicentral distances greater than 300 km) 
at soft-soil sites range from 10 to 50 at frequencies between 0.2 and 0.7 Hz with respect to hard-rock sites1,2. 
However, the hard-rock sites also experience large amplifications of about 10 due to regional site effects (quanti-
fied from attenuation relationships) associated with the volcanic arc deposits where the valley is embedded3,4. This 
means that absolute spectral amplifications in the lake-bed zone of the Valley of Mexico may reach values from 
100 to 500, which are probably the largest ever reported worldwide4.

Long-lasting ground motion in the Valley of Mexico
While the amplification of seismic waves in the Valley of Mexico has been satisfactorily explained by regional and 
local soil conditions5–12, the physical reasons for the long duration of ground motion remain an open question. 
Initial efforts addressing this issue considered two-dimensional wave propagation models in small-basin con-
figurations with realistic attenuation properties. Results from these exercises led to conclude that surface-waves 
trains generated at the edges of the basin10,13,14 suffer a rapid decay as they propagate, and thus to discard this 
mechanism as a possible explanation for the long seismic records7,15. This conclusion invoked the existence of 
regional-scale effects producing the elongation of the incoming wavefield to Mexico City from subduction earth-
quakes, such as multipathing of seismic waves due to scatterers in the crust and surroundings of the basin16,17, 
and seismic energy entrapment in both the accretionary prism near the source region and the Transmexican 
Volcanic Belt (TMVB)18,19. The interaction between the incoming wavefield and the local basin conditions may 
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also elongate the ground motion when the resonant frequencies of the basin coincide with the dominant periods 
of the wavefield20.

Although our current understanding of the duration of ground motion in the lake-bed zone of MC is clearly 
rooted in the nature of the incoming wavefield, the actual effects produced by the sedimentary basin itself have 
been underestimated. Figure 2a shows the seismic records (f <  1 Hz) of a magnitude 3.4 earthquake that occurred 
~4 km below the city on December 1, 2014 (Fig. 1). These unprecedented records were possible thanks to a 
recently-installed permanent broadband network (blue circles) in the Valley of Mexico operated by the Servicio 
Sismológico Nacional (SSN). Despite the small magnitude of the event, ground motion in the basin lasted 
more than two minutes (e.g. at lake-bed sites VRVM, ICVM and PBVM). This can be better appreciated in the 
band-pass filtered signals at 0.3 Hz, where the long coda is dominated by the harmonic beating widely reported 
in the literature for subduction earthquakes recorded in MC16,21. In contrast, this beating is barely present at 
hard-rock sites such as CUIG and CJVM, where the motion is dominated by a single wave package with duration 
no longer than 20 s. This observation strongly suggests that ground motion in the lake-bed zone experiences very 
long durations in the absence of regional-scale effects. Local basin conditions are thus preponderant in the dura-
tion of ground shaking across the basin at frequencies where the amplification of seismic waves is the largest. The 
leading question of this work is thus raised about the mechanisms allowing long-lasting wave propagation within 
a highly dissipative sedimentary basin. Two main hypotheses may be advanced: (1) the basin incoming wavefield 
suffers from multiple-scattering even at a local scale, and/or (2) the sedimentary basin itself enhances sustained 
wave trains generation and efficient propagation.

Though certainly true, hypothesis one does not seem to have first order implications in the duration of ground 
motion at the lake-bed zone, as revealed by the absence of significant seismic energy in the coda of hard-rock sites 
(Fig. 2). On the other hand, considering the highly dissipative and fluid saturated sediments that cover large part 
of the basin (see next section), a plausible idea supporting hypothesis two is the efficient propagation of seismic 
energy in the deep basin, carried by surface-waves overtones. In this work we examine this argument based on 
realistic 3D wave propagation modeling to understand whether local soil conditions within the basin may explain 
the observed long seismic records.

A basin model for the Valley of Mexico
The Valley of Mexico is located in the southern and volcanically active part of the TMVB (Fig. 1). This region is 
composed by Oligocene volcanics overlaying Cretaceous limestones. On top of these formations within the valley, 
there are Miocene volcanics overlain by a ~100 m thick sequence of tuffs or sands, gravel and recent lava flows11,22, 
averaging a thickness of ~2 km for the TMVB above the Cretaceous limestones12,23. Geotechnically speaking, this 
geologic setting corresponds to the hill zone of the valley (region outside the blue contour in Fig. 1), which may 

Figure 1. Topographic setting of Mexico City (MC) and the Valley of Mexico. Color scale corresponds to the 
basin thickness (i.e., the basin contact with the Oligocene volcanics of the Transmexican Volcanic Belt, TMVB). 
Stars show the epicenters for the vertical body forces applied at the free surface (green) and the magnitude 3.4 
earthquake of December 1, 2014 (red). This figure has been created using the Generic Mapping Tools (GMT) 
Version 5.3.0, http://gmt.soest.hawaii.edu.
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be considered hard-rock sites (e.g. CUIG, MHVM and CJVM). The stratigraphy of the MC basin is essentially 
the same as in the hill zone except for the absence of recent lava flows and the presence of clays with high water 
content of 10 to about 100 m thickness24,25. The basin is geotechnically known as the lake-bed zone of the valley 
(region within the red contour in Fig. 1) and it is where the largest amplification of ground motion is observed. 
The transition region in between the lake-bed and the hard-rock zones is mainly composed by alluvial depos-
its. The composition and thickness of the surficial clay deposits changes laterally within the basin8,22. However, 
shear-wave speed measurements on core samples from different boreholes in the lake-bed zone show extremely 
low values in these deposits (i.e. 30–100 m/s), with an average thickness of about 50 m24. Laboratory tests26 and 
field estimates27 also show that the clays are highly dissipative, with very low shear Q values ranging from 10 to 50. 
These observations led to a four-layer velocity model for the basin with very high Vp/Vs values on top to explain 
experimental data from several earthquakes28. We adopt this model for the lake-bed zone in our calculations 
(Figure A1a and Table A1).

Observations within the basin show that depths (H) to the deep, geotechnically consistent deposits are pro-
portional to the natural vibration periods (T0) of the sites (i.e., H =  (β /4)*T0)3. These periods are thus proportional 
to the thickness of the surficial clay layers that we have assumed constant in our model. However, to confine the 
underlying deep-basin deposits in depth, from a large data set of natural vibration periods across the basin2,29 and 
assuming an average shear-wave speed (β ) of 400 m/s, we generated the bed-rock geometry shown in Fig. 1. This 
interface represents, in our model, the contact between the basin deposits and the Oligocene volcanics of the TMVB 
(i.e., fourth interface in Figure A1a). A cross section of our basin model along the dotted line of Fig. 1 is shown 
later in section “Dominance of surface waves overtones”. Regarding the crustal structure surrounding the basin, 
we adopted a 1D model determined from the inversion of receiver functions at the CUIG site30, which includes 
a relatively low-velocity layer on top, associated with the ~2 km thick TMVB (see Figure A1a and Table A1).  
To minimize numerical errors, the interfaces of the model were vertically homogenized before discretizing the 
model by averaging the S- and P-slownesses and densities31 (circles in Figure A1a). The homogenization length is 
50 m, which is about half of the minimum wavelength in the surficial clay layers. Using the computational method 
introduced in the next section we calibrated, by trial and error, the attenuation properties of the seismic model so 
that the durations of the intense phases of ground motions (i.e., time between 5% and 95% of the Arias intensity)32  
observed for the M3.4 earthquake in nine stations are similar to those predicted by our model assuming a 4 km 
depth reverse faulting below the epicenter (Figs 2b and A2), as suggested by the first P-wave arrivals. These 
properties, which are in accordance with laboratory and field measurements26,27, are such that Qs =  0.3*Vs for 
Vs <  400 m/s and Qs =  0.1*Vs otherwise, with Qp =  2*Qs everywhere (Table A1).

Computational method for viscoelastic wave propagation
Simulating the propagation of seismic waves in extreme sedimentary basins represents a big challenge. In our 
seismic model for the Valley of Mexico, the S-wavelength at 1 Hz shortens from 4.8 km in the deep crust to 
only 50 m in the top layer of the basin during propagation. To obtain an accurate solution of the elastodynamic 
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Figure 2. (a) Observed velocity seismograms in two different frequency bands at nine broadband seismic 
stations for a M3.4 earthquake with 4 km depth (see Fig. 1). Records are aligned with the P-wave arrival 
and scaled with the factors given for each trace. Notice the long seismic records in the lake-bed stations. 
(b) Observed and modeled durations of the strong shaking phase for f <  1 Hz. The corresponding synthetic 
seismograms are shown in Figure A2.
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equations governing the propagating waves with such modulation, the numerical scheme must handle pow-
erful capabilities to sample the wavefield efficiently in the whole simulation domain. For this reasons we have 
developed an hp-discontinuous Galerkin finite element method (DG-FEM) called GEODG3D that handles both 
unstructured domain decompositions (h-adaptivity) and different approximation orders per element in space 
(p-adaptivity)33–35. GEODG3D is an extension for viscoelastic wave propagation of a method previously intro-
duced for elastic waves33. It solves the velocity-stress formulation of the visco-elastodynamic equations in three 
dimensions with rock quality factors, Qs and Qp, chosen to be nearly constant in the frequency range of interest 
(i.e., f <  1 Hz). For a detailed description of the viscoelastic model and the DG-FEM see Methods.

To maximize the integration time step imposed by the Courant stability criterion, GEODG3D locally adapts 
the elements’ approximation order depending on both the elastic properties of the medium and the size of the 
tetrahedra (p-adaptivity) (Figure A3a). For decomposing the simulation domain in tetrahedral elements, we fol-
lowed a meshing strategy that guarantees the same numerical accuracy across the whole domain33. Given a max-
imum resolvable frequency (1 Hz in this work) and starting from a regular coarse mesh, the strategy iteratively 
refines the elements until the accuracy criterion (i.e., 3 elements per minimum wavelength; Figure A5) is satisfied 
locally in at least 99.8% of the elements (h-adaptivity) (Figure A3b). Figure 3 shows the resulting mesh for the 
upper part of the simulation domain, where the elements are clearly adapted to both the actual topography and 
the extremely low velocities of the basin (compare with Fig. 1). Numerical verification (Figure A4) and conver-
gence analysis (Figure A5) of the GEODG3D viscoelastic solver have been thoroughly done35, finding excellent 
results for different international benchmark problems (see Section 3 of Methods). Table A2 provides useful num-
bers related to the tetrahedral mesh and discretization parameters used in all simulations of this study.

Dominance of surface waves overtones
Observational evidence for the dominance of surface waves overtones in the Valley of Mexico shows that peak 
displacements in the lake-bed zone between 0.3–0.5 Hz at different borehole depths (green circles in Fig. 1) for 
several subduction earthquakes are in accordance with theoretical eigenfunctions for the Rayleigh-waves first 
overtones in the basin model of Table A128. These observations, which are shown later in section “Dominance of 
surface waves overtones”, reveal that seismic energy barely decays with depth. Furthermore, surface waves disper-
sion diagrams generated from the correlation of ambient noise in the lake-bed zone also show the overwhelming 
dominance of first overtones36. To understand the physical reason explaining these observations and to quantify 
the implications in terms of ground motion duration, we first analyzed Green’s functions in our 3D model of 
the Valley of Mexico (Fig. 3) for eight vertical forces applied at the free surface around the basin (green stars in 
Fig. 1). The sources radiation thus corresponds to P- and S-waves followed by a dominant Rayleigh train. In order 
to quantify the effect of attenuation, we performed the simulations for both the elastic and the viscoelastic cases 
up to 220 s in the UNAM supercomputer Miztli. Velocity snapshots for the viscoelastic simulation with source S6 
are shown in Fig. 4, where amplification, diffraction and generation of surface waves at the basin edges are clearly 
observed.

Figure 5 shows normalized seismic profiles at 0.5 Hz with 500 m spacing for source S6 along the dashed line of 
Fig. 1. In the elastic case (Fig. 5a), three main pulses are observed. Two of them propagate from the basin edges 
with speed of ~66 m/s, and the other emerges at ~10 km of the array with a speed of 260 m/s. Considering the 
Rayleigh waves group-velocity dispersion curves for shallow and deep basin locations (circles in Figure A1b), 
speeds clearly correspond to the fundamental mode (R0) and first overtones (R1), respectively. It is striking that 

N

93 km

79 km

Figure 3. Top ~10 km of the unstructured tetrahedral mesh used in the study. Notice that the elements 
honor the basin geometry and the actual topography of the terrain (compare with Fig. 1). The mesh considered 
for the simulations reaches 50 km depth. This figure has been created using the TetView Linux software Version 
1.0, http://wias-berlin.de/software/tetgen/tetview.html.
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even in the absence of attenuation, the first overtone dominates in the deep basin (i.e., between 10 and 23 km 
along the array). Unlike the elastic case, attenuation rapidly dissipates the fundamental mode and makes the over-
tones dominant along almost the whole array in the viscoelastic simulation (Fig. 5b). The most prominent wave 
train in the shallow basin regions propagates with the speed of the bedrock fundamental mode (i.e., ~1,300 m/s, 

Figure 4. Snapshots of the Green’s function for the vertical body force S6 (see Fig. 1) described by the inset 
time history with flat spectrum up to 1 Hz. Notice the topographic scattering, the generation and propagation 
of wave trains at different speeds within the basin, and their multiple diffractions. This figure has been created 
using the Matlab software Version R2016a, http://www.mathworks.com/.

Figure 5. Seismic sections of the radial-component at 0.5 Hz for source S6 along the linear array shown in 
Fig. 1 for the elastic (a) and viscoelastic (b) models. A cross section of the basin model is shown at the bottom. 
On top, peak ground accelerations (PGAs, radial component) along the array (blue) normalized by the value at 
the station with smallest epicentral distance. Durations of the strong shaking phase along the array (orange) as 
percentages of the duration of the incoming wavefield (i.e., the duration measured at the station with smallest 
epicentral distance). As a reference, the dashed line indicates the durations considering only the 1D regional 
structure (i.e., in the absence of the basin).
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Figure A1b). This means that the incident R0 suffers a mode conversion to become the second overtone (R2) 
when transduced into the basin, and that such overtone dominates the ground motion at shallow regions thanks 
to the rapid dissipation of the basin fundamental mode, R0. Around 12 km along the array, the R1 becomes dom-
inant when surface waves propagate from shallow to deeper parts of the basin, revealing the strong influence of 
the deep sediments.

A systematic analysis is necessary to conclude that overtones dominate the ground motion in the whole basin 
model. We thus analyzed the wavefields from the eight sources at a regular network of boreholes with 1 km 
spacing (gray dots in Fig. 1). From the seismograms at the network we computed and averaged synthetic eigen-
functions of Rayleigh waves for all sources in each borehole. To do so we normalized vertical displacements along 
the boreholes by the corresponding peak values at the free surface and at the same absolute time28. Figure 6a 
and c show the average eigenfunctions with standard deviation bars for both the elastic (blue solid lines) and 
viscoelastic (red solid lines) simulations at two representative sites, P1 and P2, and different frequencies. In the 
unrealistic elastic simulations and shallow basin regions (i.e., < 250 m deep; e.g. at site P1), the energy at 0.5 Hz 
decays very rapidly with depth (see Figure A6a) and, consequently, the corresponding eigenfunctions fit the 
expected shape for the fundamental mode (dashed blue line in Fig. 6a). In contrast, in the realistic viscoelastic 
simulations the energy efficiently travels in depth so that the eigenfunctions fit the theoretical shape for the first 
and second overtones (dashed red and green lines). Something similar happens in the deep basin at 0.3 Hz (e.g., 
at site P2), where the elastic and viscoelastic eigenfunctions follow the expected shapes for the fundamental and 
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first overtone, respectively (dashed lines in Fig. 6c and Figure A6b). Although it is difficult to identify propagating 
pulses in the seismic profiles at 0.3 Hz (Figure A7), eigenfunctions at shallow regions reveal that ground motion 
is dominated by the first and/or second overtones in both the elastic and viscoelastic cases (Figure A9d). In 
deeper locations and 0.5 Hz, while the viscoelastic simulations are clearly dominated by the first and/or second 
overtones, variability of the elastic eigenfunctions reveals a contested dominance between the fundamental and 
higher modes (Figure A9b). In conclusion, ground motion between 0.3 and 0.5 Hz in the viscoelastic model are 
dominated, across the whole basin, by surface-waves overtones as data from real boreholes suggest29 (black circles 
in Fig. 6a,c). The strong attenuation in the top clay layers is responsible for this propagation regime by dissipating 
the fundamental mode (Figure A6). RMS differences of the elastic and viscoelastic averaged eigenfunctions in 
the whole borehole network are shown in Figures A9a and A9c, where the shallow and deep regions of the basin 
are clearly distinguished by yellow colors. In those regions and frequencies, the attenuation plays a major role 
promoting the overtones dominance.

Implications for the duration of ground motion
Since the attenuation decreases with depth, seismic energy in the deep basin carried by overtones can propagate 
long distances. Basin-transduced surface waves and generation of wave trains at the basin edges, in addition to the 
wavefield dispersion and diffraction across the 3D structure, should then elongate the duration of ground motion. 
The top panels of Figs 5 and A7 show durations of the strong shaking phase for Rayleigh waves along the seismic 
profile for source S6. In the realistic viscoelastic model, durations grow as the basin becomes deeper, reaching 
values of 170–280% and 290–500% of the incoming field duration at 0.5 and 0.3 Hz, respectively. A similar sit-
uation is found for Love waves (transverse component) as shown in Figure A8, where relative durations vary as 
160–280% at 0.5 Hz and 200–500% at 0.3 Hz along almost the whole array. Results for Love waves where obtained 
applying a 1.5 km depth double-couple strike-slip point source at location S6. In shallow regions (i.e. < 300 m 
deep), peak ground accelerations (PGAs) are the largest, although significant amplification also occurs far from 
the source, between 22 and 28 km of the array for Rayleigh waves. As expected, amplification of single wave pack-
ages in the shallow basin region shortens the strong shaking duration. This is clear in both figures from the anti-
correlation of PGA and durations along the profile. Horizontal spectral amplifications (geometric mean of both 
horizontal components) at 0.5 Hz with respect to the CUIG site averaged for all sources reach values larger than 
10 along two ring-like regions encompassed by the 2 s dominant-period contour (Fig. 6b). These estimates are 
in qualitative agreement with empirical values of spectral accelerations at the same frequency37 and suggest that 
regions with largest amplification may be explained by the geometry of the deep basin. Significantly larger ampli-
fications (up to 25) are found at the lake-bed representative site P3 (Fig. 6b) around ~1.8 and ~3.2 s (Figure A10),  
which are two periods with similar amplification levels (with respect to CUIG) for subduction earthquakes at 
near by locations2. These results give confidence in our model predictions in terms of amplification patterns in 
the valley.

Average durations of horizontal strong shaking in regions with large amplification are relatively small for the 
reason explained above (Fig. 6d). However, durations in most regions of the basin exceed 40 s as observed in 
the lake-bed stations for the M3.4 earthquake (Fig. 2). Although much smaller in amplitude, ground motions at 
hard-rock are also long due to the scatter effect of the basin in the opposite side of the source. This is clearly seen 
in Figure A11, where ground motion duration inside and outside the basin is the same within the shadow-like 
region, proving that seismic energy recorded at hard-rock sites does not necessarily correspond to the incom-
ing wavefield of the basin, as suggested by several authors5,8,16. Our simulations show that duration of ground 
motion is remarkably lengthened at frequencies with the largest amplification in the lake-bed (i.e., between ~0.2 
and ~0.7 s) (Figs 5, A7 and A8). Long shaking duration at these frequencies may cause large structural damage 
in Mexico City due to the accumulation of yielding cycles that lengthen the natural vibration periods of the 
structures. Such mechanism makes these periods to approach those of the soil promoting structural failure, as 
observed during the devastating 1985 earthquake where more than three hundred 9–12 story, relatively small 
buildings collapsed38,39.

In conclusion, our results demonstrate that waves overtones dominate the ground motion in the lake-bed zone 
of the Valley of Mexico and that this propagation regime strongly contributes to the elongation of intense shaking 
(i.e., duration of both Rayleigh and Loves waves longer than 170% and 290% of the incoming field duration at 
0.5 and 0.3 Hz, respectively) at frequencies where the largest amplification is observed. The bedrock fundamen-
tal mode is transduced into the basin and converted into overtones (first and second modes) that dominate the 
ground motion. The structure of the deep basin is responsible for this mechanism, proving that local basin con-
ditions remarkably increase the duration of strong motion in the lake-bed despite the highly dissipative surficial 
sediments. Our results imply that duration of the incoming wavefield from subduction earthquakes should be 
significantly shorter than the observed duration in the lake-bed zone. This conclusion contradicts what has been 
previously stated from observational and theoretical studies considering the ground motion at hard-rock sites as 
the basin incoming wavefield. The contradiction can be explained if the seismic coda at those sites is dominated 
by multiple-scattered local waves generated at the basin, as suggested by our simulations.
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In this section we introduce the mathematical and computational models used to simulate the wave propagation in

the Valley of Mexico. First, we introduce the model for a viscoelastic rheology and how we couple the corresponding

constitutive relationship with the equation of motion to get the hyperbolic system describing the viscoelastic wave

propagation. Then, we introduce the system discretization following a discontinuous Galerkin strategy, and present

the computational model verification and convergence analysis based on different international benchmark problems.

We also include all tables and supplementary figures referred in the main text of the manuscript.

1 Viscoelastic model for waves propagation

The stress-strain constitutive relationship in an isotropic viscoelastic medium can be defined as

σij(t) = δijδkl

∫ t

−∞
λ(t− τ)∂tεkl(τ)dτ

+(δikδjl + δilδjk)

∫ t

−∞
µ(t− τ)∂tεkl(τ)dτ, (1)

where σij(t) is the stress tensor, λ(t) and µ(t) are the Lamé relaxation functions and εkl(t) is the strain tensor.

To avoid the unaffordable computation of the time convolutions in equation (1), for each Lamé relaxation function

we will model the viscoelastic rheology as a Generalized Maxwell Body (GMB-EK) with n Maxwell Bodies (MB) and

1 Hooke Body (HB) connected in parallel4. In the frequency domain, the relaxation functions can be written as

λ(ω) = λU

(
1−

n∑

l=1

Y λl
ωl

ωl + iω

)
(2)

µ(ω) = µU

(
1−

n∑

l=1

Y µl
ωl

ωl + iω

)
, (3)

where λU and µU are the unrelaxed Lamé parameters that correspond to the instantaneous elastic response of the

viscoelastic material, Y λl and Y µl are the anelastic coefficients and ωl are the relaxation frequencies for the lth

MB. The anelastic coefficients, Y λl and Y µl , gather some physical properties of the propagation medium11 and its

computation will be explain in Section 1.1.

We use the inverse Fourier transformation to express the Lamé relaxation functions (equations (2) and (3)) in the
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time domain, so that convolutions in equation (1) may be written as:

∫ t

−∞
λ(t− τ)∂tεkl(τ)dτ = λU εkl − λU

n∑

m=1

Y λmζ
kl
m(t) (4)

∫ t

−∞
µ(t− τ)∂tεkl(τ)dτ = µU εkl − µU

n∑

m=1

Y µmζ
kl
m(t), (5)

where we define the anelastic functions as

ζklm(t) = ωm

∫ t

−∞
εkl(τ) exp−ωm(t−τ) dτ m = 1, · · · , n k, l ∈ {1, 2, 3}, (6)

and, because of the exponential term in equation (6), the time evolution of the anelastic functions can be associated

with their own ODE8:

∂tζ
kl
m(t) + ωmζ

kl
m(t) = ωmεkl(t) m = 1, · · · , n k, l ∈ {1, 2, 3}. (7)

By substituting equations (4) and (5) into equation (1) our constitutive relationship becomes

σij(t) = δijδklλU εkl(t) + (δikδjl + δilδjk)µU εkl(t)

−
n∑

m=1

(δijδklλUY
λ
mζ

kl
m(t) + (δikδjl + δilδjk)µUY

µ
mζ

kl
m(t)). (8)

To avoid having the physical properties involved in the fluxes computation1 (see Section 2), we define the stress vector

as ~σ = (ω, ω′, ω′′, σxy, σxz, σyz)t with ω = 1
3 (σxx+σyy+σzz), ω

′ = 1
3 (2σxx−σyy−σzz) and ω′′ = 1

3 (−σxx+2σyy−σzz).
This change of variable allows to express equation (8) in the following matrix form as

Λ~σ =
∑

θ∈{x,y,z}
∂θNθ~u−

n∑

l=1

Al~ζl (9)

where ~u = (ux, uy, uz)
t is the displacement vector and ~ζl = (ζxxl , ζyyl , ζzzl , ζ

xy
l , ζxzl , ζyzl )t is the anelastic function

vector for the lth MB. Matrix Λ = diag[3/(3λU + 2µU ), (3/2µU ), 3/(2µU ), 1/µU , 1/µU , 1/µU ], which gathers the

physical properties of the medium, is given by the unrelaxed Lamé parameters, λU and µU , and Nθ are constant real

matrices defined as

Nx =




1 2 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0




T

Ny =




0 0 0 1 0 0

1 −1 2 0 0 0

0 0 0 0 0 1




T

Nz =




0 0 0 0 1 0

0 0 0 0 0 1

1 −1 −1 0 0 0




T

.

Matrix A, associated with the anelastic term of equation (8), is given by

Al =




A1
l A1

l A1
l 0 0 0

2A2
l −A2

l −A2
l 0 0 0

−A2
l 2A2

l −A2
l 0 0 0

0 0 0 2A2
l 0 0

0 0 0 0 2A2
l 0

0 0 0 0 0 2A2
l




, (10)

where A1
l =

3λUY
λ
l +2µUY

µ
l

3λU+2µU
and A2

l = Y µl .
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To obtain the first part of the hyperbolic system of partial differential equations governing the propagation of

viscoelastic waves, we just applied the time derivative to equation (9):

Λ∂t~σ =
∑

θ∈{x,y,z}
∂θNθ~v −

n∑

l=1

Al~ξl, (11)

where ~v = ∂t~u = (vx, vy, vz)
t is the velocity vector, and ~ξl = ∂t~ζl = (ξxxl , ξyyl , ξzzl , ξ

xy
l , ξxzl , ξyzl )t, is the time derivative

of the anelastic functions vector ~ζl that for simplicity, we will still call the anelastic function vector. Then the ODE

associated with ~ξl is given by

∂t~ξl + ωl~ξl = ωl
∑

θ∈{x,y,z}
∂θOθ~v, (12)

where

Ox =




1 0 0 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0




T

Oy =




0 0 0 0.5 0 0

0 1 0 0 0 0

0 0 0 0 0 0.5




T

Oz =




0 0 0 0 0.5 0

0 0 0 0 0 0.5

0 0 1 0 0 0




T

. (13)

To complete the hyperbolic system and keep track of the time-varying velocity field, we incorporate the equation of

motion. This equation can be written in matrix form1 as

ρ∂t~v =
∑

θ∈{x,y,z}
∂θMθ~σ + ~f, (14)

where ρ is the medium density, ~f is the external force vector and Mθ are constant real matrices defined as

Mx =




1 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


 My =




0 0 0 1 0 0

1 0 1 0 0 0

0 0 0 0 0 1


 Mz =




0 0 0 0 1 0

0 0 0 0 0 1

1 −1 −1 0 0 0


 .

Thus, equations (11) and (14) constitute the hyperbolic system fully describing the viscoelastic wave propagation.

1.1 Computation of the anelastic coefficients

The computation of the anelastic coefficients, Y λl and Y µl , in equations (2) and (3) is done such that the quality

factors, Qϕ, for ϕ ∈ {λ, µ}, are approximated over a frequency range of interest. The inverse of the quality factor is

defined for each Lamé relaxation function (equations (2) and (3)) as

Q−1ϕ (ω) =
Imϕ(ω)

Reϕ(ω)
=

n∑

l=1

ωlω +Q−1(ω)ω2
l

ω2
l + ω2

Y ϕl ϕ ∈ {λ, ω}. (15)

To approximate a nearly constant Qϕ(ω) in a given frequency range, we set the relaxation frequencies ωl in the

frequency range of interest with a logarithmically equidistant spacing4. A constant Q has been proved to be a good

approximation for most geophysical applications9. Nonetheless, the following procedure can also be applied for any

frequency dependency of Q10. Once the relaxation frequencies are spread along the frequency range, we used a least

square method to determine the anelastic coefficients in equation (15) that better fit the function Qϕ(ω).

In practice, seismologists describe the rocks anelastic dissipation through the quality factors Qα and Qβ associated

with the P - and S- waves, respectively. After computing their corresponding coefficients Y αl and Y βl , we can compute

3



those related with the Lamé parameters using the transformations

Y λl =

(
1 +

2µ

λ

)
Y αl −

2µ

λ
Y βl and Y µl = Y βl . (16)

For our simulations, we have considered three MB (i.e., three relaxation frequencies) to approximate constant Qα and

Qβ in the frequency range [0.01 5.0] Hz, which is a reasonable choice for our modeling purposes. The more relaxation

frequencies we consider the better is the approximation of the given function Qϕ(ω). However, it is important to

notice that increasing the amount of relaxation frequencies implies a significant increment in the memory storage

requirements and computational time.

2 hp-Discontinuous Galerkin method

Before solving the hyperbolic system given by equations (11) and (14), we first need to decompose the physical

domain, Ω, into K elements, so that

Ω ' Ωh =

K∑

i=1

Di (17)

where each Di is a straight-sided tetrahedron whose union constitutes a geometrically conforming mesh .

We approximate the velocity and stress vectors in every tetrahedron, Di ∀i ∈ {1, . . . ,K}, using a nodal interpolation6

as

~̂vi(~x, t) =

di∑

j=1

~vij (~xj , t)ϕij (~x) (18)

~̂σi(~x, t) =

di∑

j=1

~σij (~xj , t)ϕij (~x), (19)

where ~x ∈ Di, t is the time and di is the number of nodes supporting the interpolation Lagrangian polynomial basis

functions, ϕij , associated to the j-node located at ~xj .

Using the nodal interpolations (18) and (19), we can apply a discontinuous Galerkin approach5 to equations (11)

and (14) and get

ρi(I3 ⊗Ki)
~v
n+ 1

2
i − ~vn−

1
2

i

∆t
= −

∑

θ∈{x,y,z}
(Mθ ⊗ Eiθ)~σni

+
1

2

∑

k∈Ni
[(Pik ⊗Fik)~σni + (Pik ⊗ Gik)~σnk ] (20)

(Λi ⊗Ki)
~σn+1
i − ~σni

∆t
= −

∑

θ∈{x,y,z}
(Nθ ⊗ Eiθ)~vn+

1
2

i −
n∑

l=1

(Ail ⊗Ki)~ξ
n+ 1

2
il

+
1

2

∑

k∈Ni

[
(Qik ⊗Fik)~v

n+ 1
2

i + (Qik ⊗ Gik)~v
n+ 1

2

k

]
(21)

where the matrices involved are: the mass matrix

(Ki)rj =

∫

Vi

ϕirϕijdV j, r ∈ [1, di],
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the stiffness matrix

(Eiθ)rj =

∫

Vi

(∂θϕir )ϕijdV j, r ∈ [1, di] θ ∈ {x, y, z},

the flux matrices

(Fik)rj =

∫

Sik

ϕirϕijdS j, r ∈ [1, di]

(Gik)rj =

∫

Sik

ϕirϕkjdS r ∈ [1, di] j ∈ [1, dk].

and the auxiliary flux matrices

Pik =
∑

θ∈{x,y,z}
nikθMθ

Qik =
∑

θ∈{x,y,z}
nikθNθ,

where I3 is the 3x3 identity matrix, ⊗ represent the tensor product, and nikθ is the component along the θ axis of

the unit normal vector ~nik of the element face Sik which points from the i- to the k-element.

The size of these matrices depends on the order of the polynomial basis used for the nodal interpolation. The flux

terms of the ith-tetrahedron are computed following a non-dissipative centered scheme with its Ni adjacent elements.

Besides, thanks to the change of variable previously introduced, the fluxes of equation (21) do not involve the physical

properties of the neighboring elements but only their velocity fields.

In our method, we have implemented P0, P1 and P2 (i.e. constant, linear and quadratic) approximation orders that

can be individually assigned to each tetrahedron Di depending on its characteristic size and medium properties (i.e.,

p-adaptivity). Staggered time integration is performed through a second-order explicit leap-frog scheme, which allows

the alternation of velocities and stresses during computation. The order of approximation used for time integration

matches the highest approximation order for the spatial interpolation (i.e. P2).

To solve the ODE’s governing the anelastic functions (12), we approximate these functions using a nodal interpolation

and the same Galerkin approach introduced before for equations (11) and (14), to get

(I6 ⊗Ki)
~ξ
n+ 1

2
il

− ~ξn−
1
2

il

∆t
= −ωl


(I6 ⊗Ki)~ξn−

1
2

il
+

∑

θ∈{x,y,z}
(Oθ ⊗ Eiθ)~vn−

1
2

i




+ωl
1

2

∑

k∈Ni

[
(Rik ⊗Fik)~v

n− 1
2

i + (Rik ⊗ Gik)~v
n− 1

2

k

]
(22)

where Rik =
∑
θ∈{x,y,z} nikθOθ. It is important to notice that the discontinuous Galerkin approximation used for

the ODE’s allows us to honour the p-adaptivity of the scheme.

In order to achieve good accuracy for P2 elements, the unstructured model discretization must warranty 3 tetrahedra

per minimum wavelength5 (see Figure A5). On the other hand, the scheme stability is given by an heuristic criterion7

given by

∆t < min
i

(
1

2ki + 1
· 2ri
αi

)
(23)

where ri is the radius of the sphere inscribed in the element indexed by i, αi is the P−wave velocity in the element

and ki is the polynomial degree used in the element.

5



Our Discontinuous Galerkin Finite Element Method (DG-FEM) (i.e., the GEODG3D code) thus has two main

features that make it a very flexible and powerful numerical tool. One is the h-adaptivity, which allows working with

unstructured tetrahedral meshes geometrically adapted to the physical properties of the medium and the free surface

topography, so that the accuracy criterion is satisfied locally (Figures 3a and A3b). The other is the p-adaptivity,

that allows choosing the most convenient order of approximation per tetrahedron to relax as much as possible the

stability condition (i.e., to maximize the integration time step). A nice example of p-adaptivity is given in Figure

A3a, where the elements right below the basin, which have a very little characteristic size and relatively high wave

speeds, are low approximation order (i.e., P1 or P0). This numerical approach was developed in recent years during

the PhD thesis of Tago (2012)12, where more methodological and numerical details are provided.

3 Model verification and convergence

To verify the correctness of the solutions yielded by the GEODG3D code, we solved two international benchmarks

problems. Solutions were compared with those from AXITRA2, a semi-analytical discrete wave number method.

The benchmarks correspond to the elastic and viscoelastic versions of the Layer Over an Homogeneous half-space

problems, LOH1 and LOH3, respectively3.

For the LOH3 benchmark, the viscoelastic moduli were exactly the same in both the AXITRA and GEODG3D

simulations. This choice allows quantifying approximation errors associated only to the implementation of the

attenuation model for a given number of relaxation mechanisms and thus for the same Q(ω) functions. In this

benchmark problem, the top layer is 1000 m thick and the physical properties of the whole model are given in Table

A3. We approximated the frequency-independent quality factors Qα and Qβ with three relaxation mechanisms.

Receivers are located in the free surface (z = 0) with positions relative to the epicenter (x→ North and y → East)

given in Table A4. A double-couple point source is located 2000 m below the free surface with all components of its

moment tensor equal to zero except Mxy = Myx, with moment value M0 = 1018 Nm. The Moment rate time history

is a Gaussian pulse given by
1

tr
√
π

exp
−(t− t0)2

t2r
, . (24)

where t is the time, tr = 0.05 s is the rise time and t0 = 0.25 s is the origin time. The source spectrum is almost

flat up to 10 Hz so all the frequencies below have almost the same amplitude. Solutions should be compared up to

5.0 Hz.

All solutions were computed using P2 elements in the physical domain, approximately ten P1 elements in the

Convolutional Perfectly Matched Layer (CPML)5 region and free surface boundary conditions on top of the model.

The characteristic size of the tetrahedra used for both the structured and the unstructured meshes was 100 m, as

suggested in the benchmarks descriptions3. This choice is convenient for our method since the number of elements

per minimum wavelength, nλ, is about three, which corresponds to the accuracy criterion for our method5 (see Figure

A5).

Figure A4 shows the comparison of the three velocity components in the farthest three receivers (i.e. located about

32 times the minimum wavelength from the epicenter) using an unstructured mesh. The time series were filtered

using a two-pass four-pole Butterworth filter in the frequency band [1− 5] Hz. The agreement between solutions is

excellent (i.e., error of about 1.2%).

We performed a convergence analysis of the GEODG3D method based on both the elastic (LOH1) and the viscoelastic

(LOH3) benchmarks considering structured and unstructured meshes. The Normalized Root Mean Square (NRMS)
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function was used to quantify the error between our solutions and the AXITRA reference solutions. This function is

given by

NRMS(vDG−FEMθ , vAXITRAθ ) =

√
(
∑n
i=1(vDG−FEMθi

− vAXITRAθi
)2)/n

max(vAXITRAθ )−min(vAXITRAθ )
, (25)

where n is the length of the seismograms vectors and θ ∈ {x, y, z}. Components with no signals were excluded in

the NRMS computation. For the rest of receivers we computed the NRMS in the three velocity components and

averaged them to have a single misfit value.

Figure A5 presents NRMS values computed for the following four simulation cases: 1) the LOH1 benchmark with

structured mesh, 2) the LOH1 benchmark with unstructured mesh, 3) the LOH3 benchmark with structured mesh

and 4) the LOH3 benchmark with unstructured mesh. NRMS values are reported as a function of the number of

elements per minimum wavelength, nλ, associated with the cutoff frequency of 5 Hz. Linear regressions are also

plotted in the log-log scale. The resulting slopes give the convergence rates of the solutions with respect to nλ.

For the unstructured viscoelastic case (i.e., for conditions similar to our simulations in the Valley of Mexico) the

convergence rate is 2.98.

Four main conclusions detach from Figure A5: 1) viscoelastic solutions are systematically better than the elastic

ones no matter we use structured or unstructured meshes; 2) the convergence rate of both viscoelastic and elastic

solutions is virtually the same and depends on the kind of mesh we use; 3) the convergence rate is significantly higher

in unstructured meshes no matter we solve the elastic or viscoelastic equations (i.e. convergence rate about 1.8 times

higher); and 4) numerical errors are lower than 2% and 1.2% in structured and unstructured meshes, respectively,

provided that nλ >= 3 no matter we solve the elastic or viscoelastic equations.
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Table	A1	Velocity	structure	considered	in	this	study.	Green	shaded	layers	correspond	

to	 those	 inside	 the	 3D	 basin	 geometry	 shown	 in	 Figure	 1.	 Blue	 shaded	 layers	

correspond	to	the	1D	structure	where	the	basin	 is	embedded.	Thicknesses	 indicated	

with	stars	correspond	to	the	deepest	point	of	the	basin.	They	vary	depending	on	the	

basin	geometry.	

