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2 Résumé et mots-clefs
L’expertise botanique humaine devient trop rare pour fournir les données de terrain néces-
saires à la surveillance de la biodiversité végétale. L’utilisation d’observations botaniques
géolocalisées des grands projets de sciences citoyennes, comme Pl@ntNet, ouvre des portes
intéressantes pour le suivi temporel de la distribution des espèces de plantes. Pl@ntNet fourni
des observations de flore identifiées automatiquement, un score de confiance, et peuvent être
ainsi utilisées pour les modèles de distribution des espèces (SDM). Elles devraient permettre
de surveiller les plantes envahissantes ou rares, ainsi que les effets des changements globaux
sur les espèces, si nous parvenons à (i) prendre en compte de l’incertitude d’identification,
(ii) correction les biais d’échantillonnage spatiaux, et (iii) prédire préçisément les espèces à un
grain spatial fin.

Nous nous demandons d’abord si nous pouvons estimer des distributions réalistes d’espèces
végétales envahissantes sur des occurrences automatiquement identifiées de Pl@ntNet, et quel
est l’effet du filtrage avec un seuil de score de confiance. Le filtrage améliore les prédictions
lorsque le niveau de confiance augmente jusqu’à ce que la taille de l’échantillon soit limitante.
Les distributions prédites sont généralement cohérentes avec les données d’expertes, mais
indiquent aussi des zones urbaines d’abondance dues à la culture ornementale et des nouvelles
zones de présence.

Ensuite, nous avons étudié la correction du biais d’échantillonnage spatial dans les SDM
basés sur des présences seules. Nous avons d’abord analysé mathématiquement le biais lorsque
les occurrences d’un groupe cible d’espèces (Target Group Background, TGB) sont utilisées
comme points de fond, et comparé ce biais avec celui d’une sélection spatialement uniforme de
points de base. Nous montrons alors que le biais de TGB est dû à la variation de l’abondance
cumulée des espcèes du groupe cible dans l’espace environnemental, qu’il est difficile de con-
trôler. Nous pouvons alternativement modéliser conjointement l’effort global d’observation
avec les abondances de plusieurs espèces. Nous modélisons l’effort d’observation comme une
fonction spatiale étagée définie sur un maillage de cellules géographiques. L’ajout d’espèces
massivement observées au modèle réduit alors la variance d’estimation de l’effort d’observation
et donc des modèles des autres espèces.

Enfin, nous proposons un nouveau type de SDM basé sur des réseaux neuronaux convo-
lutifs utilisant des images environnementales comme variables d’entrée. Ces modèles peuvent
capturer des motifs spatiaux complexes de plusieurs variables environnementales. Nous pro-
posons de partager l’architecture du réseau neuronal entre plusieurs espèces afin d’extraire
des prédicteurs communs de haut niveau et de régulariser le modèle. Nos résultats montrent
que ce modèle surpasse les SDM existants, et que la performance est améliorée en prédis-
ant simultanément de nombreuses espèces, et sont confirmés par des campagnes d’évaluation
coopérative de SDM menées sur des jeux de données indépendants. Cela supporte l’hypothèse
selon laquelle il existe des modèles environnementaux communs décrivant la répartition de
nombreuses espèces.

Nos résultats supportent l’utilisation des occurrences Pl@ntnet pour la surveillance des
invasions végétales. La modélisation conjointe de multiples espèces et de l’effort d’observation
est une stratégie prometteuse qui transforme le problème des biais en un problème de vari-
ance d’estimation plus facile à contrôler. Cependant, l’effet de certains facteurs, comme le
niveau d’anthropisation, sur l’abondance des espèces est difficile à séparer de celui sur l’effort
d’observation avec les données d’occurrence. Ceci peut être résolu par une collecte complémen-
taire protocollée de données. Les méthodes d’apprentissage profond mises au point montrent
de bonnes performances et pourraient être utilisées pour déployer des services de prédiction
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spatiale des espèces.

Mot-clés: Surveillance de la biodiversité; sciences-citoyennes; espèces exotiques envahissantes
; habitats d’espèces de plantes ; Modèles de Distribution d’Espèces ; Données de présence-
seule ; biais d’échantillonnage ; Ecologie statistique ; Réseaux de Neurones Convolutionnels
Profonds ; pouvoir prédictif ; recommandation d’espèces
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3 Abstract et keywords
Human botanical expertise is becoming too scarce to provide the field data needed to monitor
plant biodiversity. The use of geolocated botanical observations from major citizen science
projects, such as Pl@ntNet, opens interesting paths for a temporal monitoring of plant species
distribution. Pl@ntNet provides automatically identified flora observations, a confidence score,
and can thus be used for species distribution models (SDM). They enable to monitor the
distribution of invasive or rare plants, as well as the effects of global changes on species, if we
can (i) take into account identification uncertainty, (ii) correct for spatial sampling bias, and
(iii) predict species abundances accurately at a fine spatial grain.

First, we ask ourselves if we can estimate realistic distributions of invasive plant species
on automatically identified occurrences of Pl@ntNet, and what is the effect of filtering with a
confidence score threshold. Filtering improves predictions when the confidence level increases
until the sample size is limiting. The predicted distributions are generally consistent with
expert data, but also indicate urban areas of abundance due to ornamental cultivation and
new areas of presence.

Next, we studied the correction of spatial sampling bias in SDMs based on presences only.
We first mathematically analyzed the bias when the occurrences of a target group of species
(Target Group Background, TGB) are used as background points, and compared this bias with
that of a spatially uniform selection of base points. We then show that the bias of TGB is
due to the variation in the cumulative abundance of target group species in the environmental
space, which is difficult to control. We can alternatively jointly model the global observation
effort with the abundances of several species. We model the observation effort as a step spatial
function defined on a mesh of geographical cells. The addition of massively observed species
to the model then reduces the variance in the estimation of the observation effort and thus on
the models of the other species.

Finally, we propose a new type of SDM based on convolutional neural networks using
environmental images as input variables. These models can capture complex spatial patterns
of several environmental variables. We propose to share the architecture of the neural network
between several species in order to extract common high-level predictors and regularize the
model. Our results show that this model outperforms existing SDMs, that performance is
improved by simultaneously predicting many species, and this is confirmed by two cooperative
SDM evaluation campaigns conducted on independent data sets. This supports the hypothesis
that there are common environmental models describing the distribution of many species.

Our results support the use of Pl@ntnet occurrences for monitoring plant invasions. Joint
modelling of multiple species and observation effort is a promising strategy that transforms
the bias problem into a more controllable estimation variance problem. However, the effect of
certain factors, such as the level of anthropization, on species abundance is difficult to separate
from the effect on observation effort with occurrence data. This can be solved by additional
protocolled data collection. The deep learning methods developed show good performance
and could be used to deploy spatial species prediction services.

Keywords: biodiversity monitoring ; crowdsourcing ; citizen-sciences; invasive alien species
; plants species habitats ; Species Distribution Models ; Presence-only data ; Sampling bias ;
Sampling effort ; Deep Convolutional Neural Networks ; predictive power; species recommen-
dation ; statistical ecology
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"Ça ne prenait pas beaucoup plus de temps! ... Ce qui est difficile c’est la partie pédalo,
c’est pas la partie canard."
Hubert Bonisseur de La Bath
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4 Introduction
4.1 Context

Climate change is not the only threat to biodiversity. Other effects due to growing human
pressure on the land bring much more brutal changes which silently affect the ecosystems all
around the world. Two other worldwide anthropogenic factors of peril on wild plants have
been identified in Kew (2016): invasive species and land use change.

Invasive plant species continue to appear and spread, brought by increased commercial
exchanges and population movement, modifying the ecosystems on their way and causing
damages to agriculture and people health (Vitousek et al. (1996)). Invasive plant species are
estimated to cost around 1.7 billions pounds to the U.K. every year (Kew, 2016). Recent
human-induced land cover change has been shown to globally decrease the vegetation produc-
tivity. Indeed, Great proportion of the land cover have been observed to change between 2001
and 2012, especially in mangroves (25%) and tropical coniferous forests (24%), mainly due to
conversion of forest to pastures or farmland, inducing a decrease of primary productivity of
2.5% in both biomes (Kew, 2016). The global decrease of forest area worldwide is of about
1.7% between 1990 and 2005, according to Lindquist et al. (2013)). These changes are quite
visible, but others are not so easily detected. Agriculture practices are in continuous change.
A growing use of pesticides has been observed globally (Oerke, 2006), making life harder for
many weed species. In France, change in crop management in the past decades has trans-
formed the habitat of weed plants which affect their regional (Fried et al., 2008) and national
(Fried et al., 2010) species diversity. An even more preoccupying phenomenon is biodiversity
decrease runaway. Indeed, it has been shown that less diverse local communities are more
sensitive to invasions (Kennedy et al., 2002). These phenomenons are ongoing and they have
rapid impacts on the ecosystems, especially on plants.

However, the inability of resource managers, scientists, and policy makers to efficiently and
effectively prevent, control and react to these phenomenons has already resulted in environ-
mental and economic losses worldwide (Heywood et al. (1995), Born et al. (2005), Tscharntke
et al. (2012)). This inability is importantly due to the complexity of ecosystems and a lack of
objective, sufficient and regularly updated data that would enable the monitoring of species
distributions. Indeed, according to the last ICUN redlist evaluation 1, 13,494 plant species
have at least a vulnerable status, and 157 among them are extinct at least in the wild. This
evaluation was done for 25,996 plant species having enough data, that is around 7% of all
described plant species in the world, according to ThePlantList 2. Plants are thus among the
most critical terrestrial biological groups in terms of lack of knowledge in this regard. As-
sessment of species status and future vulnerability rely, in particular, on species distribution
modelling methods because they provide abundance maps and population response to various
types of environments (e.g.:Norris (2004),Thomas et al. (2004)). It is also a primary mate-
rial to prioritize reserve areas (Ferrier (2002), Loiselle et al. (2003)), evaluate their ability to
preserve species habitats given spatial shifts due to climate change (Araújo et al., 2004) or
suggest suitable sites for re-introduction (Pearce and Lindenmayer, 1998).

Identifying and preventing species extinction is crucial to conserving biodiversity but often
treats only a symptom of a deeper problem of an ecosystem disruption. Ecological research
enables to understand the functioning of ecosystems, including the dependency of species to
the environment but also their interactions which may enable to anticipate the evolution of the

1https://www.iucnredlist.org/resources/summary-statistics
2http://www.theplantlist.org/
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ecosystem under perturbations, like removal or addition of some species. It also often relies
on statistical species distribution and ecological niche models (Peterson and Soberón, 2012)
tools. These models have been used to predict future potential plant species distribution and
extinction under climate change (Thomas et al. (2004),Thuiller (2004),Thuiller et al. (2005)),
or land use change (Thuiller et al., 2008), invasion paths under climate change (Beerling et al.
(1995),Peterson (2003)), or study the invasibility of plant communities (Richardson and Pyšek,
2006).

However, addressing the challenges of plant biodiversity conservation at the scale of the
world flora will require to achieve a scale up of taxonomic and spatial coverage and to monitor
the effects of current changes on wild populations in order to fill the many gaps of ecological
knowledge. This primarily requires to exploit biodiversity data at its maximum. A promising
lever for action is to develop species distribution modelling methods that deal appropriately
with the worldwide growing available crowd-sourced data.

As awareness of the perils on biodiversity progresses, more and more people get interested
to it and eventually invest their time learning about species, or even collect data on the field
while wandering in the nature by the means of collaborative naturalist platforms, often in
association with citizen-science programs. This new dawn for biodiversity citizen-sciences has
largely been favored by the development of online platforms to store, revise, manage, explore
and share biological records (e.g. Silvertown et al. (2015)) and mobile devices to collect the
data (Graham et al., 2011). These organisations have already contributed to major successes
in the conservation of certain species, and this is particularly visible in the case of birds,
which have so far benefited from long-term voluntary commitment through extensive citizen
science programs (Greenwood, 2007). Plant species are more difficult to identify which has
for long restrained the volunteer data collection to a few skilled botanists. Nevertheless, the
recent improvement of automated plant species identification from pictures (Wäldchen et al.
(2018)) such as in the context of the mobile application Pl@ntNet, brought many amateurs to
produce reliable geolocated occurrences of plant species, sometimes even engaging in volunteer
field reporting. The huge amount of spatial data collected on thousands of plant species in last
years has motivated their use for an automatic regular monitoring of plant species distribution
based on citizen observations. As the data is mainly produced around urban and accessible
areas, it provides a great opportunity to monitor especially alien invasive plant species, but
also species endangered by human activity. Thus, the work of this thesis aim at investigating
opportunities and resolving limits in the use of such massive and opportunistic species records
produced through crowd-sourcing. More precisely, the species records are sampled without
protocol and very heterogeneously in space, entailing biases in species distribution models,
which motivates a focus on the development of efficient bias correction techniques.

4.2 Available spatial data on species for distribution models

Spatial data on biodiversity is always limiting to address most ecological questions over large
taxonomic, geographic and temporal scales as illustrated by the seven shortfalls of biodiversity
knowledge (Hortal et al., 2015). Still, the amount of data available for research on species
distribution has dramatically increased in the last decade, as it can be seen on GBIF portal 3.
It is explained by the conjunction of web platforms and mobile technologies (Graham et al.,
2011). More precisely it is due to the emergence of large data sharing platforms, including
or separated from collaborative data revision platforms (implying non-experts), automatic
data annotation and mobile devices that jointly enable the collection of consistent geolocation

3www.gbif.org
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and pictures. These technologies have led to a diversification of large scale data producers
(recrudescence of citizen-scientists and volunteers). We will briefly describe the interests and
peculiarities of large scale citizen-sciences and naturalist platforms producing opportunistic
presence-only data, and provide some quantitative insights on the Pl@ntNet data. Finally,
some comments are given about the geographic environmental data that are used for plant
SDM.

Sampling protocol type. It is crucial for the use of biodiversity data with an appropriate
type of SDM to characterize the type of sampling protocol that was used to collect it. Firstly,
we can differentiate standardized data from nonstandardized data (Miller et al., 2019). On
one hand, standardized data has a well defined sampling design and fixed protocol at known
sampling location, so that the effect of the observation process is controlled. They are most
informative about the species that is measured, but are often costly to collect, constraining,
have restricted access and concern restricted areas and/or taxa. Some typical examples of
standardized data are abundance, presence-absence (e.g. Violle et al. (2015), Maitner et al.
(2018)), counts with standardized effort (Giraud et al. (2016), Sauer et al. (2017)), plants
relative cover (like Braun-Blanquet scores Brisse et al. (1995)), camera traps (Ahumada et al.,
2011) and probably tele-detection data in a few years (He et al., 2015b). On the other hand,
nonstandardized data, as defined in Miller et al. (2019), are "Data not collected under stan-
dardized protocol, where sampling locations and sampling effort are often unknown and sam-
pling protocol varies". Thus, the exact observed areas, observation intensity and time, the
detection capacity of observers and their reporting behavior are partially or totally unknown.
These nonstandardized data are much less informative about the species because of all the
uncertainty about the sampling process, but are cheaper and easier to collect. Typical types of
partially standardized data are distance sampling, where observers move along a pre-defined
transect while observing some species around them (Buckland et al., 2005), and site-occupancy
data (MacKenzie and Nichols, 2004), where observers report that they visited a site and if
they detected some species. For those types of data, the observation effort along the transect
or inside the site, and the capacity of each observer to detect and identify the species variably
affect the chances that the observer reports the species when present. Finally, species ge-
olocated occurrences, often also referred as presence-only data (Pearce and Boyce, 2006),
report that a species was present at a point at a certain time. Informations about the sampling
behavior of contributors may go with a presence-only dataset. For example, Bradter et al.
(2018) interviewed active observers gathering bird occurrences on their reporting behavior and
detection capacities to infer some species absences where observers reported other species but
not the focal one. Presence-only data is said to be opportunistic (Kery et al., 2010) when
there is no rule guiding consistently the sampling process across the dataset and individual
rules are unknown, i.e. no focus on determined sites or species, and observer may change of
reporting behavior along the duration of data collection. It contains less information about
the sampling process than previous data types because there is no report of non-detection
of a species, and in particular, no report doesn’t mean absence. The detection capacities is
unknown with opportunistic occurrences, as in site-occupancy data, but we haven’t anything
either about the area that have been observed except the point where an occurrence was re-
ported, thus we have less information about the observation effort. Many uses of presence-only
data in presence-absence SDM by generating pseudo-absences have thus led to estimation bi-
ases as it is explained in sections 5.4. Still, these have long been the most abundant source
of biodiversity data, considering that the number of specimens in museums and herbariums
is estimated at around 2-3 billions Krishtalka and Humphrey (2000) and with a significant
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part of geolocated and dated ones. Plus, they are currently becoming even more predominant
through the exponential development of crowd-sourcing: The Global Biodiversity Information
Facility (GBIF) 4 stores around 1,2 billions of geolocated occurrences at the time of writing,
30% of which were added during the 4 last years. Thus, it is crucial to properly account for
the sampling process uncertainty in SDM applied to opportunistic occurrences, which is why
it is at the center of the present thesis.

Also note that the level of standardization has nothing to do with the expertise or profes-
sional status of the data producer. Standardized data may be collected by non-expert volun-
teers (Sauer et al., 2017), while presence-only data are often collected by experts. For example,
the current biggest plant occurrences dataset in France is the SiFlore dataset distributed by the
FCBN (Just et al., 2015) which regroups around 20 millions occurrences collected by botanical
experts from the regional botanical conservatories. Even though, high level of standardization
are often time consuming for data collection, and are difficult to implement in crowdsourcing.

Data quality. Many aspects of data quality are important to consider when one aim at mod-
elling species distributions. Concerns of data quality have been reviewed by (Pipino et al.,
2002) who characterized the set of aspects that should be addressed on the quality of the data
to use. We extracted the main aspects that should be regarded when dealing with biodiversity
data : Accessibility (consider cost of accessing the data, giving credit, restrictions on usage and
sharing of the results), appropriate amount for the purpose (typically depend on the sampling
protocol and question), completeness (incomplete data require specific methods or partial re-
moval of the data), representation consistency (consider cost of homogenisation of format,
and potential loss and incompleteness resulting from the process), timeliness (the extent to
which is sufficiently up-to-date for the task), value-added and free-of-error. The error of the
data is important to consider for the accuracy of SDM. The data may contain species iden-
tification errors, which is an important problem for plants. Indeed, there are around 350,000
accepted plant species recognized by the ThePlantList 5 (accepted names), and many species
look closely alike. The discrimination of plant species often suppose to observe reproductive
organs which presence depend on the plant phenology. Their analysis require a particular
attention which is not easy for an non experimented human eye (Hawthorne and Lawrence,
2013). Also, occurrences having different species label may actually correspond to a same true
species because of e.g. species synonyms, or taxonomic referential discrepancies when merging
occurrences datasets of various origins (Isaac et al., 2004). This is again typical in the case
of plants, whose taxonomy is heterogeneous around the world. This is has been recognized
as a major limitation to the renewable production of data on plant biodiversity given the
decreasing number of botanical experts worldwide (Paknia et al., 2015). It is a good practice
to match initial names to a single reference taxonomic referential, e.g. using the Taxonomic
Resolution Service (Boyle et al., 2013). Another source of error is geolocation uncertainty,
which remain a problem, even though it has been drastically reduced by the development of
naturalist mobile applications. Indeed, acquisition of GPS coordinates varies in space, it is
especially difficult to obtain accurate geolocations in covered areas such as forests or inside
steep valleys (Frair et al. (2004)). A great part of museum and herbariums occurrences lack
geolocation information, or it is inaccurate, or this information is written in text only (Gra-
ham et al. (2004),Newbold (2010),Beaman et al. (2004)). In the Pl@ntNet data, geolocation
uncertainty is mostly concentrated between 0 and 60 meters, but species richness may exceeds
hundreds of species inside the area of uncertainty and the vegetation profile itself may change

4https://www.gbif.org/
5theplantlist.org
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along such distance. Also note that services exist for automatically georeferencing species oc-
currences data and computing accuracy attributes from textual information (Guralnick et al.
(2006), Hill et al. (2009)).

The era of citizen-sciences programs and collaborative naturalist platforms. Many
worldwide crowdsourced opportunistic occurrences data sources became accessible through
the internet in the last decade based on either large-scale citizen-science organizations (e.g.
Gillings et al. (2019), Sullivan et al. (2009), Affouard et al. (2019)), web based naturalist com-
munity platform (e.g. iNaturalist6, Naturgucker 7). Great national crowdsourcing platforms
also deal with the same scales of data (e.g. Nyegaard (2019), Shah and Coulson (2019)).
Indeed, a resurgence of citizen science has occurred in recent decades, even though the con-
cept dates back to at least 1900 with the beginning of the Christmas Bird Count (Silvertown,
2009). For instance, eBird (Sullivan et al., 2009) is now the largest contributor to the GBIF
with around 500 millions geolocated occurrences (40% of total) around the world at the time
of writing. The data and results produced by bird citizen-sciences projects such organizations
had numerous beneficial impacts on conservation management (Greenwood (2007),Schuster
et al. (2019)). Besides, contributing to improvements in species conservation is an important
motivation of citizens participating in such projects (Hobbs and White, 2012). Those mecha-
nisms induce a positive loop of involvement and results operating with citizen-sciences applied
to biodiversity, even if it has been acknowledged that participation remains unevenly spread
among socio-economic classes and ethnic groups (Hobbs and White, 2012) and further work
is needed to understand the specific barriers to participation, which should include better
communication of scientific and conservation outcomes (Novacek, 2008).

Introduction and opportunities of Pl@ntNet data. The overall growing scarcity of
professional botanical and taxonomist experts implies a bottleneck in the training of new
experts. Despite the many small structures collecting spatialized plant data, the lack of
expertise needed to produce high quality species identification, restrains the use of these data
for research and conservation, even in collaborative reviewing systems. Then, verification
and revisions of the mass of uncertain observations has become a real burden for expert
botanists, and automatic plant species identification has become an important need (Gaston
and O’Neill, 2004). Pl@ntNet is a citizen-sciences project and a mobile phone application
providing a service of automatic plant species identification from pictures, based on deep
learning algorithms (Affouard et al., 2019). Some of its goals are to unlock the access to plant
identification to a large number of citizens through automated identification, restore human
identification expertise, promote plant sciences, and generate renewable data for a use in plant
ecology and biodiversity research. In this perspective, the project collaborates since its begins
with the network of French botanists Tela Botanica 8 (Botanica, 2019). The application
now works on a significant part of the world flora (ThePlantList taxonomic referential 9),
and has also 17 specific botanical taxonomic referentials dedicated to countries or regions
of the world covering in total most of America, western Europe, Africa, and many islands.
Users of Pl@ntNet ask for species identification by sending a set of pictures, along with their
geolocation, the identification engine produces a prediction of species ranked by probability
which is sent back to the user, with a illustrative pictures support for each likely species and

6https://www.inaturalist.org/
7https://naturgucker.de/natur.dll/
8https://www.tela-botanica.org/
9theplantlist.org
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organs. Each time a user ask for identification, it produces a query associated to an automatic
species ranked list, which is often geolocated. When the user receives the result, he may
select the species he thinks is the best identification, and his choice is also stored in Pl@ntNet
servers as an observation. A confidence score is attributed to the observation depending on
a user experience score. Observations pass in real time in a flow seen by all active users
who may revise the identification, which will increase the confidence score. This collaborative
revision system enables more qualified volunteers to revise uncertain identifications, and to less
experimented users to learn from their errors. Once it passes a certain confidence threshold,
the observation pictures are added to the database used for training the algorithm, defining an
active learning loop. The improvement is not only due to this enrichment of the database but
also to innovations in the algorithm design and implementation, integration of complementary
plant pictures databases from Encyclopedia Of Life (EOL10) and a crawling of web images.
These innovations were guided by results of an annual evaluation campaign of algorithm for
visual plant species predictions organized in the context of LifeCLEF (Joly et al. (2019)). The
Algorithms for plant identification evaluated in the 2014 and 2017 editions of LifeCLEF were
compared to identification skills of botanists with various expertise level, from students to the
best experts of the French flora. It showed that the algorithms performances have drastically
increased in four years. In 2014, most experts botanists were superior to the best algorithm,
but in 2017, the best algorithms using deep convolutional neural networks and noisy data from
the web, are all better than all experts except the best of them (Bonnet et al. (2016), Bonnet
et al. (2018)).

Pl@ntNet capitalizes today around 50 millions geolocated queries worldwide, among which
5% have an observation. From the beginning of 2019 until the end of July, the application was
used 30 millions of times, generating an average of 115,000 geolocated queries per day and
335,578 distinct users have contributed observations or votes. For illustration, Figure 1 repre-
sents the geographic distribution of geolocated queries collected during year 2018, restricted to
France, and the proportions of land cover categories where they have been collected, compared
to the global proportions of land cover categories over the French territory. The IT infrastruc-
ture behind Pl@ntNet has been recently reworked (Affouard et al., 2019), and it enables to
manage, store, and explore in a reliable and unified way the all data including pictures taken
by users, and should support its current exponential growth of use for the years coming.

Thus, the automatically predicted species probability is a good indication of the identifi-
cation certainty. Geolocated queries may then be used as occurrences for SDM taking this
identification probability score into account, as it is done in Chapter 1, but they are oppor-
tunistic in nature. Users don’t have any sampling scheme, we don’t know where the user has
observed, what where his detection abilities and its species interests at time of the query. This
justify the investigation of spatial sampling bias correction in Chapter 2 and 3, on the basis
of existing work introduced in section 5.4.1. Resolving this pitfall would enable a standard-
ized use of Pl@ntNet queries, which offer a unique spatio-temporal coverage of species that are
remarkable to most citizens, especially in anthropogenic habitats. In particular, they provide
a great opportunity to monitor the emergence and colonization of alien invasive species. Their
high geolocation accuracy and control of uncertainty also enables a fine scale study of plant
distribution in various environment and their adaptation to very local environmental changes
due to human activity.

Environmental data. Spatial environmental data is a complementary very important sub-
ject for SDM. A first review was recently published by Mod et al. (2016), who synthesized

10http://www.catalogueoflife.org/portfolio/encyclopedia-life
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Figure 1: (Top) Mapped counts for Pl@ntNet geolocated queries (1st November 2017 - 1st
November 2018) over 4x4km squares. Quantiles bounding the discrete color-scale units have
been computed overall non-null square counts. (Bottom) Proportion of simplified land cover
categories (aggregation of CORINE land cover 2012) for a random subset of 50,000 Pl@ntNet
2018 geolocated queries (blue) and 50,000 points uniformly drawn over the French territory
(pink-orange).
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Figure 2: Histograms representing the distribution of points distance to the French roads
network (autoroutes, nationales and départementales) for a random subset of 50,000 Pl@ntNet
2018 geolocated queries (Top) and 50,000 points uniformly drawn over the French territory
(Bottom)
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eco-physiologically based recommendations of environmental variables to consider for SDM. It
also put in perspective these recommendations with the available environmental data for re-
searchers and what is actually used in practice. Unfortunately, as noted by (Mod et al., 2016),
no study has carried out an itemizing of available geographic environmental information and
their specifications. The main specifications, important to consider when planning to use it for
SDM, are grain size, extent, uncertainty. Their effects on SDM are reviewed in Moudrỳ and
Šímová (2012). Geographic environmental variables were gathered during the PhD (especially
suitable for modelling plant distributions and observation pressure) and compiled them in the
same format of geographic raster covering France (Botella, 2019). This compilation of datasets
is used for SDM applications in Chapters 1, 3, 4 and 5.
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4.3 Species Distribution Models (SDM): Overview and state-of-the-
art of presence-only methods

In this section, we explain the evolution of the theory of species distributions underpinning
Species Distribution Models (SDM). This shall help the reader understand the context of SDM
variables and models architecture choices and justify the terminology that we use. We define
SDM and describe the different categories mainly in terms of the type of observation data
they use. We then focus on SDM for presence-only data with the recent unification of those
methods based on point processes models, and more particularly Poisson processes that are
largely used in the thesis.

4.3.1 Niche theory

The study of species distributions is the fundamental goal of biogeography and thus has a long
history (Wallace, 1860). The concept of ecological niche roots in the work of Grinnel in 1917
(Grinnell, 1917) who observed that species presence was restricted along environmental gra-
dients and that these ranges of environments were distinctive enough across species to reflect
different ecological properties. He thereby suggested that inclusion in those environmental
ranges should reflect species conditions for survival. Besides, interactions with other species
also participate to determine the capacity of a species to survive and reproduce in a given
place through biotic interactions (competition, facilitation and trophic interactions) as noted
by Elton (1927). Hutchinson (1957) proposed a formal definition of the fundamental niche of a
species that is still a crucial concept in modern niche theory. He defined the fundamental niche
as the hypervolume, in the multi-dimensional space defined by some ecological axes, where
the population of the species can persist indefinitely if one excludes any negative biotic inter-
actions with other species. Ecological axes may include environmental gradients unaffected
by biological organisms (called scenopoetic variables), and resources variables or population
variables from other species (called bionomic variables). This definition of the niche, that is
a characteristic of the species must be distinguished from earlier uses (Grinnell (1917), Elton
(1927)) that meant a physical place or a "recess" in the environment.
Hutchinson (1957) already differentiated the concepts of fundamental and realized niche, which
restrict the fundamental niche to the conditions where the species can survive indefinitely while
competing with other species. As the latter definition can’t explain alone the actual species
distribution, Pulliam (2000) proposed to include in the realized niche environments made avail-
able by stochastic phenomenons of colonization-extinctions, pulling together the original niche
theory of Hutchinson (1957), meta-population theory of Hanski (1999) and source-sink theory
Pulliam (1988). Indeed, the species may have been maintained outside of its fundamental niche
by colonization (active exploration of animal for resources and plants dispersal mechanisms),
while it may also be absent in its fundamental niche because of random demographic effects,
or removal by a disturbance. As a consequence, the realized niche is not necessarily included
in the fundamental niche. The logic of stochastic source-sink dynamical patterns has been
interestingly pushed further by the “unified neutral theory of biodiversity and biogeography”
proposed by Hubbell (2001). Hubbell studied mathematically the consequences of a surprising
hypothesis that is central to its theory: All individuals within the same trophic level have the
same probability of reproduction, death and dispersal, regardless of their species identity. In
other words, neutral theory assumes, on the contrary of niche theory, that all species coexisting
in a given environment, and having the same interactions with other organisms, have the same
absolute fitness. Without immigration, the random demographic drift ultimately leads to local
extinction or full dominance of a species, but entails no spatio-environmental pattern for the
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species distribution. However, when considering immigration, one species becoming abundant
in some local communities will favor it’s domination in nearby communities through sustained
colonization, eventually leading to a spatial pattern of abundance at a certain stage. This
observed habitat of the species is then said to be contingent because, e.g. other species were
equally likely to have this same distribution. Those radical assumptions underline stochastic
phenomena that may lead to wrong conclusions with the analysis of species distributions, and
that were neglected because of previous theoretical concepts. A last important extension of
the realized niche in its modern definition is made by accounting more broadly for biotic in-
teractions than simple pairwise competitions. Indeed, an environment may be made available
to the species by e.g. a facilitation from another species (Brooker et al., 2008), the coexistence
induced by intransitive competitive interactions networks (which contain loops) of at least
three species (Laird and Schamp, 2006), or more complex interactions phenomenons including
negative and positive interactions of at least three species. Even if important steps have been
made to better define and show evidence of the mechanisms that separate the real distribution
of a species from its fundamental niche, the realized niche itself has not been given a modern
formal and consensual definition to my knowledge. Finally, the one that We will retain is the
set of environments, inside a certain area with its biotic context and a moment in time, where
the species actually lives for a reasonable lifetime.
A last important definition in the modern niche theory is the potential niche, a concept intro-
duced by Jackson and Overpeck (2000). It may be defined as the set of environments where
a species could survive for a reasonable lifetime if there was no dispersal constraints, i.e. if
the species was at equilibrium in the geographic domain (Araújo and Pearson, 2005). The
potential niche include the realized niche. It is the target of methods for predicting species
invasions, or future distributions under global changes.
As a summary on the concepts of the niche theory, what we do observe in nature, the current
distribution of a species, is shaped by a complex interplay between multiple factors. The
fundamental niche of a species defines its elementary requirements for establishment with-
out biotic interactions, disturbances, nor spatial dynamics. It is deviated by the interaction
with other species, constrained by a spatio-temporal trajectory of dispersal and an history of
stochastic demographic fluctuations, that jointly determine the realized niche. Furthermore,
the potential niche is meant by the extension of the realized niche if there was no dispersal
constraint, and is of crucial interest for predictive biogeography. See Figure 4 for a summary
of definition introduced here.

4.3.2 Studying the response functions

Hutchinson (1957) already noted a limitation in the binary view of niche concept: “It is sup-
posed that all points in each fundamental niche imply equal probability of persistence of the
species, all points outside each niche, zero probability of survival of the relevant species. Ordi-
narily there will however be an optimal part of the niche with markedly suboptimal conditions
near the boundaries”. All factors that negatively affect the population of a species will have an
even greater effect if the conditions are less optimal for its development. This already justifies
the view of a continuously varying species fitness along environmental gradient (Whittaker,
1967). On top of that, the conjunction of spatial auto-correlation of environmental gradi-
ents and dynamic colonization processes tend to induce even more smoothness in the real
abundance along an environmental gradient. This effect is known as the Moran theorem in
population dynamics (Royama (2012) p.89) and it was analytically studied by Kendall et al.
(2000). All together, it led to the view of a continuously varying abundance response to envi-
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Figure 3: Conceptual illustration of fundamental, potential and realized niches of a species
in the environmental and geographic spaces. A. The fundamental niche envelope (purple),
potential niche envelope (orange), realized niche (blue squares) and the existing environmental
subspace (pale green) in a geographic domain (called D), represented in the space defined by
two environmental variables. B. The individuals of the species (blue squares), the projected
envelope of its fundamental niche (purple), the presence envelope of a stronger competitor
(red), the presence of a facilitator (dark green) and the area of the projected potential niche
(orange) in the geographic space. Source-sink mechanisms maintain the presence of the species
outside of its fundamental niche, even in the zone of its competitor.
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ronmental gradient called the Response Function (RF) in plant ecology. The response function
was notably illustrated by the abundance of Californian oaks species along the elevation gra-
dient by Whittaker and Niering (1975). The study of the RF and the processes driving its
shape became an important topic in plant ecology Whittaker (1967). In animal biology, the
point of view of the Resource Selection Function (RSF) (Austin, 2002) is different: Animals
are mobile and seek the most appropriate habitats for their survival and reproduction. They
move out to less optimal habitat when the resource is limiting. This point of view led to
similar function representation and estimation methods. Because of the fundamental niche
borders of Grinnell (1917), the RF/RSF are expected to be tapered, i.e. their value decrease
when going to extremities of the gradient values. They are typically assumed to be bell-shaped
(Whittaker, 1967). Hypotheses of Gaussian RF for all species, equally spaced and of equal am-
plitude, with their width restricted by competition have been proposed (Gause (1936), Tilman
(1982)). However, a competition with another species aside from the optimal environmental
conditions is expected to induce a skewed RF (Austin and Smith, 1990), with slow decrease
on the side limited by fitness, and a sharper one on the side where competitor appears. If the
optimal environmental range itself is occupied by a stronger competitor, it should lead to a
low observed response on the mode of the potential RF, inducing bimodality in the observed
RF (Whittaker (1960), Whittaker (1967), Ellenberg and Mueller-Dombois (1974)). See Figure
4 for a summary of definition introduced here.

4.3.3 Species distribution models overview

The present section will provide an overview of the world of Species Distribution Models
(SDM). SDM experienced an explosive growth of use in the scientific literature over recent
years, and they are especially used by governmental and non-governmental organizations
charged with biological resource assessment and conservation (Guisan et al., 2013). It has
been facilitated by the development of digital data sets as described in the previous section.
In a previous review, Franklin (2010) said “a Species Distribution Model extrapolates species
distribution data in space and time, usually based on a statistical model ”. It is an efficient
explanation of what SDM does and how it is built. SDMs can use different types of data on
species and the environment, statistical models and inference algorithms. Franklin (2010) also
mentioned that SDMs have their roots in the study of response functions (ecological gradient
analysis, see Whittaker (1960) and Whittaker et al. (1973)), biogeography (Box, 1981), remote
sensing and geographic information science.
Note the distinction between SDM and Ecological Niche Models (ENM, Peterson and Soberón
(2012)). Both are mostly based on the same statistical methods introduced further, but ENM
approximate the fundamental niche of a species in order to extrapolate robust predictions of
the species potential distribution in different places or time, typically under environmental
change (Soberón and Nakamura, 2009). To hope achieve a robust estimation, the modeler
must rely on many hypothesis on the species ecology: he must use environmental variables
that are strong determinant of the species environmental requirements (resource or condition
gradients, see Guisan and Zimmermann (2000)), avoid dispersal constraints over the area,
and generally assume the effects of biotic interactions to be local and average out at the
scale of ENM predictions (Eltonian noise hypothesis, see Soberón and Nakamura (2009)). A
more straightforward way to estimate species niches is to set up physiological experiments
in controlled environmental conditions as recommended by Pulliam (2000). SDM have a dif-
ferent approach. It aims at providing the most accurate continuous maps of species actual
distribution in the sampled area and period of time, or the empirical response over certain
environmental variables. It needs no prior hypothesis on the species ecology, but doesn’t
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The quick evolution of the theory underpinning species distributions has induced a lot of ambiguity
in its vocabulary and a lot of misuses were propagated in the literature. Here is a summary of the
definitions of concepts We usea.

• Environmental variable: A variable defined over the geographical space at a moment in time
that quantitatively or qualitatively represent a measure of the abiotic environment. The abiotic
environment might be either unaffected (e.g. annual temperature, precipitations, elevation)
or affected by living organisms (e.g. soil Ph, land cover, soil organic matter).

• Fundamental niche of a species: Given a multi-dimensional coordinate system defined by
some ecological axes, it is the hyper-volume (or set of points) of conditions where the popu-
lation of a species could persist indefinitely if one excludes any competitive biotic interactions
with other species. Ecological axes include environmental or biotic variables. This definition
is taken from Hutchinson (1957).

• Realized niche of a species: Given a multi-dimensional coordinate system of ecological axes,
it its the set of points, existing inside a geographic area with its biotic context at a moment
in time, where the species actually lives for a reasonable lifetime.

• Potential niche of a species: Given a multi-dimensional coordinate system of ecological axes,
it its the set of points, existing inside a geographic area with its biotic context at moment
in time, where the species would survive for a reasonable lifetime if there was no dispersal
constraints. It is always included in the realized niche with set equality when the species is at
equilibrium in the area (see Araújo and Pearson (2005)).

• Response function: It is a response value linked to the species population (typically abun-
dance, probability of presence, expected intensity or fitness) that is a function of an environ-
mental or biotic variable. We talk of a response surface when the response is a function of
several variables.

• Habitat : A type of abiotic environment and biotic context empirically characterized to
generally contain a given species. It is especially extracted from correlative SDM. The use of
this term has been recommended by Kearney (2006) to avoid confusions between elements
of the fundamental niche. A species might live in many habitats which are all included in its
realized niche.

• Habitat suitability: A function that approximates the true abundance of the species, depends
on environmental variables and is based on empirical observations. We call it more precisely
the “environmental density” when it is based only on environmental variables and estimated
as a Poisson process intensity.

I also chose a set of notations for introducing SDM methods. We define D ⊂ R2 representing a
geographic domain of study. We consider d ∈ N environmental variables (sometimes called gradients
if continuous) w = (w1, ..., wd), and p ∈ N environmental features x := (x1, . . . , xp), which are all
real functions defined everywhere in D. The environmental features x are actually various functions
of the original environmental variables w. They model together the shape of the response surface in
the space of w through a parameterized linear combination as expressed in equation 1. For example,
x might include wi and w2

i in its components when wi is continuous, whereas, if wi is categorical,
the categories indicators (1wi=e)e∈Im(wi) where Im(wi) is the set of all possible categories. In the
context of most SDM, w are step functions over rectangular cells of geographic raster, but they may
sometimes be defined explicitly as continuous functions. We name z := (z1, . . . , zN ) ∈ DN the set
of geographical positions of a modelled species occurrences.

aStill, inconsistent uses may have been committed in our articles.
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give any guaranty of the predictions accuracy in non-sampled environments, distant locations
and times. SDM have also been called “habitat suitability models” (Hirzel et al. (2006), Ray
and Burgman (2006)), and “predictive habitat distribution models” (Guisan and Zimmermann,
2000) or “spatially explicit habitat suitability models” (Rotenberry et al., 2006) when used for
prediction in the geographical space. We introduce SDM methods by the angle of their re-
sponse function class, because it is the core of any SDM, and it should give a clearer view of
methods relations and distinctions. We also highlight the differences between methods dealing
with presence-absence, site-occupancy data and presences only.

The theoretical concepts of the niche theory paved the way for the first SDM methods. The
so-called envelope methods were based on this theory and tried to extract the niche of species
from geolocated occurrences only. The first and most simple of envelope methods is BIOCLIM
(Busby, 1991), which simply computes a binding multidimensional box of the occurrences in
the space of continuous bioclimatic environmental variables. Each marginal response function
to a wi is an interval indicator function 1{wi∈[ai1,a

i
2]} and the response surface is simply the

product of those marginals. A related method called HABITAT (Walker and Cocks, 1991)
considers a convex hull. Other famous methods in the same spirit include DOMAIN (Carpen-
ter et al., 1993) and MD (Farber and Kadmon, 2003). Envelope methods determine a subset
of environments were the species occurs, thus these methods were the first enabling to predict
if a non-prospected geographical area was suitable for the species, which was especially used
for predicting ranges of biological invasions (Petitpierre et al. (2017), Barbet-Massin et al.
(2018)) and distribution under global change (Midgley et al., 2003).

Around the 90’s, there has been a switchover from methods that seek to estimate a niche,
in the sense of an hypervolume, to methods that estimate the Response Function in the space
of environmental variables.
Firstly, many SDM methods have been used to deal with presence-absence data, be-
cause presence-absence data are much more informative and less biased than presences-only
data. These methods include: Generalized Linear Models (GLM, McCullagh (2019), Thuiller
(2003)), Genetic Algorithm for Range Prediction (GARP, Stockwell (1999)), Generalized Ad-
ditive Models (GAM, Hastie and Tibshirani (1986), Yee and Mitchell (1991)), Multivariate
Adaptative Regression Splines (MARS, Friedman (1991), Ward (2007)), Artificial Neural Net-
works (ANN, Pearson et al. (2002)) and Boosted Regression Trees (BRT, Elith et al. (2008)).

I first give a simple and general form of response function model from which we can easily
explain the peculiarities of each method. SDM assume that the relationship between the
output variable, taken at a location i, named yi ∈ R (abundance, probability of presence,
occupancy probability) and the input environmental variables wk ∈ Rd is determined through
a Response Function whose general form is expressed in 1.

E(yi) = g

(
d∑

k=1

fθ(k)(w
i
k)

)

= g

(
p∑
j=1

θjx
i
j(w

i)

) (1)

The features xj were defined in Figure 4 as functions of w. Equation 1 shows that the
expected value of the response yi is a given function g of a parameterized linear combination
of the features xi.
In the following, We synthesize the characteristics of each method with respect to the class of
response function, how it is estimated, and how it handles model complexity. Known limits
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of the methods are also mentioned.

GLM. In the context of presence-absence data, Generalized Linear Models are generally
applied in the form of logistic regression and include a few simple features of the wi such as
quadratic w2

i and cubic w3
i transformations. Sometimes, product terms wiwj are also included

in the model. They are fitted with maximum likelihood method, classically implemented
in statistical libraries through the Iteratively Weighted Least Squares algorithm (McCullagh
(2019), chapter 2.5). This method is implemented in the base package of R. It is straightfor-
ward to implement and transparent, because the user chooses himself the features to integrate
in the model. Often the Aikaike Information Criterion (Akaike, 1974) is used with such models
for features selection, when there are not too many features. In latter case, the L1 penalty
(Lasso) is often preferred (Tibshirani, 1996).

GAM. Generalized Additive Models (Hastie and Tibshirani, 1986) were proposed as a non-
parametric alternative to GLMs by Yee and Mitchell (1991). They model the response surface
with x(w) = (f1(w1), ..., fm1(w1), fm1+1(w2), ...) using bases of smooth functions to model the
response along each continuous environmental variable. The user chose the basis of functions,
called smoothers, like Splines, especially the common choice of B-splines (De Boor, 1972), or
LOESS (Locally Estimated Scatterplot Smoothing, Cleveland (1979)). Briefly, a B-spline basis
is defined from a finite set of distinct variable values, called knots, and an order of smoothness.
The knots define the number of functions in the basis and the union of their supports spanning
the variable range, which defines the complexity of the potential response function fitted, while
the order defines the degree of "smoothness" of the functions through the order of its defined
derivatives (order 1 is piece-wise linear, 2-quadratic- is once differentiable, 3-cubic- is twice
differentiable, etc). In most situations, GAM has the advantage to require less parameters for
fitting complex response function compare to polynomial features in a GLM, and this method
gives thus a more complex model without over-fitting.

MARS. Multivariate Adaptive Regression Splines Friedman (1991) is closely related to
GAM but enjoys an automated procedure to define the knots and order of smoothness of
the splines basis. It has been proposed later to deal with complex response when d is high and
(multiple environmental variables) and one want to estimate terms in x that are functions of
complex functions of a few variables, i.e. xk = f(wi, wj) or xk = f(wi, wj, wm). MARS has
an efficient fitting procedure and it is also more comfortable to use than GAM, because it has
a statistically sound optimal selection procedure for the knots which allows to estimate more
complex models without over-fitting when the sample size is large Wisz et al. (2008).

GARP. The Genetic Algorithm for Rule set Prediction was introduced in Stockwell (1999).
It is a sophisticated machine learning algorithm that determines an optimal set of rules to
predict species presence or absence. A rule is composed of a set of indicators, such as interval
indicator 1{wi∈[a1,a2]} for continuous variables (similarly to BIOCLIM), or atomic indicators
1{wi=a} for categorical variables, and a prediction to do (presence or absence) if the product of
rule’s indicators equals 1. The method optimizes the set of rules through a genetic algorithm
that explores the space of all rules using cross-over (exchange of elementary indicators between
rules) and mutations (deviation of the interval or value of an elementary rule). Rules predictive
performances are evaluated at each step on test data which determine a selection inside the
rule population.
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ANN. Artificial Neural Networks are a class of models where the "neurons" xj(w) are para-
metric non-linear functions of the whole vector w. Neural network models architecture is
described more extensively in Chapter 4 but, for example, the simplest ANN with one hidden
layer will have neurons xj = h(wTβj), where h is a non-linear function. The model is fitted by
maximizing the likelihood respectively to the parameters vectors (β1, ..., βp) and respectively
to θ. By increasing infinitely the number of neurons p , any function of w1, ..., wd can be
approximated, which makes this method particularly attractive. However, optimizing ANNs
is difficult, because the likelihood has many local optima, and optimizing it too much leads to
over-fitting. Optimizing techniques for those models have considerably developed in the last
ten years, but were much less efficient at the time of first uses for SDM. Indeed, ANN were
early used for SDM, as in Lek and Guégan (1999) or Pearson et al. (2002). Even though, they
have shown good prediction performances comparatively to other methods.

BRT. Boosted Regression Trees have been proposed to model species distribution by Elith
et al. (2008). The prediction of BRT is based on multiple regression trees (decision trees
where each leaf predict an output value) predictions. Thus, the combination of all trees con-
tributions may be summarized as a response function that is constant over hyper-rectangles
(e.g. xj(w) = 1{∩kwk∈]ak1 ,a

k
2 [} where ak1 ∈ R ∪ −∞ and ak2 ∈ R ∪ +∞ ) jointly making a parti-

tion of the environmental space. The algorithm optimizes the partition (through the number
of trees and their own partition) and the function values (θ) to minimize a predictive error.
The originality of this method compared to Random Forests (Breiman, 2001) is that trees are
added iteratively. At each step, a new regression tree is built with a maximum depth (modeller
defined) to minimize the likelihood which has been re-weighted to inflate the importance of
data of larger error from previous trees prediction. An important point is that a depth of one
doesn’t allow variables interaction effects, i.e. non-linear functions of several components of
x, a depth of two allow first order interactions effects (between 2 variables), etc. There is a
balance to find with the number of trees (more trees imply a more complex response and more
over-fit) and the learning rate. This method was originally introduced in Friedman (2001).

These methods are easily adapted to abundance data, i.e. counts of individuals in the
place, by simply changing the link function g (generally taking the exponential) and the prob-
ability distribution of y (generally choosing the Poisson distribution). Abundance data is
theoretically more informative than presence-absence data because they provide an additional
quantitative information of the suitability across presence sites, which enables to fit a more
complex response surface with the same number of samples. However, as presence-absence
and abundance data need a constraining sampling protocol, they are costly to collect.

Most SDM methods only account for the environment to predict the response of a species,
but SDM using spatial coordinates as input or accounting explicitly for spatial auto-correlation
may also have great predictive power (Bahn and McGill, 2007) because the distribution of
species show spatial patterns that are often captured through the spatial auto-correlation
of environmental variables. However, more recent approaches tried to jointly account for
interactions between species, or effects of non-observed environmental variables, in statistical
models using the framework of latent variables models (Ovaskainen et al. (2010), Kissling et al.
(2012), Pollock et al. (2014)). Several implementations of those Generalized Linear Latent
Variables Models (GLLVMs) exist in R. For examples, the package hmsc that is based on an
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EM algorithm inference (Ovaskainen and Soininen, 2011), while the package gllvm 11 is based
on variational approximation (Hui et al., 2017). The package jSDM 12 implements GLLVMs
in a hierarchical bayesian framework through Gibbs sampling and C++ based computations.
Those methods may theoretically correct for patterns in the species distribution due to biotic
interactions independently of the environment. They thus provide a less biased view of the
fundamental niche of the species. They also provide a model based statistical method to
investigate directly the species co-variations.
Let’s now go to models for the less standardized type of site-occupancy data with imperfect
detection, introduced in section 5.2. Fundamentally, SDM methods for standardized data
(presence-absence, abundance) and site-occupancy data under imperfect detection rely on
similar models of the species response function. The key difference is the way to model the
reported data conditionally to actual species abundance, or presence. SDM for occupancy-
detection data have been introduced by MacKenzie et al. (2002). The elementary data is a site
associated with the history of reports or non-detections of the species presence for repeated
visits during a period of time where the species is assumed to have been constantly present
or absent. The data can be thus considered as a form of presence-absence data degraded
by imperfect detection. The occupancy-detection models take into account that the species
might not have been detected during a visit in the site where it is present. To define the
probabilistic model underlying occupancy-detection methods, we first consider the n sites
previously defined, with environmental features xi for site i. Like before, the probability of
presence of the species at i is represented by the response function g(θTxi). We consider that
i is visited T times and we note the detection history of the species by introducing the index
of the visit yi = yi1, ..., yiT ∈ {0, 1}T , the likelihood of all those reports is given in equation 2.

pθ(yi) = g(θTxi)
∏T

t=1(dit)
yit(1− dit)1−yit If

∑
t yit > 0

= 1− g(θTxi) Otherwise
(2)

Where dit is the probability of detection of the species at i during visit t, which is generally rep-
resented as a function of environmental or meteorological variables that affect detection, and
observer variables (expertise, interests etc). Then, the global likelihood is simply the product
over all sites. This model enables to consistently estimate, as for the presence-absence case,
the response function parameters θ when the number of sites increases, and there is repeated
visits for each site with a reasonable probability of detection. As the likelihood has a non-
standard expression and may not be fitted with standard R libraries like glm, gam or gbm, it
may require more sophisticated libraries to fit complex response curve classes on occupancy
data with imperfect detection. Rather than estimating the probability of presence, Royle
and Nichols (2003) proposed an extension of the model framework to estimate the abundance
through occupancy-detection data. Methods have been also developed specifically for other
slightly different types of semi-standardized data, e.g. distance sampling data Royle et al.
(2004), repeated counts Royle (2004b), or multinomial counts Royle (2004a). The R package
unmarked 13 was specifically developed to carry out estimation based on those different types
of likelihoods for semi-standardized data Fiske et al. (2011). It can easily implement GLM
like response function models, or GAM like models through a user customized design matrix.
Other approaches applied to this type of data demand further developments. Similar models
may be fitted in a Bayesian framework through the R package hSDM 14, with the appreciable

11https://CRAN.R-project.org/package=gllvm
12https://CRAN.R-project.org/package=jSDM
13https://CRAN.R-project.org/package=unmarked
14https://CRAN.R-project.org/package=hSDM
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optional addition of spatially auto-correlated random effects in the models. However, consid-
ering that the probability of detecting the species at least once, conditionally to its presence,
over all visits (1 −∏t(1 − dit)) becomes very small. Then, the absence of a species in a site
where it has not been detected becomes very uncertain, and thus occupancy-detection data
becomes very similar, in term of statistical information, as presence-only data.

This brings us now to the methods for presence-only (PO) data. As the weakest but most
abundant and accessible type of data about biodiversity, PO data has been the ground for the
development of many SDM methods. We already gave brief overview of the envelope methods
(BIOCLIM, etc), the first PO SDM. Those ad hoc methods didn’t account for the spatial areas
associated to each environmental elementary range. The pitfall of it lies in the imbalance
of environments representation in space. We illustrate it with a categorical environmental
variable example, but the principle is the same for continuous ones: Consider that a species
has no preferences with respect to an environmental binary variable wi and that wi = a1

over 90% of the area and wi = a2 elsewhere. Then, under uniform sampling the species
will be reported 9 times more, in expectation, in a1 than in a2. Thus, an envelope/profile
method applied to a few number of occurrence will estimate that environment a2 is marginal
or even not suitable for the species. PO SDM methods based on pseudo-absences background
points were introduced to account for the problem of environmental imbalance. Two types of
responses appeared to solve this problem. The first one is to simply apply the discriminative
presence-absence statistical methods (GLM, GAM, BRT, etc) by replacing the true absences
(that we don’t have) by so called pseudo-absences points most often uniformly in space. For
example, such methods were applied in the extensive PO SDM methods comparison of Elith
et al. (2006). However, as it will explained in section 5.3.5, this lead to shrunk estimates of the
environmental variables effects. On the other hand, environmental density methods essentially
estimate the density of occurrences per unit area as a function of the environment. This type
of method correct for environmental imbalance by selecting background points uniformly in
the study area, which will be contrasted with occurrence points. The first major method of
this type is the Ecological Niche Factor Analysis (ENFA, Hirzel et al. (2002)), which estimates
the environmental density as a Gaussian in the space of (continuous) environmental variables.
In the following subsections, we explain in more detail the MAXENT method, which may also
fit gaussian environmental densities but also more complex response functions, and the more
general methodology of spatial point processes.

