
 

 
 

THÈSE
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
ALPES
Spécialité : Automatique

Arrêté ministériel : 7 août 2006

Présentée par
Nicolas MARTIN

Thèse dirigée par Carlos CANUDAS-DE-WIT et
codirigée par Paolo FRASCA

préparée au sein du
GIPSA-lab
dans l’école doctorale Electronique Electrotechnique
Automatique & Traitement du signal (EEATS)

Network partitioning algorithms with
scale-free objective

Thèse soutenue publiquement le 19 Février 2020,
devant le jury composé de:

Myriam PREISSMANN
Directrice de recherche, G-SCOP, Présidente du jury
Pierre-Alexandre BLIMAN
Directeur de recherche, INRIA, Rapporteur
Christophe CRESPELLE
Maitre de conférence, Université Claude Bernard Lyon 1, Rapporteur
Jacquelien Scherpen
Professor, University of Groningen, Examinatrice
Paolo FRASCA
Chargé de recherche, GIPSA-lab, Co-directeur de thèse





UNIVERSITÉ DE GRENOBLE ALPES

EEATS
Electronique Electrotechnique Automatique & Traitement du signal

T H È S E
pour obtenir le titre de

docteur en sciences

de l’Université de Grenoble Alpes
Mention : Automatique

Présentée et soutenue par

Nicolas MARTIN

Network partitioning algorithms with scale-free objective

Thèse dirigée par Carlos CANUDAS-DE-WIT

GIPSA-lab
soutenue le 19/02/2020

Jury :

Rapporteurs : Pierre-Alexandre BLIMAN - Directeur de recherche, INRIA
Christophe CRESPELLE - Maitre de conférence, Université Claude Bernard Lyon 1

Co-directeur : Paolo FRASCA - Chargé de recherche, GIPSA-lab
Présidente : Myriam PREISSMANN - Directrice de recherche, G-SCOP
Examinatrice : Jacquelien SCHERPEN - Professor, University of Groningen





Résumé

L’analyse, l’estimation et le contrôle de systèmes dynamiques évoluant sur des réseaux se
confronte à des problèmes de complexité lorsque le système considéré devient trop grand.
Pour faire face à ces problèmes d’échelles des méthodes de réduction de modèle sont utilisées.
Cette thèse s’intéresse particulièrement à une méthode de réduction de réseaux en particulier
: le partitionnement. Cette méthode consiste à trouver une partition des noeuds du réseaux
induisant un réseau de dimension réduite ayant certaines caractéristiques. Afin d’utiliser le
réseau réduit comme modèle du système initial, toute méthode de réduction vise à préserver
certaines propriétés du réseaux initial. La particularité de notre travail est d’imposer en plus
au réseau réduit certaines propriétés de notre choix. Cette approche permet de bénéficier des
propriétés du réseau réduit pour l’application qui en sera faite par la suite en particulier l’
observation, l’estimation ou le contrôle du système. En particulier une propriété d’intérêt est
appelée scale-free1. Un réseau est dit scale-free si il possède quelques noeuds, appelés hub,
avec un très grand nombre de connexions mais que la plupart de ces noeuds ont très peu de
connexions. Précisément un réseau est dit scale-free si sa distribution de degrés suit une loi de
puissance. Cette thèse s’articule autour de cette problématique et est composée de six parties
principales détaillés ci-dessous: Tout d’abord une introduction permet de définir un cadre
formel à ce travail, de le recontextualiser et d’apporter certains préliminaires sur les propriétés
du réseaux que l’on veut préserver ou imposer et notamment la propriété scale-free. Dans le
premier chapitre nous étudions l’impact d’une contrainte de connexité dans un problème de
partitionnement. Le deuxième chapitre explore le problème de partitionnement assurant que
le réseau réduit soit scale-free. Dans le troisième chapitre nous proposons d’imposer au réseau
réduit une certaine propriété assurant que l’évolution du système peut être reconstruite dans
une certaine mesure. Enfin les quatrième et cinquième chapitres sont des applications des
résultats précédents respectivement au réseau de trafic et au réseau d’épidémie. La thèse
se termine sur une conclusion revenant sur les principales contributions et offre quelques
perspectives.

Le premier chapitre concerne un problème que nous avons dénommé le prix de la
connexité. Lorsqu’on considère un problème de partitionnement de réseau où la meilleur
partition doit être trouvée afin d’optimiser un certain objectif il est possible d’y ajouter une
contrainte de connexité. Dans ce cas, les noeuds au sein d’une même partie de la partition
doivent être connectée entre eux. Cette contrainte est pertinente par exemple lorsqu’on
considère un réseau de trafic (ou n’importe quel réseau avec une géographie sous-jacente) et
que l’on souhaite que chaque partie de la partition corresponde à une zone géographique.
Ajouter cette contrainte va nécessairement diminuer la qualité de la réduction au regard de
l’objectif fixé. La dégradation de la solution est ce que l’on appelle le prix de la connexité.
Nous proposons ensuite d’estimer sa valeur pour un réseau donné et pour n’importe quel

1Certains ouvrages en français parlent d’invariance d’échelle mais le terme anglais est le plus souvent
conservé.
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problème de partitionnement. Pour ce faire, on compare la taille des ensembles de recherche
du problème et du problème contraint qui sont respectivement l’ensemble des partitions
du réseau et l’ensemble des partitions connexes du réseaux. Le rapport entre la cardinal
de ces deux ensembles est appelé rapport de connexité. La suite du chapitre vise à estimer
cette valeur et en particulier nous obtenons une borne supérieure dans le cas de réseau
Erdős–Rényi. Finalement, nous montrons expérimentalement que cette borne est très proche
de la vraie valeur du rapport de connexité calculée expérimentalement.

Le second chapitre pose le problème de partitionnement de réseau induisant une struc-
ture scale-free. Comme dit précédemment, il est nécessaire de préserver également des
caractéristiques du réseau initiale. Étant donné un réseau initial, nous proposons donc
un méta-problème consistant à trouver la meilleure partition en terme de scale-free sous
les contraintes de préservations de propriété. Nous proposons ensuite un méta-algorithme
donnant le squelette d’une méthode pour obtenir une solution suboptimal à ce type de
problème. Nous résolvons ensuite un premier cas simple de ce type de problème pour
des raisons essentiellement didactiques. Puis nous nous intéressons un problème plus
complexe préservant certaines propriétés dynamiques du réseau initial à savoir: la conserva-
tion de masse, la centralité de vecteur propre et la masse totale du système. Des résultats
mathématiques sont établis permettant d’établir un algorithme sub-optimal pour ce problème.

Le troisième chapitre s’intéresse à la possibilité de reconstruire l’évolution d’un état
agrégé d’un réseau. En considérant un système linéaire invariant dans le temps, on défini
la notion de détectabilité moyenne comme la possibilité de pouvoir reconstruire la valeur
moyenne de certaines zones du réseau à partir de quelques mesures. Le problème qui nous
intéresse est donc de trouver une partition du réseau entre une partie observée et d’autres
parties non-observées assurant la détectabilité moyenne. Un premier résultat montre que
pour un type de système particulier une condition suffisante à la détectabilité est la régularité
des parties non-observées ce qui signifie qu’au sein de chacune de ces parties les noeuds
doivent tous avoir le même degrés sortant. Un algorithme est ensuite proposé pour trouver
une telle partition. Cependant ce problème de détection de sous-graphes réguliers est
fondamentalement complexe entre autre parce que c’est un problème NP, que les meilleurs
solutions sont souvent des réseaux trop petits et que les hypothèses sur le système de départ
sont très contraignante. Ceci étant dit, nous proposons ensuite une version relaxée du
problème où l’on ne cherche plus la régularité exacte du sous-graphe mais une certaine forme
de quasi-régularité. En effet, nous montrons que l’erreur de reconstruction de la moyenne de
chaque sous-graphe peut être borné par une fonction de l’erreur de la régularité. A partir de ce
résultat nous proposons un algorithme fournissant une partition en sous-graphe quasi-régulier.

Les deux derniers chapitres sont des applications des résultats théoriques présentés dans les
trois premiers chapitres. Le quatrième chapitre s’intéresse au trafic routier de l’agglomération
grenobloise. Nous montrons qu’à partir du grand réseau initial (environ 19000 noeuds), les
résultats du chapitre deux permettent d’obtenir un réseau réduit avec une structure scale-free.
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Des simulations montrent ensuite qu’il est possible d’utiliser ce réseau réduit pour reconstituer
efficacement la dynamique du système initial. Le cinquième chapitre propose deux applica-
tions en lien avec l’épidémiologie, la science qui étudie la propagation de maladie dans une
population et que nous présentons dans une première partie du chapitre. La première applica-
tion s’intéresse à la question de stratégie de vaccination. Étant donnés un réseau représentant
une population et un nombre limité de vaccin, on cherche les individus les plus intéressant à
vacciner (et donc retirer du réseau) afin d’enrayer la propagation de la maladie. Des résultats
bien connus pour les réseau scale-free propose de vacciner les hubs c’est à dire les individus
fortement connectés. Pour les raisons plus homogènes, nous proposons d’utiliser l’algorithme
du deuxième chapitre pour obtenir un réseau réduit scale-free et ainsi identifié certaines zone
ayant un rôle de hub au sein du réseau initiale. Cette stratégie est comparé à d’autres stratégies
et nous montrons qu’elle est jusqu’à deux fois plus efficace pour une large plage de paramètre
du modèle. Enfin la dernière application considère la propagation d’une maladie au sein
d’un large réseau d’individu recouvrant le territoire francais. En utilisant les résultats du
troisième chapitre, on montre qu’il est possible de diviser la population en plusieurs zones
dont l’évolution moyenne peut être estimée efficacement à partir de l’observation d’une petite
partie des individus.
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Introduction

L’art de donner le même nom à des
choses différentes

Henri Poincaré

0.1 Motivation to network reduction

0.1.1 The world as a network

A network is a system composed of elements interacting together. This definition is not precise
as the terms system, elements and interacting are in a certain way blurry. However, it seems
to be a good definition and if the terms are not clear it is because networks include a very
vast range of systems. Networks are everywhere. This statement is so used in literature that
it has almost lost its sense, but, literally, networks are everywhere:
Humans are connected within societies forming networks where the links may be friendships,
family ties or work relationships. The brains of these humans are composed of billions of
connected neurons, and each of these neurons are composed by molecules interacting together
via chemical reactions. Besides the brain, the human body contains several other networks
such as circulatory, nervous and lymphatic systems. Thanks to their brains, humans build
road networks, electrical networks and telecommunication networks. In addition to humanity,
animal interactions and physical phenomenon can also be interpreted as networks. Networks
are everywhere, inside and around us.

While it includes a large variety of different systems, networks can be modeled and studied

(a) The brain network is composed of bil-
lions of interconnected neurons

(b) The cosmic web describes the distribu-
tion of matter in the universe

Figure 1: From the hidden recesses of our brain to the structure of the space, a large variety
of systems can be viewed as networks.

1



2 Introduction

within a same mathematical formalism. The parenthood of this formalism is often attributed
to the Swiss mathematician Leonard Euler and its problem of the seven bridges of Königsberg
in 1736. This problem asks us to find a route in the city of Königsberg which crosses once
and only each of the seven bridges. While at first view the problem seems far from the
network theory, Euler used mathematics to bring a solution leading to the foundation of the
graph theory3. However, this primary work remained isolated and confined to recreational
mathematics. In 1878, this formalism found an application in chemistry when the English
mathematician J.J. Sylvester introduced the chemicograph. But it is especially during the
twentieth century that network found an application in sociology, with the introduction of
sociogram. In the second part of the twentieth century several models aimed to explain the
recurrent structure found in networks. In particular, Paul Erdős and Alfred Rényi introduced
in 1958 a model bearing their name. This model will be detailed further as it is still commonly
used in network theory. In 1998, Duncan Watts and Steven Strogatz proposed their small-
world model explaining the result of the experiment proposed by the psychologist Stanley
Milgram in 19604. Finally, in 1999 Albert-Lazlo Barabási and Réka Albert introduced the
scale-free model which explains the structure of a large variety of networks. This last model
will be widely used throughout the thesis and extensively presented in Section 0.3. Today,
network theory is ubiquitous in many different areas of research. We give hereafter some
examples of works using this formalism:

Biology and medicine Biology is probably one of the fields which has benefited the most
from the network theory. We can cite for example the protein/protein interaction net-
works which help to empower our knowledge about the biochemical events between
proteins within a cell; the metabolic networks describes more generally all the physical
interactions in a biological system (from a cell to an organism); in a macroscopic point of
view food webs are also represented as networks and help to better understand ecological
interconnections; finally networks are widely used to model the propagation of a disease
within a population. Throughout this thesis, we will precisely present applications in
this last field.

Linguistic and art Semantic networks represent the semantic relations between different
words in a language. They help to better understand the structure of a language, to
implement high-level interfaces on computers or to design efficient translation engines.
Narrative networks link together different concepts of a story which can be fictions,
historic events, or even personal stories. In the same idea, there are networks linking
the characters of fictional universes such as the Marvel Cinematic Universe5, Game of
Thrones6 or the Shakespeare’s tragedies7.

Computer and information science Obviously networks are ubiquitous in computer sci-
3We will say a word further on the difference between graphs and networks
4In this experiment Stanley Milgram aimed to show that any individual is connected to any other through

few intermediates. This groundbreaking work emphasized that the human society is a small-world and is
commonly associated with the idea of the six-degrees of separation.

5See https://studentwork.prattsi.org/infovis/projects/marvel-universe-visualization/
6See https://networkofthrones.wordpress.com/
7See http://www.martingrandjean.ch/network-visualization-shakespeare/

https://studentwork.prattsi.org/infovis/projects/marvel-universe-visualization/
https:// networkofthrones.wordpress.com/
http://www.martingrandjean.ch/ network-visualization-shakespeare/
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ence at different levels. From the physical layer with the design of computer networks
to the application layer with the structure of the internet in which websites are con-
nected via hyperlinks. From the algorithmic point of view, the functioning of a web
engine is also based on network theory. For example, Google uses, among other tools,
the PageRank metric to find the most relevant website within the network. From a
more theoretical point of view, bayesian networks are used in information theory to
understand the relations between different pieces of information.

Sociology As said, sociology is the application which partly encouraged the development of
network theory. Today, the research in this area studies social networks online (Face-
book, Twitter,...) and offline (work, school, friendship), to understand, for example,
how an information spreads in a population or how communities emerge. In criminali-
tics (also named forensic science), network theory is also used to gather information and
detect fraud.

This list is far from exhaustive and aims only to give an overview on the wide range of
applications of network theory. One could have also evoked power distribution networks,
neural networks, applications in climatology, in risk-assessment, in economics and in traffic
modelisation. This last application will be considered and discussed in the thesis. [29] draws
up a vast review of the applications and research areas concerned by network theory. Figure 2
illustrates this variety of utilization.

In particular, a network may be used to represent the evolution of a dynamical system. In
this case a state is associated to any element of the network and equation governs the evolution
of the state of each element in function of the state of its neighborhood. Along this thesis, we
will consider such evolution occurring on networks. We will present further the details of the
dynamical equations in which we are interested.
While the study of networks is abundant, in some instances the size of the network makes it
more challenging to analyze. From this issue flows the question of the reduction of networks
which is the guideline of this work.

0.1.2 Reduction of complexity

Large networks (with thousands of nodes) are common in several fields like transportation,
power grid or biology among others. The Stanford Large Network Dataset [71] lists such large
systems and can give an order of magnitude: Internet peer-to-peer networks have around
104 nodes, traffic networks have around 106 nodes and social networks have between 104

and 107 nodes. At these scales, the analysis of these large networks becomes very costly or
even impossible. This complexity motivates network reduction methods also known as coarse-
graining or summarization methods. Works on the network reduction are profuse (see [77] for
an extensive survey) and the ERC-granted project Scale-Freeback8, in which this thesis takes
place, aims precisely, among other things, to reduce the complexity of large-scale networks.

8See http://scale-freeback.eu/

http://scale-freeback.eu/
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(a) Network of the connection between the
characters of the Game Of Thrones uni-
verse (season 1)

(b) Simplified network of the human
metabolism

(c) The Zachary’s karate club network is
an example of social network commonly
used

(d) Visual representation of a portion
of the Internet structure from the Opte
Project

Figure 2: Use of networks in various research areas.
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The objectives of the network reduction are different depending on the application. However,
the different purposes of network reduction methods have the following form: cutting the
complexity (e.g. volume of data, redundancy, visualization) of a network while preserving some
properties (e.g. topological, dynamical, patterns). The techniques used differ but essentially
there are four categories: partitioning (merging nodes in super-node and/or edges in super-
edges), compression (exploiting redundancy in the patterns of the network) and simplification
(removing unimportant nodes and/or edges). In this thesis, we consider only partitioning
approaches as it is the most common and the most rich method. This terminology, as well
as the approaches, may differ according to the fields of study. This thesis falls in the scope
of a dynamical system vision which aims to reduce networks by preserving a consistency,
in particular, in the dynamical behavior. Precisely, besides the preservation of dynamical
characteristics, our work proposes to endow the reduced network with a particular shape
known as scale-free. The two following sections aims to introduce a variety of network-related
notions, among them the scale-free property, allowing to introduce more formally the objectives
of the thesis.

0.2 Introduction to network theory

This section provides a partial introduction to the network theory and to the notions used
along the thesis and necessary for the formulation of the objective of our work.

0.2.1 Generalities on networks and network partitioning

We introduce formally in this section some generalities and notations related to network and
network partitioning. A network G is a pair (V, E), where V is a set of nodes9 and E is a set
of edges verifying E ⊂ V × V. The graph is said undirected if for all edges (v, w) in E , the
edge (w, v) is also in E , which means that the edges has no direction. In the other case, the
graph is said directed and the direction of the edges matters.
In this thesis, we consider directed10 networks G, represented by the triple (A,V, E) where
A ∈ R|V|×|V| is the adjacency matrix, whose non-zeros values indicate the edges: Ai,j 6= 0

implies (i, j) ∈ E . In particular if the non-zero values of A are different, the graph is said
weighted. In this case, Ai,j = w 6= 0 indicated that a weight w is assigned to the edge (i, j).
We may denote G = ( · ,V, E) if only the structure of G (and not the weights) is relevant. A
visual representation is associated to any network. In such representation, dots represent the
nodes of the network and links between the dots represent the edges. In the case of a directed
network, an arrow is added to the link to represent the direction of the edge and in the case
of a weighted network the weight of each edges may be displayed.
We present now some definitions related to networks.

9While we use the terms of network and node throughout the thesis the notation G and V inherits from
the terms graph and vertex. In the next section we will briefly discuss this terminology

10However, for readability concern we may illustrate some notions with undirected networks.
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Definition 0.1 (Degree)
In general, the degree of a node is the number of connections the node has. When considering
directed network we distinguish indegree and outdegree:

• The indegree of a node v, denoted degin(v), is the number of nodes preceding v (these
nodes are called the predecessors of v) which is:

degin(v) = |{w ∈ V, (w, v) ∈ E}| (1)

where | · | gives the cardinality of a set. The set of predecessors is denoted Nin:

Nin(v) = {w ∈ V, (w, v) ∈ E} (2)

• The outdegree of a node v, denoted degout(v), is the number of nodes following v (these
nodes are called the successors of v) which is:

degin(v) = |{w ∈ V, (v, w) ∈ E}| (3)

The set of successors is denoted Nout:

Nout(v) = {w ∈ V, (v, w) ∈ E} (4)

In the following, when there is no need to precise if we consider indegree or outdegree, we
will use the general term degree.

Definition 0.2 (Degree distribution)
The degree distribution of a network G, denoted by ΠG, is a vector giving the distribution of
the degree over the whole network which is:

ΠG,k = |{v ∈ V, deg(v) = k}|

Figure 3 gives an illustration of the degree distribution of a network.

Definition 0.3 (Network partition)
A partition S = {S1, S2, ..., Sn} of a network is a partition of the set of vertices V which is:⋃

i

Si = V (5)

∀ i, j ∈ [1, n] i 6= j =⇒ Si ∩ Sj = ∅ (6)

Each element Si is named a part11 of the partition S. Let us remark that this definition
does not imply that the nodes inside a part have to be somehow connected. From a partition
of a network, we obtain a new network defined hereafter.

11In the literature, the term cluster is also used. We prefer here part for the consistency with partition and
to avoid the polysemy of cluster.
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v1 v2

v3

v4

v5

(a)

0 1 2 3
0

1

2

3

Degree

N
um

be
r
of

no
de
s

(b)

Figure 3: A network of 5 nodes (a) and the corresponding degree distribution (b): Three
nodes (v2, v3, v5

has degree 1, one node (v4) has degree 2 and one node (v1) has degree 3.

Definition 0.4 (Network coming out of a partition)
Let G0 = ( · ,V0, E0) be a network, let S be a partition of this network. We denote G1 =

( · ,V1, E1) the network coming out the partition S of G0. Which is:

V1 = {1, . . . , |S|}

(i, j) ∈ E1 ⇔ (Si × Sj)
⋂
E0 6= ∅

(7)

If G1 is a network obtained from a partition of G0 we denote G0 � G1 or G0
S
� G1 to

emphasize the partition. Let us remark that since this relation only determines the structure
of the reduced network and not its weights, there is an infinite number of weighted networks
coming out of the partition S of G0.
Finally, we also define a particular type of partition that we will need throughout our devel-
opment: the merging12.

Definition 0.5 (Merging)
A merging is a partition in which only two nodes are merged. Let {1, ..., n} be the set of
vertices, the merging of the vertices v and w is denoted by Sv,w and:

Sv,w ={{1}, {2}, . . . , {v − 1}, {v + 1}, . . .
. . . , {w − 1}, {w + 1}, . . . {n}, {v, w}}

Figure 4 illustrates the notions of partition, merging and network coming out of a partition.

0.2.2 Network properties

This section aims to define a list of network properties that will be used throughout the thesis.
These properties are roughly divided into three parts to help readability. This section is not

12We coined this term and it is not used in the literature
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(a) Example of a partition (b) Network coming out
of the partition

(c) Example of merging (d) Network coming out of
the merging

Figure 4: Illustration of partition and merging

expected to be thoroughly examined at the first read but to be used as a glossary to which
the reader can refer all along the thesis. A particularly interesting property for us is the
scale-freeness and Section 0.3 is fully dedicated to present it.

Remark 0.1 (Terminology). The terms used in this thesis are not always uniquely employed
in the literature, and due to the wide range of areas concerned by the network theory it is
common that several terms coexist for a same concept. We will try to give these different
terms and indicate the one we will use.
First of all, we say a word on the difference between graph and network : basically, these
terms correspond to the same object but with a different connotation following the authors.
Intuitively, graph refers to the mathematical object while network refers to the physical object.
Said otherwise, a network is a graph endowed with a physical model. It is in this sense that
the graph theory and network theory are often divided. For the sake of simplicity, in this
thesis we do not make a real difference between these two terms, and we use mainly the term
network to remain consistent. However in some cases, the term graph may be chosen if it
appeared more natural and it should not preoccupy the reader. In the same way, the couples
of terms node/vertex and edge/arc coexist in the literature and we will mainly use here node
and edge.



0.2. Introduction to network theory 9

Structural properties

In this part, we define notion regarding only the structure and the weights of the network
without considering any dynamics. We first define connectedness, also known as connectivity.
To introduce properly the different notions of connectedness we first introduce the notions of
walk and path.

Definition 0.6 (Walk and path)
A walk is a sequence of edges of the form (vi0 , vi1), (vi1 , vi2), (vi2 , vi3), . . . (vim−1 , vim).
A path is a walk in which all nodes are distinct.
An undirected walk is a sequence of couples of the form (vi0 , vi1), (vi1 , vi2), . . . (vim−1 , vim)

verifying (vik , vik+1
) ∈ E or (vik+1

, vik) ∈ E.
An undirected path is an undirected walk in which all nodes are distinct.

Definition 0.7 (Strongly connected network)
A network is said to be strongly connected if it exists a path from any node to any other node.

Definition 0.8 (Weakly connected network)
A network is said to be weakly connected if it exists a an undirected path from any node to any
other node.

Roughly, a directed network is strongly connected if any node can be connected to any
other node following the edges and it is weakly connected if the network forms an unique
island. If the network is not weakly connected then it is disconnected. Figure 5 illustrates the
three different cases: strongly connected, weakly connected and disconnected.

We now define the characteristics lengths of a network. In general two metrics are referred
as the characteristics lengths: the diameter and the radius. Both aims to measure how much
the nodes are close together. To define these two concepts, we first define eccentricity.

Definition 0.9 (Eccentricity)
In a network, the eccentricity of a node v, denoted εv, is the greatest distance between v and
any other node:

εv = max
w∈V

δ(v, w) (8)

where δ(v, w) is the length of the shortest path between v and w.

Definition 0.10 (Radius)
The radius r is the minimal eccentricity:

r = min
v∈V

εv (9)

Definition 0.11 (Diameter)
The diameter d is the maximal eccentricity:

d = max
v∈V

εv (10)
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v1

v2

v3

v4v5

(a) Strongly connected net-
work: it is possible to go
from any node to any other
node following the edges

v1

v2

v3

v4v5

(b) Weakly connected net-
work: it is not possible to go
from node v3 to any other
node, the network is not
strongly connected. How-
ever, the network forms an
unique island.

v1

v2

v3

v4v5

(c) Disconnected network:
node v5 is not linked to the
rest of the network.

Figure 5: Network connectedness

fig. 5 ε1 ε2 ε3 ε4 ε5 r d

(a) 3 4 4 3 3 3 4

(b) 3 4 +∞ 3 3 3 +∞
(c) +∞ +∞ +∞ +∞ +∞ +∞ +∞

Table 1: Eccentricities, radius and diameters for networks of fig. 5

The diameter is then the longest distance between any two nodes of the graph. The radius
is somehow the distance between the most central node and the node, which is the furthest
from it. Note that if the graph is not strongly connected the diameter is infinite and if it
is disconnected the radius and all the eccentricities are also infinite. Table 1 presents the
eccentricities, radius and diameter for the three networks in fig. 5.

The clustering coefficient measures how much a network tends to form clusters. Different
versions of the clustering coefficient exist. The one we use requires first the computation of
the local clustering coefficient:

Definition 0.12 (Local clustering coefficient)
The local clustering coefficient of a node v, denoted cv is the following quantity:

cv =
|{i, j ∈ Nout(v), (i, j) ∈ E}|

nout(nout − 1)
(11)

where nout = |Nout(v)|

The local clustering coefficient measures the tendency of the successors of a node to be
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connected together.

Definition 0.13 (Cluster coefficient)
The clustering coefficient of a network, denoted C is the average value of the local clustering
coefficients:

C =
1

|V|
∑
v∈V

cv (12)

By considering only few parts of the network we can extract a new network. This refers
to the notion of subgraph defined hereafter.

Definition 0.14 (Subgraph)
Given G0 = ( · ,V0, E0), a subgraph G1 = ( · ,V1, E1) of G0 is a graph verifying

V1 ⊂ V0 (13)

E1 ⊂ E0 (14)

Therefore, a subgraph G1 of a given graph G0 is obtained by considering only a part of
the nodes and edges of G0. An induced subgraph is a specific case of subgraph:

Definition 0.15 (Induced subgraph)
Given G0 = ( · ,V0, E0), the subgraph induced by the subset I ⊂ V0, denoted GI , is the graph
consisting of the nodes in I and all the edges between nodes of I. Therefore, we have GI =

( · , I, EI) with:
EI = (I × I) ∩ E0 (15)

Figure 6 illustrates the difference between the two notions.

Definition 0.16 (Regular network)
A network is said regular if all its nodes have the same degree:

∃ d ∈ N, ∀ v ∈ V, deg(v) = d (16)

d is called the degree of regularity.

When the degree of regularity is equal to 0 the network is said empty (or null) and when
its equal to n − 1, where n is the number of nodes, the network is said complete. Figure 7
illustrates this.