	
H	(km)	 Vp	(km/s)	 Vs	(km/s)	 Rho	(gr/cm3)	 Qp		 Qs	
0.03	 0.8	 0.05	 2.0	 30.0	 15.0	
0.02	 1.2	 0.1	 2.0	 60.0	 30.0	
0.25	 2.0	 0.4	 2.05	 80.0	 40.0	
0.25*	 2.5	 0.8	 2.05	 160.0	 80.0	
1.42*	 2.70	 1.56	 2.20	 312.0	 156.0	
2.34	 5.51	 3.18	 2.53	 636.0	 318.0	
10.97	 6.00	 3.46	 2.69	 692.0	 346.0	
27.62	 6.68	 3.86	 2.91	 772.0	 386.0	
∞ 8.31	 4.80	 3.43	 960.0	 480.0	

	

	

Table	 A2	 Numerical	 information	 of	 a	 typical	 viscoelastic	 simulation.	 The	 UNAM	

supercomputing	platform	Miztli	has	40	Gb	Infiniband	 interconextion	and	processors	

Intel	Xeon	E5-2670	with	frequency	of	2.6	to	3.3	GHz.	

	
Maximum	resolved	frequency	 1	Hz	
Size	of	the	simulation	domain	 93.3	x	79.7	x	50.3	km	
Length	of	the	CPML	layer	 8	km	
Number	of	mesh	elements	 12.25	million	
Elements	within	the	basin	 97.04	%	
P0	elements	 10.41	%	
P1	elements	 12.85	%	
P2	elements	 76.75	%	
Minimum	element	size	 0.49	m	
Maximum	element	size	 737	m	
Integration	time	step	 0.00036	s	
Number	of	time	steps	 514,995	
Number	of	parallel	processors	 512	
Computing	elapsed	time	 23.7	hr	

	 	



Table A3: Medium parameters of the LOH3 benchmark
α (m/s) β (m/s) ρ (kg/m3) Qα Qβ

layer 4000 2000 2600 120 40
halfspace 6000 3464 2700 180 80

Table A4: Receivers location of the LOH1 and LOH3 benchmarks
Receiver 1 2 3 4 5 6 7 8 9

x (m) 0 0 0 490 3919 7348 577 4612 8647
y (m) 693 5543 10392 490 3919 7348 384 3075 5764

9
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Figure	A1	(a)	Velocity	structure	used	in	the	numerical	model	(see	Table	A1).	Depth	of	

the	basin	basement	varies	in	space	according	to	the	basin	thickness	shown	in	Figure	1.	

Circles	show	the	homogenized	velocity	structure	used	for	the	model	discretization.	(b)	

Rayleigh	waves	dispersion	curves	for	the	vertical	component	of	the	fundamental	(R0,	

blue)	and	first	overtone	(R1,	red)	at	shallow	(250	m	thick;	dashed)	and	deep	(500	m	

thick;	solid)	basin	sites.	
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Figure	A2	Synthetic	velocity	seismograms	computed	at	nine	broadband	stations	 for	

the	 M3.4	 earthquake	 with	 4	 km	 depth	 (Figure	 1).	 The	 source	 is	 a	 vertical	 dip-slip	

dislocation	with	 strike	 to	 the	 north	 and	 source	 time	 function	 shown	 in	 the	 inset	 of	

Figure	4.	Records	are	aligned	with	the	P-wave	arrival.	Durations	of	the	strong	shaking	

phases	for	f	<	1	Hz	are	compared	with	real	observations	in	Figure	1b.	 	
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Figure	A3	(a)	Cross-section	of	the	discrete	model	along	the	dashed	line	of	Figure	6b.	

The	distribution	of	 the	elements	approximation	order	(i.e.,	p-adaptivity)	 is	 indicated	

with	 three	 different	 colors.	 Notice	 the	 concentration	 of	 low-order	 elements	 right	

below	the	interface	with	highest	impedance	contrasts	(i.e.,	below	the	shallower	basin	

regions	 close	 to	 its	 borders).	 (b)	 Same	 cross-section	 showing	 the	 tetrahedral	mesh	

refinement	within	the	basin	(h-adaptivity).		 	
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Figure	A4	Comparison	of	synthetic	seismograms	(bandpass	filtered	between	1	and	5	

Hz)	 computed	 with	 the	 Discontinuous	 Galerkin	 GEODG3D	 method	 (blue)	 and	 the	

Discrete	 Wave	 Number	 method	 (DWN,	 red)	 for	 the	 viscoelastic	 benchmark	 “Layer	

Over	 a	 Halfspace	 3”	 (LOH3)	 of	 the	 Southern	 California	 Earthquake	 Center	 (SCEC)	

described	by	Day	et	al.	(2003).	Both	solutions	were	computed	with	exactly	the	same	

viscoelastic	 modulus	 for	 three	 relaxation	 mechanisms	 so	 the	 signals	 misfit	 only	

responds	 to	numerical	approximation	errors.	The	GEODG3D	solution	was	computed	

using	a	P2	unstructured	mesh	with	characteristic	size	of	100	m.	The	three	receivers	

are	located	at	distances	from	the	source	of	about	32	times	the	minimum	wavelength.	 	
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Figure	 A5	 Convergence	 analysis	 for	 GEODG3D	 elastic	 (red)	 and	 viscoelastic	 (blue)	

methods	considering	structured	(solid)	and	unstructured	(dashed)	meshes.	Problems	

used	 were	 the	 LOH1	 and	 LOH3	 (Day	 et	 al.,	 2003)	 taking	 the	 DWN	 solutions	 as	

references.	Viscoelastic	solutions	are	always	better	that	the	elastic.	Convergence	rate	

in	unstructured	meshes	(slope	of	2.98)	is	significantly	higher	than	the	corresponding	

value	 for	structured	meshes	(slope	of	1.64).	This	 is	due	 to	 the	numerical	anisotropy	

induced	by	the	regularity	of	elements	in	the	structured	mesh.	 	
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Figure	A6	Synthetic	borehole	seismograms	at	sites	P1	and	P2	(see	Figure	A9)	for	two	

different	frequencies.	While	the	energy	of	the	fundamental	mode	(R0)	decays	rapidly	

with	 depth	 (red	 rectangles),	 that	 of	 the	 first	 and	 second	 overtones	 (R1	 and	 R2)	

persists	along	the	entire	depth	of	the	borehole.	Compare	the	amplitudes	of	the	wave	

packages	with	the	eigenfunctions	of	Figures	6a	and	6c.	
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Figure	A7	Same	as	Figure	5	but	for	f	=	0.3	Hz.		
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Figure	A8	Same	as	Figure	5	but	for	Love	waves	in	the	viscoelastic	model	at	(a)	f	=	0.5	

Hz	and	(b)	 f	=	0.3	Hz.	This	simulation	corresponds	 to	a	1.5	km	depth	double-couple	

strike-slip	point	source	at	location	S6.	 	
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Figure	A9	 (a)	and	(c)	RMS	differences	of	the	averaged	(for	the	eight	sources)	elastic	

and	 viscoelastic	 eigenfunctions	 computed	 in	 the	whole	 borehole	 network	 shown	 in	

Figure	1	for	two	different	frequencies.	White	contours	delineate	the	basin	geometry	at	

fixed	depths	in	meters.	Yellow	colors	depict	regions	where	attenuation	plays	a	major	

role	resulting	in	the	dominance	of	Rayleigh	waves	first	overtones.	(b)	and	(d)	Same	as	

Figure	6	but	for	frequencies	of	0.3	and	0.5	Hz	at	representative	sites	P1	and	P2.	Notice	

the	dominance	of	first	overtones	at	0.3	Hz	for	both	elastic	and	viscoelastic	models	in	

shallow	 basin	 regions	 (i.e.,	 at	 P1).	 This	 figure	 has	 been	 created	 using	 the	 Matlab	

software	Version	R2016a,	http://www.mathworks.com/.	 	
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Figure	A10	Average	horizontal	spectral	amplification	for	the	eight	sources	(solid	red	

line)	and	standard	deviations	(black	dotted	lines)	at	the	lake-bed	representative	site	

P3	(Figure	6)	with	respect	to	the	hard-rock	CUIG	site.	
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Figure	 A11	 (a)	Duration	of	 the	strong	shaking	phase	of	 the	Green’s	 function	due	 to	

source	S6	 (Figures	1	and	4)	averaged	 for	both	horizontal	 components	and	 f	<	1	Hz.	

Notice	 the	 long	 duration	 of	 ground	motions	 in	 both	 the	 sedimentary	 basin	 and	 the	

external	shadow	region.	(b)	Seismograms	computed	in	two	close	sites,	one	in	the	lake-

bed	 zone	 and	 the	 other	 at	 hard-rock	 within	 the	 seismic	 shadow.	 Red	 dashed	 lines	

indicate	 the	strong	shaking	phase	computed	 form	the	Arias	 intensity.	Although	very	

different	 in	 amplitude,	 durations	 of	 their	 strong	 phases	 are	 almost	 the	 same.	 This	

figure	 has	 been	 created	 using	 the	 Matlab	 software	 Version	 R2016a,	

http://www.mathworks.com/.	
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Revisiting the Basin-edge Effect at Kobe During the 1995 Hyogo-Ken

Nanbu Earthquake

SOLINE HALLIER,1 EMMANUEL CHALJUB,1 MICHEL BOUCHON,1 and HARUKO SEKIGUCHI
2

Abstract—The basin edge effect, i.e., the interference of the direct S wave with the surface wave diffracted

off the basin edge has been invoked by many authors to explain the damage distribution during the January 17,

1995 Hyogo-Ken Nanbu (Kobe) earthquake. Here we present the results of numerical experiments obtained with

the spectral element method in 2-D geometry. Our results confirm that the amplification of horizontal motion

close to the basin edge can be twice as large as the one measured in the center of the basin. This additional

amplification is shown to depend strongly on the edge geometry and on frequency, due to physical dispersion of

diffracted surface waves. In particular we obtain maximal amplification around 3 Hz, at frequencies critical for

buildings.

Key words: Site effect, basin edge, numerical modelling, spectral element method, Kobe.

1. Introduction

The Hyogo-Ken Nanbu (Kobe) earthquake (M = 7.2) of January 17, 1995 caused

considerable damage in the area of Kobe, in particular in a localized zone referred to as

the damage, or disaster, belt where most buildings collapsed. The damage belt is a

1 km-wide and 30 km-long area with WSW-ENE orientation, located about 1 km from

the Rokko fault (see Fig. 1). In order to explain this peculiar damage distribution,

KAWASE (1996) invoked a wave propagation effect which he referred to as the basin edge

effect. The basin edge effect is caused by the constructive interference between the direct

S-wave impinging on the basin and the surface wave diffracted off the basin edge. It

produces an amplification pattern consistent with the observations, i.e., parallel to the

fault, localized at a finite distance from the fault and affecting mainly the horizontal

motion in the direction normal to the fault. Maximum values of ground velocity recorded

during the Kobe earthquake are given in Table 1.

Many authors have confirmed this effect for the Kobe event, based upon

numerical simulations either in 2-D (e.g., PITARKA et al., 1996, 1997) or 3-D geometry
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(e.g., FURUMURA and KOKETSU, 2000; PITARKA et al., 1998; HISADA et al., 1998). Most of

these studies were restricted to low frequencies, i.e., less than 2 Hz in 2-D and less than

1 Hz in 3-D. This upper frequency bound was imposed by available computational

resources (especially in 3-D).

Figure 1

Map of the Osaka basin showing the disaster belt of the Kobe event (shaded zone) defined as the area where the

JMA intensity exceeded VII. The Rokko and Nojima faults are indicated with black lines and the epicenter with

a star. The basin edge is indicated with a black dotted line. The studied profile, perpendicular to the basin edge,

is indicated with a black dashed line (digitized from PITARKA et al., 1998).

Table 1

Values of the peak velocity (in m/s) recorded at stations shown in Figure 1 during the Kobe earthquake. Radial

corresponds to the component perpendicular to the fault and transverse corresponds to the component parallel to

the fault. Note the large amplification of the radial component at station TKT, located within the damage belt

Station Radial Transverse Vertical

KBU 0.36 0.39 0.18

KOJ 0.86 0.38 0.34

KOB 1.02 0.56 0.49

TKT 1.57 0.63 0.13

1752 S. Hallier et al. Pure appl. geophys.,



In this paper, we present the results of numerical experiments conducted with the

spectral element method (SEM) (e.g., KOMATITSCH and VILOTTE, 1998; KOMATITSCH and

TROMP, 1999; CHALJUB et al., 2007) with the objective of better understanding the basin

edge effect in the Kobe area and of quantifying its dependence on the basin-edge

geometry. The SEM is particularly well suited for this study since it can naturally handle

the sharp contrast between the basin and the bedrock, in particular at the basin edge,

and because it provides great accuracy in modeling surface wave propagation. Our

simulations consider a 2-D geometry and are valid for frequencies up to 4 Hz. We do not

account for the complexity of the source process (see e.g., WALD, 1996; SEKIGUCHI et al.,

1996a,1996b, for details) as we only focus on the edge effect, which as stated previously

is a 2-D propagation effect.

2. Numerical Model

We consider the basin geometry and the velocity model given in PITARKA et al. (1996)

and represented in the left part of Figure 2. Note that the shape of the basin edge in the

original model of PITARKA et al. (1996) is more complex than the one shown in Figure 2.

The influence of the edge geometry on the basin edge effect will be discussed in the

remainder of the paper.

The values of density, P and S velocities and quality factors QP and QS are given in

Table 2. The model is piecewise homogeneous, with non-flat interfaces between the

layers. The shallowest layer is 50-m thick, with minimal S velocity of 300 m/s. The phase

and group velocities of the fundamental Rayleigh mode for this velocity model are shown

in the right part of Figure 2.
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Figure 2

Left: Close view of the Kobe model used in this study showing the geometry of the basin edge and the different

zones of the model whose numbers are defined in Table 2. The position of the epicenter is indicated with an

asterisk. Right: Theoretical group (solid line) and phase (dashed line) velocities of the fundamental Rayleigh

mode for the velocity model given in Table 2.
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In order to model P - SV wave propagation in the Kobe model with the SEM, we

designed a simple structured mesh of quadrangles that honors all the physical interfaces

defined above. In each element, we use a polynomial order N = 4 for both spatial

directions. For calculations accurate up to 4 Hz, the mesh contains 150 9 60 elements,

and we impose a number of 5 points (one element) per minimal wavelength.

We consider a shear dislocation source, located at 10-km depth beneath the basin

edge. The source time function is a smoothed step function which radiates a displacement

field with a flat spectrum in the frequency band considered in our calculations.

We define 51 surface receivers located every 50 m between -500 m and 2000 m

relative to the basin edge. The receiver line is perpendicular to the basin edge and its

position in the Osaka basin is shown in Figure 1.

We record the ground velocity on the vertical component and on the horizontal

component perpendicular to the basin edge. To quantify the edge effect, we introduce an

aggravation factor which we define as the ratio of the horizontal (perpendicular to the

basin edge) peak ground velocity (PGV) within the basin to the horizontal PGV at a

reference receiver located in the basin, 1500 m from the basin edge.

3. Results

3.1. Frequency Dependence

The interference of the diffracted surface wave with the direct S wave forms the

basin-edge effect, but since the surface wave is dispersive the interference is expected to

depend on frequency as well.

Figure 3 shows the horizontal (perpendicular to the basin edge) and vertical

components of ground velocity recorded along the receiver line and filtered between 2

and 4 Hz. Due to the radiation pattern of the source, the main incoming phase is an S

wave with almost vertical incidence, which is clearly seen on the horizontal component.

The vertical component is dominated by energy diffracted off the basin edge and

traveling as surface (Rayleigh) waves. The dashed line indicates the group velocity of the

Table 2

Definition of the piecewise homogeneous basin model used in our calculations (after PITARKA et al. 1996). The

physical interfaces are flat in the center of basin, but have significant slope close to the basin edge. The

‘‘maximum depth’’ refers to the interface depth 1500 m from the basin edge

Layer Maximum depth (m) q (kg/m3) VP (m/s) VS (m/s) QP QS

1 50 1600 1500 300 60 30

2 705 2000 1600 500 160 80

3 1173 2200 2000 1100 300 150

4 1785 2200 4200 2850 440 220

5 ? 2400 5700 3200 2000 1000
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high-frequency Airy phase seen around 3 Hz in Figure 2. The interference of the S wave

with this surface arrival corresponds to a maximum aggravation factor of 1.6 which

occurs about 550 m from the basin edge. Note that previous studies of the basin-edge

effect in Kobe have focused on the low frequency interference and have ignored the

possible interference with the high-frequency Airy phase.

The same results filtered between 0 and 2 Hz are shown in Figure 4. The dashed line

shows an energy arrival with group velocity of 440 m/s, which corresponds to the plateau

seen around 1 Hz in the group velocity curve of Figure 2. The interference of the S wave

with this low frequency Rayleigh wave takes place further away from the edge, around

850 m, on a 450 m wide area and leads to a maximum value of the aggravation factor of

about 1.4. These results are in good agreement with those of KAWASE (1996) and PITARKA

et al. (1997, 1998). As discussed by KAWASE (1996), the zone with aggravated
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Figure 3

Left: Spatial variation of the aggravation factor calculated along the receiver line perpendicular to the basin edge

for the frequency band [2 Hz, 4 Hz]. Middle and right: Synthetic seismograms filtered between 2 and 4 Hz of

horizontal and vertical ground velocity. The vertical component is dominated by the surface wave diffracted off

the basin edge. The dashed line indicates the Rayleigh energy arrival with group velocity about 200 m/s which

corresponds to the Airy phase seen around 3 Hz in Figure 2.
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PGV predicted by low-frequency 2-D numerical simulations is not as large as the

observed damage belt (around 1200 m for the latter in the area considered by KAWASE

(1996) and in this study, compared to about 600 m for numerical predictions). Figure 3

suggests that if the input motion had enough energy above 2 Hz, then the high-frequency

interference could have increased the width of the zone with aggravated PGV (by about

200 m) and shifted it closer to the basin edge.

Figure 4

Left: Spatial variation of the aggravation factor calculated along the receiver line perpendicular to the basin edge

for the frequency band [0 Hz, 2 Hz]. Right: Synthetic seismograms filtered between 0 and 2 Hz of horizontal

ground velocity. The dashed line indicates the Rayleigh energy arrival with group velocity about 440 m/s which

interferes with the direct S wave about 850 m from the basin edge.
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3.2. Effect of Edge Geometry

The geometry of the basin edge is known to affect the energy diffracted towards the

basin (see e.g., BARD and BOUCHON, 1980a,1980b; AOI et al., 1995) and is therefore

expected to change the characteristics of the basin-edge interference. For example,

NARAYAN (2005) found a systematic decrease of the amplitude of diffracted Love waves

with decreasing slope of the basin edge. In his study, the geometry of the basin is

restricted to edges tilted towards the bedrock. Here we test all possible orientations for

the basin edge, including the case in which the edge is tilted towards the basin. We

refer to the geometry considered by NARAYAN (2005) as shape A, to the case of a

vertical edge as shape B, and to the last case as shape C (see top panel of Fig. 5).

Shapes A, B and C are typical of basins bounded by normal, strike-slip and thrust

faults, respectively. In our simulations, the A and C shapes are obtained by shifting the

position of the basin edge at the surface by 400 m in the direction of the bedrock and

basin, respectively. The slope of the edge, defined as the angle between the basin edge

and the surface, is 68� for the A and C shapes. For each basin geometry, the zero offset

corresponds to the basin edge position at the surface and the reference basin site is

located 1500 m from the edge. The source position is unchanged in all cases. We plot

the aggravation factor as a function of the distance from the basin edge for three

frequency bands: low frequency (LF) [0 Hz, 2 Hz], high frequency (HF) [2 Hz, 4 Hz]

and broadband (BB) [0 Hz, 4 Hz].
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Figure 5

Top: The three geometries of the basin edge considered in this study. The basin edge can be either vertical B,

tilted towards the bedrock A or towards the basin C. The position of the epicenter is indicated with an asterisk.

Bottom: Ratio of the horizontal PGV measured in the basin to the horizontal PGV measured at the reference

basin site. The analysis is performed in three frequency bands: [0 Hz, 4 Hz] (solid line), [0 Hz, 2 Hz] (dash-

dotted line) and [2 Hz, 4 Hz] (dashed line). The basin-edge effect occurs in both the low-frequency and the

high-frequency bands (see text).
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The distance to the basin edge of the zone with increased PGV depends slightly on the

edge geometry: It is shifted by about 250 m for A and C shapes, compared to the case of a

straight edge. This is because the diffraction of the Rayleigh wave involves the structure

of the basin edge at depth, whereas we measure the distance to the basin edge at the

surface. Note that like NARAYAN (2005), we found no significant dependence of the

amplitude of the diffracted Rayleigh wave on the slope of the basin edge.

For shape A, the aggravation factors reach values of : 1.35 (LF), 1.35 (HF) and 1.15

(BB). For the HF band and LF band, the maximum values of the aggravation factor are

obtained 650 m and 1250 m from the basin edge, respectively. The overall pattern

obtained for vertical edge (B shape) is similar to that of shape A.

The amplification pattern is somehow different for shape C as the basin-edge effect is

now dominated by the HF interference. The aggravation factor due to the basin-edge

effect is unchanged in the LF band (around 1.5), but it reaches 2.1 in the HF band.

Numerical tests (not shown here) suggest that this extra amplification is due to the

focusing of the direct S wave by the shape of the basin edge. The focusing of the direct S

due to the particular shape of the basin edge is likely to occur for all frequencies, however

it is only at high frequency that it adds to the interference with the diffracted Rayleigh

wave and therefore leads to an enhanced basin-edge effect.

The basin edge geometry in the Kobe area is most likely of shape C (PITARKA et al.,

1996). The basin-edge effect should therefore have had a high-frequency part with a

constructive interference closer to the fault. The fact that this interference has not been

reported is due either to the fact that high-frequencies have only been slightly excited by

the Kobe main shock, or simply because of the lack of recordings very close to the fault.

Such HF basin-edge effect could in principle have been recorded on aftershocks of the

Kobe event by deploying a receiver line perpendicular to the basin edge (see e.g., ADAMS

et al., 2003). Such analysis could have helped to identify a posteriori the importance of

the basin-edge effect in the dramatic occurrence of the disaster belt.

4. Conclusions

We have presented a numerical study of the basin-edge effect in the Kobe area based

upon the spectral element method. We have shown that the basin-edge effect can occur

over a wide frequency band, and that it is influenced by the shape of the basin edge. With

the velocity model of the Kobe area, the direct S wave is shown to interfere with the

surface wave at two possible locations in two distinct frequency bands: the first

interference occurs at low frequency (between 0 Hz and 2 Hz) about 600 m from the fault,

the second occurs closer to the fault (about 250 m) and at higher frequency (between 2 Hz

and 4 Hz). Aggravation factors measured on ratios of horizontal peak ground velocity

reach about 1.5 and 2.1 for the low-frequency and high-frequency interferences,

respectively. These values suggest that the basin-edge effect has contributed to the

occurrence of the damage belt on a frequency band wider than previously reported.
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S U M M A R Y
We present a new approach for performing broad-band ground motion time histories (0.1–
30 Hz) of a future earthquake in a sedimentary basin. Synthetics are computed with an
hybrid scheme combining reciprocity-based 3-D-spectral element method simulations at low
frequencies and empirical Green’s functions (EGF) at high frequencies. The combination
between both deterministic and empirical parts results in a set of hybrid Green’s functions,
summed according to a new k−2 kinematic model algorithm. The summation technique enables
to remove the high-frequency artefacts that appear above the EGF corner frequency. The
ground motion variability is assessed by generating a variety of source parameter sets selected
from a priori probability density functions. This leads to a population of response spectra,
from which the median spectral acceleration and standard deviation values are derived. The
method is applied to simulate a MW 5.5 event in the deep Grenoble basin (French Alps). The
comparison with EC8 regulations suggests the need of specific design spectra in the Grenoble
valley.

Key words: Earthquake ground motions; Site effects; Europe.

I N T RO D U C T I O N

Synthesizing time histories of ground motion in urban areas is
useful to design specific structures and to estimate potential dam-
ages for a future earthquake. This is particularly true in Euro-
pean alpine valleys where moderate earthquakes may have large
consequences caused by large 2-D/3-D site effects. The Grenoble
city is a typical example of alpine valley: first, historic seismicity
shows the possibility of MW 5.5 events at the vicinity of the city
(≈20 km); second, this deep sedimentary valley exhibits large com-
plex site effects (Lebrun et al. 2001; Cornou et al. 2003; Guéguen
et al. 2006b; Drouet et al. 2007). In order to analyse seismic haz-
ard in the Grenoble valley, a MW 5.5 scenario earthquake occur-
ring on the Belledonne border fault south of the city is assumed
(Thouvenot et al. 2003). The source proximity makes it necessary
to use a finite-extent source description. The ground motion pre-
dictions are thus performed with a new approach coupling the k−2

source model (Herrero & Bernard 1994) and hybrid Green’s func-
tions (HGF), that incorporate 3-D site effects. This new procedure
provides an estimation of the ground motion variability.

Ground motion characteristics are strongly affected by the ve-
locity structure. The lack of detailed knowledge of the propaga-

tion medium makes it usually difficult to use numerical methods
for estimating ground motion at high frequency (generally above
1–2 Hz). An alternative approach is then the empirical Green’s
functions (EGF) method (Hartzell 1978), when good quality small
earthquake recordings are available. This method automatically in-
cludes propagation and site effects, under the assumption of the
soil response linearity. Nevertheless it is inadequate for assessing
low-frequency ground motion, because of the often bad signal-to-
noise ratio in the small event recordings below 1 Hz. Thus, several
authors (Kamae et al. 1998; Pulido & Kubo 2004; Pacor et al.
2005) proposed to calculate broad-band ground motion with a hy-
brid scheme combining deterministic and stochastic approaches:
low-frequency Green’s functions are evaluated by numerical algo-
rithms whereas high-frequency Green’s functions are obtained from
filtered white noise. In this paper, a hybrid method is also pro-
posed. First, low-frequency ground motion (<1 Hz) is modelled
with 3-D spectral element method (Komatitsch & Vilotte 1998;
Komatitsch & Tromp 1999; Komatitsch et al. 2004; Chaljub et al.
2007) calculations based on reciprocity. Second, the good qual-
ity recordings of a ML 2.8 earthquake provided by the 2005
Grenoble experiment (Chaljub et al. 2006) and the French perma-
nent accelerometric network (http://www-rap.obs.ujf-grenoble.fr),
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are used as EGFs to simulate high-frequency ground motion
(1–30 Hz). The advantage of such a combination is that both meth-
ods are adequate for simulating specific site effects.

In addition, in the relevant frequency range for earthquake engi-
neering and within a few fault lengths, ground-motion simulations
highly depend on the rupture process complexity. Thanks to its
ease of application, kinematic modelling remains the best way to
perform physically based ground motion predictions. Moreover,
Hartzell et al. (2005) compared a class of kinematic models based
on fractal distribution of subevent sizes with a simple slip-
weakening dynamic model and concluded that at present the kine-
matic simulations match better the 1994 Northridge ground motion
than the dynamic ones. A now classical approach is a self-similar
rupture model in which the spatial static slip distribution is described
in the wavenumber domain by a k−2 power-law decay (Herrero &
Bernard 1994; Bernard et al. 1996). This model leads to the com-
monly observed ω−2 displacement amplitude spectrum decay under
the two constraints that the rupture front propagates with a constant
rupture velocity and that the rise time is inversely proportional to
the wavenumber k. Ground motion is next computed by summing
up the HGF according to a k−2 source model. In order to couple
k−2 model and the EGF method, a specific summation algorithm
is developed. It enables to correct the high-frequency artefacts that
appear above the EGF corner frequency. Finally, source parame-
ters are defined with probability density functions and the resulting
ground motion variability is assessed by means of the Latin Hy-
percube Sampling (LHS) method. The ground motion sensitivity
to source parameters and to EGF uncertainties is thoroughly inves-
tigated. As a result, median and standard deviation of the spec-
tral acceleration (SA) are predicted on nine stations within the
Grenoble valley in the frequency range [0.1–30 Hz]. In order to
test the reliability of the ground motion predictions, simulations on
rock station are compared to the empirical ground motion equations
developed by Bragato & Slejko (2005) and to the stochastic method
of Pousse et al. (2006). The comparison of the predictions at sed-
iments stations with Eurocode eight suggests the need of specific
design spectra in the framework of the Grenoble basin.

S O U RC E M O D E L

Static slip distribution

The complexity of the static slip is described with a self-similar
distribution of slip heterogeneities. Following Herrero & Bernard
(1994) the static slip is supposed to have a k−2 asymptotic de-
cay in the wavenumber domain beyond the corner wavenumber kc,
inversely proportional to the ruptured fault dimension. For a rect-
angular fault plane with length L and width W we define the slip
amplitude spectrum in a way similar to Somerville et al. (1999) and
Gallovic & Brokesova (2004)

Dk(kx , ky) = D̄LW√
1 +

[(
kx L
K

)2
+

(
ky W

K

)2
]2

, (1)

where kx and ky are the wavenumbers along the strike and the
dip directions, respectively, D̄ refers to the mean slip and K
is a dimensionless constant controlling the corner wavenumber
kc = K/

√
(L2 + W 2). The parameter K is fundamental because

it determines the amplitude of the slip heterogeneities generating
the high-frequency source energy. At low wavenumber [k2

x + k2
y ≤

(1/L)2 + (1/W )2] the slip spectrum phases are chosen to concen-
trate the slip on the fault centre whereas for high wavenumbers,
phases are random. Consequently, the static slip is the sum of a de-
terministic and a stochastic part. The deterministic part of the slip
generates a smooth asperity with mean slip D̄, the size of which
depends on the corner wavenumber, that is, the dimensionless pa-
rameter K. Large values of K lead to a small asperity. The main
asperity is then added to the high wavenumber slip contributions,
corresponding to a set of zero mean slip heterogeneities. This leads
to a variety of heterogeneous slip models. All the details to generate
the static slip distributions can be found in Appendix A.

Since for a given wavenumber k > kc, the slip fluctuation ampli-
tudes are proportional to K 2, K controls the roughness of the static
slip. Fig. 1 displays examples of static slip distributions obtained for
different K values. The case K = 0.35 results in one large smooth
asperity covering the whole fault plane. For K = 1.4 the maximum
slip increases and a large part of the fault has zero slip. Conse-
quently, the gradient of the slip distribution increases as well and
static slip is rougher. This emphasizes the link between K and the
average static stress drop �σ . To better illustrate this correlation,

Figure 1. Example of static slip distributions for different K values. The
mean slip is D̄ = 0.4 m in all cases. The blue line defines the area with slip
above 0.2Dmax. To calculate the static stress drop values, we assume Cf =
1 and μ = 1010 N m. The �σ values are 18, 34 and 65 bars for K = 0.35,
0.7 and 1.4, respectively.
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we calculate �σ following Kanamori & Anderson (1975):

�σ = C f μ
D̄

L̃
, (2)

where Cf is a non-dimensional shape factor (Cf ≈ 1 in all cases), μ is
the rigidity and L̃ represents the characteristic length of the rupture
area. We define L̃ as the square root of the main slip area, defined
by the fault surface with slip over 20 per cent of the maximum slip.
This simple test shows the average static stress drop increase with
K (see legend of Fig. 1 for more details).

Source kinematics

Following Bernard et al. (1996), we model the rupture process
as a ‘self-healing’ slip pulse of width L0 propagating at constant
rupture velocity v. For wavenumbers k < 1

2L0
, the rise time is

τmax = L0/v whereas for higher wavenumbers, the rise time is
inversely proportional to k. These choices ensure the commonly
observed flat level of the acceleration amplitude spectrum beyond
the corner frequency F c. Gallovic & Brokesova (2004) derived
a general equation of the ground motion acceleration spectrum
for a 2-D rectangular fault model with a k-dependent rise time.
They developed an analytical formula of the amplitude spectrum
for a line fault in a homogeneous elastic medium, in the Fraun-
hoffer’s approximation. The authors show evidence of two charac-
teristic frequencies. First, the corner frequency can be expressed
as

Fc = vCd K

L
, (3)

where Cd = 1
1−(v/c) cos �

is the directivity coefficient (Ben-Menahem
1961). � denotes the directivity angle, defined as the angle between
the rupture front propagation and the source–receiver direction, and
c is the shear wave velocity. The second characteristic frequency
is defined as: Ft = (vCd)/(2L0). Beyond Ft, the high-frequency
energy comes from the coherent summation of the small-scale rup-
tures within the slip band. Gallovic & Burjanek (2007) showed
that such constructive interferences result in overestimated high-
frequency directivity effects. Thus, following Bernard & Herrero
(1994) and Gallovic & Burjanek (2007), we assign the small-scale
heterogeneities (k > 1

2L0
) random rupture directions to reduce the

high-frequency spectral level dependence on the rupture propaga-
tion direction. According to Gallovic & Burjanek (2007), at fre-
quencies above the transition frequency

F0 = v

L0
= 1

τmax
, (4)

the acceleration amplitude spectral level for � = 0◦ and � = 180◦

is such that

Ao = 4π 2Cs Mo

(
v

L

)2

· K 2 · RMS
[
Cd (�)2 X (Cd (�)/2)

]
, (5)

where Cs contains the propagation information and radiation pat-
tern and X is the amplitude spectrum of the slip velocity function
corresponding to unit slip and a one second rise time. In this paper, a
Gaussian function with standard deviation σ = τmax/10 is assumed
for the slip velocity function. For � = 90◦, the spectral level is flat
above the corner frequency. It is given by

A�=90◦ = 4π 2Cs Mo

(
v

L

)2

· K 2 · X (1/2). (6)

Figure 2. Representation of the acceleration spectra for different values
of the directivity angle �. A Gaussian slip velocity function with standard
deviation σ = τmax/10 is assumed. In this example, L = 20 km, K = 1,
L0 = 0.1L , v = 3000 m s−1 and v/c = 0.8. Introducing rupture incoherence
does not modify the spectrum for � = 90◦. Nevertheless, for � = 0◦ and
180◦, the directivity coefficient is the quadratic sum of Cd

2 coefficients
with variable � (Bernard & Herrero 1994). To obtain the curves for � =
0◦ and 180◦, following Gallovic & Burjanek (2007), the theoretical spectra
for a classical k−2 model are modified by setting their level to A0 above the
frequency 2 f 0. A cosine function is then applied between frequencies f 0/2
and 2 f 0 to ensure a smooth transition. The high-frequency levels for the
other values of � range from A�=90◦ to A0.

The levels obtained for the other values of � range from A0 to
A�=90◦ . A representation of the ground acceleration amplitude spec-
trum is given in Fig. 2. The whole rupture process is illustrated on
Fig. 3. Note that the resulting slip velocity functions exhibits neg-
ative values at some points, which is physically unrealistic. Ruiz
et al. (2007) developed a recombination scheme of the Fourier slip
components to get slip velocity functions compatible with earth-
quake dynamic (e.g. Tinti et al. 2005). Nevertheless, studying the
shape of this function is not the purpose of our study and we do
not apply any other correction than removing the negative static slip
values.

S U M M AT I O N A L G O R I T H M

The simulated event ground motion displacement U (r , t) at position
r is numerically expressed according to the discretized representa-
tion theorem (Aki and Richards 2002)

U (r, t) =
∑

i j

μi j ai j

moi j

si j (t − tri j ) ∗ Gi j (r, t), (7)

where μi j , ai j , moi j and G(r , t)ij refer to the rigidity, area, seismic
moment and Green’s function at the subfault (i, j), respectively. The
slip histories sij(t) and the rupture times tri j arise from the k−2 source
model described above. In this study Gij(r , t) is replaced with the
recording of a small earthquake u(r , t) used as EGF. According to
Hartzell (1978) the summation is valid only below the EGF corner
frequency f c. The small event is supposed to follow a k−2 model as
well. In the following (l, w, KS, d̄, mo) stands for the fault length,
width, K value, mean dislocation and seismic moment of the small
event, respectively.
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Figure 3. Representation of the rupture process, modelled as a slip pulse propagating at constant rupture velocity v. The slip distribution is split into its low
and high components at frequency k = 1

2L0
. The low wavenumber slip has a rise time equal to τmax = L0/v. The high wavenumber slip is composed of a set of

heterogeneities of different scales, considered as independent subevents. These subevents start slipping as the main rupture front reaches one point, randomly
chosen, from which a secondary rupture front propagates (see bottom left box). The slip duration for a given subevent is proportional to its wavenumber. The
figure also displays example of resulting slip velocity functions, compared with the functions that would be obtained from a classical k−2 model (without
random nucleation points). In this example, L = 5 km, W = 2.5 km, D̄ = 0.2 m, K = 1 and τmax = 0.3 s.

Fault plane discretization

The EGF fault plane is assumed to be a square. Its length is deter-
mined from the corner frequency. The EGF is supposed to be small
enough (ML = 2.8 in this study) to neglect directivity effects. This
common assumption is controversial (e.g. Boatwright 2007) and is
discussed in the section ‘EGF uncertainties’. Thus, assuming a k−2

model, the EGF corner frequency is such that

fc = vKS

l
. (8)

Assessing the rupture length implies to determine the K S value.
An approximation of K S can be obtained by considering the model
of Brune (1970), which gives for a circular fault: f c = 0.33c/r fge,
where c is the shear wave velocity and r fge is the fault radius.
In the case of a square fault plane, the conservation of the EGF
rupture surface between a square and a circular fault gives: fc =
0.33

√
πc/ l. By considering: v = 0.8c, which is consistent with

dynamic rupture modelling, we get: f c ≈ 0.74v/l. This suggests
K S ≈ 0.74. Thus, from eq. (8), we obtain the small earthquake
rupture length.

The dimensions of the target event fault plane are next assessed
using the scaling laws between small and large earthquakes. The
classical law of Brune (1970), based on the assumption of self-

similarity between the small and the large events, gives

L

l
= W

w
= D̄

d̄
= N , withN =

(
M0

m0

)1/3

. (9)

M0 denotes the seismic moment of the target event. Note that eq. (9)
is valid provided that both events have the same K value. In other
words, the choices L = W = N · l and K = K S lead to a target event
stress drop equal the EGF one. In our procedure, L and W are fixed.
Consequently, the natural variability of the simulated event stress
drop is accounted for by a deviation from K = K S . The choice
of the K value distribution will be discussed later. The fault plane
discretization parameters can be found in Table 1.

Summation along dislocation rise-time

As explained above, the static slip consists in a deterministic part,
with mean slip D̄ and a stochastic zero mean high wavenumber part.
It leads us to split the summation along the dislocation rise-time in
two parts. The number of EGFs to sum on a given subfault (i, j)
is: Ni j = NDETi j + NSTOi j , where DET and STO indicies stand for
deterministic and stochastic slip, respectively. NDETi j is such that∑

i j NDETi j = N 3 and NSTOi j = ∑
k

1
d̄
|Dki j |, where Dki j is the slip

contribution of the kth spectrum component at the subfault (i, j).
The global summation algorithm can be expressed as

U (r, t) = R(t) ∗ u(r, t), (10)
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Table 1. Fault plane discretization and EGF
parameters. N L, N W and N D denotes the EGF
number to sum along the strike, the dip and
the dislocation rise time, respectively.

Parameters Value

M0 2.2 × 1017 N m
m0 2.0 × 1013 N m

L/W 2
f c 12 Hz
l 0.160 km

N L 36
N W 18
N D 18

Target event strike 120◦
EGF strike 160◦

Dip 90◦
EGF focal depth 3 km

Notes: The seismic moments of the EGF and
the simulated event are directly obtained
from the moment magnitude. We assume
that local magnitude and moment magnitude
are the same for the EGF. The corner
frequency f c is assessed from the EGF
displacement amplitude spectrum.

where the site-dependent apparent source-time function (ASTF)
R(t) is

R(t) =
N∑

i=1

N∑
j=1

r

ri j

⎡
⎣NDETi j∑

q=1

δ(t − tri j − tsi j − tDETq )

+
NSTOi j∑

q=1

p · δ(t − tri j − tsi j − tSTOq )

⎤
⎦. (11)

The indice q denotes the summation along the dislocation rise time.
The constant p is defined according to: p = 1 for Dki j > 0 and p =
−1 for Dki j < 0. At last the term tsi j is introduced to account for
the different subfault/receiver S-wave traveltime delays and r/r ij is
the geometric spreading factor.

