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Résumé : La capacité d'apprendre des 
représentations génériques d'objets tels que des 
images, des mots ou des phrases est essentielle 
pour construire des algorithmes qui ont une 
compréhension élargie du monde. Grâce à 
l'apprentissage par transfert, les réseaux neuronaux 
peuvent apprendre des représentations d’objets 
comme des images à partir de gros jeux de 
données, puis les exploiter pour améliorer la 
performance des tâches à faibles ressources. Bien 
que l'apprentissage par transfert ait été très efficace 
pour transférer les représentations d'images 
apprises sur ImageNet à des tâches de vision à 
faibles ressources, les représentations génériques 
de texte à l'aide de réseaux neuronaux se sont 
limitées aux représentations de mots. Cette thèse 
présente une étude des représentations de phrases. 
J’y présente comment l’on a poussé l'état de l'art 
des embeddings monolingues et cross-lingues. Les 
premières contributions de cette thèse incluent 
SentEval, un outil d'évaluation et d’analyse des 
représentations de phrases universelles et 
InferSent, un encodeur de phrases générique. 
 

Nous montrons dans cette première partie que des 
représentations génériques de phrase peuvent être 
construites via des réseaux de neurones et qu'elles 
fournissent des caractéristiques (« features») 
puissantes de phrases, utilisables dans de 
nombreux contextes. Dans la deuxième partie de 
ma thèse, mes contributions traitent de l'alignement 
de distributions de mots et de phrases dans 
plusieurs langues. Je montre pour la première fois 
qu'il est possible d’aligner des espaces de mots et 
de phrases de manière totalement non supervisée, 
sans aucune données parallèles. En particulier, 
nous montrons que nous pouvons traduire des mots 
de manière non supervisée, ce qui a été la pierre 
angulaire du nouveau domaine de recherche de 
"traduction automatique non supervisée". Ma 
dernière contribution sur la modélisation multilingue 
montre que les représentations de phrases 
provenant des modèles de langues peuvent être 
alignées de manière totalement non supervisée, ce 
qui conduit à un nouvel état de l'art en traduction 
automatique supervisée et non supervisée, et en 
classification cross-lingue. 
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Abstract : Being able to learn generic 
representations of objects such as images, words or 
sentences is essential to building machines that 
have a broad understanding of the world. Through 
transfer learning, neural networks can learn 
representations from high-resource tasks and then 
leverage these to improve performance on low-
resource task. While transfer learning has been very 
successful for transferring image features learned 
on ImageNet to low-resource visual understanding 
tasks, generic representations of text using neural 
networks were mostly limited to word embeddings. 
This dissertation presents a full study of sentence 
embeddings, through which I discuss how I have 
pushed the state of the art in monolingual and 
cross-lingual general-purpose embeddings. The first 
contributions of this thesis include SentEval, a 
transfer learning evaluation toolkit for universal 
sentence embeddings, InferSent, a state-of-the-art 
generic sentence encoder, and probing tasks, 
through which sentence encoders are analyzed and 
probed for linguistic properties.  
 

We show in this first part that generic 
representations of sentence can be built and that 
they provide powerful out-of-the-box features of 
sentences. In the second part of my PhDs, my 
contributions have been centered around aligning 
distributions of words and sentences, in many 
languages. I show for the first time that it is possible 
to build generic cross-lingual word and sentence 
embedding spaces in a completely unsupervised 
way, without any parallel data. In particular, we 
show that we can perform word translation without 
parallel data, which was the building block for the 
new research field of "unsupervised machine 
translation". My last contribution on cross-lingual 
language modeling shows that state-of-the-art 
sentence representations can be aligned in a 
completely unsupervised way, leading to a new 
state of the art on supervised and unsupervised 
machine translation, and on the zero-shot 
crosslingual classification benchmarked called 
"XNLI". 
 

 



Abstract

Being able to learn generic representations of objects such as images, words or sentences

is essential to building machines that have a broad understanding of the world. Through

transfer learning, neural networks can learn representations from high-resource tasks and

then leverage these to improve performance on low-resource tasks. While transfer learn-

ing has been very successful for transferring image features learned on ImageNet to low-

resource visual understanding tasks, generic representations of text using neural networks

were mostly limited to word embeddings. This dissertation presents a full study of sentence

embeddings, through which I discuss how I have pushed the state of the art in monolingual

and cross-lingual general-purpose embeddings. The first contributions of this thesis in-

clude SentEval, a transfer learning evaluation toolkit for universal sentence embeddings,

InferSent, a state-of-the-art generic sentence encoder, and probing tasks, through which

sentence encoders are analyzed and probed for linguistic properties. We show in this first

part that generic representations of sentences can be built and that they provide powerful

out-of-the-box features of sentences. In the second part of my PhD, my contributions have

been centered around aligning distributions of words and sentences, in many languages. I

show for the first time that it is possible to build generic cross-lingual word and sentence

embedding spaces in a completely unsupervised way, without any parallel data. In partic-

ular, we show that we can perform word translation without parallel data, which was the

building block for the new research field of ”unsupervised machine translation”. The last

contribution of this thesis on cross-lingual language modeling shows that state-of-the-art

sentence representations can be aligned in a completely unsupervised way, leading to a new

state of the art on supervised and unsupervised machine translation, and on the zero-shot

cross-lingual natural language inference benchmarked dubbed ”XNLI”.
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Chapter 1

Introduction

Neural networks are very efficient tools that perform pattern matching and learn mappings

from various inputs (images, text, speech) to output labels. Learning neural networks with

millions of parameters on a particular task such as image classification requires a great

amount of training data for the optimization algorithm to converge to a suitable minimum

of the loss landscape. While this amount of data is available for some tasks - such as the

ones where neural networks made a breakthrough like ImageNet (Deng et al., 2009) - it is

simply impossible to label that many samples for each machine learning task. Instead, neu-

ral networks pretrained on large tasks are re-used on low-resource tasks either by learning

a classifier on top of the output representations of the pretrained encoder or by fine-tuning

both the encoder and the classifier on the new task (Oquab et al., 2014). This procedure

is called transfer learning. While this has been rapidly successful in computer vision after

the AlexNet breakthrough (Krizhevsky et al., 2012), transfer learning in natural language

processing had been mostly limited to reusing pretrained word embeddings (Mikolov et al.,

2013c). The goal of my thesis was to build general-purpose sentence encoders that provide

embeddings that can be useful for a broad and diverse set of downstream tasks. I have

made several contributions to the field of transfer learning in NLP during my PhD. The two

main sections of this thesis correspond to the first and second half of my PhD in which I

focused respectively on monolingual sentence representations and cross-lingual text repre-

sentations. In the following, we make a brief description of those two chapters and of our

contributions.

1



CHAPTER 1. INTRODUCTION 2

Monolingual Sentence Representations In the first part of this thesis, I describe how we

can learn, evaluate and analyze universal sentence representations in the monolingual case.

Precisely, I introduce SentEval (Conneau and Kiela, 2018), a framework that evaluates the

generalization power of sentence embeddings through transfer learning on multiple down-

stream tasks. SentEval is the first toolkit that automates the evaluation of transfer learning

for natural language processing. The user is only asked to provide a sentence encoder that

takes text sentences as input and outputs sentence embeddings. For each of the downstream

task, a logistic regression or a multi-Layer perceptron (MLP) is learned on top of the sen-

tence embeddings on the training set of each task. Sentence embeddings are then defined as

being ”good” if they provide good features for a broad and diverse set of transfer tasks, that

is if the dev/test accuracy on each downstream task is high. We open-sourced SentEval1o

help the community build better sentence encoders. Together with SentEval, we made a

thorough experimental exploration of various sentence encoders. Inspired by the success

of transfer learning in computer vision where convolutional neural networks trained on Im-

ageNet can be transfered to lower-resource tasks such as Pascal (Everingham et al., 2010),

we explored various combinations of model architectures and training tasks. As opposed

to computer vision, the natural language processing (NLP) community did not converge

to a consensus regarding which model and which tasks should be combined to obtain the

best general-purpose sentence representations. By evaluating multiple combinations of

sentence encoder architectures and training tasks on SentEval, we built InferSent (Conneau

et al., 2017), a new state-of-the-art sentence encoder that provide strong sentence repre-

sentations. We show that it significantly outperforms previous approaches, including the

average of pretrained word embeddings which is a powerful baseline, in particular for clas-

sification benchmarks. Our pretrained model provides sentence embeddings out of the box

and was used extensively by the community after we open-sourced it. Finally, in this first

chapter, we describe how we analyze the linguistic properties contained in the sentence

embedding space. SentEval results help understand how powerful sentence embeddings

are when used as features for tasks such as topic classification, sentiment analysis, natural

language inference, semantic textual similarity or image-caption retrieval. But due to the

complexity of those tasks, SentEval did not provide insights on what kinds of linguistic

1t



CHAPTER 1. INTRODUCTION 3

properties are encoded in the sentence embedding space. Inspired by recurrent discussions

in the community about ”what can be crammed into fixed-size vectors”, we built ”probing

tasks” (Conneau et al., 2018a). Each evaluating is designed for a single linguistic property

of the input sentence, for example the subject number or genre. For instance, one probing

task can be used to understand whether we can extract the sentence length using a logis-

tic regression trained on top of the fixed-size sentence embeddings. Or probing tasks can

be used to understand whether we can recover the information of words in the sentence,

whether we can extract the number or gender of the main subject, or whether we can ex-

tract other grammatical information from the input sentence. Our ten probing tasks thus

provide a convenient way to analyze and understand neural network sentence encoders,

and we added them to our SentEval evaluation framework. We make a thorough analysis

of the impact of the sentence encoder architecture and the impact of the training task on the

linguistic properties contained in the sentence embedding space.

Cross-lingual sentence representations In the second part of my PhD, we extended our

research from monolingual natural language understanding (NLU) to cross-lingual under-

standing (XLU). Indeed, the entire research community has been very English-centric and

we wanted to depart from that by building representations for many languages. SentE-

val or the recently introduced GLUE benchmark (Wang et al., 2018) only include English

benchmarks, and as InferSent requires human annotated data, it is not directly scalable to

other languages. Even if InferSent only required unsupervised data in each language, is

would not be convenient to have one model for each of the 7000 languages that exist in

the world, or to carry 7000 machine translation systems that translate everything to En-

glish. As a result, in the second part of my PhD, I worked on aligning distributions and

building cross-lingual text representations. As a first step, I built cross-lingual word em-

beddings (Conneau et al., 2018b). While the previous work of Mikolov et al. (2013b) had

shown that a seed dictionary was needed to learn a linear mapping between two monolin-

gual word2vec word embedding spaces in (say) English and French, we showed that we

could completely remove the need for parallel supervision. Our work dubbed ”MUSE”

(for Multilingual Unsupervised and Supervised Embeddings) used in particular adversarial

training to match the two distributions. Reducing the amount of supervision needed to align



CHAPTER 1. INTRODUCTION 4

embedding spaces is very important as cross-lingual understanding is particularly relevant

for low-resource languages, for which by definition there exists little parallel data. In the

shared word embedding space that we obtained after unsupervised alignment, looking at the

nearest neighbor of a source word in the target space led to the correct word translation with

approximately 70% accuracy for English and French. This means that using only monolin-

gual corpora, we can exploit the similarity between languages to perform word translation

in a completely unsupervised way. We are thus able to perform completely unsupervised

word translation from one language to another, just by looking at monolingual data in the

two languages. This line of work was further investigated by my colleagues and I, and this

led to the field of ”unsupervised machine translation” (Lample et al., 2018a,b), where we

extended unsupervised machine translation from the word level to the sentence level. After

the alignment of word embeddings, we extended this idea to the alignment of cross-lingual

sentence representations. While SentEval and the GLUE benchmark focused exclusively

on English natural language understanding tasks, we were interested in cross-lingual under-

standing tasks. In particular, as a way to evaluate cross-lingual sentence encoders, we built

a zero-shot cross-lingual classification benchmark called the cross-lingual natural language

inference (XNLI) benchmark (Conneau et al., 2018c). Our work was meant to catalyze

research in the direction of cross-lingual understanding, which was partly sulked by the

community due to the lack of evaluation benchmarks. The XNLI task is essential in prac-

tice as it represents a situation where training data is only available in a few high-resource

languages, while predictions need to be made in many other languages, for instance to pro-

vide assistance for users. XNLI only provides English training data, but has dev and test

sets in 14 other languages including two low-resources ones, Urdu and Swahili, for which

cross-lingual transfer is particularly interesting. In this work, we aligned sentence encoders

using an alignment loss that leverages millions of parallel data. Finally, the last work of my

PhD focused on cross-lingual language models (Lample and Conneau, 2019). In this work

we learn cross-lingual sentence representations that lead to a new state of the art on XNLI.

Similar to the MUSE project on aligning distributions of words in an unsupervised way, we

show that we can completely get rid of parallel data for aligning distributions of sentences

while still obtaining very powerful cross-lingual sentence encoders. In this last article, we

extend the approach of language model pretraining (Radford et al., 2018; Devlin et al.,
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2018) to the cross-lingual setting to pretrain sentence encoders and decoders. We show

that we can leverage parallel data to improve even more the alignment of our unsupervised

approach. Using cross-lingual language model pretraining, we outperform by a large mar-

gin the previous state of the art in supervised and unsupervised neural machine translation,

where we initialize both the encoders and the decoders, and in cross-lingual classification

where we pretrain the sentence encoder and reach a new state of the art on XNLI. This work

constitutes a significant step towards a better understanding of low-resource languages and

multilinguality.



Chapter 2

Background

In this section, we summarize the principal developments in NLP related to this PhD the-

sis with a focus on neural-based approach. In particular, we describe word embeddings,

sentence encoders, neural machine translation, language modeling, multi-task learning,

cross-lingual understanding and transfer learning in NLP.

Transfer learning for natural language processing has been very successful only in re-

cent years. In computer vision however, image representations obtained from convolu-

tional neural networks (Fukushima, 1980; Waibel et al., 1995; LeCun et al., 1998) (CNNs)

trained on ImageNet (Deng et al., 2009) had been successfully transferred to lower-resource

tasks (Oquab et al., 2014). Indeed, learning CNNs amounts to estimating millions of pa-

rameters and requires a very large number of annotated image samples. This property

prevents application of CNNs to problems with limited training data and makes transfer

learning essential for most computer vision tasks.

For natural language processing, progress in learning and transferring representations of

text was indeed not as striking. Universal text representations were mostly limited to word

embeddings, the most successful approach being word2vec (Mikolov et al., 2013c,a), a fast

method to learn word representations from a large unsupervised text corpus. Word2vec

is inspired from the Cloze task (Taylor, 1953) and the distributional hypothesis from Har-

ris (1954) which states that words that occur in the same contexts tend to have the same

meaning. In word2vec, a simple linear layer is used together with a ranking loss to make

embeddings of words that appear in similar contexts closer to each other in the embedding

6
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space than randomly sampled pairs of words. Interestingly, a very similar approach had al-

ready been introduced in the work of Bengio et al. (2003) and Collobert and Weston (2008)

where they used an additional hidden layer, but the important contribution of word2vec was

to simplify their idea and make it accessible to a larger audience by open-sourcing a fast and

efficient tool, and pretrained word embeddings. The word2vec approach, although limited

to words, was a breakthrough in natural language processing and in particular in transfer

learning for NLP. When trained on a sufficiently large amount of data like Wikipedia or

CommonCrawl (Mikolov et al., 2017), word embeddings were not domain-specific any-

more but universal enough that they could be used in many different contexts. And it only

required raw text data. As an extension of word representations, the average of word em-

beddings (also known as bag of vectors) was shown to provide strong features for sentence

and document classification (Le and Mikolov, 2014; Joulin et al., 2016). The word2vec

approach was followed by a large body of work extending and exploiting this idea. In

particular, it was explained in (Levy and Goldberg, 2014) that the word2vec algorithm

named skipgram with negative sampling was implicitly factorizing a word-context matrix,

whose cells are the pointwise mutual information (PMI) of the respective word and con-

text pairs. More practically, (Bojanowski et al., 2017) extended word2vec with a method

dubbed ”fastText” that exploits character-level information of the words by using character

n-grams embeddings which allowed to build word embeddings for unseen words. Mikolov

et al. (2017) introduced additional training tricks to improve the quality of word repre-

sentations and explored the limit of word2vec by learning word embeddings on the Com-

monCrawl dataset that contains tens of billions of words, showing a significant increase

in performance on word analogy and word similarity. Together with the area of research

focused on the learning part of word embeddings, a large body of work investigated how

to evaluate the representations. Mikolov et al. (2013c) proposed to use of word similarity

tasks to evaluate how the cosine similarity between word embeddings is correlated with

human judgment. They also proposed the word analogy task (Mikolov et al., 2013a) as a

stopping criterion for learning word embeddings. Evaluation benchmarks included related-

ness (Budanitsky and Hirst, 2006; Agirre et al., 2009), similarity (Hill et al., 2016b), topical

similarity (Hatzivassiloglou et al., 2001) and domain similarity (Turney, 2012). As it is the

case for many research projects, evaluation is key to building better methods. Similar to
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what has been done for building better word representations, in this thesis, we build strong

evaluation benchmarks as well as new learning methods for general-purpose sentence rep-

resentations.

Word2vec is an unsupervised method that requires unannotated text data. This is an

essential property that makes it generalizable to almost any language. For example, Grave

et al. (2018) build word embedding spaces for 157 languages by using CommonCrawl data.

In the earlier work of (Mikolov et al., 2013b), it was shown that word embedding spaces

in multiple languages could be aligned to form a single shared embedding space, where

words that have similar meaning are close in the sense of the cosine distance. Specifically,

they show that a linear mapping can be learned from a source space (say French) to a target

space (say English) by minimizing the dot-product of the projected source word vectors

with their corresponding target word vectors using a seed dictionary of word translations.

In this shared embedding space, the nearest neighbor of a source word in the target space

corresponds to its translation with high accuracy and the performance is usually evaluated

using the precision@K. This was the first successful approach for learning cross-lingual

distributed text representations. A series of articles improves this method, for example

using an orthogonal constraint (Smith et al., 2017) or by reducing the amount of parallel

data needed (Artetxe et al., 2017). This line of work that attemps to reduce the amount of

supervision needed to align text distributions is essential. Indeed, one of the main motiva-

tions for cross-lingual understanding is to improve methods for low-resource languages by

leveraging data in high-resource languages. But for these low-resource languages, by def-

inition, the amount of parallel data with other languages is scarce. In our work (Conneau

et al., 2018b), we show that we can completely remove the need for parallel supervision to

align word embedding spaces by using an adversarial approach (Ganin et al., 2016). We

show that we can translate words without parallel data. This idea is further extended in our

work on unsupervised machine translation (Lample et al., 2018a) and for learning general-

purpose cross-lingual sentence representations in a fully unsupervised way (Lample and

Conneau, 2019).

While pretrained word embeddings were largely successful in many NLP applications,

in particular for text classification tasks with limited training data, little had been done to

extend word embeddings to sentence embeddings, beyond the average of word vectors.
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This was the beginning of the use of neural networks to encode sentences in fixed-size

vectors. After the seminal work of (Mikolov, 2012) on recurrent neural network (RNN)

based language model, Sutskever et al. (2014); Cho et al. (2014b) revisited the power of

RNNs and long short term memory (Hochreiter and Schmidhuber, 1997) as way to both

encode and decode sentences. In the paper of Sutskever et al. (2014), a RNN encoder

summarizes an input sentence into a fixed-size vector, and the conditional RNN language

model decoder uses that context vector to generate the output translation word by word us-

ing greedy or beam search. This led to the creation of ”neural machine translation”, a new

paradigm that allows to perform machine translation in an end-to-end manner with the so-

called ”encoder-decoder” or ”sequence to sequence” neural approach, replacing the former

phrase-based approach (Koehn et al., 2007). These models are learned through stochastic

gradient descent (SGD) or Adam (Kingma and Ba, 2014) and backpropagation through

time (BPTT). Sequence to sequence models have been largely improved since the work of

Sutskever, with a number of strong contributions such as using subword units to counteract

the large vocabulary softmax problem (Sennrich et al., 2015b; Wu et al., 2016), using an at-

tention mechanism to improve performance for long sentences (Bahdanau et al., 2015), the

use of sequence-level loss to alleviate the discrepancy between train and test time (Ranzato

et al., 2015; Wu et al., 2016), exploiting monolingual data through back-translation (Sen-

nrich et al., 2015a), and the use of convolutional neural networks (Gehring et al., 2017)

or self-attention Transformer networks (Vaswani et al., 2017) instead of LSTMs. The re-

discovery of the power of LSTMs and other contributions in neural machine translation

have impacted the rest of the NLP research community, providing new methods for parsing

(Vinyals et al., 2015a), image captioning (Vinyals et al., 2015b; Xu et al., 2015), sequence

labeling (Lample et al., 2016) or language modeling (Jozefowicz et al., 2016). In parallel,

time-delay neural networks (Waibel et al., 1995), also known as 1-dimensional convolu-

tional neural networks, have been successful for encoding and decoding sentences, for

example for document classification (Kalchbrenner et al., 2014; Kim, 2014; Zhang et al.,

2015; Conneau et al., 2016) where architectures were inspired from the computer vision

community (He et al., 2016), and for neural machine translation (Gehring et al., 2016,

2017). However, those neural architectures were only trained to perform one task at a time
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and were meant to provide general-purpose representations of text. (Kiros et al., 2015) pro-

posed a way to learn general-purpose sentence representations that could be used for many

different tasks. They extended the idea of the skipgram approach to the sentence-level us-

ing a sequence to sequence model that take an input sentence and is trained to predict the

previous or next sentence in a novel (Zhu et al., 2015). Once the encoder is trained, they

use it as a feature generator and learn logistic regressions on top of the sentence represen-

tations to perform classification on several downstream tasks. They obtained better results

than the representations resulting from the average of word embeddings (a.k.a bag of vec-

tors). While bags of vectors are strong baselines, they are inherently limited as they do not

capture word order or word context (a word has the same representations regardless of the

sentence it belongs to) and SkipThought was a first attempt to incorporate more informa-

tion in the embedding space. Our own InferSent (Conneau et al., 2017) approach extends

SkipThought by looking for the best combination of model and task to obtain the best uni-

versal sentence encoder. But InferSent leverages supervised data, similar to what was done

in computer vision where ConvNets were trained on ImageNet and eventually used as fea-

ture generator for lower-resource tasks. Our SentEval tool (Conneau and Kiela, 2018) also

extends the work of (Kiros et al., 2015) by proving an automatic evaluation of sentence

embeddings on more than 15 downstream tasks. The goal of SentEval was to provide a

unified evaluation benchmark that would help catalyze research in the direction of learning

sentence representations. Following SentEval, a similar approach was done by New York

University (NYU) through the GLUE benchmark (Wang et al., 2018). Understanding what

neural networks understand about natural language is an essential area of research in deep

learning for NLP. While SentEval and GLUE involve downstream tasks such as sentence

classification or semantic textual similarity from which it is difficult to infer what linguistic

information the embeddings contain, SentEval also involves probing tasks (Conneau et al.,

2018a), which are meant to understand the embeddings. Each probing task is designed to

probe a single property of the embedding space, such as word order, word content or sub-

ject number. Some of them are inspired from the earlier work of Shi et al. (2016); Adi et al.

(2017) who also used auxiliary prediction tasks to probe neural machine translation encoder

and simple embedding methods. Conneau et al. (2018a) proposes a study of the impact of

the encoder architecture and the training task on the quality of sentence embeddings. The
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approaches mentioned above proposed ways to build general-purpose representations but

did not investigate multi-task learning. Extending the ability of neural networks so that they

perform more than one task at a time, Luong et al. (2015) proposed multi-task sequence to

sequence learning where a single LSTM encoder is used together with multiple decoders

trained with a skipthought, parsing and machine translation objective. They showed that

they could have strong performance on all the tasks with only one encoder and even im-

prove the BLEU score of a machine translation system using additional side objectives.

With the idea that if an encoder is meant to be universal it should be trained to perform

multiple tasks at once, Subramanian et al. (2018) exploits the approach of (Luong et al.,

2015) to learn generic representations of sentences and extends our InferSent approach to

multi-task learning. They show that they can obtain better representations by training on

machine translation, parsing, natural language inference (Bowman et al., 2015) at once

and by evaluating them on SentEval tasks. While the previously described trend was to

leverage available supervised datasets to obtain better representations, the work of Radford

et al. (2018); Devlin et al. (2018) revived language modeling as a way to learn strong rep-

resentations of text in a completely unsupervised way. In particular the BERT approach of

Devlin et al. (2018) uses masked language modeling (MLM) that significantly outperforms

the classical causal language modeling (CLM) for pretraining Transformer networks. The

main methodological difference between language model pretraining and the fixed-size

representations proposed in (Kiros et al., 2015; Conneau et al., 2017; Subramanian et al.,

2018) was that the language model encoders were fine-tuned entirely on downstream tasks,

as opposed to frozen representations on top of which a classifier is learned (Conneau and

Kiela, 2018). They showed strong gains in performance on the GLUE benchmark (Wang

et al., 2018) by fine-tuning their pretrained LSTM/Transformer language models on sen-

timent analysis (Socher et al., 2013), natural language inference (Bowman et al., 2015;

Williams et al., 2018), semantic textual similarity (Cer et al., 2017) and machine transla-

tion (Lample and Conneau, 2019). The work of Radford et al. (2018); Devlin et al. (2018)

on language model fine-tuning was another breakthrough in transfer learning for natural

language processing as they found a pretraining task that is completely unsupervised, a

property that is particularly useful as it allows domain adaptation and large-scale learning
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on huge amount of unsupervised data (Jozefowicz et al., 2016; Radford et al., 2019). Sim-

ilar to multi-task learning, (Johnson et al., 2017b) proposed to extend the encoder decoder

approach to the multilingual setting through multilingual training. Their approach builds a

neural machine translation architecture with only one encoder and one decoder for many

different languages. The encoder decoder architecture is trained simultaneously on multi-

ple machine translation objectives corresponding to multiple language pairs. For instance

the encoder can encode French sentences but also German sentences and decode them in

English. They showed that they can encode sentences coming from multiple languages in

a shared embedding space, and that having a multilingual encoder and decoder can help

transfer representations from high-resource to low-resource language pairs and eventually

improve BLEU score. They used a shared subword vocabulary to encode words coming

from various languages and alphabets. This work was an important step towards better

cross-lingual understanding. While Mikolov et al. (2013b) had shown the possibility of

aligning word distributions, they showed that multiple languages could be encoded in a

single shared embedding space with the same encoder. Together with this contribution in

machine translation, a series of work attempted to align distributions of sentences, with

the property that in this shared multilingual sentence embedding space, translations should

have similar embeddings. Schwenk et al. (2017); Artetxe and Schwenk (2018); Eriguchi

et al. (2018) leverage available parallel data and use the same multilingual neural machine

translation approach than Johnson et al. (2017b) but without attention to learn a multi-

ligual sentence encoder. Their encoder is then used to provide features for cross-lingual

classification (Schwenk and Li, 2018; Conneau et al., 2018c), similar to what was done in

(Conneau and Kiela, 2018) but in the cross-lingual setting. Conneau et al. (2018c) uses a

ranking loss to align sentence encoders and introduces the cross-lingual natural language

inference (XNLI) benchmark to alleviate the lack of resources in evaluating cross-lingual

understanding and cross-lingual sentence representations in particular. For the XNLI task,

training data is only available in English, but at test time the model is required to make pre-

dictions in 14 other languages such as French, German, Russian, Swahili or Urdu. This task

is also known as zero-shot cross-lingual classification and has loads of applications in a pro-

duction setting where training data is largely available in a few languages but not in other

lower-resource languages where the task is still very important (for example for building
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NLP educational systems for users that only understand the low-resource languages). Con-

neau et al. (2018c) investigates simpler and more efficient ways than machine translation

for cross-lingual classification and provides the first large-scale cross-lingual classification

benchmark. The work of Artetxe and Schwenk (2018); Conneau et al. (2018c) was largely

outperformed on XNLI by our latest work on cross-lingual language models introduced in

Lample and Conneau (2019), where we extended the approach of Radford et al. (2018);

Devlin et al. (2018) to the cross-lingual setting. We showed strong improvements on XNLI

but also on supervised and unsupervised machine translation (Conneau et al., 2018b; Lam-

ple et al., 2018a,b) when both encoders and decoders were pretrained with cross-lingual

language models. Similar to what we had done in (Conneau et al., 2018b), we showed that

it was possible to align sentence representations in a fully unsupervised way using masked

language modeling, and we proposed an additional training objective that can still lever-

age parallel data dubbed translation language modeling (TLM). To build a cross-lingual

encoder, we concatenate the Wikipedia corpora, learn a subword vocabulary and use the

MLM objective as if we only had one language. To improve even more the alignment be-

tween various languages we use TLM which is a natural extension of the BERT objective

(Devlin et al., 2018) where we concatenate two parallel sentences and learn a Transformer

model to recover masked word in the input. When used in combination with MLM, TLM

provides strong improvements on cross-lingual classification as it forces the Transformer

to leverage the context in another language when predicting a masked word. This approach

was the last piece of work that we did as part of my PhD. In this last contribution, we built

a fully unsupervised state-of-the-art cross-lingual sentence encoder.