4.3.4 MAXENT

This SDM method is based solely on presences. It is explained quite extensively because it
has strong links with the Point processes methodology described, it is used a lot for predicting
species distributions in many contexts, and it is at the basis of an important method of sam-
pling bias correction. Also, this method has been used or studied in Chapters 1, 2, 4 and
5. MAXENT predictive performance was early evaluated comparatively to other PO-SDM
methods of its time on a wide range of test presence-absence data from several taxonomic
groups Elith et al. (2006) and demonstrated to have comparatively better (GARP, GAM,
GLM, DOMAIN, BIOCLIM), similar (GDM, MARS) or slightly lower (BRT) predictive per-
formances than other methods. Its ease of use and ability to robustly carry out inference on
few occurrences Phillips and Dudík (2008) also helped to popularize it. A bibliographic search
on the Web of Science database indicates that 22% of articles published between 2008 and
june 2019 that were retrieved with topic TS=("species distribution" AND "occurrence") also
matched the intersection with TS="MAXENT". It indicates how widely the method is used
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for modelling species distributions from occurrence data in recent years.

MAXENT analyses the relation between a collection of geolocated species occurrences
zocc = (z1, ..., zn) ∈ D and environmental features x by first splitting D into a user-defined
number ng of cells (sites) over a regular grid which centers are noted (g1, ..., gng) ∈ Dng . Then,
a binary vector δ(zocc) = (δ1, ..., δng) is computed with δi = 1/ng if there is at least an oc-
currence in site i, or δi = 0 otherwise. This vector is called the empirical distribution of
the species over sites. Note that the centers gi, as well as the empirical distribution δ(zocc),
implicitly depends on the defined number of sites ng. The probability distribution estimated
by MAXENT represents for each site the probability that the species would be present there,
if it were to be present on only one site. This probability distribution is noted πMAX in equa-
tion 3. The probability in each site i is modelled as a function of the environmental features
measured on the site x(gi). In words, equation 3 states that the MAXENT estimate, proposed
in Phillips et al. (2004), maximises the entropy of the probability distribution under the con-
straints that each empirical average of the environmental feature is closer to its expectation
under the probability distribution than a given positive regularization constant.

Note Π = {π = (π1, ..., πng),∀i ∈ [|1, ng|], πi ≥ 0,
∑ng

i=1 πi = 1}
and ∀k ∈ [|1, p|], γk > 0, Ik(π, γk) = 1{

|
ng∑
i=1

xk(gi)(δi−πi)|≤γk
}

Then πMAX = argmax
π∈Π,

p∑
k=1

Ik(π,γk)=p

−∑ng

i=1 πilog(πi)
(3)

The condition meant by the indicator Ik(π) is softer than the condition
∑ng

i=1 xk(gi)δi =∑ng

i=1 xk(gi)πi. Indeed, we allow the estimated average feature over sites not to be exactly
equal to the empirical one, because we know that it is an approximation of the true expec-
tation of the feature. Thus, defining a higher γk means a lower confidence in the empirical
mean for environmental feature k. It turns out that the solution of equation 3 is of the form
πMAX
i = exp(βTx(gi))/

∑ng

j=1 exp(βTx(gj)) with β ∈ Rp, which is called a Gibbs distribution.
It must be noted that maximum entropy formulation of the problem in equation 3 has an equiv-
alent maximum likelihood formulation which is to minimize DKL(exp(βTx)||p) +

∑p
k=1 γk|βk|,

i.e. the Kullback-Leibler divergence from the empirical distribution to the latter Gibbs distri-
bution penalized with a Lasso penalty term. The maximum likelihood method regularized by
a Lasso penalty has long been known for having good variable selection properties when there
are many variables while the data are reduced Tibshirani (1996).

Initially, MAXENT required the modeler to specify the regularization hyper-parameters
γk. Later, some noticeable new functionalities were added to MAXENT software Phillips and
Dudík (2008), including (i) the addition of a new feature class (transformation of the original
environmental variables) and (ii) a optimized set of default regularization hyper-parameters
γk. Firstly, We describe hereafter all the features classes used in MAXENT. Considering some
originals environmental variables wj ∈ RD, MAXENT will build a vector x of environmental
features based on the following terms:

• linear: wj.

• quadratic: w2
j .
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• product: wiwj with i 6= j. If the modeler restrain MAXENT features to linear, quadratic
and product, they respectively constrain the estimated distribution to be close to the
empirical means, variances and covariances of original environmental variables over oc-
currences Phillips et al. (2006).

• category indicator:
∑m

j=1 1w1=cj , if for example w1 is a categorical variable with cate-
gories c1, ..., cm.

• threshold: 1wj>s with many values of s ∈ [min(wj(g1), ..., wj(gng)),max(wj(g1), ..., wj(gng))].

• forward and backward hinges: 1wj>s(wj˘s)/(max(wj) − s) being the forward form and
1wj>s(wj˘s)/(max(wj)− s) the backward, with many values of
s ∈ [min(wj(g1), ..., wj(gng)),max(wj(g1), ..., wj(gng))]. Without going into details the
collections of s for threshold and hinge features depend on the implementation which
differ from the initial Java software Phillips and Dudík (2008) to the recent R package
maxnet Phillips et al. (2017).

Through the fitted features parameters (the βk), the modeller can visualize the species
response function along each original environmental variable wj. We note x̃j the function
taking as input value of the original environmental variable wj and returning the vector of
environmental features computed from this value, and β̃j the parameters associated with those
features. Then, ignoring the product terms, the species MAXENT response function along
the environmental gradient wj is proportional to w → exp(β̃Tj x̃j(w)).

Secondly, according to the website 15 and the statements of Phillips et al. (2017), both the
java software Maxent and the R package maxnet currently have a same default regularization
scheme. The procedure attributes predefined penalization hyper-parameters that are equals
per feature class. This hyper-parameters values are described in Phillips and Dudík (2008).
They were determined by a cross-validation procedure evaluating the predictive accuracy of
MAXENT tuned with different regularization hyper-parameters per feature class over 226
species covering different taxonomical groups and regions of the world.

To summarize, MAXENT is an SDM method fitted on presence-only data aiming at mak-
ing reliable prediction of habitat suitability and showed actual better performances than most
other PO-SDM of its time Elith et al. (2006). The key strengths of MAXENT is that it
enjoys good estimation properties when the relevant quantitative environmental descriptors
for defining the model are unknown, because of the multiple features it allows (i). Also, it
has good estimation properties even when there are few occurrences, because of its model
selection procedure (ii). MAXENT is closely related to point processes recently popularized
for the purpose of SDM, which are introduced in the next paragraph.

4.3.5 The unifying framework of point processes models

Point processes are defined as a random collection of points over a given ensemble. They are
based on probabilistic models ruling the number and location of the random points. From
now on, We always consider the ensemble where points appear to be a subset of R2 that we

15http://plantecology.syr.edu/fridley/bio793/maxent.html
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call D. Formally, we note Z a random collection of points on D, B(D) the Borellian tribe
over D, and #|Z ∩ B| ∈ N the finite cardinal of Z ∩ B, i.e. the number of points of Z in the
sub-space B ∈ B(D). Z is a point process if it is locally finite, i.e. there is almost surely no
open subspace with infinite number of points, and ∀B ∈ B(D), #|Z∩B| is a random variable.
Because the point process is a collection of points, it makes it quite different in nature from
the usual random variables that are dealt with in standard statistical models, may they be
integers or real numbers.

The simplest point process is called the Poisson process which is defined by (i) the number
of points follows a Poisson distribution, (ii) the points locations are independent and identically
distributed. More formally, the Poisson process is characterized by its intensity measure, or
alternatively its intensity function, a positive function over B(D) such that:

Definiton: in-homogeneous Poisson process Let Z be a Poisson process, noted Z ∼
IPP (λ), where λ ∈ RD is the positive intensity function. Then, ∀B ∈ B(D), #|Z ∩ B| ∼
P (Λ(B)) = P (

∫
B
λ(z)µ(dz)), where Λ is the intensity measure of the process and µ the

Lebesgue measure on R2.

In the context of presence-only SDM, the response function being modeled is the intensity
of Poisson process. It is homogeneous to the expected number of occurrences per area unit at
every point, and it is interpretable as the species expected abundance given the data under
exhaustive sampling. Point processes thus explicitely model the number and locations of
occurrences in a continuous space under the hypothesis of points independency. The intensity
function doesn’t depend on the size of the area where points have been sampled.

A first set of remarkable properties of Poisson processes is its mathematical links with other
SDM methods. It is first, closely related with MAXENT, because the latter has been shown
to be equivalent to a standard Poisson regression Renner and Warton (2013). Briefly, recalling
that MAXENT defines sites g1, ..., gng over a regular geographic grid where it summarizes the
occurrences of each cell as reported presence or no occurrence, then fitting a L1-penalized
Poisson regression over those sites with pseudo-counts 0 or 1/ng is exactly equivalent to fit
MAXENT. Then, as ng increases, the size of sites tend to 0, each occurrence becomes alone in
its site (NB: if no point is duplicated, which should be avoided anyway to fit a Poisson process
model) and most sites become empty. Asymptotically, the log-linear Poisson regression pa-
rameter vector tend to the corresponding log-linear Poisson process log-intensity parameters
expect the intercept Renner and Warton (2013). It means that the intensity of the Poisson
process is proportional to the Maxent distribution when the grid resolution increases. Thus,
the analysis over discrete sites rather than in the continuous space is the key distinction be-
tween MAXENT and the associated Poisson process. Besides, the β parameter of our Poisson
process intensity have been shown to be the asymptotic limit of the presence-background
logistic regression related slope parameters (those that multiply the variables in the linear
predictor, not the intercept) as the number of uniformly sampled background points tend to
infinity Warton et al. (2010). Indeed, the shrinkage bias on those slope parameters noted by
Ward (2007) (section 5.1) when using a finite background sample disappears asymptotically.
A more recent result enabled to use in practice the logistic regression as an approximation of
the Poisson process. It was brought by Fithian and Hastie (2013) which showed that, under a
particular weighting scheme of a finite set of background points in the likelihood, the logistic
estimates approximate well the Poisson process parameters.

The fact that presence-only data provide no information about the absence of a species
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where no occurrence was recorded has been a trouble for defining a proper SDM method-
ology for this data for many years Warton et al. (2010). First approaches used to generate
pseudo-absences and use them as true absences in PA methods. Ad hoc procedures have been
proposed for selection pseudo-absences in this context (Pearce and Boyce (2006), Zarnetske
et al. (2007)), but without theoretical justification. No clear methodological recommendations
emerged on how to select the pseudo-absence for using PA models. Indeed, different ways of
selecting pseudo absences may give different estimates. Plus, it was shown in Ward (2007)
(Chapter I) that selecting a finite set of uniformly distributed pseudo-absences induce slope
parameters shrinkage bias in the model estimates. Ward et al. (2009) proposed to explicitly
model the true state of a pseudo-absence, as presence or true absence, in the logistic regres-
sion setting with a binary latent variable. However, it requires a prior knowledge of the global
proportion of the "false" pseudo-absences which is seldom known. Warton et al. (2010) pro-
posed instead to model the distribution of presences through Poisson processes use quadrature
points, also called background points in reference to MAXENT. To understand what exactly
are background points in the context of Poisson processes, we must have a look at the exact
log likelihood of a realized Poisson process Z = (z1, . . . , zN), which is written in equation 4.

p(z1, ..., zN |θ) =
(
∫
D λ(z)dz)N

!N
e−

∫
D λ(z)dz

N∏
k=1

λ(zk)∫
D λ(z)dz

⇔ p(z1, ..., zN |θ) α exp
(
−
∫
D
λ(z)dz

) N∏
k=1

λ(zk)

⇔ log(p(z1, ..., zN |θ)) α
N∑
k=1

log(λ(zk))−
∫
D
λ(z)dz

(4)

Where λ is also implicitly a function of θ. In general, the integral term of the log-likelihood
can’t be computed exactly or analytically. Even if so, the exact numerical computation would
be very costly when we deal with multiple high resolution rasters of environmental variables.
We rather use a numerical approximation. In a nutshell, the integral is replaced by a weighted
sum of λ computed at some quadrature/background points. They may be drawn uniformly to
provide an unbiased estimation of the integral following the Monte Carlo method of integral
approximation. This likelihood may then be fitted with generalized linear models libraries
using a second controlled approximation proposed by Berman and Turner (1992). This is the
method that we use to fit Poisson processes in chapters 2 and 3. More details can be found
in the convivial papers Warton et al. (2010) and Renner et al. (2015), or in Appendix 2.3 of
the present manuscript. Finally, background points aim at providing a finite representation
of the continuous space D through a finite collection of points over which is approximated
the expected intensity. Maximizing likelihood then means maximizing a contrast between the
intensity of the occurrences and the average intensity over D. Poisson process give thus a clear
role to background points and simple procedures have been shown to control the number of
points required for a given level of approximation accuracy of the log likelihood Renner et al.
(2015).

In my experience, the justification of the log-linear model for Poisson process, while their
might be many other non-negative functions to fill this role technically, is often asked and its
justification seem to be spread across the literature. We provide hereafter noticeable mathe-
matical modelling assumptions justifying its use. The logarithm is the natural link function
of the Poisson regression in generalized linear models McCullagh (2019). Models for counts
based on independence lead naturally to a multiplicative effect of each input variable variation
on the expected count, which is expressed by the logarithm link as noted in 2.2.3 of the latter
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book. Complementarily, the information theoretic result noted by Phillips et al. (2004) is
interesting: The log-linear model appears as the maximum entropy solution when setting the
constraint of average and expected features equality (see equation 3). It intuitively means
that we want the model to fit a rather uniform intensity unless the information contained in
the data says differently. As we have seen that the Poisson process is a punctual limit of the
Poisson regression model, it is relevant to take the log-linear model for the intensity model in
order to preserve those properties.

Poisson processes have other useful properties for the purpose of modelling species distri-
bution that are extracted from Daley and Vere-Jones (2007) and Chiu et al. (2013).

Property 1: Conditional likelihood Let Z be a Poisson process defined over D with
Z ∼ IPP (λ) and B ∈ B. Then, conditionally to #|Z ∩ B| = n, the n points are indepen-
dently distributed over B with the probability density function λ/

∫
B
λ(z)µ(dz).

This property is useful because it provides an alternative formulation of the Poisson process
likelihood that only implies the intensity function proportional density over the domain. We
use it for deriving the properties in chapter 2.

Property 2: Superposition Let Z1 and Z2 be two Poisson processes defined over D of
respective intensity functions λ1 and λ2. Then, the superposition of their points collection
Z1 ∪ Z2 is also a Poisson process of intensity function λ1 + λ2.

Property 3: Thinning Let Z be a Poisson process defined over D of intensity function
λ and s : D → [0, 1] be a measurable function. We build the thinned process such that any
point z ∈ D of Z is kept with probability s(z). Then, this thinned process is also a Poisson
process of intensity function sλ. This property is also known as the Prekopa’s theorem.
This property is especially used to model the partial and spatially heterogeneous reporting of
species individuals in chapters 2 and 3.

When dealing with several types of occurrences, such as multiple species, a marked point
process, where the mark of a point is a category, is the natural object to consider.

Definition: Marked point process. Let K ⊂ N be a finite set. Then a marked point
process (Z,M) is a point process defined over DxK such that Z is a point process over D and
M a collection of elements of K with #|Z| = #|M |. In the chapter 3, we introduce a marked
Poisson process to model the joint distribution of multiple species along with a common ob-
servation process.

Some point process diagnostic tools may be useful for analyzing if the model is well speci-
fied or detecting structured spatial errors patterns. Poisson processes assume that points are
independent, but this hypothesis might be wrong in many situations of ecology because of
the spatial dependence due to species dispersal process or the observation process. We must
insure, once a Poisson process model is fitted on occurrences, that the hypothesis of points
independence given the intensity is reasonable. A procedure for checking a spatial interaction
between points has been proposed with the in-homogeneous K-function (Baddeley et al., 2000).
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This function is a generalization, applicable to a fitted in-homogeneous Poisson process, of the
original K-function Ripley (1977) which computes the ratio of points in a neighborhood of a
given distance compared to the process intensity. Besides, there may be spatial patterns in the
error of the model fitted intensity due e.g. to missing variables. The error may be visualized
through the smoothed Pearson residuals Baddeley et al. (2005a). Leverage and influence help
to analyse which places or occurrences that contribute the most to the fitted intensity. Pearson
residuals, leverage and influence may be visualized with the spastat package (Baddeley et al.,
2005b).

Spatial point processes have many positive outcomes for modelling different types of data.
Apart from punctual occurrences, it is possible to jointly model with a hybrid likelihood:
counts of individual over a given area Giraud et al. (2016), presence-absence data Fithian
et al. (2015) or presence-absence with imperfect detection / occupancy-detection Koshkina
et al. (2017). In those joint models, the species intensity component is shared between all
data types. With such setting, the standardized data help to correct for sampling bias in the
occurrences data, while the mass of occurrences reduce the variance of the estimates, especially
for rare species, and provide broader spatial coverage (Giraud et al. (2016), Dorazio (2014)).

As a last point, we state that through point process models, the modeler is not tied to the
constraints of the single Maxent software implementation and he may use the suite of mod-
elling tools of statistical softwares: many smoother types (splines functions were pointed out
as a future development for Maxent Phillips and Dudík (2008)), multiple penalties (L2, elastic
net), the possibility of weighting the samples to account for various types of data uncertainty,
etc. Point processes models have, so to say, a big universe in the probability and statistics
theory, but there also exist multiple tools to simulate and infer those models. There are sev-
eral softwares to fit point processes in R (spatstat, ppmlasso). Poisson processes may also be
fitted through generalized linear models libraries like glm/gam/glmm through the Infinitely
Weighted Logistic regression Fithian and Hastie (2013) or Poisson regression approximation
Berman and Turner (1992) results. One may fit more complex point processes models using
more sophisticated optimization libraries, enjoying automatic differentiation and, like ADMB
Fournier et al. (2012) or TMB Kristensen et al. (2015) or deep learning specialized librairies
like Mxnet Chen et al. (2015), which is used for multiple Poisson regression in chapter 4.
Bayesian point processes with log-linear model including random effects with complex covari-
ances, or Cox processes may be fitted with the R-INLA library Lindgren et al. (2015).

Points want to break free, don’t put them in cells. In summary, point processes models
have been popularized for SDM applications with presence only data especially because they
emerged as a generalization of the Maxent method. Through their intensity parameter and
the stochastic process around it, they enable to model the continuous location of points with
parameters that doesn’t depend on scale through subjective partitioning of space or loss of
information due to removal of occurrences. Even though, we note that this continuous frame-
work often induce a computational burden for inference, but many controlled approximations
may achieved to avoid that burden. They identify a clear role of background points, that
characterize the sampled environments which is contrasted with occurrence patterns, poten-
tially unlocking optimal selection procedures, but this is yet an under-investigated area to
my knowledge. Finally, we gave a brief overview of the many available tools for inference,
assumptions checking and analysis of spatial dependence in point processes.
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4.4 Boundaries and pitfalls of Species Distribution Models based on
massive opportunistic occurrences

This section exposes two general issues addressed in the thesis regarding species distribution
modelling based on massive occurrences collected without sampling protocol. Firstly, in sec-
tion 5.4.1, we introduce the problem of sampling biases, by explaining how they distort the
modelled view of species distribution, and focus on spatial sampling biases, which is the sub-
ject of chapters 2 and 3. Secondly, in section 5.4.2, we come to limitations concerning model
complexity. We give context on the uses of deep learning techniques for SDM and gather
recent theoretical, methodological and applications advances of deep learning that may be
leveraged to improve fine grain SDM predictions. These concepts are leveraged in Chapter 4.

4.4.1 Biases due to sampling heterogeneity in presence only data

We have seen that presence-only data is a massive, renewable and wealthy source of data for
biodiversity monitoring. However, spatial and temporal sampling biases have been recognized
decades ago to be present in many volunteer surveys as explained in Yoccoz et al. (2001).
Models based on PO data are probably the most sensitive to this biases as these data are
influenced by many types of heterogeneity in the sampling process. In this section, we first
explain how sampling intensity bias PO SDM because of variable observation effort across
space, time, species or observers, distorting the observed distribution. Then, we focus on
existing methods to correct for spatial sampling biases.

Defining opportunistic occurrences and observation effort. The sampling of occur-
rences data is said to be opportunistic when there is no rule guiding consistently the sampling
protocol of the group of observers contributing to a given dataset of occurrences. Equivalently,
a sampling rule might have been followed by contributors, but it is not known by the modeller.
A counter-example would be, e.g. a dataset where all observers had for mission to prospect
homogeneously, i.e. with constant detection probability, a given set of sites is not opportunis-
tic. The term of opportunistic data has been used to qualify such type of presence-only data
for the first time by Kery et al. (2010), who applied site-occupancy SDM to opportunistic
occurrences coming from citizen sciences datasets to correct mainly for temporal variation in
detection probability. They aggregated the reports per season over sites to build the detec-
tion histories. In this case, the detection probability modelled in site-occupancy models is
dependent on the observation effort. Indeed, in the context of opportunistic occurrences, the
probability of collecting the occurrence of a species, conditional on its presence, does not only
depend on the observer’s ability to detect it while observing. It also depends on the observa-
tion intensity towards this site over all observers. This intensity that we call the observation
effort is widely variable from an area to another, and from a time to another, in opportunistic
datasets, and it will be crucial to study its variation.
To be as general as possible, we define the observation effort as the density of the expected
number of views/observations (potentially leading to occurrences) per instant and spatial
point. The observation effort is thus a function defined over the product of time and geo-
graphic space. Formally, we note V (u) the random variable equals to the number of views of
point u ∈ U ⊂ R3 in the geographico-temporal space. we define the observation effort v(u)
as E(V (u)). Technically, V is theoretically allowed to be any number because it results of the
sum of multiple observers attention, thus several observers may pay attention to a same spatial
point at a same instant. If an observer pays attention to a point where a species individual
is located, the observer might detect the species and then report it as an occurrence, but the
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observation effort is independent of those posterior steps. The definition of the observation
effort is used in chapters 2 and 3 but, as we study its spatial effect, it is integrated over a
time period during which the occurrences are collected, and thus becomes a function in the
geographical space only. we may call it alternatively sampling effort, when it is assimilated
to the product of observation, detection and reporting probabilities (the latter are assumed
constant over space sometimes), or when We consider the product of the three instead of the
observation effort by itself. The here defined sampling effort is closely related to the concept
of recorder’s activity of Isaac et al. (2014). We also note that the sampling effort term may
be used in the literature with slightly different definitions in other contexts, but We chose
this definition to be consistent with those chosen (more or less implicitly, and sometimes with
extra assumptions) in the literature of site-occupancy models (e.g.MacKenzie et al. (2002),
Kery et al. (2010)) and presence only SDM literature (e.g. Dudík et al. (2006), Phillips et al.
(2009), Warton et al. (2013), Fithian et al. (2015), Giraud et al. (2016)).

SDM biases factors under heterogeneous sampling An occurrence gives the only cer-
tainty of the presence of a specimen at a given time and place where it was reported. Absence
where the species has not been reported remains uncertain, particularly for opportunistic
data. Thus, a different distribution of sampling effort in space and time produces a different
occurrence density, which distorts our view of the actual distribution of the species.

First, Figure 5 represents a natural model decomposing the drivers of the sampling process.
The sampling process of a given observer is decomposed into the probability that a location
is observed (observation effort), the probability that it is detected, reported and ultimately
identified as the good species. The three events must happen successively for that observer to
produce an occurrence. We note p(u) the probability to detect, report and identify correctly
an individual located at u ∈ R3 (assuming same probability for the m total observers) con-
ditionally to observation of u by the observer. Equation 5 shows that the expected number
N(u) of reported occurrences at u may be approximately factorized as the product of p(u)
and the sampling effort v(u) = E(V (u)) when p(u) is very small, which is typically the case
when dealing with opportunistic sampling. N(u) also becomes a Bernoulli random variable as
p→ − > 0 and, then, E(N(u)) equals the probability to sample the occurrence. This property
allows, for example, to simply model observed occurrences as a thinned Poisson process as we
do it in Chapter 2 and 3.

E(N(u)) =
∑m

i=1 i
∑m

j=i p(V (u) = j)
(
j
i

)
p(u)i(1− p(u))j−i

≈
p=o(1)

∑m
j=1 p(V (u) = j)jp

= p(u) E(V (u))

(5)

Equation 5 tells us that, under our assumptions, the variation in sampling effort can
be decomposed in a multiplicative way into the variation in the probability of observation,
detection, reporting and identification. Thus, the density of reported occurrences co-varies
with the abundance and with the sampling effort, which will artificially increase the number of
occurrences in areas or times that are more visited, where detection is easier or where observers
are more prone to contributing. As presence-only SDM methods fit a response surface in the
space of environmental variables, an environment with larger average sampling effort will have
an over-estimated species response. Evidence of sampling bias have been shown in simulation
Leitão et al. (2011). A strong evidence of SDM environmental bias on opportunistic presence
only data is given by Syfert et al. (2013). They fit MAXENT on occurrences of ferns in NZ
with sampling bias correction, using background points sampled according to a sampling effort
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Figure 5: Illustration of the decomposition of the sampling process for an occurrence of Aphyl-
lanthes monspeliensis L. (photo credit c© Jean Tosti, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=168737)
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grid (computed from all vascular plants occurrences over the region), or no correction (random
background). They observed that non-corrected models had much less predictive accuracy on
independent presence-absence data than when bias was taken into account.

Variation in the sampling effort may be explain by many factors. The observation effort
depends on the terrain accessibility (Warton et al. (2013), Reddy and Dávalos (2003)) and
practicability, e.g. roughness or vegetation density. To illustrate uneveness of the observa-
tion effort across environments, the bottom graph of Figure 1 shows the distribution of the
Pl@ntNet users identification queries across land cover categories compared to the proportion
of these categories in space. The proportion of urban occurrences is much higher than ur-
ban global percentage cover, which shows how observers activity is concentrated in cities and
their surroundings. Also, Figure 2 illustrates the distribution of the distance to roads for the
same Pl@ntNet occurrences (above), which is much more concentrated toward roads than the
distribution of uniformly drawn points over the territory (below). Then, the detection proba-
bility depends on the visibility of the specimens in a given area, and thus on the weather and
landscape (Wintle et al., 2005). For plant species, detectability has especially been shown to
depend on size, form, flower presence/colour/size (Kéry and Gregg (2003), Slade et al. (2003),
Burrows (2004)) and local abundance (Garrard et al., 2013). It is also strongly suspected that
the reporting Pl@ntNet probability depends on the interest of the species for the observer and
on the propensity of the environment to induce a contributing behaviour, e.g. observers are
more likely to conduct surveys when hiking in the wild than when passing over a strip of grass
in an industrial area.

If we consider all those factors affecting globally sampling effort, we expect that the later
will vary across space, environments, seasons, years, species, and observers. However, SDM
do not generally account for all those dimensions, and even less for sampling effort along those
dimensions. Problematically, note that when one of the dimensions is integrated out in the
model (e.g. static SDM on occurrences collected over several years), and there is interaction
of sampling effort along both dimensions, it will induce an irremediable bias. For example,
the sampling effort may vary in space and time. For example, Pellet (2008) showed, through
site-occupancy models, that butterfly detectability highly varies during a season, and that
intervals of high detectability are distinct between species. If we were to model the distribution
of those species from presences-only, we should not only account for varying global sampling
effort over time in the model, but also for varying spatial distribution of sampling effort over
time, because observed areas vary from one season to another. Similar phenomenons appear
on many plants because of their phenology: Plants whose vegetative parts disappear during
winter are undetectable during this period, and besides most plants are more remarkable when
flowering.

Accounting properly for such phenomenons in SDM is really complex. For now, we decided
to focus in my thesis on the correction of spatial and environmental variations of sampling
effort. Their precise links and effect on presence-only Poisson process models is unravelled in
Chapter 2.

Methods for addressing spatial sampling bias in SDM based on opportunistic oc-
currences. Several methods have been proposed to correct for spatial and environnemental
sampling bias. A first type of correction methods manipulate occurrences and background
points. A wrong selection of background points in Maxent or Poisson processes, e.g. taking
background points distributed over a larger area than the one that has been sampled, or con-
versely in a smaller area, will entail environmental sampling bias in the model as described in
the case of (Phillips, 2008). They state that the background points should represent the area
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that has been observed to generate the species occurrences to avoid bias. This is surely an as-
pect to look at when defining background but this is insufficient, because (i) we can’t identify
sites that were visited without producing occurrences, and (ii) the level of sampling effort is
likely to vary a lot among visited areas. Other authors have proposed to eliminate some oc-
currences when they are too concentrated in the geographical space (Boria et al. (2014),Varela
et al. (2014)) or in the environmental space (Varela et al., 2014) to avoid over-concentration of
occurrences in some areas due to high sampling effort. The environmental filtering approach
was shown to improve presence-absence discrimination (Varela et al., 2014) on a virtual species.
Spatial filtering correction was worst than no correction in certain studies (Varela et al. (2014),
Boria et al. (2014)). No guideline is given to select the filtering strength. Plus, the occurrences
density reflects not only sampling effort but also the species abundance. Removing blindly
occurrences based on their raw density clearly deviates the problem from one type of bias to
another. For example, a specialist species over some environmental gradient will have concen-
trated occurrences along this axis. Then, environmental filtering induce a generalism bias on
the response estimate. Another popular approach, called TGB, uses the sites where at least
an occurrences have been collected, from a so called Target-Group of species, as background
points. It has been introduced and tested on real data by Phillips et al. (2009), after success-
ful simulation results from Dudík et al. (2006). Syfert et al. (2013) independently evaluated
the TGB approach compared to uniform background points on two biased ferns occurrences
datasets. They found that TGB yielded much better prediction performance on independent
presence-absence test data than uniform background, but that the predictions from the most
biased training dataset was still inferior, suggesting residual bias. More contrasted results
were brought by (Ranc et al., 2016) who showed that TGB correction was efficient for species
with wide occurrence area whereas it was worst than no correction for species having a narrow
spatial range of occurrence. TGB also received an interesting theoretical critic from Warton
et al. (2013) (Figure 2), who remarked that environments with higher species richness would
be over corrected by TGB method as they generate more occurrences independently of the
sampling effort. Another question is how to define the resolution of "sites" (Phillips et al.,
2009), where TG background points are aggregated as one, when dealing with continuously
distributed and accurately geolocated species occurrences as in Pl@ntNet.

A second type of correction approach adopt the strategy to explicitly model and esti-
mate sampling effort along with the species intensity. Indeed, Ranc et al. (2016) stated that
"the attention should be focused on a more essential question: how to estimate environmental
sampling bias from an opportunistic dataset containing multiple species". This is not straight-
forward as the multiplicative dependence of sampling effort and species abundance in the
data lead to a fundamental problem of source separation. The first strategy proposed was
to jointly model sampling effort with a single species response (Warton et al., 2013) in the
context of Poisson point processes. The sampling effort model is built from ad hoc co-variables
assumed to drive its spatial variation, like distance to roads, to cities and to coasts, in the case
of this eucalyptus dataset from Queensland, Australia. A successful implementation of this
method was done by Stolar and Nielsen (2015). A method was proposed to estimate specif-
ically the sampling effort by Fernández and Nakamura (2015). They model the detection of
a target group of species based on a multinomial of observation where the sampling effort is
a accessibility factor depending on distances to roads, cities and cities populations, with few
parameters. The estimated sampling effort may be used to generate background data and,
then, fit a presence only SDM on any species assumed to have been sampled with similar effort
than the Target-Group. In the case of jointly modelling sampling effort and species response in
a log-linear Poisson process (Warton et al., 2013), the modeler must insure that their respec-
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tive co-variables are all distinct and far from co-linearity. In some conditions, this restriction
may be relaxed when adding complementary standardized data in the model. Giraud et al.
(2016) modelled opportunistic counts of many birds species over several sites jointly with stan-
dardized counts (where the sampling effort is known). Opportunistic counts were selected to
match sites of standardized counts. However, the latter lacked several species compared to
the former, and counts were lower. They set up a fully spatial model (species responses and
sampling efforts had a distinct parameter per site). They showed that the known sampling
effort of standardized data enabled to identify the whole model, i.e. the opportunistic relative
sampling effort in each site, which in turn unlocked the identification of the relative abun-
dance of species unobserved in the standardized data in the same site. Plus, they showed that
integrating the opportunistic data significantly reduced the relative abundance estimation vari-
ance of rare species compared to the standardized data alone. Fithian et al. (2015) proposed
in parallel a close approach. They jointly modelled opportunistic occurrences with a shared
sampling effort component among multiple species occurrences intensities, and integrated to
this model standardized presence-absence data on some plots. In this case, sampling effort is
modelled as a function of geographic variables (as in Warton et al. (2013)) which enable to
correct sampling bias of opportunistic occurrences even outside of presence-absence plot. Note
that similar modelling approaches based on the same principle were developed for jointly inte-
grating site-occupancy data with opportunistic occurrences (Dorazio (2014), Koshkina et al.
(2017)). Finally, the knowledge of reporting behavior of some active observers has been used
to infer species absences from opportunistic occurrences of citizen science program (Bradter
et al., 2018).

As shown by our bibliographic survey, even if the sampling bias has been highlighted as a
major problem of presence only SDM for almost two decades, the published knowledge of its
mechanism and interaction with species distribution is empirical and based on a few specific
examples. To summarize, two types of approaches have been proposed to correct for spatial
and environmental sampling bias. Selecting background points whose distribution is a proxy
of the sampling effort, or estimating the sampling effort jointly with species response, either
through on a simple tailored model of sampling effort or with complementary standardized
data. The former approach is simpler to set up, provides less variables estimates of the species
response, but it may induce biases that are not well understood when the background is
inappropriate, and their procedure is unclear. The latter has more statistically sound way of
correcting bias, but it implies more sophisticated models, to identify a proper sampling model
and/or complementary standardized data, and is prone to estimation variance as the number
of parameter is increased by the addition of a sampling effort model.

4.4.2 Input dimension constraints in the era of deep learning

Today, many new sources or types of environmental layers become available for SDM at high
resolution, especially because of the development of remote sensing technologies and auto-
matic image analysis. Then, the number of potentially relevant variables to include in SDM is
high, and the ecological modeller would ideally like to include them all as input and have an
algorithm able to extract only the effects that significantly correlate with the studied response.
Besides, Lek et al. (1996) early stated that relationships between environmental variables and
species response were often poorly captured by linear models, and were often tailored through
ad hoc transformations leading to sub-optimal model fitting. However, when adding new vari-
ables, the number of potential interactions effects between several variables increases exponen-
tially. For example, a species might have a realized niche that imply a complex combination of
many environmental variables values. When accounting for such complex effects in the model,
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the modeller is often confronted to the problem of over-fitting. The potential complexity of
a class of response functions of a statistical model is often called model expressivity (Raghu
et al., 2017). It is easy to build and fit expressive models, but again, it often translates into
over-fitted estimates with low out-of-sample predictive power, i.e. low generalization power.
Deep and convolutional neural networks along with their state of the art learning procedures
are said to be remarkably resistant to over-fitting. Thus, they may be an interesting tool
for fitting more complex and robust response functions over more environmental variables in
SDM. In the following, we come back to the concepts of generalization power, over-fitting and
regularization when increasing the input dimension and model complexity through fundamen-
tal statistical learning theory principles. We then introduce the recent theoretical arguments
justifying the generalization power of deep and convolutional neural networks and highlight
opportunities of applications for SDM. For an introduction of NN and their architectures, the
reader may refer to Chapter 4.

Generalization power and regularization The statistical learning theory (Vapnik, 2013)
aims at answering the problem of learning the most robust approximation of the response
function from a finite noisy sample of unknown error distribution. It has been mathematically
formalized by the framework of the Probably Approximately Correct (PAC) learning (Valiant
(1984), Vapnik (2013)). A concept is said to be learnable by an algorithm if the algorithm
may find in polynomial time a function whose predictive error is bounded with any defined
probability by some constant. The statistical learning theory of Vapnik (2013) has a different
point of view from classical statistical inference. It is based on the idea that the true prob-
abilistic distribution of the output data conditionally on the input is unknown and a robust
learning of a predictive function shouldn’t be based on any distribution hypothesis. It aims at
providing algorithms risk bounds that are independent of it and speed of convergence rate for
different learning algorithms. In the following, we note H the class of functions that may be
fitted by a learning algorithm. The statistical learning of a predictive function f ∈ H is based
on the empirical risk minimization, which generalizes the maximum likelihood method for
independent and identically distributed data. An important insight from the work of Vapnik
(2013) is given by equation 6.

Pr

(
ε2 ≤ D(H)(log(2N/D(H)) + 1) + log(µ/4)

N

)
= 1− µ (6)

Where D is the VC dimension of H is the largest integer h such that there exists a
sample of size h which is shattered by H. A set of data points are shattered by H if, for
all assignments of labels (resp. values) to those points, there exists a f ∈ H such that f
makes no errors when evaluated over this set of data points. Equation 6 states that, when
the sample size is kept constant, the generalization error increases monotonically with the
VC-dimension, i.e. a type of complexity measure of the model class of functions. Note that
similar equations have been derived for other measures of complexity such as the Rademacher
measure (Gnecco and Sanguineti, 2008). If we consider real input variables the same bounds,
as the input dimension increases, the number of variables combinations (product of intervals
with same width) increases exponentially. Thus, the number of data required to estimate the
output response for each variables combination is also an exponential function of the input
dimension, as for the VC dimension of the model class of functions modelling the response.
Then, when increasing the input dimension, we increase exponentially the VC dimension if we
adapt the model class of functions to account for all variables interactions effects, while our
sample size is kept constant. Finally, according to equation 6, it induces a sharp increase in
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the generalization error, that is over-fitting. This problem is called the curse of dimensionality
in the context of statistical learning (Giraud, 2014).

Then, controlling the complexity of the model class of functions is very important to
control over-fitting. Regularization helps to reduce the complexity of a given class of func-
tion by setting an a priori preference on certain functions inside the class: Constraining the
functions of the class to have certain properties (e.g. function smoothness in the context of
non parametric statistics which is the principle of GAM, see citeyee1991generalized, input
dimensionality reduction, see Giraud (2014), or restriction of input variables through expert
knowledge), quantitatively penalizing certain functions in the loss (e.g. L2/Ridge (REF) or
L1/Lasso penalty, Tibshirani (1996)), modifying the loss/error function, using informative
prior distributions of parameters for Bayesian inference, or a model optimization algorithm
with implicit regularization (Ioffe and Szegedy (2015), Chaudhari and Soatto (2018)). For
instance, Maxent regularization scheme allows it to fit predictive SDM from very few occur-
rences (less than 50, see Phillips and Dudík (2008)) using tens of environmental variables and
their transformations. This is because Maxent exploits the variables selection properties of
the Lasso regularization scheme (Tibshirani, 1996).

Recent resurgence of deep and convolutional neural networks. Feedforward Neural
Network (NN) have been known for long to be highly expressive models. Indeed, (Hornik
et al., 1989) showed that, given enough neurons, NN are able to approximate arbitrarily well
any measurable function of any number of bounded input variables, and are thus a class of
universal approximators. This is true even for a single hidden layer network, and for any non-
linear and continuous activation function. Many statistical learning methods also have this
property, but not all are equal in their generalization power and regularization ability. Even
though the method with highest generalization power should depend on the problem, many
empirical and theoretical results appearing during the last decade from many domains have
supported the idea that deep NN enjoy more resistance to over-fitting (Poggio et al., 2017),
and thus enable to deal with much more high dimensional input data. First deep feedforward
NN were learnt more than thirty years ago (Werbos (1974), Parker (1985), Lecun (1985),
Rumelhart et al. (1988)), but the last decade has seen many applications showing evidence
of their impressive generalization power for speech recognition, visual object identification
(Krizhevsky et al., 2012) and object detection compared to other machine learning methods
with large and diversified training dataset (LeCun et al., 2015).

This remarkable success asks the question: Why deep NN revealed their empirical efficiency
less than a decade ago while they have been initially invented and used more than 30 years
ago? Deep NN have indeed been stuck for many years in the bag of models with restricted
uptake in the machine learning community after the first introduction of the back-propagation
algorithm that enable to optimize their weights (Rumelhart et al., 1988). It is now quite clear
that deep learning architectures may only outperform other machine learning methods on real
world applications when the sample size is large enough, otherwise the sample doesn’t provide
a dense enough coverage of the high dimensional input space, to enable any robust estimation
of a complex response function. Then, Deep and convolutional NN have been able to show
significant performance thanks to the unlocking of three major locks: access to large learning
datasets, the democratization of Graphical Processing units (GPU) computing and advances
in NN optimization techniques.

Firstly, large labelled dataset started to appear and be freely accessible on the web for
important machine learning problems such as image classification and object detection (the
main example being Deng et al. (2009)). Such large datasets require a long time to annotate
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them and greatly benefited from collaborative efforts.

Secondly, GPU computing softwares for deep learning started to appear (e.g. Krizhevsky
et al. (2012)). Indeed, GPU computing enabled to greatly accelerate learning of deep NN
on regular computers, enabling any researcher to experiment those methods and engineer
them to answer specific problems. Goeau et al. (2017) Thirdly, advances in the theoretical
understanding of their optimization process and the development of optimization techniques
facilitated and accelerated the optimization of NN and were identified as drivers of improved
empirical predictive performances. Two main theoretical issues have been recently finely un-
derstood and taken into account in current optimization techniques of deep NN that concern:
Escaping the many local minima/saddle points and controlling the gradient value. A wide or
deep enough NN is theoretically very expressive and may fit well any set of data, but optimiz-
ing its parameters (called weights) by standard gradient descent with the back-propagation
algorithm will generally lead to a poor fit due to the many sub-optimal local optima and
saddle points of the loss function in the space of weights, where gradient descent will get
stuck. mini-Batch stochastic gradient descent algorithm (SGD) and its numerous extensions
like ADAM, RMSprop, AdaDelta, or (see Ruder (2016) for a review) were applied with more
success. It may indeed quickly vanish or explode during model learning (Hanin, 2018). During
the back-propagation step, the weights are updated in the opposite direction of the gradient,
i.e. towards the closest local minima. The distance of the minima will depend on the local
curvature which is unknown, even though it is approximated adaptatively by some stochastic
gradient algorithms. Then, If the learning rate is too low, it will induce a vanishing gradient,
because we will get stuck in a close local minima. Conversely if it is too high, weights update
might increase the loss compared to the last step, tending to induce a higher gradient norm on
the next mini-batch and a loss increase runaway. Furthermore, the control of the learning rate
(the global coefficient scaling the update of all weights) is crucial, as the curvature of the loss
may vary importantly from one point to another in the space of input variables. An inappropri-
ate random initialization might also induce a wrong gradient regime (Krähenbühl et al., 2015).
Internal covariate shift is another important problem. A deep NN has many layers combining
the neurons activations from the previous ones. If the distribution of values of the previous
layer is biased or has high variance, it may induce strong variations in the activations of the
current layer, which will propagate to the next (Ioffe and Szegedy, 2015). This may easily
happen with batch stochastic gradient descent algorithms where each descent step computes
the predictions and gradient over a very small subset of the data (typically between 32 and
128 data). Initially, the activation function used in NN was the sigmoid function. It has a fast
vanishing derivative when the input moves away from 0, progressively forbidding parameters
of previous layers to be updated.. The ReLU activation function, x → x ∗ 1{x≥0}, has been
proposed by Nair and Hinton (2010) to help solving this problem. The previous phenomenon
can’t happen on the positive side because its derivative equals 1 and the activation intensity
value is conserved for the next layer. It also accelerates the learning speed of deep NN and
was showed to improve deep NN performances on many other machine learning benchmark
datasets (e.g. (Zeiler et al., 2013) for speech recognition). Another important ingredient to the
optimization of deep NN was Batch-Normalization, which consists of standardizing each acti-
vation of the model, while computing the predictions in the forward phase, by the mean and
standard deviation of the same activation over the current batch of data (Ioffe and Szegedy,
2015). Using BatchNorm forces each activation to be centered with unit variance and thus
prevents them to shift. BatchNorm prevents the vanishing of many neurons, and it allows to
increase the learning rate with much more resilience to exploding and vanishing gradient and
thus induce a much faster learning. It is also an efficient element of regularization. Empirical
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evidence and theoretical elements introduced above have shown that the learning rate policy,
the mini-batch size, the type of descent algorithm, parameters initialization, activation func-
tion choice and other operations in the optimization procedure greatly impact the ability to
learn a deep NN with good generalization power, and with fewer computational time. Thus,
they are elements to consider all together to achieve an efficient learning scheme on a new
problem.

To summarize, recent advances in datasets availability, GPU oriented deep learning li-
braries, and optimization techniques have enable the learning of complex deep and convo-
lutional NN models on much larger datasets with a drastically reduced computational cost
and time investment. However, it doesn’t explain why, fundamentally, deep learning methods
have a remarkable resistance to over-fitting and are consequently the most efficient methods
nowadays on many machine learning tasks, which is discussed in the next paragraph.

Towards understanding deep and convolutional NN generalization power. An in-
teresting point is that conventional measures of the model class of functions complexity such
as the VC dimension highly over-estimate the complexity of deep NN models, and thus their
generalization error (Zhang et al., 2016). In other words, the measure of deep NN models com-
plexity through their number of parameters suggest, according to equation 6, that they should
over-fit much more than they actually do empirically. This asks why deep NN don’t over-fit
so easily to the data. Several research branches currently look for answer to this question. In
the remainder of this paragraph, we discuss recent state of the art on this topic.

Also, deeper architectures are often said to be resistant to over-fitting to shallower networks,
providing better generalization power for complex response function or higher input dimension.
However, a concept of function complexity may only be defined based on a set of elementary
functional components, but the suitability of basis of functions is specific for representing
certain classes functions. As a basic example, a continuous periodic function is exactly fitted
by its finite Fourrier serie, while no finite monomial basis (1, x, x2, ...) can fit it. Conversely,
the natural exponential function is quickly approximated with monomial terms of its Taylor
expansion while it takes much more terms to achieve the same precision with a Fourrier serie.
As it is an ill-defined problem, no general measure of function complexity exists. Plus, the
exact response function depend on the problem and is only observed through finite data. Thus,
a better way to set the problem is to ask how well a family of approximators (typically a NN
model with all possible weights values), may approximate a class of functions that is likely to
contain the target function for a wide spectrum of problems. The property of compositionality
of NN originally appeared to be a main motivation for hierarchical models of visual cortex
because they could be regarded as a pyramid of AND and OR layers, that is a sequence of
conjunctions and disjunctions (Riesenhuber and Poggio, 1999). Deep neural networks was
pushed by Hinton and Lecun LeCun et al. (1989), arguing that deeper NN architectures
provide some exponential expressivity while keeping the number of parameters reasonable.
This argument came from results from the complexity theory of boolean circuits (Håstad and
Goldmann, 1991) early suggested that Deep NN built with multiple hidden layers were more
appropriate for approximating composed functions of many input variables. Mathematically
sound results of the same nature were brought on deep NN later. Montufar et al. (2014)
provided a discretized view of the notion of NN model expressivity by counting the number
of linear regions that can be synthesized by a deep network with rectified linear unit (ReLU)
nonlinearities. Very recently, Raghu et al. (2017) showed that a certain measure of expressivity
of NN called "trajectory length", and defined by the level of variation of the output along a
one dimensional trajectory in the input space, grows exponentially with the depth of the
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model. An active field of research in explaining why generalization power of NN comes from
their depth is the one merging function approximation theory and PAC learning. It provides a
mathematically sound way of defining and characterizing networks architecture efficiency. This
branch tries to identify more precise sets of functions that may be approximated by DNNs.
Significant results in this branch were summarized in Poggio et al. (2017) review. It is shown
that (i) deep networks are especially well designed to approximate response functions that
compose "local" constituent functions, e.g. functions with low dimensional input, and in these
case avoid the curse of dimensionality, (ii) for such response functions, there is a theoretical
guarantee that deep convolutional NN architectures outperform one layered architectures and
kernel machines, because convolution is by definition a local function in the previous sense
(even without weight sharing, which reduce drastically the family of estimators size). If the
elementary polynomials are sparse then deep NN will be even more efficient. A conjecture is
also stated about the fact that the multi-class setting of many problems where deep learning
is applied favor the success of these architectures, because it forces the extraction of shared
functional components between all classes which match the structure of some problem. Further
results were brought by (Gribonval et al., 2019) that provided a measure of the speed at which
convergence is achieved when increasing the size and depth of the network for several classes
of true response functions.

Another important axe of research to explain the generalization power of deep NN is
the regularization imposed by the Stochastic Gradient Descent algorithm (Chaudhari and
Soatto, 2018). It also worthwhile to note that recent works suggest that generalization puzzle
of deep learning can been analysed through an Information theoretic perspective. Notably,
Shwartz-Ziv and Tishby (2017) suggests that a deep network can be seen as an information
processing pipeline where the information retained about the input progressively reduces as it
goes through the network’s layers. The so-called information bottleneck phenomenon would
naturally prevent the network from learning over-complex representation of the input retaining
only useful information to predict the output variable. However, other works suggest that
compression might not be the only key procress to provide good generalization as showed
through invertible deep neural network function architecture, which preserve all the input
information, and still achieve good predictive performance on the ImageNet dataset 16.

Finally, a path for understanding the effect of the regularization operated in deep NN
optimization is the study of norms of the model weights along the learning process. A whole
body of theory and strong empirical results show evidence that some norm on the model
weights might control the excess risk of generalization, i.e. the difference between the test
and train errors (Bartlett (1998), Neyshabur et al. (2015), Liang et al. (2017), Barbet-Massin
et al. (2018)).

In summary, several important mechanisms of deep NN regularization have been shown
through the current merging of approximation and PAC learning theories, the analysis of the
implicit regularization of the stochastic gradient descent algorithm and the analysis of weights
norm in during the optimization process. However, current research hasn’t yet provided a
global and firm theoretical framework to understand deep learning generalization power. the
state of the art is not yet able to provide clear theoretical support for architecture design
guidelines.

Capturing response to spatio-environmental patterns through convolutional NN.
We have seen in section 5.3.1-2 that complex realized species distribution patterns of abun-
dance may result from the local structure of the landscape because of source-sink dynamics,

16http://www.image-net.org/
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surrounding biotic context, and environmental changes along time. Then, we may ask if and
how SDM could capture patterns of the landscape to better predict species response. Deep
convolutional Neural Network (NN) may be a good opportunity to address this challenge.
Indeed, Convolutional layers of deep CNN are specifically designed to detect spatial patterns
of various scales in n-channel images (Zeiler and Fergus, 2014), while restricting drastically
the space of functions compared to other existing approaches. Besides, species distribution
models enabling to capture spatial patterns of the environment have never been developed.
Thus, CNNs open attractive perspectives for analysing how complex spatial structure of the
environment affect patterns of species distribution.

4.5 Questions of the thesis

In this section We take the reader through the research questions of my work of PhD and
explain the organisation of the chapters.

As we have seen in section 5.2, the Pl@ntNet mobile application generates a lot of geolo-
cated species occurrences, which for the most part are only automatically identified by a deep
Convolutional NN classifier without any human validation: the queries. An important concern
for the Pl@ntNet project was to know how these data could be exploited to contribute to the
monitoring of biodiversity. It seems suited to survey invasive alien species. Indeed, most of the
concentration of queries is tied to the human population, which overlap with the distribution
of most alien invasive species because of their introduction, naturalisation or dissemination
mechanisms. However, even though the identification quality was very heterogeneous among
species and pictures, we can use the output probability distribution of the queries classifier to
approximate identification certainty. Thus, in Chapter 1 we wondered (i) if we could retrieve
realistic invasive species distribution patterns with Maxent applied to the geolocated queries,
and (ii) what was the effect of various level of occurrences filtering, based on the classifier
score of the most likely species, on the relevance of the final SDM. We selected 7 alien invasive
species in the French metropolitan territory, run Maxent (Phillips et al., 2006) SDM on those
occurrences, filtered with several level of identification certainty, using uniform background
and model based sampling bias correction (Warton et al., 2013) and compared the models pre-
dictions to independent national expert reports (FCBN-INPN). We evaluated the True Skill
Statistics (TSS) of the predicted response on FCBN presence-absence over 10x10km sites and
another metric measuring how well the model recovered the most abundant sites. This study
is presented in the form of our first article and is provided in Chapter 1.

Dealing with spatio-environmental sampling bias when making SDM from large oppor-
tunistic occurrences database was at the center of the questions of the PhD and is addressed
in Chapter 2 and Chapter 3. Sampling bias is tied to the environment and affects im-
portantly the distribution of occurrences in the Pl@ntNet data. We noticed that the model
based bias correction was unsatisfying in Chapter 1 because of descriptors associated with
the species intensity captured a visible part of the sampling density.

The Target-Group background strategy is a very promising alternative because it avoids
the technical difficulties of sampling effort estimation. However, even though the method
intuitive idea seem relevant, section 5.4.1 showed that the ways this method is put in practice
are heterogeneous, and its results are uncertain (Warton et al. (2013), Ranc et al. (2016)).
There is no procedure or justification of practical guidelines to define the composition of the
Target-Group of species or the resolution of the sites grid. Taking a step back, the practice of
transforming occurrences and background into "at least one occurrence" per site induce a scale
dependency that is questionable in the framework of Poisson point processes. We considered
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the application of a limit case of TGB, the method that takes all individual Target-Group
Occurrences as Background (TGOB). More generally, there is no clear unifying description
of the mechanism of sampling bias based on a theoretical background, that could guide the
practice of SDM, nor of biases appearing because of TGB correction, even though an effect
of spatially varying species richness has been mentioned in Warton et al. (2013). Sampling
bias has been empirically shown to depend on the species occurrence area (Ranc et al., 2016),
which is a combination of the generalism of the species along many environmental gradients,
its global occurrence rate and its global sampling effort. We argue that it is true but quite
vague. The bias may be characterized along each environmental gradient, because the SDM is
in the end a function of the environmental variable. In Chapter 2, we formalized the effect
of spatial sampling effort on species occurrences intensity in the environmental space and on
Poisson process model inference bias with two types of background points selection scheme:
Uniformly drawn Background (UB) points or TGOB. We assumed that species are distributed
according to independent Poisson processes, whose realizations are thinned according to the
sampling effort function. We especially asked how the Target-Group species distributions
affect bias in the Poisson process species intensity estimate, and what it takes to control this
bias.

Chapter 2 showed that it is difficult to control for bias when applying the TGOB strategy,
due to unknown TG species realized niches. Working on improving the joint modelling of
species intensities and sampling effort seems more promising, because integrating explicitly
sampling effort in the model enables to recast the initial problem of bias as a problem of
estimation variance, which we can hope to solve through the large amount of data available.
Joint integration of standardized data with opportunistic presences-only in SDM may greatly
help to separate species distribution from observation effort (Giraud et al. (2016), Fithian et al.
(2015), Koshkina et al. (2017)), but standardized flora surveys are costly, as the identification
expertise becomes scarce. Those data are hard to access or dates back to many years ago, while
we are especially motivated by a regular monitoring of alien invasive species distribution. Thus,
in Chapter 3, we propose a method for jointly estimating observation effort and multiple
species responses functions from large amount of opportunistic occurrences only, based on a
marked Poisson process model. The observation effort component is shared among species and
is a step function defined over a partition of space into cells. Jointly multiple species should
improve the estimation of all species response, especially on the margins of their distribution,
because we get information on the observation effort everywhere where at least some species
live.

