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Abstract

Preferences play an important role in daily life in various domains, especially in psy-
chology, economy sociology and in philosophy. Today, the study of preferences has
pivoted to unconventional preference models and new applications for preference man-
agement such as preference learning. Imperfect preference data needs to be reasoned by
more complicated model and preference learning has found its indispensable position
in applications of search engine sorting, recommendation systems, and social network
analysis.

In this thesis, we review state-of-the-art methods on preference modeling, aggre-
gation and preference learning. Based on the theory of belief functions (TBF), we
propose a model for imperfect preferences with uncertainty, imprecision, called BFpref
model. In TBF, a piece of knowledge with uncertainty and imprecision is called evi-
dential. Thus, preferences in BFpref model are also referred to as evidential preferences.

BFpref model is also capable of expressing incompleteness through total ignorance
in the framework of the TBF. With this model, relevant strategies are proposed to
fuse multiple evidential preferences. In addition, a distance on imperfect preferences
is introduced to take into account the four types of preference relationships differently.
This distance is called Weighted Singleton Distance (WSD).

The unsupervised classification on evidential preferences with BFpref model is also
studied by distinguishing between complete and incomplete preferences. Indeed, all
existing work in learning on evidential objects are not theoretically convincing. In this
thesis, an impossibility theorem on clustering over evidential bodies in the theory of
belief functions is proposed and proved.

The following part gives more detailed contents of context and main contributions
in this thesis.

Context

The thesis commences with an introduction of aggregation and learning tasks over
imperfect preferences.

III
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Aggregation of preferences

Most conventional preference studies focus on problems of preference aggregation, also
known as social choice theory. In this process, several preferences are aggregated into
one, usually considered for collective decision-making. In this thesis, we focus only
on the problem of single-criteria decision making, where each item being compared is
represented by a single criterion.

Preference learning

Nevertheless, the study of preferences is not limited to social choice theory. With the
fashionable development of artificial intelligence (AI), preference reasoning is regarded
as a particularly promising research direction for the AI community. Preference learning
is primarily about inducing preference models from empirical data. The process of
inducing preferences is also referred to as preference elicitation.

Preference learning techniques are widely used, from search engine services to the
construction of recommendation systems. Searching for groups among agents accord-
ing to their preferences is a fundamental step in preference determination, also called
preference clustering.

New challenges: Imperfect preference data

Initiated by the development of digital technologies, in particular the Internet boom,
more and more possibilities to collect and exploit preference data are becoming possible.
Such a development has led to a multitude of new challenges and issues in preference
research, both at the theoretical and application levels. Problems include, but are
not limited to, the management of preference data imperfection and the corresponding
applications.

In the context of this thesis, there are three main aspects to the imperfection of
preference data: Preferences with uncertainty Preferences with imprecision Preferences
with incompleteness (data missing)

Uncertainty in preferences refers to epistemic situations on the knowledge of pref-
erence information where preference relationships cannot be described by sound and
reliable opinions. Imprecision in preferences refers to cases in which multiple preference
relationships are possible, usually caused by a lack of knowledge or implicitness about
preference information. The imprecision is generally caused by flaws in preference ac-
quisition, or data sources, such as uncertain agent opinion, conflicts between multiple
sources, and implicit information.

The theory of belief functions (TBF, also called Evidential theory or Dampster-
Shaffer theory) is a formal framework for representing and reasoning information with
uncertainty and imprecision by extending both the set-membership approach and prob-
ability theory. The term “evidential” is used in TBF to refer to imperfect information
containing both “imprecision” and “uncertainty”.

Incompleteness of preferences refers to cases where the preference relations are not
observed on all elements of a data space. i.e. preference information is partially and/or
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completely missing.

Objectives

The objectives of this thesis are to propose a new modeling of imperfect preferences
and to explore the problems of managing such preferences. To deal with the problems
of uncertainty and imprecision, we rely on a theoretical framework: the theory of belief
functions.

The subject of this thesis is globally related to three aspects: the modeling of imper-
fect preferences (with the theory of belief functions), the decision making on imperfect
preferences (resulting from the aggregation of preferences), and the unsupervised learn-
ing of imperfect preferences.

Chapter 2 to Chapter 4 provide preliminary knowledge and review the state-of-the-
art works on the corresponding topics.

In Chapter 2, different orders, structures, and relationships of preferences are pre-
sented and compared, followed by a synthesis on imperfect preference models, in partic-
ular the fuzzy preference model, which is the most popular one. Concerning the theory
of belief functions, basic definitions as well as combination rules and their conditions
of use are introduced.

In Chapter 3, existing similarity measures on preferences are introduced. These
measures are divided into two categories: measures of pairwise preference relations
and measures of preference structures. The first category comprises the standardized
distances on preference encoding and the axiomatic distances. We also compared the
different axioms accepted for each axiomatic distance and analyzed their differences
in the interpretation of incomparability. The second category concerns measurements
between two preference structures (or orders of preference). In this case, similarity is
often measured by correlation-related distances such as Kendall’s, Spearman’s or Pear-
son’s distance. As for the theory of belief functions, measures of similarity between
BBAs are introduced in three categories: distances from a geometric point of view,
divergence from a statistical distribution point of view, and conflict from the view of a
common support on events.

Chapter 4 reviews major problems and techniques in preference aggregation and
preference clustering. Particularly, techniques managing incomplete data are also re-
viewed. Concerning the aggregation of preferences, different classical voting methods
are presented, followed by voting issues such as Condorcet’s paradox. The relationship
between similarity measures and preference aggregation is also reviewed. Indeed, for
the majority of aggregation rules, in particular consensus rules, the aggregated result
is essentially a preference closest to all the preferences to be aggregated, i.e. it is a
process of minimizing the sum of the distances of the aggregated (group) preference to
the preferences of the agents considered. The differences between the different methods
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of voting or aggregating preferences essentially correspond to differences in the distance
applied.

Preference learning is a sub-domain of artificial intelligence, mainly consisting of
two objectives (i) to classify agents into different groups based on their individual pref-
erences, and (ii) to explicit group preferences. The first objective is often seen as a
problem close to the detection of communities, and the second as a problem close to
recommendation systems. In this thesis, the first objective is principally targeted.

Incompleteness of data bring challenges to both preference aggregation and learning.
Techniques dealing with incompleteness consists of three principal categories:

• Discarding the missing data,

• Imputing the missing data,

• Modeling missing data by soft computing methods.

The adaptable cases as well as advantages/disadvantages are also concluded in Chap-
ter 4.

Contributions

The contributions of this thesis are composed of three aspects: modeling, aggregation
and learning of imperfect preference data, respectively introduced in Chapter 5, 6 and 7.

In preference modeling

Contributions in preference modeling are introduced in chapter 5. A novel model for
uncertainty and imprecise preference is proposed, based on the theory of belief func-
tion, namely BFpref model (Belief Function based preference). An ambiguity in the
definitions of preference relationships over the interpretations of “incomparabilit” and
“incompleteness” is firstly pointed out. Most work interprets the “incomparability”
relationship as missing or “undecided” information. Other work interprets “incompa-
rability” as another type of preference relationship, different from “strict preferences”
and “indifference”, or the “undecidable” case, which also meets the original definition
of “incomparability”.

In this work, we consider that the incompleteness of preferences is caused by missing
information and we have clarified this ambiguity by proposing BFpref model. According
to the theory of belief functions, evidential bodies with uncertainty and imprecision are
represented by BBAs under a predefined discrimination framework. By defining a
framework of discernment about possible events (called singleton in TBF):

Ω = {ω1, ω2, ..., ωk}
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, the degrees of uncertainty and imprecision are represented by the Basic Belief Assign-
ment (BBA) m : 2Ω ← [0.1] such that :∑

X⊆Ω
m(X) = 1

Non-zero elements are called focal elements.
Uncertainty is represented by values less than 1 and imprecision by values on ele-

ments representing unions of events. For example, 1 > m(X1 ∪X2) > 0 represents an
uncertain degree of belief about imprecise information between X1 and X2.

The BFpref model allows the user to express preferences based on a degree of belief.
These degrees are defined on each pair alternatives, and are interpreted as elementary
belief masses. The discernment frame of BFpref model is composed of four exclusive
singletons, representing respectively the relations “strict preference”, “strict inverse
preference”, “indifference” and “incomparability”. Formally, in BFpref, the discrimina-
tion framework is defined as follows: Ω = {ω�, ω≺, ω∼}.

The BFpref model is capable of expressing all three aspects of imperfection in pref-
erences, and it distinguishes ambiguity from incomparability. The “undecidable” case
is directly represented by a singleton, while missing information (“undecided” case) is
represented by a case of extreme imprecision - total ignorance, which is the union of
all possible singletons on the framework of discernment.

In preference aggregation

Contributions in preference aggregation is introduced in Chapter 6. A preference ag-
gregation strategy is proposed along with a novel distance over BBAs for decision
making. With the BFpref model, a preference aggregation strategy is proposed, based
on the Dempster combination rule and a minimum distance decision strategy. We
also proposed a strategy to avoid Condorcet’s paradox and an efficient Depth First
Search (DFS) method for constructing acyclic oriented graphs. Compared to a naive
algorithm, the proposed DFS method improves results on most graph structures.

During the decision stage of the preference aggregation process modeled by BFpref,
a flaw in the distances for evidential bodies is identified: all existing distances for
BBAs consider that the distances between singletons are identical, differences in the
similarity between singletons are never dealt with. Indeed, by measuring the similarity
between preference relationships, this problem is particularly important. For example,
the similarity between “difference” and “strict preference” is equivalent to the similarity
between “strict preference” and “reverse strict preference”. This result obtained with
all existing distances is counter-intuitive, as the first distance is expected to be less
than the second. As BBAs are in space of 2Ω, the interaction between focal elements
should also be considered. This property is called strongly structural.

To solve this problem, we analyzed the assumptions applied in the Jousselme dis-
tance, which is a strongly structural distance for BBAs, and removed an unwanted
assumption that the distances between the different singletons are equal. By extend-
ing the Jousselme distance, we proposed the Weighted singleton distance (WSD). The
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WSD distance takes into account the differences in similarities between the different
singletons, and is furthermore highly structural. In other words, the measure between
singletons’ unions also considers different similarities between singletons. We also ap-
plied this WSD distance in the decision making stage of the SUSHI dataset (A Survey of
Sushi Preferences in Japan). The comparison results show that decisions based on the
WSD are more reasonable and moderate than those based on the Jousselme distance.

In preference learning

Contributions in preference learning is introduced in Chapter 7, mainly consisting of a
strategy for imperfect preference reasoning and clustering, as well as an impossibility
theorem for clustering over evidential bodies.

Learning on evidential preferences, more precisely, the clustering of preferences from
the BFpref model, is also addressed in this thesis. Agents’ profiles are represented by
uncertain preferences via the BFpref model when several sources of conflicting prefer-
ences are taken into account. In our method, the estimation of BBAs of an identical
agent corresponds to the estimation of the conflict between the different sources of infor-
mation. More precisely, the dissimilarities between the different sources of an identical
agent are considered as a degree of ignorance of this agent, and the relations repre-
sented for each source are distributed over the corresponding elements of the BBAs.
The similarities between the agents are based on the sum of the Jousselme distance
over all pairs of objects studied, which is equivalent to the Kendall distance in the case
of definite preferences.

Concerning the classification phase, the k-centroid method is not applicable because
only the distances between couples are provided. Therefore, the independent algorithms
of the centroid computation are the only ones that can be applied in our case. In this
work, the Ek-NNclus (Evidential k-NN clustering) method is applied. Ek-NNclus is
a flexible clustering method also based on belief function theory. The result of the
clustering carried are evaluated by the silhouette score and Adjusted Rand Index (ARI)
in comparison with other metrics such as Kendall distance and Euclidean distance.

By comparing with a strategy applying an arithmetic mean of the two sources of
conflicting agent preferences, it is illustrated that the BFpref model returns a better
clustering result. Our method is therefore able to detect agent communities even in the
presence of uncertain preferences.

Clustering has so far only been performed on complete preferences. Indeed, the
distance for incomplete evidential orders based on the existing distances does not allow
the classification of incomplete data. This is caused by ignorance (partial or total)
expressed in the BBAs. In the frame of TBF, “ignorance” is considered as an extreme
case of imprecision. The imprecision is fully considered in conjunctive combination
rules in TBF, but not in distance measuring over BBAs. An obvious consequence is
that all “ignorance” are considered as identical. Thus, evidential objects with high
imprecision are usually grouped into one cluster. Such flaw in the distance seriously
jeopardizes the learning task.
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We launch a discussion on learning tasks over evidential bodies, started by the
relation between k-centroid and combination rules in TBF. An impossibility theorem
for k-centroid clustering is proposed and proved, stating that it is impossible to simul-
taneously satisfy the properties of “metric consistency, “surjectivity of centroid” and
“neutrality of ignorance”. A corresponding corollary is also induced, stating that no
conjunctive combination rule is suitable for k-centroid clustering methods over BBAs.

Perspectives
Other than the contributions introduced above, in thesis, we have also proposed a
preliminary idea of clustering evidential bodies by abandoning the property of "metric
consistency". We reckon that the similarity between evidential bodies should also be
measured by evidential values in another discernment frame of TBF. This idea is ex-
pected to be explored and verified, which stays in our short-term perspectives.
Furthermore, the decision making problem is limited in mono-criteria in this thesis.
Multi-criteria decision making (MCDM) is a more commonly encountered problem.
PROMETHEE is a famous MCDM method, and is also in frame of pairwise compari-
son among alternatives as in BFpref model. Thus, extending BFpref on PROMETHEE
for MCDM problems would be a promising perspective.
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Résumé

Les préférences jouent un rôle important dans notre vie quotidienne, et ce dans di-
verses domaines, notamment en psychologie, en économie, en sociologie et en philoso-
phie. L’étude des préférences a une longue histoire. Cela a été mis en lumière par
les chercheurs pendant des siècles, en particulier dans les systèmes de vote. De nos
jours, l’étude et la modélisation des préférences s’est orientée vers dee modèles des
préférences non conventionnels, et vers de nouvelles applications concernant la ges-
tion de ces dernières. La théorie des probabilités, des sous-ensembles flous, des en-
sembles aléatoires, etc., ont été introduites pour modéliser les préférences incertaines.
Aujourd’hui, de nombreux travaux de recherche sur les préférences portent sur des ap-
plications de tris dans les moteurs de recherche, de systèmes de recommandation, et
d’analyse de réseaux sociaux.

Dans cette thèse, nous passons en revue les méthodes de pointe sur la modélisation
des préférences, l’agrégation et l’apprentissage des préférences. Basé sur la théorie des
fonctions de croyance (TBF), nous proposons un modèle pour les préférences imparfaites
avec incertitude, imprécision, appelé modèle BFpref. Dans la TBF, un élément de
connaissance avec incertitude et imprécision est appelé évidentiel. Ainsi, les préférences
dans le modèle BFpref sont également appelées préférences évidentielles.

Dans le cadre du TBF, le modèle BFpref est également capable d’exprimer l’in-
complétude par une ignorance totale. Avec ce modèle, des stratégies pertinentes sont
proposées pour fusionner de multiples préférences probantes. En outre, une distance
sur les préférences imparfaites est introduite pour prendre en compte différemment les
quatre types de relations de préférence. Cette distance est appelée distance singleton
pondérée (Weighted Singleton Distance, WSD).

La classification non supervisée sur les préférences évidentielles avec le modèle BF-
pref est également étudiée en distinguant les préférences complètes et incomplètes. En
effet, tous les travaux existants en matière d’apprentissage sur les objets probants ne
sont pas théoriquement convaincants. Dans cette thèse, un théorème d’impossibilité de
clustering sur les corps évidentiels dans la théorie des fonctions de croyance est proposé
et prouvé.

La partie suivante donne un contenu plus détaillé du contexte et des principales
contributions de cette thèse.

XI
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Contexte
La thèse commence par une introduction des tâches d’agrégation et d’apprentissage sur
les préférences imparfaites.

Agrégation des préférences

La plupart des études classiques sur les préférences porte sur des problèmes d’agrégation
des préférences, ce qui est également appelé théorie du choix social. Dans ce processus,
plusieurs préférences sont agrégées en une seule, généralement considérée pour une
prise de décision collective. Dans cette thèse, nous nous concentrons uniquement sur le
problème de prise de décision monocritère, où chaque élément comparé est représenté
par un seul critère.

Apprentissage des préférences

Néanmoins, l’étude des préférences n’est pas limitée à la théorie du choix social. Avec
le développement en vogue de l’intelligence artificielle (IA), le raisonnement avec les
préférences est considéré comme une direction de recherche particulièrement promet-
teuse pour la communauté de l’IA. L’apprentissage de préférences s’agit principale-
ment d’induire des modèles de préférence prédictifs à partir de données empiriques.
Le processus d’induction de préférences prédictives est également appelé élicitation de
préférences.

Les techniques d’apprentissage des préférences sont très utilisées, des services de
moteur de recherche à la construction de systèmes de recommandation. La recherche
de groupes parmi les agents en fonction de leurs préférences est une étape fondamentale
de la détermination des préférences, également appelée clustering de préférences.

Nouveaux défis: imperfection des données de préférence des agents

Initié par le développement des technologies numériques, en particulier le boom d’Inter-
net, de plus en plus de possibilités pour collecter et exploiter les données de préférences
deviennent possibles. Un tel développement a entraîné une multitude de défis et
d’enjeux nouveaux en matière d’étude des préférences, tant au niveau théorique qu’au
niveau applicatif. Les problèmes incluent mais ne se limitent pas à la gestion de
l’imperfection des données de préférence et aux applications correspondantes.

Dans le cadre de cette thèse, l’imperfection des données issues des préférences com-
porte principalement trois aspects :

• Les préférences incertaines

• Les préférences imprécises

• Les préférences incomplètes

L’incertitude dans les préférences fait référence aux situations épistémiques sur la con-
naissance des informations de préférences où les relations de préférences ne peuvent pas
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être décrites par un avis solide et sûr. L’imprécision dans les préférences fait référence
aux cas dans lesquels de multiples relations de préférence sont possibles, générale-
ment causées par l’absence de connaissances ou l’implicite sur les informations rela-
tives aux préférences. Les imperfections sont généralement causées par les failles dans
l’acquisition des préférences, ou les sources des données, telles que l’opinion incertaine
des agents, les conflits entre plusieurs sources, et les informations implicites.

La théorie des fonctions de croyance est un cadre formel permettant de représenter
et de raisonner avec des informations incertaines et imprécises en élargissant à la fois
l’approche fondée sur l’appartenance à un ensemble et à la théorie des probabilités. Le
terme « crédibiliste » est utilisé dans la théorie de fonction de croyance pour se référer
à des informations contenant à la fois « l’imprécision » et « l’incertitude ».

L’incomplétude des préférences renvoie aux cas où la relation de préférence n’est
pas observée sur tous les éléments d’un espace de données, i.e. l’information sur les
préférences est partiellement et/ou complètement manquante.

Objectifs

Les objectifs de cette thèse sont de proposer une nouvelle modélisation des préférences
imparfaites et d’explorer les problèmes de gestion de ce type de préférences. Pour
traiter les problèmes d’incertitude et d’imprécision, nous nous sommes appuyé sur un
cadre théorique solide : la théorie des fonctions de croyance.

Le sujet de cette thèse concerne globalement trois aspects : la modélisation des
préférences imparfaites (avec la théorie des fonctions de croyance), la prise de décision
sur de telles préférences (issues de l’agrégation des préférences), et l’apprentissage non-
supervisé sur de telles préférences (clustering des préférences imparfaites).

Cette thèse est principalement structurée par une partie état-de-l’art et une partie
présentant les contributions. La partie sur l’état-de-l’art présente trois chapitres :

• Les concepts de base autour des préférences et la théorie des fonctions de croyance

• Les mesures de similarité sur les préférences et les fonctions de croyance

• La gestion des préférences, incluant l’agrégation des préférences et l’apprentissage
des préférences

Dans Chapitre 1, différents ordres, structures, et relations de préférences sont présentés
et comparés, suivi par une synthèse sur les modèles des préférences imparfaites, en
particulier le modèle des préférences floues, qui est le plus populaire. Concernant
la théorie des fonctions de croyance, les définitions de base ainsi que les règles de
combinaison et leurs conditions d’utilisation sont introduits.

Dans le deuxième chapitre, des mesures de similarité sur des préférences sont
d’abord introduites. Ces mesures sont divisées en deux catégories : les mesures sur
les relations de préférences par paire et celles sur les structures des préférences. La
première catégorie comporte les distances normées sur l’encodage des préférences et
les distances axiomatiques. Nous avons aussi comparé les différents axiomes accep-
tés pour chaque distance axiomatique et analysé leurs différences d’interprétation de
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l’incomparabilité. La seconde catégorie concerne les mesures entre deux structures de
préférence (ou ordres de préférence). Dans ce cas, la similarité est souvent mesurée par
des distances liées à la corrélation telle que la distance de Kendall, de Spearman ou de
Pearson. Quant à la théorie des fonctions de croyance, les mesures de similarité entre
les fonctions de masse sont introduites en trois catégories : les distances d’un point de
vue géométrique, la divergence d’un point de vue de distribution statistique et le conflit
d’un point de vue de support sur les évènements.

Chapitre 3 concerne principalement l’agrégation et l’apprentissage des préférences,
et surtout le clustering des préférences. Concernant l’agrégation des préférences, dif-
férentes méthodes classiques de votes sont présentées, suivie par des problématiques
de vote telle que le paradoxe de Condorcet et le théorème d’impossibilité d’Arrow. La
relation entre les mesures de similarité et l’agrégation de préférences est aussi passée
en revue. En effet, pour la majorité des règles d’agrégation, en particulier les règles de
consensus, le résultat d’agrégation est essentiellement une préférence la plus proche de
toutes les préférences à agréger, i.e. c’est un processus de minimisation de la somme des
distances de la préférence agrégée (de groupe) aux préférences des agents considérées.
Les différences entre les différentes méthodes de vote ou d’agrégation de préférences
correspondent essentiellement à des différences au niveau de la distance appliquée.

Nous avons également examiné les méthodes d’agrégation des préférences floues,
dont la majorité est fondée sur les opérateurs de moyenne pondérée (Operator of
weighted average, OWA en anglais). Par contre, ce modèle est incapable d’exprimer
l’imprécision dans les préférences.

L’apprentissage des préférences est un sous-domaine de l’intelligence artificielle.
Dans cette thèse, nous nous focalisons principalement sur la clustering des préférences
en considérant essentiellement les problèmes liés à l’incomplétude des données, car il
s’agit d’une problématique souvent rencontrée dans le contexte les différentes applica-
tions utilisant ou manipulant des préférences réelles (i.e. non simulées). Nous avons
étudié les méthodes de clustering les plus utilisées pour les données manquantes et les
avons catégorisé en trois groupes :

• Défausser des données manquantes

• Déduction des données manquantes

• Modéliser les données manquantes en modélisant les imperfections.

Quant à l’apprentissage des préférences, deux objectifs sont considérés dans le cadre
de cette thèse :

• classifier les agents en différents groupes en se basant sur leurs préférences indi-
viduelles, et

• expliciter les préférences de groupes. Le premier objectif est souvent vu comme
un problème proche de la détection des communautés, et le second comme une
problématique proche des systèmes de recommandation.
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Contributions
Les contributions de cette thèse sont composées de trois aspects : la modélisation,
l’agrégation et l’apprentissage des données de préférences imparfaites, respectivement
introduits dans les chapitres 5, 6 et 7.

En modelisation des préférences

Premièrement, nous avons souligné l’ambiguïté sur les définitions de la relation de
préférence « incomparabilité » et « l’incomplétude ». La plupart des travaux inter-
prètent « incomparabilité » comme une information manquante ou « non décidé ».
D’autres travaux interprètent « incomparabilité » comme une relation binaire spéci-
fique, différente des « préférences strictes » et « d’indifférence », ou du cas « non décisif
», qui respecte également la définition originale de « l’incomparabilité ».

Dans ce travail, nous considérons que le caractère incomplet des préférences est
causé par les informations manquantes et nous avons clarifié cette ambiguïté dans
un nouveau modèle de préférences fondées sur la théorie des fonctions de croyance,
nommé modèle BFpref. Selons la théorie des fonctions de croyance, l’incertitude et
l’imprécision sont représentées par les fonctions de masse m() sous une cadre de dis-
cernement prédéfinie. En définissant un cadre de discernement sur les évènements
possibles:

Ω = {ω1, ω2, . . . , ωk},

les degrés d’incertitude et d’imprécision sont représenté par la fonction de masse m :
2Ω ← [0, 1] tel que ∑

X⊆Ω
m(X) = 1

où l’imprécision est représenté par les valeur sur les non-singleton éléments.
Le modèle BFpref est un modèle de préférences par paires dont le cadre de dis-

cernement est composé de quatre singletons, représentant respectivement les termes «
préférence stricte », « préférence stricte inverse », « indifférence » et « incomparabilité ».
Formellement, dans BFpref, le cadre de discernement:

Ω = ω�, ω≺, ω≺, ω∼.

Le modèle BFpref est capable d’exprimer les trois aspects de l’imperfection dans les
préférences, et il distingue l’ambiguïté de la définition du terme « incomparabilité ».
Le cas « non décisif » est directement représenté par un singleton alors que les informa-
tions manquantes (cas non décidé) sont représentées par un cas d’extrême imprécision
- l’ignorance totale, qui est l’union de tous les singletons possibles sur le cadre du
discernement.

En agrégation des préférences

À l’aide du modèle BFpref, nous avons proposé une stratégie d’agrégation des préférences
en matière de preuve fondée sur la règle de combinaison de Dempster et une stratégie de
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décision de distance minimale. Nous avons également proposé une stratégie pour éviter
le paradoxe de Condorcet ainsi qu’une méthode de parcours en profondeur (Depth
First Search DFS en anglais) efficace pour la construction de graphes orientés acy-
cliques. Comparant avec l’algorithme naïve, i.e. itérativement détecter circles et les
éliminer, la DFS méthode performe mieux sur certain structures des graphes.

Lors de l’étape de décision de l’agrégation des préférences sur le modèle BFpref,
nous avons signalé une faille dans les distances pour les objets évidentiels. Nous accep-
tons la propriété de « structurel fortement » car elles expliquent l’interaction entre les
éléments focaux de deux fonctions de masse comparées. Cependant, aucune distance
n’est capable de distinguer des singletons avec des poids différents. C’est défaut est
obvious en mesurant la similarité entre les relations de préférence. Par exemple, avec
ce défaut, la similarité entre « indifférence » et « préférence stricte » est équivalent que
cela entre « préférence stricte » et « préférence stricte inversé ». Ce résultat est contre
toute les distances pour les relations de préférence et les sens communs. (la première
doit être inférieur que la deuxième.)

Pour résoudre ce problème, nous avons analysé les hypothèses sur lesquelles repose
la distance de Jousselme, qui s’agit une distance populaire pour les fonctions de masse,
et en avons supprimé une hypothèse non désirée, qui considère que les distances entre
les différents singletons sont égales. En étendant la distance de Jousselme, nous avons
proposé la distance WSD (Weighted singleton distance en anglais). La distance WSD
tient compte des différences de similarités entre les différents singletons, et elle est de
plus fortement structuré. Autrement dit, la mesure entre les unions des singletons
considère aussi des similarités différentes entre les singletons. Nous avons également
appliqué cette distance WSD dans l’étape de prise de décision sur le jeu de données
SUSHI (Une enquête sur les préférences de sushi en Japon). Les résultats de la com-
paraison montrent que les décisions fondées sur le WSD sont plus raisonnables que
celles fondées sur la distance de Jousselme.

En apprentissage des préférences

L’apprentissage sur les préférences évidentielle, plus précisément, le clustering des
préférences issues du modèle BFpref, est aussi abordé dans le cadre de cette thèse.
Nous représentons les profils des agents par des préférences incertaines via le modèle
BFpref lorsque plusieurs sources de préférences conflictuelles sont prises en compte.
Dans notre méthode, l’estimation de fonctions de masses d’un agent identique cor-
respond à l’estimation du conflit entre les différentes sources d’informations. Plus
précisément, les dissimilarités entre les différentes sources d’un agent identique sont
considérées comme un degré d’ignorance de cet agent, et les relations représentées pour
chaque source sont distribuées sur les éléments correspondants des fonctions de masse.
Les similarités entre les agents sont fondées sur la somme de la distance de Jousselme
sur toutes les couples d’objets étudiés, ce qui équivaut à la distance de Kendall dans le
cas des préférences certaines.

Concernant la phase de classification, la méthode de k-means ne pourra pas être ap-
pliquée car seulement les distances entre couples sont fournies, et de ce fait le calcul du
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centroïde devient un problème NP-difficile. Par conséquent, les algorithmes indépen-
dants du calcul de « centroïdes » sont les seuls à pouvoir être appliqués dans notre cas.
Dans ce travail, la méthode Ek-NNclus (Evidential k-NN clustering) est appliquée. Ek-
NNclus s’agit d’une méthode souple de clustering aussi basé sur théorie de fonction
de croyance. L’évaluation du résultat du clustering réalisé est fondée sur le score de
silhouette, en comparaison avec d’autres distances telles que Kendall et Euclidean.

En comparant avec une stratégie appliquant moyenne arithmétique des deux sources
de préférences conflictuelles des agents, il est illustré que le modèle BFpref renvoie un
meilleur résultat de clustering en termes de score de silhouette. Notre méthode est
donc capable de détecter les communautés des agents même en présence de préférences
incertaines.

Le clustering est effectuée jusqu’alors uniquement sur des préférences complètes.
En effet, la distance pour les ordres évidentielles incomplets fondée sur la distance de
Jousselme ne permet pas la classification de données incomplètes. Cela est causé par
l’ignorance (partielle ou totale) exprimée dans les fonctions de masse. Prenons un ex-
emple extrême, les valeurs manquantes représentées par l’ignorance totale. Mesurées
par la distance de Jousselme, l’ignorance est considérée comme un cas d’opinion iden-
tique d’un agent à un autre. Donc les agents ayant majoritairement des préférences
manquantes seront classifiés dans un même groupe. Ce problème existe avec toutes
les mesures de distance et divergences appliquées dans la théorie des fonctions de croy-
ance. Les valeurs manquantes sont estimées par des mesures de conflits, qui considèrent
l’ignorance totale comme un élément neutre, i.e. le conflit entre l’ignorance totale et
toutes les autres fonctions de masse est nul. Cette propriété a pour conséquence la con-
vergence de toutes les classes vers l’ignorance. Ce qui fausse le processus de clustering.

EPartant de ce constat, nous avons proposé et prouvé un théorème d’impossibilité
actant qu’il n’existe pas de règles de combinaison pertinente pour le calcul du centroïde
parmi les objets évidentiels, qui respectent les propriétés de « cohérence de metric », «
surjectivité de centroïde » et de « neutralité de l’ignorance ». Une conséquence de ce
théorème est qu’il n’y pas d’algorithmes de classification non-supervisée fondés sur le
principe du k-means adaptés aux fonctions de masse, i.e. tenant compte des impréci-
sions des objets. Par contre, nous avons proposé une idée préliminaire de clustering en
abandonnant la propriété de « cohérence métrique » et en mesurant la similarité entre
les fonctions de masse par les valeurs évidentiel. Ce travail à approfondir est laissé en
perspective.

La perspective la plus proche est d’appliquer la notion d’ignorance dans la clas-
sification sur des données incomplètes et comparer avec des méthodes d’état-de-l’art.
Le problématique de mesurer la similarité entre les fonctions de masse mentionnée au-
paravant doit être d’abord réglé. Dans nos plans, nous allons mesurer les similarités
entre les objets évidentiels aussi par les fonctions de masse dans une nouvelle cadre de
discernement, pour qu’elle puisse mesurer les différence dans états d’objets ainsi que
dans leurs niveau d’incertitude et d’imprécision. Dans ce travail, l’estimation de valeur
des fonctions de masse de mesure dans le nouvelle cadre de discernement. Les règles à
respecter dans ce processus est aussi une aspect importante.



XVIII Résumé

Perspectives
A part des contributions présentées ci-dessus, nous avons également proposé en thèse
une idée préliminaire de regroupement des organes de preuve en abandonnant la pro-
priété de « cohérence métrique ». Nous estimons que la similarité entre les organismes
de preuve devrait également être mesurée par les valeurs de preuve dans un autre cadre
de discernement du TBF. Cette idée devrait être explorée et vérifiée, ce qui reste dans
nos perspectives à court terme.

De plus, le problème de la prise de décision est limité en mono-critère dans cette
thèse. La prise de décision multicritères (MCDM) est un problème plus fréquemment
rencontré. PROMETHEE est une célèbre méthode MCDM, et est également dans le
cadre de la comparaison par paires entre les alternatives comme dans le modèle BFpref.
Ainsi, l’extension de la BFpref sur PROMETHEE pour les problèmes MCDM serait
une perspective prometteuse.
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Chapter 1

Introduction

“To be, or not to be, that is the
question.”

— William Shakespeare, Hamlet

In Shakespeare’s play Hamlet, the prince Hamlet faces two options: “to be, or not
to be”. His selection between the two options is a simple expression of his preference.
His mechanism of analyzing the benefits and loss in taking the choice is studied in the
decision making theory.
From the selection between objects, more information other than preference opinion on
objects to be selected may also be potentially implied. Here is an example in presidency
election. In the USA presidency election in 2016, in addition to the result that Donald
Trump was elected the 45th U.S. president, there are also research [FSW+17] showing
that the choice (which can be regarded as a sort of preference) of voters may correlate
with their class, race, gender or other elements. The preferences of a person may relate
to his/her potential properties, such as characteristics, education back ground, commu-
nities, hobbies, etc. Moreover, not only the preference itself, the certain of preference
may also reflect such third-part information. In psychology, the uncertainty of choice
is used in the determination of personality types, such as the DiSC® personality test
applications [Sug09].
All these examples fall on the management of preference information. In this the-
sis, we study the modeling and management of imperfect preference information, with
uncertainty, imprecision and incompleteness.

1.1 Brief overview on preferences
Preferences play an important role in the activities of human beings, especially in psy-
chology, economics, sociology and philosophy. For instance, in democratic politics, del-
egates are elected by voting and such systems are essentially procedures of aggregation
of preferences. In economics, preference relation is usually used for the comparison
between alternatives, applied in decision making procedure. In sports matches, the
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ranking result of athletes is a format of preferences. In computer science and technol-
ogy, rankings of objects, such as searching results, are also types of preferences.

