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Abstract

Legged robots have a huge potential field of application that ranges from routine and danger-
ous works, to help in the treatment of children with autism. Nevertheless, employing these
complex machines on a real application requires safety guarantees on their functioning. This
is traditionally approached by over-sizing the robot design, but, since how resources should be
distributed is unknown, these robots are still quite restricted in their capabilities, yet without
formal safety guarantees and too expensive for most simple tasks. A quantitative analysis to
determine how fast and precise, and therefore how expensive should sensors, actuators and
computers be has never been investigated in the existing scientific literature. There is a long
theoretical and practical work to be done in this regard and it is the goal of this thesis to
initiate this discussion.

Based on concepts from robust control theory, considering bounded uncertainties, we
propose to quantify the effect of main sources of uncertainty on the balance control of the
center of mass of the robot, since it is unstable and fundamental to develop any other task.
As a first result, we established conditions to ensure the safe balance of the robot. Then, we
provided control choices to reduce the restrictiveness on the motion of the robot and its cost.
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Résumé

Les robots à pattes ont un énorme champ d’applications potentiel, allant des travaux rou-
tiniers et dangereux, à l’assistance comme intermédiaires rassurants entre des enfants autistes
et leur entourage. Cependant, l’utilisation de ces machines complexes requiert des garanties
de sécurité sur leur fonctionnement. Ceci est traditionnellement abordé en sur-dimensionnant
la conception du robot. Toutefois, comme la répartition des ressources est inconnue, leurs
capacités sont encore assez limitées, sans garanties de sécurité formelles et trop coûteux pour
la plupart des tâches simples. Une analyse quantitative visant à déterminer la rapidité et la
précision, et donc le coût, des capteurs, des actionneurs et des calculateurs n’a jamais été
étudiée dans la littérature scientifique existante. Il y a là tout un travail théorique et pratique
qui reste à réaliser et le but de cette thèse est d’initier cette discussion.

Sur la base des concepts de la théorie du contrôle robuste, prenant en compte des incerti-
tudes bornées, nous proposons de quantifier l’effet des principales sources d’incertitude sur le
contrôle de l’équilibre du centre de gravité du robot, car il est instable et fondamental pour
développer toute autre tâche. Comme premier résultat, nous avons déterminé les conditions
nécessaires pour assurer l’équilibre du robot en toute sécurité. Ensuite, nous fournissons des
choix de contrôle pour réduire le caractère restrictif du mouvement du robot et de son cout.
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Chapter 1

Introduction

1.1 Context and motivation

Biped and quadruped robots are facing today a transition to become a versatile tool with ap-
plications in entertainment [Nakaoka 2011, Ramos 2015], manufacturing [Bolotnikova 2017]
and providing services [Kemp 2008, Pandey 2014], among others. This year (2019) alone, the
EU project Comanoid demonstrated successfully that biped robots could soon be employed
on aircraft manufacturing operations at an Airbus civilian airliner plant [Kheddar 2019];
Anybotics started the commercialization of its quadruped robot ANYmal C employed for
autonomous industrial inspection [Gehring 2019]; and NASA is soon sending back to the
International Space Station its humanoid robot Robonaut 2, after some repairs on earth, to
continue testing the plausibility of using this kind of robots working alongside astronauts in
the station.

A widespread practical use of legged robots requires, however, guarantees about their
safety and operational performance: guaranteeing that all constraints, those imposed for
balance and the task-specific ones, are always satisfied.

The dynamics of the Center of Mass (CoM) of these robots over the support feet is
unstable, and therefore very sensitive to all sources of uncertainty, which abound: noisy
sensors, inaccurate actuators, unmodeled dynamics, unexpected environment interactions,
etc. This results in tracking errors when trying to follow a given reference motion which
can easily lead to a failure: malfunctioning, objectives not achieved, loss of balance, etc. In
research prototypes, the risk of failure is usually contained using very fast and precise (and
therefore, very expensive) sensors, actuators and computers, resulting in robots that are too
expensive for commercial purposes, and yet without safe operation guarantees. In order to
account for the tracking error, the reference motion is normally tightened using hand tuned
safety margins, which results either over-restrictive (as in [Feng 2016b] where point feet are
assumed for the robot Atlas) or unsafe.

Assuming bounded uncertainties and introducing the key concept of Robust Positively
Invariant (RPI) sets, we ensure a bounded tracking error and precisely specify such bound.
So, with a corresponding adaptation of the reference motion, we can guarantee the safe
operation of the robot.

Since the tracking error bound is linearly related to the uncertainty bound, a bigger
uncertainty produces bigger tracking errors and, therefore, the safety guarantees require a
more restricted reference motion. Studying this relation between bounds, we propose control
choices to minimize it, allowing for less constrained motions, handling of larger uncertainty
sources or reduction of the cost of the robot.

1



2 CHAPTER 1. INTRODUCTION

1.2 Contribution

In this thesis, we implement tools from the robust control theory to guarantee a safe operation
of legged robots while reducing the resources required for such purpose.

• In order to identify and reduce uncertainty sources, we worked with the complete non-
linear CoM dynamics. We showed that it can be linearized without approximations by a
simple change of variables, relying on the Whole Body Controller (WBC) to compensate
for the non-linear part (Sections 2.3 and 3.3 ).

• We obtained analytical expressions for the tracking error bound (Chapter 4). As a
consequence of this:

- We proposed feedback gains to minimize the relation between uncertainty and
tracking error bounds, allowing for less constrained motions, handling of larger
uncertainty sources or reduction of the robot cost (Sections 5.3.2 and 5.5.2).

- We analyzed the sensitivity of the tracking error to the system parameters, ob-
taining that it is independent of the sampling period and is weakly related to the
ground interaction compliance (Sections 5.3.3 and 5.5.2).

- We obtained the sequence of disturbances that maximizes the tracking error for
any choice of feedback gain (Sections 4.4.1.2 and 4.4.2.2).

- We obtained analytically the vertices of the minimum RPI set (Sections 4.4.1.5
and 4.4.2.2).

• Using the initial constraint proposed in [Mayne 2005] for a robust MPC scheme, which
is new in the context of legged robots, we ensured a bounded tracking error. Thanks to
this bound, we stated conditions to guarantee the safe operation of the robot (Sections
4.5 and 6.3.4).

1.2.1 List of publications

The work on this thesis resulted in a publication in a peer-reviewed journal:

• N. A. Villa, J. Englsberger and P.-B. Wieber. Sensitivity of legged balance control to
uncertainties and sampling period. IEEE Robotics and Automation Letters (RA-L),
vol. 4, no. 4, pages 3665–3670, 2019

Also accepted on the 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS)

And a publication in a peer-reviewed conference:

• N. A. Villa and P.-B. Wieber. Model predictive control of biped walking with bounded
uncertainties. In IEEE-RAS International Conference on Humanoid Robotics (Hu-
manoids), pages 836–841, 2017

1.3 Outline

This thesis is composed of 5 main Chapters 2-6, a conclusive Chapter 7 and appendices. We
introduce the dynamical model of the robot on Chapter 2. Then, in Chapter 3 we present an
overview of our control scheme and the main sources of uncertainty affecting it. The effect
from uncertainties on the tracking error is detailed and bounded analytically in Chapter 4,
where we also discuss how to improve the robot capability to manage bigger uncertainties and
generate less restrictive motions while keeping safety guarantees. In Chapter 5, we choose
feedback gains to minimize the impact from uncertainty, and we analyse the sensitivity of the
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resulting closed-loop system to sampling period and ground interaction compliance, which
we validate experimentally using the robot Toro. In chapter 6, we describe our MPC scheme
to generate the reference motion including an initial constraint to ensure a bounded tracking
error.

1.4 Notations

Scalars, Vectors and Matrices

• Scalars are denoted using the standard italic font: N , n.

• Vectors and matrices are denoted by letters in a bold font: x, A.

• Sequences of scalars or vectors stacks the elements vertically in a vector as:

U = 〈u1, . . . , un〉 ≡

u1
...
un

, X = (x1, . . . , xn) ≡

x1
...
xn

. (1.1)

• I – is the identity matrix of order n× n according to the context.

• 0 – is the matrix of zeros of order n×m according to the context.

• Mc,i the i-th column of the matrix M

• Mr,i the i-th row of the matrix M

• When several subscripts collide, we separate them with a dot: pcdes·ref

Sets

• Sets are denoted using the calligraphic font: C,P,V
• Special number sets are denoted using blackboard bold font: R, N.

• R is the set of real numbers.

• N is the set of natural numbers.

• Rn is the set of real-valued vectors.

• Rn×m is the set of real-valued matrices.

Functions

• Function names in mathematical expressions are written in the regular roman font:
sign(q), cosh(ωτ).

• The norm L2 in vectors and the absolute value in scalars are denoted as: |f |, |q|.
• The angle between vectors is denoted as: ∠(L,B).

Sign Convention

• Current values are denoted without any additional notation: x, u.

• Estimated, approximated or commanded values are denoted with a prime: x′, u′.

• Error or disturbance values are denoted using a hat: x̂, û.

• Errors are defined with their positive sign as:

x̂ = x− x′, û = u− u′.

• Reference values are denoted with the subindex: xref , uref .

• Tracking error values are denoted with a tilde: x̃, ũ.

• Tracking errors are defined with their positive sign as:

x̃ = x− xref , ũ = u− uref . (1.2)



Chapter 2

Biped Robot Modeling

2.1 Introduction

Humanoids and legged robots in general are complex machines with tens of degrees of freedom
that must be precisely coordinated to develop the physical interactions required for useful
tasks. We present in this chapter a brief overview of these machines focusing on the control
issues that are relevant for the following chapters.

We describe briefly the Lagrangian mechanics of these robots and its limitations in
Sec. 2.2. The effects of external forces on the robot as a whole are presented in Sec. 2.3,
formulated in terms of the Center of Mass (CoM). We comment the dynamical implications
of common scenarios in Sec. 2.3.1 and we describe the CoM restrictions in Sec. 2.3.2.

2.2 Robot Mechanics

A legged robot can be described mechanically as a kinematic chain of N actuated joints
connecting N+1 links, where no link is fixed to the global reference frame, so that the robot
can move freely in its 3D environment. The complete vector of independent generalized
coordinates

q =

qjρ
θ

 (2.1)

can be described by a vector of joint positions qj ∈ RN that determines the robot posture,
and the global position ρ ∈ R3 and orientation θ ∈ R3 of a reference frame attached to some
part of the robot.

Joints are normally equipped with rotary actuators to change the robot’s posture by
introducing a vector of joint torques η ∈ RN . The final motion of the robot is also affected by
interaction forces fi ∈ R between the environment and the i-th link, inertial effectsN ∈ RN+6

(as Coriolis and centrifugal forces) and the gravity acceleration g ∈ R3 [Hurmuzlu 2004,
Wieber 2016, Englsberger 2016]

M(q)

q̈jρ̈
θ̈

+

0
g
0

+N(q, q̇) =

η0
0

+
∑
i

Ji(q)fi, (2.2)

whereM ∈ R(N+6)×(N+6) is the generalized inertia matrix of the robot and Ji is the Jacobian
matrix formulated in [Wieber 2006a] for each link.

Since the joint actuation η cannot affect directly the global position ρ and orientation θ,
the robot locomotion requires using external forces. As usual for legged robots, we consider

4



2.3. CENTER OF MASS DYNAMICS 5

that such external forces are supplied by the contact between the feet and the ground. Though
other parts of the robot can also produce a helpful support depending on the situation
[Sherikov 2015] and even other kind of external forces, such as jet propulsion, could be used
to generate the robot locomotion [Pucci 2017].

Contact forces can only be exerted when some link of the robot has established a contact
with some surface in the environment. This condition can be modeled as the complementarity
problem [Hurmuzlu 2004]:

δkfk = 0, with δk ≥ 0, |fk| ≥ 0, (2.3)

where the distance between contact surfaces δk indicates whether the contact has been ac-
complished (δk = 0) or not (δk > 0) for the k-th contact force fk on some link.

Contact forces with the ground are usually unilateral: the force component f⊥k orthogonal
to the surface can push but not pull on the ground,

f⊥k ≥ 0. (2.4)

And in order to avoid foot slipping, the tangential component f
‖
k must satisfy [Wieber 2016]

|f‖k | ≤ µkf
⊥
k , (2.5)

where µk is the friction coefficient of the k-th contact interaction.
The contact forces required for the robot balance and locomotion can only be controlled

indirectly through the coordinated actuation of joints producing some appropriate sequence
of postures. According to the desired motion, the robot is controlled to stand, balancing its
body with a given ground contact; or to walk, establishing and interrupting ground contacts
cyclically [Sherikov 2016].

Any robot motion is restricted to postures qj without interpenetration of the robot parts,
joint torques η within the motor limitations, links with unalterable sizes (rigid body links)
and other limitations of the robot hardware that introduce control restrictions of the form
[Sherikov 2016, Feng 2016a]:

φ ≤ φ(q, q̇, q̈,η) ≤ φ (2.6)

where φ is an application-dependent function with lower φ and upper φ limits defined by the
hardware restrictions.

When a foot reaches the ground to establish a new contact point, an impact occurs. Such
impact is normally modeled assuming an instantaneous collision on a rigid surface and its
effects are estimated using a collision mapping [Westervelt 2018, Hurmuzlu 2004]:

q̇− 7−→ q̇+, (2.7)

that relates the robot velocities just before q̇− and just after q̇+ the impact. This behavior
with finite jumps in the velocity corresponds to a hybrid dynamics.

2.3 Center of Mass Dynamics

The behavior of the robot affected by external forces can be approached more simply by
considering its Center of Mass (CoM) c defined as the weighted sum:

c ≡

N+1∑
i=1

limi

N+1∑
i=1

mi

, (2.8)
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where mi and li are the mass and position of the CoM of the i-th link. We can obtain the
contact forces required to balance and drive the robot around its environment from Newton
and Euler equations of the robot motion with respect to its CoM c [Wieber 2006a]:∑

k

fk = mc̈+mg − fe (2.9)∑
k

(rk − c)× fk = L̇− ηe, (2.10)

where we have separated the forces fk exerted at the ground contact points rk and the rest
of external wrenches fe, ηe, as proposed in [Agravante 2016]. L is the centroidal angular
momentum of the entire robot and m is its total mass. Combining these equations we obtain:∑

k

rk × fk = c× (mc̈+mg − fe) + L̇− ηe. (2.11)

Let’s adopt Cartesian coordinate axes x, y, z with origin on the contact surface of one foot
on the ground and the axis z normal to it, and separate the torque introduced by the contact
forces as: ∑

k

rk × fk =
∑
k

 ryk-rxk
0

fzk −
 fyk-fxk

0

rzk +

 0
0

rxkf
y
k − r

x
kf

y
k

, (2.12)

where the first term is related to the pressure distribution fzk on the contact surface; the
second term is related to the unevenness of the ground (it is zero when the contact surface is
a plane so rzk = 0, but can become relevant when climbing stairs); and the third one, normal
to the contact surface, is used to control the robot orientation.

Rewriting the pressure distribution fzk in terms of the Center of Pressure (CoP) p, that is
defined as the point on the contact surface where we can concentrate the distributed pressure
as a single force

∑
fzk that produce the same torque as the original distribution [Sardain 2004]:

px, y
∑
k

fzk ≡
∑
k

rx, yk fzk , (2.13)

and dividing all the expression (2.11) by the z coordinate of the Newton equation (2.9), we
can obtain the x, y coordinates of the CoM dynamics [Wieber 2016]:

px, y = cx, y − (mc̈x, y +mgx, y − fx, ye )cz

mc̈z +mgz − fze
+
S(L̇x, y − ηx, ye )

mc̈z +mgz − fze
+

∑
k r

z
kf

x, y
k∑

k f
z
k

, (2.14)

with a π
2 rotation matrix S = [ 0 -1

1 0 ]. We rearrange this expression to emphasize the linear
relation between CoM acceleration c̈ and CoP p:

c̈x,y = ω2(cx,y − px,y + nx,y), (2.15)

with some constant value ω2 ≈ gz

cz , gathering all non-linearities in the vector:

nx,y ≡ c̈
x,y

ω2
− (mc̈x,y +mgx,y − fx,ye )cz

mc̈z +mgz − fze
+
S(L̇x,y − ηx,ye )

mc̈z +mgz − fze
+

∑
k r

z
kf

x,y
k∑

k f
z
k

. (2.16)

Rewriting this expression as a system of two first order differential equations with the change
of variables

ζx, y ≡ cx, y − ċ
x, y

ω
, (2.17)

ξx, y ≡ cx, y +
ċx, y

ω
, (2.18)
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we obtain the modal form

ζ̇x, y = ω(px, y − nx, y − ζx, y), (2.19)

ξ̇x, y = ω(ξx, y − px, y + nx, y), (2.20)

where ζx, y converges to px, y−nx, y, and ξ, the so called Divergent Component of the Motion
(DCM) [Takenaka 2009], diverges away from px, y −nx, y constituting an unstable dynamics.
We can see, moreover, reorganizing (2.18) that the CoM is attracted by the DCM:

ċx, y = ω(ξx, y − cx, y). (2.21)

2.3.1 Common Scenarios

In practical applications of legged robots, it may be required to walk on slopes (having non-
zero gx, y) or on uneven terrains (having non-zero

∑
k r

z
kf

x, y
k ). In these cases the lateral

acceleration gx, y and torque
∑

k r
z
kf

x, y
k are bounded, can be easily estimated using the robot

sensors, and the friction forces fx, yk can be controlled to stabilize the motion.
External forces, on the other hand, are not bounded, but we assume that the robot is

controlled to handle tools and objects requiring bounded wrenches fe, ηe, as well as avoiding
collisions and dangerous places [Bohórquez 2016].

