

Surveillance de procédés de type mélange Kim Phuc Tran

▶ To cite this version:

Kim Phuc Tran. Surveillance de procédés de type mélange. Automatique / Robotique. Université de Nantes (UNAM), 2016. Français. NNT: . tel-02525768

HAL Id: tel-02525768 https://hal.science/tel-02525768

Submitted on 31 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Thèse de Doctorat

Kim Phuc TRAN

Mémoire présenté en vue de l'obtention du grade de Docteur de l'Université de Nantes Label européen sous le sceau de l'Université Bretagne Loire

École doctorale : Sciences et technologies de l'information, et mathématiques

Discipline : Automatique, productique, section CNU 61 Unité de recherche : Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN)

Soutenue le 29 Septembre 2016

Surveillance de procédés de type mélange

JURY

Président : M. Gilbert SAPORTA, Professeur émérite, Conservatoire National des Arts et Métiers, Paris, France Rapporteurs : M. Célestin KOKONENDJI, Professeur des universités, Université de Franche-Comté, Besançon, France M. Cedric HEUCHENNE, Professeur, Université de Liège, Liège, Belgique M. Ghislain VERDIER, Maître de conférencer, Université de Pau et des Pays de l'Adour, Pau, France M. Teodor TIPLICA, Maitre de conférences titulaire de l'HDR, Institut des Sciences et Techniques de l'Ingénieur d'Angers - ISTIA, Angers, France M. Philippe CASTAGLIOLA, Professeur des universités, Université de Nantes, Nantes, France

Examinateurs :

Directeur de thèse :

à l'ange de ma vie, ma chérie, Phuong Hanh...

Remerciements

En premier lieu, je tiens à remercier mon directeur de thèse, le professeur Philippe CASTAGLIOLA, pour la confiance qu'il m'a accordée en acceptant d'encadrer ce travail doctoral et pour ses multiples conseils pour toutes les heures qu'il a consacrées à diriger cette recherche. Sa confiance, ses encouragements, sa dévouement et particulièrement ses nombreuses aides dans la rédaction de ce manuscrit m'ont permis de m'épanouir sereinement tout au long de mes travaux. J'aimerais également lui dire à quel point j'ai apprécié sa grande disponibilité. J'ai été extrêmement sensible à ses qualités humaines d'écoute et de compréhension tout au long de ce travail doctoral. J'ai beaucoup apprécié travailler à ses côtés tant sur le plan scientifique que sur le plan humain. Je garde toujours beaucoup de plaisir à discuter avec lui et à bénéficier de ces conseils qui ont été et resteront des moteurs de mon travail de chercheur. Pour tout ce qu'il m'a appris, je lui remercie très chaleureusement.

J'exprime mes plus vifs remerciements à l'ensemble des membres de mon jury : le Professeur Gilbert SAPORTA, du Conservatoire National des Arts et Métiers, Paris, France pour avoir accepté de présider mon jury de thèse. Le Professeur Célestin KOKONENDJI de l'Université de Franche-Comté, Besançon, France et le Proffesseur Cedric HEUCHENNE de l'Université de Liège, Liège, Belgique pour leur travail de rapporteur et l'intérêt qu'ils ont manifesté à l'égard de mon travail. Docteur Ghislain VERDIER de l'Université de Pau et des Pays de l'Adour, Pau, France et Docteur Teodor TIPLICA de l'Institut des Sciences et Techniques de l'Ingénieur d'Angers - ISTIA, Angers, France pour leur gentillesse d'avoir accepté de participer à mon jury de thèse en tant qu'examinateur de thèse.

Mes remerciements vont également au Professeur Govanni Celano de l'Università di Catania, Italie pour la collaboration scientifique au niveau des articles réalisés en commun dans le domaine du contrôle de la qualité et pour le temps qu'il m'a accordé à plusieurs reprises au cours de cette thèse ainsi que pour l'intérêt qu'il a porté à mes travaux. J'adresse également un remerciement au Professeur Michael Khoo Boon Chong de le School of Mathematical Sciences Universiti Sains Malaysia, Malaysia pour la collaboration scientifique au niveau des articles réalisés en commun dans le domaine du contrôle de la qualité.

Merci à l'ensemble des membres et ex-membres de l'équipe SLP pour m'avoir apporté leur support moral et m'encourager tout au long de ma démarche. Dorra RAHALI et Khaled LAMECHE, merci, pour vos nombreuses aides dans la rédaction de ce manuscrit.

Je remercie toute personne qui ont contribué de près ou de loin à l'accomplissement de cette thèse.

Je ne saurai terminer mes remerciements sans une pensée pour ma famille. Je m'adresse à mon père Kim Mot TRAN et ma mère Thi Lan PHAN, ma reconnaissance pour leur soutien pendant toutes ces années de thèse. Ils ont toujours cru en moi et m'ont apporté son réconfort moral dans l'accomplissement de ce travail.

Je remercie aussi spécialement ma femme pour son amour, son soutien, et d'être compréhensive et patiente avec moi pendant toutes ces années d'étude, et je lui souhaite bon courage pour sa thèse aussi.

Acronymes

Le lecteur trouvera ci-dessous les principaux acronymes utilisés tout au long de cette thèse.

ABRÉVIATION	DÉFINITION				
ARL	Average Run Length				
CRL	Conforming Run Length				
CUSUM	CUmulative SUM				
DPH	Discrete PHase type				
DS	Double Sampling				
EARL	Expected Average Run Length				
EWMA	Exponentially Weighted Moving Average				
LCL	Lower Control Limit				
MSP	Maîtrise Statistique des Procédés				
MCUSUM	Multivariate CUmulative SUM				
MEWMA	Multivariate Exponentially Weighted Moving Average				
RL	Run Length				
SDRL	Standard-Deviation Run Length				
SPC	Statistical Process Control				
SPM	Statistical Process Monitoring				
SNR	Signal to Noise Ratio				
UCL	Upper Control Limit				
VAR	Vector Autoregression				
VARMA	Vector Autoregression Moving Average				
VSI	Variable Sampling Interval				
VSS	Variable Sample Size				

Introduction

Aujourd'hui, la qualité est devenue l'un des plus importants facteurs de décision des consommateurs lorsqu'il s'agit de faire un choix parmi des produits et/ou des services. La recherche de la qualité des produits (et des services) est alors devenue un point clé de la compétitivité des entreprises. Parmi toutes les approches visant à l'amélioration de la qualité, il en existe une particulièrement importante : la Maîtrise Statistique des Procédés (MSP). Parmi les outils de la MSP, les cartes de contrôle sont des outils très utiles pour la détection et l'élimination des causes assignables modifiant le processus. Les cartes de contrôle de type Shewhart ont été largement utilisées comme un outil simple et efficace pour surveiller la moyenne et / ou la dispersion d'une unique caractéristique qualité. En générale, la moyenne ou la médiane sont utilisées pour surveiller la position du procédé alors que l'écart-type, la variance ou l'étendue sont utilisés pour surveiller la dispersion du procédé. A la différence de nombreuses recherches antérieures, cette thèse porte sur des cartes de contrôle pour surveiller le ratio de valeurs moyennes (supposées suivre des lois normales) et des cartes de contrôle pour surveiller des données de type "composition". Ma thèse est composée des cinq contributions suivantes :

- Notre premier travail de recherche porte sur une carte de contrôle pour surveiller le ratio de valeurs moyennes à l'aide de règles supplémentaires. Cette partie de notre travail a été publiée récemment dans la revue International Journal of Production Research (Tran et al. (2016a)), la revue International Journal of Reliability, Quality and Safety Engineering (Tran (2016)) et au "22th ISSAT International Conference on Reliability and Quality in Design", Los Angeles, CA, USA, August, 2016 (Tran et al. (2016e)).
- Notre deuxième travail de recherche porte sur une carte de contrôle pour surveiller le ratio de valeurs moyennes en utilisant une approche EWMA. Cette partie de notre travail a été publiée récemment dans la revue Quality and Reliability Engineering International (Tran et al. (2016b)).
- Notre troisième travail de recherche porte sur une carte de contrôle pour surveiller le ratio de valeurs moyennes avec une approche de type CUSUM. Cette partie de notre travail a été publiée récemment dans la revue Statistical Papers (Tran et al. (2016c)).
- Notre quatrième travail de recherche porte sur une carte de contrôle de type Shewhart pour surveiller le ratio de valeurs moyennes en prenant en compte les erreurs de mesure. Cette partie de notre travail a été publiée récemment dans la revue International Journal of Production Research (Tran et al. (2016d)).
- Finalement, notre cinquième travail de recherche porte sur une carte de contrôle pour surveiller des données de type composition à l'aide d'une approche MEWMA.

Cette thèse est décomposée de la manière suivante :

• Le chapitre 2 introduit les bases de la Maîtrise Statistique des Procédés et définit les principales cartes de contrôle univariées et multivariées par variables ainsi que les principaux indicateurs de performance basés sur le Run Length.

- Le chapitre 3 présente un état de l'art restreint (de fait) des recherches effectuées dans le domaine du contrôle statistique de la qualité pour le ratio de valeurs moyenne et pour des données de type composition. Ce chapitre permet de détailler les caractéristiques statistiques du ratio empirique dans le cas de la loi normale ainsi que les concepts permettant l'analyse des données de type composition.
- Le chapitre 4 est le premier chapitre correspondant aux contributions de cette thèse et introduit et compare plusieurs règles supplémentaires pour surveiller le ratio. Une approche de type chaîne de Markov a été utilisée pour obtenir les paramètres optimaux et les mesures de performances.
- Le chapitre 5 propose et étudie les caractéristiques ainsi que la performance des cartes EWMA pour surveiller le ratio de valeurs moyennes.
- Le chapitre 6 propose et étudie les caractéristiques ainsi que la performance des cartes CUSUM pour surveiller le ratio de valeurs moyennes.
- Le chapitre 7 étudie les caractéristiques ainsi que la performance de la carte de contrôle Shewhart pour surveiller le ratio dans le cas d'erreur de mesure.
- Le chapitre 8 propose et étudie une carte de contrôle pour surveiller les données de type composition avec une approche MEWMA.
- Finalement, le chapitre 9 donne une conclusion générale et propose de nouvelles perspectives de recherche pour les travaux futurs qui peuvent se baser sur les démarches et les résultats obtenus dans cette thèse.

État de l'art

1

Introduction générale à la maîtrise statistique des procédés

1.1 Introduction

La Maîtrise Statistique des Procédés MSP, plus connue sous le nom de SPC (pour Statistical Process Control, SPC, ou Statistical Process Monitoring, SPM) est une méthode de suivi de la production basée sur les statistiques. La MSP suggère l'utilisation d'outils et de techniques statistiques principalement pour la gestion et l'amélioration des processus, Stapenhurst (2010). Elle favorise le développement de l'autocontrôle et permet de garantir le niveau de qualité optimum à chaque étape de la fabrication. Le but de la MSP est de privilégier la démarche préventive consistant à évaluer l'aptitude du procédé par rapport aux spécifications, à analyser en permanence ses performances par rapport à une situation de référence et à intervenir, non pas lorsqu'on génère des produits défectueux, mais dès qu'il y a une dérive par rapport à cette situation de référence.

La MSP est plus que jamais nécessaire pour pouvoir prétendre à un niveau de qualité et de fiabilité indispensable en milieu industriel. Parmi les applications de la MSP, nous nous limiterons à l'étude des outils dédiés aux caractéristiques mesurables (nous ne nous intéresserons donc pas aux caractéristiques discrètes, dites par attributs). L'application de la MSP repose sur deux concepts de base : l'étude des capabilités et le suivi et le pilotage des procédés par cartes de contrôle, Nakhla (2006). Cette thèse porte plus particulièrement sur les cartes de contrôle univariée et multivariées.

L'utilisation de la MSP nécessite que l'on collecte, à intervalle de temps régulier, des échantillons composés de n individus sur lesquels on effectue une (ou éventuellement plusieurs) mesure(s). La valeur de n, fixée d'avance, est ce que l'on appelle la *taille de l'échantillon*. Si le nombre d'échantillons collecté est m, alors l'ensemble des mesures obtenues peut se représenter sous la forme d'un tableau (voir la 1.1) formé de m lignes et n colonnes dans lequel $X_{i,j}$ est l'observation correspondant au jème individu du ième échantillon.

On supposera que les données $X_{i,j}$ suivent une loi normale de paramètres (μ_0, σ_0) où μ_0 et σ_0 sont respectivement la moyenne et l'écart-type nominale / sous-contrôle du procédé (supposé stable et capable). A partir d'un tableau de données MSP il est possible de calculer un certain nombre de caractéristiques importantes. Pour chaque échantillon *i* (chaque ligne du tableau de données MSP) on peut calculer la

Echantillons	Mesures						
1	$X_{1,1}$	$X_{1,2}$	• • •	$X_{1,n}$			
2	$X_{2,1}$	$X_{2,2}$	•••	$X_{2,n}$			
:	÷	÷	÷	÷			
m	$X_{m,1}$	$X_{m,2}$	• • •	$X_{m,n}$			

TABLE 1.1 : Tableau MSP de $m \times n$ mesures $X_{i,j}$

moyenne \bar{X}_i , la médiane empirique \tilde{X}_i , l'écart-type empirique S_i et l'étendue R_i . A partir de ces quantités, on peut calculer

• La moyenne des moyennes

$$\bar{\bar{X}} = \frac{1}{m} \sum_{i=1}^{m} \bar{X}_i$$

• La moyenne des médianes empiriques

$$\bar{\tilde{X}} = \frac{1}{m} \sum_{i=1}^{m} \tilde{X}_i$$

• La moyenne des écart-types empiriques

$$\bar{S} = \frac{1}{m} \sum_{i=1}^{m} S_i$$

• La moyenne des étendues

$$\bar{R} = \frac{1}{m} \sum_{i=1}^{m} R_i$$

Pour obtenir une estimation $\hat{\mu}_0$ du paramètre μ_0 , il suffit de choisir :

$$\hat{\mu} = \bar{\bar{X}}$$
 ou $\hat{\mu} = \tilde{X}$

Pour obtenir une estimation $\hat{\sigma}_0$ du paramètre σ_0 , il suffit de calculer au choix :

$$\hat{\sigma}_0 = rac{ar{S}}{K_S(n)}$$
 ou $\hat{\sigma}_0 = rac{ar{R}}{K_R(n)}$

où $K_S(n)$ et $K_R(n)$ sont des constantes tabulées dans la Table 1.2. Inventées par Walter Shewhart, les cartes de contrôle ont été au cœur de la MSP depuis les année 1930. La construction d'une carte de contrôle est basée sur des principes statistiques. Une carte de contrôle est un dispositif graphique pour surveiller une caractéristique mesurable d'un processus dans le but de montrer que celui-ci fonctionne bien à l'intérieur de ses limites de variation attendues. Un objectif majeur d'une carte de contrôle est "de détecter rapidement l'apparition des causes assignables de changements de processus afin que le processus puisse être étudiée et des mesures correctives entreprisent avant que de nombreuses unités non conformes ne soient fabriquées", Montgomery (2013). En pratique, il existe deux grands types de dérives :

• Dérive en position : dans ce cas, la moyenne du procédé passe de sa valeur nominale μ_0 à une position $\mu_1 = \mu_0 + \delta_\mu \sigma_0$, où δ_μ est un paramètre qui quantifie l'amplitude de la dérive en position.

• Dérive en dispersion : dans ce cas, la dispersion du procédé passe de sa valeur nominale σ_0 à une valeur $\sigma_1 = \delta_{\sigma} \sigma_0$ où $\delta_{\sigma} > 0$ quantifie l'amplitude de la dérive en dispersion.

On supposera qu'une dérive en position et en dispersion ne peuvent généralement jamais avoir lieu simultanément. D'une manière générale, pour réaliser une carte de contrôle il faut (Phase I) :

- 1. Fixer une taille d'échantillon n et un intervalle de prélèvement h. Par exemple, on va décider de prélever n = 5 individus toutes les h = 15 minutes.
- 2. Collecter *m* échantillons de *n* mesures $X_{i,j}$ prélevés au cours d'une production stabilisée et sous surveillance (sans cause spéciale), ce qui permet d'obtenir un tableau MSP comme celui présenté précédemment.
- 3. Vérifier que les données du tableau MSP suivent une loi normale à l'aide d'un test statistique *ad hoc* (Anderson-Darling ou Shapiro-Wilk par exemple).
- 4. Choisir la statistique T que l'on désire surveiller. On choisira classiquement la moyenne ou la médiane empirique pour contrôler la position de la caractéristique X, et l'écart-type empirique ou l'étendue pour contrôler sa dispersion.
- 5. Calculer les limites de contrôle *LCL* (Lower Control Limit) et *UCL* (Upper Control Limit) de la carte de contrôle sélectionnée.
- 6. Vérifier que tous les points sur la carte se situent entre les limites de contrôle. Si ce n'est pas le cas, éliminer les points concernés et recalculer les limites de contrôle.

Les limites de contrôle LCL et UCL ayant été calculées "une fois pour toute", il faut ensuite prélever au cours de la production (Phase II), un échantillon de taille n avec un intervalle de prélèvement h, puis calculer la valeur de la statistique T lui correspondant

- si LCL < T < UCL, on décide qu'aucune cause spéciale n'est apparue, et donc que la caractéristique définissant la qualité de la production est restée stable. La production peut donc continuer.
- si T ≤ LCL ou T ≥ UCL, on décide qu'une ou plusieurs causes spéciales sont apparues, et que donc un changement significatif dans la caractéristique définissant la qualité de la production est survenu. La production doit être arrêtée et la ou les causes spéciales éliminées.

1.2 Les principales cartes de contrôle univariées pour des caractéristiques mesurables

1.2.1 Cartes de contrôle de Shewhart pour la moyenne et la médiane

Comme dans Montgomery (2013), nous allons définir trois cartes de contrôles qui sont la carte de la moyenne / étendue (\bar{X}, R) , la carte de la moyenne / écart-type (\bar{X}, S) et la carte de la médiane / étendue (\tilde{X}, R) .

La carte de la moyenne / écart-type (\bar{X},S)

Les limites de contrôle $LCL_{(\bar{X},S)}$ et $UCL_{(\bar{X},S)}$ de la carte (\bar{X},S) s'obtiennent en calculant

$$LCL_{(\bar{X},S)} = \bar{X} - A_{(\bar{X},S)}(n) \times \bar{S}$$
$$UCL_{(\bar{X},S)} = \bar{X} + A_{(\bar{X},S)}(n) \times \bar{S}$$

où $A_{(\bar{X},S)}(n)$ est un coefficient listé dans la Table 1.2.

1.2. LES PRINCIPALES CARTES DE CONTRÔLE UNIVARIÉES POUR DES CARACTÉRISTIQUES MESURABLES 16

n	$A_{(\bar{X},R)}(n)$	$A_{(\bar{X},S)}(n)$	$A_{(\tilde{X},R)}(n)$	$L_S(n)$	$U_S(n)$	$L_R(n)$	$U_R(n)$	$K_S(n)$	$K_R(n)$
2	1.8800	2.6587		0.0021	4.0171	0.0021	4.0171	0.7979	1.1284
3	1.0233	1.9544	1.1972	0.0415	2.9006	0.0414	2.9247	0.8862	1.6926
4	0.7286	1.6281		0.1080	2.4775	0.1071	2.5257	0.9213	2.0588
5	0.5768	1.4273	0.6962	0.1730	2.2442	0.1705	2.3119	0.9400	2.3259
6	0.4832	1.2871		0.2293	2.0925	0.2245	2.1761	0.9515	2.5344
7	0.4193	1.1819	0.5123	0.2769	1.9841	0.2695	2.0808	0.9594	2.7044
8	0.3725	1.0991		0.3173	1.9019	0.3071	2.0095	0.9650	2.8472
9	0.3367	1.0317	0.4140	0.3519	1.8369	0.3389	1.9538	0.9693	2.9700
10	0.3083	0.9754		0.3818	1.7838	0.3660	1.9087	0.9727	3.0775
11	0.2851	0.9274	0.3519	0.4080	1.7395	0.3895	1.8714	0.9754	3.1729
12	0.2658	0.8859		0.4312	1.7018	0.4100	1.8398	0.9776	3.2585
13	0.2494	0.8495	0.3087	0.4518	1.6691	0.4281	1.8127	0.9794	3.3360
14	0.2354	0.8173		0.4704	1.6406	0.4442	1.7890	0.9810	3.4068
15	0.2231	0.7885	0.2766	0.4872	1.6153	0.4587	1.7681	0.9823	3.4718
16	0.2123	0.7626		0.5024	1.5928	0.4717	1.7495	0.9835	3.5320
17	0.2028	0.7391	0.2518	0.5164	1.5725	0.4836	1.7329	0.9845	3.5879
18	0.1943	0.7176		0.5292	1.5541	0.4944	1.7178	0.9854	3.6401
19	0.1866	0.6979	0.2319	0.5411	1.5374	0.5044	1.7041	0.9862	3.6890
20	0.1796	0.6797		0.5521	1.5220	0.5135	1.6915	0.9869	3.7350
21	0.1733	0.6629	0.2155	0.5623	1.5079	0.5220	1.6800	0.9876	3.7783
22	0.1675	0.6473		0.5719	1.4948	0.5299	1.6693	0.9882	3.8194
23	0.1621	0.6327	0.2018	0.5808	1.4827	0.5373	1.6595	0.9887	3.8583
24	0.1572	0.6191		0.5893	1.4714	0.5442	1.6503	0.9892	3.8953
25	0.1526	0.6063	0.1901	0.5972	1.4609	0.5506	1.6417	0.9896	3.9306

TABLE 1.2 : Coefficients intervenant dans le calcul des limites de contrôle des cartes de Shewhart

La carte de la moyenne/étendue (\bar{X}, R)

Les limites de contrôle $LCL_{(\bar{X},R)}$ et $UCL_{(\bar{X},R)}$ de la carte (\bar{X},R) s'obtiennent en calculant

$$LCL_{(\bar{X},R)} = \bar{X} - A_{(\bar{X},R)}(n) \times \bar{R}$$
$$UCL_{(\bar{X},R)} = \bar{X} + A_{(\bar{X},R)}(n) \times \bar{R}$$

où $A_{(\bar{X},R)}(n)$ est un coefficient listé dans la Table 1.2.

La carte de la médiane / étendue (\tilde{X}, R)

Les limites de contrôle $LCL_{(\tilde{X},R)}$ et $UCL_{(\tilde{X},R)}$ de la carte (\tilde{X},R) s'obtiennent en calculant

$$LCL_{(\tilde{X},R)} = \tilde{X} - A_{(\tilde{X},R)}(n) \times \bar{R}$$
$$UCL_{(\tilde{X},R)} = \bar{X} + A_{(\tilde{X},R)}(n) \times \bar{R}$$

où $A_{(\tilde{X},R)}(n)$ est un coefficient listé dans la Table 1.2.

1.2.2 Carte Run Rules $\mathbf{RR}_{r,s} \bar{X}$

La carte Run Rules $\operatorname{RR}_{r,s} \overline{X}$ pour la moyenne \overline{X} ont été proposées par Western-Electric (1956). Pour une carte Run Rules $\operatorname{RR}_{r,s} \overline{X}$, il est nécessaire de définir deux paires de limites de contrôle

$$LCL_1 = \mu_0 - K_1\sigma_0, UCL_1 = \mu_0 + K_1\sigma_0$$

et

$$LCL_2 = \mu_0 - K_2 \sigma_0, UCL_2 = \mu_0 + K_2 \sigma_0,$$

où $K_2 \ge K_1 \ge 0$ sont deux constantes à définir. Soient les intervalles $\Omega_1 = [LCL_1, UCL_1], \Omega_2^- = [LCL_2, LCL_1), \Omega_2^+ = (UCL_1, UCL_2]$ et $\Omega_2^{+\infty} = (-\infty, LCL_2) \cup (UCL_2, +\infty)$. Une carte RR_{r,s} \bar{X} considère que le procédé est hors-contrôle, à l'instant *i*, si une des règles sivantes s'applique

- (règle 1) $\bar{X}_i \in \Omega_2^{+\infty}$,
- (règle 2) $\{\bar{X}_i \in \Omega_2^- \text{ et } \# \bar{X}_j \in \Omega_2^-, j = i s + 1, \dots, i \ge r\}$ ou $\bar{X}_j \in \Omega_2^+ \text{ et } \# \{\bar{X}_j \in \Omega_2^+, j = i s + 1, \dots, i\} \ge r.$

Des valeurs classiques pour (r, s) sont (2, 3), (3, 4) et (4, 5).

1.2.3 Carte synthétique \bar{X}

Carte synthétique \bar{X} a été proposée par Wu and Spedding (2000). Pour une carte synthétique \bar{X} , il est nécessaire de définir des limites de contrôle

$$LCL = \mu_0 - K\sigma_0,$$

$$UCL = \mu_0 + K\sigma_0,$$

avec K > 0 ainsi qu'une limite inférieure $H \in \{1, 2, ...\}$. Si $\bar{X}_j, \bar{X}_{j+1}, ..., \bar{X}_{i-1}, \bar{X}_i$ est une séquence telle que $\bar{X}_i \notin [LCL, UCL]$, $\bar{X}_k \in [LCL, UCL]$ pour $k \in \{j+1, j+2, ..., i-1\}$ et $\bar{X}_j \notin [LCL, UCL]$ alors la carte synthétique \bar{X} considère que le procédé est hors-contrôle à l'instant i si $CRL = i - j \leq H$ où CRL est le "Conforming Run Length".

1.2.4 Carte VSI \bar{X}

La carte (Variable sampling Interval) VSI \bar{X} , proposé par Reynolds et al. (1988), est une carte de contrôle dans laquelle l'intervalle d'échantillonnage h entre deux inspections peut varier. Pour une carte VSI \bar{X} , il est nécessaire de définir deux paires de limites de contrôle $(LCL_1 = \mu_0 - K_1\sigma_0 \text{ et } UCL_1 = \mu_0 + K_1\sigma_0)$ et $(LCL_2 = \mu_0 - K_2\sigma_0 \text{ et } UCL_2 = \mu_0 + K_2\sigma_0)$ où $K_2 \ge K_1 \ge 0$ sont deux constantes à définir. Il faut aussi définir un intervalle d'échantillonnage "court", h_S (Short), et un intervalle d'échantillonnage "long", h_L (Long), tels que $0 < h_S \le 1 \le h_L$. Soit $h(i) \in \{h_S, h_L\}$, i = 1, 2, ..., l'intervalle d'échantillonnage utilisé avant le prélèvement du *i*ème échantillon. La stratégie VSI appliquée à la surveillance de la moyenne est la suivante :

- si $\bar{X}_i \in \Omega_1 = [LCL_1, UCL_1]$, le procédé est déclaré sous-contrôle et l'échantillon suivant est recueilli après un intervalle d'échantillonnage long $h(i+1) = h_L$,
- si $\bar{X}_i \in \Omega_2 = [LCL_2, LCL_1) \cup (UCL_1, UCL_2]$, le procédé est aussi déclaré sous-contrôle mais l'échantillon suivant est recueilli après un intervalle d'échantillonnage court $h(i+1) = h_S$,
- si $\bar{X}_i \in \Omega_2^* = (-\infty, -UCL_2) \cup (UCL_2, \infty)$, le procédé est déclaré hors-contrôle.

1.2.5 Carte VSS \bar{X}

La carte (Variable Sampling Size) VSS \bar{X} , proposée par Costa (1994), est une carte de contrôle dans laquelle la taille n de l'échantillon peut varier d'une inspection à la suivante. Pour une carte VSS \bar{X} , il est nécessaire de définir une taille d'échantillon "petite", n_S (Small), et une taille d'échantillon "grande", n_L (Large), tels que $1 \le n_S \le n_L$. Dans le cas de la carte VSS \bar{X} , ce n'est pas la statistique \bar{X}_i qui est surveillée mais la statistique Z_i définie par

$$Z_i = \frac{(\bar{X}_i - \mu_0)\sqrt{n(i)}}{\sigma_0}$$

1.2. LES PRINCIPALES CARTES DE CONTRÔLE UNIVARIÉES POUR DES CARACTÉRISTIQUES MESURABLES 18

où $n(i) \in \{n_S, n_L\}, i = 1, 2, ..., \text{ est la taille de l'échantillon à l'instant i. L'avantage d'utiliser <math>Z_i$ à la place de \bar{X}_i est que $Z_i \sim N(\delta_\mu \sqrt{n(i)}, 1)$ et, en particulier, $Z_i \sim N(0, 1)$ lorsque le procédé et souscontrôle. Ceci permet d'avoir des limites de contrôle ($LCL_2 = -K_2$ et $UCL_2 = +K_2$) et de surveillance ($LCL_1 = K_1$ et $UCL_1 = +K_1$) très simples, où $K_2 \geq K_1 > 0$ sont deux constantes à définir. La stratégie VSS appliquée à la surveillance de la moyenne est donc la suivante :

- si Z_i ∈ Ω₁ = [−K₁, K₁], le procédé est déclaré sous-contrôle et la taille de l'échantillon suivant est n(i + 1) = n_S,
- si Z_i ∈ Ω₂ = [-K₂, -K₁) ∪ (K₁, K₂], le procédé est aussi déclaré sous-contrôle mais la taille de l'échantillon suivant est n(i + 1) = n_L,
- si $Z_i \in \Omega_2^* = (-\infty, -K_2) \cup (K_2, \infty)$, le procédé est déclaré hors-contrôle.

1.2.6 Carte DS \overline{X}

La carte DS \bar{X} a été proposée par Daudin (1992). Pour une carte (Double Sampling) DS \bar{X} , il est nécessaire de définir :

- trois constantes K_1 , K_2 et K_3 telles que $0 \le K_1 \le K_2$ et $0 \le K_3$,
- deux tailles d'échantillon n_1 et n_2 .

Soient $\Omega_1 = [-K_1, K_1], \Omega_2 = [-K_2, -K_1] \cup (K_1, K_2], \Omega_{2\infty} = (-\infty, -K_2) \cup (K_2, \infty)$ et $\Omega_3 = [-K_3, K_3]$. La stratégie utilisée par la carte DS- \overline{X} est la suivante :

• Étape 1 Prélever à l'instant *i* un échantillon de taille n_1 , calculer sa moyenne \bar{X}_{i1} et calculer la statistique

$$Z_{i1} = \frac{(\bar{X}_i - \mu_0)\sqrt{n_1}}{\sigma_0}$$
(1.1)

- Étape 2 Si $Z_{i1} \in \Omega_1$ le procédé est déclaré sous-contrôle et on repart à l'étape 1 pour traiter l'instant i + 1.
- Étape 3 Si $Z_{i1} \in \Omega_{2\infty}$ le procédé est déclaré hors-contrôle.
- Étape 4 Si Z_{i1} ∈ Ω₂ il n'est pas possible de décider immédiatement si le procédé est sous- ou horscontrôle. Afin de pouvoir décider, on va prélever (toujours à l'instant i) un second échantillon de taille n₂, calculer sa moyenne X
 _{i2} et calculer la moyenne globale X
 _i des deux échantillons de taille n₁ et n₂, i.e

$$\bar{X}_i = \frac{n_1 \bar{X}_{i1} + n_2 \bar{X}_{i2}}{n_1 + n_2} \tag{1.2}$$

et ensuite calculer

$$Z_{i} = \frac{(\bar{X}_{i} - \mu_{0})\sqrt{n_{1} + n_{2}}}{\sigma_{0}}$$

 Étape 5 Si Z_i ∈ Ω₃ le procédé est déclaré sous-contrôle et on repart à l'étape 1 pour traiter l'instant i + 1 et si Z_i ≠ Ω₃ le procédé est déclaré hors-contrôle.

1.2.7 Carte EWMA \bar{X}

Roberts (1958) a été le premier à introduire la technique EWMA (Exponentially Weighted Moving Average) \bar{X} dans le domaine de la MSP. Pour une carte EWMA \bar{X} , il est nécessaire de définir des limites de contrôle

$$LCL = \mu_0 - K\sigma_0$$
$$UCL = \mu_0 + K\sigma_0$$

avec K > 0, ainsi qu'une constante de lissage $\lambda \in (0, 1]$. La statistique surveillée est

$$Y_i = (1 - \lambda)Y_{i-1} + \lambda \bar{X}_i$$

Une carte EWMA \overline{X} considère que le procédé est sous-contrôle à l'instant *i* si $Y_i \in [LCL, UCL]$. Si on remplace Y_{i-1} en fonction de Y_{i-2} , puis Y_{i-2} en fonction de Y_{i-3} , etc., on obtient

$$Y_{i} = (1 - \lambda)^{i} Y_{0} + \lambda \sum_{j=0}^{i-1} (1 - \lambda)^{j} \bar{X}_{i-j}.$$

On voit ainsi clairement que Y_i est une combinaison linéaire de la variable aléatoire initiale Y_0 pondérée par un coefficient $(1 - \lambda)^i$, et des variables aléatoires $\bar{X}_1, \ldots, \bar{X}_i$ pondérées par les coefficients $\lambda(1 - \lambda)^{i-1}, \lambda(1 - \lambda)^{i-2}, \ldots, \lambda$. C'est pour cette raison que la série Y_1, \ldots, Y_i, \ldots est appelée série EWMA. On remarquera que plus λ est proche de 0, plus la série Y_1, \ldots, Y_i, \ldots est une version "lissée" de la série $\bar{X}_1, \ldots, \bar{X}_i$. A la limite, pour $\lambda = 0$, on a $Y_1 = Y_{i-1} \ldots = Y_0$. A l'inverse, plus λ est proche de 1, plus la série Y_1, \ldots, Y_i, \ldots ressemble à la série $\bar{X}_1, \ldots, \bar{X}_i$. A la limite, pour $\lambda = 1$, on a $Y_i = \bar{X}_i, i \ge 1$. Lorsque le procédé est sous-contrôle, on a $E(\bar{X}_i) = \mu_0$ et donc l'espérance mathématique de la variable aléatoire $Y_i, i \ge 1$, est égale à

$$E(Y_i) = (1-\lambda)^i E(Y_0) + \lambda \mu_0 \sum_{j=0}^{i-1} (1-\lambda)^j = (1-\lambda)^i E(Y_0) + \lambda \mu_0 \left(\frac{1-(1-\lambda)^i}{\lambda}\right)$$

Après simplification, il reste

$$E(Y_i) = (1 - \lambda)^i E(Y_0) + \mu_0 - \mu_0 (1 - \lambda)^i$$

Si on suppose que $E(Y_0) = \mu_0$, alors il reste tout simplement

$$E(Y_i) = \mu_0$$

On pourra remarquer que même si $E(y_0) \neq \mu_0$, alors l'espérance mathématique asymptotique de la série Y_1, \ldots, Y_i, \ldots est tout de même égale à

$$\lim_{i \to +\infty} E(Y_i) = \mu_0$$

Lorsque le procédé est sous-contrôle, on a $V(\bar{X}_i) = \frac{\sigma_0^2}{n}$ et, les variables aléatoires $\bar{X}_1, \ldots, \bar{X}_i$ étant indépendantes, la variance de la variable aléatoire Y_i est égale à

$$V(Y_i) = (1-\lambda)^{2i} V(Y_0) + \lambda^2 \frac{\sigma_0^2}{n} \sum_{j=0}^{i-1} (1-\lambda)^{2j} = (1-\lambda)^{2i} V(Y_0) + \lambda^2 \frac{\sigma_0^2}{n} \left(\frac{1-(1-\lambda)^{2i}}{\lambda(2-\lambda)}\right)$$

Après simplification, il reste

$$V(Y_i) = (1-\lambda)^{2i}V(Y_0) + \left(\frac{\lambda}{2-\lambda}\right)\frac{\sigma_0^2}{n}(1-(1-\lambda)^{2i})$$

On peut alors considérer que

• soit $Y_0 = \mu_0$ est une constante et que donc $V(Y_0) = 0$. Dans ce cas, on obtient

$$V(Y_i) = \left(\frac{\lambda}{2-\lambda}\right) \frac{\sigma_0^2}{n} (1 - (1-\lambda)^{2i})$$

• soit Y_0 est une v.a. telle que $E(Y_0) = \mu_0$ et $V(Y_0) = \frac{\sigma_0}{n}$ et dans ce cas, on obtient (après quelques calculs)

$$V(Y_i) = \left(\frac{\lambda + 2(1-\lambda)^{2i+1}}{2-\lambda}\right) \frac{\sigma_0^2}{n}$$

Cette dernière expression nous semble la plus logique car elle implique que $V(Y_i)$ est une fonction décroissante de *i*.

On pourra remarquer que quelque soit la valeur de $V(Y_0)$, la variance asymptotique de la série Y_1, \ldots, Y_i, \ldots est égale à

$$\lim_{i \to +\infty} V(Y_i) = \left(\frac{\lambda + 2(1-\lambda)}{2-\lambda}\right) \frac{\sigma_0^2}{n}$$

Pour cette raison, certains auteurs préfèrent utiliser les limites de contrôle suivantes (dites asymptotiques) pour la carte EWMA \bar{X} :

$$LCL = \mu_0 - K' \sqrt{\frac{\lambda}{n(2-\lambda)}} \sigma_0$$
$$UCL = \mu_0 + K' \sqrt{\frac{\lambda}{n(2-\lambda)}} \sigma_0$$

1.2.8 La carte CUSUM \bar{X}

La carte CUSUM \bar{X} a été proposé par Page (1954). Le principe de la carte de contrôle CUSUM est de sommer les écarts entre les moyennes \bar{X}_i et la valeur cible μ_0 de telle manière que si le procédé s'éloigne significativement de cette valeur cible, le cumul des écarts va croître, et permettra de détecter une dérive. Pour une carte (Cummulative Sums) CUSUM \bar{X} , la statistique surveillée est

$$C_i^+ = \max[0, \bar{X}_i - (\mu_0 + K) + C_{i-1}^+]$$

$$C_i^- = \max[0, (\mu_0 - K) - \bar{X}_i + C_{i-1}^-]$$

avec le paramètre de référence $K = k \times \sigma_0$ où k est une constante qui depend de n et la limites de contrôle $H = h \times \sigma_0$ où h est une constante qui depend de n. La suite de variables aléatoires $C_1^+, \ldots, C_i^+, \ldots$ permet de détecter une dérive positive de la moyenne, alors que la suite de variables aléatoires $C_1^-, \ldots, C_i^-, \ldots$ permet de détecter une dérive négative. On prend en général $C_0^- = C_0^+ = 0$. Si le procédé s'éloigne de cette valeur cible à l'étape i, le cumul des écarts va croître et dépasser la limite H qui permettra de détecter ce changement :

$$\max(C_i^-, C_i^+) > H$$

Une amélioration de carte CUSUM "classique" consiste à poser $C_0^- = C_0^+ = H/2$. La carte de contrôle qui en résulte porte le nom de carte CUSUM FIR (Fast Input Response) et permet de détecter des derives de la moyenne survenent rapidement après le démarrage.

1.3 Les principales cartes de contrôle multivariées pour des caractéristiques mesurables

1.3.1 Carte de contrôle du T^2 de Hotelling

On supposera que la mesure de qualité X suit une loi multi-normale $N_p(\mu, \Sigma)$ de vecteur moyenne μ et de matrice de variance-covariance Σ . Par définition, la distance de Mahalanobis est

$$T^2 = (\bar{\mathbf{X}} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{X}} - \boldsymbol{\mu}).$$

Cette distance quantifie la proximité du point X à la moyennes μ en prenant en compte les covariances. Deux points avec la même distance Mahalonobis ont la même valeur de densité de probabilité. La carte de contrôle T^2 est une carte de contrôle multivariée pour la moyenne du processus. L'origine de cette carte de contrôle remonte à Hotelling (1947). La carte de contrôle T^2 pour des groupes d'observations utilise la statistique suivante :

$$T_i^2 = n(\bar{\mathbf{X}} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{X}} - \boldsymbol{\mu}),$$

et la carte de contrôle T^2 pour les observations individuelles utilise

$$T_i^2 = (\mathbf{X} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}),$$

Si les paramètres μ et Σ sont connus, la statistique T_i^2 suit une distribution du χ^2 à p degrés de liberté. Par conséquent, la limite de contrôle supérieure de la carte du T^2 de Hotelling est

$$UCL = F_{\chi^2}^{-1}(1 - \alpha | p)$$

où α est l'erreur de type I et où $F_{\chi^2}^{-1}(x|p)$ est la fonction de répartition inverse de la loi du χ^2 à p degrés de liberté. Dans le cas où les paramètres ne sont pas connus, la statistique T_i^2 devient :

· Pour un groupe d'observations

$$T_i^2 = n(\bar{\mathbf{X}} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{S}^{-1} (\bar{\mathbf{X}} - \boldsymbol{\mu}),$$

avec pour limite de contrôle supérieure UCL

$$UCL = \frac{p(m+1)(n-1)}{mn - m - p + 1} F_F^{-1}(1 - \alpha | p, m(n-1) - p + 1),$$

où $F_F^{-1}(x|p, m(n-1) - p + 1)$ est la fonction de répartition de la loi de Fisher de paramètres p et m(n-1) - p + 1; les valeurs m et p sont respectivement la taille de l'échantillon et le nombre de variables

· Pour des observations individuelles

$$T_i^2 = (\mathbf{X} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{S}^{-1} (\mathbf{X} - \boldsymbol{\mu}),$$

avec pour limite de contrôle supérieure

$$UCL = \frac{p(m-1)(m+1)}{m(m-p)} F_F^{-1}(1-\alpha|p,m-p).$$

1.3.2 Carte de contrôle EWMA multivariée

Lowry et al. (1992) a proposé la carte de contrôle EWMA multivariée (MEWMA) pour surveiller le vecteur des moyennes. On supposera de nouveau que la mesure de qualité suit une distribution multi-normale avec vecteur moyen μ et matrice de variance-covariance Σ . La carte de contrôle MEWMA est basée sur la surveillance de la statistique

$$Q_i = \mathbf{Y}_i^{\mathsf{T}} \boldsymbol{\Sigma}_{Y_i}^{-1} \mathbf{Y}_i,$$

avec

 $\boldsymbol{\Sigma}_{Y_i} = \frac{r}{2-r} \boldsymbol{\Sigma},$

et

$$\mathbf{Y}_i = r(\mathbf{X}_i - \boldsymbol{\mu}) + (1 - r)\mathbf{Y}_{i-1},$$

où $r \in (0, 1)$ (equivalent à λ pour la carte EWMA) et $\mathbf{Y}_0 = \mathbf{0}$. La carte de contrôle MEWMA signale une situation hors-contrôle lorsque $Q_i > H$ où H > 0 est une limites de contrôle spécifiée.

1.3.3 Carte de contrôle CUSUM multivariée

De la même façon que pour la carte de contrôle précédente, on supposera que $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. La Carte Multivariée CUSUM (MCUSUM), suggérée par Crosier (1988), est une généralisation multivariée de la carte CUSUM univariée. La carte MCUSUM cumule les déviations de la moyenne par rapport à la référence en tenant compte de l'information de tous les points précédents. La carte de contrôle MCUSUM est basée sur la surveillance de la statistique

$$Y_i = \left(\mathbf{S}_{H,i}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{S}_{H,i}\right)^{1/2}$$

avec

$$\mathbf{S}_{H,i} = \begin{cases} \mathbf{0} & \text{if } C_i \leq k, \\ (\bar{\mathbf{X}}_i - \boldsymbol{\mu} + \mathbf{S}_{H,i-1}) & \text{if } C_i > k, \end{cases}$$

où $C_i = (\bar{\mathbf{X}}_i - \boldsymbol{\mu} + \mathbf{S}_{H,i-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{X}}_i - \boldsymbol{\mu} + \mathbf{S}_{H,i-1})$. La carte de contrôle MCUSUM signale une situation hors-contrôle lorsque $Y_i > H$ où H > 0 est une limites de contrôle spécifiée.

1.4 Mesures de performance de cartes de contrôle univariées et multivariées pour les caractéristiques mesurables

L'objectif de cartes de contrôle (basé sur la statistique T_i) consiste à détecter le plus rapidement possible toutes dérives dans un processus afin que celui-ci reste le moins longtemps possible dans une situation horscontrôle. Dans les années 1950, Aroian and Levene (1950) ont considéré plusieurs mesurer la performance des cartes de contrôle par utiliser la notion de Run Length. Par définition, le Run Length, noté par RL, est la variable aléatoire correspondant au nombre d'échantillons prélevés avant qu'une cause spéciale ne soit détectée, i.e.

$$RL = \inf\{i = 1, 2, \dots | T_i \notin [LCL, UCL]\}$$

La caractéristique déduite de la variable aléatoire L la plus souvent utilisée est l'ARL (Average Run Length), SDRL (Standard Deviation of the Run Length) et les percentiles de la distribution du RL. L'ARLreprésente le nombre moyen de valeurs de la statistique jusqu'à la détection d'une situation hors-contrôle. L'ARL est une fonction très importante car elle permet de comparer les cartes de contrôle entre elles. Il est important de noter que, dans cette thèse, nous utilisons seulement ARL et SDRL pour mesurer la performance de cartes de contrôle univariées et multivariées. Nous reverrons cela plus en détail dans la partie "Contributions". Nous considérons la carte de contrôle de Shewhart dans le but d'illustrer comment l'ARL est calculé. Dans le cas de la carte Shewhart \bar{X} , avec les limites de contrôle $LCL = \mu_0 - K\sigma_0$ et $UCL = \mu_0 + K\sigma_0$, nous pouvons montrer que le RL est donc une variable aléatoire géométrique de paramètre $1 - \beta$ avec

$$\beta = F_N((\delta_\mu + K)\sqrt{n}) - F_N((\delta_\mu - K)\sqrt{n}),$$

où δ_{μ} est le paramètre qui quantifie l'amplitude de la dérive en position et $F_N(...)$ est la fonction de répartition de la loi normale (0, 1). Par conséquent, RL a pour fonctions de masse et de répartition :

$$f_{RL}(\ell) = (1-\beta)\beta^{\ell-1},$$

$$F_{RL}(\ell) = 1-\beta^{\ell}.$$

On déduit aussi que ARL et SDRL sont égaux à

$$ARL = \frac{1}{1-\beta},$$

$$SDRL = \frac{\sqrt{\beta}}{1-\beta}.$$

Dans le cas de la carte Shewhart \bar{X} , si $K = \frac{3}{\sqrt{n}}$, on a alors $ARL = \frac{1}{0.0027} = 370.4$. Ceci veut dire que même si le procédé est sous-contrôle, la carte de contrôle \bar{X} signalera une situation hors-contrôle tous les 370.4 échantillons en moyenne. Pour définir la constante K de la carte \bar{X} il suffit de définir l'ARL sous-contrôle que l'on note ARL_0 et on a donc

$$K = \frac{F_N^{-1}(1 - \frac{1}{2ARL_0})}{\sqrt{n}}$$

On peut aussi définir le *r*-quantile du run length comme étant la valeur RL_r vérifiant $P(RL \le RL_r) = F_{RL}(RL_r) \approx r$. Puisque $f_{RL}(1) = F_{RL}(1) = 1 - \beta$, il est donc nécessaire de fixer $r \in [1 - \beta, 1)$. Pour $r \in [1 - \beta, 1)$, on a donc $1 - \beta^{RL_r} \approx r$ et on déduit que

$$RL_r \approx \frac{\ln(1-r)}{\ln(\beta)}.$$

Deux quantiles du run length sont particulièrement importants : le 0.5-quantile $RL_{0.5}$, aussi appelé MRL (Median of the Run Length), et le 0.95-quantile $RL_{0.95}$. Lorsque le procédé est sous-contrôle et que $K = \frac{3}{\sqrt{n}}$, on a $\beta = 0.9973$ et par conséquent $MRL \approx 256.4$ et $RL_{0.95} \approx 1108$.

1.5 Conclusions

Dans ce chapitre, nous avons introduit les bases de la MSP, présenté les principales cartes de contrôle univariées par mesurage (principalement pour la moyenne) ainsi que les cartes de contrôle multivariées pour le vecteur moyen.

Comme nous le verrons dans le chapitre suivant, il existe des situations de production où les professionnels de la qualité peuvent être intéressés par la surveillance continue du rapport Z de p = 2 variables aléatoires X et Y et non par la surveillance du vecteur moyen μ et / ou de la stabilité de la matrice de variance-covariance Σ . Par ailleurs, la surveillance continue des données de type composition par cartes de contrôle multivariées sera étudiée. Le but du chapitre suivant est de présenter un état de l'art des recherches effectuées dans ce domaine.

2

Cartes de contrôle pour surveiller un ratio et des données compositionnelles

2.1 Introduction

Comme nous venons de le voir dans le chapitre précédent, les cartes de contrôle sont des outils utilisables pour détecter rapidement l'apparition de causes assignables dans des procédés. Lorsque p variables corrélées doivent être surveillées simultanément, la carte du T^2 de Hotelling (Hotelling (1947), Mason et al. (2001), Mason and Young (2002)) est l'équivalent multivariable de la carte de Shewhart pour la moyenne. Des articles de référence sur la surveillance multivariable du vecteur moyenne ou de la matrice de variancecovariance sont Lowry and Montgomery (1995), Yeh et al. (2006), Bersimis et al. (2007), Frisen (2011).

Il existe néanmoins des environnements de production où les professionnels de la qualité peuvent être intéressés par la surveillance continue du rapport Z de p = 2 variables aléatoires X et Y et non par la surveillance du vecteur moyen μ et / ou de la stabilité de la matrice de variance-covariance Σ . Des procédés de production où plusieurs composants doivent être mélangés ensemble pour obtenir une composition de produit peuvent nécessiter la surveillance du ratio de variables qualité lorsque les responsables de la qualité sont principalement intéressés à la comparaison relative de la même propriété pour deux composants. Les industries alimentaire, pharmaceutiques et la production de matériaux sont des exemples typiques de ces milieux de fabrication. Par exemple, dans l'industrie de la préparation des aliments ces spécifications peuvent être liés à l'équilibre correct associé à la pondération relative de deux ingrédients dans une recette ; dans l'industrie pharmaceutique, le rapport de proportion correcte d'ingrédients actifs assure la sécurité et l'efficacité des médicaments. De même, dans la production industrielle de matériaux, les éléments de base sont mélangés ensemble dans un alliage selon des proportions réciproquement optimisés afin d'obtenir certaines propriétés physiques et chimiques désirées. Si la quantité de chaque composant (exprimé, par exemple, sous la forme d'un poids, d'un volume ou d'une concentration) peut être modélisée comme une variable aléatoire, alors le contrôle en ligne de la stabilité de la recette peut être réalisée au moyen d'une ou de plusieurs cartes de contrôle de surveillance du rapport Z_{ij} = propriété du composant (ingrédient) i / composant (ingrédient) j. Une carte de contrôle pour surveiller le ratio est également utile dans d'autres situations où ratio peut être "sans dimension" et représente le changement d'une caractéristique de la qualité du produit mesuré avant et après une réaction chimique / physique. Alternativement, il peut représenter une propriété chimique / physique du produit, qui est elle-même définie comme un rapport.

Des premiers travaux sur la surveillance du ratio de variables qualité ont déjà été publiés par Spisak (1990) et Davis and Woodall (1991), qui ont étudié un exemple issu d'un programme de surveillance du système d'assurance-chômage américain. Les cartes de contrôle pour surveiller le ratio de deux variables normales ont également été examinées par Öksoy et al. (1994) qui a proposé un ensemble de suggestions pour la mise en œuvre de cartes de contrôle de Shewhart permettant la surveillance d'un procédé de fabrication de verre où le ratio composition en oxide / densité est une caractéristique importante. Très récemment, Celano et al. (2014) ont discuté des propriétés statistiques d'une carte de Shewhart pour des mesures individuelles, i.e. n = 1 (la carte de contrôle de RZ-Shewhart) permettant de surveiller le rapport de deux variables normales. Celano and Castagliola (2016a) ont prolongé ce travail en supposant des sous-groupes constitués d'échantillons de taille n > 1. Enfin, Celano and Castagliola (2016b) ont démontré que la carte de contrôle synthétique pour la surveillance du ratio de variables (Syn-RZ) a toujours une meilleure sensibilité statistique que la carte de contrôle Shewhart-RZ.

Il existe aussi des environnements de production où les professionnels de la qualité peuvent être intéressés par la surveillance continue de données compositionnelles. Les données compositionnelles (Compositional data ou CoDa en anglais) sont un type particulier de données qui décrivent des compositions de produits représentées sous la forme de vecteurs de proportions, de pourcentages, de concentrations ou de fréquences. Par example, dans l'industrie chimique, la composition chimique, le profil d'impuretés ou des compositions agrégées sont considérées comme étant des données compositionnelles (voir Aitchison (1986) et Pawlowsky-Glahn et al. (2015)). En raison des contraintes inhérentes liées aux compositions, les données compositionnelles ne peuvent pas être traitées exactement de la même manière que les données classiques (non contraintes) multivariées. Dans la littérature de la MSP, il y a très peu d'articles discutant des méthodes de surveillance dédiées aux données compositionnelles. Nous pouvons citer Boyles (1997) qui a étudié une carte de contrôle de type χ^2 pour la surveillance de données compositionnelles. Plus récemment, Vives-Mestres et al. (2014a) a proposé une carte de contrôle T^2 permettant de surveiller une composition de p = 3composants et d'interpréter les différents types de situation hors-contrôle. Une extension de Vives-Mestres et al. (2014a) a été proposée par les mêmes auteurs dans Vives-Mestres et al. (2014b). Dans cet article, ils ont proposé une carte de contrôle T^2 pour des données compositionnelles dans le cas d'observations individuelles (n = 1) et ils ont comparé cette carte avec la carte de contrôle classique T^2 (après avoir supprimé une variable) en termes d'ARL sous-contrôle. Comme on peut effectivement le voir, le nombre d'articles sur la surveillance de données compositionnelles est vraiment restreint.

Dans le reste de ce chapitre, nous allons présenter les cartes de contrôle pour surveiller le ratio ainsi que les cartes de contrôle pour surveiller les données compositionnelles proposées dans la littérature : la carte de contrôle Shewhart pour le ratio proposée par Spisak (1990) et évaluée par Davis and Woodall (1991), les cartes de contrôle de Shewhart pour le ratio de deux variables normales corrélées proposée par Öksoy et al. (1994), la carte de contrôle Shewhart-RZ proposée par Celano and Castagliola (2016a), la carte de contrôle Syn-RZ proposée par Celano and Castagliola (2016b), la carte de contrôle pour surveiller les données compositionnelles proposée par Vives-Mestres et al. (2014b).

2.2 Carte de contrôle pour surveiller le ratio

2.2.1 La distribution du ratio du Z et du \hat{Z}_i empirique

Supposons que l'on observe p = 2 variables aléatoires continues X et Y telles que $\mathbf{W} = (X, Y)^T \sim N(\boldsymbol{\mu}_{\mathbf{W}}, \boldsymbol{\Sigma}_{\mathbf{W}})$ i.e \mathbf{W} est un vecteur aléatoire normal bivarié avec pour vecteur moyen

$$\boldsymbol{\mu}_{\mathbf{W}} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \qquad (2.1)$$

et matrice de variance-covariance

$$\Sigma_{\mathbf{W}} = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}, \qquad (2.2)$$

où ρ est le coefficient de corrélation entre X et Y. Soient $\gamma_X = \frac{\sigma_X}{\mu_X}$ et $\gamma_Y = \frac{\sigma_Y}{\mu_Y}$ les coefficients de variation des variables aléatoires X et Y respectivement, et soit $\omega = \frac{\sigma_X}{\sigma_Y}$ le ratio de leurs écart-types. Par définition, le ratio Z de X sur Y est $Z = \frac{X}{Y}$. Dans la littérature, la distribution du ratio de deux variables suivant une loi normale a été étudiée par Geary (1930), Hayya et al. (1975), Cedilnik et al. (2004) et Pham-Gia et al. (2006). Selon Cedilnik et al. (2004), une expression explicite générale pour la distribution de probabilité $f_Z(z|\gamma_X, \gamma_Y, \omega, \rho), z \in \mathbb{R}$ est

$$f_Z(z|\gamma_X, \gamma_Y, \omega, \rho) = S(z|\omega, \rho) \times D(z|\gamma_X, \gamma_Y, \omega, \rho)$$
(2.3)

où

$$S(z|\omega,\rho) = \frac{1}{\pi} \left(\frac{\omega\sqrt{1-\rho}}{(z-\omega\rho)^2 + \omega^2(1-\rho^2)} \right)$$
(2.4)

est la partie "standard" de $f_Z(z|\gamma_X, \gamma_Y, \omega, \rho)$, qui correspond à la distribution d'une distribution Cauchy de paramètres $a = \omega \rho$ (localisation) et $\omega^2(1 - \rho^2)$ (échelle), et où

$$D(z|\gamma_X, \gamma_Y, \omega, \rho) = \exp^{-\frac{1}{2}\sup R^2} + \sqrt{2\pi}R(z)\left(\Phi(R(z)) - 0.5\right)\exp^{-\frac{1}{2}(\sup R^2 - R(z)^2)}$$
(2.5)

est la partie "déviante" de $f_Z(z|\gamma_X, \gamma_Y, \omega, \rho)$, $\Phi(.)$ est la fonction de répartition de la loi normale (0, 1), R(z) et sup R^2 sont calculés comme suit :

$$R(z) = \frac{\left(\frac{1}{\gamma_X} - \rho \frac{1}{\gamma_Y}\right) z - \omega \left(\rho \frac{1}{\gamma_X} - \frac{1}{\gamma_Y}\right)}{\sqrt{\left(1 - \rho^2\right) \left((z - \omega \rho)^2 + \omega^2 (1 - \rho^2)\right)}}$$
(2.6)

$$\sup R^{2} = \frac{\frac{1}{\gamma_{X}^{2}} - 2\rho \frac{1}{\gamma_{X}} \frac{1}{\gamma_{Y}} + \frac{1}{\gamma_{Y}^{2}}}{1 - \rho^{2}}$$
(2.7)

Dans cette thèse, comme dans Celano and Castagliola (2016a), nous allons supposer que les coefficients de variation γ_X et γ_Y sont généralement dans l'intervalle (0, 0.2]. En fait, pour des procédés stables et prévisibles avec des paramètres de qualité normalement distribués, la dispersion de la population devrait être significativement plus petite que la moyenne dans le but de limiter le nombre d'unités défectueuses par rapport à l'intervalle de spécification, et pour obtenir des valeurs suffisamment grandes de l'indice de capabilité. Pour cette raison, dans ces procédés, il est très fréquent que le coefficient de variation prenne de petites valeurs dans l'intervalle (0, 0.2]. Un exemple typique serait une dimension linéaire d'une pièce mécanique, où la dispersion des observations devrait être nettement inférieure à la valeur nominale afin de respecter les limites de tolérance fixées.

Comme expliqué dans Celano and Castagliola (2016a), des approximations pour la distribution de probabilité $f_Z(z|\gamma_X, \gamma_Y, \omega, \rho)$, la fonction de répartition $F_Z(z|\gamma_X, \gamma_Y, \omega, \rho)$ et la fonction de répartition inverse $F_Z^{-1}(p|\gamma_X, \gamma_Y, \omega, \rho)$ du ratio Z peuvent être obtenues en utilisant une approche similaire à celle proposée par Geary (1930) et Hayya et al. (1975).

Dans ce cas, l'approximation pour la fonction de répartition $F_Z(z|\gamma_X, \gamma_Y, \omega, \rho)$ est

$$F_Z(z|\gamma_X, \gamma_Y, \omega, \rho) \simeq \Phi\left(\frac{A}{B}\right),$$
(2.8)

où $\Phi(.)$ est la fonction de répartition de la loi normale (0, 1) et où A et B sont des fonctions de $z, \gamma_X, \gamma_Y, \omega$ et ρ , i.e.

$$A = \frac{z}{\gamma_Y} - \frac{\omega}{\gamma_X}, \tag{2.9}$$

$$B = \sqrt{\omega^2 - 2\rho\omega z + z^2}.$$
 (2.10)

Une approximation de la distribution de probabilité $f_Z(z|\gamma_X, \gamma_Y, \omega, \rho)$ s'obtient par différenciation, i.e.

$$f_Z(z|\gamma_X, \gamma_Y, \omega, \rho) \simeq \left(\frac{1}{B\gamma_Y} - \frac{(z - \rho\omega)A}{B^3}\right) \times \phi\left(\frac{A}{B}\right),$$
 (2.11)

où $\phi(.)$ est la distribution de probabilité de la loi normale (0, 1). Finalement, comme présenté dans Celano and Castagliola (2016a), la fonction de répartition inverse $F_Z^{-1}(p|\gamma_X, \gamma_Y, \omega, \rho)$ de Z peut être approximée par

$$F_Z^{-1}(p|\gamma_X, \gamma_Y, \omega, \rho) \simeq \begin{cases} \frac{-C_2 - \sqrt{C_2^2 - 4C_1C_3}}{2C_1} & \text{if } p \in (0, 0.5], \\ \frac{-C_2 + \sqrt{C_2^2 - 4C_1C_3}}{2C_1} & \text{if } p \in [0.5, 1), \end{cases}$$
(2.12)

où C_1, C_2 et C_3 sont des fonctions de $p, \gamma_X, \gamma_Y, \omega$ et ρ , i.e.

$$C_1 = \frac{1}{\gamma_Y^2} - (\Phi^{-1}(p))^2, \qquad (2.13)$$

$$C_2 = 2\omega \left(\rho(\Phi^{-1}(p))^2 - \frac{1}{\gamma_X \gamma_Y} \right),$$
 (2.14)

$$C_3 = \omega^2 \left(\frac{1}{\gamma_X^2} - (\Phi^{-1}(p))^2 \right), \qquad (2.15)$$

et où $\Phi^{-1}(.)$ est la fonction de répartition inverse de la loi normale (0, 1).

Maintenant, supposons qu'à chaque période d'échantillonnage i = 1, 2, ... nous recueillons un échantillon de *n* couples indépendants { $\mathbf{W}_{i,1}, \mathbf{W}_{i,2}, ..., \mathbf{W}_{i,n}$ }, où chaque $\mathbf{W}_{i,j} = (X_{i,j}, Y_{i,j})^T \sim N(\boldsymbol{\mu}_{\mathbf{W},i}, \boldsymbol{\Sigma}_{\mathbf{W},i}),$ j = 1, ..., n, est un vecteur aléatoire bivariée de loi normale avec le vecteur moyenne

$$\boldsymbol{\mu}_{\mathbf{W},i} = \begin{pmatrix} \mu_{X,i} \\ \mu_{Y,i} \end{pmatrix}, \qquad (2.16)$$

et la matrice de variance-covariance

$$\boldsymbol{\Sigma}_{\mathbf{W},i} = \begin{pmatrix} \sigma_{X,i}^2 & \rho_0 \sigma_{X,i} \sigma_{Y,i} \\ \rho_0 \sigma_{X,i} \sigma_{Y,i} & \sigma_{Y,i}^2 \end{pmatrix}.$$
(2.17)

On va supposer que, de manière générale, il est possible d'avoir $\mu_{\mathbf{W},i} \neq \mu_{\mathbf{W},k}$, et $\Sigma_{\mathbf{W},i} \neq \Sigma_{\mathbf{W},k}$, pour $i \neq k$. Nous allons également supposer que pour les deux variables X et Y il existe une relation linéaire $\sigma_{X,i} = \gamma_X \times \mu_{X,i}$ et $\sigma_{Y,i} = \gamma_Y \times \mu_{Y,i}$, où γ_X et γ_Y sont les coefficients de variation suppose connus et constants. Cette supposition vient du fait que de nombreuses caractéristiques de qualité ont une dispersion qui est proportionnelle à la moyenne de la population : poids, résistance à la traction, etc. Cela implique que, d'un échantillon à un autre, les valeurs de $\mu_{X,i}$ et $\mu_{Y,i}$ sont libres de changer mais les valeurs de $\sigma_{X,i}$ et $\sigma_{Y,i}$ doivent nécessairement changer proportionnellement à $\mu_{X,i}$ et $\mu_{Y,i}$. Le ratio empirique \hat{Z}_i est défini comme étant égal à

$$\hat{Z}_{i} = \frac{\hat{\mu}_{X,i}}{\hat{\mu}_{Y,i}} = \frac{\bar{X}_{i}}{\bar{Y}_{i}} = \frac{\sum_{j=1}^{n} X_{i,j}}{\sum_{j=1}^{n} Y_{i,j}}, i = 1, 2, \dots$$
(2.18)

Puisque $\bar{X}_i \sim N(\mu_{X,i}, \frac{\sigma_{X,i}}{\sqrt{n}})$ et $\bar{Y}_i \sim N(\mu_{Y,i}, \frac{\sigma_{Y,i}}{\sqrt{n}})$, les coefficients de variation $\gamma_{\bar{X}}$ et $\gamma_{\bar{Y}}$ sont égaux à

$$\gamma_{\bar{X}} = \frac{\sigma_{X,i}}{\mu_{X,i}\sqrt{n}} = \frac{\gamma_X}{\sqrt{n}}, \\ \gamma_{\bar{Y}} = \frac{\sigma_{Y,i}}{\mu_{Y,i}\sqrt{n}} = \frac{\gamma_Y}{\sqrt{n}},$$
(2.19)

et le ratio des écart-types $\omega_i = \frac{\sigma_{X,i}}{\sigma_{Y,i}}$, à chaque inspection i, est égal à

$$\omega_i = \frac{\mu_{X,i}}{\mu_{Y,i}} \times \frac{\gamma_X}{\gamma_Y}, i = 1, 2, \dots$$
(2.20)

Lorsque le processus est sous-contrôle, on suppose que le ratio $\frac{\mu_{X,i}}{\mu_{Y,i}} = z_0, i = 1, 2, ...,$ où z_0 est sa valeur sous-contrôle. Par conséquent, le ratio des écart-types est

$$\omega_i = \omega_0 = z_0 \frac{\gamma_X}{\gamma_Y}, i = 1, 2, \dots$$
(2.21)

où ω_0 est la valeur sous-contrôle du ratio des écart-types. En conséquence, la fonction de répartition $F_{\hat{Z}_i}(z|n, \gamma_X, \gamma_Y, z_0, \rho_0)$ et la fonction de répartition inverse $F_{\hat{Z}_i}^{-1}(p|n, \gamma_X, \gamma_Y, z_0, \rho_0)$ de \hat{Z}_i peuvent être déduites de la fonction de répartition $F_Z(z|\gamma_X, \gamma_Y, \omega, \rho)$ dans (2.8) et de la fonction de répartition inverse $F_Z^{-1}(p|\gamma_X, \gamma_Y, \omega, \rho)$ dans (2.12) en utilisant

$$F_{\hat{Z}_i}(z|n,\gamma_X,\gamma_Y,z_0,\rho_0) = F_Z\left(z|\frac{\gamma_X}{\sqrt{n}},\frac{\gamma_Y}{\sqrt{n}},\frac{z_0\gamma_X}{\gamma_Y},\rho_0\right), \qquad (2.22)$$

$$F_{\hat{Z}_i}^{-1}(p|n,\gamma_X,\gamma_Y,z_0,\rho_0) = F_Z^{-1}\left(p|\frac{\gamma_X}{\sqrt{n}},\frac{\gamma_Y}{\sqrt{n}},\frac{z_0\gamma_X}{\gamma_Y},\rho_0\right).$$
(2.23)

2.2.2 La carte de contrôle Shewhart pour le ratio de deux variables aléatoire

La première carte que nous allons aborder est la carte Shewhart pour le ratio de deux variables aléatoires proposée par Spisak (1990). Considérons le problème de la surveillance d'un processus en utilisant le ratio $R_h = \frac{Y_h}{X_h}$, h = 1, 2, ... où Y_h et X_h sont deux variables aléatoires. Supposons que des échantillons soient tirés à partir de H groupes différents. Soient respectivement n_h et N_h la taille de l'échantillon et de la population pour le groupe h, h = 1, 2, ..., H. L'objectif de cette carte de contrôle est de déterminer si le ratio R_h pour un seul groupe est significativement différent des ratios des autres groupes. Si la carte indique qu'un ou plusieurs des H groupes sont hors-contrôle, alors ces groupes doivent être examinés de plus prêt. L'exemple spécifique utilisé par Spisak (1990) correspond à des données de paiement d'assurance-chômage. L'objectif de la carte (dans l'exemple) est de faire en sorte qu'il y ait un un faible pourcentage d'erreur au niveau des dépenses totales. Pour chaque individu $i = 1, 2, ..., n_h$ dans le groupe h = 1, 2, ..., H, on définit le paiement total X_{hi} et le paiement trop perçu Y_{hi} . Spisak (1990) propose de calculer la statistique

$$\hat{R} = \frac{\sum_{h=1}^{H} Y_h}{\sum_{h=1}^{H} X_h},$$

où $Y_h = \sum_{i=1}^{n_h} Y_{hi}$ et $X_h = \sum_{i=1}^{n_h} X_{hi}$. La variance $V(\hat{R}_h)$ de la statistique \hat{R}_h définie ci-dessus est donnée par Spisak (1990) comme étant égale à

$$V(\hat{R}_h) = \frac{s_y^2 + r^2 s_x^2 - 2r s_{yx}}{n_h \bar{x}^2},$$

où r est le coefficient de corrélation linéaire entre X_{hi} et Y_{hi} et $s_y^2 = \frac{\sum_{h=1}^{H} s_{yh}^2(n_h-1)}{n-H}$. Ici, s_{yh}^2 est la variance empirique de Y_{hi} pour le groupe h et n est le nombre total d'éléments prélevés dans le groupe H,

i.e. $n = \sum_{h=1}^{H} n_h$. Les termes s_{yx} et s_x^2 sont calculés de manière analogue. On déduit donc que les limites de contrôle pour la carte proposée par Spisak (1990) sont

$$UCL = \hat{R} + 3\sqrt{V(\hat{R}_h)}$$
$$LCL = \hat{R} - 3\sqrt{V(\hat{R}_h)}$$

Une valeur de \hat{R}_h en dehors des limites de contrôle génère une situation hors-contrôle indiquant qu'une cause assignable est probablement apparue. Le principale désavantage de cette carte est qu'elle ne définit aucun modèle sous-jacent. Pour être plus précis, il n'y a pas d'utilisation d'un modèle permettant d'obtenir la distribution du ratio et le fait de prendre des limites à ±3 écart-types ne peut pas être valide car la distribution du ratio n'est pas symétrique. N'ayant pas défini la distribution du ratio, Spisak (1990) n'ont pas non plus obtenu d'indicateurs de performance comme l'*ARL*, par exemple.