Another concern of the PhD was to investigate the opportunities of deep learning methods
to improve the spatial prediction of plant species, that could complement picture based iden-
tification by developing spatial recommendation systems like in Mac Aodha et al. (2019). We
have seen in section 5.3.1-2 that patterns of abundance may result from the local structure
of the landscape because of source-sink dynamics, surrounding biotic context, and environ-
mental changes along time. We ask if and how SDM could capture patterns of the landscape
to improve prediction of species response. Deep convolutional NN have been shown to be an
efficient model architecture to capture spatial patterns that can be modelled by composed
function of local low dimensional patterns, as seen in section 5.4.2. In Chapter 4, we in-
vestigate if Deep convolutional NN can perform better than state of the art presence-only
SDM. Plus, we have seen in section 5.4.2 that multi-class deep NN generalized better than
single-class when classes shared input features patterns (Poggio et al., 2017). Thus, Chapter
4 also evaluates if deep NN, and deep convolutional NN, with more species responses but the
same hidden layers architecture generalize better on every species.
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Learning complex NN architectures takes computational time and finding efficient imple-
mentations for a given problem open numerous possibilities: e.g. the choice of pre-treatments,
input data, architecture, regularization scheme, learning algorithm, etc. Thus, deep learning
model improvement is currently an empirical process, where the modeler cannot test every
combination and thus refines its choices depending on the effect of local changes. The Life-
CLEF evaluation campaign began in 2014 (Joly et al., 2014) and was built in the spirit of
providing a place for multiple researchers to work at developing the best algorithms for various
task of biodiversity identification. A train dataset is provided to participants who may use it
for creating their algorithms. A test dataset is built to evaluate the predictive performances
of algorithms on the task, and each participant may submit answers of several algorithms to
the evaluation. In the context of this PhD, GeoLifeCLEF has been initiated in 2018 as a
task of LifeCLEF specifically dedicated to evaluate fine spatial grain species recommendation
algorithms. The aim of the algorithm is to predict the list of species that are the most likely
to be observed at a given location. The expected research outcomes of GeoLifeCLEF were of
two types: (i) Evaluate new machine learning presence-only SDM algorithms with higher fine
spatial grain predictive power that may serve as material for ecological research, (ii) favor new
insights on avenues of improvement for next generation predictive models. Chapter 5 report
the main results of the two editions of GeoLifeCLEF coordinated in 2018 and 2019. For the
first edition of the task we extracted around 300,000 plant species occurrences from the GBIF
17 in France, among which 70,000 were taken as evaluation data, and provided an image patch
of 33 environmental variables for each occurrence to enhance the experimentation of convolu-
tional models. 2019 edition kept the same study area, but provided a much larger training set
of species occurrences including the 2018 dataset, more than 2 millions Pl@ntNet queries and
around 10 millions of occurrences from other biological groups extracted from the GBIF. The
test set improved in quality as we provided 25,000 expert occurrences from the CBNmed 18

with accurate geolocation and a weighted selection scheme to insure uniform distribution in
space and more concordance between species representation and their true spatial abundance.
We also changed the evaluation metric to account for the fact that many plant species coexist
under the scale of geolocation accuracy. 3 participants submitted 33 runs and 5 participants
submitted 44 runs to the 2018 and 2019 editions respectively, providing interesting open and
perennial benchmark datasets for spatial species recommendation.

17https://www.gbif.org/
18www.cbnmed.fr//
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5 Chapter 1:
Species distribution modelling based on
the automated identification of citizen
observations
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Identifying organisms is a key step in accessing information related 
to the ecology of species. Specifically, large- scale monitoring of spe-
cies distribution dynamics is essential in the context of global change. 
Such monitoring requires intensive occurrence data, but such data 
are lacking due to the level of expertise necessary to correctly iden-
tify and record living organisms. This is especially true for plants, 
which are one of the most difficult groups to identify, with more 
than 350,000 known species on earth. The Rio Conference of 1992 
(the Earth Summit, United Nations Conference on Environment 
and Development [UNCED], Rio de Janeiro, Brazil, 3–14 June 

1992 [http://www.un.org/geninfo/bp/enviro.html]) recognized 
this taxonomic gap as a major obstacle to the global implementa-
tion of the Convention on Biological Diversity. Gaston and O’Neill 
(2004) discussed the potential of using automated identification ap-
proaches, typically based on machine learning and multimedia data 
analysis methods, to produce more intensive occurrence data. They 
suggested that if the scientific community is able to (1) overcome 
the production of large training data sets, (2) more precisely iden-
tify and evaluate error rates, (3) scale up automated approaches, 
and (4) detect novel species, it will then be possible to initiate the 
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the future.
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development of a generic automated species identification system. 
Such a system should then open important opportunities for studies 
in biology, ecology, and related fields.

Since Gaston and O’Neill (2004) raised the question, enormous 
work has been done on the development of automated approaches 
for plant species identification (Casanova et  al., 2009; Yanikoglu 
et al., 2014; Lee et al., 2015; Champ et al., 2016; Goëau et al., 2016; 
Joly et  al., 2016; Wilf et  al., 2016; Wäldchen and Mäder, 2017). 
Deep learning techniques in particular have been recently shown 
to achieve impressive recognition performance (Goëau et al., 2017). 
Some of these results were integrated into effective web or mo-
bile tools and have initiated close interactions between computer 
scientists and end- users such as ecologists, botanists, educators, 
land managers, and the general public. One remarkable realiza-
tion in this domain is the Pl@ntNet mobile application (Affouard 
et  al., 2017). It is used in an eponymous citizen science initiative 
(SciStarter, available at https://scistarter.com/project/16909-Plnt-
Net) by a growing number of users around the world (more than 
6 million downloads since 2013), and tens of thousands of plant 
pictures are submitted each day. Because a large fraction of this ob-
servation stream is geolocalized, it has great potential in terms of 
biodiversity monitoring and species distribution modeling (SDM). 

As the use of opportunistic data coming from citizen science initia-
tives has already been proven by Giraud et al. (2016) to strengthen 
the estimate of relative bird species abundance, we can expect 
other potential uses for such data types in a botanical context with  
Pl@ntNet.

Acquiring a large amount of opportunistic data still occurs at 
the expense of data quality and reliability, however. Many irrelevant 
pictures are submitted by the users of the Pl@ntNet application. 
This includes non- plant pictures, plant pictures of poor quality, or 
pictures of taxa that are not in the designated checklist (e.g., potted 
plants, ornamental and horticultural varieties, hybrids). Because 
the machine learning algorithm is not able to filter all of these pic-
tures, many of them result in false positives (i.e., they are predicted 
as occurrences of species belonging to the checklist). Indeed, for a 
species automatically identified from a picture, two problems may 
induce identification error: (1) there is an intrinsic taxonomic un-
certainty given the picture alone (i.e., it does not contain the discri-
minant visual pattern[s] that would make an expert certain about 
the exact species identification) or (2) the species was misidentified. 
Figure 1 illustrates typical examples of identification errors for Acer 
monspessulanum L. In Fig. 1B, one can see that the small symmet-
rical lobes at the base of the leaf might be confused with those of 

FIGURE 1. Four unvalidated Pl@ntNet plant pictures representing, or identified as, Acer monspessulanum and their respective predicted confidence 
values for the highest ranked species (the sum of scores over all species is always 100). (A) The species is A. monspessulanum and is well predicted. 
(B) The species is A. monspessulanum, but the model confounds it with A. campestre. (C) The species is A. monspessulanum or A. pseudoplatanus, but 
the species cannot be determined with the fruit only; there is an intrinsic taxonomic uncertainty. (D) The species is Hedera helix but is predicted as A. 
monspessulanum because this leaf is quite similar, as one can compare with (A).
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a young specimen of A. campestre L., which is probably the cause 
of the model uncertainty. Figure 1C well illustrates the problem of 
taxonomic uncertainty, as several species cannot be distinguished 
by the feature recorded in the observer’s image where there is high 
proximity of the confidence values of the first two species. Finally, 
Fig. 1D shows a leaf of Hedera helix L. with three major lobes that 
have strong visual similarity to those of the A. monspessulanum leaf. 
Manually cleaning such large and noisy data streams is not possible. 
These problems imply that all species are not equal in their potential 
for automatic identification. There are several factors that make a 
species automatically identifiable from a photograph: the scale of 
the discriminant visual pattern (for example, there are many issues 
with the Poaceae family because discriminant features are often too 
small to be easily captured with a photograph), the visual saliency 
of the pattern compared to other species, and the temporality of the 
pattern due to the phenology of its organ.

In this article, we explore the possibility of exploiting automat-
ically identified observations, without human validation, for SDM. 
Specifically, we study the impact of the degree of uncertainty of the 
retained occurrences when training the popular MAXENT niche 
modeling approach (Merow et al., 2013). Given the type of Pl@nt-
Net users, candidate species have to be automatically identifiable by 
non- expert observers who are often not familiar with the discrimi-
nant part of the plant that needs to be photographed. In addition, 
species that are visually similar in pictures must be avoided, and 
the chosen species must be well illustrated in the predictive model 
training database. In addition to these criteria that allow automatic 
species identification, we must take into account the requirements 
using SDM on presence- only data to acquire meaningful results. 
More precisely, the species must have contrasted environmental 
preferences regarding the study domain, its realized habitat must 
not be overly constrained by its dispersal capacity or important his-
torical perturbations, and there must be enough observation points 
regarding the environmental variables considered.

Considering these constraints on species selection, the available 
data, and the potential use- cases, we applied our protocol to the mod-
eling of the distribution of five species classified in major and mod-
erate categories of invasion by the National Mediterranean Botanical 
Conservatory of Porquerolles for the southeastern region of France 
(Conservatoire botanique national méditerranéen de Porquerolles, 
2018). Invasive species represent a major economic cost to our soci-
ety (estimated at nearly €12 billion a year in Europe) and are one of 
the main threats to biodiversity conservation (Weber and Gut, 2004). 
The early detection of the appearance of these species is a key ele-
ment in managing them and reducing the cost of such management. 
The analysis of Pl@ntNet data can provide a highly valuable response 
to this problem because the presence of these species is often corre-
lated with that of human activity (and thus to the density of Pl@nt-
Net data occurrences), and the constant flow of observations enables 
annual monitoring of species distributions.

METHODS

Automatic species identification and the Pl@ntNet workflow

We first present the workflow of the Pl@ntNet system that yields 
automatically identified observations. To compute automatic spe-
cies identification, we use a convolutional neural network (CNN). 
CNNs have been shown to considerably improve the accuracy of 

automated plant species identification compared to previous meth-
ods (Grinblat et al., 2016; Ghazi et al., 2017; Goëau et al., 2017). More 
generally, CNNs recently received much attention in the computer 
vision community because of the impressive performance they can 
achieve on a large variety of classification tasks. Details of the CNN 
architecture and of the training procedure we used in this study are 
provided in Appendix 1. The network was trained in a supervised 
manner on a set of 332,000 humanly validated plant images belong-
ing to approximately 11,000 species and an additional rejection 
class (containing non- plant pictures taken by Pl@ntNet users, e.g., 
faces, animals, manufactured objects). These species cover a large 
part of the European and North African floras, according to the net-
work of people initially involved in the production and validation of 
these data (this network was initiated with the Tela Botanica non- 
governmental organization [http://www.tela-botanica.org] and the 
network of French- speaking botanists, composed of professionals 
and amateurs). This data set also includes a few hundred species 
of common tropical plants from two tropical regions: the Indian 
Ocean region and tropical Amazonia. Data from these two regions 
were collected by scientists and engineers from research institutes 
and universities working on these flora, representatives of the Tela 
Botanica network in these regions, and Pl@ntNet users. The data 
validation process was conducted using the IdentiPlante web tool 
(http://www.tela-botanica.org/appli:identiplante), essentially dedi-
cated to the Tela Botanica community, and was also accessible on 
the Pl@ntNet Android app. These applications display all botanical 
records shared by the project members. Logged- in users are able to 
provide new identifications, post comments, and vote on previous 
identifications. The revised data are regularly crawled by the visual 
search engine, which picks up observations considered correctly 
identified according to a predefined set of rules on the votes and on 
possible conflicts. These validation tools allow coverage of a grow-
ing number of species, from 800 in 2013 up to 11,000 in 2016.

Species distribution modeling using automatically identified 
Pl@ntNet observations

We performed SDM based on the unvalidated Pl@ntNet obser-
vations made in France in 2016. In total, the data represent ap-
proximately 2 million observations (most observations have only 
one image and some have up to five images). Each image x was 
passed to the CNN to receive an automated species prediction in 
the form of a categorical distribution p(k|x) estimating the prob-
ability that the image x is from the k- th species (according to the 
softmax classification layer of the CNN). For the observations 
composed of several images, the predictions were simply averaged 
(i.e., p(k|x) = 1/nx · ∑p(k|xi) for an observation x composed of nx 
images xi). We then kept only the observations for which the most 
probable species (denoted as kmax) belonged to the set of the five 
potential invasive species considered in our study: Acer negundo 
L., Carpobrotus edulis (L.) N. E. Br., Erigeron karvinskianus DC., 
Opuntia ficus-indica (L.) Mill., and Reynoutria japonica Houtt. 
The resulting number of occurrences per species and per interval 
of confidence values p(kmax|x) is provided in Fig. 2. For low values 
of p(kmax|x), the level of noise is important (e.g., with several false 
positives for p(kmax|x) < 30%). For the highest values of p(kmax|x) 
(e.g., p(kmax|x) > 95%), the level of noise is more reasonable but 
the number of occurrences is also much lower. Thus, to maximize 
SDM performance, one could expect a positive trade- off with an 
intermediate threshold.
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To validate the species distribution models trained from au-
tomatically identified data, we used a second reference data set 
comprising count data collected and validated by French expert 
naturalists. This data set, referred to as Inventaire National du 
Patrimoine Naturel (INPN; https://www.gbif.org/dataset/75956ee6-
1a2b-4fa3-b3e8-ccda64ce6c2d; Dutrève and Robert, 2016), comes 
from the Global Biodiversity Information Facility (https://www.
gbif.org/). The underlying occurrences were collected in various 
contexts, including floras and regional catalogs, specific invento-
ries, field notebooks, and surveys carried out by botanical conserv-
atories. We kept only a subset of these data corresponding to the 
five invasive species considered in our study. The resulting data set 
contains 20,810 occurrences (see Table 1 for the detailed numbers 
per species) aggregated in 3242 quadrat cells of 100 km2 distributed 
on a regular grid of 5175 quadrat cells covering the French territory.

Species distribution models were computed via MAXENT 
(Phillips et al., 2004, 2006), a popular environmental niche mod-
eling method. In particular, we used the implementation of the 
maxnet (Phillips et  al., 2017) R package that expands the input 
environmental variables with several functions (including lin-
ear, quadratic, threshold, hinge, and first- order interactions). 
Because we used presence- only SDM, we used pseudo- absence 
localities for model parameterization (see Appendix  2 for more 
details). MAXENT was computed on a set of 29 input environ-
mental variables, including bioclimatic, pedological, topological, 

hydrographical, and land cover variables from CHELSA Climate 
data 1.1 (Karger et al., 2017), Consultative Group on International 
Agricultural Research–Consortium for Spatial Information 
(CGIAR- CSI) potential evapo- transpiration (ETP) data (Zomer 
et al., 2007, 2008), ESDBv.2 (Panagos, 2006; Van Liedekerke et al., 
2006; Panagos et al., 2012), U.S. Geological Survey Digital Elevation 
data, the Institut National de l’information Géographique et 

FIGURE 2. The number of Pl@ntNet observations per species and per 
confidence values p(kmax|x).

TABLE  1. Detailed number of occurrences in the Inventaire National du 
Patrimoine Naturel (INPN) data set by species.

Species name
No. of  

observations
No. of 100- km2 

areas

Acer negundo L. 5217 904
Carpobrotus edulis (L.) N. E. Br. 484 114
Erigeron karvinskianus DC. 711 306
Opuntia ficus-indica (L.) Mill. 120 44
Reynoutria japonica Houtt. 14,278 2623

TABLE 2. List and details of the environmental descriptors used in this study.

Name Description Nature Valuesa Local image

CHBIO_2 Mean monthly 
temp (max, min)

quanti. [7.8, 21.0] Yes

CHBIO_7 Temp. annual range quanti. [16.7, 42.0] Yes
CHBIO_8 Mean temp. of 

wettest quarter
quanti. [−14.2, 23.0] Yes

CHBIO_9 Mean temp. of 
driest quarter

quanti. [−17.7, 26.5] Yes

CHBIO_10 Mean temp. of 
warmest quarter

quanti. [−2.8, 26.5] Yes

CHBIO_11 Mean temp. of 
coldest quarter

quanti. [−17.7, 11.8] Yes

CHBIO_13 Precip. of wettest 
month

quanti. [43.0, 285.5] Yes

CHBIO_14 Precip. of driest 
month

quanti. [3.0, 135.6] Yes

CHBIO_15 Precip. seasonality 
(CV)

quanti. [8.2, 26.5] Yes

CHBIO_18 Precip. of warmest 
quarter

quanti. [19.8, 851.7] Yes

CHBIO_19 Precip. of coldest 
quarter

quanti. [60.5, 520.4] Yes

etp Potential 
evapotranspiration

quanti. [133, 1176] Yes

alti Elevation quanti. [−188, 4672] Yes
shade Shade level quanti. [0, 1] No
slope Ground slope quanti. [0, 13457] No
dmer Distance to 

coastline
quanti. [|0, 32767|] No

droute Distance to roads quanti. [|0, 32767|] No
proxi_eau <50 m to fresh 

water
bool. {0, 1} Yes

awc_top Topsoil available 
water capacity

ordinal {0, 120, 165, 
210}

Yes

bs_top Base saturation of 
the topsoil

ordinal {35, 62, 85} Yes

cec_top Topsoil cation 
exchange capacity

ordinal {7, 22, 50} Yes

crusting Soil crusting class ordinal [|0, 5|] Yes
dgh Depth to a gleyed 

horizon
ordinal {20, 60, 140} Yes

dimp Depth to an 
impermeable layer

ordinal {60, 100} Yes

erodi Soil erodibility class ordinal [|0, 5|] Yes
oc_top Topsoil organic 

carbon content
ordinal {1, 2, 4, 8} Yes

pd_top Topsoil packing 
density

ordinal {1, 2} Yes

text Dominant surface 
textural class

ordinal [|0, 5|] Yes

clc Ground occupation categ. [|1, 48|] Yes

Note: bool. = Boolean data; categ. = categorical data; CV = coefficient of variation of 
monthly precipitation; quanti. = quantitative data.

aData presented in curly brackets ({ }) contain the list of all possibles values of the variable, 
i.e., a discrete ensemble; square brackets ([ ]) indicate the continuous range of values that 
can take the variable, i.e., a continuous interval; vertical lines indicate the range of integers 
between the two bounds given, i.e., a discrete interval.



Applications in Plant Sciences 2018 6(2): e1029 Botella et al.—Species distribution modeling based on automatically identified observations • 5 of 11

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2018 Botella et al.

forestière–Système d’Administration Nationale des Données et 
Référentiels sur l’Eau (IGN- SANDRE) BD Carthage, CORINE 
Land Cover 2012 data, and IGN ROUTE500 data. The detailed 
methodology of how these variables were collected and formatted 
is described in Appendix  3. The full list of the variables used is 
presented in Table 2. For each of the considered species, we com-
puted seven models with varying levels of minimal confidence 
of species occurrences, i.e., different threshold values pmin(kmax|x) 
of the categorical probability p(kmax|x). We know that the global 
sampling effort in Pl@ntNet is highly correlated with human 
population density and the proximity to roads and to the coast-
line. In our study, the sampling intensity was so high compared 
to the species abundance that we strongly overestimated the spe-
cies abundance in cities, on beaches, and on roads. Consequently, 
we fitted MAXENT models, including variables of urban areas, 
proximity to roads, and distance to the coastline. In the predicted 
abundance function, we then kept these variables constant across 
space to cancel the effect of the sampling effort (see Appendix 2 
for more details). This approach has already been proposed and 
successfully used in the literature of SDMs (Warton et  al., 2013; 
Stolar and Nielsen, 2015). The predictive effectiveness of the mod-
els was then assessed using the INPN count data as a validation set. 
We used two evaluation metrics: (1) the true skills statistics (TSS) 
equal to the sum of the sensitivity and the specificity minus one (as 
described in Allouche et al., 2006), and (2) the accuracy on 10% 
densest quadrats (A10DQ; see Appendix 2 for more details). The 
TSS is the sum of sensibility and specificity minus one when com-
paring the SDM predicted presences/absences of a species with the 
references (the INPN data set). It is a meaningful measure to eval-
uate the model’s ability to detect presences while simultaneously 
minimizing false positives. It is computed through binarization 
of SDM continuous prediction based on the threshold that max-
imizes the TSS. We chose the A10DQ as a complementary metric 
because it evaluates the accuracy of the models in predicting the 
quadrats with the highest abundance (INPN count), which is an 
especially interesting property from the perspective of invasive 
species management.

RESULTS

Figure 3 displays the evaluation metrics as a function of the con-
fidence threshold pmin(kmax|x) applied to filter the automatic pre-
dictions. We found that the confidence threshold had variable 
influence depending on the species, but there was an overall trend 
represented by the average curve (Fig. 3, black solid line). Too- low 
thresholds did not allow for filtering identification errors suffi-
ciently, thus the model was biased by the presence of too many irrel-
evant occurrences. A too- high threshold (above 70%) also degraded 
the model performance (in particular, the accuracy of the quadrat 
cells with the higher level of counts; see Fig. 3) because the number 
of retained occurrences in the training set decreased significantly 
with increasing threshold. Models based on too few occurrences 
could not provide a relevant prediction of species distribution. With 
the current Pl@ntNet data, the chosen species, and the variables, a 
confidence threshold of 70% represented a good compromise for 
SDM. It filtered identification errors effectively for most species 
while retaining enough occurrences for model training. The most 
problematic species was Reynoutria japonica: it had very poor TSS 
for all thresholds (a TSS score of 0 would be a random prediction of 
presence and absence), indicating that the SDM did not distinguish 
presence and absence zones very well. This species is the most wide-
spread, which leads to poor SDM performances. Nevertheless, for 
the best threshold, A10DQ showed that 20% of the densest INPN 
quadrats were predicted by the model fitted on Pl@ntNet, which 
is significantly better than a random ranking of quadrats (which 
would give an average of 10% and a standard deviation of 1.3%). 
Consequently, the model could capture information on the dis-
tribution of Reynoutria from the Pl@ntNet data. Conversely, very 
good results were obtained for both metrics for Opuntia ficus-indica 
and Carpobrotus edulis.

Figure 4 further shows the distributions predicted for each spe-
cies using pmin(kmax|x) = 70%. For comparison, we also displayed 
the expert count data of INPN, as well as the specificity and sen-
sitivity of our model measured with that data (at TSS max). Most 
regions with high INPN counts were reasonably well predicted by 

FIGURE  3. Predictive effectiveness of the species distribution models trained on Pl@ntNet data as a function of the confidence threshold value 
pmin(kmax|x) showing accuracy on the 10% densest quadrats (A) and true skill statistics (TSS; conversion of prediction value into presence/absence with 
the threshold that maximizes TSS) (B).



Applications in Plant Sciences 2018 6(2): e1029 Botella et al.—Species distribution modeling based on automatically identified observations • 6 of 11

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2018 Botella et al.

FIGURE  4. Maps of species distribution models computed from Pl@ntNet data (based on pmin(kmax|x) = 70%) and of expert count data from the 
Inventaire National du Patrimoine Naturel (INPN). The sensibility and specificity used for the computation of the true skill statistics (for pmin(kmax|x) 
= 70) is provided for each species.
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the models. Accordingly, sensitivity values were generally accurate 
for most species. Nevertheless, there were also regions for which 
the Pl@ntNet model and INPN data disagreed; in these regions the 
Pl@ntNet model predicted high abundances but there were none 
or very few occurrences in the INPN data. The strongest disagree-
ment occurred for Reynoutria japonica, i.e., the taxon for which the 
specificity was the lowest. Other false- positive prediction regions 
included the west coast for Opuntia ficus-indica and Carpobrotus 
edulis and the “Golfe du Lion” (arc on the southeast coast) for O. 
ficus-indica and Erigeron karvinskianus.

DISCUSSION

Visual inspection of Pl@ntNet observations occurring in such 
false- positive regions revealed that for the vast majority such ob-
servations did not correspond to erroneous identifications (pmin 
(kmax|x) = 70% is a high enough threshold to remove noise effi-
ciently). Rather, they corresponded to real occurrences that can be 
classified in three main categories (see Fig. 5 for examples of obser-
vations belonging to the different categories). The first category can 
be qualified as cultivated specimens, i.e., specimens planted and/
or maintained by humans such as gardening plants, house plants, 
ornamental plants in city parks, etc. Most occurrences of Opuntia 
ficus-indica on the west coast belonged to this category. A second 

category of observations could be qualified as casual invasive spec-
imens, i.e., isolated specimens that often flourish close to human 
construction but that do not form self- replacing populations. 
Cultivated and casual invasive specimens present in the observa-
tions reveal that the species is able to grow in a great diversity of 
habitats. These specimens should be identified, either to (1) filter 
them for model learning, (2) evaluate the correlation between spe-
cies gardening intensity and its abundance in wild surroundings, 
or (3) learn more complex models that integrate dispersal mech-
anisms and quantify more precisely the importance of gardening 
intensity on the species’ capacity to colonize a region. To identify 
cultivated specimens, several options are possible: for example, 
learning models can be used to identify the context of the picture 
or the user can be asked to clarify the type of environment where 
the observation was made, especially when observations appear 
ambiguous. Apart from the issue of correctly predicting species oc-
currences in the wild, frequent occurrences of cultivated and casual 
invasive specimens in a region where there is no presence in the 
wild can reflect the risk of future invasion in the wild.

A last category of observations can be qualified as newly in-
ventoried invasive specimens, i.e., non- isolated specimens living 
in natural areas that have yet to be inventoried in the INPN data. 
Notably, the majority of occurrences of Carpobrotus edulis on the 
west coast belong to this category. Newly inventoried invasive spec-
imens could provide an early warning for territory managers. For 

FIGURE 5. Pl@ntNet observations with a species prediction score of more than 70% for plants living in natural conditions or cultivated for ornamen-
tal purpose.
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example, we found newly inventoried specimens of Reynoutria ja-
ponica in the Pl@ntNet data, and we suspect that poor performance 
of its SDM could reflect a negative bias in the evaluation metrics of 
this species. Typically, specimens occurring outside of presence ar-
eas identified by experts and not categorized as cultivated or casual 
invasive should be prioritized for expert validation.

In this study, our sampling effort correction approach was based 
on prior knowledge of sampling intensity in the Pl@ntNet data. We 
could not evaluate the errors related to the sampling effort bias with-
out complementary systematic survey data. Nevertheless, the INPN 
data have their own heterogeneity in the spatial distribution of the 
sampling effort. These data were collected by independent regional 
conservatories, and variations in sampling by different workforces 
may have introduced regional heterogeneity. Furthermore, some 
zones are not surveyed by conservatories, typically cities in most 
cases, which tends to bias the Pl@ntNet model error in urban ar-
eas. The study of global sampling effort bias is crucial for exploit-
ing presence- only data collected without protocol. The spatially 
heterogeneous sampling effort is especially problematic when it is 
correlated with environmental variables impacting the species dis-
tribution. For example, the sampling effort is correlated with the 
distance to the coastline, which is also a variable influencing the 
abundance of Opuntia ficus-indica, Erigeron karvinskianus, and 
Carpobrotus edulis. Because our bias correction method removes the 
distance to the coastline effect, it partially removes the ability of the 
model to capture this effect on the species distribution. When we in-
cluded these variables in the predicted distribution of the three spe-
cies (results not presented in this article), we found a much greater 
predicted abundance gradient toward the coast. However, the maps 
presented in Fig. 4 show that the model captured a part of the coastal 
effect through other variables that are correlated with the distance to 
coastline. The same problem will occur with other invasive species 
that tend to grow near roads as a result of constant perturbation 
or dispersal mechanisms. More generally, we note that the presence 
of invasive species is strongly influenced by human activity. It is 
also highly correlated with observational intensity in opportunistic 
presence- only data. Thus, this category of species represents a major 
methodological challenge for improving SDM based on presence- 
only data and represents a clear path for future research.

CONCLUSIONS

This study is the first to evaluate the potential of automated iden-
tification of opportunistic plant observations for modeling species 
distributions. The described methodology allowed us to analyze 
the potential usefulness of the Pl@ntNet data. By comparing SDMs 
trained on Pl@ntNet unvalidated observations with validated in-
dependent count data on a large spatial scale, we found that the 
data are rich enough to be used for SDM with only a single year 
of data collection. However, we also showed that distributions re-
ported from Pl@ntNet data do not precisely match those of ex-
pert data. The main reasons for these deviations appear to be the 
presence of cultivated or casual invasive specimens in the data set, 
the detection of real presence in new areas, and the limits of the 
sampling bias correction method. Noticing these limits allowed us 
to underline significant research challenges for SDMs and to pro-
vide possible methods to usefully integrate information provided 
by opportunistic citizen science observations into conservation 
management.
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APPENDIX 1. Detailed architecture and training procedure of the 
convolutional neural network used to compute the automated 
identifications.

The main strength of convolutional neural network (CNN) 
technologies comes from their ability to learn discriminant 
visual features directly from the raw pixels of the images without 
exponentially increasing the model variables as the dimensionality 
grows (Goodfellow et al., 2016). This is achieved by stacking 
multiple convolutional layers, i.e., the core building blocks of a 
CNN. In general, a convolutional layer takes images as input 
and produces as output feature maps corresponding to different 
convolution kernels while looking for different visual patterns.

To get to specific choices in the architecture, we used an 
extended version of the GoogleNet model (Szegedy et al., 2015) 
that is a very deep CNN that stacks several so- called inception 
layers. As in Carranza- Rojas et al. (2017), we extended the base 
version with batch normalization (Ioffe and Szegedy, 2015), which 
has been proven to speed up convergence and limit overfitting, 
and with a parametric rectified linear unit (PReLU) activation 
function (He et al., 2015) instead of the traditional rectified linear 
unit (ReLU).

To improve the generalization ability of the network, we used 
transfer learning, which is a powerful paradigm to overcome the lack 
of sufficient domain- specific training data. Deep learning models 
have to be trained on thousands of pictures per class to converge 
on accurate classification models. It has been shown that the first 
layers of deep neural networks deal with generic features (Yosinski 
et al., 2014) so that they are generally usable for other computer 
vision tasks. Consequently, they can be trained on arbitrary training 
image data. The last layers contain more or less generic information 
transferable from one classification task to another. These layers are 
expected to be more informative for the optimization algorithm than 
a random initialization of the weights of the network. Therefore, a 
common practice is to initialize the network by pre- training it on a 
large available data set and then fine- tune it on the scarcer domain- 
specific data. Many networks are pre- trained on the generalist data 
set ImageNet (Deng et al., 2009), which covers a large variety of visual 
concepts, including animals, vehicles, and manufactured objects. 
Because the GoogleNet model we used was already pre- trained on 
this generalist data set, we used the following methodology for fine- 
tuning it on our data set of 11,000 species (using the Caffe framework 
[Jia et al., 2014]):
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1. The linear classification layer was replaced by a new one aimed at 
classifying the new classes (i.e., the 11,000 species). It was initial-
ized with random weights and the learning rate was multiplied 
by 10 for this layer.

2. The other layers were kept unchanged to initialize the network 
with the weights learned from ImageNet.

3. The network was trained on the 332,000 plant images of our 
training set.

A batch size of 16 images was used for each iteration, with a 
learning rate of 0.0075 with images of 224 × 224 resolution. Simple 
crop and resize data augmentation was used with the default set-
tings of the Caffe framework.

APPENDIX 2. Description of Pl@ntNet data post- treatments, 
generation of quadrature points, and experimental procedure. Results 
were obtained using R.

Filtering of Pl@ntNet geolocated observations: We used the 
unvalidated observations collected by Pl@ntNet users during the 
year 2016. We kept only observations for which one of our five 
species was ranked first according to the identification score. We 
first selected those whose GPS geolocation falls in the French 
Metropolitan territory (polygon: getData(country=“FRA”,level=0), 
function from package raster) excluding Corsica, or are closer 
than 500 m to the coastline (because of coordinate error). 
Because observations are very often duplicated due to a repeated 
submission of the same set of pictures, we kept only one of the 
identical observations. Unsatisfactory automatic identification 
of the same specimen allowed the user to take new pictures of 
the specimen and submit it again. This kind of duplication was 
removed by the following procedure: for two occurrences closer 
than 60 sec in time and 100 m in space, we kept the one with 
highest p(kmax|x).

Quadrature points: MAXENT can be interpreted as a non- 
homogeneous Poisson process model (Fithian and Hastie, 2013). 
Thus, computing a MAXENT model from observations requires 
integration of its intensity function over the spatial domain of study D 
(in this study, the French territory). For this purpose, it approximates 
the integral with quadrature points, also called “pseudo- absences,” 
that represent the distribution of the environmental descriptors on 
D. As our domain was wide, and some of our descriptors vary with 
high spatial frequency (like distance to roads or proximity to fresh 
water), we used a high number of quadrature points. We generated 
101,632 points on a grid with a similar spacing of 0.025 in longitude 
(approximately 2 km) and latitude (approximtely 2.8 km), and 
strictly included in the French polygon (see above).

Prediction of model relative abundance for a plot and 
attribution of quadrature points to plots: With a fitted 
MAXENT model, we can evaluate its intensity function at every 
quadrature point via environmental descriptors, which gives a 
high- resolution map of predicted relative abundance across 
France. This fine- resolution prediction includes the effect of high- 
frequency variables. However, to compare model predictions 
to counts on quadrat cells, we need to upscale our prediction: 
according to the properties of the inhomogeneous Poisson 
process, the law of the number of points falling in a quadrat cell 
is a Poisson law whose parameter is the integral of the intensity 

function over the quadrat cell. Because the quadrature points 
are regularly spaced, we can approximate this integral up to a 
factor (common to every quadrat cell because they have the same 
area) with the mean of intensity values over quadrature points 
contained in the quadrat cell. For some cells located mainly 
above sea or ocean, some did not contain any quadrature points, 
thus we attributed the closest one while removing it from its 
original plot. In this way, quadrat cells contained an average of 
17.1 quadrature points.

Bias-corrected model prediction: We know that there is 
sampling bias in the Pl@ntNet observation data. The most 
important is high sampling effort in cities, close to roads, and 
near coastlines (because of use during tourist activities). In 
addition, we know that for the species of interest, distance to 
roads and cities has no strong link to real abundance. Because 
we want to remove the artificial importance of those variables in 
the concentration of observations, one strategy is to integrate the 
sampling variables in the intensity function, as is now commonly 
done in such cases (Warton et al., 2013). If there is no perfect 
linear link between sampling and abundance variables, we will 
correctly infer our abundance model. Finally, we predict an 
unbiased relative abundance by setting the sampling variables to 
a constant value everywhere in space. However, we cannot do this 
for the distance to coastline because this variable plays a key role 
in the real abundance of Carpobrotus edulis, Opuntia ficus-indica, 
and Erigeron karvinskianus.

Evaluation metric: The evaluation metric represents the 
proportion of the top 10% quadrats in terms of real count that 
are also in the top 10% in terms of model prediction. However, 
we have to define the last quadrat cell ranked in the top 10% 
for counts, which is problematic for some species because of ex 
aequo cells. That is why we defined the following procedure that 
is adjusted for each species in the percentage of top cells such that 
the metrics can be calculated and the percentage is the closest 
to 10%. It is known as accuracy on the 10% densest quadrats 
(A10DQ):

Where Np&c(i) is the number of cells that are contained in the 
Nc(i) higher cells both in terms of count and of model prediction.

Calculation of Nc(i): We order the cells by decreasing the count 
of i and note Ck the count of the k- th cell in this order. As we are 
interested in the quadrat cells ranked in the highest 10%, if C518 
> C519, we set Nc(i) = 518. Otherwise, C518 = C519 (ex aequo exists 
for 518th position), then we note sup the position of the last cell 
with count C519 and inf the position of the first cell with count C519. 
The chosen rule is to take Nc(i) such that Nc(i) = Min(|sup- 518|, 
|inf- 518|).

APPENDIX 3. Detailed methodology of how environmental 
variables were collected and formatted in our study.

We used data covering the French metropolitan territory, freely 
available on the web. The environmental descriptors are listed in 
Table 2. Because the original coordinate systems of the layers used 
varied among sources, we systematically converted them to WGS84 

Np&c(i)

Nc(i)
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using the rgdal package in R, which was the reference coordinate 
system for our observations, quadrature points, and quadrat cells. In 
the following points, we describe the sources, nature, and eventual 
transformations of those environmental data:

• CHELSA Climate data 1.1: These are raster data with worldwide 
coverage and 1-km resolution. A mechanistic climatic model 
is used to make spatial predictions of monthly mean-max-min 
temperatures, mean precipitations, and 19 bioclimatic variables 
that are downscaled with statistical models integrating histori-
cal measures of meteorologic stations from 1979 to the present 
(see Karger et al., 2017). The data are under Creative Commons 
Attribution 4.0 International License (available at http://chelsa- 
climate.org/downloads/).

• The ESDB v2, 1kmx1km Raster Library (Panagos, 2006; Van 
Liedekerke et al., 2006; Panagos et al., 2012): The library 
contains multiple soil pedological descriptor raster layers 
covering Eurasia at a resolution of 1 km. We selected 10 de-
scriptors from the library. They represent quantitative phys-
ico-chemical quantities of the soil (from the PedoTransfer 
Rules Database [PTRDB attributes, available at https://esdac.
jrc.ec.europa.eu/content/ptrdb-attributes]) that have been 
deduced from soil classification with expert rules, and their 
values are aggregated in intervals. As there are few possi-
ble intervals by variables (2−6), we integrated them as cat-
egorical variables in MAXENT. The data are maintained 
and distributed freely for scientific use by the European 
Soil Data Centre at http://eusoils.jrc.ec.europa.eu/content/
european-soil-database-v2-raster-library-1kmx1km.

• CORINE Land Cover 2012, version 18.5.1, 12/2016: This is a 
raster layer describing soil occupation with 48 categories across 
Europe (25 countries) at a resolution of 100 m. This classification 
is the result of an interpretation process applied to the earth’s 
surface with high-resolution satellite images. We set this varia-
ble as categorical in MAXENT with only 30 relevant categories 
for our purposes. This database of the European Union is freely 
accessible online at: http://land.copernicus.eu/pan-european/
corine-land-cover/clc-2012.

• CGIAR-CSI ETP data: The Consultative Group on 
International Agricultural Research–Consortium for 
Spatial Information (CGIAR-CSI) distributes this world-
wide monthly potential evapo-transpiration raster data. 
It is pulled from a model developed by Antonio Trabucco 
(Zomer et al., 2007, 2008). Rasters are estimated by the 
Hargreaves formula using mean monthly surface tempera-
tures and standard deviation from WorldClim 1:4 (http://
www.worldclim.org/version1), and radiation on top of at-
mosphere. The raster is at a 1-km resolution and is freely 

downloadable for a nonprofit use at http://www.cgiar-csi.org/
data/global-aridity-and-pet-database#description.

• U.S. Geological Survey Digital Elevation data: The Shuttle Radar 
Topography Mission achieved in 2010 by the Endeavour shuttle 
measured digital elevation at 3 arcs per second resolution over 
most of the earth’s surface. Raw measures have been post-pro-
cessed by the National Aeronautics and Space Administration 
and the National Geospatial-Intelligence Agency to correct 
detection anomalies. This gives a precision measurement of 
approximately 90 m for this variable. The data are available 
from the U.S. Geological Survey and are downloadable on the 
EarthExplorer (https://earthexplorer.usgs.gov/). See https://lta.
cr.usgs.gov/SRTMVF for more information.

• BD Carthage v3: BD Carthage is a spatial database holding infor-
mation on the structure and nature of the French Metropolitan 
hydrological network. We focus on the geometric segments rep-
resenting watercourses, polygons representing hydrographic 
fresh surfaces, and the ocean. The data have been produced by 
the Institut National de l’information Géographique et forestière 
(IGN) from an interpretation of the BD Ortho IGN. The data-
base is maintained by SANDRE under free license for non-profit 
use and is downloadable at: http://services.sandre.eaufrance.fr/
telechargement/geo/ETH/BDCarthage/FXX/2014/arcgis/.
For “proxi_eau,” i.e., the proximity to fresh water, we used 

QGIS (https://qgis.org/) to rasterize to a 12.5-m resolution, with 
a buffer of 50 m, (1) the shapefile COURS_D_EAU.shp and (2) 
the polygons of SURFACES_HYDROGRAPHIQUES.shp with 
attribute NATURE=“Eau douce permanente”. We then created 
the maximum of the proximity raster derived from COURS_D_
EAU.shp and SURFACES_HYDROGRAPHIQUES.shp (so the 
value of 1 corresponds to an approximate distance of less than 
50 m to a watercourse or hydrographic surface of fresh water). 
For “dmer,” i.e., the distance to the ocean, we calculated, using 
QGIS, the distance raster at a resolution of 12.5 m to polygons 
with attribute TYPE=“Pleine mer” in the shapefile SURFACES_
HYDROGRAPHIQUES.shp of BD Carthage up to a distance of 
32,767 m for storage format convenience.

• ROUTE500 1.1: This database register classifies road linkages 
between cities (highways, national roads, and departmental 
roads) in France in shapefile format, representing approxi-
mately 500,000 km of roads. It is produced under free license 
(all uses) by the IGN. Data are available online at http://
osm13.openstreetmap.fr/~cquest/route500/. For deriving the 
variable “droute,” the distance to the main roads networks, we 
used a similar procedure as for “dmer,” calculating the dis-
tance raster for all the elements of the shapefile ROUTES.shp 
(segments).
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Abstract
The use of naturalist mobile applications have dramatically increased during last years, and

provide huge amounts of accurately geolocated species presences records. Integrating this

novel type of data in species distribution models (SDMs) raises specific methodological

questions. Presence-only SDM methods require background points, which should be con-

sistent with sampling effort across the environmental space to avoid bias. A standard

approach is to use uniformly distributed background points (UB). When multiple species are

sampled, another approach is to use a set of occurrences from a Target-Group of species

as background points (TGOB). We here investigate estimation biases when applying TGOB

and UB to opportunistic naturalist occurrences. We modelled species occurrences and

observation process as a thinned Poisson point process, and express asymptotic likelihoods

of UB and TGOB as a divergence between environmental densities, in order to characterize

biases in species niche estimation. To illustrate our results, we simulated species occur-

rences with different types of niche (specialist/generalist, typical/marginal), sampling effort

and TG species density. We conclude that none of the methods are immune to estimation

bias, although the pitfalls are different: For UB, the niche estimate fits tends towards the

product of niche and sampling densities. TGOB is unaffected by heterogeneous sampling

effort, and even unbiased if the cumulated density of the TG species is constant. If it is con-

centrated, the estimate deviates from the range of TG density. The user must select the

group of species to ensure that they are jointly abundant over the broadest environmental

sub-area.

1 Introduction

Species Distribution Models (SDM) ([1]) based on presence-only data are widely used to

characterize the ecological niches and distributions of animal and plant species across
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environments and space, for ecological studies and conservation planning. Popular examples

of such methods include ENFA ([2]), GARP ([3]), Maxent ([4]) and more recently Bayesian

methods ([5, 6]). Large amounts of presence-only data have become available through the digi-

tization of herbarium collections ([7, 8]) and the development of citizen science, and they

should improve estimation accuracy in SDM. However, sampling effort is heterogeneous and

often depends on environment, yielding estimation biases in SDM ([9]). These biases are not

alleviated when increasing occurrence data and require the development of methods acknowl-

edging sampling heterogeneity.

While first presence-only SDM methods like BIOCLIM ([10]) and DOMAIN ([11]) aimed

at computing environmental ranges where the species could live, recent methods ([12]) look

for more accuracy, and estimate the species density across environment. This density is pro-

portional to the species expected abundance regarding only the environment. To estimate this

species environmental density, such methods use a set of “background” or “pseudo-absences”

points (or “quadrature” points in literature on Poisson process models, see [12], which should

reflect the sampling intensity across the environmental space. Background points are usually

drawn uniformly over the region, assuming a uniform sampling of the focal species distribu-

tion (default option in Maxent). However, this assumption is inadequate in most cases. Indeed,

the occurrences are mostly collected without a strict sampling protocol. People visit more cer-

tain places than others, e.g. because they are closer from where they live, easier to access, bio-

logically interesting, or aesthetically attractive. This geographic bias translates into an

environmental bias, i.e. the global sampling effort that is induced by the sum of observers

covaries with the environment. For instance, Fig 1 shows the that distribution of opportunistic

observations of the mobile app Pl@ntNet in 2017 ([13]) is higher in lower-elevation areas. For

a species specialized to mountain ecosystems, small populations at lower elevation could be

over-sampled. When inferring an SDM with a uniform background, species occupancy at

higher elevation would be under-estimated and the estimated niche would thus be biased

toward lower elevation.

Presence-only data has evolved in availability and format. Indeed, thanks to large scale citi-

zen-sciences programs like iNaturalist (https://www.inaturalist.org/), eBird (https://ebird.org/

home), Pl@ntNet (https://plantnet.org/) or Naturgucker (https://www.naturgucker.de/),

spreading the use of smartphone applications for reporting naturalist observations ([14]), pres-

ence-only data become massive in developed countries and geolocation of individual speci-

mens becomes more accurate. In the past, most presence only data came from experts

collections: Natural museums, naturalist surveys, conservatories data or environmental agen-

cies. Observations of species presences were often aggregated to a prospection site geolocation,

which spatial coverage is unknown and varies between sites. The Target-Group Background

method (TGB) was proposed by [15] to correct for sampling bias in presence-only niche mod-

els in this context. It proposes to define background points as the sites where there has been at

least one presence among a Target-Group of species. Today, almost each species presence

reported from a mobile phone has its own geolocation and to aggregate them a posteriori in

sites asks specific methodological questions. A simpler, and slightly different method is to inte-

grate all species occurrences from the Target-Group as background. Of course, this procedure

has strong links with the original TGB approach, but while TGB requires sampling effort to be

homogeneous between sites to work properly, as noticed by [16] (page 429), the other method

might better correct for a varying sampling effort because the concentration of occurrences

from all TG species sounds more proportional to the prospection pressure in the area.

In this study, we propose a new theoretical investigation of specific advantages and biases of

this approach, that we will call Target-Group Occurrences Background (TGOB) in the follow-

ing. A basic problem is that the density of occurrences in the TG might be a poor
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approximation of the real sampling effort, because it does not only reflect sampling effort but

also the varying species densities and ecological preferences of species in the TG. Thus, using

Target-Group occurrences background may entail new estimation biases in SDM. However,

there is no comprehensive perspective on the conditions leading to such bias. Here we address

which properties of sampling effort and which ecological characteristics of species in TG can

entail biases in (i) an analysis with uniform background points, and (ii) an analysis with Tar-

get-Group occurrences background.

Fig 1. Elevation versus sampling effort in the French mediterranean region. A. An illustration of what might look

like the sampling probability (or sampling effort function) over the French mediterranean region. This function is

based on a kernel density estimate fitted on all the plant identifications queries sent to the Pl@ntNet mobile application

system during 2016 and 2017. B. Ground elevation in meters over the French Mediterranean region. This data is

extracted from the SRTM 2010 elevation database with resolution 3 arc-seconds (� 90 meters), see the U.S. Geological

Survey website (https://lta.cr.usgs.gov/SRTMVF).

https://doi.org/10.1371/journal.pone.0232078.g001
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Poisson process are useful models for presence-only SDM because they enable a clear prob-

abilistic model and inference procedure for estimating the species environmental density. We

consider Poisson process models with log-linear intensity function, which includes the most

popular Maxent model ([17]). Starting from a model of species occurrences based on a thinned

Poisson process where the thinning intensity is heterogeneous in space and represents the

sampling effort, we first exhibited the induced Poisson process in the environmental space and

showed how its intensity factorizes into the species intensity and the sampling effort averaged

over space for any environment. We then re-expressed the expected density estimator as a

divergence depending on focal species density, TG species density and observation density.

We assessed how estimation biases arise when these densities are environmentally heteroge-

neous. We simulated basic cases where estimation biases are expected, for different types of

sampling effort, varying niche types of the focal species (specialist vs generalist, typical vs mar-

ginal optimum), and three levels of niche breadth in TG species. We show that using back-

ground points drawn from the sampling effort proportional density is asymptotically

unbiased, and show two types of bias related to alternative ways of defining background points:

(i) a bias due to a mismatch of background points with actual sampling effort in the uniform

background selection scheme, (ii) a bias due to ecological preferences of TG species, but irre-

spective of sampling heterogeneity, in TGOB.

To our knowledge, this is the first study bringing such theoretical insights to characterize

sampling-related biases in presence-only SDM. Our results should help SDM users anticipate

those biases, and decide whether they can use uniform, TGO backgrounds, or orientate them

towards other methods and complementary data. Guidelines are provided for building the TG.

It should guide good practices for performing more reliable presence only habitat models.

In section 2, the model of species distribution and observation is described, we introduce

the form of the point process intensity in the environmental space and the observation inten-

sity factor. In section 3, the simulation and inference settings are described. In section 4,

detailed results are provided and finally, in section 5, they are discussed in order to provide

guidelines for modelers.

2 Model of species observations

We introduce here a probabilistic model controlling the random generation of species located

occurrences. It is a two step process where (i) species individuals locations are distributed

according to a Poisson point process (see section 2.2), (ii) the individuals are partially observed

through a random thinning operation (section 2.3). Section 2.3 also introduces an intermedi-

ary result, showing how the expected density of occurrences in the environmental space factor-

izes with an observation density factor that will be crucial to determine the bias of species

density estimation. Before anything else, section 2.1 introduces some notations used all along

the article, and the reader may find all notations are summarized and explained in Table 1.

2.1 Notations

We define a measured two dimensional space ðD;LðDÞ;mÞ, where LðDÞ is the Lebesgue σ-

algebra over D, a bounded subset of R2, and μ is the Lebesgue measure on R2, which can be

understood as the standard measure of area. Individuals of a species are represented by

points distributed over D, and only a part of them is reported by observers. Over this

domain we consider an environmental variable that is represented by a measurable

function x : D! R, continuous almost everywhere and bounded. We note

ImðxÞ ¼ fw 2 R; 9z 2 D; x is continuous at z and xðzÞ ¼ wg. Then, 8W � R, we note

x−1(W) = {z 2 D, x(z) 2W}. We deal here with a single environmental variable x for clarity,
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but the results can be extended to more variables with the same method. We also define μx,
the geographic area where x takes a certain range of values: For all subset of environment

value W 2 LðRÞ; mxðWÞ ¼ mfx� 1ðWÞg ¼
R

x� 1ðWÞ1dm, where LðRÞ is the Lebesgue σ-algebra

over R. The almost continuity of x means that μx(Im(x)) = μ(D), i.e. the spatial area over

which x is continuous equals the area of D, or said differently, the area of all points of dis-

continuity of x taken together is null. This hypothesis allows us to deal either with a continu-

ously varying variable (e.g. defined by a mathematical function over space), or a locally

discontinuous one, typically like raster environmental data (see for example [18] for a

review on commonly used environmental variables in plants SDM), and even a mixture of

both. For example, x could be the elevation variable illustrated by Fig 1. Thus, this hypothe-

sis makes our analysis quite general regarding x.

2.2 Distribution model

Species individuals are represented by the random set Z of their positions in D. We assume Z
is distributed according to an inhomogeneous Poisson process over D with intensity function

lox : D! Rþ, where o is functions composition. The intensity λ depends on the environmen-

tal variable x. We assume it is continuous almost everywhere on R, has bounded values on any

bounded subset of R and note: Z* IPP(λox(.)). Poisson process have indeed been proposed

and used as natural probabilistic models for the distribution of species individuals in space

([12, 16]). The intensity represents the punctual limit of the expected species abundance per

space unit. We note, 8w 2 R; f ðwÞ ¼ lðwÞR

R
lðuÞdu

, a formal definition of the ecological concept of

the species response function to variable x ([19, 20]). It can be seen as the probability density

function of the random environmental variable x(z) of any individual random location z inside

a virtual geographic space where all possible environmental values of x are equally represented

in terms of area (this is not necessarily the case in D). In short, we call f the species density.

The inhomogeneous Poisson process model proposed here represents a broad class of pres-

ence-only SDM including the popular Maxent model, even though Maxent further uses a L1

penalty for model selection. This regularization was not integrated in the study as it doesn’t

change the incidence of sampling bias.

Table 1. Notations summary: Mathematical notation, name, definition and meaning in our model. �Almost everywhere.

Notation Name Formal definition Role in model

D Geographic domain D � R2
bounded Represent the study area

x Environmental variable D! R continuous a.e.� and bounded Enviro. variable measured over D ex: anual

precipitations

λ Species intensity l : R! Rþ continuous a.e.� and bounded on any

bounded subset

Expected species abundance per space unit

f Species density f : R! Rþ, f ≔ lR

R
ldm

Density derived from λ over R

s Sampling effort s: D! [0, 1] continuous Locally represents the probability to report a species

individual

�s Observation intensity �s : R! ½0; 1�, Expressed in Eq 1 Avg. sampling effort on areas of D where x = w
sx Observation density sx : R! Rþ, sx ≔ �sR

R
�sdm

Density derived from �s over R. Controls UB bias, see

Eq 2

a Cumulated Target-Group species

density
a : R! Rþ, a≔

PN

i¼1

l
i

R

Rð
PN

i¼1

l
i
Þdm

Controls TGOB bias see Eq 5

https://doi.org/10.1371/journal.pone.0232078.t001
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2.3 Observation model and observation density along the environmental

gradient

We use a probabilistic model of observation in order to study the effect of heterogeneous sam-

pling effort on bias. It is similar to the models used in [4, 15, 16, 21]. We consider a continuous

sampling effort function s: D! [0, 1]. For any point z 2 D where an individual of some spe-

cies is located, the probability to report it is s(z). Note that s is not a probability density over D.

There is, of course, no occurrences apart from true locations of individuals. Under this model,

the thinning property of inhomogeneous Poisson process ([22]), called Prekopa’s theorem,

states that reported presences of the species Zr are distributed according to Zr* IPP(s(.)λ � x
(.)). To understand more clearly sampling bias on estimated niche, we propose to look rather

at the environmental space rather than the geographic space. Indeed, we are especially inter-

ested in the bias of the estimated species density, which is a function of the environmental vari-

ables. However, estimation bias will depend on the sampling effort, which is defined over the

geographic space but may be transposed to the environmental space. Our first and intermedi-

ary result (proved in Text A of S1 Appendix) is that the distribution of the observed species

individuals in the environmental spaceR also follows a general Poisson process ([22, 23])

whose measure is, for any W 2 R,
R

Wl�sdmx and intensity l�s. Where �s is defined by Eq 1. This

intensity function lðwÞ�sðwÞ in environment w represents the expected number of occurrences

on any spatial unit where the environment is constant and equal to w, given the underlying

shape of the sampling effort s. We show that it is the product of the species intensity λ and the

average of the sampling effort �s across all areas of D with the given environment. This factori-

zation appears because the species intensity is a function of x.