For several applications we can expect the robot to spend most of the time walking in a
simple scenario where the ground is flat (rzk = 0) and horizontal (gx, y = 0), without additional
external wrenches (fe = 0, ηe = 0), resulting in

nx,y =
c̈x,y

ω2
− cz

c̈z + gz
c̈x,y +

SL̇x,y

m(c̈z + gz)
, (2.22)

where the angular momentum variation L̇ and CoM vertical motion c̈z are bounded
[Herr 2008, Brasseur 2015], can be easily estimated, and L̇ can be introduced by moving
the body to stabilize the motion [Lee 2012].

Standing still is an even simpler but also common condition. In such case the vector nx, y

vanishes, resulting in a CoM linearly related to the CoP [Wieber 2016]

c̈x,y = ω2(cx,y − px,y), (2.23)

corresponding to the model of a linear inverted pendulum which has also been experimentally
validated for the balance of human beings while standing [Winter 1998]. Since the non-linear
effects n are bounded, and because of the simplicity and linearity of this relation, it is
normally used for the control of legged robots even in walking scenarios (neglecting L̇x,y and
c̈z) [Englsberger 2011, Kajita 2010] obtaining good results even in presence of perturbations
[Choi 2006, Feng 2016b, Wieber 2006b].

2.3.2 Restrictions on the Center of Mass Dynamics

From the CoM dynamics computation we obtain the forces required for the robot locomotion
and its associated whole-body kinematics

ċ = JCoM q̇, (2.24)

using a Jacobian matrix JCoM [Sugihara 2002] based on the CoM definition (2.8). Then, from
an inverse dynamics problem [Sherikov 2016], we can obtain the required joint torques η.
In consequence, for the feasibility of the CoM motion, it must agree with the whole-body
hardware restrictions and with the limitations of each physical interaction.
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Considering the unilaterality of contact forces (2.4), the CoP is bound to the convex hull
P of the contact points as can be easily noticed from its definition (2.13) [Wieber 2016]:

px, y =

∑
k r

x, y
k fzk∑
k f

z
k

∈ P(sk). (2.25)

The size and shape of this set, that we call support polygon, varies depending on the position
and orientation of the feet sk on the ground.

We control the robot to always maintain at least one foot on the ground. The placement
of new steps must respect some minimum distance from the foot currently on the ground
in order to avoid self collisions (2.6), and a maximum distance related to leg length (2.6),
constraining new step placements sx, y to some stepping area [Herdt 2010]:

sx, y ∈ S(sk). (2.26)

The maximum leg length also determines a maximum distance between the CoM and the
feet on the ground [Brasseur 2015]:

cx, y ∈ C(sk). (2.27)

Other restrictions can also be considered such as limits on CoM velocity and ac-
celeration ċx, y, c̈x, y introduced by the limited joint torques [Grandia 2019] and friction
forces [Caron 2015] fx, yk (2.5), or task specific constraints such as avoiding obstacles
[Bohórquez 2016, Ciocca 2019].

2.4 Conclusion

We have presented a general overview of the physics involved in legged robots. We have
introduced the concept of CoM, reaching an exhaustive expression for its dynamics, and we
presented the CoM restrictions related to the robot hardware and its interactions with the
environment.



Chapter 3

Control and Uncertainty

3.1 Introduction

MPC
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or Decision
terms in n

Robot
Sensors

and
Actuators

State
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(q̃j , η̃)
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(qj ,η)ref
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Figure 3.1: Control scheme. This general layout is presented in the current chapter describing
its main sources of uncertainty û. In Ch. 4 we determine a precise bound for the
tracking error x̃. In Ch. 5 we study the election of feedback gains K aiming to minimize
the tracking error bound. In Ch. 6 we propose an MPC reference generation scheme
(uref , xref ), and we propose a safe form to close the reference generation loop (dashed
connection).

The goal of this chapter is to present our CoM control scheme shown in Fig. 3.1, and the
main sources of uncertainty affecting it. The structure of joint actuators and the interaction
with the ground determine our capability to control contact forces. Considering typical
configurations, the CoP can be controlled directly or indirectly as discussed in Sec. 3.2.
Controlling directly the difference p − n, we obtain a linear CoM dynamics in Sec. 3.3.
This requires controlling or estimating the terms in n and, therefore, is subject to some
uncertainty. In Sec. 3.4 we rewrite the control system in discrete form to match the digital
instruments used for the internal signal communication. In order to track a reference motion,
considering all sources of uncertainty, we propose in Sec. 3.5 a feedback control law and show
its closed-loop stability conditions. In Sec. 3.5.1, we introduce a standard Smith predictor to
deal with delays between the state estimation and the control execution.

9
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3.2 Types of Actuation

Considering physical applications, we expect legged robots to manipulate tools [Okada 2006],
carry heavy objects while cooperating with humans or other robots [Agravante 2016], reach
target places avoiding all sort of obstacles [Bohórquez 2016, Brossette 2017], etc. During their
normal operation, the robots must exert precise contact forces to balance all the environment
interactions and follow some desired motion.

These robots control forces from interactions with the environment through the coordi-
nated actuation of joints. Thus, precision in such an indirect control requires both precise
control of joint actuation [Semini 2011] and a detailed knowledge of the interaction dynamics
[Grandia 2019].

Looking for the capability to determine directly every joint torque η (in so-called torque-
controlled robots), several joint control architectures have been proposed in the literature.
Strengths and weakness of hydraulic, pneumatic and electric based joints in terms of force
actuation are discussed in [Hutter 2016, Englsberger 2014, Pratt 2002].

Normally, a rigid ground is assumed for the contact interaction, it means that unilateral
forces of arbitrary magnitude can be instantaneously exerted within the support polygon P.
Many indoor applications of legged robots, such as bringing supplies in industrial plants,
could match with this assumption. Considering also a torque controlled robot, allows us to
control directly the CoP in the dynamics (2.15) that we repeat here in scalar form

c̈ = ω2(c− p+ n), (3.1)

valid for any x or y coordinate, since they are uncoupled and present identical dynamics. We
write, then, the control system P→CĊ:

d

dt

[
c
ċ

]
=

[
0 1
ω2 0

][
c
ċ

]
+

[
0

-ω2

]
(p− n). (3.2)

Or considering only the DCM (2.18), we obtain the system P→X:

ξ̇ = ωξ − ω(p− n). (3.3)

Other robot architectures implement the joint actuation by setting every joint position qj
(so-called position controlled robots), which in general incorporate some form of force control
at the end effectors [Ibanez 2012] to manage specific interactions such as ground contact, but
normally, the resulting force control loop is slow. In [Kajita 2010] a converging dynamics of
the CoP

ṗ = γ(pdes − p), (3.4)

with some desired CoP pdes , is proposed for a position controlled robot which relies on a
compliant element in the sole to control ground contact forces. This CoP converging dynamics
can also be observed in torque controlled robots [Englsberger 2015], having a much higher
time parameter γ.

Unstructured environments can present more complex contact interactions with the
ground [Li 2013]. When the ground is compliant, we can expect a similar converging CoP
with some time varying parameter γ. So, either a slow force control loop or a compliant sup-
port ground, introduces a converging dynamics (3.4) for the CoP and results in the control
system Pd→CĊP:

d

dt

cċ
p

 =

 0 1 0
ω2 0 -ω2

0 0 -γ

cċ
p

+

 0
ω2

0

n+

0
0
γ

pdes (3.5)
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proposed in [Kajita 2010], or in terms of the DCM, Pd→XP:

d

dt

[
ξ
p

]
=

[
ω -ω
0 -γ

][
ξ
p

]
+

[
ω
0

]
n+

[
0
γ

]
pdes (3.6)

proposed in [Morisawa 2012], where the control variable is the desired CoP pdes . For simplic-
ity, we will consider only this second form (Pd→XP) of the system with CoP compliance.

In the following sections we will represent generically the control input as u and the state
as x for all systems.

3.2.1 Inaccurate actuation

Setting an input value u′ requires all joints to move accordingly to generate a particular in-
teraction with the ground. The inaccuracy of joint actuators produces, therefore, a mismatch
between the desired contact forces and the resulting ground interaction. We can define an
actual effective input u related to the current actuation as

u = u′ + â, (3.7)

differing with the commanded input u′ by a bounded uncertain mismatch â. Typically, these
inaccuracies are introduced by:

Friction: When working with small loads, joint friction can produce torques with magnitude
comparable to the commanded torque producing wrong position and torque outputs.

Flexibilities: Interaction forces such as the contact with the ground produce a deformation
of the robot structure introducing uncertainty in the interaction and their application
point.

Backlash: Gaps in the mechanical chain require the joint motors to make some displacement
without applying appreciable torque or motion of links, which delays the control action.
This issue does not have a big impact in each joint since harmonic drives as well as
hydraulic pumps present low backlash [Semini 2011], but its accumulated effect along
all the kinematic chain can be meaningful and approaches to compensate for it has been
proposed [Jung 2004].

Bandwidth: In a real motor, inertia and maximum allowed current limit the rate of change
of its output torque (which measured in Hertz (Hz) is called bandwidth). Friction,
flexibilities and backlash produce an even smaller effective bandwidth limit in the robot
actuation.

Similarly, in a compliant terrain the contact force is not instantaneously applied, but
with some finite rate. In [Grandia 2019] it is proposed a cost function to penalize rapid
variations of the high level control input to be consistent with these limitations.

3.2.2 State Estimation

The robot model and sensors distributed on the robot structure are used to estimate all
relevant dynamic variables such as CoM c, CoP p, DCM ξ, non-linearities n, robot posture qj ,
and their time derivatives.

Commonly, these robots incorporate an Inertial Measurement Unit (IMU) in the central
body to measure acceleration and angular velocities of the structure, force sensors in every
joint or only at the end effectors to sense interactions with the environment, and joint en-
coders to determine the position of each joint. Other sensors such as cameras and lidars are
often included to measure the global position of the robot, and recognize dynamically the
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environment. The state estimation is normally implemented using optimal observers such as
Kalman filters or moving horizon estimators [Xinjilefu 2015, Mifsud 2017].

Noise in sensors, bad calibration of instruments, numerical issues and other sources of
uncertainty along the estimation process results in state estimation errors x̂. These errors
can be efficiently bounded, limiting the predicted state variation based on the robot model
[Fang 2018].

3.3 Equivalent Linear Dynamics

During its normal operation, the robot produces intentional movements that impact non-
linearly on the CoM dynamics, such as vertical motion cz, ċz, c̈z of the CoM while walking
or climbing stairs, or external forces fe, ne when manipulating tools. These effects n can be
efficiently bounded [Brasseur 2015, Serra 2016]:

n ∈ N , (3.8)

and based on the robot sensors and the model (2.16), they can be estimated and taken into
account to control the robot balance and locomotion.

Since n is known and affects the dynamics in the same form as p, we linearize all systems
(3.2), (3.3), (3.5), (3.6) by introducing the change of variable

pc = p− n, (3.9)

that we call compensated CoP (cCoP). So, we obtain

P→CĊ:

[
ċ
c̈

]
=

[
0 1
ω2 0

][
c
ċ

]
+

[
0

-ω2

]
pc, (3.10)

P→X: ξ̇ = ωξ − ωpc, (3.11)

and defining also the desired cCoP:

pcdes = pdes −
(
n+

ṅ

γ

)
, (3.12)

we have,

Pd→XP:

[
ξ̇
ṗc

]
=

[
ω -ω
0 -γ

][
ξ
pc

]
+

[
0
γ

]
pcdes . (3.13)

Based on the estimation of n (and ṅ), the WBC is in charge of bringing the input pc or
pcdes to the required values by controlling the CoP p.

We normally control the robot to maintain certain posture and move limbs as humans do,
which mostly defines the value of n. Thus, the cCoP is constrained to the support polygon
(2.25) shifted by n

pc ∈ P − n. (3.14)

In some scenarios, we may have access to exert external forces ηe, fe, f
x, y
k [Sherikov 2015]

or modify slightly the vertical motion c̈z, cz and angular momentum L. Controlling such
variables for balance, we can obtain a laxer cCoP constraint:

pc ∈ P ⊕ -Nc − ng, (3.15)

where the non-linearities n = nc + ng are separated in a bounded controlled part nc ∈ Nc
and a known given part ng. The controlled term nc can be decided on-line optimally using
the method of Safe SQP proposed by [Bohorquez 2018]. In this thesis, however, we use the
constraint (3.14) assuming that none part of n is directly controlled for balance.
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3.3.1 Non-Linear Model Errors

Due to the natural lack of information in a dynamic environment, the estimated value n′

of non-linear effects is missing unexpected interactions and makes a bad estimate of those
partially known. Such model error n̂ has different effects depending on the system:

P→X / P→CĊ

The commanded cCoP is
p′c = p− n′ = p− n+ n̂, (3.16)

so, reordering, we can observe that the actual cCoP is

pc = p− n = p′c − n̂, (3.17)

with the actuation error -n̂.

Pd→XP

We command a desired cCoP as

p′cdes = pdes −
(
n′ +

ṅ′

γ

)
= pdes −

(
n+

ṅ

γ

)
+

(
n̂+

ˆ̇n

γ

)
, (3.18)

so, reordering, we can observe that the actual desired cCoP is

pcdes = pdes −
(
n+

ṅ

γ

)
= p′cdes − n̂−

ˆ̇n

γ
. (3.19)

with the actuation error -(n̂+ ˆ̇n/γ).
Moreover, in this case, pc is a state variable and n̂ introduces the estimation error

p̂c = pc − p′c = -n̂. (3.20)

3.4 Discrete Control

Based on the linear CoM dynamics, we decide the control action u to feed the WBC through
a zero-order hold circuit, which maintains the input constant during time periods τ (the
sampling period). Therefore, we restrict explicitly our dynamics to piece-wise constant control
actions

ut = uiτ for the i-th time period iτ ≤ t < (i+1)τ, (3.21)

that allows us to rewrite our continuous control systems in discrete form [Ogata 1995]. Let’s
consider generically the system

ẋt = Gxt +Hut, (3.22)

with state xt and system matrices G and H. From this equation’s solution, given xiτ at
some initial time t = iτ , the state x(i+1)τ after a period τ is

x(i+1)τ = eGτxiτ + eG(i+1)τ

∫ (i+1)τ

iτ
e-GtHuiτdt, (3.23)

Since G is non-singular in our systems, it is:

x(i+1)τ = eGτxiτ + (eGτ− I)G-1Huiτ , (3.24)
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and with the change of notation:

A = eGτ

B = (eGτ − I)G-1H

x = xiτ

u = uiτ ,

(3.25)

it is equivalent to

x+ = Ax+Bu. (3.26)

In particular, for each formulation, we obtain the matrices:

P→CĊ

A =

[
cosh(ωτ) ω-1 sinh(ωτ)
ω sinh(ωτ) cosh(ωτ)

]
, B =

[
1− cosh(ωτ)
−ω sinh(ωτ)

]
, (3.27)

with state and input:

x =

[
c
ċ

]
, u = pc = p− n. (3.28)

P→X

A = eωτ , B = 1− eωτ (3.29)

with state and input:

x = ξ u = pc = p− n. (3.30)

Pd→XP

A =

[
eωτ ω

γ+ω (e-γτ − eωτ )

0 e-γτ

]
, B =

[
ω(1−e-γτ )+γ(1−eωτ )

γ+ω

1− e-γτ

]
, (3.31)

with state and input:

x =

[
ξ
pc

]
, u = pcdes = pdes −

(
n+

ṅ

γ

)
. (3.32)

3.5 Closed-Loop Dynamics

Consider a reference motion xref , uref , generated according to the robot dynamics model,
using any standard motion generation scheme [Wieber 2016] (we discuss the reference motion
generation in more detail in Ch. 6). Because of the uncertainties described above, we track
this reference using a feedback law based on the estimated state x′ = x − x̂. The resulting
effective control law is:

u = uref +K(x− xref ) + û, (3.33)
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with a feedback gain of the form

K = k
[
1 λ

]
for P→CĊ and Pd→XP, (3.34)

K = k for P→X, (3.35)

and where û groups all previously discussed uncertainties coming from actuation (Sec. 3.2.1),
estimation (Sec. 3.2.2), and model errors (Sec. 3.3.1):

P→CĊ

û = â− n̂−Kx̂

P→X

û = â− n̂− kξ̂

Pd→XP

û = â− n̂−
ˆ̇n

γ
−Kx̂

so that it is bounded in a set
û ∈ V. (3.36)

Any known (not uncertain) offset in the actuation or estimation must be taken into account as
a part of the calibration of the control system, or included in the robot model as a parameter.
In consequence, the set of uncertainty V is centered on zero.

