# Modeling and management of imperfect preferences with the theory of belief functions 

Yiru Zhang

## To cite this version:

Yiru Zhang. Modeling and management of imperfect preferences with the theory of belief functions.
Artificial Intelligence [cs.AI]. Université de Rennes 1, 2020. English. NNT: . tel-02503990v1

HAL Id: tel-02503990

## https://hal.science/tel-02503990v1

Submitted on 10 Mar 2020 (v1), last revised 10 Nov 2020 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Thèse de doctorat de

## L'UNIVERSITÉ DE RENNES 1 <br> Comue Université Bretagne Loire

École Doctorale N ${ }^{\circ} 601$
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique
Par

## Yiru ZHANG

## Modeling and management of imperfect preferences with the theory of belief functions

Thèse présentée et soutenue à Rennes, le 03/02/2020
Unité de recherche : IRISA
Thèse $\mathbf{N}^{\circ}$ :

## Rapporteurs avant soutenance :

Christine LARGERON Professeure, Université Jean Monnet
Sébastien DESTERCKE Chargé de recherche HDR CNRS, Université Technologie de Compiègne (UTC)

## Composition du Jury :

Attention, en cas d'absence d'un des membres du Jury le jour de la soutenance, la composition du Jury ne comprend que les membres présents
Examinateurs: Philippe BESNARD
Meltem ÖZTÜRK
Sébastien DESTERCKE
Directeur de recherche CNRS, IRIT
Maître de conférences, Université Paris Dauphine
Chargé de recherche HDR CNRS, UTC
Christine LARGERON Professeure, Université Jean Monnet
Dir. de thèse: Arnaud MARTIN
Professeur, Université Rennes 1
Co-encadrante: Tassadit BOUADI Maître de conférences, Université Rennes 1
Invité(s) :

## Acknowledgment

Being indebted to many people and organizations for their help and support during my Ph.D. study and research in team DRUID, IRISA, University of Rennes 1, I would like to express all my gratitude.

Before all, I would give my gratitude to the supervisors of this thesis, Arnaud Martin, professor of Université Rennes 1 and Tassadit Bouadi, Associated professor of Université Rennes 1, for their guide and help during my three years of thesis work as well as in the redaction of this thesis. Their patience, kindness and generosity have solved many problems both technically and emotionally. Their instructions also helped me to develop a rigorous way of research, which is a great treasure in my work and life in the future.

I would specially thank Yewan Wang, who have accompanied with me, during the moments of both depression and happiness. Her heterogeneous care and aids covered from my life to research work. The experiences of supporting each other on the redaction our own thesis at the same moment would be an unforgettable memory full of sweets and bitters. I would also promise her a loyal and promising future for both of us.

A great gratitude is also given to Mr. and Mrs. Pouliquen. They did not only rent the charm studio to me, but also treated me as their own grandson. I really wish them to keep in good health forever.

I will not forget the help from Mr. Yvan Picaud and Dr. Philippe Legay, my excolleagues in Orange Labs, Lannion. Without their introduction of this thesis subject, all this journey would not take place.

This dissertation would not have been possible without the support, contribution, and friendship of all my colleagues in team DRUID and my friends in Lannion. Na Li, Constance Thierry, Salma Ben Dhaou, ZhenZhe Zhong, Mouloud Kharoune and so many others. their presence, accompany, support during the days in Lannion have well decorated these three years of my life.

I am grateful for the ceaseless support and love of my parents and my brother. Their unwavering faith and confidence in me and my abilities have shaped me into the
person I am. I will do my best to recompense for their supports and comprehensions on years of my absence from their side even though they will never be repayable.

I would firstly thank all members in my jury committee, especially Christine Largeron and Sébastien Desdercke, who have also been in the comité de suivi individuel of my thesis.

Finally, I would like to thank two entities, Allocations de Recherche Doctorale (ARED) and Lannion-Trégor Communauté, for their economical support on the work of my thesis.

## Contents

Acknowledgment ..... i
I Introduction ..... 1
1 Introduction ..... 3
Introduction ..... 3
1.1 Brief overview on preferences ..... 3
1.2 New challenges: Imperfectness of agent preference data ..... 6
1.3 Objectives and contributions ..... 9
1.4 Structure of the thesis ..... 11
1.5 Publication list ..... 13
II Background ..... 15
2 Basic concepts ..... 17
2.1 Preference Modeling ..... 17
2.2 Uncertain preferences ..... 20
2.3 Introduction to theory of belief functions (TBF) ..... 22
2.4 Conclusion ..... 28
3 Similarity measures on preferences and on the theory of belief functions ..... 33
3.1 Properties of distances ..... 33
3.2 Distances between preference relation types ..... 35
3.3 Distances in preference structures ..... 37
3.4 Similarity measures in the theory of belief functions ..... 40
3.5 Conclusion ..... 41
4 Preference management ..... 45
4.1 Preference aggregation functions ..... 45
4.2 Voting paradoxes and impossibility theorems ..... 46
4.3 Aggregation on various preference models ..... 47
4.4 Preference learning ..... 50
4.5 Preference clustering ..... 53
4.6 Conclusion ..... 58
III Contributions ..... 61
5 BFpref model, an evidential model for imperfect preferences ..... 63
5.1 An issue in "incomparability" ..... 63
5.2 BFpref model ..... 64
5.3 Evidential preference aggregation strategies ..... 65
5.4 Experiments ..... 70
5.5 Conclusion ..... 76
6 A weighted singleton distance for BFpref model ..... 79
6.1 An issue in the similarity between evidential preferences ..... 79
6.2 WSD - a distance for weighted singletons in the discernment of prefer- ence types ..... 82
6.3 Illustrative examples and experiments ..... 87
6.4 Conclusion ..... 94
7 Clustering on evidential preferences ..... 97
7.1 Scientific issues on distances for evidential preferences ..... 97
7.2 A proposed method for clustering agents according to evidential preferences ..... 100
7.3 Introduction to an unsupervised classifier-EK-NNclus ..... 102
7.4 Experiments of clustering on evidential preferences ..... 107
7.5 Experimentation results for $k$ determination in EkNNclus ..... 112
7.6 Conclusion ..... 116
Conclusion and perspectives ..... 119
Appendices ..... 127
A Proof of proposition 1 ..... 129
B Proof of proposition 2 ..... 130
C Proof of proposition 3 ..... 131
D Aggregation result of sushi preference in east and west Japan ..... 132
E Sushi Information ..... 133
Bibliography ..... 150
Table of figures ..... 151

## Part I

## Introduction

## Chapter 1

## Introduction

"To be, or not to be, that is the question."

- William Shakespeare, Hamlet

In Shakespeare's play Hamlet, the prince Hamlet faces two options: "to be, or not to be". His selection between the two options is a simple expression of his preference. His mechanism of analyzing the benefits and loss in taking the choice is studied in the decision making theory.
From the selection between objects, more information other than preference opinion on objects to be selected may also be potentially implied. Here is an example in presidency election. In the USA presidency election in 2016, in addition to the result that Donald Trump was elected the 45 th U.S. president, there are also research [FSW ${ }^{+}$17] showing that the choice (which can be regarded as a sort of preference) of voters may correlate with their class, race, gender or other elements. The preferences of a person may relate to his/her potential properties, such as characteristics, education back ground, communities, hobbies, etc. Moreover, not only the preference itself, the certain of preference may also reflect such third-part information. In psychology, the uncertainty of choice is used in the determination of personality types, such as the DiSC ${ }^{\circledR}$ personality test applications [Sug09].
All these examples fall on the management of preference information. In this thesis, we study the modeling and management of imperfect preference information, with uncertainty, imprecision and incompleteness.

### 1.1 Brief overview on preferences

Preferences play an important role in the activities of human beings, especially in psychology, economics, sociology and philosophy. For instance, in democratic politics, delegates are elected by voting and such systems are essentially procedures of aggregation of preferences. In economics, preference relation is usually used for the comparison between alternatives, applied in decision making procedure. In sports matches, the
ranking result of athletes is a format of preferences. In computer science and technology, rankings of objects, such as searching results, are also types of preferences.

The study on preference has a long history. It has been under the high light of researchers for centuries, especially in voting systems. Here we list some historic timestamps of some important initiative research on preferences and more details will be discussed in Chapter II. Early to medieval period in 1299, Ramon Llull, considered as the earliest founding father of voting theory and social choice theory, invented the voting method named "Ars generalis" (meaning general method), also known as "Copeland's method" based on binary combination of simple alternatives [Col13]. In 1435, Nicholas of Cusa is believed to be the first person inventing Borda count method (named after the French mathematician Jean-Charles de Borda) for preference aggregation [HP08]. In 18th century, Marquis de Condorcet's studied the cyclic cases in preference aggregation, namely Condorcet's Paradox [dCmdC85]. In 1951, Nobel laureate Kenneth Arrow found an impossibility theorem, namely Arrow's impossibility theorem, pointing a vital problematic in the study of preferences.


Figure 1.1 - Important study on preference in history.
Nowadays, the study on the preference has pivoted to the model of unconventional preferences and novel applications on preference management. Fuzzy set theory [Zad65] has been introduced to model the uncertain preference and many methods on multicriteria decision making have been proposed such as AHP (Analytic Hierarchy Process) by Saaty in 1970s [Saa02], Electre (ELimination Et Choix Traduisant la REalité) by Roy in 1968 [Roy68], PROMETHEE by Brans and Vincke in 1985 [BV85] and other methods. Today, many research works about preference focus on the application of recommendation systems. Netflix Prize [ $\left.\mathrm{BL}^{+} 07\right]$, a well awarded competition for recommendation systems, has set fire on the blossom of the applications on preferences.

Before the introduction of more detailed technique issues, we unify the terminology of this thesis first. In a simple piece of preference information, the compared objects are named as "alternatives". ${ }^{1}$ The entity who express the preferences are named as "agent" ${ }^{2}$.

[^0]The preference management mainly consists of two aspects: preference aggregation, which is also a sub-domain of decision making theory, and preference learning, which is a sub-domain of machine learning.

### 1.1.1 Preference aggregation

Most of the conventional study on preference were focused on problems about preference aggregation methods. which is also named social choice theory. In this process, multiple preferences are aggregated into one, usually applied for decision making. Here is a simple example of preference aggregation with a problem of paradox:

Example 1. Which activity to practice?
Alice, Bob, and Charlie decide to organize an activity for their Saturday afternoon. They vote among three options: practicing Archery (a), playing Basketball (b), and watching a movie in Cinema (c). By $a \succ b$ denote the proposition that outcom $a$ is preferred to outcome $b$. The opinion of each one is given as:

$$
\begin{align*}
\text { Alice : } & & a \succ b \succ c \\
\text { Bob: } & & b \succ c \succ a  \tag{1.1}\\
\text { Charlie: } & & c \succ a \succ b
\end{align*}
$$

One straightforward approach would be to pick the activity with the largest number of votes (namely plurality method). However, by applying such method, we encounter a cyclic condition, making it impossible to make the final decision. This paradox is named as Condorcet's paradox.

To conclude, social choice theory deals with the problems on the aggregation of preferences and decision making. In this thesis, we focus only on mono-criterion decision making problem, where every compared item is represented by only one single criterion. Concerning this topic, in Chapter 4, state-of-the-art methods of mono-criterion decision making are introduced. Besides, aggregation on preferences with uncertainty is discussed in Chapters 5 and 6 .

### 1.1.2 Preference learning

Nevertheless, the study on preferences is not limited to social choice theory. With the trendy development of artificial intelligence (AI), reasoning with preference is considered as a particularly promising research direction for the AI community [Doy04]. Preference learning is a relatively large topic. Roughly speaking, it is about inducing predictive preference models from empirical data. Some definitions on preference

[^1]learning are larger, including also the application of preferences in machine learning algorithms [FH11]. In this thesis, we focus mainly on the former one. Here is a simple example on preference learning.

Example 2. Chopsticks or fork and knife
Table manner and habits are different between China and France. In China, people prefer chopsticks to fork and knife as eating utensil while in France, fork and knife are always preferred. David is a server in a restaurant offering both kinds of utensils. By learning this knowledge on eating utensil preference, when a Chinese client comes, David elicit that chopsticks are more probably preferred and he would prepare chopsticks as default utensil.

Similar to this example, preference learning techniques are widely used from searching engine services to recommendation systems building. To find groups among agents upon their preferences is a fundamental step in preference elicitation, also named as preference clustering. More discussion on preference learning is given in Chapter 4. Besides, in Chapter 7, we study more cases of clustering on unconventional preferences.

In the two examples given above, preferences are expressed in crystal clear ways, meaning that all preference relations between alternatives are certain. However, such conditions are no longer enough to solve problems encountered nowadays, coming up with new challenges.

### 1.2 New challenges: Imperfectness of agent preference data

Initiated by the development of digital technology, especially the boom of the Internet, more possibilities of collecting and mining the preference data become possible. Such development has proposed abundant of novel challenges and issues on the study of preferences, varying from theoretic to application levels. The issues include but are not limited to the imperfectness of the preference data and the corresponding applications.

In the scope of this thesis, the imperfectness on preference data consists of mainly three aspects:

1. Preference with uncertainty;
2. Preference with imprecision;
3. Incomplete preference.

The uncertainty in preferences refers to epistemic situations on the knowledge of preference information where the preference relations can not be exactly described. The imprecision in preferences refers to the cases where multiple preference relations are
possible, usually caused by absence of knowledge or implicity on preference information. The incompleteness in preference refer to the cases that preference relation are not observed on all elements in a alternative space.
In this thesis, the term "evidential" is used, referring to circumstances with both "imprecision" and "uncertainty". For better understanding, some corresponding examples are given as follows.

### 1.2.1 Preferences with uncertainty

The uncertainty in preferences can be interpreted in two ways: uncertainty expressed directly from agents, which is in terms of cognition, or uncertainty in the preference data, which is in terms of statistic. Here are two examples respectively demonstrate these two ways of interpretation.
Example 3. Ramboutan and apple:
Uncertain preference caused by lack of knowledge.
Alice is asked to express her preference between ramboutan and apple. Alice has never tasted ramboutan but she infers the taste of ramboutan by the similarity in term of shape between ramboutan and litchi. As Alice knows she prefers litchi to apple, she gives an uncertain opinion that she prefers ramboutan to apple.


Figure 1.2 - Photo of litchis and ramboutans.
The three pieces of fruits on the left with bold peels are litchis. The other three with long hair are ramboutans.

Example 4. SUSHI preference data set: conflicting sources of preference data
In the SUSHI preference data set [Kam03a], every respondent is asked to express his/her preference over different sushis by both ranking and scoring. Between two types of sushi Maguro and $\boldsymbol{E b i}$, Bob expresses Maguro outranks Ebi in ranking but gives Maguro 3 points and Ebi 4 points, indicating that Maguro $\prec \boldsymbol{E b i}$. In this way, Bob's preference between Maguro and $\boldsymbol{E b i}$ is uncertain

The reasoning methods on uncertain knowledge are various. In Section 2.2 of the Chapter 2, several popular reasoning methods on uncertain preference are introduced.

(a) Sushi Ebi

(b) Sushi Maguro

Figure 1.3 - Two types of sushi Ebi and Maguro.

### 1.2.2 Preferences with imprecision

The imprecision in preference implies that more than one preference relation may exist between a pair of alternatives under comparison. Here we give examples of imprecise preference inferred from natural language.

Example 5. Imprecision in preferences

The sentence "A Peugeot 208 car is not worse than a Renault Clio" implies that Peugeot is preferred or indifferent to Renault. The sentence "Marvel Comics and DC Comics are not in the same class" indicates only that Marvel and $\boldsymbol{D C}$ are not indifferent, but both Marvel is preferred to $\boldsymbol{D C}$ or $\boldsymbol{D C}$ is preferred to Marvel are possible.

### 1.2.3 Incomplete preferences

Sometimes, agents may not give their preference opinion on the whole set of alternatives. The incompleteness in preferences is caused by missing information. An example on real world data is given here:

Example 6. Missing information in Sushi preference dataset
Again, in Sushi preference dataset, every respondent is asked to give their preferences on 10 random sushis out of 100 . Thus, the missing information on the left 90 sushis causes incompleteness in preference.

However, some works consider that "incompleteness" is caused by the "incomparability" relation [RS93]. Such controversy is also due to the different interpretation on "incomparability". Some works regard "incomparability" as the absence of knowledge. The clarification on these notions are also in the scope of this thesis with an unified framework proposed, based on the theory of belief functions. More detailed discussions are given in Chapters 3, 5 and 6 .

Targeted on these issues on the imperfectness of preference information, the objectives of this thesis are as follows.


Figure 1.4 - Research topic of this thesis.

### 1.3 Objectives and contributions

The goal of this thesis is to improve preference models for imperfect preference and explore management problems on such preferences. To deal with problems of uncertainty and imprecision, we applied the theory of belief functions.

The theory of belief functions is a formal framework for representing and reasoning with uncertain and imprecise information by extending both the set-membership approach and probability theory. More detailed introduction is given in Chapter 2. The research topics of this thesis are concluded by Figure 1.4. The topics mainly combines the modeling on imperfect preference data (with the theory of belief functions), decision making from imperfect data (preference aggregation) and data mining on preference (clustering on preference data)

A global view of problematic in this thesis is illustrated in Figure 1.5. The blocks in grey marks the contributions, which mainly concern the domains of modeling on imperfect preferences as well as management (including aggregation and clustering) of such preferences.

Agents may express their preferences with imperfectness, caused by conflicting sources, uncertainty or the ambiguity of expression. Several contributions are made to the field of imperfect preference modeling and management. In modeling part, we propose the BFpref model, an evidential model for imperfect preference based on the theory of belief functions. Based on BFpref model, we studied the management prob-


Figure 1.5 - Problems and processes concerned in the thesis
lems from aggregation to clustering of imperfect preferences.

## Modeling of imperfect preference

We firstly clarified some ambiguity at the definition level on different types of preference relation, especially the definition of "incomparability". Besides, raw preference data may be imperfect from agents level: uncertain, conflicting, and incomplete preferences are possible in agents' expression. To model such preferences, we propose a general framework expressing the "uncertainty", "imprecision" and "incompleteness" in preference with the help of the theory of belief functions (TBF), named as BFpref model. Basic Belief Assignment (BBA) is used to express the uncertainty and imprecision level on preference relations. More introduction on TBF is given in Section 2.3 of Chapter 2.

## Aggregation problems on imperfect preferences

This contribution mainly consists of two aspects. Firstly, we proposed and compared different aggregation strategies, based on different combination rules, and decisionmaking methods for BFpref model, as the theory of belief functions (TBF) has been proved to be a practical mathematical tool for data fusion. However, we find that the state-of-the-art distance measures in TBF are not adaptable for decision in preference relations. An important one is that all singletons are equally measured, making the distance between "indifference" and "strict preference" equal to the distance between two "strict preferences inverse". To solve this problem, a new metric named Weighted

Singleton Distance (WSD) is proposed, enabling to measure the similarity between two BBAs in the same framework with different weights on singletons. In the solution of avoidance of Condorcet's paradox (introduced in Section 4.2 of Chapter 4), we also proposed a faster algorithm for Directed Acyclic Graph (DAG) building based on Depth First Search (DFS), which improves the efficiency of cycle detection and elimination in evidential preference structures.

## Clustering on evidential preferences

In this part, BFpref as well as different distances are applied in the application of community detection. Community detection is a popular topic in network science field. In social network analysis, preference is often applied as an attribute for individuals' representation. In some cases, uncertain and imprecise preferences may appear. Moreover, conflicting preferences can arise from multiple sources. Based on BFpref model, the clustering quality in case of perfect preferences as well as imperfect ones based on weak orders (orders that are complete, reflexive and transitive) are studied. Limited by several properties, the clustering process is only executed on complete preference orders. Some necessary properties for incomplete preference orders are also discussed and are in the scope of our future work.

Table 1.1 shows the topics on evidential preference management, including preference aggregation and clustering. The preferences are categorized into two parts: complete and incomplete. In this thesis, only aggregation on both categories of preferences are studied. The clustering on preference is limited on complete preferences while only discussion is given for incomplete preferences.

Table 1.1 - Preference management concerned in this thesis

|  | group decision making | clustering |
| :---: | :---: | :---: |
| complete | $\sqrt{ }$ | $\sqrt{ }$ |
| incomplete | $\sqrt{ }$ | discussion |

### 1.4 Structure of the thesis

This thesis is organized in three parts, including eight chapters. In addition to the first chapter made up of the introduction, Part II and III respectively consist of four and three chapters.

In Part II, the state of the art methods on preference modeling, preference aggregation as well as preference learning on mono-criterion preferences are presented.
In Chapter 2, the basic models of preferences are firstly introduced. A brief introduction on the theory of belief functions is also given.
In Chapter 3, different similarity measure methods are introduced. These measures includes distances for preference relations, distances and correlations for preferences
structures (orders) as well as distance, conflict and divergence measure methods in TBF.
Chapter 4 concerns the management of preferences, including preference aggregation and preference learning. In the first aspect, different preference aggregation methods as well as problematic issues are introduced. Besides, the distances play important roles in both aggregation and preference learning. Thus, distances used in preference and in the theory of belief functions as well as preference learning are also introduced in this chapter. In the second aspect, a brief introduction on preference learning is presented, along with applications on preference clustering. Such techniques are often applied in preference based community detection and recommendation systems.

The contributions of the thesis are introduced in Part III.
In Chapter 5, some ambiguities in the definitions of preference relations, especially the "incomparability", are discussed and clarified. Based on this clarification, an evidential preference model based on the theory of belief functions (namely BFpref) is proposed, enabling the expression of preferences with uncertainty and imprecision. Based on BFpref model, an aggregation method for evidential preferences is proposed and compared with other conventional procedures. A Condorcet's paradox avoidance method is also introduced, with a faster algorithm for DAG building proposed.
In Chapter 6, we focus on a flaw in the similarity measure, introduced above, on BBAs and proposed a new metric named WSD with the issue solved. WSD is applied in the aggregation of imperfect preferences and the comparison with other methods show that WSD is more reasonable.
In Chapter 7, the clustering applications on preferences expressed by BFpref model is studied, with a new evidential preference reasoning method proposed. Some comparisons between different metrics are also illustrated.

Finally, the last chapter gives conclusions and perspectives on our work.
During the work of this thesis, we have published the following papers.

### 1.5 Publication list

## International conferences

- Zhang Y., Bouadi T., Martin A. Preference fusion and Condorcet's Paradox under uncertainty. 20th International Conference on Information Fusion (FUSION), Xi'an, 2017, pp. 1-8
- Zhang Y., Bouadi T., Martin A. A clustering model for uncertain preferences based on belief functions International Conference on Big Data Analytics and Knowledge Discovery. Springer, Cham, 2018: 111-125.
- Zhang Y., Bouadi T., Martin A. An empirical study to determine the optimal k in Ek-NNclus method. International Conference on Belief Functions. Springer, Cham, 2018.


## International journals

- Zhang Y., Bouadi T., Martin A. A distance for uncertain and imprecise preferences based on the theory of belief functions, applied for group decision making. Submitted to Journal of Knowledge-Based-System


## Part II

## Background

## Chapter 2

## Basic concepts

To simplify the expression of the work in this thesis, we introduce basic concepts and models around the preference paradigm in this chapter. Besides, a brief introduction on the theory of belief functions is given as well. The chapter is structured as follows. Concepts of preference modeling are introduced in Section 2.1, followed by an introduction of different modeling on unconventional preferences in Section 2.2. An introduction on the theory of belief functions (TBF) in Section 2.3, with basic definitions and several commonly used combination rules given.

### 2.1 Preference Modeling

The representation of preferences has been studied in various domains such as decision theory [ÖTV05], artificial intelligence [WD91], economics and sociology [Arr59]. Preferences are essential to efficiently express user's needs or wishes in decision support systems such as recommendation systems and other preference-aware interactive systems that need to elicit and satisfy user preferences. However, preference modeling and preference elicitation are not easy tasks, because human beings tend to express their opinions in natural language rather than in the form of preference relations. Preferences are also widely used in collective decision making and social choice theory, where the group's choice is made by aggregating individual preferences.

### 2.1.1 Binary relations

The preference are mostly modeled in forms of binary relation between two alternatives.
Definition 2.1.1. Binary Relation: A binary relation $R$ on a set $\mathcal{A}$ is a subset of the cartesian product $\mathcal{A} \times \mathcal{A}$.

In preferences, $\mathcal{A}$ denotes the set of alternatives and $R$ the preference relation. The product of binary relations can be regarded as transitive between multiple binary relations in a sequence, defined by the following definition.

Definition 2.1.2. Product of binary relations: Given two binary relations $R_{1}$ and $R_{2}$, three alternatives $a_{1}, a_{2}, \in \mathcal{A}: a_{1} R_{1} \cdot R_{2} a_{2} \Leftrightarrow \exists a_{i} \in \mathcal{A}: a_{1} R_{1} a_{i}$ and $a_{i} R_{2} a_{2}$

### 2.1.2 Properties of binary relations

Before introducing different preference structures, we collectively cite different possible properties for a binary relation.

A relation $R$ is called:

```
reflexive, if }\quadaRa,\foralla\in
irreflexive, if }\quada\negRa,\foralla\in
symmetric, if }\quadaRb->bRa,\foralla,b\in
antisymmetric, if }\quad(aRb,bRa)->a=b,\foralla,b\in
complete, if }\quad(aRb\mathrm{ or }bRa),\foralla\not=b\in
strongly complete, if }\quad(aRb\mathrm{ or }bRa),\foralla,b\in
transitive, if
negatively transitive, if
semi-transitive, if }\quad(aRb,bRc)->(aRd or dRc),\foralla,b,c,d\in
Ferrers relation, if }\quad(aRb,cRd)->(aRd or cRb),\foralla,b,c,d\in
```

Several preference relations are defined depending on the properties they satisfy, introduced as follows.

### 2.1.3 Preference relations

Based on the definition of a binary relation, between any couple of alternatives $a_{i}, a_{j}$ (without order), only 4 relations possibly exist $\{\succ, \succeq, \approx, \sim\}$ :

- $\succ$ : Strict preference. $a_{i} \succ a_{j}$ states that " $a_{i}$ is preferred to $a_{j}$ " Between $a_{i}, a_{j}$ both $a_{i} \succ a_{j}$ and $a_{j} \succ a_{i}$ are possible. For ease of readability, we use $a_{i} \prec a_{j}$ instead of $a_{j} \succ a_{i}$ in the following parts
- $\approx$ : Indifference. $a_{i} \approx a_{j}$ states that " $a_{i}$ is indifferent to $a_{j}$ "
- $\succeq$ : Weak preference. $a \succeq b$ states that " $a_{i}$ is preferred or indifferent to $a_{j}$ "
- $\sim$ : Incomparability. $a_{i} \sim a_{j}$ states that " $a_{i}$ is incomparable to $a_{j}$ "

Weak preference is the union of strict preference and indifference. Preferences on a set of alternatives are usually represented by a preference structure, defined as follows.

Definition 2.1.3. Preference structure: A preference structure on $\mathcal{A}$ is a reflexive binary relation $R$ on $\mathcal{A}$. As the complete property is implied by the existence of the incomparability relation, we categorize different preference structures by incomparability. i.e. structures without incomparability are complete while structures with incomparability are considered as incomplete.

These relations can be defined on binary relation $R$ as:

$$
\begin{aligned}
& a_{i} \succ a_{j} \Leftrightarrow a_{i} R a_{j} \text { and } a_{j} \neg R a_{i} \\
& a_{i} \approx a_{j} \Leftrightarrow a_{i} R a_{j} \text { and } a_{j} R a_{i}
\end{aligned}
$$

With the definitions of $\langle\succ\rangle$ and $\langle\approx\rangle$, we have two other relations:

$$
\begin{array}{ll}
a_{i} \succeq a_{j} & \Leftrightarrow a_{i} \succ a_{j} \text { or } a_{i} \approx a_{j} \\
a_{i} \sim a_{j} & \left.\left.\left.\Leftrightarrow a_{i}\right\urcorner \succ a_{j} \text { and } a_{i}\right\urcorner \prec a_{j} \text { and } a_{i}\right\urcorner \approx a_{j}
\end{array}
$$

The "weak preference" is the union of strict preference and indifference. Thus, between two alternatives $a_{i}$ and $a_{j}$, the four relations $\{\succ, \prec, \approx, \sim\}$ are exclusive and exhaustive ${ }^{1}$. We propose the illustration given in Figure 2.1. In this figure, the round on the left represent the set of relation $a_{i} R a_{j}$ and the round on the right the set of relation $a_{j} R a_{i}$. The overlapped part, showing the intersection of the two sets, represent the set of relation $a_{i} \approx a_{j}$. According to the definition, the incomparability relation $a_{i} \sim a_{j}$ is the negation of all the three relations above, thus represented by masked part in orange.


Figure 2.1 - Venn diagram of preference relations
From the definitions above, the following properties are guaranteed:

- $\langle\succ\rangle$ is transitive and anti-symmetric;
- $\langle\approx\rangle$ is transitive, symmetric and reflexive

With the relations "Strict preference","Indifference" and "Incomparability", and $R$ a binary relation on the alternative set $A$, we can define different preference orders:

Definition 2.1.4. Total order: $R$ is a total order if and only if $R \in\{\succ, \prec\}$
A total order is also called "linear" order.
Definition 2.1.5. Weak order: $R$ is a weak order if and only if $R \in\{\succ, \prec, \approx\}$

[^2]Definition 2.1.6. Partial order: $R$ is a partial order if and only if $R \in\{\succ, \prec, \sim\}$
In many works, weak orders are also referred to as partial rankings. In our work, we accept the terms "weak order" and "partial order".