Definition 0.17 (Mass conservation)
A weighted network is said to have the mass conservation property if, for each node, the sum
of the weights coming in equals the sum of the weights coming out:

∀ i ∈ [1, ..., |V|],
|V|∑
j=1

Ai,j =

|V|∑
j=1

Aj,i (17)
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v1

v2

v3

v4v5

(a) Initial graph G0

v1

v2

v3

v4

(b) Subgraph of G0: the
nodes {1, 2, 3, 4} and some
edges between them are con-
sidered

v1

v2

v3

v4

(c) The induced subgraph
G{1,2,3,4} : the nodes
{1, 2, 3, 4} and all edges be-
tween them are considered

Figure 6: Subgraph and induced subgraph

v1

v2

v3

v4v5

(a) An empty network is
regular with a degree of reg-
ularity equal to 0.

v1

v2

v3

v4v5

(b) Regular network both
for indegree and outdegree
with a degree of regularity
equal to 2

v1

v2

v3

v4v5

(c) Network regular for out-
degree (degree of regularity
equal to 1) and not regular
for indegree

Figure 7: Network regularity
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v1
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1
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44

Figure 8: Network with the mass conservation property. For each node the sum of the weights
coming in equal the sum of the weights coming out.

The term flow network is also used for networks having this property. In this thesis, for
such a network we will say that it is mass conserving, it has the mass conservation property
or it is a flow network. Figure 8 illustrates this property.

Definition 0.18 (Total mass)
The total mass of a weighted network, denoted M , is the sum of all the weights in the network:

M =

|V|∑
i=1

|V|∑
j=1

Ai,j (18)

In fig. 8 the total mass is 16.

Dynamical properties of networks : a control systems perspective

This second part presents more specifically notions related to the dynamical evolution of a
network. Through the thesis, we will use linear equations governing the evolution of networks
defined hereafter13. For that we associate to the network G = (A,V, E) a state vector x ∈ R|V |
assigning a value to each node of the network. The equation governing its evolution is:{

ẋ(t) = Ax(t) +Bu(t)

ẏ(t) = Cx(t)
(19)

where A is the weighted adjacency of the network G, u(t) ∈ Rp is a control (or input) vector,
B ∈ R|V|×p is the input matrix pointing the nodes to control, y(t) ∈ Rm is the output vector
and C ∈ Rm×|V| is the output matrix. If, all along this thesis, we consider dynamical system
evolving network, the notions defined below remain true for any system with or without an
underlying network structure. Notions related to controllability and observability will be
evoked throughout the thesis. Basically, they refer, respectively, to the possibility to steer the

13Note that in Chapter 2 we will consider a different type of evolution. We present here the most commonly
used dynamical equations from which we can define notions of control theory.
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state of the network towards a desired state and the possibility to determine the state of the
network through only few measurements. We define properly these properties hereafter. The
bulk of this section is inspired from the book Linear Systems Theory of João Hespanha [53]
to which the reader is invited to refer for further information on the subject.

System (19) drives the state x(0) = x0 at time t0 to the state x(T ) = X1 at time T given
by:

x1 = eATx0 +

∫ T

0
eA(T−τ)Bu(τ)dτ (20)

The notion of controllability refers to the possibility to transfer the state between two
states. The following definition allows to express the range of accessible state.

Definition 0.19 (Controllable subspace)
The controllable subspace C of the system (19) consists of all states x0 for which, for all T > 0,
there exists an input u : [0, T ] −→ Rp that drives the state from x0 at time 0 to the origin at
time T , which is:

C =

{
x0 ∈ R|V|, ∀T > 0, ∃u, eATx0 +

∫ T

0
eA(T−τ)Bu(τ)dτ = 0

}
(21)

The matrix C of (19) play no role in this definition. Therefore one talk about the control-
lable subspace of the pair (A,B) and thus, when considering the underlying network, one may
talk about the controllable subspace associated to a weighted network and a set of controlled
node.

Definition 0.20 (Controllable system)
The system (19) is controllable if C = R|V|, which is if any state can be driven to the origin.

Note that targeting the origin is not a special case: if we can go from any state in finite
time to the origin, then we can go from that state to any other state in finite time as well.
To any control input u : [0, T ] −→ Rp we associate the following measure of the energy:∫ T

0
‖u(τ)‖22dτ (22)

The controllability Gramian is a matrix associated to control and used, among other things,
to measure how much energy is needed to control a given system.

Definition 0.21 (Controllability Gramian)
The controllability Gramian14 of system (19) is defined by:

WC =

∫ +∞

0
eAτBB>eA

>(τ)dτ (23)

14This definition corresponds to the Gramian in infinite time. Another version in finite time exist also but
will not be considered here.
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Observability is a notion dual to controlability. It refers to the possibility to determine x(0)

from the future inputs and outputs u(t) and y(t) for t ≤ 0. When considering system (19),
the evolution of the output is described by:

y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ)dτ ∀ t ≤ 0 (24)

To study the system’s observability, we need to determine under which condition we can solve

CeAtx0 = y(t)−
∫ t

0
CeA(t−τ)Bu(τ)dτ ∀ t ≤ 0 (25)

for the unknown x0 ∈ R|V|. This lead to the following definition:

Definition 0.22 (Unobservable subspace)
The unobservable subspace UO consists of all states x0 ∈ R|V| for which

CeAtx0 = 0∀t > 0 (26)

This leads to the the following definition

Definition 0.23 (Observable system)
The system (19) is observable if the unobservable subspace is reduced to the zero vector which
is UO = 0. This implies that the initial state x0 can be uniquely determined.

The matrix B of (19) play no role in this definition. Therefore one talk about the
observability of the pair (A,C).

A weaker notion than the observability is the detectability and will be considered in the
thesis. Basically, a system is said detectable if the components of unobservable subspace are
all asymptotically stable and therefore it is possible to determine asymptotically the state of
the system. To define it properly we introduce first the following decomposition.

Theorem 0.1 (Observable decomposition - Theorem 16.2 in [53])
For every system (19), there is a similarity transformation that takes the system to the form

(
ẋo
ẋu

)
=

[
Ao 0

A21 Au

](
xo
xu

)
+

[
Bo
Bu

]
u

y = [Co 0]

(
xo
xu

) (27)

for which:

• The pair (Ao, Co) is observable

• The unobservable subspace of (0.24) is given by

ŪO = Im
[

0

In̄×n̄

]
(28)
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where Im is the image of a vector and n̄ is the dimension of the unobservable subspace
of the original system.

Based on this decomposition, the detectability is defined as follows:

Definition 0.24 (Detectable system)
The system (19) is detectable if its decomposition verifies n = n̄ (the system is observable) or
if Au is a stability matrix

These notions of control theory will be used along the thesis both in the development of our
work and in the motivation for our interest in scale-free networks presented in the following
section.

0.3 Scale-free networks

We pay particular attention to a special type of networks: scale-free networks. These math-
ematical objects have been extensively studied at the beginning of this century and have
aroused a lot of interest. In one hand because it appeared that a lot of systems are well
captured by the definition of scale-free networks, and in the other hand because these net-
works exhibit properties and behavior differing from other networks and potentially beneficial
for some applications. In this section we propose a presentation of scale-free networks from
different point of view: first we give a mathematical definition, then a historical approach and
finally a non-exhaustive list of properties and applications.

0.3.1 Definition

While it exists a wide range of networks, it is possibly to classify them according to different
criteria. In particular, a property of interest is the degree distribution of the network. The
degree distribution says a lot about the structure of the network and it is often used to classify
networks. Based on this distribution, it is interesting to distinguish two different structures:
the first one is when the degree distribution is homogeneous: all nodes have a degree close to
the average degree. This type of degree distribution is obtained, for example, with random
Erdős-Rényi networks [39]. The second noteworthy structure is the heavy-tailed distribution:
in this case few nodes have a very large degree while most of the nodes have a small degree. In
the case where the distribution is a power-law we refer to it as a scale-free network. Figure 9
gives a representation of this two types of network and their respective degree distributions.

Definition 0.25 (Scale-free network)
Let G be a network and ΠG its degree distribution. G is said to be scale-free if it exists α > 0

such that:
∀ k ∈ N, ΠG(k) ∝ k−α (29)
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(a) Network with a homogeneous degree
distribution: all nodes have more or less
the same degree

(b) Scale-free network: some nodes are
highly-connected and most are poorly-
connected
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(d) The degree distribution of a
scale-free network is heavy-tailed:
the right side is extended further.

Figure 9: Comparison of two types of networks and their respective degree distribution
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Figure 10: The international air transportation network has a scale-free structure. The small-
world property (see Section 0.3.3) of the scale-free networks ensures that it is possible to travel
the world relatively quickly. This image comes from [48].

α is called the scale-free coefficient of G.
In practice G is called scale-free if its degree distribution is relatively close to a power law.

For a directed network, the definition is the same but it is necessary to precise if we
consider indegree, outdegree, or both. In the latter case, one may have two different scale-free
coefficients, αin and αout.
Figure 10 shows a famous example of scale-free network: the international air transportation
network. Indeed some airports are huge platforms and are highly connected while there is a
majority of national or local airport with few connections.

0.3.2 Historic of scale-free networks

The studies of these networks started with Derek Price in 1965 [105] when he looked at the
network of citation between scientific papers. Since the most a paper is cited the most he
tends to be cited again, he discovered that there are few papers with a very large degree.
In [105], Derek Price exhibited the heavy-tailed degree distribution of the citation networks
and proposed a model capturing its properties. This was the first-time that a scale-free network
is noticed, but the name was not coined yet.
Beyond this network, it is common, in a lot of different contexts, that the most connected
item attracts more connections. This mechanism has been discovered in different fields and at
different time, hence it is known by different names: preferential attachment in network theory,
Yule effect in evolution, cumulative advantage or again Matthew effect in sociology. This is
almost always this mechanism which leads to real-world scale-free networks. As an example,
the World Wide Web network, constituted of the webpages connected via hyperlink, is subject
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to preferential attachment. Indeed, when a new web-page is created, it will probably propose
links towards some websites which are already highly-connected. In 1999, it is precisely by
studying the topology of the WorldWildWeb that Albert-László Barabási and its collaborators
rediscovered scale-free networks forgotten since Derek Price [9]. In their work, they proposed a
model of scale-free network, the Barabási-Albert model, based on the preferential attachment
mechanism. This model is explained hereafter. Since their rediscovery it has been shown that
scale-freeness is ubiquitous in a wide range of fields such as biological networks [64], social
networks [73] and internet network [125] among others. Above the highlighting of the scale-
free nature of a variety networks, a lot of works has been done to study the properties of
scale-free networks. We will detail further some of these properties.

The Barabási-Albert model To explain scale-free structure of the World Wild
Web, Albert-László Barabási and Réka Albert proposed a model allowing to generate
networks with a power-law degree distribution, which was not possible with the
classical Erdős-Rényi model. The iterative algorithm they proposed relies on the
preferential attachment mechanism. Hereafter is an explannation of the algorithm
for the undirected case.

• At the beginning a small network, the seed, is considered:

G0 = ( · ,V0, E0) (30)

• At each step k a new node is added to the network Gk:

Vk = Vk−1 ∪ {vk} (31)

• The new node is then connected to m nodes. These nodes are chosen via
preferential attachmenta: the most connected is a node, the most likely it is to
be chosen:

Ek = Ek−1 ∪ {(vk, vi1), . . . (vk, vim)} (32)

where i1, . . . , im ≤ k and the probability that nodes vi is selected is propor-
tional to degGk−1

(vi).

No matter the value of m, if the number of iteration is large enough, the model leads
to a network with a degree distribution P (k) ∝ k−3 which corresponds to a scale-free
network. This model is the most commonly used to generate scale-free network. A
version for directed network can be used. In this case, at each step links are created
from min nodes to the new node, and from the new node to mout nodes with a
preferential attachment depending respectively on the indegree and outdegree of the
nodes.

aThis preferential attachment has to be linear to obtain a power-law distribution [43]

After the early 2000s and the promising discovery of scale-free networks, several works
claimed that scale-free networks are actually rare in the real-world [25, 66]. These claims took
a new extent in 2019 with the publication of the article "Scale-Free are rare" [19] leading
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to several outcomes in scientific press. These works actually success to prove clearly some-
thing: there is almost no networks with a power-law degree distribution. This is true and
noteworthy, the power-law is an idealized case for infinite-size network. As said before, two
phenomena are used to explain the heavy-tailed degree distribution of some networks: pref-
erential attachment and growing. These phenomena are used in the Barabási-Albert leading
to a power law degree distribution: P (k) ∝ k−3. In real-world a lot more different processes
may occur such as disappearance of nodes, disappearance of edges, attraction due to other
factors, noise... Since then, these other mechanism has been incorporate in another scale-free
generating model [37]. Therefore, results based on the power-law degree distribution and the
Barabási-Albert model are not straightforwardly applicable to real-world network. However,
they often furnish a very good approximation. This is a textbook case of the famous aphorism
of Georges Box: "All models are wrong, but some are useful". The two articles [8, 54] comes
back on this controversy and explains that indeed power-law is never reached but this does
not disqualify scale-free as a very powerful model.
That being said, the omnipresence of scale-free networks in natural and technological systems
encourages a better understanding of their properties and the potential advantages, inconve-
nient and opportunities that they present. We propose in the next section to present some
properties flowing naturally from Definition 0.25. Some applications taking advantage of these
properties are presented in Appendix 0.3.4. In order to structure the discussion we decided to
distinguish roughly properties and applications in the following but sometimes these notions
are closed and the distinction can be fuzzy.

0.3.3 Properties of scale-free network

While some properties of scale-free networks depends on the model used to generate them,
like the Barabási-Albert model or other models [31, 52, 70], some properties flows naturally
from the power-law degree distribution. Here we present some of the most common properties
of scale-free network.

Presence of hubs The main feature of the scale-free network is the presence of highly-
connected nodes the so-called hubs. The other properties flow more or less directly from this
fundamental property. On the contrary, in a random network, the presence of nodes with
a large number of connection is very unlikely. Thus, before the emergence of the scale-free
models, the models based on random networks struggled to capture the effect of the presence
of hubs. Taking the World Wide Web as an example, it appears that more than 80 percent
of the webpages are referenced by 4 links or less, these are the poorly-connected nodes, and
0.01 percent are referenced by 1000 links or more, these are the hubs [10].

Robustness to random failure A common concern when studying network is the ro-
bustness, or resilience, of the system. Does a computer network still works if a part of the
equipment crashed ? How longer would be the route from place A to place B if some roads
are closed ? How the brain would react if some neurons are inhibited ? Of course each of
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(a) Random network with 4 random fail-
ures: the resulting network is fragmented
in three components

(b) Scale-free network with 4 random fail-
ures: a large component remains well-
connected along with two isolated nodes

Figure 11: We compare here the robustness to random failure between random and scale-free
networks. As most of their nodes are unimportant, the connectedness resists better to failure
in scale-free networks.

this question depends on the interaction between the nodes and are specific to the different
problems. However, knowing if the network remains connected or if it is fragmented depends
only on the structure of the network. It appears that scale-free networks are very resilient
to accidental failures. An accidental failure, by opposition with targeted attacks, developed
further, concerns the case where a node is randomly shut down for any reason. Noticing that
a large majority of nodes in a scale-free networks are poorly-connected nodes, it appears that
if a random fraction of the system fails, it will touch very likely these poorly-connected nodes,
and so it will not impact so much the structure of the network. See fig. 11 for a comparison
of the robustness of a random and a scale-free network.

Vulnerability to targeted attack The counterpart of the previous property is that scale-
free networks can easily be broken apart if the nodes shutting down are aimed to the hub.
As the hubs maintain the structure of the network, the removal of the hub would cause an
important fragmentation of the network. Figure 12 illustrates this.
The consequences of this phenomenon are double: in some cases this represents a threat for
the sustainability of the system, in other cases it is a chance to prevent a danger. Indeed, if
a network describes a flow of interest, such as information on internet, persons on a traffic
network or goods on a delivery network, the presence of such weak spot is a major risk for
the durability of the system. On the contrary, if what flows over the network is harmful, such
as a disease through a social network or a virus through a computer network, the hubs are
strategic points to remove to prevent the spreading.

Small-world Intuitively, the small-world property says that you can go from any node to
any other node in few steps in a scale-free network. In a scale-free network, by passing through
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(a) Random network after removing the
three most connected nodes. The resulting
network is composed of two big components
and an isolated nodes.

(b) Scale-free networks after removing the
three most connected nodes. The network
is fragmented in 11 parts.

Figure 12: Scale-free networks are sensitive to targeted attack: the hubs are the Achille’s
heel of this network. Random networks do not have such weakness and the vulnerability is
distributed through the whole network.

the hubs you can connect quickly any part of the network. The Barabási-Albert model (and
other models leading to scale-free network) is said to be small-world because the characteristic
lengths (radius and diameter) of the generated network grow no faster than the logarithm of
the number of nodes15. This explains, for example, that the air transportation network,
exhibiting a scale-free structure [50] (as shown in fig. 10), allows to travel anywhere with few
connections.

These properties among others (hyperbolic embedding, clustering distribution) flows di-
rectly from the definition of scale-free network. In some applications, it is possible to take
advantage of these properties and gain efficiency with respect to other networks. In the next
section, we present three different applications of scale-fee networks.

0.3.4 Applications of scale-free network

In this section, we present three applications taking advantage of the scale-free properties
presented in Section 0.3.3. Actually, these are not direct applications to real-world but com-
putations or approaches benefiting from scale-freeness.

15The model is even ultra small-world which means that the characteristic lengths grow as the logarithm of
the logarithm of the number of nodes [26]
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Network navigation

The problem to find the shortest path between two nodes in a network is solved, in particular,
thanks tothe Dijkstra algorithm [35]. However another problem, known as network navigation,
is to go from a node to another using only local information: the geographical position of the
neighbors and the position of the destination [13]. The most obvious strategy is to go at each
step as close as possible to the destination. In random network, the navigation performs badly
since it is not possible to see distant shortcuts. By contrast, in scale-free networks when the
nodes are arranged with the right method, the network navigation performs almost as well
as the shortest path method [12]. This is due to the hyperbolic nature of scale-free networks
and the best method to arrange nodes follows a hyperbolic metric16. Figure 13 illustrates this
propensity of scale-free network for navigation. In this example, the local navigation gives a
path as short as the optimal path (computed with the Djikstra algorithm) in a majority of
cases: 88% of success. Moreover, in average the path found is 5% longer than the shortest
path. By contrast, in a random network the results are way lower: 44.5% of success and 24%
longer in average. In spite of the non-optimality, the local navigation presents two advantages
in comparison with the Djikstra algorithm which ensures optimality. First, in some cases, the
knowledge of the whole network is either impossible or too costly to obtain. Secondly and
most important, the time complexity in the case of the Djikstra algorithm is O(n log(n)) where
n is the number of nodes in the network while for local navigation it is O(log(log(n)). As an
example, for a network with a million nodes the local navigation is about five millions time
faster. Thus, when designing the architecture of a network, this feature is a good argument
to design with a scale-free structure if a lot of transmission has to been done between nodes
(as communications networks).

Strategy of vaccination

To study the evolution of a disease in a population a wide range of model uses network to
model the connection among the population. These models form a field of research called
network epidemiology presented in Chapter 5. These models can also be used to model the
spreading of a computer virus [104] or to model information diffusion in a population [49].
A question of interest is the influence of the structure of the social network on the propagation
of the disease. In scale-free networks, the presence of hubs is detrimental as their high-
connectivity make them very susceptible to infection, and once infected they can contaminate
a lot of individuals: hubs act as epidemic relay. For example, it is shown that, within a
particular model (Susceptible-Infected-Susceptible), a disease may eventually disappear totally
of a random network [6], while it always survives in a scale-free network [15] for any value
of the model’s parameters. This sounds like a bad news for scale-free networks: if a social
network has a scale-free structure it will be difficult to eradicate a disease, and if a computer
network is scale-free, as Internet is [28], a virus will easily survive. However, it is possible to
take advantage of the sensitive position of the hubs by eliminating them. As seen in fig. 12

16Here is a video showing different manners to arrange the nodes of a network: https://www.youtube.com/
watch?v=sRujricoGQY

https://www.youtube.com/watch?v=sRujricoGQY
https://www.youtube.com/watch?v=sRujricoGQY
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(a) We compared shortest path and local navigation on a scale-free network
where the nodes are arranged with a hyperbolic metric. The local naviga-
tion performs in this case as good as the shortest path computed with the
Djikstra algorithm (although the two routes are different).

(b) Over 200 tests, the local navigation performs as the shortest path in
88% of cases and in average the path found is 5% longer.

Figure 13: Due to its underlying hyperbolic nature, a scale-free networks is particularly
adapted to network navigation. The computation time needed for it is several order of mag-
nitude lower than the classical Djikstra algorithm.
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in Introduction when the hubs are removed, a scale-free network is quite fragmented and
restrains the diffusion which is not the case in a random network. By chance, with vaccine (or
an antivirus in the computer case), it is actually possible to remove a node from the epidemic
network. As expected in scale-free network it is very efficient to vaccinate the hubs (which
is the persons with the most acquaintances), in priority [102]. Of course, this question arises
if the number of vaccine is limited or in the case of voluntary vaccination [126], and raises
ethical dimension making it essentially academic. Figure 14 proposes a simulation illustrating
this result. This phenomenon may be an incentive when the structure of a network has to
be chosen (for a computer network for example). If it is possible to protect few nodes, then
a scale-free structure is preferable. Whereas if there is no protection, a random network is a
better choice to restrain the propagation. When the structure of the network is already fixed
(as social networks), an abstracting network with a scale-free structure can still be used to
determine a good vaccination strategy. This point is developed in Section 5.2

Network controllability

The notion of network controllability refers to the ability to steer the state of the network
endowed with a dynamical equation as 19 towards a desired state using some inputs. Several
notions of controllability can be considered according to the problem. The question of the
controllability of scale-free network has divided the opinion of researchers in particular because
of these different notions of controllability. We propose here a brief review of these discussions.
Network controllability has first been introduced by Lin in 1974[74] where he defined structural
controllability. A system is structurally controllable if the placement of the inputs (which is
matrix B in (19)) and the configuration of the network (which is the placement of the non-zeros
value of A in (19)) allow the inputs to reach any node of the system. As an example we consider
a very basic model of information transmission. In this model, nodes represent individuals,
edges are communication channels between individuals, and the inputs are information media
(a newspaper for example). In this case, the system is said structurally controllable if the
information coming from the inputs (newspaper) can reach any node (individuals). Figure 15
illustrates this example.

Some results [45, 111] have been obtained about structural controllability especially on
how to determine if a network is structurally controllable and where to place the inputs
to make a given network structurally controllable. However this notion of controllability
does not take into account the intensity of the connection between the nodes, which is the
weights in the matrix A in (19). The structural controllability only refers to the structure
and not to the weighted network. In practice most networks have weighted edges which
can represent a strength, a capacity or an intensity for example. To emphasize why this is
essential, let us reconsider the network model introduced previously and add a weight on the
edges. We consider that these weights correspond to the probability of transmition of the
piece of information. Figure 16 presents two scenarios for this model. The two networks are
structurally controllable as the information can reach everyone. However, one can feel that
the transmission of the signal is much more difficult in the first scenario. If Bill consults only
once the information of the input and if the individuals talk only once, the probabilities that
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(a) Scale-free network. The ten most
connected nodes are plotted in red.

(b) Scale-free network after vaccination:
the ten most connected nodes has been
removed.

(c) Random network. The ten most con-
nected nodes are plotted in red.

(d) Random network after vaccination:
the ten most connected nodes has been
removed.

(e) Evolution of the percentage of infected people in the four networks. Ini-
tially 20% of people are infected and the evolution is driven by the SIS model.
The scale-free network performs worse than the random networks. But after
the vaccination of the hubs, the epidemic disappears totally in the scale-free
network faster than in the random network.

Figure 14: Strategy of vaccination for scale-free networks
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(a) Bill and Anne read the paper. Chloé
and Bill can speak together while Chloé
speak with Anne but not the inverse. In
this case the information contained the in-
put newspaper can reach everyone

(b) The situation is the same as the first
configuration except that Chloé and Bill
do not talk together. In this case, the in-
formation will never reach Chloé

Figure 15: We present two different configurations of a basic information propagation model.
In (a) the system is structurally controllable: every node is reached by the input. In (b) the
system is not structurally controllable: a node can not be reach by the input.

(a) Bill read the paper with a probability
of 0.1. Then the information is transmit-
ted to Anne and to Chloé with probability
0.1.

(b) Bill read the paper with a probability
of 0.9. Then the information is transmit-
ted to Anne and to Chloé with probability
0.9.

Figure 16: Even if the two networks are structurally controllable one can feel that the infor-
mation is much more easily transmitted in the second case.
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Figure 17: Energy needed to transmit the information up to Chloé as a function of the
probability of transmission. Here we plot the three metrics measuring the control energy

Chloé accepts the information are respectively 0.1% and 72.9%. This example emphasizes a
fundamental notion in network control which is not captured by the structural controllability:
the energy required as defined in (22). Indeed, it may be theoretically possible to steer a
system towards any desired state while the amount of energy needed make it impossible. It
is particularly the case in large-scale network for which the structural controllability is not
sufficient in practice. A lot of studies in this domain focus on the placement of the input
in view to reduce the energy needed for control. As said before the controllability Gramian
defined in (17) allow to estimate the energy needed to control a given system. There is, at
least, three ways to quantify the energy needed to control a system [92] based on this matrix.

• The energy needed to steer the system from the origin along the most energy-consuming
direction. This energy corresponds to the inverse of the smallest eigenvalue of the
Gramian 1/λmin(W)

• The average energy needed to steer the system from the origin to any direction. It is
proportional to the trace of the inverse of the Gramian Tr(W−1). If the system is not
controllable, the Gramian is singular and W−1 is not computable.

• The volume of the space-state reachable from the origin with a fixed amount of energy.
This volume is proportional to the determinant of the Gramian det(W)

Figure 17 shows the value of these energy measure for the model presented in fig. 16 with
values of the probability of transmission varying from 0.05 to 1. The three metrics confirm
that the highest are the weights in the network the less energy is needed to control the system.

We can now raise the question of the effect of scale-freeness in the controllability of network.
Intuitively, it seems that by controlling the hubs which are highly-connected it is easy to steer
the state of the whole node. If the information propagation model proposed before is applied



0.3. Scale-free networks 29

on a scale-free network, then it seems that if the individuals with a lot of relation are targeted
by the input, then the information would easily spread in the population. However scale-free
networks also imply that a large number of nodes are poorly-connected and so are difficult to
reach.
Liu, Slotline and Barabási proposed in [76] a major and one of the first contribution on this
question. They proposed an algorithm to find a minimal number of input to control to reach
controllability. In their study, they consider the structural controllability and not the notion
of control energy which has been developed later. They showed that in scale-free network
the number of nodes to control is relatively high and their algorithm seems to avoid to place
input on hubs. This result has been received with surprise by the community engendering,
in particular, two answering papers: The first one [91] written by Müller and Schuppert, two
biologists, argued that from their empirical result, it appears that scale-free biological networks
can be reprogrammed with few inputs (0.02% of controlled nodes against 80% according to the
algorithm of Liu et al.). The second article [30] explain why the result of [76] contradicts the
intuition and the empirical results: in the model they proposed, nodes evolves as a function of
their neighborhood and do not have a proper dynamic. In most practical cases, though, the
evolution of a node is influenced by its current state.
It is clear that the link between controllability and scale-freeness is not clear. We propose
hereafter several factors which may affect this relation:

• The measure of the controllability: As seen before some consider structural control-
lability which is a binary measure giving sometimes unrealistic result due to energy
requirement. Other measures consider the energy required but several metrics co-exist.
Other measures can also be considered: the minimum dominating set, for example,
which also conceals the notion of energy. With this measure, scale-free network appears
to be easily controllable as concluded in [94] and [89].

• The system considered: The system may have a linear or non-linear dynamics, and as
said before the nodes may have, or not, a proper dynamics. Several generating models
leading to scale-free networks can be used and leads to slightly different properties. [36]
presents the difference of controllability between two models of scale-free networks.

• Type of control: Several question appears: where is the control applied ? It may be on
the nodes, or on edges. How is it applied ? It may be open-loop or closed-loop controller.
What is the objective of the control ? It may be the whole state of the system, a unique
state (single output control) or an aggregated value of the states (output control). Is
the control constrained or unconstrained ?