Defining the tracking errors of state and input:

x̃ = x− xref , ũ = u− uref = Kx̃+ û, (3.37)

and generating the reference motion xref , uref to satisfy the system dynamics (3.26)

x+
ref = Axref +Buref , (3.38)

we obtain the dynamics of the tracking error:

x̃+ = (A+BK)x̃+Bû. (3.39)

Notice that (in its own space of variables) the tracking error also satisfies the original system
dynamics:

x̃+ = Ax̃+Bũ (3.40)

It means that, for example, the tracking error of the CoM velocity is also the velocity of the
CoM tracking error ˜̇c = ˙̃c.

The current motion x, u must satisfy all constraints (2.26), (2.27), (3.14):

u = uref + ũ ∈ U , (3.41)

x = xref + x̃ ∈ X , (3.42)

where the set U groups the constraints related to the input variable and X those related to
the state. So, in order to ensure feasibility without over-restricting the reference motion xref ,
uref , we will investigate more about the tracking error dynamics in the following chapters.

3.5.1 Feedback Delays

We have designed the feedback law (3.33) to produce the control action u(x) required when
the state is x. Since u(x) is obtained from an estimation x′ of the state, it introduces also
the estimation error x̂ in (3.36). Delays between the sampling of sensors and the control
execution increases this estimation error:

Consider a known delay δ, and the state x-δ when sensors are sampled, the control action
u is executed when the state is

x = Aδx
-δ +Bδ(u

−
ref +Kx̃− + û−), (3.43)
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where matrices Aδ, Bδ are obtained from (3.25) using δ as sampling period. This
state is normally estimated using a Smith predictor with available data as proposed in
[Koenemann 2015]:

x′ = Aδx
′-δ +Bδ(u

−
ref +K(x̃− − x̂−)), (3.44)

where x′-δ is the estimation obtained from the robot sensors. The resulting estimation error
is the difference:

x̂ = x− x′ = Aδx̂
-δ +Bδ(û

− +Kx̂−), (3.45)

that is larger than the direct estimation error x̂-δ due to the instability of Aδ. So, for each
system the estimation error is:

P→CĊ

x̂ = Aδx̂
-δ+Bδ(â

−−n̂−)

P→X

ξ̂ = Aδ ξ̂
-δ+Bδ(â

−−n̂−)

Pd→XP

x̂ = Aδx̂
-δ+Bδ(â

−−n̂−− ˆ̇n
γ )

3.5.2 Stable Feedback Gains

The tracking error dynamics is stable if the norm of all eigenvalues (also called poles) of the
closed-loop matrix are smaller than 1. Following Jury’s stability criterion [Jury 1962] in the
case of 2nd-order systems, it is stable if and only if:

q1q2 < 1, (3.46)

(q1 − 1)(q2 − 1) = q1q2 − (q1 + q2) + 1 > 0, (3.47)

(q1 + 1)(q2 + 1) = q1q2 + (q1 + q2) + 1 > 0, (3.48)

where q1 and q2 are the system’s poles. In particular for each system we have:

P→CĊ
Substituting the trace and determinant

q1q2 = det(A+BK) = 1− k + k cosh(ωτ)− kλω sinh(ωτ), (3.49)

q1 + q2 = tr(A+BK) = k + (2− k) cosh(ωτ)− kλω sinh(ωτ), (3.50)

of the closed-loop matrix on Jury’s conditions, the stability limits of K are:

λ >
cosh(ωτ)− 1

ω sinh(ωτ)
, (3.51)

k > 1, (3.52)

kλ <
cosh(ωτ) + 1

ω sinh(ωτ)
, (3.53)

which are represented in Fig. 3.2.

P→X

The closed-loop pole is:

q = A+Bk = eωτ + k(1− eωτ ), (3.54)

its norm is smaller than 1 if k satisfies:

1 < k <
eωτ + 1

eωτ − 1
. (3.55)
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Pd→XP

Substituting the trace and determinant

q1q2 = det(A+BK) = e(ω−γ)τ +k

(
γe-γτ+ωeωτ

γ+ω
+λeωτ−(λ+1)e(ω−γ)τ

)
, (3.56)

q1 + q2 = tr(A+BK) = e-γτ + eωτ + k

(
λ− γeωτ+ωe-γτ

γ+ω
− λe-γτ + 1

)
, (3.57)

of the closed-loop matrix on Jury’s conditions, the stability limits of K are:

λ <
e(γ−ω)τ−1

eγτ−1
k-1+

γ(eγτ−e-ωτ )

(γ+ω)(eγτ−1)
− 1, (3.58)

λ > k-1 − 1, (3.59)

λ >
1+eγτ

1−eγτ
k-1+

2γ(eγτ−e-ωτ )

(γ+ω)(eγτ−1)(1+e-ωτ )
−1. (3.60)

which are represented in Fig. 3.3

3.6 Practical Summary and Conclusions

The external forces required for the robot locomotion are obtained from its interaction with
the ground. In order to reduce the uncertainty, it is important to use an appropriate model
for this interaction. We proposed the systems P→CĊ (3.2) and P→X (3.3) for rigid ground
interactions, and Pd→CĊP (3.5) and Pd→XP (3.6) for compliant ground interactions.

Producing desired balance and locomotion of the robot while satisfying all its constraints
requires planning the motion in advance, which is computationally demanding. In order to
reduce the required CPU resources, we have arranged the control scheme (shown in Fig. 3.1)
to plan the robot motion using a linear form of the complete CoM dynamics. Moreover,
in order to reduce uncertainties, we use piece-wise constant control actions matching the
typical choice of zero-order hold circuits for the control signal communication. As a result,
we obtained linear time-invariant discrete-time control systems of the form:

x+ = Ax+Bu, (3.61)

with the matrices A and B reported in (3.27), (3.29) and (3.31).
In spite of the effort and resources spent trying to reduce uncertainties with fast and pre-

cise sensors, actuators and detailed models, we will always have some remaining uncertainty,
which is dangerous considering the unstable dynamics and hard constraint of the robot. We
compensate for the effects of these uncertainties introducing a feedback term in the control
signal. As a result, we obtained the following control laws and uncertainties:

P→CĊ
The proposed control law is:

u = pc = pcref + k(c̃+ λ˜̇c) + û, (3.62)

with uncertainties of the form:

û = â− n̂−K
(
Aδx̂

-δ +Bδ(â
− − n̂−)

)
, (3.63)

coming from actuation, modelling and state estimation errors.
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Figure 3.2: Set of stable gains for P→CĊ. The set of feedback gains k-1 and λ that lead to a sta-

ble closed-loop dynamics is a triangle, where λ varies between cosh(ωτ)−1
ω sinh(ωτ) and cosh(ωτ)+1

ω sinh(ωτ)

while k-1 varies between cosh(ωτ)−1
cosh(ωτ)+1 and 1.

Figure 3.3: Set of stable gains for Pd→XP. The set of feedback gains k-1 and λ that lead to a

stable closed-loop dynamics is a triangle, where λ varies between −ω(e
ωτ+1)+γ(e−γτ+1)
(γ+ω)(1+eωτ )

and ω(eωτ−1)+γ(e−γτ−1)
(γ+ω)(1−eωτ ) while k-1 varies between γ(1−eωτ )(e−γτ−eωτ )

(γ+ω)(1+eωτ )2 and γ(e−γτ−eωτ )
(γ+ω)(1−eωτ ) . λv

has a long expression, it can be positive or negative depending on the parameters γ, ω, τ .
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P→X

The proposed control law is:

u = pc = pcref + kξ̃ + û, (3.64)

with uncertainties of the form:

û = â− n̂− k
(
eωδ ξ̂-δ + (eωδ − 1)(â− − n̂−)

)
, (3.65)

coming from actuation, modelling and state estimation errors.

Pd→XP

The proposed control law is:

u = pcdes = pcdes·ref + k(ξ̃ + λp̃c) + û, (3.66)

with uncertainties of the form:

û = â− n̂−
ˆ̇n

γ
−K

(
Aδx̂

-δ +Bδ

(
â− − n̂− −

ˆ̇n−

γ

))
+ kλn̂, (3.67)

coming from actuation, modelling and state estimation errors.

The set of feedback gains K that stabilize the closed-loop dynamics of each system is
reported in eqs.(3.49)-(3.60).



Chapter 4

Bounded Deviations for Bounded
Uncertainty

4.1 Introduction

This chapter exposes in a quantitative form the effect that uncertainty has on the tracking
error and how to manage it for safety. We refer to uncertainty as the set of all possible control
mistakes, described in the previous chapter; but, when one concrete mistake occurs during
the robot operation, we call it a disturbance.

We show in Sec. 4.2 that using stable gains, a bounded uncertainty produces also bounded
tracking errors contained in a Robust Positively Invariant (RPI) set. Based on this bound,
we can obtain a relation between bound sizes of uncertainty and tracking error as shown in
Sec. 4.3. Such relation depends on the eigenstructure of the closed-loop matrix, as we show
in Sec. 4.4, where this relation is computed for real-valued and complex-conjugate poles. As
a result, we obtain the Worst-Case Sequence (WCS) of disturbances and all vertices of the
RPI set. In order to guarantee feasibility of the controller, and then, a safe robot operation,
we must ensure the robot motion to satisfy the system constraints in spite of the tracking
error as shown in Sec. 4.5.

4.2 Bounded Tracking Error

Considering some initial tracking error x̃ and the entire set of uncertainties û ∈ V, the
successor tracking error in (3.39) is bounded by the difference inclusion:

x̃+ ∈ (A+BK)x̃+BV. (4.1)

By iteration, after N samples, the tracking error is

x̃+N ∈ (A+BK)N x̃+

N−1⊕
i=0

(A+BK)iBV. (4.2)

Since the feedback gain K is chosen to stabilize the closed-loop matrix A+BK (eigenvalues
with norm smaller than 1), the first term vanishes when N →∞:

(A+BK)N x̃→ 0, (4.3)

and the tracking error converges to a compact set [Kolmanovsky 1998, Theorem 4.1]:

x̃+N → Z ≡
∞⊕
i=0

(A+BK)iBV. (4.4)

20
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Considering a convex set V, this Minkowski sum is also convex [Schneider 1993, Sec. 1.1].

Based on its definition (4.4), the set Z satisfies

Z = (A+BK)Z ⊕BV, (4.5)

which implies from (4.1), that if the tracking error x̃ belongs to the set Z, then for any
disturbance û ∈ V, the successor tracking error x̃+ will also belong to Z:

∀û ∈ V, x̃ ∈ Z ⇒ x̃+ ∈ Z, (4.6)

therefore, every future tracking error will belong to Z as long as û ∈ V. A set with this
property is called Robust Positively Invariant (RPI), and in particular, Z is the minimum RPI
set since it is contained in every closed RPI set of the closed-loop system (4.1) [Rakovic 2005].

We use this property to ensure a bounded tracking error

x̃ ∈ Z, (4.7)

with the input tracking error bounded accordingly

ũ ∈KZ ⊕ V, (4.8)

provided that the robot motion starts within these bounds. We can ensure the initial tracking
error to lie in Z by starting the robot operation standing still, which reduces uncertainty
(minimum actuation and n, n̂ vanish) letting the stable matrixA+BK to bring the tracking
error closer to zero, within Z. A safer form to ensure it, proposed in Ch. 6, is to generate the
reference trajectory xref satisfying (4.7) as an initial condition based on the current state x.

4.3 Quantitative Effect of Uncertainties

We can obtain a bound for the tracking error of every variable in the CoM dynamics using
the set Z and operations of sets described in Appx. A:

P→CĊ
CoM position and velocity tracking errors are bounded as:

c̃ =
[
1 0

]
x̃ ∈

[
1 0

]
Z,

˜̇c =
[
0 1

]
x̃ ∈

[
0 1

]
Z,

(4.9)

and the cCoP tracking error is bounded as (3.37):

p̃c = ũ = Kx̃+ û ∈KZ ⊕ V. (4.10)

P→X

The DCM tracking error is bounded as:

ξ̃ = x̃ ∈ Z, (4.11)

and the cCoP tracking error is bounded as (3.37):

p̃c = ũ = kξ̃ + û ∈ kZ ⊕ V. (4.12)
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Pd→XP

DCM and cCoP tracking errors are bounded as:

ξ̃ =
[
1 0

]
x̃ ∈

[
1 0

]
Z,

p̃c =
[
0 1

]
x̃ ∈

[
0 1

]
Z,

(4.13)

and the tracking error bound of the desired cCoP is (3.37):

p̃cdes = ũ = Kx̃+ û ∈KZ ⊕ V. (4.14)

In general terms, the tracking error Lx̃ of any linear combination of state variables, with
coefficients in some vector L, is bounded according to (4.7)

Lx̃ ∈ LZ. (4.15)

From linear programming, the maximum value Lz is reached at some vertex z ∈ Z. Iterating
in (3.39) with disturbances ûi ∈ V contained in the real interval

V ≡ [-ûpeak, ûpeak], (4.16)

this maximum tracking error

Lz = max
Û

∞∑
i=0

L(A+BK)iBû-i (4.17)

is obtained using a Worst-Case Sequence (WCS) of disturbances

Ûl ≡ 〈 . . . , û-2, û-1, û0〉, (4.18)

with

û-i = sign
(
L(A+BK)iB

)
ûpeak (4.19)

maximizing each addend of the sum in (4.17). So, we have

Lz =
∞∑
i=0

∣∣L(A+BK)iB
∣∣ûpeak. (4.20)

Let’s also define the ratio

rl ≡
Lz

ûpeak
=
∞∑
i=0

∣∣L(A+BK)iB
∣∣, (4.21)

that translates the bound ûpeak of the uncertainty û into the bound Lz of the tracking
error Lx̃. Since the closed-loop matrix A+BK is designed to be stable, this series converges
to some value depending on our choice of feedback gain K.

4.4 Series Convergence

Assuming that the closed-loop matrix is diagonalizable, we factorize it as follows:

A+BK = M

[
q1 0
0 q2

]
M-1, (4.22)
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with an invertible matrix M , so that the sum (4.21) is equivalent to:

rl =

∞∑
i=0

∣∣∣∣LM[
qi1 0
0 qi2

]
M-1B

∣∣∣∣
=

∞∑
i=0

∣∣α1q
i
1 + α2q

i
2

∣∣, (4.23)

with coefficients α1 and α2 obtained directly from the matrices LM and M-1B:

α1 ≡ LMc,1M
-1
r,1B

α2 ≡ LMc,2M
-1
r,2B,

(4.24)

where the matrix subindexes identify one single column or one single row:

M =
[
Mc,1 Mc,2

]
, M-1 =

[
M-1

r,1

M-1
r,2

]
. (4.25)

4.4.1 Real-Valued Poles

When the closed-loop matrix A + BK has real-valued poles q1, q2, we rename poles and
coefficients such that |qm| < |qm|. If |q1| = |q2|, we rename them such that |αm| ≤ |αm|.

4.4.1.1 Ratio Between Bounds

Let’s rewrite the series (4.23) making explicit the sign inside the absolute value of the i-th
addend αmq

i
m + αmq

i
m which is determined by the term with bigger absolute value.

Case 1: When αm = 0, the sum (4.23) is actually a geometric series

rl =
∞∑
i=0

∣∣αmqim∣∣, (4.26)

and converges to

rl =
|αm|

1− |qm|
. (4.27)

Case 2: When |αm| ≤ |αm|, since |qm| ≤ |qm|, we have that ∀i, |αmqim| ≤ |αmq
i
m|, which

means:

∀i ≥ 0, sign(αmq
i
m + αmq

i
m) = sign(αmq

i
m), (4.28)

so, the sum (4.23) is actually the sum of two geometric series

rl =

∞∑
i=0

∣∣αmqim + αmq
i
m

∣∣ =

(
αm

∞∑
i=0

(smqm)i + αm

∞∑
i=0

(smqm)i

)
sign(αm), (4.29)

where sm is the sign of qm, and the sum converges to

rl =

(
αm

1− smqm
+

αm

1− smqm

)
sign(αm). (4.30)
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Case 3: When |αm| > |αm|, with αm 6= 0 and |qm| < |qm|, we have

|αmqim| ≤ |αmq
i
m| ⇐⇒

∣∣∣∣qmqm
∣∣∣∣i ≤ ∣∣∣∣αm

αm

∣∣∣∣
⇐⇒ i ≥ ln|αm/αm|

ln |qm/qm|
≡ ν, (4.31)

where we call the fraction obtained ν. Note that both ln(|αm/αm|) and ln(|qm/qm|) are
negative. Similarly, we can obtain that |αmqim| > |αmq

i
m| when i < ν.

