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Résumé en français

L’objectif général de cette thèse est de proposer de nouveaux modèles pour la distribu-

tion des marchandises dans une organisation de type messagerie transportant des petits lots,

inférieurs à un camion complet, (less than truckload shipments, LTL). Les collectes et les

livraisons sont réalisées par des tournées de véhicules et sont consolidées dans des plateformes

de transfert (ou hubs). En effet, avec la pression pour augmenter les performances des systèmes

logistiques en termes de réduction des coûts et d’amélioration du niveau de service, le trans-

port de marchandises par messagerie ( B to B ou B to C) reçoit de plus en plus d’attention.

Le transport des marchandises, en particulier le transport routier, est un élément essentiel dans

l’environnement économique. Selon les statistiques du transport de marchandises de la Com-

mission Européenne 1, 75.1 % du transport intérieur total de marchandises dans les États mem-

bres de l’EU (EU-28) a été réalisé sur les routes en 2012, estimé à près de 1575 milliards tonne-

kilomètres (tkm). Dans le système logistique et le cadre de gestion de la chaîne d’approvisionnement

(supply chain management, SCM), le transport routier de marchandises prend en charge les ac-

tivités d’approvisionnement, de production et de distribution en déplaçant matières premières,

produits semi-finis et finis d’une façon efficace et opportune. Comme tous les autres secteurs

économiques, le transport routier de marchandises doit atteindre des niveaux de haute perfor-

mance en termes d’efficacité économique et de qualité de service.

Normalement, le transport routier de marchandises peut être divisé en deux types basés sur

les quantités de produits que les expéditeurs individuels peuvent charger dans un camion: trans-

port par camions complets (full truckload shipments, FTL) et transport par camions incomplets

(LTL) [5]. Le FTL implique le transport de grandes quantités de cargaison homogène d’un

expéditeur donné dans un seul camion, tandis que le transport LTL concerne des petites quan-

tités de cargaison collectées auprès des différents expéditeurs et consolidés sur des remorques

1. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Freight_transport_statistics
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à un terminal par l’entreprise de transport. Habituellement, un transporteur FTL est spécialisé

dans le déplacement d’un type spécifique de fret et propose un transport personnalisé à partir

d’une origine vers une destination unique directement sans aucun transbordement. Ainsi, il est

souvent utilisé entre une origine et une destination avec une grande demande.

Toutefois, un transporteur LTL peut traiter des demandes dont les expéditions ne rempli-

raient pas un camion complet en termes de poids ou de volume, mais qui peuvent être con-

solidées avec d’autres marchandises dans un terminal, pour réduire les coûts et la pollution. De

plus, dans le transport LTL, au lieu de traiter chaque demande entre origine-destination (O-D)

directement, un transporteur collecte des cargaisons de diverses origines (i.e. des expéditeurs,

des producteurs) pour l’expédition vers des destinations différentes (par exemple, les clients,

les magasins de détail) via un ou plusieurs hubs. Les collectes peuvent être des allers et retours

directs ou une tournée avec de multiples arrêts, en fonction de la demande de chaque origine.

Après la collecte, la marchandise est triée et consolidée dans un hub soit pour un transfert vers

un autre hub ou pour l’expédition vers les destinations soit directement, soit par tournées [23].

Dans certains cas comme les services postaux, les collectes et livraisons peuvent être effectuées

simultanément dans un même camion. Dans d’autres cas par exemple les biens de consomma-

tion, les collectes et les livraisons sont organisées séparément. Cela correspond au le cas courant

où les collectes de différents expéditeurs sont faites dans l’après-midi, alors que les livraisons

vers des destinations différentes sont effectuées le lendemain matin, pour permettre le transport

inter-hub pendant la nuit avec des camions pleins.

Pour les cas mentionnés ci-dessus, avec du transport LTL, le réseau appelé "hub et spoke",

est plus complexes et difficile à organiser que les opérations de FTL, parce que la performance

du système de LTL est non seulement liée à la distance entre les origines et les destinations

mais est également dépend de la conception du réseau de hubs et l’efficacité des opérations de

transport. Ainsi afin de concevoir un réseau de transport LTL efficace avec l’objectif de min-

imiser le coût total et satisfaisant aux exigences requises, les entreprises devront simultanément

déterminer la localisation des hubs, la répartition des origines (chargeurs) et les destinations (ré-

cepteurs) sur les hubs, le routage des flux entre l’origine et la destination, ainsi que les tournées

de collecte et livraison optimales au sein du réseau. Dans certains cas, la collecte et la livraison

sont uniquement considérés comme des allers-retours directs entre spokes satellites ou nœuds
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non-hub et hubs. Les spokes correspondent aux origines et aux destinations des flux. Ceci est

connu comme le problème de localisation de hub (hub location problem, HLP), qui se concen-

tre sur le choix des emplacements de hubs et d’affectation des spokes. Toutefois, dans d’autres

cas tels que le transport de biens de consommation, afin de réduire les coûts de transport entre

spokes et hubs, des tournées avec multiples arrêts sont réalisées pour la collecte et la livraison

dans ce réseau. Le problème de tournées de véhicules (vehicle routing problem, VRP) est com-

biné à l’optimisation des transports LTL. Ceci conduit à un nouveau problème d’optimisation

connu comme le problème de localisation de hubs et tournées combinées ( hub location-routing

problem, HLRP), qui est le problème abordé de cette thèse. Son but est de minimiser le coût

total du système LTL, y compris les coûts fixes pour établir les hubs, les coûts de transport inter-

hubs , les coûts fixes des véhicules et les coûts des tournées pour les collectes et livraisons.

Pour illustrer le système de HLRP pour le transport LTL, un exemple pour le transport de

marchandises générales est représenté sur la Figure 1, où les carrés, les cercles et les triangles

représentent les hubs candidats, les origines des marchandises (fournisseurs) et les destinations

(clients), respectivement. Les flèches en gras représentent les arcs de transfert connectant les

hubs. Les lignes en pointillés représentent les arcs de collecte entre fournisseurs et hubs (routes

de collecte), tandis que les lignes pleines simples représentent les arcs de livraison. Pour les

tournées de collecte ou de livraison, il y a deux modes de routage possibles : la tournée avec un

seul nœud telles que les routes R1 ou R2 et la tournée avec multiples nœuds comme les routes

R3 ou R4.

Figure 1: Le réseau de la HLRP pour le transport de LTL
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Extension du HLP et du VRP, le HLRP est étroitement lié au problème de localisation et

routage (LRP), et peut aussi être appelé le problème de localisation et routage entre plusieurs

origines et plusieurs destinations ( many-to-many location-routing problem, MMLRP) dans

certaines recherches [66, 149, 179]. Le LRP classique ne considère que la partie livraison et op-

timise les coûts totaux de distribution et routages à partir des dépôts sélectionnés, en satisfaisant

les demandes des clients. Les objectifs du LRP sont de déterminer l’emplacement des dépôts,

l’affectation des clients aux dépôts, et la conception des routes de distribution (ou le collecte)

associées aux dépôts. Contrairement au LRP, qui ne considère qu’un type de route, le HLRP

traite les routes à la fois de collecte et de livraison séparément ou non. En outre, le HLRP prend

en compte des échanges de flux entre paires d’origines - destinations et les connexions entre les

hubs. Les principales différences du HLRP et des problèmes connexes susmentionnés peuvent

être vues dans le Tableau 1. Le HLRP considère la plupart des facteurs de décision pour les

transports LTL et peut être adapté aux autres problèmes connexes facilement. Par exemple, si

le transport inter-hub n’est pas considéré, le HLRP peut être considéré comme deux LRPs.

Tableau 1: Les différences entre HLP, VRP, LRP et HLRP
XXXXXXXXXXXXProblème

Décision Localiser
le hub

Affecter les
nœuds

non-hub

Concevoir les
tournées des

véhicules

Considérer les flux
entre origines et

destinations
HLP × × ×
VRP ×

MDVRP × ×
LRP × × ×

HLRP × × × ×

Dans la littérature, contrairement aux HLP et LRP, qui ont été très étudiés par la commu-

nauté de la recherche depuis plusieurs décennies (voir les articles de synthèse comme [176,

183]) , très peu de travaux ont abordé le HLRP directement. En outre, la plupart des études

sur ce problème mettent l’accent sur les systèmes de services postaux dans lesquels collectes

et livraisons peuvent être effectuées simultanément dans le même camion [40, 66, 180]. Il y a

un manque de modèles et de méthodes de résolution traitant du HLRP pour les transports LTL

de marchandises générales, où la collecte et la livraison se produisent à différents moments

[149, 179]. Sur le développement de méthodes de résolution, la plupart d’entre eux ont proposé

des heuristiques hiérarchiques et résolvent certains cas réels ou des instances de taille moyenne.

Pour ces raisons, il semble plutôt prometteur pour développer des modèles et des méthodes
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efficaces pour résoudre ce cas général de HLRPs.

Comme mentionné ci-dessus, cette thèse se concentre principalement sur le problème de

localisation de hubs et tournées combinées (HLRP) pour le transport LTL des marchandises,

impliquant la localisation des hubs, l’affectation des nœuds satellites aux hubs, le routage des

flux entre chaque origine et destination, et des tournées de collecte et de livraison optimales.

L’objectif est de minimiser le coût total de transport du réseau de hub et satellites en développant

des modèles et algorithmes spécifiques. Pour atteindre cet objectif, les problèmes suivants sont

pris en compte et doivent être résolus:

(1) détermination du nombre et de la localisation des hubs parmi les candidats potentiels,

ainsi que l’allocation de chaque nœud non-hub à un hub, et les routages des flux de toutes

les origines vers les destinations.

(2) détermination des routes de service entre chaque entité de collecte ou livraison affectée

à un hub donné. Les routes peuvent consister en un transport direct (entre le hub et

un fournisseur ou un client donné) ou en une tournée locale avec plusieurs arrêts pour

laquelle on doit décider de l’ordre de visite.

Pour résoudre les problèmes de recherche définis ci-dessus simultanément, nous dévelop-

pons un modèle stratégique, comprenant les décisions de localisation-affectation du HLP ainsi

que la conception des tournées types qui pourraient être adaptées au niveau opérationnel. Des

modèles mathématiques et des méthodes de résolution efficaces sont proposées pour résoudre

le HLRP et sont évalués sur des instances inspirés de la littérature. Basée sur cette thématique

de recherche, cette thèse est organisé comme suit:

Après une introduction, le Chapitre 2 est consacré à un état de l’art sur le HLRP et à une

revue de la littérature macroscopique sur les problèmes connexes, comme le HLP, le VRP et le

LRP. Tout d’abord, nous avons introduit la définition, les caractéristiques, les variantes et les

applications pour chaque problème connexe (HLP, VRP et LRP). Puis les formulations math-

ématiques et méthodes de résolution ont été résumées pour chaque problème, en particulier le

HLP avec l’affectation unique, le VRP avec capacité (capacitated VRP, CVRP) et le LRP avec

capacité (capacitated LRP, CLRP). Enfin, une comparaison entre les problèmes connexes et le

HLRP est proposée, suivie d’une revue des travaux publiés sur le HLRP. Contrairement aux
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nombreux travaux relatifs aux problèmes connexes, le HLRP a reçu peu d’attention jusqu’à

maintenant en particulier pour les applications au transport LTL de biens de consommation.

À notre connaissance, seulement 7 travaux publiés (voir Tableau 2) ont abordé le HLRP et

la plupart d’entre eux surviennent après l’année 2010. En outre, la plupart des papiers sur le

HLRP traite des applications particulières dans lesquelles la capacité du véhicule n’est pas prise

en compte, facilitant la collecte et la livraison combinées des produits dans la même tournée,

comme c’est le cas dans le domaine des services postaux. Même si des heuristiques ou des

méthodes exactes ont été proposées, seulement les petites et moyennes instances peuvent être

résolues. De cette revue de la littérature, nous remarquons qu’aucune recherche n’a été menée

sur le HLRP avec des collectes et des livraisons séparées, correspondant néanmoins à des ap-

plications réelles que pour des entreprises de transport spécialisée dans le transport de charges

de moins de 3 tonnes, nécessitant ce type d’organisation pour réduire les coûts et respecter les

délais de livraison (moins de 24h ou moins de 48h).

Tableau 2: Comparaison détaillée entre les travaux connexes sur le HLRP

Article
Characteristiques

Location Allocation Number
of hubs

Hub
constraint

Routing
constraint Solution Application

area Size

Nagy et al.
(1998)[149] yes single not fixed capacitated length Hierarchical

heuristic
One

instance 249

Liu et al.
(2003)[130] no single+direct

shipment one hub uncapacitated length Heuristic Random
instances 25

Wasner et al.
(2004)[203] yes multiple+direct

shipment not fixed capacitated capacitated Heuristic Austria
postal 10

Çetiner et al.
(2010) [40] yes multiple p hubs uncapacitated length two-stage

heuristic
Turkish
postal 81

Camargo et al.
(2013) [66] yes single not fixed uncapacitated length Benders de-

composition AP 100

Rodriguez-Martin
et al. (2014) [180] yes single p hubs uncapacitated number of

nodes B&C CAB+AP 50

Rieck et al. (2014)
[179] yes single+direct

shipment p hubs uncapacitated capacitated
Multi-start
procedure

+GA

timber-
trade

industry
140

Our research yes single not fixed capacitated capacitated MA and
B&C

freight
and postal 100

Ainsi, le développement d’un modèle général pour le HLRP avec les collectes et les livraisons

distinctes et des méthodes exacte et approximative efficaces pour ce problème semblent être une

avenue intéressante de recherche. Nous nous sommes inspirés de la littérature sur le HLP, LRP

et VRP pour la modélisation de ce problème et le développement de méthodes de résolution. La

revue de la littérature nous indique aussi la nécessité de développer des méthodes de résolution

spécifiques et des métaheuristiques particulières pour résoudre ce problème.

Le Chapitre 3 se concentre sur le développement de modèles pour le HLRP avec capacité et
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affectation unique (capacitated single allocation HLRP, CSAHLRP), qui est le problème central

de recherche de cette thèse. Sur ce problème, chaque satellite doit être affecté à un seul hub et

une seule route. Les transports directs entre les fournisseurs et les clients ne sont pas consid-

érés; chaque flux peut être transporté à travers deux hubs au plus, et les véhicules utilisés sont

homogènes et avec capacité. De plus,chaque hub potentiel est limité par une capacité. Suite

à la description détaillée de ce problème, nous présentons deux modèles mathématiques pour

le CSAHLRP comprenant une formulation avec une variable à 4 indices (Modèle 1) et l’autre

avec une variable à 3 indices (Modèle 2). Dans le premier modèle, la variable Yijkl est utilisée

pour désigner la fraction de flux du fournisseur i au client j via les hubs k et l. Le second

modèle utilise une variable avec 3 indices Yikl représentant la fraction du flux total provenant

du fournisseur i acheminée à travers les hubs k et l. Le Modèle 2 réduit évidemment le nombre

de variables et de contraintes par rapport au Modèle 1 (comme représenté sur la Figure 2).

Figure 2: La comparaison de la taille du Modèle 1 et Modèle 2 avec 6 hubs potentiels

En outre, afin d’évaluer les deux modèles proposés à travers des expérimentations numériques,

nous avons généré des jeux de données. Les valeurs des paramètres de coût sont générées sur

la base des données des coûts de transport proposés par le Comité National Routier français

(CNR) 2. Pour les coordonnées des nœuds de hubs potentiels, fournisseurs et clients du réseau,

nous avons utilisé les données de Australie Poste (AP) issues de la littérature [78] ((obtenus

de OR-Library 3). Toutes les instances produites sont divisées en trois groupes en fonction du

nombre des hubs potentiels. Pour chaque groupe, nous avons distingué trois types d’instances

2. http://www.cnr.fr/en
3. http://people.brunel.ac.uk/ mastjjb/jeb/orlib/phubinfo.html
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en fonction du niveau de capacité des hubs (petite, moyenne, grande).

Pour les petites et moyennes instances générées, nous comparons la complexité et la per-

formance des deux modèles à partir des résultats de calcul obtenus par CPLEX dans une

limite de 3 heures. Le Tableau 3 évalue les forces et les faiblesses de chaque modèle pour

l’obtention de bornes supérieures et de bornes inférieures, la possibilité de trouver des solu-

tions optimales et le temps de calcul pour atteindre la borne supérieure. Dans ce tableau, la

colonne 1 définit chaque groupe d’instances. Les colonnes 2 et 3 montrent l’écart moyen avec

la borne supérieure GapUB% = (UBM − UBbest)/UBbest ∗ 100% et l’écart moyen avec la

borne inférieure GapLB% = (UBbest−LBM)/UBbest ∗100%, respectivement, où UBM , LBM

représentent la borne supérieure, la borne inférieure obtenue par CPLEX sur chaque modèle,

et UBbest représente la meilleure borne supérieure fournie par n’importe quel modèle. Puis la

capacité à trouver des solutions à partir de chaque modèle pour toutes les instances de test est

indiquée dans les colonnes 4 et 5. En outre, la dernière colonne TUB indique le temps moyen

pour atteindre les bornes supérieures correspondant à chaque groupe d’instances.

Tableau 3: Comparaison des résultats des deux modèles (Modèle 1 et Modèle 2)

Instance groupe
4-index (Modèle 1) 3-index (Modèle 2)

GapUB% GapLB%
Optimal

/all

No
solution

/all
TUB GapUB% GapLB%

Optimal
/all

No
solution

/all
TUB

3 hubs potentiel 1.45 14.71 3/15 0/15 3730.10 0.02 13.35 5/15 0/15 4633.85

6 hubs potentiel 2.36 18.05 0/12 3/12 7502.80 0.00 18.57 0/12 3/12 6765.29

10 hubs
potentiel 4.31 25.15 0/12 3/12 6172.18 0.00 27.91 0/12 3/12 8453.24

Moyenne totale 2.48 19.31 3/39 6/39 5801.69 0.01 19.94 5/39 6/39 6617.46

Tout d’abord, à partir de l’écart moyen avec la borne inférieure et la borne supérieure pour

chaque groupe d’instances, on peut voir que le modèle avec 3 indices peut trouver de meilleures

bornes supérieures que le modèle à 4 indices en trois heures de calcul par CPLEX, tandis que

le modèle avec 4 indices peut fournir de meilleures bornes inférieures. A partir du nombre de

solutions optimales trouvées par CPLEX sur la base de chaque modèle, le modèle à 3 indices a

trouvé cinq solutions optimales contre trois solutions optimales pour le modèle à 4 indices. Il

convient également de noter que CPLEX n’a pas trouvé de solutions réalisables aux problèmes

de taille moyenne avec 6 et 10 hubs potentiels quelque soit le modèle. Au regard du temps

nécessaire pour atteindre la borne supérieure avec CPLEX, les modèles montrent tous que ce

problème est difficile à résoudre par un solveur commercial.
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En outre, une analyse de la solution est proposée sur la base de différentes valeurs des

paramètres permettant d’illustrer la conception du réseau de CSAHLRP pour le transport LTL.

Un exemple des meilleures solutions obtenues avec l’instance 6-10-10 est illustré sur la Figure

3. Dans cette figure, les cercles, les triangles et les carrés représentent les fournisseurs, les

clients et les hubs sélectionnés, respectivement. Les lignes pointillées, lignes solides et les

lignes continues avec des doubles flèches représentent des arcs de collecte, des arcs de livraison

et des arcs de inter-hub, respectivement.

Figure 3: Illustration de la solution d’instances 6-10-10

De la Figure 3, nous pouvons voir la variété des décisions sur la localisation et le routage en

fonction des capacités différentes des hubs. Par exemple, la meilleure solution pour l’instance

6-10-10-120 sur Fig.3 c ouvrira le hub numéro 2. Tous les fournisseurs/clients sont affectés à ce

hub pour échanger le flux des marchandises par 7 circuits de collecte et 8 tournées de livraison.

Cependant, pour l’instance 6-10-10-45 (voir Fig.3 a), avec deux hubs ouverts, il y a 8 tournées

de collecte locales et 8 tournées de livraison locales depuis les hubs, y compris les tournées

de nœuds uniques 2 ↔ 13 et 3 ↔ 22. Les détails sur les meilleures solutions pour l’instance

6-10-10 peuvent être vus dans le Tableau 4.

Ce chapitre fournit non seulement une base de calcul pour les chapitres suivants, mais mon-

tre également la difficulté de résoudre le HLRP avec CPLEX, et la nécessité de développer une
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Tableau 4: Détails des meilleures solutions pour instance 6-10-10
H-I-J Hub-Cap Hub sélectionné Collection tours Livraison tours Coût

6-10-10

45 2, 3

2-8-2, 2-9-2 2-17-2, 2-26-25-2

7613.94
2-12-2, 2-13-2 2-23-2, 2-19-2

3-10-3, 3-14-7-3 3-21-3, 3-22-3,
3-11-16-3, 3-15-3 3-24-20-3, 3-18-3

60 2, 3

2-12-10-2, 2-9-2 2-23-2, 2-17-2

6828.25
2-13-2, 2-14-7-2 2-19-2, 2-22-2
3-16-11-3, 3-8-3 2-25-26-2, 3-21-3

3-15-3 3-24-20-3, 3-18-3

120 2

2-10-2, 2-13-2 2-17-2, 2-22-2

6249.60
2-11-16-2, 2-8-2 2-20-24-2, 2-25-26-2
2-9-2, 2-12-15-2 2-19-2, 2-18-2

2-7-14-2 2-23-2, 2-21-2

métaheuristique ou un autre algorithme spécifique pour résoudre ce problème, en particulier

pour les instances de grande taille.

Le Chapitre 4 est consacré au développement d’une telle métaheuristique pour résoudre

le CSAHLRP efficacement. Un algorithme mémétique (memetic algorithm, MA) est proposé.

C’est une heuristique évolutionnaire hybride basée sur un algorithme génétique combiné à une

procédure de recherche locale. Il s’est avéré très efficace pour résoudre les problèmes connexes

et fournit des solutions fiables dans des applications réelles. Par exemple, dans le HLR, le VRP

et le LRP, il a été appliqué avec succès. Cependant, il n’a pas été utilisé pour le HLRP. C’est

pourquoi, nous avons choisi cette méthode pour résoudre le CSAHLRP. A chaque itération

de cet algorithme mémétique ( Figure 4), après avoir trouvé des solutions globales à travers

les opérateurs génétiques (opérateurs de sélection, croisement et de mutation), une recherche

locale itérative est exécutée pour améliorer les décisions de localisation et de routage pour la

collecte/livraison jusqu’à ce qu’aucune amélioration ne soit plus trouvée. Toutes les étapes

sont répétées jusqu’à ce que le critère d’arrêt soit satisfait. Après le test des paramètres, les

critères d’arrêt dans ce MA sont définis par le nombre maximal de génération fixé à 200 ou si

la meilleure solution n’est pas améliorée pendant 100 générations successives.

Pour le codage du chromosome dans cet algorithme mémétique, il est composé de deux

sections : la section de localisation (location section) et la section de routage (routing section)

(représentées sur la Figure 5). La première section montre les localisations des hubs sélec-

tionnés et la seconde est composée d’une permutation des fournisseurs et des clients. Ensuite,

chaque fournisseur ou client dans la section de routage est affecté au hub à la position corre-
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Figure 4: Le cadre de l’algorithme mémétique (MA)

spondante dans la section de localisation. Par exemple dans Figure 5, le fournisseur 4 est affecté

au hub 1 et le client 11 est affecté au hub 2. Puis les tournées de collecte ou de livraison sont

déterminées par l’ordre des fournisseurs ou des clients dans la section de routage et la capacité

du véhicule. Il convient de noter que les fournisseurs et clients ne peuvent pas être attribués à

une même tournée.

Figure 5: Un exemple du codage du chromosome pour le HLRP

La fonction d’évaluation de l’algorithme comprend non seulement les coûts totaux de so-

lutions, mais également une pénalité si la capacité des hubs est dépassée pour la collecte et la

livraison. Pour l’opérateur de sélection, la sélection avec roulette (the roulette wheel selection)

est utilisée sur la base de l’équation de la probabilité suivante:

P (|k|) =
2k

PopSize(PopSize+ 1)
(1)
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où k est le kime chromosome ordonné dans l’ordre décroissant des valeurs de la fonction

d’évaluation dans la population, et PopSize est la taille de la population. Cette probabilité

est inversement proportionnelle à la valeur de la fonction d’évaluation. Ainsi, un individu avec

une meilleure valeur de fitness dispose d’une plus grande probabilité d’être sélectionné en tant

que parents ou d’entrer dans la prochaine génération.

Pour l’opérateur de croisement (voir Figure 6), un point de croisement (one-point crossover)

classique est utilisé sur la section de localisation. Pour la section de routage, après avoir généré

un point, la première partie de l’enfant est identique au parent 1 avant ce point. Pour le reste,

l’enfant prend successivement le code du parent 2, sauf les parties de code qui existent déjà

dans la première partie. A propos de l’opérateur de mutation (Figure 7), un hub de la section

de localisation peut muter aléatoirement ; pour la section de routage, deux points sont générés

tout d’abord, puis le point 1 (nœud 7) est retiré de sa position actuelle et inséré après le point 2

(nœud 10).

Figure 6: L’opérateur de croisement pour les sections de localisation et routage

Figure 7: L’opérateur de mutation pour les sections de localisation et routage

Pour la recherche locale itérative dans ce MA, deux types d’opérateurs sont utilisés pour

améliorer les décisions de routage de collecte et livraison simultanément. Ils incluent des

opérateurs intra-routes et des opérateurs inter-routes. Pour les opérateurs intra-routes, les opéra-

teurs de swap et 1-insertion sont utilisés. Puis le 2-opt* et le déplacement entre les différentes

routes sont utilisés. Des opérateurs de perturbation sont utilisés pour améliorer les décisions
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de localisation-affectation à savoir les opérateurs de fermeture de hub, d’ouverture de hub et

d’échange de hubs .

Pour évaluer le performance du MA proposé, de nombreuses expérimentations numériques

sont effectuées sur la base des instances générées. Tout d’abord, avec les instances de petites et

moyennes tailles générées, les meilleures valeurs objectif trouvées par le MA sont comparées

avec la meilleure borne supérieure obtenue par CPLEX pour chaque taille d’instance. A par-

tir de l’écart moyen de la borne supérieure UB% pour chaque groupe d’instances (Tableau 5),

nous constatons que le MA peut atteindre toutes les solutions optimales trouvées par CPLEX.

De plus, quand CPLEX ne peut pas trouver de solutions optimales, le MA peut trouver une

meilleure solution que CPLEX (voir l’écart de la borne inférieure moyenne LB%). Le MA

améliore 18 meilleures solutions sur 33 instances de test avec une amélioration maximale de

10%. En outre, les temps de calcul du MA et de CPLEX pour arriver à la meilleure borne

supérieure sont comparés dans la colonne 5 ( TUB ) et dans la colonne 9 ( Taver ). On remar-

que que, pour toutes les instances de test, le MA peut atteindre toutes les meilleures solutions

dans un temps plus court que CPLEX. On constate que le MA peut résoudre les instances de

petite et moyenne taille en une minute. En outre, dans les 3 heures, CPLEX n’a pas trouvé les

solutions optimales pour les instances moyennes (vu de la colonne Ttotal ). De plus, CPLEX

n’a pas trouvé de solutions réalisables pour les instances de grandes tailles avec plus de 50

satellites. Ainsi, avec les expériences sur les instances de grande tailles résolues par le MA,

nous constatons que le MA proposé résout efficacement toutes les instances et peut fournir des

solutions réalisables pour les instances jusqu’à 100 satellites et 10 hubs potentiels. La figure 8

montre l’écart moyen de tous les tests avec le MA pour les différentes tailles d’instances. Les

petits écarts moyens trouvés démontrent une bonne stabilité du MA proposé et illustre que cette

méthode peut fournir des solutions prometteuses pour le CSAHLRP dans les transports LTL.

Récemment, une question a été posée dans [32], concernant la validation des économies

d’échelle du fait de la concentration des flux dans les hubs: Les flux inter-hubs sont-ils supérieurs

aux flux provenant des satellites? Par conséquent, sur la base des meilleures solutions obtenues

par MA pour les instances avec grande taille, le Tableau 6 compare les flux inter-hubs et les

flux entre satellites et hubs et valide le rôle de consolidation des hubs dans les transports LTL.

Les deux premières colonnes présentent le nom de l’instance et la capacité des hubs. Les
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Tableau 5: La comparaison des résultats entre CPLEX et le MA proposé
Instance groupe CPLEX MA

Hub potentiel Spokes UB% LB% TUB(s) Ttotal(s) UB% LB% Taver(s) Ttotal(s)
3 10 0.00 0.00 1.64 5.81 0.00 0.00 0.19 1.92

20 0.00 1.46 415.69 6770.23 0.00 1.46 1.22 12.19
30 0.00 13.52 6557.94 10800.00 -0.10 13.44 3.17 31.71
40 0.00 24.20 6867.86 10800.00 -1.14 23.41 9.49 94.94
50 0.00 27.68 9646.76 10800.00 -4.67 24.50 24.47 244.71

Moyenne 0.00 13.37 4697.98 7835.43 -1.18 12.56 7.71 77.10

6 20 0.00 6.97 4179.32 10800.00 0.00 6.97 2.49 24.89
30 0.00 16.95 7025.19 10800.00 -0.09 16.87 9.94 99.45
40 0.00 29.58 9164.35 10800.00 -3.45 22.45 22.45 236.49

Moyenne 0.00 17.83 6789.62 10800.00 -1.18 15.43 11.63 120.27

10 20 0.00 12.96 6723.72 10800.00 -1.14 12.01 3.37 33.73
30 0.00 26.86 9258.68 10800.00 -1.55 25.71 15.76 157.61
40 0.00 38.49 9377.31 10800.00 -9.50 31.98 43.27 432.66

Moyenne 0.00 26.11 8453.24 10800.00 -4.06 23.24 20.80 208.00

Moyenne totale 0.00 19.68 6292.59 10434.51 -1.97 16.25 12.35 124.57

Figure 8: L’écart moyen de le MA en fonction de le taille du problème (nombre de nœud)

colonnes 3 et 4 fournissent respectivement le nombre d’arcs inter-hubs et de routes locales dans

la meilleure solution pour chaque instance. En outre, il indique également le flux minimal entre

hubs Minflowhub et le flux maximal des routes locales Maxflowroute dans les colonnes 7 et 8,

respectivement. La dernière colonne donne le pourcentage moyen (%)de nœuds non-hubs avec

un flux plus grand que le flux inter-hub. Il montre que, dans les meilleures solutions, le flux

des arcs inter-hubs est toujours plus grand que le flux des routes locales, et qu’il est également

plus grand que chaque flux provenant de satellite. Ces tests démontrent l’intérêt des hubs pour

consolider les flux et l’efficacité du transport inter-hubs pour les compagnies de transport LTL.

Bien que le MA améliore la borne supérieure obtenue par CPLEX, il faut améliorer égale-

ment la borne inférieure. Par conséquent, une méthode exacte basée sur l’algorithme de branche-

ment et coupes (branch-and-cut algorithm, B&C) est proposé dans le chapitre 5 pour résoudre
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Tableau 6: La comparaison des flux sur les arcs inter-hubs et les routes locales

Instance Γk
Hub
arcs Routes Flowhub Flowroute Minflowhub Maxflowroute Average %

6-40-40
90 6 36 26.58 13.03 22.36 14.97 0%

135 2 36 53.23 13.06 42.21 14.97 0%

6-50-50
105 6 42 25.93 12.88 19.08 14.91 0%
150 2 42 65.54 12.87 56.37 14.98 0%

10-40-40
90 6 36 26.58 13.03 22.36 14.97 0%

135 2 36 53.23 13.06 42.21 14.97 0%

10-50-50
105 6 43 29.07 12.60 21.71 14.96 0%
150 2 41 60.98 13.19 55.03 14.95 0%

optimalement le CSAHLRP et améliorer les bornes inférieures. Nous proposons tout d’abord

une nouvelle formulation adaptée du Modèle 1 pour le problème traité. Dans cette nouvelle

formulation, la variable de décision pour les parties de routage local est modifiée et devient une

variable entière xkij . Elle représente le nombre de fois où l’arc bord (i, j) est visité par une

route à partir du hub k. Elle peut être égale à 0, 1, 2 en fonction du type d’arc. La fonction

objectif minimise toujours le coût total. Ensuite, pour les contraintes, les principaux change-

ments concernent les parties de routage pour la collecte et la livraison à savoir les contraintes

de capacité des véhicules, les contraintes de conservation de flux et les contraintes de cohérence

pour chaque hub.

Puis, afin de renforcer la borne inférieure de la nouvelle formulation, certaines inégalités

valides sont proposées et utilisées dans cet algorithme. La première famille d’inégalités valides

est appelées inégalités valides simples (Sim). Ils renforcent les liens entre les variables de

routage et les variables d’affectation. Elles montrent que n’importe quel nœud doit être visité

par une route à partir d’un hub sélectionné. De toute évidence, ces inégalités sont de taille

polynomiale. En plus des inégalités valides simples, plusieurs inégalités valides de taille expo-

nentielle dérivées des problèmes connexes sont utilisées dans la méthode exacte. Le premier

grand groupe correspond à celles dérivées du VRP. Si on réduit tous les hubs à un grand hub

fictif, la partie de routage pour la collecte ou la livraison dans le HLRP correspond au CVRP. En-

suite, les inégalités valides pour le VRP peuvent être adaptées au HLRP. La première famille de

ce groupe concerne les contraintes d’arrondi de capacité des tournées ( rounded route capacity

constraints, RRC). Elles sont linéaires et garantissent les contraintes de capacité des véhicules

et évitent les sous-circuits de collecte et de livraison. Le deuxième groupe est appelé inégal-
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ités généralisées Multistar (generalized large multistar inequalities, GLM). Elles sont valables

pour des sous-ensembles de fournisseurs et de clients dans le HLRP, lorsque leur taille n’est pas

inférieure à 2. D’autres inégalités sont inspirées du LRP. La première famille correspond aux

inégalités valides de capacité de hub ( hub capacity valid inequalities, HC). Elles renforcent les

contraintes de capacité de hubs dans les processus de collecte et de livraison, et sont valables

pour les sous-ensembles de fournisseurs et de clients lorsque le flux total est supérieur à la ca-

pacité du hub. Elles indiquent que les nœuds dans ce type de sous-ensemble ne peuvent pas être

totalement servis par les routes à partir d’un seul hub. Un deuxième groupe issu du LRP est

appelé inégalités valides de degré de hub renforcé (strengthened hub degree valid inequalities,

SHD). Elles renforcent les contraintes de degré de hub lorsque le flux total d’un sous-ensemble

est inférieur à la capacité du véhicule. Elles sont valables lorsque les distances respectent les

inégalités triangulaires. La dernière famille appelée inégalités valides de co-circuit désagrégées

(disaggregated co-circuit valid inequalities, DCoC) est valable pour un sous-ensemble de four-

nisseurs et de clients et un ensemble d’arcs F impair et sans tournées d’aller-retour.

Sur la base du cadre classique de l’algorithme de B&C, une méthode exacte pour le CSAHLRP

est présentée en Figure 9. A l’étape d’initialisation, deux cas sont possibles. Le premier ini-

tialise l’algorithme sans solution initiale et la borne supérieure est réglée sur l’infini, nous

l’appellerons pure B&C. Dans l’autre cas une solution initiale du MA initialise l’algorithme

et la valeur objectif de cette solution est utilisée comme borne supérieure. Nous l’appelons

B&C+MA. Les autres parties de la méthode sont traitées par CPLEX. Lors de l’identification

des inégalités violées, l’approche de séparation pour les inégalités valides simples est appelée

en premier, puis l’algorithme de séparation pour les contraintes de RRC, les inégalités SHD et

GLM est appliqué séquentiellement. Si aucune inégalité violée pour les types SHD et GLM

n’est trouvée, la routine de séparation pour les HC est appelée. Enfin, le procédé de séparation

pour les contraintes DCoCC est appelé si aucune inégalité ci-dessus ne se trouve violée. Dans

cette stratégie de séparation, le problème de la séparation des inégalités valides simples peut

être résolu d’une manière simple. Toutefois, pour d’autres inégalités valides de taille exponen-

tielle, un algorithme randomisé glouton (a greedy randomized algorithm [94]) est appliqué pour

générer les contraintes de RRC, ainsi que les inégalités valides SHD, GLM et HC.

Des expérimentations numériques ont été menées sur les instances de petites et moyennes
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Figure 9: Le cadre de B&C proposé pour la CSAHLRP

tailles pour évaluer les effets de chaque famille d’inégalités valides sur le renforcement de la

borne inférieure de la nouvelle formulation. Les résultats sont comparées en utilisant l’écart

de la borne inférieure au nœud racine obtenu en ajoutant chaque famille d’ inégalités valides

à la fois pour la nouvelle formulation (voir Tableau 7). La colonne 3 donne l’écart moyen

de la borne inférieure obtenue sur la formulation originale sans inégalités valides. Les autres

colonnes indiquent les valeurs pour chaque famille d’ inégalités valides et pour chaque taille

d’instances. A partir de ce tableau, nous constatons que les contraintes RRC sont les inégalités

les plus efficaces, suivies par les inégalités GLM et SHD. En outre, la formulation initiale peut

être améliorée par l’ajout des inégalités valides, à l’exception des inégalités DCoCC. Donc,

cette famille d’inégalités valides ne sera pas utilisée dans l’expérience finale.

Ensuite, nous évaluons la performance de B&C+MA en comparant les résultats avec ceux

obtenus par le B&C sans la solution initiale du MA et CPLEX pour résoudre des instances de

petite et moyenne tailles (Tableau 8). Ils sont comparés à l’aide de l’écart moyen de la borne

inférieure LB%, la possibilité de trouver des solutions (Optimal/all et No solution/all) et le
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Tableau 7: La comparaison de l’effet de chaque famille des inégalités valides
Instance groupe Spokes Original Sim RRC HC SHD DCoCC GLM

3 hubs potentiel

10 10.45 9.19 2.67 9.97 5.99 10.45 9.50
20 19.71 19.59 9.81 19.71 18.75 19.71 15.84
30 20.09 20.01 14.46 20.09 16.61 20.09 18.80
40 27.45 27.42 17.25 27.11 27.40 27.45 24.27
50 27.13 27.09 20.24 27.13 26.86 27.13 22.84

Moyenne 20.97 20.66 12.88 20.80 19.12 20.97 18.25

6 hubs potentiel

20 20.02 19.53 11.63 20.02 18.87 20.02 17.31
30 19.48 19.44 16.18 19.48 16.94 19.48 18.11
40 26.01 25.94 22.07 25.19 24.77 26.01 24.98
50 26.59 26.56 21.69 26.59 26.46 26.59 25.13

Moyenne 23.03 22.87 17.89 22.82 21.76 23.03 21.38

10 hubs potentiel

20 20.11 20.07 15.24 20.11 19.39 20.11 19.59
30 21.10 21.07 16.95 21.10 19.78 21.10 20.51
40 26.16 25.37 22.05 26.01 25.79 26.16 23.76
50 25.82 25.21 21.98 25.82 25.30 25.82 25.47

Moyenne 23.30 22.93 19.05 23.26 22.57 23.30 22.33

Moyenne totale 22.32 22.04 16.32 22.18 20.99 22.32 20.47

temps TUB pour atteindre la borne supérieure par chaque méthode et chaque groupe d’instances.

Tout d’abord, à partir des valeurs de LB%, on peut voir que le B&C+MA améliore la borne

inférieure par rapport au pure B&C et CPLEX pour tous les groupes d’instances. De plus, le

B&C trouve 17 solutions optimales alors que CPLEX ne trouve que trois solutions optimales

sur les 39 instances de test. Nous avons également trouvé que le pure B&C n’a pas trouvé de

solutions réalisables pour les instances avec 50 spokes et 10 hubs potentiels. Enfin, en analysant

le temps nécessaire pour atteindre la borne supérieure par chaque méthode, on remarque que le

B&C+MA est plus rapide.

Tableau 8: Comparaison des résultats de B&C+MA, pure B&C et CPLEX

Instance groupe
B&C+MA Pure B&C CPLEX

LB%
Optimal

/all

No
solution

/all
TUB(s) LB%

Optimal
/all

No
solution

/all
TUB LB%

Optimal
/all

No
solution

/all
TUB(s)

3 hubs
potentiel 1.15 8/15 0/15 710.15 1.95 8/15 0/15 3631.62 13.84 3/15 0/15 3730.10

6 hubs
potentiel 3.02 5/12 0/12 40.20 4.49 5/12 0/12 6049.94 17.93 0/12 3/12 8470.31

10 hubs
potentiel 3.38 4/12 0/12 1597.40 3.69 4/12 3/12 5916.44 20.70 0/12 3/12 6172.18

Moyenne
totale 2.52 17/39 0/39 782.58 3.37 17/39 3/39 5199.33 17.49 3/39 6/39 6124.20

Pour les grandes instances résolues par le B&C+MA, les meilleurs résultats obtenus sont

comparés avec les meilleures valeurs objectif fournies par le MA pour tous les groupes d’instances.
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Après avoir comparé l’écart moyen de la borne supérieure, on constate que bien que l’algorithme

B&C proposé n’a pas résolu toutes les instances optimalement, il trouve 20 nouvelles meilleures

solutions sur 69 instances par rapport au MA De plus, l’écart moyen de la borne supérieure

pour toutes les instances est négatif. Cela indique une amélioration de l’objectif avec le B&C

algorithme proposé, et reflète également que la solution initiale du MA est très proche de la

meilleure solution trouvée par toute méthode utilisée dans cette thèse.

Le Chapitre 6 traite de l’application du HLRP dans les systèmes de services postaux. Tout

d’abord, nous avons analysé les caractéristiques individuelles de cette application et avons

présenté une formulation mathématique du HLRP dans les systèmes de services postaux où

la collecte et la livraison à un nœud sont opérées simultanément. Un exemple de réseau pour

cette application est représenté en Figure 10, où les carrés et les cercles représentent les nœuds

de hubs établis et les nœuds non-hub, respectivement. Les lignes pleines sont les arcs inter-

hubs, les lignes pointillées représentent les arcs des tournées locales. Ainsi, afin d’optimiser

ce réseau avec le coût total minimum, on doit déterminer la localisation des nœuds de hubs,

la répartition des nœuds non-hub, ainsi que les tournées locales visitant chaque localisation de

nœuds satellites pour la collecte et la livraison. En outre, les hypothèses suivantes sont prises

en compte dans le modèle:

(1) Chaque nœud non-hub doit être affecté à un hub et doit être servi par une seule tournée

locale (affectation unique);

(2) La quantité totale de flux affecté à un hub ne peut pas dépasser sa capacité, à la fois pour

le flux de collecte et également le flux de livraison (problème avec capacité);

(3) Chaque tournée locale est limitée à un nombre maximal de nœuds visité q, incluant le

nœud hub;

(4) Chaque tournée locale doit commencer à un hub et revenir au même hub;

(5) Le flux entre deux nœuds origine-destination peut passer à travers deux hubs au plus.

Afin de résoudre des instances de grandes tailles dans les systèmes de services postaux,

l’algorithme mémétique proposé dans chapitre 4 est adapté à ce problème. Après un grand

nombre d’expérimentations sur la base des instances inspirées du jeu de données de AP, nous

avons analysé les effets des différents paramètres sur les solutions, comme le niveau de capacité
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Figure 10: Le réseau de HLRP dans le système de service postal

des hubs, le nombre de hubs potentiels et la proportion du coût de routage dans le coût total.

En particulier, la structure des coûts de chaque solution avec différentes valeurs de paramètres

est analysée. La Figure 11 montre les changements de chaque élément de coût pour l’instance

6-10 quand la proportion de coût de routage (λ) augmente. On observe que le coût d’affectation

(coût de manutention) a une plus grande proportion dans le coût total même quand λ augmente.

En outre, les solutions ne présentent pas de changements évidents quand λ est égal à 1 et 100

d’une part, ainsi que λ = 500 et λ = 1000 d’autre part.

Figure 11: La structure des coûts pour instance 6-10 avec différentes valeurs de λ

Enfin, les résultats obtenus sur des instances de test pour λ = 100 et λ = 500 prouvent que le

MA surpasse CPLEX en termes de qualité de la solution et de temps de résolution. Le Tableau

9 compare, pour différentes valeurs de λ , l’écart moyen de la borne supérieure UB%, l’écart

moyen de la borne inférieure LB% et le temps moyen TUB (s) pour trouver la meilleure borne
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supérieure pour chaque groupe d’instances. Il se trouve que le MA peut obtenir des solutions

optimales pour les instances de petite taille et améliorer la plupart des meilleures solutions de

CPLEX dans un temps le plus court quand les solutions optimales sont introuvables.

Tableau 9: La comparaison des résultats entre CPLEX et le MA adapté pour les systèmes de
services postaux

λ Instance groupe
CPLEX MA

UB% LB% TUB (s) UB% LB% TUB (s)

100

3 potential hubs 0.00 1.05 8117.69 -0.18 0.87 3.11

6 hubs potentiel 0.00 7.44 9955.60 -4.25 4.34 503.45

10 hubs potentiel 0.00 10.85 9930.51 -7.72 4.79 1063.18
Moyenne 0.00 6.45 9334.60 -4.05 3.33 523.25

500

3 hubs potentiel 0.00 2.27 7586.77 -0.07 2.20 3.32

6 hubs potentiel 0.00 3.27 7213.88 -1.09 2.24 9.38

10 hubs potentiel 0.00 4.84 7267.63 -2.45 2.55 22.38
Moyenne 0.00 3.46 7356.09 -1.20 2.33 11.69

Enfin, l’efficacité et la stabilité du MA est vérifiée par de nombreuses expérimentations sur

toutes les instances produites et avec λ = 100. On voit sur la Figure 12 que l’écart moyen entre

le meilleur résultat obtenu et le résultat moyen du MA est inférieur à 5.00%. En outre, pour

toutes les instances, lorsque le nombre de nœuds est supérieur à 50, l’écart moyen est relative-

ment stable. Cela démontre également que le MA peut fournir des solutions prometteuses pour

le HLRP dans les systèmes de services postaux avec jusqu’à 100 nœuds satellites et 10 hubs

potentiels.

Figure 12: La tendance de l’écart moyen selon la taille du problème pour les instances postales
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Enfin, la conclusion résume les principales contributions de la thèse et définit quelques

perspectives pour les futurs travaux de recherche. Le travail de recherche principal et les con-

tributions théoriques de cette thèse sont résumés comme suit:

(1) Un état de l’art sur HLRP est donné sur la base des travaux publiés, ainsi qu’une revue

de la littérature des problèmes connexes, i.e. le HLP, le LRP et le VRP. Les caractéris-

tiques individuelles, les modèles mathématiques classiques et les principales méthodes

de résolution de chaque problème sont résumés. La principale contribution est d’analyser

les relations et les différences entre les problèmes connexes et de suggérer des directions

pour l’analyse de HLRP par rapport aux contraintes du problème, méthodes de résolution

et domaines d’application.

(2) De nouveaux modèles sont proposés pour le HLRP avec affectation unique et capac-

ité avec des processus de collecte et de livraison séparés ou non, respectivement. Deux

formulations de programmation linéaires générales sont consacrées à une résolution par

CPLEX pour les instances de petite et moyenne tailles et pour donner un aperçu des ré-

sultats du CSAHLRP avec différentes valeurs de paramètres. Une formulation avec une

variable de flux à 3 indices a été proposé pour mettre en œuvre un algorithme de branche-

ment et coupes pour résoudre le CSAHLRP. Un autre modèle mathématique est dédié au

HLRP dans les systèmes de services postaux où la collecte et la livraison sont opérées

simultanément dans une même tournée de véhicule. Ce chapitre est principalement con-

sacré à l’analyse des solutions et à l’évaluation de différentes valeurs de paramètres.

(3) Un algorithme mémétique (MA) est proposé pour résoudre le CSAHLRP pour le trans-

port de biens de consommation et pour les systèmes de services postaux. Il combine une

procédure de recherche locale itérative (ILS) dans le cadre d’un algorithme génétique

(GA) pour trouver des solutions réalisables de bonne qualité dans un temps compétitif.

Les résultats obtenus sur des instances de petites et moyennes tailles, par rapport aux ré-

sultats de CPLEX prouvent que le MA proposé surpasse CPLEX en termes de meilleures

solutions et de temps de calcul. En outre, cette approche nous permet de trouver ef-

ficacement de bonnes solutions réalisables pour des instances de grande taille avec un

maximum de 100 nœuds satellite.
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(4) Un algorithme de branchement et coupes (B&C) est développé pour résoudre le CSAHLRP

pour le transport de marchandises générales s’appuyant sur certaines familles d’inégalités

valides, qui renforcent le programme linéaire relaxé (LP). En outre, la meilleure solution

de l’algorithme mémétique est importé sous forme de la solution initiale au niveau du

nœud racine du B&C proposé. Les résultats montrent une bonne performance de notre

B&C pour résoudre les petites et moyennes instances de manière optimale jusqu’à 30

nœuds satellites et 10 hubs potentiels. En outre, il donne d’importantes améliorations

sur les bornes inférieures obtenues par CPLEX. Les résultats sur des instances de grande

taille montrent que le B&C proposé peut trouver quelques nouvelles meilleures solutions

par rapport à celles obtenus par le MA.

(5) De nouvelles instances pour le CSAHLRP sont générées à partir du jeu de données de

Australie Poste (AP), ainsi qu’une véritable base de données des coûts issus du Comité

National Routier français (CNR). De plus, pour chaque méthode proposée, un grand nom-

bre d’expérimentations ont été menées permettant le réglage des paramètres, les compara-

isons des résultats et des évaluations de performance.
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1
Introduction

1.1 Background and motivation
The overall goal of this thesis is to propose new models for goods distribution within the

framework of less than truckload (LTL) shipments, when collections and deliveries are orga-
nized through vehicle routing and consolidated at freight terminals. Indeed with the pressure
to increase the performance of logistics systems in terms of reducing costs and improving ser-
vice levels, LTL freight transportation (for B to B or B to C shipments) has been receiving
more and more attention. Freight transportation, especially road freight transport, is an essen-
tial element of the economic environment. According to freight transport statistics from the
European Commission 1, 75.1% of the total inland freight transport in the EU Member States
(EU-28) was transported over roads in 2012, which was estimated to be close to 1575 billion
tonne-kilometer (tkm). In the logistics system and the supply chain management framework,
road freight transport supports procurement, production and distribution activities by moving
raw materials, semi-finished and finished products in an efficient and timely way. Like all other
economic sectors, road freight transportation must achieve high performance levels in terms of
economic efficiency and service quality [59].

Normally, road freight transportation can be divided into two types based on the amounts
of cargoes that individual shippers can load in a truck: full truckload shipping (FTL) and less
than truckload (LTL) shipping [5]. FTL shipping involves the transportation of large amounts
of homogeneous cargo from a given shipper in a single truck, while LTL shipping relates to the
transportation of small freight collected from various shippers and consolidated onto trailers at
a terminal by the transport firm. Usually, a FTL carrier specializes in moving a specific kind
of freight and offers customized transportation from an origin to a single destination directly
without any transshipment. Thus, it is often used between origins and destination with a large
demand.

However, an LTL carrier can handle demands which shipments would not fill one full truck
in terms of weight or volume capacity but that can be consolidated with other goods at a termi-
nal, to reduce costs and pollution. Then, in the LTL industry, instead of handling each demand
between origin-destination (O-D) pairs directly, a carrier collects cargoes from various origins

1. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Freight_transport_statistics
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(i.e. shippers, producers) for shipment to different destinations (i.e. clients, retail stores) via
one or several hubs. The collections can be operated in a straight-and-back way or a multiple-
stop tour, depending on the demand of each origin. After collection, the freight is sorted and
consolidated in a hub terminal either for additional line-hauls to another hub terminal or for
shipment to the destinations either directly or through delivery tours [23]. In some cases such
as postal services, collection and deliveries may be done simultaneously in one truck. In other
cases such as consumer goods, collections and deliveries are organized separately. This corre-
sponds for example to the common case where collections from various shippers are made in
the afternoons and while deliveries to different destinations are made in the next morning, to
allow inter-hub transportation overnight with fully loaded long-haul trucks.

For the cases mentioned above, both of the LTL networks, called hub-and-spoke networks,
are more complex and difficult to organize than FTL operations, because the performance of
the LTL system is not only related to the distance between origins and destinations but is also
dependent on the design of the network of hub terminals and the efficiency of transportation
routing operations. So in order to design an efficient LTL shipment network with the objective
of minimizing the total cost and meeting the required demands, companies need to simultane-
ously determine the location of the hubs, the allocation of origins (shippers) and destinations
(receivers) to the hubs, the routing of flow between origins and destinations, as well as the opti-
mal collection and delivery routes within the network. In the past, the design of collection and
delivery routes through this kind of network has often been considered by means of straight-
and-back modes between spokes and hubs. This is knows as the hub location problem (HLP),
which focuses on the location of hubs while it may lead to the use many local transportation
links. Nowadays, in order to deal with more accurate models and obtain more realistic solu-
tions in a hub-and-spoke network, some managers and researchers take into account the local
tour planning between spokes and hubs, especially for the postal service cases [40, 180, 203].
This problem is known as the Hub Location-Routing Problem (HLRP), combining the hub lo-
cation and vehicle routing problems, which are interdependent in real life. It has become a new
and popular topic in the area of transportation network design. For this reason, this dissertation
addresses the HLRP, which goal is to minimize the total cost of the LTL system, including fixed
costs to establish hubs, inter-hub transportation costs, and collection/delivery routing costs.

Besides being an extension of the hub location problem, the HLRP is closely related to
the location-routing problem (LRP), which it is also called the many-to-many location-routing
problem (MMLRP) in some researches [66, 149, 179]. The classical LRP assumes that cus-
tomers have only delivery demand and it optimizes the distribution through routes from the
depots. The goals of the LRP are to determine the location of the depots, the allocation of
customers to depots, and the design of the distribution (or collection) routes associated with
the depots, and which corresponds to the Vehicle Routing Problem (VRP). Differently from the
LRP, which only considers one type of route, the HLRP deals with both collection and delivery
routes separately or not. In addition, the HLRP takes into account exchanges of flows between
O-D pairs and connections between hubs.