Definition 2.1.7. Quasi (pre)order: $R$ is a quasi-(pre)order if and only if $R \in\{\succ, \prec, \approx, \sim\}$

## Examples

For better understanding, we give some examples from real life of each type of orders.
Example 7. Total order: Sprint race
In a sprint race in track and field competitions, final ranking of competitors is a total order.

Example 8. Weak order: Exam for students
In an exam, if we rank all students by their notes, this ranking is a weak order. Indifference relations are caused by several students having same notes.

The example on partial order can be ambiguous, caused by the definition of "incomparability". Different circumstances of "incomparability" may be related to different interpretations. As this is still an open issue, we give the corresponding example in the contribution part in Chapter 5.

To distinguish conventional preference and in-conventional ones introduced later, we use the term "crisp" and "soft". For crisp preference, every relation is binary. For soft preference, uncertainty may exist. Thus binary representation is no longer enough. Besides, imperfectness such as imprecision and ignorance may also exist. In next section, we introduce different theories for soft preference modeling.

### 2.2 Uncertain preferences

Almost all soft methods can be applied in uncertain preference modeling, such as probability theory, fuzzy set theory, rough set theory, etc. In this section, we introduce several classical models for soft preference modeling.

### 2.2.1 Fuzzy preference

Confronting preferences with imprecision, the theory of fuzzy set [Zad65] has always been a powerful tool. The most accepted model was firstly proposed by Blin [Bli74], and then developed by others on different applications, notably in group decision making [BSS78, Tan84].

Fuzzy preference modeling is based on fuzzy membership. We borrow the definitions in [Bli74]. A fuzzy binary relation on an alternative set $\mathcal{A}$ is determined by a fuzzy set on the product set $\mathcal{A} \times \mathcal{A}$, that is, by a membership function (MF) $\mu_{R}: \mathcal{A} \times \mathcal{A} \rightarrow[0,1]$ over the set $\mathcal{A} \times \mathcal{A}$. Considering the case where $\mathcal{A}$ is finite, $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}$, we can define an $N \times N$ matrix $\mathbf{R}$ whose $(i, j)$ element $r_{i j}$ is given by:

$$
\begin{equation*}
r_{i j}=\mu_{R}\left(a_{i}, a_{j}\right), i, j=1, \ldots, N \tag{2.1}
\end{equation*}
$$

from the membership function $\mu_{R}$. Conversely an $n \times n$ matrix with elements in $[0,1]$ defines a fuzzy binary relation on $\mathcal{A}$. Thus, we have $0 \leqslant r_{i j} \leqslant 1$.
When $R$ is a preference relation, the element $r_{i j}$ represents the degree of preference of alternative $a_{i}$ to alternative $a_{j}$. There are two ways of interpretation on the values of $r_{i j}$ : One is that $r_{i j}>0.5$ represents an uncertain preference of $a_{i}$ over $a_{j}$ while $a_{i}$ is definite (meaning without uncertainty) preferred to $a_{j}$ if $r_{i j}=1$. The other interpretation is that $r_{i j}>0.5$ represents a preference of $a_{i}$ to $a_{j}$ with some intensity level, while $r_{i j}=1$ represents the highest intensity level.

Most of works on fuzzy preferences do not distinguish the concepts of "imprecision" and "intensity". They believe that the two interpretations are rather homogeneous because a certain opinion of "prefer" often corresponds to an intense preference.

In fuzzy set theory, some assumptions are accepted.

- $\mathbf{R}$ is reciprocal. It can be additive:

$$
\begin{equation*}
r_{i j}+r_{j i}=1, \tag{2.2}
\end{equation*}
$$

or multiplicative [HVCHA07, Xu15]:

$$
\begin{equation*}
r_{i j} \cdot r_{j i}=1 \tag{2.3}
\end{equation*}
$$

- Intensity is transitive: if $x_{i}$ is preferred to $x_{j}$ and $x_{j}$ is preferred to $x_{k}$, then $x_{i}$ should be preferred to $x_{k}$ with at least the same intensity. Formally:

$$
\begin{array}{r}
r_{i j} \geqslant 0.5, r_{j k} \geqslant 0.5 \\
\Rightarrow r_{i k} \geqslant \min \left(r_{i j}, r_{j k}\right), \forall i, j, k \in 1, \ldots, N \tag{2.4}
\end{array}
$$

This type of transitivity is also called moderate stochastic transitivity in the probabilistic choice theory [Luc12].

Some extension versions of fuzzy preferences are also proposed. For example, the authors of [Xu07] introduced intuitionistic fuzzy preference relations (IFPR) based on intuitionistic fuzzy set [Ata99] by introducing both membership function and nonmembership function. Traditionally, fuzzy preference models are used in the context of preference aggregation applications in decision making theory. The corresponding methods are introduced in Chapter 4.

Fuzzy set theory is popular in reasoning uncertain information. Other soft method theories have also been applied in preference modeling.

### 2.2.2 Preference by probability: Bayesian model

Instead of reasoning, Baysian model is a popular probabilistic model usually applied in preference elicitation. The model is defined as follows: For agent $n$, given a utility function $g\left(a_{i}\right)$ on alternative $a_{i}$, on pairwise preference $a_{i}, a_{j}$, a common model for observations $a_{i} \succ a_{j}$ is the probit likelihood [GSB10] defined as:

$$
\begin{equation*}
p\left(a_{i} \succ a_{j}\right)=\Phi(g(i)-g(j)) \tag{2.5}
\end{equation*}
$$

where $\Phi$ denotes the standard Gaussian cumulative distribution function.
Another popular option is the logit likelihood [KP13] defined as

$$
\begin{equation*}
p\left(a_{i} \succ a_{j}\right)=\frac{1}{e^{-(g(i)-g(j))}} \tag{2.6}
\end{equation*}
$$

Bayesian model is often applied in Plackett-Luce ranking model [Luc59, Pla75]. The model is defined as follows:
Given rankings $\sigma$ on set $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}$ Under Luce's axiom, the probability of selecting alternative $a_{j}$ from $\mathcal{A}$ is given by

$$
\begin{equation*}
P\left(a_{j} \mid \mathcal{A}\right)=\frac{\alpha\left(a_{j}\right)}{\sum_{a_{i} \in \mathcal{A}} \alpha\left(a_{i}\right)} \tag{2.7}
\end{equation*}
$$

where $\alpha\left(a_{i}\right)$ denotes the worth of alternative $a_{i}$.
This model is usually applied in social choice problems (which is introduced in Chapter 4)

Similar to Fuzzy set theory, Bayesian model are not able to express ignorance in preference information. In the cases with ignorance, the theory of belief functions (TBF) becomes more useful. TBF is a powerful mathematical tool for modeling uncertain data, i.e. data with both ignorance and imprecision.

### 2.3 Introduction to theory of belief functions (TBF)

The theory of belief functions (TBF) (also referred to as Dempster-Shafer or Evidence Theory) is a mathematical theory that generalizes the theory of probabilities by giving up the additivity constraint. It was firstly introduced by Dempster [Dem67] in the context of statistical inference as a general model of uncertainties. Afterwards, Shafer [Sha76] formalized it as a theory of evidence. In 1980's and 1990's, Smets popularized and developed this theory by proposing Transferable Belief Model (TBM) [Sme90] and it has been applied widely in various domains such as information fusion, classification, reliability and risk analysis, etc. By extending probabilistic and set-valued representations, it allows to represent degrees of belief and incomplete information in a unified frame.
Unlike the probability theory, which is unable to distinguish equally probable events from the case of ignorance, in the theory of belief functions, both imprecision and ignorance are modeled.
TBF has been proved to be a powerful tool in applications of data fusion [Sme00, EMS04, KKKR13]. Generally, data fusion consists of four steps:

1. Modeling
2. Estimation
3. Combination
4. Decision

In this section, we introduce basic definitions and tools in the theory of belief functions accompanied with a tour-guide for data fusion.

Definition 2.3.1. Discernment frame: The discernment frame $\Omega$ is a finite set of disjoint elements, defining the domain of references, formally:

$$
\begin{equation*}
\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\} \tag{2.8}
\end{equation*}
$$

where $\omega_{i}$ are exclusive and exhaustive.
The definition of hypotheses $\omega$ are related to the given problem. The belief functions are defined on the power set $2^{\Omega}=\{X: X \subseteq \Omega\}$. Confronting a data fusion problem, the modeling step is fundamentally on the definition of a proper frame of discernment.

Definition 2.3.2. Basic Belief Assignment ${ }^{2}$ : Function $m: 2^{\Omega} \rightarrow[0,1]$ is called Basic Belief Assignment (BBA) on $2^{\Omega}$, such that

$$
\begin{equation*}
\sum_{X \subseteq \Omega} m(X)=1 \tag{2.9}
\end{equation*}
$$

A BBA is called normalized if $m(\emptyset)=0$.
Definition 2.3.3. Categorical BBA: A categorical $B B A$ is a normalized BBA which has a unique focal element $X^{*}$, formally:

$$
m(X)= \begin{cases}1, & \text { if } X=X^{*} \subset \Omega  \tag{2.10}\\ 0, & \text { otherwise }\end{cases}
$$

Categorical BBAs are specific cases of simple BBA. Thus a categorical BBA on element $X, X \subset \Omega$ is denoted as $X^{0}$.

In a BBA, the values on union elements representing the imprecision are also interpreted as the ignorance of the knowledge, formally, $m(X) \neq 0,|X|>1$. With the imprecision, when $m(\Omega)<1$ we call $m$ represent partial ignorance on $X$. Otherwise, if $m(\Omega)=1, m$ is called "vacuous", representing total ignorance.

Definition 2.3.4. Vacuous BBA: A vacuous $B B A$ is a particular categorical BBA focused on $\Omega$, formally:

$$
m(X)= \begin{cases}1, & \text { if } X=\Omega  \tag{2.11}\\ 0, & \text { otherwise }\end{cases}
$$

[^3]Vacuous BBA are denoted as $m_{\text {? }}$ in this thesis.
Definition 2.3.5. Focal element (focal set): Every element $X \subseteq \Omega$ such that $m(X)>0$ is called focal set, and focal element if $X \in \Omega$.
Definition 2.3.6. Simple BBA: $m$ is a simple BBA if it has the following form:

$$
\begin{array}{r}
m(X)=1-w(X) \\
m(\Omega)=w(X) \tag{2.12}
\end{array}
$$

where $w(X)$ denote the weight function (Equation (2.19)) on $X$. for some $X \subset \Omega, X \neq \emptyset$ and $w(X) \in[0,1]$. For convenience, such BBA is denoted by $X^{w(X)}$.

Thus, a BBA is capable to express both uncertainty and imprecision. When the focal element has value less than 1 , the uncertainty level is expressed. While the focal element is on the union of singletons, imprecision is expressed.
Definition 2.3.7. Dogmatic BBA: A dogmatic BBA is a BBA where $\Omega$ is not a focal element. Formally:

$$
\begin{equation*}
m(\Omega)=0 \tag{2.13}
\end{equation*}
$$

Definition 2.3.8. Bayesian BBA: A Bayesian $B B A$ is a BBA which all focal elements are elementary hypotheses, i.e. all focal elements are singletons. Formally:

$$
m(X)= \begin{cases}\in[0,1], & \text { if }|X|=1  \tag{2.14}\\ 0, & \text { otherwise }\end{cases}
$$

A Bayesian BBA is a probability distribution over frame $\Omega$. Furthermore, if a Bayesian BBA is categorical, it describes that there is no uncertainty. Thus the state of the concerned variable is certain and precise.

In data fusion procedures, the value assignment on BBAs is the estimation step.
Definition 2.3.9. Belief function: If the evidence tells us that the truth is in $Y$, and $Y \subseteq X$, we say that the evidence supports $X$.
Given a normalized BBA $m$, the probability that evidence supports $X$ is:

$$
\begin{equation*}
\operatorname{Bel}(Y)=\sum_{X \subseteq Y} m(X) \tag{2.15}
\end{equation*}
$$

The value of $\operatorname{Bel}(X)$ is called the degree of belief in $X$, and the function is called a belief function.
Definition 2.3.10. Plausibility function: If the evidence does not support $\bar{X}$, it is consistent with $X$.
For a normalized BBA $m$ (i.e. $m(\emptyset)=0$ ), the probability that the evidence is consistent with $X$ is

$$
\begin{align*}
\operatorname{Pl}(X) & =\sum_{X \cap Y \neq \emptyset} m(Y)  \tag{2.16}\\
& =1-\operatorname{Bel}(\bar{X}) \tag{2.17}
\end{align*}
$$

The value of $P l(X)$ is called the plausibility of $X$ and the function plausibility.
Definition 2.3.11. Commonality function: Commonality function $Q: 2^{\Omega} \rightarrow[0,1]$ is another equivalent representation of a belief function. It is defined as:

$$
\begin{equation*}
Q(X)=\sum_{Y \supseteq X} m(Y), \forall X \subseteq \Omega \tag{2.18}
\end{equation*}
$$

With commonality function $Q$, the weight function from a BBA is defined.

Definition 2.3.12. Weight function: The weight function on element $X \subset \Omega$ is calculated by :

$$
\begin{equation*}
w(X)=\prod_{Y \supseteq X} Q(Y)^{(-1)^{|Y|-|X|+1}} \tag{2.19}
\end{equation*}
$$

In the next part, we introduce TBF tools for combination and decision steps in data fusion.

### 2.3.1 Combination rules in TBF

As aforementioned, data fusion is an important application of the theory of belief functions. We borrow the definition of data fusion in [HAMA16]:

Data fusion is the process of integrating multiple data sources to produce more consistent, accurate, and useful information than that provided by any individual data source.

In the theory of belief functions, the process of data fusion is usually related to the combination of multiple BBAs defined on the same frame of discernment, representing multiple sources on identical variables.
Many combination rules have been proposed with the account of various properties of information sources. Here among which an important one is introduced, namely cognitive independence[Sme93].

Definition 2.3.13. Cognitive independence: Sources are considered as cognitively independent if any source has no communication with the others.

Cognitive independence is different from conditional independence. The former one is defined from a point of view of the intrinsic property from the sources, while the latter one is defined from a statistical view.

For cognitive independent sources, when all sources are reliable, Dempster's combination rule and conjunctive combination rule are often applied.
In the discernment frame $\Omega$, given two cognitively independent and reliable sources $s_{1}$ and $s_{2}, m_{1}$ and $m_{2}$ are two BBAs of $s_{2}$ and $s_{2}$ on $\Omega$, the combination rules are defined as follows.

## Conjunctive combination rule

For all $X \subseteq \Omega, X \neq \emptyset$, the conjunctive rule on $X$ is given by:

$$
\begin{equation*}
m_{C o n j}(X)=\sum_{Y_{1} \cap Y_{2}=X} m_{1}\left(Y_{1}\right) m_{2}\left(Y_{2}\right) \tag{2.20}
\end{equation*}
$$

The conjunctive operator is denoted as $®$ in this thesis.

## Dempster's combination rule

Dempster's rule is a normalized version of conjunctive rule, given by:

$$
\begin{equation*}
m_{D}(X)=\frac{1}{1-\kappa} m_{C o n j}(X) \tag{2.21}
\end{equation*}
$$

where

$$
\kappa=\sum_{A \cap B=\emptyset} m_{1}(A) m_{2}(B)
$$

$\kappa$ is generally called (global) conflict. From the concept of simple BBA and conjunctive combination rule $\cap$, the definition of separable BBA is given as:

Definition 2.3.14. Separable BBA: A (normalized) BBA is separable if it can be written as the combination of simple BBAs

$$
\begin{equation*}
m=\underset{\emptyset \neq X \subset \Omega}{@} X^{w(X)} \tag{2.22}
\end{equation*}
$$

with $0 \leq w(X) \leq 1$ for all $X \subset \Omega, X \neq \emptyset$

## Large Number of Sources (LNS) conjunctive rule

When the number of sources is large and BBAs are separable, if these sources have similar reliability, the conjunctive rule may converge to total conflict, making the rule inapplicable. LNS rule [ZMP17] solves such problems by clustering BBAs and adding proper reliability on sources.
The procedure of LNS is as follows:

1. Cluster the simple BBAs into $c$ groups based on their focal element;
2. Combine the BBAs in the same group;
3. Reliability-based discounting;
4. Global combine the fused BBAs in different groups.

After step 1, a simple BBA from source $s_{j}$ in cluster $k$ is denoted by $X_{k}^{w_{j}}$, the rule is given by:

$$
\begin{equation*}
m_{L N S}=\bigoplus_{k=1, \ldots, c}^{@}\left(X_{k}\right)^{1-\alpha_{k}+\alpha_{k}} \prod_{j=1}^{N_{k}} w_{j} \tag{2.23}
\end{equation*}
$$

where $N_{k}$ denotes the number of simple BBAs in cluster $k, \alpha_{k}$ the discounting coefficient, given by:

$$
\begin{equation*}
\alpha_{k}=\frac{N_{k}}{\sum_{i=1}^{c} N_{i}} \tag{2.24}
\end{equation*}
$$

When information sources are not cognitively independent, mean value combination rule is often applied, defined as follows.

## Mean value combination rule

Mean value rule is often applied when sources are cognitively dependent. Given multiple sources $\mathbf{S}=\left\{s_{1}, \ldots, s_{s}\right\}$ with BBAs $m_{1}, \ldots, m_{s}$ the mean value rule is given by:

$$
\begin{equation*}
m(X)=\frac{1}{s} \sum_{i=1}^{s} m_{i}(X), \forall X \in 2^{\Omega} \tag{2.25}
\end{equation*}
$$

## Discounting

Discounting coefficients [Sha76] are applied when the reliability of sources are different. With a coefficient $\alpha_{j} \in[0,1]$ on source $s_{j}$, given the BBA on $s_{j}$, noted as $m_{j}$, the discounted BBA $m_{j}^{\alpha}$ is defined as

$$
\begin{array}{r}
m_{j}^{\alpha}(X)=\alpha_{j} m_{j}(X), \forall X \subseteq \Omega \backslash \Omega  \tag{2.26}\\
m_{j}^{\alpha}(\Omega)=1-\alpha_{j}\left(1-m_{j}(\Omega)\right)
\end{array}
$$

$\alpha_{j}=0$ implies that the source $s_{j}$ is completely unreliable and the discounted BBA represents total ignorance. It should be noted that the discounting is a pre-combination treatment method depending on the reliability of sources, rather than combination rules.

Many other combination rules exist depending on specific conditions, assumptions or properties. For example, cautious rule [Den06] is well accepted when the property of idempotence is required. Yager's rule [Yag87] assumes that the global conflict comes from the ignorance. Dubois and Prade's [DP88] rule assumes that partial conflict comes from partial ignorance. When the reliability of sources are unknown and at least one source is reliable, the disjunctive rule is often applied. Mix rules [MO07] are sometimes used for dealing with partial conflicts.

### 2.3.2 Decision making in TBF

In the theory of belief functions, the decision making procedure is to choose one set $X$ in scope of the frame $\Omega$.

In the theory of belief functions, the decision making process is to select one element $X \in 2^{\Omega}$. Normally, the decision is based on the evidence degree.

## Credal based decision

Usually, decisions are made based on the maximum values of evidence, or credal value. The pessimist way is to decide on the singleton with maximum belief degree, i.e. singleton with maximum support from evidence, formally:

$$
\begin{equation*}
\max _{\omega \in \Omega} \operatorname{Bel}(\omega) \tag{2.27}
\end{equation*}
$$

The optimist way is to decide on the singleton with maximum plausibility degree, i.e. singleton which is most consistent with evidence, formally:

$$
\begin{equation*}
\max _{\omega \in \Omega} P l(\omega) \tag{2.28}
\end{equation*}
$$

A well accepted view is to manage the conflicts after the combination step [Sme07], a compromised method is given on the maximum value of pignistic probability

$$
\begin{equation*}
\max _{\omega \in \Omega} \operatorname{Bet} P(\omega) \tag{2.29}
\end{equation*}
$$

defined by:

$$
\begin{equation*}
\operatorname{Bet} P(X)=\sum_{Y \subseteq \Omega, Y \neq \emptyset} \frac{|X \cap Y|}{|Y|} m(Y) \tag{2.30}
\end{equation*}
$$

where $|X|$ is the cardinality of set $X$.

## Distance based decision

Decision on distance was originally proposed in [EMSY14], given a combined BBA $m$ the decided element $\omega^{\prime}$ is selected by the following rule:

$$
\begin{equation*}
\omega^{\prime}=\underset{X \subseteq \Omega}{\operatorname{argmin}}\left\{d\left(m, X^{0}\right)\right\} \tag{2.31}
\end{equation*}
$$

where $X^{0}$ is a categorical BBA on $X \subseteq \Omega, d\left(m_{1}, m_{2}\right)$ the distance function on BBAs $m_{1}, m_{2}$ (such as Jousselme distance [JGEB01]).

This distance based decision rule allows to decide on all elements in $2^{\Omega}$, including partial ignorance events.

### 2.4 Conclusion

In this chapter, we introduced different popular models on precise and imprecise preference relations, as well as the definitions concerned. A synthetic conclusion on the definitions of preference orders is given in Tables 2.1 and 2.2 , where $a, b, c, d, e$ and $f$ are alternatives, $P$ the set of strict preference relations, $I$ the set of indifference relations, $g(\cdot)$ an utility function on alternatives, and $R$ the corresponding relation.
The adjacency matrix of total order can be transferred into a triangular matrix $U$.

Table 2.1 - Total \& weak order



Figure 2.2 - Relations between different type of orders

For weak order, the existence of "indifference" relation makes the sub-matrix made up of ones, denoted by $J$, after the permutation operations.

On the conceptions of preference structures, following relations are true, illustrated in Figure 2.2. The upper relation chain is enriched with the relation of "indifference" and "incomparability" by turn while the lower one with the "incomparability" and "indifference".

On the modeling of imprecision preferences, three theories for uncertain information are introduced, with capability of information reasoning illustrated in Table 2.3. The theory of belief functions is a mathematical tool for reasoning knowledge with imprecision and ignorance and also a powerful tool for information fusion, with different combination and decision making procedures. Several popular fusion and decision rules are introduced, with applicable circumstances concluded in Table 2.4.

Table 2.2 - Partial \& Quasi order


Table 2.3 - Modeling of uncertainty for different theories

| Theory | Uncertainty | Imprecision | Ignorance |
| :---: | :---: | :---: | :---: |
| Probability | $\checkmark$ | x | x |
| Fuzzy set | $\checkmark$ <br> (intensity degree) | x | x |
| Possibility | $\checkmark$ | $\checkmark$ <br> (plausibility <br> in TBF) | $\sqrt{ }$ |
| Belief function | $\checkmark$ | $\sqrt{ }$ | $\sqrt{ }$ |

Of course, many other combination rules exist, meeting different properties of combinations. In this thesis, solely the rules above are applied. To conclude, in this chapter, we introduced basic concepts on preference and theory of belief functions, which are fundamental elements for the work of this thesis. In next chapters of this part, we will introduce state-of-the-art methods on preference aggregation and learning.

Table 2.4 - Application circumstances of several combination rules

| Combination rule (or process) | Circumstances |
| :---: | :---: |
| Dempster's rule | Cognitively independent and equally reliable |
| Mean rule | Cognitively dependent |
| LNS rule | Large number of simple support BBAs |
| Discounting rule | different reliability |

## Chapter 3

## Similarity measures on preferences and on the theory of belief functions

Similarity measures between preferences are often applied in many preference based application such as preference aggregation and preference learning, which are introduced in Chapter 4. In this chapter, we introduce some popular methods of similarity measure applicable to preference models as well as similarity methods in the theory of belief functions.
The chapter is structured as follows: in Section 3.1, properties of distances and definitions of all types of metrics are introduced. In Section 3.2 and 3.3, popular similarity measure methods for preference relation as well as preference structures are respectively introduced and compared. Besides, in Section 3.4, similarity measures applied in TBF are also introduced, categorized into three views: distance, divergence and conflict measure.

### 3.1 Properties of distances

Distances on preference relations measure the similarity between distinctive preference relation types, usually applied in group consensus rules for preference aggregation. Distances on preference relation are categorized into two types: encoded preference distance and axiomatic distance. A distance function is also called a metric, possessing certain properties.

Definition 3.1.1. distance function (or metric): A distance function (or metric) on a set of objects $\mathcal{X}$ is a function

$$
\begin{equation*}
d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}, \tag{3.1}
\end{equation*}
$$

where $\mathbb{R}_{\geq 0}$ is the set of non-negative real numbers and for all $x, y, z \in \mathcal{X}$, the following properties are satisfied:

1. $d(x, y) \geq 0 \quad$ non-negativity or separation axiom
2. $d(x, y)=0 \Leftrightarrow x=y \quad$ identity of indiscernibles
3. $d(x, y)=d(y, x) \quad$ symmetry
4. $d(x, z) \leq d(x, y)+d(y, z) \quad$ subadditivity or triangle inequality

Some functions measuring similarity may not possess all the four properties, introducing other definitions of pseudometrics, quasimetrics, metametrics and semimetrics.

Definition 3.1.2. Pseudo-metric: Pseudo metrics do not satisfy the property of identity of indiscernibles from metric properties.

In other words, for a pseudo-metric $d_{p-m e t r i c}$,

$$
\begin{equation*}
\exists x, y \in \mathcal{X}, x \neq y, d_{p-\text { metric }}(x, y)=0 \tag{3.3}
\end{equation*}
$$

Definition 3.1.3. Quasi-metric: Quasi-metrics satisfy the properties of non-negativiey, identity of indiscernibles and triangle inequality.

Without the property of symmetry, in quasi-metric, the order of measured objects may make difference on the result.

Definition 3.1.4. Meta-metric: Meta-metrics $d_{m-m e t r i c}$ applies property of identity of a weakened discernible from metric with $d_{m-m e t r i c}(x, y)=0 \Rightarrow x=y$ but $x=y \nRightarrow$ $d_{m-m e t r i c}(x, y)=0$.

Definition 3.1.5. Semi-metric: Semi-metrics drop the property of triangle inequality from metric

Semi metric is also defined as similarity or dissimilarity in many works, possessing only non-negativity, identity of indiscernible and symmetry properties. Dissimilarity is the reciprocal to similarity. In this thesis, we accept the term of similarity.

Pre-metrics are very relaxed definition, possessing solely non-negativity and idempotent. formally:

Definition 3.1.6. Pre-metric A pre-metric on $\mathcal{X}$ is a function $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$, satisfying the properties of:

$$
\begin{align*}
& \text { 1. } d(x, y) \geq 0 \\
& \text { 2. } d(x, x)=0 \tag{3.4}
\end{align*}
$$

In this terminology of this thesis, distances are metrics by default and similarity possess at least the properties of semi-metrics.

The similarity measure for preferences are based on the definitions of different types of metrics above. Similarity measures for preferences fundamentally depend on the preference representation. Generally, these similarity measures are categorized into two groups: similarity between preference relation types and similarity between preference structures. As definition distance possesses most of the properties, the following introductions are mainly on different types of distances.

### 3.2 Distances between preference relation types

Given the preference relation types $\mathcal{R}=\{\succ, \prec, \approx, \sim\}$, distance between preference relation types measure the similarity between $R_{1}, R_{2} \in \mathcal{R}$.

### 3.2.1 Distances on encoded preferences

The four preference relation types can be encoded based on adjacency matrix. Given two alternatives $a_{i}, a_{j}$, the preference relation types are respectively expressed by adjacency in Table 3.1.

Table 3.1 - Encoding of preference relations
Relation:

Encode:


| $a_{i} \prec a_{j}$ |  |  |
| :--- | :---: | :---: |
|  $a_{i}$ $a_{j}$ <br> $a_{i}$ 0 0 <br> $a_{j}$ 1 0 |  |  |
| 0010 |  |  |


| $a_{i} \approx a_{j}$ |
| :--- |
|  $a_{i}$ $a_{j}$ <br> $a_{i}$ 0 1 <br> $a_{j}$ 1 0 |
| 0110 |

$a_{i} \sim a_{j}$

|  | $a_{i}$ | $a_{j}$ |
| :--- | :--- | :--- |
| $a_{i}$ | 0 | 0 |
| $a_{j}$ | 0 | 0 |

0000

We denote encoding function as $e n c(\cdot)$, and the four bits of encoded preference as $e n c_{1-4}()$, the encoded preferences are in form of vectors. Thus, Minkowski distance [JD88] can be applied. Given two preference relation types $R_{1}, R_{2} \in\{\succ, \prec, \approx, \sim\}$, the Minkowski distance $d_{\text {minkowski }}$ is defined as:

$$
\begin{equation*}
d_{\text {minkowski }}\left(R_{1}, R_{2}\right)=\left(\sum_{i=1}^{4}\left|e n c_{i}\left(R_{1}\right)-e n c_{i}\left(R_{2}\right)\right|^{p}\right)^{\frac{1}{p}} \tag{3.5}
\end{equation*}
$$

where $p$ denotes the norm $L^{p}$ (Lebesgue space).
For encoded data, Manhattan distance is usually applied, i.e. $p=1$ in Minkowski distance. Thus, the Manhattan distance on preference relation types is given in Table 3.2. Manhattan distance is a measure function on encoded data, however, it is not able to keep some intrinsic properties of preferences. For instance, there is no reason supporting that $d(\succ, \prec)=d(\approx, \sim)$. To keep such properties, axiomatic distances were proposed.