8w 2 R;�sðwÞ ¼
lim
d!0

R

x� 1 w� d
2
;wþd

2½ �ð Þsdm

mx w � d

2
;wþ d

2

� �� �
Þ

if w 2 ImðxÞ

0 otherwise; by convention:

8
>><

>>:

ð1Þ

We note sx the environmental density associated to �s on R, called the observation density:

8w 2 R; sxðwÞ ¼
�sðwÞR

R
�sdm

. In other words, sx is the probability density of x(z) when z is randomly

drawn over D according to the proportional density of the sampling effort (s/
R
D sdμ). For

example, if the environment where observers spend the most time per area unit is x = w, then

sx(w) will be the maximum of sx. The results section will tell precisely how sx induce bias with

the uniform background scheme.

3 Simulation and inference setting

To clarify and illustrate the practical consequences of the mathematical results presented in

section 4, we carry out a simulation experiment exhibiting the estimation biases in various sce-

narios. In the following, UB denotes the estimation of a Poisson Point Process model with uni-

form background, and TGOB the Target-Group occurrences background alternative. We

simulate large samples of observed points of a focal species under contrasted scenarios of focal

species density and observation density shapes. We also generate a large set of alternatively

uniform or Target-Group background points, with various shapes of species cumulated den-

sity for the latter. We carry out the species density model estimation from the given focal spe-

cies observed points and background points. We finally plot the estimated density,

approximating the expected estimation, against the true one and the observation density along

the enviromnental variable axis. For UB, we also plot the focal species occurrences, that is the

theoretically expected density estimate, while for TGOB we plot the TG species cumulated
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density shape and the theoretically expected density estimate. This experimental procedure is

summarized in diagram of Fig 2. This part presents each step of the simulation scheme and

technical settings.

3.1 Environmental variable

We consider a square spatial domain D = [−5, 5]2 where the environmental variable x is a lin-

ear gradient from west to east, such that x(z) = z1. In this setting, μx is equal to the restriction

of theR-Lebesgue measure to Im(x) = [−5, 5], i.e. each x value has the same spatial extent, and

thus the estimate will not be better in most represented values. Illustrations of the density

derived from μx, Im(x), an observation density and species density (see further) are provided

in S1 Fig.

3.2 Focal species

The species density f is the probability density function of the environmental value of a speci-

men random location. We model it with a Gaussian function, which is a standard assumption

related to the representation of species distribution over environmental gradients ([19, 24]).

We give some insights about the underlying model assumptions in Text B of S1 Appendix.

The mean of f is called μ0, it is the environmental optimum of the species, and we take

μ0 2 {−1, −4} (typical vs marginal). Besides, σ0 is the standard deviation, or the niche breadth

of the species, and we take σ0 2 {0.6, 1.5}, for a specialist or generalist species. We thus simulate

4 virtual species. f is illustrated in each graph of Fig 3.

3.3 Types of observation density

We want to estimate the density of the focal species from reported points. We examine how

the bias in estimated intensity is related to sx, the observation density in Im(x). We define sev-

eral shapes for sx in Im(x), which is illustrated with the yellow curve in each graph of Fig 3:

Fig 2. Illustration of the simulation experiment procedure used in this paper to evaluate species density

estimation bias under various scenarios. This flowchart shows the role of every component (i.e. the focal species

intensity f, the observation density sx, and the cumulated TG species density a) in the simulation of occurrences, the

density estimation with TGOB and UB, and the illustrative comparison of the estimates with the theoretical

expectations respectively exhibited by Eqs 2 and 5.

https://doi.org/10.1371/journal.pone.0232078.g002
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Fig 3. Plot of the estimated niche density with UB (A-H) and TGOB (I-O) methods for a selection of simulation

situations. The different curves are: The focal species intensity function (f), observation density (sx), observed points

density (λ0 sx, in UB graphs), Target-Group species density (a, in TGOB graphs), ratio density of species over target

group (λ0/a, in TGOB graphs), UB and TGOB estimators of species density from simulated points. A-μ0 = −1; σ0 = 1.5;

obs = CST. B-μ0 = −1; σ0 = 1.5; obs = CUT. C-μ0 = −4; σ0 = 0.6; obs = CUT. D-μ0 = −1; σ0 = 1.5; obs = LIN. E-μ0 = −1; σ0

= 0.6; obs = HOL. F-μ0 = −1; σ0 = 1.5; obs = HOL. G-μ0 = −4; σ0 = 0.6; obs = GS. H-μ0 = −4; σ0 = 1.5; obs = GS. I-μ0 = −1;

σ0 = 1.5; obs = HOL. J-μ0 = −1; σ0 = 1.5; obs = CUT. K-μ0 = −4; σ0 = 1.5; obs = GS. L-μ0 = −1; σ0 = 1.5; obs = GS. M-μ0 =

−1; σ0 = 0.6; obs = HOL. N-μ0 = −1; σ0 = 1.5; obs = HOL. A-μ0 = −4; σ0 = 0.6; obs = HOL.

https://doi.org/10.1371/journal.pone.0232078.g003
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1. Constant (CST), representing unbiased, constant observation over the domain. See graph

A.

2. (1/10) − (x/50), i.e. linearly decreasing from west to east (LIN). See graph D.

3.
1x2½� 5;0�

5
, constant observation on the lower part of the domain (CUT). See graph B.

4.
logð1þðxþ1Þ2ÞR

½� 5;5�
logð1þðwþ1Þ2Þdw

, with depleted observation density around -1 (HOL). See graph E.

5. A standard normal distribution (NOR). See graph G.

Note that sx is determined through the definition of the sampling effort s which is in the

spatial domain. We set the sampling effort to be constant along the second dimension of space

(latitude) in our simulation setting, which enforces sx αs and we thus control the shape of sw
through the shape of s over the longitude.

3.4 Target group of species

TGOB method uses occurrences from a set of species called the Target Group (TG) as back-

ground points in the inference setting (see methods implementation below). We thus simulate

the TG occurrences background by generating occurrences of N independent species, consti-

tuting the TG, through their observed intensities. For species i, its local observed intensity

takes values l
i
ðxðzÞÞ�sðxðzÞÞ; 8z 2 D (assuming constant detection in space), and regrouping

occurrences of all TG species is equivalent to drawing points with a global intensity

CaaðxðzÞÞ�sðxðzÞÞ ¼
PN

i¼1
l
i
ðxðzÞÞ�sðxðzÞÞ, where aðxðzÞÞ≔

PN
i¼1
l
i
ðxðzÞÞ=Ca is called the TG

species cumulated density and Ca≔ ¼
R

Rð
PN

i¼1
l
i
Þdm is its normalisation constant. As it is

shown further, a will determine the bias of TGOB. Thus, we do not define each TG species

density individually in the simulation, but rather test 3 shapes of a. It enables to visualize

clearly its effect on TGOB bias: (i) FLAT: A Gaussian density of mean 0 and standard deviation

20 (� constant), (ii) THICK: A Gaussian density of mean 0 and standard deviation 2 and (iii)

THIN: A Gaussian density of mean 0 and standard deviation 1. They are represented in,

respectively, graphs J, I and M of Fig 3.

3.5 Simulating observation points

Statistical theory insures that the density estimate will converge towards its expectation when

increasing the size of the sample. Then, for all simulations, we generate a very large sample of

points (occurrences and background) so that the estimate approximates well this expectation,

insuring that the estimation error is completely due to bias and not the randomness of the

sample. To generate points according to a Poisson process of intensity function f on Im(x), we

first determine an upper bound B of f on Im(x). Then, we repeat (i) Draw a point z* U(D),

(ii) Draw a variable y* U([0, B]), (iii) We accept z if y<= f(x(z)) and (iv) If 20000 points are

accepted, finish the procedure, otherwise go back to (i). This algorithm is applied to the focal

species observed points, target group observed points and background points (see next sec-

tion). 20000 points were enough for convergence of all estimates in UB and TGOB.

3.6 Computation of models and software

In the UB method, we estimate the model parameters with the standard maximum likelihood

approach. We use the Poisson process likelihood approximation of [25], which transform the

original likelihood to a Poisson regression likelihood, using background points. We draw the

background points uniformly in the spatial domain D. Details on the construction of
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approximation, the weighting of points and the reparametrization of μ0 and σ0 are presented

in Text C of S1 Appendix. As the objective function is a particular case of Generalized Linear

Model likelihood, we fit the parameters using the standard R package glm. For TGOB method,

the procedure is the same except that the background points are independently drawn from

the density sa/
R
D sadμ rather than uniformly on D.

4 Results

We present results on estimation biases for UB and TGOB methods based on both a mathe-

matical analysis and simulation. Our main results are formal Eqs (2) and (5) which express the

target of the density estimate in the environmental space as a function of the true focal species

density f, the observation density sx (for UB) or the cumulated TG species density a (for

TGOB) given the generative model described in section 2. Estimation bias then depends on

the instanciation of f and sx for UB, or of f and a for TGOB. We qualitatively describe the bias,

i.e. the estimated density deviation compared to the true one, that will appear depending on

the shape of the dependent densities: The observation density (for UB in sections 4.2, 4.4, 4.5,

4.6 and for TGOB in 4.8), the focal species density (for UB in 4.3, and for TGOB in 4.9, 4.10)

and the Target-Group species density for TGOB (4.8, 4.9). This qualitative description are

based on interpretation of Eqs 2, 3, 4, 5 and 6. This qualitative description of bias is numeri-

cally illustrated with several simulated scenarios. Graphs of all simulated scenarios are repre-

sented in S2 Fig for UB, and S3, S4 and S5 Figs for TGOB. R scripts for running the

simulations and generating the graphs can be found in at https://github.com/ChrisBotella/UB-

and-TGOB. Results are presented here for a single environmental variable. In the case of sev-

eral environmental variables x1, . . ., xp, the Kullback-Leibler (KL) divergence used in the fol-

lowing equations is simply applied to densities over the multidimensional space, with adapted

definitions for sx1 ;...;xp
and mx1 ;...;xp

. For simplifying notations, we will possibly mean, by the nota-

tion of a function, a product or a quotient of functions, the density associated with it on its def-

inition space, and this in all that follows. For example, fsx refers to the proportional density

function fsx/
R

Im(x) fsx dμx over Im(x).

4.1 UB: Niche estimate minimizes KL divergence from observed density

We show in Text D of S1 Appendix that the expectation of the parameters estimates of the UB

method is:

EðŷUBÞ ¼ argmin
y
Dmx

KLðfsxjjfyÞ ð2Þ

Eq 2 means that the estimated species density fŷUB
will fit the observed environmental

density fsx as close as possible within the parametrization constraints in term of the KL

Divergence with measure μx (μx-almost everywhere). For example, in our simulation model,

fŷUB
is Gaussian, so it cannot fit perfectly to fsx which is non-Gaussian (see graph B of Fig 3),

but achieves the best Gaussian approximation. However, in the case where sx and f are two

Gaussian densities with distinct means and variances, fsx will also be Gaussian [26]. Thus,

fŷUB
will exactly converge to fsx (see graph H of Fig 3). However, it has a different mean and

variance from f, so that the UB estimate is biased. A Complementary explanation about the

significance of μx for the KL-Divergence, and its consequences are given in Text E of

S1 Appendix.
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4.2 UB: Bias is small for small variations of observation density over the

species niche

UB bias is tightly linked to the concentration of the observation density in the environmental

space but this concept of concentration is hard to define. Still, as a density get less concentrated

it get closer to a uniform density, and its variation get close to zero everywhere. Thus, we study

the effects of variations of sx and f on bias, we propose an explanation of the bias behavior

observed in simulation through a simple analysis based on the density functions derivatives.

For this purpose, both density functions are assumed to be differentiable over Im(x), which is

true in the simulation setting, except in the case of observation type CUT. Eq 3 shows that

when sx varies little, the observed points density sx f, which is fitted by the UB estimate, will get

close to the true species density f.

lim
maxj@sx=@xj!0

@fsx
@x
¼ lim

maxj@sx=@xj!0

@f
@x sx þ

@sx
@x f

� �

R

Rf sx dmx
¼
@f
@x

ð3Þ

Fig 3A confirms that UB is not biased when observation density is constant: The species

true density f (red curve) is equal to the observed point density sx f (green curve), which is per-

fectly fitted by the UB estimated density (blue curve). Even for graph D, the gap between true

and estimated density is very small. This behavior is explained by Eq 3: If linearly decreasing

observation density varies slowly, i.e. max|@sx/@x is close to zero, the derivative of the target

@fy0
sx � fy0

=@x is close to the derivative of the species true density, implying that the estimate

will fit this density. In addition, in environments where species specimens are rare, very low

observation density doesn’t affect the global estimate. Type CUT illustrates this: There is

almost no bias for μ0 = −4 (graph C of Fig 3), as the observed species density (green curve) is

very close to the true species density (red curve). We note as a side remark that the differentia-

bility of sx over Im(x) is not necessary. It depends on complex conditions on x and s. As a

counter example, continuity of sx doesn’t even have a standard sense if x is defined by a geo-

graphic raster. Indeed, Im(x) is then discrete set of x values taken over the raster cells, and �s is

only defined on these values which don’t include any continuum of real numbers. The differ-

entiability is only assumed here to analyse the effects of sx variations in a simplified context.

4.3 UB: Smaller bias for more specialist species

The comparison of the graphs G (specialist) to H (generalist) in Fig 3 shows that the bias on

niche optimum and breadth estimates is stronger for the generalist species. Indeed, we deduce

from Eq 4 that fsx approaches sx as the variation of f over Im(x) decreases.

lim
maxj@f =@xj!0

@fsx
@x
¼ lim

maxj@f =@xj!0

@f
@x sx þ

@sx
@x f

� �

R

Rfsxdmx
¼
@sx
@x

ð4Þ

We can thus say that for a generalist species, the variation speed of sx is high compared to

the one of f, and UB estimate will fit more the observation density than the species density.

4.4 UB: Over-estimated specialization when sampling effort is

concentrated

When the observation density is highly concentrated in a restricted range of the environment,

as with the type GS, UB estimates that the species is more specialized than it is actually (see

graphs G and H of Fig 3). The estimated niche variance is then lower than expected.
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4.5 UB: Strong deviations from optimum

Graphs B and H in Fig 3 show that, when the observation density is concentrated far from the

optimum of the species density, we get a strongly deviated estimated optimum. This might be

very misleading for ecological analysis. Estimation of graph H suggests that the species is the

most abundant in a range where it is actually cryptic.

4.6 UB: Sampling marginal specimens means over-estimating generalism

Graph F of Fig 3 shows that when the observation is more intense in the margin of the species

niche, UB over-estimates the niche breadth of the species. This case represent observers having

more interest in reporting a species out of its typical environment.

4.7 TGOB: Integrating samples from a Target Group of species

Firstly, using the same analytical approach as previously, we show in Text F of S1 Appendix

that drawing directly background points from the sampling effort proportional density

s/
R
D s(z)dz give unbiased species intensity estimate. This answers an open question of [4] who

introduced this theoretical method (called ApproxFactorBiasOut in the article). Unfor-

tunately, we rarely have directly access to a true sample from the sampling effort distribution.

An interesting alternative is to use Target-Group species occurrences as background points

(TGOB), i.e. making the hypothesis that those occurrences are approximately drawn from the

sampling effort proportional density. We will investigate biases occurring with this method

and a necessary and sufficient condition on Target-Group species to avoid them under our

modeling hypothesis. In the following, we introduce an equation showing the displaced target

of the TGOB estimator. It shows how the cumulated TG species density, especially when it is

concentrated in restricted environments, can bias the estimated focal species density. We have

a target group of N species whose individuals are distributed independently according to the

species model described above, and reported from the same area D with the probability of

observation s (same as the species of interest), giving for each of them a set of observation

locations ðZiÞi2½j1;ntg j�. 8i 2 ½j1;Nj�; Zi � IPPðs li
� xÞ. We assume a constant detection proba-

bility of individuals across space for any species conditionally to observation. Then, the global

set of Target Group observations locations is Ztg ≔ [i2½j1;Nj� Zi � IPPðs a � xÞ, where

8z 2 D; aðxðzÞÞ≔
PN

i¼1

l
i
ðxðzÞÞÞ is the cumulated TG species intensity. The expected estimate

of TGOB is:

EðŷTGOBÞ ¼ argmin
y
Dmx

KLðfsxjjfysxaÞ ð5Þ

The proof is given in Text G of S1 Appendix. If 8w 2 Im(x), a(w)> 0, we can set fθ≔ f/a to

cancel the divergence. Eq 5 means the TGOB estimate is expected to fit to density f/a, which is

independent of the observation density, but depends on the cumulated TG species density.

This result leads to the following consequences described in sections 4.8, 4.9 and 4.10.

4.8 TGOB: If a is constant, TGOB is unbiased

We can see that when a is constant, sx a α sx. Thus, the background points are distributed

according to the sampling effort, and TGOB yields an unbiased estimation as

ApproxFactorBiasOut. This is true whatever is the observation density. We illustrate

it in two cases of Fig 3: μ0 = −1;σ0 = 1.5; CUT with graph J and μ0 = −4; σ0 = 1.5; GS with

graph K. Here the TGOB estimator approaches almost perfectly the true species density,
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correcting well for unbalanced observation density in both cases, while in those same cases

UB gives a strongly biased estimate. Furthermore, even with non constant a, the different

types of observation density never affect TGOB. The bias is only due to the Target Group

species density. For example, graphs I and L of Fig 3 show that TGOB estimator do not

change in two very different observation density situations, HOL and GS, but with the same

species density {μ0 = −1, σ0 = 1.5} and TG.

4.9 TGOB: The estimate deviates from a peaky Target Group species

density

The more the Target Group species density (a) is concentrated in some range of x, the more

our niche estimate will be located outside of this range. It may entail an over estimation of

niche breadth, a bias in optimum, or even an hyper-concentration on the borders. To show

this, we can analyse the effect of the variation speed of a and f, by again assuming that they are

differentiable over Im(x) and examining the derivative of f/a:

@f =a
@x
¼

1

a
@f
@x
�

f
a
@a
@x

� �

ð6Þ

If a gets high in a neighborhood v of Im(x), we will have f/a! 0 on v, and
@f =a
@x tends to 0 as

well. Our estimate then becomes flat and low on v as it fits to f/a. In parallel, a is low outside of

v because it must integrate to 1. Therefore, in Im(x)\v, we will have f/a! +1, and its deriva-

tive becomes important with the same sign as � @a
@x. In summary, as a concentrates in a neigh-

borhood v, our TGOB estimate becomes flat and low on v, while it increases outside of v, with

bigger slopes where a varies. This expulsion phenomenon entails bias in optimum and vari-

ance estimation. Thus, the magnitude of bias depends on the concentration of a, but also on

the marginality of the optimum of the focal species (μ0) compared to the one of the Target-

Group. Indeed, the graphs I and M of Fig 3 show that when the species optimum is close to the

one of the TG density (typical species), the niche breadth is over-estimated. There is also a

small deviation in optimum because the focal species is not centered around the TG optimum.

In other words, the focal species density overlaying with the cumulated TG species density is

deviated outside in the estimate. On the contrary, when the species optimum is far from the

cumulated TG species density optimum (marginal species, see graph O of Fig 3), or when the

cumulated TG density is just more concentrated (compare graph N to I in Fig 3), the situation

is worse. The estimate cancels on the range of the cumulated TG species density, while it gets

hyper-concentrated outside. In summary, the more the Target Group of species has a global

environmental preference and the focal species is marginal, the more its niche estimate will be

dispersed, or expelled, out of this environment.

4.1 TGOB: Stronger bias for generalist species

When comparing graph M to N in Fig 3, we see that TGOB is more biased on generalist spe-

cies. For a generalist species, the estimate is more expelled from the TG species density volume.

Thus, generalism of the focal species increases bias in both UB and TGOB, but the cause of

bias differs, respectively, the heterogeneity of observation density and the TG global density.

As UB fits the product of f and sx, TGOB does the same with the product of f and 1/a, and the

latter varies in � @a
@x

f
a2 because the variation of f is small.
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5 Discussion

In this study, we have explained two types of bias related to the way to define background

points: the sampling selection bias in UB and the the TG definition bias in TGOB. The for-

mer case concerns the way background points reflect sampling heterogeneity, while the latter

case concerns the influence of ecological preferences in TG species.

Concerning UB, our results confirm some empirical results in Maxent literature. The niche

estimate will fit to the product of the focal species and observation densities. A major conse-

quence is that bias is stronger for generalist species. Bias is also strong when the sampling effort

is concentrated towards places representing a restricted range of environmental values, which

happens when observers have specific preferences towards these restricted conditions. This

will overestimate species specialization. Conversely, observing a species more intensively at the

margin of its niche leads to overestimate niche breadth.

If the Target-Group is well selected, the method Target-Group occurrences background

does account for varying sampling effort. A well selected Target-Group means that the sum of

Target-Group species intensities is constant across environments. However, it is biased when

this cumulated intensity of TG species varies in the environmental space, e.g. when there is

some systematic environmental preference among TG species. In this case, the magnitude of

bias will depend on the concentration of the TG density (depending on the TG species), the

generalism of the focal species, and the marginality of its niche compared to the TG density.

As the TG species density gets more concentrated compared to the focal species niche, the

niche breadth will be over-estimated, and ultimately focal species density will strongly deviate

from TG density. If TG species density approaches 0 faster than the species of interest in some

environmental range, TGOB estimator should dramatically increase there, overriding varia-

tions elsewhere. Including the focal species in the Target-Group should partly prevent the

niche expulsion effect because at least background points from the focal species will cover its

niche. Also, the ecological niche of the focal species plays an important role. A generalist spe-

cies is more affected by bias, as well as species with marginal niche compared to the TG den-

sity. On the contrary, when applied to a non-marginal focal species, TGOB will overestimate

the niche breadth, or from another point of view, the effect of corresponding covariates will be

reduced. This covariate effect cancellation will be all the stronger with Maxent ([27]) because

of its Lasso regularisation. We recommend to carefully chose Target Group of species so as to

insure, at least, that there are TG occurrences in the widest environmental subspace associated

with the study domain. It will insure that at least one of the TG species is present in any kind

of environments. Generalist species over each environmental variable should be included if

possible to overall decrease the variation of the cumulated TG species density. The modeler

must avoid using TGOB if presences of the focal species reach marginal environments com-

pared to the whole Target-Group distribution.

Alternatives methods to TGOB and UB to account for sampling bias in presence only

SDMs may be more suited in certain situations. [28] proposed to model sampling effort with

distinct environmental variables from the species intensity (e.g. distance to roads or to cities).

Thus it removes species intensity bias due to the covariation of sampling effort and species

intensity covariates. However, often some covariates influence both sampling and species den-

sity. Still, our results support this approach if the sampling effort variation along its dedicated

covariates is stronger than the species intensity variation (Eq 4), and the species intensity varia-

tion along its covariate is stronger than the sampling effort variation (Eq 3). Besides, for mod-

elers who can access complementary systematic survey data, integrated models combining

occurrences and presence-absence data have been developed in [16] and [29] with the same
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goal. In the same spirit, models combining presence-background with site-occupancy data

([30]) may be another efficient way to account for sampling bias.

We underline that our results directly concern a vast class of presence-only SDM called

Poisson process models ([12]) whose intensity function is strictly positive. Indeed, modelers

may use different variables transformations as predictors (GAM [31], MARS [32]), or learn

those transformations automatically, like with deep neural networks ([33]). Qualitatively

speaking, bias behaviors extend to L1 penalized Poisson process methods like Maxent ([34])

and to other related SDMs methods (whose predictive function is based on covariates) when

using pseudo-absences, e.g. GARP ([3]), ENFA ([2]), or BRT ([1]). Models integrating interac-

tions effects between species, called joint SDMs ([35]), should be similarly affected by

described biases, as species interactions are assumed independent of the environment, but a

specific investigation on biases of such methods would be important in view of the recent

attention they are receiving in ecology. We notice that potential biases of the studied methods

are not restricted to the ones presented here, and the modeler must be careful to other sources

of errors. For example, other authors recently studied how the interaction of environmental

variables resolution and niche breadth induce bias ([36]). Besides, model errors might not be

due to biases, but rather to estimation variance which is also investigated in the SDM literature

([37, 38, 39]). A limitation of this study is that we did not study some other proposed sampling

bias correction methods, such as occurrence thinning procedures, in spatial ([40, 41]) or envi-

ronmental ([42]) domains. As occurrences thinning increases the entropy of the observed

points density, it brings its own bias which should be investigated more closely. Such proce-

dures could be studied through the formalism that we are developing.

TGOB is exactly equivalent to TGB, proposed by [15], if each TG site (defined either by the

environmental rasters or the spatial aggregation of the occurrences) contain only one occur-

rence. However, it may differ significantly when many occurrences are aggregated on sites. If

so, TGB will be biased by a varying prospection intensity between sites and varying TG den-

sity, while TGOB may be biased only by the latter factor. In this context, the strengths of

TGOB would be leveraged by the search for a criterion to select the best Target-Group of spe-

cies, which guarantees a low variation of the cumulated TG species density in the environment.

The difficulty is that such criterion must be computable from the sets of occurrences of species

eligible for the Target-Group. This is an open problem and an area for future work, leading to

a clear and reliable background points selection method applicable by SDMs end users.

Supporting information

S1 Appendix. Texts and mathematical proofs.

(PDF)

S1 Fig. Illustrations of μx, f and sx along x values. An example species density with the stan-

dard normal distribution (red curve), the density derived from μx chosen uniform over [−5, 5]

for the simulation study (black curve), and the observation density sx of type LIN (gold curve).

(PNG)

S2 Fig. Illustrations of all simulation results for UB. Plotted true species density (f), observa-

tion density (sx), observed points density (fsx) and UB estimate of species density in the envi-

ronmental space. Each situation of the simulation study is represented.

(PNG)

S3 Fig. Illustrations of all simulation results for TGOB with FLAT TG species density. Plot-

ted true species density (f), observation density (sx), flat Target Group species density (a), ratio

density of species over target group (f/a) and TGOB estimate of species density in the
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environmental space. Each situation of the simulation is represented.

(PNG)

S4 Fig. Illustrations of all simulation results for TGOB with THICK TG species density.

Plotted true species density (f), observation density (sx), thick Target Group species density

(a), ratio density of species over target group (f/a) and TGOB estimate of species density in the

environmental space. Each situation of the simulation is represented.

(PNG)

S5 Fig. Illustrations of all simulation results for TGOB with THIN TG species density.

Plotted true species density (λ0), observation density (sx), thin Target Group species density

(a), ratio density of species over target group (λ0/a) and TGOB estimate of species density in

the environmental space. Each situation of the simulation is represented.

(PNG)
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7 Chapter 3:
Estimating sampling effort across space
from large amounts of species occur-
rences
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Abstract1

• Building reliable Species Distribution Models (SDMs) from species occurrence infor-2

mation collected without protocol requires correctly acknowledging the spatial distribu-3

tion of observation, i.e. the sampling effort. In most cases sampling effort is unknown but4

entails bias. Jointly estimating parameters of this effort and of species densities should5

allow controlling sampling biases. We propose a method and guidelines to jointly esti-6

mate the spatial variation of sampling effort and multiple species densities from massive7

presences only.8

• We define a spatial lattice and estimate (i) the relative sampling effort as a step func-9

tion across lattice cells, and (ii) multiple species densities as functions of environmental10

variables. A marked Poisson process models simultaneously multiple species occurrences11

along with a common factor representing sampling effort. We evaluate estimation per-12

formance and robustness to variation inside lattice cells on realistic simulated datasets:13

We define sampling effort derived from real occurrences, simulate species occurrences,14

perform estimation, and evaluate it. We also illustrate the method on a real dataset of15

around 500,000 occurrences from 300 plant species in France, stemming from a large-scale16

citizen science observatory (Pl@ntNet).17
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• We show that sampling effort is correctly estimated, in expectation, when the true18

sampling effort is constant inside lattice cells. We observed bias when the covariation of19

sampling with covariates inside cells is strong, otherwise the method is robust to sampling20

variations inside cells. Running the model on real occurrences of 300 plant species pro-21

vided a relative sampling effort map covering 40% of the French territory, and its spatial22

variations reached a factor of several thousands. We also show the density estimated for23

an exotic invasive plant is consistent with prior knowledge and predicts invaded areas24

that are unknown or likely to be invaded in the future.25

• This is the first method estimating sampling effort as an explicit spatial function from26

multiple species occurrences. It has good scalability and can take advantage of the distri-27

butions of most observed species to better infer sampling effort and other species densities.28

For large opportunistic occurrences datasets, like in citizen-sciences projects, it should29

be useful to correct for sampling bias and study spatial variations of sampling effort.30

Keywords: presence only data; sampling effort; citizen-science; biodiversity monitoring;31

species distribution modeling; niche models; multi-species models; Poisson point process; sam-32

pling bias ; opportunistic data.33

1 Introduction34

Studying biodiversity dynamics and defining appropriate conservation strategies require char-35

acterizing and analyzing species distributions in space and time. Worldwide citizen science36

projects and naturalist networks provide massive species occurrence data, from numerous37

active contributors, and thus convey valuable insights into biodiversity patterns. In order38

to perform ecologically meaningful Species Distribution Models (SDMs, Elith and Leathwick39

[2009]) with such data, characterizing how observers report presences, i.e. their sampling40
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effort, is crucial. However, both a spatial variation in sampling effort and species ecological41

niches shape observed species distributions, and an appropriate method is required to disen-42

tangle their influences.43

Digitized, geolocated species presence records, called occurrences, have first been compiled44

from digitized expert collections, mainly field naturalist surveys and records in natural history45

museums (Soberón and Peterson [2004]). Species occurrences have now become massively46

available through worldwide citizen-science programs or naturalist community platforms (e.g.,47

iNaturalist, e-Bird, Pl@ntNet, Naturgucker, see Chandler et al. [2017]), thanks to new digital48

tools and smartphone applications (Teacher et al. [2013]). For example, eBird currently shares49

around 500 millions valid geolocated species occurrences worldwide on GBIF1. In addition,50

automatic identification from images or sound samples (Joly et al. [2018]), and collaborative51

review of observations have enhanced identification quality of such data. However, these oc-52

currence data are mostly reported without a planned sampling protocol. For example, in53

the case of Pl@ntNet and iNaturalist, contributors generally submit for identification, to an54

automatic system and/or a community of members, some specimens that are sampled non-55

randomly in space and seem remarkable, atypical or new to them. Such sampling, often called56

"opportunistic" (Kery et al. [2010]), depends on the specific behaviour and reporting choices of57

contributors. It globally leads to spatially heterogeneous sampling effort. Our objective here58

is to characterize how spatial sampling heterogeneity affects reported species distributions and59

the ecological niche inferred from such data. The sampling effort is defined as an intensity60

function measuring the number of visits during which observers can report a specimen occur-61

rence at a given point. It is sometimes also called "observation effort" (Calenge et al. [2015]).62

The sampling effort defined in this way does not depend on species detectability or reporting63

interest (Fithian et al. [2015] and Giraud et al. [2016]).64

1https://www.gbif.org/
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Estimating the spatial variation in sampling effort in a set of species occurrences is crucial65

for many purposes. The unknown spatial variation in sampling effort can be correlated to an66

environmental factor and yields biases in SDM results (Botella et al. [2020]). Thus, it is crucial67

to acknowledge sampling effort in SDM and several approaches have been proposed to tackle68

this problem. Sampling effort may be approximated from some available information on the69

sampling scheme. Calenge et al. [2015] thus used the number of driven kilometers reported70

by agents as a proxy of the relative sampling effort in the process of collecting dead animals71

occurrences along roads. Alternatively, one can represent sampling effort by the distribution72

of background points used for inference of environmental density in SDM. Phillips et al. [2009]73

thus proposed the Target-Group Background (TGB) procedure, where sites with at least one74

observation among a Target-Group of species provides a proxy of sampling effort. Bradter75

et al. [2018] proposed using information about the prospecting behaviours and the detection76

skills of very active reporters to infer true absences of species, and then use the information77

in a joint model with presence-only data. De Solan et al. [2019] provided another approach78

to estimate sampling effort in multi-species presence-only SDMs, by using the presence-only79

data to estimate sampling effort. Finally, Warton et al. [2013] proposed to jointly model the80

sampling effort along with a single species abundance. Sampling effort is modeled with a set81

of carefully chosen dedicated variables assumed to be its main drivers. Once the joint model82

is fitted, the sampling effort can be predicted in space separately from species abundance. Ex-83

plicitely or implicitely, introduced approaches require using additional information or specific84

assumptions on sampling effort or species additionnally to the occurrences data themselves to85

get unbiased estimation.86

In this work, we propose a new SDM method for presence-only data, requiring less prior knowl-87

edge on the sampling process. It is based on a spatial smoothness assumption on the sampling88
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effort over units of a spatial mesh, and it jointly estimates the sampling effort with multiple89

species environmental densities from occurrences data. Indeed, we are doomed to a spatially90

averaged estimation of sampling effort because we don’t exactly know where observers have91

been. In spatial statistics, bases of spatially smooth functions, called smoothers, are often used92

to estimate response surfaces in a computationally efficient way when the number of samples is93

large [Johannesson and Cressie, 2004]. The response surface typically represents non-observed94

spatially smooth predictors. In our approach, we use a cell-wise constant function to model95

sampling effort, which can be expressed as a linear combination of spatial B-splines of order96

0 [Eilers and Marx, 1996]. We formally demonstrate that the method can alleviate biases97

on sampling effort and species niches estimates, while allowing computational efficiency for98

large occurrences datasets. We show that the method works with a realistic size dataset and99

a realistic profile of sampling effort, derived from real a occurrences density. We also study100

the method robustness to the crucial assumption of sampling effort constancy inside cells by101

varying the degree of spatial variation speed and curvature of the sampling effort. We finally102

illustrate the method outputs on a large dataset of opportunistic plant occurrences automat-103

ically identified from pictures coming from a citizen sciences observatory called Pl@ntNet.104

The use of these data for modeling the distribution of remarkable species like exotic invasive105

species is promising (Botella et al. [2018]). As an example, we comment the estimated density106

of an exotic invasive plant species in France.107
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2 Material and methods108

2.1 A spatial model for the sampling effort109

We jointly model multiple species occurrences as independent marked Poisson point processes.110

The density of each species occurrence process is the product of the sampling effort and of111

the given species density, representing its abundance, which is a function of environmental112

variables. It corresponds to the presence-only SDM framework introduced in Renner et al.113

[2015]. The diagram of Figure ?? illustrates the principle and elements of the method and114

defines the components of the statistical model. Apart from the sampling effort component, our115

model can be seen as a multi-species version of the model proposed by Warton et al. [2013]. In116

addition, our model is equivalent to Fithian et al. [2015] if the presence-absence term is removed117

from their log-likelihood. Our purpose is to devise a model suited to presence-only data, which118

are more frequently available today. In the following, we present the probabilistic model119

of occurrences underlying the proposed estimation method, highlight the assumptions,and120

explain when and how it theoretically improves SDM estimation compared to bias correction121

in a single species model. We then expose the conditions for proper use of the method, from122

which guidelines are derived.123

Species occurrence processes and density functions. We denoteD the two dimensional124

geographic domain where occurrences have been collected. We consider N species included in125

the model. The model assumes that the individuals of any species i are distributed over D126

according to a Poisson process of intensity function λi. λi is assumed to be a log-linear function127

of environmental variables defined all over D. We note by the vector xi(z) = (xi1(z), ..., x
i
pi
(z))128

the environmental features of species i at point z, where pi is the number of features. A129
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feature is the result of a function applied to an environmental variable. Different features may130

be derived from a same variable: For instance, the identity and quadratic features together131

model a gaussian response to a variable. βi = (βi1, ..., β
i
pi
) are the parameters associated with132

the features such that the species intensity is written λi(z) = exp(αi+
∑pi

k=1 β
i
kx

i
k(z)). For the133

model estimation, we can only estimate the relative species intensity (i.e. its density) across134

space and across species, not the absolute abundance, so we assume that α1 = 0 by convention.135

Note that the environmental features vector xi depends on the species. This formulation of the136

species density model is probably the most popular when modeling species distribution with137

point processes (Phillips et al. [2006], Chakraborty et al. [2011], Warton et al. [2013], Dorazio138

[2014], Renner et al. [2015], Fithian et al. [2015], Koshkina et al. [2017]). It is flexible, because139

many non-linear transformation of a same initial environmental variable can be integrated to140

a species features vector.141

Sampling effort and occurrences report. We defined earlier the sampling effort as the142

function over space equal to the number of passages of all observers at a point over a time143

period potentially. This function can vary spatially at very high resolution, but it makes144

sense to model it by a random function whose parameter is a smooth spatial intensity. we145

also assume that the reporting probability is constant in space, time and across observers.146

More precisely, we assume that the sampling effort at point z ∈ D, noted s(z) models the147

probability of observing a spatial point z. Then, if an individual is present at z, it is detected148

and reported with probability Ri, which implies overall that the individual is sampled with149

probability Ri s(z) ∈ [0, 1]. It means that we assume that the probability of sampling species i150

individuals vary proportionally to s across space, but may be globally higher or lower than any151

other species. The distribution of observed species occurrences then follows a thinned Poisson152

process, i.e., a Poisson process of intensity z → Ris(z)λi(z) (Chiu et al. [2013]). We expect153
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the number of occurrences to be proportional to species abundance while keeping sampling154

effort constant.155

Sampling effort model. We model s as a cell-wise constant function. s is assumed to be156

constant within the units of a spatial mesh defined over D. This central assumption of our157

model makes sense if the sampling effort is known to vary reasonably slowly across space, at158

the scale of mesh cells. In the following experiments, we chose a lattice with square cells for159

simplicity, but any other type of partition of D could be examined with the same modeling160

framework. The sampling effort is a factor in the intensity function as shown in equation 2161

of Fig. 1. We set, for any point z ∈ D, s(z) = exp(
∑

j∈[|1,C|] γj1z∈cj) where (cj)j∈[|1,C|] are162

the cells of the mesh verifying ∪j∈[|1,C|]cj = D and ∩j∈[|1,C|]cj = ∅, and γ = (γ1, ...γC) are the163

sampling effort model parameters to estimate. There is a parameter in R for each unit of the164

spatial mesh. Therefore, the sampling effort is defined as a categorical effect associated to the165

cell identifier. We can only estimate the relative sampling effort across space, and thus we166

assume by convention that γ1 = 0.167

Model identifiability and estimability. It is impossible to identify absolute values of Ri,168

the sampling effort s and the species density λi from presence only data. We can only estimate169

sampling effort and species density up to a constant factor (see Fithian and Hastie [2013],170

Hastie and Fithian [2013]). Ri is confounded with the intercept of s and λi. It is important171

that our model design enables good parameters estimability [Jacquez and Greif, 1985]. As172

shown in Appendix B, if the features basis composed of the environmental features and173

sampling cells indicator functions are too much collinear, we will get high covariances between174

the sampling effort and the species densities parameters estimates. That is, the true densities175

of sampling effort and species densities will be somehow mixed together in our estimates.176
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Similarly to the model of Dorazio [2014], we should also control the condition number of the177

model observed Fisher information matrix (explicitly given in Appendix A). We recall that178

the condition number is the ratio of highest and lowest eigenvalues of this matrix. It must be179

low and ideally close to one. We advise to select sampling cells and environmental features180

such that the condition number is inferior to 106. Higher resolution sampling cells tend to181

increase the condition number, and if the sampling cells are nested in the cells of a raster182

environmental feature, then the model is simply non-identifiable.183

Model design guidelines We provide some conditions and recommendations for proper184

use of the method:185

1. There should be at least several tens of occurrences (all species included) per sampling186

cells included in the model. Otherwise discard the cells, the occurrences within, and do187

not include any background points over these cells. Alternatively, the size of cells can188

be increased to meet the condition. Scarce cells integrate as many background points189

as other cells, but would be useless computational burden to the model and a potential190

source of variance: The information gain on the sampling effort parameter in a cell is191

equal to the total number of occurrences in this cell (see Appendix A). As the sampling192

effort in those cells is very uncertain, they don’t contribute to reduce the variance on193

the species parameters.194

2. There should be at least several tens of occurrences for each environmental feature of195

each species.196

3. For each environmental feature, the standard deviation of this feature over all occurrences197

divided by the standard deviation over background points should not be too small, at198

least 1/3 in practice. This is a proxy of the spread of the global occurrence intensity along199
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the feature gradient. It is a good coverage indication for this feature. The estimation200

of its parameter with a certain confidence will require all the more occurrences as this201

indicator is low.202

4. Regarding the choice of cell sizes, an optimal compromise should exist, but we have203

no definite procedure to reach it in practice yet. Three main limits can prevent good204

estimation when the sampling mesh reach a too high resolution: the estimation variance205

(see the first point above), the identifiability (discussed earlier) and the memory limita-206

tion (number background points required). Conversely, designing too large cells entails207

more variation of sampling effort inside cells, which tends to favor estimation bias (see208

section of the results and Appendix B, paragraph 2). In practice, a cross-validation209

scheme should be run for each tested cell area. Decreasing the size of cells can very210

quickly increase estimation variance of the species parameters, as shown for a simulation211

example in paragraph 4 of Appendix C.212

5. It is important to include some highly observed species in the model if available, es-213

pecially if they have a wide distribution over the territory. Further, an environmental214

variable should be from the model of a species, if it is known to be generalist along this215

gradient, so that to (i) reduce the estimation variance for all others species density pa-216

rameters associated with this gradient as shown in a paragraphs 2 and 3 of Appendix217

C, and (ii) drastically reduce the estimation bias. Generalist species provide a reference218

for sampling effort along the environmental gradient for the model. Globally, the mod-219

eler should include environmental variables parsimoniously to avoid high covariances220

between sampling effort and species densities estimates.221
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• Species distribution model
The environmental intensity of species i is

λi : Rpi → R+

xi → exp(αi +
∑pi

k=1 β
i
kx

i
k)

(1)

Where xi : D → Rpi are the environmental variables considered for species i. The intensity repre-
sents the species expected abundance in some environment. We assume that the locations of species
i individuals Zi are distributed according to the In-homogeneous Poisson process: Zi ∼ IPP (λi ox).

• Sampling effort model
The sampling effort s : D → [0, 1] represents the probability that a punctual location is ob-
served, which doesn’t depend on the species (it doesn’t include the detection probability, or re-
porting interest). We approximate it by a step function over a mesh making a partition of D:
s(z) = exp(

∑
j∈[|1,C|] γj1z∈cj ) , where (cj)j∈[|1,C|] are the cells of the mesh. We chose a regular

mesh in the following experiments for simplicity, but it is not a requirement.

• Full model
A species individual located at z ∈ D is reported with probability Ri s(z) where Ri ∈ [0, 1] is
the constant probability of detecting and reporting i. Then, with the thinning property of Poisson
processes, the joint probability distribution of the model is:

(Z1, ..., ZN ) ∼ ⊗Ni=1IPP (s Ri λi) (2)

• Main assumptions

1. Individuals locations are independent given the environment.

2. The probability of detection and reporting of any species is constant in space, time and across
observers.

3. The reporting of two individuals at distinct point locations are independent random variables.

4. The proportion of sampled individuals is small everywhere.

5. The sampling effort is constant per sampling cell.

Figure 1: Method workflow summary and statistical model
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2.2 Inference222

We summarize here the procedure for inferring parameter values from multi-species occur-223

rences data, and the detailed procedure is given in Appendix D. A log-linear Poisson pro-224

cesses is fitted over multiple species, but with a shared term in their linear predictor, i.e.225

the log-sampling effort for a given spatial mesh of cells (regular mesh of squares in the fol-226

lowing applications). The procedure basically minimizes the sum of negative log-likelihoods227

of each species’ Poisson process. Thus the objective function that is maximised is similar228

to the one of Fithian et al. [2015], except that the presence-absence term is removed. We229

use a convergent approximation of the Poisson process likelihood, whose integral term is230

heavy to compute, by a Poisson regression likelihood [Berman and Turner, 1992], and we231

use spatially uniformly distributed background points to achieve the estimation of the inte-232

gral term [Warton et al., 2010]. The implementation is done with the glmnet library for R233

(https://www.r-project.org/), in a similar way to Renner et al. [2015], except that it is234

extended to the multi-species case. glmnet handles sparse matrices and is very efficient in235

terms of memory and computational load, given the structure of the model design matrix. The236

R code for reproducing the results and fitting the model is provided in a Github repository:237

https://github.com/ChrisBotella/SamplingEffort.238

2.3 Simulation study239

We simulated virtual occurrence datasets to assess the reliability of inferences. The R code240

to reproduce this simulation study, i.e. to generate sampling effort rasters, simulate species241

occurrences, fit the model and run analysis over all scenarios, is provided in Github repository:242

https://github.com/ChrisBotella/SamplingEffort.243
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Real study area. French Mediterranean region over the Longitude/Latitude extent [1.5, 8]×244

[41, 45] (defining D in our model).245

Virtual species densities. We simulated no = (n1, ..., n50) occurrences of 50 virtual246

species, based on occurrence numbers of the 50 most represented plant species in the Pl@ntNet247

queries dataset (https://zenodo.org/record/2634137#.XpNmqZngphE) overD, so thatmin(no) =248

1502,max(no) = 5002 and
∑

i ni/50 ≈ 2206. All the virtual species densities (λi for species249

i in our model) were defined as Gaussian functions of the same single environmental variable250

(two cases considered: elevation/alti or annual precipitations/chbio_12, see Appendix E).251

The mean of the Gaussian density was drawn uniformly inside the quantiles 0.1 and 0.9 of the252

environmental variable range of values, while the standard deviation was drawn according to253

a gamma distribution of shape parameter 3 and scale parameter 50. The two environmental254

variables were chosen because they are both strongly linked to the simulated sampling effort255

(described further). In addition, the resolution of alti variable (around 90 meters) was much256

finer than chbio_12 (around 1km), and thus alti varies more strongly inside the sampling257

cells of our model. Therefore, the effect of alti was expected to be less well estimated with258

our method.259

Realistic sampling effort. We simulated a realistic spatial distribution of sampling effort260

while controlling the smoothness of its variation. The sampling effort (s : D → R in our261

model) was derived from the spatial distribution of all automatically identified plant obser-262

vations in the Pl@ntNet queries data. We applied an exponential quadratic kernel density263

estimator function to the counts of those occurrences per small square cells (resolution=0.002264

in longitude and latitude) over D. This yields a smoothed raster over D with same resolution.265

We experimented 4 values for the bandwidth parameter H = {20, 50, 80, 100} respectively in266
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cells units, i.e. 3.2, 8, 12.8, 16 kilometers in longitude, or 4.4, 11, 17.6, 22 kilometers in latitude.267

Thus we computed everywhere the local sampling effort value as a weighted local average of268

the surrounding counts with a weight decreasing with distance. The contribution of a count269

at distance n cells was proportional to exp(−n2/H), where H is the bandwidth introduced270

above. For instance, for H = 20, the weight decreased of 80% at 3.8km in longitude. At271

highest bandwidth H = 100, we mainly represented the large-scale populations and coastline272

effects, while at lowest bandwidth H = 20 we saw the influence of important rivers and roads273

connecting cities on sampling effort. Additionally, we devised a fifth profile of sampling effort274

that was constant with the spatial cells of the models (defined below), and equal to the average275

of counts within cells. This profile called H=+Inf, was used as a reference, and enabled us276

to check the performance of the method under the best model specification, and to character-277

ize the error only due to estimation variance. The sampling effort sharply decreased at low278

values for both environmental gradients, alti and chbio_12, which motivates correction for279

sampling bias in both simulation scenarios.280

Occurrences simulation. For a given species i with spatial intensity λi ◦x, and for a given281

sampling effort surface s, we draw independently ni occurrences according to the conditional282

Poisson process of intensity sλi◦x : D → R+ through a simple acceptation-rejection algorithm.283

This procedure was consistent with our model of distribution and observation as described in284

the Box of Figure 1.285

Model fitting. We fitted the proposed method model over the 50 species with a spatial286

mesh of square cells with (0.1, 0.1) dimensions in (longitude,latitude), or approximately (8, 11)287

in kilometers. Thus, except for the case where the simulated sampling effort was cell-wise288

constant, the fitted model was deliberately mis-specified. Indeed, the simulated sampling289
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effort varied strongly inside cells for the lowest bandwidth H = 20, and much more softly290

for the highest H = 100. We also filtered sampling cells and occurrences. We only kept291

sampling cells where there was at least 50 occurrences overall. The background points were292

drawn uniformly over cells as explained in Appendix D. We drew background points until293

there was at least 10 per sampling cells. The model was fitted for the following 10 simulation294

scenarios: Two environmental variables (elevation and precipitations) and 5 sampling effort295

profiles (including the 4 levels of smoothness and the cell-wise constant sampling effort).296

Evaluation of performance. We used two metrics to evaluate the estimation performance297

of the sampling effort:298

1. The coefficient of determination between the simulated sampling effort and its estimation299

over the points of a fine regular spatial grid across D (around 200 meters resolution).300

2. The coefficient of determination between the simulated sampling effort averaged per301

sampling cell and its estimation over the same points. In other words, this metric302

computes the correlation with the best possible approximation of the true sampling303

effort and is necessarily superior to the first.304

We also evaluated the estimation performance of species i density parameters as the coefficient305

of determination between λi and its estimate λ̂i across uniformly distributed values of x in the306

range [min{x(z), z ∈ D},max{x(z), z ∈ D}]. We computed the metric over the environmental307

gradient x rather than over the geographic space D, to avoid biasing evaluation toward the308

most represented environmental values.309
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2.4 Illustration with real data310

We illustrate the estimation of the relative sampling effort and species density for plant species311

occurrences from the Pl@ntNet citizen-science project2. Geo-located occurrences are col-312

lected by citizens using a mobile application (Joly et al. [2016]). They are automatically313

identified by the Pl@ntNet engine. Details on the current identification system and the314

database infrastructure are provided in Affouard et al. [2017]. The R code for extracting315

occurrences and environmental data, and fitting the model is provided in a Github repository:316

https://github.com/ChrisBotella/SamplingEffort.317

Species occurrences. The Pl@ntNet queries 2017-2018 in France provided the oc-318

currence dataset, which is described and freely downloadable at Botella et al. [2019] (http:319

//doi.org/10.5281/zenodo.2634137). Species presence records were collected in France320

from beginning of 2017 to October 2018 with the Pl@ntNet mobile application. The user321

takes one or several pictures of a plant specimen organs (e.g. leaf, flower, fruit, or bark). Pic-322

tures are then sent to the Pl@ntNet API to carry out automatic identification of the species323

producing a distribution of probabilities over species. The identification certainty score is324

the highest of these probabilities. The global Pl@ntNet identification system is described in325

Affouard et al. [2017] (although the identification engine has regularly evolved since). We first326

filtered species occurrences whose identification certainty score (field FirstResPLv2Score)327

was above 0.85. Then, we kept only the 300 species with highest number of occurrences. The328

list of species is provided in the table speciesTable.csv of the Github repository 3. We kept329

only occurrences no missing values for the selected environmental variables (described below).330

We then defined a regular spatial grid of squares of 4km side over the French metropolitan331

2https://plantnet.org/en/
3https://github.com/ChrisBotella/SamplingEffort
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territory including Corsica, and restricted it to squares whose center was inside the territory332

or closer than 4km from the border or coast. We kept only the squares that had more than333

5 occurrences and thus excluded all the occurrences within other squares. We ended up with334

a set of 475,138 occurrences, distributed over 15,556 spatial squares covering around 40%335

of the French territory. These squares are colored on the map of Fig. 3. To illustrate the336

method output regarding species densities, we analysed the fitted density of Phytolacca amer-337

icana L., an exotic invasive plant species in France called, using external available data. We338

especially referred to the FCBN (National Botanical Conservatories Federation) occurrences339

which are geographically summarized at : http://siflore.fcbn.fr/?cd_ref=&r=metro. It340

is a national expert dataset and independent of Pl@ntNet.341

Environmental data. We selected a set of 9 environmental variables to model the envi-342

ronmental density of species included in the model. The critical point here is that we need343

a parsimonious number of variables related to the niche of many plant species. Following344

the recommendations of Mod et al. [2016] on environmental variables for modeling macro345

ecological species niches, we included mean and annual variation of temperature, annual pre-346

cipitations, potential evapo-transpiration, elevation, slope, available soil water capacity, a soil347

pH proxy and a simplified plant habitat type descriptor. The variables are presented in Table348

1 of Appendix E. These environmental data come from multiple sources [Karger et al., 2016,349

Panagos, 2006, Panagos et al., 2012, Van Liedekerke et al., 2006, Zomer et al., 2007, 2008].350

The local values were extracted from the geographic rasters described and downloadable at351

Botella [2019] 4.352

Species density model. For continuous environmental gradients, the distribution of plant353

species is often modelled with a Gaussian density function. This choice can be justified be-354

4http://doi.org/10.5281/zenodo.2635501
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cause it is a maximum entropy probability density function for which we control independently355

the mean and variance, two useful criteria for describing species environmental densities. We356

chose the Gaussian distribution model for the continuous environmental variables: chbio_1,357

chbio_5, chbio_12-etp, etp, alti and slope. We combined annual rainfall chbio_12 and358

potential evapotranspiration etp into chbio_12-etp, called the water balance, which is com-359

monly used in plants SDM (Mod et al. [2016]). We included categorical pedologic variables360

representing physico-chemical properties categories. There were 48 categories in the origi-361

nal CORINE Land Cover 2012 classification. To avoid inflating the number of parameters for362

land cover effects, we defined a Simplified Habitat Typology (spht) with 5 types: cultivated,363

forest, grasslands, urban and other. Each type included primary CORINE Land Cover364

2012 categories as shown in Table 2 of the Appendix E. We included an interaction effect365

between water balance and slope. When this effect is strong, a different slope translates in a366

different water balance optimum. Thus a plant establishing on steeper slope could compensate367

for water run-off. To summarize, equation 3 shows the R formula of the linear predictor of any368

species density, with 19 features terms computed from the environmental variables of Table369

1 of Appendix E. It thus yields 19 parameters for the density of each species, including370

the intercept, plus 15, 556 − 1 parameters of observation in sampling cells, yielding 21, 255371

parameters in total, for 475, 138 occurrences.372

∼ 1 + etp + I(etp2)+ I(chbio_12-etp)+ I((chbio_12-etp)2)+ chbio_1+ I(chbio_12)

+chbio_5+ I(chbio_52)+ alti+ I(alti2)+ slope+ I(slope2)

+awc_top+ I(awc_top2)+ bs_top+ I(bs_top2)+ spht+ slope:I(chbio_12-etp)

(3)
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Background points. We uniformly drew a fixed number of points per sampling cell as373

described in Appendix D. It avoids the problems of total uniform sampling, i.e. cells with374

no background points. We draw 6 points per sampling cells to account for environmental375

heterogeneity within cells, which makes 93,336 background points duplicated for each species,376

that is 28,000,800 background points in total. The model design matrix was then of dimensions377

(28,475,938 ; 21,255) in the likelihood optimization process. A standard R numeric matrix of378

this dimensions would require around 3,7 To of RAM memory. However, our design matrix379

was sparse, including only 2 ∗ (pi + 1) + 1 = 39 non-null values per line for most lines in our380

example, so that storage cost was decreased with a factor 500 with the R sparse matrix format381

(see library Matrix). The model could be fitted with R-glmnet on a machine with 196 Go of382