Chapter 3

Monolingual sentence representations

In this section, we present successively how we can evaluate, learn and analyze fixed-size

English sentence embeddings. Specifically, we show how to evaluate sentence representa-

tions through transfer learning, by building SentEval1 (Conneau and Kiela, 2018), an eval-

uation toolkit for universal sentence embeddings. Then, we conduct a thorough analysis of

the impact of the sentence encoder architecture and the training task on the quality of the

sentence representations and build InferSent2 (Conneau et al., 2017), a universal sentence

encoder that was state of the art at the time of publication and that that had a significant

impact in the research community. Finally, we analyze sentence embedding spaces coming

from various encoders by building probing tasks which are each made to probe a single

linguistic property of an input sentence, like sentence length, parse tree type, word order or

subject number (Conneau et al., 2018a).

3.1 Evaluating Sentence Embeddings

In this first section, we introduce SentEval, a toolkit for evaluating the quality of universal

sentence representations which forms the basis of the first part of my thesis. In this section,

we present various sentence embeddings baselines and will introduce InferSent in section

1https://github.com/facebookresearch/SentEval
2https://github.com/facebookresearch/InferSent

14
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3.2. SentEval encompasses a variety of tasks, including binary and multi-class classifica-

tion, natural language inference and sentence similarity. The set of tasks was selected based

on what appears to be the community consensus regarding the appropriate evaluations for

universal sentence representations. The toolkit comes with scripts to download and prepro-

cess datasets, and an easy interface to evaluate sentence encoders. The aim is to provide a

fairer, less cumbersome and more centralized way for evaluating sentence representations.

3.1.1 Introduction

Following the recent word embedding upheaval, one of NLP’s next challenges has become

the hunt for universal general-purpose sentence representations. What distinguishes these

representations, or embeddings, is that they are not necessarily trained to perform well on

one specific task. Rather, their value lies in their transferability, i.e., their ability to capture

information that can be of use in any kind of system or pipeline, on a variety of tasks.

Word embeddings are particularly useful in cases where there is limited training data,

leading to sparsity and poor vocabulary coverage, which in turn lead to poor generaliza-

tion capabilities. Similarly, sentence embeddings (which are often built on top of word

embeddings) can be used to further increase generalization capabilities, composing un-

seen combinations of words and encoding grammatical constructions that are not present

in the task-specific training data. Hence, high-quality universal sentence representations

are highly desirable for a variety of downstream NLP tasks.

The evaluation of general-purpose word and sentence embeddings has been problem-

atic (Chiu et al., 2016; Faruqui et al., 2016), leading to much discussion about the best

way to go about it3. On the one hand, people have measured performance on intrinsic

evaluations, e.g. of human judgments of word or sentence similarity ratings (Agirre et al.,

2012; Hill et al., 2016b) or of word associations (Vulić et al., 2017). On the other hand,

it has been argued that the focus should be on downstream tasks where these representa-

tions would actually be applied (Ettinger et al., 2016; Nayak et al., 2016). In the case of

sentence representations, there is a wide variety of evaluations available, many from before

3See also workshops on evaluating representations for NLP, e.g. RepEval: https://repeval2017.github.io/
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the “embedding era”, that can be used to assess representational quality on that particu-

lar task. Over the years, something of a consensus has been established, mostly based on

the evaluations in seminal papers such as SkipThought (Kiros et al., 2015), concerning

what evaluations to use. Recent works in which various alternative sentence encoders are

compared use a similar set of tasks (Hill et al., 2016a; Kiros et al., 2015).

Implementing pipelines for this large set of evaluations, each with its own peculiarities,

is cumbersome and induces unnecessary wheel reinventions. Another well-known problem

with the current status quo, where everyone uses their own evaluation pipeline, is that

different preprocessing schemes, evaluation architectures and hyperparameters are used.

The datasets are often small, meaning that minor differences in the evaluation setup may

lead to very different outcomes, which implies that results reported in papers are not always

fully comparable.

In order to overcome these issues, we introduce SentEval4: a freely available toolkit

that makes it easy to evaluate universal sentence representation encoders on a large set of

evaluation tasks that has been established by community consensus. The aim of SentEval

is to make research on universal sentence representations fairer, less cumbersome and more

centralized. To achieve this goal, SentEval encompasses the following:

• one central set of evaluations, based on what appears to be community consensus;

• one common evaluation pipeline with fixed standard hyperparameters, apart from

those tuned on validation sets, in order to avoid discrepancies in reported results; and

• easy access for anyone, meaning: a straightforward interface in Python, and scripts

necessary to download and preprocess the relevant datasets.

In addition, we provide examples of models, such as a simple bag-of-words model.

These could potentially also be used to extrinsically evaluate the quality of word embed-

dings in NLP tasks.

4https://github.com/facebookresearch/SentEval
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name N task C examples label(s)
MR 11k sentiment (movies) 2 “Too slow for a younger crowd , too shallow for an older one.” neg
CR 4k product reviews 2 “We tried it out christmas night and it worked great .” pos
SUBJ 10k subjectivity/objectivity 2 “A movie that doesn’t aim too high , but doesn’t need to.” subj
MPQA 11k opinion polarity 2 “don’t want”; “would like to tell”; neg, pos
TREC 6k question-type 6 “What are the twin cities ?” LOC:city
SST-2 70k sentiment (movies) 2 “Audrey Tautou has a knack for picking roles that magnify her [..]” pos
SST-5 12k sentiment (movies) 5 “nothing about this movie works.” 0

Table 3.1: Classification tasks. C is the number of classes and N is the number of samples.

name N task output premise hypothesis label
SNLI 560k NLI 3 “A small girl wearing a

pink jacket is riding on
a carousel.”

“The carousel is mov-
ing.”

entailment

SICK-E 10k NLI 3 “A man is sitting on a
chair and rubbing his
eyes”

“There is no man sitting
on a chair and rubbing
his eyes”

contradiction

SICK-R 10k STS [0, 5] “A man is singing a
song and playing the
guitar”

“A man is opening a
package that contains
headphones”

1.6

STS14 4.5k STS [0, 5] “Liquid ammonia leak
kills 15 in Shanghai”

“Liquid ammonia leak
kills at least 15 in
Shanghai”

4.6

MRPC 5.7k PD 2 “The procedure is
generally performed
in the second or third
trimester.”

“The technique is used
during the second
and, occasionally, third
trimester of pregnancy.”

paraphrase

COCO 565k ICR sim 5 “A group of people
on some horses riding
through the beach.”

rank

Table 3.2: Natural Language Inference and Semantic Similarity tasks. NLI la-
bels are contradiction, neutral and entailment. STS labels are scores between 0 and 5.
PD=paraphrase detection, ICR=image-caption retrieval.

3.1.2 Evaluations

Our aim is to obtain general-purpose sentence embeddings that capture generic informa-

tion, which should be useful for a broad set of tasks. To evaluate the quality of these

representations, we use them as features in various transfer tasks. In the following, we

describe these downstream tasks.
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Binary and multi-class classification We use a set of binary classification tasks (see Ta-

ble 3.5) that covers various types of sentence classification, including sentiment analysis

(MR and both binary and fine-grained SST) (Pang and Lee, 2005; Socher et al., 2013),

question-type (TREC) (Voorhees and Tice, 2000), product reviews (CR) (Hu and Liu,

2004), subjectivity/objectivity (SUBJ) (Pang and Lee, 2004) and opinion polarity (MPQA)

(Wiebe et al., 2005). We generate sentence vectors and classifier on top, either in the form

of a Logistic Regression or an MLP. For MR, CR, SUBJ and MPQA, we use nested 10-fold

cross-validation, for TREC cross-validation and for SST standard validation.

Entailment and semantic relatedness We also include the SICK dataset (Marelli et al.,

2014) for entailment (SICK-E), and semantic relatedness datasets including SICK-R and

the STS Benchmark dataset (Cer et al., 2017). For semantic relatedness, which consists

of predicting a semantic score between 0 and 5 from two input sentences, we follow the

approach of Tai et al. (2015) and learn to predict the probability distribution of related-

ness scores. SentEval reports Pearson and Spearman correlation. In addition, we include

the SNLI dataset (Bowman et al., 2015), a collection of 570k human-generated English

sentence pairs supporting the task of natural language inference (NLI), also known as rec-

ognizing textual entailment (RTE). NLI consists of predicting whether two input sentences

are entailed, neutral or contradictory. SNLI was specifically designed to serve as a bench-

mark for evaluating text representation learning methods.

Semantic Textual Similarity While semantic relatedness requires training a model on

top of the sentence embeddings, we also evaluate embeddings on the unsupervised Se-

mEval tasks. These datasets include pairs of sentences taken from news articles, forum

discussions, news conversations, headlines, image and video descriptions labeled with a

similarity score between 0 and 5. The goal is to evaluate how the cosine distance between

two sentences correlate with a human-labeled similarity score through Pearson and Spear-

man correlations. We include STS tasks from 2012 (Agirre et al., 2012), 20136 (Agirre

et al., 2013), 2014 (Agirre et al., 2014), 2015 (Agirre et al., 2015) and 2016 (Agirre et al.,

5Antonio Rivera - CC BY 2.0 - flickr
6Due to License issues, we do not include the SMT subtask.
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2016). Each of these tasks includes several subtasks. SentEval reports both the average and

the weighted average (by number of samples in each subtask) of the Pearson and Spearman

correlations.

Paraphrase detection The Microsoft Research Paraphrase Corpus (MRPC) (Dolan et al.,

2004) is composed of pairs of sentences which have been extracted from news sources on

the Web. Sentence pairs have been human-annotated according to whether they capture a

paraphrase/semantic equivalence relationship. We use the same approach as with SICK-E,

except that our classifier has only 2 classes, i.e., the aim is to predict whether the sentences

are paraphrases or not.

Caption-Image retrieval The caption-image retrieval task evaluates joint image and lan-

guage feature models (Lai and Hockenmaier, 2014). The goal is either to rank a large

collection of images by their relevance with respect to a given query caption (Image Re-

trieval), or ranking captions by their relevance for a given query image (Caption Retrieval).

The COCO dataset provides a training set of 113k images with 5 captions each. The objec-

tive consists of learning a caption-image compatibility score Lcir(x, y) from a set of aligned

image-caption pairs as training data. We use a pairwise ranking-loss Lcir(x, y):

∑
y

∑
k

max(0, α− s(V y, Ux) + s(V y, Uxk)) +∑
x

∑
k′

max(0, α− s(Ux, V y) + s(Ux, V yk′)),

where (x, y) consists of an image y with one of its associated captions x, (yk)k and

(yk′)k′ are negative examples of the ranking loss, α is the margin and s corresponds to the

cosine similarity. U and V are learned linear transformations that project the caption x and

the image y to the same embedding space. We measure Recall@K, with K ∈ {1, 5, 10},
i.e., the percentage of images/captions for which the corresponding caption/image is one

of the first K retrieved; and median rank. We use the same splits as Karpathy and Fei-Fei

(2015), i.e., we use 113k images (each containing 5 captions) for training, 5k images for

validation and 5k images for test. For evaluation, following Karpathy and Fei-Fei (2015),
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we split the 5k images in 5 random sets of 1k images on which we compute the mean R@1,

R@5,R@10 and median (Med r) over the 5 splits. We include 2048-dimensional pretrained

ResNet-101 (He et al., 2016) features for all images.

3.1.3 Usage and Requirements

Our evaluations comprise two different types of tasks: ones where we need to learn a model

on top of the provided sentence representations (e.g. classification or regression) and ones

where we simply take the cosine similarity between the two representations, as for the STS

tasks. In the binary and multi-class classification tasks, we fit either a Logistic Regression

classifier or an MLP with one hidden layer on top of the sentence representations. For the

natural language inference tasks, where we are given two sentences u and v, we provide

the classifier with the input 〈u, v, |u − v|, u ∗ v〉. To fit the Pytorch models, we use Adam

(Kingma and Ba, 2014), with a batch size 64. We tune the L2 penalty of the classifier

with grid-search on the validation set. When using SentEval, two functions should be

implemented by the user:

• prepare(params, dataset): sees the whole dataset and applies any neces-

sary preprocessing, such as constructing a lookup table of word embeddings (this

function is optional); and

• batcher(params, batch): given a batch of input sentences, returns an array

of the sentence embeddings for the respective inputs.

The main batcher function allows the user to encode text sentences using any Python

framework. For example, the batcher function might be a wrapper around a model written

in Pytorch, TensorFlow, Theano, DyNet, or any other framework7. To illustrate the use,

here is an example of what an evaluation script looks like, having defined the prepare and

batcher functions:

import senteval

7Or any other programming language, as long as the vectors can be passed to, or loaded from, code written
in Python.
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se = senteval.engine.SE(

params, batcher, prepare)

transfer_tasks = [’MR’, ’CR’]

results = se.eval(transfer_tasks)

Parameters Both functions make use of a params object, which contains the settings

of the network and the evaluation. SentEval has several parameters that influence the eval-

uation procedure. These include the following:

• task path (string, required): path to the data.

• seed (int): random seed for reproducibility.

• batch size (int): size of minibatch of text sentences provided to batcher (sen-

tences are sorted by length).

• kfold (int): k in the kfold-validation (default: 10).

The default config is:

params = {’task_path’: PATH_TO_DATA,

’usepytorch’: True,

’kfold’: 10}

We also give the user the ability to customize the classifier used for the classification

tasks.

Classifier To be comparable to the results published in the literature, users should use the

following parameters for Logistic Regression:

params[’classifier’] =

{’nhid’: 0, ’optim’: ’adam’,

’batch_size’: 64, ’tenacity’: 5,

’epoch_size’: 4}

The parameters of the classifier include:
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• nhid (int): number of hidden units of the MLP; if nhid> 0, a Multi-Layer Percep-

tron with one hidden layer and a Sigmoid nonlinearity is used.

• optim (str): classifier optimizer (default: adam).

• batch size (int): batch size for training the classifier (default: 64).

• tenacity (int): stopping criterion; maximum number of times the validation error

does not decrease.

• epoch size (int): number of passes through the training set for one epoch.

• dropout (float): dropout rate in the case of MLP.

For use cases where there are multiple calls to SentEval, e.g when evaluating the sen-

tence encoder at every epoch of training on the dev sets, we propose the following prototyp-

ing set of parameters, which will lead to slightly worse results but will make the evaluation

significantly faster:

params[’classifier’] =

{’nhid’: 0, ’optim’: ’rmsprop’,

’batch_size’: 128, ’tenacity’: 3,

’epoch_size’: 2}

You may also pass additional parameters to the params object which will further be

accessible from the prepare and batcher functions (e.g a pretrained model).

Datasets In order to obtain the data and preprocess it so that it can be fed into SentE-

val, we provide the get transfer data.bash script in the data directory. The script

fetches the different datasets from their known locations, unpacks them and preprocesses

them. We tokenize each of the datasets with the MOSES tokenizer (Koehn et al., 2007)

and convert all files to UTF-8 encoding. Once this script has been executed, the task path

parameter can be set to indicate the path of the data directory.
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Requirements SentEval is written in Python. In order to run the evaluations, the user

will need to install numpy, scipy and recent versions of pytorch and scikit-learn. In order

to facilitate research where no GPUs are available, we offer for the evaluations to be run on

CPU (using scikit-learn) where possible. For the bigger datasets, where more complicated

models are often required, for instance STS Benchmark, SNLI, SICK-R and the image-

caption retrieval tasks, we recommend to train pytorch models on a single GPU.

3.1.4 Baselines

Model MR CR SUBJ MPQA SST-2 SST-5 TREC MRPC SICK-E
Representation learning (transfer)

GloVe LogReg 77.4 78.7 91.2 87.7 80.3 44.7 83.0 72.7/81.0 78.5
GloVe MLP 77.7 79.9 92.2 88.7 82.3 45.4 85.2 73.0/80.9 79.0
fastText LogReg 78.2 80.2 91.8 88.0 82.3 45.1 83.4 74.4/82.4 78.9
fastText MLP 78.0 81.4 92.9 88.5 84.0 45.1 85.6 74.4/82.3 80.2
SkipThought 79.4 83.1 93.7 89.3 82.9 - 88.4 72.4/81.6 79.5
Supervised methods directly trained for each task (no transfer)

SOTA 83.11 86.31 95.51 93.31 89.52 52.42 96.12 80.4/85.93 84.54

Table 3.3: Transfer test results for various baseline methods. We include supervised results
trained directly on each task (no transfer). Results 1 correspond to AdaSent (Zhao et al.,
2015), 2 to BLSTM-2DCNN (Zhou et al., 2016b), 3 to TF-KLD (Ji and Eisenstein, 2013)
and 4 to Illinois-LH system (Lai and Hockenmaier, 2014).

Several baseline models are evaluated in Table 3.3 and in Table 3.4. We include two of

the baselines that were most successful at the time of publication of our approach:

• Continuous bag-of-words embeddings (average of word vectors). We consider the

most commonly used pretrained word vectors available, namely the fastText (Mikolov

et al., 2017) and the GloVe (Pennington et al., 2014) vectors trained on Common-

Crawl.

• SkipThought vectors (Ba et al., 2016)

In addition to these methods, we include the results of current state-of-the-art methods

for which both the encoder and the classifier are trained on each task (no transfer). For
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GloVe and fastText bag-of-words representations, we report the results for Logistic Re-

gression and Multi-Layer Perceptron (MLP). For the MLP classifier, we tune the dropout

rate and the number of hidden units in addition to the L2 regularization. We do not observe

any improvement over Logistic Regression for methods that already have a large embed-

ding size (4800 for SkipThought). On most transfer tasks, supervised methods that are

trained directly on each task still outperform transfer methods. Our hope is that SentEval

will help the community build sentence representations with better generalization power

that can outperform both the transfer and the supervised methods.

Model SST’12 SST’13 SST’14 SST’15 SST’16 SICK-R SST-B
Representation learning (transfer)

GloVe BoW 52.1 49.6 54.6 56.1 51.4 79.9 64.7
fastText BoW 58.3 57.9 64.9 67.6 64.3 82.0 70.2
SkipThought-LN 30.8 24.8 31.4 31.0 - 85.8 72.1
Char-phrase 66.1 57.2 74.7 76.1 - - -

Supervised methods directly trained for each task (no transfer)
PP-Proj 60.01 56.81 71.31 74.81 - 86.82 -

Table 3.4: Evaluation of sentence representations on the semantic textual similarity bench-
marks. Numbers reported are Pearson correlations x100. We use the average of Pearson
correlations for STS’12 to STS’16 which are composed of several subtasks. Charagram-
phrase numbers were taken from (Wieting et al., 2016). Results 1 correspond to PP-Proj
(Wieting et al., 2015) and 2 from Tree-LSTM (Tai et al., 2015).

Comparison with recent developments

After SentEval was introduced, another benchmark for evaluating sentence encoders called

”GLUE” was created (Wang et al., 2018). While SentEval focuses on the evaluation of

fixed-size frozen sentence embeddings, the goal of the GLUE benchmark was to evaluate

in particular the pretraining of sentence encoders. That is, instead of only learning a lo-

gistic regression on top of sentence embeddings, the entire encoder is fine-tuned on each

downstream task. Note that one advantage of not fine-tuning sentence encoders is that the

same encoder can be used for multiple tasks as opposed to having one fine-tuned encoder
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per task. Also, GLUE focused mostly on high-resource downstream tasks that have hun-

dreds of thousand of training samples while SentEval focuses on low-resource transfer with

small downstream tasks such as MR, CR etc. An interesting direction of research that we

describe in the 4th chapter of this thesis is language model fine-tuning which started with

the ELMO (Peters et al., 2018) approach and was further investigated in Radford et al.

(2018); Devlin et al. (2018). This line of work was evaluated on the GLUE benchmark.

Our contribution in that research area is described in the last chapter of this thesis on cross-

lingual language models.

3.1.5 Discussion

Universal sentence representations are a hot topic in NLP research. Making use of a generic

sentence encoder allows models to generalize and transfer better, even when trained on

relatively small datasets, which makes them highly desirable for downstream NLP tasks.

We introduced SentEval as a fair, straightforward and centralized toolkit for evaluating

sentence representations. We have aimed to make evaluation as easy as possible: sentence

encoders can be evaluated by implementing a simple Python interface, and we provide a

script to download the necessary evaluation datasets. In section 3.2, we make a thorough

evaluation of which model and which trained task should be used to obtain the best possible

universal sentence encoder on SentEval, and introduce InferSent (Conneau et al., 2017). In

section 3.3, we enrich SentEval with probing tasks (Conneau et al., 2018a) to provide tools

to better understand how the encoder understands language. Our hope is that our toolkit

will be used by the community in order to ensure that fully comparable results are published

in research papers.
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3.2 Learning General-Purpose Sentence Embeddings

In the previous chapter, we introduced SentEval, a toolkit to automatically evaluate the

quality of sentence representations. Using this evaluation measure, in this chapter, we

conduct a thorough experimental investigation of the best (model, task) combination to ob-

tain state-of-the-art sentence embeddings, inspired by the successful (ConvNet,ImageNet)

combination in computer vision. As seen in the Background section, many modern NLP

systems rely on word embeddings, previously trained in an unsupervised manner on large

corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as

sentences, were however not so successful when we conducted the present study. Several

attempts at learning unsupervised representations of sentences had not reached satisfac-

tory enough performance to be widely adopted, and language model fine-tuning (Radford

et al., 2018) was not yet discovered. In this chapter, we show how universal sentence rep-

resentations trained using the supervised data of the Stanford Natural Language Inference

datasets can consistently outperform previous unsupervised methods like SkipThought vec-

tors (Kiros et al., 2015) on a wide range of transfer tasks. Much like how computer vision

uses ImageNet to obtain features, which can then be transferred to other tasks, our work

tends to indicate the suitability of natural language inference for transfer learning to other

NLP tasks. As part of this work, we made our encoder publicly available.8

3.2.1 Introduction

Distributed representations of words (or word embeddings) (Bengio et al., 2003; Collobert

et al., 2011; Mikolov et al., 2013c; Pennington et al., 2014) have shown to provide useful

features for various tasks in natural language processing and computer vision. While there

seems to be a consensus concerning the usefulness of word embeddings and how to learn

them, this is not yet clear with regard to representations that carry the meaning of a full

sentence. That is, how to capture the relationships among multiple words and phrases in a

single vector remains an question to be solved.

In this chapter, we study the task of learning universal representations of sentences,

8https://www.github.com/facebookresearch/InferSent

https://www.github.com/facebookresearch/InferSent
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i.e., a sentence encoder model that is trained on a large corpus and subsequently trans-

ferred to other tasks. Two questions need to be solved in order to build such an encoder,

namely: what is the preferable neural network architecture; and how and on what task

should such a network be trained. Following existing work on learning word embeddings,

most current approaches consider learning sentence encoders in an unsupervised manner

like SkipThought (Kiros et al., 2015) or FastSent (Hill et al., 2016a). Here, we investigate

whether supervised learning can be leveraged instead, taking inspiration from previous re-

sults in computer vision, where many models are pretrained on the ImageNet (Deng et al.,

2009) before being transferred. We compare sentence embeddings trained on various su-

pervised tasks, and show that sentence embeddings generated from models trained on a

natural language inference task reach the best results in terms of transfer accuracy. We

hypothesize that the suitability of NLI as a training task is caused by the fact that it is

a high-level understanding task that involves reasoning about the semantic relationships

within sentences.

Unlike in computer vision, where convolutional neural networks are predominant, there

are multiple ways to encode a sentence using neural networks. Hence, we investigate the

impact of the sentence encoding architecture on representational transferability, and com-

pare convolutional, recurrent and even simpler word composition schemes. Our experi-

ments show that an encoder based on a bi-directional LSTM architecture with max pool-

ing, trained on the Stanford Natural Language Inference (SNLI) dataset (Bowman et al.,

2015), yielded state-of-the-art sentence embeddings (at the time of publication) compared

to previous alternative unsupervised approaches like SkipThought or FastSent, while be-

ing much faster to train. We establish this finding on a broad and diverse set of transfer

tasks that measures the ability of sentence representations to capture general and useful

information.
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3.2.2 Related work

In the following, we present a more detailed related work than in the background, focused

on learning representations. Transfer learning using supervised features has been success-

ful in several computer vision applications (Razavian et al., 2014). Striking examples in-

clude face recognition (Taigman et al., 2014) and visual question answering (Antol et al.,

2015), where image features trained on ImageNet (Deng et al., 2009) and word embeddings

trained on large unsupervised corpora are combined.

In contrast, at the time of publication, most approaches for sentence representation

learning were unsupervised, which we argued was because the NLP community had not

yet found the best supervised task for embedding the semantics of a whole sentence. In-

terestingly, while our work focused on going from unsupervised to supervised learning,

later work (Radford et al., 2018; Devlin et al., 2018) showed amazing results using only

language models on large-scale datasets. Another motivation for having an unsupervised

method is that neural networks are very good at capturing the biases of the task on which

they are trained, but can easily forget the overall information or semantics of the input

data by specializing too much on these biases. Learning models on large unsupervised

task makes it harder for the model to specialize. Littwin and Wolf (2016) showed that co-

adaptation of encoders and classifiers, when trained end-to-end, can negatively impact the

generalization power of image features generated by an encoder. They propose a loss that

incorporates multiple orthogonal classifiers to counteract this effect.

Work on generating sentence embeddings range from models that compose word em-

beddings (Le and Mikolov, 2014; Arora et al., 2017; Wieting et al., 2015) to more complex

neural network architectures. SkipThought vectors (Kiros et al., 2015) propose an objective

function that adapts the skip-gram model for words (Mikolov et al., 2013c) to the sentence

level. By encoding a sentence to predict the sentences around it, and using the features in

a linear model, they were able to demonstrate good performance on 8 transfer tasks. They

further obtained better results using layer-norm regularization of their model in (Ba et al.,

2016). Hill et al. (2016a) showed that the task on which sentence embeddings are trained

significantly impacts their quality. In this section, we consider SkipThought with layer

normalization as our baseline. The results on SentEval were presented in the last section.
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In addition to unsupervised methods, Hill et al. (2016a) included supervised train-

ing in their comparison—namely, on machine translation data (using the WMT’14 En-

glish/French and English/German pairs), dictionary definitions and image captioning data

(see also Kiela et al. (2017)) from the COCO dataset (Lin et al., 2014). These models

obtained significantly lower results compared to the unsupervised Skip-Thought approach.

Previous work had explored training sentence encoders on the SNLI corpus and ap-

plying them on the SICK corpus (Marelli et al., 2014), either using multi-task learning or

pretraining (Mou et al., 2016; Bowman et al., 2015). The results were inconclusive and

did not reach the same level as simpler approaches that directly learn a classifier on top

of unsupervised sentence embeddings instead (Arora et al., 2017). To our knowledge, this

work is the first attempt to fully exploit the SNLI corpus for building generic sentence

encoders. As we show in our experiments, we are able to consistently outperform unsu-

pervised approaches, even if our models are trained on much less (but human-annotated)

data.

3.2.3 Approach

This work combines two research directions, which we describe in what follows. First, we

explain how the NLI task can be used to train universal sentence encoding models using the

SNLI task. We subsequently describe the architectures that we investigated for the sentence

encoder, which, in our opinion, covers a suitable range of sentence encoders that were in

use at the time of publication. Since then, Transformer networks have become dominant in

the field. Specifically, we examined standard recurrent models such as LSTMs and GRUs,

for which we investigate mean and max-pooling over the hidden representations; a self-

attentive network that incorporates different views of the sentence (similar in idea to the

Transformer self-attention mechanism); and a hierarchical convolutional network that can

be seen as a tree-based method that blends different levels of abstraction.
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The Natural Language Inference task

The SNLI dataset consists of 570k human-generated English sentence pairs, manually la-

beled with one of three categories: entailment, contradiction and neutral. It captures nat-

ural language inference, also known in previous incarnations as Recognizing Textual En-

tailment, and constitutes one of the largest high-quality labeled resources explicitly con-

structed in order to require understanding sentence semantics. We hypothesize that the

semantic nature of NLI makes it a good candidate for learning universal sentence embed-

dings in a supervised way. That is, we aim to demonstrate that sentence encoders trained

on natural language inference are able to learn sentence representations that capture uni-

versally useful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u− v|, u ∗ v)

Figure 3.1: Generic NLI training scheme.

Models can be trained on SNLI in two different ways: (i) sentence encoding-based

models that explicitly separate the encoding of the individual sentences and (ii) joint meth-

ods that allow to use encoding of both sentences (to use cross-features or attention from

one sentence to the other).

Since our goal is to train a generic sentence encoder, we adopt the first setting. As

illustrated in Figure 3.1, a typical architecture of this kind uses a shared sentence encoder

that outputs a representation u for the premise and the v for the hypothesis. Once these

sentence vectors are generated, three matching methods are applied to extract relations
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between u and v : (i) concatenation of the two representations (u, v); (ii) element-wise

product u ∗ v; and (iii) absolute element-wise difference |u − v|. The resulting vector,

which captures information from both the premise and the hypothesis, is fed into a 3-class

classifier consisting of multiple fully-connected layers culminating in a softmax layer.