Table 3.2 - Hamming distance (Manhattan distance) between two preference relation types

|  | $\succ$ | $\prec$ | $\approx$ | $\sim$ |
| :---: | :---: | :---: | :---: | :---: |
| $\succ$ | 0 | 2 | 1 | 1 |
| $\prec$ | 2 | 0 | 1 | 1 |
| $\approx$ | 1 | 1 | 0 | 2 |
| $\sim$ | 1 | 1 | 2 | 0 |

### 3.2.2 Axiomatic distances for preferences

Axiomatic distances are based on appropriate axioms on preference relations, with also properties of metrics respected. Such distances were initiated by Kemeny and Snell in 1963 [KS63] for consensus aggregation rule on weak orders (a.k.a. KS model), then generalized by Bogart [Bog73, Bog75] to deal with partial orders, which excludes the "indifference" relation. Afterwards, Cook et. al. [CKS86] developed a distance on bimatrix representation of quasi orders (a.k.a. CS model). Extended from KS model, J. M. Blin [Bli76] proposed an aggregation method by distance maximization procedure. Khelifa and Martel [KM01] proposed an axiomatic distance by taking the center value in a restrained space limited by axioms for consensus group decision making by respecting RS model [RS93], namely KM model. These various models do not accept identical axioms, causing some differences in numeric values of similarities.

CS distance follows the axioms demonstrated in Figure 3.1. In this axiom, the inverse strict preference relations are considered as the most distant. "indifference" is between the "incomparability" and strict preference. Thus the distances respect the following relation:

$$
\begin{equation*}
d(\sim, \succ)=d(\sim, \prec)=d(\sim, \approx)+d(\approx, \succ) \tag{3.6}
\end{equation*}
$$

With the minimum positive distance valued as 1 , the CS distance is given in Table 3.3.


Figure 3.1 - Distance relation accepted in CS distance

In RS model, the distances are values following the Figure 3.2. The distance between "incomparability" are abstractly defined by $x$ and $y$ without giving a precise value.

Therefore, the distances between preference relations are given in Table 3.4.

Table 3.3 - Distance between different preference relation types in CS distance

|  | $\succ$ | $\prec$ | $\approx$ | $?$ |
| :---: | :---: | :---: | :---: | :---: |
| $\succ$ | 0 | 2 | 1 | 2 |
| $\prec$ | 2 | 0 | 1 | 1 |
| $\approx$ | 1 | 1 | 0 | 2 |
| $?$ | 2 | 2 | 1 | 0 |



Figure 3.2 - Distance relation accepted in RS distance.

According to the axioms in [RS93], a synthetic relation between $x, y$ is limited in Equation (3.7).

$$
\begin{equation*}
0<\max \{2, x\} \leq y \leq \min \{4,2+x\} \tag{3.7}
\end{equation*}
$$

In KM distance, the authors regard the "incomparability" as an absence of knowledge and applied the insufficiency principle of Laplace. Thus, the distance from "incomparability" to other relations are equivalent, formally:

$$
\begin{equation*}
d(\sim, \succ)=d(\sim, \prec)=d(\sim, \approx) \tag{3.8}
\end{equation*}
$$

With minimum distance valued as 1 , the numeric distance between different preference types are given in Table 3.5. The detail of the calculation is given in [KM01].

More discussion on axiomatic preference distances are given in Section 3.5, with a synthetic comparison between different distance models summarized.

### 3.3 Distances in preference structures

Preference structures as total orders (or linear order) can be regarded as ordinal variables. Thus, rank correlation coefficients and distances can be applied. Some most popular rank correlation distances are:

- Spearman's footrule distance [DG77]
- Kendall's $\tau$ [Ken48]
- Fagin's distance $\left[\mathrm{FKM}^{+} 04\right]$ for weak orders

Table 3.4 - Distance between different preference relation types in RS distance.

|  | $\succ$ | $\prec$ | $\approx$ | $\sim$ |
| :---: | :---: | :---: | :---: | :---: |
| $\succ$ | 0 | 4 | 2 | y |
| $\prec$ | 4 | 0 | 2 | y |
| $\approx$ | 2 | 2 | 0 | x |
| $\sim$ | y | y | x | 0 |

Table 3.5 - Distance between different preference relation types in KS model

|  | $\succ$ | $\prec$ | $\approx$ | $?$ |
| :---: | :---: | :---: | :---: | :---: |
| $\succ$ | 0 | $\frac{5}{3}$ | 1 | $\frac{4}{3}$ |
| $\prec$ | $\frac{5}{3}$ | 0 | 1 | $\frac{4}{3}$ |
| $\approx$ | 1 | 1 | 0 | $\frac{4}{3}$ |
| $?$ | $\frac{4}{3}$ | $\frac{4}{3}$ | $\frac{4}{3}$ | 0 |

It should be noted that correlation coefficients are not distances since the coefficient function values are in range of $\lfloor-1,+1\rceil$ rather than $\mathbb{R}_{\geq 0}$.

For two total preference orders $\sigma_{1}, \sigma_{2}$ in same alternative space $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\sigma_{1}: a_{1}^{\prime} \succ a_{2}^{\prime} \succ \ldots \succ a_{n}^{\prime}
$$

and

$$
\sigma_{2}: a_{1}^{\prime \prime} \succ a_{2}^{\prime \prime} \succ \ldots \succ a_{n}^{\prime \prime}
$$

denote the ranking function as $\operatorname{rank}(a)$, indicating the ranking position of the alternative $a$ in the corresponding order. The different correlation coefficients and distances are defined as follows:

## Spearman's footrule distance

Spearman's footrule distance $d_{\text {spearman }}$ measure the similarity between two ranks by number of displacement (to make them equal). Defined by:

$$
\begin{equation*}
d_{\text {spearman }}\left(\sigma_{1}, \sigma_{2}\right)=\sum_{i=1}^{n}\left(\operatorname{rank}_{\sigma_{1}}\left(a_{i}\right)-\operatorname{rank}_{\sigma_{2}}\left(a_{i}\right)\right) \tag{3.9}
\end{equation*}
$$

Spearman's footrule distance is also a Manhattan distance for rank variables.
Spearman's correlation coefficient $\rho$ is a coefficient varying from -1 to +1 , where +1 implies the identical case and -1 the inverse case, defined as Spearman's $\rho$ :

$$
\begin{equation*}
\rho\left(\sigma_{1}, \sigma_{2}\right)=1-\frac{6 \sum_{i=1}^{n}\left(\operatorname{rank}\left(a_{i}\right)-\operatorname{rank}\left(a_{i}^{\prime}\right)\right)^{2}}{n\left(n^{2}-1\right)} \tag{3.10}
\end{equation*}
$$

## Kendall's $\tau$ and Fagin's distance

In Kendall's $\tau$, alternatives are compared in a pairwise way. For any pair of alternatives $a_{1}, a_{2}$, between two orders $\sigma_{1}, \sigma_{2}$ denote $a_{1} R_{\sigma} a_{2}$ for relations between alternatives in order $\sigma$, with $R \in\{\succ, \prec\}$. We give the definition of concordant and discordant, with a discordant function on alternatives $a_{i}, a_{j}$ in orders $\sigma_{1}$ and $\sigma_{2}$ denoted as $\bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right)$ :

- If $a_{1} R_{\sigma_{1}} a_{2}=a_{1} R_{\sigma_{2}} a_{2}, a_{1}$ and $a_{2}$ are concordant in $\sigma_{1}$ and $\sigma_{2}$, thus, $\bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right)=$ 0 ;
- If $a_{1} R_{\sigma_{1}} a_{2} \neq a_{1} R_{\sigma_{2}} a_{2}, a_{1}, a_{1}$ and $a_{2}$ are discordant in $\sigma_{1}$ and $\sigma_{2}$, thus, $\bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right)=$ 1;
- If $a_{1} \approx_{\sigma_{1}} a_{2}$ and $a_{1} \approx_{\sigma_{2}} a_{2}, a_{1}$ and $a_{2}$ are neither concordant nor discordant.

The Kendall's distance $d_{\text {Kendall }}$ is simply the number of discordant pairs, more formally:

$$
\begin{equation*}
d_{\text {Kendall }}\left(\sigma_{1}, \sigma_{2}\right)=\sum_{i<j} \bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right), \tag{3.11}
\end{equation*}
$$

and Kendall's correlation coefficient $\tau$ is defined as:

$$
\begin{equation*}
\tau=\frac{\text { (number of concordant pairs) }- \text { (number of discordant pairs) }}{n(n-1) / 2} \tag{3.12}
\end{equation*}
$$

Fagin's distance $\left[\mathrm{FKM}^{+} 04\right]$ is an extension version of $\operatorname{Kendall's} \tau$, adapting to weak orders, i.e. the "indifference" relation is considered. Extended from the discordant function above, Fagin's distance considers the following case:

- if $a_{1} \approx_{\sigma_{1}} a_{2}$ and $a_{1} R_{\sigma_{2}} a_{2}$, the discordant is values by the penalty $p$, i.e. $\bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right)=$ $p$.

According to $\left[\mathrm{FKM}^{+} 04\right]$, the choice of $p$ must respect:

$$
\begin{equation*}
\frac{1}{2}<p<1 \tag{3.13}
\end{equation*}
$$

The calculation of Fagin's distance is similar to Kendall's $\tau$ with the new case considered:

$$
\begin{equation*}
d_{F a g i n}\left(\sigma_{1}, \sigma_{2}\right)=\sum_{i<j} \bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right), \tag{3.14}
\end{equation*}
$$

Diaconis and Graham proved that the Spearman's footrule and Kendall's $\tau$ are robust [DG77]: For any ordinal rankings $\sigma_{1}, \sigma_{2}$ on the same alternative space $A$

$$
\begin{equation*}
d_{\text {Kendall }}\left(\sigma_{1}, \sigma_{2}\right)<d_{\text {Spearman }}\left(\sigma_{1}, \sigma_{2}\right)<2 \times d_{\text {Kendall }}\left(\sigma_{1}, \sigma_{2}\right) \tag{3.15}
\end{equation*}
$$

### 3.4 Similarity measures in the theory of belief functions

In the theory of belief functions, different similarity measures are also applied on BBAs. From geometrical and statistical views, these measures are categorized into three parts: distance, divergence and conflicts ${ }^{1}$.

### 3.4.1 Geometry view: distance

As BBAs are defined in space of $2^{\Omega}$, In addition to all the properties for metrics in Equation (3.2), properties considering structure of discernment are specific to BBAs. [JM12] consider following properties:

- Strong structural property:

A distance measure $d$ between two $\mathrm{BBAs} m_{1}$ and $m_{2}$ is strongly structural if its definition accounts for the interaction between the focal elements of $m_{1}$ and $m_{2}$.

- Weak structural property:

A distance measure $d$ between two BBAs $m_{1}$ and $m_{2}$ is weakly structural if its definition accounts for the cardinality between the focal elements of $m_{1}$ and $m_{2}$.

- Structural similarity:

A distance measure $d$ between two BBAs $m_{1}$ and $m_{2}$ is structural similarity if its definition accounts for the interaction between the set $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ of focal elements of $m_{1}$ and $m_{2}$.

A popular distance that is strongly structural is Jousselme distance [JGEB01], defined as:

$$
\begin{equation*}
d_{J o u s s e l m e}\left(m_{1}, m_{2}\right)=\sqrt{\left(\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}\right)^{T} \boldsymbol{J a c c}\left(\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}\right)} \tag{3.16}
\end{equation*}
$$

where Jacc is the matrix whose elements are Jaccard indices:

$$
\begin{equation*}
\operatorname{Jacc}\left(X_{1}, X_{2}\right)=\frac{\left|X_{1} \cap X_{2}\right|}{\left|X_{1} \cup X_{2}\right|}, \text { for } X_{1}, X_{2} \in 2^{\Omega} \backslash \emptyset \tag{3.17}
\end{equation*}
$$

These properties are "natural" to the distances on BBAs, however, the importance or advantages have not been theoretically proved. Some other properties are proposed in the contribution part of the thesis

### 3.4.2 Statistic view: divergence

As BBAs express also the imprecision information, they can be measured from a view of entropy. Divergence is used for similarity measure in entropy, such as KullbackLeibler divergence [KL51] for probability distribution. Perry and Stephanou proposed

[^4]a divergence $d_{P S}$ for BBAs by applying Dempster's combination rule rather than Bayes' rule:
\[

$$
\begin{equation*}
d_{P S}\left(m_{1}, m_{2}\right)=\left|\mathcal{F}_{1} \cup \mathcal{F}_{2}\right|\left(1-\frac{\left|\mathcal{F}_{1} \cap \mathcal{F}_{2}\right|}{\left|\mathcal{F}_{1} \cup \mathcal{F}_{2}\right|}\right)+\left(\boldsymbol{m}_{\mathbf{1}} \bigcirc \boldsymbol{m}_{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}\right)^{T}\left(\boldsymbol{m}_{\mathbf{1}} @ \boldsymbol{m}_{\mathbf{2}}-\boldsymbol{m}_{\mathbf{2}}\right) \tag{3.18}
\end{equation*}
$$

\]

where $\cap$ is the Dempster's combination operator. $d_{P S}$ has two components respectively measuring the structural similarity and information change.

For futher reading, a synthetic study on distances and divergence in TBF is done in [JM12].

### 3.4.3 Conflicts measuring

As BBAs are able to express ignorance, the term conflict is used to describe the coherence between evidential knowledge, especially those with partial ignorance. The most common one is global-conflict Conf $(\cdot)$, defined on the Dempster's combination rule:

$$
\begin{equation*}
\operatorname{Conf}\left(m_{1}, m_{2}\right)=\left(m_{1} @ m_{2}\right)(\emptyset) \tag{3.19}
\end{equation*}
$$

where $®$ denotes the Dempster's combination operator.
Indeed, global-conflict measures the contradiction between BBAs. In [DB13], the authors proposed and summarized several properties needed for measuring conflicts between BBAs.Conflicts are also based on other measures. In [MJO08], authors proposed a conflicting measure method developed from Jousselme distance. Another conflict measure based on the inclusion is proposed in [Mar12]. A global introduction on conflict management is given in [Mar19]. The conflicts are usually applied in decision making procedures. In fact, the application on conflicts in TBF is limited than distances because they may not be metric.

### 3.5 Conclusion

In this chapter, we illustrated the basic notions on metrics and reviews different distances for preference relations and structures. Some conflicting axioms on axiomatic distances are compared and discussed. For distances on preference relations, all distances respect that the distance between "indifference" and "strict preference" is less than that between two inverse strict preferences. The most controversial issue focuses on the similarity of "incomparability" with other preference relation types.

While for Minkowski distance (including Manhattan distance), the relations are defined by encoded formats with "incomparability" defined as an exclusive concepts to other relation types. The distances between four preference relations are illustrated in Figure 3.3.

For example, CS model, KM (JMK) model and RS models have different axioms concerning the relation of "incomparability". In fact, in RS model [RS93], the "incomparability" is defined as:


Figure 3.3 - Preference distance applied in Minkowski family.
$a \longrightarrow b$ implies $a>b$
$a \longleftrightarrow b$ implies $a=b$

Incomparability relation is the affirmation of the incapacity to establish the relation type: there is no indifference, no weak preference and no strict preference between the two alternatives.

Such definition indicates the illustration in Figure 3.4a. In CS model and KM (JMK) models, the incomparability is defined as "the two alternatives are not compared", corresponding to the definition in Figure 3.4b.


Figure 3.4 - Venn diagrams of the preference relations
In order to distinguish this disagreement on the definition of incompleteness, we express the relations by $\{\succ, \prec, \approx, \sim, ?\}$, where $\langle\succ\rangle$ denotes the "incomparability" relation and $\langle ?\rangle$ the missing information. The accepted axioms are listed as follows:

1. Axioms 1: properties of metric are satisfied:
(a) Axiom 1a (Non-negativity): $\forall R_{1}, R_{2} \in\{\succ, \prec, \approx, \sim\}, \Delta\left(R_{1}, R_{2}\right) \geq 0$, with equality if and only if $R_{1}=R_{2}$
(b) Axiom 1b (identity of indiscernibles): $\Delta\left(R_{1}, R_{2}\right)=0 \Longleftrightarrow R_{1}=R_{2}$
(c) Axiom 1c (Symmetry): $\forall R_{1}, R_{2} \in\{\succ, \prec, \approx, \sim\}, \Delta\left(R_{1}, R_{2}\right)=\Delta\left(R_{2}, R_{1}\right)$
(d) Axiom 1d (Triangle inequality): $\forall R_{1}, R_{2}, R_{3} \in\{\succ, \prec, \approx, \sim\}, \Delta\left(R_{1}, R_{3}\right)+$ $\Delta\left(R_{3}, R_{2}\right) \leq \Delta\left(R_{1}, R_{2}\right)$
2. Axiom 2: $\Delta(\succ, \approx)=\Delta(\prec, \approx)$ and $\Delta(\succ, \sim)=\Delta(\prec, \sim)$
(BIS: $\Delta(\succ, ?)=\Delta(\prec$, ?)). This axiom says $\succ$ and $\prec$ are opposite relations
3. Axiom 3: $\Delta(\succ, \approx)+\Delta(\approx, \prec)=\Delta(\succ, \prec)$.
4. Axiom 4: $\Delta(\succ, \sim) \leq \Delta(\approx, \sim)$
(BIS 1: $\Delta(\succ, ?) \leq \Delta(\approx, ?)$
BIS 2: $\Delta(\succ, ?)=\Delta(\approx, ?))$
5. Axiom 5: $\Delta(\approx, \sim) \leq \Delta(\approx, \succ)$ (BIS: $\Delta(\approx, ?) \leq \Delta(\approx, ?))$
6. Axiom 6: $\Delta(\succ, \prec)=\max \left(\left\{\Delta\left(R_{1}, R_{2}\right): R_{1}, R_{2} \in\{\succ, \prec, \approx, \sim\}\right\}\right)$,
meaning that strict preference and inverse preference relations are mostly distinguished.

For the axiomatic models mentioned above, the distance relations are illustrated in Figure 3.5.


Figure 3.5 - Preference distance applied in three different models, with:
$a \longrightarrow b$ implies $a>b$
$a \longleftrightarrow b$ implies $a=b$
The comparison demonstrated in Table 3.6 sums up the controversial part between four types of distances, especially concerning the "incomparability" relation.

Table 3.6 - Controversial similarity related to "incomparability" in different relation models.

| Distance | Distance to incomparability |
| :---: | :---: |
| Mincowski distance | $d(\succ, \sim)=d(\succ, \approx)$ |
|  | $d(\succ, \prec)=d(\approx, \sim)$ |
| CS distance | $d(\succ, ?)>d(?, \approx)$ |
|  | $d(\succ, \approx)=d(?, \succ)$ |
|  | $d(\succ, \prec)>d(?, \approx)$ |
| JKM distance | $d(\succ, ?)=d(?, \approx)$ |
|  | $d(\succ, \approx)<d(?, \succ)$ |
|  | $d(\succ, \prec)>d(?, \approx)$ |
|  | $d(\succ, \sim)>d(\sim, \approx)$ |
| RS distance | $d(\succ, \approx)=d(\sim, \succ)$ |
|  | $d(\succ, \prec)>d(\sim, \approx)$ |

To recapitulate, there is no standard distance between preference relation types accepted by all researchers, and the definition of "incompleteness" remains a disputable issue. The choice of distance on preference relations is a flexible process. More arguments on this issue is contributed in Section 5

We also introduced similarity measure in TBF. As TBF is a tool for uncertainty modeling, more criteria are applicable in addition to distance. Three genres of methods can be categorized, defined from different aspects of view, resumed in Table 3.7.

Table 3.7 - Points of view on similarity measure between BBAs.

| Similarity | Aspect |
| :---: | :--- |
| Distance | Geometry: Each BBA is represented by a vector. <br> Thus distance for vectors are applicable |
| Divergence | Statistic: A BBA represent the imprecision of the information source. <br> Thus entropy is applicable. |
| Conflict | Consistency: A BBA represent the ignorance of the information source. <br> Thus conflict is applicable considering the ignorance factor. |

In deed, similarity measures are useful in preference management including preference aggregation and preference learning, introduced in more details in next chapters.

## Chapter 4

## Preference management

In this chapter, we review state of the art methods on preference management problems. In the scope of this thesis, we mainly studied two important sub-domains of preference management problems, preference aggregation and preference learning. Generally speaking, preference aggregation is the procedure of merging multi-agents' preferences into one. Preference learning is a combined domain of preference modeling and machine learning, either by applying machine learning methods on preference data, or by applying preference concepts in machine learning algorithms design. The chapter is divided into two parts: in Sections 4.1, 4.2, 4.3, and 4.3.2, aggregation problems and methods are introduced. In Sections 4.4 a global view on preference learning is introduced, followed by preference clustering section (Section 4.5).

### 4.1 Preference aggregation functions

Preference aggregation problem is also called "social choice problem" in the study of sociology and economy. Briefly speaking, preference aggregation serves to merge multiple preferences on same group of alternatives, and finally result into one alternative. The problem setting is defined as follows.
Social choice setting: A preference aggregation problem setting (or social choice setting) is defined by a triple $(\mathcal{A}, \mathcal{A} \mathcal{T}, \mathcal{O D})$ where:

1. $\mathcal{A}:=\left\{a_{1}, \ldots, a_{K}\right\}$ of size $K$ is a finite set of outcomes, also called candidates, or alternatives.
2. $\mathcal{A G \mathcal { T }}:=\left\{a g t_{1}, \ldots, a g t_{N}\right\}$ of size $N$ is a finite set of agents
3. $\mathcal{O D}:=\left\{\sigma_{1}, \ldots, \sigma_{M}\right\}$ of size $M$ is a set of preferences ordering over $\mathcal{A}$

Preference aggregation methods is an application in social choice theory. As this thesis is not mainly on the topic of sociology, the utilization of the term "social choice" may cause ambiguity. Hence, we insist on the term "preference aggregation".
Definition 4.1.1. Preference aggregation function (social choice function): A preference aggregation function over $\mathcal{A G} \mathcal{T}$ and $\mathcal{A}$ is a function $C: \mathcal{O D}^{n} \rightarrow \mathcal{A}$.

When there are only two alternatives, the most widely used voting system, and arguably the most natural, is majority rule. Under majority rule, we take the alternative that is preferred by a majority of the voters and rank it first, placing the other alternative second. For this discussion we will assume that the number of voters is odd, so that we do not need to worry about the possibility of majority rule producing ties. Since majority rule is so natural in the case of two alternatives, it is natural to try designing a voting system based on majority rule when there are more than two alternatives. This, however, turns out to be remarkably tricky. The most direct approach is to first create group preferences, by applying majority rule to each pair of alternatives, and then trying to turn these group preferences into a group ranking. That is, we create a group preference relation $\succ$ out of all the individual preferences $\succ_{k}$ as follows. For each pair of alternatives $a_{i}$ and $a_{j}$, we count the number of individuals for whom $a_{i} \succ_{k} a_{j}$ and the number of individuals for whom $a_{j} \succ_{k} a_{i}$. If the first number is larger than the second, then we say that the group preference $\succ$ satisfies $a_{i} \succ a_{j}$, since a majority of the voters prefer $a_{i}$ to $a_{j}$ when these two alternatives are considered in isolation. Similarly, we say $a_{j} \succ a_{i}$ in the group preference if $a_{j} \succ_{k} a_{i}$ for a majority of the individuals $k$. Since the number of voters is odd, we cannot have equal numbers favoring $a_{i}$ and favoring $a_{j}$. Hence, for every distinct pair of alternatives we will have exactly one of $a_{i} \succ a_{j}$ or $a_{j} \succ a_{i}$. That is, the group preference relation is complete.

### 4.2 Voting paradoxes and impossibility theorems

In this section, we list some of the most famous paradoxes and impossibility theorems. It should be pointed that in the work of this thesis, only Condorcet's paradox is addressed. Other issues are for reading references.

## Condorcet's paradox

Various paradoxes and impossibility theorems may arise from a preference fusion process with majority rule, and one of the most well-known is Condorcet's paradox, also known as voting paradox [dCmdC85]. It is a situation in which collective preferences can be cyclic, (i.e. not transitive) even the preferences of individual voters are transitive. The avoidance of Condorcet's Paradox is also referred to as guarantee of "consistence" or "transitivity" in some work.
Other paradoxes are also studied in decision making theory, such as Borda's paradox, Ostrogorski's paradox [RD76], the referendum paradox, etc. As these paradoxes are not in the scope of our work, detailed definitions are not given here. Some others problems exist concerning more specific issue corresponding to the circumstances. For example, in voting systems for political regime, it is better to guarantee that the elected candidate get the majority votes for the sake of stability, even though plural (more than two) candidates participate in the campaign.

### 4.3 Aggregation on various preference models

In this section, we introduce several aggregation rules on both crisp preference and fuzzy preference. For crisp preference, some popular traditional strategies as well as distance-based strategy are introduced. For fuzzy preference, we briefly introduce the Operator Weight Average (OWA) method as well as its extensions.

### 4.3.1 Aggregation on crisp preferences

Aggregation functions on crisp preferences usually based on voting rules. We introduce some of the most popular voting rules, depending on different principles.

## Condorcet methods

A Condorcet method [dCmdC85] is an aggregation rule that the aggregated alternative is preferred by the majority to all other alternatives. Such alternative is also called the Condorcet winner. As aforementioned, due to Condorcet's paradox, such alternative do not exist when the preference relation among multiple alternative create a circle.

## Borda count

In Borda count [Eme13], agents rank alternatives in order of preference, with a number of points given to each alternative corresponding to its ranking position. A higher ranked alternative obtains a bigger number of points. Once all agents have been counted the alternative with the most points is the winner.
The Borda count is often described as a consensus-based voting system rather than a majoritarian one [Lip13], and it's able to determine multiple winners.

## Plurality runoff

In plurality voting, each agent is allowed to vote for only one alternative, and the one who polls the most among its counterparts is elected. This method is easy to practice for plural alternatives. However, plurality voting is not a majoritarian voting, making it unable to reflect the consensus of the entire agents. Therefore, run-off mechanism is often introduced. In this mechanism, the first two winners of plurality rule go to the second round, and agents apply a majority voting on these two alternatives.
Plurality runoff is usually applied in political elections, such as president election in France, Parliament delegates election in Iran and mayors election in Italy.
Other voting rules also exist adapting to various using circumstances. As such work is not our focus, we recommend to refer to [Lip13] for further reading.

## Pairwise distance based preference aggregation

Many preference aggregation rules are designed on the minimization of distances between alternative pairs also called distance based consensus rules. Generally, it can be concluded by Algorithm 1.

Given alternative set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$, agents in agent set $\mathcal{A G \mathcal { T }}=\left\{a g t_{1}, \ldots, a g t_{n}\right\}$ express their preferences on pairwise alternatives in $A$ with possible preference relations in $\{\succ, \prec, \approx, \sim\}$. We denote a preference relation function between two alternatives $a_{i}$ and $a_{j}$ from agent agts as $\operatorname{Pref}^{s}\left(a_{i}, a_{j}\right) \rightarrow\{\succ, \prec, \approx, \sim\}$, a distance based preference aggregation procedure is defined in Algorithm 1.

```
Algorithm 1 Pairwise distance-based preference aggregation algorithm
Input: \(\operatorname{Pref}^{s}\left(a_{i}, a_{j}\right)\) :
    Preferences from agents \(\mathcal{A \mathcal { G }}\) on alternatives \(a_{i}, a_{j} \in \mathcal{A}\)
Output: \(\operatorname{Pref}^{*}\left(a_{i}, a_{j}\right)\) :
    Aggregated preference on alternatives \(a_{i}, a_{j} \in \mathcal{A}\)
    Decision on every alternative pair
    for \(a_{i}, a_{j} \in \mathcal{A}, i<j\) do
        for \(R \in\{\succ, \prec, \approx, \sim\}\) do
            Compute \(\Phi_{i, j}(R)=\sum_{s=1}^{s=n} d_{\Delta}\left(R, \operatorname{Pref}\left(a_{i}, a_{j}\right)\right)\)
        end for
        Decide \(\operatorname{Pref}^{*}\left(a_{i}, a_{j}\right)=\left\{R: \underset{R \in\{\succ,<, \approx, \sim\}}{\operatorname{argmin}} \Phi_{i, j}(R)\right\}\)
    end for
```

In fact, many traditional voting rules are intrinsically the minimization of certain distances. P. Viapini [Via15] has studied this correspondence, giving the following conclusions between similarity measure and aggregation methods:

Table 4.1 - Correspondence between some distances and aggregation methods

| Aggregation method | Similarity measure | Properties |
| :--- | :--- | :--- |
| Plurality | $d_{P L}$ | premetric |
| Top-k | $d_{T K}$ | premetric |
| Veto | $d_{V}$ | premetric |
| Borda | Spearman | metric |
| Scoring rule | Positional Spearman | metric |

$d_{P L}, d_{T K}$ and $d_{V}$ respectively denote similarity measures corresponding to Plurality, top-k, and veto rule.