RAM.383

3 Results384

We firstly assessed the reliability of our joint model estimation method over around 100,000385

simulated occurrences of 50 virtual species, for 10 simulation scenarios covering the different386

values of two factors, the environmental gradient (2 types, alti and chbio_12) and the387

simulated sampling effort (5 types). We summarized the performance metrics of parameter388

estimation in Figure 2 for the sampling effort (graph A.) and the 50 species densities (graph389

B.). Secondly, we illustrated the method on 300 plant species using around 500,000 occurrences390

in France. Specifically, we examined estimation results for an exotic invasive plant, Phytolacca391

americana L.392

Simulation: Very good fit when the simulated sampling effort is cellwise constant.393

As shown in Figure 2, the estimate of sampling effort had a R2 of 0.97 (for alti and chbio_12)394
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when cellwise sampling effort was constant (H=+Inf), while the average R2 for the species395

environmental densities was 0.95 for alti and 0.88 for chbio_12. It shows that the method396

recovers unbiased niches and sampling effort estimates under good model specifications, and397

that it is almost unaffected by estimation variance for this size of sample and parameterization.398

However, the crucial assumption of sampling effort homogeneity within cells, which enables399

inference with our model, is of course wrong in the reality, and we need to assess the effect of400

realistic violations of the assumption on estimation performance, as shown below.401

Simulation: Smoother is better. Red and black curves of Figure 2 (A.) show that the402

approximation of the sampling effort was better when the sampling effort was smoother, for403

both environmental variables. While the red curve represents the fit to the raw sampling404

effort, the black curve represents the fit to the sampling effort averaged per cell and is always405

above (i.e. the Best Cellwise Constant Approximation (BCCA) of the true sampling effort406

that can be estimated by the model in the ideal case). The model estimating sampling effort407

could not fit the variations of sampling effort inside cells, which were integrated as error by408

the red curve. As H increased, the true sampling effort spatial variation became softer and409

it was thus closer to be constant inside model cells. This should reduce the gap between the410

red and the black curve, if the model estimate converges towards the BCCA. It is surprising411

though that for x:alti H:-20 the gap was much smaller than for x:alti H:-50, but still the R2
412

computed with true sampling effort was 0.0044 while it was two times smaller for the average413

per cell (0.01, unshown).414

Bias under joint variation of sampling effort and environmental variable within415

cells. It is most unlikely that the high error of x:alti H:-20 was due to estimation variance,416

as the fit is almost perfect for the cellwise constant effort. The error was most likely due to an417

21



estimation bias when the model of sampling effort cannot fit the variations of occurrence den-418

sity within cells. Specifically, bias could appear if sampling effort strongly covaried with the419

environmental feature within cells, at least in a restricted range of the gradient. We observed420

empirically and described such bias in sampling effort profile (3) of the complementary simu-421

lation experiment in Appendix F, with a visualisation of species and sampling effort density422

estimates. To simplify, in a single species case, the model is optimized so that the variation of423

sγ(z)λβ ◦ x(z) across space (product of the sampling effort and the species density estimates)424

fits the variation of observed occurrence density s(z)λ ◦ x(z). However, the best approxima-425

tion of this product of densities is not necessarily the product of the best approximations per426

density, namely the BCCA of s and λ◦x itself. We can characterize more accurately this phe-427

nomenon in the multi species case with a re-expression and analysis of the asymptotic model428

negative log-likelihood given in equation (1) of Appendix A. By re-expressing the equation429

with a single environmental variable x ∈ Im(x), we obtained the equation 4. For large samples,430

fitting the model is equivalent to minimizing the right term of equation 4, where the terms431

ErrWj

s,λi
(s, sγ) and ErrWj

s,λi
(λi, λiβi) can be seen as logarithmic density errors over the range of432

environment Wj for the sampling effort and the species i density, respectively. Those errors433

are spatially weighted by occurrence density of species i, s λi◦x, and its number of occurrences434

ni. If sampling effort s is badly approximated by the sampling mesh, i.e. by the BCCA, and435

if s shows a strong and consistent co-variation with x within cells, then ErrWs,λi(s, sγ) can show436

monotonic variation along the environmental gradient. The effect can be counterbalanced by437

an opposite variation profile in the error terms of the species densities, which can be achieved438

by adjusting their parameters to minimize the overall error. Such lack of robustness of the439

sampling mesh to environmentally structured variations within cells is a consequence of the440

latent lack of identifiability of the model. On the contrary, if the sampling effort variation441
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within cells is independent from that of environmental variables, no bias is caused whatever442

the strength of sampling effort variation. This problem is related to the problem of spatial443

confounding in spatial statistics Hodges and Reich [2010], or to interlinked biases between444

covariates and purely spatial effects in generalized linear mixed models.445

{γ̂, β̂1, ..., β̂N} = argmin
γ,β1,...,βN

∑B
j=1

∑N
i=1 ni

(
ErrWj

s,λi
β∗
i

[s, sγ] + ErrWj

s,λi
β∗
i

[λiβ∗
i
, λiβi ]

)
µ(x−1(Wj))

Where (Wj)j∈[|1,B|] is a partition of Im(x) into small intervals

and ∀f, g ∈ R+D densities over D

ErrWs,λ[f, g] :=
∫
x−1(W ) s(z)λ◦x(z)(log(f)−log(g))dz

µ(x−1(W ))

(4)

Note that in equation 4, we consider that all densities integrate to 1 over D.446

Simulation: Estimation of species densities improves for smoother sampling effort.447

Figure 2 -B. shows that species responses were on average well estimated in most scenarios,448

even when sampling effort estimation was worst. In the scenario x:alti H:20, the average R2
449

of the 50 species densities was around 0.85. In fact, as shown by the asymmetry of density450

plots in all scenario, most species had good fit with similar performance, while a few other ones451

had significantly worse fit. As for the sampling effort estimation, estimation quality notably452

increased with H. Therefore, the robustness issue with sampling effort variation within cells453

translated into a bias in species estimates. In addition, some species had consistently bad454

estimation with R2 below 0.50 even for H = +Inf. It could be the consequence of a simulated455

niche optimum being in scarcely sampled areas and/or of a lack of occurrences. Species456

density estimation was overall less good in case chbio_12 compared to case alti, even with457

good model specification (0.88 for x:chbio_12 H:+Inf on average compared to 0.95 for458
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x:alti H:+Inf on average, see B. of Figure 2) where the sampling effort density estimation459

is almost perfect. It implies that lower performance is not due to estimation bias, but to460

estimation variance, due to responses that are harder to estimate given the sampling effort461

and occurrences. The lower estimation quality with chbio_12 was thus not intrinsically due462

to the variable itself, but a consequence of species niches (randomnly defined, see the protocol463

section) that are harder to estimate. It also highlights that even though species estimation464

can be unbiased, its precision necessarily depends on the overall intensity of sampling, i.e.465

we need a sufficient number of points everywhere (all species confounded) in environmental466

space to insure homogeneity in the estimation quality across species, as highlighted in section467

model design guidelines.468

Illustration: Evaluating sampling heterogeneity in Pl@ntNet data. Fig. 3 shows the469

estimated log-relative sampling effort of 300 plants species reported in Pl@ntNet between 2017470

and 2018. The maximal variations of estimated sampling effort across the territory are of a471

factor 1000, e.g. Biarritz (a very touristic city) compared to remote sites in the natural reserve472

of Camargues. We can interpret from the multiplicative model that any species was observed473

1000 times more in certain places just because of the frequency of visits and independently of474

their actual abundance.475

Illustration: Phytolacca americana L. distribution. The fitted model also provided476

environmental densities of 300 plant species. We predicted the log relative density for any477

species i, at any point z where the species variables xi were all known, by computing its478

specific linear predictor
∑pi

k=1 β̂
i
kx

k
i (z). We projected the decimal logarithm of Phytolacca479

americana L. density estimation across all France in graph B of Fig. 4. It is consistent480

with the knowledge of Phytolacca habitat as described in Dumas [2011]: It is cultivated as481
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Figure 2: R2 between generative and estimated model components in the 10 simulation sce-
narios for the Sampling effort (A.) and the species environmental densities (B.). In (A.) the
R2 is computed between the simulated sampling effort density (raw in red or averaged per
estimation cell in black) and the estimated density over the geographic space. Regarding
the evaluation of the species densities estimates, the same metric is computed between the
true and the estimated densities over the environmental gradient and for the 50 species, that
for each scenario. In (B.) we summarize the 50 species metrics values through the boxplot
overlayed on a density plot.
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ornamental all over France - one of the reasons of its introduction - and often establishes on482

disturbed soils in the surroundings. In rural areas, it prefers managed forests with acidic and483

sandy soils. It is also found along rivers bordered with trees, as predicted by the model along484

the Rhone and the Garonne. The northern France is not favorable to it. The model recovers485

true hot spots even in scarcely sampled areas. Indeed, the model predicts that the species is486

abundant in several scarcely sampled departments, like the Indre (36), Aude (11), Charente487

(16) and the Gers (32). FCBN records from 2000, which can be seen at http://siflore.488

fcbn.fr/?cd_ref=113418&r=metro, confirm that the species is indeed widely present in Indre489

(36). Conversely, there are very few reports in the INPN data for Aude (11), Charente (16) or490

Gers (32), although presence records exist (Dumas [2011] and Pl@ntNet occurrences). Those491

regions have indeed been under-prospected by conservatories experts in the last 20 years.492

Thus the current Phytolacca americana abundance stayed either undetected by convervatories493

sampling or it is a recent invasion.494

We also see that the predicted density of Phytolacca within cities is very high. It asks the495

question of whether (i) it is really due to Phytolacca’s higher abundance inside cities or (ii)496

to residual estimation bias. Hypothesis (ii) is supported by the fact the effect of the urban497

category of spht variable was the highest of all categories for most species, even those avoiding498

such habitats (e.g. Vicia faba L. had lowest urban effect of all but was predicted to be 2 times499

more intense in cities). The fact that many species of the list were partly gardened may favor500

such bias. However, effect of (i) is probably also strong because Phytolacca is an invasive501

species used as ornamental or medicinal plant in many gardens, and its urban inflation of502

factor 24 is much higher than for Vicia faba. It emphasizes that the effect of gardening species503

abundance on urban inflation is strong.504
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Figure 3: Relative sampling effort estimated from Pl@ntNet occurrences in France. The
model was fitted on 475,316 occurrences of 300 plant species in France reported between 2017
and 2018 through the Pl@ntNet application. We represent the logarithm in base 10 of the
estimated sampling effort to more clearly show the broad orders of variation. The white cells
are those with too few occurrences, which were discarded in the analyses.
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Figure 4: Raw occurrences and estimated density of Phytolacca americana L. from Pl@ntNet
data. A. 5,176 occurrences of Phytolacca americana L. collected through Pl@ntNet users
with automatic identification over the 2017-2018 period. B. Decimal logarithm of predicted
relative density of Phytolacca americana L. across France estimated from the occurrences with
the proposed method. The discrete gradient of colors represent quantiles intervals ranges. The
model corrects for the over-concentration of occurrences in northern cities due to sampling
effort.
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4 Discussion505

We propose a method to jointly estimate environmental densities of many species, along with506

a spatial function representing a common sampling effort. By modeling the sampling effort507

as a step-wise constant function over a spatial mesh, the methods offers flexible estimation508

of the sampling effort without a priori constraints or knowledge on the spatial determinants.509

For modelling species densities, the method can be seen as a multi-species extension of the510

Warton et al. [2013], or a particular case of the method of Fithian et al. [2015] for presence511

only data. However, our method differs from the FactorBiasOut method based on Target-512

Group Background (TGB Phillips et al. [2009]). FactorBiasOut is unbiased if the cumulative513

intensity of TG species is constant across environments [Botella et al., 2020], and in this case514

it should yield the same estimation as our method. Nevertheless, selecting a Target-Group515

fulfilling this condition is challenging.516

We have shown that our method provides unbiased estimation of species relative densities517

and sampling effort if the later is constant within the cells of a spatial mesh. Although518

this condition is crucial to disentangle species and sampling densities, we have also shown519

that the method is robust to reasonable variation of sampling effort within cells, and even520

to stronger variation unrelated to environmental drivers of species densities. However, if the521

sampling effort covaries with an environmental driver within cells, bias in the sampling effort522

and species estimates is likely to appear. We also demonstrated that information on sampling523

effort gained from the most observed species helps to better estimate the niche of less observed524

species with our method. Our method is devised for analysing large volume of occurrences. In525

the illustration here, we could successfully analyze around 500,000 opportunistic occurrences526

from 300 plant species distributed all over France, with a total of 20,000 parameters. The527
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illustration also indicated that sampling effort varied by a factor of several thousands across528

spatial cells, supporting its ability to handle opportunistic datasets with high variation in529

sampling effort. The analysis of Phytolacca americana L. suggested a broader distribution530

and potential areas yet undetected based on published knowledge and data. Nevertheless,531

predictions out of the training area must be critically and carefully examined, as they can532

present different environmental conditions and be subject to extrapolation errors.533

Pooling occurrences to control estimation variance. A major advantage of our method534

is to require less prior constraints or knowledge on sampling effort, but such flexibility comes535

at some cost. Our method becomes quickly data hungry when decreasing the spatial area of536

sampling cells. In the illustration provided here, pooling the occurrences of many species was537

needed to allow reasonable estimation of the relative sampling effort on 15, 556 cells of area538

16km2. Our method is not suited when the concentration of occurrences per sampling cell is539

too low, as for herbarium datasets including few samples collected over large areas with much540

heterogeneous sampling effort. In such cases, the FactorBiasOut method (Phillips et al. [2009])541

should be more reliable because it does not require many degrees of freedom to model sampling542

effort. However, our methods proved efficient when the global number of occurrences is high543

and the average number of occurrences per species is high (the minimum per species being544

reasonable, see our guidelines), because pulling information from all species allow improving545

the estimation of sampling effort. It is suited for opportunistic datasets where some species546

are highly observed, for instance with citizen-science or naturalist programs. We have also547

shown that the highly observed species are all the more useful as they are widely distributed.548

Estimation variance on a species density can thus be drastically reduced compared to the single549

species model (Appendix C, paragraph 1). An even more efficient way to reduce estimation550

variance and bias is to withdraw some environmental variables that should not play on a551
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given species density (Appendix C, paragraphs 2-3). This species could allow improving552

estimation of relative sampling effort over gradients of these environmental variables.553

How to efficiently design a spatial mesh for sampling effort? An optimal design554

of the spatial mesh should ensure that the real sampling effort is constant within every cell.555

Otherwise, estimation biases can arise (see Appendix B, paragraph 2). Although a thinner556

partition of space should allow more constant sampling effort within cells, a coarser partition557

should be preferred in order to minimize (i) estimation variance of all parameters, and (ii)558

parameters co-variances, especially between sampling and species densities, because a more559

variable environment within cells should allow better distinguishing its influence against a560

constant sampling effort. A cross-validation scheme combined with a density evaluation metric561

(see e.g. Tsybakov [2009]) should guide the design of the spatial mesh with homogeneous cell562

sized, but a more efficient sampling design can integrate heterogeneous cells sizes and shapes.563

Therefore, optimizing the design of the sampling mesh remains an promising way for improving564

the method.565

How to manage variation in species detection probability? Several assumptions re-566

garding the detection probabilities may deviate from reality. First, the sampling effort is567

assumed identical across species, but our model can allow varying detection probability across568

species (Ris), which is still not distinguishable from species global abundance. It means that569

we assume the detection probability density to vary similarly across space for all species. This570

assumption is not specific to our method (seeFithian et al. [2015]). However, biases can ap-571

pear if species detection probability varies differently in space from one species to another.572

For instance, some species might be looked for only in specific areas and such sampling pecu-573

liarity can induce bias in the estimation of the species densities. We also make the assumption574

31



that for each modelled species, the detection probability is identical across observers. Species575

included in the model should be selected to respect this assumption. It also concerns the576

problem of heterogeneous identification skills in the case of citizen-sciences data. A rule of577

thumb is to only include in the model species that are all well identified by all observers, and to578

ensure that most observers have enough skills to identify species less frequent species. Lastly,579

we assume the expected number of occurrences to be proportional to the local abundance580

of the species and the sampling effort. If for instance, observers report at maximum only581

one individual from the local population, it may impact the estimation of our model. But it582

will depend on the number of observers that prospect and their distribution. If this number583

of observers is high (everywhere) and their probability of detection of specimens is globally584

low, then estimates of our model should not change drastically. However, if the number of585

observers is low everywhere, and their probability of detection is high, then we expect that586

the estimation of the environmental density by our model will be shrinked. The assumption587

seems somehow consistent with the citizen science context, but otherwise, occurrences thin-588

ning strategies may be useful to avoid bias (Boria et al. [2014], Fourcade et al. [2014], Varela589

et al. [2013]) and could be applied for our method.590

Scalability. Our method can handle occurrence datasets including many species, occur-591

rences over large geographic and environmental scales as shown by our illustration on the592

Pl@ntNet data over France. The fit of this model required computations on a very large de-593

sign matrix of dimensions 29 millions rows by 22 thousand columns. However, thanks to the594

sampling effort cellwise constant model, lines only had 39 non null columns. This structure595

is exploited by the sparse matrix format of the R-glmnet (Friedman et al. [2010]) R package,596

minimizing memory use. We could thus use 28,000,800 background points for the likelihood597

approximation. The memory load increases only linearly with the number of sampling cells598
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(number of background points ∝ number of cells). Memory limitation on standard computers599

can still appear with more species (several thousands) and/or higher resolution of environmen-600

tal variables (e.g. derived from satellite imagery) and/or larger domain, because the number of601

required background points is roughly proportional to the number of species and to the max-602

imum number of environmental raster cells. Optimizing the selection of background points603

and using a batch gradient descent algorithm should allow handling much larger dimensions.604

Bias under covariation of sampling effort and environmental features within cells.605

With a cellwise constant model of sampling effort and a coarser grain of cells compared to606

environmental variation, spatial confusion of sampling effort and species densities should be607

prevented (Hodges and Reich [2010]) . However, the simulation experiment showed that608

the model can confound the influence of environment and sampling effort on species density.609

Based on theoretical arguments and simulation experiments (Appendix F scenario 2), we610

showed that there is an approximately linear deviation in the average of log-sampling effort611

estimate along an environmental feature if the true sampling effort strongly and monotonically612

covaries within cells with this feature environmental. A similar bias due to heterogeneity in613

sampling effort related to land-cover and elevation variables within cells is suspected for the614

illustration on real occurrences. Bias appears when the sampling mesh does not allow to615

capture strong variation in sampling effort along an environmental gradient playing on species616

density. Therefore, we recommend not to include an environmental variable if the sampling617

effort varies very quickly over its most represented range of values in space.618

Perspectives to improve joint estimation of sampling effort and species abun-619

dances. More generally, joint modeling approaches from presence only are vulnerable to620

wrong model specification regarding spatial covariation in sampling effort and species density621
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(discussed in Appendix B). There is currently no blindly reliable solution for sampling bias622

correction with presence only data. An approach that has been recently emphasized is to in-623

tegrate more standardized data (e.g. presence-absence, counts, occupancy detection, distance624

sampling) which provide information on species abundance that is not, or less, affected by an625

unknown sampling process. Such integration is possible within the Poisson process framework626

as, e.g., with presence-absence data (Giraud et al. [2016] and Fithian et al. [2015]), abundance627

counts with imperfect detection (Dorazio [2014]), and site occupancy with imperfect detection628

(Koshkina et al. [2017]). Including standardized data on a small subset of species can be629

enough to drastically improve joint estimation of sampling effort and species densities (Giraud630

et al. [2016]). If no standardized dataset is available, one possible bypass is to build comple-631

mentary site-occupancy (Louvrier et al. [2018]) or absence (Bradter et al. [2018]) data from632

the opportunistic presences only, using external knowledge to determine a priori the sampled633

area or constrain detection probabilities. Data integration methods have thus gained momen-634

tum Miller et al. [2019], but not all standardized data can equally well improve estimation.635

For example, there is common observation bias of opportunistic datasets such as Pl@ntNet in636

urban areas. Overcoming the bias would require integrating standardized species surveys both637

within and outside cities, because surveys conversely undersampling urban areas would be use-638

less to resolve model confusion. However, it is difficult to find standardized data covering as639

well areas within and outside cities. It brings us to the question of data collection orientation640

or selection based on a specific goal of model improvement. Such problem might be cast as641

the optimization of some function of parameters variances or co-variances over all possible642

sampling effort distributions given some constraints on the global effort. Similar questions643

have been defined and found answers in the literature of optimal design (Pukelsheim [2006]).644

For instance, in the context of our method, our results imply that the estimation would be645
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much improved only if we could orientate the sampling effort, during data collection, to in-646

sure that it constant inside some geographic areas with heterogeneous environment. Those647

areas should then be used as sampling cells. More broadly, data collection orientation has648

strong implications for better integrating citizen-science projects in biodiversity monitoring,649

but there is still little and only recent work on it Reich et al. [2018].650

651

Synthesis. We have shown that our method can estimate sampling effort in geographic652

space with much less prior assumptions than previous methods. We have also proposed and653

discussed several possible extensions allowing using the method in a broad range of situations.654

It is especially suited to analyze observations of many species by many citizens at large spatial655

scale, and should decrease biases in species distribution estimates. We thus expect that the656

approach will be useful to recover information of sampling effort from purely opportunistic657

occurrences, enabling post-analysis of sampling effort variation in citizen science programs and658

guiding strategies for further data collection. In addition, insofar as citizen science occurrences659

are generally collected continuously, our method should allow regular monitoring of many taxa660

and support on-time and adapted conservation and management strategies.661

5 Data accessibility662

In the aim to follow the FAIR principles, datasets and source code used in this manuscript663

are provided at the follow urls :664

• Species occurrences data may be freely downloaded at http://doi.org/10.5281/zenodo.665

2634137.666

• Environmental rasters may be freely downloaded at http://doi.org/10.5281/zenodo.667
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2635501.668

• The R code for running simulations and real data illustration, as well as the list of modelled669

species are provided on the manuscript dedicated Github repository : https://github.com/670

ChrisBotella/SamplingEffort.671
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Chapter 10
A Deep Learning Approach to Species
Distribution Modelling

Christophe Botella, Alexis Joly, Pierre Bonnet, Pascal Monestiez,
and François Munoz

Abstract Species distribution models (SDM) are widely used for ecological
research and conservation purposes. Given a set of species occurrence, the aim
is to infer its spatial distribution over a given territory. Because of the limited
number of occurrences of specimens, this is usually achieved through environmental
niche modeling approaches, i.e. by predicting the distribution in the geographic
space on the basis of a mathematical representation of their known distribution
in environmental space (= realized ecological niche). The environment is in most
cases represented by climate data (such as temperature, and precipitation), but
other variables such as soil type or land cover can also be used. In this paper, we
propose a deep learning approach to the problem in order to improve the predictive
effectiveness. Non-linear prediction models have been of interest for SDM for more
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than a decade but our study is the first one bringing empirical evidence that deep,
convolutional and multilabel models might participate to resolve the limitations of
SDM. Indeed, the main challenge is that the realized ecological niche is often very
different from the theoretical fundamental niche, due to environment perturbation
history, species propagation constraints and biotic interactions. Thus, the realized
abundance in the environmental feature space can have a very irregular shape that
can be difficult to capture with classical models. Deep neural networks on the other
side, have been shown to be able to learn complex non-linear transformations in a
wide variety of domains. Moreover, spatial patterns in environmental variables often
contains useful information for species distribution but are usually not considered in
classical models. Our study shows empirically how convolutional neural networks
efficiently use this information and improve prediction performance.

10.1 Introduction

10.1.1 Context on Species Distribution Models

Species distribution models (SDM) have become increasingly important in the last
few decades for the study of biodiversity, macro ecology, community ecology and
the ecology of conservation. An accurate knowledge of the spatial distribution of
species is actually of crucial importance for many concrete scenarios including
the landscape management, the preservation of rare and/or endangered species,
the surveillance of alien invasive species, the measurement of human impact or
climate change on species, etc. Concretely, the goal of SDM is to infer the spatial
distribution of a given species based on a set of geo-localized occurrences of that
species (collected by naturalists, field ecologists, nature observers, citizen sciences
project, etc.). However, it is usually not possible to learn that distribution directly
from the spatial positions of the input occurrences. The two major problems are
the limited number of occurrences and the bias of the sampling effort compared to
the real underlying distribution. In a real-world dataset, the raw spatial distribution
of the observations is actually highly correlated to the preference and habits of the
observers and not only to the spatial distribution of the species. Another difficulty is
that in most cases, we only have access to presence data but not to absence data. In
other words, occurrences inform that a species was observed at a given location but
never that it was not observed at a given location. Consequently, a region without
any observed specimen in the data remains highly uncertain. Some specimens could
live there but were not observed, or no specimen live there but this information is
not recorded. Finally, knowing abundance in space doesn’t give information about
the ecological determinants of species presence.

For all these reasons, SDM is usually achieved through environmental niche
modeling approaches, i.e. by predicting the distribution in the geographic space on
the basis of a representation in the environmental space. This environmental space is
in most cases represented by climate data (such as temperature, and precipitation),
but also by other variables such as soil type, land cover, distance to water, etc. Then,
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the objective is to learn a function that takes the environmental feature vector of
a given location as input and outputs an estimate of the abundance of the species.
The main underlying hypothesis is that the abundance function is related to the
fundamental ecological niche of the species, in the sense of Hutchinson (see [1]).
That means that in theory, a given species is likely to live in a single privileged
ecological niche, characterized by an unimodal distribution in the environmental
space. However, in reality, the abundance function is expected to be more complex.
Many phenomena can actually affect the distribution of the species relative to its so
called abiotic preferences. For instance, environment perturbations, or geographical
constraints, or interactions with other living organisms (including humans) might
have encourage specimens of that species to live in a different environment. As a
consequence, the realized ecological niche of a species can be much more diverse
and complex than its hypothetical fundamental niche.

10.1.2 Interest of Deep and Convolutional Neural Networks for
SDM

Notations When talking about environmental input data, there could be confusions
between their different possible formats. Without precision given, x will represent a
general input environmental variable which can have any format. When a distinction
is made, x will represent a vector, while an array is always noted X. To avoid
confusions on notations for the different index kinds, we note the spatial site index
as superscript on the input variable (xk or Xk for kth site) and the component index
as subscript (so xk

j for the j th component of kth site vector xk ∈ R
p, or for the array

Xk ∈ Md,e,p(R), Xk
.,j,. is the j th matrix slice taken on its second dimension). When

we denote an input associated with a precise point location taken in a continuous
spatial domain, the point z is noted as argument: x(z).

Classical SDM approaches postulate that the relationship between output and
environmental variables is relatively simple, typically of the form:

g(E[y|x]) =
∑

j

fj (xj ) +
∑

j,j ′
hj,j ′(xj , xj ′) (10.1)

where y is the response variable targeted, a presence indicator or an abundance in
our case, the xj ’s are components of a vector of environmental variables given as
input for our model, fj are real monovariate functions of it, hj,j ′ are bivariate real
functions representing pairwise interactions effects between inputs, and g is a link
function that makes sure E[y|x] lies in the space of our response variable y. State-of-
the-art classification or regression models used for SDM in this way include GAM
[2], MARS [3] or MAXENT [4, 5]. Thanks to fj , we can isolate and understand
the effect of the environmental factor xj on the response. Often, pairwise effects
form of hj,j ′ is restricted to products, like it is the case in the very popular model
MAXENT. It facilitates the interpretation and limits the dimensionality of model
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parameters. However, it sets a strong prior constraint without a clear theoretical
founding as the explanatory factors of a species presence can be related to complex
environmental patterns.

To overcome this limitation, deep feedforward neural networks (NN) [6] are good
candidates, because their architecture favor high order interactions effects between
the input variables, without constraining too much their functional form thanks
to the depth of their architecture. To date, deep NN have shown very successful
applications, in particular image classification [7]. Until now, to our knowledge,
only one-layered-NN’s have been tested in the context of SDM (e.g. in [8] or [9]).
If they are able to capture a large panel of multivariate functions when they have
a large number of neurons, their optimization is difficult, and deep NN have been
shown empirically to improve optimization and performance (see section 6.4.1 in
[6]). However, NN overfit seriously when dealing with small datasets, which is the
case here (≈5000 data), for this reason we need to find a way to regularize those
models in a relevant way. An idea that is often used in SDM (see for example [10])
and beyond is to mutualize the heavy parametric part of the model for many species
responses in order to reduce the space of parameters with highest likelihood. To
put it another way, a NN that shares last hidden layer neurons for the responses of
many species imposes a clear constraint: the parameters must construct high level
ecological concepts which will explain as much as possible the abundance of all
species. These high-level descriptors, whose number is controlled, should be seen as
environmental variables that synthesize the most relevant information in the initial
variables.

Another limitation of models described by Eq. (10.1) is that they don’t capture
spatial autocorrelation of species distribution, nor the information of spatial patterns
described by environmental variables which can impact species presence. In the
case of image recognition, where the explanatory data is an image, the variables, the
pixels, are spatially correlated, as are the environmental variables used in the species
distribution models. Moreover, the different channels of an image, RGB, can not be
considered as being independent of the others because they are conditioned by the
nature of the photographed object. We can see the environmental variables of a
natural landscape in the same way as the channels of an image, noting that climatic,
soil, topological or land use factors have strong correlations with others, they are
basically not independent of each other. Some can be explained by common mech-
anisms as is the case with the different climatic variables, but some also act directly
on others, as is the case for soil and climatic conditions on land use in agriculture,
or the topology on the climate. These different descriptors can be linked by the
concept of ecological environment. Thus, the heuristic that guides our approach is
that the ecological niche of a species can be more effectively associated with high
level ecological descriptors that combine non linearly the environmental variables
on one hand, and the identification of multidimensional spatial patterns of images of
environmental descriptors on the other hand. Convolutional neural networks (CNN,
see [11]) applied to multi-dimensional spatial rasters of environmental variables can
theoretically capture those, which makes them of particular interest.
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10.1.3 Contribution

This work is the first attempt in applying deep feedforward neural networks and
convolutional neural networks in particular to species distribution modeling. It intro-
duces and evaluates several architectures based on a probabilistic modeling suited
for regression on count data, the Poisson regression. Indeed, species occurrences
are often spatially degraded in publicly available datasets so that it is statistically
and computationally more relevant to aggregate them into counts. In particular,
our experiments are based on the count data of the National Inventory for Nature
Protection (INPN1), for 50 plant species over the metropolitan French territory
along with various environmental data. Our models are compared to MAXENT,
which is among the most used classical model in ecology. Our results first show
how mutualizing model features for many species prevent deep NN to overfit and
finally allow them to reach a better predictive performance than the MAXENT
baseline. Then, our results show that convolutional neural networks performed
even better than classical deep feedforward networks. This shows that spatially
extended environmental patterns contain relevant extra information compared to
their punctual values, and that species generally have a highly autocorrelated
distribution in space. Overall, an important outcome of our study is to show that
a restricted number of adequately transformed environmental variables can be used
to predict the distribution of a huge number of species. We believe the study of the
high-level environmental descriptors learned by the deep NNs could help to better
understand the co-abundance of different species, and would be of great interest for
ecologists.

10.2 A Deep Learning Model for SDM

10.2.1 A Large-Scale Poisson Count Model

In this part, we introduce the statistical model which we assume generates the
observed data. Our data are species observations without sampling protocol and
spatially aggregated on large spatial quadrat cells of 10 × 10 km. Thus, it is relevant
to see them as counts.

To introduce our proposed model, we first need to clarify the distinction between
the notion of “obsvered abundance” and “probability of presence”. Abundance
is a number of specimens relatively to an area. In this work, we model species
observed abundance rather than probability of presence because we work with
presence only data and without any information about the sampling process. Using
presence-absence models, such as logistic regression, could be possible but it would

1http://https://inpn.mnhn.fr/.
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require to arbitrarily generate absence data. And it has been shown that doing so
can highly affect estimation and give biased estimates of total population [12].
Working with observed abundance doesn’t bias the estimation as long as the space
if homogeneously observed and we don’t look for absolute abundance, but rather
relative abundance in space.

The observed abundance, i.e. the number of specimens of a plant species found
in a spatial area, is very often modeled by a Poisson distribution in ecology: when
a large number of seeds are spread in the domain, each being independent and
having the same probability of growing and being seen by someone, the number of
observed specimens in the domain will behave very closely to a Poisson distribution.
Furthermore, many recent SDM models, especially MAXENT as we will see later,
are based on inhomogeneous Poisson point processes (IPP) to model the distribution
of species specimens in an heterogeneous environment. However, when geolocated
observations are aggregated in spatial quadrats (≈10 × 10 km each in our case),
observations must be interpreted as count per quadrats. If we consider K quadrats
named (s1, . . . , sK) (we will call them sites from now), with empty intersection, and
we consider observed specimens are distributed according to IPP(λ), where λ

is a positive function defined on R
p and integrable over our study domain D (where

x is known everywhere), we obtain the following equation:

∀k ∈ [|1,K|], N(sk) ∼ P

(∫

sk

λ(x(z))dz

)
(10.2)

Now, in a parametric context, for the estimation of the parameters of λ, we need
to evaluate the integral by computing a weighted sum of λ values taken at quadrature
points representing all the potential variation of λ. As our variables x are constant
by spatial patches, we need to compute λ on every point with a unique value of x

inside sk , and to do this for every k ∈ [|1,K|]. This can be very computationally
and memory expensive. For example, if we take a point per square km (common
resolution for environmental variables), it would represent 518,100 points of vector,
or patch, input to extract from environmental data and to handle in the learning
process. At the same time, environmental variables are very autocorrelated in space,
so the gain in estimation quality can be small compared to taking a single point per
site. Thus, for simplicity, we preferred to make the assumption, albeit coarse, that
the environmental variables are constant on each site and we take the central point to
represent it. Under this assumption, we justify by the following property the Poisson
regression for estimating the intensity of an IPP.

Property The inhomogeneous Poisson process estimate is equivalent to a Poisson
regression estimate with the hypothesis that x(z) is constant in any given site of the
domain.
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Proof We note z1, . . . , zN ∈ D the N species observations points, K the number
of disjoints sites making a partition of D, and assumed to have an equal area. We
write the likelihood of z1, . . . , zN according to the inhomogeneous poisson process
of intensity function λ ∈ (R+)D:

p(z1, . . . , zN |λ) = p(N |λ)

N∏

i=1

p(zi |λ)

= (
∫
D

λ)N

N ! exp

(
−

∫

D

λ

) N∏

i=1

λ(x(zi))∫
D

λ

= exp
(− ∫

D
λ
)

N !
N∏

i=1

λ(x(zi))

We transform the likelihood with the logarithm for calculations commodity:

log(p(z1, . . . , zN |λ)) =
N∑

i=1

log (λ(x(zi))) −
∫

D

λ − log(N !)

We leave the N ! term, as it has no impact on the optimisation of the likelihood with
respect to the parameters of λ. Now,

∫
D

λ simplifies to a sum, as x(z) is constant
inside each site of D :

N∑

i=1

log (λ(x(zi))) −
∫

D

λ =
N∑

i=1

log (λ(x(zi))) −
∑

k∈Sites

|D|
K

λ(xk)

=
∑

k∈Sites

nk log
(
λ(xk)

)
− |D|

K
λ(xk)

Where nk is the number of species occurrences that fall in site k. We can aggregate
the occurrences that are in a same site because x is the same for them. We can now
factorize |D|/K on the whole sum, which brings us, up to the factor, to the poisson
regression likelihood with pseudo-counts Knk/|D|.

= |D|
D

∑

k∈Sites

Dnk

|D| log
(
λ(xk)

)
− λ(xk)

So maximizing this log-likelihood is exactly equivalent to maximizing the initial
Poisson process likelihood. ��
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Proof uses the re-expression of the IPP likelihood, inspired from [13], as that of
the associated Poisson regression. In the following parts, we always consider that,
for a given species, the number y of specimens observed in a site of environmental
input x is as follows:

y ∼ P(λm,θ (x)) (10.3)

Where m is a model architecture with parameters θ .
From Eq. (10.3), we can write the likelihood of counts on K different sites

(x1, . . . , xK) for N independently distributed species with abundance functions
λm1,θ1 , . . . ,λmN,θN

∈ (R+)R
p
, respectively determined by models (mi)i∈[|1,N |] and

parameters (θi)i∈[|1,N |]:

p
(
(yi

k)i∈[|1,N |],k∈[|1,K|]|(λmi,θi
)i∈[|1,N |]

)
=

N∏

i=1

K∏

k=1

(λmi,θi
(xk))

yi
k

yi
k!

exp(−λmi,θi
(xk))

Which gives, when eliminating log(yi
k)! terms (which are constant relatively to

models parameters), the following negative log-likelihood :

L
(
(yi

k)i∈[|1,N |],k∈[|1,K|]|(λmi,θi
)i∈[|1,N |]

)
:=

N∑

i=1

K∑

k=1

λmi,θi
(xk)−yi

k log(λmi,θi
(xk))

(10.4)
Following the principle of maximum likelihood, for fitting a model architecture,

we minimize the objective function given in Eq. (10.4) relatively to parameters θ .

10.2.2 Links with MAXENT

For our experiment, we want to compare our proposed models to a state of the art
method commonly used in ecology. We explain in the following why and how we
can compare the chosen reference, MAXENT, with our models.

MAXENT [4, 5] is a popular SDM method and related software for estimating
relative abundance as a function of environmental variables from presence only data
points. This method has proved to be one of the most efficient in prediction [14],
while guaranteeing a good interpretability thanks to the simple elementary form of
its features and its variable selection procedure. The form of the relative abundance
function belongs to the class described in Eq. (10.1). More specifically:

log
(
λMAX,θ (x)

) = α +
p∑

j=1

S∑

s=1

f s
j (x(j)) +

∑

j<j ′
βj,j ′xjx

′
j (10.5)
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where x(j) is the j th component of vector x. The link function is a logarithm, and
variables interactions effects are product interactions. If xj is a quantitative variable
the functions (fs)s∈[|1,S|] belongs to four categories: linear, quadratic, threshold and
hinge. One can get details on the hinges functions used in MAXENT in [15]. If
xj is categorical, then fj takes a different value for every category, with one zero
category.

It has been shown that MAXENT method is equivalent to the estimation of an IPP
intensity function with a specific form and a weighted L1 penalty on its variables
[16]. Let’s call λMAX,θ (x) the intensity predicted by MAXENT with parameters
θ at x. Last property says that on any given dataset, θ̂ estimated from a Poisson
regression (aggregating observations as counts per site) is the same as the one of the
IPP (each observation is an individual point, even when there are several at a same
site). In our experiments, we ran MAXENT using the maxnet package in R [17],
with the default regularization, and giving to the function :

1. A positive point per observation of the species.
2. A pseudo-absence point per site.

MAXENT returns only the parameters of the (f s
j )s,j and the (βj,j ′)j<j ′ , but not

the intercept α, as it is meant to only estimate the absolute abundance. We don’t aim
at estimating absolute abundance either, however, we need the intercept to measure
interesting performance metrics across all the compared models. To resolve this,
for each species, we fitted the following model using the glm package in R as a
second step:

y ∼ P (exp(α + log(p)))

Where α is our targeted intercept, p is the relative intensity prediction given by
MAXENT at the given site, and y is the observed number of specimens at this site.

10.2.3 SDM Based on a Fully-Connected NN Model

We give in the following a brief description of the general structure of fully-
connected NN models, and how we decline it in our tested deep model architecture.

10.2.3.1 General Introduction of Fully-Connected NN Models

A deep NN is a multi-layered model able to learn complex non-linear relationship
between an input data, which in our case will be a vector x ∈ R

p of environmental
variables that is assumed to represent a spatial site, and output variables y1, . . . , yN ,
which in our case is species counts in the spatial site. The classic so called fully-
connected NN model is composed of one or more hidden layer(s), and each layer is
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composed of one or more neuron(s). We note n(l,m) the number of neurons of layer
l in model architecture m. m parameters are stored in θ . In the first layer, each neuron
is the result of a parametric linear combination of the elements of x, which is then
transformed by an activation function a. So for a NN m, a

1,j
m (x, θ) := a(xT θ1

j )

is called the activation of j th neuron of the first hidden layer of m when it is
applied to x. Thus, on the lth layer with l > 1, the activation of the j th neuron
is a((θ l

j )
T a

l−1,.
m ). Now, we understand that the neuron is the unit that potentially

combines every variables in x, and, its activation inducing a non-linearity to the
parametric combination, it can be understood as a particular basis function in the
p dimensional space of x. Thus, the model is able to combine as many basis
functions as there are neurons in each layer, and the basis functions become more
and more complex when going to further layers. Finally, these operations makes m

theoretically able to closely fit a broad range of functions of x.
Learning of model parameters is done through optimization (minimization

by convention) of an objective function that depends on the prediction goal.
Optimization method for NN parameters θ is based on stochastic gradient descent
algorithms, however, the loss function gradient is approximated by the back-
propagation algorithm [18].

Learning a NN model lead to a lot of technical difficulties that have been
progressively dealt with during last decade, and through many different techniques.
We present some that have been of particular interest in our study. A first point is
that there are several types of activation functions, the first one introduced being
the sigmoid function. However, the extinction of its gradient when xT θ1

j is small
or big, has presented a serious problem for parameters optimization in the past.
More recently, the introduction of the ReLU [19] activation function helped made
an important step forward in NNs optimization. A second point is that when we
train a NN model, simultaneous changes of all the parameters lead to important
change in the distribution (across the dataset) of each activation of the model. This
phenomenon is called internal covariate shift, and perturbs learning importantly.
Batch-Normalization [20] is a technique that significantly reduces internal covariate
shift and help to regularize our model as well. It consists of a parameterized
centering and reduction of pre-activations. This facilitates optimization and enables
to raise the learning rate leading to a quicker convergence. At the same time, it has
a regularization effect because the centering and reduction of a neuron activation
is linked to the mini-batch statistics. The mini-batch selection being stochastic at
every iteration, a neuron activation is stochastic itself, and the model will not rely
on it when it has no good effect on prediction.

10.2.3.2 Models Architecture in This Study

For a given species i, When we know the model parameter θ , we can predict the
parameter of the Poisson distribution of the random response variable yi ∈ N, i.e.
the count of species i, conditionally on its corresponding input x, with the formula :

λm,θ (x) = exp(γ T
i aNh,.

m (x, θ)) (10.6)
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Fig. 10.1 A schematic representation of fully-connected NN architecture. Except writings, image
comes from Michael R©Nielsen2.

For this work, we chose the logarithm as link function g mentioned in 1.2. It
is the conventional link function for the generalized linear model with Poisson
family law, and is coherent with MAXENT. γi ∈ R

n(Nh,m) is included in θ .
It does the linear combinations of last layer neurons activations for the specific
response i. If we set n(Nh,m) := 200 as we do in the following experiments,
there are only 200 parameters to learn per individual species, while there are a
lot more in the shared part of the model that builds a

Nh,.
m (x, θ). Now for model

fitting, we follow the method of the maximum likelihood, the objective function
will be a negative-loglikelihood, but it could otherwise be some other prediction
error function. Note that we will rather use the term loss function than negative
loglikelihood for simplicity. We chose the ReLU as activation function, because it
showed empirically less optimization problems and a quicker convergence. Plus, we
empirically noticed the gain in optimization speed and less complications with the
learning rate initialization when using Batch-Normalization. For this reason, Batch-
Normalization is applied to every pre-activation (before applying the ReLU) to every
class of NN model in this paper, even with CNNs. We give a general representation
of the class of NN models used in this work in Fig. 10.1.

10.2.4 SDM Based on a Convolutional NN Model

A convolutional NN (CNN) can be seen as a extension of NN that are particularly
suited to deal with certain kind of input data with very large dimensions. They
are of particular interest in modeling species distribution, because they are able to
capture the effect of spatial environmental patterns. Again, we will firstly describe
the general form of CNN before going to our modeling choices.

2http://neuralnetworksanddeeplearning.com/chap6.html
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10.2.4.1 General Introduction of CNN Models

CNN is a form of neural network introduced in [11]. It aims to efficiently apply
NN to input data of large size (typically 2D or 3D arrays, like images) where
elements are spatially auto-correlated. For example, using a fully-connected neural
network with 200 neurons on an input RGB image of dimensions 256 × 256 × 3
would imply around 4 ∗ 107 parameters only for the first layer, which is already too
heavy computationally to optimize on a standard computer these days. Rather than
applying a weight to every pixel of an input array, CNN will apply a parametric
discrete convolution, based on a kernel of reasonable size (3/3/p or 5/5/p are
common for N/N/p input arrays) on the input arrays to get an intermediate feature
map (2D). The convolution is applied with a moving windows as illustrated in
Fig. 10.2b. Noting X ∈ Md,d,p an input array, we simplify notations in all that
follows by writing CV (X, kγ (c)) the resulting feature map from applying the

convolution with (c, c, p) kernel of parameters γ ∈ R
c2p. If the convolution is

applied directly on X, the sliding window will pass its center over every Xi,j,. from
the up-left to the bottom-right corner and produce a feature map with a smaller size
than the input because c > 1. The zero-padding operation removes this effect
by adding (c − 1)/2 layers of 0 on every side of the array. After a convolution,
there can be a Batch-Normalization and an activation function is generally applied
to each pixel of the features maps. Then, there is a synthesizing step made by the
pooling operation. Pooling aggregates groups of cells in a feature map in order to
reduce its size and introduce invariance to local translations and distortions. After
having composed these operations several times, when the size of feature maps is
reasonably small (typically reaching 1 pixel), a flattening operation is applied to
transform the 3D array containing all the feature maps into a vector. This features
vector will then be given as input to a fully-connected layer as we described in last
part. The global concept underlying convolution layers operations is that first layers
act as low level interpretations of the signal, leading to activations for salient or
textural patterns. Last layers, on their side, are able to detect more complex patterns,
like eyes or ears in the case of a face picture. Those high levels features have much
greater sense regarding predictions we want to make. Plus, they are of much smaller
dimension than the input data, which is more manageable for a fully-connected
layer.

10.2.4.2 Constitution of a CNN Model for SDM

The idea which pushes the use of CNN models for SDM is that complex spatial
patterns like a water network, a valley, etc., can affect importantly the species
abundance. This kind of pattern can’t be really deducted for punctual values of
environmental variables. Thus, we have chosen to build a SDM model which takes
as input an array with a map of values for each environmental variable that is used
in the other models. This way, we will be able to conclude if there is extra relevant
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information in environmental variables spatial patterns to predict better species
distribution. In Fig. 10.2a, we show for a single site a subsample of environmental
variables maps taken as input by our CNN model. To provide some more detail
about the model architecture, the input array X is systematically padded such that
the feature map resulting from the convolution is of same size as 2 first dimensions
of the input ((c − 1)/2 cells of 0 after on the sides of the 2 dimensions). To
illustrate that, our padding policy is the same as the one illustrated in the example
given in Fig. 10.2b. However, notice that the kernel size can differ and the third
dimension size of input array will be the number of input variables or feature
maps. For an example of For the reasons described in 2.3, we applied a Batch-
Normalization to each feature map (same normalization for every pixels of a map)
before the activation, which is still a ReLU. For the pooling operation, we chose the
average pooling which seems intuitively more relevant to evaluate an abundance
(=concentration). The different kinds of operations and their succession in our CNN
model are illustrated in Fig. 10.2c.

10.3 Data and Methods

10.3.1 Observations Data of INPN

This paper is based on a reference dataset composed of count data collected
and validated by French expert naturalists. This dataset, referred as INPN3 for
“national inventory of natural heritage” [21], comes from the GBIF portal.4 It
provides access to occurrences data collected in various contexts including Flora
and regional catalogs, specific inventories, field note books, and prospections carried
out by the botanical conservatories. In total, the INPN data available on the GBIF
contains 20,999,334 occurrences, covering 7626 species from which we selected
1000 species.

The assets of this data are the quality of their taxonomic identification (provided
by an expert network), their volume and geographic coverage. Its main limitation,
however, is that the geolocation of the occurrences was degraded (for plant
protection concerns). More precisely, all geolocations were aggregated to the closest
central point of a spatial grid composed of 100 km2 quadrat cells (i.e. sites of
10×10 km). Thus, the number of observations of a species falling in a site gives
a count.

In total, our study is based on 5181 sites, which are split in 4781 training sites for
fitting models, and 400 test sites for validating and comparing models predictions.

3https://inpn.mnhn.fr.
4https://www.gbif.org/.
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Fig. 10.2 (a) Examples of input environmental data (b) for convolution, pooling and flattening
process in our (c) Convolutional Neural Network architecture

10.3.2 Species Selection

For the genericity of our results and to make sure they are not biased by the choice
of a particular category of species, we have chosen to work with a high number of
randomly chosen species. From the 7626 initial species, we selected species with
more than 300 observations. We selected amongst those a random subset of 1000
species to constitute an ensemble E1000. Then, we randomly selected 200 species
amongst E1000 to constitute E200, and finally randomly selected 50 in E200 which
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gave E50. E50 being the main dataset used to compare our model to the baselines, we
provide in Fig. 10.1 the list of species composing it. The full dataset with species
of E1000 contains 6,134,016 observations in total (see Table 10.1 for the detailed
informations per species).

10.3.3 Environnemental Data

In the following, we denote by p the number of environmental descriptors. For
this study, we gathered and compiled different sources of environmental data
into p = 46 geographic rasters containing the pixel values of environmental
descriptors presented in Table 10.2 with several resolutions, nature of values,
but having a common cover all over the metropolitan French territory. We chose
some typical environmental descriptors for modeling plant distribution that we
believe carry relevant information both as punctual and spatial representation. They
can be classified as bioclimatic, topological, pedologic hydrographic and land
cover descriptors. In the following, we briefly describe the sources, production
method, and resolution of initial data, and the contingent specific post-process for
reproducibility.

10.3.3.1 Climatic Descriptors: Chelsea Climate Data 1.1

Those are raster data with worldwide coverage and 1 km resolution. A mechanistical
climatic model is used to make spatial predictions of monthly mean-max-min tem-
peratures, mean precipitations and 19 bioclimatic variables, which are downscaled
with statistical models integrating historical measures of meteorologic stations from
1979 to today. The exact method is explained in the reference papers [22] and
[23]. The data is under Creative Commons Attribution 4.0 International License
and downloadable at (http://chelsa-climate.org/downloads/).

10.3.3.2 Potential Evapotranspiration: CGIAR-CSI ETP Data

The CGIAR-CSI distributes this worldwide monthly potential-evapotranspiration
raster data. It is pulled from a model developed by Antonio Trabucco [24, 25].
Those are estimated by the Hargreaves formula, using mean monthly surface
temperatures and standard deviation from WorldClim 1:4 (http://www.worldclim.
org/), and radiation on top of atmosphere. The raster is at a 1km resolution, and is
freely downloadable for a nonprofit use at:

http://www.cgiar-csi.org/data/global-aridity-and-pet-database#description
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Table 10.1 List of species in E50 with the total number of observations and prevalence in the full
database

Taxon name Total # obs. Prevalence

Alisma plantago-aquatica L. 15,324 56.3

Alopecurus geniculatus L. 5703 31.5

Antennaria carpatica (Wahlenb.) Bluff & Fingerh 1780 4.0

Anthrisen sylvestris (L.) Hoffm. 27,381 64.9

Astragalus hypoglottis L. 1901 5.7

Berteroa incana (L.) DC. 3966 11.2

Biscutella brevicaulis Jord. 450 1.0

Campanula spicata L. 544 1.7

Carduus vivariensis Jord. 1577 7.4

Carex ericctorum Pollich 538 1.8

Carlina acanthifolia All. 6214 10.6

Centranthus augustifolius (Mill.) DC. 2755 5.9

Cladanthus mixtus (L.) Chevall. 637 5.3

Coronilla coronata L. 325 0.9

Cynoglossum creticum Mill. 1470 9.2

Cytisus villosus Pourr. 562 1.0

Dianthus pyrenaicus Pourr. 392 0.8

Epilobium alpestre (Jacq.) Krocker 1197 3.5

Euphorbia dendroide L. 747 0.5

Festuca cinerea Vill. 3795 5.3

Galium lucidum All. 3204 11.7

Galium timeroyi Jord. 1362 6.6

Helictotrichon sedenense (Clarion ex DC.) Holub 8498 5.4

Hieracium lawsonii Vill. 629 3.2

Hieracium praecox Sch.Bip. 998 4.7

Iris lutescens Lam. 2537 6.6

Juncus trifidus L. 3570 3.9

Lathyrus niger (L.) Bernh. 2474 13.8

Myrtus communis L. 2054 1.9

Meconopsis cambrica (L.) Vig. 1291 3.8

Oxalis corniculata L. 5628 37.5

Oxytropis fetida (Vill.) DC. 315 1.0

Persicaria vivipara (L.) Rouse Decraene 11,122 5.9

Phleum alpinurn L. 7267 6.3

Potamogeton coloratus Hornem. 813 5.5

Potentilla pusilla Host 655 1.7

Primula latifolia Lapeyr. 1268 1.8

Psilurus incurvus (Gouan) Schinz & Thell. 597 4.2

Ranunculus parnassifolius L. 371 1.0

Ranunculus repens L. 76,346 83.0

Reseda lutea L. 16,756 49.0

(continued)
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Table 10.1 (continued)

Taxon name Total # obs. Prevalence

Rorippa pyrenaica (All.) Rchb. 2169 9.2

Rubus ulmifolius Schott 14,523 35.5

Thalictrum aquilegifolium L. 2855 8.8

Thalictrum alpinum L. 581 1.0

Trifolium micranthum Viv. 767 8.0

Valerianella rimosa Bast. 1518 13.8

Vicia onobrychioides L. 1602 6.3

Viola lactea Sm. 520 4.7

Visearia vulgaris Bernh. 781 3.2

10.3.3.3 Pedologic Descriptors: The ESDB v2: 1 km × 1 km Raster
Library

The library contains multiple soil pedology descriptor raster layers covering Eurasia
at a resolution of 1 km. We selected 11 descriptors from the library. More precisely,
those variables have ordinal format, representing physico-chemical properties of
the soil, and come from the PTRDB. The PTRDB variables have been directly
derived from the initial soil classification of the Soil Geographical Data Base of
Europe (SGDBE) using expert rules. SGDBE was a spatial relational data base
relating spatial units to a diverse pedological attributes of categorical nature, which
is not useful for our purpose. For more details, see [26, 27] and [28]. The data
is maintained and distributed freely for scientific use by the European Soil Data
Centre (ESDAC) at http://eusoils.jrc.ec.europa.eu/content/european-soil-database-
v2-raster.

10.3.3.4 Altitude: USGS Digital Elevation Data

The Shuttle Radar Topography Mission achieved in 2010 by Endeavour shuttle
managed to measure digital elevation at three arc second resolution over most of
the earth surface. Raw measures have been post-processed by NASA and NGA in
order to correct detection anomalies. The data is available from the U.S. Geological
Survey, and downloadable on the Earthexplorer (https://earthexplorer.usgs.gov/).
One can refer to https://lta.cr.usgs.gov/SRTMVF for more informations.