Summation process beyond the EGF corner frequency

Beyond f c the main event energy is purely stochastic because the
EGF summation becomes incoherent. Hence the ASTF spectral
level is flat and corresponds approximately to the square root of the
total number of EGFs to sum up. Thus the resulting high-frequency
level is not in agreement with the desired level for the source model.
The theoretical level expected for f ≥ f c is �-dependent (see
section ‘Source kinematics’). However, for simplicity, we assume
that this level is the same whatever the value of � is. We then
set the acceleration spectrum level to its maximum value A0 (note
that after eqs (5) and (6), the largest error induced corresponds to
a factor of A0/A�=90◦ ≈ 2). Consequently, the theoretical ASTF
level is supposed to be (see Appendix B)

|R( f ≥ fc)theo| = βN K 2, (12)

where β ≈ 3.5.
Following Kohrs-Sansorny et al. (2005), the number of EGFs to

sum along the dislocation rise time is modified to reproduce the
required high-frequency spectral level. The following procedure is
proposed (see Appendix C): (1) the EGF dislocation d is adapted
so that the average number of EGF summed on each subfault is not

N but [ α(N )
β

]2 · N 2

K 2 , where α(N ) = 2
√

ln
(

N−1
4

)
and β ≈ 3.5; (2)

the deterministic slip contribution to the ASTF is low-pass filtered
to keep only the zero mean slip fluctuations contributions beyond
f c and (3) the spectrum is divided by [ β

α(N ) ]2 · K 2

N to conserve the
seismic moment.

Resulting ASTF

Fig. 4(a) displays the effects of the above-described EGF summa-
tion scheme correction on the average ASTF amplitude spectra.
The spectra are calculated for an unilateral rupture and a rectangu-
lar fault with L/W = 2. This fault ratio is in agreement with the
results of Somerville et al. (1999) and will be kept in the following.
Fig. 4(a) shows that the high-frequency procedure based on the
assumption of a square fault plane holds for L/W = 2 and
the target high-frequency level is reached. Note that in addition
to the misestimation of the high-frequency spectral level, an other
type of numerical artefact appears due to the finite distances be-
tween the small-event sources (Bour & Cara 1997). It corresponds
to a peak occurring approximatively at: f p = vCd/l (Fig. 4b). In
order to reduce this peak, a random component is introduced in the
rupture velocity v. v is thus uniformly distributed in the interval
[v − 100 m s−1, v + 100 m s−1]. Are also shown the effects of
the source (Figs 4c and d). These figures show that the main the-
oretical characteristics of the amplitude spectrum for a line fault
are preserved (i.e. corner frequencies, �, K and τmax-dependence
of the model). It should be noticed that R(f ) phases are necessar-
ily stochastic beyond f c. Nevertheless this is consistent with the
rupture process that is purely stochastic above F0.

G R E E N ’ S F U N C T I O N S

EGFs

On 2005 October 1 a small earthquake occurred on the southern tip
of the Belledonne border fault, about 15 km south of the Grenoble
city (ML = 2.8, Local magnitude Sismalp, http://sismalp.obs.ujf-
grenoble.fr). This event has been recorded by the French accelero-
metric permanent network and by a temporary array from the French
mobile network (INSU/CNRS), composed of velocimetric sensors
(CMG40T, with a flat response from 20 to 60 s) and deployed in
the Grenoble city from 2005 June 15 to October 30 (Chaljub et al.
2006). These good quality recordings provide an opportunity to
simulate the effects of a moderate sized earthquake with the EGF
method. Velocities are first differentiated to get the ground acceler-
ation. Twenty-seven three-component accelerograms are then used
as EGFs to compute ground motion at nine stations in the Grenoble
city (Fig. 5). Seven of the stations are installed on soft soil within
the sediment-filled valley, while two are located at rock sites. The
hypothesized scenario is a MW 5.5 left-lateral strike slip event.
The fault plane is supposed to be vertical with a strike of 120◦. The
small earthquake characteristics and the rupture plane discretiza-
tion parameters are displayed in Table 1. Note that the strike of the
small event (160◦) is different from that of the target event. Indeed
a value of 120◦ seems more appropriate for a MW 5.5 scenario in
the Laffrey area (Thouvenot et al. 2003). In order to account for
differences in focal mechanism, a simple procedure is applied to
correct the EGF radiation pattern. It has been observed that the
radiation pattern of small earthquakes is frequency dependent and
characterized by a transition from the theoretical double-couple
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Figure 4. Average apparent source-time function spectra (quadratic mean of 100 simulated spectra) in the case of an unilateral rupture and a rectangular fault
plane with L/W = 2. The parameters used to compute the spectra are in agreement with the Grenoble application. They are displayed at the bottom right. (a)
Effect of the high-frequency spectral level correction. The dashed line in the zoomed box indicates the expected theoretical level. (b) Effect of the addition of
a random component to the rupture velocity. (c) Effect of the roughness parameter K. (d) Effect of the angle � and the rise time τmax. Frequencies f 0 and f ′

0

denotes the transition frequencies for τmax = 0.6 and 0.3 s, respectively. (e) Effect of removing the negative slip value.

radiation pattern at low frequencies to a totally isotropic radiation
pattern at high frequencies (Satoh 2002). Following Pulido & Kubo
(2004) we assume a radiation pattern with a linear variation from 1
to 3 Hz between the theoretical double-couple radiation and a spher-
ical radiation. We only consider the contributions of the SH and SV
waves. The theoretical radiation patterns FSH and FSV are given in
Aki and Richards (2002) (equations 4.90 and 4.91). To estimate the
take-off angle, an homogeneous medium is hypothesized. Finally,
to assess the contributions of the SH and SV waves to the dif-
ferent ground motion components, we assume a vertically incident
wave-field, which is the most plausible given the impedance contrast
(≈4) between the bedrock and the sedimentary basin. This leads to
a frequency-dependent factor used to correct the EGF amplitude
spectrum. This factor equals 1 above 3 Hz and does not change the
vertical component. The EW and NS-component modifications at

1 Hz do not exceed a factor of 5, except for station G15 for which
a change in the fault azimuth shifts from a maximum to a node of
the SH radiation pattern, and the EW-component correction factor
equals 0.05. The resulting EGF amplitude spectrum modification is
large but significantly improves the fit between the 3-D simulation
and the EGFs (Fig. 6a).

EGF uncertainties

The small event input parameters (moment magnitude MW, corner
frequency f c and K value K s) are only known with large uncertain-
ties. Here we analyse the influence of a potential parameter value
misestimation on the simulated ground motion. More precisely, the
sensitivity to each EGF parameter is investigated by looking ASTF
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Figure 5. Map of the Grenoble valley, station and fault location.

changes when varying the given parameter around its supposed
best estimate value, while keeping the other parameters unchanged.
First, the MW reference value is chosen by assuming mL = MW

for small events, which leads to MW = 2.8. A deviation of plus or
minus 0.2 from the MW reference value results in a change of a
factor 2 in the seismic moment value m0, and consequently, in the
number of EGF to sum up. Therefore, the simulations are largely
sensitive to the MW value at low frequency (Fig. 7a). Furthermore,
the corner frequency controls the EGF rupture length l (eq. 8), and
consequently, the target event fault plane dimension. For instance,
underestimating the f c value leads to increased rupture length L
and decreased target event corner frequency f c. Since the number
of summed EGF is unchanged, the f c uncertainty does not con-
cern the low-frequency and high-frequency expected spectral levels
(Fig. 7b). Finally, Fig. 7(c) shows the effects of varying the K s value,
assuming self-similarity between the small and the target events
(K = K s). As f c is kept constant, changing K s also affects the
rupture lengths l and L.

In addition, it has been assumed that the small event is not af-
fected by directivity effects. If this hypothesis is rejected, first, the
simple correction applied to account for the EGF fault strike modi-
fication (initial estimated value of 160◦ set equal to 120◦, see section
‘EGFs’) should also include a modification of f c. Nevertheless, the
procedure applied in this study to simulate ground motion above
f c ensure that the expected ASTF spectral level at f c is obtained,
whatever the f c value is. Consequently, the particular EGF direc-
tivity effects are not expected to significantly modify the simulation
results. Second, although the � values differ from one station to
the other (Fig. 5), the f c reference value has been set from the data
recorded at OGMU rock station and is supposed to be the same
for all the stations. However, the difference in the � values is not
large. Thus, once again, this approximation is expected to bring only
minor modifications on ground motion. Using several EGFs would

ensure that the potential small event directivity effects are averaged.
However, in moderate seismicity area like the Grenoble basin, very
few events are available.

HGFs

Since the EGFs have a satisfactory signal-to-noise ratio (>2) only
beyond about 1 Hz, they are not adequate to simulate the low-
frequency ground motion. Consequently, low frequencies are com-
puted with the spectral element method (SEM) and combined in
the time domain with the EGFs to obtain a set of HGFs (Kamae
et al. 1998). The SEM is a high-order method that combines the
ability of finite element methods to handle 3-D geometries and the
minimal numerical dispersion of spectral methods (Komatitsch &
Vilotte 1998; Komatitsch & Tromp 1999). The reader is referred to
Chaljub et al. (2007), Komatitsch et al. (2004), Lee et al. (2008)
and Chaljub (2009) for details about the application of the SEM
to ground motion estimation in sedimentary basins or valleys. The
SEM is particularly well suited for ground motion estimation in
alpine valleys because of its natural ability to account for free-
surface topography and its accuracy to model the propagation of
surface waves, such as those diffracted off the valley edges. The
numerical prediction of ground motion with the SEM presented
hereafter have been carefully validated by comparison with those
of other advanced 3-D methods, during the numerical benchmark
organized within the 2006 symposium on the effects of surface ge-
ology (ESG) on ground motion (Chaljub et al. 2009; Tsuno et al.
2009).

Deterministic ground motion calculations implicitly assume that
the 3-D structure (i.e. the positions of the physical interfaces, seis-
mic wave velocities, densities, attenuation factors, etc.) is known
from the source region to the receivers. For the Grenoble area, we
use a simple 1-D model of the crust combined with a 3-D model
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Figure 6. (a) Effect of the EGF radiation pattern correction on the fitting between the deteministic and the empirical ground motion. (b) Principle of the
low-frequency ground motion simulation. 3D-simulations and EGFs are filtered and summed on each subfault to obtain a set of HGFs.

of the sedimentary valley. The crustal model is defined following
Thouvenot et al. (2003) and given in Table 2.

The 3-D valley model is bounded by the sediment-bedrock in-
terface obtained by Vallon (1999). Within the sedimentary cover,
seismic velocities and densities are only allowed to vary with depth
as⎧⎪⎨
⎪⎩

a = 300.0 + 19.0 × √
d,

b = 1450.0 + 1.2 × d,

ρ = 2140.0 + 0.125 × d,

(13)

where depth d is given in m, P (resp. S) velocities a (resp. b) in m s−1

and mass density ρ in kg m−3. Finally, we account for attenuation
only in the sediments by assuming a finite shear quality factor
Qμ = 50 and an infinite bulk quality factor Qκ .

The depth dependence of seismic velocities given by eq. (13)
relies on direct measurements made for depths larger than 40 m
in a deep borehole drilled in 1999 in the eastern part of the valley

(Nicoud et al. 2002). It also matches closely the values derived from
a refraction profile in the western part of the valley (Cornou 2002;
Dietrich et al. 2009). This is consistent with the early geological
history of the valley since the deep part of the sedimentary cover (i.e.
below about −30 m) was formed by the sedimentation of postglacial
lacustrine deposits, a smooth process that did not produce strong
lateral variations. The shallower part, filled by the deposits of the
Isère and Drac rivers, is known to be much more heterogeneous and
a continuous effort is deployed to map these lateral variations into
a fully 3-D model of the valley. The 1-D model defined by eq. (13)
provides a crude average of the shallow subsurface but it has been
shown to explain reasonably well the ground motion characteristics
for frequencies below 1.5 Hz, in particular the level of amplification
between bedrock and sediments (Chaljub et al. 2004, 2005; Chaljub
2009) and the ambient noise propagation properties (Cornou et al.
2008).

In order to define the low frequency part of the HGFs, we need
to compute the ground motion at a small number of stations (9 for
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Figure 7. Sensitivity of the ASTF to the EGF parameters MW, f c and K s. The assumed reference values are MW = 2.8, f c = 12 Hz and K s = 0.74. The
spectra correspond to the quadratic mean of 100 simulated spectra for � = 90◦ and τmax = 0.6 s.

Table 2. 1-D velocity and density model of the bedrock used for estimating
the deterministic part of the hybrid Green’s functions.

Depth of Quality
top layer (km) α (km s−1) β (km s−1) ρ (g cm−3) factor

0 5.60 3.20 2.72 ∞
3 5.92 3.43 2.72 ∞
27 6.60 3.81 2.92 ∞
35 8.00 4.45 3.32 ∞

the results presented in this paper) due to a large number of point
sources distributed on the fault plane. The fault plane is discretized
into 36 × 18 = 648 square subfaults of length 160 m. It is therefore
indicated to invoke the reciprocity of the wave equation and to
switch the respective roles of sources and receivers, as suggested
by Eisner & Clayton (2001), Graves & Wald (2001) and recently
implemented by Zhao et al. (2006) for tomographic applications.

Let xR stand for the position of one of the receivers. The ith com-
ponent of the displacement field due to a double-couple punctual
source located at xS is

ui (xR, t) = ∂ G ji

∂x S
k

(xR, xS, t) ∗ M jk(xS, t), (14)

where G is the Green’s function and M gathers the seismic moment
tensor and the source time function. Note that G has to be evaluated
at the receiver position. Applying reciprocity yields

ui (xR, t) = ∂ Gi j

∂x S
k

(xS, xR, t) ∗ M jk(xS, t), (15)

where now the Green’s function is the displacement field evaluated
at the source position due to a unit force located at the receiver. The
final seismic moment is described with a Heaviside function, scaled
to the EGF magnitude (ML = 2.8).

Following eq. (15), we thus performed a total of 27 simulations, 3
unit forces in the x , y and z directions for each of the nine receivers,
and recorded the spatial derivatives of the ground displacement at
the 648 points defining the fault plane. The grid used for those
calculations contains about 40 000 elements (2 600 000 points) and
provides a sampling of at least five gridpoints per wavelength for
frequencies up to 2 Hz. The computation of 90 s of these 157 464
derivatives of Green’s functions required a continuous access to
32 CPUs during about 2 months.

Next, both deterministic and empirical parts of the Green’s func-
tions are summed in the time domain on each subfault by adjusting
the P-waves arrival times (Fig. 6b). Numerical simulations and
EGFs are, respectively, low-passed and high-passed filtered with a
pair of complementary filters. A set of 648 three-component HFG
is obtained for each station. Given that the EGFs do not have a
satisfactory signal-to-noise ratio below 1 Hz and that determinis-
tic Green’s functions are calculated up to 2 Hz, the value of the
filter cut-off frequency can be chosen within this range. Numeri-
cal simulations result in a set of Green’s functions specific to the
subfault-receiver path. This is not the case for the empirical part
since the same EGF is used for each part of the fault plane. Never-
theless, the numerical simulation accuracy is strongly limited by the
lack of detailed knowledge of the propagation medium. Therefore,
the cut-off frequency is chosen to be 1 Hz (Fig. 6b).
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Figure 8. Sensitivity of the ground acceleration with respect to the variation by one standard deviation of the parameter K, the hypocentre abscissa Xnuc and
the rupture velocity v. Acceleration and velocity time histories are the EW-components at station OGMU. The maximum value is indicated on the right of each
time-series. Xnuc/L ≤ 0.5 corresponds to the northwestern part of the fault. In order to show the K effects, an antidirective unilateral rupture is supposed. This
way the sensitivity to K can be observed not only on the ground acceleration but also on the velocity. To study the v effects, the hypocentre is set on the middle
of the fault.

G RO U N D M O T I O N P R E D I C T I O N S

Ground motion variability assessment

The ground motion prediction variability is evaluated by first defin-
ing the source parameter uncertainties and then calculating their
effects on the SA. More precisely the k−2 model parameters are
assigned probability density functions. The Latine hypercube sam-
pling (LHS) method (McKay 1988) is next applied to select for
each parameter a set of n values, chosen with respect to its distri-
bution. These values are randomly combined for obtaining a set of
n samples of source parameters (see Pavic et al. 2000, for more
details). Finally, the resulting parameter combinations are used to
simulate, with the aforementioned summation algorithm, a class of
n response spectra, from which the median and standard deviation
of SA are calculated. In this study, a value of n = 50 is taken.
For each simulation the high wavenumber slip spectrum phases are
randomly defined.

The source parameter distributions are assessed by investigating
their scattering obtained from past kinematic inversion studies. Mai
et al. (2005) have analysed the hypocentre position by studying a
database of more than 80 finite-source rupture models and defined
probability density functions that we used in this paper. Somerville

et al. (1999) also detailed the characteristics of 15 crustal earth-
quake slip models, from which they derived a relation between the
corner wavenumber kc = K/L and the seismic moment. For a MW

5.5 event, the relation gives a median K value of 0.5 with a standard
error of 0.26. Taking this distribution, the n = 50 K -values range
from 0.17 to 1.2. Consequently, according to the discussion of Ap-
pendix A, the slip model correction proposed to remove the negative
slip areas can be applied. Next we supposed that the rupture veloc-
ity v is uniformly distributed between 0.7c and 0.9c, where c is the
share wave velocity. Finally, we assume a constant rise-time τmax

equal to 0.25 s, which is the average value proposed by Somerville
et al. (1999) for a MW 5.5 earthquake. Fig. 8 displays the effects
of the source parameters uncertainties on the ground acceleration
and velocity at rock station OGMU. Are also shown examples of
amplitude acceleration Fourier spectra for unilateral directive and
antidirective ruptures (Fig. 9).

Simulation on rock and validation

In order to test the reliability of the ground motion predictions,
simulations on rock site are compared to the empirical ground mo-
tions equations of Bragato & Slejko (2005) and to the stochastic
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Figure 9. Example of amplitude acceleration Fourier spectra for unilateral directive and antidirective ruptures, at OGMU rock station (EW component). The
slope is approximately ω2 below Fc1 and Fc2 (theoretical corner frequency values for a non-directive and a directive propagation, respectively). The spectral
level is flat and equal for both rupture types beyond the transition frequency F0, and starts decreasing above about 10 Hz, due to the seismic wave attenuation.

method developed by Pousse et al. (2006). Both methods, based
on real data, provide estimation of the ground motion median and
standard deviation expected at a rock station. Bragato & Slejko
(2005) empirical equations have been derived from a large data set
of seismometric and accelerometric records collected in the Eastern
Alps and are valid in the magnitude range 2.5–6.3 for distances of
up to 130 km. Pousse et al. (2006) method generates time-domain
accelerograms following a specific time envelope and based on the
assumption that phases are random. The frequency content of the
signal follows a modified ω−2 model. The method depends on four
indicators (peak ground acceleration, strong-motion duration, Arias
intensity and central frequency), empirically connected to Japanese
data recorded by the K-net array.

Fig. 10 stands for the comparison between the EGF response spec-
tra at rock stations (OGMU and G10) and Bragato & Slejko (2005)
predictions. The good agreement between the data and Bragato &
Slejko (2005) model in the frequency range 0.5–3 Hz, especially
for station G10, shows that the EGF seismic moment estimation
is correct. Discrepancies observed at frequencies above 3 Hz can
be explained by the rock stiffness differences at stations OGMU
and G10. VS30 is close to 2200 m s−1 at OGMU and 1500 m s−1 at
G10, whereas Bragato & Slejko (2005) model includes softer rock
types (800 < VS30 < 1500 m s−1 on average; P. L. Bragato, 2008,
personal communication). In the following station G10, which best
fits the empirical model rock site definition, is kept as the reference
rock station.

Comparison between our k−2 hybrid calculations, Bragato &
Slejko (2005) predictions and Pousse et al. (2006) stochastic sim-
ulations is displayed on Fig. 11. Stochastic simulations are initially
adjusted to adapt the definition of rock. Indeed the K-net array rock
types used in Pousse et al. (2006) correspond to VS30 ≈ 800 m s−1.
Pousse et al. (2006) VS30 is thus set equal to 1500 m s−1. Since
the roughness parameter K median value is poorly constrained by
Somerville et al. (1999) empirical model, ground motion predic-
tions are shown not only for a median value K = 0.5 but also for

Figure 10. Comparison between the EGF response spectra at rock stations
OGMU and G10 (EW component) and Bragato & Slejko (2005) empirical
ground motion equations for a rock site, ML = 2.8 and an epicentral distance
equal to 19 km.

K = K S = 0.74 (self-similarity between the small and the simulated
events) and for K = 1 [value used in the classical model of Herrero
& Bernard (1994)]. First, for K = 0.5, our ground motion simula-
tions well match Bragato & Slejko (2005) empirical equations in
the frequency range 0.5–2 Hz and predict lower values for higher
frequencies (Fig. 11a). This is consistent with the comparison be-
tween the EGF and the empirical equation predictions, showing a
similar tendency (Fig. 10). The difference observed at high fre-
quency decreases with an increasing K value. Second, a value of
K = 1 is necessary to improve the agreement between k−2 hybrid
simulations and Pousse et al. (2006) corrected response spectra. For
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Figure 11. (a) Comparison between the response spectra obtained from our k−2 hybrid predictions (station G10, EW component), Bragato & Slejko (2005)
empirical ground motion equations and Pousse et al. (2006) stochastic simulations, corrected according to Cotton et al. (2006) procedure (VS30 = 1500 m s−1).
The dashed line correspond to the plus and minus standard deviation spectra. (b) Example of accelerograms (station G10, EW component) obtained from the
k−2 hybrid procedure. Are also shown example of Pousse et al. (2006) corrected stochastic simulations. The six time-series span the median ground motion
within ±1 SD.

K = 1, the obtained time-series are also similar in terms of ampli-
tude and duration (Fig. 11b). Note that below 1 Hz, the stochastic
simulations exceed the other predictions of a factor of about 2.
This difference may come from Pousse et al. (2006) procedure,
that overestimates the acceleration Fourier amplitude below the
corner frequency for moderate sized earthquakes (Fabian Bonilla,
2008, personal communication—see also fig. 8 of Pousse et al.
2006).

Despite the discrepancies observed at high frequency, one can
conclude that our simulations are consistent with Bragato & Slejko
(2005) empirical equations and the stochastic simulations, for the
three tested K values.

Simulation on sediment

In order to simulate ground motion at sediment stations, a K value of
0.5 is kept, since it results from past earthquake analysis (Somerville
et al. 1999, relationships). The comparison at the rock station G10
with Bragato & Slejko (2005) empirical equation results and Pousse
et al. (2006) corrected simulations suggests that K = 0.5 does not
lead to overestimated ground motion. Fig. 12 displays the accelero-
grams derived from median source parameter values at the 9 stations
and Fig. 13 displays median and standard deviation of the simulated
response spectra. The spectra are compared with the European regu-
lation spectra (EC8) for rock site (category A in EC8 classification)

or for standard to stiff soils (category B and C) for the stations lo-
cated within the basin. First, our predictions exceed the EC8 spectra
at some sites and some frequencies, especially at station OGDH,
which exhibits two peaks at 0.3 and 2 Hz. The first peak, gener-
ated by 3-D simulations (<1 Hz), corresponds to the fundamental
resonance frequency of the sedimentary basin (Lebrun et al. 2001;
Guéguen et al. 2006a). This peak also clearly appears at stations
OGFH, G15 and G20. This confirms the importance of coupling
the EGF with 3-D numerical calculations. The second peak at 2 Hz
has been well identified from geophysical and geotechnical surveys
(Guéguen et al. 2006b, P. Guéguen and S. Garambois, unpublished
manuscript) and from global inversion methods (Drouet et al. 2007).
This is interpreted as the resonance effects within a surficial soft
clay layer overlaying more competent sandy graver layers. Second,
the spectral responses at stations G20 and OGDH, located only a
few hundreds of meters away, obviously diverge beyond 1 Hz. This
points out the large spatial variability of the high-frequency ampli-
fication effects, caused by fast lateral variations of the upper soft
sediment layers (Tsuno et al. 2008). Such variations are observed
from several drillings and surface wave measurements performed
in this area. Third, the EC8 design spectra largely exceed our sim-
ulations at rock stations OGMU and G10. These results indicate
that standard European regulations provide a frequency-dependent
and site-dependent safety margin in the Grenoble basin. The use
of HGFs suggests the need of specific design spectra in Grenoble,
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Figure 12. Simulated accelerograms for median parameter values. The maximum value is indicated on the right of each accelerogram.

with increased low-frequency level in the valley and much smaller
spectra on rock. Microzonation studies are thus preferable in such
a specific geological context.

C O N C LU S I O N

A new method has been introduced for performing broad-band
ground motion time histories from a finite-extent source model.
This method includes specific site effects and is adequate for
simulating ground motion in 3-D deep alluvial valleys. The ground
acceleration is computed in the frequency range 0.1–30 Hz with
a new approach coupling k−2 source model and HGFs, obtained
by summing reciprocity-based SEM 3-D simulations (<1 Hz) and
EGFs. A procedure is proposed to assess the ground motion predic-
tion variability due to the source rupture process, from specific dis-
tributions of the k−2 model parameters. We used this new approach
for predicting ground motion for a potential MW 5.5 earthquake in
the Grenoble valley. At sediment sites, the simulated response spec-
tra significantly differ from one station to the other. At some sites
simulations present large response spectra both at high-frequency
(>1 Hz) and low-frequency (≈0.3 Hz) and EC8 spectra are ex-
ceeded. This points out the interest of coupling EGFs and 3-D
numerical simulations in such deep valleys.

The method presented relies on reliable estimation of the source
model parameter distributions. Our ground motion estimations es-
pecially depends on the slip distribution roughness, controlled by the
parameter K. In order to estimate the a priori K value distribution,
Somerville et al. (1999) scaling laws have been used. Neverthe-

less, the reliability of these relationships may be questionable. First,
Somerville et al. (1999) results have been derived from a small num-
ber of inverted source models (15) and the event magnitudes MW

range from 5.6 to 7.2, which decreases the K estimation robustness
for a MW 5.5 event. Second, the inverse problem parametrization
often involves subjective decision resulting in highly different in-
verted slip images and there is no basis to distinguish between
artefacts, smoothing constraints and real features (Beresnev 2003).
The comparison made in Fig. 11 indicates that a median K value
of 0.5 may result in underestimated ground motion. There is thus a
need of improving earthquake model databases to better constrain
source parameters for performing blind predictions. An other ap-
proach would have been to set the median K value equal to 1, which
leads to the best fit between the predictions at rock station G10,
Bragato & Slejko (2005) predictions and Pousse et al. (2006) cor-
rected simulations. Such a calibration is also proposed by Causse
et al. (2008). Nevertheless, this approach would not change the
general conclusion on the comparison between the ground motion
predictions at sediment stations and the EC8 design spectra.
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Figure 13. Simulated median and standard deviation of the spectral acceleration (EW component), compared with EC8 spectra. The median K value is K =
0.5, as suggested by Somerville et al. (1999) empirical model.

Accelerometric Permanent network and all the participants to the
2005 Grenoble experiment (Chaljub et al. 2006).
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A P P E N D I X A : S TAT I C S L I P
G E N E R AT I O N

The static slip models are obtained by inverse Fourier transform
from eq. (1). They result from the superposition of a deterministic
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Figure 14. (a) Slip amplitude spectrum in 2-D (left-hand panel) and 1-D (right-hand panel). The deterministic slip (k ≤ 1/L) is defined by only 3 points. (b)
Deterministic slip correction procedure. The mean slip is 0.4 m and the K value equals 1. The space between the slip contourlines is 0.2 m. (c) Effect of the slip
correction procedure on the amplitude slip spectrum. The curves correspond to the 1-D along-strike Fourier transforms. The larger the K value is, the larger
the reduction induced by removing the negative slip is.

part (k ≤ kc) and a stochastic part (k > kc). From numerical con-
siderations the deterministic slip is defined in the Fourier domain
by a limited number of points (only three points in 1-D, Fig. 14a).
This results in spurious artefacts in the space domain, in particular
strongly negative slip zones. A simple process is thus introduced
to enhance the low wavenumber asperity features (Fig. 14b): (1)
the low wavenumber slip amplitude spectrum is resampled using n
times the original sampling rate. The resulting spatial slip covers a
fictitious fault plane of size (nL, nW ). In practice, we used n = 4;
(2) the centre window of size (L, W ) is selected; (3) the remaining
negative slip areas and the fault edges are assigned zero slip and

(4) a constant scaling factor is applied to conserve the mean slip.
This procedure brings about only minor modifications on the slip
amplitude spectrum (Fig. 14c).

The deterministic slip is next added the high wavenumber slip
contributions. A classical problem of this superposition is the emer-
gence of negative slip areas in the final slip distributions. In order
to remove the unphysical negative slip values, the slip fluctuation
amplitudes are just reduced at any point with negative slip to reach a
zero slip. The slip is next tapered on the edges and normalized again
to get the right mean slip. The effect of the negative slip removing
is to decrease the slip spectrum amplitude at high frequency, and
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consequently the source energy. However, this reduction remains
weak for K ≤ 1 because most of the slip is positive (Fig. 14c). Be-
sides our tests show that the apparent source time function spectral
decay is preserved and that the high-frequency energy decrease is
also weak for K ≤ 1 (cf. Section ‘Summation Algorithm’, Fig. 4e).
For simulating with higher K values, negative slip values can be
kept but the k−2 source model has to be considered as a purely
mathematical tool providing the expected source spectrum charac-
teristics.

A P P E N D I X B : C A L C U L AT I O N O F
T H E T H E O R E T I C A L A S T F H I G H -
F R E Q U E N C Y S P E C T R A L L E V E L

From eq. (11), the ASTF amplitude spectrum is such that:

|R( f )| = |U ( f )|/|u( f )|, (B1)

where U ( f ) and u( f ) denotes the simulated event and the EGF dis-
placement spectra, respectively. Beyond the EGF corner frequency
f c, both events have a ω−2 spectral decay. Hence the theoretical
ASTF amplitude spectrum is a plateau, the level of which is:

|R( f ≥ fc)|theo = |U ( fc)|theo/|u( fc)|theo. (B2)

The theoretical displacement spectrum amplitude of the target
event at frequency f c is

|U ( fc)|theo = Ao

4π 2 f 2
c

. (B3)

The Ao value is given by eq. (5) and the corner frequency of the
small event, that is assumed to follow a k−2 model, is such that:
fc = vKS

l , with K S ≈ 0.74 (eq. 8).
Besides, the propagation effects and radiation patterns and sup-

posed to be the same for both EGF and simulated event. It leads
to:

|u( fc)|theo = Csmo, (B4)

After eqs (B2), (B3) and (B4), and by assuming that both events
have the same rupture velocity, we obtain

|R( f ≥ fc)|theo = RMS
[
Cd (�)2 X (Cd (�)/2)

] (
Mo

mo

)(
l

L

)2( K

KS

)2

.

(B5)

For a ratio v/c = 0.8 and for a Gaussian slip velocity function with
a standard deviation σ = τ/10 RMS[Cd(�)2 X (Cd(�)/2)] ≈ 1.9.
Thus, eq. (B5) gives

|R( fc)|theo = βN K 2, (B6)

with β ≈ 3.5.

A P P E N D I X C : C A L C U L AT I O N
O F T H E E G F N U M B E R T O S U M
F O R T H E H I G H - F R E Q U E N C Y
A S T F L E V E L C O R R E C T I O N

In order to obtain the expected level |R( f ≥ f c)|theo, the average
number of EGFs to sum along the rise time dislocation is adapted.
This choice comes to assume a new EGF dislocation. Let d/γ be the
modified EGF dislocation. At low frequency, the EGF summing up
is coherent. Hence the ASTF amplitude becomes γ N 3. To conserve

Figure 15. Representation of the slip distribution Dk (x , y) for a given
wavenumber k. The integrals I1 and I2 (eqs 26 and 27) represents the
integrals of |Dk (x , y)| over the surfaces S1 and S2, respectively.

the seismic moment, the whole spectrum is divided by γ . Besides,
beyond f c, the summation is incoherent. Therefore, the ASTF level
becomes the square root of the EGF quadratic sum, each EGF being
represented by a Dirac function with amplitude 1 or −1. This leads
to

|R( f ≥ fc)|obs = 1

γ

√
γ (NSTO + NDET), (C1)

where N DET = N 3 and N STO is the total number of summed EGF
resulting from the stochastic slip heterogeneities. The deterministic
slip contribution to the ASTF is low-pass filtered to keep only the
stochastic slip contributions beyond f c. Thus, eq. (C1) gives

|R( f ≥ fc)|obs =
(

NSTO

γ

)1/2

. (C2)

N STO calculation

In order to estimate N STO, the surface slip density for a given
wavenumber k > 1/

√
L2 + W 2 is calculated. It is defined as

ρsk = 1

LW

∫ L

0

∫ W

0
|Dk(x, y)|dxdy, (C3)

where Dk(x , y) represents the slip distribution for the wavenumber
k. Using the integrals I1 and I2 of |Dk(x , y)| over the surfaces S1

and S2, respectively (Fig. 15), we obtain

ρsk = 1

LW
· 2(I1 + I2) · 2Lkx · 2W ky

= 8kx ky(I1 + I2), (C4)

with

I1 = 2Dk(kx , ky)
∫ 1

4kx

0

∫ 1
4ky

0

∣∣sin[2π (kx x + ky y)]
∣∣ dxdy

= Dk(kx , ky)

π 2kx ky

(C5)

and

I2 = 2Dk(kx , ky)
∫ 1

4ky

0

∫ 1
4ky

− ky
kx

0

∣∣cos[2π (kx x + ky y)]
∣∣ dxdy

= (π − 2)

2

Dk(kx , ky)

π 2kx ky
. (C6)
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It leads to

ρsk = 4Dk(kx , ky)

π
. (C7)

The overall surfacic slip density ρs is obtain by summing all the
high wavenumber contributions

ρs = 2
∫ kxmax

kxmin

∫ kymax

kymin

ρsk dkx dky . (C8)

From eq. (1) we come to

ρs ≈ 8

π
DK 2

∫ kxmax

kxmin

∫ kymax

kymin

1

k2
x + k2

y

dkx dky . (C9)

In the following a square fault plane is assumed (L = W ).
Hence from numerical considerations (see Appendix A, Fig. 14a):
kxmin = kymin = 2

l(N−1) and kxmax = kymax = kN = 1
2l . Next cartesian

coordinates are replaced with polar coordinates (r , �) in eq. (C9).
It leads to the following approximation:

ρs ≈ 8

π
D̄K 2

∫ π/2

0

∫ 1
2l

2
l(N−1)

1

r 2 cos �2 + r 2 sin �2
rdrd�

≈ 4D̄K 2 ln

(
N − 1

4

)
. (C10)

Besides N STO is related to ρs according to

NSTO = ρs L2

d̄l2
. (C11)

Then, inserting (C10) into (C11) we get

NSTO ≈ α(N )2 N 3 K 2, (C12)

with α(N ) = 2
√

ln
(

N−1
4

)
.

� Calculation of the adapted EGF dislocation d/γ

After eqs (C2) and (C12), the observed ATSF spectral level is:

|R( f ≥ fc)|obs = α(N )

γ 1/2
N 3/2 K . (C13)

Finally, after eq. (B6), the condition: |R( f ≥ f c)|obs = |R( f c)|theo

leads to

α(N )

γ 1/2
N 3/2 K = βN K 2. (C14)

Consequently, the new EGF dislocation to be considered is d/γ

with

γ =
(

α(N )

β

)2 N

K 2
, (C15)

where α(N ) = 2
√

ln
(

N−1
4

)
and β ≈ 3.5.
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Is Ground-Motion Variability Distance Dependent?

Insight from Finite-Source Rupture Simulations

by Afifa Imtiaz, Mathieu Causse, Emmanuel Chaljub, and Fabrice Cotton*

Abstract The ground-motion variability sigma is a fundamental component in prob-
abilistic seismic-hazard assessment because it controls the hazard level at very low prob-
abilities of exceedance. So far, most of the analyses based on empirical ground-motion
prediction equations do not consider any distance dependency of sigma. This study aims
to analyze the potential distance dependency of ground-motion variability, especially in
the near-field region, where the variability is poorly constrained due to the lack of avail-
able records. We, therefore, investigate the distance dependency of sigma by performing
numerical simulations of ground motion for some strike-slip events. Synthetic velocity
seismograms (up to 3 Hz) have been generated from a suite of finite-source rupture
models of past earthquakes. Green’s functions were calculated for a 1D velocity struc-
ture using a discrete wavenumber technique (Bouchon, 1981). The within-event com-
ponent of the ground-motion variability was then evaluated from the synthetic data as a
function of distance. The simulations reveal that the within-event component of the
ground motion shows a distance dependency, subject to the rupture type. For bilateral
ruptures, the variability tends to increase with distance. On the contrary, in case of uni-
lateral events, the variability decreases with distance.

Introduction

Empirical ground-motion prediction equations (GMPEs)
developed by means of regression techniques from recorded
strong-motion data, generally are based on very simple pa-
rameterization with magnitude (M), distance (d), and site cat-
egory (s). The distribution of ground motion for a given M,
d, and s is then represented in terms of a median and a stan-
dard deviation, referred to as the aleatory variability sigma,
which is a fundamental component in probabilistic seismic-
hazard analysis (PSHA). Sigma exerts a strong influence on
the seismic-hazard level, especially for long return periods
(Bommer and Abrahamson, 2006). It is therefore imperative
to accurately constrain sigma to perform reliable seismic-
hazard analyses.

In seismic-hazard studies two types of uncertainties,
termed as aleatory variability and epistemic uncertainty,
are considered. Aleatory variability is defined as the natural
randomness in a process and is supposed to be irreducible.
On the contrary, epistemic uncertainty refers to the scientific
uncertainty in the model of the process caused by limited
data and knowledge, which can theoretically be reduced
to zero with models better explaining the data. Ideally, sigma
should represent the aleatory ground-motion variability ob-
tained from repeated events on the same fault and recorded at

the same station. As such, it includes only the natural ran-
domness of the source rupture process (Anderson and Brune,
1999). Nevertheless, the computation of sigma in GMPEs is
typically performed from records at multiple stations from
different earthquakes, and hence mixes various paths and site
responses. In other words, the variability in ground motion
due to differences in paths and site response is typically con-
sidered as aleatory whereas it should be treated as epistemic
uncertainty. This assumption is commonly referred to as er-
godic (Anderson and Brune, 1999).