It appears therefore that the question of the controllability of scale-freeness is not unique
and indissociable from the scenario, the network system, and the control strategy considered
which explains the dissensus on this question.
All that being said, we present now briefly an approach developed in [21] which is particu-
larly interesting in our case. It shows that scale-freeness is somehow a good feature for an
abstracting network used to design a control input of a large-scale network. The objective of
the article is to control an aggregation (e.g. the average) of the uncontrolled nodes. Based on
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Figure 18: In [21] several control strategy for network are compared. In the first scenario,
the whole system is considered. A control design can be found to reach a desired state with
low energy. However, for large-scale network the computation needed to find this control may
be tremendous. The second and third scenarios uses then an abstraction of the large-scale
network to reduce the computation requirements and preserve a good approximation of the
desired state. Moreover, in the third scenario it is emphasized that if the controlled nodes are
the hubs of the network, the energy needed is much lower than for random controlled node.

the observation that for large-scale networks the computation of the controllability Gramian
and the optimal control is very time-consuming, the authors propose to considers a smaller
network abstracting the large one. They show that using this abstraction, the computation
of the optimal control is much faster and preserves a good performance as the output is close
to the desired state. Finally, and essentially for us, they show that the control energy needed
decreases if the degree of the measured nodes increases. Figure 18 illustrates the main re-
sult of this article. Therefore, the abstracting network allows to design a low-computation
control directed on few nodes and driving the average state of other nodes close to a desired
state. By providing the abstracting network a scale-free structure, the control is moreover low
energy-consuming.

0.3.5 Synthesis

Through this presentation of scale-free networks we have seen that it is useful to group together
networks with a heavy-tail degree distribution. Indeed, a lot of real-world systems have this
tendency and share common properties. We have highlighted some properties flowing from
the definition, and some applications taking advantages of these properties. Therefore, when
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Figure 19: Principle of the Scale-Free reduction approach.

designing a new network it may be useful to endow it with a scale-free architecture if these
properties may benefit to the applications. In contrast, when considering a pre-existing system,
the properties of the network are already fixed and there is no benefit to consider the network
as scale-free. However, when a large-scale network is reduced it is possible to impose a scale-
free structure to the reduced network in order to benefit from the assets of the scale-freeness
by using a reduced network with a scale-free structure. This idea is the very essence of our
work and will be developed in particular in Chapter 2. Figure 19 illustrates this principle.
Of course, in order to use the reduced system it is essential to preserve the behavior and
properties of the initial system. Some properties which are particularly interesting to preserve
through the reduction have been presented in Section 0.2.2. In the next section we discuss
more precisely the problems we want to tackle and how they are arranged within the thesis.

0.4 Problematics and contributions

In order to reduce the complexity or large-scale network we aim through this thesis to develop
tools and algorithms to partition a network with the following criteria: i) preserve some
properties (dynamical behavior, structural characteristics, ...) of the original network ii)
impose some properties (scale-freeness) to the reduced network.
The design of such network partitioning algorithms is the cornerstone of our work to which we
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graft different related problematics. As evoked, the major one is the design of a partitioning
algorithm inducing a scale-free network which will be treated in Chapter 2. Within this
chapter we will also think about which properties of the initial network have to be preserved
in order to preserve the characteristics of the initial network and how to do so. Before that,
we raise a more theoretical question on the structure of the partition itself: as the parts
may gather disconnected nodes, what are the drawbacks of imposing the nodes inside each
part to be connected ? This question will be explored in Chapter 1. The third major work,
treated in Chapter 3, concerns a reconstruction issue. We will investigate how to partition a
network between measured and unmeasured nodes in order to ensure that the average of the
unmeasured nodes can be efficiently reconstructed. Then, three applications are presented: in
Chapter 4, we apply the partitioning algorithm towards scale-freeness to a large-scale urban
traffic network. We show then that, thanks to the properties preserved through the partition,
the reduced network can be used as an abstraction of the initial network. Finally, Chapter 5
will propose two independent applications in epidemiology. In the first one, we show that the
scale-freeness of the abstracting network can be used to build a cure-allocation strategy. In the
second application, we take advantage of the result on average reconstruction to estimate the
evolution of a disease on a large-scale network. Figure 20 gives an overview of the structure
of the thesis.
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If the main purpose of the thesis is to investigate partitioning problems, we study in this
first chapter a preliminary question. This question concerns the structure of the partition
itself and can be formulated as follows: how much adding a connectedness constraint in
a partition problem degrades the solution ? Said otherwise, we will compare two classes
of problems of optimal network partitioning: in the first class of problem one impose the
nodes belonging to a same part of the partition to be connected. In the second class of
problem, no constraint of connectedness is imposed. Obviously, this constraint worsens the
result of the optimization problem. However, it may be interesting to add this constraint in
some applications. Therefore, it is useful to estimate how much this connectedness constraint
degrades the optimal solution of the partitioning problem. The estimation of this degradation
is the objective of this chapter.
The work presented throughout this chapter has been published in [87] and presented at the
European Control Conference 2019. This work has been carried out partially during my stay
in Imura Laboratory in Tokyo Technology institute alongside with the team of Pr. Imura and
within the JSPS summer program.
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Figure 1.1: A class in which pupils have different affinity forms a network. Here the nodes are
the pupils and the edges represent the friendship between them which can be one-sided (yes it
may be sad, but it is for the sake of the example). To constitute working groups, should the
teacher consider this friendship network ? This image is from "Les Choristes" of Christophe
Barratier.

1.1 The price of connectedness and problem formulation

1.1.1 Introducing problem: a textbook case

We present first a short scenario in order to familiarize the reader with the problem before
introducing a more formal framework. We consider a class in which some pupils are friends
and some are not as shown in fig. 1.1. For an activity, the class has to be divided in some
groups of different sizes: for example, 20 pupils have to be divided in 4 groups of sizes: 4, 7,
6 and 3. The teacher wants to optimize the groups regarding a precise metric: he wants to
be the groups to be as homogeneous as possible. Therefore he wants to minimize the average
standard deviation of level within the groups. Before addressing the grouping problem, the
teacher wonders if he should add a constraint of friendship within the groups. By adding
such a constraint, the best grouping he can find would be always worse or equal than in the
unconstrained case. Indeed, the unconstrained case includes all the constrained grouping.
However, the teacher wonders how much this constraint would damage the quality of the
solution which is the homogeneity inside each group.
When looking at the network of friendship, adding this constraint means that each group
have to form a weakly connected subgraph. If the teacher want to please the kids, he has to
pay in counterpart a deterioration of the quality of the grouping. He has to pay the price of
connectedness.
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1.1.2 The price of connectedness

Generalizing the previous example, any partitioning problem can be solved with or without
the connectedness constraint. Of course, adding a constraint to a problem can only reduce the
quality of the optimal solution. But, as discussed later, in some circumstances this constraint
is necessary. In this chapter, we consider network partitioning problems which can be seen
as optimization problems. A large number of works have treated partitioning problems with
different objective function and constraints. For example, [90] aims to preserve stability and
synchronization of the system, [23] and [22] preserves the network structure, [97] looks for the
best reduced system in order to estimate an aggregated state of the initial network and [60]
provides a reduced system with a dynamical behavior close to the initial system while pre-
serving several properties for control purpose. This last work will be presented in this chapter
as a motivating example.
A partition respecting the connectedness constrained is named here connected partition. In
some cases, it is relevant to prefer connected partitions: as in the introducing example, when
consider social network one may want to find a partition ensuring that in each part the indi-
viduals are related. When studying epidemic spreading through a population, it is interesting
to detect communities1 in order to apply a control or to observe the evolution at the bor-
ders [85]. In another register, when considering networks with a geographical nature such as
urban traffic networks, transportation networks or power grids one may want to preserve the
geographical nature of the system and so imposing each part to be connected. In urban traffic
network, if the reduced network is used for estimating the traffic state [78], we want that each
part of the partition corresponds to a geographical area. Since we consider directed networks,
connectedness may have different definitions as explained in the introduction. We will con-
sider here weak connectedness as it is enough to ensures the preservation of the geographical
nature of the network.
When the connectedness constraint is considered, it is clear that the optimal solution is always
worse or equal to the optimal solution without the constraint. In this chapter, we investigate
how much the connectedness constraint degrades the solution regarding to the structure of
the network. The difference between the two optimal solutions is named the price of con-
nectedness2 and denoted by ∆. It is clear that the price of connectedness actually depends
mainly on the optimization problem. For example, if the metric to minimize favors connected
partitions, adding the constraint will not affect too much the result.
As an example, we formalize a similar problem as in the introducing case. We consider a
network where a value is given to every node. We pose now the following problem: Find a
partition of size n minimizing the average variance within the parts. If in the system of interest
it turns out that adjacent nodes tend to have close values then the price of connectedness will
be relatively small. Figure 1.2 illustrates such a case.
The approach proposed here aims to estimate the price of connectedness without solving the
two optimization problems. Even more, we actually do not consider any particular partition-
ing problem and we want to estimate the price of connectedness in a network for any problem.

1in a population, communities can be viewed as a connected subgraph
2This term has been coined in reference to the concept of price of anarchy in game theory. This refers to

the degradation due to the selfish behavior of the agent compared to the global optimum [69].
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Figure 1.2: Partitioning the network in three parts in order to minimize the standard deviation
within the parts. The price of connectedness is the difference between the optimal solutions
in the unconstrained and constrained case, in this case ∆ = 1.35− 0.94 = 0.41.
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Figure 1.3: In order to estimate the price of connectedness, we compare for a given network the
number of partitions and the number of connected partitions. The ratio of the two cardinalities
is the ratio of connectedness.

As the partitioning problem is an optimization problem, adding the connectedness constraint
amounts to reduce the feasible set of the problem. Therefore, we propose to estimate the
price of connectedness with the ratio of the cardinalities of the two feasible sets: the set of
partitions and the set of connected partitions. It is clear that this approximation is some-
how coarse since we do not consider any particular problem. In the other hand, it allows
to have an estimation of the price of connectedness of a given network for any partitionning
problem. See fig. 1.3 for an illustration of this approach. This ratio is named hereafter ratio
of connectedness and is denoted by ρ. To motivate this approach we will first present some
simulations on a partitioning problem from the literature: the cluster model reduction [58].
We focus then on the estimation of the ratio of connectedness ρ. Note that this ratio can also
be viewed as the probability that a given partition is a connected partition. We consider in
this article random directed network obtained via the directed Erdős-Rényi model detailed
later. We will show then that the value of ρ in an Erdős-Rényi graph is directly linked with ρ̄
the probability that an Erdős-Rényi graph is connected. The value of this latter probability
has been investigated by a broad literature providing asymptotic estimations. See [63] for a
discussion on these results. These asymptotic estimations are valid for very large networks.
We propose here an upper bound on ρ̄ valid for networks of any size. From this result we
derive an upper bound on the ratio of connectedness ρ. Let us reconsider the introducing
problem to explain approach. For any problem of pupils partition for which the sizes of the
part are known, we propose to estimate the deterioration of the optimal solution caused by
the friendship constraint by comparing the number of ways to partition the pupils with and
without the constraint. Intuitively, if almost all pupils are friends, almost every partition will
be a friendly partition and so the price of connectedness is low. At the contrary, if the number
of friendship is low, there are few friendly partitions compared to the number of partition,
and so the price of connectedness is high.
The main contributions of this chapter are:

(i) Highlighting the relation between the price of connectedness ∆ and the ratio of connect-
edness ρ via a numerical example

(ii) The link between ρ in an Erdős-Rényi graph and the probability ρ̄ that an Erdős-Rényi
graph is connected; and finally



40 Chapter 1. The price of connectedness

(iii) the derivation of a tight upper bound on ρ̄ leading to a tight upper bound on ρ, both
for Erdős-Rényi graphs

The chapter is composed as follows: in Section 1.2 an example illustrates the price of con-
nectedness in a concrete problem and the link between ∆ and ρ, Section 1.3 contains the
main results, namely the estimation of ∆. Section 1.4 presents some simulations showing the
validity and the tightness of the estimation. A last section concludes the chapter.

1.2 Illustrative example: The clustered model reduction

In this section, we will present an example of partitioning problem from the literature. Within
this example we will emphasize the price of connectedness which is the gap between the
solutions of the constrained and unconstrained problems.

1.2.1 The clustered model reduction problem

Consider the following discrete-time linear system:

Σ : x(t+ 1) = Ax(t) +Bu(t) (1.1)

where x(t) ∈ Rn is the state of the system. Given n̂ the desired size of the reduced system.
We define the reduced system as follows:

Σ̂P :

{
ξ(t+ 1) = PAP>ξ(t) + PBu(t)

x̂(t) = P>ξ(t)
(1.2)

where P ∈ Rn̂×n is the reduction matrix. The problem is to find the matrix P making
the dynamics of Σ̂P the closest to the dynamics of Σ. More precisely, we want to minimize
‖g − ĝP ‖H2 , where g is the transfer function from control u to state x and ĝP is the transfer
function from control u to state x̂ and where ‖ · ‖H2 which is the H2 norm is the root-mean-
square of the impulse responses of the system defined as follows:

‖g‖H2 =

√
1

2π

∫ ∞
−∞

Tr (g(ejω)>g(ejω)) dω (1.3)

The H2 norm measures the energy of the impulse response and imposing ‖g − ĝP ‖H2 to be
small implies that the responses of system Σ and Σ̂P are close. Thus, the system Σ̂P can
be used as an abstraction of the system Σ for control purposes since they have a similar
behavior.
A continuous-time version of the problem was first presented in [59] followed by different
extensions in [58, 60] and [61]. The unconstrained problem can be written as follows:

min
P∈Rn̂×n

‖g − ĝP ‖H2 , (1.4)
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Figure 1.4: Connected and disconnected partitions. The partition is the one defined in (1.6)
applied to two different networks.

To formulate the constrained problem associated to (1.4) we introduce I(P ) the partition
associated to the reduction matrix P . We have I(P ) := {I1, I2, . . . , In̂} where Il is a part of
the partition defined as:

Il := {j ∈ {1, . . . , n}, Pl,j 6= 0} (1.5)

As an example, let P be the following partition matrix:

P =

 ? ? 0 ? 0 0

0 0 ? 0 0 0

0 0 0 0 ? ?

 (1.6)

where ? represents any non-zero real number, then I(P ) = {{1, 2, 4}, {3}, {5, 6}}.

Definition 1.1 (Connected partition)
A partition I of a network G is a connected partition if and only if every subgraph GIl induced
by a part Il is weakly connected.
Ic(G) represents the set of connected partitions of a network G.

See fig. 1.4 for an example of connected and disconnected partitions. Using this definition,
the constrained problem can be written as follows:

min
P∈Rn̂×n
I(P )∈Ic(G)

‖g − ĝP ‖H2 (1.7)

In [58] the authors propose an algorithm to solve the problem defined in (1.4). In appendix A,
we present this algorithm and its adaptation allowing to solve the constrained problem (1.7).
In the next section, some simulations illustrate the price of connectedness in this case.
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1.2.2 From the price of connectedness to the ratio of connectedness

We propose here to show the price of connectedness in the clustered model reduction via
numerical simulations. Then we present an estimator of interest: the ratio of connectedness.

Simulation 1.1. Let us first introduce properly the directed Erdős-Rényi model that we will
use.

The directed Erdős-Rényi model The model first introduced in [40] allows to
generate random directed networks as follows:
We consider n vertices and each of the n2 potential edges (self-loop are allowed)
exists with a probability p. The expected value of number of edges is then pn2 and
the mean degree is pn. The degree distribution is known to be a Poisson law.

We consider a collection of 500 Erdős-Rényi graphs with p = 0.2 and n = 100 denoted
G1, . . . , G500. Thanks to the algorithms presented in Appendix A, we solve the partitioning
problems (1.4) and (1.7) for each network Gi and for different size of the reduced network n̂.
We denote by εu the mean error in the unconstrained problem and by εc the mean error in
the constrained problem which is:

εu =
1

500

500∑
i=1

min
P∈Rn̂×n

‖g − ĝP ‖H2 (1.8)

εc =
1

500

500∑
i=1

min
P∈Rn̂×n

I(P )∈Ic(Gi)

‖g − ĝP ‖H2 (1.9)

Figure 1.5 shows the value of εu and εc as a function of the reduction factor n−n̂
n .

Figure 1.5: Estimation error in the unconstrained problem and in the constrained problem.
The difference between the two results is the price of connectedness.

The relative difference between the two errors represented by an arrow in fig. 1.5 is the
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price of connectedness denoted by ∆ and defined as:

∆ :=
εc − εu
εu

(1.10)

To estimate the value of this difference by only knowing the structure of the network, we
propose to use the ratio of connectedness presented hereafter.

The ratio of connectedness: a counting-based estimation

Beyond this example, the loss due to the connectedness constraint always exists in any par-
titioning problem. We propose here to tackle this question at a high level: we propose to
estimate the price of connectedness for any couple of problems which can be formulated as an
optimization problem.

min
I∈I(G0,M)

JG0(I) and min
I∈Ic(G0,M)

JG0(I) (1.11)

where JG0 is any cost function of the following form:

JG0 : I(G0,M) −→ R (1.12)

and where I(G0,M) is the set of partition of G0 such that the part i has a size mi; and
Ic(G0,M) ⊂ I(G0,M) is the set of connected partition. M = (m1, m2, . . . , m|I|) is called the
size vector and verifies

∑
mi = |V0|

The two problems of (1.11) are respectively the Unconstrained Problem and the Constrained
Problem. The approach presented here consists in comparing the cardinalities of I and Ic
which are respectively the set of partition and the set of connected partition of G0.
More precisely, given a network G having n nodes, and a vector M we want to estimate the
ratio of connectedness defined as follows:

ρ(G,M) :=
|Ic(G,M)|
|I(G,M)|

(1.13)

This serves as a proxy to estimate the price of connectedness. Note that I(G,M) actually does
not depend on G as the connections between nodes do not matter3. Before going deeper into
the estimation of ρ, we will present in the next section some evidences on the link between
the ratio of connectedness ρ and the price of connectedness ∆.

1.2.3 Relation between ρ and ∆ in the clustered model reduction

A way to emphasize and make more precise the relation between ρ and ∆ is to observe
simulations on the clustered model reduction presented in the previous section. Precisely, we
want to observe how the price of connectedness ∆ evolves when simulations are done with

3Cardinality of I(G,M) is a known result [93]. However we will not use this result since we will derive an
upper bound of ρ and not its exact value.
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networks having a different ratio of connectedness ρ. For this purpose we consider 100 Erdős-
Rényi graphs with n = 100 vertices and an edge probability p varying between 0 and 14.
Figure 1.6 shows the relation between ρ and ∆.

Figure 1.6: Relation between the price of connectedness and the ratio of connectedness. Each
point correspond to an Erdős-Rényi graph with n = 100 and p ∈ [0; 1]. The ratio of connect-
edness, ρ(G,M) is estimated by counting the number of connected partitions over the 500

partitions randomly generated (we fix arbitrarily M = [5, 5, . . . , 5]). The price of connect-
edness ∆(G) is computed using (1.10) and Appendix A. In dotted blue the fitting function
in (1.14).

By inspection it seems that, in this case, ∆ can be approximately related to ρ via the
following equation:

∆(ρ) = −γ log(ρ) (1.14)

with γ ≈ 0.17. Moreover, this function verifies ∆(ρ) −→ ∞ as ρ → 0 and ∆(1) = 0 which is
what we expect from the relation5 between ∆ and ρ. While the relation (1.14) is intrinsically
linked to the particular couple of problems (1.4)- (1.7) considered here, it is clear that ∆ and
ρ are generally related. This relation is intuitive when formulated as follows: the smaller
the feasible set of the constrained problem, the larger the gap between the solutions of the
constrained and unconstrained problems. Motivated by this example, we propose, in the next
section, a tight upper bound on ρ in a (n, p)-Erdős-Rényi graph for a given partition size
vector M .

4It is clear that the ratio of connectedness ρ grows with p: increasing p gives a network with more edges
and so the number of connected partitions is higher. At the limit, if p = 1 (complete graph) then ρ = 1 and if
p = 0 (null graph) then ρ = 0.

5When ρ goes to 0 the number of connected partitions goes to 0 and the optimal solution of the constrained
problem worsens which is ∆ → ∞. On the other hand, when ρ = 1, every partition is a connected partition
(the graph is complete) and the solutions of the constrained and unconstrained problems are the same which
is ∆ = 0.
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1.3 Value of the ratio of connectedness in a (n, p)-Erdős-Rényi
graph

In this section we develop the calculations leading to an estimation the ratio of connectedness
in a directed (n, p)-Erdős-Rényi graph for a given partition size vector M .

1.3.1 Factorization formula

As we consider Erdős-Rényi graph, we denote by ρ(n, p,M) the expected value of the ratio
of connectedness of a (n, p) Erdős-Rényi graph. Noticing that drawing randomly m nodes
in a (n, p) Erdős-Rényi graph is equivalent to generate a (m, p) Erdős-Rényi graph, we can
decompose the price of connectedness as follows:

ρ(n, p,M) =
n̂∏
i=1

ρ̄(mi, p) (1.15)

where ρ̄(mi, p) is the probability that a (m, p) Erdős-Rényi graph is weakly connected. We
focus now on ρ̄(m, p) the probability of connectedness of a (m, p)-Erdős-Rényi graph. This
question has been investigated in several works. Already the seminal paper of Erdős and
Rényi [40] described a phase transition behavior for the value of this probability in the case of
undirected graph. Several works [16, 47] investigate the phase transition behavior in Erdős-
Rényi directed graph. However only results for strong connectedness are provided while we
look here for weak connectedness. In particular, if we denote by Gn,p a random (n, p)-Erdős-
Rényi graph and S the set of strongly connected networks it is shown that:{

P(Gn,p ∈ S) −→
n→∞

1 if p > lnn
n

P(Gn,p ∈ S) −→
n→∞

0 if p < lnn
n

(1.16)

Where P(χ) is the probability of χ. From our knowledge there is not such result for weak
connectedness. However, it is clear that if such a threshold exists it should be smaller or equal
to lnn

n , because weak connectedness is a milder property than strong connectedness, and we
presume that it is equal. Phase transitions results are pertinent for large-scale networks.
However in the case of network partitioning the size of the parts are relatively small (which is
mi in (1.15) is small) and so these results can not be used. In the next section we propose an
upper bound on ρ̄: the probability of weak connectedness for a directed Erdős-Rényi graph.

1.3.2 Upper-bound on ρ̄

To estimate the probability ρ̄(m, p), we propose to consider an upper bounding probability
ρ̄0(m, p) which is the probability that in a (m, p)-Erdős-Rényi graph there is no isolated node
(node with zero indegree and outdegree). The set of connected networks is included in the set
of networks without isolated nodes, which implies that

ρ̄0(m, p) > ρ̄(m, p) (1.17)
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Some works have emphasized a phase transition behavior for the probability of presence of
isolated nodes [44, 56]. These results are only for undirected networks and are valid for
large-scale networks. The following proposition gives an exact expression for ρ̄0:

Proposition 1.1
Let ρ̄0(m, p) be the probability that a directed (m, p)-Erdős-Rényi graph has no isolated nodes.
We have

ρ̄0(m, p) = 1−
m2−2∑
k=0

θ(m, k)pk(1− p)m2−k (1.18)

where θ(m, k) is the number of directed networks with m nodes and k edges and with (at least)
one isolated node.

Proof of Proposition 1.1 Let us denote Γm the set of networks with m nodes having
isolated nodes and Γ̄m its complement which is the set of network withm nodes and no isolated
nodes. Let Gm,p be a random Erdős-Rényi graph

ρ̄0(m, p) = P(Gm,p ∈ Γ̄m) (1.19)

= 1− P(Gm,p ∈ Γm) (1.20)

Now if we denote Γkm the set of networks of size m with isolated nodes and k edges we have:

ρ̄0(m, p) = 1−
m2∑
k=1

P(Gm,p ∈ Γkm) (1.21)

Every network in Γkm has the same probability to appear which is the probability that a
(m, p)-Erdős-Rényi graph has k edges. Hence we have P(Gm,p ∈ Γkm) = |Γkm|pk(1 − p)m

2−k.
Let us denote θ(m, k) := |Γkm|. Noting that θ(m,m2) = θ(m,m2 − 1) = 0 leads to the
result.

Therefore, we obtain a value for ρ̄0 depending on the value of θ(m, k). By reusing the
factorization formula in (1.15) we deduce ρ0 an upper bound on ρ which is:

ρ0(n, p,M) =
n̂∏
i=1

ρ̄0(mi, p) (1.22)

To complete the calculations, the next result specifies the value of θ(m, k)

Proposition 1.2
Let θ(m, k) be the number of networks with m nodes, k edges and (at least) one isolated node.
We have

θ(m, k)=



(
m2

k

)
if k<

m

2

bm−
√
kc∑

s=1

(
m

s

)[(
(m−s)2

k

)
−θ(m−s, k)

]
if k≥ m

2

(1.23)
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Proof of Proposition 1.2 When k the number of edges of a network is strictly smaller
than m

2 it is impossible that the k edges cover the m nodes. Thus, any network with m nodes
and k < m

2 edges contains (at least) one isolated node. The number of such network is equal
to the number of way to arrange k edges among the m2 possible edges. This number is equal
to
(
m2

k

)
.

Let’s denote θs(n, k) the number of networks with n nodes, k edges and exactly s isolated
nodes. We have:

θ(m, k) =
m∑
s=1

θs(m, k) (1.24)

Let us remark that s > m−
√
k =⇒ θs(m, k) = 0 because it is not possible to have k edges

in less than
√
k nodes. Hence we can rewrite the previous equation as:

θ(m, k) =

bm−
√
kc∑

s=1

θs(m, k) (1.25)

Moreover, θs can be rewritten as follows:

θs(m, k) =

(
m

s

)
σ(m− s, k), (1.26)

where σ(m− s, k) is the number of networks with m− s nodes, k edges and no isolated node.
This value is multiplied by the number of ways to choose the s isolated nodes within the m
nodes, which is

(
m
s

)
. We have then:

θ(m, k) =

bm−
√
kc∑

s=1

(
m

s

)
σ(m− s, k) (1.27)

Finally, σ the number of networks without isolated nodes is equal to the total num-
ber of networks minus the number of networks with at least one isolated node, and so:
σ(m− s, k) =

((m−s)2
k

)
− θ(m− s, k). Leading to the result.

The same reasoning can be used to solve the problem for a directed network without self-
loops or for an undirected network with or without self-loops. In these cases the m2−2 in the
limit of the sum in (1.18) should be replaced respectively with m(m− 1)− 2, m(m+ 1)/2− 1

and m(m− 1)/2− 1 and
(
m2

k

)
the total number of network with m nodes and k edges should

be replaced respectively with
(m(m−1)

k

)
,
(m(m+1)/2

k

)
and

(m(m−1)/2
k

)
.

Considering that there are relatively few networks which are not connected while having no
isolated nodes, the two probabilities ρ̄(m, p) and ρ̄0(m, p) appears to be really close. It seems
even that the two probabilities tend towards each other for largem. This leads to the following
conjecture.

Conjecture 1.1
Let ρ̄(m, p) be the probability that a random (m, p)-Erdős-Rényi graph is connected and ρ̄0(m, p)

be the probability that a random (m, p)-Erdős-Rényi graph has no isolated nodes, then:

lim
m→∞

ρ̄(m, p)

ρ̄0(m, p)
= 1 (1.28)
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This result would straightforwardly lead to this second result:

lim
n→∞

ρ(n, p,M)

ρ0(n, p,M)
= 1 (1.29)

In the next section we present some simulations to validate the closeness of the upper bound
proposed. Before this, fig. 1.7 sums up the approach developed throughout this chapter.

1.4 Validation of the upper bound

To illustrate the relevance of the upper bound used for the probability of weak connectedness
in an Erdős-Rényi graph, we compare an experimental value of ρ̄(m, p) and the theoretical
value of ρ̄0(m, p) given in (1.18). To find the experimental value we generate 1000 (m, p)-
Erdős-Rényi graphs for each value of of m = {6, 8, 10, 12} and p = {0, 0.02, 0.04, . . . , 1}. An
approximation of ρ̄(m, p) consists in counting the proportion of the 1000 networks that are
connected. The results are presented in fig. 1.8. We notice that i) the inequation ρ̄0 ≥ ρ̄ is
well verified and ii) the upper bound ρ̄0 is relatively close to ρ̄ and the difference seems to
vanish when m grows as presumed in Conjecture 1.1. Let us note that the formula given in
Proposition 1.2 does not allow to compute θ(m, k) for large value of m. Indeed the recursive
call to the function θ is computationally heavy and the value of the binomial coefficient grows
quickly.
Now that we have seen that ρ̄0 is tightly upper bounding ρ̄ we want to come one step back
and verifying that the upper bound ρ0 derived from ρ̄0 by way of (1.22) is also tightly upper
bounding ρ. To compute an experimental value of ρ(n, p,M), as before, we generate 1000

Erdős-Rényi with n = 100 nodes for each value of p varying between 0 and 1. For each
network we generate a random partition with the part sizes m1 = m2 = . . . = m20 = 5. An
approximation of ρ consists in counting the proportion of the 1000 networks whose partition
is connected. The results are presented in fig. 1.9. We verify that the upper bound is indeed
very close to the real value. Though for few value of p it seems that ρ(n, p,M) > ρ0(n, p,M),
it is only due to statistical noise.