### 4.3.2 Aggregation on uncertain preferences

In Section 2.2, fuzzy preference model was introduced confronting preferences with uncertainty. Many aggregation on fuzzy preferences have been proposed. In the following part, we introduce several main-stream method.
Given the fuzzy preferences from all agents, a collective fuzzy preference relation is obtained by aggregating all completed individual fuzzy preference relations. An intuitive way is to take the average values. We denote the fuzzy preference between $a_{i}$ and $a_{j}$ from agent $a g t_{k}$ as $r_{i j}^{k}$ and the weight of agent $a g t_{k}$ as $w_{k}$, for $K$ agents, the aggregated fuzzy preference is calculated by:

$$
\begin{equation*}
r_{i j}=\frac{1}{K} \sum_{k=1}^{K} w_{k} r_{i j}^{k} \tag{4.1}
\end{equation*}
$$

This method is named Ordered Weighted Averaging (OWA) operator, originally proposed by [Yag88]. Almost all aggregation methods on fuzzy preferences are based on OWA. Extended from OWA, induced OWA (IOWA) operator [Yag03, YF98, YF99] has received increasing attention. In this method, the meta-data on alternatives are used to induce the ordering in the first place, for purpose to estimate values of some unknown information. To avoid the Condorcet's paradox, i.e. to keep the property of transitivity of the aggregated preference, in [HVCHA07], authors proposed additive consistency IOWA (AC-IOWA). [CHVAH08] studied the cardinal consistency and proved that it is a characterization of multiplicative transitivity. [MC11] proposed Induced Order Weighted Averaging Distance (IOWAD) operator to aggregate fuzzy preferences from a view point of distance, similar to Algorithm 1.

For futher reading, we list some applications of fuzzy preferences. Fuzzy preferences are often applied in linguistic information. [CAHV09] proposed a consensus model for unbalanced fuzzy linguistic information. [MGL13] proposed 2-TILGOWA operator to estimate linguistic values and applied for decision making. [Xu07] applied OWA on intuitionistice fuzzy preference relations (IFPR) and [pCqX19] developed aggregation method with the consideration on consistency for IFPR.

Although fuzzy preference model is powerful in expressing uncertainty ${ }^{1}$ in preferences, it still has some shortcomings. A very important one is that it merely represent the degree (or probability) of the preference relation and could not express the imprecision problems as well as the conflicts in decision making procedures are hardly kept. A solution on these shortcomings is proposed in Chapter 5 in the contribution part of this thesis.

In addition to the aggregation, another management application on preference is preference learning.

[^5]
### 4.4 Preference learning

Preference learning is a sub-field of machine learning, particularly oriented to applications and theories concerning preference knowledge. In preference management, learning on preference data is also an important aspect, often applied in preference elicitation applications. In this section, we firstly give a global introduction on preference learning with corresponding notions. Afterwards, we focus on one specific aspect of preference learning, clustering on preferences, which is one of the major topics in this thesis.

The procedure of clustering on preferences is important in both preference elicitation and community detection. Many preference elicitation methods follow the strategies that predict the unobserved preferences of an agent based on the observed preferences of neighbor agents, with more details in following contents. In social networks and sociology, preferences can be applied as a part of profile information for community detection. In this section, we firstly give a global introduction on the research domain of preference learning and its position in the study of artificial intelligence. Afterwards, we concentrate on clustering methods on preferences in Section 4.5, which is in the scope of our thesis work.

In addition to preference modeling and reasoning methods mentioned in previous chapters, preference learning is often aimed at preference elicitation (or predicting, or mining) problems. " Roughly speaking, preference learning is about inducing predictive preference models from empirical data "[FH11]. Methods for learning preferences in an automatic way are among the recent research topics in disciplines such as machine learning, knowledge discovery, and recommendation systems. Preference learning is strongly related to various scientific domains, a brief illustration is given in Figure 4.1, originally proposed in $\left[\mathrm{FHR}^{+} 14\right]$.


Figure 4.1 - Preference learning and related research areas within machine learning (blue), information retrieval (purple), applied mathematics (turquoise), and the decision sciences (green), from $\left[\mathrm{FHR}^{+} 14\right]$

Preference learning is a relatively large concept. Below, we introduce the specific scenarios and techniques in preference learning. For better understanding, a topic map may be helpful in Figure 4.3 in the conclusion part of this chapter.

### 4.4.1 Two scenarios

According to [FH10], preference learning mainly consists of two scenarios: learning from label preferences and learning from object (or alternatives) preferences. The former one focuses on applying preference management techniques in supervised learning, and the latter one on applying machine learning techniques on preference knowledge. Formal concepts are given below.

## Learning from label preferences

This scenario is also called label ranking in [FH11]. Learning from label preferences concerns the problems in supervised learning methods.
Given:

- a set of training instances $\left\{x_{k} \mid k=1, \ldots, n\right\} \subseteq \mathcal{X}$,
- a set of labels $\mathcal{L}=\left\{\lambda_{i} \mid i=1, \ldots, m\right\}$,
- and a set of associated pairwise preferences on labels $\lambda_{i} \succ_{x_{k}} \lambda_{j}$ of each training instance $x_{k}$,
learning from label preferences aims to find a mapping function of labels ranking on each alternative $\mathcal{X} \rightarrow \mathcal{M}_{X L}$, where $\mathcal{M}_{X L}$ denotes the assignment of a ranking permutation $\succ_{x}$ on $\mathcal{L}$ to every $x \in \mathcal{X}$. In other words, learning from label preferences is to predict the label ranking in $\mathcal{L}$ for any instance $x \in \mathcal{X}$, where $\lambda_{i} \succ_{x} \lambda_{j}$ implies that instance $x$ prefers label $\lambda_{i}$ to $\lambda_{j}$. This scenario is often encountered in ensemble learning, where final labels of objects are obtained by the aggregation of multiple classifiers, such as Bagging [Bre96] and Adaboost [FS97].

In deed, learning of label preferences has been a trend of extending machine learning methods to complex and structured output spaces [FH03, THJA04], notably in multilabel classification, where multiple labels may be assigned to each instance..

## Learning from object preferences

This scenario is also called object ranking is other works as [FH11]. In the scenario of learning from object preferences, the machine learning algorithms are applied on objects with preference relation known to predict preference relation on new objects. This scenario is formally defined as follows.
Given

- a (potentially infinite) set $\mathcal{A}$ of objects (alternatives),
- and a finite set of pairwise preferences $a_{i} R a_{j},\left(a_{i}, a_{j}\right) \in \mathcal{A} \times \mathcal{A}, R \in\{\succ, \prec, \approx, \sim\}$,

Methods of learning from object preferences aim to find a ranking function $\mathbf{O}(\cdot)$ that returns a permutation ranking on object $\mathcal{A}^{\prime}, \mathcal{A}^{\prime} \subset \mathcal{A}$.

Briefly speaking, learning from object preference is the elicitation of implicit preferences based on the observed preference knowledge. This scenario is the most fundamental task in the domain of preference learning and has been widely applied, especially in recommendation systems.

In [FH11], the authors consider another scenario, instance ranking, in addition to the two above. Roughly speaking, instance ranking aims to rank objects (instances) based on their corresponding label (or class) information. As instance ranking also aims to find ranking function on objects, we hereby consider it as a sub-scenario of object ranking. More details are available in [FH11].

To recapitulate, learning from object preferences is to predict preference relations or rankings by using machine learning methods while learning from label preferences is to predict preferences among labels in machine learning problems. The two scenarios are not isolated. In the scenario of learning from label preferences, labels are sometimes regarded as objects thus technique of object ranking can be applied.

In this thesis, the term "preference learning" refers to the second scenario-learning from object preferences. In the following content, major techniques for learning on object preferences are introduced.

### 4.4.2 Major techniques for preference learning

Preference learning techniques mainly consist of two categories: learning utility functions and learning preference relations, respectively introduced as follows.

## Learning utility functions

An utility function is a mapping function $f: \mathcal{A} \rightarrow \mathbb{R}$ that assigns an utility degree $f(a)$ to each object $a \in \mathcal{A}$, which induces a linear order on $\mathcal{A}$. A ranking relation $a_{i} \succ a_{j}$ is derived by values of the utility function $f\left(a_{i}\right)>f\left(a_{j}\right)$.
A common example of utility function is the scoring (or noting) systems, such as Netflix Prize $\left[\mathrm{BL}^{+} 07\right]$ for film scores predicting, and Sushi scores in Sushi dataset [Kam03a].
Such techniques have attracted many researchers. A most basic idea is to portray each agent by the scores on each alternative and learning directly in the space of scores. Several chanllenges exist in such methods, such as incapability to deal with missing values and low efficiency when data dimension is large. Targeted on these issues, many solutions have been proposed, such as Matrix Factorization (MF) [KP13, ZWFM06], collaborative filtering (CF) [Kam03a, CMF08, HKBR99, Paz99], Deep Learning [IJW ${ }^{+}$19, ZYST19], and hybrid methods [WWY15]. More introduction on these solutions is given in Section 4.5.

## Learning preference relations

However, preferences do not always come with utiliy functions. In some cases, where preferences are expressed by orders, or by pairwise relations, learning preference relations becomes necessary. Besides, [CSS98, DJBW03] have pointed out that obtaining information of preference relations may be easier and more natural than obtaining the labels needed for a classification or regression approach, and such type of information is more accurate, since " people tend to rate their preferences in a relative way, comparing objects with the other patners in the same batch", namely batch effect [DDCLB08].

Learning preference relations focuses on comparing pairs of objects (alternatives) in terms of binary preference relations. This kind of approach has been pursued in [CSS98] and applied in various domains from recommendation on internet [Joa02] to agriculture production $\left[\mathrm{BBD}^{+} 04\right]$. Some important survey works are introduced in [KKA10, FH03].

Learning from object preferences has been widely applied in research works on Recommendation Systems (RS) ${ }^{2}$, where clustering techniques are often applied. Generally speaking, " RS help agents to find content, products, or services by aggregating and analyzing suggestions from other agents, which means reviews from various authorities and agents " [PKCK12]. Globally, popular RS methods are categorized into two schools: content-based filtering (CB) and collaborative filtering (CF). CB analyzes a set of alternatives rated by an agent and uses the content of the alternatives, sometimes with the provided ratings, to infer an agent's profile that can be used to recommend additional alternatives (items) of interest. In CF, the agent will be recommended alternatives based on other agents with similar tastes and preferences. Besides, hybrid methods combining CB and CF have also been proposed [BS97, MCG ${ }^{+} 99$, Paz99]. Some literature review works providing more detailed introduction are available in [PKCK12] and [AT05].
In addition to RS, preference information is also useful in community detection. In CF, the search of similar agents is actually a process close to the principle of community detection. [JPW07] applied community detection methods on bidding preferences in eBay market data. $\left[\mathrm{YST}^{+} 13\right]$ proposed a RS based on preference-aware community detection. [ZKL15] introduced preference-based non-negative matrix factorization (PNMF) model to incorporate implicit link preference information for overlapping community detection.

### 4.5 Preference clustering

As mentioned above, in CF, recommended alternatives to an agent are based on other agents with similar tastes and preferences. Such work of finding neighborhood in agents based on the similarity is also also called community detection in domain of

[^6]social networks, and preference information has already applied in many works such as [LCLM16, YST $\left.{ }^{+} 13\right]$. With the terminology of preference learning, these processes are clustering on preferences.

The objective is to segment agents into different groups (called clusters) based on their preference information such that agents in the same cluster share more similar preferences to each other than to those in other clusters. This procedure is important in many preference based applications, such as recommendation systems building, community detection, etc.

A brief workflow of data clustering is illustrated in Figure 4.2. The data clustering consists of four principle steps:

1. Feature selection

In this step, features are extracted and selected to represent every instance (or "agent" in preference clustering), making up the data for further process. In our case, the features are based on preference information of each agents.
2. Clustering algorithm selection and application

In this step, proper clustering algorithm as well as corresponding parameters are selected and executed on data for processing. After this step, instances are grouped into different clusters.
3. Clustering result validation

In this step, the clustering results obtained in the previous step are evaluated. The result is validated if the evaluation result is satisfying enough.
4. Interpretation of clustering results

In this step, the validated clustering results are interpreted as knowledge. Concerning on the clustering on agents, the results can be interpreted as communities of agents.

In this thesis, we mainly focus on the modeling and representation of agents (also called features) from preference data. A major issue particularly important for preferences exists in the completeness of the data. Given an agents set of size $K \mathcal{A \mathcal { G }}=$ $\left\{a g t_{1}, a g t_{2}, \ldots, a g t_{K}\right\}$ represented by their partial preferences on alternatives $\mathcal{A}$, clustering based preference elicitation methods consists in two procedures:

1. Cluster agents into different partitions $\mathcal{C}=\left\{c_{1}, \ldots, c_{|\mathcal{C}|}\right\}$ based on partial preference information. Denote the clustering function as $\mathbf{C}(\mathbf{a g t}): \mathcal{A G \mathcal { T }} \rightarrow \mathcal{C}$.
2. Elicit the unobserved preferences of agent $a g t_{m}$, based on the partition (or neighborhood) where $a g t_{m}$ belongs.

We can say that this work is a "chicken or the egg causality dilemma". The two procedures are dependent to each other, i.e. for the agent clustering procedure in an identical algorithm, preferences with less unobserved data returns a more reliable while


Figure 4.2 - Workflow of data clustering
for the preference elicitation procedure, a partitioning result with better quality returns a more solid prediction.

Hereby, we introduce main stream methods of the clustering on incomplete preferences.

### 4.5.1 Clustering on incomplete preferences

Clustering on incomplete preferences is a specific application of clustering on data with missing or unobserved information, which is a common issue in machine learning. According to [LR19], the missing data may follow different randomness, divided into three categories, quoted below.

1. Missing completely at random (MCAR): This is the highest level of randomness. It occurs when the probability of an instance (case) having a missing value for an attribute does not depend on either the known values or the missing data. In this level of randomness, any missing data treatment method can be applied without risk of introducing statistical bias on the data;
2. Missing at random (MAR): When the probability of an instance having a missing value for an attribute may depend on the known values, but not on the value of the missing data itself;
3. Not missing at random (NMAR): When the probability of an instance having a missing value for an attribute could depend on the value of that attribute.

Before the discussion on incompleteness, we firstly distinguish two concepts "sparse matrix" and "scarce matrix".

Definition 4.5.1. Sparse matrix: A sparse matrix (or sparse array) is a matrix in which most elements are zeros.

Definition 4.5.2. Scarce matrix: A scarce matrix is a matrix in which most elements are missing (we call it null in this work).

In many works, the definition of "sparsity" and 'scarcity" are not distinguished. Sparse matrix may refer both of the two scenarios above and missing data are valued as zeros. For matrix on preference information, this is pertinent in following cases:

- The matrix represents the information of comparability. In an information matrix [CKS86] $I=\left(I_{i j}\right)$, where $i, j$ denotes comparison information between alternatives $a_{i}, a_{j}$, i.e.

$$
I_{i j}= \begin{cases}1, & \text { if } a_{i}, a_{j} \text { are compared }  \tag{4.2}\\ 0, & \text { otherwise }\end{cases}
$$

Such cases corresponds to MCAR or MAR categories.

- The missing information can be induced as "dislike" opinion. For instance, in a voting mechanism where agents express their top-k alternatives, the missing information on other alternatives can be induced as "dislike". Thus, it is pertinent to define the utility function, such as scores, on these alternatives as zeros. It should be noted that data are not randomly missing, it's a NMAR case.

Targeted on the scarcity problems where parts of data are null, i.e. cases of MCAR and MAR, clustering methods can be categorized into three schools:

- Data imputation. Data imputation refers to the process of replacing missing data with substitute values. The imputation of missing preferences is already elicitation procedure. Usually, such methods fill the missing data with statistical approaches, such as Neibourhood based methods [BM03, LDSS04], EM based methods [GJ94, WLXC05], Non-negative Matrix Factorization [ZWFM06], etc. The neighborhood based methods imputes the missing data from the nearby agents. Usually, the neighborhood are defined by clustering process (introduced later) or ground truth information. In [GJ94], the authors assume that data instances are generated independently from a mixture probability density and applies EM method to maximize the likelihood on observed values to estimate the parameters of the distribution. More precisely, mixture of Gaussian is applied on real-valued data and mixture of Bernoulli for discrete valued data. In [WLXC05], the authors applied logistic regression model as the probability distribution assumption and applied EM method for the likelihood maximization. Matrix Factorization (MF) is a popular method for score prediction in recommendation systems. Given
the scoring matrix from all agents on all alternative $X_{m \times n}$ ( $n$ alternatives by $m$ agents), MF aims to find two matrix $U_{m \times k}$ and $V_{k \times n}$ such that

$$
\begin{equation*}
X=U V \tag{4.3}
\end{equation*}
$$

This method assume that the scores follow a linear model, thus the objective is to build a linear model adapted to observed values, usually evaluated also by likelihood. The searching for $U$ and $V$ in MF is also a clustering process where $k$ clusters are determined.

As transitivity is an extra property for preference data comparing to other information, imputation by transitivity of preference relations $\left[\mathrm{ACH}^{+} 08\right]$ (or deduction) is also a reasonable method.

- Clustering on observed preference (Ignoring and discarding data). In this category, all missing data are discarded and the clustering is effected only on observed attributes. There are two mainstream ways of discarding in preference clustering: clustering on top-k preferences or discounting the similarity between objects by weighting on their completeness, also nameed partial distance strategy. In clustering on top-k preferences, alternatives with missing preference information are assumed to be disliked. This assumption transfer the "scarcity" into "sparsity" by filling the "null" with zero. Discounted distances are normally relevant to the superposition of alternatives shared by two partial orders. Many measures have been proposed such as Jaccard similarity [KBGM09], CPCC [SM95], WPCC [HKBR99], SPCC [JE09], etc, corresponding to different measure of similarity between preference orders.
- Modeling the missing features by soft methods, such as fuzzy theory [HB01, ZC03] and rough set theory[LDSS05]. These methods interpret the null values with a high degree of uncertainty, then apply soft clustering methods.

The last category is also related to clustering on uncertain data. With uncertainty, data values are no longer atomic. In order to apply traditional clustering methods, uncertainty data needs to be summarized into atomic values. To take mean values is an intuitive way, and such method has been applied on incomplete preference data [Kam03a]. However, taking mean value is based on rough assumptions and could seriously affect the quality of clustering results. Interpreting the uncertain data into interval data is also a feasible solution [VdCL00, CL02]. In fact, such methods are intrinsically based on the assumption that the missing data respect a uniform distribution.
Furthermore, many work apply more sophisticated probability density function (pdf) or statistical models. [HG05] applied maximum likelihood estimation on Mixture Gaussian model. Fuzzy theory have also been applied in clustering on data with uncertainty. In [CCKN06], the authors proposed a fuzzy modeling on uncertain data named Uncertain k-means (UK-means). $\left[\mathrm{NKC}^{+} 06\right]$ studied various prunning methods on UK-means to improve the efficiency. [PLP11] proposed a Uncertain Customized k-means (UCK)
by extended UK-means with the assumption that standard deviation of measurement data is available. For more reading, $\left[\mathrm{CCK}^{+} 05\right]$ provides some synthetic information. For better understanding, we distinguish two definitions on soft methods hereby. In the domain of soft computing, soft clustering is a popular topic. Soft clustering is different from modeling data with soft methods (soft modeling). In soft clustering, data is crisp. One data point (instance) can belong to multiple clusters with a certainty degree, such as FCM [BEF84] based on fuzzy theory, ECM [MD08], EVCLUS [DM04] and EKNNclus [DKS15a] based on TBF. However, in soft modeling, data are uncertain (say soft data), which is a different scenario than soft clustering. Thus, soft clustering can not be applied directly on soft data.

### 4.6 Conclusion

Two aspects of preference management are introduced in this chapter: preference aggregation and preference learning (preference clustering). In preference aggregation, we reviewed several typical problems: Condorcet's paradox (transitivity), missing information, as well as Arrow's impossibility theorem. The first two are to avoid or deal with once encountered while Arrow's impossibility describes a property of voting systems. For crisp preferences, Condorcet's paradox is avoided by the definition of voting mechanism (strategy). For fuzzy preferences, the transitivity is guaranteed by keeping the consistency in fuzzy values, such as additive consistency and multiplicative consistency. The incompleteness problem is a challenge for both preference aggregation and preference clustering. Depending on various causes of incompleteness, different solutions are applicable, concluded in Table 4.2. For top-k preference, the preference information

Table 4.2 - Different completing strategies to different causes of missing information

| Completing <br> strategy | Examples | Preference <br> Aggregation | Preference <br> Learning |
| :---: | :---: | :---: | :---: |
| As disliked | Top-k are given | $\checkmark$ | $\sqrt{ }$ |
| As indifference | Absence of agents | $\sqrt{ }$ | x |
| By statistical model | Average of other agents | x | $\sqrt{ }$ |

are given only on the most preferred alternatives. Thus, it's reasonable to induce that the alternatives without preference information given are disliked and such induction is objective.
For agents who are absent in expressing their opinion on preference, it is reasonable to consider their preferences as "indifference", which plays a neutral role in the aggregation process. However, such strategy is no longer applicable in preference learning. The reason is simple: "indifference" is a meaningful value in agent portrait. If such assumption is accepted, all agent not expressing preference opinion will be grouped into one cluster. Such clustering result does not correspond to the initial objective: clustering agents by their portraits of preferences.
For agents who do not express their preference opinion on the entire alternative space,
it is reasonable to complete the missing value by statistic methods, such as average value of preferences from similar agents. However, these induced preferences are not convincing, i.e. there is no proof that the completed information respects the agent's subjective opinion. Therefore, if such induced preference data are applied in preference aggregation, the aggregated result will lose the reflection to the group's opinion.

In preference learning, a brief plan of problems is introduced. A topic map on preference learning is concluded in Figure 4.3. We also introduced the characteristic


Figure 4.3 - Topic map of preference learning
relation between some aggregation methods and distances. All preference aggregation methods are based on one principle: to find a consensus opinion, i.e. the aggregated preference should have as little conflict to agents' individual preference as possible and respect the majority opinion in agents. The distance based aggregation is equal to the centroid calculation in preference clustering on the same distance for preference similarity measuring.

Some difficulties in learning on imperfect preferences are pointed out, with a brief survey on different schools of clustering methods based on imperfect data, some of which are adaptable for imperfect preferences. In addition to the strategies of completing the preference information, more solutions are applicable for preference learning. A summary is given in Table 4.3.

We also introduced the relation with preference clustering and recommendation systems, which is a major application for preference learning. Finally, with the help of different soft computing methods, such as fuzzy theory and TBF, we distinguished the

Table 4.3 - Methods on clustering on incomplete preferences.

| Category | Description | Examples |
| :--- | :--- | :--- |
| Complete <br> missing values | Complete missing values under assumptions <br> Usually with zeros or with average value | Table 4.2 |
| Cluster on <br> observed data | Weight the instances <br> with completeness of observation | CPCC <br> WPCC |
| Soft modeling | Regard the missing data as uncertain problem. <br> Apply soft theories. | UK-means |

soft clustering methods and soft modeling for data with uncertainty.
In next part, we introduce contributions of our this thesis work. The contribution is mainly on modeling on imperfect preferences, with applications around aggregation and clustering.

## Part III

Contributions

## Chapter 5

## BFpref model, an evidential model for imperfect preferences

In the introduction chapter, preference relations with imperfectness as well as some ambiguities in the basic definition of preference relations were introduced, identifying new challenges in preference modeling. In Section 2.2 of Chapter 2, it is mentioned that the state of the art models for non crisp preferences are able to modelize the preferences with uncertainty but not imprecision. Besides, in the conclusion part of Chpater 3, an ambiguity in the definition of "incomparability" was introduced. Targeting on these issues, based on the theory of belief functions, we propose a frame of discernment on all possible preference relations between two alternatives, namely BFpref (Belief Function based PREFerence) model [ZBM17]. BFpref model is able to express both uncertainty and imprecision as well as information missing in preference reasoning.

In this chapter, we introduce our contributions on evidential preference modeling. Firstly, we pose an issue on the definition of "incomparability" with different interpretations. Afterwards, a frame of discernment for BFpref model is given in Section 5.2, followed by a solution for modeling the imperfectness, including problems of "uncertainty", "imprecision" and "incompleteness". Afterwards, we propose a strategy to avoid Condorcet's paradox as well as a Depth First Search (DFS) based algorithm to optimize the search of Condorcet's paradox situation.

### 5.1 An issue in "incomparability"

Incomplete orders (partial orders and quasi orders) include the "incomparability" preference relation. However, "incomparability" relation may refer to multiple interpretations. We compare three examples respectively caused by "absence of knowledge", "conflict" and "non-observed data".

In Chapter I, example 3 presented a situation that agents do not know "Ram-
boutan", so they are not able to give a "strict preference" when alternatives concern "Ramboutan". In this case, "incomparability" is caused by lack of knowledge on the alternatives.
The second example is a real case on Sushi preference dataset [Kam03a], already given in Example 4 in Chapter I. In this example, the "incomparability" is caused by "nonobservable" (or implicity) in parts of data. More details of Sushi preference dataset is given in Section 6.3.2.
The third example is taken from $\left[\mathrm{DMO}^{+} 12\right]$ between two job offers.
Example 9. Which job is better?
Bob gets two job opportunities: $j o b_{1}$ and $j o b_{2} . ~ J o b_{1}$ comes with a low salary but is very interesting while $j o b_{2}$ with a high salary but is not interesting at all. When comparing these two jobs with high conflict, Bob has difficulties to express a strict preference in favor of one of them or indifference.

Three scenarios of "incomparability" is demonstrated in the examples. The first two examples are caused by the absence of information (respectively from the angle of agents and the data). The third one is caused by conflicts. In our opinion, different interpretations of "incomparability" should be modeled differently. In next sections, we introduce the BFpref model for uncertain and imprecise preferences, we also distinguish the two interpretations of "incomparability".

### 5.2 BFpref model

In the BFpref model, we consider a case that a set of agents $\mathcal{A G \mathcal { T }}=\left\{a g t_{1}, \ldots, a g t_{n}\right\}$ expressing their preferences between every pair over an alternative set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$. Thus, each agent is a source of preference information. For any $a_{i}, a_{j} \in \mathcal{A}$, four relations are possible:

- Strict preference: $a_{i} \succ a_{j}$
- Inverse strict preference: $a_{i} \prec a_{j}$
- Indifference: $a_{i} \approx a_{j}$
- Incomparability: $a_{i} \sim a_{j}$

To ensure that the four relations are exclusive and exhaustive for all preferences between two alternatives, the relation of "incomparability" is indispensable. Therefore, on a given pair of alternatives $a_{i}$ and $a_{j}$, the frame of discernment is defined as:

$$
\begin{equation*}
\Omega_{i j}=\left\{\omega_{i j}^{R} \mid R \in\{\succ, \prec, \approx, \sim\}\right\} . \tag{5.1}
\end{equation*}
$$

Obviously, with the theory of belief functions, BFpref model is able to express preference information with ignorance and imprecision. This model is also available to distinguish different interpretations of "incomparability".
To summarize the three examples of incomparability (Example 3, 4 and 9), given two alternatives $a_{i}, a_{j} \in \mathcal{A}$, an "incomparability" relation may refer to two scenarios:

1. $a_{i}$ and $a_{j}$ are not compared because of the lack of knowledge or the information of comparability is missing (say "undecided" case);
2. $a_{i}$ and $a_{j}$ are not comparable because of conflicts (say "indecisive" case).

To distinguish these two scenarios in BFpref model, the "indecisive" case is represented by the singleton $\omega^{\sim}$ and the "undecided" case by the vacuous BBA $m$ ? where $m_{?}(\Omega)=1$, also representing the total ignorance (see Definition 2.3.4 of Chapter 2).

In some circumstances such as surveys, or voting systems, four BBAs

$$
m_{s}^{R}, R \in\{\succ, \prec, \approx, \sim\}
$$

are defined for agent $a g t_{s}$, estimating on each alternative pair $a_{i}, a_{j}$. Each BBA is a simple supported, respectively representing the uncertainty degree on the four preference relations and the agents are assumed to be cognitively independent. Such design is for sake of agents' convenience because in a voting system, a person usually feels more convenient to give belief degrees on one single event rather than four. Besides, observation on one relation is always simpler than on four relations. The assumption of cognitive independence is an essential condition required by many combination rules such as conjunctive rule. This assumption is reasonable to be applied on different agents since in many preference collection mechanisms such as voting systems, the exchange between different agents is considered as limited.

In Chapter 4, we introduced preference management as an important research domain. Based on the BFpref model, the management of preferences is studied as well. In this chapter, we mainly focus on the aggregation problems in BFpref and corresponding solutions, introduced in next sections.

### 5.3 Evidential preference aggregation strategies

As mentioned in Chapter 4, the aggregation of preferences is indeed a specific case of information fusion process, where the theory of belief functions plays an important role. In this section, we mainly introduce two different aggregation rules on evidential preferences based on the combination rule in the theory of belief functions. The entire information fusion process mainly consisting of two steps: combination and decision. Specially for preference data, the avoidance of Condorcet's paradox situations is also an important issue. Thus, we also studied the problem and proposed a Condorcet's paradox avoidance strategy as well as an efficient elimination algorithm.

### 5.3.1 Combination

The preference aggregation on BFpref model is actually the combination and decision steps with the terminology of the theory of belief functions. In this section, we first introduce different combination strategies for BFpref model, then, in the decision part,
we introduce our algorithms to avoid Condorcet's paradox.

Developed from combination and decision rules, we propose two combination strategies, marked as Strategy A and Strategy B. For each alternative pair $a_{i}$ and $a_{j}(i<j)$, the strategies are illustrated in Figures 5.1 and 5.2 followed by detailed explanations. Strategy A was originally proposed by [EBMBY15]. Both strategies are based on the two combination rules described in Equations (5.3) and (5.2).