Sentence encoder architectures

A wide variety of neural networks for encoding sentences into fixed-size representations

exists, and when it is not yet clear which one best captures generically useful information,

eventhough there has been a recent consensus around Transformer networks (which did not

exist at the time of this study). We compare 7 different architectures: standard recurrent

encoders with either Long Short-Term Memory (LSTM) or Gated Recurrent Units (GRU),

concatenation of last hidden states of forward and backward GRU, Bi-directional LSTMs

(BiLSTM) with either mean or max pooling, self-attentive network and hierarchical con-

volutional networks.

LSTM and GRU Our first, and simplest, encoders apply recurrent neural networks using

either LSTM (Hochreiter and Schmidhuber, 1997) or GRU (Cho et al., 2014a) modules, as

in sequence to sequence encoders (Sutskever et al., 2014). For a sequence of T words

(w1, . . . , wT ), the network computes a set of T hidden representations h1, . . . , hT , with

ht =
−−−−→
LSTM(w1, . . . , wT ) (or using GRU units instead). A sentence is represented by the

last hidden vector, hT .

We also consider a model BiGRU-last that concatenates the last hidden state of a for-

ward GRU, and the last hidden state of a backward GRU to have the same architecture as

for SkipThought vectors.

BiLSTM with mean/max pooling For a sequence of T words {wt}t=1,...,T , a bidirec-

tional LSTM computes a set of T vectors {ht}t. For t ∈ [1, . . . , T ], ht, is the concatenation
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The movie was great
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Figure 3.2: Bi-LSTM max-pooling network.

of a forward LSTM and a backward LSTM that read the sentences in two opposite direc-

tions:

−→
ht =

−−−−→
LSTMt(w1, . . . , wT )

←−
ht =

←−−−−
LSTMt(w1, . . . , wT )

ht = [
−→
ht ,
←−
ht ]

We experiment with two ways of combining the varying number of {ht}t to form a fixed-

size vector, either by selecting the maximum value over each dimension of the hidden

units (max pooling) (Collobert and Weston, 2008) or by considering the average of the

representations (mean pooling).

Self-attentive network The self-attentive sentence encoder (Liu et al., 2016; Lin et al.,

2017) uses an attention mechanism over the hidden states of a BiLSTM to generate a rep-

resentation u of an input sentence. The attention mechanism is defined as :
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The movie was great
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Figure 3.3: Inner Attention network architecture.

h̄i = tanh(Whi + bw)

αi =
eh̄

T
i uw∑

i e
h̄Ti uw

u =
∑
t

αihi

where {h1, . . . , hT} are the output hidden vectors of a BiLSTM. These are fed to an

affine transformation (W , bw) which outputs a set of keys (h̄1, . . . , h̄T ). The {αi} repre-

sent the score of similarity between the keys and a learned context query vector uw. These

weights are used to produce the final representation u, which is a weighted linear combi-

nation of the hidden vectors.

Following Lin et al. (2017) we use a self-attentive network with multiple views of the

input sentence, so that the model can learn which part of the sentence is important for the

given task. Concretely, we have 4 context vectors u1
w, u

2
w, u

3
w, u

4
w which generate 4 repre-

sentations that are then concatenated to obtain the sentence representation u. Figure 3.3

illustrates this architecture.
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Figure 3.4: Hierarchical ConvNet architecture.

Hierarchical ConvNet One of the best performing models on classification tasks is a

convolutional architecture termed AdaSent (Zhao et al., 2015), which concatenates dif-

ferent representations of the sentences at different level of abstractions. Inspired by this

architecture, we introduce a faster version consisting of 4 convolutional layers. At every

layer, a representation ui is computed by a max-pooling operation over the feature maps

(see Figure 3.4).

The final representation u = [u1, u2, u3, u4] concatenates representations at different

levels of the input sentence. The model thus captures hierarchical abstractions of an input

sentence in a fixed-size representation.
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Training details

For all our models trained on SNLI, we use SGD with a learning rate of 0.1 and a weight

decay of 0.99. At each epoch, we divide the learning rate by 5 if the dev accuracy decreases.

We use mini-batches of size 64 and training is stopped when the learning rate goes under

the threshold of 10−5. For the classifier, we use a multi-layer perceptron with 1 hidden-

layer of 512 hidden units. We use open-source GloVe vectors trained on Common Crawl

840B with 300 dimensions as fixed word embeddings.

name N task C examples label(s)
MR 11k sentiment (movies) 2 “Too slow for a younger crowd , too shallow for an older one.” neg
CR 4k product reviews 2 “We tried it out christmas night and it worked great .” pos
SUBJ 10k subjectivity/objectivity 2 “A movie that doesn’t aim too high , but doesn’t need to.” subj
MPQA 11k opinion polarity 2 “don’t want”; “would like to tell”; neg, pos
TREC 6k question-type 6 “What are the twin cities ?” LOC:city
SST-2 70k sentiment (movies) 2 “Audrey Tautou has a knack for picking roles that magnify her [..]” pos
SST-5 12k sentiment (movies) 5 “nothing about this movie works.” 0

Table 3.5: Classification tasks. C is the number of classes and N is the number of samples.

Our aim is to obtain general-purpose sentence embeddings that capture generic infor-

mation that is useful for a broad set of tasks. To evaluate the quality of these representations,

we use them as features and evaluate them on 12 transfer tasks from SentEval.

Model NLI Transfer
dim dev test micro macro

LSTM 2048 81.9 80.7 79.5 78.6
GRU 4096 82.4 81.8 81.7 80.9
BiGRU-last 4096 81.3 80.9 82.9 81.7
BiLSTM-Mean 4096 79.0 78.2 83.1 81.7
Inner-attention 4096 82.3 82.5 82.1 81.0
HConvNet 4096 83.7 83.4 82.0 80.9
BiLSTM-Max 4096 85.0 84.5 85.2 83.7

Table 3.6: Performance of sentence encoder architectures on SNLI and (aggregated)
transfer tasks. Dimensions of embeddings were selected according to best aggregated
scores (see Figure 3.5). Underline means new state of the art on SNLI.
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
Unsupervised representation training (unordered sentences)

Unigram-TFIDF 73.7 79.2 90.3 82.4 - 85.0 73.6/81.7 - - .58/.57
ParagraphVec (DBOW) 60.2 66.9 76.3 70.7 - 59.4 72.9/81.1 - - .42/.43
SDAE 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - - .37/.38
SIF (GloVe + WR) - - - - 82.2 - - - 84.6 .69/ -
word2vec BOW† 77.7 79.8 90.9 88.3 79.7 83.6 72.5/81.4 0.803 78.7 .65/.64
fastText BOW† 78.3 81.0 92.4 87.8 81.9 84.8 73.9/82.0 0.815 78.3 .63/.62
GloVe BOW† 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 0.800 78.6 .54/.56
GloVe Positional Encoding† 78.3 77.4 91.1 87.1 80.6 83.3 72.5/81.2 0.799 77.9 .51/.54
BiLSTM-Max (untrained)† 77.5 81.3 89.6 88.7 80.7 85.8 73.2/81.6 0.860 83.4 .39/.48

Unsupervised representation training (ordered sentences)
FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64
FastSent+AE 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - - .62/.62
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35
SkipThought-LN 79.4 83.1 93.7 89.3 82.9 88.4 - 0.858 79.5 .44/.45

Supervised representation training
CaptionRep (bow) 61.9 69.3 77.4 70.8 - 72.2 73.6/81.9 - - .46/.42
DictRep (bow) 76.7 78.7 90.7 87.2 - 81.0 68.4/76.8 - - .67/.70
NMT En-to-Fr 64.7 70.1 84.9 81.5 - 82.8 69.1/77.1 - .43/.42
Paragram-phrase - - - - 79.7 - - 0.849 83.1 .71/ -
BiLSTM-Max (on SST)† (*) 83.7 90.2 89.5 (*) 86.0 72.7/80.9 0.863 83.1 .55/.54
BiLSTM-Max (on SNLI)† 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65
BiLSTM-Max (on AllNLI)† 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 0.884 86.3 .70/.67

Supervised methods (directly trained for each task – no transfer)
Naive Bayes - SVM 79.4 81.8 93.2 86.3 83.1 - - - - -
AdaSent 83.1 86.3 95.5 93.3 - 92.4 - - - -
TF-KLD - - - - - - 80.4/85.9 - - -
Illinois-LH - - - - - - - - 84.5 -
Dependency Tree-LSTM - - - - - - - 0.868 - -

Table 3.7: Transfer test results for various architectures trained in different ways. Un-
derlined are best results for transfer learning approaches, in bold are best results among the
models trained in the same way. † indicates methods that we trained, other transfer mod-
els have been extracted from (Hill et al., 2016a). For best published supervised methods
(no transfer), we consider AdaSent (Zhao et al., 2015), TF-KLD (Ji and Eisenstein, 2013),
Tree-LSTM (Tai et al., 2015) and Illinois-LH system (Lai and Hockenmaier, 2014). (*)
Our model trained on SST obtained 83.4 for MR and 86.0 for SST (MR and SST come
from the same source), which we do not put in the tables for fair comparison with transfer
methods.

3.2.4 Empirical results

In this section, we refer to ”micro” and ”macro” averages of development set (dev) results

on transfer tasks whose metrics is accuracy: we compute a ”macro” aggregated score that

corresponds to the classical average of dev accuracies, and the ”micro” score that is a sum
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Figure 3.5: Transfer performance w.r.t. embedding size using the micro aggregation
method.

of the dev accuracies, weighted by the number of dev samples.

Architecture impact

Model We observe in Table 3.6 that different models trained on the same NLI corpus

lead to different transfer tasks results. The BiLSTM-4096 with the max-pooling operation

performs best on both SNLI and transfer tasks. Looking at the micro and macro averages,

we see that it performs significantly better than the other models LSTM, GRU, BiGRU-last,

BiLSTM-Mean, inner-attention and the hierarchical-ConvNet.

Table 3.6 also shows that better performance on the training task does not necessarily

translate in better results on the transfer tasks like when comparing inner-attention and

BiLSTM-Mean for instance.

We hypothesize that some models are likely to over-specialize and adapt too well to the

biases of a dataset without capturing general-purpose information of the input sentence.

For example, the inner-attention model has the ability to focus only on certain parts of a

sentence that are useful for the SNLI task, but not necessarily for the transfer tasks. On

the other hand, BiLSTM-Mean does not make sharp choices on which part of the sentence

is more important than others. The difference between the results seems to come from the

different abilities of the models to incorporate general information while not focusing too
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Caption Retrieval Image Retrieval
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r
Direct supervision of sentence representations
m-CNN (Ma et al., 2015) 38.3 - 81.0 2 27.4 - 79.5 3
m-CNNENS (Ma et al., 2015) 42.8 - 84.1 2 32.6 - 82.8 3
Order-embeddings (Vendrov et al., 2016) 46.7 - 88.9 2 37.9 - 85.9 2
Pre-trained sentence representations
SkipThought + VGG19 (82k) 33.8 67.7 82.1 3 25.9 60.0 74.6 4
SkipThought + ResNet101 (113k) 37.9 72.2 84.3 2 30.6 66.2 81.0 3
BiLSTM-Max (on SNLI) + ResNet101 (113k) 42.4 76.1 87.0 2 33.2 69.7 83.6 3
BiLSTM-Max (on AllNLI) + ResNet101 (113k) 42.6 75.3 87.3 2 33.9 69.7 83.8 3

Table 3.8: COCO retrieval results. SkipThought is trained either using 82k training
samples with VGG19 features, or with 113k samples and ResNet-101 features (our setting).
We report the average results on 5 splits of 1k test images.

much on specific features useful for the task at hand.

For a given model, the transfer quality is also sensitive to the optimization algorithm:

when training with Adam instead of SGD, we observed that the BiLSTM-max converged

faster on SNLI (5 epochs instead of 10), but obtained worse results on the transfer tasks,

most likely because of the model and classifier’s increased capability to over-specialize on

the training task.

Embedding size Figure 3.5 compares the overall performance of different architectures,

showing the evolution of micro averaged performance with regard to the embedding size.

Since it is easier to linearly separate in high dimension, especially with logistic re-

gression, it is not surprising that increased embedding sizes lead to increased performance

for almost all models. However, this is particularly true for some models (BiLSTM-Max,

HConvNet, inner-att), which demonstrate unequal abilities to incorporate more information

as the size grows. We hypothesize that such networks are able to incorporate information

that is not directly relevant to the objective task (results on SNLI are relatively stable with

regard to embedding size) but that can nevertheless be useful as features for transfer tasks.
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Task transfer

We report in Table 3.7 transfer tasks results for different architectures trained in differ-

ent ways. We group models by the nature of the data on which they were trained. The

first group corresponds to models trained with unsupervised unordered sentences. This in-

cludes bag-of-words models such as word2vec-SkipGram, the Unigram-TFIDF model, the

Paragraph Vector model (Le and Mikolov, 2014), the Sequential Denoising Auto-Encoder

(SDAE) (Hill et al., 2016a) and the SIF model (Arora et al., 2017), all trained on the Toronto

book corpus (Zhu et al., 2015). The second group consists of models trained with unsu-

pervised ordered sentences such as FastSent and SkipThought (also trained on the Toronto

book corpus). We also include the FastSent variant “FastSent+AE” and the SkipThought-

LN version that uses layer normalization. We report results from models trained on super-

vised data in the third group, and also report some results of supervised methods trained

directly on each task for comparison with transfer learning approaches.

Comparison with SkipThought The best performing sentence encoder at the time of

publication was the SkipThought-LN model, which was trained on a very large corpora

of ordered sentences. With much less data (570k compared to 64M sentences) but with

high-quality supervision from the SNLI dataset, we are able to consistently outperform the

results obtained by SkipThought vectors. We train our model in less than a day on a single

GPU compared to the best SkipThought-LN network trained for a month. Our BiLSTM-

max trained on SNLI performs much better than the released SkipThought vectors on MR,

CR, MPQA, SST, MRPC-accuracy, SICK-R, SICK-E and STS14 (see Table 3.7). Except

for the SUBJ dataset, it also performs better than SkipThought-LN on MR, CR and MPQA.

We also observe by looking at the STS14 results that the cosine metrics in our embedding

space is much more semantically informative than in SkipThought embedding space (pear-

son score of 0.68 compared to 0.29 and 0.44 for ST and ST-LN). We hypothesize that this

is namely linked to the matching method of SNLI models which incorporates a notion of

distance (element-wise product and absolute difference) during training.

NLI as a supervised training set Our findings indicate that our model trained on SNLI

obtains much better overall results than models trained on other supervised tasks such as
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COCO, dictionary definitions, NMT, PPDB (Ganitkevitch et al., 2013) and SST. For SST,

we tried exactly the same models as for SNLI; it is worth noting that SST is smaller than

NLI. Our representations constitute higher-quality features for both classification and sim-

ilarity tasks. One explanation is that the natural language inference task constrains the

model to encode the semantic information of the input sentence, and that the information

required to perform NLI is generally discriminative and informative.

Domain adaptation on SICK tasks Our transfer learning approach obtains better results

than previous state-of-the-art on the SICK task - which can be seen as an out-domain ver-

sion of SNLI - for both entailment and relatedness. We obtain a pearson score of 0.885

on SICK-R while (Tai et al., 2015) obtained 0.868, and we obtain 86.3% test accuracy

on SICK-E while previous best hand-engineered models (Lai and Hockenmaier, 2014) ob-

tained 84.5%. We also significantly outperformed previous transfer learning approaches

on SICK-E (Bowman et al., 2015) that used the parameters of an LSTM model trained on

SNLI to fine-tune on SICK (80.8% accuracy). We hypothesize that our embeddings al-

ready contain the information learned from the in-domain task, and that learning only the

classifier limits the number of parameters learned on the small out-domain task.

Image-caption retrieval results In Table 3.8, we report results for the COCO image-

caption retrieval task. We report the mean recalls of 5 random splits of 1K test images as in

Ma et al. (2015); Vendrov et al. (2016). When trained with ResNet features and 30k more

training data, the SkipThought vectors perform significantly better than the original setting,

going from 33.8 to 37.9 for caption retrieval R@1, and from 25.9 to 30.6 on image retrieval

R@1. Our approach pushes the results even further, from 37.9 to 42.4 on caption retrieval,

and 30.6 to 33.2 on image retrieval. These results are comparable to previous approach of

(Ma et al., 2015) that did not do transfer but directly learned the sentence encoding on the

image-caption retrieval task. This supports the claim that pre-trained representations such

as ResNet image features and our sentence embeddings can achieve competitive results

compared to features learned directly on the objective task.



CHAPTER 3. MONOLINGUAL SENTENCE REPRESENTATIONS 41

MultiGenre NLI The MultiNLI corpus (Williams et al., 2018) was recently released as

a multi-genre version of SNLI. With 433K sentence pairs, MultiNLI improves upon SNLI

in its coverage: it contains ten distinct genres of written and spoken English, covering most

of the complexity of the language. We augment Table 3.7 with our model trained on both

SNLI and MultiNLI (AllNLI). We observe a significant boost in performance overall com-

pared to the model trained only on SLNI. Our model even reaches AdaSent performance

on CR, suggesting that having a larger coverage for the training task helps learn even bet-

ter general representations. On semantic textual similarity STS14, we are also competitive

with PPDB based paragram-phrase embeddings with a pearson score of 0.70. Interestingly,

on caption-related transfer tasks such as the COCO image caption retrieval task, training

our sentence encoder on other genres from MultiNLI does not degrade the performance

compared to the model trained only SNLI (which contains mostly captions), which con-

firms the generalization power of our embeddings.

3.2.5 Visualization of BiLSTM-max sentence encoders

Our representations were trained to focus on parts of a sentence such that a classifier can

easily tell the difference between contradictory, neutral or entailed sentences.

In Table 3.12 and Table 3.9, we investigate how the max-pooling operation selects the

information from the hidden states of the BiLSTM, for our trained and untrained BiLSTM-

max models (for both models, word embeddings are initialized with GloVe vectors).

For each time step t, we report the number of times the max-pooling operation selected

the hidden state ht (which can be seen as a sentence representation centered around word

wt).

Without any training, the max-pooling is rather even across hidden states, although it

seems to focus consistently more on the first and last hidden states. When trained, the

model learns to focus on specific words that carry most of the meaning of the sentence

without any explicit attention mechanism.

Note that each hidden state also incorporates information from the sentence at different

levels, explaining why the trained model also incorporates information from all hidden

states.
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Figure 3.6: Pair of entailed sentences A: Visualization of max-pooling for BiLSTM-max
4096 untrained.

Figure 3.7: Pair of entailed sentences A: Visualization of max-pooling for BiLSTM-max
4096 trained on NLI.

3.2.6 Conclusion

This section studied the effects of training sentence embeddings with supervised data by

testing on 12 different transfer tasks. We showed that models learned on NLI can perform

better than models trained in unsupervised conditions such as SkipThought or on other su-

pervised tasks. By exploring various architectures, we showed that a BiLSTM network with

max pooling made the best universal sentence encoding method, outperforming previous
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Figure 3.8: Pair of entailed sentences B: Visualization of max-pooling for BiLSTM-max
4096 untrained.

Figure 3.9: Pair of entailed sentences B: Visualization of max-pooling for BiLSTM-max
4096 trained on NLI.

approaches like SkipThought vectors.

We believe that this work only scratches the surface of possible combinations of models

and tasks for learning generic sentence embeddings. Larger datasets that rely on natural

language understanding for sentences could bring sentence embedding quality to the next

level. Our work was in particular followed by multi-task learning (Subramanian et al.,

2018) and the revival of language models (Radford et al., 2018; Devlin et al., 2018) for

learning generic text representations in an unsupervised way.
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3.3 Probing Sentence Embeddings for Linguistic Proper-

ties

In the previous sections, we have explored ways to evaluate and learn general-purpose

sentence embeddings. In this last section about monolingual sentence representations, we

complete our study by analyzing sentence embedding spaces. Although much effort has

recently been devoted to training high-quality sentence embeddings, we still have a poor

understanding of what they are capturing. “Downstream” tasks, often based on sentence

classification, are commonly used to evaluate the quality of sentence representations as we

have seen in the first chapter on SentEval. The complexity of the SentEval tasks makes

it however difficult to infer what kind of information is present in the representations. In

this section, we introduce 10 probing tasks designed to capture simple linguistic features

of sentences, and we use them to study embeddings generated by three different encoders

trained in eight distinct ways, uncovering intriguing properties of both encoders and train-

ing methods.

3.3.1 Introduction

Despite Ray Mooney’s quip that you cannot ”cram the meaning of a whole %&!$# sentence

into a single $&!#* vector”, sentence embedding methods have achieved impressive results

in tasks ranging from machine translation (Sutskever et al., 2014; Cho et al., 2014b) to en-

tailment detection (Williams et al., 2018), spurring the quest for “universal embeddings”

trained once and used in a variety of applications (Kiros et al., 2015; Conneau et al., 2017;

Subramanian et al., 2018). Positive results on concrete problems suggest that embeddings

capture important linguistic properties of sentences. However, real-life “downstream” tasks

require complex forms of inference, making it difficult to pinpoint the information a model

is relying upon. Impressive as it might be that a system can tell that the sentence “A movie

that doesn’t aim too high, but it doesn’t need to” (Pang and Lee, 2004) expresses a subjec-

tive viewpoint, it is hard to tell how the system (or even a human) comes to this conclusion.

Complex tasks can also carry hidden biases that models might lock onto (Jabri et al., 2016).

For example, Lai and Hockenmaier (2014) show that the simple heuristic of checking for
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explicit negation words leads to good accuracy in the SICK sentence entailment task.

Model introspection techniques have been applied to sentence encoders in order to gain

a better understanding of which properties of the input sentences their embeddings retain

(see Section 3.3.5). However, these techniques often depend on the specifics of an encoder

architecture, and consequently cannot be used to compare different methods. Shi et al.

(2016) and Adi et al. (2017) introduced a more general approach, relying on the notion of

what we will call probing tasks. A probing task is a classification problem that focuses

on simple linguistic properties of sentences. For example, one such task might require to

categorize sentences by the tense of their main verb. Given an encoder (e.g., an LSTM)

pre-trained on a certain task (e.g., machine translation), we use the sentence embeddings

it produces to train the tense classifier (without further embedding tuning). If the classifier

succeeds, it means that the pre-trained encoder is storing readable tense information into

the embeddings it creates. Note that:

1. The probing task asks a simple question, minimizing interpretability problems.

2. Because of their simplicity, it is easier to control for biases in probing tasks than in

downstream tasks.

3. The probing task methodology is agnostic with respect to the encoder architecture,

as long as it produces a vector representation of sentences.

We greatly extend earlier work on probing tasks as follows. First, we introduce a larger

set of probing tasks (ten in total), organized by the type of linguistic properties they probe.

Second, we systematize the probing task methodology, controlling for a number of possible

nuisance factors, and framing all tasks so that they only require single sentence representa-

tions as input, for maximum generality and to ease result interpretation. Third, we use our

probing tasks to explore a wide range of state-of-the-art encoding architectures and training

methods, and further relate probing and downstream task performance. Finally, release our

probing data sets and tools as part of SentEval, hoping they will become a standard way to

study the linguistic properties of sentence embeddings.9

9https://github.com/facebookresearch/SentEval/tree/master/data/probing

https://github.com/facebookresearch/SentEval/tree/master/data/probing
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3.3.2 Probing tasks

In constructing our probing benchmarks, we adopted the following criteria. First, for gen-

erality and interpretability, the task classification problem should only require single sen-

tence embeddings as input (as opposed to, e.g., sentence and word embeddings, or multiple

sentence representations). Second, it should be possible to construct large training sets in

order to train parameter-rich multi-layer classifiers, in case the relevant properties are non-

linearly encoded in the sentence vectors. Third, nuisance variables such as lexical cues or

sentence length should be controlled for. Finally, and most importantly, we want tasks that

address an interesting set of linguistic properties. We thus strove to come up with a set

of tasks that, while respecting the previous constraints, probe a wide range of phenomena,

from superficial properties of sentences such as which words they contain to their hierar-

chical structure to subtle facets of semantic acceptability. We think the current task set is

reasonably representative of different linguistic domains, but we are not claiming that it is

exhaustive. We expect future work to extend it.

The sentences for all our tasks are extracted from the Toronto Book Corpus (Zhu et al.,

2015), more specifically from the random pre-processed portion made available by Paperno

et al. (2016). We only sample sentences in the 5-to-28 word range. We parse them with

the Stanford Parser (2017-06-09 version), using the pre-trained PCFG model (Klein and

Manning, 2003), and we rely on the part-of-speech, constituency and dependency parsing

information provided by this tool where needed. For each task, we construct training sets

containing 100k sentences, and 10k-sentence validation and test sets. All sets are balanced,

having an equal number of instances of each target class.

Surface information These tasks test the extent to which sentence embeddings are pre-

serving surface properties of the sentences they encode. One can solve the surface tasks

by simply looking at tokens in the input sentences: no linguistic knowledge is called for.

The first task is to predict the length of sentences in terms of number of words (SentLen).

Following Adi et al. (2017), we group sentences into 6 equal-width bins by length, and

treat SentLen as a 6-way classification task. The word content (WC) task tests whether it

is possible to recover information about the original words in the sentence from its embed-

ding. We picked 1000 mid-frequency words from the source corpus vocabulary (the words
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with ranks between 2k and 3k when sorted by frequency), and sampled equal numbers of

sentences that contain one and only one of these words. The task is to tell which of the

1k words a sentence contains (1k-way classification). This setup allows us to probe a sen-

tence embedding for word content without requiring an auxiliary word embedding (as in

the setup of Adi and colleagues).

Syntactic information The next batch of tasks test whether sentence embeddings are

sensitive to syntactic properties of the sentences they encode. The bigram shift (BShift)
task tests whether an encoder is sensitive to legal word orders. In this binary classification

problem, models must distinguish intact sentences sampled from the corpus from sentences

where we inverted two random adjacent words (“What you are doing out there?”).

The tree depth (TreeDepth) task checks whether an encoder infers the hierarchical

structure of sentences, and in particular whether it can group sentences by the depth of the

longest path from root to any leaf. Since tree depth is naturally correlated with sentence

length, we de-correlate these variables through a structured sampling procedure. In the re-

sulting data set, tree depth values range from 5 to 12, and the task is to categorize sentences

into the class corresponding to their depth (8 classes). As an example, the following is a

long (22 tokens) but shallow (max depth: 5) sentence: “[1 [2 But right now, for the time

being, my past, my fears, and my thoughts [3 were [4 my [5business]]].]]” (the outermost

brackets correspond to the ROOT and S nodes in the parse).

In the top constituent task (TopConst), sentences must be classified in terms of the

sequence of top constituents immediately below the sentence (S) node. An encoder that

successfully addresses this challenge is not only capturing latent syntactic structures, but

clustering them by constituent types. TopConst was introduced by Shi et al. (2016). Follow-

ing them, we frame it as a 20-way classification problem: 19 classes for the most frequent

top constructions, and one for all other constructions. As an example, “[Then] [very dark

gray letters on a black screen] [appeared] [.]” has top constituent sequence: “ADVP NP

VP .”.

Note that, while we would not expect an untrained human subject to be explicitly aware

of tree depth or top constituency, similar information must be implicitly computed to cor-

rectly parse sentences, and there is suggestive evidence that the brain tracks something akin
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to tree depth during sentence processing (Nelson et al., 2017).

Semantic information These tasks also rely on syntactic structure, but they further re-

quire some understanding of what a sentence denotes. The Tense task asks for the tense

of the main-clause verb (VBP/VBZ forms are labeled as present, VBD as past). No target

form occurs across the train/dev/test split, so that classifiers cannot rely on specific words

(it is not clear that Shi and colleagues, who introduced this task, controlled for this factor).

The subject number (SubjNum) task focuses on the number of the subject of the main

clause (number in English is more often explicitly marked on nouns than verbs). Again,

there is no target overlap across partitions. Similarly, object number (ObjNum) tests for

the number of the direct object of the main clause (again, avoiding lexical overlap). To

solve the previous tasks correctly, an encoder must not only capture tense and number, but

also extract structural information (about the main clause and its arguments). We grouped

Tense, SubjNum and ObjNum with the semantic tasks, since, at least for models that treat

words as unanalyzed input units (without access to morphology), they must rely on what

a sentence denotes (e.g., whether the described event took place in the past), rather than

on structural/syntactic information. We recognize, however, that the boundary between

syntactic and semantic tasks is somewhat arbitrary.

In the semantic odd man out (SOMO) task, we modified sentences by replacing a ran-

dom noun or verb o with another noun or verb r. To make the task more challenging, the

bigrams formed by the replacement with the previous and following words in the sentence

have frequencies that are comparable (on a log-scale) with those of the original bigrams.