It means that

when i < n sign(αmq
i
m + αmq

i
m) = sign(αmq

i
m)

when i ≥ n sign(αmq
i
m + αmq

i
m) = sign(αmq

i
m),

(4.32)

where n ∈ N is the smallest integer bigger than ν (n = dνe, rounded up). So, we can
separate the sum (4.23) in four geometric series

rl =

(
αm

n−1∑
i=0

(smqm)i + αm

n−1∑
i=0

(smqm)i

)
sign(αm)

+

(
αm

∞∑
i=n

(smqm)i + αm

∞∑
i=n

(smqm)i

)
sign(αm), (4.33)

where sm is the sign of qm, and the sum converges to

rl =

(
αm

1− (smqm)n

1− smqm
+ αm

1− (smqm)n

1− smqm

)
sign(αm)

+

(
αm

(smqm)n

1− smqm
+ αm

(smqm)n

1− smqm

)
sign(αm). (4.34)

Notice that this latter expression reduces to the case 1 when n → ∞ (with αm = 0)
and to the case 2 when n = 0. So, we can unify all cases with this latter formulation
using different values of n.

All possibilities are contained in cases 1, 2 and 3, but we consider an additional case
which overlaps with cases 2 and 3 since it corresponds to an important property that we will
discuss in the next chapter:

Case 4: When poles qm, qm and coefficients αm, αm have equal signs

sign(αm) = sign(αm), sign(qm) = sign(qm), (4.35)

we have

sign(αmq
i
m + αmq

i
m) = sign(αmq

i
m) = sign(αmq

i
m) ∀i ≥ 0, (4.36)

so, regardless of the relation between coefficients αm, αm, we can use (4.30) or equiva-
lently n = 0 in (4.34).

4.4.1.2 Worst-Case Disturbances

The WCS of disturbances (4.18) follows the same separation in four cases since it depends
on the same sign structure (4.19). We name these sequences depending on the parameter n
since it will be helpful in the following sections.
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In cases 2 (4.28) and 4 (4.36) (corresponding to n = 0), the WCS is

Ûl = Û0 = 〈 . . . , û(2|0), û(1|0), û(0|0)〉, (4.37)

with elements of the form (4.19):

û(i|0) = simsign(αm)ûpeak. (4.38)

In the case 3 (4.32), we can write the WCS as

Ûl = 〈 Û0s
n
m, Ûn〉 (4.39)

where the final sequence of n iterations is:

Ûn = 〈 û(n−1|n), û(n−2|n), . . . , û(0|n)〉, (4.40)

with elements of the form (4.19):

û(i|n) = simsign(αm)ûpeak. (4.41)

In the case 1 (corresponding to n→∞) the WCS is

Ûl = Û∞ = 〈 . . . , û(2|∞), û(1|∞), û(0|∞)〉, (4.42)

also satisfying (4.19) with elements of the form (4.41).
Notice that each sequence Û0, Ûn, Û∞ depends on the sign of only one pole sm or sm

and is either constant when it is positive, or alternate when it is negative.

4.4.1.3 Reaching Vertices of the Minimum RPI Set

The coefficients α1, α2 (4.24) satisfy the bijective relation with L:[
α1 α2

]
= LM

[
M-1

r,1B1 0

0 M-1
r,2B2

]
, (4.43)

where, since M is invertible by hypothesis (4.22) and assuming that M-1
r,1B, M-1

r,2B are
different to 0, the matrix on the right is invertible. So, by choosing the vector L, we can get
any pair of coefficients α1, α2, corresponding to any of the four cases proposed before and to
any value of n ∈ N in the case 3 for given poles q1, q2. For each case, and each value of n,
we have a corresponding WCS of disturbances

Ûl = 〈 Û0s
n
m, Ûn〉, (4.44)

that reaches accordingly some vertex z ∈ Z maximizing the product Lx̃ subject to x̃ ∈ Z.
Therefore, by varing the vector L, we can reach all vertices of the minimum RPI set Z.

In the following sections we will choose the vector L to decide arbitrarily the value of
n ∈ N and the sign of αm.

4.4.1.4 Stationary Tracking Error

Iterating in (3.39) with the sequence Û0, the tracking error reaches some vertex z0

x̃→ z0 =

∞∑
i=0

(A+BK)iBû(i|0) ∈ Z, (4.45)

and maintains the stationary condition

smz0 = (A+BK)z0 +Bû(i|0), (4.46)

z0 = (A+BK)smz0 +Bû(i+1|0), (4.47)

while disturbances û(i|0) have the form (4.38) of the sequence Û0 as we show in the Appx. B.
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4.4.1.5 Numbered Vertices

Consider the worst-case subsequences (4.39) of case 3

Û1 = 〈û(0|1)〉 with n = 1

Û2 = 〈û(1|2), û(0|2)〉 with n = 2 (4.48)
...

Ûn = 〈û(n-1|n), . . . , û(1|n), û(0|n)〉 with n ∈ N.

For each subsequence Ûn, we choose a vector L producing sign(αm) = sn-1
m to obtain them

all starting in the same form (4.41):

û(n-1|n) = sn-1
m sign(αm)ûpeak

= sn-1
m sn-1

m ûpeak

= ûpeak, (4.49)

so that, we can nest them:

Û1 = 〈û(0|1)〉 = ûpeak with n = 1

Û2 =
〈
Û1, û(0|2)

〉
= 〈s0

m, s
1
m〉ûpeak with n = 2 (4.50)

...
Ûn =

〈
Ûn-1, û(0|n)

〉
= 〈s0

m, s
1
m, . . . , s

n-1
m 〉ûpeak with n ∈ N.

Therefore, after reaching the vertex x̃→ z0 (4.46), (4.47) produced by Û0, the WCS

Ûl = 〈Û0s
n
m, Ûn〉, (4.51)

actually finishes iteratively n worst-case sequences, reaching accordingly a new vertex at each
iteration:

z1 = (A+BK)z0 +Bû(0|1)sm

z2 = (A+BK)z1 +Bû(0|2)sm (4.52)
...

zn = (A+BK)zn-1 +Bû(0|n)sm.

As a result, vertices of the minimum RPI set Z are reached in order by the WCS Ûl,
and the number n (together with sign(αm)) identifies one particular vertex zn in Z. This
analytic computation of vertices is shown in Fig. 4.1, where we compare them with the outer
approximation proposed by [Rakovic 2005].

4.4.2 Complex-Valued Poles

When the poles are complex-conjugate q1, 2 = q e±jθ, also the coefficients α1, 2 = α e±jϕ are
complex conjugate, as we show in the Appx. C.

4.4.2.1 Ratio Between Bounds

In this case the infinite sum (4.23) becomes

rl =

∞∑
i=0

∣∣α1q
i
1 + α2q

i
2

∣∣ = α

∞∑
i=0

∣∣∣e(iθ+ϕ)j + e−(iθ+ϕ)j
∣∣∣ qi

= 2α

∞∑
i=0

|cos(iθ + ϕ)| qi. (4.53)
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Figure 4.1: minimum RPI sets. Both poles are positive on the left, and they have opposite signs
on the right. We show all terms of the summation (4.45) using the WCS Û0 (in red)

that reaches the vertex z0 and the three first iterations of the subsequence Ûn (4.52)
reaching the vertices z1 (in blue), z2 (in green) and z3 (in orange). We also show the
outer approximation of the minimum RPI set proposed in [Rakovic 2005] with dotted
black lines.

Considering poles with any angle θ, the factor | cos(iθ+φ)| is normally aperiodic making
hard the computation of rl. So, we propose the upper bound approximation

rl ≤ r′l = 2α
n−1∑
i=0

|cos(iθ + ϕ)| qi + 2α
∞∑
h=n

qh

= 2α

n−1∑
i=0

|cos(iθ + ϕ)| qi + 2α
qn

1− q
, (4.54)

where since | cos(iθ + ϕ)| ≤ 1 ∀i, we replace the cosine by 1 for all addend with i ≥ n,
choosing some number n ∈ N to ensure a small enough approximation error r̂l:

r̂l = rl − r′l, − 2αqn

1− q
< r̂l < 0. (4.55)

When the ratio between the angle θ and 2π is a rational number, |cos(iθ+ϕ)| varies with
the period

T =
LCM(θ, 2π)

θ
, (4.56)

given by the Least Common Multiple (LCM) of θ and 2π. So, we can rewrite rl as

rl = 2α
∞∑
h=0

(
T−1∑
i=0

|cos(iθ + ϕ)|qi
)
qhT , (4.57)

to obtain the exact convergence

rl = 2α

∑T−1
i=0 |cos(iθ + ϕ)|qi

1− qT
. (4.58)
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4.4.2.2 Worst-Case Disturbances

Based on the ratio rl (4.53), the WCS of disturbances

Ûl = 〈 . . . , û(2|l), û(1|l), û(0|l)〉, (4.59)

has elements of the form (4.19):

û(i|l) =
cos(iθ + ϕ)

|cos(iθ + ϕ)|
ûpeak. (4.60)

4.4.2.3 Reaching Vertices of the Minimum RPI Set

The WCS of disturbances Ûl is designed to maximize the tracking error Lx̃ for some vector
of coefficients L. Since x̃ is bound to the minimum RPI set Z, this maximum value Lz is
reached at some vertex z ∈ Z. The sequence Ûl is determined by the angles θ and ϕ from
poles q1, 2 = qe±jθ and coefficients α1, 2 = αe±jϕ. From the definition of coefficients α1, α2

(4.24), we can see that ϕ is actually the angle between L and B:

LB =LMM−1B

=LMc,1M
−1
r,1B +LMc,2M

−1
r,2B

=α1 + α2

=2α cos(ϕ) =⇒ |L||B| = 2α, ∠(L, B) = ϕ. (4.61)

So, considering vectors Li such that ∠(Li, B) = ϕ+ iθ, each iteration of the sequence (4.59)
reaches a corresponding vertex zi ∈ Z.

4.4.2.4 Vertices of the Minimum RPI Set

We consider the tracking error Lx̃ that reaches its maximum value at some vertex z0 ∈ Z
and we propose an outer approximation to such vertex:

z′0 =

n−1∑
i=0

(A+BK)iBû(i|l) +
qn

1− q
B

ûpeak

cos(ϕ)
, (4.62)

where the first term is obtained iterating n times in (3.39) with the WCS (4.59) Ûl and ϕ is
the angle between L and B. Let’s show that z′0 is an outer approximation of z0: Multiplying
by L on the left we obtain

Lz′0 =
n−1∑
i=0

L(A+BK)iBû(i|l) +
qn

1− q
LB

ûpeak

cos(ϕ)
, (4.63)

using the factorization (4.22), the coefficients α1, α2 from (4.24) and the product LB from
(4.61), it is

Lz′0 =
n−1∑
i=0

|α1q
i
1 + α2q

i
2|ûpeak + 2α

qn

1− q
ûpeak

=

(
2α

n−1∑
i=0

| cos(iθ + ϕ)|qi + 2α
qn

1− q

)
ûpeak, (4.64)

that is an upper bound approximation of the tracking error bound Lz0, from (4.54):

Lz′0 = r′lûpeak. (4.65)
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Figure 4.2: minimum RPI set. We show in red the summation (4.17) that reaches some vertex
z0, approximated here by z′0. Then, vertices z1, z2, z3, · · · (or their outer approxima-
tions) are obtained by one iteration each. We also show the outer approximation of the
minimum RPI set proposed in [Rakovic 2005] with dotted black lines.

The estimation error on z′0 is

ẑ0 = z0 − z′0 = µ
qn

1− q
B

ûpeak

cos(ϕ)
, with −1 < µ < 0. (4.66)

Starting from z′0, we can continue iterating in the closed-loop system (3.39) with worst-
case disturbances of the form (4.60) to obtain outer approximations of an arbitrary quantity
of vertices

z′1 = (A+BK)z′0 +Bû(-1|l)

z′2 = (A+BK)z′1 +Bû(-2|l)...
z′n = (A+BK)z′n−1 +Bû(-n|l)...

(4.67)

with decreasing estimation errors since the closed-loop matrix A + BK has poles with
norm q less than one. We compare these vertices with the minimum RPI set obtained from
[Rakovic 2005] in Fig. 4.2.

When the sequence Ûl (4.59) is periodic, using it in (3.39), the tracking error x̃ reaches
some vertex z0 ∈ Z once each period T :

z0 = (A+BK)Tz0 +
T-1∑
h=0

(A+BK)hBû(h|L). (4.68)

Using such vertex z0 as starting point, and iterating with worst-case disturbances of the form
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(4.60), we can obtain the vertices:

z1 = (A+BK)z0 +Bû(-1|l),

z2 = (A+BK)z1 +Bû(-2|l),...
z0 = (A+BK)zT-1 +Bû(-T |l).

(4.69)

4.5 Tracking Error and Constraints

Thanks to the bound (4.7) on the tracking error x̃, we can guarantee that all system con-
straints (3.42), (3.41) are satisfied as long as û ∈ V by constraining the reference trajectory
as:

xref ∈ X 	 Z, (4.70)

uref ∈ U 	KZ 	 V, (4.71)

where the symbol 	 represents a Pontryagin difference (Appx. A), these sets are non-empty
if

Z ⊂ X , (4.72)

KZ ⊕ V ⊂ U . (4.73)

Feasibility is guaranteed in this form up to a maximum uncertainty Vmax , defined when some
tracking error bound (that we call the limiting bound) reaches a constraint boundary in (4.72),
(4.73).

In Ch. 5, we will look for a feedback gain K to reduce specifically such limiting bound
in order to extend these feasibility guarantees while reducing restrictiveness of the reference
motion.

P→CĊ
Considering the constraints (2.27), (3.14), we obtain the conditions (4.72) and (4.73)
to be: [

1 0
]
Z ⊂ C, (4.74)

KZ ⊕ V ⊂ P − n (4.75)

Since the tracking error x̃ satisfies the original dynamics (3.40) (see Sec. 3.5), having
it stabilized (i.e., using the control law (3.33) with stable feedback gains (3.51), (3.52),

(3.53)) physically means that when a tracking error of the CoM
[
c̃
˜̇c

]
∈ Z is produced,

we move the tracking error of the cCoP p̃c ∈KZ⊕V even further to push it backwards:

¨̃c = ω2(c̃− p̃c). (4.76)

So, for stability, the set KZ ⊕ V bounding the cCoP tracking error p̃c is bigger than
the set

[
1 0

]
Z bounding the CoM tracking error c̃. Moreover, in humanoid robots

the compensated support polygon P − n (given by the foot size) is normally smaller
than the kinematic constraint C (given by the leg length). So, the tracking error bound
KZ ⊕ V of the cCoP p̃c is the limiting bound.
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P→X

Since this system does not include information of the CoM position, only the condition
(4.73) applies:

kZ ⊕ V ⊂ P − n (4.77)

and, therefore, the tracking error bound kZ ⊕V of the cCoP p̃c is the limiting bound.

Pd→XP

Since this system does not include information of the CoM position, only the condition
(4.72) applies: [

0 1
]
Z ⊂ P − n (4.78)

and, therefore, the tracking error bound
[
0 1

]
Z of the cCoP p̃c is the limiting bound.

4.6 Discussion and Conclusions

When the robot is unable to execute specified control actions, we lose the control of the
motion with unpredictable consequences due to its unstable dynamics. As the main result of
this chapter, we can state conditions to guarantee robust feasibility, and thereby ensuring a
safe operation of the robot:

• On the control settings, we must stabilize the closed-loop dynamics (4.1) of the
tracking error using stable feedback gains K (Sec. 3.5.2), and we must design the
reference constraints (4.70), (4.71) taking into account the tracking error bound x̃ ∈ Z.

• On the operation, we need bounded uncertainties û ∈ V and feasible goal tasks (4.70),
(4.71).

In order to generate all reference constraints without over-restricting the robot motion,
we need a precise measure of the tracking error bound. Considering the tracking error Lx̃ of
an arbitrary linear combination of state variables, we have obtained three important results:
the ratio rl (4.34), (4.54), (4.58) that relates the upper bound Lz of this tracking error with
the uncertainty of the system ûpeak; The WCS of disturbances Ûl (4.18); and based on the

structure of Ûl, we proposed an analytical form to compute the vertices of the minimum RPI
set (4.52), (4.67), (4.69).

Comparing each tracking error bound with their constraints, we observed that the cCoP
tracking error p̃cpeak is limiting the capability of the robot to handle bigger uncertainties or,
equivalently, to allow less restrictive reference motions. So, in the next chapter, we focus
particularly on reducing this tracking error bound.



Chapter 5

Robustness and Feedback Gains

5.1 Introduction

The goal of this chapter is to choose feedback gains to minimize the impact from uncer-
tainty on the robot operation. This way, we maximize the set of uncertainty that the robot
can handle safely while minimizing restrictiveness in the reference motion generation (4.70),
(4.71).

In Sec. 5.2 we map different regions of stable gains depending on the behaviors of the
WCS of disturbances described in the previous chapter. Focusing on the case of rigid ground
interactions, in Sec. 5.3, we obtain the feedback gains that minimize the impact from distur-
bances on the robot operation, producing a bound on the tracking error which is independent
from the sampling period. These results are validated in experiments and simulations using
the humanoid robot Toro, developed at DLR, in section Sec. 5.4; where we also discuss the
restrictiveness of the resulting control scheme. Considering a compliant ground interaction,
in Sec. 5.5, we obtain numerically the minimum cCoP tracking error bound, which results
smaller than in the rigid case for most standard compliance and sampling periods.