1.5 Conclusion

When looking at network partitioning problems, it is clear that imposing a connectedness
constraint deteriorates the quality of the solution. However, this constraint is essential for
some applications (in particular when the network has an underlying geographical nature).
We presented here an approach based on probability and counting allowing to estimate the
price of connectedness which is the degradation due to the connectedness constraint. This is a
high-level approach in the sense that it does not focus on the particular optimization problem,
only on the cardinalities of the feasible sets in the constrained and unconstrained cases. The
drawback of this high-level approach is that, the results are not precise when considering a
particular problem. Then an extension of this work would be to investigate to what extent,
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× × . . .×

× × . . .×

Factorization for-
mula (1.15)

Upper
bound (1.17)

Factorization for-
mula (1.22)

Figure 1.7: This diagram illustrates the approach proposed in this chapter. In order to estimate
the price of connectedness we estimate the ratio of connectedness ρ(p, n,M): line (1). Based
on (1.15), we factorize the problem: line (1) to line (2). Then the upper bound (1.17) allows
the passage from line (2) to line (3). The rest of the chapter present the calculations leading
to Propositions 1.1 and 1.2 giving the value of ρ̄0. Finally the factorization formula (1.22)
lead to the final upper bound of the ratio of connectedness: line (3) to line (4).

the ratio of connectedness influences the price of connectedness. In other words, the study of
the function ∆(ρ) which depends on the particular problem considered. Another extension of
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Figure 1.8: Comparison between the experimental value of ρ̄(m, p) (the probability that a
given (m, p)-Erdős-Rényi graph is connected) and the theoretical value of the upper bound
ρ̄0(m, p) (the probability that a given (m, p)-Erdős-Rényi graph has no isolated node) for
p ∈ [0, 1] and for different values of m. The phase transition behavior detailed in (1.16) is
represented in dotted black: when m grows ρ̄(m, p) gets closer to the transition.

Figure 1.9: Comparison between the experimental value of ρ(100, p, {5, . . . , 5}), and the the-
oretical value of the upper bound ρ0(100, p, {5, . . . , 5}) for p ∈ 0 : 0.005 : 1.

this work would be the simplification of the recursive formula given in Proposition 1.2 allowing
to make it computable for large-scale networks.
This chapter and in particular the last results shows us the effect of the connectedness con-
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straint with respect to the the topology. The price of connectedness is negatively correlated to
the density of the network. In the scenario considered in fig. 1.9 if p < 0.3 (which means that
each nodes has less than 30 connections in average), the ratio of connectedness is almost null
which means that the number of connected partitions is negligible compared to the number
of partitions and the difference between the constrained and unconstrained problems will be
considerable. At the contrary, when p > 0.7 (which means that each nodes has more than 70

connections in average), the ratio of connectedness is almost equal to one which means that
almost any partition is a connected partition and the difference between the constrained and
unconstrained problems is negligible.
Throughout the thesis we will apply results about partitioning to urban traffic networks and
epidemic networks. As discussed in the introduction, both of these applications gain to be par-
titioned with the connectedness constraint. This preliminary analysis enlighten us regarding
the loss due to this physical constraint.
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As seen in Introduction, scale-free networks endow interesting properties which are helpful
in different contexts. Moreover, if a network does not have this particular structure, we claim
that it is interesting to consider a scale-free network abstracting the initial one. To this end,
this chapter presents the results we obtained regarding the problem of network partitioning
inducing scale-freeness. Further in this thesis, Section 5.2 and Chapter 4 present practical
implementations of this approach are proposed. A primary version of the result introduced
in this chapter has been presented at the 2018 European Control Conference in Limassol,
Cyprus [83] and a more complete version has been published in Transaction on Network
Science and Engineering [84]. A video popularizing this approach has also been produced1.

1The video is available here: https://www.youtube.com/watch?v=UXc76Z5Ek3M&t=56s
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2.1 Introduction

The approach proposed in this chapter combines several objectives: starting with a large-scale
initial network, we aim to reduce it into a scale-free network while preserving characteristics of
the initial network. As seen in the introduction, interesting properties emerge naturally from
the definition of scale-free networks [95]. We recall here some of those properties: small dis-
tances between nodes [27], robustness to random failures, easiness to disconnect, hyperbolic
space embedding [14]. These properties allow to gain efficiency in some applications such
as network navigation, vaccination in epidemiology, or control design as developed in Ap-
pendix 0.3.4. In order to reap these advantages, we propose in this chapter to find a network
abstracting an arbitrary large-scale network and exhibiting a scale-free structure. However,
we do not investigate here to what extent the scale-freeness of the reduced network may be
meaningful for the initial network. We focus only on the design of a reduction method whose
output is a scale-free network. In Section 5.2 though, we will present an application where
the scale-freeness of the abstracting network is useful.
The main contributions of this chapter are as follows:

(i) The introduction of a framework to treat a class of network partitioning problem along
with a meta-algorithm to solve such problems.

(ii) The analysis of two particular problems falling in the scope of the framework. In par-
ticular, the second problem requires the analysis of several properties of network.

(iii) The analysis of the performance of the algorithm and the tuning of the parameters
studied on synthetic networks.

The chapter is organized as follows: Section 2.2 introduces a class of problem and gives a
general approach to solve them, Sections 2.3 and 2.4 presents two particular problems of this
class: the first one is rather simple and has a pedagogic and illustrative purpose. The second
one implies the analysis of the preservation of different network-related properties. Section 2.5
gives some results on the algorithm proposed in 2.4 and a simulation of this algorithm applied
on an academic case. Finally, Section 2.6 concludes the chapter.

2.2 Framework for a class of problems

This section is devoted to the introduction of a class problems of network partitioning inducing
scale-freeness while preserving features of the initial network. This type of problem can be
seen as an optimization problem with some constraints. We propose then a general method
to solve this type of problem. The problem formulation along with the solving method form
a framework that we will use to treat two particular problems in the two following sections.
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2.2.1 Targeting scale-freeness as an optimization problem

The problem treated in this chapter is to find a partition S of an initial large network G0,
such that the network G1 coming out of the partition S has a degree distribution close to a
given scale-free distribution. We also want G1 to preserve some physical properties of G0 and
guarantee a certain similarity between G0 and G1. Therefore, this problem can be formally
stated as follows:

Problem 2.1
Given an initial network G0 ∈ Ψ, and a desired scale-free coefficient α, find a network G1,
solution of the following minimization problem.

min
G

JSFα(G), subject to G0 � G
G ∈ Ψ

G0 ≡ G
(2.1)

where:

• JSFα is a α-scale-free cost function (JSFα(G) = 0 meaning that G is perfectly scale-free
with a coefficient equal to α)

• Ψ is the set of networks respecting the physical properties imposed.

• ≡ is a binary relation translating a certain similarity between the initial and final net-
work.

The physical constraint (G ∈ Ψ) and the similarity constraint (G0 ≡ G) does not have
any mathematical difference and one could have gather them. We separate them in the for-
mulation to emphasize that the underlying motivations for both is different.
This formulation includes a large number of partitioning problems depending on Ψ the prop-
erties to preserve and ≡ the binary relation considered. Note also that any scale-free cost
function can be used to steer the reduce network towards this type of network. We present
hereafter a simple scale-free cost function that we will use.

2.2.2 Scale-free cost function

We present here an intuitive measure of scale-freeness that we will use throughout this chapter.
We first define what is the ideal scale-free distribution and then we explain how we measure
the distance to this ideal case.

Definition 2.1 (Scale-free target distribution)
The α-scale-free target distribution of range n, denoted ΠSF

α,n corresponds to the most scale-free
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distribution that a network of size n could have. It is defined as follows:

ΠSF
α,n =

1∑kcut
i=1 i

−α


1−α

2−α

...
k−αcut

 (2.2)

where kcut is a cut-off calculated as the highest degree for which the number of nodes having
this degree is higher than 1 in a α-scale-free network of range n:

kcut = argmax
k

{
k−α∑k
i=1 i

−α
≥ 1

n

}
(2.3)

The normalization term 1∑kcut
i=1 i−α

allows us to compare degree distributions of any size

with the target distribution. The cutoff kcut is needed more for technical reasons: it avoids
to penalize a distribution for negligible value in the tail of the target distribution and it fixes
a limit for the practical computation of the distribution. We define now the scale-free cost
function:

Definition 2.2 (Scale-free cost function)
For any network G the scale-free cost function is the L2 relative distance to the target distri-
bution.

JSFα(G) =

∥∥∥ΠG −ΠSF
α,|G|

∥∥∥
2

‖ΠG‖2
, (2.4)

where ΠSF
α,|G| is the scale-free target distribution defined as in (2.2) and |G| is the number of

nodes in G.

Let us note that ΠG and ΠSF
α,|G| are not necessarily of the same size. In this case, zeros

are added at the end of the smallest vector so that the sizes match. Figure 2.1 illustrates this
cost function.

It is also possible to impose a scale-free distribution both on the indegree and the outdegree
with two different coefficients αin and αout. In this case the scale-free cost function is:

JSFα(G) =µin

∥∥∥Πin −ΠSF
αin,|G|

∥∥∥
2

‖Πin‖2
+ µout

∥∥∥Πout −ΠSF
αout,|G|

∥∥∥
2

‖Πout‖2
(2.5)

where µin, µout > 0 are two coefficients allowing to adjust the relative importance to steer
one distribution with respect to the other one. Having two different scale-free coefficients
for indegree and outdegree can be useful: if the network considered is endowed with a linear
dynamical system as in (19), the work in [75] suggests that different scale-free coefficients for
indegree and outdegree distribution can be useful to improve controllability.
Note that the mathematical results presented further are independent of the scale-free cost
function chosen. Hence, any definition of the cost function could be used without questioning
the validity of the results. However, as we are going to see, this definition gives sufficiently
good results.
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Figure 2.1: The scale-free cost function measures the difference between the degree distribution
ΠG and the target scale-free distribution which is here ΠSF

2,100. By minimizing the dashed zone
the reduce networks tends to be scale-free.

2.2.3 A meta-algorithm to solve the optimization problem

In this section, we present a general method providing a sub-optimal solution to problems
of the class presented in the previous section. This is a meta-algorithm in the sense that it
gives the skeleton of the method, and for each specific problem, some specifications have to be
provided. A way to solve exactly this problem is to explore all the partition of a given network
and select the one which minimizes the scale-free cost function and respects the constraints.
However, as mentioned in Chapter 1 the number of partitions of a network is very large (even
for connected partitions) and the exploration of all of them is computationally unfeasible. We
propose hence an iterative algorithm in which at each step we look for the merging Sv,w min-
imizing the scale-free cost function2. As presented in introduction, a merging is a particular
type of partition where only two nodes are gathered together. Therefore, instead of exploring
once the set of all partitions we explore iteratively the set of merging.
By doing this, the number of computations is hugely reduced. Here is an insight of this econ-
omy of computation: the number of partitions of a network with n nodes in k parts is called
the Stirling number of the second kind, and its order of magnitude is kn−k [107]. In contrast,
the number of merging of a network with n nodes is n2 and to reach k parts, the research has
to be iterated n − k times. Therefore, via this approximation, the number of candidates to
test goes down from about kn−k to (n− k)n2, which is a huge improvement when considering
large-scale network. As an example, to partition a network of n = 100 nodes in k = 20 parts,
the exploration of all partitions would require around 10104 test and an iterative exploration
of merging would require around 8.105 tests. In the particular case of connected partitions,

2This is why we just need the result of Theorem 2.2 for merging.
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the computations would be more complicated (the estimation found in Chapter 1 could be
used) but the gain would be of the same magnitude.
By using this approximation, the Scale-Free cost-function is only minimized at each iteration.
This is a greedy algorithm, and it will not find the best solution of Problem 2.1. We will
see, though, that the networks obtained with this method are sufficiently close to a scale-free
structure. Furthermore, even with this approximation, when dealing with large-scale net-
works, looking for the best merging Sv,w within all pair of nodes (v, w) still requires heavy
computations. As pointed above the number of tests is cubic with respect to the number of
nodes. For a network with ten thousand nodes, it would require around 1012 tests, which is
unreachable in reasonable time. Therefore, to cut this complexity, the best merging Sv,w is
searched among a relatively small random subset of pair of nodes (v, w). The effect of the
approximation due to this random selection will be discussed later.
Based on this, we present now the meta-algorithm providing a sub-optimal solution to Prob-
lem 2.1. Algorithm 1 describes our approach; therein Gk is the network at step k and is
represented by the triple (Ak, Ek, Vk). The inputs are the initial network G0 ∈ Ψ, a scale-free
coefficient αSF > 0 and an integer nrand ∈ N corresponding to the the size of the random
subset of pair of nodes. As explained previously, the algorithm consists in a loop (line 2)

Algorithm 1 Meta algorithm - Merge To Scale-Free
Input: G0, αSF , nrand

Output: Gend
1: k = 0

2: while ¬stop do
3: Ω←− nrand random elements of Vk × Vk verifying constraints of Problem 2.1
4: for (v, w) ∈ Ω do
5: nSF (Sv,w) = JSFα(Merge(Gk,Sv,w))

6: end for
7: Sbest = argmin nSF (Sv,w)

8: Gk+1 = Merge(Gk,Sbest)
9: k = k + 1

10: end while

decomposed as follows: first a random subset Ω of nrand pair of nodes is generated (line 3).
Then for each pair of nodes (v, w) in Ω, the scale-freeness of the network obtained by merging
Sv,w in the network Gk is computed (line 5). Finally, the best merging under the constraints
of the problem is selected (line 7) and the new network is obtained by operating this merging
(line 8).
The function Merge associates to a network G and a merging S, a new network obtained G1

verifying G0 �S G1. Function Merge may include the computation of the weights of the new
network in order to respect the constraints of the problem. The stopping criterion stop is not
discussed here, it may be defined as the step where it is no more possible to find a merging
that decreases the scale-free cost function, or as a fixed number of iterations if the size of the
reduced network is given.
Let us note that if we want to obtain a connected partition it is sufficient to consider only
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pair of connected nodes at each step: the line 3 is thus replaced by

Ω←− nrand random elements of Ek. (2.6)

The loss due to this modification has been discussed in Chapter 1. For now on, we will mainly
focus on the connected partition case, as the problem posed in this chapter is more addressed
to traffic networks with a geographical nature.
The class of problem 2.1 and the Algorithm 1 form the framework in which the two following
sections take place. This framework will also be used in an application to epidemic developed
in 5.2 where we take advantage of the scale-freeness of the abstracting network to design a
vaccination strategy.

2.3 A first instance of the problem fostering node similarity

In this section, we present a first problem fitting the class of problem 2.1. We consider here
a network, in which a value is attributed to each node. Besides the scale-free objective, we
want to obtain a partition in which the value of nodes within a same part are close. This
section does not present any major contribution but has a didactic purpose to manipulate
the framework presented before. It will also allow to illustrate the algorithm with an online
animation.

2.3.1 Specific problem formulation

A way to ensure a coherency in the reduced network G1 is to gather only nodes of G0 having
a close value. For example, in a social network we may want to merge only individuals of the
same age, or in a road traffic network to merge only roads with a similar density. We denote
{x1, . . . , xn} the value attributed to each node of G0 and S the partition of G0 defined as:

S = {S1, S2, . . . , Sp} where Sk = {vi1 , . . . , vipk} ⊂ V0 (2.7)

In order to define the constraint we introduce the following notion.

Definition 2.3 (Divergence)
Considering a network G0 and a partition S, we define ∆(G0,S) the divergence of G0 in S
the following quantity:

∆(G0,S) = max
Sk∈S

max
i,j∈Sk

|xi − xj | (2.8)

The divergence of G in S is the maximal difference between two nodes in a same part. We
want to ensure that two nodes in a same part have at maximum a distance of ε. This leads
to the following formulation of the problem:

Problem 2.2
Given an initial network G0, a desired scale-free coefficient α, and a threshold ε, find a network
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G1, solution of the following minimization problem.

min
G

JSFα(G), subject to G0 � G
∆(G0, S) < ε

(2.9)

Therefore, ∆(G0, S) < ε is the binary relation translating the similarity we want to pre-
serve. Let us note that unlike the formulation of the general Problem 2.1 the similarity
constraint here concerns directly the initial network G0 and the partition S. Actually, this
constraint concerns indirectly the graph G1 as this one depends only on G0 and S. This
difference is negligible and an equivalent formulation of Problem 2.2 could make appear G0

and G1.

2.3.2 Specific algorithm

Based on the skeleton given in Algorithm 1, we propose here an algorithm providing a sub-
optimal solution to Problem 2.2. To ensure that two nodes in a same part can not respect
the distance ε, at each step the lower and higher value of the nodes composing a part must be
known. Therefore, we associate to the nodes v of the current network Gk, the couples (mv,Mv)

respectively the minimum and maximum value of the nodes merged in v. This algorithm is
obtained by adding a block if..then..else to test the difference between the nodes of the tested
edge.

Algorithm 2 Merge To Scale-Free with node similarity
Input: G0, αSF , nrand, ε
Output: Gend
1: k = 0

2: while ¬stop do
3: Ω←− nrand random elements of Ek
4: for (v, w) ∈ Ω do
5: if |Mv −mw| < ε and |mv −Mw| < ε then
6: nSF (Sv,w) = JSFα(Merge(Gk,Sv,w))

7: else
8: nSF (Sv,w) = +∞
9: end if

10: end for
11: Sbest = argmin nSF (Sv,w)

12: Gk+1 = Merge(Gk,Sbest)
13: k = k + 1

14: end while

Where, the function Merge(Gk,Sbest) is as follows:

Merge(G,Sbest) : Γn × Ek −→ Γn−1

G, (v, w) 7−→ G′ = ( · ,V ′, E ′)
(2.10)
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where

V ′ = (V\{v, w}) ∪ vw
E ′ = (E\{v, w}) ∪ {(vw,Nout(v) ∪Nout(w))} ∪ {(Nin(v) ∪Nin(w)), vw}

mvw = min(mv,mw)

Mvw = max(Mv,Mw)

(2.11)

An animation illustrating an execution of Algorithm 2 is available online3. In this video,
the color of the nodes indicates their value between 0 and 1 and the parameters are fixed as
follows ε = 0.2, nrand = 10 and αSF = 2.3. The convergence of the degree-distribution (plotted
in a log-log representation) towards a scale-free distribution appears clearly. However, we can
also see that at the very, when the reduced network becomes too small the degree distribution
starts to get apart of this objective. A way to explain is to imagine that at the limit the
reduced network is reduced to an only node. At this point, the network is not scale-free
anymore. Therefore, after passing an optimum the network will get further to a scale-free
structure. Figure 2.2 illustrate this evolution of the scale-free cost function.

Figure 2.2: Evolution of the scale-free cost function through the algorithm. The evolution is
averaged over 100 simulation on a same network of size 1000 with nrand = 50.

2.4 Property preserving problem

In this section we present a less trivial problem, implying constraints on the dynamics of the
network. In order to design an algorithm respecting these constraints we will first present
several intermediate results. This problem and its solving represent the main contribution of
this chapter. Sections 2.5 and 2.1 will present additional results and simulations about this
problem.

3see https://www.youtube.com/watch?v=h3NUfM5weP4

https://www.youtube.com/watch?v=h3NUfM5weP4
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2.4.1 Preliminaries

We first present a couple of concepts that will allow us to specify the merge to scale-free
problem.

Eigenvector distance

In order to compare the behavior of two networks, we will consider the eigenvector centrality
defined hereafter.

Definition 2.4 (Eigenvector centrality)
The vector of eigenvector centrality is a vector, denoted x?, associating to each node of the
network its relative importance. It is the only vector4 verifying:

x? = P>x? and ‖x?‖1 = 1 (2.12)

where P is is the adjacency matrix normalized by rows which is:

Pi,j =
Ai,j∑
k

Ai,k
, (2.13)

This centrality can be viewed as the ratio of time spent by a random walker5 on each node
of the network. This centrality is also the steady state of the following discrete dynamical
equation: {

x(k + 1) = P>x(k)

x(0) = x0
(2.14)

for any value of x0.

We denote Φ the operator associating a network in with its eigenvector centrality:

Φ : G 7−→ x?, s.t. x? = P>x? and ‖x?‖1 = 1 (2.15)

Let us note that strong connectivity is a necessary condition for computing the eigenvector
centrality and hence to develop the rest of our analysis. Therefore, for now on, we consider, in
this section, that the initial networkG0 is strongly connected. Let us note that traffic networks,
one of our applications of interest, are always strongly connected (one can picture that it is
always possible to reach any point from any point via roads). To compare a network G0 with a
network G1 issued from the partition S of G0 based on their eigenvector centrality, we need an
operator of projection σS . The projection corresponds to the sum of the components within
each part of the partition. We give here a precise definition:

4The existence and uniqueness is ensured by the Perron-Frobenius theorem [103]
5When he is on a node, the walker chooses randomly his next step among the neighbors of the node with

a probability proportionally to the weights on the edges.
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Definition 2.5 (Projection operator)
Let x ∈ Rn and S a partition of the set {1, .., n}, we define the projection operator σS as:

σS : Rn −→ R|S|

x 7−→ y : ∀i, yi =
∑
j∈Si

xj
(2.16)

This operator can be written as a matrix operation: σS(x) = KSx where:

(KS)i,j =

{
1 if j ∈ Si
0 else

(2.17)

We can compare two networks G0 and G1 verifying G0
S
� G1 by looking at the vector

∆G0,G1 defined as:
∆G0,G1 = Φ(G1)− σS(Φ(G0)) (2.18)

The i − th entry of ∆G0,G1 represents how close the centrality of the nodes i in G1 is to
the sum of the centralities in the subset Si in G0. ∆G0,G1 will be called eigenvector distance6

between the networks G0 and G1.

Figure 2.3 illustrates the computation of the projection and the comparison between G0

and G1.

The eigenvector distance defined by (2.18) quantifies the loss of information through the
partitioning regarding the steady-state of the initial network. The network G1 is aimed to
abstract the dynamical behavior of G0 but the dynamics inside each parts is lost and only
the dynamics between the parts is taking into account. Therefore, the eigenvector distance
measures how much the deletion of the internal dynamics impacts the estimation of the ag-
gregated eigenvector centrality. Imposing ∆G0,G1 to be small implies that the weights of G1

have to be computed in such a way that the dynamics of G1 can mimic the dynamics of G0

without taking into account the internal structure of the parts. We will see in the next section
that it is actually always possible to compute the weights of the reduced network in order to
cancel out the eigenvector distance. Said otherwise, for any partition of G0, the weights of G1

can be computed such that the eigenvector centrality of each node of G1 corresponds to the
sum of the eigenvector centralities in the corresponding subset of G0.
The eigenvector centrality is particularly interesting to preserve for some applications. As an
example, consider a network where some items (cars, people, goods,...) travel from one node to
another following equation (??). By canceling the eigenvector distance, the distribution of the
items at the steady-state is preserved: the number of the items in a part of the partition equals
the number of items given by the abstracting network. Therefore, the abstracting network
can be used to estimate and analyze the aggregated steady state of a large-scale network.

6Note that the term distance does not correspond used here to the mathematical acceptance of this term
which is a scalar verifying a certain number of properties.
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G0
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.04

.27

Φ(G0) =[
0.05 0.11 0.16 0.27 0.13 0.04 0.05 0.05 0.04 0.04 0.01 0.01 0.03

]T

G1

.24
.24

.12

.40

Φ(G1) =[
0.24 0.40 0.12 0.24

]T

.16

.03.01

.04

.11 .05

.05 .13 .01

.04

.05

.04

.27Σ = 0.49

Σ = 0.13

Σ = 0.22
Σ = 0.05

σS (Φ(G0)) =[
0.59 0.22 0.13 0.05

]T

projection

∆G0,G1 = Φ(G1)− σS(Φ(G0))

∆G0,G1 =
[

-0.35 0.18 -0.01 0.19
]T

Figure 2.3: This figure illustrates the projection operator (2.16) and the computation of the
eigenvector distance (2.18). To compare the dynamical behavior of G0 and G1 (with G0 � G1)
we first compute the eigenvector centrality for each using (2.12). The computation of this
centrality depends on the weights assigned on the edges, here we considered that all weights
are equal to 1. As the two vectors are not of the same dimension we sum the component
of Φ(G0) within each part of the partition. In this way we obtain σS(Φ(G0)) which can be
compared with Φ(G1) leading to the vector ∆G0,G1 . Here we notice that the reconstruction
of the yellow part is good, while the reconstruction of the other part are not.
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Mass conservation

In the the problem we treat, we assume that the initial network is a flow network. As seen
in the introduction, this means that for each nodes, the amount of weight going in equals the
amount of weight going out. We aim to preserve this property through the reduction. The
preservation of this property has a strong physical meaning because some networks as electrical
networks, water supply networks or generally every network representing transportation are
flow networks by their nature. For instance, in electrical network this property corresponds
to the famous Kirchoff’s circuit law. Thus, by preserving this property we ensure that the
reduction method does not violate an intrinsic physical property of the system. We give here
a definition of the set of networks having this property:

Ψflow =

G = (A, V,E), ∀k,
∑
i

Aik =
∑
j

Akj

 (2.19)

We also call flow matrix an adjacency matrix of a flow network which is a matrix A such
that ∀k,

∑
iAik =

∑
j Akj .

Total mass

A third property of interest, when considering system implying a flow, is the total mass. The
total mass is the sum of all the weights in the network. When these weights have a physical
meaning (capacity, resistance,...) it may be useful to preserve their sum. The total mass of a
network G will be denoted by ‖G‖0. Equivalently, the sum of all the values of its adjacency
matrix A is denoted by ‖A‖0.

2.4.2 Specific problem formulation

In the previous section, we presented three notions allowing us to give specifications to Prob-
lem 2.1. Thus, we look for a reduced network that comes out of a partition of the initial
network with the following three features: it minimizes the scale-free cost function (2.4), it
is a flow network as defined in (2.19), it cancels out the eigenvector distance (2.18) and it
preserves the total mass of the initial network. This leads to the following formulation:

Problem 2.3
Given a strongly connected initial network G0 ∈ Ψflow and a desired scale-free coefficient α,
find a network G1, solution of the following minimization problem.

min
G

JSFα(G), subject to G0 � G
G ∈ Ψflow

∆G0,G = 0
‖G0‖0 = ‖G‖0

(2.20)
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Where Ψflow is given in (2.19) and 0 is a vector of zeros of the corresponding dimension.
To compare with the general formulation (2.1), here the physical property to preserve is
the mass conservation Ψ = Ψflow and the similarity is decomposed in two components:
G0 ≡ G ⇐⇒ ∆G0,G = 0 and ‖G0‖0 = ‖G‖0.

2.4.3 Result on the optimization problem

In this section, we present preliminary results on the constraints of Problem 2.3 leading to
the design of the specific algorithm. In particular, we will see how the weights of the reduced
network can be chosen such that: i) the eigenvector distance is null, ii) the reduced network
remains a flow network and iii) the sum of all weights in the network is preserved.
These results refers to the hard constraint of the problem.

Canceling eigenvector distance

Here, we are going to see that, with a certain choice of the weights of the reduced network, we
can ensure a perfect consistency, in terms of eigenvector centrality, between the two networks.

Theorem 2.1
Let G0 = (A0, V0, E0) ∈ Γn. Let G1 be the network coming out of the merging Sv,w for any
edges (v, w) ∈ E0. There is a choice of the weights of G1 such that the eigenvector distance
between G0 and G1 is null, which is ∆G0,G1 = 0.
To do so, it is sufficient to take P1, the normalized adjacency matrix of G1 as:

P1 = FP0H
>, (2.21)

where F,H ∈ Rn−1×n are defined by:

Fi,j =


1 if i < n− 1 and Si = {j}
βv if i = n− 1 and j = v

βw if i = n− 1 and j = w

0 else

(2.22)

Hi,j =

{
1 if j ∈ Si
0 else

(2.23)

and βv =
x?0(v)

x?0(v)+x?0(w) , βw =
x?0(w)

x?0(v)+x?0(w) where x?0 is the eigenvector centrality of G0.