Davis and Woodall (1991) ont eux proposé un modèle sous-jacent raisonnable pour le ratio de deux variables aléatoires. Ils ont supposé que les variables aléatoires X_{hi} étaient indépendantes et suivaient une loi normale $N(\mu, \sigma)$, h = 1, 2, ..., H, $i = 1, 2, ..., N_h$. Ils ont utilisé le même type d'exemple que Spisak (1990) et, pour des raisons pratiques, ils ont aussi supposé que le ratio $R_{hi} = \frac{Y_{hi}}{X_{hi}}$, h = 1, 2, ..., H, $i = 1, 2, ..., N_h$. Ils ont utilisé le même type d'exemple que Spisak (1990) et, pour des raisons pratiques, ils ont aussi supposé que le ratio $R_{hi} = \frac{Y_{hi}}{X_{hi}}$, h = 1, 2, ..., H, $i = 1, 2, ..., N_h$ entre le paiement trop perçu et le paiement total d'un individu était distribué suivant la densité de probabilité suivante

$$p(R_{hi}) = \begin{cases} \pi_0 & \text{si } R_{hi} = 0, \\ \pi_1 & \text{si } R_{hi} = 1, \\ (1 - \pi_0 - \pi_1) \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} R_{hi}^{\alpha - 1} (1 - R_{hi})^{\beta - 1} & \text{si } R_{hi} \in (0, 1) \end{cases}$$
(2.24)

où $\Gamma(z)$ est la fonction gamma, $\pi_0 \ge 0$, $\pi_1 \ge 0$, $\alpha > 0$ et $\beta > 0$. Ainsi, lorsqu'une erreur partielle est présente, le ratio est supposé suivre une distribution beta. Dans ce cas, les ratios sont supposés se situer entre 0 et 1 exclusivement et cette distribution peut être utilisée avec $\pi_0 = \pi_1 = 0$. Une variable aléatoire de distribution définie par l'équation 2.24, multipliée par un individu X_{hi} , générerait un individu valeur Y_{hi} , $h = 1, 2, \ldots, H$, $i = 1, 2, \ldots, n_h$. La performance de la carte de contrôle Shewhart pour le ratio sera ensuite évaluée en fonction de ce modèle. Dans ce cas, la distribution du ratio est intraitable et Davis and Woodall (1991) ont dû générer les propriétés statistiques de la carte de contrôle pour le ratio par simulation. Les résultats ont montré que la carte Shewhart pour le ratio de deux variables aléatoires proposée par Spisak (1990) n'est pas efficace en raison de la variabilité excessive de la limite supérieure de contrôle.

2.2.3 Les cartes de contrôle Shewhart pour le ratio de deux variables normales corrélées

La deuxième carte que nous allons aborder est la carte Shewhart pour le ratio proposée par Öksoy et al. (1994). Öksoy et al. (1994) ont proposé un ensemble de méthodes pour la mise en œuvre de cartes de contrôle de Shewhart permettant la surveillance du ratio composition en oxide / densité. Supposons qu'à chaque période d'échantillonnage i = 1, 2, ..., N nous recueillons un échantillon de n couples indépendants $\{\mathbf{W}_{i,1}, \mathbf{W}_{i,2}, ..., \mathbf{W}_{i,n}\}$, où chaque $\mathbf{W}_{i,j} = (X_{i,j}, Y_{i,j})^T \sim N(\boldsymbol{\mu}_{\mathbf{W}}, \boldsymbol{\Sigma}_{\mathbf{W}}), j = 1, ..., n$ est un vecteur aléatoire normal bivarié avec pour vecteur moyen

$$\boldsymbol{\mu}_{\mathbf{W}} = \left(\begin{array}{c} \mu_X \\ \mu_Y \end{array}\right),$$

et matrice de variance-covariance

$$\boldsymbol{\Sigma}_{\mathbf{W}} = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix},$$

Le ratio empirique \hat{Z}_i est défini comme étant égal à

$$\hat{Z}_{i} = \frac{\hat{\mu}_{X,i}}{\hat{\mu}_{Y,i}} = \frac{\bar{X}_{i}}{\bar{Y}_{i}} = \frac{\sum_{j=1}^{n} X_{i,j}}{\sum_{j=1}^{n} Y_{i,j}}, i = 1, 2, \dots, N$$

Les limites de contrôle LCL et UCL des cartes Shewhart proposées par Öksoy et al. (1994) sont de type "probabilistes", i.e. elles vérifient $P(\hat{Z}_i < LCL) = P(\hat{Z}_i > UCL) = \frac{\alpha}{2}$ où α est l'erreur de type I fixé. Les valeurs de LCL et UCL peuvent être obtenues à partir d'une table présentée dans Öksoy and Aroian (1994). Dans ce papier, il n'y a pas de discussion sur la performance de ces cartes en terme de run length.

2.2.4 La carte de contrôle Shewhart-RZ

La troisième carte que nous allons aborder est la carte Shewhart pour le ratio quand $\rho_0 \neq 0$ (notée Shewhart-RZ) proposée par Celano and Castagliola (2016a). Les limites de contrôle de la carte Shewhart-RZ proposée par Celano and Castagliola (2016a) sont de type "probabilistes" (et non de type $K \times \sigma$), c'est-à-dire

$$UCL_{RZ} = F_{\hat{Z}_i}^{-1} \left(1 - \frac{\alpha}{2} | n, \gamma_X, \gamma_Y, z_0, \rho_0\right)$$
$$LCL_{RZ} = F_{\hat{Z}_i}^{-1} \left(\frac{\alpha}{2} | n, \gamma_X, \gamma_Y, z_0, \rho_0\right)$$

où α est l'erreur de type I fixée. Dans Celano and Castagliola (2016a), les auteurs ont montré que ces limites de contrôle peuvaient être réécrites comme suit

$$LCL_{RZ} = K_L \times z_0,$$

$$UCL_{RZ} = K_U \times z_0,$$

où K_L et K_U sont des constantes qui dépendent de α , n, γ_X , γ_Y , ρ_0 et $z_0 = 1$

$$K_L = F_{\hat{Z}_i}^{-1}(\frac{\alpha}{2}|n,\gamma_X,\gamma_Y,1,\rho_0), K_U = F_{\hat{Z}_i}^{-1}(1-\frac{\alpha}{2}|n,\gamma_X,\gamma_Y,1,\rho_0).$$

où γ_X et γ_Y sont les coefficients de variation assumés connus et constants, z_0 est la valeur sous-contrôle du ratio et ρ_0 est la valeur sous-contrôle du coefficient de corrélation. La ligne centrale de la carte Shewhart-RZ est la médiane \tilde{Z} de la distribution du ratio

$$CL_{RZ} = \tilde{Z} = F_{\hat{Z}_i}^{-1}(0.5|n, \gamma_X, \gamma_Y, z_0, \rho_0)$$

où

$$F_{\hat{Z}_i}^{-1}(p|n,\gamma_X,\gamma_Y,z_0,\rho_0) = F_Z^{-1}(p|n,\frac{\gamma_X}{\sqrt{n}},\frac{\gamma_Y}{\sqrt{n}},z_0,\rho_0)$$

avec $F_Z^{-1}(\ldots)$ définie dans 2.12.

Concernant les propriétes du run length de la carte Shewhart-RZ, elles sont faciles à obtenir car cette carte est une carte de type Shewhart. La valeur de β est

$$\beta = F_Z \left(UCL | \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau z_0 \gamma_X}{\gamma_Y}, \rho_0 \right) - F_Z \left(LCL | \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau z_0 \gamma_X}{\gamma_Y}, \rho_0 \right)$$
$$= F_Z \left(K_U | \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau \gamma_X}{\gamma_Y}, \rho_0 \right) - F_Z \left(K_L | \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau \gamma_X}{\gamma_Y}, \rho_0 \right)$$

et nous avons immédiatement

$$ARL = \frac{1}{1 - \beta}$$

et

$$SDRL = \frac{\sqrt{\beta}}{1-\beta} = \sqrt{ARL \times (ARL-1)}$$

avec $\frac{UCL}{z_0} = K_U$ et $\frac{LCL}{z_0} = K_L$.

2.2.5 La carte de contrôle Syn-RZ

La quatrième carte de contrôle que nous allons aborder est la carte Synthetique pour le ratio quand $\rho_0 \neq 0$ (notée Syn-RZ) proposée par Celano and Castagliola (2016b). Pour une carte de contrôle Syn-RZ, il est nécessaire de définir des limites de contrôle sous la forme

$$UCL_{RZ} = F_{\hat{Z}_i}^{-1} \left(1 - \frac{\alpha_{RZ}}{2} | n, \gamma_X, \gamma_Y, z_0, \rho_0 \right)$$
$$LCL_{RZ} = F_{\hat{Z}_i}^{-1} \left(\frac{\alpha_{RZ}}{2} | n, \gamma_X, \gamma_Y, z_0, \rho_0 \right)$$

où α_{RZ} est l'erreur de type I de la sous-carte Shewhart-RZ ainsi une qu'une limite inférieure $H \in \{1, 2, ...\}$. Si $\hat{Z}_j, \hat{Z}_{j+1}, ..., \hat{Z}_{i-1}, \hat{Z}_i$ est une séquence telle que $\hat{Z}_j \notin [LCL_{RZ}, UCL_{RZ}], \hat{Z}_k \in [LCL_{RZ}, UCL_{RZ}]$ pour $k \in \{j+1, j+2, ..., i-1\}$ et $\hat{Z}_j \notin [LCL_{RZ}, UCL_{RZ}]$ alors la carte Syn-RZ considère que le procédé est hors-contrôle à l'instant *i* si $CRL = i - j \leq H$ où CRL est le "Conforming Run Length". L'ARL de la carte Syn-RZ s'obtient de la manière suivante :

$$ARL = \frac{1}{1 - F_Z \left(K_U | \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau\gamma_X}{\gamma_Y}, \rho_0 \right) + F_Z \left(K_L | \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau\gamma_X}{\gamma_Y}, \rho_0 \right)} \times \frac{1}{1 - \left(F_Z \left(K_U | \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau\gamma_X}{\gamma_Y}, \rho_0 \right) - F_Z \left(K_L | \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\gamma_Y}, \rho_0 \right) \right)^H}$$

2.3 Carte de contrôle pour surveiller les données compositionnelles

2.3.1 Concept d'analyse des données compositionnelles

Par définition, un vecteur ligne $\mathbf{x} = (x_1, x_2, \dots, x_p)$ est défini comme étant une *p*-composition lorsque tous ses composants sont des nombres réels strictement positifs (i.e. $\mathbf{x} \in \mathbb{R}^p_+$) et ils ne véhiculent uniquement que des informations relatives. Deux compositions \mathbf{x} et \mathbf{y} peuvent être différentes mais refléter des compositions équivalentes. Par exemple, dans \mathbb{R}^3_+ , $\mathbf{x} = (0.2, 0.5, 0.3)$ est différent de $\mathbf{y} = (20, 50, 30)$ mais ils sont compositionnellement équivalents parce qu'ils véhiculent la même information relative. En conséquence, afin de savoir si deux compositions \mathbf{x} et \mathbf{y} sont compositionnellement équivalentes nous devons d'abord les normaliser en utilisant l'opérateur de *closure* définie comme

$$\mathcal{C}(\mathbf{x}) = \left(\frac{\kappa x_1}{\sum_{i=1}^p x_i}, \frac{\kappa x_2}{\sum_{i=1}^p x_i}, \dots, \frac{\kappa x_p}{\sum_{i=1}^p x_i}\right),$$

où $\kappa > 0$ est une constante devant être fixée (en général $\kappa = 1$). Puis, en utilisant l'opérateur de closure, deux compositions x et y sont dites compositionnellement équivalentes si $C(\mathbf{x}) = C(\mathbf{y})$.

L'espace géométrique des données compositionnelles représente en effet un sous-ensemble S^p de l'espace réel appelé simplexe et défini comme

$$S^{p} = \left\{ \mathbf{x} = (x_{1}, x_{2}, \dots, x_{p}) | x_{i} > 0, i = 1, 2, \dots, p \text{ and } \sum_{i=1}^{p} x_{i} = \kappa. \right\}$$

Dans \mathbb{R}^p nous pouvons définir une géométrie Euclidienne qui définit un espace ayant une structure métrique. Cette géométrie permet de définir comment ajouter des vecteurs, la façon de les multiplier par une valeur scalaire, comment savoir si deux vecteurs sont orthogonaux, comment calculer la distance entre deux points, etc. Cette géométrie ne peut malheureusement pas être utilisée pour des données compositionnelles et il est donc important de définir un espace vectoriel dédié avec une structure métrique spécifique sur S^p .

Cette géométrie spécifique est appelé "géométrie d'Aitchison" (Aitchison (1986)). Les opérations de base nécessaires à l'obtention d'une structure d'espace vectoriel sur S^p sont l'opérateur de *perturbation* \oplus de $\mathbf{x} \in S^p$ par $\mathbf{y} \in S^p$ (analogue à une translation dans \mathbb{R}^p) défini comme

$$\mathbf{x} \oplus \mathbf{y} = \mathcal{C}(x_1y_1, x_2y_2, \dots, x_py_p)$$

et l'opérateur *powering* \odot de $\mathbf{x} \in S^p$ par une constante $a \in \mathbb{R}$ (analogue de la multiplication scalaire dans \mathbb{R}^p) défini comme

$$a \odot \mathbf{x} = \mathcal{C}(x_1^a, x_2^a, \dots, x_p^a)$$

En particulier, (S^p, \oplus) est un groupe commutatif, i.e. pour x, y et z dans S^p on a $\mathbf{x} \oplus \mathbf{y} = \mathbf{y} \oplus \mathbf{x}$ (commutativité), $(\mathbf{x} \oplus \mathbf{y}) \oplus \mathbf{z} = \mathbf{x} \oplus (\mathbf{y} \oplus \mathbf{z})$ (associativité), $\mathbf{1}_{S^p} = \mathcal{C}(1, 1, \dots, 1) = (\frac{1}{p}, \frac{1}{p}, \dots, \frac{1}{p})$ (élément neutre unique pour \oplus), $\mathbf{x}^{-1} = \mathcal{C}(x_1^{-1}, x_2^{-1}, \dots, x_p^{-1})$ tel que $\mathbf{x} \oplus \mathbf{x}^{-1} = \mathbf{1}_{S^p}$ (inverse). La définition de l'inverse permet de définir la *perturbation difference* comme $\mathbf{x} \ominus \mathbf{y} = \mathbf{x} \oplus \mathbf{y}^{-1}$.

Afin d'obtenir une géométrie Euclidienne pour S^p nous avons aussi besoin de définir un produit scalaire $\langle \mathbf{x}, \mathbf{y} \rangle_A = \langle \operatorname{clr}(\mathbf{x}), \operatorname{clr}(\mathbf{y}) \rangle$ (Aitchison inner product de \mathbf{x} et \mathbf{y}), une norme $||\mathbf{x}||_A = ||\operatorname{clr}(\mathbf{x})||_2$ (Aitchison norm de \mathbf{x}) et une distance $d_A(\mathbf{x}, \mathbf{y}) = d_2(\operatorname{clr}(\mathbf{x}), \operatorname{clr}(\mathbf{y}))$ (Aitchison distance entre \mathbf{x} and \mathbf{y}) où $\langle \cdot, \cdot \rangle$ est le produit scalaire dans \mathbb{R}^p , $||\cdot||_2$ est la norme L^2 dans \mathbb{R}^p , $d_2(\cdot, \cdot)$ est la distance dans \mathbb{R}^p et $\operatorname{clr}(\mathbf{x})$ est la transformation centered logratio de \mathbf{x} défini comme

$$\operatorname{clr}(\mathbf{x}) = \left(\ln \frac{x_1}{\bar{x}_G}, \ln \frac{x_2}{\bar{x}_G}, \dots, \ln \frac{x_p}{\bar{x}_G}\right),$$

où \bar{x}_G est la moyenne géométrique de la composition x, i.e.

$$\bar{x}_G = \left(\prod_{i=1}^p x_i\right)^{\frac{1}{p}} = \exp\left(\frac{1}{p}\sum_{i=1}^p \ln x_i\right).$$

Par construction, si clr(\mathbf{x}) = $\boldsymbol{\xi} = (\xi_1, \xi_2, \dots, \xi_p)$ alors $\xi_1 + \xi_2 + \dots + \xi_p = 0$. Par conséquent, si $\boldsymbol{\xi}$ satisfait $\xi_1 + \xi_2 + \dots + \xi_p = 0$ alors la transformation *inverse centered logratio* clr⁻¹($\boldsymbol{\xi}$) est

$$\operatorname{clr}^{-1}(\boldsymbol{\xi}) = \mathcal{C}(\exp(\xi_1), \exp(\xi_2), \dots, \exp(\xi_p))$$

Comme toute composition \mathbf{x} in S^p est contrainte par $x_1 + x_2 + \ldots + x_p = \kappa$ et doit dont être représenté dans un espace de dimension p - 1. Supposons maintenant que $\{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_{p-1}\}$ soit une base orthonormée du simplex S^p , i.e. on a $\langle \mathbf{b}_i, \mathbf{b}_j \rangle_A = \langle \operatorname{clr}(\mathbf{b}_i), \operatorname{clr}(\mathbf{b}_j) \rangle = \delta_{i,j}$ où $\delta_{i,j} = 0$ (1) lorsque $i \neq j$ (i = j). L'utilisation de cette base orthonormée permet de décomposer toute composition \mathbf{x} dans S^p sous la forme $\mathbf{x} = (x_1^* \odot \mathbf{b}_1) \oplus (x_2^* \odot \mathbf{b}_2) \oplus \cdots \oplus (x_{p-1}^* \odot \mathbf{b}_{p-1})$ où $x_i^* = \langle \mathbf{x}, \mathbf{b}_i \rangle_A = \langle \operatorname{clr}(\mathbf{x}), \operatorname{clr}(\mathbf{b}_i) \rangle, i = 1, 2, \ldots, p - 1$. Par définition, on définit la transformation ilr (ou *isometric logratio*) ilr(\mathbf{x}) = $\mathbf{x}^* = (x_1^*, x_2^*, \ldots, x_{p-1}^*)$. La transformation ilr est une isométrie qui relie toute composition \mathbf{x} dans S^p dans \mathbb{R}^{p-1} . Soit \mathbf{B} la matrice de dimension (p - 1, p) dans laquelle les lignes sont égales à $\operatorname{clr}(\mathbf{b}_i), i = 1, 2, \ldots, p - 1$. Cette matrice est appelé matrice de contraste associée à la base orthonormée $\{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_{p-1}\}$. Il y a un nombre infini de candidats pour définir une telle base orthonormée. Egozcue and Pawlowsky-Glahn (2005) ont suggéré qu'une base orthonormée pour le simplex pouvait être défini sour la forme $\mathbf{b}_i = \mathcal{C}(b_{i,1}, \ldots, b_{i,j}, \ldots, b_{i,p})$ où chaque $b_{i,j}$ est défini comme

$$b_{i,j} = \begin{cases} \exp\left(\sqrt{\frac{1}{i(i+1)}}\right) & j \le i \\ \exp\left(-\sqrt{\frac{i}{i+1}}\right) & j = i+1 \\ 1 & j > i+1 \end{cases}$$

La transformation ilr peut alors être défini sous la forme du produit matriciel suivant

$$\operatorname{ilr}(\mathbf{x}) = \operatorname{clr}(\mathbf{x})\mathbf{B}^{\mathsf{T}}.$$

Inversement, si nous voulons obtenir les coordonnées de la composition $\mathbf{x} \in S^p$ à partir des coordonnées $\mathbf{x}^* \in \mathbb{R}^{p-1}$, nous devons utiliser la transformation *inverse isometric logratio* défini comme

$$\operatorname{ilr}^{-1}(\mathbf{x}^*) = \operatorname{clr}^{-1}(\mathbf{x}^*\mathbf{B}) = \mathcal{C}(\exp(\mathbf{x}^*\mathbf{B})).$$

Pour plus de détails voir, par exemple, Pawlowsky-Glahn et al. (2015).

2.3.2 Carte de contrôle pour les observations individuelles pour surveiller les données compositionnelles

Soit $\mathbf{x}_i = (x_1, x_2, ..., x_p)$ une *p*-composition et $\mathbf{z}_i = (z_1, ..., z_{p-1})$ où \mathbf{z}_i est la coordonnée dans \mathbb{R}^{p-1} de la composition observée au moment *i*. Soient $\boldsymbol{\mu}_z$ et $\boldsymbol{\Sigma}_z$ le vecteur moyen et la matrice de variance-covariance de \mathbf{z}_i . Vives-Mestres et al. (2014b) ont proposé la carte de contrôle CoDa T_C^2 pour les observations individuelles (n = 1), défini comme

$$T_C^2 = (\mathbf{z}_i - \boldsymbol{\mu}_z)^{\mathsf{T}} \boldsymbol{\Sigma}_z^{-1} (\mathbf{z}_i - \boldsymbol{\mu}_z).$$

Si les paramètres μ_z et Σ_z sont connus, alors T_C^2 suit une loi du $\chi^2(p-1)$ et la limite de contrôle supérieure est égale à

$$UCL = F_{\gamma^2}^{-1}(\alpha|p-1)$$

où α est une erreur de type I fixée. Si les paramètres μ_z et Σ_z ne sont pas connus, la limite de contrôle pour la phase I est défini par

$$UCL = \frac{(m-1)^2}{m} F_{\beta}^{-1}(\alpha | (p-1)/2, (m-p-2)/2)$$

où $F_{\beta}^{-1}(x|p/2, (m-p-2)/2)$ est la fonction de répartition inverse de la distribution beta de paramètres (p-1)/2 et (m-p-2)/2. Les valeurs m et (p-1) sont respectivement la taille de l'échantillon et le nombre de variables.

En pratique, au lieu de travailler avec la composition complète le praticien recueille uniquement les données à partir des p-1 premières variables. Pour utiliser la carte T^2 avec ces données, Vives-Mestres et al. (2014b) ont montré que l'approche classique qui consiste à utiliser une carte du T^2 peut amener à une situation où c'est la variable éliminée qui est responsable de la dérive et que celle-ci peut ne pas être détectée. De plus, la performance de la carte de contrôle T_C^2 est meilleur que la carte T^2 en termes d'ARL sous-contrôle.

2.4 Conclusions

Dans ce chapitre nous avons fait le point en ce qui concerne les recherches déjà réalisées sur les cartes de contrôle pour surveiller le ratio et les données compositionnelles. Comme on a pu s'en appercevoir, il y eu assez peu de recherche dans ces domaines. Si nous résumons, nous avons présenté la carte de contrôle Shewhart pour le ratio proposée par Spisak (1990) et évaluée ensuite par Davis and Woodall (1991), les cartes de contrôle Shewhart pour le ratio de deux variables normales corrélées proposée par Öksoy et al. (1994), la carte de contrôle Shewhart-RZ proposée par Celano and Castagliola (2016a), la carte de contrôle Syn-RZ proposée par Celano and Castagliola (2016b) et la carte de contrôle pour surveiller les données compositionnelles proposée par Vives-Mestres et al. (2014b). Toutes ces cartes de contrôle pour la surveillance du ratio et des données compositionnelles sont des cartes de contrôle de type Shewhart, qui sont connues pour être peu efficaces dans la détection de changements faibles ou modérés dans le procédé.

Par conséquent, dans les chapitres suivants, nous allons nous intéresser à proposer diverses cartes contrôle pour surveiller le ratio et les données compositionnelles en utilisant des approches plus efficaces :

- les cartes de contrôle pour surveiller le ratio avec règles supplémentaires,
- les cartes de contrôle pour surveiller le ratio avec la méthode EWMA,

35

- les cartes de contrôle pour surveiller le ratio avec la méthode CUSUM,
- la carte de contrôle de type Shewhart pour surveiller le ratio avec erreurs de mesure.

Nous nous intéresserons aussi à l'évaluation des performance d'une carte de contrôle pour surveiller les données compositionnelles avec la méthode MEWMA.

CONTRIBUTIONS

Cartes de contrôle pour surveiller le ratio avec règles supplémentaires

3.1 Introduction

Les cartes de contrôle proposées par Spisak (1990) (et évaluée ensuite par Davis and Woodall (1991)), Ôksoy et al. (1994) et Celano and Castagliola (2016a) sont des cartes de type Shewhart qui sont efficaces pour détecter des changements de grande amplitude. La sensibilité statistique d'une carte de contrôle Shewhart peut être améliorée en utilisant des règles supplémentaires (ou Run Rules). Pour cette raison, il est naturel d'explorer l'utilisation de la carte de Shewhart avec règles supplémentaires comme une solution alternative. Les règles supplémentaires les plus connues ont été proposées pour la moyenne \bar{X} par la Western-Electric (1956). Plusieurs règles supplémentaires ont été aussi proposées par Page (1955), Roberts (1958), Bissell (1978), and Wheeler (1983). Par l'utilisation d'une approche basée sur les chaines de Markov, Champ and Woodall (1987) ont obtenu une formule exacte afin d'évaluer les propriétés du Run-Lengh de la carte de contrôle Shewhart X avec règles supplémentaire. Palm (1990) a utilisé leur méthode pour construire des tableaux de percentiles du Run-Length lorsque une ou plusieurs règles supplémentaires sont utilisés avec une carte de contrôle \overline{X} pour surveiller la moyenne. Lowry et al. (1995) ont utilisé l'approche de la chaine de Markov pour étudier les règles supplémentaires de Western-Electric (1956) pour les cartes de contrôle S et R, et ont suggéré des règles alternatives, qui sont également basées sur des règles supplémentaires. D'autres règles supplémentaires ont également été suggérées par Divoky and Taylor (1995), Champ and Woodall (1997), Klein (2000), Shmueli and Cohen (2003), Fu et al. (2003), Khoo (2004), Yasui et al. (2006), Acosta-Mejia (2007), Antzoulakos and Rakitzis (2008), Zhang and Castagliola (2010), Trip and Does (2010), Riaz et al. (2011) and Castagliola et al. (2013).

Dans ce chapitre, nous allons présenter les cartes de contrôle de type Shewhart avec règles supplémentaires (que nous appelons cartes de contrôle RRRZ) pour surveiller le ratio de deux variables normales en utilisant des limites de contrôle unilatérales. Pour calculer les propriétés statistiques des cartes de contrôle RRRZ, nous utilisons une approche similaire à celle de Celano and Castagliola (2016a).

3.2 Mise en œuvre des cartes de contrôle RRRZ

On suppose que p = 2 variables aléatoires continues X et Y distribuées selon une loi binormale sont corrélées avec un coefficient de corrélation sous-contrôle ρ_0 . Pour la caractéristique de qualité $Z = \frac{X}{Y}$, nous recueillons un échantillon de *n* couples indépendants $\{\mathbf{W}_{i,1}, \mathbf{W}_{i,2}, ..., \mathbf{W}_{i,n}\}$ à chaque période d'échantillonnage i = 1, 2, ..., où chaque $\mathbf{W}_{i,j} = (X_{i,j}, Y_{i,j})^T \sim N(\boldsymbol{\mu}_{\mathbf{W},i}, \boldsymbol{\Sigma}_{\mathbf{W},i}), j = 1, ..., n$, est un vecteur bivarié aléatoire de loi normale avec le vecteur moyen (2.16) et la matrice de variance-covariance (2.17). Comme dans Celano and Castagliola (2016a), on suppose qu'il est possible d'avoir $\boldsymbol{\mu}_{W,i} \neq \boldsymbol{\mu}_{W,k}$, et $\sigma_{W,i} \neq \sigma_{W,k}$, pour $i \neq k$. Nous supposons également que pour les deux variables X et Y il y a une relation linéaire $\sigma_{X,i} = \gamma_X \times \boldsymbol{\mu}_{X,i}$ et $\sigma_{Y,i} = \gamma_Y \times \boldsymbol{\mu}_{Y,i}$, où γ_X et γ_Y sont les coefficients de variation assumés connus et constants. Cette supposition vient du fait que de nombreuses caractéristiques de qualité ont une dispersion qui est proportionnelle à la moyenne de la population. Cela implique que, d'un échantillon à un autre, les valeurs de $\boldsymbol{\mu}_{X,i}$ et $\boldsymbol{\mu}_{Y,i}$ sont libres à changer mais les valeurs de $\sigma_{X,i}$ et $\sigma_{Y,i}$ doivent nécessairement changer proportionnellement par rapport à $\boldsymbol{\mu}_{X,i}$ et $\boldsymbol{\mu}_{Y,i}$.

Le but de ce chapitre est d'appliquer et d'évaluer plusieurs types de règles supplémentaires afin de surveiller le ratio \hat{Z}_i dans (2.18). Nous suggérons de définir deux cartes de contrôle

- une première carte avec la règle supplémentaire r-parmi-s (notée RRRZ⁻_{r,s}) visant à détecter une diminution de Â_i avec une unique limite de contrôle inférieure LCL_{RRRZ} (i.e. la limite de contrôle supérieure UCL_{RRRZ} = ∞). Pour cette carte de contrôle, une situation hors-contrôle est signalée à l'instant i si r-parmi-s valeurs successives de Â_i sont tels que Â_i < LCL_{RRRZ}.
- une seconde carte avec la règle supplémentaire r-parmi-s (notée RRRZ⁺_{r,s}) visant à détecter une augmentation de Â_i avec une unique limite de contrôle supérieure UCL_{RRRZ} (i.e. la limite de contrôle inférieure LCL_{RRRZ} = -∞). Pour cette carte de contrôle, une situation hors-contrôle est signalée à l'instant i si r-parmi-s valeurs successives de Â_i sont tels que Â_i > UCL_{RRRZ}.

Il est important de noter que, comme dans Klein (2000), nous allons nous concentrer uniquement sur des règles supplémentaires "pures" qui ne nécessitent uniquement que des limites d'avertissement et aucune limite de contrôle et supposent qu'une situation de hors-contrôle doit être signalée que si uniquement une des règles supplémentaires se réalise. Comme montré dans Klein (2000), l'avantage des cartes de contrôle avec règles supplémentaires *pures* (par rapport à des cartes de contrôle *composites*, nécessitant des limites de contrôle ainsi que des limites d'avertissement) est la simplicité de leur mise en œuvre et de leur interprétation. Plus précisément, dans ce chapitre, nous nous allons concentrer uniquement sur les cartes RRRZ 2-parmi-3 et 3-parmi-4 qui correspondent au cas (r = 2, s = 3) et (r = 3, s = 4). Le choix des règles supplémentaires 2-parmi-3 et 3-parmi-4 seulement est basé sur le principe de *parcimonie*, à savoir qu'il est toujours possible d'utiliser des règles supplémentaires plus complexes, mais l'amélioration de la sensibilité de ces cartes suite à un changement de processus est marginale comparée à la difficulté de mettre en œuvre ces cartes de contrôle.

3.3 Propriétés du Run Length

Concernant des cartes de contrôle $RRRZ_{2,3}^-$ et $RRRZ_{2,3}^+$, la séquence de points tracés sur ces cartes peut être modélisée comme un processus stochastique. Les propriétés du run lenght des cartes $RRRZ_{2,3}^-$ et $RRRZ_{2,3}^+$ peuvent être obtenues en utilisant la chaîne de Markov définie par la matrice de transition **P** définie cidessous (où le 4ème état correspond à l'état absorbant) :

$$\mathbf{P} = \begin{pmatrix} \mathbf{Q} & \mathbf{r} \\ \\ \mathbf{0}^T & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & p \mid 1-p \\ p & 0 & 0 \mid 1-p \\ 0 & 1-p & p \mid 0 \\ \hline 0 & 0 & 0 \mid 1 \end{pmatrix},$$
(3.1)

où $P(\hat{Z}_i \ge LCL_{\text{RRRZ}})$ $(P(\hat{Z}_i \le UCL_{\text{RRRZ}}))$ pour la carte de contrôle $\text{RRRZ}_{2,3}^ (\text{RRRZ}_{2,3}^+)$, $\mathbf{0} = (0, 0, \dots, 0)^T$, $\mathbf{Q}_{(3,3)}$ est la matrice des probabilités de transition correspondant uniquement aux états transitoires, le vecteur $\mathbf{r}_{(3,1)}$ satisfait $\mathbf{r} = \mathbf{1} - \mathbf{Q}\mathbf{1}$ (i.e. la somme des probabilités est égale à 1), avec $\mathbf{1} =$

 $(1, 1, 1)^T$. Le vecteur $\mathbf{q}_{(3,1)}$ qui correspond aux probabilités initiales associées aux états transitoires est égal à $\mathbf{q} = (0, 0, 1)^T$ (i.e. l'état initial est le 3ème).

Nous supposons que l'apparition d'une situation hors contrôle fait passer la valeur nominale du ratio z_0 à une valeur $z_1 = \tau \times z_0$, où $\tau > 0$ quantifie l'amplitude du changement. Les valeurs de $\tau \in (0, 1)$ correspondent à une diminution de z_0 , alors que des valeurs de $\tau > 1$ correspondent à une augmentation de z_0 . Nous considérons aussi que lorsqu'une situation hors-contrôle apparait, le coefficient de corrélation peut passer de la valeur $\rho = \rho_0$ à la valeur $\rho = \rho_1$. Les probabilités p dans (3.1) sont égales à

• Pour la carte de contrôle RRRZ⁻_{2.3} :

$$p = 1 - F_{\hat{Z}_i}(LCL_{\text{RRRZ}}|n,\gamma_X,\gamma_Y,z_1,\rho_1)$$
(3.2)

• Pour la carte de contrôle $RRRZ_{2,3}^+$:

$$p = F_{\hat{Z}_i}(UCL_{\text{RRRZ}}|n,\gamma_X,\gamma_Y,z_1,\rho_1).$$
(3.3)

où $F_{\hat{Z}_i}(...)$ est la fonction de répartition de la variable aléatoire \hat{Z}_i définie dans l'équation 2.22. La carte RRRZ peut être facilement étendue à d'autres règles supplémentaires comme, par exemple, la règle 3-parmi-4 (les cartes de contrôle correspondantes sont les cartes RRRZ_{3,4} et RRRZ_{3,4}). Pour les cartes de contrôle RRRZ_{3,4} et RRRZ_{3,4} a matrice $Q_{(7\times7)}$ des probabilités transitoires est égale à

$$\mathbf{Q} = \begin{pmatrix} 0 & 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & p & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 - p & p \\ p & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 - p & p & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 - p & p & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 - p & p \end{pmatrix},$$
(3.4)

et le vecteur initial est $\mathbf{q} = (0, 0, 0, 0, 0, 0, 1)^T$ (i.e. l'état initial est le 7ème). Le nombre d'étapes jusqu'à ce que le processus atteigne l'état absorbant (i.e. le run length) est une variable aléatoire RL de type Phase discrète (DPH) de paramètres (\mathbf{Q}, \mathbf{q}), (voir Neuts (1981) ou Latouche and Ramaswami (1999)). Par conséquent, la moyenne (ARL) et l'écart-type (SDRL) du run length RL des cartes RRRZ_{2,3} et RRRZ_{3,4} unilatérales sont égaux à

$$ARL = \nu_1, \tag{3.5}$$

$$SDRL = \sqrt{\mu_2},$$
 (3.6)

avec

$$\nu_1 = \mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{1}, \tag{3.7}$$

$$\nu_2 = 2\mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-2} \mathbf{Q} \mathbf{1}, \qquad (3.8)$$

$$\mu_2 = \nu_2 - \nu_1^2 + \nu_1. \tag{3.9}$$

Il est intéressant de noter que cette approche basée sur une chaîne de Markov a été utilisée par de nombreux auteurs afin d'établir les propriétés des cartes de contrôle, voir par exemple Costa (1994, 1997, 1999) et Jensen et al. (2008).

3.4 Analyse numérique

Dans ce chapitre, la performance statistique est mesurée par l'ARL sous-contrôle. Une fois que les limites de contrôle (dans notre cas LCL_{RRRZ} et UCL_{RRRZ} , selon la règle sélectionnée) sont définies, l'ARL peut être numériquement évalué pour un changement particulier τ , en utilisant l'approche de la chaîne de Markov présentée dans la section précédente. Lorsqu'un processus est sous-contrôle, la moyenne du RL sera notée ARL_0 . Au contraire, lorsqu'un processus est hors-contrôle, la moyenne du RL sera notée ARL_1 . Une carte de contrôle est considéré comme meilleure que ses concurrentes si elle a une valeur de ARL_1 plus faible pour un changement particulier τ lorsque l' ARL_0 est le même pour tous les cartes de contrôle considérées. Comme pour la cartes de contrôle RZ dans Celano and Castagliola (2016a), les limites de contrôle unilatérales LCL_{RRRZ} et UCL_{RRRZ} des cartes de contrôle RRRZ⁻_{r,s} and RRRZ⁺_{r,s} peuvent être réécrites sous la forme $LCL_{RRRZ} = K_L \times z_0$ et $UCL_{RRRZ} = K_U \times z_0$ où K_L et K_U sont des constantes qui dépendent de ARL_0 , n, γ_X , γ_Y , ρ_0 et $z_0 = 1$. Ces constantes K_L et K_U sont des constantes qui dépendent de $ARL_0 = 200$, $n \in \{1, 5, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$ et $\rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}$ et sont présentées dans la Table 3.1. Il est important de noter que les valeurs de K_L et K_U dans la Table 3.1 correspondent à des limites de contrôle unilatérales. Par exemple, si $\gamma_X = 0.01$, $\gamma_Y = 0.2$, $\rho_0 = 0.4$ et n = 5 alors

- la limite inférieure de la carte RRRZ_{2,3} est LCL_{RRRZ} = 0.8762 × z₀ et la limite inférieure de la carte RRRZ_{3,4} est LCL_{RRRZ} = 0.9109 × z₀, alors que la limite supérieure de ces deux cartes est UCL_{RRRZ} = ∞ × z₀ = ∞.
- la limite supérieure de la carte RRRZ⁺_{2,3} est UCL_{RRRZ} = 1.1655 × z₀ et la limite supérieure de la carte RRRZ⁺_{3,4} est UCL_{RRRZ} = 1.1089 × z₀, alors que la limite inférieure de ces deux cartes est LCL_{RRRZ} = -∞ × z₀ = -∞.

A partir des résultats présentés dans la Table 3.1 on peut conclure que

- Pour des valeurs de (γ_X, γ_Y) fixées, les valeurs de K_L et K_U changent en fonction de n et ρ_0 . En particulier K_L augmente et K_U diminue lorsque n et ρ_0 augmentent. Par exemple, pour les cartes $\operatorname{RRRZ}_{2,3}^-$ et $\operatorname{RRRZ}_{2,3}^+$, lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.01)$, on a $K_L = 0.9733$ et $K_U = 1.0274$ si n = 1 et $\rho_0 = -0.4$ et on a $K_L = 0.9954$ et $K_U = 1.0046$ si n = 15 et $\rho_0 = 0.4$.
- Pour des valeurs de n et ρ_0 fixées, les valeurs de K_L et K_U changent en fonction de (γ_X, γ_Y) . En particulier, K_L diminue et K_U augmente lorsque (γ_X, γ_Y) augmentent. Par exemple, pour la cartes $\operatorname{RRRZ}_{3,4}^-$ et $\operatorname{RRRZ}_{3,4}^+$, lorsque n = 5 et $\rho_0 = 0.4$, on a $K_L = 0.9945$ et $K_U = 1.0055$ lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.01)$ et on a $K_L = 0.8959$ et $K_U = 1.1162$ lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$.

Les figures 3.1 et 3.2 montrent les valeurs de ARL_1 des cartes RRRZ_{2,3}, RRRZ_{3,4} et Shewhart-RZ lorsque le processus dérive d'un état sous-contrôle à un état hors-contrôle sans changement dans la corrélation entre X et Y (i.e. $\rho_0 = \rho_1 = \rho$). Les figures 3.1 et 3.2 présentent les résultats pour n = 1 et n = 15. Les résultats ont également été obtenus pour n = 5 mais ils ne sont pas présentés ici. A partir de ces figures, nous pouvons tirer les conclusions suivantes (nous faisons aussi référence au *SDRL* même s'il n'apparait pas dans les figures 3.1 et 3.2) :

• La performance des cartes de contrôle unilatérales RRRZ est fortement influencée par (γ_X, γ_Y) et ρ_0 . Plus les coefficients de variation (γ_X, γ_Y) sont petits, plus vite les cartes de contrôle détectent une situation hors-contrôle. Cela est principalement dû au fait que l'intervalle $[K_L, K_U]$ est plus reserré. Par exemple, lorsque $\rho_0 = 0.4$, n = 15 et $\tau = 0.99$, nous obtenons $ARL_1 = 2.1$ et $SDRL_1 = 0.2$ $(ARL_1 = 3.0$ et $SDRL_1 = 0.2)$ pour la carte $RRRZ_{2,3}^-$ ($RRRZ_{3,4}^-$) si $(\gamma_X, \gamma_Y) = (0.01, 0.01)$. Nous obtenons $ARL_1 = 105.1$ et $SDRL_1 = 103.3$ ($ARL_1 = 97.5$ et $SDRL_1 = 94.8$) pour la carte $RRRZ_{2,3}^-$ ($RRRZ_{3,4}^-$) si $(\gamma_X, \gamma_Y) = (0.2, 0.2)$. De plus, la présence d'une corrélation négative ($\rho_0 < 0$) entre les variables aléatoires X et Y réduit la sensibilité des cartes RRRZ par rapport à une corrélation

γ_X	γ_Y	$ ho_0$	n = 1	n = 5	n = 15
0.01	0.01	-0.8	(0.9698, 1.0311)	(0.9864, 1.0138)	(0.9921, 1.0079)
			(0.9790, 1.0214)	(0.9906, 1.0095)	(0.9945, 1.0055)
		-0.4	(0.9733, 1.0274)	(0.9880, 1.0122)	(0.9931, 1.0070)
			(0.9815, 1.0189)	(0.9917, 1.0084)	(0.9952, 1.0048)
		0.0	(0.9774, 1.0231)	(0.9898, 1.0103)	(0.9941, 1.0059)
			(0.9843, 1.0159)	(0.9930, 1.0071)	(0.9959, 1.0041)
		0.4	(0.9825, 1.0178)	(0.9921, 1.0079)	(0.9954, 1.0046)
			(0.9878, 1.0123)	(0.9945, 1.0055)	(0.9968, 1.0032)
		0.8	(0.9898, 1.0103)	(0.9954, 1.0046)	(0.9974, 1.0026)
			(0.9930, 1.0071)	(0.9968, 1.0032)	(0.9982, 1.0018)
0.20	0.20	-0.8	(0.5292, 1.8897)	(0.7588, 1.3178)	(0.8534, 1.1718)
			(0.6496, 1.5395)	(0.8268, 1.2095)	(0.8962, 1.1158)
		-0.4	(0.5693, 1.7565)	(0.7838, 1.2758)	(0.8695, 1.1501)
			(0.6831, 1.4640)	(0.8455, 1.1827)	(0.9079, 1.1015)
		0.0	(0.6201, 1.6126)	(0.8138, 1.2287)	(0.8885, 1.1255)
			(0.7242, 1.3808)	(0.8677, 1.1524)	(0.9216, 1.0851)
		0.4	(0.6897, 1.4499)	(0.8524, 1.1731)	(0.9125, 1.0959)
			(0.7785, 1.2845)	(0.8959, 1.1162)	(0.9387, 1.0653)
		0.8	(0.8063, 1.2403)	(0.9119, 1.0966)	(0.9485, 1.0543)
			(0.8652, 1.1558)	(0.9385, 1.0655)	(0.9641, 1.0372)
0.01	0.20	-0.8	(0.7460, 1.4960)	(0.8687, 1.1756)	(0.9199, 1.0946)
			(0.8100, 1.2992)	(0.9055, 1.1155)	(0.9433, 1.0637)
		-0.4	(0.7507, 1.4866)	(0.8712, 1.1723)	(0.9214, 1.0928)
			(0.8135, 1.2936)	(0.9073, 1.1133)	(0.9443, 1.0625)
		0.0	(0.7555, 1.4772)	(0.8737, 1.1689)	(0.9230, 1.0910)
			(0.8171, 1.2879)	(0.9091, 1.1111)	(0.9454, 1.0613)
		0.4	(0.7605, 1.4676)	(0.8762, 1.1655)	(0.9245, 1.0892)
			(0.8208, 1.2821)	(0.9109, 1.1089)	(0.9465, 1.0600)
		0.8	(0.7656, 1.4578)	(0.8788, 1.1621)	(0.9261, 1.0873)
			(0.8246, 1.2762)	(0.9128, 1.1066)	(0.9476, 1.0588)
0.20	0.01	-0.8	(0.6685, 1.3404)	(0.8507, 1.1511)	(0.9136, 1.0870)
			(0.7697, 1.2345)	(0.8965, 1.1044)	(0.9401, 1.0601)
		-0.4	(0.6727, 1.3320)	(0.8530, 1.1479)	(0.9150, 1.0853)
			(0.7730, 1.2292)	(0.8982, 1.1022)	(0.9412, 1.0590)
		0.0	(0.6770, 1.3235)	(0.8555, 1.1446)	(0.9166, 1.0835)
			(0.7765, 1.2238)	(0.9000, 1.1000)	(0.9423, 1.0578)
		0.4	(0.6814, 1.3150)	(0.8580, 1.1413)	(0.9181, 1.0817)
			(0.7800, 1.2183)	(0.9018, 1.0978)	(0.9434, 1.0565)
		0.8	(0.6859, 1.3062)	(0.8605, 1.1379)	(0.9197, 1.0798)
			(0.7836, 1.2127)	(0.9037, 1.0956)	(0.9445, 1.0553)

TABLE 3.1 : Valeurs de (K_L, K_U) pour la carte RRRZ_{2,3} (première ligne) et la carte RRRZ_{3,4} (deuxième ligne), pour $z_0 = 1$, $ARL_0 = 200$, $n \in \{1, 5, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$ et $\rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}$

FIGURE 3.1 : Valeurs de ARL_1 des cartes RRRZ_{2,3} (- \Box -), RRRZ_{3,4} (- \blacksquare -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$

FIGURE 3.2 : Valeurs de ARL_1 des cartes RRRZ_{2,3} (- \Box -), RRRZ_{3,4} (- \blacksquare -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \ \gamma_Y \in \{0.01, 0.2\}, \ \gamma_X \neq \gamma_Y, \ \rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}, \ \rho_0 = \rho_1, \ \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, \ n \in \{1, 15\}$ et $ARL_0 = 200$

positive ($\rho_0 > 0$). Par exemple, si (γ_X, γ_Y) = (0.2, 0.2), $\tau = 0.99$, n = 15 et $\rho_0 = -0.4$ nous avons $ARL_1 = 130.3$ et $SDRL_1 = 128.5$ ($ARL_1 = 123.6$ et $SDRL_1 = 120.9$) pour la carte $RRRZ_{2,3}^-$ ($RRRZ_{3,4}^-$), comparé à $ARL_1 = 105.1$ et $SDRL_1 = 103.3$ ($ARL_1 = 97.5$ and $SDRL_1 = 94.8$) si $\rho_0 = 0.4$.

- Lorsque (γ_X, γ_Y) = (0.01, 0.01) et que n augmente (disons n ≥ 5) les carte RRRZ_{2,3} et RRRZ_{3,4} sont très sensibles à un changement, i.e. nous avons ARL₁ ≃ 2 et SDRL₁ ≃ 0 (ARL₁ ≃ 3 et SDRL₁ ≃ 0), qui est la valeur la plus faible possible pour la carte RRRZ_{2,3} (RRRZ_{3,4}) lorsque τ < 0.99 ou τ > 1.01, voir la Figure 3.1 pour n = 15.
- La performance statistique des cartes RRRZ_{2,3} et RRRZ_{3,4} n'est pas identique pour une même valeur absolue de $\Delta_Z = 100 \times |\tau 1|$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.01)$, n = 1, $\rho_0 = 0.4$ et $\tau = 0.98(1.02)$, i.e. $\Delta_Z = 2\%$ nous avons $ARL_1 = 3.7$ et $SDRL_1 = 2.2$ ($ARL_1 = 3.8$ et $SDRL_1 = 2.3$) pour la carte RRRZ_{2,3} (RRRZ_{3,4}) et nous avons $ARL_1 = 4.2$ et $SDRL_1 = 1.8$ ($ARL_1 = 4.3$ et $SDRL_1 = 1.9$) pour la carte RRRZ_{3,4} (RRRZ_{3,4}), voir la Figure 3.1. De même, lorsque (γ_X, γ_Y) = (0.01, 0.2), n = 1, $\rho_0 = 0.4$ et $\tau = 0.98$ (1.02), nous obtenons $ARL_1 = 121.3$ et $SDRL_1 = 119.5$ ($ARL_1 = 154.5$ et $SDRL_1 = 152.7$) pour la carte RRRZ_{2,3} (RRRZ_{3,4}) et $ARL_1 = 119.2$ et $SDRL_1 = 116.5$ ($ARL_1 = 143.5$ et $SDRL_1 = 140.8$) pour la carte RRRZ_{3,4} (RRRZ_{3,4}), voir la Figure 3.2.
- Comme indiqué ci-dessus, pour la même valeur de Δ_Z et γ_X = γ_Y la performance statistique est supérieure lorsque τ < 1. Inversement, lorsque γ_X ≠ γ_Y la tendance de sensibilité de la carte dépend de la plus petite valeur des coefficients de variation γ_X et γ_Y. Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.2), n = 5, ρ₀ = 0.4 et τ = 0.98 (1.02), nous avons ARL₁ = 78.8 et SDRL₁ = 77.0 (ARL₁ = 98.7 et SDRL₁ = 96.9) pour la carte RRRZ_{2,3}⁻ (RRRZ_{3,4}⁺) et ARL₁ = 74.3 et SDRL₁ = 71.6 (ARL₁ = 87.8 et SDRL₁ = 85.1) pour la carte RRRZ_{3,4}⁻ (RRRZ_{3,4}⁺). Inversement, lorsque (γ_X, γ_Y) = (0.2, 0.01), nous obtenons ARL₁ = 97.3 et SDRL₁ = 95.5 (ARL₁ = 80.2 and SDRL₁ = 78.4) pour la carte RRRZ_{2,3}⁻ (RRRZ_{3,4}⁺).
- Une comparaison avec les valeurs de ARL_1 pour la carte Shewhart-RZ obtenu dans Celano and Castagliola (2016a) montre que, lorsque $\gamma_X = \gamma_Y = 0.1$, n = 1 et $\tau \in (0.95, 1)$ le meilleur choix est soit la carte $RRRZ_{2,3}^-$ ou soit la carte $RRRZ_{3,4}^-$, lorsque $\gamma_X = \gamma_Y = 0.1$, n = 1 et $\tau \in (1, 1.02)$ le meilleur choix est soit la carte $RRRZ_{2,3}^+$ ou soit la carte $RRRZ_{3,4}^+$ et lorsque $\tau \leq 0.95$ ou $1.02 \leq \tau$ le meilleur choix est la carte Shewhart-RZ. Lorsque $\gamma_X = \gamma_Y = 0.1$, n = 15, $\rho_0 < 0$ et $\tau \in (0.98, 1)$ le meilleur choix est soit la carte $RRRZ_{2,3}^-$ ou soit la carte $RRRZ_{3,4}^+$, lorsque $\gamma_X = \gamma_Y = 0.1$, n = 15, $\rho_0 < 0$ et $\tau \in (0.98, 1)$ le meilleur choix est soit la carte $RRRZ_{2,3}^-$ ou soit la carte $RRRZ_{3,4}^+$, lorsque $\gamma_X = \gamma_Y = 0.1$, n = 15, $\rho_0 < 0$ et $\tau \in (1, 1.02)$ le meilleur choix est soit la carte $RRRZ_{3,4}^+$ pous out la carte $RRRZ_{3,4}^+$ et lorsque $\tau \leq 0.98$ ou $1.02 \leq \tau$ le meilleur choix est soit la carte $RRRZ_{3,4}^+$ ou soit la carte $RRRZ_{3,4}^+$ et lorsque $\tau \leq 0.98$ ou $1.02 \leq \tau$ le meilleur choix est la carte Shewhart-RZ. Lorsque $\gamma_X = \gamma_Y = 0.2$ ou $\gamma_X \neq \gamma_Y = 0.1$, n = 15, $\rho_0 > 0$, le meilleur choix est la carte Shewhart-RZ. Lorsque $\gamma_X = \gamma_Y = 0.2$ ou $\gamma_X \neq \gamma_Y$ le meilleur choix est soit la carte $RRRZ_{3,4}^+$ pour $\tau \in \{0.90, 0.95, 0.98, 0.99\}$ et le meilleur choix est soit la carte $RRRZ_{3,4}^+$ pour $\tau \in \{1.01, 1.02, 1.05, 1.10\}$. Comme prévu, les cartes de contrôle pour surveiller le ratio avec règles supplémentaires sont plus sensibles que le cartes de contrôle Shewhart-RZ Shewhart pour des dérives faibles du ratio nominal z_0 .

L'apparition d'une cause assignable peut aussi décaler le coefficient de corrélation ρ entre les variables aléatoires X et Y de la valeur ρ_0 à ρ_1 . Les figures 3.3 et 3.4 présentent les valeurs de ARL_1 pour les cartes de contrôle RRRZ_{2,3}, RRRZ_{3,4} et Shewhart-RZ pour les valeurs $\rho_0 = \pm 0.4$ et les changements de ρ_0 à $\rho_1 = 0.5 \times \rho_0$ et $\rho_1 = 2 \times \rho_0$, i.e. $(\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}$. Il convient de noter que, lorsque $\tau = 1$, soit lorsque la cause assignable ne fait que déplacer le coefficient de corrélation, mais pas le ratio nominal, on a $ARL_0 \neq 200$. Les résultats obtenus montrent que pour toute taille de changement :

FIGURE 3.3 : Valeurs de ARL_1 des cartes $RRRZ_{2,3}$ (- \Box -), $RRRZ_{3,4}$ (- \blacksquare -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$

FIGURE 3.4 : Valeurs de ARL_1 des cartes $RRRZ_{2,3}$ (- \Box -), $RRRZ_{3,4}$ (- \blacksquare -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$

- la réduction d'une corrélation négative détériore la sensibilité de la carte de contrôle. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2), n = 5, \rho_1 = 0.5 \times \rho_0 = -0.2$ et $\tau = 0.98$, nous avons $ARL_1 = 188.4$ et $SDRL_1 = 186.6$ ($ARL_1 = 158.0$ et $SDRL_1 = 155.2$) pour la carte $RRRZ_{2,3}^-$ ($RRRZ_{3,4}^-$). Si $\rho_1 = \rho_0 = -0.4$, nous avons $ARL_1 = 122.8$ and $SDRL_1 = 121$ ($ARL_1 = 115.3$ and $SDRL_1 = 112.5$). L'inverse se produit si le niveau de corrélation négative augmente. Par exemple, pour $\rho_1 = 2 \times \rho_0 = -0.8$ on a $ARL_1 = 68.5$ et $SDRL_1 = 66.7$ ($ARL_1 = 74.8$ et $SDRL_1 = 72.1$) pour la carte $RRRZ_{2,3}^-$ ($RRRZ_{3,4}^-$).
- la réduction d'une corrélation positive améliore la sensibilité de la carte de contrôle. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.01)$, n = 5, $\rho_1 = 0.5 \times \rho_0 = 0.2$ et $\tau = 1.02$, nous avons $ARL_1 = 76.2$ et $SDRL_1 = 74.4$ ($ARL_1 = 73.0$ et $SDRL_1 = 70.3$) pour la carte $RRRZ_{2,3}^+$ ($RRRZ_{3,4}^+$). Si $\rho_1 = \rho_0 = 0.4$, nous avons $ARL_1 = 80.2$ et $SDRL_1 = 78.4$ ($ARL_1 = 75.6$ et $SDRL_1 = 72.9$). L'inverse se produit si le niveau de corrélation positif augmente. Par exemple, pour $\rho_1 = 2 \times \rho_0 = 0.8$ nous avons $ARL_1 = 89.5$ et $SDRL_1 = 87.7$ ($ARL_1 = 81.3$ et $SDRL_1 = 78.6$) pour la carte $RRRZ_{2,3}^+$ ($RRRZ_{3,4}^+$).

En pratique, l'amplitude de la dérive τ est inconnue. Celano et al. (2013) ont montré qu'une carte de contrôle a une mauvaise performance statistique si les paramètres utilisés pour sa conception sont définis pour une dérive fixée et que l'amplitude réelle de la dérive est en fait différente. Dans la littérature, les chercheurs ont proposé d'utiliser la distribution uniforme pour tenir compte de la valeur inconnue de la dérive, voir, par exemple, Ryu et al. (2010) pour la conception de cartes CUSUM pour surveiller la moyenne d'échantillon et Celano et al. (2013), qui ont étudié des cartes de contrôle pour des séries courtes et des amplitudes de dérive inconnues. De manière similaire à Celano and Castagliola (2016a), quand un praticien de la qualité a un intérêt pour détecter un intervalle de dérives $\Omega = [a, b]$, mais pas de préférence pour une dérive particulière alors une distribution uniforme sur $\Omega = [a, b]$ peut être utilisée et l'indicateur qui doit alors être calculé est l'*EARL* (Expected Average Run Length) qui est défini de la manière suivante :

$$EARL = \int_{\Omega} ARL \times f_{\tau}(\tau) \mathrm{d}\tau, \qquad (3.10)$$

où ARL est défini comme dans (3.5) et $f_{\tau}(\tau) = \frac{1}{b-a}$ pour $\tau \in \Omega$. Les tables 3.2 et 3.3 présentent les valeurs du EARL pour $\Omega = [0.9, 1)$ (cas d'une diminution, notée (D) dans les tables 3.2 et 3.3) and $\Omega = (1, 1.1]$ (cas d'une augmentation, notée (I) dans les tables 3.2 et 3.3) pour respectivement les cas $\rho_0 = \rho_1$ et $\rho_0 \neq \rho_1$. Les conclusions concernant les valeurs d'EARL dans les tables 3.2 et 3.3 sont similaires à celles obtenues dans le cas d'une dérive fixe. En outre, les valeurs d'EARL présentées dans les tables 3.2 et 3.3 révèlent aussi que :

- lorsque γ_X = γ_Y = γ les cartes RRRZ_{2,3} et RRRZ_{3,4} ont une performance approximativement symétrique pour les valeurs petites de γ_X et γ_Y. Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.01), n = 5, ρ₀ = ρ₁ = -0.4, on a EARL = 2.5 (3.4) dans les cas d'une diminution et d'une augmentation de la valeur de la dérive, voir la Table 3.2. Pour les plus grandes valeurs de γ_X et γ_Y, la sensibilité statistique est légèrement meilleure pour Ω = [0.9, 1) que pour Ω = (1, 1.1]. Par exemple, lorsque (γ_X, γ_Y) = (0.2, 0.2), n = 5, ρ₀ = ρ₁ = -0.4, nous obtenons EARL = 69.0 (63.0) dans le cas d'une diminution et EARL = 71.9 (65.7) dans le cas d'une augmentation. Il est intéressant de noter que cette constatation est indépendante d'un changement du coefficient de corrélation, c'est-à-dire pour ρ₀ ≠ ρ₁, voir la table 3.3.
- lorsque γ_X ≠ γ_Y la sensibilité statistique dépend des valeurs de γ_X et γ_Y. Si γ_X < γ_Y, alors la sensibilité statistique est meilleur pour Ω = [0.9, 1) que pour Ω = (1, 1.1]. Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.2), n = 5, ρ₀ = ρ₁ = -0.4, nous obtenons EARL = 39.1 (37.1) dans le cas d'une diminution et EARL = 51.8 (45.2) dans le cas d'une augmentation, voir la table 3.2. La situation inverse a lieu pour γ_X > γ_Y. Par exemple, lorsque (γ_X, γ_Y) = (0.2, 0.01), n = 5,

 $\rho_0 = \rho_1 = -0.4$, nous avons EARL = 49.5 (43.2) dans le cas d'une diminution et EARL = 40.8 (38.7) dans le cas d'une augmentation, voir la table 3.2. Ce résultat est également indépendant d'un changement du coefficient de corrélation.

Une comparaison entre les valeurs d'*EARL* des cartes RRRZ avec les valeurs d'*EARL* obtenu dans Celano and Castagliola (2016a) (voir les Tableaux VI–VII) pour la carte Shewhart-RZ est réalisé dans les tables 3.4 et 3.5. L'indicateur suivant est adopté pour la comparaison

$$\Delta_E = 100 \times \frac{EARL_{\text{Shewhart}-RZ} - EARL_{\text{RRRZ}}}{EARL_{\text{Shewhart}-RZ}},$$
(3.11)

où $EARL_{\text{Shewhart}-RZ}$ ($EARL_{\text{RRRZ}}$) est la valeur d'EARL pour la carte Shewhart-RZ (RRRZ). Si $\Delta_E > 0$, alors la carte RRRZ est meilleur que la carte Shewhart-RZ et si $\Delta_E < 0$, alors c'est l'inverse. Il est important de noter que Δ_E (pour le cas de dérives aléatoires) ne doit pas être confondu avec Δ_Z (déjà introduit dans le cas de dérive déterministe). Les résultats (arrondis à l'entier le plus proche) présentés dans les tables 3.4 et 3.5 montrent que :

- lorsque $\gamma_X = \gamma_Y$, la carte Shewhart-RZ est meilleur que la carte RRRZ pour les petites valeurs de γ_X et γ_Y lorsque $n \ge 5$. Par exemple, lorsque $\rho_0 = \rho_1 = 0.4$, n = 15, $\gamma_X = \gamma_Y = 0.01$, dans les cas d'une augmentation et diminution, nous obtenons $\Delta_E = -100$ (-200) pour la carte RRRZ_{2,3} (RRRZ_{3,4}), voir la table 3.4. Pour des mesures individuelles, n = 1, la carte RRRZ est meilleur que la carte Shewhart-RZ, voir les tables 3.4 et 3.5. Pour des valeurs plus grandes de γ_X et γ_Y , la carte RRRZ est meilleur que la carte Shewhart-RZ. Par exemple, lorsque $\rho_0 = \rho_1 = 0.8$, n = 15, $\gamma_X = \gamma_Y = 0.2$ dans les cas d'une augmentation et diminution, nous obtenons $\Delta_E = 53$ (56) pour la carte RRRZ_{2,3} (RRRZ_{3,4}), voir la table 3.4. Ces résultats restent toujours valables en présence d'un changement du coefficient de corrélation.
- lorsque γ_X ≠ γ_Y, la carte RRRZ est *toujours* meilleur que la carte Shewhart-RZ. Par exemple, lorsque ρ₀ = ρ₁ = 0.8 n = 15, γ_X = 0.01, γ_Y = 0.2, on a Δ_E = 47 (50) dans le cas d'une augmentation et Δ_E = 56 (61) dans le cas d'une diminution, voir la table 3.4. Là encore, ces résultats restent toujours valables en présence d'un changement du coefficient de corrélation.