The study on preference has a long history. It has been under the high light of
researchers for centuries , especially in voting systems. Here we list some historic time-
stamps of some important initiative research on preferences and more details will be
discussed in Chapter II. Early to medieval period in 1299, Ramon Llull, considered as
the earliest founding father of voting theory and social choice theory, invented the voting
method named “Ars generalis” (meaning general method), also known as “Copeland’s
method” based on binary combination of simple alternatives [Col13]. In 1435, Nicholas
of Cusa is believed to be the first person inventing Borda count method (named after the
French mathematician Jean-Charles de Borda) for preference aggregation [HP08]. In
18th century, Marquis de Condorcet’s studied the cyclic cases in preference aggregation,
namely Condorcet’s Paradox [dCmdC85]. In 1951, Nobel laureate Kenneth Arrow
found an impossibility theorem, namely Arrow’s impossibility theorem, pointing a vital
problematic in the study of preferences.

Figure 1.1 – Important study on preference in history.

Nowadays, the study on the preference has pivoted to the model of unconventional
preferences and novel applications on preference management. Fuzzy set theory [Zad65]
has been introduced to model the uncertain preference and many methods on multi-
criteria decision making have been proposed such as AHP (Analytic Hierarchy Process)
by Saaty in 1970s [Saa02], Electre (ELimination Et Choix Traduisant la REalité) by
Roy in 1968 [Roy68], PROMETHEE by Brans and Vincke in 1985 [BV85] and other
methods. Today, many research works about preference focus on the application of
recommendation systems. Netflix Prize [BL+07], a well awarded competition for rec-
ommendation systems, has set fire on the blossom of the applications on preferences.

Before the introduction of more detailed technique issues, we unify the terminology
of this thesis first. In a simple piece of preference information, the compared objects
are named as “alternatives”. 1 The entity who express the preferences are named as
“agent”2.

1The term “items” is usually applied in recommendation systems and “candidate” in electoral sys-
tems.

2The term “user” or “individual” is usually applied in recommendation systems and “voter” in
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The preference management mainly consists of two aspects: preference aggregation,
which is also a sub-domain of decision making theory, and preference learning, which
is a sub-domain of machine learning.

1.1.1 Preference aggregation

Most of the conventional study on preference were focused on problems about preference
aggregation methods. which is also named social choice theory. In this process, multiple
preferences are aggregated into one, usually applied for decision making. Here is a
simple example of preference aggregation with a problem of paradox:

Example 1. Which activity to practice?

Alice, Bob, and Charlie decide to organize an activity for their Saturday
afternoon. They vote among three options: practicing Archery (a), playing
Basketball (b), and watching a movie in Cinema (c). By a � b denote the
proposition that outcom a is preferred to outcome b. The opinion of each
one is given as:

Alice : a � b � c
Bob : b � c � a

Charlie : c � a � b
(1.1)

One straightforward approach would be to pick the activity with the largest number
of votes (namely plurality method). However, by applying such method, we encounter
a cyclic condition, making it impossible to make the final decision. This paradox is
named as Condorcet’s paradox.

To conclude, social choice theory deals with the problems on the aggregation of pref-
erences and decision making. In this thesis, we focus only on mono-criterion decision
making problem, where every compared item is represented by only one single crite-
rion. Concerning this topic, in Chapter 4, state-of-the-art methods of mono-criterion
decision making are introduced. Besides, aggregation on preferences with uncertainty
is discussed in Chapters 5 and 6.

1.1.2 Preference learning

Nevertheless, the study on preferences is not limited to social choice theory. With
the trendy development of artificial intelligence (AI), reasoning with preference is con-
sidered as a particularly promising research direction for the AI community [Doy04].
Preference learning is a relatively large topic. Roughly speaking, it is about induc-
ing predictive preference models from empirical data. Some definitions on preference

electoral systems.
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learning are larger, including also the application of preferences in machine learning
algorithms [FH11]. In this thesis, we focus mainly on the former one. Here is a simple
example on preference learning.

Example 2. Chopsticks or fork and knife

Table manner and habits are different between China and France. In China,
people prefer chopsticks to fork and knife as eating utensil while in France,
fork and knife are always preferred. David is a server in a restaurant offering
both kinds of utensils. By learning this knowledge on eating utensil pref-
erence, when a Chinese client comes, David elicit that chopsticks are more
probably preferred and he would prepare chopsticks as default utensil.

Similar to this example, preference learning techniques are widely used from search-
ing engine services to recommendation systems building. To find groups among agents
upon their preferences is a fundamental step in preference elicitation, also named as
preference clustering. More discussion on preference learning is given in Chapter 4.
Besides, in Chapter 7, we study more cases of clustering on unconventional preferences.

In the two examples given above, preferences are expressed in crystal clear ways,
meaning that all preference relations between alternatives are certain. However, such
conditions are no longer enough to solve problems encountered nowadays, coming up
with new challenges.

1.2 New challenges: Imperfectness of agent preference
data

Initiated by the development of digital technology, especially the boom of the Internet,
more possibilities of collecting and mining the preference data become possible. Such
development has proposed abundant of novel challenges and issues on the study of
preferences, varying from theoretic to application levels. The issues include but are not
limited to the imperfectness of the preference data and the corresponding applications.

In the scope of this thesis, the imperfectness on preference data consists of mainly
three aspects:

1. Preference with uncertainty;

2. Preference with imprecision;

3. Incomplete preference.

The uncertainty in preferences refers to epistemic situations on the knowledge of pref-
erence information where the preference relations can not be exactly described. The
imprecision in preferences refers to the cases where multiple preference relations are
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possible, usually caused by absence of knowledge or implicity on preference informa-
tion. The incompleteness in preference refer to the cases that preference relation are
not observed on all elements in a alternative space.
In this thesis, the term “evidential” is used, referring to circumstances with both “im-
precision” and “uncertainty”. For better understanding, some corresponding examples
are given as follows.

1.2.1 Preferences with uncertainty

The uncertainty in preferences can be interpreted in two ways: uncertainty expressed
directly from agents , which is in terms of cognition, or uncertainty in the preference
data, which is in terms of statistic. Here are two examples respectively demonstrate
these two ways of interpretation.
Example 3. Ramboutan and apple:
Uncertain preference caused by lack of knowledge.

Alice is asked to express her preference between ramboutan and apple.
Alice has never tasted ramboutan but she infers the taste of ramboutan
by the similarity in term of shape between ramboutan and litchi. As Alice
knows she prefers litchi to apple, she gives an uncertain opinion that she
prefers ramboutan to apple.

Figure 1.2 – Photo of litchis and ramboutans.
The three pieces of fruits on the left with bold peels are litchis. The other three with long hair

are ramboutans.

Example 4. SUSHI preference data set: conflicting sources of preference data

In the SUSHI preference data set [Kam03a], every respondent is asked to
express his/her preference over different sushis by both ranking and scor-
ing. Between two types of sushi Maguro and Ebi, Bob expresses Maguro
outranks Ebi in ranking but gives Maguro 3 points and Ebi 4 points,
indicating that Maguro ≺ Ebi. In this way, Bob’s preference between
Maguro and Ebi is uncertain

The reasoning methods on uncertain knowledge are various. In Section 2.2 of the
Chapter 2, several popular reasoning methods on uncertain preference are introduced.
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(a) Sushi Ebi (b) Sushi Maguro

Figure 1.3 – Two types of sushi Ebi and Maguro.

1.2.2 Preferences with imprecision

The imprecision in preference implies that more than one preference relation may exist
between a pair of alternatives under comparison. Here we give examples of imprecise
preference inferred from natural language.

Example 5. Imprecision in preferences

The sentence “A Peugeot 208 car is not worse than a Renault Clio” implies
that Peugeot is preferred or indifferent to Renault. The sentence “Mar-
vel Comics and DC Comics are not in the same class” indicates only that
Marvel and DC are not indifferent, but both Marvel is preferred to DC
or DC is preferred to Marvel are possible.

1.2.3 Incomplete preferences

Sometimes, agents may not give their preference opinion on the whole set of alternatives.
The incompleteness in preferences is caused by missing information. An example on
real world data is given here:

Example 6. Missing information in Sushi preference dataset

Again, in Sushi preference dataset, every respondent is asked to give their
preferences on 10 random sushis out of 100. Thus, the missing information
on the left 90 sushis causes incompleteness in preference.

However, some works consider that “incompleteness” is caused by the “incompara-
bility” relation [RS93]. Such controversy is also due to the different interpretation on
“incomparability”. Some works regard “incomparability” as the absence of knowledge.
The clarification on these notions are also in the scope of this thesis with an unified
framework proposed, based on the theory of belief functions. More detailed discussions
are given in Chapters 3, 5 and 6.

Targeted on these issues on the imperfectness of preference information, the objec-
tives of this thesis are as follows.
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Figure 1.4 – Research topic of this thesis.

1.3 Objectives and contributions

The goal of this thesis is to improve preference models for imperfect preference and ex-
plore management problems on such preferences. To deal with problems of uncertainty
and imprecision, we applied the theory of belief functions.

The theory of belief functions is a formal framework for representing and reasoning
with uncertain and imprecise information by extending both the set-membership ap-
proach and probability theory. More detailed introduction is given in Chapter 2. The
research topics of this thesis are concluded by Figure 1.4. The topics mainly combines
the modeling on imperfect preference data (with the theory of belief functions), decision
making from imperfect data (preference aggregation) and data mining on preference
(clustering on preference data)

A global view of problematic in this thesis is illustrated in Figure 1.5. The blocks
in grey marks the contributions, which mainly concern the domains of modeling on
imperfect preferences as well as management (including aggregation and clustering) of
such preferences,.

Agents may express their preferences with imperfectness, caused by conflicting
sources, uncertainty or the ambiguity of expression. Several contributions are made
to the field of imperfect preference modeling and management. In modeling part, we
propose the BFpref model, an evidential model for imperfect preference based on the
theory of belief functions. Based on BFpref model, we studied the management prob-
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Figure 1.5 – Problems and processes concerned in the thesis

lems from aggregation to clustering of imperfect preferences.

Modeling of imperfect preference

We firstly clarified some ambiguity at the definition level on different types of pref-
erence relation, especially the definition of “incomparability”. Besides, raw preference
data may be imperfect from agents level: uncertain, conflicting, and incomplete pref-
erences are possible in agents’ expression. To model such preferences, we propose a
general framework expressing the “uncertainty”, “imprecision” and “incompleteness”
in preference with the help of the theory of belief functions (TBF), named as BFpref
model. Basic Belief Assignment (BBA) is used to express the uncertainty and impre-
cision level on preference relations. More introduction on TBF is given in Section 2.3
of Chapter 2.

Aggregation problems on imperfect preferences

This contribution mainly consists of two aspects. Firstly, we proposed and compared
different aggregation strategies, based on different combination rules, and decision-
making methods for BFpref model, as the theory of belief functions (TBF) has been
proved to be a practical mathematical tool for data fusion. However, we find that the
state-of-the-art distance measures in TBF are not adaptable for decision in preference
relations. An important one is that all singletons are equally measured, making the
distance between “indifference” and “strict preference” equal to the distance between
two “strict preferences inverse”. To solve this problem, a new metric named Weighted
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Singleton Distance (WSD) is proposed, enabling to measure the similarity between
two BBAs in the same framework with different weights on singletons. In the solution
of avoidance of Condorcet’s paradox (introduced in Section 4.2 of Chapter 4), we also
proposed a faster algorithm for Directed Acyclic Graph (DAG) building based on Depth
First Search (DFS), which improves the efficiency of cycle detection and elimination in
evidential preference structures.

Clustering on evidential preferences

In this part, BFpref as well as different distances are applied in the application of com-
munity detection. Community detection is a popular topic in network science field.
In social network analysis, preference is often applied as an attribute for individuals’
representation. In some cases, uncertain and imprecise preferences may appear. More-
over, conflicting preferences can arise from multiple sources. Based on BFpref model,
the clustering quality in case of perfect preferences as well as imperfect ones based on
weak orders (orders that are complete, reflexive and transitive) are studied. Limited
by several properties, the clustering process is only executed on complete preference
orders. Some necessary properties for incomplete preference orders are also discussed
and are in the scope of our future work.

Table 1.1 shows the topics on evidential preference management, including pref-
erence aggregation and clustering. The preferences are categorized into two parts:
complete and incomplete. In this thesis, only aggregation on both categories of pref-
erences are studied. The clustering on preference is limited on complete preferences
while only discussion is given for incomplete preferences.

Table 1.1 – Preference management concerned in this thesis

group decision making clustering
complete

√ √

incomplete
√

discussion

1.4 Structure of the thesis

This thesis is organized in three parts, including eight chapters. In addition to the first
chapter made up of the introduction, Part II and III respectively consist of four and
three chapters.

In Part II, the state of the art methods on preference modeling, preference aggre-
gation as well as preference learning on mono-criterion preferences are presented.
In Chapter 2, the basic models of preferences are firstly introduced. A brief introduc-
tion on the theory of belief functions is also given.
In Chapter 3, different similarity measure methods are introduced. These measures
includes distances for preference relations, distances and correlations for preferences
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structures (orders) as well as distance, conflict and divergence measure methods in
TBF.
Chapter 4 concerns the management of preferences, including preference aggregation
and preference learning. In the first aspect, different preference aggregation methods as
well as problematic issues are introduced. Besides, the distances play important roles
in both aggregation and preference learning. Thus, distances used in preference and in
the theory of belief functions as well as preference learning are also introduced in this
chapter. In the second aspect, a brief introduction on preference learning is presented,
along with applications on preference clustering. Such techniques are often applied in
preference based community detection and recommendation systems.

The contributions of the thesis are introduced in Part III.
In Chapter 5, some ambiguities in the definitions of preference relations, especially the
“incomparability”, are discussed and clarified. Based on this clarification, an evidential
preference model based on the theory of belief functions (namely BFpref) is proposed,
enabling the expression of preferences with uncertainty and imprecision. Based on BF-
pref model, an aggregation method for evidential preferences is proposed and compared
with other conventional procedures. A Condorcet’s paradox avoidance method is also
introduced, with a faster algorithm for DAG building proposed.
In Chapter 6, we focus on a flaw in the similarity measure, introduced above, on BBAs
and proposed a new metric named WSD with the issue solved. WSD is applied in the
aggregation of imperfect preferences and the comparison with other methods show that
WSD is more reasonable.
In Chapter 7, the clustering applications on preferences expressed by BFpref model is
studied, with a new evidential preference reasoning method proposed. Some compar-
isons between different metrics are also illustrated.

Finally, the last chapter gives conclusions and perspectives on our work.
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Chapter 2

Basic concepts

To simplify the expression of the work in this thesis, we introduce basic concepts and
models around the preference paradigm in this chapter. Besides, a brief introduction on
the theory of belief functions is given as well. The chapter is structured as follows. Con-
cepts of preference modeling are introduced in Section 2.1, followed by an introduction
of different modeling on unconventional preferences in Section 2.2. An introduction on
the theory of belief functions (TBF) in Section 2.3, with basic definitions and several
commonly used combination rules given.

2.1 Preference Modeling
The representation of preferences has been studied in various domains such as decision
theory [ÖTV05], artificial intelligence [WD91], economics and sociology [Arr59]. Pref-
erences are essential to efficiently express user’s needs or wishes in decision support
systems such as recommendation systems and other preference-aware interactive sys-
tems that need to elicit and satisfy user preferences. However, preference modeling and
preference elicitation are not easy tasks, because human beings tend to express their
opinions in natural language rather than in the form of preference relations. Prefer-
ences are also widely used in collective decision making and social choice theory, where
the group’s choice is made by aggregating individual preferences.

2.1.1 Binary relations

The preference are mostly modeled in forms of binary relation between two alternatives.

Definition 2.1.1. Binary Relation: A binary relation R on a set A is a subset of
the cartesian product A×A.

In preferences, A denotes the set of alternatives and R the preference relation. The
product of binary relations can be regarded as transitive between multiple binary rela-
tions in a sequence, defined by the following definition.

17
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Definition 2.1.2. Product of binary relations: Given two binary relations R1 and
R2, three alternatives a1, a2,∈ A: a1R1 ·R2a2 ⇔ ∃ai ∈ A : a1R1ai and aiR2a2

2.1.2 Properties of binary relations

Before introducing different preference structures, we collectively cite different possible
properties for a binary relation.

A relation R is called:

reflexive, if aRa,∀a ∈ A
irreflexive, if a¬Ra,∀a ∈ A
symmetric, if aRb→ bRa,∀a, b ∈ A
antisymmetric, if (aRb, bRa)→ a = b,∀a, b ∈ A
complete, if (aRb or bRa), ∀a 6= b ∈ A
strongly complete, if (aRb or bRa), ∀a, b ∈ A
transitive, if (aRb, bRc)→ aRc,∀a, b, c ∈ A
negatively transitive, if a¬Rb, b¬Rc→ a¬Rc,∀a, b, c ∈ A
semi-transitive, if (aRb, bRc)→ (aRd or dRc),∀a, b, c, d ∈ A
Ferrers relation, if (aRb, cRd)→ (aRd or cRb),∀a, b, c, d ∈ A

Several preference relations are defined depending on the properties they satisfy, in-
troduced as follows.

2.1.3 Preference relations

Based on the definition of a binary relation, between any couple of alternatives ai, aj
(without order), only 4 relations possibly exist {�,�,≈,∼}:

• �: Strict preference. ai � aj states that “ai is preferred to aj” Between ai, aj
both ai � aj and aj � ai are possible. For ease of readability, we use ai ≺ aj
instead of aj � ai in the following parts

• ≈: Indifference. ai ≈ aj states that “ai is indifferent to aj”

• �: Weak preference. a � b states that “ai is preferred or indifferent to aj”

• ∼: Incomparability. ai ∼ aj states that “ai is incomparable to aj”
Weak preference is the union of strict preference and indifference. Pref-

erences on a set of alternatives are usually represented by a preference structure,
defined as follows.
Definition 2.1.3. Preference structure: A preference structure on A is a reflex-
ive binary relation R on A. As the complete property is implied by the existence of
the incomparability relation, we categorize different preference structures by incompa-
rability. i.e. structures without incomparability are complete while structures with
incomparability are considered as incomplete.
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These relations can be defined on binary relation R as:

ai � aj ⇔ aiRaj and aj¬Rai
ai ≈ aj ⇔ aiRaj and ajRai

With the definitions of 〈�〉 and 〈≈〉, we have two other relations:

ai � aj ⇔ ai � aj or ai ≈ aj
ai ∼ aj ⇔ ai¬ � aj and ai¬ ≺ aj and ai¬ ≈ aj

The “weak preference” is the union of strict preference and indifference. Thus, between
two alternatives ai and aj , the four relations {�,≺,≈,∼} are exclusive and exhaustive1.
We propose the illustration given in Figure 2.1. In this figure, the round on the left
represent the set of relation aiRaj and the round on the right the set of relation ajRai.
The overlapped part, showing the intersection of the two sets, represent the set of
relation ai ≈ aj . According to the definition, the incomparability relation ai ∼ aj is
the negation of all the three relations above, thus represented by masked part in orange.

Figure 2.1 – Venn diagram of preference relations

From the definitions above, the following properties are guaranteed:

• 〈�〉 is transitive and anti-symmetric;

• 〈≈〉 is transitive, symmetric and reflexive

With the relations “Strict preference”,“Indifference” and “Incomparability”, and R
a binary relation on the alternative set A, we can define different preference orders:

Definition 2.1.4. Total order: R is a total order if and only if R ∈ {�,≺}

A total order is also called “linear” order.

Definition 2.1.5. Weak order: R is a weak order if and only if R ∈ {�,≺,≈}
1As ai � aj is equivalent to aj ≺ ai, to avoid repetitive comparisons between two alternatives, we

assume that i < j in this article.
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Definition 2.1.6. Partial order: R is a partial order if and only if R ∈ {�,≺,∼}

In many works, weak orders are also referred to as partial rankings. In our
work, we accept the terms “weak order” and “partial order”.

Definition 2.1.7. Quasi (pre)order: R is a quasi-(pre)order if and only if
R ∈ {�,≺,≈,∼}

Examples

For better understanding, we give some examples from real life of each type of orders.

Example 7. Total order: Sprint race

In a sprint race in track and field competitions, final ranking of competitors
is a total order.

Example 8. Weak order: Exam for students

In an exam, if we rank all students by their notes, this ranking is a weak
order. Indifference relations are caused by several students having same
notes.

The example on partial order can be ambiguous, caused by the definition of “incom-
parability”. Different circumstances of “incomparability” may be related to different
interpretations. As this is still an open issue, we give the corresponding example in the
contribution part in Chapter 5.

To distinguish conventional preference and in-conventional ones introduced later,
we use the term “crisp” and “soft”. For crisp preference, every relation is binary.
For soft preference, uncertainty may exist. Thus binary representation is no longer
enough. Besides, imperfectness such as imprecision and ignorance may also exist.
In next section, we introduce different theories for soft preference modeling.

2.2 Uncertain preferences
Almost all soft methods can be applied in uncertain preference modeling, such as prob-
ability theory, fuzzy set theory, rough set theory, etc. In this section, we introduce
several classical models for soft preference modeling.

2.2.1 Fuzzy preference

Confronting preferences with imprecision, the theory of fuzzy set [Zad65] has always
been a powerful tool. The most accepted model was firstly proposed by Blin [Bli74],
and then developed by others on different applications, notably in group decision mak-
ing [BSS78, Tan84].
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Fuzzy preference modeling is based on fuzzy membership. We borrow the definitions
in [Bli74]. A fuzzy binary relation on an alternative set A is determined by a fuzzy set
on the product set A×A, that is, by a membership function (MF) µR : A×A → [0, 1]
over the set A×A. Considering the case where A is finite, A = {a1, . . . , aN}, we can
define an N ×N matrix R whose (i, j) element rij is given by:

rij = µR(ai, aj), i, j = 1, . . . , N (2.1)

from the membership function µR. Conversely an n× n matrix with elements in [0, 1]
defines a fuzzy binary relation on A. Thus, we have 0 6 rij 6 1.
When R is a preference relation, the element rij represents the degree of preference of
alternative ai to alternative aj . There are two ways of interpretation on the values of rij :
One is that rij > 0.5 represents an uncertain preference of ai over aj while ai is definite
(meaning without uncertainty) preferred to aj if rij = 1. The other interpretation is
that rij > 0.5 represents a preference of ai to aj with some intensity level, while rij = 1
represents the highest intensity level.

Most of works on fuzzy preferences do not distinguish the concepts of “imprecision”
and “intensity”. They believe that the two interpretations are rather homogeneous
because a certain opinion of “prefer” often corresponds to an intense preference.

In fuzzy set theory, some assumptions are accepted.

• R is reciprocal. It can be additive:

rij + rji = 1, (2.2)

or multiplicative [HVCHA07, Xu15]:

rij · rji = 1 (2.3)

• Intensity is transitive: if xi is preferred to xj and xj is preferred to xk, then xi
should be preferred to xk with at least the same intensity. Formally:

rij > 0.5, rjk > 0.5
⇒ rik > min(rij , rjk),∀i, j, k ∈ 1, . . . , N (2.4)

This type of transitivity is also called moderate stochastic transitivity in the
probabilistic choice theory [Luc12].

Some extension versions of fuzzy preferences are also proposed. For example, the
authors of [Xu07] introduced intuitionistic fuzzy preference relations (IFPR) based on
intuitionistic fuzzy set [Ata99] by introducing both membership function and non-
membership function. Traditionally, fuzzy preference models are used in the context
of preference aggregation applications in decision making theory. The corresponding
methods are introduced in Chapter 4.

Fuzzy set theory is popular in reasoning uncertain information. Other soft method
theories have also been applied in preference modeling.
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2.2.2 Preference by probability: Bayesian model

Instead of reasoning, Baysian model is a popular probabilistic model usually applied
in preference elicitation. The model is defined as follows: For agent n, given a utility
function g(ai) on alternative ai, on pairwise preference ai, aj , a common model for
observations ai � aj is the probit likelihood [GSB10] defined as:

p(ai � aj) = Φ(g(i)− g(j)) (2.5)

where Φ denotes the standard Gaussian cumulative distribution function.
Another popular option is the logit likelihood [KP13] defined as

p(ai � aj) = 1
e−(g(i)−g(j)) (2.6)

Bayesian model is often applied in Plackett-Luce ranking model [Luc59, Pla75]. The
model is defined as follows:
Given rankings σ on set A = {a1, . . . , aN} Under Luce’s axiom, the probability of
selecting alternative aj from A is given by

P (aj |A) = α(aj)∑
ai∈A α(ai)

(2.7)

where α(ai) denotes the worth of alternative ai.
This model is usually applied in social choice problems (which is introduced in

Chapter 4)
Similar to Fuzzy set theory, Bayesian model are not able to express ignorance in pref-

erence information. In the cases with ignorance, the theory of belief functions (TBF)
becomes more useful. TBF is a powerful mathematical tool for modeling uncertain
data, i.e. data with both ignorance and imprecision.

2.3 Introduction to theory of belief functions (TBF)
The theory of belief functions (TBF) (also referred to as Dempster-Shafer or Evidence
Theory) is a mathematical theory that generalizes the theory of probabilities by giv-
ing up the additivity constraint. It was firstly introduced by Dempster [Dem67] in
the context of statistical inference as a general model of uncertainties. Afterwards,
Shafer [Sha76] formalized it as a theory of evidence. In 1980’s and 1990’s, Smets
popularized and developed this theory by proposing Transferable Belief Model (TBM)
[Sme90] and it has been applied widely in various domains such as information fu-
sion, classification, reliability and risk analysis, etc. By extending probabilistic and
set-valued representations, it allows to represent degrees of belief and incomplete infor-
mation in a unified frame.
Unlike the probability theory, which is unable to distinguish equally probable events
from the case of ignorance, in the theory of belief functions, both imprecision and ig-
norance are modeled.
TBF has been proved to be a powerful tool in applications of data fusion [Sme00,
EMS04, KKKR13]. Generally, data fusion consists of four steps:
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1. Modeling

2. Estimation

3. Combination

4. Decision

In this section, we introduce basic definitions and tools in the theory of belief functions
accompanied with a tour-guide for data fusion.

Definition 2.3.1. Discernment frame: The discernment frame Ω is a finite set of
disjoint elements, defining the domain of references, formally:

Ω = {ω1, . . . , ωn} (2.8)

where ωi are exclusive and exhaustive.

The definition of hypotheses ω are related to the given problem. The belief functions
are defined on the power set 2Ω = {X : X ⊆ Ω}. Confronting a data fusion problem,
the modeling step is fundamentally on the definition of a proper frame of discernment.

Definition 2.3.2. Basic Belief Assignment2: Function m : 2Ω → [0, 1] is called
Basic Belief Assignment (BBA) on 2Ω, such that∑

X⊆Ω
m(X) = 1 (2.9)

A BBA is called normalized if m(∅) = 0.

Definition 2.3.3. Categorical BBA: A categorical BBA is a normalized BBA which
has a unique focal element X∗, formally:

m(X) =
{

1, if X = X∗ ⊂ Ω
0, otherwise

(2.10)

Categorical BBAs are specific cases of simple BBA. Thus a categorical BBA on
element X,X ⊂ Ω is denoted as X0.

In a BBA, the values on union elements representing the imprecision are also in-
terpreted as the ignorance of the knowledge, formally, m(X) 6= 0, |X| > 1. With the
imprecision, when m(Ω) < 1 we call m represent partial ignorance on X. Otherwise,
if m(Ω) = 1, m is called “vacuous”, representing total ignorance.

Definition 2.3.4. Vacuous BBA: A vacuous BBA is a particular categorical BBA
focused on Ω, formally:

m(X) =
{

1, if X = Ω
0, otherwise

(2.11)

2Basic Belief Assignment is also called mass function
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Vacuous BBA are denoted as m? in this thesis.

Definition 2.3.5. Focal element (focal set): Every element X ⊆ Ω such that
m(X) > 0 is called focal set, and focal element if X ∈ Ω.

Definition 2.3.6. Simple BBA: m is a simple BBA if it has the following form:

m(X) = 1− w(X)
m(Ω) = w(X)

(2.12)

where w(X) denote the weight function (Equation (2.19)) onX. for someX ⊂ Ω, X 6= ∅
and w(X) ∈ [0, 1]. For convenience, such BBA is denoted by Xw(X).

Thus, a BBA is capable to express both uncertainty and imprecision. When the
focal element has value less than 1, the uncertainty level is expressed. While the focal
element is on the union of singletons, imprecision is expressed.

Definition 2.3.7. Dogmatic BBA: A dogmatic BBA is a BBA where Ω is not a
focal element. Formally:

m(Ω) = 0 (2.13)

Definition 2.3.8. Bayesian BBA: A Bayesian BBA is a BBA which all focal ele-
ments are elementary hypotheses, i.e. all focal elements are singletons. Formally:

m(X) =
{
∈ [0, 1], if |X| = 1
0, otherwise

(2.14)

A Bayesian BBA is a probability distribution over frame Ω. Furthermore, if a
Bayesian BBA is categorical, it describes that there is no uncertainty. Thus the state
of the concerned variable is certain and precise.

In data fusion procedures, the value assignment on BBAs is the estimation step.

Definition 2.3.9. Belief function: If the evidence tells us that the truth is in Y ,
and Y ⊆ X, we say that the evidence supports X.
Given a normalized BBA m, the probability that evidence supports X is:

Bel(Y ) =
∑
X⊆Y

m(X) (2.15)

The value of Bel(X) is called the degree of belief in X, and the function is called a
belief function.

Definition 2.3.10. Plausibility function: If the evidence does not support X̄, it is
consistent with X.
For a normalized BBAm (i.e. m(∅) = 0), the probability that the evidence is consistent
with X is

Pl(X) =
∑

X∩Y 6=∅
m(Y ) (2.16)

= 1−Bel(X̄) (2.17)
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The value of Pl(X) is called the plausibility of X and the function plausibility.

Definition 2.3.11. Commonality function: Commonality function Q : 2Ω → [0, 1]
is another equivalent representation of a belief function. It is defined as:

Q(X) =
∑
Y⊇X

m(Y ),∀X ⊆ Ω (2.18)

With commonality function Q, the weight function from a BBA is defined.

Definition 2.3.12. Weight function: The weight function on element X ⊂ Ω is
calculated by :

w(X) =
∏
Y⊇X

Q(Y )(−1)|Y |−|X|+1 (2.19)

In the next part, we introduce TBF tools for combination and decision steps in data
fusion.

2.3.1 Combination rules in TBF

As aforementioned, data fusion is an important application of the theory of belief
functions. We borrow the definition of data fusion in [HAMA16]:

Data fusion is the process of integrating multiple data sources to produce
more consistent, accurate, and useful information than that provided by any
individual data source.

In the theory of belief functions, the process of data fusion is usually related to the
combination of multiple BBAs defined on the same frame of discernment, representing
multiple sources on identical variables.
Many combination rules have been proposed with the account of various properties
of information sources. Here among which an important one is introduced, namely
cognitive independence[Sme93].

Definition 2.3.13. Cognitive independence: Sources are considered as cognitively
independent if any source has no communication with the others.

Cognitive independence is different from conditional independence. The for-
mer one is defined from a point of view of the intrinsic property from the sources, while
the latter one is defined from a statistical view.

For cognitive independent sources, when all sources are reliable, Dempster’s com-
bination rule and conjunctive combination rule are often applied.
In the discernment frame Ω, given two cognitively independent and reliable sources s1
and s2, m1 and m2 are two BBAs of s2 and s2 on Ω, the combination rules are defined
as follows.
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Conjunctive combination rule

For all X ⊆ Ω, X 6= ∅, the conjunctive rule on X is given by:

mConj(X) =
∑

Y1∩Y2=X
m1(Y1)m2(Y2) (2.20)

The conjunctive operator is denoted as ∩© in this thesis.

Dempster’s combination rule

Dempster’s rule is a normalized version of conjunctive rule, given by:

mD(X) = 1
1− κmConj(X) (2.21)

where
κ =

∑
A∩B=∅

m1(A)m2(B)

κ is generally called (global) conflict. From the concept of simple BBA and conjunctive
combination rule ∩©, the definition of separable BBA is given as:

Definition 2.3.14. Separable BBA: A (normalized) BBA is separable if it can be
written as the combination of simple BBAs

m = ∩O
∅6=X⊂Ω

Xw(X) (2.22)

with 0 ≤ w(X) ≤ 1 for all X ⊂ Ω, X 6= ∅

Large Number of Sources (LNS) conjunctive rule

When the number of sources is large and BBAs are separable, if these sources have
similar reliability, the conjunctive rule may converge to total conflict, making the rule
inapplicable. LNS rule [ZMP17] solves such problems by clustering BBAs and adding
proper reliability on sources.
The procedure of LNS is as follows:

1. Cluster the simple BBAs into c groups based on their focal element;

2. Combine the BBAs in the same group;

3. Reliability-based discounting;

4. Global combine the fused BBAs in different groups.

After step 1, a simple BBA from source sj in cluster k is denoted by Xwj
k , the rule

is given by:

mLNS = ∩©
k=1,...,c

(Xk)
1−αk+αk

Nk∏
j=1

wj

(2.23)
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where Nk denotes the number of simple BBAs in cluster k, αk the discounting coeffi-
cient, given by:

αk = Nk
c∑
i=1

Ni

(2.24)

When information sources are not cognitively independent, mean value combination
rule is often applied, defined as follows.

Mean value combination rule

Mean value rule is often applied when sources are cognitively dependent. Given multiple
sources S = {s1, . . . , ss} with BBAs m1, . . . ,ms the mean value rule is given by:

m(X) = 1
s

s∑
i=1

mi(X),∀X ∈ 2Ω (2.25)

Discounting

Discounting coefficients [Sha76] are applied when the reliability of sources are different.
With a coefficient αj ∈ [0, 1] on source sj , given the BBA on sj , noted as mj , the
discounted BBA mα

j is defined as

mα
j (X) = αjmj(X), ∀X ⊆ Ω \ Ω
mα
j (Ω) = 1− αj(1−mj(Ω))

(2.26)

αj = 0 implies that the source sj is completely unreliable and the discounted BBA
represents total ignorance. It should be noted that the discounting is a pre-combination
treatment method depending on the reliability of sources, rather than combination
rules.

Many other combination rules exist depending on specific conditions, assumptions
or properties. For example, cautious rule [Den06] is well accepted when the property
of idempotence is required. Yager’s rule [Yag87] assumes that the global conflict comes
from the ignorance. Dubois and Prade’s [DP88] rule assumes that partial conflict comes
from partial ignorance. When the reliability of sources are unknown and at least one
source is reliable, the disjunctive rule is often applied. Mix rules [MO07] are sometimes
used for dealing with partial conflicts.

2.3.2 Decision making in TBF

In the theory of belief functions, the decision making procedure is to choose one set X
in scope of the frame Ω.

In the theory of belief functions, the decision making process is to select one element
X ∈ 2Ω. Normally, the decision is based on the evidence degree.
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Credal based decision

Usually, decisions are made based on the maximum values of evidence, or credal value.
The pessimist way is to decide on the singleton with maximum belief degree, i.e.
singleton with maximum support from evidence, formally:

maxω∈ΩBel(ω) (2.27)

The optimist way is to decide on the singleton with maximum plausibility degree, i.e.
singleton which is most consistent with evidence, formally:

maxω∈ΩPl(ω) (2.28)

A well accepted view is to manage the conflicts after the combination step [Sme07], a
compromised method is given on the maximum value of pignistic probability

maxω∈ΩBetP (ω), (2.29)

defined by:

BetP (X) =
∑

Y⊆Ω,Y 6=∅

|X ∩ Y |
|Y |

m(Y ) (2.30)

where |X| is the cardinality of set X.