In the literature, in contrast to the HLP and the LRP, which have been the focus of the
research community for several decades (see review papers in [176, 183]), only very few works
have directly addressed the HLRP. Moreover, most of the studies on this problems arise after
2010 and focused on postal service systems in which collection and delivery may be done
simultaneously in the same truck [40, 66, 180]. However there is a lack of models and solution
methods addressing the HLRP for LTL shipments of general freight transport providers, where
collections and deliveries occur separately [149, 179]. Regarding the development of solution
methods, most of them proposed hierarchical heuristics and solved some real cases or medium
size instances. For these reasons, it looks rather promising to develop models and efficient
methods for solving this general case of HLRPs.
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1.2 Research problem and outline of the thesis

As mentioned above, this dissertation focuses on the hub location-routing problem for less-
than-truckload shipments, involving the location of hubs, the allocation of non-hub nodes, the
routing of flows between each origin and destination and the optimal collection and delivery
routes. The objective is to optimize the total operating cost of the hub-and-spoke network by
means of models and algorithms development. To achieve this goal, the following problems are
addressed:

(1) determination of the number and location of the hubs among potential candidates, as well
as the allocation of each non-hub node to a hub and the itineraries of flows from all origins
to destinations.

(2) determination of the service routes between each collection or delivery entities allocated
to a given hub. The routes can consist in a direct shipment (between the hub and a given
supplier or client) or in a multi-stop local tour for which we have to decide the visiting
order.

To address the above defined research problems simultaneously, we develop a strategic
model comprising the location-allocation decisions of the HLP as well as the design of repre-
sentative tours that could be adapted at the operational level. Mathematical models and efficient
solution methods are proposed to solve the HLRP and are evaluated on instances inspired from
the literature. Based on this research road-map, this dissertation is organized as follows, fol-
lowing this first introductory Chapter:

Chapter 2 is devoted to a state of the art on the hub location-routing problem and a macro-
scopic literature review on the related problems including the hub location problem, the vehicle
routing problem and the location-routing problem. A particular attentions is paid to the fea-
tures, mathematical models, exact and heuristic solutions methods for each related problem.
Finally, a review of the HLRP is provided, based on the current published researches and dis-
cusses different model, constraints, solving methods and application areas. The main purpose
of this chapter is to show the limitation of existing researches on hub location-routing problems
and the necessity of developing new models and methods for solving various situation of this
problem, which allows us to define the goal and the research problems of the thesis.

Chapter 3 focuses on the development of models for the capacitated single allocation hub
location-routing problem (CSAHLRP), which is the central research problem of this thesis.
Following a detailed description of this problem, we present two mathematical models for the
CSAHLRP including a formulation with a 4-index variable and another with a 3-index variable.
In order to perform a computational study with a commercial solver, a generation process of
HLRP instances is described based on related problems from the literature and the real data
base from Comité National Routier (CNR) 2. Particular attention is paid to the comparison of
the complexity and the performance of the two models based on generated small and medium
size instances. We discuss the strengths and weaknesses of each model according to computa-
tional results. In addition, a solution analysis is given based on different parameter values to
provide some insights into the network design of the CSAHLRP. This chapter not only provides
a computational foundation for the following chapters, but also shows the difficulty of solving
the hub location-routing problem with a commercial solver and the necessity of developing a
metaheuristic or other specific algorithm to solve large instances.

2. http://www.cnr.fr/en
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Chapter 4 is devoted to the development of such a metaheuristic for solving the capacitated
single allocation hub location-routing problem efficiently. A memetic algorithm is proposed,
based on a genetic algorithm (GA) combining an iterative local search (ILS) procedure. For
the coding of the chromosomes, we used a two-dimensional array to represent the location and
routing informations. For the iterative local search, different operators for the hub location and
vehicle routing sections are implemented sequentially to improve the solutions obtained at each
iteration of the GA. Many computational experiments are conducted on the generated instances
to evaluate the performance of the proposed MA, including tuning of the main parameters.
The results obtained on small to medium instances have been compared with the ones from the
CPLEX commercial solver to show the strengths of our MA in terms of finding best solutions in
acceptable computational time. In addition, the results obtained on large instances demonstrate
that this MA is able to provide promising and reliable solutions for the CSAHLRP with up to
100 non-hub nodes.

Chapter 5 presents an exact method based on the branch- and-cut algorithm (B&C) for the
CSAHLRP. We propose firstly a new mathematical model for the CSAHLRP based on a three-
index vehicle flow model of the LRP [173]. Then some valid inequalities derived from the VRP
or the LRP are introduced to strengthen the LP relaxation of this formulation. In the proposed
B&C algorithm, a separation algorithm for each family of valid inequalities is presented as well
as a branching strategy. In addition, at the root node of the B&C algorithm, the best solution
from the memetic algorithm is used as an initial solution and its objective value is considered
as the upper bound of the optimal solution. Computational experiments have been conducted
on available instances to evaluate the effects of each family of valid inequalities on strengthen-
ing the LP relaxation of the new formulation. In addition, we compare the results on small to
medium instances with ones obtained by CPLEX and one particular B&C without initial solu-
tions, and also investigate the whole performance of the B&C algorithm compared to the results
obtained by the MA based on the large instances. The results demonstrate a good performance
of our B&C algorithm for the small and medium instances and reveal the importance of a good
initial solution in the B&C algorithm.

Chapter 6 deals with the application of hub location-routing problem to postal service sys-
tems where the collection and delivery at each node location are operated simultaneously in
the same truck. A mathematical formulation is presented here based on the main features of
this application and adapted from our previous formulation. Our memetic algorithm is adapted
to solve this problem. A large number of computational experiments are completed, based on
instances inspired from the Australian Post data set [78] to analyze the solutions with different
parameter values and evaluate the performance of the MA for solving the postal system cases.
This also prove the efficiency and adaptability of the MA to variant of the HLRP.

Finally, Conclusion summarizes the main contributions of the thesis and defines some per-
spectives for future research.



2
Literature review

In the past decades, the design and optimization of transportation networks have received an
increasing interest from the scientific community and this interest corresponds to challenging
problems from industry. Based on the concerned research of this thesis, this chapter provides
a state of the art for the hub location-routing problem (HLRP), as well as an extensive litera-
ture review on closely related problems, such as the hub location problem, the location routing
problem and the vehicle routing problem. Firstly, section 2.1 describes in detail each related
problem, involving their definition, variants, modeling approaches and different solution meth-
ods found in the literature. Then section 2.2 presents a review for the HLRP based on the
current published researches, highlighting and discussing the models, solution methods and ap-
plications. Finally the section 2.3 provides the conclusion of this chapter with a short summary.

2.1 Related problems

As mentioned in the first chapter of this thesis, the hub location-routing problem con-
siders the decisions needed for the design of logistic service network for less-than-truckload
(LTL) shipments, concerning the choice of consolidation terminals, the allocation of each ori-
gin/destination point and the routing plan of flows over the network. These decisions are related
to those of three classical problems: the hub location problem (HLP), the vehicle routing prob-
lem (VRP) and the integrated location-routing problem (LRP). In this section, a literature review
for each of these problems is presented. We first give a detailed description of the HLP with its
definition, classical models and exact and heuristic solution methods. Then we summarize the
main variants of the VRP, the mathematical models and the algorithms found in the literature.
Finally a review of the LRP is presented including its features, models and main solution meth-
ods. A final section present a review of the existing works on the HLRP and we conclude about
our research agenda for addressing this problem.

39
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2.1.1 The hub location problem

Introduction

As an important research area in location theory, the hub location problems (HLPs) involve
the location of hub facilities and the allocation of non-hub nodes to hubs in order to route the
flows between many origins and many destinations. Application areas concern many trans-
portation systems involving commodities such as mail, people, digital signal or information
flows. Hubs are facilities devoted to flow consolidation, sorting, transshipment and switching
centers to replace the traditional direct connections between all origin-destination (O-D) nodes
with fewer and indirect transportation links [31]. In order to satisfy origin to destination de-
mands, instead of transferring the flows directly, concerned commodities are concentrated into
hubs from many different origins, sorted and then re-routed to different destinations directly or
via another hubs. Usually, the hubs themselves are fully interconnected and the links between
non-hub nodes (spokes) and a hub are direct arc. This problem is fundamental for the design
of a hub-and-spoke network and can reduce the total costs of the system using fewer resources.
In the following, a detailed description of HLP is provided based on the recent literature. We
will present the HLP features, network components, classifications, applications and solution
algorithms.

The hub location problem is a subclass of network design problems in which hub facilities
concentrate flows in order to take advantage of economies of scale. It is actually a location-
allocation problem, and the essence is to decide the optimal number and location of hubs and
achieve the efficient allocation of resources, to transport demands from many origins to many
destinations. In the HLP system (as seen in Figure 2.1), the transportation of commodities from
one origin to its destination is performed through one single hub, like path i2 −→ h −→ j2

or two different hubs like path i3 −→ k −→ m −→ j3. The origin or destination nodes
are directly connected to the hubs by single arcs. In some cases, direct shipments are allowed
between origins and destinations like path i1 −→ j1. The corresponding network example
and alternative paths between the origins and destinations are shown in Figure 2.1. Based on
geographical characteristic and the type of problem addressed, the system can rely on a discrete
network or a continuous plane. However, a hub-and-spoke network mainly consists of two types
of nodes and arcs linking them, [36]:

Figure 2.1: A HLP network example and the alternative paths

(1) Non-hub nodes ( nodes (i1, i2, i3...) and (j1, j2, j3...) in Figure 2.1). They are origin and
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destination nodes of commodities or informations and form the basic structure of the HLP
system. For example, in air passenger travel, cities airport are the origin and destination
nodes. In a LTL system for freight transport, different suppliers (shippers) correspond to
the origin nodes while their clients are the destination nodes.

(2) Hub nodes ( nodes h, k and m). They refer to a switch terminal where the commodities
or information flows are consolidated to be transfered to another hub or to their final
destination. They can be located among a set of candidate hubs, which can be a subset of
non-hub nodes or not. Their locations greatly affect the total cost and performance of the
hub network.

(3) Inter-hub arcs ( arc (k,m), (h, k) and (h,m) in Figure 2.1). They connect any two hub
nodes and form the backbone structure of the network. Normally, full trucks operate on
the inter-hub arcs and this results in a discount factor from the cost of transport between
non-hub and hub nodes because of the economies of scale [154]. Most of the researches
assume that the hubs are fully connected [11].

(4) Access arcs ( arcs (i2, h), (h, j2), (i3, k) and (m, j3)). They connect the non-hub nodes
(origins or destinations) to the hub nodes and correspond to the assignment decisions. In
a traditional hub network, these arcs are one-way links and concentrate the main parts of
the flows. In some cases, direct connection between origin and destination are allowed,
however, without transferring through the hubs.

(5) Demands. A demand is associated to a commodity or information flow between the
origin and destination nodes. Generally, the demands for each O-D pair are relatively
small quantities and it is beneficial to ship them via consolidation hubs if the volumes are
not compatible with direct shipments. Two major data sets are available in HLP research
area. One of them is based on the airline passenger interactions between 25 U.S. cities
in 1970 as evaluated by the Civil Aeronautics Board (called CAB data sets) [156]. The
other one is based on the operational data of the Australia Post system (called AP data
sets) [76].

From the above description of the network structure characteristics, it can be seen that the
HLP is different from classical facility location problems. For example, the demand in facility
location problems is only specified as a quantity of commodities for each customer point, not
as a flow between many O-D pairs. Also the facility location problem doesn’t consider the
interaction between hub facilities. Campbell and O’Kelly [37] summarized the following key
features of the hub location problem, establishing the theoretical basis for a research agenda on
the HLP long the following lines:

• Hubs are not only consolidation/dissemination points for the flows, but also switching
and sorting centers. Their locations need to be decided through an optimization process.

• Flows between many origins and destinations (demands) are allowed to pass via hubs to
get a benefit on transportation costs because of the consolidation of flows. This benefit is
expressed in terms of a discount factor α.

• The overall objective is to minimize the total cost, the transportation distance or the re-
sponse time of the system. Any of these factors depends not only on the location of hubs
but also on the routing of flows.

• In addition, Campbell proposed in 1994 two other features [33] which have been retained
as fundamental characteristics of most of the literature in this area: firstly, the routing of
flows can go through at most two hubs, resulting from the triangle inequality for distances
and secondly, direct transportation between O-D pairs is not allowed.

During the past years, many variants of the hub location studies have been studied: there are
capacitated or uncapacitated hub location problems depending on whether the capacity of hubs
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is limited or not, if the number of hubs to locate is known in advance, it is termed p-hub location
problem. Different objectives can be considered as p-hub median location problem which is to
minimize the total cost (distance, time, etc.) of transportation [34, 164], p-hub center location
problem which is to minimize the maximum cost ( distance or time ) of O-D pairs [31, 75], and
p-hub covering location problem which is to locate some hubs so that the non-hub nodes can
be covered within a specified distance or time by hubs [89]. In addition, if hubs are located
from a set of discrete points, it is called as discrete hub location problem. However, if hubs
can be selected from any point in a continuous plane, it is a continuous hub location problem.
More commonly, if it is assumed that each non-hub node can be assigned to only one hub, it
is termed a single allocation HLP, such as less-than-truckload transportation networks or some
telecommunication networks. Otherwise, it is a multiple allocation HLP in which non-hub
nodes can be linked to more than one hub, for example the airline passenger networks where
there are multiple flights from non-hub cities to several airline terminals. In order to clearly
show these different types of HLPs and introduce the notations used in the following of the
thesis, the classification of HLPs is given in Table 2.1. For example, if a location problem
doesn’t consider a limited capacity for the hub nodes but considers different periods of times,
and assumes that each non-hub node is assigned to only one hub, and that the number of located
hubs is imposed to a given value p, this problem is called a "multi-periods uncapacitated single
allocation p-hub location problem"’, which can be noted MPUSApHLP.

Table 2.1: The varieties and notations of HLPs [80]
Hub capacity Allocation strategy Number of located hubs Objectives Periods

Capacitated
(C)

Single allocation
(SA) Certain-p Median (M) Single period

(SP)

Uncapacitated
(U)

Multiple allocation
(MA) Uncertain-fixed cost Center (T) Multi-periods

(MP)

Covering (V)

It seems that Hakimi [96] presented the first related paper addressing the optimal location of
the switching centers in a communication network and the police stations in a highway system,
which is similar to the concept of the HLP. Then Goldman [91] extended Hakimi’s works to
the optimal location for n centers in a network. Later, Toh et al. [197] gave a definition for
a hub and spoke network and discussed the impact of the hub network centralization on the
domestic airline industry. However, the first popular paper about transportation hub location
problem has been proposed by O’Kelly [155, 156] in 1986. He gave several operational exam-
ples of air freight and passenger networks involving ten large U.S. cities. Since that time, HLPs
have attracted many researchers and have been successfully applied to the design of many dif-
ferent transportation systems (such as air passenger/freight networks, postal systems, trucking
system and maritime cargo industry) and telecommunications networks (for example computer
systems, telephone networks and video conferences).

In airlines and airport industries, O’Kelly [157] studied the airline passenger interactions
between 25 U.S. cities and firstly proposed the standard CAB data set for the HLPs. Later,
O’Kelly and Lao [159] solved the transportation mode choice problem of an air express in-
dustry in the USA. Adler and Hashai [4] researched a p-hub median location problem for air
transport of the Middle East region. Menou et al. [139] described a method to select the lo-
cation to centralize cargo at a Moroccan airport hub, in order to minimize the total transport
costs. Besides, there are some other applications of the HLP in this area [58, 129]. For the
postal and express systems, Kuby and Gray [117] developed a mixed-integer program for a
hub-and-spoke network with stopovers and feeders, and then applied it to the western U.S. por-
tion of the Federal Express packages collection system. Ernst and Krishnamoorthy [76] solved
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a p-HLP for the Australian Post (AP) network. Gendron and Semet [88] discussed some for-
mulations of a multi-echelon location problem for an application in the fast delivery service.
In the trucking and railway networks, Cunha et al. [60] proposed a genetic algorithm heuristic
to solve an uncapacitated single allocation HLP for a LTL truck company in Brazil. Jeong et
al. [103] addressed a hub-and-spoke design problem for the European freight railway system.
Campbell [35] presented a multiple allocation p-hub median model and a multiple allocation
hub arc location model for the freight transportation of time-definite trucking firms. Gelareh et
Nickel [87] presented a new realistic model tailored for an urban transport network and liner
shipping companies and proposed Benders decomposition approach to solve them. Sender and
Clausen [182] developed heuristic approaches to solve a capacitated multiple allocation HLP
of German wagonload traffic in railway logistics. There are also some studies of HLPs for the
maritime cargo industry. Hsu et al. [100] studied a multi-objective decision-making for a mar-
itime hub-and-spoke container network. Takano et al. [195] solved the p-hub median problem
with shuttle services and applied it to the containerized cargo transport of Asian hub ports.

Classical mathematical models for the HLP

The classical hub location problem is defined on an undirected graph G = (N,A), where
N = {v1, v2...vi...vn} is the set of all nodes including origin/destination nodes and candidate
hub nodes and A = {(i, j)|i ∈ N, j ∈ N} is the set of all arcs connecting any two vertices
including inter-hub arcs and access arcs. The flows between any O-D pair are denoted Wij and
Cij is the unit transportation cost between any two nodes. In addition, α ≤ 1 is the inter-hub
discount factor to reflect the economies of scale. Based on these key features and hypothesis,
many mathematical formulations have been proposed for the HLPs. Here, some classical mod-
els for the single allocation HLP are introduced. The evolution of related studies is summarized
in Figure 2.2.

Figure 2.2: The evolution of the mathematical models for the single allocation HLP

The first recognized model for the HLP has been proposed by O’Kelly in 1987 [157]. It
is a quadratic mathematical formulation of the uncapacitated single allocation p-hub location
problem (USAp-HLP). This formulation assumes that each node is assigned to only one hub and
the required number of located hubs is set to p. Each candidate hub has no capacity limitation.
Then an integer variableXij is set to 1 to denote that node i is assigned to hub j, and 0 otherwise.
The variable Xii is set to 1 if node i is a hub, 0 otherwise. In order to simplify the model, Oi =∑

j∈N Wij is the total amount of flows originating at node i; and similarly Dj =
∑

i∈N Wij is
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the total amount of flows whose destination is node j. Therefore, this first integer programming
formulation of USApHLP [157] is:

(USApHLP) Min
∑
i∈N

∑
k∈N

XikCik(Oi+Di)+
∑
j∈N

∑
m∈N

Xjm

∑
i∈N

∑
k∈N

Xik(αWijCkm) (2.1)

subject to

(n− p+ 1)Xjj −
∑
i∈N

Xij ≥ 0 ∀j ∈ N (2.2)

∑
j∈N

Xij = 1 ∀i ∈ N (2.3)

∑
j∈N

Xjj = p (2.4)

Xij ∈ {0, 1} ∀i, j ∈ N (2.5)

The objective function (2.1) is to minimize the transportation costs including the assignment
cost of every node to its hub for outgoing and incoming flows and the quadratic interaction
costs between hubs. Constraints (2.2) denote that no node is assigned to a site unless it is an
open a hub. Constraints (2.3) are the single allocation constraints. Constraints (2.4) define the
number of located hubs as p. The last equations (2.5) are the binary integer constraints for
variables.

Later, O’Kelly [158] adapted this formulation to the uncapacitated single allocation hub
location problem with fixed costs (USAHLP), where the number of located hubs is a decision
variable. However, it was also a quadratic mathematical model. Then Campbell [33] introduced
the first linear integer programming formulations for different HLPs including USApHLP and
USAHLP, and then converted the uncapacitated versions to the capacitated single allocation hub
location problem (CSAHLP) by adding capacity constraints. It can be considered as the first
linear model of CSAHLP. In addition to the parameters of the USApHLP, it defined a variable
Xijkm as the fraction of flow from origin i to destination j that is routed via hubs k and m in
that order. In addition, variable Yk takes the value of 1 if node k is a hub and 0 otherwise. Zik is
the allocation variable . In addition, let Cijkm = Cik + Cmj + αCkm be the transportation cost
per unit from origin i to destination j via hubs k and m. Further, Fk is defined as the fixed cost
of establishing a hub at location k, and the capacity of a hub at location k is noted as Γk. Based
on the above parameters and decision variables, a linear integer programming formulation for
CSAHLP [33] was presented as follows:

(CSAHLP-1) Min
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

WijXijkmCijkm +
∑
k∈N

FkYk (2.6)

subject to∑
k∈N

∑
m∈N

Xijkm = 1 ∀i, j ∈ N (2.7)

Zik ≤ Yk ∀i, k ∈ N (2.8)∑
j∈N

∑
m∈N

(WijXijkm +WijXjimk) = (Oi +Di)Zik ∀i, k ∈ N (2.9)



2.1. RELATED PROBLEMS 45∑
i∈N

∑
j∈N

(Wij +Wji)Zik ≤ ΓkYk ∀k ∈ N (2.10)

0 ≤ Xijkm ≤ 1 ∀i, j, k,m ∈ N (2.11)

Yk ∈ (0, 1) ∀k ∈ N (2.12)

Zik ∈ (0, 1) ∀i, k ∈ N (2.13)

Objective function (2.6) minimizes the total costs including not only the transportation cost
over all O-D pairs but also the establishing cost of hubs. Constraints (2.7) ensure that the total
flow for each O-D pair is routed via some hub pairs. Constraints (2.8) state that a node can
only be assigned to an open hub. Constraints (2.9) are the single allocation requirement and
flow balance equations. Equations (2.10) are the hub capacity constraints. And the last three
equations (2.11)-(2.13) are constraints on the variable values .

In the same year, Aykin [13] formulated the capacitated HLP with fixed costs, allowing
direct connections between O-D pairs. Later, Skorin-Kapov et al. [184] presented a new mixed
integer model for the single allocation HLP. They noted the constraints (2.9) were very weak
and provided much tighter ones by replacing them with the following pair of equations:∑

m∈N

Xijkm = Zik ∀i, j, k ∈ N (2.14)

∑
k∈N

Xijkm = Zjm ∀i, j,m ∈ N (2.15)

Constraints (2.14) ensure that if node i is allocated to hub k, the total flow from origin i to
destination j routed via all paths using link i − k will be nonzero; similarly, constraints (2.15)
indicate that for each origin i and destination j, if the path of a flow is i− k −m− j, then the
destination j should be allocated to the hub m.

Although the modified model of CSAHLP with constraints (2.14) and (2.15) is tight, it is
still very large with regards to the number of variables and constraints. Therefore, in order to
reduce the size of the above linear formulations, Ernst and Krishnamoorthy [76] introduced a
new variable Y i

kl to remove variable Xijkm and proposed a different model for USApHLP. They
defined this new variable as the total amount of commodity flow from node i that is routed
between hubs k and l. In addition, they defined the cost coefficients for collection paths from
origins i to hubs k, and distribution paths from hubs l to destinations j. They were denoted as
χ and δ, respectively. With these new variables and parameters, Ernst and Krishnamoorthy [78]
developed a new formulation for the CSAHLP with fixed costs:

(CSAHLP-2) Min
∑
i∈N

∑
k∈N

CikZik(χOi+ δDi) +
∑
i∈N

∑
k∈N

∑
l∈N

αCklY
i
kl +

∑
k∈N

FkZkk (2.16)

subject to (2.13),

∑
k∈N

Zik = 1 ∀i ∈ N (2.17)

Zik ≤ Zkk ∀i, k ∈ N (2.18)∑
i∈N

OiZik ≤ ΓkZkk ∀k ∈ N (2.19)
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l∈N

Y i
kl −

∑
l∈N

Y i
lk = OiZik −

∑
j∈N

WijZjk ∀i, k ∈ N (2.20)

Y i
kl ≥ 0 ∀i, k, l ∈ N (2.21)

Zkk is the location variable which implies that site k is an open hub if it takes the value of 1.
The objective function (2.16) has the same meaning as equation (2.6). Constraints (2.17) ensure
the single allocation for each node i. Constraints (2.18) prevent allocation to non-hub nodes.
Equations (2.19) are the capacity constraints and (2.20) are the divergence equations for the flow
at node k from i. It indicates that the demand and supply at the nodes are determined by the
allocation variable Zik. Correia et al. [54] revisited this classical formulation and showed that
it may be incomplete for some instances. They introduced the following new set of constraints
(2.22) to complete the formulation. Through some computational experiments, they proved that
the new constraints were computationally effective as cuts but also that the original formulation
can always obtain the optimal values for the tested instances. Recently, Saiedy et al. [181]
presented a new two-index quadratic model for the CSAHLP with n hub centers and proved it
was faster than other models for small and medium instances.∑

l∈N,l 6=k

Y i
kl ≤ OiZik ∀i, k ∈ N (2.22)

Exact methods and heuristic algorithms

Many exact and heuristic solution methods have been proposed for different hub location
problems including. O’Kelly [157] showed that the HLP is NP-hard, even if the locations of
the hubs are fixed, and he introduced two enumeration-based heuristics to solve a single allo-
cation p-HLP. In this section, in accordance with the research focus of this thesis, we highlight
and discuss some successful exact methods and heuristics proposed for the capacitated single
allocation hub location problem (shown in Table 2.2). In this table, the first column represents
the algorithm types proposed by the articles listed in the second column. The column "detailed
algorithm" gives more information about the method proposed. The fourth column illustrates
the problem variant studied by each article and the last column describes the largest instance
size solved by the corresponding method. For the newest surveys on algorithms used to solve
other HLPs, one can refer to Alumur and Kara [11] or Farahani et al. [80].

Table 2.2: Exact methods and heuristics proposed for CSAHLP
Method Article Detailed Algorithm Problem notation Application size

Exact methods Aykin (1994) [13] B&B+LR CSAHLP+ direct connections 40 US cities
Ernst et al. (1999) [78] B&B+preprocessing Classical CSAHLP 200 AP nodes
Labbé et al. (2005) [121] B&C Quadratic CSAHLP 50 AP nodes
Correia et al. (2010) [56] LPR+preprocessing CSAHLP + multiple capacity levels 50 AP nodes
Contreras (2011) [50] B&P+LR Classical CSAHLP 200 AP nodes
Correia et al. (2011) [55] LP + commercial solver CSAHLP + capacity decisions 50 AP nodes
Camargo et al. (2012) [64] GBD CSAHLP under congestion 200 AP nodes
Ge et al. ( 2014) [86] LP Fixed-hub single allocation problem 50 AP nodes
Karimi et al. (2014) [111] CPLEX CSAHLP+hierarchical structure IAD-37 cities
Correia et al. (2014) [57] LPR + valid inequalities CSAHLP+ multi-product -

Meta-Heuristics Aykin (1994) [13] Heuristic+LR CSAHLP+ direct connections 40 US cities
Ernst et al. (1999) [78] SA and RDH Classical CSAHLP 200 AP nodes
Stanimirovic (2007) [186] GA+caching technique Classical CSAHLP 200 AP nodes
Randall (2008) [177] ACO + local search Classical CSAHLP 50 AP nodes
Chen (2008) [41] An effective heuristic Classical CSAHLP 200 AP nodes
Costa et al. (2008) [61] A bi-critera approach CSAHLP+ bi-criteria objectives 40 AP nodes
Contreras (2009) [51] LR+SO Classical CSAHLP 200 AP nodes
Camargo et al. (2011) [65] OA+GBD CSAHLP under congestion 200 AP nodes
Sun et al. (2012) [192] ACO+GA Asymmetric allocation HLP -
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Ernst and Krishnamoorthy [78] developed a linear programming (LP)-based branch and
bound method (B&B) to solve the capacitated single allocation problem. They also proposed
two heuristics to obtain a good solution as the initial upper bounds of the branch and bound. One
of them is based on simulated annealing (SA), and the other is based on random descent (RDH).
In addition, a few preprocessing steps were performed to fix some variables and tighten the LP
relaxation. They conducted computational experiments not only based on the CAB data set,
but also applied their method to the Australian Post (AP) network for the first time. They com-
pared the performance of the two proposed heuristics on obtaining upper bounds, and showed
that RDH outperformed SA for problems with tight hub capacities. Then the effectiveness
of two formulations was compared with the same upper bounds in the branch and bound tree
search. The preprocessing step was proved to be effective, especially for problems with tight
hub capacities. Finally, some larger problems with 200 nodes were solved using SA and RDH
heuristics. Labbé et al. [121] studied the polyhedral properties for the linear capacitated hub
location (LHL) problem with single assignment which has a fixed capacity for each hub. Then
they proposed a branch-and-cut algorithm (B&C) to solve this problem. In this exact method,
some valid inequalities and a preprocessing algorithm were added to obtain optimal solutions.
Computational tests were carried out on two sets of data from France Telecoms and the clas-
sical AP data set, showing that their algorithm can solve the problem effectively. Stanimirović
[186] proposed a genetic algorithm (GA) to solve the CSAHLP where a caching technique was
applied to improve the computational performance. Then the author demonstrated the robust-
ness and effectiveness of the heuristic based on the computational results from the AP data set
with up to 200 nodes. Later, Randall [177] developed four variants of the ant colony (ACO)
algorithm to solve this problem including hub oriented ACO, node oriented ACO, multi-colony
ACO and hub-subset oriented ACO. Some local search operators were used to improve the so-
lutions produced by any of the ACO algorithms. For the assignment order, two methods were
used: one is a random assignment order and the other is based on levels of flow. Finally, compu-
tational experiments were designed to evaluate the effectiveness of each ACO approach through
the comparison of the results obtained by a random descent heuristic. In the tests, different as-
signment order strategies and local search heuristics are investigated. The results showed that
each approach can obtain optimal solutions in a reasonable computational time for the AP data
set up to 50 nodes. Chen [41] presented an effective heuristic to resolve the CSAHLP. It was
evaluated through extensive computational experiments based on AP data set and proved that it
outperformed a simulated annealing from the literature.

Recently, Contreras et al. [51] proposed a Lagrangean relaxation (LR) based on a subgra-
dient optimization (SO) to obtain tight upper and lower bounds for the CSAHLP. Also, a fast
primal heuristic was applied to obtain good quality feasible solutions. Some tests were pre-
sented to reduce the computational effort for larger instances from the AP data set. Later, these
authors [50] developed a branch-and-price algorithm (B&P) based on the Lagrangean relax-
ation to solve exactly large-scale capacitated hub location problems with single assignment of
up to 200 nodes.

For some extensions of the CSAHLP, Aykin [13] presented a B&B algorithm and a greedy-
interchange heuristic for a capacitated hub-and-spoke network design problem where hubs had
a limited capacity. In addition, he allowed both non-stop service and hub connection service
between origins and destinations. Both algorithms firstly identified a set of hub locations and
obtained a reduced subproblem. Then, for the subproblem, a subgradient optimization was
used to solve its Lagrangian relaxation to get the optimal solution. Finally, he tested the two
heuristics with 135 problems using data on airline passenger flows between the top forty US
cities ranked by the number of passengers in 1989. The results showed that the two methods
could successfully find good solutions, and the overall performance of the greedy-interchange
heuristics was better than the branch-and-bound algorithm for most cases. Costa et al. [61] pre-
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sented two bi-criteria models for the CSAHLP. Instead of imposing hub capacity constraints,
they introduced a second objective function to minimize the total service time (first model) or
the maximum service time (second model) for processing the flows into the hubs. Then in order
to provide non-dominated solutions, they proposed an interactive decision-aid approach based
on progressive and selective learning. Computational tests were carried out on the AP data set.
The acceptability of the hubs flow charges of these non-dominated solutions was studied and
compared to those of the unique solution given by the standard CSAHLP. Correia et al. [56]
studied a CSAHLP with multiple capacity levels where the capacity of the hubs becomes an-
other decision variable. They proposed several formulations with different sets of inequalities
and compared them to the bounds provided by the linear programming relaxation (LPR). In
addition, some preprocessing tests were introduced to reduce the model size. The results of
computational experiments based on the AP data set allowed the identification of a good model
for solving this problem optimally. After this work, the authors [55] imposed balancing require-
ments as an extension of the CSAHLP, which considered the maximum difference between the
maximum and minimum number of non-hub nodes allocated to the hubs. They proposed two
mixed-integer linear programming (MIP) formulations and evaluated their possibility to obtain
optimal solutions with a commercial solver.

Recently, Camargo et al. [65] proposed a hybrid outer-approximation/Benders decompo-
sition (GBD) algorithm to tackle the single allocation hub location problem under congestion.
The computational experiments based on AP standard data set showed that the proposed method
could solve the problem optimally with 200 nodes in a reasonable time. Later, Camargo and
Miranda [64] extended this problem to two different network design perspectives: the network
owner and user. They proposed related models and deployed a Benders decomposition algo-
rithm to obtain the optimal solutions for large scale instances based on AP data set. Sun et
al. [192] presented an integer programming model for a capacitated asymmetric allocation hub
location problem and solved it using CPLEX. For large-size problems, they developed a hybrid
method combining an ant colony optimization algorithm (ACO) and a genetic algorithm. Ge
et al. [86] presented a linear programming-based algorithm to solve a fixed-hub single alloca-
tion problem where hubs are fixed and fully connected. In his algorithm, a geometric rounding
method was used to round fractional solutions of LP relaxations to integer ones. The results
based on randomly generated instances and AP data set indicated its effectiveness for large-
sized problems. Karimi et al. [111] developed a new and applied model for the capacitated
single allocation hub location problem with a hierarchical structure, where different levels of
services for transportation network were considered. Computational results based on Iranian
Airport Data (IAD) including 37 cities were presented to confirm the performance of the model
solved by CPLEX. Correia et al. [57] proposed several models for an extension of classical
CSAHLP assuming that multiple products were shipped through the hub-and-spoke network.
They considered two cases according to the hubs could handle all products or a single-product.
Additionally, in order to strengthen the models, they added some inequalities based on the lower
bound provided by the linear relaxation.

Conclusion

As presented in this section, many researches have been conducted on many variants of the
Hub Location Problem and many models have been proposed for the past twenty years or so,
such as on the basic HLP as well as more complex problems such as the multi-product HLP, the
HLP hybridized by the routing problem and the multi-period HLP. The earliest classification on
the HLP has been proposed by O’Kelly and Miller in 1994 [160]. For a detailed introduction
on the HLP variants, one can refer to the review of Alumur and Kara [11]. For an extensive
review on the applications, one can refer to Campbell et al. [36] or to Farahani et al. [80],
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who also presented the main methods for solving the HLP to date. Two main data sets have
been developed and are available for testing the HLP models and solution techniques, i.e. the
CAB data set in the airline and airport industries and the Australian Post data set (AP) in the
postal service and most of the developed models and methods have been tested on these data
sets. As far as exact methods are concerned, mixed integer programming formulation have been
solved using standard commercial solvers, or Branch and Bound methods using preprocessing,
Branch and Cut or lagrangian relaxation. Different heuristic or meta heuristic methods have
been proposed and tested, including local search methods and population based methods such
as genetic algorithms. The best exact and heuristic methods have been able to solve large
problems such that the 200 nodes problems of the AP data set.

2.1.2 The vehicle routing problem

Introduction

The second related problem to our research is the vehicle routing problem (VRP). The ob-
jective of this literature review is not to present an exhaustive review of VRP variants and
solution methods, but to focus on the most important aspects related to our research. The VRP
can be described as a problem of designing a set of optimal collection or delivery routes from
a depot. This problem plays a vital role in the field of distribution management and logistics
system optimization. It was introduced by Dantzig and Ramser in 1959 [62], and can be found
in many industrial applications, such as mail delivery, product distribution, waste collection,
bus schedule and the routing of snowplough. There have been huge research efforts for more
than 50 years to study different types of VRPs and propose solution approaches. Even for the
literature review, there are abundant publications: among the main reviews and books for the
VRP, one can refer to [52, 90, 122, 123, 200]. Some recent surveys about the latest works and
developments can be found in [19, 119] or [67]. In this section, a general introduction to the
VRP is given, consisting in its basic features, different types, as well as the main exact solution
methods and heuristic algorithms.

As a natural generalization of the Traveling Salesman Problem (TSP) [62], a classical ve-
hicle routing problem (seen in Figure 2.3) can be defined on a complete graph G′ = (V ′, A′)
where V ′ = {0, 1, 2, ...i...j...n} is the vertex set with node 0 the depot and A′ = {(i, j)|i, j ∈
V ′, i 6= j} is the set of arcs. V ′c = V

′ \ {0} corresponds to the set of customers (stops) with a
known non-negative demand di. A weight c′ij is associated to each arc (i, j) ∈ A′. It represents
the traveling cost from vertex i to vertex j. This problem known as Capacitated Vehicle Routing
Problem (CVRP) is to visit each customer once, with a fleet of homogeneous vehicles, starting
and ending at the same depot and satisfying vehicle capacity constraints. The classical goals
are to minimize the total traveling distance or time, to minimize the number of used vehicles or
to achieve multi-objectives simultaneously.

In addition to the CVRP described above, many variants of the VRP have been studied in
the past years. Yeun et al [209] introduced the definitions and mathematical models for some
variants, as well as their solving methods. In particular, we can mention:

• the multi-depot vehicle routing problem (MDVRP). It is a direct extension of the VRP,
in which a set of available depots is given instead of only one. The problem is to design
several vehicle routes from multiple depots to service a set of customers and then return
to the same depot [113].

• the vehicle routing problem with pick-up and delivery (VRPPD). In this problem, each
customer is associated to a non-negative commodity quantity di to be delivered and also
pi to be picked up. Then at each customer location i, both pickup and delivery services
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Figure 2.3: A solution example of a classical vehicle routing problem

should be accomplished by the same vehicle route, assuming that the delivery is per-
formed before the pickup. Its goal is to minimize the overall length of the routes and
requires that the vehicle capacity can not be exceeded in any point of a route [200].

Other variants of the vehicle routing problems have been studied, such as the vehicle rout-
ing problem with time window (VRPTW), the heterogeneous fleet VRP (HVRP) where vehicles
have different capacities; the VRP with backhauls (VRPPB) which deals with two types of cus-
tomers: linehaul customers (LC) that request a quantity of goods from the depot and backhaul
customers (BC) that send a quantity of goods to the depot; and the periodic VRP (PVRP) where
vehicle routing for serving customers should be designed based on multiple time periods. For
more details, one can refer to the review papers [52, 67].

Mathematical models for the CVRP

Based on the above definition of the CVRP, many modeling approaches are proposed in the
literature. The first one is known as a vehicle flow model where an integer variable is defined
to count the number of times the arc (i, j) is visited by a vehicle. We can distinguish two
forms: two-index vehicle flow formulation and three-index vehicle flow formulation. A two-
index formulation has been proposed by Laporte et al. [126]. An integer variable xij is used to
represent the number of times the arc (i, j) appears in the solution. It can take value {0, 1} if
ß, j ∈ V ′c and value {0, 1, 2} when i = 0, j ∈ V ′c . Note that x0j = 2 corresponds to a return trip
including a single customer j. The two-index vehicle flow model (VF2) proposed by [126] for
the symmetric capacitated VRP can be described as follows :

(VF2) Min
∑

(i,j)∈A′,i<j

cijxij (2.23)

subject to ∑
j∈V ′c

x0j = 2m (2.24)

∑
i<k

xik +
∑
j>k

xkj = 2 ∀k ∈ V ′c (2.25)
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i∈S

∑
h/∈S,h<i

xhi +
∑
i∈S

∑
j /∈S,j>i

xij ≥ 2b(S) S ⊂ V ′c (2.26)

xij ∈ {0, 1} ∀i, j ∈ V ′c (2.27)

x0j ∈ {0, 1, 2} ∀j ∈ V ′c (2.28)

In this model, the objective function (2.23) is to minimize the total route costs. Constraints
(2.24) define the degree of depot vertex. Constraints (2.25) impose that exactly two edges are
incident into each customer k. In constraints (2.26), b(S) is the minimum number of vehicles
needed to serve a given set S. This capacity-cut constraints prevent the formation of subtours
by forcing a sufficient number of edges to be linked with each subset and also ensure the ve-
hicle capacity requirements. In practice, it is common to handle b(S) as d

∑
i∈S di/Q

′e . The
equations (2.27) and (2.28) are the value constraints of variables. In some cases, the variable
xij can be replaced by xe, ∀e ∈ A′ [199]. In addition, constraints (2.26) may be rewritten as the
generalized subtour elimination constraints:∑

i∈S

∑
j∈S,j>i

xij ≤ |S| − b(S) S ⊆ V ′c , S 6= ∅ (2.29)

A three-index formulation (VF3) uses a binary variable xkij to indicate the number of times
the arc (i, j) is visited by vehicle k. A variable yik is used to represent if vertex i is visited by
vehicle k. The three-index formulation can be given as follows [200]:

(VF3) Min
∑
i∈V ′

∑
j∈V ′

cij

m∑
k=1

xijk (2.30)

subject to

m∑
k=1

yik = 1 ∀i ∈ V ′c (2.31)

m∑
k=1

y0k = m (2.32)

∑
j∈V ′

xijk =
∑
j∈V ′

xjik = yik ∀i ∈ V ′, k = 1, .....m (2.33)

∑
i∈V ′

diyik ≤ Q′ ∀k = 1, .....,m. (2.34)

∑
i∈S

∑
j /∈S

xijk ≥ yik ∀S ⊆ V ′c , i ∈ S, k = 1, ...,m. (2.35)

xijk ∈ {0, 1} ∀i, j ∈ V ′, k = 1, ......m (2.36)

yik ∈ {0, 1} ∀i ∈ V ′, k = 1, ....m (2.37)

In this formulation, constraints (2.31)-(2.33) indicate the single service of each customer by ex-
actly one vehicle, thatm vehicles start from the depot, and the route continuity at every customer
location i, respectively. Constraints (2.34) are the vehicle capacity restriction, and equations
(2.35) are the subtour elimination constraints. Note that constraints (2.35) are exponentially
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increasing, then in order to overcome this drawback, the following family of constraints with a
polynomial number may be considered to replace them [118]:

ui − uj + nxijk ≤ n− 1 ∀i, j ∈ V ′c , i 6= j, k = 1, ....,m (2.38)

where ui,∀i ∈ V ′c are additional variables with an arbitrary real number.
The second modeling approach is called as a commodity flow (CF) model, developed by

Garvin et al. [85] in an oil delivery problem. In this approach, a flow variable is added into
the model to specify the amount of the demand transported on arc (i, j)|i, j ∈ V ′, i 6= j. There
are mainly three different formulations: one commodity, two commodity and multi commodity
flow models [16, 123]. The third approach is originally proposed by Balinski and Quandt in
1964 [21], which is called a set partitioning formulation. In this approach, one new set R =
{R1, ..., Rs} is defined to represent all feasible routes with a cost rj for each route Rj . For
variables, let aij be a binary coefficient equal to 1 if and only if vertex i is served by route Rj ,
0 otherwise. Another binary variable xj takes the value 1 when the route Rj is selected by the
solution. Then the formulation is [52]:

(SP) Min
s∑
j=1

rjxj (2.39)

subject to

s∑
j=1

aijxj = 1 ∀i ∈ V ′c (2.40)

s∑
j=1

xj = m (2.41)

xj ∈ {0, 1} j = 1, ..., s (2.42)

Constraints (2.40) impose that each customer i can be visited by only one feasible route, and
(2.41) require that in total m routes are selected. One of the main drawbacks associated with
this formulation lies in the large number of binary variables xj due to the huge size of feasible
route set R. Thus, in order to solve this problem exactly based on the SP formulation, one of
the most common approaches is a column generation algorithm [200]. In addition to the above
models, a two-commodity flow formulation was proposed by Baldacci et al. for the symmetric
CVRP [16].

To solve these NP-hard problems, a large variety of solution methods have been proposed:
exact algorithms, classical heuristics and metaheuristics [123]. In the following, some of the
most popular methods proposed for the CVRP, MDVRP and VRPPD are introduced and also
summarized in Table 2.3. The last column "Node size" shows the number of cities of the largest
size instances solved by the corresponding work.

Exact methods

In the abundant literature about exact methods to solve VRPs, branch and bound methods as
well as branch and cut methods have been widely used. The branch-and-bound method (B&B)
adopts a best-bound-first search strategy to find current best solution for a given problem in a
dynamically generated search tree. During the searching iterations, the aim is to narrow the
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gap between the lower bounds and the current best solutions through node selection, bound
calculation and branching. In order to improve the lower bounds, most of the B&B methods
proposed for the CVRP were implemented based on some combinatorial relaxation strategies,
such as Assignment Problem relaxation obtained from formulation VF2 [124], the K-tree re-
laxation combined with Lagrangian relaxation (LR) [138], or the additive bounding approach
proposed by Fischetti et al. [81]. Later, Baldacci et al. [17] presented a procedure to compute
valid lower bounds for the CVRP based on a Set Partitioning formulation (SP) and solved it by
a branch and bound algorithm. In addition, Dastghaibifard et al. [63] developed a parallel B&B
for solving the CVRP using multi computers and dynamic load balancing to save the execution
time. Laporte et al. [127] expended a branch and bound method to solve a class of asymmetrical
MDVRP with up to 80 nodes. More details about the structure and implementation of the B&B
algorithms for VRPs can be found in [123, 199].

Recently, Baldacci and Mingozzi [18] presented a new B&B algorithm for solving different
classes of VRPs based on the set partitioning formulation (SP) including the CVRP, the MDVRP
and the HVRP. This algorithm used three types of bounding procedures based on LP-relaxation
(LPR) and on the LR to reduce the formulation size so that the resulting problem could be solved
by a commercial solver. Computational results reveal that the method improved lower bounds
of the main instances from the literature and solved all considered problem types involving up
to 199 customers. Almoustafa et al. [9] reformulated an asymmetric VRP (AVRP) with distance
constraints and introduced a multi-start B&B method (MSBB) based on the one proposed by
Laporte et al. [124]. It used the best-first strategy and a new tolerance based criterion for
branching. In addition, a random tie-breaking rule was used to choose the next solving node.
Computational results showed this exact method solved the largest instances in literature with up
to 1000 customers within a reasonable time. Muter et al. [145] embedded a column generation
(CG) within a B&B algorithm for solving the multi-depot vehicle routing problem with inter-
depot routes and obtained optimal integer solutions.

The second effective exact method for solving the VRP is the branch-and-cut algorithm
(B&C). Araque et al. [12] presented a branch-and-cut algorithm for the identical customer
VRP based on a path-partitioning formulation which used the generalized subtour elimination
(GSE) constraints , large multistars inequalities (LM), intermediate multistars (IM) and small
multistars (SM) in the cutting plane phase. Computational results showed that it could solve
optimally randomly generated problems with up to 60 customers.

Augerat et al. [163] were the first to present the B&C algorithm for the CVRP based on for-
mulation VF2 and strengthened it by valid inequalities such as generalized capacity inequalities
(GEC), comb (COM) inequalities and capacity strengthened comb (CSCOM) inequalities. In
addition, they contributed mainly to the design of separation procedures for the valid inequali-
ties, as well as the introduction of different branching strategies. Experimental results showed
this algorithm solved instances involving 135 customers. Later, an improved version was devel-
oped by Naddef and Rinaldi [200]. They introduced several new families of valid inequalities
to strengthen the linear relaxation problem, such as framed capacity constraints (FC), path-bin
inequalities and some valid inequalities from the TSP. They also exactly solved the instances
with up to 135 customers. Letchford et al. [128] showed the validity of LM, IM and SM in-
equalities for both kinds of capacitated VRP either with unit demands or general demands. In
addition, they developed other families of multistar inequality to strengthen this method, such as
generalized large multistar (GLM) inequalities, knapsack large multistar (KLM) inequalities,
partial multistar (PM) inequalities. Then, Lysgaard et al. [133] developed the most complete
B&C algorithm for the CVRP based on formulation VF2 by using a variety of cutting planes,
including rounded capacity constraints, FC constraints, GEC, strengthened comb (SCOM) in-
equalities, multistar and PM inequalities, extended hypotour inequalities and classical Gomory
mixed-integer cuts. They also described the detailed separation algorithms for each class of
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inequalities, as well as the branching rules and node selection strategy. Computational results
based on a large number of instances showed it was competitive with other B&C and optimally
solved some instances for the first time.

In addition, Baldacci et al. [16] proposed a new two-index integer formulation for the sym-
metric CVRP based on a two-commodity flow approach and an adapted B&C. Computational
experimentation with instances from the literature and randomly generated demonstrated the
good performance of this new B&C. Subramanian et al. [190] proposed undirected and di-
rected two-commodity flow formulations for the VRP with simultaneous pickup and delivery
(VRPSPD). They presented a B&C scheme to test proposed formulations and showed the undi-
rected one obtained better results based on open problems with up to 200 customers.

Table 2.3: Exact methods and meta-heuristics for the CVRP, MDVRP and VRPPD
Method Article Problem type Detailed Algorithm Node size

Exact method B&B Laporte et al. (1986)[124] CVRP AP relaxation 100
Laporte et al. (1988)[127] MDVRP B&B 80
Fischetti et al. (1994)[81] CVRP additive bounding 135
Martinhon et al. (2000)[138] CVRP LR+K-tree relaxation 135
Baldacci et al. (2006)[17] CVRP SP 200
Dastghaibifard et al. (2008)[63] CVRP Parallel B&B 101
Baldacci et al. (2008)[18] CVRP+MDVRP LPR+LR 199
Almoustafa et al. (2013)[9] AVRP MSB&B 1000
Muter et al. (2014)[145] MDVRP CG+B&B 200

B&C Araque et al. (1994)[12] VRP GSE+LM+IM+SM 60
Augerat et al. (1998)[163] CVRP GEC+COM+CSCOM 135
Naddef et al. (2002)[200] CVRP FC+path-bin 135
Letchford et al. (2002)[128] CVRP GLM+KLM+PM 135
Lysgaard et al. (2004)[133] CVRP SCOM+hypotour ... 135
Baldacci et al. (2004)[16] CVRP CF model 135
Fukasawa et al. (2006)[83] CVRP robust BCP 135
Baldacci et al. (2008)[15] CVRP SP model+LR 135
Subramanian et al. (2010)[190] VRPSPD CF model 200

others Amico et al. (2006)[68] VRPPD B&P 40
Christiansen et al. (2008)[43] MDVRP BCP 60
Gutiérrez-Jarpa et al. (2010)[93] VRPPD B&P+CG 50
Bettnelli et al. (2011)[28] MDVRP+TW BCP 144
Contardo (2012)[46] MDVRP VF+SP models 200

Metea-heuristic Local search Pisinger and Ropke (2007) [166] CVRP+MDVRP ALNS 1000
Wassan et al. (2008)[205] VRPSPD RTS 200
Chen et al. (2010)[42] CVRP IVND 480
Groer et al. (2011) [92] CVRP PLS 1200
Cordeau et al. (2011)[53] CVRP+MDVRP PITS 480
Jin et al. (2012)[104] CVRP PMNTS 1200
Marinakis (2012)[136] CVRP MPNS-GRASP 480
Kuo and Wang (2012)[120] MDVRP VNS 360
Subramanian et al. (2013)[191] CVRP+MDVRP ILS+MIP 480
Nagy et al. (2013)[151] VRPDPD RTS 200
Xiao et al. (2014) [207] CVRP VNS+SA 480
Wassan and Nagy (2014)[204] VRPPD review ..

Population search Prins (2004)[168] CVRP GA+LS 483
Cattaruzza et al. (2014)[39] MTVRP MA 199
Tasan and Gen (2012)[202] VRPSPD GA 34
Potvin (2007)[167] VRPs EAs review ..

Learning mechanism Hoff et al. (2009)[98] VRPPD Lasso solution+TS 484
Gajpal et al. (2009)[84] VRPSPD ACS 135
Szeto et al. (2011)[193] CVRP ABCA 480
Kanthavel et al. (2011)[108] CVRP NPS 135
Yang et al. ( 2011)[208] MDVRP APAC 16
Kanthavel et al. (2012)[107] VRPPD NPS 135

Some other B&Cs are developed based on the Set Partitioning (SP) formulation. Fukasawa
et al. [83] presented a new SP formulation and proposed a robust branch-and-cut-and-price
(BCP) method for the CVRP, which combined column and cut generation to improve lower
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bounds and could solve to optimality all instances from the literature with up to 135 vertices.
Later, Baldacci et al. [15] presented a new exact algorithm based on the SP model and strength-
ened it by additional cuts, such as strengthened capacity inequalities and clique inequalities.
This algorithm used three different bounding procedures to generate a reduced problem based
on q-route relaxation and Lagrangean relaxation. The resulting problem was solved by CPLEX.
Computational results showed the new lower bounds were better than the ones presented by
Fukasawa et al. [83]. For a detailed introduction of this method, one can refer to a recent
review of Baladacci et al. [19].

Except the above two classical exact methods, there are also many works which focus on
developing other effective exact algorithms for solving various VRPs. With respect to the multi-
depot VRP, Christiansent et al. [43] introduced a branch-and-cut-and-price algorithm for the
MDVRP with stochastic demands. In this algorithm, they decomposed the pricing into a sepa-
rate pricing problem for each depot and then solved them by a dynamic programming procedure.
In addition, they suggested two heuristic algorithms to speed up the pricing and solved the in-
stances with up to 60 nodes. Bettnelli et al. [28] developed also a BCP algorithm to solve the
MDVRP with heterogeneous vehicles and considering time windows, which combined differ-
ent cutting and pricing strategies. Contardo [46] proposed two models for the MDVRP under
capacity and route length constraints using vehicle-flow and set-partitioning formulations, re-
spectively. A new exact method was proposed to solve the two models. The first one is based
on the cutting planes method and the second one on column-and-cut generation. Some valid
inequalities were added to strengthen their lower bounds.

For the VRP with pickup and delivery, Amico et al. [68] developed a branch-and-price
approach (B&P) to solve this problem exactly with up to 40 customers. Later, Gutiérrez-Jarpa
et al. [93] proposed a new branch-and-price algorithm to solve five variants of the VRP with
deliveries, selective pickups and time windows, which combined a column generation algorithm
and a label-setting algorithm. Computational results showed this method solved the instances
involving up to 50 customers optimally.

Metaheuristics

As introduced in the last section, most of the exact methods can only solve the VRP in-
stances with up to 200 customers. With the increase of the real problem size, many efforts have
focused on the development of heuristics or metaheuristics in recent years for solving different
VRPs. Generally, classical heuristics can be divided into constructive heuristics and improve-
ment heuristics. The former mainly consists of the Clarke and Wright saving algorithm, the
sequential insertion algorithm, sweep algorithm and other two-phase decomposition heuristics.
For the improvement algorithms, two types are applied to the VRP solutions: intra-route heuris-
tics and inter-route heuristics. For more details of these classical heuristics, one can refer to the
introduction in [52, 200]. Here, we mainly presented some successful metaheuristics for the
related VRPs in recent years. We distinguish local search methods, population search based
methods and methods based on a learning mechanism.