5.2 Map of Worst-Case Disturbances

As we discussed in Sec. 4.4, the WCS of disturbances Ûl depends on the eigenstructure of
the closed-loop matrix A+BK, and coefficients α1, α2 of the particular ratio rl that we are
studying. Since the eigenstructure and coefficients depend ultimately on the feedback gain
K, we can map these behaviors onto the set of stable gains shown in Figs. 5.1 and 5.2, as
follows.

5.2.1 Real-Valued and Complex Conjugate Poles

The relation between poles q and feedback gains K is defined by the characteristic equation

det(qI −A−BK) = 0 (5.1)

of the closed-loop system [Ogata 1995], where I is the identity matrix. For our second order
systems it is:

det(A+BK)− tr(A+BK)q + q2 = 0. (5.2)

Solving this quadratic equation, the poles

q1, 2 =
tr(A+BK)

2
±
√

tr(A+BK)2 − 4 det(A+BK)

2
(5.3)

32
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Figure 5.1: Map of behaviors for P→CĊ. This map is made for the cCoP tracking error p̃c

considering the feedback law (3.33). We indicate with colors the cases to compute r
described in Sec. 4.4: case 2 in green, case 3 in blue, case 4 in light blue and complex-
conjugate poles in red. Tab. 5.1 characterizes each region.

Figure 5.2: Map of behaviors for Pd→XP. This map is made for the cCoP tracking error p̃c

considering the feedback law (3.33). We indicate with colors the cases to compute r
described in Sec. 4.4: case 2 in green, case 3 in blue and complex-conjugate poles in red.
Tab. 5.2 characterizes each region.
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P→CĊ

Region qm qm |αm| ≷ |αm| Case

I + + (-)αm ≷ (-)αm 4
II + + (+)αm ≤ (-)αm 2
III + - (-)αm ≤ (-)αm 2
IV + - (+)αm ≤ (-)αm 2
V - - (+)αm > (-)αm 2
VI + + (-)αm > (+)αm 3
VII - + (-)αm > (+)αm 3
VIII - + (-)αm > (-)αm 3

Table 5.1: Region conditions.

Pd→XP

Region qm qm |αm| ≷ |αm| Case

I + - (-)αm ≤ (+)αm 2
II - - (-)αm ≤ (+)αm 2
III - + (+)αm > (-)αm 3
IV + + (+)αm > (-)αm 3

Table 5.2: Region conditions.

are real-valued (∆ ≥ 0), or complex conjugate (∆ ≤ 0) depending on the discriminant

∆ ≡ tr(A+BK)2 − 4 det(A+BK). (5.4)

This separates the set of stable feedback gains into two subsets with a frontier such that

∆ = 0, (5.5)

where both poles are equal q1 = q2 = q∗ and from (5.3), the trace is

tr(A+BK) = 2q∗. (5.6)

Considering gains of the form (3.34), this frontier describes a curve in coordinates (k-1, λ) as
shown in Figs. 5.1 and 5.2. Combining expressions (5.5) and (5.6) we can parameterize this
curve with the value of the pole q∗ ∈ {-1, 1}.

5.2.2 Equal Magnitude Poles

Coefficients α1, α2 are defined from the eigenvectors Mc,1, Mc,2 (4.24) associated to poles q1

and q2 respectively. Working with real-valued poles, we rename them such that |qm| > |qm|.
Since cases 2 and 3 described in Sec.4.4.1 depend on the ordinal relation |αm| ≶ |αm|,
when the order between poles q1, q2 is inverted, the coefficients αm and αm exchange names
accordingly, switching between cases 2 and 3 (or between 2 and 1 when some α is 0). On
the frontier between regions of feedback gains with different pole orders, both poles must
have the same magnitude. Since the curve (5.5) with equal poles q1 = q2 cannot produce
this separation (it is not crossing the region of real-valued poles), we look for gains where the
poles are opposite q1 = -q2:

q1 + q2 = tr(A+BK) = 0. (5.7)

Considering the vectors B and K (3.34):

B =

[
b1
b2

]
, K = k

[
1 λ

]
, (5.8)

the trace is:

tr(A+BK) = tr(A) + tr(BK)

= tr(A) +KB

= tr(A) + b1k + b2kλ,

(5.9)
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so, opposite poles (5.7) represent a line in coordinates (k-1, λ):

tr(A)k-1 + b2λ+ b1 = 0, (5.10)

as shown in Figs. 5.1 and 5.2.

5.2.3 Equal and Opposite Sign Poles

The case 4 described in Sec. 4.4.1 requires both poles with the same sign q1q2 > 0 (and both
coefficients α1α2 > 0, what will be discussed in Sec. 5.2.7). The frontier between poles with
equal and opposite sign is when one of the poles is zero:

q1q2 = det(A+BK) = 0. (5.11)

Considering vectors of the form (5.8) and the matrix

A =
[
Ac,1 Ac,2

]
=

[
a11 a12

a21 a22

]
, (5.12)

we can see that this determinant is

det(A+BK) = (a11 + b1k)(a22 + b2kλ)− (a12 + b1kλ)(a21 + b2k)

= a11a22 − a12a21 + (a11b2 − a21b1)kλ− (a12b2 − a22b1)k

= det(A) + det
[
Ac,1 B

]
kλ− det

[
Ac,2 B

]
k.

(5.13)

So, this frontier (5.11) corresponds to a line in coordinates (k-1, λ):

det(A)k-1 + det
[
Ac,1 B

]
λ− det

[
Ac,2 B

]
= 0, (5.14)

as shown in Figs. 5.1 and 5.2.

5.2.4 Gains for a Given Pole

Having one pole with an arbitrary real value q∗, corresponds to a set of feedback gains
satisfying

det(A+BK)− tr(A+BK)q∗ + q2
∗ = 0, (5.15)

we can see from the trace (5.9) and determinant (5.13) that this is equivalent to:

det(A) + det
[
Ac,1 B

]
kλ− det

[
Ac,2 B

]
k − tr(A)q∗ − b1kq∗ − b2kλq∗ + q2

∗ = 0(
det(A)− tr(A)q∗ + q2

∗
)
k−1 +

(
det
[
Ac,1 B

]
− b2q∗

)
λ− b1q∗ − det

[
Ac,2 B

]
= 0,

(5.16)

so this set of feedback gains K represents a line in coordinates (k-1, λ). As an example, the
stability margins in Fig. 5.1 and Fig. 5.2 are lines defined by q∗ = 1 and q∗ = -1.

For simplicity we rewrite this expression as

σ(∗,0)k
-1 + σ(∗,1)λ+ σ(∗,2) = 0, (5.17)

gathering all parameters in coefficients σ(∗,0), σ(∗,1) and σ(∗,2) that depend on the fixed pole
q∗ as indicated in their subscripts.



36 CHAPTER 5. ROBUSTNESS AND FEEDBACK GAINS

5.2.5 Intersections of Given Pole Lines

The line defined by any real-valued pole q∗ intersects the curve of equal poles (5.5) when
q1 = q2 = q∗ at some feedback gain K satisfying both expressions:

σ(∗,0)k
-1 + σ(∗,1)λ+ σ(∗,2) = 0, (5.18)

tr(A+BK)2 − 4 det(A+BK) = 0, (5.19)

This intersection can only be tangent to the curve (5.19) since the line (5.18) is defined by a
real-valued pole. Notice that on the point of tangency, the pole q∗ used to define the line is
also the parameter of the curve. Any other point in the region with real-valued poles can be
understood as the intersection

σ(1,0)k
-1 + σ(1,1)λ+ σ(1,2) = 0, (5.20)

σ(2,0)k
-1 + σ(2,1)λ+ σ(2,2) = 0, (5.21)

between two lines tangent to the curve (5.5), defined by poles q1 and q2. So, we can determine
the two poles of any point in the region of real-valued poles by simple identification of the
two tangents to (5.5) that croiss such point.

5.2.6 Interpreting Plots

We can recognize visually the distribution of poles in Figs. 5.1 and 5.2 considering the recap
of previous results:

a) Every line, tangent to the curve (5.5), maintains one pole constant with the value of
the pole q∗ in the point of tangency.

b) The curve of equal poles (5.5) is parameterized by the pole q∗. Varing q∗ from -1 to 1,
this curve goes from one vertex to another of the set of stable gains.

c) Every point in the region with real-valued poles is the intersection of two lines tangent
to the curve (5.5). These two lines define the two poles obtained at such point.

Let’s exemplify this on the map of behaviors shown in the Fig. 5.3. From a), we can
observe that on top of the curve, the parameter q∗ = e-ωτ is given by the horizontal line.
From b), the parameter decreases to the left reaching q∗ = 0 on the intersection with the
frontier line q1q2 = 0. So, for any point in this segment we have

0 ≤ qa ≤ e-ωτ . (5.22)

Towards the right, the parameter grows up to q∗ = 1 on the intersection with the stability
limit. So, for any point in this segment we have

e-ωτ ≤ qb ≤ 1. (5.23)

Noticing that every point in the region I is the intersection of one tangent to the segment
(5.22) and one tangent to the segment (5.23) (as in the illustrated example). From c), we
have that poles in region I are both positive, with one bigger and one smaller than e-ωτ .
Similarly, we can see that every point in region II is the intersection of two tangents to the
segment (5.23) only, concluding that poles in region II are both bigger than e-ωτ .

In the following, we detail the frontier curves between different regions for each system:
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Figure 5.3: Tangent lines for P→CĊ. We show how to recognize visually the distribution of poles
based on lines tangent to the frontier between complex-conjugate and real-valued poles.
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P→CĊ
From the trace (3.50) and determinant (3.49) of the closed-loop matrix, we obtain:
The frontier between regions with real-valued and complex conjugate poles (∆ = 0)
(5.5) is with

λ =

(
(2k-1 − 1)

√
cosh(ωτ)− 1 + 2

√
2k-1(1− k-1)

)
ω sinh(ωτ)

√
cosh(ωτ)− 1. (5.24)

The frontier between regions with equal and opposite sign poles (q1q2 = 0) (5.11) is
with

λ =
cosh(ωτ)− 1 + k-1

ω sinh(ωτ)
. (5.25)

The poles have opposite values (q1 + q2 = 0) with gains that satisfy (5.7)

λ =
(2k-1 − 1) cosh(ωτ) + 1

ω sinh(ωτ)
. (5.26)

P→X

The pole (3.54) changes its sign (q = 0) when

k =
eωτ

eωτ − 1
. (5.27)

Pd→XP

From the trace (3.57) and determinant (3.56) of the closed-loop matrix, we obtain:
The frontier between regions with real-valued and complex-conjugate poles (∆ = 0)
(5.5) is with

λ =

(√(
e(γ+ω)τ − 1

)
k-1 −

√
γ(eωτ − 1)eγτ

γ + ω

)2

(eγτ − 1)− ω

γ + ω
. (5.28)

The frontier between regions with equal and opposite sign poles (q1q2 = 0) (5.11) is
with

λ =
1− k-1

eγτ − 1
− γe-ωτ + ωeγτ

(γ + ω)(eγτ − 1)
. (5.29)

The poles have opposite values (q1 + q2 = 0) with gains that satisfy (5.7)

λ =
1 + e(γ+ω)τ

1− eγτ
k−1 − γ(eωτ − 1)eγτ

(γ + ω)(1− eγτ )
− ω

γ + ω
. (5.30)

5.2.7 cCoP Tracking Error Bound Ratio

As we concluded in Sec. 4.5, our priority is to minimize the impact from disturbances û ∈ V
on the cCoP tracking error bound p̃cpeak. So, we focus on the ratio (4.10), (4.12), (4.13):

r ≡
p̃cpeak

ûpeak
. (5.31)
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Considering this ratio, we can obtain the coefficients αm and αm to include in our maps the
frontiers between cases discussed in Sec. 4.4.1 (αm = 0, αm = 0, |αm| = |αm|).

Only with P→CĊ there is a separation of cases due to these limits corresponding to
αm = 0 and αm = 0. We describe the frontier for this case only:

P→CĊ

Consider the eigenvector V =
[
-ω-1

1

]
of the matrix A (3.27) associated to its stable

eigenvalue q = e-ωτ :
AV = qV . (5.32)

When λ = ω-1, feedback gains of the form (3.34) K = k
[
1 ω-1

]
are orthogonal to V ,

therefore, we have
(A+BK)V = AV = qV , (5.33)

which means that V and q are an eigenvector and a pole of the closed-loop matrix as
well. Hence, from the diagonalization (4.22), Mc,1 = V is a column of M and the
respective coefficient is

α1 = KMc,1M
-1
r,1B = 0. (5.34)

5.3 Torque-Controlled Robot on Rigid Ground

A rigid ground is the most common scenario for robots that work indoors. Typically, a fast
force control is also desired for the safety of the robot and its environment, specially when
managing expensive instruments or collaborating with humans.

In this section, we focus on this configuration to study in more detail, and minimize, the
effect of different uncertainty sources on the tracking error using systems P→CĊ and P→X.
In particular, we consider the torque-controlled humanoid robot Toro developed at DLR, but
the proposed mathematical results apply indistinctly to torque-controlled legged robots in
general.

5.3.1 Tracking Error and Gain Regions

From (5.31), the cCoP tracking error bound, expressed in terms of all uncertainty sources
(3.36) is

p̃cpeak = r(âpeak + n̂peak) + rk(ĉpeak + λˆ̇cpeak). (5.35)

When we have only actuation errors (ĉpeak = ˆ̇cpeak = 0), p̃cpeak is related to feedback gains K
only through the ratio r. Using the results obtained in Sec. 4.4, we present in Fig. 5.4 the
ratio r (5.31) on the entire set of stable gains K. We can see that it tends to infinity when
gains approach the stability boundaries and has a minimum value for poles q1 = 0, q2 = e-ωτ

that correspond to the feedback gain

K =
1

1− e-ωτ
[
1 ω−1

]
. (5.36)

With an estimation error ĉ, we can expect the minimum of p̃cpeak to be with smaller values

of k (bigger k-1), and with some estimation error ˆ̇c, smaller values of λ. We generate the level
curves of cCoP tracking error shown in Fig. 5.5 considering, as an example the proportion
between uncertainty sizes:

âpeak + n̂peak = ĉpeak +
ˆ̇cpeak

ω
, (5.37)
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Figure 5.4: Level curves of the ratio r. The minimum ratio r is reached with k-1 = 1− e-ωτ and
λ = ω-1 shown in black, and its values grow towards infinity on the stability boundary
shown in yellow. We also overlay the map of regions discussed earlier.

in order to weight similarly actuation and estimation errors, using ω to match units. Other
proportions exhibit similar level curves for p̃cpeak with minimum values in or close to λ = ω-1.

This choice (λ = ω-1) is particularly interesting since it has been shown to maximize con-
trollability in [Sugihara 2009] where it is called “the best CoM-CoP regulator”, and became,
therefore, a standard control choice [Morisawa 2012], [Englsberger 2011].

5.3.2 Optimal Gains

In the system P→CĊ, feedback gains of the form

K = k
[
1 ω-1

]
, (5.38)

produce the poles

q1 = e-ωτ , q2 = eωτ + k(1− eωτ ), (5.39)

obtained from the determinant (3.49) and trace (3.50) of the closed-loop matrix A +BK.
For λ = ω-1, moreover, we have obtained in (5.34) that

α1 = KMc,1M
-1
r,1B = 0, (5.40)

and α2 can be obtained from the product:

KB =KMM-1B

=KMc,1M
-1
r,1B +KMc,2M

-1
r,2B

=α1 + α2

=α2 = k(1− eωτ ).

(5.41)
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Figure 5.5: Level curves of the tracking error bound p̃cpeak. Using the proportion of uncer-
tainties (5.37), The minimum cCoP tracking error p̃cpeak, shown in black, is reached with

λ = ω-1 and its values grow towards infinity on the stability boundary shown in yellow.
We also overlay the map of regions discussed earlier.

So, the ratio r is the sum (4.23):

r =
p̃cpeak

ûpeak
=
∞∑
i=0

|q2α2|+ 1, (5.42)

that converges to (4.34):

r =
k(eωτ − 1)

1− |q2|
+ 1, (5.43)

and depending on the sign of q2 it is:

r =


1

k−1 + 2 if eωτ − 1 ≤ 1
k−1 , (q2 ≥ 0),

2+(eωτ−1)
2−(k−1)(eωτ−1) if 1

k−1 ≤ eωτ − 1 < 2
k−1 , (q2 ≤ 0),

(5.44)

defined within the stability limits (3.52), (3.53) with λ = ω-1.
On the other hand, the system P→X has only one pole obtained in (3.54):

q = A+Bk = eωτ + k(1− eωτ ), (5.45)

so, from the summation (4.21), the ratio r is

r =
p̃cpeak

ûpeak
=

∞∑
i=0

|k q (1− eωτ )|+ 1, (5.46)

that coincides with the ratio (5.42) for the system P→CĊ, and therefore converges to (5.44).
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Since gains of the form (5.38) feedback the DCM (2.18) ξ on P→CĊ, we can see that
both systems (P→CĊ and P→X) result with the same control law (3.33):

u = pc = pcref + kξ̃ + û, (5.47)

the same uncertainty (3.36):
û = â− n̂− kξ̂ ∈ V, (5.48)

and the same cCoP tracking error bound (4.12):

p̃cpeak = r(âpeak + n̂peak) + rkξ̂peak. (5.49)

Considering the ratio r with q2 ≥ 0 in (5.44) (region I), the derivatives of this tracking
error are

dp̃cpeak

dk
=

(
2(k − 1)2 − 1

)
ξ̂peak − n̂peak − âpeak

(k − 1)2
, (5.50)

d2p̃cpeak

dk2
=

2

(k − 1)3
(n̂peak + âpeak + ξ̂peak). (5.51)

Since
d2p̃cpeak
dk2

is positive for any stable gain k (3.55), the minimum tracking error

p̃c∗peak =

(√
ξ̂peak +

√
2(âpeak + n̂peak + ξ̂peak)

)2

(5.52)

is obtained using a feedback gain k∗ such that
p̃cpeak

dk
= 0:

k∗ = 1 +

√
âpeak + n̂peak + ξ̂peak

2ξ̂peak

. (5.53)

Taking typical uncertainty sizes [Flayols 2017] as:

n̂peak + âpeak = ξ̂peak = 0.5 cm, (5.54)

the optimal gain is k∗ = 2, and the minimal bound of the cCoP tracking error p̃c∗peak = 4.5 cm,
as shown in Fig. 5.6, that corresponds to the half-width of Toro’s feet.