10.3.3.5 Hydrographic Descriptor: BD Carthage v3

BD Carthage is a spatial relational database holding many informations on the
structure and nature of the french metropolitan hydrological network. For the
purpose of plants ecological niche, we focus on the geometric segments representing
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Table 10.2 Table of 46 environmental variables used in this study

Name Description Nature Values Resolution

CHBIO_1 Annual mean temperature quanti. [−10.6, 18.4] 30

CHBIO_2 Mean of monthly max(temp)-min(temp) quanti. [7.8,21.0] 30

CHBIO_3 Isothermality (100*chbio_2/chbio_7) quanti. [41.2,60.0] 30

CHBIO_4 Temperature seasonality (std. dev.*100) quanti. [302,778] 30

CHBIO_5 Max temperature of warmest month quanti. [36.4,6.2] 30

CHBIO_6 Min temperature of coldest month quanti. [−28.2, 5.3] 30

CHBIO_7 Temperature annual range (5–6) quanti. [16.7,42.0] 30

CHBIO_8 Mean temperature of wettest quarter quanti. [−14.2, 23.0] 30

CHBIO_9 Mean temperature of driest quarter quanti. [−17.7, 26.5] 30

CHBIO_10 Mean temperature of warmest quarter quanti. [−2.8, 26.5] 30

CHBIO_11 Mean temperature of coldest quarter quanti. [−17.7, 11.8] 30

CHBIO_12 Annual precipitation quanti. [318,2543] 30

CHBIO_13 Precipitation of wettest month quanti. [43.0,285.5] 30

CHBIO_14 Precipitation of driest month quanti. [3.0,135.6] 30

CHBIO_15 Precipitation seasonality (Coef. of Var.) quanti. [8.2,26.5] 30

CHBIO_16 Precipitation of wettest quarter quanti. [121,855] 30

CHBIO_17 Precipitation of driest quarter quanti. [20,421] 30

CHBIO_18 Precipitation of warmest quarter quanti. [19.8,851.7] 30

CHBIO_19 Precipitation of coldest quarter quanti. [60.5,520.4] 30

etp Potential evapotranspiration transpiration quanti. [133,1176] 30

alti Elevation quanti. [−188, 4672] 3

awc_top Topsoil available water capacity ordinal {0, 120, 165, 210} 30

bs_top Base saturation of the topsoil ordinal {35, 62, 85} 30

cec_top Topsoil cation exchange capacity ordinal {7, 22, 50} 30

crusting Soil crusting class ordinal [|0, 5|]
dgh Depth to a gleyed horizon ordinal {20, 60, 140} 30

dimp Depth to an impermeable layer ordinal {60, 100} 30

erodi Soil erodibility class ordinal [|0, 5|] 30

oc_top Topsoil organic carbon content ordinal {1, 2, 4, 8} 30

pd_top Topsoil packing density ordinal {1, 2} 30

text Dominant surface textural class ordinal [|0,5|] 30

proxi_eau <50 meters to fresh water bool. {0, 1} 30

arti Artificial area: clc ∈ {1, 10} bool. {0, 1} 30

semi_arti Semi-artificial area: clc ∈ {2, 3, 4, 6} bool. {0, 1} 30

arable Arable land: clc ∈ {21, 22} bool. {0, 1} 30

pasture Pasture land: clc ∈ {18} bool. {0, 1} 30

brl_for Broad-leaved forest: clc ∈ {23} bool. {0, 1} 30

coni_for Coniferous forest: clc ∈ {24} bool. {0, 1} 30

mixed_for Mixed forest: clc ∈ {25} bool. {0, 1} 30

nat_grass Natural grasslands: clc ∈ {26} bool. {0, 1} 30

moors Moors: clc ∈ {27} bool. {0, 1} 30

(continued)
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Table 10.2 (continued)

Name Description Nature Values Resolution

sclero Sclerophyllous vegetation: clc ∈ {28} bool. {0, 1} 30

transi_wood Transitional woodland-shrub: clc ∈ {29} bool. {0, 1} 30

no_veg No or few vegetation: clc ∈ {31, 32} bool. {0, 1} 30

coastal_area Coastal area: clc ∈ {37, 38, 39, 42, 30} bool. {0, 1} 30

ocean Ocean surface: clc ∈ {44} bool. {0, 1} 30

watercourses, and polygons representing hydrographic fresh surfaces. The data has
been produced by the Institut National de l’information Géographique et forestière
(IGN) from an interpretation of the BD Ortho IGN. It is maintained by the SANDRE
under free license for non-profit use and downloadable at:
http://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FX
From this shapefile, we derived a raster containing the binary value of variable
proxi_eau, i.e. proximity to fresh water, all over France. We used qgis to rasterize
to a 12.5 m resolution, with a buffer of 50 m, the shapefile COURS_D_EAU.shp on
one hand, and the polygons of
*SURFACES_HYDROGRAPHIQUES.shp with attribute NATURE=“Eau douce
permanente” on the other hand. We then created the maximum raster of the previous
ones (So the value of 1 correspond to an approximate distance of less than 50 m to
a watercourse or hydrographic surface of fresh water).

10.3.3.6 Land Cover: Corine Land Cover 2012, Version 18.5.1, 12/2016

It is a raster layer describing soil occupation with 48 categories across Europe
(25 countries) at a resolution of 100 m. This classification is the result of an
interpretation process from earth surface high resolution satellite images. This
data base of the European Union is freely accessible online for all use at http://
land.copernicus.eu/pan-european/corine-land-cover/clc-2012 and commonly used
for the purpose of plant distribution modeling. For a need of meaningfull variables at
our scale and reduced memory consumption, we reduced the number of categories
to 14 following mainly the procedure of They eliminate some categories of few
interest, too rare or inaccurate, and groups categories that are associated with
similar plant communities. In addition, we introduce a category “Semi artificial
surfaces”, which regroups perturbed natural areas, interesting for the study of
alien invasive species. We keep the category “Sea and ocean” from the Corine
Land Cover classification because it can be an important contextual variable for
the convolutional neural network model. The final categories groups are detailed
in Table 10.2. for each of the retain categories, we created a raster of the same
resolution as the original one, where the value 1 means the pixel belongs to the
category, or the value is 0 otherwise.
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10.3.3.7 Environmental Variables Extraction and Format

When creating the p global GeoTIIF rasters, as the original coordinate system
of the layer vary among sources, we change it if necessary to WGS84 using
rgdal package on R, which is the coordinate system INPN occurrences databases.
As explained previously, for computational reasons considering the scale, and
simplicity, we chose to represent each site by a single geographic point, and chose
the center of the site. We are going to compare two types of models. For a site
k, the first takes as input a vector of p elements which values are those of the
environmental variables taken at the geolocation of the center of the site k, while
the other takes p rasters of size (d,d) cropped (with package raster) from the
global raster of each environmental descriptors and centered at the center of k. If
we denote reslon,j the spatial resolution in longitude of global raster of the jth

environmental descriptor, and reslat,j its resolution in latitude, the spatial extent of
Xk

.,.,j is (d.reslat,j × d.reslon,j ). As a consequence, the extents are heterogeneous
across environmental descriptors. In this study, we experimented the method with
d = 64, so the input data items Xk learned by our convolutional model is of
dimension 64 × 64 × 46.

10.3.4 Detailed Models Architectures and Learning Protocol

MAXENT is learned independently on every species of E50. Similarly, we fit a
classic loglinear model to give a naive reference. Then, two architectures of NN are
tested, one with a single hidden layer (SNN), one with six hidden layers (DNN).
Those models take a vector of environmental variables xk as input. As introduced
previously, we want to evaluate if training a multi-response NN model, i.e. a NN
predicting several species from a single a

Nh(m)
m (x, θ), can prevent overfitting. One

architecture of CNN is tested, which takes as input an array Xk . Hereafter, we
described more precisely the architecture of those models.

10.3.4.1 Baseline Models

• LGL Considering a site k, and its environmental variables vector xk , the output
function λLGL of the loglinear model parametrized by β ∈ R

p is simply the
exponential of a scalar product between xk and β :

λLGL(xk, β) = exp
(
βT xk

)

As LGL has no hidden layer, we learned a multi-response model, which is
equivalent to fitting the 50 mono-response models independently.

• MAXENT.
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10.3.4.2 Proposed Models Based on NN

• SNN has only 1 hidden layer (Nh = 1) with 200 neurons (|a1
SNN | = 200) all

batch-normalized and the activation function is ReLU. As the architecture is not
deep, it makes a control example to evaluate when stacking more layers. SNN is
tested in 3 multi-response versions, on E50, E200 or E1000.

• DNN is a deep feedforward network with Nh = 6 hidden layers and
n(l, DNN) = 200,∀l ∈ [|1, 6|]. Every pre-activation is Batch-normalized
and has a ReLU activation. DNN is tested in 4 versions, the mono-response case
fitted independently on each species of E50 like MAXENT and LGL, and the
multi-response fitted on E50, E200 or E1000.

• CNN is composed of two hidden convolutional layers and one last layer fully
connected with 200 neurons, exactly similar to previous ones. The first layer is
composed of 64 convolution filters of kernel size (3, 3) and 1 line of 0 padding.
The resulting feature maps are batch-normalized (same normalization for every
pixels of a feature map) and transformed with a Relu. Then, an average pooling
with a (8, 8) kernel and (8, 8) stride is applied. The second layer is composed of
128 convolution filters of kernel size (5, 5) and 2 lines of padding, plus Batch-
Normalization and ReLU. After, that a second average pooling with a (8, 8)

kernel and (8, 8) kernel and (8, 8) stride reduces size of the 128 feature maps
to one pixel. Those are collected in a vector by a flattening operation preceding
the fully connected layer. This architecture is not very deep. However, considered
the restricted number of samples, a deep CNN would be very prone to over fitting.
CNN is tested in multi-responses versions on E50, E200 and E1000.

10.3.4.3 Models Optimization

Our experiments were conducted using the R framework (version 3.3.2), on a
Windows 10 machine with 2 CPUs with 2.60 GHz and 4 cores each, and one
GPU NVIDIA Quadro M1000M. mxnet [29] is a convenient C++ library for
learning deep NN models and is deployed as an R package. It integrates a high
level symbolic language for quickly building customized models and loss functions,
and automatically distributes calculations under CPUs or GPUs.

We fit the MAXENT model for every species of E50 with the recently released
R package maxnet [17] and the vector input variables.

The LGL model was fitted with the package mxnet. The loss being convex, we
used a simple gradient descent algorithm and stopped when the gradient norm was
close to 0. The learning took around 2 min.

SNN, DNN and CNN models are fitted with the package mxnet: All model
parameters were initialized with a uniform distribution U(−0.03, 0.03), then we
applied a stochastic gradient descent algorithm with a momentum of 0.9, a
batch-size of 50 (batch samples are randomly chosen at each iteration), and an initial
learning rate of 10−8. The choice of initial learning rate was critical for a good
optimization behavior. A too big learning rate can lead to training loss divergence,
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whereas when it is too small, learning can be very slow. We stopped when the
average slope of the training mean loss had an absolute difference to 0 on the last 100
epochs inferior to 10−3. The learning took approximately 5 min for SNN, 10 min for
DNN, and 5 h for CNN (independently of the version).

10.3.5 Evaluation Metrics

Predictions are made for every species of E50 and several model performance
metrics are calculated for each species and for two disjoints and randomly sampled
subsets of sites: A train set (4781 sites) which is used for fitting all models and a
test set (400 sites) which aims at testing models generalization capacities. Then,
train and test metrics are averaged over the 50 species. The performance metrics are
described in the following.

10.3.5.1 Mean Loss

Mean loss, just named loss in the following, is an important metric to consider
because it is relevant regarding our ecological model and it is the objective function
that is minimized during model training. The Mean loss of model m on species i

and on sites 1, . . . , K is:

Loss(m, i, {1, . . . , K}) = 1

K

K∑

k=1

λm,θi
(xk) − yi

k log(λm,θi
(xk))

In Table 10.3, the loss is averaged over species of E50. Thus, in the case of a
mono-response model, we averaged the metric over the 50 independently learned
models. In the multi-response case, we averaged the metric over each species
response of the same model.

10.3.5.2 Root Mean Square Error (Rmse)

The root mean square error is a general error measure, which, in contrary to the
previous one, is independent of the statistical model:

Rmse(m, i, {1, . . . , L}) =
√√√√ 1

K

K∑

k=1

(
yi
k − λm,θi

(xk)
)2

In Table 10.3, the average of the Rmse is computed over species of E50. Mono-
response models are treated as explained previously.
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10.3.5.3 Accuracy on 10% Densest Quadrats (A10%DQ)

It represents the proportion of sites which are in the top 10% of all sites in term of
both real count and model prediction. This is a meaningful metric for many concrete
scenarios where the regions of a territory have to be prioritized in terms of decision
or actions related to the ecology of species. However, we have to define the last
site ranked in the top 10% for real counts, which is problematic for some species,
because of ex-aequo sites. That is why we defined the following procedure which
adjust for each species the percentage of top cells, such that the metrics can be
calculated and the percentage is the closest to 10%. Denoting y the vector of real
counts over sites and ŷ the model prediction:

A10%DQ(ŷ, y) := Np&c(ŷ, y)

Nc(y)
(10.7)

Where Np&c(ŷ, y) is the number of sites that are contained in the Nc(y) highest
values of both y and ŷ.

Calculation of Nc(y) : We order the sites by decreasing values of y and note
Ck the value of the kth site in this order. Noting d := round(dim(y)/10) =
round(dim(ŷ)/10), as we are interested in the sites ranked in the 10% highest, if
Cd > Cd+1 we simply set Nc(y) = d. Otherwise, if Cd = Cd+1 (ex-aequo exist for
dth position), we note Sup the position of the last site with value Cd+1 and Inf the
position of the first site with count Cd . The chosen rule is to take Nc(y) such that
Nc(y) = min(|Sup − d|, |Inf − d|).

10.4 Results

In the first part we describe and comment the main results obtained from perfor-
mance metrics. Then, we illustrate and discuss qualitatively the behavior of models
from the comparison of their predictions maps to real counts on some species.

10.4.1 Quantitative Results Analysis

Table 10.3 provides the results obtained for all the evaluated models according to
the three evaluation metrics. The four main conclusions that we can derive from that
results are that (1) performances of LGL and mono-response DNN are lower than
the one of MAXENT for all metrics, (2) multi-response DNN outperforms SNN in
every version and for all metrics, (3) multi-response DNN outperforms MAXENT
in test Rmse in every version, (4) CNN outperforms all the other models, in every
versions (CNN50, 200, 1000), and for all metrics.
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According to these results, MAXENT shows the best performance amongst
mono-response models. The low performance of the baseline LGL model is mostly
due to underfitting. Actually, the evaluation metrics are not better on the training
set than the test set. Its simple linear architecture is not able to exploit the
complex relationships between environmental variables and observed abundance.
DNN shows poor results as well in the mono-response version, but for another
reason. We can see that its average training loss is very close to the minimum, which
shows that the model is overfitting, i.e. it adjusts too much its parameters to predict
exactly the training data, loosing its generalization capacity on test data.

However, for multi-responses versions, DNN performance increases importantly.
DNN50 shows better results than MAXENT for the test Loss and test Rmse, while
DNN200 and DNN1000 only show better Rmse. To go deeper, we notice that
average and standard deviation of test rmse across E50 species goes down from
DNN1 to DNN1000, showing that model becomes less sensitive to species data.
Still, test loss and A10%DQ decrease, so there seems to be a performance trade-off
between the different metrics as a side effect of the number of responses.

Whatever is the number of responses for SNN, the model is under-fitting and its
performance are stable, without any big change between SNN50, 200, and 1 K. This
model doesn’t get improvement from the use of training data on a larger number
of species. Furthermore, its performance is always lower than DNN’s, which shows
that stacking hidden layers improves the model capacity to extract relevant features
from the environmental data, keeping all others factors constant.

The superiority of the CNN whatever the metric is a new and important result
for species distribution modeling community. Something also important to notice,
as for DNN, is the improvement of its performance for te.Loss and te.Rmse when
the number of species in output increases. Those results suggest that the multi-
response regularization is efficient when the model is complex (DNN) or the input
dimensionality is important (CNN) but has no interest for simple models and small
dimension input (SNN). There should be an optimal compromise to find between
model complexity, in term of number of hidden layers and neurons, and the number
of species set as responses.

For the best model CNN1000, it is interesting to see if the performance obtained
on E50 could be generalized at a larger taxonomic scale. Therefore, we computed
the results of the CNN1000 on the 1000 plant species used in output. Metrics
values are :

• Test Loss = −1.275463 (minimum = −1.95)
• Test Rmse = 2.579596
• Test A10%DQ = 0.58

These additional results show that the average performance of CNN1000 on E1000
remains close from the one on E50. Furthermore, one can notice the stability of
performance across species. Actually, the test Rmse is lower than 3 for 710 of the
1000 species. That means that the learned environmental features are able to explain
the distribution of a wide variety of species. According to the fact that French flora
is compound of more than 6000 plant species, the potential of improvement of CNN



10 A Deep Learning Approach to Species Distribution Modelling 193

Table 10.3 Train and test performance metrics averaged over all species of E50 for all tested
models

# species in output Archi. Loss on E50 Rmse on E50 A10%DQ on E50

tr.(min:-1.90) te.(min:-1.56) tr. te. tr. te.

1
MAX −1.43 −0.862 2.24 3.18 0.641 0.548

LGL −1.11 −0.737 3.28 3.98 0.498 0.473

DNN −1.62 −0.677 3.00 3.52 0.741 0.504

50
SNN −1.14 −0.710 3.14 3.05 0.494 0.460

DNN −1.45 −0.927 2.94 2.61 0.576 0.519

CNN −1.82 −0.991 1.18 2.38 0.846 0.607

200
SNN −1.09 −0.690 3.25 3.03 0.479 0.447

DNN −1.32 −0.790 5.16 2.51 0.558 0.448

CNN −1.59 −1.070 2.04 2.34 0.650 0.594

1K
SNN −1.13 −0.724 3.27 3.03 0.480 0.455

DNN −1.38 −0.804 3.86 2.50 0.534 0.467

CNN −1.70 −1.09 1.51 2.20 0.736 0.604

For the single response class, the metric is averaged over the models learnt on each species

predictions based on the use of this volume of species could be really important and
one of the first at the country level (which is costly in terms of time with classical
approaches).

We can go a bit deeper in the understanding of model performances in terms of
species types. Figure 10.3 provides for CNN1000 and MAXENT the test Rmse as
a function of the species percentage of presence sites. It first illustrates the fact that
all SDMs are negatively affected by an higher percentage of presence sites, even the
best, which is a known issue amongst species distribution modelers. Actually, the
two models have quite similar results for species with high percentage of presence
sites. Moreover, CNN1000 is better for most species compared to Maxent, and
especially for species with low percentage of presence sites. For those species, we
also notice that CNN’s variance of Rmse is much smaller than MAXENT: there is
no hard failing for CNN.

10.4.2 Qualitative Results Analysis

As metrics are only summaries, visualization of predictions on maps can be useful
to make a clearer idea of the magnitude and nature of models errors. We took a
particular species with a spatially restricted distribution in France, Festuca cinerea,
in order to illustrate some models behavior that we have found to be consistent
across this kind of species in E50. The maps of real counts and several models
predictions for this species are shown on Fig. 10.4. As we can note on map A of,
Festuca cinerea was only observed in the south east part of the French territory.
When we compare the different models prediction, CNN1000 (B) is the closest to
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Fig. 10.3 Test Rmse plotted versus percentage of presence sites for every species of E50, with
linear regression curve, in blue with Maxent model, in red with CNN1000

real counts though DNN50 (C) and MAXENT (E) are not far. Clearly, DNN1000 (E)
and LGL (F) are the models that over estimate the most the species presence over the
territory. Another thing relative to DNN behavior can be noticed regarding Fig. 10.4.
DNN1000 has less peaky punctual predictions than DNN50, it looks weathered.
This behavior is consistent across species and could explain that the A10%DQ
metric is weak for DNN1000 (and DNN200) compared to DNN50: A contraction
of predicted abundance values toward the mean will imply less risk on prediction
errors but predictions on high abundance sites will be less distinguished from others.

Good results provided in Table 10.3 can hide bad behavior of the models for
certain species. Indeed, when we analyze, on Fig. 10.5, the distribution predicted
by Maxent and CNN1000 for widespread species, such as Anthriscus sylvestris (L.)
and Ranunculus repens L., we can notice a strong divergence with the INPN data.
These two species, with the most important number of observation and percentage of
presence sites in our experiment (see Table 10.1), are also the less well predicted by
all models. For both species, MAXENT shows very smooth variations of predictions
in space, which is sharply different from their real distribution. If CNN1000 seems
to better fit to the presence area, it has still a lot of errors.

As last interesting remark, we note that a global maps analysis, on more species
than the ones illustrated here, shows a consistent stronger false positive ratio for
models under-fitting the data or with too much regularization (high number of
responses in output).
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Fig. 10.4 Real count of Festuca cinerea Vill. and prediction for five different models. Test sites
are framed into green squares. (a) Number of observations in INPN dataset, and geographic
distribution predicted with (b) CNN1000, (c) DNN50, (d) DNN1000, (e) Maxent, (f) LGL

10.5 Discussion

The performance increase with multi-responses models shows that multi-responses
architecture are an efficient regularization scheme for NNs in SDM. It could be
interesting to evaluate the performance impact of going multi-response on rare
species where data rare limited. We have systematically noticed false predicted
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Fig. 10.5 (a) Species occurrences in INPN dataset, and geographic distribution predicted with
Maxent and CNN1000 for Anthriscus sylvestris (L.) Hoffm., (b) Species occurrences in INPN
dataset, and geographic distribution predicted with Maxent and CNN1000 for Ranunculus repens L

presence for species that are not in the Mediterranean region. It could be due to
a high representativity of species from this region in France. In the multi-response
modeling, the Mediterranean species could favor prediction in this area through
neurons activations rather than other areas where few species are present, inducing
bias. Thus, the distributions complementarity between selected species could be an
interesting subject for further research.

Even if our study presents promising results, there are still some open problems.
A first one is related to the bias in the sampling process that is not taken into account
in the model. Indeed, even if the estimation of bias in the learning process is difficult,
this could strongly improve our results. Bias can be related to the facts that (1) some
regions and difficult environments are clearly less inventoried than others (this can
be seen with “empty region” in South western part of the country in Figs. 10.4
and 10.5); (2) some regions are much more inventoried than others, according to
the human capacities of the National botanical conservatories, which have very
different sizes ; (3) some common and less attractive species for naturalists are not
recorded, even if they are present in prospected areas, which is a bias due to the use
of opportunistic observations rather than exhaustive count data.

In the NN models learning, there is still work to be done on quick automated
procedure for tuning optimization hyper-parameters, especially the initial learning
rate, and we are looking for a more suited stopping rule. On the other hand, in the
case of models of species distributions, we can imagine to minimize the number of
not null connections in the network, to make it more interpretable, and introduce an
L1-type penalty on the network parameters. This is a potential important perspective
of future works.
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One imperfection in our modeling approach that induces biased distribution
estimate is that the representation (vector or array of environmental variables) of
a site is extracted from its geographic center. MAXENT, SNN and DNN models
typically only integrate the central value of the environmental variables on each site,
omitting the variability within the site. Instead of that, an unbiased data generation
would sample for each site many representations uniformly in its spatial domain and
in number proportional to its area. This way, it would provide richer information
about sites and at the same time prevent NN model over-fitting by producing more
data samples.

A deeper analysis of the behavior of the models according to the ecological
preferences of the species could be of a strong interest for the ecological community.
This study could allow to see dependences of the models to particular spatial
patterns and/or environmental variables. Plus, it would be interesting to check if
NN perform better when the species environmental niche is in the intersection of
variables values that are far from their typical ranges into the study domain, which
is something that MAXENT cannot fit.

Another interesting perspective for this work is the fact that, new detailed fine-
scale environmental data become freely available with the development of the
open data movement, in particular thanks to advances in remote sensing methods.
Nevertheless, as long as we only have access to spatially degraded observations
data at kilometer scales like here, it is difficult to consistently estimate the effect
of variables that vary at high frequency in space. For example, the informative
link between species abundance and land cover, proximity to fresh water or
proximity to roads, is very blurred and almost lost. To overcome this difficulty,
there is much hope in the high flow of finely geolocated species observations
produced by citizen sciences programs for plant biodiversity monitoring like Tela
Botanica,5 iNaturalist,6 Naturgucker7 or Pl@ntNet.8 From what we can see on
the GBIF,9 the first three already have high resolution and large cover observation
capacity: they have accumulated around three hundred thousand finely geolocated
plant species observations just in France during last decade. Citizen programs
in biodiversity sciences are currently developing worldwide. We expect them to
reach similar volumes of observations to the sum of national museums, herbaria
and conservatories in the next few years, while still maintaining a large flow of
observations for the future. With good methods for dealing with sampling bias, those
fine precision and large spatial scale data will make a perfect context for reaching
the full potential of deep learning SDM methods. Thus, NN methods could be a
significant tool to explore biodiversity data and extract new ecological knowledge
in the future.

5http://www.tela-botanica.org/site:accueil.
6https://www.inaturalist.org/.
7http://naturgucker.de/enjoynature.net.
8https://plantnet.org/en/.
9https://www.gbif.org/.
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10.6 Conclusion

This study is the first one evaluating the potential of the deep learning approach
for species distributions modeling. It shows that DNN and CNN models trained
on 50 plant species of French flora clearly overcomes classical approaches, such
as Maxent and LGL, used in ecological studies. This result is promising for future
ecological studies developed in collaboration with naturalists expert. Actually, many
ecological studies are based on models that do not take into account spatial patterns
in environmental variables. In this paper, we show for a random set of 50 plant
species of the French flora, that CNN and DNN, when learned as multi-species
output models, are able to automatically learn non-linear transformations of input
environmental features that are very relevant for every species without having to
think a priori about variables correlation or selection. Plus, CNN can capture extra
information contained in spatial patterns of environmental variables in order to
surpass other classical approaches and even DNN. We also did show that the models
trained on higher number of species in output (from 50 to 1000) stabilize predictions
across species or even improve them globally, according to the results that we got
for several metrics used to evaluate them. This is probably one the most important
outcome of our study. It opens new opportunities for the development of ecological
studies based on the use of CNN and DNN (e.g. the study of communities).
However, deeper investigations regarding specific conditions for models efficiency,
or the limits of interpretability NN predictions should be conducted to build richer
ecological models.
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Abstract. The GeoLifeCLEF challenge provides a testbed for the system-
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1 Introduction

Automatically predicting the list of species that are the most likely to be ob-
served at a given location is useful for many scenarios in biodiversity informatics.
First of all, it could improve species identification processes and tools by reduc-
ing the list of candidate species that are observable at a given location (be they
automated, semi-automated or based on classical field guides or flora). More
generally, it could facilitate biodiversity inventories through the development of
location-based recommendation services (typically on mobile phones) as well as
the involvement of non-expert nature observers. Last but not least, it might
serve educational purposes thanks to biodiversity discovery applications provid-
ing functionalities such as contextualized educational pathways.

The aim of the challenge is to predict the list of species that are the most likely
to be observed at a given location. Therefore, we provided a large training set of
species occurrences, each occurrence being associated to a multi-channel image
characterizing the local environment. Indeed, it is usually not possible to learn a
species distribution model directly from spatial positions because of the limited
number of occurrences and the sampling bias. What is usually done in ecology is
to predict the distribution on the basis of a representation in the environmental



space, typically a feature vector composed of climatic variables (average temper-
ature at that location, precipitation, etc.) and other variables such as soil type,
land cover, distance to water, etc. The originality of GeoLifeCLEF is to gener-
alize such niche modeling approach to the use of an image-based environmental
representation space. Instead of learning a model from environmental feature
vectors, participants may learn a model from k-dimensional image patches, each
patch representing the value of an environmental variable in the neighborhood
of the occurrence (see Figure 1 below for an illustration). From a machine learn-
ing point of view, the challenge will thus be treatable as a multi-channel image
classification task.

Fig. 1. Example of 6 channels from the environmental tensor of an occurrence. Each
channel is an environmental heatmap, i.e. a matrix representing the values of an envi-
ronmental variable in a square spatial area centered at the occurrence location.

2 Dataset

The participants were provided with a train and test set of species geolocated
occurrences. Both were first composed of a .csv file with the occurrences spatial
coordinates, the punctual values of environmental variables at the occurrence
location, and, for the train table, the species name and identifier. Secondly, each
row of the table (train and test) referred to a 33-channel image containing the
environmental tensor extracted at that location.



2.1 Species occurrences

Occurrences data were extracted from the Global Biodiversity Information Facil-
ity platform (GBIF 6). To achieve precise species prediction from a geolocation,
the geolocations in question must be as precise as possible. However, a high
number of occurrences from the GBIF have a spatially degraded geolocation for
conservation reasons. Thus, we have chosen source datasets with undegraded
geolocations in France, which are :

1. Carnet en ligne from Tela Botanica.
2. Cartographie des Leguminosae (Fabaceae) en France from Tela Botanica.
3. Naturgucker dataset.
4. iNaturalist Research-grade Observations.

Only observations falling in the metropolitan French territory were kept so as
to focus on a region for which we had an easy access to rich and homogeneous
environmental descriptors for the whole dataset. Occurrences with uncertain
names, as notified by the GBIF, were removed. The full dataset is finally com-
posed of 291,392 occurrences. The labels to be predicted within the challenge are
the species identifier (field species glc id). There are 3,336 species identifiers
in total, and their associated taxonomic names are provided by the field es-
pece retenue bdtfx (bdtfx referential 4.1). Due to some unreferenced hetero-
geneity in the data collection protocol (naturalists checklists, conversion of site
name to geolocation, etc), some geographical points accumulate several occur-
rences. Indeed, there are in total 75,668 distinct geolocations (with a maximum
of 527 points in one geolocation). All occurrences geolocations are represented
in Figure 2. It reveals the bias in the spatial distribution of the occurrences.

2.2 Environmental data

Each occurrence is characterized by 33 local environmental images of 64x64 pix-
els. These environmental images were constructed from various open datasets
and include 19 bioclimatic quantitative variables at 1km resolution from Chelsea
Climate [6], 10 pedological ordinal variables at 1km resolution from ESDB soil
pedology data [11,12,16], one land cover categorical descriptor at 100 meters
resolution from Corine Land Cover 2012 soil occupation data (version 18.5.1,
12/2016), one potential evapo-transpiration quantitative variable at 1km resolu-
tion from CGIAR-CSI evapotranspiration data ([18,19]), one elevation quantita-
tive variable at 90 meters resolution from USGS Elevation data (Data available
from the U.S. Geological Survey and downloadable on the Earthexplorer7) and
one indicator of fresh water proximity at 12,5m resolution from the BD Carthage
hydrologic data. As each of those variables are stored in large raster covering
the French geographical territory. For any occurrence, we crop a 64 × 64 pixels
window centered on the occurrence geolocation from the raster of each envi-
ronmental variable. This way, we make the 64 × 64 × 33 environmental tensor

6 https://www.gbif.org/
7 (https://earthexplorer.usgs.gov/)



Fig. 2. Occurrences geolocations in GeoLifeCLEF 2018 and their source dataset over
the metropolitan territory.

associated with this occurrence. Besides, the punctual environmental values asso-
ciated with an occurrence, are simply the extracted cell’s values from the rasters
at the occurrence geolocation.

2.3 Train and test sets

The total of 291,392 occurrences were randomly split into a training set (218,543)
and a test set (72,849) with the constraints that :

– For each species in the test set, there is at least one observation of it in the
training set.

– An observation of a species in the test set is distant of more than 100 meters
from all observations of this species in the train set to avoid major reporting
dependencies.

Thus, the final train set contained all of the 3,336 species, while the test set
contained 3,209 species.

3 Task Description

For every occurrence of the test set, participants must supply a list of 100 species
maximum, ranked without ex-aequo. The used evaluation metric is the Mean



Reciprocal Rank (MRR). The MRR is a statistic measure for evaluating any
process that produces a list of possible responses to a sample of queries ordered
by probability of correctness. The reciprocal rank of a query response is the
multiplicative inverse of the rank of the correct answer. The MRR is the average
of the reciprocal ranks for the whole test set:

MRR =
1

Q

Q∑

q=1

1

rankq

where Q is the total number of query occurrences xq in the test set and rankq
is the rank of the correct species y(xq) in the ranked list of species predicted by
the evaluated method for the occurrence xq.

4 Participants and methods

22 research groups registered to the GeoLifeCLEF challenge 2018. Among this
large raw audience, 3 research groups finally succeeded in submitting run files.
Details of the used methods and evaluated systems are synthesized below and
further developed in the working notes of the participants ([2], [15] and [8]). Ta-
ble 1 reports the results achieved by each run as well as a brief synthesis on the
methods used in each of them. Complementary, the following paragraphs give a
few more details about the methods and the overall strategy employed by each
participant.

FLO team, France, 10 runs, [2]: FLO developed four prediction models,
(i) one convolutional neural network trained on environmental tensors (FLO 3).
The CNN implemented a customized architecture. It also treated the categori-
cal land cover descriptor independantly from quantitative variables for the pri-
mary layers. Activation’s of both variables types where then fused in deeper
layers. (ii) one neural network (FLO 2) trained on species occurrences falling
at the closest spatial point and two other models only based on the spatial
occurrences of species: (iii) a closest-location classifier (FLO 1) and (iv) a ran-
dom forest fitted on the spatial coordinates (FLO 4). Other runs correspond to
late fusions of that base models, either by simply averaging either the output
probabilities (FLO 5,FLO 6,FLO 7,FLO 8), or ranks with the Borda method
(FLO 9,FLO 10).

ST team, Germany, 16 runs, [14]: ST experimented two main types of
models, convolutional neural networks on environmental tensors with different
data augmentations like rotation and flip of images (ST 1, ST 3, ST 11, ST 14,
ST 15, ST 18, ST 19) and Boosted Trees (XGBoost) on vectors of environmental
variables concatenated with spatial positions (ST 6, ST 9, ST 10, ST 12, ST 13,
ST 16, ST 17). They also proposed a nearest-neighbor classifier based on the
environmental variables of occurrences (ST 5), and two species cluster models



(ST 17,ST 8) where groups of species are constituted by the similarity of the
environmental variables where they occur. For analysis purposes, ST 2 corre-
sponds to a random predictor and ST 7 to a constant predictor returning always
the 100 most frequent species (ranked by decreasing value of their frequency in
the training set).

SSN, India, 4 runs, [10]: SSN attempted to learn a CNN-LSTM hybrid
model, based on a ResNext architecture [17] extended with an LSTM layer [3]
aimed at predicting the plant categories at 5 different levels of the taxonomy
(class, then order, then family, then genus and finally species). The four runs are
derived from this model.

5 Results

We report in Figure 3 and Table 1 the main results achieved by the 33 sub-
mitted runs as well as some synthetic information about the used methods and
variables for each run. The main conclusions we can draw from that results are
the following:

Convolutional Neural Networks outperformed boosted trees: Boosted
trees are known to provide state-of-the-art performance for environmental mod-
elling. They are actually used in a wide variety of ecological studies [4,1,7,9].
Our evaluation, however, demonstrate that they can be consistently outper-
formed by convolutional neural networks trained on environmental data tensors.
The best submitted run that does not result from a fusion of different models
(FLO 3), is actually a convolutional neural network trained on the environmen-
tal patches. It achieved a MRR of 0.043 whereas the best boosted tree (ST 16)
achieved a MRR of 0.035. As another evidence of the better performance of
the CNN model, the six best runs of the challenge result from the combina-
tion of it with the other models of the Floris’Tic team. Now, it is important
to notice that the CNN models trained by the ST team (ST 1, ST 3, ST 11,
ST 14, ST 15, ST 18, ST 19) and SSN team did not obtain good performance
at all (often worse than the constant predictor based on the class prior distri-
bution), which could be due to a mismatch of species identifiers, as noticed by
the participant. For team ST, results can’t be interpreted directly as a failure
of the methods. The ranking of runs in the test set was not consistent with
validation results and the learning process can be improved according to [15].
This illustrates the difficulty of designing and fitting deep neural networks on
new problems without former references in the literature. Lastly, the approaches
trying to adapt existing complex CNN architectures that are popular in the
image domain (such as VGG [13], DenseNet [5], ResNEXT [17] and LSTM [3])
were not successfull. High difference of performances in CNN learned with home-
made architectures (FLO 6, FLO 3, FLO 8, FLO 5, FLO 9, FLO 10 compared
to ST 3, ST 1) could underline the importance of architecture choices.



Purely spatial models are not so bad: the random forest model of the
FLO team, fitted on spatial coordinates solely (FLO 4), achieved a fair MRR
of 0.0329, close to the performance of the boosted trees of the ST team (that
were trained on environmental & spatial data). Purely spatial models are usually
not used for species distribution modelling because of the heterogeneity of the
observations density across different regions. Indeed, the spatial distribution of
the observed specimens is often more correlated with the geographic preferences
of the observers than with the abundance of the observed species. However the
goal of GeoLifeClef is to predict the most likely species to observe given the real
presence of a plant. Thus, the heterogeneity of the sampling effort should induce
less bias than in ecological studies.

It is likely that the Convolutional Neural Network already captured
the spatial information: The best run of the whole challenge (FLO 6) results
from the combination of the best environmental model (CNN FLO 3) and the
best spatial model (Random forest FLO 4). However, it is noticeable that the
improvement of the fused run compared to the CNN alone is extremely tight
(+ 0.0005), and actually not statistically significant. In other words, it seems
that the information learned by the spatial model was already captured by the
CNN. Besides, CNN uses the whole environmental tensor as input and is better
than the XGBoost methods which used only the average of each environmental
matrix as input. So it is likely that CNN captured more information than the
average of the environmental image. It might be some patterns associated with
a particular area, or more generic environmental patterns (a wet valley, etc.).

The learning of species communities patterns has potential: We first
state that species have marked spatial patterns. Indeed, predicting the nearest
species in space (FLO 1) or in the environmental space (ST 5) is much more
efficient than simply listing species per global abundance (ST 7), which corre-
sponds to a uniform prior on spatial distribution of each species. Second, meth-
ods that allow interactions between species abundance, either by building and
predicting group of species that have similar environmental preferences (ST 17),
or learning the association between species that co-occur in a close surround-
ing (FLO 2) perform better than simple nearest-neighbor approaches. However,
these approaches are still limitating as, for example, FLO 2 only used the closest
point as input information about surrounding species. Besides, even though the
good performance of ST 17, there was very few groups of more than 1 species
in their algorithm, which leaves small chances to predict non-common species
while they represent the majority of species.

A significant margin of progress but still very promising results: even
if the best MRR scores appear to be very low at a first glance, it is important
to relativize them with regard to the nature of the task. Many species (tens to
hundred) are actually living at the same location so that achieving very high
MRR scores is not possible. The MRR score is useful to compare the methods
between each others but it should not be interpreted as for a classical information
retrieval task. In the test set itself, several species are often observed at exactly
the same location. So that there is a max bound on the achievable MRR equal to



0.56. The best run (FLO 3) is still far from this max bound (MRR=0.043) but it
is much better than the random or the prior distribution based MRR. Concretely,
it retrieves the right species in the top-10 results in 25% of the cases, or in the
top-100 in 49% of the cases (over 3, 336 species in the training set), which means
that it is not so bad at predicting the set of species that might be observed at
that location.



Table 1: Methods and results of runs submitted to GeoLifeCLEF2018.

rank
run-
name

score algorithm type variables top1 top10 top30

Perfect 0.5593 0.4214 0.854 0.97

1 FLO 6 0.0435
fusion: CNN+Random
Forest

Env.tensor, Geoloc 0.0116 0.100 0.25

2 FLO 3 0.0430 CNN Env.tensor 0.0110 0.098 0.25

3 FLO 8 0.0423
fusion: CNN + Random
Forest + NN

Env.tensor, Geoloc,
Neighbors

0.0111 0.097 0.24

4 FLO 5 0.0422 fusion: CNN + NN Env.tensor, Neighbors 0.0112 0.097 0.24

5 FLO 9 0.0388
CNN + Random forest
+ NN

Env.tensor, Geoloc,
Neighbors

0.0099 0.088 0.22

6
FLO 10

0.0365
CNN + nearest-
neighbors (spatial)
+ Random Forest

Env.tensor, Neighbors,
Geoloc

0.0116 0.074 0.20

7 ST 16 0.0358
XGBoost (1
model/species)

Env.tensor, Geoloc 0.0111 0.077 0.18

8 ST 13 0.0352 XGBoost Env.tensor, Geoloc 0.0114 0.075 0.18

9 ST 10 0.0348 XGBoost Env.tensor, Geoloc 0.0113 0.073 0.18

10 ST 9 0.0344 XGBoost Env.tensor, Geoloc 0.0108 0.073 0.18

11 ST 12 0.0343 XGBoost Env.tensor, Geoloc 0.0110 0.072 0.18

12 ST 6 0.0338
XGBoost (1
model/species)

Env.tensor, Geoloc 0.0104 0.072 0.18

13 FLO 4 0.0329 Random forest Geoloc 0.0098 0.071 0.17

14 FLO 7 0.0327 NN + Random forest Neighbors, Geoloc 0.0093 0.071 0.18

15 ST 17 0.0326
Environmental cluster-
ing of species

Env.tensor, Geoloc 0.0106 0.068 0.16

16 FLO 2 0.0274 NN Neighbors 0.0079 0.057 0.15

17 ST 5 0.0271
nearest-neighbors (envi-
ronment, spatial)

Neighbors 0.0098 0.051 0.14

18 ST 8 0.0220
Environmental cluster-
ing of species

Env.tensor, Geoloc 0.0087 0.043 0.08

19 FLO 1 0.0199
nearest-neighbors (spa-
tial)

Geoloc 0.0077 0.042 0.09

20 ST 3 0.0153 CNN Env.tensor 0.0047 0.029 0.08

21 ST 1 0.0153 CNN Env.tensor 0.0047 0.029 0.08

22 ST 14 0.0144 CNN Env.tensor 0.0040 0.030 0.07

23 ST 7 0.0134 Global species frequency occurrences counts 0.0026 0.033 0.08

24 ST 15 0.0103 CNN (vgg-like) Env.tensor 0.0046 0.019 0.03

25 ST 19 0.0099
standard DenseNet121
CNN

Env.tensor 0.0021 0.024 0.05

26 ST 11 0.0096 CNN (vgg-like) Env.tensor 0.0022 0.022 0.05

27 ST 18 0.0096 ensemble CNN (vgg-like) Env.tensor 0.0019 0.023 0.05

28 ST 4 0.0085 XGBoost Env.tensor, spatial 0.0021 0.022 0.04

29 SSN 3 0.0030 CNN(Resnext)-LSTM Env.tensor, Taxonomy 0.0006 0.006 0.02

30 SSN 4 0.0016 CNN(Resnext)-LSTM Env.tensor, Taxonomy 0.0000 0.005 0.01

31 ST 2 0.0016 Random list 0.0003 0.003 0.01

32 SSN 2 0.0013 CNN(Resnext)-LSTM Env.tensor, Taxonomy 0.0001 0.002 0.01

33 SSN 1 0.0004 CNN(Resnext)-LSTM Env.tensor, Taxonomy 0.0001 0.002 0.00



Fig. 3. MRR scores per submitted run and participant.

6 Complementary Analysis

Spatial heterogeneity of model performances: We computed the MRR
restricted to occurrences that fall in spatial quadrats of 10×10 km all over the
French territory. We projected this on a map in Figure 4. The global perfor-
mances of the methods hide spatial heterogeneity, as shown in the map. Indeed,
Paris is the best predicted area, then the Mediterranean region and the Alpes.
Then other regions like the Loire, the Pyrenees and the Atlantic coastline. One
could think this is due to the larger number of points available in these areas,
but this is not exactly true. Complementary analysis showed that the impor-
tantly sampled areas had a more stable MRR but not higher in average. Thus,
improving models predictions should pass by finding reasons of varying regional
performances, in the hope to bring a solution.

Rare species are not unpredictable: For each species and method, we
calculated the MRR over the occurrences of this species in the test set. We
ordered species per decreasing global occurrences count in the test set in order
to compare the performances of each method along the gradient from common
to rare species. The raw graphs were difficult to analyse because the MRR varies



Fig. 4. MRR per 10×10km square spatial quadrat for FLO 3 over the study region.



importantly for rare species, as there are very few occurrences. Thus, we operate
a smoothing along the scarcity gradient. For each species we took the median of
the MRR over the 40 species of closest rank on this scarcity gradient. Figures
5 and 6 show the result for FLO 3 (environmental CNN), ST 16 (XGBoost),
FLO 4 (spatial Random Forest) and ST 7 (Global frequency of species). One
can see that ST 7 early cancels along the scarcity gradient. This is because more
than 50% of the species over which the median is calculated have a null MRR,
which correctly represents the tendancy we want to observe. First, it seems that
non-common species have marked spatial preferences because FLO 4 is much
better when getting scarcer than ST 7. Second, the progression of predictions of
FLO 3 and ST 16 compared to FLO 4 for rare species (in the long tail) suggests
that those species mainly have marked environmental preferences that is not easy
to capture with a spatial model which doesn’t have access to this information.
The CNN is very good at predicting non-common species, which may be a bit
surprising as (i) its predictions should be smooth in space according to the width
of some environmental images (64x64km for climatic and pedological variables)
and the chosen architecture and (ii) rare species often have a restricted niche.

7 Conclusion

We have analyzed the results of the 3 participants of GeoLifeCLEF 2018. CNN
models learnt on environmental tensors revealed to be the most performing
method, however challenging to operate. According to those results, they are
more efficient than Boosted Trees a state of the art method in species distri-
bution modeling. This might be because they may detect particular area or
environmental patterns as they access to the full surrounding environment data,
but that remain to be proved. Spatial and species association methods have
shown reasonably good results, but there is room for improvement, especially
for the use of interdependence. The complementary analysis revealed that all
methods had the same areas of unreliability. Furthermore, the integration of
environmental variables seems to be very beneficial to the prediction of non-
common species. The task of finding the species found at a precise location is
difficult because many species co-exist at very small spatial scales (under the
meter). The accuracy of current geolocation devices doesn’t even allow to indi-
cate with this precision the point where the specimen was observed. Thus, in
the future, the evaluation process shouldn’t penalize predictions of other species
that have been observed in such a close surrounding regarding the precision of
the reported geolocation.



Fig. 5. Smoothed MRR per species for FLO 3 and ST 16. Species are ordered by
number of occurrences in the test set. Each species MRR is smoothed by taking the
median over the MRR the 40 species of closest rank along the scarcity gradient.



Fig. 6. Smoothed MRR per species for FLO 4 and ST 7. Species are ordered by number
of occurrences in the test set. Each species MRR is smoothed by taking the median
over the MRR the 40 species of closest rank along the scarcity gradient.
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Abstract. The GeoLifeCLEF challenge aim to evaluate location-based
species recommendation algorithms through open and perennial datasets
in a reproducible way. It offers a ground for large-scale geographic species
prediction using cross-kingdom occurrences and spatialized environmen-
tal data. The main novelty of the 2019 campaign over the previous one
is the availability of new occurrence datasets: (i) automatically identified
plant occurrences coming from the popular Pl@ntnet platform and (ii)
animal occurrences coming from the GBIF platform. This paper presents
an overview of the resources and assessment of the GeoLifeCLEF 2019
task, synthesizes the approaches used by the participating groups and
analyzes the main evaluation results. We highlight new successful ap-
proaches relevant for community modeling like models learning to pre-
dict occurrences from many biological groups and methods weighting
occurrences based on species infrequency.

Keywords: LifeCLEF, biodiversity, environmental data, species recommenda-
tion, evaluation, benchmark, Species Distribution Models, methods comparison,
presence-only data, model performance, prediction, predictive power

1 Introduction

The automatic prediction of the species most likely to be observed at a given
location is an important issue for many areas such as biodiversity conservation,
land management or environmental education. First, it could improve species
identification processes and tools by reducing the list of candidate species observ-
able at a given site (whether automated, semi-automatic or based on traditional
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ber 2019, Lugano, Switzerland.



field guides or flora). More generally, it could facilitate biodiversity inventories
and compliance with regulatory obligations for the environmental integration of
development projects. Finally, it could be used for educational purposes through
biodiversity discovery applications offering functionalities such as contextualized
educational pathways.

In the context of LifeCLEF evaluation campaign 2019 [6], the objective of
the GeoLifeCLEF challenge is to evaluate the state of the art of species predic-
tion methods over the long term and with a view to reproducibility. To achieve
this, the challenge freely provides researchers with large-scale, documented and
accessible data sets over the long term. Concretely, the aim of the challenge is
to predict the list of species that are the most likely to be observed at a given
location. Therefore, we provide a large training set of species occurrences and a
set of environmental rasters that characterize the environment in a quantitative
and qualitative way at any position in the territory. Indeed, it is usually not
possible to learn a species distribution models directly from spatial positions
because of the limited number of occurrences and the sampling bias. What is
usually done in ecology is to predict the distribution of species based on a repre-
sentation in environmental space, typically a characteristic vector composed of
climatic variables (mean temperature at that location, precipitation, etc.) and
other variables such as soil type, land cover, distance to water, etc. GeoLife-
CLEF’s originality is to encourage the extension of this approach to learning a
more complex representation space that takes into account various input data
such as environmental descriptors, their spatial structure and the known biotic
context. Therefore, we provide tools to facilitate the extraction of environmental
tensors that can be easily used as input data to models such as convolutional
neural networks.

In 2019, the provided data was significantly enriched and several methodolog-
ical improvements have been made. In more details, the new features introduced
are as follows:

1. Pl@ntNet occurrences: to increase the amount of plant occurrences in the
training set, we completed the publicly available data from the GBIF6 with
user-generated observations of the Pl@ntNet mobile application [1]. These
data are clearly noisier and more biased than conventional occurrence data
but they can be filtered by the confidence level of the taxonomic automatic
classifier used in the app and they have the advantage of being produced in
huge quantities.

2. Occurrences of other kingdoms: to investigate how knowledge of the presence
of non-plants organisms can help predict the presence of plants species, we
provided a large training set of occurrences from other kingdoms coming
from the GBIF platform.

3. A better quality test set: to ensure the reliability of our evaluation, the
occurrence data of the test set were restricted to expert data with the highest
species identification certainty and high geographical accuracy (lower than 50
m). Last but not least, the test occurrences were sampled in order to avoid, as

6 https://www.gbif.org/



much as possible, biases of spatial coverage and in the species representation.
By this way, it contributes to give relatively more importance to rare species
and scarce areas.

In the following sections, we describe in more details the data produced and
the evaluation methodology used. We then present the results of the evaluation
and the analysis of these results.

2 Dataset

2.1 Train occurrences

Pl@ntNet raw data. (PL complete) This data is directly pulled from [4]. Pl@ntNet7

is a smartphone app using machine learning to identify plant species from pic-
tures submitted by a broad public of users. For each submission, also called
a query, the Pl@ntNet algorithm answers a distribution of probability values
across the targeted taxonomic referential. If the users allows it, the query’s ge-
olocation is also stored. In the provided training data, we used all accurately
geolocated queries (with maximum 30 meters uncertainty) in France from the
beginning of 2017 to the end of October 2018. Each geolocated occurrence is
labelled with the species of higher identification probability. This dataset is thus
very heterogeneous in species identification quality, due to the high variability of
the image quality submitted by users. The confidence score is provided to Geo-
LifeCLEF participants as specific field in this dataset, who can use it to account
for identification uncertainty in their models. This data set contains 2,377,610
occurrences covering 3,906 plant species.

Pl@ntNet filtered data. (PL filtered) We proposed a filtered version of the
previous dataset based on species identification quality. We only kept the occur-
rences for which the first species probability value was above 0.98. This score
has been determined by expert to give a reasonable degree of identification con-
fidence. This set of 237,087 occurrences covers 1,364 species.

GeoLifeClef 2018. (GBIF) Train and test occurrences datasets from the pre-
vious year edition [5] were merged to feed the current challenge. Those plants
occurrences were extracted from the Global Biodiversity Information Facility 8.
This set of occurrences is around ten times smaller than the Pl@ntNet dataset,
as shown in Figure 1. Within this dataset, occurrences are often aggregated
on a same geographic point, which denotes uncertain or degraded geolocation.
However, the geolocation certainty field is often missing. It contains 281, 952
occurrences covering 3, 231 plant species.

7 https://plantnet.org
8 https://www.gbif.org/



Occurrences of other kingdoms. (GBIF) This data source is made of species that
are not plants, but may interact somehow with plants (e.g. trophic, pollination,
symbiosis, use of plant as habitat or shelter), and are thus likely to carry in-
teresting correlations with plant species presences. None of those species are in
the list of species to predict in the test set (which are only plant species). Those
occurrences have also been extracted from the GBIF; based on the following fil-
ters: { Basis of record: Human, Location : include coordinates, Country or area
: France }. We extracted occurrences from 7 non-plant taxonomic groups:

– Chordata/ Aves (8,000,000).
– Chordata/ Mammalia (1,300,000)
– Chordata/ Amphibia (300,000)
– Chordata/ Reptilia (200,000)
– Arthropoda/ Insecta (3,250,000)
– Arthropoda/ Arachnida (70,000)
– Fungi/ Basidiomycota (50,000)

It contains 10,618,839 occurrences in total covering 23,893 taxa.

Taxonomic and geographic filters applied to all datasets. Because scientists do
not name species by the same way in all regions of the world, many official lists of
species names, called referentials, co-exist. There are no exact matching between
them (in particular because of the new scientific knowledge acquired during the
period between the creation of two separate lists) except those suggested by the
scientific latin names themselves. In our case, the distinct data sources don’t use
the same referentials. Furthermore, distinct species names might be considered
as redundant (synonyms) in some referentials. GBIF uses its own referential
made from several taxonomic referentials, and GBIF occurrences may not be
at the species taxonomic level, but at sub-species, or genus, etc. Pl@ntNet data
includes occurrences from several plants taxonomic referentials (like The Plant
List9, GRIN10, the French National plant list, etc.).
Thus, for attributing species identifiers in GeoLifeCLEF, it was important to
first match all occurrences names to a single taxonomic referential adapted for
the French Flora. We chose to use Taxref v12 11 referential. We only kept names
matching Taxref v12 according to an exact matching algorithm (R script pro-
vided on Github 12). Some true species might have been lost due to distinct
spelling between the GBIF taxonomy and Taxref.
We only kept points falling inside the French territory (Polygon from GADM13)
or inside a 30 meters buffer zone, to account for geolocation uncertainty. Finally,
occurrences were randomly shuffled to avoid any bias introduced by their order
of use.
9 http://www.theplantlist.org/

10 https://www.ars-grin.gov/
11 https://inpn.mnhn.fr/programme/referentiel-taxonomique-taxref?lg=en
12 https://github.com/maximiliense/GLC19/blob/master/GITHUB_taxonomic_and_

spatial_filtering.R
13 https://gadm.org/



Fig. 1. Number of occurrences per training dataset. Trusted occurrences were deter-
mined from Pl@ntNet species identification engine certainty score.



2.2 Environmental data

Geographic rasters. The geographic and environmental data proposed to par-
ticipants are a compilation of geographic rasters. The variables represented are
often used for the purpose of species distribution modelling, especially for plants.
The nature of values stored in the rasters are quantitative (bioclimatic, topo-
logical, hydrographical and evapo-transpiration variables), ordinal (pedological
variables) or categorical (land cover). The rasters are extracted from the data
repository of Botella [3], where readers can find a detailed description.

Fig. 2. Patch extracted at the city of Brest, France.