Thanks to the increasing availability of strong-motion
records, several recent studies propose to refine ground-
motion variability analyses by splitting sigma into various
component (e.g., Chen and Tsai, 2002; Al-Atik et al., 2010;
Rodriguez-Marek et al., 2011; Edwards and Fäh, 2013). Fol-
lowing the notation of Al-Atik et al. (2010), the total vari-
ability can then be expressed as

σtot �
����������������
ϕ2 � τ2

q
; �1�

in which, ϕ refers to the within-event variability (due to the
variability in site conditions and path effects for a given event
recorded at various stations) and τ refers to the between-event
variability (essentially due to the natural source randomness).
The variability σtot can further be refined by extracting the
contribution of site-specific effects from ϕ, to obtain the

*German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473
Potsdam, Germany; fcotton@gfz‑potsdam.de.
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single-station standard deviation (or single-station sigma)
defined as

σss �
�����������������
ϕ2
ss � τ2

q
: �2�

The term ϕSS is then called the event-corrected single-station
sigma. A very recent work by Rodriguez-Marek et al. (2013)
addresses the issue of the variation of single station sigma with
respect to region, magnitude, and distance. First, it is remark-
able from their work that the mean values of ϕSS appear to be
stable (average ϕSS ≈ 0:45) across the different regions
(California, Taiwan, Japan, Switzerland, and Turkey). Second,
the authors observe that ϕSS depends both on magnitude and
distance. They propose various models to account for such
potential dependencies for moment magnitude (Mw) 4.5–8
and for distances up to 200 km, opening some new insights
for improving PSHA. Nevertheless, the reliability of suchmod-
els at short distances (<20 km) remains questionable due to
the scarcity of near-field records of moderate-to-large events
(Mw >6) and potential large epistemic uncertainties associ-
ated with small event metadata (in particular depth).

The present article addresses the issue of the ground-mo-
tion variability using near-field kinematic-rupture simulations.
Our strategy is to evaluate sigma from synthetic data as a func-
tion of distance. Our study focuses on the within-event com-
ponent of sigma (ϕ) only. Various published kinematic source
models of vertical strike-slip events are considered to represent
the source process on the fault. Synthetic velocity time series
are computed up to 3 Hz by convolving slip-rate functions with
1DGreen’s functions at stations placed at various azimuths and
distances from the source. For each source model, we then ex-
tract ϕ for peak ground velocity (PGV) and study the variations
of ϕ with respect to distance. It is important to note that the
scope of our study is not to provide ground-motion variability
values, to be directly incorporated in seismic-hazard analyses,
which would require an unreasonably large number of source
models and computation time.We limited our selection by con-
sidering vertical strike-slip events with 6 < Mw < 7 only, to
focus on the overall physical properties that are likely to influ-
ence the distance dependency of ϕ.

Although a variety of distance definitions are available,
this work will use RJB, the Joyner–Boore distance, defined as
the shortest distance from the receiver to the surface projec-
tion of the fault plane (Joyner and Boore, 1981), enabling us
to represent the finiteness of the fault in the region of the
near-fault plane. The RJB distance is equivalent to the rupture
distance Rrup (closest distance to the rupture surface) for ver-
tical strike-slip events, especially when the rupture is very
close to the surface as for our selected fault models.

Ground-Motion Simulation

Kinematic Source Models

A total of 11 kinematic source models (i.e., the spatiotem-
poral distribution of slip on the fault plane), with magnitudes

ranging fromMw 5.8 to 6.8, were generated for vertical strike-
slip events. Eight of the source models are based on published
models of past events, obtained using kinematic inversion of
strong-motion observations, sometimes combined with Global
Positioning System and/or Interferometric Synthetic Aperture
Radar data. Although they were derived using various inver-
sion techniques, most of them assume uniformity in rupture
velocity and rise time (Table 1). These models were extracted
from a database of finite-source rupture models available on-
line (Mai and Thingbaijam, 2014; see Data and Resources).
Among the eight models, six correspond to bilateral rupture
and two to unilateral rupture. The classification of the models
into bilateral/unilateral rupture is based on McGuire et al.
(2002), who proposed to quantify rupture directivity using a
directivity ratio (DR) computed from the second moments of
the slip space–time distribution (see Appendix A). DR ranges
from 0, for a 1D symmetric bilateral rupture with constant slip,
to 1, for a unilateral rupture.

To properly compute ground motion up to 3 Hz, a fine
grid is required to represent the slip history on the fault plane.
Because the considered kinematic source models are defined
on coarse grids (∼2 km × 2 km), they have been interpolated
on a smaller grid (e.g., 200 m × 200 m), ensuring at least
five points per minimum wavelength. The interpolation pro-
cedure assumes self-similarity of the static slip beyond the
Nyquist wavenumber of the original model by imposing a
k−2 slope of the slip spectrum. The resulting numbers of sub-
faults are shown in Table 1.

These eight source models were complemented by three
synthetic models produced using a k−2 description of the fi-
nal slip (e.g., Causse et al., 2009). The fault-plane configu-
ration and other kinematic parameters (rise time and rupture
velocity) are the same as the source model derived by Seki-
guchi and Iwata (2002) for the 2000 Tottori earthquake (Ta-
ble 1). The final slip on the fault plane is described in the
wavenumber domain by a k−2 asymptotic decay beyond a
corner wavenumber kc � K=Lc, in which Lc is the character-
istic rupture length and K is a nondimensional parameter. The
parameter K expresses the degree of roughness of the slip
heterogeneity. Thus we generated three source models charac-
terized by a smooth slip distribution (K � 0:4), a rough one
(K � 1:6) and an intermediate one (K � 0:8), so as to isolate
the effect of the slip roughness on the ground-motion variability.

Source parameters and computed DRs of the eight mod-
els, extracted from the database of finite-source rupture mod-
els, are listed in Table 1. The corresponding source parameter
distributions are provided in Figures 1 and 2. The images of
the k−2 slip models are shown in Figure 3. In Table 1, mag-
nitude (Mw) and hypocentral depth (H) of each event along
with the length (L) and width (W) of the source model are
given. SVF indicates the slip-velocity function considered.
Each extracted model from the database was interpolated
to a finer grid of subfaults, which is given by Nb. subfaults.
In case of constant rupture velocity (VR) and rise time (TR),
the corresponding values are indicated. Nb.TW refers to the
number of time windows used in the inversion (Nb:TW > 1
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in case of multi-time-window linear inversion; Hartzell and
Heaton, 1983). The Kagoshimaen-hoku-seibu source model
has been derived assuming constant rise time but variable
rupture velocity. Nevertheless, this model has been simpli-
fied, considering an average constant rupture velocity, due to
unavailability of the rupture time distribution in the source
model database. The DR indicates the rupture type. Imperial
Valley and Coyote Lake models (DR > 0:5) can be consid-
ered as unilateral and the rest (DR < 0:5) as bilateral.

Station Layout

A network of 135 hypothetical stations at various distan-
ces and azimuths was designed. The receiver configuration
was set up for the RJB (Joyner–Boore distance) distances 1,
3, 10, 20, 30, 60, and 100 km. We remind that RJB and Rrup

distances are the same for vertical strike-slip events with rup-
ture reaching the surface. The receivers were positioned at
the specified distances along a line parallel to the fault as
well as beyond the ends of the fault extending radially out-
ward. The locations of the stations were adapted to the re-
spective rupture lengths of the source models. The station
layout is illustrated in Figure 4 for the source model of the
2005 Fukuoka event (rupture length L � 26 km). The azi-
muth angle (θ) between the direction of the rupture propa-
gation and the epicenter-receiver azimuth followed the
definition provided in Somerville et al. (1997). Because we
are considering strike-slip fault models only, the angle θ is
measured from the epicenter to the station in the horizontal
plane as illustrated in Figure 4.

Synthetic Ground-Motion Computation

Green’s functions were computed considering 1D lay-
ered velocity structures (as used by the respective authors
for source inversion, see Appendix B) using a discrete wave-
number technique (computer package AXITRA, Coutant,
1989). For the three synthetic k−2 source models, the chosen
velocity structure is the one used by Sekiguchi and Iwata
(2002) to derive the source model of the 2000 Tottori event.
Synthetic ground motions are next computed by convolving
the Green’s functions with the slip history of all the subfaults,
as defined in the 11 considered kinematic source models.
The SVF were the same as those used by the authors. Finally
three-component velocity time series were obtained at each
receiver location, by summing the contributions from the dif-
ferent subfaults, for the respective source models. Because of
the large extent of some of the faults considered in this study
(number of subfaults, Table 1), the calculation of the ground
motions were distributed on a computing grid to be achieved
in a reasonable time. The principle of the decomposition of
the computations is explained in Appendix C. The synthetics
of the fault normal component from the 2005 Fukuoka model
have been illustrated in Figure 5.
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PGV Calculation

We computed the PGV values as proposed by Boore et al.
(2006), using the GMRotD50 definition. GMRotD50 is an ori-
entation-independent geometric mean using period-dependent
rotation angles. The two orthogonal components of the synthetic
time series have been rotated from 1° to 90° in 1° steps, and the
geometric mean for each pair of rotated time series were stored.
Finally, PGV is taken as the median value of all the 90 geometric
means. Ripperger et al. (2008) compared different PGVapprox-
imations from the two horizontal components and observed that
GMRotD50 is a stable measure of the PGV showing a low

dependence on the orientation of the horizontal components.
Figure 6 shows the mean (with a standard deviation error
bar) of ground motion in terms of natural log of PGV averaged
over the different azimuths and along the RJB distances for the
fault models considered in this study. It is interesting to notice
that in Figure 6b, the PGV values at RJB � 1 km seems to
indicate a slight reduction compared to those at RJB � 3 km.

Analysis of PGV Within-Event Variability

We assessed the within-event component ϕ of the PGV
variability (corresponding to a single source recorded at
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Figure 1. Slip images of the kinematic source models, having constant rupture velocity and rise time, extracted from the database of
finite-source rupture models and interpolated to a finer grid. The models are (a) Fukuoka (2005), (b) Yamaguchi (1997), (c) Kagoshimaen-
hoku-seibu (1997), (d) Kagoshima (1997), (e) Tottori (2000, Sekiguchi and Iwata), and (f) Coyote Lake (1979). The star symbol shows the
location of the hypocenter. Contour lines represent lines of constant slip value.
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several stations) in this work. For each earthquake e, the vari-
ability at a distance R is calculated as the standard deviation of
the residuals. The residuals are defined as

δe;R � ln�PGV�e;R;θ − ln�PGV�θe;R ; �3�

in which ln�PGV�e;R;θ refers to the predictions for earthquake
e at distance R and azimuth θ, and ln�PGV�θe;R denotes the
average over azimuths. Figure 7a illustrates the within-event
ground-motion variability ϕ with varying distances for the
selected source models from the finite-source rupture model
database. Similarly, Figure 7b compares the variability for
the three k−2 source models along with the two 2000 Tottori
models.

We cannot ascertain any magnitude dependency of the
variability due to the narrow magnitude range (Mw 5.82–
6.83) considered. The most remarkable observation is that
ϕ is dependent on distance. The distance dependency of ϕ
exhibits two main regimes depending on the rupture type,
that is, unilateral or bilateral (Fig. 7a). The perceptible trends
of the PGV variability along with physical explanations on
the origin of the variability are described below.

Variability Considering Bilateral Ruptures Only

We observe two main tendencies of ϕ considering bilat-
eral rupture models only (i.e., with DR < 0:5), which could
further be distinguished by the distance from the source.
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Figure 2. (a) Slip amplitude, (c) slip duration, (e) rupture front evolution images of Tottori (2000, Semmane et al., 2005), and (b) slip
amplitude, (d) slip duration, (f) rupture front evolution images of Imperial Valley (1979). Both kinematic source models have been extracted
from the database of finite-source rupture models and then interpolated to a finer grid.
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Variability in the Near Field (below RJB ∼ 20 km)

Considering the tendency of average values of within-
event variability computed from nine bilateral models (the
curve Avg-of-Bilateral-Models) in Figure 7a, variability ϕ
demonstrates a fairly steady trend up to about 20 km from
the source. However, the difference in the ϕ values among
different rupture models is large (Fig. 8). This is because
at short distances ϕ is controlled by source parameters such
as location of main slip area, rupture initiation point, and hy-
pocentral depth. A comparison of the results obtained for the
Tottori event (models of Semmane et al., 2005, and Sekigu-
chi and Iwata, 2002) and the synthetic k−2 source models
(Fig. 7b) highlights the effect of the position of the main slip
area. The source model derived for Tottori (Figs. 1e and 2a)
considers the main slip area to be more widespread on the
upper part in comparison to the synthetic k−2 source models,
which assume the main slip area to be on the middle of the
fault plane (Fig. 3). This may have caused the lower values of
ϕ at 3 to ∼20 km distance for the former models. Besides,
the comparison between the three k−2 models (Fig. 7b) illus-
trates the effect of the different degrees of slip roughness
(represented by the nondimensional parameter K). Accord-
ing to Causse et al. (2010), the natural variability of K can be
described by a lognormal distribution with σlog�K� � 0:12.
Thus, the values of K considered in our study (K � 0:4,
K � 0:8, and K � 1:6) are expected to cover a wide range
of potential degree of slip roughness ([median − 1:5 stan-
dard, median� 1:5 standard], that is ∼85% of the potential
values). The comparison indicates that the degree of slip
roughness alone has little influence on the ground-motion
variability in comparison to the position of the main slip area,
except in the very near field (i.e., at 1 km), in which ϕ ∼ 0:15
for K � 0:4 and ϕ ∼ 0:35 for K � 1:6. The sensitivity to slip
roughness is likely to depend on other source parameters (rise,

time, and rupture velocity) and their potential correlations. For
instance, large values of the rise time act as low-pass filters and
could contribute to smoothing the effects of slip hetero-
geneities. On the other hand, shorter values of rise time
(i.e., <3:5 s) may tend to increase the sensitivity to slip
roughness.

Variability in the Far Field (beyond RJB ∼ 20 km)

Interestingly, the ϕ values for the bilateral events seems
to increase gradually above ∼20 km distance (Fig. 7a). This
tendency can be explained by the fact that in the far field
extended sources behave like point sources, and accordingly,
ϕ is essentially controlled by radiation pattern shape of S
waves and Love waves. This is further investigated by analyz-
ing the azimuth and distance dependency of the PGV values
for the 2005 Fukuoka and 2000 Tottori (Semmane et al.,
2005) earthquakes. Figure 9a represents the PGV values at
each receiver station for the respective azimuth angle θ at dif-
ferent RJB distances. θ is the angle between the direction of
rupture propagation and the epicenter-station azimuth (Somer-
ville et al., 1997). For distances larger than ∼30 km, the PGV
values over various azimuths along the station-array form aW-
shape exhibiting radiation pattern effect. Following the SH-
wave radiation pattern shape, we observe PGV maxima at azi-
muths 0°, 90°, and 180° and PGV minima at 45° and 135°. The
slower decay of PGV maxima compared to that of PGV min-
ima, with increasing distance (featuring the elongation of W-
shape in Fig. 9a), eventually results in increased variability. In-
deed PGV maxima are related to maximum SH-wave energy
radiation at all distances, whereas the minima, that is, ground
velocity at azimuths 45° and 135° are associated with a de-
crease of SH-wave energy radiation due to finite-source effects
as distance increases.
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Figure 3. Slip images of the synthetic source models (a) k2-C04 (K � 0:4), (b) k2-C08 (K � 0:8), and (c) k2-C16 (K � 1:6), produced
using k−2 descriptions of the final slip.
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Variability Considering Unilateral Ruptures Only

Turning now to the two unilateral rupture models (i.e.,
with DR > 0:5) of the 1979 Imperial Valley and 1979
Coyote Lake earthquakes, we can observe that unlike the bi-
lateral models, the variability exhibits a decreasing tendency
with distance (Fig. 7a), implying higher ϕ values at shorter
distances due to the presence of directivity effects. For uni-
lateral events, strong forward-directivity effects (i.e., ampli-
fication of the PGV value) are expected for small values of
the station-azimuth θ (θ < ∼30°). The dependence of direc-
tivity effects on θ is illustrated in Figure 9b, where the PGV
values for the unilateral events are plotted against θ, at each
RJB distance. At short distances (<∼10 km) most of the sta-
tions are located in the 0°–30° azimuth region (15 out of 20
stations at 1 km) and thus associated with a strong PGV am-
plification due to forward-directivity effects. The large pro-
portion of high peaked PGV values results in large variability

ϕ at shorter distances. As the distance increases, fewer sta-
tions remain in the forward-directivity direction (3 out of 20
at 100 km) due to the smaller fault dimension relative to the
fault-to-station distance, and hence the ϕ values decrease. At
100 km, the values of ϕ are of the same order as for bilateral
events, meaning that the directivity of the rupture propaga-
tion is a second order effect far away from the source (i.e.,
beyond 2–3 rupture lengths).

Discussion and Conclusions

The ground-motion variability sigma is a fundamental
component of PSHA studies, because small variations in
sigma values can have a large influence on seismic-hazard
analyses. So far GMPEs have considered sigma to be constant
over distance. Though a few recent data analyses suggest that
sigma is distance dependent, such studies remain, however,
affected by the lack of strong-motion data recorded in the
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near-source region (<10–20 km). In this article, we have an-
alyzed sigma from the viewpoint of simulations to complement
real data studies and to investigate the influence of different
source parameters on the resulting ground-motion variability.
Ground motion, represented by the PGV, is computed from
various kinematic source models and Green’s functions com-
puted for 1D-layered velocity models. Our study focuses on
the within-event component ϕ of sigma. For simplicity, we
have limited our study to vertical strike-slip faults.

Our results suggest that the within-event variability ϕ
depends significantly on the rupture type, with unilateral
ruptures resulting in larger ϕ values than bilateral ruptures,
especially in the near-source region. Far away from the
source (∼100 km), this dependency vanishes and ϕ is steady
(ϕ ∼ 0:3–0:5) for both kinds of ruptures. Thus the distance
dependency of ϕ presents two main behaviors: (1) ϕ in-
creases with distance for bilateral events and (2) ϕ decreases
with distance for unilateral events. Interestingly, the range of
within-event variability values provided by our numerical
simulations in far field is consistent with the single station
within-event variability (ϕSS) estimates obtained from real
data by Rodriguez-Marek et al. (2013) (ϕ ∼ 0:4 at 100 km).
It should be mentioned, however, that our ϕ estimations are
not only single station but also single path because we as-
sume a 1D velocity structure.

Using a global catalog of large shallow earthquakes,
McGuire et al. (2002) found that approximately 80% of
ruptures have DRs larger than 0.5, pointing out the overall
predominance of unilateral ruptures. This shows the impor-
tance of considering directivity effects in the estimation of
the between-event variability of ground motions. For a given
earthquake scenario, prior knowledge about the rupture direc-
tion may contribute in refining the estimates of ϕ. The large
variability, which we obtained at a short distance for unilateral
ruptures, may, however, be strongly reduced if azimuth is con-
sidered as a predictor. This could be quantified by computing
median ground motion from prediction models that account
for directivity effects (e.g., Somerville et al., 1997; Spudich

and Chiou, 2008) or simply by assessing the variability in vari-
ous azimuth ranges.

Our simulations are performed up to 3 Hz for simple
1D media. The ϕ values inferred in far field are essentially
controlled by the shape of the wave radiation pattern. Never-
theless the radiation pattern effect, which is clearly observed in
our synthetics, might be limited to lower frequency range
(<∼1 Hz) in real velocity structures. The theoretical four-lobe
S-wave radiation pattern may be limited to low frequencies
(<1 Hz), with an isotropic pattern at high frequency due to
the scattering of seismic waves (e.g., Liu and Helmberger,
1985; Takenaka et al., 2003; Takemura et al., 2009). In addi-
tion, according to Cho et al. (2010), observations suggest that
far-field radiation patterns change from a distinct double-
couple pattern, with strong directivity effects at low frequen-
cies (<1 Hz), to a more isotropic pattern with diminished
directivity effects at high frequencies, putting forward the fact
that directivity effects are also frequency dependent. This fre-
quency dependence of directivity effects has been attributed to
source incoherency by Bernard and Herrero (1994). Because
our rupture models do not include any source of incoherency,
the strong impact of directivity effects on the ϕ values com-
puted from our synthetics may be weaker in the case of real
earthquakes.

The results presented in this study are valid in a narrow
magnitude range (∼6 < Mw < ∼7) and for vertical strike-
slip events only. In addition, due to the small number of con-
sidered source models, the source variability may be under-
estimated and the inclusion of additional source models may
then modify the observed overall trends. Considering addi-
tional unilateral rupture models would also strengthen the
conclusions on the role of directivity effects. Finally, the co-
gency of our results relies on the validity of the inverted
source models, which may be affected by uncertainties
(e.g., Mai et al., 2007), due to the nonuniqueness of the in-
verse problem, errors in the forward model, etc. Source in-
version models derived from incomplete datasets and the
ground-motion prediction at a site that is not considered in
the inversion can be significantly biased. This is especially
true if the prediction site is isolated as pointed out by Cirella
and Spudich (2013). From a set of accelerograms recorded in
the area of Niigata, the authors generated thousands of good
source models (i.e., with a good level of data fit) of the 2007
Chuetsu earthquake that they used to predict ground motion
at the Kashiwazaki-Kariwa nuclear power plant. They found
that the ground-motion scatter at the power plant is of the
order of the empirically observed between-event variability.
Part of this scatter arises from particular choices to param-
eterize the inversion process, which are inherently user de-
pendent. For instance, two of the source models considered
in our study account for variability in slip, rupture velocity,
and rise time, whereas the other models assume uniformity
in rupture velocity and rise time (Table 1). These a priori
choices partially constrain distributions and correlation pat-
terns of source parameters, which may impact the ϕ values.
However, the fact that we got nearly analogous estimation of
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ϕ from the two 2000 Tottori models, which were obtained by
different authors inversion parameterization, adds credibility
to our results. Furthermore, our study is intended to focus
only on the variability of ground motion rather than its ab-
solute value. The overall observed trends of the ground-
motion variability have been related to global source features
(rupture directivity, depth of the main slip area) that may still
be captured by source inversions.

Data and Resources

The eight finite-source rupture models used in this study
have been extracted from the finite-source rupture model
database (Mai and Thingbaijam, 2014) available at http://
equake‑rc.info/SRCMOD/ (last accessed March 2014). This
website is an online database of finite-fault rupture models of
past earthquakes obtained using kinematic inversion of strong-
motion data, sometimes combined with geodetic and/or data.
The database provides the complete description of the space–
time distribution of the coseismic slip, except from the model

of Horikawa (2001) of the Kagoshimean-hoku-seibu event for
which the rupture time distribution is not available.

Institut des Sciences de la Terre (ISTerre) is part of
Labex OSUG@2020 (ANR10 LABX56). Most of the com-
putations presented in this article were performed using the
Grenoble University High Performance Computing (HPC)
center, CIMENT, infrastructure (https://ciment.ujf-grenoble.
fr; last accessed March 2014), which is supported by the
Rhône-Alpes region (GRANT CPER07_13 CIRA: http://
www.ci-ra.org; last accessed March 2014) and France-Grille
(http://www.france-grilles.fr; last accessed March 2014). For
the parallel computations of a large number of single jobs,
we exploited the available resources of a local grid of HPC
clusters (totalizing more than 3000 computing cores) in a
best-effort mode, the grid middleware “cigri” (http://ciment.
ujf-grenoble.fr/cigri; last accessed March 2014). The results
were stored on a distributed data grid operated by the Inte-
grated Rule-Oriented Data System (IRODS) (https://
www.irods.org; last accessed March 2014).

0 90 180
10

−3

10
−2

10
−1

10
0

1 km(a)

(b)

P
G

V
 [m

/s
]

0 90 180

3 km 

0 90 180

10 km

Azimuth [deg]

0 90 180

30 km

0 90 180

60 km

0 90 180

100 km

2005 Fukuoka−M 6.67
2000 Tottori(Semmane)−M 6.73

0 90 180
10

−3

10
−2

10
−1

10
0

1 km

P
G

V
 [m

/s
]

0 90 180

3 km

0 90 180

10 km

Azimuth [deg]
0 90 180

30 km

0 90 180

60 km

0 90 180

100 km

1979 Imperial Valley−M 6.53
1979 Coyote Lake−M 5.92

Figure 9. PGV values for the stations located at different azimuths along varying RJB distances, for (a) bilateral and (b) unilateral events.
Here azimuth represents θ, the angle between the epicenter and the station as illustrated in Figure 4.

Is Ground-Motion Variability Distance Dependent? 959



Acknowledgments

We thank Martin Mai and an anonymous reviewer for very construc-
tive and insightful feedback that helped us to considerably improve the ar-
ticle. We are thankful for the computation facilities we have been provided
with from ISTerre and the Grenoble University High Performance Comput-
ing (HPC) center CIMENT.

References

Al-Atik, L., N. Abrahamson, J. J. Bommer, F. Scherbaum, F. Cotton, and N.
Kuehn (2010). The variability of ground-motion prediction models
and its components, Seismol. Res. Lett. 81, 794–801, doi: 10.1785/
gssrl.81.5.794.

Anderson, J. G., and J. N. Brune (1999). Probabilistic seismic hazard assess-
ment without the ergodic assumption, Seismol. Res. Lett. 70, no. 1, 19–28.

Archuleta, R. J. (1984). A faulting model for the 1979 Imperial Valley earth-
quake, J. Geophys. Res. 89, no. B6, 4559–4585.

Asano, K., and T. Iwata (2006). Source process and near-source ground
motions of the 2005 West Off Fukuoka Prefecture earthquake, Earth
Planet Space 58, 93–98.

Bernard, P., and A. Herrero (1994). Slip heterogeneity, body-wave spectra, and
directivity of earthquake ruptures, Ann. Geofisc. XXXVII, 1679–1690.

Bommer, J. J., and N. A. Abrahamson (2006). Why do modern probabilistic
seismic-hazard analyses often lead to increased hazard estimates? Bull.
Seismol. Soc. Am. 96, 1967–1977.

Boore, D. M., J. W. Lamprey, and N. A. Abrahamson (2006). Orientation-
independent measures of ground motion, Bull. Seismol. Soc. Am. 96,
no. 4A, 1502–1511, doi: 10.1785/0120050209.

Bouchon, M. (1981). A simple method to calculate Green’s functions for
elastic layered media, Bull. Seismol. Soc. Am. 71, no. 4, 959–971.

Causse, M., E. Chaljub, F. Cotton, C. Cornou, and P. Y. Bard (2009). New
approach for coupling k-2 and empirical Green’s functions: Applica-
tion to the blind prediction of broadband ground-motion in the
Grenoble basin, Geophys. J. Int. 179, 1627–1644.

Causse, M., F. Cotton, and M. Mai (2010). Constraining the roughness degree
of slip heterogeneity, J. Geophys. Res. doi: 10.1029/2009JB006747.

Chen, Y.-H., and C.-C. P. Tsai (2002). A new method for estimation of the
attenuation relationship with variance components, Bull. Seismol. Soc.
Am. 92, no. 5, 1984–1991.

Cho, H., J. Hu, Y. Klinger, and E. M. Dunham (2010). Frequency depend-
ence of radiation patterns and directivity effects in ground motion from
earthquakes on rough faults, Eos Trans. AGU, (Fall Meet.), Abstract
#S51A-1914.

Cirella, A., and P. Spudich (2013). Aleatory and epistemic uncertainties in
interpolated ground motions—Example from the Kashiwazaki-Kariwa
Nuclear Powaer Plant recordings of the July 16, 2007, Niigata-ken
Chuetsu-oki, Japan, earthquake, Geophys. Res. Abstr., EGU2013-5932.

Coutant, O. (1989). Program of numerical Simulation AXITRA, Research
Reports LGIT, Université Joseph Fourier, Grenoble (in French).

Edwards, B., and D. Fäh (2013). A stochastic ground motion model for
Switzerland, Bull. Seismol. Soc. Am. 103, doi: 10.1785/0120110331.

Hartzell, S. H., and T. H. Heaton (1983). Inversion of strong ground motion and
teleseismic waveform data for the fault rupture history of the 1979 Imperial
Valley, California, earthquake, Bull. Seismol. Soc. Am. 73, 1553–1583.

Horikawa, H. (2001). Earthquake doublet in Kagoshima, Japan: Rupture of
asperities in a stress shadow, Bull. Seismol. Soc. Am. 91, no. 1, 112–127.

Joyner,W. B., and D.M. Boore (1981). Peak horizontal acceleration and velocity
from strong-motion records including records from the 1979 Imperial Val-
ley, California, earthquake, Bull. Seismol. Soc. Am. 71, no. 6, 2011–2038.

Liu, H., and D. V. Helmberger (1983). The near-source ground motion of the
6 August 1979 Coyote Lake, California, earthquake, Bull. Seismol.
Soc. Am. 73, no. 1, 201–218.

Liu, H., and D. V. Helmberger (1985). The 23:19 aftershock of the 15 Oc-
tober 1979 Imperial valley earthquake: More evidence for an asperity,
Bull. Seismol. Soc. Am. 75, 689–708.

Mai, P. M., and K. K. S. Thingbaijam (2014). SRCMOD: An online database
of finite-fault rupture models, Seismol. Res. Lett. 85, no. 6, doi:
10.1785/0220140077.

Mai, P. M., J. Burjanek, B. Delouis, G. Festa, C. Francois-Holden, D. Monelli,
T. Uchide, and J. Zahradnik (2007). Source-inversion blind test: Initial
results and further developments, Eos Trans. AGU, 88, no. 52 (Fall
Meet. Suppl.), Abstract S53C-08.

McGuire, J. J., L. Zhao, and T. H. Jordan (2002). Predominance of unilateral
rupture for a global catalog of large earthquakes, Bull. Seismol. Soc.
Am. 92, no. 8, 3309–3317.

Miyakoshi, K., T. Kagawa, H. Sekiguchi, T. Iwata, and K. Irikura (2000).
Source characterization of inland earthquakes in Japan using source
inversion results, Paper read at Proc. 12th World Conf. Earthq. Eng.,
Auckland, New-Zealand, 30 January–4 February 2000.

Ripperger, J., P. M. Mai, and J.-P. Ampuero (2008). Variability of near-field
ground motion from dynamic earthquake rupture simulations, Bull.
Seismol. Soc. Am. 98, no. 3, 1207–1228, doi: 10.1785/0120070076.

Rodriguez-Marek, A., F. Cotton, N. Abrahamson, S. Akkar, L. Al-Atik, B.
Edwards, G. Montalva, and M. Dawood (2013). A model for single-
station standard deviation using data from various tectonic regions,
Bull. Seismol. Soc. Am. 103, 3149–3163, doi: 10.1785/0120130030.

Rodriguez-Marek, A., G. A. Montalva, F. Cotton, and F. Bonilla (2011).
Analysis of single-station standard deviation using the KiK-net data,
Bull. Seismol. Soc. Am. 101, 1242–1258, doi: 10.1785/0120100252.

Sekiguchi, H., and T. Iwata (2002). Source process and near-fault ground
motion of the 2000 Tottori-ken Seibu earthquake, Monthly Chikyu
no. 38, 182–188 (in Japanese).

Semmane, F., F. Cotton, and M. Campillo (2005). The 2000 Tottori earth-
quake: A shallow earthquake with no surface rupture and slip proper-
ties controlled by depth, J. Geophys. Res. 110, no. B3, B03306, doi:
10.1029/2004JB003194.

Somerville, P. G., N. F. Smith, R. W. Graves, and N. A. Abrahamson (1997).
Modification of empirical strong ground motion attenuation relations
to include the amplitude and duration effects of rupture directivity,
Seismol. Res. Lett. 68, 199–222.

Spudich, P., and B. S.-J. Chiou (2008). Directivity in NGA earthquake ground
motion: Analysis using isochrone theory, Earth. Spectra 25, 279–298.

Takemura, S., T. Furumura, and T. Saito (2009). Distortion of the apparent
S-wave radiation pattern in the high-frequency wavefield: Tottori-Ken
Seibu, Japan, earthquake of 2000, Geophys. J. Int. 178, 950–961.

Takenaka, H., Y. Mamada, and H. Futamure (2003). Near-source effect on
radiation pattern of high-frequency S waves: Strong SH-SVmixing ob-
served from aftershocks of the 1997 northwestern Kagoshima, Japan,
earthquakes, Phys. Earth Planet. In. 137, nos. 1/4, 31–43.

Appendix A

Computation of Directivity Ratios

For each source model, we compute the directivity ratio
(DR) as proposed by McGuire et al. (2002). From the space–
time slip distribution, we first compute the second spatial
moment μ̂�2;0�, the second temporal moment μ̂�0;2�, and the
mixed moment μ̂�1;1� defined as

μ̂�2;0� �
ZZ

_f�~r; t��~r − ~r0��~r − ~r0�TdVdt; �A1�

μ̂�0;2� �
ZZ

_f�~r; t��t − t0�2dVdt; �A2�
and
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μ̂�1;1� �
ZZ

_f�~r; t��~r − ~r0��t − t0�dVdt; �A3�

in which _f�~r; t� is the space–time moment rate function, and
~r0 and t0 refer to the spatial and temporal centroids.

Next, we determine the characteristic duration, expressed
as

τc � 2

����������������������
μ̂�0;2�=M0�

q
�A4�

and the characteristic dimension in a direction ~n, expressed as

xc�~n� � 2

�������������������������������
~nT�μ̂�2;0�=M0�~n

q
; �A5�

in which M0 denotes the seismic moment. The characteristic
rupture length Lc is defined as xc�~n1�, the maximum value of
xc�~n�, ~n1 being the Eigen vector associated with the largest
eigen value. The ratio

νc � Lc=τc �A6�
then represents the characteristic rupture velocity.

Finally, we compute the average velocity of the instan-
taneous spatial centroid:

ν0 � μ̂�1;1�=μ̂�0;2�: �A7�
The DR is defined as the ratio ν0=νc.

Appendix B

Velocity Models Used for Ground-Motion
Computation

All the considered velocity models are the ones that have
been used to perform source inversions, except the Imperial
Valley earthquake, for which the model has been slightly
simplified to reduce computation time. The velocity models
considered in the ground-motion simulation are given in
Table B1 for the bilateral models and in Tables B2 and B3
for unilateral models; VP, VS indicate the velocity and QP,
QS the quality factor of P and S waves, respectively. D in-
dicates density of the material in the layer.

For the Imperial Valley (1979) event, Archuleta (1984)
assumes a model with velocity gradient as presented in
Table B2. For the Green’s function computation with Axitra
program, different sublayers of the given velocity model
were considered, which involved linear interpolation of the
values. For example, the second layer (between 0.4 and
5 km) was divided into N � 5 sublayers of thickness dh �
1150 m each, and values of the other parameters were taken
at the middle of each sublayer. Similarly, the third layer (be-
tween 5 and 11 km depth) was divided into N � 6 sublayers
of thickness dh � 1000 m. The fourth layer (between 11 and
11.1 km) marks the discontinuity. Finally, the fifth layer
(between 11.1 and 12 km depth) was divided into N � 2

sublayers of thickness dh � 450 m. The final velocity model
adopted is given in Table B3.

Appendix C

Computations of the Synthetic Ground Motions for
Large Faults

The principle of the decomposition of the computations
of ground motions for the large faults considered in this
study is as follows:

Let F stand for one of those faults. F is further decom-
posed into Ns subfaults, such that the typical length of each
subfault is a fifth of the minimum wavelength on F. Let Nr

Table B1
Velocity Models of the Bilateral Events

Event Name
Depth
(m)

VP
(m=s)

VS
(m=s)

D
(kg=m3) QP QS

Fukuoka
(2005)

0 5500 3200 2600 ∞ ∞
5000 6000 3460 2700 ∞ ∞
18000 6700 3870 2800 ∞ ∞

Yamaguchi
(1997)

0 5600 3300 2600 400 400
3000 6000 3500 2700 450 450
30000 6600 3800 2900 500 500

Kagoshimaen-
hoku-seibu
(1997)

0 2800 1620 2100 80 40
500 4900 2830 2300 300 150

5000 6000 3460 2700 300 150
15000 6700 3870 3100 500 250
35000 7800 4500 3400 1000 500

Kagoshima
(1997)

0 3100 1800 2300 200 200
500 4400 2500 2500 350 350

3000 5900 3400 2700 450 450
22000 7000 4000 3000 500 500

Tottori (2000,
Semmane
et al., 2005)

0 5500 3180 2600 500 200
2000 6050 3490 2700 500 200
16000 6600 3810 2800 200 200
38000 8030 4620 3100 500 200

Tottori (2000,
Sekiguchi
and Iwata,
2002)

0 5500 3179 2600 500 200
2000 6050 3497 2700 500 200
16000 6600 3815 2800 500 200
38000 8000 4600 3000 500 200
20000 8100 4620 3300 500 200

Table B2
Initial Velocity Model of Imperial Valley (1979) from Database

Event Name
Depth
(m)

VP
(m=s)

VS
(m=s)

D
(kg=m3) QP QS

Imperial Valley (1979),
Initial Model

0 1700 400 1800 ∞ ∞
400 1800 700 1800 ∞ ∞

5000 5650 3200 2500 ∞ ∞
11000 5850 3300 2800 ∞ ∞
11100 6600 3700 2800 ∞ ∞
12000 7200 4150 2800 ∞ ∞
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(here Nr � 135) be the number of receivers, then the com-
putation of the ground motions is done in three steps: (1) the
components of all Green’s functions relating the Ns subfaults
to the Nr receivers are computed with the Axitra code (Cou-
tant, 1989); (2) each Green’s function is convolved in space
and time to account both for the magnitude and focal mecha-
nism of the subfault and for the imposed rupture kinematics;
and (3) the contributions of the Ns subfaults are summed at
each of the Nr receivers.

The Ns × Nr calculations needed by step (1) were done
in parallel on the number of subfaults, that is, for each sub-

fault the calculations at all receivers were gathered in a single
job. For this purpose, we exploited the available resources of
a local grid of High Performance Computing clusters (total-
izing more than 3000 computing cores) in a best-effort mode
thanks to the grid middleware “cigri.” The results, consisting
of one binary file per subfault, were stored on a distributed
data grid operated by the IRODS system. The convolutions
needed by step (2) were also distributed on the computing
grid and stored again on the data grid. Finally, the reduce
operation needed in step (3) was done for all receivers by
successive grouping of the sources by packets, the size of
which was controlled by the maximum number of binary
files that would fit in the random access memory (RAM)
of each computing node. For the example of the Imperial
Valley calculations, each binary file containing the contribu-
tion of a single subfault at all receivers was about 16MB, and
the size of the source packets was 200 so that the summation
could be done in a RAM of size 4 GB. For this event, which
was the most demanding of all cases, the total time needed
to compute the Green’s functions was about 4000 hours
of a single CPU core on an Intel E5-2670 with frequency
2.6 GHz.
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Table B3
Velocity Models of the Unilateral Events

Event Name
Depth
(m)

VP
(m=s)

VS
(m=s)

D
(kg=m3) QP QS

Imperial Valley
(1979),
Interpolated Model

0 1700 400 1800 ∞ ∞
400 1800 700 1800 ∞ ∞

1550 2281 1013 1888 ∞ ∞
2700 3243 1638 2063 ∞ ∞
3850 4206 2263 2238 ∞ ∞
5000 5169 2888 2413 ∞ ∞
6000 5667 3208 2525 ∞ ∞
7000 5700 3225 2575 ∞ ∞
8000 5733 3242 2625 ∞ ∞
9000 5767 3258 2675 ∞ ∞
10000 5800 3275 2725 ∞ ∞
11000 5833 3292 2775 ∞ ∞
11100 6225 3500 2800 ∞ ∞
11550 6750 3813 2800 ∞ ∞
12000 7050 4038 2800 ∞ ∞

Coyote Lake (1979) 0 3000 1500 2400 ∞ ∞
500 5000 2800 2700 ∞ ∞

3000 5700 3300 2780 ∞ ∞
12000 6900 3300 3000 ∞ ∞
60000 8100 4670 3200 ∞ ∞
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A B S T R A C T

The Euroseistest Verification and Validation Project (E2VP) is part of a series of complementary benchmarking
exercises launched to better assess the ability of numerical simulation to accurately predict seismic ground
motion. E2VP targeted more specifically the current, most-advanced numerical methods applied to realistic 3D,
linear models of sedimentary basins through a quantitative comparison of the recorded and numerically-
simulated ground motions. The target site, located within the Mygdonian basin near Thessaloniki, Greece, has
been thoroughly investigated for two decades and a detailed, realistic 3D model has been derived from
geological, geophysical and geotechnical investigations, while a dedicated instrumentation provided a significant
number of surface and borehole recordings. Verification and validation tests up to a frequency of 4 Hz, much
beyond the 0.4 Hz fundamental frequency of the deepest part of the graben, have been performed for a set of 19
local, small to moderate magnitude events. For careful and accurate enough computations, the model-to-model
differences are smaller than the model-to-observations differences, the latter being controlled by uncertainties
primarily in the crustal propagation model and source properties, and secondarily in the shallow structure. It is
therefore recommended to prefer distant and/or deep events (R > 10–20 km, Z > 8–10 km) for validation
exercises. Additional sensitivity tests illustrate the ability of carefully verified numerical simulation tools to
provide an instructive insight at the structure of the so-called “aleatory” variability of ground motion, for both
its within- and between-event components. The between-event variability is shown to be very sensitive to
hypocenter location errors (even as low as ± 2 km), and to uncertainty in magnitude estimates. It explains the
increase of aleatory variability for small magnitude events and emphasizes the usefulness of dense seismological
networks. The within event, single-site variability is shown to be associated to an “epistemic” dependence of the
3D site response on the event back-azimuth, distance and depth, and calls for caution when interpreting single-
station variabilities derived from a too small number of events.