## - Strategy A:



Figure 5.1 - Combination Strategy A

Firstly, we combine the four BBAs on four relations of one pair $\left(a_{i}, a_{j}\right)$ from one agent agt into one BBA. As the four BBAs originate from one identical agent, they are not cognitively independent (see Section 2.3), then, the mean value rule is proper for the combination. Applying mean value combination rule upon equation (5.2) as:

$$
\begin{equation*}
m_{s}^{\Omega_{i j}}(X)=\frac{1}{4} \sum_{R \in\{\succ, \prec, \approx, \sim\}} m_{s}^{R}(X), X \subseteq \Omega_{i j} \tag{5.2}
\end{equation*}
$$

where $m_{s}^{\Omega_{i j}}$ denotes the belief degree of agent $a g t_{s}$ on the entire frame of discernment $\Omega_{i j}$ defined in Equation 5.1. Then, the conjunctive combination rule in equation (5.3) is applied over multiple agents because they are cognitively independent. For an alternative pair $\left(a_{i}, a_{j}\right)$, we obtain a BBA given by:

$$
\begin{equation*}
m^{\Omega_{i j}}(X)=\overbrace{s=1}^{\complement} m_{s}^{\Omega_{i j}}(X), X \subseteq \Omega_{i j} \tag{5.3}
\end{equation*}
$$

where $m^{\Omega_{i j}}$ denotes the aggregated belief level from all agents on the entire frame of discernment. The BBA $m^{\Omega_{i j}}(X)$ is the finally combined BBA for the alternative pair $\left(a_{i}, a_{j}\right)$. One of the drawbacks of strategy A is in its inability to scale with the volume of information sources (agents in our case). After the first combination with mean value rule, the combined BBAs are no longer simple support BBAs and have auto-conflict. The non-simple-support BBAs cause global-conflicts and lead to increase the value of $m^{\Omega_{i j}}(\emptyset)$ when conjunctive combination rule is applied. Once the volume of sources gets large, global-conflicts are exacerbated by the
conjunctive combination rule so that $m^{\Omega_{i j}}(\emptyset)$ converges to 1 [MJO08]. To avoid such deterioration, we proposed strategy $B$ in which the conjunctive rule is applied on simple support BBAs.

## - Strategy B:



Figure 5.2 - Combination Strategy B

Strategy B is the inverse of strategy A, presented in Figure 5.3.1.
Firstly, we arrange BBAs for each alternative pair ( $a_{i}, a_{j}$ ) of all agents $S$ into 4 groups, respectively representing the four preference relations. On each group, the conjunctive combination (equation (5.4)) is applied.

$$
\begin{equation*}
m^{R_{i j}}(X)=\underset{s=1}{\mathbb{S}} m_{s}^{R_{i j}}(X), R_{i j} \in\{\succ, \prec, \approx, \sim\}, X \subseteq \Omega_{i j} \tag{5.4}
\end{equation*}
$$

where $m^{R_{i j}}$ denotes the aggregated belief degree of all agents on preference relation $R$ between alternatives $a_{i}$ and $a_{j}$. Afterwards, we apply mean value combination method on the 4 combined groups.

$$
\begin{equation*}
m^{\Omega_{i j}}(X)=\frac{1}{4} \sum_{R \in\{\succ, \prec, \approx, \sim\}} m^{R}(X) \tag{5.5}
\end{equation*}
$$

The Strategy B is more suitable when few BBAs are valued with ignorance or imprecision. Applying conjunctive combination rule on such BBAs can cause high global-conflict, i.e. the combined BBA has large value on $\emptyset$. Such phenomena will be illustrated in the experiments part.

### 5.3.2 Decision

After two combinations, we finally get a BBA for each pair $\left(a_{i}, a_{j}\right)$ denoted by $m^{\Omega_{i j}}$. The decision related to the relationship of each pair is taken based on the pignistic probability $\operatorname{bet} P(\cdot)$ on the space $\Omega_{i j}$ by:

$$
\begin{equation*}
\omega_{i j, d}=\underset{\omega_{i j}^{R}, R \in\{\succ, \prec, \approx, \sim\}}{\operatorname{argmax}} \operatorname{bet} P^{\Omega_{i j}}\left(\omega_{i j, R}\right) \tag{5.6}
\end{equation*}
$$

Since the decision is made on aggregated preferences. Conflict preferences such as Condorcet's paradox may appear. In the subsection 5.3 .3 , we propose two algorithms to avoid Condorcet's paradox in the final result.

### 5.3.3 Condorcet's paradox avoidance in graph construction

In the following, we use directed graph for the graphic representation of the preference order obtained from the fusion process. The four possible relationships are illustrated as follows:

- $\omega_{i j}^{\succ}: a_{i} \succ a_{j}$ :

- $\omega_{i j}^{\prec}: a_{i} \prec a_{j}$ :

- $\omega_{\tilde{\tilde{j}}}: a_{i} \approx a_{j}:$

- $\omega_{i j}^{\sim}: a_{i} \sim a_{j}:$


In the preference graph, a Condorcet's paradox is represented by strongly connected components (or cycle). A strongly connected component of size 2 is considered as an indifference relationship, therefore Condorcet's paradox is represented by cycles of minimum size 3. A simple example of Condorcet's cycle is illustrated in Figure 5.3.


Figure 5.3 - Graphic representation of Condorcet's paradox

Condorcet's paradox does not respect the property of transitivity, which must be satisfied for quasi order (see Definition 2.1.7 in Section 2.1). To avoid Condorcet's paradox, we have to cut an edge in the cycle of size equal or larger than 3. The fact of removing an edge between $a$ and $b$ is equivalent to replace the original relation between $a$ and $b$ by "incomparability". In order to introduce as little knowledge as possible, we decide to remove the edge which is most similar to the relation "incomparability". To measure this dimilarity, in our work, we choose Jousselme distance [JGEB01] (see Equation (3.16) in Chapter 3) for distance measurement. Jousselme distance is considered as a reliable similarity measure between different BBAs [EMSBY14]. It considers coefficients on the elements composed by singletons. In this paper, Jousselme distance is denoted by $d_{J}$. Hence distance between an alternative pair $\left(a_{i}, a_{j}\right)$ and "incomparability" is denoted by $d_{J}\left(m_{i j}, \omega_{i j}^{\sim, 0}\right)$, where the BBA of incomparability $\omega_{i j}^{\sim, 0}$ denotes the categorical BBA $\left(m\left(\omega^{\sim}\right)=1\right)$ on preference relation $\sim$ between the two alternatives.

Obviously, preferences over multiple alternatives without Condorcet's paradox can be represented by a Directed Acyclic Graph (DAG) (note that cycles of 2 elements
are tolerated in such graph because of the "indifference" relation). To simplify the explanation, DAG with tolerance of 2-element-cycle is denoted by $D A G_{2}$.

With strongly connected components (SCC) search methods such as Tarjan's algorithm [Tar72], we firstly propose a naive algorithm by iterating "DAG detect-edge remove" process in Algorithm 2. Each iteration detects all the SCC of size larger than 2 as subgraphs (function SCC in Algorithm 2) and remove one edge closest to incomparability in each sub-graph (Loop Process in Algorithm 2).

```
Algorithm 2 Naive \(D A G_{2}\) Building Algorithm
Input: A preference graph \(G\) constructed on equation (5.6) with edges valued by BBAs
    edge.mass
Output: A directed acyclic graph
    // Loop Process
    while subgraphList \(=S C C(G)\) is not empty do
        for subgraph in subgraphList do
            remove edge in all edges of subgraph who is nearest to the preference relation
            of "incomparability".
        end for
    end while
    // SCC search function (apply Tarjan's algorithm)
    function \(\operatorname{SCC}(G)\)
        Input: directed graph \(G\)
        Output: The sub-graphs of strongly connected components of size larger than
    2 in \(G\).
```

Since the SCC search function returns the largest strongly connected component found, this method loses its efficiency confronting SCC with nested cycles. A simple structure of nested cycles is illustrated in Figure 5.4.


Figure 5.4 - Nested cycles
Facing such structure of preferences, we propose here a more efficient algorithm to build a $D A G_{2}$ in an incremental way, described in Algorithm 3. In this algorithm, all edges are ordered by their Jousselme distance to incomparability at the initialization phase (line 2). "Incremental" means that the graph is built by adding edges one by one in a descending order of their distance to incomparability. Given an alternative pair $a_{i}, a_{j}$ with their predefined comparable (preference, inverse preference or indifference)
relation $r$ calculated from the BBA , we check if the graph is still a $D A G_{2}$ with new edge between $a_{i}, a_{j}$ added. The checking process is based on a Depth-First-Search (DFS) algorithm. Given two nodes $a_{i}$ and $a_{j}$ in graph $G$, function $D F S\left(G, a_{i}, a_{j}\right)$ returns the path length from $a_{i}$ to $a_{j}$.

More precisely, if a relation $r$ is a strict preference $a_{i} \succ a_{j}$, the DFS algorithm searching node $a_{i}$ starts from node $a_{j}$. If $a_{i}$ is found, a cycle will appear if the edge $i \longrightarrow$ $j$ is added. In such case, we replace the relation between $a_{i}, a_{j}$ by an incomparability relation (remove the edge) (line 6 and 7). Similarly if $r$ is inverse preference $a_{i} \prec a_{j}$, the DFS algorithm searches node $a_{j}$ from $a_{i}$ (line 8 and 9). However, the relation "indifference" may hinder the time performance of this algorithm. If $r$ represents the indifference relation $a_{i} \approx a_{j}$, we have to apply DFS twice from $a_{i}$ to $a_{j}$ and from $a_{j}$ to $a_{i}$ (line 10 and 11).

In a structure of nested cycles containing $E$ edges, $V$ vertex and $N$ cycles, the naive algorithm based on SCC search (Algorithm 2) can reach a temporal complexity of $\mathcal{O}(N(|E|+|V|))$ while the incremental algorithm (Algorithm 3) has a temporal complexity of $\mathcal{O}(N)$.

Although the incremental algorithm is efficient on nested cycle, its time performance degenerates when the preference structure has few nested cycles or many indifference relations. The applicability of the two algorithms is demonstrated and discussed in the following section.

### 5.4 Experiments

In this section, we compare the two proposed preference fusion strategies and two proposed algorithms for Condorcet's paradox avoidance. The fusion strategies are evaluated from a numeric point of view while the algorithms are evaluated in terms of time performance. Lacking social network data from real world, the data used in our experiments were generated manually or randomly.

### 5.4.1 Preference fusion strategies

In this experiment, we firstly define preference structures of 3 agents as illustrated in figure 5.5. To simplify our experiments, the alternative pairs are always in an ascending order (i.e. $\forall a_{i}, a_{j} \in A \Rightarrow i<j$ ). The belief degrees for alternative pairs $(2,3),(2,4)$ and $(3,4)$ are specially given in table 5.1. For the other alternatives, their belief degrees are set by default values given in table 5.2

```
Algorithm 3 Incremental \(D A G_{2}\) Building Algorithm
Input: All pairs \(P A I R S\) and their BBAs \(M\)
Output: A \(D A G_{2}\) graph
    // Initialization:
    Initialize an empty graph \(G\)
    Ascending order all pairs PAIRS by \(d_{J}\left(m^{\Omega_{i j}}, \omega_{4}^{0}\right)\), stock in a stack denoted as
    Stack.
    // Loop Process
    while \(S t a c k\) is not empty do
        pair \(\left(a_{i}, a_{j}\right)=\) Stack.pop ()
        Add nodes \(a_{i}\) and \(a_{j}\) into graph \(G\)
        if \(a_{i} \succ a_{j}\) then
            pathLength \(=D F S\left(G, a_{j}, a_{i}\right)\)
        else if \(a_{i} \prec a_{j}\) then
            pathLength \(=D F S\left(G, a_{i}, a_{j}\right)\)
        else if \(a_{i} \approx a_{j}\) then
            pathLength \(=\max \left(\operatorname{DFS}\left(G, a_{j}, a_{i}\right), \operatorname{DFS}\left(G, a_{i}, a_{j}\right)\right)\)
        end if
        if pathLength \(\geqslant 2\) then
            Consider relation between \(\left(a_{i}, a_{j}\right)\) as incomparability
        else
            add edge between \(\left(a_{i}, a_{j}\right)\) calculated by \(m_{i j}\) (equation (5.6))
        end if
    end while
    // Recursive Function
    function \(\operatorname{DFS}(G, v, n)\) :
    label \(v\) as discovered
    if all successors of \(v\) in \(G\) are labeled as discovered then
        return 0
    else
        for \(w\) in non-discovered successors of \(v\) do
            if \(w\) is \(n\) then
                return 1
            else
                    \(l e n=\operatorname{DFS}(G, w, n)\)
                    if \(l e n=0\) then
                return 0
                    else
                        return len +1
            end if
            end if
        end for
    end if
```





Figure 5.5 - Preference order of three agents

Table 5.1 - Belief degree values for alternative pairs $(2,3),(2,4)$ and $(3,4)$

| agent/pair | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| Agent $1 /(2,3)$ | 0.8 | 0.7 | 0.6 | 0.5 |
| Agent $1 /(2,4)$ | 0.4 | 0.1 | 0.3 | 0.6 |
| Agent 1/(3,4) | 0.9 | 0.8 | 0.7 | 0.6 |
| Agent 2/(2,3) | 0.5 | 0.4 | 0.6 | 0.9 |
| Agent 2/(2,4) | 0.2 | 0.4 | 0.3 | 0.1 |
| Agent 2/(3,4) | 0.9 | 0.8 | 0.1 | 0.7 |
| Agent 3/(2,3) | 0.6 | 0.2 | 0.4 | 0.1 |
| Agent 3/(2,4) | 0.3 | 0.5 | 0.2 | 0.1 |
| Agent 3/(3,4) | 0.8 | 0.1 | 0.6 | 0.9 |

Table 5.2 - Default belief degree values on 4 relations

| relation | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| preference | 0.8 | 0.2 | 0.3 | 0.1 |
| inverse preference | 0.1 | 0.9 | 0.2 | 0.1 |
| indifference | 0.3 | 0.3 | 0.7 | 0 |
| incomparability | 0.1 | 0.1 | 0 | 0.9 |

With both fusion strategies A and B (in Section 5.3), we get two different results illustrated in Figures 5.6 and 5.7.

A different edge result between alternatives $a_{1}$ and $a_{2}$ is high lighted by dashed dotted line: the relation between alternatives $a_{1}$ and $a_{2}$ is indifferent from strategy A,


Figure 5.6 - Fusion result of strategy A


Figure 5.7 - Fusion result of strategy B
while $a_{2} \succ a_{1}$ from strategy B. Focal elements in BBAs on edges are shown in Tables 5.3 and 5.4. Since in original data, BBAs are zero on all non-singleton elements, the final BBAs are still zero on union elements except ignorance (and empty set for strategy A).

Table 5.3 - BBA values on edges of strategy A

| pair | $\emptyset$ | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1,2)$ | 0.17989 | 0.08620 | 0.19870 | 0.21626 | 0.01139 | 0.30755 |
| $(2,3)$ | 0.07858 | 0.17209 | 0.03612 | 0.08545 | 0.15812 | 0.46962 |
| $(2,4)$ | 0.08745 | 0.07225 | 0.12931 | 0.11762 | 0.12373 | 0.46962 |
| $(3,4)$ | 0.07858 | 0.17209 | 0.03612 | 0.08545 | 0.15812 | 0.46962 |
| $(4,5)$ | 0.20880 | 0.22056 | 0.15581 | 0.09589 | 0.03375 | 0.28519 |

Table $5.4-\mathrm{BBA}$ values on edges of strategy B

| pair | $\emptyset$ | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1,2)$ | 0 | 0.13975 | 0.23775 | 0.232 | 0.025 | 0.3655 |
| $(2,3)$ | 0 | 0.1765 | 0.05 | 0.10825 | 0.17 | 0.49525 |
| $(2,4)$ | 0 | 0.1 | 0.152 | 0.138 | 0.14875 | 0.46125 |
| $(3,4)$ | 0 | 0.1765 | 0.05 | 0.10825 | 0.17 | 0.49525 |
| $(4,5)$ | 0 | 0.241 | 0.234 | 0.152 | 0.06775 | 0.30525 |

From this result, we observe that:

1. Both combination strategies do not always return same results.
2. A significant difference between the two results exists in the value of empty set $\emptyset$.
3. A Condorcet's paradox appears in the fusion result.

The first two observations concern the empty set value $m^{\Omega_{i j}}(\emptyset)$. If high globalconflict exist in among sources, a conjunctive combination can cause high value on
$m^{\Omega_{i j}}(\emptyset)$, implying high auto-conflict in the combined result [MJO08]. Moreover, this conflict accumulate when the number of sources increasing. As a result, $m^{\Omega_{i j}}(\emptyset)$ may converge to 1 and other focal elements are no longer convincing. For better demonstration, we illustrate the average of $m^{\Omega_{i j}}(\emptyset)$ after combination on all alternative pairs. The average value is calculated by:

$$
\begin{equation*}
m_{\text {average }}(\emptyset)=\frac{1}{\left|C_{|\mathcal{A |}|}^{2}\right|} \sum_{i, j \in C_{|\mathcal{A}|}^{2}} m^{\Omega_{i j}(\emptyset)} \tag{5.7}
\end{equation*}
$$

where $C$ denotes the combination operation, $|\mathcal{A}|$ the size of the alternative set $\mathcal{A}$.
The agent number ranges from 3 to 90 with step of 3 by replicating Agent 1, 2 and 3 by multiple times. The result is illustrated in Figure 5.8.


Figure 5.8 - Average of $m(\emptyset)$ with agent number increasing
This result shows clearly the default of strategy A. The average of $m^{\Omega_{i j}(\emptyset) \text { in strat- }}$ egy A converges to 1 while it is always 0 in strategy B. Our experiment example is already an optimal case because agents belief degrees are not various enough (they are just a repetition of the belief degrees of Agent 1, 2 and 3). In fact, the curve of strategy A may rise faster if agents' belief degrees are more various.

In Condorcet's paradox made up by alternatives 2,3 and 4 , the distance between the final combined BBA associated to the edges of the cycle and the relation of incomparability is given in Table 5.5.

Table 5.5 - Jousselme distance between alternative pair BBA and incomparability

| alternative pair | $d_{J}$ in Strategy A | $d_{J}$ in Strategy B |
| :---: | :---: | :---: |
| $(2,3)$ | 0.70798 | 0.60715 |
| $(3,4)$ | 0.77016 | 0.60739 |
| $(2,4)$ | 0.66928 | 0.64387 |

From table 5.5, another difference between strategy $A$ and $B$ can be found. In strategy $\mathrm{A}, \mathrm{BBA}$ of alternative pair $(2,4)$ is the closest to incomparability while in strategy B , the closest alternative pair to incomparability is $(2,3)$. The final result is illustrated in Figures 5.9 and 5.10.


Figure 5.9 - Result without Condorcet's paradox in strategy A


Figure 5.10 - Result without Condorcet's paradox in strategy B

Considering the drawback caused by convergence of empty set value, we believe that strategy B outperforms strategy A, because the latter one does not scale with the number of agents.

### 5.4.2 Condorcet's paradox avoidance

In this experiment, we evaluated the performance on three special preference structures: nested cycles (Figure 5.4), entangled circles (Figure 5.11) and non-nested structures with indifference relations (Figure 5.12). The BBAs associated to the preference relations are randomly generated adapting with entangled Condorcet's paradox. The evaluation is based on the runtime with increasing number of nested cycles $N$. As all BBAs are randomly generated following an uniform distribution from 0 to 1 , we take the average value of 10 same tests to ensure the reliability of the result. In the experiments, alternative numbers range from 20 to 400 with an interval of 40 .


Figure 5.11 - Entangled cycles


Figure 5.12 - Non-nested Cycles
The performances related to the three preference structures are illustrated in figure 5.13. We observe that the incremental algorithm outperforms the naive algorithm when the structures contain a great number of nested cycles. However, for the structures with little nested cycles but many indifference relations, the naive algorithm performs better. Hence, the selection of Condorcet's paradox avoidance algorithm should be adapted to the structure of the preferences.

### 5.5 Conclusion

In this chapter, we introduced the modeling and fusion problem of preference with uncertainty and imprecision. Targeted on such preferences information, we proposed and compared two strategies with conjunctive combination rule and mean value combination rule, based on the theory of belief functions. The one which avoid global conflicts performs better when the number of sources scales up. We also proposed a Condorcet's paradox avoidance method as well as an efficient DFS-based algorithm adapting to preference structure with nested cycles. By comparing the time performance of Condorcet's paradox avoidance algorithms on different types of preference structures, we noticed that the incremental algorithm is more efficient on nested structures while the naive algorithm is better on non-nested ones. Limited by our data sources, our experimental works were done on synthetic data. Furthermore, the algorithm for DAG construction can be applied in more general cases, other than those related to preference orders. In domains concerning directed graphs with valued edges (e.g. telecommunication, social network analysis, etc.), Algorithm 3 may find its usefulness.

There are still more works left to explore. Since our experiments are executed on synthetic data, the quality of aggregation result is not objectively evaluated. Concerning the "transitivity" property, only the Condorcet's paradox is removed, but the relation of "incomparability" does not guarantee the property of "transitivity". Another issue falls on the similarity measure applied in decision making. In this decision strategy, the preference of strict preference is equally weighted as indifference, which is in contradiction to the natural sense. When aggregating two preference relations: $\succ$ and $\approx$, it is natural to reach to a $\succ$ relation as result. However, the aggregation method proposed in this chapter gives equal chance to these two relations. This issue will be discussed in detail and solved in the next chapter.


Figure 5.13 - Performances on different preference structures

## Chapter 6

## A weighted singleton distance for BFpref model


#### Abstract

In the previous chapter, a belief function based model for imperfect preference was proposed. At the end of the last chapter, we mentioned an issue in the distance for BBAs that the difference between singletons are always equal, which may be against the properties of the singletons in some circumstances. In decision making process, this issue may cause a biased result when confronting the relation of "indifference". In this chapter, we introduce our contribution on a novel distance for BBAs while considering different weights on singletons, named Weighted Singleton Distance (WSD). The advantage of WSD exists mainly in decision making on evidential preferences (BFpref model). This chapter is structured as follows. In Section 6.1, we firstly review the assumptions in the properties in the state-of-the-art distances on BBAs and then attribute the issues to a redundant property. In Section 6.2 , by respecting new properties, WSD is introduced by extending on axiomatic distance for preference relation types. In Section 6.3, WSD is applied in preference aggregation and compared with other consensus strategies on both synthetic data and SUSHI data from the real world.


### 6.1 An issue in the similarity between evidential preferences

In the theory of belief functions, various divergence and similarity measure methods have been introduced for BBAs in Chapter 3. The definition of the frame of discernment $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right\}$ requires all singleton elements to be mutually exclusive and exhaustive, which are essential properties for the modeling in the theory of belief functions. However, most of these metrics accept an assumption that singleton elements are equally measured when measuring the similarity between different singleton elements. Precisely:

Assumption 1. In a set of exclusive elements $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right\}$, the similarity
between each elements is constant (normalized as 0 ). Formally,

$$
\begin{equation*}
\operatorname{sim}\left(\omega_{m}, \omega_{n}\right)=0, \forall \omega_{m}, \omega_{n} \in \Omega . \tag{6.1}
\end{equation*}
$$

Apparently, Assumption 1 is inappropriate for BFpref model. As introduced in Section 3.2 of Chapter 3, we observe a contradictory case that $d_{\Delta}(\succ, \prec)>d_{\Delta}(\succ, \approx)$, where $d_{\Delta}$ denotes the axiomatic distance between preference relations. For similarity on BFpref model, the following condition should be respected:

$$
\begin{equation*}
\operatorname{sim}\left(\omega^{\succ}, \omega^{\prec}\right)<\operatorname{sim}\left(\omega^{\succ}, \omega^{\approx}\right) \tag{6.2}
\end{equation*}
$$

where $\left.\omega^{R}, R \in\{\succ, \prec, \approx, \sim\}\right\}$ represent the singletons on corresponding preference relations. This inequality relation indicates that the relation $\succ$ and $\prec$ are most incoherent among all couples of relations. The contradiction between Equation (6.2) and (6.1) often appears in decision making step. Even in some distance independent decision making strategies, such as maximum pignistic strategy (see Equation (2.30) in Section 2.3). Indeed, on decision on singletons, maximum pignistic strategy is equivalent to the minimum Jousselme distance (see Equation (3.16) in Section 3.4) to categorical BBAs. A proposition is therefore given:

Proposition 1. A decision is made on BBA $m$ in the frame of discernment $\Omega=$ $\left\{\omega_{1}, \ldots, \omega_{k}\right\}$, the following rules return the same result.
Given

$$
\begin{align*}
& \omega_{\text {bet } P}=\underset{\omega_{i} \in \Omega}{\operatorname{argmax}}\left(b e t P_{m}\left(\omega_{i}\right)\right) \\
& \omega_{\min D}=\underset{\omega_{i} \in \Omega}{\operatorname{argmin}}\left(d_{J}\left(m, \omega_{i}^{0}\right)\right) \tag{6.3}
\end{align*}
$$

with $\omega_{i}^{0}$ denoting a categorical BBA on $\omega_{i}$, and $d_{J}$ Jousselme distance [JGEB01], the equality relation

$$
\omega_{b e t P}=\omega_{\min D}
$$

is always true.
The proposition is thus given in another way:

Proposition . In the frame of discernment $\Omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$. If for a BBA $m$, exist $\omega_{d}$ such that $\forall \omega_{i} \in \Omega, \omega_{i} \neq \omega_{d}$,

$$
\begin{equation*}
\operatorname{bet} P_{m}\left(\omega_{d}\right) \geqslant \operatorname{bet} P_{m}\left(\omega_{i}\right) \tag{6.4}
\end{equation*}
$$

Then the following in-equation is true:

$$
\begin{equation*}
d_{J}\left(m, \omega_{d}^{0}\right) \leqslant d_{J}\left(m, \omega_{i}^{0}\right) \tag{6.5}
\end{equation*}
$$

where $\omega_{d}^{0}$ and $\omega_{i}^{0}$ represent categorical BBA on $\omega_{d}$ and $\omega_{i}$ respectively.
The demonstration is given in Appendix A.
With Assumption 1 abandoned, we hereby recapitulate more properties required in similarity measuring between evidential preference relations.

### 6.1.1 Properties of similarity measure for evidential preferences

The relation between different order types from the most specific to the most general is illustrated in Figure 6.1.

Figure 6.1 - Relations between four types of orders
In this relation map, between any two types of orders, the relation on the right is more general (possessing more relations) than the left, Thus, similarity measure for quasi (pre)orders is compatible with all the other three orders. However, most of the similarity measures are designed for complete orders, i.e. weak orders and total orders. The difficult part falls on the similarity measure when dealing with "incomparable" relation. To give up Assumption 1 (the similarities between singletons are equal), we define three necessary properties for similarity measure between two BBAs in BFpref model.

Property 1. Weighted singleton: The similarity measure between BBAs takes into account the different similarity between singletons. Scilicet, Assumption 1 in Section 6.1 is abandoned.

Property 2. Metric: The similarity is measured by a distance. Therefore, the properties of metric are kept.

Thus, non-negativity, identity of indiscernible, symmetry and triangle-inequality are kept. These properties guarantee that the similarity is measured by a metric. In the theory of belief functions, BBAs are defined in space of $2^{\Omega}$. Hereby, we introduce the property of strongly structural for distances between BBAs. The definition is borrowed from [JM12].

Definition 6.1.1. Strongly structural: A similarity measure sim between two BBAs $m_{1}$ and $m_{2}$ is called strongly structural if its definition accounts for the interaction between the focal elements of $m_{1}$ and $m_{2}$.

We directly give an example of strongly structural property for evidential preferences in Equation (6.6). Hence, the similarity measure for BBA should have stongly structural property.

Property 3. Strongly structural: Formally, a similarity measure is strong structural, if:

$$
\begin{equation*}
\forall X, Y \in 2^{\Omega}, \operatorname{sim}(X, Y) \geq \operatorname{sim}(X \backslash(X \cap Y), Y) \tag{6.6}
\end{equation*}
$$

For a weak order with $\Omega_{\text {weak }}=\left\{\omega_{\succ}, \omega_{\prec}, \omega_{\approx}\right\}$, Equation (6.6) requires that the following three relations must be satisfied.

1. Similarity between strict preference and union with indifference:

$$
\begin{align*}
& \operatorname{sim}\left(\left\{\omega_{\succ}\right\},\left\{\omega_{\succ}, \omega_{\approx}\right\}\right)>\operatorname{sim}\left(\left\{\omega_{\succ}\right\},\left\{\omega_{\approx}\right\}\right) \\
& \Rightarrow \operatorname{sim}\left(\left\{\omega_{\succ}\right\},\left\{\omega_{\succ}, \omega_{\approx}\right\}\right) \in[1-p, 1] . \tag{6.7a}
\end{align*}
$$

Symmetrically,

$$
\begin{align*}
& \operatorname{sim}\left(\left\{\omega_{\prec}\right\},\left\{\omega_{\prec}, \omega_{\approx}\right\}\right)>\operatorname{sim}\left(\left\{\omega_{\prec}\right\},\left\{\omega_{\approx}\right\}\right) \\
& \Rightarrow \operatorname{sim}\left(\left\{\omega_{\prec}\right\},\left\{\omega_{\prec}, \omega_{\approx}\right\}\right) \in[1-p, 1] . \tag{6.7b}
\end{align*}
$$

where $1-p$ is the normalized similarity value between $\omega_{\succ}$ and $\omega_{\approx}$
2. Similarity between strict preference and total ignorance:

$$
\begin{equation*}
\operatorname{sim}\left(\left\{\omega_{\succ}\right\}, \Omega\right)<\operatorname{sim}\left(\left\{\omega_{\succ}\right\},\left\{\omega_{\succ}, \omega_{\approx}\right\}\right) \tag{6.8a}
\end{equation*}
$$

Symmetrically,

$$
\begin{equation*}
\operatorname{sim}\left(\left\{\omega_{\prec}\right\}, \Omega\right)<\operatorname{sim}\left(\left\{\omega_{\prec}\right\},\left\{\omega_{\prec}, \omega_{\approx}\right\}\right) . \tag{6.8b}
\end{equation*}
$$

3. Strict preference and union of other two different preference types:

$$
\begin{equation*}
\operatorname{sim}\left(\left\{\omega_{\succ}\right\},\left\{\omega_{\approx}\right\}\right)>\operatorname{sim}\left(\left\{\omega_{\succ}\right\},\left\{\omega_{\prec}, \omega_{\approx}\right\}\right)>\operatorname{sim}\left(\left\{\omega_{\succ}\right\},\left\{\omega_{\prec}\right\}\right) . \tag{6.9a}
\end{equation*}
$$

Symmetrically,

$$
\begin{equation*}
\operatorname{sim}\left(\left\{\omega_{\prec}\right\},\left\{\omega_{\approx}\right\}\right)>\operatorname{sim}\left(\left\{\omega_{\prec}\right\},\left\{\omega_{\succ}, \omega_{\approx}\right\}\right)>\operatorname{sim}\left(\left\{\omega_{\succ}\right\},\left\{\omega_{\prec}\right\}\right) \tag{6.9b}
\end{equation*}
$$

In Section 6.2, we introduce an adapted distance measure for BFpref model satisfying all these three properties.