That is, if the original sentence contains bigrams wn−1o and own+1, the corresponding

bigrams wn−1r and rwn+1 in the modified sentence will have comparable corpus frequen-

cies. No sentence is included in both original and modified format, and no replacement is

repeated across train/dev/test sets. The task of the classifier is to tell whether a sentence has

been modified or not. An example modified sentence is: “ No one could see this Hayes and

I wanted to know if it was real or a spoonful (orig.: ploy).” Note that judging plausibility

of a syntactically well-formed sentence of this sort will often require grasping rather subtle

semantic factors, ranging from selectional preference to topical coherence.
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The coordination inversion (CoordInv) benchmark contains sentences made of two co-

ordinate clauses. In half of the sentences, we inverted the order of the clauses. The task is

to tell whether a sentence is intact or modified. Sentences are balanced in terms of clause

length, and no sentence appears in both original and inverted versions. As an example,

original “They might be only memories, but I can still feel each one” becomes: “I can still

feel each one, but they might be only memories.” Often, addressing CoordInv requires an

understanding of broad discourse and pragmatic factors.

Row Hum. Eval. of Table 3.10 reports human-validated “reasonable” upper bounds for

all the tasks, estimated in different ways, depending on the tasks. For the surface ones,

there is always a straightforward correct answer that a human annotator with enough time

and patience could find. The upper bound is thus estimated at 100%. The TreeDepth,

TopConst, Tense, SubjNum and ObjNum tasks depend on automated PoS and parsing an-

notation. In these cases, the upper bound is given by the proportion of sentences correctly

annotated by the automated procedure. To estimate this quantity, one linguistically-trained

we checked the annotation of 200 randomly sampled test sentences from each task. Fi-

nally, the BShift, SOMO and CoordInv manipulations can accidentally generate acceptable

sentences. For example, one modified SOMO sentence is: “He pulled out the large round

onion (orig.: cork) and saw the amber balm inside.”, that is arguably not more anomalous

than the original. For these tasks, we ran Amazon Mechanical Turk experiments in which

subjects were asked to judge whether 1k randomly sampled test sentences were acceptable

or not. Reported human accuracies are based on majority voting.

3.3.3 Sentence embedding models

In this section, we present the three sentence encoders that we consider and the seven tasks

on which we train them.

Sentence encoder architectures

A wide variety of neural networks encoding sentences into fixed-size representations exist.

We focus here on three that have been shown to perform well on standard NLP tasks.
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task source target

AutoEncoder
I myself was out on an island in the
Swedish archipelago , at Sandhamn .

I myself was out on an island in the Swedish
archipelago , at Sand@ ham@ n .

NMT
En-Fr

I myself was out on an island in the
Swedish archipelago , at Sandhamn .

Je me trouvais ce jour là sur une ı̂le de l’ archipel
suédois , à Sand@ ham@ n .

NMT
En-De

We really need to up our particular
contribution in that regard .

Wir müssen wirklich unsere spezielle Hilfs@ leis-
tung in dieser Hinsicht aufstocken .

NMT En-Fi
It is too early to see one system as
a universal panacea and dismiss an-
other .

Nyt on liian aikaista nostaa yksi järjestelmä jal@
usta@ lle ja antaa jollekin toiselle huono arvo@
sana .

SkipThought
the old sami was gone , and he was a
different person now .

the new sami didn ’t mind standing barefoot in
dirty white , sans ra@ y-@ bans and without beau-
tiful women following his every move .

Seq2Tree Dikoya is a village in Sri Lanka .
(ROOT (S (NP NNP )NP (VP VBZ (NP (NP DT NN )NP

(PP IN (NP NNP NNP )NP )PP )NP )VP . )S )ROOT

Table 3.9: Source and target examples for seq2seq training tasks.

BiLSTM-last/max For a sequence of T words {wt}t=1,...,T , a bidirectional LSTM com-

putes a set of T vectors {ht}t. For t ∈ [1, . . . , T ], ht is the concatenation of a forward LSTM

and a backward LSTM that read the sentences in two opposite directions. We experiment

with two ways of combining the varying number of (h1, . . . , hT ) to form a fixed-size vector,

either by selecting the last hidden state of hT or by selecting the maximum value over each

dimension of the hidden units. The choice of these models are motivated by their demon-

strated efficiency in seq2seq (Sutskever et al., 2014) and universal sentence representation

learning (Conneau et al., 2017), respectively.10

Gated ConvNet We also consider the non-recurrent convolutional equivalent of LSTMs,

based on stacked gated temporal convolutions. Gated convolutional networks were shown

to perform well as neural machine translation encoders (Gehring et al., 2016) and language

modeling decoders (Dauphin et al., 2016). The encoder is composed of an input word

embedding table that is augmented with positional encodings (Sukhbaatar et al., 2015),

followed by a stack of temporal convolutions with small kernel size. The output of each

convolutional layer is filtered by a gating mechanism, similar to the one of LSTMs. Finally,

max-pooling along the temporal dimension is performed on the output feature maps of the

last convolution (Collobert and Weston, 2008).
10We also experimented with a unidirectional LSTM, with consistently poorer results.
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Training tasks

Seq2seq systems have shown strong results in machine translation (Zhou et al., 2016a).

They consist of an encoder that encodes a source sentence into a fixed-size representation,

and a decoder which acts as a conditional language model and that generates the target sen-

tence. We train Neural Machine Translation systems on three language pairs using about

2M sentences from the Europarl corpora (Koehn, 2005). We pick English-French, which

involves two similar languages, English-German, involving larger syntactic differences,

and English-Finnish, a distant pair. We also train with an AutoEncoder objective (Socher

et al., 2011) on Europarl source English sentences. Following Vinyals et al. (2015a), we

train a seq2seq architecture to generate linearized grammatical parse trees (see Table 3.9)

from source sentences (Seq2Tree). We use the Stanford parser to generate trees for Eu-

roparl source English sentences. We train SkipThought vectors (Kiros et al., 2015) by

predicting the next sentence given the current one (Tang et al., 2017), on 30M sentences

from the Toronto Book Corpus, excluding those in the probing sets. Finally, as in InferSent

in section 3.2, we train sentence encoders on Natural Language Inference using the con-

catenation of the SNLI (Bowman et al., 2015) and MultiNLI (Bowman et al., 2015) data

sets (about 1M sentence pairs). In this task, a sentence encoder is trained to encode two

sentences, which are fed to a classifier and whose role is to distinguish whether the sen-

tences are contradictory, neutral or entailed. Finally, as in section 3.2, we also include

Untrained encoders with random weights, which act as random projections of pre-trained

word embeddings.

Training details

BiLSTM encoders use 2 layers of 512 hidden units (∼4M parameters), Gated ConvNet has

8 convolutional layers of 512 hidden units, kernel size 3 (∼12M parameters). We use pre-

trained fastText word embeddings of size 300 (Mikolov et al., 2017) without fine-tuning,

to isolate the impact of encoder architectures and to handle words outside the training sets.

Training task performance and further details are in the subsection complementary analysis.
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3.3.4 Probing task experiments

Task SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
Baseline representations

Majority vote 20.0 0.5 17.9 5.0 50.0 50.0 50.0 50.0 50.0 50.0
Hum. Eval. 100 100 84.0 84.0 98.0 85.0 88.0 86.5 81.2 85.0
Length 100 0.2 18.1 9.3 50.6 56.5 50.3 50.1 50.2 50.0
NB-uni-tfidf 22.7 97.8 24.1 41.9 49.5 77.7 68.9 64.0 38.0 50.5
NB-bi-tfidf 23.0 95.0 24.6 53.0 63.8 75.9 69.1 65.4 39.9 55.7
BoV-fastText 66.6 91.6 37.1 68.1 50.8 89.1 82.1 79.8 54.2 54.8

BiLSTM-last encoder
Untrained 36.7 43.8 28.5 76.3 49.8 84.9 84.7 74.7 51.1 64.3
AutoEncoder 99.3 23.3 35.6 78.2 62.0 84.3 84.7 82.1 49.9 65.1
NMT En-Fr 83.5 55.6 42.4 81.6 62.3 88.1 89.7 89.5 52.0 71.2
NMT En-De 83.8 53.1 42.1 81.8 60.6 88.6 89.3 87.3 51.5 71.3
NMT En-Fi 82.4 52.6 40.8 81.3 58.8 88.4 86.8 85.3 52.1 71.0
Seq2Tree 94.0 14.0 59.6 89.4 78.6 89.9 94.4 94.7 49.6 67.8
SkipThought 68.1 35.9 33.5 75.4 60.1 89.1 80.5 77.1 55.6 67.7
NLI 75.9 47.3 32.7 70.5 54.5 79.7 79.3 71.3 53.3 66.5

BiLSTM-max encoder
Untrained 73.3 88.8 46.2 71.8 70.6 89.2 85.8 81.9 73.3 68.3
AutoEncoder 99.1 17.5 45.5 74.9 71.9 86.4 87.0 83.5 73.4 71.7
NMT En-Fr 80.1 58.3 51.7 81.9 73.7 89.5 90.3 89.1 73.2 75.4
NMT En-De 79.9 56.0 52.3 82.2 72.1 90.5 90.9 89.5 73.4 76.2
NMT En-Fi 78.5 58.3 50.9 82.5 71.7 90.0 90.3 88.0 73.2 75.4
Seq2Tree 93.3 10.3 63.8 89.6 82.1 90.9 95.1 95.1 73.2 71.9
SkipThought 66.0 35.7 44.6 72.5 73.8 90.3 85.0 80.6 73.6 71.0
NLI 71.7 87.3 41.6 70.5 65.1 86.7 80.7 80.3 62.1 66.8

GatedConvNet encoder
Untrained 90.3 17.1 30.3 47.5 62.0 78.2 72.2 70.9 61.4 59.6
AutoEncoder 99.4 16.8 46.3 75.2 71.9 87.7 88.5 86.5 73.5 72.4
NMT En-Fr 84.8 41.3 44.6 77.6 67.9 87.9 88.8 86.6 66.1 72.0
NMT En-De 89.6 49.0 50.5 81.7 72.3 90.4 91.4 89.7 72.8 75.1
NMT En-Fi 89.3 51.5 49.6 81.8 70.9 90.4 90.9 89.4 72.4 75.1
Seq2Tree 96.5 8.7 62.0 88.9 83.6 91.5 94.5 94.3 73.5 73.8
SkipThought 79.1 48.4 45.7 79.2 73.4 90.7 86.6 81.7 72.4 72.3
NLI 73.8 29.2 43.2 63.9 70.7 81.3 77.5 74.4 73.3 71.0

Table 3.10: Probing task accuracies. Classification performed by a MLP with sigmoid
nonlinearity, taking pre-learned sentence embeddings as input (see complementary for de-
tails and logistic regression results).

Baselines Baseline and human-bound performance are reported in the top block of Table

3.10. Length is a linear classifier with sentence length as sole feature. NB-uni-tfidf is

a Naive Bayes classifier using words’ tfidf scores as features, NB-bi-tfidf its extension to

bigrams. Finally, BoV-fastText derives sentence representations by averaging the fastText
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embeddings of the words they contain (same embeddings used as input to the encoders).11

Except, trivially, for Length on SentLen and the NB baselines on WC, there is a healthy

gap between top baseline performance and human upper bounds. NB-uni-tfidf evaluates to

what extent our tasks can be addressed solely based on knowledge about the distribution of

words in the training sentences. Words are of course to some extent informative for most

tasks, leading to relatively high performance in Tense, SubjNum and ObjNum. Recall

that the words containing the probed features are disjoint between train and test partitions,

so we are not observing a confound here, but rather the effect of the redundancies one

expects in natural language data. For example, for Tense, since sentences often contain

more than one verb in the same tense, NB-uni-tfidf can exploit non-target verbs as cues:

the NB features most associated to the past class are verbs in the past tense (e.g “sensed”,

“lied”, “announced”), and similarly for present (e.g “uses”, “chuckles”, “frowns”). Using

bigram features (NB-bi-tfidf) brings in general little or no improvement with respect to the

unigram baseline, except, trivially, for the BShift task, where NB-bi-tfidf can easily detect

unlikely bigrams. NB-bi-tfidf has below-random performance on SOMO, confirming that

the semantic intruder is not given away by superficial bigram cues.

Our first striking result is the good overall performance of Bag-of-Vectors, confirming

early insights that aggregated word embeddings capture surprising amounts of sentence

information (Pham et al., 2015b; Arora et al., 2017; Adi et al., 2017). BoV’s good WC

and SentLen performance was already established by Adi et al. (2017). Not surprisingly,

word-order-unaware BoV performs randomly in BShift and in the more sophisticated se-

mantic tasks SOMO and CoordInv. More interestingly, BoV is very good at the Tense,

SubjNum, ObjNum, and TopConst tasks (much better than the word-based baselines), and

well above chance in TreeDepth. The good performance on Tense, SubjNum and ObjNum

has a straightforward explanation we have already hinted at above. Many sentences are

naturally “redundant”, in the sense that most tensed verbs in a sentence are in the same

tense, and similarly for number in nouns. In 95.2% Tense, 75.9% SubjNum and 78.7%

ObjNum test sentences, the target tense/number feature is also the majority one for the

whole sentence. Word embeddings capture features such as number and tense (Mikolov

11Similar results are obtained summing embeddings, and using GloVe embeddings (Pennington et al.,
2014).
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et al., 2013d), so aggregated word embeddings will naturally track these features’ major-

ity values in a sentence. BoV’s TopConst and TreeDepth performance is more surprising.

Accuracy is well above NB, showing that BoV is exploiting cues beyond specific words

strongly associated to the target classes. We conjecture that more abstract word features

captured by the embeddings (such as the part of speech of a word) might signal different

syntactic structures. For example, sentences in the “WHNP SQ .” top constituent class

(e.g., “How long before you leave us again?”) must contain a wh word, and will often

feature an auxiliary or modal verb. BoV can rely on this information to noisily predict the

correct class.

Encoding architectures Comfortingly, proper encoding architectures clearly outperform

BoV. An interesting observation in Table 3.10 is that different encoder architectures trained

with the same objective, and achieving similar performance on the training task,12 can lead

to linguistically different embeddings, as indicated by the probing tasks. Coherently with

the findings of Conneau et al. (2017) for the downstream tasks, this suggests that the prior

imposed by the encoder architecture strongly preconditions the nature of the embeddings.

Complementing recent evidence that convolutional architectures are on a par with recurrent

ones in seq2seq tasks (Gehring et al., 2016), we find that Gated ConvNet’s overall probing

task performance is comparable to that of the best LSTM architecture (although, as shown

in the complementary analysis, the LSTM has a slight edge on downstream tasks). We

also replicate the finding of section 3.2 that BiLSTM-max outperforms BiLSTM-last both

in the downstream tasks (see below) and in the probing tasks (Table 3.10). Interestingly,

the latter only outperforms the former in SentLen, a task that captures a superficial aspect

of sentences (how many words they contain), that could get in the way of inducing more

useful linguistic knowledge.

Training tasks We focus next on how different training tasks affect BiLSTM-max, but

the patterns are generally representative across architectures. NMT training leads to en-

coders that are more linguistically aware than those trained on the NLI data set, despite

the fact that we confirm the finding of section 3.2 that NLI is best for downstream tasks.

12See complementary analysis subsection for details on training task performance.
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Perhaps, NMT captures richer linguistic features useful for the probing tasks, whereas shal-

lower or more ad-hoc features might help more in our current downstream tasks. Sugges-

tively, the one task where NLI clearly outperforms NMT is WC. Thus, NLI training is

better at preserving shallower word features that might be more useful in downstream tasks

(cf. Figure 3.11 and discussion there).

Unsupervised training (SkipThought and AutoEncoder) is not on a par with supervised

tasks, but still effective. AutoEncoder training leads, unsurprisingly, to a model excelling

at SentLen, but it attains low performance in the WC prediction task. This curious result

might indicate that the latter information is stored in the embeddings in a complex way, not

easily readable by our MLP. At the other end, Seq2Tree is trained to predict annotation from

the same parser we used to create some of the probing tasks. Thus, its high performance

on TopConst, Tense, SubjNum, ObjNum and TreeDepth is probably an artifact. Indeed, for

most of these tasks, Seq2Tree performance is above the human bound, that is, Seq2Tree

learned to mimic the parser errors in our benchmarks. For the more challenging SOMO

and CoordInv tasks, that only indirectly rely on tagging/parsing information, Seq2Tree is

comparable to NMT, that does not use explicit syntactic information.

Perhaps most interestingly, BiLSTM-max already achieves very good performance

without any training (Untrained row in Table 3.10). Untrained BiLSTM-max also per-

forms quite well in the downstream tasks. This architecture must encode priors that are

intrinsically good for sentence representations. Untrained BiLSTM-max exploits the in-

put fastText embeddings, and multiplying the latter by a random recurrent matrix provides

a form of positional encoding. However, good performance in a task such as SOMO,

where BoV fails and positional information alone should not help (the intruder is randomly

distributed across the sentence), suggests that other architectural biases are at work. In-

triguingly, a preliminary comparison of untrained BiLSTM-max and human subjects on

the SOMO sentences evaluated by both reveals that, whereas humans have a bias towards

finding sentences acceptable (62% sentences are rated as untampered with, vs. 48% ground-

truth proportion), the model has a strong bias in the opposite direction (it rates 83% of the

sentences as modified). A cursory look at contrasting errors confirms, unsurprisingly, that

those made by humans are perfectly justified, while model errors are opaque. For exam-

ple, the sentence “I didn’t come here to reunite (orig. undermine) you” seems perfectly
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acceptable in its modified form, and indeed subjects judged it as such, whereas untrained

BiLSTM-max “correctly” rated it as a modified item. Conversely, it is difficult to see any

clear reason for the latter tendency to rate perfectly acceptable originals as modified. We

leave a more thorough investigation to further work. See similar observations on the effec-

tiveness of untrained ConvNets in vision by Ulyanov et al. (2017).

Probing task comparison A good encoder, such as NMT-trained BiLSTM-max, shows

generally good performance across probing tasks. At one extreme, performance is not par-

ticularly high on the surface tasks, which might be an indirect sign of the encoder extracting

“deeper” linguistic properties. At the other end, performance is still far from the human

bounds on TreeDepth, BShift, SOMO and CoordInv. The last three tasks ask if a sentence

is syntactically or semantically anomalous. This is a daunting job for an encoder that has

not been explicitly trained on acceptability, and it is interesting that the best models are,

at least to a certain extent, able to produce reasonable anomaly judgments. The asym-

metry between the difficult TreeDepth and easier TopConst is also interesting. Intuitively,

TreeDepth requires more nuanced syntactic information (down to the deepest leaf of the

tree) than TopConst, that only requires identifying broad chunks.

Figure 3.10 reports how probing task accuracy changes in function of encoder training

epochs. The figure shows that NMT probing performance is largely independent of target

language, with strikingly similar development patterns across French, German and Finnish.

Note in particular the similar probing accuracy curves in French and Finnish, while the

corresponding BLEU scores (in lavender) are consistently higher in the former language.

For both NMT and SkipThought, WC performance keeps increasing with epochs. For

the other tasks, we observe instead an early flattening of the NMT probing curves, while

BLEU performance keeps increasing. Most strikingly, SentLen performance is actually

decreasing, suggesting again that, as a model captures deeper linguistic properties, it will

tend to forget about this superficial feature. Finally, for the challenging SOMO task, the

curves are mostly flat, suggesting that what BiLSTM-max is able to capture about this task

is already encoded in its architecture, and further training doesn’t help much.
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Figure 3.10: Probing task scores after each training epoch, for NMT and
SkipThought. We also report training score evolution: BLEU for NMT; perplexity (PPL)
for SkipThought.

Probing vs. downstream tasks Figure 3.11 reports correlation between performance on

our probing tasks and the downstream tasks of SentEval. Strikingly, WC is significantly

positively correlated with all downstream tasks. This suggests that, at least for current mod-

els, the latter do not require extracting particularly abstract knowledge from the data. Just

relying on the words contained in the input sentences can get you a long way. Conversely,

there is a significant negative correlation between SentLen and most downstream tasks.

The number of words in a sentence is not informative about its linguistic contents. The

more models abstract away from such information, the more likely it is they will use their

capacity to capture more interesting features, as the decrease of the SentLen curve along
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training (see Figure 3.10) also suggests. CoordInv and, especially, SOMO, the tasks re-

quiring the most sophisticated semantic knowledge, are those that positively correlate with

the largest number of downstream tasks after WC. We observe intriguing asymmetries:

SOMO correlates with the SICK-E sentence entailment test, but not with SICK-R, which is

about modeling sentence relatedness intuitions. Indeed, logical entailment requires deeper

semantic analysis than modeling similarity judgments. TopConst and the number tasks neg-

atively correlate with various similarity and sentiment data sets (SST, STS, SICK-R). This

might expose biases in these tasks: SICK-R, for example, deliberately contains sentence

pairs with opposite voice, that will have different constituent structure but equal meaning

(Marelli et al., 2014). It might also mirror genuine factors affecting similarity judgments

(e.g., two sentences differing only in object number are very similar). Remarkably, TREC

question type classification is the downstream task correlating with most probing tasks.

Question classification is certainly an outlier among our downstream tasks, but we must

leave a full understanding of this behaviour to future work (this is exactly the sort of anal-

ysis our probing tasks should stimulate).

3.3.5 Related work

Adi et al. (2017) introduced SentLen, WC and a word order test, focusing on a bag-of-

vectors baseline, an autoencoder and skip-thought (all trained on the same data used for the

probing tasks). We recast their tasks so that they only require a sentence embedding as in-

put (two of their tasks also require word embeddings, polluting sentence-level evaluation),

we extend the evaluation to more tasks, encoders and training objectives, and we relate

performance on the probing tasks with that on downstream tasks. Shi et al. (2016) also use

3 probing tasks, including Tense and TopConst. It is not clear that they controlled for the

same factors we considered (in particular, lexical overlap and sentence length), and they

use much smaller training sets, limiting classifier-based evaluation to logistic regression.

Moreover, they test a smaller set of models, focusing on machine translation.

Belinkov et al. (2017a), Belinkov et al. (2017b) and Dalvi et al. (2017) are also in-

terested in understanding the type of linguistic knowledge encoded in sentence and word

embeddings, but their focus is on word-level morphosyntax and lexical semantics, and
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Figure 3.11: Spearman correlation matrix between probing and downstream tasks.
Correlations based on all sentence embeddings we investigated (more than 40). Cells in
gray denote task pairs that are not significantly correlated (after correcting for multiple
comparisons).

specifically on NMT encoders and decoders. Sennrich (2017) also focuses on NMT sys-

tems, and proposes a contrastive test to assess how they handle various linguistic phenom-

ena. Other work explores the linguistic behaviour of recurrent networks and related models

by using visualization, input/hidden representation deletion techniques or by looking at the

word-by-word behaviour of the network (e.g., Nagamine et al., 2015; Hupkes et al., 2017;

Li et al., 2016; Linzen et al., 2016; Kàdàr et al., 2017; Li et al., 2017). These methods,

complementary to ours, are not agnostic to encoder architecture, and cannot be used for

general-purpose cross-model evaluation.
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3.3.6 Complementary analysis

Amazon Mechanical Turk survey

Subjects were recruited through the standard Amazon Mechanical Turk interface.13 We

created independent surveys for the SOMO, CoordInv and BShift tasks. We asked subjects

to identify which sentences were acceptable and which were anomalous/inverted. Partici-

pants were restricted to those based in an English-speaking country.

To maximize annotation quality, we created a control set. Two authors annotated 200

random sentences from each task in a blind pretest. Those sentences on which they agreed

were included in the control set.

We collected at least 10 judgments per sentence, for 1k random sentences from each

task. We only retained judgments by subjects that rated at least 10 control sentences with

accuracy of at least 90%. After filtering, we were left with averages of 2.5, 2.9 and 12

judgments per sentence for SOMO, CoordInv and BShift, respectively. Responses were

aggregated by majority voting, before computing the final accuracies.

We did not record any personal data from subjects, and we only used the judgments in

aggregated format to produce the estimated human upper bounds reported in our tables.

Further training details

Encoder training For seq2seq tasks, after hyper-parameter tuning, we chose 2-layer

LSTM decoders with 512 hidden units. For NLI, we settled on a multi-layer perceptron

with 100 hidden units. As is now common in NMT, we apply Byte Pair Encoding (BPE)

(Sennrich, 2017) to target sentences only, with 40k codes (see Table 1 in the main text

for examples of transformed target sentences). We tune dropout rate and input embedding

size, picking 1024 for BiLSTMs and 512 for Gated ConvNets. We use the Adam optimizer

for BiLSTMs and SGD with momentum for Gated ConvNets (after Adam gave very poor

results). The encoder representation is fed to the decoder at every time step. For model se-

lection on the validation sets, we use BLEU score14 for NMT and AutoEncoder, perplexity

for SkipThought and accuracy for Seq2Tree and NLI.

13https://www.mturk.com/
14MOSES multi-bleu.perl script (Koehn et al., 2007)

https://www.mturk.com/
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Table 3.11 reports test set performance of the various architectures on the original train-

ing tasks. For NMT and Seq2Tree, we left out two random sets of 10k sentences from the

training data for dev and test. The NLI dev and test sets are the ones of SNLI. Observe how

results are similar for the three encoders, while, as discussed in the main text, they differ in

terms of the linguistic properties their sentence embeddings are capturing. The last row of

the table reports BLEU scores for our BiLSTM architecture trained with attention, showing

that the architecture is on par with current NMT models, when attention is introduced. For

comparison, our attention-based model obtains 37 BLEU score on the standard WMT’14

En-Fr benchmark.

Model En-Fr En-De En-Fi Seq2Tree NLI
Gated ConvNet 25.9 17.0 14.2 52.3 83.5
BiLSTM-last 27.3 17.9 14.3 55.2 84.0
BiLSTM-max 27.0 18.0 14.7 53.7 85.3
BiLSTM-Att 39.1 27.2 21.9 58.4 -

Table 3.11: Test results for training tasks. Figure of merit is BLEU score for NMT and
accuracy for Seq2Tree and NLI.

Probing task training The probing task results reported in the main text are obtained

with a MLP that uses the Sigmoid nonlinearity, which we found to perform better than

Tanh. We tune the L2 regularization parameter, the number of hidden states (in [50, 100,

200]) and the dropout rate (in [0, 0.1, 0.2]) on the validation set of each probing task. Only

for WC, which has significantly more output classes (1000) than the other tasks, we report

Logistic Regression results, since they were consistently better.

Logistic regression results

Logistic regression performance approximates MLP performance (compare Table 3.12 here

to Table 2 in the main text). This suggests that most linguistic properties can be extracted

with a linear readout of the embeddings. Interestingly, if we focus on a good model-training
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combination, such as BiLSTM-max trained on French NMT, the tasks where the improve-

ment from logistic regression to MLP is relatively large (>3%) are those arguably requiring

the most nuanced linguistic knowledge (TreeDepth, SOMO, CoordInv).
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Figure 3.12: Evolution of probing tasks results wrt. embedding size. The sentence
representations are generated by a BiLSTM-max encoder trained on either NLI or NMT
En-Fr, with increasing sentence embedding size.

Downstream task results

We evaluate our architecture+training method combinations on the downstream tasks from

the SentEval toolkit.15 See documentation there for the tasks, that range from subjectivity

analysis to question-type classification, to paraphrase detection and entailment. Also refer

to the SentEval page and to Conneau et al. (2017) for the specifics of training and figures

of merit for each task. In all cases, we used as input our pre-trained embeddings without

fine-tuning them to the tasks. Results are reported in Table 3.13.
15https://github.com/facebookresearch/SentEval

https://github.com/facebookresearch/SentEval
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We replicate the finding of section 3.2 about the effectiveness of the BiLSTM archi-

tecture with max pooling, that has also a slight edge over GatedConvNet (an architecture

they did not test). As for the probing tasks, we again notice that BiLSTM-max is already

effective without training, and more so than the alternative architectures.

Interestingly, we also confirm Conneau et al.’s finding that NLI is the best source task

for pre-training, despite the fact that, as we saw in the main text (Table 2 there), NMT

pre-training leads to models that are capturing more linguistic properties. As they observed

for downstream tasks, increasing the embedding dimension while adding capacity to the

model is beneficial (see Figure 3.12) also for probing tasks in the case of NLI. However, it

does not seem to boost the performance of the NMT En-Fr encoder.

Finally, the table also shows results from the literature recently obtained with various

state-of-the-art general-purpose encoders, namely: SkipThought with layer normalization

(Ba et al., 2016), InferSent (BiLSTM-max as trained on NLI by Conneau et al.) and Multi-

Task (Subramanian et al., 2018). A comparison of these results with ours confirms that we

are testing models that do not lag much behind the state of the art.

3.3.7 Conclusion

We introduced a set of tasks probing the linguistic knowledge of sentence embedding meth-

ods. Their purpose is not to encourage the development of ad-hoc models that attain top

performance on them, but to help exploring what information is captured by different pre-

trained encoders.