The first category of metaheuristics widely applied is local search based algorithms which
start from an initial solution and move to another solution at each iteration in a neighborhood
solutions space to find best solutions until a stopping condition is satisfied. They mainly in-
clude simulated annealing (SA) algorithm, tabu search (DS) and variable neighborhood search
(VNS) algorithms. Pisinger and Ropke [166] proposed recently a general heuristic to solve
five different variants of the VRP based on a large neighborhood search framework, called
the adaptive large neighborhood search (ALNS). They presented an approach to transform all
variants into a rich pickup and delivery model and then solved them using ALNS. Computa-
tional results based on many instances from the literature showed it was able to improve 183
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best known solutions out of 486 benchmark tests. Chen et al. [42] developed an iterated vari-
able neighborhood descent algorithm (IVND) based on a multi-operator optimization to solve
the CVRP, where a cross-exchange operator was applied as a perturbation strategy to generate
new starting solutions and avoid local minim. The results based on 34 benchmark problems
with up to 480 customers showed the competitiveness of the IVND. Later, in order to quickly
find high-quality solutions for the VRP, a parallel local search algorithm (PLS) was developed
by Groër et al. [92] which was combined with integer programming based on SP formula-
tion. Computational experiments with 129 processors proved this method could solve large
instances with up to 1200 nodes within a short time and discovered 13 new best solutions from
55 benchmark problems. Jin et al. [104] presented a parallel multi-neighborhood cooperative
tabu search algorithm (PMNTS) for the CVRPs, where several different neighborhood struc-
tures were used in a DS algorithm. Their computational experiments based on 32 large scale
instances proved the high effectiveness of this method and provided new best solutions for
four instances involving up to 1000 nodes. Marinakis [136] proposed a new modified version
of the greedy randomized adaptive search procedure (GRASP), called multiple phase neigh-
borhood search-GRASP (MPNS-GRASP) to solve the CVRP. In this method, a new stopping
criterion, based on Lagrangean relaxation and subgradient optimization, was used. In addition,
the circle restricted local search moves strategy was used to expand the neighborhood search.
The test results on two sets of benchmark instances (up to 480 nodes) showed that the method
can obtain solutions with high quality in a competitive computational time compared to other
heuristics. Xiao et al. [207] presented a hybrid VNS combined with simulated annealing (SA)
to solve the CVRP. Test results based on 39 well-known benchmark instances showed the pro-
posed algorithm outperformed most algorithms in the literature in terms of solution quality and
computational efficiency.

Cordeau and Maischberger [53] developed a parallel iterated tabu search (PITS) heuristic
for solving the VRP and several of its variants including the CVRP, the PVRP and the MDVRP.
In this heuristic, the iterated local search is combined with tabu search and the computational
results showed that it outperformed the tabu search alone and recent heuristics. In addition, the
use of the parallel computing found new best known solutions for many test problems. Kuo
and Wang [120] proposed a variable neighborhood search (VNS) to solve an extended MD-
VRP which considered the loading cost. The proposed method comprised three phases: an
initial solution generation with a stochastic method; a neighborhood search phase with four op-
erators and finally SA is used for neighborhood solution acceptance. The results based on 23
benchmark problems showed that this method improved the best known results. Recently, Sub-
ramanian et al. [191] proposed a hybrid algorithm based on an iterated local search (ILS) and
a mixed integer programming (MIP) solver for solving a class of VRPs with an homogeneous
fleet. It was evaluated on hundreds of well-known instances of the considered variants (CVRP,
MDVRP, VRPPD, etc.) and found 52 new best solutions. The largest instances involved up to
480 nodes. For the VRP with pickups and deliveries, a reactive tabu search (RTS) metaheuristic
was designed by Wassan et al. [205] to solve the VRP with simultaneous pickups and deliveries
(VRPSPD) involving up to 200 nodes. Recently, Nagy et al. [151] used this RTS algorithm
to solve effectively the VRP with divisible pickups and deliveries (VRPDPD). A recent review
about the VRPPD was written by Wassan and Nagy [204], which introduced the models and
some meta-heuristics for solving VRPPDs.

The second category of metaheuristic for the VRP is population search based algorithms,
i.e. evolutionary algorithms (EAs) [39, 168, 202]. A recent survey can be found in [167]. We
will describe these methods in detail in Chapter 4 of this thesis since we chose to develop such
a memetic algorithm for solving our hub location and routing problem.

The last class of metaheuristics is learning mechanisms based algorithms including neu-
ral networks and ant colony optimization (ACO). Szeto et al. [193] proposed an artificial bee
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colony algorithm (ABCA) for the CVRP. Gajpal and Abad [84] considered a VRP with simul-
taneous delivery and pickup (VRPSDP) problem and introduced an ant colony system (ACS)
to solve it. In this algorithm, a construction rule combined with two multi-route local search
schemes is used. Kanthavel et al. [107, 108] applied the nested particle swarm (NPS) optimiza-
tion to solve the CVRP and the VRPPD with up to 135 customers. For other variants, Hoffe
et al. [98] presented some lasso shaped solutions produced by a TS algorithm for solving the
VRPPD. Yang et al. [208] presented a new mathematical model and proposed a self-adaptive
and polymorphic ant colony (APAC) algorithm for the MDVRP with multi-model vehicle and
multi-task.

Conclusion

The vehicle routing problem concerns many real-life applications and is a very challenging
combinatorial optimization problem. It has attracted a considerable amount of research for more
than fifty years. Several formulations such as 2-index, 3-index and set covering formulations
have been proposed for many variants of the problem and many exact and approximate solutions
techniques have been and are still developed. Among others, a recent survey from Cordeau [52]
summarized different models and algorithms of VRPs. Recently, Baldacci et al. [19] provided
a review on recent exact algorithms for the vehicle routing problem (VRP). And Jaegere et al.
[67] classified existing numerous articles of VRPs and analyzed the trends in the literature.

In this section, we have discussed VRP variants that are directly or indirectly related to our
subject. We have presented the main models and solution methods. Exact solution techniques
focus on many variants of the branch and bound, branch and cut, and branch and cut and price
procedures or learning mechanisms, while many types of meta-heuristic solutions are available,
corresponding mainly to local searches and population search based methods. Together with
other criteria, this will allow us to propose the mathematical formulation of the routing part of
our HLRP, and guide us for the choice of promising solution methods. We will discuss this at
the end of this chapter.

2.1.3 The location-routing problem

Introduction

Another problem related to the HLRP is the location-routing problem (LRP). It deals with
the simultaneous determination of the location of facilities and vehicle routing to or from these
locations in order to prevent suboptimal solutions when these to problems are closely linked
[150]. The LRP takes into account a number of feasible depot sites and aims aims at determin-
ing the number and location of depots to retain, as well as build the distribution (or collection)
routes from depots to service all customers, so as to minimize the total system cost. Gener-
ally, the total cost includes both fixed and operating costs of depots and vehicle routes. This
combinatorial optimization problem arises in the distribution management and has been applied
in many different fields, such as the design of city logistic systems [189], the management of
hazardous wastes [10] and the optimization of a supply chain [82]. In this section, we mainly
introduce the mathematical model and solving methods for the LRP, especially the capacitated
location-routing problem (CLRP).

Mathematical models

The capacitated location-routing problem is defined on an undirected networkG = (I, J, E)
(shown in Figure 2.4). I = {i1, ..., im} is a set of m possible depots, and J = {j1, ..., jn}
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indicates a set of n customers. Let V = I ∪ J be the set of all nodes and E = {(i, j) : i ∈
V, j ∈ V } represents the set of all edges. Each edge (i, j) ∈ E is associated to a nonnegative
weight cij representing the traveling cost between node i and j. Each customer j ∈ J has a
known demand dj . In addition, a capacity limitation Wi and an opening cost Oi are associated
with each potential depot i. Further, a set of vehicles with capacity and fixed cost is available
at depots. It is normally assumed that the vehicles are shared by all depots and the cost matrix
satisfies the triangle inequality [176]. Therefore, in order to satisfy the demand of all customers
and minimize the total cost, the CLRP needs to select which depots should be open and which
routes should be constructed. In addition, the following constraints must be satisfied:

1. each customer j can be served by only one vehicle and its demand dj must be satisfied.

2. the available vehicles can be used by any depot, but each vehicle must start from one
depot and return to the same one.

3. each vehicle can be used once at most by one depot. Therefore, the CLRP is a single
assignment problem.

4. the total quantity of customer demand served by one depot i can not exceed its capacity
Wi. And also the total load of each vehicle must fit its capacity.

Various versions of the LRP have been put forward during the last years, such as the periodic
location-routing problem [174], the LRP with simultaneous pickup and delivery [110] and the
LRP with time windows [44] which considers time requirements of customers.

Figure 2.4: Network of a location-routing problem (CLRP)

In the first LRP studies, most authors addressed a version with either uncapacitated depots
or uncapacitated vehicles. For example, Laporte et al. [125] provided an integer linear pro-
gram (ILP) formulation and a branch-and-cut method for the LRP with capacitated vehicles
and uncapacitated depots. Albareda-Sambola et al. [8] proposed a model for the LRP which
considered capacitated depots while the vehicles were assumed uncapacitated. For the CLRP
with both capacitated depots and vehicles, Wu et al. [206] gave a mathematical formulation for
this problem considering a homogeneous fleet or limited heterogeneous fleet. In 2007, Prins et
al. [172] proposed a zero-one linear programming model (CLRP1) for the CLRP with a single
fleet K. Each vehicle k ∈ K is associated with the capacity Q and the fixed cost F . Then based
on the basic constraints as mentioned above, this model defines binary variables yi = 1 if depot
i ∈ I is opened, fij = 1 if customer j ∈ J is assigned to depot i ∈ I , and xjlk = 1 if edge
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(j, l) ∈ E is in the route performed by vehicle k ∈ K. So in order to minimize the total cost,
the CLRP1 model was formulated as follows:

(CLRP1 [172]) Min
∑
i∈I

Oiyi +
∑
i∈V

∑
j∈V

∑
k∈K

cijxijk +
∑
k∈K

∑
i∈I

∑
j∈J

Fxijk (2.43)

subject to ∑
j∈J

djfij ≤ Wiyi ∀i ∈ I (2.44)

∑
j∈J

∑
i∈V

djxijv ≤ Q ∀k ∈ K (2.45)

∑
k∈K

∑
i∈V

xijk = 1 ∀j ∈ J (2.46)

∑
j∈V

xijk −
∑
j∈V

xjik = 0 ∀k ∈ K, ∀i ∈ V (2.47)

∑
i∈I

∑
j∈J

xijk ≤ 1 ∀k ∈ K (2.48)

∑
i∈S

∑
j∈S

xijk ≤ |S| − 1 ∀S ⊆ J,∀k ∈ K (2.49)

∑
u∈J

xiuk +
∑

u∈V \{j}

xujk ≤ 1 + fij ∀i ∈ I,∀j ∈ J,∀k ∈ K (2.50)

xijk ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀k ∈ K (2.51)

yi ∈ {0, 1} ∀i ∈ I (2.52)

fij ∈ {0, 1} ∀i ∈ I,∀j ∈ J (2.53)

Objective function (2.43) minimizes the sum of depot opening costs, vehicle travel costs
and fixed costs. Constraints (2.44) and (2.45) are capacity constraints for depots and routes,
respectively. Constraints (2.46) ensure that each customer can be visited by exactly one route.
Constraints (2.47) and (2.48) guarantee the continuity of each route and a termination at the de-
pot of origin. Constraints (2.49) are sub-tour elimination constraints. Constraints (2.50) specify
that a customer can be assigned to a depot only if there is a route connecting them. Finally,
constraints (2.51)-(2.53) state the binary nature of decision variables used in the formulation.

Recently, Belenguer et al. [26] added a new variable into the CLRP model and developed
a two-index vehicle-flow formulation (CLRP2). In this new model, variables wij are used to
model return trips with only one customer. They are equal to 1 if edge (i, j) is used twice and
to 0 otherwise. Then for general routes, binary variables xij take value 1 only if edge (i, j) ∈
E\I×I is traversed exactly once in the solution. Note that xij = 1 implieswij = 0 andwij = 1
implies xij = 0 if i ∈ I and j ∈ J . In addition, they define δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S}
to denote the set of edges with only one end-node in S. γ(S) = {(i, j) ∈ E : i ∈ S, j ∈ S}
represents the set of edges with both end-nodes in S. And for each pair of disjoint subsets S
and S ′ , let (S : S

′
) = {(i, j) ∈ E : i ∈ S, j ∈ S ′} denote the set of edges with one end-node

in S and the other in S ′ . Finally, for a given edge set H , they define x(H) =
∑

(i,j)∈H xij and
similarly for w(H). For a given subset S ⊆ J , D(S) =

∑
j∈S dj is the total demand in S, and

an integer k(S) = dD(S)/Qe is defined as a lower bound on the number of vehicles to serve



60 CHAPTER 2. LITERATURE REVIEW

customers in S. Thus, the CLRP2 model can be formulated as the following integer program.

(CLRP2 [26]) Min
∑
i∈I

Oiyi +
∑

(i,j)∈E

cijxij +
∑
i∈I

∑
j∈J

2cijwij +
F

2

∑
i∈I

∑
j∈J

(xij + 2wij)

(2.54)
subject to

2w({j} : I) + x(δ(j)) = 2 ∀j ∈ J (2.55)

x(γ(S)) ≤ |S| − k(S) ∀S ⊆ J (2.56)

xij + wij ≤ yi ∀i ∈ I,∀j ∈ J (2.57)

x({j} : I) + w({j} : I) ≤ 1 ∀j ∈ J (2.58)

x(S : J \ S) + x(S : I \ {i}) + 2w(S : I \ {i}) ≥ 2 ∀S ⊆ J,∀i ∈ I,D(S) > Wi (2.59)

x(γ(S ∪ {l, j})) + x({j} : I
′
) + x({l} : I \ I ′) ≤ |S|+ 2 ∀j, l ∈ J,∀S ⊆ J \ {l, j},∀I ′ ⊂ I

(2.60)
xij ∈ {0, 1} ∀(i, j) ∈ E (2.61)

yi ∈ {0, 1} ∀i ∈ I (2.62)

wij ∈ {0, 1} ∀i ∈ I,∀j ∈ J (2.63)

The objective function (2.54) represents the same total cost as (2.43). Constraints (2.55) are the
degree constraints and flow conservation equations for customer nodes. Constraints (2.56) limit
the capacity of the vehicles and also are called sub-tour elimination constraints. In constraints
(2.57), the edges incident with a depot may be used only if this depot is open. Constraints (2.58)
forbid return trips to be linked with two different depots. Constraints (2.59) restrict the capacity
for depots. They prohibit the existence of routes starting from a same depot i and serving a
demand larger than Wi. Constraints (2.60) are called path elimination constraints and prevent
paths with two different depots. Finally, constraints (2.61)-(2.63) are the binary restrictions on
the variables.

Based on the CLRP2 model, Contardo et al. [48] introduced a three-index vehicle-flow
formulation, as well as a two-index two-commodity flow formulation and a three-index two-
commodity flow formulation. And then they presented several families of valid inequalities that
can be used to strengthen the LP relaxation of the proposed formulations. Finally, they com-
pared the performance of all the formulations based on numerous computational experiments.
In addition, there exist also some other mathematical models based on set-partitioning formu-
lation [7, 20, 49].

Solution methods for the LRP

The combination of two NP-hard problems (facility location problem and vehicle routing
problem) in the LRP induces that this problem is difficult to solve by exact methods. When
the problem size increases, heuristic approaches become the best viable alternative. Therefore,
there are fewer works devoted to the study of exact methods, in contrast to an extensive literature
on heuristics or metaheuristics for solving the LRP [176]. Here, we introduce the exact methods
and some heuristic algorithms proposed in the recent literature about the CLRP. A summary of
these methods can be seen in Table 2.4. This table use the same notations with the ones in
Table 2.2, while the last column illustrates the largest instance size solved by corresponding
algorithms consisting of the number of customers (first value) and the number of potential
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depots (second value).
After some exact methods were proposed to solve the LRP with uncapacitated depot (UDLRP)

[125] or uncapacitated vehicle (UVLRP) [8], Akca et al. [7] presented the first set-partitioning
based formulation for the CLRP and then described a branch-and-price algorithm (B&P) to
solve this problem. In their algorithm, different pricing procedures were developed including
exact pricing algorithms and heuristic versions. Four variants of the B&P were implemented
based on the proposed pricing schemes. The computational experiments based on instances
from the literature and randomly generated evaluated the performance of each kind of branch-
and-price algorithm on their capacity to provide upper bounds. The results indicated that the
algorithm was effective to find good solutions even for instances with up to 85 customers and 7
depots, though it didn’t produce quality lower bounds.

Table 2.4: Exact methods and heuristics proposed for the LRP
Method Article Detailed Algorithm Problem note Application size

Exact method Laporte et al. (1986) [125] B&C UDLRP 20-8
Albareda-Sambola et al. (2005) [8] B&B UVLRP 30-10
Akca et al. (2009) [7] B&P CLRP 85-7
Belenguer et al. (2011) [26] B&C CLRP 75-10
Baldacci et al. (2011) [20] DP+DA CLRP+ULRP 199-14
Contardo et al. (2011) [49] BCP CLRP 200-10
Contardo et al. (2013) [48] B&C CLRP 100-10

Heuristics Prins et al. (2006) [170] MA+PM CLRP 200-20
Duhamel et al. (2008) [73] GAHLS CLRP 100-10
Derbel et al. (2012) [71] GA+ILS CLRP 30-10
Wu et al. (2002) [206] SA+decomposition MDLRP 150-30
Prins et al. (2007) [172] LRGTS CLRP 200-20
Derbel et al. (2010) [70] ILS UVLRP 30-10
Duhamel et al. (2010) [74] GRASP×ELS CLRP 200-20
Yu et al. (2010) [210] SA CLRP 318-4
Contardo et al. (2011c) [47] GRASP+ILS CLRP 200-20
Jokar et al. (2011) [105] ITPS CLRP 200-10
Jokar et al. (2012) [106] SA CLRP 100-10
Escobar et al. (2013) [79] 2-Phase HGTS CLRP 200-20
Prikwieser et al. (2010) [165] VNS+VLNS CLRP+PLRP **
Derbel et al. (2011) [69] VNS CLRP 150-10
Jabal-Ameli et al. (2011) [101] VND CLRP 200-20
Jarboui et al. (2013) [102] VND+VNS UVLRP 200-20
Barreto et al. (2007) [24] Cluster analysis CLRP 150-10
Nadizadeh et al. (2011) [146] GCM CLRP 150-10
Sodsoon (2010) [185] MMAS CLRP 85-7
Ting et al. (2013) [196] MACO CLRP 200-20

Belenguer et al. [26] elaborated the first branch-and-cut algorithm based on the CLRP2
model. They strengthened the model by some new families of valid inequalities, such as im-
proved depot capacity constraints, improved path elimination constraints, co-circuit constraints,
depot degree constraints and inequalities derived from the CVRP. Based on a basic framework
of B&C, they embedded all additional constraints in a cutting plane based on a detailed sepa-
ration strategy, looked for a set of violated inequalities, and then added them to the relaxation
linear program to resolve it until no violated inequality was found. The computational exper-
iments based on 34 standard instances showed that 26 instances were solved to optimality by
this B&C, including some problems with up to 50 customers and 5 depots. And also it pro-
vided feasible solutions for instances with up 85 customers and 7 depots. In the same year,
Baldacci et al. [20] described a new exact method based on a set-partitioning formulation for
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solving the CLRP. They provided new efficient lower-bounding procedures, based on dynamic
programming (DP) and dual ascent methods (DA). Then the produced lower bounds were ap-
plied by an algorithm to decompose the CLRP into a limited set of multi-depot vehicle routing
problem (MDVRP). Finally an additional exact method was used to solve each MDVRP. The
experimental results on 60 benchmark instances from the literature showed this exact method
outperformed the previous ones proposed by Akca et al. [7] and Belenguer et al. [26], on the
quality of the lower bounds produced and the number of instances solved to optimality. Fur-
thermore, it solved to optimality the instances of uncapacitated LRP involving 199 customers
and 14 depots.

Later, a branch-and-cut-and-price algorithm (BCP) was developed by Contrado et al. [49]
to solve the CLRP. They introduced some new families of valid inequalities and added them
into a two-index formulation to determine all the possible subsets of depot locations. Then
two bounding procedures were applied sequentially to reduce the CLRP to a series of MD-
VRP based on the set-partitioning formulation. Finally, they solved the corresponding MDVRP
by the means of column-and-cut generation. Through computational experiments on a large
number of instances from the literature, the proposed algorithm was demonstrated to be able
to produce tighter bounds for most instances and improved the best known feasible solutions
for 7 instances, compared with the exact method of Baldacci et al. [20]. In addition, it solved
four previously open instances to optimality including one with up to 200 customers and 10 de-
pots. Recently, these authors [48] presented three new formulations for the CLRP (mentioned
in last section), and compared the performance of the proposed ones with an existing two-index
vehicle-flow formulation. They derived new valid inequalities and improved some previous ones
to strengthen each formulation. Then, new suitable branch-and-cut algorithms were developed
for each of the formulations, as well as new separation algorithms. Computational results based
on a wide number of instances from the literature showed compact formulations were able to
produce tighter gaps for most instances. And three-index formulations can solve problems more
quickly, especially for some hard instances with up to 100 customers. Furthermore, they indi-
cated that the proposed B&C could produce tighter gaps than the one of Belenguer et al. [26]
on the two-index vehicle-flow formulation.

In many studies on heuristics and metaheuristic techniques developed to solve the CLRP,
the first family is the genetic algorithm-based approach, such as a memetic algorithm with
population management (MA|PM) [170], a genetic algorithm with a split procedure and a local
search scheme (GAHLS) [73], and a genetic algorithm with iterated local search (GA+ILS)
[71]. The detailed description on the application of the CLRP will be given in Chapter 4.

Another group of popular heuristics for the CLRP is local search based algorithms. Wu
et al. [206] presented a simulated annealing-based (SA) decomposition approach for solving
the multi-depot location-routing problem (MDLRP) with multiple fleet types. They divided
the problem into two sub-problems, i.e. the location-allocation problem (LAP) and the general
vehicle routing problem (VRP). Then each sub-problem was solved by SA hybridized some
neighborhood moves in a sequential and iterative manner. The computational results on prob-
lems from the literature and newly created indicated that the proposed algorithm outperformed
some previous heuristics for small and medium instances. In addition, it was effective to solve
large-size instances with up to 150 customers and 30 depots. Prins et al. [172] developed a
cooperative metaheuristic combining Lagrangean relaxation (LR) and a granular tabu search
(GTS) heuristic to solve the CLRP. Firstly, they used a Lagrangean relaxation on a facility-
location problem to select the depot locations. Then, the routes from the resulting MDVRP
were improved by the proposed GTS. The new routes obtained were applied into a new loca-
tion phase. In order to strengthen the cooperation between the two phases, information about
edges most often used was recorded to build new routes. Computational results based on three
sets of instances from the literature showed that the proposed LRGTS improved the best known
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solutions for most instances involving up to 200 customers with 10 capacitated depots or 20
uncapacitated depots. Furthermore, it was able to find optimal solutions on small instances with
up to 29 customers and 5 depots within a competitive time.

Later, Derbel et al. [70] applied an iterated local search (ILS) to solve the LRP with an
uncapacitated vehicle at each depot. This local search used four different neighborhood struc-
tures to modify routing sequence for obtaining a local optimum solution. Then a perturbation
mechanism was added to improve the solutions until a stopping criterion was satisfied. The
computational results showed that the proposed ILS was competitive in terms of solution qual-
ity and computing time compared with the tabu search heuristics of Albreda-Sambola et al.
[8]. In addition, this method was able to solve some instances with up to 30 customers and 10
depots. Duhamel et al. [74] developed a new metaheuristic, consisting in a greedy random-
ized adaptive search procedure (GRASP), hybridized with an evolutionary local search (ELS)
to solve the CLRP. It was called as GRASP×ELS. In this method, the GRASP was used to
provide some initial solutions, which then were improved by the ELS. Instead of creating one
child-solution at each iteration, the ELS generated more children-solutions and selected the best
one at each iteration. And two levels of mutation were applied in the ELS including the mu-
tation on tour and mutation on hubs. In the mutation on tour, the giant TSP tours without trip
delimiters were produced and then converted into the LRP solutions via a splitting procedure
subject to vehicle capacity, fleet size and depot capacities. Computational results on three sets
of benchmark instances showed the GRASP×ELS outperformed the three other metaheuristics
(MA|PM, GRASP and LRGTS) proposed by Prins et al. [170, 171, 172] for the number of
best solutions found. It also improved a majority of best-known solutions including instances
involving up to 200 customers and 20 depots. Meanwhile, Yu et al. [210] proposed a simulated
annealing (SA) based heuristic for solving the CLRP and compared it with other heuristics in
the literature including MA|PM [170], GRASP [171], LRGTS [172], clustering based heuris-
tics (CH) [24] and GAHLS [73]. Their computational results indicated the proposed SA was
competitive on the aspect of finding best solutions. For 85 LRP benchmark instances solved,
this method obtained 78 best solutions including 52 new best solutions during the parameter
analysis. Furthermore, it solved two large instances with up to 318 customers and 4 depots. A
metaheuristic was developed by Contardo et al. [47] for the CLRP based on a greedy random-
ized adaptive search procedure (GRASP) and a new integer linear programming (ILP), i.e., a
new location-reallocation model. In the first step of this approach, the GRASP was applied to
construct a bundle of initial solutions followed by local search procedures. Then the ILP was
solved to obtain a new solution as a combination of all routes in the solution bundle. In the
final step, the ILP model was iteratively solved by a column generation algorithm to improve
the solutions found in last two steps. Through comparing to seven previous heuristics published
for the CLRP, the computational results on 89 benchmark instances showed the high competi-
tiveness of the proposed algorithm in terms of solution quality and computing time. In total, it
improved 17 best known feasible solutions including two instances with up to 200 customers
and 20 depots.

Recently, Jokar et al. proposed an iterative two phase search (ITPS) based heuristic [105]
and a new simulated annealing (SA) based algorithm [106] to solve the CLRP. In the first work,
an initial solution population was generated by a greedy approach in phase 1 and then was
improved by various neighborhood searches in phase 2. The computational results based on
some benchmark instances showed this method was able to provide effective solutions, where
the cost was less than 3% in average compared with the one obtained by the three published
methods of Prins et al.. In the second work, the SA was compared to the method of Barret
et al. [24]. Results on 11 instances showed the new SA improved some best known solutions
with up to 100 customers and 10 depots. A new two-phase hybrid heuristic algorithm (2-Phase
HGTS) was developed by Escobar et al. [79] in 2013 to solve the CLRP. In the first phase, an
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initial feasible solution was constructed by an initial hybrid procedure followed by a splitting
procedure. And then a modified granular tabu search (GTS) was applied to improve the solution
quality in the second phase. In addition, a randomized perturbation approach was applied in the
GTS to escape from a local optimum. Computational results based on 79 benchmark instances
from the literature showed the effectiveness of the proposed method. It improved 10 best known
solutions within reasonable computing times and outperformed previous methods for larger
instances with 200 customers, compared with five most effective published heuristics for the
CLRP.

In addition, the neighborhood search based algorithms have also been widely studied to
solve the CLRP. Pirkwieser et al. [165] presented a variable neighborhood search (VNS) for
the CLRP and the periodic LRP, where the VNS was combined with three very large neighbor-
hood searches (VLNS) based on integer linear programming. Derbel et al. [69] developed a
general VNS for solving the CLRP, where many neighborhood structures and a shaking proce-
dure were applied to diversify the search space and improve solutions. Computational study on
13 instances from the literature showed the proposed VNS obtained 11 best known solutions
involving one with 150 customers and 10 depots. Meanwhile, a variable neighborhood descent
(VND) based algorithm was proposed by Jabal-Ameli et al. [101] to solve the CLRP. They used
a two-stage algorithm to generate the initial solutions in the first stage, and then improved them
using the VND algorithm in the second stage. The computational experiments were carried on
55 benchmark instances from the literature. Results indicated that the proposed VND was able
to provide high quality solutions with objective values not more than 5% in average of the ones
obtained by other three published heuristics: GRASP of Prins et al. [171], LRGTS of Prins et
al. [172] and SA of Yu et al. [210]. Recently, Jarboui et al. [102] integrated a VND algorithm
as the local search in the general VNS framework to solve the LRP with multiple capacitated
depots and uncapacitated vehicles (UVLRP). In this algorithm, they used simultaneously the
routing and location neighborhood structures in the local search and shaking phases. Computa-
tional results based on large number of test instances from the literature showed the proposed
method could provide high quality solutions in less average computing times, in comparison
with the ILS of Derbel et al. [70] and the TS of Albreda-Sambola et al. [8].

In addition to the heuristics mentioned above, Barreto et al. [24] presented several hier-
archical and non-hierarchical clustering techniques to solve the CLRP, which are included in
a sequential heuristic algorithm. They proposed also a number of guide-lines concerning the
choice of a suitable clustering technique. This approach has demonstrated its effectiveness in
finding feasible solutions for instances with up to 150 customers and 10 depots in a reasonable
computing time. Nadizadeh et al. [146] introduced a greedy clustering method (GCM) to solve
the CLRP. This method consists in four phases to find the best solutions, i.e., clustering the
customers using a greedy search algorithm subject to the vehicle capacity, selecting the location
of depots to cover total demand of customers and minimize the total establishing cost, allocat-
ing the clusters to the open depots considering the capacity of depot and finally setting routes
between depots and customers using ant colony system (ACS). They were repeated for a prede-
fined number of iterations to obtain better solutions to replace last one until a stopping criterion
was satisfied. Computational results showed the performance of the proposed algorithm was
satisfactory. It solved all tested problems (19 standard instances) with the lowest average gap
(1.33%)compared to the best known solutions from three other algorithms of the literature. In
addition, it obtained 9 best solutions including 2 new ones. There are also some works focusing
on the development of ant system based heuristics to solve the CLRP, such as a max-min ant
system (MMAS) algorithm proposed by Sodsoon [185] and a multiple ant colony optimization
algorithm (MACO) proposed by Ting et al. [196] in 2013.



2.2. THE HUB LOCATION-ROUTING PROBLEM 65

Conclusions

For more details of the location-routing problem, one can refer to the review papers [140,
150, 176]. Min et al. [140] summarized the earliest researches on the combined LRP and
proposed some research directions. It gave the classifications about problems, perspectives
and solution methods. Later, a new review was given by Nagy and Salhi [150] who made a
detailed description for the LRP and summarized the main achievements until 2007. It not
only introduced the different formulations and application areas of the LRP, but also analyzed
the main exact methods and heuristics. Recently, Prodhon and Prins [176] gave the newest
survey about research works on the LRP and new extensions after 2007. It compared the results
obtained by different metaheuristics based on the standard instances for the CLRP, the multi-
echelon LRP (LRP-2E) and the multi-objective LRP. In addition, some research directions are
deduced from the literature analysis.

As appears from our analysis, many variants of the location routing problem have been
studied and many models and solution techniques have been proposed in terms of exact methods
and metaheuristics. These methods can solve problems involving up to 20 depots and 200
customers. Since the research problem we are concerned with concerns both the location of
hubs (with inter-hub flows) and collection or delivery routing, we will consider approaches
related to the HLP, LRP and VRP in order to model and solve this problem.

2.2 The hub location-routing problem

2.2.1 Problem introduction and features

Unlike the previous related problems, there has been only few studies focusing on the global
hub location-routing problem (HLRP) which is the focus of our research. As mentioned above,
this problem can be considered as a combination of the hub location, location-routing and vehi-
cle routing problems, which are often interdependent in real logistics applications. The location
of hubs is often influenced by market areas, vehicle transport costs and organizational consider-
ations. As the LRP is an approach to locate facilities simultaneously to corresponding vehicle
routes, the HLRP can be regarded as an approach to model and solve hub location problems
taking into account vehicle routing decisions. So in order to propose more accurate models
and more realistic solutions in a hub-and-spoke network, in addition to determining the location
of hub terminals and the assignment of spokes, the HLRP also considers local tour planning
between spokes and hubs. In some researches, this problem has been called the many-to-many
location-routing problem (MMLRP) [149]. In this section, a state of the art about the HLRP
is given including its characteristics, the relationship with other related problems, application
areas and solution methods.

It seems that Nagy and Salhi presented the first work related to the hub location-routing
problem in 1998 [149], which was called the MMLRP. In this problem, it is assumed that each
customer at location i sends a different commodity qij to some other customers j. The customer
locations may be independent or feasible sites for a consolidation terminal. Finally, a fleet
of vehicles is available. The objective of the MMLRP is to design a system able to exchange
commodities between customer pairs, determining the number and location of terminals, and the
number and routes of vehicles in order to satisfy the transportation demands while minimizing
the total fixed and variable costs of the terminals and transport activities. This is probably
the first definition for the HLRP. These authors viewed this system as a two-level network, the
hub level, determining the hub locations and the access level designing the routing decisions,
respectively. In addition, they pointed out that a customer may be served by two vehicles
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(one for pickups and one for deliveries) if these operations are not made at the same time.
This problem may occur in the freight transport [130] or in the postal industries [40, 66, 180,
203]. In the freight transport, the pickups and deliveries are made separately while they are
performed simultaneously in the postal system. We can also distinguish the uncapacitated or
the capacitated variants of this problem [66] or the p-hub variant [40, 180]. For the vehicle
routing constraints, some studies focus on the tour length limitation [40, 66] while others limit
the number of customers in each tour [180].

Çetiner et al. [40] combined the hubbing and routing problem and applied it to the Turkish
postal delivery system. They described the HLRP as a problem of locating hubs and generating
multiple-stop routes for the non-hub points allocated to the hubs. They formulated an integrated
bi-objective problem combining the multiple allocation p-hub median problem with the multiple
vehicle routing problem with uncapacitated hubs and vehicles. Camargo et al. [66] extended
the definition including also the routing of the flow of many origins to many destinations at
a minimal cost and they called this problem the many-to-many hub location-routing problem
(MMHLRP). Recently, Rodríguez-Martín [180] combined the single allocation p-hub median
problem and the vehicle routing problem in a postal system and assumed that each hub operated
only one route to serve its customers.

Based on the above descriptions and definitions of different researchers, the HLRP can be
described by the following characteristics:

1. There are three different sets in the network, including origins sites, destination sites and
feasible hubs sites. Their geographical locations can either be disjoint or not.

2. The HLRP considers the corresponding relationship of demand flows between each origin
and destination (O-D) pairs and not only the demand of individual origin or destination.
Therefore, the routing of flows from origins to destinations should be designed, as well
as both pick-up and delivery routes.

3. At the hub level, the terminal location has to be determined and all terminals are assumed
to be connected to all the others. The links between terminals are direct links.

4. At the access level, the routing decisions serve the customers with vehicles starting from
and returning to the same terminal.

5. The pick-up and delivery processes can be operated simultaneously or not. But they
should be implemented in a cycle tour starting and ending at same hub.

6. For the location of the hubs, fixed costs of establishing the hubs and also transportation
cost between hubs are considered.

As mentioned in the hub location problem, the hub-and-spoke network for freight transport
and postal systems consists in three phases: the first one is the collection phase from origins
to hubs, the second one is the exchange phase between different hubs and the third one is the
distribution phase from hubs to destinations. So in order to simultaneously meet the needs of
many origins and destinations, the Hub Location Routing Problem (HLRP) can be defined to
determine the number and the location of hubs, the assignment of the non-hub nodes to the
hubs, the local vehicle routing for collection and delivery simultaneously or not, and the routing
of flows from origins to destinations, with the objective of minimizing the total cost including
hub costs, inter-hub transportation costs and vehicle routing costs. From this definition, we
can see that the HLRP considers all the decisions associated with the HLP and the VRP. And
differently from the LRP, which only considers one type of route (collection or delivery), the
HLRP deals with both collection and delivery routes. In addition, the HLRP takes into account
the exchanges of flows between origins and destinations and the transfers between hubs, which
are not involved in the LRP. The differences between the related problems and the HLRP on
the aspect of decisions making are summarized in Table 2.5. From this table, it can be seen
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that many logistics problems are special cases of the HLRP, such as the hub location problem if
the local routing costs are not considered, and the LRP if there is no inter-hub flow and if only
collection or delivery processes are considered.

Table 2.5: The differences between the HLP, LRP and HLRP
XXXXXXXXXXXXProblem

Decision Locate
hub

Allocate
non-hub nodes

Design
vehicle routes

Consider flow between
origin and destination

HLP × × ×
VRP ×

MDVRP × ×
LRP × × ×

HLRP × × × ×

2.2.2 Modeling and solution methods
In contrast to the HLP, VRP and the LRP, which have been the subject of many researches,

only very few works have directly addressed the HLRP. Nagy and Salhi [149] proposed a math-
ematical formulation for the many-to-many location-routing problem (MMLRP) with capacity.
They introduced one variable to represent whether the pickup and delivery at one customer
location were served simultaneously or not in the model. However, this formulation leads to
a large number of variables and constraints even for a small number of customers. So in or-
der to solve this complex problem, they developed a hierarchical heuristic solution framework
based on the concept of "nested methods", and they solved the problem in three stages including
the location, the routing and their inter-relation. Finally, one instance with 249 customers was
solved to illustrate the usefulness of the proposed method. Liu et al. [130] studied a mixed truck
delivery system that allows both hub-and-spoke and direct shipment delivery modes. They in-
troduced a heuristic algorithm to determine the delivery mode for each supplier-customer pair
and to perform vehicle routing with two modes. They compared the mixed system with the pure
hub-and-spoke system and the pure direct shipment system. The experimental results showed
that the mixed system can save around 10% of the total traveling distance on average, compared
with the two pure systems. Although the system considered pickup and delivery routing in a
hub-and-spoke network, it included only one hub. It can therefore be treated as a 1-HLRP with
direct shipments.

In addition, some researchers have focused on the partitioning-hub location-routing prob-
lem (PHLRP) which is indeed a hub location problem involving graph partitioning and rout-
ing features. Gourdin et al. [162] first introduced three integer programming formulations of
the PHLRP and compared them. Catanzaro et al. [38] explored possible valid inequalities to
strengthen the IP model and introduced a branch-and-cut algorithm to solve the PHLRP which
contained 20 vertices. Ta et al. [194] presented a binary integer linear programming model and
a new method based on the difference of convex function algorithm to solve larger problems
with up to 25 vertices.

Until now, most of the work on the HLRP has been applied to postal service networks where
the pickup and delivery usually occur simultaneously. Wasner et al. [203] developed a two-
layer hub location and vehicle routing model for an Austrian parcel delivery service. In their
non-linear model, they considered the number of trips between hubs, the quantity transferred
between depots directly or across the hubs, the number of pickup and delivery routes, and the
capacity of the vehicles. To solve this non-linear model, a heuristic solution was proposed,
based on a sequence of local search procedures. According to the authors, the key idea of the
proposed method was to divide the transportation process into two interrelated problems: the
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pickup and delivery design and the line haul design. Then, the heuristics determines the decision
variables and parameters. The solution concept is based upon a parallel method and includes
many feedbacks and iterations to improve the solution obtained from each step. Finally, one
case was studied to illustrate the method. Çetiner et al. [40] developed a two-stage method that
includes locating and routing for an uncapacitated-length-limited HLRP for the Turkish postal
delivery system. The heuristic contains hubbing and routing stages which iterate during the
whole procedure using an updating scheme of the distance used in the first stage. A case study
for the Turkish postal service with 81 nodes was developed and tested to prove the effectiveness
of this model and method.

More recently, Camargo et al. [66] proposed a new formulation and a tailored Benders de-
composition algorithm for the many-to-many hub location-routing problem (MMHLRP) with
uncapacitated hubs in a parcel delivery network. The model consisted of locating the hubs,
generating local tours to service the non-hub nodes and to connect the non-hub nodes to the
installed hubs, and routing the flows. In this problem, it is assumed that the pickups and the
deliveries may occur simultaneously and that a constraint for each local tour limits the maxi-
mum distance allowed. In the proposed algorithm, the formulation was divided into the master
problem to provide a lower bound (LB) and the subproblem to provide an upper bound (UB) to
reach an optimal solution. Computational results based on the instances inspired from AP data
set confirmed the efficiency and robustness of the algorithm which can solve instances up to
100 nodes. Rodríguez-Martín et al. [180] presented a mixed integer programming formulation
and proposed a branch-and-cut algorithm for the single allocation p-hub location and routing
problem in the postal industry. The model determines the location of p-hubs, the allocation
of the nodes to the hubs and the routing among the nodes allocated to the same hubs. They
assumed that the uncapacitated hub nodes were directly connected to each other and each hub
could operate one route at most to serve all the nodes assigned to it on a cycle. The objective
function minimizes the sum of the cost of assigning nodes to hubs, the cost of routing between
hubs and the cost of routing within a cycle. In the proposed B&C, the authors introduced some
valid inequalities to strengthen the formulation and checked the violated ones at each node of
the search tree with a cutting plane method. Through some computational experiments based
on instances from the CAB and the AP data set, they demonstrated that the proposed method
succeeds in solving instances with up to 50 nodes. In addition, they analyzed the impacts of
different model parameters on the solutions and the cost structures of different solutions.

Today, more and more researchers consider incorporating the routing decisions into the
location problem. Recently, Kartal et al. [112] presented a mathematical mini-max model
which considered the integration of uncapacitated single allocation p-hub center and multi depot
multiple traveling salesman problems. The goal of the model was to minimize maximum route
lengths without capacity. Two heuristics based on simulated annealing and random descent
were introduced and tested on CAB, AP and Turkish data sets. Armin et al. [132] presented
a formulation for the p-hub location and vehicle routing problem for which they proposed two
exact solution approaches (branch-and-cut and Benders decomposition). Their model was also
based on the postal delivery system. Computational experiments were performed on the AP
data set ranging from 10 nodes to 25 nodes with CPLEX. Rieck et al. [179] focused on an
extension of the many-to-many location-routing problem (MMLRP) which considered the inter-
hub transport and multi-commodity pickup-and-delivery. They divided the network into three
layers and integrated direct shipment to determine the location of hubs and vehicle routing of
pickups and deliveries. They presented a mixed-integer linear program (MIP) for this problem
with capacitated vehicle and uncapacitated hubs. Computational study shown some small-scale
problem instances ( 5 pick points, 2 potential hubs and 8 delivery points) generated can be
solved to optimality using solver CPLEX based on this model. In addition, a heuristic multi-
start procedure (MSP) based on a fix-and-optimize scheme and a genetic algorithm (GA) were
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developed for solving larger-scale instances. In each iteration of the fix-and-optimize scheme, a
subset of binary decision variables is set to one based on an initial solutions and then re-optimize
the problem with a branch-and-bound framework. In the proposed genetic algorithm, a multi-
dimensions matrix was used to represent an individual. The results obtained by CPLEX, the
MSP heuristic and the genetic algorithm were compared to evaluate the performance of each
method in solving different size of instances. They shown that the proposed heuristics can give
some feasible solutions for the instances with up to 40 pickup point, 6 potential hubs and 100
delivery points. The detailed comparison between the above articles about the HLRP and our
study can be seen in Table 2.6.

Table 2.6: Detailed comparison between related works on the HLRP

Article
Characteristic

Location Allocation Number
of hubs

Hub
constraint

Routing
constraint Solution Application

area Size

Nagy et al.
(1998)[149] yes single not fixed capacitated length Hierarchical

heuristic
One

instance 249

Liu et al.
(2003)[130] no single+direct

shipment one hub uncapacitated length Heuristic Random
instances 25

Wasner et al.
(2004)[203] yes multiple+direct

shipment not fixed capacitated capacitated Heuristic Austria
postal 10

Çetiner et al.
(2010) [40] yes multiple p hubs uncapacitated length two-stage

heuristic
Turkish
postal 81

Camargo et al.
(2013) [66] yes single not fixed uncapacitated length Benders de-

composition AP 100

Rodriguez-Martin
et al. (2014) [180] yes single p hubs uncapacitated number of

nodes B&C CAB+AP 50

Rieck et al. (2014)
[179] yes single+direct

shipment p hubs uncapacitated capacitated
Multi-start
procedure

+GA

timber-
trade

industry
140

Our research yes single not fixed capacitated capacitated MA and
B&C

freight
and postal 100

2.2.3 Conclusions
The state of the art about the HLRP indicates that, among the few works on this problem,

most of them concerns parcel delivery applications where collections and deliveries may be per-
formed simultaneously and within the same routes. Moreover, very few works take into account
the capacity constraint for vehicles and there is a lack of models and methods addressing the
HLRP for general LTL freight shipments. Regarding solution methods, some proposed heuris-
tics and solved real cases. Others developed exact methods to solve small and medium size
instances. However, it is not possible to compare the different approaches as most researches
tackled practical applications or studied different variants. We therefore feel that there is a need
for developing generic models and methods for tackling hub location and routing problems for
LTL shipment for both cases involving simultaneous and separate collections and deliveries,
with and without vehicles or hub capacities.

2.3 General conclusions and research directions
This section provided a literature review on the problems related to the hub location-routing

problem and on the HLRP itself. This review was focused on problems related to our re-
search problematic. Firstly, we introduced the definition, features, variants and applications
for each related problem including the hub location problem (HLP), the vehicle routing prob-
lem (VRP) and the location-routing problem (LRP). Then the mathematical formulations and
solution methods were summarized for each problem, especially the single allocation HLP, the
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CVRP and the CLRP. Finally, a comparison between related problems and the HLRP was given,
followed by a review of all works published on this topic.

From this literature review, it can be seen that although many works focus on related prob-
lems, the hub location routing problem has received little attention until now especially for
applications to general LTL freight transport. Most of the papers on the HLRP deal with partic-
ular applications in which the vehicle capacity is not taken into account, facilitating the mixed
collection and delivery of products in the same tour, such as it is the case in the postal services
area. Even if heuristics or exact solution methods have been proposed, only small and medium
problems can be solved. From this literature review, we can notice that no research has been
conducted onto the HLRP with separated collections and deliveries, corresponding nevertheless
to real applications as for trucking companies specialized in the transportation of loads less than
3 tons, necessitating this kind of organization to reduce costs and achieve the time restrictions
for deliveries (less than 24h or less than 48h).

Thus the development of a general model for the the HLRP in with distinct collections and
deliveries and corresponding efficient exact and approximate solution methods appears to be
an interesting avenue of research. The literature on the HLP, LRP and VRP inspires us for the
modeling of this problem and provides us hints for the most promising solution methods. The
literature review also tells us the necessity to develop specific solution methods and in particular
metaheuristics if we want to solve realistic problems.

In the following of the thesis, we present mathematical formulations for the hub location-
routing problem for general freight transport. We develop a metaheuristic method in order to
solve realistic large size instances in a reasonable time. This metaheuristic of the memetic algo-
rithm framework combines a genetic algorithm and an iterative local search. These techniques
have been successfully used for VRPs and LRPs. Inspired from the efficient exact methods for
the VRP, we also propose a new branch and cut method. This technique has already proven its
efficiency for LRP problems to outperform commercial solvers on computing time and qual-
ity of solutions. Finally we adapt the proposed model and metaheuristics in order to solve the
classical postal service hub location routing problem.



3
Models for the capacitated single
allocation hub location-routing problem

In this chapter, we introduce a general description of the capacitated single allocation hub
location-routing problem (CSAHLRP) considered in this research. Two mathematical models
for this problem are presented. The first model includes a formulation with a 4-index variable
and the second one contains a formulation with a 3-index variable to reduce the size of the
model. Finally, we compare the complexity and the performance of the two models solving
small to medium instances with a commercial solver.

3.1 Problem definition
To illustrate the operation of the hub location-routing problem in LTL shipments, an ex-

ample of the organization and network is shown in Figure 3.1 where the squares, circles and
triangles represent the candidate hubs, the origins of goods (suppliers) and the destinations
(clients) respectively. The bold edges represent the transfer arcs connecting hubs. The dashed
edges represent the local collection arcs connecting suppliers to one hub while the simple solid
edges stand for the local delivery arcs. Since we consider the general case where collections
and deliveries are made separately, we distinguish two kinds of tours. For both collection or
delivery tours, there are two possible routing modes. One is a single-node route such as routes
R1 or R2. The other is a multiple-nodes route like routes R3 or R4.

As can be seen from Figure 3.1, there are therefore three types of node sets: the set of
suppliers which are the origins of flows; the set of clients which are the destinations of flows;
and the set of candidate hubs which serve as service and transit centers for both suppliers and
clients. Then the transportation process can be divided into three components in order to ship
the flows from any supplier to its clients: the collection process from suppliers to hubs, the
transfer process between hubs and the delivery process from hubs to clients. Because the activ-
ities of collection from suppliers and distribution to clients are considered separately, a supplier
and a client cannot be serviced to the same tour. In this research, for each O-D pair, we allow
shipment through a one hub or two hubs rather than direct transport. No more than two hub
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Figure 3.1: The network of the HLRP in LTL shipments

stops are considered because we assume that the distance matrix satisfies the triangle inequal-
ities. So more than two hub stops would be meaningless. In addition, likewise for the HLP,
there are many variants of the HLRP based on different hypothesis, such as single/multiple
allocation, capacitated/uncapacitated and fixed cost/p-hub problems. Here, we consider a ca-
pacitated single allocation hub location-routing problem (CSAHLRP). It includes the following
characteristics and hypothesis:

(1) Every potential hub is capacitated and subject to a fixed opening and operating cost. Then
the total quantity of flow assigned to a hub can’t exceed its capacity.

(2) The number of hubs to be selected is not fixed, which is decided by the decision process.
(3) Each tour associated to a hub corresponds to one vehicle.
(4) Each node (supplier or client) is assigned to one selected hub (single allocation).
(5) Each supplier or client is visited exactly once by one vehicle (no splitting of collections

or deliveries).
(6) The total quantity of flow on each tour is limited to at most the vehicle capacity.
(7) Each tour starts and ends at the same selected hub.
(8) The total quantity of flow from suppliers (supply) to clients (demand) has to be trans-

ported.
(9) The collections and deliveries are done independently (no mixed tours).

(10) There are no direct connection between origins and destinations, and all the flows must
go through at most two hubs.

(11) For the vehicles, we consider a homogeneous fleet with a capacity and a fixed cost.
(12) The transportation cost between hubs is assumed to depend on the distance and the flow

quantity transferred.
(13) The routing costs of the vehicles for the local collection and delivery tours are assumed

to only depend on the distance of the traversed arcs.
Also, the geographic position of suppliers, clients and potential hubs are known in advance, as
well as the quantities of flows to be shipped between each O-D pair. Then in order to optimize
the transportation network and minimize the total cost, the CSAHLRP consists in deciding
which potential hub will be selected, and in assigning every supplier and client to only one hub
among the open ones. At the same time, for each hub-suppliers group or hub-clients group, it
is needed to design the optimal tours to service them. In the next section, mathematical models
for the CSAHLRP are proposed, based on the above characteristics.
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3.2 Mathematical formulations
In this section, two mathematical models for the CSAHLRP and some formulation improve-

ments are presented. The hub location parts are derived from some classical HLP formulations
[78, 184]. For the routing parts, they are based on a three-index VRP formulation [200], and
improved by ideas from the multi-depot vehicle-routing problem [206].

3.2.1 Notation and overview
We consider a complete graph G = (N,E) with a vertex set N and a complete connected

edge set E. Associated with the networkG, a distance matrix is defined, where the elements are
the distance between two nodes (i, j) ∈ E, i ∈ N, j ∈ N . We consider also a demand matrix
being the flow quantity for each supplier-client pair. As suggested in the problem definition
above, the process of routing the flow from suppliers to clients, can be viewed as a set of three
components: the collection process from suppliers to hubs, the transfer process between hubs
and the delivery process from hubs to clients. Different parameters reflect the unit costs for the
transfer, collection and delivery processes, respectively. Based on the above description and
hypothesis of Section 3.1, the notations used to formulate the model are presented below:

• Sets
H− set of potential hubs k ∈ H;

I− set of suppliers i ∈ I;

J− set of clients j ∈ J ;

N− set of all nodes, N = H ∪ I ∪ J ;

V− set of vehicles v ∈ V .

• Parameters
Fk− fixed cost of operating hub k;

Γk− capacity of hub k;

fv− fixed cost of a vehicle v;

Q− capacity of a vehicle;

qij− flow quantity from supplier i ∈ I to client j ∈ J ;

dij− distance between two nodes (i, j) ∈ E, i ∈ N, j ∈ N ;

α− unit cost parameter for the inter-hub transport;

β− unit cost parameter for the collection tour;

γ− unit cost parameter for the delivery tour;

Oi− total quantity of flow originating at supplier i, Oi =
∑

j∈J qij;

Dj− total quantity of flow for client j, Dj =
∑

i∈I qij;

• Decision Variables
Yijkl− the fraction of flow shipped from supplier i to client j via hubs k and l. It
is a classical decision variable for the HLP which indicates that the flow from one
supplier to one client is routed along the path i → k → l → j. Node k and l can
refer to a single hub node.

zik− the allocation variable of a node i to a hub k. It is equal to 1 if the node i is
allocated to the hub k, 0 otherwise; especially, zkk = 1 if the hub k is selected to be
open. It is also a classical variable for the HLP.
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xvij− is equal to 1 if arc (i, j) is served by vehicle v, 0 otherwise. This variable
indicates the visiting order of each local tour;

Zv
i − the binary allocation variable of a non-hub node i to a vehicle v. It is equal to

1 if node i is allocated to vehicle v.

Uiv− Auxiliary variables for sub-tours eliminations.

Based on the above description, collection from suppliers and delivery to clients are consid-
ered separately, a supplier and a client cannot be allocated to the same local tour, in accordance
with our hypothesis. Moreover, the number of hubs required is not imposed and will result from
the optimization, taking into account the capacity restrictions and the fixed costs for potential
hubs, in particular. In the next section, we present the formulation of the problem with 4-index
variables for flows.