Notice that, as a result of the expression of r (5.44), once the feedback gain has been
chosen, the cCoP tracking error bound p̃c∗peak does not depend on the sampling period τ as
long as it is shorter than

τ0 = ω-1 ln

(
1

k − 1
+ 1

)
. (5.55)

The tracking error bound p̃c∗peak is not improved by reducing the sampling period below this
value, but it degrades sharply when τ > τ0, as shown in Fig. 5.6. For the robot Toro
(ω ≈ 3.2s-1), τ0 = 216 ms.

5.3.3 Independence of the sampling period

The independence of the sampling period observed in (5.44) when λ = ω-1, is actually a
property of feedback gains in regions I and II as we show in following:

From Tab. 5.1, in regions I and II, the WCS of disturbances Ûl = Û0 is a constant
disturbance ûpeak (n = 0 with qm > 0). Hence, the tracking error (4.10) converges to the
stationary value (see Sec.4.4.1.4):

p̃cpeak = |Kz0|+ ûpeak, (5.56)
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Figure 5.6: Relation between cCoP tracking error bound and sampling period. The cCoP
tracking error bound produced by actuation and estimation errors of up to 0.5 cm, using
the optimal gains k∗ = 2 and λ = ω-1 (ω ≈ 3.2s-1 for Toro) for different sampling
periods τ .

where the vertex z0 satisfies (4.46):

z0 = (A+BK)z0 +Bûpeak, (5.57)

which can be easily obtained:

z0 =

[
c̃0
˜̇c0

]
=

[
ûpeak
1−k
0

]
. (5.58)

The ratio r defined in (5.31) is

r =
|Kz0|
ûpeak

+ 1 =
1

k − 1
+ 2, (5.59)

which is independent from λ, ω and τ for gains in regions I and II.

Proof. Let’s demonstrate formally that regions I and II correspond to cases 2 and 4 (n = 0).
As indicated in (4.28) and (4.36) it implies that

sign(αmq
i
m + αmq

i
m) = sign(αmq

i
m) ∀ i ≥ 0 (5.60)

the sign of every addend in the infinite sum (4.23) coincides with the sign of the term asso-
ciated to the bigger eigenvalue qm.

Rewriting the addend in (4.23) we have

αmq
i
m + αmq

i
m = (αm + αm)qim + αm(qim − qim), (5.61)

the first term is negative since we can observe from (4.24) that

αm + αm = KB (5.62)

= k − k cosh(ωτ)− kλω sinhωτ (5.63)

= qm + qm − 2 cosh(ωτ) < 0, (5.64)
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where the last equality follows from (3.50). With the help of a computer algebra system, we
can obtain

αm =
1− qm

(k − 1)(qm − qm)
(qmqm − 1 + k(1− qm)), (5.65)

αm =
1− qm

(k − 1)(qm − qm)
(qmqm − 1 + k(1− qm)). (5.66)

Having αm also negative would complete the proof. The fraction on the left is positive, so αm

has the same sign as the factor on the right. From (3.49), in region I (λ ≥ ω-1) we have:

qmqm − 1 + k(1− qm) = k(cosh(ωτ)− λω sinh(ωτ)− qm) (5.67)

≤ k(e-ωτ − qm). (5.68)

Region II (λ ≤ ω-1) satisfies that k ≤ 1 + e-ωτ , so

qm − 1 + k(1− qm) ≤ q2
m − 1 + k(1− qm) (5.69)

≤ (1− qm)(k − 1− qm) (5.70)

≤ (1− qm)(e-ωτ − qm). (5.71)

In both cases, this factor is negative since at least one pole is greater or equal to e-ωτ in these
regions (check the example in Sec. 5.2.6), so qm ≥ e-ωτ , and n = 0 follows.

Notice that the stationary vertex z0 satisfies the equilibrium condition of the system
dynamics (3.1) in the tracking error space, as mentioned in Sec. 3.5. It is, zero velocity
˙̃c0 = ˜̇c0 = 0, and CoM coinciding with cCoP p̃cpeak = c̃0.

5.3.4 Uncompensated Vertical Motion (a preliminary discussion)

Variations in the vertical motion cz, c̈z, gz, fze affect the x, y components of the CoM ac-
celeration c̈. As we discussed in Sec. 3.3, the WBC must compensate for them based on
estimated values c′z, c̈′z, g′z, f ′ze to maintain the linear CoM dynamics (3.10), which is de-
tailed in [Brasseur 2015]. Errors in this estimation, however, have two effects: the first one
is a disturbance of the form n̂ that has been discussed in Sec. 3.3.1; as a second effect, they
modify the linear dynamics (3.10) producing the parameter ω to vary with time between
some bounds ωmin ≤ ω ≤ ωmax . Since the set of stable gains and all regions depend on ω as
shown in Fig. 5.1, our fixed choice of feedback gain is not optimal anymore.

Looking at the level curves in Figs. 5.4 and 5.5, the tracking error p̃cpeak grows faster
for variations of λ towards region C.C. than towards region I. So, we may be interested in
maintaining our feedback gain K in region I for any value of ω. Choosing λ = ω−1

min and k-1

within the limits of the region (5.25) and (3.52):

ωmax

ωmin
sinh(ωmax τ) + 1− cosh(ωmax τ) ≤ k-1 < 1, (5.72)

Our feedback gain K can be maintained in region I for variations such that

ωmin

ωmax
> tanh(ωmax τ). (5.73)

As an example, the largest variation presented in [Brasseur 2015], between ωmin = 3.37 s-1

and ωmax = 3.5 s-1 satisfies this condition

ωmin

ωmax
= 0.96 > 0.018 = tanh(ωmax τ), (5.74)
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using an standard sampling period τ = 5 ms.
Within region I, the cCoP tracking error bound p̃cpeak (5.35) is linearly related to λ reaching

its minimum value on the lower bound of the region λ = ω-1. Using an arbitrary gain λ = ω-1
min

in region I, the optimal gain k∗ can be obtained as before in (5.53):

k∗ = 1 +

√
â+ n̂+ ĉ+ ω-1

min
ˆ̇c

2(ĉ+ λˆ̇c)
, (5.75)

that produces the minimum tracking error bound:

p̃c∗peak =

(√
ĉ+ ω-1

min
ˆ̇c+

√
2(â+ n̂+ ĉ+ ω-1

min
ˆ̇c)

)2

. (5.76)

5.4 Simulations and Experiments

Let’s evaluate the tracking error dynamics with long sampling periods τ in experiments and
simulations with the humanoid robot Toro1, controlled as follows:

CoM Controller: We use the DCM-based linear feedback (5.47), with feedback gain λ=ω−1

and k = 2 (used in the example of Fig. 5.6), and several sampling periods τ , specified
in each case. For the particular case of the robot Toro, ω = 3.21 s−1.

Whole-Body Controller: Joint positions and contact forces are controlled with an inverse
dynamics scheme based on a standard Quadratic Program (QP) [Englsberger 2018].
In this scheme, uncertainties û and non-linearities n are partially compensated using
arm movements to introduce variations of the angular momentum L̇. The sampling
period of this QP-based WBC is kept constant at 3 ms, unrelated to the CoM sampling
period τ used in (5.47).

Uncertainty Sources: The control law (5.47) generates piece-wise constant values of the
input pc according to (3.21) but, the reference motion has been generated considering a
continuous variation of pcref , this introduces a numerical error during the double support
stages (when both feet are on the ground) that can be observed in Figs. 5.7 and 5.8. An
estimation error is also introduced in the CP-feedback (5.47). And in the experiments
we have, moreover, mechanical â and model n̂ errors (3.36).

We can observe in Fig. 5.7 that, in experiments with Toro, the lateral DCM and cCoP
tracking performances are similar and satisfactory when τ = 51 ms or 120 ms, as expected
from our theoretical analysis. For longer sampling periods, the WBC generates larger arm
motions in order to compensate for the growing numerical error and other non-linearities,
which ends up triggering an emergency stop due to the increased risk of collision, (see Fig 5.9).

The resulting failure originates in the QP-based WBC and not the DCM linear feed-
back (5.47), so this doesn’t contradict the proposed theoretical analysis. In simulations, this
safety system is not triggered and we can observe in Fig. 5.8 that the tracking performance
is maintained at a satisfactory level for sampling periods up to τ = 216 ms while degrading
sharply afterwards, validating strikingly well the theoretical analysis proposed earlier.

1Simulations and experiments in this section were provided courtesy of Johannes Englsberger at the DLR
for the article [Villa 2019].
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Figure 5.7: Long sampling period experiments. Lateral component of walking experiments
with the humanoid robot Toro using a feedback gain k = 2 and sampling period τ =
51 ms (up) or τ = 120 ms (down). The DCM ξ is represented in blue, while the cCoP
is in dashed black. The reference values ξref and pref are indicated with dotted lines.
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Figure 5.8: Long sampling period simulations. Lateral component of walking simulations with
the humanoid robot Toro using a feedback gain k = 2 and sampling periods τ = 216 ms
(up) or τ = 232 ms (down). The DCM ξ is represented in blue, while the cCoP is
in dashed black. The reference values ξref and pref are indicated with dotted lines.
The numerical error results from the different functional form between black dotted and
dashed curves during double support stages.
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Figure 5.9: Emergency stop. Robot Toro triggering an emergency stop when the minimum allowed
distance between arm and leg is reached.

5.4.1 Restrictiveness and Future Work

We can observe in Figs. 5.7 and 5.8, that the cCoP tracking error p̃c (difference between dotted
and dashed black curves) grows, in average, with the sampling period τ . We show this in
Fig. 5.10, indicating for each fraction of the tracking error bound p̃cpeak, the percentage of
the experiment (or simulation) time during which the tracking error p̃c has been maintained
below. As an example, in the experiment using τ = 100 ms, the tracking error p̃c was
maintained below 20% of the bound p̃cpeak during 83% of the experiment time. We can observe
that using longer sampling periods, higher tracking errors are reached more often, always
respecting the upper bound p̃peak. This bound is, however, independent of the sampling
period τ when using feedback gains in regions I and II, as discussed in Sec. 5.3.3.

During the robot motion, disturbances normally do not follow the WCS, resulting in
cCoP tracking errors p̃c that are, most of the time, smaller than the bound p̃cpeak as shown
in Fig. 5.10. In order to guarantee a safe robot operation, the control system must be able
to handle the maximum tracking error p̃cpeak since it could be reached with the WCS of
disturbances. This implies restricting the reference constraints (4.70), (4.71) for the worst
case. Since it is over-restricting most of the time, we still can improve the management of
uncertainty while maintaining safety guarantees. As a future work, we consider:

• Introducing a saturation in the feedback term of (3.33) ũ, below the maximum value
required ũpeak, part of the disturbance may be postponed (evolving in open loop) up
to a time in the future when the control ũ is not saturated. This strategy can be
complemented including a feedback term in the step placement, as usual in robots with
point feet [Kim 2016], and using the larger support polygon P of the double support
stages to compensate for bigger (or postponed) disturbances.

• Using a disturbance observer as the one presented in [Smaldone 2019], we can recognize
early a WCS of disturbances to change the feedback gainK into a region with a different
worst-case behavior, in the map of Figs. 5.1, 5.2, in order to avoid tracking error peaks.
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Figure 5.10: Cumulated time of each tracking error size. We show the portion of time during
which the cCoP tracking errors p̃c is smaller than each given fraction of the bound value
p̃cpeak. This tracking error timing is shown for whole-body experiments (τ = 2 and
100 ms) and simulation (τ = 200 ms) (up); and for CoM simulations with disturbances
such that û = ±ûpeak where the sign ± is randomly decided every 50 ms (down). In
all cases k = 2.
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5.5 Compliant Ground Interaction

When the ground is not rigid, the dynamics of interaction with the ground produces a slower
control of forces, and therefore of the CoP. We have a similar dynamics in position controlled
robots, which typically rely on the deflection of a spring in the ankle to measure and exert
ground contact forces. For these cases, we cannot neglect the dynamics of contact forces
(3.4) [Kajita 2010]. In this section, we study how to minimize the effect from uncertainty
sources on the cCoP tracking error using the system Pd→XP and the humanoid robot HRP-4
(ω ≈ 3.54) developed by Kawada Industries. However, once again, most part of the discussion
applies to legged robots in general.

5.5.1 Tracking Error and Gain Regions

We show in Fig. 5.11 the ratio r (5.31) for every stable feedback gain K with soft (γ = 2ω)
and stiff (γ = 40ω) ground interaction. It is minimum when both poles are zero q1 = q2 = 0,
and grows towards the stability limits.

Including all sources of uncertainty (3.36), the cCoP tracking error bound (5.31) is

p̃cpeak = r

(
âpeak + n̂peak +

ˆ̇npeak

γ

)
+ rkξ̂peak + rkλp̂cpeak. (5.77)

From this expression we can expect the minimum tracking error to be reached with smaller
gains k and λ than the minimum ratio r, depending on the proportion between uncertainties.
We show in Fig. 5.12 level curves of the cCoP tracking error for stable gains with equivalent
magnitudes for each uncertainty source:

âpeak + n̂peak +
ˆ̇npeak

γ
= ξ̂peak = p̂cpeak. (5.78)

Soft ground interactions (small γ) reach the minimum bound p̃c∗peak in region C.C. where
the closed-loop poles have complex-conjugate values. Hence, the ratio r must be computed
numerically from the outer approximation proposed in Sec. 4.4.2. Stiffer ground interactions
(high γ) reach the minimum bound p̃c∗peak in the region IV with real-valued poles and the ratio
r is obtained from (4.34).

5.5.2 Optimal Gains

In the limit of rigid ground interaction (γ →∞), the control system Pd→XP (3.31)[
ξ+

pc+

]
=

[
eωτ 0
0 0

][
ξ
pc

]
+

[
1− eωτ

1

]
pcdes (5.79)

is decoupled in a system of the form P→X (3.29) in the first row, and an instantaneous cCoP
control in the second row:

pc+ = pcdes . (5.80)

In such case, moreover, the line of gains for a null pole q1q2 = 0 (5.29) satisfies:

λ = lim
γ→∞

(
1− k-1

eγτ − 1
− γe-ωτ + ωeγτ

(γ + ω)(eγτ − 1)

)
= lim
γ→∞

-

(
e-ωτ

(1 + ω
γ )(eγτ − 1)

+
ω

(γ + ω)(1− e-γτ )

)
= 0,

(5.81)
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Figure 5.11: Level curves of the ratio r. We show soft γ = 2ω (left) and stiff γ = 40ω (right)
ground interactions. In both cases the sampling period is τ = 87 ms. The level is
minimum in black and grows towards the stability limits in yellow. We also overlay
the map of regions discussed earlier.

Figure 5.12: Level curves of the cCoP tracking error bound p̃cpeak. We show soft γ = 2ω
(left) and stiff γ = 40ω (right) ground contact. In both cases the sampling period is
τ = 87 ms. The level is minimum in black and grows towards the stability limits in
yellow. We also overlay the map of regions discussed earlier.
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Figure 5.13: Relation between cCoP tracking error bound, compliance and sampling
period. The minimum cCoP tracking error bound p̃c∗peak obtained numerically with
uncertainty sources of up to 0.5 cm and sampling periods τ = 5, 20, 50, 87 and
100 ms. Black curves corresponds to DCM-feedback law and blue curves show the case
of complete state feedback.

so that both r and rkλ have minimum values with λ = 0. Using this gain, the control law
(3.33) is

pc = pcref + kξ̃ + û, (5.82)

that is equivalent to (5.47). So, all results of the Sec. 5.3.2 follows.

When γ has finite values, we consider both the DCM-feedback law (using λ = 0) (5.81)
and the complete state feedback law (3.33) to generate the Fig. 5.13. Considering standard
uncertainty amplitudes [Flayols 2017], [Benallegue 2015]:

âpeak + n̂peak +
ˆ̇npeak

γ
= ξ̂peak = p̂cpeak = 0.5 cm, (5.83)

in this figure, optimal feedback gains are obtained numerically to minimize the cCoP tracking
error bound (5.77), which is shown as a function of the interaction compliance γ-1 for several
sampling periods.