We performed an extensive linguistic evaluation of several sentence encoders that were

used at the time of this study. Our results suggest that the encoders are capturing a wide

range of properties, well above those captured by a set of strong baselines. We further

uncovered interesting patterns of correlation between the probing tasks and more com-

plex “downstream” tasks, and presented a set of intriguing findings about the linguistic

properties of various embedding methods. For example, we found that Bag-of-Vectors is

surprisingly good at capturing sentence-level properties, thanks to redundancies in natu-

ral linguistic input. We showed that different encoder architectures trained with the same
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objective with similar performance can result in different embeddings, pointing out the im-

portance of the architecture prior for sentence embeddings. In particular, we found that

BiLSTM-max embeddings are already capturing interesting linguistic knowledge before

training, and that, after training, they detect semantic acceptability without having been

exposed to anomalous sentences before. We hope that our publicly available probing task

set will become a standard benchmarking tool of the linguistic properties of new encoders,

and that it will stir research towards a better understanding of what they learn.

We would like to extend the probing tasks to other languages (which should be rela-

tively easy, given that they are automatically generated), investigate how multi-task training

affects probing task performance and leverage our probing tasks to find more linguistically-

aware universal encoders.
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Task SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
Baseline representations

Majority vote 20.0 0.5 17.9 5.0 50.0 50.0 50.0 50.0 50.0 50.0
Hum. Eval. 100 100 84.0 84.0 98.0 85.0 88.0 86.5 81.2 85.0
Length 100 0.2 18.1 9.3 50.6 56.5 50.3 50.1 50.2 50.0
NB-uni-tfidf 22.7 97.8 24.1 41.9 49.5 77.7 68.9 64.0 38.0 50.5
NB-bi-tfidf 23.0 95.0 24.6 53.0 63.8 75.9 69.1 65.4 39.9 55.7
BoV fastText 54.8 91.6 32.3 63.1 50.8 87.8 81.9 79.3 50.3 52.7

BiLSTM-last encoder
Untrained 32.6 43.8 24.6 74.1 52.2 83.7 82.8 71.8 49.9 64.5
AutoEncoder 98.9 23.3 28.2 72.5 60.1 80.0 81.2 76.8 50.7 62.5
NMT En-Fr 82.9 55.6 35.8 79.8 59.6 86.0 87.6 85.5 50.3 66.1
NMT En-De 82.7 53.1 35.2 80.1 58.3 86.6 88.3 84.5 50.5 66.1
NMT En-Fi 81.7 52.6 35.2 79.3 57.5 86.5 84.4 82.6 50.5 65.9
Seq2Tree 93.2 14.0 46.4 88.5 74.9 87.3 90.5 89.7 50.6 63.4
SkipThought 59.5 35.9 30.2 73.1 58.4 88.7 78.4 76.4 53.0 64.6
NLI 71.6 47.3 28.4 67.4 53.3 77.3 76.6 69.6 51.6 64.7

BiLSTM-max encoder
Untrained 66.2 88.8 43.1 68.8 70.3 88.7 84.6 81.7 73.0 69.1
AutoEncoder 98.5 17.5 42.3 71.0 69.5 85.7 85.0 80.9 73.0 70.9
NMT En-Fr 79.3 58.3 45.7 80.5 71.2 87.8 88.1 86.3 69.9 71.8
NMT En-De 78.2 56.0 46.9 81.0 69.8 89.1 89.7 87.9 71.3 73.5
NMT En-Fi 77.5 58.3 45.8 80.5 69.7 88.2 88.9 86.1 71.9 72.8
Seq2Tree 91.8 10.3 54.6 88.7 80.0 89.5 91.8 90.7 68.6 69.8
SkipThought 59.6 35.7 42.7 70.5 73.4 90.1 83.3 79.0 70.3 70.1
NLI 65.1 87.3 38.5 67.9 63.8 86.0 78.9 78.5 59.5 64.9

GatedConvNet encoder
Untrained 90.3 17.1 30.3 47.5 62.0 78.2 72.2 70.9 61.4 59.1
AutoEncoder 99.3 16.8 41.9 69.6 68.1 85.4 85.4 82.1 69.8 70.6
NMT En-Fr 84.3 41.3 36.9 73.8 63.7 85.6 85.7 83.8 58.8 68.1
NMT En-De 87.6 49.0 44.7 78.8 68.8 89.5 89.6 86.8 69.5 70.0
NMT En-Fi 89.1 51.5 44.1 78.6 67.2 88.7 88.5 86.3 68.3 71.0
Seq2Tree 94.5 8.7 53.1 87.4 80.9 89.6 91.5 90.8 68.3 71.6
SkipThought 73.2 48.4 40.4 76.2 71.6 89.8 84.0 79.8 68.9 68.0
NLI 70.9 29.2 38.8 59.3 66.8 80.1 77.7 72.8 69.0 69.1

Table 3.12: Probing task accuracies with Logistic Regression. Taking pre-learned sen-
tence embeddings as input.
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Model MR CR SUBJ MPQA SST-2 SST-5 TREC MRPC SICK-E SICK-R STSB
Baseline representations

Chance 50.0 63.8 50.0 68.8 50.0 28.6 21.2 66.5 56.7 0.0 0.0
BoV fastText 78.2 80.2 91.8 88.0 82.3 45.1 83.4 74.4 78.9 82.0 70.2

BiLSTM-last encoder
Untrained 69.7 70.2 84.8 87.0 77.2 37.6 79.6 68.5 71.6 68.2 54.8
AutoEncoder 66.0 70.7 85.7 81.1 70.0 36.2 84.0 69.9 72.2 67.6 58.3
NMT En-Fr 74.5 78.7 90.3 88.9 79.5 42.0 91.2 73.7 79.7 78.3 69.9
NMT En-De 74.8 78.4 89.8 88.7 78.8 42.3 88.0 74.1 78.8 77.5 69.3
NMT En-Fi 74.2 78.0 89.6 88.9 78.4 39.6 84.6 75.6 79.1 77.1 67.1
Seq2Tree 62.5 69.3 85.7 78.7 64.4 33.0 86.4 73.6 71.9 59.1 44.8
SkipThought 77.1 78.9 92.2 86.7 81.3 43.9 82.4 72.7 77.8 80.0 73.9
NLI 77.3 84.1 88.1 88.6 81.7 43.9 86.0 74.8 83.9 85.6 74.2

BiLSTM-max encoder
Untrained 75.6 78.2 90.0 88.1 79.9 39.1 80.6 72.2 80.8 83.3 70.2
AutoEncoder 68.3 74.0 87.2 84.6 70.8 34.0 85.0 71.0 75.3 70.4 55.1
NMT En-Fr 76.5 81.1 91.4 89.7 77.7 42.2 89.6 75.1 79.3 78.8 68.8
NMT En-De 77.7 81.2 92.0 89.7 79.3 41.0 88.2 76.2 81.0 80.0 68.7
NMT En-Fi 77.0 81.1 91.5 90.0 80.3 43.4 87.2 75.0 81.7 80.3 69.5
Seq2Tree 65.2 74.4 88.3 80.2 66.5 31.6 85.0 72.0 74.8 65.1 36.1
SkipThought 78.0 82.8 93.0 87.3 81.5 41.9 86.8 73.2 80.0 82.0 71.5
NLI 79.2 86.7 90.0 89.8 83.5 46.4 86.0 74.5 84.5 87.5 76.6

GatedConvNet encoder
Untrained 65.5 65.3 78.3 82.9 65.8 34.0 67.6 68.1 61.6 56.7 38.9
AutoEncoder 72.1 74.1 86.6 86.0 74.4 36.6 79.6 69.7 72.0 65.8 45.5
NMT En-Fr 74.5 78.3 88.7 88.4 76.8 38.3 86.2 72.5 77.3 73.2 60.4
NMT En-De 77.1 80.4 90.9 89.2 79.2 41.9 90.4 76.8 81.9 78.7 69.4
NMT En-Fi 76.9 82.0 91.2 90.0 78.8 41.9 90.0 76.7 81.1 79.5 70.8
Seq2Tree 65.3 73.1 85.0 79.8 63.7 31.8 81.2 72.9 74.0 58.4 30.8
SkipThought 76.0 81.7 91.5 87.2 77.9 41.5 88.8 72.3 79.5 80.0 67.8
NLI 76.7 84.7 87.4 89.1 79.2 40.9 82.0 70.8 82.0 84.7 64.4

Other sentence embedding methods
SkipThought 79.4 83.1 93.7 89.3 82.9 - 88.4 72.4 79.5 85.8 72.1
InferSent 81.1 86.3 92.4 90.2 84.6 46.3 88.2 76.2 86.3 88.4 75.8
MultiTask 82.4 88.6 93.8 90.7 85.1 - 94.0 78.3 87.4 88.5 78.7

Table 3.13: Downstream tasks results for various sentence encoder architectures pre-
trained in different ways.
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Chapter Summary

In this chapter, we have explained how to evaluate, learn and analyze universal fixed-size

sentence embedding spaces, through SentEval, InferSent and probing tasks (Conneau and

Kiela, 2018; Conneau et al., 2017, 2018a). After our work on universal sentence repre-

sentations, several extensions have been made by the community. In particular, multi-task

training (Subramanian et al., 2018) was used to build even better general-purpose sentence

encoder with the intuition that if sentence encoders are to be universal, they should be

trained on multiple tasks at once. In parallel, another similar line of work appeared, deal-

ing with language model pretraining. Instead of using supervised data, (Radford et al.,

2018; Devlin et al., 2018) revisited the power of language modeling for learning generic

representations of text. Their approach was different than ours in several way. They fine-

tune the entire encoder on the downstream task while we only learn a classifier on top

of frozen fixed-size sentence embeddings. And they evaluate their model on the GLUE

benchmark, which is different than SentEval as it includes high-resource downstream tasks

while SentEval is mostly focused on low-resource transfer. However they showed that

language model fine-tuning also worked well when considering a limited amount of data

from the downstream tasks. In our contribution in section 4.3, we present in further de-

tails that line of work as part of our own contributions on cross-lingual language modeling.

After our contributions on fixed-size sentence representations, we continued working on

learning text representations but in the cross-lingual setting. I got interested in aligning

distributions of words or sentences (Conneau et al., 2018b,c; Lample and Conneau, 2019).

There are multiple reasons why cross-lingual understanding is an interesting direction for

research. There are approximately 7000 languages in the world, but a large amount of the

available supervised (or unsupervised) language data is in a few high-resource languages.

Building annotated data in each language is simply not a scalable way to provide strong

NLP systems in all languages. Ideally, we would like to leverage the supervised data that

exists in one high-resource language such as English to build or improve an NLP system

in a low-resource language like Swahili. Even if our methods only required unsupervised

text data like BERT, the amount of text from a language like Nepalese is simply not suffi-

cient to build strong representations and we may want to leverage weak supervision from
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other languages, even in the form of unsupervised text. Also, having one single system

for each language is cumbersome and hard to maintain. In the next chapter, we explain

how we can align distributions of words and sentences with as little parallel supervision

as possible. Similar to SentEval, we build a zero-shot cross-lingual classification bench-

mark called ”XNLI” to evaluate cross-lingual encoders. We show that with cross-lingual

encoders (Lample and Conneau, 2019), we can leverage English annotated data to build

stronger classification systems in Urdu or Swahili.



Chapter 4

Cross-lingual sentence representations

In this chapter, we first present how to align word embedding spaces without parallel data

which is the premise of a new machine translation paradigm called ”unsupervised machine

translation”. We then switch to the sentence-level and explain how and why we built the

first large-scale cross-lingual understanding (XLU) evaluation benchmark for zero-shot text

classification. We use this new benchmark called XNLI to evaluate a sentence embedding

alignment method based on an alignment loss that leverages available parallel data. While

having seen only supervision in English at training time, we are able to make very accu-

rate predictions at test time for the fourteen XNLI languages. Our approach can have an

important impact in a production setting as supervised data is usually scarce in many lan-

guages. One problem of that approach is that it requires a significant amount of parallel data

which is by definition difficult to collect for low-resource languages. That is why, inspired

by recent advances in language model fine-tuning, we investigate cross-lingual language

models as a way to learn powerful cross-lingual encoders without parallel data. Similar

to the unsupervised alignment of word embeddings, we show that we can align sentence

embedding spaces in a completely unsupervised way. We extend the BERT approach to

the cross-lingual setting and also propose a new objective to leverage parallel data when

it is available. Our approach leads to a new state of the art on XNLI and significantly

outperforms previous approaches. I also demonstrate in the last section that cross-lingual

language model pretraining of encoders and decoders in the case of supervised and un-

supervised neural machine translation significantly outperforms the previous state of the

69
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art.

4.1 Aligning Word Representations Without Parallel Data

State-of-the-art methods for learning cross-lingual word embeddings have relied on bilin-

gual dictionaries or parallel corpora. Recent studies showed that the need for parallel

data supervision can be alleviated with character-level information. While these methods

showed encouraging results, they are not on par with their supervised counterparts and are

limited to pairs of languages sharing a common alphabet. In this section, we show that we

can build a bilingual dictionary between two languages without using any parallel corpora,

by aligning monolingual word embedding spaces in an unsupervised way. Without using

any character information, our model even outperforms existing supervised methods on

cross-lingual tasks for some language pairs. Our experiments demonstrate that our method

works very well also for distant language pairs, like English-Russian or English-Chinese.

We finally describe experiments on the English-Esperanto low-resource language pair, on

which there only exists a limited amount of parallel data, to show the potential impact of our

method in fully unsupervised machine translation. Our code, embeddings and dictionaries

are publicly available1.

4.1.1 Introduction

Most successful methods for learning distributed representations of words (e.g. (Mikolov

et al., 2013c,a; Pennington et al., 2014; Bojanowski et al., 2017)) rely on the distributional

hypothesis of (Harris, 1954), which states that words occurring in similar contexts tend

to have similar meanings. (Levy and Goldberg, 2014) show that the skip-gram with neg-

ative sampling method of (Mikolov et al., 2013c) amounts to factorizing a word-context

co-occurrence matrix, whose entries are the pointwise mutual information of the respective

word and context pairs. Exploiting word co-occurrence statistics leads to word vectors that

reflect the semantic similarities and dissimilarities: similar words are close in the embed-

ding space and conversely.

1https://github.com/facebookresearch/MUSE

https://github.com/facebookresearch/MUSE
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(Mikolov et al., 2013b) first noticed that continuous word embedding spaces exhibit

similar structures across languages, even when considering distant language pairs like En-

glish and Vietnamese. They proposed to exploit this similarity by learning a linear mapping

from a source to a target embedding space. They employed a parallel vocabulary of five

thousand words as anchor points to learn this mapping and evaluated their approach on a

word translation task. Since then, several studies aimed at improving these cross-lingual

word embeddings ((Faruqui and Dyer, 2014; Xing et al., 2015; Lazaridou et al., 2015; Am-

mar et al., 2016; Artetxe et al., 2016; Smith et al., 2017)), but they all rely on bilingual

word lexicons.

Previous attempts at reducing the need for bilingual supervision (Smith et al., 2017)

employ identical character strings to form a parallel vocabulary. The iterative method of

Artetxe et al. (2017) gradually aligns embedding spaces, starting from a parallel vocabulary

of aligned digits. These methods are however limited to similar languages sharing a com-

mon alphabet, such as European languages. Some recent methods explored distribution-

based approach (Cao et al., 2016) or adversarial training (Zhang et al., 2017a) to obtain

cross-lingual word embeddings without any parallel data. While these approaches sound

appealing, their performance is significantly below supervised methods. To sum up, cur-

rent methods have either not reached competitive performance, or they still require parallel

data, such as aligned corpora (Gouws et al., 2015; Vulic and Moens, 2015) or a seed parallel

lexicon (Duong et al., 2016).

In this section, we introduce a model that either is on par, or outperforms supervised

state-of-the-art methods, without employing any cross-lingual annotated data. We only

use two large monolingual corpora, one in the source and one in the target language. Our

method leverages adversarial training to learn a linear mapping from a source to a target

space and operates in two steps. First, in a two-player game, a discriminator is trained

to distinguish between the mapped source embeddings and the target embeddings, while

the mapping (which can be seen as a generator) is jointly trained to fool the discriminator.

Second, we extract a synthetic dictionary from the resulting shared embedding space and

fine-tune the mapping with the closed-form Procrustes solution from (Schönemann, 1966).

Since the method is unsupervised, cross-lingual data can not be used to select the best

model. To overcome this issue, we introduce an unsupervised selection metric that is highly
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correlated with the mapping quality and that we use both as a stopping criterion and to

select the best hyper-parameters.

In summary, this section makes the following main contributions:

• We present an unsupervised approach that reaches or outperforms state-of-the-art su-

pervised approaches on several language pairs and on three different evaluation tasks,

namely word translation, sentence translation retrieval, and cross-lingual word simi-

larity. On a standard word translation retrieval benchmark, using 200k vocabularies,

our method reaches 66.2% accuracy on English-Italian while the best supervised ap-

proach is at 63.7%.

• We introduce a cross-domain similarity adaptation to mitigate the so-called hubness

problem (points tending to be nearest neighbors of many points in high-dimensional

spaces). It is inspired by the self-tuning method from (Zelnik-manor and Perona,

2005), but adapted to our two-domain scenario in which we must consider a bi-partite

graph for neighbors. This approach significantly improves the absolute performance,

and outperforms the state of the art both in supervised and unsupervised setups on

word-translation benchmarks.

• We propose an unsupervised criterion that is highly correlated with the quality of the

mapping, that can be used both as a stopping criterion and to select the best hyper-

parameters.

• We release high-quality dictionaries for 12 oriented languages pairs, as well as the

corresponding supervised and unsupervised word embeddings.

• We demonstrate the effectiveness of our method using an example of a low-resource

language pair where parallel corpora are not available (English-Esperanto) for which

our method is particularly suited.

The section is organized as follows. Section 4.1.2 describes our unsupervised approach

with adversarial training and our refinement procedure. We then present our training pro-

cedure with unsupervised model selection in Section 4.1.3. We report in Section 4.1.4 our

results on several cross-lingual tasks for several language pairs and compare our approach
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Figure 4.1: Toy illustration of the method. (A) There are two distributions of word
embeddings, English words in red denoted by X and Italian words in blue denoted by
Y , which we want to align/translate. Each dot represents a word in that space. The size of
the dot is proportional to the frequency of the words in the training corpus of that language.
(B) Using adversarial learning, we learn a rotation matrix W which roughly aligns the two
distributions. The green stars are randomly selected words that are fed to the discriminator
to determine whether the two word embeddings come from the same distribution. (C) The
mapping W is further refined via Procrustes. This method uses frequent words aligned by
the previous step as anchor points, and minimizes an energy function that corresponds to a
spring system between anchor points. The refined mapping is then used to map all words
in the dictionary. (D) Finally, we translate by using the mapping W and a distance metric,
dubbed CSLS, that expands the space where there is high density of points (like the area
around the word “cat”), so that “hubs” (like the word “cat”) become less close to other
word vectors than they would otherwise (compare to the same region in panel (A)).

to supervised methods. Finally, we explain how our approach differs from recent related

work on learning cross-lingual word embeddings.

4.1.2 Model

In this section, we always assume that we have two sets of embeddings trained indepen-

dently on monolingual data. Our work focuses on learning a mapping between the two sets

such that translations are close in the shared space. (Mikolov et al., 2013b) show that they

can exploit the similarities of monolingual embedding spaces to learn such a mapping. For

this purpose, they use a known dictionary of n = 5000 pairs of words {xi, yi}i∈{1,n}, and

learn a linear mapping W between the source and the target space such that

W ? = argmin
W∈Md(R)

‖WX − Y ‖F (4.1)
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where d is the dimension of the embeddings, Md(R) is the space of d× d matrices of real

numbers, andX and Y are two aligned matrices of size d×n containing the embeddings of

the words in the parallel vocabulary. The translation t of any source word s is defined as t =

argmaxt cos(Wxs, yt). In practice, (Mikolov et al., 2013b) obtained better results on the

word translation task using a simple linear mapping, and did not observe any improvement

when using more advanced strategies like multilayer neural networks. (Xing et al., 2015)

showed that these results are improved by enforcing an orthogonality constraint on W . In

that case, the equation (4.1) boils down to the Procrustes problem, which advantageously

offers a closed form solution obtained from the singular value decomposition (SVD) of

Y XT :

W ? = argmin
W∈Od(R)

‖WX − Y ‖F = UV T ,with UΣV T = SVD(Y XT ). (4.2)

In this section, we show how to learn this mapping W without cross-lingual supervision;

an illustration of the approach is given in Fig. 4.1. First, we learn an initial proxy of W by

using an adversarial criterion. Then, we use the words that match the best as anchor points

for Procrustes. Finally, we improve performance over less frequent words by changing the

metric of the space, which leads to spread more of those points in dense regions. Next, we

describe the details of each of these steps.

Domain-adversarial setting

In this section, we present our domain-adversarial approach for learning W without cross-

lingual supervision. Let X = {x1, ..., xn} and Y = {y1, ..., ym} be two sets of n and

m word embeddings coming from a source and a target language respectively. A model is

trained to discriminate between elements randomly sampled fromWX = {Wx1, ...,Wxn}
and Y . We call this model the discriminator. W is trained to prevent the discriminator from

making accurate predictions. As a result, this is a two-player game, where the discrimina-

tor aims at maximizing its ability to identify the origin of an embedding, and W aims at

preventing the discriminator from doing so by making WX and Y as similar as possible.

This approach is in line with the work of (Ganin et al., 2016), who proposed to learn latent

representations invariant to the input domain, where in our case, a domain is represented

by a language (source or target).
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Discriminator objective We refer to the discriminator parameters as θD. We consider

the probability PθD
(
source = 1

∣∣z) that a vector z is the mapping of a source embedding

(as opposed to a target embedding) according to the discriminator. The discriminator loss

can be written as:

LD(θD|W ) = − 1

n

n∑
i=1

logPθD
(
source = 1

∣∣Wxi
)
− 1

m

m∑
i=1

logPθD
(
source = 0

∣∣yi). (4.3)

Mapping objective In the unsupervised setting, W is now trained so that the discrimina-

tor is unable to accurately predict the embedding origins:

LW (W |θD) = − 1

n

n∑
i=1

logPθD
(
source = 0

∣∣Wxi
)
− 1

m

m∑
i=1

logPθD
(
source = 1

∣∣yi). (4.4)

Learning algorithm To train our model, we follow the standard training procedure of

deep adversarial networks of (Goodfellow et al., 2014). For every input sample, the dis-

criminator and the mapping matrix W are trained successively with stochastic gradient

updates to respectively minimize LD and LW . The details of training are given in the next

section.

Refinement procedure

The matrix W obtained with adversarial training gives good performance (see Table 4.1),

but the results are still not on par with the supervised approach. In fact, the adversarial

approach tries to align all words irrespective of their frequencies. However, rare words

have embeddings that are less updated and are more likely to appear in different contexts

in each corpus, which makes them harder to align. Under the assumption that the mapping

is linear, it is then better to infer the global mapping using only the most frequent words

as anchors. Besides, the accuracy on the most frequent word pairs is high after adversarial

training.

To refine our mapping, we build a synthetic parallel vocabulary using theW just learned

with adversarial training. Specifically, we consider the most frequent words and retain only

mutual nearest neighbors to ensure a high-quality dictionary. Subsequently, we apply the
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Procrustes solution in (4.2) on this generated dictionary. Considering the improved solution

generated with the Procrustes algorithm, it is possible to generate a more accurate dictio-

nary and apply this method iteratively, similarly to (Artetxe et al., 2017). However, given

that the synthetic dictionary obtained using adversarial training is already strong, we only

observe small improvements when doing more than one iteration, i.e., the improvements

on the word translation task are usually below 1%.

Cross-domain similarity local scaling (CSLS)

In this subsection, our motivation is to produce reliable matching pairs between two lan-

guages: we want to improve the comparison metric such that the nearest neighbor of a

source word, in the target language, is more likely to have as a nearest neighbor this partic-

ular source word.

Nearest neighbors are by nature asymmetric: y being a K-NN of x does not imply that

x is a K-NN of y. In high-dimensional spaces (Radovanović et al., 2010), this leads to a

phenomenon that is detrimental to matching pairs based on a nearest neighbor rule: some

vectors, dubbed hubs, are with high probability nearest neighbors of many other points,

while others (anti-hubs) are not nearest neighbors of any point. This problem has been

observed in different areas, from matching image features in vision (Jegou et al., 2010) to

translating words in text understanding applications (Dinu et al., 2015). Various solutions

have been proposed to mitigate this issue, some being reminiscent of pre-processing already

existing in spectral clustering algorithms (Zelnik-manor and Perona, 2005).

However, most studies aiming at mitigating hubness consider a single feature distri-

bution. In our case, we have two domains, one for each language. This particular case

is taken into account by (Dinu et al., 2015), who propose a pairing rule based on reverse

ranks, and the inverted soft-max (ISF) by (Smith et al., 2017), which we evaluate in our ex-

perimental section. These methods are not fully satisfactory because the similarity updates

are different for the words of the source and target languages. Additionally, ISF requires to

cross-validate a parameter, whose estimation is noisy in an unsupervised setting where we

do not have a direct cross-validation criterion.

In contrast, we consider a bi-partite neighborhood graph, in which each word of a given

dictionary is connected to its K nearest neighbors in the other language. We denote by
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NT(Wxs) the neighborhood, on this bi-partite graph, associated with a mapped source

word embedding Wxs. All K elements of NT(Wxs) are words from the target language.

Similarly we denote by NS(yt) the neighborhood associated with a word t of the target

language. We consider the mean similarity of a source embedding xs to its target neighbor-

hood as

rT(Wxs) =
1

K

∑
yt∈NT(Wxs)

cos(Wxs, yt), (4.5)

where cos(., .) is the cosine similarity. Likewise we denote by rS(yt) the mean similarity

of a target word yt to its neighborhood. These quantities are computed for all source and

target word vectors with the efficient nearest neighbors implementation by (Johnson et al.,

2017a). We use them to define a similarity measure CSLS(., .) between mapped source

words and target words, as

CSLS(Wxs, yt) = 2 cos(Wxs, yt)− rT(Wxs)− rS(yt). (4.6)

Intuitively, this update increases the similarity associated with isolated word vectors.

Conversely it decreases the ones of vectors lying in dense areas. Our experiments show

that the CSLS significantly increases the accuracy for word translation retrieval, while not

requiring any parameter tuning.

4.1.3 Training and architectural choices

Architecture

We use unsupervised word vectors that were trained using fastText2. These correspond to

monolingual embeddings of dimension 300 trained on Wikipedia corpora; therefore, the

mapping W has size 300 × 300. Words are lower-cased, and those that appear less than 5

times are discarded for training. As a post-processing step, we only select the first 200k

most frequent words in our experiments.

For our discriminator, we use a multilayer perceptron with two hidden layers of size

2048, and Leaky-ReLU activation functions. The input to the discriminator is corrupted

2Word vectors downloaded from: https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText
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with dropout noise with a rate of 0.1. As suggested by (Goodfellow, 2016), we include a

smoothing coefficient s = 0.2 in the discriminator predictions. We use stochastic gradient

descent with a batch size of 32, a learning rate of 0.1 and a decay of 0.95 both for the dis-

criminator and W . We divide the learning rate by 2 every time our unsupervised validation

criterion decreases.

Discriminator inputs

The embedding quality of rare words is generally not as good as the one of frequent words

(Luong et al., 2013), and we observed that feeding the discriminator with rare words had a

small, but not negligible negative impact. As a result, we only feed the discriminator with

the 50,000 most frequent words. At each training step, the word embeddings given to the

discriminator are sampled uniformly. Sampling them according to the word frequency did

not have any noticeable impact on the results.

Orthogonality

(Smith et al., 2017) showed that imposing an orthogonal constraint to the linear operator

led to better performance. Using an orthogonal matrix has several advantages. First, it

ensures that the monolingual quality of the embeddings is preserved. Indeed, an orthogonal

matrix preserves the dot product of vectors, as well as their `2 distances, and is therefore

an isometry of the Euclidean space (such as a rotation). Moreover, it made the training

procedure more stable in our experiments. In this section, we propose to use a simple

update step to ensure that the matrix W stays close to an orthogonal matrix during training

((Cisse et al., 2017)). Specifically, we alternate the update of our model with the following

update rule on the matrix W :

W ← (1 + β)W − β(WW T )W (4.7)

where β = 0.01 is usually found to perform well. This method ensures that the matrix stays

close to the manifold of orthogonal matrices after each update. In practice, we observe that

the eigenvalues of our matrices all have a modulus close to 1, as expected.
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Dictionary generation

The refinement step requires to generate a new dictionary at each iteration. In order for the

Procrustes solution to work well, it is best to apply it on correct word pairs. As a result, we

use the CSLS method described in Section 4.1.2 to select more accurate translation pairs

in the dictionary. To increase even more the quality of the dictionary, and ensure that W

is learned from correct translation pairs, we only consider mutual nearest neighbors, i.e.

pairs of words that are mutually nearest neighbors of each other according to CSLS. This

significantly decreases the size of the generated dictionary, but improves its accuracy, as

well as the overall performance.