Tensors extraction. To facilitate the learning of representations taking into ac-
count the spatial structure of the environment, we provided a Python toolbox14

allowing to extract local environmental tensors from any position in the rasters.
By default, it extracts for each raster a 64x64 pixels patch centered on the target
position and aggregate the patches from all rasters in the form of a tensor of size
nx64x64 where n is the number rasters.

2.3 Test data

We have chosen an independent and unpublished source dataset of occurrences
for the test set. It is extracted from the SILENE database maintained by the
Conservatoire Botanique Mediterranéen 15. Those observations come from vari-
ous providers including the conservatory himself, but also national parks, botan-
ical associations or impact study consultants. We removed species (i) that were
not present in the train set, (ii) vulnerable species according to the SINP referen-
tial “espèces sensibles” 16, (iii) and species that are at least vulnerable according
to the IUCN red list 17. This dataset has a high degree of identification certainty
because only botanical experts contribute to it. Its geolocation certainty is un-
der 50 meters. We used random weighted selection scheme to draw 25,000 test
occurrences among the 700,000 of the initial set noted S. We compute, for each
occurrence si in S a weight wi:

wi = 1/(ni × ri)

Where ri is the number of species in the neighborhood of si defined by a
circle of radius d. ni is the total number of occurrences in the neighborhood. We
define the spatial scale d = 2 kilometers. With these weights and the following
algorithm, we guaranty that (i) test occurrences are uniformly distributed in the
geographic space at scale 2d, (ii) there is as many occurrences of each present
species on neighborhoods of radius 2d. We then draw the test occurrences from
S without replacement, through the following algorithm:

– Initialize the bag of test occurrences S′ := S and the test set T = ∅.
– Randomly draw an occurrence in S′, say i.
– Draw a scalar z ∼ U(0,max(w1, ..., w|S|)).
– If z < wi, remove i from S′ and add it to T , otherwise leave it in S′.
– Stop if |T | = 25000, otherwise we go back to step (1).

3 Task description

For every occurrence of the test set, the evaluated systems must return a list
of 50 species maximum, ranked without ex-aequo. The main evaluation metric

14 https://github.com/maximiliense/GLC19
15 http://flore.silene.eu/index.php?cont=accueil
16 http://www.naturefrance.fr/languedoc-roussillon/

referentiel-des-donnees-sensibles
17 https://uicn.fr/liste-rouge-flore/



used is the top 30 accuracy (TOP30). We provide its expression hereafter:

TOP30 :
1

Q

Q∑

q=1

1rankq≤30

where Q is the total number of query occurrences xq in the test set and rankq
is the rank of the correct species y(xq) in the ranked list of species predicted by
the evaluated method for the occurrence xq.
A secondary metric is the Mean Reciprocal Rank (MRR), a statistic measure
for evaluating any process that produces a list of possible responses to a sample
of queries ordered by probability. The reciprocal rank of a query response is the
multiplicative inverse of the rank of the correct answer. We provide its expression
hereafter :

MRR :
1

Q

Q∑

q=1

1

rankq

The MRR was used as main metric during last year edition. We compute it
this year, in order to enable comparisons between two campaigns.

4 Participants and methods

61 participants registered to the challenge through the online platform, among
which 5 participants managed to submit runs in times. A total of 44 runs were
submitted. All participants runs methods are characterized by their types of
model architecture, the occurrences and input data they used in table 6. In the
following paragraph, we describe in more details the methodology of each team.

LIRMM, Inria, Univ. Paul Valery, Univ. Montpellier, France, 4 runs, [10] :
This team used a single deep convolutional neural network architecture derived
in four models. All models take as input the default environmental tensors ex-
tracted by the provided python toolbox (see section 2.1), with a one-hot encoding
transformation for each category of the land cover variables (clc), inducing 77
layers images in the input of the model. The chosen architecture was an Incep-
tion V3 ([13]). Models were trained as classifiers, using a softmax output and
a cross-entropy loss (also known as multinomial logistic regression). Model of
run 27006 was trained on all occurrences of PL complete and glc18 datasets,
while models 27004 used PL complete with identification score ≥ 0.7, and 27005
used PL complete with identification score ≥ 0.98 (filtered dataset). Further-
more, runs 27004 and 27005 were only trained on a subset of the occurrences:
a sample of around 30K occurrences was drawn according to the same selection
procedure as for the test set. Thus, all those models predicted only plant species.
On the contrary, model 27007 was trained on all occurrences datasets including
PL complete, glc18 and also noPlants. This one was trained to predict plant
species and many animal species.



SaraSi, EcoSols, UMR 1222 INRA - Montpellier SupAgro, France, 5 runs, [12]
: This team used mainly two types of models: a convolutional neural network
(CNN) based on the environmental tensors in the same spirit as LIRMM (27086,
27087, 27088) with a customized architecture, and a deep neural network using
only a vector of co-occurrences of non-plants taxa as input (27089, 27082). The
CNN model architecture separates the feature extraction depending on the type
of variables that is deal with. Indeed, it apply distinct convolutional layers to
the three categories of environmental patches (continuous, ordinal and categor-
ical). The extracted features are concatenated and used as input in a series of
fully-connected layers. A noticeable technique of ”categories embedding” was
used for the categorical and ordinal patches. It transforms the one-hot encoded
patches in a lower number of continuous valued matrices. Also, they addressed
the class imbalance of the training set by optimizing a weighted cross-entropy
loss so that occurrences of more abundant species were less numerous. They
trained this model on the PL complete dataset (27086) and on a reduced ver-
sion of this dataset to test set species (27088). the run 27087 was like 27086 but
trained longer. For the other approach they implemented a customized version
of the Continuous Bag of Words model [8]. The input is a set of identifiers of the
non-plant ”super-taxa” occurring in the neighborhood. An embedding vector as-
sociated to the set of ”super-taxa” is learned. A ”super-taxa” is an aggregation
of many species assumed to share a same type of interaction with plants. They
were determined through experts knowledge.

SSN CSE, SSN College of Engineering of Chennai, and VIT University of Vel-
lore, India, 12 run, [7] : This team tackles the challenge with classical machine
learning techniques. They relied on three datasets : (i) spatial position of the
occurrences only, (ii) spatial position and punctual environmental vector at the
position of the occurrence, (iii) spatial position and vector of the average value
of the environmental variables within a 16x16 pixels square centered on the oc-
currence. As a baseline, the authors first propose a probabilistic model where
the probability of a species depends on its frequency in the whole training set
(Const. prior). In addition, the authors relied on three categories of models.
They first used random forest with spatial coordinates only as input (27102),
and boosted trees (XGBoost: 26997, 26996, 27O13, 27012, 26988) and artificial
neural network (27069, 27070, 27064, 27067) for using either spatial positions,
environmental vectors or both. For one neural network, the authors split the fea-
tures in 5 groups and trained a neural network per group for which predictions
are then combined to form a single model.

Atodiresein, Faculty of Computer Science, “Alexandru Ioan Cuza” University,
Romania, 20 runs [2] : This team based their runs on standard machine learn-
ing algorithms: nearest neighbors (K-NN), random forests (Rand. For.), boosted
trees (XGBoost) and deep neural networks (ANN). Those algorithms were ap-
plied to either the PL complete or PL trusted datasets. They used either the



spatial coordinates or the environmental punctual values of a selection of 29
environmental variables, or the concatenation of coordinates and variables. All
combinations of algorithms, occurrences data and input data were evaluated on
a validation set and the best of them were submitted. They also carried ensemble
predictions from those models (runs 26969, 26970, 26958, 27062, 26960, 26971,
26961, 26964, 26968). A partial explanation of the low performances of their runs
is that they only answered a short list of species (maximum 5) for each test oc-
currences, which lowers down performances a lot, especially for the top30 metric.

Lot of Lof, Inra, France, 3 runs, [9] : This team used occurrences density estima-
tion based on log-linear spatial in-homogeneous Poisson point processes (PPP).
They used a restricted set of environmental variables to model the distribution
of occurrences based on expert knowledge: etp, alti, chbio 5, chbio 12,

awc top, bs top, slope and aggregated clc in 5 land covers categories. They
built their models with the 141 test species having the most occurrences in the
PL trusted dataset. Run 27124 is the standard PPP, while runs 27123 and 27063
apply different corrections for spatial sampling bias.

5 Results and discussion

The TOP30 and MRR evaluation scores achieved by all submitted runs are
provided in Figures 3 and 4 (numerical values of the TOP30 are also replicated
in the third column of Table 6). As a complementary analysis, Figure 5 displays
the average TOP30 accuracy obtained for each species in the test set as a function
of the number of occurrences of this species in the test set.

These results contributes to drive the following findings:

The occurrences of the other kingdoms significantly improve plants
prediction. This can be observed from the comparison of run 27007 and run
27006 of the LIRMM team which are all things equal except the use of the oc-
currences of other kingdoms. The TOP30 increases from 0.136 to 0.177, which
represents an improvement of 30%. The use of the occurrences of the other king-
doms is therefore the main cause of the best performances obtained by this team
with regard to the SaraSi team. From the ecological point of view, this suggests
that the biotic interactions (competition, predation, facilitation) between plant
species and other biological groups play a very important role in determining
the distribution of the species. From a deep learning point of view, it means
that the convolutional neural network is able to transfer a consistent knowledge
from the domain of the other kingdoms to the plant domain. An architecture
that aim at predicting so many species through mutual neurons (as run 27007)
might be a more efficient design for learning those relationships than using the
co-occurrences as input data (as did runs 27089, 27082). It would be interesting
to investigate this by comparing the latter strategy with a model taking both
environmental patches and co-occurrences as input.



Fig. 3. Average Top30 accuracy per run and participant. It was computed over the
25,000 test occurrences. This was the official ranking metric for the task.

Fig. 4. Mean Reciprocal Rank per run and participant. It was computed over the
25,000 test occurrences.



Weighting the loss by species is better for predicting rare species.
The CNN models learnt by the SaraSi team were based on a weighted cross-
entropy loss penalizing the classes with more samples as a way to compensate
class imbalance. Interestingly, it can be seen in Figure 5 that this significantly
increased the ability of the model 27086 to predict the species having few oc-
currences compared to the winner CNN (run 27007) from LIRMM. Run 27086
is better than 27007 for more than 80% of the species. LIRMM team gave equal
weights to all occurrences in the loss for training model 27007. It also shows how
the most represented species hide the performances on the majority of species,
which rarely occur. Giving more balanced weights across species is certainly im-
portant to achieve more robust predictions because the observation preferences
across species vary a lot from one biodiversity dataset to another, as it is the
case here between Pl@ntNet, the GBIF and SILENE.

The more complex the model, the better the prediction. The analysis
of the column ”model” of Table 6 suggests that, at least models using environ-
mental inputs, can be ranked according to their performance as: (i) Convolu-
tional Neural Network (CNN), (ii) Boosted trees (XGboost), (iii) Deep Neural
Network (ANN), (iv) Poisson point processes, (v) K-Nearest Neighbors. This
clearly shows a gradient from the models that integrate the most complex in-
put data (CNN having the most complex with many channels of environmental
images) and the most flexible architectures (CNN, XGBoost and ANN can fit
very complex functions of their input data), to the models that are the most
constrained by their input data (environmental vectors only) and with simple
architectures (log-linear model of PPP, no optimized parameters for K-NN). This
shows that the size of the available datasets and the complexity of the problem
give a real advantage to complex statistical learning methods. More specifically,
once again CNN results far exceeded those of the other methods which reinforces
the results obtained in the last edition of the challenge. The CNN are likely to
extract complex features of spatio-environmental patterns in their highest level
neurons which are more suited to describe species habitats than environmental
variables designed by experts. They may also captures spatial configurations of
habitats that favor certain dispersion mechanisms, e.g. source-think coloniza-
tion, or detect signatures of particular trophic assemblages.

The training of CNN can fail. Although the best models were based
on CNNs, not all CNNs obtained so good results. Indeed, some runs based on
CNNs were even worst than the prior ranking of species according to their global
abundance (see 27004 ≤ 26821). Furthermore, non-submitted CNN models men-
tioned in a participant working note did perform less in validation than simpler
approaches (see [7] 3.4). Model design (architecture, selection of environmental
channels, management of categorical variables), regularization (optimization al-
gorithm, use of dropout, learning rate and stopping rule policy), training data
(especially size, see runs 27004 and 27005) and occurrence weighting scheme de-



termine jointly the implementation success.

Fig. 5. Top30 accuracy averaged per species abundance class for the two best CNN
models. Species were ranked by decreasing number of occurrences in the test set and
then aggregated in 14 classes of abundances. For run 27086, each occurrence is weighted
inversely proportional to the abundance of its species in the loss function.

Results of the MRR show that performances were globally lower than last
year. Indeed, last year average MRR of the ten best runs was 0.039 while it is
0.024 this year. This large global performance gap is probably due to the diffi-
culty of the test set, given that last year dataset was included in the training
data. We note that the test set was not identically distributed, firstly because it
was located on the Mediterranean region only, but also because the occurrences
were sampled to avoid spatial and species biases. We know that all models pre-
dict less well rare species and under-sampled areas. Thus, this drop in overall
performance supports the idea that the new test set has succeeded in giving
greater importance to rare species and sub-sampled areas.
In absolute terms, the best run gives the good answer 20% of the times in its top-
30. Thus, roughly speaking, even the best model gives generally a large majority
of wrong species in its top-30 list. To give an order of comparison, the database
Sophy [11] contains more than 35,000 exhaustive plant species inventories on
plots generally not exceeding 400m2, and covers a wide range of environments
in France. According to it, the species diversity in such plots is 25 in average



and rarely exceeds 70. There is thus large room for improvement in automated
predictions.

6 Conclusion and perspectives

We now come back on the main outcomes of this task and discuss its perspec-
tives.
LIRMM best CNN successfully integrated many non-plants species occurrences
in their models predictions to better extract spatio-environmental patterns that
more robustly predict plants species. It suggests that the global biotic assemblage
highly determine the plant assemblage through underlying species interactions,
and the multi-species prediction proved again to be a good deep learning strategy
to account for it. This is the main new outcome of this year’s edition. However,
there should be significant room for improvement in the implementation of this
approach. Indeed, LIRMM indicated that the winning model training couldn’t be
finished for time constraints reasons. Furthermore, light and customized models
architectures accounting for the different variables natures seem more adapted
to the problem than heavily parameterized state-of-the-art image classification
architectures. Indeed, SaraSi customized CNN architecture has performed better
than the related LIRMM Inception V3 CNN with the same output. Merging the
strengths of both strategies promises good improvements in the future.
A rich source of information that remains unexploited for this task is the high
resolution satellite images data. For example, today, 50 cm resolution satellite
images are freely available for research all over the french territory through the
National Institute of Geography (IGN) 18. Including such images as input in the
current models would inform them about very local land cover type and thus
give much finer resolution prediction, if one can efficiently handle the size of this
data.
The philosophy of the evaluation was to favor models that are more robust to
biases in the training data, especially the imbalance of species representation
and the heterogeneous spatial coverage, both consequences of the reporting pro-
cess heterogeneity. We can say that it is a success concerning species imbalance
representation. Indeed, SaraSi achieved remarkably stable performances even for
rare species through a per class weighting scheme in the cost function. A next
step would be to account for spatial sampling heterogeneity, as we have seen
that all methods still struggle a lot with scarcely reported areas.
Regarding the evaluation process on this problem globally, we put an effort
this year in the quality of the occurrences identification, and corrected for the
species imbalance bias and heterogeneous spatial coverage (due to the reporting
heterogeneity). Our new evaluation strategy was quite discriminant across the
methods, and lowered globally the computed results. In absolute terms, we have
also seen that even the best model tends to rank a lot of relevant species (i.e.
probably absent from the surroundings) before the good one. The problem of
spatial prediction of plant species lists is objectively far from being solved. Still,

18 https://geoservices.ign.fr/documentation/geoservices/



with the new areas of improvements that the task results pointed out, we are
optimistic about the future methodological advances on the problem of location
based species prediction.





Table 1. Results and summarized methodology description of all runs submitted to Ge-
oLifeCLEF 2019. Symbols and abbreviations: A+B means that variables/data B was
added to A. A\B means that variables/data B where removed from A. complete∩ test
means that only test species occurrences from the complete dataset were used. Products
(×) and exponent notations in column ”model archi.” decompose an ensemble methods
with its different models. Occurrences: complete=PL complete,filtered=PL filtered,
all plants=PL complete + PL filtered + glc18, all=PL complete + PL filtered +
glc18 + nonP lants. Covariates in model input: ”enviro. tensors”=environmental ten-
sors with spatial neighborhood”, ”enviro.”=punctual values of environmental variables,
”coord.”= spatial coordinates.
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10 Discussion
10.1 Results synthesis

10.1.1 Handling identification uncertainty.

In chapter 1, we have introduced a new kind of data for SDM: Automatically identified and
geolocated plant pictures coming from Pl@ntNet are taken as species occurrences. We have
exposed the nature of major identifications biases: varying confusion level between species,
and intrinsic identification uncertainty in the data because the pictures often don’t contain ap-
propriate visual information. Both may lead to biases in SDM and it is thus important to filter
the occurrences based on a proxy of identification certainty. We have applied MAXENT, a
standard presence-only SDM method, to unvalidated Pl@ntNet occurrences of 2016 for 7 alien
invasive species. We accounted for spatial sampling bias in MAXENT based on a sampling
effort model. We applied this method on several subsets of the whole occurrences filtered with
increasing thresholds of confidence value (identification engine probability output). We have
shown that (i) for most species and all applied thresholds, models yielded consistent results
with models applied on independent expert data, (ii) the average effect of the identification
certainty score threshold was positive for low thresholds and negative for high thresholds, (iii)
the model performance was variable across species but models were almost exactly ranked ac-
cording to the species prevalences (because generalist species are known to be more sensitive
to biases, e.g. sampling biases, see next section). The optimal threshold to apply may vary
depending on the species, the number of occurrences, and we recommend to select it through
cross-validation. This experimentation also showed that the models fitted on the Pl@ntNet
data identified true species occurrence areas corresponding to absences in the expert data.
Indeed, many true specimens were cultivated, point out that Pl@ntNet data could be used
to identify invasive species cultivation patterns across territories. However, those specimens
bias importantly the distribution model because the species may be cultivated in much more
environments than it may survive in the wild, thus they should be removed in order to prop-
erly study the distribution of the species in the nature. Other where casual invasive or newly
inventoried invasive specimens. Their detection could provide early warnings for territories
managers. Separating the occurrences of cultivated plants from the wild ones is an important
problem to resolve prior to use the Pl@ntNet data in the modelling of invasive species dis-
tribution in the wild. It could be done in a probabilistic way through the recognition of the
cultivation context in the visual content of the plant pictures, and by combining the geoloca-
tion with high resolution land cover maps as the one recently produced by the CESBIO from
the sentinel-2 satellite images19.

We note that, since experiment of Chapter 1 on the 2016 data, the Pl@ntNet identifica-
tion engine greatly improved as it followed the best implementations of the annual PlantCLEF
challenges. It was compared to human expert identification two times (Bonnet et al. (2016),
Bonnet et al. (2018)). The best algorithms reached the performances of the best expert the
second time. This performance increase especially concerns western Europe flora. Also, the
data has increased with exponential growth (factor at least 2) every year since, and the com-
bination of both factor must have greatly improved the potential for detection and modelling
of alien invasive species in the wild. An application of the Pl@ntNet identification engine of
january 2019 on all queries from the begin of 2017 to october 2018 gave birth to a new dataset
of 2.2 millions of opportunistic occurrences over France, with a geolocation accuracy above 30

19http://www.cesbio.ups-tlse.fr/multitemp/?p=11778
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meters, and associated with identification confidence values, that is freely accessible at Botella
et al. (2019).

10.1.2 Spatial sampling bias correction.

In Chapter 1, spatial sampling effort was explicitly modelled with three covariates: Distance
to roads, distance to the coastlines and presence of cities. Those covariates were then set
constant in prediction, as recommended by Warton et al. (2013). This bias correction had a
visible effect on prediction maps, and the bias model especially captured a strong negative
effect of distance to road, and effects of cities. However, some important limitations have to be
highlighted in this methodology: (i) An effect of distance to coastline has been captured, but
we can still observe an increasing density towards coastline in the corrected species intensity
maps of Carpobrotus edulis, Erigeron Karvinskianus and Opuntia ficus-indica. Thus, the
species intensity covariates can be linearly combined to reproduce a gradient that is similar to
distance to coastlines. Then, we are not really able to isolate the effect of distance to coastline
on occurrences intensity with this model. (ii) Model specification of the distance to roads
and coastlines effects is arbitrary and questionable. (iii) The true abundance of several of our
species is known to be closely linked with the covariates of sampling effort and the contribution
of abundance and sampling effort on the occurrences intensity may not be separated, which is
a fundamental problem of this correction approach.

This leads us to bias correction methods investigated in chapters 2 and 3 that have the
potential to solve problems (ii) and (iii). Chapter 2 investigated biases arising by the use
of multiple species opportunistic occurrences as a proxy of the sampling effort distribution.
We carried out a theoretical study of the biases arising with 2 methods of background points
selection in SDM based on Poisson point processes for presence-only data. The first is the
standard spatially random uniform background selection, while the second use occurrences of
a target group of species as background points. For this method, we show that the estimated
species intensity fits the product of the true species intensity and the sampling effort, thus bias
is particularly strong when the sampling effort is concentrated along environmental gradients.
The second method uses occurrences from a set of species, the Target-Group, as background.
We have shown that, under constant detection probability, it fits the ratio of the focal species
density divided by the sum of Target-Group species intensities (TG species density). Thus,
this second method is unaffected by observation bias, but it is affected by variation of the
TG species density: The fitted relative intensity will be under-estimated for environmental
conditions where the sum of TG species is higher, and conversely it will drastically be over-
estimated in environments where the TG species density is low. Reducing the expected bias
when applying the Target-Group strategy would require to minimize the variation of whole
sum of TG species abundance along every environmental gradients through an appropriate
selection of those species.

Our results also prove the conjecture of Dudík et al. (2006), a distribution of background
points drawn from the sampling effort spatial density provides an unbiased estimate. The
results formalize and extend the first critics of the Target-Group strategy in Warton et al.
(2013), which took the example of bias due to varying level of species richness in two envi-
ronments. Expressing the bias as a function of TG species density generalizes the concept of
species richness bias of Warton et al. (2013), in the sense that even with a constant species
richness, some species might be very rare in an environment rather than in another.

TGOB procedure directly takes points as background, whereas the TGB procedure usually
uses TG sites, i.e. spatial areas where at least a TG occurrence has been reported Phillips
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et al. (2009). Thus, TGOB is simpler because we don’t have to define a grid of sites for
occurrences. Also, the procedure by site is not consistent with the Poisson process framework
where the spatial variation of occurrences concentration carries the information of the process
local intensity. As a consequence, the bias of TGB depends on both the sampling effort
and the TG species distributions in a complex way, contrarily to TGOB which bias doesn’t
depend on sampling effort. A limit is that we didn’t defined rigorously the concept of density
concentration. A formal definition of density concentration would enable to study analytically
the effect of concentration on bias. For example, it might be useful in order to provide a bias
metric bound depending on the level of concentration.

We have seen in Chapter 2 that we can’t eliminate TGOB bias without further knowledge
about the TG species distributions. Then, the other strategy of jointly modelling species
intensities along with the sampling effort might be improved to solve some limitations identified
in Chapter 1. Indeed, we need to deal with complex and unknown environmental factors
affecting sampling effort on a large spatial scale, and with some species that depend on the
same environmental factors.

We thus studied the estimation of sampling effort from presence only data that without
relying on much prior hypothesis on environmental drivers of sampling effort. In this perspec-
tive, chapter 3 introduced a Poisson process SDM framework based on the joint modelling of
many species intensities along with of the sampling effort. The sampling effort model is a step-
wise constant function over a partition of space defined by the modeler, which can typically be
a regular spatial grid of squares. The identification of the species response model parameters
from the sampling effort model parameters is enabled by the variation of occurrences concen-
tration along the environmental gradients inside the sampling cells. The multi-species model
enables to infer relative sampling effort in space, even when a single species is absent. We
have shown in simulation that the method works well when the species response model is well
specified, i.e. the relevant environmental gradients are chosen and the response function shape
may be well approximated, and the sampling effort cells limits correctly reflect variations of
the sampling effort. We illustrated our method with an application over around 500,000 occur-
rences from 300 plant species collected through Pl@ntNet over the 2017-2018 period in France.
However, the estimation of sampling effort and species intensities is biased when the sampling
effort varies systematically along an environmental gradient inside designed sampling cells.

10.1.3 Multi-species prediction from environmental images using deep learning.

In Chapter 4, we investigated the prediction performance of deep learning modelling ap-
proaches in the context of SDM. We developed a Poisson regression model whose intensity
parameter was modelled by either a deep neural network (DNN), or a convolutional neural
network (CNN), predicting counts of species occurrences collected over sites of equal area. We
compared these models with the state of the art SDM method MAXENT for randomly chosen
species of the french Flora through metrics computed on counts over test sites. We also im-
plemented a multi-species shared network: The final hidden layer of the neural network model
is shared and used as input for the linear predictor of all response functions. Multi-response
versions of the deep and convolutional networks models were implemented with 50, 200 and
1000 species. It showed that multi-responses neural networks always outperformed single-
response models, in particular MAXENT, and were all the more efficient in predicting the test
50 species as they were trained to predict more species. It also shows that many species share
common signatures in their response functions, which are extracted robustly inside non-linear
environmental features through multi-response models. These shared environmental features
suggest that the model recovered patterns of species communities and potentially sampling

194



effort patterns structured in the environmental space. Also, CNN was always better than
DNN, showing that this model architecture has important generalization ability for predict-
ing species distribution, even in distant sites (test sites were at 10km away from train sites).
It suggests that either the CNN were able to capture the spatial information of the patch
of environmental variables given as input, or it captured transferable spatial patterns of the
environment.

Implementing, fitting and testing complex models such as deep neural networks require
time and computational resources because of the many possible model designs, optimiza-
tion techniques and problems, e.g. exploding or vanishing gradient. Regarding any machine
learning problem, it is often impossible to compare all promising implementations for a sin-
gle research team, which motivates collaborative evaluation to foster new species distribution
models approaches and engineer more efficient prediction algorithms.

In chapter 5, we gave an overview of the two first editions of GeoLifeCLEF international
evaluation campaign. It was initiated in 2018 in the context of the CLEF evaluation campaign.
It is designed to evaluate location-based species prediction algorithms, which are strongly re-
lated to SDM. We here summarize the results of the two editions. It was first shown that
Convolutional Neural Networks based on environmental variables image patches (3D-tensors
where the third dimension is the type of environmental variable) (Deneu et al. (2018), Negri
(2019), Si-Moussi (2019)) had the best results. They were better than other machine learning
methods used by the participants : Boosted Trees, Neural Networks, Random Forest, Nearest
Neighbors, clustering methods, which were learnt on various type of input (environmental
variables, spatial coordinates or species co-occurrences). Even though, the CNN implemen-
tations varied from existing architectures taken from image recognition tasks to sophisticated
architectures customized for the task (Deneu et al., 2019). Secondly, multi-classes predictions
including non-plant species (Negri (2019), 34 000 species in total) showed to largely improve
the predictive performance, suggesting that the model could capture more relevant environ-
mental patterns for plants through the added animals distribution. Finally, models accounting
for environmental variables improved performances on rare species compared to models based
only on spatial coordinates. Environmental CNN were better than other models for predicting
rare species, especially when compensating occurrences number imbalance through train loss
weighting (Si-Moussi, 2019).

The superiority of environmental CNN models was confirmed on three independent test
datasets (Chapter 4, Chapter 5 - GLC18 and Chapter 5 - GLC19) with four different imple-
mentations (Chapter 4, Deneu et al. (2018), Negri (2019), Si-Moussi (2019)). However, deep
CNN may also deeply fail to generalize. Indeed, some CNN implementations failed in test pre-
dictions (Moudhgalya et al. (2018), Taubert et al. (2018), Negri (2019), Krishna (2019)) often
because learning complex architectures without overfitting requires specific optimization and
regularization techniques (batch stochastic gradient descent, Dropout, batch-normalization
and the joint effect of multiple-response/multi-label classification modelling and architecture
bottleneck (Chapter 4)), time and computational resources for model tuning. Indeed, it shows
that the particular resistance of deep learning to the curse of dimensionality is relative and
conditioned on the alchemy of many techniques and practices whose combination is time con-
suming to find. But these effort were not done in vain, as recent models implementations
have shown consistently good performances across space and species. They could be used to
develop prediction services for spatial species recommendation on the French territory and
help on site-identification, automatically alarm on potential identification errors in the data,
provide biodiversity context information for educational purposes. However, more work on
the standardization of model regularization would be needed to propose a package or a clearer
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methodological guidelines.

10.2 Perspectives

10.2.1 Sampling biases

Guidelines to chose the proper bias correction method. The questions that naturally
arise from our work is: Now, how to concretely reduce at maximum sampling bias when faced
with the estimation of some species distribution and a dataset of opportunistic occurrences
from multiple species?

What we have come to is that the bias induced by the TGOB method is unknown in the
reality without information on the TG species real abundances. However, if the modeler have
such information for some species, he must constitute the TG so that the sum of their abun-
dance is approximately constant over all environmental gradients. Then, the TGOB method
may be the best alternative, because it avoids the increased estimation variance problem due
to joint model of the sampling effort and species intensities.

The method proposed in Chapter 3 should be most suited when we have many species
with a large number of occurrences, which together cover most of the study domain. Those
species occurrences are expected to contribute together to a good sampling effort estimation
everywhere in the spatial domain, which reduces in turn the estimation variance on scarcer
species models. We note that the modeller may compare several grid sizes by using standard
cross validation and appropriate error metric for density estimators, e.g., the averaged negative
log-likelihood (proportional in expectation to the KL-Divergence from the density) or the
density cross-validation criterion as introduced in Tsybakov (2009).

The modeler may also follow the approach of Warton et al. (2013) if he is confident about a
sampling effort model and has enough occurrences of the focal species. We advise to check the
first principal angle between the family of environmental variables vector along a large set of
uniformly drawned spatial positions in the domain, and the family of sampling effort variables
evaluated at the same position. This angle should be maximised to minimize the confusion
between sampling effort and species response. This method may be directly compared with
the previous one through the above mentioned cross-validation metrics restricted to the focal
species occurrences.

In some cases, the modeler may convert at least a part of its opportunistic occurrences
from multiple species into site-occupancy data. Indeed, if the focal species has been observed
at least once on a site, all other visits of the site, proven by other species occurrences, may
be used as a non-detection data. This method was already proposed in Kery et al. (2010).
It pulls more information from the data when the detection and reporting probabilities of
observers for the species are not too small. This method would benefit to be applied only to
observers that were indeed looking for the focal species, and not indifferent to it, which yields
a similar approach than generating absences based on observer reporting behavior information
(see Bradter et al. (2018)), but morever account for imperfect detection.

In other cases, we advocate that the methods mentioned above have high risks of biases or
errors, and thus the modeler should rather consider integrating complementary standardized
data.

Resolving biases by integrating different data types and orientating data collec-
tion. Poisson process model enable to compute a joint likelihood of e.g. presence-only,
presence-absence and site-occupancy data (Dorazio (2014), Fithian et al. (2015), Koshkina
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et al. (2017)) with a shared model component for the species intensity. The more standard-
ized data helps resolve identifiability issues in the less standardized data. Models and methods
integrating several types of data have recently become more popular because has many small
projects have begin to share their data collected with different sampling protocols (Miller et al.,
2019). However, data integration may not be sufficient because the standardized data must
be in the right place and concern the right species to be usefull to the model. Many large scale
naturalist community platforms have all the ingredients to organize an orientated scheme of
somehow standardized data collection. Indeed, inside the large community of Pl@ntNet users,
there is a restricted core of very active contributors that would be motivated towards producing
greater quality data contribution. Stohlgren and Schnase (2006) already proposed a concep-
tual iterative sampling design for continuously monitoring invasive species with a constraint
of sampling a small portion of the territory. Starting from a likely biased presence-only model
of the species distribution fitted on opportunistic occurrences, they propose to determine from
this model some areas to sample presence-absence data determined from the presence-only
model. Then they propose to fit a more accurate presence-absence model on the newly col-
lected data. It would help next data collection phase, and so on. Today we could automatize
and transpose this design in a model based continuously updated sampling design. We could
build a statistically sound framework for priorizing new standardized data collection areas.
Indeed, using models integrating opportunistic occurrences and standardized data and model
based optimal sampling theory (Jacquez and Greif, 1985), we may determine a priorization
of sites to collect the new data that optimally improve the estimability of model parameters.
Then, proposition of most useful standardized reports could be proposed to experienced and
active Pl@ntNet users around their area. We may alternatively envision an active learning
scheme, were a model based short list of species representative of the site is proposed to the
observer, which confirm of infirm their presence. This kind of automatic active learning system
based on distribution models and a network of volunteer contributors is actually not new and
was already implemented in the bird watching community (Kelling et al., 2012). It may now
be the time for plants to be brought to light too, which they sorely need.

Improving joint estimation of sampling effort and species intensities. A fundamen-
tal problem of the joint estimation of Chapter 3 is that, as we are trying to separate two
density signals from one. We separate the sampling effort and the species intensity from the
occurrence intensity of each species, with the additional difficulty that occurrence intensity
translates in a finite number of points in the data. Even with an infinite number of points,
many equivalent mathematical solutions are possible. As we add some assumptions about the
signal, the model becomes identifiable, but if the models of species responses or sampling effort
is wrongly specified, it may lead to important biases. More precisely, the estimates asymp-
totically minimizes a weighted sum of the divergences on each species occurrence densities
DKL(λi(x(.))s(.)||λiθi(x(.))sγ(.)). A crucial problem is that our estimates of sampling effort
sγ̂ and species intensities λi

θ̂i
may not converge to the best approximation of the truth, i.e.

the λis and s, because either the model of λiθi or sγ is not suited. Then, it may exist couples
(sb, λ

i
b) that are very biased compared to their respective truths, but whose product is much

closer to the occurrences density λi(x(.))s(.).
We have observed such behavior in simulations when the sampling effort varied continu-

ously inside sampling cells and systematically along an environmental gradient. For example,
in Chapter 3, all species had a very high categorical effect for the urban land cover (the inten-
sity was multiplied by a factor three at least compared to all other categories), even for some
species that are almost absent from cities and not cultivated. The most likely explanation
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is that the true sampling effort intensity in cities has not been captured by urban sampling
cells, but instead by the urban categorical effect of all species, because the spatial variation
of occurrences concentration was better explained by a change of land cover than a change of
sampling cells. The challenge is then to induce in our model a realistic constraint that prevent
such undesirable effect. We here propose some ideas to resolve this estimability issue.

A first idea comes from the fact that the sum of all species abundances (per unit of space)
is upper bounded. The idea is to penalize locally the sum of all species abundances, i.e. adding
a penalization term ζ

∫
D

∑
i λ̃

i
θi

(z)dz in the negative log-likelihood, where λ̃iθi := λiθi/pi is a
re-weighting of the species fitted intensity where pi is the species global detection and report
probability (averaged over seasons). In fact, the fitted species intensity is only approximately
proportional to the species abundance, so the sum of intensities does not vary in space like
the sum of abundances. This sum of intensity will be much more affected by the variation in
intensity of a very remarkable species than by a discrete species, even if the latter is globally
more abundant. Thus, penalizing the sum of intensities would not be equivalent to penalizing
the sum of real abundances and could induce biases. On the other hand, if the intensity
of each species is divided by the probability of detection and reporting of the species in the
sum, this sum becomes proportional to the sum of species abundances. Then, our penalty
should avoid the model from transferring the sampling intensity into all species locally. This is
likely to limit the transfer of sampling effort intensity inside every species response. To avoid
other biases, we should include a large set of species representative of the local flora. A way
to estimate the species probabilities of detection and reporting is proposed in the following
paragraphs.

Another possible realistic constraint would use the knowledge of the generalism of some
species over certain environmental gradient to help the model converge to the good estimation.
If any species is known to be widely distributed over a certain environmental gradient, or
indifferent to the categories of a categorical variable, the corresponding parameters must be
"locked" to 0 in the model (e.g. by giving a large penalty hyperparameter to the parameter,
or removing the effect from the model). This way, the locked species occurrence density
variation will greatly help the model to estimate the sampling effort variation along variation
of the locked environmental gradient.

Other improvements of the methods should ideally include deep learning dimensionality
reduction techniques of the species intensities environmental features. Indeed, their are nu-
merous likely useful environmental features and they induce both estimation variance and
decrease estimability of all species responses and the sampling effort. In Chapter 4, we have
used deep convolutional NN to extract a small number of environmental features summarizing
the most important information of the input for species responses prediction. Such high level
environmental features could be used as parsimonious input variables of the species responses
in the method of Chapter 3. This dimensionality reduction through model architecture bot-
tleneck design might also be directly tested to separate sampling effort and species responses
in a deep NN model. E.g. we could dedicate a neuron in the last layer to log-sampling effort,
by forcing an equal and constant associated parameter values in the linear predictors of all
species.

Accounting for temporal heterogeneity in species detection due to phenology.
Plant species don’t flower at the same periods of the year, some even pass most of the winter
with underground organs and are thus undetectable during this period. It has been shown
that observers detection and reporting probabilities are clearly affected by the period of the
year for all plants (Burrows, 2004) and by plants flowers and size and other morphological
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traits that depends on the species phenology (Kéry and Gregg, 2003). Being able to estimate
species detection and reporting probabilities for each period of the year has already been done
with opportunistic occurrences of butterfly (Kery et al., 2010) and has two main interests:
(i) To be able to compare estimated species intensities to each others, which may be used to
get estimation of all species absolute abundance based on one species absolute abundance,
and further (ii) to apply any method based on global plant species abundance, or on the
species richness, e.g. the regularization technique proposed in the last paragraph. We can
moreover use the knowledge that plants are static and most have an at least annual cycle,
under temperate climate. Then, if an individual has been observed at some time in the year
it is very likely that he has been here all along the year. Then, we may use an occurrence as a
proof of presence and generate non-detection data for all the year with all other visits of the
site that didn’t led to an occurrence of this species, but of another. Then, we may model and
fit the probability of detection and reporting, in order to estimate its varying values across
seasons, based on a conditional likelihood on the species presence. We emphasize that this
data is more informative than site-occupancy data because we have no uncertainty about the
presence of the species on the site and may directly estimate our probability. Still, these data
may be integrated in a model combining it with site-occupancy data. The main problem here
is that we don’t know the abundance of the species when it is present, which should affect the
detection ability of observers. The proposed idea could then be extended to account for this,
e.g. following the lines of N-mixture models Royle (2004b) which account for this abundance
effect on detection probability in the context of site-occupancy models. The link of temporal
heterogeneity in detection and plants phenology could also be pushed further to help detect
spatial variation in species flowering through spatio-temporal variations in their detectability.

Accounting for mis-identification. In presence-only data, mis-identification may glob-
ally induce smoother species responses because the real species occurrences are diluted by a
contamination of other species that doesn’t have the same distribution. When confusions are
approximately symmetrical among a group of species, their estimated intensities will become
more similar. However, to my knowledge, works accounting for mis-identification in SDM are
very rare (but see Guilbault et al. (2019)). In the case of Pl@ntNet, we noticed that species
that have the most illustrations in the identification engine tend to get in general higher con-
fidence scores compared to species that have scarcer illustrations. Then, a rare species that
looks similar to a well illustrated species will be often missed, and we will lack geolocated
data to estimate its distribution. SDM accounting for mis-identification may thus be espe-
cially useful to obtain more accurate distributions estimations of rare species. The Pl@ntNet
system generates observations with high identification certainty, which could be used for es-
timating a matrix of confusion probabilities between many species. Also an online platform,
called ThePlantGame20 is specifically dedicated to resolve uncertain automatic identifications
by attributing identification task to a group human identifiers automatically selected among
many volunteers for their estimated capacity to discriminate the good classification among
the set of likely species. The system establish final identification through a majority vote.
The system actively learns to better qualify the identifiers capacities along time based on
their answers Servajean et al. (2017). However, it is not easy to get true out-of-sample data
informing about the algorithm species true confusions because most of the valid identification
data is soon used for next round training of the identification engine. A practice to avoid it
could be to build an extensive validation dataset with an explicit license restricting its spe-
cific use without permissions, to prevent this data to be used in future algorithms training
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data. Otherwise, we could use the whole distributions of output probability on species from
the algorithm output as a proxy to likely confusions and use it for an appropriate weighting
of SDM likelihood. As an illustration, the contribution to the location based classification
log-likelihood of an occurrence collected at z that has probability 0.8 to be species A and 0.2
to be species B would be the term 0.8log(p(a|z)) + 0.2log(p(b|z)).

10.2.2 Point processes ecological interpretations, related assumptions and limits

In this section, We exhibit a simple probabilistic model of plant seedlings and survival to
understand under which assumptions the Poisson process intensity may be directly linked to
the fundamental niche of a species. Then, we discuss the limitations of Poisson processes
when points are interacting in the context of dispersal or biotic interactions, and we point
out examples of other point processes to account for such phenomena. Consider that N seeds
are distributed uniformly and independently in a geographical area D. Each seed belongs
to the same species and we assume that they have the same genotype, and thus the same
environmental requirements or fundamental niche. The area has a heterogeneous environment,
and is not equally suited for the seeds to grow and produce a mature individual. We define
by p(z) the probability that a seed produces a mature individual if it is at location z ∈ D.
When the number of seeds N tends to infinity, the set of mature individuals are distributed
according to an in-homogeneous Poisson process of intensity function z → Np(z)/|D|. The
process intensity is thus proportional to the survival probability p. If each mature individual
has the same distribution of probability for its number of children, independently of the
environment, then the population growth rate, or absolute fitness, is also proportional to p.
In this case, recalling that the fundamental niche was defined as the environmental conditions
where the population growth rate is strictly superior to one, its projection in D is inside the
region where p is superior to an unknown threshold. In reality, the number of children is likely
to depend on the suitability of the environment for reproduction. Also, the uniform seeds rain
assumption is obviously wrong in nature, as it primarily depends on the distribution of parent
individuals. Thus, unfortunately for the real life, the intensity may not be simply related
to the fundamental niche. Poisson process models also encounter limits by their inability to
deal with points interactions. Starting back from our conceptual model. The distribution
of seeds from the parents can’t always be exactly modelled by an in-homogeneous Poisson
process. For example, a problematic deviation from Poisson processes is that seeds will be
naturally clustered in space. Indeed, as long as parents will disperse seeds in areas that are not
completely overlapping, the children points depend on their parent position. Still, we note that
this phenomenon may however be modelled with a process built on Poisson processes called
the Neymann-Scott process, for which approximate inference methods have been proposed and
applied to study the distribution of tropical trees (Waagepetersen (2007), Shen et al. (2009)).
Another limitation of the described model is that it doesn’t integrate the interactions of the
individual with other species that plays at fine spatial grain. These interactions (facilitation,
competition, predation) with a set of locally growing species multiplies by a positive factor (<1
if unfavorable, >1 otherwise) the probability of survival of the focal species. Simultaneously,
the focal species participates to modify the survival probability of all other species growing
locally. Thus biotic interactions introduce another level of dependency which is not, this
time, between the points of a given species process, but between points of distinct species. For
example, Illian et al. (2009) modelled the influence of trees locations over reseeders locations in
a small plot plant community with species diversity. More precisely, they explicitly modelled
the effect of individuals locations from 19 resprouters species over the spatial intensity of
individuals from 5 reseeders species, using Poisson process conditional likelihood. Another
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kind of point process accounting for interaction between points is the Cox process: It as a
point process whose intensity function is the exponential of a gaussian process. A multivariate
Cox process has recently been used to jointly model spatial point patterns of multiple species
distributions (Waagepetersen et al., 2016) which may be due to positive biotic interaction.
However modelling explicitly pairwise species spatial interaction is much more challenging
with this kind of model, and has never been done to my knowledge. Recently, Schnoerr et al.
(2016) showed the spatio-temporal cox process may be used as a mean to estimate efficiently
parameters of stochastic reaction-diffusion processes. This might be used in the future for the
inference of a more mechanistic process of species dispersal from occurrence data.

Thus, the intensity estimated by a Poisson process model should not be rigorously inter-
preted to be proportional to the probability of survival alone, but as the product of colonization
intensity, survival probability, locally reweighted by a global biotic interaction factor due to
the biotic context. This intensity is also consistant with the estimate of the Resource Selection
Function in the context of animal ecology (Aarts et al. (2012), McDonald et al. (2013)).

We can conclude that because inhomogeneous Poisson point processes have a clear proba-
bilistic basis, they enable a clearer interpretation of the intensity that is estimated even though
this framework is, alike other presence-only SDM methods, limiting for sophisticated ecological
models because it doesn’t account properly for reproduction, colonization and species inter-
actions processes. Putting apart the difficulty of inference and implementations for sophisti-
cated point processes, it must be highlighted that important care should be taken regarding
the estimability of parameters in models including several complex ecological processes. Non-
identifiability of the model, or confusion of effects may appear in a similar way to what we
have shown for disentangling species abundance and observation effort.

10.2.3 Studying transferability of complex species distribution models

Transferability of habitat features learnt by deep NN SDM. As we have seen in
section 5.3.2-3, the actual frontier between Species Distribution (or habitat suitability) and
Ecological Niche Models (ENM) is blurred and porous. They use fundamentally similar statis-
tical tools, while their essential differences consists in different degree of input prior knowledge
and strength of about assumptions about species ecology (Peterson and Soberón, 2012). Eco-
logical Niche Models clearly aim at transferability of predictions in space (Randin et al., 2006),
time and under global changes of the climate, land use or cover. Complex statistical models
such as machine learning SDM approaches are often avoided because of their propensity to
fit contingent or too indirect explanatory variables effects on the species response with poor
generalization power. Indeed, often the variables selection for model input is done without
prior knowledge of real ecological requirements of the species.

However, we would point out that precisely incorporating variables whose effect on the
species is not directly known and using complex automatic learning methods, can sometimes,
on the contrary, reveal new habitat features that are transferable and important for the species
ecology. Also, a known effect of some habitat features may not be properly taken into account
inside a hand-made species response function model. This may be detected by the ability of
a model to give good predictions when evaluated in distant areas.

For instance, a complementary analysis of the GeoLifeCLEF 2019 was carried out to vi-
sualize the effect of the distance to training occurrences on out-of-sample predictive accuracy
for the evaluated algorithms. It is displayed in Figure 6. The two best methods are based on
deep convolutional NN (runs 27007 and 27086), and we see that, even if they seem to overfit
around the training data (because their test performance is relatively small at short distance),
the performance increases until around 3-4 kilometers, while simpler models like Maxent (run
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Figure 6: Smoothed TOP30 test accuracy versus geographical distance (in meters) to plants
training occurrences for several runs of GeoLifeCLEF 2019. 27007 is the winner environmental
CNN; 27086 is another environmental CNN implementation ranked 2nd on the task; 26997
is XGBoost, a method related to BRT; 27069 is a deep NN based on environmental features;
27124 is Maxent; 27102 is a Random Forest with only spatial coordinates as input variables;
26821 is a constant prediction based on whole species abundances in the training set.

27124) have their maximum predictive power at short distances and it decreases further. It
suggests that convolutional NN captured some more spatially transferable habitat features
than simpler models.

Learning deep NN leads to the construction of activation functions, which can be seen
as synthetic variables of the information contained in the images of environmental variables.
Indeed, these activation functions, later called habitat features, summarize all the information
of the explanatory variables useful to predict the composition of species of a place. They
can be thus interpreted as attributes for qualifying the ecological niches of each species. In
this sense, machine learning may also be used as a tool in the process of discovering new
transferable features for improving ENM.

Still, the knowledge discovery process is not straightforward, it would require to (i) empiri-
cally determine models having a high transferability potential with an appropriate evaluation,
(ii) disentange the features providing transferable power from those that don’t, and (iii) char-
acterize in an human communicable way new transferable features, that also contributes to
interpret them ecologically to enrich ENM.

Identifying transferable habitat features. This could be done by statistically analysing
the link between the activations of high-level environmental features with the out-of-sample
model performance on test data, typically taken at distant places.

Interpretability of transferable habitat features and species niches. Interpretation
of deep SDM can be decomposed in two aspects: (i) understanding what habitat features
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mean, (ii) and understanding which habitat features describe which species.
Firstly, it is important to understand the ecological meaning of transferable habitat fea-

tures, both with respect to variables and species, in order to be able to interpret the model
as a whole. Methods for interpreting what patterns are used by convolutional NN models
features and how each neurons of a model correlate with external interpretable concepts have
seen important advances with medical applications (see for example Selvaraju et al. (2017)
and Graziani et al. (2018)) in last years. For convolutional NN based on environmental image
patches, we could empirically characterize the relationships between habitat features activation
and some expert defined concepts of the images: mean values, variance, textures, geometric
patterns, and their logical combinations. The effect of modifications of the input data with
various transformations could also be studied.

Secondly, a complementary analysis is to characterize the distribution of species in the space
of neurons values, i.e. to understand which environmental concept is useful to describe which
species niche and conversely to what type of species may correspond a neuron activation.
For instance, Chapter 4 showed that 1000 species responses could be well predicted with
200 neurons (habitat features), which suggests some mutualization of the neurons activation
between the species. Some examples of questions emerging from this statement would be:
Does species with atypical niches have specific neurons? Does species with typical restricted
niche share neurons with others species? Does generalist species mobilize more neurons? On
the theory side, is there some parsimony rule in the way deep NN models match neurons and
output?

10.2.4 Improving SDM predictions by accounting for species interactions

Most SDM models used in the works introduced here predict species responses conditionally
to the environment. They are not able to use the information of a given species presence to
better predict other species. However, this information may be very relevant as suggested by
the Eltonian conception of the species niche Elton (1927). Even the description of the envi-
ronment itself is partial or erroneous, and other present species may inform about unobserved
environmental factors.

The role of biotic interactions in determining the species distribution lacks documenta-
tion and has been identified as a limitation for reliable prediction (Davis et al., 1998). Even
though, there is evidence that using variables of interacting species presence in SDM may
improve their predictions (Heikkinen et al., 2007). We have introduced and evaluated a class
of method that implicitly integrate potential species interactions through a joint modelling of
multiple species responses based on the environment. This type of model predict an expected
species composition based on the environment p(y1, ..., yN |x). It uses a shared neural network
between all predicted species until the last hidden layer (Chapter 4), and this type of model
was since evaluated in several studies (Deneu et al. (2018), Negri (2019), Deneu et al. (2019),
Si-Moussi (2019)). Because the number of neurons is restricted compared to the number of
species (architecture bottleneck), it allows to extract environmental features that are linearly
combined to activate groups of species. Thus, we expect this method to extract environmental
patterns of species communities. This small number of features learnt to predict many species
have a fundamentally similar role as the archetypes species in the response functions mixture
model of Dunstan et al. (2011). However, this type of model can’t predict species responses
conditionally to the presences and absences of other species in the surrounding, e.g. p(y1|y2, x).
Indeed, we would like to condition the focal species likelihood on other species because it pro-
vides extra information on unobserved local environment and potential biotic interactions. It
has been enabled by the joint SDM framework (Ovaskainen et al. (2010), Pollock et al. (2014))
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where multiple species responses are modelled through multivariate generalized linear mod-
els including latent variables. In jSDM, the species responses are conditionally independent
given the latent variables z, i.e. p(y1, y2|x, z) = p(y1|x, z)p(y2|x, z). Then, equation 7 shows
that, contrarily to the first approach, a species distribution is in general not independent of
another species conditionally on the environment because a dependence is introduced through
the unobserved variable.

p(y1, y2|x) =

∫
p(y1, y2|x, z)p(z)dz =

∫
p(y1|x, z)p(y2|x, z)dz 6= p(y1|x)p(y2|x) (7)

We mention that a method for jointly learning multiple species responses to the environ-
ment, through a neural network, and latent variables effects, as previously, has been proposed
by Chen et al. (2016).