Distance based decision

Decision on distance was originally proposed in [EMSY14], given a combined BBA m
the decided element ω′ is selected by the following rule:

ω′ = argmin
X⊆Ω

{d(m,X0)} (2.31)

where X0 is a categorical BBA on X ⊆ Ω, d(m1,m2) the distance function on BBAs
m1,m2 (such as Jousselme distance [JGEB01]).

This distance based decision rule allows to decide on all elements in 2Ω, including
partial ignorance events.

2.4 Conclusion

In this chapter, we introduced different popular models on precise and imprecise pref-
erence relations, as well as the definitions concerned. A synthetic conclusion on the
definitions of preference orders is given in Tables 2.1 and 2.2, where a, b, c, d, e and f
are alternatives, P the set of strict preference relations, I the set of indifference rela-
tions, g(·) an utility function on alternatives, and R the corresponding relation.
The adjacency matrix of total order can be transferred into a triangular matrix U .
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Table 2.1 – Total & weak order

Total Order Weak Order

Definition
Complete
Antisymmetric
Transitive

Complete
Transitive

Numerical aRb⇔ g(a) ≥ g(b)
g(a) = g(b)⇒ a = b

aRb⇔ g(a) ≥ g(b)

Properties
P transitive & complete
P negatively transitive
P · P ⊂ P

P transitive
I transitive
I · P ⊂ P
P · I ⊂ P

Matrix Example

a b c d e f
a 1 1 1 1 1 1
b 0 1 1 1 1 1
c 0 0 1 1 1 1
d 0 0 0 1 1 1
e 0 0 0 0 1 1
f 0 0 0 0 0 1

a b c d e f
a 1 1 1 1 1 1
b 1 1 1 1 1 1
c 1 1 1 1 1 1
d 0 0 0 1 1 1
e 0 0 0 0 1 1
f 0 0 0 0 0 1

Permutation result [U ]
[
J J
0 U

]

Total order

Weak order

Partial order

Quasi order
with “indifferen

ce”

with incompleteness

with incompleteness

with “indifferen
ce”

Figure 2.2 – Relations between different type of orders

For weak order, the existence of “indifference” relation makes the sub-matrix made up
of ones, denoted by J , after the permutation operations.

On the conceptions of preference structures, following relations are true, illustrated
in Figure 2.2. The upper relation chain is enriched with the relation of “indifference”
and “incomparability” by turn while the lower one with the “incomparability” and “in-
difference”.

On the modeling of imprecision preferences, three theories for uncertain informa-
tion are introduced, with capability of information reasoning illustrated in Table 2.3.
The theory of belief functions is a mathematical tool for reasoning knowledge with im-
precision and ignorance and also a powerful tool for information fusion, with different
combination and decision making procedures. Several popular fusion and decision rules
are introduced, with applicable circumstances concluded in Table 2.4.
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Table 2.2 – Partial & Quasi order

Partial Order Quasi order

Definition
Reflexive
Anti-symmetric
Transitive

Reflexive
Transitive

Numerical aRb⇒ g(a) ≥ g(b)
g(a) = g(b)⇒ a = b

aRb⇒ g(a) ≥ g(b)

Property ∩ of a total order

P transitive
I transitive
P · I ⊂ P
I · P ⊂ P

Matrix Example

a b c d e
a 1 0 1 1 1
b 0 1 1 1 1
c 0 0 1 1 1
d 0 0 0 1 1
e 0 0 0 0 1

a b c d e
a 1 1 0 1 1
b 1 1 1 1 1
c 0 0 1 1 1
d 0 0 0 1 1
e 0 0 0 1 1

Table 2.3 – Modeling of uncertainty for different theories

Theory Uncertainty Imprecision Ignorance
Probability

√
x x

Fuzzy set
√

(intensity degree) x x

Possibility
√

√

(plausibility
in TBF)

√

Belief function
√ √ √

Of course, many other combination rules exist, meeting different properties of com-
binations. In this thesis, solely the rules above are applied. To conclude, in this chapter,
we introduced basic concepts on preference and theory of belief functions, which are
fundamental elements for the work of this thesis. In next chapters of this part, we will
introduce state-of-the-art methods on preference aggregation and learning.
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Table 2.4 – Application circumstances of several combination rules

Combination rule (or process) Circumstances
Dempster’s rule Cognitively independent and equally reliable

Mean rule Cognitively dependent
LNS rule Large number of simple support BBAs

Discounting rule different reliability
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Chapter 3

Similarity measures on
preferences and on the theory of
belief functions

Similarity measures between preferences are often applied in many preference based
application such as preference aggregation and preference learning, which are intro-
duced in Chapter 4. In this chapter, we introduce some popular methods of similarity
measure applicable to preference models as well as similarity methods in the theory of
belief functions.
The chapter is structured as follows: in Section 3.1, properties of distances and defini-
tions of all types of metrics are introduced. In Section 3.2 and 3.3, popular similarity
measure methods for preference relation as well as preference structures are respec-
tively introduced and compared. Besides, in Section 3.4, similarity measures applied in
TBF are also introduced, categorized into three views: distance, divergence and conflict
measure.

3.1 Properties of distances

Distances on preference relations measure the similarity between distinctive preference
relation types, usually applied in group consensus rules for preference aggregation.
Distances on preference relation are categorized into two types: encoded preference
distance and axiomatic distance. A distance function is also called a metric, possessing
certain properties.

Definition 3.1.1. distance function (or metric): A distance function (or metric)
on a set of objects X is a function

d : X × X → R≥0, (3.1)

33
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where R≥0 is the set of non-negative real numbers and for all x, y, z ∈ X , the following
properties are satisfied:

1. d(x, y) ≥ 0 non-negativity or separation axiom
2. d(x, y) = 0⇔ x = y identity of indiscernibles
3. d(x, y) = d(y, x) symmetry
4. d(x, z) ≤ d(x, y) + d(y, z) subadditivity or triangle inequality

(3.2)

Some functions measuring similarity may not possess all the four properties, intro-
ducing other definitions of pseudometrics, quasimetrics, metametrics and semi-
metrics.

Definition 3.1.2. Pseudo-metric: Pseudo metrics do not satisfy the property of
identity of indiscernibles from metric properties.

In other words, for a pseudo-metric dp−metric,

∃x, y ∈ X , x 6= y, dp−metric(x, y) = 0 (3.3)

Definition 3.1.3. Quasi-metric: Quasi-metrics satisfy the properties of non-negativiey,
identity of indiscernibles and triangle inequality.

Without the property of symmetry, in quasi-metric, the order of measured objects
may make difference on the result.

Definition 3.1.4. Meta-metric: Meta-metrics dm−metric applies property of identity
of a weakened discernible from metric with dm−metric(x, y) = 0 ⇒ x = y but x = y ;
dm−metric(x, y) = 0.

Definition 3.1.5. Semi-metric: Semi-metrics drop the property of triangle inequal-
ity from metric

Semi metric is also defined as similarity or dissimilarity in many works, pos-
sessing only non-negativity, identity of indiscernible and symmetry properties. Dissim-
ilarity is the reciprocal to similarity. In this thesis, we accept the term of similarity.

Pre-metrics are very relaxed definition, possessing solely non-negativity and idem-
potent. formally:

Definition 3.1.6. Pre-metric A pre-metric on X is a function d : X × X → R≥0,
satisfying the properties of:

1. d(x, y) ≥ 0
2. d(x, x) = 0

(3.4)
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In this terminology of this thesis, distances are metrics by default and similarity
possess at least the properties of semi-metrics.

The similarity measure for preferences are based on the definitions of different types
of metrics above. Similarity measures for preferences fundamentally depend on the
preference representation. Generally, these similarity measures are categorized into
two groups: similarity between preference relation types and similarity between prefer-
ence structures. As definition distance possesses most of the properties, the following
introductions are mainly on different types of distances.

3.2 Distances between preference relation types

Given the preference relation types R = {�,≺,≈,∼}, distance between preference
relation types measure the similarity between R1, R2 ∈ R.

3.2.1 Distances on encoded preferences

The four preference relation types can be encoded based on adjacency matrix. Given
two alternatives ai, aj , the preference relation types are respectively expressed by ad-
jacency in Table 3.1.

Table 3.1 – Encoding of preference relations

Relation:

Encode:

ai � aj
ai aj

ai 0 1
aj 0 0
0100

ai ≺ aj
ai aj

ai 0 0
aj 1 0
0010

ai ≈ aj
ai aj

ai 0 1
aj 1 0
0110

ai ∼ aj
ai aj

ai 0 0
aj 0 0
0000

We denote encoding function as enc(·), and the four bits of encoded preference
as enc1−4(), the encoded preferences are in form of vectors. Thus, Minkowski dis-
tance [JD88] can be applied. Given two preference relation types R1, R2 ∈ {�,≺,≈,∼},
the Minkowski distance dminkowski is defined as:

dminkowski(R1, R2) =
( 4∑
i=1
|enci(R1)− enci(R2)|p

) 1
p

(3.5)

where p denotes the norm Lp (Lebesgue space).
For encoded data, Manhattan distance is usually applied, i.e. p = 1 in Minkowski
distance. Thus, the Manhattan distance on preference relation types is given in Ta-
ble 3.2. Manhattan distance is a measure function on encoded data, however, it is not
able to keep some intrinsic properties of preferences. For instance, there is no reason
supporting that d(�,≺) = d(≈,∼). To keep such properties, axiomatic distances were
proposed.
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Table 3.2 – Hamming distance (Manhattan distance) between two preference relation
types

� ≺ ≈ ∼
� 0 2 1 1
≺ 2 0 1 1
≈ 1 1 0 2
∼ 1 1 2 0

3.2.2 Axiomatic distances for preferences

Axiomatic distances are based on appropriate axioms on preference relations, with also
properties of metrics respected. Such distances were initiated by Kemeny and Snell
in 1963 [KS63] for consensus aggregation rule on weak orders (a.k.a. KS model), then
generalized by Bogart [Bog73, Bog75] to deal with partial orders, which excludes the
“indifference” relation. Afterwards, Cook et. al. [CKS86] developed a distance on bi-
matrix representation of quasi orders (a.k.a. CS model). Extended from KS model, J.
M. Blin [Bli76] proposed an aggregation method by distance maximization procedure.
Khelifa and Martel [KM01] proposed an axiomatic distance by taking the center value in
a restrained space limited by axioms for consensus group decision making by respecting
RS model [RS93], namely KM model. These various models do not accept identical
axioms, causing some differences in numeric values of similarities.

CS distance follows the axioms demonstrated in Figure 3.1. In this axiom, the
inverse strict preference relations are considered as the most distant. “indifference” is
between the “incomparability” and strict preference. Thus the distances respect the
following relation:

d(∼,�) = d(∼,≺) = d(∼,≈) + d(≈,�) (3.6)
With the minimum positive distance valued as 1, the CS distance is given in Table 3.3.

Figure 3.1 – Distance relation accepted in CS distance

In RS model, the distances are values following the Figure 3.2. The distance between
“incomparability” are abstractly defined by x and y without giving a precise value.

Therefore, the distances between preference relations are given in Table 3.4.
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Table 3.3 – Distance between different preference relation types in CS distance

� ≺ ≈ ?
� 0 2 1 2
≺ 2 0 1 1
≈ 1 1 0 2
? 2 2 1 0

Figure 3.2 – Distance relation accepted in RS distance.

According to the axioms in [RS93], a synthetic relation between x, y is limited in
Equation (3.7).

0 < max{2, x} ≤ y ≤ min{4, 2 + x} (3.7)

In KM distance, the authors regard the “incomparability” as an absence of knowl-
edge and applied the insufficiency principle of Laplace. Thus, the distance from “in-
comparability” to other relations are equivalent, formally:

d(∼,�) = d(∼,≺) = d(∼,≈) (3.8)

With minimum distance valued as 1, the numeric distance between different preference
types are given in Table 3.5. The detail of the calculation is given in [KM01].

More discussion on axiomatic preference distances are given in Section 3.5, with a
synthetic comparison between different distance models summarized.

3.3 Distances in preference structures
Preference structures as total orders (or linear order) can be regarded as ordinal vari-
ables. Thus, rank correlation coefficients and distances can be applied. Some most
popular rank correlation distances are:

• Spearman’s footrule distance [DG77]

• Kendall’s τ [Ken48]

• Fagin’s distance [FKM+04] for weak orders
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Table 3.4 – Distance between different preference relation types in RS distance.

� ≺ ≈ ∼
� 0 4 2 y
≺ 4 0 2 y
≈ 2 2 0 x
∼ y y x 0

Table 3.5 – Distance between different preference relation types in KS model

� ≺ ≈ ?
� 0 5

3 1 4
3

≺ 5
3 0 1 4

3
≈ 1 1 0 4

3
? 4

3
4
3

4
3 0

It should be noted that correlation coefficients are not distances since the coefficient
function values are in range of b−1,+1e rather than R≥0.

For two total preference orders σ1, σ2 in same alternative space A = {a1, . . . , an}

σ1 : a′1 � a′2 � . . . � a′n

and
σ2 : a′′1 � a′′2 � . . . � a′′n

denote the ranking function as rank(a), indicating the ranking position of the alterna-
tive a in the corresponding order. The different correlation coefficients and distances
are defined as follows:

Spearman’s footrule distance

Spearman’s footrule distance dspearman measure the similarity between two ranks by
number of displacement (to make them equal). Defined by:

dspearman(σ1, σ2) =
n∑
i=1

(rankσ1(ai)− rankσ2(ai)) (3.9)

Spearman’s footrule distance is also a Manhattan distance for rank variables.
Spearman’s correlation coefficient ρ is a coefficient varying from -1 to +1, where +1
implies the identical case and -1 the inverse case, defined as Spearman’s ρ:

ρ(σ1, σ2) = 1− 6∑n
i=1(rank(ai)− rank(a′i))2

n(n2 − 1) (3.10)
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Kendall’s τ and Fagin’s distance

In Kendall’s τ , alternatives are compared in a pairwise way. For any pair of alternatives
a1, a2, between two orders σ1, σ2 denote a1Rσa2 for relations between alternatives in
order σ, with R ∈ {�,≺}. We give the definition of concordant and discordant, with
a discordant function on alternatives ai, aj in orders σ1 and σ2 denoted as K̄i,j(σ1, σ2):

• If a1Rσ1a2 = a1Rσ2a2, a1 and a2 are concordant in σ1 and σ2, thus, K̄i,j(σ1, σ2) =
0;

• If a1Rσ1a2 6= a1Rσ2a2, a1, a1 and a2 are discordant in σ1 and σ2, thus, K̄i,j(σ1, σ2) =
1;

• If a1 ≈σ1 a2 and a1 ≈σ2 a2, a1 and a2 are neither concordant nor discordant.

The Kendall’s distance dKendall is simply the number of discordant pairs, more formally:

dKendall(σ1, σ2) =
∑
i<j

K̄i,j(σ1, σ2), (3.11)

and Kendall’s correlation coefficient τ is defined as:

τ = (number of concordant pairs)− (number of discordant pairs)
n(n− 1)/2 (3.12)

Fagin’s distance [FKM+04] is an extension version of Kendall’s τ , adapting to weak
orders, i.e. the “indifference” relation is considered. Extended from the discordant
function above, Fagin’s distance considers the following case:

• if a1 ≈σ1 a2 and a1Rσ2a2, the discordant is values by the penalty p, i.e. K̄i,j(σ1, σ2) =
p.

According to [FKM+04], the choice of p must respect:

1
2 < p < 1 (3.13)

The calculation of Fagin’s distance is similar to Kendall’s τ with the new case
considered:

dFagin(σ1, σ2) =
∑
i<j

K̄i,j(σ1, σ2), (3.14)

Diaconis and Graham proved that the Spearman’s footrule and Kendall’s τ are ro-
bust [DG77]: For any ordinal rankings σ1, σ2 on the same alternative space A

dKendall(σ1, σ2) < dSpearman(σ1, σ2) < 2× dKendall(σ1, σ2) (3.15)
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3.4 Similarity measures in the theory of belief functions

In the theory of belief functions, different similarity measures are also applied on BBAs.
From geometrical and statistical views, these measures are categorized into three parts:
distance, divergence and conflicts1.

3.4.1 Geometry view: distance

As BBAs are defined in space of 2Ω, In addition to all the properties for metrics in
Equation (3.2), properties considering structure of discernment are specific to BBAs.
[JM12] consider following properties:

• Strong structural property:
A distance measure d between two BBAs m1 and m2 is strongly structural if its
definition accounts for the interaction between the focal elements of m1 and m2.

• Weak structural property:
A distance measure d between two BBAs m1 and m2 is weakly structural if its
definition accounts for the cardinality between the focal elements of m1 and m2.

• Structural similarity:
A distance measure d between two BBAs m1 and m2 is structural similarity if its
definition accounts for the interaction between the set F1 and F2 of focal elements
of m1 and m2.

A popular distance that is strongly structural is Jousselme distance [JGEB01], defined
as:

dJousselme(m1,m2) =
√

(m1 −m2)TJacc(m1 −m2) (3.16)

where Jacc is the matrix whose elements are Jaccard indices:

Jacc(X1, X2) = |X1 ∩X2|
|X1 ∪X2|

, for X1, X2 ∈ 2Ω \ ∅ (3.17)

These properties are “natural” to the distances on BBAs, however, the importance or
advantages have not been theoretically proved. Some other properties are proposed in
the contribution part of the thesis

3.4.2 Statistic view: divergence

As BBAs express also the imprecision information, they can be measured from a view
of entropy. Divergence is used for similarity measure in entropy, such as Kullback-
Leibler divergence [KL51] for probability distribution. Perry and Stephanou proposed

1Strictly speaking, “conflict” is not a similarity measure (semi-metric). Since it measures the con-
sistence of different BBA, we put it in this section.
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a divergence dPS for BBAs by applying Dempster’s combination rule rather than Bayes’
rule:

dPS(m1,m2) = |F1 ∪ F2|
(

1− |F1 ∩ F2|
|F1 ∪ F2|

)
+ (m1 ∩©m2 −m1)T (m1 ∩©m2 −m2)

(3.18)
where ∩© is the Dempster’s combination operator. dPS has two components respectively
measuring the structural similarity and information change.

For futher reading, a synthetic study on distances and divergence in TBF is done
in [JM12].

3.4.3 Conflicts measuring

As BBAs are able to express ignorance, the term conflict is used to describe the coher-
ence between evidential knowledge, especially those with partial ignorance. The most
common one is global-conflict Conf(·), defined on the Dempster’s combination rule:

Conf(m1,m2) = (m1 ∩©m2)(∅) (3.19)

where ∩© denotes the Dempster’s combination operator.
Indeed, global-conflict measures the contradiction between BBAs. In [DB13], the au-
thors proposed and summarized several properties needed for measuring conflicts be-
tween BBAs.Conflicts are also based on other measures. In [MJO08], authors proposed
a conflicting measure method developed from Jousselme distance. Another conflict
measure based on the inclusion is proposed in [Mar12]. A global introduction on
conflict management is given in [Mar19]. The conflicts are usually applied in deci-
sion making procedures. In fact, the application on conflicts in TBF is limited than
distances because they may not be metric.

3.5 Conclusion
In this chapter, we illustrated the basic notions on metrics and reviews different dis-
tances for preference relations and structures. Some conflicting axioms on axiomatic
distances are compared and discussed. For distances on preference relations, all dis-
tances respect that the distance between “indifference” and “strict preference” is less
than that between two inverse strict preferences. The most controversial issue focuses
on the similarity of “incomparability” with other preference relation types.

While for Minkowski distance (including Manhattan distance), the relations are
defined by encoded formats with “incomparability” defined as an exclusive concepts to
other relation types. The distances between four preference relations are illustrated in
Figure 3.3.

For example, CS model, KM (JMK) model and RS models have different axioms
concerning the relation of “incomparability”. In fact, in RS model [RS93], the “incom-
parability“ is defined as:
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Figure 3.3 – Preference distance applied in Minkowski family.
a −→ b implies a > b
a←→ b implies a = b

Incomparability relation is the affirmation of the incapacity to establish the
relation type: there is no indifference, no weak preference and no strict
preference between the two alternatives.

Such definition indicates the illustration in Figure 3.4a. In CS model and KM (JMK)
models, the incomparability is defined as “the two alternatives are not compared”,
corresponding to the definition in Figure 3.4b.

(a) “Incompleteness” caused
by ignorance

(b) “Incompleteness” caused by
ignorance without “incomparability”

Figure 3.4 – Venn diagrams of the preference relations

In order to distinguish this disagreement on the definition of incompleteness, we ex-
press the relations by {�,≺,≈,∼, ?}, where 〈�〉 denotes the “incomparability” relation
and 〈?〉 the missing information. The accepted axioms are listed as follows:

1. Axioms 1: properties of metric are satisfied:

(a) Axiom 1a (Non-negativity): ∀R1, R2 ∈ {�,≺,≈,∼},∆(R1, R2) ≥ 0, with
equality if and only if R1 = R2

(b) Axiom 1b (identity of indiscernibles): ∆(R1, R2) = 0⇐⇒ R1 = R2
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(c) Axiom 1c (Symmetry): ∀R1, R2 ∈ {�,≺,≈,∼},∆(R1, R2) = ∆(R2, R1)
(d) Axiom 1d (Triangle inequality): ∀R1, R2, R3 ∈ {�,≺,≈,∼},∆(R1, R3) +

∆(R3, R2) ≤ ∆(R1, R2)

2. Axiom 2: ∆(�,≈) = ∆(≺,≈) and ∆(�,∼) = ∆(≺,∼)
(BIS: ∆(�, ?) = ∆(≺, ?)). This axiom says � and ≺ are opposite relations

3. Axiom 3: ∆(�,≈) + ∆(≈,≺) = ∆(�,≺).

4. Axiom 4: ∆(�,∼) ≤ ∆(≈,∼)
(BIS 1: ∆(�, ?) ≤ ∆(≈, ?)
BIS 2: ∆(�, ?) = ∆(≈, ?))

5. Axiom 5: ∆(≈,∼) ≤ ∆(≈,�)
(BIS: ∆(≈, ?) ≤ ∆(≈, ?))

6. Axiom 6: ∆(�,≺) = max({∆(R1, R2) : R1, R2 ∈ {�,≺,≈,∼}}),
meaning that strict preference and inverse preference relations are mostly distin-
guished.

For the axiomatic models mentioned above, the distance relations are illustrated in
Figure 3.5.

Figure 3.5 – Preference distance applied in three different models, with:
a −→ b implies a > b
a←→ b implies a = b

The comparison demonstrated in Table 3.6 sums up the controversial part between
four types of distances, especially concerning the “incomparability” relation.



44 Similarity in preferences and TBF

Table 3.6 – Controversial similarity related to “incomparability” in different relation
models.

Distance Distance to incomparability

Mincowski distance d(�,∼) = d(�,≈)
d(�,≺) = d(≈,∼)

CS distance
d(�, ?) > d(?,≈)
d(�,≈) = d(?,�)
d(�,≺) > d(?,≈)

JKM distance
d(�, ?) = d(?,≈)
d(�,≈) < d(?,�)
d(�,≺) > d(?,≈)

RS distance
d(�,∼) > d(∼,≈)
d(�,≈) = d(∼,�)
d(�,≺) > d(∼,≈)

To recapitulate, there is no standard distance between preference relation types ac-
cepted by all researchers, and the definition of “incompleteness” remains a disputable
issue. The choice of distance on preference relations is a flexible process. More argu-
ments on this issue is contributed in Section 5

We also introduced similarity measure in TBF. As TBF is a tool for uncertainty
modeling, more criteria are applicable in addition to distance. Three genres of methods
can be categorized, defined from different aspects of view, resumed in Table 3.7.

Table 3.7 – Points of view on similarity measure between BBAs.

Similarity Aspect

Distance Geometry: Each BBA is represented by a vector.
Thus distance for vectors are applicable

Divergence Statistic: A BBA represent the imprecision of the information source.
Thus entropy is applicable.

Conflict Consistency: A BBA represent the ignorance of the information source.
Thus conflict is applicable considering the ignorance factor.

In deed, similarity measures are useful in preference management including prefer-
ence aggregation and preference learning, introduced in more details in next chapters.



Chapter 4

Preference management

In this chapter, we review state of the art methods on preference management problems.
In the scope of this thesis, we mainly studied two important sub-domains of prefer-
ence management problems, preference aggregation and preference learning. Generally
speaking, preference aggregation is the procedure of merging multi-agents’ preferences
into one. Preference learning is a combined domain of preference modeling and ma-
chine learning, either by applying machine learning methods on preference data, or
by applying preference concepts in machine learning algorithms design. The chapter
is divided into two parts: in Sections 4.1, 4.2, 4.3, and 4.3.2, aggregation problems
and methods are introduced. In Sections 4.4 a global view on preference learning is
introduced, followed by preference clustering section (Section 4.5).

4.1 Preference aggregation functions
Preference aggregation problem is also called “social choice problem” in the study of
sociology and economy. Briefly speaking, preference aggregation serves to merge mul-
tiple preferences on same group of alternatives, and finally result into one alternative.
The problem setting is defined as follows.
Social choice setting: A preference aggregation problem setting (or social choice
setting) is defined by a triple (A,AGT ,OD) where:

1. A := {a1, . . . , aK} of size K is a finite set of outcomes, also called candidates, or
alternatives.

2. AGT := {agt1, ..., agtN} of size N is a finite set of agents

3. OD := {σ1, . . . , σM} of size M is a set of preferences ordering over A

Preference aggregation methods is an application in social choice theory. As this
thesis is not mainly on the topic of sociology, the utilization of the term “social choice”
may cause ambiguity. Hence, we insist on the term “preference aggregation”.
Definition 4.1.1. Preference aggregation function (social choice function): A
preference aggregation function over AGT and A is a function C : ODn → A.

45
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When there are only two alternatives, the most widely used voting system, and
arguably the most natural, is majority rule. Under majority rule, we take the alter-
native that is preferred by a majority of the voters and rank it first, placing the other
alternative second. For this discussion we will assume that the number of voters is odd,
so that we do not need to worry about the possibility of majority rule producing ties.
Since majority rule is so natural in the case of two alternatives, it is natural to try
designing a voting system based on majority rule when there are more than two alter-
natives. This, however, turns out to be remarkably tricky. The most direct approach is
to first create group preferences, by applying majority rule to each pair of alternatives,
and then trying to turn these group preferences into a group ranking. That is, we
create a group preference relation � out of all the individual preferences �k as follows.
For each pair of alternatives ai and aj , we count the number of individuals for whom
ai �k aj and the number of individuals for whom aj �k ai. If the first number is
larger than the second, then we say that the group preference � satisfies ai � aj , since
a majority of the voters prefer ai to aj when these two alternatives are considered in
isolation. Similarly, we say aj � ai in the group preference if aj �k ai for a majority
of the individuals k. Since the number of voters is odd, we cannot have equal numbers
favoring ai and favoring aj . Hence, for every distinct pair of alternatives we will have
exactly one of ai � aj or aj � ai. That is, the group preference relation is complete.

4.2 Voting paradoxes and impossibility theorems

In this section, we list some of the most famous paradoxes and impossibility theorems. It
should be pointed that in the work of this thesis, only Condorcet’s paradox is addressed.
Other issues are for reading references.

Condorcet’s paradox

Various paradoxes and impossibility theorems may arise from a preference fusion pro-
cess with majority rule, and one of the most well-known is Condorcet’s paradox, also
known as voting paradox [dCmdC85]. It is a situation in which collective preferences
can be cyclic, (i.e. not transitive) even the preferences of individual voters are transi-
tive. The avoidance of Condorcet’s Paradox is also referred to as guarantee of “consis-
tence” or “transitivity” in some work.
Other paradoxes are also studied in decision making theory, such as Borda’s paradox,
Ostrogorski’s paradox [RD76], the referendum paradox, etc. As these paradoxes are
not in the scope of our work, detailed definitions are not given here. Some others
problems exist concerning more specific issue corresponding to the circumstances. For
example, in voting systems for political regime, it is better to guarantee that the elected
candidate get the majority votes for the sake of stability, even though plural (more than
two) candidates participate in the campaign.
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4.3 Aggregation on various preference models

In this section, we introduce several aggregation rules on both crisp preference and
fuzzy preference. For crisp preference, some popular traditional strategies as well as
distance-based strategy are introduced. For fuzzy preference, we briefly introduce the
Operator Weight Average (OWA) method as well as its extensions.

4.3.1 Aggregation on crisp preferences

Aggregation functions on crisp preferences usually based on voting rules. We introduce
some of the most popular voting rules, depending on different principles.

Condorcet methods

A Condorcet method [dCmdC85] is an aggregation rule that the aggregated alternative
is preferred by the majority to all other alternatives. Such alternative is also called the
Condorcet winner . As aforementioned, due to Condorcet’s paradox, such alternative
do not exist when the preference relation among multiple alternative create a circle.

Borda count

In Borda count [Eme13], agents rank alternatives in order of preference, with a number
of points given to each alternative corresponding to its ranking position. A higher
ranked alternative obtains a bigger number of points. Once all agents have been counted
the alternative with the most points is the winner.
The Borda count is often described as a consensus-based voting system rather than a
majoritarian one [Lip13], and it’s able to determine multiple winners.

Plurality runoff

In plurality voting, each agent is allowed to vote for only one alternative, and the one
who polls the most among its counterparts is elected. This method is easy to practice
for plural alternatives. However, plurality voting is not a majoritarian voting, making
it unable to reflect the consensus of the entire agents. Therefore, run-off mechanism is
often introduced. In this mechanism, the first two winners of plurality rule go to the
second round, and agents apply a majority voting on these two alternatives.
Plurality runoff is usually applied in political elections, such as president election in
France, Parliament delegates election in Iran and mayors election in Italy.
Other voting rules also exist adapting to various using circumstances. As such work is
not our focus, we recommend to refer to [Lip13] for further reading.
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Pairwise distance based preference aggregation

Many preference aggregation rules are designed on the minimization of distances be-
tween alternative pairs also called distance based consensus rules. Generally, it can be
concluded by Algorithm 1.

Given alternative set A = {a1, . . . , ak}, agents in agent set AGT = {agt1, . . . , agtn}
express their preferences on pairwise alternatives in A with possible preference relations
in {�,≺,≈,∼}. We denote a preference relation function between two alternatives ai
and aj from agent agts as Pref s(ai, aj) → {�,≺,≈,∼}, a distance based preference
aggregation procedure is defined in Algorithm 1.

Algorithm 1 Pairwise distance-based preference aggregation algorithm
Input: Pref s(ai, aj):

Preferences from agents AGT on alternatives ai, aj ∈ A
Output: Pref∗(ai, aj):

Aggregated preference on alternatives ai, aj ∈ A
Decision on every alternative pair

1: for ai, aj ∈ A, i < j do
2: for R ∈ {�,≺,≈,∼} do

3: Compute Φi,j(R) =
s=n∑
s=1

d∆(R,Pref(ai, aj))

4: end for
5: Decide Pref∗(ai, aj) = {R : argmin

R∈{�,≺,≈,∼}
Φi,j(R)}

6: end for

In fact, many traditional voting rules are intrinsically the minimization of certain
distances. P. Viapini [Via15] has studied this correspondence, giving the following
conclusions between similarity measure and aggregation methods:

Table 4.1 – Correspondence between some distances and aggregation methods

Aggregation method Similarity measure Properties
Plurality dPL premetric
Top-k dTK premetric
Veto dV premetric
Borda Spearman metric
Scoring rule Positional Spearman metric

dPL, dTK and dV respectively denote similarity measures corresponding to Plurality,
top-k, and veto rule.
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4.3.2 Aggregation on uncertain preferences

In Section 2.2, fuzzy preference model was introduced confronting preferences with un-
certainty. Many aggregation on fuzzy preferences have been proposed. In the following
part, we introduce several main-stream method.
Given the fuzzy preferences from all agents, a collective fuzzy preference relation is ob-
tained by aggregating all completed individual fuzzy preference relations. An intuitive
way is to take the average values. We denote the fuzzy preference between ai and aj
from agent agtk as rkij and the weight of agent agtk as wk, for K agents, the aggregated
fuzzy preference is calculated by:

rij = 1
K

K∑
k=1

wkr
k
ij (4.1)

This method is named Ordered Weighted Averaging (OWA) operator, originally pro-
posed by [Yag88]. Almost all aggregation methods on fuzzy preferences are based on
OWA. Extended from OWA, induced OWA (IOWA) operator [Yag03, YF98, YF99] has
received increasing attention. In this method, the meta-data on alternatives are used to
induce the ordering in the first place, for purpose to estimate values of some unknown
information. To avoid the Condorcet’s paradox, i.e. to keep the property of transitiv-
ity of the aggregated preference, in [HVCHA07], authors proposed additive consistency
IOWA (AC-IOWA). [CHVAH08] studied the cardinal consistency and proved that it
is a characterization of multiplicative transitivity. [MC11] proposed Induced Order
Weighted Averaging Distance (IOWAD) operator to aggregate fuzzy preferences from
a view point of distance, similar to Algorithm 1.

For futher reading, we list some applications of fuzzy preferences. Fuzzy preferences
are often applied in linguistic information. [CAHV09] proposed a consensus model for
unbalanced fuzzy linguistic information. [MGL13] proposed 2-TILGOWA operator to
estimate linguistic values and applied for decision making. [Xu07] applied OWA on
intuitionistice fuzzy preference relations (IFPR) and [pCqX19] developed aggregation
method with the consideration on consistency for IFPR.

Although fuzzy preference model is powerful in expressing uncertainty1 in prefer-
ences, it still has some shortcomings. A very important one is that it merely represent
the degree (or probability) of the preference relation and could not express the impre-
cision problems as well as the conflicts in decision making procedures are hardly kept.
A solution on these shortcomings is proposed in Chapter 5 in the contribution part of
this thesis.

In addition to the aggregation, another management application on preference is
preference learning.

1In many works, the fuzzy preference is interpreted as an expression of intensity.
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4.4 Preference learning

Preference learning is a sub-field of machine learning, particularly oriented to applica-
tions and theories concerning preference knowledge. In preference management, learn-
ing on preference data is also an important aspect, often applied in preference elicitation
applications. In this section, we firstly give a global introduction on preference learning
with corresponding notions. Afterwards, we focus on one specific aspect of preference
learning, clustering on preferences, which is one of the major topics in this thesis.