3.2.2 4-index formulation of CSAHLRP

To clarify the presentation of the model, we divide the constraints into four parts: the hub
location constraints; the collection routing constraints; the delivery routing constraints and the
constraints on the values of variables. Then, based on the above notations, the initial mathe-
matical formulation of the CSAHLRP with 4-index ( CSAHLRP-F4-0 ) is presented as follows,
with the goals of minimizing the total cost and meeting the service requirements:

CSAHLRP-F4-0

Min
∑
k∈H

Fkzkk +
∑
i∈I

∑
j∈J

∑
k∈H

∑
l∈H

αdklqijYijkl +
∑
v∈V

∑
i∈I∪H

∑
j∈I∪H,j 6=i

βdijx
v
ij

+
∑
v∈V

∑
i∈J∪H

∑
j∈J∪H,j 6=i

γdijx
v
ij +

∑
v∈V

∑
k∈H

∑
i∈I∪J

fvx
v
ki (3.1)

subject to
—hub location constraints:

zik ≤ zkk ∀i ∈ N, ∀k ∈ H (3.2)∑
k∈H

zik = 1 ∀i ∈ I ∪ J (3.3)

∑
l∈H

Yijkl = zik ∀i ∈ I,∀j ∈ J,∀k ∈ H (3.4)

∑
k∈H

Yijkl = zjl ∀i ∈ I,∀j ∈ J,∀l ∈ H (3.5)

∑
i∈I

∑
j∈J

∑
l∈H

qijYijkl ≤ Γkzkk ∀k ∈ H (3.6)

∑
i∈I

∑
j∈J

∑
k∈H

qijYijkl ≤ Γlzll ∀l ∈ H (3.7)

—collection routing constraints:∑
i∈I

∑
j∈J

qijZ
v
i ≤ Q ∀v ∈ V (3.8)
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i∈I∪H

xvij −
∑
i∈I∪H

xvji = 0 ∀v ∈ V, ∀j ∈ I ∪H (3.9)

∑
u∈I∪H

(xvku + xvui) ≤ 1 + zik ∀i ∈ I,∀k ∈ H,∀v ∈ V (3.10)

∑
v∈V

Zv
i = 1 ∀i ∈ I (3.11)

∑
i∈I∪H

xvij = Zv
j ∀j ∈ I,∀v ∈ V (3.12)

∑
j∈I∪H

xvij = Zv
i ∀i ∈ I,∀v ∈ V (3.13)

∑
i∈H

∑
j∈I

xvij ≤ 1 ∀v ∈ V (3.14)

∑
i∈I

∑
j∈H

xvij ≤ 1 ∀v ∈ V (3.15)

—delivery routing constraints:∑
j∈J

∑
i∈I

qijZ
v
j ≤ Q ∀v ∈ V (3.16)

∑
i∈J∪H

xvij −
∑
i∈J∪H

xvji = 0 ∀v ∈ V, ∀j ∈ J ∪H (3.17)

∑
u∈J∪H

(xvku + xvuj) ≤ 1 + zjk ∀j ∈ J,∀k ∈ H,∀v ∈ V (3.18)

∑
v∈V

Zv
j = 1 ∀j ∈ J (3.19)

∑
i∈J∪H

xvij = Zv
j ∀j ∈ J,∀v ∈ V (3.20)

∑
j∈J∪H

xvij = Zv
i ∀i ∈ J,∀v ∈ V (3.21)

∑
i∈H

∑
j∈J

xvij ≤ 1 ∀v ∈ V (3.22)

∑
i∈J

∑
j∈H

xvij ≤ 1 ∀v ∈ V (3.23)

—constraints on decision variables:

Uiv − Ujv + |I|xvij ≤ |I| − 1 ∀v ∈ V, ∀i ∈ I,∀j ∈ I (3.24)

Uiv − Ujv + |J |xvij ≤ |J | − 1 ∀v ∈ V, ∀i ∈ J,∀j ∈ J (3.25)∑
i∈H

∑
j∈H

xvij = 0 ∀v ∈ V (3.26)

0 ≤ Yijkl ≤ 1 ∀i ∈ I,∀j ∈ J,∀k ∈ H,∀l ∈ H (3.27)
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zik ∈ {0, 1} ∀i ∈ N,∀k ∈ H (3.28)

xvij ∈ {0, 1} ∀i ∈ N,∀j ∈ N,∀v ∈ V (3.29)

Zv
i ∈ {0, 1} ∀i ∈ I ∪ J,∀v ∈ V (3.30)

Uiv ≥ 0 ∀i ∈ I ∪ J,∀v ∈ V (3.31)

In this model, the objective function (3.1) minimizes the sum of the fixed hub operating
costs, transportation cost between hubs, local collection routing cost, local delivery routing cost
and fixed costs of vehicles. The meaning of constraints is explained below:

Constraints for Hub location
• Constraints (3.2) verify that a spoke (a supplier or client node) is allocated to an

open hub.
• Constraints (3.3) impose that a spoke is assigned to one hub (single allocation).
• Constraints (3.4) and (3.5) represent the coherence between allocation variables and

flow variables. They show that if a non-hub node is allocated to a hub, then all of
the flows from or to this non-hub node should pass through this hub.

• Constraints (3.6) and (3.7) are hub capacity constraints for the collection and the
delivery processes, respectively.

Constraints for collection routing
• Constraints (3.8) are the vehicle capacity constraints.
• Constraints (3.9) are the flow conservation constraints which ensure the continuity

of every node visited by one vehicle.
• Constraints (3.10) ensure the connection of location variables and routing variables.

They specify that a supplier can be assigned to a hub only if there is a vehicle from
that hub going through that supplier.

• Constraints (3.11) impose that a supplier can only be served by a single vehicle.
• Constraints (3.12) and (3.13) ensure the connection of two variables. They show the

continuity of visit.
• Constraints (3.14) and (3.15) represent that each vehicle can be used once at most

starting and ending at one hub.
Constraints for delivery routing

• Constraints (3.16)-(3.23) impose the same conditions defined for the local collection
routing, but for the set of clients. They have the same meanings as the collection
routing constraints.

Constraints on decision variables
• Constraints (3.24) and (3.25) are sub-tour elimination constraints for collection and

delivery routing, respectively.
• Constraints (3.26) represent that there are no collection or delivery routes between

hubs.
• Constraints (3.27)-(3.31) are value constraints for variables Yijkl, zik, xvij , Z

v
i and

Uiv, respectively.

We can see that the CSAHLRP-F4-0 formulation is linear but in order to simplify the model,
we note that variable Zv

i can be replaced by xvij , because a tight relationship exists between
the two variables in constraints (3.12), (3.13), (3.20) and (3.21). So CSAHLRP-F4-0 can be
improved as follows:
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• Improvement 1: Vehicle capacity constraints (3.8) and (3.16) can be replaced by the
following two inequalities, respectively:∑

i∈I

∑
j∈I∪H

Oix
v
ij ≤ Q ∀v ∈ V (3.32)

∑
j∈J

∑
i∈J∪H

Djx
v
ij ≤ Q ∀v ∈ V (3.33)

Demonstration:
To prove this property, let us consider expression (3.8) as an example:∑

i∈I
∑

j∈J qijZ
v
i ≤ Q ∀v ∈ V

As ∑
j∈J qij = Oi ∀i ∈ I

Then we get: ∑
i∈I

OiZ
v
i ≤ Q ∀v ∈ V (3.34)

since ∑
j∈I∪H x

v
ij = Zv

i ∀i ∈ I, v ∈ V
Therefore, the left side of constraints (3.8) can be expressed as

∑
i∈I

∑
j∈I∪H Oix

v
ij . And

then we get the new vehicle capacity constraints (3.32). Similarly for delivery process,
equations (3.33) are valid for delivery vehicle capacity constraints.

• Improvement 2: Single visiting constraints (3.11) and (3.19) can be changed to the fol-
lowing expression, respectively:∑

v∈V

∑
j∈I∪H

xvij = 1 ∀i ∈ I (3.35)

∑
v∈V

∑
i∈J∪H

xvij = 1 ∀j ∈ J (3.36)

Demonstration:
Here, we consider constraints (3.11) as an example to prove this proposition:∑

v∈V Z
v
i = 1 ∀i ∈ I

As ∑
j∈I∪H x

v
ij = Zv

i ∀i ∈ I, v ∈ V
Then, we can get:∑

v∈V
∑

j∈I∪H x
v
ij =

∑
v∈V Z

v
i = 1 ∀i ∈ I

Therefore, equations (3.35) are valid for the single visiting constraint and similarly for
constraints (3.36). They show that there must be only one vehicle visiting a given supplier
or one client.

Considering the above improvements, variable Zv
i is no more necessary for the CSAHLRP

model, as well as equations (3.12), (3.13), (3.20) and (3.21). We then obtain a new mathemat-
ical formulation with the 4-index variable, denoted as CSAHLRP-F4, which includes objective
function (3.1) and the following constraints:

• hub location constraints (3.2)-(3.7);
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• collection routing constraints including equations (3.9), (3.10), (3.14), (3.32) and (3.35);

• delivery routing constraints including equations (3.17), (3.18), (3.22), (3.33) and (3.36);

• sub-tour elimination constraints and value constraints for variables consisting of expres-
sions (3.26)-(3.31) and (3.33).

The objective of model CSAHLRP-F4 is still to minimize the total cost including the fixed
hub costs, transportation cost between hubs, local tours cost and fixed costs of vehicles. The
constraints have the same meanings as the ones in CSAHLRP-F4-0. Even if it has been im-
proved, CSAHLRP-F4 still contains a large number of variables and constraints. So in order to
reduce the size of the model, a 3-index mathematical formulation is introduced in next section.

3.2.3 3-index formulation of CSAHLRP

Based on the analysis for the 4-index mathematical model presented in the previous sec-
tion, we can see that variable Yijkl induces a large number of variables and constraints for the
CSAHLRP. So in order to reduce the size of the model, inspired by a model of the hub location
problem (HLP) [78], the second component of the HLRP, i.e. the inter-hub transfers, can be
treated as a multi-commodity flow problem. The flow from each supplier i can be represented
with a commodity i. Then a new variable Yikl is defined as the fraction of total flow of commod-
ity i (i.e. the flow from supplier i) that is routed from hub k to l. Except for this new decision
variable, the notations used in 3-index model remain the same as in CSAHLRP-F4.

For this new model, we also divide the constraints into four parts: the hub location con-
straints; the collection routing constraints; the delivery routing constraints and the constraints
on the values of variables. Then, based on the above definitions, the 3-index mathematical
formulation for the CSAHLRP (CSAHLRP-F3) is proposed as follows:

CSAHLRP-F3

Min
∑
k∈H

Fkzkk +
∑
i∈I

∑
k∈H

∑
l∈H

αdklOiY
i
kl +

∑
v∈V

∑
i∈I∪H

∑
j∈I∪H,j 6=i

βdijx
v
ij

+
∑
v∈V

∑
i∈J∪H

∑
j∈J∪H,j 6=i

γdijx
v
ij +

∑
v∈V

∑
k∈H

∑
i∈I∪J

fvx
v
ki (3.37)

subject to

• hub location constraints (3.2), (3.3) and∑
i∈I

Oizik ≤ Γkzkk ∀k ∈ H (3.38)

∑
j∈J

Djzjl ≤ Γlzll ∀l ∈ H (3.39)

∑
l∈H

Y i
kl = zik ∀i ∈ I,∀k ∈ H (3.40)

∑
l∈H

Y i
lkOi =

∑
j∈J

qijzjk ∀i ∈ I,∀k ∈ H (3.41)

• collection routing constraints including (3.9), (3.10), (3.14), (3.32) and (3.35);

• delivery routing constraints including (3.17), (3.18), (3.22), (3.33) and (3.36);
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• finally the sub-tour elimination constraints and the value constraints for variables
consisting of expressions (3.24)-(3.26), (3.28), (3.29), (3.31) and

0 ≤ Y i
kl ≤ 1 ∀i ∈ I,∀k ∈ H,∀l ∈ H (3.42)

The objective function also minimizes the sum of the fixed hub costs, transportation cost
between hubs, collection routing cost, delivery routing cost and fixed costs of vehicles. Con-
straints (3.38) and (3.39) are hub capacity constraints for collection and delivery, respectively.
Constraints (3.40) and (3.41) are the flow conservation equations at the hubs. They show that if
an O-D node is allocated to a hub, then all the flow from or to the node should pass through this
hub. Constraints (3.42) are constraints on the values of variables Y i

kl. It can be any real number
between 0 and 1.

In comparison to CSAHLRP-F4, the above formulation reduces the problem size due to the
introduction of variable Y i

kl. For example, if we let |H| = k, |I| = |J | = n, CSAHLRP-F4 will
have n2k2 variables Yijkl. And it requires n2k constraints (3.4) and (3.5). However, CSAHLRP-
F3 will have nk2 variables Y i

kl and nk constraints (3.40) and (3.41). Then the problem size of
CSAHLRP-F3, both in number of variables and constraints, has been reduced by a factor of n.
The comparison of problem size between the two models with 6 potential hubs can be seen in
Figure 3.2. It shows that CSAHLRP-F3 has less variables and constraints for the same number
of non-hub nodes.

Figure 3.2: The size comparison of CSAHLRP-F4 and CSHLRP-F3 with 6 potential hubs

3.2.4 Valid inequalities

In this section, in order to strengthen the previous two formulations, we introduce two fam-
ilies of valid inequalities. The first valid inequality is to restrict the number of open hubs:∑

k∈H

zkk ≥ zmin (3.43)
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where zmin is the minimum number of open hubs to be able to handle the total quantity of flows
from the suppliers or to the clients. That is,

zmin∑
k=1

Γk ≥ max(
∑
i∈I

Oi;
∑
j∈J

Dj) (3.44)

where the hub capacities are indexed in decreasing order. Especially, when the hub capacities
are assumed identical, this inequality becomes the following:

zmin ∗ Γk ≥ max(
∑
i∈I

Oi;
∑
j∈J

Dj) (3.45)

As
∑

i∈I Oi =
∑

j∈J Dj =
∑

i∈I,j∈J qij and the zmin is an integer, then there is an obvious

lower bound defined as d
∑

i∈I,j∈J qij

Γk
e, where dxe represents the smallest integer not less than x.

Thus, the valid inequality (3.43) can be replaced by the following polynomial-size inequality
when the hub capacities are identical:

∑
k∈H

zkk ≥ d
∑

i∈I,j∈J qij

Γk
e (3.46)

The second valid inequality provides a lower bound on the total number of vehicles used
for collection and delivery in any integer feasible solution, respectively. This family of valid
inequalities is inspired from the capacitated vehicle routing problem [200]. They are represented
as follows:

∑
i∈H

∑
j∈I

∑
v∈V

xvij ≥ d
∑

i∈I
∑

j∈J qij

Q
e (3.47)

∑
i∈H

∑
j∈J

∑
v∈V

xvij ≥ d
∑

i∈I
∑

j∈J qij

Q
e (3.48)

Here, dxe denotes the smallest integer not less than x. Inequalities (3.47) impose a minimum
number of vehicles in the collection process to handle the total flows from suppliers and (3.48)
limits the vehicle number necessary for the delivery process. The above valid inequalities are
polynomial-size and can be added directly to our models to solve the CSAHLRP.

3.3 Instances generation

In order to solve the CSAHLRP, we needs to generate sets of instances, because none are
directly available in the literature for this problem. To that purpose, we have decided to use
a set of randomly generated instances inspired from the AP data set introduced by Ernst and
Krishnamoorthy [78] to generate our instances networks nodes and arcs. In addition, we have
generated cost parameters on the basis of the cost data base of the French Comité National
Routier (CNR) 1.

The standard AP data set has been used to generate instances ranging from 10 to 200 nodes.
From these generated instances, we only retained the coordinates of nodes (obtained at OR-

1. http://www.cnr.fr/en
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Library 2). Because our HLRP considers collections and deliveries separately, it is necessary
to distinguish the set of potential hubs, suppliers and clients. Hence, we used the initial node
coordinates of AP data sets to generate the node coordinates of the above three sets randomly.
Then we generated the demand flows between each supplier-client pair and the other parameters
concerning hubs and vehicles (fixed costs and capacities) based on the informations from the
CNR data base, to obtain realistic values for our problem.

Thus, based on the CNR informations and the characteristics of our HLRP, we set the ca-
pacity of all vehicles Q to 15 t. The fixed cost of vehicles fv and variable unit costs α, β and
γ have been calculated using the formula presented in Table 3.1. The fixed daily cost for a
vehicle has been retained at 200 C. As the collection or delivery tours take place on a half-day,
we set fv to 100 C as the fixed cost of each local tour. In addition, because the unit cost α is
assumed to depend on the distance and the flow quantity between hubs and β, γ only depend
on the distance of tours, we obtained their values from the formulas shown in Table 3.1. So, α
is set to 0.057 C/km.t, and β, γ are set to 0.8 C/km.

Table 3.1: The parameter values for vehicle
Basic dates from CNR Dates for HLRP parameters

Name Value Name Formula Value
Load capacity

Q
15 t Fixed cost for

tour fv
f0/2 100 C

Cost per
kilometer Ck

0.4 C/km Unit transfer
cost α (Ck + Ch/v1)/Q+ fv/(Q ∗ dave) 0.057 C/km.t

Fixed daily
cost f0

200 C Unit collection
cost β Ck + Ch/v2 0.8 C/km

Cost by hour
Ch

20 C/h Unit delivery
cost γ Ck + Ch/v2 0.8 C/km

Note: dave is the average inter-hub distance. Here, it is set to 500 km. And v1, v2 is the average
speed of one vehicle for inter-hub transfer and local tour, respectively. Here, we set v1 = 80km/h
and v2 = 50km/h.

The instance names are denoted |H| − |I| − |J |, |H| ∈ {3, 6, 10} representing the number
of potential hubs, |I| = |J | ∈ {5, 10, 15, 20, 20, 25, 30, 35, 40, 45, 50} the number of suppliers
and clients respectively. As mentioned above, for each instance, the coordinates of suppliers
and clients have been selected randomly from the AP data sets and the potential hubs have been
selected, also randomly, from the supplier and client sets. For example, the initial 10-nodes
AP instance can be used to generate the HLRP instances 3-5-5, the initial 20-nodes instance can
generate the HLRP instances 3-10-10, 6-10-10 and 10-10-10, and so on. The generation process
of nodes coordinates can be seen in Algorithm 1. Normally, potential hubs can be preselected by
decision makers based on geography, economy or environment factors. Thus a part of known
node locations were generated here as the locations of potential hubs. The size of instances
differ by the number of suppliers. The small instances consider a number of suppliers from 5
to 15, the medium ones from 20 to 25 suppliers, and the large instances are the ones with 30 to
50 suppliers. Obviously, this method can generate many different instances for the CSAHLRP.
Here, we generated one group of test sets shown in Table 3.2 to conduct our first experiments
and compare the different models. The results will be shown in the next section based on the
small and medium instances. This group contains 23 HLRP instances, where the suppliers and
clients can be located at the same geographic locations. Then, the distances dij are computed

2. http://people.brunel.ac.uk/ mastjjb/jeb/orlib/phubinfo.html
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as follows: first the coordinates are divided by 100, the Euclidean distances are calculated and
then rounded to the nearest integer which should require the triangular inequality.

Algorithme 1 Generation of node coordinates
1: Input: Initial node coordinates of AP data set N0;
2: Set |I| = |N0|/2 and I ⇐ RandomGenerator(N0);
3: Set |J | = |N0|/2 and J ⇐ RandomGenerator(N0);
4: Get the union set H

′
= I ∪ J ;

5: Set |H| ∈ {3, 6, 10} and H ⇐ RandomGenerator(H
′
);

6: Return the coordinates of each set and compute the distance dij .

The quantity of flow between suppliers and clients is determined uniformly in the interval
[0.5, 3.0] such that the total flow Oi, ∀i ∈ I and Dj , ∀j ∈ J can not exceed 15t. In addition,
when the coordinates of a supplier/client couple are the same, the flow is set to 0, because, this
kind of flow doesn’t require a hub transfer and so is not considered in this model. The hub
capacities Γk are the same for all the hubs and three values are considered to ensure the opening
at least 3, 2, 1 hubs, respectively. The hub capacities can also accommodate an integer number
of vehicles. For each instance, the value of Γk that we retained can be seen in Table 3.2.

Table 3.2: Description of experiment instances
Instance size Instance name Hub capacity (t)

Small

3-5-5 15/30/45
3 (6, 10)-10-10 45/60/120
3 (6, 10)-15-15 45/75/135

Medium
3 (6, 10)-20-20 60/90/165
3 (6, 10)-25-25 75/105/195

Large

6 (10)-30-30 90/120/240
6 (10)-35-35 90/135/270
6 (10)-40-40 90/135/255
6 (10)-45-45 105/150/285
6 (10)-50-50 105/150/300

Finally, to set the hub fixed costs for the purpose of experimenting our models, we have
conducted a sensitivity analysis on a possible range of costs to analyze its influence on solutions.
We have tested four values for the hub fixed costs Fk ∈ {2000, 1000, 500, 100} and three values
for the hub capacities. All the results presented in Table 3.3 have been obtained with CPLEX
12.5 on model CSAHLRP-F3 within 3 hours of computation. In this table, the first column
indicates the instance name and characteristics. For example, instance "3-10-10" refers to an
instance with 3 candidate hubs, 10 suppliers and 10 clients. The "Hub_Cap" column indicates
the value of the hub capacities. The third column gives the different values for Fk. And the
next two columns represent the total cost and the cost without hub fixed cost of the best solution
found in limited time. Next four columns show the percentage of each cost component on total
cost, involving the fixed hub cost C1, the inter-hub transportation cost C2, the local collection
and delivery cost C3 and the vehicle fixed cost C4, respectively. Then the "Open hub" column
shows the name of open hubs in the best solution. From this table, we can see that for most
instances, the hub fixed cost has no obvious influence on the best solutions until it is set to a
small value (100 C). But for instances 3-10-10 and 6-10-10 with a hub capacity of 45t, it can be
seen that opening a larger number of hubs can yield lower values for Cost′ when Fk decreases.
For example when Fk = 500, 3 hubs are open for the 3-10-10-45 instance, at a cost of 4885.32
C. However when Fk = 1000, 2 hubs are open at a cost of 5613.94 C. Therefore, through this
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preliminary analysis of the solutions, we have decided to set Fk to 1000 C for each hub for the
following experiments.

Table 3.3: Sensitivity analysis on hub fixed cost for small instances
H-I-J Cap_hub Fk Costtotal Cost

′
C1% C2% C3% C4% Open hub

3-5-5

15

2000 5867.85* 1867.85 68.17 1.44 23.57 6.82 1, 2
1000 3867.85* 1867.85 51.71 2.19 35.76 10.34 1, 2
500 2867.85* 1867.84 34.87 2.95 48.23 13.95 1, 2
100 2067.85* 1867.85 9.67 4.09 66.89 19.34 1, 2

30

2000 4068.00* 2068.00 49.16 0.00 41.00 9.83 1
1000 3068.00* 2068.00 32.59 0.00 54.37 13.04 1
500 2568.00* 2068.00 19.47 0.00 64.95 15.58 1
100 2067.85* 1867.85 9.67 4.09 66.89 19.34 1, 2

45

2000 4068.00* 2068.00 49.16 0.00 41.00 9.83 1
1000 3068.00* 2068.00 65.19 0.00 54.37 13.04 1
500 2568.00* 2068.00 19.47 0.00 64.95 15.58 1
100 2067.85 1867.85 9.67 4.09 66.89 19.34 1, 2

3-10-10

45

2000 9899.26 5926.26 40.41 3.18 40.53 16.16 2, 3
1000 7613.94 5613.94 26.27 5.16 47.55 21.01 2, 3
500 6385.32 4885.32 23.49 8.34 44.68 23.49 1, 2, 3
100 5054.35 4754.35 5.94 11.24 53.15 29.68 1, 2, 3

60

2000 8828.25 4828.24 45.31 4.39 33.31 16.99 2, 3
1000 6828.25* 4828.24 29.29 5.67 43.07 21.97 2, 3
500 5828.25* 4828.24 17.16 6.65 50.46 25.74 2, 3
100 4884.31* 4584.31 6.14 10.57 52.58 30.71 1, 2, 3

120

2000 7249.60* 5249.60 27.59 0.00 51.72 20.69 2
1000 6249.60* 5249.60 16.00 0.00 60.00 24.00 2
500 5749.60* 5249.60 8.70 0.00 65.21 26.09 2
100 4884.31* 4584.31 6.14 10.57 52.58 30.71 1, 2, 3

6-10-10

45

2000 9896.50 5896.50 40.42 2.63 40.78 16.17 2, 3
1000 7613.94 5613.94 26.27 5.16 47.55 21.01 2, 3
500 6251.81 4751.51 23.99 8.54 43.46 23.99 2, 3, 5
100 4690.78 4090.78 12.79 16.67 36.43 34.11 1, 2, 3, 4, 5, 6

60

2000 8943.80 4943.80 44.72 4.85 33.65 16.77 2, 3
1000 6828.25 4828.24 29.29 5.67 43.07 21.97 2, 3
500 5943.80 4943.80 16.82 7.31 50.63 25.24 2, 3
100 4671.45* 4071.45 12.84 16.46 36.44 34.25 1, 2, 3, 4, 5, 6

120

2000 7249.60 5249.60 27.59 0.00 51.72 20.69 2
1000 6249.60 5249.60 16.00 0.00 60.00 24.00 2
500 5749.60 5249.60 8.70 0.00 65.21 26.09 2
100 4671.45 4017.45 12.84 16.46 35.29 34.25 1, 2, 3, 4, 5, 6

3.4 Models comparison

To compare our two models (CSAHLRP-F4 and CSAHLRP-F3), we coded them and the
valid inequalities in C++ language and used CPLEX 12.5 to solve both of them with the same
default parameters setting. All computational experiments were conducted on an Intel Core
i3 CPU of 3 GHz and 8 GB of memory. The running time for CPLEX has been limited to
three hours. Because CPLEX can’t obtain solutions for larger instances in the time limit, all
experiments in this section have been conducted only for small and medium size instances. The
results are presented in Tables 3.4-3.7.
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3.4.1 Comparison of CSAHLRP-F4 and CSAHLRP-F3
The first experiments compare the performance of the two models: CSAHLRP-F4 and

CSAHLRP-F3. For both of them, we use the same upper bound value for each instance. It
is obtained from the best objective value among the two formulations. In addition to the general
final lower gap at the end of search tree, we also provide the initial lower gap at the root node
to compare the effectiveness of the two models. The comparison results are presented in Tables
3.4 and 3.5. The following notations are used in the two tables:

• z(UB): best objective value found by CPLEX in the time limit. For each instance, it is
computed as z(UB) = min{zF4, zF3}, where zF4 is the best objective value based on
CSAHLRP-F4, and zF3 is the one based on CSAHLRP-F3. The mark "*" denotes that the
solution is optimal.

• %LB0: deviation in % of the best objective value from the lower bound obtained at the
root node by CPLEX; it is computed as %LB0 = z(UB)−LB0

z(UB)
× 100%, where LB0 is the

initial lower bound obtained at the root node on each model.

• TLB0 : computing time in seconds to get the initial lower bound LB0.

• %LB: the deviation in % between the best objective value and the final lower bound
found by CPLEX within the time limit. Here, %LB = z(UB)−LB

UB
× 100%, where LB is

the best lower bound.

• %UB: the deviation in % between the best objective value and the corresponding upper
bound based on each model. Here, %UB = zF4||zF3−z(UB)

z(UB)
× 100%.

• Ttotal: total computing time in seconds.

Table 3.4: Comparison of CSAHLRP-F4 and CSAHLRP-F3 with 3 potential hubs
Instance name

z(UB)
CSAHLRP-F4 CSAHLRP-F3

H-I-J Hub_Cap %LB0 TLB0
%LB %UB Ttotal %LB0 TLB0

%LB %UB Ttotal

3-5-5

15 3867.85* 12.99 0.37 0.00 0.00 8.03 11.96 0.90 0.00 0.00 8.55
30 3068.00* 19.00 0.34 0.00 0.00 4.87 19.00 0.28 0.00 0.00 4.40
45 3068.00* 19.00 0.28 0.00 0.00 5.01 19.00 0.30 0.00 0.00 4.48

3-10-10

45 7613.94 19.59 4.21 4.93 0.00 10800.60 20.93 2.04 4.38 0.00 10800.10
60 6828.25* 13.80 1.68 0.98 0.00 10800.90 13.55 2.03 0.00 0.00 3632.55
120 6249.60* 19.36 1.78 1.60 0.00 10800.40 18.97 1.58 0.00 0.00 5878.04

3-15-15

45 10614.21 24.39 3.93 18.03 0.00 10800.30 23.29 7.04 17.49 0.37 10800.20
75 8940.28 21.54 6.63 16.20 1.00 10800.60 21.06 9.94 13.71 0.00 10800.10
135 8232.80 26.29 7.47 11.21 0.00 10800.70 27.75 4.10 9.06 0.00 10800.70

3-20-20

60 12186.05 32.48 20.19 28.23 2.02 10800.80 32.53 19.95 26.33 0.00 10800.50
90 10469.24 32.10 11.58 28.29 7.06 10800.90 31.75 21.72 20.61 0.00 10800.60
165 9336.80 32.98 33.68 27.37 0.00 10800.00 34.71 10.56 25.68 0.00 10800.70

3-25-25

75 13165.30 26.39 57.11 24.71 3.24 10800.40 26.32 50.53 23.28 0.00 10800.10
105 13121.13 33.77 62.20 31.96 0.88 10800.80 33.77 64.60 31.76 0.00 10800.50
195 11325.60 32.10 79.95 27.20 7.51 10800.10 32.10 50.19 27.99 0.00 10800.00

Average 24.39 19.43 14.71 1.45 24.45 16.38 13.35 0.02

Table 3.4 presents the performance comparison between the two models, for the small and
medium size instances with 3 potential hubs. The numbers in bold indicate the best results
obtained. In this table, based on the values of %UB, we can see that CSAHLRP-F3 can obtain
the best objective values for 14 instances among 15. Conversely, CSAHLRP-F4 has found only
9 best solutions. CSAHLRP-F3 has found finds 5 optimal solutions against 3 for CSAHLRP-F4.
Especially for the instance 3-10-10, CSAHLRP-F3 finds the optimal solutions for larger hub
capacity in a shorter time. And also, CSAHLRP-F3 obtains tighter gaps than CSAHLRP-F4
regarding to the values of %LB (13.35% vs 14.71% in average). In addition, to get the initial
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lower bound LB0, CSAHLRP-F3 is faster than CSAHLRP-F4 (16.38 seconds vs 19.43 seconds,
in average).

For the instances with more potential hubs (6 and 10), Table 3.5 shows that CSAHLRP-F3
outperforms CSAHLRP-F4 for all of the instances to find better objective values within the time
limit in terms of %UB (0.00% vs 3.34% in average). CSAHLRP-F3 can find better solutions
for all of 18 instances, while CSAHLRP-F4 can reach them only for 6 instances. However,
in terms of lower bound, especially at the root node, CSAHLRP-F4 obtains a tighter gap than
CSAHLRP-F3 (24.53% vs 24.97% in average for the value of %LB). But CSAHLRP-F3 is
still faster than CSAHLRP-F4 (36.23 seconds vs 92.33 seconds, in average) to obtain the lower
bound at the root node. Therefore, for the small and medium instances, CSAHLRP-F3 can find
better solutions than CSAHLRP-F4 within the time limit. Detailed results for each formulation
are presented in the next section.

Table 3.5: Comparison of CSAHLRP-F4 and CSAHLRP-F3 on instances with 6 and 10 potential hubs
Instance name

z(UB)
CSAHLRP-F4 CSAHLRP-F3

H-I-J Hub_Cap %LB0 TLB0
%LB %UB Ttotal %LB0 TLB0

%LB %UB Ttotal

6-10-10

45 7613.94 25.96 7.44 14.25 2.05 10800.90 24.63 17.32 11.42 0.00 10800.20
60 6828.25 14.58 21.12 6.93 0.00 10800.10 16.38 16.83 3.55 0.00 10800.90
120 6249.60 19.18 18.97 6.36 0.00 10800.50 22.47 12.11 5.95 0.00 10800.80

6-15-15

45 9608.55 21.23 32.70 15.65 2.20 10800.40 22.28 16.52 16.88 0.00 10800.30
75 8940.28 25.73 29.38 17.91 1.00 10800.40 27.43 32.46 19.58 0.00 10800.4
135 8232.80 29.68 28.88 15.34 0.00 10800.10 31.99 15.18 14.38 0.00 10800.00

6-20-20

60 10903.48 30.26 68.31 27.07 4.02 10800.50 30.92 39.53 28.24 0.00 10800.40
90 10469.24 36.47 82.06 32.19 11.97 10800.9 37.73 43.20 31.23 0.00 10800.10
165 9479.20 38.71 115.25 33.37 0.00 10800.60 40.13 47.64 29.25 0.00 10800.30

10-10-10

45 7549.08 25.46 68.91 18.64 0.72 10800.20 31.62 38.84 19.46 0.00 10800.00
60 6896.10 20.94 36.54 12.66 0.00 10800.10 24.54 41.59 13.81 0.00 10800.60
120 6249.60 24.57 31.36 7.72 0.00 10800.90 29.91 12.36 5.62 0.00 10800.30

10-15-15

45 9600.12 28.05 68.16 23.03 6.96 10800.70 30.06 30.58 25.95 0.00 10800.70
75 8755.91 33.04 106.89 24.89 3.04 10800.70 34.13 51.40 29.02 0.00 10800.00
135 8333.60 36.19 161.26 23.38 6.55 10800.20 41.52 28.00 25.61 0.00 10800.70

10-20-20

60 11466.44 40.12 207.92 35.67 7.02 10800.40 40.58 55.40 37.46 0.00 10800.00
90 10611.96 45.22 167.59 37.92 7.48 10800.20 45.22 40.83 39.07 0.00 10800.40
165 10469.24 54.03 179.76 42.46 7.06 10800.30 54.03 49.97 38.95 0.00 10800.00

Average 32.65 92.33 24.53 3.34 34.81 36.23 24.97 0.00

3.4.2 Solutions analysis
In this section, we present the detailed results obtained with CPLEX on the two formulations

for the small and medium size instances. Table 3.6 is based on the CSAHLRP-F4 model, while
Table 3.7 shows the results from the CSAHLRP-F3 model. The optimal solution is reported
with the mark "*". The best lower bound found is also reported if the time limit is reached. The
following notations are used in Table 3.6 and 3.7.

• UB: upper bound found by CPLEX in a limited time on each formulation, marked "*" if
the solution is optimal;

• LB: final lower bound or best lower bound found by CPLEX;

• %LB: deviation in % of the corresponding upper bound from the lower bound found by
CPLEX. Here, %LB = UB−LB

UB
× 100%;

• CPU time(s): computing time in seconds ;

• Open hubs: index of the located hubs;
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• Max of routes: maximum number of routes assigned to a hub for collection and delivery
together in the optimal or best solution.

Table 3.6: Experiments results obtained on CSAHLRP-F4 for small and medium instances

H-I-J Hub_Cap UB LB %LB CPUtime (s) Open hub Max of routes

3-5-5

15 3867.85* 3867.85 0.00 8.03 1, 2 2
30 3068.00* 3068.00 0.00 4.87 1 4
45 3068.00* 3068.00 0.00 5.01 1 4

3-10-10

45 7613.94 7238.84 4.93 10800.60 2, 3 8
60 6828.25 6761.66 0.98 10800.90 2, 3 9

120 6249.60 6149.43 1.60 10800.40 2 15

3-15-15

45 10614.21 8700.37 18.03 10800.30 1, 2, 3 7
75 9030.06 7491.54 17.04 10800.60 1, 3 11

135 8232.80 7309.67 11.21 10800.70 1 18

3-20-20

60 12431.80 8746.01 29.65 10800.80 1, 2, 3 10
90 11208.20 7507.93 33.01 10800.90 2, 3 15

165 9336.80 6781.47 27.37 10800.00 2 20

3-25-25

75 13591.96 9912.11 27.07 10800.40 1, 2, 3 11
105 13235.94 8928.26 32.55 10800.80 1, 3 16
195 12175.86 8245.60 32.28 10800.10 1, 3 19

6-10-10

45 7769.82 6529.27 15.97 10800.90 2, 3 8
60 6828.25 6354.95 6.93 10800.10 2, 3 9

120 6249.60 5852.00 6.36 10800.50 2 15

6-15-15

45 9820.39 8104.40 17.47 10800.40 1, 3, 4 7
75 9030.06 7338.70 18.73 10800.40 1, 3 11

135 8232.80 6969.98 15.34 10800.10 1 18

6-20-20

60 11341.95 7951.78 29.89 10800.50 1, 2, 4, 5 9
90 11722.40 7099.69 39.43 10800.90 2, 4 15

165 9479.20 6315.92 33.37 10800.60 2 20

10-10-10

45 7603.18 6141.83 19.22 10800.20 5, 7, 8 6
60 6896.10 6023.26 12.66 10800.10 2, 10 9

120 6249.60 5767.31 7.72 10800.90 2 15

10-15-15

45 10268.51 7389.08 28.04 10800.70 1, 5, 7 8
75 9022.46 6576.63 27.11 10800.70 5, 7 12

135 8879.20 6385.09 28.09 10800.20 7 19

10-20-20

60 12271.94 7376.51 39.89 10800.40 3, 6, 8 9
90 11405.52 6587.89 42.24 10800.20 2, 9 13

165 11208.20 6024.20 46.25 10800.30 2, 3 15

The results in Table 3.6 show that CPLEX can find a feasible solution within the time limit of
three hours for CSAHLRP-F4 for all of the 33 instances, but only three optimal solutions. Table
3.7 also shows a good performance of CSAHLRP-F3, which can solve all of the instances within
the time limit and find 5 optimal solutions. For the other instances, it can find a better solution
than CSAHLRP-F4. However, the gap is still large. We conclude that it will be necessary to
consider the development of a meta-heuristic and a specific exact method in order to better solve
these instances.
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Table 3.7: Experimental results obtained on CSAHLRP-F3 for small and medium size instances

H-I-J Hub_Cap UB LB %LB CPU time(s) Open hub Max of routes

3-5-5

15 3867.85* 3867.85 0.00 8.55 1, 2 2
30 3068.00* 3068.00 0.00 4.40 1 4
45 3068.00* 3068.00 0.00 4.48 1 4

3-10-10

45 7613.94 7280.72 4.38 10800.10 2, 3 8
60 6828.25* 6828.25 0.00 3632.55 2, 3 9
120 6249.60* 6249.60 0.00 5878.04 2 15

3-15-15

45 10653.01 8758.11 17.79 10800.20 1, 2, 3 7
75 8940.28 7714.49 13.71 10800.10 1, 3 11
135 8232.80 7487.25 9.06 10800.70 1 18

3-20-20

60 12186.05 8977.83 26.33 10800.50 1, 2, 3 11
90 10469.24 8312.03 20.61 10800.60 2, 3 13
165 9336.80 6939.54 25.68 10800.70 2 20

3-25-25

75 13165.30 10099.80 23.28 10800.10 1, 2, 3 11
105 13121.13 8954.44 31.76 10800.50 1, 2, 3 12
195 11325.60 8155.36 27.99 10800.00 3 25

6-10-10

45 7613.94 6744.25 11.42 10800.20 2, 3 8
60 6828.25 6585.81 3.55 10800.90 2, 3 9
120 6249.60 5877.90 5.95 10800.80 2 15

6-15-15

45 9608.55 7986.42 16.88 10800.30 1, 3, 5 6
75 8940.28 7189.37 19.58 10800.40 1, 3 11
135 8232.80 7049.12 14.38 10800.00 1 18

6-20-20

60 10903.48 7823.82 28.24 10800.40 2, 4, 5 10
90 10469.24 7199.82 31.23 10800.10 2, 3 13
165 9479.20 6706.20 29.25 10800.30 2 20

10-10-10

45 7549.08 6080.37 19.46 10800.00 2, 3, 10 7
60 6896.10 5943.59 13.81 10800.60 2, 10 9
120 6249.60 5898.25 5.62 10800.30 2 15

10-15-15

45 9600.12 7108.60 25.95 10800.70 3, 5, 7 6
75 8755.91 6214.67 29.02 10800.00 7, 8 11
135 8333.60 6199.54 25.61 10800.70 7 18

10-20-20

60 11466.44 7171.53 37.46 10800.00 2, 4, 8 9
90 10611.96 6465.97 39.07 10800.40 4, 5 12
165 10469.24 6391.69 38.95 10800.00 2, 3 13
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From the best solutions of all instances (see Tables 3.6 and 3.7), it can be seen that the
number of open hubs in the solutions decreases and their index changes when the hub capacity
increases. Most of the objective values also decrease because less hubs are operated to satisfy
the total quantity of flow. But for some instances, the number of open hubs doesn’t change even
if the hub capacity increases. In this case, the hub fixed cost is no longer the main factor in the
objective value. Moreover, open more hubs can possibly achieve a lower cost. For example for
instance 3-25-25 with 105 t. of capacity, CSAHLRP-F4 finds a solution with a cost of 13235.94
Euros and 2 open hubs. However, CSAHLRP-F3 finds a better one with a cost of 13121.13
Euros and 3 open hubs. While the vehicle capacity remains unchanged, the route composition
can change and sometimes the number of routes increases with a lower total cost. Figure 3.3
and 3.4 illustrate this effect through the optimal or best solutions obtained for instances 3-5-5
and 6-10-10. They provide some insights into the results obtained with CPLEX for solving this
network design problem for general goods shipments. In these figures, the circles, the triangles
and the squares represent the suppliers, the clients and the selected hubs, respectively. The
dotted lines, solid lines and the solid lines with double arrows represent the collection arcs,
delivery arcs and inter-hub arcs, respectively.

Figure 3.3: Solution illustration of instances 3-5-5

Figure 3.3 illustrates the results obtained with the 3-5-5 instance for three different values of
hub capacities. According to the data generation procedure, the suppliers, clients and potential
hubs may have been located at the same geographical position. So in this instance, potential
hub sites 1, 2 and 3 have been randomly selected at the same geographical locations as supplier
nodes 7, client node 11 and supplier node 5, respectively. From Figure 3 a, b and c, it can be
seen that the optimal solutions found have obvious differences as the hub capacity is changing.
For example, the optimal solution for the instances 3-5-5-30 and 3-5-5-45, will open one hub
(number 1). All suppliers/clients are assigned to this hub to exchange the commodity flow
through two collection routes and then two delivery routes (see Fig.3.3 b and c). However,
for the 3-5-5-15 instance, two hubs (number 1 and 2), are selected and there are four routes
designed to complete the commodity exchanges: one collection tour and one delivery tour for
each hub (see Fig.3.3 a).

For the 6-10-10 instance (Figure 3.4), some suppliers, clients and potential hubs may also
have been located at the same geographical position. Supplier 7 and client 18 are such an
example, as well as hub 2, supplier 12 and client 17. The flow from supplier 12 is collected
to hub 2 through a collection tour including other suppliers. After sorting and consolidation of
goods in the hub, the flow to client 17 is delivered through another delivery tour (see Fig.3.4
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Figure 3.4: Solution illustration of instances 6-10-10

c). From Figure 3.4, we can see the variety of location and routing decisions depending on the
different hub capacities. For example, the best solution for instance 6-10-10-120 in Fig.3.4 c
will open hub number 2. Then all suppliers/clients are assigned to this hub to exchange the
commodity flows through 7 collection routes and 8 delivery routes. However, for instance 6-
10-10-45 (see Fig.3.4 a), with two open hubs, there are 8 collection local tours and 8 delivery
local tours from the hubs, including the single node tours 2 ↔ 13 and 3 ↔ 22. The details of
the best solutions for the two sets of instances can be seen in Table 3.8.

Table 3.8: Details of the best solutions for instance 3-5-5 and 6-10-10
H-I-J Hub-Cap Open hub Collection tours Delivery tours Cost

3-5-5

15 1, 2
1-5-7-1 1-9-12-13-1

3867.852-8-4-6-2 2-10-11-2

30 1
1-5-7-1 1-10-11-1

3068.001-6-4-8-1 1-13-12-9-1

45 1
1-5-7-1 1-10-11-1

3068.001-6-4-8-1 1-13-12-9-1

6-10-10

45 2, 3

2-8-2, 2-9-2 2-17-2, 2-26-25-2

7613.94
2-12-2, 2-13-2 2-23-2, 2-19-2

3-10-3, 3-14-7-3 3-21-3, 3-22-3,
3-11-16-3, 3-15-3 3-24-20-3, 3-18-3

60 2, 3

2-12-10-2, 2-9-2 2-23-2, 2-17-2

6828.25
2-13-2, 2-14-7-2 2-19-2, 2-22-2
3-16-11-3, 3-8-3 2-25-26-2, 3-21-3

3-15-3 3-24-20-3, 3-18-3

120 2

2-10-2, 2-13-2 2-17-2, 2-22-2

6249.60
2-11-16-2, 2-8-2 2-20-24-2, 2-25-26-2
2-9-2, 2-12-15-2 2-19-2, 2-18-2

2-7-14-2 2-23-2, 2-21-2
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3.5 Conclusion
In this chapter, we first discuss the concept and propose a detailed definition for the hub

location-routing problem for less-than-truckload shipment. We propose then two mathematical
models for the CSAHLRP, based upon a four index and a three index formulation, and we intro-
duce some valid inequalities. In order to compare the two models and solve the HLRP, instances
sets are generated based on related problems from the the literature and the real data base from
Comité National Routier (CNR). Finally, some computational experiments are conducted on
the basis of the small and medium generated instances to compare the performance of the two
models and provide some insights into the network design of the CSAHLRP. The results prove
the effectiveness of our models, especially that of the three-index formulation model for solving
small to medium size instances. Experiments also show the difficulty of solving this NP-hard
problem with a commercial solver even for the medium size instances. Therefore, it seems nec-
essary to develop a metaheuristic and an efficient exact algorithm to obtain better solutions and
be able to solve larger instances.



4
Memetic algorithm for the CSAHLRP

As mentioned previously, the Hub Location Routing Problem (HLRP) is a combinatorial
optimization problem involving two NP-hard problems: the Hub Location Problem (HLP) and
the Vehicle Routing Problem (VRP). The aim is to determine the hub locations, the assignment
of non-hub nodes and the local routing for both collections and deliveries, which we consider
handled separately. As we have found in previous experiments, it is very difficult and time-
consuming to address this problem with a commercial solver. Therefore, to solve it effectively,
we propose to develop a meta-heuristic. In this chapter, we propose a memetic algorithm (MA),
combining a genetic algorithm (GA) and a local search procedure (LS) to solve the capacitated
single allocation hub location-routing problem (CSAHLRP). Firstly, an introduction and liter-
ature review of this heuristic are given, including the fundamentals of genetic algorithm and
iterative local search. Then the different components of the GA and local search operators are
described in detail. Finally, extensive computational results based on the generated instances
of Chapter 3 are presented including a parameter tuning phase and an algorithm performance
analysis. Finally conclusions are given for this chapter.

4.1 An overview of memetic algorithm
In this section, the origin, the definition and general framework of memetic algorithm are

introduced. Then a specific literature review about the related problems and applications is
provided.

4.1.1 Introduction

The term of " Memetic algorithm " was created in 1989, introduced by Moscato [143], in-
spired by both Darwinian’ principles of natural selection and Dawkins’ notion of memes [1].
The word ’meme’ is defined as " the basic unit of cultural transmission, or imitation". It de-
notes an analogy to the gene in the context of cultural evolution and is similar to the genes of
genetic algorithms (GAs). However, a gene in GAs is improved only using global evolutionary
operators in the reproduction step, but a meme is allowed to carry out a local search to improve
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it own quality [201]. Based on this fundamental, Memetic algorithms (MAs) can be viewed
as the synergistic combination of a population-based global search algorithm coupled with an
individual-based local improvement procedure. After this method has been proposed, with the
continuous development of researchers in many diverse domains (mathematics [72], medicine
[6], production [114] and transportation [137]), MAs have become a hot topic nowadays as op-
timization search methods. They have been used to solve many NP-hard optimization problems
successfully, such as traveling salesman problem [29], hub location problem [192] and vehicle
routing problem [202]. In these researches, MAs are also called as Lamarckian evolutionary
algorithms (EA), cultural algorithms, hybrid genetic algorithm or genetic local search. A recent
review about memetic algorithms and memetic computing optimization can be seen in [153].

Different from classical genetic algorithms which simulate the process of biological evolu-
tion, the memetic algorithm imitates a culture evolution process. In this process, MAs exploit
all available knowledge about the problem under study. This incorporation of problem domain
knowledge is a fundamental feature of MAs. It suggests that in memetic algorithm, a meme is
not only simply transmitted between individuals, but also is modified and enhanced in life-time
of an individual by studying and communicating with other meme parts [144]. In general, the
enhancement part is accomplished by incorporating heuristics, approximation algorithms or lo-
cal search techniques. In our research, for the capacitated single allocation hub location-routing
problem, the memetic algorithm is a combination of a genetic algorithm (GA) with an iterated
local search (ILS).

As a population-based search approach, the GA is a stochastic, global heuristic based on the
concepts of natural selection and evolution [188]. At each iteration of the GA, each possible
solution is treated as an individual of a population and is represented as a string of characters
(genetic code). After the decoding of each individual, a fitness value is governed by the cor-
responding objective function value or other fitness function value to measure the individual’s
quality in the population. Then, pairs of good individuals are selected as parents to produce new
individuals (offspring) by applying crossover and mutation operators. Next, some replacements
are applied on the current population to generate a new population. This "evaluation-selection-
crossover-mutation-replacement" cycle is repeated until a stopping criterion is met and the best
individual of the last generation is considered as the solution to the problem. Because the pure
GA may fail to converge to a global optimum, the MA uses a local search to refine the GA
search spaces to obtain high quality solutions. Generally, an iterated local search algorithm
starts from a candidate solution and then iteratively moves to a neighbor solution generated at
random or constructed by an algorithm. The movements leading to preferable solutions are
accepted and the better solution is kept at each step until a solution deemed optimal is found or
a time bound is reached.

Based on the above description, the basic scheme of the memetic algorithm for the CSAHLRP
can be seen in Figure 4.1. First, after the setting of global parameters, the MA starts with a pop-
ulation of initial random solutions, and then it selects the best individuals from the population
at each generation, based on a fitness function, including a penalty component, and applies
crossover and mutation operators to produce the next generation. Most importantly, to over-
come the weaknesses of the GA, some iterations of local search modules are applied to each
new generated individual or to the current best solution to improve the assignment and routing
solutions. Finally, the new individuals are compared with the worst individuals of the current
population and replace them if better. The whole process is repeated until the maximum num-
ber of iterations is satisfied or the best solution is not improved during a maximum number of
successive iterations. The pseudo-code of the proposed MA is presented in Algorithm 2.

In Algorithm 2, the parameters PopSize, MaxGen and MaxNoImp refer to the population
size of each generation, the maximum number of iterations and the maximum number of suc-
cessive iterations without improvement of the best solution, respectively. Two counters, NbGen
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Figure 4.1: The framework of the memetic algorithm

and NbNoImp, must also be defined corresponding to the number of new generations already
obtained and the number of successive iterations without improvement of the best solution.
Pc and Pm are the probability of crossover and mutation, respectively. Based on the general
framework of the MA, the key issues are: the code to represent a solution, the definition of the
evaluation function, the design of the genetic operators and the iterated local search. These will
be introduced in the following sections.

Algorithme 2 Memetic algorithm for the hub location-routing problem
1: Set the global parameters PopSize, MaxGen and MaxNoImp;
2: Generate randomly the first generation, define it as Pop;
3: Evaluate each chromosome of population Pop with fitness function Feval(x);
4: Find the current best chromosome xbest: Feval(xbest) = MinFeval(x),∀x ∈ Pop;
5: While NbGen<MaxGen and NbNoImp<MaxNoImp Do
6: Select parents x1 and x2 based on selection mechanism for all populations;
7: Apply crossover operator to x1 and x2 to obtain the offspring xnew based on Pc;
8: Apply mutation to xnew to get x

′

new based on Pm;
9: Repeat

10: Apply iterated local search to x
′

new to obtain the improved solution and return x
′

new;
11: Until the stopping criteria of iterated local search is satisfied;
12: Compare x

′

new with the worst individual in the population Pop and replace it if better;
13: Update current best solution xbest and best fitness Fevalbest for current generation;
14: Return xbest.

4.1.2 Literature review

As mentioned above, the MA has been one of the most popular algorithms for solving
complex and large-scale combinatorial optimization problems in a wide range of application
domains. In recent years, both GA and MA have been successfully applied to solve hub loca-
tion problems (HLPs), vehicle routing problems (VRPs) and location-routing problems (LRPs).
Some of the proposed memetic algorithms about these related problems are reviewed in the
following and summarized in Tables 4.1-4.3.

Many solution methods have been developed successfully to solve the HLP based on its dif-
ferent characteristics, including the memetic algorithm or hybrid genetic algorithms. In 1998,
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Abdinnour-Helm [2] developed a new heuristic method based on a hybridization of genetic al-
gorithms (GAs) and tabu search (TS)-GATS for the uncapacitated single allocation hub location
problem (USAHLP). In this hybrid heuristic, GAs are used to determine the number and the lo-
cation of the hubs and TS heuristic is used to find the optimal assignment of spokes to hubs.
Based on airline passenger flow between 25 US cities in 1970 as evaluated by the Civil Aero-
nautics Board (the CAB data set), the experimental results clearly demonstrated that using TS in
combination with GAs yields much better solutions compared to applying GAs alone. In 2005,
Topcuoglu et al. [198] proposed a new and robust genetic algorithm for the USAHLP to deter-
mine the number of hubs, the location of hubs and the assignment of spokes to the hubs. The
computational results based on some instances from CAB data set and Australia Post (AP) data
set proved a better performance of their heuristics in comparison to those previously obtained
from GATS by Abdinnour-Helm [2]. Even for large problems, their approach outperformed the
related works at that time with respect to both solution quality and computational time.