Proof of Theorem 2.1 In order to prove Theorem 2.1 we have to show three points which
are: the matrix P1 defined in (2.21)
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i) has a structure compatible with a network coming out of the merging Sv,w of the network
G0

ii) is normalized

iii) has an eigenvector centrality equal to the projection of the eigenvector centrality of P0

This three points will be proved one after the other:

i) By definition of a network coming out of a partition (see (7)), there is an edge i −→ j

in the reduced network if and only if there exists an edge l −→ k in G0 such that l ∈ Si
and k ∈ Sj . We want to show that the position of the non-zeros values in P1 respects
this. By definition of P1 (2.21), we have:

P1i,j =

n∑
k=1

n∑
l=1

Fi,lP0l,kHj,k

and, from the definition (2.23), we know that Fi,l 6= 0 ⇔ l ∈ Si and that Hj,k 6= 0 ⇔
k ∈ Sj . Thus:

P1i,j =
∑
k∈Sj

∑
l∈Si

Fi,lP0l,kHj,k

It comes out that:

P1i,j 6= 0⇐⇒ ∃(l, k) ∈ Si × Sj s.t. P0l,k 6= 0 (2.24)

Therefore, P1 is indeed the adjacency matrix of a network coming out the merging Sv,w
of the network G0.

ii) We want to show that the matrix P1 is normalized in the sense that ∀i ∈ [1, . . . , n− 1]

we have
∑

j P1i,j = 1. By definition of P1 (2.21), we have:

n−1∑
j=1

P1i,j =
n−1∑
j=1

∑
k∈Sj

∑
l∈Si

Fi,lP0l,kHj,k

We decompose
∑n−1

j=1 P1i,j in
∑n−2

j=1 P1i,j + P1i,n−1, and so

n−1∑
j=1

P1i,j =
∑

k∈Sn−1

∑
l∈Si

Fi,lP0l,kHn−1,k +
n−2∑
j=1

∑
k∈Sj

∑
l∈Si

Fi,lP0l,kHj,k

We recall that a merging Sv,w has the following form:

Sv,w = {{1}︸︷︷︸
S1

, . . . , {v − 1}︸ ︷︷ ︸
Sv−1

, {v + 1}︸ ︷︷ ︸
Sv

, . . . , {w − 1}︸ ︷︷ ︸
Sw−2

, {w + 1}︸ ︷︷ ︸
Sw−1

, . . . , {n}︸︷︷︸
Sn−2

, {v, w}︸ ︷︷ ︸
Sn−1

} (2.25)
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We note that for all j < n− 1, there exists a unique k ∈ Sj and so, with the definition
of H (2.23), a unique k such that Hj,k = 1. Denoting it by kj , we have:

n−1∑
j=1

P1i,j =
∑

k∈{v,w}

∑
l∈Si

Fi,lP0l,k +

n−2∑
j=1

∑
l∈Si

Fi,lP0l,kj

Moreover, when j covers the set {1, ..., n−2} then kj covers the set {1, .., n}\{v, w} and
then:

n−1∑
j=1

P1i,j =
∑

k∈{v,w}

∑
l∈Si

Fi,lP0l,k +
∑

k∈{1,..,n}\{v,w}

∑
l∈Si

Fi,lP0l,k

Finally, merging the two parts of the sum, we have:

n−1∑
j=1

P1i,j =

n∑
k=1

∑
l∈Si

Fi,lP0l,k

=
∑
l∈Si

Fi,l

n∑
k=1

P0l,k

Yet, P0 is normalized, so
∑n

k=1 P0l,k = 1. It follows:

n−1∑
j=1

P1i,j =
∑
l∈Si

Fi,l

Now, either i < n−1 and, with the definition of F (2.23) we have directly
∑n−1

j=1 P1i,j = 1,
or i = n− 1 and then

n−1∑
j=1

P1n−1,j =
∑

l∈Sn−1

Fn−1,l

n−1∑
j=1

P1n−1,j = βv + βw =
x?0(v)

x?0(v) + x?0(w)
+

x?0(w)

x?0(v) + x?0(w)
= 1

Therefore, based on the proof of i) and i)), P1 is the normalized adjacency matrix of a
reduced network G1 coming out of the merging Sv,w of G0.

iii) Let x?1 be the eigenvector centrality of G1. We want to show that σ(x?0) = x?1. It is
sufficient to show that σ(x?0) fulfill the definition of the eigenvector centrality of G1

which are σ(x?0) = P>1 σ(x?0) and the sum of σ(x?0) is 1. By uniqueness of the eigenvector
centrality, this will proof iii). Before that, we need some preliminary results:
At first, we remark that the definition of H is the same as the definition of KS in (2.17)
so we have σ(x) = Hx for all x. Moreover, the matrix product H>F has the following
form:
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H>F =



1
. . .

1

βv βw
1

. . .
1

βv βw
1

. . .
1



(2.26)

which can also be written as follows:

H>F = In−1 + (βv − 1)en−1
v,v + βve

n−1
w,v + (βw − 1)en−1

w,w + βwe
n−1
v,w

where eni,j is the square matrix of size n whose only non-zero entry is a 1 at the (i, j)th
position, and In is the identity matrix of size n. It follows that

∀i /∈ {v, w}, (x?>0 H
>F )i = x?0(i)

and if i = v, (x?0
>H>F )v = x?0(v)βv + x?0(w)βv

(x?0
>H>F )v = (x?0(v) + x?0(w))

x?0(v)

x?0(v) + x?0(v)
= x?0(v)

and if i = w, (x?0
>H>F )w = x?0(v)βw + x?0(w)βw

(x?0
>H>F )w = (x?0(v) + x?0(w))

x?0(w)

x?0(v) + x?0(v)
= x?0(w)

Hence x?0
> = x?0

>H>F , and then:

x?0
>P0H

> = x?0
>H>FP0H

>

and by definition x?0
>P0 = x?0

> and FP0H
> = P1

x?0
>H> = x?0

>H>P1

Hx?0 = P>1 Hx
?
0

σ(x?0) = P>1 σ(x?0)

Moreover, it is clear that
∑
σ(x?0) =

∑
x?0 = 1. Thus, σ(x?0) fulfill the definition of the

eigenvector centrality of G1. And by uniqueness of the eigenvector centrality σ(x?0) = x?1.
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This result concerns only merging, which is a particular partition, but it can be extended
to any partition. For simplicity, and since it is sufficient for the following, we have only shown
the case of the merging. Note that the preservation of the eigenvector centrality influences
only the normalized adjacency matrix of G1. Therefore, it remains many degrees of freedom
to choose the adjacency matrix and so the weights of G1.

Preservation of the mass conservation

The mass conservation property defined in (2.19) is another physical property that we aim to
preserve through the reduction. We see here that if the initial network is a flow network we
can ensure that the reduced network is a flow network too.

Theorem 2.2
Let P be a normalized matrix as defined in (2.13) then it exists a diagonal matrix X such that
XP is a flow matrix.
To do so, it is sufficient to take X as:

X = κDiag(x?) (2.27)

= where κ 6= 0 and x? is the eigenvector centrality associated with P .

Proof of Theorem 2.2

Let x? be the eigenvector centrality of P , which is x?P = x? and X = κDiag(x?) for any
κ 6= 0. We have that κx?P = κx? and consequently 1>XP = 1>X = (X1)> = (XP1)>.
Thus, the vector whose entries are the sum of the column of XP is equal to the vector which
entries are the sum of the row of XP . Hence, XP is a flow matrix.

As the preservation of the mass conservation does not influence the normalized adjacency
matrix it is compatible with the canceling of eigenvector distance. Moreover, with κ we still
have one degree of freedom to choose the weights of G1.

Preservation of total mass

From Theorems 2.1 and 2.2 we have the following corollary:

Corollary 2.1
Let G0 be a network and P0 its normalized adjacency matrix. Let S be any merging and F
and H the merging matrices associated to S. Consider the network G1 defined by the matrix
A1 as:

A1 = κDiag(x?1)FP0H
>, (2.28)

where x?1 is the eigenvector centrality of P1 := FP0H
> and κ 6= 0. Then G1 is a flow network

and ∆G0,G1 = 0.
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Let us note that the network G1 is not unique as its adjacency matrix is defined up to a
multiplicative constant κ. In the following we fix κ such that the sum of all weights in G1 is
equal to the sum of all weights in G0, which is:

κ =
|A0|0

|Diag(x?1)FP0H>|0
(2.29)

where | · |0 is defined as: |A|0 =
∑

i,j Ai,j for all matrices A.
In this way, the reduced network G1 is uniquely defined and verifies the constraints of Prob-
lem 2.3.
Thus given a network G0 and a merging S, we denote GS0 , the network coming out the parti-
tion of S and fulfilling all the constraints of Problem 2.3. The adjacency matrix of this graph
is given by:

AS0 =
|A0|0

|Diag(x?1)FP0H>|0
Diag(x?1)FP0H

> (2.30)

Reformulation of the optimization problem

The results of this section has shown that for any partition we can choose the weights of the
resulting network such that the constraints of Problem (2.3) are respected. Therefore, finding
the partition minimizing the scale-free cost function is enough to solve Problem (2.3). Thus,
we formulate this new problem:

Problem 2.4
Given G0 = (A, V,E) ∈ Ψ, find the partition S minimizing the scale-free cost function:

min
S

JSFα(GS0 ) (2.31)

2.4.4 Specific algorithm

Based on the result of the Section 2.4.3, a description of the algorithm is presented in Al-
gorithm 3. Therein„ the network Gk is represented by (Ak, Ek, Vk). First, we compute the
eigenvector centrality x?0 of the initial network (line 1), the normalized adjacency matrix P0

(line 2) and the coefficient κ (line 3). A random subset Ω of nrand edges is drawn (line 6). For
each edge S, we compute the reduced network GS coming from the merging S in Gk (line 8)
using κ, x?k and Pk. The scale-free cost function of GS is computed (line 9). Finally, the best
edge to merge is chosen (line 11) and the new network is computed (line 12). After recomput-
ing x?k as a projection of the previous value (line 13) and Pk (line 14), the loop restarts with
the new network.
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Algorithm 3 Merge to scale-free with property preservation
Input: G0, αSF , nrand

Output: Gend
1: x?0 = Φ(G0)

2: P0 from (2.13)
3: κ from (2.29)
4: k = 0

5: while ¬stop do
6: Ω←− nrand random elements of Ek
7: for (v, w) ∈ Ω do
8: Compute GSv,wk from (2.30)
9: nSF (Sv,w) = JSFα(G

Sv,w
k )

10: end for
11: Sbest = argminnSF (Sv,w)

12: Gk+1 = GSbestk from (2.30)
13: x?k+1 = σSbest(x

?
k)

14: Pk+1 from (2.13)
15: k++
16: end while

2.5 Some results about the algorithm

2.5.1 Algorithm complexity

In this section, we discuss the complexity of the algorithm in terms of number of operations.
Several definitions and notations are used to quantify an order of magnitude. Here, we use
the notation Θ( · ) defined as follows:

f(x) = Θ(g(x)) ⇐⇒ ∃ c1, c2 > 0, c1g(x) < f(x) < c2g(x) (2.32)

Proposition 2.1
Consider Algorithm 3 on an initial network G0 with N nodes, and with nrand the size of the
random subset. The algorithm can be divided in two phases:

• An initial phase in which, in particular, the eigenvector centrality is computed. The
complexity of this phase is Θ(N3) in the worst case, but can be lowered to Θ(N2) in
some cases.

• The reduction phase which consists in at most N iterations having each a complexity of
Θ(Nnrand)

Overall the worst-case complexity is Θ(N3).
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Proof of Proposition ?? For the first phase, the computation of an eigenvector needs
Θ(N3) operations. However in [117], it is shown that if the maximum degree of the network
is bounded, the computation can be done in Θ(N2).
For the second phase, we know that at each step of the algorithm, the number of nodes
decreases by 1 and the total number of iterations can not be larger than N . Then, we consider
that the number of steps is Θ(N). Let C be the total number of operations in each iteration,
we have

C = Crand + nrand

(
CMerge + CJSFα

)
+ Cargmin + Cσ

The different functions can be detailed as follows:

• rand consists in picking nrand values, so Crand = Θ(nrand).

• Merge is the computation of the new network (2.30), which can be computed as a
combination of the columns and rows of the previous adjacency matrix, so CMerge =

Θ(N).

• JSFα can be decomposed as follow:

• Compute the degree distribution of the adjacency matrix. The number of operation
needed is the number of different degrees in the network. Thus, the number of
operations is smaller than N .

• Computation of the scale-free cost function: it is the norm of a difference of two
vectors whose sizes are always smaller than N . Thus, the number of operations is
also smaller than N .

Finally CJSFα
= Θ(N).

• argmin require Θ(nrand) operations.

• σ consists in the combination of the coordinates of x?k. Hence Cσ = Θ(N)

Finally we have:

C = Θ(nrand + nrand(N +N) + nrand +N)

C = Θ(Nnrand)

Thus, the complexity of the second phase is Θ(N2nrand).

This complexity is polynomial with respect to the size of the initial network, whereas the
naive way to find a partition of a network by testing all possibilities have an exponential
complexity. Even by improving the partitioning algorithm, the complexity is lower-bounded
by the complexity of the eigenvector centrality which can not be lowered. However, this
algorithm is not supposed to be run in real time, but once to find a reduced network which
can then be used as an abstracting model. Thus a relatively high complexity is not crippling
for the application.
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The complexity of the reduction phase is linear with respect to nrand. Therefore, it is possible
to tune this parameter to reduce the computation time. We will investigate in the next section
the influence of this parameter on the performance of the algorithm.

2.5.2 Influence of the size of the random subset

In this section, some experiments are presented to emphasize the influence of nrand in Algo-
rithm 3. In particular, we focus on two points:

1. The speed of convergence towards a scale-free network: Through the iterations, the
current network gets closer and closer to the scale-free structure. We will wonder to
what extent testing more candidates at each iteration improves this convergence.

2. The reproducibility of the the algorithm: As the algorithm implies a random process
(the generation of the subset of pair of nodes), even with similar initial conditions,
two executions of the algorithm will produce different output. We will wonder if these
different output still have similar properties. Beyond the similarity of the properties,
we will also wonder if the reduced networks come from similar partitions and so if some
areas of the network of the initial network tend to always cluster together.

For these experimentations we will consider a synthetic family of networks: the Manhattan-like
grids introduced hereafter
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The Manhattan-like grid Manhattan grids, or simply grids, is a family of di-
rected network inspired by the topology of the urban network of Manhattan [112].
It consists simply of a grid of size N ×N in which each of the N2 intersections is a
node. Therefore G = (A,V, E) is a N ×N Manhattan grid if:

∀ i, j ∈ [1, . . . , N2], Ai,j = Aj,i =


1 if i− j = 1 and i 6≡ 1 mod n

1 if i− j = N

0 else
(2.33)

In our case, in order to get heterogeneous networks we add some random irregulari-
ties:

• Nodes are removed with probability β:

∀ v ∈ V, V = V\{v} with probabilityβ (2.34)

• Diagonal shortcuts are created with probability γ

∀ i, j ∈ [1, . . . , N2], s.t. i− j = N + 1 and i 6≡ 1 mod n

or i− j = N − 1 and i 6≡ 0 mod n

E = E ∪ {(i, j)} with probability γ

(2.35)

• Edges are restricted to a unique direction with probability δ

∀ (i, j) ∈ E , E = E\{(i, j)} with probability δ/2

and E = E\{(j, i)} with probability δ/2
(2.36)

Such a network is a Manhattan grid with perturbations, hence the name Manhattan-
like grid. The weights on the edges are generated randomly while ensuring that the
grid is a flow network (see Appendix B). The advantages of this type of network
are multiple: i) the degree distribution is far from a scale-free distribution, so it
can shows the ability of the algorithm to steer the network towards a scale-free
structure, ii) it is easy to build this type of network, even with an arbitrarily large size,
making the results presented easily reproducible and iii) it is a good representation of
some physical networks [116] such as urban traffic networks or brain networks [121].
Hereafter an example from this family of network where thick lines represent double-
way edges.
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On the convergence of the algorithm

In fig. 2.4 we observe the evolution of the scale-free cost function through the iterations of
the algorithm for different values of nrand. When nrand = 1, the edge merged is randomly
chosen. That is why it is labeled ’Random edge’ in the legend. Let first remark that for
every value of nrand the error decreases initially, even in the case nrand = 1, where the edge to
merge is randomly selected. This shows that networks (at least this type of grids) naturally
tends towards a scale-free structure when edges are iteratively merged. The figure shows that
the benefit from increasing nrand is logarithmic. Thus, increasing nrand does not increase
substantially the performance while it increases linearly the computation time as seen in
Proposition 2.1. In this case, nrand = 10 produces network almost as scale-free as in the
exhaustive case while being around 100 times faster (in the exhaustive case, there is about
1000 edges to test).

Figure 2.4: Comparison of the evolution of the scale-free cost function through the algorithm
for different values of nrand. The initial network is a Manhattan-like grid of size 45× 45 and
with 1962 nodes. The simulation is stopped when the size of the current network is equal to
5% of the size of the initial network.

On the reproducibility of the algorithm

Now we examine, how close the networks obtained via several executions of the algorithm
are and how the value of nrand influences this consistency. To answer this question, we have
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executed Algorithm 3 several times with the same initial network and the same parameters.
Then, we compare topological properties of the networks obtained. Precisely, we consider an
initial Manhattan-like grid 25 × 25 and we run the algorithm until there is no more merging
that increases the scale-freeness. We have executed the algorithm 50 times with nrand = 3, 50

times with nrand = 30 and once with nrand = +∞ which is the exhaustive case (as the output
is deterministic one execution is enough). Then, we compute four properties for each output
network: number of edges, number of nodes, radius (minimum eccentricity of any node), and
scale-free cost function. Let us note that, to have a fair comparison, the radius is divided
by the number of nodes in the network. In fig. 2.5 the results are presented in the form of
histograms.

Figure 2.5: Histograms of the properties of the different networks obtained with different
instances of the algorithm and with the same initial network. For each property, the x-axis
represents the values and the y-axis, the frequency of apparition of each value. The green bars
shows the values obtained when nrand = 3, the red bars when nrand = 30 and the blue bar
when nrand = +∞. The superimposed lines fits the histograms.

We remark that the values are arranged around an expected value in an almost bell-
shaped distribution. When nrand is higher, this Gaussian behavior is more marked with a
lower mean deviation is lower and an expected value closer to the case nrand = +∞ (which
can be considered as a reference value). Therefore, as expected, a large value of nrand reduces
randomness.
In addition to the question of the consistency of the properties, we wonder if the partitions
obtained from different execution of the algorithm are close. For this purpose, we compare the
partitions obtained when nrand = 3 and nrand = 30 with the partition of reference obtained
with nrand = +∞. A common way to compare two partitions is to use the normalized mutual
information [32, 42]. The definition is quickly recalled hereafter. It is rather technical, thus
the reader can pursue the reading just knowing that the normalized mutual information gives
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a value between 0 and 1 on the similarity between two partitions.

The normalized mutual information Let us consider two partitions S =

{S1, ..., Sm} and T = {T1, ..., Tp} over a networka of size n. The partial distri-
butions of the part Si is P (Si) = 1

n |Si|. It measures the proportion of nodes which
are in the part Si. The joint distribution of Si and Tj is P (Si, Tj) = 1

n |Si ∩ Tj |. It
measures the proportion of nodes which are both in Si and Tj . The entropy of the
partition S is defined as H(S) = −

∑
i P (Si) log(P (Si)) and translates how much

the set {1, .., n} is fragmented in S:
if S = {{1, ..., n}}, then H(S) = −P ({1, ..., n}) log(P ({1, ..., n})) = 0 = −1× log(1).
On contrary if S = {{1}, ..., {n}}, then the entropy is maximal.
The joint entropy is defined as H(S, T ) = −

∑
i,j P (Si, Tj) log(P (Si, Tj)) and

translates how much the set {1, .., n} is fragmented in the intersection partition
{S1 ∩ T1, S2 ∩ T1, ..., Sm ∩ Tp}.
Finally, the mutual information is defined as Ĩ(S, T ) = H(S)+H(T )−H(S, T ). In a
word, it translates how much the intersection of S and T is more fragmented than S
and T are. To calculate the normalized mutual information, we add a normalization
factor: I(S, T ) = 2Ĩ(S,T )

H(S)+H(T ) .
Thanks to this tool coming from information theory, we are able to attribute a value
I(S, T ) ∈ [0; 1] to measure the similarity between two partitions S and T . In par-
ticular, if S = T then I(S, T ) = 1.

aHere, we consider partitions over a network, but the definition remains the same for partitions
over any set.

We consider a Manhattan-like grid of size 35×35. To test the consistency of the partitions,
we compare each of the 50 partitions obtained with nrand = 3 with the reference partition
(obtained when nrand = +∞). We also make the comparison between each of the 50 partitions
obtained with nrand = 30 and the reference partition. Figure 2.6 shows the obtained results.
Once again, we observe a bell-shaped distribution of the values. We observe that the mean
value is closer to 1 when nrand is larger. It means that, as expected, when the random effect
is reduced, the partitions obtained are closer to the reference partition.
In conclusion, in Sections 2.5.1 and 2.5.2 we have seen that when nrand increases: the run
time increases linearly, the scale-free error decreases logarithmically and the variability of the
outputs decreases. However, the consistency of the output is not necessarily a property of
interest. According to the numerical results, it appears that a relatively small value of the
number of edges tested at each step (nrand ≈ 20) is a good balance.

2.5.3 Modification of topological properties

The main effect of the algorithm is to modify the degree distribution of an arbitrary network.
However, one can wonder how the other structural properties of the initial network are mod-
ified. We would want to compare the properties of the initial and final networks, but the
direct comparison could be biased by the difference of their sizes. Therefore, to compare the
properties fairly, we generate a small-scale version of the initial network. This network is build
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Figure 2.6: Histograms of the normalized mutual information between the partition of refer-
ence and the 50 partitions obtained with nrand = 3 (in blue) and the 50 partitions obtained
with nrand = 30 (in red).

the same way as the initial network but with a size similar to the final network.
In Table 2.1 we show the structural properties of the initial network, of the small-scale version
of the initial network named reference network and the averaged values for 50 networks result-
ing of the algorithm. The structural properties which are compared are: Number of nodes,
number of edges, radius7, diameter 7, number of hub (we defined a hub as a node connected
with at least 5% of all nodes), clustering coefficient 7, maximum indegree and mean indegree.

Table 2.1: Modification of the properties of the network through the reduction

Initial network Reference network Reduced networks Evolution
Num. of nodes 1165 508 516.42 '
Num. of edges 4426 1911 2236.80 '

Radius 29 20 9.16 ↘
Diameter 57 37 17.22 ↘

Num. of hub 0 0 35.14 ↗
Clust. coeff. 0.1 0.1 0.43 ↗
Max indegree 6 6 23.3 ↗
Mean indegree 3.80 4.33 3.76 '

The comparison is rather fair since the reduced networks and the reference network have
a similar size (number of nodes and edges) and since the initial network and the reference
network are consistent (no hubs, same clustering coefficient, same max and mean degree).
One can remark that the characteristic distances (radius and diameter) of the reduced net-
work are significantly lower than the reference network, while the clustering coefficient is
significantly higher, which are two features commonly observed in scale-free models. The

7 These properties are defined in Section 0.2.2
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other topological modifications, presence of hubs and higher maximum indegree, is directly
explained by the power-law degree distribution of scale-free networks.

Simulation 2.1. In this section, Algorithm 3 is applied to an academic case. We consider
an initial large-scale Manhattan-like grid and we apply the reduction algorithm to it. The
tuning of the different parameters is presented in Table 2.2 and the output of the simulation
is presented in fig. 2.7.

Table 2.2: Parameters of the simulation on the Manhattan-like grid

Size |G| αSF nrand Degree
65× 65 3824 2 10 in

2.6 Conclusion

In this chapter, we have introduced a class of network partitioning problem inducing a scale-
free distribution. These problems are formulated as optimization problems: we want to opti-
mize the scale-freeness of the graph under constraints on similarity and properties preservation.
In particular, while treating a particular problem, we have shown that it is possible to opti-
mize the scale-freeness under three constraints: the eigenvector centrality is preserved up to a
projection, the total mass remains the same and the mass conservation property is preserved.
Then, we define a partition algorithm which takes advantage of these results and allows to find
a sub-optimal solution. Experimental results brought some insights on the functioning of the
algorithm and strong clues on the choice of a free-parameter of the algorithm. In particular,
we show that we can speed up the execution with almost the same efficiency.
The multi-level presentation of the problem and the algorithm allows to easily generalize our
results to other contexts. Moreover, the algorithm could be used to drive a network towards
any desired structure and still verify the similarity constraints. Chapter 4 presents an imple-
mentation of this algorithm on a large-scale traffic network taking advantage of the preserva-
tion of the properties. In the other, Section 5.2 presents an application in epidemiology taking
adavantage of the scale-freeness of the reduced network.
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(a) The initial network. Double-way links are
thicker than one-way ones.

(b) Indegree distribution of the initial net-
work, of the reduced network and the target
distribution in log-log representation.

(c) The reduced network issued from the partition. The size of the
nodes represents their degree and the color matches with the color of
the partition in (d).

(d) Final partition of the initial network. The color matches with the
colors of the nodes in the reduced network (c).

Figure 2.7: Result of the Manhattan-like grid simulation. (a) the initial network, (b) the
indegree distributions, (c) the final network and (d) the final partition. Sub-figure (b) empha-
sizes well the efficiency of the network to drive the degree distribution very close to the target
distribution.
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One of the main concern of the Scale-Freeback project is to develop tools for control
and observation of large-scale network. In particular, concerning observability, one question
echoed our investigation of network partitioning problems: how to partition a network between
measured and unmeasured nodes in order to ensure a good reconstruction of the network state ?
Precisely, the recent work of Niazi et al. [96] proposed the novel notions of average detectability
and average observability referring to systems in which it is possible to reconstruct the average
state of the unmeasured nodes (respectively in open and close loop). We will focus here on
average detectability that we will introduce more precisely later. Through this chapter we
present tools to partition a network in order to ensure this property or a relaxed version of
it. The last algorithm proposed in this chapter will be applied to network epidemiology in
Chapter 5.

83
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3.1 Introduction

In network theory, observation problems aim to reconstruct the state of the whole system
by knowing only the state of few nodes [123]. This topic has been widely studied and has
raised the question, among others, of the choice of the measured nodes to improve the recon-
struction [46, 62, 124]. In observability and controllability theories, most of the approaches
aim to reconstruct or to control the whole state of the systems [65, 76, 99, 106]. To solve the
problem in large-scale networks two issues emerge: the complexity of the computation and the
limited number of sensors (and/or their price). Taking this into account, it is often difficult to
reconstruct the exact state of a large-scale network. Yet, in many instances, there is no need
to reconstruct the state of each node, but only an aggregation of these states. For example,
in a large-scale traffic network, the number of measurements and the computational effort
required to reconstruct the density of vehicles in each street would be disproportionate since
the knowledge of the average density in different areas is quite enough for traffic management
purposes. Recently, Niazi et al. [96] took advantage of this observation and proposed the
notions of average observability and average detectability. These notions refer to the capacity
to reconstruct the average state of the unmeasured nodes respectively in closed-loop and in
open-loop. Precisely, in an average detectable system, it is possible to design an observer
estimating the average of the unmeasured nodes such that the error converges to zero. In this
chapter, we focus on this latter notion. In [96] the authors propose a sufficient condition for
average detectability allowing to test if a given network and a given subset of measured nodes
form an average detectable system. To go further, if it is possible to choose the placement
of the measured nodes, a question emerges: given a network what is the smallest subset of
nodes to measure in order to fulfill the average detectability condition ? Said otherwise, what
is the smallest subset of nodes to measure in order to be able to reconstruct the average of
the unmeasured nodes ? This is the question we address throughout this chapter.
In order to transform the condition for average detectability into a structural condition, we
will restrict ourselves to a particular type of system: negative uniform network. We will show
that with such systems, if the subgraph of unmeasured nodes forms a regular network1, then
the system is average detectable. Therefore, our problem becomes detecting the largest regu-
lar induced subgraph (RIS) out of a given network.
The question of finding induced subgraphs with particular properties has been addressed in
several works. We can cite the maximum clique problem [18] which has implications, in
particular, in social networks; frequent subtree mining [24] which is applied to data analysis;
induced subgraph isomorphism problem [113] or its variant as snake-in-the-box problem or the
maximum independent set problem. In most cases, these problems are either oriented to data
analysis or are graph problems with no direct application. To our knowledge, the present work
is the first to use an induced subgraph problem for a reconstruction concern. The problem
posed here -the detection of regular induced subgraph- has been studied in different contexts
and we will propose a brief review of the works in this domain in Section 3.2.
However we will see that the detection of regular induced subgraph to reach average detectabil-
ity raises some difficulties. Therefore, in Section 3.3, we relax the problem by introducing the

1Here, we call regular a network in which all the nodes have the same outdegree. The term out-regular
would be more accurate, but we prefer regular for readability concerns.
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notion of quasi-regularity, which qualifies a network which is close to be regular. We derive
then a result linking the error of regularity and the error of reconstruction: the more regular
is the unmeasured subgraph , the better is the reconstruction. On these grounds, we treat
the problem of quasi-regular induced subgraph detection (qRIS). Finally, we also extend the
approach to multiple quasi-regular induced subgraph (mqRIS) which allows to estimate aver-
ages of several subsets of nodes.
The main contributions of this chapter are:

• The emphasis of link between the reconstruction of the average and the regularity of the
unmeasured nodes.