We can observe that the DCM-feedback law is close to optimal for hard ground interactions
(γ-1 < 1

5ω ) and degrades sharply when the interaction is softer.

We can also see that some degree of compliance in the ground interaction slightly reduces
the size of the minimum cCoP tracking error p̃c∗peak with respect to the rigid case, from 4.5
cm down to 3.5 cm when

0 < γ-1 ≤ 1

2ω
, 0 < τ ≤ 87 ms, (5.84)

which contains most practical uses. For example, [Kajita 2010, Morisawa 2012] use γ-1 = 1
5.6ω

with τ = 5 ms and [Caron 2019] uses γ-1 = 1
2ω with τ = 5 ms.
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5.6 Discussion and Conclusions

Thanks to the conditions for a safe operation introduced in Ch. 4, we can safely manage
uncertainties up to a maximum set Vmax by restricting the robot motion for the worst case
of maximum tracking error. We propose to minimize the tracking error bound p̃cpeak by an
appropriate choice of feedback gain K. Thus, we can generate less restricted motions or
handle bigger uncertainties coming from, for example, cheaper sensors and actuators, while
maintaining our safety guarantees.

When the ground interaction is rigid, the minimum tracking error bound p̃c∗peak (5.52) is
obtained using the feedback gains K∗ reported in (5.53). Feedback gains in the region I
of Fig. 5.1, such as K∗, produce tracking error bounds that are independent of the sam-
pling period τ . For standard uncertainties â, n̂, x̂, we can use sampling periods as long as
τ ≈ 200 ms with literally no impact on the tracking error bound p̃c∗peak and, therefore, on
the guarantee that balance can be maintained safely. This provides some degree of freedom
in the choice of sampling period, which could be used to avoid exciting structural vibration
modes [Englsberger 2018] or to save energy computing less often the control law (3.33), since
the CPU consumption has been observed to be a significant fraction of the whole power
consumption of the robot Toro [Henze 2019].

When the ground interaction is compliant, the optimal feedback gain K∗ can be obtained
by minimizing numerically the tracking error bound (5.77). We have observed that the min-
imum tracking error bound p̃c∗peak is bounded by the rigid case for most standard compliance
γ, sampling periods τ and uncertainties â, n̂, x̂.

In order to perform the analysis proposed in this chapter, we have developed maps of
worst-case behavior of disturbances to identify the appropriate computation of the ratio r
(5.31) from Sec. 4.4 and main characteristics of the tracking error obtained from a given
feedback gain.



Chapter 6

Reference Motion Generation

6.1 Introduction

The reference motion is designed as a feasible trajectory for the robot to achieve some goal.
It must satisfy the system dynamics (3.38) and tighter constraints (4.70), (4.71), to account
for uncertainties. Considering the particular case of biped robots, we generate the reference
motion based on the set of variables presented in Sec. 6.2. In order to compute it online
considering its hard constraints, we use the method of Model Predictive Control MPC, that
is briefly described in Sec. 6.3. Our implementation is detailed in Secs. 6.4, 6.3.2 and 6.3.3.
We discuss, in Sec. 6.3.4 an initial constraint to feedback the current state of the robot in the
motion generation scheme, which closes the dashed connection of Fig. 3.1. We compare in
simulations the resulting “closed-loop” controller with the standard “open loop” implemen-
tation.

6.2 Walking Motion Configuration

Iterating with the dynamics (3.38), the reference trajectory Xref with initial state xref ·0, is
the sequence of states

xref ·1
xref ·2

...
xref ·i

...

 =


A
A2

...
Ai

...

xref ·0 +


B 0 0 0
AB B 0 0

...
. . . 0

Ai-1B Ai-2B · · · B
...

. . .




uref ·0
uref ·1

...
uref ·i

...

, (6.1)

when a reference sequence of control actions Uref is executed.
At every time instant, the robot motion x, u must satisfy the physical constraints (2.26),

(3.14), (2.27) reproduced here:

s ∈ S(sk) (6.2)

pc ∈ P(sk)− n (6.3)

c ∈ C(sk). (6.4)

Assuming rectangular sets as shown in Figs.6.1, 6.2, 6.3, the reference motion is con-
strained in the simple form (4.71), (4.70):

∆s ≤ ∆s ≤ ∆s, (6.5)

∆pc + p̃cpeak ≤ ∆pcref ≤ ∆pc − p̃cpeak, (6.6)

∆c+ c̃peak ≤ ∆cref ≤ ∆c− c̃peak, (6.7)

54
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Figure 6.1: Stepping Area. On the left, we show the restriction in the placement of new steps, that
we approximate with a rectangular region S on the ground. On the right, we present
the first two steps of the summation (6.8).

where ∆s, ∆p and ∆c are the CoF, CoP and CoM measured from the center of each respective
constraint set with lower and upper limits indicated. Introducing these relative measures,
during the j-th step, the global variables can be written as:

sj ≡ s0 +

j∑
b=1

(
(-1)bvc + ∆sb

)
, (6.8)

pc ≡ sj + ∆pcref + p̃c, (6.9)

c ≡ sj + ∆cref + c̃, (6.10)

where constant vector vc indicates the center of the next stepping area S measured from the
center of the landed foot at each instant.

We need a sequence of control actions uref ·i such that the resulting reference motion (6.1)
satisfies the constraints (6.5), (6.6), (6.7). A trajectory predefined off-line can be used as
done in [Choi 2006], or in [Song 2015] where a handcrafted trajectory is adapted to satisfy the
walking constraints. For the on-line generation of the trajectory considering hard constraints,
Model Predictive Control (MPC) is one of few suitable methods [Mayne 2000] and, therefore,
has been used extensively for the control of legged robots. This allows generating walking
motions online with automatic footstep placement [Herdt 2010], taking into account visual
feedback [Dune 2011], avoiding collisions in a crowd [Bohórquez 2016], undertaking physical
collaborations with humans [Agravante 2016], etc.

6.3 Model Predictive Control

At each time instant i, MPC generates the reference control action uref ·i to be executed
during the next time-step of duration T . This method takes into account a finite preview
horizon of N time-steps starting at the current time i to generate an optimal control action
uref ·i following the steps [Fernandez-Camacho 1995]:

1 - A cost function is generated, based on the robot model and the initial state xref ·i,
having its minimum value in some aimed motion xaim·(h|i), uaim·(h|i), where we use i to
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Figure 6.2: Support polygon. Assuming bounded disturbances, the cCoP pc is bound to the
region in dashed lines, which is always contained in the support polygon P−n (external
rectangle) if we constrain the reference cCoP pcref to the internal rectangle. The support
polygon changes shape during the double support stage. Nevertheless, sampling the
system right before and right after the change of supporting foot, we can implement the
restrictions for the single support only. For this, we match the periods of discretization
and double support (T = 100 ms) in the reference generation.
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Figure 6.3: Kinematic Constraint. Leg lengths restrict the CoM c to lie in a region C around
the landed foot sj , that we approximate with a square. We satisfy this limitation, with
bounded uncertainties, by restricting the reference CoM cref to the internal square.
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t = i+ h t > tj+1 · · · t > tj+2 · · · t > tj+M

i+ 0 0 0 0
i+ 1 0 0 0

... 0 · · · 0 · · · 0
tj+1 + 1 1 0 0

... 1 · · ·
... · · · 0

tj+M + 1 1 1 1
... 1 · · · 1 · · · 1

i+N 1 1 1

Table 6.1: The landed foot at each preview time h is determined from
the condition associated to its corresponding column. As
a result, we obtain the matrix Ei.

Ei =



0 0 0
0

1
...

...
1
...

1
...

1 1 1 1


(6.17)

index the real time instant when the preview horizon starts, and h ∈ {0, · · · , N} to
index future time instants in the preview horizon.

2 - An optimal sequence of control actions

Uref ·i ≡ 〈uref ·(0|i), uref ·(1|i), . . . , uref ·(N-1|i)〉, (6.11)

according to the system dynamics, is obtained minimizing the cost function within the
system constraints (4.70), (4.71).

3 - The resulting control action uref ·i ≡ uref ·(0|i) is executed during one time-step reaching
a new state xref ·i+1, that is used to initialize the computation of the next control action
uref ·i+1 ≡ uref ·(0|i+1) (which in principle may be different from uref ·(1|i) because of the
new information available).

6.3.1 Predicted Trajectory

Let’s consider the relative variables ∆s, ∆uref to design the optimization problem required
in MPC, where ∆uref is the relative cCoP ∆pcref or its desired value ∆pcdes·ref depending on
the system. We can write the predicted control sequence as:

Uref ·i = Si + ∆Uref ·i, (6.12)

where
∆Uref ·i ≡ 〈∆uref ·(0|i), ∆uref ·(1|i), . . . , ∆uref ·(N -1|i)〉 ∈ RN , (6.13)

and Si indicates the landed foot at each time h in the preview horizon, from (6.8) we have:

Si = S0·i +Ei(Vc·i + ∆Si) ∈ RN , (6.14)

where S0·i ∈ RN indicates in all its elements the global position s(0|i) of the foot that is
landed when the preview horizon starts. The M predicted future steps

Vc·i ≡ 〈(-1)j(i)+1vc, (-1)j(i)+2vc, . . . , (-1)j(i)+Mvc〉 ∈ RM , (6.15)

∆Si ≡ 〈∆s(1|i), ∆s(2|i), . . . , ∆s(M |i)〉 ∈ RM , (6.16)

with the j-th step landed when the preview horizon starts, are adapted to their respective
timing in the preview horizon using the matrix Ei, obtained from a logic table as Tab. 6.1. We
use predefined times tj to change the supporting foot as in [Herdt 2010], but in principle, a
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different criterion could be used, as for example based on the capturability area [Pratt 2006],
or on the CoM potential energy [Imanishi 2018].

Iterating in the reference dynamics (3.38) with this predicted control sequence Uref ·i as
shown in (6.1), we can obtain the predicted trajectory:

Xref ·i = ANxref ·(0|i) +BNUref ·i, (6.18)

where AN and BN are the extended matrices shown in (6.1) for N iterations.

We decide the control sequence Uref ·i from an optimization problem with a cost function
to penalize undesired states and restricted to produce only feasible motions as we describe in
the following sections.

6.3.2 Cost Function

We penalize the states xref ·(h|i) and inputs ∆uref ·(h|i) along the preview horizon based on the
distance to the aimed motion xaim·(h|i), uaim·(h|i) using a cost function of the form

Vi(Uref ·i,xref ·(0|i)) =
N∑
h=1

σx‖Lxref ·(h|i) −Lxaim·(h|i)‖2 +
N−1∑
h=0

σu‖∆uref ·(h|i) −∆uaim·(h|i)‖2,

(6.19)
where σx, σu ∈ R are predefined weights and we are keeping the notation introduced in
Ch.4 for an arbitrary linear combination of state variables Lxref ·(h|i). Later in this chapter

we present simulations using the system P→CĊ where we aim for some desired DCM ξaim
(L =

[
1 ω-1

]
) and for some desired CoM (L =

[
1 0

]
). Moreover, we normally aim to

minimize the control input ∆Uaim = 0 in order to reduce the effort of motors, maintain pcref
far from its constraint bounds and produce smooth motions.

6.3.3 Terminal Constraint

At each iteration with MPC, we compute a sequence of N control actions uref ·(h|i), then we
only execute the first one uref ·(0|i) and, at the next time-step (i + 1), we compute N new
actions uref ·(h|i+1). Thanks to this mechanism, we can be sure that feasible control actions
uref ·(h|i) could be executed, at least during N time-steps in the future. Feasibility in posterior
times (so-called recursive feasibility) can be ensured by introducing a terminal constraint as

xref ·(N |i) ∈ Xter, (6.20)

to reach at the end of the preview horizon some set of states Xter that satisfies all system
constraints and where the robot can stay for indefinite time using some feasible control law.

In legged robots, it is normally achieved by imposing that the robot is able to stop
at the end of the preview horizon [Sherikov 2014, Ciocca 2017] without execute additional
steps. This constraint, called 0-step capturability [Koolen 2012], requires the DCM ξref to
be reachable (or “capturable”) by the cCoP pcref within the current support polygon (6.6) to
stabilize the dynamics (2.15). In such case, the robot can stay standing with some simple
control law.

When using terminal constraints, MPC restricts the robot motion to always keep the
terminal set reachable at the end of the preview horizon. This restrictiveness can be reduced
using longer preview horizons or bigger terminal sets Xter. Sticking to the objectives of
this thesis, we propose, for each system, stopping terminal sets that reduce the motion
restrictiveness while ensuring feasibility:
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P→X

The set of states Xter defined by physical and capturability constraints:

∆pc + p̃cpeak < ∆ξref < ∆pc − p̃cpeak, (6.21)

is a control positively invariant set as shown in the App. D. Therefore, we can ensure
the long term feasibility of the motion generated using this set as terminal constraint.

P→CĊ
The set of states Xter defined by physical and capturability constraints:

∆pc + p̃cpeak < ∆ξref < ∆pc − p̃cpeak, ∆c+ c̃peak ≤ ∆cref ≤ ∆c− c̃peak, (6.22)

is a control positively invariant set as shown in the App. D. Therefore, we can ensure
the long term feasibility of the motion generated using this set, shown in Fig. 6.4, as
terminal constraint.

Pd→XP

The set of states Xter defined by physical and capturability constraints:

∆pc + p̃cpeak ≤ ∆pcref ≤ ∆pc − p̃cpeak,

∆pc + p̃cpeak ≤
(

1 +
ω

γ

)
∆ξref −

ω

γ
∆pcref ≤ ∆pc − p̃cpeak,

(6.23)

is a control positively invariant set as shown in the App. D. Therefore, we can ensure
the long term feasibility of the motion generated using this set, shown in Fig. 6.5, as
terminal constraint.

Alternatively, terminal constraints to ensure that the robot can continue walking after
the horizon have been proposed in [Scianca 2019]. However, in a dynamic environment, the
capability to perform emergency stops may be necessary for safety [Bohórquez 2016].

6.3.4 Initial Constraint

At each iteration, the MPC scheme generates a new trajectory along the preview horizon.
Usually, this trajectory is initialized from the optimal state

xref ·(0|i) = xref ·(1|i-1) (6.24)

obtained from the previous iteration i-1, regardless of the current state of the robot
[Feng 2015]. In this case, as discussed in Sec. 4.2, once the current state is within a RPI
set around the reference trajectory (4.7)

x(0|i) ∈ xref ·(0|i) + Z, (6.25)

it stays bounded around the reference ensuring robust recursive feasibility for any disturbance
û ∈ V thanks to the robust positively invariance of the set Z [Langson 2004, prop. 2]. In this
approach, however, we cannot ensure feasibility before the tracking error x̃ = x(0|i)−xref ·(0|i)
reaches the set Z. We call Open Loop MPC (OL-MPC) this initialization since it does not
incorporate information from the current state of the robot.
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Figure 6.4: Terminal constraint of P→CĊ. We show the terminal set obtained in App. D for
the system P→CĊ represented in the state space with variables ∆cref , ∆ċref and ∆cref ,
∆ξref . Using the proposed feedback law (D.6), the closed-loop system evolves from each
state as indicated with blue arrows x+

ref − xref .
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Figure 6.5: Terminal constraint of Pd→XP. We show the terminal set obtained in App. D for
the system Pd→XP represented in the state space with variables ∆ξref , ∆pcref . Using the
proposed feedback law (D.7), the closed-loop system evolves from each state as indicated
with blue arrows x+

ref − xref .
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In order to ensure the condition (6.25) from the beginning of the motion, we could initialize
the trajectory directly from the current state

xref ·(0|i) = x(0|i), (6.26)

which is also a common approach [Wieber 2006b], but since the current state may not satisfy
the reference constraints, the controller can become infeasible even with a small disturbance.
We call Direct Closed-Loop MPC (DCL-MPC) this initialization.

In the approach proposed in [Mayne 2005], the initial state xref ·(0 |i) is optimally chosen
to satisfy the reference constraint (4.70), taking into account the current state to accomplish
the condition (6.25) at every iteration with the initial constraint

xref ·(0|i) ∈ x(0|i) −Z. (6.27)

This way, even after an unexpected strong perturbation that pushes the tracking error away
from Z, if the state x is still feasible, the condition (6.25) is automatically recovered generat-
ing a reference motion that is reactive to disturbances. Robust recursive feasibility is ensured
for any disturbance û ∈ V [Mayne 2005, prop. 3]. We call Closed-Loop MPC (CL-MPC) this
initialization.

Thanks to the extra degree of freedom introduced in the initial state by this latter ap-
proach, the MPC can get access to control also the feedback term Kx̃, inserting artificially
a tracking error x̃ ∈ Z. We show this property in the simulation of Fig. 6.6: Without distur-
bances, the DCM must be moved from the boundary of the reference constraint to the center
of the support polygon. Using the standard OL-MPC (initialized in xref ·(1|i-1)), this task is
impossible since it requires the cCoP pcref to be outside the reference constraint. CL-MPC,
however, uses an additional input Kx̃ to drive the DCM according to the aimed motion while
keeping the reference cCoP pcref within its restriction. Notice that in this case, since there
are not disturbances, DCL-MPC behaves in the same form as OL-MPC.