Later on, Cunha et al. [60] addressed a formulation for a modified USAHLP, in which the
discount factor on the inter-hub links is consider to vary according to the total amount of freight
between hub terminals. Then they proposed a hybrid heuristic based on GA and simulated
annealing (SA) to solve some benchmark problems from CAB data set and a real-world case
for a LTL truck company in Brazil. In their approach, the SA was considered as an efficient local
improvement procedure to apply to each generated individual of the population. Naeem et al.
[147] also proposed a simple but effective genetic algorithm for the USAHLP in 2010. The main
contribution in their research concerns two new chromosome representation methods and two
crossover operators. The results based on benchmark problems found all best known solutions
for 12 AP problems and improved some solutions for the CAB data. Recently, Miroslav et al.
[135] proposed a newest efficient memetic algorithm for the USAHLP. They used two new and
efficient local search heuristics to be incorporated in the evolutionary algorithm frame. One
was to find the best location of hubs and the other one tried to improve the allocation of the
non-hub nodes to hubs. Finally, they implemented a broad, comprehensive set of computational
experiments, including all benchmark problems found in the literature and newly generated
set of large-scale instances with up to 900 nodes. The results showed that the proposed MA
obtained all best known solutions on small and medium size CAB and AP instances. Even for
larger problems, it could produce high-quality solutions in a reasonable time.

Relaxing the single allocation constraint, Kratica et al. [116] proposed a genetic algorithm
for solving uncapacitated multiple allocation HLP (UMAHLP) in 2005. They used binary en-
coding and caching technique to improve the performance of GA. The results based on standard
AP instances with up to 200 nodes showed that the approach quickly obtained all optimal solu-
tion known in literature. Zorica Stanimirović [187] developed a new heuristic method based on
a GA applying mutation with frozen bits to solve the uncapacitated multiple allocation p-hub
median problem (UMApHMP). The good performance of this approach has been demonstrated
by a comparison with the existing methods based on well known CAB and AP data sets with up
to 200 nodes and 20 hubs.

For the capacitated versions, Stanimirović et al. [186] presented a genetic algorithm for the
capacitated single allocation hub location problem (CSAHLP). In this proposed method, the
objective function is correcting infeasible individuals to become feasible in the future genera-
tions of the GA. The computational experiments were conducted on standard AP instances with
up to 200 nodes and revealed the satisfying performance of the GA implementation compared
to previous researches, especially on large problems solved effectively in shorter time. Later,
this heuristic method was applied for solving the capacitated single allocation p-hub median
problem (CSApHMP) [188]. Similarly, the computational results on AP data set demonstrated
the robustness fo the proposed algorithm. Kratica et al.[115] presented two evolutionary al-
gorithms (EAs) to solve the capacitated hub location problem (CHLP). It is a variant of the
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classical HLP, where all the hubs are not necessarily connected but considers the capacities on
both arcs and hubs. They improved the overall performance of both proposed EA implemen-
tations by a caching technique. And their empirical study indicated that the first EA method is
very efficient for the small and medium size problems, while the second one based on heuristic
can produce high-quality solutions for larger problems. Recently, Sun et al. [192] addressed
a capacitated asymmetric allocation hub location problem (CAAHLP) and a solution method
based on combined ant colony optimization algorithm and genetic algorithm was developed
to solve this problem. The former was to determine the number and locations of hubs, and
the latter tried to solve the node allocation problem. The solution method highlighted a good
performance through a comparative study.

For other versions of the HLP (see Table 4.1), there are also many applications of memetic
algorithms. Takano et al. [195] used a genetic algorithm to solve the hub-and-spoke problem
(GAHP) for the liner shipping with shuttle services and applied it to the containerized cargo
transport of Asian hub ports. Mohammadi et al. [141] proposed a hybrid algorithm, based on a
GA and SA to solve a capacitated single allocation hub covering location problem (CSAHCLP).
The related results comparison showed that the hybrid method gave better solutions than GA
and SA alone. Bashiri et al. [25] presented a GA based heuristic to solve the capacitated single
allocation p-hub center problem (CSApHCP) and achieved the optimum solutions for all tested
instances in 25 runs with up to 25 nodes.

Table 4.1: The application of memetic algorithms on HLPs
Problem type Paper Algorithm details Instance/size

USAHLP Abdinnour-Helm (1998) [2] GA+tabu search CAB/ 25 nodes
Topcuoglu et al. (2005) [198] Pure GA CAB and AP/ 200 nodes
Cunha and Silva (2007) [60] GA+SA CAB and a case in Brazil/ 25 nodes
Naeem et al. (2010) [147] GA+two new encoding schemes CAB and AP/ 200 nodes
Marić et al. (2013) [135] GA+two local searches CAB and AP/ 900 nodes

UMAHLP Kratica et al. (2005) [116] GA+caching technique AP/ 200 nodes

UMApHMP Stanimirović ( 2008 ) [187] GA+ caching technique CAB and AP/ 200 nodes-20 hubs

CSAHLP Stanimirović (2007) [186] GA+caching technique AP/ 200 nodes

CSApHMP Stanimirović (2010) [188] GA+caching technique AP/ 200 nodes-20 hubs

CHLP Kratica et al. (2011) [115] two EAs+caching technique New instances/ 100 nodes

CAAHLP Sun et al. (2012) [192] GA+ant colony optimization -

GAHP Takano et al. (2009) [195] GA CAB and case study/ 18 ports

CSAHCLP Mohammadi et al. (2010) [141] GA+SA Randomly generate data/ 70 nodes

CSApHCP Bashiri et al. (2013) [25] GA AP/ 25 nodes-6 hubs

Many variants of memetic algorithms have been proposed for solving different versions of
the vehicle routing problem (VRP). In 2003, Baker et al. [14] considered the application of
a pure GA and a hybrid one combined with neighborhood search methods (NSM) to the ba-
sic VRP. Computational results showed their good performances compared with tabu search
and simulated annealing in terms of solution quantity and solving time. Then a hybrid genetic
algorithm (HGA) was proposed by Berger et al. [27] to solve the capacitated vehicle rout-
ing problem (CVRP). In this HGA, two populations of solutions concurrently evolved and ex-
changed respective best individuals at each generation, and some mutation operators were used
based on the large neighborhood search (LNS). The results over classical benchmark problems
proved its competitiveness through a comparison with the best-known methods. Later, more
researchers improved and developed new algorithms based on the GA to solve the classical
VRPs [142, 167, 168, 169]. Among them, Prins [169] presented two memetic algorithms (GAs
hybridized with a local search) to solve the heterogeneous fleet VRP (HFVRP) and the vehicle
fleet mix problem (VFMP). Both of them encoded the chromosomes as giant tours without trip
delimiters and evaluated solutions with a splitting procedure. The first MA used a dispersal rule
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in objective space and the second one considered the population management for MA to control
solutions diversity using a distance measure in solution space. Computational tests showed both
of them compete with other heuristics and found some new best solutions for VFMP. About the
applications of evolutionary algorithms (EAs) to solve VRPs, one can refer to a survey reported
by Potvin [167].

Regarding extensions of the VRP, Vidal et al. [202] proposed a hybrid genetic algorithm
with adaptive diversity control to solve the multi-depot VRP (MDVRP), the periodic VRP
(PVRP) and the multi-depot periodic VRP (MDPVRP) with capacitated vehicles and con-
strained route duration. This meta-heuristic combines a genetic algorithm, a neighborhood-
based search (NS) and a population management mechanism to maintain a high level of diver-
sity among individuals. Extensive computational results proved it can reach high quality so-
lutions on the literature benchmarks and outperformed other heuristics for the three problems.
Cattaruzza et al. [39] considered a memetic algorithm for the multi trip vehicle routing problem
(MTVRP), where each vehicle can perform more than one service trip during the working day.
In this MA, a combined local search (LS) operator was introduced to perform pejorative moves
along with re-assignment of trips to vehicles. The reported results over 99 instances showed it
outperformed previous algorithms with respect to average solution quality. In addition, Ho et
al. [97] and Liu et al. [131] also addressed the hybrid GAs to solve the multi-depot VRP. For
the VRP with time windows (VRPTW), there exists also the application of memetic algorithms.
For example, Ombuki et al. [161] presented a multi-objective genetic algorithm using the Pareto
ranking technique to solve the standard benchmarks with up 100 customers. Nagata et al. [148]
proposed an effective memetic algorithm using an edge assembly crossover and a novel penalty
function for solving the VRPTW. Its computational results demonstrated this method improves
184 best-known solutions out of 365 instances. Nalepa et al. [152] presented a parallel memetic
algorithm, and Barkaoui et al. [22] developed an adaptive evolutionary approach to solve the
VRPTW. The application details of memetic algorithm for VRPs can be seen in Table 4.2.

Table 4.2: The application of memetic algorithms on VRPs
Problem type Paper Algorithm details Instances/ size

CVRP Baker et al. (2003) [14] GA +NSM Benchmark instances/ 200 cities
Berger et al. (2003) [27] GA+LNS Benchmark instances/ 200 cities
Christian Prins (2004) [168] GA+local search 34 instances from literature/ 483 customers
Potvin et al. (2007) [167] Survey on EAs for VRPs Benchmark instances/ 1000 customers
Mohammed et al. ( 2012) [142] GA Random instance/ 100 locations

HFVRP+VFMP Christian Prins (2009) [169] Two MAs Instances from literatures/ 100 cities

MDVRP Liu et al. (2014) [131] A new hybrid GA Instances from literature
Ho et al. (2008) [97] Two hybrid GAs Two randomly examples/ 100 customers

MDPVRP Vidal et al. (2011) [202] GA+NS+adaptive diversity control Benchmark instances/ 480 customers

MTVRP Cattaruzza et al. (2014) [39] GA+splitting procedure+LS Benchmark instances/ 200 vertices

VRPTW Ombuki et al. (2006) [161] Multi-objective GA Benchmark instaces/ 100 customers
Nagata et al. (2010) [148] Penalty-based edge assembly MA 356 benchmarks instances/ 1000 customers
Nalepa et al. (2012) [152] A parallel MA Instances from literatures/ 1000 customers
Barkaoui et al. (2013) [22] An adaptive evolutionary approach Instances from literatures / 100 customers

Finally, the location-routing problem (LRP), which combines location and routing deci-
sions, has also been solved with memetic algorithms. Prins et al. [170] presented a memetic
algorithm with population management (MA | PM) to solve the capacitated location-routing
problem (CLRP). In this MA, a local search procedure was hybridized, and a PM technique
was used to control the population diversity based on a distance measure in the solution space.
The experimental results showed this algorithm can find good quality solutions for three kinds
of instances and outperformed other meta-heuristics. Karaoglan et al. [109] proposed a hy-
brid approach based on genetic algorithm and simulated annealing to solve the location-routing
problem with simultaneous pickup and delivery (LRPSPD). The experimental study indicated
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a good performance of this approach compared with a branch-and-cut algorithm on a set of
instances in terms of quality solutions and solving time. Prodhon [174] developed a hybrid
evolutionary algorithm to solve large size instances of the periodic location-routing problem
(PLRP). In this hybrid heuristic, each individual was evaluated based on the randomized ex-
tended Clarke and Wright algorithm (RECWA). Then an evolutionary local search (ELS) was
used to improve the assignment of visit days to customers. Computational results showed this
meta-heuristic outperformed the previous methods for the PLRP. Derbel et al. [71] described
a GA combined with an iterative local search (ILS) to solve a LRP with multiple capacitated
depots and one uncapacitated vehicle for each depot. It used a ILS to intensify the search space
and improve the solutions generated by GA. Recently, Martínez-Salazar et al. [137] proposed
two memetic algorithms to solve a bi-objective transportation location routing problem (TLRP).
In this problem, two objectives were considered : minimize total cost and balance the drivers’
workload. One of the two MAs used a simple local search to replace the classic mutation opera-
tor and stopped when a fixed number of generations arrived, however, the other one considered
a tabu search procedure as mutation operator and set the stopping criterion as a fixed number of
iterations without changes. Computational results with some instances of the literature showed
that the second one was better than the first one. In addition to the above works, there has also
been other applications of the MA to LRPs [175, 82] (seen in Table 4.3).

Table 4.3: The application of memetic algorithms on LRPs
Problem type Paper Algorithm details Instance size

CLRP Prins et al. (2006) [170] GA +local search+ PM 200 customers+20 depots
Derbel et al. (2012) [71] GA+ILS 30 customers+10 depots

PLRP Prodhon et al. (2008) [175] MA | PM 200 customer+10 depots
Caroline Prodhon (2011) [174] GA+RECWA+ELS 200 customer+10 depots

LRPSPD Karaoglan et al. (2010) [109] GA+SA 100 customers+10 depots

LRP+inventory Forouzanfar et al. (2012) [82] GA 60 customers+15 depots

TLRP Martínez-salazar et al. (2014) [137] Two MAs 50 customers+10 depots

In conclusion, the many successful implementations of memetic algorithms for these three
families of related problems, suggests us to take advantage of its potential value for solving the
HLRP. To our knowledge, this has never been done. In the next sections, we will describe the
different components of the MA which we propose for solving the CSAHLRP, comprising a
genetic algorithm, followed by an iterative local search.

4.2 Genetic algorithm for the CSAHLRP
In this section, a brief description of genetic algorithms and generic templates are presented.

Then we detail each element of the GA that we propose.

4.2.1 Overview
As mentioned above, a genetic algorithm combines an adaptive probabilistic search with an

optimization heuristic. It was first introduced by John Holland and his colleagues in 1975 [99],
and simulates the biological selection and evolutionary processes in nature, based on Darwin’s
"survival of the fittest" theory. In recent years, GAs have been applied to different areas, and
has proven to be one of the robust and effective algorithms for combinatorial optimization prob-
lems. Besides, it is computationally simple and easy to implement, even for complex problems.



98 CHAPTER 4. MEMETIC ALGORITHM FOR THE CSAHLRP

Generally (see Algorithm 2), a GA starts with an initial feasible population (GenerateInitial
()), evaluates each individual in the population based on a fitness function, and then updates
the population using a selection process (Selection (x1, x2)) and crossover (Crossover (x1, x2)),
and mutation (Mutation ()) operators to generate better individuals and to better adapt the gen-
erated population to the problem environment. In this cycle process, individuals representing
solutions are described at each generation in the form of chromosomes, which are made up of
genes. Then all operators performed on individuals aim at generating better chromosome or
genes for the population. So the best individual in the last generation can be seen as an ap-
proximate optimal solution for the problem. In practice, this process is not endless and often is
repeated for a number of iterations or until the system does not improve anymore.

Based on this general process and according to the specific features of our CSAHLRP, we
have designed GA, as a part of our MA, to solve this problem. As mentioned above, the general
framework of the GA can be seen in Algorithm 3. In this algorithm, all notations remain the
same as the ones of Algorithm 2 and Prnd is a random probability to control occurrences of
crossover or mutation processes. The main components of this GA consist of the following
ones [178]:

Algorithme 3 Generic GA for the CSAHLRP
1: Solution encoding;
2: Set PopSize, MaxGen and MaxNoImp;
3: GenerateInitial ()
4: While NbGen<MaxGen and NbNoImp<MaxNoImp Do
5: Evaluate chromosome;
6: Find the current best chromosome xbest:
7: for i = 1 to PopSize Do
8: Selection (x1, x2)
9: if (Prnd < Pc) then

10: xnew = Crossover(x1, x2) ;
11: endif
12: if (Prnd < Pm) then
13: x

′
new = Mutation(xnew);

14: endif
15: Update this population using the replacement strategy.
16: endfor
17: End While
18: Return xbest.

(1) Representation of possible solutions. The chromosome encoding is the precondition to
implement the GA. In practice, there are mainly four encoding approaches including
binary encoding, permutation encoding, value encoding and tree encoding. In our GA,
one chromosome of CSAHLRP is represented with value encoding for location decision
but permutation encoding for routing decision, as presented in section 4.2.2.

(2) Evaluation of the chromosomes. This consists in the determination of the fitness function
value and is the basis of the selection operator. It is the only criterion to evaluate the
solution quality, and it can be an original fitness function or a standard one. The former
is normally the objective function of the problem and the latter is to guarantee its non-
negativity in some cases. Here, in order to prevent infeasible solutions, a penalty function
is considered (see section 4.2.2).

(3) Generation of the initial feasible population. This the starting step of the GA. The deter-
mination of the population size can affect the diversity of the population and the compu-
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tational efficiency. Generally, the initial population can be set randomly or by heuristics.
Here, our initial population is generated randomly based on some rules and the population
size is set after parameter tuning (seen in section 4.4.1).

(4) Design and application of genetic operators, including the selection technique, crossover,
mutation and replacement strategies. These are the most important components for an
effective GA. The basic approaches for each operator have been introduced in [178]. The
detailed design of these operators for our CSAHLRP is presented in section 4.2.3 below.

(5) Termination criteria. This is needed especially because a GA is a stochastic search. Usual
approaches put a limit on the number of generations or on the computer clock time, or
stop when the objective value or fitness value can’t continuously get better in a limited
number of iterations, or terminate when the population’s diversity falls below a preset
value. For our GA, the first two criteria are used to terminate the algorithm.

In the following, we describe the components of our GA in detail.

4.2.2 Chromosome evaluation and initial population

In this algorithm, the solutions of the HLRP are coded with natural numbers for each chro-
mosome C(x) and include two sections: a location section L(x) and a routing section R(x).
The location section L(x) consists in hub location information and the routing section R(x)
consists in one permutation of non-hub nodes representing the order of a collection or deliv-
ery route. More clearly, consider a chromosome x and its coding C(x) = L(x) + R(x). Let
L(x) = {l1, l2, l3, ..., ln} and R(x) = {r1, r2, r3, ..., rn}, where n is the number of non-hub
nodes, li is the index of an open hub and ri is the index of the suppliers and clients. Then, for
each i ∈ {1, 2, ..., n}, the location/allocation information returned indicates that the non-hub
node ri is assigned to hub li and that hub li is open. The routing information can be obtained
from R(x) according to the order of non-hub nodes allocated to each hub of L(x). An example
of this coding method for a given chromosome can be seen in Figure 4.2. In order to express
the proposed algorithm more clearly, the set of potential hubs, suppliers and clients are shown
in disjoint locations in this figure. In this example, 3 possible hubs, 5 suppliers and 5 clients
are considered. To distinguish the three kinds of sets, they are named with ascending integers.
So, H = {1, 2, 3} is the set of potential hubs; I = {4, 5, 6, 7, 8} is the set of suppliers and
J = {9, 10, 11, 12, 13} is the set of clients. Because the collection and delivery processes are
distinguished, the routing section enables the distinction of the two types of routes, knowing the
nature of the nodes. For example, since suppliers 4, 7 and 6 are allocated to hub 1, the collec-
tion route serving these suppliers is obtained based on their permutation order in R(x). More
precisely, supplier 4 is followed by supplier 7 and then by supplier 6 in R(x), indicating that the
collection route serving them from hub 1 is {1-4-7-6-1}. Similarly, the delivery route from hub
1 is {1-10-12-1}. All the routes corresponding to this example can be seen in Figure 4.2. The
verification of the vehicle capacity constraint is addressed by each decoding procedure. Once
the vehicle capacity is violated by the insertion of a new node, this node is assigned to a new
route. The hub capacity is calculated during the evaluation of each chromosome.

In order to perform a natural selection, every individual i is evaluated in terms of its fitness
value fi, determined by an evaluation function. The fitness value measures the quality of the
solutions and enables them to be compared. In our MA, for each generation, the individuals
are evaluated by the fitness function Feval(x) based on the formulation CSAHLRP-F4 presented
in Chapter 3, which includes the objective value of the solution, as well as a penalty cost for
exceeding the capacity of hubs in order to favor the feasibility of the solutions. This evaluation
is carried out at each iteration of the MA to determine the best solution. The evaluation function
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of a solution x is defined as follows:

Feval(x) = Objectivevalue(x) + Penaltycost(x) (4.1)
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and
Penaltycost(x) = δ

∑
k∈H

max{0,
∑
i∈I

zikOi +
∑
j∈J

zjkDj − 2Γk} (4.2)

in which δ is the penalty parameter for exceeding the capacity of hubs.

Figure 4.2: An example of chromosome coding for the hub location-routing problem

The initial population for our GA, and then MA algorithm, contains PopSize individuals and
is generated randomly. The genes of the location section L(x) are generated randomly from the
set of potential hubs based on different seeds. The routing section R(x) consists of one random
permutation of non-hub nodes representing the order of a collection or delivery route. Here,
a randomized procedure using the system time as the initial seed is used to produce a random
permutation of non-hub nodes. Thus, this method guarantees that each supplier and client can
be assigned to one hub at random and it can also produce many different visiting orders for
the routes. As a result, this random approach can provide a diversity of genetic materials and
possible improvements in the objective function for the next generations. In addition, in order to
consider a trade-off between efficiency and effectiveness, a study to determine the parameter of
population size PopSize will be conducted in section 4, because a small size population would
not explore enough search space effectively, while a too large population would need much
more time.
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4.2.3 Genetic operators

After calculating Feval(x) for all individuals, the population is ordered in descending order
based on the value of Feval(x). Then, some pairs of good chromosomes are selected from the
population to keep them in the next generation. For the selection operator, many methods can be
found in the literature. In our MA, the parents are selected with a roulette wheel process [178]
according to the following ranking probability equation where k is the kth chromosome ordered
in descending order of the fitness value in the population, and PopSize is the population size.
This probability is inversely proportional to the fitness value. Thus, an individual with good
fitness has a higher probability of being selected.

P (|k|) =
2k

PopSize(PopSize+ 1)
(4.3)

In our GA, a one-point crossover operator is applied to the chromosome C(x) both on the
location section L(x) and on the routing section R(x) (Figure 4.3). After two parents have been
selected, one point PL of the L(x) section is generated randomly. Then, the first part of the
offspring comes from the code of parent 1 before this point PL, and the rest comes from parent
2 after PL. For the routing section R(x), after the selection of a crossover point PR, the first
part of the offspring is the same as parent 1 before the point PR. For the rest, the offspring takes
the code of parent 2 sequentially, except for those already present in the offspring. Thus, the
routing section of the new offspring is obtained. To favor the diversity of the chromosomes, the
crossovers on the two sections are implemented in parallel.

Figure 4.3: Crossover operator for location and routing sections

For the mutation operator (Figure 4.4), different methods are used for the two sections of the
chromosome. In the location section L(x), the hub assignment is modified by replacing some
randomly chosen hubs by others also randomly chosen from the set of potential hubs. This can
give rise to the possibility of opening a new hub or closing a hub. For example, in Figure 4.4,
hub 2 will be closed after applying the mutation operator. For the routing section R(x), two
points are generated, and then the first point is removed from its current position and inserted
into a new position after the second point. In Figure 4.4, nodes 7 and 10 are selected randomly.
Then the mutation operator will insert node 7 after node 10, and the nodes between 7 and 10
(6, 9, 8, 12) will be shifted to the left one by one. After the Crossover and Mutation processes
have been completed, a replacement strategy is executed, were each new generated offspring is
compared to the worst individual in the population and replaces it if it is better. Thus, the best
individuals of the population can be kept for the next generation.
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Figure 4.4: Mutation operator for location and routing sections

4.3 Iterated local search for the CSAHLRP

This section presents the design of the iterated local search to be part of the memetic algo-
rithm for the CSAHLRP, including the generic framework, the local search on the routing and
hub location processes.

4.3.1 Overview

Local search procedures are greedy algorithms applied to a feasible solution to further im-
provement of its quality [45]. It consists in generating a locally optimal solution by exploring
the neighborhood of a given solution. The local search is characterized by its neighborhood
structure. A neighborhood is achieved by modifying some components of the solution to create
a new one. Therefore, identifying some effective neighborhood structures is very important.

The goal of the local search in the MA is to overcome the weaknesses of a genetic algorithm
by increasing the population’s diversity. For the HLRP, an iterated local search (ILS) is used on
both location and routing sections. The framework of our ILS is presented in Algorithm 4. First,
a local search on the routing section of the chromosomes is applied to the initial solution s0 to
find a better solution s′ . Then a local search on the location section, in the form of a perturbation
operator, is performed on the solution s′ . A new neighborhood solution s is obtained, defining
the location of the hubs and the assignment of non-hub nodes. Then, for each neighborhood s
of the location section, a local search on the routing section is applied again to generate a new
local optimum solution s′′ . Finally, the solution s′′ is evaluated and replaces the solution s′ if its
fitness is better. The ILS process is repeated until the termination criterion is satisfied. In this
ILS, four kinds of classic operators are used to generate new neighborhoods and improve the
routing solution, including intra-route and inter-route operators. The intra-route operators used
are the swap and the insert operators. 2-opt∗ and relocate moves are used between the different
routes. For the location part, three perturbation operators are used to improve the location-
allocation solution including hub closing, hub opening and hub swap operators. All of the local
search procedures are performed sequentially.

4.3.2 Local search on the routing

The local search on the routing section aims to generate a local optimal solution for the
collection and delivery tours. It can be achieved by modifying some components of the routing
section according to some neighborhood methods. For the HLRP, when the hub locations are
known, the problem becomes a multiple-depot vehicle routing problem (MDVRP). Many suc-
cessful local search procedures applied to the VRP [30] and the LRP [134] can be used. Here,
we have selected four local searches to construct the neighborhoods of the routing section: the
swap procedure and the 1-insertion operator for intra-route improvement and the 2-opt* oper-
ator and relocate operator to modify several routes simultaneously. These local searches are
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Algorithme 4 Iterated local search (ILS)
1: s0 = initial solution after applying genetic operators;
2: s

′ = Routing local search (s0);
3: Repeat
4: s = Perturbation -location local search (s′) ;
5: s

′′ = Routing local search (s);
6: if Feval(s

′′
) < Feval(s

′
) then

7: s
′ ←− s

′′;
8: endif;
9: Until the stop criteria of ILS is satisfied;

10: Return s′ .

illustrated in Figure 4.5 and are described in the following. Index 0 in Figure 4.5 represents the
hub. All of them are carried out on the same type of route (i.e. collection or delivery routes).
In the routing local search process, the four methods are performed sequentially in the given
order. An initial solution s0 is improved by applying them one by one. If a new better solution is
found by a given local search, its application is repeated until no improvement is found. Then,
the next local search starts. The process is continued until none of the local searches produces
a positive improvement. Moreover, in all cases, the capacity constraints on vehicles must be
respected.

(1) The swap intra-route procedure is performed between two randomly selected nodes as-
signed to the same route which swap their positions. The corresponding route is modified
but neither the number nor the assignment of non-hub nodes in the route is changed. In
the repeated process, which considers all feasible better swaps of two nodes, a move is
accepted if the resulting total cost is less than the current one. As Figure 4.5.a shows,
nodes 2 and 4 will be swapped if c(2, 5) + c(1, 4) > c(1, 2) + c(4, 5).

(2) The 1-insertion operator is carried out by removing one node from its position and in-
serting it elsewhere in the same route as shown in Figure 4.5.b. Under the same cycle
criterion as with the swap operator, the new route will be kept if it is better than the cur-
rent one. In Figure 4.5.b, node 2 is selected to insert between node 1 and node 4 because
c(1, 2) + c(2, 4) + c(3, 5) < c(1, 4) + c(3, 2) + c(2, 5).

(3) The 2-opt∗ operator is an extension of the 2-opt intra-route operator. The principle is to
remove two edges from two different routes and then reconnect the corresponding nodes
with other edges. The basic idea is to exchange the end part of the two routes after the
cutting points, thus preserving the orientation of the routes. In Figure 4.5.c, the end parts
of the routes after nodes 3 and 7, respectively, are exchanged. This is performed by
replacing edges (3, 4) and (7, 8) with edges (3, 8) and (7, 4). This process is repeated
until the stopping criterion is met.

(4) The relocate inter-route operator is performed by simply moving a node from one route
to another. As seen in Figure 4.5.d, node 3 from the first route is relocated to the second
route while preserving the orientation of the routes. Thereby, arcs (2, 3), (3, 4) and (8, 9)
are removed and replaced by arcs (2, 4), (3, 9) and (8, 3).

4.3.3 Local search on hub location-perturbation
For the local search on the hub location part of the solution, three ways are applied sequen-

tially to perturb the solution: hub closing, hub opening and hub swap operators (Figure 4.6).
The three procedures can provide more opportunities to deal with a different type of solution by
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Figure 4.5: Illustration of four neighborhoods in routing local search

modifying the hub location and assignment solution. All three perturbations are performed one
by one followed by the routing local search to find a local optimum for each location solution.
The resulting solution of each perturbation is evaluated to replace the current one if it is better
until the stopping criterion is met.

As shown in Figure 4.6, for the hub closing operator, one open hub is first randomly selected
to be closed, then the suppliers and clients previously allocated to this hub are reassigned to the
nearest open hub. In Figure 4.6.a, hub 1 is selected to be closed and all allocated nodes are
reassigned to hub 2. The corresponding decoded solution is shown below the chromosome.
This operator can produce new solutions by decreasing the number of open hubs. For the hub
opening operator, a closed hub is randomly chosen and is opened. Then supplier and client
nodes are reassigned to the nearest hub. For example, in Figure 4.6.b, hub 3 is selected to open
and the two nearest nodes 5 and 8 are allocated to hub 3 from hub 2. Therefore, hub 3 will
replace the corresponding position of hub 2 in the location section of the chromosome. This
operator can perturb the solution by increasing the number of open hubs. For the hub swap
operator, one open hub is selected randomly, and then an other open hub is chosen by a roulette
wheel selection. The selection probabilities are inversely proportional to the distance to the first
selected hub. Finally, the positions of the two selected hubs are exchanged in the chromosome.
As seen in Figure 4.6.c, open hub 1 is exchanged with hub 2 and then all of the assignments are
also changed. The corresponding solution is presented below the chromosome.
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Figure 4.6: Perturbation operators-location local search

4.4 Computational experiments and results
In this section, we present the results of the computational experiments which we have

carried out with the memetic algorithm described in the previous section, on all the generated
instances introduced in Chapter 3. The proposed MA is implemented in the C++ language and
all experiments were conducted on an Intel Core i3 CPU of 2.93 GHz and 6 GB of memory,
running on the operational system Window 7. For each instance, the MA was run 10 times. To
evaluate the quality of the MA, the results are compared to those obtained by solving our MILP
model with CPLEX, presented in Chapter 3 on some small and medium instances of up to 25
suppliers and 25 clients. Firstly, some computational tunings are done to set the parameters of
the MA. These results are discussed in section 4.4.1. In section 4.4.2, the results of the MA
are compared to those obtained with CPLEX (chapter 3). Finally, all the results obtained by
the MA including larger instances are detailed in section 4.4.3, followed by the performance
analysis.

4.4.1 Parameters tuning
Several parameters are involved in the proposed MA to solve CSAHLRP, such as the size

of the population PopSize, the number of iterations MaxGen, the crossover probability Pc
and mutation probabilities Pm1 and Pm2. These values can influence directly the quality of
the generated solutions, so need to be tuned. Theoretically, all parameters should be tuned
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but it is complex and too time consuming. So based on general principles of MA and related
reference [71], we mainly tuned three of them (PopSize, Pm1 and Pm2) to find a better pa-
rameter combinations. For their possible values, we set PopSize ∈ {100, 200}, (Pm1, Pm2) ∈
{(0.7, 0.9), (0.5, 0.9), (0.07, 0.05)}. Then a total of 6 combinations of values (listed in Table
4.4) need to be tested. As it is time consuming, the parameter tunings are not necessarily per-
formed on all instances. And considering the reliability and fairness, four group of problem
instances are chosen for the parameter tuning, including instances 3-10-10, 3-15-15, 6-20-20
and 6-25-25. All of the tuning results are shown in Table 4.5 and 4.6 for the different combina-
tions.

Table 4.4: Different combinations for parameter tuning and testing
Combination PopSize Pm1 Pm2 Combination PopSize Pm1 Pm2

Combination 1 100 0.7 0.9 Combination 4 200 0.7 0.9
Combination 2 100 0.5 0.9 Combination 5 200 0.5 0.9
Combination 3 100 0.07 0.05 Combination 6 200 0.07 0.05

In Tables 4.5 and 4.6, the first two columns declare the instance name (number of hubs,
suppliers and clients), and also the hub capacity. In order to evaluate and compare the results of
different combinations, we present for each one the best objective value found by MA (Zbest),
the percentage between the average value of 10 runs and the best value(Aver gap), and the
average running time (Taver) in seconds. The bold values correspond to the best values in each
row. From these results, it can be seen that when PopSize = 100, Combination 1 with the
highest mutation probabilities gets the lowest average gap, which indicates the stability of this
combination. However, Combination 2 finds most of the best solutions and Combination 3
takes less time. When the population size increases to 200 (Combinations 4, 5, 6), the overall
performance of the MA is improved with a larger time. Especially Combination 4 not only can
find the best solutions, but also obtains a lower gap. Therefore, it can be considered as the best
combination to solve all instances and will be used for all computational experiments in the
following.

Table 4.5: Parameter tuning results of the different combinations with PopSize = 100
Instance name Combination 1 Combination 2 Combination 3

H-I-J Hub_Cap Zbest
Aver
gap Taver(s) Zbest

Aver
gap Taver(s) Zbest

Aver
gap Taver(s)

3-10-10

45 7613.94 2.07 0.93 7864.22 2.79 1.00 7613.94 2.25 0.92
60 6828.25 1.47 0.93 6828.25 1.89 1.02 6828.25 1.49 0.96

120 6249.60 0.00 0.79 6249.60 0.00 0.78 6249.60 0.00 0.87

3-15-15

45 10854.02 2.89 3.41 10799.64 2.96 3.07 11130.49 2.10 2.99
75 9377.02 2.76 3.15 8940.28 3.87 2.86 9214.70 2.59 3.12

135 8248.80 1.60 2.60 8232.80 1.24 2.84 8232.80 0.56 2.65

6-20-20

60 10640.92 2.91 29.95 11116.62 2.86 29.95 11034.85 3.02 21.78
90 9826.03 4.57 29.95 9793.74 3.28 20.88 9834.03 4.10 20.98

165 9337.60 2.76 25.11 9336.80 2.29 21.86 9336.80 3.97 19.44

6-25-25

75 12835.44 2.98 47.86 12860.53 3.83 49.23 12772.27 3.59 48.03
105 12096.43 2.34 47.21 12175.21 2.78 48.13 12130.50 4.66 47.54
195 11112.80 2.56 46.86 11093.60 2.89 50.73 11112.00 3.09 47.15

Average 2.41 19.90 2.56 19.36 2.62 18.04
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Table 4.6: Parameter tuning results of the different combinations with PopSize = 200
Instance name Combination 4 Combination 5 Combination 6

H-I-J Hub_Cap Zbest
Aver
gap Taver(s) Zbest

Aver
gap Taver(s) Zbest

Aver
gap Taver(s)

3-10-10

45 7613.94 0.83 1.32 7613.94 2.64 1.32 8053.43 2.77 1.14
60 6828.25 0.00 1.66 6828.25 0.38 1.54 6828.25 2.64 1.11

120 6249.60 0.00 0.78 6249.60 0.00 1.23 6249.60 0.00 1.03

3-15-15

45 10622.13 1.00 3.83 10687.50 2.22 3.83 10832.74 2.66 3.40
75 8940.28 1.07 2.85 8940.28 1.55 3.78 9095.47 1.46 3.30

135 8232.80 0.02 2.84 8232.80 0.71 3.74 8232.80 0.42 3.14

6-20-20

60 10640.92 2.71 29.95 10940.28 3.04 24.07 11253.13 2.77 21.63
90 9793.74 2.05 20.88 9834.03 3.10 24.44 9793.74 3.82 21.18

165 9336.80 1.13 20.12 9336.80 1.74 23.02 9352.80 2.52 23.99

6-25-25

75 12621.48 3.79 57.28 12803.37 2.83 56.90 12747.33 3.55 52.76
105 11854.31 2.28 47.21 11854.31 2.85 56.48 12252.31 3.80 53.00
195 11093.60 1.02 50.73 11135.20 2.72 60.07 11093.60 2.72 54.99

Average 1.32 19.95 1.98 21.70 2.43 20.06

4.4.2 Comparison with the results from CPLEX solver
Following the tuning of the main parameters as described above, the following values of

the MA parameters are chosen as indicated thereafter to perform all computational experiments
and results comparison. The size of the population PopSize is set to 200 and the algorithm
stops if the maximum number of iterations (MaxGen) reaches 200 or when the best individual
remains unchanged after 100 consecutive iterations (MaxNoImp). The crossover probability
(Pc) is set to 0.8. The mutation probabilities Pm1 and Pm2 for the location and routing sections
are set to 0.7 and 0.9, respectively. The penalty parameter δ of the fitness function is set to 1000
to avoid infeasible solutions.

First, Tables 4.7 and 4.8 compare the results obtained by CPLEX and the proposed MA
respectively, for small and medium instances with 3 potential hubs and more. The best gap
between the two methods is indicated in boldface. With CPLEX, we report the optimal solution
if it is obtained before the time limit, or the best feasible solution otherwise. The best lower
bound found is also reported if the time limit is reached. In these two tables, the instance name
is denoted by the number of potential hubs, the number of suppliers, the number of clients and
the hub capacity. For the other columns of the tables, the following notations are used:

• LB: lower bound or best lower bound found by CPLEX in three hours;

• UB: upper bound (best objective value ) found by CPLEX in three hours on each instance,
marked "*" if the solution is optimal;

• %LB: deviation in % of the upper bound from the lower bound found by CPLEX. Here,
%LB = UB−LB

UB
× 100%;

• TUB: CPU time in seconds used to obtain the upper bound value the first time by CPLEX;

• Time (s): CPU time in seconds used by the corresponding method;

• Zbest: best objective value found by the MA in 10 runs, marked "*" if the solution is
optimal;

• %LB
′: deviation in % between the best objective value and the lower bound of CPLEX,

Here, %LB
′
= Zbest−LB

Zbest
× 100%;

• %UB: deviation in % between the best objective value and upper bound of CPLEX, Here,
%UB = Zbest−UB

UB
× 100%;
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• Tbest (s): CPU time in seconds for the best objective obtained by the MA;

• Ttotal (s): total CPU time in seconds used by the MA for 10 runs.

The results in Table 4.7 show that the MA outperforms CPLEX on all 15 instances with 3
potential hubs. The MA can reach all optimal solutions (5 instances) obtained by CPLEX in a
shorter computational time, which is less than 2 seconds for the best run and 16 seconds for 10
runs. Especially, when CPLEX cannot find the optimal solution within the time limit, the MA
can find a better solution in a shorter time (see the value of %UB ). Here, on the 10 instances
for which CPLEX did not find an optimal solution, the MA found 6 new best solutions. The
gap with the lower bound found by CPLEX shows that the MA outperforms CPLEX with an
average value of 12.56% versus 13.37% for CPLEX.

Table 4.7: Results comparison between CPLEX and MA with 3 potential hubs
Instance name CPLEX-CSAHLRP-F3 MA

H-I-J Hub_Cap LB UB %LB TUB Time(s) Zbest %LB
′

%UB Tbest Ttotal

3-5-5

15 3867.85 3867.85* 0.00 1.61 8.55 3867.85* 0.00 0.00 0.20 2.03
30 3068.00 3068.00* 0.00 1.72 4.40 3068.00* 0.00 0.00 0.17 1.89
45 3068.00 3068.00* 0.00 1.76 4.48 3068.00* 0.00 0.00 0.17 1.84

3-10-10

45 7280.72 7613.94 4.38 266.9 10800.00 7613.94 4.38 0.00 1.17 13.17
60 6828.25 6828.25* 0.00 16.94 3632.55 6828.25* 0.00 0.00 1.64 16.59

120 6249.60 6249.60* 0.00 1.12 5878.04 6249.60* 0.00 0.00 0.76 7.82

3-15-15

45 8758.11 10653.01 17.79 9761.03 10800.00 10622.13 17.55 -0.29 3.99 38.28
75 7714.49 8940.28 13.71 9285.85 10800.00 8940.28 13.71 0.00 2.89 28.47

135 7487.25 8232.80 9.06 626.94 10800.00 8232.80 9.06 0.00 2.47 28.38

3-20-20

60 8977.83 12186.05 26.33 9807.08 10800.00 11948.93 24.86 -2.26 9.42 96.64
90 8312.03 10469.24 20.61 7685.36 10800.00 10348.40 19.68 -1.15 8.66 94.65

165 6939.54 9336.80 25.68 3111.13 10800.00 9336.80 25.68 0.00 9.22 93.54

3-25-25

75 10099.80 13165.30 23.28 10421.32 10800.00 12828.40 21.27 -2.56 21.06 214.61
105 8954.44 13121.13 31.76 10413 10800.00 12057.20 25.73 -9.39 24.41 259.54
195 8155.36 11325.60 27.99 8105.95 10800.00 11093.60 26.49 -2.05 25.30 259.99

Average 13.37 4633.85 12.56 -1.18 7.44 77.16

The results for the instances with more hubs in Table 4.8 also show the good performance
of the MA compared to CPLEX on all the 18 instances. For all of them, the MA reaches all the
best solutions in a shorter computational time (16.10 seconds in average), and also it improves
most of the solutions, especially for the medium instances, such as instance 6-20-20 and 10-20-
20. Although for most instances, it is difficult to prove the optimality of the solutions. But from
the CPU time to find the first feasible solution (upper bound value) by CPLEX, i.e. TUB, it can
be seen that the MA can find a better value than CPLEX in a shorter time (16.10s vs 7609.26s
in average).

4.4.3 Detailed results of the memetic algorithm
Tables 4.9-4.11 present the detailed results obtained with all instances (small, medium and

large ones) for different values of the number of potential hubs, and the details of the perfor-
mance of the MA. The "Best run" represents the best solution found in 10 runs by the MA
including the best objective value Zbest, the corresponding running time (Tbest (s)) and the de-
tails of the best solution found by the MA. "Open hub" gives the index of the located hubs and
"Max routes" represents the maximum number of routes assigned to a hub for collection and
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Table 4.8: Results comparison between CPLEX and MA with more potential hubs
Instance name CPLEX-CSAHLRP-F3 MA

H-I-J Hub_Cap LB UB %LB TUB Time(s) Zbest %LB
′

%UB Tbest Ttotal

6-10-10

45 6744.25 7613.94 11.42 6173.93 10800.00 7613.94 11.42 0.00 2.59 25.88
60 6585.81 6828.25 3.55 6193.96 10800.00 6828.25 3.55 0.00 2.36 24.49

120 5877.90 6249.60 5.95 3.31 10800.00 6249.60 5.95 0.00 1.98 25.30

6-15-15

45 7986.42 9608.55 16.88 7924.74 10800.00 9581.90 16.65 -0.28 9.92 100.85
75 7189.37 8940.28 19.58 10032.19 10800.00 8940.28 19.58 0.00 9.44 100.92

135 7049.12 8232.80 14.38 3066.42 10800.00 8232.80 14.38 0.00 9.39 96.56

6-20-20

60 7823.82 10903.48 28.24 10307.5 10800.00 10640.92 26.47 -2.41 29.73 299.48
90 7199.82 10469.24 31.23 9382.8 10800.00 9793.74 26.49 -6.45 20.16 208.76

165 6706.20 9479.20 29.25 7802.76 10800.00 9336.80 28.17 -1.50 18.74 201.23

10-10-10

45 6080.37 7549.08 19.46 4794.89 10800.00 7366.08 17.45 -2.42 3.21 35.97
60 5943.59 6896.10 13.81 10028.85 10800.00 6828.25 12.96 -0.98 3.29 32.15

120 5898.25 6249.60 5.62 5347.42 10800.00 6249.60 5.62 0.00 2.98 33.07

10-15-15

45 7108.60 9600.12 25.95 9902.02 10800.00 9447.72 24.76 -1.59 19.97 198.47
75 6214.67 8755.91 29.02 7792.37 10800.00 8594.36 27.69 -1.85 13.88 132.71

135 6199.54 8333.60 25.61 10081.64 10800.00 8232.80 24.70 -1.21 12.20 141.65

10-20-20

60 7171.53 11466.44 37.46 10679.64 10800.00 10619.89 32.47 -7.71 43.43 406.98
90 6465.97 10611.96 39.07 7488.22 10800.00 9793.74 33.98 -7.71 43.43 402.75

165 6391.69 10469.24 38.95 9964.08 10800.00 9065.60 29.50 -13.41 46.08 488.25
Average 21.97 7609.26 20.10 -2.62 16.10 164.19

delivery together in the best solution. The "Average on 10 runs" shows the statistical result of
10 runs of the MA. The average objective value Z of the solutions found in 10 runs is shown in
the column of "Average value" and then the following statistical indicators are used to evaluate
the performance of the MA:

• Aver gap (%): the average deviation in % between each value obtained by the MA and
the best value. Here, Avergap = Z−Zbest

Zbest
× 100%;

• CV (%): the coefficient of variance for the objective values of the 10 runs with the average
value. Here, CV = SD/Z × 100%, where SD is the standard deviation of all the
objective values of the 10 runs;

• CV ′(%): the coefficient of variance for all objective values of the 10 runs with the best
objective value. Here, CV ′ = SD/Zbest × 100%;

• Taver (s): the average running time for the 10 runs of the MA.

The results in Tables 4.9-4.11 show that the proposed MA can solve effectively all the in-
stances, even the largest ones which include 100 nodes with 10 potential hubs. For all instances,
the proposed MA can find feasible solutions for the CSAHLRP in less than 20 minutes for the
instances with 3 and 6 potential hubs. And for the ones with 10 potential hubs, the proposed
MA can solve all the problems in less than 50 minutes. Moreover, the small average resulting
gaps (0.60% for the instances with 3 hubs, 2.38% for the instances with 6 hubs and 2.72%
for the ones with 10 potential hubs) prove the robustness and usefulness of the memetic algo-
rithm. Moreover, the coefficient of variance with the average objective valueCV (0.45%, 1.50%
and 1.62% in average, respectively) and with the best objective value CV ′ (0.45%, 1.54% and
1.67% in average, respectively), demonstrate the good stability of the MA. For the best solution,
it can be seen that the assignment solution is changed or the number of open hubs is decreased
when the capacity of the hubs increases, and the total cost for most instances decreases because
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Table 4.9: Results from the MA for the instances with 3 potential hubs
Instance name Best run Average on 10 runs

H-I-J Hub_Cap Zbest Tbest(s) Open
hub

Max
routes

Average
value

Aver
gap CV CV

′
Taver(s)

3-5-5

15 3867.85* 0.20 1, 2 2 3867.85 0.00 0.00 0.00 0.20
30 3068.00* 0.17 1 4 3068.00 0.00 0.00 0.00 0.19
45 3068.00* 0.17 1 4 3068.00 0.00 0.00 0.00 0.18

3-10-10

45 7613.94 1.17 2, 3 8 7677.07 0.83 1.69 1.70 1.32
60 6828.25* 1.64 2, 3 9 6828.25 0.00 0.00 0.00 1.66

120 6249.60* 0.76 2 15 6249.60 0.00 0.00 0.00 0.78

3-15-15

45 10622.13 3.99 1, 2, 3 7 10727.99 1.00 0.76 0.77 3.83
75 8940.28 2.89 1, 3 11 9035.75 1.07 0.92 0.93 2.85

135 8232.80 2.47 1 18 8234.20 0.02 0.02 0.02 2.84

3-20-20

60 11948.93 9.42 1, 2, 3 10 12172.04 1.87 1.34 1.37 9.66
90 10348.40 8.66 2, 3 12 10478.64 1.26 0.71 0.72 9.46

165 9336.80 9.22 2 20 9350.88 0.15 0.18 0.18 9.35

3-25-25

75 12828.40 21.06 1, 2, 3 11 12994.59 1.30 0.55 0.56 21.46
105 12057.20 24.41 2, 3 12 12227.03 1.41 0.47 0.48 25.95
195 11093.60 25.30 3 24 11098.80 0.05 0.06 0.06 26.00

Average 7.44 0.60 0.45 0.45 7.72

less hubs may be operated to satisfy the total demand of suppliers and clients, and better route
composition is formed.

Figure 4.7 and 4.8 show the relationship between the average gap or the coefficient of vari-
ance CV ′(%) and the number of nodes, respectively, for the different values of the potential
hubs number. They demonstrate the stability of the MA. It can be seen that the average gap
between the best single run and the average run of the MA is less than 4.00%. In addition, for
all instances, when the number of nodes exceeds 50, the average gap is relatively stable without
significant fluctuation. And Figure 8 shows that the coefficient of variance of all the objective
values from the best one is less than 2.50%. Even when the number of nodes exceeds 50, it is
close to 2.00%. This shows that the solutions in all the 10 runs are close to the best one. Hence,
it offers the decision maker several solutions near to the optimum.

Figure 4.7: The average gap of the MA depending on the problem scale (number of nodes)

In addition, in order to compare the best objective value found by CPLEX and the proposed
MA, Figures 4.9-4.11 give some insights for their tendencies as a function of CPU time based
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Table 4.10: Results from the MA for the instances with 6 potential hubs
Instance name Best run Average on 10 runs

H-I-J Hub_Cap Zbest Tbest(s) Open
hub

Max
routes

Average
value

Aver
gap CV CV

′
Taver(s)

6-10-10

45 7613.94 2.59 2, 3 8 7676.63 0.82 0.73 0.73 2.59
60 6828.25 2.36 2, 3 9 6828.25 0.00 0.00 0.00 2.45

120 6249.60 1.98 2 15 6249.60 0.00 0.00 0.00 2.53

6-15-15

45 9581.90 9.92 1, 3, 5 7 9839.30 2.69 1.90 1.95 10.09
75 8940.28 9.44 1, 3 11 9152.80 2.38 1.39 1.42 10.09

135 8232.80 9.39 1 18 8253.52 0.25 0.44 0.44 9.66

6-20-20

60 10640.92 29.73 2, 4, 5 9 10929.50 2.71 1.54 1.58 29.95
90 9793.74 20.16 2, 5 13 9994.26 2.05 1.48 1.51 20.88

165 9336.80 18.74 2 20 9441.92 1.13 0.63 0.63 20.12

6-25-25

75 12621.48 57.41 2, 3, 4 10 13100.14 3.79 1.99 2.06 57.28
105 11854.31 49.95 2, 4 14 12124.35 2.28 2.08 2.13 47.21
195 11093.60 47.64 3 24 11207.24 1.02 2.14 2.17 50.73

6-30-30

90 14222.26 107.66 1, 3, 5 13 14781.56 3.93 1.37 1.42 102.94
120 13207.59 118.26 1, 5 17 13508.79 2.28 1.14 1.16 130.13
240 12453.60 110.79 5 32 12600.24 1.18 1.48 1.49 96.50

6-35-35

90 16775.89 204.97 1, 5, 6 14 17454.82 4.05 2.04 2.13 197.25
135 16327.47 185.30 5, 6 19 16841.45 3.15 1.74 1.80 280.62
270 16209.60 173.63 1 35 16656.50 2.76 1.65 1.70 180.54

6-40-40

90 16135.02 346.04 1, 4, 5 13 16956.13 5.09 2.53 2.65 349.14
135 14998.09 365.96 1, 5 18 15382.23 2.56 1.11 1.13 383.99
255 14891.20 295.06 1 34 15275.76 2.58 2.68 2.75 486.04

6-45-45

105 17180.81 569.05 1, 5, 6 16 17756.32 3.35 2.16 2.23 863.56
150 16193.70 557.31 5, 6 22 16567.36 2.31 1.58 1.62 567.98
285 15424.00 526.08 6 38 15763.46 2.20 2.20 2.24 622.21

6-50-50

105 18654.91 988.75 2, 4, 6 16 19455.80 4.29 2.12 2.21 940.49
150 17162.17 968.44 4, 6 21 17248.99 3.36 1.27 1.31 953.66
300 16458.40 955.55 4 41 16676.49 1.96 1.06 1.08 1020.99

Average 249.34 2.38 1.50 1.54 275.54
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Table 4.11: Results from the MA for the instances with 10 potential hubs
Instance name Best run Average on 10 runs

H-I-J Hub_Cap Zbest Tbest(s) Open
hub

Max
routes

Average
value

Aver
gap CV CV

′
Taver(s)

10-10-10

45 7366.08 3.21 2, 7 8 7532.87 2.26 0.95 0.97 3.60
60 6828.25 3.29 2, 3 9 6845.36 0.25 0.43 0.43 3.22

120 6249.60 2.98 2 15 6249.60 0.00 0.00 0.0 3.31

10-15-15

45 9447.72 19.97 5, 7, 8 7 9671.40 2.37 1.23 1.25 19.85
75 8594.36 13.88 7, 8 9 8713.79 1.39 0.98 1.00 13.27

135 8232.80 12.20 1 8 8274.88 0.51 0.83 0.83 14.17

10-20-20

60 10619.89 40.53 5, 7, 10 9 10958.84 3.19 1.89 1.95 40.70
90 9793.74 43.43 2, 5 13 9978.64 1.89 0.83 0.84 40.27

165 9065.60 46.08 7 20 9189.68 1.37 1.01 1.03 48.83

10-25-25

75 12333.12 102.82 3, 4, 7 10 12842.05 4.13 2.60 2.71 97.88
105 11797.13 120.82 3, 7 14 12097.21 2.54 1.15 1.18 134.55
195 11093.60 111.84 3 24 11379.45 2.58 3.35 3.43 123.86

10-30-30

90 13965.64 262.53 1, 5, 9 12 14775.07 5.80 1.23 1.30 265.39
120 13207.59 206.56 1, 5 17 13619.30 3.12 1.85 1.90 259.28
240 12437.60 193.75 5 32 12641.52 1.64 2.03 2.07 198.56

10-35-35

90 16675.10 479.97 1, 5, 8 14 17380.77 4.23 2.14 2.24 480.26
135 16240.32 390.13 5, 6 20 16686.17 2.75 1.82 1.87 408.04
270 16113.60 364.06 9 36 16389.19 1.71 1.54 1.56 409.18

10-40-40

90 16135.02 807.88 1, 4, 5 13 16999.99 5.36 1.83 1.93 844.55
135 14998.09 782.80 1, 5 18 15458.87 3.07 2.55 2.63 805.08
255 14866.40 823.53 1 34 15225.29 2.41 1.57 1.61 804.17

10-45-45

105 17135.03 1461.31 1, 5, 6 16 17972.89 4.89 1.38 1.44 1482.06
150 16200.24 1314.53 5, 6 20 16728.71 3.26 2.58 2.67 1381.46
285 15414.40 1281.28 6 38 15787.08 2.42 2.55 2.62 1341.39

10-50-50

105 17491.90 2413.68 4, 6, 7 15 18401.05 5.20 1.93 2.04 2331.45
150 17154.52 2086.29 4, 6 21 17669.33 3.00 1.88 1.94 2171.20
300 16400.80 2056.53 4 41 16737.23 2.05 1.62 1.65 1844.59

Average 572.07 2.72 1.62 1.67 576.67
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Figure 4.8: CV
′ changes of the MA depending on the problem scale (number of nodes)

on instance 3-5-5, 3-10-10 and 6-10-10. In these figures, the red lines show the evolution of the
best objective values found by CPLEX, and the green ones are the tendency of fitness values in
the best run of the MA. The blue lines show the lower bound found by CPLEX as a function
of CPU time. From them, it can be seen that the MA can always find better objective values
than CPLEX within the same time. And for the optimal solutions or best solutions, the MA
always reaches them earlier than CPLEX. For example, for instance 3-5-5 with 15t hub capacity
(shown in Figure 4.9.a), CPLEX reaches the optimal value 3867.85 in 1.61 seconds, while the
MA can reach it within 0.5 seconds. For the instance 3-10-10 with 60t hub capacity (shown
in Figure 4.10.b), the MA can obtain the optimal value 6828.25 within 2 seconds compared
to 16.94 seconds for CPLEX. For the best value 7613.94 of instance 6-10-10 with 45t hub
capacity, CPLEX needs 6200 seconds to find it, while MA just needs less than 1 second. These
figures outline the difficulty for CPLEX to improve the lower bound and prove the optimality
of the solution. Moreover, Figures 4.12-4.14 present the evolution of the fitness value at each
generation of the MA according to the number of generations. In particular, Figure 4.12 shows
the average best fitness value at each generation for the 10 runs based on instance 3-10-10 with
different hub capacities. The other figures show the best fitness values at each generation in
the best run of the MA based on instances 6-10-10 and 6-15-15, respectively. All of them
demonstrate a good convergence of the fitness values of our MA.