• The design of algorithms identifying the nodes to measure such that the average of the
unmeasured nodes can be efficiently estimated.

The chapter is organized as follows: after some preliminaries, Section 3.2 presents the exact
problem of reconstruction and the algorithm associated and Section 3.3 presents the relaxed
problem, the extension to the multiple subgraphs case and the algorithms associated to both
problems.

3.1.1 Preliminaries

In this chapter we associate to the network a dynamical equation as introduced in the intro-
duction:

Σ :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3.1)

where A is the weighted adjacency matrix of the network, x(t) = [x1(t), . . . , xn(t) ]T is the
state vector associating a value to each nodes of the network and u(t) = [u1(t), . . . , up(t) ]T

is the input vector.
We will consider that the output vector y contains a sample of k components of the state
vector x. This means that y = [x1(t), . . . , xk(t) ]T and so C =

[
Ik 0

]
. The nodes

V1 := {v1, . . . , vk} are called the measured nodes while V2 := {vk+1, . . . , vn} are the un-
measured nodes. We denote m the number of unmeasured nodes: m = n− k. We also denote
x2(t) = [xk+1(t), . . . , xn(t) ]T , the state of unmeasured nodes and xav2 the average value of the
unmeasured nodes:

xav2 =
1

m
1Tx2 (3.2)

Correspondingly, we decompose the matrices A and B as follows:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
. (3.3)
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With A11 ∈ Rk×k, A22 ∈ Rm×m and all the other block matrices of corresponding dimensions.
We denote by σ the deviation vector defined as:

σ = x2 − 1xav2 =


xk+1 − xav2

xk+2 − xav2
...

xn − xav2

 (3.4)

This vector contains the difference between the value of each unmeasured nodes and the
average value of the unmeasured nodes. We have 1Tσ ≡ 0. The evolution of xav2 is described
by the following equation:

ẋav2 = αxav2 + gy(t) + bu(t) + ησ(t) (3.5)

with α = 1
m1

TA221, g = 1
m1

TA21, b = 1
m1

TB2 and η = 1
m1

TA22.
Let x̂av2 be an open-loop observer for xav2 described as:

˙̂xav2 = αx̂av2 + gy(t) + bu(t) (3.6)

We will see in the next section the condition on the system to ensure that the observer x̂av2

converges to xav2 .

3.2 Regular Induced Subgraph (RIS) detection for exact aver-
age detectability

In this section, we explore the problem of network partition between measured and unmeasured
nodes to ensure the average detectability property that we will precisely define. We will see
that under hypothesis, this partitioning problem can be solved by detecting a regular induced
subgraph. We will see then how to detect such subgraphs. Finally, we will enlighten some
limitations of this approach leading to the relaxed problem presented in the next section.

3.2.1 Average detectable system

Definition 3.1 (Average Detectability: AD)
A system Σ as defined in (3.1), with a subset V1 of measured nodes is said to be average
detectable if zero output and zero input implies that the average value of V2 converges to zero:

∀ xav2 (0) ∈ Rm, ∃T ∈ R, ∀ t > T, y(t) = 0m, u(t) = 0p =⇒ lim
t→∞

xav2 (t) = 0 (3.7)

where 0n is a vector of zeros of length n.

This means that, in an average detectable system, if nothing goes in or comes out the
unmeasured subgraph then the average value of the unmeasured nodes will vanish: No internal
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dynamics can live only within the unmeasured subgraph. The average detectability of system
Σ is in fact equivalent [96] to the convergence of this observer

Σ AD ⇐⇒ lim
t→∞
|x̂av2 (t)− xav2 (t)| = 0 (3.8)

where x̂av2 is the estimator defined in (3.6).
We exhibit hereafter a sufficient condition for average detectability. In order to introduce the
condition for average detectability we first define a network-based notion.

Definition 3.2 (Outflow balanced network)
Let G be a directed weighted network represented by its adjacency matrix A. G is said to be
outflow balanced2 if the sum of the weights of the outgoing edges is the same for every nodes,
which is :

∃ γ ∈ R, 1TA = γ1T (3.9)

Moreover, if γ < 0, then the network is said to be negatively outflow balanced.

Example 3.1 illustrates this property.

Example 3.1. Consider the network G represented in the figure hereafter. Its adjacency matrix
A is as follows:

A =


0 0 −2 −5

−5 0 −3 0

0 −1 0 0

0 −4 0 0

 (3.10)

We verify that 1TA = −5× 1T . Hence the network G is negatively outflow balanced.

v1

v2 v3v4

-5
-1

-4

-2

-3

-5

We can now give the condition for average detectability.

Proposition 3.1 (Sufficient condition for average detectability - Theorem 3 in [96])
Consider a system Σ associated to the network G and denote by GV2 the subgraph of G induced
by the subset of unmeasured nodes. The system Σ is average detectable if GV2 is negatively
outflow balanced.

2This term should not be mistaken with the notion of balanced network existing in network theory in a
different context.
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Figure 3.1: By measuring the node v2, the unmeasured nodes V2 = {v1, v3, v4, v5} induces a
negatively outflow balanced GV2 with γ = −2. Thus, the system is average detectable.

This result implies that, if the set of nodes can be partitioned into two subsets such that
one induced subgraph is negatively outflow balanced, then measuring the nodes outside this
subgraph makes the system average detectable. Figure 3.1 gives an example of such a system.

3.2.2 Regular Induced Subgraph detection

Motivated by Proposition 3.1, we shall consider the following problem.

Problem 3.1 (Negatively outflow balanced induced subgraph detection)
In a given network, find the largest induced subgraph which is negatively outflow balanced.

Based on Proposition 3.1, by measuring the nodes outside the subgraph found the system
is average detectable. However, in an arbitrary network with independent weights there is,
almost surely, no outflow balanced subgraph. That being said, two solutions can be considered:
either we restrict ourselves to particular systems for which we know that negatively outflow
balanced subgraphs can be found, or we relax the notion of average detectability and hence
the notion of regularity. The latter solution will be explored in Section 3.3 where we introduce
the notion of quasi-regularity. In the remainder of this section, we focus on the first solution:
we treat the problem for a particular type of systems: the negative uniform networks defined
hereafter.

Definition 3.3 (Negative uniform network: NUN)
A network G, represented by the adjacency matrix A, is said to be negative uniform if all its
non-zero weights are equal and negative, which is

∀ i, j, Aij ∈ {a; 0} (3.11)

with a < 0.

Given this definition, the following fact is immediate
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Proposition 3.2 (Sufficient condition for average detectability of negative uniform network)
Let Σ be a system associated to a negative uniform network G. Then, Σ is average detectable
if GV2 is regular.

Proof of Proposition 3.2 In a negative uniform network we remark that

1TA = a× degout(G), (3.12)

Therefore, with (3.9) and (3.12), a negative uniform network is negatively outflow balanced if
there exists γ < 0:

a× degout(G) = γ1T

degout(G) =
γ

a
1T

This mean that all the outdegree of G must be the same, which is G has to be regular.

Finally we have that finding a regular induced subgraph in a negative uniform network
implies average detectability which is equivalent to the convergence of the estimator:

RIS & NUN =⇒ AD ⇐⇒ x̂av2 (t)− xav2 (t) −→
t→∞

0 (3.13)

Remark 3.1. Although negative uniform network is a quite restrictive case, we can also consider
positive uniform network with a same negative self-loop η. Indeed in this case, we have
1TA = a×degout(A)−η1, and even with a > 0 the right side can be negative if the self-loop η
is large enough. Proposition 3.2 remains true if the system is associated with such a network.
This type of networks includes for example some heat systems with high dissipation [57]. The
model of epidemic used in the application in Chapter 5 falls also in this scope. In the rest of
the section, we only consider negative uniform network for the simplicity of the development.

We can now formulate the problem arising from Problem 3.1 restricted to the negative
uniform networks case.

Problem 3.2 (Regular induced subgraph detection)
Let G be a negative uniform network. We look for the largest regular induced subgraph (RIS)
of G, which is:

max
I⊂V
|I|,

s.t. GI is regular.
(3.14)

where GI is the subgraph of G induced by the subset of nodes I.

Based on Proposition 3.2, by measuring the nodes outside the subgraph solution of Prob-
lem 3.2, we obtain an average detectable system. Figure 3.2 illustrates this approach.
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(a) We detect a regular induced
subgraph. Here the five nodes
in the center have a same out-
degree equal to 2.

(b) The system is excited with an arbitrary sinusoidal input in
some nodes. The dotted blue lines represent the evolution of the
unmeasured node and the solid blue line their average. The solid
red line represents the evolution of the observer described in (3.6)
which converges towards the averaged value.

Figure 3.2: Representation of the approach proposed in this section: (a) from an initial nega-
tive uniform network, a regular subgraph is detected; (b) as the system is average detectable,
the observer (3.6) converges towards the averaged value of the unmeasured nodes.
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Solving Problem 3.2 can benefit from the extended literature on the k−regular induced
subgraph (or k-RIS) problem, which differs from Problem 3.2 in fixing the desired degree k.
The works in this domain can be classified as follows:

• Complexity of the k-RIS problem: A first work [79] showed that the problem in
the case k = 0 is NP-hard. Then several works [4, 20] generalize the result for any k
and different type of networks. Some studies [68, 80] exhibit a polynomial complexity
for some particular types of network.

• Algorithms to detect the largest k-RIS: Despite the complexity of the problem,
some algorithms have been proposed to solve it. In the case k = 0, [41, 109] propose fast-
exponential algorithms (which is in O(cn) with c ≤ 2). For any k, a fast-exponential
algorithm based on a branch-and-bound approach is proposed in [51] and a polyno-
mial algorithm for a particular type of networks in [1]. However these results consider
undirected network and standard regularity (not out-regularity as us). Still, the branch-
and-bound approach proposed in [51] can be extended to our case and will be presented
later.

• Upper-bound on the size of the largest k-RIS: Facing the complexity of the
problem it is interesting to obtain an upper bound on the size of the optimal solution.
An intuitive upper bound on the size of the largest k-RIS is the size of the k-Core of the
network. The k-Core is a subgraph obtained by removing iteratively nodes with a degree
smaller than k. More elaborate upper bounds have been proposed for any k [20, 81] or
for particular values of k [79, 82]. As above, these results are valid only for undirected
network and, from our knowledge, only the k-Core approach can be extended to our
case.

• Approximating algorithm to find a sub-optimal solution: While it would be
interesting to find an approximate solution of our problem, it is shown that this problem
is hard to approximate [3].

These insights will be the basis for our approach to RIS, which we elaborate next.

3.2.3 An algorithm for the RIS problem

As discussed in the previous section, the literature proposes only methods to find the largest
k-regular induced subgraph but nothing to solve the problem for every k. A simple approach
consists in solving the problem for each k and then keeping the best solution: We denote
RIS(G) and k-RIS(G) respectively, the largest regular and k-regular induced subgraphs of G.
We have then:

|RIS(G)| = max
k∈N

| k-RIS(G)| (3.15)

Some tricks can be used to optimize the approach:
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• As seen in the previous section, there are some methods allowing to find an upper bound
on the size of k-RIS(G). We denote this upper bound by θk(G). While testing the value
of k-RIS(G) for every k, if θk0(G) is smaller than the largest k-RIS(G) so far, it is useless
to compute k0-RIS(G). Noticing that the computation of this upper bound is faster by
far than the computation of the k-RIS(G), this helps to compute the regular induced
subgraph.

• The cases with k = 0 and k = 1 are particular: they are known as the maximum
independent set and the maximum matching. Specific algorithm can be applied for
these case.

• Using an approximate algorithm for the k-RIS would imply a sub-optimal solution for
the RIS which can be interesting if the approximation is good.

Based on these remarks, we propose Algorithm 4 to detect the largest regular induced
subgraph within a given network.

Algorithm 4 Regular induced subgraph detection
Input: G
1: RIS = []

2: for k = 0 : max(degout(G)) do
3: θk = UpperBound_k-RIS(k,G)

4: if θk > |RIS | then
5: k-RIS = Find_k-RIS(k,G)

6: RIS = max(RIS, k-RIS)

7: end if
8: end for
Output: RIS

This is actually a meta-algorithm as we gave here only the skeleton of the method and not
the sub-algorithms UpperBound_k-RIS and Find_k-RIS. The choice of these sub-algorithm
is discussed hereafter.
Remark 3.2. The sub-algorithms Find_k-RIS(k,G) and UpperBound_k-RIS(k,G) can be
different algorithms for the particular cases k = 0 and k = 1. However, for directed networks,
it seems that there is no specific algorithms providing a clear benefit.

Sub-algorithm for the upper bound

We first discuss the implementation of the UpperBound_k-RIS(k,G) algorithm. This algo-
rithm is detailed in Algorithm 5 and is based on the computation of the k-Core. As said
before, the k-Core of a network is the subgraph obtained after removing repetitively the nodes
with a degree smaller than k. It is clear that

k-RIS(G) ⊂ k-Core(G) (3.16)

and so, the size of the k-Core is an upper bound on the size of k-RIS.
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Algorithm 5 k-Core
Input: G, k
1: I ← Nodes in G with outdegree < k

2: while I is not empty do
3: Remove I from G

4: I ← Nodes in G with outdegree < k

5: end while
6: θk ← number of nodes in G
Output: θk an upper bound on the size of the k-RIS

Sub-algorithm to find the k-RIS

The implementation of the second sub-algorithm Find_k-RIS(k,G) is described in Algo-
rithm 6. It is an extension of the branch-and-bound approach proposed in [51]. It is a
recursive algorithm designed as follows: Given a network G and a degree k, we first compute
the k-Core of G (line 1). If the network obtained is k−regular then the k-RIS is found (line 3)
and the algorithm terminates. Otherwise there is at least one node, denoted r, with a degree
larger than k (line 5). It is clear that either r is not in the k-RIS either (at least) one of
its successors3 is not (line 6). Thus, we consider the subgraphs obtained by removing r or a
successor of r (line 8). Finally we compute the k-RIS for each of them (line 9) and select the
largest one (line 11).

Algorithm 6 k-RIS

Input: G, k
1: G← k-Core(G, k)

2: if G is k−regular then
3: k-RIS← G

4: else
5: r ← a node of G with degree > k

6: I ← Nout(r) ∪ r
7: for i ∈ I do
8: Gtmp ← remove i in G
9: k-RIStmp{i} = k-RIS(Gtmp, k)

10: end for
11: k-RIS = max(k-RIStmp)

12: end if
Output: k-RIS

Remark 3.3. It is possible to use a technical trick to speed-up the algorithm. The size of the
current best solution can be stored and passed to the recursive call to k-RIS (line 9). If the
size of the current subgraph is smaller than the size of the best solution, the recursion stops.
This shortcut is not in algorithm 6 for the sake of readability.

3Nout(r) is the set of successors of r
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Figure 3.3: Left: The largest regular induced subgraph found is highlighted in red. The
double-way edges are thicker. All the nodes in the subgraph have an outdegree equal to 3.
Right: The upper bound (k-Core) is displayed in blue for k ∈ {1; 2; 3; 4}. The real size of
k-RIS are in dot red for k ∈ {1; 2; 3}. The 4-RIS is not computed since σ(4) < |3-RIS|. The
red dotted line represents the size of the RIS.

Simulation 3.1. Figure 3.3 presents a result obtained with Algorithm 4 (and Algorithms 5-
6). Considering that the network is negative uniform, the system is average detectable by
measuring the 8 nodes outside of the red subgraph.

3.2.4 Discussions

The method proposed above suffers some limitations which we summarize below:

• Negative uniform systems, which motivate our search for RIS, are rare: It seems that
there is no practical example in the literature. Even if we consider positive uniform
systems with large negative self-loop, as mentioned in Remark 3.1, the applications are
scarce.

• RIS is a fragile notion: For example, a grid network which is very close to regular (only
the nodes on the border have a smaller degree) does not fulfill the condition of the
theorem. Moreover, the largest RIS in a network is generally relatively small.

• The RIS problem is hard to solve: there is no specific method for the RIS problem and
the k-RIS problem has to be solved several times. Moreover, as said before, the k-RIS

problem is a NP-hard problem and there is no good approximation algorithm to solve
it.

• The largest RIS in a network is often very small, and suboptimal heuristics return even
smaller subgraphs.
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Based on these statements, the RIS detection approach introduced in this section is difficult
to apply to real-world problems. We will see that it is possible to accept some errors on the
regularity will preserving the possibility to reconstruct efficiently the average. We introduce,
in the next section, the notion of quasi-regularity leadong to more flexibility.

3.3 Approximate average detectability

3.3.1 Link between error of regularity and error of reconstruction

In Proposition 3.1, the sufficient condition for average detectability was 1TA22 = γ1T with
γ < 0. To relax the problem we consider now that this equality is no more exactly verified
and we introduce a perturbation vector s defined as:

γ = argmin
γ′∈R

1TA22 − γ′1T , s = 1TA22 − γ1T (3.17)

and a regularity error ε defined as:

ε =
‖s‖1
m|γ|

(3.18)

We denote x̃av2 := xav2 − x̂av2 the reconstruction error. The following proposition gives the link
between the regularity error the reconstruction error, defined as:

ess = lim sup
t→∞

|x̃av2 | (3.19)

Proposition 3.3 (Relation between regularity error and reconstruction error)
Assume that

1

m
1TA221 < 0 (3.20)

Then, the reconstruction and regularity errors satisfiy

ess ≤ max
i
σ̄i

ε

1− ε
, (3.21)

where σ̄ = lim supt→∞ |σ(t)|.

Proof of Proposition 3.3 From equations (3.5) and (3.6) we have then:

˙̃xav2 (t) = αx̃av2 (t) + ησ(t) (3.22)

where σ defined in ( 3.4) is the deviation from average,

α =
1

m
1TA221 =

1

m
(γ1T + sT )1 = γ +

1

m
sT1 (3.23)

aand since 1Tσ(t) = 0,

ησ(t) =
1

m
1TA22σ(t) =

1

m
(γ1T + sT )σ(t) =

1

m
sTσ(t) (3.24)
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Therefore, (3.22) becomes

˙̃xav2 (t) = (γ +
1

m
sT1)x̃av2 (t) +

1

m
sTσ(t) (3.25)

which is a stable dynamics by virtue of (3.20). Since A is stable, σ(t) is bounded in magnitude
and ∣∣∣∣lim sup

t→∞
x̃av2 (t)

∣∣∣∣ ≤ − 1
m |s

T σ̄|
γ + 1

ms
T1

(3.26)

Finally,

−
1
m |s

T σ̄|
γ + 1

ms
T1

=
|sT σ̄|

m|γ| − sT1
≤ |sT σ̄|
m|γ| − |sT1|

≤ ‖s‖1 maxi σ̄i
m|γ| − ‖s‖1

(3.27)

and (3.21) follows from with the definiton of ε in (3.18)

The constant σ̄ depends on the physical system of interest and corresponds to the maximal
difference between the state of an unmeasured node and the average state of the unmeasured
nodes.
According to Proposition 3.3, in order to minimize the reconstruction error, it is interesting to
find a subgraph having a reasonable regularity error ε. Relation (3.21) is emphasized through
simulations in the following section.

Remark 3.4. The reconstruction error ess grows with the regularity error ε which means that
the reconstruction will be better if the subgraph of unmeasured nodes is large, close to be
regular and with a large degree of regularity.

Before investigating the qRIS detection problem, we present some simulations enlightening
the relation described in Proposition 3.3. To this end, we first introduce a family of networks
for which we can control the regularity.

Definition 3.4 (p−reg network)
Given a network G, we denote Nout(i) = {j, (j, i) ∈ E}, the set of successors of i.
A network is said p−reg if it verifies:{

|Nout(i)| = 1 if i is odd
|Nout(i)| = p if i is even

(3.28)

Graphs of this family have the particularity to have one half of their nodes with outdegree
1 and the other half with outdegree p. In particular if p = 1, the network is 1-regular (it
is a cycle). By increasing the value of p, the regularity worsens as shown in fig. 3.4. In the
following numerical simulations, we consider a series of networks composed of a p-reg network
and one additional measured node as in fig. 3.5. Therefore, with such network, by tuning the
value of p we can modify the regularity of GV2 while preserving the shape of the system. The
network used in the experiment contains 101 nodes (100 nodes in the p-reg network plus one
extra node to measure). We add some random inputs to the system and we compare the error
ess for different value of p. The results are displayed in fig. 3.6. We notice that as predicted by
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Figure 3.4: The family of p−reg networks allows to control the regularity of a network.

v1

v2 v3

v4 v5

v6 v7

v8 v9

Figure 3.5: A 2-reg network as defined in Definition 3.4 with an additional node to measure.
For the experiments, a similar network is used with 100 nodes and p varying from 1 to 100.
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Figure 3.6: Error of reconstruction as a function of the error regularity for the family of p-reg
network. For each p ∈ [1, ..., 100], 25 p-reg network are generated with different inputs. The
error of reconstruction is then computed as the bias between the signal and the reconstruction
at t = 1000 (which is a good approximation of ess). This emphasizes the link between the
regularity of a subgraph and the ability to reconstruct its average.

Proposition 3.3 the error of reconstruction grows with the error of regularity. This simulation
enlightens the fact that by minimizing the error of regularity ε we can control the error of
reconstruction ess.

3.3.2 Quasi-Regular Induced Subgraph detection

While detecting quasi-regular subgraph, if a small error is imposed on the regularity, the
subgraph found might be small (and so the number of nodes to measure would be high). In
the other hand, Proposition 3.3 ensures that the reconstruction would be better. Consequently,
a compromise between the number of measure and the quality of the reconstruction has to
be found. An interesting way to implement this compromise is by fixing a threshold for the
error of regularity and then find the largest subgraph whose regularity error is lower than this
threshold. This leads to the qRIS detection problem defined hereafter.

Problem 3.3 (Quasi-regular induced subgraph detection)
Let G be a network and ε0 > 0 a threshold for the quasi-regularity. We look for the largest
quasi-regular subgraph of G, which is:

max
I⊂V
|I|,

s.t. ε(GI) < ε0
(3.29)

where ε(G) is the regularity error associated to G as defined in (3.18).

Therefore, by measuring the nodes outside the subgraph solution of Problem 3.3 we can
reconstruct the average value of the subgraph with an error of the order of σ̄ ε0

1−ε0 . Note that
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this problem may have no feasible solution if ε0 is chosen to be too small. After this caveat,
we present a beam search algorithm providing a sub-optimal solution to Problem 3.3.

3.3.3 An algorithm for qRIS detection

Like in the RIS case, a combinatorial algorithm exploring every possible subgraph would
find the exact solution but it is uncomputable in practice even for networks with a relatively
small size. We present here a beam-search algorithm providing a sub-optimal solution to
Problem 3.3.

Principle of beam search algorithms The principle of beam-search algorithms
is as follows: A set of candidate solutions is considered as a seed. Then, a set of
solution deriving from these candidates is considered and the β most promising are
memorized (β is called the beam width) and form the new set of candidates. The
algorithm stops when a candidate is satisfying enough or when the new candidates
are no more satisfying. In this latter case, the final solution is chosen among all the
previous candidates.

For the quasi-RIS detection the algorithm is described in Algorithm 7: We initialize the
set of candidates with the singletons of each node (line 1). Then we iterate while one of the
candidate has a regularity error smaller than the minimum accepted ε0 (line 2) (see Remark 3.5
for a discussion on this point). At each iteration, new candidates are derived from the current
candidates (line 4-5). These new candidates Jc are all the subsets composed by one current
candidate c and any other nodes Si of the network. Finally all these new candidates are united
(line 7), the β best form the new candidates (line 8) and the best one is stored as quasi−RIS

(line 9). By repeating this operation several times, the size of the candidates grows until
none of the candidate have a regularity error small enough. At the end, the candidate with
the smallest regularity error is chosen. Figure 3.7 illustrates this algorithm. Beam-search
algorithms, like this one, are a type of greedy algorithm and hence do not provide an optimal
solution. However the computations are relatively fast and the solutions found are rather
good, as we will see.

Remark 3.5. In Algorithm 7 the while loop will stop if none of the candidate have a regularity
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Figure 3.7: Illustration of Algorithm 7. Here the beam width β = 2, so at each step the best
two candidates are kept (solid line). Two small modifications are brought to make the example
more readable: the seed is a single candidate while in the algorithm the seed is composed of the
singletons of each node; the new candidates are the subsets composed of a previous candidate
and a node neighboring this candidate, while the latter node can be arbitrary chosen in the
algorithm.
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Algorithm 7 quasi-RIS detection
Input: G: network with n nodes, ε0 maximum acceptable error, β beam width
1: Cand ← {{1}; {2}; . . . ; {n}}
2: while minI∈Cand ε(GI) < ε0 do
3: for c ∈ Cand do
4: S ← [1, . . . , n]\c
5: Jc = {c ∪ S1; c ∪ S2; . . . ; c ∪ Send}
6: end for
7: Ω←

⋃
c Jc

8: Cand ← β smallest ε(Gc) for c ∈ Ω

9: quasi-RIS← smallest ε(Gc) for c ∈ Ω

10: end while
Output: quasi−RIS

error small enough. However, this condition is relatively strict as it is possible that it is not
verified at some iteration but it will be verified in the future. Thus, a relaxed condition would
be to stop if the the condition is disrespected several iterations in a row. Then, the solution
would be chosen among the last candidate verifying the condition.
Remark 3.6. The new candidates are chosen in a way that may induce a disconnected sub-
graph. This allows to explore more potential solutions. However, as discussed in Chapter 1, for
some applications the connectedness of the unobserved subgraph may be required or wished.
For example when the network has a geographical nature (as urban traffic network or electrical
grid), it is interesting to estimate the average of a geographical area. In this case, the algo-
rithm can be adapted by changing line 4 with S ← Nin(c) ∪ Nout(c). Figure 3.7 implements
this solution.
Simulation 3.2. For this simulation, we designed a network including a particularly regular
subgraph to emphasize the ability of the algorithm to detect it. In this simulation the pa-
rameters are ε0 = 0.1 and β = 300 which means that at each step we conserve the 300 best
candidates. The subgraph obtained is presented in fig. 3.8(a). We compute then the recon-
struction of the average in this subgraph. Figure 3.8(b) shows the actual average and the
estimation made by measuring the nodes outside the subgraph.

We have seen how to detect a regular or quasi-regular subgraph in order to estimate
their average. We propose, in the next section, to generalize this approach, to detect several
subgraphs and estimate different averages.

3.3.4 Extension to Multiple quasi-Regular Induced Subgraphs (mqRIS)

In the previous problems we tried to find one regular or quasi-regular subgraph in order
to estimate its average. We wonder, now, to which extent it is possible to detect several
regular or quasi-regular subgraphs and estimate their respective average. Considering the
limitations posed by the regularity case evoked in Section 3.2.4, we focus only on the quasi-
regular problem. However a similar generalization can be led for the regularity case. In
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(a) In blue, the quasi-regular sub-
graph detected with algorithm 7.