### 6.2 WSD - a distance for weighted singletons in the discernment of preference types

Jousselme distance is widely accepted in applications based on the theory of belief functions. It respects Properties 2 and 3 in Section 6.1.1. Thus, inspired by the methology of Jousselme distance given in Equation (3.16), we develop the WSD distance with Property 1 respected.

By applying Jaccard index, Jousselme distance satisfies Assumption 1. To address this contradiction, we define WSD distance as follows:

$$
\begin{equation*}
d_{W S D}\left(m_{1}, m_{2}\right)=\sqrt{\left(\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}\right)^{T} \boldsymbol{\operatorname { S i m }}\left(\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}\right)} \tag{6.10}
\end{equation*}
$$

where $\boldsymbol{S i m}$ is the matrix of similarities between different elements. The calculation of $\boldsymbol{S i m}$ is detailed in the rest of this subsection.

Firstly, we define the similarity function $\operatorname{Sim}\left(X_{1}, X_{2}\right)$ between two elements $X_{1}$ and $X_{2}$ by two functions $\operatorname{resemb}\left(X_{1}, X_{2}, \ldots, X_{K}\right)$ and entire $\left(X_{1}, X_{2}, \ldots, X_{K}\right)$ :

$$
\begin{equation*}
\operatorname{sim}\left(X_{1}, X_{2}\right)=\frac{\operatorname{resemb}\left(X_{1}, X_{2}\right)}{\operatorname{entire}\left(X_{1}, X_{2}\right)} \tag{6.11}
\end{equation*}
$$

where $\operatorname{resemb}\left(X_{1}, X_{2}\right)$ describes the cause of the similarity between $X_{1}$ and $X_{2}$ (say resemblance), and entire $\left(X_{1}, X_{2}\right)$ the entire part concerned by $X_{1}$ and $X_{2}$. The calculation of $\operatorname{resemb}\left(X_{1}, X_{2}, \ldots, X_{K}\right)$ and entire $\left(X_{1}, X_{2}, \ldots, X_{K}\right)$ is introduced as follows.

Denote the function $\operatorname{resemb}(\cdot)$ and entire $(\cdot)$ with Assumption 1 accepted as $\operatorname{resemb}_{\text {ass1 }}(\cdot)$ and entire $_{\text {ass } 1}(\cdot)$, the functions $\operatorname{resemb}_{\text {ass } 1}\left(X_{1}, X_{2}, \ldots, X_{K}\right)$ and entire $_{\text {ass1 }}\left(X_{1}, X_{2}, \ldots, X_{K}\right)$ are inherited as:

$$
\begin{align*}
\operatorname{resemb}_{a s s 1}\left(X_{1}, X_{2}, \ldots, X_{K}\right) & =\left|X_{1} \cap X_{2} \cap \ldots \cap X_{K}\right|  \tag{6.12}\\
\text { entire }_{\text {ass } 1}\left(X_{1}, X_{2}, \ldots, X_{K}\right) & =\left|X_{1} \cup X_{2} \cup \ldots \cup X_{K}\right| \tag{6.13}
\end{align*}
$$

To simplify the expression, we denote $W=\left\{X_{1}, X_{2}, \ldots, X_{K}\right\}$, $\operatorname{resemb}(W)$ for $\operatorname{resemb}\left(X_{1}, X_{2}, \ldots, X_{K}\right)$ and entire $(W)$ for $\operatorname{entire}\left(X_{1}, X_{2}, \ldots, X_{K}\right)$. Thus, by dropping Assumption 1, entire $(W)$ is defined as a generalized version of cardinal function on union:

$$
\begin{align*}
\operatorname{entire}(W)= & \sum_{\omega \in \cup W} \operatorname{entire}(\omega) \quad-\sum_{W_{2} \subseteq W,\left|W_{2}\right|=2} \operatorname{resemb}\left(W_{2}\right) \\
& +\sum_{W_{3} \subseteq W,\left|W_{3}\right|=3} \operatorname{resemb}\left(W_{3}\right)-\sum_{W_{4} \subseteq W,\left|W_{4}\right|=4} \operatorname{resemb}\left(W_{4}\right) \\
& +\ldots \sum_{W_{k} \subseteq W,\left|W_{|\Omega|}\right|=|\Omega|} \operatorname{resemb}\left(W_{k}\right) \times(-1)^{|\Omega|} \\
= & \sum_{\omega \in \cup W} \operatorname{entire}(\omega)+\sum_{k=1}^{|\Omega|} \sum_{W_{k} \subseteq W,\left|W_{k}\right|=k} \operatorname{resemb}\left(W_{k}\right) \times(-1)^{k}, \tag{6.14}
\end{align*}
$$

where $\left|W_{k}\right|$ denote the number of arguments $(X \subseteq \Omega)$ in $W_{k}$ and $\cup W$ the union of elements in all arguments, i.e. for $W=\left\{X_{1}, X_{2}, \ldots, X_{K}\right\}$, we have:

$$
\begin{equation*}
\cup W=X_{1} \cup X_{2} \cup \ldots \cup X_{K} \tag{6.15}
\end{equation*}
$$

With Equation (6.14), given only the similarity between two singleton elements, entire $(W)$ does not have a unique solution. To guarantee the uniqueness in the solution for similarity, we introduce two other assumptions.

Assumption 2. In a set of exclusive elements $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right\}$, any resemblance is shared only by maximal two exclusive elements, i.e.

$$
\begin{equation*}
\operatorname{resemb}(W)=0, \quad \forall W \subseteq 2^{\Omega},|W| \geq 3 \tag{6.16}
\end{equation*}
$$

Assumption 2 guarantees that given only $\operatorname{sim}\left(\omega_{m}, \omega_{n}\right)$, a unique solution exists for $\operatorname{resemb}\left(\omega_{m}, \omega_{n}\right)$.

Assumption 3. Elements are normalized in the calculation. Entire part concerned by one singleton is assigned to 1 , formally:

$$
\begin{equation*}
\operatorname{entire}(\omega)=1, \quad \forall \omega \in \Omega \tag{6.17}
\end{equation*}
$$

With Assumptions 2 and 3, given similarity $\operatorname{sim}\left(\omega_{m}, \omega_{n}\right)$, the resemblance is calculable. Deduced from Equation (6.14), we have:

$$
\begin{equation*}
\operatorname{entire}(X, Y)=\sum_{\omega \in X \cup Y} \operatorname{entire}(\omega)-\sum_{\substack{\omega_{m} \in X \\ \omega_{n} \in Y \\ m \neq n}} \operatorname{resemb}\left(\omega_{m}, \omega_{n}\right) \tag{6.18}
\end{equation*}
$$

Hence, Equation (6.11) is inherited as:

$$
\begin{equation*}
\operatorname{sim}\left(X_{1}, X_{2}\right)=\frac{\sum_{\substack{\omega_{m} \in X_{1} \\ \omega_{n} \in X_{2} \\ m \neq n}} \operatorname{resemb}\left(\omega_{m}, \omega_{n}\right)}{\sum_{\omega \in X_{1} \cup X_{2}} \operatorname{entire}(\omega)-\sum_{\substack{\omega_{m} \in X_{1} \\ \omega_{n} \in X_{2} \\ m \neq n}} \operatorname{resemb}\left(\omega_{m}, \omega_{n}\right)} \tag{6.19}
\end{equation*}
$$

To guarantee Assumption 2 given by Equation (6.16), the following equation must be respected:

$$
\begin{equation*}
\sum_{\substack{\omega_{m}, \omega_{n} \in \Omega \\ \omega_{m} \neq \omega_{n}}} \operatorname{sim}\left(\omega_{m}, \omega_{n}\right) \leq 1 \tag{6.20}
\end{equation*}
$$

An illustrative example for WSD similarity calculation is given in Section 6.2.1.

### 6.2.1 Illustrative example-WSD for BFpref model

As aforementioned, four preference relations are exclusive with each other, as shown in Figure 3.4a. For two BBAs $m_{1}$ and $m_{2}$ on $\Omega^{\text {pref (defined in Equation (5.1)), with }}$ Assumption 1, in Jousselme distance, similarities between elements are constant, which is contradictory with Equation (6.2) in Section 6.1. Thus, WSD is more appropriate. Hereby, given the similarities between singletons, we illustrate how WSD is calculated as a tutorial. The tutorial takes the example of BFpref model.

The similarity values between $\omega_{R} \mid R \in\{\succ, \prec, \approx, \sim\}$ is given in Table 6.1, In Table 6.1, $x, y$ and $z$ represent the values of corresponding similarities between singletons.

Table 6.1 - Similarity between singletons

|  | $\omega_{\succ}$ | $\omega_{\prec}$ | $\omega_{\approx}$ | $\omega_{\sim}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\omega_{\succ}$ | 1 | 0 | x | y |
| $\omega_{\prec}$ | 0 | 1 | x | y |
| $\omega_{\approx}$ | x | x | 1 | z |
| $\omega_{\sim}$ | y | y | z | 1 |

These values are not definitively assigned because various versions exist, as introduced in Section 3.2 of Chapter 3. To simplify the deduction, function resemb( $\left.X_{1}, X_{2}\right)$ is assigned by $v_{1}, v_{2}, v_{3}$ as follows:

$$
\begin{align*}
& \operatorname{resem} b\left(\omega_{\succ}, \omega_{\approx}\right)=\operatorname{resemb}\left(\omega_{\prec}, \omega_{\approx}\right)=v_{1} \\
& \operatorname{resem} b\left(\omega_{\succ}, \omega_{\sim}\right)=\operatorname{resemb}\left(\omega_{\prec}, \omega_{\sim}\right)=v_{2}  \tag{6.21}\\
& \operatorname{resem} b\left(\omega_{\approx}, \omega_{\sim}\right)=
\end{align*}
$$

From Equations (6.17), (6.18) and values in Equation (6.21), following relations are established:
where $x, y$ and $z$ are similarity values of Table 6.1. Therefore, with numeric values of $v_{1}, v_{2}$ and $v_{3}$, by applying Equation (6.19), the similarity in space $2^{\Omega}$ can be calculated. To guarantee Assumption 2, we have

$$
\begin{align*}
& 2 v_{1}+v_{3} \leq 1 \Rightarrow \frac{4 x}{1+x}+\frac{2 z}{1+z} \leq 1 \Rightarrow \frac{2}{x+1}+\frac{1}{z+1} \leq \frac{5}{2} \\
& 2 v_{2}+v_{3} \leq 1 \Rightarrow \frac{4 y}{1+y}+\frac{2 z}{1+z} \leq 1 \Rightarrow \frac{2}{y+1}+\frac{1}{z+1} \leq \frac{5}{2}  \tag{6.23}\\
& v_{1}+v_{2} \leq 1 \Rightarrow \frac{2 x}{1+x}+\frac{2 y}{1+y} \leq 1 \Rightarrow \frac{1}{x+1}+\frac{1}{y+1} \leq \frac{3}{2}
\end{align*}
$$

In Fagin's distance (see Equation (3.14) of Chapter 3), the similarity between "indifference" and "strict preference" is measured by a penalty value $p$, where $\operatorname{sim}\left(\omega_{\succ}, \omega_{\approx}\right)=$ $1-p$. Recall that in Fagin's distance, in order to guarantee the property of metric, the value of $p$ should be chosen by Equation (3.13), repeated here.

$$
\frac{1}{2}<p<1
$$

Thus, the similarity is chosen by:

$$
\begin{equation*}
0<\operatorname{sim}\left(\omega_{\succ}, \omega_{\approx}\right)<\frac{1}{2} \tag{6.24}
\end{equation*}
$$

This is consistent with the conditions of Equations (6.22) and (6.23).
The similarity based on Hamming distance introduced in Section 3.2 of Chapter 3 (repeated in Table 3.2) does not satisfy the condition of Equation (6.20), i.e. Assumption 2. In Minkowski family distances on the encoding of preference relations (see Equation (3.5) of Chapter 3), Assumption 2 is satisfied for $L^{\rho}$ space while $\rho \geq 2$.

Table 6.2 - Hamming distance between preference relation types

|  | $\omega_{\succ}$ | $\omega_{\prec}$ | $\omega_{\approx}$ | $\omega_{\sim}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\omega_{\succ}$ | 0 | 2 | 1 | 1 |
| $\omega_{\prec}$ | 2 | 0 | 1 | 1 |
| $\omega_{\approx}$ | 1 | 1 | 0 | 2 |
| $\omega_{\sim}$ | 1 | 1 | 2 | 0 |

### 6.2.2 Application: Group decision making

As mentioned at the beginning of this chapter, the original objective of proposing WSD distance is to solve an issue of biased decision result confronting "indifference" in group decision making. For a better readability, we briefly review the process of group decision making with BFpref model.

For alternative pair $a_{i}, a_{j} \in A$, the decision making procedure consists mainly in two steps: BBA combination and decision, illustrated in Figure 6.2.

$$
\begin{gathered}
m_{1}^{\Omega_{i j}} \\
\vdots \\
m_{s}^{\Omega_{i j}}
\end{gathered} \xlongequal{\begin{array}{c}
\text { Conjunctive } \\
\text { combination }
\end{array}} m^{\Omega_{i j}} \xrightarrow{\text { Decision }} R_{i j} \in\{\succ, \prec, \approx, \sim\}
$$

Figure 6.2 - Group decision making procedure
With absence of information interpreted as "incomparability" (in CS and KM models, see Section 3.2.2 of Chapter 3), the concensus decision strategies may converge to "absence of information". To address this issue, we apply conjunctive rule for the combination of BBAs. As mentioned in Section 5.3 of Chapter 5, conjunctive rule may cause high global conflict if the BBAs are simple on different singleton and number of sources is relatively large. The LNS-CR (Conjunctive Rule for Large Number of Sources) [ZMP18] is more adaptable for the aggregation of preferences without uncertainty because the BBAs are often separable, and this rule is equivalent to Strategy B in Section 5.3 of Chapter 5 when sources are simple BBAs.
In the decision step, we apply the minimum distance based strategy, repeated here:

$$
\omega_{i j}=\underset{R \in\{\succ,<, \approx, \sim\}}{\operatorname{argmin}}\left(d\left(m^{\Omega_{i j}}, \omega_{R}^{0}\right)\right)
$$

An advantage of this decision rule is that it discriminates the weight of different singletons affected by WSD distance. This advantage is illustrated and discussed in Section 6.3.

### 6.3 Illustrative examples and experiments

In this section, we firstly illustrate the decision procedure by examples on synthetic data. Afterwards, in Subsection 6.3.2, we demonstrate the entire preference aggregation and decision procedure on imperfect data, applied on Sushi preference data.

### 6.3.1 On synthetic data

Different preference aggregation rules are compared on generated data. On alternatives $a_{i}$ and $a_{j}$ in quasi order with missing data, following specific preference cases are possible:

- $a_{i} \succ a_{j}$.
- $a_{i} \prec a_{j}$.
- $a_{i} \approx a_{j}$.
- $a_{i} \sim a_{j}$
- preference information is not given, shorted as vac (vacuous).

With the number of each preference type variant, we compare the aggregated preference following different rules compatible with quasi orders:

- KM (JKM) model [KM01]
- CS model [RS93]
- Kamishima's model [Kam03a]
- BFpref model with Jousselme distance (BFJ)
- BFpref model with weighted singleton distance (BFwsd)


## Experiment 1: Impact of missing data

As KM and CS model are not applicable on measuring incomparability relationship as mentioned in Section 3.2 of Chapter 3, thus, we generate preferences without incomparability but ignorance. All generated preferences are certain, thus their corresponding BBAs are categorical. For WSD distance, the similarity values between preference types are given in Table 6.3.

The similarity setting in Table 6.3 takes extreme values, i.e. the equality conditions in Equation (6.23) are satisfied. In Table 6.4, the first column indicates the index of

Table 6.3 - Similarity values setting in Experiment1.

|  | $\succ$ | $\prec$ | $\approx$ | $\sim$ |
| :---: | :---: | :---: | :---: | :---: |
| $\succ$ | 1 | 0 | $\frac{1}{3}$ | 0 |
| $\prec$ | 0 | 1 | $\frac{1}{3}$ | 0 |
| $\approx$ | $\frac{1}{3}$ | $\frac{1}{3}$ | 1 | 0 |
| $\sim$ | 0 | 0 | 0 | 1 |

Table 6.4 - Experiment settings of Experiment 1

| Exp. <br> set | $n_{\succ}$ | $n_{\prec}$ | $n_{\approx}$ | $n_{\sim}$ | $n_{\text {vac }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 4 | 4 | 0 | 7 |
| 2 | 5 | 3 | 3 | 0 | 20 |
| 3 | 5 | 5 | 4 | 0 | 7 |
| 4 | 5 | 5 | 5 | 0 | 0 |
| 5 | 5 | 5 | 5 | 0 | 20 |
| 6 | 5 | 5 | 0 | 0 | 0 |
| 7 | 5 | 0 | 5 | 0 | 0 |
| 8 | 5 | 0 | 5 | 0 | 20 |
| 9 | 5 | 0 | 4 | 0 | 20 |

each experiment setting and columns $n_{\succ}, n_{\prec}, n_{\approx}, n_{\sim}$, and $n_{\text {vac }}$ represent the number of agents giving the related preference relation.

Aggregation results are illustrated in Table 6.5. Experiment 1 shows several cases where different results are obtained by different aggregation strategies. To simplify the expression, we use "MB" for "modified Borda rule", BFJ S, BFJ $\Omega$ respectively for BFpref model applying Jousselme distance for decision on singleton and on the whole discernment and BFwds S , BFwsd $\Omega$ respectively for BFpref model applying weighted singleton distance for decision on singletons and on the whole discernment. In column "combined BBA", non-zero values in the finally combined BBAs are illustrated (without value on $\emptyset$ ).

Following conclusions can be drawn:

1. In setting $N^{\circ} 1,2,3,5,8,9$, KM or CS models return vac, indicating "missing data". Thus, distance based consensus rules are not capable to deal with preference data with high percentage of missing data. More specifically, KM model is less robust than CS model confronting missing data while missing data has no influence on the results of Modified Borda, BFJ_S and BFwsd_S method.
2. In setting $N^{\circ} 1$ to 6 , both BFJ $\_\Omega$ and BFwsd $\_\Omega$ risk to decide on $\Omega$ (vac) when
[^7]Table 6.5 - Results of Experiment $1^{1}$

| Exp. set | KM | CS | MB | $\begin{aligned} & \text { BFJ } \\ & \text { on } \mathrm{S} \end{aligned}$ | BFJ $\Omega$ | $\begin{aligned} & \text { BFwsd } \\ & \text { on } \mathrm{S} \end{aligned}$ | BF wsd $\Omega$ | combined BBA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | vac | $\approx$ | $\succ$ | $\succ$ | $\Omega$ | $\approx$ | $\begin{aligned} & \succ \cup \prec \cup \approx \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & m_{1}(\succ)=0.184 \\ & m_{1}(\prec)=0.131 \\ & m_{1}(\approx)=0.131 \\ & m_{1}(\Omega)=0.295 \end{aligned}$ |
| 2 | vac | vac | $\succ$ | $\succ$ | $\Omega$ | $\succ$ | $\begin{aligned} & \succ \cup \prec \cup \approx \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & m_{2}(\succ)=0.184 \\ & m_{2}(\prec)=0.131 \\ & m_{2}(\approx)=0.131 \\ & m_{2}(\Omega)=0.295 \end{aligned}$ |
| 3 | vac | $\approx$ | $\approx$ | $\begin{aligned} & \succ \\ & \text { or } \prec \end{aligned}$ | $\Omega$ | $\approx$ | $\begin{aligned} & \succ \cup \prec \cup \approx \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & m_{3}(\succ)=0.164 \\ & m_{3}(\prec)=0.164 \\ & m_{3}(\approx)=0.118 \\ & m_{3}(\Omega)=0.295 \end{aligned}$ |
| 4 | $\approx$ | $\approx$ | $\approx$ |  | $\Omega$ | $\approx$ | $\begin{aligned} & \succ \cup \prec \cup \approx \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & m_{4}(\succ)=0.148 \\ & m_{4}(\prec)=0.148 \\ & m_{4}(\approx)=0.148 \\ & m_{4}(\Omega)=0.296 \end{aligned}$ |
| 5 | vac | vac | $\approx$ | or $\prec$ or $\approx$ | $\Omega$ | $\approx$ | $\begin{aligned} & \succ \cup \prec \cup \approx \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & m_{5}(\succ)=0.148 \\ & m_{5}(\prec)=0.148 \\ & m_{5}(\approx)=0.148 \\ & m_{5}(\Omega)=0.296 \end{aligned}$ |
| 6 | $\begin{aligned} & \succ \\ & \text { or } \prec \end{aligned}$ | $\begin{aligned} & \succ \\ & \text { or } \prec \\ & \text { or } \approx \end{aligned}$ | $\approx$ | $\begin{aligned} & \succ \\ & \text { or } \prec \end{aligned}$ | $\begin{aligned} & \approx \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & \succ \\ & \text { or } \prec \end{aligned}$ | $\begin{aligned} & \succ \cup \prec \\ & \text { or } \succ \cup \prec U \approx \\ & \text { or } \succ U \prec U \sim \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & m_{6}(\succ)=0.25 \\ & m_{6}(\prec)=0.25 \\ & m_{6}(\approx)=0 \\ & m_{6}(\Omega)=0.25 \end{aligned}$ |
| 7 | $\begin{aligned} & \succ \\ & \text { or } \approx \end{aligned}$ | $\begin{aligned} & \succ \\ & \text { or } \approx \end{aligned}$ | $\succ$ | $\begin{aligned} & \succ \\ & \text { or } \approx \end{aligned}$ | $\begin{aligned} & \succ \cup \approx \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & \succ \\ & \text { or } \approx \end{aligned}$ | $\succ \cup \approx$ | $\begin{aligned} & m_{7}(\succ)=0.25 \\ & m_{7}(\prec)=0 \\ & m_{7}(\approx)=0.25 \\ & m_{7}(\Omega)=0.25 \end{aligned}$ |
| 8 | vac | vac | $\succ$ | $\begin{aligned} & \succ \\ & \text { or } \approx \end{aligned}$ | $\begin{aligned} & \succ \cup \approx \\ & \text { or } \Omega \end{aligned}$ | $\begin{aligned} & \succ \\ & \text { or } \approx \end{aligned}$ | $\succ \cup \approx$ | $\begin{aligned} & m_{8}(\succ)=0.25 \\ & m_{8}(\prec)=0 \\ & m_{8}(\approx)=0.25 \\ & m_{8}(\Omega)=0.25 \end{aligned}$ |
| 9 | vac | $v a c$ | $\succ$ | $\succ$ | $\succ \cup \approx$ | $\succ$ | $\succ \cup \approx$ | $\begin{aligned} & m_{9}(\succ)=0.3 \\ & m_{9}(\prec)=0 \\ & m_{9}(\approx)=0.196 \\ & m_{9}(\Omega)=0.247 \end{aligned}$ |

the number of missing data is important. This jeopardizes the advantage of belief function based model mentioned above.
3. The modified Borda rule always returns a precise result. However, it is not able to distinguish $\approx, \sim$ and vac. Modified Borda is equivalent to merely count the number of $\succ$ and $\prec$ with plurality principle and the other type of preference are neglected.
4. Comparing BFpref model in setting 3 and 4, we could say that BFwsd_S gives a more pertinent result than BFJ_S. Given identical number of $\succ$ and $\prec$, it is more pertinent to be decided as $\approx$ than $\succ$ or $\prec$.

## Experiment 2: Condorcet's paradox in preference aggregation

Condorcet's paradox resulting from belief function based preference model was discussed in [ZBM17], based on BFJ decision strategy. With the pertinent BFwsd strategy, Condorcet's paradox may be avoided in some cases.

Here is a simple example, three agents $A G T_{1}, A G T_{2}, A G T_{3}$ give the following uncertain preferences on three alternatives $a_{1}, a_{2}, a_{3}$ with the following values: correspond-

Table 6.6 - Preference BBAs of $u_{1}$

|  | $\mathrm{m}\left(\omega_{\succ}\right)$ | $\mathrm{m}\left(\omega_{\prec}\right)$ | $\mathrm{m}\left(\omega_{\approx}\right)$ | $\mathrm{m}\left(\omega_{\sim}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $a_{1}, a_{2}$ | 0.7 | 0 | 0.3 | 0 |
| $a_{1}, a_{3}$ | 0.9 | 0 | 0.1 | 0 |
| $a_{2}, a_{3}$ | 0.7 | 0 | 0.3 | 0 |

Table 6.7 - Preference BBAs of $u_{2}$

|  | $\mathrm{m}\left(\omega_{\succ}\right)$ | $\mathrm{m}\left(\omega_{\prec}\right)$ | $\mathrm{m}\left(\omega_{\approx}\right)$ | $\mathrm{m}\left(\omega_{\sim}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $a_{1}, a_{2}$ | 0 | 0.9 | 0.1 | 0 |
| $a_{1}, a_{3}$ | 0 | 0.7 | 0.3 | 0 |
| $a_{2}, a_{3}$ | 0.7 | 0 | 0.3 | 0 |

Table 6.8 - Preference BBA values of $u_{3}$

|  | $\mathrm{m}\left(\omega_{\succ}\right)$ | $\mathrm{m}\left(\omega_{\prec}\right)$ | $\mathrm{m}\left(\omega_{\approx}\right)$ | $\mathrm{m}\left(\omega_{\sim}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $a_{1}, a_{2}$ | 0.7 | 0 | 0.3 | 0 |
| $a_{1}, a_{3}$ | 0 | 0.7 | 0.3 | 0 |
| $a_{2}, a_{3}$ | 0 | 0.9 | 0.1 | 0 |

ingly supporting the preference relations decided by both BFJ and BFwsd, illustrated in Figure 6.3.


Figure 6.3 - Uncertain preferences of 3 agents
Table 6.9 - BBAs of aggregated preferences from 3 agents

|  | $m(\emptyset)$ | $\mathrm{m}\left(\omega_{\succ}\right)$ | $\mathrm{m}\left(\omega_{\prec}\right)$ | $\mathrm{m}\left(\omega_{\approx}\right)$ | $\mathrm{m}\left(\omega_{\sim}\right)$ | $m(\Omega)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a_{1}, a_{2}$ | 0.147 | 0.186 | 0.075 | 0.166 | 0 | 0.426 |
| $a_{1}, a_{3}$ | 0.147 | 0.075 | 0.186 | 0.166 | 0 | 0.426 |
| $a_{2}, a_{3}$ | 0.147 | 0.186 | 0.075 | 0.166 | 0 | 0.426 |

The aggregated preferences have the bba shown in Table 6.9. In this case, the decision rules BFJ and BFwsd return different final preference, as illustrated in Figure 6.4.

(a) BFJ rule

(b) BFwsd rule

Figure 6.4 - Decision results from two BFpref consensus rules

On the aggregated BBAs in Table 6.9, the BFJ decision rule returns a "cycle" preference, which signifies a Condorcet's paradox. However, BFwsd decision rule returns the "indifferent" relation among the three alternatives, which is a rational result.

A Condorcet's paradox removing method based on BFpef model was proposed in [ZBM17]. The idea is based on replacing the "comparable" (i.e. "strict preference", "inverse strict preference" or "indifference") preference relation nearest to "incomparability" in the Condorcet's cycle by an "incomparability" relation. This subject has been discussed in the previous chapter (Section 5.3 .3 of Chapter 5), the details of the algorithm are described in Algorithm 2 and Algorithm 3 of Chapter 5.

The difference of results between $B F_{-} J$ and $B F{ }_{-} W S D$ in removing Condorcet's paradox procedure is caused by the difference in the values of distance function $d\left(m, \omega_{\sim}^{0}\right)$.

### 6.3.2 Experiment 3: Conflicting preference aggregation on sushi preference dataset

In this experiment, we apply the BFpref model on Sushi dataset, which contains conflicting preference sources. We firstly introduce the data and detail the aggregation
procedure. Then, we evaluate the aggregation quality by a specific "oiliness index", adapted to a common sense knowledge of Japanese sociology of food.