All of these observations let us believe that the results of the MA for large instances are near
the optimum values. However this property should be validated through further research either
by determining more efficient lower bounds or by comparing the results to those of another
metaheuristic.

In his recent work, Campbell [32] points out the necessity to validate the consolidation role
of the hubs in a hub-and-spoke organization, by comparing the inter-hub flows with the routing
flows. In order to do so, we have evaluated the average flow transfered between hubs Flowhub
and the average flow routed by each local route Flowroute in the best solutions obtained by the
MA on some large instances and we have reported them in Table 4.12. The first two columns
present the instance name and hub capacity. Column 3 and 4 provide respectively the number
of hub arcs and the local routes in the best solution for each instance. In addition, it also
reports the minimum flow between hubs Minflowhub and the maximum flow in local routes
Maxflowroute in column 7 and 8, respectively. The last column provides an average percentage
(%) of the number of non-hub nodes with flow larger than the hub arc flow. It can be observed
from this table that the average hub arc flow is always larger than the average route flow for these
instances. There are no local route with a flow larger than the hub arc flow. In addition, there are
also no spokes (non-hub nodes) with flow larger than the hub arc flow. All these observations
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demonstrate the interest of hub terminals to aggregate flows in the LTL shipment network and
the efficiency of the inter-hub transportation. They also justify the underlying hypothesis of the
problem.

Table 4.12: The comparison of flow on hub arcs and local routes

Instance Γk
Hub
arcs Routes Flowhub Flowroute Minflowhub Maxflowroute Average %

6-40-40
90 6 36 26.58 13.03 22.36 14.97 0%

135 2 36 53.23 13.06 42.21 14.97 0%

6-50-50
105 6 42 25.93 12.88 19.08 14.91 0%
150 2 42 65.54 12.87 56.37 14.98 0%

10-40-40
90 6 36 26.58 13.03 22.36 14.97 0%

135 2 36 53.23 13.06 42.21 14.97 0%

10-50-50
105 6 43 29.07 12.60 21.71 14.96 0%
150 2 41 60.98 13.19 55.03 14.95 0%

4.5 Conclusion
In this chapter, we have proposed a memetic algorithm, combining a genetic algorithm and

an iterative local search, in order to solve medium and large instances of the CSAHLRP. After
presenting an overview of memetic algorithms, especially the literature review of researches
related to ours, the detailed operators of this algorithm have been presented. For the coding of
the chromosome, we used a two-dimension array to represent the location and routing infor-
mations. For the genetic part, we have described the chromosome selection process, and the
crossover and mutation operators as well as the replacement strategy. For the iterative local
search, different operators for the hub location and vehicle routing sections have been imple-
mented sequentially. In order to evaluate the performance of the proposed MA, many compu-
tational experiments have been conducted on the instances presented in Chapter 3, including
tuning of the main parameters. A comparison with the results obtained by solving our model
with CPLEX on small and medium size instances has shown that our MA could determine the
optimal solutions for small instances within a shorter time. In addition, it can provide good and
stable solutions for medium and large instances efficiently and reliably, as it has been shown
through many computational experiments. In the next chapter, a branch-and-cut algorithm will
be presented in order to solve our problem exactly and further evaluate the results obtained by
this metaheuristics.
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Figure 4.9: Comparison of the solution evolution between CPLEX and the MA for instance 3-5-5
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Figure 4.10: Comparison of the solution evolution between CPLEX and the MA for instance 3-10-10



4.5. CONCLUSION 117

Figure 4.11: Comparison of the solution evolution between CPLEX and the MA for instance 6-10-10
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Figure 4.12: The convergence of the average fitness value in 10 runs for instance 3-10-10

Figure 4.13: The convergence of the fitness value in the best run for instance 6-10-10

Figure 4.14: The convergence of the fitness value in the best run for instance 6-15-15



5
Branch-and-cut algorithm for the
CSAHLRP

In this chapter, an exact method based on the branch-and-cut scheme is proposed to solve
the capacitated single allocation hub location-routing problem (CSAHLRP) for the LTL ship-
ments. Firstly, we proposed a mathematical formulation for this problem based on a three-index
vehicle-flow model of the LRP [173]. Then some valid inequalities are introduced to strengthen
this formulation. Finally, a branch-and-cut algorithm is developed and some computational
experiments are implemented based on the instances generated in Chapter 3.

5.1 Introduction
The Branch-and-cut (B&C) algorithm is a widely used exact method to solve integer linear

programming problems (ILPs). As a divide-and-conquer approach, it combines the branch-and-
bound (B&B) technique and the cutting plane procedure. The B&B method solves a sequence
of linear programming (LP) relaxation of ILPs to generate fractional or integer solutions. And
the cutting plane method is used to tighten the LP relaxations by dynamically identifying the
valid inequalities violated by the current fractional solution. Thus, at each step of the B&C
algorithm, the violated inequalities are added to the LP relaxation that is solved again to yield
different solutions.

The framework of the B&C method (shown in Algorithm 5) can be visualized by construct-
ing an enumeration tree where each node represents a subproblem. After setting the initial
upper bound zUB and lower bound zLB for the ILP, the set of unexplored nodes of the enumer-
ation tree L needs to be initialized, typically with the subproblem at the root node ILP 0. Then
a node i is selected from the set L and its LP relaxation is first solved to obtain the current
solution Si and the objective value zi. If Si is infeasible, then the ILP is also infeasible. The
algorithm will prune the current node i and stop, as well as if zi ≥ zUB. However, if the current
solution is integral feasible, then the upper bound is updated with the minimum objective value
zi. Otherwise, some violated inequalities generated by the cutting plane procedure are added
to the ILP i and the LP relaxation is re-optimized in Step 4. If no additional cut is found, the

119
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Algorithme 5 Branch-and-cut algorithm
Input: An integer linear programming problem ILP .
Output: Optimal solution Sopt and the optimal objective value zopt.

1. Initialization:
Set the upper bound zUB = +∞ or to the value of a known feasible solution;
Set the lower bound zLB = −∞;
Initialize the candidate list of unexplored nodes denoted L← {ILP 0}.

2. Termination:
If (zLB ≥ zUB) or (L = ∅) or (other termination criterion is met), then
zopt = zUB, and report the corresponding solution as optimal solution Sopt. Stop.

else,
go to the next step.

3. Node selection:
Select an enumeration node i ∈ L and delete it from L, i.e. L← L \ {i}.

4. Solve relaxation:
Solve the relaxation of subproblem ILP i at node i;
Obtain current solution Si and its objective value zi, update zLB = zi.

• If (Si is infeasible), then
set zLB = +∞ and go to Step 2.

• If (zi ≥ zUB), then
go to Step 2.

• If (Si is integral feasible) and (zi < zUB), then
set zUB = zi, and go to Step 2.

• else
go to next step.

5. Add cutting plane:
If desired, search for valid inequalities violated by solution Si, denoted as K.

• If (K 6= ∅), then
add the set K to the problem ILP i and return to Step 4.

• else
proceed.

6. Branching:
Branch based on a non-integer variable and create two new nodes i1, i2;
Add new nodes to L, i.e. L← L ∪ {i1, i2}.
Return to Step 2.
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branching is executed and adds two new nodes to the set L while node i is deleted from L. This
process is repeated until an optimal solution is found or other termination criterion is satisfied.
This algorithm has been used to solve exactly many combinatorial optimization problems and
in various application areas, as, for example, the vehicle routing problem [15, 16, 133] and the
location-routing problem [26, 48, 110] as mentioned in Chapter 2. In addition, this algorithm is
also a good approach to provide bounds for large and/or hard problems when it is not possible
to prove the optimality of solutions.

In the development of a B&C algorithm, the main challenges are the determination of the
classes of valid inequalities and the separation routines to generate them. In most cases, heuris-
tic algorithms are applied for the separation procedure. In the following sections, some valid
inequalities for the CSAHLRP and the corresponding separation methods are presented based
on a new mathematical formulation.

5.2 A new mathematical formulation for the CSAHLRP

In order to exactly solve the CSAHLRP or provide good bounds using the B&C, a new
mathematical formulation is proposed based on a three-index vehicle-flow model of the LRP
[45]. The collection and delivery routing parts of the original 4-index mathematical model
CSAHLRP-F4 presented in Chapter 3 are changed according to this formulation. In this new
model, the activities of collection from suppliers and delivery to clients remain separated, so a
supplier and a client can not be allocated to the same local tour. Keeping the same hypotheses
and notations as those introduced in Chapter 3, the new model is also defined in a complete
graph G = (N,E) with a vertex set N = H ∪ I ∪ J . Thus in order to determine the optimal
locations of hubs, the routing of each flow between suppliers and clients, as well as the local
collection and delivery tours, some additional notations are used in the new model.

SI− subset of I , ∀SI ⊆ I , and SI = {I
⋃
H} \ SI is the complementary set of SI ;

SJ− subset of J , ∀SJ ⊆ J , and SJ = {J
⋃
H} \ SJ be the complementary set of SJ ;

δ(S)− the set of edges with exactly one end-vertex in S, i.e., δ(S) = {{i, j} ∈ E : i <
j, i ∈ S, j ∈ S or i ∈ S, j ∈ S};
δ
′
(S : S ′)− the set of edges with one end-node in S and the other one in S ′, ∀S ⊆

N, ∀S ′ ⊆ N ;

r(S, k)− the minimum number of vehicles needed to service the suppliers or clients from
hub k in subset S;

r(S)− the minimum number of vehicles needed to service the supplier or clients from all
hubs in subset S ;

q(S, k)− the total quantity of flow from the suppliers or to clients in subset S served by
hub k;

q(S)− the total quantity of flow from the suppliers or to clients in subset S.

For the decision variables, zik is used as the allocation variable to represent if a node i is
assigned to a hub k. Yijkl represents the fraction of flow from supplier i to client j via hub k to
hub l. For the routing part, the following variables are defined in the new model:

xkij(i < j)− an integer variable to represent the number of times that edge {i, j} is
traversed by one vehicle from hub k. It may take the values {0, 1}, ∀{i, j} ∈ E, i, j 6∈ H
and the values {0, 1, 2}, ∀{i, j} ∈ E, i ∈ H, j 6∈ H . Note that xkij = 2 corresponds to a
return trip between the hub k and node j.
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M c
k > 1,Md

k > 1− integer variables, corresponding to the number of vehicles used at
hub k to collect and deliver, respectively. Note that the two variables can also be known
constants based on specific conditions.

Then, based on the above notations and variables, the new mathematical formulation for the
CSAHLRP (CSAHLRP-B&C) is presented as follows:

CSAHLRP-B&C

Min
∑
k∈H

Fkzkk +
∑
i∈I

∑
j∈J

∑
k∈H

∑
l∈H

αdklqijYijkl +
∑
k∈H

∑
i∈I∪H,i<j

∑
j∈I

βdijx
k
ij

+
∑
k∈H

∑
i∈J∪H,i<j

∑
j∈J

γdijx
k
ij + fv

∑
k∈H

(M c
k +Md

k ) (5.1)

subject to

• hub location constraints (3.2)-(3.5), (3.38) and (3.39);

• collection and delivery routing constraints including:∑
(i,j)∈δ(SI)

xkij ≥ 2r(SI , k) ∀k ∈ H,∀SI ⊆ I, |SI | ≥ 2 (5.2)

∑
u∈I∪k,u<i

xkui +
∑

l∈I∪k,l>i

xkil = 2zik ∀i ∈ I,∀k ∈ H (5.3)

∑
i∈I

xkki = 2M c
k ∀k ∈ H (5.4)

∑
(i,j)∈δ(SJ )

xkij ≥ 2r(SJ , k) ∀k ∈ H,∀SJ ⊆ J, |SJ | ≥ 2 (5.5)

∑
u∈J∪k,u<j

xkuj +
∑

l∈J∪k,l>j

xkjl = 2zjk ∀j ∈ J,∀k ∈ H (5.6)

∑
j∈J

xkkj = 2Md
k ∀k ∈ H (5.7)

• variable values constraints (3.27), (3.28) and

xkij ∈ {0, 1} ∀k ∈ H,∀i 6∈ H,∀j 6∈ H (5.8)

xkij ∈ {0, 1, 2} ∀k ∈ H,∀i ∈ H,∀j 6∈ H (5.9)

The objective function (5.1) minimizes the sum of the establishing hub costs, transportation
cost between hubs, collection routing costs, delivery routing costs and fixed costs of operating
vehicles. The hub location constraints keep the same implications as the corresponding ones in
Chapter 3. For the local routing part, constraints (5.2)-(5.4) are collection routing constraints.
Constraints (5.2) play a dual role: they prevent the formation of sub-tours in each collection
route and they ensure that route capacity constraints are not violated. These inequalities, for
any subset SI of suppliers from hub k not including the hub, impose that r(SI , k) vehicles
enter and leave SI from hub k. Constraints (5.3) are not only the flow conservation constraints
which ensure that two edges are incident to each supplier, but also specify that a supplier can be
assigned to a hub only if there is a route from that hub going through that supplier. They can be
called as the degree constraints for each supplier. Formulas (5.4) define the degree constraint
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of each hub and also connect the routing variable xkij and the number of vehicles M c
k used

in collection phase. Equations (5.5)-(5.7) are the delivery routing constraints which have the
similar meanings to the collection routing constraints. Constraints (5.8)-(5.9) are the variables
value constraints.

5.3 Valid inequalities
In this section, some valid inequalities are proposed to strengthen the linear relaxation of

the new formulation by eliminating some fractional solutions from the solution space.

5.3.1 Known valid inequalities
As mentioned in Chapter 3, the two efficient polynomial-size valid inequalities for the for-

mulation CSAHLRP-F4, are obviously valid for the new formulation. The first one is the open
hub limitation inequality (3.46) which can be added directly into the linear relaxation of the
new formulation. It provides the minimum number of hubs to open.

The second class of known polynomial-size valid inequalities (3.47) and (3.48) give the
minimum number of routes used for the collection and delivery from the hubs. Based on the
new variable definitions, this family of valid inequalities can be derived from the hub degree
constraints (5.4) and (5.7), respectively. They limit the number of edges entering and leaving
the hubs and denote that each vehicle must enter and leave the same hub if it passes this hub.
Obviously, the variables M c

k and Md
k have the following lower bound limitation to serve the

demands of all suppliers or clients allocated to hub k:

M c
k ≥

∑
i∈I zikOi

Q
∀k ∈ H (5.10)

Md
k ≥

∑
j∈J zjkDj

Q
∀k ∈ H (5.11)

So the constraints (5.4) and (5.7) can be replaced by the following inequalities:

∑
i∈I

xkki ≥ 2

∑
i∈I zikOi

Q
∀k ∈ H (5.12)

∑
j∈J

xkkj ≥ 2

∑
j∈J zjkDj

Q
∀k ∈ H (5.13)

In order to simplify the above two groups of inequalities, all the hubs are grouped and can
be viewed as a large fictive depot. Thus the two hub degree constraints on each hub can be
transformed into the following two single allocation constraints.

∑
k∈H

∑
i∈I

xkki ≥ 2

∑
i∈I Oi

Q
(5.14)

∑
k∈H

∑
j∈J

xkkj ≥ 2

∑
j∈J Dj

Q
(5.15)

Because the left sides of above inequalities are integer values, the rounded lower bounds can
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replace the right sides. Therefore, the valid inequalities providing the minimum number of
routes associated to the hubs, called as hub degree valid inequalities are given as follows:

∑
k∈H

∑
i∈I

xkki ≥ 2d
∑

i∈I Oi

Q
e (5.16)

∑
k∈H

∑
j∈J

xkkj ≥ 2d
∑

j∈J Dj

Q
e (5.17)

where dxe denotes the smallest integer not less than x.

5.3.2 Simple valid inequalities between variables

Some other simple and efficient polynomial-size inequalities can be used to improve the
lower bounds of the linear relaxation by a straightforward way. They are given as follows:

xkij ≤ zik ∀k ∈ H,∀i ∈ I,∀j ∈ I (5.18)

xkij ≤ zjk ∀k ∈ H,∀i ∈ I,∀j ∈ I (5.19)

xkij ≤ zik ∀k ∈ H,∀i ∈ J,∀j ∈ J (5.20)

xkij ≤ zjk ∀k ∈ H,∀i ∈ J,∀j ∈ J (5.21)

xkki ≤ 2zkk ∀k ∈ H,∀i ∈ I ∪ J (5.22)

These valid inequalities impose a strong relationship between the routing variables and the
allocation variables. They show that, if a supplier i or a client j is not allocated to a open hub
k, then all routing variables from the hub k and linked to that supplier i or client j should be set
to 0. And it is also valid for the routing variable starting from hub k as in inequality (5.22). It
shows that there is no link between a closed hub k and any supplier or client.

Except the previous straightforward valid inequalities, the following exponential-size in-
equalities derived from the CVRP [16, 133] or the CLRP [26, 45] can also be adapted to our
problem. They can be applied in the cutting plane procedure to improve the efficiency of the
B&C and obtain better solutions or lower bounds.

5.3.3 Rounded route capacity constraints

Let us consider the constraints (5.2) and (5.5), they are the capacity constraints for the routes
(also called generalized subtour elimination constraints) which represent that at least r(S, k)
vehicles enter and leave S from hub k, for any subset of suppliers or clients. They are derived
from similar constraints of the CVRP and have been proved to be NP-hard to compute r(S, k)
[16]. However, they remain valid if r(S, k) is replaced by a lower bound on its value, such as
follows:

r(SI , k) ≥
∑

i∈SI
Oizik

Q
∀k ∈ H,∀SI ⊆ Ik, |SI | ≥ 2 (5.23)

r(SJ , k) ≥
∑

i∈SJ
Djzjk

Q
∀k ∈ H,∀SJ ⊆ Jk, |SJ | ≥ 2 (5.24)
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Moreover, if we group all hubs into one large fictive hub like in the hub degree valid inequality,
the collection and delivery process can be considered as two capacitated vehicle routing prob-
lems (CVRP). Thus, with a rounded lower bound of the right side, the rounded route capacity
(RRC) constraints for the CSAHLRP can be presented as follows:

∑
k∈H

∑
(i,j)∈δ(SI)

xkij ≥ 2d
∑

i∈SI
Oi

Q
e ∀SI ⊆ I, |SI | ≥ 2 (5.25)

∑
k∈H

∑
(i,j)∈δ(SJ )

xkij ≥ 2d
∑

j∈SJ
Dj

Q
e ∀SJ ⊆ J, |SJ | ≥ 2 (5.26)

They guarantee that the number of routes serving a set of suppliers or clients is not less than the
corresponding lower bound for collection and delivery process, respectively. They can be also
expressed as in the capacitated location-routing problem [110] as follows:

∑
k∈H

∑
(i,j)∈δ′ (SI :SI)

xkij ≤ |SI | − d
∑

i∈SI
Oi

Q
e ∀SI ⊆ I, |SI | ≥ 2 (5.27)

∑
k∈H

∑
(i,j)∈δ′ (SJ :SJ )

xkij ≤ |SJ | − d
∑

j∈SJ
Dj

Q
e ∀SJ ⊆ J, |SJ | ≥ 2 (5.28)

5.3.4 Hub capacity valid inequalities
These valid inequalities are based on the depot capacity constraints which were originally

proposed for the CLRP [26]. Based on the relationship between the HLRP and the LRP, we
have adapted these valid inequalities for the CSAHLRP, called as hub capacity (HC) valid
inequalities as follows:∑

k∈Hk 6=h

∑
(i,j)∈δ′ (SI :I\SI)

xkij +
∑

k∈H,k 6=h

∑
i∈SI

xkki ≥ 2 ∀h ∈ H,∀SI ⊆ I, q(SI) > Γh (5.29)

∑
k∈H,k 6=h

∑
(i,j)∈δ′ (SJ :J\SJ )

xkij +
∑

k∈H,k 6=h

∑
j∈SJ

xkkj ≥ 2 ∀h ∈ H,∀SJ ⊆ J, q(SJ) > Γh (5.30)

They are valid for the CSAHLRP and emphasize the capacity restriction for hubs in the
collection and delivery processes, respectively. Given any feasible CSAHLRP solution, when
the total quantity of flow originating from the supplier subset SI is larger than the capacity of
hub h, i.e. q(SI) > Γh, the suppliers in SI can’t be completely served by the vehicles from the
only hub h. There should exist at least one supplier in SI allocated to another hub. Therefore, it
needs at least two links from suppliers in subset SI to another hub than h or to another supplier
j /∈ SI served by another hub. Similar inequalities (5.30) are also valid for the delivery process
when the total amount of flow sent to the client subset SJ exceeds the capacity of hub h.

5.3.5 Strengthened hub degree valid inequalities and disaggregated co-
circuit constraints

Inspired from the depot degree constraints of Belenguer et al. [26] and the disaggregated
facility degree constraints of Contardo [45] for the capacitated location-routing problem, we
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developed the strengthened hub degree (SHD) inequalities for the CSAHLRP, and named them
SHD in order to distinguish them from the hub degree constraints (5.16) and (5.17). They are
valid for the CSAHLRP when the edge distances satisfy the triangle inequality. The SHD valid
inequalities for the CSAHLRP are given as follows:∑

i∈SI

xkki +
∑
i∈SI

∑
j∈SI

xkij ≤ 2zkk + |SI | − 1 ∀SI ⊆ I, q(SI) ≤ Q,∀k ∈ H (5.31)∑
j∈SJ

xkkj +
∑
i∈SJ

∑
j∈SJ

xkij ≤ 2zkk + |SJ | − 1 ∀SJ ⊆ J, q(SJ) ≤ Q,∀k ∈ H (5.32)

Inequalities (5.31) are for the collection process and (5.32) are for the delivery process. They
are valid for the subsets S for which the total quantity of flow q(S) doesn’t exceed the vehicle
capacity Q.

Proposition 5.3.1 Inequalities (5.31) and (5.32) are valid for the CSAHLRP.
Proof. We consider the inequalities (5.31) as an example. There are two cases based on the

value of zkk to verify them. Firstly when zkk = 0, it means that the hub k will not be open.
Then the left side of (5.31) will be zero, i.e.

∑
i∈SI

xkki+
∑

i∈SI

∑
j∈SI

xkij = 0 and 0 ≤ |SI |−1
always holds. In another case where zkk = 1, the right side of (5.31) will be |SI | + 1. If
q(SI) ≤ Q, all the suppliers in SI can be at most served by one vehicle starting from the hub
k under the assumption that edge distances hold the triangular inequalities. Indeed, if there are
more than one vehicle from hub k visiting these suppliers, they can always be merged into one
vehicle aiming to saving the distance cost and the vehicle number used by this hub. Therefore,
inequality

∑
i∈SI

xkki +
∑

i∈SI

∑
j∈SI

xkij ≤ |SI |+ 1 holds. Similar proof can be extended to the
inequalities (5.32).

The other family of valid inequalities are called as disaggregated co-circuit (DCoCC) con-
straints and are based on the ones proposed by Contardo [45] for a three-index formulation of
the CLRP. We have adapted them for the CSAHLRP as follows:∑
(i,j)∈{δ(SI)\FI}

xkij ≥
∑

(i,j)∈FI

xkij − |FI |+ 1 ∀k ∈ H,∀SI ⊆ I,∀FI ⊂ δ
′
(SI : I \ SI), |FI |is odd

(5.33)∑
(i,j)∈{δ(SJ )\FJ}

xkij ≥
∑

(i,j)∈FJ

xkij−|FJ |+1 ∀k ∈ H,∀SJ ⊆ J,∀FJ ⊂ δ
′
(SJ : J\SJ), |FJ |is odd

(5.34)
where F with odd size is a subset of edges with one end-node in SI or SJ and the other in I \SI
or J \ SJ . These constraints are valid if the return trips are not considered in F . In this case,
the number of other edges used in the feasible solution must still be an even due to the circuit
vehicle routes. The return trip is the vehicle route serving only one supplier or one client.

Proposition 5.3.2 Inequalities (5.33) and (5.34) are valid for the CSAHLRP.
Proof. Let use the constraints (5.33) as an example where

∑
(i,j)∈FI

xkij ≤ |FI | for FI ⊂
δ
′
(SI : I \ SI) always holds.

If
∑

(i,j)∈FI
xkij < |FI |, constraints (5.33) are obviously satisfied because the right side is

non-positive.
If
∑

(i,j)∈FI
xkij = |FI |, then the right side will be 1. In this case, the left side

∑
(i,j)∈{δ(SI)\FI} x

k
ij

has two possibilities. If the set δ(SI)\FI involve return trips from hub k, then
∑

(i,j)∈{δ(SI)\FI} x
k
ij ≥

1 always holds. Otherwise, because
∑

(i,j)∈FI
xkij = |FI | indicates that all the edges in FI are

visited by vehicles starting from hub k, it follows that there must be at least one edge existing
in δ(SI) \ FI linked to hub k because |FI | is odd. Therefore,

∑
(i,j)∈{δ(SI)\FI} x

k
ij ≥ 1.

Similarly, constraints (5.34) are valid for the delivery process of the CSAHLRP.
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5.3.6 Generalized large multistar inequalities

The last exponential-size inequalities are derived from the generalized large multistar (GLM)
inequalities, which were presented for the CVRP [133] and have been utilized for the LRP [110].
The original form for the CVRP is given as follows:

Q
′
x
′
(E
′
(S
′
)) +

∑
j∈Vc\S′

q
′

jx
′
(E
′
(S
′
: {j})) ≤ Q

′|S| − q′(S) (5.35)

where Vc denotes the set of customers in CVRP; S ′ ⊂ Vc, |S
′ | ≥ 2 is a subset of customer

set called as a nucleus; E ′(S ′) is the set of edges with both end-nodes in S ′; while E ′(S ′ :
{j}) denotes the set of edges with one end-vertex in S

′ and the other one is j called as a
satellite [128]. In addition, Q′ is the vehicle capacity, q′j is the demand for each customer j
and q′(S ′) =

∑
j∈S′ q

′
j denotes the total demand of customers in subset S ′ . The variable x′ij

represents the number of times the edge (i, j) is used in the CVRP solution. And x′(E ′(N)) =∑
(i,j)∈E′ (N) x

′
ij .

As mentioned above, if all hubs are shrunk into one large fictive hub, the collection process
of the CSAHLRP corresponds to a capacitated vehicle routing problem. Then the relationship
between the variable x′ij of the CVRP and the variable xkij in formulation CSAHLRP-B&C is
expressed as x′ij =

∑
k∈H x

k
ij , for (i, j) ∈ E, i < j. Then based on this relationship as well as

between corresponding parameters, the adapted GLM inequality for the collection and delivery
processes of the CSAHLRP are given as follows, respectively:

Q
∑
k∈H

∑
i∈SI

∑
j∈SI ,i<j

xkij +
∑
i∈I\SI

Oi

∑
k∈H

∑
(i,j)∈δ′ (SI :{i})

xkij ≤ Q|SI | − q(SI) ∀SI ⊂ I, |SI | ≥ 2

(5.36)
Q
∑
k∈H

∑
i∈SJ

∑
j∈SJ ,i<j

xkij +
∑

j∈J\SJ

Dj

∑
k∈H

∑
(i,j)∈δ′ (SJ :{j})

xkij ≤ Q|SJ | − q(SJ) ∀SJ ⊂ J, |SJ | ≥ 2

(5.37)

5.4 Branch-and-cut algorithm

In this section, our branch-and-cut algorithm for the CSAHLRP is described based on
the framework presented in Algorithm 5. Initially, a linear program (LP) of the formulation
CSAHLRP-B&C is built, containing the objective function and some constraints described later.
Then, at each node of the search tree, we solve the current LP and look for a set of violated in-
equalities among those presented in section 5.3 by solving the separation problem. The violated
constraints are added to the current LP, which is optimized again. This process stops when no
more violated cuts can be found. If there are also fractional values for integer variables, the
branching is implemented. If all the integer constraints are satisfied, a new node is explored un-
til an optimal solution is found or the limited time is arrived. The main implementation features
of our B&C algorithm are discussed below.

5.4.1 Initial linear relaxation

To initialize the LP model of the formulation CSAHLRP-B&C, the complex constraints
(5.2) and (5.5) are relaxed as well as the integer constraints on the variables of the original
formulation to reduce the size of the LP model and efficiently solve the model. In addition,
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we relax the constraints (5.4) and (5.7), which are replaced by the hub degree valid inequalities
(5.16) and (5.17), respectively. The open hub limitation inequality (3.46) is also contained in
the initial LP model to limit the number of open hubs at the root node. Hence, the initial LP
model LF is defined as follows:

Min
∑
k∈H

Fkzkk +
∑
i∈I

∑
j∈J

∑
k∈H

∑
l∈H

αdklqijYijkl +
∑
k∈H

∑
i∈I∪H,i<j

∑
j∈I

βdijx
k
ij

+
∑
k∈H

∑
i∈J∪H,i<j

∑
j∈J

γdijx
k
ij +

fv
2

∑
k∈H

∑
i∈i∪J

xkki (5.38)

subject to constraints (3.2)-(3.5), (3.38), (3.39), (5.3), (5.6) and continuous relaxation of deci-
sion variables, together with valid inequalities (3.46), (5.16) and (5.17).

5.4.2 Separation procedures and branching strategy

An important step in the B&C algorithm is the design of the separation procedures which
decide how to identify violated inequalities in the cutting plane scheme. For the constraints pre-
sented in section 5.3, several algorithms are applied to find the violated ones from the current
LP solution. Most of them are heuristic methods which have been used in the CVRP or the
CLRP for some similar inequalities.

Separation of the simple valid inequalities
The polynomial-size inequalities, i.e. simple valid inequalities (5.18)-(5.22), are separated

by a complete enumeration and the violated cuts are added into the LP model at each node.
Separation of the RRC constraints
To separate the RRC constraints (5.27)-(5.28), a greedy randomized algorithm is applied, as

in the CVRP [3, 16] and in the vehicle covering tour problem [95]. It is an iterative procedure
that is applied to a number of subsets SI ⊆ I and SJ ⊆ J generated a priori. Here, we use the
collection process as an example to illustrate this heuristic. Given an initial subset of suppliers
SI , at each iteration, it is updated with a new supplier that maximizes x(δ(SI : i)) over all
i ∈ I \ SI . Let i∗ ∈ I \ SI be the new added supplier who should satisfy

∑
k∈H

(
∑

u∈SI ,u<i∗

xkui∗ +
∑

u∈SI ,u>i∗

xki∗u) = maxi∈I\SI

[∑
k∈H

(
∑

u∈SI ,u<i

xkui +
∑

u∈SI ,u>i

xkiu)

]
(5.39)

Then the constraint (5.27) is checked for the subset SI
⋃
i∗. If the current solution violates this

constraint, it is added to the LP model, and SI is updated.
In this separation algorithm (shown in Algorithm 6), the initial subset SI is generated with a

single supplier from a seed set ΥI which includes half of the supplier nodes selected randomly
[110]. After the initialization of SI , it is iteratively expanded by a new supplier node i∗ based on
the above criteria. Then the constraint (5.27) violation is checked for SI ∪ i∗. The violated ones
are stored into the identified inequality set K and added to the model. This process is repeated
until all suppliers are contained into the set SI . Then the next seed from Υ is considered as the
initial subset SI and the above steps are repeated until the ΥI is empty. During this process,
a checking duplicate policy is implemented in the set K to avoid the generation of previously
identified subset. At the same time, the constraint (5.28) is also checked based on the set of
clients with a similar method. The detailed steps of this separation algorithm for the RRC
constraints are presented in Algorithm 6.
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Algorithme 6 Separation algorithm for the RRC constraints (5.27) and (5.28)
1. Generate a supplier seed set ΥI which randomly includes half of the supplier set nodes;

Generate a client seed set ΥJ which randomly includes half of the client set nodes.
2. Repeat

2.1. Initialize randomly SI with a supplier i ∈ ΥI as well as SJ with a client j ∈ ΥJ ;

2.2. SI ← i, SJ ← j, ΥI ← ΥI \ i and ΥJ ← ΥJ \ j;
2.3. Repeat

• Select next supplier i∗ and next client j∗ such that

∑
k∈H

(
∑

u∈SI ,u<i∗

xkui∗ +
∑

u∈SI ,u>i∗

xki∗u) = maxi∈I\SI

∑
k∈H

(
∑

u∈SI ,u<i

xkui +
∑

u∈SI ,u>i

xkiu)


∑
k∈H

(
∑

l∈SJ ,l<j∗

xklj∗ +
∑

l∈SJ ,l>j∗

xkj∗l) = maxj∈J\SJ

∑
k∈H

(
∑

l∈SJ ,l<j

xklj +
∑

l∈SJ ,l>j

xkjl)


• SI ← SI ∪ i∗, SJ ← SI ∪ j∗;

Check the violation of constraint (5.27) for SI and constraint (5.28) for SJ .

• Add the violated ones to the LP model and store them in set K after repetitive inspection.

Until SI = I and SJ = J .

Until ΥI = ∅ and ΥJ = ∅.

To separate the hub capacity valid inequalities (5.29)-(5.30), the SHD inequalities (5.31)-
(5.32) and the GLM inequalities (5.36)-(5.37), similar heuristics as Algorithm 6 are imple-
mented.

Separation of the hub capacity valid inequalities
The separation of the hub capacity valid inequalities (5.29)-(5.30) is performed as in Algo-

rithm 6, but the procedure only considers subsets SI ⊆ I and SJ ⊆ J for each hub h ∈ H , such
that q(SI) > Γh and q(SJ) > Γh.

Separation of the SHD inequalities
The violation of SHD inequalities (5.31) and (5.32) are checked for each hub and the same

subsets SI and SJ as generated in Algorithm 6, respectively. But they should satisfy q(SI) ≤ Q
and q(SJ) ≤ Q.

Separation of the GLM inequalities
The GLM inequalities are checked for the shrunk fictive depot and each generated subsets

SI and SJ but not including all suppliers and clients. Therefore, in order to reduce the compu-
tational time, the seed sets ΥI and ΥJ for them are generated randomly with only one supplier
and one client, respectively.

Separation algorithm for the DCoCC constraints
About the separation algorithm for the DCoCC constraints (5.33) and (5.34), the genera-

tion of sets SI and Sj keeps the same as the Algorithm 6 for the SHD inequalities. Then for
these sets, it needs to look for subsets FI ⊂ δ(SI) and FJ ⊂ δ(SJ) that define the violated
constraints (5.33) and (5.34) for each hub k ∈ H , respectively. Here, a heuristic procedure, as
for the CLRP [45], is applied to delimit the edge sets FI and FJ and to minimize the left side
of constraints (5.33) and (5.34). Given a subset SI and hub k, the generation of the subset FI
can be executed in a linear time by defining FI = {(i, j) ∈ δ(SI) : xkij ≤ 1/2}. If |F | is even,
then either add to or remove from FI the edge in δ(SI) minimizing the variety of the left side
of (5.33). The similar process is implemented to generate subset FJ . Then, for each supplier
set SI and generated set FI , and also for each client set SJ and edge set FJ , the corresponding
DCoCC constraint is checked for each hub until all suppliers and clients are included in SI and
SJ , respectively. Finally, violated identified inequalities are stored in the set K.
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Strategies to generate the cuts
Based on the preliminary experiments presented in Section 5.5, the following strategies are

utilized to decide when and where the above separation algorithms are used to identify the
corresponding violated inequalities at each node of the complete B&C algorithm. Firstly, the
separation approach for the simple valid inequalities (5.18)-(5.22) is called to generate a set of
violated cuts whose maximum size is limited to 100. Then the separation algorithm for the
RRC constraints (5.27)-(5.28) is called to generate corresponding violated cuts until no one
is found. Finally, the separation routines for the SHD valid inequalities (5.31)-(5.32) and the
GLM inequalities (5.36)-(5.37) are applied sequentially to generate the sets of corresponding
violated. The maximum number of cuts for the SHD inequalities is limited to 20 and to 50 for
the GLM inequalities. These values have been fixed after some preliminary tests. If no violated
cuts for the two valid inequalities (the SHD and the GLM) are found, the separation algorithm
for the hub capacity valid inequalities (5.29)-(5.30) is called to identify a set of corresponding
violated cuts whose maximum size is limited to 10. The separation method for the DCoCC
constraints (5.33)-(5.34) is called finally if no above violated cuts are found and the maximum
size is limited to 10. All above violated inequalities found by the separation strategy are stored
in the set K and added to the LP model if K is not empty. Then the model is optimized again
until an optimal solution is obtained or the limited computational time is reached.

Our branch-and-cut algorithm is built in C++ using the Concert Technology framework
of CPLEX 12.5, where some default cuts are used to improve the lower bounds. In order to
turn off some useless CPLEX cuts and reduce the computational time, some tests were done
by activating each CPLEX cut one by one in the B&C algorithm. We observed that the four
CPLEX cuts (the flow path cut, the disjunctive cut, the GUB cut and the flow cover cut) were
useless for our problem and then were turned off in the complete B&C algorithm. Moreover, in
order to avoid errors due to floating point arithmetic, a certain tolerance ε > 0 should be used
for checking the violation of each cut [45]. After several tests, we use ε = 0.1 for all of the cuts
except for the generation of the RRC cut where the tolerance is set to ε = 0.01.

Branching techniques
We have tested several branching strategies such as branching on the allocation variables z

before the routing variables x, branching on the flow variables Y before the routing variables
x and branching on the allocation variables z before the flow variables Y . But none of these
strategies outperform the CPLEX branching, so we let CPLEX make the branching decisions.
In addition, at the root node of the search tree, we introduce the solution provided by the MA as
an initial feasible solution of the B&C algorithm, and the best objective value obtained by the
MA for each instance is imported as an upper bound of the optimal solution value, at the root
node of the branching tree.

5.5 Computational experiments and results

In this section, we describe the computational experiments and results of the branch-and-
cut algorithm based on the instances generated in Chapter 3. In order to give a comprehensive
evaluation of the algorithm, we firstly investigate how each family of valid inequalities affects
the linear relaxation. Then the complete B&C algorithm, with all the efficient cuts, is evaluated
by comparing the results with the ones obtained by the solver CPLEX (Chapter 3) and the
memetic algorithm (Chapter 4), respectively. In addition, all experiments have been conducted
on a computer with Intel Core i3 CPU of 2.93 GHz and 6 GB of memory, under the Window 7
Operating System.
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5.5.1 Effect evaluations of valid inequalities

Following the experimental study of Karaolan et al. [110], a first experiment has been con-
ducted to study the effects of each family of valid inequalities on strengthening the LP relaxation
formulation. These experiments are based on all the small and medium instances generated in
Chapter 3. Table 5.1 and 5.2 report the results obtained by solving the LP relaxation of the orig-
inal formulation (without cuts) and the enlarged formulation by adding one family of valid in-
equalities in the cutting plane at a time. In the two tables, the computational results are analyzed
using a lower bound percentage gap %LB0 and the number of corresponding valid inequalities
Num found by the corresponding formulation, to compare the effects of each family of valid
inequalities. Here, the gap %LB0 is calculated as %LB0 = (UB − LB0)/UB ∗ 100%, where
UB is the upper bound provided by the best solution value obtained by the proposed B&C al-
gorithm, and LB0 is the LP relaxation bound given by the studied formulation. Except these
notations, the first two columns in each row give the name of each test instance. And the third
column give the value of the LP relaxation bound LB0 obtained by the original formulation.

Table 5.1 shows the results for the simple (Sim) valid inequalities (5.18)-(5.22), the rounded
route capacity (RRC) constraints (5.27)-(5.28) and the hub capacity (HC) valid inequalities
(5.29)-(5.30), and Table 5.2 for the strengthened hub degree (SHD) valid inequalities (5.31)-
(5.32), the disaggregated co-circuit (DCoCC) inequalities (5.33)-(5.34) and the generalized
large multistar (GLM) inequalities (5.36)-(5.37).

As seen in the two tables, the original formulation without additional cuts has large lower
bound percentage gaps (22.32% on average) for all test instances. The worst case is more than
29% for the instances with 40 non-hub nodes. Obviously, this performance is improved by
adding a family of valid inequality at a time to the original formulation. Among all of the
valid inequalities, the RRC constraints give the best improvement and reduce the average gap
to 16.32% for all the test instances with almost 6% improvement on average. Depending on
the number of potential hubs (3, 6 and 10), the reduction is about 8%, 5% and 4% on average,
respectively. In addition, the GLM and SHD valid inequalities are also efficient and reduce
the average percentage gaps by around 2.0% and 1.3% for all the test instances, respectively.
Finally, the simple valid inequalities and hub capacity valid inequalities lead to slight improve-
ments. However, the DCoCC inequalities don’t improve the lower bounds.

Moreover, from the column labeled Num, it can be noted that the family of the RRC con-
straints is the most used, following by the simple and the GLM valid inequalities. The other
three families of valid inequalities are rarely used, especially the DCoCC constraints which
have not been identified in the cutting plane. Thus we decided not to include the DCoCC valid
inequalities in the implementation of the complete B&C algorithm.

5.5.2 Results of the complete branch-and-cut algorithm

The complete branch-and-cut algorithm has been run on all instances generated in Chapter
3 with a time limit of 10800s (3 hours). In order to evaluate the performance of our B&C
algorithm, we compare the results with those obtained by the solver CPLEX, for the small
and medium instances (shown in Table 5.3). We also test the branch-and-cut algorithm with
and without an initial solution provided by the memetic algorithm (MA). The B&C algorithm
without initial solution is named B&C0. However, for the large instances, the B&C results are
compared to the ones obtained by the MA in Chapter 4 (shown in Table 5.4) because CPLEX
and the B&C0 didn’t find solutions within the time limit or for out of memory.

Table 5.3 depicts the computational results obtained by the complete B&C, the B&C0

and CPLEX based on the CSAHLRP-F4 formulation presented in Chapter 3 for all small and
medium instances. The first two columns in this table give the information about the test in-
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Table 5.1: Effects of the valid inequalities (Sim, RRC and HC)
Instance name

UB
Original Sim RRC HC

H-I-J Γk LB0 %LB0 %LB0 Num %LB0 Num %LB0 Num

3-5-5

15 3867.85 3558.54 8.00 4.22 44 8.00 4 6.55 1
30 3068.00 2709.60 11.68 11.68 0 0.00 19 11.68 0
45 3068.00 2709.60 11.68 11.68 0 0.00 19 11.68 0

3-10-10

45 7613.94 5800.59 23.82 23.57 79 19.88 136 23.82 0
60 6828.25 5720.15 16.23 16.15 44 6.41 191 16.23 0

120 6249.60 5057.60 19.07 19.04 18 3.14 253 19.07 0

3-15-15

45 10614.20 8302.15 21.78 21.64 74 18.91 160 21.78 0
75 8940.28 7289.83 18.46 18.41 76 14.31 272 18.46 0

135 8232.80 6584.80 20.02 19.97 32 10.18 319 20.02 0

3-20-20

60 11737.60 8608.86 26.66 26.63 103 19.81 419 25.62 3
90 10348.40 7603.83 26.52 26.46 95 19.85 298 26.52 0

165 9336.80 6612.00 29.18 29.18 0 12.08 667 29.18 0

3-25-25

75 12828.40 9551.64 25.54 25.49 116 18.90 544 25.54 0
105 12057.20 8675.37 28.05 28.03 122 24.78 416 28.05 0
195 11093.60 8011.20 27.79 27.75 65 17.03 1028 27.79 0

6-10-10

45 7613.94 5751.31 24.46 24.41 122 19.76 65 24.46 0
60 6828.25 5699.56 16.53 15.13 92 8.95 121 16.53 0

120 6249.60 5057.60 19.07 19.04 36 6.16 264 19.07 0

6-15-15

45 9581.90 7835.25 18.23 18.18 152 16.27 190 18.23 0
75 8940.28 7135.00 20.19 20.18 91 18.26 198 20.19 0

135 8232.80 6584.80 20.02 19.94 38 14.00 288 20.02 0

6-20-20

60 10640.92 8162.53 23.29 23.26 223 22.47 310 23.18 2
90 9793.74 7289.49 25.57 25.36 202 23.13 270 23.22 2

165 9336.80 6612.00 29.18 29.18 0 20.60 386 29.18 0

6-25-25

75 12621.48 9473.83 24.94 24.92 214 22.30 448 24.94 0
105 11854.31 8649.27 27.04 27.02 231 23.10 437 27.04 0
195 11093.60 8011.20 27.79 27.75 67 19.68 644 27.79 0

10-10-10

45 7366.06 5637.44 23.47 23.45 125 20.75 101 23.47 0
60 6828.25 5614.15 17.78 17.70 176 16.67 68 17.78 0

120 6249.60 5057.60 19.07 19.04 34 8.30 212 19.07 0

10-15-15

45 9447.72 7582.80 19.74 19.72 226 19.47 11 19.74 0
75 8594.36 6845.63 20.35 20.28 201 16.31 158 20.35 0

135 8232.80 6322.40 23.20 23.20 0 15.06 240 23.20 0

10-20-20

60 10619.89 8009.58 24.58 24.45 306 23.37 303 24.11 1
90 9793.74 7217.20 26.31 26.27 220 23.26 207 26.31 0

165 9065.60 6563.20 27.60 25.40 42 19.50 282 27.60 0

10-25-25

75 12226.42 9396.93 23.14 22.31 397 21.38 441 23.14 0
105 11692.22 8591.11 26.52 25.64 311 23.42 503 26.52 0
195 11093.60 8011.20 27.79 27.70 99 21.14 549 27.79 0

Average 22.32 22.04 115 16.32 293 22.18 1
Average in 3-hub instances 20.97 20.66 58 12.88 316 20.87 0
Average in 6-hub instances 23.03 22.87 122 17.89 302 22.82 1

Average in 10-hub instances 23.30 22.93 178 19.05 256 23.26 0
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Table 5.2: Effects of valid inequalities (SHD, DCoCC and GLM) for the original formulation
Instance name

UB
Original SHD DCoCC GLM

H-I-J Γk LB0 %LB0 %LB0 Num %LB0 Num %LB0 Num

3-5-5

15 3867.85 3558.54 8.00 7.76 2 8.00 0 5.13 2
30 3068.00 2709.60 11.68 5.11 6 11.68 0 11.68 0
45 3068.00 2709.60 11.68 5.11 6 11.68 0 11.68 0

3-10-10

45 7613.94 5800.59 23.82 22.30 2 23.82 0 22.46 13
60 6828.25 5720.15 16.23 14.88 9 16.23 0 14.40 11

120 6249.60 5057.60 19.07 19.07 0 19.07 0 10.66 29

3-15-15

45 10614.20 8302.15 21.78 21.19 4 21.78 0 20.46 25
75 8940.28 7289.83 18.46 15.27 19 18.46 0 16.33 47

135 8232.80 6584.80 20.02 13.38 26 20.02 0 19.60 32

3-20-20

60 11737.60 8608.86 26.66 26.49 2 26.66 0 22.06 269
90 10348.40 7603.83 26.52 26.52 0 26.52 0 21.57 238

165 9336.80 6612.00 29.18 29.18 0 29.18 0 29.18 0

3-25-25

75 12828.40 9551.64 25.54 25.37 2 25.54 0 21.34 356
105 12057.20 8675.37 28.05 27.44 16 28.05 0 24.14 236
195 11093.60 8011.20 27.79 27.79 0 27.79 0 23.05 175

6-10-10

45 7613.94 5751.31 24.46 24.04 1 24.46 0 22.19 15
60 6828.25 5699.56 16.53 14.36 8 16.53 0 14.10 16

120 6249.60 5057.60 19.07 18.23 2 19.07 0 15.64 24

6-15-15

45 9581.90 7835.25 18.23 16.39 6 18.23 0 17.25 27
75 8940.28 7135.00 20.19 17.80 4 20.19 0 19.30 20

135 8232.80 6584.80 20.02 16.62 12 20.02 0 17.77 23

6-20-20

60 10640.92 8162.53 23.29 22.13 12 23.29 0 22.07 120
90 9793.74 7289.49 25.57 23.00 17 25.57 0 23.69 95

165 9336.80 6612.00 29.18 29.18 0 29.18 0 29.18 0

6-25-25

75 12621.48 9473.83 24.94 24.89 2 24.94 0 24.25 130
105 11854.31 8649.27 27.04 26.71 4 27.04 0 26.29 114
195 11093.60 8011.20 27.79 27.79 0 27.79 0 24.85 118

10-10-10

45 7366.06 5637.44 23.47 23.09 2 23.47 0 22.86 5
60 6828.25 5614.15 17.78 16.85 2 17.78 0 17.68 2

120 6249.60 5057.60 19.07 18.23 3 19.07 0 18.23 10

10-15-15

45 9447.72 7582.80 19.74 18.45 5 19.74 0 18.97 14
75 8594.36 6845.63 20.35 17.69 17 20.35 0 19.35 13

135 8232.80 6322.40 23.20 23.20 0 23.20 0 23.20 0

10-20-20

60 10619.89 8009.58 24.58 24.57 1 24.58 0 23.54 69
90 9793.74 7217.20 26.31 25.74 5 26.31 0 24.71 63

165 9065.60 6563.20 27.60 27.07 12 27.60 0 23.02 100

10-25-25

75 12226.42 9396.93 23.14 23.08 4 23.14 0 23.09 24
105 11692.22 8591.11 26.52 25.67 1 26.52 0 26.34 31
195 11093.60 8011.20 27.79 27.17 14 27.79 0 26.99 23

Average 22.32 20.99 6 22.32 0 20.47 64
Average in 3-hub instances 20.97 19.12 6 20.97 0 18.25 96
Average in 6-hub instances 23.03 21.76 6 23.03 0 21.38 59

Average in 10-hub instances 23.30 22.57 6 23.30 0 22.33 30
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stances as in the previous tables. The column labeled UB displays the upper bound for each
instance provided with the best-known solution value obtained by all methods. Then suc-
cessive columns compare the performance of the three methods. The first one denoted as
Gap% is the deviation percentage of the lower bound LB found from the upper bound, i.e.
Gap% = (UB − LB)/UB × 100%. The second one is the total number of nodes inspected
during the branching tree of each method. And the last one is the total running time in seconds.

Table 5.3 shows that the B&C algorithm (with or without initial solution) can always provide
a feasible solution, even when Cplex cannot obtain one as for instance 6-25-25. Moreover, 17
instances out of the 36 are solved to optimality by the complete B&C algorithm within 10
minutes on average, including one instance with 30 non-hub nodes and 10 potential hubs. In
the same time, Cplex can only find 3 optimal solutions. For the 19 instances unsolved optimally,
the gaps between the lower bound and the upper bound is between 0.57% and 8.23% with an
average value of 3.84%. Meantime, 34 instances have a gap lower than 6%. With respect to the
instances with 3 potential hubs, 8 out of 15 instances are optimally solved within 6 minutes and
the average gap is 1.15% for all considered instances. For the instances with 6 or 10 potential
hubs, the average gaps are around 3% and 2%, respectively.

Comparing the results obtained with the introduction of the initial solution provided by the
MA and without (B&C0), we can notice the important impact of the initial solution, reducing
the average gap (2.03% versus 3.10%) for all the small and medium instances. The initial
solution also greatly reduces the number of nodes in the search tree for 30 instances among the
36 (4904 versus 44601, on average). Moreover, all the best solution values reported in column
UB have been found by the complete B&C. These results indicate the good effectiveness of
the initial solutions on the performance of the B&C algorithm. Finally, the comparative results
with those obtained by CPLEX show that the B&C outperforms CPLEX for the test instances
in terms of the number of reached optimal solutions, the average gap (2.03% versus 16.82%),
the number of explored nodes in the search tree (4904 versus 82237) and the average running
time (5913.81s versus 9818.72s).

Table 5.4 reports the results obtained by the complete B&C algorithm for the large instances
and compares them with those obtained by the MA in Chapter 4. In this table, Z∗ is the value
of the final solution found by the B&C algorithm or the value of the initial solution if the B&C
fails to improve a solution. The values in bold indicate the new solution found by B&C. Except
the instance name and Z∗, the following notations are used in Table 5.4:

• UB%: the gap between the best value UB found by the B&C within 3 hours and the
value of Z∗, i.e. UB% = (UB − Z∗)/Z∗ × 100%.

• LB%: the deviation in % of the upper bound from the lower bound LB found by the
complete B&C. Here, LB% = (UB − LB)/UB × 100%.

• Time (s): CPU time in seconds used by the corresponding method.

• Open hubs: the index of the located hubs in the best solution found by the corresponding
method.

• BestObj: the best objective value found by the MA in 10 runs;

• UB′%: the percentage gap between the best value BestObj obtained by the proposed
MA and the value of Z∗, Here, UB′% = (BestObj − Z∗)/Z∗ × 100%.

• LB′%: the deviation in % between the BestObj of the MA and the lower bound LB
obtained by the complete B&C, i.e. LB′% = (BestObj − LB)/BestObj × 100%.