1. Introduction

The rapid development of the simulation codes and computational
facilities allowed considering the use of numerical-simulation tools as a
valid option for predicting seismic ground motion, especially for poorly

instrumented or moderate-seismicity countries lacking representative
earthquake recordings. However, such an approach requires a careful
evaluation of the actual performance of numerical simulation codes.
This issue has been the topic of a few international studies, including
blind prediction tests or comparative exercises, focused on various
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sites. It started with the Turkey Flat, California (Cramer [1]), and
Ashigara Valley, Japan (e.g., Bard [2]), blind tests focusing on effects of
surface sediments, the results of which were presented during the first
ESG conference in Odawara (Japan) in 1992. It was followed by more
comprehensive comparison exercises on the Osaka/Kobe basin area in
Japan (Kawase and Iwata, 1998 [3]), and on the Southern California
area within the SCEC framework (Day et al. [4–6]; Bielak et al. [7]),
which also included the effects of extended sources and regional
propagation in the low frequency range (f < 1 Hz). Each of these cases
had its own specificities (for instance, very low frequencies for the
Osaka and SCEC exercises). A request issued in late 2003 by the French
Nuclear Authority (ASN) to perform a 3D, NL simulation of site
response for specific sites, was the initial impetus for a dedicated R
&D program funded by CEA Cadarache and ILL (Laue-Langevin
Institute, an international research center on neutron science based
in Grenoble, and operating the most intense neutron source on Earth).
It started with an international benchmarking exercise on the Grenoble
basin (Chaljub et al. [8]; Tsuno et al. [9]; Chaljub et al. [10]), and was
further deepened through the Euroseistest Verification and Validation
Project (E2VP). Considering the lessons of the ESG2006 Grenoble
benchmark, the E2VP project was launched in 2007 with two main
objectives: (a) a quantitative analysis of the accuracy of current, most-
advanced numerical methods applied to realistic 3D models of
sedimentary basins, in the linear, small strain domain (3DL verifica-
tion); (b) a quantitative comparison of the recorded and numerically-
simulated ground motions (3DL validation). The selected target site
was an extensional graben located in the Mygdonian basin near
Thessaloniki, Greece, located in a seismically active zone, belonging
to both Serbomacedonian massif and Circum Rodope zone (Fig. 1). A
detailed, realistic 3D model of the basin and surrounding area had
already been derived from a comprehensive set of geological, geophy-
sical and geotechnical investigations, and the site instrumentation
installed for about two decades provided a significant number of
surface and borehole recordings.

This paper is intended to present a concise overview of the work
accomplished since the launching of the E2VP project. This project has
been organized in two phases, E2VP1 (2007–2010) and E2VP2 (2012–

2014). As the main results of the first phase are reported in two recent
papers (Chaljub et al. [11]; Maufroy et al. [12]), the present article puts
more emphasis on the latest results, while reminding the overall
process. The first section shortly reminds the main learnings of
E2VP1, and its shortcomings as well. A few key issues were identified,
which shaped the second phase E2VP2: its main components are
presented in the following section, including an improvement of the
source parameters for a larger set of validation events, an enlargement
and refinement of the 3D model on the basis of newly compiled
information and sometimes new measurements, and a comprehensive
set of numerical simulations for close to 2000 point source locations
and 15 receivers. These simulations aim first at the validation up to a
frequency of 4 Hz, much beyond the 0.4 Hz fundamental frequency of
the deepest part of the graben, for a set of 19 local, small to moderate
magnitude events. The corresponding results are described in the
following section, distinguishing the rock and sediment stations, and
for the latter the absolute ground motion and the 3D site response. The
next section is dedicated to the presentation of additional sensitivity
tests, which illustrate the ability of carefully verified numerical
simulation tools to provide an instructive insight at the structure of
the so-called “aleatory” variability of ground motion: the between-event
component is shown to be highly impacted by uncertainties in
hypocentral location and magnitude, while the within event component
is affected by the epistemic dependence of site response on source
back-azimuth. The conclusion summarizes the main outcomes from the
whole E2VP project, including recommendations regarding the orga-
nization of further validation exercises, the use of numerical simulation
for ground motion prediction in engineering projects, and the analysis,
interpretation and reduction of the aleatory variability in GMPEs.

2. From E2VP1 to E2VP2: the main steps

In short, the basic ideas of the project were, on the example of the
Euroseistest site, to (1) quantify the “distance” between results of
independent models and numerical schemes, and as much as possible
to reduce them to the lowest possible level through a careful under-
standing of the differences; and (2) to compare this “cross-computation

GREECE

FYROM
BULGARIA

Thessaloniki

EUROSEISTEST

EUROSEISTEST

Fig. 1. Location of the Euroseistest site in North-Eastern Greece and first-order geological map of the surroundings of the Mygdonian basin. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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distance” to the “misfit” between simulation results and actual mea-
sured data for as many real events as possible. In order to keep track of
overestimation or underestimation bias, a sign is included in this
distance as detailed in Maufroy et al. [12]. The first phase E2VP1
(2007–2010) included a comprehensive series of cross-model verifica-
tions, with side computations on canonical models aimed at investigat-
ing the accuracy of numerical schemes under very stringent conditions
– as detailed in Chaljub et al. [11] -, and a first round of comparison
between observations and simulations for a small number (6) of local
events, as reported in Maufroy et al. [12]. The computations were
performed up to a frequency of 4 Hz: this remains limited compared to
the frequency range of interest in earthquake engineering, but this is
significantly higher than all previous similar exercises. It led to a
number of lessons and recommendations on the use of the numerical-
simulation approach, as listed in Table 1, but it also led to the
identification of a few further issues that needed to be addressed in a
second phase.

2.1. 3D linear modeling

The main focus and success of E2VP1 was thus on the use of 3D,
linear simulation. The main results are summarized in Fig. 2. The code-
to-code differences could be drastically reduced by the consideration of
dedicated canonical models and stringent goodness-of-fit criteria
comparing the waveforms in the time-frequency domain (Kristekova
et al. [13]), leading to significant improvements in the numerical
schemes (Chaljub et al. [11]). The simulation-to-observation differ-
ences could be quantified for only a limited number of events (6)
because of the moderate seismicity and the limited extension of the 3D
model considered by that time. For those events, the simulated and
observed waveforms remain so different that another metrics was
adopted to quantify their differences, on the basis of “engineering”
parameters. After a careful analysis of the original Anderson’s criteria
(Anderson [14]), five parameters (C1 to C5) were selected (see Maufroy
et al. [12]): pga (C1), the spectral acceleration at intermediate (C2) and
low (C3) frequencies (averages in the [1.5–3 Hz] and [0.375–0.75 Hz]
ranges, respectively), an “energy” indicator C4 (cumulative absolute
velocity, CAV), and the Trifunac-Brady duration (RSD, Trifunac and

Brady [15]) for C5. Parameters C1–C3 evaluate the amplitude of the
signal in different frequency bands. These frequency bands are chosen
according to the observed characteristics of the real signals at the
center of the Mygdonian basin: the frequency range evaluated by C3
includes the fundamental resonance frequency of the basin, while C2
covers the two higher modes. C1 evaluates the highest frequencies
available in the synthetics. C4 and C5 evaluate the total energy of the
signal and its duration, respectively. The misfit was computed for each
parameter in terms of relative increase or decrease compared to the
measured values. Fig. 2 indicates that such an “engineering” distance is
around 10–25% between different simulations, to be compared with
misfit values in the range 40–80% between observations and simula-
tions. As detailed in Maufroy et al. [12], these numbers do vary
depending on the considered receiver (rock or valley), on the con-
sidered event, and on the engineering parameter, but the overall trends
are robust, and emphasize both the usefulness of the prior verification
part and the difficulty to obtain satisfactory, unbiased numerical
predictions of ground motion.

Only very few events could be used for the validation: this is a
typical situation for moderate/weak seismicity areas. It was therefore
considered useful to include more events [from 6 to 19] in the second
phase of the validation exercise (those shown in Fig. 1), which led to
increase the size of the 3D model, as illustrated later in Fig. 6. In
addition, the significant misfit between observations and simulations
was shown to be partly due to uncertainties or errors in source
parameters: the misfits on the sole site response component were
found lower than those on absolute motion (Maufroy et al. [12]). It was
thus decided first to improve as much as possible the location of the 19
selected events, and second to investigate through numerical simula-
tion how the uncertainties in source parameters map on the variability
of site-specific ground motion from local earthquakes.

2.2. Non-linear (NL) modeling

The first phase also included an comparison of 2D, NL simulations
on a NS cross-section of Euroseistest. This attempt for a verification of
NL codes proved however to be a failure, as code-to-code differences
were too large with too many, too poorly identified origins. Yet, it is

Table 1
Summary of main learnings from E2VP phase 1.

Main lessons about verification and validation
studies

• Careful verification requires time and often to “go back to basics”, while careful validation requires high
quality data, i.e., including rich and high quality metadata.

• No ground-motion simulation code accounting for wave propagation in complex media can be considered as
press-button, neither in the linear, 3D domain, nor in the non-linear 2D - or even 1D - cases. The most
common case is that, without iterations and cross-checking, different codes provide significantly different
results when applied to the same case study.

• Too fast applications of existing codes by non-expert users may yield wrong ground-motion estimates,
potentially resulting in raising mistrust in end-users. This warning is applicable to all numerical simulation,
including the simplest ones, but gets more and more important with increasing code sophistication.

• Some codes currently used in engineering applications would deserve some significant improvements, or
strong warnings on stringent validity limits, while even state-of-the-art codes (predominantly in the
“academic” field) deserve constant upgrading.

Main recommendations for a wise use of numerical
simulation codes

• One should never be satisfied with only one computation from one single team, but should request several
teams (at least two) with different numerical schemes to perform parallel computations of the same case.
Results should be considered as reliable only if they agree beyond some quantitative goodness-of-fit
threshold.

• These goodness-of-fit criteria should definitely be agreed upon by the engineering community in order to
reach an objective of transparent quantitative comparison, which should replace sentences such as “one can
see the very good agreement on the figure”

• In the long run, it would be very valuable to assign a specific “quality label” to numerical codes and teams
that did accept to run some of the now existing “canonical” cases with their own numerical code, which are
freely available on web pages (http://www.sismowine.org/). Maintaining this kind of internet facility in the
long run will be beneficial for the whole community.

• External peer reviews are always useful in assessing the quality of results derived from highly sophisticated
numerical codes.

• Comparison with actual data (in-situ earthquake recordings), whenever possible, are always useful. Having
sensitive in-situ instrumentation (continuously recording broad-band velocimeters or sensitive
accelerometers) proves to be invaluable for checking the reliability of numerical-simulation results.
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obvious that NL simulation codes deserve similar verification and
validation efforts, especially as they are much more often used in
engineering practice than 3D, linear simulation codes. Although non-
linear site response was one of the major topics of the two pioneering
blind tests initiated in the late 80′s for the sites of Ashigara Valley
(Japan) and Turkey Flat (California), they were inconclusive because
both sites lacked strong motion records involving significant non-linear
behavior. A new benchmarking of 1D NL codes was performed in the
last decade, based on the same Turkey Flat site that experienced a 0.3g
motion during the 2004 Parkfield earthquake, and a few other sites
with vertical array data (La Cienega, California; the KGWH02 KiK-net
site in Japan, and Lotung in Taiwan). Its main findings, reported by
Kwok et al. [16] and Stewart and Kwok [17], emphasized the key
importance of the way these codes are used and of the required in-situ
measurements. Significant differences between records and predictions
have been identified as due to an incorrect velocity profile (although it
was derived from redundant borehole measurements), a non-1D soil
geometry (non-planar layers), and imperfections/deficiencies in the
constitutive models, which were unable to represent the actual
degradation curves for shear modulus and damping. The E2VP1 failure
and these recent conclusions thus allowed to issue three main
recommendations for future benchmarking exercises: a) NL verifica-
tion should be performed on the simplest possible cases (1D soil
columns and total stress, water-free, analysis); b) it should be
performed on already instrumented sites having recorded large accel-
eration levels; c) it should be associated with careful in-situ surveys and
lab tests designed in tight connection with the needs of the rheological
models implemented in the various NL codes.

The second phase, E2VP2 (2012–2014). was thus designed to
answer some of the identified issues related with 3D linear modeling,
while two other projects were launched to address some other: the
PRENOLIN project (Régnier et al. [18–20]) was designed to start
answering the issues about NL modeling according to the E2VP1
lessons, and another benchmarking exercise, named “INTERPACIFIC”,
was launched for a comparative assessment of the performance of
various in-situ geophysical and geotechnical survey techniques

(Garofalo et al. [21,22]). The present paper focuses exclusively on the
new results related to 3D, linear modeling (E2VP2).

3. New validation phase E2VP2: model, data and simulations

This section presents the four main components of the additional
work performed for this new phase, while the following sections will be
dedicated to the presentation of the new results, in terms of validation
and sensitivity analysis. The additional work started with the selection
of a larger set of events and the re-assessment of their source
parameters; the consideration of a lerger set of events implied an
enlargement of the 3D model, which was therefore updated and
implemented in an improved numerical code. The latter was then used
for computing the ground motion associated not only to the new set of
real events, but also for sensitivity studies allowing the investigate the
deterministic impact of source location (distance, depth and back-
azimuth) on ground motion characteristics, together with the impact of
source parameter uncertainties on ground motion variability.

3.1. Improvement of source parameters for an increased number of
local events (from 6 to 19)

This work included careful relocation and determination of focal
mechanisms through waveform fitting of broad-band and accelero-
metric recordings with 1D synthetics computed by the discrete
wavenumber method with the crustal velocity model proposed by
Novotny et al. [23]. It is worth mentioning that for the events that
were already considered in the first validation phase, the new source
parameters can vary significantly with respect to the old ones: as an
example, the largest event (Mw=4.4) used in the first phase was moved
by 5 km vertically and 4.5 km horizontally to define the S3 event of
phase 2. The resulting event parameters are listed in Table 2 and their
location and focal mechanism are displayed in Fig. 3. Details on the
relocation work may be found in appendix 3 of Maufroy et al. [24].

Fig. 2. Summary of horizontal absolute misfits obtained on the E2VP1 evaluation parameters C1–C5 (see text for their definition and Maufroy et al. [12] for more details) for the
verification and validation exercises considering different configurations. Left: localization and focal mechanism of the 6 validation events (beachballs) and of the receivers used for the
comparison (red and yellow triangles). Right: (a) average misfits for the 6 selected events at all receivers; (b) average misfits for the 5 events recorded at the central soil site TST; (c)
average misfits for the biggest event #4 at all receivers. Synthetics-to-synthetics distances (verification, blue tones dots) are compared to recordings-to-synthetics misfits (validation,
warm tones dots). The verification distances are computed for either the real array of 15 surface receivers (red triangles, solid circles) or the complete virtual array of 287 receivers
(yellow triangles, crosses). A single value per array is obtained by calculating the weighted average of the absolute distances over the considered receivers (with weights proportional to
the value of the corresponding ground-motion parameter). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Update and extension of the 3D model

The E2VP-phase 1 was based on the preexisting 3D model as
proposed by Manakou [25] and Manakou et al. [26]. For E2VP-phase 2,
a new 3D model was built “from scratch” in order to avoid any bias due
to pre-existing interpretation choices. This new model has been
extended to the whole Mygdonian basin by gathering all the available
information complemented by a few additional specific measurements
to constrain the bedrock geometry, the sedimentary thickness and the
seismic velocity. An important point to mention in order to understand
the “philosophy” of this E2VP2 validation effort, is that we did our best
to build the new 3D model only on the basis of the available geological,

geophysical and geotechnical data: there was no attempt to “retro-fit”
the model in an ad hoc approach in order to optimize the fit between
simulated ground motion and real records (an approach which was
actually used in the first validation phase with the previous model). The
objective is to be as close as possible to a realistic, blind prediction
situation.

The compiled data include geology, hydrological and geotechnical
boreholes (190 in total, out of which 59 reached the paleozoic base-
ment at depths varying from 0 to 408 m), geophysical surveys (seismic
refraction lines, controlled source/radio magneto-telluric surveys,
array microtremor and H/V measurements). All available data were
compiled in 3D using the geomodeller GOCAD (Caumon et al. [27];

Table 2
Characteristics of the 19 selected real events that occurred near the Mygdonian basin, whose recordings by the Euroseistest accelerometric array are compared to 3D numerical
predictions in the validation phase 2. Only the preferred solutions of the inversion for source parameters are shown.

Event ID Date Lat. (°) Long. (°) Depth (km) Mag. Mw TST hyp. dist. (km) Strike (°) Dip (°) Rake (°)

S1 2006/05/10 40.5208 23.4052 5 4.38 19.3 245 54 −105
S2 2006/08/17 40.5433 23.1732 11 3.59 20.0 80 57 −149
S3 2005/09/12 40.7255 23.3408 10 4.40 12.8 281 52 −98
S4 2009/06/21 40.6895 23.1148 11 3.14 18.7 100 61 −102
S5 2012/10/21 40.6950 23.2580 11 3.44 11.9 81 53 −127
S6 2004/06/08 40.5520 23.5233 9 3.30 25.0 71 82 −121
S7 2004/07/15 40.6800 23.4378 7 3.70 14.4 73 53 −118
S8 2004/07/15 40.6952 23.4733 9 3.70 18.2 258 47 −96
S9 2004/11/09 40.7648 23.3520 3 3.10 12.7 253 46 −98
S10 2004/12/12 40.6760 23.2853 4 2.70 4.2 240 51 −89
S11 2005/04/20 40.8121 22.9129 4 3.50 36.1 103 58 −94
S12 2005/09/12 40.7012 23.3586 4 3.00 8.1 301 52 −77
S13 2005/10/09 40.7889 23.4375 8 3.40 20.2 64 74 −116
S14 2007/12/27 40.7230 23.1700 11 3.50 16.4 276 59 −95
S15 2008/08/28 40.6617 23.3292 3 2.80 4.4 80 48 −83
S16 2008/10/13 40.6120 23.4200 9 2.90 15.3 306 58 −52
S17 2009/10/05 40.6920 23.3850 10 3.40 13.1 63 60 −174
S18 2010/08/08 40.5603 23.5785 8 4.60 28.1 235 52 −157
S19 2011/07/25 40.6265 23.3047 5 2.80 6.6 14 84 0

Fig. 3. Map of the 19 seismic events that were considered for the validation part of E2VP2. The focal mechanisms are indicated with beach-balls, the size of which is proportional to the
magnitude of the event. Most of the events exhibit normal faulting, consistently with the extension regime of the area. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Mallet [28]) to build a 3D geological model for the whole Mygdonian
basin.

The main features of the resulting model are 1/the 3D geometry of
the “geophysical” bedrock (i.e. Paleozoic basement), 2/the main faults
surfaces and 3/the thickness maps of the entire filling of the
Mygdonian basin. The present-day structure of the basin (shown in
Fig. 4) is composed of three structural units, from shallower to deeper
unit: (1) the Mygdonian system (2) the ProMygdonian system and (3)
the Paleozoic basement (Manakou [25]; Manakou et al. [26]). The
Mygdonian and ProMygdonian systems are two sedimentary units
presenting significant lateral thickness variations, from 140 m in the
eastern part (close to the Volvi Lake) to 400 m in the western part
(close to the Lagada Lake). The Mygdonian system is composed of
quaternary fluvial-lacustrine, deltaic, lacustrine, lagoonal and estuarine
deposits (Sotiriadis et al. [31]), corresponding to Pleistocene and
Holocene age. The ProMygdonian system is composed of conglomer-
ates, sandstones, silt-sand and red-beds sediments (Raptakis et al.
[32]), with a Tertiary age. These two sedimentary units overlay the
Paleozoic basement, composed of gneiss, amphibolites, two-mica
schists and marble intrusions. The overall thickness of the
Mygdonian and ProMygdonian units is mapped in Fig. 5, together
with the surface topography outside of the Mygdonian sedimentary
filling.

These structural units are affected by a complex fault system. In the
entire basin, the faults are mostly striking NW-SE, excepted in the
eastern part (Volvi Lake) where the faults strike E-W and N-S. The
main features are the 12 km long Vasiloudi - Gerakarou - Nikomidino -
Stivos fault system, running through the southern and western part of
the basin (F-GNSP for the main fault system and F-VL & F-Sx for its
two segments, see Fig. 4). This fault system presents a constant dip to
the North (70–80°), reduced to about 35° with increasing depth.

3.3. Update of the 3D simulation model (Spectral Element method)

3D simulations were performed with a spectral element code
including an improved meshing and velocity homogeneization strategy,
surface topography and intrinsic attenuation. The size of the computa-
tional domain is 69 km×69 km in the horizontal directions, and
extends from the surface (with an elevation with respect to sea level
varying from −6 m to 1181 m) down to a constant elevation plane at
30 km depth. The spectral element mesh was obtained using a robust,
semi-automated procedure which produces a geometrically conform-
ing, unstructured mesh of hexahedral elements, the sizes of which were
tuned for a maximum frequency of 4 Hz and the associated wave-
lengths. The new model is characterized by a “double-gradient” velocity
model, characterized by a first linear gradient from 130 m/s at surface

Fig. 4. Simplified structural sketch of the Mygdonian basin, modified from Mygdonian geological [29] and neotectonic maps [30], scales 1:50000–1:100000. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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to 475 m/s at an intermediate surface within the basin, and a second
linear gradient from this intermediate surface (475 m/s) to the bedrock
interface (with a sediment base velocity of 800 m/s). This intermediate
surface, corresponding to a gradient change without velocity jump,
could be associated to the Mygdonian/Premygdonian (M/P) limit. The
corresponding velocity, unit mass and quality factors are listed in
Table 3. The only abrupt velocity contrast thus corresponds to the
sediment/bedrock interface, where the S-velocity jumps from 800 m/s
to 2400 m/s. As specified in Maufroy et al. [33], the mesh does not
follow neither the discontinuity of material parameters at the sedi-
ment-bedrock interface, nor the discontinuity of their first-order
derivatives at the limit between the Pre-Mygdonian and Mygdonian
sediments. Instead, those interfaces were homogenized by vertically
averaging the S- and P- slownesses and mass density, as suggested in
[10]. The size of the homogenization window is L=25 m, about half the
minimum element size. The mesh contains about 6.5 million elements
and, since the polynomial order is set to N=4, about 435 million grid
points. The element size is kept smaller than the local minimum
wavelength, that is, smaller than 50 m in the shallower basin part and
450 m in the bedrock, insuring at least 5 grid-points per wavelength for
frequencies up to about 4 Hz.

For consistency, the bedrock velocity model has been taken
identical to the velocity model used for the event relocation [23].

3.4. Ground motion simulations

This updated and improved model was then used for the simulation
of the expected ground motion for various sets of events and receivers:

• A first set (“S1”) was dedicated to the validation, i.e., the comparison
between predictions and observations. It consists of the 19 selected

events, with their actual, improved source parameters (magnitude
range: 2.7–4.6; distance range: 0–30 km, as listed in Table 2),
computed at the 15 receivers corresponding to actual strong motion
instruments, as shown in Fig. 6.

• A second set (“S2”) was dedicated to the investigation of the
sensitivity of ground motion to the exact source location: each of
the 19 events was recomputed for a total of 27 hypocentral
positions, considering all combinations with a shift of the actual
hypocenter by ± 2 km in each X, Y and Z direction. The resulting
shifted hypocenters are thus located within a cubic box centered on
the actual hypocenter location (as indicated in Table 2), and with a
4 km long edge.

• A large set (“S3”) of 7*36*5=1260 virtual events arranged in 7
concentric circles from 2.5 to 30 km, 36 back-azimuths (10° step)
and at 5 different depths from 2.5 to 15 km was considered to
perform a comprehensive investigation of the sentivity of ground
motion and site response to source location (i.e., distance, depth,
and backazimuth) in a fully 3D environment. The corresponding
focal mechanisms were randomly generated following a Gaussian
distribution around the “average” normal faulting parameters in the
Mygdonian basin area: strike=86 ± 18°, dip=52 ± 15°, rake=−101 ±
51°.

• Out of this “S3” set, a subset “S4” was extracted corresponding to a
set of 52 actually occurred events (“real catalog”, see below), which
could not however be all used for the validation as a) the
corresponding number of recordings was often too small, and b)
the focal mechanism could not be determined with enough accuracy.

The three sets (S1–S3, including thus S4) were computed for the 15
receivers using the reciprocity theorem, which allows to limit the
number of simulations to 3 times the number of receivers and thus
saves computational time when the number of sources exceeds the
number of receivers. As detailed in Causse et al. [34], the spatial
derivatives of the 3D Green’s functions are then convolved with the
moment tensors to obtain the time series at the 15 receivers. The
epicenter locations of sets S3 and S4 are displayed in Fig. 7.

4. New validation results

The set S1, corresponding to the nineteen seismic events listed in

Fig. 5. Thickness of the whole sedimentary (quaternary+tertiary) series as derived form the 3D compilation of available data in 3D geomodelling. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 3
VS, VP, ρ, QS and QP “anchor” values used to build E2VP2 properties model within the
basin.

Vs Vp ρ Qs Qp

Surface 130 1500 2075 =Vs/10 =max [Vp/20, Vs/5]
M/P limit 475 2100 2130
Bedrock top 800 2700 2250
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Table 2 and Fig. 3, well recorded by the Euroseistest accelerometric
array, is considered in this section. The 3D numerical simulations of
the 19 events are performed with the code EFISPEC3D (De Martin
[35]) implementing the Spectral Element Method. They include the
effects of surface topography and of frequency independent intrinsic
attenuation, which was modeled using a Zener body with 3 relaxation
mechanism distributed between 0.1 Hz and 4 Hz, as detailed in Moczo
et al. [36].

Pre-processing of the data to perform the validation exercise
includes: (1) filtering the real data with a Butterworth filter between
0.3 Hz (order 6) and 3.0 Hz (order 10), in order to get a similar
frequency content between the recordings and the synthetics without
contamination by high energy transients at frequencies higher than the
maximum simulation frequency (4 Hz); (2) synchronization of record-

ings with the corresponding synthetics on the first P-wave arrival; (3)
all couples of signals to be compared are cut to the same length in
duration; and (4) a study of the signal-to-noise (SNR) ratio is
performed on all recordings to determine the frequency band where
that ratio is greater than 3: only recordings fulfilling such a SNR
criterion over a frequency band [0.7–4 Hz] have been considered for
the validation.

Differences between numerically-simulated seismograms and
earthquake recordings were quantified as for E2VP Phase 1 on the
basis of the 5 ground-motion parameters mentioned above. Arguments
for the selected characteristics, details on their computations and on
the way to handle the horizontal components are provided in Maufroy
et al. [12]. The main results of this “blindly- oriented” validation
exercise are summarized below, starting with the rock sites.

Fig. 6. Map of the whole model used for E2VP phase 2 modeling (box of 69×69 km), compared with the location of the area of the “phase 1”modeling box. The surface topography DEM
et elevation of the top of the bedrock within the basin are also displayed. Also shown are the location of the 15 accelerometric stations used far the validation (red triangles), the 19 real
events selected for the comparison between numerical predictions and actual recordings (white circles, with numbers referring to event IDs in Table 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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4.1. Validation results at rock sites

Results of the comparison between actual recordings and their
numerical predictions at 3 rock sites in Euroseistest are given in
Table 4. PRO is the northernmost station on a rock outcrop in the
Profitis village, STE is the southernmost station on a rock outcrop
south of the Stivos village, and TST5 is the deepest borehole sensor
(depth 196 m) in the central vertical array. The level of misfit obtained
on the 5 ground motion parameters Ci of the E2VP evaluation
procedure is expressed by the average misfit computed for each of
them from the selected events that were recorded at the corresponding
rock site. The misfit values obtained here are similar or below in
absolute value to the misfits obtained in the first validation phase at
PRO and STE rock sites, giving a first confirmation that the surface
ground motion outside the basin is in general well predicted by the
numerical simulations. Only the borehole site TST5 exhibits anom-
alously high misfit values at the highest frequencies considered in the
validation.

To get another viewpoint on the level of misfit outside the basin,
Fig. 8 displays the Fourier spectral ratios computed between recordings
and their numerical predictions for the events recorded at these 3 rock

sites. Concerning northern rock site PRO (see Fig. 8a), the median ratio
of observed ground motion over predicted is globally satisfactory (i.e.,
around and close to value 1), except for the lowest frequencies that are
under-estimated. Reason for that low-frequency under-estimation of
the ground motion at PRO is not yet understood. At southern rock site
STE ( Fig. 8b) the median ratio is satisfactorily close to 1 in all
frequencies. It is noteworthy however that the validation results at STE
can be bad for a few events (the colored lines giving the result for each
individual event are far from the value 1 in a few cases).

At borehole site TST5 (Fig. 8c) that is located close to the sediment-
basement interface at 196 m depth, the actual ground motion appears
to be significantly over-estimated by the synthetics at high frequencies.
This can obviously significantly impact the ground motion prediction at
the surface and center of the basin. Several tentative explanations can
be considered. One possibility could be the new crustal-propagation
model, as the model from Papazachos [37], used in E2VP phase 1, was
later replaced by the model from Novotný et al. [23] also used in the
improved characterization of the seismic sources. A comparative study
for the two models, detailed in Maufroy et al. [24], indicates the E2VP2
crustal model induces only a slight increase (around 20% in general,
possibly reaching up to 60% over some narrow frequency bands) of
rock motion compared to the previous E2VP model. This effect,
although it could participate, cannot fully explain the high-frequency
overestimation found at borehole site TST5.

Another possibility is that borehole site TST5, located right below
the sediments, might be significantly and inappropriately affected by
the basin propagation in the new basin model of E2VP phase 2. The
strongest argument in favor of that hypothesis is found in Fig. 8c. The
average ratio (solid black line) exhibits, in addition to the overestima-
tion trend at high frequencies, three troughs at frequencies around
0.75 Hz, 1.7 Hz and 2.7 Hz: these frequencies do coincide with the first
1D resonance frequencies in the basin at TST0. Such an excess

Fig. 7. Epicentral location of the “virtual” seismic sources considered in the numerical study. The response of the Mygdonian basin (bold white line) is computed for 1260 virtual
sources (black circular crosses) located on seven concentric circles around the central soil site TST indicated by the red triangle, with back-azimuths equally distributed every 10°, and
five different depths. 52 of these virtual locations are very close to real earthquakes recorded at some of the accelerometric stations: the epicentral locations of those 52 real events are
depicted by the magenta dots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Average in % of horizontal misfits on the E2VP evaluation criteria between the actual
recordings and their numerical predictions at 3 rock sites: northern rock site PRO,
southern rock site STE and borehole TST5. The number of events recorded by each
station and considered in the average is indicated in the last column.

C1 PGA C2 2.0 Hz C3 0.5 Hz C4 CAV C5 RSD Number of events

PRO −21 −24 −54 −9 −73 9
STE 34 39 1 8 −124 17
TST5 128 129 53 88 −161 16
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footprint of the frequency-dependent site effect at TST, together with
the overestimation trend at high frequency at TST5, might be indicative
of a too weak attenuation in the new basin model, resulting in a too
energetic feedback of energy radiating from the basin into the bedrock,
especially at high frequency. Such an hypothesis should be also
associated with an overamplification at TST0, which is partly the case,
as seen in the following.

Finally a third possibility comes from the absence of scattering in
the numerical model, the bedrock consisting of horizontally layered,
homogeneous media. The signal duration (parameter C5) is found
indeed to be under-predicted for each rock site, which is consistent
both with the over prediction of amplitude parameters especially at
high frequencies, and the absence of scattering.

4.2. Validation results in the Mygdonian basin

The same evaluation procedure has been applied to all stations for
all selected events. The validation results have been detailed for each
event, each site and each considered ground motion parameter as
illustrated in Fig. 9 on the example of event S7 (one of the most
satisfactory as seen in Table 5). They can also be summarized for each
site and ground motion parameter as listed in Table 5 for the central
site TST0. The detailed results for each event are available in Maufroy

et al. [24].
In most cases the ground motion in the basin is significantly over-

estimated, while the signal duration (parameter C5) is almost system-
atically under-estimated. The last parameter is tightly related both to
regional scattering – not accounted for in the modeling -, and to
damping within the sediments, which is not constrained by any
measurement. One way to investigate the preferential origin of this
duration under-prediction is to have a special focus on the basin
response.

Following the procedure of the first validation phase (Maufroy et al.
[12]), “hybrid” time histories are computed to further investigate the
ability of the numerical predictions to predict the site-response
component of the ground motion. Hybrid time histories at TST0 are
obtained by convolving the recorded signal at TST5 (which thus
includes the actual source and path terms, in particular all the delayed
arrivals from crustal scattering) with the site-effect part coming from
the simulation (synthetic borehole-surface transfer function computed
for the same event).

Hybrid time histories maximize the impact of numerical estimate of
site-effect component and minimize the effect of uncertainties in source
description or in crustal propagation. The validations misfits corre-
sponding to such hybrid time histories are also listed in Table 5: such
an approach can be found to significantly improve the fit on the

Fig. 8. Fourier spectral ratios between recordings and their numerical predictions at 3 rock sites: (a) northern rock site PRO, (b) southern rock site STE and (c) borehole TST5. Each
colored line corresponds to one seismic event of the validation. The solid black line indicates the average ratio in each panel. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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amplitude-frequency parameters C1–C3, and on the energy parameter
C4 as well – with however a remaining trend for over-prediction -,
while the average misfit on duration C5 is moved from under-
prediction to over-prediction. The misfit values obtained on criteria
C1 to C3 for the hybrid time histories are significantly lower than for
the full synthetics, being in absolute value closed to the values obtained
in validation phase 1 (see Fig. 14 in Maufroy et al. [12]). The typical
average misfit values encountered in phase 1 for hybrids were ranging
from −20% to −50%. In the second phase, the corresponding average
values equal 27%, 29% and 1% on C1–C3 respectively. However, when
not taking into account events S10 and S15 (identified as being bad
candidates for validation due to their proximity and low magnitude),
those values decrease to 19%, 16% and −22% on C1–C3 respectively (–

48% on C3 when considering only events with signal-to-noise ratio
greater than 3). This represents a general improvement of the valida-
tion results on the site-effect component.

One important change from validation phase 1 to phase 2, is that
the site-effect component was globally under-estimated in phase 1
(negative average misfit values for hybrid time histories at TST0), while
it is now mostly over-estimated in phase 2 (positive average misfit
values on C1 and C2). This observation, combined with the average
misfit on duration, also supports the probable under-estimation of the
damping value within the sediments.

The slight over-prediction of site response estimates also appear
clearly on Fig. 10, which displays a comparison between the observed
and computed surface/downhole transfer functions for various event

Fig. 9. Example map of horizontal misfits on the E2VP evaluation criteria between the recordings of the real event S7 (see Table 2 and Fig. 6) and its 3D numerical prediction. C1 is
based upon peak ground acceleration, C2 upon elastic spectral acceleration ranging 1.5–3.0 Hz, C3 upon elastic spectral acceleration ranging 0.375–0.750 Hz, C4 upon cumulative
absolute velocity and C5 upon 5–95% relative significant duration (see [12] for details). Each colored dot corresponds to the misfit obtained at the corresponding real surface receiver.
Red/yellow tones are for overestimation of the recordings by the prediction; blue/green tones are for underestimation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 5
Values of average horizontal misfits on the five engineering parameters Ci between the actual recordings at central soil site TST0 and their numerical predictions. Values in % evaluate
the predictions by full synthetics vs. hybrid time histories (i.e. site response only). For each parameter Ci, the average is computed over the 16 events that were recorded both at TST0
and TST5, and over the 14 events excluding the worst ones S10 and S15.

FULL SYN. HYBRIDS FULL SYN. HYBRIDS FULL SYN. HYBRIDS FULL SYN. HYBRIDS FULL SYN. HYBRIDS
C1 C1 C2 C2 C3 C3 C4 C4 C5 C5

S1 154 10 129 11 27 −58 196 72 −39 92
S3 177 19 186 39 89 −48 156 13 −93 −63
S4 142 62 128 84 78 52 42 95 −169 −6
S5 147 32 166 35 40 −12 76 −4 −93 1
S6 128 81 117 104 −22 106 68 198 −44 98
S7 87 −24 63 −19 −77 −90 47 25 −41 64
S8 130 12 173 12 156 −73 192 62 −61 47
S9 186 −3 192 20 164 15 152 34 −70 27
S10 471 75 506 98 431 203 365 94 −205 101
S11 68 35 63 32 −65 4 61 66 4 47
S12 201 5 201 29 136 −72 146 −16 −48 −26
S13 243 46 153 −47 5 −134 123 −12 −109 −19
S14 234 2 214 −5 188 −1 184 −15 −57 15
S15 310 92 338 134 262 129 253 114 −102 29
S16 2 9 −119 −120 −143 −17 −72 31 −71 47
S19 99 −15 139 50 58 19 126 146 −69 53
AVERAGE 173 27 166 29 83 1 132 56 −79 32
AVERAGE without S10 S15 143 19 129 16 45 −22 107 50 −69 27
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subsets. Fig. 10a, corresponding to the 16 events of set S1 for which the
TST0/TST5 ratio is available, exhibits a slight over-estimation of the
site response by the E2VP2 numerical simulation, especially at
frequencies between 1 and 1.5 Hz, together may be with a slight over
estimation of the fundamental frequency. Fig. 10b compares the “best”
instrumental estimate of TST5/TST0 transfer function, derived from a
set of 21 pairs of recordings with high signal-to-noise ratio (including
events from outside the model box), with the average transfer function
obtained for the S3 simulation set (1260 events). An over-prediction in
the same frequency range is still present, but it is also associated with a
significantly larger variability of the site response (especially the
observed one), and significant differences in the average instrumental
ratios from the two sets of recordings. Although different, the average
numerical and instrumental transfer functions are almost entirely
located within the 16–84% variability range (i.e. within ± 1 stan-
dard-deviation) of each other, except around 1 Hz and beyond 3 Hz.
The latter is probably indicative of an under-estimation of the damping
in the sediments, while the former is probably a consequence of the
high sensitivity of ground motion and site response to the source
location (distance, depth and back-azimuth), which is investigated
further in the next section.