The procedure of clustering on preferences is important in both preference elicitation
and community detection. Many preference elicitation methods follow the strategies
that predict the unobserved preferences of an agent based on the observed preferences
of neighbor agents, with more details in following contents. In social networks and
sociology, preferences can be applied as a part of profile information for community
detection. In this section, we firstly give a global introduction on the research domain
of preference learning and its position in the study of artificial intelligence. Afterwards,
we concentrate on clustering methods on preferences in Section 4.5, which is in the
scope of our thesis work.

In addition to preference modeling and reasoning methods mentioned in previous
chapters, preference learning is often aimed at preference elicitation (or predicting, or
mining) problems. “ Roughly speaking, preference learning is about inducing predictive
preference models from empirical data ” [FH11]. Methods for learning preferences in
an automatic way are among the recent research topics in disciplines such as machine
learning, knowledge discovery, and recommendation systems. Preference learning is
strongly related to various scientific domains, a brief illustration is given in Figure 4.1,
originally proposed in [FHR+14].

Figure 4.1 – Preference learning and related research areas within machine learning
(blue), information retrieval (purple), applied mathematics (turquoise), and the deci-
sion sciences (green), from [FHR+14]

.
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Preference learning is a relatively large concept. Below, we introduce the specific
scenarios and techniques in preference learning. For better understanding, a topic map
may be helpful in Figure 4.3 in the conclusion part of this chapter.

4.4.1 Two scenarios

According to [FH10], preference learning mainly consists of two scenarios: learning from
label preferences and learning from object (or alternatives) preferences . The former one
focuses on applying preference management techniques in supervised learning, and the
latter one on applying machine learning techniques on preference knowledge. Formal
concepts are given below.

Learning from label preferences

This scenario is also called label ranking in [FH11]. Learning from label preferences
concerns the problems in supervised learning methods.
Given:

• a set of training instances {xk|k = 1, . . . , n} ⊆ X ,

• a set of labels L = {λi|i = 1, . . . ,m},

• and a set of associated pairwise preferences on labels λi �xk λj of each training
instance xk,

learning from label preferences aims to find a mapping function of labels ranking on
each alternative X →MXL, whereMXL denotes the assignment of a ranking permu-
tation �x on L to every x ∈ X . In other words, learning from label preferences is to
predict the label ranking in L for any instance x ∈ X , where λi �x λj implies that
instance x prefers label λi to λj . This scenario is often encountered in ensemble learn-
ing, where final labels of objects are obtained by the aggregation of multiple classifiers,
such as Bagging [Bre96] and Adaboost [FS97].

In deed, learning of label preferences has been a trend of extending machine learning
methods to complex and structured output spaces [FH03, THJA04], notably in multi-
label classification, where multiple labels may be assigned to each instance..

Learning from object preferences

This scenario is also called object ranking is other works as [FH11]. In the scenario
of learning from object preferences, the machine learning algorithms are applied on
objects with preference relation known to predict preference relation on new objects.
This scenario is formally defined as follows.
Given

• a (potentially infinite) set A of objects (alternatives),



52 Preference management

• and a finite set of pairwise preferences aiRaj , (ai, aj) ∈ A×A, R ∈ {�,≺,≈,∼},

Methods of learning from object preferences aim to find a ranking function O(·)
that returns a permutation ranking on object A′,A′ ⊂ A.

Briefly speaking, learning from object preference is the elicitation of implicit prefer-
ences based on the observed preference knowledge. This scenario is the most fundamen-
tal task in the domain of preference learning and has been widely applied, especially in
recommendation systems.

In [FH11], the authors consider another scenario, instance ranking, in addition
to the two above. Roughly speaking, instance ranking aims to rank objects (instances)
based on their corresponding label (or class) information. As instance ranking also
aims to find ranking function on objects, we hereby consider it as a sub-scenario of
object ranking. More details are available in [FH11].

To recapitulate, learning from object preferences is to predict preference relations
or rankings by using machine learning methods while learning from label preferences is
to predict preferences among labels in machine learning problems. The two scenarios
are not isolated. In the scenario of learning from label preferences, labels are sometimes
regarded as objects thus technique of object ranking can be applied.

In this thesis, the term “preference learning” refers to the second scenario–learning
from object preferences. In the following content, major techniques for learning on
object preferences are introduced.

4.4.2 Major techniques for preference learning

Preference learning techniques mainly consist of two categories: learning utility func-
tions and learning preference relations, respectively introduced as follows.

Learning utility functions

An utility function is a mapping function f : A → R that assigns an utility degree f(a)
to each object a ∈ A, which induces a linear order on A. A ranking relation ai � aj is
derived by values of the utility function f(ai) > f(aj).
A common example of utility function is the scoring (or noting) systems, such as Netflix
Prize [BL+07] for film scores predicting, and Sushi scores in Sushi dataset [Kam03a].
Such techniques have attracted many researchers. A most basic idea is to portray each
agent by the scores on each alternative and learning directly in the space of scores. Sev-
eral chanllenges exist in such methods, such as incapability to deal with missing values
and low efficiency when data dimension is large. Targeted on these issues, many solu-
tions have been proposed, such as Matrix Factorization (MF) [KP13, ZWFM06], col-
laborative filtering (CF) [Kam03a, CMF08, HKBR99, Paz99], Deep Learning [IJW+19,
ZYST19], and hybrid methods [WWY15]. More introduction on these solutions is given
in Section 4.5.
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Learning preference relations

However, preferences do not always come with utiliy functions. In some cases, where
preferences are expressed by orders, or by pairwise relations, learning preference rela-
tions becomes necessary. Besides, [CSS98, DJBW03] have pointed out that obtaining
information of preference relations may be easier and more natural than obtaining the
labels needed for a classification or regression approach, and such type of information is
more accurate, since “ people tend to rate their preferences in a relative way, comparing
objects with the other patners in the same batch”, namely batch effect [DDCLB08].

Learning preference relations focuses on comparing pairs of objects (alternatives) in
terms of binary preference relations. This kind of approach has been pursued in [CSS98]
and applied in various domains from recommendation on internet [Joa02] to agriculture
production [BBD+04]. Some important survey works are introduced in [KKA10, FH03].

Learning from object preferences has been widely applied in research works on Rec-
ommendation Systems (RS)2, where clustering techniques are often applied. Generally
speaking, “ RS help agents to find content, products, or services by aggregating and
analyzing suggestions from other agents, which means reviews from various authorities
and agents ” [PKCK12]. Globally, popular RS methods are categorized into two schools:
content-based filtering (CB) and collaborative filtering (CF). CB analyzes a set of alter-
natives rated by an agent and uses the content of the alternatives, sometimes with the
provided ratings, to infer an agent’s profile that can be used to recommend additional
alternatives (items) of interest. In CF, the agent will be recommended alternatives
based on other agents with similar tastes and preferences. Besides, hybrid methods
combining CB and CF have also been proposed [BS97, MCG+99, Paz99]. Some lit-
erature review works providing more detailed introduction are available in [PKCK12]
and [AT05].
In addition to RS, preference information is also useful in community detection. In CF,
the search of similar agents is actually a process close to the principle of community de-
tection. [JPW07] applied community detection methods on bidding preferences in eBay
market data. [YST+13] proposed a RS based on preference-aware community detec-
tion. [ZKL15] introduced preference-based non-negative matrix factorization (PNMF)
model to incorporate implicit link preference information for overlapping community
detection.

4.5 Preference clustering
As mentioned above, in CF, recommended alternatives to an agent are based on other
agents with similar tastes and preferences. Such work of finding neighborhood in
agents based on the similarity is also also called community detection in domain of

2Recommendation Systems are also called recommender systems, or personalization systems in
different research communities
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social networks, and preference information has already applied in many works such
as [LCLM16, YST+13]. With the terminology of preference learning, these processes
are clustering on preferences.

The objective is to segment agents into different groups (called clusters) based on
their preference information such that agents in the same cluster share more similar
preferences to each other than to those in other clusters. This procedure is important
in many preference based applications, such as recommendation systems building, com-
munity detection, etc.

A brief workflow of data clustering is illustrated in Figure 4.2. The data clustering
consists of four principle steps:

1. Feature selection
In this step, features are extracted and selected to represent every instance (or
“agent” in preference clustering), making up the data for further process. In our
case, the features are based on preference information of each agents.

2. Clustering algorithm selection and application
In this step, proper clustering algorithm as well as corresponding parameters
are selected and executed on data for processing. After this step, instances are
grouped into different clusters.

3. Clustering result validation
In this step, the clustering results obtained in the previous step are evaluated.
The result is validated if the evaluation result is satisfying enough.

4. Interpretation of clustering results
In this step, the validated clustering results are interpreted as knowledge. Con-
cerning on the clustering on agents, the results can be interpreted as communities
of agents.

In this thesis, we mainly focus on the modeling and representation of agents (also
called features) from preference data. A major issue particularly important for pref-
erences exists in the completeness of the data. Given an agents set of size K AGT =
{agt1, agt2, . . . , agtK} represented by their partial preferences on alternatives A, clus-
tering based preference elicitation methods consists in two procedures:

1. Cluster agents into different partitions C = {c1, . . . , c|C|} based on partial prefer-
ence information. Denote the clustering function as C(agt) : AGT → C.

2. Elicit the unobserved preferences of agent agtm, based on the partition (or neigh-
borhood) where agtm belongs.

We can say that this work is a “chicken or the egg causality dilemma”. The two
procedures are dependent to each other, i.e. for the agent clustering procedure in an
identical algorithm, preferences with less unobserved data returns a more reliable while
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Figure 4.2 – Workflow of data clustering

for the preference elicitation procedure, a partitioning result with better quality returns
a more solid prediction.

Hereby, we introduce main stream methods of the clustering on incomplete prefer-
ences.

4.5.1 Clustering on incomplete preferences

Clustering on incomplete preferences is a specific application of clustering on data
with missing or unobserved information, which is a common issue in machine learning.
According to [LR19], the missing data may follow different randomness, divided into
three categories, quoted below.

“

1. Missing completely at random (MCAR): This is the highest level of ran-
domness. It occurs when the probability of an instance (case) having a
missing value for an attribute does not depend on either the known val-
ues or the missing data. In this level of randomness, any missing data
treatment method can be applied without risk of introducing statistical
bias on the data;

2. Missing at random (MAR): When the probability of an instance having
a missing value for an attribute may depend on the known values, but
not on the value of the missing data itself;

3. Not missing at random (NMAR): When the probability of an instance
having a missing value for an attribute could depend on the value of
that attribute.

”
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Before the discussion on incompleteness, we firstly distinguish two concepts “sparse
matrix” and “scarce matrix”.

Definition 4.5.1. Sparse matrix: A sparse matrix (or sparse array) is a matrix in
which most elements are zeros.

Definition 4.5.2. Scarce matrix: A scarce matrix is a matrix in which most elements
are missing (we call it null in this work).

In many works, the definition of “sparsity” and ‘scarcity” are not distinguished.
Sparse matrix may refer both of the two scenarios above and missing data are valued
as zeros. For matrix on preference information, this is pertinent in following cases:

• The matrix represents the information of comparability. In an information ma-
trix [CKS86] I = (Iij), where i, j denotes comparison information between alter-
natives ai, aj , i.e.

Iij =
{

1, if ai, aj are compared,
0, otherwise

(4.2)

Such cases corresponds to MCAR or MAR categories.

• The missing information can be induced as “dislike” opinion. For instance, in
a voting mechanism where agents express their top-k alternatives, the missing
information on other alternatives can be induced as “dislike”. Thus, it is pertinent
to define the utility function, such as scores, on these alternatives as zeros.
It should be noted that data are not randomly missing, it’s a NMAR case.

Targeted on the scarcity problems where parts of data are null, i.e. cases of MCAR
and MAR, clustering methods can be categorized into three schools:

• Data imputation. Data imputation refers to the process of replacing missing
data with substitute values. The imputation of missing preferences is already elic-
itation procedure. Usually, such methods fill the missing data with statistical ap-
proaches, such as Neibourhood based methods [BM03, LDSS04], EM based meth-
ods [GJ94, WLXC05], Non-negative Matrix Factorization [ZWFM06], etc. The
neighborhood based methods imputes the missing data from the nearby agents.
Usually, the neighborhood are defined by clustering process (introduced later) or
ground truth information. In [GJ94], the authors assume that data instances
are generated independently from a mixture probability density and applies EM
method to maximize the likelihood on observed values to estimate the parameters
of the distribution. More precisely, mixture of Gaussian is applied on real-valued
data and mixture of Bernoulli for discrete valued data. In [WLXC05], the au-
thors applied logistic regression model as the probability distribution assumption
and applied EM method for the likelihood maximization. Matrix Factorization
(MF) is a popular method for score prediction in recommendation systems. Given
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the scoring matrix from all agents on all alternative Xm×n (n alternatives by m
agents), MF aims to find two matrix Um×k and Vk×n such that

X = UV. (4.3)

This method assume that the scores follow a linear model, thus the objective is
to build a linear model adapted to observed values, usually evaluated also by
likelihood. The searching for U and V in MF is also a clustering process where k
clusters are determined.

As transitivity is an extra property for preference data comparing to other infor-
mation, imputation by transitivity of preference relations [ACH+08] (or deduc-
tion) is also a reasonable method.

• Clustering on observed preference (Ignoring and discarding data). In
this category, all missing data are discarded and the clustering is effected only on
observed attributes. There are two mainstream ways of discarding in preference
clustering: clustering on top-k preferences or discounting the similarity between
objects by weighting on their completeness, also nameed partial distance strategy.
In clustering on top-k preferences, alternatives with missing preference informa-
tion are assumed to be disliked. This assumption transfer the “scarcity” into
“sparsity” by filling the “null” with zero. Discounted distances are normally rele-
vant to the superposition of alternatives shared by two partial orders. Many mea-
sures have been proposed such as Jaccard similarity [KBGM09], CPCC [SM95],
WPCC [HKBR99], SPCC [JE09], etc, corresponding to different measure of sim-
ilarity between preference orders.

• Modeling the missing features by soft methods, such as fuzzy theory [HB01,
ZC03] and rough set theory[LDSS05]. These methods interpret the null values
with a high degree of uncertainty, then apply soft clustering methods.

The last category is also related to clustering on uncertain data. With uncertainty,
data values are no longer atomic. In order to apply traditional clustering methods, un-
certainty data needs to be summarized into atomic values. To take mean values is an in-
tuitive way, and such method has been applied on incomplete preference data [Kam03a].
However, taking mean value is based on rough assumptions and could seriously affect
the quality of clustering results. Interpreting the uncertain data into interval data is
also a feasible solution [VdCL00, CL02]. In fact, such methods are intrinsically based
on the assumption that the missing data respect a uniform distribution.
Furthermore, many work apply more sophisticated probability density function (pdf)
or statistical models. [HG05] applied maximum likelihood estimation on Mixture Gaus-
sian model. Fuzzy theory have also been applied in clustering on data with uncertainty.
In [CCKN06], the authors proposed a fuzzy modeling on uncertain data named Uncer-
tain k-means (UK-means). [NKC+06] studied various prunning methods on UK-means
to improve the efficiency. [PLP11] proposed a Uncertain Customized k-means (UCK)
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by extended UK-means with the assumption that standard deviation of measurement
data is available. For more reading, [CCK+05] provides some synthetic information.
For better understanding, we distinguish two definitions on soft methods hereby. In the
domain of soft computing, soft clustering is a popular topic. Soft clustering is different
from modeling data with soft methods (soft modeling). In soft clustering, data is crisp.
One data point (instance) can belong to multiple clusters with a certainty degree, such
as FCM [BEF84] based on fuzzy theory, ECM [MD08], EVCLUS [DM04] and EKN-
Nclus [DKS15a] based on TBF. However, in soft modeling, data are uncertain (say soft
data), which is a different scenario than soft clustering. Thus, soft clustering can not
be applied directly on soft data.

4.6 Conclusion

Two aspects of preference management are introduced in this chapter: preference ag-
gregation and preference learning (preference clustering). In preference aggregation, we
reviewed several typical problems: Condorcet’s paradox (transitivity), missing informa-
tion, as well as Arrow’s impossibility theorem. The first two are to avoid or deal with
once encountered while Arrow’s impossibility describes a property of voting systems.
For crisp preferences, Condorcet’s paradox is avoided by the definition of voting mech-
anism (strategy). For fuzzy preferences, the transitivity is guaranteed by keeping the
consistency in fuzzy values, such as additive consistency and multiplicative consistency.
The incompleteness problem is a challenge for both preference aggregation and prefer-
ence clustering. Depending on various causes of incompleteness, different solutions are
applicable, concluded in Table 4.2. For top-k preference, the preference information

Table 4.2 – Different completing strategies to different causes of missing information

Completing
strategy Examples Preference

Aggregation
Preference
Learning

As disliked Top-k are given
√ √

As indifference Absence of agents
√

x
By statistical model Average of other agents x

√

are given only on the most preferred alternatives. Thus, it’s reasonable to induce that
the alternatives without preference information given are disliked and such induction
is objective.
For agents who are absent in expressing their opinion on preference, it is reasonable
to consider their preferences as “indifference”, which plays a neutral role in the aggre-
gation process. However, such strategy is no longer applicable in preference learning.
The reason is simple: “indifference” is a meaningful value in agent portrait. If such
assumption is accepted, all agent not expressing preference opinion will be grouped
into one cluster. Such clustering result does not correspond to the initial objective:
clustering agents by their portraits of preferences.
For agents who do not express their preference opinion on the entire alternative space,
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it is reasonable to complete the missing value by statistic methods, such as average
value of preferences from similar agents. However, these induced preferences are not
convincing, i.e. there is no proof that the completed information respects the agent’s
subjective opinion. Therefore, if such induced preference data are applied in preference
aggregation, the aggregated result will lose the reflection to the group’s opinion.

In preference learning, a brief plan of problems is introduced. A topic map on
preference learning is concluded in Figure 4.3. We also introduced the characteristic

Figure 4.3 – Topic map of preference learning

relation between some aggregation methods and distances. All preference aggregation
methods are based on one principle: to find a consensus opinion, i.e. the aggregated
preference should have as little conflict to agents’ individual preference as possible and
respect the majority opinion in agents. The distance based aggregation is equal to the
centroid calculation in preference clustering on the same distance for preference simi-
larity measuring.

Some difficulties in learning on imperfect preferences are pointed out, with a brief
survey on different schools of clustering methods based on imperfect data, some of which
are adaptable for imperfect preferences. In addition to the strategies of completing
the preference information, more solutions are applicable for preference learning. A
summary is given in Table 4.3.

We also introduced the relation with preference clustering and recommendation
systems, which is a major application for preference learning. Finally, with the help of
different soft computing methods, such as fuzzy theory and TBF, we distinguished the
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Table 4.3 – Methods on clustering on incomplete preferences.

Category Description Examples
Complete
missing values

Complete missing values under assumptions
Usually with zeros or with average value Table 4.2

Cluster on
observed data

Weight the instances
with completeness of observation

CPCC
WPCC

Soft modeling Regard the missing data as uncertain problem.
Apply soft theories. UK-means

soft clustering methods and soft modeling for data with uncertainty.

In next part, we introduce contributions of our this thesis work. The contribution
is mainly on modeling on imperfect preferences, with applications around aggregation
and clustering.



Part III

Contributions

61





Chapter 5

BFpref model, an evidential
model for imperfect preferences

In the introduction chapter, preference relations with imperfectness as well as some
ambiguities in the basic definition of preference relations were introduced, identifying
new challenges in preference modeling. In Section 2.2 of Chapter 2, it is mentioned that
the state of the art models for non crisp preferences are able to modelize the preferences
with uncertainty but not imprecision. Besides, in the conclusion part of Chpater 3, an
ambiguity in the definition of “incomparability” was introduced. Targeting on these
issues, based on the theory of belief functions, we propose a frame of discernment on all
possible preference relations between two alternatives, namely BFpref (Belief Function
based PREFerence) model [ZBM17]. BFpref model is able to express both uncertainty
and imprecision as well as information missing in preference reasoning.

In this chapter, we introduce our contributions on evidential preference modeling.
Firstly, we pose an issue on the definition of “incomparability” with different interpre-
tations. Afterwards, a frame of discernment for BFpref model is given in Section 5.2,
followed by a solution for modeling the imperfectness, including problems of “uncer-
tainty”, “imprecision” and “incompleteness”. Afterwards, we propose a strategy to
avoid Condorcet’s paradox as well as a Depth First Search (DFS) based algorithm to
optimize the search of Condorcet’s paradox situation.

5.1 An issue in “incomparability”

Incomplete orders (partial orders and quasi orders) include the “incomparability” pref-
erence relation. However, “incomparability” relation may refer to multiple interpre-
tations. We compare three examples respectively caused by “absence of knowledge”,
“conflict” and “non-observed data”.

In Chapter I, example 3 presented a situation that agents do not know “Ram-
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boutan”, so they are not able to give a “strict preference” when alternatives concern
“Ramboutan”. In this case, “incomparability” is caused by lack of knowledge on the
alternatives.
The second example is a real case on Sushi preference dataset [Kam03a], already given
in Example 4 in Chapter I. In this example, the “incomparability” is caused by “non-
observable” (or implicity) in parts of data. More details of Sushi preference dataset is
given in Section 6.3.2.
The third example is taken from [DMÖ+12] between two job offers.
Example 9. Which job is better?

Bob gets two job opportunities: job1 and job2. Job1 comes with a low salary
but is very interesting while job2 with a high salary but is not interesting at
all. When comparing these two jobs with high conflict, Bob has difficulties
to express a strict preference in favor of one of them or indifference.

Three scenarios of “incomparability” is demonstrated in the examples. The first two
examples are caused by the absence of information (respectively from the angle of
agents and the data). The third one is caused by conflicts. In our opinion, different
interpretations of “incomparability” should be modeled differently. In next sections, we
introduce the BFpref model for uncertain and imprecise preferences, we also distinguish
the two interpretations of “incomparability”.

5.2 BFpref model
In the BFpref model, we consider a case that a set of agents AGT = {agt1, . . . , agtn}
expressing their preferences between every pair over an alternative set A = {a1, . . . , ak}.
Thus, each agent is a source of preference information. For any ai, aj ∈ A, four relations
are possible:

• Strict preference: ai � aj

• Inverse strict preference: ai ≺ aj

• Indifference: ai ≈ aj

• Incomparability: ai ∼ aj
To ensure that the four relations are exclusive and exhaustive for all preferences between
two alternatives, the relation of “incomparability” is indispensable. Therefore, on a
given pair of alternatives ai and aj , the frame of discernment is defined as:

Ωij = {ωRij |R ∈ {�,≺,≈,∼}}. (5.1)

Obviously, with the theory of belief functions, BFpref model is able to express
preference information with ignorance and imprecision. This model is also available to
distinguish different interpretations of “incomparability”.
To summarize the three examples of incomparability (Example 3, 4 and 9), given two
alternatives ai, aj ∈ A, an “incomparability” relation may refer to two scenarios:
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1. ai and aj are not compared because of the lack of knowledge or the information
of comparability is missing (say “undecided” case);

2. ai and aj are not comparable because of conflicts (say “indecisive” case).

To distinguish these two scenarios in BFpref model, the “indecisive” case is repre-
sented by the singleton ω∼ and the “undecided” case by the vacuous BBA m? where
m?(Ω) = 1, also representing the total ignorance (see Definition 2.3.4 of Chapter 2).

In some circumstances such as surveys, or voting systems, four BBAs

mR
s , R ∈ {�,≺,≈,∼}

are defined for agent agts, estimating on each alternative pair ai, aj . Each BBA is a
simple supported, respectively representing the uncertainty degree on the four prefer-
ence relations and the agents are assumed to be cognitively independent. Such design
is for sake of agents’ convenience because in a voting system, a person usually feels
more convenient to give belief degrees on one single event rather than four. Besides,
observation on one relation is always simpler than on four relations. The assumption
of cognitive independence is an essential condition required by many combination rules
such as conjunctive rule. This assumption is reasonable to be applied on different agents
since in many preference collection mechanisms such as voting systems, the exchange
between different agents is considered as limited.

In Chapter 4, we introduced preference management as an important research do-
main. Based on the BFpref model, the management of preferences is studied as well. In
this chapter, we mainly focus on the aggregation problems in BFpref and corresponding
solutions, introduced in next sections.

5.3 Evidential preference aggregation strategies

As mentioned in Chapter 4, the aggregation of preferences is indeed a specific case
of information fusion process, where the theory of belief functions plays an important
role. In this section, we mainly introduce two different aggregation rules on evidential
preferences based on the combination rule in the theory of belief functions. The entire
information fusion process mainly consisting of two steps: combination and decision.
Specially for preference data, the avoidance of Condorcet’s paradox situations is also
an important issue. Thus, we also studied the problem and proposed a Condorcet’s
paradox avoidance strategy as well as an efficient elimination algorithm.

5.3.1 Combination

The preference aggregation on BFpref model is actually the combination and decision
steps with the terminology of the theory of belief functions. In this section, we first
introduce different combination strategies for BFpref model, then, in the decision part,
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we introduce our algorithms to avoid Condorcet’s paradox.

Developed from combination and decision rules, we propose two combination strate-
gies, marked as Strategy A and Strategy B. For each alternative pair ai and aj (i < j),
the strategies are illustrated in Figures 5.1 and 5.2 followed by detailed explanations.
Strategy A was originally proposed by [EBMBY15]. Both strategies are based on the
two combination rules described in Equations (5.3) and (5.2).

• Strategy A:

m�s
. . .
m∼s

mean value rule
combination m

Ωij
s

m�1
. . .
m∼1

mean value rule
combination
(eq 5.2)

m
Ωij
1

...
...

...
conjunctive rule
combination
(eq 5.3)

mΩij

Figure 5.1 – Combination Strategy A

Firstly, we combine the four BBAs on four relations of one pair (ai, aj) from one
agent agts into one BBA. As the four BBAs originate from one identical agent,
they are not cognitively independent (see Section 2.3), then, the mean value
rule is proper for the combination. Applying mean value combination rule upon
equation (5.2) as:

m
Ωij
s (X) = 1

4
∑

R∈{�,≺,≈,∼}
mR
s (X), X ⊆ Ωij (5.2)

where mΩij
s denotes the belief degree of agent agts on the entire frame of dis-

cernment Ωij defined in Equation 5.1 . Then, the conjunctive combination rule
in equation (5.3) is applied over multiple agents because they are cognitively
independent. For an alternative pair (ai, aj), we obtain a BBA given by:

mΩij (X) = S
∩©
s=1

m
Ωij
s (X), X ⊆ Ωij (5.3)

where mΩij denotes the aggregated belief level from all agents on the entire frame
of discernment. The BBAmΩij (X) is the finally combined BBA for the alternative
pair (ai, aj). One of the drawbacks of strategy A is in its inability to scale with the
volume of information sources (agents in our case). After the first combination
with mean value rule, the combined BBAs are no longer simple support BBAs and
have auto-conflict. The non-simple-support BBAs cause global-conflicts and lead
to increase the value of mΩij (∅) when conjunctive combination rule is applied.
Once the volume of sources gets large, global-conflicts are exacerbated by the



Evidential preference aggregation strategies 67

conjunctive combination rule so that mΩij (∅) converges to 1 [MJO08]. To avoid
such deterioration, we proposed strategy B in which the conjunctive rule is applied
on simple support BBAs.

• Strategy B:

m∼1
. . .
m∼s

conjunctive rule
combination m∼

m�1
. . .
m�s

conjunctive rule
combination
(eq 5.4)

m�

...
...

...
mean value rule
combination
(eq 5.5)

mΩij

Figure 5.2 – Combination Strategy B

Strategy B is the inverse of strategy A, presented in Figure 5.3.1.
Firstly, we arrange BBAs for each alternative pair (ai, aj) of all agents S into 4
groups, respectively representing the four preference relations. On each group,
the conjunctive combination (equation (5.4)) is applied.

mRij (X) = S
∩©
s=1

m
Rij
s (X), Rij ∈ {�,≺,≈,∼}, X ⊆ Ωij (5.4)

where mRij denotes the aggregated belief degree of all agents on preference rela-
tion R between alternatives ai and aj . Afterwards, we apply mean value combi-
nation method on the 4 combined groups.

mΩij (X) = 1
4

∑
R∈{�,≺,≈,∼}

mR(X) (5.5)

The Strategy B is more suitable when few BBAs are valued with ignorance or
imprecision. Applying conjunctive combination rule on such BBAs can cause high
global-conflict, i.e. the combined BBA has large value on ∅. Such phenomena will be
illustrated in the experiments part.

5.3.2 Decision

After two combinations, we finally get a BBA for each pair (ai, aj) denoted by mΩij .
The decision related to the relationship of each pair is taken based on the pignistic
probability betP (·) on the space Ωij by:

ωij,d = argmax
ωRij ,R∈{�,≺,≈,∼}

betPΩij (ωij,R) (5.6)

Since the decision is made on aggregated preferences. Conflict preferences such as
Condorcet’s paradox may appear. In the subsection 5.3.3, we propose two algorithms
to avoid Condorcet’s paradox in the final result.
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5.3.3 Condorcet’s paradox avoidance in graph construction

In the following, we use directed graph for the graphic representation of the preference
order obtained from the fusion process. The four possible relationships are illustrated
as follows:

• ω�ij : ai � aj :
i j

• ω≺ij : ai ≺ aj :
i j

• ω≈ij : ai ≈ aj :
i j

• ω∼ij : ai ∼ aj :
i j

In the preference graph, a Condorcet’s paradox is represented by strongly connected
components (or cycle). A strongly connected component of size 2 is considered as
an indifference relationship, therefore Condorcet’s paradox is represented by cycles of
minimum size 3. A simple example of Condorcet’s cycle is illustrated in Figure 5.3.

a b

c

Figure 5.3 – Graphic representation of Condorcet’s paradox

Condorcet’s paradox does not respect the property of transitivity, which must be
satisfied for quasi order (see Definition 2.1.7 in Section 2.1). To avoid Condorcet’s
paradox, we have to cut an edge in the cycle of size equal or larger than 3. The fact of
removing an edge between a and b is equivalent to replace the original relation between
a and b by “incomparability". In order to introduce as little knowledge as possible,
we decide to remove the edge which is most similar to the relation “incomparability".
To measure this dimilarity, in our work, we choose Jousselme distance [JGEB01] (see
Equation (3.16) in Chapter 3) for distance measurement. Jousselme distance is consid-
ered as a reliable similarity measure between different BBAs [EMSBY14]. It considers
coefficients on the elements composed by singletons. In this paper, Jousselme distance
is denoted by dJ . Hence distance between an alternative pair (ai, aj) and “incompara-
bility" is denoted by dJ(mij , ω

∼,0
ij ), where the BBA of incomparability ω∼,0ij denotes the

categorical BBA (m(ω∼) = 1) on preference relation ∼ between the two alternatives.
Obviously, preferences over multiple alternatives without Condorcet’s paradox can

be represented by a Directed Acyclic Graph (DAG) (note that cycles of 2 elements
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are tolerated in such graph because of the “indifference” relation). To simplify the
explanation, DAG with tolerance of 2-element-cycle is denoted by DAG2.

With strongly connected components (SCC) search methods such as Tarjan’s al-
gorithm [Tar72], we firstly propose a naive algorithm by iterating “DAG detect-edge
remove” process in Algorithm 2. Each iteration detects all the SCC of size larger
than 2 as subgraphs (function SCC in Algorithm 2) and remove one edge closest to
incomparability in each sub-graph (Loop Process in Algorithm 2).

Algorithm 2 Naive DAG2 Building Algorithm
Input: A preference graph G constructed on equation (5.6) with edges valued by BBAs

edge.mass
Output: A directed acyclic graph

// Loop Process
1: while subgraphList=SCC(G) is not empty do
2: for subgraph in subgraphList do
3: remove edge in all edges of subgraph who is nearest to the preference relation

of “incomparability”.
4: end for
5: end while

// SCC search function (apply Tarjan’s algorithm)
function SCC(G)

Input: directed graph G
Output: The sub-graphs of strongly connected components of size larger than

2 in G.

Since the SCC search function returns the largest strongly connected component
found, this method loses its efficiency confronting SCC with nested cycles. A simple
structure of nested cycles is illustrated in Figure 5.4.

1 2
3

4

N
...

Figure 5.4 – Nested cycles

Facing such structure of preferences, we propose here a more efficient algorithm to
build a DAG2 in an incremental way, described in Algorithm 3. In this algorithm, all
edges are ordered by their Jousselme distance to incomparability at the initialization
phase (line 2). “Incremental" means that the graph is built by adding edges one by one
in a descending order of their distance to incomparability. Given an alternative pair
ai, aj with their predefined comparable (preference, inverse preference or indifference)
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relation r calculated from the BBA, we check if the graph is still a DAG2 with new edge
between ai, aj added. The checking process is based on a Depth-First-Search (DFS)
algorithm. Given two nodes ai and aj in graph G, function DFS(G, ai, aj) returns the
path length from ai to aj .

More precisely, if a relation r is a strict preference ai � aj , the DFS algorithm
searching node ai starts from node aj . If ai is found, a cycle will appear if the edge i −→
j is added. In such case, we replace the relation between ai, aj by an incomparability
relation (remove the edge) (line 6 and 7). Similarly if r is inverse preference ai ≺ aj ,
the DFS algorithm searches node aj from ai (line 8 and 9). However, the relation
“indifference" may hinder the time performance of this algorithm. If r represents the
indifference relation ai ≈ aj , we have to apply DFS twice from ai to aj and from aj to
ai (line 10 and 11).

In a structure of nested cycles containing E edges, V vertex and N cycles, the
naive algorithm based on SCC search (Algorithm 2) can reach a temporal complexity
of O(N(|E| + |V |)) while the incremental algorithm (Algorithm 3) has a temporal
complexity of O(N).

Although the incremental algorithm is efficient on nested cycle, its time performance
degenerates when the preference structure has few nested cycles or many indifference
relations. The applicability of the two algorithms is demonstrated and discussed in the
following section.

5.4 Experiments

In this section, we compare the two proposed preference fusion strategies and two
proposed algorithms for Condorcet’s paradox avoidance. The fusion strategies are eval-
uated from a numeric point of view while the algorithms are evaluated in terms of
time performance. Lacking social network data from real world, the data used in our
experiments were generated manually or randomly.