From Table 5.4, it can be observed that the completed B&C has not solved the large in-
stances to optimality but finds 18 new best solutions out of the 33 instances including three
6-50-50 instances and two 10-50-50 instances. The average lower bound gap LB% for all
large instances varies between 5.32% and 25.70% and 15 instances have LB% gaps less than
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Table 5.3: Results comparison for the small and medium instances with B&C0 and CPLEX
Instance name

UB
Complete B&C B&C0 CPLEX-F4

H-I-J Γk Gap% Nodes Time (s) Gap% Nodes Time(s) Gap% Nodes Time(s)

3-5-5

15 3867.85 0.00 0 0.11 0.00 0 0.09 0.00 3457 8.03
30 3068.00 0.00 0 0.14 0.00 0 0.14 0.00 2381 4.87
45 3068.00 0.00 0 0.09 0.00 0 0.14 0.00 2381 5.01

3-10-10

45 7613.94 0.00 1318 15.94 0.00 3453 16.69 4.93 448951 10800.00
60 6828.25 0.00 127 3.49 0.00 254 3.71 0.98 127031 10800.00
120 6249.60 0.00 0 3.62 0.00 20 4.51 1.60 355489 10800.00

3-15-15

45 10614.20 1.68 29023 10800.00 2.19 475519 10800.00 18.03 177464 10800.00
75 8940.28 0.00 23178 356.95 0.00 39893 434.24 16.20 236187 10800.00
135 8232.80 0.00 5932 202.92 0.00 6883 200.06 11.21 143788 10800.00

3-20-20

60 11737.60 5.12 9677 10800.00 6.46 124760 10800.00 25.49 100179 10800.00
90 10348.40 1.74 10411 10800.00 2.29 253800 10800.00 27.45 101564 10800.00
165 9336.80 0.57 13497 10800.00 1.96 175915 10800.00 27.37 104298 10800.00

3-25-25

75 12828.40 5.69 2404 10800.00 6.81 65200 10800.00 22.73 24677 10800.00
105 12057.20 1.66 3117 10800.00 2.25 35514 10800.00 25.95 20281 10800.00
195 11093.60 0.81 3154 10800.00 2.55 56714 10800.00 25.67 22034 10800.00

6-10-10

45 7613.94 0.00 6895 111.58 0.00 8084 172.21 14.25 125311 10800.00
60 6828.25 0.00 147 16.72 0.00 194 15.19 6.93 164351 10800.00
120 6249.60 0.00 30 9.56 0.00 31 11.70 6.36 186270 10800.00

6-15-15

45 9581.90 1.84 14685 10800.00 2.79 65485 10800.00 15.42 68436 10800.00
75 8940.28 0.00 6665 3057.11 0.00 78417 4773.01 17.91 40620 10800.00
135 8232.80 0.00 6079 1039.90 0.00 22397 1152.57 15.34 21913 10800.00

6-20-20

60 10640.92 5.31 1040 10800.00 8.50 16556 10800.00 25.27 16710 10800.00
90 9793.74 4.49 1370 10800.00 7.58 20648 10800.00 27.51 19861 10800.00
165 9336.80 3.07 1768 10800.00 3.55 34500 10800.00 32.35 15900 10800.00

6-25-25

75 12621.48 8.23 181 10800.00 13.98 7444 10800.00 NFS
105 11854.31 8.05 240 10800.00 10.45 6852 10800.00 NFS
195 11093.60 5.26 271 10800.00 7.02 8042 10800.00 NFS

10-10-10

45 7366.08 0.00 1208 209.712 0.00 16276 1026.35 16.62 22942 10800.00
60 6828.25 0.00 451 146.05 0.00 2338 197.248 11.79 53737 10800.00
120 6249.60 0.00 51 54.887 0.00 225 68.3596 7.72 77734 10800.00

10-15-15

45 9447.72 3.86 979 10800.00 5.13 19931 10800.00 18.65 6297 10800.00
75 8594.36 1.90 1090 10800.00 3.65 22209 10800.00 21.99 10080 10800.00
135 8232.80 0.00 1533 2468.28 0.00 20109 4286.28 22.44 3161 10800.00

10-20-20

60 10619.89 5.48 11300 10800.00 9.59 6705 10800.00 26.51 1764 10800.00
90 9793.74 4.89 8972 10800.00 8.82 6688 10800.00 29.28 4465 10800.00
165 9065.60 3.34 9742 10800.00 5.98 4567 10800.00 31.26 4114 10800.00

Average 2.03 4904 5913.81 3.10 44601 6043.40 16.82 82237 9818.72
Average in 3-hub instances 1.15 6789 5078.88 1.63 82528 5083.97 13.84 124677 8641.19
Average in 6-hub instances 3.02 3281 6652.91 4.49 22388 6810.39 17.93 73264 10800.00
Average in 10-hub instances 2.16 3925 6319.88 3.69 11005 6619.80 20.70 20477 10800.00
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Table 5.4: Results comparison for the large instances with the memetic algorithm
Instance name

Z∗
Completed B&C MA

H-I-J Γk UB% LB% Time(s) Open
hub UB

′
% LB

′
% Time(s) Open

hub

6-30-30

90 14222.26 0.00 9.45 10800.00 1, 3, 5 0.00 9.45 107.66 1, 3, 5
120 13207.59 0.00 9.00 10800.00 1, 5 0.00 9.00 118.26 1, 5
240 12437.00 0.00 5.76 10800.00 5 0.13 5.89 110.79 5

6-35-35

90 16775.89 0.00 9.38 10800.00 1, 5, 6 0.00 9.38 204.97 1, 5, 6
135 16111.84 0.00 8.62 10800.00 5, 6 1.34 9.83 185.30 5, 6
270 16037.30 0.00 6.01 10800.00 5, 6 1.07 7.01 173.63 1

6-40-40

90 16135.02 0.00 14.00 10800.00 1, 4, 5 0.00 14.00 346.04 1, 4, 5
135 14998.09 0.00 10.72 10800.00 1, 5 0.00 10.72 365.96 1, 5
255 14866.40 0.00 9.85 10800.00 1 0.17 10.00 295.06 1

6-45-45

105 16791.97 0.00 19.36 10800.00 1, 2, 5 2.32 21.18 569.05 1, 5, 6
150 16193.70 0.00 12.41 10800.00 5, 6 0.00 12.41 557.31 5, 6
285 15414.40 0.00 9.78 10800.00 6 0.06 9.84 526.08 6

6-50-50

105 18453.88 0.00 22.64 10800.00 2, 4, 6 1.09 23.47 988.75 2, 4, 6
150 16688.49 0.00 17.02 10800.00 4, 6 2.84 19.31 968.44 4, 6
300 16355.20 0.00 10.07 10800.00 4 0.63 10.63 955.55 4

10-25-25

75 12226.42 0.00 9.52 10800.00 3, 4, 7 0.87 10.30 102.82 3, 4, 7
105 11692.22 0.00 6.26 10800.00 3, 7 0.90 7.10 120.82 3, 7
195 11093.60 0.00 5.32 10800.00 3 0.00 5.32 111.84 3

10-30-30

90 13965.64 0.00 10.25 10800.00 1, 5, 9 0.00 10.25 262.53 1, 5, 9
120 13207.59 0.00 9.10 10800.00 1, 5 0.00 9.10 206.56 1, 5
240 12437.60 0.00 6.35 10800.00 5 0.00 6.35 193.75 5

10-35-35

90 16332.42 0.00 16.67 10800.00 5, 6, 9 2.10 18.38 479.97 1, 5, 8
135 16097.96 0.00 12.57 10800.00 5, 6 0.88 13.34 390.13 5, 6
270 16037.30 0.00 8.75 10800.00 5, 6 0.48 9.19 364.06 9

10-40-40

90 16135.02 0.00 16.00 10800.00 1, 4, 5 0.00 16.00 807.88 1, 4, 5
135 14998.09 0.00 13.49 10800.00 1, 5 0.00 13.49 782.80 1, 5
255 14866.40 0.00 9.03 10800.00 1 0.00 9.03 823.53 1

10-45-45

105 17135.03 0.00 20.72 10800.00 1, 5, 6 0.00 20.72 1461.31 1, 5, 6
150 16193.70 0.00 17.57 10800.00 5, 6 0.04 17.61 1314.53 5, 6
285 15389.60 0.00 11.76 10800.00 6 0.16 11.90 1281.28 6

10-50-50

105 17491.90 0.00 25.70 10800.00 4, 6, 7 0.00 25.70 2413.68 4, 6, 7
150 16814.98 0.00 23.71 10800.00 4, 6 2.02 25.22 2086.29 4, 6
300 16283.20 0.00 12.76 10800.00 4 0.72 13.39 2056.53 4

Average 0.00 12.41 10800.00 0.54 12.86 658.58
Average in 6-hub instances 0 11.60 10800.00 0.64 12.14 431.52
Average in 10-hub instances 0 13.08 10800.00 0.45 13.43 847.80
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10%. Compared to the results obtained by the MA, it can be seen that the completed B&C has a
smaller lower bound gap (12.41% versus 12.86%, on average) but a larger running time (10800s
versus 658.58s on average). It is also interesting to note that the B&C algorithm improves the
best solution for the instance 6-35-35 with 270t hub capacity, in increasing the number of open
hubs.

Computational results and details on the number of valid inequalities detected by our algo-
rithm and added to the LP during the complete B&C are given in Table 5.5-5.7. They show
the results for all generated instances with 3, 6 and 10 potential hubs, respectively. In these
tables, following the "instance name" column, columns 3-5 give the computational results ob-
tained in 3 hours for each instance including the upper bound UB, the deviation between the
lower bounds and upper bound Gap% and the total number of nodes in the branch-and-cut
tree. Then the columns 6-10 show the numbers of corresponding cuts found in our algorithm
including the simple valid inequalities (5.18)-(5.22), the rounded route capacity (RRC) con-
straints (5.27)-(5.28), the hub capacity (HC) valid inequalities (5.29)-(5.30), the strengthened
hub degree (SHD) valid inequalities (5.31)-(5.32) and the generalized large multistar (GLM)
inequalities. The last two columns in these tables provide the information on the best solutions
obtained by the B&C algorithm, in terms of the index of open hubs and the maximum number
of routes operated by one hub. On average for all the test instances, almost 76.1% of these valid
inequalities correspond to the RRC constraints, which are the most frequent ones. And the
GLM valid inequalities and simple valid inequalities are the second most frequent ones with a
percentage around 11.6% and 7.8% of all found cuts, respectively. This conclusion is consistent
with the one summarized in the first experiment to inspect the effects of each family of valid
inequalities. With respect to the instances with different number of potential hubs, the average
lower bound gaps are 1.15%, 7.79% and 9.44% for 3, 6 and 10 potential hubs, respectively. In
addition, it can be observed from each table that the number of non-hub nodes gives a greater
impact on the difficulty of solving this problem exactly, especially when the non-hub nodes
exceed 50.

Table 5.5: Number of valid equalities found by the complete B&C for instances with 3 hubs
Instance name

UB Gap% Nodes
Cuts Solution

H-I-J Γk Sim RRC HC SHD GLM Open
hub

Max of
routes

3-5-5

15 3867.85 0.00 0 0 13 0 0 8 1, 2 2
30 3068.00 0.00 0 0 20 0 4 0 1 4
45 3068.00 0.00 0 0 20 0 4 0 1 4

3-10-10

45 7613.94 0.00 1318 11 288 52 4 188 2, 3 8
60 6828.25 0.00 127 7 266 8 10 39 2, 3 9
120 6249.60 0.00 0 1 295 0 3 24 2 15

3-15-15

45 10614.20 1.68 29023 27 1889 276 8 731 1, 2, 3 7
75 8940.28 0.00 23178 11 1703 37 1 476 1, 3 11
135 8232.80 0.00 5932 7 1962 0 28 71 1 18

3-20-20

60 11737.60 5.12 9677 46 2523 168 11 657 1, 2, 3 9
90 10348.40 1.74 10411 23 2187 29 4 424 2, 3 12
165 9336.80 0.57 13497 3 3404 0 48 88 2 20

3-25-25

75 12828.40 5.69 2404 64 3184 92 8 536 1, 2, 3 11
105 12057.20 1.66 3117 55 2844 18 6 482 2, 3 12
195 11093.60 0.81 3154 50 2634 0 12 580 3 24

Average 1.15 6789 20 1549 45 10 287
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Table 5.6: Number of valid equalities found by the complete B&C for the instances with 6 hubs
Instance name

UB Gap% Nodes
Cuts Solution

H-I-J Γk Simple RRC HC SHD GLM Open
hub

Max of
routes

6-10-10

45 7613.94 0.00 6895 10 290 168 4 334 2, 3 8
60 6828.25 0.00 147 11 273 2 5 153 2, 3 9
120 6249.60 0.00 30 0 320 0 5 57 2 15

6-15-15

45 9581.90 1.84 14685 6 1286 83 2 102 1, 3, 5 7
75 8940.28 0.00 6665 22 845 91 1 201 1, 3 11
135 8232.80 0.00 6079 32 882 0 7 663 1 18

6-20-20

60 10640.92 5.31 1040 41 670 190 3 427 2, 4, 5 9
90 9793.74 4.49 1370 34 1048 40 5 324 2, 5 13
165 9336.80 3.07 1768 28 2360 0 7 302 2 20

6-25-25

75 12621.48 8.23 181 69 1184 10 11 514 2, 3, 4 10
105 11854.31 8.05 240 57 1124 48 4 448 2, 4 14
195 11093.60 5.26 271 50 2070 0 9 540 3 24

6-30-30

90 14222.26 9.45 13235 145 517 84 5 324 1, 3, 5 13
120 13207.59 9.00 6319 137 1218 5 7 131 1, 5 17
240 12437.00 5.76 4576 64 3310 0 17 64 5 32

6-35-35

90 16775.89 9.38 3869 200 881 2 8 146 1, 5, 6 14
135 16111.84 8.62 2941 186 1947 12 24 274 5, 6 19
270 16037.30 6.01 2168 164 2078 0 41 107 5, 6 19

6-40-40

90 16135.02 14.01 3582 281 1211 3 4 224 1, 4, 5 13
135 14998.09 10.72 4617 291 1352 4 3 146 1, 5 18
255 14866.40 9.85 3956 141 1504 0 25 301 1 34

6-45-45

105 16791.97 19.36 157 430 2654 8 71 167 1, 2, 5 16
150 16193.70 12.41 213 415 1495 1 4 222 5, 6 22
285 15414.40 9.78 178 222 1347 0 80 114 6 38

6-50-50

105 18453.88 22.64 16 239 1381 0 2 149 2, 4, 6 16
150 16688.49 17.02 21 255 2114 0 15 135 4, 6 21
300 16355.20 10.07 186 186 2129 0 19 101 4 41

Average 7.79 3163 138 1389 28 14 147
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Table 5.7: Number of valid equalities found by the complete B&C for the instances with 10 hubs
Instance name

UB Gap% Nodes
Cuts Solution

H-I-J Γk Simple RRC HC SHD GLM Open
hub

Max of
routes

10-10-10

45 7366.08 0.00 1208 30 340 216 4 400 2, 7 8
60 6828.25 0.00 451 18 406 12 1 234 2, 3 9

120 6249.60 0.00 51 6 317 0 4 168 2 15

10-15-15

45 9447.72 3.86 979 32 611 150 0 224 5, 7, 8 7
75 8594.36 1.90 1090 47 807 0 2 282 7, 8 9

135 8232.80 0.00 1533 28 1446 0 5 128 1 8

10-20-20

60 10619.89 5.48 11300 2 6440 0 61 94 5, 7, 10 9
90 9793.74 4.89 8972 7 3645 0 73 173 2, 5 13

165 9065.60 3.34 9742 68 5045 0 37 412 7 20

10-25-25

75 12226.42 9.52 3837 49 527 19 4 268 3, 4, 7 10
105 11692.22 6.26 5137 211 432 0 1 131 3, 7 14
195 11093.60 5.32 3715 99 1026 0 14 89 3 24

10-30-30

90 13965.64 10.25 2539 148 656 7 4 180 1, 5, 9 12
120 13207.59 9.10 938 148 1039 3 5 159 1, 5 17
240 12437.60 6.35 1496 64 749 0 3 93 5 32

10-35-35

90 16332.42 16.67 854 403 1130 0 4 49 5, 6, 9 14
135 16097.96 12.57 2106 317 997 12 4 64 5, 6 20
270 16037.30 8.75 2736 268 1155 0 9 58 5, 6 19

10-40-40

90 16135.02 16.00 321 518 1231 0 2 97 1, 4, 5 13
135 14998.09 13.49 480 400 1368 14 9 102 1, 5 18
255 14866.40 9.03 692 141 723 0 2 146 1 34

10-45-45

105 17135.03 20.72 106 655 1368 1 7 119 1, 5, 6 16
150 16193.70 17.57 95 620 788 1 1 168 5, 6 20
285 15389.60 11.76 146 311 1209 0 1 188 6 38

10-50-50

105 17491.90 25.70 28 659 2114 9 6 52 4, 6, 7 15
150 16814.98 23.71 37 573 2066 3 0 85 4, 6 21
300 16283.20 12.76 56 401 1630 0 4 55 4 41

Average 9.44 2246 230 1454 17 10 156
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5.6 Conclusion
In this chapter, we presented a branch-and-cut (B&C) algorithm to solve the capacitated

single allocation hub location-routing problem (CSAHLRP) based on a new formulation. In the
proposed B&C algorithm, some families of valid inequalities were introduced to strengthen the
LP relaxation of the new formulation, as well as their separation algorithms and the branching
strategy. In addition, the best solutions from the memetic algorithm of Chapter 4 were imported
as the initial solutions at the root node of the B&C algorithm and the upper bound of the op-
timal solutions. Computational experiments have been conducted on all instances generated in
Chapter 3. The results demonstrate a good performance of our B&C algorithm for the small
and medium instances both in terms of quality and computing time, compared with the ones
obtained by solver CPLEX. Furthermore, the computational results reveal that a good initial
solution, as the one obtained by the MA, helps the branch-and-cut algorithm in finding high
quality solutions by exploring fewer nodes of the search tree. For large instances, the com-
parison was done with the MA and the complete B&C algorithm found some new best known
solutions although with lager lower bound gaps. We believe that the large gaps for large in-
stances are due to the poor quality of the lower bounds. In fact, we have tested some instances
based on 6-50-50 solved in 12 hours. However, it is found that the best solutions have not been
improved and the lower bounds get a smaller reduction (3.37%, on average for three hub ca-
pacity levels). Therefore there is still a wide space for developing more valid inequalities and
improving the cutting plane procedure.



6
Model and solution method for the HLRP
in postal service system

In this chapter, we focus on an application of the hub location-routing problem in the postal
service system, where the collection and delivery operations can be done simultaneously in the
same route. Based on the main features of this application, a mathematical formulation is firstly
described which is derived from the model proposed in Chapter 3. Then the memetic algorithm
(MA) presented in Chapter 4 is adapted to solve the HLRP in postal service systems. Finally,
the computational experiments are implemented based on the instances inspired from the AP
data set [77] to investigate the solutions with different parameters and evaluate the performance
of the MA for solving the postal system cases.

6.1 Introduction

Besides the less-than-truckload (LTL) shipments, the private express industry or public
postal system represents another application area of the hub location-routing problem (HLRP) .
In this application, each node location represent a post code district which has both a collection
and a delivery flow. These flows correspond to parcel or mail volumes and can be exchanged
between any two node locations. The hub nodes play not only a consolidation role but also a
sorting function. In this hub location-routing network of postal systems, instead of direct con-
nection between two nodes, the parcels are consolidated, sorted, regrouped at hub facilities and
then are sent to the different destinations. In order to reduce the number of vehicles used in
the system, local tours are operated between non-hub nodes to collect and deliver the parcels or
mails instead of direct links between non-hub nodes and hubs . The network is similar to the
network of LTL shipment for general goods except for local tours. However, we can notice the
following significant differences between the two applications:

- In postal service systems, non-hub nodes usually send flow to themselves. This indicates
that a parcel may be sent to a hub node where it is sorted and then be returned to the same
post district (same node).

141
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- Collection and delivery unit costs are different in postal systems due to quite different
processes and transportation modes [36], and consequently unit routing costs are different
from the LTL application .

- Collection and delivery processes happen simultaneously in the same route. Therefore,
each homogeneous non-hub node location can be visited once by only one vehicle route.

Based on the above description, the network of HLRP in postal systems can be represented
in Figure 6.1 where the squares and circles represent the established hub nodes and non-hub
nodes, respectively. And the bold lines are inter-hub arcs while dotted lines denote local tour
arcs. So in order to optimize this hub location-routing network for a postal system, it needs to
determine the location of hub nodes, the allocation of non-hub nodes, as well as the local tours
visiting each node location for the collection and delivery. To the best our knowledge, most
of the HLRP literature focus on this application and considers particular constraints in their
models [40, 66, 180, 203] as the limitation of the driving time for the local tours, the multiple
allocation of non-hub nodes or the possibility of direct connection between two non-hub nodes.
For more details and a state of the art about the HLRP in postal systems, one can refer to the
section 2.3 in Chapter 2. The assumptions used in the postal systems are as follows:

Figure 6.1: The network of the HLRP in postal systems

(1) Each non-hub node can be assigned to one hub and can be served by only one local tour,
i.e. single allocation problem;

(2) The total quantity of flow assigned to one hub can not exceed its capacity, including the
collection flow and also delivery flow, i.e. capacitated problem;

(3) Each local tour is limited to a maximum number of visited nodes q, including the hub
node;

(4) Each local tour must begin at a hub and return to the same one;

(5) The flow between any two O-D nodes can pass through two hubs at most.

6.2 Mathematical formulation
Let G′ = (N

′
, A) be a complete graph and represent the HLRP network in a postal system.

N
′
= H ∪N is the set of all nodes, where H and N represent the candidate hub nodes and non-

hub nodes, respectively. Usually H ⊆ N , however, the decisions maker can always select some
potential hub nodes from all known node locations based on the economic, public transportation
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and environmental factors. Thus it will be assumed that H ⊂ N and they belong to different
sets in the mathematical formulation even they may have the same geographical sites. For the
case H = N , it can be modeled by duplicating the set of non-hub nodes N into H [26]. In
this network, each arc (i, j) ∈ A : i, j ∈ N ′ , i 6= j has a nonnegative cost, which can be given
by the Euclidean distance dij or a shortest path in the road network between node i and j. In
addition, a flow matrix with the elements wij : i, j ∈ N is considered to represent the parcel
volume from node i to node j through one or two installed hubs. Normally wij 6= wji and the
demand in the same tour is not exchanged directly, but via a hub.

Furthermore, all candidate hub nodes have a capacity restriction Γ
′

k and are associated with
a fixed installing cost F ′k. For the vehicles operated in the local tours, a homogeneous fleet V is
considered with a fixed cost f . So in order to carry out the determination of the HLRP network
in postal systems, we use the same decision variables as the ones presented in Chapter 3:

• Yijkl− the fraction of flow from node i to node j via hubs k and l. It is a classical decision
variable for the HLP and it indicates that the flow between two nodes is routed along the
path i→ k → l→ j. Here, the hubs k and l can be located at the same node;

• zik− the allocation variable of a node i to a hub k. It is equal to 1 if the node i is allocated
to the hub k, 0 otherwise; specially, zkk = 1 if the hub k is open. It is also a classical
variable for the HLP;

• xvij− the three-index vehicle flow variable, it equals 1 if the arc (i, j) is served by vehicle
v, 0 otherwise. It defines the visiting order of each local tour;

Uiv− Auxiliary variables for sub-tours eliminations.

The objective function minimizes the total cost, including the fixed cost of establishing the
hubs, the inter-hubs transportation cost, the transportation cost of local tours and the fixed cost
of the vehicles, and a fixed charge for assigning the non-hub nodes to the hubs, called as the
handling cost c′ik for the incoming and outgoing volumes of node i ∈ N by hub k ∈ H , as
proposed in [66]. In addition, the transportation cost between hubs depends on the arc distance
and the parcel volumes transferred, which is reduced by a factor α′ to reflect the economies of
scale. The local tour cost is determined by the distance of the arcs traversed as it is usually
assumed. We also add a factor λ to change the relative weight of the local routing cost com-
ponent in the objective value [180]. Compared to the other cost elements, the local tour costs
are very small and don’t permit the optimization of the routes if they aren’t enhanced. Then
with the aforementioned definition, in order to minimize the total cost and meet the service
requirements, the capacitated single allocation HLRP in postal systems (CSAHLRP-pos) can be
modeled as follows:

CSAHLRP-pos

Min
∑
k∈H

F
′

kzkk +
∑
i∈N

∑
k∈H

c
′

ikzik +
∑
i∈N

∑
j∈N

∑
k∈H

∑
l∈H

α
′
dklwijYijkl + λ

∑
v∈V

∑
i∈N ′

∑
j∈N ′ ,j 6=i

dijx
v
ij

+
∑
v∈V

∑
k∈H

∑
i∈N

fxvki (6.1)

subject to
zik ≤ zkk ∀i ∈ N ′ ,∀k ∈ H (6.2)∑
k∈H

zik = 1 ∀i ∈ N ′ (6.3)

∑
l∈H

Yijkl = zik ∀i ∈ N,∀j ∈ N, ∀k ∈ H (6.4)
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k∈H

Yijkl = zjl ∀i ∈ N,∀j ∈ N, ∀l ∈ H (6.5)

∑
i∈N

∑
j∈N

∑
l∈H

wijYijkl ≤ Γ
′

kzkk ∀k ∈ H (6.6)

∑
i∈N

∑
j∈N

∑
k∈H

wijYijkl ≤ Γ
′

lzll ∀l ∈ H (6.7)

∑
i∈N

∑
j∈N ′ ,j 6=i

xvij ≤ q ∀v ∈ V (6.8)

∑
i∈N ′

xvij −
∑
i∈N ′

xvji = 0 ∀v ∈ V, ∀j ∈ N ′ (6.9)

∑
u∈N ′

(xvku + xvui) ≤ 1 + zik ∀i ∈ N,∀k ∈ H,∀v ∈ V (6.10)

∑
v∈V

∑
j∈N ′

xvij = 1 ∀i ∈ N (6.11)

∑
i∈H

∑
j∈N

xvij ≤ 1 ∀v ∈ V (6.12)

Uiv − Ujv + |N |xvij ≤ |N | − 1 ∀v ∈ V, ∀i ∈ N,∀j ∈ N (6.13)∑
i∈H

∑
j∈H

xvij = 0 ∀v ∈ V (6.14)

0 ≤ Yijkl ≤ 1 ∀i ∈ N,∀j ∈ N, ∀k ∈ H,∀l ∈ H (6.15)

zik ∈ {0, 1} ∀i ∈ N ′ , ∀k ∈ H (6.16)

xvij ∈ {0, 1} ∀i ∈ N ′ ,∀j ∈ N ′ , ∀v ∈ V (6.17)

Uiv ≥ 0 ∀i ∈ N,∀v ∈ V (6.18)

In this model, the objective function (6.1) minimizes the sum of the fixed hub operating costs,
handling cost of nodes (assigning cost of nodes to hubs), transportation cost between hubs, local
tours transportation cost and fixed costs of vehicles. Constraints (6.2)-(6.7) are the location
constraints. Constraints (6.2) and constraints (6.3) impose that a non-hub node can be allocated
to only one open hub. Constraints (6.4) and (6.5) represent the coherence between the allocation
variables and the flow variables. They impose that if a non-hub node is allocated to a hub, then
all the flows from or to this non-hub node should pass through the same hub. Constraints (6.6)
and (6.7) are hub capacity constraints for the incoming and outgoing volumes, respectively. In
the local routing part, constraints (6.8) restrict the total number of nodes served by each tour.
Constraints (6.9) are the flow conservation constraints which ensure the continuity of every node
visited by one vehicle. Constraints (6.10) are the connection between the location variables and
the local routing variables. They specify that a node can be assigned to a hub only if there is
a vehicle from that hub going through that node. Constraints (6.11) represent that a node can
only be served by a single vehicle. Constraints (6.12) represent that each vehicle can be used
at most once in a hub. Constraints (6.13) are sub-tour elimination constraints inspired from the
TSP [118]. Equations (6.14) indicate that local tours can not happen between two hub nodes.
Constraints (6.15)-(6.18) define the variable values.
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6.3 The memetic algorithm for the HLRP in postal system

Based on the relationship between model (CSAHLRP-pos) for postal systems and model
(CSAHLRP-F4) for general goods LTL shipments, we have adapted the memetic algorithm
(MA) proposed in Chapter 4 to solve the HLRP for postal systems. Following the basic frame-
work of MA algorithm (shown in Algorithm 2) and all operators (genetic operators and iterated
local search) proposed in Chapter 4, main components of the adapted MA here are illustrated
as follows:

1. Solution representation and evaluation: the chromosome C ′(x) of the HLRP solution in
postal systems is also represented with natural numbers including the location section and
the routing section. The location section L′(x) consists in a string of hub index where
each gene is generated randomly from the set of potential hubs. The routing section
R
′
(x) is construct with only one random permutation of all non-hub nodes representing

their visiting orders in the route. The process of chromosome decoding remains the same
as the one presented in section 4.2.2 of Chapter 4 except that the routing part includes
both suppliers and clients in the same route. Any non-hub node can be serviced by any
vehicle route as long as all constraints are met. More clearly, consider the example shown
in Figure 6.2 where 10 non-hub nodes and 3 candidate hub nodes are considered. To
distinguish the two kinds of sets, they are named with ascending integers. So, H =
{1, 2, 3} is the set of candidate hub nodes; N = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13} is the set
of non-hub nodes. In this example, the 3 candidate hubs are generated randomly and
located at the same geographic place as the non-hub nodes 4, 13 and 12, respectively.
Thus based on the method introduced in Chapter 4, nodes 4, 7, 6, 10 and 12 in Figure 6.2
are allocated to hub node 1 according to the correspondence between location and routing
sections. A local tour serving these nodes is obtained based on their permutation order
in R′(x), i.e. 1-4-7-6-10-12-1 if the maximum number of nodes in one route is set to 5.
Meantime, another vehicle route 2-5-9-8-11-13-2 is constructed for the hub node 2. In
each decoding procedure, when the node limitation is violated by the insertion of a new
node, this node is assigned to a new route.

Figure 6.2: An example of a chromosome for the HLRP solution of postal systems

In addition, the hub capacity is checked by the fitness function of each solution s, con-
sisting of the objective function and the penalty function also given as follows:

Feval(s) = Objectivevalue(s) + Penaltycost(s) (6.19)
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where

Objectivevalue(s) =
∑
k∈H

F
′

kzkk +
∑
i∈N

∑
k∈H

c
′

ikzik +
∑
i∈N

∑
j∈N

∑
k∈H

∑
l∈H

α
′
dklwijYijkl

+ λ
∑
v∈V

∑
i∈N ′

∑
j∈N ′ ,j 6=i

dijx
v
ij +

∑
v∈V

∑
k∈H

∑
i∈N

fxvki

and

Penaltycost(s) = δ
′∑
k∈H

max{0,
∑
i∈I

zik
∑
j∈N

wij +
∑
j∈J

zjk
∑
i∈N

wij − 2Γ
′

k}

in which δ′ is the penalty parameter for exceeding the capacity of hubs in postal instances.

2. Genetic operators: All genetic operators for the postal cases remain the same as the ones
presented in section 4.2.3, including the roulette wheel based selection scheme, one-point
crossover operation on location and routing sections and the mutation operators of two
sections. The initial population is generated randomly and contains PopSize individuals.
The stopping criterion is based on the maximum number of generations or when the best
fitness value can’t be improved in a continuous iteration number.

3. Iterative local search: In this iterative local search procedure, all the neighborhood searches
described in section 4.3 are applied including the local search on the hub location and ve-
hicle routing. The implementation details keep consistent with the previous case except
the capacity constraint on routes (maximum number of visited nodes) which must be
respected by each neighborhood search.

6.4 Computational experiments and results
In this section, the computational experiments and results are introduced based on the in-

stances inspired from the Australian Post (AP) standard data set obtained in OR-Library 1. All
tests are carried on a computer with Intel Core i3 CPU of 2.93 GHz and 6 GB of memory, under
the Window 7 Operating System.

6.4.1 Instances and parameter values
The standard AP data set can produce instance sizes ranging from 10 up to 200 nodes with

a generator. Here, the coordinates of nodes and the flow demand wij between any two non-hub
nodes of each initial AP instance are used directly in our model. And for sake of simplicity,
the sites of potential hubs H with size 3, 6 and 10 are generated randomly from the non-hub
nodes N . The new cost item c

′

ik is assumed to depend on the distance dik and total volume of
incoming and outgoing flow at node i. In AP data set, it is defined as c′ik = dik(aO

′
i + bD

′
i),

where O′i =
∑

j∈N wij , D
′
i =

∑
i∈N wij is the total volume of parcels originating at node i and

to node i as destination, respectively.
After some preliminary tests, the main parameter values used in the computational experi-

ments are summarized in Table 6.1. For the hub capacities, we assumed them homogeneous.
Based on the total flow of all nodes, the capacity is set to Γ ′k ∈ {6000, 3000, 1500} to ensure
that 1, 2 or 3 hubs at least should open to process the total quantity, respectively. The maximum

1. http://people.brunel.ac.uk/ mastjjb/jeb/orlib/phubinfo.html
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number of nodes in each route is set to q = 20. Finally, the vehicle fixed cost is set to f = 1000
as in [66]. The hub fixed cost is inspired from the AP data set, providing fixed costs for the
first 50 hub nodes. In our experiments, we used the average value of all hub fixed costs as the
homogeneous hub fixed cost F ′k = 28000.

Table 6.1: Values of the different parameters used in the experiments
Name Value Name Value

Discount factor α
′
= 0.75

Hub capacity Γ
′

k

L 6000

Handling cost
a = 3 M 3000
b = 2 S 1500

Routing percentage λ ∈ {1, 100, 500, 1000} Vehicle fixed cost f = 1000
Route nodes q = 20 Hub fixed cost F

′

k = 28000

6.4.2 Parameters and solutions analysis
The first computational experiments with different values of λ ∈ {1, 100, 500, 1000} are

carried on the instances with 10, 20, 25 non-hub nodes and 3, 6, 10 potential hubs, respectively.
The values of parameter λ are chosen to obtain optimal or best solutions with an increasing
percentage of the routing cost in the total cost and to measure the impact of this parameter
on solutions. All 9 instances are solved by CPLEX with the three hub capacity levels Γ

′

k ∈
{L,M, S}. The results obtained by CPLEX in three hours are summarized in Table 6.2 to 6.4
for the test instances with 3, 6 and 10 potential hubs, respectively. These tables present the
cost components and computational information of the solutions. In these tables, the first two
columns introduce the instance information including the number of non-hub nodes and the hub
capacity Γ

′

k. Column 3 shows the value of parameter λ. In the other columns, the following
notations are used to investigate each solution:

• TC: the total cost of each solution found by CPLEX in three hours. The mark ’*’ indi-
cates an optimal solution;

• V C: the total variable cost of each solution without the fixed hub and vehicle costs;

• FixedH%: the percentage of establishing hub costs on the total cost;

• InterH%: the percentage of inter-hub transportation costs on the total cost;

• Routing%: the percentage of local routing costs on the total cost;

• Alloca%: the percentage of allocation costs (handling costs) on the total cost;

• FixedV%: the percentage of fixed operating vehicle costs on the total cost;

• Open hub: the index of the open hubs in each solution;

• Gap%: the gap of the best solution with the lower bound found by CPLEX in 3 hours ;

• Time(s): the CPU time used by CPLEX.

It can be observed from Table 6.2-6.4 that all instances are solved by CPLEX within the
time limit with tight gaps (1.78%, 2.29%, 4.46%, on average for instances with 3, 6, 10 potential
hubs, respectively ). All instances with 10 non-hub nodes are solved to optimality except two
instances with 6 potential hubs and two instances with 10 potential hubs when λ = 1. The
gaps with lower bounds show that, as the hub capacity gets tighter, the problem becomes more
difficult to solve, more hubs are open to satisfy the needs of customers and more possibilities
of allocation strategies are enumerated to reach the optimality. Also the instances with large
values of λ are usually more difficult to solve.
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Table 6.2: Computational results with CPLEX for the instances with 3 potential hubs and different λ
Nodes Γ

′
k

λ TC V C FixedH% InterH% Routing% Alloca% FixedV% Open
hub Gap% Time (s)

10 L 1 247623.40* 189623.40 22.61 9.62 0.05 66.91 0.81 1, 2 0.00 5102.86
100 259821.39* 201821.39 21.55 9.17 4.74 63.77 0.77 1, 2 0.00 163.94
500 309106.20* 251106.20 18.12 7.71 19.93 53.60 0.65 1, 2 0.00 302.58
1000 363443.92* 276443.92 23.11 8.31 29.65 38.11 0.83 1, 2, 3 0.00 209.34

M 1 247623.40* 189623.40 22.61 9.62 0.05 66.91 0.81 1, 2 0.00 5340.01
100 259821.39* 201821.39 21.55 9.17 4.74 63.77 0.77 1, 2 0.01 117.14
500 309106.20* 251106.20 18.12 7.71 19.93 53.60 0.65 1, 2 0.00 177.47
1000 363443.92* 276443.92 23.11 8.31 29.65 38.11 0.83 1, 2, 3 0.00 251.85

S 1 349561.39* 262561.39 24.03 12.11 0.04 62.96 0.86 1, 2, 3 0.00 10648.50
100 364904.19* 277904.19 23.02 11.60 4.25 60.31 0.82 1, 2, 3 0.01 7978.17
500 426895.31* 339895.31 19.68 9.91 18.15 51.56 0.70 1, 2, 3 0.00 3000.91
1000 501491.90* 414491.90 16.75 8.16 29.31 45.18 0.60 1, 2, 3 0.00 3775.51

20 L 1 251538.20 193538.20 22.26 8.41 0.08 68.46 0.80 1, 3 0.40 10800.00
100 270518.13 212518.13 20.70 7.82 7.09 63.66 0.74 1, 3 0.76 10800.00
500 345205.48 287205.48 16.22 6.54 26.19 50.48 0.58 1, 3 1.78 10800.00
1000 435598.05 377598.05 12.86 5.18 41.50 40.00 0.46 1, 3 1.43 10800.00

M 1 251540.41 193540.41 22.26 8.41 0.08 68.46 0.80 1, 3 0.40 10800.00
100 270518.13 212518.13 20.70 7.82 7.09 63.66 0.74 1, 3 0.65 10800.00
500 345205.48 287205.48 16.22 6.54 26.19 50.48 0.58 1, 3 1.47 10800.00
1000 435598.05 377598.05 12.86 5.18 41.50 40.00 0.46 1, 3 1.41 10800.00

S 1 317729.55 230729.55 26.44 10.47 0.07 62.07 0.94 1, 2, 3 1.84 10800.00
100 334800.12 247800.12 25.09 9.90 6.30 57.81 0.90 1, 2, 3 1.82 10800.00
500 420514.51 333514.51 19.98 7.74 24.96 46.62 0.71 1, 2, 3 5.93 10800.00
1000 531003.89 444003.89 15.82 6.32 39.35 37.95 0.56 1, 2, 3 9.37 10800.00

25 L 1 279858.93 221858.93 20.01 8.20 0.08 71.00 0.71 2, 3 2.31 10800.00
100 297496.91 210496.91 28.24 9.38 7.49 53.88 1.01 1, 2, 3 1.41 10800.00
500 386654.92 299654.92 21.72 7.22 28.82 41.46 0.78 1, 2, 3 3.09 10800.00
1000 492144.79 405144.79 17.07 6.05 42.26 34.01 0.61 1, 2, 3 3.09 10800.00

M 1 279861.01 221861.01 20.01 8.20 0.08 71.00 0.71 2, 3 2.30 10800.00
100 302342.11 244342.11 18.52 7.50 7.45 65.87 0.66 2, 3 2.98 10800.00
500 386654.92 299654.92 21.72 7.22 28.82 41.46 0.78 1, 2, 3 3.35 10800.00
1000 492144.79 405144.79 17.07 6.05 42.26 34.01 0.61 1, 2, 3 2.93 10800.00

S 1 286849.00 199849.00 29.28 10.31 0.09 59.27 1.05 1, 2, 3 0.71 10800.00
100 310030.89 223030.89 27.09 9.54 7.56 54.84 0.97 1, 2, 3 1.86 10800.00
500 403284.36 316284.36 20.83 7.33 28.93 42.16 0.74 1, 2, 3 4.84 10800.00
1000 520901.89 433901.89 16.13 5.68 44.98 32.64 0.58 1, 2, 3 7.76 10800.00

Average 1.78
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Table 6.3: Computational results with CPLEX for the instances with 6 potential hubs and different λ
Nodes Γ

′
k

λ TC V C FixedH% InterH% Routing% Alloca% FixedV% Open hub Gap% Time (s)
10 L 1 223127.15* 136127.15 37.65 9.80 0.05 51.15 1.34 2, 5, 6 0.00 10512.10

100 234910.84* 147910.84 35.76 9.31 5.07 48.59 1.28 2, 5, 6 0.00 317.38
500 274511.42* 158511.42 40.80 10.10 15.96 31.68 1.46 2, 3, 5, 6 0.00 44.46
1000 318329.81* 202329.81 35.18 8.71 27.53 27.32 1.26 2, 3, 5, 6 0.00 60.98

M 1 223127.15 136127.15 37.65 9.80 0.05 51.15 1.34 2, 5, 6 0.88 10800.00
100 234910.84* 147910.84 35.76 9.31 5.07 48.59 1.28 2, 5, 6 0.00 403.39
500 274511.42* 158511.42 40.80 10.10 15.96 31.68 1.46 2, 3, 5, 6 0.00 41.26
1000 318329.81* 202329.81 35.18 8.71 27.53 27.32 1.26 2, 3, 5, 6 0.00 61.68

S 1 234130.74 118130.74 47.84 12.11 0.05 38.30 1.71 1, 2, 5, 6 1.69 10800.00
100 245500.25* 129500.25 45.62 11.55 4.68 36.53 1.63 1, 2, 5, 6 0.00 3814.15
500 283408.62* 138408.62 49.40 12.06 14.73 22.05 1.76 1, 2, 3, 5, 6 0.00 39.23
1000 325142.90* 180142.90 43.06 10.51 25.67 19.22 1.54 1, 2, 3, 5, 6 0.00 53.31

20 L 1 251538.20 193538.20 22.26 8.41 0.08 68.46 0.80 1, 3 0.40 10800.00
100 270518.13 212518.13 20.70 7.82 7.09 63.66 0.74 1, 3 0.77 10800.00
500 345205.48 287205.48 16.22 6.54 26.19 50.48 0.58 1, 3 1.96 10800.00
1000 435598.05 377598.05 12.86 5.18 41.50 40.00 0.46 1, 3 2.10 10800.00

M 1 251539.91 193539.91 22.26 8.41 0.08 68.46 0.80 1, 3 0.40 10800.00
100 270518.13 212518.13 20.70 7.82 7.09 63.66 0.74 1, 3 0.65 10800.00
500 345205.48 287205.48 16.22 6.54 26.19 50.48 0.58 1, 3 2.08 10800.00
1000 435598.05 377598.05 12.86 5.18 41.50 40.00 0.46 1, 3 2.10 10800.00

S 1 277133.39 190133.39 30.31 10.01 0.08 58.52 1.08 1, 3, 4 0.74 10800.00
100 297178.45 210178.45 28.27 9.23 6.75 54.74 1.01 1, 3, 4 1.62 10800.00
500 380983.87 293983.87 22.05 7.20 27.27 42.70 0.79 1, 3, 4 5.13 10800.00
1000 486255.94 370255.94 23.03 6.87 40.15 29.12 0.82 1, 2, 3, 4 7.98 10800.00

25 L 1 246168.53 188168.53 22.75 6.14 0.09 70.21 0.81 2, 5 0.41 10800.00
100 267789.09 209789.09 20.91 5.64 8.16 64.54 0.75 2, 5 0.72 10800.00
500 372723.32 313723.32 15.02 4.46 32.79 46.92 0.80 2, 5 7.42 10800.00
1000 477443.70 419443.70 11.73 2.53 46.68 38.64 0.42 2, 5 6.34 10800.00

M 1 246168.53 188168.53 22.75 6.14 0.09 70.21 0.81 2, 5 0.41 10800.00
100 267789.09 209789.09 20.91 5.64 8.16 64.54 0.75 2, 5 0.95 10800.00
500 355144.88 297144.88 15.77 4.25 30.75 48.67 0.56 2, 5 1.96 10800.00
1000 471730.57 413730.57 11.87 4.02 45.68 38.00 0.42 2, 5 5.67 10800.00

S 1 283047.43 167047.43 39.57 11.68 0.09 47.25 1.41 1, 2, 4, 5 5.62 10800.00
100 295568.71 208568.71 28.42 8.55 7.92 54.10 1.01 1, 2, 5 3.03 10800.00
500 410486.60 323486.60 20.46 6.07 33.85 38.89 0.73 1, 2, 5 10.92 10800.00
1000 516793.43 399793.43 21.67 6.38 44.98 26.00 0.97 1, 2, 4, 5 10.62 10800.00

Average 2.29
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These tables highlight that the allocation cost represents a large part in the total cost and
it decreases when more hubs are opened. When the value of the parameter λ increases, the
contribution of routing costs to the total cost obviously increases while the weights of inter-hub
transportation cost and allocation costs on the total cost decrease. For example, for the instances
with 10 non-hub nodes and 6 potential hubs (shown in Table 6.3), when Γ

′

k = 6000 (uncapac-
itated), the proportion of routing costs increases from 0.05% to 27.53% as λ increases from 1
to 1000, while the contribution of the inter-hub transportation costs decreases from 9.80% to
8.71%, as well as the contribution of allocation costs decreases from 51.15% to 27.32%. For
the effect of the different hub capacity levels, we observe that the solutions have no obvious
changes when Γ

′

k decreases from 6000 to 3000 through the comparison of the total costs and
cost structure with the same λ value. However, when Γ

′

k decreases to 1500, all the solutions
indicate more open hubs and operated routes to minimize the total cost. More closer insights
into this effect can be seen in Table 6.5.

Table 6.4: Computational results with CPLEX for the instances with 10 potential hubs and different λ
Nodes Γ

′
k

λ TC V C FixedH% InterH% Routing% Alloca% FixedV% Open hub Gap% Time (s)
10 L 1 223127.15 136127.15 37.65 9.80 0.05 51.15 1.34 3, 4, 7 0.89 10800.00

100 234910.84* 147910.84 35.76 9.31 5.07 48.59 1.28 3, 4, 7 0.00 1438.69
500 271741.11* 126741.11 51.52 11.83 13.07 21.75 1.84 1, 2, 3, 7, 8 0.00 302.38
1000 307247.09* 162247.09 45.57 10.46 23.11 19.23 1.63 1, 2, 3, 7, 8 0.00 168.68

M 1 223127.15 136127.15 37.65 9.80 0.05 51.15 1.34 3, 4, 7 1.24 10800.00
100 234910.84* 147910.84 35.76 9.31 5.07 48.59 1.28 3, 4, 7 0.00 1040.76
500 271741.11* 126741.11 51.52 11.83 13.07 21.75 1.84 1, 2, 3, 7, 8 0.00 221.72
1000 307247.09* 162247.09 45.57 10.46 23.11 19.23 1.63 1, 2, 3, 7, 8 0.00 219.85

S 1 224359.71 137359.71 37.44 10.61 0.06 50.55 1.34 3, 7, 8 1.33 10800.00
100 236779.79* 149779.79 35.48 10.06 5.30 47.90 1.27 3, 7, 8 0.00 1227.46
500 273209.22* 128209.22 51.24 12.63 13.29 21.01 1.83 1, 2, 3, 7, 8 0.00 84.58
1000 309515.25* 164515.25 45.23 11.15 23.46 18.54 1.62 1, 2, 3, 7, 8 0.00 3072.00

20 L 1 233829.92 175829.92 23.95 8.10 0.08 67.01 0.86 1, 7 0.43 10800.00
100 252809.85 194809.85 22.15 7.50 7.58 61.98 0.79 1, 7 0.91 10800.00
500 326030.83 268030.83 17.18 6.20 27.73 48.28 0.61 1, 7 2.10 10800.00
1000 416423.40 358423.40 13.45 4.86 43.41 37.80 0.48 1, 7 2.56 10800.00

M 1 233838.01 175838.01 23.95 8.10 0.09 67.01 0.86 1, 7 0.44 10800.00
100 252809.85 194809.85 22.15 7.50 7.58 61.98 0.79 1, 7 1.04 10800.00
500 326030.83 268030.83 17.18 6.20 27.73 48.28 0.61 1, 7 2.08 10800.00
1000 416423.40 358423.40 13.45 4.86 43.41 37.80 0.48 1, 7 2.43 10800.00

S 1 267182.34 151182.34 41.92 9.11 0.08 47.39 1.50 2, 7, 8, 9 6.83 10800.00
100 270183.11 183183.11 31.09 7.00 7.19 53.61 1.11 1, 7, 8 1.39 10800.00
500 369024.72 281024.72 22.76 5.04 30.53 40.59 1.08 1, 7, 8 9.08 10800.00
1000 440217.74 353217.74 19.08 4.17 43.02 33.04 0.68 1, 7, 8 4.98 10800.00

25 L 1 233776.92 175776.92 23.95 7.36 0.10 67.73 0.86 6, 9 0.44 10800.00
100 256352.73 198352.73 21.84 6.49 8.52 62.37 0.78 6, 9 1.28 10800.00
500 348412.80 290412.80 16.07 4.94 32.97 45.45 0.57 6, 9 4.47 10800.00
1000 452101.98 394101.98 12.39 3.53 47.76 35.88 0.44 6, 9 3.38 10800.00

M 1 238045.43 180045.43 23.52 7.93 0.13 67.58 0.84 6, 9 2.23 10800.00
100 257822.19 199822.19 21.72 7.10 9.17 61.23 0.78 6, 9 2.03 10800.00
500 351358.39 293358.39 15.94 5.50 31.61 46.39 0.57 6, 9 5.32 10800.00
1000 455231.39 397231.39 12.30 4.59 47.36 35.31 0.44 6, 9 4.75 10800.00

S 1 338782.74 221782.74 33.06 6.82 0.09 58.56 1.48 4, 5, 6, 9 24.88 10800.00
100 367590.64 250590.64 30.47 6.29 7.92 53.97 1.36 4, 5, 6, 9 25.48 10800.00
500 437234.34 320234.34 25.62 5.82 30.59 36.82 1.14 1, 5, 6, 9 20.54 10800.00
1000 629480.65 512480.65 17.79 3.67 46.23 31.52 0.79 4, 5, 6, 9 28.01 10800.00

Average 4.46

Table 6.5 studies the optimal solutions of the instances with 10 non-hub nodes and different
number of potential hubs. In this table, we present the detailed values of the total costs TC, the
fixed establishing hub costs FixedH , the inter-hub transportation costs InterH , the local rout-
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ing costs Rouring, the allocation costs Alloca and the fixed operating vehicle costs FixedV of
the optimal or best solution obtained by CPLEX. In addition, the first three columns introduce
the information on each test instance including the number of potential hub nodes, the value of
λ and the hub capacity level. The last two columns present the index of the open hubs and the
total number of operating vehicles in each solution.

Table 6.5: Results with different capacities and λ values for the instances with 10 non-hub nodes
Potential
hubs λ Γ

′
k

TC FixedH InterH Routing Alloca F ixedV Open hubs NV

3 1 L 247623.40 56000.00 23824.44 123.21 165675.75 2000.00 1, 2 2
M 247623.40 56000.00 23824.44 123.21 165675.75 2000.00 1, 2 2
S 349561.39 84000.00 42317.04 154.98 220089.37 3000.00 1, 2, 3 3

100 L 259821.39 56000.00 23824.44 12321.20 165675.75 2000.00 1, 2 2
M 259821.39 56000.00 23824.44 12321.20 165675.75 2000.00 1, 2 2
S 364904.19 84000.00 42317.04 15497.78 220089.37 3000.00 1, 2, 3 3

500 L 309106.20 56000.00 23824.44 61606.01 165675.75 2000.00 1, 2 2
M 309106.20 56000.00 23824.44 61606.01 165675.75 2000.00 1, 2 2
S 426895.31 84000.00 42317.04 77488.90 220089.37 3000.00 1, 2, 3 3

1000 L 363443.92 84000.00 30188.26 107747.10 138508.55 3000.00 1, 2, 3 3
M 363443.92 84000.00 30188.26 107747.10 138508.55 3000.00 1, 2, 3 3
S 501491.90 84000.00 40921.60 147005.99 226564.32 3000.00 1, 2, 3 3

6 1 L 223127.15 84000.00 21870.53 119.03 114137.59 3000.00 2, 5, 6 3
M 223127.15 84000.00 21870.53 119.03 114137.59 3000.00 2, 5, 6 3
S 234130.74 112000.00 28346.91 114.84 89668.99 4000.00 1, 2, 5, 6 4

100 L 234910.84 84000.00 21870.53 11902.72 114137.59 3000.00 2, 5, 6 3
M 234910.84 84000.00 21870.53 11902.72 114137.59 3000.00 2, 5, 6 3
S 245500.25 112000.00 28346.91 11484.35 89668.99 4000.00 1, 2, 5, 6 4

500 L 274511.42 112000.00 27722.63 43818.40 86970.39 4000.00 2, 3, 5, 6 4
M 274511.42 112000.00 27722.63 43818.40 86970.39 4000.00 2, 3, 5, 6 4
S 283408.62 140000.00 34172.55 41734.28 62501.79 5000.00 1, 2, 3, 5, 6 5

1000 L 318329.81 112000.00 27722.63 87636.79 86970.39 4000.00 2, 3, 5, 6 4
M 318329.81 112000.00 27722.63 87636.79 86970.39 4000.00 2, 3, 5, 6 4
S 325142.90 140000.00 34172.55 83468.56 62501.79 5000.00 1, 2, 3, 5, 6 5

10 1 L 223127.15 84000.00 21870.53 119.03 114137.59 3000.00 3, 4, 7 3
M 223127.15 84000.00 21870.53 119.03 114137.59 3000.00 3, 4, 7 3
S 224359.71 84000.00 23813.64 125.46 113420.62 3000.00 3, 7, 8 3

100 L 234910.84 84000.00 21870.53 11902.72 114137.59 3000.00 3, 4, 7 3
M 234910.84 84000.00 21870.53 11902.72 114137.59 3000.00 3, 4, 7 3
S 236779.79 84000.00 23813.64 12545.53 113420.62 3000.00 3, 7, 8 3

500 L 271741.11 140000.00 32136.66 35505.97 59098.48 5000.00 1, 2, 3, 7, 8 5
M 271741.11 140000.00 32136.66 35505.97 59098.48 5000.00 1, 2, 3, 7, 8 5
S 273209.22 140000.00 34515.22 36306.03 57387.97 5000.00 1, 2, 3, 7, 8 5

1000 L 307247.09 140000.00 32136.66 71011.95 59098.48 5000.00 1, 2, 3, 7, 8 5
M 307247.09 140000.00 32136.66 71011.95 59098.48 5000.00 1, 2, 3, 7, 8 5
S 309515.25 140000.00 34515.22 72612.06 57387.97 5000.00 1, 2, 3, 7, 8 5

The effect of the different hub capacity levels on the network design solutions can be demon-
strated by Table 6.5. For example with the instances with 10 non-hub nodes and 10 potential
hubs, when λ = 100, the optimal solutions for Γ

′

k ∈ {6000, 3000} establish 3 hubs which are
located at sites 3, 4 and 7 to process the total demand with a total cost of 234910.84. When
Γ
′

k = 1500, the optimal solution also opens 3 hubs but one hub is changed from site 4 to site
8. Then the allocation strategy and routing design are changed to adapt tighter capacity con-
straint with a slightly greater total cost 236779.79. The corresponding optimal network for this
example is shown in Figure 6.3. In order to give more insights for the HLRP network in postal
systems, Figure 6.4 display another example of the best solutions obtained for the instances
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with 20 non-hub nodes and 10 potential hubs, when λ = 100. In this figure, the 10 potential
hubs are generated from 20 non-hub nodes. For example the candidate hub 1 is located at the
same geography site as node 17, as well as candidate hubs 3, 7 corresponding to nodes 29, 14,
respectively. In this test instance, the best solutions obtained for Γ

′

k ∈ {6000, 3000} operate two
local tours starting at hub 1 and hub 7 respectively. The total cost for this case is 252809.85.
When Γ

′

k decreases to 1500, the best solution obtained (with cost 270183.11) opens three hubs
(1, 7, 8), each one with a local tour.