5. Sensitivity studies and insight into the structure of the
aleatory variability

One of the important outcome of the verification and validation
exercise is the significantly smaller code-to-code distance compared to
the code-to-data misfit. The latter is interpreted as resulting from
errors or uncertainties in the source parameters and on the propaga-
tion model. It is therefore fully legitimate to use the numerical
simulation approach to investigate, in a relative way, the sensitivity
of ground motion and site response both to the variability in source
parameters (i.e., the variability for a wide range of different hypocentral
locations: epicentral distance, depth and backazimuth) and to the
uncertainty in source parameters (i.e., to small changes in the
magnitude and location parameters comparable to hypocentral loca-
tion error). The synthetics obtained with the simulation approach for a
large number of sources and receivers can also be used to generate
some synthetic GMPEs, and to analyse the impact of the source
uncertainties on the value of the aleatory variability in the light of
the results of the sensitivity studies, investigating in particular how
epistemic variabilities affect the within and between-event aleatory
variability components.

5.1. Epistemic variability of site response

It is most often considered - at least implicitly - that site response

can be decoupled from source and path effects. This section takes
advantage of the S3 simulation set to investigate the sensitivity of the
site response to some simple source-receiver attributes (back-azimuth,
depth and distance) linked to the source-site crustal path and incoming
wavefield, which may be a priori thought to impact the site response in
a highly 3D environment. As a comprehensive analysis of this simula-
tion set is provided in Maufroy et al. [33], only a short insight is
provided here in relation with the impact of epistemic variability of site
response on the “apparent” within-event aleatory variability. Fig. 11
displays the variability of surface/borehole transfer function with
source back-azimuth and epicentral distance:

The amplification is found to exhibit a noticeable dependence on
source back-azimuth. It is slightly larger around the two main peaks
(0.7 Hz and 2 Hz) for southern events, and exhibits a smoother
frequency-dependence for northern sources. The largest back-azimuth
dependence is found for shallow, far sources while the smallest one
consistently corresponds to deep, close sources (Fig. 11 bottom). This
variability is related to the actual 3D geometry of the sediment-
basement interface, with gentler slopes on the northern edge, and
steeper slopes on the southern edges.

This dependency is frequency dependent: the variations with back-
azimuth are the largest for the intermediate frequency range (around
and just above the basin fundamental frequency), in between the
fundamental and first higher 1D resonances, corresponding to the band
mostly affected by edge-generated surface waves: their energy strongly
depends on the incidence (source-depth) and back-azimuth of the
incoming wavefield, in relation with the complex 3D geometry of the
sediment-basement interface.

Though not shown here, the variability in site response is also found
to be significantly larger when the reference is an outcropping rock at
2–3 km distance from the considered site, while it is minimum when
the reference is at depth in the bedrock beneath the considered site.
Vertical arrays are thus to be recommended, even though the “refer-
ence” motion at deep bedrock may significantly differ from an out-
cropping rock motion.

5.2. Sensitivity of ground motion to source location uncertainties

Besides the variability of site response related to large changes in
back-azimuth and distance, we also investigated the impact of small
changes in source location, mimicking the actual uncertainty in source
location, on the variability of ground motion. The background objective
is to provide a better guidance for the selection of appropriate events
for future validation exercises, but it also improves our understanding
of the aleatory variability of GMPEs. In that aim, we have considered
the “S2” set, where the hypocentral locations of the 19 events of set S1
are moved at 27 different positions within a 4 km edge cubic box

Fig. 10. Left: Median of SSR (Standard Spectral Ratios) at TST0 with TST5 as reference station, derived from the actual recordings of the 16 events of set S1 (solid red line, associated
variability shown in pink), and for the corresponding E2VP2 simulations (bold blue line, associated variability shown by thin blue lines). Right: the same for another set of recordings
(black line, 21 events with the best sigma to noise ratio, including more distant events outside the model box) compared with the predicted response for set S3 (solid magenta line, 1260
events on concentric circles and with various depth). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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centered on the best location estimate. The ± 2 km variability in each x,
y and z direction is considered a reasonable and probably minimum
estimate of the actual location uncertainty, especially for small
magnitude events. For each event and each site, the variability of
ground motion was estimated from the standard deviation of the
acceleration response spectra for the 27 different hypocentral locations,
at each frequency from 0.5 to 3.5 Hz, and then averaged over the whole
frequency band. For each event, the site variabilities were averaged to
provide an index of the “event” variability linked to the source location;
this averaging was done separately for the four rock stations and the 11
sediment stations within the graben. The resulting values are summar-
ized in Table 6, Fig. 12 displays the variability of acceleration spectra at
site TST0 on the example of 4 different events corresponding to
different depths and epicentral distances: event S10 is shallow (4 km)
and close (4.2 km hypocentral distance), event S05 is deep and close
(11 km and 11.9 km, respectively), event S11 is shallow and more
distant (4 km, and 36 km, respectively), and event S02 is deep and
distant (11 km and 20 km, respectively, see Table 2 and Fig. 3).
Significant differences appear between the 4 events: the smallest
variability is found for distant, deep, event S02, while the largest
corresponds to the closer, shallow event S10.

A detailed look at Table 6 indicates that the variabilities at sediment
and rock sites are very similar, and seem to be much more related to
source location than to site response. This is further illustrated in
Fig. 13, which compares the overall variabilities at sediment sites and
at rock sites, together with the variability of the site transfer function. It

shows that sediment and rock variabilities are comparable: their
differences remain small compared to the large event-to-event varia-
bility of the sensitivity of ground motion to exact source location.
Moreover, the ground motion variability is systematically larger, to
much larger, than the corresponding variability of the rock-to-sediment
transfer function: the former range from 0.07 to 0.30, while the latter
lie between 0.04 and 0.10. Fig. 14 confirms that the ground motion
variability is tightly related to the source distance and hypocentral
depth: it is the largest for shallow, near sources, (variabilities larger
than 0.25 for depths smaller than 5 km and epicentral distances
smaller than 10 km) and the smallest for distant, deeper sources
(variabilities below 0.10 for distances larger than 10 km and depth
beyond 10 km, or distances beyond 20 km and depths larger than
8 km). One may notice that the site response variability also exhibits a
slight decrease with increasing epicentral distance and hypocentral
depth; It is however much less pronounced than for the response
spectra. It may therefore be concluded that validation exercises
focusing on absolute ground motion are much more difficult for very
close events or very shallow, local events, unless there is a very dense
local seismological array that allows to locate the events with a
precision much smaller than the ± 2 km uncertainty considered here.
Nevertheless, if the validation target is the site transfer function, even
close and shallow events can be used.

Fig. 11. Example impact of the source distance and backazimuth on the average amplification at the central TST site. Top left=Map of the basin and source location considered in this
study. The basin contours are indicated by the bold white line and the surface elevation is given by the color scale. The location of the central receiver TST is shown by the red triangle,
and the sources epicenters are shown by the circular setting of black crosses. Ground motions at TST are analyzed by considering 4 back-azimuth areas (N, E, S, and W) as described by
the colored circular arrows; the areas are separated by the 4 back-azimuth values at TST (degrees labels) that correspond to the basin edges. Top right=average surface/borehole transfer
functions for the 4 different back-azimuth ranges (solid lines=average, dotted lines=average ± one standard deviation. Bottom frames: details on the sensitivity to backazimuth for five
different frequencies (color code), and three different event subsets, as indicated in the different frames (far events, all events and deep close events. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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5.3. Contributions to the understanding of aleatory variability

The previous sections show that the predicted ground motion
exhibits an epistemic dependence on the source location, that the 3D
site response varies with the source back-azimuth, and that the
sensitivity to tiny changes in the source position very significantly
impact the ground motion at short distances or for shallow sources.
Such a complex and coupled dependence is not taken into account even
in the latest, most sophisticated GMPEs. Considering that results of
carefully verified numerical simulation codes are reliable, we thus used
the results of the comprehensive set of 1260 virtual sources to derive
synthetic GMPEs and to investigate how the above mentioned, well-
identified, epistemic variability maps into the aleatory variability σ
(and its within-event, φ, and between-event, τ, components). Basically,
for each considered source, the numerically derived Green’s functions
were convolved with ad hoc source functions in order to simulate
earthquakes with magnitude in the range 2–5. For the subsets
corresponding to real events (S4 set corresponding to 52 real events),
the magnitude was tuned to the real one; for all the other “virtual”
events of the S3 set, the magnitude was assigned arbitrarily, in the
limited range 2–5 however to be consistent with the point source
assumption. These various sets of scaled synthetics were then used to
derive GMPEs using the artificial neural network (ANN) approach
described in Derras et al. [38] and Derras et al. [39]. The “standard”
explanatory variables were the moment magnitude Mw, the epicentral
distance Depi, the hypocentral depth Z, and the VS30 site proxy.
Alternative site proxies were also considered (fundamental frequency
f0, local sediment thickness h, average sediment velocity VSh), and
additional source parameters as well (mainly the source back-azimuth

Table 6
Sensitivity of ground motion to hypocentral location uncertainty. For the 19 events of set
S1 (rows), the table lists the value of the average standard deviation (log10 scale) of the
computed acceleration response spectra over the frequency range [0.5–3.2 Hz] for the 4
rock stations (Column #2), the 11 sediemnt stations (column #3) the deep borehole site
at graben center (TST5, column #4) and the surface site at graben center (TST0, column
#5); finally column #6 lists the corresponding values of the average variability of TST0/
TST5 Fourier transfer functions over the same frequency range.

Event ID (S1
set)

Average rock Average
sediment

TST5 TST0 TST0/
TST5

S01 0,126 0,141 0,131 0,129 0,081
S02 0,100 0,068 0,074 0,062 0,060
S03 0,101 0,082 0,089 0,086 0,040
S04 0,101 0,085 0,109 0,079 0,042
S05 0,244 0,219 0,294 0,246 0,069
S06 0,102 0,081 0,074 0,072 0,056
S07 0,208 0,230 0,241 0,236 0,072
S08 0,126 0,128 0,162 0,140 0,063
S09 0,263 0,276 0,234 0,240 0,065
S10 0,301 0,294 0,308 0,305 0,086
S11 0,203 0,224 0,217 0,223 0,066
S12 0,221 0,225 0,225 0,228 0,070
S13 0,114 0,106 0,124 0,114 0,058
S14 0,107 0,086 0,093 0,085 0,068
S15 0,254 0,294 0,271 0,286 0,101
S16 0,184 0,181 0,217 0,198 0,072
S17 0,157 0,113 0,171 0,132 0,049
S18 0,101 0,086 0,077 0,076 0,061
S19 0,243 0,216 0,242 0,226 0,077

Fig. 12. Variability of the acceleration response spectra at TST0 site resulting from a ± 2 km variability in source location, for 4 different events of the S1 set. The color code corresponds
to the hypocentral depth Z (red for Z=Z0−2 km, green for Z=Z0 and blue for Z=Z0+2 km. The median response spectra is given in each panel by the solid black line, surrounded by the
upper (84%) and lower (16%) percentiles as dashed black lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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BAZ). The objectives were multifold:
– Compare the within and between- event variability levels between

synthetics and real data (set S4).
– Investigate the effect of the size of the data set (small, S4, versus

large, S3) on the values of within- and between-event variabilities.
– Investigate the effect of “controlled uncertainty” on magnitude or

source localization on the between-event variability.
– Investigate the impact of various site proxies (VS30, fundamental

frequency f0, local sediment thickness H, average sediment velocity
VSH,) and of the corresponding uncertainties on the within-event
variability.

– In such 3D basins, investigate the possible use of other source/
site information, such as back-azimuth, in view of somewhat reducing
the aleatory variability.

The results obtained so far are partly illustrated in Figs. 15 and 16
for two simple ground motion parameters, pga and pgv. Similar
analyses were performed also for spectral ordinates at various oscillator
frequencies (from 0.5 to 3.5 Hz), but are not significantly different from
what is obtained for pga and pgv (note however that, as numerical
predictions are valid only up to 4 Hz, “pga” corresponds to a limited
frequency range). The main findings are summarized below.

i) The within and between event variabilities do exhibit a significant
dependence on the data set. Fig. 15 displays the total, between-
and within-event variabilities obtained for pga and pgv with a
neural network considering moment magnitude, epicentral dis-
tance, depth and VS30 as explanatory variables, and for the two
sets S3 and S4. All variabilities are shown to increase with the size
of the data set. The between-event variability is found to be much
larger (i.e., by about 50%) for the full S3 set than for the reduced S4
set; the size of the data set also slightly impacts the within-event
variability, but to a much smaller extent (around 10–20%). The
large increase of the between-event variability can be explained by

the strong sensitivity of ground motion to hypocentral depth and
distance. The increase of the within-event variability is consistent
with the fact the S4 subset exhibits a skewed azimuthal distribution
(see Fig. 7) and the observed sensitivity of site response to back-
azimuth (Fig. 11). Such findings raise the attention on the need to
consider a large set of recordings at a given site to have a reliable
estimate of the within-event variability: in S3 set there are 1260
recordings per site, and 52 in S2 set. It thus invites to be cautious
when working on too small data sets: both the between- and
within-event variabilities may be underestimated, which may in
turn also impact the estimates of single-site sigma. This should
definitely be kept in mind in the derivation of GMPEs.

ii) It is also worth mentionning (see Maufroy et al. [40] for more
details) that, for the S4 subset, the values of within and between-
event variabilities are found somewhat lower on synthetics com-
pared to their values derived from actual recordings. The corre-
sponding values are listed in Table 7 (second and third columns).
One of the reason of the lower within-event variabilities on the
synthetics may come from the absence of uncertainty on the source
parameters (magnitude and location). Therefore, different levels of
uncertainties were artificially introduced in the magnitude and
location values, without changing the corresponding synthetics
computed with real, unperturbed magnitude and location.
Magnitude values were randomly modified using a uniform
distribution within [m−Δm, m+Δm], with Δm taken equal succes-
sively to 0.1, 0.2, 0.3, 0.4 and 0.5. For each Δm value, ten random
sets of magnitude values were generated, and GMPEs derived on
the corresponding sets of unchanged synthetics, with unchanged
locations and distances, and modified magnitude values. The
results are illustrated, on the example of the peak ground velocity
PGV, in Fig. 16 left: as expected, the within-event estimate is left
basically unchanged, while the between-event variability exhibits a
significant, quasi-linear increase with Δm: it is doubled (from 0.12
to 0.24, log 10 values) for Δm=0.25, and tripled (up to 0.36) for
Δm=0.5. Similar trends were obtained for other ground motion
parameters (pga, spectral accelerations at various periods) and are
not indicated here for conciseness.

iii) A similar analysis was performed to investigate the impact of
uncertainties in source location. The actual locations were ran-
domly modified using a uniform distribution centered on the actual
one, with maximum deviations Δl in the x, y and z directions
varying from 1 to 10 km. For each Δl value, ten random sets of
modified locations were generated to avoid any set-specific bias.
The right frame of Fig. 16 indicates that the within-event varia-
bility remains basically unchanged, while the between-event varia-
bility increases noticeably with source location uncertainty: the τ
value increases by 25% (from 0.12 to 0.15) for a location
uncertainty of ± 3 km, and by 50% (up to 0.18) for a location
uncertainty of ± 5 km. Considering the average magnitude un-
certainty (especially for moderate magnitude events) is at least 0.2,
and the average location uncertainty is probably ranging from 2 to
5 km, our results indicate that a non negligible amount (i.e.,
increase by about 50–100%) of the between-event variability
comes from source parameter uncertainties. The increase of
variability at small magnitude reported in many recent GMPEs
may therefore be a consequence of a larger location uncertainty,
and investing in dense seismological networks for more precise
localization may therefore constitute one of the most efficient ways
to reduce sigma, especially for GMPEs including a large number of
recordings from small magnitude events.

iv) The other types of source parameters that were considered for
these synthetic GMPEs are the source depth Z and back-azimuth
BAZ. It was found that, for the S4 data set, the τ value is
significantly reduced when considering Z (from 0.2 to 0.10, i.e.
by about 50%), and further reduced (from 0.10 to 0.075, 25%)
when considering BAZ, while the φ value remains unchanged. Such

Fig. 13. Variability of the ground motion predictions resulting from a ± 2 km variability
in source location, for the 19 different events of the S1 set. This variability is expressed in
terms of standard deviations over the 0.5–3.3 Hz frequency range, of the predicted
response spectra and TST0/TST5 transfer functions as listed in Table 6. The different
symbols correspond to the average variability of response spectra at the central TST0 site
(red squares), and for the 11 sediment sites (green circles), together with the variability
of the TST0/TST5 transfer functions (black stars) plotted as a function of the
corresponding average variability of response spectra for the 4 rock sites (abscissa).
Each symbol corresponds to one of the 21 events of the S1 set. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

E. Maufroy et al. Soil Dynamics and Earthquake Engineering xx (xxxx) xxxx–xxxx

15



results cannot be directly extrapolated to classical data sets used
for the derivation of GMPEs; they however indicate that the twin
parameter set (epicentral distance, depth) performs better in
ground motion prediction than the sole hypocentral distance,
and that, when considering a single site with a pronounced 3D
underground structure, the source back-azimuth could be consid-
ered to further reduce the prediction uncertainty.

v) Finally, it was found that two site proxies, VS30 and f0, perform
almost equally well to account for site conditions, while the local
sediment thickness H and average sediment velocity VSH, which
are sometimes proposed for alternative site classifications, perform
much more poorly. A similar analysis was performed on the impact
of uncertainties in the estimates of these site proxies on the within-
event variability φ: it was found – on this particular data set – that
the impact is very small, much smaller than the uncertainties on
source parameters. As the number of sites is limited, and the
associated geological conditions as well, further investigations are
needed to generalize such results.

6. Conclusions

The use of numerical simulation has proved extremely powerful and
useful for improving the understanding of the physics of ground
motion from source to site. Using the simulation approach for design
purposes requires much care and is much more demanding, especially
when going to frequencies beyond 1 Hz. Verification and validation
exercises such as E2VP will certainly be repeated in the future on other
sites and datasets. In the same way as E2VP benefitted from lessons of
previous similar benchmarking exercises, it is important to summarize
the main lessons from the present project, and more specifically from
its second phase, as the main results from E2VP1 are already
summarized in Table 1.

Two important recommendations must first be mentioned, because
they appeared as recurrent issues all along the 8-year life of the E2VP:

Numerical simulation codes require careful use and regular cross-
checking, which proves to be a very efficient tool in securing the quality
of the results, especially after code updates or improvements.

The most important aspects of accuracy of any numerical method
and code that is applied for numerical prediction of earthquake ground
motion in engineering projects, may be valuably verified through some

Fig. 14. Control of the ground motion variability due to source location uncertainty by epicentral distance and depth. The top row displays the dependence of variability on response
spectra at TST0 (red circles) and Fourier transfer functions TST0/TST5 (blue stars) as a function of epicentral distance (left) and hypocentral depth (right). The bottom row displays the
values of the variabilities of TST0 response spectra (left) and TST0/TST5 transfer functions (right) in the (epicentral distance/depth) plane: the color code indicates the corresponding
variability (same scale for both plots); the labels on each symbol indicate the S1 event ID. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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stringent cases with already existing solutions. The canonical cases
developed within E2VP, which are freely available to the seismological
community (http://www.sismowine.org), can serve this purpose.

Most of the new work achieved during E2VP2 was related to
validation. The comparison for the 19, relocated events has thus been
found in average slightly improved for rock sites, and slightly deterio-
rated within the Mygdonian basin, with an overall trend for an
overestimation. It was found once again that the sole site response
(“hybrids”) is better estimated. The significant overestimation in terms
of signal amplitude (parameters C1–C4) thus comes mainly for the
overestimation of the rock motion, also associated with an under-
estimation of signal duration (C5): both may come from the absence of
scattering in the considered crustal model. When considering all the
real receivers, the overall E2VP2 misfit values range between +50 and
+150%, to be compared with the +40–80% of E2VP1 (on only 6

events), while the “site-response only” misfits now range around +20%,
while they were around −40% for E2VP1. The modifications in the
basin model have slightly improved the site response estimate, but the
sensitivity to the source parameters and the associated uncertainties
leads to conclude that the feasibility of validation up to frequencies
around a few Hz (4 Hz in the present case) is still a real challenge, for
several reasons.

• The predicted ground motion proves to be very sensitive to the exact
position of the source – especially its depth and distance – for very
close events and for local, shallow events: as it is unrealistic to
expect a precision on localization smaller than 2 km (especially for
the depth), it is therefore recommended, for validation purposes, to
select events with epicentral distance R larger than 20 km and
hypocentral depths Z larger than 8 km. Closer events (R > 10 km)
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Fig. 15. Impact of data set size on the total (blue circle), within-event (red circle) and between-event (grey circle) variabilities. The S3 set and S4 subsets consist of 1260 events and 52
events, respectively, both recorded at 15 sites. The aleatory variabilities are displayed for the peak ground acceleration (left) and peak ground velocity (right).

Fig. 16. Influence of the uncertainty on source parameters (magnitude, left; and location, right) on the aleatory variability components (between-event on top and within event on
bottom). This influence is illustrated here for the PGV. The amount of uncertainties considered for the magnitude values and the source location are indicated on the abscissa. Each open
blue symbol corresponds to one random generation of perturbated magnitude or location sets, while red circles correspond to the median values for the 10 random sets for one level of
magnitude or location uncertainty. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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can also be used, provided they are deeper (Z > 10 km)

• The misfit between observations and numerical predictions remain
significantly larger than the distance between carefully selected, up-
to-date, and carefully implemented numerical simulation codes. For
the prediction of ground motion for expected events with a priori
defined source characteristics, the numerical-simulation approach is
fully legitimate in the toolbox for site-specific ground-motion
estimation.

• The predictions-to-observations differences are significantly lower
when considering only the site amplification, especially when the
reference is at depth within a vertical array. This emphasizes the
added value of “hybrid” approaches made possible by the availability
of down-hole recordings and the invaluable usefulness of in-situ
recordings: it seems today very difficult to predict site effects in a
complex geometry context with only geological, geophysical and
geotechnical information. Site instrumentation is strongly recom-
mended, including also due attention to reference sites (downhole
and outcropping rock as much as possible) for a proper “calibration”
of the reference motion.

• The 3D site response however exhibits a significant dependency on
the source back-azimuth, which partly explains the event-to-event
variability of instrumental site-to-reference spectral ratios.

It is also worth to discuss these results in the light of a few recent
studies reporting comparisons between strong motion recordings and
low to intermediate frequency ground motion simulation for various
moderate to significant size earthjqulkes: Chino Hills, California (2008,
Mw 5.4, 336 receivers within 100 km distance, 0.1–4 Hz; Taborda and
Bielak [42]), Po Plain, Italy (2012, Mw 6.0, 34 receivers within 30 km
distance, 0.1–1.5 Hz; Paolucci et al. [43]), and South Napa, California
(2014, Mw 6.0, 10 receivers within 20 km distance, 0.1–5 Hz; Gallovic
[44]). The first two report Anderson-like [14] “goodness-of-fit” scores
predominantly in the range 4–8 (i.e., basically “fair” and “good”),
corresponding to simulation to recordings differences in the range 50–
100%, while the last indicates PGV and response spectra ratios in the
range [0.25–4]- thus with some gof scores below 4 (“poor” fit)-, most of
them being in the range [0.5–2] (i.e., at least “fair”). Such average
misfit values turn out to be slightly smaller than ours when considering
full synthetics (see Table 5), and significantly larger when considering
hybrid synthetics at the single receiver TST0, i.e., when focusing only
on the 3D site response. One must keep in mind however that such a
comparison must be done with caution. The values reported in these
recent post-earthquake simulation studies correspond to one particu-
lar, rather large, event, while ours are an average for many smaller
events. Another difference is that most often, in those studies, the
target records have already been used to constrain the rupture history,
while in our case the determination of source parameters is indepen-
dent of the target recordings. The comparisons reported in these papers
are performed after the event, and thus do not correspond to the case of
a fully blind situation where the ground motion prediction is requested
in advance of the event (which was actually the initial request from the
French nuclear authority that launched all these benchmarking ex-
ercises).

In addition, the comprehensive sensitivity study also showed that,
beyond the deterministic prediction of ground motion for a given
earthquake scenario, carefully verified numerical simulation can pro-
vide a very instructive insight at the structure of the so-called “aleatory”
variability of ground motion, for both its within- and between-event
components. For the E2VP case, the between-event variability has been
found very sensitive to hypocenter location errors (25% increase of τ
for a location uncertainty of ± 3 km), and to uncertainty in magnitude
estimates (doubling of τ for a Δm uncertainty of ± 0.25). Such a finding
explains the increase of aleatory variability for small magnitude events
in most recent GMPEs, and emphasizes the usefulness of dense
seismological networks in order to reduce τ and σ. The within event,
single-site variability is shown to be associated to an “epistemic”
dependence of the 3D site response on the event back-azimuth
(predominantly), and on distance and depth (more slighltly). This
result calls for caution in the interpretation of single-station variabil-
ities derived from a too small number of events: in the E2VP case, even
52 recordings at one site are not enough to fully capture the whole
variability of site response when the azimuthal distribution is skewed.
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Total σ 0.24 0.16 0.22 0.19
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CONTENTS 2

Abstract

Among the physical processes that control the amplitude of seismic waves, attenuation is probably the
most poorly understood and undetermined factor. Deciphering and quantifying the mechanisms at the origin
of wave attenuation represents a current frontier in seismology and allied fields. At the phenomenological
level, attenuation processes fall into two categories: elastic processes such as scattering of seismic waves
by small-scale heterogeneities; inelastic processes such as absorption and dissipation caused by the anleas-
ticity of the geological materials or fluid flow. The separation of scattering and absorption phenomena is
key to make the link between frequency-dependent attenuation of seismic waves and mechanisms of energy
dissipation proposed in the rock physics literature. The objective of the proposal SSAM is to develop a
genuine tomographic approach to the Mapping of Seismic Scattering and Absorption properties of Earth
materials with applications to the structure and dynamics of the continental crust, and seismic hazard as-
sessment. To carry out this research, we will elaborate on recent theoretical advances in the field of wave
multiple scattering and random signal processing which pave the way for the development of an inversion
technique exploiting diffuse seismic wavefields and ambient noise in the 0.05-30 Hz frequency band. This
methodological proposal, which brings together experts in the theory of wave propagation in complex media,
state-of-the-art numerical methods and seismic tomography relies on a three-fold approach: (i) At the theo-
retical level, our work is based on recent advances of the project coordinator in the field of radiative transfer
of seismic waves, which let us foresee the possibility to separate scattering and absorption phenomena. (ii)
State-of-the art numerical simulations of seismic wave propagation in heterogeneous media will facilitate
the validation of the theoretical approach, will allow us to test our inversion tools in realistic situations and
to extend our approach to the field of ambient noise. (iii) Combined with data analysis from dense seismic
networks, our tomographic approach should provide high-resolution maps of the scattering and absorption
properties of geological media at spatial scales ranging from the sedimentary basin to the continental crust
of Western Europe. At the sedimentary basin scale, attenuation models will facilitate the quantification of
the variability of ground motions in connection with the presence of small-scale heterogeneities, thereby
reducing epistemic uncertainties in seismic hazard assessment. At the european scale, attenuation models
will provide a novel high-resolution characterization of crustal rock properties, independent of the seismic
velocity models. Together with the latter, scattering and absorption tomography has the potential to unravel
the mechanisms underlying the creation of small-scale heterogeneities as well as the role of fluids in the
dissipation of seismic energy.
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Partner Last Name First Name Current Position
Involvement
in the project
(PM)

Contribution to the project

IRAP MARGERIN Ludovic
CNRS Researcher
(CR1)

28

Project Coordinator, theory
and numerical implementation
of sensitivity kernels for coda
waves

IRAP CALVET Marie
Physicien Adjoint
(Associate Profes-
sor)

15

Inverse problem and implemen-
tation of scattering/absorption
tomography, geological inter-
pretation of the results

IRAP BYSTRICKY Micha Associate Professor 6
Interpretation of the results and
relation with physical properties
of rocks

IRAP
Master student
then Ph.D student

5+36
Attenuation tomography of Eu-
rope

ISTerre CHALJUB Emmanuel Physicien Adjoint 15,6
Design of heterogeneity models,
numerical simulations of ran-
dom wave fields

ISTerre STEHLY Laurent Physicien Adjoint 12,6
Sensitivity functions for noise
wavefields

ISTerre
Master student
then Ph.D student

5+36
Sensitivity of noise to source
distribution and attenuation to-
mography of the Argostoli Basin

ISTerre Master student 5
Development of a software suite
for distributed processing of
seismic data
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DE MAR-
TIN

Florent Research Engineer 5,4
Numerical simulations and dis-
semination of scientific results

BRGM IT Engineer 6
Construction of synthetic seis-
mogram catalogue

Table 1 Summary table of the personnel involved in the project SSAM. Note: the “precariousness” rate (taux
de précarité) R of our proposal is defined as the ratio between the research time of non-permanent participants
supported by ANR and the research time of all participants, independent of their funding (the calculation
excludes Ph.D and Master students). We find R = (24+4)/(25.8+13.8+3.6+24+15.6+12.6+5.4+4) =
26.71% which is below the rate of 30% recommended by ANR.

1 Context, position and objectives of the detailed proposal
Much of our knowledge about the natural resources and deep structure of the Earth’s crust comes from high-
resolution tomography of seismic velocities. But this technique, which has proven so effective, offers only an
incomplete description of the medium properties. Any natural material contains small-scale heterogeneities,
fundamentally unresolvable by velocity tomography, which scatter and absorb seismic energy and entail both
attenuation and large variability of ground motions (see Figure 1). Deciphering and quantifying the mecha-
nisms at the origin of attenuation represents a current frontier in seismology and allied fields. The objective
of the proposal SSAM is to develop a genuine tomographic approach to the Mapping of Seismic Scattering
and Absorption properties of Earth materials with applications to the structure and dynamics of the continental
crust and seismic hazard assessment. While the outputs of our research have direct implications for the design
of future hazard maps, our proposal focuses on the development of methodological tools that aim at the quan-
tification of the basic processes -scattering and absorption-, which are responsible for the attenuation of seismic
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Figure 1 Schematic view of the processes and spatial scales involved in seismic wave attenuation. Scattering is
caused by small-scale elastic fluctuations or mechanical discontinuities which cannot be resolved by classical
tomographic methods. Absorption is caused by anelastic processes, such as viscous dissipation, fluid flow
between fractures, or at the pore scale.

waves.

1.1 What can we learn from scattering/absorption tomography?
1.1.1 Implications for the structure and dynamics of the crust

A number of physical models have been proposed in the literature to explain the absorption of seismic energy
(see e.g. Mavko et al. 2009, for a review). However, in practical applications, it remains difficult to pinpoint a
particular mechanism. The principal obstacle to the characterization of absorption processes is the intrication
between scattering attenuation caused by small-scale heterogeneities in the range [0.1-10]km and intrinsic
attenuation. As evidenced by the long-lasting seismic coda (see Sato et al. 2012, for a review), multiple-
scattering is prominent in the crust and masks the absorption processes.

Within the framework of the SSAM proposal, we will develop a new technique to map separately the
scattering and absorption properties of geological media as a function of frequency. While previous attempts
in this direction have previously been made, they all rely on a regionalization of the data and implicitly assume
spatially homogeneous properties (see Sato et al. 2012, and references therein). As illustrated in Figure 1,
absorption properties (in particular their frequency dependence) shed light on physical processes occurring at
spatial scales that are completely inaccessible by standard methods. By combining our new measurements with
the results of classical velocity tomography which are already available, we expect to put constraints on the
presence, nature and topology of fluids that are thought to be ubiquitous in the crust. Let us remark that there
is still a gap to bridge between mechanisms that are described at the laboratory scale and field measurements,
simply because the range of frequencies does not usually overlap (Wang 2010; Adelinet et al. 2010). By
mapping precisely the absorption properties of geological units, our approach may also be used to establish
empirical attenuation laws that in turn may guide the development or discrimination of physical attenuation
models that are relevant in the [0.05-30]Hz frequency band.

As illustrated in Figure 1, small-scale heterogeneities, which are prominent in the crust, are responsible for
seismic wave scattering. Conversely, frequency-dependent scattering attenuation provides major constraints on
the texture of geological media: media that are poor (resp. rich) in small scales have smooth (resp. rough)
aspects. As tectonic processes are responsible for the creation of small-scale heterogeneities, they very likely
leave specific imprints in the texture of the medium. Therefore, as previously demonstrated by the proposers
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in the case of the Earth’s inner core, detailed mapping of scattering properties may unravel key information on
the dynamical processes at work in the crust (Monnereau et al. 2010).

1.1.2 Implications for seismic hazard

In the context of risk studies, the extreme variability of ground motion amplitude and duration observed over a
broad range of spatial scales (100m-100km) is one of the fundamental sources of epistemic uncertainty in the
evaluation of seismic hazard. Among the physical processes that control the amplitude of seismic waves, atten-
uation is probably the most poorly understood and undetermined factor, and plays an important role in various
“hot” engineering seismology topics. For instance attenuation is identified as the controlling phenomenon of
the kappa parameter which is used by engineers to characterize the high-frequency content of ground motions
(Anderson and Hough 1984; Parolai et al. 2015). Scattering also controls the generation of surface waves at
major surface heterogeneities such as alluvial deposits, topography and possibly buildings (Imtiaz et al. 2014).
Despite its recognized importance, there is no routine measurement of attenuation in engineering applications.
Scattering is most often ignored and absorption is usually taken as inversely proportional to the shear wave
velocity, but this is only a convention hiding a lack of knowledge. The mapping of scattering and absorption
properties will facilitate the design of realistic models of both frequency-dependent intrinsic attenuation and
small-scale heterogeneity, and will push back the current frontiers of strong ground motion predictions for
relevant targets such as sedimentary basins, thereby considerably reducing the epistemic uncertainty.

In the same context, the design of seismic hazard maps at regional or continental scale relies heavily on so-
called “ground motion prediction equations” (GMPE) which require the knowledge of a frequency-dependent
quality factor (e.g. Douglas 2003). Because attenuation displays short-scale (few tens of km) lateral variations
in the crust, these GMPE often fail to predict the observed amplitudes thereby introducing large uncertainties in
ground motion estimations. To overcome this limitation, next generation GMPE should obviously incorporate
2-D (3-D) spatial variations of the quality factor and will directly benefit from the kind of high-resolution
attenuation models we aim to develop (Pasyanos 2015).

At a more local scale (i.e., site specific studies), attenuation mapping would facilitate the calibration of
nonlinear soil models at intermediate strain levels ≈ 10−5-10−3 (Hartzell et al. 2004). After the dramatic
nuclear accident triggered by the 2011 Tohoku earthquake, a better assessment of nonlinear site response is
currently under deep investigation in the workpackage PRENOLIN of the SINAPS@ Project (funded by the
ANR “Investissement d’Avenir - recherche en matière de sureté nucléaire et de radioprotection”). The attenua-
tion factors that we intend to map at local scale could be directly used by such nonlinear models for calibration
purposes.

1.2 Scattering and absorption tomography with random wave fields: proof of concept
1.2.1 Exploiting multiply-scattered waves: why?

A number of techniques have been devised to retrieve attenuation information from the modeling of direct seis-
mic waves emitted by earthquakes. A major issue with the use of deterministic and ballistic signals lies in the
fact that their amplitude is affected by multiple factors that are difficult to disentangle in practice: source radia-
tion pattern, geometrical effects such as focussing/defocussing, site effects caused by surface layering, and last
but not least attenuation. In addition, since both scattering –the effect of small-scale elastic fluctuations– and
absorption –the dissipation of seismic energy– manifest themselves as an approximately exponential decay of
direct wave amplitude with distance, it is not possible to separate their effects from attenuation measurements
based on ballistic waves only. This feature is highly undesirable since scattering and dissipation convey inde-
pendent and complementary information on the nature of the medium. Moreover, while absorption removes
seismic energy from the medium and therefore reduces the overall amplitude of ground motions, scattering can
entrap energy in the most heterogeneous regions, and entail a dramatic increase of the signal duration. In con-
clusion, whether one adopts a purely geophysical or more risk-oriented viewpoint, the separation of scattering
and absorption effects is a crucial issue, and a real seismological challenge.

In this proposal, we argue that the modeling of scattered seismic signals, which are prominent in the short
period seismic wave field (typically less than 20s), offers an elegant and efficient solution to the problem of
mapping seismic attenuation. In particular, the tail portion of the seismogram known as the seismic coda, which
is composed of waves multiply-scattered by crustal heterogeneities, displays a number of interesting features
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Figure 5. (a) Tomographic map of Qo and (b) tomographic map of h, at 1 Hz for Eurasia. All cells are
3! ! 3! in area.
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Figure 2 Left: map of the seismic coda wave quality factor Qc for Eurasia (taken from Romanowicz and
Mitchell 2007). Right: map of Qc for the Pyrenees (Calvet et al. 2013). Red (blue) corresponds to high (low)
attenuation.

for attenuation studies. In sharp contrast with ballistic arrivals, the rate of decay of the coda is not affected
by the source mechanism or the local site effects, but is a sensitive function of the geological environment
(Fehler and Sato 2003). Moreover, a number of observations as well as numerical experiments support the idea
that scattering and absorption have distinct impacts on the shape of the seismic coda: increasing the scattering
strength results in a broadening of the coda envelope, while increasing absorption yields a faster decay rate of
the coda. These simple properties form the physical basis for the separation of scattering and absorption effects
from coda waves.

The mathematical model relating the scattering and absorption properties of the medium to the spatio-
temporal energy distribution of coda waves is known as the theory of radiative transfer (RT) or transport theory
in short. This model has been adopted in a broad range of disciplines such as IR optical tomography, ultra-
sonics, astrophysics, to cite a few only. A concise introduction to radiative transfer methods in seismology
can be found in Margerin (2005). At least three facts have limited the applications of RT theory to seismic
data. First of all, because late arrivals explore a broad volume of the medium, it is widely believed that coda
waves are inherently devoid of precise local information, and therefore inadequate for tomographic purposes.
Second, efficient numerical methods to solve globally the transport equation have been lacking for a long time,
even for the trivial case of a homogeneous scattering medium. Finally, the quantitative relation between spatial
variations of scattering and /or absorption, or in other words the sensitivity of coda waves to a local change of
propagation properties was not known. In the past two years, the project coordinator (PC) and his colleagues
have made decisive progresses on all three fronts and are now in a position to develop a genuine tomography of
scattering and absorption properties based on scattered seismic signals. All previous attempts at mapping scat-
tering/absorption properties rely on the assumption that the propagation medium is statistically homogeneous
in the region under investigation (Fehler et al. 1992; Hoshiba 1993; Sato et al. 2012), thereby severely limiting
the spatial resolution of such approaches.

Thanks to the densification of seismic networks and the development of database facilities in Europe, we
hope to take full advantage of our new theoretical approach. Figure 2 illustrates the tremendous gain of spatial
resolution that may be achieved thanks to the use of earthquake data from dense permanent networks. This
Figure represents a map of the decay rate of coda waves, quantified by the coda quality factor Qc. On the left, we
show a map of Qc for the crust of Eurasia taken from the state-of-the-art Treatise on Geophysics (2007). Only
very large scale variations correlated with mountain ranges and cratonic areas show up. Note that metropolitan
France is represented by one red Pixel at this scale. The contrast with the Qc map (right) obtained by our group
for the Pyrenees is spectacular. We want to emphasize that this map is not the result of a tomography, but
a mere representation of the observed variability of the coda decay obtained with the aid of earthquake data
from permanent seismic networks. On this map, the sedimentary basins and the axial pyrenean zone show up
clearly in the western part of the range, demonstrating a correlation with major geological units. But even more
interesting is the sharp discontinuity between the eastern and western Pyrenees, which is not apparent in the
geology and which suggests that attenuation studies may reveal previously undetected deep geological units.
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StationSource

Absorption

Currently Accepted Theory New Theory

Scattering

Figure 3 Map view of the sensitivity of coda waves to a perturbation of scattering and absorption properties in
the medium. Left: the currently accepted view with uniform sensitivity and no distinction between attenuation
mechanisms. Center: “true” sensitivity to scattering. Right: “true” sensitivity to absorption. Color scale in
arbitrary units. The black line delimits the area sampled by the waves after twice the ballistic shear wave arrival
time (Mayor et al. 2014).