Figure 4.2: Unsupervised model selection. Correlation between our unsupervised valida-
tion criterion (black line) and actual word translation accuracy (blue line). In this particular
experiment, the selected model is at epoch 10. Observe how our criterion is well correlated
with translation accuracy.

Validation criterion for unsupervised model selection

Selecting the best model is a challenging, yet important task in the unsupervised setting, as

it is not possible to use a validation set (using a validation set would mean that we possess

parallel data). To address this issue, we perform model selection using an unsupervised cri-

terion that quantifies the closeness of the source and target embedding spaces. Specifically,

we consider the 10k most frequent source words, and use CSLS to generate a translation
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for each of them. We then compute the average cosine similarity between these deemed

translations, and use this average as a validation metric. We found that this simple criterion

is better correlated with the performance on the evaluation tasks than optimal transport

distances such as the Wasserstein distance ((Rubner et al., 2000)). Figure 4.2 shows the

correlation between the evaluation score and this unsupervised criterion (without stabiliza-

tion by learning rate shrinkage). We use it as a stopping criterion during training, and also

for hyper-parameter selection in all our experiments.

4.1.4 Experiments

In this section, we empirically demonstrate the effectiveness of our unsupervised approach

on several benchmarks, and compare it with state-of-the-art supervised methods. We first

present the cross-lingual evaluation tasks that we consider to evaluate the quality of our

cross-lingual word embeddings. Then, we present our baseline model. Last, we compare

our unsupervised approach to our baseline and to previous methods. In the last subsection,

we offer a complementary analysis on the alignment of several sets of English embeddings

trained with different methods and corpora.

en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en en-eo eo-en
Methods with cross-lingual supervision and fastText embeddings
Procrustes - NN 77.4 77.3 74.9 76.1 68.4 67.7 47.0 58.2 40.6 30.2 22.1 20.4
Procrustes - ISF 81.1 82.6 81.1 81.3 71.1 71.5 49.5 63.8 35.7 37.5 29.0 27.9
Procrustes - CSLS 81.4 82.9 81.1 82.4 73.5 72.4 51.7 63.7 42.7 36.7 29.3 25.3
Methods without cross-lingual supervision and fastText embeddings
Adv - NN 69.8 71.3 70.4 61.9 63.1 59.6 29.1 41.5 18.5 22.3 13.5 12.1
Adv - CSLS 75.7 79.7 77.8 71.2 70.1 66.4 37.2 48.1 23.4 28.3 18.6 16.6
Adv - Refine - NN 79.1 78.1 78.1 78.2 71.3 69.6 37.3 54.3 30.9 21.9 20.7 20.6
Adv - Refine - CSLS 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 32.5 31.4 28.2 25.6

Table 4.1: Word translation retrieval P@1 for our released vocabularies in various
language pairs. We consider 1,500 source test queries, and 200k target words for each
language pair. We use fastText embeddings trained on Wikipedia. NN: nearest neighbors.
ISF: inverted softmax. (’en’ is English, ’fr’ is French, ’de’ is German, ’ru’ is Russian, ’zh’
is classical Chinese and ’eo’ is Esperanto)
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Evaluation tasks

Word translation The task considers the problem of retrieving the translation of given

source words. The problem with most available bilingual dictionaries is that they are gen-

erated using online tools like Google Translate, and do not take into account the polysemy

of words. Failing to capture word polysemy in the vocabulary leads to a wrong evaluation

of the quality of the word embedding space. Other dictionaries are generated using phrase

tables of machine translation systems, but they are very noisy or trained on relatively small

parallel corpora. For this task, we create high-quality dictionaries of up to 100k pairs of

words using an internal machine translation tool to alleviate this issue. We make these

dictionaries publicly available as part of the MUSE library3.

We report results on these bilingual dictionaries, as well on those released by (Dinu

et al., 2015) to allow for a direct comparison with previous approaches. For each language

pair, we consider 1,500 query source and 200k target words. Following standard practice,

we measure how many times one of the correct translations of a source word is retrieved,

and report precision@k for k = 1, 5, 10.

Cross-lingual semantic word similarity We also evaluate the quality of our cross-lingual

word embeddings space using word similarity tasks. This task aims at evaluating how well

the cosine similarity between two words of different languages correlates with a human-

labeled score. We use the SemEval 2017 competition data (Camacho-Collados et al., 2017)

which provides large, high-quality and well-balanced datasets composed of nominal pairs

that are manually scored according to a well-defined similarity scale. We report Pearson

correlation.

Sentence translation retrieval Going from the word to the sentence level, we consider

bag-of-words aggregation methods to perform sentence retrieval on the Europarl corpus.

We consider 2,000 source sentence queries and 200k target sentences for each language

pair and report the precision@k for k = 1, 5, 10, which accounts for the fraction of pairs

for which the correct translation of the source words is in the k-th nearest neighbors. We

3https://github.com/facebookresearch/MUSE

https://github.com/facebookresearch/MUSE
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use the idf-weighted average to merge word into sentence embeddings. The idf weights are

obtained using other 300k sentences from Europarl.

Results and discussion

In what follows, we present the results on word translation retrieval using our bilingual dic-

tionaries in Table 4.1 and our comparison to previous work in Table 4.2 where we signifi-

cantly outperform previous approaches. We also present results on the sentence translation

retrieval task in Table 4.3 and the cross-lingual word similarity task in Table 4.4. Finally,

we present results on word-by-word translation for English-Esperanto in Table 4.5.

English to Italian Italian to English
P@1 P@5 P@10 P@1 P@5 P@10

Methods with cross-lingual supervision (WaCky)
(Mikolov et al., 2013b) † 33.8 48.3 53.9 24.9 41.0 47.4
(Dinu et al., 2015)† 38.5 56.4 63.9 24.6 45.4 54.1
CCA† 36.1 52.7 58.1 31.0 49.9 57.0
(Artetxe et al., 2017) 39.7 54.7 60.5 33.8 52.4 59.1
(Smith et al., 2017)† 43.1 60.7 66.4 38.0 58.5 63.6
Procrustes - CSLS 44.9 61.8 66.6 38.5 57.2 63.0
Methods without cross-lingual supervision (WaCky)
Adv - Refine - CSLS 45.1 60.7 65.1 38.3 57.8 62.8
Methods with cross-lingual supervision (Wiki)
Procrustes - CSLS 63.7 78.6 81.1 56.3 76.2 80.6
Methods without cross-lingual supervision (Wiki)
Adv - Refine - CSLS 66.2 80.4 83.4 58.7 76.5 80.9

Table 4.2: English-Italian word translation average precisions (@1, @5, @10) from 1.5k
source word queries using 200k target words. Results marked with the symbol † are from
(Smith et al., 2017). Wiki means the embeddings were trained on Wikipedia using fastText.
Note that the method used by (Artetxe et al., 2017) does not use the same supervision as
other supervised methods, as they only use numbers in their initial parallel dictionary.
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Baselines In our experiments, we consider a supervised baseline that uses the solution of the

Procrustes formula given in (4.2), and trained on a dictionary of 5,000 source words. This baseline

can be combined with different similarity measures: NN for nearest neighbor similarity, ISF for

Inverted SoftMax and the CSLS approach described in Section 4.1.2.

Cross-domain similarity local scaling This approach has a single parameter K defining the

size of the neighborhood. The performance is very stable and therefore K does not need cross-

validation: the results are essentially the same for K = 5, 10 and 50, therefore we set K = 10 in

all experiments. In Table 4.1, we observe the impact of the similarity metric with the Procrustes

supervised approach. Looking at the difference between Procrustes-NN and Procrustes-CSLS, one

can see that CSLS provides a strong and robust gain in performance across all language pairs,

with up to 7.2% in en-eo. We observe that Procrustes-CSLS is almost systematically better than

Procrustes-ISF, while being computationally faster and not requiring hyper-parameter tuning. In

Table 4.2, we compare our Procrustes-CSLS approach to previous models presented in (Mikolov

et al., 2013b; Dinu et al., 2015; Smith et al., 2017; Artetxe et al., 2017) on the English-Italian word

translation task, on which state-of-the-art models have been already compared. We show that our

Procrustes-CSLS approach obtains an accuracy of 44.9%, outperforming previous approaches. In

Table 4.3, we also obtain a strong gain in accuracy in the Italian-English sentence retrieval task using

CSLS, from 53.5% to 69.5%, outperforming previous approaches by an absolute gain of more than

20%.

Impact of the monolingual embeddings For the word translation task, we obtained a signifi-

cant boost in performance when considering fastText embeddings trained on Wikipedia, as opposed

to previously used CBOW embeddings trained on the WaCky datasets (Baroni et al., 2009), as can

been seen in Table 4.2. Among the two factors of variation, we noticed that this boost in perfor-

mance was mostly due to the change in corpora. The fastText embeddings, which incorporates

more syntactic information about the words, obtained only two percent more accuracy compared to

CBOW embeddings trained on the same corpus, out of the 18.8% gain. We hypothesize that this

gain is due to the similar co-occurrence statistics of Wikipedia corpora. Figure 4.3 in the appendix

shows results on the alignment of different monolingual embeddings and concurs with this hypoth-

esis. We also obtained better results for monolingual evaluation tasks such as word similarities and

word analogies when training our embeddings on the Wikipedia corpora.
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Adversarial approach Table 4.1 shows that the adversarial approach provides a strong system

for learning cross-lingual embeddings without parallel data. On the es-en and en-fr language pairs,

Adv-CSLS obtains a P@1 of 79.7% and 77.8%, which is only 3.2% and 3.3% below the super-

vised approach. Additionally, we observe that most systems still obtain decent results on distant

languages that do not share a common alphabet (en-ru and en-zh), for which method exploiting

identical character strings are just not applicable (Artetxe et al., 2017). This method allows us to

build a strong synthetic vocabulary using similarities obtained with CSLS. The gain in absolute

accuracy observed with CSLS on the Procrustes method is even more important here, with differ-

ences between Adv-NN and Adv-CSLS of up to 8.4% on es-en. As a simple baseline, we tried to

match the first two moments of the projected source and target embeddings, which amounts to solv-

ing W ? ∈ argminW ‖(WX)T (WX)− Y TY ‖F and solving the sign ambiguity (Umeyama, 1988).

This attempt was not successful, which we explain by the fact that this method tries to align only

the first two moments, while adversarial training matches all the moments and can learn to focus on

specific areas of the distributions instead of considering global statistics.

English to Italian Italian to English
P@1 P@5 P@10 P@1 P@5 P@10

Methods with cross-lingual supervision
(Mikolov et al., 2013b) † 10.5 18.7 22.8 12.0 22.1 26.7
(Dinu et al., 2015) † 45.3 72.4 80.7 48.9 71.3 78.3
(Smith et al., 2017) † 54.6 72.7 78.2 42.9 62.2 69.2
Procrustes - NN 42.6 54.7 59.0 53.5 65.5 69.5
Procrustes - CSLS 66.1 77.1 80.7 69.5 79.6 83.5
Methods without cross-lingual supervision
Adv - CSLS 42.5 57.6 63.6 47.0 62.1 67.8
Adv - Refine - CSLS 65.9 79.7 83.1 69.0 79.7 83.1

Table 4.3: English-Italian sentence translation retrieval. We report the average P@k
from 2,000 source queries using 200,000 target sentences. We use the same embeddings as
in (Smith et al., 2017). Their results are marked with the symbol †.

Refinement: closing the gap with supervised approaches The refinement step on the syn-

thetic bilingual vocabulary constructed after adversarial training brings an additional and significant



CHAPTER 4. CROSS-LINGUAL SENTENCE REPRESENTATIONS 85

gain in performance, closing the gap between our approach and the supervised baseline. In Ta-

ble 4.1, we observe that our unsupervised method even outperforms our strong supervised baseline

on en-it and en-es, and is able to retrieve the correct translation of a source word with up to 83%

accuracy. The better performance of the unsupervised approach can be explained by the strong

similarity of co-occurrence statistics between the languages, and by the limitation in the supervised

approach that uses a pre-defined fixed-size vocabulary (of 5,000 unique source words): in our case

the refinement step can potentially use more anchor points. In Table 4.3, we also observe a strong

gain in accuracy (up to 15%) on sentence retrieval using bag-of-words embeddings, which is con-

sistent with the gain observed on the word retrieval task.

Application to a low-resource language pair and to machine translation Our method is

particularly suited for low-resource languages for which there only exists a very limited amount of

parallel data. We apply it to the English-Esperanto language pair. We use the fastText embeddings

trained on Wikipedia, and create a dictionary based on an online lexicon. The performance of our

unsupervised approach on English-Esperanto is of 28.2%, compared to 29.3% with the supervised

method. On Esperanto-English, our unsupervised approach obtains 25.6%, which is 1.3% better

than the supervised method. The dictionary we use for that language pair does not take into account

the polysemy of words, which explains why the results are lower than on other language pairs. Peo-

ple commonly report the P@5 to alleviate this issue. In particular, the P@5 for English-Esperanto

and Esperanto-English is of 46.5% and 43.9% respectively.

SemEval 2017 en-es en-de en-it
Methods with cross-lingual supervision
NASARI 0.64 0.60 0.65
our baseline 0.72 0.72 0.71
Methods without cross-lingual supervision
Adv 0.69 0.70 0.67
Adv - Refine 0.71 0.71 0.71

Table 4.4: Cross-lingual wordsim task.
NASARI (Camacho-Collados et al., 2016)
refers to the official SemEval2017 baseline.
We report Pearson correlation.

en-eo eo-en
Dictionary - NN 6.1 11.9
Dictionary - CSLS 11.1 14.3

Table 4.5: BLEU score on English-
Esperanto. Although being a naive
approach, word-by-word translation is
enough to get a rough idea of the input
sentence. The quality of the generated
dictionary has a significant impact on
the BLEU score.

To show the impact of such a dictionary on machine translation, we apply it to the English-

Esperanto Tatoeba corpora (Tiedemann, 2012). We remove all pairs containing sentences with
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unknown words, resulting in about 60k pairs. Then, we translate sentences in both directions by

doing word-by-word translation. In Table 4.5, we report the BLEU score with this method, when

using a dictionary generated using nearest neighbors, and CSLS. With CSLS, this naive approach

obtains 11.1 and 14.3 BLEU on English-Esperanto and Esperanto-English respectively. Table 4.6 in

the complementary analysis (see subsection below) shows some examples of sentences in Esperanto

translated into English using word-by-word translation. As one can see, the meaning is mostly

conveyed in the translated sentences, but the translations contain some simple errors. For instance,

the “mi” is translated into “sorry” instead of “i”, etc. The translations could easily be improved

using a language model.

4.1.5 Complementary analysis

In order to gain a better understanding of the impact of using similar corpora or similar word em-

bedding methods, we investigated merging two English monolingual embedding spaces using either

Wikipedia or the Gigaword corpus ((Parker et al., 2011)), and either Skip-Gram, CBOW or fastText

methods (see Figure 4.3).
Source mi kelkfoje parolas kun mia najbaro tra la barilo .
Hypothesis sorry sometimes speaks with my neighbor across the barrier .
Reference i sometimes talk to my neighbor across the fence .
Source la viro malantaŭ ili ludas la pianon .
Hypothesis the man behind they plays the piano .
Reference the man behind them is playing the piano .
Source bonvole protektu min kontraŭ tiuj malbonaj viroj .
Hypothesis gratefully protects hi against those worst men .
Reference please defend me from such bad men .

Table 4.6: Esperanto-English. Examples of fully unsupervised word-by-word transla-
tions. The translations reflect the meaning of the source sentences, and could potentially
be improved using a simple language model.

4.1.6 Related work

In this section we make an in-depth review of the specific area of unsupervised word translation and

word embeddings alignment that the related work in Section 2. Work on bilingual lexicon induction

without parallel corpora has a long tradition, starting with the seminal works by Rapp (1995) and
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Figure 4.3: English to English word alignment accuracy. Evolution of word transla-
tion retrieval accuracy with regard to word frequency, using either Wikipedia (Wiki) or the
Gigaword corpus (Giga), and either skip-gram, continuous bag-of-words (CBOW) or fast-
Text embeddings. The model can learn to perfectly align embeddings trained on the same
corpus but with different seeds (a), as well as embeddings learned using different models
(overall, when employing CSLS which is more accurate on rare words) (b). However, the
model has more trouble aligning embeddings trained on different corpora (Wikipedia and
Gigaword) (c). This can be explained by the difference in co-occurrence statistics of the
two corpora, particularly on the rarer words. Performance can be further deteriorated by
using both different models and different types of corpus (d).

Fung (1995). Similar to our approach, they exploit the Harris (1954) distributional structure, but

using discrete word representations such as TF-IDF vectors. Following studies by Fung and Yee
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(1998); Rapp (1999); Schafer and Yarowsky (2002); Koehn and Knight (2002); Haghighi et al.

(2008); Irvine and Callison-Burch (2013) leverage statistical similarities between two languages

to learn small dictionaries of a few hundred words. These methods need to be initialized with a

seed bilingual lexicon, using for instance the edit distance between source and target words. This

can be seen as prior knowledge, only available for closely related languages. There is also a large

amount of studies in statistical decipherment, where the machine translation problem is reduced

to a deciphering problem, and the source language is considered as a ciphertext (Ravi and Knight,

2011; Pourdamghani and Knight, 2017). Although initially not based on distributional semantics,

recent studies show that the use of word embeddings can bring significant improvement in statistical

decipherment (Dou et al., 2015).

The rise of distributed word embeddings has revived some of these approaches, now with the

goal of aligning embedding spaces instead of just aligning vocabularies. Cross-lingual word embed-

dings can be used to extract bilingual lexicons by computing the nearest neighbor of a source word,

but also allow other applications such as sentence retrieval or cross-lingual document classifica-

tion (Klementiev et al., 2012). In general, they are used as building blocks for various cross-lingual

language processing systems. More recently, several approaches have been proposed to learn bilin-

gual dictionaries mapping from the source to the target space (Mikolov et al., 2013b; Zou et al.,

2013; Faruqui and Dyer, 2014; Ammar et al., 2016). In particular, Xing et al. (2015) showed that

adding an orthogonality constraint to the mapping can significantly improve performance, and has

a closed-form solution. This approach was further referred to as the Procrustes approach in Smith

et al. (2017).

The hubness problem for cross-lingual word embedding spaces was investigated by Dinu et al.

(2015). The authors added a correction to the word retrieval algorithm by incorporating a nearest

neighbors reciprocity term. More similar to our cross-domain similarity local scaling approach,

Smith et al. (2017) introduced the inverted-softmax to down-weight similarities involving often-

retrieved hub words. Intuitively, given a query source word and a candidate target word, they esti-

mate the probability that the candidate translates back to the query, rather than the probability that

the query translates to the candidate.

Recent work by Smith et al. (2017) leveraged identical character strings in both source and

target languages to create a dictionary with low supervision, on which they applied the Procrustes

algorithm. Similar to this approach, recent work by Artetxe et al. (2017) used identical digits and

numbers to form an initial seed dictionary, and performed an update similar to our refinement step,

but iteratively until convergence. While they showed they could obtain good results using as little
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as twenty parallel words, their method still needs cross-lingual information and is not suitable for

languages that do not share a common alphabet. For instance, the method of Artetxe et al. (2017)

on our dataset does not work on the word translation task for any of the language pairs, because the

digits were filtered out from the datasets used to train the fastText embeddings. This iterative EM-

based algorithm initialized with a seed lexicon has also been explored in other studies (Haghighi

et al., 2008; Kondrak et al., 2017).

There has been a few attempts to align monolingual word vector spaces with no supervision.

Similar to our work, Zhang et al. (2017a) employed adversarial training, but their approach is dif-

ferent than ours in multiple ways. First, they rely on sharp drops of the discriminator accuracy for

model selection. In our experiments, their model selection criterion does not correlate with the over-

all model performance, as shown in Figure 4.2. Furthermore, it does not allow for hyper-parameters

tuning, since it selects the best model over a single experiment. We argue it is a serious limitation,

since the best hyper-parameters vary significantly across language pairs. Despite considering small

vocabularies of a few thousand words, their method obtained weak results compared to supervised

approaches. More recently, Zhang et al. (2017b) proposed to minimize the earth-mover distance

after adversarial training. They compare their results only to their supervised baseline trained with

a small seed lexicon, which is one to two orders of magnitude smaller than what we report here.

4.1.7 Conclusion

In this section, we show for the first time that one can align word embedding spaces without any

cross-lingual supervision, solely based on unaligned datasets of each language, while reaching or

outperforming the quality of previous supervised approaches in several cases. Using adversarial

training, we are able to initialize a linear mapping between a source and a target space, which we

also use to produce a synthetic parallel dictionary. It is then possible to apply the same techniques

proposed for supervised techniques, namely a Procrustean optimization. Two key ingredients con-

tribute to the success of our approach: First we propose a simple criterion that is used as an effective

unsupervised validation metric. Second we propose the similarity measure CSLS, which mitigates

the hubness problem and drastically increases the word translation accuracy. As a result, our ap-

proach produces high-quality dictionaries between different pairs of languages, with up to 83.3%

precision@1 on the Spanish-English word translation task. This performance is on par with su-

pervised approaches. Our method is also effective on the English-Esperanto pair, thereby showing

that it works for low-resource language pairs, and can be used as a first step towards unsupervised
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machine translation. Indeed, we used our unsupervised word embeddings alignment as an initializa-

tion step for fully unsupervised machine translation (at the sentence level). In Lample et al. (2016,

2018b) we use a neural and a phrase-based machine translation approach that only requires mono-

lingual corpora, and we show that the initialization of the lookup table of the LSTM/Transformer

encoder and decoder by the unsupervised cross-lingual word embeddings obtained through MUSE

is essential. We will come back to unsupervised machine translation in Section 4.3, where we show

that we can improve even more the pretraining of encoders and decoders for unsupervised machine

translation. We will see that our approach leads to a score of 33 BLEU on English-French without

using any parallel data, a score that is on par with those obtained by the best supervised methods

near 2014.
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4.2 Evaluating Cross-Lingual Sentence Representations

In this section, we move from the word level to the sentence level and build the first large-scale

cross-lingual sentence classification benchmark which helps us evaluate our cross-lingual sentence

encoders. State-of-the-art natural language processing systems often rely on supervision in the form

of annotated data to learn competent models. These models are generally trained on data in a sin-

gle language (usually English), and cannot be directly used beyond that language. Since collecting

data in every language is not realistic, there has been a growing interest in cross-lingual language

understanding (XLU) and low-resource cross-language transfer. In this section, we construct an

evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural

Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as

Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual

sentence understanding by providing an informative standard evaluation task. In addition, we pro-

vide several baselines for multilingual sentence understanding, including two based on machine

translation systems, and two that use parallel data to train aligned multilingual bag-of-words and

LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and

that directly translating the test data yields the best performance among available baselines.

4.2.1 Introduction

Contemporary natural language processing systems typically rely on annotated data to learn how

to perform a task (e.g., classification, sequence tagging, natural language inference). Most com-

monly the available training data is in a single language (e.g., English or Chinese) and the resulting

system can perform the task only in the training language. In practice, however, systems used in

major international products need to handle inputs in many languages. In these settings, it is nearly

impossible to annotate data in all languages that a system might encounter during operation.

A scalable way to build multilingual systems is through cross-lingual language understanding

(XLU), in which a system is trained primarily on data in one language and evaluated on data in

others. While XLU shows promising results for tasks such as cross-lingual document classification

(Klementiev et al., 2012; Schwenk and Li, 2018), there are very few, if any, XLU benchmarks for

more difficult language understanding tasks like natural language inference. NLI has emerged as a

practical test bed for work on sentence understanding. In NLI, a system is tasked with reading two

sentences and determining whether one entails the other, contradicts it, or neither (neutral). Recent

crowdsourced annotation efforts have yielded datasets for NLI in English (Bowman et al., 2015;
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Language Premise / Hypothesis Genre Label

English
You don’t have to stay there.
You can leave.

Face-To-Face Entailment

French
La figure 4 montre la courbe d’offre des services de partage de travaux.
Les services de partage de travaux ont une offre variable.

Government Entailment

Spanish
Y se estremeció con el recuerdo.
El pensamiento sobre el acontecimiento hizo su estremecimiento.

Fiction Entailment

German
Während der Depression war es die ärmste Gegend, kurz vor dem Hungertod.
Die Weltwirtschaftskrise dauerte mehr als zehn Jahre an.

Travel Neutral

Swahili
Ni silaha ya plastiki ya moja kwa moja inayopiga risasi.
Inadumu zaidi kuliko silaha ya chuma.

Telephone Neutral

Russian
И мы занимаемся этим уже на протяжении 85 лет.
Мы только начали этим заниматься.

Letters Contradiction

Chinese
让我告诉你，美国人最终如何看待你作为独立顾问的表现。

美国人完全不知道您是独立律师。
Slate Contradiction

Arabic Nine-Eleven Contradiction

Table 4.7: Examples (premise and hypothesis) from various languages and genres from the
XNLI corpus.

Williams et al., 2018) with nearly a million examples, and these have been widely used to evaluate

neural network architectures and training strategies (Rocktäschel et al., 2016; Gong et al., 2018;

Peters et al., 2018; Wang et al., 2018), as well as to train effective, reusable sentence representations

(Conneau et al., 2017; Subramanian et al., 2018; Cer et al., 2018; Conneau et al., 2018a).

In this section, we introduce a benchmark that we call the Cross-lingual Natural Language

Inference corpus, or XNLI, by extending these NLI corpora to 15 languages. XNLI consists of

7500 human-annotated development and test examples in NLI three-way classification format in

English, French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai,

Chinese, Hindi, Swahili and Urdu, making a total of 112,500 annotated pairs. These languages span

several language families, and with the inclusion of Swahili and Urdu, include two lower-resource

languages as well. Because of its focus on development and test data, this corpus is designed to

evaluate cross-lingual sentence understanding, where models have to be trained in one language

and tested in different ones. We evaluate several approaches to cross-lingual learning of natural

language inference that leverage parallel data from publicly available corpora at training time. We

show that parallel data can help align sentence encoders in multiple languages such that a classifier

trained with English NLI data can correctly classify pairs of sentences in other languages. While



CHAPTER 4. CROSS-LINGUAL SENTENCE REPRESENTATIONS 93

outperformed by our machine translation baselines, we show that this alignment mechanism gives

very competitive results. A second practical use of XNLI is the evaluation of pretrained general-

purpose language-universal sentence encoders. We hope that this benchmark will help the research

community build multilingual text embedding spaces. Such embeddings spaces will facilitate the

creation of multilingual systems that can transfer across languages with little or no extra supervision.

The chapter is organized as follows: We next survey the related literature on cross-lingual lan-

guage understanding. We then describe our data collection methods and the resulting corpus in

Section 4.2.3. We describe our baselines in Section 4.2.4, and finally present and discuss results in

Section 4.2.5.

4.2.2 Related Work

In this section, we review the related work specific to cross-lingual understanding and cross-lingual

text representations in particular.

Multilingual Word Embeddings Much of the work on multilinguality in language under-

standing has been at the word level. Several approaches have been proposed to learn cross-lingual

word representations, i.e., word representations where translations are close in the embedding space.

Many of these methods require some form of supervision (typically in the form of a small bilingual

lexicon) to align two sets of source and target embeddings to the same space (Mikolov et al., 2013b;

Kociský et al., 2014; Faruqui and Dyer, 2014; Ammar et al., 2016). More recent studies have showed

that cross-lingual word embeddings can be generated with no supervision whatsoever (Artetxe et al.,

2017; Conneau et al., 2018b) as explained in the previous section.

Sentence Representation Learning Many approaches have been proposed to extend word

embeddings to sentence or paragraph representations (Le and Mikolov, 2014; Wieting et al., 2015;

Arora et al., 2017). The most straightforward way to generate sentence embeddings is to consider

an average or weighted average of word representations, usually referred to as continuous bag-of-

words (CBOW). Although naı̈ve, this method often provides a strong baseline. More sophisticated

approaches—such as the unsupervised SkipThought model of Kiros et al. (2015) that extends the

skip-gram model of Mikolov et al. (2013c) to the sentence level—have been proposed to capture

syntactic and semantic dependencies inside sentence representations. While these fixed-size sen-

tence embedding methods have been outperformed by their supervised counterparts (Conneau et al.,

2017; Subramanian et al., 2018) as shown in Section 3, some recent developments have shown that
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pretrained language models can also transfer very well, either when the hidden states of the model

are used as contextualized word vectors (Peters et al., 2018), or when the full model is fine-tuned

on transfer tasks (Radford et al., 2018; Howard and Ruder, 2018).

Multilingual Sentence Representations In the past sections, we have seen ways to build

strong monolingual sentence representations, and how to align word embedding spaces. Our goal in

this section is to extend those ideas to build strong cross-lingual representations of sentences. There

has been some effort on developing multilingual sentence embeddings. For example, Chandar et al.