3.5 Un exemple illustratif

Dans cette section, nous discutons de la mise en œuvre d'une carte de contrôle RRRZ basée sur le même exemple que celui présenté dans Celano and Castagliola (2016a). Dans cet exemple, on s'intéresse à une entreprise qui produit du muesli dont deux des constituants sont des "graines de courge" (Pumpkin) et des "graines de lin" (Flaxseeds). Pour répondre aux exigences de valeur nutritive, ils est nécessaire que le poids en "graines de courge" soit identique à celui des "graines de lin", soit 10% du poids total. Leurs proportions nominales au poids total du contenu de la boîte sont donc tous deux fixées à $p_p = p_f = 0.1$. Selon les besoins du marché et les pays, le poids de chaque boite de muesli est différente. Quelque soit le poids de la boite de muesli, l'entreprise souhaite surveiller à intervalles réguliers $i = 1, 2, \ldots$ les éventuelles dérives du ratio sous-contrôle $z_0 = \frac{\mu_{p,i}}{\mu_{f,i}} = 1$, où $\mu_{p,i}$ et $\mu_{f,i}$ sont respectivement les poids moyens pour "graines de courge" et "graines de lin". On suppose que, pendant le processus de mélange, le ratio sous-contrôle peut se trouver modifié du à des problèmes liés à la machine de dosage. Toutes les 30 minutes un prélèvement de n = 5 boites est réalisé et les poids moyens des deux types de graines sont obtenus $\overline{W}_{p,i} = \frac{1}{n} \sum_{j=1}^{n} W_{p,i,j}$ et $\overline{W}_{f,i} = \frac{1}{n} \sum_{j=1}^{n} W_{f,i,j}$. A partir de ces valeurs, le ratio $\hat{Z}_i = \frac{\overline{W}_{p,i}}{W_{f,i}}$ est calculé et tracé sur la carte de la contrôle RRRZ. Dans Celano and Castagliola (2016a), les valeurs $\gamma_p = 0.02$, $\gamma_f = 0.01$ et $\rho_0 = 0.8$ ont été fixées. Pour définir la carte RRRZ, on suppose qu'une augmentation de seulement 1% est suffisante pour déclancher une situation hors contrôle. On fixe donc la valeur $\tau = 1.01$. Pour la carte RRRZ⁺_{2,3} (RRRZ⁺_{3,4}),

	$(\gamma_X =$	$= 0.01, \gamma_Y = 0$	0.01)	(γ_X)	$= 0.2, \gamma_Y = 0.2$.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = \rho_1$	= -0.8		
(D)	(6.5, 6.7)	(2.7, 3.5)	(2.1, 3.1)	(126.0, 116.9)	(75.9, 69.6)	(47.0, 42.9)
(I)	(6.7, 6.8)	(2.7, 3.6)	(2.1, 3.1)	(129.3, 120.3)	(79.0, 72.5)	(49.2, 44.8)
				0.4		
(\mathbf{D})	$(\mathbf{F} \mathbf{G} \mathbf{F} \mathbf{O})$	(2524)	$\rho_0 \equiv \rho_1$ (2.1.2.0)	= -0.4	(60, 0, 62, 0)	$(41 \ 6 \ 27 \ 0)$
(D)	(5.0, 5.9)	(2.3, 3.4)	(2.1, 3.0)	(119.8, 110.2) (102.9, 112.7)	(09.0, 03.0)	(41.0, 37.9)
(1)	(5.7, 0.0)	(2.5, 3.4)	(2.1, 3.0)	(123.2, 113.7)	(71.9, 65.7)	(43.5, 39.5)
			$\rho_0 = \rho$	$p_1 = 0$		
(D)	(4.5, 5.0)	(2.3, 3.2)	(2.0, 3.0)	(111.0, 100.9)	(60.1, 54.6)	(35.0, 31.9)
(I)	(4.6, 5.0)	(2.3, 3.2)	(2.0, 3.0)	(114.5, 104.4)	(62.8, 57.0)	(36.6, 33.2)
~ /					())	
			$\rho_0 = \rho_1$	= 0.4		
(D)	(3.4, 4.1)	(2.1, 3.1)	(2.0, 3.0)	(96.7, 86.4)	(47.7, 43.2)	(26.5, 24.1)
(1)	(3.4, 4.1)	(2.1, 3.1)	(2.0, 3.0)	(100.3, 89.7)	(49.9, 45.1)	(27.6, 25.1)
			$\rho_0 = \rho_1$	= 0.8		
(D)	(2.3, 3.2)	(2.0, 3.0)	(2.0, 3.0)	(65.6, 56.7)	(26.9, 24.3)	(13.6, 12.7)
(I)	(2.3, 3.2)	(2.0, 3.0)	(2.0, 3.0)	(68.5, 59.2)	(28.0, 25.2)	(14.0, 13.1)
	(-) -)	(-))		()	() -)	(-) -)
	/	0.01	2 2)	/		24)
	(γ_X)	$= 0.01, \gamma_Y = 0.01$	0.2)	$(\gamma_X =$	$= 0.2, \gamma_Y = 0.2$	01)
	$n = 1^{\left(\gamma_X\right)}$	$= 0.01, \gamma_Y = 0.$	(0.2) n = 15	n = 1	$= 0.2, \gamma_Y = 0.$ $n = 5$	n = 15
	n = 1 (72 0 51 1)	$= 0.01, \gamma_Y = 0$ $n = 5$	$ \begin{array}{r} 0.2) \\ \underline{n = 15} \\ \rho_0 = \rho_1 \end{array} $ (22.1.217)	$n = 1$ $(\gamma_X = 1)$ $= -0.8$ $(100.5, 00, c)$	$= 0.2, \gamma_Y = 0.1$ $n = 5$	n = 15
(D)	$(\gamma_X + n = 1)$ (72.8, 71.1)	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} 0.2) \\ n = 15 \\ \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.0, 24.7) \end{array} $	$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ \hline = -0.8 \\ (106.5, 92.6) \\ (75.6, 75.6) \\$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 22.7)$	$ \begin{array}{c} 01) \\ n = 15 \\ (26.7, 23.8) \\ (24.9, 22.5) \\ \end{array} $
(D) (I)	(γ_X) n = 1 (72.8, 71.1) (110.0, 96.1)	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} 0.2) \\ n = 15 \\ \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \end{array} $	$ \begin{array}{r} (\gamma_X = 1 \\ \hline n = 1 \\ \hline = -0.8 \\ (106.5, 92.6) \\ (75.8, 74.0) \end{array} $	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$	$ \begin{array}{c} 01) \\ n = 15 \\ (26.7, 23.8) \\ (24.0, 22.5) \end{array} $
(D) (I)	$(\gamma_X + n = 1)$ (72.8, 71.1) (110.0, 96.1)	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} 0.2) \\ \underline{n = 15} \\ \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \rho_0 = \rho_1 \end{array} $	$ \frac{n = 1}{\begin{array}{c} (\gamma_X = \\ n = 1 \end{array})} \\ = -0.8 \\ (106.5, 92.6) \\ (75.8, 74.0) \\ = -0.4 \end{array} $	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$	$ \begin{array}{c} 01) \\ n = 15 \\ (26.7, 23.8) \\ (24.0, 22.5) \end{array} $
(D) (I) (D)	$(\gamma_X + n = 1)$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ $	$ \frac{(\gamma_X = 1)}{(\gamma_X = -0.8)} $ $ \frac{(106.5, 92.6)}{(75.8, 74.0)} $ $ = -0.4 $ $(105.7, 91.7) $	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$	$ \begin{array}{c} \hline 01) \\ n = 15 \\ \hline (26.7, 23.8) \\ (24.0, 22.5) \\ \hline (26.2, 23.3) \end{array} $
(D) (I) (D) (I)	$(\gamma_X + n = 1)$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \end{array} $	$ \frac{(\gamma_X = n = 1)}{(106.5, 92.6)} = -0.4 \\ (105.7, 91.7) \\ (74.4, 72.8) $	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$	$ \begin{array}{r} \hline 01) \\ n = 15 \\ (26.7, 23.8) \\ (24.0, 22.5) \\ (26.2, 23.3) \\ (23.4, 22.0) \\ \end{array} $
(D) (I) (D) (I)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \end{array} $	$(\gamma_X = \frac{n = 1}{(\gamma_{1,1} = -0.8)})$ $(106.5, 92.6)$ $(75.8, 74.0)$ $= -0.4$ $(105.7, 91.7)$ $(74.4, 72.8)$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$	$ \begin{array}{c} 01) \\ n = 15 \\ (26.7, 23.8) \\ (24.0, 22.5) \\ (26.2, 23.3) \\ (23.4, 22.0) \\ \end{array} $
(D) (I) (D) (I)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 60.5)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ \underline{n = 15} \\ \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \\ \rho_0 = \rho \end{array} $	$\begin{array}{r} (\gamma_X = \\ n = 1 \\ \hline \\ = -0.8 \\ (106.5, 92.6) \\ (75.8, 74.0) \\ = -0.4 \\ (105.7, 91.7) \\ (74.4, 72.8) \\ p_1 = 0 \\ (104.0, 90.0) \end{array}$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(40.7, 40.5)$	$ \begin{array}{c} 01) \\ n = 15 \\ (26.7, 23.8) \\ (24.0, 22.5) \\ (26.2, 23.3) \\ (23.4, 22.0) \\ (25.7, 22.0) \\ \end{array} $
(D) (I) (D) (I) (D)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 68.7)$ $(109.5, 0.12)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \\ \rho_0 = \rho \\ (22.0, 20.8) \\ \hline (22.0, 20.8) \\ \hline \end{array} $	$\begin{array}{r} (\gamma_{X} = \\ n = 1 \\ \hline \\ = -0.8 \\ (106.5, 92.6) \\ (75.8, 74.0) \\ = -0.4 \\ (105.7, 91.7) \\ (74.4, 72.8) \\ \hline \\ n = 0 \\ (104.9, 90.8) \\ \hline \\ (104.9, 90.8) \\ \hline \end{array}$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(48.7, 42.5)$ $(22.7, 42.5)$ $(22.7, 22.7)$	$ \begin{array}{c} \hline 01) \\ n = 15 \\ \hline (26.7, 23.8) \\ (24.0, 22.5) \\ \hline (26.2, 23.3) \\ (23.4, 22.0) \\ \hline (25.7, 22.8) \\ \hline $
(D) (I) (D) (I) (D) (I)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 68.7)$ $(108.5, 94.3)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ $	$(\gamma_X = \frac{n = 1}{(\gamma_{1,1} = -0.8)})$ $= -0.4$ $(105.7, 91.7)$ $(74.4, 72.8)$ $(73.0, 71.6)$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(48.7, 42.5)$ $(39.9, 37.9)$	$ \begin{array}{c} \hline 01) \\ n = 15 \\ \hline (26.7, 23.8) \\ (24.0, 22.5) \\ \hline (26.2, 23.3) \\ (23.4, 22.0) \\ \hline (25.7, 22.8) \\ (22.8, 21.5) \\ \end{array} $
(D) (I) (D) (I) (D) (I)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 68.7)$ $(108.5, 94.3)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \\ \rho_0 = \rho \\ (22.0, 20.8) \\ (26.7, 23.7) \\ \rho_0 = \rho_1 \end{array} $	$ \frac{n = 1}{(\gamma_X = n = 1)} $ $= -0.8$ $(106.5, 92.6)$ $(75.8, 74.0)$ $= -0.4$ $(105.7, 91.7)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(104.9, 90.8)$ $(73.0, 71.6)$ $= 0.4$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(48.7, 42.5)$ $(39.9, 37.9)$	n = 15 $(26.7, 23.8)$ $(24.0, 22.5)$ $(26.2, 23.3)$ $(23.4, 22.0)$ $(25.7, 22.8)$ $(22.8, 21.5)$
(D) (I) (D) (I) (D) (I) (D)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 68.7)$ $(108.5, 94.3)$ $(68.7, 67.5)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \\ \rho_0 = \rho \\ (22.0, 20.8) \\ (26.7, 23.7) \\ \rho_0 = \rho_1 \\ (21.4, 20.3) \\ \end{array} $	$(\gamma_X = \frac{n = 1}{(\gamma_{X, 0} = 1)^{-0.8}})$ $= -0.8$ $(106.5, 92.6)$ $(75.8, 74.0)$ $= -0.4$ $(105.7, 91.7)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $= 0$ $(104.9, 90.8)$ $(73.0, 71.6)$ $= 0.4$ $(104.0, 89.9)$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(48.7, 42.5)$ $(39.9, 37.9)$ $(47.9, 41.7)$	$ \begin{array}{c} \hline 01) \\ n = 15 \\ \hline (26.7, 23.8) \\ (24.0, 22.5) \\ \hline (26.2, 23.3) \\ (23.4, 22.0) \\ \hline (25.7, 22.8) \\ (22.8, 21.5) \\ \hline (25.1, 22.3) \end{array} $
(D) (I) (D) (I) (D) (I) (D) (I)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 68.7)$ $(108.5, 94.3)$ $(68.7, 67.5)$ $(107.6, 93.3)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \hline \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \\ \hline \rho_0 = \rho \\ (22.0, 20.8) \\ (26.7, 23.7) \\ \hline \rho_0 = \rho_1 \\ (21.4, 20.3) \\ (26.1, 23.2) \\ \end{array} $	$(\gamma_X = \frac{n = 1}{(106.5, 92.6)}$ $= -0.4$ $(105.7, 91.7)$ $(74.4, 72.8)$ $(73.0, 71.6)$ $= 0.4$ $(104.0, 89.9)$ $(71.6, 70.2)$	$= 0.2, \gamma_Y = 0.1$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(48.7, 42.5)$ $(39.9, 37.9)$ $(47.9, 41.7)$ $(39.0, 37.1)$	n = 15 $(26.7, 23.8)$ $(24.0, 22.5)$ $(26.2, 23.3)$ $(23.4, 22.0)$ $(25.7, 22.8)$ $(22.8, 21.5)$ $(25.1, 22.3)$ $(22.3, 21.0)$
(D) (I) (D) (I) (D) (I) (D) (I)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 68.7)$ $(108.5, 94.3)$ $(68.7, 67.5)$ $(107.6, 93.3)$	$= 0.01, \gamma_Y = 0.$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \\ \rho_0 = \rho \\ (22.0, 20.8) \\ (26.7, 23.7) \\ \rho_0 = \rho_1 \\ (21.4, 20.3) \\ (26.1, 23.2) \\ \end{array} $	$(\gamma_X = \frac{n = 1}{(\gamma_{X, 0} = 1)^{-0.8}})$ $= -0.8$ $(106.5, 92.6)$ $(75.8, 74.0)$ $= -0.4$ $(105.7, 91.7)$ $(74.4, 72.8)$ $(71.6, 70.2)$ $(74.4, 70.2)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(71.6, 70.2)$ $(74.4, 70.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.4, 72.8)$ $(74.6, 70.2)$ $(74.6, 70.2)$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(48.7, 42.5)$ $(39.9, 37.9)$ $(47.9, 41.7)$ $(39.0, 37.1)$	n = 15 $(26.7, 23.8)$ $(24.0, 22.5)$ $(26.2, 23.3)$ $(23.4, 22.0)$ $(25.7, 22.8)$ $(22.8, 21.5)$ $(25.1, 22.3)$ $(22.3, 21.0)$
(D) (I) (D) (I) (D) (I) (D) (I)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 68.7)$ $(108.5, 94.3)$ $(68.7, 67.5)$ $(107.6, 93.3)$	$= 0.01, \gamma_{Y} = \frac{1}{n = 5}$ $(39.9, 37.9)$ $(52.6, 45.9)$ $(39.1, 37.1)$ $(51.8, 45.2)$ $(38.3, 36.4)$ $(50.9, 44.4)$ $(37.4, 35.6)$ $(50.1, 43.6)$	$ \begin{array}{c} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \hline \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \\ \hline \rho_0 = \rho \\ (22.0, 20.8) \\ (26.7, 23.7) \\ \hline \rho_0 = \rho_1 \\ (21.4, 20.3) \\ (26.1, 23.2) \\ \hline \rho_0 = \rho_1 \\ \hline (22.0, 20.8) \\ \hline \rho_0 = \rho_1 \\ \hline (21.4, 20.3) \\ \hline \rho_0 = \rho_1 \\ \hline (22.0, 20.8) \\ \hline \rho_0 = \rho_1 \\ \hline (22.0, 20.8) \\ \hline \rho_0 = \rho_1 \\ \hline (22.0, 20.8) \\ \hline \rho_0 = \rho_1 \\ \hline (22.0, 20.8) \\ \hline \rho_0 = \rho_1 \\ \hline (22.0, 20.8) \\ \hline \rho_0 = \rho_1 \\ \hline (22.0, 20.8) \\ \hline \rho_0 = \rho_1 \\ \hline (22.0, 20.8) \\ \hline \rho_0 = \rho_1 \\ \hline \rho_0$	$(\gamma_{X} = \frac{n = 1}{(\gamma_{X} = -0.8)})$ $= -0.8 (106.5, 92.6) (75.8, 74.0)$ $= -0.4 (105.7, 91.7) (74.4, 72.8)$ $(74.4, 72.8) (74.4, 72.8) (73.0, 71.6)$ $= 0.4 (104.0, 89.9) (71.6, 70.2)$ $= 0.8 (102.2, 0.02, 0)$	$= 0.2, \gamma_Y = 0.1$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(48.7, 42.5)$ $(39.9, 37.9)$ $(47.9, 41.7)$ $(39.0, 37.1)$	n = 15 $(26.7, 23.8)$ $(24.0, 22.5)$ $(26.2, 23.3)$ $(23.4, 22.0)$ $(25.7, 22.8)$ $(22.8, 21.5)$ $(25.1, 22.3)$ $(22.3, 21.0)$
(D) (I) (D) (I) (D) (I) (D) (I) (D) (T)	(γ_X) $n = 1$ $(72.8, 71.1)$ $(110.0, 96.1)$ $(71.5, 69.9)$ $(109.3, 95.2)$ $(70.1, 68.7)$ $(108.5, 94.3)$ $(68.7, 67.5)$ $(107.6, 93.3)$ $(67.2, 66.1)$ $(109.6, 93.3)$	$= 0.01, \gamma_{Y} = 1$ $n = 5$ $(39.9, 37.9)$ $(52.6, 45.9)$ $(39.1, 37.1)$ $(51.8, 45.2)$ $(38.3, 36.4)$ $(50.9, 44.4)$ $(37.4, 35.6)$ $(50.1, 43.6)$ $(36.5, 34.7)$ $(40.5, 34.7)$	$ \begin{array}{c} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 \\ (23.1, 21.7) \\ (27.9, 24.7) \\ \hline \rho_0 = \rho_1 \\ (22.5, 21.2) \\ (27.3, 24.2) \\ \hline \rho_0 = \rho \\ (22.0, 20.8) \\ (26.7, 23.7) \\ \hline \rho_0 = \rho_1 \\ (21.4, 20.3) \\ (26.1, 23.2) \\ \hline \rho_0 = \rho_1 \\ (20.8, 19.7) \\ \hline \rho_0 = \rho_1 \\ $	$(\gamma_{X} = \frac{n = 1}{(\gamma_{X} = -0.8)})$ $= -0.8 (106.5, 92.6) (75.8, 74.0)$ $= -0.4 (105.7, 91.7) (74.4, 72.8)$ $(74.4, 72.8)$ $(73.0, 71.6)$ $= 0.4 (104.0, 89.9) (71.6, 70.2)$ $= 0.8 (103.2, 88.9) (70.4, 90.8) (70.4, 90.8)$	$= 0.2, \gamma_Y = 0.4$ $n = 5$ $(50.3, 44.0)$ $(41.7, 39.5)$ $(49.5, 43.2)$ $(40.8, 38.7)$ $(48.7, 42.5)$ $(39.9, 37.9)$ $(47.9, 41.7)$ $(39.0, 37.1)$ $(47.0, 40.9)$ $(20.4, 20.2)$	$\begin{array}{c} \hline 01) \\ n = 15 \\ \hline (26.7, 23.8) \\ (24.0, 22.5) \\ \hline (26.2, 23.3) \\ (23.4, 22.0) \\ \hline (25.7, 22.8) \\ (22.8, 21.5) \\ \hline (25.1, 22.3) \\ (22.3, 21.0) \\ \hline (24.5, 21.8) \\ (21.7, 22.8) \\ \hline (22.8, 21.8) \\ \hline (21.7, 22.8) \\ \hline (22.8, 21.8) \\ \hline (21.7, 22.8) \\ \hline (21.7, 22.8) \\ \hline (22.8, 21.8) \\ \hline (22.8, $

TABLE 3.2 : Valeurs de EARL pour les cartes $RRRZ_{2,3}$ (gauche) et $RRRZ_{3,4}$ (droite) pour $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}$, $\rho_0 = \rho_1$, $n \in \{1, 5, 15\}$, $ARL_0 = 200$, $\Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

	$(\gamma_X =$	$= 0.01, \gamma_Y = 0$	0.01)	$(\gamma_X = 0.2, \gamma_Y = 0.2)$			
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15	
			$\rho_0 =$	$-0.4, \rho_1 = -0.2$			
(D)	(6.3, 6.1)	(2.5, 3.3)	(2.1, 3.0)	(177.9, 149.7)	(100.2, 82.0)	(58.2, 47.4)	
(I)	(6.4, 6.2)	(2.5, 3.4)	(2.1, 3.0)	(183.5, 154.8)	(104.7, 85.7)	(60.8, 49.5)	
			o. —	$-0.1 a_{\rm c} = -0.8$			
(D)	(1856)	(2534)	$p_0 = (2 \ 1 \ 3 \ 1)$	(69.0, 72.3)	$(A1 \ 9 \ AA \ 3)$	(26, 0, 28, 3)	
(D) (I)	(4.0, 5.0)	(2.5, 3.4) (2.5, 3.4)	(2.1, 0.1) (2.1, 3.1)	(05.0, 72.0) (70, 7, 74, 2)	(41.5, 44.5) (43.5, 46.1)	(20.5, 20.5) (28.1, 20.5)	
(1)	(4.5, 5.0)	(2.0, 0.4)	(2.1, 0.1)	(10.1, 14.2)	(40.0, 40.1)	(20.1, 25.5)	
			$ ho_0$ =	$= 0.4, \rho_1 = 0.2$			
(D)	(3.2, 4.1)	(2.1, 3.1)	(2.0, 3.0)	(53.8, 55.9)	(28.8, 30.6)	(17.3, 18.4)	
(I)	(3.2, 4.1)	(2.1, 3.1)	(2.0, 3.0)	(55.5, 57.8)	(30.0, 31.9)	(18.0, 19.1)	
			00 =	$= 0.4 \rho_1 = 0.8$			
(D)	(6944)	(2130)	(20.30)	$(4572 \ 0 \ 2019 \ 3)$	(3412.0, 881.8)	$(1473 \ 9 \ 337 \ 1)$	
(D) (I)	(7245)	(2.1, 3.0) (2.1, 3.0)	(2.0, 3.0) (2.0, 3.0)	$(4803 \ 6 \ 2118 \ 9)$	$(3539\ 0\ 913\ 5)$	(1170.9, 307.1) (1520, 9, 347, 9)	
(1)	(1.2, 1.0)	(2.1, 0.0)	(2.0, 0.0)	(1000.0,2110.0)	(0000.0,010.0)	(1020.0,011.0)	
	$(\gamma_X$	$= 0.01, \gamma_Y = 0$	0.2)	(γ)	$\chi = 0.2, \gamma_Y = 0.0$	1)	
	$n = 1^{\left(\gamma_X\right)}$	$= 0.01, \gamma_Y = 0$ $n = 5$	0.2) n = 15	n = 1 (75)	$x = 0.2, \gamma_Y = 0.0$ $n = 5$	1) $n = 15$	
	$n = 1 \qquad (\gamma_X)$	$= 0.01, \gamma_Y = 0$ $n = 5$	$\frac{0.2)}{n = 15}$ $\rho_0 =$	$\frac{n}{-0.4, \rho_1 = -0.2}$	$K = 0.2, \gamma_Y = 0.0$ $n = 5$	1) $n = 15$	
(D)	$(\gamma_X n = 1)$ $(75.7, 72.7)$	$= 0.01, \gamma_Y = 0$ $n = 5$ (40.8, 38.2)	$ \frac{n = 15}{\rho_0} = (23.3, 21.7) $	$ \frac{n = 1}{-0.4, \rho_1 = -0.2} (109.5, 94.4) $	$x = 0.2, \gamma_Y = 0.0$ n = 5 (51.3, 44.3)	1) n = 15 (27.1, 23.8)	
(D) (I)	$(\gamma_X n = 1)$ (75.7, 72.7) (113.2, 98.0)	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$	$ \begin{array}{r} 0.2) \\ \underline{n = 15} \\ \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \end{array} $	$ \frac{n = 1}{\begin{array}{c} & (\gamma_{2}) \\ \hline n = 1 \\ \hline -0.4, \rho_{1} = -0.2 \\ (109.5, 94.4) \\ (78.8, 75.7) \end{array}} $	$ \begin{array}{r} \kappa = 0.2, \gamma_Y = 0.0 \\ n = 5 \end{array} \begin{array}{r} (51.3, 44.3) \\ (42.6, 39.8) \end{array} $	1) n = 15 (27.1, 23.8) (24.3, 22.5)	
(D) (I)	$(\gamma_X n = 1)$ (75.7, 72.7) (113.2, 98.0)	$= 0.01, \gamma_Y = 0$ $n = 5$ (40.8, 38.2) (53.7, 46.3)	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \\ \rho_0 = \\ \end{array} $	$ \frac{n = 1}{\begin{array}{c} & (\gamma_{2}) \\ \hline -0.4, \rho_{1} = -0.2 \\ (109.5, 94.4) \\ (78.8, 75.7) \\ -0.4, \rho_{1} = -0.8 \end{array}} $	$ \begin{array}{l} K = 0.2, \gamma_Y = 0.0 \\ n = 5 \\ (51.3, 44.3) \\ (42.6, 39.8) \\ \end{array} $	1) n = 15 (27.1, 23.8) (24.3, 22.5)	
(D) (I) (D)	$(\gamma_X \\ n = 1$ (75.7, 72.7) (113.2, 98.0) (64.2, 65.1)	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$	$ \begin{array}{r} \hline 0.2) \\ $	$ \frac{n = 1}{\begin{array}{c} & (\gamma_{2}) \\ \hline n = 1 \\ \hline -0.4, \rho_{1} = -0.2 \\ (109.5, 94.4) \\ (78.8, 75.7) \\ \hline -0.4, \rho_{1} = -0.8 \\ (98.7, 86.9) \\ \end{array}} $	$ \begin{array}{l} \hline $	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$	
(D) (I) (D) (I)	$(\gamma_X \\ n = 1$ (75.7, 72.7) (113.2, 98.0) (64.2, 65.1) (102.0, 90.1)	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$ $(48.3, 43.0)$	$ \begin{array}{r} \hline 0.2) \\ $	$ \frac{n = 1}{-0.4, \rho_1 = -0.2} \\ (109.5, 94.4) \\ (78.8, 75.7) \\ -0.4, \rho_1 = -0.8 \\ (98.7, 86.9) \\ (66.9, 67.8) $	$ \frac{\gamma_{Y} = 0.2, \gamma_{Y} = 0.0}{n = 5} $ (51.3, 44.3) (42.6, 39.8) (46.2, 41.2) (37.7, 36.7)	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$ $(21.9, 21.2)$	
(D) (I) (D) (I)	$(\gamma_X n = 1 (75.7, 72.7) (113.2, 98.0) (64.2, 65.1) (102.0, 90.1)$	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$ $(48.3, 43.0)$	$ \begin{array}{r} \hline 0.2) \\ \underline{n = 15} \\ \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \\ \rho_0 = \\ (21.1, 20.4) \\ (25.7, 23.3) \end{array} $	$ \frac{n = 1}{-0.4, \rho_1 = -0.2} \\ (109.5, 94.4) \\ (78.8, 75.7) \\ -0.4, \rho_1 = -0.8 \\ (98.7, 86.9) \\ (66.9, 67.8) \\ 0.4, \rho_1 = 0.2 $	$ \frac{1}{K} = 0.2, \gamma_Y = 0.0 \\ n = 5 $ (51.3, 44.3) (42.6, 39.8) (46.2, 41.2) (37.7, 36.7)	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$ $(21.9, 21.2)$	
(D) (I) (D) (I)	$(\gamma_X \\ n = 1$ $(75.7, 72.7)$ $(113.2, 98.0)$ $(64.2, 65.1)$ $(102.0, 90.1)$	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$ $(48.3, 43.0)$ $(25.0, 24.6)$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \\ \rho_0 = \\ (21.1, 20.4) \\ (25.7, 23.3) \\ \hline \rho_0 = \\ \rho_0 = \\ \hline \rho_0 = \\ \rho_$	$ \frac{n = 1}{-0.4, \rho_1 = -0.2} \\ (109.5, 94.4) \\ (78.8, 75.7) \\ -0.4, \rho_1 = -0.8 \\ (98.7, 86.9) \\ (66.9, 67.8) \\ = 0.4, \rho_1 = 0.2 \\ (100.2, 97.2) $	$ \frac{1}{K} = 0.2, \gamma_Y = 0.0 \\ n = 5 $ (51.3, 44.3) (42.6, 39.8) (46.2, 41.2) (37.7, 36.7) (46.1, 40.6)	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$ $(21.9, 21.2)$ $(24.6, 21.0)$	
(D) (I) (D) (I) (D)	$(\gamma_X \\ n = 1$ $(75.7, 72.7)$ $(113.2, 98.0)$ $(64.2, 65.1)$ $(102.0, 90.1)$ $(64.8, 64.9)$ $(102.7, 90.6)$	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$ $(48.3, 43.0)$ $(35.8, 34.6)$ $(48.2, 42.4)$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \\ \hline \rho_0 = \\ (21.1, 20.4) \\ (25.7, 23.3) \\ \hline \rho_0 = \\ (20.7, 19.8) \\ \hline (25.2, 29.7) \\ \hline \end{array} $	$ \frac{n = 1}{\begin{array}{c} & (\gamma_{2}) \\ \hline n = 1 \\ \hline -0.4, \rho_{1} = -0.2 \\ (109.5, 94.4) \\ (78.8, 75.7) \\ \hline -0.4, \rho_{1} = -0.8 \\ (98.7, 86.9) \\ (66.9, 67.8) \\ \hline = 0.4, \rho_{1} = 0.2 \\ (100.3, 87.2) \\ (67.5, 67.5) \\ \hline \end{array}} $	$ \frac{1}{K} = 0.2, \gamma_Y = 0.0 \\ n = 5 $ (51.3, 44.3) (42.6, 39.8) (46.2, 41.2) (37.7, 36.7) (46.1, 40.6) (27.2, 26.0)	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$ $(21.9, 21.2)$ $(24.3, 21.8)$ $(21.5, 20.6)$	
(D) (I) (D) (I) (D) (I)	$(\gamma_X n = 1 (75.7, 72.7) (113.2, 98.0) (64.2, 65.1) (102.0, 90.1) (64.8, 64.9) (103.7, 90.6)$	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$ $(48.3, 43.0)$ $(35.8, 34.6)$ $(48.2, 42.4)$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \\ \hline \rho_0 = \\ (21.1, 20.4) \\ (25.7, 23.3) \\ \hline \rho_0 = \\ (20.7, 19.8) \\ (25.3, 22.7) \\ \end{array} $	(γ) $n = 1$ $-0.4, \rho_1 = -0.2$ $(109.5, 94.4)$ $(78.8, 75.7)$ $-0.4, \rho_1 = -0.8$ $(98.7, 86.9)$ $(66.9, 67.8)$ $= 0.4, \rho_1 = 0.2$ $(100.3, 87.2)$ $(67.5, 67.5)$	$ \frac{1}{K} = 0.2, \gamma_Y = 0.0 \\ n = 5 $ (51.3, 44.3) (42.6, 39.8) (46.2, 41.2) (37.7, 36.7) (46.1, 40.6) (37.3, 36.0)	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$ $(21.9, 21.2)$ $(24.3, 21.8)$ $(21.5, 20.6)$	
(D) (I) (D) (I) (D) (I)	$(\gamma_X \\ n = 1$ $(75.7, 72.7)$ $(113.2, 98.0)$ $(64.2, 65.1)$ $(102.0, 90.1)$ $(64.8, 64.9)$ $(103.7, 90.6)$	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$ $(48.3, 43.0)$ $(35.8, 34.6)$ $(48.2, 42.4)$	$\overline{\begin{array}{c} 0.2) \\ n = 15 \\ \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \\ \rho_0 = \\ (21.1, 20.4) \\ (25.7, 23.3) \\ \rho_0 = \\ (20.7, 19.8) \\ (25.3, 22.7) \\ \rho_0 = \\ \rho_0$	$\begin{array}{c} (\gamma),\\ \hline n = 1\\ \hline -0.4, \rho_1 = -0.2\\ (109.5, 94.4)\\ (78.8, 75.7)\\ \hline -0.4, \rho_1 = -0.8\\ (98.7, 86.9)\\ (66.9, 67.8)\\ \hline = 0.4, \rho_1 = 0.2\\ (100.3, 87.2)\\ (67.5, 67.5)\\ \hline = 0.4, \rho_1 = 0.8 \end{array}$	$ \frac{1}{K} = 0.2, \gamma_Y = 0.0 \\ n = 5 $ (51.3, 44.3) (42.6, 39.8) (46.2, 41.2) (37.7, 36.7) (46.1, 40.6) (37.3, 36.0)	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$ $(21.9, 21.2)$ $(24.3, 21.8)$ $(21.5, 20.6)$	
(D) (I) (D) (I) (D) (I) (D)	$(\gamma_X \\ n = 1$ $(75.7, 72.7)$ $(113.2, 98.0)$ $(64.2, 65.1)$ $(102.0, 90.1)$ $(64.8, 64.9)$ $(103.7, 90.6)$ $(78.1, 73.4)$	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$ $(48.3, 43.0)$ $(35.8, 34.6)$ $(48.2, 42.4)$ $(41.1, 37.8)$	$\overline{\begin{array}{c} 0.2) \\ n = 15 \\ \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \\ (28.2, 24.7) \\ \rho_0 = \\ (21.1, 20.4) \\ (25.7, 23.3) \\ \rho_0 = \\ (20.7, 19.8) \\ (25.3, 22.7) \\ \rho_0 = \\ (23.1, 21.2) \end{array}}$	$\begin{array}{r} (\gamma),\\ n = 1\\ \hline 0.4, \rho_1 = -0.2\\ (109.5, 94.4)\\ (78.8, 75.7)\\ \hline -0.4, \rho_1 = -0.8\\ (98.7, 86.9)\\ (66.9, 67.8)\\ \hline = 0.4, \rho_1 = 0.2\\ (100.3, 87.2)\\ (67.5, 67.5)\\ \hline = 0.4, \rho_1 = 0.8\\ (112.3, 95.7)\\ \end{array}$	$ \frac{1}{K} = 0.2, \gamma_Y = 0.0 \\ n = 5 $ (51.3, 44.3) (42.6, 39.8) (46.2, 41.2) (37.7, 36.7) (46.1, 40.6) (37.3, 36.0) (51.8, 44.1)	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$ $(21.9, 21.2)$ $(24.3, 21.8)$ $(21.5, 20.6)$ $(26.9, 23.3)$	
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X \\ n = 1$ $(75.7, 72.7)$ $(113.2, 98.0)$ $(64.2, 65.1)$ $(102.0, 90.1)$ $(64.8, 64.9)$ $(103.7, 90.6)$ $(78.1, 73.4)$ $(116.3, 99.4)$	$= 0.01, \gamma_Y = 0$ $n = 5$ $(40.8, 38.2)$ $(53.7, 46.3)$ $(36.1, 35.2)$ $(48.3, 43.0)$ $(35.8, 34.6)$ $(48.2, 42.4)$ $(41.1, 37.8)$ $(54.2, 46.0)$	$\overline{\begin{array}{c} 0.2) \\ n = 15 \\ \rho_0 = \\ (23.3, 21.7) \\ (28.2, 24.7) \\ \rho_0 = \\ (21.1, 20.4) \\ (25.7, 23.3) \\ \rho_0 = \\ (20.7, 19.8) \\ (25.3, 22.7) \\ \rho_0 = \\ (23.1, 21.2) \\ (28.1, 24.2) \end{array}}$	$\begin{array}{r} (\gamma),\\ n = 1\\ \hline -0.4, \rho_1 = -0.2\\ (109.5, 94.4)\\ (78.8, 75.7)\\ \hline -0.4, \rho_1 = -0.8\\ (98.7, 86.9)\\ (66.9, 67.8)\\ \hline = 0.4, \rho_1 = 0.2\\ (100.3, 87.2)\\ (67.5, 67.5)\\ \hline = 0.4, \rho_1 = 0.8\\ (112.3, 95.7)\\ (81.4, 76.5)\\ \end{array}$	$ \frac{1}{K} = 0.2, \gamma_Y = 0.0 \\ n = 5 $ (51.3, 44.3) (42.6, 39.8) (46.2, 41.2) (37.7, 36.7) (46.1, 40.6) (37.3, 36.0) (51.8, 44.1) (42.9, 39.4)	n = 15 $(27.1, 23.8)$ $(24.3, 22.5)$ $(24.6, 22.4)$ $(21.9, 21.2)$ $(24.3, 21.8)$ $(21.5, 20.6)$ $(26.9, 23.3)$ $(24.0, 22.0)$	

TABLE 3.3 : Valeurs de EARL pour les cartes $RRRZ_{2,3}$ (gauche) and $RRRZ_{3,4}$ (droite) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

	$(\gamma$	$_X = 0.01, \gamma_Y = 0$	0.01)	$(\gamma_X =$	$= 0.2, \gamma_Y =$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$ \rho_0 = \rho_1 = -0.8 $			
(D)	(50, 48)	(9, -16)	(-50, -121)	(33, 37)	(44, 49)	(48, 53)
(I)	(50, 49)	(12, -16)	(-50, -121)	(31, 36)	(44, 49)	(49, 53)
			$a_{1} = a_{2} = -0.4$			
(D)	$(47 \ 44)$	(-4 - 41)	$\rho_0 = \rho_1 = -0.4$ (-75, -150)	(35, 40)	(46, 50)	(49 54)
(D) (I)	(47, 44)	(-1, -1) (0 -35)	(-75, -150)	(30, 40) (34, 30)	(40, 50) (46, 50)	(43, 54) (40, 54)
(1)	(11,11)	(0, 00)	(10, 100)	(04, 05)	(40,00)	(10,01)
			$\rho_0 = \rho_1 = 0$			
(D)	(43, 36)	(-21, -68)	(-81, -172)	(39, 44)	(48, 52)	(50, 55)
(I)	(43, 38)	(-21, -68)	(-81, -172)	(37, 43)	(48, 52)	(50, 55)
			$a_{1} = a_{1} = 0.4$			
(\mathbf{D})	(30, 16)	(-50, -121)	$\rho_0 = \rho_1 = 0.4$ (-100 -200)	(44, 50)	(50, 54)	$(51 \ 56)$
(\mathbf{D})	(30, 10) (32, 18)	(-50, -121) (-50, -121)	(-100, -200) (-100, -200)	(44, 50) (43, 40)	(50, 54) (50, 55)	(51, 50) (52, 56)
(1)	(52, 10)	(50, 121)	(100, 200)	(40, 40)	(50, 55)	(02, 00)
			$\rho_0 = \rho_1 = 0.8$			
(D)	(-21, -68)	(-100, -200)	(-100, -200)	(54, 60)	(53, 57)	(53, 56)
(I)	(-21, -68)	(-100, -200)	(-100, -200)	(54, 60)	(53, 58)	(53, 56)
	(~	$v_{v} = 0.01 \ v_{v} =$	$\overline{(0,2)}$	$(\gamma_{V} =$	$= 0.2, \gamma_V =$: 0.01)
	n = 1	$\gamma_X = 0.01, \gamma_Y = n = 5$	(0.2) $n = 15$	$(\gamma_X = n = 1)$	$= 0.2, \gamma_Y =$ n = 5	= 0.01) n = 15
	n = 1	$\gamma_X = 0.01, \gamma_Y = n = 5$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \rho_0 = \rho_1 = -0.8 \end{array} $	$(\gamma_X = n = 1)$	$= 0.2, \gamma_Y =$ n = 5	(0.01) n = 15
(D)	n = 1 (7) (32, 33)	$\gamma_X = 0.01, \gamma_Y = $ n = 5 (43, 45)	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \rho_0 = \rho_1 = -0.8 \\ (47, 50) \end{array} $	$(\gamma_X = n = 1$ $(51, 58)$	$= 0.2, \gamma_Y =$ n = 5 (54, 60)	(55, 60) (0.01) $n = 15$
(D) (I)	$ \begin{array}{c} (n = 1) \\ (32, 33) \\ (50, 57) \end{array} $	$\gamma_X = 0.01, \gamma_Y = $ n = 5 (43, 45) (55, 60)	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33)	$= 0.2, \gamma_Y = $ n = 5 (54, 60) (43, 46)	(55, 60) (47, 50)
(D) (I)	(7) $n = 1$ $(32, 33)$ $(50, 57)$	$\gamma_X = 0.01, \gamma_Y = $ n = 5 (43, 45) (55, 60)	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ 0.4 \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33)	$= 0.2, \gamma_Y = $ n = 5 (54, 60) (43, 46)	$ \begin{array}{c} 0.01) \\ n = 15 \\ (55, 60) \\ (47, 50) \end{array} $
(D) (I)	$ \begin{array}{c} (n = 1) \\ (32, 33) \\ (50, 57) \\ (32, 33) \\ (50, 57) \end{array} $	$\gamma_X = 0.01, \gamma_Y = \frac{1}{n = 5}$ (43, 45) (55, 60) (42, 45)	$ \begin{array}{r} 0.2) \\ \underline{n = 15} \\ \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33)	$0.2, \gamma_Y = \frac{1}{n = 5}$ (54, 60) (43, 46)	$\begin{array}{c} 0.01) \\ n = 15 \\ (55, 60) \\ (47, 50) \end{array}$
(D) (I) (D)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$	$\gamma_X = 0.01, \gamma_Y = \frac{1}{n = 5}$ (43, 45) (55, 60) (42, 45) (55, 60)	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (22, 58)	$= 0.2, \gamma_Y = \frac{1}{n = 5}$ $(54, 60)$ $(43, 46)$ $(55, 60)$ $(42, 46)$	$\begin{array}{c} 0.01)\\ n = 15 \end{array}$ $\begin{array}{c} (55, 60)\\ (47, 50) \end{array}$ $\begin{array}{c} (55, 60)\\ (47, 50) \end{array}$
(D) (I) (D) (I)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$	$\gamma_X = 0.01, \gamma_Y = \frac{1}{n = 5}$ $(43, 45)$ $(55, 60)$ $(42, 45)$ $(55, 60)$	$ \begin{array}{r} 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33)	$= 0.2, \gamma_Y = \frac{1}{n = 5}$ $(54, 60)$ $(43, 46)$ $(55, 60)$ $(43, 46)$	$\begin{array}{c} 0.01)\\ n = 15 \end{array}$ $\begin{array}{c} (55, 60)\\ (47, 50) \end{array}$ $\begin{array}{c} (55, 60)\\ (47, 50) \end{array}$
(D) (I) (D) (I)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$	$\gamma_X = 0.01, \gamma_Y = n = 5$ (43, 45) (55, 60) (42, 45) (55, 60)	$ \begin{array}{r} 0.2) \\ n = 15 \\ \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0 \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33)	$= 0.2, \gamma_Y = \frac{1}{n = 5}$ $(54, 60)$ $(43, 46)$ $(55, 60)$ $(43, 46)$	$\begin{array}{c} 0.01)\\ n = 15 \\ (55, 60)\\ (47, 50) \\ (55, 60)\\ (47, 50) \end{array}$
(D) (I) (D) (I) (D)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$	$\gamma_X = 0.01, \gamma_Y = \frac{n}{n} = 5$ (43, 45) (55, 60) (42, 45) (55, 60) (42, 45)	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0 \\ (47, 50) \\ (47, 50) \\ \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33) (52, 59)	$= 0.2, \gamma_Y = \frac{1}{n = 5}$ $(54, 60)$ $(43, 46)$ $(55, 60)$ $(43, 46)$ $(55, 61)$	$\begin{array}{c} 0.01)\\ n = 15 \\ (55, 60)\\ (47, 50) \\ (55, 60)\\ (47, 50) \\ (55, 60) \end{array}$
(D) (I) (D) (I) (D) (I)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$ $(51, 58)$	$y_X = 0.01, \gamma_Y = n = 5$ (43, 45) (55, 60) (42, 45) (55, 60) (42, 45) (55, 61)	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0 \\ (47, 50) \\ (55, 60) \\ \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33) (52, 59) (32, 33)	$\begin{array}{l} 0.2, \gamma_Y = \\ n = 5 \\ (54, 60) \\ (43, 46) \\ (55, 60) \\ (43, 46) \\ (55, 61) \\ (43, 46) \end{array}$	$\begin{array}{c} 0.01)\\ n = 15 \\ \hline (55, 60)\\ (47, 50) \\ \hline (55, 60)\\ (47, 50) \\ \hline (55, 60)\\ (47, 50) \end{array}$
(D) (I) (D) (I) (D) (I)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$ $(51, 58)$	$\gamma_X = 0.01, \gamma_Y = \frac{n}{n} = 5$ $(43, 45)$ $(55, 60)$ $(42, 45)$ $(55, 60)$ $(42, 45)$ $(55, 61)$	$ \begin{array}{r} 0.2) \\ \underline{n = 15} \\ \hline \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0 \\ (47, 50) \\ (55, 60) \\ \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33) (52, 59) (32, 33)	$\begin{array}{l} 0.2, \gamma_Y = \\ n = 5 \\ (54, 60) \\ (43, 46) \\ (55, 60) \\ (43, 46) \\ (55, 61) \\ (43, 46) \end{array}$	$\begin{array}{c} 0.01)\\ n = 15 \\ (55, 60)\\ (47, 50) \\ (55, 60)\\ (47, 50) \\ (55, 60)\\ (47, 50) \end{array}$
(D) (I) (D) (I) (D) (I)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$ $(51, 58)$ $(32, 33)$	$\gamma_X = 0.01, \gamma_Y = \frac{n}{n} = 5$ $(43, 45)$ $(55, 60)$ $(42, 45)$ $(55, 60)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33) (52, 59) (32, 33) (52, 59) (32, 33)	$\begin{array}{l} 0.2, \gamma_Y = \\ n = 5 \\ (54, 60) \\ (43, 46) \\ (55, 60) \\ (43, 46) \\ (55, 61) \\ (43, 46) \\ \end{array}$	$\begin{array}{c} 0.01) \\ n = 15 \\ (55, 60) \\ (47, 50) \\ (55, 60) \\ (47, 50) \\ (55, 60) \\ (47, 50) \\ (55, 60) \\ (47, 50) \\ \end{array}$
(D) (I) (D) (I) (D) (I) (D)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$ $(51, 58)$ $(32, 33)$ $(52, 53)$	$\gamma_X = 0.01, \gamma_Y = \frac{n}{n} = 5$ $(43, 45)$ $(55, 60)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$	$ \begin{array}{r} \hline 0.2) \\ \hline n = 15 \\ \hline \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (55, 60) \\ \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33) (52, 59) (32, 33) (53, 59) (32, 33)	$\begin{array}{l} : 0.2, \gamma_Y = \\ n = 5 \\ \hline (54, 60) \\ (43, 46) \\ \hline (55, 60) \\ (43, 46) \\ \hline (55, 61) \\ (43, 46) \\ \hline (55, 61) \\ (42, 45) \end{array}$	$\begin{array}{c} 0.01) \\ n = 15 \\ (55, 60) \\ (47, 50) \\ (55, 60) \\ (47, 50) \\ (55, 60) \\ (47, 50) \\ (55, 60) \\ (47, 50) \\ \end{array}$
(D) (I) (D) (I) (D) (I) (D) (I)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$ $(51, 58)$ $(32, 33)$ $(51, 58)$	$\gamma_X = 0.01, \gamma_Y = n = 5$ (43, 45) (55, 60) (42, 45) (55, 60) (42, 45) (55, 61) (42, 45) (55, 61) (42, 45) (55, 61)	$ \begin{array}{r} \hline 0.2) \\ $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33) (52, 59) (32, 33) (53, 59) (32, 33)	$\begin{array}{l} 0.2, \gamma_Y = \\ n = 5 \\ (54, 60) \\ (43, 46) \\ (55, 60) \\ (43, 46) \\ (55, 61) \\ (43, 46) \\ (55, 61) \\ (43, 45) \end{array}$	$\begin{array}{c} 0.01)\\ n = 15 \\ \hline (55, 60)\\ (47, 50) \end{array}$
(D) (I) (D) (I) (D) (I) (D) (I)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$ $(51, 58)$ $(32, 33)$ $(52, 58)$	$y_X = 0.01, \gamma_Y = n = 5$ (43, 45) (55, 60) (42, 45) (55, 60) (42, 45) (55, 61) (42, 45) (55, 61) (42, 45) (55, 61)	$ \begin{array}{r} \hline 0.2) \\ \hline n = 15 \\ \hline \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \hline \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \hline \rho_0 = \rho_1 = 0 \\ (47, 50) \\ (55, 60) \\ \hline \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (56, 60) \\ \hline \rho_0 = \rho_1 = 0.8 \\ \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33) (52, 59) (32, 33) (53, 59) (32, 33)	$\begin{array}{l} : 0.2, \gamma_Y = \\ n = 5 \\ \hline (54, 60) \\ (43, 46) \\ \hline (55, 60) \\ (43, 46) \\ \hline (55, 61) \\ (43, 46) \\ \hline (55, 61) \\ (43, 45) \end{array}$	$\begin{array}{c} 0.01)\\ n = 15\\ \hline (55, 60)\\ (47, 50)\\ \hline \end{array}$
(D) (I) (D) (I) (D) (I) (D) (I) (D)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$ $(51, 58)$ $(32, 33)$ $(52, 58)$ $(32, 33)$	$y_X = 0.01, \gamma_Y = n = 5$ $(43, 45)$ $(55, 60)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$	$ \begin{array}{r} \hline 0.2) \\ n = 15 \\ \hline \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \hline \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \hline \rho_0 = \rho_1 = 0 \\ (47, 50) \\ (55, 60) \\ \hline \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (56, 60) \\ \hline \rho_0 = \rho_1 = 0.8 \\ (47, 50) \\ \end{array} $	$(\gamma_X = n = 1)$ (51, 58) (32, 33) (52, 58) (32, 33) (52, 59) (32, 33) (53, 59) (32, 33) (53, 60)	$\begin{array}{l} : 0.2, \gamma_Y = \\ n = 5 \\ (54, 60) \\ (43, 46) \\ (55, 60) \\ (43, 46) \\ (55, 61) \\ (43, 46) \\ (55, 61) \\ (43, 45) \\ (55, 61) \end{array}$	$\begin{array}{r} 0.01)\\ n = 15 \\ \hline (55, 60)\\ (47, 50) \end{array}$
(D) (I) (D) (I) (D) (I) (D) (I) (D) (I)	(n = 1) $(32, 33)$ $(50, 57)$ $(32, 33)$ $(51, 57)$ $(32, 33)$ $(51, 58)$ $(32, 33)$ $(52, 58)$ $(32, 33)$ $(52, 59)$	$y_X = 0.01, \gamma_Y = n = 5$ $(43, 45)$ $(55, 60)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$ $(42, 45)$ $(55, 61)$	$ \begin{array}{r} \hline 0.2) \\ \hline n = 15 \\ \hline \rho_0 = \rho_1 = -0.8 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = -0.4 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0 \\ (47, 50) \\ (55, 60) \\ \rho_0 = \rho_1 = 0.4 \\ (47, 50) \\ (56, 60) \\ \rho_0 = \rho_1 = 0.8 \\ (47, 50) \\ (56, 61) \\ \end{array} $	$(\gamma_X = n = 1)$ $(51, 58)$ $(32, 33)$ $(52, 58)$ $(32, 33)$ $(52, 59)$ $(32, 33)$ $(53, 59)$ $(32, 33)$ $(53, 60)$ $(32, 33)$	$\begin{array}{l} 0.2, \gamma_Y = \\ n = 5 \\ \hline (54, 60) \\ (43, 46) \\ \hline (55, 60) \\ (43, 46) \\ \hline (55, 61) \\ (43, 46) \\ \hline (55, 61) \\ (43, 45) \\ \hline (55, 61) \\ (42, 45) \end{array}$	$ \begin{array}{r} 0.01) \\ n = 15 \\ (55, 60) \\ (47, 50) \\ (55, 60) \\ (55, 60) \\ (55, 60) \\ $

TABLE 3.4 : Δ_E pour les cartes RRRZ_{2,3} (gauche) et RRRZ_{3,4} (droite) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

	(/	$\gamma_X = 0.01, \gamma_Y =$	= 0.01)	$(\gamma_X =$	$= 0.2, \gamma_Y =$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = -0.4, \rho_1 =$	-0.2		
(D)	(59, 60)	(10, -17)	(-75, -150)	(39, 49)	(56, 64)	(59, 67)
(I)	(60, 61)	(13, -17)	(-75, -150)	(38, 48)	(56, 64)	(60, 67)
			$\rho_0 = -0.4, \rho_1 =$	-0.8		
(D)	(25, 12)	(-25, -70)	(-75, -158)	(24, 21)	(26, 22)	(30, 26)
(I)	(25, 15)	(-19, -61)	(-75, -158)	(23, 19)	(26, 21)	(30, 27)
			$\rho_0 = 0.4, \rho_1 =$	0.2		
(D)	(5, -20)	(-61, -138)	(-100, -200)	(31, 29)	(29, 24)	(29, 25)
(I)	(8, -17)	(-61, -138)	(-100, -200)	(30, 27)	(29, 24)	(30, 26)
				0.0		
	$(0, 0, 0, \overline{7})$		$\rho_0 = 0.4, \rho_1 =$	0.8	(01 07)	(05 00)
(D)	(90, 97)	(-5, -50)	(-100, -200)	(22, 65)	(91, 97)	(95, 99)
(1)	(90, 97)	(-5, -50)	(-100, -200)	(20, 65)	(91, 97)	(95, 99)
	($\gamma_X = 0.01, \gamma_Y$	= 0.2)	$(\gamma_X =$	$= 0.2, \gamma_Y =$	= 0.01)
	n = 1 ($\begin{aligned} \gamma_X &= 0.01, \gamma_Y \\ n &= 5 \end{aligned}$	= 0.2) n = 15	$(\gamma_X = n = 1)$	$= 0.2, \gamma_Y =$ n = 5	= 0.01) n = 15
	n = 1	$\gamma_X = 0.01, \gamma_Y$ $n = 5$	$= 0.2) n = 15 \rho_0 = -0.4, \rho_1 =$	$\frac{\gamma_X}{n=1} = \frac{n}{-0.2}$	$= 0.2, \gamma_Y = $ $n = 5$	= 0.01) n = 15
(D)	n = 1 (34, 36)	$\frac{\gamma_X = 0.01, \gamma_Y}{n = 5}$ $(44, 48)$	$ = 0.2) n = 15 \rho_0 = -0.4, \rho_1 = (49, 52) $	$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ -0.2 \\ (53, 59) \end{array}$	$= 0.2, \gamma_Y = $ n = 5 (56, 62)	= 0.01) n = 15 (56, 61)
(D) (I)	n = 1 (34, 36) (52, 58)		$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 =$ $(49, 52)$ $(56, 62)$	$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ -0.2 \\ (53, 59) \\ (34, 36) \end{array} $	$= 0.2, \gamma_Y = \frac{1}{n} = 5$ (56, 62) (44, 48)	$ \begin{array}{c} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \end{array} $
(D) (I)	n = 1 (34, 36) (52, 58)		$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 =$ $(49, 52)$ $(56, 62)$ $\rho_0 = -0.4, \rho_1 =$	$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ -0.2 \\ (53, 59) \\ (34, 36) \\ -0.8 \end{array} $	$= 0.2, \gamma_Y = $ n = 5 (56, 62) (44, 48)	$ \begin{array}{c} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \end{array} $
(D) (I) (D)	n = 1 (34, 36) (52, 58) (28, 27)		$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 = (49, 52)$ $(56, 62)$ $\rho_0 = -0.4, \rho_1 = (44, 46)$	$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ -0.2 \\ (53, 59) \\ (34, 36) \\ -0.8 \\ (49, 55) \end{array} $	$= 0.2, \gamma_Y = \frac{1}{n = 5}$ (56, 62) (44, 48) (53, 58)	$ \begin{array}{r} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \\ (53, 57) \end{array} $
(D) (I) (D) (I)	n = 1 (34, 36) (52, 58) (28, 27) (48, 54)		$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 =$ $(49, 52)$ $(56, 62)$ $\rho_0 = -0.4, \rho_1 =$ $(44, 46)$ $(53, 57)$	$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ \hline -0.2 \\ (53, 59) \\ (34, 36) \\ \hline -0.8 \\ (49, 55) \\ (28, 27) \\ \end{array} $	$= 0.2, \gamma_Y = \frac{1}{n = 5}$ $(56, 62)$ $(44, 48)$ $(53, 58)$ $(39, 41)$	$ \begin{array}{c} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \\ (53, 57) \\ (44, 46) \end{array} $
(D) (I) (D) (I)	n = 1 (34, 36) (52, 58) (28, 27) (48, 54)		$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 = (49, 52)$ $(56, 62)$ $\rho_0 = -0.4, \rho_1 = (44, 46)$ $(53, 57)$ $\rho_0 = 0.4, \rho_1 = 0.4,$	$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ \hline -0.2 \\ (53, 59) \\ (34, 36) \\ \hline -0.8 \\ (49, 55) \\ (28, 27) \\ \hline 0.2 \\ \end{array} $	$= 0.2, \gamma_Y = \frac{1}{n = 5}$ $(56, 62)$ $(44, 48)$ $(53, 58)$ $(39, 41)$	$ \begin{array}{c} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \\ (53, 57) \\ (44, 46) \end{array} $
(D) (I) (D) (I) (D)	n = 1 (34, 36) (52, 58) (28, 27) (48, 54) (30, 30)	$\overline{\gamma_X = 0.01, \gamma_Y}$ $n = 5$ $(44, 48)$ $(56, 62)$ $(39, 41)$ $(53, 58)$ $(40, 42)$	$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 = (49, 52) (56, 62)$ $\rho_0 = -0.4, \rho_1 = (44, 46) (53, 57)$ $\rho_0 = 0.4, \rho_1 = (45, 47)$	$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ -0.2 \\ (53, 59) \\ (34, 36) \\ -0.8 \\ (49, 55) \\ (28, 27) \\ 0.2 \\ (51, 58) \end{array} $	$= 0.2, \gamma_Y = \frac{n}{n} = 5$ $(56, 62)$ $(44, 48)$ $(53, 58)$ $(39, 41)$ $(54, 59)$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \\ (53, 57) \\ (44, 46) \\ (54, 59) \\ \end{array} $
(D) (I) (D) (I) (D) (I)	n = 1 (34, 36) (52, 58) (28, 27) (48, 54) (30, 30) (51, 57)	$\overline{\gamma_X = 0.01, \gamma_Y}$ $n = 5$ $(44, 48)$ $(56, 62)$ $(39, 41)$ $(53, 58)$ $(40, 42)$ $(54, 60)$	$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 = (49, 52)$ $(56, 62)$ $\rho_0 = -0.4, \rho_1 = (44, 46)$ $(53, 57)$ $\rho_0 = 0.4, \rho_1 = (45, 47)$ $(54, 59)$	$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ -0.2 \\ (53, 59) \\ (34, 36) \\ -0.8 \\ (49, 55) \\ (28, 27) \\ 0.2 \\ (51, 58) \\ (30, 30) \end{array} $	$= 0.2, \gamma_Y = \frac{n}{n} = 5$ $(56, 62)$ $(44, 48)$ $(53, 58)$ $(39, 41)$ $(54, 59)$ $(41, 43)$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \\ (53, 57) \\ (44, 46) \\ (54, 59) \\ (45, 48) \\ \end{array} $
(D) (I) (D) (I) (D) (I)	n = 1 (34, 36) (52, 58) (28, 27) (48, 54) (30, 30) (51, 57)	$ \begin{aligned} \overline{\gamma_X} &= 0.01, \gamma_Y \\ n &= 5 \\ (44, 48) \\ (56, 62) \\ (39, 41) \\ (53, 58) \\ (40, 42) \\ (54, 60) \\ (54, 60) $	$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 = (49, 52) (56, 62)$ $\rho_0 = -0.4, \rho_1 = (44, 46) (53, 57)$ $\rho_0 = 0.4, \rho_1 = (45, 47) (54, 59)$	$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ \hline 0.2 \\ (53, 59) \\ (34, 36) \\ \hline -0.8 \\ (49, 55) \\ (28, 27) \\ 0.2 \\ (51, 58) \\ (30, 30) \\ 0.8 \end{array} $	$= 0.2, \gamma_Y = \frac{n}{n} = 5$ $(56, 62)$ $(44, 48)$ $(53, 58)$ $(39, 41)$ $(54, 59)$ $(41, 43)$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \\ (53, 57) \\ (44, 46) \\ (54, 59) \\ (45, 48) \\ \end{array} $
(D) (I) (D) (I) (D) (I)	n = 1 (34, 36) (52, 58) (28, 27) (48, 54) (30, 30) (51, 57) (26, 20)	$\overline{\gamma_X = 0.01, \gamma_Y}$ $n = 5$ $(44, 48)$ $(56, 62)$ $(39, 41)$ $(53, 58)$ $(40, 42)$ $(54, 60)$ $(46, 50)$	$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 = (49, 52)$ $(56, 62)$ $\rho_0 = -0.4, \rho_1 = (44, 46)$ $(53, 57)$ $\rho_0 = 0.4, \rho_1 = (45, 47)$ $(54, 59)$ $\rho_0 = 0.4, \rho_1 = (50, 54)$	$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ \hline 0.2 \\ (53, 59) \\ (34, 36) \\ \hline -0.8 \\ (49, 55) \\ (28, 27) \\ 0.2 \\ (51, 58) \\ (30, 30) \\ 0.8 \\ (55, 61) \end{array} $	$= 0.2, \gamma_Y = \frac{n}{n} = 5$ $(56, 62)$ $(44, 48)$ $(53, 58)$ $(39, 41)$ $(54, 59)$ $(41, 43)$ $(58, 64)$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \\ (53, 57) \\ (44, 46) \\ (54, 59) \\ (45, 48) \\ (58, 62) \\ \end{array} $
(D) (I) (D) (I) (D) (I) (D) (U)	n = 1 (34, 36) (52, 58) (28, 27) (48, 54) (30, 30) (51, 57) (36, 39) (54, 61)	$ \begin{array}{r} \gamma_X = 0.01, \gamma_Y \\ n = 5 \\ (44, 48) \\ (56, 62) \\ (39, 41) \\ (53, 58) \\ (40, 42) \\ (54, 60) \\ (46, 50) \\ (58, 64) \end{array} $	$= 0.2)$ $n = 15$ $\rho_0 = -0.4, \rho_1 = (49, 52) (56, 62)$ $\rho_0 = -0.4, \rho_1 = (44, 46) (53, 57)$ $\rho_0 = 0.4, \rho_1 = (45, 47) (54, 59)$ $\rho_0 = 0.4, \rho_1 = (50, 54) (58, 64)$	$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ \hline 0.2 \\ (53, 59) \\ (34, 36) \\ \hline -0.8 \\ (49, 55) \\ (28, 27) \\ 0.2 \\ (51, 58) \\ (30, 30) \\ 0.8 \\ (55, 61) \\ (26, 40) \\ \end{array} $	$= 0.2, \gamma_Y = \frac{n}{n} = 5$ $(56, 62)$ $(44, 48)$ $(53, 58)$ $(39, 41)$ $(54, 59)$ $(41, 43)$ $(58, 64)$ $(46, 51)$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ (56, 61) \\ (49, 52) \\ (53, 57) \\ (44, 46) \\ (54, 59) \\ (45, 48) \\ (58, 63) \\ (51, 55) \\ \end{array} $

TABLE 3.5 : Δ_E pour les cartes RRRZ_{2,3} (gauche) et RRRZ_{3,4} (droite) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

FIGURE 3.5 : Les cartes $RRRZ_{2,3}^+$ et $RRRZ_{3,4}^+$ pour l'exemple de l'industrie alimentaire

le paramètre $K_U = 1.0097$ ($K_U = 1.0067$) a été obtenu numériquement et, puisque $z_0 = 1$, la limite de contrôle supérieure est $UCL_{RRZ} = 1.0097$ (UCL = 1.0067).

La Table 3.6 présente un ensemble d'échantillons simulés prélevés dans le processus avec des boîtes dont le poids est 250gr ou 500gr et les valeurs de la statistique \hat{Z}_i . Le processus est supposé fonctionner sous-contrôle jusqu'à l'échantillon #10. Ensuite, entre les échantillons #10 et #11 nous avons simulé l'apparition d'une cause spéciale modifiant le ratio de z_0 à $z_1 = 1.01 \times z_0$, i.e. un pourcentage d'augmentation du ratio égal à 1%. La Figure 3.5 présente les cartes RRRZ⁺_{2,3} (haut) et RRRZ⁺_{3,4} (dessous). La carte RRRZ⁺_{2,3} (RRRZ⁺_{3,4}) signale l'occurrence d'une situation hors-contrôle de deux-parmi-trois (trois-parmiquate) points successifs #11 et #12 (#11, #12 et #13) au dessus de la limite de contrôle $UCL_{\rm RRRZ} = 1.0097$ ($UCL_{\rm RRRZ} = 1.0067$). Dans la Figure 3.5, nous présentons également la limite supérieure $UCL_{\rm Shewhart-RZ} = 1.0167$ de la carte Shewhart-RZ. Dans cet exemple, la carte Shewhart-RZ signale à l'échantillon #11, i.e. presque en même temps que la carte RRRZ⁺_{2,3}. Une fois les actions correctives effectuées après l'échantillon #15, le procédé redevient sous-contrôle.

				$W_{p,i,j}$ [gr]]		$\bar{W}_{p,i}$ [gr]	
Échantillon	Boîtes dont le poids			$W_{f,i,j}$ [gr]]		$\bar{W}_{f,i}$ [gr]	$\hat{Z}_i = \frac{W_{p,i}}{\bar{W}_{f,i}}$
1	250 gr	25.479	25.355	24.027	25.792	24.960	25.122	1.003
		25.218	25.171	24.684	25.052	25.107	25.046	
2	250 gr	25.359	25.172	24.508	25.292	24.449	24.956	1.003
	-	25.211	25.115	24.679	24.933	24.831	24.954	
3	250 gr	24.574	24.864	25.865	25.107	24.811	25.044	1.005
	C	24.784	24.868	25.377	24.879	24.734	24.929	
4	250 gr	25.313	24.483	24.088	25.184	25.681	24.950	0.999
		25.338	24.859	24.305	25.115	25.251	24.974	
5	250 gr	25.557	24.959	25.023	24.482	25.531	25.111	0.998
-		25.277	25.402	25.012	24.937	25.148	25.163	
6	250 gr	24 882	$24\ 473$	24 814	$25\ 418$	24,732	24 864	0.997
C C	200 81	24.962	24.644	24.817	25.419	24.818	24.932	0.0001
7	500 gr	49 848	48 685	49 994	49 910	49 374	49562	0 999
,	500 81	49.993	49.128	49.830	49.566	49.422	49.588	0.000
8	500 gr	49 668	50 338	49 149	47 807	49 064	49 205	0 990
0	500 81	49.695	50.681	49.640	48.969	49.612	49.720	0.000
9	500 gr	51 273	48 303	48 510	50 594	48 591	49 454	0 993
,	500 81	50.366	49.210	49.844	49.890	49.595	49.781	0.000
10	500 gr	48 720	51 566	49677	50 651	50 344	50 192	1.002
10	500 gi	49.721	51.900 50.215	50.178	50.324	50.071	50.102	1.002
11	500 gr	51 372	51 700	51 000	50 886	49 641	50 920	1.017
11	500 gi	51.572 50.164	51.700 50.272	49.884	50.000	49.845	50.920 50.045	1.017
12	500 ar	52 020	53 189	51 374	51 3/9	48 771	51 138	1 093
12	500 gi	52.020 50.749	50.369	49.697	49.575	49.440	49.966	1.023
12	500 ar	52 260	40.419	50 704	50.270	50.001	50.040	1.016
13	500 gi	52.500 50 047	49.412	50.704 50.297	50.370 50.408	50.901 50.026	50.949 50 152	1.010
14	500 ar	52 409	50 447	49 719	19 574	50.275	50.101	1 009
14	JUU gr	52.498 50 064	50.447 50.124	40.713	40.074 48 865	50.275 50.344	49 712	1.008
15	250 ~~	05.001	04.6F0	94 469	10.000	05.011 05.071	01 070	0.006
13	250 gr	25.123 25.041	24.008 24.700	24.408 24 835	25.030 25.211	20.071 25.008	24.870 24.077	0.990
		20.041	24.130	41.000	40.411	20.000	44.311	

 TABLE 3.6 : Données de exemple de l'industrie alimentaire

3.6 Conclusions

Dans ce chapitre plusieurs cartes de contrôle avec règles supplémentaires ont été proposées pour surveiller le ratio lorsque la taille de l'échantillon n > 1. Une approche de type chaîne de Markov a été utilisée pour obtenir les valeurs de ARL, SDRL et EARL ainsi que les paramètres des cartes RRRZ. Pour chaque carte de contrôle unilatérale, nous avons calculé les valeurs de l'ARL hors-contrôle pour différentes valeurs des coefficients de contrôle de variation (γ_X, γ_Y) et du coefficient de corrélation ρ .

Si le processus dérive d'un état sous-contrôle à un état hors-contrôle sans changement dans la corrélation entre X et Y (i.e. $\rho_0 = \rho_1 = \rho$), nous pouvons tirer les conclusions suivantes :

- 1. la performance des cartes de contrôle unilatérales RRRZ est fortement influencée par (γ_X, γ_Y) et ρ_0 . Plus les coefficients de variation (γ_X, γ_Y) sont petits, plus vite les cartes de contrôle détectent une situation hors-contrôle,
- la performance statistique des cartes RRRZ_{2,3} et RRRZ_{3,4} n'est pas identique pour une même valeur absolue de Δ_Z = 100 × |τ − 1|. Pour la même valeur de Δ_Z et γ_X = γ_Y la performance statistique est supérieure lorsque τ < 1. Inversement, lorsque γ_X ≠ γ_Y la tendance de sensibilité de la carte dépend de la plus petite valeur des coefficients de variation γ_X et γ_Y
- 3. Une comparaison avec les valeurs de ARL₁ pour la carte Shewhart-RZ obtenu dans Celano and Castagliola (2016a) montre que, lorsque γ_X = γ_Y = 0.1, n = 1 et τ ∈ (0.95, 1) le meilleur choix est soit la carte RRRZ⁻_{2,3} ou soit la carte RRRZ⁻_{3,4}, lorsque γ_X = γ_Y = 0.1, n = 1 et τ ∈ (1, 1.02) le meilleur choix est soit la carte RRRZ⁺_{2,3} ou soit la carte RRRZ⁺_{3,4} et lorsque τ ≤ 0.95 ou 1.02 ≤ τ le meilleur choix est soit la carte RRRZ⁻_{2,3} ou soit la carte RRRZ⁺_{3,4}, lorsque γ_X = γ_Y = 0.1, n = 15, ρ₀ < 0 et τ ∈ (0.98, 1) le meilleur choix est soit la carte RRRZ⁻_{2,3} ou soit la carte RRRZ⁻_{3,4}, lorsque γ_X = γ_Y = 0.1, n = 15, ρ₀ < 0 et τ ∈ (0.98, 1) le meilleur choix est soit la carte RRRZ⁻_{2,3} ou soit la carte RRRZ⁺_{3,4}, lorsque γ_X = γ_Y = 0.1, n = 15, ρ₀ < 0 et τ ∈ (1, 1.02) le meilleur choix est soit la carte RRRZ⁺_{2,3} ou soit la carte RRRZ⁺_{3,4} et lorsque τ ≤ 0.98 ou 1.02 ≤ τ le meilleur choix est la carte RRRZ⁺_{3,4} et lorsque τ ≤ 0.98 ou 1.02 ≤ τ le meilleur choix est la carte Shewhart-RZ. Lorsque γ_X = γ_Y = 0.2 ou γ_X ≠ γ_Y = 0.1, n = 15, ρ₀ > 0, le meilleur choix est la carte Shewhart-RZ. Lorsque γ_X = γ_Y = 0.2 ou γ_X ≠ γ_Y le meilleur choix est soit la carte RRRZ⁻_{3,4} pour τ ∈ {0.90, 0.95, 0.98, 0.99} et le meilleur choix est soit la carte RRRZ⁺_{3,4} pour τ ∈ {1.01, 1.02, 1.05, 1.10}.

L'apparition d'une cause assignable peut aussi modifier le coefficient de corrélation ρ entre les variables aléatoires X et Y de la valeur ρ_0 à la valeur ρ_1 . Dans ce cas, nous pouvons tirer les conclusions suivantes :

- 1. la réduction d'une corrélation négative détériore la sensibilité de la carte de contrôle,
- 2. la réduction d'une corrélation positive améliore la sensibilité de la carte de contrôle.

Dans ce chapitre, nous avons aussi utilisé l'EARL qui permet de prendre en compte le fait que l'on peut avoir intérêt à détecter un intervalle de dérives $\Omega = [a, b]$, mais pas de préférence pour une dérive particulière, ce qui amène à choisir une distribution uniforme sur $\Omega = [a, b]$. Les principales conclusions que l'on peut tirer à partir de l'évaluation de EARL sont :

- 1. lorsque $\gamma_X = \gamma_Y = \gamma$, les cartes RRRZ_{2,3} et RRRZ_{3,4} ont une performance approximativement symétrique pour des valeurs petites de γ_X et γ_Y . Pour des plus grandes valeurs de γ_X et γ_Y , la sensibilité statistique est légèrement meilleure pour $\Omega = [0.9, 1)$ que pour $\Omega = (1, 1.1]$,
- 2. lorsque $\gamma_X \neq \gamma_Y$ la sensibilité statistique dépend des valeurs de γ_X et γ_Y . Si $\gamma_X < \gamma_Y$, alors la sensibilité statistique est meilleur pour $\Omega = [0.9, 1)$ que pour $\Omega = (1, 1.1]$. La situation inverse a lieu pour $\gamma_X > \gamma_Y$.