As mentioned, the current state x(0|i) is not always available to initialize the reference
motion, but even when DCL-MPC is feasible, it annuls the tracking error

x(0|i) − xref ·(0|i) = x̃ = 0, (6.28)

and, therefore, the feedback term Kx̃. Let’s show how easily DCL-MPC can fail in the
simulation of Fig. 6.7: We aim to maintain the DCM on the reference constraint boundary
while disturbances affect the robot. We sample the feedback law (3.33) every τ = 5 ms
[Kajita 2010], while the MPC is recomputed every T = 100 ms [Wieber 2006b]. So, we
can see that in each time-step T , the feedback term is annulled during 5 ms, which ends
up producing the divergence of the DCM. We show in Fig. 6.8 how the same task can be
achieved by OL-MPC and CL-MPC which produce the same result.

Let’s compare more dynamically the robot behavior with these three initializations (6.24),
(6.26), (6.27) in the walking scenario of Fig. 6.9: We aim to realize two steps on place, then
move 0.5 m on the side, and walk on place six steps to stop and stay standing on the seventh
step. Disturbances appear at time 5.6 s with a constant value until the end of the simulation.
We can observe that the closed-loop scheme is able to avoid the overshot that appears at
4.5 s thanks to its less restricted motion and maintains the system stable while stopping on
one foot.
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Figure 6.6: Standing simulation. without uncertainties, we aim (as shown in dashed blue lines)
to move the DCM from the reference constraint boundary (dashed black line) towards
the center of the foot. The required control action is infeasible for OL-MPC (top),
while CL-MPC (bottom) uses the feedback term producing an artificial tracking error x̃.
Parameters: τ = 5 ms, T = 100 ms, system P→CĊ.
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Figure 6.7: Standing Simulation. Using DCL-MPC (initialized as xref ·(0|i) = x(0|i)) we aim to
maintain the DCM on the reference constraint boundary (black dashed line). When
disturbances appear at time 0.6 s, the commanded input uref ·(0|i) +Kx̃ (shown in blue)
stabilize the motion up to the time 0.7 s, when x̃ is annulled and the DCM (shown
with solid black curve) starts the divergence. In this simulation we relaxed the terminal
constraint (6.20) for the feasibility of the reference motion after the first disturbance.
Parameters: τ = 5 ms, T = 100 ms, system P→CĊ.
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Figure 6.8: Standing simulation. Using OL-MPC or CL-MPC, we aim to maintain the DCM on
the reference constraint boundary (black dashed line) while disturbances affect the robot.
The DCM is maintained bounded in the set [1 ω-1]Z (bottom) and the commanded
cCoP (blue curve) in the support polygon (top). Parameters: τ = 5 ms, T = 100 ms,
system P→CĊ.
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Figure 6.9: Walking simulation. We compare the walking motion generated when using OL-
MPC (top), DCL-MPC (middle) and CL-MPC (bottom). Following the aimed CoM
(red dashed lines), only CL-MPC is able to avoid the overshot at 4.5 s thanks to the
input Kx̃ used on previous steps. When disturbances appear at 5.6 s, only OL-MPC
and CL-MPC maintain the stability. In the simulation with DCL-MPC, we relaxed the
terminal constraint at the end of the simulation to avoid the infeasibility of the controller
letting the simulation continue. Parameters: τ = 5 ms, T = 100 ms, system P→CĊ.
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6.4 Optimization Problem

Finally the optimization problem that we are considering to decide the control sequence Uref ·i
is of the form:

minimize
∆Uref ·i, ∆Si, xref ·(0|i)

Vi(Uref ·i,xref ·(0|i)) : (6.19)

subject to constraints


physical : (6.5), (6.6), (6.7)

terminal : (6.20)

initial : (6.27).

(6.29)

6.5 Conclusion

We have described a standard MPC scheme to generate reference motions satisfying the
system dynamics (3.38). In order to ensure long term feasibility, reference motions generated
by MPC must always be able to reach a given terminal set within the preview horizon time.
The restrictiveness introduced in this way, to ensure feasibility, can be reduced using bigger
terminal sets. We have proposed stopping terminal sets that minimize this restrictiveness for
systems P→X and P→CĊ since they contain any feasible state (6.6) (6.7) for an standing
still robot, and a quite loose terminal set for the system Pd→XP.

Every implementation of MPC in legged locomotion uses an initial state, determined
by some sort of initial constraint, to compute the motion along each preview horizon. We
have shown that the standard initial constraint xref ·(0|i) = xref ·(1|i-1) is quite restrictive
when working with uncertainties. Using the freer initial constraint (6.27), we can reduce
this restrictiveness letting the MPC indirectly control the feedback term Kx̃ and producing
reference motions reactive to strong perturbations.



Chapter 7

Conclusions

This thesis aims to contribute to the development of conceivable legged robots in terms of
robustness, operability, and cost for real applications.

As a first step in this discussion, we presented in Chapter 2 the complete CoM dynamics
showing that most of the terms typically neglected are bounded, can be directly controlled,
or have no effect on common scenarios. Errors in the estimation of these non-linear dynamics
constitute, however, a source of uncertainties. Main sources of uncertainty along a standard
control scheme have been reported in Chapter 3. Using a simple feedback law to track some
desired reference motion, we obtained a stable closed-loop dynamics for the tracking error.

As a consequence of this stable dynamics, we showed in Chapter 4 that bounded un-
certainties result in bounded tracking errors. We obtained analytically the tracking error
bound and the worst sequence of disturbances depending on the closed-loop eigenstructure.
Considering this bound on the tracking error we discussed the conditions to guarantee the
safe operation of the robot. In order to understand better the relation between the tracking
error bound and our choice of control parameters, we developed maps of the tracking error
behavior in Chapter 5. Using these maps, we chose feedback gains that minimize the track-
ing error bound, reducing therefore the resources required to ensure the safe operation of the
robot. We observed that the region of gains with minimum tracking error is independent of
the sampling period and presents also minimum sensitivity to variations on the parameter ω
introduced by the vertical motion of the robot. We also analyzed the effects of an arbitrary
ground compliance on the tracking error bound with numerically optimized feedback gains,
observing that it is normally bounded by the case of rigid ground interactions.

In order to ensure safety guarantees, the reference motion must be constrained taking into
account the tracking error bound as we showed in the MPC scheme presented in Chapter 6.
When the reference motion is generated online we have more information available, but how
to introduce it in our MPC scheme is not intuitive. For this, we discuss the initial constraint
proposed in [Mayne 2005] compared with standard choices in legged robot controllers. We
have seen that this initial constraint also provide a valuable contribution to reduce the motion
restrictiveness, reducing once again the resources required to ensure a safe operation of the
robot.
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Appendix A

Set Operations

We define the following set operations in order to maintain a simplified notation.

• Product of scalar and set (cA)

Given a scalar c ∈ R and a set A ⊆ Rn,
we denote cA to a new set defined as:

cA ≡ {ca | a ∈ A} ⊆ Rn.

• Product of vector and set (vA)

Given a vector (or matrix) v ∈ Rn×m and a set A ⊆ Rn,
we denote vA to a new set defined as:

vA ≡ {v>a | a ∈ A} ⊆ Rm.

• Sum of vector and set (v +A)

Given a vector v ∈ Rn and a set A ⊆ Rn,
we denote v +A to a new set defined as:

v +A ≡ {v + a | a ∈ A} ⊆ Rn.

• Minkowski sum (A⊕ B)

Given sets A,B ⊆ Rn,
we denote A⊕ B to a new set defined as:
A⊕ B ≡ {a+ b | a ∈ A, b ∈ B} ⊆ Rn.

• Pontryagin difference (A	 B)

Given sets A,B ⊆ Rn,
we denote A	 B to a new set defined as:
A	 B ≡ {x | x+ B ⊆ A} ⊆ Rn.

• Intersection of sets (A ∩ B)

Given sets A,B ⊆ Rn,
we denote A ∩ B to a new set defined as:
A ∩ B ≡ {x | x ∈ A and x ∈ B} ⊆ Rn.
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Appendix B

Vertex Convergence

Using the diagonal form (4.22) of the closed-loop matrix, the stationary vertex z0 (4.45) is
obtained from the convergence:

z0 =
∞∑
i=0

(A+BK)iBû(i|0)

=
∞∑
i=0

M

[
qim 0
0 qim

]
M-1B sim sign(αm) ûpeak

=M


∞∑
i=0

qim s
i
m 0

0
∞∑
i=0

qim s
i
m

M-1B sign(αm) ûpeak (B.1)

So, iterating from z0 in the closed-loop dynamics (3.39) with disturbances of the sequence
Û0 (4.38), we have:

(A+BK)z0 +Bû(1|0) = (A+BK)z0 +B sm sign(αm) ûpeak

= M

[
qm 0
0 qm

]
M-1M


∞∑
i=0

qim s
i
m 0

0
∞∑
i=0

qim s
i
m

M-1B sign(αm) ûpeak +B sm sign(αm) ûpeak

= M


∞∑
i=0

qi+1
m sim 0

0
∞∑
i=0

qi+1
m sim

M-1B sign(αm) ûpeak +M

[
q0
m sm 0
0 q0

m sm

]
M-1B sign(αm) ûpeak

= M


∞∑
i=0

qi+1
m sim + q0

msm 0

0
∞∑
i=0

qi+1
m sim + q0

msm

M-1B sign(αm) ûpeak

= M


∞∑
i=0

qim s
i−1
m 0

0
∞∑
i=0

qim s
i−1
m

M-1B sign(αm) ûpeak

= smM


∞∑
i=0

qim s
i
m 0

0
∞∑
i=0

qim s
i
m

M-1B sign(αm) ûpeak, (B.2)
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that is smz0 from (B.1), so:

smz0 = (A+BK)z0 +Bû(1|0). (B.3)

Similarly, we can obtain for the next iteration that:

z0 = s2
mz0 = (A+BK)smz0 +Bû(2|0). (B.4)

We conclude, therefore, that applying the sequence Û0, the tracking error converges to a
stationary condition in which alternates between z0 and smz0.



Appendix C

Complex-Conjugate Coefficients

We determine in following the form of coefficients α1, α2 when poles q1, q2 are complex-
conjugate.

Since matrices L, B and A+BK are real-valued, we know that:

LB ∈ R (C.1)

L(A+BK)B ∈ R. (C.2)

Let’s consider coefficients of the form α1 = a1 + jb1 and α2 = a2 + jb2. From the definition
of these coefficients (4.24), in (C.1) we have:

LB =LMM-1B (C.3)

=LMc,1M
-1
r,1B +LMc,2M

-1
r,2B (C.4)

=α1 + α2 (C.5)

=a1 + a2 + j(b1 + b2) ∈ R, (C.6)

which means that b1 = -b2 = b. Diagonalizing the matrix A+BK (4.22) in (C.2) we have:

L(A+BK)B =LM

[
q1 0
0 q2

]
M−1B (C.7)

=α1q1 + α2q2 ∈ R, (C.8)

considering poles of the form q1, 2 = q e±jθ, it is:

α1q1 + α2q2 =
(
a1ejθ + a2e-jθ

)
q + jb

(
ejθ − e-jθ

)
q ∈ R (C.9)

since jb
(
ejθ − e-jθ

)
= -2b sin(θ) ∈ R, it requires that

a1ejθ + a2e-jθ ∈ R, (C.10)

which means that a1 = a2 = a. We conclude, therefore, that the coefficients α1, α2 are also
complex-conjugate:

α1 = a+ jb α2 = a− jb. (C.11)
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Terminal Constraints

D.1 Definitions

Definition D.1. Positively Invariant Set [Kerrigan 2000]. The non-empty set Xter is
positively invariant for the closed-loop system

x+
ref = (A+BK)xref , (D.1)

if and only if it satisfies the reference constraints

Xter ⊂ X 	 Z, (D.2)

KXter ⊂ U 	KZ 	 V, (D.3)

and any state x in the set, evolves always contained in the set:

xref ∈ Xter =⇒ x+
ref ∈ Xter. (D.4)

Definition D.2. Control Positively Invariant Set [Kerrigan 2000]. The non-empty set
Xter is control positively invariant for the system

x+
ref = Axref +Buref , (D.5)

if and only if there exists a feedback control law uref = f(xref ) such that this set is positively
invariant for the resulting closed-loop system.

D.2 Terminal Sets

We justify, in following, our choice of terminal constraint considering the control law
[Sugihara 2009]:

∆pcref = kref ∆ξref , with 1 < kref <
eωτ

eωτ − 1
, (D.6)

for systems P→X and P→CĊ, and the control law

∆pcdes·ref =

(
1 +

ω

γ

)
∆ξref −

ω

γ
∆pcref , (D.7)

for the system Pd→XP.
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P→X

From the closed-loop form (3.54), we can write this closed-loop system as

∆ξ+
ref =

(
1− (eωτ − 1)(kref − 1)

)
∆ξref , (D.8)

where the DCM evolves towards the CoF from any state in the set Xter defined by
the feasible inputs (6.6):

∆pc + p̃cpeak ≤ kref ∆ξref ≤ ∆pc − p̃cpeak, (D.9)

with feedback gains kref in (D.6). We can obtain the biggest feasible control positively
invariant set when kref tends to 1:

∆pc + p̃cpeak < ∆ξref < ∆pc − p̃cpeak. (D.10)

P→CĊ
Changing variables, the closed-loop system is equivalently:[

∆c+
ref

∆ξ+
ref

]
=

[
e−ωτ sinh(ωτ)

0 eωτ

][
∆cref
∆ξref

]
+

[
1− cosh(ωτ)

1− eωτ

]
kref ∆ξref . (D.11)

The DCM (second row) evolves towards the CoF from any state as shown in (D.8).
Working on the first row, a given position ∆c+

ref can only be reached from:

∆cref =

(
eωτ − eωτ − 1

2

(
(eωτ + 1)− kref (eωτ − 1)

)∆ξref

∆c+
ref

)
∆c+

ref , (D.12)

So, the CoM can only reach its feasibility boundary ∆c− c̃peak (6.7) from outside:

∆cref =

(
eωτ − eωτ − 1

2

(
(eωτ + 1)− kref (eωτ − 1)

)(∆pc − p̃cpeak)/kref

∆c− c̃peak

)
(∆c− c̃peak)

>

(
eωτ − eωτ − 1

2

(
(eωτ + 1)− kref (eωτ − 1)

))
(∆c− c̃peak)

> ∆c− c̃peak, (D.13)

where we first use that (∆pc− p̃cpeak)/kref < ∆c− c̃peak, and then, that the stable gains
are such that 1 < kref (D.6). Therefore, the control law (D.6) maintains the state
contained in the feasible set Xter defined as:

∆pc + p̃cpeak ≤ kref ∆ξref ≤ ∆pc − p̃cpeak, ∆c+ c̃peak ≤ ∆cref ≤ ∆c− c̃peak, (D.14)

We can obtain the biggest feasible control positively invariant set when kref → 1:

∆pc + p̃cpeak < ∆ξref < ∆pc − p̃cpeak, ∆c+ c̃peak ≤ ∆cref ≤ ∆c− c̃peak. (D.15)
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Pd→XP

From this system dynamics (3.31), the DCM evolves as

∆ξ+
ref =

ω∆pcref + γ∆pcdes·ref
ω + γ

+ eωτ
(

∆ξref −
ω∆pcref + γ∆pcdes·ref

ω + γ

)
+
ω(1− e-γτ )

ω + γ
(∆pcdes·ref −∆pcref ), (D.16)

that considering the control law (D.7), becomes

∆ξ+
ref −∆ξref = (1− e-γτ )(∆pcdes·ref −∆ξref ), (D.17)

and the cCoP evolves as

∆pc+
ref −∆pcref = (1− e-γτ )(∆pcdes·ref −∆pcref ). (D.18)

Both converge to the desired cCoP ∆pcdes·ref , which stays constant according to the
control law (D.7):

∆pc+
des·ref =

(
1 +

ω

γ

)
∆ξ+

ref −
ω

γ
∆pc+

ref

=

(
1 +

ω

γ

)(
∆ξref + (1− e-γτ )(∆pcdes·ref −∆ξref )

)
− ω

γ

(
∆pcref + (1− e-γτ )(∆pcdes·ref −∆pcref )

)
=(1− e-γτ )∆pcdes·ref + e-γτ

((
1 +

ω

γ

)
∆ξref −

ω

γ
∆pcref

)
=∆pcdes·ref . (D.19)

Therefore, any state in the set Xter defined as

∆pc + p̃cpeak ≤ ∆pcref ≤ ∆pc − p̃cpeak, (D.20)

∆pc + p̃cpeak ≤
(

1 +
ω

γ

)
∆ξref −

ω

γ
∆pcref = ∆pcdes·ref ≤ ∆pc − p̃cpeak. (D.21)

is maintained in this set by the control law (D.7). We conclude, then, that this set is
a control positively invariant set.

In all cases (6.21), (6.22), (6.23) Xter is a control positively invariant set since it is feasible
and there exist some control law (D.6), (D.7) such that any state in this set evolves always
contained in this set.
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