5.4.1 Preference fusion strategies

In this experiment, we firstly define preference structures of 3 agents as illustrated in
figure 5.5. To simplify our experiments, the alternative pairs are always in an ascending
order (i.e. ∀ai, aj ∈ A ⇒ i < j). The belief degrees for alternative pairs (2,3), (2,4)
and (3,4) are specially given in table 5.1. For the other alternatives, their belief degrees
are set by default values given in table 5.2.
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Algorithm 3 Incremental DAG2 Building Algorithm
Input: All pairs PAIRS and their BBAs M
Output: A DAG2 graph

// Initialization:
1: Initialize an empty graph G
2: Ascending order all pairs PAIRS by dJ(mΩij , ω0

4), stock in a stack denoted as
Stack.
// Loop Process

3: while Stack is not empty do
4: pair (ai, aj) = Stack.pop()
5: Add nodes ai and aj into graph G
6: if ai � aj then
7: pathLength=DFS(G, aj , ai)
8: else if ai ≺ aj then
9: pathLength=DFS(G, ai, aj)

10: else if ai ≈ aj then
11: pathLength=max(DFS(G, aj , ai), DFS(G, ai, aj))
12: end if
13: if pathLength> 2 then
14: Consider relation between (ai, aj) as incomparability
15: else
16: add edge between (ai, aj) calculated by mij (equation (5.6))
17: end if
18: end while

// Recursive Function
function DFS(G, v, n):

19: label v as discovered
20: if all successors of v in G are labeled as discovered then
21: return 0
22: else
23: for w in non-discovered successors of v do
24: if w is n then
25: return 1
26: else
27: len=DFS(G,w, n)
28: if len == 0 then
29: return 0
30: else
31: return len + 1
32: end if
33: end if
34: end for
35: end if
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Figure 5.5 – Preference order of three agents

Table 5.1 – Belief degree values for alternative pairs (2,3), (2,4) and (3,4)

agent/pair ω1 ω2 ω3 ω4
Agent 1/(2,3) 0.8 0.7 0.6 0.5
Agent 1/(2,4) 0.4 0.1 0.3 0.6
Agent 1/(3,4) 0.9 0.8 0.7 0.6
Agent 2/(2,3) 0.5 0.4 0.6 0.9
Agent 2/(2,4) 0.2 0.4 0.3 0.1
Agent 2/(3,4) 0.9 0.8 0.1 0.7
Agent 3/(2,3) 0.6 0.2 0.4 0.1
Agent 3/(2,4) 0.3 0.5 0.2 0.1
Agent 3/(3,4) 0.8 0.1 0.6 0.9

Table 5.2 – Default belief degree values on 4 relations

relation ω1 ω2 ω3 ω4
preference 0.8 0.2 0.3 0.1

inverse preference 0.1 0.9 0.2 0.1
indifference 0.3 0.3 0.7 0

incomparability 0.1 0.1 0 0.9

With both fusion strategies A and B (in Section 5.3), we get two different results
illustrated in Figures 5.6 and 5.7.

A different edge result between alternatives a1 and a2 is high lighted by dashed
dotted line: the relation between alternatives a1 and a2 is indifferent from strategy A,
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Figure 5.6 – Fusion result of strategy A
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Figure 5.7 – Fusion result of strategy B

while a2 � a1 from strategy B. Focal elements in BBAs on edges are shown in Tables 5.3
and 5.4. Since in original data, BBAs are zero on all non-singleton elements, the final
BBAs are still zero on union elements except ignorance (and empty set for strategy A).

Table 5.3 – BBA values on edges of strategy A

pair ∅ ω1 ω2 ω3 ω4 Ω
(1,2) 0.17989 0.08620 0.19870 0.21626 0.01139 0.30755
(2,3) 0.07858 0.17209 0.03612 0.08545 0.15812 0.46962
(2,4) 0.08745 0.07225 0.12931 0.11762 0.12373 0.46962
(3,4) 0.07858 0.17209 0.03612 0.08545 0.15812 0.46962
(4,5) 0.20880 0.22056 0.15581 0.09589 0.03375 0.28519

Table 5.4 – BBA values on edges of strategy B

pair ∅ ω1 ω2 ω3 ω4 Ω
(1,2) 0 0.13975 0.23775 0.232 0.025 0.3655
(2,3) 0 0.1765 0.05 0.10825 0.17 0.49525
(2,4) 0 0.1 0.152 0.138 0.14875 0.46125
(3,4) 0 0.1765 0.05 0.10825 0.17 0.49525
(4,5) 0 0.241 0.234 0.152 0.06775 0.30525

From this result, we observe that:

1. Both combination strategies do not always return same results.

2. A significant difference between the two results exists in the value of empty set ∅.

3. A Condorcet’s paradox appears in the fusion result.

The first two observations concern the empty set value mΩij (∅). If high global-
conflict exist in among sources, a conjunctive combination can cause high value on
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mΩij (∅), implying high auto-conflict in the combined result [MJO08]. Moreover, this
conflict accumulate when the number of sources increasing. As a result, mΩij (∅) may
converge to 1 and other focal elements are no longer convincing. For better demon-
stration, we illustrate the average of mΩij (∅) after combination on all alternative pairs.
The average value is calculated by:

maverage(∅) = 1
|C2
|A||

∑
i,j∈C2

|A|

mΩij (∅) (5.7)

where C denotes the combination operation, |A| the size of the alternative set A.
The agent number ranges from 3 to 90 with step of 3 by replicating Agent 1, 2 and

3 by multiple times. The result is illustrated in Figure 5.8.

Figure 5.8 – Average of m(∅) with agent number increasing

This result shows clearly the default of strategy A. The average of mΩij (∅) in strat-
egy A converges to 1 while it is always 0 in strategy B. Our experiment example is
already an optimal case because agents belief degrees are not various enough (they are
just a repetition of the belief degrees of Agent 1, 2 and 3). In fact, the curve of strategy
A may rise faster if agents’ belief degrees are more various.

In Condorcet’s paradox made up by alternatives 2, 3 and 4, the distance between
the final combined BBA associated to the edges of the cycle and the relation of incom-
parability is given in Table 5.5.

Table 5.5 – Jousselme distance between alternative pair BBA and incomparability

alternative pair dJ in Strategy A dJ in Strategy B
(2,3) 0.70798 0.60715
(3,4) 0.77016 0.60739
(2,4) 0.66928 0.64387
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From table 5.5, another difference between strategy A and B can be found. In
strategy A, BBA of alternative pair (2, 4) is the closest to incomparability while in
strategy B, the closest alternative pair to incomparability is (2, 3). The final result is
illustrated in Figures 5.9 and 5.10.
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Figure 5.9 – Result without Condorcet’s paradox in strategy A
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Figure 5.10 – Result without Condorcet’s paradox in strategy B

Considering the drawback caused by convergence of empty set value, we believe
that strategy B outperforms strategy A, because the latter one does not scale with the
number of agents.

5.4.2 Condorcet’s paradox avoidance

In this experiment, we evaluated the performance on three special preference struc-
tures: nested cycles (Figure 5.4), entangled circles (Figure 5.11) and non-nested struc-
tures with indifference relations (Figure 5.12). The BBAs associated to the preference
relations are randomly generated adapting with entangled Condorcet’s paradox. The
evaluation is based on the runtime with increasing number of nested cycles N . As
all BBAs are randomly generated following an uniform distribution from 0 to 1, we
take the average value of 10 same tests to ensure the reliability of the result. In the
experiments, alternative numbers range from 20 to 400 with an interval of 40.

1 2 3 4 5 N. . .

Figure 5.11 – Entangled cycles
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Figure 5.12 – Non-nested Cycles

The performances related to the three preference structures are illustrated in fig-
ure 5.13. We observe that the incremental algorithm outperforms the naive algorithm
when the structures contain a great number of nested cycles. However, for the structures
with little nested cycles but many indifference relations, the naive algorithm performs
better. Hence, the selection of Condorcet’s paradox avoidance algorithm should be
adapted to the structure of the preferences.

5.5 Conclusion
In this chapter, we introduced the modeling and fusion problem of preference with un-
certainty and imprecision. Targeted on such preferences information, we proposed and
compared two strategies with conjunctive combination rule and mean value combina-
tion rule, based on the theory of belief functions. The one which avoid global conflicts
performs better when the number of sources scales up. We also proposed a Condorcet’s
paradox avoidance method as well as an efficient DFS-based algorithm adapting to pref-
erence structure with nested cycles. By comparing the time performance of Condorcet’s
paradox avoidance algorithms on different types of preference structures, we noticed
that the incremental algorithm is more efficient on nested structures while the naive
algorithm is better on non-nested ones. Limited by our data sources, our experimental
works were done on synthetic data. Furthermore, the algorithm for DAG construction
can be applied in more general cases, other than those related to preference orders. In
domains concerning directed graphs with valued edges (e.g. telecommunication, social
network analysis, etc.), Algorithm 3 may find its usefulness.

There are still more works left to explore. Since our experiments are executed on
synthetic data, the quality of aggregation result is not objectively evaluated. Con-
cerning the “transitivity" property, only the Condorcet’s paradox is removed, but the
relation of “incomparability” does not guarantee the property of “transitivity”. An-
other issue falls on the similarity measure applied in decision making. In this decision
strategy, the preference of strict preference is equally weighted as indifference, which
is in contradiction to the natural sense. When aggregating two preference relations:
� and ≈, it is natural to reach to a � relation as result. However, the aggregation
method proposed in this chapter gives equal chance to these two relations. This issue
will be discussed in detail and solved in the next chapter.
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Figure 5.13 – Performances on different preference structures
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Chapter 6

A weighted singleton distance for
BFpref model

In the previous chapter, a belief function based model for imperfect preference was
proposed. At the end of the last chapter, we mentioned an issue in the distance for
BBAs that the difference between singletons are always equal, which may be against
the properties of the singletons in some circumstances. In decision making process,
this issue may cause a biased result when confronting the relation of “indifference”. In
this chapter, we introduce our contribution on a novel distance for BBAs while con-
sidering different weights on singletons, named Weighted Singleton Distance (WSD).
The advantage of WSD exists mainly in decision making on evidential preferences (BF-
pref model). This chapter is structured as follows. In Section 6.1, we firstly review
the assumptions in the properties in the state-of-the-art distances on BBAs and then
attribute the issues to a redundant property. In Section 6.2, by respecting new prop-
erties, WSD is introduced by extending on axiomatic distance for preference relation
types. In Section 6.3, WSD is applied in preference aggregation and compared with
other consensus strategies on both synthetic data and SUSHI data from the real world.

6.1 An issue in the similarity between evidential prefer-
ences

In the theory of belief functions, various divergence and similarity measure methods
have been introduced for BBAs in Chapter 3. The definition of the frame of discern-
ment Ω = {ω1, ω2, . . . , ωk} requires all singleton elements to be mutually exclusive and
exhaustive, which are essential properties for the modeling in the theory of belief func-
tions. However, most of these metrics accept an assumption that singleton elements are
equally measured when measuring the similarity between different singleton elements.
Precisely:

Assumption 1. In a set of exclusive elements Ω = {ω1, ω2, . . . , ωk}, the similarity
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between each elements is constant (normalized as 0). Formally,

sim(ωm, ωn) = 0,∀ωm, ωn ∈ Ω. (6.1)

Apparently, Assumption 1 is inappropriate for BFpref model. As introduced in
Section 3.2 of Chapter 3, we observe a contradictory case that d∆(�,≺) > d∆(�,≈),
where d∆ denotes the axiomatic distance between preference relations. For similarity
on BFpref model, the following condition should be respected:

sim(ω�, ω≺) < sim(ω�, ω≈) (6.2)

where ωR, R ∈ {�,≺,≈,∼}} represent the singletons on corresponding preference rela-
tions. This inequality relation indicates that the relation � and ≺ are most incoherent
among all couples of relations. The contradiction between Equation (6.2) and (6.1)
often appears in decision making step. Even in some distance independent decision
making strategies, such as maximum pignistic strategy (see Equation (2.30) in Sec-
tion 2.3). Indeed, on decision on singletons, maximum pignistic strategy is equivalent
to the minimum Jousselme distance (see Equation (3.16) in Section 3.4) to categorical
BBAs. A proposition is therefore given:

Proposition 1. A decision is made on BBA m in the frame of discernment Ω =
{ω1, . . . , ωk}, the following rules return the same result.
Given

ωbetP = argmax
ωi∈Ω

(betPm(ωi))

ωminD = argmin
ωi∈Ω

(dJ(m,ω0
i ))

(6.3)

with ω0
i denoting a categorical BBA on ωi, and dJ Jousselme distance [JGEB01], the

equality relation
ωbetP = ωminD

is always true.
The proposition is thus given in another way:

Proposition . In the frame of discernment Ω = {ω1, . . . , ωk}. If for a BBA m, exist
ωd such that ∀ωi ∈ Ω, ωi 6= ωd,

betPm(ωd) > betPm(ωi) (6.4)

Then the following in-equation is true:

dJ(m,ω0
d) 6 dJ(m,ω0

i ) (6.5)

where ω0
d and ω0

i represent categorical BBA on ωd and ωi respectively.
The demonstration is given in Appendix A.

With Assumption 1 abandoned, we hereby recapitulate more properties required in
similarity measuring between evidential preference relations.
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6.1.1 Properties of similarity measure for evidential preferences

The relation between different order types from the most specific to the most general
is illustrated in Figure 6.1.

Total order

Weak order

Partial order

Quasi order
with “indifferen

ce”

with “incompleteness”

with “incompleteness”

with “indifferen
ce”

Figure 6.1 – Relations between four types of orders

In this relation map, between any two types of orders, the relation on the right
is more general (possessing more relations) than the left, Thus, similarity measure for
quasi (pre)orders is compatible with all the other three orders. However, most of the
similarity measures are designed for complete orders, i.e. weak orders and total orders.
The difficult part falls on the similarity measure when dealing with “incomparable”
relation. To give up Assumption 1 (the similarities between singletons are equal), we
define three necessary properties for similarity measure between two BBAs in BFpref
model.

Property 1. Weighted singleton: The similarity measure between BBAs takes
into account the different similarity between singletons. Scilicet, Assumption 1 in
Section 6.1 is abandoned.

Property 2. Metric: The similarity is measured by a distance. Therefore, the
properties of metric are kept.

Thus, non-negativity, identity of indiscernible, symmetry and triangle-inequality are
kept. These properties guarantee that the similarity is measured by a metric. In the
theory of belief functions, BBAs are defined in space of 2Ω. Hereby, we introduce the
property of strongly structural for distances between BBAs. The definition is borrowed
from [JM12].

Definition 6.1.1. Strongly structural: A similarity measure sim between two
BBAs m1 and m2 is called strongly structural if its definition accounts for the in-
teraction between the focal elements of m1 and m2.

We directly give an example of strongly structural property for evidential prefer-
ences in Equation (6.6). Hence, the similarity measure for BBA should have stongly
structural property.

Property 3. Strongly structural: Formally, a similarity measure is strong struc-
tural, if:

∀X,Y ∈ 2Ω, sim(X,Y ) ≥ sim(X \ (X ∩ Y ), Y ). (6.6)
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For a weak order with Ωweak = {ω�, ω≺, ω≈}, Equation (6.6) requires that the
following three relations must be satisfied.

1. Similarity between strict preference and union with indifference:

sim({ω�}, {ω�, ω≈}) > sim({ω�}, {ω≈})
⇒ sim({ω�}, {ω�, ω≈}) ∈ [1− p, 1]. (6.7a)

Symmetrically,

sim({ω≺}, {ω≺, ω≈}) > sim({ω≺}, {ω≈})
⇒ sim({ω≺}, {ω≺, ω≈}) ∈ [1− p, 1]. (6.7b)

where 1− p is the normalized similarity value between ω� and ω≈

2. Similarity between strict preference and total ignorance:

sim({ω�},Ω) < sim({ω�}, {ω�, ω≈}). (6.8a)

Symmetrically,

sim({ω≺},Ω) < sim({ω≺}, {ω≺, ω≈}). (6.8b)

3. Strict preference and union of other two different preference types:

sim({ω�}, {ω≈}) > sim({ω�}, {ω≺, ω≈}) > sim({ω�}, {ω≺}). (6.9a)

Symmetrically,

sim({ω≺}, {ω≈}) > sim({ω≺}, {ω�, ω≈}) > sim({ω�}, {ω≺}). (6.9b)

In Section 6.2, we introduce an adapted distance measure for BFpref model satis-
fying all these three properties.

6.2 WSD – a distance for weighted singletons in the dis-
cernment of preference types

Jousselme distance is widely accepted in applications based on the theory of belief func-
tions. It respects Properties 2 and 3 in Section 6.1.1. Thus, inspired by the methology
of Jousselme distance given in Equation (3.16), we develop the WSD distance with
Property 1 respected.

By applying Jaccard index, Jousselme distance satisfies Assumption 1. To address
this contradiction, we define WSD distance as follows:

dWSD(m1,m2) =
√

(m1 −m2)TSim(m1 −m2) (6.10)
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where Sim is the matrix of similarities between different elements. The calculation of
Sim is detailed in the rest of this subsection.

Firstly, we define the similarity function Sim(X1, X2) between two elements X1 and
X2 by two functions resemb(X1, X2, . . . , XK) and entire(X1, X2, . . . , XK):

sim(X1, X2) = resemb(X1, X2)
entire(X1, X2) (6.11)

where resemb(X1, X2) describes the cause of the similarity between X1 and X2 (say
resemblance), and entire(X1, X2) the entire part concerned by X1 and X2.
The calculation of resemb(X1, X2, . . . , XK) and entire(X1, X2, . . . , XK) is introduced
as follows.

Denote the function resemb(·) and entire(·) with Assumption 1 accepted as
resembass1(·) and entireass1(·), the functions resembass1(X1, X2, . . . , XK) and
entireass1(X1, X2, . . . , XK) are inherited as:

resembass1(X1, X2, . . . , XK) = |X1 ∩X2 ∩ . . . ∩XK |
entireass1(X1, X2, . . . , XK) = |X1 ∪X2 ∪ . . . ∪XK |

(6.12)
(6.13)

To simplify the expression, we denote W = {X1, X2, . . . , XK}, resemb(W )
for resemb(X1, X2, . . . , XK) and entire(W ) for entire(X1, X2, . . . , XK). Thus, by
dropping Assumption 1, entire(W ) is defined as a generalized version of cardinal func-
tion on union:

entire(W ) =
∑

ω∈∪W
entire(ω) −

∑
W2⊆W,|W2|=2

resemb(W2)

+
∑

W3⊆W,|W3|=3
resemb(W3) −

∑
W4⊆W,|W4|=4

resemb(W4)

+ . . . +
∑

Wk⊆W,|W|Ω||=|Ω|
resemb(Wk)× (−1)|Ω|

=
∑

ω∈∪W
entire(ω) +

|Ω|∑
k=1

∑
Wk⊆W,|Wk|=k

resemb(Wk)× (−1)k, (6.14)

where |Wk| denote the number of arguments (X ⊆ Ω) in Wk and ∪W the union of
elements in all arguments, i.e. for W = {X1, X2, . . . , XK}, we have:

∪W = X1 ∪X2 ∪ . . . ∪XK . (6.15)

With Equation (6.14), given only the similarity between two singleton elements,
entire(W ) does not have a unique solution. To guarantee the uniqueness in the solution
for similarity, we introduce two other assumptions.
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Assumption 2. In a set of exclusive elements Ω = {ω1, ω2, . . . , ωk}, any resemblance
is shared only by maximal two exclusive elements, i.e.

resemb(W ) = 0, ∀W ⊆ 2Ω, |W | ≥ 3 (6.16)

Assumption 2 guarantees that given only sim(ωm, ωn), a unique solution exists for
resemb(ωm, ωn).

Assumption 3. Elements are normalized in the calculation. Entire part concerned by
one singleton is assigned to 1, formally:

entire(ω) = 1, ∀ω ∈ Ω (6.17)

With Assumptions 2 and 3, given similarity sim(ωm, ωn), the resemblance is calcu-
lable. Deduced from Equation (6.14), we have:

entire(X,Y ) =
∑

ω∈X∪Y
entire(ω)−

∑
ωm∈X
ωn∈Y
m6=n

resemb(ωm, ωn) (6.18)

Hence, Equation (6.11) is inherited as:

sim(X1, X2) =

∑
ωm∈X1
ωn∈X2
m6=n

resemb(ωm, ωn)

∑
ω∈X1∪X2

entire(ω)−
∑

ωm∈X1
ωn∈X2
m6=n

resemb(ωm, ωn)
(6.19)

To guarantee Assumption 2 given by Equation (6.16), the following equation must
be respected: ∑

ωm,ωn∈Ω
ωm 6=ωn

sim(ωm, ωn) ≤ 1 (6.20)

6.2.1 Graphic demonstration of WSD calculation

For better comprehension, we illustrate the calculation of WSD in a graphical way on
four singletons ω1, ω2, ω3 and ω4 in Figure 6.2.

According to the exclusiveness of discernment framework, singletons has no su-
perposed part, illustrated in Figure 6.2a. Obviously, Figure 6.2a is isomorphic with
Figure 2.1. In Jousselme distance, distances between singletons are equal as no super-
posed area is shared between any two singletons.

We assume that exclusive singletons may have superposed part in another space
S∗ different from their original definition space S, causing the difference in similarities
between singletons. Such hypothesis is reasonable. For instance, among three cars
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Volkswagen Golf, Volkswagen Polo, and Renault Clio, each car is exclusive with others
if the description of the car is only on the entity (space S). However, Golf and Polo
can be considered as more similar than Clio if the brand of the car is considered for
the description (space S∗). Without a concrete definition, the superposed surface is
assigned by similarity values between singletons, as illustrated in Figure 6.2b.

(a) Element in original space S (b) Element in space S∗ with different similarity
values

Figure 6.2 – Graphical representation of WSD calculation

Thus, the calculation of similarity between elements X,Y ∈ 2Ω becomes the calcu-
lation of the corresponding area in Venn diagram of S∗ space. Assumption 2 indicates
that superposition only exists between at most two singletons while Assumption 3
indicates that the area of each singleton (circle) is valued as 1.

An illustrative example for WSD dissimilarity calculation is given in Section 6.2.2.

6.2.2 Illustrative example-WSD for BFpref model

As aforementioned, four preference relations are exclusive with each other, as shown
in Figure 3.4a. For two BBAs m1 and m2 on Ωpref (defined in Equation (5.1)), with
Assumption 1, in Jousselme distance, similarities between elements are constant, which
is contradictory with Equation (6.2) in Section 6.1. Thus, WSD is more appropriate.
Hereby, given the similarities between singletons, we illustrate how WSD is calculated
as a tutorial. The tutorial takes the example of BFpref model.

The similarity values between ωR|R ∈ {�,≺,≈,∼} is given in Table 6.1, In Ta-

Table 6.1 – Similarity between singletons

ω� ω≺ ω≈ ω∼
ω� 1 0 x y
ω≺ 0 1 x y
ω≈ x x 1 z
ω∼ y y z 1

ble 6.1, x, y and z represent the values of corresponding similarities between singletons.
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These values are not definitively assigned because various versions exist, as introduced
in Section 3.2 of Chapter 3. To simplify the deduction, function resemb(X1, X2) is
assigned by v1, v2, v3 as follows:

resemb(ω�, ω≈) = resemb(ω≺, ω≈) = v1

resemb(ω�, ω∼) = resemb(ω≺, ω∼) = v2

resemb(ω≈, ω∼) = v3

(6.21)

From Equations (6.17), (6.18) and values in Equation (6.21), following relations are
established: 

x = v1
2− v1

⇒ v1 = 2x
1 + x

y = v2
2− v2

⇒ v2 = 2y
1 + y

z = v3
2− v3

⇒ v3 = 2z
1 + z

(6.22)

where x, y and z are similarity values of Table 6.1. Therefore, with numeric values of
v1, v2 and v3, by applying Equation (6.19), the similarity in space 2Ω can be calculated.
To guarantee Assumption 2, we have

2v1 + v3 ≤ 1 ⇒ 4x
1 + x

+ 2z
1 + z

≤ 1 ⇒ 2
x+ 1 + 1

z + 1 ≤
5
2

2v2 + v3 ≤ 1 ⇒ 4y
1 + y

+ 2z
1 + z

≤ 1 ⇒ 2
y + 1 + 1

z + 1 ≤
5
2

v1 + v2 ≤ 1 ⇒ 2x
1 + x

+ 2y
1 + y

≤ 1 ⇒ 1
x+ 1 + 1

y + 1 ≤
3
2

(6.23)

In Fagin’s distance (see Equation (3.14) of Chapter 3), the similarity between “indif-
ference” and “strict preference” is measured by a penalty value p, where sim(ω�, ω≈) =
1− p. Recall that in Fagin’s distance, in order to guarantee the property of metric, the
value of p should be chosen by Equation (3.13), repeated here.

1
2 < p < 1

Thus, the similarity is chosen by:

0 < sim(ω�, ω≈) < 1
2 (6.24)

This is consistent with the conditions of Equations (6.22) and (6.23).

The similarity based on Hamming distance introduced in Section 3.2 of Chapter 3
(repeated in Table 3.2) does not satisfy the condition of Equation (6.20), i.e. As-
sumption 2. In Minkowski family distances on the encoding of preference relations (see
Equation (3.5) of Chapter 3), Assumption 2 is satisfied for Lρ space while ρ ≥ 2 .
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Table 6.2 – Hamming distance between preference relation types

ω� ω≺ ω≈ ω∼
ω� 0 2 1 1
ω≺ 2 0 1 1
ω≈ 1 1 0 2
ω∼ 1 1 2 0

6.2.3 Application: Group decision making

As mentioned at the beginning of this chapter, the original objective of proposing WSD
distance is to solve an issue of biased decision result confronting “indifference” in group
decision making . For a better readability, we briefly review the process of group deci-
sion making with BFpref model.

For alternative pair ai, aj ∈ A, the decision making procedure consists mainly in
two steps: BBA combination and decision, illustrated in Figure 6.3.

m
Ωij
s

m
Ωij
1

...

Conjunctive
combination

mΩij
Decision

Rij ∈ {�,≺,≈,∼}

Figure 6.3 – Group decision making procedure

With absence of information interpreted as “incomparability” (in CS and KM mod-
els, see Section 3.2.2 of Chapter 3), the concensus decision strategies may converge
to “absence of information”. To address this issue, we apply conjunctive rule for the
combination of BBAs. As mentioned in Section 5.3 of Chapter 5, conjunctive rule may
cause high global conflict if the BBAs are simple on different singleton and number
of sources is relatively large. The LNS-CR (Conjunctive Rule for Large Number of
Sources) [ZMP18] is more adaptable for the aggregation of preferences without uncer-
tainty because the BBAs are often separable, and this rule is equivalent to Strategy B
in Section 5.3 of Chapter 5 when sources are simple BBAs.
In the decision step, we apply the minimum distance based strategy, repeated here:

ωij = argmin
R∈{�,≺,≈,∼}

(d(mΩij , ω0
R))

An advantage of this decision rule is that it discriminates the weight of different sin-
gletons affected by WSD distance. This advantage is illustrated and discussed in Sec-
tion 6.3.
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6.3 Illustrative examples and experiments

In this section, we firstly illustrate the decision procedure by examples on synthetic
data. Afterwards, in Subsection 6.3.2, we demonstrate the entire preference aggregation
and decision procedure on imperfect data, applied on Sushi preference data.

6.3.1 On synthetic data

Different preference aggregation rules are compared on generated data. On alterna-
tives ai and aj in quasi order with missing data, following specific preference cases are
possible:

• ai � aj .

• ai ≺ aj .

• ai ≈ aj .

• ai ∼ aj .

• preference information is not given, shorted as vac (vacuous).

With the number of each preference type variant, we compare the aggregated preference
following different rules compatible with quasi orders:

• KM (JKM) model [KM01]

• CS model [RS93]

• Kamishima’s model [Kam03a]

• BFpref model with Jousselme distance (BFJ)

• BFpref model with weighted singleton distance (BFwsd)

Experiment 1: Impact of missing data

As KM and CS model are not applicable on measuring incomparability relationship as
mentioned in Section 3.2 of Chapter 3, thus, we generate preferences without incompa-
rability but ignorance. All generated preferences are certain, thus their corresponding
BBAs are categorical. For WSD distance, the similarity values between preference
types are given in Table 6.3, with corresponding graphical representation in Figure 6.4.

The similarity setting in Table 6.3 takes extreme values, i.e. the equality conditions
in Equation (6.23) are satisfied. In Table 6.4, the first column indicates the index of
each experiment setting and columns n�, n≺, n≈, n∼, and nvac represent the number
of agents giving the related preference relation.

Aggregation results are illustrated in Table 6.5. Experiment 1 shows several cases
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Table 6.3 – Similarity values setting in
Exp 1

� ≺ ≈ ∼
� 1 0 1

3 0
≺ 0 1 1

3 0
≈ 1

3
1
3 1 0

∼ 0 0 0 1

Figure 6.4 – Graphical illustration of
similarity between singletons in Exp 1.

Table 6.4 – Experiment settings of Experiment 1

Exp.
set n� n≺ n≈ n∼ nvac

1 5 4 4 0 7
2 5 3 3 0 20
3 5 5 4 0 7
4 5 5 5 0 0
5 5 5 5 0 20
6 5 5 0 0 0
7 5 0 5 0 0
8 5 0 5 0 20
9 5 0 4 0 20

where different results are obtained by different aggregation strategies. To simplify the
expression, we use “MB” for “modified Borda rule”, BFJ S, BFJ Ω respectively for
BFpref model applying Jousselme distance for decision on singleton and on the whole
discernment and BFwds S, BFwsd Ω respectively for BFpref model applying weighted
singleton distance for decision on singletons and on the whole discernment. In column
“combined BBA”, non-zero values in the finally combined BBAs are illustrated (with-
out value on ∅).

Following conclusions can be drawn:

1. In setting N◦1, 2, 3, 5, 8, 9, KM or CS models return vac, indicating “missing
data”. Thus, distance based consensus rules are not capable to deal with prefer-
ence data with high percentage of missing data. More specifically, KM model is

1Union sign ∪ indicates that the decision is on an imprecision set in 2Ω while “or” indicates that
multiple decisions are possible.
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Table 6.5 – Results of Experiment 11

Exp.
set KM CS MB BFJ

on S BFJ Ω BFwsd
on S BF wsd Ω combined BBA

1 vac ≈ � � Ω ≈ � ∪ ≺ ∪ ≈
or Ω

m1(�) = 0.184
m1(≺) = 0.131
m1(≈) = 0.131
m1(Ω) = 0.295

2 vac vac � � Ω � � ∪ ≺ ∪ ≈
or Ω

m2(�) = 0.184
m2(≺) = 0.131
m2(≈) = 0.131
m2(Ω) = 0.295

3 vac ≈ ≈ �
or ≺ Ω ≈ � ∪ ≺ ∪ ≈

or Ω

m3(�) = 0.164
m3(≺) = 0.164
m3(≈) = 0.118
m3(Ω) = 0.295

4 ≈ ≈ ≈
�
or ≺
or ≈

Ω ≈ � ∪ ≺ ∪ ≈
or Ω

m4(�) = 0.148
m4(≺) = 0.148
m4(≈) = 0.148
m4(Ω) = 0.296

5 vac vac ≈
�
or ≺
or ≈

Ω ≈ � ∪ ≺ ∪ ≈
or Ω

m5(�) = 0.148
m5(≺) = 0.148
m5(≈) = 0.148
m5(Ω) = 0.296

6 �
or ≺

�
or ≺
or ≈

≈ �
or ≺

≈
or Ω

�
or ≺

� ∪ ≺
or � ∪ ≺ ∪ ≈
or � ∪ ≺ ∪ ∼
or Ω

m6(�) = 0.25
m6(≺) = 0.25
m6(≈) = 0
m6(Ω) = 0.25

7 �
or ≈

�
or ≈ � �

or ≈
� ∪ ≈
or Ω

�
or ≈ � ∪ ≈

m7(�) = 0.25
m7(≺) = 0
m7(≈) = 0.25
m7(Ω) = 0.25

8 vac vac � �
or ≈

� ∪ ≈
or Ω

�
or ≈ � ∪ ≈

m8(�) = 0.25
m8(≺) = 0
m8(≈) = 0.25
m8(Ω) = 0.25

9 vac vac � � � ∪ ≈ � � ∪ ≈

m9(�) = 0.3
m9(≺) = 0
m9(≈) = 0.196
m9(Ω) = 0.247
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less robust than CS model confronting missing data while missing data has no
influence on the results of Modified Borda, BFJ_S and BFwsd_S method.

2. In setting N◦1 to 6, both BFJ_Ω and BFwsd_Ω risk to decide on Ω (vac) when
the number of missing data is important. This jeopardizes the advantage of belief
function based model mentioned above.

3. The modified Borda rule always returns a precise result. However, it is not able
to distinguish ≈, ∼ and vac. Modified Borda is equivalent to merely count the
number of � and ≺ with plurality principle and the other type of preference are
neglected.

4. Comparing BFpref model in setting 3 and 4, we could say that BFwsd_S gives
a more pertinent result than BFJ_S. Given identical number of � and ≺, it is
more pertinent to be decided as ≈ than � or ≺.

Experiment 2: Condorcet’s paradox in preference aggregation

Condorcet’s paradox resulting from belief function based preference model was dis-
cussed in [ZBM17], based on BFJ decision strategy. With the pertinent BFwsd strategy,
Condorcet’s paradox may be avoided in some cases.

Here is a simple example, three agents AGT1, AGT2, AGT3 give the following uncer-
tain preferences on three alternatives a1, a2, a3 with the following values: correspond-
ingly supporting the preference relations decided by both BFJ and BFwsd, illustrated
in Figure 6.5.

1

2 3
Agent u1

1

2 3
Agent u2

1

2 3
Agent u3

Figure 6.5 – Uncertain preferences of 3 agents

The aggregated preferences have the bba shown in Table 6.9. In this case, the deci-
sion rules BFJ and BFwsd return different final preference, as illustrated in Figure 6.6.

1

2 3

(a) BFJ rule

1

2 3

(b) BFwsd rule

Figure 6.6 – Decision results from two BFpref consensus rules
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Table 6.6 – Preference BBAs of u1

m(ω�) m(ω≺) m(ω≈) m(ω∼)
a1, a2 0.7 0 0.3 0
a1, a3 0.9 0 0.1 0
a2, a3 0.7 0 0.3 0

Table 6.7 – Preference BBAs of u2

m(ω�) m(ω≺) m(ω≈) m(ω∼)
a1, a2 0 0.9 0.1 0
a1, a3 0 0.7 0.3 0
a2, a3 0.7 0 0.3 0

Table 6.8 – Preference BBA values of u3

m(ω�) m(ω≺) m(ω≈) m(ω∼)
a1, a2 0.7 0 0.3 0
a1, a3 0 0.7 0.3 0
a2, a3 0 0.9 0.1 0

Table 6.9 – BBAs of aggregated preferences from 3 agents

m(∅) m(ω�) m(ω≺) m(ω≈) m(ω∼) m(Ω)
a1, a2 0.147 0.186 0.075 0.166 0 0.426
a1, a3 0.147 0.075 0.186 0.166 0 0.426
a2, a3 0.147 0.186 0.075 0.166 0 0.426

On the aggregated BBAs in Table 6.9, the BFJ decision rule returns a “cycle” pref-
erence, which signifies a Condorcet’s paradox. However, BFwsd decision rule returns
the “indifferent” relation among the three alternatives, which is a rational result.

A Condorcet’s paradox removing method based on BFpef model was proposed
in [ZBM17]. The idea is based on replacing the “comparable” (i.e. “strict preference”,
“inverse strict preference” or “indifference”) preference relation nearest to “incompa-
rability” in the Condorcet’s cycle by an “incomparability” relation. This subject has
been discussed in the previous chapter (Section 5.3.3 of Chapter 5), the details of the
algorithm are described in Algorithm 2 and Algorithm 3 of Chapter 5.