Les travaux présentés dans ce chapitre ont été publiés dans Tran et al. (2016a), Tran et al. (2016e) et Tran (2016).

Les cartes de contrôle de type Shewhart pour le ratio sont efficaces pour détecter des changements de faible amplitude. Toutefois, elles peuvent prendre plus de temps pour détecter des changements de petite et moyenne amplitude. L'utilisation de règles supplémentaires est une première façon d'étendre la carte de Shewhart classique de manière assez simple. Une autre solution, les cartes de contrôle pour surveiller le ratio avec la méthode EWMA sera l'objet du chapitre suivant.

Cartes de contrôle pour surveiller le ratio avec la méthode EWMA

4.1 Introduction

Les cartes de contrôle de type Shewhart pour le ratio sont efficaces pour détecter des changements de grande amplitude. Elles ont été largement adoptées du fait de leur mise en application facile. Toutefois, elles peuvent prendre plus de temps pour détecter des changements de petite et moyenne amplitude. Pour cette raison, plusieurs méthodes/stratégies ont été proposées dans la littérature MSP afin de résoudre ce problème. Les alternatives classiques proposées dans la littérature font intervenir des cartes de contrôle plus avancées telles que les cartes avec règles supplémentaires présentées dans le chapitre précédent. Parmi ces méthodes, la mise en œuvre de cartes de contrôle EWMA est particulièrement efficace, voir Montgomery (2013). De part leur définition, les cartes de contrôle EWMA ont un mécanisme qui permet l'intégration de l'information de tous les sous-groupes précédents au moyen de poids décroissant géométriquement avec le numéro de l'échantillon. Roberts (1959) a été le premier à introduire la technique EWMA dans le domaine de la MSP. Ses propriétés et les stratégies de conception optimale ont été examinées en détails par de nombreux auteurs tels que, par exemple, Robinson and Ho (1978), Hunter (1986), Crowder (1987), Lucas and Saccucci (1990), Castagliola (2005), Shu et al. (2007), Castagliola et al. (2011) pour citer quelques-uns.

Dans ce chapitre, nous allons présenter la méthode EWMA en utilisant des limites de contrôle unilatérales avec "redémarrage" pour surveiller le ratio de deux variables normales. Comme largement discuté par Castagliola et al. (2011), la décision de mettre en œuvre deux cartes de contrôle EWMA unilatérales distinctes au lieu d'une unique carte de contrôle EWMA bilatérale est motivée par les raisons suivantes :

- la distribution du ratio est *asymétrique* : par conséquent, la conception de différentes limites de contrôle permet d'obtenir les valeurs de l'*ARL* sous-contrôle identique pour les deux cartes de contrôle EWMA unilatérales ;
- il y a plus de flexibilité dans la conception de chaque carte de contrôle EWMA unilatérale : par exemple, si le qualiticien sait dans quelle direction la condition hors-contrôle peut se produire plus souvent que les autres, alors la valeur des limites de contrôle de la carte de contrôle EWMA unilatérale peut être réglée de manière à avoir un une sensibilité plus élevée;
- le problème bien connu de l'inertie de la carte de contrôle EWMA bilatérale en raison de l'effet pondéré dans le temps des observations passées est surmonter en ajoutant un état de "redémarrage"

associé à chaque carte de contrôle EWMA unilatérale.

Pour calculer les propriétés statistiques des cartes de contrôle EWMA pour surveiller le ratio en utilisant des limites de contrôle unilatérales (notée cartes de contrôle EWMA-RZ par la suite), nous allons utiliser une approche similaire à celle de Celano and Castagliola (2016a).

4.2 Mise en œuvre des carte de contrôle EWMA-RZ

On suppose que p = 2 variables aléatoires continues X et Y distribuées selon une loi binormale sont corrélées avec un coefficient de corrélation sous-contrôle ρ_0 . Pour la caractéristique de qualité $Z = \frac{X}{Y}$, nous recueillons un échantillon de n couples indépendants $\{W_{i,1}, W_{i,2}, ..., W_{i,n}\}$ à chaque période d'échantillonnage i = 1, 2, ..., où chaque $W_{i,j} = (X_{i,j}, Y_{i,j})^T \sim N(\mu_{W,i}, \Sigma_{W,i}), j = 1, ..., n$, est un vecteur bivarié aléatoire de loi normale avec le vecteur moyen (2.16) et la matrice de variance-covariance (2.17). Comme dans Celano and Castagliola (2016a), on suppose qu'il est possible d'avoir $\mu_{W,i} \neq \mu_{W,k}$, et $\sigma_{W,i} \neq \sigma_{W,k}$, pour $i \neq k$. Nous supposons également que pour les deux variables X et Y il y a une relation linéaire $\sigma_{X,i} = \gamma_X \times \mu_{X,i}$ et $\sigma_{Y,i} = \gamma_Y \times \mu_{Y,i}$, où γ_X et γ_Y sont les coefficients de variation assumés connus et constants. Cette supposition vient du fait que de nombreuses caractéristiques de qualité ont une dispersion qui est proportionnelle à la moyenne de la population. Cela implique que, d'un échantillon à un autre, les valeurs de $\mu_{X,i}$ et $\mu_{Y,i}$ sont libres à changer mais les valeurs de $\sigma_{X,i}$ et $\sigma_{Y,i}$ doivent nécessairement changer proportionnellement par rapport à $\mu_{X,i}$ et $\mu_{Y,i}$.

Le but de ce chapitre est d'appliquer et d'évaluer la technique EWMA pour surveiller \hat{Z}_i dans (2.18). De même que dans Castagliola et al. (2011), nous proposons de définir les deux cartes de contrôle EWMA unilatérales suivantes :

• une première carte EWMA (notée EWMA-RZ⁻) visant à détecter une *diminution* de \hat{Z}_i et définie par

$$Y_i^- = \min(z_0, (1 - \lambda^-)Y_{i-1}^- + \lambda^- Z_i)$$
(4.1)

avec $Y_0^- = z_0$ comme valeur initiale et une unique limite de contrôle inférieure $LCL^- = K^- \times z_0$ (i.e. la limite de contrôle supérieure $UCL^- = z_0$). Pour cette carte de contrôle, une situation hors-contrôle est signalée dès que $Y_i^- < LCL^-$.

• une seconde carte EWMA (notée EWMA-RZ⁺) visant à détecter une *augmentation* de \hat{Z}_i et définie par

$$Y_i^+ = \max(z_0, (1 - \lambda^+)Y_{i-1}^+ + \lambda^+ \hat{Z}_i)$$
(4.2)

avec $Y_0^+ = z_0$ comme valeur initiale et une unique limite de contrôle supérieure $UCL^+ = K^+ \times z_0$ (i.e. la limite de contrôle inférieure $LCL^- = z_0$). Pour cette carte de contrôle, une situation horscontrôle est signalée dès que $Y_i^+ > UCL^+$.

où $\lambda^+ \in (0,1]$ et $K^+ > 1$ ($\lambda^- \in (0,1]$ et $K^- < 1$) sont respectivement le paramètre de lissage et les paramètres de la carte EWMA-RZ⁺ (EWMA-RZ⁻). Le calcul de la valeur optimale de lissage et des paramètres de la carte (λ^-, K^-) and (λ^+, K^+) est expliqué dans la section suivante.

4.3 Optimisation ARL pour les cartes de contrôle EWMA-RZ

Nous supposons que l'apparition d'une situation hors contrôle fait passer la valeur nominale du ratio z_0 à une valeur $z_1 = \tau \times z_0$, où $\tau > 0$ quantifie l'amplitude du changement. Les valeurs de $\tau \in (0, 1)$ correspondent à une diminution du ratio nominale z_0 , alors que des valeurs de $\tau > 1$ correspondent à une augmentation de z_0 . Nous considérons aussi que lorsqu'une situation hors-contrôle apparait, le coefficient de corrélation peut passer de la valeur $\rho = \rho_0$ à la valeur $\rho = \rho_1$. Concernant les cartes de contrôle EWMA-RZ, la séquence de points tracés sur ces cartes peut être modélisée comme un processus stochastique. Les propriétés du run lenght des cartes EWMA-RZ peuvent être obtenues en utilisant l'approche de la chaîne de Markov initialement proposé par Brook and Evans (1972). Selon cette approche, l'intervalle entre les limites de contrôle d'une carte EWMA est divisé en plusieurs sous-intervalles contigus de sorte que la chaîne de Markov a p + 2 états, où les états $0, 1, \dots, p$ appartiennent à l'intervalle de contrôle et sont transitoires et l'état p + 1 coïncide avec une situation hors-contrôle et est absorbant. La matrice P des probabilités de transition de la chaine de Markov discrète est

$$\mathbf{P} = \begin{pmatrix} \mathbf{Q} & \mathbf{r} \\ \mathbf{0}^T & 1 \end{pmatrix} = \begin{pmatrix} Q_{0,0} & Q_{0,1} & \dots & Q_{0,p} & r_0 \\ Q_{1,0} & Q_{1,1} & \dots & Q_{1,p} & r_1 \\ \vdots & \vdots & & \vdots \\ Q_{p,0} & Q_{p,1} & \dots & Q_{p,p} & r_p \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix},$$

où \mathbf{Q} est la matrice (p+1, p+1) des probabilités correspondant aux états transitoires, $\mathbf{0} = (0, 0, \dots, 0)^T$ et le vecteur $\mathbf{r}_{(p+1)}$ satisfait $\mathbf{r} = (\mathbf{1} - \mathbf{Q}\mathbf{1})$ (i.e. la somme des probabilités est égale à 1) avec $\mathbf{1} = (1, 1, \dots, 1)^T$. Le vecteur $\mathbf{q}_{(p+1,1)}$ qui correspond aux probabilités initiales associées aux états transitoires est égal à $\mathbf{q} = (q_0, q_1, \dots, q_p)^T$. Le nombre d'étapes jusqu'à ce que le processus atteigne l'état absorbant (i.e. le run length) est une variable aléatoire RL de type Phase discrète (DPH) de paramètres (\mathbf{Q}, \mathbf{q}), (voir Neuts (1981) or Latouche and Ramaswami (1999)). Par conséquent, la moyenne (ARL) et l'écart-type (SDRL) du run length RL des cartes EWMA-RZ unilatérales sont égaux à

$$ARL = \nu_1, \tag{4.3}$$

$$SDRL = \sqrt{\mu_2},$$
 (4.4)

avec

$$\nu_1 = \mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{1}, \tag{4.5}$$

$$\nu_2 = 2\mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-2} \mathbf{Q} \mathbf{1}, \qquad (4.6)$$

$$\mu_2 = \nu_2 - \nu_1^2 + \nu_1. \tag{4.7}$$

Les valeurs de ARL et SDRL des cartes de contrôle EWMA-RZ⁻ et EWMA-RZ⁺ peut être évaluées numériquement en utilisant les formules présentées au dessus. Sans perte de généralité, nous supposons dans la partie restante de la cette section que $z_0 = 1$. Pour la carte de contrôle EWMA-RZ⁺, l'intervalle entre $z_0 = 1$ et $UCL^+ = K^+ > 1$ (voir la Figure 4.1) est divisé en p sous-intervalles de largeur 2δ , où $\delta = \frac{K^+ - 1}{2p}$. Pour la carte de contrôle EWMA-RZ⁻, l'intervalle entre $z_0 = 1$ et $LCL^- = K^- < 1$ est divisé en p sous-intervalles de largeur 2δ , où $\delta = \frac{1-K^-}{2p}$. Par définition, chaque H_j , $j = 1, \ldots, p$, représente le point médian du jème sous-intervalle et $H_0 = z_0 = 1$ correspond à l'état de "redémarrage" des cartes EWMA-RZ (i.e. le max(...) et le min(...) dans respectivement (4.2) and (4.1)). Lorsque le nombre p de sous-intervalles est suffisamment grand, (disons p = 200), cette approche finie fournit une méthode efficace qui permet d'évaluer avec précision les propriétés du run-length des cartes EWMA-RZ. Dans notre cas particulier, l'élément générique $Q_{i,j}$, $i = 0, 1, \ldots, p$, de la matrice Q des probabilités de transition est égal à

• si j = 0 (pour la carte EWMA-RZ⁺),

$$Q_{i,0} = F_{\hat{Z}_i} \left(\frac{1 - (1 - \lambda^+)H_i}{\lambda^+} \middle| \gamma_X, \gamma_Y, \tau, \rho_1 \right)$$
(4.8)

• si j = 0 (pour la carte EWMA-RZ⁻),

$$Q_{i,0} = 1 - F_{\hat{Z}_i} \left(\frac{1 - (1 - \lambda^-) H_i}{\lambda^-} \middle| \gamma_X, \gamma_Y, \tau, \rho_1 \right)$$
(4.9)

FIGURE 4.1 : Discrétisation de l'intervalle entre $z_0 = 1$ et $UCL^+ = K^+$ en p de sous-intervalles de largeur 2δ pour la cartes de contrôle EWMA-RZ⁺.

• si j = 1, 2, ..., p (pour les cartes EWMA-RZ⁻ et EWMA-RZ⁺),

$$Q_{i,j} = F_{\hat{Z}_i} \left(\frac{H_j + \delta - (1 - \lambda)H_i}{\lambda} \middle| \gamma_X, \gamma_Y, \tau, \rho_1 \right) -F_{\hat{Z}_i} \left(\frac{H_j - \delta - (1 - \lambda)H_i}{\lambda} \middle| \gamma_X, \gamma_Y, \tau, \rho_1 \right)$$
(4.10)

où $F_{\hat{Z}_i}(\ldots)$ est le c.d.f. de \hat{Z}_i comme défini dans (2.22) et où λ dans (4.10) est soit λ^+ ou λ^- . Enfin, concernant le vecteur q des probabilités initiales, celui-ci est égal à $\mathbf{q} = (1, 0, \ldots, 0)$.

Dans la pratique, la conception des cartes de contrôle EWMA-RZ⁻ et EWMA-RZ⁺ consiste à sélectionner les couples optimaux (λ^{-*}, K^{-*}) ou (λ^{+*}, K^{+*}) qui minimisent l'ARL hors-contrôle pour des dérives prévus du ratio sous-contrôle et du coefficient de corrélation soumis à une contrainte sur ARL sous-contrôle. Ces couples optimaux peuvent être obtenus en utilisant les deux étapes de la procédure d'optimisation suivantes :

- 1. Trouver l'ensemble des couples (λ^-, K^-) ou (λ^+, K^+) tel que $ARL = ARL_0$ (où ARL_0 est une valeur prédéfinie "sous-contrôle" de l'ARL).
- Choisir, parmi ces couples (λ⁻, K⁻) ou (λ⁺, K⁺), le couple (λ^{-*}, K^{-*}) ou (λ^{+*}, K^{+*}) qui fournit la meilleure performance statistique, i.e. la plus petit valeur "hors-contrôle" de l'ARL pour un changement d'amplitude τ dans le ratio sous-contrôle z₀ et pour un déplacement particulier du coefficient de corrélation de ρ = ρ₀ à ρ = ρ₁.

Afin de trouver ces combinaisons optimales (λ^{-*}, K^{-*}) nous utilisons simultanément un algorithme de résolution d'équations non-linéaires et un algorithme d'optimisation du logiciel Scicoslab (www.scicoslab.org) Pour des valeurs fixées de $n, \gamma_X, \gamma_Y, \rho_0$, et $\tau = 1$ nous recherchons les combinaisons optimales (λ, K) tel que $ARL(\lambda, K, n, \gamma_X, \gamma_Y, \rho_0, \tau = 1) = ARL_0 = 200$ (en utilisant le solveur d'équations non-linéaires) minimisant $ARL(\lambda, K, n, \gamma_X, \gamma_Y, \rho_0, \tau \neq 1)$ (en utilisant l'optimiseur).

	(7	$\gamma_X = 0.01, \gamma_Y = 0.00$)1)	(*	$\gamma_X = 0.2, \gamma_Y = 0.2$	2)
au	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = \rho_1$	= -0.8		
0.90	(0.9999, 0.9523)	(1.0000, 0.9784)	(1.0000, 0.9875)	(0.0500, 0.9068)	(0.0847, 0.9288)	(0.2102, 0.9218)
0.95	(0.7598, 0.9618)	(0.9999, 0.9784)	(1.0000, 0.9875)	(0.0500, 0.9068)	(0.0500, 0.9507)	(0.0688, 0.9621)
0.98	(0.2053, 0.9840)	(0.6399, 0.9848)	(1.0000, 0.9875)	(0.0500, 0.9068)	(0.0500, 0.9507)	(0.0500, 0.9696)
0.99	(0.0743, 0.9917)	(0.2414, 0.9920)	(0.5153, 0.9924)	(0.0500, 0.9068)	(0.0500, 0.9507)	(0.0500, 0.9696)
1.01	(0.0764, 1.0088)	(0.2320, 1.0079)	(0.5061, 1.0076)	(0.0500, 1.2253)	(0.0500, 1.0714)	(0.0500, 1.0376)
1.02	(0.1927, 1.0159)	(0.6125, 1.0150)	(0.9998, 1.0127)	(0.0500, 1.2253)	(0.0500, 1.0714)	(0.0500, 1.0376)
1.05	(0.6980, 1.0375)	(0.9998, 1.0221)	(1.0000, 1.0127)	(0.0500, 1.2253)	(0.0500, 1.0714)	(0.0733, 1.0482)
1.10	(1.0000, 1.0501)	(1.0000, 1.0221)	(1.0000, 1.0127)	(0.0500, 1.2253)	(0.0843, 1.0993)	(0.1701, 1.0823)
			$\rho_0 = \rho_1$	= -0.4		
0.90	(1.0000, 0.9578)	(1.0000, 0.9809)	(1.0000, 0.9889)	(0.0500, 0.9143)	(0.1062, 0.9256)	(0.2531, 0.9218)
0.95	(0.8789, 0.9621)	(0.9999, 0.9809)	(1.0000, 0.9889)	(0.0500, 0.9143)	(0.0500, 0.9557)	(0.0831, 0.9616)
0.98	(0.2429, 0.9843)	(0.7569, 0.9848)	(0.9995, 0.9889)	(0.0500, 0.9143)	(0.0500, 0.9557)	(0.0500, 0.9729)
0.99	(0.0885, 0.9917)	(0.2819, 0.9922)	(0.6242, 0.9924)	(0.0500, 0.9143)	(0.0500, 0.9557)	(0.0500, 0.9729)
1.01	(0.0874, 1.0085)	(0.2771, 1.0078)	(0.6086, 1.0076)	(0.0500, 1.1880)	(0.0500, 1.0615)	(0.0500, 1.0327)
1.02	(0.2316, 1.0157)	(0.7238, 1.0150)	(1.0000, 1.0112)	(0.0500, 1.1880)	(0.0500, 1.0615)	(0.0500, 1.0327)
1.05	(0.8176, 1.0373)	(1.0000, 1.0195)	(1.0000, 1.0112)	(0.0500, 1.1880)	(0.0500, 1.0615)	(0.0849, 1.0461)
1.10	(1.0000, 1.0441)	(1.0000, 1.0195)	(1.0000, 1.0112)	(0.0500, 1.1880)	(0.0969, 1.0937)	(0.2004, 1.0797)
	x · · · · · · · · · · · · · · · · · · ·	x		-0.0		x
0.90	(1,0000,0,9642)	(1,0000,0,0838)	$p_0 = p_1^2$ (1,0000,0,0006)	(0.0500, 0.0230)	(0.1302, 0.0235)	(0.3178, 0.0228)
0.90	(1.0000, 0.9042) (1.0000, 0.9642)	(1.0000, 0.9838)	(1.0000, 0.9900) (1.0000, 0.9906)	(0.0500, 0.9239) (0.0500, 0.9239)	(0.1392, 0.9235) (0.0500, 0.9616)	(0.3178, 0.3228) (0.1088, 0.9607)
0.95	(1.0000, 0.0042) (0.3091, 0.9845)	(0.9303, 0.9800) (0.9201, 0.9849)	(1.0000, 0.0000) (0.0000, 0.0000)	(0.0500, 0.9239) (0.0500, 0.9239)	(0.0500, 0.9010) (0.0500, 0.9617)	(0.1000, 0.9001) (0.0500, 0.9768)
0.90	(0.3031, 0.3049) (0.1120, 0.9919)	(0.3201, 0.3043) (0.3605, 0.9923)	(0.3333, 0.3300) (0.7762, 0.9924)	(0.0500, 0.9239) (0.0500, 0.9239)	(0.0500, 0.9017) (0.0500, 0.9616)	(0.0500, 0.9708) (0.0500, 0.9768)
1.01	(0.1120, 0.0010) (0.1148, 1.0085)	(0.3000, 0.3020) (0.3478, 1.0076)	(0.7702, 0.0021) (0.7592, 1.0076)	(0.0500, 0.0200) (0.0500, 1.1488)	(0.0500, 0.0010) (0.0500, 1.0506)	(0.0500, 0.9100) (0.0500, 1.0273)
1.01	(0.2971, 1.0000)	(0.8993, 1.0010)	(0.1092, 1.0010) (0.9999, 1.0094)	(0.0500, 1.1188)	(0.0500, 1.0500) (0.0500, 1.0506)	(0.0500, 1.0273)
1.02	(0.2971, 1.0100) (0.9934, 1.0369)	(0.0999, 1.0100) (0.9999, 1.0164)	(0.0000, 1.0001) (1.0000, 1.0095)	(0.0500, 1.1188)	(0.0500, 1.0500) (0.0545, 1.0536)	(0.0000, 1.0210) (0.1040, 1.0438)
1.10	(1.0000, 1.0371)	(1.0000, 1.0104)	(1.0000, 1.0095)	(0.0500, 1.1488)	(0.0010, 1.0000) (0.1179, 1.0876)	(0.2534, 1.0772)
	()	()	(,)	0.4	(()
0.00	(1,0000,0,0722)	(1,0000,0,0875)	$\rho_0 = \rho_1$ (1.0000_0.00027)	1 = 0.4	(0.2040, 0.0226)	(0.4566, 0.0224)
0.90	(1.0000, 0.9722)	(1.0000, 0.9875)	(1.0000, 0.9927) (1.0000, 0.0027)	(0.0500, 0.9371) (0.0500, 0.0271)	(0.2040, 0.9220) (0.0661, 0.0628)	(0.4300, 0.9234) (0.1600, 0.0605)
0.95	(0.9999, 0.9722) (0.4465, 0.0847)	(1.0000, 0.9875)	(1.0000, 0.9927) (1.0000, 0.0027)	(0.0500, 0.9371) (0.0500, 0.0271)	(0.0001, 0.9028) (0.0658, 0.0620)	(0.1000, 0.9003) (0.0501, 0.0817)
0.98	(0.4405, 0.9847) (0.1642, 0.0010)	(0.9999, 0.9875) (0.5100, 0.0025)	(1.0000, 0.9927) (0.0002, 0.0027)	(0.0500, 0.9371) (0.0500, 0.0271)	(0.0058, 0.9029) (0.0658, 0.0620)	(0.0501, 0.9817) (0.0500, 0.0817)
1.01	(0.1043, 0.9919) (0.1584, 1.0081)	(0.5109, 0.9925) (0.5075, 1.0076)	(0.9992, 0.9927) (0.0034, 1.0073)	(0.0500, 0.9571) (0.0500, 1.1063)	(0.0058, 0.9029) (0.0500, 1.0380)	(0.0500, 0.9817) (0.0500, 1.0207)
1.01	(0.1304, 1.0001) (0.4173, 1.0140)	(0.3073, 1.0070) (0.9000, 1.0127)	(0.9954, 1.0073) (0.9985, 1.0073)	(0.0500, 1.1003) (0.0500, 1.1063)	(0.0500, 1.0500) (0.0500, 1.0380)	(0.0500, 1.0207) (0.0500, 1.0207)
1.02	(0.4170, 1.0145) (0.9000, 1.0286)	(0.0000, 1.0127) (1.0000, 1.0127)	(0.9900, 1.0073) (1.0000, 1.0073)	(0.0500, 1.1003) (0.0500, 1.1063)	(0.0500, 1.0500) (0.0699, 1.0472)	(0.0000, 1.0207) (0.1465, 1.0415)
1.05	(0.9999, 1.0286)	(1.0000, 1.0127) (1.0000, 1.0127)	(1.0000, 1.0073) (1.0000, 1.0073)	(0.0540, 1.1005) (0.0540, 1.1115)	(0.0035, 1.0412) (0.1638, 1.0813)	(0.1400, 1.0410) (0.3632, 1.0744)
1.10	(0.0000, 1.0200)	(1.0000, 1.0121)	(1.0000, 1.0010)	(0.0010, 1.1110)	(0.1000, 1.0010)	(0.0002, 1.0111)
0.00	(1 0000 0 0828)	(1,0000,0,00027)	$\rho_0 = \rho_1$ (1.0000, 0.0058)	1 = 0.8	(0.4248.0.0248)	(0.0250.0.0228)
0.90	(1.0000, 0.9838)	(1.0000, 0.9927) (1.0000, 0.0027)	(1.0000, 0.9958)	(0.1145, 0.9291) (0.0500, 0.0500)	(0.4546, 0.9246) (0.1562, 0.0608)	(0.9250, 0.9256) (0.2485, 0.0610)
0.95	(1.0000, 0.9000)	(1.0000, 0.9927)	(1.0000, 0.9900)	(0.0500, 0.9599)	(0.1302, 0.9008)	(0.0400, 0.9019) (0.0016, 0.0027)
0.98	(0.9197, 0.9890) (0.3597, 0.0024)	(1.0000, 0.9927)	(1.0000, 0.9938)	(0.0500, 0.9599)	(0.0500, 0.9815)	(0.0910, 0.9837) (0.0501, 0.0801)
0.99	(0.3327, 0.3324) (0.3488, 1.0076)	(0.3331, 0.3321) (0.0053, 1.0072)	(0.3333, 0.3330) (1,0000, 1,0042)	(0.0500, 0.9599) (0.0500, 1.0545)	(0.0500, 0.9010)	(0.0501, 0.9691) (0.0500, 1.0116)
1.01	(0.3400, 1.0070) (0.8004, 1.0150)	(0.3333, 1.0073) (0.0005, 1.0073)	(1.0000, 1.0042)	(0.0500, 1.0545) (0.0500, 1.0545)	(0.0500, 1.0209)	(0.0000, 1.0110) (0.0005, 1.0172)
1.02	(0.0334, 1.0130) (1.0000, 1.0164)	(0.3335, 1.0073) (1.0000, 1.0073)	(1.0000, 1.0042)	(0.0500, 1.0545) (0.0500, 1.0545)	(0.0500, 1.0209) (0.1413, 1.0410)	(0.0300, 1.0172) (0.3080, 1.0277)
1.03	(1.0000, 1.0104)	(1.0000, 1.0073)	(1.0000, 1.0042)	(0.0300, 1.0343) (0.0027, 1.0830)	(0.1410, 1.0410) (0.2452, 1.0720)	(0.3009, 1.0377) (0.8040, 1.0740)
1.10	(1.0000, 1.0104)	(1.0000, 1.0073)	(1.0000, 1.0042)	(0.0957, 1.0820)	(0.5452, 1.0750)	(0.0049, 1.0740)

TABLE 4.1 : Valeurs de (λ^{-*}, K^{-*}) lorsque $\tau \in \{0.90, 0.95, 0.98, 0.99\}$ et (λ^{+*}, K^{+*}) lorsque $\tau \in \{1.01, 1.02, 1.05, 1.10\}$ pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}$ et $ARL_0 = 200$.

4.4 Analyse numérique

Les couples optimaux des paramètres de conception (λ^{-*}, K^{-*}) ou (λ^{+*}, K^{+*}) pour les deux cartes de contrôle EWMA-RZ unilatérales ont été sélectionnés en limitant l'*ARL* sous-contrôle à la valeur *ARL*₀ = 200. A titre de comparaison, les valeurs de n, γ_X , γ_Y , ρ_0 , ρ_1 et τ pris en compte dans ce chapitre sont les mêmes que ceux examinés par Celano and Castagliola (2016a) i.e. $n \in \{1, 5, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}$, $\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}$ pour les conditions $\gamma_X = \gamma_Y$, $\gamma_X \neq \gamma_Y$, $\rho_0 = \rho_1$ et $\rho_0 \neq \rho_1$. Les couples optimaux (λ^{-*}, K^{-*}) et (λ^{+*}, K^{+*}) dans la Table 4.1 correspondent à la carte EWMA-RZ⁻ lorsque $\tau \in \{0.90, 0.95, 0.98, 0.99, 0.99\}$ et correspondent à la carte EWMA-RZ⁺ lorsque $\tau \in \{1.01, 1.02, 1.05, 1.10\}$. Pour des raisons de calcul, (i.e. convergence de la chaîne de Markov), les valeurs optimales pour λ^+ et λ^- sont toujours plus grandes que 0.05. Par souci de concision, la Table 4.1 présente uniquement les paramètres de conception optimaux pour la condition $\gamma_X = \gamma_Y$. Quelques conclusions simples peuvent être tirées de la Table 4.1

- lorsque $\Delta_{\tau} = |\tau 1|$ augmente, les valeurs de λ^{-*} et λ^{+*} augmentent et tendent vers 1. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.01), \rho_0 = \rho_1 = -0.8$ et n = 15 nous avons $\lambda^- = 0.5153(1.0000)$ si $\tau = 0.99(0.90)$, i.e. $\Delta_{\tau} = 0.01(0.1)$ et nous avons $\lambda^+ = 0.0764(1.0000)$ si $\tau = 1.01(1.10)$, i.e. $\Delta_{\tau} = 0.01(0.1)$. En outre, les valeurs de K^- diminuent et les valeurs de K^+ augmentent à mesure que Δ_{τ} augmente. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2), \rho_0 = \rho_1 = -0.8$ et n = 15 nous avons $K^- = 0.9696(0.9218)$ si $\tau = 0.99(0.90)$, i.e. $\Delta_{\tau} = 0.01(0.1)$ et nous avons $K^+ = 1.0376(1.0823)$ si $\tau = 1.01(1.10)$, i.e. $\Delta_{\tau} = 0.01(0.1)$.
- pour des valeurs fixées de (γ_X, γ_Y), ρ₀ et τ les valeurs de λ^{-*} et λ^{+*} changent avec n et, en particulier, λ^{-*} et λ^{+*} augmentent à mesure que n augmente. Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.01) et ρ₀ = ρ₁ = 0.4, τ = 0.98(1.02) nous avons λ⁻ = 0.4465 (λ⁺ = 0.4173) si n = 1 et nous avons λ⁻ = 1.0000 (λ⁺ = 0.9985) si n = 15.
- lorsque γ_X = γ_Y, pour des valeurs fixées de n, ρ₀ et τ, les valeurs de (λ^{-*}, K^{-*}) et (λ^{+*}, K^{+*}) dépendent de (γ_X, γ_Y). En particulier, avec de plus petites valeurs du coefficients de variation (γ_X, γ_Y), les valeurs de λ^{-*} et λ^{+*} sont plus grandes. En outre, les valeurs de K⁻ augmentent et les valeurs de K⁺ diminuent lorsque les coefficients de variation (γ_X, γ_Y) augmentent. Par exemple, lorsque n = 1, ρ₀ = ρ₁ = 0.4 et τ = 1.02 nous avons λ⁺ = 0.4143 et K⁺ = 1.0149 lorsque (γ_X, γ_Y) = (0.01, 0.01) et nous avons λ⁺ = 0.0500 et K⁺ = 1.1063 lorsque (γ_X, γ_Y) = (0.2, 0.2).

Les valeurs hors-contrôle ARL_1 pour les cartes de contrôle Shewhart-RZ et EWMA-RZ sont représentées sur la Figure 4.2 (pour $\gamma_X = \gamma_Y$) et sur la Figure 4.3 (pour $\gamma_X \neq \gamma_Y$), pour $n \in \{1, 15\}$ et lorsque le processus passe d'un état sous-contrôle à un état hors-contrôle sans un changement dans la corrélation entre X et Y, i.e. $\rho_0 = \rho_1 = \rho$. Les principaux résultats présentés dans les figures 4.2 et 4.3 peuvent être résumés comme suit, (nous faisons aussi référence au SDRL même s'il n'apparait pas dans les figures 4.2 et 4.3) :

- la performance des cartes de contrôle EWMA-RZ unilatérales est fortement influencée par (γ_X, γ_Y) et ρ_0 . Plus les coefficients de variation (γ_X, γ_Y) sont petits, plus les cartes de contrôle EWMA-RZ détectent rapidement une situation hors-contrôle. Par exemple, lorsque $\rho_0 = 0.4$, n = 15 et $\tau = 0.99$, nous obtenons $ARL_1 = 1.2$ et $SDRL_1 = 0.5$ si $(\gamma_X, \gamma_Y) = (0.01, 0.01)$; nous obtenons $ARL_1 =$ 63.5 et $SDRL_1 = 53.0$ si $(\gamma_X, \gamma_Y) = (0.2, 0.2)$. La présence d'une corrélation négative ($\rho_0 < 0$), entre les variables aléatoires X et Y réduit le sensibilité de la carte. Par exemple, si $(\gamma_X, \gamma_Y) =$ (0.2, 0.2), $\tau = 0.99$, n = 15 et $\rho_0 = -0.4$ nous avons $ARL_1 = 90.1$ et $SDRL_1 = 79.5$, comparé à $ARL_1 = 63.5$ et $SDRL_1 = 53.0$ si $\rho_0 = 0.4$.
- pour une corrélation positive entre les variables aléatoires X et Y, n ≥ 1 et (γ_X, γ_Y) = (0.01, 0.01), les cartes de contrôle EWMA-RZ unilatérales sont très sensibles à un changement dans le processus, i.e. nous avons ARL₁ ≃ 1 et SDRL₁ ≃ 0 lorsque τ < 0.99 ou τ > 1.01, voir par exemple Figure 4.2 pour n = 15.

- on peut voir que, pour une même valeur absolue Δ_Z = 100 × Δ_τ, la performance statistique des cartes EWMA-RZ n'est pas identique. En outre, la différence de performance dépend de (γ_X, γ_Y). Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.01), n = 1, ρ₀ = 0.4, et τ = 0.98 (1.02), i.e. Δ_Z = 2% nous avons ARL₁ = 3.1 et SDRL₁ = 1.7 (ARL₁ = 3.2 et SDRL₁ = 1.7) pour la carte EWMA-RZ⁻ (EWMA-RZ⁺), voir la Figure 4.2. De même, lorsque (γ_X, γ_Y) = (0.01, 0.2), n = 1, ρ₀ = 0.4 et τ = 0.98 (1.02), on a ARL₁ = 97.0 et SDRL₁ = 88.9 (ARL₁ = 112.6 et SDRL₁ = 96.4) pour la carte EWMA-RZ⁻ (EWMA-RZ⁺), voir la Figure 4.3.
- enfin, pour la même valeur de Δ_Z , la performance statistique des cartes EWMA-RZ est plus élevée lorsque $\tau < 1$ et $\gamma_X = \gamma_Y$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, n = 1, $\rho_0 = 0.4$ et $\tau = 0.98 (1.02)$, i.e. $\Delta_Z = 2\%$ nous avons $ARL_1 = 109.7$ et $SDRL_1 = 100.2$ ($ARL_1 = 111.2$ et $SDRL_1 = 97.4$) pour la carte de contrôle EWMA-RZ⁻ (EWMA-RZ⁺). Inversement, lorsque $\gamma_X \neq \gamma_Y$, la tendance de sensibilité des cartes EWMA-RZ dépend de la plus petite valeur du coefficient de variation entre γ_X et γ_Y . Plus précisément, pour $\gamma_X < \gamma_Y$, la performance statistique des cartes EWMA-RZ est plus élevée lorsque $\tau < 1$. En revanche, pour $\gamma_X > \gamma_Y$, la performance statistique des cartes et set plus élevée lorsque $\tau < 1$. En revanche, pour $\gamma_X > \gamma_Y$, la performance statistique des cartes EWMA-RZ est plus élevée lorsque $\tau > 1$. Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.2), n = 1, $\rho_0 = 0.4$ et $\tau = 0.98 (1.02)$ nous avons $ARL_1 = 97.0$ et $SDRL_1 = 88.9 (ARL_1 = 112.6$ et $SDRL_1 = 96.4$) pour la carte EWMA-RZ⁻ (EWMA-RZ⁺). A l'inverse, lorsque (γ_X, γ_Y) = (0.2, 0.01), nous obtenons $ARL_1 = 103.0$ et $SDRL_1 = 91.1 (ARL_1 = 92.1$ et $SDRL_1 = 81.1$) pour la carte EWMA-RZ⁻ (EWMA-RZ⁺).

Les figures 4.4 et 4.5 présentent les valeurs hors-contrôles de ARL_1 des cartes de contrôle Shewhart-RZ et EWMA-RZ lorsque $\rho_0 \neq \rho_1$ et, plus particulièrement, pour les coefficients de corrélation sous-contrôle $\rho_0 = \pm 0.4$ et des changements de ρ_0 à $\rho_1 = 0.5 \times \rho_0$ et $\rho_1 = 2 \times \rho_0$, i.e. $(\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}$. Il convient de noter que, lorsque $\tau = 1$, i.e. lorsque la cause assignable ne fait que déplacer le coefficient de corrélation ρ_0 , mais pas le ratio nominal z_0 , on a $ARL_0 \neq 200$. Les résultats obtenus montrent que quelque soit la taille du changement :

- la diminution d'une corrélation négative détériore la sensibilité de la carte de contrôle. Par exemple, lorsque (γ_X, γ_Y) = (0.2, 0.2), n = 1, ρ₁ = 0.5 × ρ₀ = -0.2 et τ = 0.98, nous avons ARL₁ = 161.6 et SDRL₁ = 151.8 pour la carte EWMA-RZ⁻. Si ρ₁ = ρ₀ = -0.4, nous avons ARL₁ = 134.1 et SDRL₁ = 125.3. L'inverse se produit si le niveau de corrélation positive augmente, par exemple, lorsque ρ₁ = 2 × ρ₀ = -0.8 nous avons ARL₁ = 86.5 et SDRL₁ = 84.3 pour la carte EWMA-RZ⁻.
- la diminution d'une corrélation positive améliore la sensibilité de la carte de contrôle. Par exemple, lorsque (γ_X, γ_Y) = (0.2, 0.01), n = 1, ρ₁ = 0.5 × ρ₀ = 0.2 et τ = 1.02, nous avons ARL₁ = 109.4 et SDRL₁ = 93.5 pour la carte EWMA-RZ⁺. Si ρ₁ = ρ₀ = 0.4, nous avons ARL₁ = 92.1 et SDRL₁ = 81.1. L'inverse se produit si le niveau la corrélation positive augmente, par exemple, lorsque ρ₁ = 2 × ρ₀ = 0.8 nous avons ARL₁ = 119.6 et SDRL₁ = 102.9 pour la carte EWMA-RZ⁺.

Une comparaison avec les valeurs ARL_1 pour la carte de contrôle Shewhart-RZ obtenue dans Celano and Castagliola (2016a) montre que, en général, les cartes de contrôle EWMA-RZ sont plus efficaces que la carte de contrôle Shewhart-RZ lorsque $\tau \in [0.9, 1) \cup (1, 1.1]$, i.e pour les petites et moyennes tailles de changement du ratio sous-contrôle z_0 .

De manière similaire au chapitre précédent, afin d'avoir un indicateur de performance global, quelque soit la dérive τ , nous allons aussi utiliser la notion d'*EARL*. Dans le cas des cartes de contrôle EWMA-RZ, la conception optimale consiste à trouver les *nouveau* couples optimaux uniques (λ^{-*}, K^{-*}) ou (λ^{+*}, K^{+*}) en fonction de la carte de contrôle sélectionné, de telle sorte que

• Pour la cate EWMA-RZ⁻ :

$$(\lambda^{-*}, K^{-*}) = \operatorname*{argmin}_{(\lambda^{-}, K^{-})} EARL(n, K^{-}, \lambda^{-}, \gamma_X, \gamma_Y, \rho_0, \rho_1)$$

FIGURE 4.2 : Valeurs de ARL_1 pour les cartes EWMA-RZ (- \square -) et RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$.

FIGURE 4.3 : Valeurs de ARL_1 pour les cartes EWMA-RZ (- \square -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \ \gamma_Y \in \{0.01, 0.2\}, \ \gamma_X \neq \gamma_Y, \ \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \ \rho_0 = \rho_1, \ \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, \ n \in \{1, 15\}$ et $ARL_0 = 200$.

FIGURE 4.4 : Valeurs de ARL_1 pour les cartes EWMA-RZ (- \square -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$.

FIGURE 4.5 : Valeurs de ARL_1 pour les cartes EWMA-RZ (- \square -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$.

sous la contrainte

$$ARL(n, K^-, \lambda^-, \gamma_X, \gamma_Y, \rho_0, \rho_1 = \rho_0, \tau = 1) = ARL_0,$$

• Pour la carte EWMA-RZ⁺ :

$$(\lambda^{+*}, K^{+*}) = \operatorname*{argmin}_{(\lambda^+, K^+)} EARL(n, K^+, \lambda^+, \gamma_X, \gamma_Y, \rho_0, \rho_1)$$

sous la contrainte

$$ARL(n, K^+, \lambda^+, \gamma_X, \gamma_Y, \rho_0, \rho_1 = \rho_0, \tau = 1) = ARL_0.$$

Nous avons fixé $ARL_0 = 200$. Les tables 4.2 et 4.3 donnent les valeurs du EARL pour $\Omega = [0.9, 1)$ (pour le cas d'une diminution, notée (D) dans les tables 4.2 et 4.3) et $\Omega = (1, 1.1]$ (pour le cas d'une augmentation, notée (I) dans les tables 4.2 et 4.3) pour respectivement $\rho_0 = \rho_1$ et $\rho_0 \neq \rho_1$. Les résultats obtenus dans ces tables permettent de tirer des conclusions similaires à celles des tables 4.2 et 4.3, mais elles révèlent aussi quelque chose de plus :

- lorsque $\gamma_X = \gamma_Y$, les cartes EWMA-RZ ont une performance approximativement symétrique pour les valeurs petites de γ_X et γ_Y . Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.01)$, n = 5, $\rho_0 = -0.4$, nous avons EARL = 1.5 dans le cas d'une diminution et d'une augmentation, voir la Table 4.2. Cette constatation est indépendante d'un changement du coefficient de corrélation, voir la Table 4.3. Pour des plus grandes valeurs de γ_X et γ_Y , la sensibilité statistique dépend de la corrélation du coefficient hors-contrôle ρ_1 . Lorsque $\rho_1 = \rho_0$, la sensibilité statistique est légèrement meilleure pour $\Omega = [0.9, 1)$ que pour $\Omega = (1, 1.1]$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, n = 5, $\rho_0 = \rho_1 = -0.4$, nous avons EARL = 42.7 dans le cas d'une diminution et EARL = 44.2 dans le cas d'une augmentation, voir la Table 4.2. Lorsque $\rho_1 > \rho_0$, la sensibilité statistique est légèrement meilleure pour $\Omega = [0.9, 1)$ que pour $\Omega = (1, 1.1]$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, n = 5, $\rho_0 = 0.4$, $\rho_1 = 0.8$, on a EARL = 141.2 dans le cas d'une diminution et EARL = 186.6 dans le cas d'une augmentation. Lorsque $\rho_1 < \rho_0$ et $n \le 5$ la sensibilité statistique est légèrement meilleure pour $\Omega = (1, 1.1]$ que pour $\Omega = [0.9, 1)$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, n = 1, $\rho_0 = 0.4$, $\rho_1 = 0.8$, on a EARL = 141.2 dans le cas d'une diminution et EARL = 186.6 dans le cas d'une augmentation. Lorsque $\rho_1 < \rho_0$ et $n \le 5$ la sensibilité statistique est légèrement meilleure pour $\Omega = (1, 1.1]$ que pour $\Omega = [0.9, 1)$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, n = 1, $\rho_0 = 0.4$, $\rho_1 = 0.2$, nous avons EARL = 46.4 dans le cas d'une diminution et EARL = 43.8 dans le cas d'une augmentation, voir la Table 4.3.
- lorsque $\gamma_X \neq \gamma_Y$, la sensibilité statistique dépend des valeurs de γ_X et γ_Y . Si $\gamma_X < \gamma_Y$, la sensibilité statistique est meilleur pour $\Omega = [0.9, 1)$ que pour $\Omega = (1, 1.1]$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.2)$, n = 5, $\rho_0 = \rho_1 = -0.4$, nous avons EARL = 26.1 dans le cas d'une diminution et EARL = 29.4 dans le cas d'une augmentation, voir la Table 4.2. La situation inverse se produit pour $\gamma_X > \gamma_Y$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.01)$, n = 5, $\rho_0 = \rho_1 = -0.4$, nous avons EARL = 26.6 dans le cas d'une augmentation, voir la Table 4.2.

Une comparaison entre les valeurs d'*EARL* des cartes EWMA-RZ avec les valeurs d'*EARL* obtenues dans Celano and Castagliola (2016a) pour la carte Shewhart-RZ (voir les tables VI–VII dans cet article) est réalisée dans les tables 4.4 et 4.5. L'indicateur suivant est adopté pour la comparaison

$$\Delta_E = 100 \times \frac{EARL_{\text{Shewhart}-RZ} - EARL_{\text{EWMA}-RZ}}{EARL_{\text{Shewhart}-RZ}},$$
(4.11)

où $EARL_{\text{Shewhart}-RZ}$ ($EARL_{\text{EWMA}-RZ}$) est la valeur d'EARL pour la carte Shewhart-RZ (EWMA-RZ). Si $\Delta_E > 0$, alors la carte EWMA-RZ est meilleur que la carte Shewhart-RZ; si $\Delta_E < 0$, alors c'est la carte Shewhart-RZ qui est meilleur que la carte EWMA-RZ. Il est important de noter que Δ_E (pour le cas de changement aléatoire) ne doit pas être confondu avec Δ_Z (déjà introduit pour le cas déterministe). Les résultats (arrondis à l'entier le plus proche) présentés dans les tables 4.4 et 4.5 montrent que :

	$(\gamma_X =$	$0.01, \gamma_Y$	= 0.01)	$(\gamma_X =$	$= 0.2, \gamma_Y$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = \rho_1$	= -0.8		
(D)	4.4	1.7	1.2	90.2	47.7	28.7
(I)	4.5	1.7	1.2	94.7	49.2	29.8
			$\rho_0 = \rho_1$	0.4		
(D)	3.7	15	$p_0 - p_1$ 1 1	- 0.4 83 1	42.7	25.4
(D)	3.8	1.5	1.1	87.5	44.2	26.1
(1)	0.0	1.0	1.1	01.0	11.2	20.1
			$\rho_0 = \rho$	$p_1 = 0$		
(D)	3.0	1.4	1.1	74.0	36.8	21.5
(I)	3.1	1.4	1.1	78.2	38.1	22.3
			$\rho_0 = \rho$	$_{1} = 0.4$		
(D)	2.2	1.2	1.0	61.2	29.2	16.4
(I)	2.3	1.2	1.0	64.9	30.1	17.0
			0 — 0	- 0.8		
(\mathbf{D})	1 /	1.0	$p_0 = p_1$	1 - 0.8	16.6	8.8
(D) (I)	1.4	1.0	1.0	41.1	10.0 17.2	0.0 9.1
(1)	1.1	1.0	1.0	11.1	11.2	0.1
				·		
	$(\gamma_X =$	$0.01, \gamma_Y$	r = 0.2)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.01)
	$(\gamma_X = n = 1)$	$\begin{array}{c} 0.01, \gamma_Y \\ n = 5 \end{array}$	n = 0.2) n = 15	$\begin{array}{c} (\gamma_X = \\ n = 1 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$	= 0.01) n = 15
	$(\gamma_X = n = 1$	$0.01, \gamma_Y$ $n = 5$	$r = 0.2)$ $n = 15$ $\rho_0 = \rho_1$ 15.1	$\begin{array}{c} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ \hline 50.1 \end{array}$	$0.2, \gamma_Y$ $n = 5$	= 0.01) n = 15
(D)	$(\gamma_X = n = 1)$ 55.2	$\begin{array}{c} 0.01, \gamma_Y\\ n=5 \end{array}$	r = 0.2) n = 15 $\rho_0 = \rho_1$ 15.1 16.6	$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ \hline = -0.8 \\ 59.1 \\ 52.7 \end{array}$	$0.2, \gamma_Y$ $n = 5$ 28.2 27.2	= 0.01) n = 15 15.9 15.6
(D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.6\\ 29.9\\ \end{array} $		$(\gamma_X = \frac{n = 1}{-0.8}$ 59.1 53.7	$0.2, \gamma_Y$ n = 5 28.2 27.2	= 0.01) n = 15 15.9 15.6
(D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.6\\ 29.9\\ \end{array} $		$(\gamma_X = \frac{n = 1}{2})$ $= -0.8$ 59.1 53.7 $= -0.4$	$0.2, \gamma_Y$ n = 5 28.2 27.2	= 0.01) n = 15 15.9 15.6
(D) (I) (D)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.6\\ 29.9\\ 26.1\\ \end{array} $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \end{array} $	$0.2, \gamma_Y$ n = 5 28.2 27.2 27.7	= 0.01) $n = 15$ 15.9 15.6 15.6
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.6\\ 29.9\\ 26.1\\ 29.4\\ \end{array} $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ 28.2 27.2 27.7 26.6	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.6\\ 29.9\\ 26.1\\ 29.4\\ \end{array} $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ \gamma_1 = 0 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ 28.2 \\ 27.2\\ 27.7 \\ 26.6\\ \end{array} $	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3	$\begin{array}{c} 0.01, \gamma_{Y} \\ n = 5 \end{array}$ $\begin{array}{c} 26.6 \\ 29.9 \end{array}$ $\begin{array}{c} 26.1 \\ 29.4 \end{array}$ $\begin{array}{c} 25.6 \end{array}$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ p_1 = 0 \\ 57.4 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ 28.2 27.2 27.7 26.6 27.2	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3 67.2	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.6\\ 29.9 \end{array}$ $\begin{array}{c} 26.1\\ 29.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.9 \end{array}$		$ \frac{\gamma_X = n = 1}{\begin{array}{c} n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ p_1 = 0 \\ 57.4 \\ 51.9 \\ \end{array}} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ 28.2 27.2 27.7 26.6 27.2 26.1	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3 14.9
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3 67.2	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.6\\ 29.9 \end{array}$ $\begin{array}{c} 26.1\\ 29.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.9 \end{array}$		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ p_1 = 0 \\ 57.4 \\ 51.9 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ 28.2 27.2 27.7 26.6 27.2 26.1	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3 14.9
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3 67.2	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.6\\ 29.9 \end{array}$ $\begin{array}{c} 26.1\\ 29.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.9 \end{array}$		$ \begin{array}{r} \hline $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ 28.2 27.2 27.7 26.6 27.2 26.1	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3 14.9
(D) (I) (D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3 67.2 52.4	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.6\\ 29.9 \end{array}$ $\begin{array}{c} 26.1\\ 29.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.9 \end{array}$ $\begin{array}{c} 25.1 \end{array}$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ p_1 = 0 \\ 57.4 \\ 51.9 \\ 1 = 0.4 \\ 56.6 \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 28.2 \\ 27.2 \\ \\ 27.7 \\ 26.6 \\ \\ 27.2 \\ 26.1 \\ \\ 27.0 \\ \end{array}$	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3 14.9 14.9
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3 67.2 52.4 66.3	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.6\\ 29.9 \end{array}$ $\begin{array}{c} 26.1\\ 29.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.9 \end{array}$ $\begin{array}{c} 25.1\\ 28.4 \end{array}$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ p_1 = 0 \\ 57.4 \\ 51.9 \\ n = 0.4 \\ 56.6 \\ 51.0 \\ \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 28.2 \\ 27.2 \\ \\ 27.7 \\ 26.6 \\ \\ 27.2 \\ 26.1 \\ \\ 27.0 \\ 25.6 \end{array}$	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3 14.9 14.9 14.5
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3 67.2 52.4 66.3	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.6\\ 29.9 \end{array}$ $\begin{array}{c} 26.1\\ 29.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.9 \end{array}$ $\begin{array}{c} 25.1\\ 28.4 \end{array}$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ p_1 = 0 \\ 57.4 \\ 51.9 \\ n = 0.4 \\ 56.6 \\ 51.0 \\ n = 0.8 \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 28.2 \\ 27.2 \\ \\ 27.7 \\ 26.6 \\ \\ 27.2 \\ 26.1 \\ \\ 27.0 \\ 25.6 \end{array}$	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3 14.9 14.9 14.5
(D) (I) (D) (I) (D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3 67.2 52.4 66.3 51.4	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.6\\ 29.9 \end{array}$ $\begin{array}{c} 26.1\\ 29.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.9 \end{array}$ $\begin{array}{c} 25.1\\ 28.4 \end{array}$ $\begin{array}{c} 24.5 \end{array}$		$ \frac{\gamma_X = n = 1}{n = 1} = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ p_1 = 0 \\ 57.4 \\ 51.9 \\ n = 0.4 \\ 56.6 \\ 51.0 \\ n = 0.8 \\ 55.7 $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 28.2 \\ 27.2 \\ \\ 27.7 \\ 26.6 \\ \\ 27.2 \\ 26.1 \\ \\ 27.0 \\ 25.6 \\ \\ 26.2 \end{array}$	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3 14.9 14.9 14.5 14.6
(D) (I) (D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.2 68.9 54.3 68.0 53.3 67.2 52.4 66.3 51.4 65.4	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.6\\ 29.9 \end{array}$ $\begin{array}{c} 26.1\\ 29.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.9 \end{array}$ $\begin{array}{c} 25.1\\ 28.4 \end{array}$ $\begin{array}{c} 24.5\\ 27.8 \end{array}$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 59.1 \\ 53.7 \\ = -0.4 \\ 58.3 \\ 52.8 \\ p_1 = 0 \\ 57.4 \\ 51.9 \\ n = 0.4 \\ 56.6 \\ 51.0 \\ n = 0.8 \\ 55.7 \\ 50.1 \\ \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$ $\begin{array}{c} 28.2 \\ 27.2 \\ 27.7 \\ 26.6 \\ 27.2 \\ 26.1 \\ 27.0 \\ 25.6 \\ 26.2 \\ 25.0 \end{array}$	= 0.01) $n = 15$ 15.9 15.6 15.6 15.2 15.3 14.9 14.9 14.5 14.6 14.2

TABLE 4.2 : Valeurs de *EARL* pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}$ et $ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).
	$(\gamma_X =$	$0.01, \gamma_Y$	= 0.01)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = -0.4$	$1, \rho_1 = -0.2$	2	
(D)	3.9	1.5	1.1	95.4	48.2	27.8
(I)	4.0	1.6	1.1	119.8	53.1	29.7
			$\rho_0 = -0.4$	$1, \rho_1 = -0.8$	3	
(D)	3.5	1.5	1.1	62.9	34.2	21.0
(I)	3.5	1.5	1.1	56.8	32.9	21.0
			$\rho_0 = 0.4$	$1_{01} = 0.2$		
(D)	2.1	1.2	1.0	46.4	22.9	13.5
(I)	2.2	1.2	1.0	43.8	22.7	13.7
	2.4	1.0	$\rho_0 = 0.4$	$1, \rho_1 = 0.8$	1 1 1 0	20 -
(D)	2.4	1.2	1.0	273.7	141.2	29.7
(I)	2.4	1.2	1.0	1805.2	186.6	38.6
	$(\gamma_X =$	$0.01, \gamma_Y$	y = 0.2)	$(\gamma_X =$	$0.2, \gamma_Y =$	= 0.01)
	$(\gamma_X = n = 1$	$\begin{array}{c} 0.01, \gamma_{\mathrm{Y}} \\ n = 5 \end{array}$	x = 0.2) n = 15	$(\gamma_X = n = 1$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$	= 0.01) n = 15
	$(\gamma_X = n = 1)$	$\begin{array}{c} 0.01, \gamma_{\mathrm{Y}} \\ n = 5 \end{array}$	r = 0.2) n = 15 $\rho_0 = -0.4$	$(\gamma_X = n = 1)$ $n = 1$ $n = -0.2$	$\frac{0.2, \gamma_Y}{n=5}$	= 0.01) n = 15
(D)	$(\gamma_X = n = 1$ 55.4	$0.01, \gamma_{Y}$ n = 5 26.5	r = 0.2) n = 15 $\rho_0 = -0.4$ 15.0	$(\gamma_X = \frac{n-1}{1, \rho_1 = -0.2}$	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ 2 2 28.0	= 0.01) n = 15 15.7
(D) (I)	$(\gamma_X = n = 1)$ 55.4 69.6	$0.01, \gamma_{Y}$ n = 5 26.5 29.8		$(\gamma_X = \frac{n = 1}{1, \rho_1 = -0.2}$ 58.8 54.5	$ \begin{array}{r} 0.2, \gamma_Y : \\ n = 5 \\ 2 \\ 28.0 \\ 27.1 \\ \end{array} $	= 0.01) n = 15 15.7 15.4
(D) (I)	$(\gamma_X = n = 1)$ 55.4 69.6	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 26.5\\ 29.8\\ \end{array} $		$(\gamma_X = \frac{n = 1}{1, \rho_1 = -0.2}$ 58.8 54.5 $4, \rho_1 = -0.8$	$ \begin{array}{r} 0.2, \gamma_Y := \\ n = 5 \\ 2 \\ 2 \\ 28.0 \\ 27.1 \\ 8 \end{array} $	= 0.01) n = 15 15.7 15.4
(D) (I) (D)	$(\gamma_X = n = 1$ 55.4 69.6 52.1	$ \begin{array}{r} 0.01, \gamma_{Y} \\ n = 5 \\ 26.5 \\ 29.8 \\ 25.4 \\ \end{array} $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ 1, \rho_1 = -0.2 \\ 58.8 \\ 54.5 \\ 4, \rho_1 = -0.8 \\ 57.2 \end{array} $	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 28.0 \\ 27.1 \\ 8 \\ 27.2 \end{array} $	= 0.01) n = 15 15.7 15.4 15.3
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.4 69.6 52.1 65.2	$\begin{array}{c} 0.01, \gamma_{\rm Y} \\ n = 5 \end{array}$ $\begin{array}{c} 26.5 \\ 29.8 \end{array}$ $\begin{array}{c} 25.4 \\ 28.6 \end{array}$		$ \frac{(\gamma_X = n = 1)}{(\rho_1 = -0.2)} $ $ \frac{n = 1}{58.8} $ $ 54.5 $ $ 4, \rho_1 = -0.8 $ $ 57.2 $ $ 49.8 $	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 5 \\ 8 \\ 2 \\ 2 \\ 5 \\ 8 \\ 2 \\ 2 \\ 5 \\ 8 \\ 2 \\ 2 \\ 5 \\ 8 \\ 2 \\ 2 \\ 5 \\ 8 \\ 2 \\ 2 \\ 5 \\ 8 \\ 2 \\ 2 \\ 5 \\ 8 \\ 2 \\ 2 \\ 5 \\ 8 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	= 0.01) $n = 15$ 15.7 15.4 15.3 14.9
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.4 69.6 52.1 65.2	$ \begin{array}{r} 0.01, \gamma_{Y} \\ n = 5 \\ 26.5 \\ 29.8 \\ 25.4 \\ 28.6 \\ \end{array} $		$ \frac{(\gamma_X = n = 1)}{(\gamma_X = 1)^{n-1}} $ $ \frac{n = 1}{58.8} $ $ 54.5 $ $ 4, \rho_1 = -0.8 $ $ 57.2 $ $ 49.8 $ $ 4. \rho_1 = 0.2 $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 28.0 \\ 27.1 \\ \hline 3 \\ 27.2 \\ 25.8 \\ \end{array} $	= 0.01) $n = 15$ 15.7 15.4 15.3 14.9
(D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 55.4 69.6 52.1 65.2 51.2	$\begin{array}{c} 0.01, \gamma_{Y} \\ n = 5 \\ 26.5 \\ 29.8 \\ 25.4 \\ 28.6 \\ 24.7 \end{array}$		$ \frac{(\gamma_X = n = 1)}{(\gamma_X = 1)} $ $ \frac{n = 1}{58.8} $ $ \frac{54.5}{54.5} $ $ \frac{1}{4}, \rho_1 = -0.8 $ $ \frac{57.2}{49.8} $ $ \frac{1}{4}, \rho_1 = 0.2 $ $ \frac{56.0}{56.0} $	$ \begin{array}{r} \hline 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 28.0 \\ 27.1 \\ 3 \\ 27.2 \\ 25.8 \\ 26.7 \\ \end{array} $	= 0.01) $n = 15$ 15.7 15.4 15.3 14.9 14.8
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.4 69.6 52.1 65.2 51.2 64.9	$\begin{array}{c} 0.01, \gamma_{\rm Y} \\ n = 5 \\ \\ 26.5 \\ 29.8 \\ \\ 25.4 \\ 28.6 \\ \\ 24.7 \\ 28.0 \end{array}$	$ \begin{array}{r} r = 0.2) \\ n = 15 \\ \rho_0 = -0.4 \\ 15.0 \\ 16.4 \\ \rho_0 = -0.4 \\ 14.5 \\ 15.9 \\ \rho_0 = 0.4 \\ 14.0 \\ 15.4 \\ \end{array} $	$ \frac{(\gamma_X = n = 1)}{(\gamma_X = 1)^{n-1}} $ $ \frac{n = 1}{58.8} $ $ \frac{54.5}{54.5} $ $ \frac{1}{4}, \rho_1 = -0.8 $ $ \frac{57.2}{49.8} $ $ \frac{1}{4}, \rho_1 = 0.2 $ $ \frac{56.0}{49.4} $	$ \begin{array}{r} \hline 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 28.0 \\ 27.1 \\ 3 \\ 27.2 \\ 25.8 \\ 26.7 \\ 25.1 \\ \end{array} $	= 0.01) $n = 15$ 15.7 15.4 15.3 14.9 14.8 14.4
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 55.4 69.6 52.1 65.2 51.2 64.9	$\begin{array}{c} 0.01, \gamma_{\rm Y}\\ n=5 \end{array}$ $\begin{array}{c} 26.5\\ 29.8 \end{array}$ $\begin{array}{c} 25.4\\ 28.6 \end{array}$ $\begin{array}{c} 24.7\\ 28.0 \end{array}$	$ \begin{array}{r} r = 0.2) \\ n = 15 \\ \rho_0 = -0.4 \\ 15.0 \\ 16.4 \\ \rho_0 = -0.4 \\ 14.5 \\ 15.9 \\ \rho_0 = 0.4 \\ 14.0 \\ 15.4 \\ 2 = 0.4 \end{array} $	$ \frac{(\gamma_X = n = 1)}{(\gamma_X = 1)} $ $ \frac{n = 1}{58.8} $ $ \frac{54.5}{54.5} $ $ \frac{1}{4}, \rho_1 = -0.8 $ $ \frac{57.2}{49.8} $ $ \frac{1}{4}, \rho_1 = 0.2 $ $ \frac{56.0}{49.4} $ $ \frac{1}{4}, \rho_1 = 0.8 $	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 28.0 \\ 27.1 \\ \hline 3 \\ 27.2 \\ 25.8 \\ \hline 26.7 \\ 25.1 \\ \end{array} $	= 0.01) $n = 15$ 15.7 15.3 14.9 14.8 14.4
(D) (I) (D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 55.4 69.6 52.1 65.2 51.2 64.9 54.0	$\begin{array}{c} 0.01, \gamma_{\rm Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.5\\ 29.8 \end{array}$ $\begin{array}{c} 25.4\\ 28.6 \end{array}$ $\begin{array}{c} 24.7\\ 28.0 \end{array}$	$ \begin{aligned} r &= 0.2) \\ n &= 15 \\ \rho_0 &= -0.4 \\ 15.0 \\ 16.4 \\ \rho_0 &= -0.4 \\ 14.5 \\ 15.9 \\ \rho_0 &= 0.4 \\ 14.0 \\ 15.4 \\ \rho_0 &= 0.4 \\ 14.5 \\ 14.5 \\ 15.4 \\ \rho_0 &= 0.4 \\ 14.5 \\ 15.4 \\ P_0 &= 0.4 \\ 14.5 \\ 14.5 \\ 15.4 \\ P_0 &= 0.4 \\ $	$ \frac{(\gamma_X = n = 1)}{(\gamma_X = 1)^{n-1}} $ $ \frac{n = 1}{58.8} $ $ \frac{54.5}{54.5} $ $ \frac{1}{4}, \rho_1 = -0.8 $ $ \frac{57.2}{49.8} $ $ \frac{1}{4}, \rho_1 = 0.2 $ $ \frac{56.0}{49.4} $ $ \frac{1}{4}, \rho_1 = 0.8 $ $ \frac{57.7}{57.7} $	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 7 \\ 2 \\ 5 \\ 2 \\ 7 \\ 2 \\ 5 \\ 5 \\ 2 \\ 5 \\ 5 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	= 0.01) $n = 15$ 15.7 15.4 15.3 14.9 14.8 14.4 15.2
(D) (I) (D) (I) (D) (I) (D) (T)	$(\gamma_X = n = 1)$ 55.4 69.6 52.1 65.2 51.2 64.9 54.9 60.5	$\begin{array}{c} 0.01, \gamma_{Y} \\ n = 5 \\ 26.5 \\ 29.8 \\ 25.4 \\ 28.6 \\ 24.7 \\ 28.0 \\ 25.8 \\ 20.2 \end{array}$	$ \begin{array}{r} \overline{\rho} = 0.2) \\ n = 15 \\ \overline{\rho_0} = -0.4 \\ 15.0 \\ 16.4 \\ \rho_0 = -0.4 \\ 14.5 \\ 15.9 \\ \rho_0 = 0.4 \\ 14.0 \\ 15.4 \\ \rho_0 = 0.4 \\ 14.5 \\ 15.4 \\ \rho_0 = 0.4 \\ 14.5 \\ 15.2 \\ $	$(\gamma_X = \frac{n = 1}{1, \rho_1 = -0.2}$ $(\gamma_X = \frac{n = 1}{58.8}$ $(\gamma_X = \frac{n = 1}{58.$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 28.0 \\ 27.1 \\ \hline 3 \\ 27.2 \\ 25.8 \\ \hline 26.7 \\ 25.1 \\ \hline 27.7 \\ 26.5 \\ \hline \end{array} $	= 0.01) $n = 15$ 15.7 15.4 15.3 14.9 14.8 14.4 15.2 14.0

TABLE 4.3 : Valeurs de *EARL* pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 \neq \rho_1, n \in \{1, 5, 15\}$ et $ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

FIGURE 4.6 : La carte EWMA-RZ pour l'exemple de l'industrie alimentaire.

- lorsque $\gamma_X = \gamma_Y$, la carte EWMA-RZ est meilleur que la carte Shewhart-RZ. Dans certains cas, les résultats pour les cartes EWMA-RZ sont très semblables à celles de la carte de contrôle de Shewhart-RZ pour les petites valeurs de γ_X et γ_Y . Par exemple, lorsque $\rho_0 = \rho_1 = 0$, $\gamma_X = \gamma_Y = 0.01$, pour une augmentation ou une diminution, nous avons $\Delta_E = 62$ avec n = 1 et $\Delta_E = 0$ avec n = 15, voir la Table 4.4. Pour les plus grandes valeurs de γ_X et γ_Y , la carte EWMA-RZ est *toujours* meilleur que la carte Shewhart-RZ. Par exemple, lorsque $\rho_0 = \rho_1 = 0.8$, n = 15, $\gamma_X = \gamma_Y = 0.2$ pour une augmentation ou une diminution, nous avons $\Delta_E = 70$, voir les tables 4.4 et Table 4.5.
- lorsque $\gamma_X \neq \gamma_Y$, la carte EWMA-RZ est *toujours* meilleur que la carte Shewhart-RZ. Par exemple, lorsque $\rho_0 = \rho_1 = 0.8$, n = 15, $\gamma_X = 0.01$, $\gamma_Y = 0.2$, on a $\Delta_E = 65$ dans le cas d'une diminution et $\Delta_E = 74$ dans le cas d'une augmentation, voir la Table 4.4.

4.5 Un exemple illustratif

Nous allons utiliser dans cette section les mêmes données proposées par Celano and Castagliola (2016a) qui simulent un problème de contrôle de la qualité réel de l'industrie alimentaire. Dans Celano and Castagliola (2016a), la valeur sous-contrôle du ratio $z_0 = \frac{\mu_{p,i}}{\mu_{f,i}} = 1$, où $\mu_{p,i}$ et $\mu_{f,i}$ sont respectivement les poids moyens pour les "graines de courge" et les "graines de lin". Toutes les 30 minutes un prélèvement de n = 5 boites est réalisé et les poids moyens des deux types de graines sont obtenus $\overline{W}_{p,i} = \frac{1}{n} \sum_{j=1}^{n} W_{p,i,j}$ et $\overline{W}_{f,i} = \frac{1}{n} \sum_{j=1}^{n} W_{f,i,j}$. A partir de ces valeurs, le ratio $\hat{Z}_i = \frac{\overline{W}_{p,i}}{W_{f,i}}$ est calculé et tracé sur la carte de contrôle EWMA-RZ⁺. Les valeurs $\gamma_p = 0.02$, $\gamma_f = 0.01$ et $\rho_0 = 0.8$ ont été fixées. Cette fois, une valeur de $\tau = 1.01$ dans le ratio doit être interprétée comme étant le signal que quelque chose ne va pas dans la production. Par conséquent, on fixe donc la valeur $\tau = 1.01$ et décide de mettre en œuvre une carte EWMA-RZ⁺.