## Conflict management on sushi preference dataset

Table 6.10 - Sushi preference dataset

|  | \# agents | \# alternatives | sparsity | conflict between <br> rank and score | remark |
| :--- | :--- | :--- | :--- | :--- | :--- |
| East | 3257 | 100 | $90 \%$ | $3.45 \%$ | more oily |
| West | 1742 | 100 | $90 \%$ | $3.44 \%$ | less oily |

In Sushi preference dataset, agents are categorized as east and west, indicating their geographical position. 3257 agents from the east region and 1742 from the west express their preferences over 10 sushis out of 100 , in formats of both scoring and ranking. Thus, the sparsity of data is $90 \%$. Owing to the fact that two sources preferences (ranking and scoring) are available, contradiction may exist. Detailed information on the dataset is given in Table 6.10. According to the Japanese sociology of food, eastern and western Japan has obvious differences. Generally speaking, the eastern Japanese habitats prefer more oily and more heavily seasoned food than the western Japanese habitats. The oiliness level of each type of sushi is also provided, denoted by oil $\in[0,4]$, where 0 signifies the most oily taste and 4 the least (To make the data correspondent to a natural recognition, i.e. higher values implies more oily food, we transfer these values inversely, making 0 signify the least oily and 4 the most, as shown in Appendix D). We make group decision on different regions and verify if the result is coherent with this knowledge.
In sushi preference dataset, for an identical agent, the response in score and rank are cognitively dependent. Thus, as aforementioned in Section 5.3 of Chapter 5, the means rule (see Equation (2.25) in Chapter 2) is appropriate for preference aggregation on one identical agent. Extended from Figure 6.2 in Section 6.2.2, the procedure is given on Figure 6.5.


Figure 6.5 - Combination procedure for sushi preferences

### 6.3.3 Evaluation

The evaluation on group decision making is tricky. Usually, the evaluation of the decision results are based on the effects in applications, such as feedback of service [AHVCH10], knowledge of ground truth [PC09], etc. These criteria require additional information apart from the raw preference information. Other evaluation criteria measure the discrepancy or consensus degree between the ranking of final solution and the ranking solution of each expert, such as Deviation Index (DI), Violation index (VI), Best alternative coverage rate (BACR), introduced in [CLCH13]. We extend the criteria DI to be compatible with indifference relation. Average deviation index $A D I$ measures the consensus level of each agent $s$ and the aggregated preference by average of Fagin distance $\tau(\cdot)$ [FKS03a], with distance between indifference and strict preference valued as 0.5. The absent preferences from an individual agent are not taken into account. Formally:

$$
\begin{equation*}
A D I=\frac{1}{|S|} \sum_{s \in S} \tau\left(\sigma_{a g g}, \sigma_{s}\right) \tag{6.25}
\end{equation*}
$$

where $\sigma_{a g g}$ denotes the aggregated preference order, $\sigma_{s}$ the preference order of agent $s$. The average deviation index of four rules on two regions is given in Table 6.11. In

Table 6.11 - Aggregated conflicting Sushi preferences with ADI

|  | ADI order <br> BF J | ADI score <br> BF J | ADI order <br> BF WSD | ADI score <br> BF WSD |
| :--- | :--- | :--- | :--- | :--- |
| East Japan | 0.2685 | 0.2395 | 0.1462 | 0.1172 |
| West Japan | 0.2661 | 0.2417 | 0.1346 | 0.1103 |

Table 6.11, we can clearly conclude that decision rule of $B F{ }_{-} W S D$ gives a more consensus aggregation result than $B F_{-} J$, both on preferences in format of score and in format of rank. It should be pointed that the ADI is not a convincing homogeneous evaluation criterion. If the preference aggregation method is based on the minimization of a preference order distance, denoted as $d_{a g g}$, the best result in the evaluation always corresponds to $d_{a g g}$ applied in the aggregation.
We also evaluate the preference aggregation results with the ground truth. For sushi preference dataset, having the knowledge that Japanese from east region usually prefer more oily sushi, we reckon that if the aggregated preferences is able to discriminate the oiliness largely from different region, the aggregation rule is appropriate. We define an average oiliness index (AOI) on the whole aggregated preference.
Given the oiliness level of sushi $a_{i}$, denoted as $\operatorname{oil}\left(a_{i}\right)$, oiliness index $A O I$ on a set of sushi $A_{\text {sushi }}$ is simply calculated by

$$
\begin{equation*}
A O I\left(A_{\text {sushi }}\right)=\frac{1}{\left|A_{\text {sushi }}\right|} \sum_{a_{i} \in A_{\text {sushi }}} \operatorname{oil}\left(a_{i}\right) \tag{6.26}
\end{equation*}
$$

We compared AOI on top-k sushis respectively from east and west Japan. The comparison is calculated by the difference:

$$
\begin{equation*}
A O I_{d i f f}=A O I\left(A_{\text {sushi }}^{E a s t}\right)-A O I\left(A_{\text {sushi }}^{W e s t}\right) \tag{6.27}
\end{equation*}
$$

where $A O I\left(A_{\text {sushi }}^{\text {East }}\right)$ and $A O I\left(A_{\text {sushi }}^{W \text { est }}\right)$ respectively represent $A O I$ on aggregated sushi orders in East and West Japan.


Figure 6.6 - Sushi AOI difference between East Japan and West Japan
In Figure 6.6, $k$ (in top- $k$ ) varies from 1 to 100 . Axis 0 represents the case that habits from East and West Japan share equal tastes in terms of oiliness. From the definition in Equation (6.27), a positive value of $A O I_{\text {diff }}$ indicates that top- $k$ in east Japan is more oily than the west Japan and vice versa for a negative value. It can be figured $A O I_{\text {diff }}$ is positive globally in all values of $k$ both in decision rule based on Jousselme distance and WSD distance, especially in top-10 sushi. This result supports the knowledge that people in east Japan prefer more oily sushis. However, $A O I_{d i f f}$ is negative around $k=20$. This is caused by the sushi ranked the 19 th and 20 th in east Japan (sushi Hamachi and tekka maki) are less oily than those in west Japan (sushi Uni and Botanebi) (see Appendix D and E). However, the knowledge that people in east Japan eat more oily is not strictly defined and the fact that people in west Japan prefer several oily sushi is tolerable.

The entire ranking list in east and west Japan as well as additional information on these sushi are provided in Appendix D and E.

### 6.4 Conclusion

It is well accepted that preference relations consist of three types of binary relations: "strict preference", "indifference" and "incomparability". However, disagreements exist in the interpretation of "incomparability". Some works interpret it as "not compared"
resulted from the absence of information and other work as "not able to compare" because of some causes such as conflicts. Supported by the original definition, we analyzed different interpretations and accepted the latter one. We demonstrated that the "incomparability" is exclusive with other relations and the case of "not compared" caused by the absence of information is actually the union of all possible relations, i.e. total ignorance.

BFpref model for preferences with imprecision and ignorance based on the theory of belief functions is able to express the different interpretations in one BBA. The unobserved preferences are considered as total ignorance, and the relation of "incomparability" is considered as an exclusive relation to "strict preference" and "indifference". This model respects strictly their original definitions.

In decision making, given a BBA , minimum of distance to categorical BBA and maximum on pignistic are widely accepted. We proved that the decision making strategies of maximum pignistic and minimum on Jousselme distance on singletons are equivalent. However, existing metrics for BBA similarity measure take the singletons equally, i.e. the dissimilarity are not weighted. For preferences, it is more relevant to consider that the distance between "strict preference" and "inverse strict preference" is larger than that between "strict preference" and "indifference".

To solve this issue, we proposed a novel similarity measure metric (named Weighted Singleton Distance, WSD) for BBAs, taking the similarity between singletons into account. WSD is de facto an extended version of Jousselme distance, it returns to Jousselme distance when similarity between different singletons are equal. WSD is more relevant than Jousselme distance for BFpref model because it is able to differentiate the similarity between different types of preference relations. We applied WSD metric for decision making strategy, especially for Condorcet's paradox removal. We compared strategies based on WSD and Jousselme distance and concluded that WSD is more pertinent.

In the experiment part, the similarity values between different preference relations are assigned by extreme values, i.e. the equality case in Equation eq:valuecondition. Indeed, the similarities between four preference relations are not definitively defined. As introduced in Section 3.2 of Chapter 3, various similarity values may be adaptable, depending on the application cases. In this thesis, only the limitation conditions. The selection of the similarity value can be affected by additional knowledge upon the using cases, or by learning methods.

Besides, in Chapters 3 and 4, we introduced that distance is applicable in both preference aggregation and preference learning in termes of preference managnement. In the scope of this work, we applied WSD distance in preference aggregation. However, its applications in classification are not justified. In the cases of certain preferences, WSD is equivalent to Kendall's $\tau$ distance in case of total order and to Fagin's distance in case of weak order. Thus, it is pertinent to apply WSD for classification on complete preferences both certain [FKS03b] or uncertain [ZBM18a] cases. Nevertheless, for incomplete preferences, where the impact of ignorance is important, it is reasonable to doubt the appropriateness of WSD. In the future work, we will study on the
classification applications based on similarity between imperfect preferences.
In the next chapter, we study the possibility of clustering on evidential preference learning with BFpref model.

## Chapter 7

## Clustering on evidential preferences

In previous chapters, we have studied the aggregation issues on BFpref model for evidential preferences. As mentioned in Chapter 4, preference learning is a promising and popular domain. It can be applied in various applications such as community detection in social network, or preference elicitation in recommendation systems. In this chapter, we introduce our contribution on the application of BFpref model in preference learning.
Based on BFpref model, a distance for complete preference structures with uncertainty was proposed in Chapter 6, solving an issue of decision on singletons with distinctive weights. However, the distance in learning methods required more properties. For example, the measure of distance between two pieces of total ignorance are regarded as identical in distance measure, but to classify such two pieces of knowledge into one group is abitrary. In Section 7.1, we firstly introduce the issues learning on evidential objects and propose properties required. Based on these properties, we found a paradox in learning on evidential objects with distances. Afterwards, in Section 7.2, we applied EK-NNclus method [DKS15b] for clustering on data of complete evidential preferences confronting multiple sources. The clustering results on BFpref models are compared with a simple mean value strategy in Section 7.4.

When applying EK-NNclus method, a method for the determination of the number of clusters $k$ was proposed, based on silhouette coefficient score [Rou87] and elbow method [Tho53]. However, this work is not yet applicable on clustering of evidential preferences, since it require the calculation of centroïd. The experiment and a demonstrative guide of this $k$ determination method is given in Section 7.5, after the experiment part of evidential preference clustering.

### 7.1 Scientific issues on distances for evidential preferences

The clustering process is to segment objects into multiple groups (called clusters) based on their similarity such that objects in the same cluster share more degree of similarity
to each other than to those in other clusters. Usually, this similarity is measured by distance. A most simple method is to centroïd based clustering such as k -means $\left[\mathrm{M}^{+} 67\right]$.

### 7.1.1 Distance in k-means

In the first phase, we tend to cluster the $\mathcal{A \mathcal { G }}$ represented by order set $\mathcal{O D}$ with a k -means based algorithm.
Generally, a k-means based algorithm can be regarded as three principal steps:

1. Initialization: randomly choose $k$ initial centroïds
2. Assignment step: Compute cluster labels and distance to the corresponding cluster center of every object
3. Update step: Calculate the center of clusters

For $M$ orders on $N$ alternatives, the objects are represented by a 3-D tensor of dimension $M \times V \times 2^{\Omega}$, where

$$
\begin{equation*}
V=\frac{N(N-1)}{2} \tag{7.1}
\end{equation*}
$$

denotes the number of possible alternative pairs, $2^{\Omega}$ the size of mass vector with discernment frame of $\Omega$.

### 7.1.2 Consistence between distance and combination rules

For evidential objects represented by BBAs, combination rules on BBAs are applied in the update step while conflicts measure methods are used in assignment step (calculating of the inertia). Given a set of evidential elements (represented by BBAs) on discernment framework $\Omega$

$$
\begin{equation*}
\mathcal{E}(\Omega) \subseteq[0,1]^{2^{\Omega}}, \tag{7.2}
\end{equation*}
$$

a similarity measure $d$ is defined as:

$$
\begin{equation*}
d: \mathcal{E}(\Omega) \times \mathcal{E}(\Omega) \rightarrow \mathbb{R}_{\geq 0} \tag{7.3}
\end{equation*}
$$

(see Definition 3.1.5 in Chapter 3). Concerning our case, following conditions are supposed to be satisfied:

1. Metric consistency: For the objects that a k-means algorithm is theoretically correct, i.e. the iteration result converges, the combination rule $\odot$ and the similarity measure $d$ must be consistent. Formally, the combined BBA $m_{c o m b}$ is given by:

$$
\begin{equation*}
m_{\text {comb }}=\bigodot_{i=1}^{k} m_{i} \tag{7.4}
\end{equation*}
$$

such that $\forall m^{\prime} \in \mathcal{E}(\Omega), m^{\prime} \neq m_{\text {comb }}$,

$$
\begin{equation*}
\sum_{i=1}^{k} d\left(m_{k}, m^{\prime}\right) \geqslant \sum_{i=1}^{k} d\left(m_{k}, m_{c o m b}\right) \tag{7.5}
\end{equation*}
$$

A stronger property for similarity measure is metric (see Definition 3.1.1 in Section 3.1), with properties repeated here: $\forall m_{x}, m_{y}, m_{z} \in \mathcal{E}(\Omega)$

- Non-negativity: $d\left(m_{x}, m_{y}\right) \geq 0$
- Identity of indiscernibles: $d\left(m_{x}, m_{y}\right)=0 \Leftrightarrow m_{x}=m_{y}$
- Symmetry: $d\left(m_{x}, m_{y}\right)=d\left(m_{y}, m_{x}\right)$
- Triangle inequality: $d\left(m_{x}, m_{z}\right) \leq d\left(m_{x}, m_{y}\right)+d\left(m_{y}, m_{z}\right)$

2. idempotence: The combination rule $\odot$ must be idempotent, i.e.

$$
\begin{equation*}
\forall m \in \mathcal{E}(\Omega), m \bigodot m=m \tag{7.6}
\end{equation*}
$$

3. Uniqueness of combination result: For a given set of BBAs, there exist one and only one combination result. Hence, the equality in Inequation (7.5) is not possible.
4. Ignorance neutrality: The knowledge representing ignorance is supposed to play a "neutral role" in the combined result. Formally, for combination rules $\odot$.

$$
\begin{equation*}
\forall m \in \mathcal{E}(\Omega), m \bigodot m_{\Omega}=m \tag{7.7}
\end{equation*}
$$

Indeed, the property of "idempotence" is a corollary of "metric consistence". The proof is given in Appendix B.

### 7.1.3 Incompleteness of preference orders

Another difficulty exists in the dissimilarity measure between preferences in quasiorders, where "incomparability" may exist, interpreted as "missing data" (or "incompleteness") in this context. However, none of the metric in Chapter 3 is able to measure the dissimilarity between preferences with such "incompleteness". An extreme case is given: $\mathcal{A}_{1}, \mathcal{A}_{2}$ are two subsets of comparable alternative set such that $\mathcal{A}: \mathcal{A}_{1} \subset \mathcal{A}, \mathcal{A}_{2} \subset \mathcal{A}$, and $\mathcal{A}_{1} \cap \mathcal{A}_{2}=\emptyset$.

Two preferences $\sigma_{1}, \sigma_{2}$ in a quasi-order are respectively on $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$. In this case, we need to measure the dissimilarity between two preferences with no alternatives in common, which may exist in quasi-orders.

### 7.1.4 Some combination rules and their properties

We have studied several combination rules and similarity measure methods. However, none of them works well for the following reasons.

- Dempster's combination rule. This rule is conjunctive, but not idempotent
- Cautious rule. This rule is idempotent, but the ignorance is not neutral.
- Minimization of Jousselme's distance. This rule is idempotent but not conjunctive. With most of the objects represented by $m_{\Omega}$, the combination result converge to $m_{\Omega}$.
- Klein's idempotent combination rule [KDC18]. This rule is both idempotent and conjunctive. However, it is still impossible to define a similarity measure consistent with this rule, generally proved by Proposition 2 afterwards.

Indeed, concerning the properties in Section 7.1, a impossibility theorem proposed below.
Proposition 2. On set of evidential elements $\mathcal{E}(\Omega)$ (represented by BBAs), given a similarity measure $d: \mathcal{E}(\Omega) \times \mathcal{E}(\Omega) \rightarrow \mathbb{R} \geq 0$, there is no such $d$ that meets the properties of metric consistence, uniqueness of combination result, and ignorance neutrality.

The demonstration is given in Appendix B.
Without solving this issue on incomplete preferences, we started with the complete preferences, i.e. the partial orders.

### 7.2 A proposed method for clustering agents according to evidential preferences

In this section, we explain how the agents are represented and clustered from two sources of preferences. The clustering procedure is straightforward, it is concisely illustrated in figure 7.1. The first block concerns the representation of agents and modeling of


Figure 7.1 - Flowchart of preference clustering
mass functions from two preference sources $S_{1}$ and $S_{2}$. The second block concerns the calculation on the similarity between agents. The third block concerns the clustering algorithm, we used EK-NNclus algorithm in our work, explained later.

### 7.2.1 Representation of agents

We consider the case that a group of $K$ agents expressing their preferences between each pair of alternatives from the set $\mathcal{A}$ of size $N$. Therefore, the preference of an agent $a g t_{k}$, denoted by $\sigma_{k}$, is represented by a mass function on all possible alternative pairs:

$$
\sigma_{u}:=\left[\begin{array}{ccccccc}
m_{1,2} ; & m_{1,3} ; & \ldots ; & m_{1, N} ; & m_{2,3} ; & \ldots ; & m_{N-1, N} \tag{7.8}
\end{array}\right]
$$

Hence, for $N$ alternatives, the representation of an agent is made up by $\frac{N(N-1)}{2}$ mass functions.

### 7.2.2 Modeling of mass functions

In our model, we take advantage of the possibility of expressing on ignorance in the framework of BFpref (see Equation (5.1) in Section 5.2). Given two preference order sources $\sigma_{n, 1}, \sigma_{n, 2}$ from one agent $a g t_{n}$, we interpret the Fagin distance $d_{F}\left(\sigma_{1}, \sigma_{2}\right)$ as ignorance degree when conflict encountered. That is to say: for $a_{i}, a_{j}(i<j)$ in both $\sigma_{n, 1}, \sigma_{n, 2}$ of agent $a g t_{n}$, the mass function value is given according to following conditions:

1. Case 1: $a_{i}, a_{j}$ are in the same relation in both $\sigma_{1}, \sigma_{2}\left(\right.$ say $\left.a_{i} \succ a_{j}\right), m_{i j}$ is a categorical mass function on the corresponding element $\left(m_{i j}\left(\omega_{\succ}\right)=1\right)$.
2. Case 2: $a_{i}, a_{j}$ are in the conflicting relations in $\sigma_{1}$ and $\sigma_{2}$, respectively denoted as $\omega_{i j, \sigma_{1}}, \omega_{i j, \sigma_{2}} \in \Omega_{i j}, \omega_{i j, \sigma_{1}} \neq \omega_{i j, \sigma_{2}}$ (say $a_{i} \succ a_{j}$ in $\sigma_{1}$ while $a_{i} \approx a_{j}$ in $\sigma_{2}$, thus, $\left.\omega_{i j, \sigma_{1}}=\omega_{\succ}, \omega_{i j, \sigma_{2}}=\omega_{\approx}\right)$, the mass function values are given by:

$$
\begin{align*}
& m_{i j}(\Omega)=d_{F}\left(\sigma_{1}, \sigma_{2}\right) \\
& m_{i j}\left(\omega_{i j, \sigma_{1}}\right)=m_{i j}\left(\omega_{i j, \sigma_{2}}\right)=\left(1-d_{\text {Fagin }}\left(\sigma_{1}, \sigma_{2}\right)\right) / 2 \tag{7.9}
\end{align*}
$$

where $d_{\text {Fagin }}$ denotes the Fagin's distance (see Equation (3.14) in Chapter 3) between two orders, with penalty value $p=0.5$.

### 7.2.3 Similarity between different agents

The dissimilarity measure is based on Jousselme distance [JGEB01] for mass functions. Given two mass functions modeling preference relations between alternatives $a_{i}$ and $a_{j}$ from agents $a g t_{1}$, agt $t_{2}$ expressing preference orders $\sigma_{1}, \sigma_{2}$, we denote Jousselme distance as $d_{J}\left(m_{i j, \sigma_{1}}, m_{i j, \sigma_{2}}\right)$. The dissimilarity between two agents' preferences is denoted via Jousselme distance as:

$$
\begin{equation*}
d\left(\sigma_{1}, \sigma_{2}\right)=\sum_{j=1}^{k} \sum_{i=1, i<j}^{k} d_{J}\left(m_{i j, \sigma_{1}}, m_{i j, \sigma_{2}}\right) \tag{7.10}
\end{equation*}
$$

Where $m_{i j, \sigma}$ denotes the mass function of alternative pair $\left(a_{i}, a_{j}\right)$ according to the order $\sigma$. Therefore, a normalized distance is given by

$$
\begin{equation*}
d_{\text {Normalize }}\left(\sigma_{1}, \sigma_{2}\right)=\frac{1}{N b_{\text {total }}} d\left(\sigma_{1}, \sigma_{2}\right) \tag{7.11}
\end{equation*}
$$

where $N b_{\text {total }}=\frac{N(N-1)}{2}$, is the amount of all alternative pairs.
Indeed, normalized distance degrade to Kendall distance when preferences are certain, i.e. all BBAs are categorical. A proposition is therefore concluded:

Proposition 3. The normalized distance function defined in Equation (7.11) is equivalent to Kendall distance when the preference orders are total and crisp.

The demonstration is given in Appendix C. The clustering process is therefore applied on this normalized distance function. In the next section, we focus on the selection of clustering algorithms.

### 7.3 Introduction to an unsupervised classifier-EK-NNclus

For similarity spaces in which only pairwise distances are given (such as Kendall distance), the centroïd of several agents is a metric k-center problem and is proved to be NP-hard. Moreover, uniqueness of the centroïd is guaranteed only when the similarity space is a Riemannian manifold [FVJ09]. Therefore, we avoid using clustering methods requiring the calculation of centroïd, such as k -means.
Various clsutering algorithms adaptable for pairwise distances exist, such as connectivity based model and density models. The comparison of different clustering methods is not in the scope of this thesis, we applied EK-NNclus method [DKS15b] as clustering approach. A brief introduction is given below.

### 7.3.1 EK-NNclus algorithm

EK-NNclus [DKS15b] is a clustering algorithm based on the evidential $k$-nearestneighbor classifier (Ek-NN classifier) [Den95]. Pairwise distances is sufficient for $k$ -nearest-neighbor searching. Thus, EK-NNclus is independent to the calculation of centroïd. EK-NNclus starts from an initial random set of clusters, and iteratively reassigns objects to clusters using Ek-NN classifier. The algorithm converges to a stable status of partition. For each object, its membership to clusters is described by a mass function in a framework of each cluster and the whole set of clusters (i.e. ignorance). For a set of objects

$$
\mathcal{X}=\left\{x_{1}, \ldots, x_{K}\right\},
$$

given a matrix of pairwise distances $D=\left(d_{i j}\right)$, where $d_{i j}$ denotes the distance between objects $x_{i}$ and $x_{j}$. In EK-NN classification rule, a discernment frame is defined for each objects belonging to clusters $\mathcal{C}=\left\{c_{1}, \ldots . c_{C}\right\}$ as:

$$
\begin{equation*}
\Omega^{E c}=\left\{\omega_{1}, \ldots, \omega_{C}\right\} \tag{7.12}
\end{equation*}
$$

The BBA of degrees on each cluster of object $x_{i}$ is denoted as $m_{i}^{E c}$. The set of $k$ nearest neighbors for object $x_{i}$ is denoted as $N K(i)$.

According to [DKS15b], the procedure of EK-NNclus can be briefly divided into the following parts:

- Preparation Calculate the mass value $\eta_{i j}$ of event that $x_{j}$ is in the $k$-nearest neighbors of $x_{i}$ based on $d_{i j}$ by a non-increasing mapping function $\phi\left(d_{i j}\right)$, defined as:

$$
\eta_{i j}= \begin{cases}\phi\left(d_{i j}\right), & \text { if } j \in N K(i) \\ 0, & \text { otherwise }\end{cases}
$$

- Initialization Initialize the labels of each object randomly. The authors of [DKS15b] suggest that number of clusters $c$ can be set to the number of objects $n$ if $n$ is not too large. A binary membership function inClus $_{i, c}$ on object $x_{i}$ and cluster $c$ is also initialized randomly, where inClus $_{i, c}=1$ implies $x_{i}$ belongs to cluster $c$ and 0 otherwise.
- Iteration Randomly reorder all objects. Then, for every object $x_{i}^{\prime}$ in the new order, calculate the plausibility of belonging to each cluster. Plausibility of $x_{i}$ belong to cluster $c$ is calculated by:

$$
\begin{equation*}
u_{i, c}=\sum_{j \in N K(i)} v_{i j} \times \text { inClus }_{i, c}, c \in \mathcal{C} \tag{7.13}
\end{equation*}
$$

where $v_{i j}$ is calculated from $\eta_{i j}$ by:

$$
\begin{equation*}
v_{i j}=-\ln \left(1-\eta_{i j}\right) . \tag{7.14}
\end{equation*}
$$

Then, assign $x_{i}^{\prime}$ to the cluster with the highest plausibility.

$$
\text { inClus }_{i, c}= \begin{cases}1, & \text { if } u_{i, c} \text { is the maximum in } \mathcal{C}, \\ 0, & \text { otherwise }\end{cases}
$$

- Convergence condition The iterations stop when the labels of all objects are stable.

After the convergence condition is reached, the final BBA of clustering result on $x_{i}$ is calculated by:

$$
\begin{equation*}
m_{i}^{E c}=\underset{j \in N K(i)}{@} m_{i j}^{E c} \tag{7.15}
\end{equation*}
$$

where

$$
\begin{array}{r}
m_{i j}^{E c}\left(\omega_{k}(j)\right)=\eta_{i j} \\
m_{i j}^{E C}\left(\Omega^{E c}\right)=1-\eta_{i j} \tag{7.17}
\end{array}
$$

and $®$ the conjunctive combination rule.
In this procedure, the number of $k$ at the preparation step has a vital impact on the clustering results. If $k$ is too small, the matrix of $\eta$ becomes sparse. In this case, the iteration times are very few and the clustering result depends highly on the initialization step, which is usually random. If $k$ is too large, two objects far away from each other may be considered as in the same neighborhood. This may have two consequences:

1. The computation time becomes important.
2. Objects naturally in different clusters may be targeted as in the same one, causing a sub-estimation of number of clusters.

Therefore, the determination of $k$ is important to guarantee a good quality of clustering.
The optimal $k$ varies with the scale of the data. There is no identical $k$ for datasets even respecting identical distribution. Therefore, the determination of $k$ is necessary for every clustering analysis problem. The determination of $k$ is two-fold. An optimal $k$ in EK-NNclus should:

1. Cluster the data into an optimal number of clusters.
2. Return a result with high quality, close to the ground truth density or knowledge if they are known.

There are already some often-applied methods to determine the number of clusters $C$, usually these methods are related with evaluation criteria, such as silhouette coefficient [Rou87]) optimization, elbow method [Tho53] and information criterion approach [GHLR01]. By combining Adjusted Rand Index (ARI), Elbow method and silhouette score, we proposed a $k$ determination strategy for EK-NNclus method in [ZBM18b]. We have to admit that this method is not applied for clustering on evidential preferences because it still needs the calculation of centroïd. Therefore, a brief introduction on this work is given below with experiment part in Section 7.3.3.

### 7.3.2 Evaluation criteria for clustering

In an ideal case where ground truth knowledge is given, it is natural that the clustering results more consistent to the ground truth correspond to better methods. This consistence between two clustering result is usually evaluated by Adjusted Rand Index (ARI) [HA85]:

## ARI

Given the knowledge of the ground truth class assignments $L_{t}$ and our clustering algorithm assignments of the same samples $L$, Adjusted Rand Index measures the similarity of the two assignments, with chance normalization, ignoring permutations. The ARI is calculated as follows:
Let us define $\alpha$ and $\beta$ as:

- $\alpha$ : the number of pairs of elements that are in the same set in $L_{t}$ and in the same set in $L$
- $\beta$ : the number of pairs of elements that are in different sets in $L_{t}$ and in different sets in $L$

The raw (unadjusted) Rand index is then given by:

$$
\begin{equation*}
R I=\frac{\alpha+\beta}{C_{2}^{|\mathcal{X}|}} \tag{7.18}
\end{equation*}
$$

where $C_{2}^{|\mathcal{X}|}$ is the total number of possible pairs in the dataset (without ordering). However the $R I$ score does not guarantee that random label assignments will get a value close to zero (especially if the number of clusters is in the same order of magnitude as the number of samples). To counter this effect we can discount the expected RI ( $E[R I]$ ) of random labels by defining the adjusted Rand index as follows:

$$
\begin{equation*}
A R I=\frac{R I-E[R I]}{\max (R I)-E[R I]} \tag{7.19}
\end{equation*}
$$

Obviously, the range of $A R I$ is $\lfloor 0,1\rceil$ while 1 relates to the best case and 0 the worst.

## Silhouette coefficient

If the ground truth labels are not known, evaluation must be performed using the model itself. The silhouette coefficient is such an evaluation criterion. A higher silhouette coefficient score relates to a model with better defined clusters. The silhouette coefficient is defined for each sample and is composed of two scores:

- $\bar{d}_{\text {intra }}$ : the mean distance between a sample and all other points in the same class (intra-class).
- $\bar{d}_{\text {inter }}$ : the mean distance between a sample and all other points in the next nearest class (inter-class).