The difference of results between BF_J and BF_WSD in removing Condorcet’s
paradox procedure is caused by the difference in the values of distance function d(m,ω0

∼).
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6.3.2 Experiment 3: Conflicting preference aggregation on sushi pref-
erence dataset

In this experiment, we apply the BFpref model on Sushi dataset, which contains con-
flicting preference sources. We firstly introduce the data and detail the aggregation
procedure. Then, we evaluate the aggregation quality by a specific “oiliness index”,
adapted to a common sense knowledge of Japanese sociology of food.

Conflict management on sushi preference dataset

Table 6.10 – Sushi preference dataset

# agents # alternatives sparsity conflict between
rank and score remark

East 3257 100 90% 3.45‰ more oily
West 1742 100 90% 3.44‰ less oily

In Sushi preference dataset, agents are categorized as east and west, indicating their
geographical position. 3257 agents from the east region and 1742 from the west express
their preferences over 10 sushis out of 100, in formats of both scoring and ranking.
Thus, the sparsity of data is 90%. Owing to the fact that two sources preferences
(ranking and scoring) are available, contradiction may exist. Detailed information on
the dataset is given in Table 6.10. According to the Japanese sociology of food, eastern
and western Japan has obvious differences. Generally speaking, the eastern Japanese
habitats prefer more oily and more heavily seasoned food than the western Japanese
habitats. The oiliness level of each type of sushi is also provided, denoted by oil ∈ [0, 4],
where 0 signifies the most oily taste and 4 the least (To make the data correspondent to
a natural recognition, i.e. higher values implies more oily food, we transfer these values
inversely, making 0 signify the least oily and 4 the most, as shown in Appendix D). We
make group decision on different regions and verify if the result is coherent with this
knowledge.
In sushi preference dataset, for an identical agent, the response in score and rank are
cognitively dependent. Thus, as aforementioned in Section 5.3 of Chapter 5, the means
rule (see Equation (2.25) in Chapter 2) is appropriate for preference aggregation on
one identical agent. Extended from Figure 6.3 in Section 6.2.3, the procedure is given
on Figure 6.7.

6.3.3 Evaluation

The evaluation on group decision making is tricky. Usually, the evaluation of the deci-
sion results are based on the effects in applications, such as feedback of service [AHVCH10],
knowledge of ground truth [PC09], etc. These criteria require additional information
apart from the raw preference information. Other evaluation criteria measure the dis-
crepancy or consensus degree between the ranking of final solution and the ranking
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Figure 6.7 – Combination procedure for sushi preferences

solution of each expert, such as Deviation Index (DI), Violation index (VI), Best al-
ternative coverage rate (BACR), introduced in [CLCH13]. We extend the criteria DI
to be compatible with indifference relation. Average deviation index ADI measures
the consensus level of each agent s and the aggregated preference by average of Fagin
distance τ(·) [FKS03a], with distance between indifference and strict preference valued
as 0.5. The absent preferences from an individual agent are not taken into account.
Formally:

ADI = 1
|S|

∑
s∈S

τ(σagg, σs) (6.25)

where σagg denotes the aggregated preference order, σs the preference order of agent s.
The average deviation index of four rules on two regions is given in Table 6.11. In

Table 6.11 – Aggregated conflicting Sushi preferences with ADI

ADI order
BF J

ADI score
BF J

ADI order
BF WSD

ADI score
BF WSD

East Japan 0.2685 0.2395 0.1462 0.1172
West Japan 0.2661 0.2417 0.1346 0.1103

Table 6.11, we can clearly conclude that decision rule of BF_WSD gives a more
consensus aggregation result than BF_J , both on preferences in format of score and
in format of rank. It should be pointed that the ADI is not a convincing homogeneous
evaluation criterion. If the preference aggregation method is based on the minimization
of a preference order distance, denoted as dagg, the best result in the evaluation always
corresponds to dagg applied in the aggregation.
We also evaluate the preference aggregation results with the ground truth. For sushi
preference dataset, having the knowledge that Japanese from east region usually prefer
more oily sushi, we reckon that if the aggregated preferences is able to discriminate the
oiliness largely from different region, the aggregation rule is appropriate. We define an
average oiliness index (AOI) on the whole aggregated preference.
Given the oiliness level of sushi ai, denoted as oil(ai), oiliness index AOI on a set of
sushi Asushi is simply calculated by

AOI(Asushi) = 1
|Asushi|

∑
ai∈Asushi

oil(ai) (6.26)
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We compared AOI on top-k sushis respectively from east and west Japan. The com-
parison is calculated by the difference:

AOIdiff = AOI(AEastsushi)−AOI(AWest
sushi) (6.27)

where AOI(AEastsushi) and AOI(AWest
sushi) respectively represent AOI on aggregated sushi

orders in East and West Japan.

Figure 6.8 – Sushi AOI difference between East Japan and West Japan

In Figure 6.8, k (in top-k) varies from 1 to 100. Axis 0 represents the case that
habits from East and West Japan share equal tastes in terms of oiliness. From the
definition in Equation (6.27), a positive value of AOIdiff indicates that top-k in east
Japan is more oily than the west Japan and vice versa for a negative value. It can be
figured AOIdiff is positive globally in all values of k both in decision rule based on
Jousselme distance and WSD distance, especially in top-10 sushi. This result supports
the knowledge that people in east Japan prefer more oily sushis. However, AOIdiff is
negative around k = 20. This is caused by the sushi ranked the 19th and 20th in east
Japan (sushi Hamachi and tekka maki) are less oily than those in west Japan (sushi
Uni and Botanebi) (see Appendix D and E). However, the knowledge that people in
east Japan eat more oily is not strictly defined and the fact that people in west Japan
prefer several oily sushi is tolerable.

The entire ranking list in east and west Japan as well as additional information on
these sushi are provided in Appendix D and E.

6.4 Conclusion
It is well accepted that preference relations consist of three types of binary relations:
“strict preference”, “indifference” and “incomparability”. However, disagreements exist
in the interpretation of “incomparability”. Some works interpret it as “not compared”
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resulted from the absence of information and other work as “not able to compare”
because of some causes such as conflicts. Supported by the original definition, we
analyzed different interpretations and accepted the latter one. We demonstrated that
the “incomparability” is exclusive with other relations and the case of “not compared”
caused by the absence of information is actually the union of all possible relations, i.e.
total ignorance.

BFpref model for preferences with imprecision and ignorance based on the the-
ory of belief functions is able to express the different interpretations in one BBA. The
unobserved preferences are considered as total ignorance, and the relation of “incompa-
rability” is considered as an exclusive relation to “strict preference” and “indifference”.
This model respects strictly their original definitions.

In decision making, given a BBA, minimum of distance to categorical BBA and max-
imum on pignistic are widely accepted. We proved that the decision making strategies
of maximum pignistic and minimum on Jousselme distance on singletons are equivalent.
However, existing metrics for BBA similarity measure take the singletons equally, i.e.
the dissimilarity are not weighted. For preferences, it is more relevant to consider that
the distance between “strict preference” and “inverse strict preference” is larger than
that between “strict preference” and “indifference”.

To solve this issue, we proposed a novel similarity measure metric (named Weighted
Singleton Distance, WSD) for BBAs, taking the similarity between singletons into
account. WSD is de facto an extended version of Jousselme distance, it returns to
Jousselme distance when similarity between different singletons are equal. WSD is more
relevant than Jousselme distance for BFpref model because it is able to differentiate the
similarity between different types of preference relations. We applied WSD metric for
decision making strategy, especially for Condorcet’s paradox removal. We compared
strategies based on WSD and Jousselme distance and concluded that WSD is more
pertinent.

In the experiment part, the similarity values between different preference relations
are assigned by extreme values, i.e. the equality case in Equation eq:valuecondition.
Indeed, the similarities between four preference relations are not definitively defined.
As introduced in Section 3.2 of Chapter 3, various similarity values may be adaptable,
depending on the application cases. In this thesis, only the limitation conditions. The
selection of the similarity value can be affected by additional knowledge upon the using
cases, or by learning methods.

Besides, in Chapters 3 and 4, we introduced that distance is applicable in both pref-
erence aggregation and preference learning in termes of preference managnement. In
the scope of this work, we applied WSD distance in preference aggregation. However,
its applications in classification are not justified. In the cases of certain preferences,
WSD is equivalent to Kendall’s τ distance in case of total order and to Fagin’s distance
in case of weak order. Thus, it is pertinent to apply WSD for classification on com-
plete preferences both certain [FKS03b] or uncertain [ZBM18a] cases. Nevertheless,
for incomplete preferences, where the impact of ignorance is important, it is reason-
able to doubt the appropriateness of WSD. In the future work, we will study on the
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classification applications based on similarity between imperfect preferences.
In the next chapter, we study the possibility of clustering on evidential preference

learning with BFpref model.
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Chapter 7

Clustering on evidential
preferences

In previous chapters, we have studied the aggregation issues on BFpref model for evi-
dential preferences. As mentioned in Chapter 4, preference learning is a promising and
popular domain. It can be applied in various applications such as community detection
in social network, or preference elicitation in recommendation systems. In this chapter,
we introduce our contribution on the application of BFpref model in preference learn-
ing.
Based on BFpref model, a distance for complete preference structures with uncertainty
was proposed in Chapter 6, solving an issue of decision on singletons with distinctive
weights. However, the distance in learning methods required more properties. For
example, the measure of distance between two pieces of total ignorance are regarded
as identical in distance measure, but to classify such two pieces of knowledge into one
group is abitrary. In Section 7.1, we firstly introduce the issues learning on evidential
objects and propose properties required. Based on these properties, we found a paradox
in learning on evidential objects with distances. Afterwards, in Section 7.2, we applied
EK-NNclus method [DKS15b] for clustering on data of complete evidential preferences
confronting multiple sources. The clustering results on BFpref models are compared
with a simple mean value strategy in Section 7.4.

When applying EK-NNclus method, a method for the determination of the num-
ber of clusters k was proposed, based on silhouette coefficient score [Rou87] and elbow
method [Tho53]. However, this work is not yet applicable on clustering of eviden-
tial preferences, since it require the calculation of centroïd. The experiment and a
demonstrative guide of this k determination method is given in Section 7.5, after the
experiment part of evidential preference clustering.

7.1 Scientific issues on distances for evidential preferences

The clustering process is to segment objects into multiple groups (called clusters) based
on their similarity such that objects in the same cluster share more degree of similarity

99
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to each other than to those in other clusters. Usually, this similarity is measured by
distance. A most simple method is to centroïd based clustering such as k-means [M+67].

7.1.1 Distance in k-means

In the first phase, we tend to cluster the AGT represented by order set OD with a
k-means based algorithm.
Generally, a k-means based algorithm can be regarded as three principal steps:

1. Initialization: randomly choose k initial centroïds

2. Assignment step: Compute cluster labels and distance to the corresponding clus-
ter center of every object

3. Update step: Calculate the center of clusters

For M orders on N alternatives, the objects are represented by a 3-D tensor of dimen-
sion M × V × 2Ω, where

V = N(N − 1)
2 (7.1)

denotes the number of possible alternative pairs, 2Ω the size of mass vector with dis-
cernment frame of Ω.

7.1.2 Consistence between distance and combination rules

For evidential objects represented by BBAs, combination rules on BBAs are applied
in the update step while conflicts measure methods are used in assignment step (cal-
culating of the inertia). Given a set of evidential elements (represented by BBAs) on
discernment framework Ω

E(Ω) ⊆ [0, 1]2Ω
, (7.2)

a similarity measure d is defined as:

d : E(Ω)× E(Ω)→ R≥0 (7.3)

(see Definition 3.1.5 in Chapter 3). Concerning our case, following conditions are
supposed to be satisfied:

1. Metric consistency: For the objects that a k-means algorithm is theoretically
correct, i.e. the iteration result converges, the combination rule ⊙ and the simi-
larity measure d must be consistent. Formally, the combined BBA mcomb is given
by:

mcomb =
k⊙
i=1

mi (7.4)

such that ∀m′ ∈ E(Ω),m′ 6= mcomb,

k∑
i=1

d(mk,m
′) >

k∑
i=1

d(mk,mcomb) (7.5)
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A stronger property for similarity measure is metric (see Definition 3.1.1 in Sec-
tion 3.1), with properties repeated here: ∀mx,my,mz ∈ E(Ω)

• Non-negativity: d(mx,my) ≥ 0
• Identity of indiscernibles: d(mx,my) = 0⇔ mx = my

• Symmetry: d(mx,my) = d(my,mx)
• Triangle inequality: d(mx,mz) ≤ d(mx,my) + d(my,mz)

2. idempotence: The combination rule ⊙ must be idempotent, i.e.

∀m ∈ E(Ω),m
⊙

m = m. (7.6)

3. Surjectivity of combination result: The combination rule is surjective. i.e.
For a given set of BBAs, there exist one and only one combination result. Hence,
the equality in Inequation (7.5) is not possible.

4. Ignorance neutrality: The knowledge representing ignorance is supposed to
play a “neutral role” in the combined result. Formally, for combination rules ⊙.

∀m ∈ E(Ω),m
⊙

mΩ = m. (7.7)

Indeed, the property of “idempotence” is a corollary of “metric consistence”. The
proof is given in Appendix B.

7.1.3 Incompleteness of preference orders

Another difficulty exists in the dissimilarity measure between preferences in quasi-
orders, where “incomparability” may exist, interpreted as “missing data” (or “incom-
pleteness”) in this context. However, none of the metric in Chapter 3 is able to
measure the dissimilarity between preferences with such “incompleteness”. An ex-
treme case is given: A1,A2 are two subsets of comparable alternative set such that
A: A1 ⊂ A,A2 ⊂ A, and A1 ∩ A2 = ∅.

Two preferences σ1, σ2 in a quasi-order are respectively on A1 and A2. In this case,
we need to measure the dissimilarity between two preferences with no alternatives in
common, which may exist in quasi-orders.

7.1.4 Some combination rules and their properties

We have studied several combination rules and similarity measure methods. However,
none of them works well for the following reasons.

• Dempster’s combination rule. This rule is conjunctive, but not idempotent

• Cautious rule. This rule is idempotent, but the ignorance is not neutral.



102 Clustering on evidential preferences

• Minimization of Jousselme’s distance. This rule is idempotent but not conjunc-
tive. With most of the objects represented bymΩ, the combination result converge
to mΩ.

• Klein’s idempotent combination rule [KDC18]. This rule is both idempotent
and conjunctive. However, it is still impossible to define a similarity measure
consistent with this rule, generally proved by Proposition 2 afterwards.

Indeed, concerning the properties in Section 7.1, a impossibility theorem proposed
below.
Proposition 2. On set of evidential elements E(Ω) (represented by BBAs), given a
similarity measure d : E(Ω) × E(Ω) → R≥0, there is no such d that meets the prop-
erties of metric consistence, uniqueness of combination result, and ignorance
neutrality.

The demonstration is given in Appendix B.

Without solving this issue on incomplete preferences, we started with the complete
preferences, i.e. the partial orders.

7.2 A proposed method for clustering agents according to
evidential preferences

In this section, we explain how the agents are represented and clustered from two sources
of preferences. The clustering procedure is straightforward, it is concisely illustrated
in figure 7.1. The first block concerns the representation of agents and modeling of

Figure 7.1 – Flowchart of preference clustering

mass functions from two preference sources S1 and S2. The second block concerns the
calculation on the similarity between agents. The third block concerns the clustering
algorithm, we used EK-NNclus algorithm in our work, explained later.

7.2.1 Representation of agents

We consider the case that a group of K agents expressing their preferences between
each pair of alternatives from the set A of size N . Therefore, the preference of an agent
agtk, denoted by σk, is represented by a mass function on all possible alternative pairs:

σu :=
[
m1,2; m1,3; . . . ; m1,N ; m2,3; . . . ; mN−1,N

]
(7.8)

Hence, for N alternatives, the representation of an agent is made up by
N(N−1)

2 mass functions.
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7.2.2 Modeling of mass functions

In our model, we take advantage of the possibility of expressing on ignorance in the
framework of BFpref (see Equation (5.1) in Section 5.2). Given two preference order
sources σn,1, σn,2 from one agent agtn, we interpret the Fagin distance dF (σ1, σ2) as
ignorance degree when conflict encountered. That is to say: for ai, aj (i < j) in
both σn,1, σn,2 of agent agtn, the mass function value is given according to following
conditions:

1. Case 1: ai, aj are in the same relation in both σ1, σ2 (say ai � aj), mij is a
categorical mass function on the corresponding element (mij(ω�) = 1).

2. Case 2: ai, aj are in the conflicting relations in σ1 and σ2, respectively denoted
as ωij,σ1 , ωij,σ2 ∈ Ωij , ωij,σ1 6= ωij,σ2 (say ai � aj in σ1 while ai ≈ aj in σ2, thus,
ωij,σ1 = ω�, ωij,σ2 = ω≈), the mass function values are given by:

mij(Ω) = dF (σ1, σ2)
mij(ωij,σ1) = mij(ωij,σ2) = (1− dFagin(σ1, σ2))/2 (7.9)

where dFagin denotes the Fagin’s distance (see Equation (3.14) in Chapter 3)
between two orders, with penalty value p = 0.5.

7.2.3 Similarity between different agents

The dissimilarity measure is based on Jousselme distance [JGEB01] for mass functions.
Given two mass functions modeling preference relations between alternatives ai and aj
from agents agt1, agt2 expressing preference orders σ1, σ2, we denote Jousselme distance
as dJ(mij,σ1 ,mij,σ2). The dissimilarity between two agents’ preferences is denoted via
Jousselme distance as:

d(σ1, σ2) =
k∑
j=1

k∑
i=1,i<j

dJ(mij,σ1 ,mij,σ2) (7.10)

Wheremij,σ denotes the mass function of alternative pair (ai, aj) according to the order
σ. Therefore, a normalized distance is given by

dNormalize(σ1, σ2) = 1
Nbtotal

d(σ1, σ2) (7.11)

where Nbtotal = N(N−1)
2 , is the amount of all alternative pairs.

Indeed, normalized distance degrade to Kendall distance when preferences are cer-
tain, i.e. all BBAs are categorical. A proposition is therefore concluded:
Proposition 3. The normalized distance function defined in Equation (7.11) is equiv-
alent to Kendall distance when the preference orders are total and crisp.

The demonstration is given in Appendix C. The clustering process is therefore
applied on this normalized distance function. In the next section, we focus on the
selection of clustering algorithms.
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7.3 Introduction to an unsupervised classifier–EK-NNclus
For similarity spaces in which only pairwise distances are given (such as Kendall dis-
tance), the centroïd of several agents is a metric k-center problem and is proved to be
NP-hard. Moreover, uniqueness of the centroïd is guaranteed only when the similarity
space is a Riemannian manifold [FVJ09]. Therefore, we avoid using clustering methods
requiring the calculation of centroïd, such as k-means.
Various clsutering algorithms adaptable for pairwise distances exist, such as connectiv-
ity based model and density models. The comparison of different clustering methods is
not in the scope of this thesis, we applied EK-NNclus method [DKS15b] as clustering
approach. A brief introduction is given below.

7.3.1 EK-NNclus algorithm

EK-NNclus [DKS15b] is a clustering algorithm based on the evidential k-nearest-
neighbor classifier (Ek-NN classifier) [Den95]. Pairwise distances is sufficient for k-
nearest-neighbor searching. Thus, EK-NNclus is independent to the calculation of
centroïd. EK-NNclus starts from an initial random set of clusters, and iteratively re-
assigns objects to clusters using Ek-NN classifier. The algorithm converges to a stable
status of partition. For each object, its membership to clusters is described by a mass
function in a framework of each cluster and the whole set of clusters (i.e. ignorance).
For a set of objects

X = {x1, . . . , xK},

given a matrix of pairwise distances D = (dij), where dij denotes the distance between
objects xi and xj . In EK-NN classification rule, a discernment frame is defined for each
objects belonging to clusters C = {c1, ....cC} as:

ΩEc = {ω1, . . . , ωC} (7.12)

The BBA of degrees on each cluster of object xi is denoted as mEc
i . The set of k nearest

neighbors for object xi is denoted as NK(i).
According to [DKS15b], the procedure of EK-NNclus can be briefly divided into the

following parts:

• Preparation Calculate the mass value ηij of event that xj is in the k-nearest
neighbors of xi based on dij by a non-increasing mapping function φ(dij), defined
as:

ηij =
{
φ(dij), if j ∈ NK(i)
0, otherwise

• Initialization Initialize the labels of each object randomly. The authors of
[DKS15b] suggest that number of clusters c can be set to the number of ob-
jects n if n is not too large. A binary membership function inClusi,c on object xi
and cluster c is also initialized randomly, where inClusi,c = 1 implies xi belongs
to cluster c and 0 otherwise.
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• Iteration Randomly reorder all objects. Then, for every object x′i in the new
order, calculate the plausibility of belonging to each cluster. Plausibility of xi
belong to cluster c is calculated by:

ui,c =
∑

j∈NK(i)
vij × inClusi,c, c ∈ C (7.13)

where vij is calculated from ηij by:

vij = −ln(1− ηij). (7.14)

Then, assign x′i to the cluster with the highest plausibility.

inClusi,c =
{

1, if ui,c is the maximum in C,
0, otherwise

• Convergence condition The iterations stop when the labels of all objects are
stable.

After the convergence condition is reached, the final BBA of clustering result on xi is
calculated by:

mEc
i = ∩©

j∈NK(i)
mEc
ij (7.15)

where

mEc
ij (ωk(j)) = ηij (7.16)

mEc
ij (ΩEc) = 1− ηij (7.17)

and ∩© the conjunctive combination rule.

In this procedure, the number of k at the preparation step has a vital impact on the
clustering results. If k is too small, the matrix of η becomes sparse. In this case, the
iteration times are very few and the clustering result depends highly on the initialization
step, which is usually random. If k is too large, two objects far away from each other
may be considered as in the same neighborhood. This may have two consequences:

1. The computation time becomes important.

2. Objects naturally in different clusters may be targeted as in the same one, causing
a sub-estimation of number of clusters.

Therefore, the determination of k is important to guarantee a good quality of clustering.
The optimal k varies with the scale of the data. There is no identical k for datasets

even respecting identical distribution. Therefore, the determination of k is necessary
for every clustering analysis problem. The determination of k is two-fold. An optimal
k in EK-NNclus should:
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1. Cluster the data into an optimal number of clusters.

2. Return a result with high quality, close to the ground truth density or knowledge
if they are known.

There are already some often-applied methods to determine the number of clusters
C, usually these methods are related with evaluation criteria, such as silhouette co-
efficient [Rou87]) optimization, elbow method [Tho53] and information criterion ap-
proach [GHLR01]. By combining Adjusted Rand Index (ARI), Elbow method and
silhouette score, we proposed a k determination strategy for EK-NNclus method in
[ZBM18b]. We have to admit that this method is not applied for clustering on evi-
dential preferences because it still needs the calculation of centroïd. Therefore, a brief
introduction on this work is given below with experiment part in Section 7.3.3.

7.3.2 Evaluation criteria for clustering

In an ideal case where ground truth knowledge is given, it is natural that the cluster-
ing results more consistent to the ground truth correspond to better methods. This
consistence between two clustering result is usually evaluated by Adjusted Rand Index
(ARI) [HA85]:

ARI

Given the knowledge of the ground truth class assignments Lt and our clustering algo-
rithm assignments of the same samples L, Adjusted Rand Index measures the similarity
of the two assignments, with chance normalization, ignoring permutations. The ARI is
calculated as follows:
Let us define α and β as:

• α: the number of pairs of elements that are in the same set in Lt and in the same
set in L

• β: the number of pairs of elements that are in different sets in Lt and in different
sets in L

The raw (unadjusted) Rand index is then given by:

RI = α+ β

C
|X |
2

(7.18)

where C |X |2 is the total number of possible pairs in the dataset (without ordering).
However the RI score does not guarantee that random label assignments will get a value
close to zero (especially if the number of clusters is in the same order of magnitude
as the number of samples). To counter this effect we can discount the expected RI
(E[RI]) of random labels by defining the adjusted Rand index as follows:

ARI = RI − E[RI]
max(RI)− E[RI] (7.19)
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Obviously, the range of ARI is b0, 1e while 1 relates to the best case and 0 the worst.

Silhouette coefficient

If the ground truth labels are not known, evaluation must be performed using the model
itself. The silhouette coefficient is such an evaluation criterion. A higher silhouette co-
efficient score relates to a model with better defined clusters. The silhouette coefficient
is defined for each sample and is composed of two scores:

• d̄intra: the mean distance between a sample and all other points in the same class
(intra-class).

• d̄inter: the mean distance between a sample and all other points in the next
nearest class (inter-class).

The silhouette coefficient sil for a single sample is given as:

sil = d̄inter − d̄intra
max(d̄inter, d̄intra)

(7.20)

The silhouette coefficient for a set of samples is given as the mean of the silhouette co-
efficient for each sample. From the definition above, for a dataset, silhouette coefficient
close to 1 indicates a satisfying clustering result while 0 a bad one.

Elbow method

The elbow method [Tho53] applies the distortion as a criterion for clustering result.
The rule is simple: among a set of different numbers of clusters C, one should choose a
number c ∈ C, such that c+ 1 clusters do not give a much better modeling of the data.
Given object set X in c clusters, we denote the center of clusters by µ1, µ2, . . . , µc. The
quality of the modeling is measured by the distortion J of the clustering, calculated by:

J(c, µ) = 1
|X|

∑
xi∈X

(
c

min
j=1

(xi − µj)2) (7.21)

where |X| denotes the size of objects set. Therefore, c can be subjectively deter-
mined with the help of a distortion plot helps, illustrated in the experiment part of
Section 7.5.2.

A disadvantage of elbow method is that the “elbow" cannot always be unambigu-
ously identified [KJS96]. The observation of the “elbow" is subjective because “a cluster
that does not give a much better modeling of the data" cannot be justified quantita-
tively. Another inconvenience of the elbow method is that the calculation of distortion
is based on the centroïd of each cluster. This jeopardizes the property that EK-NNclus
is independent of the calculation of centroïd.
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7.3.3 A k determination strategy

The idea of k determination is simple: an optimal k in EK-NNclus should return a
high quality clustering result. Given a dataset, the quality of clustering can be easily
evaluated if knowledge of ground truth is provided. A high value of ARI between
clustering result and the ground truth implies a good clustering quality. However, in
most cases, the ground truth is absent. The results of clustering are often evaluated by
how well different clusters are separated. Silhouette coefficient is such a criteria and it
is often strongly correlated with ARI. The correlation is plotted in the Section 7.5.1.
However, to determine k only by silhouette coefficient is still risky. Fewer clusters may
sometimes return a higher silhouette coefficient (example illustrated in Section 7.5.1 and
Figure 7.12b). Thus, other conditions are needed. Elbow method is used as the second
criterion to avoid that too few clusters are detected. The strategy is straightforward.
From the intersection of the set of k (Kc) corresponding to the best c and the set of k
(Ksil) corresponding to relatively high silhouette coefficient, the interval of values of k
is obtained. We denote a set of all possible k by K. A proper subset of k is therefore
refined by: Krefine = Kc∩Ksil. We define a silhouette efficient function fsc(k), implying
the silhouette coefficient of the clustering result with k in EK-NNclus algorithm. Thus,
the optimal k is given by:

k = arg max
k∈Krefine

(fsc(k)). (7.22)

Because of the facts that the elbow method is a subjective method and that “rel-
atively high silhouette coefficients" are also subjectively defined, both Kc and Ksil are
indefinite sets. Thus, if Krefine = ∅, we can extend Kc by softer condition or Ksil by
lower threshold to obtain a non empty Krefine.

As the determination of k in EK-NNclus method does not relate to the main sub-
ject of this thesis, we put demonstrative tutorial examples as well as experiments in
Section 7.5.

Discussions on k determination method

Although combining silhouette coefficient and elbow is helpful in k determination, it is
not applicable in our case, i.e. clustering on evidential preference. This is due to some
short-comings conducted by elbow method. Firstly, the distortion requires the calcula-
tion of centroïds of clusters, which neutralizes an advantage of EK-NNclus: EK-NNclus
is adaptable to pairwise distances and independent to the calculation of centroïd. Be-
sides, the determination of c by elbow method is subjective and can be sometimes
ambiguous. In the future, we can replace elbow method by centroïd-independent c
determination method, making the strategy more adaptable.

In our work of clustering on evidential preferences, the determination of k in EK-
NNclus is merely based on maximization of silhouette coefficient.
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7.4 Experiments of clustering on evidential preferences

Although BFpref model was originally designed for preferences under uncertainty, we
are still curious about its quality for clustering on certain preferences. Thus the clus-
tering quality of our model can be divided into two aspects: on crisp preferences and
on uncertain preferences.

We tested different metrics on synthetic certain and uncertain preferences. We also
compared different metrics on a real world certain preferences from SUSHI dataset [Kam03b].

In the following parts, we introduce the method of generating synthetic preferences
and compare the clustering quality of different metrics. To simplify the experiments,
all preferences are expressed in a space of 10 alternatives.

7.4.1 Crisp preferences

The experiments in this section are executed on crisp preferences, i.e. preferences
without uncertainty or imprecision, from both synthetic data and real world data.

Synthetic data

Certain preferences are those who are from non-conflicting sources. In this case, we
only consider and generate one source of preferences. To study the clustering quality,
we firstly generate preferences with different ranges to their centroïds.

The data is generated by Algorithm 4. By increasing the number of switching
operations T , we obtain clusters with different density. To avoid random errors, we
generate distinctive preference sets 10 times and take the average value of ARI and
silhouette score. Besides, the optimal parameter k in EK-NNclus algorithm varies with
the size of data and distribution of the samples. We test on various k and choose the
one that returns the largest ARI and average silhouette coefficient1 as our result.

In figures 7.2, 7.3, 7.4, ARI and silhouette coefficient performed on generated data
with neighbors in various ranges (switch time from 1 to 3) and different sizes (neighbor
size2 varies from 10 to 100) are illustrated.

According to these results, one can conclude that the BFpref model and Kendall
distance have equivalent good quality both in terms of ARI and silhouette score, while
Euclidean distance always has a poor quality. A high value in ARI usually corresponds
to a high silhouette score, signifying a good clustering result.

Real data

SUSHI preference dataset [Kam03b] is collected from a survey on Japanese consumer
preferences over different sushis. It has a data set containing 5000 complete strict
rank orders (i.e. total orders) of 10 different kinds of sushi. We applied these three
metrics in clustering on real data of Sushi Preference Data Set. Figure 7.5 illustrates

1Without special remark, we use term “silhouette coefficient” for “average“ value on set of samples
by default.

2By saying neighbor size, we mean the number of samples in each cluster.
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Algorithm 4 Generate preferences in |C| clusters
Input: Cluster number C

Switch time T
neighbour size NS
Alternative size in each order N

Output: C clusters of preferences
// Centroids initialization

1: randomly generate centroïd c1 of N elements.
2: for ic in 2 : C do
3: dist_max = 0
4: for s in 1 : 5000 do
5: randomly generate preference os of N elements

6: dist_sum =
ic−1∑
i=1

dKendall(os, ci)

7: if dist_sum > dist_max then

8: dist_max =
ic−1∑
i=1

dKendall(os, ci)

9: centroïd cci = os
10: end if
11: end for
12: end for

Generate neighbors
13: for each centroïd oc do
14: for ns in 1 : NS do
15: for t in 1 : T do
16: randomly generate index i, j
17: exchange ranking order of ai, aj in oc, making a new order
18: end for
19: end for
20: end for
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Figure 7.2 – ARI and silhouette coefficient, switch = 1

Figure 7.3 – ARI and silhouette coefficient, switch = 2

silhouette plots of clusters with different metrics3. Kendall distance and BFpref model
have similar quality. Euclidean distance has a relatively poor quality. This result is
consistent with the synthetic data in Figures 7.2, 7.3 and 7.4.

Among the three metrics, none of them has an absolutely high silhouette score
(larger than 0.5). This is due to the quality of the data. SUSHI dataset doesn’t
guarantee the existence of obvious communities among the agents.

7.4.2 Uncertain preferences

In this part, we suppose a case that two preferences are given with different represen-
tations: ranking and score. The ranking preferences are generated in the same way as
in subsection 7.4.1. Scores are generated by the following steps: scores range from 1
to 5 are generated respecting a given rank preference. In this way, indifference rela-
tions are introduced, causing conflicts between two preference sources. Given a ranking
preference σr of 10 alternatives a1 to a10, the scores are generated by the following rules:

3As different K in EK-NNclus algorithm returns different clustering results, we compare clustering
result who returns relatively high silhouette coefficients.
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Figure 7.4 – ARI and silhouette coefficient, switch = 3

Figure 7.5 – Silhouette plot of different metrics on SUSHI dataset

• For least preferred two alternatives (2 alternatives at the end of the σr, i.e. ranking
no. 9 and 10), we give score 1.

• For alternatives sorted at the positions 7 and 8, we give score 2.

• With the similar rule, for most preferred two sushis (ranking no. 1 and 2), we
give score 5.

For example with: a1 � a2 � a3 � a4 � a5 � a6 � a7 � a8 � a9 � a10
the scores are: a1 : 5, a2 : 5, a3 : 4, a4 : 4, a5 : 3, a6 : 3, a7 : 2, a8 : 2, a9 : 1, a10 : 1

We compared our model with an average-based-euclidean metric. Still, ARI and
silhouette scores are applied as evaluation criteria.

Confronting a case of two preference sources: ranking σr and score σs, the mean
rank of alternative ai is calculated:

r̄(ai) = 1
2(r(σr, ai) + r(σs, ai)) (7.23)

Thus, agent u’s average preference order is represented by:

Ōu :=
[
r̄(a1), r̄(a2), . . . , r̄(a|A|)

]
(7.24)
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Therefore, the example above has vector:[
1, 1.5, 3, 3.5, 5, 5.5, 7, 7.5, 9, 9.5

]
For Kendall distance, we calculate the distance matrix from rankings and scores,

then take the average value as the combined distance. As indifference relation exists
in σs, we apply Fagin distance for σs. Given ranking preferences σr1, σr2 and score
preferences σs1, σs2, denoting respectively the preference from agents agt1 and agt2,
the average distance is thus given by:

d̄Fagin(agt1, agt2) = 1
2(dFagin(σr1, σr2) + dFagin(σs1, σs2)) (7.25)

We compared the model based on Euclidean distance equation (7.24), Kendall dis-
tance (7.25) and BFpref model given in equation (7.8).