Pour n = 5, $\rho_0 = 0.8$, $\tau = 1.01$, les paramètres optimaux pour la carte EWMA-RZ⁺ sont $\lambda^+ = 0.3938$ et $K^+ = 1.007754$, i.e. $UCL^+ = 1.007754 \times 1 = 1.007754$. Les valeurs d'échantillons prélevées dans

	$(\gamma_X =$	$0.01, \gamma_Y$	= 0.01)	$(\gamma_X =$	$= 0.2, \gamma_Y$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = \rho_1$	= -0.8		
(D)	66	43	14	52	65	69
(I)	66	45	14	50	65	69
			$0_0 = 0_1$	= -0.4		
(D)	65	38	$\frac{\rho_0}{8}$	55	67	69
(L)	65	40	8	53	67	70
(-)			-			
			$\rho_0 = \rho$	$p_1 = 0$		
(D)	62	26	0	59	68	70
(I)	62	26	0	58	68	70
			$\rho_0 = \rho_1$	= 0.4		
(D)	55	14	0	65	70	70
(I)	54	14	0	63	70	70
			0 - 0	- 0.8		
(D)	26	0	$ \rho_0 = \rho_1 $	1 = 0.8 73	71	70
(D) (I)	20 26	0	0	73 72	71	$\frac{70}{70}$
(1)	20	0	0	12	12	70
	$(\gamma_X =$	$0.01, \gamma_Y$	r = 0.2)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.01)
	$(\gamma_X = n = 1$	$\begin{array}{c} 0.01, \gamma_Y \\ n = 5 \end{array}$	r = 0.2) n = 15	$(\gamma_X = n = 1)$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$	= 0.01) n = 15
	$(\gamma_X = n = 1$	$0.01, \gamma_Y$ $n = 5$	$r = 0.2)$ $n = 15$ $\rho_0 = \rho_1$	$(\gamma_X = \frac{n = 1}{1})$ $= -0.8$	$0.2, \gamma_Y$ $n = 5$	= 0.01) n = 15
(D)	$(\gamma_X = n = 1)$ 49	$\begin{array}{c} 0.01, \gamma_Y \\ n = 5 \end{array}$		$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \end{array}$	$0.2, \gamma_Y$ $n = 5$ 75	= 0.01) n = 15 73
(D) (I)	$(\gamma_X = n = 1)$ 49 69	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 74 \\ \end{array} $	$r = 0.2)$ $n = 15$ $\rho_0 = \rho_1$ 66 73	$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n=5 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$	= 0.01) n = 15 73 66
(D) (I)	$(\gamma_X = n = 1)$ 49 69	$\begin{array}{c} 0.01, \gamma_Y\\ n=5 \end{array}$ $\begin{array}{c} 62\\ 74 \end{array}$		$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n=5 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$	= 0.01) n = 15 73 66
(D) (I) (D)	$(\gamma_X = n = 1)$ 49 69 49	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 74 \\ 62 \end{array} $		$\boxed{\begin{array}{c} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \end{array}}$	$0.2, \gamma_Y$ n = 5 75 63 75	= 0.01) n = 15 73 66 73
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 69 49 70	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 74 \\ 62 \\ 75 \\ \end{array} $		$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ \hline 73 \\ 52 \\ = -0.4 \\ \hline 74 \\ 52 \end{array}$	$0.2, \gamma_Y$ n = 5 75 63 75 63	= 0.01) n = 15 73 66 73 66
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 69 49 70	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 74 \\ 62 \\ 75 \\ \end{array} $		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ \Rightarrow -0 \end{array}}$	$\begin{array}{c} 0.2, \gamma_Y \\ n=5 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$	= 0.01) n = 15 73 66 73 66
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 69 49 70 49	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 74 \\ 62 \\ 75 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62$		$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ p_1 = 0 \\ 74 \end{array}$	$0.2, \gamma_Y$ n = 5 75 63 75 63 75	= 0.01) n = 15 73 66 73 66 73
(D) (I) (D) (I) (D) (J)	$(\gamma_X = n = 1)$ 49 69 49 70 49 70	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 74 \\ 62 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ p_1 = 0 \\ 74 \\ 52 \\ \end{array} $	$0.2, \gamma_Y$ n = 5 75 63 75 63 75 63	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 73 \\ 66 \\ \hline \end{array} $
(D) (I) (D) (I) (D) (I)	$(\gamma_X = \frac{1}{n = 1})$ 49 69 49 70 49 70	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5 \\ 62 \\ 74 \\ 62 \\ 75 \\ 62 \\ 75 \\ 62 \\ 75 \\ \end{array} $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ p_1 = 0 \\ 74 \\ 52 \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \end{array}$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 73 \\ 66 \\ 73 \\ 66 \\ 73 \\ 66 \\ \end{array} $
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 69 49 70 49 70	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 62\\ 74\\ 62\\ 75\\ 62\\ 75\\ 62\\ 75\\ \end{array} $		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ p_1 = 0 \\ 74 \\ 52 \\ q_1 = 0.4 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ 75 63 75 63 75 63	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 73 \\ 66 \\ 73 \\ 66 \\ 73 \\ 66 \end{array} $
(D) (I) (D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 49 69 49 70 49 70 49 70 48	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 62\\ 74\\ 62\\ 75\\ 62\\ 75\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ p_1 = 0 \\ 74 \\ 52 \\ n = 0.4 \\ 74 \\ \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \end{array}$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 74 \\ \end{array} $
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 69 49 70 49 70 48 71	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5 \\ 62 \\ 74 \\ 62 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ p_1 = 0 \\ 74 \\ 52 \\ q = 0.4 \\ 74 \\ 52 \\ \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \end{array}$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 74 \\ 66 \\ \end{array} $
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 69 49 70 49 70 48 71	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 62\\ 74\\ 62\\ 75\\ 75\\ 62\\ 75\\ 62\\ 75\\ 62\\ 75\\ 62\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ p_1 = 0 \\ 74 \\ 52 \\ 1 = 0.4 \\ 74 \\ 52 \\ 1 = 0.8 \\ = 0.8 \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \end{array}$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 74 \\ 66 \\ \end{array} $
(D) (I) (D) (I) (D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 49 69 49 70 49 70 48 71 48	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5 \\ 62 \\ 74 \\ 62 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ 0_1 = 0 \\ 74 \\ 52 \\ 1 = 0.4 \\ 74 \\ 52 \\ 1 = 0.8 \\ 75 \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \end{array}$	$ \begin{array}{c} = 0.01) \\ n = 15 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 74 \\ 74 \\ \hline \hline 74 \\ 74 \\ \hline 74 \\ \hline 74 \\ \hline 74 \\ \hline 74 \\ 74 \\ \hline 74 \\ 74 \\ \hline 74 \\ \hline 74 \\ 74 \\ \hline 74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\$
(D) (I) (D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 69 49 70 49 70 48 71 48 71 48 71	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ \end{array} $ $ \begin{array}{c} 62\\ 74\\ \end{array} $ $ \begin{array}{c} 62\\ 75\\ \end{array} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 73 \\ 52 \\ = -0.4 \\ 74 \\ 52 \\ p_1 = 0 \\ 74 \\ 52 \\ 1 = 0.4 \\ 74 \\ 52 \\ 1 = 0.8 \\ 75 \\ 51 \\ 51 $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \end{array}$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 73 \\ 66 \\ \hline 74 \\ 66 \\ \hline 74 \\ 66 \\ \hline 74 \\ 66 \\ \hline \end{array} $

TABLE 4.4 : Δ pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

	$(\gamma_X =$	$0.01, \gamma_Y$	r = 0.01)	$(\gamma_X =$	$= 0.2, \gamma_Y$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = -0.4$	$,\rho_1 = -0.$	2	
(D)	75	46	8	68	79	81
(I)	75	45	8	60	78	81
			$ \rho_0 = -0.4 $	$,\rho_1 = -0.$	8	
(D)	45	25	8	32	40	46
(I)	47	29	8	39	44	48
			$\rho_0 = 0.4$	$\rho_1 = 0.2$		
(D)	38	8	0	41	44	45
(I)	37	8	0	45	47	47
			$a_{0} = 0.4$	$a_1 = 0.8$		
(D)	99	40	$p_0 = 0.4$	$,p_1 = 0.0$ 95	95	100
(D) (I)	99	40	0	50 70	100	100
(1)	00	10	0	10	100	100
	$(\gamma_X =$	$0.01, \gamma_{Y}$	x = 0.2)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.01)
	$(\gamma_X = n = 1$	$\begin{array}{c} 0.01, \gamma_{\mathrm{N}} \\ n = 5 \end{array}$	r = 0.2) n = 15	$(\gamma_X = n = 1$	$0.2, \gamma_Y$ $n = 5$	= 0.01) n = 15
	$(\gamma_X = n = 1$	$0.01, \gamma_{\rm M}$ $n = 5$	r = 0.2) n = 15 $\rho_0 = -0.4$	$(\gamma_X = n = 1)$ $\rho_1 = -0.$	$0.2, \gamma_Y$ $n = 5$ 2	= 0.01) n = 15
(D)	$(\gamma_X = n = 1)$ 52	$0.01, \gamma_{Y}$ $n = 5$ 64	r = 0.2) n = 15 $\rho_0 = -0.4$ 67	$(\gamma_X = \frac{n = 1}{\rho_1 = -0.}$	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 76 \\ 25 \end{array} $	= 0.01) n = 15 75
(D) (I)	$(\gamma_X = n = 1)$ 52 71	$0.01, \gamma_{5}$ n = 5 64 76	r = 0.2) n = 15 $\rho_0 = -0.4$ 67 75	$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0. \\ 75 \\ 50 \end{array}}$	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \end{array} $	= 0.01) n = 15 75 68
(D) (I)	$(\gamma_X = n = 1)$ 52 71	$0.01, \gamma_{Y}$ n = 5 64 76		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0. \\ 75 \\ 50 \\ \rho_1 = -0. \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 76 \\ 65 \\ 8 \end{array} $	= 0.01) n = 15 75 68
(D) (I) (D)	$(\gamma_X = n = 1)$ 52 71 42.2	$0.01, \gamma_{Y}$ $n = 5$ 64 76 58		$(\gamma_X = \frac{n = 1}{\rho_1 = -0.}$ γ_5 γ_5 γ_5 γ_6 γ_7	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 72 \\ \end{array} $	= 0.01) n = 15 75 68 71
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 52 71 42.2 67	$0.01, \gamma_{y}$ n = 5 64 76 58 72		$ \frac{\gamma_X = n}{\begin{array}{c} n = 1 \\ \rho_1 = -0. \\ 75 \\ 50 \\ \rho_1 = -0. \\ 71 \\ 36 \end{array}} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 76 \\ 65 \\ 8 \\ 72 \\ 59 \\ \end{array} $	= 0.01) n = 15 75 68 71 62
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 52 71 42.2 67	$0.01, \gamma_{y}$ n = 5 64 76 58 72		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0. \\ 75 \\ 50 \\ \rho_1 = -0. \\ 71 \\ 36 \\ \rho_1 = 0.2 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 72 \\ 59 \\ \end{array} $	= 0.01) n = 15 75 68 71 62
(D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 52 71 42.2 67 45	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 64\\ 76\\ 58\\ 72\\ 59\\ \end{array} $		$ \frac{\gamma_X = n = 1}{\rho_1 = -0.} $ $ \frac{\gamma_2}{\gamma_1} = -0. $ $ \frac{\gamma_2}{\gamma_1} = -0. $ $ \frac{\gamma_1}{\gamma_1} = 0.2 $ $ \frac{\gamma_2}{\gamma_3} = 0.2 $ $ \frac{\gamma_1}{\gamma_3} = 0.2 $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 76 \\ 65 \\ 8 \\ 72 \\ 59 \\ 74 \\ \end{array} $	= 0.01) n = 15 75 68 71 62 72
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 52 71 42.2 67 45 69	$ \begin{array}{r} 0.01, \gamma_{Y} \\ n = 5\\ 64\\ 76\\ 58\\ 72\\ 59\\ 74\\ \end{array} $		$ \frac{\gamma_X = n = 1}{\rho_1 = -0.} $ $ \frac{\gamma_5}{50} $ $ \rho_1 = -0. $ $ \frac{\gamma_1}{36} $ $ \rho_1 = 0.2 $ $ \frac{\gamma_3}{49} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 72 \\ 59 \\ 74 \\ 61 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ 75 \\ 68 \\ 71 \\ 62 \\ 72 \\ 64 \\ \end{array} $
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 52 71 42.2 67 45 69	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 64\\ 76\\ 58\\ 72\\ 59\\ 74\\ \end{array} $		$ \frac{\gamma_X = n = 1}{\rho_1 = -0.} $ $ \frac{\gamma_2}{\gamma_5} $ $ \frac{\gamma_5}{50} $ $ \frac{\gamma_6}{\gamma_1 = -0.} $ $ \frac{\gamma_1}{36} $ $ \frac{\gamma_1}{\gamma_6} = 0.2 $ $ \frac{\gamma_3}{49} $ $ \rho_1 = 0.8 $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 72 \\ 59 \\ 74 \\ 61 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ 75 \\ 68 \\ 71 \\ 62 \\ 72 \\ 64 \\ \end{array} $
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 52 71 42.2 67 45 69 55	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 64\\ 76\\ 58\\ 72\\ 59\\ 74\\ 66\\ \end{array} $		$ \frac{\gamma_X = n}{(\gamma_X = 1)} $ $ \frac{n = 1}{75} $ $ \frac{75}{50} $ $ \frac{70}{71} = -0.2 $ $ \frac{71}{36} $ $ \frac{71}{73} $ $ \frac{49}{77} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 72 \\ 59 \\ 74 \\ 61 \\ 78 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 75 \\ 68 \\ \hline 71 \\ 62 \\ \hline 72 \\ 64 \\ \hline 76 \\ \end{array} $
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 52 71 42.2 67 45 69 55 73	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 64\\ 76\\ 58\\ 72\\ 59\\ 74\\ 66\\ 77\\ \end{array} $	$ \begin{array}{r} \overline{n = 0.2)} \\ $	$ \frac{\gamma_X = n = 1}{\gamma_1 = -0.75} $ $ \frac{\gamma_1 = -0.75}{50} $ $ \frac{\gamma_1 = -0.71}{36} $ $ \frac{\gamma_1 = 0.2}{\gamma_3} $ $ \frac{\gamma_1 = 0.8}{\gamma_7} $ $ \frac{\gamma_7}{57} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 72 \\ 59 \\ 74 \\ 61 \\ 78 \\ 67 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 75 \\ 68 \\ \hline 71 \\ 62 \\ \hline 72 \\ 64 \\ \hline 76 \\ 70 \\ \end{array} $

TABLE 4.5 : Δ pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1), \text{ i.e. cas décroissant (D) et } \Omega = [1, 1.1), \text{ i.e. cas croissant (I).}$

		$W_{p,i,j}$ [gr]					$W_{p,i}$ [gr]	_	
Échantillon	Boîtes dont le poids		1	$W_{f,i,j}$ [gr]]		$\bar{W}_{f,i}$ [gr]	$\hat{Z}_i = \frac{W_{p,i}}{\overline{W}_{f,i}}$	Y_i^+
1	250 gr	25.479	25.355	24.027	25.792	24.960	25.122	1.003	1.00118
		25.218	25.171	24.684	25.052	25.107	25.046		
2	250 gr	25.359	25.172	24.508	25.292	24.449	24.956	1.003	1.00072
		25.211	25.115	24.679	24.933	24.831	24.954		
3	250 gr	24.574	24.864	25.865	25.107	24.811	25.044	1.005	1.00240
		24.784	24.868	25.377	24.879	24.734	24.929		
4	250 gr	25.313	24.483	24.088	25.184	25.681	24.950	0.999	1.00106
		25.338	24.859	24.305	25.115	25.251	24.974		
5	250 gr	25.557	24.959	25.023	24.482	25.531	25.111	0.998	1.00000
		25.277	25.402	25.012	24.937	25.148	25.163		
6	250 gr	24.882	24.473	24.814	25.418	24.732	24.864	0.997	1.00000
	6	24.962	24.644	24.817	25.419	24.818	24.932		
7	500 gr	49.848	48.685	49.994	49.910	49.374	49.562	0.999	1.00000
·		49.993	49.128	49.830	49.566	49.422	49.588	0.000	
8	500 gr	49 668	50 338	49 149	47 807	49 064	49 205	0.990	1 00000
0	500 gi	49.695	50.681	49.640	48.969	49.612	49.720	0.000	1.00000
0	500 ar	51 972	18 202	48 510	50 504	48 501	40.454	0.002	1 00000
2	500 gi	51.275 50.366	40.303	40.010	49 890	40.591	49.404 49.781	0.995	1.00000
10	500	40.700	F1 FCC	10.011	F0.051	50.944	50.100	1 000	1 00070
10	500 gr	48.720 49.721	51.000 50.215	49.077 50.178	50.051 50.324	50.344 50.071	50.192 50.102	1.002	1.00079
	500	43.121	50.215	50.170	50.524	10.011	50.102	1.01	1 00 51 5
11	500 gr	51.372	51.700	51.000	50.886	49.641	50.920 50.045	1.017	1.00717
		50.104	50.272	49.884	50.061	49.845	50.045		
12	500 gr	52.020	53.182	51.374	51.342	48.771	51.138	1.023	1.01340
		50.749	50.369	49.697	49.575	49.440	49.966		
13	500 gr	52.360	49.412	50.704	50.370	50.901	50.949	1.016	1.01443
		50.047	49.981	50.297	50.408	50.026	50.152		
14	500 gr	52.498	50.447	48.713	48.574	50.275	50.101	1.008	1.01190
		50.064	50.124	49.162	48.865	50.344	49.712		
15	250 gr	25.123	24.658	24.468	25.030	25.071	24.870	0.996	1.00564
	-	25.041	24.790	24.835	25.211	25.008	24.977		

TABLE 4.6 : Données de exemple de l'industrie alimentaire.

le processus et des statistiques \hat{Z}_i et Y_i^+ sont présentées dans la Table 4.6. Ces données présentent 15 échantillons prélevés dans le procédé avec l'apparition d'une cause spéciale entre les échantillons #10 et #11 modifiant le ratio de z_0 à $z_1 = 1.01 \times z_0$. La Figure 4.6 montre la carte EWMA-RZ⁺ où l'on peut s'apercevoir de l'occurrence d'une situation hors-contrôle au niveau du point #12 au dessus de le limite $UCL^+ = 1.007754$ (voir aussi les valeurs en gras dans la Table 4.6). Une fois les actions correctives effectuées après l'échantillon #15, le procédé redevient sous-contrôle.

4.6 Conclusions

Dans ce chapitre, nous avons présenté deux cartes de contrôle EWMA unilatérales distinctes pour surveiller le ratio $Z = \frac{X}{Y}$ de deux variables normales lorsque la taille de l'échantillon n > 1. Une approche de type chaîne de Markov a été utilisée pour obtenir les valeurs de ARL, SDRL et EARL ainsi que les paramètres optimaux des cartes EWMA-RZ. Pour chaque carte de contrôle unilatérale, nous avons calculé les valeurs de l'ARL hors-contrôle pour différentes valeurs des coefficients de variation (γ_X, γ_Y) et du coefficient de corrélation ρ .

Si le processus dérive d'un état sous-contrôle à un état hors-contrôle sans changement dans la corrélation entre X et Y (i.e. $\rho_0 = \rho_1 = \rho$), nous pouvons tirer les conclusions suivantes :

- 1. la performance des cartes de contrôle EWMA-RZ unilatérales est fortement influencée par (γ_X, γ_Y) et ρ_0 . Plus les coefficients de variations (γ_X, γ_Y) sont petits, plus vite les cartes de contrôle EWMA-RZ détectent une situation hors-contrôle. La présence d'une corrélation négative ($\rho_0 < 0$), entre les variables aléatoires X et Y réduit la sensibilité de la carte par rapport à une corrélation positive, $(\rho_0 > 0)$,
- 2. pour une même valeur absolue $\Delta_Z = 100 \times \Delta_{\tau}$, la performance statistique des cartes EWMA-RZ n'est pas identique,
- 3. pour la même valeur de Δ_Z , la performance statistique des cartes EWMA-RZ est plus élevée lorsque $\tau < 1$ et $\gamma_X = \gamma_Y$. Inversement, lorsque $\gamma_X \neq \gamma_Y$, la sensibilité des cartes EWMA-RZ dépend de la plus petite valeur du coefficient de variation entre γ_X et γ_Y .

L'apparition d'une cause assignable peut aussi changer la valeur du coefficient de corrélation ρ entre les variables aléatoires X et Y de la valeur ρ_0 à ρ_1 . On peut alors tirer les conclusions suivantes :

- 1. la diminution d'une corrélation négative détériore la sensibilité de la carte de contrôle et l'inverse se produit si le niveau de corrélation négative augmente,
- 2. la réduction d'une corrélation positive améliore la sensibilité de la carte de contrôle et l'inverse se produit si le niveau de corrélation positive augmente.

Concernant les valeurs d'EARL obtenues, nous pouvons conclure que

- 1. lorsque $\gamma_X = \gamma_Y$, les cartes EWMA-RZ ont une performance approximativement symétrique pour les petites valeurs de γ_X et γ_Y . Pour les plus grandes valeurs de γ_X et γ_Y , la sensibilité statistique dépend de la valeur de ρ_1 ,
- 2. lorsque $\gamma_X \neq \gamma_Y$, la sensibilité statistique dépend des valeurs de γ_X et γ_Y ,
- 3. lorsque $\gamma_X = \gamma_Y$, la carte EWMA-RZ est meilleure que la carte Shewhart-RZ. Dans certains cas, les résultats pour les cartes EWMA-RZ sont très semblables à celles de la carte de contrôle de Shewhart-RZ pour les petites valeurs de γ_X et γ_Y . Pour les plus grandes valeurs de γ_X et γ_Y , la carte EWMA-RZ est *toujours* meilleur que la carte Shewhart-RZ,

Les travaux présentés dans ce chapitre ont été publiés dans Tran et al. (2016b).

Les cartes de contrôle de type Shewhart sont assez lentes dans la détection des changements faibles ou modérées du procédé. Pour cette raison plusieurs méthodes / stratégies ont été proposées dans la littérature pour résoudre ce problème. La mise en œuvre des cartes de contrôle EWMA-RZ est particulièrement efficace. Une autre solution, les cartes de contrôle pour surveiller le ratio avec la méthode CUSUM sera l'objet du chapitre suivant.

Cartes de contrôle pour surveiller le ratio avec la méthode CUSUM

5.1 Introduction

Comme nous l'avons expliqué dans les chapitre précédents, les cartes de contrôle de type Shewhart pour surveiller le ratio ne sont efficaces que pour détecter des changements de faible amplitude mais elles peuvent prendre plus de temps pour détecter des changements de petite et moyenne amplitude. Les alternatives classiques pour résoudre ce problème font intervenir des cartes de contrôle plus avancées telles que les cartes avec règles supplémentaires, les cartes EWMA présentées dans les chapitres précédent, les cartes CUSUM ainsi que les cartes de contrôle qui utilisent des stratégies adaptatives telles que la stratégie qui consiste à échantillonner avec des intervalles de temps variables (VSI) ainsi qu'une autre stratégie qui coniste à prélever des échantillons de taille variable (VSS). Parmi ces méthodes, les cartes de contrôle de type CUSUM se sont révélées être très sensibles à la détection des changements de petite amplitude, et elles sont une excellente alternative à la carte de contrôle Shewhart pour surveiller un processus pendant la phase II, voir Montgomery (2013). L'utilisation de la carte CUSUM a été reconnue dès le début comme intuitivement attrayante pour détecter des changements plus petits mais persistants (voir Hawkins and Olwell (1998)). Page (1954) a été le premier à introduire le technique CUSUM dans le domaine de la MSP; puis, ses propriétés et la conception de cette stratégies ont été examinées systématiquement par de nombreux auteurs. Pour de plus amples détails, voir, par exemple, Woodall and Adams (1993), Castagliola et al. (2009), Castagliola and Maravelakis (2011), Graham et al. (2014), Mukherjee (2015) pour ne citer que quelques-uns.

Dans ce chapitre, nous allons présenter la méthode CUSUM en utilisant des limites de contrôle unilatérales avec "redémarrage" pour surveiller le ratio de deux variables normales. Pour obtenir les propriétés statistiques des cartes de contrôle CUSUM pour surveiller le ratio en utilisant des limites de contrôle unilatérales (appelées par la suite cartes de contrôle CUSUM-RZ), nous allons utiliser une approche similaire à celle de Celano and Castagliola (2016a).

5.2 Mise en œuvre des cartes de contrôle CUSUM-RZ

Supposons que p = 2 variables aléatoires continues X et Y distribuées selon une loi binormale soient corrélées avec un coefficient de corrélation sous-contrôle ρ_0 . Pour la caractéristique de qualité $Z = \frac{X}{Y}$, nous recueillons un échantillon de n couples indépendants { $\mathbf{W}_{i,1}, \mathbf{W}_{i,2}, ..., \mathbf{W}_{i,n}$ } à chaque période d'échantillon-

nage i = 1, 2, ...,où chaque $\mathbf{W}_{i,j} = (X_{i,j}, Y_{i,j})^T \sim N(\boldsymbol{\mu}_{\mathbf{W},i}, \boldsymbol{\Sigma}_{\mathbf{W},i}), j = 1, ..., n$, est un vecteur bivarié aléatoire de loi normale avec le vecteur moyen (2.16) et la matrice de variance-covariance (2.17). Comme dans Celano and Castagliola (2016a), on suppose qu'il est possible d'avoir $\mu_{W,i} \neq \mu_{W,k}$, et $\sigma_{W,i} \neq \sigma_{W,k}$, pour $i \neq k$. Nous supposons également que pour les deux variables X et Y il y a une relation linéaire $\sigma_{X,i} = \gamma_X \times \mu_{X,i}$ et $\sigma_{Y,i} = \gamma_Y \times \mu_{Y,i}$, où γ_X et γ_Y sont les coefficients de variation supposés connus et constants.

Le but de ce chapitre est d'appliquer et d'évaluer la technique CUSUM pour surveiller \hat{Z}_i dans (2.18). Nous proposons de définir les deux cartes de contrôle CUSUM unilatérales suivantes :

• une première carte CUSUM (notée CUSUM-RZ⁻) visant à détecter une *diminution* de \hat{Z}_i et basée sur la surveillance de la statistique suivante :

$$S_i^- = \max(0, S_{i-1}^- - (\hat{Z}_i - z_0) - K^-)$$
(5.1)

avec $S_0^- = 0$ comme valeur initiale et une unique limite de contrôle inférieure $LCL^- = H^- \times z_0$ avec $H^- > 0$. Pour cette carte de contrôle, une situation hors-contrôle est signalée dès que $S_i^- > LCL^-$.

• une seconde carte CUSUM (notée CUSUM-RZ⁺) visant à détecter une *augmentation* de \hat{Z}_i et basée sur la surveillance de la statistique suivante :

$$S_i^+ = \max(0, S_{i-1}^+ + (\hat{Z}_i - z_0) - K^+)$$
(5.2)

avec $S_0^+ = 0$ comme valeur initiale et une unique limite de contrôle supérieure $UCL^+ = H^+ \times z_0$ avec $H^+ > 0$. Pour cette carte de contrôle, une situation hors-contrôle est signalée dès que $S_i^+ > UCL^+$.

où z_0 et le ratio sous-contrôle et $K^+ = k^+ \times z_0$ avec $k^+ \ge 0$ et $K^- = k^- \times z_0$ avec $k^- \ge 0$ sont les paramètres de référence qui permettent de "régler" la sensibilité des cartes de contrôle CUSUM-RZ.

5.3 Optimisation *ARL* pour les cartes de contrôle CUSUM-RZ

Il est habituel d'utiliser la moyenne (ARL) et l'écart-type (SDRL) de la distribution du Run Length pour évaluer la performance des cartes de contrôle comme nous l'avons défini dans les chapitres précédents. Supposons que l'apparition d'une situation hors contrôle fait passer la valeur nominale du ratio z_0 à une valeur $z_1 = \tau \times z_0$, où $\tau > 0$ quantifie l'amplitude du changement. Les valeurs de $\tau \in (0, 1)$ correspondent à une diminution du ratio nominale z_0 , alors que des valeurs de $\tau > 1$ correspondent à une augmentation de z_0 . Nous considérons aussi que lorsqu'une situation hors-contrôle apparait, le coefficient de corrélation peut passer de la valeur $\rho = \rho_0$ à la valeur $\rho = \rho_1$. Les équations intégrales de type Fredholm et les modèles de chaînes de Markov ont été largement utilisés pour étudier la performance des cartes de contrôle de type CUSUM en terme de Run Length, voir Li et al. (2014). Concernant les cartes de contrôle CUSUM-RZ, la séquence de points tracés sur ces cartes peut être modélisée comme un processus stochastique. Les propriétés du run lenght des cartes CUSUM-RZ peuvent être obtenues en utilisant l'approche de la chaîne de Markov initialement proposée par Brook and Evans (1972). Selon cette l'approche, l'intervalle de contrôle d'une carte de contrôle CUSUM peut être divisée en plusieurs sous-intervalles contigus de manière à obtenir une chaîne de Markov a p + 2 états, où les états $0, 1, \ldots, p$ appartiennent à l'intervalle de contrôle et sont transitoires et l'état p + 1 coïncide avec un signal et est un état absorbant pour les carte CUSUM-RZ. La matrice des probabilités de transition P de cette chaîne de Markov discrète est :

$$\mathbf{P} = \begin{pmatrix} \mathbf{Q} & \mathbf{r} \\ \mathbf{0}^T & 1 \end{pmatrix} = \begin{pmatrix} Q_{0,0} & Q_{0,1} & \dots & Q_{0,p} & r_0 \\ Q_{1,0} & Q_{1,1} & \cdots & Q_{1,p} & r_1 \\ \vdots & \vdots & & & \vdots \\ Q_{p,0} & Q_{p,1} & \dots & Q_{p,p} & r_p \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix},$$

FIGURE 5.1 : Discrétisation de l'intervalle entre 0 et $UCL^+ = H^+$ en p de sous-intervalles de largeur 2δ pour la cartes de contrôle CUSUM-RZ⁺.

où \mathbf{Q} est la matrice des probabilités de transition (p+1, p+1), $\mathbf{0} = (0, 0, \dots, 0)^T$ et le vecteur $\mathbf{r}_{(p+1)}$ satisfait $\mathbf{r} = (\mathbf{1}-\mathbf{Q}\mathbf{1})$ (i.e. la somme des probabilités est égale à 1) avec $\mathbf{1} = (1, 1, \dots, 1)^T$. Le vecteur $\mathbf{q}_{(p+1,1)}$ qui correspond aux probabilités initiales associées aux états transitoires est égale à $\mathbf{q} = (q_0, q_1, \dots, q_p)^T$. Le nombre d'étapes jusqu'à ce que le processus atteigne l'état absorbant (i.e. le run length) est une variable aléatoire RL de type Phase discrète (DPH) de paramètres (\mathbf{Q}, \mathbf{q}), (voir Neuts (1981) ou Latouche and Ramaswami (1999)). Par conséquent, l'ARL et le SDRL du run length RL des cartes CUSUM-RZ unilatérales sont égaux à :

$$ARL = \nu_1, \tag{5.3}$$

$$SDRL = \sqrt{\mu_2},$$
 (5.4)

avec

$$\nu_1 = \mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{1}, \tag{5.5}$$

$$\nu_2 = 2\mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-2} \mathbf{Q} \mathbf{1}, \tag{5.6}$$

$$\mu_2 = \nu_2 - \nu_1^2 + \nu_1. \tag{5.7}$$

Les valeurs de ARL et SDRL des cartes de contrôle CUSUM-RZ⁻ et CUSUM-RZ⁺ peut être évaluées numériquement en utilisant les formules présentées ci-dessus. Sans perte de généralité, nous supposons dans la partie restante de cette section que $z_0 = 1$. Pour la carte de contrôle CUSUM-RZ⁺, l'intervalle entre 0 et $UCL^+ = H^+ > 0$ (voir la Figure 5.1) est divisé en p sous-intervalles de largeur 2δ , où $\delta = \frac{H^+}{2p}$. Pour la carte de contrôle CUSUM-RZ⁻, l'intervalle entre 0 et $LCL^- = H^- > 0$ est divisé en p sous-intervalles de largeur 2δ , où $\delta = \frac{H^-}{2p}$. Par définition, chaque H_j , $j = 1, \ldots, p$, représente le point médian du jème sousintervalle et $H_0 = 0$ correspond à l'état de "redémarrage" des cartes (i.e. le max(...) et min(...) dans respectivement (5.2) et (5.1)). Lorsque le nombre p de sous-intervalles est suffisamment grand, (disons p = 200), cette approche fournit une méthode efficace qui permet d'évaluer avec précision les propriétés run-length des cartes CUSUM-RZ. Dans notre cas particulier, l'élément générique $Q_{i,j}$, $i = 0, 1, \ldots, p$, de la matrice \mathbf{Q} des probabilités de transition est égal à

• si j = 0 (pour la carte CUSUM-RZ⁺),

$$Q_{i,0} = F_Z \left(1 - H_i + k^+ \left| \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau\gamma_X}{\gamma_Y}, \rho_1 \right)$$
(5.8)

• si j = 0 (pour la carte CUSUM-RZ⁻),

$$Q_{i,0} = 1 - F_Z \left(1 + H_i - k^- \left| \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau \gamma_X}{\gamma_Y}, \rho_1 \right)$$
(5.9)

• si $j = 1, 2, \ldots, p$ (pour la carte CUSUM-RZ⁺),

$$Q_{i,j} = F_Z \left(1 + H_j - H_i + \delta + k^+ \left| \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau\gamma_X}{\gamma_Y}, \rho_1 \right) - F_Z \left(1 + H_j - H_i - \delta + k^+ \left| \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau\gamma_X}{\gamma_Y}, \rho_1 \right)$$
(5.10)

• si $j = 1, 2, \ldots, p$ (pour la carte CUSUM-RZ⁻),

$$Q_{i,j} = F_Z \left(1 + H_i - H_j + \delta - k^- \left| \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau\gamma_X}{\gamma_Y}, \rho_1 \right) - F_Z \left(1 + H_i - H_j - \delta - k^- \left| \frac{\gamma_X}{\sqrt{n}}, \frac{\gamma_Y}{\sqrt{n}}, \frac{\tau\gamma_X}{\gamma_Y}, \rho_1 \right)$$
(5.11)

où $F_{\hat{Z}_i}(...)$ est le c.d.f. de \hat{Z}_i comme défini dans (2.22). Comme on peut le constater, la définition de $Q_{i,j}$ dans les équations précédentes ne dépend pas de z_0 . Par conséquent, comme dans Celano and Castagliola (2016a), les propriétés du run length, ARL et SDRL, ne dépendront pas de z_0 . Enfin, concernant à la condition initiale, le vecteur q des probabilités initiales est égal à $\mathbf{q} = (1, 0, ..., 0)$.

Dans la pratique, la conception des cartes de contrôle CUSUM-RZ⁻ et CUSUM-RZ⁺ consiste à sélectionner les couples optimaux (k^{-*}, H^{-*}) ou (k^{+*}, H^{+*}) qui minimisent l'ARL hors-contrôle pour des changements fixés du ratio sous-contrôle et du coefficient de corrélation soumis à une contrainte pour l'ARL sous-contrôle. Ces couples optimaux peuvent être obtenus en utilisant les deux étapes de la procédure d'optimisation suivantes :

- 1. Trouver l'ensemble des couples (k^-, H^-) ou (k^+, H^+) tel que $ARL = ARL_0$ (où ARL_0 est une valeur fixée de l'ARL "sous-contrôle").
- Choisir, parmi ces couples (k⁻, H⁻) ou (k⁺, H⁺), le couple (k^{-*}, H^{-*}) ou (k^{+*}, H^{+*}) qui fournit la meilleure performance statistique, i.e. la plus petit valeur de l'ARL "hors-contrôle" pour un changement d'amplitude τ dans le ratio z₀ et pour un changement particulier du coefficient de corrélation de ρ = ρ₀ à ρ = ρ₁.

De manière similaire au chapitre précédent, afin de trouver ces combinaisons optimales (k^*, H^*) nous utilisons simultanément un algorithme de résolution d'équations non-linéaires et un algorithme d'optimisation du logiciel Scicoslab. Pour des valeurs fixées de n, γ_X , γ_Y , ρ_0 , et $\tau = 1$ nous recherchons les combinaisons optimales (k, H) tel que $ARL(k, H, n, \gamma_X, \gamma_Y, \rho_0, \tau = 1) = ARL_0 = 200$ (en utilisant le solveur d'équations non-linéaires) minimisant $ARL(k, H, n, \gamma_X, \gamma_Y, \rho_0, \tau \neq 1)$ (en utilisant l'optimiseur).

5.4 Analyse numérique

Les couples optimaux des deux cartes de contrôle CUSUM-RZ unilatérales (k^{-*}, H^{-*}) and (k^{+*}, H^{+*}) ont été sélectionnés en limitant l'*ARL* sous-contrôle à la valeur $ARL_0 = 200$. A titre de comparaison, les valeurs de n, γ_X , γ_Y , ρ_0 , ρ_1 et τ pris en compte dans ce chapitre sont les mêmes que ceux examinés par Celano and Castagliola (2016a) i.e. $n \in \{1, 5, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}$, $\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}$ pour les conditions

	(γ	$X = 0.01, \gamma_Y = 0.00$)1)	(-	$\gamma_X = 0.2, \gamma_Y = 0.2$	2)
au	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$ \rho_0 = \rho_1 $	= -0.8		
0.90	(0.0416, 0.0061)	(0.0078, 0.0170)	(0.0000, 0.0628)	(0.0000, 2.5907)	(0.0431, 0.7500)	(0.0500, 0.2911)
0.95	(0.0254, 0.0240)	(0.0079, 0.0167)	(0.0026, 0.0163)	(0.0000, 2.5907)	(0.0141, 1.1649)	(0.0222, 0.5042)
0.98	(0.0100, 0.0618)	(0.0079, 0.0167)	(0.0026, 0.0163)	(0.0000, 2.5907)	(0.0000, 1.5447)	(0.0060, 0.8037)
0.99	(0.0049, 0.1014)	(0.0050, 0.0256)	(0.0026, 0.0163)	(0.0000, 2.5907)	(0.0000, 1.5447)	(0.0008, 0.9858)
1.01	(0.0051, 0.1047)	(0.0050, 0.0264)	(0.0025, 0.0168)	(0.0700, 6.7518)	(0.0184, 2.0548)	(0.0093, 1.0432)
1.02	(0.0100, 0.0657)	(0.0079, 0.0173)	(0.0025, 0.0168)	(0.0700, 6.7518)	(0.0231, 1.8354)	(0.0141, 0.8717)
1.05	(0.0246, 0.0278)	(0.0079, 0.0173)	(0.0025, 0.0168)	(0.0700, 6.7518)	(0.0367, 1.4081)	(0.0281, 0.5935)
1.10	(0.0479, 0.0022)	(0.0078, 0.0176)	(0.0020, 0.0205)	(0.0700, 6.7518)	(0.0584, 1.0436)	(0.0504, 0.3965)
	,	<i>,</i>	$\rho_0 = \rho_1$	L = -0.4		
0.90	(0.0313, 0.0111)	(0.0039, 0.0250)	(0.0000, 0.0555)	(0.0100, 2.2169)	(0.0453, 0.6116)	(0.0506, 0.2322)
0.95	(0.0254, 0.0176)	(0.0061, 0.0169)	(0.0020, 0.0162)	(0.0000, 2.4247)	(0.0168, 0.9712)	(0.0230, 0.4127)
0.98	(0.0100, 0.0492)	(0.0061, 0.0169)	(0.0020, 0.0162)	(0.0000, 2.4247)	(0.0002, 1.4046)	(0.0070, 0.6776)
0.99	(0.0049, 0.0828)	(0.0050, 0.0203)	(0.0020, 0.0162)	(0.0000, 2.4247)	(0.0000, 1.4131)	(0.0017, 0.8463)
1.01	(0.0051, 0.0855)	(0.0050, 0.0209)	(0.0019, 0.0165)	(0.0604, 5.3098)	(0.0154, 1.7683)	(0.0084, 0.8922)
1.02	(0.0100, 0.0523)	(0.0061, 0.0173)	(0.0019, 0.0165)	(0.0648, 5.0316)	(0.0201, 1.5589)	(0.0131, 0.7325)
1.05	(0.0246, 0.0205)	(0.0061, 0.0173)	(0.0019, 0.0165)	(0.0700, 4.7349)	(0.0337, 1.1669)	(0.0271, 0.4847)
1.10	(0.0353, 0.0089)	(0.0039, 0.0256)	(0.0000, 0.0567)	(0.0700, 4.7349)	(0.0554, 0.8467)	(0.0495, 0.3161)
0.00	(0.0005 0.0100)	(0.0000.0.0104)	$\rho_0 = \rho$	$p_1 = 0.0$		(0.0510.0.1501)
0.90	(0.0225, 0.0138)	(0.0039, 0.0184)	(0.0000, 0.0470)	(0.0223, 1.7461)	(0.0475, 0.4627)	(0.0512, 0.1701)
0.95	(0.0225, 0.0138)	(0.0043, 0.0170)	(0.0010, 0.0195)	(0.0000, 2.2076)	(0.0195, 0.7570)	(0.0238, 0.3135)
0.98	(0.0101, 0.0359)	(0.0043, 0.0170)	(0.0014, 0.0157)	(0.0000, 2.2076)	(0.0031, 1.1348)	(0.0079, 0.5361)
0.99	(0.0050, 0.0628)	(0.0043, 0.0170)	(0.0014, 0.0157)	(0.0000, 2.2070)	(0.0000, 1.2484)	(0.0027, 0.0808)
1.01	(0.0050, 0.0047)	(0.0043, 0.0172)	(0.0014, 0.0160)	(0.0443, 4.2883)	(0.0124, 1.4442) (0.0171, 1.0401)	(0.0074, 0.7208) (0.0102, 0.5772)
1.02	(0.0099, 0.0382)	(0.0043, 0.0172)	(0.0014, 0.0160)	(0.0480, 4.0232)	(0.0171, 1.2491)	(0.0122, 0.5773)
1.05	(0.0240, 0.0135) (0.0240, 0.0125)	(0.0043, 0.0172)	(0.0012, 0.0172) (0.0000, 0.0470)	(0.0012, 3.4228) (0.0700, 2.1105)	(0.0308, 0.9033)	(0.0202, 0.3073) (0.0487, 0.3216)
1.10	(0.0240, 0.0155)	(0.0059, 0.0188)	(0.0000, 0.0479)	(0.0700, 5.1105)	(0.0520, 0.0508)	(0.0487, 0.2310)
0.90	(0.0134, 0.0160)	(0,0000,0,0628)	$p_0 - p_0$ (0.0000, 0.0365)	(0.0342, 1.2074)	(0.0493, 0.2989)	(0.0515, 0.1046)
0.95	(0.0134, 0.0160)	(0.0026, 0.0164)	(0.0005, 0.0192)	(0.0050, 1.7542)	(0.0220, 0.5118)	(0.0246, 0.2035)
0.98	(0.0101, 0.0219)	(0.0026, 0.0164)	(0.0008, 0.0145)	(0.0000, 1.8926)	(0.0060, 0.8120)	(0.0088, 0.3706)
0.99	(0.0050, 0.0405)	(0.0026, 0.0164)	(0.0008, 0.0145)	(0.0000, 1.8926)	(0.0007, 0.9945)	(0.0036, 0.4949)
1.01	(0.0050, 0.0418)	(0.0025, 0.0168)	(0.0008, 0.0146)	(0.0282, 3.1236)	(0.0093, 1.0570)	(0.0064, 0.5166)
1.02	(0.0099, 0.0232)	(0.0025, 0.0168)	(0.0008, 0.0146)	(0.0326, 2.8779)	(0.0141, 0.8850)	(0.0112, 0.3973)
1.05	(0.0137, 0.0165)	(0.0025, 0.0168)	(0.0005, 0.0193)	(0.0452, 2.3558)	(0.0279, 0.6058)	(0.0253, 0.2377)
1.10	(0.0137, 0.0165)	(0.0020, 0.0205)	(0.0000, 0.0370)	(0.0650, 1.8616)	(0.0497, 0.4083)	(0.0481, 0.1415)
			$\rho_0 = \rho$	$p_1 = 0.8$		
0.90	(0.0039, 0.0184)	(0.0000, 0.0365)	(0.0000, 0.0211)	(0.0441, 0.5283)	(0.0506, 0.1094)	(0.0244, 0.0772)
0.95	(0.0043, 0.0168)	(0.0005, 0.0192)	(0.0000, 0.0211)	(0.0184, 0.8232)	(0.0243, 0.2084)	(0.0244, 0.0772)
0.98	(0.0043, 0.0168)	(0.0008, 0.0146)	(0.0003, 0.0115)	(0.0025, 1.2056)	(0.0088, 0.3756)	(0.0097, 0.1581)
0.99	(0.0043, 0.0168)	(0.0008, 0.0146)	(0.0003, 0.0115)	(0.0000, 1.2983)	(0.0036, 0.5002)	(0.0046, 0.2325)
1.01	(0.0043, 0.0175)	(0.0008, 0.0149)	(0.0003, 0.0116)	(0.0123, 1.5982)	(0.0064, 0.5236)	(0.0054, 0.2410)
1.02	(0.0043, 0.0175)	(0.0008, 0.0149)	(0.0003, 0.0116)	(0.0168, 1.3979)	(0.0111, 0.4039)	(0.0102, 0.1685)
1.05	(0.0043, 0.0175)	(0.0005, 0.0193)	(0.0000, 0.0213)	(0.0295, 1.0380)	(0.0250, 0.2439)	(0.0244, 0.0874)
1.10	(0.0039, 0.0188)	(0.0000, 0.0370)	(0.0000, 0.0213)	(0.0493, 0.7584)	(0.0472, 0.1476)	(0.0294, 0.0738)

TABLE 5.1 : Valeurs de (k^{-*}, H^{-*}) lorsque $\tau \in \{0.90, 0.95, 0.98, 0.99\}$ et (k^{+*}, H^{+*}) lorsque $\tau \in \{1.01, 1.02, 1.05, 1.10\}$ pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}$ et $ARL_0 = 200$.

 $\gamma_X = \gamma_Y, \gamma_X \neq \gamma_Y, \rho_0 = \rho_1$ et $\rho_0 \neq \rho_1$. Les couples optimaux (k^{-*}, H^{-*}) et (k^{+*}, H^{+*}) dans la Table 5.1 correspondent à la carte CUSUM-RZ⁻ lorsque $\tau \in \{0.90, 0.95, 0.98, 0.99\}$ et correspondent à la carte CUSUM-RZ⁺ lorsque $\tau \in \{1.01, 1.02, 1.05, 1.10\}$. Par souci de concision, la Table 5.1 présente uniquement les paramètres pour la condition $\gamma_X = \gamma_Y$. Quelques conclusions simples peuvent être tirées du la Table 5.1

- en général, lorsque $\gamma_X = \gamma_Y$, $\rho_0 = \rho_1$, pour des valeurs fixées de n et τ , la tendance des valeurs de k^{-*} et k^{+*} ne sont pas identiques lorsque les valeurs de $\gamma_X = \gamma_Y$ changent de $\gamma_X = \gamma_Y = 0.01$ à $\gamma_X = \gamma_Y = 0.2$. Par exemple, lorsque $\rho_0 = \rho_1 = -0.8$, $\tau = 0.99$ et n = 15 nous avons $k^{-*} = 0.0026$ lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.01)$ et nous avons $k^{-*} = 0.0008$ lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$. Lorsque $\rho_0 = \rho_1 = -0.8$, $\tau = 0.98$ et n = 15 nous avons $k^{-*} = 0.0026$ lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.01)$ et on a $k^{-*} = 0.0060$ lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$.
- lorsque γ_X = γ_Y, pour des valeurs fixées de n, ρ₀ = ρ₁ et τ, les valeurs de H^{-*} et H^{+*} dépendent de (γ_X, γ_Y). En particulier, plus les coefficients de variation (γ_X, γ_Y) sont petits, plus les valeurs de H^{-*} et H^{+*} sont petits. Par exemple, lorsque n = 1, ρ₀ = ρ₁ = 0.4 et τ = 1.02 nous avons H^{+*} = 0.0232 lorsque (γ_X, γ_Y) = (0.01, 0.01) et nous avons H^{+*} = 2.8779 lorsque (γ_X, γ_Y) = (0.2, 0.2).

Les valeurs hors-contrôle ARL_1 pour les cartes de contrôle Shewhart-RZ, EWMA-RZ et CUSUM-RZ sont représentés sur la Figure 5.2 (pour $\gamma_X = \gamma_Y$) et sur la Figure 5.3 (pour $\gamma_X \neq \gamma_Y$), pour $n \in \{1, 15\}$, lorsque le processus dérive d'un état sous-contrôle à un état hors-contrôle sans un changement dans la corrélation entre X et Y, i.e. $\rho_0 = \rho_1 = \rho$.

Les conclusions concernant les résultats présentés dans les figures 5.2 et 5.3 peuvent être résumées comme suit, (nous faisons aussi référence au SDRL même s'il n'apparait pas dans les figures 5.2 et 5.3) :

- la performance des cartes de contrôle CUSUM-RZ unilatérales est fortement influencée par (γ_X, γ_Y) et ρ_0 . Plus les coefficients de variation (γ_X, γ_Y) sont petits, plus vite les cartes de contrôle CUSUM-RZ sont capables de détecter une condition hors-contrôle. Par exemple, lorsque $\rho_0 = 0.4$, n = 15 et $\tau = 0.99$, nous avons $ARL_1 = 2.1$ et $SDRL_1 = 0.4$ si $(\gamma_X, \gamma_Y) = (0.01, 0.01)$; on a $ARL_1 = 60.4$ et $SDRL_1 = 43.4$ si $(\gamma_X, \gamma_Y) = (0.2, 0.2)$. Nous avons trouvé que la présence d'une corrélation négative ($\rho_0 < 0$), entre les variables aléatoires X et Y réduit le sensibilité de la carte par rapport à une corrélation positive, ($\rho_0 > 0$). Par exemple, si $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, $\tau = 0.99$, n = 15 et $\rho_0 = -0.4$ nous avons $ARL_1 = 84.3$ et $SDRL_1 = 62.8$, comparé à $ARL_1 = 60.4$ et $SDRL_1 = 43.4$ si $\rho_0 = 0.4$.
- pour ρ₁ = ρ₀, n ≥ 1 et (γ_X, γ_Y) = (0.01, 0.01), les cartes de contrôle CUSUM-RZ unilatérales sont très sensibles à un changement dans le processus, i.e. nous avons ARL₁ ≃ 1 et SDRL₁ ≃ 0 lorsque τ < 0.99 ou τ > 1.01, voir par exemple Figure 5.2 pour n = 15.
- cette étude indique que, pour à la même valeur absolue du critère Δ_Z = 100 × Δ_τ, la performance statistique des cartes CUSUM-RZ n'est pas identique. Notamment, la différence de performance dépend de (γ_X, γ_Y). Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.01), n = 15, ρ₀ = 0.4, et τ = 0.98 (1.02), i.e. Δ_Z = 2% nous avons ARL₁ = 1.0 et SDRL₁ = 0.2 (ARL₁ = 1.1 et SDRL₁ = 0.2) pour la carte CUSUM-RZ⁻ (CUSUM-RZ⁺), voir la Figure 5.2. De même, lorsque (γ_X, γ_Y) = (0.01, 0.2), n = 15, ρ₀ = 0.4 et τ = 0.98 (1.02), nous avons ARL₁ = 25.2 et SDRL₁ = 17.0 (ARL₁ = 27.2 and SDRL₁ = 17.4) pour la carte CUSUM-RZ⁻ (CUSUM-RZ⁻), voir la Figure 5.3.
- enfin, pour la même valeur de Δ_Z, la performance statistique des cartes CUSUM-RZ est plus élevée lorsque τ < 1 et γ_X = γ_Y. Par exemple, lorsque (γ_X, γ_Y) = (0.2, 0.2), n = 1, ρ₀ = 0.4 et τ = 0.98 (1.02), i.e. Δ_Z = 2% nous avons ARL₁ = 102.3 et SDRL₁ = 84.6 (ARL₁ = 104.6 et SDRL₁ = 78.5) pour la carte CUSUM-RZ⁻ (CUSUM-RZ⁺). A l'inverse, lorsque γ_X ≠ γ_Y, la tendance de sensibilité des cartes CUSUM-RZ dépend de la plus petite valeur des coefficients de variation γ_X et γ_Y. Plus précisément, pour γ_X < γ_Y, la performance statistique des cartes CUSUM-RZ est plus

FIGURE 5.2 : Valeurs de ARL_1 pour les cartes CUSUM-RZ (- \square -), EWMA-RZ (- \blacksquare -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$

FIGURE 5.3 : Valeurs de ARL_1 pour les cartes CUSUM-RZ (- \square -), EWMA-RZ (- \blacksquare -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y, \rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ and $ARL_0 = 200$

élevée lorsque $\tau < 1$. En revanche, pour $\gamma_X > \gamma_Y$, la performance statistique des cartes CUSUM-RZ est plus élevée lorsque $\tau > 1$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.2)$, n = 1, $\rho_0 = 0.4$ et $\tau = 0.98$ (1.02) nous avons $ARL_1 = 94.3$ et $SDRL_1 = 81.7$ ($ARL_1 = 104.5$ et $SDRL_1 = 75.6$) pour la carte CUSUM-RZ⁻ (CUSUM-RZ⁺). A l'inverse, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.01)$, nous avons $ARL_1 = 93.9$ et $SDRL_1 = 67.6$ ($ARL_1 = 89.3$ and $SDRL_1 = 70.4$) pour la carte CUSUM-RZ⁻ (CUSUM-RZ⁺), voir la Figure 5.3.

Lorsque $\rho_0 \neq \rho_1$, les figures 5.4 et 5.5 présentent les valeurs hors-contrôle ARL_1 des cartes de contrôle Shewhart-RZ, EWMA-RZ et CUSUM-RZ, pour les coefficients de corrélation sous-contrôle $\rho_0 = \pm 0.4$ et les changements de ρ_0 à $\rho_1 = 0.5 \times \rho_0$ et $\rho_1 = 2 \times \rho_0$, i.e. $(\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}$. Les résultats obtenus montrent que pour toute taille de dérive :

- la diminution d'une corrélation négative détériore la sensibilité de la carte de contrôle. Par exemple, lorsque (γ_X, γ_Y) = (0.2, 0.2), n = 1, ρ₁ = 0.5 × ρ₀ = -0.2 et τ = 0.98, nous avons ARL₁ = 136.3 et SDRL₁ = 120.1 pour la carte CUSUM-RZ⁻. Si ρ₁ = ρ₀ = -0.4, on a ARL₁ = 128.1 et SDRL₁ = 113.5. L'inverse se produit si le niveau de positif corrélation augmente, par exemple, lorsque ρ₁ = 2 × ρ₀ = -0.8 nous avons ARL₁ = 97.0 et SDRL₁ = 90.9 pour la carte CUSUM-RZ⁻.
- la diminution d'une corrélation positive améliore la sensibilité de la carte de contrôle. Par exemple, lorsque (γ_X, γ_Y) = (0.2, 0.01), n = 1, ρ₁ = 0.5 × ρ₀ = 0.2 et τ = 1.02, nous avons ARL₁ = 86.8 et SDRL₁ = 70.2 pour la carte CUSUM-RZ⁻. Si ρ₁ = ρ₀ = 0.4, nous avons ARL₁ = 89.3 et SDRL₁ = 70.4. L'inverse se produit si le niveau de corrélation positive augmente, par exemple, lorsque ρ₁ = 2×ρ₀ = 0.8 nous avons ARL₁ = 94.2 and SDRL₁ = 70.8 pour la carte CUSUM-RZ⁻.

Dans les figures 5.2–5.5, une comparaison avec les valeurs de ARL_1 de la carte de contrôle Shewhart-RZ obtenue dans Celano and Castagliola (2016a) montre que, en général, lorsque $\tau \in [0.9, 0.98) \cup (1.02, 1.1]$ les cartes CUSUM-RZ sont le meilleur choix parce que les valeurs de ARL_1 de ces cartes sont plus petites que celles de la carte Shewhart-RZ. Dans les pires cas, par exemple, lorsque n = 15, $\gamma_X = \gamma_Y = 0.01$ et $\rho_1 = \rho_0 \ge 0$ la carte Shewhart-RZ est le meilleur choix. Comme prévu, dans la plupart des cas, les cartes CUSUM-RZ sont plus sensibles que la carte Shewhart-RZ.

Selon Montgomery (2013), il est important de noter que les performances statistiques des cartes de contrôle CUSUM et EWMA sont assez similaires. En pratique, Hawkins and Wu (2014) ont conclu que, la carte CUSUM est généralement plus performante que la carte EWMA si le changement réel est proche de ce qui était attendu, mais la carte EWMA peut être plus efficace si le changement réel est plus petit que celui prévu initialement. Dans ce chapitre, à partir des figures 5.2–5.5, une comparaison avec les valeurs pour les cartes EWMA-RZ obtenue dans Tran et al. (2016b) montre que, lorsque $\tau \in [0.9, 0.98) \cup (1.02, 1.1]$ et $\rho_0 = \rho_1$, la carte CUSUM-RZ surpasse la carte EWMA-RZ. Lorsque $\tau \in [0.9, 0.98) \cup (1.02, 1.1]$, $\rho_0 \neq \rho_1$ et $n \geq 5$, la carte CUSUM-RZ est encore plus rapide dans la détection de la cause assignable. Dans certains cas, la carte EWMA-RZ a la meilleure performance statistique, par exemple, lorsque n = 1, $\gamma_X = \gamma_Y = 0.2$ et $\rho_1 = -0.2$, $\rho_0 = -0.4$.

Comme nous l'avons fait dans les chapitres précédents, afin d'avoir un indicateur de performance global, quelque soit la dérive τ , nous allons aussi utiliser la notion d'*EARL*. Dans le cas des cartes de contrôle CUSUM-RZ, la conception optimale consiste à trouver les *nouveau* couples optimaux uniques (k^{-*}, H^{-*}) ou (k^{+*}, H^{+*}) qui dépendent de la carte de contrôle sélectionnée, de telle sorte que

• Pour la carte CUSUM-RZ⁻ :

$$(k^{-*}, H^{-*}) = \operatorname*{argmin}_{(k^{-}, H^{-})} EARL(n, H^{-}, k^{-}, \gamma_X, \gamma_Y, \rho_0, \rho_1)$$

sous la contrainte

$$ARL(n, H^{-}, k^{-}, \gamma_X, \gamma_Y, \rho_0, \rho_1 = \rho_0, \tau = 1) = ARL_0,$$

FIGURE 5.4 : Valeurs de ARL_1 pour les cartes CUSUM-RZ (- \square -), EWMA-RZ (- \blacksquare -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$

FIGURE 5.5 : Valeurs de ARL_1 pour les cartes CUSUM-RZ (- \square -), EWMA-RZ (- \blacksquare -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$

• Pour la carte CUSUM-RZ⁺ :

$$(k^{+*}, H^{+*}) = \operatorname*{argmin}_{(k^+, H^+)} EARL(n, H^+, k^+, \gamma_X, \gamma_Y, \rho_0, \rho_1)$$

sous la contrainte

$$ARL(n, H^+, k^+, \gamma_X, \gamma_Y, \rho_0, \rho_1 = \rho_0, \tau = 1) = ARL_0,$$

Nous avons fixé $ARL_0 = 200$. Les tables 5.2 et 5.3 montrent les valeurs du EARL pour $\Omega = [0.9, 1)$ (dans le cas d'une diminution, notée (D) dans les tables 5.2 et 5.3) et $\Omega = (1, 1.1]$ (dans le cas d'une augmentation, notée (I) dans les tables 5.2 et 5.3) pour respectivement $\rho_0 = \rho_1$ et $\rho_0 \neq \rho_1$. Nous avons obtenu les résultats suivants de valeurs EARL dans les Tables 5.2 et 5.3, ils sont similaires aux résultats de la taille de changement déterministes discutées ci-dessus. En outre, les valeurs de EARL présenté dans les tables 5.2 et 5.3 révèlent aussi quelque chose de plus :

- lorsque $\gamma_X = \gamma_Y$, les cartes CUSUM-RZ ont une performance approximativement symétrique pour les valeurs petites de γ_X et γ_Y . Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.01, 0.01)$, n = 5, $\rho_0 = 0.4$, nous avons EARL = 1.2 pour les cas d'une diminution et d'une augmentation, voir la Table 5.2. En outre, cette constatation est indépendante d'une modification du coefficient de corrélation, voir la Table 5.3. Pour les plus grandes valeurs de γ_X et γ_Y , la sensibilité statistique dépend de la valeur du coefficient de corrélation hors-contrôle ρ_1 . Lorsque $\rho_1 = \rho_0$, la sensibilité statistique est légèrement meilleure pour $\Omega = [0.9, 1)$ que pour $\Omega = (1, 1.1]$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, n = 5, $\rho_0 = \rho_1 = -0.4$, nous avons EARL = 41.9 dans le cas d'une diminution et EARL = 43.5 dans le cas d'une augmentation, voir la Table 5.2. Lorsque $\rho_1 > \rho_0$, la sensibilité statistique est légèrement meilleure pour $\Omega = [0.9, 1)$ que pour $\Omega = (1, 1.1]$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, n = 5, $\rho_0 = 0.4$, $\rho_1 = 0.8$, on a EARL = 31.8 dans le cas d'une diminution et EARL = 44.2 dans le cas d'une augmentation. Lorsque $\rho_1 < \rho_0$ et $n \le 5$ la sensibilité statistique est légèrement meilleure pour $\Omega = (1, 1.1]$ que pour $\Omega = [0.9, 1)$. Par exemple, lorsque $(\gamma_X, \gamma_Y) = (0.2, 0.2)$, n = 1, $\rho_0 = 0.4$, $\rho_1 = 0.2$, nous avons EARL = 46.2 dans le cas d'une diminution et EARL = 43.1 dans le cas d'une augmentation, voir la Table 5.3.
- lorsque γ_X ≠ γ_Y, la sensibilité statistique dépend des valeurs de γ_X et γ_Y. Si γ_X < γ_Y, la sensibilité statistique est meilleur pour Ω = [0.9, 1) que pour Ω = (1, 1.1]. Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.2), n = 5, ρ₀ = ρ₁ = -0.4, nous avons EARL = 26.0 dans le cas d'une diminution et EARL = 28.9 dans le cas d'une augmentation, voir la Table 5.2. La situation inverse se produit pour γ_X > γ_Y. Par exemple, lorsque (γ_X, γ_Y) = (0.2, 0.01), n = 5, ρ₀ = ρ₁ = -0.4, nous avons EARL = 26.4 dans le cas d'une augmentation, voir la Table 5.2. Il est intéressant de noter que cette constatation est indépendante d'un changement dans le coefficient de corrélation.