(b) Reconstruction of the average of the quasi-regular subgraph obtained

Figure 3.8: Illustration of the qRIS approach. Our algorithm is able to detect a subgraph (a)
which is enough regular to make the reconstruction of its average quite good (b).
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the RIS and qRIS problems we wanted to have the minimum number of nodes to measure
leading to the minimization problems 3.2 and 3.3. Here again we have the same objective to
minimize the number of measured nodes. Thus, we want to find disjoint quasi-regular induced
subgraphs GI1 , . . . , GIm maximizing the cardinality of the union of the subgraphs. Moreover,
these subgraphs can not share any successors which is nodes outside the subgraph and pointed
by a node of the subgraph. This is because the successors of a subgraph are measured to
estimate the average value of the subgraph. If a node is pointed by two nodes belonging to
two different subgraphs, the condition for the reconstruction does not hold (see [96]). We
denote I = [I1, . . . , Im] the set of the subsets of nodes. The problem tackled in this section is
formulated as follows:

Problem 3.4 (Multi quasi-regular induced subgraph detection)
Let G be a network and ε0 > 0 a threshold for quasi-regularity. We look for a set I of
quasi-regular subsets minimizing the number of nodes to measure, which is:

max
I=[I1,...,Im]

∣∣∣⋃ Ij

∣∣∣ ,
s.t. ∀ i, ε(GIi) < ε0

∀ i, j, (Ii ∪Nout(Ii)) ∩ (Ij ∪Nout(Ij)) = ∅

(3.30)

The second constraint translates the non-overlapping of the subgraphs and their succes-
sors. The quasi-RIS detection algorithm 7 presented in the previous section can be extended
almost straightforwardly to the multiple subgraphs case as follows: a first quasi-regular sub-
graph is detected, the subgraph and its neighborhood (which are the nodes to measure) are
removed from the network and the process is repeated with the new network. To limit the
number of nodes to measure it is interesting to limit the number of neighbors of the subgraph
selected at each iteration. To this end, the new candidate at each iteration are the subgraphs
maximizing |I|/|Nout(I)| which is the ratio between the size of the subgraph and the size of
its neighborhood instead of the subgraph minimizing ε(GI) in Algorithm 7.

The algorithm for multi quasi-RIS detection is described in Algorithm 8 where quasi-RIS?

refers to the algorithm 7 where "smallest ε(Gc)" in lines (8) ans (9) is replaced by

argmax
c∈Ω, ε(Gc)<ε0

|c|
|Nout(c)|

(3.31)

Simulation 3.3. We propose here a simulation of Algorithm 8 for the mqRIS detection. To
this end, we consider an initial network (fig. 3.9) designed with five zones more regular than
the average. This aims to test the capacity of the algorithm to detect regular subgraphs. The
result of the simulation is displayed in fig. 3.10. In this case, the quasi-RIS detection algorithm
is applied five times before no more satisfying subgraphs can be found. At each step, we can
see that the subgraph and its out-neighborhood found at the previous step is removed and
the algorithm is applied with the new network obtained.
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Algorithm 8 Multi quasi-RIS detection
Input: G: network with n nodes, ε0 maximum acceptable error, β beam width, imax maxi-

mum number of subgraph detected
1: I = []

2: I = quasi-RIS?(G, ε0, β)

3: while I is not empty do
4: I = I ∪ I
5: G = remove I ∪Nout(I) from G

6: I = quasi-RIS?(G, ε0, β)

7: end while
Output: I set of subsets inducing multiple quasi-RIS

Figure 3.9: The initial network is a grid designed such that certain zones are more regular.
The algorithms aims to find these zones. These zones are not easily identifiable at the naked
eyes and the reader is invited to try it before looking at the result of the algorithm.

3.4 Conclusion

Based on the novel notion of average detectability, we proposed here three algorithms identi-
fying measured node placement in order to estimate the average of the unmeasured subgraph.
Considering a particular type of system, the first algorithm finds regular induced subgraph
to reach exact average detectability which is the estimation of the average is asymptotically
unbiased. Due to the limitation of this first problem, we proposed a relaxation: we focused on
the detection of quasi-regular induced subgraph which results in an estimation of the average
with a bias which depends on the quasi-regularity. The second algorithm achieves this task.
The third algorithm allows to detect several quasi-regular induced subgraphs to estimate the
averages of different subsets of the system. In Chapter 5 we will apply the third algorithm to
estimate the evolution of a disease spreading in an interaction network over French territory.
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(a) A first subgraph is found (in blue).
On the right the evolution of the reg-
ularity error of the best candidate
through the iterations. The red dot
corresponds to the iteration where the
subgraph maximizing (3.31) is found.

(b) The first subgraph found and its
successors are removed and the algo-
rithm is applied again to detect a sec-
ond subgraph (in blue).

(c) The second subgraph found and
its successors are removed and the al-
gorithm is applied again to detect a
third subgraph (in blue).

(d) The third subgraph found and its
successors are removed and the al-
gorithm is applied again to detect a
fourth subgraph (in blue).

(e) The fourth subgraph found and
its successors are removed and the al-
gorithm is applied again to detect a
fifth subgraph (in blue). The algo-
rithm stops here as there is no other
subgraph which are enough regular.

(f) The network obtained when merg-
ing the subgraphs obtained at each
steps. By measuring the remaining
nodes, the average of the subgraphs
detected can be estimated.

Figure 3.10: (a-e) Left: in blue the detected subgraph within the current network; Right:
the evolution of the regularity error of the best candidate is displayed through the iteration.
A red dot shows the iteration of the selected subgraph. (d) represents the network obtained
by merging the different subgraphs. This reduced network offers an estimation of the initial
network, and thus can be seen as an aggregation of it.
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Application to traffic

The question of whether machines can think is about as
relevant as the question of whether submarines can swim

Edsger Djikstra
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This chapter is dedicated to present a concrete implementation of the partitioning algo-
rithm introduced in Chapter 2. We consider here the urban traffic network of Grenoble that
we will present in a first section. Then, a partition of this algorithm is obtained thanks to the
MergeToScaleFree algorithm. Finally, due to the properties preserved by the algorithm, the
reduced network is used to simulate the dynamics of the initial system.

4.1 Traffic network of Grenoble

4.1.1 Geographical network

Situated in the south-east of France, close to the Alps, Grenoble is the 16th largest city of
France. The situation of the city, surrounded by three ranges of mountains, constraints the
urban traffic network making Grenoble the fifth most congested city in France [115]. See
fig. 4.1 for a satellite picture of the city. In the framework of the ScaleFree-Back project1

the collection of traffic data and the monitoring of the traffic condition over the whole city is
1For further information see http://scale-freeback.eu/.
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Figure 4.1: Satellite picture of Grenoble. We can see the Vercors range in the west, the
Chartreuse range in the north and the Belledonne range in the south-east constraining the
development of the urban traffic network.

studied and is a part of the GTL-ville experimentation2 (following the GTL experimentation
started in 2009 [122]). As large networks are hard to control, we wonder how an abstracted
version of the network could help to design a control strategy and how the scale-freeness of
this abstracting network can be an advantage. It is in this framework that the study of the
reduction of the urban traffic of Grenoble takes place. The network, provided by TomTom,
is a representation of the city center of Grenoble as it contains all roads and intersections
within an area of about 5 km per 5 km. Figure 4.2 represents the area considered within the
Grenoble Metropolis. In this network, the nodes correspond to the roads and there exists an
edge between two nodes ni and nj if there is an intersection linking road ni to road nj . The
weight on the edges is an estimation of the flow of vehicles going from one road to another
in average. The computation of this estimation is explained hereafter.The network possesses
13099 nodes and 31570 edges.

4.1.2 Estimation of the flow

In the light of the properties preserved by the MergeToScale-Free algorithm, and in particular
the eigenvector centrality, one of the objective of this reduction could be to estimate the
distribution of vehicle in the city at the steady state. To this end, the weights assigned to
each edge of the network represents the average flow of vehicle going from one road to another.
To estimate this flow we consider two different pieces of information: the number of lanes and
the speed limit of the downstream road. Indeed, the more important (in terms of flow) a road

2The GTL-ville aims to monitor the traffic condition inside the whole city of Grenoble. See
http://gtlville.inrialpes.fr/.
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Figure 4.2: The traffic network of Grenoble metropolis and in red the city center that we will
consider here.

is, the higher is its speed limit and the larger is the road. Based on this assumption the weight
wij from road ni to road nj is computed as follows:

wij = ljv
max
j (4.1)

where lj is the number of lanes in road j and vmaxj is the speed limit on road j. These data
are provided by TomTom.
However, with this computation, nothing ensures that the network is a flow network3. To
ensure this we project the network into the flow network space. This computation is explained
in Appendix B. Figure 4.3 illustrates the network model.

4.1.3 Physical properties of traffic networks

In a traffic network, if the weights represent the average flow of cars from a street to another,
the flow coming in one node is equal to the flow coming out the node4. Therefore, the mass
conservation is an intrinsic property of the system, and the preservation of this property
through the reduction is essential to ensure the physical consistency. The cancellation of
the eigenvector distance ensures that the dynamics of the initial network and the abstracting
network are consistent. In particular, the number of vehicles in each zone of the network at

3as defined in Section 0.2.2 a flow network is a network with the mass conservation property
4In this model we neglect the cars parking along a street which would violate the mass conservation property
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Figure 4.3: Sample of the network: the nodes represent the streets, and the weights on edges
are estimated flow from one node to another. The weights are computed such that the network
is a flow network.

the steady state will be the same in the two systems. The preservation of the total sum of
all weights guarantees that the number of vehicles is the same in the initial and the reduced
networks.
Therefore, Algorithm 3, which ensures the preservation of these three properties, is particularly
relevant for traffic network. In the next section we present the results obtained with the
algorithm and we compare the dynamics of the two networks.

4.2 Reduction of the Grenoble traffic network

Within this section, we apply the method presented in Chapter 2 in order to obtain a scale-free
network abstracting the Grenoble traffic network and preserving a certain consistency. We
will see then, how this reduced network can be used to simulate the dynamics of the system
compared to the initial network.

4.2.1 The reduced system

We apply the reduction Algorithm 3 on this network and we impose a scale-freeness on the
indegree distribution. The choice of the different parameters of the algorithm is presented
in Table 4.1. As a reminder, |G| is the number of nodes in the initial network, αSF is the
imposed scale-free coefficient for indegree, nrand is the number of edges tested at each iteration
and niter gives the number of iterations. Hence, the number of nodes in the reduced network
is 2099 which correspond to a reduction of 83.9%.
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Table 4.1: Parameters of the simulation on the Grenoble urban traffic network

|G| αSF nrand niter
13099 2 50 11000

Figure 4.4 presents the initial network and the partition found by the algorithm. Fig-
ure 4.5 presents the reduced network coming out of this partition and the different degree
distributions. The ability of the algorithm to get close to the desired distribution is clear as
the reduced network exhibits a power law degree distribution. Few hubs are visible on the
reduced network. However, as seen in Chapter 2, when the reduced network becomes too small
it tends to loose its scale-free structure. Therefore, a compromise must be found between the
scale-freeness of the reduced network and its smallness.

4.2.2 Simulations on the reduced network

Model

We will now see that the reduced network can be used to analyze the dynamics of the system.
We consider a linear time-invariant discrete-time system:

Σ : x(k + 1) = Px(k) +Bφin(k) (4.2)

where x represents the number of vehicles in each road, P is the normalized adjacency matrix
issued from the adjacency matrix A as defined in (2.13), B points the road having an in-flow,
and φin represents the dynamics of the inflows. The computation of the adjacency matrix
A in order to estimate the real flows and to ensure the mass conservation property has been
explained in the previous section and in Appendix B. In this model, the distribution of vehicle
at time k + 1 is given by the state at time k and the matrix P describing the transitions
from one road to another. Therefore, the time from a vehicle to go from one node to another
does not depend on the length of the street, which is a drawback of the model. However, we
can roughly estimate that this time is, in average, around thirty seconds. Therefore in the
simulation, we consider that the time past between two states is thirty seconds.
Let us note that a linear system like this one is not realistic for traffic system where a lot of non-
linear phenomena occur. However, in the case of free-flow (which is without any congestion
on the roads) a linear system is acceptable.
The results obtained in Chapter 2 state that the algorithm preserves the steady-state in the
reduced system if the evolution equation is:

ẋ(t) = Px(t) (4.3)

This equation does not include any input. This is why, in the scenario we will consider,
the in-flows stop after a while (φin(t) = 0, t > T ) to show that after that the distributions
converges towards each other. The advantage of considering some in-flows at the beginning
of the simulation is to emphasize the capacity of the abstracting system to emulate the
dynamics of the initial system even in the range where we do not have theoretical results.
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Scenario

We consider that, at t = 0, there is no car inside the network which is x(0) = 0. This can be
seen as an ideal case of the network during the night, where there is almost no traffic. Then,
in the morning, at t > 0, some cars enter into the network. The entry points of the network,
pointed by matrix B, are the roads at the border of the network5. As shown in fig. 4.6, we
divide the entry points in three categories: the ones from the north (in blue), the ones from
the east (in red) and the ones from the south (in yellow). The west border remains unexcited.
Different dynamics govern the inflow in these different entry points. After a while, when
t = 400 (which corresponds to more than 3 hours) the in-flows are stopped and we observe
the evolution of the vehicles distribution converging towards an equilibrium.

Simulations

Figure 4.7 shows the results of the simulation after 2000 time steps6. The color displayed
here represents the relative density at each node. Precisely the color of nodes vi at time t is
proportional to:

ci(t) =
xi(t)

maxj xj(t)
(4.4)

and the color on the edges corresponds to the average color of its two extremities.

This simulation enlightens the capacity of the abstracting network to mimic the dynamical
behavior of the initial network and in particular its equilibrium point. We note however that
the nodes of the reduced network do not necessarily correspond to sensitive zones of the initial
network that we would want to watch over. As an example, the large road crossing the north
of Grenoble from west to east (more or less red in the initial network) is not well captured
by the reduced system. That being said, one could add a constraint or an additional cost
function to the problem in order to force the partition to capture these tactical points of the
traffic network.
The simulation on the reduced network is about 5 times faster. Therefore, using the abstract-
ing network to estimate the traffic condition in real-time or to compare different strategies of
traffic control offers a good performance both with regard to the run-time and the accuracy.

5Let us note that, in reality, a lot of cars are parked in the city and starts from inside the network. However,
we choose to have inflows only from the outside of the network to observe the progressive diffusion of the cars
in the network

6An animation of the complete simulation is available here: https://youtu.be/6wSF_kqFVL8

https://youtu.be/6wSF_kqFVL8
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(a) Initial network

(b) Partition obtained through the algorithm. The color of each part
matches the color of the nodes of the reduced network in fig. 4.5

Figure 4.4
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(a) Reduced network: the size of the nodes represents their indegree and
their color matches the color of the partition in fig 4.4.

(b) Log-log plot of the indegree distributions of the initial network, the reduced
network and the scale-free target.

Figure 4.5
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Figure 4.6: The Grenoble traffic network with the inflows coming from the borders
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(a) t = 1 (0h)

(b) t = 1000 (8h20)

(c) t = 2000 (16h40)

Figure 4.7: Representation of the state of the initial (left) and reduced (right) networks at
different time. On the bottom the dynamic of the inflows and the current time (the dotted
line) are plotted. The initial networks possesses 13099 nodes while the reduced nodes possesses
2099 nodes. At t = 2000, we can consider that the steady-state is reached.
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Application to network epidemiology

First, the terror. And then a moment of hunger. This is how
the sense of taste disappears from our world. They don’t
even have time to give the disease a name.

Susan, Perfect Sense
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The theoretical development of Chapters 2 and 3 appears rather academic and disconnected
from real-world problems. Within this chapter, we consider the study of diseases spreading
over a population to present two applications of these results. In the first section, some
preliminaries about network epidemiology are given which allow to introduce the models used
in the applications. Section 5.2 present a cure-allocation strategy using a scale-free abstraction
as presented in Chapter 2. This work has been presented at the NecSys conference 2018
conference in Groningen and published in [85]. Finally, Section 5.3 uses the result of Chapter 3
to reconstruct from few measurements an aggregated state of the evolution of an epidemic.
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5.1 Introduction to network epidemiology

5.1.1 Overview of the models

History of network epidemiology

The mathematical modeling of epidemic spreading aims to evaluate the progression of an epi-
demic through a population and to design tools to control the propagation. The first work
using mathematics to understand disease is due to Daniel Bernouilli in 1760 [11] when he
aimed to study the reliability of the smallpox inoculation1. This work is considered as the
first attempt of mathematical modeling of life and as a precursor of biomathematics. However
it was not until 1897 that a first model of disease spreading was proposed by Ronald Ross in his
study of malaria [110]. He obtained results on the processus of evolution of the epidemic and
promoted the study of this new field. In particular, Gray McKendrick encouraged by Ross pub-
lished from 1927 together with William Kermack three articles [kermack1927contributions]
introducing a new class of models: the compartmental models. In these class of models, the
population is divided into compartments having the same characteristics and the evolution of
the size of the compartments is described. As we will see, the most common compartments
used are Susceptible (S), Infected (I) and Recovered (R) leading, among others, to the two
models: SIS and SIR. All along the twentieth century, works in this field increased and fo-
cused, in particular, on this compartmental models. A more complete review of the history
and the models of mathematical epidemiology can be found in [34].
At the same time, the second part of the twentieth century saw the appearance of the network
theory explaining a wide range of natural phenomenon. Limited until then by the hypothesis
of homogeneity of the population, compartmental models benefited in the early 2000s from the
development of network theory. Indeed, networks allowed to take into account the interactions
among the population. This leads to the network epidemiology models that we will use in the
two applications presented in this chapter. A review of the use of networks in epidemiology
can be found in [100].

Compartmental models

In 1927, the groundbreaking theory of Kermack–McKendrick [67] introduced the notion of
compartments in epidemiology. Their model divides the population into three compartments:

Susceptible (S): healthy individuals who can be infected

Infected (I): individuals suffering the disease

Recovered (R): individual immunized to the disease who can not be infected anymore

1also called variolation, it is somehow the ancestor of the smallpox vaccine.
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A susceptible individual can pass into the infected compartment if he gets the disease and
then in the recovered state if he is cured. Thus the evolution of a patient follows this scheme
S −→ I −→ R. The proportion of the population represented by each compartment nS , nI
and nR (such that nS + nI + nR = 1) is governed by a differential equation which depends
on the parameters of the disease. Thus, in the Kermack–McKendrick model the evolution of
individuals does not take into account their neighborhood and is restricted to the evolution
of their compartment.
Yet, one can imagine that an individual which is in contact with a lot of people is more vul-
nerable to the disease than an isolated individual, which can play a role in the spreading of
the epidemic. With the introduction of networks into compartment models, the evolution of
the individuals depends also on the state of their neighborhood. Thus, for example, a suscep-
tible individual will be more likely to be infected if he is surrounded by infected individuals.
Figure 5.1 illustrates the difference between this two types of models.

Originally, the compartmental models included only the three compartments mentioned
above. The models which use these compartments are commonly referred as SIR models.
After that, ither compartments have been introduced, for example:

Exposed: individuals infected but not yet infectious

Carrier: individuals not suffering the disease but who can infect other

Quarantine: individuals infected but put in quarantine so they can not infect others

Considering these additional compartments allows to refine the accuracy of the model and is
sometimes necessary to model certain epidemics. On the contrary, another commonly used
model, the SIS model, considers only the Susceptible and Infected compartments. This model,
used in the two applications presented in this chapter, is described in the next section.

5.1.2 The SIS model

Classical model

As the name suggests, in the SIS model, a susceptible individual can pass into the infected
compartment if he gets the disease and then comes back in the susceptible compartment if
he is cured as illustrated in fig. 5.2. It differs from the SIR model in the state of the cured
individual: in the SIS model a cured individual can be infected again, while in the SIR model
a cured individual can not be infected again. This model is particularly relevant for some
infections, as common cold or influenza, for which there is no immunization upon recovery.
The transition from one compartment to the other is governed by two values: the infection
rate β and the recovery rate δ (with 0 ≤ β, δ ≤ 1).

We denote Xi(k) the state of individual i at time k: Xi(k) = 0 means that the individual
i is susceptible and Xi(k) = 1 means that the individual i is infected. The exact equation of
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first one to propose a compartment system. In this model,
the population is divided into three different compart-
ments (susceptible, infected, recovered) whose size is gov-
erned by a differential equation. Other compartment
models exist with different compartments and different
dynamics.

R

IS

R

S I

R R S

R

R

I

S

(b) With the arrival of network theory, compartmental
models can take into account the interaction between
individuals. The equation of evolution depends on the
model chosen and is not precised here.

Figure 5.1: Illustration of the compartments model in epidemiology

evolution that we consider here is as follows:

if Xi(k) = 0, Xi(k + 1) = 1 with probability β
1

|Nin(i)|
∑

j∈Nin(i)

Xj(k)

if Xi(k) = 1, Xi(k + 1) = 0 with probability δ

(5.1)

This can be read as follows: if an individual is susceptible at time k, the probability that
he gets infected at time k + 1 is the proportion of infected people within its neighbors scaled
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Susceptible Infected

δ

β
Figure 5.2: Sketch of the SIS model

by the infection rate β. In the other hand if an individual is infected at time k, the probability
that he recovers at the time k+ 1 is the recovery rate δ. Thus, a disease with high β and low
δ is particularly violent, while a disease with low β and high δ is benign.
After several time steps, the proportion of infected people converges towards a steady state
called the prevalence [100]. If this convergence is well defined in model without network, or
in deterministic network model, in our case, due to the stochastic process, the proportion
of infected people fluctuate around the prevalence, denoted ρ. In the experiments presented
in 5.2 this prevalence is computed as the average proportion of infected people over a window
of time after the convergence:

ρ =
1

100

100∑
k=1

X̄(1000 + k) (5.2)

where X̄(k) is the average value of the vector X at time k. This formulation of the prevalence
has been chosen empirically to efficiently capture the prevalence observed. Let us note that
the prevalence only depends on the structure of the network G and the spreading rate λ = β

δ ,
but not on the initial subset of infected nodes (as long as this subset is non-empty) [102]. We
will write the prevalence as ρ(G,λ).
For the first application, in Section 5.2, we will consider Model (5.1) which is commonly used
in network epidemiology [33, 101]. For the second application, in Section 5.3, we consider a
slightly different version described in the next section.

Linearized mean-field approximation

We consider here a mean-field approximation of the SIS model introduced in [118]. In this
case, the nodes of the network do not represent individuals but groups of people. The nodes
are not in a fixed state S or I but have a proportion p of people infected. The dynamics of p
is then:

ṗ(t) = (AB − δI)p(t)− PABp(t), p(0) = p0 (5.3)



122 Chapter 5. Application to network epidemiology

where p = [p1, . . . , pn] are the proportions of infected people in each group (and P =

diag(p1, . . . , pn)), I is the identity matrix, B = βI and p0 is the initial proportion of in-
fected people in each group. In order to use the approach developed in Chapter 3, we consider
a linearization around zero [100] of (5.3):

ṗ(t) = (AB − δI)︸ ︷︷ ︸
A

p(t), p(0) = p0 (5.4)

In order to include sources of infection that are external to the population, we define a
matrix B ∈ {0; 1}n×b to identify nodes that are in contact with sources of infection, and
the function u(t) ∈ Rb to represent the temporal evolution of these sources of infection. By
including these inputs u, the dynamics becomes

ṗ(t) = Ap(t) + Bu(t), p(0) = p0 (5.5)

This leads to the matrices with the following form:

A =



−δ β 0 β 0 0 0

0 −δ 0 0 β β 0

β 0 −δ 0 0 0 0

β 0 β −δ 0 β 0

0 0 0 0 −δ 0 β

0 0 0 β β −δ 0

0 0 0 0 0 β −δ


and B =



1

0

1

0

0

0

1


(5.6)

These matrices correspond to the system illustrated in fig. 5.3. System (5.5) falls in the
scope of positively uniform system with a large negative self-loop as discussed in Remark 3.1.
Therefore, the Multiple Quasi-Regular Induced Subgraph detection can be applied.

Remark 5.1. Although we use in this article the terminology of epidemics, let us note that
these models are also used in other contexts such as: spreading of computer viruses over web
networks [7] or information spreading over social networks [72].

5.2 MergeToCure, scale-free abstraction for cure allocation
strategy

5.2.1 Introduction

In network epidemiology, a common problem is to choose individuals to cure in order to re-
duce the spreading. As cured individuals can not be infected or infect other individuals they
can be considered as removed from the network. Therefore, if the number of cures is limited,
identifying individuals which removal will reduce the most the spreading is an interesting
problem known as cure allocation2. Intuitively, the best choice is to remove nodes such that

2instead of the term cure, the terms vaccine, treatment or quarantine are also used. Indeed, all refer, in a
certain way, to the removal of the node from the network.
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Figure 5.3: Example of a network corresponding to the SIS model in (5.6). The snake lines
correspond to the inputs.

the network becomes less connected and so the epidemic can not spread easily. However,
finding the best nodes to remove in order to decrease the connectedness of the network is a
NP-complete problem [119]. Therefore, several papers propose heuristics to approximately
solve this problem. Essentially it is proposed to remove the most important nodes: [55] pro-
poses to remove the nodes with the highest betweenness centrality and [88] the nodes with the
highest PageRank [88]3. In [33], the problem is addressed in the context of scale-free networks.
As discussed in Appendix 0.3.4, it is shown that for this type of networks allocating cures to
the most connected nodes reduces efficiently the spreading. This strategy will be called here
the hub-removal strategy. In homogeneous networks such as Manhattan-like grids, the absence
of hubs reduces the efficiency of this strategy. In [108] the question of allocating cure in a
grid network is addressed. However, in this work the proposed strategy requires to know the
location of the seed4 of the epidemic, which is unrealistic.
The main contributions of this section is the introduction of a strategy to allocate cure
in Manhattan-like grids. This strategy uses a scale-free network abstracting the initial
Manhattan-like grid. We show numerically that this strategy is better than other strategies

3These notions has been presented in Section 0.2.2
4patient zero, the first infected individual.
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for a large range of the parameters.

Allocating cures in scale-free networks

Appendix 0.3.4 presents cure-allocation strategy in scale-free networks. Let us introduce some
additionnal results. It is known [2] that in a grid or a random network there exists an epidemic
threshold λc under which the prevalence is always zero:

∀λ < λc, ρ(Ghom, λ) = 0 (5.7)

where Ghom is any homogeneous network (grid or random).
At the contrary, in scale-free network there is no such epidemic threshold [33]. Thus, if a
population forms a scale-free network, even a minor infection will always persist. However,
as discussed in Appendix 0.3.4 removing the hubs in a scale-free network allows to reduce
drastically the epidemic. In particular, [33] shows that it is possible to restore such an epidemic
threshold by removing the biggest hubs, and this threshold can even be made larger than in a
homogeneous network by removing enough hubs. Precisely, if we consider a scale-free network
build with the Barabási-Albert model, we have:

λc =
k0 −m
k0m

ln−1

(
k0

m

)
(5.8)

where m is the number of edges added at each step in the Barabási-Albert model5 and k0 is
the degree above which every node is removed.

However this strategy is not efficient if the degree distribution of the network is homoge-
neous. Similarly, the strategies recommending to remove nodes with the highest PageRank
or the highest betweenness centrality lose their interest in a network where all the nodes are
more or less similar. Therefore, in the next section we address the following problem: how
to find an efficient strategy of cure allocation for homogeneous networks ? To this end, we
present an approach inspired by the hub-removal strategy: by finding a scale-free abstraction
of a homogeneous network we can highlight some zone-hubs which are more interesting to
cure. To find this scale-free abstraction we use the algorithm MergeToScaleFree, presented in
Chapter 2.

5.2.2 The strategy Merge To Cure

Description of the strategy

The idea of the strategy is to identify zones which play the role of hubs in the network by
using the algorithm MergeToScaleFree, and then to focus on curing these zones.

The strategy can be detailed as follows:
5see Section 0.3.2
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1. Extract a scale-free abstraction out of the original homogeneous network.