Figure 7.6 – ARI and silhouette coefficient on conflicting preferences, switch = 1

Figure 7.7 – ARI and silhouette coefficient on conflicting preferences, switch = 2

The results illustrated by Figures 7.6,7.7 and 7.8 show the advantage of BFpref
model over Euclidean distance and Kendall (Fagin) distance when dealing with two
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Figure 7.8 – ARI and silhouette coefficient on conflicting preferences, switch = 3

sources. Comparing Figures 7.6, 7.7, and 7.8 from conflicting sources with Figures 7.2,
7.3, and 7.4, we observe that both averaged Euclidean distance and Kendall distance
are deteriorated more than BFpref model. The results prove the advantage of BFpref
model on preferences under uncertainty. This advantage comes from the fact that in
BFpref model, conflicts are partly interpreted as ignorance and have less impact in
dissimilarity measuring. However, this compromise also causes a loss in criterion of
silhouette coefficient.

7.5 Experimentation results for k determination in EkN-
Nclus

In this section, the experiment as well as illustrative examples for k determination
in EK-NNclus method is given. We firstly studied the correlation between ARI and
silhouette coefficient, and then applied our strategy on toy datasets. The synthetic
data are generated by Gaussian distributions. For the sake of better visualization, the
synthetic data are always generated in a 2 dimensional space.

7.5.1 Correlation between ARI and silhouette coefficient

We generate synthetic datasets for this experiment. The procedure is as follows:

1. Given a set of standard deviation (noted std) and the number of clusters denoted
by nclus, we generate a set of datasets Sdata = {X1, X2, . . . , XD} with ground
truth. Datasets with 8 clusters and with std = 0.5, 1.0, 2, 2.5 are illustrated in
Figure 7.10.

2. On one dataset Xd ∈ Sdata, given a set of parameter values
K = {k1, k2, . . . , k|K|}, calculate ARI and silhouette coefficient of each k ∈ K.
A set of ARIs and silhouette coefficients are obtained corresponding to different
k, respectively denoted as SARI and Ssil. The Pearson correlation coefficient
ρ(SARI ,Ssil) is calculated for dataset Xd, denoted by ρd.
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Figure 7.9 – Pearson correlation coefficient between ARI and silhouette vs. data sets
with different std.

Figure 7.9 illustrates the variation of the correlation between ARI and silhouette
coefficient via different standard deviations. We observe that the correlation declines
while data are distributed more sparsely. From a certain standard deviation, the cor-
relation has a tendency to increase. These are datasets used in the experiment of
Figure 7.9. While std is small, data are obviously clustered. Thus a clustering re-
sult regrouping objects nearby is consistent with the knowledge of the ground truth,
which returns a high correlation. With std increasing, different clusters overlap and
the correlation decreases. When std is high enough that data distribution converges
to random, the clustering returns lows values on both ARI and silhouette coefficient,
making them “correlated” again. Of course, this is not a real correlation. Both ARI
and silhouette are measured on random generated data, the results are always bad,
making the correlation index high.

However, the strong correlation cannot guarantee that silhouette coefficient is enough
for k determination. The ARI and silhouette coefficient obtained from different k on
data in Figure 7.10 are respectively plotted in Figure 7.11. We observe that a high sil-
houette coefficient does not always correspond to a high ARI when value of k is large,
even if objects in different clusters are naturally well separated (e.g. dataset with std
= 0.5). This has been explained in Section 7.3.1 that a high value on k may cause
underestimation of the number of clusters c, which may result in a satisfying silhouette
coefficient. Elbow method determining the c helps to provide a constraint condition.

7.5.2 Optimal k determination strategy on real toy datasets

We applied the strategy in Section 7.3.3 on real toy datasets: Iris and Wine datasets
from UCI4 to help to refine the interval of k.

4Iris: https://archive.ics.uci.edu/ml/datasets/Iris
Wine: https://archive.ics.uci.edu/ml/datasets/wine
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(a) std=0.5 (b) std=1.0

(c) std=2.0 (d) std=2.4

Figure 7.10 – Data distributions with different values of standard deviation.

Toy dataset Iris: Figure 7.12 illustrates the plot supporting k determination
strategy for Iris toy data. Results are obtained with a cross validation of 10 experiments.
We still observe that the values of ARI, silhouette coefficient and number of clusters
have large fluctuation, which proves that the determination of k is risky.

Without knowledge of c, from the silhouette coefficient plot in Figure 7.12b, one
may conclude that k ∈ [30, 50] is the best value. With elbow method, we can figure
that c = 2 or 3 is a reasonable value, so k ∈ [15, 40] is more reasonable. Taking the
intersection of both intervals, we focus on a refined interval k ∈ [30, 40]. In this interval,
k = 35 returns the highest silhouette coefficient (given by the abscissa of Figure 7.12b).
Thus, finally we determine k = 32 by equation (7.22). With the ARI plot (given by
the ordinate of Figure 7.12b), we can verify that k ≈ 35 is the proper value, so the
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(a) std=0.5 (b) std=1.0

(c) std=2.0 (d) std=2.4

Figure 7.11 – ARI and Silhouette coefficient via k on different datasets.

proposed strategy is adapted.
Toy dataset Wine: The elbow method and clustering criteria plot are illustrated

in Figure 7.13. It is tricky to determine the number c of clusters by Elbow method
for this dataset. Different observers may give different decisions on the best number
of clusters. Therefore, 3 or 4 can both be concluded as c. According to Figure 7.13b,
c ∈ {3, 4} corresponds approximately to k ∈ [20, 50]. A high silhouette coefficient value
corresponds to the interval k ∈ [40, 70]. By taking the intersection of both intervals, we
conclude that a proper k should be in the interval [40, 50] and we obtain k = 49 such
as the optimal value by equation (7.22).

According to Figure 7.13b, with only silhouette coefficient, we may arbitrarily

(a) Elbow method. (b) ARI, silhouette coefficient and number of
clusters vs. k.

Figure 7.12 – Results on Iris dataset.
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(a) Elbow method. (b) ARI, silhouette coefficient and number of
clusters vs. k.

Figure 7.13 – Results on Wine dataset.

choose a high value k ∈ [60, 70]. However, this value gives an underestimation of
the c value. The elbow method fixing a proper number of clusters helps to determine
a k that returns the highest ARI.

7.6 Conclusion

In this chapter, we investigate the problem of clustering agents according to their pref-
erences, when dealing with multiple and conflicting sources (two in our case study). To
cope with this issue, we apply the BFpref model to express and interpret the contradic-
tions and conflicts from different sources as uncertainty and ignorance. We introduce
a new approach that captures the preference data structure and deal with uncertain
information.

To highlight the relevance of the proposed solution, we perform experiments on
synthetic and real data to compare our method with other preference models, and
found the advantage in the expressiveness of the uncertainty and the incomparability
of the preference orders. Indeed, we compare BFpref model on synthetic data between
Euclidean distance and Kendall distance both in certain and uncertain cases, using
EK-NNclus algorithm. In certain cases, BFpref model has equivalent clustering-quality
with Kendall distance and outperforms the Euclidean distance. In uncertain cases,
BFpref model has better clustering-quality over the other distances. BFpref model is
also applied on SUSHI preference data set and observed that BFpref model has one of
the most satisfying clustering-quality.

BFpref model is only applied on complete preference orders (i.e. weak orders) from
only two sources. In the future, we will work on an ameliorated BFpref model deal-
ing with several conflicting preferences sources. A more general dissimilarity measure
method for incomplete orders (i.e. quasi-orders) is also in the scope of our future work.

Besides, a practical problem encountered in the application of EK-NNclus algo-
rithm is also discussed: the determination of the optimal number of nearest neighbors
k. Based on some methods borrowed from determination of the number c of clusters
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in c-means, we proposed a combined strategy. In this strategy, silhouette coefficient
is applied to evaluate the clustering quality and elbow method is used as an extensive
procedure for over-fitting. Comparing with an empirical suggestive interval for k de-
termination given by [DKS15b], the proposed strategy gives a more refined selection of
k and guarantees a relative high quality of clustering.

The strategy has some short-comings conducted by elbow method. Firstly, the
determination of c by elbow method is subjective and can be sometimes ambiguous.
Besides, the distortion requires the calculation of centroïds of clusters, which neutralizes
an advantage of EK-NNclus: EK-NNclus is centroïd independent. This issue leaves a
pity that the k determination method is not applicable in clustering on evidential
preferences. In the future, we plan to replace elbow method by centroïd-independent c
determination method, making the strategy more adaptable.



120 Clustering on evidential preferences



Conclusion and perspectives

Conclusion

Preference has been a popular topic in scientific research for long time ranges from
sociology, economy to computer science and engineering. In this thesis, we focus on
the modeling and management on imperfect preference information, applied in decision
making and machine learning.
Three aspects of imperfection on preference information are considered: uncertainty,
imprecision and incompleteness. In preference information, the uncertainty is a sit-
uation of limited knowledge where it is impossible to exactly describe the existing
preference relation. This is usually an epistemic situation. The imprecision refers
to situations where multiple preference relations are possible, so that it is impossible
to decide on a specific relation. Preferences with uncertainty and imprecision is also
called “evidential preferences”. The incompleteness in preferences considered in the the-
sis refers to cases where preference relations are unknown between some alternatives,
making it impossible to create complete preference relations on all alternatives. The
imperfections are usually caused by the flaws in the sources of preference data, such
as uncertain opinion of agents, conflicts in multiple sources and implicit information.
The research topic of this thesis is a combined domain of preference, machine learning
imperfect data modeling.

In the state-of-the-art part, we firstly reviewed different modeling methods on both
crisp and uncertain preference as well as the theory of belief functions. Total orders,
weak orders, partial orders and quasi orders are compared in the definition level. Among
many uncertain preference models, we highlighted fuzzy preference, which is the most
popular one for uncertain preference modeling. However, fuzzy preference is capable
to express the uncertainty but not imprecision problems. In the part of the theory of
belief functions, besides the basic concepts, some commonly used combination rules are
also introduced with adaptable application circumstances.

After this, we introduce on similarity measuring methods on preference relations
and structures as well as similarity measure in the theory of belief functions. Between
two preference relations, in apart to different norms of distances, the axiomatic dis-
tances are specific on preferences. Different axiomatic preferences are compared from
the level of axioms accepted to values adopted. As for similarity between preference
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structures, different correlation based distances are introduced, such as Kendall dis-
tance, Spearman footrule distance and Peason correlation.

Afterwards, different preference management problems and solutions, more specif-
ically, aggregation and preference clustering methods, are introduced as well as the
role that similarity plays in these processes. In the preference aggregation part, typical
voting rules in election systems as well as different aggregation strategy for fuzzy pref-
erence are introduced, followed by traditional problems such as Condorcet paradox and
Arrow’s impossibility theorem. In preference clustering part, we clarify the position
of preference clustering in the research topic of Artificial Intelligence. Confronting the
incompleteness problem in machine learning, we categorize the mainstream methods
into three groups: data discarding strategy, data imputation strategy and soft method
strategy.

The contributions are also on the modeling and management on imperfect prefer-
ence data. Firstly, we pointed out an ambiguity in the “incompleteness” caused by the
definition of preference relation “incomparability”. Most work interpret “incomparabil-
ity” as a missing information case, or “not decided” case. Some other works interpret
“incomparability” as a specific binary relation that is different from “strict preference”
and “indifference”, or “non-decisive” case, which also respect the original definition of
“incomparability”,. In this work, we consider the incompleteness in the preferences is
caused by the missing information and clarified this ambiguity in an novel evidential
preference model based on the theory of belief functions, namely BFpref model. BF-
pref model is a pairwise preference model with the frame of discernment made up by
four singleton, respectively representing “strict preference”, “inverse strict preference”,
“indifference”, and “incomparability”. BFpref model is capable to express all the three
aspects of imperfection in preferences, and it distinguishes the ambiguity in the defini-
tion of “incomparability”. The “non-decisive” case is directly represented by a singleton
while the missing information (not-decided case) is represented by an extreme impre-
cision case–total ignorance, which is the union off all possible singleton in the frame of
discernment.

With the help of BFpref model, we proposed an aggregation strategy on eviden-
tial preferences based on Dempster’s combination rule and minimum distance decision
strategy. We also proposed a strategy to avoid Condorcet paradox as well as an efficient
DFS method for Directed Acyclic Graph building.

During the decision step of preference aggregation on BFpref model, we pointed out
a flaw in state-of-the-art distances for evidential objects. Some distances in TBF are
structural, i.e. they account for the interaction between the focal elements compared
in two BBAs. However, none of them is capable to distinguish the measure on BBAs
of singletons with different weights.
To solve this problem, we analyzed assumptions accepted by Jousselme distance and
dropped an unwanted one, which consider the different singletons are equally different.
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By extending Jousselme distance and proposed WSD distance. We also applied WSD
in decision making on SUSHI data set. The comparison results demonstrated that de-
cisions based on WSD is more reasonable than on Jousselme distances.

Learning on evidential preference, more specifically, clustering on preferences in
BFpref model, is also in the scope of this thesis. We tended to represent agents’ portraits
by evidential preference by BFpref when multiple sources of preference with conflicts
are considered. The representation works are mostly in estimation step. The similarity
between agents are based on the sum of Jousselme distance and degrade to Kendall
distance in case of crisp preference. With comparison with a mean value strategy, it
is illustrated that BFpref returns better clustering result in terms of silhouette score
confronting multiple preference sources with conflicts for identical agents. However, the
clustering work is solely done on complete preferences. For the incomplete evidential
preferences, we proved an impossibility theorem that there is no pertinent combination
rule for centroid calculating among evidential objects, which respects the properties
of “metric consistency”, “uniqueness of combination” and “ignorance neutrality”. The
research on evidential preferences learning can be generalized into learning on evidential
objects, which is in the perspective of this thesis. Several new scientific issues are
proposed in the work of this thesis. Some of them are our future work introduced as
perspectives.

Perspectives

In this section, we discuss on some scientific challenges related to the topic of this thesis,
from aspects of short and long terms perspectives. The introduction of perspectives
starts with a discussion on similarity measure between evidential objects.

More discussion on similarity measure between evidential objects

In Section 7.1, we proposed an impossibility theorem on distance between evidential
object in clustering. In this section, we give more discussion on this topic.5

For learning on objects expressed on BBAs, we believe that a conflict based method
consistent with Dempater’s conjunctive combination rule ∩© may be more pertinent.
One possible solution is given as follows:
Between two BBAs m1 and m2, instead of a distance function d : E(Ω)×E(Ω)→ R≥0, a
measure function for evidential objects dTBF should return an evidential value, i.e. The
similarity measure is essentially a projection function in from the original discernment
to a new one. Formally, for a set of evidential objects BBAs

dTBF : E(Ω)× E(Ω)→ E(Ω′) (7.26)
5Acknowledgment:

The main idea of this discussion is inspired by a discussion with Pr. Sébastien Destercke from UTC.
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where Ω′ is another discernment frame than original discernment Ω for similarity mea-
sure.
For m1,m2, the simplest discernment frame for clustering Ω′ can be defined as:

Ω′ = {ω′1, ω′2} (7.27)

where ω′1 indicates that m1 and m2 are in the same cluster while ω′2 indicates that the
two BBAs are in different clusters. With such definitions, the clustering procedures
with multiple feature dimensions D = {m(1),m(2), . . .m(D)}, a method with following
steps may be feasible:

1. Define a measure function ddimTBF (·) for each dimension dim ∈ D. For instances i
and j, get the estimated partition BBA mi,j,(dim) (Estimation step)

2. For instances i, j, combine on all feature dimensions with conjunctive rule (Com-
bination step):

mij = ∩©
dim∈D

mi,j,(dim) (7.28)

The combination step may be discounting coefficient defined in Equation (2.26),
repeated here:

mα
j (X) = αjmj(X),∀X  Ω

mα
j (Ω) = 1− αj(1−mj(Ω))

with αj estimated by learning or other methods.

3. Partition evidential objects based on mi,j

In short term, we will continue the research work on preference learning on evidential
preferences with incompleteness. Confronting this challenge, several issues need to be
resolved.

Short term: preference learning with BFpref model

In this thesis, we have studied the clustering problem on complete evidential preference
with BFpref model. The objective is to develop a method for predicting the unobserved
preference relations on incomplete evidential preference. However, we have proven some
difficulties in measuring the distance between BBAs especially when vacuous BBAs
exist, representing unobserved preferences. To address this issue, following problems
should be firstly responded:

What does similarity really measure between evidential objects?

When measuring the similarity between evidential preferences, we actually want to
measure the similarity between the objects represented by BBAs rather than BBA vec-
tors. Thus, the similarity between BBAs does not always correspond to the similarity
between evidential objects. An extreme example has been discussed that two identical
vacuous BBAs do not indicate that the evidential pieces of knowledge are identical.
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Indeed, a proper result should be that the similarity between two vacuous BBAs is also
total ignorance, i.e. it’s impossible to measure such similarity.
All the state of the art distances for BBAs measure either the vector representation
or the divergence between uncertainty. The first one measures the similarity from a
geometry view and the latter from a statistic view. However, none of them measures
the objects themselves. We believe that the reason of this issue is that the one single
BBA may express multiple kinds of information. Here is an example, a categorical
BBA describes purely the state of the an object, or “content” (the state is a quali-
tative value) While a vacuous BBA describes purely the evidence degree (uncertainty
and imprecision) which is total ignorance. Other BBAs may express these two kind of
information at the same time.
To clarify this issue, we reckon that the concept of information quantity of a BBA
may be helpful, which is usually measured by entropy. In [JS18], they authors made a
survey on properties in different definitions of entropy in the theory of belief functions.
A well defined similarity measure for BBAs should take account of both “content”
and “evidence degree”. As discussed in Section 7.1.4, it is more pertinent to measure
the similarity between BBAs by a BBA in another discernment framework (We call it
evidential similarity).

Thus, the measure of similarity on objects represented by BBAs is a projection
process between two different frameworks of discernment. To realize such projection,
proper properties and conditions should be firstly defined. This is the nearest work in
the future.

How to apply evidential similarity in learning algorithms?

This question is one step further than the previous one. All the distance based ma-
chine learning algorithms apply “traditional distance functions” in non-negative real
numbers. Assume that a proper evidential similarity is defined, corresponding ma-
chine learning algorithms need to be designed. Thus, to develop a such method is also
another important perspective. As similarities are no longer crisp, soft methods in
machine learning may be helpful.

Long term: more applications with BFpref model

The long-term perspectives concerns more applications with BFpref model. We propose
several potential applications and issues to address.

How to manage imperfect preferences in a multi-criteria context?

In the problems adressed in this thesis, alternatives are represented by a single criterion,
thus these methods are also named as mono-criterion decision making methods. In some
circumstancs, alternatives are represented by multiple criteria, proposing multi-criteria
decision making problems (MCDM). Indeed, mono-criterion decision making is the base
of multi-criteria decision.
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There are already various of group decision making methods developed on MDCM
problems, such as analytic hierarchy process (AHP) developed by Thomas L. Saaty in
1970s [Saa02], ELECTRE (“ELimination Et Choix Traduisant la REalité" or “ELimina-
tion and Choice Expressing REality") [Roy68, FMR05], PROMETHEE [BV85, BM05].
In multi-criteria context, preferences may also be imperfect. For uncertain cases, fuzzy
set approaches: [KF87, YDP99], rough set approaches [GMS99a, GMS99b], optimiza-
tion approaches [LS02, CK91] and probabilistic models [Ste05] are also important works.

In the future, we well study more problems of imperfectness in multi-criteria con-
text, such as imprecision and incomplete problems. We believe that BFpref model can
be useful in multi-criteria decision making problems as well as multi-criteria prefer-
ence learning problems confronting preferences with uncertainty, imprecision as well
incompleteness.

How to apply BFpref on data of large scale?

In the theory of belief functions, for a value of |Ω| states, the discernment frame is
defined on a space with dimension of 2Ω. In BFpref, for one pair of alternatives, 16
values is registered. Moreover, as BFpref model is based on pairwise relation, on N
alternatives, its space complexity is O(N2), while list-wise order model has complexity
of O(N). When the alternative space scales up, the require of memory space increase
rapidly, making the calculation costly. In order to apply BFpref in industry circum-
stances, it is important to ameliorate the corresponding process.

This work can be two folded. First idea is in the expression of BBAs and second in
the calculation process.
Although each BBA is expressed in space of 2Ω, most of elements are valued as 0. Thus,
it is sufficient to assign only non-zero elements and ignore the elements with 0. For
example, a simple BBA only needs to express one non-zero element.
The calculation of distances between preferences on different alternative pairs are in-
dependent. This makes it possible to propose algorithms for parallel or distributed
computing, which is practical in dealing with big scale of data.

How to apply BFpref on real world data

In the world of internet, there are usually different websites or services who work on
similar business (i.e. they are competitors). eg. Yelp and TripAdviser provide restau-
rant recommendation service, Amazon and eBay provide retail service, Booking and
PriceLine provide room and vehicle reservation services, Rotten Tomatoes and IMDb
provide film rating and reviewing services. Therefore, for consumers, it is common
to have accounts on different sites in the same field. This make it possible that one
individual’s preference on identical alternatives may have different sources. (For ex-
ample, one may rate Avengers III higher than Captain American III on IMDb while
equally on Rotten Tomatoes). This is similar to the case we encountered in SUSHI
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data. We believe that it is valuable to build a reliable and robust recommendation
system based on preferences from multiple sources. Furthermore, we would also like to
apply BFpref model in social network analysis, especially in community detection. In
this perspective, an important challenge exist in the estimation of BBAs from different
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A Proof of proposition 1
Proposition 1:

In the frame of discernment Ω = {ω1, . . . , ωk}. If for a BBA m, exist ωd such that

∀ωi ∈ Ω, ωi 6= ωd,

betPm(ωd) > betPm(ωi)

Proof. We rewrite the Jousselme distance by its square form for simplification. Thus,

d2
J(m,mωd

cat)
=(m−mωd

cat)TJacc(m−mωd
cat)

=
∑
X 6=ωd
Y 6=ωd

m(X)m(Y )JaccX,Y

+
∑
ωd∈Y

(m(ωd)− 1)m(Y ) 1
|Y |

+
∑
ωd∈X

(m(ωd)− 1)m(X) 1
|X|

=
∑
X 6=ωd
Y 6=ωd

m(X)m(Y )JaccX,Y

+
∑
ωd∈Y

m(ωd)m(Y ) 1
|Y |

+
∑
ωd∈X

m(ωd)m(X) 1
|X|

−
∑
ωd∈Y

m(Y ) 1
|Y |
−
∑
ωd∈X

m(X) 1
|X|

=
∑
X 6=ωd
Y 6=ωd

m(X)m(Y )JaccX,Y

+
∑
X=ωd
ωd∈Y

m(X)m(Y )JaccX,Y +
∑
ωd∈X
Y=ωd

m(Y )m(X)JaccY,X

+
∑
X=ωd
ωd /∈Y

m(X)m(Y )JaccX,Y +
∑
ωd /∈X
Y=ωd

m(Y )m(X)JaccY,X

−
∑
ωd∈Y

m(Y ) 1
|Y |
−
∑
ωd∈X

m(X) 1
|X|

=
∑

m(X)m(Y )JaccX,Y − 2
∑
ωd∈Y

m(Y ) 1
|Y |

(29)

Similarly, we have

d2
J(m,mωi

cat) =
∑

m(X)m(Y )JaccX,Y − 2
∑
ωi∈Y

m(Y ) 1
|Y |

(30)

Given that
betPm(ωd) > betPm(ωi)
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we have
1

1−m(∅)
∑
ωd∈Y

m(Y ) 1
|Y |

>
1

1−m(∅)
∑
ωi∈Y

m(Y ) 1
|Y |

⇒
∑
ωi∈Y

m(Y ) 1
|Y |
−
∑
ωd∈Y

m(Y ) 1
|Y |

6 0

Therefore

d2
J(m,mωd

cat)− d2
J(m,mωi

cat)

=− 2
∑
ωd∈Y

m(Y ) 1
|Y |

+ 2
∑
ωi∈Y

m(Y ) 1
|Y |

6 0

⇒ dJ(m,mωd
cat) 6 dJ(m,mωi

cat)
Inequation (6.5) is true.

B Proof of proposition 2
Proposition 2: Let a combination rule ⊙ with the property of consistent metric for a
distance d, then the combination rule ⊙ is idempotent.

Proof. Let a combination rule ⊙ with the property of consistent metric for a distance
d and let m a BBA and ∀ BBA m′ 6= m, according to the property of identity of
indiscernible and the non-negativity of the distance d, we have:

d(m,m′) > 0.

with d(m,m) = 0,

d(m,m) + d(m,m) < d(m,m′) + d(m,m′)

Thus,
m
⊙

m = m

Proposition 2: There is no combination rule owning properties of “metric consis-
tence”, “uniqueness of combination result” and “Ignorance neutrality”.

Proof. Given a BBA m 6= mΩ, according to the property of idempotent, we have

∀m′ 6= m

d(m,m) + d(m,m) 6 d(m,m′) + d(m,m′)
with d(m,m) = 0 and m 6= m′ (identity of indiscernible), we have

d(m,m′) > 0. (31)
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(This proves that the idempotent is an intrinsic property of metric consistence)

With the uniqueness of combination result, in relation (7.5), the equality becomes
impossible. Thus, Inequality (7.5) becomes

k∑
i=1

d(mk,m
′) >

k∑
i=1

d(mk,mcomb) (32)

With the property of ignorance neutrality, from the relation inequality (32), we
have ∀m′ 6= m,

d(m,m) + d(m,mΩ) < d(m,m′) + d(m′,mΩ) (33)

Take m′ = mΩ, Inequations (31) and (33) become

d(m,mΩ) > 0 (34)

and
d(m,mΩ) < d(m,mΩ) + d(mΩ,mΩ)

written as:
d(mΩ,mΩ) > 0

This is contradictory to the property of identity discernible. Thus the assumption is
false.

C Proof of proposition 3
Proposition 3: Based on Jousselme distance, we define a normalized distance for evi-
dential preference orders σ1 and σ2:

dNormalize(σ1, σ2) = 1
Nbtotal

d(σ1, σ2)

dNormalize(σ1, σ2) is equivalent to Kendall distance when the preference orders are total
and crisp.

Proof. Kendall distance: Given two complete ranking orders σ1 and σ2, the Kendall τ
distance dτ is defined as:

dKendall(σ1, σ2) =
∑

rankσ1 (ai)<rankσ1 (aj)
(rankσ2(ai) > rankσ2(aj)), (35)

This is equivalent to the following equation:

dKendall(σ1, σ2) =
∑
i<j

K̄i,j(σ1, σ2) (36)

where
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• K̄i,j(σ1, σ2) = 0 if i and j are in the same relative ranking in σ1 and σ2

• K̄i,j(σ1, σ2) = 1 if i and j are in the opposite order in σ1 and σ2.

In BFpref model, denote the preference ai and aj in σ1 and σ2 as mij,1 and mij,2. If
the preference is crisp, the two BBAs are categorical. If ai and aj are in same relative
rank in both σ1 and σ2, we have

dJ(mij,σ1 ,mij,σ2) = 0

Otherwise, ai and aj are in different relative rank in σ1 and σ2 (let’s say ai � aj in σ1
and ai ≺ aaj in σ2), we have

mij,σ1(ω�) = 1

mij,σ2(ω≺) = 1

the Jousselme distance between mij,O1 and mij,O2

dJ(mij,σ1 ,mij,σ2) = 1

For a preference structure, Jousselme distance based similarity is defined as:

dJ,structure(σ1, σ2) =
∑
i<j

dJ(mij,σ1 ,mij,σ2) (37)

This is equivalent to Equation (36). Similarly, the proposition is also true if Jousselme
distance is replaced by WSD.

D Aggregation result of sushi preference in east and west
Japan

The ranking results of east Japan and west Japan under two different distance for
decision making are illustrated below, with numbers 0 to 99 indicating the types of
sushi.

• Aggregation of East Japan by decision rule of Jousselme distance:
19, 8, 37, 9, 2, 15, 61, 6, 1, 41, 47, 11, 79, 53, 0, 10, 22, 20, 13, 26, 27, 4, 3, 21,
31, 36, 76, 25, 5, 57, 34, 14, 7, 73, 46, 54, 32, 45, 43, 38, 65, 50, 88, 62, 18, 44,
58, 82, 12, 66, 72, 63, 71, 39, 70, 23, 91, 16, 48, 51, 35, 33, 67, 29, 60, 96, 24, 74,
28, 75, 68, 30, 77, 83, 42, 95, 55, 80, 52, 64, 92, 56, 85, 49, 69, 78, 87, 59, 99, 84,
40, 90, 81, 86, 17, 98, 93, 89, 94, 97

• Aggregation of West Japan by decision rule of Jousselme distance:
8, 19, 15, 9, 11, 2, 0, 13, 53, 20, 47, 61, 1, 22, 6, 3, 37, 26, 4, 41, 27, 10, 79, 43,
14, 5, 21, 36, 34, 25, 45, 65, 88, 31, 73, 57, 30, 7, 76, 46, 39, 44, 12, 68, 48, 71,
62, 54, 67, 50, 70, 72, 55, 32, 74, 18, 24, 95, 66, 82, 96, 52, 33, 63, 23, 51, 83, 29,
35, 87, 58, 60, 49, 28, 75, 64, 85, 78, 16, 84, 69, 40, 81, 38, 56, 80, 89, 77, 94, 17,
90, 99, 91, 42, 86, 59, 93, 98, 92, 97
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• Aggregation of East Japan by decision rule of WSD distance
8, 19, 2, 9, 37, 6, 15, 47, 61, 1, 11, 53, 0, 41, 22, 10, 79, 20, 13, 26, 4, 27, 3, 21,
31, 36, 25, 76, 5, 57, 34, 7, 14, 73, 54, 46, 43, 45, 32, 38, 65, 50, 88, 62, 18, 44,
72, 58, 66, 39, 71, 82, 23, 12, 63, 91, 70, 48, 51, 16, 35, 29, 60, 33, 75, 67, 74, 96,
24, 68, 95, 28, 30, 83, 80, 77, 42, 55, 64, 78, 52, 56, 85, 92, 99, 69, 49, 87, 84, 59,
40, 81, 90, 86, 17, 98, 93, 89, 94, 97

• Aggregation of West Japan by decision rule of WSD distance
8, 19, 15, 9, 11, 2, 53, 47, 13, 20, 1, 0, 61, 3, 37, 6, 26, 22, 27, 4, 41, 10, 79, 43,
21, 14, 5, 36, 25, 34, 45, 65, 88, 31, 73, 76, 7, 46, 57, 48, 44, 71, 62, 68, 39, 30,
12, 50, 54, 67, 72, 70, 74, 18, 55, 32, 95, 66, 24, 82, 63, 96, 33, 52, 51, 83, 23, 29,
49, 60, 58, 87, 35, 75, 28, 85, 64, 78, 16, 84, 69, 81, 40, 56, 38, 80, 89, 17, 77, 94,
90, 99, 91, 42, 59, 86, 93, 98, 92, 97

E Sushi Information

Table 1 – Sushi information

ID Sushi
original oiliness
(0: most oily
4: least oily)

inverse oiliness
(0: least oily
4: most oily)

0 ebi 2.73 1.27
1 anago 0.93 3.07
2 maguro 1.77 2.23
3 ika 2.69 1.31
4 uni 0.81 3.19
5 tako 3.09 0.91
6 ikura 1.26 2.74
7 tamago 2.37 1.63
8 toro 0.55 3.45
9 amaebi 1.91 2.09
10 hotategai 2.35 1.65
11 tai 2.99 1.01
12 akagai 2.52 1.48
13 hamachi 1.26 2.74
14 awabi 2.53 1.47
15 samon 1.27 2.73
16 kazunoko 2.68 1.32
17 shako 2.57 1.43
18 saba 1.92 2.08
19 chu toro 0.80 3.20
20 hirame 2.99 1.01
21 aji 2.32 1.68
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22 kani 2.82 1.18
23 kohada 2.70 1.30
24 torigai 2.54 1.46
25 unagi 0.54 3.46
26 tekka maki 2.25 1.75
27 kanpachi 1.58 2.42
28 mirugai 2.39 1.61
29 kappa maki 3.73 0.27
30 geso 2.33 1.67
31 katsuo 1.91 2.09
32 iwashi 2.11 1.89
33 hokkigai 2.57 1.43
34 shimaaji 2.23 1.77
35 kanimiso 0.91 3.09
36 engawa 2.20 1.80
37 negi toro 1.26 2.74
38 nattou maki 1.65 2.35
39 sayori 2.80 1.20
40 takuwan maki 3.33 0.67
41 botanebi 1.99 2.01
42 tobiko 2.25 1.75
43 inari 1.58 2.42
44 mentaiko 1.81 2.19
45 sarada 2.48 1.52
46 suzuki 2.65 1.35
47 tarabagani 2.68 1.32
48 ume shiso maki 3.38 0.62
49 komochi konbu 2.24 1.76
50 tarako 1.88 2.12
51 sazae 2.41 1.59
52 aoyagi 2.50 1.50
53 toro samon 0.69 3.31
54 sanma 1.81 2.19
55 hamo 2.57 1.43
56 nasu 3.18 0.82
57 shirauo 3.08 0.92
58 nattou 1.53 2.47
59 ankimo 0.75 3.25
60 kanpyo maki 2.82 1.18
61 negi toro maki 1.26 2.74
62 gyusashi 1.15 2.85
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63 hamaguri 2.29 1.71
64 basashi 1.48 2.52
65 fugu 3.13 0.87
66 tsubugai 2.40 1.60
67 ana kyu maki 2.22 1.78
68 hiragai 2.50 1.50
69 okura 2.37 1.63
70 ume maki 3.30 0.70
71 sarada maki 2.09 1.91
72 mentaiko maki 1.87 2.13
73 buri 0.96 3.04
74 shiso maki 3.50 0.50
75 ika nattou 1.58 2.42
76 zuke 1.49 2.51
77 himo 2.26 1.74
78 kaiware 3.41 0.59
79 kurumaebi 2.42 1.58
80 mekabu 3.05 0.95
81 kue 1.97 2.03
82 sawara 2.38 1.62
83 sasami 2.80 1.20
84 kujira 1.26 2.74
85 kamo 1.29 2.71
86 himo kyu maki 2.71 1.29
87 tobiuo 2.49 1.51
88 ishigakidai 2.66 1.34
89 mamakari 2.35 1.65
90 hoya 2.24 1.76
91 battera 1.68 2.33
92 kyabia 1.33 2.67
93 karasumi 1.71 2.29
94 uni kurage 1.44 2.56
95 karei 2.60 1.40
96 hiramasa 1.97 2.03
97 namako 1.94 2.06
98 shishamo 2.16 1.84
99 kaki 1.78 2.22

Remark: Original oiliness oiloriginal is given from 0 to 4 indicating the most oily to
the least oily. In our experiment, we use the data in inverse oiliness, calculated by
4− oiloriginal (in column inverse oiliness) to correspond that a larger value indicate
a more oily sushi.