Une comparaison entre les valeurs *EARL* de cartes CUSUM-RZ avec les valeurs *EARL* obtenues dans Celano and Castagliola (2016a) pour la carte Shewhart-RZ (voir les tables VI–VII dans cet article) est réalisée dans les tables 5.4 et 5.5. L'indice suivant est adopté pour la comparaison

$$\Delta_E = 100 \times \frac{EARL_{\text{Shewhart}-RZ} - EARL_{\text{CUSUM}-RZ}}{EARL_{\text{Shewhart}-RZ}},$$
(5.12)

où $EARL_{Shewhart-RZ}$ ($EARL_{CUSUM-RZ}$) est la valeur d'EARL pour la carte Shewhart-RZ (CUSUM-RZ). Si $\Delta_E > 0$, alors la carte CUSUM-RZ est meilleure que la carte Shewhart-RZ; si $\Delta_E < 0$, alors c'est la carte Shewhart-RZ qui est meilleure que la carte CUSUM-RZ. Il est important de noter que Δ_E (pour le cas de changement aléatoire) ne doit pas être confondu avec Δ_Z (déjà introduit pour le cas déterministe). Les résultats présentés dans les tables 5.4 et 5.5 (arrondis à l'entier le plus proche) montrent que :

	$(\gamma_X =$	$0.01, \gamma_Y$	= 0.01)	$(\gamma_X =$	$= 0.2, \gamma_Y$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = \rho_1$	= -0.8		
(D)	4.3	1.6	1.2	85.9	46.4	28.4
(I)	4.4	1.7	1.2	93.0	48.2	29.4
			$\rho_0 = \rho_1$	= -0.4		
(D)	3.6	1.5	1.2	79.0	41.9	25.2
(I)	3.7	1.5	1.2	84.1	43.5	26.0
				0		
	2.0	1.0	$\rho_0 = \rho$	$p_1 = 0$	24.2	01.0
(D)	2.9	1.3	1.2	70.4	36.2	21.3
(1)	3.0	1.4	1.2	75.1	37.6	22.0
			$\rho_0 = \rho_1$	$_{L} = 0.4$		
(D)	2.1	1.2	1.1	58.7	28.7	16.3
(I)	2.2	1.2	1.1	62.6	29.7	16.8
			$a_{2} = a_{1}$	-0.8		
(D)	13	11	$p_0 = p_1$ 1 1	1 = 0.0 37 9	164	86
(D)	1.4	1.1	1.1	40.1	16.9	8.9
(-)						0.0
	/	0.01				0.01)
	$(\gamma_X =$	$0.01, \gamma_Y$	r = 0.2)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.01)
	$(\gamma_X = n = 1$	$0.01, \gamma_Y$ $n = 5$	r = 0.2) n = 15	$\begin{array}{c} (\gamma_X = \\ n = 1 \\ \hline 0.8 \end{array}$	$0.2, \gamma_Y$ $n = 5$	= 0.01) n = 15
	$(\gamma_X = n = 1$ 54.6	$0.01, \gamma_Y$ $n = 5$	r = 0.2) n = 15 $\rho_0 = \rho_1$ 15.0	$\begin{array}{c} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \end{array}$	$0.2, \gamma_Y$ $n = 5$ 27.8	= 0.01) n = 15 15.7
(D)	$(\gamma_X = n = 1)$ 54.6 65.3	$0.01, \gamma_{Y}$ n = 5 26.5 29.4	r = 0.2) n = 15 $\rho_0 = \rho_1$ 15.0 16.3	$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \end{array}$	$0.2, \gamma_Y$ n = 5 27.8 26.9	= 0.01) n = 15 15.7 15.3
(D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3	$0.01, \gamma_Y$ n = 5 26.5 29.4		$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \end{array}$	$0.2, \gamma_Y$ n = 5 27.8 26.9	= 0.01) n = 15 15.7 15.3
(D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.5\\ 29.4\\ \end{array} $		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \end{array}}$	$0.2, \gamma_Y$ n = 5 27.8 26.9	= 0.01) n = 15 15.7 15.3
(D) (I) (D)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8	$ \begin{array}{r} 0.01, \gamma_Y \\ n = 5\\ 26.5\\ 29.4\\ 26.0\\ \end{array} $		$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \end{array}$	$0.2, \gamma_Y$ n = 5 27.8 26.9 27.4	= 0.01) n = 15 15.7 15.3 15.4
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6	$ \begin{array}{r} 0.01, \gamma_Y \\ n = 5\\ 26.5\\ 29.4\\ 26.0\\ 28.9\\ \end{array} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ 27.8\\ 26.9\\ 27.4\\ 26.4\\ \end{array} $	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.5\\ 29.4\\ 26.0\\ 28.9\\ \end{array} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ 27.8\\ 26.9\\ 27.4\\ 26.4\\ \end{array} $	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0
(D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9	$ \begin{array}{r} 0.01, \gamma_Y \\ n = 5\\ 26.5\\ 29.4\\ 26.0\\ 28.9\\ 25.5\\ \end{array} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \end{array} $	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5\\ 27.8\\ 26.9\\ 27.4\\ 26.4\\ 26.9\\ \end{array} $	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9 63.8	$ \begin{array}{r} 0.01, \gamma_Y \\ n = 5\\ 26.5\\ 29.4\\ 26.0\\ 28.9\\ 25.5\\ 28.3\\ \end{array} $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \\ 51.5 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ 27.8 26.9 27.4 26.4 26.9 25.9	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1 14.7
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9 63.8	$ \begin{array}{r} 0.01, \gamma_Y \\ n = 5\\ 26.5\\ 29.4\\ 26.0\\ 28.9\\ 25.5\\ 28.3\\ \end{array} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \\ 51.5 \\ = -0.4 \end{array} $	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5\\ 27.8\\ 26.9\\ 27.4\\ 26.4\\ 26.9\\ 25.9\\ \end{array} $	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1 14.7
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9 63.8 52.0	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 26.5 \\ 29.4\\ 26.0 \\ 28.9\\ 25.5 \\ 28.3\\ 24.0\\ \end{array} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \\ 51.5 \\ q = 0.4 \\ 54.1 \\ \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ 27.8\\ 26.9\\ 27.4\\ 26.4\\ 26.9\\ 25.9\\ 26.4\\ \end{array} $	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1 14.7 14.7
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9 63.8 52.0 62.0	$ \begin{array}{r} 0.01, \gamma_{Y}\\n = 5\\ 26.5\\29.4\\ 26.0\\28.9\\ 25.5\\28.3\\ 24.9\\27.8\\ \end{array} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \\ 51.5 \\ 1 = 0.4 \\ 54.1 \\ 50.6 \\ \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 27.8 \\ 26.9 \\ 27.4 \\ 26.4 \\ 26.9 \\ 25.9 \\ 26.4 \\ 25.2 \end{array}$	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1 14.7 14.7 14.7 14.2
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9 63.8 52.0 62.9	$ \begin{array}{c} 0.01, \gamma_{Y}\\n = 5\\ 26.5\\ 29.4\\ 26.0\\ 28.9\\ 25.5\\ 28.3\\ 24.9\\ 27.8\\ \end{array} $		$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \\ 51.5 \\ n = 0.4 \\ 54.1 \\ 50.6 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$ 27.8 26.9 27.4 26.4 26.9 25.9 26.4 25.3	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1 14.7 14.7 14.3
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9 63.8 52.0 62.9	$ \begin{array}{r} 0.01, \gamma_{Y}\\n = 5\\ 26.5\\29.4\\ 26.0\\28.9\\ 25.5\\28.3\\ 24.9\\27.8\\ \end{array} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \\ 51.5 \\ n = 0.4 \\ 54.1 \\ 50.6 \\ n = 0.8 \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 27.8 \\ 26.9 \\ \\ 27.4 \\ 26.4 \\ \\ 26.9 \\ 25.9 \\ \\ 26.4 \\ 25.3 \end{array}$	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1 14.7 14.7 14.3
(D) (I) (D) (I) (I) (I) (I) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9 63.8 52.0 62.9 51.0	$ \begin{array}{r} 0.01, \gamma_{Y}\\n = 5\\ 26.5\\29.4\\ 26.0\\28.9\\ 25.5\\28.3\\ 24.9\\27.8\\ 24.4\\ \end{array} $		$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \\ 51.5 \\ 1 = 0.4 \\ 54.1 \\ 50.6 \\ 1 = 0.8 \\ 53.3 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$ 27.8 26.9 27.4 26.4 26.9 25.9 26.4 25.3 25.9	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1 14.7 14.7 14.3 14.4
(D) (I) (D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.6 65.3 53.8 64.6 52.9 63.8 52.0 62.9 51.0 62.1	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.5\\ 29.4 \end{array}$ $\begin{array}{c} 26.0\\ 28.9 \end{array}$ $\begin{array}{c} 25.5\\ 28.3 \end{array}$ $\begin{array}{c} 24.9\\ 27.8 \end{array}$ $\begin{array}{c} 24.4\\ 27.3 \end{array}$		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 56.3 \\ 53.1 \\ = -0.4 \\ 55.6 \\ 52.3 \\ p_1 = 0 \\ 54.8 \\ 51.5 \\ 1 = 0.4 \\ 54.1 \\ 50.6 \\ 1 = 0.8 \\ 53.3 \\ 49.7 \end{array} $	$\begin{array}{c} 0.2, \gamma_{Y} \\ n = 5 \end{array}$ $\begin{array}{c} 27.8 \\ 26.9 \end{array}$ $\begin{array}{c} 27.4 \\ 26.4 \end{array}$ $\begin{array}{c} 26.9 \\ 25.9 \end{array}$ $\begin{array}{c} 26.4 \\ 25.3 \end{array}$ $\begin{array}{c} 25.9 \\ 24.8 \end{array}$	= 0.01) $n = 15$ 15.7 15.3 15.4 15.0 15.1 14.7 14.7 14.3 14.4 14.0

TABLE 5.2 : Valeurs de *EARL* pour les cartes CUSUM-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}$ et $ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

	$(\gamma_X =$	$\overline{0.01, \gamma_Y}$	= 0.01)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\overline{\rho_0 = -0.4}$	$\rho_1 = -0.2$	2	
(D)	3.7	1.5	1.2	81.5	43.5	26.7
(I)	3.8	1.5	1.2	104.9	49.7	28.8
			$\rho_0 = -0.4$	$\rho_1 = -0.3$	8	
(D)	3.3	1.5	1.2	65.5	33.7	20.6
(I)	3.4	1.5	1.2	60.4	32.3	20.6
			o 0.4	· 0.9		
(\mathbf{D})	0.1	1.0	$\rho_0 = 0.4$	$\mu_1, \rho_1 = 0.2$	99 F	12.0
(D)	2.1	1.2	1.1 1.1	40.2	22.5	13.2
(1)	2.1	1.2	1.1	43.1	22.3	13.3
			$ \rho_0 = 0.4 $	$\rho_1 = 0.8$		
(D)	2.2	1.2	1.1	64.6	31.8	18.9
(I)	2.3	1.2	1.1	126.2	44.2	22.2
	$(\gamma_{\rm V} =$	$0.01. \gamma_{\rm v}$	r = 0.2	$\gamma_{\rm V} \equiv$	$0.2. \gamma_V$	= 0.01)
	$(\gamma_X = n = 1$	$0.01, \gamma_Y$ $n = 5$	r = 0.2) n = 15	$\begin{array}{c} (\gamma_X = \\ n = 1 \end{array}$	$0.2, \gamma_Y$ $n = 5$	= 0.01) n = 15
	$(\gamma_X = n = 1$	$\begin{array}{c} 0.01, \gamma_Y\\ n=5 \end{array}$	r = 0.2) n = 15 $\rho_0 = -0.4$	$(\gamma_X = n = 1)$ $n = 1$ $\rho_1 = -0.2$	$\frac{0.2, \gamma_Y}{n=5}$	= 0.01) n = 15
(D)	$(\gamma_X = n = 1)$ 54.4	$0.01, \gamma_Y$ $n = 5$ 26.3	r = 0.2) n = 15 $\rho_0 = -0.4$ 14.8	$(\gamma_X = \frac{n = 1}{n = 1}$ $\rho_1 = -0.3$ 55.6	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 27.6 \end{array} $	= 0.01) n = 15 15.5
(D) (I)	$(\gamma_X = n = 1)$ 54.4 65.7	$0.01, \gamma_Y$ n = 5 26.3 29.2		$(\gamma_X = \frac{n = 1}{1 + \rho_1 = -0.2}$	$ \begin{array}{r} \hline 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 27.6 \\ 26.9 \end{array} $	= 0.01) n = 15 15.5 15.2
(D) (I)	$(\gamma_X = n = 1)$ 54.4 65.7	$0.01, \gamma_Y$ n = 5 26.3 29.2		$(\gamma_X = \frac{n = 1}{1 + \rho_1 = -0.5})$ $(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{1}{55.6})$ $(\gamma_X = \frac{1}{55.6})$ $(\gamma_X = \frac{1}{55.6})$	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 27.6 \\ 26.9 \\ 8 \end{array} $	= 0.01) n = 15 15.5 15.2
(D) (I) (D)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.3\\ 29.2\\ 25.3\\ \end{array} $	$\overline{\rho} = 0.2)$ $n = 15$ $\rho_0 = -0.4$ 14.8 16.1 $\rho_0 = -0.4$ 14.3	$ \frac{\gamma_X = n = 1}{\begin{array}{c} n = 1 \\ 55.6 \\ 53.7 \\ 55.4 \end{array}} $	$ \begin{array}{c} \hline 0.2, \gamma_Y \\ n = 5 \\ 2 \\ 27.6 \\ 26.9 \\ 8 \\ 26.9 \\ \end{array} $	= 0.01) n = 15 15.5 15.2 15.1
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0 62.3	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 26.3\\ 29.2\\ 25.3\\ 28.1\\ \end{array} $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ 55.6 \\ 53.7 \\ 4, \rho_1 = -0.3 \\ 55.4 \\ 49.5 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 27.6 \\ 26.9 \\ 8 \\ 26.9 \\ 25.5 \\ \end{array} $	= 0.01) $n = 15$ 15.5 15.2 15.1 14.6
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0 62.3	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5\\ 26.3\\ 29.2\\ 25.3\\ 28.1\\ \end{array} $		$ \frac{\gamma_X = n = 1}{\begin{array}{c} n = 1 \\ 55.6 \\ 53.7 \\ 4.\rho_1 = -0.3 \\ 55.4 \\ 49.5 \\ 0.2 \\ \end{array}} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 27.6 \\ 26.9 \\ 8 \\ 26.9 \\ 25.5 \\ \end{array} $	= 0.01) $n = 15$ 15.5 15.2 15.1 14.6
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0 62.3	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 26.3\\ 29.2\\ 25.3\\ 28.1\\ 24.6\\ \end{array} $		$(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.4})$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 27.6 \\ 26.9 \\ 8 \\ 26.9 \\ 25.5 \\ \hline 26.9 \\ 25.5 \\ 26.9 \\ 25.5 \\ 25$	= 0.01) $n = 15$ 15.5 15.2 15.1 14.6 14.6
(D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0 62.3 51.1	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 26.3\\ 29.2\\ 25.3\\ 28.1\\ 24.6\\ 27.6\\ 2$		$ \frac{(\gamma_X = n = 1)}{(\gamma_X = -0.3)} $ $ \frac{n = 1}{55.6} $ $ \frac{53.7}{55.4} $ $ \frac{1}{49.5} $ $ \frac{1}{49.5} $ $ \frac{1}{54.0} $ $ \frac{1}{54.0} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 27.6 \\ 26.9 \\ \hline 8 \\ 26.9 \\ 25.5 \\ \hline 26.2 \\ 26.$	= 0.01) $n = 15$ 15.5 15.2 15.1 14.6 14.6
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0 62.3 51.1 61.8	$0.01, \gamma_{Y}$ $n = 5$ 26.3 29.2 25.3 28.1 24.6 27.4		$(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.4})$ $(\gamma_X = \frac{n = 1}{55.4})$ $(\gamma_X = \frac{n = 1}{54.6})$ $(\gamma_X = \frac{n = 1}{54.$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 4 \\ 9 \\ \end{array} $	= 0.01) $n = 15$ 15.5 15.2 15.1 14.6 14.6 14.1
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0 62.3 51.1 61.8	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 26.3\\ 29.2\\ 25.3\\ 28.1\\ 24.6\\ 27.4\\ \end{array} $	$\overline{r} = 0.2)$ $n = 15$ $\rho_0 = -0.4$ 14.8 16.1 $\rho_0 = -0.4$ 14.3 15.6 $\rho_0 = 0.4$ 13.8 15.1 $\rho_0 = 0.4$	$(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.4})$ $(\gamma_X = \frac{n = 1}{55.4})$ $(\gamma_X = \frac{n = 1}{54.0})$ $(\gamma_X = \frac{n = 1}{54.$	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 27.6 \\ 26.9 \\ \hline 8 \\ 26.9 \\ 25.5 \\ \hline 26.2 \\ 24.9 \\ \end{array} $	= 0.01) $n = 15$ 15.5 15.2 15.1 14.6 14.6 14.1
(D) (I) (D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0 62.3 51.1 61.8 53.4	$\begin{array}{c} 0.01, \gamma_{Y} \\ n = 5 \\ 26.3 \\ 29.2 \\ 25.3 \\ 28.1 \\ 24.6 \\ 27.4 \\ 25.6 \end{array}$		$(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.4})$ $(\gamma_X = \frac{n = 1}{55.4})$ $(\gamma_X = \frac{n = 1}{54.6})$	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 27.6 \\ 26.9 \\ \hline 8 \\ 26.9 \\ 25.5 \\ \hline 26.2 \\ 24.9 \\ \hline 26.8 \\ \end{array} $	= 0.01) $n = 15$ 15.5 15.2 15.1 14.6 14.6 14.1 15.0
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 54.4 65.7 52.0 62.3 51.1 61.8 53.4 65.3	$\begin{array}{c} 0.01, \gamma_{Y}\\ n = 5 \end{array}$ $\begin{array}{c} 26.3\\ 29.2 \end{array}$ $\begin{array}{c} 25.3\\ 28.1 \end{array}$ $\begin{array}{c} 24.6\\ 27.4 \end{array}$ $\begin{array}{c} 25.6\\ 28.6 \end{array}$		$(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.6})$ $(\gamma_X = \frac{n = 1}{55.4})$ $(\gamma_X = \frac{n = 1}{53.6})$ $(\gamma_X = \frac{n = 1}{54.6})$ $(\gamma_X = \frac{n = 1}{54.2})$ $(\gamma_X = \frac{n = 1}{54.$	$ \begin{array}{r} \hline 0.2, \gamma_Y \\ n = 5\\ \hline 2\\ 27.6 \\ 26.9\\ \hline 8\\ 26.9 \\ 25.5\\ \hline 26.2 \\ 24.9\\ \hline 26.8 \\ 26.3\\ \hline \end{array} $	= 0.01) $n = 15$ 15.5 15.2 15.1 14.6 14.6 14.1 15.0 14.7

TABLE 5.3 : Valeurs de *EARL* pour les cartes CUSUM-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 \neq \rho_1, n \in \{1, 5, 15\}$ et $ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

FIGURE 5.6 : La carte CUSUM -RZ pour l'exemple de l'industrie alimentaire.

- lorsque γ_X = γ_Y, la carte CUSUM-RZ est meilleure la carte Shewhart-RZ dans la plupart des cas. La carte Shewhart-RZ est meilleure (ou très similaire) que les cartes CUSUM-RZ lorsque les valeurs de γ_X et γ_Y sont faibles et n ≥ 5. Par exemple, lorsque ρ₀ = ρ₁ = 0, γ_X = γ_Y = 0.01, pour tout les cas d'une augmentation et d'une diminution, nous avons Δ_E = 62 avec n = 1 et Δ_E = 0 avec n = 15, voir la Table 5.4. Pour les plus grandes valeurs de γ_X et γ_Y, les cartes CUSUM-RZ sont *toujours* meilleures que la carte Shewhart-RZ. Par exemple, lorsque ρ₀ = ρ₁ = 0.8, n = 15, γ_X = γ_Y = 0.2 pour tout les cas d'une augmentation et diminution, nous avons Δ_E = 70, voir les tables 5.4 et 5.5.
- lorsque $\gamma_X \neq \gamma_Y$, les cartes CUSUM-RZ sont *toujours* meilleures que la carte Shewhart-RZ. Par exemple, lorsque $\rho_0 = \rho_1 = 0.8$, n = 15, $\gamma_X = 0.01$, $\gamma_Y = 0.2$, on a $\Delta_E = 65$ pour le cas d'une diminution et $\Delta_E = 74$ pour le cas d'une augmentation, voir la Table 5.4. Ces résultats restent valables dans le cas d'un changement de la valeur du coefficient de corrélation sous-contrôle.

5.5 Un exemple illustratif

93

Dans cette section, on va de nouveau utiliser les données proposées par Celano and Castagliola (2016a) qui simulent un problème de contrôle de la qualité réel de l'industrie alimentaire. Dans Celano and Castagliola (2016a), la valeur sous-contrôle du ratio $z_0 = 1$, la taille de l'échantillon n = 5. Les valeurs $\gamma_p = 0.02$, $\gamma_f = 0.01$ et $\rho_0 = 0.8$ ont été fixées. Cette fois, une valeur de $\tau = 1.01$ dans le ratio doit être interprétée comme étant un signal que quelque chose ne va pas dans la production. Par conséquent, on fixe donc la valeur $\tau = 1.01$ et on décide de mettre en œuvre une carte CUSUM-RZ⁺.

Pour n = 5, $\rho_0 = 0.8$, $\tau = 1.01$, les paramètres optimaux pour la carte CUSUM-RZ⁺ sont $k^+ = 0.000793$, i.e. $K^+ = k^+ \times z_0 = 0.000793$ et $H^+ = 0.045685$, i.e. $UCL_+ = H^+ \times z_0 = 0.045685$. La Table 5.6 montre l'ensemble des données d'échantillons simulées recueillies dans le processus, les tailles de boîte correspondantes, 250–500 gr, et les statistiques \hat{Z}_i et S_i^+ . Comme nous l'avons expliqué dans les chapitre précédent, ces données présentent 15 échantillons prélevés dans le procédé avec l'apparition d'une cause spéciale entre les échantillons #10 et #11 modifiant le ratio de z_0 à $z_1 = 1.01 \times z_0$. La Figure Figure 5.6 montre la carte CUSUM-RZ⁺, qui signale l'apparition d'une situation hors-contrôle au niveau du 13ième point qui est au dessus de la limite de contrôle $UCL^+ = 0.045685$ (voir les valeurs en gras dans la Table 5.6).

	$(\gamma_X =$	$0.01, \gamma_Y$	= 0.01)	$(\gamma_X =$	$= 0.2, \gamma_Y$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = \rho_1$	= -0.8		
(D)	67	47	14	54	66	69
(I)	67	45	14	51	66	70
			$\rho_0 = \rho_1$	0.4		
(D)	66	38	$ \rho_0 - \rho_1 0 $	- 0.4 58	67	70
(D) (I)	66	40	0	55	67	70
(1)	00	40	0	00	01	10
			$\rho_0 = \rho$	$p_1 = 0$		
(D)	63	32	-9	61	69	70
(I)	63	26	-9	59	69	70
			$\rho_0 = \rho_1$	= 0.4		
(D)	57	14	-10	66	70	70
(I)	56	14	-10^{-10}	65	70	71
~ /						
	22	10	$\rho_0 = \rho_1$	1 = 0.8	-	
(D)	32	-10	-10	74	72	70
(1)	36	-10	-10	73	72	71
	$(\gamma_X =$	$0.01, \gamma_Y$	r = 0.2)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.01)
	$(\gamma_X = n = 1$	n = 5	r = 0.2) n = 15	$(\gamma_X = n = 1)$	$0.2, \gamma_Y$ $n = 5$	= 0.01) n = 15
	$(\gamma_X = n = 1$	$\begin{array}{c} 0.01, \gamma_Y \\ n = 5 \end{array}$	$r = 0.2)$ $n = 15$ $\rho_0 = \rho_1$	$\begin{array}{c} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$	= 0.01) n = 15
(D)	$(\gamma_X = n = 1)$ 49	$\begin{array}{c} 0.01, \gamma_Y \\ n = 5 \end{array}$		$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \end{array}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 75 \end{array} $	= 0.01) n = 15 74
(D) (I)	$(\gamma_X = n = 1)$ 49 71	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \end{array} $ $ \begin{array}{c} 62 \\ 75 \end{array} $		$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$	= 0.01) n = 15 74 67
(D) (I)	$(\gamma_X = n = 1)$ 49 71	62 75 62		$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$	= 0.01) n = 15 74 67
(D) (I) (D)	$(\gamma_X = n = 1)$ 49 71 49	62 62 62 62		$\begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \\ 75 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$ $\begin{array}{c} 75 \end{array}$	= 0.01) n = 15 74 67 74
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71	62 62 75 62 75 62 75		$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \\ 75 \\ 52 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$	= 0.01) n = 15 74 67 74 66
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71	$ \begin{array}{c} $		$(\gamma_X = \frac{n = 1}{2})$ $= -0.8$ 74 53 $= -0.4$ 75 52 0	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 75 \\ 63 \\ 75 \\ 63 \\ \end{array} $	= 0.01) n = 15 74 67 74 66
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71 49 71	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5 \\ 62 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75$		$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \\ 75 \\ 52 \\ p_1 = 0 \\ 75 \\ 52 \end{array}$	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$ $\begin{array}{c} 75 \\ 63 \end{array}$	= 0.01) n = 15 74 67 74 66
(D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 49 71 49 71 49 71 49 71	$ \begin{array}{c} $		$\begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \\ 75 \\ 52 \\ p_1 = 0 \\ 75 \\ 52 \\ p_2 = 0 \\ 75 \\ 52 \end{array}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ cn $	= 0.01) n = 15 74 67 74 66 74 66
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71 49 71 49 72	$ \begin{array}{c} $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \\ 75 \\ 52 \\ p_1 = 0 \\ 75 \\ 52 \\ \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 74 \\ 67 \\ \hline 74 \\ 66 \\ \hline 74 \\ 66 \\ \hline 74 \\ 66 \\ \end{array} $
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71 49 71 49 72	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 75 \\ 75 \\ $		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \\ 75 \\ 52 \\ p_1 = 0 \\ 75 \\ 52 \\ q = 0.4 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 74 \\ 67 \\ \hline 74 \\ 66 \\ \hline 74 \\ 66 \\ \hline 74 \\ 66 \\ \end{array} $
(D) (I) (D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 49 71 49 71 49 72 49	$ \begin{array}{c} $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \\ 75 \\ 52 \\ p_1 = 0 \\ 75 \\ 52 \\ n = 0.4 \\ 76 \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ 76 \\ 76 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 74 \\ 67 \\ \hline 74 \\ 66 \\ \hline 74 \\ \end{array} $
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71 49 71 49 72 49 72 49 72	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 75 \\ 75 \\ $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ \hline n = 1 \\ \hline = -0.8 \\ 74 \\ 53 \\ \hline = -0.4 \\ 75 \\ 52 \\ \hline p_1 = 0 \\ 75 \\ 52 \\ \hline n = 0.4 \\ 76 \\ 52 \\ \hline \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ 76 \\ 63 \\ 76 \\ 63 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 74 \\ 67 \\ \hline 74 \\ 66 \\ \hline \end{array} $
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71 49 72 49 72 49 72	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 75 \\ 75 \\ $		$ \begin{array}{r} (\gamma_X = \\ n = 1 \\ = -0.8 \\ 74 \\ 53 \\ = -0.4 \\ 75 \\ 52 \\ p_1 = 0 \\ 75 \\ 52 \\ n = 0.4 \\ 76 \\ 52 \\ 0 \end{array} $	$\begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 75 \\ 63 \\ \\ 76 \\ 63 \end{array}$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 74 \\ 66 \\ \end{array} $
(D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71 49 71 49 72 49 72 72 49 72 72 72 72 72 72 72 72 72 72 72 72 72	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 75 \\ 75 \\ $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ \hline n = 1 \\ \hline = -0.8 \\ 74 \\ 53 \\ \hline = -0.4 \\ 75 \\ 52 \\ \hline p_1 = 0 \\ 75 \\ 52 \\ \hline n = 0.4 \\ 76 \\ 52 \\ \hline n = 0.8 \\ 76 \\ \hline \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ 75 \\ 63 \\ 75 \\ 63 \\ 75 \\ 63 \\ 76 \\ 63 \\ 76 \\ 63 \\ 76 \\ 76 \\ 76 \\ 76 \\ 76 \\ 76 \\ 76 \\ 76$	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 74 \\ 66 \\ \hline 74 \\ \hline 74 \\ 66 \\ \hline 74 \\ \hline 74 \\ 74 \\ \hline 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ $
(D) (I) (D) (I) (D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 49 71 49 71 49 72 49 72 48 72 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$ \begin{array}{c} 0.01, \gamma_Y \\ n = 5 \\ 62 \\ 75 \\ 75 \\ $		$ \begin{array}{r} \hline (\gamma_X = \\ n = 1 \\ \hline n = 1 \\ \hline = -0.8 \\ 74 \\ 53 \\ \hline = -0.4 \\ 75 \\ 52 \\ \hline p_1 = 0 \\ 75 \\ 52 \\ \hline n = 0.4 \\ 76 \\ 52 \\ \hline n = 0.8 \\ 76 \\ \hline 54 \\ \hline \end{array} $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5\\ \end{array} $ $ \begin{array}{c} 75\\ 63\\ \end{array} $ $ \begin{array}{c} 75\\ 63\\ \end{array} $ $ \begin{array}{c} 76\\ 63\\ \end{array} $ $ \begin{array}{c} 76\\ 63\\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 74 \\ 66 \\ \hline 74 \\ \hline 74 \\ 66 \\ \hline 74 \\ \hline 74 \\ \hline 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ $

TABLE 5.4 : Δ pour les cartes CUSUM-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

	$(\gamma_X =$	$\overline{0.01, \gamma_Y}$	= 0.01)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.2)
	n = 1	n = 5	n = 15	n = 1	n = 5	n = 15
			$\rho_0 = -0.4$	$\rho_1 = -0.2$	2	
(D)	76	46	0	72	81	82
(I)	76	48	0	65	79	81
			$\rho_0 = -0.4$	$\rho_1 = -0.5$	8	
(D)	48	25	0	29	41	47
(I)	48	29	0	35	45	49
			$\rho_0 = 0.4$	$o_1 = 0.2$		
(D)	38	8	-10	42	45	47
(I)	40	8	-10	46	48	49
			.			
(=)		10	$ \rho_0 = 0.4 $	$\rho_1 = 0.8$	100	100
(D)	99	40	-10	99	100	100
(I)	99	40	-10	98	100	100
	$(\gamma_X =$	$0.01, \gamma_Y$	r = 0.2)	$(\gamma_X =$	$0.2, \gamma_Y$	= 0.01)
	$(\gamma_X = n = 1$	$\begin{array}{c} 0.01, \gamma_{\mathrm{Y}} \\ n = 5 \end{array}$	r = 0.2) n = 15	$(\gamma_X = n = 1)$	$0.2, \gamma_Y$ $n = 5$	= 0.01) n = 15
	$(\gamma_X = n = 1)$	$\begin{array}{c} 0.01, \gamma_{\mathrm{Y}} \\ n = 5 \end{array}$	r = 0.2) n = 15 $\rho_0 = -0.4$	$(\gamma_X = \frac{n}{n} = 1)$	$0.2, \gamma_Y$ $n = 5$ 2	= 0.01) n = 15
(D)	$(\gamma_X = n = 1)$ 53	$0.01, \gamma_{Y}$ $n = 5$ 64	r = 0.2) n = 15 $\rho_0 = -0.4$ 68	$(\gamma_X = \frac{n = 1}{\rho_1 = -0.5}$	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \end{array} $	= 0.01) n = 15 75
(D) (I)	$(\gamma_X = n = 1)$ 53 72	$0.01, \gamma_{Y}$ n = 5 64 76	r = 0.2) n = 15 $\rho_0 = -0.4$ 68 75	$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0.1 \\ 76 \\ 55 \end{array}}$	$ \begin{array}{r} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ \end{array} $	= 0.01) n = 15 75 68
(D) (I)	$(\gamma_X = n = 1)$ 53 72	$0.01, \gamma_{Y}$ n = 5 64 76		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0.1 \\ 76 \\ 55 \\ \rho_1 = -0.1 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \end{array} $	= 0.01) n = 15 75 68
(D) (I) (D)	$(\gamma_X = n = 1)$ 53 72 42	$0.01, \gamma_{Y}$ n = 5 64 76 58		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0.5 \\ 76 \\ 55 \\ \rho_1 = -0.5 \\ 72 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ \hline 8 \\ 73 \\ \end{array} $	= 0.01) n = 15 75 68 71
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 53 72 42 69	$0.01, \gamma_{Y}$ n = 5 64 76 58 73		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0.5 \\ 76 \\ 55 \\ \rho_1 = -0.5 \\ 72 \\ 47 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 73 \\ 59 \\ \end{array} $	= 0.01) n = 15 75 68 71 63
(D) (I) (D) (I)	$(\gamma_X = n = 1)$ 53 72 42 69	$0.01, \gamma_{Y}$ n = 5 64 76 58 73		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0.3 \\ 76 \\ 55 \\ \rho_1 = -0.3 \\ 72 \\ 47 \\ \rho_1 = 0.2 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 73 \\ 59 \\ \end{array} $	= 0.01) n = 15 75 68 71 63
(D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 53 72 42 69 45	$0.01, \gamma_{Y}$ n = 5 64 76 58 73 59		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0.3 \\ 76 \\ 55 \\ \rho_1 = -0.4 \\ 72 \\ 47 \\ \rho_1 = 0.2 \\ 74 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 73 \\ 59 \\ 74 \end{array} $	= 0.01) n = 15 75 68 71 63 73
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 53 72 42 69 45 71	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 64\\ 76\\ 58\\ 73\\ 59\\ 74\\ \end{array} $		$\overline{\begin{array}{c} (\gamma_X = \\ n = 1 \\ \rho_1 = -0.3 \\ 76 \\ 55 \\ \rho_1 = -0.3 \\ 72 \\ 47 \\ \rho_1 = 0.2 \\ 74 \\ 49 \end{array}}$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 73 \\ 59 \\ 74 \\ 61 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ n = 15 \\ \hline 75 \\ 68 \\ \hline 71 \\ 63 \\ \hline 73 \\ 64 \\ \end{array} $
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 53 72 42 69 45 71	$0.01, \gamma_{Y}$ n = 5 64 76 58 73 59 74		$ \frac{\gamma_X = n}{p_1 = -0.5} $ $ \frac{\gamma_X = n}{p_1 = -$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 73 \\ 59 \\ 74 \\ 61 \\ \end{array} $	= 0.01) n = 15 75 68 71 63 73 64
(D) (I) (D) (I) (D) (I)	$(\gamma_X = n = 1)$ 53 72 42 69 45 71	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 64\\ 76\\ 58\\ 73\\ 59\\ 74\\ 69\\ 74\\ 60\\ 74\\ 60\\ 74\\ 74\\ 74\\ 74\\ 75\\ 74\\ 74\\ 75\\ 74\\ 75\\ 74\\ 74\\ 75\\ 74\\ 75\\ 74\\ 75\\ 74\\ 75\\ 74\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75$		$ \frac{\gamma_X = n = 1}{\rho_1 = -0.3} $ $ \frac{\gamma_1 = -0.3}{\gamma_1} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_1}{\gamma_2} $ $ \frac{\gamma_2}{\gamma_1} $ $ \frac{\gamma_1}{\gamma_2} $ $ \gamma_1$	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 73 \\ 59 \\ 74 \\ 61 \\ \hline - 4 \\ 61 \\ \hline - 4 \\ - 5 \\ \hline - 5 \\ - 6 \\ - 6 \\ - 7 \\ $	= 0.01) n = 15 75 68 71 63 73 64
(D) (I) (D) (I) (D) (I) (D)	$(\gamma_X = n = 1)$ 53 72 42 69 45 71 56	$ \begin{array}{c} 0.01, \gamma_{Y} \\ n = 5\\ 64\\ 76\\ 58\\ 73\\ 59\\ 74\\ 67\\ \end{array} $		$ \frac{\gamma_X = n}{p_1 = -0.3} $ $ \frac{\gamma_X = n}{p_1 = -0.3} $ $ \frac{\gamma_0}{p_1} = -0.3 $ $ \frac{\gamma_0}{p_1} = 0.2 $ $ \frac{\gamma_0}{p_1} = 0.3 $ $ \frac{\gamma_0}{p_1} = 0.8 $ $ \frac{\gamma_0}{p_1} = 0.8 $ $ \frac{\gamma_0}{p_1} = 0.8 $	$ \begin{array}{c} 0.2, \gamma_Y \\ n = 5 \\ \hline 2 \\ 76 \\ 65 \\ 8 \\ 73 \\ 59 \\ 74 \\ 61 \\ 78 \\ \hline 78 \\ \hline \end{array} $	$ \begin{array}{c} = 0.01) \\ n = 15 \\ 75 \\ 68 \\ 71 \\ 63 \\ 73 \\ 64 \\ 77 \\ 77 \\ 77 \\ 77 \\ 77 \\ 77 \\ 77 \\ 7$

TABLE 5.5 : Δ pour les cartes CUSUM-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1), \text{ i.e. cas décroissant (D) et } \Omega = [1, 1.1), \text{ i.e. cas croissant (I).}$

		$W_{p,i,j}$ [gr]					$\bar{W}_{p,i}$ [gr]		
Échantillon	Boîtes dont le poids			$W_{f,i,j}$ [gr]		$\bar{W}_{f,i}$ [gr]	$\hat{Z}_i = \frac{\bar{W}_{p,i}}{\bar{W}_{f,i}}$	S_i^+
1	250 gr	25.479	25.355	24.027	25.792	24.960	25.122	1.003	0.002207
2	250	25.218	25.171	24.684	25.052	25.107	25.046	1 000	0.001.419
2	250 gr	25.359 25.211	25.172 25.115	24.508 24.679	25.292 24.033	24.449 24.831	24.950 24.954	1.003	0.001413
2	250	20.211	20.110	24.075	24.303	24.001	05.044	1.005	0.005000
3	250 gr	24.374 24.784	24.804 24.868	25.805 25.377	25.107 24.879	24.811 24.734	25.044 24.929	1.005	0.005620
4	250	21.101 0F 919	24.000	20.011	05 104	21.101 05 CO1	04.050	0.000	0.002000
4	250 gr	20.313 25.338	24.483 24.859	24.088 24.305	25.184 25.115	25.081 25.251	24.950 24.974	0.999	0.003820
5	250	20.000	24.000	24.000	20.110	05 591	05 111	0.000	0.001099
5	250 gr	25.557 25.277	24.959 25/402	25.023 25.012	24.482 24.937	25.531 25.148	25.111 25.163	0.998	0.001033
<i>(</i>	250	20.211	20.402	20.012	24.301	20.140	20.100	0.007	0.000000
6	250 gr	24.882 24.962	24.473 24.644	24.814 24.817	25.418 25.419	24.732 24.818	24.864 24.932	0.997	0.000000
7	500	40.949	40.005	40.004	40.010	40.274	40 500	0.000	0.00000
/	500 gr	49.848	48.085	49.994	49.910	49.374 49.422	49.502 49.588	0.999	0.000000
0	500	40.000	50.990	40.140	47.007	40.004	40.005	0.000	0.000000
8	500 gr	49.008 49.695	50.338 50.681	49.149	47.807	49.004 49.612	49.205 49.720	0.990	0.000000
0	500	43.030	40.001	40.510	40.303	49.012	49.120	0.000	0.000000
9	500 gr	50.366	48.303	48.510	50.594 79.890	48.591 49.595	49.454 49.781	0.993	0.000000
10	500	49.700	10.210	40.077	10.000	50.944	50.100	1 000	0.001007
10	500 gr	48.720 49.721	51.000 50.215	49.077 50.178	50.001 50.324	50.344 50.071	50.192 50.102	1.002	0.001207
11	500	51 979	51 700	51.000	50.024	40.041	50.102	1 017	0.017419
11	500 gr	50 164	51.700 50.272	51.000 49.884	50.880 50.061	49.041 49.845	50.920 50.045	1.017	0.017413
12	500	50.104	59.100	51.004	51.940	40 771	F1 190	1 000	0.020(20
12	500 gr	52.020 50.749	50.182 50.369	51.374 49.697	51.342 49.575	48.771	51.138 49.966	1.023	0.039620
12	500	50.145	40.410	10.001	10.070	50.001	10.040	1.010	0.054006
13	500 gr	52.300 50.047	49.412	50.704 50.207	50.370 50.408	50.901 50.026	50.949 50.152	1.010	0.054820
1.4	500	50.047	49.901	40.719	40.574	50.020	50.102	1 000	0.0(2022
14	500 gr	52.498 50.064	50.447 50.124	48.713	48.074 48.865	00.275 50 344	00.101 49 719	1.008	0.002033
15	250	00.004	04.050	94 400	-10.000	05.071	-13.112	0.000	0.057000
15	250 gr	25.123 25.041	24.658 24.790	24.408 24.835	25.030 25.211	25.071 25.008	24.870 24.977	0.996	0.057239
		20.041	24.130	24.000	20.211	20.000	24.311		

 TABLE 5.6 : Données de exemple de l'industrie alimentaire.

5.6 Conclusion

97

Dans ce chapitre, nous avons présenté deux cartes de contrôle CUSUM-RZ unilatérales distinctes pour surveiller le ratio de valeurs moyennes lorsque des sous-groupes de taille n > 1 sont collectées. L'évaluation de la performance statistique des cartes de contrôle CUSUM-RZ est basée sur une méthodologie de la chaîne de Markov, ainsi que sur approximation normale de la distribution de Z. Pour différentes valeurs des coefficients de variation (γ_X, γ_Y) et du coefficient de corrélation sous-contrôle ρ , nous avons généré des tables et des figures présentant les valeurs optimales hors-contrôle ARL_1 . En outre, la comparaison numérique avec la performance de la carte Shewhart-RZ et des cartes EWMA-RZ montre que les cartes CUSUM-RZ ont globalement une meilleure sensibilité statistique dans la plupart des cas.

Les travaux présentés dans ce chapitre ont été publiés dans Tran et al. (2016c).

Les cartes de contrôle pour la surveillance continue du ratio de deux variables aléatoires normales présentées dans les chapitres précédents supposent qu'il n'y a aucune erreur dans le processus de mesure. Mais, en pratique, les erreurs de mesure existent toujours dans les applications de contrôle de qualité et elles peuvent affecter considérablement les performances des cartes de contrôle. Pour cette raison, l'évaluation de la performance d'une carte de contrôle de type Shewhart pour surveiller le ratio Shewhart-RZ avec erreurs de mesure sera l'objet du chapitre suivant.

Carte de contrôle Shewhart-RZ avec erreur de mesure

6.1 Introduction

Comme nous l'avons expliqué dans les chapitre précédents, les cartes de contrôle pour surveiller le ratio ont été étudiées et utilisées pour détecter des changements dans un processus. Pour de plus amples détails, voir, par exemple, Spisak (1990), Davis and Woodall (1991), Öksoy et al. (1994), Celano and Castagliola (2016a), Celano and Castagliola (2016b), Tran et al. (2016a), Tran et al. (2016b), Tran et al. (2016c) pour ne citer que quelques-uns. Parmi ces cartes, les cartes de contrôle pour surveiller le ratio avec la méthode EWMA par Tran et al. (2016b) et les cartes de contrôle pour surveiller le ratio avec la méthode CUSUM par Tran et al. (2016c) présentées dans les chapitres précédents se sont révélées être très sensibles à la détection des changements de petite amplitude.

Les cartes de contrôle précitées pour contrôler le ratio de deux variables normales sont conçues sous l'hypothèse que la mesure est sans erreur. Mais, dans de nombreux scénarios industriels, il existe souvent des erreurs de mesure importantes qui affectent la performance des cartes de contrôle. Depuis Bennet (1954) qui a étudié l'effet des erreurs de mesure sur la carte Shewhart \bar{X} , il existe de nombreuses études sur la performance réelle des différentes cartes de contrôle en présence d'erreurs de mesure, pour plus détails, voir par exemple : Kanazuka (1986), Linna and Woodall (2001), Linna et al. (2001), Maravelakis (2004), Costa and Castagliola (2011), Maravelakis (2012), Hu et al. (2014), Noorossana and Zerehsaz (2015).

Dans ce chapitre, nous allons présenter l'évaluation des performance de la carte de contrôle Shewhart-RZ proposée par Celano and Castagliola (2016a) avec erreurs de mesure en utilisant le modèle proposé par Linna et al. (2001).

6.2 Modèle d'erreur linéaire covariable pour le ratio Z

Comme suggéré par Linna et al. (2001), supposons que la (vraie) caractéristique de qualité $\mathbf{W} = (X, Y)^T \sim N(\boldsymbol{\mu}_{\mathbf{W}}, \boldsymbol{\Sigma}_{\mathbf{W}})$ avec le vecteur moyen (2.16) et la matrice de variance-covariance (2.17) ne soit pas directement observable, mais peut être seulement mesurée par une quantité observable (covariable) $\mathbf{W}^* =$

 $(X^*, Y^*)^T$ défini comme (modèle d'erreur linéaire)

$$\mathbf{W}^* = \mathbf{A} + \mathbf{B}\mathbf{W} + \boldsymbol{\varepsilon},\tag{6.1}$$

où A est un vecteur (2×1) de constantes relatives à la *calibration* de la mesure,

$$\mathbf{A} = \begin{pmatrix} a_X \\ a_Y \end{pmatrix},\tag{6.2}$$

B est une matrice (2×2) et $\varepsilon \sim N(\mathbf{0}, \Sigma_M)$ est un vecteur aléatoire normale bivarié centré supposé être indépendant de W avec pour matrice de variance-covariance

$$\Sigma_M = \begin{pmatrix} \sigma_{MX}^2 & \rho_M \sigma_{MX} \sigma_{MY} \\ \rho_M \sigma_{MX} \sigma_{MY} & \sigma_{MY}^2 \end{pmatrix}, \tag{6.3}$$

où σ_{MX} et σ_{MY} sont les écarts-types de l'erreur de mesure pour X et Y, respectivement, et $\rho_M \in (-1, +1)$ est le coefficient de corrélation correspondant. Plus $(\sigma_{MX}, \sigma_{MY})$ sont petits, plus *l'exactitude* de la mesure est élevée. Dans le reste du chapitre, nous allons supposer que $\mathbf{B} = \mathbf{I}_{2\times 2}$ est une matrice identité qui relie la valeur réelle de l'observation à son homologue observée. Avec cette hypothèse, nous pouvons adapter le modèle d'erreur linéaire pour obtenir une représentation mathématique complète de l'exactitude et de l'erreur de la *calibration*. Ceci est également compatible avec Linna et al. (2001) qui recommande un matrice inversible $p \times p$ de constantes, souvent diagonale, pour la matrice \mathbf{B} .

Soit $Z^* = \frac{X^*}{Y^*}$ le ratio observé de X^* et Y^* , soit $\gamma_{X^*} = \frac{\sigma_{X^*}}{\mu_{X^*}}$, soient respectivement $\gamma_{Y^*} = \frac{\sigma_{Y^*}}{\mu_{Y^*}}$ les coefficients de variation observés de X^* et Y^* , soit $\omega^* = \frac{\sigma_{X^*}}{\sigma_{Y^*}}$ le ratio de leur écart-type observé et soit ρ^* le coefficient de corrélation observé entre X^* et Y^* . Tel qu'indiqué dans le précédent chapitre, la distribution de Z^* est entièrement définie aussi longtemps que γ_{X^*} , γ_{Y^*} , ω^* et ρ^* sont connus : le reste de la section est consacrée à l'étude de la l'obtention des formules pour γ_{X^*} , γ_{Y^*} , ω^* et ρ^* comme des fonctions des valeurs γ_X , γ_Y , ω et ρ .

Le vecteur moyen $\mu_{\mathbf{W}^*}$ et la matrice de variance-covariance $\Sigma_{\mathbf{W}^*}$ de \mathbf{W}^* sont égaux à

$$\boldsymbol{\mu}_{\mathbf{W}^*} = \mathbf{A} + \mathbf{B}\boldsymbol{\mu}_{\mathbf{W}}, \tag{6.4}$$

$$\Sigma_{\mathbf{W}^*} = \mathbf{B}\Sigma_{\mathbf{W}}\mathbf{B}^T + \Sigma_M = \Sigma_{\mathbf{W}} + \Sigma_M.$$
(6.5)

Ceci permet d'obtenir

$$\boldsymbol{\mu}_{\mathbf{W}^*} = \begin{pmatrix} \mu_{X^*} \\ \mu_{Y^*} \end{pmatrix} = \begin{pmatrix} a_X + \mu_X \\ a_Y + \mu_Y \end{pmatrix}$$
(6.6)

et

$$\Sigma_{\mathbf{W}^*} = \begin{pmatrix} \sigma_{X^*}^2 & \rho^* \sigma_{X^*} \sigma_{Y^*} \\ \rho^* \sigma_{X^*} \sigma_{Y^*} & \sigma_{Y^*}^2 \end{pmatrix}$$
(6.7)

où les variances $\sigma_{X^*}^2$ et $\sigma_{Y^*}^2$ de X^* et Y^* sont respectivement égales à

$$\sigma_{X^*}^2 = \sigma_X^2 + \sigma_{MX}^2, \tag{6.8}$$

$$\sigma_{Y^*}^2 = \sigma_Y^2 + \sigma_{MY}^2, (6.9)$$

et le terme $r = \rho^* \sigma_{X^*} \sigma_{Y^*}$ est égal à

$$r = \rho \sigma_X \sigma_Y + \rho_M \sigma_{MX} \sigma_{MY}. \tag{6.10}$$

Le coefficient de corrélation ρ^* entre X^* et Y^* peut être obtenu en utilisant (6.8), (6.9) et (6.10) de la manière suivante :

$$\rho^* = \frac{\rho \sigma_X \sigma_Y + \rho_M \sigma_{MX} \sigma_{MY}}{\sigma_{X^*} \sigma_{Y^*}}.$$
(6.11)

En outre, les coefficients de variation $\gamma_{X^*} = \frac{\sigma_{X^*}}{\mu_{X^*}}$ et $\gamma_{Y^*} = \frac{\sigma_{Y^*}}{\mu_{Y^*}}$ de X^* et Y^* sont respectivement égaux à

$$\gamma_{X^*} = \frac{\sqrt{\sigma_X^2 + \sigma_{MX}^2}}{a_X + \mu_X}, \tag{6.12}$$

$$\gamma_{Y^*} = \frac{\sqrt{\sigma_Y^2 + \sigma_{MY}^2}}{a_Y + \mu_Y},$$
(6.13)

et, enfin, le ratio des écart-types $\omega^* = \frac{\sigma_{X^*}}{\sigma_{Y^*}}$ est égal à

$$\omega^* = \sqrt{\frac{\sigma_X^2 + \sigma_{MX}^2}{\sigma_Y^2 + \sigma_{MY}^2}}.$$
(6.14)

Soient respectivement $\eta_X = \frac{\sigma_{MX}}{\sigma_X}$ et $\eta_Y = \frac{\sigma_{MY}}{\sigma_Y}$ les racines carrées des ratios de la variabilité du système de mesure et des variables X et Y. Si on divise le numérateur et le dénominateur de (6.11) par $\sigma_X \sigma_Y$, en se rappelant que $\omega = \frac{\sigma_X}{\sigma_Y}$, puis, après quelques manipulations et simplifications simples, le coefficient de corrélation ρ^* entre X^* et Y^* peut être réécrit comme

$$\rho^* = \frac{\rho + \rho_M \eta_X \eta_Y}{\sqrt{1 + \eta_X^2} \sqrt{1 + \eta_Y^2}}$$
(6.15)

Soient $\theta_X = \frac{a_X}{\mu_X}$ et $\theta_Y = \frac{a_Y}{\mu_Y}$. Si nous divisons le numérateur de (6.12) par σ_X , le dénominateur de (6.12) par μ_X et si nous multiplions (6.12) par $\gamma_X = \frac{\sigma_X}{\mu_X}$, le coefficient de variation γ_{X^*} de X^* peut être réécrit comme

$$\gamma_{X^*} = \frac{\sqrt{1+\eta_X^2}}{1+\theta_X} \times \gamma_X \tag{6.16}$$

D'une manière similaire, si nous divisons le numérateur de (6.13) par σ_Y , le dénominateur de (6.13) par μ_Y et si nous multiplions (6.13) par $\gamma_Y = \frac{\sigma_Y}{\mu_Y}$, le coefficient de variation γ_{Y^*} de Y^* peut être réécrit comme

$$\gamma_{Y^*} = \frac{\sqrt{1+\eta_Y^2}}{1+\theta_Y} \times \gamma_Y \tag{6.17}$$

Enfin, si nous divisons le numérateur de (6.14) par σ_X , le dénominateur de (6.14) par σ_Y et si nous multiplions (6.14) par $\omega = \frac{\sigma_X}{\sigma_Y}$, le ratio des écart-types ω^* peut être réécrit comme

$$\omega^* = \sqrt{\frac{1+\eta_X^2}{1+\eta_Y^2}} \times \omega. \tag{6.18}$$

Les p.d.f., c.d.f. and i.d.f. de Z^{*} peuvent être obtenus à partir (2.8), (2.11) et (2.12) par remplacement simple de γ_X , γ_Y , ω et ρ avec γ_X^* , γ_Y^* , ω^* et ρ^* tels que définis dans les équations (6.15)–(6.18).

6.3 Mise en œuvre de la carte de contrôle Shewhart-RZ avec erreurs de mesure

A chaque période d'échantillonnage i = 1, 2, ..., nous supposons que nous recueillons un échantillon de n valeurs indépendantes $\{\mathbf{W}_{i,1}, \mathbf{W}_{i,2}, ..., \mathbf{W}_{i,n}\}$ dont les valeurs sont inobservables, où chaque $\mathbf{W}_{i,j} = (X_{i,j}, Y_{i,j})^T \sim N(\boldsymbol{\mu}_{\mathbf{W}}, \boldsymbol{\Sigma}_{\mathbf{W}}), j = 1, ..., n$. Par système de mesure disponible, nous observons en fait un échantillon de n mesures indépendantes $\{\mathbf{W}_{i,1}^*, \mathbf{W}_{i,2}^*, ..., \mathbf{W}_{i,n}^*\}$, où chaque $\mathbf{W}_{i,j}^* = \mathbf{A} + \mathbf{B}\mathbf{W}_{i,j} + \boldsymbol{\varepsilon}_{i,j} =$

6.3. MISE EN ŒUVRE DE LA CARTE DE CONTRÔLE SHEWHART-RZ AVEC ERREURS DE MESURE

 $(X_{i,j}^*, Y_{i,j}^*)^T \sim N(\boldsymbol{\mu}_{\mathbf{W}^*}, \boldsymbol{\Sigma}_{\mathbf{W}^*}), j = 1, \dots, n$. La statistique que nous proposons de suivre à chaque période d'échantillonnage $i = 1, 2, \dots$ est

$$\hat{Z}_{i}^{*} = \frac{\hat{\mu}_{X_{i}^{*}}}{\hat{\mu}_{Y_{i}^{*}}} = \frac{\bar{X}_{i}^{*}}{\bar{Y}_{i}^{*}} = \frac{\sum_{j=1}^{n} X_{i,j}^{*}}{\sum_{j=1}^{n} Y_{i,j}^{*}}.$$
(6.19)

Puisque $\bar{X}_i^* \sim N(\mu_{X^*}, \frac{\sigma_{X^*}}{\sqrt{n}})$ et $\bar{Y}_i^* \sim N(\mu_{Y^*}, \frac{\sigma_{Y^*}}{\sqrt{n}})$, les coefficients de variation $\gamma_{\bar{X}^*}$ et $\gamma_{\bar{Y}^*}$ de \bar{X}_i^* et \bar{Y}_i^* sont égaux à

$$\gamma_{\bar{X}^*} = \frac{\sigma_{X^*}}{\mu_{X^*}\sqrt{n}} = \frac{\gamma_{X^*}}{\sqrt{n}},$$
(6.20)

$$\gamma_{\bar{Y}^*} = \frac{\sigma_{Y^*}}{\mu_{Y^*}\sqrt{n}} = \frac{\gamma_{Y^*}}{\sqrt{n}},$$
(6.21)

et, à chaque période d'échantillonnage i = 1, 2, ..., le ratio des écart-types $\omega_{\hat{Z}^*}$ correspond à \hat{Z}_i^* est égal à

$$\omega_{\hat{Z}^*} = \frac{\sigma_{X^*} / \sqrt{n}}{\sigma_{Y^*} / \sqrt{n}} = \frac{\sigma_{X^*}}{\sigma_{Y^*}} = \omega^*$$
(6.22)

Nous allons supposer que, lorsque le processus est sous-contrôle, le coefficient de corrélation entre les deux variables $X_{i,j}$ et $Y_{i,j}$ est $\rho = \rho_0$ et le ratio moyen est $z = \frac{\mu_X}{\mu_Y} = z_0$. Puisque la distribution de \hat{Z}_i^* n'a pas de moments, les limites de contrôle LCL et UCL de la carte Shewhart-RZ sont définis comme limites de contrôle probabilistes, i.e.

$$LCL = F_Z^{-1}\left(\frac{\alpha}{2} \left| \frac{\gamma_{X^*}}{\sqrt{n}}, \frac{\gamma_{Y^*}}{\sqrt{n}}, \omega^*, \rho^* \right),$$
(6.23)

$$UCL = F_Z^{-1}\left(1 - \frac{\alpha}{2} \left| \frac{\gamma_{X^*}}{\sqrt{n}}, \frac{\gamma_{Y^*}}{\sqrt{n}}, \omega^*, \rho^*\right\right).$$
(6.24)

où α est la probabilité de fausse alarme souhaitée pour la carte. Les valeurs de ρ^* , γ_{X^*} , γ_{Y^*} dans (6.23) et (6.24), et ω^* dans (6.15)–(6.18) sont calculées pour $\rho = \rho_0$ et $z = z_0$. La ligne centrale CL de la carte Shewhart-RZ peut être défini à la valeur médiane, i.e.

$$CL = F_Z^{-1}\left(0.5 \left| \frac{\gamma_{X^*}}{\sqrt{n}}, \frac{\gamma_{Y^*}}{\sqrt{n}}, \omega^*, \rho^* \right.\right).$$
(6.25)

Nous supposons que l'apparition d'une situation hors-contrôle fait passer le ratio z_0 à $z_1 = \tau \times z_0$, où $\tau > 0$ est la taille de changement. Les valeurs de $\tau \in (0, 1)$ correspondent à une diminution du ratio z_0 nominal, alors que les valeurs de $\tau > 1$ correspondent à une augmentation du ratio z_0 nominal. Nous considérons aussi que lorsque le procédé passe d'une situation sous-contrôle à une situation hors-contrôle, le coefficient de corrélation peut passer de $\rho = \rho_0$ à $\rho = \rho_1$. Comme avec toutes les autres cartes de contrôle de type Shewhart, le run length de la carte de contrôle Shewhart-RZ avec erreurs de mesure suit une distribution géométrique de paramètre $1 - \beta$ où β est égal à

$$\beta = F_Z \left(UCL \left| \frac{\gamma_{X^*}}{\sqrt{n}}, \frac{\gamma_{Y^*}}{\sqrt{n}}, \omega^*, \rho^* \right. \right) - F_Z \left(LCL \left| \frac{\gamma_{X^*}}{\sqrt{n}}, \frac{\gamma_{Y^*}}{\sqrt{n}}, \omega^*, \rho^* \right. \right).$$
(6.26)

Dans (6.26), les valeurs de ρ^* , γ_{X^*} , γ_{Y^*} et ω^* dans (6.15)–(6.18) sont calculées pour $\rho = \rho_1$ et $z = z_1$. Il est facile d'obtenir les expressions de l'*ARL* hors-contrôle comme étant égal à

$$ARL = \frac{1}{1-\beta}.$$
(6.27)

De manière similaire aux chapitres précédents, nous utilisons la performance global EARL pour étudier l'effet des erreurs de mesure sur la carte de contrôle Shewhart-RZ. Dans la section suivante, nous examinerons deux gammes différentes de changements : $\Omega_D = [0.9, 1)$ correspondant au cas d'une diminution pour τ et $\Omega_I = [1, 1.1)$ correspondant au cas d'une augmentation pour τ .

6.4 L'effet de l'erreur de mesure sur la carte de contrôle Shewhart-RZ

Dans cette section, nous étudions la performance statistique de la carte de contrôle Shewhart-RZ avec modèle linéaire d'erreur. Lorsque le processus est sous-contrôle, la valeur de ARL sera notée ARL_0 . Pour les valeurs fixes de n, γ_X , γ_Y , ρ_M , η_X , η_Y , θ_X , θ_Y , z_0 , ρ_0 , ρ_1 et τ , les valeurs de ARL peuvent être obtenus facilement à partir de (6.27). Dans cette section, nous allons supposer que $z_0 = 1$.

La Table 6.1 donne les valeurs des limites de contrôle de probabilité (LCL, UCL) correspond à $\alpha = 0.005$ (i.e. $ARL_0 = 200$) pour les valeurs étudiées $n \in \{1, 5, 7, 10, 15\}, \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_M = 0.5, \eta_X = \eta_Y = 0.28$ et $\theta_X = \theta_Y = 0.05$. Le choix des valeurs de (η_X, η_Y) est motivé par l'hypothèse d'une valeur acceptable pour le ratio signal-sur-bruit (signal-to-noise ratio, SNR), qui est une mesure de la performance d'un système de mesure (pour savoir si la *calibration* est adéquate). Le SNR est défini par l'Automotive Industry Action Group (AIAG) pour la réalisation d'analyse "Gauge R&R" (voir Montgomery (2013)). Dans notre recherche, le SNR des deux variables aléatoires X et Y sont respectivement égaux à

$$SNR_X = \sqrt{\frac{\frac{2}{1+\eta_X^2}}{1-\frac{1}{1+\eta_X^2}}} = \frac{\sqrt{2}}{\eta_X},$$
 (6.28)

$$SNR_Y = \sqrt{\frac{\frac{2}{1+\eta_Y^2}}{1-\frac{1}{1+\eta_Y^2}}} = \frac{\sqrt{2}}{\eta_Y}.$$
 (6.29)

(6.30)

Nous supposons que $\eta_X = \eta_Y = 0.28$ correspond à $SNR_X = SNR_Y = 5$, qui est la valeur limite inférieure pour obtenir une *calibration* acceptable du système de mesure. L'erreur de calibration dépend de la calibration de l'instrument et elle est généralement égale à un certain pourcentage de la mesure réelle. Dans ce chapitre, nous prenons $\theta_X = \theta_Y = 0.05$ comme étant les valeurs les plus élevées pour obtenir une calibration acceptable du système de mesure. Nous considérons également $\rho_M = 0.5$ i.e. les erreurs liées à la *calibration* sont corrélés positivement. Cela peut être une hypothèse intuitive, si les mesures sont réalisées sur le même instrument, par le même opérateur.

Les résultats présentés dans la Table 6.1 permettent de conclure les mêmes tendances que pour la carte Shewhart-RZ dans Celano and Castagliola (2016a) et, plus précisément :

- Pour des valeurs de (γ_X, γ_Y) fixées, les valeurs de LCL et LCL changent avec n et ρ₀. En particulier, LCL augmente et UCL diminue à mesure que n et ρ₀ augmentent. Par exemple, lorsque (γ_X, γ_Y) = (0.01, 0.01), nous avons LCL = 0.9539 et UCL = 1.0483 si n = 1 et ρ₀ = −0.4 et nous avons LCL = 0.9919 et UCL = 1.0081 si n = 15 et ρ₀ = 0.4.
- Pour des valeurs de n et ρ₀ fixées, les valeurs de LCL et UCL changent avec (γ_X, γ_Y). En particulier, LCL diminue et UCL augmente à mesure que (γ_X, γ_Y) augmentent. Par exemple, lorsque n = 5 et ρ₀ = 0.4, nous avons LCL = 0.9860 et UCL = 1.0142 lorsque (γ_X, γ_Y) = (0.01, 0.01) et nous avons LCL = 0.7483 et UCL = 1.3363 lorsque (γ_X, γ_Y) = (0.2, 0.2).

Nous étudions l'effet de l'erreur de *calibration* (mesuré par η_X et η_Y) sans aucune autre source d'erreur. La Figure 6.1 (pour le cas $\rho_0 = \rho_1 = -0.8$) et la Figure 6.2 (pour le cas $\rho_0 = -0.4$ et $\rho_1 = -0.8$) présentent les valeurs *EARL* pour la carte de contrôle de Shewhart-RZ en fonction de $\eta_X \in \{0, 0.1, 0.2, ..., 1\}$ et $\eta_Y \in \{0, 0.1, 0.2, ..., 1\}$. Dans ces figures, nous avons $n \in \{1, 15\}, \gamma_X = \gamma_Y \in \{0.01, 0.2\}, \rho_M = 0,$ $\theta_X = \theta_Y = 0, \Omega_D = [0.9, 1)$ et $\Omega_I = [1, 1.1)$.

Les résultats présentés sur les Figures 6.1 et 6.2 peuvent être commentés de la manière suivante :

γ_X	γ_Y	$ ho_0$	n = 1	n = 5	n = 7	n = 10	n = 15
0.01	0.01	-0.8	0.9481	0.9764	0.9801	0.9833	0.9863
			1.0548	1.0241	1.0204	1.0170	1.0139
		-0.4	0.9539	0.9791	0.9823	0.9852	0.9879
			1.0483	1.0213	1.0180	1.0150	1.0122
		0.0	0.9607	0.9822	0.9850	0.9874	0.9897
			1.0409	1.0181	1.0153	1.0128	1.0104
		0.4	0.9691	0.9860	0.9882	0.9901	0.9919
			1.0319	1.0142	1.0119	1.0100	1.0081
		0.8	0.9810	0.9914	0.9928	0.9939	0.9950
			1.0194	1.0086	1.0073	1.0061	1.0050
0.20	0.20	-0.8	0.2931	0.6135	0.6636	0.7109	0.7577
			3.4112	1.6301	1.5068	1.4067	1.3198
		-0.4	0.3333	0.6485	0.6954	0.7392	0.7822
			3.0004	1.5421	1.4380	1.3528	1.2784
		0.0	0.3884	0.6915	0.7341	0.7733	0.8115
			2.5746	1.4461	1.3622	1.2931	1.2323
		0.4	0.4715	0.7483	0.7844	0.8173	0.8488
			2.1208	1.3363	1.2748	1.2236	1.1781
		0.8	0.6271	0.8372	0.8618	0.8838	0.9045
			1.5945	1.1945	1.1604	1.1315	1.1056
0.01	0.20	-0.8	0.6208	0.7874	0.8145	0.8401	0.8656
			2.4138	1.3604	1.2890	1.2313	1.1814
		-0.4	0.6273	0.7911	0.8177	0.8429	0.8680
			2.3888	1.3541	1.2840	1.2272	1.1782
		0.0	0.6340	0.7949	0.8210	0.8457	0.8703
			2.3636	1.3477	1.2788	1.2231	1.1750
		0.4	0.6409	0.7987	0.8243	0.8486	0.8728
			2.3381	1.3412	1.2736	1.2189	1.1717
		0.8	0.6480	0.8027	0.8278	0.8516	0.8753
			2.3125	1.3346	1.2683	1.2147	1.1684
0.20	0.01	-0.8	0.4143	0.7351	0.7758	0.8122	0.8464
			1.6109	1.2700	1.2278	1.1904	1.1552
		-0.4	0.4186	0.7385	0.7788	0.8148	0.8487
			1.5942	1.2641	1.2230	1.1864	1.1521
		0.0	0.4231	0.7420	0.7820	0.8176	0.8511
			1.5774	1.2581	1.2181	1.1825	1.1490
		0.4	0.4277	0.7456	0.7852	0.8204	0.8534
			1.5604	1.2520	1.2131	1.1784	1.1458
		0.8	0.4324	0.7493	0.7885	0.8232	0.8559
			1.5433	1.2458	1.2081	1.1743	1.1425

TABLE 6.1 : Valeurs de *LCL* (première rangée) et *UCL* (deuxième rangée) pour la cart Shewhart-RZ en présence d'erreurs de mesure, pour $z_0 = 1$, $ARL_0 = 200$, $\theta_X = \theta_Y = 0.01$, $\eta_X = \eta_Y = 0.28$, $\rho_M = 0.5$, $n \in \{1, 5, 7, 10, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$ et $\rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}$

FIGURE 6.1 : Les effets de η_X et η_Y sur la performance globale de la carte Shewhart-RZ en présence d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\theta_X = \theta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = \rho_1 = -0.8$

FIGURE 6.2 : Les effets de η_X et η_Y sur la performance globale de la carte Shewhart-RZ en présence d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\theta_X = \theta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = -0.4$, $\rho_1 = -0.8$

- Les performances de la carte de contrôle de Shewhart-RZ est influencée par l'erreur de calibration, mesuré par (η_X, η_Y). Dans la plupart des cas, plus les valeurs de (η_X, η_Y) sont petites, plus rapide est la carte de contrôle dans la détection d'une condition hors-contrôle. Par exemple, lorsque n = 1, Ω = [0.9, 1), ρ₀ = -0.4, ρ₁ = -0.8, γ_X = γ_Y = 0.01, nous avons EARL = 6.5 lorsque η_X = η_Y = 0.1 et EARL = 7.2 lorsque η_X = η_Y = 0.4 (voir la Figure 6.2).
- Pour les valeurs γ_X = γ_Y = 0.2 et Ω = [0.9, 1), ρ₁ = ρ₀ = -0.8 plus la valeur de η_X (η_Y) est petite (grande), plus la valeur de *EARL* est petite lorsque η_Y (η_X) est constante. Par exemple, lorsque n = 1, Ω = [0.9, 1), ρ₀ = ρ₁ = -0.8, γ_X = γ_Y = 0.2, nous avons *EARL* = 188.8 pour η_X = η_Y = 0.2, *EARL* = 190.4 pour η_X = 0.3, η_Y = 0.2 et *EARL* = 188.1 pour η_X = 0.2, η_Y = 0.3 (voir la Figure 6.1).
- Dans la pratique, lorsque les deux valeurs de $\eta_X \leq 0.5$ et $\eta_Y \leq 0.5$, les valeurs de *EARL* en présence d'erreurs de mesure ne sont pas significativement plus grande que la valeur de *EARL* sans erreur de mesure, i.e. lorsque $\eta_X = \eta_Y = 0$, $\theta_X = \theta_Y = 0$ et $\rho_M = 0$. Par exemple, lorsque n = 1, $\Omega = [0.9, 1)$, $\rho_0 = -0.4$, $\rho_1 = -0.8$, $\gamma_X = \gamma_Y = 0.01$, nous avons *EARL* = 6.9 pour $\eta_X = \eta_Y = 0.3$ et *EARL* = 6.4 sans erreur de mesure (voir la Figure 6.2). Nous pouvons conclure que l'erreur de *calibration* ne modifie pas significativement les performances de la carte de contrôle de Shewhart-RZ avec un bon système de mesure.

Nous étudions l'effet de l'erreur d'exactitude (i.e. θ_X et θ_Y) sans aucune autre source d'erreur. La Figure 6.3 (pour le cas $\rho_0 = \rho_1 = -0.8$) et la Figure 6.4 (pour le cas $\rho_0 = -0.4$ et $\rho_1 = -0.8$) présentent les valeurs *EARL* pour la carte de contrôle de Shewhart-RZ en fonction de $\theta_X \in \{0, 0.005, 0.01, \dots, 0.05\}$ et de $\theta_Y \in \{0, 0.005, 0.01, \dots, 0.05\}$. Dans ces figures, nous avons $n \in \{1, 15\}, \gamma_X = \gamma_Y \in \{0.01, 0.2\}, \rho_M = 0, \eta_X = \eta_Y = 0, \Omega_D = [0.9, 1)$ et $\Omega_I = [1, 1.1)$.

Les résultats obtenus montrent que :

- La performance de la carte de contrôle de Shewhart-RZ est légèrement influencée par l'erreur d'exactitude, mesurée par (θ_X, θ_Y) . Dans la plupart des cas, plus les valeurs de (θ_X, θ_Y) sont grandes, plus rapide est la carte de contrôle dans la détection de la condition hors-contrôle. De plus, les valeurs de EARL en présence d'erreurs d'exactitude sont plus petites que la valeur de EARL sans erreur de mesure, i.e. lorsque $\eta_X = \eta_Y = 0$, $\theta_X = \theta_Y = 0$ et $\rho_M = 0$. Par exemple, lorsque n = 1, $\Omega = [0.9, 1)$, $\rho_0 = -0.4$, $\rho_1 = -0.8$, $\gamma_X = \gamma_Y = 0.01$, nous avons EARL = 6.1 lorsque $\theta_X = \theta_Y = 0.045$, EARL = 6.3 lorsque $\theta_X = \theta_Y = 0.015$ et EARL = 6.4 lorsqu'il n'y a pas d'erreurs de mesure (voir la Figure 6.4).
- Pour des valeurs de γ_X = γ_Y = 0.2 et Ω = [0.9, 1), ρ₁ = ρ₀ = -0.8 fixées, plus la valeur de θ_X est grande (petite), plus la valeur de EARL est petite lorsque θ_Y (θ_X) est constante. De plus, lorsque θ_Y ≥ 0.025 les valeurs de EARL en présence d'erreurs d'exactitude sont plus petites que la valeur de EARL sans erreur de mesure, i.e. lorsque η_X = η_Y = 0, θ_X = θ_Y = 0 et ρ_M = 0. Par exemple, lorsque n = 1, Ω = [0.9, 1), ρ₀ = ρ₁ = -0.8, γ_X = γ_Y = 0.2, nous avons EARL = 188.0 pour θ_X = θ_Y = 0.005, EARL = 187.4 pour θ_X = 0.015, θ_Y = 0.005, EARL = 188.3 pour θ_X = 0.005, θ_Y = 0.025 et EARL = 188.2 sans erreur de mesure (voir la Figure 6.3).
- Dans la pratique, lorsque les valeurs de θ_X ≤ 0.02 et θ_Y ≤ 0.02, les valeurs de EARL en présence d'erreurs d'exactitude sont à peu près les mêmes que les valeurs de EARL sans erreur de mesure, i.e. lorsque η_X = η_Y = 0, θ_X = θ_Y = 0 et ρ_M = 0. Par exemple, lorsque n = 1, Ω = [0.9, 1), ρ₀ = -0.4, ρ₁ = -0.8, γ_X = γ_Y = 0.01, nous avons EARL = 6.4 pour θ_X = θ_Y = 0.01 et EARL = 6.4 sans erreur de mesure (voir la Figure 6.4). Nous pouvons conclure que l'erreur d'exactitude n'affecte pas significativement la performance de la carte Shewhart-RZ pour les niveaux habituels d'erreurs d'exactitude fournies par des instruments de mesure calibrés.