Figure 2 therefore conveys two crucial messages: (1) there exist rapid spatial variations of attenuation in the
crust that have remained undetected so far; (2) the massive deployments of seismic stations which took place
in the last 15 years offer the opportunity to map these variations with unprecedented resolution. In seismically
active regions which are the most interesting for both risk and geodynamic studies, earthquake records should
suffice for our purposes. In more quiet regions, we will take advantage of the recent advances in signal-
processing techniques which allow the passive reconstruction of the Green’s function –including the scattered
coda– from ambient noise records.

Figure 3 serves to illustrate the dramatic increase of spatial resolution that we may expect thanks to the
tomographic technique we intend to develop. On this Figure, the black dots show the location of the source
and station and the black ellipse delimits the area (volume) sampled by the waves at a given lapse time in the
coda. In this case, we have chosen twice the travel time of ballistic shear waves, a value commonly found in the
literature. The left plot shows the commonly accepted view on the spatial sensitivity of coda waves, which is
uniformly distributed inside the causality ellipse. In the center we show the “true” sensitivity function of coda
waves to scattering perturbations, derived from RT theory by our group (Mayor et al. 2014; Margerin et al.
2016). In red (blue) areas, an increase of the scattering level entails a decrease (increase) of the amplitude of
the coda at the given lapse-time. The sensitivity displays fine spatial variations which are completely absent
in the classical view. The approximation apparent in Figure 3 (left) added to the sparse data coverage in turn
explain why all rapid spatial variations of attenuation are washed out in images such as the one shown on
Figure 2 (left). Note also that the color scale in Figure 3 has been saturated to enhance the visibility: the
sensitivity tends in fact to infinity as one approaches the source and station, which implies that coda waves are
extremely sensitive to changes occurring in the vicinity of these 2 points. This feature is a strong argument
in favor of the fact that coda waves are sensitive to local changes, contrary to what was believed so far. We
have successfully implemented a simplified version of the kernel shown in Figure 3 (right) to obtain a map
of the depth-averaged absorption properties of the crust in the Western Alps with a lateral resolution of about
100km, thereby demonstrating the feasibility of our project (Mayor et al. 2016). Let us finally remark that if we
perturb absorption instead of scattering, a very different sensitivity function is obtained (Figure 3, right), which
strongly supports the idea that separation of scattering and absorption effects is indeed possible with scattered
waves. Sensitivity functions of the RT equation form the cornerstone of the linearized inversion strategy we
intend to follow. However, it should be pointed out that the kernels shown in Figure 3 (center + right) need to
be generalized in several ways. In the scientific program, we describe the necessary improvements and their
technical solutions.
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1.2.2 Exploiting the noise wave field: development and numerical validation

Following early developments in acoustics (Weaver and Lobkis 2001), it has been shown that the Green’s
function between distant seismic stations can be retrieved from the correlation of seismic noise (Shapiro and
Campillo 2004). To take advantage of the recent developments in ambient noise processing, we will make every
effort to extend our approach to the Greens Functions (GF) retrieved by cross-correlation. This is admittedly
a theoretical and methodological challenge, but well worth pursuing in view of the potential benefits. One of
the chief interests of analyzing noise records lies in the fact that they allow the reconstruction of GF between
arbitrary pairs of seismic stations, thereby increasing tremendously the path coverage in regions of low seismic
activity.

Recently, several studies have suggested that the attenuation of surface waves may be estimated using
ambient noise data. Based on a semi-empirical model of the coherency of ambient noise, Prieto et al. (2009)
built a 1D shear wave attenuation model of southern California. In Prieto’s approach, the spatial decay of the
envelope of the coherency is fitted with an exponential function containing a single spatial scale representing
the attenuation length. This method was extended by Lawrence and Prieto (2011) to map the attenuation of
Rayleigh waves in the western US in the 8-32s period band. It is worth emphasizing that the interpretation
of the exponential term is a subject of heated debates, as it depends on a number of ingredients, including the
spatial distribution of noise sources and the processing of data.

The amplitude of direct arrivals reconstructed by noise cross-correlations has also been analyzed by Prieto
and Beroza (2008); Lin et al. (2011); Denolle et al. (2013). These authors have argued that the amplitude decay
of Rayleigh waves with distance is similar for earthquake data and empirical Green’s function reconstructed
from noise cross-correlations. Nevertheless, the interpretation of the amplitude of direct waves reconstructed by
cross-correlations remains quite controversial, since these waves are affected by the same factors as earthquake
data, but with two additional complexities: (1) the noise source distribution varies in time and space, and (2) the
processing technique has a strong impact on the retrieved amplitudes (e.g. Seats et al. 2012). It is well known
that noise sources are not uniformly distributed at the surface of the Earth, leading to azimuthal variations in the
strength of ambient noise sources. As a consequence, the amplitude of noise correlations depends heavily on
the azimuth of the station pair considered. For this reason, it is difficult to map lateral variations of attenuation
using station pairs having different orientations. Moreover, Cupillard and Capdeville (2010) have shown using
numerical simulations that in the case of a non-uniform distribution of noise sources, the geometrical spreading
of noise cross-correlations depends on the source distribution. If this effect is not properly taken into account,
it can lead to erroneous attenuation measurements.

The emphasis of our research will be on the analysis of the full waveform of noise- based Green’s function,
including the coda. The analysis of the correlation properties of this coda by Stehly et al. (2008) supports the
view that, very much like the coda of earthquakes, it is composed of multiply-scattered waves and may therefore
be exploited to image scattering and absorption properties. Furthermore, the numerical study by Colombi et al.
(2014) strongly suggests that coda waves are much less sensitive than direct waves to the azimuthal anisotropy
of the noise source distribution. To clarify the interpretation of the amplitude of noise cross-correlations, we
propose to follow an empirical approach based on numerical simulations. Contrary to previous investigations,
we will to take into account the influence of scattering by small-scale heterogeneities of the medium which are
widespread in the crust and which have been overlooked in most theoretical approaches so far. We will take
advantage of the reciprocity of the wave equation to perform a joint numerical study of noise cross-correlation
functions and coda waves in heterogeneous media at no extra numerical cost. How this may be achieved in
practice is detailed in the technical section of this proposal.

The methodological developments will be greatly facilitated by the construction of a catalog of synthetic
noise and coda waveforms based on state-of-the-art numerical simulations of wave propagation in scattering
and absorbing media. This database, which will be built at an early stage of the project and made available
to the seismological community, will serve two purposes: (1) Define the limits of validity and the spatial
resolution of a linearized scattering/absorption tomography in a controlled situation. (2) Evaluate numerically
the sensitivity kernels of noise-reconstructed coda waves w.r.t. the relevant physical parameters: scattering,
absorption and noise source distribution. To build this catalog, we will calculate the GF of the wave equation
in a variety of random heterogeneous media, for series of point-like white-noise sources distributed on a grid.
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Exploiting the linearity of the wave equation, the action of the different sources can then be combined at will
to analyze the influence of the noise source distribution on the retrieved GF amplitude. The same game can
be played with the propagation medium by perturbing locally the variance of velocity fluctuations and/or the
intrinsic quality factor quantifying the amount of absorption. To simulate major geophysical boundaries such
as basin edges, more complex models combining small-scale heterogeneities with sharp discontinuities may
also be considered. Armed with this catalog of synthetic seismograms, we should get a complete grasp of the
scattering/absorption imaging capabilities of earthquake and noise-based coda waves.

1.3 Field applications
We envisage two applications of scattering and absorption tomography at quite different spatial scales. (1)
During the FP7 2010-2014 European Project NERA, a dense network of 65 broad-band seismological stations
was deployed in Argostoli, on the greek ionian island of Cephalonia, one of the highly seismogenically active
zone in Europe. The network recorded 6 months of seismic noise and about 500 teleseismic, regional and
local events with a high signal-to-noise ratio. The network geometry, characterized by interstation distance
ranging from 5 m to 2 km (average 50 m) and sampling various geological units, provides a unique opportunity
to understand the spatial variability of earthquake ground motion and its effect on large span structures. The
ability to map small-scale heterogeneities and intrinsic attenuation is critical to better understand and model the
amplification and duration lengthening of earthquake ground motion. The Argostoli site has also been chosen
as a test site to study non-linear site response, for which the characterization of intrinsic attenuation is critical
for the calibration of non-linear models at low deformation rates. The Argostoli dataset is available to the
research community through the European portal EIDA since mid-2015.

(2) The second application is devoted to the mapping of scattering and absorption properties of the crust
in Western Europe. This region has been very well instrumented : about 1300 permanent seismic stations
(broadband velocimeters and accelerometers) and 30 temporary experiments have been deployed since 1996
(∼1100 stations). Waveforms are already available through the European portal EIDA. We also note that within
the timeline of our project, we expect a significant improvement of the spatial coverage in certain regions. In
the case of Spain and south-western France for instance, the data of the Iberarray and Pyrope experiments
should be released within the next one or two years. We may also benefit from the data acquired during the
AlparrayFr experiment (2015-2019), funded by the ANR. Western Europe displays an incredible geological
diversity, including old and recent mountain ranges, volcanic areas, subduction zones at different stages, and
major active faults. To gain further understanding of the dynamical processes at the origin of this diversity,
we need to go beyond velocity tomography. We anticipate that our tomographic approach, which quantifies
independently absorption and scattering, can unravel key features that have been missed by seismic imaging so
far.

1.4 Relation to other research projects.
To our knowledge, the SSAM proposal has no equivalent at the national, european or international level. Our
research is completely original for several reasons: (i) Most notably, we develop of a new tomographic tech-
nique based on a recent theoretical result established by our group. (ii) The end products of our research are
high-resolution scattering/absorption maps which are still lacking worldwide. (iii) Most seismological imaging
techniques employed at the continental scale exploit direct waves at frequencies below 1Hz. We exploit specif-
ically multiply-scattered signals in a broad frequency range [0.05-30]Hz, which is directly relevant to seismic
hazard applications. (iv) The targets of our applications cover a broad range of scales: from the sedimentary
basin to the continent.

Furthermore, we expect cross-fertilization between our project and other ongoing research programs. We
have already noted that the output of our research will be useful to calibrate non-linear models such as those
developed in the context of the Sinaps@ project funded by ANR. Attenuation mapping of the Argostoli basin
will complement the velocity models that are developed in the framework of the European Research Project
NERA. In turn, the outputs of this project will be particularly useful for our purposes, as a knowledge of the
background velocity is required in our approach. Likewise, the European reference velocity model EPcrust
(Molinari and Morelli 2011) will be fruitfully exploited to provide meaningful geological and geophysical
interpretation of our results. In addition, we note that all the data that we analyze will be collected thanks to
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Newsletter

Attenuation models

Release of numerical simulations and restitution workshop

Table 2 Timeline of the SSAM project.

the EIDA infrastructure. In particular, we will take advantage of both the densification of permanent seismic
networks (EPOS initiative of the european commission), and of past temporary experiments at the national level
(e.g. the Pyrope experiment supported by ANR) or at the european level (e.g. Iberarray).

2 Scientific and technical program, organisation of the proposal
To successfully carry out the proposed research, we will need to pursue theoretical developments, numeri-
cal simulations and data analyses at different geophysical scales ranging from the sedimentary basin to the
continent. In this section we describe in details the different tasks of our research program as well as their
inter-connections. When specific risks have been identified, the back-up solutions -when available- are clearly
indicated at the beginning of each task description. A kick-off meeting and three coordination meetings will be
successively organized at IRAP, BRGM and ISTerre to discuss the results, monitor the workflow, and readjust
the strategy if necessary. The exact schedule of these meetings will be discussed by the partners in the course of
the project. These meeting will be supplemented with regular web conferences (at least one every six months)
to ensure information exchange between the partners. Table 2 summarizes the timeline of the project. Further
details on the connections and dependencies between tasks are provided in the text.
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2.1 Task 1: Numerical simulations of random wave fields
Deliverables/Milestones: Data bank of synthetic seismograms in 2-D and 3-D spatially varying heterogeneous
media.
Members involved: E. Chaljub (ISTerre) is responsible for the numerical developments and will supervise
a Master student in charge of developing a software suite for the post-processing of the simulations. The
heterogeneity models will be designed in collaboration with the PC. Cross-checks of the numerical simulations
will be performed with F. De Martin (BRGM).
Back-up solution: Use Finite Difference instead of Spectral Elements to perform numerical simulations in
continuous random media.

2.1.1 Preliminary remarks.

Numerical simulations are a very important component of this project and will serve different purposes: (i) In
the case of earthquake coda waves, we have seen that a well established physical model -radiative transfer-
has been developed which allows one to model the space-time distribution of energy in the coda with good
accuracy. Nevertheless, our tomographic approach requires an essential linearization step which certainly limits
its applicability. Numerical simulations will therefore be essential to delimit the domain of validity of our
approach, to experiment different inversion strategies, and to determine the spatial resolution of attenuation
models in a variety of controlled situations. (ii) In the case of ambient noise, the physical picture is not as clear
as with multiply-scattered waves generated by earthquakes. The complex interplay between inhomogeneous
spatial distribution of noise sources and scattering processes is a particularly challenging issue. We will use
numerical simulations to study experimentally the sensitivity of the amplitude of direct and coda waves of noise
correlograms to the relevant medium and source parameters. In this way, we hope to clarify the potential of
noise data for attenuation studies.

It is very important to note that the numerical simulations will do double duty. In other words, ambient
noise and coda waves may be studied in the same framework. The key to understand this point lies in the
fact that noise sources are usually very short range (compared to other spatial length-scales) and may therefore
be represented as white-noises. In this case, the cross-correlation CAB of two random wavefields acquired at
positions A and B may be obtained through a single surface or volume integral of Green’s functions G:

CAB(τ) =

∫∫
G(A,X; t)G(B, X; t + τ) S(X)dXdt, (1)

where the space integral is performed over the whole domain, its boundary or yet another subset, depending
on the spatial distribution of noise sources, as encapsulated in the term S(X). By the reciprocity theorem,
G(X,B; t) = G(B,X; t), the evaluation of the integral (1) requires only two numerical simulations with
impulsive sources at A and B, respectively. The Green’s functions synthesized in each simulation between A,
or B, and all positions X may be analyzed separately to study coda waves. The simple but very important
result (1) is a clear motivation for the joint study of coda and noise wave fields in heterogeneous media. Below,
we explain how to cover a range of interesting geophysical situations with a single numerical input model.

2.1.2 Design of the heterogeneity models

In this section, we discuss the practical numerical implementation of the models of heterogeneity.

Discrete vs continuous models of heterogeneity. In the real Earth, both discrete scatterers (cracks, intru-
sions) and continuous fluctuations of elastic parameters are present. Numerically, however, considering the two
types of models simultaneously would be impractical. The key to the success of our numerical experiments
lies in the control of the scattering parameters of the model, and this is most easily achieved if we consider a
single form of disorder at a time. The most important spatial scale of a scattering model is the scattering mean
free path l, which controls the exponential rate of decay of the coherent wave and the generation of multiply-
scattered waves (Sheng, 2006 for a review). In the temporal domain, one defines a mean free time τ = l/c (c is
the wave speed) which represents the mean time between two scattering events in the heterogeneous medium.
In order to have full control on the simulations, we must be able to determine a priori the value of the mean
free path (or mean free time). Different techniques have been proposed in the literature to carry out this task,
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which depend on the type of heterogeneity model. This point further justifies the separate treatment of the
continous/discrete situations below.

(i) Models of continuous fluctuations are described by a power spectrum of heterogeneity which we denote
by Φ. For a given elastic parameter, e.g. the rigidity µ, this power spectrum and the spatial correlation
function C of the relative fluctuations δµ/µ form a Fourier tranform pair:

C(x) =

⟨
δµ

µ
(r + x)

δµ

µ
(r)

⟩
=

1

(2π)d

∫∫∫
Φ(q)eiq·xdq, (2)

where d is space dimension. In the Earth, there are both direct and indirect evidences that the power
spectrum follows a power-law over a broad range of wave numbers, which is often modeled with the aid
of a Von-Kármán function. Direct proof of this fact comes from the analysis of well-log data. Observation
and modeling of high-frequency seismogram envelops (f > 1Hz) provide additional support for the Von-
Kármán model, which is defined by:

Φ(q) =
8π3/2ϵ2a3Γ(ν + 3/2)

Γ(ν)(1 + q2a2)ν+3/2
, (3)

where ϵ2 denotes the total variance of the fluctuations, a is the correlation length of the fluctuations, and
ν is an exponent which controls the richness of the model in small-scale features.

(ii) While the continuous models are relatively easy to generate, they can be fully controlled only if the
variance of the fluctuations is not too large, which permits the application of perturbation theory to
calculate the mean free path. Therefore, to test models with strong scattering (high-contrast heterogenous
media), it is also useful to implement models of discrete, distributed heterogeneities for which very
accurate methods to calculate the mean free path have been developed (Sheng 2006). The chief difficulty
in the generation of these models is the avoidance of scatterers overlap, which in turn entails spatial
correlations between the scattering centers. This situation can be handled at the theoretical level but
slightly complicates the calculation of the mean free path.

Spatial/temporal scaling of the models. Here, we give a typical example of a Von-Kármán random medium
which allows us to cover a broad range of interesting scattering situations in a single numerical experiment. In
the Earth, the mean free path depends strongly on the geological context and on the central frequency of the
waves, but typical estimates for the crust lie in the range 10 − 500km. Figure 4 shows the dependence of the
mean free path upon a-dimensional frequency ka = ωa/c for a realistic Von-Kármán medium with ν = 0.25,
variance of the fluctuations ϵ2 = 0.025 and correlation length a = 0.5km. Scattering theory allows us to
calculate very precisely the mean free path for this model:

l−1 =
k4

16π2

∫

4π
Φ

(
2ω

c
sin

θ

2

)
sin θdθdϕ, (4)

where k is the central wavenumber of the waves (not to be confused with the wavenumber q describing the
spatial fluctuations of the elastic parameters). It is very important to note that the mean free path is fully
determined by the power spectrum of heterogeneities and that the whole range l ∈ [10−500]km may be covered
by simulating the propagation of waves over a decade in frequency, as shown by Figure 4. By appropriately
filtering the signal in different frequency bands, we will therefore be able to model the propagation of seismic
waves in a variety of situations which are relevant to the propagation in the crust: the low-frequency regime
ka ∈ [0.5, 1] is representative of microseismic noise studies and the high-frequency regime ka ∈ [1, 5] is
typical of earthquake coda analyses. Table 3 displays the characteristic parameters obtained after choosing
realistic values of the wave velocity c and the total simulation time window. The accuracy of the numerical
results depends critically on the ability to represent the small scales in the model. Again, scattering theory
allows us to precisely determine the maximal spatial frequency (or minimum fluctuation length) that needs to
be correctly represented. We note in particular that formula (4) implies that the waves are sensitive to small-
scale features of the medium up to the spatial frequency qmax = 2ω/c with ω the central frequency of the waves.
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Figure 4 Frequency dependence of the mean
free path in a Von-Kármán type heterogeneous
medium with correlation length a = 0.5km.

Table 3 Typical parameters of the Von-Kármán model of Fig-
ure 4, assuming a background shear wave velocity c = 3.14
km/s and a time window T = 250 s. τ : mean free time, l :
mean free path, λ : wavelength.

ka 0.5 1 5

l (km) 400 150 15

τ (s) 130 50 5

λ (km) 6.28 3.14 0.63

T/τ 2 5 50

Therefore, if we want to accurately simulate wave propagation for wavelengths larger than λmin, we will have
to filter out all the spatial fluctuations below λmin/2 and to adapt the spatial resolution of the numerical grid
accordingly (i.e. to roughly double the spatial resolution used for smooth media) to make sure that our results
are both numerically accurate and physically sound.

2.1.3 Cross-Validation of numerical simulations in heterogeneous media

Recent studies have pointed out that numerical simulation of elastic wave propagation in complex 3D media
was still far from being a press-button approach (e.g. Chaljub et al. 2010, 2015) implying that verification of
the numerical codes is an important step prior to application to realistic cases. In this proposal, we will use
two different simulation codes implementing the spectral element method in 2D and 3D: specfem (Peter et al.
2011) and efispec (De Martin 2011). Both codes have already been verified for a variety of realistic 3D
applications (e.g. Chaljub et al. 2015). The calculations will be shared between the two codes and between
different operators at ISTerre and BRGM in order to minimize the level of human error. We will also use a set
of finite-difference codes developped by the team of P. Moczo at the Coemenius University of Bratislava1 in
order to verify the numerical implementation of continuous random media.

2.1.4 Numerical simulations: ∞ 2-D case

We will start by the simulation of scalar (SH) wave propagation in an unbounded viscoelastic medium with
random properties as described in Figure 4 and Table 3. One of the main objectives is to understand the contri-
bution of the sources of seismic noise to the Green’s function reconstructed by cross-correlation, in particular
to its coda. Around 10 simulations will be performed in order to be able to analyze pairs of receivers with inter-
distances ranging between 1 and 10 seismic wavelengths. In order to cover a realistic range of source-receiver
distances, we will use a squared 2D computational domain with 314 km side and will consider a uniform distri-
bution of point sources (i.e. of receivers in the simulation thank to reciprocity) in the volume. According to the
numbers given in Table 3, the spatial resolution of the numerical grid should be adapted to half the minimum
seismic wavelength, i.e. 314 m (to be confirmed in the cross-validation step). For the spectral element method,
using a polynomial order N ∈ [4 − 5], this yields an element size equal to 314 m at most, so the total 2D
domain will be meshed with 1000 × 1000 elements. Based upon preliminary calculations using the 2D version
of specfem in a background homogeneous visco-elastic medium with c = 3.14 km/s, each simulation of 250
s of propagation requires about 150 hours of single core CPU time on Froggy, the latest machine available at
the Grenoble University computing center2. This reasonable computational time will allow us to run all the
SH calculations, including the computation of numerical noise sensitivity kernel (see task 3), using our local
(Grenoble University and BRGM) computational resources.

To investigate in a systematic fashion the sensitivity of the coda to spatial variations of scattering/absorption
1http://nuquake.eu/Computer Codes/index.html
2https://ciment.ujf-grenoble.fr
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properties, the propagation medium will be divided up into cells of typical size l/10 to l/5. One cell at a time,
we will modify the local scattering/absorption properties and simulate the propagation of waves in the perturbed
medium. To increase the scattering strength, it suffices to locally boost the standard deviation of the fluctuations.
Note that we have full control on the perturbation of the mean free path thanks to Eq. (4). Absorption is
easily controlled by increasing (or decreasing) directly the quality factor. For each source/receiver simulation,
we typically expect to carry out about 500 simulations to cover the whole domain of interest. To promote
the synergy and interaction between the partners, the post-processing of synthetic data will be performed on
a distributed data grid (further details are provided in section 2.6). A master student will be recruited and
supervised by E. Chaljub to develop a software suite for distributed processing of distributed seismic data.

2.1.5 Numerical simulations in a half-space: 2-D + 3-D case

The next step will be to simulate P -SV wave propagation in a viscoelastic half-space with random distribution
of shear and compressional wave speeds. As further detailed in Task 3, an important goal of these simulations is
to clarify the impact of the source distribution on the amplitude of noise cross-correlation functions, as well as
their sensitivity to spatial variations of absorption and scattering properties. Again, the medium will be divided
up into cells where scattering/absorption properties will be successively perturbed. Based on preliminary P −
SV calculations performed with specfem2D in a background homogeneous viscoelastic medium with VS =
3.14 km/s and VP = 5 km/s, simulating 250 s of propagation requires about 500 hours of single core CPU
time on Froggy. Given the number of simulations needed to compute the numerical noise sensitivity kernels
(typically 500 per source-station configuration as outlined above), we will use both local and national (GENCI)
computational resources for the P − SV 2D calculations. Finally, we will also perform 3D simulations in
viscoelastic random media in order to (i) test the radiative transfer sensitivity kernels developed in Task 2 in
a realistic crustal configuration when a localized transition in absorption and/or scattering properties exists,
(ii) understand the effect of a strong discontinuity of the background medium, such as a sedimentary basin, on
the seismic and noise coda.

Our spectral element codes and processing pipelines are already operational in 3D. In particular, we have
designed a semi-automated procedure to generate the spectral element meshes which adapt to the variations,
even strong, of seismic velocities. We first build a conforming unstructured spectral element mesh with local
refinement in the regions of interest (close to the surface, around a sedimentary basin), and then define a smooth
velocity medium using simple homogenization tools. In Figure 5, we show an example of such mesh designed
for the mygdonian basin in Greece. The computational domain is 65 km × 65 km × 30 km and the shear wave
velocities are as low as 135 m/s in the top part of the sedimentary layers. Simulation of 30 s of propagation
in this model for frequencies up to 4 Hz requires about 15000 hours of single core CPU on Curie (one of the
GENCI machine with almost similar performance as Froggy). The same kind of calculations, adding random
fluctuations outside of the basin and extending the runtime to 90 s (i.e. × 3) will be needed for the proposal.
For this, we will rely on the computational resources available at the national level (GENCI) and ask for five
millions single CPU hours on a massively parallel machine (Curie or equivalent). A specific proposal will be
submitted to GENCI in spring 2016 through the dedicated website. Post-processing will be performed on a
data grid as outlined above.

2.2 Task 2: Theoretical developments of coda waves sensitivity kernels
Deliverables/Milestone: numerical codes to calculate the sensitivity functions of coda waves to absorption and
scattering in 3-D media, based on spectral solutions of the radiative transfer equation
Members involved: This task will be entirely performed by the PC at IRAP.
Back-up solution: Implementation of differential Monte-Carlo methods instead of spectral techniques.

The objective of task 2 is to extend the preliminary results shown in Figure 3 (acoustic 2-D case + isotropic
scattering) to the full elastic 3-D case including the coupling between body and surface waves. The PC will
invest a very significant amount of this research time to this task (70% in the first 2 years). Sensitivity ker-
nels based on the equation of radiative transfer form the theoretical basis for the separation of scattering and
absorption properties and will be implemented in a linearized inversion approach as described in task 4.

The development of a fully-coupled theory for the modeling of multiply-scattered waves is admittedly a
very ambitious goal. Our research strategy will be based on a step-by-step approach, increasing the level of
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Figure 5 Spectral element mesh used for 3D numerical simulation of wave propagation in the Mygdonian basin
(Greece) up to 4 Hz. The mesh is composed by 4,764,721 hexahedron elements and about 316 million Gauss-
Lobatto-Legendre collocation points (i.e., around 950 million degrees of freedom). The mesh is refined twice:
once when approaching the free surface and once again inside the low-velocity basin to respect the numerical
dispersion relationship

complexity of the physical model progressively. Since the radiative transfer equation is not part of the standard
curriculum of solid earth geophysicists, we provide a quick overview of the topic. At the formal level, transport
equations in scattering and absorbing media take the following general form:

∂I(r, t,n)

∂t
+ cn · ∇I(r, t,n) +

(
1

τa(r)
+

1

τs(r)

)
I(r, t,n) =

1

τs(r)

∫

2π
p(n,n′)I(r, t,n′)dn′ + S(r, t,n)

(5)
Eq. (5) contains two timescales: the mean free time τs which quantifies the scattering properties, and the
absorption time τa

3. Because the Earth is not a simple heterogeneous medium, these timescales vary spatially.
The transported quantity is the specific intensity I(r, t,n), which represents the flux of energy in direction n, at
position r and time t. The term S(r, t,n) represents the source of energy, and the function p(n,n′) describes the
angular dependence of the scattering. The latter is fully determined by the heterogeneity power spectrum Φ. Our
goal is to retrieve the functions τs(r) and τa(r) from the spatio-temporal distribution of seismic energy. In the
linearized approach, we introduce a reference medium whose scattering and absorption properties (1/τ0

s , 1/τ0
a )

are supposed to be known 4. We then decompose 1/τa as: 1/τa(r) = 1/τ0
a +δ(1/τa(r)), where the term δ(1/τs)

is supposed to be small compared to 1/τ0
s . A similar decomposition applies to 1/τa. The detected intensity

in the reference and perturbed medium is denoted by I0 and I0 + δI , respectively. The sensitivity kernels for
scattering and absorption are then defined as:

δI(t)

I0(t)
=

∫
Ks(r, t)δ(1/τs(r))dr +

∫
Ka(r, t)δ(1/τa(r))dr (6)

In other words, we have obtained a linear relation between the spatial variations of scattering and absorption
properties and the detected intensity (see Mayor et al. 2014; Margerin et al. 2016, for technical details). The
solution of the inverse problem, i.e., the retrieval of the scattering/absorption properties from the data is the
subject of task 4. In what follows, we present the strategy adopted to calculate the kernels Ks and Ka in cases
of increasing complexity.

3For waves of central frequency ω, the following relations with the traditional scattering and intrinsic quality factors hold: Qsc =
ωτs, Qi = ωτa

4The determination of the reference medium is discussed in Task 4
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2.2.1 Acoustic radiative transfer in 3-D

The calculation of the kernels Ks and Ka depends crucially on the knowledge of the Green’s function of Eq. (5)
in the reference medium. In the work of Mayor et al. (2014), we exploited an analytical solution of the problem
in 2-D for a simplified model which assumes that the function p is constant (isotropic scattering). In view of
applications to real data (and to facilitate the comparison with numerical works), it is of utmost importance to
model the multiple scattering of waves in heterogeneous media with a Von-Kármán power spectrum. As previ-
ously noted, this requires the knowledge of the Green’s function of Eq. (5) for a general function p, a problem
which is notoriously difficult to solve either numerically or analytically. Fortunately, it was recently pointed
out that Fourier methods “with a twist” can be successfully employed to obtain semi-analytical solutions of the
transfer problem in the stationary case, or numerically stable series solution in the time-dependent case (Markel
2004; Panasyuk et al. 2006; Liemert and Kienle 2011). These new Fourier expansions are sometimes collec-
tively referred to as the method of “rotated reference frames” because they exploit rotational symmetries of
the transfer equation. The spectral approach turns the angular convolutions required to calculate the sensitivity
functions (6) into simple multiplications, which represents a decisive computational advantage. In other words,
once the Green’s function has been discretized in the spectral domain, the extra-numerical work required to
calculate the sensitivity functions is almost negligible. Therefore, in what follows the emphasis is put on the
calculation of the Green’s function of the radiative transfer equation based on spectral techniques.

In 2-D, the propagation direction n may be specified by a single angle. The basic idea of the modified
Fourier method is to expand the specific intensity as follows: I(r, t,n) = I0(r,t)

2 +
∑

m Im(r, t) cos(mϕr).
The difference with a standard expansion lies in the fact that the angle ϕr is defined with respect to a reference
frame which rotates with the position vector r, hence the name of the method. Additional Fourier and Hankel
transforms with respect to the time and space variables turn the equation of transfer into a simple tridiagonal
system whose solution is almost trivial. The numerical cost grows only linearly with the integer N at which
the Fourier series is truncated. We have successfully implemented a modified version of the method of rotated
reference frames to extend the calculation of sensitivity functions to 2-D heterogeneous media of the Von-
Kármán type (Margerin et al. 2016).

The extra effort to pass from the 2-D to the 3-D scalar case appears rather modest. Apart from a change of
basis functions (Legendre polynomials instead of trigonometric functions, spherical Bessel functions instead of
ordinary Bessel functions), all the nice properties of the method are preserved, in particular the tridiagonal form
of the linear system of equations. We therefore expect to solve the 3-D scalar case rather rapidly. At the level
of the radiative transfer equation, the free surface of the Earth imposes total specular reflection of the incident
energy flows. This boundary condition may be very conveniently treated by the classical method of image.
While the scalar model of scattering in a 3-D half-space is only an intermediate result, it already captures much
of the essential physics. Indeed, numerical solutions of the elastic radiative transfer equation for coupled P
and S waves obtained by the Monte-Carlo method have revealed two important facts (Margerin et al. 2000):
(i) multiply-scattered signals are very rapidly dominated by shear waves5; this stems from the fact that mode
coupling favors P → S over S → P conversions; (ii) Polarization of shear waves is very rapidly washed out
and has a minor impact on the transport of waves. For this reason, the simple scalar model should already do
a very good job at sufficiently high-frequencies where we expect the energy transport by Rayleigh waves to be
negligible.

2.2.2 Elastic radiative transfer in 2-D and 3-D

The next step of our research will be devoted to the introduction of coupling between different wave modes.
Several strategies may be envisaged which are summarized below. It should be noted at first that the structure
of the radiative transfer equation (5) does not change if one considers two or more propagating modes instead
of one. It may happen that some modes are degenerate, like for example shear waves in 3-D space, whose
polarization spans a 2-D subspace. This gives rise to polarization effects, which, as explained above, are washed
out rapidly in the multiple scattering process. We will therefore neglect these subtleties in our approach.

5A deeper asymptotic result known as equipartition stipulates that the energy density of S waves becomes larger than the one of P
waves by a factor 2c3

p/c3
s (t → ∞), with cp and cs the P and S wave speeds in the medium
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Coupling between body waves in 2-D in-plane geometry (P -SV ). We will first consider the coupling
between P and S waves in 2-D. In this case, Eq. (5) becomes a 2-D integro-differential equation for the
specific intensity vector (Ip, Is), where Ip and Is are the respective P and S intensity. The velocity c, the mean
free time τs and the absorption time τa should accordingly be interpreted as diagonal matrices: Diag(cp, cs),
Diag(τp

s , τ s
s ), Diag(τp

a , τ s
a) with self-explanatory notations. The function p becomes a 2 × 2 matrix which

describe mode conversions. We note again that this matrix function is fully specified by the power spectrum of
heterogeneities Φ.

A preliminary investigation indicates that the application of the method of rotated coordinate frames to
the vector transport equation yields a banded linear system in 2N unknown, where we recall that the Fourier
expansion (2.2.1) is truncated for m > N . A variety of efficient techniques have been developed to solve this
kind of linear problems, some of which are already implemented in compiler suites (eg Polizzi and Sameh
2006).We are therefore confident in the fact that the spectral approach can be both accurate and convenient in
the vector case too. We therefore expect this work to be done in 6 months.The algorithm will first be developed
in 2-D infinite space and the free surface will again be treated by the method of image. The sensitivity functions
for absorption and scattering will be validated with the aid of the 2-D P -SV numerical simulations performed
during task 1.

In principle it is possible to perturb the scattering and absorption properties of P and S waves separately.
In the case of scattering, the perturbations of the P and S mean free times will be strongly correlated because
these quantities are tied to the heterogeneity model. Concerning absorption properties, the situation is not as
clear, although it is usually believed that shearing motions are responsible for most of the dissipation. At the
theoretical level, we will be able to distinguish between perturbations of the inverse quality factors Qκ and Qµ,
which in turn control the absorption times of P and S waves6.

Coupling between body and surface waves The last 18 months of task 2 will be dedicated to the modeling
of the coupling between body and surface waves. This part of the proposal is important to determine the depth-
dependence of the sensitivity functions, which in turn depends on the relative importance of body and surface
waves in the energy transport. A very promising approach to tackle this problem is the quasi-2D transport theory
developed by Trégourès and Van Tiggelen (2002). This model applies in a waveguide geometry (e.g. crust over
mantle) and is based on a surface wave decomposition of the elastic wavefield. In this approach, body waves
and surface waves are treated on the same footing, the former being represented as a surface wave mode sum.
As an additional bonus, this model allows one to straightforwardly incorporate depth-dependent properties.
The quasi-2D transport equation is formally identical with Eq. (5). Similar to the P -S case discussed above,
all quantities should be understood as vectors or matrices: the specific intensity is a n-dimensional vector, each
component representing the intensity transported by mode i (i ∈ {0, 1, · · · , n}); the velocity c, the mean free
time τs and the absorption time τa are diagonal matrices with elements the group velocity, the scattering mean
free times and the absorption time of the modes respectively. These last two quantities are fully determined by
the power spectrum Φ and the quality factors Qκ and Qµ, respectively.

The formalism described above for coupled P -S waves extends straightforwardly to the quasi-2D equation
of transport. However, the banded numerical system to be solved will become much larger since a large number
of guided modes (typically 50 modes or more) will be necessary to represent accurately the body waves. We
nevertheless foresee that the size of the system (typically 10000× 10000) will still be manageable numerically.
The calculations will be performed on the local computer center CALMIP7. We also would like to emphasize
that there exist alternatives to the spectral technique we propose to implement. In particular, the PC has already
developed a Monte-Carlo simulation code to solve the transport equation for coupled P and S waves in 3-
D. This code may be extended to treat a more general system, coupling together a large number of modes.
Differential Monte-Carlo methods (Lux and Koblinger 1991) may then be employed to calculate numerically
the sensitivity kernels in a completely independent way. While Monte-Carlo methods suffer from several
well-known drawbacks such as slow numerical convergence and lack of accuracy, they are relatively easy to
implement and very flexible. Therefore, they form a viable alternative to the spectral techniques, which secures
the numerical developments.

6The relations between the former and the latter are one-to-one
7http://www.calmip.univ-toulouse.fr
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2.3 Task3: Numerical study of the sensitivity of the coda of ambient noise cross-correlations
Deliverable/Milestone: empirical sensitivity functions of the coda of noise cross-correlations for perturbations
of scattering, absorption and source distribution.
Members involved: The task will be performed at ISTerre by a Master student then PhD student to be recruited,
under the supervision of E. Chaljub and L. Stehly.

Preliminary remarks and key questions. Several theoretical works have put the forward the possibility to
retrieve the full Green’s function of an arbitrarily complex medium from the cross-correlation of noise wave
fields acquired at arbitrarily distant stations. The main requirement is that the sources of seismic noise be
homogeneously distributed within the medium, and/or that the scattering of seismic waves by heterogeneities
within the Earth be strong enough to randomize the seismic wavefield outside of the target region (De Verdière
2009; Wapenaar et al. 2006). In practice this assumption is never completely fulfilled: noise sources are
restricted to the free surface of the Earth implying that seismic noise is dominated by surface waves (Bernard
1952; Hasselmann 1963; Friedrich et al. 1998; Ekström 2001). Moreover, the distribution of noise sources and
their temporal evolution are frequency dependent: above 1Hz, the seismic noise is mainly excited by human
activities, whereas at longer period (> 1s) it is related to the interaction between the oceans and the solid earth
(Gutenberg 1951; Ardhuin et al. 2015). This implies that the biases that may arise in the Green’s function
reconstruction are frequency dependent (Stehly et al. 2006). Although Stehly et al. (2008) have shown that
coda waves are at least partially reconstructed by cross-correlating seismic noise in the 5-40s period band, the
problem is still open and requires further investigations.

The aim of this work package is to evaluate the impact of a non-homogeneous distribution of noise sources
on the amplitude of the coda reconstructed from noise correlations. More precisely, we will investigate how the
sensitivity of the coda of noise cross-correlation is related to the distribution of noise sources. To address this
question we will follow a systematic step-by-step approach as described below.