2. Identify the hubs in the scale-free abstraction, corresponding to zones-hubs in the initial
network.

3. Assign a cure to the nodes at the border of the zone-hubs.

The interest of the hub removal is to cut the main routes of infection. Then, in the case
of zones-hubs, it is sufficient to only remove the border of these zones. Figure 5.4 gives an
illustration of the strategy.

Remark 5.2. An interesting link can be made with the so-called meta-population models. In
these models, introduced in [5], nodes do not represent individuals but groups such as cities.
In our case, if the initial network is a network of individuals, our strategy consists in finding
how to regroup these individuals at a coarser scale and this way extract a meta-population
model out of the initial model. As the meta-population network is designed to be scale-free
we just have to identify the most connected groups of individuals to cure and therefore reduce
the spreading of the epidemic.

Experimental results

In this section, we present the experimental setup to validate our strategy. Through this
section we consider Manhattan-like grids as defined in 2.5.2. To test the efficiency of our
method we consider a Manhattan-like grid G and we numerically compute its prevalence
using (5.1). Then we remove nodes according to different strategies:

1. MergeToCure. We denote ncure the number of nodes removed.

2. By curing randomly ncure nodes

3. By curing the ncure nodes with the highest degree: hub-removal strategy.

4. By curing the ncure nodes with the highest betweenness centrality.

5. By curing the ncure nodes with the highest PageRank.

Then the prevalence is computed for the networks obtained with each of these strategies. The
prevalences are compared with the null case where no cure is allocated in the network. For
each strategy σ we compute the benefit Bσ as:

Bσ(ncure, λ) =
ρ(G,λ)− ρ(Gσ, λ)

ρ(G,λ)
(5.9)

where Gσ is the network obtained with the strategy σ. This benefit measures how much the
strategy σ reduce the initial prevalence of the network. Thus, the higher is Bσ the better is
the strategy σ.
In the simulation presented in fig. 5.5, a tenth of the population is initially infected. In the
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Initial network

Scale-free
abstraction

Remove hubs

Remove nodes
at the border
of zone-hubs

Figure 5.4: Illustration of the strategy MergeToCure to find a subset of nodes to cure in a
Manhattan-like grid. For simplicity, we present here an undirected network, but the same
process can be applied to a directed network.



5.2. MergeToCure, scale-free abstraction for cure allocation strategy 127

four simulations we have removed, respectively, 1, 2, 3 and 4 zone-hubs in the MergeToCure
strategy. For the other strategies we removed the same number of nodes as removed in the
MergeToCure strategy. The percentage of nodes hence removed is specified for each result.
The abstracting scale-free is generated with a scale-free coefficient αSF = 2.8. The value of
the infection rate λ is varying between 0.4 and 4 with a step of 0.1. The results are averaged
over 50 realizations with a different set of initially infected nodes. The considered network is
a 60× 60 Manhattan-like grid which contains 3287 nodes.

Figure 5.5: Averaged benefit brought by each strategy for different value of λ and Nhub in a
60× 60 grid network. When B = 1 it means that ρ(Gσ, λ) = 0 which means that the strategy
allows to completely eradicate the disease.

We observe that the MergeToCure strategy has a larger benefit than all other strategies
when λ & 1 and ncure . 25%. For a large proportion of removed nodes (larger than 30% of
the population) the hub strategy becomes more efficient than the MergeToCure strategy. We
suggest then, that, in a Manhattan-like grid, the MergeToCure strategy is the most efficient
to reduce the prevalence for parameters: (λ, ncure) ∈ [1; +∞) × (0, 0.3N ], where N is the
number of nodes in the network. This means that our strategy is the best when the infection
is particularly virulent and the number of available cure is very limited. To get an idea of the
value of λ for real diseases, [38], for example, estimates this value for sexually transmissible
diseases between [0.76, 1.52].
In order to improve the efficiency of the MergeToCure strategy we also wonder how to choose
the scale-free coefficient in the MergeToScalefree algorithm. Thus, we consider the benefit
B(ncure, λ, αSF ) with 25% of node reduced and varying λ and αSF . Figure 5.6 shows the
results. The benefit tends to be higher for high value of αSF , which is when the hubs are
fewer but more connected.
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Figure 5.6: Benefit brought by the strategy MergeToCure as a function of the scale-free
coefficient of the abstracting network.

5.3 Average detectability of an epidemic spreading

In this section we apply the mqRIS algorithm presented in Section ?? to a real-world case:
the spreading of a disease over an interaction network of the main cities in France. By
reconstructing the average state of different subgraphs, we aim to estimate the evolution of
the proportion of infected people in different areas.

5.3.1 The estimation problem

It is clear how important it is to estimate the evolution of a disease, for instance in order to
take appropriate sanitary measures or to study the efficiency of a treatment (fig. 5.7). As it
is very costly to determine the state of each individual, one needs methods to reconstruct the
spreading of the epidemic per areas and with relatively few measurements. We propose here
to use our approach to estimate the evolution of the proportion of infected people in different
areas, by measuring the state of few groups. In order to construct a concrete example, we shall
consider the above linearized SIS dynamics over a contact network beween the main French
cities.

5.3.2 Topology of the network

We consider a network of interactions between groups of individuals in the main cities of
France. The network is structured at two different scales: one level within the cities and
one level between the cities. It is known that at the level of a city, individuals are strongly
interconnected and tend to form clusters [17, 114]. Here we use the Watts-Strogatz model [120]
which is known to well capture the features of social networks. At the level of the country,
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Figure 5.7: Interpolating map of the number of individual infected with flu for 100000 inhab-
itants in January 2019 in France. Map available on www.sentiweb.fr. c©Inserm

there are fewer connections between different cities and the number of connections between
two cities is proportional to the numbers of their inhabitants and inversely correlated to their
distance. The network is generated by considering twenty two of the most populated cities in
France. The details of the topology of the network are given in table 5.1. Figure 5.8 shows
the obtained network.

5.3.3 Simulations

Figure 5.9 presents the partition found with Algorithm ??. The network has been divided in
11 subgraphs containing 1112 nodes in total. Thus, only 292 nodes remains to measure which
represents only 20.80% of the nodes. Some parts fit cities while others include a whole region.
The figure gives also the regularity error ε, the number of nodes |V| and the mean degree k
for each subgraph.

Next, since we have the partition in which each induced subgraph is quasi-regular it is
possible to estimate the value of the average inside each subgraph.
The parameters of the model are fixed as follows: β = 0.05 and δ = 0.98. We randomly add
323 sources of infection randomly distributed in the territory. To be close to the reality we use
as initial conditions the situation presented in fig. 5.7 which is available on www.sentiweb.fr.
Figure 5.10 shows the evolution of the proportion of infected individuals inside each subgraph
and the estimation made with the open-loop observer x̂av2 described in (3.6). The solid lines
are the actual averages while the dotted lines are the estimated averages. Figure 5.11 shows
the evolution of the absolute error for each subgraph. We observe that, as expected, the
estimation errors decrease quickly and remain relatively small. However, as we did not find
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Figure 5.8: The network of interactions over the France territory. It is composed of 1404
nodes, each representing a population of 5000 individuals. The subgraphs within the cities
are based on the Watts-Strogatz model while the network between the cities is a random
network where the probability of connection between two nodes decreases exponentially with
the distance.

Population
Number of groups (nodes) 1404
Pop. per groups 5000
Number of cities 22
Network
Model within cities Watts-Strogatz
Mean degree K 10

Prob. rewire β 0.1

Prob. connection inter-cities ed
2/10

850

Number of inputs 323

SIS model
Infection rate β 0.05

Recovery rate δ 0.98

Table 5.1: Parameters for the network of interactions and the SIS model
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Figure 5.9: Partition obtained via the mqRIS algorithm. The legend gives the error of regu-
larity, the number of nodes and the mean degree for each subgraph detected.

Figure 5.10: Proportion of infected individuals within each subgraph. The solid lines are the
ground-truth values and the dotted lines are the estimated values.
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Figure 5.11: Semi-log representation of absolute errors between the ground-truth value and
the estimated value for each subgraph. The errors are decreasing but they do not converge to
zero.

exact regular subgraphs, the system is not detectable and the errors do not converge to zero.

5.4 Conclusion

In this chapter we applied two methods developed throughout this thesis to network epidemi-
ology: the MergeToScaleFree algorithm and the Multiple Quasi-Regular Induced Subgraph
detection.
In the first application, we explored the problem of allocating a limited number of cure in a
network in order to reduce the spreading of an epidemic. It is known that in scale-free net-
works an efficient strategy consists in curing the hubs. Thus, thanks to the MergeToScaleFree
algorithm presented in Chapter 2, we derived a scale-free abstracting network to identify some
zone-hubs in a homogeneous network. We showed numerically that this strategy is better than
all other strategies when the epidemic is particularly violent and the number of vaccine is very
restricted.
In the second section, we explored the problem of estimating the evolution of an epidemic
over a population with few measures. As shown in Chapter 3, it is possible to estimate the
average of unmeasured nodes if the subgraphs which they form are close to regular. Based on
this observation, we use the algorithm developed in Chapter 3 to identify such quasi-regular
subgraphs. We identify thus the individuals to diagnose in order to know the average state of
the unmeasured communities in the population.



Conclusion

All models are wrong,
but some are useful

Georges Box

In this conclusion we will first draw up a list of the contributions presented throughout the
thesis. Based on the limitations of these contributions we will present some possible extensions
and opened questions that this thesis sparked.

Review of the contributions

Through this thesis we have raised and investigated several questions concerning network
partitioning algorithms. We first wondered how a partitioning can be done regarding to the
connectedness of the parts. Precisely, we estimated the loss due to the connectedness con-
straint. Following this theoretical question, we proposed two problems of network partitioning
and we exhibited algorithms bringing solutions to these problems. In the first problem, we
wanted the reduced network to have a scale-free structure while preserving somehow the char-
acteristics of the initial network. In the second problem, we aimed to partition the network
with a reconstruction purpose: we separated the measured nodes and the unmeasured nodes
such that the average of the unmeasured nodes can be efficiently estimated. Following this
three first chapters presenting theoretical results, we proposed applications divided into two
chapters corresponding to the field of application: traffic and epidemiology. A detailed review
of the contributions per chapter is given hereafter:

The price of connectedness: For any problem of optimal network partitioning, one may
consider that the part have to be connected or not. Depending on the application, this
constraint of connectedness may be necessary or only desirable. Therefore, a question
emerges: how much this constraint of connectedness will damage the quality of the
optimization. This damaging is what we call the price of connectedness and we aimed
to estimate its value throughout the chapter. We first emphasized the link between this
price of connectedness with another quantity: the ratio of connectedness which is the
ratio between the number of connected partitions and the total number of partitions of
a given network. We proposed then a tight upper bound on the ratio of connectedness
which is the ratio between the number of partitions without isolated nodes and the total
number of partitions. Finally, we exhibit an exact formula for this value and we show
that it is indeed a good upper bound for the ratio of connectedness.

Network partitioning algorithm towards scale-free structure: In the introduction we
have exhibited clues on the potential interest of a scale-free abstracting network. Thus,
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this chapter was dedicated to the elaboration of a partitioning algorithm inducing a scale-
free reduced network. We first introduced a general framework composed of a class of
partitioning problems inducing scale-free networks and a meta-algorithm to solve such
problems. We treated then two problems corresponding to this class of problem. The
first problem had more a didactic purpose whereas the second one required an impor-
tant mathematical development. Indeed, in this second problem, we want to preserve
three properties through the partition: the eigenvector centrality6 of the system up to
a projection, the mass conservation7 and the total mass8. We show then how to recom-
pute the weights of the reduced network such that these properties are preserved for the
particular type of partition used in the algorithm. Finally, we proposed some results on
the algorithm and a simulation. Note that the framework developed in this chapter is
reused in the first application to epidemic which take advantage of the scale-freeness of
the reduced network.

Network partitioning algorithm towards average detectability: Noticing that it is
often useless and difficult to reconstruct exactly each state of a large-scale network,
it seems relevant to reconstruct only an aggregated state. Yet, precisely, the recently
introduced notion average detectability refers to systems in which it is possible to re-
construct the average state of the unobserved nodes (in open loop). In this chapter, we
proposed a method to determine which nodes have to be measured in order to make
the system average detectable. Precisely, we show that for a certain type of systems,
the regularity of the unmeasured subgraph implies the average detectability of the sys-
tem. We reuse then the existing literature on regular subgraph detection to build an
algorithm inducing average detectable system. As the hypothesis on the initial system
were restrictive and the results quite poor, we relaxed the strict notion of average de-
tectability to allow errors in the regularity of the unmeasured subgraph. We show that,
in this case, the error of reconstruction, is upper bounded by a function of the error
of regularity. Therefore, we proposed an algorithm detecting quasi-regular subgraph.
Finally, we generalized the method to consider several different subgraphs for which we
estimate separately the average. This approach is reused in the last chapter to estimate
the evolution of an epidemic.

Application to traffic: The second algorithm developed in Chapter 2 is particularly inter-
esting for traffic network. Thus, we applied this algorithm to the traffic network of the
city-center of Grenoble. First, we introduced the model considered: the geographical
network and the estimation of the traffic flow. Then, a scale-free network abstracting
this network is obtained through the algorithm. Finally, we simulate a scenario over the
two networks and show that the reduced network can efficiently be used to analyze the
evolution of the traffic conditions.

Application to network epidemiology: The last chapter is divided into two different ap-
6this measure corresponds to the steady state of the network excited by a linear and stable discrete-time

system.
7if a network have this property, the sum of the weights coming in a node equals the sum of the weights

coming out of this node.
8the sum of all the weights in the network
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plications using the same models of network epidemiology. Therefore, in a first part, we
introduced network epidemiology theory and the different models used. Then the two
applications are presented:

MergeToCure, scale-free abstraction for cure allocation strategy We pro-
posed in this section a strategy for cure allocation9 for networks with a
homogeneous degree distribution: we partition the initial network and we use
the scale-free abstraction to identify some zone-hubs. Then, the individual at
the border of theses zone are cured. We numerically compared this method with
others cure-allocation strategies, using a SIS model. We showed that our method
is the most efficient to reduce the propagation of the disease when the number of
cure is very limited and when the epidemics is particularly virulent.

Average detectability of an epidemic spreading: When considering the spreading
of a disease, it is not possible to know precisely the state of each individual. In this
section, we applied the method proposed in Chapter 3 to determine the individuals
which state have to be measured in order to reconstruct an aggregation of the
states. By measuring few nodes, one can estimate the average state in different
parts of the population. This approach has been applied on a large-scale network
that we have generated: an interaction network over the french territory.

Possible extensions

The results presented in this thesis are at some point limited by the hypothesis or the models
considered. However, since these limitations are not locked doors but opportunities to extend
our work, we will highlight some questions raised and potential future work for each chapter:

The price of connectedness: The formula (1.23) for the upper bound on the ratio of con-
nectedness is a recursive formula and can not be used for large value of the parameters.
Thus, it could be very useful, and surely feasible, to rewrite this formula in another way
making it more easily computable.
While the tightness of the upper bound has been enlightened through simulations, this
work would benefit from a theoretical result quantifying somehow this tightness and/or
showing that the two quantities converge towards each other.
Finally, if the estimation of the ratio of connectedness is a quite solid result, the link
with the price of connectedness is weaker. A better understanding of the link between
these two quantities, possibly regarding to the partitioning problem considered, would
enhance this work.

Network partitioning algorithm towards scale-free structure: The framework devel-
oped is quite efficient to obtain a reduced network with a scale-free structure. However,
we can wonder if the scale-free cost function proposed is relevant. Maybe a cost-function

9In network epidemiology, cure allocation strategies aim to find the nodes to remove from the network (by
curing them) in order to reduce the propagation of a disease.
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focusing more on the right part of the distribution could be better if only the distribution
of hubs matter.
The framework proposed includes a large variety of problems. An investigation could
be lead to understand in which contexts and to what extent the scale-freeness of the
reduced network can be used, and the constraints that have to be added to the problem
in each cases.
As discussed in the chapter, the computation of the weights satisfying the constraints
can be generalized to any partition (and not only merging). Therefore, an efficient way
to find the best partition inducing a scale-free network would be more efficient than
looking iteratively for the best merging.

Network partitioning algorithm towards average detectability: Several limitations
for the strict case (RIS) have been presented within the chapter leading to the relaxed
case (qRIS and mqRIS). These limitations was not only about the solutions but also
about the problem itself so that we do not expect any extension for the RIS case. In
contrast, for the relaxed problem, it seems that the link between the error of regularity
and the error of reconstruction could be better understood. Indeed, the relation that
we proposed includes a constant of the system making it less quantifiable. Throughout
the chapter, we proposed to identify the nodes to measure in order to reach average
detectability. A same approach could be used with the notion of average observability
also introduced in [96], or in order to identify nodes to control to steer the average state
as proposed in [98].

Application to traffic: The model used for traffic is quite unrealistic as it considers a linear
dynamic. While the theoretical results are valid only for such a linear dynamic, one can
wonder if the estimations made by the reduced network are still relevant with a more
realistic traffic model implying non-linearity.
The value of the flow on the network are estimated from partial data on the roads. With
real flow information the simulation would be more interesting. In the frame of the ERC
Scale-Freeback project, the collect of traffic data is precisely one of the objectives and
will be integrated to the GTL-ville platform10.
Finally, one can wonder to what extent the scale-freeness of the reduced network is useful
in the context of traffic modeling. It seems that a first answer could be brought by the
boundary control theory as shown in [98], where the use of scale-free network is favored.

Application to network epidemiology: As for the application to traffic, the application
here suffers from the limitation of the models. In this case, one of the main limitation
of the network model of epidemiology is that it is impossible to know with precision
the exact interconnection within a population. Therefore, it could be interesting to
investigate, how the results of this section can be generalized to other models. More
precisely for each of the application:

MergeToCure, scale-free abstraction for cure allocation strategy In this sec-
10Following the GTL project [122] who aimed to monitor the traffic condition on a single road in the

south of Grenoble, the GTL-ville aims to monitor the traffic condition inside the whole city of Grenoble. See
http://gtlville.inrialpes.fr/.
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tion, we proposed a cure assignation strategy for networks with a homogeneous
degree distribution. However, one can wonder if some interaction networks (or
computer networks) are actually homogeneous. At least [73] shows that for sexual
transmitting diseases, transmission networks have a scale-free structure.
As said before, the misunderstood of the exact structure of the network prevents
from identifying the zone-hubs and, even more, the individuals at the border of
these zones. However, one could investigate, how to identify individuals who prob-
ably play this role with partial information on the network, and how much this
inaccuracy would impact the efficiency of the strategy.
Finally, it is obvious that choosing the individuals to cure implies some ethical
issues. Most of the time, the resources allow to cure every individuals without
distinction, making this question only academic. However, in some cases, such as
for computer network, this strategy may be applicable.

Average detectability of an epidemic spreading: Above the limitations due to the
model, the fact that the subgraphs detected do not necessarily correspond to city
or small area may be an inconvenient. However, a simple way to prevent this
issue would be to add a cost function in the algorithm penalizing the subgraphs
scattered.
Moreover, this work would be more relevant if it would have been compared to
other estimation methods specially with regard to the number of measurement, the
quality of the reconstruction, and the running time of the algorithm.

Hopefully, the possible extensions presented in this section may reach someone and the
work presented throughout this thesis will be carried a little bit further until it reaches any
practical usage. At least, all this work will benefit to myself. In a minor part, for all the
knowledge I discovered through these years. And in a major part, for all the personal skills I
had to develop to achieve such a piece of work. Resilience being probably the most important
of them.





Appendix A

Algorithms for clustered model
reduction

We present here the algorithms used to solve problems (1.4) and (1.7). A deep description of
the algorithm would require the introduction of several definition and notions which are out of
the scope of this thesis, we present only some insights to understand its principle and especially
how it has been adapted to solve the constrained problem (1.7). The detailed algorithm can
be found in [58]. The algorithm is an iterative greedy algorithm which means that at each
step the best pair of nodes is selected and merged. The metric used to quantify the value of a
pair of node, denoted by δ in the algorithm, of node is not given here. At each step only the
number of nodes in the network is reduced by one, and then the same procedure is applied
(n− n̂) times where n is the size of the initial graph and n̂ is the desired size of the final graph.
By merging iteratively nodes, we end up with a partition of the initial network. In the original
algorithm, any pair of nodes may be merged at each iterations. Thus, the final partition may
be disconnected. This is described in Algorithm 9 hereafter and is taken from [58]. In the
adaption we proposed, described in Algorithm 10, only the connected nodes can be merged
at each step. Thus, the final partition is necessarily connected. In the algorithms, Vk and
Ek correspond respectively to the set of nodes and the set of edges of the network after k
iterations.

Algorithm 9 Original Cluster Model Reduction
Input: Network G and desired final size n̂
Output: Final partition I
1: Initialize the partition as I ← {I1, . . . , IN} = {{1}, . . . , {N}}
2: for k = 1 : (n− n̂) do
3: for all pair (i, j) ∈ Vk × Vk do
4: Assign a reducibility value to the pair (Ii, Ij) := δi,j
5: end for
6: Merge the parts minimizing the reducibility value, which is

(Ia, Ib) := argmin δ(Ii, Ij), Ia ← Ia ∪ Ib, I ← I\Ib (A.1)

7: end for

Other computations are done after this algorithm to deduce the weight in P but there
are identical for the two problems. For our concern we are only interested in this part of the
reduction method. Note that these two algorithms are suboptimal.
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Algorithm 10 Cluster Model Reduction inducing connected partition
Input: Network G and desired final size n̂
Output: Final partition I
1: Initialize the partition as I ← {I1, . . . , IN} = {{1}, . . . , {N}}
2: for k = 1 : (n− n̂) do
3: for all pair (i, j) ∈ Ek do
4: Assign a reducibility value to the pair (Ii, Ij) := δi,j
5: end for
6: Merge the parts minimizing the reducibility value, which is

(Ia, Ib) := argmin δ(Ii, Ij), Ia ← Ia ∪ Ib, I ← I\Ib (A.2)

7: end for
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Weight projection to ensure the mass
conservation property

Given a network G = (A,V, E), the edge adjacency matrix, denoted by Ae, is a matrix of size
n×m, where n is the number of nodes and m is the number of edges in the matrix and define
as follows:

Aeij =


1 if Ej = ( · , i)
−1 if Ej = (i, · )
0 else

(B.1)

The vector of weights W ∈ m is defined as:

W = (ai1,j1 , ai2,j2 , . . . , aim,jm)>, where E = ((i1, j1), (i2, j2), (im, jm)) (B.2)

If the network is a flow network then Ae and W verify

AeW = 0n (B.3)

Therefore, we want the vector of weights to belong to the null space of Ae. Thus, considering a
vector W0, we obtain a vector W1 which ensure the mass conservation property by projecting
W0 on Ker(Ae). The projection is orthogonal in order to minimize the value of ‖W1 −W0‖2.

Example B.1. Consider the network depicted in fig. B.1.

n1

n2

n3

n4

w1

w2

w3

w4

w5

Figure B.1: Example of network corresponding to the matrices in (B.4)
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n1

n2

n3

n4

80

50

90

55

70

(a) The initial estimation of
the flow. The thickness of the
edges represents the flow.

n1

n2

n3

n4

133.75

28.75

133.75

28.75

162.5

(b) The flow after projection
on the space ensuring a flow
network. The thickness of the
edges represents the flow.

Figure B.2: The projection of the set of weight on the null space of the edge adjacency matrix
ensures the network to be a flow network and to be as close as possible from the initial weights.

The edge adjacency and the adjacency matrices are as follows:

A =


0 w1 w2 0

0 0 0 w3

0 0 0 w4

w5 0 0 0

 , Ae


−1 −1 0 0 1

1 0 −1 0 0

0 1 0 −1 0

0 0 1 1 −1

 (B.4)

To ensure the network to be a flow network we want:
w5 − w1 − w2 = 0

w1 − w3 = 0

w2 − w4 = 0

w3 + w4 − w5 = 0

(B.5)

Which corresponds well to Ae[w1, w2, w3, w4, w5]> = 05.
In a first estimate we consider that the weights are W0 = [80, 50, 90, 55, 70]>. This set of
weights does not induce a flow network. By computing the orthogonal projection of W0 on
Ker(Ae) we find, a vectorW1 of weights inducing a flow network and minimizing the difference
‖W0−W1‖2. In this case, the vector is as follows W1 = [133.75, 28.75, 133.75, 28.75, 162.5]>.
Figure B.2 illustrates this transformation of the weights.
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Résumé — En raison de la complexité inhérente à l’analyse de réseau de très grande taille,
l’élaboration d’algorithmes de partitionnement et diverses problématiques connexes sont traitées
au long de cette thèse. Dans un premier temps, une question préliminaire est traitée: puisque les
noeuds au sein d’une partie ne sont pas nécessairement connexes, comment quantifier l’impact d’une
contrainte de connexité ? Nous proposons ensuite un algorithme de partitionnement assurant que
le réseau réduit soit scale-free. Ceci permet de tirer profit des propriétés intrinsèques de ce type
de réseaux. Nous nous intéressons également aux propriétés à préserver pour respecter la nature
physique et dynamique du réseau initial. Dans une troisième partie, nous proposons une méthode pour
identifier les noeuds à mesurer dans un réseau pour garantir une reconstruction efficace de la valeur
moyenne des autre noeuds. Finalement, nous proposons trois applications: la première concerne le
trafic routier et nous montrons que notre premier algorithme de partitionnement permet d’obtenir
un réseau réduit émulant efficacement le réseau initial. Les deux autres applications concernent les
réseaux d’épidémiologie. Dans la première nous montrons qu’un réseau réduit scale-free permet de
construire une stratégie efficace d’attribution de soin au sein d’une population. Dans la dernière
application, nous tirons profit des résultats sur la reconstruction de moyenne pour estimer l’évolution
d’une épidémie dans un réseau de grande taille.

Mots clés : Algorithme de partitionnement, réseau scale-free, réduction de réseau

Abstract — In light of the complexity induced by large-scale networks, the design of network
partitioning algorithms and related problematics are at the heart of this thesis. First, we raise a
preliminary question on the structure of the partition itself: as the parts may includes disconnected
nodes, we want to quantify the drawbacks to impose the nodes inside each part to be connected.
Then we study the design of a partitioning algorithm inducing a reduced scale-free network. This
allows to take advantage of the inherent features of this type of network. We also focus on the
properties to preserve to respect the physical and dynamical profile of the initial network. We
investigate then how to partition a network between measured and unmeasured nodes ensuring that
the average of the unmeasured nodes can be efficiently reconstructed. In particular we show that,
under hypothesis, this problem can be reduced to a problem of detection of subgraph with particular
properties. Methods to achieve this detection are proposed. Finally, three applications are presented:
first we apply the partitioning algorithm inducing scale-freeness to a large-scale urban traffic network.
We show then that, thanks to the properties preserved through the partition, the reduced network
can be used as an abstraction of the initial network. The second and third applications deal with
network epidemics. First, we show that the scale-freeness of the abstracting network can be used to
build a cure-assignation strategy. In the last application, we take advantage of the result on average
reconstruction to estimate the evolution of a disease on a large-scale network.

Keywords: Partitionning algorithm, scale-free network, network reduction

GIPSA-Lab, 11 Rue des Mathématiques
38400 Saint-Martin-d’Hères


	Introduction
	Motivation to network reduction
	Introduction to network theory
	Scale-free networks
	Problematics and contributions
	Publications

	The price of connectedness
	The price of connectedness and problem formulation
	Illustrative example: The clustered model reduction
	Value of the ratio of connectedness in a (n,p)-Erdos-Rényi graph
	Validation of the upper bound
	Conclusion

	Network partitioning algorithm towards scale-free structure
	Introduction
	Framework for a class of problems
	A first instance of the problem fostering node similarity
	Property preserving problem
	Some results about the algorithm
	Conclusion

	Network partitioning algorithm towards average detectability
	Introduction
	Regular Induced Subgraph (RIS) detection for exact average detectability
	Approximate average detectability
	Conclusion

	Application to traffic
	Traffic network of Grenoble
	Reduction of the Grenoble traffic network

	Application to network epidemiology
	Introduction to network epidemiology
	MergeToCure, scale-free abstraction for cure allocation strategy
	Average detectability of an epidemic spreading
	Conclusion

	Conclusion
	Algorithms for clustered model reduction
	Weight projection to ensure the mass conservation property
	Bibliography