FIGURE 6.3 : Les effets de θ_X et θ_Y sur la performance globale de la carte Shewhart-RZ en présence d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\eta_X = \eta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = \rho_1 = -0.8$

FIGURE 6.4 : Les effets de θ_X et θ_Y sur la performance globale de la carte Shewhart-RZ pour $z_0 = 1$, $ARL_0 = 200, \eta_X = \eta_Y = 0, \rho_M = 0, n \in \{1, 15\}, \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y$ et $\rho_0 = -0.4, \rho_1 = -0.8$

Nous étudions aussi l'effet de la corrélation ρ_M lorsque l'erreur de *calibration* et l'erreur d'exactitude existent. La Figure 6.5 (pour le cas $\rho_0 = \rho_1 = -0.8$) et la Figure 6.6 (pour le cas $\rho_0 = -0.4$ et $\rho_1 = -0.8$) présentent les valeurs *EARL* pour la carte de contrôle de Shewhart-RZ en fonction de $\rho_M \in \{-1, -0.9, \dots, 0.9, 1\}$. Dans ces figures, nous avons $n \in \{1, 15\}, \gamma_X = \gamma_Y \in \{0.01, 0.2\},$ $\Omega_D = [0.9, 1)$ et $\Omega_I = [1, 1.1)$.

On peut noter à partir des Figures 6.5 et 6.6 que la performance de la carte de contrôle de Shewhart-RZ avec erreurs de mesure est influencée par ρ_M . Plus la valeur de ρ_M est grande, plus vite la carte de contrôle détecte une situation hors-contrôle. Par ailleurs, pour $\rho_M \ge 0$, $\eta_X = \eta_Y = 0.28$, $\theta_X = \theta_Y = 0.05$, les valeurs d'*EARL* en présence d'erreurs de mesure sont plus petites que la valeur d'*EARL* sans erreur de mesure, i.e. lorsque $\eta_X = \eta_Y = 0$, $\theta_X = \theta_Y = 0$ et $\rho_M = 0$. Par exemple, lorsque n = 1, $\Omega = [0.9, 1)$, $\gamma_X = \gamma_Y = 0.2$, $\rho_1 = -0.8 = \rho_0 = -0.8$, nous avons EARL = 12.3 lorsque $\rho_M = 0.2$; EARL = 12.2lorsque $\rho_M = 0.5$ et EARL = 13.0 sans erreur de mesure (voir la Figure 6.5).

Pour le cas général, la Table 6.2 (pour le cas $\rho_0 = \rho_1 = -0.8$) et la Table 6.3 (pour le cas $\rho_0 = -0.4$ et $\rho_1 = -0.8$) montrent les valeurs d'*EARL* pour la carte de contrôle de Shewhart-RZ en fonction de $\theta_X = \theta_Y = 0.05$, $\eta_X = \eta_Y = 0.28$ et $\rho_M = 0.5$. Dans ces tableaux, nous avons $n \in \{1, 5, 7, 10, 15\}$, $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \eta_X = \eta_Y = 0.28, \theta_X = \theta_Y = 0.05, \Omega_D = [0.9, 1)$ et $\Omega_I = [1, 1.1)$.

Les tendances présentées par valeurs d'*EARL* dans les tables 6.2-6.3 sont évidemment semblables aux résultats lorsque lorsqu'il n'y a pas d'erreurs de mesure dans Celano and Castagliola (2016a). En outre, dans la plupart des cas, les valeurs d'*EARL* en présence d'erreurs de mesure sont plus petites que les valeurs d'*EARL* sans erreur de mesure dans Celano and Castagliola (2016a). Par exemple, lorsque n = 15, $\Omega = [0.9, 1), \gamma_X = \gamma_Y = 0.2, \rho_1 = 0.8, \rho_0 = 0.4$, nous avons *EARL* = 12117.8 lorsque $\theta_X = \theta_Y = 0.05$, $\eta_X = \eta_Y = 0.28$ et $\rho_M = 0.5$; *EARL* = 35451.7 sans erreur de mesure (voir la Table 6.3). Ces résultats dans les tables 6.2-6.3 permettent de réaffirmer que l'erreur de calibration et l'erreur d'exactitude n'affectent pas de manière significative la performance de la carte de contrôle Shewhart-RZ pour des niveaux habituels de calibration et exactitude erreurs fournies par les instruments calibrées et un bon système de mesure.

6.5 Des exemples illustratif

6.5.1 Un exemple illustratif 1

Dans cette section, nous discutons de la mise en œuvre de la carte de contrôle de Shewhart-RZ en présence d'erreurs de mesure. Le contexte de l'exemple présenté ici est similaire à celui introduit dans Celano and Castagliola (2016a) qui simule un problème de contrôle de la qualité réel de l'industrie alimentaire. Dans ce cas, la valeur sous-contrôle du ratio $z_0 = 1$, la taille de l'échantillon n = 5, les valeurs $\gamma_p = 0.02$, $\gamma_f = 0.01$ et $\rho_0 = 0.8$ ont été fixées. La taille des boîtes correspondant est de 250g.

En ce qui concerne les paramètres du modèle d'erreur linéaire, nous supposons que $\theta_X = \theta_Y = 0.05$, $\eta_X = \eta_Y = 0.28$, $\rho_M = 0.5$.

Nous avons besoin de surveiller à intervalles réguliers i = 1, 2, ... pour vérifier les écarts du ratio souscontrôle $z_0 = \frac{\mu_{p,i}}{\mu_{f,i}} = 1$, où $\mu_{p,i}$ et $\mu_{f,i}$ sont respectivement les poids moyens pour "Pumpkin" et "Flaxseeds". Basé sur (6.23) et (6.24), les limites de contrôle de la carte Shewhart-RZ avec erreurs de mesure sont respectivement LCL = 0.9829 et UCL = 1.0170.

La Table 6.4 présente l'ensemble des données simulées recueillies dans le processus, la taille des boîtes correspondante de 250g et la valeur des statistiques \hat{Z}_i^* . Le processus est supposé fonctionner sous-contrôle jusqu'à l'échantillon #10. Ensuite, entre les échantillons #10 et #11 nous avons simulé l'apparition d'une

FIGURE 6.5 : L'effet de ρ_M sur la performance globale de la carte Shewhart-RZ en présence d'une erreur de mesure pour n = 1 (- \square -) et n = 15 (- \blacksquare -), $z_0 = 1$, $ARL_0 = 200$, $\eta_X = \eta_Y = 0.28$, $\theta_X = \theta_Y = 0.05$, $n \in \{1, 15\}, \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y$ et $\rho_0 = \rho_1 = -0.8$

FIGURE 6.6 : L'effet de ρ_M sur la performance globale de la carte Shewhart-RZ en présence d'une erreur de mesure pour n = 1 (- \square -) and n = 15 (- \blacksquare -), $z_0 = 1$, $ARL_0 = 200$, $\eta_X = \eta_Y = 0.28$, $\theta_X = \theta_Y = 0.05$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ and $\rho_0 = -0.4 \rho_1 = -0.8$

		$(\gamma_X =$	$0.01, \gamma_Y$	= 0.01)			$(\gamma_X =$	$= 0.2, \gamma_Y$	r = 0.2	
	n = 1	n = 5	n = 7	n = 10	n = 15	n = 1	n = 5	n = 7	n = 10	n = 15
					$\rho_0 = \rho_1$	= -0.8				
(D)	12.2	2.8	2.1	1.6	1.3	187.3	134.7	120.5	105.5	89.1
(I)	12.6	2.9	2.2	1.7	1.3	189.0	139.7	125.7	110.5	93.5
					$\rho_0 = \rho_1$	= -0.4				
(D)	10.0	2.3	1.8	1.4	1.2	184.9	125.7	111.1	96.1	80.1
(I)	10.3	2.3	1.8	1.4	1.2	186.9	130.9	116.2	100.8	84.1
					$\rho_0 = \rho_1$	1 = 0.0				
(D)	7.5	1.8	1.4	1.2	1.1	180.9	113.3	98.5	83.9	68.8
(I)	7.7	1.8	1.5	1.2	1.1	183.3	118.4	103.3	88.1	72.3
					$\rho_0 = \rho_1$	1 = 0.4				
(D)	4.8	1.3	1.2	1.1	1.0	172.7	94.5	80.3	67.0	53.8
(I)	4.9	1.3	1.2	1.1	1.0	175.9	99.1	84.4	70.3	56.4
					$\rho_0 = \rho_1$	1 = 0.8				
(D)	2.0	1.0	1.0	1.0	1.0	146.0	60.1	49.2	39.5	30.5
(I)	2.0	1.0	1.0	1.0	1.0	151.0	63.0	51.5	41.3	31.8
		1				-	4			
		$(\gamma_X =$	$= 0.01, \gamma_{1}$	Y = 0.2)			$(\gamma_X =$	$= 0.2, \gamma_Y$	= 0.01)	
	n = 1	$(\gamma_X = n = 5)$	$= 0.01, \gamma_1$ $n = 7$	n = 0.2) n = 10	n = 15	n = 1	$(\gamma_X = n = 5)$	= $0.2, \gamma_Y$ n = 7	= 0.01) n = 10	n = 15
	<i>n</i> = 1	$(\gamma_X = n = 5)$	$= 0.01, \gamma_{2}$ n = 7	r = 0.2) n = 10	$n = 15$ $\rho_0 = \rho_1$	n = 1 $= -0.8$	$(\gamma_X = n = 5)$	$= 0.2, \gamma_Y$ $n = 7$	= 0.01) n = 10	n = 15
(D)	n = 1 106.8	$(\gamma_X = n = 5)$ 69.1	$= 0.01, \gamma_{2}$ n = 7 60.7	x = 0.2) n = 10 52.1	$n = 15$ $\rho_0 = \rho_1$ 43.1	n = 1 = -0.8 219.3	$(\gamma_X = n = 5)$ 110.1	$= 0.2, \gamma_Y$ $n = 7$ 91.7	= 0.01) n = 10 74.8	n = 15 58.7
(D) (I)	n = 1 106.8 222.5	$(\gamma_X = n = 5)$ 69.1 115.4	$ \begin{array}{r} = 0.01, \gamma_{2} \\ n = 7 \\ 60.7 \\ 96.3 \\ \end{array} $	r = 0.2) n = 10 52.1 78.6	$ \begin{array}{r} n = 15 \\ \rho_0 = \rho_1 \\ 43.1 \\ 61.5 \\ \end{array} $	n = 1 = -0.8 219.3 111.1	$(\gamma_X = n = 5)$ 110.1 72.6	$= 0.2, \gamma_Y$ n = 7 91.7 63.7	= 0.01) n = 10 74.8 54.6	n = 15 58.7 45.1
(D) (I)	n = 1 106.8 222.5	$(\gamma_X = n = 5)$ 69.1 115.4	$= 0.01, \gamma_{2}$ $n = 7$ $= 7$ 60.7 96.3 $= 7$	x = 0.2) n = 10 52.1 78.6 51.0	$n = 15 \rho_0 = \rho_1 43.1 61.5 \rho_0 = \rho_1 10 1$	$ \begin{array}{r} n = 1 \\ = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 210.7 \\ $	$(\gamma_X = n = 5)$ 110.1 72.6	$= 0.2, \gamma_Y$ n = 7 91.7 63.7	= 0.01) n = 10 74.8 54.6	n = 15 58.7 45.1
(D) (I) (D)	n = 1 106.8 222.5 104.9	$(\gamma_X = n = 5)$ 69.1 115.4 67.7	$= 0.01, \gamma_{2}$ $n = 7$ $= 0.01, \gamma_{2}$	$ \begin{array}{r} Y = 0.2) \\ n = 10 \\ 52.1 \\ 78.6 \\ 51.0 \\ \hline 77.5 \\ $	$n = 15 \rho_0 = \rho_1 43.1 61.5 \rho_0 = \rho_1 42.1 20.6 0 0 0 0 0 0 0 0 0 0$	$\begin{array}{r} n = 1 \\ \hline = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 100.2 \end{array}$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0	$= 0.2, \gamma_Y \\ n = 7$ 91.7 63.7 90.6	= 0.01) $n = 10$ 74.8 54.6 73.8 555	n = 15 58.7 45.1 57.7
(D) (I) (D) (I)	n = 1 106.8 222.5 104.9 223.0	$(\gamma_X = n = 5)$ 69.1 115.4 67.7 114.3	$= 0.01, \gamma_{2}$ $n = 7$ $= 0.01, \gamma_{2}$ $= 0.00, \gamma_{2}$ $= 0.01, \gamma_{2}$		$n = 15 \rho_0 = \rho_1 43.1 61.5 \rho_0 = \rho_1 42.1 60.6$	$\begin{array}{r} n = 1 \\ \hline = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ \hline \end{array}$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1	$= 0.2, \gamma_Y$ $n = 7$ 91.7 63.7 90.6 62.3	= 0.01) n = 10 74.8 54.6 73.8 53.5	n = 15 58.7 45.1 57.7 44.1
(D) (I) (D) (I)	n = 1 106.8 222.5 104.9 223.0 102.0	$(\gamma_X = \frac{1}{2})^{-1}$ $(\gamma_X = \frac{1}{2})^{-1}$ $(\gamma_X$	$= 0.01, \gamma_{2}$ $n = 7$ $= 0.01, \gamma_{2}$ $n = 7$ $= 0.01, \gamma_{2}$		$n = 15$ $\rho_0 = \rho_1$ 43.1 61.5 $\rho_0 = \rho_1$ 42.1 60.6 $\rho_0 = \rho_1$	$\begin{array}{r} n = 1 \\ \hline = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ = 0.0 \\ 220.1 \end{array}$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1	$= 0.2, \gamma_Y$ $n = 7$ 91.7 63.7 90.6 62.3	= 0.01) $n = 10$ 74.8 54.6 73.8 53.5 $= 2.5$	n = 15 58.7 45.1 57.7 44.1
(D) (I) (D) (I) (D)	n = 1 106.8 222.5 104.9 223.0 102.9 223.2	$(\gamma_X = \frac{1}{2})^{-1}$ $(\gamma_X = \frac{1}{2})^{-1$	$= 0.01, \gamma_{2}$ $n = 7$ $= 7$ $= 60.7$ $= 96.3$ $= 59.4$ $= 95.2$ $= 58.1$ $= 60.7$ $= 60.7$ $= 7$		$n = 15$ $\rho_0 = \rho_1$ 43.1 61.5 $\rho_0 = \rho_1$ 42.1 60.6 $\rho_0 = \rho_1$ 41.2	$\begin{array}{r} n = 1 \\ \hline = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ = 0.0 \\ 220.1 \\ 100.2 \\ 220.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 100.2 \\ 200.1 \\ 200$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1 107.9	$= 0.2, \gamma_Y$ $n = 7$ 91.7 63.7 90.6 62.3 89.5 61.0	= 0.01) $n = 10$ 74.8 54.6 73.8 53.5 72.7 72.7	n = 15 58.7 45.1 57.7 44.1 56.8
(D) (I) (D) (I) (D) (I)	n = 1 106.8 222.5 104.9 223.0 102.9 223.5	$(\gamma_X = n = 5)$ 69.1 115.4 67.7 114.3 66.3 113.2	$= 0.01, \gamma_{2}$ $n = 7$ $= 7$ 60.7 96.3 59.4 95.2 58.1 94.1		$n = 15$ $\rho_0 = \rho_1$ 43.1 61.5 $\rho_0 = \rho_1$ 42.1 60.6 $\rho_0 = \rho_1$ 41.2 59.6	$\begin{array}{r} n = 1 \\ \hline = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ = 0.0 \\ 220.1 \\ 107.2 \\ 0 \end{array}$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1 107.9 69.6	$= 0.2, \gamma_Y \\ n = 7$ 91.7 63.7 90.6 62.3 89.5 61.0	= 0.01) n = 10 74.8 54.6 73.8 53.5 72.7 52.2	n = 15 58.7 45.1 57.7 44.1 56.8 43.0
(D) (I) (D) (I) (D) (I) (I)	n = 1 106.8 222.5 104.9 223.0 102.9 223.5	$(\gamma_X = n = 5)$ 69.1 115.4 67.7 114.3 66.3 113.2	$ \begin{array}{r} = 0.01, \gamma_{2} \\ n = 7 \\ \hline 60.7 \\ 96.3 \\ 59.4 \\ 95.2 \\ 58.1 \\ 94.1 \\ \hline 50.0 \\ \end{array} $		$n = 15$ $\rho_0 = \rho_1$ 43.1 61.5 $\rho_0 = \rho_1$ 42.1 60.6 $\rho_0 = \rho_1$ 41.2 59.6 $\rho_0 = \rho_1$	$\begin{array}{r} n = 1 \\ = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ 1 = 0.0 \\ 220.1 \\ 107.2 \\ = 0.4 \\ 220.1 \\ 107.2 \\ = 0.4 \end{array}$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1 107.9 69.6	$ \begin{array}{r} = 0.2, \gamma_Y \\ n = 7 \\ 91.7 \\ 63.7 \\ 90.6 \\ 62.3 \\ 89.5 \\ 61.0 \\ 0.2 \\ 4 \end{array} $	= 0.01) $n = 10$ 74.8 54.6 73.8 53.5 72.7 52.2 $= 1.2$	n = 15 58.7 45.1 57.7 44.1 56.8 43.0
(D) (I) (D) (I) (D) (I) (D) (D)	n = 1 106.8 222.5 104.9 223.0 102.9 223.5 100.9 224.1	$(\gamma_X = \frac{1}{n} = 5)$ 69.1 115.4 67.7 114.3 66.3 113.2 64.8	$ \begin{array}{r} = 0.01, \gamma_{2} \\ n = 7 \\ \hline 60.7 \\ 96.3 \\ 59.4 \\ 95.2 \\ 58.1 \\ 94.1 \\ 56.8 \\ 22.0 \\ \end{array} $		$n = 15$ $\rho_0 = \rho_1$ 43.1 61.5 $\rho_0 = \rho_1$ 42.1 60.6 $\rho_0 = \rho_1$ 41.2 59.6 $\rho_0 = \rho_1$ 40.2 59.5	$\begin{array}{r} n = 1 \\ = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ = 0.0 \\ 220.1 \\ 107.2 \\ = 0.4 \\ 220.5 \\ 105.1 \end{array}$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1 107.9 69.6 106.7 69.6	$= 0.2, \gamma_Y \\ n = 7$ 91.7 63.7 90.6 62.3 89.5 61.0 88.4 50.6	= 0.01) $n = 10$ 74.8 54.6 73.8 53.5 72.7 52.2 71.6 51.0	n = 15 58.7 45.1 57.7 44.1 56.8 43.0 55.8 42.0
(D) (I) (D) (I) (D) (I) (D) (I)	n = 1 106.8 222.5 104.9 223.0 102.9 223.5 100.9 224.1	$(\gamma_X = \frac{n}{n} = 5)$ 69.1 115.4 67.7 114.3 66.3 113.2 64.8 112.0	$= 0.01, \gamma_{2}$ $n = 7$ $= 7$ $= 60.7$ $= 96.3$ $= 59.4$ $= 95.2$ $= 58.1$ $= 94.1$ $= 56.8$ $= 92.9$		$n = 15$ $\rho_0 = \rho_1$ 43.1 61.5 $\rho_0 = \rho_1$ 42.1 60.6 $\rho_0 = \rho_1$ 41.2 59.6 $\rho_0 = \rho_1$ 40.2 58.5	$\begin{array}{r} n = 1 \\ \hline n = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ = 0.0 \\ 220.1 \\ 107.2 \\ = 0.4 \\ 220.5 \\ 105.1 \\ 0.0 \end{array}$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1 107.9 69.6 106.7 68.0	$= 0.2, \gamma_Y \\ n = 7$ 91.7 63.7 90.6 62.3 89.5 61.0 88.4 59.6	= 0.01) n = 10 74.8 54.6 73.8 53.5 72.7 52.2 71.6 51.0	n = 15 58.7 45.1 57.7 44.1 56.8 43.0 55.8 42.0
(D) (I) (D) (I) (D) (I) (D) (I) (I)	n = 1 106.8 222.5 104.9 223.0 102.9 223.5 100.9 224.1	$(\gamma_X = n = 5)$ 69.1 115.4 67.7 114.3 66.3 113.2 64.8 112.0 64.8	$= 0.01, \gamma_{2}$ $n = 7$ $= 0.01, \gamma_{2}$ $n = 7$ $= 0.01, \gamma_{2}$		$n = 15$ $\rho_0 = \rho_1$ 43.1 61.5 $\rho_0 = \rho_1$ 42.1 60.6 $\rho_0 = \rho_1$ 41.2 59.6 $\rho_0 = \rho_1$ 40.2 58.5 $\rho_0 = \rho_1$	$\begin{array}{r} n = 1 \\ = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ = 0.0 \\ 220.1 \\ 107.2 \\ = 0.4 \\ 220.5 \\ 105.1 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8 \\ 221.5 \\ = 0.8$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1 107.9 69.6 106.7 68.0 105.5	$ \begin{array}{r} = 0.2, \gamma_Y \\ n = 7 \\ 91.7 \\ 63.7 \\ 90.6 \\ 62.3 \\ 89.5 \\ 61.0 \\ 88.4 \\ 59.6 \\ 97.2 \\ \end{array} $	= 0.01) $n = 10$ 74.8 54.6 73.8 53.5 72.7 52.2 71.6 51.0 70.5	n = 15 58.7 45.1 57.7 44.1 56.8 43.0 55.8 42.0 54.0
(D) (I) (D) (I) (D) (I) (D) (I) (D) (D)	n = 1 106.8 222.5 104.9 223.0 102.9 223.5 100.9 224.1 98.7 224.7	$(\gamma_X = \frac{n}{2} - \frac{5}{2})^{-1}$ 69.1 115.4 67.7 114.3 66.3 113.2 64.8 112.0 63.2 110.6	$= 0.01, \gamma_{2}$ $n = 7$ $= 0.01, \gamma_{2}$ $n = 7$ $= 0.01, \gamma_{2}$		$n = 15$ $\rho_0 = \rho_1$ 43.1 61.5 $\rho_0 = \rho_1$ 42.1 60.6 $\rho_0 = \rho_1$ 41.2 59.6 $\rho_0 = \rho_1$ 40.2 58.5 $\rho_0 = \rho_1$ 39.1 57.5	$\begin{array}{r} n = 1 \\ = -0.8 \\ 219.3 \\ 111.1 \\ = -0.4 \\ 219.7 \\ 109.2 \\ = 0.0 \\ 220.1 \\ 107.2 \\ = 0.4 \\ 220.5 \\ 105.1 \\ = 0.8 \\ 221.0 \\ 109.2 \end{array}$	$(\gamma_X = n = 5)$ 110.1 72.6 109.0 71.1 107.9 69.6 106.7 68.0 105.5 22.4	$= 0.2, \gamma_Y \\ n = 7$ 91.7 63.7 90.6 62.3 89.5 61.0 88.4 59.6 87.2 59.1	= 0.01) $n = 10$ 74.8 54.6 73.8 53.5 72.7 52.2 71.6 51.0 70.5 40.7	n = 15 58.7 45.1 57.7 44.1 56.8 43.0 55.8 42.0 54.8 40.0

TABLE 6.2 : Valeurs de *EARL* pour la cartes Shewhart-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 7, 10, 15\}$ et $ARL_0 = 200, \theta_X = \theta_Y = 0.05, \eta_X = \eta_Y = 0.28, \rho_M = 0.5, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

	$(\gamma_X = 0.01, \gamma_Y = 0.01)$						$(\gamma_X = 0.2, \gamma_Y = 0.2)$				
	n = 1	n = 5	n = 7	n = 10	n = 15	n = 1	n = 5	n = 7	n = 10	n = 15	
					$\rho_0 = -0$	$0.4, \rho_1 = -$	$4, \rho_1 = -0.2$				
(D)	14.4	2.6	1.9	1.5	1.2	291.0	221.2	194.8	167.3	138.1	
(I)	14.8	2.6	1.9	1.5	1.2	294.3	231.1	204.3	175.8	145.1	
					$\rho_0 = -0$	$0.4, \rho_1 = -$	-0.8				
(D)	6.2	2.0	1.6	1.4	1.2	92.4	57.0	51.1	44.9	38.3	
(I)	6.4	2.0	1.6	1.4	1.2	93.2	59.0	53.1	46.9	40.1	
					$\rho_0 = 0$	$0.4, \rho_1 = 0$.2				
(D)	3.3	1.3	1.2	1.1	1.0	81.3	41.8	36.1	30.7	25.2	
(I)	3.4	1.3	1.2	1.1	1.0	82.5	43.7	37.8	32.2	26.5	
					$\rho_0 = 0$	$0.4, \rho_1 = 0$.8				
(D)	93.8	1.7	1.2	1.1	1.0	4223.3	16631.8	16262.7	14733.7	12117.8	
(I)	98.8	1.8	1.3	1.1	1.0	4328.4	17408.1	16935.2	15274.4	12519.1	
	$(\gamma_X = 0.01, \gamma_Y = 0.2)$						(0.2 .	0.01)		
		$(\gamma_X =$	= 0.01, γ_1	Y = 0.2			$(\gamma_X =$	= 0.2, γ_Y =	= 0.01)		
	n = 1	$(\gamma_X = n = 5)$	n = 7	n = 10	n = 15	n = 1	$(\gamma_X = n = 5$	$= 0.2, \gamma_Y = $ n = 7	n = 10	n = 15	
	n = 1	$(\gamma_X = n = 5)$	$= 0.01, \gamma_2$ $n = 7$	n = 10	$\frac{n=15}{\rho_0=-0}$	$\frac{n=1}{0.4, \rho_1 = -}$	$\frac{(\gamma_X = n = 5)}{-0.2}$	$= 0.2, \gamma_Y = $ $n = 7$	n = 10	n = 15	
(D)	n = 1 113.4	$(\gamma_X = n = 5)$ 72.4	$= 0.01, \gamma_{2}$ $n = 7$ 63.4	$\frac{n}{n} = 10$ 54.3	$\frac{n=15}{\rho_0=-0}$ $\frac{44.8}{\rho_0=-0}$	$\frac{n=1}{0.4, \rho_1 = -231.9}$	$(\gamma_X = \frac{n = 5}{-0.2}$ 115.3	$= 0.2, \gamma_Y = \frac{n}{n} = 7$ 95.9	n = 10 78.0	n = 15 61.0	
(D) (I)	n = 1 113.4 235.6	$(\gamma_X = \frac{n}{5})$ 72.4 121.0	$= 0.01, \gamma_{2}$ $n = 7$ 63.4 100.7	n = 10 54.3 82.0	n = 15 $\rho_0 = -0$ 44.8 64.0	$n = 1$ $\frac{n = 1}{4, \rho_1 = -231.9}$ 118.1	$(\gamma_X = \frac{n = 5}{-0.2}$ -0.2 115.3 76.1	$= 0.2, \gamma_Y = \frac{n}{n} = 7$ 95.9 66.6	n = 10 n = 10 78.0 56.9	n = 15 61.0 46.8	
(D) (I)	n = 1 113.4 235.6	$(\gamma_X = \frac{1}{2})$ $\frac{\gamma_Z}{121.0}$	$ \begin{array}{c} = 0.01, \gamma_{2} \\ \underline{n} = 7 \\ \hline 63.4 \\ 100.7 \\ \end{array} $	x = 0.2 n = 10 54.3 82.0	$n = 15 \\ \rho_0 = -0 \\ 44.8 \\ 64.0 \\ \rho_0 = -0$	$n = 1$ $\frac{n = 1}{231.9}$ 118.1 $0.4, \rho_1 = -$	$(\gamma_X = \frac{n = 5}{-0.2}$ -0.2 115.3 76.1 -0.8	$= 0.2, \gamma_Y = \frac{1}{n} = 7$ 95.9 66.6		n = 15 61.0 46.8	
(D) (I) (D)	n = 1 113.4 235.6 90.5	$(\gamma_X = \frac{n}{5})$ 72.4 121.0 59.6	$ \begin{array}{c} = 0.01, \gamma_{2} \\ n = 7 \\ \hline 63.4 \\ 100.7 \\ 52.5 \\ \end{array} $	r = 0.2 n = 10 54.3 82.0 45.3	$n = 15 \\ \rho_0 = -0 \\ 44.8 \\ 64.0 \\ \rho_0 = -0 \\ 37.6 $	$n = 1$ 231.9 118.1 $0.4, \rho_1 = -$ 197.3	$(\gamma_X = \frac{n = 5}{-0.2}$ -0.2 115.3 76.1 -0.8 97.7	$= 0.2, \gamma_Y = \frac{1}{n = 7}$ 95.9 66.6 81.3	= 0.01) n = 10 78.0 56.9 66.3	n = 15 61.0 46.8 52.0	
(D) (I) (D) (I)	n = 1 113.4 235.6 90.5 199.9	$(\gamma_X = \frac{n}{5})^{-1}$ 72.4 121.0 59.6 102.5	$ \begin{array}{r} = 0.01, \gamma_{2} \\ \underline{n} = 7 \\ \hline 63.4 \\ 100.7 \\ 52.5 \\ 85.5 \\ \end{array} $		n = 15 $\rho_0 = -0$ 44.8 64.0 $\rho_0 = -0$ 37.6 54.6	$n = 1$ 231.9 118.1 $0.4, \rho_1 = -$ 197.3 94.1	$(\gamma_X = \frac{n = 5}{-0.2}$ -0.2 115.3 76.1 -0.8 97.7 62.6	$= 0.2, \gamma_Y = \frac{n}{n} = 7$ 95.9 66.6 81.3 55.1	$ \begin{array}{r} = 0.01) \\ \underline{n} = 10 \\ \hline 78.0 \\ 56.9 \\ 66.3 \\ 47.4 \\ \end{array} $	n = 15 61.0 46.8 52.0 39.3	
(D) (I) (D) (I)	n = 1 113.4 235.6 90.5 199.9	$(\gamma_X = \frac{n}{2} - \frac{1}{2} - \frac{1}{2}$	$ \begin{array}{r} = 0.01, \gamma_{2} \\ \underline{n} = 7 \\ \hline 63.4 \\ 100.7 \\ 52.5 \\ 85.5 \\ \end{array} $		$n = 15 \\ \rho_0 = -0 \\ 44.8 \\ 64.0 \\ \rho_0 = -0 \\ 37.6 \\ 54.6 \\ \rho_0 = 0$	$\frac{n=1}{231.9}$ 118.1 $0.4, \rho_1 = -$ 197.3 94.1 $0.4, \rho_1 = 0$	$(\gamma_X = \frac{n = 5}{-0.2}$ -0.2 115.3 76.1 -0.8 97.7 62.6 .2	$ \begin{array}{c} = 0.2, \gamma_Y = \\ n = 7 \\ \hline 95.9 \\ 66.6 \\ 81.3 \\ 55.1 \\ \end{array} $	$ \begin{array}{r} = 0.01) \\ \underline{n} = 10 \\ \hline 78.0 \\ 56.9 \\ 66.3 \\ 47.4 \\ \end{array} $	n = 15 61.0 46.8 52.0 39.3	
(D) (I) (D) (I) (D)	n = 1 113.4 235.6 90.5 199.9 93.0	$(\gamma_X = \frac{n}{2} - \frac{1}{2} - \frac{1}{2}$	$ \begin{array}{r} = 0.01, \gamma_{2} \\ n = 7 \\ \hline 63.4 \\ 100.7 \\ 52.5 \\ 85.5 \\ 53.1 \\ \end{array} $		$n = 15 \\ \rho_0 = -0 \\ 44.8 \\ 64.0 \\ \rho_0 = -0 \\ 37.6 \\ 54.6 \\ \rho_0 = 0 \\ 37.7 \\ $	$\frac{n=1}{231.9}$ 118.1).4, $\rho_1 = -$ 197.3 94.1).4, $\rho_1 = 0$ 208.3	$(\gamma_{X} = \frac{n = 5}{-0.2}$ 115.3 76.1 -0.8 97.7 62.6 .2 100.6	$= 0.2, \gamma_Y = \frac{1}{n = 7}$ 95.9 66.6 81.3 55.1 83.3	$ \begin{array}{r} = 0.01) \\ n = 10 \\ 78.0 \\ 56.9 \\ 66.3 \\ 47.4 \\ 67.6 \\ \end{array} $	n = 15 61.0 46.8 52.0 39.3 52.7	
(D) (I) (D) (I) (D) (I)	n = 1 113.4 235.6 90.5 199.9 93.0 211.4	$(\gamma_X = \frac{n}{5})^{-1}$ 72.4 121.0 59.6 102.5 60.4 105.6	$ \begin{array}{r} = 0.01, \gamma_{2} \\ \underline{n} = 7 \\ \hline $	$ \begin{array}{r} x = 0.2) \\ n = 10 \\ 54.3 \\ 82.0 \\ 45.3 \\ 69.7 \\ 45.6 \\ 71.0 \\ \end{array} $	n = 15 $\rho_0 = -0$ 44.8 64.0 $\rho_0 = -0$ 37.6 54.6 $\rho_0 = 0$ 37.7 55.3	$n = 1$ 231.9 118.1 $0.4, \rho_1 = -$ 197.3 94.1 $0.4, \rho_1 = 0$ 208.3 96.8	$(\gamma_{X} = \frac{n = 5}{-0.2}$ -0.2 115.3 76.1 -0.8 97.7 62.6 .2 100.6 63.4	$= 0.2, \gamma_Y = \frac{n}{n} = 7$ 95.9 66.6 81.3 55.1 83.3 55.7	$ \begin{array}{r} = 0.01) \\ \underline{n} = 10 \\ \hline 78.0 \\ 56.9 \\ 66.3 \\ 47.4 \\ 67.6 \\ 47.8 \\ \end{array} $	n = 15 61.0 46.8 52.0 39.3 52.7 39.4	
(D) (I) (D) (I) (D) (I)	n = 1 113.4 235.6 90.5 199.9 93.0 211.4	$(\gamma_X = \frac{n}{2} - \frac{1}{2} - \frac{1}{2}$	$ \begin{array}{r} = 0.01, \gamma_{2} \\ n = 7 \\ \hline 63.4 \\ 100.7 \\ 52.5 \\ 85.5 \\ 53.1 \\ 87.6 \\ \end{array} $		$n = 15$ $\rho_0 = -0$ 44.8 64.0 $\rho_0 = -0$ 37.6 54.6 $\rho_0 = 0$ 37.7 55.3 $\rho_0 = 0$	$n = 1$ 231.9 118.1 $0.4, \rho_1 = -$ 197.3 94.1 $0.4, \rho_1 = 0$ 208.3 96.8 $0.4, \rho_1 = 0$	$(\gamma_{X} = \frac{n = 5}{-0.2}$ -0.2 115.3 76.1 -0.8 97.7 62.6 .2 100.6 63.4 .8	$= 0.2, \gamma_Y = \frac{n}{n} = 7$ 95.9 66.6 81.3 55.1 83.3 55.7	$ \begin{array}{r} = 0.01) \\ \underline{n} = 10 \\ \hline 78.0 \\ 56.9 \\ 66.3 \\ 47.4 \\ 67.6 \\ 47.8 \\ \end{array} $	n = 15 61.0 46.8 52.0 39.3 52.7 39.4	
(D) (I) (D) (I) (D) (I) (D)	n = 1 113.4 235.6 90.5 199.9 93.0 211.4 120.0	$(\gamma_X = \frac{n}{2} - \frac{1}{2} - \frac{1}{2}$	$ \begin{array}{r} = 0.01, \gamma_{2} \\ n = 7 \\ \hline 63.4 \\ 100.7 \\ 52.5 \\ 85.5 \\ 53.1 \\ 87.6 \\ 65.6 \\ \end{array} $	$\begin{array}{c} n = 10 \\ \hline n = 10 \\ \hline 54.3 \\ 82.0 \\ 45.3 \\ 69.7 \\ 45.6 \\ 71.0 \\ 56.0 \end{array}$	$n = 15$ $\rho_0 = -0$ 44.8 64.0 $\rho_0 = -0$ 37.6 54.6 $\rho_0 = 0$ 37.7 55.3 $\rho_0 = 0$ 46.0	$n = 1$ 231.9 118.1 $4, \rho_1 = -$ 197.3 94.1 $4, \rho_1 = 0$ 208.3 96.8 $4, \rho_1 = 0$ 247.4	$(\gamma_{X} = \frac{n = 5}{-0.2}$ 115.3 76.1 -0.8 97.7 62.6 .2 100.6 63.4 .8 120.7	$= 0.2, \gamma_Y = \frac{n}{n} = 7$ 95.9 66.6 81.3 55.1 83.3 55.7 99.8	$ \begin{array}{r} = 0.01) \\ \underline{n} = 10 \\ \hline 78.0 \\ 56.9 \\ 66.3 \\ 47.4 \\ 67.6 \\ 47.8 \\ 80.9 \\ \end{array} $	n = 15 61.0 46.8 52.0 39.3 52.7 39.4 62.9	

TABLE 6.3 : Valeurs de *EARL* pour la cartes Shewhart-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 \neq \rho_1, n \in \{1, 5, 7, 10, 15\}$ et $ARL_0 = 200, \theta_X = \theta_Y = 0.05, \eta_X = \eta_Y = 0.28, \rho_M = 0.5, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).

FIGURE 6.7 : La carte Shewhart-RZ en présence d'erreur de mesure pour l'exemple de l'industrie alimentaire.

cause spéciale modifiant le ratio de z_0 à $z_1 = 1.01 \times z_0$, i.e. un pourcentage d'augmentation du ratio égal à 1%. La Figure 6.7 présente la carte Shewhart-RZ. La carte Shewhart-RZ signale l'occurrence d'une situation hors-contrôle au niveau du point #11 au dessus de la limite de contrôle UCL = 1.0170. Une fois les actions correctives effectuées après l'échantillon #12, le procédé redevient sous-contrôle.

6.5.2 Un exemple illustratif 2

Selon la législation Italienne concernant le WEEE (Waste Electrical and Electronic Equipment), des consortiums dédiés au recyclage privé sans but lucratif ont été créés par les grands producteurs d'équipements électriques et électroniques pour gérer les équipements électriques et électroniques jetés. La gestion des déchets des piles est une catégorie importante de la gestion de WEEE pour prévenir la pollution des eaux et du sol. Des usines de recyclage de batteries reçoivent les batteries par lots dans des sacs et des boîtes. Malheureusement, un pourcentage de piles recyclables n'est jamais disponible dans un lot. Certaines piles non recyclables ou autres matériaux jetés peuvent être trouvés dans un lot : les autres matériaux sont généralement un mélange de petits appareils électroniques, des métaux et d'autres types de déchets. La fraction des piles non recyclables ainsi que d'autres matériaux jetés a un coût de traitement parce qu'ils doivent être traités ailleurs ou devraient être éliminés en fonction de leurs catégories de classification des déchets. Dans une de ces usines de recyclage de batteries, le processus est à l'étape de test et l'ingénieur du process doit surveiller le ratio Z des poids "piles recyclables " (variable X) par rapport au poids "charge totale" (variable Y) pour savoir s'il est stable et de quantifier la perte économique due à la présence de piles non recyclables et d'autres matériaux. Pour éviter des pertes économiques, l'ingénieur process veut une valeur cible pour le ratio sous-contrôle $z_0 = 0.95$.

Afin d'effectuer la surveillance en ligne du ratio Z, le praticien de la qualité recueille à intervalles réguliers i = 1, 2, ... un échantillon de n = 5 lots ayant un poids nominal $Y_n = 100$ kg. En raison de la variabilité de la composition d'un lot, son poids est une variable aléatoire normale $Y \sim N(100, 1)$ kg. De même, le poids des batteries recyclables dans un lot est une variable aléatoire normale avec une moyenne cible $\mu_X = 95$ kg. Les poids moyens des échantillons $\bar{X}_i^* = \frac{1}{n} \sum_{j=1}^n X_{i,j}^*$ et $\bar{Y}_i^* = \frac{1}{n} \sum_{j=1}^n Y_{i,j}^*$ sont enregistrées.

La Table 6.5 montre un ensemble d'échantillons simulés pour le processus de recyclage des batteries.

				$X_{i,j}^*$ [gr]			\bar{X}^*_i [gr]	
Échantillon	Boîtes dont le poids			$Y_{i,j}^*$ [gr]			\bar{Y}^*_i [gr]	$\hat{Z}_i^* = \frac{X_i^*}{\overline{Y}_i^*}$
1	250 gr	$26.052 \\ 26.025$	$25.687 \\ 25.741$	$26.497 \\ 26.214$	$25.747 \\ 26.005$	$\begin{array}{c} 26.603\\ 26.441 \end{array}$	$26.117 \\ 26.085$	1.001
2	250 gr	$26.195 \\ 26.230$	$27.540 \\ 26.834$	26.277 26.191	$24.990 \\ 25.767$	$25.122 \\ 25.809$	$26.025 \\ 26.166$	0.995
3	250 gr	26.922 26.819	25.997 26.202	$26.234 \\ 26.359$	$26.216 \\ 26.263$	$25.866 \\ 26.100$	$26.249 \\ 26.349$	0.996
4	250 gr	26.073 25.997	25.703 26.453	$25.793 \\ 25.995$	$25.214 \\ 25.503$	$25.810 \\ 25.600$	$25.719 \\ 25.910$	0.993
5	250 gr	$26.520 \\ 26.505$	26.587 26.338	$25.341 \\ 25.957$	26.738 26.098	$26.230 \\ 26.467$	26.283 26.273	1.003
6	250 gr	$26.476 \\ 26.442$	$27.304 \\ 26.661$	26.377 26.355	$26.874 \\ 26.416$	$25.679 \\ 25.959$	$26.542 \\ 26.367$	1.007
7	250 gr	25.687 25.741	$27.056 \\ 26.717$	25.827 26.355	25.499 25.957	$25.593 \\ 26.030$	$25.932 \\ 26.160$	0.991
8	250 gr	26.638 26.447	$26.890 \\ 26.486$	27.098 26.543	25.743 26.255	$26.147 \\ 25.949$	$26.503 \\ 26.336$	1.006
9	250 gr	$27.212 \\ 26.780$	$25.930 \\ 26.491$	25.827 26.371	26.884 26.587	$26.026 \\ 25.936$	$26.376 \\ 26.433$	0.998
10	250 gr	$26.216 \\ 26.325$	$26.630 \\ 26.205$	$26.194 \\ 26.210$	26.082 26.061	$26.052 \\ 26.025$	$26.235 \\ 26.165$	1.003
11	250 gr	$27.120 \\ 26.409$	27.047 26.367	$27.131 \\ 26.603$	$26.864 \\ 26.066$	$27.238 \\ 26.590$	$27.100 \\ 26.407$	1.026
12	250 gr	$26.461 \\ 26.614$	$26.434 \\ 26.296$	$26.844 \\ 26.465$	27.098 26.782	$\begin{array}{c} 26.262\\ 26.438\end{array}$	$26.620 \\ 26.519$	1.004
13	250 gr	25.898 26.176	$25.524 \\ 25.989$	$25.992 \\ 25.828$	26.357 26.482	$26.606 \\ 26.255$	26.075 26.146	0.997
14	250 gr	25.944 25.848	26.484 26.344	$25.896 \\ 25.881$	26.313 26.343	26.713 26.548	$26.270 \\ 26.193$	1.002
15	250 gr	25.867 26.236	$26.168 \\ 26.144$	$26.393 \\ 26.507$	$25.360 \\ 26.079$	$26.945 \\ 26.689$	$26.147 \\ 26.331$	0.993

 TABLE 6.4 : Données de exemple de l'industrie alimentaire.

FIGURE 6.8 : La carte Shewhart-RZ en présence d'erreurs de mesure pour l'exemple de l'industrie du recyclage des piles.

Pour les deux variables aléatoires X et Y, les valeurs cibles suivantes ont été fixées pour les coefficients de variation : $\gamma_X = 0.01$ et $\gamma_Y = 0.01$ (pour respectivement les batteries recyclables et la charge totale). $\rho_0 = 0.8$ est le coefficient de corrélation sous-contrôle entre les variables aléatoires X et Y. En ce qui concerne les paramètres du modèle d'erreur linéaire, nous supposons l'absence d'erreur d'*exactitude* dans le système de mesure du poids, i.e. $\theta_X = \theta_Y = 0$. À l'inverse, nous supposons que $\eta_X = \eta_Y = 0.28$ et $\rho_M = 0$ pour tenir compte de l'erreur de *calibration* du système de mesure. Basé sur (6.23) et (6.24), les limites de contrôle de la carte Shewhart-RZ avec erreurs de mesure sont respectivement LCL = 0.9411 and UCL = 0.9589.

Nous supposons que la composition des lots est sous-contrôle jusqu'à l'échantillon #10. Ensuite, pour les échantillon prélevé à partir de l'échantillon #11, nous avons simulé une composition de lot anormale avec un rapport décalé $z_1 = 0.99 \times z_0 = 0.94$, i.e. une diminution du pourcentage de ratio égale à 1%. La Figure 6.8 présente la carte de contrôle Shewhart-RZ. La carte Shewhart-RZ déclenche un signal au niveau du point #11 en dessous de la limite de contrôle LCL = 0.9411. Cette figure confirme que dans l'échantillon #11, la composition du lot est hors-contrôle. À l'inverse, les échantillons prélevés à partir de lots successifs ne montrent aucune anomalie.

6.6 Conclusion

Dans ce chapitre, nous avons étudié les effets des erreurs de mesure sur les performances de la carte de contrôle Shewhart-RZ en utilisant un modèle d'erreur linéaire : avec ce modèle, nous avons considéré à la fois l'effet de l'erreur de calibration et de l'erreur d'exactitude. Nous avons évalué la performance globale de la carte Shewhart-RZ en utilisant l'*EARL* comme critère de performance. Nous avons constaté que les performances de la carte Shewhart-RZ est influencée par l'erreur de calibration, i.e. plus la valeur de l'erreur calibration est petite, plus la carte de contrôle Shewhart-RZ détecte rapidement une situation hors-contrôle. En outre, les valeurs d'*EARL* peuvent être également affectées lorsque les valeurs de (θ_X , θ_Y), i.e. la quantité d'erreur d'exactitude, ou la corrélation entre les erreurs ρ_M sont importantes. Par conséquent, dans la pratique, l'erreur d'exactitude n'affecte pas de manière significative les performances de la carte de contrôle Shewhart-RZ pour les niveaux habituels d'erreurs fournis par des instruments calibrés. Dans la plupart des cas, les valeurs d'*EARL* en présence d'erreurs de mesure sont plus petites que les valeurs de *EARL* sans

			$X_{i,j}^*$ [kg]			$ar{X}^*_i$ [kg]	_
Echantillons			$Y_{i,j}^*$ [kg]			\bar{Y}_i^* [kg]	$\hat{Z}_i^* = \frac{\bar{X}_i^*}{\bar{Y}_i^*}$
1	95.864	94.731	94.643	94.193	94.328	94.752	0.951
	100.891	100.143	100.340	97.740	99.295	99.682	
2	94.969	94.935	94.270	94.663	93.961	94.560	0.956
	98.903	96.883	97.329	101.021	100.278	98.883	
3	93.274	95.927	94.961	96.021	95.429	95.122	0.945
	101.525	100.461	100.826	98.936	101.398	100.629	
4	95.350	96.128	96.610	95.022	95.737	95.769	0.955
	101.137	101.127	100.052	98.796	100.115	100.245	
5	94.697	96.827	94.392	94.197	96.205	95.264	0.955
	98.996	100.356	99.860	100.082	99.377	99.734	
6	94.623	93.930	96.532	94.197	93.573	94.571	0.953
	99.309	99.727	98.908	98.534	99.745	99.245	
7	94.419	95.445	94.328	95.120	95.880	95.038	0.946
	99.936	99.836	101.138	99.668	101.850	100.486	
8	96.144	94.121	96.163	93.803	94.900	95.026	0.953
	98.212	100.667	99.683	99.044	101.184	99.758	
9	94.151	94.786	95.127	94.098	94.307	94.494	0.948
	99.173	100.873	100.487	100.635	98.675	99.969	
10	96.006	96.319	94.026	94.660	93.948	94.992	0.949
	99.392	98.783	100.008	101.235	101.325	100.149	
11	93.436	94.988	93.583	94.831	92.875	93.9426	0.934
	100.491	100.976	100.815	100.102	100.685	100.614	
12	95.832	95.250	94.402	95.221	95.698	95.281	0.947
	100.007	101.654	100.648	101.531	99.040	100.576	
13	95.746	93.764	92.958	94.811	94.250	94.306	0.943
	99.164	100.864	100.174	99.642	100.309	100.031	
14	95.897	95.408	95.121	94.810	96.402	95.528	0.956
	101.025	98.955	100.267	99.332	100.238	99.963	
15	95.481	95.595	94.547	95.299	94.600	95.104	0.944
	99.933	99.406	102.736	100.533	101.300	100.782	

TABLE 6.5 : Données de l'industrie du recyclage des piles

erreur de mesure.

Les travaux présentés dans ce chapitre ont été publiés dans Tran et al. (2016d).

Les cartes de contrôle pour surveiller le ratio sont efficaces pour détecter rapidement l'apparition de causes assignables dans des procédés. Il existe aussi des environnements de production où les professionnels de la qualité peuvent être intéressés par la surveillance continue de données compositionnelles. Pour surveiller ce type de données, la carte de contrôle MEWMA sera l'objet du chapitre suivant.

7

Carte de contrôle pour surveiller des données de type composition avec une approche MEWMA

7.1 Introduction

En tant que principal outil de la MSP, les cartes de contrôle ont été largement étudiées pour surveiller différents types de données de processus, voir Montgomery (2013). Parmi les différentes type de données que l'on peut rencontrer, les données de type composition (CoDa) sont un type particulier de données qui décrivent la composition de produits représentée sous la forme de vecteurs de proportions, de pourcentages, de concentrations ou de fréquences. Dans la littérature de la MSP, il y a très peu d'articles qui ont étudié des méthodes de surveillance pour des données de type composition. Nous pouvons citer Boyles (1997) qui a étudié une carte de contrôle de type χ^2 pour la surveillance de données de type composition. Plus récemment, Vives-Mestres et al. (2014a) ont proposé une carte de contrôle T^2 permettant de surveiller une composition à 3 caractéristiques et d'interpréter les situations hors-contrôles. Comme prolongement du papier de Vives-Mestres et al. (2014a), Vives-Mestres et al. (2014b) ont proposé une carte de contrôle T^2 particulière (notée T_C^2) pour les données de type composition dans le cas d'observations individuelles (n = 1). Ces deux articles suggèrent l'utilisation d'une transformation "isometric logratio" (ilr) pour représenter des données de type composition dans un système de coordonnées dans \mathbb{R}^{p-1} et ainsi traiter des observations non contraintes. Enfin, Vives-Mestres et al. (2016) ont proposé deux méthodes pour interpréter les situations hors contrôle correspondantes pour la carte T_C^2 dans le cas où il y a plus de 3 caractéristiques.

Comme nous l'avons déjà mentionné pour les cartes de contrôle univariées, les cartes de contrôle multivariées de type Shewhart telle que la carte T^2 peuvent prendre plus de temps pour détecter des changements de petite et moyenne amplitude. Pour cette raison, il est naturel d'explorer l'utilisation d'autres types de cartes de contrôle comme les cartes de contrôle avec règles supplémentaires, MEWMA, MCUSUM. Parmi ces méthodes, la mise en oeuvre de cartes de contrôle MEWMA a été développée dans le but de fournir une plus grande sensibilité aux petits changements de la moyenne, voir Montgomery (2013). Lowry et al. (1992) ont proposé une cartes de contrôle MEWMA pour surveiller le vecteur moyen d'un processus. Ses propriétés et la stategie de conception de cette carte ont été complètement étudiées par de nombreux auteurs. Pour plus de détails, voir, Runger and Prabhu (1996), Prabhu and Runger (1997), Molnau et al. (2001), Lee and Khoo (2006), Reynolds and Stoumbos (2008), Mahmoud and Maravelakis (2010) et Wu et al. (2015).

A notre connaissance, jusqu'à présent, les cartes de type MEWMA n'ont pas été utilisées pour la sur-

veillance de données de type composition. Par conséquent, le but de ce chapitre est de proposer une carte de contrôle de type MEWMA (notée carte de contrôle MEWMA-CoDa) pour les données de type composition, sur la base de l'approche transformation ilr, lorsque la taille de l'échantillon n > 1 et d'évaluer sa performance statistique. Par ailleurs, pour calculer les propriétés statistiques de la carte MEWMA-CoDa, nous utiliserons une approche similaire à celle utilisée dans Runger and Prabhu (1996) pour le développement d'un modèle approprié de chaîne de Markov.

7.2 Carte de contrôle EWMA multivariée pour des données composées

On suppose que, à chaque période d'échantillonnage i = 1, 2, ..., nous recueillons un échantillon de *n*-tuples indépendants (ce que l'on appelle une *p*-composition) { $\mathbf{X}_{i,1}, ..., \mathbf{X}_{i,n}$ }, i.e. $\mathbf{X}_{i,j} \in S^p$, j = 1, ..., n. Soient { $\mathbf{X}_{i,1}^*, ..., \mathbf{X}_{i,n}^*$ } leurs coordonnées ilr correspondantes, i.e. $\mathbf{X}_{i,j}^* = \operatorname{ilr}(\mathbf{X}_{i,j}) \in \mathbb{R}^{p-1}$. Nous supposons que chaque $\mathbf{X}_{i,j}$, j = 1, ..., n, suit une loi normale multivariée $N_{S^p}(\boldsymbol{\mu}^*, \boldsymbol{\Sigma}^*)$ dans le simplex S^p ce qui revient à dire que chacune des coordonnées ilr correspondantes $\mathbf{X}_{i,j}^*$ suit une loi normale multivariée $N_{\mathbb{R}^{p-1}}(\boldsymbol{\mu}^*, \boldsymbol{\Sigma}^*)$ dans \mathbb{R}^{p-1} , où $\boldsymbol{\mu}^* = \operatorname{ilr}(\boldsymbol{\mu})$ est le vecteur moyenne (p-1, 1), $\boldsymbol{\Sigma}^*$ est la matrice de variance-convariance (p-1, p-1) et $\boldsymbol{\mu} \in S^p$ est le *centre* de la composition. Il est important de noter que les valeurs des paramètres $\boldsymbol{\mu}^*$ et $\boldsymbol{\Sigma}^*$ dépendent de la sélection de la transformation ilr, i.e. du choix de la matrice B tels que définis dans la section (2.3), (see Pawlowsky-Glahn et al. (2015)).

Nous supposerons que, lorsque le processus de composition est sous-contrôle, le centre de la composition est μ_0 (ou, de façon équivalente $\mu_0^* = \operatorname{ilr}(\mu_0)$) et, lorsque le processus de composition est hors-contrôle, le centre de la composition est μ_1 (ou, de façon équivalente $\mu_1^* = \operatorname{ilr}(\mu_1)$). Le but de ce chapitre est de proposer et d'évaluer une carte de contrôle multivariée EWMA (notée MEWMA-CoDa) pour surveiller le *centre* μ de la *p*-composition. Ce problème peut être résolu de manière équivalente en surveillant le vecteur moyen μ^* en coordonnées ilr et en utilisant la carte MEWMA pour le vecteur moyen de échantillon de coordonnée \overline{X}_i^* . Étant donné que la moyenne de *n* observations indépendantes de la *p*-composition est définie comme

$$ar{\mathbf{X}}_i = rac{1}{n} \odot (\mathbf{X}_{i,1} \oplus \dots \oplus \mathbf{X}_{i,n})$$

et que le vecteur moyen de l'échantillon $\bar{\mathbf{X}}_i^*$ est définie comme $\bar{\mathbf{X}}_i^* = \operatorname{ilr}(\bar{\mathbf{X}}_i) = \frac{1}{n}(\operatorname{ilr}(\mathbf{X}_{i,1}) + \cdots + \operatorname{ilr}(\mathbf{X}_{i,n})) = \frac{1}{n}(\mathbf{X}_{i,1}^* + \cdots + \mathbf{X}_{i,n}^*)$ dans \mathbb{R}^{p-1} .

Comme dans Lowry et al. (1992), la statistique à surveiller est

$$Q_i = \mathbf{Y}_i^{\mathsf{T}} \boldsymbol{\Sigma}_{Y_i}^{-1} \mathbf{Y}_i, \ i = 1, 2, \dots$$
(7.1)

où \mathbf{Y}_i est le vecteur dans \mathbb{R}^{p-1} défini comme

$$\mathbf{Y}_{i} = r(\bar{\mathbf{X}}_{i}^{*} - \boldsymbol{\mu}_{0}^{*}) + (1 - r)\mathbf{Y}_{i-1}, i = 1, 2, \dots$$

avec $\mathbf{Y}_0 = \mathbf{0}$, $r \in (0, 1]$ est un paramètre de lissage fixé et Σ_{Y_i} est la matrice de variance-covariance du vecteur \mathbf{Y}_i . De manière similaire à Lowry et al. (1992), la forme asymptotique de la matrice de variance-covariance Σ_{Y_i} sera utilisée dans le reste du chapitre, i.e.

$$\Sigma_{Y_i} = \frac{r}{n(2-r)} \Sigma^*.$$

La carte de contrôle MEWMA-CoDa signale une situation hors-contrôle lorsque $Q_i > UCL = H$ où H > 0 est une limite de contrôle pour obtenir une valeur d'ARL sous-contrôle spécifiée.

7.3 Le modèle de chaîne de Markov

Comme cela a été expliqué par Lowry et al. (1992), la performance du Run Length de la carte MEWMA- \bar{X} est uniquement fonction de la taille de l'échantillon n, du vecteur moyen sous-contrôle μ_0^* , du vecteur moyen hors-contrôle μ_1^* et de la matrice de variance-covariance Σ^* au travers du paramètre δ défini comme

$$\delta = \sqrt{n(\boldsymbol{\mu}_1^* - \boldsymbol{\mu}_0^*)^\intercal(\boldsymbol{\Sigma}^*)^{-1}(\boldsymbol{\mu}_1^* - \boldsymbol{\mu}_0^*)}.$$

Sans perte de généralité, nous limiterons l'étude numérique au cas n = 1, $\mu_0^* = 0$ (i.e. la moyenne sous-contrôle est le centre de la composition identité $\mu_0 = (\frac{1}{p}, \frac{1}{p}, \dots, \frac{1}{p})$) et $\Sigma^* = \mathbf{I}_{p-1}$ (la matrice de variance-covariance identité dans \mathbb{R}^{p-1}). Dans ce cas *standardisé*, Q_i dans (7.1) se réduit à $Q_i = b||\mathbf{Y}_i||_2^2$ avec $b = \frac{2-r}{r}$ et le paramètre δ se réduit à $\delta = ||\boldsymbol{\mu}_1^*||_2 = ||\operatorname{ilr}(\boldsymbol{\mu}_1)||_2$. Afin d'évaluer les distributions du Run Length sous-contrôle et hors-contrôle de la carte MEWMA- \bar{X} , Runger and Prabhu (1996) ont suggéré d'approximer leur calcul pour la statistique $q_i = ||\mathbf{Y}_i||_2$ en utilisant les modèles de chaînes de Markov suivantes.

Concernant le cas *sous-contrôle*, Runger and Prabhu (1996) ont montré que la répartition de la distribution du Run Length sous-contrôle de q_i pouvait être approximée en utilisant une chaîne de Markov à une dimension dans l'intervalle [0, UCL'], où $UCL' = (H/b)^{1/2}$, est divisé en m + 1 sous-intervalles / états : le premier sous-intervalle / état a une longueur $\frac{g}{2}$ et les autres ont une longueur $g = \frac{2UCL'}{2m+1}$. Concernant la carte de contrôle MEWMA-CoDa, les éléments p(i, j) (probabilité de transition de l'état i à l'état j) de la matrice (m + 1, m + 1) de transition \mathbf{P}_1 correspondant aux états transitoires sont égaux à :

• pour
$$i = 0, 1, ..., m$$
 et $j = 1, 2, ..., m$,

$$p(i,j) = P\left(\left(\frac{(j-0.5)g}{r}\right)^2 < \chi^2(p-1,c) < \left(\frac{(j+0.5)g}{r}\right)^2\right)$$

où $\chi^2(p-1,c)$ est une variable aléatoire du χ^2 non centrée avec p-1 degrés de liberté et paramètre de décentrage $c = \left(\frac{(1-r)ig}{r}\right)^2$ qui dépend de l'état i,

• pour j = 0,

$$p(i,0) = P\left(\chi^2(p-1,c) < \left(\frac{g}{2r}\right)^2\right)$$

L'ARL sous-contrôle de la carte MEWMA-CoDa est donc égal à

$$ARL = \mathbf{s}^{\mathsf{T}} (\mathbf{I}_{m+1} - \mathbf{P}_1)^{-1} \mathbf{1}_{m+1},$$

où $\mathbf{1}_{m+1} = (1, 1, \dots, 1)^{\mathsf{T}}$ est un vecteur colonne m+1 de "1" et s est le vecteur des probabilités initiales, i.e. $\mathbf{s} = (1, 0, 0, \dots, 0)^{\mathsf{T}}$.

Concernant le cas *hors-contrôle*, Runger and Prabhu (1996) ont montré que la distribution Run Length de q_i pouvait être approximée en utilisant une chaîne de Markov deux dimensions avec $\mathbf{Y}_i \in \mathbb{R}^{p-1}$ partitionné en $Y_{i1} \in \mathbb{R}$ avec une moyenne non nulle δ et $\mathbf{Y}_{i2} \in \mathbb{R}^{p-2}$ avec une moyenne nulle. Ensuite nous avons $q_i = ||\mathbf{Y}_i||_2 = (Y_{i1}^2 + \mathbf{Y}_{i2}^{\mathsf{T}}\mathbf{Y}_{i2})^{\frac{1}{2}}$. Comme dans Runger and Prabhu (1996), nous pouvons aussi utiliser pour la carte MEWMA-CoDa une chaîne de Markov à deux dimension pour Y_{i1}^2 et $||\mathbf{Y}_{i2}||_2$. La composante Y_{i1}^2 peut être approximée en utilisant l'approche de la chaîne de Markov proposée par Lucas and Saccucci (1990). Les valeurs de $||\mathbf{Y}_{i2}||_2$ peuvent être approximées par la même méthode que celle utilisée pour le cas sous-contrôle, décrit ci-dessus, p - 2 remplaçant p - 1, voir Runger and Prabhu (1996).

Concernant Y_{i1} , la probabilité de transition h(i, j) de l'état i à l'état j est utilisée pour analyser le composant hors-contrôle. Dans ce cas, le nombre d'états de la chaîne de Markov est choisi pour être égal à $2m_1 + 1$. Par conséquent, pour $i = 1, 2, ..., 2m_1 + 1$ et $j = 1, 2, ..., 2m_1 + 1$ nous avons

$$h(i,j) = \Phi\left(\frac{-UCL' + jg_1 - (1-r)c_i}{r} - \delta\right) - \Phi\left(\frac{-UCL' + (j-1)g_1 - (1-r)c_i}{r} - \delta\right)$$

où Φ représente la fonction de répartition de la loi normale et où $c_i = -UCL' + (i - 0.5)g_1$ est le point central de l'état *i* avec $g_1 = \frac{2UCL'}{2m_1+1}$ comme largeur de chaque état.

Concernant Y_{i2} , la probabilité de transition v(i, j) de l'état i à l'état j est utilisée pour analyser le composant sous-contrôle. Dans ce cas, la région de contrôle est divisée en $m_2 + 1$ états de transition. La probabilité de transition v(i, j) a la même expression que dans le cas sous-contrôle, excepté le fait que p-2 remplace p-1, i.e.

• pour $i = 0, 1, 2, \dots, m_2$ et $j = 1, 2, \dots, m_2$, nous avons

$$v(i,j) = P\left(\left(\frac{(j-0.5)g_2}{r}\right)^2 < \chi^2(p-2,c) < \left(\frac{(j+0.5)g_2}{r}\right)^2\right)$$

où $c = \left(\frac{(1-r)ig_2}{r}\right)^2$ et la largeur des états est $g_2 = \frac{2UCL'}{2m_2+1}$.

• pour j = 0,

$$v(i,0) = P\left(\chi^2(p-2,c) < \left(\frac{g_2}{2r}\right)^2\right)$$

Soit \mathbf{P}_2 la matrice de probabilité de transition de la chaîne de Markov bidimensionnelle. Etant donné que Y_{i1} est indépendant de \mathbf{Y}_{i2} , nous avons $\mathbf{P}_2 = \mathbf{H} \otimes \mathbf{V}$, où \mathbf{H} est la matrice $(2m_1 + 1, 2m_1 + 1)$ des probabilités de transition de Y_{i1} avec des éléments h(i, j), \mathbf{V} est la matrice $(m_2 + 1, m_2 + 1)$ des probabilités de transition de $||\mathbf{Y}_{i2}||_2$ avec des éléments v(i, j) et \otimes désigne le produit de Kronecker. La matrice des probabilités de transition \mathbf{P}_2 comprend les probabilités de transition entre tous les états transitoires et certain états absorbants de la chaîne de Markov.

Soit T la matrice $(2m_1 + 1) \times (m_2 + 1)$ définie comme

$$\mathbf{T}(\alpha,\beta) = \begin{cases} 1 & \text{si l'état } (\alpha,\beta) \text{ est transitoire} \\ 0 & \text{sinon} \end{cases}$$

Soit P la matrice des probabilités de transition qui contient tous les états transitoires de la chaîne de Markov. Ensuite nous avons $\mathbf{P} = \mathbf{T}(\alpha, \beta) \odot \mathbf{P}_2$ où le symbole \odot indique la multiplication matricielle élément par élément (à ne pas confondre avec l'opérateur powering pour le simplex introduit dans la Section 2.3).

Finalement, l'*ARL* hors-contrôle de la carte MEWMA-CoDA est défini comme $ARL = \mathbf{s}^{\mathsf{T}}(\mathbf{I} - \mathbf{P})^{-1}\mathbf{1}$ où s est le vecteur des probabilités initiales avec tous les composants égaux à zéro, sauf le composant correspondant à l'état $(\alpha, \beta) = (m_1 + 1, 0)$ qui est égal à 1. Dans le cas particulier où $m_1 = m_2 = m$, le composant de s qui est égal à 1 est le (m(m + 1) + 1)ème (voir Lee and Khoo (2006)). Il est important de noter que plus le nombre d'états sera grand plus précis sera le calcul de l'*ARL*. L'effet du nombre d'états sur le calcul des valeurs *ARL* est discuté par Molnau et al. (2001).

7.4 Performance de la carte de contrôle MEWMA-CoDa

La conception statistique de la carte de contrôle MEWMA-CoDa consiste à sélectionner les couples optimaux (r, H) qui minimisent l'ARL hors-contrôle pour un changement prévu δ soumis à une contrainte sur l'ARL sous-contrôle. Ces couples optimaux peuvent être obtenus en utilisant les deux étapes suivantes :

- 1. Trouver l'ensemble des couples de conception (r, H) tel que $ARL = ARL_0$ (où ARL_0 est une valeur prédéfinie de l'ARL sous-contrôle).
- 2. Choisir, parmi ces couples de conception (r, H), le couple (r^*, H^*) qui fournit la meilleure performance statistique, i.e. la plus petite valeur de l'*ARL* hors-contrôle pour un changement particulier δ dans le vecteur μ^* .

Il convient de noter que pour des raisons de calcul, (i.e. convergence de la chaîne de Markov), la valeur de r^* ne doit pas être trop petites (dans ce cas, l'approche de la chaîne de Markov donne des résultats peu fiables). Ce fait a été cité dans de nombreux articles (voir Tran et al. (2016b) et Castagliola et al. (2011)), et, pour cette raison, nous avons choisi $r^* \in [0.05, 1]$. La Table 7.1 présente les couples optimaux (r^*, H^*) et les ARLs hors-contrôle correspondant pour des valeurs sélectionnées du nombre $p \in \{3, 5, 10, 20\}$ des variables, de l'ARL sous-contrôle $ARL_0 \in \{200, 500, 1000\}$ et de la taille du changement $\delta \in \{0.25, 0.5, 0.75, 1.00, 1.25, 1.5, 1.75, 2.00\}$.

Quelques conclusions simples peuvent être tirées de la Table 7.1

- Lorsque la valeur attendue de la taille du changement δ augmente, la valeur de r* augmente, aussi. Par exemple, lorsque p = 3 et ARL₀ = 200, nous avons r* = 0.0500 (0.1445) si δ = 0.25 (1.00). Lorsque δ augmente, la valeur de H* augmente. Par exemple, lorsque p = 3 et ARL₀ = 200, nous avons H* = 7.3568 (9.2157) si δ = 0.25 (1.00).
- Compte tenu des valeurs de δ et ARL₀, la conception statistique optimale (r*, H*) dépend de p. En particulier, plus la valeur de p augmente, plus la valeur de r* diminue et celle de H* augmente. Par exemple, lorsque δ = 1 et p = 3 nous avons (r*, H*) = (0.1445, 9.2157). Lorsque δ = 1 et p = 20 nous avons (r*, H*) = (0.0998, 35.6484).