However, it is generally hard to successfully optimize generalized linear models with a high
number of latent variables. Thus, this framework is limiting to account for complex effects
of the many environmental variables and other species on a focal species. Other approaches
directly infer expected response of the focal species conditionnally on the environment and
other species observed responses, i.e. p(y1|y2, x). For example, a neural network combining
features learnt from convolutional layers applied to environmental patches and other features
learnt from species co-occurrences has been proposed and fitted by Deneu et al. (2019). This
model was learnt on the GeoLifeCLEF 2018 dataset and performed better than the best run
of this task on the test data.
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1 Text A: Poisson process induced on the environmental do-1

main and factorization of its intensity.2

In this part we show how the Poisson process modeling the distribution of observed points in the3

geographic space, explained in section 2.3 of the manuscript, induce a Poisson point process into4

the environmental space Im(x) whose intensity function, namely the expected points count per unit5

of space for a given environment, factorizes to the product of the species intensity function λ and6

the observation intensity named s̄, both defined over Im(x). We justify the interest of looking at7

bias in the environmental space. Besides, we justify several important hypothesis made in section8

2, such as the almost everywhere continuity of x over D, the almost everywhere continuity of λ9

over R and the assumption that it is bounded on any bounded subset of R.10

Poisson process induced in the environmental domain. We show hereafter that Zr follows a11

general Poisson process [Chiu et al., 2013, Haenggi, 2013] of intensity measure Λ : L (R)→12

R+,W → ∫
x−1(W ) sλ ◦ xdµ , i.e. (i) for any W ∈ L (R), |Zr ∪ x−1(W )| ∼ P(Λ(W )), and (ii)13

∀W1,W2 ∈L (R) such that W1∩W2 = /0, |Zr∪x−1(W1)| and |Zr∪x−1(W2)| are independent random14

variables.15

First, (i) is straightforward. Let W ∈L (R), then by definition |Zr∪x−1(W )| ∼P(
∫

x−1(W ) sλ ◦16

xdµ) because Zr follows a Poisson process over D of intensity measure sλ ◦ x, which is indeed a17

measure over L (R) because it is positive by definition, and it is finite because λ is bounded on18

any bounded subset of R and s ∈ [0,1] by definition.19

Secondly, (ii) is also straightforward. Let W1,W2 ∈L (R) such that W1∩W2 = /0, then x−1(W1)∩20

x−1(W2) = /0 (no spatial point has two different values of x), then ∀n1,n2 ∈N2, p(|Zr∪x−1(W1)|=21

n1, |Zr ∪ x−1(W2)| = n2) = p(|Zr ∪ x−1(W1)| = n1)p(|Zr ∪ x−1(W2)| = n2) because Zr follows a22

Poisson process over D.23

Remark: The Poisson process in the environmental space is equivalent to the one in D if and24

only x achieves a bijection, or a one-to-one correspondance, between D and the environmental25

space, which is not the case here as R is only one dimensional.26

Intensity in the environmental domain. We now show that the intensity measure Λ can also be27

written, for any W ∈L (R),Λ(W ) =
∫

W λ s̄dµx where λ s̄ is the intensity function of the induced28

Poisson process over the environmental space R relatively to the measure µx (which is null outside29

of Im(x)) and s̄ is defined by:30

∀w ∈ R, s̄(w) =





lim
δ→0

∫
x−1([w− δ

2 ,w+ δ
2 ])

sdµ

µx([w− δ
2 ,w+

δ
2 ]))

if w ∈ Im(x)

0 otherwise, by convention.
(1)
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Firstly, we show the case where w∈R\Im(x). We have that Λ(R) = Λ(Im(x)). This is because31

µ(x−1(R\Im(x))) = µ({z ∈ D,x(z) 6∈ Im(x)}) = µ({z ∈ D,x not continuous at z}) = 0 because x32

is continuous almost everywhere on D. It implies that any Lebesgue integral computed relatively33

to µ (Lebesgue measure on R2) over x−1(R\Im(x)) also equals 0. Thus we could define any value34

for s̄ outside of Im(x), we set it to 0 by convention (which means no observation intensity outside35

the geographic domain under study).36

It remains to show that the writing of s̄ is legitimate on Im(x). Im(x), as any subset of R, is a37

union of intervals and singletons. However, the singletons of Im(x) have an important particularity,38

they are all atoms of µx. More precisely, any singleton w in the connected components of Im(x) is39

necessarily an atom for the measure µx, i.e. µx(w)> 0. Indeed, there exists an open subset of the40

geographic domain O⊂ D where x is continuous and reaches the value w somewhere in O. Then,41

x(O) is an element of an interval of Im(x) that contains w, but as w is not included in any continuous42

interval of Im(x), this interval is necessarily the singleton {w}, which implies that ∀z∈ 0,x(z) = w.43

Consequently, µx(w) = µ(x−1(w))≥ µ(O)> 0 because O is an open subset of R2 and by definition44

of the Lebesgue measure on R2. We have shown that if w ∈ Im(x) is a singleton of Im(x), it is an45

atom for µx. We can then write Λ(w) =
∫

x−1(w) sλ ◦ xµ = λ (w)
∫

x−1(w) sµ = λ (w)
∫

x−1(w) sdµ
µx(w)

µx(w)46

= λ (w)

[
lim
δ→0

∫
x−1([w− δ

2 ,w+
δ
2 ])

sdµ

µx([w− δ
2 ,w+ δ

2 ]))

]
µx(w). Thus, the definition of s̄ in equation 1 holds for single-47

tons of Im(x).48

It remains to show that 1 also holds for any non-singleton interval W ⊂ Im(x). Let W ⊂ Im(x)49

be a non-singleton interval. We define the sequence (C j := {C1
j , ...,C

j
j}) j∈N∗ of finite partitions50

of [infW,supW [. We define it with ∀ j ≥ 1, i ≤ j, Ci
j = [infW +(i−1)(supW − infW )/ j, infW +51

i(supW−infW )/ j[. Then, we note I j(W ) :=
j

∑
i=1

∫
x−1(Ci

j)
sλ ◦xdµ where we can see that ∀ j, I j(W )=52

∫
x−1(W ) sλ ◦ xdµ . Besides,53

lim
j→∞

I j(W ) = lim
j→∞

j
∑

i=1
λ (infW + i(supW − infW )/ j)

∫
x−1(Ci

j)
sdµ (λcontinuous

almost everywhere)

= lim
j→∞

j
∑

i=1
λ (infW + i(supW − infW )/ j)

∫
x−1(Ci

j)
sdµ

µx(Ci
j)

µx(Ci
j) (x continuous on x−1(Ci

j)

⇒ µx(Ci
j)> 0)

=
∫

W λ s̄dµx

54

Where ∀w ∈W :

s̄(w) = lim
δ→0

∫
x−1([w− δ

2 ,w+
δ
2 ])

sdµ

µx([w− δ
2 ,w+ δ

2 ]))

Finally, we have shown that for ∀W ∈L (R),Λ(W ) =
∫

W λ s̄dµx where λ s̄ is the intensity func-55

tion of the induced Poisson process over the environmental space. We see that this intensity, repre-56

senting the expected the number of points per unit of space corresponding to a given environment57
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value, factorizes into a species intensity and s̄ that we call observation intensity which depends on58

the sampling effort s and the environmental variable x, as defined in equation 1. Roughly speaking,59

s̄(w) is the average of the sampling effort function s over the limit subspace x−1(w)⊂ D.60

Why do we analyse bias in the environmental domain. If s is heterogeneous in space, we61

may encounter a bias when estimating θ0 from Zr, but there is no direct link between the spatial62

form of s and the bias. Indeed, our target f is a function of x values. So even if s is distributed63

heterogeneously in D, its variations could cancel in Im(x) and entail no difference on the density64

of species observed points on Im(x) compared to a uniform sampling on D. That is why it is more65

relevant to look at the distribution of s over Im(x).66

Environmental variable continuity assumption The assumption of almost everywhere conti-67

nuity of x over D, which means that µ({z ∈ D/x is discontinuous at z}) = 0, is necessary to en-68

sure that s̄ and sx are well defined on Im(x). Let’s recall that Im(x) = {w ∈ R/∃z ∈ D/x(z) =69

w and x is continuous at z} is the set of values for which there exist fibers of x in D at which x70

is continuous. The almost everywhere continuity allows discontinuities of x over negligible areas71

of D, basically points and lines, which is useful because it allows x is a rasterized environmental72

variable, a continuously varying variable, or even a mixture of both.73

Species intensity continuity assumption λ which is continuous almost everywhere over Im(x).74

This hypothesis is useful to allow this function to be not continuous on certain points. For instance,75

Maxent [Phillips and Dudík, 2008] uses threshold functions in its model. Besides, this hypothesis76

doesn’t seem limiting, because it is hard to imagine a species density function that would have77

discontinuity points over an infinite and non-countable number of points, even if such function can78

be theoretically built.79

2 Text B: Modeling the species niche with a gaussian density80

Here we describe our choice of gaussian density for f in simulation. Of course, we cannot cover81

the huge variety of niche models, so we chose to illustrate classic ecological types. We assume that82

the realized niche of a species corresponds to its fundamental niche, in the sense of Hutchinson83

[1957]. The expected species abundance only depends on the suitability of environment described84

by x. Even if the spatial variation of the abiotic environment is known to be a strong determinant of85

species distribution, it is not the only factor affecting it, there is also the spatial dispersal constraints86

and the interactions with other organisms (Pulliam [2000],Soberón [2007]). Species distribution87

along environmental gradients are often thought to be unimodal and tappered, and the more precise88

choice of modeling the species density as a gaussian function along environmental gradient is quite89
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comon in ecology (Franklin [2010]). The maximum of f is called the optimum, and the inverse of90

its variance, its specialization. Indeed, those quantities are of main interest for ecological applica-91

tions, and it is crucial to study their biases. Chosing the gaussian density for f can be interpreted92

as setting the constraints that the expected x of a given species individual is µ0 (
∫
R f (w)wdw = µ0,93

optimum constraint), the variance of x over many individuals is σ2
0 (
∫
R f (w)(w− µ0)

2dw = σ2
0 ,94

specialization constraint), and f is of maximum entropy.95

3 Text C: Fitting the UB model to data96

We here present the details of the UB fitting method, as described in Berman and Turner [1992]97

and Renner et al. [2015]. The UB method is fitted by maximizing the log-likelihood of the Poisson98

point process model of intensity λθ , defined over the domain D, with observed species occurrences99

Z = {z1, ...,zn}, with respect to the model parameters θ := (α,β1,β2):100

L (z1, ...,zn|θ) = log(p(z1, ...,zn|θ))

= log
(

e−
∫

D λθ◦xdµ
n
∏
i=1

λθ (x(zi))

)

=
n
∑

i=1
log(λθ (x(z)))−

∫
D λθ ◦ xdµ

101

In general, the integral term cannot be computed exactly. We rather use a numerical approxima-102

tion. The integral is replaced by a weighted sum of λθ computed at some background/quadrature103

points, Zq = {zq
1, ...,z

q
Q} where Q is the number of background points. In MAXENT literature,104

quadrature points are often called pseudo-absences. Berman and Turner [1992] re-express the105

likelihood by including z1, ...,zn among background points, and defining samples weights. It gives106

a classic Poisson regression likelihood:107

L (z1, ...,zn|θ) ≈
Q
∑
j=1

1z∈Z log(λθ (x(z
q
j)))−w jλθ (x(z

q
j))

=
Q
∑
j=1

w j

(
y j log(λθ (x(z

q
j)))−λθ (x(z

q
j))
)108

Where the y j correspond to the Poisson regression counts (called pseudo-counts because they109

can be non integers), and w j the samples weights. We define the background points Zq\Z and110

their weights so that ∑n
i=1 wiλθ (x(z

q
i )) ≈

∫
D λθ ◦ xdµ . A unbiased and popular manner to approx-111

imate the integral is the Monte Carlo method, which uses the average over uniformly sampled112

points on D to approximate the integral. However, we must prevent z1, ...,zn from biasing our ap-113

proximation, because they are not uniformly distributed in D. We give them a total weight in the114

sum that is negligible compared to the background points drawn uniformly :115

∀ j ∈ [|1,Q|], w j





= µ(D)
100n if zq

j ∈ Z

= 99µ(D)
100(Q−n) otherwise

116

With this setting, all weights sum to µ(D), while weights of species reported points alone117

represent only 1% of this value. This way, the approximation of
∫

D λθ ◦ xdµ with background118
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points is not affected by reported points. Now, the standard formulation of the Poisson parame-119

ter in the Poisson Generalized Linear Model is slighlty different from our model. It doesn’t use120

our parametrization of λθ with the gaussian distribution parameters θ = (K,µ,σ2), but another121

equivalent parametrization. We note this equivalent function λ ′γ , called the log-linear predictor,122

for any z like this : λθ (x(z)) = λ ′γ(x(z)) = exp
(
α +β1x(z)+β2x(z)2) where γ = (α,β1,β2) are123

the parameters of the log-linear predictor that are returned by standard Generalized Linear Model124

softwares. We can now easily recover our parameters of interest µ and σ by identification:125

∀z ∈ D, λθ (x(z)) = exp
(

K− (x(z)−µ)2

2σ2

)

= exp
(
α +β1x(z)+β2x(z)2) with





β1 = µ0
σ2

0

β2 = −1
2σ2

0

⇔





µ0 = β1
2β2

σ0 = 1√
−2β2

126

Where β2 is strictly negative. We can now compute the Generalized Linear Model (with R package127

glm) to estimate parameter values β1,β2 that maximize the likelihood, for given y js, x(zq
j)s and w js.128

129

4 Text D: Proof of asymptotic UB estimate (Equation 2)130

This part proves equation 2 (section 4.1 in manuscript) which expresses the expected UB estimate131

as the minimzer of a divergence to the observed species density f sx. We are interested in the132

asymptotical estimate of the environmental density of the UB method given that the observed133

points follow the Poisson process: IPP(sλ ◦x). Our target is the intensity function λ (x(.))) but we134

can only estimate it, at best, up to a constant factor as it is multiplied by s, of unknown global scale,135

in the generating process as already shown in Fithian and Hastie [2013] and Hastie and Fithian136

[2013]. We may still estimate the relative intensity function by maximizing the joint likelihood of137

points position, conditional to the number of points generated by the process. For a finite sample138

z1, ...,zn ∈ D of point realizations of the process, it is written:139

p(z1, ...,zn|n,θ) =
n

∏
i=1

λθ (x(zi))∫
D λθ ◦ xdµ

Thus, the maximum likelihood parameter estimate of the intensity function is140

θ̂UB = argmax
θ

P(z1, ...,zn|n,θ) = argmin
θ

− 1
n

log(P(z1, ...,zn|n,θ))

We recall that s̄, λ and λθ are continuous µx-almost everywhere. Then, the limit of the above141

averaged negative Log likelihood when n→+∞ can be rewritten as follows:142

143
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lim
n→∞
− 1

n

n

∑
i=1

log
(

λθ (x(zi))∫
D λθ ◦ xdµ

)

= E
(
− log

(
λθ (x(z1))∫
D λθ ◦ xdµ

))

= −
∫

D

sλ ◦ x∫
D sλ ◦ xdµ

log
(

λθ ◦ x∫
D λθ ◦ xdµ

)
dµ

= − lim
δ→0+

N(δ )

∑
k=0

∫

D
1z∈x−1([ak,ak+δ ])

s(z)λ (x(z))∫
D sλ ◦ xdµ

log
(

λθ (x(z))∫
D λθ ◦ xdµ

)
dz

= − lim
δ→0+

N(δ )

∑
k=0

λ (ak)∫
D sλ ◦ xdµ

log
(

λθ (ak)∫
D λθ ◦ xdµ

) ∫

x−1([ak,ak+δ ])

sdµ (x(z)→ ak and

λ ,λθ continuous

µx-almost everywhere)

= − lim
δ→0+

N(δ )

∑
k=0

[
λ (ak)∫

D sλ ◦ xdµ
log
(

λθ (ak)∫
D λθ ◦ xdµ

)

∫
x−1([ak,ak+δ ]) sdµ
µx([ak,ak +δ ])

µx([ak,ak +δ ])

]

= −
∫

R

s̄λ∫
D sλ ◦ xdµ

log
(

λθ∫
D λθ ◦ xdµ

)
dµx

α −
∫

R

sx f∫
R sx f dµx

log
(

λθ∫
D λθ ◦ xdµ

)
dµx (factor > 0 and

independent of θ)

= −
∫

R

sx f∫
R sx f dµx

log

(
λθ∫

Im(x)λθ dµx

)
dµx (same method)

=
∫

R

sx f∫
R sx f dµx

[
log
(

sx f∫
R sx f dµx

)
− log( fθ )

]
dµx (adding term

independent of θ)

= Dµx
KL( f sx|| fθ )

144

145

Where ak = in f (Im(x))+ kδ and N(δ ) is the quotient of the euclidean division of |Im(x)| by δ .146

This way, we have [a0,aN(δ )]⊂ Im(x)⊂ [a0,aN(δ )+δ ].147

148

5 Text E: µx weighted KL-Divergence149

The divergence is weighted by µx, the measure of the spatial area associated with any x value. It150

means that on parts of Im(x) where µx = 0 (i.e. environment not in D or of negligible area), fθ̂UB
is151

unconstrained, so it is allowed to take any shape, and it will depend on estimated parameters. As a152

consequence, the prediction of species intensity outside the enviromental range covered in D will153

be highly influenced by a misspecification of distribution model. This remark is also true for the154

following methods. The µx weighting will also lead approximation error compromises when fθ̂UB
155

7



cannot fit exactly to f ◦ sx. For example, if the parametrization of fθ doesn’t allow it to fit well to156

sx f over both subset W1,W2 ⊂ Im(x) with W1 ∩W2 = /0, |W1| = |W2|, and µx(W1) > µx(W2), then157

the estimate should fit better on W1 than on W2.158

6 Text F: A sample from the sampling effort proportional den-159

sity as background.160

In this part we demonstrate the optimality of the theoritical method consisting of using an large161

sample of background points directly drawn independantly from the sampling effort proportional162

density over D, which is the method ApproxFactorBiasOut introduced in Dudík et al. [2006].163

164

We now assume that we have a sample zs
1, ...,z

s
n0

from s/
∫

D s(z)dz, i.e. points distributed ac-165

cording to the proportional density of the sampling effort. We use these points as equally weighted166

background points in the Poisson process likelihood. We re-express the asymptotic estimator as-167

sociated with this procedure. Like previously, we write the limit of the averaged negative log-168

likelihood, with now both n and n0 tend to infinity:169

170

lim
n→∞
n0→∞

− 1
n

n
∑

i=1
log


 λθ (x(zi))

n0
∑

j=1

µ(D)
n0

λθ (x(zs
j))




= lim
n→∞
− 1

n ∑n
i=1 log

(
λθ (x(zi))∫

D
s∫

D sdµ λθ◦x dµ

)

= −∫D
sλ◦x∫

D s λ◦x dµ log
(

λθ◦x∫
D

s∫
D sdµ λθ◦x dµ

)
dµ

= −∫
R

sx f∫
R sx f dµx

log
(

λθ (w)∫
D

s∫
D sdµ λθ◦x dµ

)
dµx (previous method, factor independent of θ )

= −∫
R

sx f∫
R sx f dµx

log
(

λθ∫
R fθ s̄∫

D sdµ dµx

)
dµx (previous method)

=
∫
R

sx f∫
R sx f dµx

log
(

f sx
fθ sx

)
dµx (adding constant term and neg-entropy of f sx)

= Dµx
KL( f sx|| fθ sx)

171

E(θ̂AFBO) = Argmin
θ

Dµx
KL( f sx|| fθ sx)

Thus, fθ̂AFBO
will converge to f , except on parts where sxµx = 0 and the method gives an172

unbiased estimate of the species niche.173

7 Text G: Proof of asymptotic TGOB estimate (Equation 5)174

This part proves equation 5 (section 4.7 in manuscript) which expresses the expected TGOB esti-175

mate as the minimzer of a divergence from fθ a to f , which means it fits to f/a. For this part we176

assume, on top of previous conditions (Riemann integrability of λ and s̄), that a is Riemann inte-177
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grable on R. We recall that the ensemble of observed points of species from the Target-Group is178

noted Ztg. On the same principle than previously, we re-express the limit of the averaged negative179

log likelihood when the background points are drawn according to the TG species density:180

181

lim
n→∞
|Ztg|→∞

− 1
n

n
∑

i=1
log


 λθ (x(zi))

∑
z∈Ztg

µ(D)

|Ztg| λθ (x(z))




= lim
n→∞
− 1

n ∑n
i=1 log

(
λθ (x(zi))∫

D s a◦x λθ◦x dµ

)
(TG points drawn from density s a◦ x)

= −∫D s λ ◦ x log
(

λθ◦x∫
D s a◦x λθ◦x dµ

)
dµ (species points drawn from density s λ ◦ x)

α −∫R sx f∫
R sx f dµx

log
(

λθ∫
D s a◦x λθ◦x dµ

)
dµx (previous method, factor independent of θ )

= −∫R sx f∫
R sx f dµx

log
(

λθ∫
R s̄aλθ dµx

)
dµx (previous method)

= −∫R sx f∫
R sx f dµx

log( fθ sxa)dµx (adding term independent of θ )

= Dµx
KL ( f sx|| fθ sxa) (substrating entropy of λ s̄px)

182
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S1 Fig. Illustrations of µx, fθ0 and sx along x values. An example species density
with the standard normal distribution (red curve), the density derived from µx chosen

uniform over [−5, 5] for the simulation study (black curve), and the observation density sx of
type LIN (gold curve).
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S2 Fig. Illustrations of all simulation results for UB. Plotted true species density
(fθ0), observation density (sx), observed points density (fθ0sx) and UB estimate of species
density in the environmental space. Each situation of the simulation study is represented.
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S3 Fig. Illustrations of all simulation results for TGOB with FLAT TG species
density. Plotted true species density (fθ0), observation density (sx), flat Target Group

species density (a), ratio density of species over target group (fθ0/a) and TGOB estimate of
species density in the environmental space. Each situation of the simulation is represented.
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S4 Fig. Illustrations of all simulation results for TGOB with THICK TG species
density. Plotted true species density (fθ0), observation density (sx), thick Target Group

species density (a), ratio density of species over target group (fθ0/a) and TGOB estimate of
species density in the environmental space. Each situation of the simulation is represented.
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S5 Fig. Illustrations of all simulation results for TGOB with THIN TG species
density. Plotted true species density (λ0), observation density (sx), thin Target Group

species density (a), ratio density of species over target group (λ0/a) and TGOB estimate of
species density in the environmental space. Each situation of the simulation is represented.
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1 Appendix A: Expected estimators and Information matrix1

Expected estimators. From the negative log-likelihood of the model expressed in equation (3) of the2

article manuscript, we derive an expression of the asymptotic density and intercept estimators in the system3

of equations 1. It shows that the density estimators minimize a weighted sum of Kullback-Leibler divergences4

from the true to estimated occurrences densities. We note in the following ni := |Zi| and θi = (αi, βi).5

E((γ̂, β̂1, ..., β̂N )) = argmin
γ,β1,...,βN

∑N
i=1(

∫
D
sλidµ)DD

KL(sλi||sγλi(0,βi))

∀i ∈ [|1, N |], E(α̂i) = log(
∫
D
sλidµ/

∫
D
sE(γ̂) exp(E(β̂i)

Tx)dµ)

(1)

1



Proof:6

E(θ̂)

= lim
n1,...,nN→∞

argmin
θ
− log(p(Z1, ..., Zn|θ))

= argmin
θ

lim
n1,...,nN→∞

N∑
i=1

ni

( ∫
D
sγλ

i
θi
dµ

ni
−

∑ni
k=1 log(sγ(z

k
i )λ

i
θi

(zki ))

ni

)

= argmin
θ

N∑
i=1

lim
ni→∞

ni

( ∫
D
sγλ

i
θi
dµ

ni
−

∑ni
k=1 log(sγ(z

k
i )λ

i
θi

(zki ))

ni

)

= argmin
θ

N∑
i=1

lim
ni→∞

ni

( ∫
D
sγλ

i
θi
dµ

ni
−
∫
D
s(z)λi(z)∫
D
sλidµ

log(sγ(z)λiθi(z))µ(dz)

)
Large number law

and transfer theorem

= argmin
θ

N∑
i=1

(
∫
D
sλidµ)

( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

+
∫
D

sλi∫
D
sλidµ

log(sλi)dµ−
∫
D

sλi∫
D
sλidµ

log(sγλ
i
θi

)dµ

)
Large number law

+ independent term

= argmin
θ

N∑
i=1

(
∫
D
sλidµ)

( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

+
∫
D

sλi∫
D
sλidµ

log

(
sλi

sγλiθi

)
dµ

)

= argmin
θ

N∑
i=1

(
∫
D
sλidµ)

( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

− log

( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

)
+
∫
D

sλi∫
D
sλidµ

log

(
sλi

∫
D
sγλ

i
θi
dµ

sγλiθi

∫
D
sλidµ

)
dµ

)

= argmin
θ

N∑
i=1

(
∫
D
sλidµ)

(
nlogL(αi) +DD

KL(sλi||sγλiθi)
)

7

Where nlogL(αi) :=

∫
D
sγλ

i
θi
dµ∫

D
sλidµ

− log

(∫
D
sγλ

i
θi
dµ∫

D
sλidµ

)
= − log




( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

)1

1!
exp

(
−
∫
D
sγλ

i
θi
dµ∫

D
sλidµ

)

 is the8

negative log-likelihood of a Poisson regression with a single count of value one. The likelihood is maximized9

when the Poisson parameter
∫
D
sγλ

i
θi
dµ/

∫
D
sλidµ = 1, which then minimizes nlogL(αi) with nlogL(αi) = 0,10

and translates into αi = log(
∫
D
sλidµ/

∫
D
sγ exp(βTi x)dµ). In other words, we can chose αi to minimize11

nlogL(αi) whatever the values of γ, β1, ..., βN , s, λ1, ..., λN . This means that the minimization of the whole12

sum with respect to γ, β1, ..., βN is unaffected by the terms (
∫
D
sλidµ)nlogL(αi) which can be removed in the13

expression of E(γ̂, β̂1, ..., β̂N ), and brings us the first equation of system 1. The second equation of 1 is shown14

by remarking that, conversely, the term DD
KL(sλi||sγλiθi) is totally independent of αi. Indeed, when replacing15

αi by αi + δ we have :16

DD
KL(sλi||sγ exp(αi + δ + βTi x)) =

∫
D

sλi∫
D
sλidµ

log
(
sλi

∫
D
sγ exp(αi+δ+β

T
i x)dµ

sγ exp(αi+δ+βTi x)
∫
D
sλidµ

)
dµ

=
∫
D

sλi∫
D
sλidµ

log
(
eδsλi

∫
D
sγ exp(αi+β

T
i x)dµ

eδsγ exp(αi+βTi x)
∫
D
sλidµ

)
dµ

=
∫
D

sλi∫
D
sλidµ

log
(
sλi

∫
D
sγ exp(αi+β

T
i x)dµ

sγ exp(αi+βTi x)
∫
D
sλidµ

)
dµ

= DD
KL(sλi||sγ exp(αi + βTi x))

17

Finally, the computation of the expected estimators can be separated as follows: First, the densities18

parameters estimates γ, β1, ..., βN are given by resolving the first equation of the system 1, and then the19

intercept parameters estimates α1, ..., αN are given by resolving the others equations.20

2



Fisher Information matrix of the model. We write I(θ), the global Fisher information matrix of our21

model parameters, and show its particular structure. Note that the Fisher information matrix is also the Hes-22

sian, or curvature, matrix of the negative log-likelihood. Indeed, I(θ) gathers the second and cross derivatives23

of the negative log-likelihood written previously in equation (3) of section 2.2 - Inference of the article (see24

also Bickel and Doksum [2015], section 6.2.2 , p.386, for more details on the Fisher information matrix).25

26

Because of our model structure, I(θ) has many 0. We compute its non-null submatrices in the following.27

We consider here, for simplifying notations, that all species densities are functions of the same vector of envi-28

ronmental features called x, such that ∀z ∈ D,x(z) ∈ Rp.29

30

βi ∈ Rp is the vector of parameters that model species i density in the environmental space for any31

i ∈ [|1, N |]. Its Fisher information matrix for this parameter is derived from the second and cross derivatives32

of the negative log-likelihood, written in equation equation (3) of the article, with respect to the components33

of βi. That is:34

I(βi) =
∫
D
xxT sλiθidµ35

36

αi ∈ R is the intercept parameter of species i that is directly linked to the global abundance and detec-37

tion/reporting probability of the species. Its information equals the total expected occurrences count of species38

i:39

I(αi) =
∫
D
sλiθidµ = E(ni)40

41

γj ∈ R is the parameter of the sampling effort in cell j. The cross information between cell j and j′ is42

null when j 6= j′ cells form a partition of D and don’t intersect. Its information equals the total expected43

occurrences count of cell j:44

45

I(γj) =
N∑
i=1

∫
D
sλiθidµ

= eγj
N∑
i=1

∫
cj
λiθidµ

= E(nj)

(2)

The cross information of γj and βi is written:46
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I(γj , βi) =
∫
cj
xeγjλiθidµ47

48

The cross information of γj and αi equals the expected occurrences count of species i in cell j:49

I(γj , αi) =
∫
cj
eγjλiθidµ = E(nji )50

51

The cross information of βi and αi is written:52

I(βi, αi) =
∫
D
xsλiθidµ53

54

The remaining of the Information matrix is null. In particular we have:55

I(γ) =




I(γ2) 0 0

0
. . . 0

0 0 I(γQ)




56

Thus, we exhibit the structure of I(θ) as follows:57

58

I(θ) =




I(γ) I(γ, α1)T I(γ, β1)T . . . I(γ, αN )T I(γ, βN )T

I(γ, α1) I(α1) I(β1, α1)T 0 0 0

I(γ, β1) I(β1, α1) I(β1) 0 0 0

... 0 0
. . . 0 0

I(γ, αN ) 0 0 0 I(αN ) I(βN , αN )T

I(γ, βN ) 0 0 0 I(βN , αN ) I(βN )




(3)

2 Appendix B: Model identifiability and robustness59

Necessary and sufficient condition for structural identifiability. Our model is structurally identifiable60

(for all set of parameters) in the multi-species case if it is in the single species case. The single species case61

is a Poisson process whose log-linear intensity function may be noted z → θT v(z) where ∀z ∈ D, v(z) =62

(1, 1z∈c2 , ..., 1z∈cQ , x1(z), ..., xp(z)), containing the intercept, the indicator functions of the cells cj , and the63

environmental features vector. Then, according to the CNS identifiability condition shown for log-linear Poisson64

processes in Rathbun and Cressie [1994], the model is identifiable if and only if the matrix
∫
D
v(z)v(z)T dz is65

of full rank, i.e. of rank 1 + p+Q− 1.66

This condition means that there must exist no linear condition of the non constant functions of v that67
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is constant. This condition is fulfilled if there is no linear combination of the environmental features that68

is constant across all sampling cells. For a single environmental feature, it would mean that this feature69

must vary at least inside one sampling cell. In the multivariate case, a simply interpretable identifiability70

condition is hard to provide. Fulfilling the condition above is sufficient to insure unicity and convergence of71

the estimator for any dataset. However, on finite number of occurrences, being close to non-identifiability72

is often synonym of facing numerical approximation problems in the likelihood optimization, or getting high73

correlations between distinct parameters estimators. We need stronger conditions to insure a good estimability74

([Jacquez and Greif, 1985]) of the model parameters. We thus advise the user, after having fit the model, to75

check the condition number of the inverse observed Fisher Information Matrix. This matrix may be computed76

by replacing parameters of the Information matrix in equation 3 by their estimates. The closer the condition77

number is to 1, the fewest is the global covariance between pairs of distinct parameters estimators.78

Still, an option for the user, in the first place before fitting the model, is to compute numerically the79

condition number of the matrix
∫
D
v(z)v(z)T dz when designing the sampling mesh. Then, the user may chose80

among the possible sampling meshes one that has a condition number inferior to 106 (from our experience)81

while keeping in mind the other conditions provided in the article. This may directly eliminate some designs82

and is much faster than fitting the model and computing the condition number over for whole information83

matrix, even though the latter is a more accurate indice of estimability as it accounts for the data points84

distribution.85

Remarks on model robustness. Profile (2) and (3) of the simulation experiment illustrate a limit of the86

method robustness: The sampling model does not allow the estimate to converge exactly towards the true87

sampling model. Indeed, the latter varies sharply in the middle of the sampling cells defined for the model. So,88

our estimation is necessarily an imperfect approximation of the truth. More generally, the following property89

formalizes a sufficient condition of estimation bias due to a lack of model robustness:90

Property: If the model fulfils the structural identifiability conditions (see first paragraph of Appendix B)91

and there exists a non-constant function g ∈ (R+\{0})D such that s/g ∈ {sγ , γ ∈ RQ−1} and λig ∈ {λiθi , θi ∈92

Rpi+1}, then the expected density estimates sγ̂ , λ1θ̂1 , ..., λ
1
θ̂1

are biased with sγ̂ = s/g and ∀i ∈ [|1, N |], λi
θ̂1

=93

λig.94

Proof: If the model is identifiable, the parameter estimators is consistant whatever are s, λ1, ..., λN . Then,95
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there is only one set of solutions (sγ̂ , λ
1
θ̂1
, ..., λ1

θ̂1
) to equations of system 1. We can easily show that the96

(s/g, λ1g, ..., λNg), where by assumption each component belongs to the associated parametric function class97

of the model, is the solution because it cancels all the KL Divergences terms in the sum of first equation in 1,98

and thus minimizes it globally (Any KL Divergence is ≥ 0 by definition). Indeed, ∀i,DD
KL(sλi||(s/g)(λig)) =99

DD
KL(sλi||sλi) = 0, by definition of the KL divergence. As g is non-constant, s/g 6= s and ∀i, λig 6= λi. In100

conclusion, we have shown that the estimators converge asymptotically towards biased sampling effort and101

species intensities.102

103

In real applications, there is no function available in our parametric function classes that exactly fit the true104

occurrences densities, even with infinite numbers of occurrences. The key question is then: Will our estimation105

converge asymptotically towards the best approximation of the true density available in our function class?106

Not necessarily. Indeed, it may exist sets of couples (sγ̂ , λ
i
θ̂i

) such that asymptotically each product density107

sγ̂ , λ
i
θ̂i

best approximates the product density sλi, but neither sγ̂ is the best approximation of s nor λi
θ̂i

is the108

best approximation of λi in their respective model function class. This non-optimal approximation can appear109

when the model is incorrectly specified. It depends on an interplay of the true densities and their model. This110

is not a particular caveat of our method though, it is intrinsic to any method that would try to separate more111

than one density from one set of points. It is thus also the case for the single species approach (Warton et al.112

[2013]).113

3 Appendix C: Estimation variance analysis114

Our model is in the canonical exponential family, and thus the vector or parameter estimators θ̂ := (γ̂, α̂1, β̂1, ..., α̂N , β̂N )115

asymptotically follows a multivariate gaussian distribution (see Bickel and Doksum [2015], section 5.3.3, p.322-116

323). In the present case of one realization from a Poisson process, the variance-covariance matrix is simply117

the inverse of the Fisher Information matrix, introduced in equation 3 of Appendix A.118

Σ(θ̂) = I(θ)−1.119

120

Effect of occurrence rate. We use this formula and equation 3 in the R script Variance_Script.R (down-121

loadable from the article Github repository: https://github.com/ChrisBotella/SamplingEffort) to effi-122
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ciently compute the model parameters variance-covariance matrix for a given scenario: A spatial domain D,123

sampling effort s, species number N and intensities λ1, ...λN (defined from their densities and expected num-124

ber of occurrences n1, ..., nN ) and the model sampling cells. We compute the variance for the profile 2 of the125

complementary simulation setting (see Appendix F). We set the number of occurrences for species 1 to 100126

while varying the number of occurrences for the other species, conversely. Figure 1 shows, in the upper panel127

(resp. lower panel), how species 1 (resp. 2) parameters variance decreases when increasing the number of128

occurrence of species 1 (resp. 2) through the curve in blue (resp. curve in red). The upper panel (resp. lower129

panel) also shows through the curve in red (resp. in blue) that the variance of the focal species 1 (resp. 2)130

parameter decreases when increasing the occurrence rate of the other species 2 (resp. 1) while occurrence rate131

of the focal one is kept constant. Indeed, increasing the number of occurrence of any species enables the model132

to better estimate the sampling effort which makes easier the estimation of every other species parameters.133

Indeed, in equation 2, we see that the information gained on the sampling effort in cell j is the expectation of134

the total number of occurrences in this cell E(nj) of all species so that each species contributes proportionally135

to its number of occurrences in the cell to improve the estimation of γj . Still, note, as shown by Figure 2, the136

indirect variance reduction mechanism from one species to another is slower than increasing the occurrence137

rate of the focal species itself.138

139

Effect of removing the parameter. As proposed in the model design guidelines paragraph of section140

2.1 of the article, we can drastically reduce the estimation variance of all species parameters by excluding an141

environmental variable from the model of one species (say species i) while keeping its in the model training142

data. This is a special case of conditional estimation (see next paragraph) where we condition on βi = 0.143

It means that we assume a priori the species i to be indifferent to the variation of the environment variable144

across the study domain D. In this case, the model knows that the species intensity is constant along this145

environmental variables (all others kept constant) and can then use the variation of occurrences concentration146

along this gradient to better estimate the variation of sampling effort. We show this in the same theoretical147

context as last paragraph, which corresponds to the sampling effort profile 2 of the simulation experiment.148

We now compute the asymptotic parameters variance of species 1 (β1) given that we known the exact niche149

parameters of species 2 (β2) along the environmental variable x. This variance is simply obtained by removing150

the columns and lines of the information matrix I(θ) (see equation 3 in Appendix A) that are associated151
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with β2, obtaining I(θ−β2
), and numerically inverting I(θ−β2

) to get the new estimators variance-covariance152

matrix Σ(θ̂−β2
). In the upper panel of Figure 1 we represented the estimation variance on density parameters153

of species 1 extracted from Σ(θ̂−β2) with a growing occurrence rate for species 1 (purple curve) or species 2154

(green curve). We can see that (i) the variance is always lower or equal compared to the cases where β2 is155

estimated (green le red, purple le blue), (ii) it is especially lower for small sample size (for 100 occurrences,156

green is well below red, and purple is well below blue), (iii) it enhances the indirect variance reduction effect157

from increasing the occurrences rate on another species (green is well below red for all occurrences rates). To158

lighten the graph, we have not added to the lower panel the effect of removing parameters β1 on estimation of159

β2 but it works the same way.160

Variance reduction with conditional estimation, the general case. Last paragraph showed that the161

estimation variance was reduced, when setting the parameters βi of some species i to 0, on all other species162

parameters. We have shown it for a specific simulation scenario and it is only a particular case of conditional163

estimation, i.e. estimating some parameters when the values of others is given, which can be used more broadly164

with our method. We show here mathematically that (i) the variance reduction is not specifically due to the165

chosen simulation scenario but appears in any case, and (ii) it appears whatever are the parameters θi over166

which we condition. We first recall that when we have many occurrences for all species, we have that (see167

Bickel and Doksum [2015], section 5.3.3, p.322-323):168

lim
n1,...,nN→∞

L(θ̂) = N (θ,Σ(θ))

Here we re-order the parameter estimation vector θ̂ = (γ̂, θ̂1, ..., ˆθi−1, θ̂i+1, ..., θ̂N , θ̂i) and decompose its169

variance-covariance matrix as follows:170

Σ(θ) =




Σ−θi ΣTc

Σc Σθi


171

We also note θ̂−i := (γ̂, θ̂1, ..., ˆθi−1, θ̂i+1, ..., θ̂N ). The Gaussian conditionning theorem states that the con-172

ditional law θ̂−i|θ̂i is a multivariate gaussian distribution with variance covariance matrix Σ(θ−i) = Σ−θi −173

ΣTc Σ−1θi Σc. The individual variances of all parameter are the diagonal elements of the latter matrix. We can174

now easily show that they are all smaller than the original variances, i.e. the diagonal elements of Σ−θi , be-175

cause the diagonal elements in the matrix ΣTc Σ−1θi Σc are all strictly positive. Indeed, Σ−1θi is positive definite as176

the inverse of Σθi , which is positive definite as a variance-covariance matrix. Then, the jth diagonal element177
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of ΣTc Σ−1θi Σc is of the form aTj Σ−1θi aj > 0 (where aj is jth column of Σc) by definition of positive definite178

matrices. In summary, the variance reduction of the estimator conditionally to the parameters of species i is179

strict whatever the value of θi.180

Effect of the number of sampling cell. With the same setting, we evaluate the effect of the number181

of modelled sampling cells, evenly spaced along the longitude of the square domain. In Figure 2, we plot182

the asymptotic estimation variance on species parameters, computed numerically through the inversion of the183

information matrix, as a function of the number of cells. All estimators variance increase with the number184

of cells, but not all types of parameters at an equal speed. More precisely, we see that the variances on β1,1185

and β2,1, which both control the optimum of the species gaussian density along the environmental gradient186

x, explode very quickly, whereas the parameters controlling the niche breadth remains reasonable even for 20187

cells. Above 20 cells, the model shows a weak numerical identifiability, checked through the high condition188

number of the information matrix. When including too many cells, we decrease the ability of the model to189

separate the effect of the environmental variable, varying less within each cell, from the cell effect. However,190

the identifiability may not concern all parameters simultaneously: The species niche breadth parameters seem191

not very sensitive to the increased number of cells. However, the sampling effort approximation error increases192

as we decrease the number of cells, and this effect is not taken into account in the estimation variance.193

Thus, determining the best size of cells should be based on cross-validation using a density evaluation metric194

(Tsybakov [2009]). For a K-fold cross-validation, we recommend to build the folds so that each one contains195

approximately a proportion 1/K of the occurrences of every individual cell, because no sampling cell should196

be empty or scarce for training.197

4 Appendix D: Inference and implementation details198

For a given mesh across which a cellwise constant sampling effort is defined, we fit log-linear Poisson processes199

for multiple species with a shared term in their linear predictor, i.e. the log-sampling effort. We here introduce200

a maximum-likelihood fitting procedure. We use an approximation of the Poisson process likelihood by a201

Poisson regression likelihood using background points, as described in Berman and Turner [1992] and Warton202

et al. [2010], which we extend to the joint likelihood of a marked Poisson process.203

We consider the set of observed occurrences for any species i ∈ [1, N ] Zi = {(zi1, i, 1), ..., (zini , i, 1)}, i.e. a set204
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Figure 1: Asymptotic species densities parameters estimation variance as a function of the number of each
species occurrence for the simulation setting of profile 2 described in section 2.4 of the article manuscript. β1,1
and β1,2 (resp. β2,1 and β2,2) are respectively the first and second parameters modeling the gaussian density
of species 1 (resp. species 2) along the environmental gradient x.
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Figure 2: Asymptotic species densities parameters estimation variance as a function of the number modelled
sampling cells (regularly spaced along the longitude of the domain) in the simulation setting of profile 2
described in section 2.4 of the article manuscript. β1,1 and β1,2 (resp. β2,1 and β2,2) are respectively the first
and second parameters modeling the gaussian density of species 1 (resp. species 2) along the environmental
gradient x. Above 20 cells, we began to diagnose weak numerical identifiability (through the condition number
of I(θ)) of the model making the variance-covariance matrix unreliable.
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of points marked with the species label i and the state 1. We have to maximize the joint likelihood of Z1, ..., ZN205

with respect to all model parameters introduced in the previous section θ := (α1, ..., αN , β
1, ..., βN , γ1, ..., γC):206

p(Z1, ..., ZN |θ) =
∏N
i=1

[
(
∫
D
s(z)λi(z)dz)

ni

!ni
exp

(
−
∫
D
s(z)λi(z)dz

) ni∏
k=1

s(zik)λi(z
i
k)∫

D
s(z)λi(z)dz

]

⇔ p(Z1, ..., ZN |θ) ∝ ∏N
i=1

[
exp

(
−
∫
D
s(z)λi(z)dz

) ni∏
k=1

s(zik)λi(z
i
k)

]

⇔ log(p(Z1, ..., ZN |θ)) =
∑N
i=1

[
ni∑
k=1

log(s(zik)λi(z
i
k))−

∫
D
s(z)λi(z)dz

]
(4)

The likelihood is factorized over species as we assume that their processes are independent given the207

environment.208

The integral terms are often very costly to compute exactly when we deal with multiple high resolution209

raster of environmental variables. We rather use a numerical approximation. Each integral is replaced by210

a weighted sum of sλi computed at some quadrature points Zqi = {(zq1 , i, 0), ..., (zqQ, i, 0)} marked with their211

species label i and state 0 indicating it is a background point, associated with some weights wi1, ..., wiQ, selected212

such that
∫
D
s(z)λi(z)dz ≈

∑Q
k=1 wks(z

q
k)λi(z

q
k). Background points are also called quadrature points, or213

pseudo-absences in the Poisson process SDM literature (Warton et al. [2010]).214

Numerical quadrature strategy and background points. We chose to draw uniformly background215

points to achieve the approximation of the integral through the unbiased Monte Carlo estimator. More216

precisely, Berman and Turner [1992] re-expressed the likelihood by including the points of Zi among the217

quadrature points Zq, and defining adapted weights. We note w(z, i, e) the weight associated with the marked218

point (z, i, e).219

log(p(Z1, ..., ZN |θ)) ≈
N∑
i=1

∑
(z,i,e)∈Zi∪Zqi

1e=1 log(s(z)λi(z))− w(z, i, e)s(z)λi(z)

=
∑

(z,k,e)∈∪i(Zi∪Zqi )
w(z, k, e) [ y(z, k, e) log(s(z)λi(z))− s(z)λi(z) ]

(5)

Where the y(z, k, e) := 1e=1/w(z, k, e) are the Poisson regression pseudo-counts (non-integers), and we220

recall that by construction of our model s(z)λi(z) = exp(
C∑
j=1

γj1z∈cj + αi + βiTxi(z)). We end up with221

a Poisson regression log-likelihood that approximates well our initial log-likelihood when there are enough222

properly selected quadrature points. We use the same quadrature points and associated weights for all species.223

Now, we need to explain how are selected those points, and how are computed their weights w(z, i, e). An224
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unbiased manner to approximate the integral is the Monte Carlo method: We use the average of sλi over225

uniformly sampled background points on D to approximate the integral
∫
D
s(z)λi(z)dz. However, occurrences226

in Zi’s are not uniformly distributed over D and we need to ensure that they will not bias our approximation.227

For this purpose, the sum of weights of occurrences is negligible compared to the sum of weights of quadrature228

points and altogether:229

∀(z, i, e) ∈ ∪i(Zi ∪ Zqi )w(z, i, e) =





|D|
100ni

if e = 1

99|D|
100Q if e = 0

230

This yields the following expression for the approximation of integral term
∫
D
s(z)λi(z)dz:231

∫
D
s(z)λi(z)dz ≈ ∑

z∈Zi∪Zqi
w(z)s(z)λi(z)

= 1
100

∑
z∈Zi

|D|
ni
s(z)λi(z) + 99

100

∑
z∈Zqi

|D|
Q s(z)λi(z)

With this setting, all weights sum to |D| (area of D), while weights of species occurrences alone represent232

only 1%, which we have noticed to be enough to not bias the approximation in our experience.233

Particularity of the application to real dataset. For the real dataset of occurrences, we use an al-234

ternative strategy to insure that all the sampling cells have background points and that they capture the235

environmental variability of each cell. We uniformly draw a fixed number (6) of background points uniformly236

in each sampling cell. As each sampling cell has the same size in the present case, we can keep the same237

weighting scheme as previously, and the procedures weighted sum will also converge to the target integral.238

We can show this by decomposing the integral into a sum of integrals over each sampling cell multiplied by239

the inverse of the total number of cells and then using the Monte Carlo (because points are uniformly drawn240

inside cells).241

Implementation details. The inference is performed using a software for Generalized Linear Model penal-242

ized with L1 (with R package glmnet) to estimate parameter values that maximize the penalized version of243

the likelihood, for given yj , Z1, ..., ZN and w.244

The R code used for fitting the model can be found on the following Github repository: https://github.245

com/ChrisBotella/SamplingEffort. Equation 6 gives the R formula building the model design matrix passed246

to glmnet.247
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248

y ∼ 1 + SamplingCell + species1 : (x11 + ...+ x1p1) + species2 : (1 + x21 + ...+ x2p2)

...+ speciesN : (1 + xN1 + ...+ xNpN )

(6)

The categorical effect of a point SamplingCell is the effect of its cell. There are C − 1 parameters for249

the sampling effort because it is impossible to identify the global intercept and the parameters of all sampling250

cells. Thus, we need to chose a way to constrain the effects of the C cells with C − 1 parameters, or in other251

words, to define contrasts. We chose the SamplingCell contrasts as contr.sum,
∑C
j=1 γj = 0. This way the252

L1 penalty induces a shrinkage of all sampling cells parameters toward zero, rather than a shrinkage toward a253

reference cell as would have done the contr.treat contrasts. Concerning the species niche parameters, there254

are pi+1 parameters for species i and different species can depend on different environmental predictors. Note255

that the intercept of species 1 is grouped with the global intercept, again for identifiability reason. It explains256

that we can only estimate the species intensities and the sampling effort up to a constant factor. Using glmnet257

allows handling sparse matrices and performing our model with large number sampling cells, environmental258

features, background points, occurrences as explained in the real data illustration section.259

5 Appendix E: Environmental variables tables260

Name Description Values Resolution (m)
CHBIO_1 Annual Mean Temperature [-10.6,18.4] 1000

CHBIO_5
Max Temperature of Warmest
Month [36.4,6.2] 1000

CHBIO_12 Annual Precipitation [318,2543] 1000
etp Potential Evapo Transpiration [133,1176] 1000
alti Elevation [-188,4672] 90
slope Absolute elevation gradient [0,13457] 90
awc_top Topsoil available water capacity {0, 120, 165, 210} 1000
bs_top Base saturation of the topsoil {35, 62, 85} 1000
spht Aggregated land cover {culti.,for.,past.,urb.,other} 100

Table 1: Table of environmental variables used in this study.
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CLC category description spht category name Raster code
Non-irrigated arable land cultivated 12
Permanently irrigated land cultivated 13
Vineyards cultivated 15
Fruit trees and berry plantations cultivated 16
Complex cultivation patterns cultivated 20
Land principally occupied by agriculture, with
significant areas of natural vegetation cultivated 21
Agro-forestry areas cultivated 22
Pastures grasslands 18
Natural grasslands grasslands 26
Moors and heathland grasslands 27
Sclerophyllous vegetation grasslands 28
Broad-leaved forest forest 23
Coniferous forest forest 24
Mixed forest forest 25
Transitional woodland-shrub forest 29
Continuous urban fabric urban 1
Discontinuous urban fabric urban 2
Industrial or commercial units urban 3
Road and rail networks and associated land urban 4
Airports urban 6
Green urban areas urban 10
Sport and leisure facilities urban 11
Port areas other 5
Mineral extraction sites other 7
Dump sites other 8
Construction sites other 9
Rice fields other 14
Olive groves other 17
Annual crops associated with permanent crops other 19
Beaches, dunes, sands other 30
Bare rocks other 31
Sparsely vegetated areas other 32
Burnt areas other 33
Glaciers and perpetual snow other 34
Inland marshes other 35
Peat bogs other 36
Salt marshes other 37
Salines other 38
Intertidal flats other 39
Water courses other 40
Water bodies other 41
Coastal lagoons other 42
Estuaries other 43
Sea and ocean other 44
No data other 48
Unclassified land surface other 49
Unclassified water bodies other 50

Table 2: spht (Aggregated land cover) categories correspondance with Corine Land Cover 2012.
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6 Appendix F: Complementary simulation study, a closer look on261

the density estimates262

6.1 Methodology263

We designed the following simulation study to examine more closely whether our approach allows reliably264

inferring sampling effort density and species densities from observed occurrences of 2 virtual species with265

heterogeneous sampling effort. Note that we do not use intercepts in the simulation because, as explained266

in section 2.1, we can’t estimate the absolute intensities over space but rather the relative intensities. We267

evaluate the estimation quality as the ability to recover the density over the environmental gradient, because it268

is the space over which both the species intensity, and the sampling effort are defined by our construction. This269

space is one-dimensional, enabling visualization. To reproduce this experiment, one must run the script called270

Simu_and_graphs.R on the article Github repository: https://github.com/ChrisBotella/SamplingEffort.271

272

Spatial domain and species variable. We consider a square spatial domain D = [0, 10]2 where the only273

environmental variable x is a linear gradient from west to east, such that x(z) = z − 5.274

275

Virtual species. The environmental intensity of virtual species is modeled as a Gaussian function over276

the gradient x, i.e. ∀z ∈ D, λi(z) ∝ exp((x(z) − µi)
2/(2σ2

i )). It means that the expected x of a given277

species individual is µi (optimum constraint), and the variance of x over many individuals is σ2
i (niche breadth278

constraint), and λi is of maximum entropy. We use the following re-parameterization of species density:279

∀z ∈ D, λi(z) ∝ exp
(
− (x(z)−µi)2

2σ2
i

)

∝ exp
(
βi1x(z) + βi2x(z)2

)
280

With





βi1 = µi
σ2
i

βi2 = − 1
2σ2
i

⇔





µi = − βi1
2βi2

σi = 1√
−2βi2

281

βi2 being strictly negative. This re-expression will be useful as the method implementation gives us esti-282

mates of βi1, βi2 for each i (see Inference section). In our simulation study we have two virtual species i ∈ {1, 2}283

and we chose the optima to be µ1 = −2.5, µ2 = 2.5. Besides, the standard deviation of their intensities are284
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σ1 = σ2 = 1.6.285

286

Types of sampling effort. We designed a case where the relative sampling effort strongly depended on the287

environment x, which makes harder separating sampling effort from species intensities: The relative sampling288

effort is a step function over D depending of the longitude only (like the feature x), and not of the latitude.289

We designed three profiles of relative sampling effort :290

1. s(z) = 1x(z)<0. This profile has a constant non-null effort on the western half of the domain, and no291

sampling on the eastern half.292

2. s(z) = 1 + 5 1x(z)∈[−4.5,−2.5[∪[−0.5,1.5[∪[2.5,4.5[. This profile has sharp variation inside the sampling cells293

of the model design.294

3. s(z) = 9 ∗ exp(−5x(z))

1 + exp(−5x(z))
+ 1. This profile is a decreasing sigmoïdal function. It has also sharp varia-295

tions inside sampling cells, plus they are continuous and monotonic all across the domain.296

The fitted sampling model is well specified for type (1). Indeed, the point of discontinuity of the simulated297

sampling effort is a limit between the sampling cells. Thus, we expect to get exact estimates of species niches298

and sampling effort density. We test how the method recovers the species niches with only a partial sampling299

of the environmental range. However, for type (2), the simulated sampling effort varies in the middle of some300

modeled sampling cells so that it’s impossible to get a perfect estimation. If the method is robust, we expect301

sampling effort estimate to approximate the average of the target in every sampling cell. Finally, the estimation302

can’t be perfect for type (3) either. Here, the sampling effort co varies strongly and monotonically with the303

environmental variable, and it is expected to be the most problematic profile for the method.304

Simulating species observed points. We drew 200, 000 occurrences for both species in each of the 3305

sampling effort scenarios. For a defined relative sampling effort s and species intensity λ, we drew points306

according to a conditional Poisson process of intensity function sλ over D. It is done using the following307

acceptance-rejection algorithm:308

• Initialization: Determine an upper bound B of sλ on D.309

• Repeat:310

1. Draw a point z ∼ U(D).311
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2. Draw a variable y ∼ U([0, B])312

3. We accept z if y <= s(z)λ(z).313

4. If 200, 000 points are accepted, finish the procedure, otherwise go back to 1).314

We chose 200, 000 points as it is well enough for a satisfying convergence of the sampling effort and species315

intensities estimates, as shown by the standard deviation bounding curves of Fig. 3.316

317

Background points. For each experiment, 50, 000 background points were uniformly drawn over D, which318

is enough for likelihood convergence in this simple setting.319

6.2 Results320

We analyse here the reliability of our joint estimation method for 2 simulated species with 3 scenarios of321

sampling effort. Fig. 3 which shows the mean and standard deviations of estimated relative sampling effort.322

Unbiased niches and sampling effort estimates under good model specifications. Our simulation323

results first show that estimation of the relative sampling effort and of relative species intensities are unbiased324

under obervation scenario (1), i.e. when the species and sampling model is well designed. In scenario (1),325

there is no sampling on the eastern part of the domain, and constant sampling on the western part. Left326

graph of box A on Fig. 3 shows that the model perfectly captures the non sampled area, and the estimate327

on the western part is almost exact. Center and right graphs of box A show that the species intensities are328

also well recovered. The model uses the variation of species points occurrences in the western part to fit the329

whole species intensity model and is then able to make good prediction on the eastern part. Blue curves in330

Fig. 3 represent the observed standard deviation, which approximately delimit the 95% confidence interval331

(mean +/- 2 times the standard deviation) of the estimate over the 20 repetitions of the simulation. We332

remark a small bias likely due and/or to numerical approximation in the fitting algorithm. It is not due to the333

regularization path as we had a bias of similar order with a implementation glmn.334

Approximation bias under bad sampling model design. Secondly, graphs of box B illustrate the results335

of scenario (2). It shows that even though the sampling effort model neglects actual variation inside sampling336

cells, the method provides a reasonably good approximation as the estimate is often close to the average of the337
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Figure 3: Sampling effort and the two species estimated densities for the three profiles of simulated sampling
effort in the simulation experiment. A. type (1); B. type (2); C. type (3); see the paragraph "Types of sampling
effort". Red curves are the mean estimates over 20 repetitions the simulation scenario, with the blue curves
delimiting the approximate 95% confidence interval. Yellow curves are the targets. Sampling density (graphs
on the left) is plotted against longitude, while species densities (graphs on the center and right) are plotted
against x values (which are in bijection). The vertical grey lines on the graphs represent the longitudinal limits
of sampling effort square cells.
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true sampling effort in each cell. Besides, the species intensities estimates, on center and right graphs of box338

B, are slightly more biased than in case (1). For the scenario (3) illustrated by the densities of box C, we see a339

joint bias in the estimation of the species densities and the sampling effort. The species densities are deviated340

on the left, associated with an underestimation of the sampling effort for low x values and an over-estimation341

for high x values.342
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