Figure 6.3: Optimal solutions for instance 10-10 with different capacities λ = 100

Figure 6.4: Best solutions for instance 10-20 with different capacities λ = 100

The effect of λ on the hub locations is presented in Table 6.5. When λ = 1 and λ = 100,
with 6 or 10 potential hubs under the same capacity level, the open hubs remain the same. When
λ increases to 500 or 1000, the number of open hubs increases. However, the location of hubs
doesn’t change for λ = 500 and λ = 1000. In addition, we note that for instances with 3
potential hubs, the optimal solutions don’t change when λ ∈ {1, 100, 500} except the increase
of the routing costs. Furthermore, Figures 6.5-6.7 show the changes as in Table 6.5, on each cost
component, except the smallest fixed vehicle costs, as λ increases. Here, we use the average
value of each cost component for the three levels of hub capacity to reveal their changes. The
three figures verify the decrease of the contribution of the allocation costs and the increase of
the routing costs in the total cost. For example, Figure 6.6 shows the average cost structure for
instances with 10 nodes and 6 potential hubs as λ increases. It can be seen that the values for
each cost component keep the same except the routing costs when λ = 1 and λ = 100, as well
as for the solutions when λ = 500 and λ = 1000. Although the above conclusions are obtained
only on the basis of the optimal solutions for the instances with 10 nodes, similar effects of
different hub capacity levels and values of parameter λ can be observed for other instances as
shown in Tables 6.2-6.4. We can conclude that a significant increase of λ improve the routing
part of the solution.
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Figure 6.5: Cost structure of instance 3-10 with different λ values

Figure 6.6: Cost structure of instance 6-10 with different λ values

Figure 6.7: Cost structure of instance 10-10 with different λ values
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6.4.3 Computational results of the memetic algorithm
Computational experiments were implemented to evaluate the performance of the memetic

algorithm in solving the HLRP of postal systems. The MA was implemented in C++ language
and all tests have been run on the same computer as the one aforementioned. After tuning
the parameters of the MA, on postal instances, the following stopping criteria are retained: the
algorithm stops when the maximum number of iteration reaches 200 or when the best individual
remains unchanged after 100 consecutive iterations. The other parameters are set to the same
values as the ones used in Chapter 4, except the penalty parameter for the fitness function
changed to 10000.

Tables 6.6-6.8 compare the results obtained by CPLEX and the MA based on different
instances for λ = 100 or λ = 500. In the three tables, the instance name is denoted by the
number of potential hubs |H| and the number of non-hub nodes |N |. The second column gives
the hub capacity level Γ

′

k ∈ {L,M, S}. In the last columns, the following notations are used to
compare the results:

• LB: lower bound or best lower bound found by CPLEX in three hours.

• UB: upper bound (best objective value ) found by CPLEX in three hours, marked "*" if
the solution is optimal.

• %LB: deviation in % of the upper bound from the lower bound found by CPLEX. Here,
%LB = (UB −LB)/UB × 100%. The bold one represents the sbest value compared to
the other method.

• Time (s): CPU time in seconds used by CPLEX.

• Open hub: the index of open hubs in the best solution obtained by each corresponding
method.

• Zbest: best objective value found by the MA in 10 runs, marked "*" if the solution is
optimal.

• %LB
′: deviation in % between the best objective value and the lower bound of CPLEX,

Here, %LB
′
= (Zbest − LB)/Zbest × 100%.

• %UB: deviation in % between the best objective value and upper bound of CPLEX, Here,
%UB = (Zbest − UB)/UB × 100%.

• Tbest (s): CPU time in seconds used for the best solution obtained by the MA.

Table 6.6 reports the results obtained by CPLEX and the proposed MA based on instances
with 3, 6 potential hubs when λ = 100. For all of the 42 test instances, the MA can reach the
same or better solutions than CPLEX including 6 optimal solutions and 26 new best solutions.
When CPLEX can’t find feasible solutions in 3 hours (8 instances), especially for the large in-
stances with small hub capacity, the MA can provide a solution of good quality in reasonable
computing time. For the 36 instances unproved to optimality, the gaps between the best ob-
jective values from the MA and the lower bounds %LB

′ change between 0.65% and 11.19%
with an average value around 3.60%. Compared to the results obtained by CPLEX, the gaps
between upper bounds and lower bounds %LB for the 36 instances vary between 0.65% and
26.43% with an average value 5.75%. Especially for the instance 6-40 with small hub capacity
level, the best solution obtained by the MA greatly improves the one found by CPLEX. With
respect to the CPU time used by each method, the MA is able to find the competitive solutions
in a shorter computational time (396.23s verse 9561.77s, on average). From the column "Open
hub", it can be observed that the locations of open hubs in the best solution obtained by each
method have no obvious changes except 5 instances (bold ones) Thus, it may be concluded that
generally, the improvement of the best solutions from the MA arise in the decisions of allocation
strategies or routing design.
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Table 6.6: Result comparison between CPLEX and the MA on the postal instances (3, 6 hubs) λ = 100
Instance name CPLEX MA
H-N Γ

′
k LB UB %LB Time(s) Open hub Zbest %LB

′
%UB Tbest Open hub

3-10
L 259821.39 259821.39* 0.00 163.94 1, 2 259821.39* 0.00 0.00 0.49 1, 2
M 259821.39 259821.39* 0.00 117.14 1, 2 259821.39* 0.00 0.00 0.49 1, 2
S 364904.19 364904.19* 0.00 7978.17 1, 2, 3 364904.19* 0.00 0.00 0.51 1, 2, 3

3-20
L 268459.98 270518.13 0.76 10800.00 1, 3 270518.13 0.76 0.00 2.99 1, 3
M 268761.38 270518.13 0.65 10800.00 1, 3 270518.13 0.65 0.00 2.98 1, 3
S 328708.88 334800.12 1.82 10800.00 1, 2, 3 334800.11 1.82 0.00 2.98 1, 2, 3

3-25
L 293308.79 297496.91 1.41 10800.00 1, 2, 3 297496.91 1.41 0.00 5.83 1, 2, 3
M 293336.05 302342.11 2.98 10800.00 1, 2, 3 297496.91 1.40 -1.60 5.95 1, 2, 3
S 304249.45 310030.89 1.86 10800.00 1, 2, 3 309937.50 1.84 -0.03 5.76 1, 2, 3

6-10
L 234910.84 234910.84* 0.00 317.38 2, 5, 6 234910.84* 0.00 0.00 1.05 2, 5, 6
M 234910.84 234910.84* 0.00 403.39 2, 5, 6 234910.84* 0.00 0.00 2.11 2, 5, 6
S 245500.25 245500.25* 0.00 3814.15 1, 2, 5, 6 245500.25* 0.00 0.00 1.08 1, 2, 5, 6

6-20
L 268435.13 270518.13 0.77 10800.00 1, 3 270518.13 0.77 0.00 8.00 1, 3
M 268757.87 270518.13 0.65 10800.00 1, 3 270518.13 0.65 0.00 8.86 1, 3
S 292370.32 297178.45 1.62 10800.00 1, 3, 4 297178.45 1.62 0.00 8.22 1, 3, 4

6-25
L 265872.05 267789.09 0.72 10800.00 2, 5 267789.09 0.72 0.00 18.92 2, 5
M 265255.76 267789.09 0.95 10800.00 2, 5 267789.09 0.95 0.00 18.69 2, 5
S 286625.48 295568.71 3.03 10800.00 1, 2, 5 295568.71 3.03 0.00 19.01 1, 2, 5

6-30
L 292289.05 297287.49 1.68 10800.00 1,4 296932.26 1.56 -0.12 16.01 1, 4
M 292316.43 298564.16 2.09 10800.00 1, 4 297409.95 1.71 -0.39 17.28 1, 4
S 316487.21 NFS - 10800.00 - 324324.83 2.42 - 16.63 1,3,4

6-40
L 308797.37 321978.94 4.09 10800.00 5 315897.38 2.25 -1.89 65.47 5
M 308873.39 332968.79 7.24 10800.00 1,6 317330.38 2.67 -4.70 50.03 1,6
S 313732.68 426430.67 26.43 10800.00 1,2,5,6 323458.77 3.01 -24.15 49.63 1,3,6

6-50
L 287194.66 302718.58 5.13 10800.00 4,5 299150.70 4.00 -1.18 112.03 4,5
M 287175.43 306157.99 6.20 10800.00 4,5 300697.36 4.50 -1.78 141.78 4,5
S 303451.00 NFS - 10800.00 - 324076.13 6.36 - 115.18 1,4,5

6-60
L 316437.56 346053.23 8.56 10800.00 2, 3 330906.30 4.37 -4.38 268.50 2,3
M 316414.18 358524.56 11.75 10800.00 2, 3 332065.06 4.71 -7.38 236.12 2,3
S 335417.71 NFS - 10800.00 - 353049.84 4.99 - 275.19 2, 3, 6

6-70
L 314003.43 368781.84 14.85 10800.00 1, 4 327382.33 4.09 -11.23 588.32 4
M 319838.22 415776.74 23.07 10800.00 1, 4, 5 351378.56 8.98 -15.49 490.54 1,4
S 356989.88 NFS - 10800.00 - 391698.83 8.86 - 474.12 1,4,5

6-80
L 277448.49 329740.26 15.86 10800.00 2, 4 298102.93 6.93 -9.59 881.70 2,4
M 277588.47 326834.02 15.07 10800.00 2, 4 299668.53 7.37 -8.31 850.53 2,4
S 316711.70 NFS - 10800.00 - 339025.06 6.58 - 788.27 2,3,4

6-90
L 322579.88 359922.33 10.38 10800.00 1, 3 340518.86 5.27 -5.39 1428.78 2
M 326323.08 366901.02 11.06 10800.00 1, 3 348169.04 6.27 -5.11 1348.68 1,3
S 334598.62 NFS - 10800.00 - 360177.21 7.10 - 1495.32 1,2,3

6-100
L 282779.22 331894.29 14.80 10800.00 2, 4 314710.74 10.15 -5.18 2301.63 1,2
M 282990.41 NFS - 10800.00 - 314710.74 10.08 - 2260.16 1,2
S 333468.26 NFS - 10800.00 - 375464.72 11.19 - 2255.91 1,2,5

Average 5.75 9561.77 3.60 -3.17 396.23
3-hub instances 1.05 8117.69 0.87 -0.18 3.11
6-hub instances 7.44 9955.60 4.34 -4.25 503.45



156 CHAPTER 6. APPLICATION IN POSTAL SERVICE SYSTEM

Table 6.7: Result comparison between CPLEX and the MA on the postal instances (10 hubs) λ = 100
Instance name CPLEX MA
H-N Γ

′
k LB UB %LB Time(s) Open hub Zbest %LB

′
%UB Tbest Open hub

10-10
L 234910.84 234910.84* 0.00 1438.69 3,4,7 234910.84* 0.00 0.00 2.13 3,4,7
M 234910.84 234910.84* 0.00 1040.76 3,4,7 234910.84* 0.00 0.00 2.75 3,4,7
S 236779.79 236779.79* 0.00 1227.46 3,7,8 236779.79* 0.00 0.00 2.09 3,7,8

10-20
L 250505.55 252809.85 0.91 10800.00 1,7 252809.85 0.91 0.00 19.11 1,7
M 250179.95 252809.85 1.04 10800.00 1,7 252809.85 1.04 0.00 18.03 1,7
S 266422.96 270183.11 1.39 10800.00 1,7,8 269764.92 1.24 -0.15 19.60 1,7,8

10-25
L 253069.18 256352.73 1.28 10800.00 6,9 256352.73 1.28 0.00 39.23 6,9
M 252591.86 257822.19 2.03 10800.00 6,9 256481.99 1.52 -0.52 38.80 6,9
S 273942.00 367590.64 25.48 10800.00 4,5,6,9 280431.85 2.31 -23.71 41.86 1,6,9

10-30
L 270892.80 276821.75 2.14 10800.00 3,9 275360.63 1.62 -0.53 37.33 3,9
M 270878.77 278896.76 2.87 10800.00 3,9 276687.78 2.10 -0.79 36.32 3,9
S 286681.02 NFS - 10800.00 - 295004.49 2.82 - 38.31 1,3,9

10-40
L 268602.31 282736.75 5.00 10800.00 8,10 274513.80 2.15 -2.91 104.88 8,10
M 268548.78 294264.14 8.74 10800.00 8,10 276789.76 2.98 -5.94 115.58 1,8
S 285860.38 NFS - 10800.00 - 299100.56 4.43 - 100.22 8,9,10

10-50
L 265684.56 324494.12 18.12 10800.00 2,10 275352.94 3.51 -15.14 287.95 5,10
M 265384.60 338123.28 21.51 10800.00 5,10 276048.12 3.86 -18.36 259.67 5,10
S 284937.55 NFS - 10800.00 - 298627.47 4.58 - 251.04 2,5,10

10-60
L 283854.05 342960.42 17.23 10800.00 9,10 295522.05 3.95 -13.83 520.65 9,10
M 283838.34 375197.35 24.35 10800.00 9,10 298002.54 4.75 -20.57 499.11 9,10
S 313801.78 389177.1 19.37 10800.00 3,9,10 337975.98 7.15 -13.16 522.06 3,8,10

10-70
L 281518.39 327083.16 13.93 10800.00 1,10 301476.60 6.62 -7.83 950.91 1,10
M 281380.38 356117.14 20.99 10800.00 1,10 304576.96 7.62 -14.47 973.72 1,10
S 295347.22 NFS - 10800.00 - 325013.12 9.13 - 1032.50 1,5,9,10

10-80
L 277709.32 346621.14 19.88 10800.00 2,4 295241.88 5.94 -14.82 1932.92 2,4
M 277767.54 312321.32 11.06 10800.00 2,4 296620.03 6.36 -5.03 1930.12 2,4
S 313183.276 NFS - 10800.00 - 341556.63 8.31 - 1751.92 2,3,4

10-90
L 288353.69 389418.76 25.95 10800.00 1,5,8 316394.76 8.86 -18.75 3284.85 5,8
M 288094.52 347803.93 17.17 10800.00 1,8 317534.98 9.27 -8.70 2925.90 1,8
S 304595.304 NFS - 10800.00 - 337997.58 9.88 - 3286.32 1,7,8

10-100
L 282789.124 NFS - 10800.00 - 314553.35 10.10 - 4401.96 2,4
M 282865.292 NFS - 10800.00 - 321427.99 12.00 - 4953.71 1,7
S 304771.005 NFS - 10800.00 - 345387.55 11.76 - 4703.42 2,4,7

Average 10.85 9930.51 4.79 -7.72 1063.18
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Table 6.7 provides the results based on the instances with 10 potential hubs and λ = 100 to
compare the performance of CPLEX and the proposed MA. For all 33 test instances, the MA
finds all known best solutions in reasonable computing time including 27 new best solutions
in which CPLEX didn’t find feasible solutions for 9 instances. For 30 instances unsolved op-
timally, the gaps between the best objective values from the MA and the lower bounds %LB

′

vary between 0.91% and 12.00%, and around 60% of these gaps are lower than 5%. Compared
to the gaps of CPLEX (%LB), the MA outperforms CPLEX for most instances (4.79% verse
10.85%, on average).

The results reported in Table 6.8 also show the good performance of the MA compared to
CPLEX on 27 small and medium instances when λ = 500. The MA can reach all optimal
solutions (9 instances) obtained by CPLEX in a shorter computational time, which is less than
3 seconds for the best solution. When CPLEX cannot find the optimal solutions within the time
limit, the MA finds 10 new best solutions from the 18 instances unsolved optimally in a shorter
time (see the value of %UB ). The 10 new best solutions obtained by the MA have lower
gaps compared to CPLEX (4.47% verse 7.52%), especially for the instances 10-25 associated
to the best improvement (13%). With respect to the CPU time used by each method to reach
the best solution with λ = 500, the MA can also find solutions of good quality in a shorter
time (11.69s verser 7356.10s, on average). In addition, the locations of open hubs in the best
solutions obtained by two methods have no differences except one instances (bold ones).

Table 6.8: Result comparison between CPLEX and the MA on the postal instances λ = 500
Instance name CPLEX MA
H-N Γ

′
k LB UB %LB Time(s) Open hub Zbest %LB

′
%UB Tbest Open hub

3-10
L 309106.20 309106.20* 0.00 302.58 1,2 309106.20* 0.00 0.00 0.50 1,2
M 309106.20 309106.20* 0.00 177.47 1,2 309106.20* 0.00 0.00 0.50 1,2
S 426895.31 426895.31* 0.00 3000.91 1,2,3 426895.31* 0.00 0.00 0.50 1,2,3

3-20
L 339070.22 345205.48 1.78 10800.00 1,3 345205.48 1.78 0.00 2.96 1,3
M 340119.04 345205.48 1.47 10800.00 1,3 345205.48 1.47 0.00 2.91 1,3
S 395598.01 420514.51 5.93 10800.00 1,2,3 419214.53 5.63 -0.31 3.00 1,2,3

3-25
L 374702.47 386654.92 3.09 10800.00 1,2,3 386023.32 2.93 -0.16 6.44 1,2,3
M 373711.17 386654.92 3.35 10800.00 1,2,3 386023.32 3.19 -0.16 6.65 1,2,3
S 383784.64 403284.36 4.84 10800.00 1,2,3 403284.36 4.84 0.00 6.39 1,2,3

6-10
L 274511.42 274511.42* 0.00 44.46 2,3,5,6 274511.42* 0.00 0.00 1.07 2,3,5,6
M 274511.42 274511.42* 0.00 41.26 2,3,5,6 274511.42* 0.00 0.00 1.48 2,3,5,6
S 283408.62 283408.62* 0.00 39.23 1,2,3,5,6 283408.62* 0.00 0.00 1.09 1,2,3,5,6

6-20
L 338429.11 345205.48 1.96 10800.00 1,3 345205.48 1.96 0.00 8.06 1,3
M 338038.62 345205.48 2.08 10800.00 1,3 345205.48 2.08 0.00 8.10 1,3
S 361440.91 380983.87 5.13 10800.00 1,3,4 377469.96 4.25 -0.92 8.86 1,3,4

6-25
L 345075.71 372723.32 7.42 10800.00 2,5 355144.88 2.84 -4.72 17.72 2,5
M 348170.71 355144.88 1.96 10800.00 2,5 355144.88 1.96 0.00 19.52 2,5
S 365660.68 410486.60 10.92 10800.00 1,2,5 393545.52 7.09 -4.13 18.56 1,2,5

10-10
L 271741.11 271741.11 0.00 302.38 1,2,3,7,8 271741.11 0.00 0.00 2.24 1,2,3,7,8
M 271741.11 271741.11 0.00 221.72 1,2,3,7,8 271741.11 0.00 0.00 2.06 1,2,3,7,8
S 273209.22 273209.22 0.00 84.58 1,2,3,7,8 273209.22 0.00 0.00 2.22 1,2,3,7,8

10-20
L 319195.00 326030.83 2.10 10800.00 1,7 326030.83 2.10 0.00 17.94 1,7
M 319240.09 326030.83 2.08 10800.00 1,7 326030.83 2.08 0.00 17.00 1,7
S 335522.62 369024.72 9.08 10800.00 1,7,8 345521.73 2.89 -6.37 19.22 1,7,8

10-25
L 332852.76 348412.80 4.47 10800.00 6,9 343708.53 3.16 -1.35 56.85 6,9
M 332659.94 351358.39 5.32 10800.00 6,9 347267.96 4.21 -1.16 41.72 6,9
S 347434.78 437234.34 20.54 10800.00 1,5,6,9 379848.59 8.53 -13.12 42.14 1,6,9

Average 3.46 7356.10 2.33 -1.20 11.69
3-hub instances 2.27 7586.77 2.20 -0.07 3.32
6-hub instances 3.27 7213.88 2.24 -1.09 9.38
10-hub instances 4.84 7267.63 2.55 -2.45 22.38
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Tables 6.9-6.11 report the detailed results obtained by the MA for all generated instances
(small, medium and large ones) with different hub capacity levels when λ = 100. The "Best
run" represents the best solution found in 10 runs by the MA including the best objective value
Zbest, the corresponding running time (Tbest (s)) and the details of the best solution found by
the MA. "Open hub" gives the index of the located hubs and "Num routes" represents the total
number of local routes in the best solution. The "Average on 10 runs" shows the statistical
result of 10 runs of the MA. The average objective value Z of the solutions found in 10 runs is
shown in the column of "Average value" and then the following statistical indicators are used to
evaluate the performance of the MA:

• Aver gap (%): the average deviation in % between each value obtained by the MA and
the best value. Here, Avergap = Z−Zbest

Zbest
× 100%;

• CV (%): the coefficient of variance for the objective values of the 10 runs with the average
value. Here, CV = SD/Z × 100%, where SD is the standard deviation of all the
objective values of the 10 runs;

• CV ′(%): the coefficient of variance for all objective values of the 10 runs with the best
objective value. Here, CV ′ = SD/Zbest × 100%;

• Taver (s): the average running time for the 10 runs of the MA.

Table 6.9: Results from the MA for the postal instances with 3 potential hubs λ = 100

Instance name Best run Average on 10 runs

H-N Γ
′

k Zbest Tbest(s) Open
hub

Num
routes

Average
value

Aver
gap CV CV

′
Taver(s)

3-10
L 259821.39 0.49 1, 2 2 259821.39 0.00 0.00 0.00 0.57
M 259821.39 0.49 1, 2 2 259821.39 0.00 0.00 0.00 0.60
S 364904.19 0.51 1, 2, 3 3 364904.19 0.00 0.00 0.00 0.52

3-20
L 270518.13 2.99 1, 3 2 272877.61 0.87 0.88 0.89 2.93
M 270518.13 2.98 1, 3 2 273949.32 1.27 1.16 1.17 2.97
S 334800.11 2.98 1, 2, 3 3 339106.83 1.29 1.03 1.04 3.13

3-25
L 297496.91 5.83 1, 2, 3 3 302142.81 1.56 0.97 0.99 6.58
M 297496.91 5.95 1, 2, 3 3 302654.82 1.73 1.13 1.15 6.23
S 309937.50 5.76 1, 2, 3 3 314017.49 1.32 0.98 0.99 5.86

Average 3.11 0.89 0.68 0.69 3.26

From Tables 6.9-6.11, we can observe that the MA can solve effectively all the postal in-
stances in a reasonable time, even the largest ones including 100 nodes with 10 potential hubs.
For all the test instances, the MA can find feasible solutions for the HLRP in postal systems in
less than 4 seconds on average for 9 instances with 3 potential hubs and 10 minutes on average
for 33 instances with 6 potential hubs. And with respect to the 33 instances with 10 potential
hubs, the MA can solve all the problems in less than 1 hour with up to 100 nodes. Moreover, the
small average resulting gaps (0.89% for the instances with 3 hubs, 2.99% for the instances with
6 hubs and 3.06% for the ones with 10 potential hubs) prove also the robustness and usefulness
of the memetic algorithm for the postal instances. Moreover, the coefficient of variance with the
average objective value CV (0.68%, 2.09% and 0.25% on average, respectively) and with the
best objective value CV ′ (0.69%, 2.16% and 2.31% on average, respectively), demonstrate also
the good stability of the MA. For the best solution, it can be seen that the assignment solution
is changed or the number of open hubs is increased as the capacity of the hubs decreases, and
the total cost for most instances increases because more hubs may be operated to satisfy the
total demand of suppliers and clients, and better route composition is formed. In addition, the
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Table 6.10: Results from the MA for the instances with 6 potential hubs λ = 100

Instance name Best run Average on 10 runs

H-N Γ
′

k Zbest Tbest(s) Open
hub

Max
routes

Average
value

Aver
gap CV CV

′
Taver(s)

6-10
L 234910.84 1.05 2,5,6 3 237066.64 0.92 0.80 0.81 1.25
M 234910.84 2.11 2,5,6 3 237130.03 0.94 0.54 0.54 1.26
S 245500.25 1.08 1,2,5,6 4 250310.99 1.96 1.30 1.33 1.23

6-20
L 270518.13 8.00 1,3 2 273899.37 1.25 0.87 0.88 9.11
M 270518.13 8.86 1,3 2 274133.29 1.34 0.71 0.71 8.61
S 297178.45 8.22 1,3,4 3 304138.54 2.34 1.99 2.03 8.26

6-25
L 267789.09 18.92 2,5 2 274891.28 2.65 2.43 2.49 21.22
M 267789.09 18.69 2,5 2 273589.82 2.17 1.93 1.97 19.40
S 295568.71 19.01 1,2,5 3 302770.88 2.44 1.50 1.54 19.24

6-30
L 296932.26 16.01 1, 4 2 308712.29 3.97 1.60 1.66 16.94
M 297409.95 17.28 1, 4 2 305956.07 2.87 2.20 2.26 17.08
S 324324.83 16.63 1,3,4 3 335059.28 3.31 2.79 2.88 17.20

6-40
L 315897.38 65.47 5 2 320797.23 1.55 1.65 1.68 59.30
M 317330.38 50.03 1,6 3 326162.81 2.78 2.61 2.69 51.13
S 323458.77 49.63 1,3,6 3 336070.42 3.90 3.04 3.16 50.26

6-50
L 299150.70 112.03 4,5 4 308519.58 3.13 1.26 1.30 109.16
M 300697.36 141.78 4,5 4 309596.37 2.96 1.45 1.49 117.97
S 324076.13 115.18 1,4,5 4 338677.95 4.51 2.38 2.49 121.06

6-60
L 330906.30 268.50 2,3 4 337927.73 2.12 1.04 1.06 247.53
M 332065.06 236.12 2,3 4 342363.63 3.10 2.86 2.95 233.17
S 353049.84 275.19 2, 3, 6 4 363056.55 2.83 2.44 2.51 243.13

6-70
L 327382.33 588.32 4 4 333163.99 1.77 1.17 1.19 549.15
M 351378.56 490.54 1,4 5 366154.11 4.21 2.33 2.43 506.34
S 391698.83 474.12 1,4,5 5 404561.09 3.28 1.88 1.94 482.35

6-80
L 298102.93 881.70 2,4 5 308974.37 3.65 3.68 3.81 927.79
M 299668.53 850.53 2,4 5 308710.22 3.02 3.59 3.70 834.91
S 339025.06 788.27 2,3,4 5 357704.39 5.51 3.62 3.82 841.78

6-90
L 340518.86 1428.78 2 5 349230.66 2.56 1.11 1.13 1407.98
M 348169.04 1348.68 1,3 5 362925.50 4.24 2.33 2.43 1408.56
S 360177.21 1495.32 1,2,3 5 396200.77 5.22 3.29 3.46 1453.11

6-100
L 314710.74 2301.63 1,2 6 328007.33 4.23 1.62 1.69 2292.74
M 314710.74 2260.16 1,2 6 326652.84 3.79 3.57 3.70 2206.95
S 375464.72 2255.91 1,2,5 6 390575.16 4.02 3.50 3.64 2224.90

Average 503.45 2.99 2.09 2.16 500.30
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Table 6.11: Results from the MA for the postal instances with 10 potential hubs λ = 100

Instance name Best run Average on 10 runs

H-N Γ
′

k Zbest Tbest(s) Open
hub

Max
routes

Average
value

Aver
gap CV CV

′
Taver(s)

10-10
L 234910.84 2.13 3, 4, 7 3 237399.91 1.06 0.84 0.85 2.16
M 234910.84 2.75 3, 4, 7 3 238205.57 1.40 0.95 0.96 2.50
S 236779.79 2.09 3, 7, 8 3 237969.34 0.50 0.76 0.77 2.36

10-20
L 252809.85 19.11 1, 7 2 257235.85 1.75 1.72 1.75 21.31
M 252809.85 18.03 1, 7 2 257666.68 1.92 1.66 1.70 17.90
S 269764.92 19.60 1, 7, 8 3 276242.78 2.40 2.19 2.24 18.56

10-25
L 256352.73 39.23 6, 9 2 261379.25 1.96 1.80 1.83 47.75
M 256481.99 38.80 6, 9 2 260421.42 1.54 1.44 1.47 41.43
S 280431.85 41.86 1, 6, 9 3 289482.40 3.23 2.18 2.25 41.02

10-30
L 275360.63 37.33 3,9 2 280739.90 1.95 1.94 1.98 39.40
M 276687.78 36.32 3,9 2 282411.08 2.07 1.88 1.91 45.81
S 295004.49 38.31 1,3,9 3 304235.00 3.13 1.93 1.99 37.77

10-40
L 274513.80 104.88 8,10 3 283227.76 3.17 2.75 2.83 105.03
M 276789.76 115.58 1,8 2 282630.79 2.11 2.34 2.39 123.03
S 299100.56 100.22 8,9,10 3 309055.35 3.07 3.07 3.17 108.22

10-50
L 275352.94 287.95 5,10 3 282571.43 2.57 2.20 2.25 249.75
M 276048.12 259.67 5,10 4 286464.35 3.77 2.64 2.65 258.79
S 298627.47 251.04 2,5,10 3 304926.42 2.11 2.34 2.39 255.93

10-60
L 295522.05 520.65 9,10 4 309777.82 4.82 2.79 2.70 609.34
M 298002.54 499.11 9,10 4 303522.67 1.85 1.28 1.29 507.29
S 337975.98 522.06 3,8,10 5 348729.24 3.18 2.58 2.66 512.65

10-70
L 301476.60 950.91 1,10 5 315131.96 4.53 2.43 2.33 966.34
M 304576.96 973.72 1,10 5 317809.70 4.34 2.55 2.66 1070.62
S 325013.12 1032.50 1,5,9,10 6 343711.45 5.75 2.90 3.07 1086.71

10-80
L 295241.88 1932.92 2,4 5 307107.40 4.02 2.34 2.44 1959.67
M 296620.03 1930.12 2,4 5 304154.33 2.54 2.20 2.25 1873.90
S 341556.63 1751.92 2,3,4 5 356773.12 4.46 3.31 3.46 1815.27

10-90
L 316394.76 3284.85 5,8 5 331238.79 4.39 2.83 2.96 3240.97
M 317534.98 2925.90 1,8 5 328874.29 3.36 1.99 2.06 3081.00
S 337997.58 3286.32 1,7,8 6 357486.38 5.77 3.18 3.36 3142.32

10-100
L 314553.35 4401.96 2,4 6 330312.92 5.01 1.75 1.84 4805.89
M 321427.99 4953.71 1,7 6 335344.12 4.33 4.87 5.01 4862.02
S 345387.55 4703.42 2,4,7 7 355412.73 2.90 2.67 2.75 4908.06

Average 1063.18 3.06 2.25 2.31 1086.69
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difficulty of solving problems can be detected through the computational time that increases as
the number of potential hubs and non-hub nodes increases and the hub capacity become more
tighter.

Figure 6.8 and 6.9 show the tendency of the average gap and the coefficient of variance
CV

′
(%) depending on the number of nodes, respectively, for 6 and 10 potential hubs. They

demonstrate the stability of the MA. It can be seen from Figure 6.8 that the average gap between
the best single run and the average run of the MA is less than 5.00%. In addition, for all
instances, when the number of nodes exceeds 50, the average gap is relatively stable without
significant fluctuation except one instance with 70 nodes and 10 potential hubs. And Figure 6.9
shows that the coefficient of variance of all the objective values from the best one is less than
4.0%. Even when the number of nodes exceeds 50, it is close to 3.00%. This shows that the
solutions in all the 10 runs are close to the best one. Hence, it can offer the decision maker
several reliable solutions near the optimum.

Figure 6.8: The tendency of the average gap depending on the problem scale of postal instances

Figure 6.9: The tendency of CV ′ depending on the problem scale of postal instances

Furthermore, in order to validate the consolidation role of the hubs in the hub-and-spoke
organization for postal instances [32], we compare the hub arc flows (inter-hub) with the spoke
(non-hub node) flows in Table 6.12 based on instance 6-20, 6-25, 10-20 and 10-25 with λ = 100.
In this table, the average flow transfered between hubs Flowhub and the average spoke flow
allocated to hubs Flowspoke in the best solutions are reported in column 5 and 6, respectively.
The first two columns present the instance name and hub capacity level. Column 3 and 4 provide
respectively the number of hub arcs and the spokes in the best solution for each instance. In
addition, it also reports the minimum flow between hubs Minflowhub and the maximum spoke
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flow Maxflowspoke in column 7 and 8, respectively. The last column provides an average
percentage (%) of the number of spokes with flow larger than the hub arc flow. It can be seen
from this table that the average hub arc flow is always larger than the average spoke flow for
these instances. There are small percentage of spokes with a flow larger than the minimum hub
arc flow (3.37%, on average). Indeed, there are at most 2 spoke flows larger than the hub arc
flow for the instance 6-20 with the small hub capacity. All these observations demonstrate the
interest of hub terminals to aggregate flows in the postal system network and the efficiency of
the inter-hub transportation. They also justify the underlying hypothesis of the problem.

Table 6.12: The comparison of hub arc flows and spoke flows in postal instances

Instance Γk
Hub
arcs Spokes Flowhub Flowspoke Minflowhub Maxflowspoke Average %

6-20

L 2 18 773.29 201.57 600.34 909.95 5.56%
M 2 18 773.29 201.57 600.34 909.95 5.56%
S 6 17 398.82 201.26 299.72 909.95 11.76%

6-25

L 2 23 677.54 150.18 586.50 782.08 4.35%
M 2 23 677.54 150.18 586.50 782.08 4.35%
S 6 22 384.33 150.39 259.05 782.08 4.35%

10-20

L 2 18 763.57 162.90 606.15 515.98 0.00%
M 2 18 763.57 162.90 606.15 515.98 0.00%
S 6 17 477.39 142.13 280.70 259.18 0.00%

10-25

L 2 23 697.98 132.76 627.36 381.26 0.00%
M 2 23 685.30 132.76 593.43 381.26 0.00%
S 6 22 373.34 121.46 277.57 339.87 4.55%
Average 620.50 159.17 493.65 622.47 3.37

6.5 Conclusion
In this chapter, the application of the hub location-routing problem in postal service systems

is studied. We analyzed the individual characteristics of this application and we presented a
mathematical formulation of the HLRP in postal systems where the pickup and delivery at one
node are operated simultaneously. Meantime, the memetic algorithm proposed in Chapter 4 is
adapted to solve large postal instance problems. In the computational experiments based on the
instances inspired from the AP data set, we analyzed the effects of different parameters on the
solutions, including the hub capacity level, the number of potential hubs and the weight of the
routing cost in the total cost. In particular, the cost structures of each solution with different
parameter values are reported. It is observed that the allocation cost (handling cost) has a larger
proportion in the total cost even when the weight of the routing cost increases. In addition,
the solutions have no obvious changes when the weight of the routing cost λ equals 1 and 100
on the one hand, as well as λ = 500 and λ = 1000 on the other hand, for most of the test
instances. Other experiments, implemented on all instances for λ = 100 and small to medium
for λ = 500 prove that the MA outperforms the solver CPLEX in terms of solution quality and
computational time. Finally, the effectiveness and stability of the memetic algorithm is verified
again through many computational experiments on all instances generated and λ = 100. It
demonstrated that the MA can provide promising solutions for the HLRP in postal service
systems with up to 100 non-hub nodes, although we have not proven their optimality. This is
due to the difficulty to obtain good lower bounds. It is worth to notice that there are nearly 60
thousands integer variables and about 260 thousands inequalities in the model for the problem
involving 100 non-hub nodes and 10 potential hubs.
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Conclusion and prospect

This thesis was devoted to proposing and testing new models and solution techniques for
the hub location-routing problem (HLRP). Two particular applications have been studied : for
the less-than-truckload (LTL) shipments of freight transport providers and for the postal sys-
tems. This is a very relevant real problem, especially for transportation network design and the
logistics system optimization in an LTL context. A particular attention has been paid to the
capacitated single allocation HLRP, which considered a restriction of capacity for the hubs and
the vehicles. The aim was to determine the location of hubs, the single allocation of non-hub
nodes to hubs, the routing of flows between each origin and destination, as well as the optimal
vehicle routing for local collection and delivery tours. In order to solve this problem aiming to
minimize the total operating cost of LTL networks, mathematical models and solution methods
were proposed, including heuristic and exact algorithms. Numerous computational experiments
based on generated instances inspired from the well known AP data set have been conducted to
evaluate the performance of the methods in terms of finding feasible solutions, improving lower
bounds or computing time. Results obtained by each method showed their individual strengths
in particular aspects. In more details, the main research work and theoretical contributions of
this thesis are summarized as follows:

(1) A state of the art about the hub location-routing problem has been given based on the
current published works, as well as a literature review of closely related problems ,ie the
Hub Location Problem (HLP), the Location and Routing Problem (LRP) and the Vehicle
Routing Problem (VRP). They summarized individual features, classical mathematical
models and main solution methods of each problem. The main goal of this literature
survey was to analyze the relations and differences among related problems and to suggest
directions for the analysis of the HLRP with respect to the problem constraints, solving
methods and application areas.

(2) New models have been proposed for the capacitated single allocation HLRP with separate
collection and delivery processes or not, respectively. Two general linear programming
formulations are devoted to a resolution by CPLEX for small size instances and to give
some insights into the CSAHLRP of general freight transport based on different parame-
ter values. A three-index vehicle flow based formulation has been proposed to implement
a branch-and-cut algorithm to solve the HLRP. Another mathematical model focuses on
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the HLRP in postal service systems where collection and delivery are operated simulta-
neously in one vehicle route. It is mainly devoted to the area of solution analysis and
evaluations based on many different parameter values.

(3) A memetic algorithm (MA) has been proposed to solve the CSAHLRP for general freight
transports as well as postal services systems problems. It combines an iterative local
search (ILS) procedure into the framework of a genetic algorithm (GA) to find feasi-
ble solutions of good quality in a competitive time. Computational results on small and
medium size instances, compared to the CPLEX results prove that the proposed MA out-
performed CPLEX in terms of finding best solutions and computational time. In addition,
such approach allows us to find good and reliable solutions for large size instances with
up to 100 non-hub nodes efficiently.

(4) A branch-and-cut (B&C) algorithm has been developed to solve the CSAHLRP for gen-
eral freight transport based on some families of valid inequalities, which strengthen the
linear programming (LP) relaxation into a cutting plane procedure. In addition, the best
solution from the memetic algorithm is used as the initial solution at the root node of the
proposed B&C algorithm. Computational results demonstrate a good performance of our
B&C algorithm for solving the small and medium instances optimally with up to 30 non-
hub nodes and 10 potential hubs. In addition, it gives large improvements on the lower
bounds obtained by CPLEX. Furthermore, results based on large instances show that the
proposed complete B&C algorithm can find some new best solutions compared to those
obtained by the MA.

(5) New sets of instances for the CSAHLRP have been generated based on the Australian Post
(AP) data set and a real cost data base of the French Comité National Routier (CNR). Then
for each of the proposed method, a large number of computational experiments have been
conducted including parameter tuning, results comparisons and performance evaluations.

Following the researches conducted for this thesis, there is still much research to be done
on this subject, to extend the models that have been proposed and enforce the solution methods.
The following research directions and issues for future work may be proposed:

1. Other variants of the HLRP exist in the literature, such as the p-hub location-routing prob-
lem, the multiple allocation hub location-routing problem or the two-layer hub location-
routing problem. Our models and proposed methods could be adapted to study these
problems.

2. Our branch-and-cut algorithm could be improved to solve exactly larger size instances
of the HLRP. In particular new valid inequalities could be developed or the ones derived
from other related problems could be adapted, and other branching strategies and separa-
tion algorithm could be adapted. It would also be interesting to adapt, our exact solution
method for solving the HLRP in postal service systems.

3. A new efficient lower bound could be developed in order to better evaluate the perfor-
mance of our heuristic methods than it has been done through linear relaxation.

4. It would be challenging to apply our methods to solve real cases from logistics providers,
and larger instance sets should be generated including more potential hubs or more non-
hub nodes to further test the capability of our methods to solve large, realistic problems.
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uncapacitated single allocation hub location problem. Soft Computing, 17(3):445–466,
2013. 94, 95

[136] Y. Marinakis. Multiple phase neighborhood search-GRASP for the capacitated vehicle
routing problem. Expert Systems with Applications, 39(8):6807–6815, 2012. 54, 56

[137] I. Martínez-salazar, N. León, and F. Ángel bello. Memetic algorithms for solving a bi-
objective transportation location routing problem. In Proceedings of the 2014 Industrial
and Systems Engineering Research Conference, pages 368–380, May 2014. 92, 97

[138] C. Martinhon, A. Lucena, and N. Maculan. A relax and cut algorithm for the vehicle
routing problem. Technical report, Universidade Federal Fluminense, Brazil, 2000. 53,
54

[139] A. Menou, A. Benallou, R. Lahdelma, and P. Salminen. Decision support for centraliz-
ing cargo at a moroccan airport hub using stochastic multicriteria acceptability analysis.
European Journal of Operational Research, 204(3):621–629, August 2010. 42

[140] H. Min, V. Jayaraman, and R. Srivastava. Combined location-routing problems: A syn-
thesis and future research directions. European Journal of Operational Research, 108:1–
15, 1998. 64

[141] M. Mohammadi, R. Tavakkoli-moghadam, H. Tolouei, and M. Yousefi. Solving a hub
covering location problem under capacity constraints by a hybrid algorithm. Journal of
Applied Operational Research, 2:109–116, 2010. 95

[142] M. Mohammed, M. Ahmad, and S. Mostafa. Using genetic algorithm in implementing
capacitated vehicle routing problem. In Computer Information Science (ICCIS), 2012
International Conference on, volume 1, pages 257–262, June 2012. 95, 96

[143] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts -
towards memetic algorithms, 1989. 91

[144] P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo,
F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, editors, New Ideas in
Optimization. 1999. 92

[145] I. Muter, J.-F. Cordeau, and G. Laporte. A branch-and-price algorithm for the multi-depot
vehicle routing problem with interdepot routes. Transportation Science, 48(3):425–441,
2014. 53, 54

[146] A. Nadizadeh, R. Sahraeian, A. S. Zadeh, and S. M. Homayouni. Using greedy cluster-
ing method to solve capacitated location-routing problem. African Journal of Business
Management, 5(21):8470–8477, 2011. 61, 64

[147] M. Naeem and B. Ombuki-Berman. An efficient genetic algorithm for the uncapacitated
single allocation hub location problem. In IEEE Congress on Evolutionary Computation
(CEC), 2010, pages 1–8, Barcelona, 07 2010. 94, 95

[148] Y. Nagata, O. Bräysy, and W. Dullaert. A penalty-based edge assembly memetic al-
gorithm for the vehicle routing problem with time windows. Computers & Operations
Research, 37(4):724 – 737, 2010. 96

[149] G. Nagy and S. Salhi. The many-to-many location-routing problem. Sociedad de Es-
tadística e Investigación Operativa, 6(2):261–275, 1998. 8, 10, 36, 65, 66, 69

[150] G. Nagy and S. Salhi. Location-routing: Issues, models and methods. European Journal
of Operational Research, 177(2):649–672, 2007. 57, 64



174 BIBLIOGRAPHY

[151] G. Nagy, N. A. Wassan, M. G. Speranza, and C. Archetti. The vehicle routing problem
with divisible deliveries and pickups. Transportation Science, 2013. 54, 56

[152] J. Nalepa and Z. J. Czech. A parallel memetic algorithm to solve the vehicle routing
problem with time windows. CoRR, abs/1402.6942, 2014. 96

[153] F. Neri and C. Cotta. Memetic algorithms and memetic computing optimization: A
literature review. Swarm and Evolutionary Computation, 2:1–14, Feb. 2012. 92

[154] M. O’Kelly and D. Bryan. Hub location with flow economies of scale. Transportation
Research Part B: Methodological, 32(8):605–616, 1998. 41

[155] M. E. O’Kelly. Activity levels at hub facilities in interacting networks. Geographical
Analysis, 18(4):343–356, 1986. 42

[156] M. E. O’Kelly. The location of interacting hub facilities. Transportation Science,
20(2):92–106, 1986. 41, 42

[157] M. E. O’Kelly. A quadratic integer program for the location of interacting hub facilities.
European Journal of Operational Research, 32(3):393–404, 1987. 42, 43, 44, 46

[158] M. E. O’Kelly. Hub facility location with fixed costs. Papers in Regional Science,
71(3):293–306, 1992. 44

[159] M. E. O’Kelly and Y. Lao. Mode Choice in a Hub-and-Spoke Network: A Zero-One
Linear Programming Approach. Geographical Analysis, 23(4):283–297, 1991. 42

[160] M. E. O’Kelly and H. J. Miller. The hub network design problem: A review and synthesis.
Journal of Transport Geography, 2(1):31–40, 1994. 48

[161] B. Ombuki, B. J. Ross, and F. Hanshar. Multi-objective genetic algorithms for vehicle
routing problem with time windows. Applied Intelligence, 24:17–30, 2006. 96

[162] F. A. Özsoy, M. Labbé, and E. Gourdin. Analytical and empirical comparison of integer
programming formulations for a partitioning-hub location-routing problem. Technical
Report 579, ULB, Department of Computer Science, 2008. 67

[163] A. P., B. J.M., B. E., C. A., N. D., and R. G. Computational results of a branch-and-cut
code for the capacitated vehicle routing problem. Technical report, Istituto di analisi dei
sistemi en informatica, Consiglio Nazionale Delle Ricerche, 1998. 53, 54

[164] J. Peiró, A. Corberán, and R. Martí. GRASP for the uncapacitated r-allocation p-hub
median problem. Computers and Operations Research, 43:50–60, 2014. 42

[165] S. Pirkwieser and G. Raidl. Variable neighborhood search coupled with ilp-based very
large neighborhood searches for the (periodic) location-routing problem. In M. Blesa,
C. Blum, G. Raidl, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics, volume
6373 of Lecture Notes in Computer Science, pages 174–189. Springer Berlin Heidelberg,
2010. 61, 64

[166] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers
& Operations Research, 34:2403–2435, 2007. 54, 55

[167] J.-y. Potvin. Evolutionary algorithms for vehicle routing. Technical Report 2007-48,
CIRRELT, 2007. 54, 56, 95, 96

[168] C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research, 31(12):1985–2002, 2004. 54, 56, 95, 96

[169] C. Prins. Two memetic algorithms for heterogeneous fleet vehicle routing problems.
Engineering Applications of Artificial Intelligence, 22(6):916–928, 2009. 95, 96

[170] C. Prins, C. Prodhon, and R. Calvo. A memetic algorithm with population management
(ma|pm) for the capacitated location-routing problem. In Evolutionary Computation in
Combinatorial Optimization, volume 3906 of Lecture Notes in Computer Science, pages
183–194. Springer Berlin Heidelberg, 2006. 61, 62, 63, 96, 97



BIBLIOGRAPHY 175

[171] C. Prins, C. Prodhon, and R. Calvo. Solving the capacitated location-routing problem by
a grasp complemented by a learning process and a path relinking. 4OR, 4(3):221–238,
2006. 63, 64

[172] C. Prins, C. Prodhon, A. Ruiz, P. Soriano, and R. W. Calvo. Solving the capacitated
location-routing problem by a cooperative lagrangean relaxation-granular tabu search
heuristic. Transportation Science, 41(4):470–483, 2007. 58, 61, 62, 63, 64

[173] C. Prodhon. Le Problème de Localisation-Routage. PhD thesis, Université de Technolo-
gie de Troyes, 2006. 38, 119

[174] C. Prodhon. A hybrid evolutionary algorithm for the periodic location-routing problem.
European Journal of Operational Research, 210:204–212, 2011. 58, 97

[175] C. Prodhon and C. Prins. A memetic algorithm with population management (ma|pm)
for the periodic location-routing problem. In Hybrid Metaheuristics, volume 5296 of
Lecture Notes in Computer Science, pages 43–57. Springer Berlin Heidelberg, 2008. 97

[176] C. Prodhon and C. Prins. A survey of recent research on location-routing problems.
European Journal of Operational Research, in press:1–17, 2014. 8, 36, 58, 60, 64

[177] M. Randall. Solution approaches for the capacitated single allocation hub location
problem using ant colony optimisation. Computational Optimization and Applications,
39(2):239–261, 2007. 46, 47

[178] C. Reeves. Handbook of Metaheuristics, chapter Genetic Algorithms, pages 55–82.
Kluwer Academic Publishers, 2003. 98, 99, 101

[179] J. Rieck, C. Ehrenberg, and J. Zimmermann. Many-to-many location-routing with inter-
hub transport and multi-commodity pickup-and-delivery. European Journal of Opera-
tional Research, 236(3):863–878, 2014. 8, 10, 36, 68, 69

[180] I. Rodríguez-Martín, J.-J. Salazar-González, and H. Yaman. A branch-and-cut algorithm
for the hub location and routing problem. Computers & Operations Research, in press:1–
30, 2014. 8, 10, 36, 65, 66, 68, 69, 142, 143

[181] H. Saiedy, S. D. Moezi, and M. Noruzi. Modeling of capacitated single allocation hub
location problems with n-hub center. Journal of Scientific & Industrial Research, 70:20–
24, 2011. 46

[182] J. Sender and U. Clausen. Heuristics for solving a capacitated multiple allocation hub
location problem with application in German wagonload traffic. Electronic Notes in
Discrete Mathematics, 41:13–20, 2013. 43

[183] Sibel Alev Alumur. Hub location and hub network design. PhD thesis, Bilkent Univer-
sity, 2009. 8, 36

[184] D. Skorin-Kapov, J. Skorin-Kapov, and M. E. O’Kelly. Tight linear programming re-
laxations of uncapacitated p-hub median problem. European Journal of Operational
Research, 94(3):582–593, 1996. 45, 73

[185] S. Sodsoon. Max-min ant system for location-routing. Suranaree J. Sci. Technol.,
17(4):321–334, 2010. 61, 64
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Thèse de Doctorat

Mi ZHANG

Le problème de localisation de hubs et tournées combinées pour le transport
des marchandises par camions incomplets

Hub location routing problem for less than truckload shipments of freight
transport providers

Résumé
Cette thèse porte sur le problème de localisation de
hubs et tournées combinées (HLRP : hub
location-routing problem), qui permet de détermine le
nombre et la localisation des hubs (ou plateformes de
consolidation), l’affectation des clients et fournisseurs
aux hubs et le schéma type des tournées de collecte
et livraison associées à chaque hub. Des modèles
mathématiques et des algorithmes d’optimisation ont
été développés pour le CSAHLRP (capacitated single
alllocation HLRP), qui considère des contraintes de
capacité sur les hubs et les véhicules, et d’affectation
unique des clients et fournisseurs aux hubs. L’objectif
des ces modèles est de minimiser le coût total
d’exploitation du réseau de transport. Ces modèles
sont appliqués au cas de la messagerie (transport de
colis par camions incomplets) dans lequel les
collectes et les livraisons sont séparées. Un modèle
est également adapté au système postal dans lequel
les collectes et livraisons peuvent être regroupées
dans une même tournée. Deux méthodes de
résolution ont été proposées pour le CSAHLRP : un
algorithme mémétique et un algorithme de
branchement et coupes. De nombreuses
expérimentations numériques montrent la
performance des méthodes développées et
permettent d’évaluer les effets des différents
paramètres sur les solutions. La performance des
algorithmes développés a été également comparée
avec celle d’un solveur commercial.

Abstract
This thesis studies the hub location-routing problem
(HLRP), which determines the number and location of
hub facilities concentrating flows and through which
flows are to be routed from origins to destinations,
together with the design of both collection and delivery
routes associated to each hub. The state of the art
shows that only very few works directly address the
HLRP. Mathematical models and optimization
algorithms are developed for the capacitated single
allocation hub location-routing problem (CSAHLRP),
which considers capacitated hubs, capacitated vehicle
and single allocation of non-hub nodes to hubs to
minimize the total operating cost of LTL logistics
network. These models are applied to the case of
less-than-truckload shipments of freight transport
providers with separated collections and deliveries.
One model is also adapted for the postal systems with
simultaneous collections and deliveries. A
metaheuristic and an exact method (Branch and cut
algorithm) are proposed to solve the CSAHLRP.
Extensive computational experiments validate our
models, evaluate the effects of different parameters on
solutions and show the performance of each proposed
method. The performances of the algorithms are also
compared to that of a commercial solver.
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