En comparaison, la Table 7.2 présente les valeurs des ARLs hors-contrôle pour les cartes MEWMA-CoDa (à gauche) et Vives-Mestres et al. (2014b)'s T_C^2 (à droite) pour des valeurs sélectionnées du nombre des variables $p \in \{3, 5, 10, 20\}$, de l'ARL sous-contrôle $ARL_0 \in \{200, 500, 1000\}$ et de la taille de changement $\delta \in \{0.25, 0.5, 0.75, 1.00, 1.25, 1.5, 1.75, 2.00\}$. A notre connaissance, la carte de contrôle de Vives-Mestres et al. (2014b)'s T_C^2 est la seule alternative trouvée dans la littérature pour la carte de contrôle MEWMA-CoDa. A partir de la Table 7.2 nous pouvons conclure que

- La carte de contrôle MEWMA-CoDa est toujours plus efficace que la carte de contrôle T²_C. Par exemple, lorsque p = 3, ARL₀ = 200 et δ = 0.25, nous avons ARL = 64.6 pour la carte MEWMA-CoDa et ARL = 115.5 pour la carte T²_C.
- Compte tenu des valeurs de δ et ARL_0 , les valeurs de l'ARL hors-contrôle dépendent de p. En particulier, plus la valeur de p est grande, plus la valeur de l'ARL augmente. Par exemple, lorsque $\delta = 1$ et p = 3, nous avons ARL = 9.9 pour la carte MEWMA-CoDa et ARL = 41.9 pour la carte T_C^2 . Lorsque $\delta = 1$, p = 20, nous avons ARL = 18.9 pour la carte MEWMA-CoDa et ARL = 115.2 pour la carte T_C^2 .

δ	p = 3	p = 5	p = 10	p = 20						
		ARL_0	= 200							
0.25	(0.0500, 7.3568)	(0.0500, 11.2273)	(0.0500, 19.2578)	(0.0500, 33.2742)						
0.50	(0.0550, 7.5453)	(0.0500, 11.2273)	(0.0500, 19.2578)	(0.0500, 33.2742)						
0.75	(0.0948, 8.5490)	(0.0873, 12.4657)	(0.0774, 20.5009)	(0.0674, 34.3931)						
1.00	(0.1445, 9.2157)	(0.1296, 13.2045)	(0.1147, 21.4453)	(0.0998, 35.6484)						
1.25	(0.1968, 9.6306)	(0.1769, 13.6971)	(0.1545, 22.0479)	(0.1346, 36.4518)						
1.50	(0.2540, 9.9220)	(0.2291, 14.0433)	(0.1993, 22.4835)	(0.1719, 37.0096)						
1.75	(0.3137, 10.1246)	(0.2813, 14.2746)	(0.2440, 22.7772)	(0.2117, 37.4140)						
2.00	(0.3759, 10.2692)	(0.3361, 14.4426)	(0.2938, 23.0040)	(0.2540, 37.7142)						
	$ARL_0 = 500$									
0.25	(0.0500, 9.6018)	(0.0500, 13.8784)	(0.0500, 22.5949)	(0.0500, 37.5582)						
0.50	(0.0500, 9.6018)	(0.0500, 13.8784)	(0.0500, 22.5949)	(0.0500, 37.5582)						
0.75	(0.0774, 10.3712)	(0.0699, 14.5526)	(0.0624, 23.1367)	(0.0525, 37.7065)						
1.00	(0.1197, 11.0383)	(0.1072, 15.3049)	(0.0923, 23.9846)	(0.0799, 38.8780)						
1.25	(0.1669, 11.4698)	(0.1470, 15.7753)	(0.1271, 24.5767)	(0.1097, 39.6292)						
1.50	(0.2167, 11.7554)	(0.1943, 16.1265)	(0.1669, 25.0037)	(0.1445, 40.1821)						
1.75	(0.2689, 11.9542)	(0.2415, 16.3560)	(0.2092, 25.3010)	(0.1794, 40.5509)						
2.00	(0.3261, 12.1017)	(0.2913, 16.5208)	(0.2540, 25.5149)	(0.2192, 40.8409)						
		ARL_0	= 1000							
0.25	(0.0500, 11.2592)	(0.0500, 15.7739)	(0.0500, 24.9034)	(0.0500, 40.4497)						
0.50	(0.0500, 11.2592)	(0.0500, 15.7739)	(0.0500, 24.9034)	(0.0500, 40.4497)						
0.75	(0.0674, 11.7607)	(0.0600, 16.1141)	(0.0525, 25.0103)	(0.0500, 40.4497)						
1.00	(0.1047, 12.4177)	(0.0923, 16.8422)	(0.0799, 25.8639)	(0.0699, 41.2729)						
1.25	(0.1470, 12.8474)	(0.1321, 17.3555)	(0.1122, 26.4529)	(0.0973, 41.9795)						
1.50	(0.1943, 13.1448)	(0.1744, 17.6888)	(0.1495, 26.8745)	(0.1271, 42.4713)						
1.75	(0.2440, 13.3484)	(0.2192, 17.9186)	(0.1868, 27.1490)	(0.1619, 42.8491)						
2.00	(0.2963, 13.4913)	(0.2664, 18.0817)	(0.2291, 27.3615)	(0.1968, 43.1058)						

TABLE 7.1 : Valeurs optimales (r^*, H^*) de la carte MEWMA-CoDa lorsque $ARL_0 = \{200, 500, 1000\}$

δ	p = 3	p = 5	p = 10	p = 20	
		ARL_0	= 200		
0.25	(64.6, 115.5)	(75.8, 138.1)	(91.1, 159.1)	(106.3, 172.7)	
0.50	(26.4, 76.9)	(31.7, 101.3)	(39.6, 129.0)	(49.3, 150.0)	
0.75	(15.1, 55.3)	(18.1, 77.4)	(22.8, 106.2)	(28.7, 131.1)	
1.00	(9.9, 41.9)	(11.9, 61.0)	(15.0, 88.7)	(18.9, 115.2)	
1.25	(7.1, 32.9)	(8.5, 49.2)	(10.7, 74.9)	(13.5, 101.7)	
1.50	(5.4, 26.6)	(6.4, 40.5)	(8.1, 63.9)	(10.2, 90.2)	
1.75	(4.3, 22.0)	(5.1, 33.9)	(6.4, 55.0)	(8.0, 80.3)	
2.00	(3.5, 18.5)	(4.1, 28.7)	(5.2, 47.7)	(6.5, 71.8)	
		ARL_0	= 500		
0.25	(102.9, 265.7)	(126.1, 327.1)	(160.5, 385.5)	(197.5, 423.7)	
0.50	(34.6, 167.7)	(41.8, 230.0)	(53.6, 304.0)	(69.3, 361.7)	
0.75	(18.8, 115.9)	(22.6, 169.7)	(28.5, 244.1)	(36.0, 310.8)	
1.00	(12.1, 84.9)	(14.4, 129.7)	(18.2, 199.1)	(23.0, 268.6)	
1.25	(8.5, 64.8)	(10.1, 101.9)	(12.7, 164.6)	(16.1, 233.5)	
1.50	(6.4, 51.1)	(7.6, 81.9)	(9.5, 137.6)	(11.9, 204.0)	
1.75	(5.0, 41.2)	(5.9, 67.0)	(7.4, 116.2)	(9.3, 179.0)	
2.00	(4.1, 33.9)	(4.8, 55.6)	(5.9, 99.0)	(7.4, 157.9)	
		ARL_0	= 1000		
0.25	(145.2, 499.9)	(184.1, 628.5)	(245.7, 753.4)	(315.8, 835.8)	
0.50	(41.6, 303.7)	(50.7, 428.6)	(66.4, 582.0)	(88.9, 704.3)	
0.75	(21.8, 204.0)	(26.0, 308.5)	(32.7, 458.9)	(41.6, 597.8)	
1.00	(13.8, 145.9)	(16.3, 230.7)	(20.5, 368.1)	(26.0, 510.6)	
1.25	(9.6, 109.1)	(11.3, 177.9)	(14.2, 299.5)	(17.9, 438.8)	
1.50	(7.2, 84.3)	(8.4, 140.4)	(10.5, 246.7)	(13.2, 379.3)	
1.75	(5.6, 66.9)	(6.5, 113.0)	(8.1, 205.6)	(10.2, 329.4)	
2.00	(4.5, 54.2)	(5.3, 92.4)	(6.5, 173.0)	(8.1, 287.5)	

TABLE 7.2 : Comparaison entre l'*ARL* hors-contrôle de la carte MEWMA-CoDa (côté gauche) et la carte T_C^2 (côté droit) lorsque $ARL_0 = \{200, 500, 1000\}$

FIGURE 7.1 : Simplex S^3 (également appelé diagramme ternaire) et correspondant coordonnées ilr dans \mathbb{R}^2 avec le ellipse de confiance 95% pour les paramètres de la phase II μ_0^* et Σ^*

7.5 Un exemple illustratif

Le contexte de l'exemple présenté ici est similaire à celle introduite dans Holmes and Mergen (1993), Sullivan and Woodall (1996), Montgomery (2013) et Vives-Mestres et al. (2014b), i.e. les données décrivent la distribution granulométrique (pourcentage en poids) pour une usine de travaux publiques en Europe. Selon Vives-Mestres et al. (2014b), il y a 4 points hors-contrôle (#1, #26, #45 and #52) dans la base de données à trois composants de taille grande (L), moyenne (M) et petite (S). Après avoir enlevé ces points horscontrôle, l'ensemble des données de la phase I est présenté dans la Table 7.3. Les valeurs des paramètres μ_0^* et Σ^* ont été estimées

$$\boldsymbol{\mu}_0^* = \left(\begin{array}{c} 1.962\\ 1.184 \end{array}\right),$$

et

$$\mathbf{\Sigma}^* = \begin{pmatrix} 0.099 & -0.022 \\ -0.022 & 0.088 \end{pmatrix},$$

Concernant la phase II, l'ensemble des données avec une taille d'échantillon n = 1 est simulé et présenté dans la Table 7.4. Le simplex S^3 (aussi appelé diagramme ternaire) et les coordonnées ilr de la composition correspondante dans \mathbb{R}^2 avec une ellipse de confiance de 95% pour les paramètres de la Phase II μ_0^* et Σ^* sont tracées dans la Figure 7.1. Dans ce cas, une taille de changement $\delta = 0.25$ dans μ^* doit être interprété comme un signal que quelque chose se passe mal dans le système de production. Pour cette raison, le praticien de la qualité fixe la taille de changement prévu à $\delta = 0.25$ et décide de mettre en œuvre une carte de contrôle MEWMA-CoDa. Pour n = 1 et $\delta = 0.25$, les paramètres optimaux pour la carte de contrôle MEWMA-CoDa sont r = 0.05 et H = 7.3568 (voir la Table 7.1). Le processus est supposé fonctionner sous-contrôle jusqu'à l'échantillon #10. Ensuite, entre les échantillons #10 et #11 nous avons simulé l'apparition d'une cause spéciale modifiant $\mu_0^* = (1.962, 1.184)^{\intercal}$ à $\mu_1^* = (2.070, 1.157)^{\intercal}$, i.e. $\delta = 0.34$. La Figure 7.2 présente la carte MEWMA-CoDa qui signale l'occurrence d'une situation horscontrôle au niveau du point #16 au dessus de la limite de contrôle H = 7.3568 (voir les valeurs en gras dans la Table 7.4). En comparaison, nous avons également tracé la carte de contrôle T_C^2 de Vives-Mestres et al. (2014b) dans la Figure 7.3 avec H = 10.5966. Les valeurs correspondantes sont également données dans la Table 7.4. Comme on peut le voir, la carte de contrôle T_C^2 ne parvient pas totalement à détecter la situation hors-contrôle détectée par la carte de contrôle MEWMA-CoDa.

CHAPITRE 7. CARTE DE CONTRÔLE POUR SURVEILLER DES DONNÉES DE TYPE COMPOSITION AVEC UNE APPROCHE MEWMA

i	М	S	L	x_{i1}^{*}	x_{i2}^{*}	i	М	S	L	x_{i1}^{*}	x_{i2}^{*}
1	92.60	4.20	3.20	$\frac{i,1}{2.19}$	$\frac{1.48}{1.48}$	27	83.60	9.00	7.40	$\frac{i,1}{1.58}$	$\frac{i,2}{1.07}$
2	91.70	3.10	5.20	2.40	0.96	28	84.80	8.40	6.80	1.63	1.12
3	86.90	9.60	3.50	1.56	1.72	29	87.10	6.60	6.30	1.82	1.09
4	90.40	6.70	2.90	1.84	1.75	30	87.20	6.70	6.10	1.81	1.12
5	92.10	3.30	4.60	2.35	1.09	31	87.30	6.10	6.60	1.88	1.02
6	91.50	4.10	4.40	2.20	1.21	32	84.80	9.00	6.20	1.59	1.22
7	90.30	4.70	5.00	2.09	1.16	33	87.40	6.10	6.50	1.88	1.03
8	85.10	6.50	8.40	1.82	0.84	34	86.80	7.20	6.00	1.76	1.17
9	89.70	6.10	4.20	1.90	1.40	35	88.80	6.40	4.80	1.86	1.31
10	92.50	3.70	3.80	2.28	1.29	36	89.80	5.30	4.90	2.00	1.22
11	91.80	3.90	4.30	2.23	1.21	37	86.90	7.30	5.80	1.75	1.20
12	91.70	4.60	3.70	2.12	1.40	38	83.80	9.00	7.20	1.58	1.09
13	90.30	5.90	3.80	1.93	1.47	39	89.20	5.20	5.60	2.01	1.10
14	94.50	2.90	2.60	2.46	1.51	40	84.50	8.60	6.90	1.62	1.11
15	94.50	2.80	2.70	2.49	1.47	41	84.40	8.20	7.40	1.65	1.04
16	88.70	3.40	7.90	2.31	0.64	42	84.30	6.80	8.90	1.78	0.81
17	84.60	8.80	6.60	1.60	1.16	43	89.80	2.00	8.20	2.69	0.40
18	90.70	5.30	4.00	2.01	1.39	44	90.40	2.90	6.70	2.43	0.72
19	90.20	7.30	2.50	1.78	1.90	45	90.10	4.00	5.90	2.20	0.95
20	92.70	3.50	3.80	2.32	1.27	46	83.60	7.70	8.70	1.69	0.87
21	91.50	5.70	2.80	1.96	1.71	57	88.00	5.60	6.40	1.95	1.02
22	91.80	5.30	2.90	2.02	1.66	48	84.70	6.90	8.40	1.77	0.86
23	90.60	6.10	3.30	1.91	1.60	49	93.00	1.90	5.10	2.75	0.78
24	87.30	5.50	7.20	1.95	0.91	50	91.40	3.60	5.00	2.29	1.05
25	82.60	10.40	7.00	1.47	1.17	51	86.20	8.80	5.00	1.61	1.39
26	83.50	10.50	6.00	1.47	1.30	52	87.20	6.90	5.90	1.79	1.16

TABLE 7.3 : L'ensemble de données avec les coordonnées ilr en phase I après le retrait des points horscontrôle de Vives-Mestres et al. (2014b)

FIGURE 7.2 : La carte de contrôle MEWMA-CoDa pour les données de exemple

i	М	S	L	$x_{i,1}^{*}$	$x_{i,2}^{*}$	Q_i	$T_{C,i}^2$
1	84.05	8.99	6.96	1.58	1.12	0.169	1.730
2	87.57	4.51	7.92	2.10	0.75	0.395	2.132
3	89.15	4.59	6.26	2.10	0.96	0.599	0.649
4	92.09	4.18	3.73	2.19	1.36	0.262	1.102
5	84.40	8.11	7.49	1.66	1.02	0.548	1.586
6	89.09	6.11	4.80	1.89	1.29	0.387	0.150
7	87.36	5.38	7.26	1.97	0.89	0.789	1.007
8	85.50	5.88	8.62	1.89	0.78	1.692	2.152
9	90.43	4.56	5.01	2.11	1.14	1.498	0.230
10	92.65	3.02	4.33	2.42	1.10	1.422	2.133
11	92.41	2.58	5.01	2.53	0.92	2.342	3.512
12	92.99	3.54	3.47	2.31	1.35	2.284	1.951
13	93.00	2.69	4.31	2.51	1.06	3.598	2.991
14	94.73	2.71	2.56	2.51	1.50	4.749	5.358
15	92.83	2.91	4.26	2.45	1.103	6.476	2.403
16	87.90	3.79	8.31	2.22	0.64	7.731	3.511
17	92.22	4.10	3.68	2.20	1.36	7.917	1.211
18	92.33	3.96	3.71	2.23	1.34	8.415	1.259
19	90.29	3.94	5.77	2.21	0.97	9.148	0.954
20	91.61	3.78	4.61	2.25	1.14	9.968	0.865

TABLE 7.4 : Données de exemple avec coordonnées il
r et les statistiques surveillées par la carte MEWMA-CoDa et la cart
e T_C^2

FIGURE 7.3 : La carte de contrôle T_C^2 pour les données de exemple

7.6 Conclusions

Dans ce chapitre, nous avons proposé la carte de contrôle MEWMA-CoDa à pour un vecteur aléatoire de loi multi-normale défini comme l'inverse du log-ratio d'une *p*-composition. Nous avons présenté les couples optimaux des paramètres de conception (r^*, H^*) et les ARL correspondant de la carte proposée pour différentes valeurs de *p*, de l'ARL sous-contrôle et de la taille de changement. La comparaison des performances numérique avec la carte Hotelling's T_C^2 pour la composition des données montre que la carte MEWMA-CoDa a une sensibilité statistique meilleur que la carte T_C^2 . Nous pensons que la surveillance en ligne de données de type composition est un champ ouvert dans la recherche de la MSP digne de considération par les chercheurs en raison de sa gamme pluridisciplinaire d'applications.

8

Conclusions Générales & Perspectives

8.1 Conclusions Générales

Dans cette thèse, nous avons essayé de proposer systématiquement des nouvelles méthodes pour surveiller le ratio ainsi que des données de type composition, sujets qui n'avaient que peu été traités dans la littérature jusqu'à présent. Le premier chapitre a introduit les bases de la M.S.P puis a permis de présenter les principales cartes de contrôle par mesurage pour la moyenne, la médiane, l'écart-type et l'étendue et les principales cartes de contrôle multivariées par variable. Dans ce premier chapitre, nous avons aussi listé les principaux indicateurs basés sur le Run Length. Le second chapitre a permis de détailler les caractéristiques statistiques du ratio empirique dans le cas de la loi normale ainsi que les concepts permettant l'analyse des données de type composition. Nous présentons aussi un état de l'art restreint (de fait) des recherches effectuées dans le domaine du contrôle statistique de la qualité pour le ratio de valeurs moyennes (supposées suivre des lois normales) et pour des données de type composition.

Dans cette thèse, une partie importante des travaux présentés a été basée sur les outils suivants :

- La détermination des propriétés de la distribution de probabilité du ratio.
- Les concepts permettant l'analyse des données de type composition.
- L'utilisation de chaînes de Markov permettant d'obtenir les diverses propriétés du Run Length.
- L'optimisation des paramètres optimaux qui minimisent l'*ARL* hors-contrôle pour des dérives prévus du ratio sous-contrôle et du coefficient de corrélation soumis à une contrainte sur l'*ARL* sous-contrôle pour les cartes de contrôle pour surveiller le ratio et les données de de type composition.
- L'évaluation des performances de la carte de contrôle Shewhart-RZ proposée avec erreurs de mesure en utilisant le modèle d'erreur linéaire pour le ratio Z.

Ensuite, dans le chapitre 3, nous nous sommes intéressés aux cartes de contrôle unilatérale pour surveiller le ratio de valeurs moyennes à l'aide de règles supplémentaires (règle 2-sur-3, 3-sur-4). Les limites de contrôle LCL_{RRRZ} et UCL_{RRRZ} des cartes avec règles supplémentaires ont été obtenues. Une comparaison avec la carte Shewhart-RZ a montré que, en général, les cartes de contrôle pour surveiller le ratio avec règles supplémentaires sont plus efficaces que le cartes de contrôle Shewhart-RZ pour des dérives faibles du ratio nominal z_0 .

134

Dans le chapitre 4, nous avons présenté deux cartes de contrôle EWMA unilatérales distinctes pour surveiller le ratio $Z = \frac{X}{Y}$ de deux variables normales lorsque la taille de l'échantillon n > 1. Une approche de type chaîne de Markov a été utilisée pour obtenir les valeurs de ARL, SDRL et EARL ainsi que les paramètres optimaux des cartes EWMA-RZ. Pour chaque carte de contrôle unilatérale, nous avons calculé les valeurs de l'ARL hors-contrôle pour différentes valeurs des coefficients de variation (γ_X, γ_Y) et du coefficient de corrélation ρ .

Dans le chapitre 5, nous avons présenté deux cartes de contrôle CUSUM-RZ unilatérales distinctes pour surveiller le ratio de valeurs moyennes lorsque des sous-groupes de taille n > 1 sont collectées. L'évaluation de la performance statistique des cartes de contrôle CUSUM-RZ est aussi basée sur une méthodologie de type chaîne de Markov. Pour différentes valeurs des coefficients de variation (γ_X, γ_Y) et du coefficient de corrélation sous-contrôle ρ , nous avons généré des tables et des figures présentant les valeurs optimales hors-contrôle ARL_1 . En outre, la comparaison numérique avec la performance de la carte Shewhart-RZ et des cartes EWMA-RZ montre que les cartes CUSUM-RZ ont globalement une meilleure sensibilité statistique dans la plupart des cas.

Dans le chapitre 6, nous avons étudié les effets des erreurs de mesure sur les performances de la carte de contrôle Shewhart-RZ en utilisant un modèle d'erreur linéaire : avec ce modèle, nous avons considéré à la fois l'effet de l'erreur de précision et de l'erreur d'exactitude. Nous avons évalué la performance globale de la carte Shewhart-RZ en utilisant l'*EARL* comme critère de performance. Nous avons constaté que la performance de la carte Shewhart-RZ est influencée par l'erreur de précision. En outre, les valeurs d'*EARL* peuvent être également affectées lorsque les valeurs de (θ_X, θ_Y), i.e. la quantité d'erreur d'exactitude, ou la corrélation entre les erreurs ρ_M sont importantes. Par conséquent, dans la pratique, l'erreur d'exactitude n'affecte pas de manière significative les performances de la carte de contrôle Shewhart-RZ pour les niveaux habituels d'erreurs fournis par des instruments calibrés. Dans la plupart des cas, les valeurs d'*EARL* en présence d'erreurs de mesure sont plus petites que les valeurs de *EARL* sans erreur de mesure.

Dans le chapitre 7, nous avons proposé la carte de contrôle MEWMA-CoDa pour les données de type composition, sur la base de la transformation ilr, lorsque la taille de l'échantillon n > 1 et nous avons évalué sa performance statistique. Nous avons présenté les couples optimaux des paramètres de conception (r^*, H^*) ainsi que les valeurs d'ARL hors-contrôle de la carte proposée pour différentes valeurs de p, de l'ARL sous-contrôle et de la taille du changement. La comparaison numérique des performances avec la carte Hotelling's T_C^2 montre que la carte MEWMA-CoDa a une sensibilité statistique meilleur que la carte T_C^2 .

En définitive, il ne faut pas oublier que tous les résultats présentés dans cette thèse sont basés sur l'hypothèse de normalité et d'indépendance des échantillons. Si cette hypothèse n'est pas vérifiée, les résultats présentés dans cette thèse doivent être ré-examinés.

8.2 Perspectives

Plusieurs travaux de recherche peuvent encore être réalisés dans le domaine des cartes de contrôles pour surveiller le ratio et les données de type composition. Tous les résultats que nous avons obtenu se basent essentiellement sur la normalité et l'indépendance des données. On peut donc imaginer de développer de nouvelles recherches concernant la surveillance du ratio et des données de type composition :

 lorsque les données originales ne suivent plus une loi normale. On pourra alors s'intéresser soit à fixer de nouvelles lois de probabilité (exponentielle ? gamma ? Weibull ? etc.) ou soit développer des approches non-paramétriques.

- lorsque les données originales sont autocorrélées en utilisant des modèles de type VAR (Vector Autoregression) ou VARMA (Vector Autoregression Moving-Average).
- lorsque les paramètres sont estimés, l'évaluation de la performance des cartes de contrôle est différente de celle lorsque les paramètres sont connus. On pourra alors s'intéresser aux cartes du ratio (Shewhart-RZ, RRRZ, EWMA-RZ, CUSUM-RZ,...) avec paramètres estimés.

Finalement, il existe d'autres cartes telle que la carte VSI, VSS et la carte Double Sampling qui n'ont pas été analysées dans le cas du ratio. Il existe aussi d'autres cartes telle que la carte MCUSUM, la carte VSI MEWMA et la carte Double Sampling T^2 , et qui n'ont été analysées dans le cas des données de type composition.

Bibliographie

- C.A. Acosta-Mejia. Two Sets of Runs Rules for the \bar{X} Chart. *Quality Engineering*, 19(2) :129–136, 2007. 39
- J. Aitchison. The Statistical Analysis of Compositional Data (Monographs on Statistics and Applied Probability). Chapman & Hall Ltd., London, (Reprinted in 2003 with additional material by The Blackburn Press), 1986. 26, 33
- D.L. Antzoulakos and A.C. Rakitzis. The Modified *r* out of *m* Control Chart. *Communications in Statistics Simulation and Computation*, 37(2):396–408, 2008. 39
- L. A. Aroian and H. Levene. The Effectiveness of Quality Control Charts. *Journal of the American Statistical Association*, 45(252) :520–529, 1950. ISSN 01621459. 22
- C.A. Bennet. Effect of Measurement Error on Chemical Process Control. *Industry Quality Control*, 10(4) : 17–20, 1954. 89
- S. Bersimis, S. Psarakis, and J. Panaretos. Multivariate Statistical Process Control Charts : an Overview. *Quality and Reliability Engineering International*, 23(5) :517–543, 2007. 25
- A.F. Bissell. An Attempt to Unify the Theory of Quality Control Procedures. *Bulletin in Applied Statistics*, 5(2):113–128, 1978. 39
- R. A. Boyles. Using the chi-square statistic to monitor compositional process data. *Journal of Applied Statistics*, 24(5):589–602, 1997. 26, 111
- D. Brook and D.A. Evans. An Approach to the Probability Distribution of CUSUM Run Length. *Biometrika*, 59(3):539–549, 1972. 59, 74
- P. Castagliola. A New S²-EWMA Control Chart for Monitoring the Process Variance. Quality and Reliability Engineering International, 21(8):781–794, 2005. 57
- P. Castagliola and P. E. Maravelakis. A CUSUM control chart for monitoring the variance when parameters are estimated. *Journal of Statistical Planning and Inference*, 141(4):1463 1478, 2011. 73
- P. Castagliola, G. Celano, and S. Fichera. A new CUSUM-S² control chart for monitoring the process variance. *Journal of Quality in Maintenance Engineering*, 15(4) :344–357, 2009. 73
- P. Castagliola, G. Celano, and S. Psarakis. Monitoring the Coefficient of Variation using EWMA Charts. *Journal of Quality Technology*, 43(3):249–265, 2011. 57, 58, 115
- P. Castagliola, A. Achouri, H. Taleb, G. Celano, and S. Psarakis. Monitoring the Coefficient of Variation using Control Charts with Run Rules. *Quality Technology and Quantitative Management*, 10(1):75–94, 2013. 39
- A. Cedilnik, K. Kosmelj, and A. Blejec. The Distribution of the Ratio of Jointly Normal Variables. *Meto*doloski Zvezki, 1(1):99–108, 2004. 27

- G. Celano and P. Castagliola. Design of a phase II Control Chart for Monitoring the Ratio of two Normal Variables. *Quality and Reliability Engineering International*, 32(1):291–308, 2016a. 26, 27, 28, 31, 34, 39, 40, 42, 45, 46, 49, 53, 58, 60, 64, 65, 73, 74, 76, 79, 81, 89, 93, 100
- G. Celano and P. Castagliola. A Synthetic Control Chart for Monitoring the Ratio of Two Normal Variables. *Quality and Reliability Engineering International*, 32(2):681–696, 2016b. 26, 32, 34, 89
- G. Celano, P. Castagliola, G. Nenes, and S. Fichera. Performance of t Control Charts in Short Runs with Unknown Shift Sizes. *Computers & Industrial Engineering*, 64:56–68, 2013. 46
- G. Celano, P. Castagliola, A. Faraz, and S. Fichera. Statistical Performance of a Control Chart for Individual Observations Monitoring the Ratio of two Normal Variables. *Quality and Reliability Engineering International*, 30(8):1361–1377, 2014. 26
- C.W. Champ and W.H. Woodall. Exact Results for the Shewhart Control Chart with Supplementary Runs Rules. *Technometrics*, 29:393–399, 1987. 39
- C.W. Champ and W.H. Woodall. Signal Probabilities of Runs Rules Supplementing a Shewhart Control Chart. *Communications in Statistics Simulation and Computation*, 26(4) :1347–1360, 1997. 39
- A. F. B. Costa. \overline{X} Charts with Variable Sample Size. *Journal of Quality Technology*, 26(3):155–163, 1994. 17, 41
- A.F.B. Costa. \overline{X} Chart with Variable Sample Size and Sampling Intervals. *Journal of Quality Technology*, 29(2):197–204, 1997. 41
- A.F.B. Costa. X Charts with Variable Parameters. *Journal of Quality Technology*, 31(4) :408–416, 1999. 41
- A.F.B. Costa and P. Castagliola. Effect of Measurement Error and Autocorrelation on the \bar{X} Chart. *Journal of Applied Statistics*, 38(4):661–673, 2011. 89
- R.B. Crosier. Multivariate Generalizations of Cumulative Sum Quality Control Schemes. *Technometrics*, 30(3):291–303, 1988. 22
- S.V. Crowder. A Simple Method for Studying Run-Length Distributions of Exponentially Weighted Moving Average Charts. *Technometrics*, 29(4):401–407, 1987. 57
- J. J. Daudin. Double sampling X charts. Journal of Quality Technology, 24(2):78-87, 1992. 18
- R.B. Davis and W.H. Woodall. Evaluation of Control Charts for Ratios. In 22nd Annual Pittsburgh Conference on Modeling and Simulation, Pittsburgh, PA, USA, 1991. 26, 30, 34, 39, 89
- J.J. Divoky and R.W. Taylor. Detecting Process Drift with Combinations of Trend and Zonal Supplementary Runs Rules. *International Journal of Quality & Reliability Management*, 12(2):60–71, 1995. 39
- J.J. Egozcue and V. Pawlowsky-Glahn. Groups of Parts and Their Balances in Compositional Data analysis. *Mathematical Geology*, 37(7):795–828, 2005. ISSN 0882-8121. 33
- M. Frisen. On Multivariate Control Charts. Production, 21(2):235-241, 2011. 25
- J.C. Fu, G. Shmueli, A. Cohen, and Y.M. Chang. A Unified Markov Chain Approach for Computing the Run Length Distribution in Control Charts with Simple or Compound Rules. *Statistics & Probability letters*, 65(4):457–466, 2003. 39
- R.C. Geary. The Frequency Distribution of the Quotient of Two Normal Variates. *Journal of the Royal Statistical Society*, 93(3):442–446, 1930. 27

- M.A. Graham, S. Chakraborti, and A. Mukherjee. Design and implementation of CUSUM exceedance control charts for unknown location. *International Journal of Production Research*, 52(18):5546–5564, 2014. 73
- D. M. Hawkins and D.H. Olwell. *Cumulative sum charts and charting for quality improvement*. Springer, 1998. 73
- D.M. Hawkins and Q. Wu. The CUSUM and the EWMA Head-to-Head. *Quality Engineering*, 26(2) : 215–222, 2014. 79
- J. Hayya, D. Armstrong, and N. Gressis. A Note on the Ratio of Two Normally Distributed Variables. *Management Science*, 21(11):1338–1341, 1975. 27
- D.S. Holmes and A. E. Mergen. Improving the Performance of the T^2 Control Chart. *Quality Engineering*, 5(4):619–625, 1993. 118
- H. Hotelling. *Multivariate Quality Control Illustrated by the Air Testing of Sample Bombsights*. New York : McGraw-Hill, 1947. 21, 25
- X.L. Hu, P. Castagliola, J. Sun, and M.B.C. Khoo. The effect of Measurement Errors on the synthetic \overline{X} chart. *Quality and Reliability Engineering International*, pages n/a–n/a, 2014. ISSN 1099-1638. doi : 10.1002/qre.1716. 89
- J.S Hunter. The Exponentially Weighted Moving Average. *Journal of Quality Technology*, 18:203–210, 1986. 57
- W.A. Jensen, G.R. Bryce, and M.R. Reynolds Jr. Design Issues for Adaptive Control Charts. *Quality and Reliability Engineering International*, 24(4):429–445, 2008. 41
- T. Kanazuka. The Effect of Measurement Error on the Power of the \bar{X} and R Charts. *Journal of Quality Technology*, 18(2):91–95, 1986. 89
- M.B.C. Khoo. Design of Runs Rules Schemes. Quality Engineering, 16(2):27-43, 2004. 39
- M. Klein. Two Alternatives to the Shewhart \bar{X} Control Chart. *Journal of Quality Technology*, 32 :427–431, 2000. 39, 40
- G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modelling. ASA-SIAM, 1999. 41, 59, 75
- M.H. Lee and M.B.C. Khoo. Optimal statistical design of a multivariate EWMA chart based on ARL and MRL. *Communications in Statistics-Simulation and Computation*, 35(3):831–847, 2006. 111, 114
- Z. Li, C. Zou, Z. Gong, and Z. Wang. The computation of average run length and average time to signal : an overview. *Journal of Statistical Computation and Simulation*, 84(8) :1779–1802, 2014. 74
- K.W. Linna and W.H. Woodall. Effect of Measurement Error on Shewhart Control Chart. *Journal of Quality Technology*, 33(2) :213–222, 2001. 89
- K.W. Linna, W.H. Woodall, and K.L. Busby. The performance of multivariate control charts in the presence of measurement error. *Journal of Quality Technology*, 33(3):349, 2001. 89, 90
- C.A. Lowry and D.C. Montgomery. A Review of Multivariate Control Charts. *IIE Transactions*, 27(6) : 800–810, 1995. 25
- C.A. Lowry, W.H. Woodall, C. W. Champ, and S. E. Rigdon. A multivariate exponentially weighted moving average control chart. *Technometrics*, 34(1):46–53, 1992. 22, 111, 112, 113

- C.A. Lowry, C.W. Champ, and W.H. Woodall. The Performance of Control Charts for Monitoring Process Variation. *Communications in Statistics Simulation and Computation*, 24(2):409–437, 1995. 39
- J.M. Lucas and M.S. Saccucci. Exponentially Weighted Moving Average Control Schemes : Properties and Enhancements. *Technometrics*, 32(1) :1–12, 1990. 57, 113
- M.A. Mahmoud and P.E. Maravelakis. The performance of the MEWMA control chart when parameters are estimated. *Communications in Statistics-Simulation and Computation*, 39(9):1803–1817, 2010. 111
- P.E. Maravelakis. EWMA Chart and Measurement Error. *Journal of Applied Statistics*, 31(4):445–455, 2004. 89
- P.E. Maravelakis. Measurement Error Effect on the CUSUM Control Chart. *Journal of Applied Statistics*, 39(2):323–336, 2012. 89
- R.L. Mason and J.C. Young. *Multivariate Statistical Process Control with Industrial Applications*. Philadelphia : ASA-SIAM, 2002. 25
- R.L. Mason, Y.M. Chou, and J.C. Young. Applying Hotelling's T² Statistic to Batch Processes. *Journal of Quality Technology*, 34(3):466–479, 2001. 25
- W.E. Molnau, G. C. Runger, D.C. Montgomery, K.R. Skinner, E. N. Loredo, and S. S. Prabhu. A program of ARL calculation for multivariate EWMA charts. *Journal of Quality Technology*, 33(4) :515–521, 2001. 111, 114
- D.C. Montgomery. *Statistical Quality Control : A Modern Introduction, 7th Edn.* John Wiley& Sons, Hoboken, New Jersey, 2013. 14, 15, 57, 73, 79, 93, 111, 118
- P. Mukherjee. On phase II monitoring of the probability distributions of univariate continuous processes. *Statistical Papers*, pages 1–24, 2015. ISSN 0932-5026. 73
- M. Nakhla. L'essentiel du management industriel : maîtriser les systèmes : production, logistique, qualité, supply chain. Dunod, 2006. 13
- M.F. Neuts. *Matrix-Geometric Solutions in Stochastic Models : an Algorithmic Approach*. Dover Publications Inc, 1981. 41, 59, 75
- R. Noorossana and Y. Zerehsaz. Effect of Measurement Error on Phase II Monitoring of Simple Linear Profiles. *The International Journal of Advanced Manufacturing Technology*, 79(9-12) :2031–2040, 2015. ISSN 0268-3768. 89
- D. Öksoy and L.A. Aroian. The quotient of two correlated normal variables with applications. *Communications in Statistics Simulation and Computation*, 23(1):223–241, 1994. 31
- D. Öksoy, E. Boulos, and L.D. Pye. Statistical Process Control by the Quotient of two Correlated Normal Variables. *Quality Engineering*, 6(2):179–194, 1994. 26, 30, 31, 34, 39, 89
- E. S. Page. Continuous Inspection Schemes. Biometrika, 41(1-2):243-257, 1954. ISSN 00063444. 20, 73
- E.S. Page. Control Charts with Warning Lines. Biometrics, 42, 1955. 39
- A. Palm. Tables of Run Length Percentiles for Determining the Sensitivity of Shewhart Control Charts for Averages with Supplementary Runs Rules. *Journal of Quality Technology*, 22(4):289–298, 1990. 39
- V. Pawlowsky-Glahn, J.J. Egozcue, and R. Tolosana-Delgado. Modeling and Analysis of Compositional Data. John Wiley & Sons, 2015. 26, 34, 112

- T. Pham-Gia, N. Turkkan, and E. Marchand. Density of the Ratio of Two Normal Random Variables and Applications. *Communications in Statistics Theory and Methods*, 35(9):1569–1591, 2006. 27
- S. S. Prabhu and G. C. Runger. Designing a multivariate EWMA control chart. *Journal of Quality Technology*, 29(1):8–15, 1997. 111
- M. R Reynolds and Z.G. Stoumbos. Combinations of multivariate shewhart and MEWMA control charts for monitoring the mean vector and covariance matrix. *Journal of Quality Technology*, 40(4):381–393, 2008. 111
- M.R. Reynolds, R.W. Amin, J.C. Arnold, and J.A. Nachlas. Charts with Variableariable Sampling Intervals. *Technometrics*, 30(2):181–192, 1988. 17
- M. Riaz, R. Mehmood, and R.J.M.M. Does. On the Performance of Different Control Charting Rules. *Quality and Reliability Engineering International*, 27(8) :1059–1067, 2011. 39
- S. Roberts. Properties of Control Chart Zone Tests. *The Bell System Technical Journal*, 37 :83–114, 1958. 19, 39
- S.W. Roberts. Control Chart Tests Based on Geometric Moving Averages. *Technometrics*, 1(3):239–250, 1959. 57
- P.B. Robinson and T.Y. Ho. Average Run Lengths of Geometric Moving Average Charts by Numerical Methods. *Technometrics*, 20(1):85–93, 1978. 57
- G. C. Runger and S. S. Prabhu. A Markov Chain Model for the Multivariate Exponentially Weighted Moving Averages Control Chart. *Journal of the American Statistical Association*, 91(436) :1701–1706, 1996. 111, 112, 113
- J.H. Ryu, H. Wan, and S. Kim. Optimal design of a CUSUM chart for a mean shift of unknown size. *Journal of Quality Technology*, 42(3):311–326, 2010. 46
- G. Shmueli and A. Cohen. Run Length Distribution for Control Charts with Runs and Scans Rules. *Communications in Statistics Theory and Methods*, 32(2):475–495, 2003. 39
- L. Shu, W. Jiang, and S. Wu. A One-Sided EWMA Control Chart for Monitoring Process Means. *Communications in Statistics Simulation and Computation*, 36(4) :901–920, 2007. 57
- A.W. Spisak. A Control Chart for Ratios. *Journal of Quality Technology*, 22(1):34–37, 1990. 26, 29, 30, 34, 39, 89
- T. Stapenhurst. Mastering statistical process control. Routledge, 2010. 13
- J.H. Sullivan and W.H. Woodall. A Comparison of Multivariate Control Charts for Individual Observations. *Journal of Quality Technology*, 28(4) :398–408, 1996. 118
- K.P. Tran. The efficiency of the 4-out-of-5 Runs Rules scheme for monitoring the Ratio of Population Means of a Bivariate Normal distribution. *International Journal of Reliability, Quality and Safety Engineering*, 2016. In press, DOI : 10.1142/S0218539316500200. 9, 55
- K.P. Tran, P. Castagliola, and G. Celano. Monitoring the Ratio of Two Normal Variables Using Run Rules Type Control Charts. *International Journal of Production Research*, 54(6) :1670–1688, 2016a. 9, 55, 89
- K.P. Tran, P. Castagliola, and G. Celano. Monitoring the Ratio of Two Normal Variables Using EWMA Type Control Charts. *Quality and Reliability Engineering International*, 32(2) :1853–1869, 2016b. 9, 72, 79, 89, 115

- K.P. Tran, P. Castagliola, and G. Celano. Monitoring the Ratio of Population Means of a Bivariate Normal distribution using CUSUM Type Control Charts. *Statistical Papers*, 2016c. In press, DOI : 10.1007/s00362-016-0769-4. 9, 87, 89
- K.P. Tran, P. Castagliola, and G. Celano. The Performance of the Shewhart-RZ Control Chart in the Presence of Measurement Error. *International Journal of Production Research*, 2016d. Accepted for publication. 9, 109
- K.P. Tran, P. Castagliola, and G. Celano. The Efficiency of the 4-out-of-5 Runs Rules Scheme for monitoring the Ratio of Population Means of a Bivariate Normal distribution. In 22nd ISSAT International Conference on Reliability and Quality in Design, Los Angeles, CA, USA, 2016e. 9, 55
- A. Trip and R.J.M.M. Does. Quality Quandaries : Interpretation of Signals from Runs Rules in Shewhart Control Charts. *Quality Engineering*, 22(4) :351–357, 2010. 39
- M. Vives-Mestres, J. Daunis-I-Estadella, and J.A. Martin-Fernandez. Out-of-Control Signals in Three-Part Compositional *T*² Control Chart. *Quality and Reliability Engineering International*, 30(3) :337–346, 2014a. ISSN 1099-1638. 26, 111
- M. Vives-Mestres, J. Daunis-I-Estadella, and J.A. Martin-Fernandez. Individual T² Control Chart for Compositional Data. *Journal of Quality Technology*, 46(2) :127, 2014b. 26, 34, 111, 115, 118, 119, 138
- M. Vives-Mestres, J. Daunis-I-Estadella, and J.A. Martin-Fernandez. Signal Interpretation in Hotelling's T^2 Control Chart for Compositional Data. *IIE Transactions*, 2016. In press, DOI: 10.1080/0740817X.2015.1125042. 111
- Western-Electric. *Statistical Quality Control Handbook*. Western Electric Co, Indianapolis, IN, 1956. 16, 39
- J. Wheeler. Detecting a Shift in Process Average : Tables of the Power Function for \bar{X} Charts. *Journal of Quality Technology*, 15 :155–170, 1983. 39
- W.H. Woodall and B.M. Adams. The statistical design of CUSUM charts. *Quality Engineering*, 5(4) : 559–570, 1993. 73
- X. Wu, R. Miao, Z. Li, J. Ren, J. Zhang, Z. Jiang, and X. Chu. Process monitoring research with various estimator-based MEWMA control charts. *International Journal of Production Research*, 53(14):4337–4350, 2015. 111
- Z. Wu and T.A. Spedding. A synthetic control chart for detecting small shifts in the process mean. *Journal* of *Quality Technology*, 32(1):32–38, 2000. 17
- S. Yasui, Y. Ojima, and T. Suzuki. *Frontiers in Statistical Quality Control 8*, chapter Generalization of the Run Rules for the Shewhart Control Charts, pages 207–219. Physica Verlag, 2006. 39
- A.B. Yeh, D.J.K. Lin, and R.N. McGrath. Multivariate Control Charts for Monitoring Covariance Matrix : a Review. *Quality Technology and Quantitative Management*, 3(4) :415–436, 2006. 25
- Y. Zhang and P. Castagliola. Run Rules \bar{X} Charts when Process Parameters are Unknown. *International Journal of Reliability, Quality and Safety Engineering*, 17(4):381–399, 2010. 39

Table des matières

Ι	État de l'art	11
1	Introduction générale à la maîtrise statistique des procédés	13
	1.1 Introduction	13
	1.2 Les principales cartes de contrôle univariées pour des caractéristiques mesurables	15
	1.2.1 Cartes de contrôle de Shewhart pour la moyenne et la médiane	15
	1.2.2 Carte Run Rules $RR_{r,s} \overline{X}$	16
	1.2.3 Carte synthétique \overline{X}^{i} .	17
	1.2.4 Carte VSI \overline{X}	17
	1.2.5 Carte VSS \bar{X}	17
	1.2.6 Carte DS \overline{X}	18
	1.2.7 Carte EWMA \bar{X}	19
	1.2.7 Carte Dividin M	20
	1.2.0 La carte coston A	20
	1.5 Les principales cartes de contrôle multivariees pour des caracteristiques incsurables $\dots \dots$	21
	1.3.1 Carte de contrôle EWMA multivoriée	21
	1.3.2 Carte de contrôle Elwin multivariée	22
	1.3.3 Carte de controle CUSUM multivariee	22
	1.4 Mesures de performance de cartes de controle univariees et multivariees pour les	~~~
		22
	1.5 Conclusions	23
2	Cartes de contrôle pour surveiller un ratio et des données compositionnelles	25
	2.1 Introduction	25
	2.2 Carte de contrôle pour surveiller le ratio	26
	2.2.1 La distribution du ratio du Z et du \hat{Z}_i empirique	26
	2.2.2 La carte de contrôle Shewhart pour le ratio de deux variables aléatoire	29
	2.2.3 Les cartes de contrôle Shewhart pour le ratio de deux variables normales corrélées	30
	2.2.4 La carte de contrôle Shewhart-RZ	31
	2.2.5 La carte de contrôle Syn-RZ	32
	2.3. Carte de contrôle pour surveiller les données compositionnelles	32
	2.5 Carte de controle pour survementes compositionnelles	32
	2.3.2 Carte de contrôle pour les observations individuelles pour surveiller les données	32
	compositionnelles	34
	2.4 Conclusions	34
п	CONTRIBUTIONS	37
3	Cartes de contrôle pour surveiller le ratio avec règles supplémentaires	39
	3.1 Introduction	39
	 3.2 Mise en œuvre des cartes de contrôle RRRZ 3.3 Propriétés du Run Length 3.4 Analyse numérique 3.5 Un exemple illustratif 3.6 Conclusions 	39 40 42 49 53
---	---	----------------------------
4	Cartes de contrôle pour surveiller le ratio avec la méthode EWMA	57
	4.1 Introduction	57
	4.2 Mise en œuvre des carte de controle EWMA-KZ	58
	4.3 Optimisation ARL pour les cartes de controle EWMA-RZ	58
	4.4 Analyse numerique	60 (5
		65
	4.6 Conclusions	/1
5	Cartes de contrôle pour surveiller le ratio avec la méthode CUSUM	73
Č	5.1 Introduction	73
	5.2 Mise en œuvre des cartes de contrôle CUSUM-RZ	73
	5.3 Optimisation ARL pour les cartes de contrôle CUSUM-RZ	74
	5.4 Analyse numérique	76
	5.5 Un exemple illustratif	81
	5.6 Conclusion	87
6	Carte de contrôle Shewhart-RZ avec erreur de mesure	89
	6.1 Introduction	89
	6.2 Modèle d'erreur linéaire covariable pour le ratio Z	89
	6.3 Mise en œuvre de la carte de contrôle Shewhart-RZ avec erreurs de mesure	91
	6.4 L'effet de l'erreur de mesure sur la carte de contrôle Shewhart-RZ	93
	6.5 Des exemples illustratif	100
	6.5.1 Un exemple illustratif 1	100
	6.5.2 Un exemple illustratif 2	105
	6.6 Conclusion	109
7	Carte de contrôle nour surveiller des données de type composition avec une approche	
1	MEWMA	111
	7.1 Introduction	111
	7.2 Carte de contrôle EWMA multivariée pour des données composées	112
	7.3 Le modèle de chaîne de Markov	113
	7.4 Performance de la carte de contrôle MEWMA-CoDa	115
	7.5 Un exemple illustratif	118
	7.6 Conclusions	118
8	Conclusions Générales & Perspectives	125
	8.1 Conclusions Générales	125
	8.2 Perspectives	126

Liste des tableaux

1.1 Tableau MSP de $m \times n$ mesures $X_{i,j}$
1.2 Coefficients intervenant dans le calcul des limites de contrôle des cartes de Shewhart 16
3.1 Valeurs de (K_L, K_U) pour la carte RRRZ _{2,3} (première ligne) et la carte RRRZ _{3,4} (deuxième ligne), pour $z_0 = 1$, $ARL_0 = 200$, $n \in \{1, 5, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$ et $a_0 \in \{-0.8, -0.4, 0.0, 4, 0.8\}$
3.2 Valeurs de <i>EARL</i> pour les cartes RRRZ _{2,3} (gauche) et RRRZ _{3,4} (droite) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\},$
$ARL_0 = 200, \Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I) 47 3.3 Valeurs de $EARL$ pour les cartes $RRRZ_{2,3}$ (gauche) and $RRRZ_{3,4}$ (droite) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_X \in \{0.01, 0.2\}$.
$(\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1), i.e. cas décroissant (D) et \Omega = [1, 1.1), i.e. cas croissant (I) $
3.4 Δ_E pour les cartes RRRZ _{2,3} (gauche) et RRRZ _{3,4} (droite) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0, 0, 1)$ i.e. cas décreissant (D) et $\Omega = [1, 1, 1)$ i.e. cas croissant (D)
$\Delta = [0.9, 1), \text{ i.e. cas decroissant (D) et } \Omega = [1, 1.1), \text{ i.e. cas croissant (I).} \qquad \qquad$
$n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1), \text{ i.e. cas decroissant (D) et } \Omega = [1, 1.1), \text{ i.e. cas}$
3.6 Données de exemple de l'industrie alimentaire 52
4.1 Valeurs de (λ^{-*}, K^{-*}) lorsque $\tau \in \{0.90, 0.95, 0.98, 0.99\}$ et (λ^{+*}, K^{+*}) lorsque $\tau \in \{1.01, 1.02, 1.05, 1.10\}$ pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1.5, 15\}$ et
$ARL_{0} = 200$
4.2 Valeurs de <i>EARL</i> pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}$ et <i>ARL</i> ₀ = 200, $\Omega = \begin{bmatrix} 0, 0, 1 \\ 0 \end{bmatrix}$ is a set déscrissent (D) et $\Omega = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix}$ is a set project (D) et Ω
4.3 Valeurs de <i>EARL</i> pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 \neq \rho_1, n \in \{1, 5, 15\}$ et $ARL_0 = 200$,
$\Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I)
$\rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1), \text{ i.e. cas}$ décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I)
4.5 Δ pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0, 9, 1)$ i.e. cas décroissant (D) et $\Omega = [1, 1, 1)$ i.e. cas croissant (D)
46 Données de exemple de l'industrie alimentaire 70

5.1	Valeurs de (k^{-*}, H^{-*}) lorsque $\tau \in \{0.90, 0.95, 0.98, 0.99\}$ et (k^{+*}, H^{+*}) lorsque	
	$\tau \in \{1.01, 1.02, 1.05, 1.10\}$ pour les cartes EWMA-RZ pour $\gamma_X \in \{0.01, 0.2\},$	
	$\gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}$ et $ABL_0 = 200$	77
5.2	Valeurs de $EABL$ pour les cartes CUSUM-RZ pour $\gamma_{\rm V} \in \{0.01, 0.2\}$ $\gamma_{\rm V} \in \{0.01, 0.2\}$	//
0.2	$\gamma_X = \gamma_V, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\} \text{ et } ARL_0 = 200.$	
	$\Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).	82
5.3	Valeurs de <i>EARL</i> pour les cartes CUSUM-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma$	
	$\gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 \neq \rho_1, n \in \{1, 5, 15\} \text{ et } ARL_0 = 200,$	
	$\Omega = [0.9, 1)$, i.e. cas décroissant (D) et $\Omega = [1, 1.1)$, i.e. cas croissant (I).	83
5.4	Δ pour les cartes CUSUM-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\},$	
	$\rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 15\}, ARL_0 = 200, \Omega = [0.9, 1), \text{ i.e. cas}$	0.4
55	decroissant (D) et $M = [1, 1.1)$, i.e. cas croissant (I).	84
5.5	Δ pointies cartes COSOM-KZ point $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, (0.0, 0.2), (0.$	
	$\Omega = [0, 9, 1)$ i.e. cas décroissant (D) et $\Omega = [1, 1, 1)$ i.e. cas croissant (D)	85
5.6	Données de exemple de l'industrie alimentaire.	86
	1	
6.1	Valeurs de LCL (première rangée) et UCL (deuxième rangée) pour la cart Shewhart-RZ en	
	presence d'erreurs de mesure, pour $z_0 = 1$, $ARL_0 = 200$, $\theta_X = \theta_Y = 0.01$, $m = m = 0.28$ or $= 0.5$ m $\in [1.5, 7, 10, 15]$ or $\in [0.01, 0.2]$ or $\in [0.01, 0.2]$ or	
	$\eta_X = \eta_Y = 0.28, \rho_M = 0.5, n \in \{1, 5, 7, 10, 15\}, \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}$ et	9 4
6.2	Valeurs de $EABL$ pour la cartes Shewhart-RZ pour $\gamma_{Y} \in \{0.01, 0.2\}$ $\gamma_{Y} \in \{0.01, 0.2\}$	74
•	$\gamma_X = \gamma_V, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, n \in \{1, 5, 7, 10, 15\}$ et $ARL_0 = 200$,	
	$\theta_X = \theta_Y = 0.05, \eta_X = \eta_Y = 0.28, \rho_M = 0.5, \Omega = [0.9, 1), \text{ i.e. cas décroissant (D) et}$	
	$\Omega = [1, 1.1)$, i.e. cas croissant (I).	103
6.3	Valeurs de $EARL$ pour la cartes Shewhart-RZ pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\},$	
	$\gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 \neq \rho_1, n \in \{1, 5, 7, 10, 15\} \text{ et } ARL_0 = 200,$	
	$\theta_X = \theta_Y = 0.05, \eta_X = \eta_Y = 0.28, \rho_M = 0.5, \Omega = [0.9, 1), \text{i.e. cas decroissant (D) et}$	104
61	M = [1, 1.1), i.e. cas croissant (i).	104
6.5	Données de l'industrie du recyclage des piles	100
0.0		100
7.1	Valeurs optimales (r^*, H^*) de la carte MEWMA-CoDa lorsque $ARL_0 = \{200, 500, 1000\}$.	116
7.2	Comparaison entre l' ARL hors-contrôle de la carte MEWMA-CoDa (côté gauche) et la	
7 2	carte T_C^2 (côté droit) lorsque $ARL_0 = \{200, 500, 1000\}$.	117
1.5	L'ensemble de données avec les coordonnées ill'en phase l'après le retrait des points hors contrôle de Vives Mestres et al. (2014b)	110
74	Données de exemple avec coordonnées ilr et les statistiques surveillées par la carte	119
,.т	MEWMA-CoDa et la carte T_2^2	123

Table des figures

3.1 Valeurs de ARL_1 des cartes $RRRZ_{2,3}$ (- \Box -), $RRRZ_{3,4}$ (- \blacksquare -) et Shewhart-RZ (-*-) pour	
$\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1,$	40
$\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200$	42
5.2 Valeurs de ARL_1 des carles $RRRZ_{2,3}$ (- \Box -), $RRRZ_{3,4}$ (- \Box -) et Snewhart-RZ (-*-) pour	
$\tau \in \{0.01, 0.2\}, \ \gamma \in \{0.01, 0.2\}, \ \gamma \chi \neq \gamma \gamma, \rho_0 \in \{0.0, -0.4, 0, 0.4, 0.0\}, \ \rho_0 = \rho_1,$ $\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, \ n \in \{1, 15\} \text{ et } ABL_0 = 200$	44
3 Valeurs de ARL_1 des cartes RRRZ _{2.2} (- \Box -) RRRZ _{2.4} (- \Box -) et Shewhart-RZ (-*-) pour	
$\gamma_X \in \{0.01, 0.2\}, \gamma_V \in \{0.01, 0.2\}, \gamma_X = \gamma_V,$	
$(\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\},\$	
$\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_0 = 200 \dots$	45
3.4 Valeurs de ARL_1 des cartes $RRRZ_{2,3}$ (- \Box -), $RRRZ_{3,4}$ (- \Box -) et Shewhart-RZ (-*-) pour	
$\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y,$	
$(\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\},\$	
$\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_0 = 200 \dots \dots \dots$	45
3.5 Les cartes $RRZ_{2,3}^+$ et $RRZ_{3,4}^+$ pour l'exemple de l'industrie alimentaire	54
4.1 Discrétisation de l'intervalle entre $z_0 = 1$ et $UCL^+ = K^+$ en p de sous-intervalles de	
largeur 2δ pour la cartes de contrôle EWMA-RZ ⁺ .	59
4.2 Valeurs de ARL_1 pour les cartes EWMA-RZ (- \Box -) et RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}$,	
$\gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1,$	
$\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_0 = 200. \dots$	63
4.3 Valeurs de ARL_1 pour les cartes EWMA-RZ (- \square -) et Shewhart-RZ (- $*$ -) pour	
$\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1,$ $\tau \in \{0.00, 0.05, 0.08, 0.00, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ABL = 200$	63
$A = \{0.90, 0.95, 0.95, 0.95, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ ct } AnL_0 = 200, \dots, n \in \{1, 15\}, n \in $	05
$\gamma_{\mathbf{v}} \in \{0.01, 0.2\}, \gamma_{\mathbf{v}} \in \{0.01, 0.2\}, \gamma_{\mathbf{v}} = \gamma_{\mathbf{v}}$	
$(\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\},\$	
$\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ et $ARL_0 = 200.$	64
4.5 Valeurs de ARL_1 pour les cartes EWMA-RZ (- \Box -) et Shewhart-RZ (-*-) pour	
$\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y,$	
$(\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\},\$	
$\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_0 = 200. \dots$	64
4.6 La carte EWMA-RZ pour l'exemple de l'industrie alimentaire	71
5.1 Discrétisation de l'intervalle entre 0 et $UCL^+ = H^+$ en p de sous-intervalles de largeur 2δ	
pour la cartes de contrôle CUSUM-RZ ⁺	75
5.2 Valeurs de ARL_1 pour les cartes CUSUM-RZ (- \Box -), EWMA-RZ (- \blacksquare -) et Shewhart-RZ (-*-)	
pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y, \rho_0 \in \{-0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, \gamma_Y \in \{0.01, 0.2\}, \gamma_Y \in \{0$	
$\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_0 = 200 \dots \dots \dots$	78

$ \begin{array}{l} \left\{ p_{0}, p_{1} = \{(-0, -0, 2), (-0, -0, 8), (0, 4, 0, 2), (0, 4, 0, 2), (0, 4, 0, 8)\}, \\ \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_{0} = 200 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0.01, 0.2\}, \gamma \in \gamma \neq \gamma \rangle, \\ \left(p_{0}, p_{1}\right) = \{(-0, -0, -0, 2), (-0, 4, -0, 8), (0, 4, 0, 2), (0, 4, 0, 8)\}, \\ \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_{0} = 200 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma \in \gamma \neq \gamma \rangle, \\ \left(p_{0}, p_{1}\right) = \{(-0, 4, -0, 2), (-0, 4, -0, 8), (0, 4, 0, 2), (0, 4, 0, 8)\}, \\ \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_{0} = 200 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma \in \gamma \Rightarrow \gamma = 0, \rho_{1} = 0, \rho_{1} = 0, n \in \{1, 15\}, \gamma \in \{0, 0, 1, 0.2\}, \gamma \in \{0, 0, 1, 0.2\}, \gamma \in \{0, 0, 0, 2\}, \gamma \in \{0, 0, 1, 0.2\}, \gamma \in \{0, 0, 1, 0.2\}, \gamma \in \{0, 0, 1, 0.2\}, \gamma \in \gamma \Rightarrow \gamma \Rightarrow \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma = \gamma \Rightarrow \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma = \gamma \Rightarrow \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma = \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma = \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma = \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma = \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma = \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma \in \{0, 0, 1, 0.2\}, \gamma = \gamma \Rightarrow p_{0} = p_{1} = -0.8 \\ \text{Solutions } Solution (1, 0, 2), \gamma = \{0, 0, 0, 0, 1, 0, 1, 0, 2\}, \gamma \in \{0, 0, 1, 0.2\}, $	5.3 5.4	Valeurs de ARL_1 pour les cartes CUSUM-RZ (- \Box -), EWMA-RZ (- \bullet -) et Shewhart-RZ (-*-) pour $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y, \rho_0 \in \{0.8, -0.4, 0, 0.4, 0.8\}, \rho_0 = \rho_1, \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\}$ and $ARL_0 = 200$ Valeurs de ARL_1 pour les cartes CUSUM-RZ (- \Box -), EWMA-RZ (- \bullet -) et Shewhart-RZ (-*-)	78
$ \begin{aligned} & (\eta, \mu) = (1, 0, \eta, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	5.5	$\begin{aligned} & (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\}, \\ & \tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_0 = 200 \dots \end{aligned}$ $Valeurs de ARL_1 \text{ pour les cartes CUSUM-RZ (-n-), EWMA-RZ (-n-) et Shewhart-RZ (-*-)} \\ & \text{pour } \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X \neq \gamma_Y, \\ & (\rho_0, \rho_1) = \{(-0.4, -0.2), (-0.4, -0.8), (0.4, 0.2), (0.4, 0.8)\} \end{aligned}$	80
6.1 Les effets de η_X et η_Y sur la performance globale de la carte Shewhart-RZ en présence d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\theta_X = \theta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = \rho_1 = -0.8$	5.6	$\tau \in \{0.90, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.10\}, n \in \{1, 15\} \text{ et } ARL_0 = 200 \dots$ La carte CUSUM -RZ pour l'exemple de l'industrie alimentaire.	80 87
10.2 Les effets de η_X et η_Y sur la performance globale de la carte Shewhart-RZ en présence d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\theta_X = \theta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = -0.4$, $\rho_1 = -0.8$	6.1	Les effets de η_X et η_Y sur la performance globale de la carte Shewhart-RZ en présence d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\theta_X = \theta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = \rho_1 = -0.8$	95
d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\eta_X = \eta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = \rho_1 = -0.8$	6.3	Les effets de η_X et η_Y sur la performance globale de la carte Shewhart-RZ en présence d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\theta_X = \theta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = -0.4$, $\rho_1 = -0.8$ Les effets de θ_X et θ_Y sur la performance globale de la carte Shewhart-RZ en présence	96
$\begin{array}{l} \gamma_{X} = \gamma_{Y} \mbox{ et } \rho_{0} = -0.4, \ \rho_{1} = -0.8 \ \\ \gamma_{X} = \gamma_{Y} \mbox{ et } \rho_{0} = -0.4, \ \rho_{1} = -0.8 \ \\ \gamma_{X} = \gamma_{Y} \mbox{ et } \rho_{0} = -0.4, \ \rho_{1} = -0.8 \ \\ \gamma_{X} = \gamma_{Y} \mbox{ et } \rho_{0} = -0.4, \ \rho_{1} = -0.8 \ \\ \gamma_{X} = \gamma_{Y} \mbox{ et } \rho_{0} = \rho_{1} \ \\ \rho_{X} = \theta_{Y} = 0.05, \ n \in \{1, 15\}, \ \gamma_{X} \in \{0.01, 0.2\}, \ \gamma_{Y} \in \{0.01, 0.2\}, \ \gamma_{X} = \gamma_{Y} \mbox{ et } \rho_{Y} \ et \\ \rho_{0} = \rho_{1} = -0.8 \ \\ \rho_{0} = 1, \ ARL_{0} = 200, \ \eta_{X} = \eta_{Y} \ et \\ \rho_{0} = \rho_{1} = -0.8 \ \\ \rho_{0} = 1, \ ARL_{0} = 200, \ \eta_{X} = \eta_{Y} \ et \\ \rho_{0} = \rho_{1} = -0.8 \ \\ \rho_{1} = -0.8 \ .$	6.4	d'erreurs de mesure pour $z_0 = 1$, $ARL_0 = 200$, $\eta_X = \eta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$, $\gamma_X = \gamma_Y$ et $\rho_0 = \rho_1 = -0.8$ Les effets de θ_X et θ_Y sur la performance globale de la carte Shewhart-RZ pour $z_0 = 1$, $ARL_0 = 200$, $\eta_X = \eta_Y = 0$, $\rho_M = 0$, $n \in \{1, 15\}$, $\gamma_X \in \{0.01, 0.2\}$, $\gamma_Y \in \{0.01, 0.2\}$.	98
$\theta_X = \theta_Y = 0.05, n \in \{1, 15\}, \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y \text{ et} \\ \rho_0 = \rho_1 = -0.8 \dots \dots$	6.5	$\gamma_X = \gamma_Y$ et $\rho_0 = -0.4$, $\rho_1 = -0.8$ L'effet de ρ_M sur la performance globale de la carte Shewhart-RZ en présence d'une erreur de mesure pour $n = 1$ (- \square -) et $n = 15$ (- \blacksquare -), $z_0 = 1$, $ARL_0 = 200$, $\eta_X = \eta_Y = 0.28$,	99
$ \theta_X = \theta_Y = 0.05, n \in \{1, 15\}, \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y \text{ and } \rho_0 = -0.4 \\ \rho_1 = -0.8 \dots \dots$	6.6	$\theta_X = \theta_Y = 0.05, n \in \{1, 15\}, \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y$ et $\rho_0 = \rho_1 = -0.8$. L'effet de ρ_M sur la performance globale de la carte Shewhart-RZ en présence d'une erreur de mesure pour $n = 1$ (- \square -) and $n = 15$ (- \blacksquare -), $z_0 = 1$, $ARL_0 = 200, \eta_X = \eta_Y = 0.28$,	101
alimentaire	6.7	$\theta_X = \theta_Y = 0.05, n \in \{1, 15\}, \gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\}, \gamma_X = \gamma_Y \text{ and } \rho_0 = -0.4$ $\rho_1 = -0.8 \dots$ La carte Shewhart-RZ en présence d'erreur de mesure pour l'exemple de l'industrie	102
7.1 Simplex S^3 (également appelé diagramme ternaire) et correspondant coordonnées ilr dans \mathbb{R}^2 avec le ellipse de confiance 95% pour les paramètres de la phase II μ_0^* et Σ^*	6.8	alimentaire	105
	7.17.27.3	Simplex S^3 (également appelé diagramme ternaire) et correspondant coordonnées ilr dans \mathbb{R}^2 avec le ellipse de confiance 95% pour les paramètres de la phase II μ_0^* et Σ^* La carte de contrôle MEWMA-CoDa pour les données de exemple La carte de contrôle T_C^2 pour les données de exemple	107 120 121 122

Thèse de Doctorat

Kim Phuc TRAN

Surveillance de procédés de type mélange

Monitoring of mixture type processes

Résumé

Dans tous les secteurs industriels, la Maîtrise Statistique des Procédés (MSP) est une méthode de suivi de la production basée sur les statistiques. Parmi les outils de la MSP, les cartes de contrôle sont des outils très utiles pour la détection et l'élimination des causes assignables modifiant le processus. Il existe des processus de production où plusieurs composants doivent être mélangés ensemble pour obtenir une composition de produit. Dans ce cas, il est nécessaire de surveiller des ratios de variables qualité lorsque les professionnels de qualité sont principalement intéressés à la comparaison relative de la même propriété pour les deux composants. Dans cette thèse, nous avons essayé de proposer systématiquement de nouvelles cartes de contrôle pour le ratio et pour des données de type composition qui n'ont pas encore été traitées jusqu'à présent dans la littérature. Des cartes de contrôle avec règles supplémentaires, des cartes EWMA, des cartes CUSUM et une carte de contrôle de type Shewhart en prenant en compte les erreurs de mesure sont proposées pour le ratio. De plus, une carte de type MEWMA pour surveiller des données de type composition est aussi proposée. Les performances de chacune des cartes de contrôle ont été évaluées et les paramètres optimaux ont été systématiquement calculés. Une validation empirique des résultats a été élaborée dans des processus industriels existants.

Mots clés

Maîtrise statistique des procédés, Cartes de contrôle, Ratio, Données de type composition.

Abstract

In industry, Statistical Process Control (SPC) is a set of statistical techniques to monitor, control and improve a process. Among SPC tools, control charts are very useful tools for the detection and the elimination of assignable causes shifting the process. There exist manufacturing environments where several components have to be mixed together to obtain a product composition. In this case, it is necessary to monitor ratios of quality variables when quality practitioners are interested in the relative comparison of the same property for two components. In this thesis, we have tried to systematically propose new control charts for the ratio and for compositional data that have not yet been proposed so far in the literature. Run rules control charts, EWMA control charts, CUSUM control charts and a Shewhart control chart in the presence of measurement error have been proposed for monitoring the ratio. Furthermore, a MEWMA control chart to monitor compositional data has also been proposed. The performance of each control chart has been evaluated and the optimal parameters have systematically been computed. An empirical validation of the results has been developed for real industrial processes.

Key Words

Statistical process control, Control charts, Ratio, Compositional data.