138



Bibliography

[ACH+08] Sergio Alonso, Francisco Chiclana, Francisco Herrera, Enrique Herrera-
Viedma, Jesús Alcalá-Fdez, and Carlos Porcel. A consistency-based proce-
dure to estimate missing pairwise preference values. International Journal
of Intelligent Systems, 23(2):155–175, 2008.

[AHVCH10] S. Alonso, E. Herrera-Viedma, F. Chiclana, and F. Herrera. A web based
consensus support system for group decision making problems and incom-
plete preferences. Information Sciences, 180(23):4477 – 4495, 2010.

[Arr59] Kenneth J Arrow. Rational choice functions and orderings. Economica,
26(102):121–127, 1959.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next gener-
ation of recommender systems: A survey of the state-of-the-art and pos-
sible extensions. IEEE Transactions on Knowledge & Data Engineering,
(6):734–749, 2005.

[Ata99] Krassimir T Atanassov. Intuitionistic fuzzy sets. In Intuitionistic fuzzy
sets, pages 1–137. Springer, 1999.

[BBD+04] Antonio Bahamonde, Gustavo F Bayón, Jorge Díez, José Ramón
Quevedo, Oscar Luaces, Juan José Del Coz, Jaime Alonso, and Félix
Goyache. Feature subset selection for learning preferences: A case study.
In Proceedings of the twenty-first international conference on Machine
learning, page 7. ACM, 2004.

[BEF84] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-
means clustering algorithm. Computers & Geosciences, 10(2-3):191–203,
1984.

[BL+07] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings
of KDD cup and workshop, volume 2007, page 35. New York, NY, USA.,
2007.

[Bli74] Jean M Blin. Fuzzy relations in group decision theory. 1974.

139



140 Bibliography

[Bli76] Jean-Marie Blin. A linear assignment formulation of the multiattribute
decision problem. Revue française d’automatique, informatique, recherche
opérationnelle. Recherche opérationnelle, 10(V2):21–32, 1976.

[BM03] Gustavo EAPA Batista and Maria Carolina Monard. An analysis of four
missing data treatment methods for supervised learning. Applied artificial
intelligence, 17(5-6):519–533, 2003.

[BM05] Jean-Pierre Brans and Bertrand Mareschal. Promethee methods. In Mul-
tiple criteria decision analysis: state of the art surveys, pages 163–186.
Springer, 2005.

[Bog73] Kenneth P Bogart. Preference structures i: Distances between transitive
preference relations. Journal of Mathematical Sociology, 3(1):49–67, 1973.

[Bog75] Kenneth P Bogart. Preference structures. ii: distances between asym-
metric relations. SIAM Journal on Applied Mathematics, 29(2):254–262,
1975.

[Bre96] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[BS97] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative
recommendation. Communications of the ACM, 40(3):66–72, 1997.

[BSS78] James C Bezdek, Bonnie Spillman, and Richard Spillman. A fuzzy relation
space for group decision theory. Fuzzy Sets and systems, 1(4):255–268,
1978.

[BV85] Jean-Pierre Brans and Ph Vincke. Note—a preference ranking organ-
isation method: (the promethee method for multiple criteria decision-
making). Management science, 31(6):647–656, 1985.

[CAHV09] Francisco Javier Cabrerizo, Sergio Alonso, and Enrique Herrera-Viedma.
A consensus model for group decision making problems with unbalanced
fuzzy linguistic information. International Journal of Information Tech-
nology & Decision Making, 8(01):109–131, 2009.

[CCK+05] Michael Chau, Reynold Cheng, Ben Kao, et al. Uncertain data mining:
A new research direction. In Proceedings of the Workshop on the Sciences
of the Artificial, Hualien, Taiwan, pages 199–204, 2005.

[CCKN06] Michael Chau, Reynold Cheng, Ben Kao, and Jackey Ng. Uncertain data
mining: An example in clustering location data. In Pacific-Asia conference
on knowledge discovery and data mining, pages 199–204. Springer, 2006.

[CHVAH08] Francisco Chiclana, Enrique Herrera-Viedma, Sergio Alonso, and Fran-
cisco Herrera. Cardinal consistency of reciprocal preference relations: a
characterization of multiplicative transitivity. IEEE transactions on fuzzy
systems, 17(1):14–23, 2008.



Bibliography 141

[CK91] Wade D. Cook and Moshe Kress. A multiple criteria decision model
with ordinal preference data. European Journal of Operational Research,
54(2):191 – 198, 1991.

[CKS86] Wade D. Cook, Moshe Kress, and Lawrence M. Seiford. Information and
preference in partial orders: A bimatrix representation. Psychometrika,
51(2):197–207, Jun 1986.

[CL02] Marie Chavent and Yves Lechevallier. Dynamical clustering of interval
data: Optimization of an adequacy criterion based on hausdorff distance.
In Classification, clustering, and data analysis, pages 53–60. Springer,
2002.

[CLCH13] C. Chen, C. S. Lin, F. S. Chen, and W. Hung. The criteria for evaluating
the effectiveness of preference aggregation methods. In 2013 International
Conference on Fuzzy Theory and Its Applications (iFUZZY), pages 167–
170, Dec 2013.

[CMF08] Laurent Candillier, Frank Meyer, and Françoise Fessant. Designing spe-
cific weighted similarity measures to improve collaborative filtering sys-
tems. In Industrial Conference on Data Mining, pages 242–255. Springer,
2008.

[Col13] Josep M Colomer. Ramon llull: from ‘ars electionis’ to social choice theory.
Social Choice and Welfare, 40(2):317–328, 2013.

[CSS98] William W Cohen, Robert E Schapire, and Yoram Singer. Learning to
order things. In Advances in Neural Information Processing Systems,
pages 451–457, 1998.

[DB13] Sébastien Destercke and Thomas Burger. Toward an axiomatic definition
of conflict between belief functions. IEEE transactions on cybernetics,
43(2):585–596, 2013.

[dCmdC85] Jean-Antoine-Nicolas de Caritat marquis de Condorcet. Essai sur
l’application de l’analyse à la probabilité des décisions rendues à la plu-
ralité des voix. De l’Imprimerie royale, 1785.

[DDCLB08] Jorge Díez, Juan José Del Coz, Oscar Luaces, and Antonio Bahamonde.
Clustering people according to their preference criteria. Expert Systems
with Applications, 34(2):1274–1284, 2008.

[Dem67] Authur P. Dempster. Upper and lower probabilities induced by a multi-
valued mapping. Ann. Math. Statist., 38(2):325–339, 04 1967.

[Den95] Thierry Denœux. A k-nearest neighbor classification rule based on
dempster-shafer theory. IEEE transactions on systems, man, and cyber-
netics, 25(5):804–813, 1995.



142 Bibliography

[Den06] Thierry Denœux. The cautious rule of combination for belief functions
and some extensions. In 2006 9th International Conference on Information
Fusion, pages 1–8. IEEE, 2006.

[DG77] Persi Diaconis and Ronald L Graham. Spearman’s footrule as a measure
of disarray. Journal of the Royal Statistical Society: Series B (Method-
ological), 39(2):262–268, 1977.

[DJBW03] Susan Dumais, Thorsten Joachims, Krishna Bharat, and Andreas
Weigend. Sigir 2003 workshop report: implicit measures of user inter-
ests and preferences. In SIGIR Forum, volume 37, pages 50–54, 2003.

[DKS15a] Thierry Denœux, Orakanya Kanjanatarakul, and Songsak Sriboonchitta.
Ek-nnclus: a clustering procedure based on the evidential k-nearest neigh-
bor rule. Knowledge-Based Systems, 88:57–69, 2015.

[DKS15b] Thierry Denœux, Orakanya Kanjanatarakul, and Songsak Sriboonchitta.
Ek-nnclus: a clustering procedure based on the evidential k-nearest neigh-
bor rule. Know.-Based Syst., 88(C):57–69, November 2015.

[DM04] Thierry Denœux and M-H Masson. Evclus: evidential clustering of prox-
imity data. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 34(1):95–109, 2004.

[DMÖ+12] Stéphane Deparis, Vincent Mousseau, Meltem Öztürk, Christophe Pallier,
and Caroline Huron. When conflict induces the expression of incomplete
preferences. European Journal of Operational Research, 221(3):593–602,
2012.

[Doy04] Jon Doyle. Prospects for preferences. Computational Intelligence,
20(2):111–136, 2004.

[DP88] Didler Dubois and Henri Prade. Representation and combination of un-
certainty with belief functions and possibility measures. Computational
intelligence, 4(3):244–264, 1988.

[EBMBY15] Faten Elarbi, Tassadit Bouadi, Arnaud Martin, and Boutheina Ben Yagh-
lane. Preference fusion for community detection in social networks. In
24ème Conférence sur la Logique Floue et ses Applications, 24ème Con-
férence sur la Logique Floue et ses Applications, Poitiers, France, Novem-
ber 2015.

[Eme13] Peter Emerson. The original borda count and partial voting. Social Choice
and Welfare, 40(2):353–358, 2013.

[EMS04] Zied Elouedi, Khaled Mellouli, and Philippe Smets. Assessing sensor re-
liability for multisensor data fusion within the transferable belief model.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics), 34(1):782–787, 2004.



Bibliography 143

[EMSBY14] Amira Essaid, Arnaud Martin, Grégory Smits, and Boutheina Ben Yagh-
lane. A Distance-Based Decision in the Credal Level. In International
Conference on Artificial Intelligence and Symbolic Computation (AISC
2014), pages 147 – 156, Sevilla, Spain, December 2014.

[EMSY14] Amira Essaid, Arnaud Martin, Grégory Smits, and Boutheina Ben Yagh-
lane. A distance-based decision in the credal level. In International Confer-
ence on Artificial Intelligence and Symbolic Computation, pages 147–156.
Springer, 2014.

[FH03] Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning
and ranking. In European conference on machine learning, pages 145–156.
Springer, 2003.

[FH10] Johannes Fürnkranz and Eyke Hüllermeier. Preference Learning, pages
789–795. Springer US, Boston, MA, 2010.

[FH11] Johannes Fürnkranz and Eyke Hüllermeier. Preference Learning: An In-
troduction, pages 1–17. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[FHR+14] Johannes Fürnkranz, Eyke Hüllermeier, Cynthia Rudin, Roman Slowin-
ski, and Scott Sanner. Preference Learning (Dagstuhl Seminar 14101).
Dagstuhl Reports, 4(3):1–27, 2014.

[FKM+04] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D Sivakumar, and Erik
Vee. Comparing and aggregating rankings with ties. In Proceedings of the
twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 47–58. ACM, 2004.

[FKS03a] Ronald Fagin, Ravi Kumar, and Dakshinamurthi Sivakumar. Comparing
top k lists. SIAM Journal on discrete mathematics, 17(1):134–160, 2003.

[FKS03b] Ronald Fagin, Ravi Kumar, and Dandapani Sivakumar. Efficient similar-
ity search and classification via rank aggregation. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data,
pages 301–312. ACM, 2003.

[FMR05] José Figueira, Vincent Mousseau, and Bernard Roy. Electre methods. In
Multiple criteria decision analysis: State of the art surveys, pages 133–153.
Springer, 2005.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of computer
and system sciences, 55(1):119–139, 1997.

[FSW+17] Daniel Faber, Jennie Stephens, Victor Wallis, Roger Gottlieb, Charles
Levenstein, Patrick CoatarPeter, and Boston Editorial Group of CNS.



144 Bibliography

Trump’s electoral triumph: Class, race, gender, and the hegemony of the
polluter-industrial complex, 2017.

[FVJ09] P Thomas Fletcher, Suresh Venkatasubramanian, and Sarang Joshi. The
geometric median on riemannian manifolds with application to robust
atlas estimation. NeuroImage, 45(1):S143–S152, 2009.

[GHLR01] Cyril Goutte, Lars Kai Hansen, Matthew G Liptrot, and Egill Rostrup.
Feature-space clustering for fmri meta-analysis. Human brain mapping,
13(3):165–183, 2001.

[GJ94] Zoubin Ghahramani and Michael I Jordan. Supervised learning from
incomplete data via an em approach. In Advances in neural information
processing systems, pages 120–127, 1994.

[GMS99a] Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. Rough
approximation of a preference relation by dominance relations. European
Journal of operational research, 117(1):63–83, 1999.

[GMS99b] Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. The use
of rough sets and fuzzy sets in mcdm. In Multicriteria decision making,
pages 397–455. Springer, 1999.

[GSB10] Shengbo Guo, Scott Sanner, and Edwin V Bonilla. Gaussian process pref-
erence elicitation. In Advances in neural information processing systems,
pages 262–270, 2010.

[HA85] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of
Classification, 2(1):193–218, Dec 1985.

[HAMA16] Mohammad Haghighat, Mohamed Abdel-Mottaleb, and Wadee Alhalabi.
Discriminant correlation analysis: Real-time feature level fusion for multi-
modal biometric recognition. IEEE Transactions on Information Forensics
and Security, 11(9):1984–1996, 2016.

[HB01] Richard J Hathaway and James C Bezdek. Fuzzy c-means clustering of
incomplete data. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 31(5):735–744, 2001.

[HG05] Hani Hamdan and Gérard Govaert. Mixture model clustering of uncertain
data. In The 14th IEEE International Conference on Fuzzy Systems, 2005.
FUZZ’05., pages 879–884. IEEE, 2005.

[HKBR99] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl.
An algorithmic framework for performing collaborative filtering. In 22nd
Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 1999, pages 230–237. Association
for Computing Machinery, Inc, 1999.



Bibliography 145

[HP08] Günter Hägele and Friedrich Pukelsheim. The electoral systems of Nicolas
of Cusa in the Catholic Concordance and beyond, pages 229–249. 01 2008.

[HVCHA07] Enrique Herrera-Viedma, Francisco Chiclana, Francisco Herrera, and Ser-
gio Alonso. Group decision-making model with incomplete fuzzy prefer-
ence relations based on additive consistency. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics), 37(1):176–189, 2007.

[IJW+19] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Navrekar, Ritesh Agarwal,
Rui Wu, Heng-Tze Cheng, Morgane Lustman, Vince Gatto, Paul Coving-
ton, et al. Reinforcement learning for slate-based recommender systems:
A tractable decomposition and practical methodology. arXiv preprint
arXiv:1905.12767, 2019.

[JD88] Anil K Jain and Richard C Dubes. Algorithms for clustering data. En-
glewood Cliffs: Prentice Hall, 1988, 1988.

[JE09] Mohsen Jamali and Martin Ester. Trustwalker: a random walk model for
combining trust-based and item-based recommendation. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 397–406. ACM, 2009.

[JGEB01] Anne-Laure Jousselme, Dominic Grenier, and Éloi Bossé. A new distance
between two bodies of evidence. Information Fusion, 2(2):91 – 101, 2001.

[JM12] Anne-Laure Jousselme and Patrick Maupin. Distances in evidence the-
ory: Comprehensive survey and generalizations. International Journal of
Approximate Reasoning, 53(2):118–145, 2012.

[Joa02] Thorsten Joachims. Optimizing search engines using clickthrough data.
In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–142. ACM, 2002.

[JPW07] R Kang-Xing Jin, David C Parkes, and Patrick J Wolfe. Analysis of bid-
ding networks in ebay: aggregate preference identification through com-
munity detection. 2007.

[JS18] Radim Jiroušek and Prakash P Shenoy. A new definition of entropy of
belief functions in the dempster–shafer theory. International Journal of
Approximate Reasoning, 92:49–65, 2018.

[Kam03a] Toshihiro Kamishima. Nantonac collaborative filtering: recommendation
based on order responses. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
583–588. ACM, 2003.

[Kam03b] Toshihiro Kamishima. Nantonac collaborative filtering: Recommendation
based on order responses. In Proceedings of the Ninth ACM SIGKDD



146 Bibliography

International Conference on Knowledge Discovery and Data Mining, KDD
’03, pages 583–588, New York, NY, USA, 2003. ACM.

[KBGM09] Georgia Koutrika, Benjamin Bercovitz, and Hector Garcia-Molina.
Flexrecs: expressing and combining flexible recommendations. In Pro-
ceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of data, pages 745–758. ACM, 2009.

[KDC18] John Klein, Sebastien Destercke, and Olivier Colot. Idempotent conjunc-
tive and disjunctive combination of belief functions by distance minimiza-
tion. International Journal of Approximate Reasoning, 92:32–48, 2018.

[Ken48] Maurice George Kendall. Rank correlation methods. 1948.

[KF87] George J. Klir and Tina A. Folger. Fuzzy Sets, Uncertainty, and Informa-
tion. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[KJS96] David J Ketchen Jr and Christopher L Shook. The application of clus-
ter analysis in strategic management research: an analysis and critique.
Strategic management journal, pages 441–458, 1996.

[KKA10] Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho. A survey and
empirical comparison of object ranking methods. In Preference learning,
pages 181–201. Springer, 2010.

[KKKR13] Bahador Khaleghi, Alaa Khamis, Fakhreddine O Karray, and Saiedeh N
Razavi. Multisensor data fusion: A review of the state-of-the-art. Infor-
mation fusion, 14(1):28–44, 2013.

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951.

[KM01] Slim Ben Khelifa and Jean-Marc Martel. A distance-based collective weak
ordering. Group Decision and Negotiation, 10(4):317–329, 2001.

[KP13] Noam Koenigstein and Ulrich Paquet. Xbox movies recommendations:
variational bayes matrix factorization with embedded feature selection.
In Proceedings of the 7th ACM Conference on Recommender Systems,
pages 129–136. ACM, 2013.

[KS63] John G. Kemeny and James Laurie Snell. Preference ranking: An ax-
iomatic approach. In Mathematical models in the social sciences, chap-
ter 2. Blaisdell, New York, 1963.

[LCLM16] Z. Li, R. Chen, L. Liu, and G. Min. Dynamic resource discovery based on
preference and movement pattern similarity for large-scale social internet
of things. IEEE Internet of Things Journal, 3(4):581–589, Aug 2016.



Bibliography 147

[LDSS04] Dan Li, Jitender Deogun, William Spaulding, and Bill Shuart. Towards
missing data imputation: a study of fuzzy k-means clustering method. In
International Conference on Rough Sets and Current Trends in Comput-
ing, pages 573–579. Springer, 2004.

[LDSS05] Dan Li, Jitender Deogun, William Spaulding, and Bill Shuart. Dealing
with missing data: Algorithms based on fuzzy set and rough set theories.
In James F. Peters and Andrzej Skowron, editors, Transactions on Rough
Sets IV, pages 37–57, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[Lip13] David Lippman. Voting theory. In Math in society. David Lippman, 2013.

[LR19] Roderick JA Little and Donald B Rubin. Statistical analysis with missing
data, volume 793. John Wiley & Sons, 2019.

[LS02] Risto Lahdelma and Pekka Salminen. Pseudo-criteria versus linear util-
ity function in stochastic multi-criteria acceptability analysis. European
Journal of Operational Research, 141(2):454–469, 2002.

[Luc59] R Duncan Luce. Individual choice behavior. 1959.

[Luc12] R Duncan Luce. Individual choice behavior: A theoretical analysis.
Courier Corporation, 2012.

[M+67] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, volume 1, pages 281–297. Oak-
land, CA, USA, 1967.

[Mar12] Arnaud Martin. About conflict in the theory of belief functions. In Belief
Functions: Theory and Applications, pages 161–168. Springer, 2012.

[Mar19] Arnaud Martin. Conflict management in information fusion with belief
functions. In Information Quality in Information Fusion and Decision
Making, pages 79–97. Springer, 2019.

[MC11] José M. Merigó and Montserrat Casanovas. Decision-making with distance
measures and induced aggregation operators. Computers & Industrial
Engineering, 60(1):66–76, 2011.

[MCG+99] Tim Miranda, Mark Claypool, Anuja Gokhale, Tim Mir, Pavel Murnikov,
Dmitry Netes, and Matthew Sartin. Combining content-based and collab-
orative filters in an online newspaper. In In Proceedings of ACM SIGIR
Workshop on Recommender Systems. Citeseer, 1999.

[MD08] Marie-Hélène Masson and Thierry Denœux. Ecm: An evidential version
of the fuzzy c-means algorithm. Pattern Recognition, 41(4):1384–1397,
2008.



148 Bibliography

[MGL13] José M Merigó and Anna M Gil-Lafuente. Induced 2-tuple linguistic gen-
eralized aggregation operators and their application in decision-making.
Information Sciences, 236:1–16, 2013.

[MJO08] Arnaud Martin, Anne-Laure Jousselme, and Christophe Osswald. Conflict
measure for the discounting operation on belief functions. In 2008 11th
International Conference on Information Fusion, pages 1–8, June 2008.

[MO07] Arnaud Martin and Christophe Osswald. Toward a combination rule to
deal with partial conflict and specificity in belief functions theory. In 2007
10th International Conference on Information Fusion, pages 1–8. IEEE,
2007.

[NKC+06] Wang Kay Ngai, Ben Kao, Chun Kit Chui, Reynold Cheng, Michael Chau,
and Kevin Y Yip. Efficient clustering of uncertain data. In Sixth Inter-
national Conference on Data Mining (ICDM’06), pages 436–445. IEEE,
2006.

[ÖTV05] Meltem Öztürke, Alexis Tsoukiàs, and Philippe Vincke. Preference Mod-
elling, pages 27–59. Springer New York, New York, NY, 2005.

[Paz99] Michael J Pazzani. A framework for collaborative, content-based and
demographic filtering. Artificial intelligence review, 13(5-6):393–408, 1999.

[PC09] Seung-Taek Park and Wei Chu. Pairwise preference regression for cold-
start recommendation. In Proceedings of the third ACM conference on
Recommender systems, pages 21–28. ACM, 2009.

[pCqX19] Hui ping Chen and Gui qiong Xu. Group decision making with incom-
plete intuitionistic fuzzy preference relations based on additive consis-
tency. Computers & Industrial Engineering, 135:560 – 567, 2019.

[PKCK12] Deuk Hee Park, Hyea Kyeong Kim, Il Young Choi, and Jae Kyeong Kim.
A literature review and classification of recommender systems research.
Expert Systems with Applications, 39(11):10059 – 10072, 2012.

[Pla75] Robin L Plackett. The analysis of permutations. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 24(2):193–202, 1975.

[PLP11] Yu Peng, Qinghua Luo, and Xiyuan Peng. Uck-means: A customized k-
means for clustering uncertain measurement data. In 2011 Eighth Inter-
national Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
volume 2, pages 1196–1200. IEEE, 2011.

[RD76] Douglas W Rae and Hans Daudt. The ostrogorski paradox: a peculiarity
of compound majority decision. European Journal of Political Research,
4(4):391–398, 1976.



Bibliography 149

[Rou87] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53 – 65, 1987.

[Roy68] Bernard Roy. Classement et choix en présence de points de vue multiples.
Revue française d’informatique et de recherche opérationnelle, 2(8):57–75,
1968.

[RS93] Bernard Roy and R Slowinski. Criterion of distance between technical
programming and socio-economic priority. RAIRO-Operations Research,
27(1):45–60, 1993.

[Saa02] TL Saaty. Decision making with the analytic hierarchy process. Scientia
Iranica, 9(3):215–229, 2002.

[Sha76] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton, 1976.

[SM95] Upendra Shardanand and Pattie Maes. Social information filtering: algo-
rithms for automating “word of mouth”. In Chi, volume 95, pages 210–217.
Citeseer, 1995.

[Sme90] Philippe Smets. The combination of evidence in the transferable belief
model. IEEE Trans. Pattern Anal. Mach. Intell., 12(5):447–458, May 1990.

[Sme93] Philippe Smets. Belief functions: the disjunctive rule of combination and
the generalized bayesian theorem. International Journal of approximate
reasoning, 9(1):1–35, 1993.

[Sme00] Philippe Smets. Data fusion in the transferable belief model. In Proceed-
ings of the third international conference on information fusion, volume 1,
pages PS21–PS33. IEEE, 2000.

[Sme07] Philippe Smets. Analyzing the combination of conflicting belief functions.
Information fusion, 8(4):387–412, 2007.

[Ste05] Theodor J. Stewart. Dealing with Uncertainties in MCDA, pages 445–466.
Springer New York, New York, NY, 2005.

[Sug09] Jeffrey Sugerman. Using the disc® model to improve communication
effectiveness. Industrial and Commercial Training, 41(3):151–154, 2009.

[Tan84] Tetsuzo Tanino. Fuzzy preference orderings in group decision making.
Fuzzy Sets and Systems, 12(2):117 – 131, 1984.

[Tar72] Robert Tarjan. Depth first search and linear graph algorithms. SIAM
JOURNAL ON COMPUTING, 1(2), 1972.



150 Bibliography

[THJA04] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and
Yasemin Altun. Support vector machine learning for interdependent and
structured output spaces. In Proceedings of the twenty-first international
conference on Machine learning, page 104. ACM, 2004.

[Tho53] Robert L Thorndike. Who belongs in the family? Psychometrika,
18(4):267–276, 1953.

[VdCL00] Rosanna Verde, Francisco de AT de Carvalho, and Yves Lechevallier. A
dynamical clustering algorithm for multi-nominal data. In Data analysis,
classification, and related methods, pages 387–393. Springer, 2000.

[Via15] Paolo Viappiani. Characterization of scoring rules with distances: appli-
cation to the clustering of rankings. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[WD91] Michael P. Wellman and Jon Doyle. Preferential semantics for goals. In
In Proceedings of the National Conference on Artificial Intelligence, pages
698–703, 1991.

[WLXC05] David Williams, Xuejun Liao, Ya Xue, and Lawrence Carin. Incomplete-
data classification using logistic regression. In Proceedings of the 22nd
International Conference on Machine learning, pages 972–979. ACM, 2005.

[WWY15] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learn-
ing for recommender systems. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages
1235–1244. ACM, 2015.

[Xu07] Zeshui Xu. Intuitionistic preference relations and their application in
group decision making. Information sciences, 177(11):2363–2379, 2007.

[Xu15] Zeshui Xu. Uncertain multi-attribute decision making: Methods and ap-
plications. Springer, 2015.

[Yag87] Ronald R Yager. On the dempster-shafer framework and new combination
rules. Information sciences, 41(2):93–137, 1987.

[Yag88] Ronald R Yager. On ordered weighted averaging aggregation operators in
multicriteria decisionmaking. IEEE Transactions on systems, Man, and
Cybernetics, 18(1):183–190, 1988.

[Yag03] Ronald R Yager. Induced aggregation operators. Fuzzy sets and systems,
137(1):59–69, 2003.

[YDP99] C-H Yeh, H. Deng, and H. Pan. Multi-criteria analysis for dredger dis-
patching under uncertainty. Journal of the Operational Research Society,
50(1):35–43, 1999.



Bibliography 151

[YF98] Ronald R Yager and Dimitar Filev. Operations for granular computing:
mixing words and numbers. In 1998 IEEE International Conference on
Fuzzy Systems Proceedings. IEEE World Congress on Computational In-
telligence (Cat. No. 98CH36228), volume 1, pages 123–128. IEEE, 1998.

[YF99] Ronald R Yager and Dimitar P Filev. Induced ordered weighted averaging
operators. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 29(2):141–150, 1999.

[YST+13] Jia-Ching Ying, Bo-Nian Shi, Vincent S Tseng, Huan-Wen Tsai,
Kuang Hung Cheng, and Shun-Chieh Lin. Preference-aware community
detection for item recommendation. In 2013 Conference on Technologies
and Applications of Artificial Intelligence, pages 49–54. IEEE, 2013.

[Zad65] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[ZBM17] Yiru Zhang, Tassadit Bouadi, and Arnaud Martin. Preference fusion
and condorcet’s paradox under uncertainty. In 2017 20th International
Conference on Information Fusion (Fusion), pages 1–8. IEEE, 2017.

[ZBM18a] Yiru Zhang, Tassadit Bouadi, and Arnaud Martin. A clustering model
for uncertain preferences based on belief functions. In International Con-
ference on Big Data Analytics and Knowledge Discovery, pages 111–125.
Springer, 2018.

[ZBM18b] Yiru Zhang, Tassadit Bouadi, and Arnaud Martin. An empirical study to
determine the optimal k in ek-nnclus method. In International Conference
on Belief Functions, pages 260–268. Springer, 2018.

[ZC03] Dao-Qiang Zhang and Song-Can Chen. Clustering incomplete data us-
ing kernel-based fuzzy c-means algorithm. Neural processing letters,
18(3):155–162, 2003.

[ZKL15] Hongyi Zhang, Irwin King, and Michael R Lyu. Incorporating implicit
link preference into overlapping community detection. In Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[ZMP17] Kuang Zhou, Arnaud Martin, and Quan Pan. Evidence combination for
a large number of sources. In 2017 20th International Conference on
Information Fusion (Fusion), pages 1–8. IEEE, 2017.

[ZMP18] Kuang Zhou, Arnaud Martin, and Quan Pan. A belief combination rule
for a large number of sources. Journal of Advances in Information Fusion,
13(2), 2018.

[ZWFM06] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning
from incomplete ratings using non-negative matrix factorization. In Pro-
ceedings of the 2006 SIAM international conference on data mining, pages
549–553. SIAM, 2006.



152 Bibliography

[ZYST19] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based
recommender system: A survey and new perspectives. ACM Computing
Surveys (CSUR), 52(1):5, 2019.



List of Figures

1.1 Important study on preference in history. . . . . . . . . . . . . . . . . . 4
1.2 Photo of litchis and ramboutans. . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Two types of sushi Ebi and Maguro. . . . . . . . . . . . . . . . . . . . . 8
1.4 Research topic of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Problems and processes concerned in the thesis . . . . . . . . . . . . . . 10

2.1 Venn diagram of preference relations . . . . . . . . . . . . . . . . . . . . 19
2.2 Relations between different type of orders . . . . . . . . . . . . . . . . . 29

3.1 Distance relation accepted in CS distance . . . . . . . . . . . . . . . . . 36
3.2 Distance relation accepted in RS distance. . . . . . . . . . . . . . . . . . 37
3.3 Preference distance applied in Minkowski family. a −→ b implies a > b

a←→ b implies a = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Venn diagrams of the preference relations . . . . . . . . . . . . . . . . . 42
3.5 Preference distance applied in three different models, with: a −→ b

implies a > b a←→ b implies a = b . . . . . . . . . . . . . . . . . . . . 43

4.1 Preference learning and related research areas within machine learning
(blue), information retrieval (purple), applied mathematics (turquoise),
and the decision sciences (green), from [FHR+14] . . . . . . . . . . . . . 50

4.2 Workflow of data clustering . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Topic map of preference learning . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Combination Strategy A . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Combination Strategy B . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Graphic representation of Condorcet’s paradox . . . . . . . . . . . . . . 68
5.4 Nested cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Preference order of three agents . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Fusion result of strategy A . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.7 Fusion result of strategy B . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.8 Average of m(∅) with agent number increasing . . . . . . . . . . . . . . 74
5.9 Result without Condorcet’s paradox in strategy A . . . . . . . . . . . . 75
5.10 Result without Condorcet’s paradox in strategy B . . . . . . . . . . . . 75
5.11 Entangled cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

153



154 List of Figures

5.12 Non-nested Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.13 Performances on different preference structures . . . . . . . . . . . . . . 77

6.1 Relations between four types of orders . . . . . . . . . . . . . . . . . . . 81
6.2 Graphical representation of WSD calculation . . . . . . . . . . . . . . . 85
6.3 Group decision making procedure . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Graphical illustration of similarity between singletons in Exp 1. . . . . . 89
6.5 Uncertain preferences of 3 agents . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Decision results from two BFpref consensus rules . . . . . . . . . . . . . 91
6.7 Combination procedure for sushi preferences . . . . . . . . . . . . . . . . 94
6.8 Sushi AOI difference between East Japan and West Japan . . . . . . . . 95

7.1 Flowchart of preference clustering . . . . . . . . . . . . . . . . . . . . . . 102
7.2 ARI and silhouette coefficient, switch = 1 . . . . . . . . . . . . . . . . . 111
7.3 ARI and silhouette coefficient, switch = 2 . . . . . . . . . . . . . . . . . 111
7.4 ARI and silhouette coefficient, switch = 3 . . . . . . . . . . . . . . . . . 112
7.5 Silhouette plot of different metrics on SUSHI dataset . . . . . . . . . . . 112
7.6 ARI and silhouette coefficient on conflicting preferences, switch = 1 . . 113
7.7 ARI and silhouette coefficient on conflicting preferences, switch = 2 . . 113
7.8 ARI and silhouette coefficient on conflicting preferences, switch = 3 . . 114
7.9 Pearson correlation coefficient between ARI and silhouette vs. data sets

with different std. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.10 Data distributions with different values of standard deviation. . . . . . . 116
7.11 ARI and Silhouette coefficient via k on different datasets. . . . . . . . . 117
7.12 Results on Iris dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.13 Results on Wine dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 118





Titre : Modélisation et gestion des préférences imparfaites avec la théorie des fonctions de
croyance
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Résumé : La modélisation et gestion de pré-
férences ouvrent de nouveaux défis, surtout
avec l’émerge de service dans le monde nu-
mérique. Ces travaux se concentrent sur les
imperfections dans l’information des préfé-
rences, telles que l’incertitude, l’imprécision
et l’incomplétude. Dans cette thèse, nous
passons en revue les méthodes existantes
sur l’agrégation et l’apprentissage des préfé-
rences. Fondé sur la théorie des fonctions de
croyance, nous proposons une modèle per-
mettant à raisonner les préférences au niveau
du coupe à partir d’un degré de croyance.
Ce modèle est capable de représenter l’in-
certitude, l’imprécision ainsi que l’incomplé-

tude par l’ignorance totale dans le cadre des
fonctions de croyance. Nous proposons en-
suite des stratégies pertinentes pour fusion-
ner de multiple préférences crédibilistes. De
plus, une distance sur les préférences impar-
faites,nommée Weighted Singleton Distance
(WSD), est introduite afin de tenir compte dif-
féremment des quatre types de relations de
préférence.
La classification non-supervisée sur les préfé-
rences crédibilistes est aussi étudiée en dis-
tinguant les préférences complètes et incom-
plètes, avec une théorème d’impossibilité sur
classification des objects crédibilists proposée
et prouvée.
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Abstract: With the emergence service in the
digital world, modeling and managing prefer-
ences bring new challenges. This work fo-
cuses on imperfections in preference informa-
tion, such as uncertainty, imprecision and in-
completeness. In this thesis, we review state-
of-the-art methods on preference aggregation
and preference learning. Based on the theory
of belief functions, we propose a model of pref-
erence information on the pairs of alternatives
(or objects) being compared.
This model is capable of expressing un-
certainty, imprecision and as incompleteness

through total ignorance in the framework of the
theory of belief functions. We then propose rel-
evant strategies to fuse multiple belief prefer-
ences. In addition, a novel distance, named
Weighted Singleton Distance (WSD), on im-
perfect preferences is introduced to take into
account the four types of preference relation-
ships differently.
The unsupervised classification on imperfect
preferences with BFpref model is also stud-
ied by distinguishing complete and incomplete
preferences, with an impossibility theorem pro-
posed and proved.