2.3.1 Sensitivity of the coda of noise cross-correlations to the spatial distribution of noise sources

The aim of this subtask is to compute the sensitivity of waveforms retrieved from noise correlations to perturba-
tions of the source distribution only. To this end, we may exploit Eq. (6), which implies that the contribution to
the correlation of a particular noise source located at X is simply proportional to the correlation of two Green’s
functions. Therefore, we may immediately express the sensitivity kernel Kn for the noise source distribution
as:

Kn(X, τ) =

∫
G(A,X; t)G(B,X; t + τ) dt (7)

This kernel quantifies the change in amplitude at time τ of the noise-based Green’s function, induced by a
perturbation of the distribution of noise sources at position X . Note that the sensitivity functions of other ob-
servables -such as the intensity of the signal reconstructed by cross-correlations- may also be straightforwardly
evaluated numerically.

Figure 6 shows an example of a sensitivity kernel Kn(X, τ) computed in PREM (Dziewonski and Anderson
1981) for two stations located 800km apart and evaluated at the arrival time of the surface waves in the 20-
25s period band. In Figure 6, we recognize three typical regions which have been previously described in
the literature: (i) the “coherent area” is delimited by black dashed lines and corresponds to noise sources
located ’near’ the axis A−B, which contribute positively to the amplitude of the surface waves (Snieder 2004;
Sabra et al. 2005; Roux et al. 2005). (ii) the “finite-frequency” area is delimited by red dashed lines, where
the kernel shows spatial oscillations. (iii) outside of the coherent and finite-frequency areas the kernel takes
negligible values. This result will be generalized to heterogeneous media using the synthetic Green’s functions
obtained during task 1. In this way, we will obtain a clear picture of the location of sources contributing to
the reconstruction of different parts of the Green’s function: direct waves, early coda and late coda. This
preliminary study will help us analyze the interplay between medium perturbation and source perturbation that
we consider next.

2.3.2 Sensitivity of the coda of noise cross-correlations to attenuation and scattering perturbations

Our next step is to determine under what conditions the coda of noise cross-correlations may be used to map
the absorption and scattering properties in the medium. To quantify the impact of the noise sources, we will
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Figure 6 Amplitude sensitivity kernel of direct surface waves in the 20-25s period band for perturbations of the
source distribution. The two stations are separated by 800 km and the PREM velocity model has been adopted.

consider different spatial distributions of practical importance: (i) Homogeneous distribution throughout the
medium (ideal configuration). (ii) Homogeneous distribution on a ring surrounding the source and station.
(iii) Asymmetric distribution on a ring to mimic directional noise sources. (iv) Single distant source of noise.
(v) In the case of a half-space geometry: sources located at the surface only. Note that at the computational
level, the only difference between the five cases pertains to the subset over which integral (1) is performed.

To evaluate the scattering and absorption sensitivity functions, the following brute force approach will be
employed. (i) For given source-receiver configuration and noise distribution, compute the noise cross-corre-
lation functions in a reference model that has homogeneous absorption and scattering properties. (ii) Next,
successively perturb the absorption/scattering properties of the medium inside small cells covering the whole
propagation medium. For each perturbation, compare the amplitude of the reference and perturbed coda waves
at different lapse times (iii) From these measurements, obtain the sensitivity kernels of coda waves recon-
structed from noise correlations w.r.t absorption/scattering perturbations for different lapse time in the coda.
The steps (i)-(iii) are repeated for each noise source distribution, and for different source-station distances. In
the framework of monitoring temporal changes of the medium with coda waves, similar numerical experiments
have been successfully conducted by Obermann et al. (2013), which gives us confidence in our strategy.

The preceding procedure will be applied to various observables. We will consider in particular the intensity
of the coda of noise cross-correlations and compare empirical sensitivity kernels with their theoretical coun-
terparts derived in task 2. In the case of an ideal homogeneous distribution of sources, we expect to find good
coincidence between the two approaches. By testing different spatial distribution of sources, we will determine
to what extent the sensitivity functions obtained in the framework of transfer theory may be applied to their
noise cross-correlations analog. In case of disagreement, our numerical approach will nevertheless allow us to
employ empirical sensitivity kernels that are tailored to the local distribution of noise sources which may be
inferred from array analysis as explained in task 5.

The numerical applications will parallel the development of theoretical sensitivity kernels as outlined in
task 2. In this way, we reinforce the synergy between tasks 1-3 to take maximum advantage of the interdisci-
plinary approach. We will first perform a complete parametric study for scalar waves in a 2-D ∞ medium for
both scattering and absorption perturbations. This study will give us access to the lateral variations of the sen-
sitivity. Next, we will consider the 2-D P -SV half-space geometry and perform a complete parametric study
to highlight the dependence of the sensitivity on the depth of the perturbations. As a full numerical study in
3-D is out of reach, we will use a few 3-D numerical simulations and results from task 2 as guides to combine
empirically the lateral and depth dependent parts of the sensitivity.

2.4 Task 4: Inverse problem
Deliverable: inversion code to retrieve the spatial variations of scattering and absorption properties from the
observed spatial variations of intensity.
Personnel involved: Task 4 will be mostly performed at IRAP by the Master/Ph.D. student under the super-
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vision of M. Calvet and L. Margerin (earthquake coda wave tomography), and in collaboration with the PhD
student and L. Stehly from ISTerre (noise coda wave tomography).
Back-up solution: At the time of writing, the outcome of task 3 has some uncertainty. If we find out that noise
data are too sensitive to the spatial distribution of noise sources for tomographic applications, we will focus our
efforts on earthquake data. Note that the methodology developed below is primarily intended to the inversion
of earthquake data, but should work with minor adaptations for noise data too.

2.4.1 Preliminary step: numerical validation of sensitivity kernels

The first step of Task 4 pertains to earthquake coda waves only, and consists in the numerical validation of the
sensitivity kernels developed during Task 2 with the aid of the numerical simulations obtained during Task 1.
We will proceed by increasing the complexity of the models progressively. To begin with, we will exploit the
2-D scalar simulations in ∞ space, which allow for a complete parametric study. We will then move on to the
2-D P -SV half-space case. First, we will test the sensitivity functions obtained by considering propagating
body waves only. We expect this model to give good results when the perturbations are located below the
penetration depth of the Rayleigh waves. We will then pursue our investigations by testing the fully coupled
theory including body and surface waves.

2.4.2 Definition of the reference heterogeneity model

In a linearized tomographic approach, we define perturbations of the medium properties with respect to a ref-
erence model. For our purposes, we therefore need to determine the spatially averaged scattering/absorption
properties of the crust in the frequency band [0.05 − 30] Hz, i.e. the scattering mean free time τs, the absorp-
tion time τa and the scattering anisotropy p, which are controlled by the heterogeneity power spectrum of the
medium8. In the case of the european crust, we cannot rely on previous estimates of the scattering and absorp-
tion lengths published in the literature because the spatial coverage is too sparse and the scattering anisotropy p
is usually undetermined. To construct our reference scattering and absorption model we will rely on a method
that we recently developed, which is based on the direct modeling of the coda in various frequency bands (Cal-
vet and Margerin 2013). This method has been successfully applied to a dataset from the Pyrenees and will be
adapted to the case of a large-scale attenuation tomography as detailed below. Note that we plan to regionalize
the reference model, a typical region having typical dimension 250 × 250km2 or more.

Because attenuation properties are strongly frequency-dependent, we will analyze the signals in a series of
narrow frequency bands (see Task 5 for further details). To account for site amplification and source magnitude,
we will normalize both observed and computed coda enveloppes by the average value of the energy in a time
window in the late coda (coda normalization approach, see Yoshimoto et al. 1993). The length and position
of this window will be adapted depending on the epicentral distance range of the records. Seismic velocities
will be fixed a priori based on the EPcrust model (Molinari and Morelli 2011) and the heterogeneity of the
medium will be described by a Von-Kármán spectrum characterized by three parameters: the variance of the
velocity fluctuations ϵ2, the correlation length a and the exponent ν, as illustrated in Task 1. To synthesize
coda enveloppes, the Green’s functions of the radiative transfer equation will be computed using the numerical
methods developed during Task 2.

In a first step, the range of acceptable values for τa will be estimated from the analysis of the coda quality
factor Qc at large lapse-time as proposed by Calvet and Margerin (2013). Next, a quantitative comparison
between observed and computed enveloppes at short lapse time will be performed through a misfit function
(various misfit functions will be tested). The important point to note is that the shape of the seismogram en-
velope near the ballistic arrivals contains crucial information on the heterogeneity power spectrum and mean
free time τs (Gusev and Abubakirov 1996; Calvet and Margerin 2013). The time window will be optimized by
testing various starting times and window lengths (Lacombe et al. 2003). Different approaches to the minimiza-
tion of the misfit function will be tested such as the classical grid search method or the Levenberg-Marquardt
algorithm. The results of individual envelopes fits may be subsequently spatially averaged to obtain the ref-
erence model but other strategies (involving e.g. some averaging of the data first) will be tested. The whole

8For simplicity, we present the case of a single propagation mode. The more general situation will be considered in the framework
of the project.
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procedure will be tested using the 3-D numerical simulations performed during task 1 in the crust and basin
configurations, respectively.

2.4.3 Inversion strategy and synthetic tests

A key feature of our theoretical approach is to arrive at a linear relation (Eq. 6) between the observable in
the coda (relative change of intensity) and the parameters of the model (scattering and absorption properties).
The first step of the inversion process is to discretize the continuous formulation to convert it to a standard
linear system involving matrices and vectors. For this purpose the use of Voxels appears as a reasonable first
choice. To treat the singularities of the sensitivity kernels at the source and receiver, we may use some general
normalization formulas derived for each kernel by Mayor et al. (2014). Outside of the Voxels containing the
source and receiver, simple Riemann sums may be used to integrate the discretized kernels numerically. The
result can then be compared to the value given by the normalization condition, which is obtained independently
and does not require numerical integration. The difference between the two quantities may finally be reassigned
to the source and receiver Voxels.

To solve the linear inverse problem, we will follow a common least-squares approach (see e.g. Tarantola
2005). Damping will be introduced through the covariance matrix of the model parameters. To optimize the
choice of damping parameters, i.e. the correlation length and variance of the correlation function, the method of
the L curve will be adopted as described by Hansen (1992). Because intensity fluctuates strongly in the coda9,
we will not try to invert directly for the time-dependent intensity. Like in the multiple lapse-time window
technique (Fehler et al. 1992), we will average the intensity in consecutive time windows of typical duration a
few tens of periods, in order to average out the statistical fluctuations.

Formula (6) also reveals that the detected intensity depends on both the scattering and absorption pertur-
bations, which inevitably introduces cross-talk between the two quantities. Fortunately, our preliminary study
demonstrates that the sensitivity to scattering perturbations decays rapidly in the coda, which alleviates the
problem. We may also consider alternative observables which are specifically sensitive to scattering or absorp-
tion. In particular Carcolé and Sato (2010); Calvet and Margerin (2013); Mayor et al. (2016) have shown that
the coda quality factor Qc evaluated in late time windows in the coda is a good proxy for the intrinsic quality
factor Qi. Hence, preliminary measurements of Qc may be used as a priori information on τa for the inverse
problem. To test the inversion procedure, we will exploit the 3-D numerical simulations performed during task1
for the sedimentary basin and continental crust configurations. The numerical tests should give us a good idea
of the spatial resolution of the method, and will facilitate the optimization of damping parameters when true
data are considered.

2.5 Task5: Geophysical applications
Deliverable/Milestone: (i) 3D scattering and absorption maps for Central and Western Europe. (ii) Scattering
and absorption model of the Argostoli Basin. (iii) Empirical attenuation-velocity laws for different geological
units.
Members involved: Task 5.1 (European attenuation model and interpretation) will be performed by the Ph.D
student, Marie Calvet and Micha Bystricky in collaboration with L. Margerin. Task 5.2 (Argostoli basin model)
will be mostly performed at ISTerre by the Ph.D. student under the supervision of E. Chaljub and L. Stehly.
Back-up solution: If the conclusion of task 3 is negative (noise data cannot be used for attenuation tomogra-
phy), we will use regional and earthquake data to carry out the attenuation tomography of Argostoli.

2.5.1 Large-scale application: the european crust

Knowledge of the crustal structure is crucial for many geophysical applications, such as upper-mantle tomo-
graphic studies which need crustal corrections, forward seismic wave propagation or location of seismic events.
Recently, Molinari and Morelli (2011) have proposed a reference crustal model for the European Plate from
a compilation of geological and geophysical data. This model (EPcrust) gives the P- and S-wave velocity in
three layers (sediments, upper crust and lower crust) with a resolution of 0.5◦ ×0.5◦ on a geographical latitude-
longitude grid. We propose to develop a similar reference 3-D crustal model of scattering and absorption in

9Under the gaussian field assumption, the intensity obeys an exponential distribution for which the standard deviation is equal to
the average value (see Sheng 2006)
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the frequency band [0.05-30]Hz in a region delimited by North Africa to the south, Scandinavia to the north,
(35◦N-71◦N), Spain to the west and Russia to the east (12◦W- 42◦E). Following the inversion strategy devel-
oped in Task 4, the attenuation model will be constructed by combining the analysis of earthquake and noise
data in the [1-30]Hz and [0.05-1]Hz frequency bands, respectively.

Figure 7 Location map of permanent and temporary seismic sta-
tions deployed in Central-Western Europe (http://www.orfeus-
eu.org/eida/).

Data collection: Thanks to the instal-
lation of permanent broadband and ac-
celerometric networks, as well as the de-
ployment of numerous temporary experi-
ments, Central and Western Europe have
been very well instrumented since 1996
(Figure 7). Within the timeline of the
project, the spatial coverage will be im-
proved in France (RESIF project, PY-
ROPE and AlparrayFR experiments) and
in Spain (IberArray experiment). Contin-
uous records are available at the European
Integrated Data Archive (EIDA) through
the Arklink protocol.
Earthquake records: For the Pyrenees, we
have already collected about 10000 wave-
forms on ∼110 seismic stations for ∼700
earthquakes which occured between 2000
and 2010 with a local magnitude ranging
from 2 to 5 (Calvet et al. 2013). This
dataset will be complemented using cat-

alogues from the European Mediterranean Seismological Centre (CSEM) or from national earthquake monitor-
ing services. We will first collect earthquake records with a local magnitude greater than 3 and an epicentral
distance smaller than 250 km. Selected records will start 30 seconds before the origin time of the earthquake
with total duration 240 seconds. In order to improve the data coverage, we will add Lg records of larger-
magnitude events (magnitude greater than 5.0) with epicentral distance ranging from 600km to 1000km and
total duration about 800s. Based on the number of seismic stations available through the EIDA portal (> 3000),
we anticipate that more than 500000 waveforms can be collected. All the waveforms will be deconvolved from
the station response, and acceleration records will be integrated to get the three components of velocity. Next,
seismograms will be filtered in five frequency bands: 1-2 Hz, 2-4 Hz, 4-8 Hz, 8- 16 Hz and 16-32 Hz (the last
band will depend on the sampling rate of the records). Amplitude are then squared to obtain the coda energy
envelope to be analyzed.

Noise records: Noise correlations will be used to study the attenuation of the european crust at lower
frequency (typically 0.02-0.3 Hz), and will thus provide complementary information. The data processing will
be adapted depending on the results of Task 3, but we can already present a general outline here. We will
collect two years of continuous noise records at all available european broadband stations during the period
2013-2014 through the EIDA portal (∼400 broadband stations) as well temporary stations deployed during
the CIFALPS experiment.10 Cross-correlations will be computed between all ∼100000 pairs of stations day
per day and averaged over two years. Noise records are known to be non-stationary. To address this issue,
we will build two sets of correlations: (1) Standard correlations obtained without applying any processing to
the noise records other than a quality control which consists in removing all segments of data that contain
earthquake, glitches or others kinds of high amplitude transients. (2) 1-bit correlations : in this case data are
filtered in narrow frequency bands and their sign calculated before computing the correlations. Although this
is completely counter-intuitive, it has been shown theoretically and numerically that the relative amplitude
of correlations computed in this way is preserved under broad assumptions (Cupillard and Capdeville 2010;

10CIFALPS is a dense seismic profile of 46 stations with an interstation spacing of 5 to 10 km deployed during 18 month from
Bollène to the Po Plain.
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Cupillard et al. 2011). All computations will be done at the computing center of the University of Grenoble
using highly optimized codes developed by Albanne Lecointre and Xavier Briand in the framework of the ERC
project Whisper.

Geophysical and geological interpretation of the results: The crustal structure of Western and Central
Europe results from various lithospheric deformation episodes which have overprinted the Proterozoic East-
European Craton and the Caledonian and variscan crustal domains since the late Paleozoic Age. Many dif-
ferent tectonic units have been identified: caledonian, variscan and alpine orogens, fault systems, magmatic
provinces, mesozoic and cenozoic rifts, active volcanoes, subduction zones, deep sedimentary basins (Ziegler
and Dèzes 2006), which are not systematically marked in the seismic velocity structure. High-resolution maps
of absorption and scattering properties have the potential to reveal specific trends and systematic correlations
between velocities and attenuation properties, thereby allowing a better investigation of the relation between
seismic properties, geology and geodynamics. Furthermore, the frequency dependence of the absorption prop-
erties may allow us to pinpoint specific dissipation mechanisms, as described in the rock physics literature (e.g.
Mavko et al. 2009, for a review). In the last six months of the project we plan to make a detailed comparison of
the attenuation structure of Europe with available seismic velocity tomographies, gravity anomaly maps (dis-
tributed by the International Gravimetric Bureau - http://bgi.omp.obs-mip.fr), geological features, earthquake
distribution, past tectonic activity and other available geophysical observations (as for example heat flux mea-
surements distributed by the International Heat Flux Commission - http://www.heatflow.und.edu). The result
of this comparison will allow us to discuss the origin of the small-scale heterogeneities in the crust and the em-
placement/circulation of fluids in connexion with crustal processes. Particular attention will be paid to tectonic
units where high-resolution velocity models have been developed (Pyrenees, Western Alps, Italian volcanoes),
as well as major faults (as for example the North-Anatolian Fault system).

2.5.2 Small-scale application: the Argostoli basin

During the last four decades, the effects of topography and geological geometry of sedimentary basin on seismic
ground motion have been the topic of many instrumental and numerical investigations. The velocity structure
of sedimentary basins is usually rather well constrained but the high-frequency attenuation and the relative
contributions of scattering and absorption are still undetermined. Yet, attenuation has a huge impact on the
strong motion amplitude and duration which has to be considered in seismic hazard assessment. Nowadays,
numerical facilities allow for high-frequency simulations of strong motions (see Task 1) including small-scale
heterogeneities and viscoelastic effects. In this project, we propose to provide a high-frequency attenuation
model for the Argostoli basin, which has been well instrumented in the framework of the FP7 2010-2014
European Project NERA. We believe that this model will be valorized through the SEISM Institute program
SINAPS (http://www.institut-seism.fr/projets/sinaps) and will shed light on the variability of ground motions
in the basin.

Data collection: Argostoli is a basin located in a small alluvial valley on Cephalonia Island, the most seis-
mically active region in Greece. Argostoli and the surrounding villages were completely destroyed by an
earthquake of magnitude 7.2 in August 1953. The Argostoli network consists of 64 broad-band stations which
have been deployed from September 2011 to April 2012 (see figure 8). This network is organized around
two profiles, respectively parallel and perpendicular to the major axis of the valley. The profiles are supple-
mented with two dense arrays. Array A is located near the south-western edge of the valley made of alluvial
deposits, and consists of 21 broadband stations with inter-station spacing ranging from 5m to 160m. Array B
is composed of 10 short-period stations located at the north-eastern edge of the valley. The two profiles are
deployed across three distinct geolocial units: marine deposits from the pliocene (west), alluvial deposits from
the holocene (center) and carbonate rocks (east) from the triassic. Geophysical (passive and active surface
wave measurements, H/V measurements) and geological surveys have been already performed to constrain the
geometry of the basin and the velocity structure beneath the seismic profile. In this project, we propose to
supplement this model with attenuation measurements at high frequency. We will take advantage of the high
density of stations (typically separated by less than one wavelength) to investigate variations of scattering and
absorption properties among the three main geolocial units.

461 local events with a magnitude smaller than 5.0 have been already recorded at the Argostoli seismic
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network within 80 km epicentral distance. These events have been relocated in the framework of the european
project NERA and most of them occur to the north-east of Argostoli. The dataset will be available in 2015
through the EIDA portal. About 6 months of continuous noise records are available at all stations. We will
compute the correlations of daily noise records between all station pairs in the 0.1-20 Hz frequency band, the
inters-tation distance varying between a few meters to 2 km.

Figure 8 Map of the seismological network deployed at Argostoli
(courtesy A. Imtiaz, ISTerre)

Earthquake records analysis In the
case of the Argostoli basin, most of our
efforts will be dedicated to the analysis of
noise records. Nevertheless, depending on
the results of task 3, we may have to an-
alyze earthquake records as a back-up so-
lution. In a first step will derive a regional
model for the Cephalonia Island (absorp-
tion, scattering and heterogeneity spectra)
from the analysis of local and regional
earthquakes, following the methodology
established during Task 4. To correct for
site effects which may be prominent in Ar-
gostoli, we will employ the coda normal-
ization technique which has proven very
efficient (Yoshimoto et al. 1993). Clearly,
the network geometry is not optimal to an-
alyze data from distant earthquakes. Nev-
ertheless we may try to exploit the high

sensitivity of coda waves in the vicinity of the station. To do so, we have to adapt the tomographic technique.
The natural idea that comes to mind is to use differential measurements, i.e., for each earthquake, take the
difference between the intensity measured at two stations located on different geological units. In this way,
we hope to remove the sensitivity to the attenuation structure in the source region. Using the linearity of our
formulation, the sensitivity kernels for these type of measurements are readily obtained and only minor changes
need to be brought to the inversion procedure. Hopefully, this differential approach may allow us to retrieve
local changes in the scattering/absorption structure across the basin.

Noise records analysis Using arrays A and B (see Figure 8), we will perform a preliminary analysis of
the noise directivity to estimate the spatial distribution of noise sources with respect to the Argostoli seismic
network. Based on this analysis, we will be able to adapt the sensitivity functions for scattering/absorption
to the distribution of noise sources. Regional estimates of the scattering properties which are required to
evaluate the sensitivity functions of noise cross-correlation functions will be provided by independent analysis
of earthquake data (see previous paragraph for details). Using the methodology developed in the framework
of Task 4, the spatial variations of the coda of noise correlations will be inverted to retrieve spatial variations
of scattering/absorption properties. For stations separated by typically more than 500m, cross-correlations will
be used. These measurements may be complemented with auto-correlations to increase the sensitivity to the
local structure. In addition to the analysis of the coda of noise cross-correlations, we also note that it should
be relatively straightforward to map the lateral and depth variations of the velocity in the basin using Rayleigh
wave dispersion. The combination of both type of measurements (velocity+ attenuation) will facilitate the
geological interpretation of the results and may also provide a complete 3-D model as an input for realistic
strong ground motion simulations.

2.6 Task 6: Sharing and dissemination of the results
Deliverables/Milestones: (i) Website of the project. (ii) Newsletter. (iii) Data bank of numerical simulations.
(iv) Restitution workshop.
Members involved: F. De Martin (BRGM) in collaboration with the PC.

Sharing and dissemination will take place at different levels: (i) To facilitate data sharing between the
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partners during the project; (ii) To ensure visibility towards both the scientific communities and the general
public; (iii) To share with the international community of seismologists the catalogue of numerical simulations
together with the appropriate tools to manipulate data.

2.6.1 Data sharing between the partners

During the project, data sharing between the different local computing centers of the partners will be done
through the Integrated Rule-Oriented Data System (iRODS, http://irods.org). iRODS is an open source data
management software used worldwide by research organizations and government agencies. It enables secure
collaboration so that users can log in to their home grid to access data hosted on other partners’ remote grid.
Thanks to iRODS’ metadata catalog that describes every file, directory, and storage resource in the data grid, the
partners will efficiently share the raw results of their numerical simulations. Numerical simulations computed
on national computing centers (GENCI) will be first transferred on ISTerre or BRGM local computing centers
and then catalogued into their iRODS’ home grid.

After post-processing and cleaning the raw results, they will be gathered and stored in a ready-to-use and
secured catalogue at DataBRGM (https://data.brgm.fr). DataBRGM, designed by the BRGM’s IT department
over the past years, will ensure the sustainability of data created along the project. It is an operational web
application created to allow BRGM researchers to preserve scientific data. This user-friendly web application
allows each user to log in to a secured workspace where he can transfer, describe and manage data. Trans-
fers can be done by drag&drop, upload to temporary FTP folder (for large sized files) or retrieval of distant
data. The description of data is achieved through a form where metadata are defined (e.g., title, date, a short
description, language and data producer, geographical information, keywords, etc.). For data management, the
workspace allows the user to create, delete and duplicate data set. Each data uploaded in the application gets a
permalink accessible through the Internet so that end-users can download it. This catalog of data could be a first
step to build (after the end of the project) a dedicated numerical simulation database managed by a database
management systems (e.g., MySQL).

2.6.2 Visibility towards the scientific community and outreach activities.

A public website of the project (e.g., www.anr-ssam.fr) will be set up and maintained by the partners. The tem-
plate of this website will be based on the following ones proposed by BRGM IT department: http://spicy.brgm.fr/
or http://www.ultimateco2.eu/. The website will present the consortium and summarize the objectives of the
project. Important deliverables such as scientific articles, proceedings, computer codes, attenuation maps,
posters or presentations will be made publicly available. Beyond the scientific dissemination, outreach activi-
ties are planned such as the publication of newsletters (1 per year) and popularized articles. This website will
also be linked to other websites devoted to seismic tomography.

2.6.3 Catalogue sharing with the seismological community

At the end of the project, all the partners are willing to widely distribute the results of their numerical sim-
ulations so that the international seismological community can reuse them for research purposes. To do so,
we will deliver a catalogue of numerical simulations together with the tools developed during the project to
post-process the data. The tools developed will allow end-users to request specific data (by metadata input) and
to post-process them.

Budget justification for each partner
IRAP

• Staff. Ph.D. student (36 months). Implementation of scattering/absorption tomography and application
to the european crust (Task 4+5). Cost: 34 × 3 = 102kAC

• Staff. Master student (then Ph.D student), 6 months. Numerical validation of sensitivity kernels (Task
4): 0.55 × 6 = 3.3kAC

• Equipment. Disks for local storage of earthquake and noise data (2.5kAC) + workstation (3kAC) + laptop
for the Ph.D student (1.5kAC) : 7kAC

• Operating costs, missions, and dissemination.
Coordination meeting: we plan 1 meeting at BRGM and 1 meeting at IsTerre with 2 participants from
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IRAP per meeting. Cost: 2 × 2 × 0.6 = 2.4kAC
Dissemination of results at international conferences (AGU, EGU): 2.8 kE per Conference.
We plan 2 conferences for the Ph.D student, L. Margerin and M. Calvet, 1 for M. Bystricky.
Total: 7 × 2.8 = 19.6kAC.
For the dissemination of scientific results, preference will be given to journals that are free of charge.
We nevertheless anticipate the possibility to publish in high impact factor journals. Publication fees:
2 × 2 = 4kAC.
Software (Mathematica): 0.6kE per year: 2.4kAC

• Total aid requested (excluding operating costs) 102 + 3.3 + 7 + 2.4 + 19.6 + 4 + 2.4 = 140.7kAC

ISTerre

• Staff. Ph.D Student, 36 months. Noise sensitivity kernels and tomography of the Argostoli basin (Task
3+5). Cost: 30804AC × 3 = 92.412kAC

• Staff. Master student (then Ph.D student), 5 months. Sensitivity of the coda of noise cross-correlation
functions to the distribution of noise sources (Task 3). Cost: 2.772kAC.

• Staff. Master student, 5 months. Development of a software suite for distributed processing of distributed
seismic data (Task 1+3+6). Cost: 2.772kAC.

• Equipment Personal computer for the Ph.D student: 1.5kAC.
• Operating costs, missions and dissemination. Networking activity: we plan 3 meetings during the

project. They will be organized in Toulouse to cut down the costs. Approximate costs per participant:
1flight (150AC) + 1 per diem (250AC) = 400AC. 3 participants (E. Chaljub, L. Stehly, Master student/Ph.D
Student): 3 × 0.4 × 3 = 3.6kAC.
Dissemination of results at international conferences (AGU, EGU): 2.5 kAC per conference. We plan 3
conferences for the Ph.D student, 2 for L. Stehly and 2 for E. Chaljub. Total: 7 × 2.5 = 17.5kAC.
Operational fees for the calculations and storage on the local HPC resources: 6.0kAC.
University management fees (4%): 5.062kAC.

• Total aid requested. 92.412 + 2 × 2.772 + 1.5 + 3.6 + 17.5 + 6.0 + 5.062 = 131.618kAC.

BRGM

• Staff. Information Technology Research Engineer, 4 months. Creation of a catalogue and a database of
numerical simulations. Cost: 30.508kAC

• Operating costs, missions, and dissemination.
Creation of a website dedicated to the project by BRGM staff: 3.498kAC.
Organisation of a one day restitution workshop (conference center rental fee; food and drink for about
100 invited scholars). Cost: 2kAC.
Missions in Toulouse and Grenoble for networking activities (2 participants at 3 meetings). Total: 2×3×
[train (200AC) + per diem (150AC)] = 2.1kAC
BRGM management fees: 1.524kAC

• Total aid requested: 30.508 + 3.498 + 2.1 + 2 + 1.524 = 39.631kAC

Access to national computer centers (GENCI): As requested by ANR, a specific proposal will be submitted
to GENCI through the dedicated web interface (http://www.edari.fr) in spring 2016. We will request 5 millions
hours single CPU Time per year on the massively parallel computer CURIE (or an equivalent super-computer),
for two years.

Description of the consortium
The research team brings together experts in numerical methods and high-performance computing, theory
and processing of random signals, wave multiple scattering and inverse problems. The first two years of the
project will be devoted to the development of a synthetic noise and coda waveform data bank. The large-scale
numerical simulations will be performed at national computer centers (TGIR GENCI) and will be supervised by
E. Chaljub (ISTERRE, UJF, Grenoble). E. Chaljub is a seismologist and applied mathematician who has made
key contributions to the development and applications of the popular and versatile spectral element method
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(SEM) from local hazard studies to global seismology. He has conducted extensive benchmarks of numerical
methods in the framework of the european projects ESG2006 and E2VP. From this experience, he has acquired
the firm conviction that numerical simulations should be cross-validated by researchers using different computer
codes, even if based on the same numerical technique. For this reason, E. Chaljub will team up with F. de
Martin, who is a junior research engineer at BRGM (Orléans). F. de Martin is an expert in numerical methods
applied to seismic hazard assessment and has developed his own implementation of SEM. In collaboration with
E. Chaljub and the BRGM Information System experts, he will supervise the computer science engineer in
charge of defining the metadata format and of building the waveform catalogue.

The analysis of synthetic noise data will be conducted by L. Stehly (ISTERRE, UJF, Grenoble) and a PhD
student to be recruited 6 months after the beginning of the project, to ensure that the construction of the data
bank has matured. L. Stehly has made several pioneering contributions to the field of ambient noise seismology.
He introduced the concept of iterated correlations, which allowed him to demonstrate the scattering origin of
the coda of noise-based GF. He clarified the temporal and spatial variations of noise sources and documented
the thickening of the crust under the western alps using ambient noise tomography. His recent focus has been on
the application of advanced signal processing methods to improve the performance of seismic interferometry.
In collaboration with E. Chaljub, he will supervise the PhD student in charge of extending the concept of
sensitivity functions to the coda of ambient noise correlations, with applications to the absorption and scattering
tomography of the Argostoli basin.

The Ph.D student in charge of the analysis of the coda of earthquake data, the development of the linearized
tomography, and the applications to Western Europe will be recruited at IRAP (Toulouse) 1.5yr after the begin-
ning of the project, to ensure that most of the theoretical and numerical tools are ready. He will be supervised by
M. Calvet (IRAP, UPS, Toulouse) who is a seismologist with a strong background in seismic tomography and
wave scattering. She has developed travel-time sensitivity kernels for the imaging of heterogeneous anisotropic
media with application to the structure of the inner core. Using dense seismological data from the Pyrenees,
she has put in evidence fine-scale spatial variations of scattering and absorption properties along the mountain
range. These observations have motivated for a large part the theoretical development of sensitivity functions.
Interpretation of the results of scattering/absorption tomography in the light of geophysical and rock physics
data will be performed by M. Bystricky, who has a broad experience in experimental rheology and mineral
physics.

L. Margerin (CNRS researcher, 44 y.o.) is the project coordinator and a seismologist with a strong expertise
in seismic wave scattering. He is at the origin of the scattering/absorption sensitivity functions, and will extend
this theory to 3-D anisotropically scattering media in the first 2 y. of the project. With M. Calvet, he will
supervise the Ph.D student in Toulouse and will conceive the input heterogeneity models for the numerical
simulations with E. Chaljub. L. Margerin has developed the first numerical Monte-Carlo solutions of radiative
transfer equations for coupled P and S seismic waves in 3-D. He introduced the concept of energy leakage of
coda waves and uncovered equipartition and weak localization of seismic waves, with application to site effect
modeling, and the heterogeneity of volcanoes. He developed the first multiple-scattering model of precursory
arrivals at the global scale and showed the existence of very weak small-scale fluctuations in the lower mantle.
With his colleague M. Calvet, he developed a technique to calculate the scattering attenuation in multi-phase
media which led to the discovery of inner core translation. His works (47 peer-reviewed articles, 7 book
chapters) have been published in a variety of leading journals (including Phys. Rev. Lett. and Science)
covering a broad range of disciplines11. In 2007, he received the Schlumberger Medal of the French Academy
of Sciences for his contributions to seismic scattering.

3 Valorisation, protection and exploitation of results, global impact of the pro-
posal

Valorisation, protection and exploitation of the results
Scientific dissemination will be carried out by taking part in international conferences and publishing peer-
reviewed articles in scientific journals. At least one article to be published in a high impact factor journal is

11Most of the publications are available at: https://omp.academia.edu/LudovicMargerin
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targeted. In accordance with the ANR commitment about the diffusion, the sharing and the archiving of the
scientific production financed by public funds (see “ANR guide des déposants”), the pre-print version or the
scientific production itself (with due respect for the publishers copyright policies and self-archiving) will be
uploaded on the open archive website HAL (http://hal.archives-ouvertes.fr) or on a local institutional archive
such as HAL-BRGM (https://hal-brgm.archives-ouvertes.fr/). During international meetings, the PC plans to
co-organize special sessions dedicated to the problem of estimating attenuation across sub-fields of seismology
(seismic tomography, seismic hazard assessment, and volcano-seismology). He has had previous experience
in organizing such interdisciplinary events through his synergistic activities as Deputy Director of the CNRS
research Group Mesoimage12.

The catalogue of synthetic seismograms produced by the spectral-element method codes specfem (under
GNU public license) and efispec (under CeCILL-V2/GNU-GPL-V3 licenses) will be disseminated under an
open data license (e.g., Open Database Commons, Open Database License or “Licence Ouverte ETALAB”,
etc.). This license is to be discussed among the partners during coordination meetings. The tools for exploiting
the catalogue, as well as the numerical codes to calculate the sensitivity kernels of multiply-scattered seismic
waves in 2-D and 3-D will be in open access under the CeCILL and/or GNU public licenses mentioned above.
Through this project, we are determined to share our catalogue and tools to enable transparent, reproducible
and transdisciplinary research.

The final products of our project are frequency-dependent, 3-D models of absorption and scattering at
two different scales: the european crust and the sedimentary basin of Argostoli. These models will be freely
downloadable on the website of the project, and will complement the velocity model of Argostoli which is
currently developed in the framework of the Sinaps project, as well as the crustal velocity model EPcrust.

A final workshop (one or two days event) will be organized to disseminate the project findings to targeted
audiences (scientists, authorities and policy makers in the fields of seismology, geophysical exploration and
risk assessment). We intend to host approximately 100 scientists to debate the results. The presentation of
the catalogue of numerical simulations and of the tools to exploit the data will be presented as well. The
future audience will be listed at the beginning of the project and maintained informed about the advancement
by semestrial newsletters. In addition to the support requested from ANR (2kAC), the workshop can be co-
sponsored by the GDR “MesoImage” if extra-expenses are needed.

Since most participants of the project are affiliated with local Universities, they will be able to integrate the
outputs of the project into their own classes. We are thinking in particular of the Erasmus Mondus Master at
the University of Grenoble, which attracts students from all around the globe to study seismology and seismic
hazard.

Global impact
In terms of strategy, the Risks and Prevention Department of BRGM as well as other public institutes or pri-
vate companies involved in seismic risk, would benefit from the frequency-dependent attenuation tomography
of Europe to produce future seismic hazard maps13. Indeed, it is widely recognized that the main cause for
the variability of the ground motion amplitude at the regional scale is the attenuation structure of the crust.
Incorporating 2-D or even 3-D spatial variation of attenuation into ground motion prediction equations should
considerably reduce the epistemic uncertainty in seismic risk studies. At regional or local scales, the experi-
ence gained during the small-scale application (Argostoli basin) by implementing heterogeneous media into the
spectral-element software efispec (currently used for advanced seismic microzoning studies in complex geo-
logical media) would help quantify the uncertainties associated with numerical predictions of ground motions.

Indirectly, the findings of the SSAM project would impact the results of the framework defined in the part-
nership agreement signed in June 2014 for five years between BRGM and the “ Caisse centrale de réassurance”
(CCR). In the domain of seismic risk, the objective of this partnership is to assess accurate financial costs of
potential damages by improving the knowledge on seismic hazard and the vulnerability of buildings in the
home country and overseas territory.

Other operational applications may be envisaged. With the rapid development and densification of seis-
12http://mesoimage.grenoble.cnrs.fr/
13The SHARE program of EU is a notable example
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mic networks through the european initiative EPOS14, more and more solid earth observatories are seeking to
develop rapid inversions of source size and mechanism, as well as real-time predictions of peak ground accel-
erations caused by major seismic events. Again, we emphasize that a better knowledge of attenuation may be
profitable to both aspects. At the regional scale, determination of the moment magnitude largely depends on a
good estimation of attenuation, which controls the corner frequency of the source spectrum.

By making our numerical codes available to the seismological community, we expect an efficient and rapid
transfer of our methodological developments towards allied fields such as volcano-seismology and exploration
geophysics, where small-scale heterogeneities play a prominent role. The measurement of frequency-dependent
absorption properties of geophysical media will bring novel independent constraints on the physical state of the
medium, thereby facilitating the localization and characterization of melts and interstitial fluids.

To our knowledge, a catalogue of synthetic Green’s functions calculated in heterogeneous media which are
rich in small scales is a completely original product that could benefit to other imaging techniques based on
multiply-scattered waves. The development of sensitivity functions for coda wave interferometry (CWI) is one
possible example. In this technique, one exploits temporal (instead of spatial) changes of the coda to detect
possible variations of medium properties. We anticipate that the sensitivity functions that we develop in the
framework of scattering/absorption tomography could be adapted to CWI to improve on the spatial resolution
of current monitoring techniques.

While a lot of efforts are directed towards seismic velocity tomography, the final images still lack a repre-
sentation of small-scale heterogeneities, which are way below the current resolution of the best models. Inde-
pendent of societal applications, the added value of our research is to retrieve novel information -scattering and
absorption- from largely unexploited seismic signals -coda waves-. We are convinced that high-resolution at-
tenuation models used in conjunction with more traditional velocity tomography will facilitate the identification
of the geodynamical processes at the origin of the present-day structure of the crust.
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