(2013) train bilingual autoencoders with the objective of minimizing reconstruction error between

two languages. Schwenk et al. (2017) and España-Bonet et al. (2017) jointly train a sequence-

to-sequence MT system on multiple languages to learn a shared multilingual sentence embedding

space. Hermann and Blunsom (2014) propose a compositional vector model involving unigrams

and bigrams to learn document level representations. Pham et al. (2015a) directly train embedding

representations for sentences with no attempt at compositionality. Zhou et al. (2016c) learn bilingual

document representations by minimizing the Euclidean distance between document representations

and their translations.

Cross-lingual Evaluation Benchmarks The lack of evaluation benchmark has hindered the

development of such multilingual representations. Most previous approaches use the Reuters cross-

lingual document classification corpus Klementiev et al. (2012) for evaluation. However, the classi-

fication in this corpus is done at document level, and, as there are many ways to aggregate sentence

embeddings, the comparison between different sentence embeddings is difficult. Moreover, the dis-

tribution of classes in the Reuters corpus is highly unbalanced, and the dataset does not provide a

development set in the target language, further complicating experimental comparisons.

In addition to the Reuters corpus, Cer et al. (2017) propose sentence-level multilingual train-

ing and evaluation datasets for semantic textual similarity in four languages. There have also been

efforts to build multilingual RTE datasets, either through translating English data (Mehdad et al.,

2011), or annotating sentences from a parallel corpora (Negri et al., 2011). More recently, Agić

and Schluter (2018) provide a corpus, that is very complementary to our work, of human transla-

tions for 1332 pairs of the SNLI data into Arabic, French, Russian, and Spanish. Among all these

benchmarks, XNLI is the first large-scale corpus for evaluating sentence-level representations on

that many languages.
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In practice, cross-lingual sentence understanding goes beyond translation. For instance, Mo-

hammad et al. (2016) analyze the differences in human sentiment annotations of Arabic sentences

and their English translations, and conclude that most of them come from cultural differences. Sim-

ilarly, Smith et al. (2016) show that most of the degradation in performance when applying a classi-

fication model trained in English to Spanish data translated to English is due to cultural differences.

One of the limitations of the XNLI corpus is that it does not capture these differences, since it was

obtained by translation. We see the XNLI evaluation as a necessary step for multilingual NLP be-

fore tackling the even more complex problem of domain-adaptation that occurs when handling this

the change in style from one language to another.

4.2.3 The XNLI Corpus

Because the test portion of the Multi-Genre NLI data was kept private, the Cross-lingual NLI Cor-

pus (XNLI) is based on new English NLI data. To collect the core English portion, we follow

precisely the same crowdsourcing-based procedure used for the existing Multi-Genre NLI corpus,

and collect and validate 750 new examples from each of the ten text sources used in that corpus for

a total of 7500 examples. With that portion in place, we create the full XNLI corpus by employing

professional translators to translate it into our fourteen target languages. This section describes this

process and the resulting corpus.

Translating, rather than generating new hypothesis sentences in each language separately, has

multiple advantages. First, it ensures that the data distributions are maximally similar across lan-

guages. As speakers of different languages may have slightly different intuitions about how to fill

in the supplied prompt, this allows us to avoid adding this unwanted degree of freedom. Second, it

allows us to use the same trusted pool of workers as was used in prior NLI crowdsourcing efforts,

without the need for training a new pool of workers in each language. Third, for any premise, this

process allows us to have a corresponding hypothesis in any language. XNLI can thus potentially

be used to evaluate whether an Arabic or Urdu premise is entailed with a Bulgarian or French hy-

pothesis etc. This results in more than 1.5M combinations of hypothesis and premises. Note that

we do not consider that use case in this work.

This translation approach carries with it the risk that the semantic relations between the two

sentences in each pair might not be reliably preserved in translation, as Mohammad et al. (2016)

observed for sentiment. We investigate this potential issue in our corpus and find that, while it does

occur, it only concerns a negligible number of sentences (see below).
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Data Collection

The English Corpus Our collection procedure for the English portion of the XNLI corpus

follows the same procedure as the MultiNLI corpus. We sample 250 sentences from each of the

ten sources that were used in that corpus, ensuring that none of those selected sentences overlap

with the distributed corpus. Nine of the ten text sources are drawn from the second release of the

Open American National Corpus4: Face-To-Face, Telephone, Government, 9/11, Letters, Oxford

University Press (OUP), Slate, Verbatim, and Government. The tenth, Fiction, is drawn from the

novel Captain Blood (Sabatini, 1922). We refer the reader to Williams et al. (2018) for more details

on each genre.

Given these sentences, we ask the same MultiNLI worker pool from a crowdsourcing platform

to produce three hypotheses for each premise, one for each possible label.

We present premise sentences to workers using the same templates as were used in MultiNLI.

We also follow that work in pursuing a second validation phase of data collection in which each

pair of sentences is relabeled by four other workers. For each validated sentence pair, we assign a

gold label representing a majority vote between the initial label assigned to the pair by the original

annotator, and the four additional labels assigned by validation annotators. We obtained a three-vote

consensus for 93% of the data. In our experiments, we kept the 7% additional ones, but we mark

these ones with a special label ’-’.

en fr es de el bg ru tr ar vi th zh hi sw ur

Premise 21.7 24.1 22.1 21.1 21.0 20.9 19.6 16.8 20.7 27.6 22.1 21.8 23.2 18.7 24.1
Hypothesis 10.7 12.4 10.9 10.8 10.6 10.4 9.7 8.4 10.2 13.5 10.4 10.8 11.9 9.0 12.3

Table 4.8: Average number of tokens per sentence in the XNLI corpus for each language.

Translating the Corpus Finally, we hire translators to translate the resulting sentences into

15 languages using the One Hour Translation platform. We translate the premises and hypotheses

separately, to ensure that no context is added to the hypothesis that was not there originally, and

simply copy the labels from the English source text. Some development examples are shown in

Table 4.7.
4http://www.anc.org/

http://www.anc.org/
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The Resulting Corpus

One main concern in studying the resulting corpus is to determine whether the gold label for some

of the sentence pairs changes as a result of information added or removed in the translation process.

Investigating the data manually, we find an example in the Chinese translation where an entailment

relation becomes a contradictory relation, while the entailment is preserved in other languages.

Specifically, the term upright which was used in English as entailment of standing, was translated

into Chinese as sitting upright thus creating a contradiction. However, the difficulty of finding such

an example in the data suggests its rarity.

To quantify this observation, we recruit two bilingual annotators to re-annotate 100 examples

each in both English and French following our standard validation procedure. The examples are

drawn from two non-overlapping random subsets of the development data to prevent the annotators

from seeing the source English text for any translated text they annotate. With no training or burn-in

period, these annotators recover the English consensus label 85% of the time on the original English

data and 83% of the time on the translated French, suggesting that the overall semantic relationship

between the two languages has been preserved. As most sentences are relatively easy to translate,

in particular the hypotheses generated by the workers, there seems to be little ambiguity added by

the translator.

More broadly, we find that the resulting corpus has similar properties to the MultiNLI corpus.

For all languages, on average, the premises are twice as long as the hypotheses (See Table 4.8). The

top hypothesis words indicative of the class label – scored using the mutual information between

each word and class in the corpus – are similar across languages, and overlap those of the MultiNLI

corpus (Gururangan et al., 2018). For example, a translation of at least one of the words no, not or

never is among the top two cues for contradiction in all languages.

As in the original MultiNLI corpus, we expect that cues like these (‘artifacts’, in Gururangan’s

terms, also observed by Poliak et al., 2018; Tsuchiya, 2018) allow a baseline system to achieve

better-than-random accuracy with access only to the premise sentences. We accept this as an un-

avoidable property of the NLI task over naturalistic sentence pairs, and see no reason to expect that

this baseline would achieve better accuracy than the relatively poor 53% seen in Gururangan et al.

(2018).

The current version of the corpus is freely available56 for typical machine learning uses, and

may be modified and redistributed. The majority of the corpus sentences are released under the

5http://nyu.edu/projects/bowman/xnli/
6http://github/facebookresearch/xnli

http://nyu.edu/projects/bowman/xnli/
http://github/facebookresearch/xnli
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OANC’s license which allows all content to be freely used, modified, and shared under permissive

terms. The data in the Fiction genre from Captain Blood are in the public domain in the United

States (but may be licensed differently elsewhere).

4.2.4 Cross-Lingual NLI

In this section we present results with XLU systems that can serve as baselines, in particular for

section 4.3.

Translation-Based Approaches

The most straightforward techniques for XLU rely on translation systems. There are two natural

ways to use a translation system: TRANSLATE TRAIN, where the training data is translated into each

target language to provide data to train each classifier, and TRANSLATE TEST, where a translation

system is used at test time to translate input sentences to the training language. These two methods

provide strong baselines, but both present practical challenges. The former requires training and

maintaining as many classifiers as there are languages, while the latter relies on computationally-

intensive translation at test time. Both approaches are limited by the quality of the translation

system, which itself varies with the quantity of available training data and the similarity of the

language pair involved.

Multilingual Sentence Encoders

An alternative to translation is to rely on language-universal embeddings of text and build multilin-

gual classifiers on top of these representations. If an encoder produces an embedding of an English

sentence close to the embedding of its translation in another language, then a classifier learned

on top of English sentence embeddings will be able to classify sentences from different languages

without needing a translation system at inference time.

We evaluate two types of cross-lingual sentence encoders: (i) pretrained universal multilin-

gual sentence embeddings based on the average of word embeddings (X-CBOW), (ii) bidirectional-

LSTM (Hochreiter and Schmidhuber, 1997) sentence encoders trained on the MultiNLI training

data (X-BILSTM). The former evaluates transfer learning while the latter evaluates NLI-specific

encoders trained on in-domain data. Both approaches use the same alignment loss for aligning

sentence embedding spaces from multiple languages which is present below. We consider two
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ways of extracting feature vectors from the BiLSTM: either using the initial and final hidden states

(Sutskever et al., 2014), or using the element-wise max over all states (Collobert and Weston, 2008).

The first approach is commonly used as a strong baseline for monolingual sentence embeddings

(Arora et al., 2017; Conneau and Kiela, 2018; Gouews et al., 2014). Concretely, we consider the

English fastText word embedding space as being fixed, and fine-tune embeddings in other languages

so that the average of the word vectors in a sentence is close to the average of the word vectors in

its English translation. The second approach consists in learning an English sentence encoder on

the MultiNLI training data along with an encoder on the target language, with the objective that

the representations of two translations are nearby in the embedding space. In both approaches, an

English encoder is fixed, and we train target language encoders to match the output of this encoder.

This allows us to build sentence representations that belong to the same space. Joint training of

encoders and parameter sharing are also interesting directions to improve and simplify the alignment

of sentence embedding spaces. We explore this research direction in section 4.3.

In all experiments, we consider encoders that output a vector of fixed size as a sentence repre-

sentation. While previous work shows that performance on the NLI task can be improved by using

cross-sentence attention between the premise and hypothesis (Rocktäschel et al., 2016; Gong et al.,

2018), we focus on methods with fixed-size sentence embeddings.

Aligning Word Embeddings Multilingual word embeddings are an efficient way to transfer

knowledge from one language to another. For instance, Zhang et al. (2016) show that cross-lingual

embeddings can be used to extend an English part-of-speech tagger to the cross-lingual setting, and

Xiao and Guo (2014) achieve similar results in dependency parsing. Cross-lingual embeddings also

provide an efficient mechanism to bootstrap neural machine translation (NMT) systems for low-

resource language pairs, which is critical in the case of unsupervised machine translation (Lample

et al., 2018a; Artetxe et al., 2018; Lample et al., 2018b). In that case, the use cross-lingual em-

beddings directly helps the alignment of sentence-level encoders. In this section, we pretrain our

embeddings using the common-crawl word embeddings (Grave et al., 2018) aligned with the MUSE

library of Conneau et al. (2018b).

Universal Multilingual Sentence Embeddings Most of the successful recent approaches for

learning universal sentence representations have relied on English (Kiros et al., 2015; Arora et al.,

2017; Conneau et al., 2017; Subramanian et al., 2018; Cer et al., 2018) as we have seen in section 3.

While notable recent approaches have considered building a shared sentence encoder for multiple
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languages using publicly available parallel corpora (Johnson et al., 2017b; Schwenk et al., 2017;

España-Bonet et al., 2017), the lack of a large-scale, sentence-level semantic evaluation has limited

their adoption by the community. In particular, these methods did not cover the scale of languages

considered in XNLI, and are limited to high-resource languages. We will see in section 4.3 that new

methods were created after our work on XNLI such as the one of Artetxe and Schwenk (2018) and

Lample and Conneau (2019) that cover a wide range of languages. As a baseline for the evaluation

of pretrained multilingual sentence representations in the 15 languages of XNLI, in this section

we consider state-of-the-art common-crawl embeddings with a CBOW encoder. Our approach,

dubbed X-CBOW, consists in fixing the English pretrained word embeddings, and fine-tuning the

target (e.g., French) word embeddings so that the CBOW representations of two translations are

close in embedding space. In that case, we consider our multilingual sentence embeddings as being

pretrained and only learn a classifier on top of them to evaluate their quality, similar to the “transfer”

tasks of SentEval (see section 3.1) but in the multilingual setting.

Aligning Sentence Embeddings Training for similarity of source and target sentences in an

embedding space is conceptually and computationally simpler than generating a translation in the

target language from a source sentence. We propose a method for training for cross-lingual similar-

ity and evaluate approaches based on the simpler task of aligning sentence representations. Under

our objective, the embeddings of two parallel sentences need not be identical, but only close enough

in the embedding space that the decision boundary of the English classifier captures the similarity.

We propose a simple alignment loss function to align the embedding spaces of two different lan-

guages. Specifically, we train an English encoder on NLI, and train a target encoder by minimizing

the loss:

Lalign(x, y) = dist(x, y)− λ(dist(xc, y) + dist(x, yc))

where (x, y) corresponds to the source and target sentence embeddings, (xc, yc) is a contrastive

term (i.e. negative sampling), λ controls the weight of the negative examples in the loss. For the

distance measure, we use the L2 norm dist(x, y) = ‖x− y‖2. A ranking loss (Weston et al., 2011)

of the form

Lrank(x, y) = max(0, α− dist(x, yc) + dist(x, y)) +

max(0, α− dist(xc, y) + dist(x, y))
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English encoder English encoder

A) Learning NLI English encoder and classifier B) Aligning sentence encoders with parallel data C) Inference in the other language

Classifier

Entailment

"You don’t have
to stay there."

"You can leave."

English encoder Spanish encoder

English parallel
sentence

Spanish parallel
sentence

English contrastive sentence vector

Spanish contrastive sentence vector

:

:

Spanish encoder Spanish encoder

Classifier

Contradiction

"Y eso te hace
sentir fatal."

"Te hace sentir 
estupendamente."

Figure 4.4: Illustration of language adaptation by sentence embedding alignment. A)
The English encoder and classifier in blue are learned on English (in-domain) NLI data.
The encoder can also be pretrained (transfer learning). B) The Spanish encoder in gray
is trained to mimic the English encoder using parallel data. C) After alignment of the
encoders, the classifier can make predictions for Spanish.

that pushes the sentence embeddings of a translation pair to be closer than the ones of negative

pairs leads to very poor results in this particular case. As opposed to Lalign, Lrank does not force the

embeddings of sentence pairs to be close enough so that the shared classifier can understand that

these sentences have the same meaning.

We use Lalign in the cross-lingual embeddings baselines X-CBOW, X-BILSTM-LAST and X-

BILSTM-MAX. For X-CBOW, the encoder is pretrained and not fine-tuned on NLI (transfer-learning),

while the English X-BiLSTMs are trained on the MultiNLI training set (in-domain). For the three

methods, the English encoder and classifier are then fixed. Each of the 14 other languages have their

own encoders with same architecture. These encoders are trained to ”copy” the English encoder

using the Lalign loss and the parallel data described in section 4.2.5. Our sentence embedding

alignment approach is illustrated in Figure 4.4.

We only back-propagate through the target encoder when optimizing Lalign such that all 14

encoders live in the same English embedding space. In these experiments, we initialize lookup

tables of the LSTMs with pretrained cross-lingual embeddings discussed in Section 4.1.



CHAPTER 4. CROSS-LINGUAL SENTENCE REPRESENTATIONS 102

fr es de el bg ru tr ar vi th zh hi sw ur

XX-En BLEU 41.2 45.8 39.3 42.1 38.7 27.1 29.9 35.2 23.6 22.6 24.6 27.3 21.3 24.4
En-XX BLEU 49.3 48.5 38.8 42.4 34.2 24.9 21.9 15.8 39.9 21.4 23.2 37.5 24.6 24.1
Word translation P@1 73.7 73.9 65.9 61.1 61.9 60.6 55.0 51.9 35.8 25.4 48.6 48.2 - -

Table 4.9: BLEU scores of our translation models (XX-En) P@1 for multilingual word
embeddings.

4.2.5 Experiments and Results

Training details

We use internal translation systems to translate data between English and the 10 other languages. For

TRANSLATE TEST (see Table 4.10), we translate each test set into English, while for the TRANSLATE

TRAIN, we translate the English training data of MultiNLI.7 To give an idea of the translation quality,

we give BLEU scores of the automatic translation from the foreign language into English of the

XNLI test set in Table 4.9. We use the MOSES tokenizer for most languages, falling back on the

default English tokenizer when necessary. We use the Stanford segmenter for Chinese (Chang et al.,

2008), and the pythainlp package for Thai.

We use pretrained 300D aligned word embeddings for both X-CBOW and X-BILSTM and only

consider the most 500,000 frequent words in the dictionary, which generally covers more than 98%

of the words found in XNLI corpora. We set the number of hidden units of the BiLSTMs to 512,

and use the Adam optimizer (Kingma and Ba, 2014) with default parameters. As for InferSent in

section 3.2, the classifier receives a vector [u, v, |u − v|, u ∗ v], where u and v are the embeddings

of the premise and hypothesis provided by the shared encoder, and ∗ corresponds to the element-

wise multiplication (see Figure 4.4). For the alignment loss, setting λ to 0.25 worked best in our

experiments, and we found that the trade-off between the importance of the positive and the negative

pairs was particularly important (see Table 4.11). We sample negatives randomly. When fitting the

target BiLSTM encoder to the English encoder, we fine-tune the lookup table associated to the target

encoder, but keep the source word embeddings fixed. The classifier is a feed-forward neural network

with one hidden layer of 128 hidden units, regularized with dropout (Srivastava et al., 2014) at a

rate of 0.1. For X-BiLSTMs, we perform model selection on the XNLI validation set in each target

language. For X-CBOW, we keep a validation set of parallel sentences to evaluate our alignment

loss. The alignment loss requires a parallel dataset of sentences for each pair of languages, which

7To allow replication of results, we share the MT translations of XNLI training and test sets.
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en fr es de el bg ru tr ar vi th zh hi sw ur

Machine translation baselines (TRANSLATE TRAIN)

BiLSTM-last 71.0 66.7 67.0 65.7 65.3 65.6 65.1 61.9 63.9 63.1 61.3 65.7 61.3 55.2 55.2
BiLSTM-max 73.7 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6

Machine translation baselines (TRANSLATE TEST)

BiLSTM-last 71.0 68.3 68.7 66.9 67.3 68.1 66.2 64.9 65.8 64.3 63.2 66.5 61.8 60.1 58.1
BiLSTM-max 73.7 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3

Evaluation of XNLI multilingual sentence encoders (in-domain)

X-BiLSTM-last 71.0 65.2 67.8 66.6 66.3 65.7 63.7 64.2 62.7 65.6 62.7 63.7 62.8 54.1 56.4
X-BiLSTM-max 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4

Evaluation of pretrained multilingual sentence encoders (transfer learning)

X-CBOW 64.5 60.3 60.7 61.0 60.5 60.4 57.8 58.7 57.5 58.8 56.9 58.8 56.3 50.4 52.2

Table 4.10: XNLI test accuracy for the 15 languages.

we describe next.

Parallel Datasets

We use publicly available parallel datasets to learn the alignment between English and target en-

coders. For French, Spanish, Russian, Arabic and Chinese, we use the United Nation corpora

(Ziemski et al., 2016), for German, Greek and Bulgarian, the Europarl corpora (Koehn, 2005), for

Turkish, Vietnamese and Thai, the OpenSubtitles 2018 corpus (Tiedemann, 2012), and for Hindi,

the IIT Bombay corpus (Anoop et al., 2018). For all the above language pairs, we were able to

gather more than 500,000 parallel sentences, and we set the maximum number of parallel sentences

to 2 million. For the lower-resource languages Urdu and Swahili, the number of parallel sentences

is an order of magnitude smaller than for the other languages we consider. For Urdu, we used the

Bible and Quran transcriptions (Tiedemann, 2012), the OpenSubtitles 2016 (Pierre and Jörg, 2016)

and 2018 corpora and LDC2010T21, LDC2010T23 LDC corpora, and obtained a total of 64k par-

allel sentences. For Swahili, we were only able to gather 42k sentences using the Global Voices

corpus and the Tanzil Quran transcription corpus8.

Analysis

Comparing in-language performance in Table 4.10, we observe that, when using BiLSTMs, re-

sults are consistently better when we take the dimension-wise maximum over all hidden states

8http://opus.nlpl.eu/

http://opus.nlpl.eu/
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(BiLSTM-max) compared to taking the last hidden state (BiLSTM-last), as observed in section

3.2 for InferSent. Unsuprisingly, BiLSTM results are better than the pretrained CBOW approach

for all languages. As in Bowman et al. (2015), we also observe the superiority of BiLSTM encoders

over CBOW, even when fine-tuning the word embeddings of the latter on the MultiNLI training set,

thereby again confirming that the NLI task requires more than just word information. Both of these

findings confirm our results obtained in section 3.2.

Figure 4.5: Evolution along training of alignment losses and X-BILSTM XNLI French (fr),
Arabic (ar) and Urdu (ur) accuracies. Observe the correlation between Lalign and accuracy.

Table 4.10 shows that translation offers a strong baseline for XLU. Within translation, TRANS-

LATE TEST appears to perform consistently better than TRANSLATE TRAIN for all languages. The

best cross-lingual results in our evaluation are obtained by the TRANSLATE TEST approach for all

cross-lingual directions. Within the translation approaches, as expected, we observe that cross-

lingual performance depends on the quality of the translation system. In fact, translation-based

results are very well-correlated with the BLEU scores for the translation systems; XNLI perfor-

mance for three of the four languages with the best translation systems (comparing absolute BLEU,

Table 4.9) is above 70%. This performance is still about three points below the English NLI per-

formance of 73.7%. This slight drop in performance may be related to translation error, changes in

style, or artifacts introduced by the machine translation systems that result in discrepancies between

the training and test data.

For cross-lingual performance, we observe a healthy gap between the English results and the

results obtained on other languages. For instance, for French, we obtain 67.7% accuracy when clas-

sifying French pairs using our English classifier and multilingual sentence encoder. When using

our alignment process, our method is competitive with the TRANSLATE TRAIN baseline, suggesting
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that it might be possible to encode similarity between languages directly in the embedding spaces

generated by the encoders. However, these methods are still below the other machine translation

baseline TRANSLATE TEST, which significantly outperforms the multilingual sentence encoder ap-

proach by up to 6% (Swahili). These production systems have been trained on much larger training

data than the ones used for the alignment loss (section 4.2.5), which can partly explain the superior-

ity of this method over the baseline. At inference time, the multilingual sentence encoder approach

is however much cheaper than the TRANSLATE TEST baseline, and this method also does not re-

quire any machine translation system. Interestingly, the two points difference in accuracy between

X-BiLSTM-last and X-BiLSTM-max is maintained across languages, which suggests that having a

stronger encoder in English also positively impacts the transfer results on other languages.

For X-BILSTM French, Urdu and Arabic encoders, we plot in Figure 4.5 the evolution of XNLI

dev accuracies and the alignment losses during training. The latter are computed using XNLI par-

allel dev sentences. We observe a strong correlation between the alignment losses and XNLI ac-

curacies. As the alignment on English-Arabic gets better for example, so does the accuracy on

XNLI-ar. One way to understand this is to recall that the English classifier takes as input the vector

[u, v, |u − v|, u ∗ v] where u and v are the embeddings of the premise and hypothesis. So this cor-

relation between Lalign and the accuracy suggests that, as English and Arabic embeddings [uen, ven]

and [uar, var] get closer for parallel sentences (in the sense of the L2-norm), the English classifier

gets better at understanding Arabic embeddings [uar, var, |uar − var|, uar ∗ var] and thus the accuracy

improves. We observe some over-fitting for Urdu, which can be explained by the small number of

parallel sentences (64k) available for that language.

In Table 4.11, we report the validation accuracy using BiLSTM-max on three languages with

different training hyper-parameters. Fine-tuning the embeddings does not significantly impact the

results, suggesting that the LSTM alone is ensuring alignment of parallel sentence embeddings. We

also observe that the negative term is not critical to the performance of the model, but can lead to

slight improvement in Chinese (up to 1.6%).

4.2.6 Conclusion

A typical problem in industrial applications is the lack of supervised data for languages other than

English, and particularly for low-resource languages. Since annotating data in every language is

not a realistic approach, there has been a growing interest in cross-lingual understanding and low-

resource transfer in multilingual scenarios. In this work, we extend the development and test sets
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fr ru zh

ft = 1, λ = 0.25 [default] 68.9 66.4 67.9
ft = 1, λ = 0.0 (no negatives) 67.8 66.2 66.3
ft = 1, λ = 0.5 64.5 61.3 63.7
ft = 0, λ = 0.25 68.5 66.3 67.7

Table 4.11: Validation accuracy using BiLSTM-max. Default setting corresponds to
λ = 0.25 (importance of the negative terms) and uses fine-tuning of the target lookup table
(ft =1).

of the Multi-Genre Natural Language Inference Corpus to 15 languages, including low-resource

languages such as Swahili and Urdu. Our dataset, dubbed XNLI, is designed to address the lack

of standardized evaluation protocols in cross-lingual understanding, and will hopefully help the

community make further strides in this area. We present several approaches based on cross-lingual

sentence encoders and machine translation systems. While machine translation baselines obtained

the best results in our experiments, these approaches rely on computationally-intensive translation

models either at training or at test time. We found that cross-lingual encoder baselines provide an

encouraging and efficient alternative, and that further work was required to match the performance

of translation based methods. After the publication of this work, XNLI was used in a series of work

including Devlin et al. (2018); Artetxe and Schwenk (2018) and our own work on cross-lingual

language model (Lample and Conneau, 2019). We discuss in more details in the next section these

approaches that significantly outperform the results presented in this section.

4.3 Cross-lingual Language Models

Recent studies have demonstrated the efficiency of generative pretraining for English natural lan-

guage understanding (Radford et al., 2018; Devlin et al., 2018). In this section, we extend this

approach to multiple languages and show the effectiveness of cross-lingual pretraining. Similar in

principle to the unsupervised alignment of word embeddings presented in section 4.1, we align sen-

tence embedding spaces in a completely unsupervised way by leveraging cross-lingual pretaining.

Specifically, we propose two methods to learn cross-lingual language models (XLMs): one unsu-

pervised that only relies on monolingual data, and one supervised that leverages parallel data with

a new cross-lingual language model objective. We obtain state-of-the-art results on cross-lingual
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classification, unsupervised and supervised machine translation. On XNLI, our approach pushes

the state of the art by an absolute gain of 4.9% accuracy and significantly outperforms approaches

presented in section 4.2. Instead of using one LSTM per language, our approach uses a single

Transformer for all the XNLI languages and is fine-tuned directly on XNLI English training data.

On unsupervised machine translation, we obtain 34.3 BLEU on WMT’16 German-English, improv-

ing the previous state of the art by more than 9 BLEU. On supervised machine translation, we obtain

a new state of the art of 38.5 BLEU on WMT’16 Romanian-English, outperforming the previous

best approach by more than 4 BLEU. Our code and pretrained models are publicly available.9

4.3.1 Introduction

As discussed previously, pretraining of sentence encoders with language modeling has led to strong

improvements on numerous natural language understanding benchmarks. In this context, a Trans-

former language model is learned on a large unsupervised text corpus, and then fine-tuned on NLU

tasks such as classification or NLI. Research in that area has been essentially monolingual, and

largely focused around English benchmarks such as SentEval or GLUE. In this section we extend

the idea of language model pretaining to the cross-lingual setting to mitigate the English-centric

bias, and build on top of the work presented in section 4.2.

We demonstrate the effectiveness of cross-lingual language model pretraining on multiple cross-

lingual understanding benchmarks, including XNLI. Precisely, we make the following contribu-

tions:

1. We introduce a new unsupervised method for learning cross-lingual representations using

cross-lingual language modeling and investigate two monolingual pretraining objectives.

2. We introduce a new supervised learning objective that improves cross-lingual pretraining

when parallel data is available.

3. We significantly outperform the previous state of the art on cross-lingual classification, un-

supervised machine translation and supervised machine translation.

4. We show that cross-lingual language models can provide significant improvements on the

perplexity of low-resource languages.

5. We make our code and pretrained models publicly available.
9https://github.com/facebookresearch/XLM
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4.3.2 Related Work

While the methods introduced in section 4.2 and the recent work of (Eriguchi et al., 2018; Artetxe

and Schwenk, 2018) require a significant amount of parallel data, our recent work in unsupervised

machine translation show that sentence representations can be aligned in a completely unsupervised

way (Lample et al., 2018a; Artetxe et al., 2018). For instance, in Lample et al. (2018b) we obtained

25.2 BLEU on WMT’16 German-English without using parallel sentences. Similar to this work

and the work we presented in section 4.1, we show that we can align distributions of sentences in

a completely unsupervised way, and that our cross-lingual models can be used for a broad set of

natural language understanding tasks, including machine translation.

The most similar work to ours is probably the one of Wada and Iwata (2018), where the authors

train a LSTM (Hochreiter and Schmidhuber, 1997) language model with sentences from different

languages. They share the LSTM parameters, but use different lookup tables to represent the words

in each language. They focus on aligning word representations and show that their approach work

well on word translation tasks.

4.3.3 Cross-lingual language models

In this section, we present the three language modeling objectives we consider throughout this work.

Two of them only require monolingual data (unsupervised), while the third one requires parallel

sentences (supervised). We consider N languages. Unless stated otherwise, we suppose that we

have N monolingual corpora {Ci}i=1...N , and we denote by ni the number of sentences in Ci.

Shared sub-word vocabulary

In all our experiments we process all languages with the same shared vocabulary created through

Byte Pair Encoding (BPE) (Sennrich et al., 2015b). As shown in Lample et al. (2018a), this greatly

improves the alignment of embedding spaces across languages that share either the same alphabet

or anchor tokens such as digits (Smith et al., 2017) or proper nouns. We learn the BPE splits on

the concatenation of sentences sampled randomly from the monolingual corpora. Sentences are

sampled according to a multinomial distribution with probabilities {qi}i=1...N , where:

qi =
pαi∑N
j=1 p

α
j

with pi =
ni∑N
k=1 nk

.
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We consider α = 0.5. Sampling with this distribution increases the number of tokens associated to

low-resource languages and alleviates the bias towards high-resource languages. In particular, this

prevents words of low-resource languages from being split at the character level.

Causal Language Modeling (CLM)

Our causal language modeling (CLM) task consists of a Transformer language model trained to

model the probability of a word given the previous words in a sentence P (wt|w1, . . . , wt−1, θ).

While recurrent neural networks obtain state-of-the-art performance on language modeling bench-

marks (Mikolov et al., 2010; Jozefowicz et al., 2016), Transformer models are also very competitive

(Dai et al., 2019).

In the case of LSTM language models, back-propagation through time (Werbos, 1990) (BPTT)

is performed by providing the LSTM with the last hidden state of the previous iteration. In the case

of Transformers, previous hidden states can be passed to the current batch (Al-Rfou et al., 2018)

to provide context to the first words in the batch. However, this technique does not scale to the

cross-lingual setting, so we just leave the first words in each batch without context for simplicity.

Masked Language Modeling (MLM)

We also consider the masked language modeling (MLM) objective of Devlin et al. (2018), also

known as the Cloze task (Taylor, 1953). Following Devlin et al. (2018), we sample randomly 15%

of the BPE tokens from the text streams, replace them by a [MASK] token 80% of the time, by

a random token 10% of the time, and we keep them unchanged 10% of the time. Differences

between our approach and the MLM of Devlin et al. (2018) include the use of text streams of an

arbitrary number of sentences (truncated at 256 tokens) instead of pairs of sentences. To counter the

imbalance between rare and frequent tokens (e.g. punctuations or stop words), we also subsample

the frequent outputs using an approach similar to Mikolov et al. (2013c): tokens in a text stream are

sampled according to a multinomial distribution, whose weights are proportional to the square root

of their invert frequencies. Our MLM objective is illustrated in Figure 4.6.

Translation Language Modeling (TLM)

Both the CLM and MLM objectives are unsupervised and only require monolingual data. How-

ever, these objectives cannot be used to leverage parallel data when it is available. We introduce a

new translation language modeling (TLM) objective for improving cross-lingual pretraining. Our
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Figure 4.6: Cross-lingual language model pretraining. The MLM objective is similar to the
one of Devlin et al. (2018), but with continuous streams of text as opposed to sentence pairs. The
TLM objective extends MLM to pairs of parallel sentences. To predict a masked English word,
the model can attend to both the English sentence and its French translation, and is encouraged to
align English and French representations. Position embeddings of the target sentence are reset to
facilitate the alignment.

TLM objective is an extension of MLM, where instead of considering monolingual text streams,

we concatenate parallel sentences as illustrated in Figure 4.6. We randomly mask words in both the

source and target sentences. To predict a word masked in an English sentence, the model can either

attend to surrounding English words or to the French translation, encouraging the model to align

the English and French representations. In particular, the model can leverage the French context if

the English one is not sufficient to infer the masked English words. To facilitate the alignment, we

also reset the positions of target sentences.

Cross-lingual Language Models

In this section, we consider cross-lingual language model pretraining with either CLM, MLM, or

MLM used in combination with TLM. For the CLM and MLM objectives, we train the model with

batches of 64 streams of continuous sentences composed of 256 tokens. At each iteration, a batch

is composed of sentences coming from the same language, which is sampled from the distribution
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{qi}i=1...N above, with α = 0.7. When TLM is used in combination with MLM, we alternate

between these two objectives, and sample the language pairs with a similar approach.

4.3.4 Cross-lingual language model pretraining

In this section, we explain how cross-lingual language models can be used to obtain:

• a better initialization of sentence encoders for zero-shot cross-lingual classification

• a better initialization of supervised and unsupervised neural machine translation systems

• language models for low-resource languages

• unsupervised cross-lingual word embeddings

Cross-lingual classification

Our pretrained XLM models provide general-purpose cross-lingual text representations. Similar

to monolingual language model fine-tuning (Radford et al., 2018; Devlin et al., 2018) on English

classification tasks, we fine-tune XLMs on XNLI to evaluate our approach. Precisely, we add a

linear classifier on top of the first hidden state of the pretrained Transformer, and fine-tune all

parameters on the English NLI training dataset. We then evaluate the capacity of our model to

make correct NLI predictions in the 15 XNLI languages. Following our approach in section 4.2, we

also include machine translation baselines of train and test sets. We report our results in Table 4.12.

Unsupervised Machine Translation

Pretraining is a key ingredient of unsupervised neural machine translation (UNMT) (Lample et al.,

2018a; Artetxe et al., 2018). In Lample et al. (2018b) we show that the quality of pretrained

cross-lingual word embeddings used to initialize the lookup table has a significant impact on the

performance of an unsupervised machine translation model. In this section, we propose to take

this idea one step further by pretraining the entire encoder and decoder with a cross-lingual lan-

guage model to bootstrap the iterative process of UNMT. We explore various initialization schemes

and evaluate their impact on several standard machine translation benchmarks, including WMT’14

English-French, WMT’16 English-German and WMT’16 English-Romanian. Results are presented

in Table 4.13.
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Supervised Machine Translation

We also investigate the impact of cross-lingual language modeling pretraining for supervised ma-

chine translation, and extend the approach of Ramachandran et al. (2016) to multilingual NMT

(Johnson et al., 2017b). We evaluate the impact of both CLM and MLM pretraining on WMT’16

Romanian-English, and present results in Table 4.14.

Low-resource language modeling

For low-resource languages, it is often beneficial to leverage data in similar but higher-resource

languages, especially when they share a significant fraction of their vocabularies. For instance, there

are about 100k sentences written in Nepali on Wikipedia, and about 6 times more in Hindi. These

two languages also have more than 80% of their tokens in common in a shared BPE vocabulary

of 100k subword units. We provide in Table 4.15 a comparison in perplexity between a Nepali

language model and a cross-lingual language model trained in Nepali but enriched with different

combinations of Hindi and English data.

Unsupervised cross-lingual word embeddings

In section 4.1, we showed how to perform unsupervised word translation by aligning monolingual

word embedding spaces with adversarial training (MUSE). In Lample et al. (2018a), we showed that

using a shared vocabulary between two languages and then applying fastText (Bojanowski et al.,

2017) on the concatenation of their monolingual corpora also directly provides high-quality cross-

lingual word embeddings (Concat) for languages that share a common alphabet. In this section,

we also use a shared vocabulary but our word embeddings are obtained via the lookup table of our

cross-lingual language model (XLM). In Section 4.3.5, we compare these three approaches on three

different metrics: cosine similarity, L2 distance and cross-lingual word similarity.

4.3.5 Experiments and results

In this section, we empirically demonstrate the strong impact of cross-lingual language model pre-

training on several benchmarks, and compare our approach to the current state of the art.
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Training details

In all experiments, we use a Transformer architecture with 1024 hidden units, 8 heads, GELU

activations (Hendrycks and Gimpel, 2016), a dropout rate of 0.1 and learned positional embeddings.

We train our models with the Adam optimizer (Kingma and Ba, 2014), a linear warm-up (Vaswani

et al., 2017) and learning rates varying from 10−4 to 5.10−4.

For the CLM and MLM objectives, we use streams of 256 tokens and a mini-batches of size

64. Unlike Devlin et al. (2018), a sequence in a mini-batch can contain more than two consecutive

sentences, as explained in Section 4.3.3. For the TLM objective, we sample mini-batches of 4000

tokens composed of sentences with similar lengths. We use the averaged perplexity over languages

as a stopping criterion for training. For machine translation, we only use 6 layers, and we create

mini-batches of 2000 tokens.

When fine-tuning on XNLI, we use mini-batches of size 8 or 16, and we clip the sentence

length to 256 words. We use 80k BPE splits and a vocabulary of 95k and train a 12-layer model

on the Wikipedias of the XNLI languages. We sample the learning rate of the Adam optimizer

with values from 5.10−4 to 2.10−4, and use small evaluation epochs of 20000 random samples.

We use the first hidden state of the last layer of the transformer as input to the randomly initialized

final linear classifier, and fine-tune all parameters. In our experiments, using either max-pooling or

mean-pooling over the last layer did not work better than using the first hidden state.

We implement all our models in PyTorch (Paszke et al., 2017), and train them on 64 Volta GPUs

for the language modeling tasks, and 8 GPUs for the MT tasks. We use float16 operations to speed

up training and to reduce the memory usage of our models.

Data preprocessing

We use WikiExtractor10 to extract raw sentences from Wikipedia dumps and use them as monolin-

gual data for the CLM and MLM objectives. For the TLM objective, we only use parallel data that

involves English, as we did in section 4.2 for our XNLI experiments. Precisely, we use MultiUN

(Ziemski et al., 2016) for French, Spanish, Russian, Arabic and Chinese, and the IIT Bombay corpus

(Anoop et al., 2018) for Hindi. We extract the following corpora from the OPUS 11 website (Tiede-

mann, 2012): the EUbookshop corpus for German, Greek and Bulgarian, OpenSubtitles 2018 for

Turkish, Vietnamese and Thai, Tanzil for both Urdu and Swahili and GlobalVoices for Swahili. For

10https://github.com/attardi/wikiextractor
11http://opus.nlpl.eu

https://github.com/attardi/wikiextractor
http://opus.nlpl.eu
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en fr es de el bg ru tr ar vi th zh hi sw ur ∆

Machine translation baselines (TRANSLATE-TRAIN)

Devlin et al. (2018) 81.9 - 77.8 75.9 - - - - 70.7 - - 76.6 - - 61.6 -
XLM (MLM+TLM) 85.0 80.2 80.8 80.3 78.1 79.3 78.1 74.7 76.5 76.6 75.5 78.6 72.3 70.9 63.2 76.7

Machine translation baselines (TRANSLATE-TEST)

Devlin et al. (2018) 81.4 - 74.9 74.4 - - - - 70.4 - - 70.1 - - 62.1 -
XLM (MLM+TLM) 85.0 79.0 79.5 78.1 77.8 77.6 75.5 73.7 73.7 70.8 70.4 73.6 69.0 64.7 65.1 74.2

Evaluation of cross-lingual sentence encoders

Conneau et al. (2018c) 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
Devlin et al. (2018) 81.4 - 74.3 70.5 - - - - 62.1 - - 63.8 - - 58.3 -
Artetxe and Schwenk (2018) 73.9 71.9 72.9 72.6 73.1 74.2 71.5 69.7 71.4 72.0 69.2 71.4 65.5 62.2 61.0 70.2
XLM (MLM) 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5
XLM (MLM+TLM) 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1

Table 4.12: Results on cross-lingual classification accuracy. Test accuracy on the 15
XNLI languages. We report results for machine translation baselines and zero-shot classi-
fication approaches based on cross-lingual sentence encoders. XLM (MLM) corresponds to
our unsupervised approach trained only on monolingual corpora, and XLM (MLM+TLM)
corresponds to our supervised method that leverages both monolingual and parallel data
through the TLM objective. ∆ corresponds to the average accuracy.

Chinese, Japanese and Thai we use the tokenizer of Chang et al. (2008), the Kytea12 tokenizer, and

the PyThaiNLP13 tokenizer respectively. For all other languages, we use the tokenizer provided

by Moses (Koehn et al., 2007), falling back on the default English tokenizer when necessary. We

use fastBPE14 to learn BPE codes and split words into subword units. The BPE codes are learned

on the concatenation of sentences sampled from all languages, following the method presented in

Section 4.3.3.

Results and analysis

In the following, we demonstrate the effectiveness of cross-lingual language model pretraining.

Our approach significantly outperforms the previous state of the art on cross-lingual classification,

unsupervised and supervised machine translation.

Cross-lingual classification In Table 4.12, we evaluate two types of pretrained cross-lingual

encoders: an unsupervised cross-lingual language model that uses the MLM objective on mono-

lingual corpora only; and a supervised cross-lingual language model that combines both the MLM

12http://www.phontron.com/kytea
13https://github.com/PyThaiNLP/pythainlp
14https://github.com/glample/fastBPE

http://www.phontron.com/kytea
https://github.com/PyThaiNLP/pythainlp
https://github.com/glample/fastBPE
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and the TLM loss using additional parallel data. Following 4.2, we include two machine translation

baselines: TRANSLATE-TRAIN, where the English MultiNLI training set is machine translated

into each XNLI language, and TRANSLATE-TEST where every dev and test set of XNLI is trans-

lated to English. We report the XNLI baselines of section 4.2, the multilingual BERT approach of

Devlin et al. (2018) and the recent work of Artetxe and Schwenk (2018).

Our fully unsupervised MLM method sets a new state of the art on zero-shot cross-lingual

classification and significantly outperforms the supervised approach of Artetxe and Schwenk (2018)

which uses 223 million of parallel sentences. Precisely, MLM obtains 71.5% accuracy on average

(∆), while they obtained 70.2% accuracy. By leveraging parallel data through the TLM objective

(MLM+TLM), we get a significant boost in performance of 3.6% accuracy, improving even further

the state of the art to 75.1%. On the Swahili and Urdu low-resource languages, we outperform the

previous state of the art by 6.2% and 6.3% respectively. Due to additional English data in parallel

corpora, we observe that TLM, in addition to MLM, also improves English accuracy from 83.2% to

85% accuracy, outperforming Artetxe and Schwenk (2018) and Devlin et al. (2018) by 11.1% and

3.6% accuracy respectively.

When fine-tuned on the training set of each XNLI language (TRANSLATE-TRAIN), our su-

pervised model outperforms our zero-shot approach by 1.6%, reaching an absolute state of the art

of 76.7% average accuracy. This result demonstrates in particular the consistency of our approach

and shows that XLMs can be fine-tuned on any language with strong performance. Similar to

the multilingual BERT (Devlin et al., 2018), we observe that TRANSLATE-TRAIN outperforms

TRANSLATE-TEST by 2.5% average accuracy, and additionally that our zero-shot approach out-

performs TRANSLATE-TEST by 0.9%.

Unsupervised machine translation For the unsupervised machine translation task we con-

sider three language pairs: English-French, English-German, and English-Romanian. Our setting

is identical to the one of Lample et al. (2018b), except for the initialization step where we use

cross-lingual language modeling to pretrain the full model as opposed to only the lookup table.

For both the encoder and the decoder, we consider different possible initializations: CLM pre-

training, MLM pretraining, or random initialization, which results in nine different settings. We then

follow Lample et al. (2018b) and train the model with a denoising auto-encoding loss along with an

online back-translation loss. Results are reported in Table 4.13. We compare our approach with the

ones of Lample et al. (2018b). For each language pair, we observe significant improvements over the

previous state of the art. We re-implemented the NMT approach of Lample et al. (2018b) (EMB),
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en-fr fr-en en-de de-en en-ro ro-en

Previous state-of-the-art - Lample et al. (2018b)

NMT 25.1 24.2 17.2 21.0 21.2 19.4
PBSMT 28.1 27.2 17.8 22.7 21.3 23.0
PBSMT + NMT 27.6 27.7 20.2 25.2 25.1 23.9

Our results for different encoder and decoder initializations

EMB EMB 29.4 29.4 21.3 27.3 27.5 26.6
- - 13.0 15.8 6.7 15.3 18.9 18.3
- CLM 25.3 26.4 19.2 26.0 25.7 24.6
- MLM 29.2 29.1 21.6 28.6 28.2 27.3

CLM - 28.7 28.2 24.4 30.3 29.2 28.0
CLM CLM 30.4 30.0 22.7 30.5 29.0 27.8
CLM MLM 32.3 31.6 24.3 32.5 31.6 29.8
MLM - 31.6 32.1 27.0 33.2 31.8 30.5
MLM CLM 33.4 32.3 24.9 32.9 31.7 30.4
MLM MLM 33.4 33.3 26.4 34.3 33.3 31.8

Table 4.13: Results on unsupervised MT. BLEU scores on WMT’14 English-French,
WMT’16 German-English and WMT’16 Romanian-English. For our results, the first two
columns indicate the model used to pretrain the encoder and the decoder. “ - ” means the
model was randomly initialized. EMB corresponds our reimplementation of the original
pretraining of the lookup table with cross-lingual embeddings from Lample et al. (2018a),
CLM and MLM correspond to pretraining with models trained on the CLM or MLM ob-
jectives.

and obtained better results than reported in their paper. We expect that this is due to our multi-GPU

implementation which uses significantly larger batches. In German-English, our best model out-

performs the previous unsupervised approach by more than 9.1 BLEU, and 13.3 BLEU if we only

consider neural unsupervised approaches. Compared to pretraining only the lookup table (EMB),

pretraining both the encoder and decoder with MLM leads to consistent significant improvements

of up to 7 BLEU on German-English. We also observe that the MLM objective pretraining consis-

tently outperforms the CLM one, going from 30.4 to 33.4 BLEU on English-French, and from 28.0

to 31.8 on Romanian-English. These results are consistent with the ones of Devlin et al. (2018) who

observed a better generalization on NLU tasks when training on the MLM objective compared to

CLM. We also observe that the encoder is the most important element to pretrain: when compared

to pretraining both the encoder and the decoder, pretraining only the decoder leads to a significant

drop in performance, while pretraining only the encoder only has a small impact on the final BLEU
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score.

Pretraining - CLM MLM

Sennrich et al. (2016) 33.9 - -
ro→ en 28.4 31.5 35.3
ro↔ en 28.5 31.5 35.6
ro↔ en + BT 34.4 37.0 38.5

Table 4.14: Results on supervised MT. BLEU scores on WMT’16 Romanian-English.
The previous state-of-the-art of Sennrich et al. (2016) uses both back-translation and an
ensemble model. ro↔ en corresponds to models trained on both directions.

Supervised machine translation In Table 4.14 we report the performance on Romanian-

English WMT’16 for different supervised training configurations: mono-directional (ro→en), bidi-

rectional (ro↔en, a multi-NMT model trained on both en→ro and ro→en) and bidirectional with

back-translation (ro↔en + BT). Models with back-translation are trained with the same monolin-

gual data as language models used for pretraining. As in the unsupervised setting, we observe that

pretraining provides a significant boost in BLEU score for each configuration, and that pretraining

with the MLM objective leads to the best performance. Also, while models with back-translation

have access to the same amount of monolingual data as the pretrained models, they are not able to

generalize as well on the evaluation sets. Our bidirectional model trained with back-translation ob-

tains the best performance and reaches 38.5 BLEU, outperforming the previous SOTA of Sennrich

et al. (2016) (based on back-translation and ensemble models) by more than 4 BLEU.

Low-resource language model In Table 4.15, we investigate the impact of cross-lingual lan-

guage modeling for improving the perplexity of a Nepali language model. To do so, we train a

Nepali language model on Wikipedia, together with additional data from either English or Hindi.

While Nepali and English are distant languages, Nepali and Hindi are similar as they share the same

Devanagari script and have a common Sanskrit ancestor. When using English data, we reduce the

perplexity on the Nepali language model by 17.1 points, going from 157.2 for Nepali-only language

modeling to 140.1 when using English. Using additional data from Hindi, we get a much larger

perplexity reduction of 41.6. Finally, by leveraging data from both English and Hindi, we reduce

the perplexity even more to 109.3 on Nepali. The gains in perplexity from cross-lingual language

modeling can be partly explained by the n-grams anchor points that are shared across languages,
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for instance in Wikipedia articles. The cross-lingual language model can thus transfer the addi-

tional context provided by the Hindi or English monolingual corpora through these anchor points to

improve the Nepali language model.

Training languages Nepali perplexity

Nepali 157.2
Nepali + English 140.1
Nepali + Hindi 115.6
Nepali + English + Hindi 109.3

Table 4.15: Results on language modeling. Nepali perplexity when using additional data
from a similar language (Hindi) or a distant one (English).

Unsupervised cross-lingual word embeddings The MUSE, Concat and XLM (MLM) meth-

ods provide unsupervised cross-lingual word embedding spaces that have different properties. In

Table 4.16, we study those three methods using the same word vocabulary and compute the cosine

similarity and L2 distance between word translation pairs from the MUSE dictionaries. We also

evaluate the quality of the cosine similarity measure via the SemEval’17 cross-lingual word simi-

larity task of Camacho-Collados et al. (2017). We observe that XLM outperforms both MUSE and

Concat on cross-lingual word similarity, reaching a Pearson correlation of 0.69. Interestingly, word

translation pairs are also far closer in the XLM cross-lingual word embedding space than for MUSE

or Concat. Specifically, MUSE obtains 0.38 and 5.13 for cosine similarity and L2 distance while

XLM gives 0.55 and 2.64 for the same metrics. Note that XLM embeddings have the particularity

of being trained together with a sentence encoder which may enforce this closeness, while MUSE

and Concat are based on fastText word embeddings.

Cosine sim. L2 dist. SemEval’17

MUSE 0.38 5.13 0.65
Concat 0.36 4.89 0.52
XLM 0.55 2.64 0.69

Table 4.16: Unsupervised cross-lingual word embeddings Cosine similarity and L2 dis-
tance between source words and their translations. Pearson correlation on SemEval’17
cross-lingual word similarity task of Camacho-Collados et al. (2017).
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4.3.6 Conclusion

In this section, we show for the first time the strong impact of cross-lingual language model (XLM)

pretraining. We investigate two unsupervised training objectives that require only monolingual

corpora: Causal Language Modeling (CLM) and Masked Language Modeling (MLM). We show

that both the CLM and MLM approaches provide strong cross-lingual features that can be used

for pretraining models. On unsupervised machine translation, we show that MLM pretraining is

extremely effective. We reach a new state of the art of 34.3 BLEU on WMT’16 German-English,

outperforming the previous best unsupervised approach by more than 9 BLEU. Similarly, we obtain

strong improvements on supervised machine translation. We reach a new state of the art on WMT’16

Romanian-English of 38.5 BLEU, which corresponds to an improvement of more than 4 BLEU

points. We also demonstrate that cross-lingual language model can be used to improve the perplexity

of a Nepali language model, and that it provides unsupervised cross-lingual word embeddings.

Without using a single parallel sentence, a cross-lingual language model fine-tuned on the XNLI

cross-lingual classification benchmark already outperforms the previous supervised state of the art

by 1.3% accuracy on average. A key contribution of our work is the translation language modeling

(TLM) objective which improves cross-lingual language model pretraining by leveraging parallel

data. TLM naturally extends the BERT MLM approach by using batches of parallel sentences

instead of consecutive sentences. We obtain a significant gain by using TLM in addition to MLM,

and we show that this supervised approach beats the previous state of the art on XNLI by 4.9%

accuracy on average. Our code and pretrained models are publicly available.



Chapter 5

Conclusion

In this thesis, we proposed new methods to learn, evaluate, analyze and align sentence embedding

spaces. First in the monolingual setting, we proposed SentEval (Conneau and Kiela, 2018; Conneau

et al., 2018a), a toolkit to evaluate and analyze fixed-size sentence embeddings. We conducted a

thorough analysis on the impact of the encoder architecture and the training task on the embedding

space, using both downstream and probing tasks. At the time of publication, we showed that In-

ferSent (Conneau et al., 2017) obtained state-of-the-art results and outperformed SkipThought and

bag-of-vectors. Our contributions inspired other researchers which extended our approach using

multi-task learning (Subramanian et al., 2018; Cer et al., 2018) and outperformed our approach. In

parallel, a new line of work emerged on sentence encoder fine-tuning where instead of learning a

logistic regression or a multi-layer perceptron on top of fixed-size frozen representations, encoders

were fine-tuned entirely on the downstream tasks. These models were evaluated on the GLUE

benchmark (Wang et al., 2018). The research community rediscovered the power of language mod-

els as a way to learn powerful sentence representations (Peters et al., 2018; Howard and Ruder,

2018; Radford et al., 2018; Devlin et al., 2018), and showed strong improvements on a number of

NLU tasks.

Both areas of research on frozen fixed-size embeddings and encoder fine-tuning were very

English-centric, in particular because SentEval and GLUE only incorporate English evaluation

benchmarks. In this thesis, we extended these approaches to the cross-lingual world and built

cross-lingual embedding spaces. We started by aligning word representations in Conneau et al.

(2018b) without parallel data using adversarial training (Ganin et al., 2016). We showed that we

could translate words between various languages while having only access to monolingual corpora.
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We switched from word embeddings alignment to sentence embeddings alignment by first proving

the community with the first large-scale cross-lingual classification benchmark called XNLI in or-

der to catalyze research in cross-lingual understanding. We showed that we could align sentence

embedding spaces using an alignment loss similar to a ranking loss, such that while having seen

only English NLI training data, we are still able to make predictions in the 14 other languages of

XNLI. Finally, we explored the power of cross-lingual language models as a way to learn strong

multilingual representations of sentences and applied to a series of XLU tasks. In particular we

showed strong improvements for supervised and unsupervised machine translation by pretraining

both the encoder and the decoder using a cross-lingual language model. We also showed that we

could leverage additional data from Hindi to improve a Nepalese language model and that we could

learn a cross-lingual sentence encoder without any parallel data. We improved our cross-lingual

masked language model by leveraging available parallel data using a new objective called trans-

lation language model that extend the BERT approach to the cross-lingual setting. We obtained

strong improvements on XNLI and outperformed the previous state of the art by 4.9% accuracy on

average.

In the recent years, we have seen a growing interest in multi-task learning and multilinguality.

With strong evaluation benchmarks like XNLI, there is indeed a lot of opportunity to build better

systems for low-resource languages. In particular, a lot of work has to be done in the direction of

cross-lingual language modeling for scaling to multiple languages and larger datasets, or improving

alignment techniques beyond translation language modeling. Leveraging redundancy in Wikipedia-

based question answering system is also an interesting research direction that we hope to explore in

the near future. We believe our work only scratches the surface of what is possible to do in cross-

lingual understanding with neural networks and we hope the research community will build even

stronger NLP systems for low-resource languages.
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T. Kociský, K.M. Hermann, and P. Blunsom. 2014. Learning bilingual word representations by

marginalizing alignments. In ACL. pages 224–229.

Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine translation. In MT summit.

volume 5, pages 79–86.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola

Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. 2007. Moses: Open

source toolkit for statistical machine translation. In Proceedings of the 45th annual meeting

of the ACL on interactive poster and demonstration sessions. Association for Computational

Linguistics, pages 177–180.



BIBLIOGRAPHY 132

Philipp Koehn and Kevin Knight. 2002. Learning a translation lexicon from monolingual corpora. In

Proceedings of the ACL-02 workshop on Unsupervised lexical acquisition-Volume 9. Association

for Computational Linguistics, pages 9–16.

Grzegorz Kondrak, Bradley Hauer, and Garrett Nicolai. 2017. Bootstrapping unsupervised bilingual

lexicon induction. In EACL.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems. pages

1097–1105.

Alice Lai and Julia Hockenmaier. 2014. Illinois-lh: A denotational and distributional approach to

semantics. Proc. SemEval 2:5.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer.

2016. Neural architectures for named entity recognition. In Proceedings of NAACL-HLT . pages

260–270.

Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model pretraining. arXiv

preprint arXiv:1901.07291 .

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. 2018a. Unsu-

pervised machine translation using monolingual corpora only. In ICLR.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.

2018b. Phrase-based & neural unsupervised machine translation. In EMNLP.

Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. 2015. Hubness and pollution: Delving

into cross-space mapping for zero-shot learning. Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics .

Quoc V Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In

ICML. volume 14, pages 1188–1196.
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