The silhouette coefficient sil for a single sample is given as:

$$
\begin{equation*}
s i l=\frac{\bar{d}_{\text {inter }}-\bar{d}_{\text {intra }}}{\max \left(\bar{d}_{\text {inter }}, \bar{d}_{\text {intra }}\right)} \tag{7.20}
\end{equation*}
$$

The silhouette coefficient for a set of samples is given as the mean of the silhouette coefficient for each sample. From the definition above, for a dataset, silhouette coefficient close to 1 indicates a satisfying clustering result while 0 a bad one.

## Elbow method

The elbow method [Tho53] applies the distortion as a criterion for clustering result. The rule is simple: among a set of different numbers of clusters $C$, one should choose a number $c \in \mathcal{C}$, such that $c+1$ clusters do not give a much better modeling of the data. Given object set $\mathcal{X}$ in $c$ clusters, we denote the center of clusters by $\mu_{1}, \mu_{2}, \ldots, \mu_{c}$. The quality of the modeling is measured by the distortion $J$ of the clustering, calculated by:

$$
\begin{equation*}
J(c, \mu)=\frac{1}{|X|} \sum_{x_{i} \in \mathcal{X}}\left(\min _{j=1}^{c}\left(x_{i}-\mu_{j}\right)^{2}\right) \tag{7.21}
\end{equation*}
$$

where $|X|$ denotes the size of objects set. Therefore, $c$ can be subjectively determined with the help of a distortion plot helps, illustrated in the experiment part of Section 7.5.2.

A disadvantage of elbow method is that the "elbow" cannot always be unambiguously identified [KJS96]. The observation of the "elbow" is subjective because "a cluster that does not give a much better modeling of the data" cannot be justified quantitatively. Another inconvenience of the elbow method is that the calculation of distortion is based on the centroïd of each cluster. This jeopardizes the property that EK-NNclus is independent of the calculation of centroïd.

### 7.3.3 A $k$ determination strategy

The idea of $k$ determination is simple: an optimal $k$ in EK-NNclus should return a high quality clustering result. Given a dataset, the quality of clustering can be easily evaluated if knowledge of ground truth is provided. A high value of ARI between clustering result and the ground truth implies a good clustering quality. However, in most cases, the ground truth is absent. The results of clustering are often evaluated by how well different clusters are separated. Silhouette coefficient is such a criteria and it is often strongly correlated with ARI. The correlation is plotted in the Section 7.5.1. However, to determine $k$ only by silhouette coefficient is still risky. Fewer clusters may sometimes return a higher silhouette coefficient (example illustrated in Section 7.5.1 and Figure 7.12b). Thus, other conditions are needed. Elbow method is used as the second criterion to avoid that too few clusters are detected. The strategy is straightforward. From the intersection of the set of $k\left(\mathcal{K}_{c}\right)$ corresponding to the best $c$ and the set of $k$ $\left(\mathcal{K}_{s i l}\right)$ corresponding to relatively high silhouette coefficient, the interval of values of $k$ is obtained. We denote a set of all possible $k$ by $\mathcal{K}$. A proper subset of $k$ is therefore refined by: $\mathcal{K}_{\text {refine }}=\mathcal{K}_{c} \cap \mathcal{K}_{\text {sil }}$. We define a silhouette efficient function $f_{s c}(k)$, implying the silhouette coefficient of the clustering result with $k$ in EK-NNclus algorithm. Thus, the optimal $k$ is given by:

$$
\begin{equation*}
k=\underset{k \in \mathcal{K}_{\text {refine }}}{\arg \max }\left(f_{s c}(k)\right) \tag{7.22}
\end{equation*}
$$

Because of the facts that the elbow method is a subjective method and that "relatively high silhouette coefficients" are also subjectively defined, both $\mathcal{K}_{c}$ and $\mathcal{K}_{\text {sil }}$ are indefinite sets. Thus, if $\mathcal{K}_{\text {refine }}=\emptyset$, we can extend $\mathcal{K}_{c}$ by softer condition or $\mathcal{K}_{\text {sil }}$ by lower threshold to obtain a non empty $\mathcal{K}_{\text {refine }}$.

As the determination of $k$ in EK-NNclus method does not relate to the main subject of this thesis, we put demonstrative tutorial examples as well as experiments in Section 7.5.

## Discussions on $k$ determination method

Although combining silhouette coefficient and elbow is helpful in $k$ determination, it is not applicable in our case, i.e. clustering on evidential preference. This is due to some short-comings conducted by elbow method. Firstly, the distortion requires the calculation of centroïds of clusters, which neutralizes an advantage of EK-NNclus: EK-NNclus is adaptable to pairwise distances and independent to the calculation of centroïd. Besides, the determination of $c$ by elbow method is subjective and can be sometimes ambiguous. In the future, we can replace elbow method by centroïd-independent $c$ determination method, making the strategy more adaptable.

In our work of clustering on evidential preferences, the determination of $k$ in EKNNclus is merely based on maximization of silhouette coefficient.

### 7.4 Experiments of clustering on evidential preferences

Although BFpref model was originally designed for preferences under uncertainty, we are still curious about its quality for clustering on certain preferences. Thus the clustering quality of our model can be divided into two aspects: on crisp preferences and on uncertain preferences.

We tested different metrics on synthetic certain and uncertain preferences. We also compared different metrics on a real world certain preferences from SUSHI dataset [Kam03b].

In the following parts, we introduce the method of generating synthetic preferences and compare the clustering quality of different metrics. To simplify the experiments, all preferences are expressed in a space of 10 alternatives.

### 7.4.1 Crisp preferences

The experiments in this section are executed on crisp preferences, i.e. preferences without uncertainty or imprecision, from both synthetic data and real world data.

## Synthetic data

Certain preferences are those who are from non-conflicting sources. In this case, we only consider and generate one source of preferences. To study the clustering quality, we firstly generate preferences with different ranges to their centroïds.

The data is generated by Algorithm 4. By increasing the number of switching operations $T$, we obtain clusters with different density. To avoid random errors, we generate distinctive preference sets 10 times and take the average value of ARI and silhouette score. Besides, the optimal parameter $k$ in EK-NNclus algorithm varies with the size of data and distribution of the samples. We test on various $k$ and choose the one that returns the largest ARI and average silhouette coefficient ${ }^{1}$ as our result.

In figures $7.2,7.3,7.4$, ARI and silhouette coefficient performed on generated data with neighbors in various ranges (switch time from 1 to 3 ) and different sizes (neighbor size $^{2}$ varies from 10 to 100) are illustrated.

According to these results, one can conclude that the BFpref model and Kendall distance have equivalent good quality both in terms of ARI and silhouette score, while Euclidean distance always has a poor quality. A high value in ARI usually corresponds to a high silhouette score, signifying a good clustering result.

## Real data

SUSHI preference dataset [Kam03b] is collected from a survey on Japanese consumer preferences over different sushis. It has a data set containing 5000 complete strict rank orders (i.e. total orders) of 10 different kinds of sushi. We applied these three metrics in clustering on real data of Sushi Preference Data Set. Figure 7.5 illustrates

[^8]```
Algorithm 4 Generate preferences in \(|C|\) clusters
Input: Cluster number \(C\)
    Switch time \(T\)
    neighbour size \(N S\)
    Alternative size in each order \(N\)
Output: \(C\) clusters of preferences
    // Centroids initialization
    randomly generate centroïd \(c_{1}\) of \(N\) elements.
    for \(i_{c}\) in \(2: C\) do
        dist_max \(=0\)
        for \(s\) in 1:5000 do
            randomly generate preference \(o_{s}\) of \(N\) elements
            dist_sum \(=\sum_{i=1}^{i_{c}-1} d_{\text {Kendall }}\left(o_{s}, c_{i}\right)\)
        if dist_sum > dist_max then
            dist_max \(=\sum_{i=1}^{i_{c}-1} d_{\text {Kendall }}\left(o_{s}, c_{i}\right)\)
            centroïd \(c_{c_{i}}=o_{s}\)
        end if
        end for
    end for
    Generate neighbors
    for each centroïd \(o_{c}\) do
        for \(n s\) in 1:NS do
            for \(t\) in \(1: T\) do
            randomly generate index \(i, j\)
            exchange ranking order of \(a_{i}, a_{j}\) in \(o_{c}\), making a new order
            end for
        end for
    end for
```



Figure 7.2 - ARI and silhouette coefficient, switch $=1$


Figure 7.3 - ARI and silhouette coefficient, switch $=2$
silhouette plots of clusters with different metrics ${ }^{3}$. Kendall distance and BFpref model have similar quality. Euclidean distance has a relatively poor quality. This result is consistent with the synthetic data in Figures 7.2, 7.3 and 7.4.

Among the three metrics, none of them has an absolutely high silhouette score (larger than 0.5). This is due to the quality of the data. SUSHI dataset doesn't guarantee the existence of obvious communities among the agents.

### 7.4.2 Uncertain preferences

In this part, we suppose a case that two preferences are given with different representations: ranking and score. The ranking preferences are generated in the same way as in subsection 7.4.1. Scores are generated by the following steps: scores range from 1 to 5 are generated respecting a given rank preference. In this way, indifference relations are introduced, causing conflicts between two preference sources. Given a ranking preference $\sigma_{r}$ of 10 alternatives $a_{1}$ to $a_{10}$, the scores are generated by the following rules:

[^9]

Figure 7.4 - ARI and silhouette coefficient, switch $=3$


Figure 7.5 - Silhouette plot of different metrics on SUSHI dataset

- For least preferred two alternatives (2 alternatives at the end of the $\sigma_{r}$, i.e. ranking no. 9 and 10), we give score 1 .
- For alternatives sorted at the positions 7 and 8 , we give score 2 .
- With the similar rule, for most preferred two sushis (ranking no. 1 and 2), we give score 5 .

For example with: $a_{1} \succ a_{2} \succ a_{3} \succ a_{4} \succ a_{5} \succ a_{6} \succ a_{7} \succ a_{8} \succ a_{9} \succ a_{10}$ the scores are: $a_{1}: 5, a_{2}: 5, a_{3}: 4, a_{4}: 4, a_{5}: 3, a_{6}: 3, a_{7}: 2, a_{8}: 2, a_{9}: 1, a_{10}: 1$

We compared our model with an average-based-euclidean metric. Still, ARI and silhouette scores are applied as evaluation criteria.

Confronting a case of two preference sources: ranking $\sigma_{r}$ and score $\sigma_{s}$, the mean rank of alternative $a_{i}$ is calculated:

$$
\begin{equation*}
\bar{r}\left(a_{i}\right)=\frac{1}{2}\left(r\left(\sigma_{r}, a_{i}\right)+r\left(\sigma_{s}, a_{i}\right)\right) \tag{7.23}
\end{equation*}
$$

Thus, agent $u$ 's average preference order is represented by:

$$
\bar{O}_{u}:=\left[\begin{array}{llll}
\bar{r}\left(a_{1}\right), & \bar{r}\left(a_{2}\right), & \ldots, & \bar{r}\left(a_{|A|}\right) \tag{7.24}
\end{array}\right]
$$

Therefore, the example above has vector:

$$
\left[\begin{array}{lllllllll}
1, & 1.5, & 3, & 3.5, & 5, & 5.5, & 7, & 7.5, & 9,
\end{array} 9.5\right]
$$

For Kendall distance, we calculate the distance matrix from rankings and scores, then take the average value as the combined distance. As indifference relation exists in $\sigma_{s}$, we apply Fagin distance for $\sigma_{s}$. Given ranking preferences $\sigma_{r 1}, \sigma_{r 2}$ and score preferences $\sigma_{s 1}, \sigma_{s 2}$, denoting respectively the preference from agents agt and agt ${ }_{2}$, the average distance is thus given by:

$$
\begin{equation*}
\bar{d}_{F a g i n}\left(\operatorname{agt}_{1}, a g t_{2}\right)=\frac{1}{2}\left(d_{F a g i n}\left(\sigma_{r 1}, \sigma_{r 2}\right)+d_{F a g i n}\left(\sigma_{s 1}, \sigma_{s 2}\right)\right) \tag{7.25}
\end{equation*}
$$

We compared the model based on Euclidean distance equation (7.24), Kendall distance (7.25) and BFpref model given in equation (7.8).


Figure 7.6 - ARI and silhouette coefficient on conflicting preferences, switch $=1$


Figure 7.7 - ARI and silhouette coefficient on conflicting preferences, switch $=2$

The results illustrated by Figures $7.6,7.7$ and 7.8 show the advantage of BFpref model over Euclidean distance and Kendall (Fagin) distance when dealing with two


Figure 7.8 - ARI and silhouette coefficient on conflicting preferences, switch $=3$
sources. Comparing Figures 7.6, 7.7, and 7.8 from conflicting sources with Figures 7.2, 7.3 , and 7.4 , we observe that both averaged Euclidean distance and Kendall distance are deteriorated more than BFpref model. The results prove the advantage of BFpref model on preferences under uncertainty. This advantage comes from the fact that in BFpref model, conflicts are partly interpreted as ignorance and have less impact in dissimilarity measuring. However, this compromise also causes a loss in criterion of silhouette coefficient.

### 7.5 Experimentation results for $k$ determination in EkNNclus

In this section, the experiment as well as illustrative examples for $k$ determination in EK-NNclus method is given. We firstly studied the correlation between ARI and silhouette coefficient, and then applied our strategy on toy datasets. The synthetic data are generated by Gaussian distributions. For the sake of better visualization, the synthetic data are always generated in a 2 dimensional space.

### 7.5.1 Correlation between ARI and silhouette coefficient

We generate synthetic datasets for this experiment. The procedure is as follows:

1. Given a set of standard deviation (noted $s t d$ ) and the number of clusters denoted by $n_{\text {clus }}$, we generate a set of datasets $\mathcal{S}_{\text {data }}=\left\{X_{1}, X_{2}, \ldots, X_{D}\right\}$ with ground truth. Datasets with 8 clusters and with $s t d=0.5,1.0,2,2.5$ are illustrated in Figure 7.10.
2. On one dataset $X_{d} \in \mathcal{S}_{d a t a}$, given a set of parameter values $\mathcal{K}=\left\{k_{1}, k_{2}, \ldots, k_{|K|}\right\}$, calculate ARI and silhouette coefficient of each $k \in \mathcal{K}$. A set of ARIs and silhouette coefficients are obtained corresponding to different $k$, respectively denoted as $\mathcal{S}_{A R I}$ and $\mathcal{S}_{\text {sil }}$. The Pearson correlation coefficient $\rho\left(\mathcal{S}_{A R I}, \mathcal{S}_{\text {sil }}\right)$ is calculated for dataset $X_{d}$, denoted by $\rho_{d}$.


Figure 7.9 - Pearson correlation coefficient between ARI and silhouette vs. data sets with different std.

Figure 7.9 illustrates the variation of the correlation between ARI and silhouette coefficient via different standard deviations. We observe that the correlation declines while data are distributed more sparsely. From a certain standard deviation, the correlation has a tendency to increase. These are datasets used in the experiment of Figure 7.9. While std is small, data are obviously clustered. Thus a clustering result regrouping objects nearby is consistent with the knowledge of the ground truth, which returns a high correlation. With std increasing, different clusters overlap and the correlation decreases. When std is high enough that data distribution converges to random, the clustering returns lows values on both ARI and silhouette coefficient, making them "correlated" again. Of course, this is not a real correlation. Both ARI and silhouette are measured on random generated data, the results are always bad, making the correlation index high.

However, the strong correlation cannot guarantee that silhouette coefficient is enough for $k$ determination. The ARI and silhouette coefficient obtained from different $k$ on data in Figure 7.10 are respectively plotted in Figure 7.11. We observe that a high silhouette coefficient does not always correspond to a high ARI when value of $k$ is large, even if objects in different clusters are naturally well separated (e.g. dataset with $s t d$ $=0.5$ ). This has been explained in Section 7.3 .1 that a high value on $k$ may cause underestimation of the number of clusters $c$, which may result in a satisfying silhouette coefficient. Elbow method determining the $c$ helps to provide a constraint condition.

### 7.5.2 Optimal $k$ determination strategy on real toy datasets

We applied the strategy in Section 7.3 .3 on real toy datasets: Iris and Wine datasets from $\mathrm{UCI}^{4}$ to help to refine the interval of $k$.

[^10]

Figure 7.10 - Data distributions with different values of standard deviation.

Toy dataset Iris: Figure 7.12 illustrates the plot supporting $k$ determination strategy for Iris toy data. Results are obtained with a cross validation of 10 experiments. We still observe that the values of ARI, silhouette coefficient and number of clusters have large fluctuation, which proves that the determination of $k$ is risky.

Without knowledge of $c$, from the silhouette coefficient plot in Figure 7.12b, one may conclude that $k \in[30,50]$ is the best value. With elbow method, we can figure that $c=2$ or 3 is a reasonable value, so $k \in[15,40]$ is more reasonable. Taking the intersection of both intervals, we focus on a refined interval $k \in[30,40]$. In this interval, $k=35$ returns the highest silhouette coefficient (given by the abscissa of Figure 7.12 b ). Thus, finally we determine $k=32$ by equation (7.22). With the ARI plot (given by the ordinate of Figure 7.12 b ), we can verify that $k \approx 35$ is the proper value, so the


Figure 7.11 - ARI and Silhouette coefficient via $k$ on different datasets.
proposed strategy is adapted.
Toy dataset Wine: The elbow method and clustering criteria plot are illustrated in Figure 7.13. It is tricky to determine the number $c$ of clusters by Elbow method for this dataset. Different observers may give different decisions on the best number of clusters. Therefore, 3 or 4 can both be concluded as $c$. According to Figure 7.13b, $c \in\{3,4\}$ corresponds approximately to $k \in[20,50]$. A high silhouette coefficient value corresponds to the interval $k \in[40,70]$. By taking the intersection of both intervals, we conclude that a proper $k$ should be in the interval [40,50] and we obtain $k=49$ such as the optimal value by equation (7.22).

According to Figure 7.13 b , with only silhouette coefficient, we may arbitrarily


Figure 7.12 - Results on Iris dataset.


Figure 7.13 - Results on Wine dataset.
choose a high value $k \in[60,70]$. However, this value gives an underestimation of the $c$ value. The elbow method fixing a proper number of clusters helps to determine a $k$ that returns the highest ARI.

### 7.6 Conclusion

In this chapter, we investigate the problem of clustering agents according to their preferences, when dealing with multiple and conflicting sources (two in our case study). To cope with this issue, we apply the BFpref model to express and interpret the contradictions and conflicts from different sources as uncertainty and ignorance. We introduce a new approach that captures the preference data structure and deal with uncertain information.

To highlight the relevance of the proposed solution, we perform experiments on synthetic and real data to compare our method with other preference models, and found the advantage in the expressiveness of the uncertainty and the incomparability of the preference orders. Indeed, we compare BFpref model on synthetic data between Euclidean distance and Kendall distance both in certain and uncertain cases, using EK-NNclus algorithm. In certain cases, BFpref model has equivalent clustering-quality with Kendall distance and outperforms the Euclidean distance. In uncertain cases, BFpref model has better clustering-quality over the other distances. BFpref model is also applied on SUSHI preference data set and observed that BFpref model has one of the most satisfying clustering-quality.

BFpref model is only applied on complete preference orders (i.e. weak orders) from only two sources. In the future, we will work on an ameliorated BFpref model dealing with several conflicting preferences sources. A more general dissimilarity measure method for incomplete orders (i.e. quasi-orders) is also in the scope of our future work.

Besides, a practical problem encountered in the application of EK-NNclus algorithm is also discussed: the determination of the optimal number of nearest neighbors $k$. Based on some methods borrowed from determination of the number $c$ of clusters
in $c$-means, we proposed a combined strategy. In this strategy, silhouette coefficient is applied to evaluate the clustering quality and elbow method is used as an extensive procedure for over-fitting. Comparing with an empirical suggestive interval for $k$ determination given by [DKS15b], the proposed strategy gives a more refined selection of $k$ and guarantees a relative high quality of clustering.

The strategy has some short-comings conducted by elbow method. Firstly, the determination of $c$ by elbow method is subjective and can be sometimes ambiguous. Besides, the distortion requires the calculation of centroïds of clusters, which neutralizes an advantage of EK-NNclus: EK-NNclus is centroïd independent. This issue leaves a pity that the $k$ determination method is not applicable in clustering on evidential preferences. In the future, we plan to replace elbow method by centroïd-independent $c$ determination method, making the strategy more adaptable.

## Conclusion and perspectives

## Conclusion

Preference has been a popular topic in scientific research for long time ranges from sociology, economy to computer science and engineering. In this thesis, we focus on the modeling and management on imperfect preference information, applied in decision making and machine learning.
Three aspects of imperfection on preference information are considered: uncertainty, imprecision and incompleteness. In preference information, the uncertainty is a situation of limited knowledge where it is impossible to exactly describe the existing preference relation. This is usually an epistemic situation. The imprecision refers to situations where multiple preference relations are possible, so that it is impossible to decide on a specific relation. Preferences with uncertainty and imprecision is also called "evidential preferences". The incompleteness in preferences considered in the thesis refers to cases where preference relations are unknown between some alternatives, making it impossible to create complete preference relations on all alternatives. The imperfections are usually caused by the flaws in the sources of preference data, such as uncertain opinion of agents, conflicts in multiple sources and implicit information. The research topic of this thesis is a combined domain of preference, machine learning imperfect data modeling.

In the state-of-the-art part, we firstly reviewed different modeling methods on both crisp and uncertain preference as well as the theory of belief functions. Total orders, weak orders, partial orders and quasi orders are compared in the definition level. Among many uncertain preference models, we highlighted fuzzy preference, which is the most popular one for uncertain preference modeling. However, fuzzy preference is capable to express the uncertainty but not imprecision problems. In the part of the theory of belief functions, besides the basic concepts, some commonly used combination rules are also introduced with adaptable application circumstances.

After this, we introduce on similarity measuring methods on preference relations and structures as well as similarity measure in the theory of belief functions. Between two preference relations, in apart to different norms of distances, the axiomatic distances are specific on preferences. Different axiomatic preferences are compared from the level of axioms accepted to values adopted. As for similarity between preference
structures, different correlation based distances are introduced, such as Kendall distance, Spearman footrule distance and Peason correlation.

Afterwards, different preference management problems and solutions, more specifically, aggregation and preference clustering methods, are introduced as well as the role that similarity plays in these processes. In the preference aggregation part, typical voting rules in election systems as well as different aggregation strategy for fuzzy preference are introduced, followed by traditional problems such as Condorcet paradox and Arrow's impossibility theorem. In preference clustering part, we clarify the position of preference clustering in the research topic of Artificial Intelligence. Confronting the incompleteness problem in machine learning, we categorize the mainstream methods into three groups: data discarding strategy, data imputation strategy and soft method strategy.

The contributions are also on the modeling and management on imperfect preference data. Firstly, we pointed out an ambiguity in the "incompleteness" caused by the definition of preference relation "incomparability". Most work interpret "incomparability" as a missing information case, or "not decided" case. Some other works interpret "incomparability" as a specific binary relation that is different from "strict preference" and "indifference", or "non-decisive" case, which also respect the original definition of "incomparability",. In this work, we consider the incompleteness in the preferences is caused by the missing information and clarified this ambiguity in an novel evidential preference model based on the theory of belief functions, namely BFpref model. BFpref model is a pairwise preference model with the frame of discernment made up by four singleton, respectively representing "strict preference", "inverse strict preference", "indifference", and "incomparability". BFpref model is capable to express all the three aspects of imperfection in preferences, and it distinguishes the ambiguity in the definition of "incomparability". The "non-decisive" case is directly represented by a singleton while the missing information (not-decided case) is represented by an extreme imprecision case-total ignorance, which is the union off all possible singleton in the frame of discernment.

With the help of BFpref model, we proposed an aggregation strategy on evidential preferences based on Dempster's combination rule and minimum distance decision strategy. We also proposed a strategy to avoid Condorcet paradox as well as an efficient DFS method for Directed Acyclic Graph building.

During the decision step of preference aggregation on BFpref model, we pointed out a flaw in state-of-the-art distances for evidential objects. Some distances in TBF are structural, i.e. they account for the interaction between the focal elements compared in two BBAs. However, none of them is capable to distinguish the measure on BBAs of singletons with different weights.
To solve this problem, we analyzed assumptions accepted by Jousselme distance and dropped an unwanted one, which consider the different singletons are equally different.

By extending Jousselme distance and proposed WSD distance. We also applied WSD in decision making on SUSHI data set. The comparison results demonstrated that decisions based on WSD is more reasonable than on Jousselme distances.

Learning on evidential preference, more specifically, clustering on preferences in BFpref model, is also in the scope of this thesis. We tended to represent agents' portraits by evidential preference by BFpref when multiple sources of preference with conflicts are considered. The representation works are mostly in estimation step. The similarity between agents are based on the sum of Jousselme distance and degrade to Kendall distance in case of crisp preference. With comparison with a mean value strategy, it is illustrated that BFpref returns better clustering result in terms of silhouette score confronting multiple preference sources with conflicts for identical agents. However, the clustering work is solely done on complete preferences. For the incomplete evidential preferences, we proved an impossibility theorem that there is no pertinent combination rule for centroid calculating among evidential objects, which respects the properties of "metric consistency", "uniqueness of combination" and "ignorance neutrality". The research on evidential preferences learning can be generalized into learning on evidential objects, which is in the perspective of this thesis. Several new scientific issues are proposed in the work of this thesis. Some of them are our future work introduced as perspectives.

## Perspectives

In this section, we discuss on some scientific challenges related to the topic of this thesis, from aspects of short and long terms perspectives. The introduction of perspectives starts with a discussion on similarity measure between evidential objects.

## More discussion on similarity measure between evidential objects

In Section 7.1, we proposed an impossibility theorem on distance between evidential object in clustering. In this section, we give more discussion on this topic. ${ }^{5}$

For learning on objects expressed on BBAs, we believe that a conflict based method consistent with Dempater's conjunctive combination rule $₫$ may be more pertinent. One possible solution is given as follows:
Between two BBAs $m_{1}$ and $m_{2}$, instead of a distance function $d: \mathcal{E}(\Omega) \times \mathcal{E}(\Omega) \rightarrow \mathbb{R}_{\geq 0}$, a measure function for evidential objects $d_{T B F}$ should return an evidential value, i.e. The similarity measure is essentially a projection function in from the original discernment to a new one. Formally, for a set of evidential objects BBAs

$$
\begin{equation*}
d_{T B F}: \mathcal{E}(\Omega) \times \mathcal{E}(\Omega) \rightarrow \mathcal{E}\left(\Omega^{\prime}\right) \tag{7.26}
\end{equation*}
$$

[^11]where $\Omega^{\prime}$ is another discernment frame than original discernment $\Omega$ for similarity measure.
For $m_{1}, m_{2}$, the simplest discernment frame for clustering $\Omega^{\prime}$ can be defined as:
\[

$$
\begin{equation*}
\Omega^{\prime}=\left\{\omega_{1}^{\prime}, \omega_{2}^{\prime}\right\} \tag{7.27}
\end{equation*}
$$

\]

where $\omega_{1}^{\prime}$ indicates that $m_{1}$ and $m_{2}$ are in the same cluster while $\omega_{2}^{\prime}$ indicates that the two BBAs are in different clusters. With such definitions, the clustering procedures with multiple feature dimensions $\mathcal{D}=\left\{m_{(1)}, m_{(2)}, \ldots m_{(D)}\right\}$, a method with following steps may be feasible:

1. Define a measure function $d_{T B F}^{\operatorname{dim}}(\cdot)$ for each dimension $\operatorname{dim} \in \mathcal{D}$. For instances $i$ and $j$, get the estimated partition BBA $m_{i, j,(\operatorname{dim})}$ (Estimation step)
2. For instances $i, j$, combine on all feature dimensions with conjunctive rule (Combination step):

$$
\begin{equation*}
m_{i j}=\bigoplus_{\operatorname{dim} \in \mathcal{D}} m_{i, j,(\operatorname{dim})} \tag{7.28}
\end{equation*}
$$

The combination step may be discounting coefficient defined in Equation (2.26), repeated here:

$$
\begin{aligned}
& m_{j}^{\alpha}(X)=\alpha_{j} m_{j}(X), \forall X \varsubsetneqq \Omega \\
& m_{j}^{\alpha}(\Omega)=1-\alpha_{j}\left(1-m_{j}(\Omega)\right)
\end{aligned}
$$

with $\alpha_{j}$ estimated by learning or other methods.
3. Partition evidential objects based on $m_{i, j}$

In short term, we will continue the research work on preference learning on evidential preferences with incompleteness. Confronting this challenge, several issues need to be resolved.

## Short term: preference learning with BFpref model

In this thesis, we have studied the clustering problem on complete evidential preference with BFpref model. The objective is to develop a method for predicting the unobserved preference relations on incomplete evidential preference. However, we have proven some difficulties in measuring the distance between BBAs especially when vacuous BBAs exist, representing unobserved preferences. To address this issue, following problems should be firstly responded:

## What does similarity really measure between evidential objects?

When measuring the similarity between evidential preferences, we actually want to measure the similarity between the objects represented by BBA s rather than BBA vectors. Thus, the similarity between BBAs does not always correspond to the similarity between evidential objects. An extreme example has been discussed that two identical vacuous BBAs do not indicate that the evidential pieces of knowledge are identical.

Indeed, a proper result should be that the similarity between two vacuous BBAs is also total ignorance, i.e. it's impossible to measure such similarity.
All the state of the art distances for BBAs measure either the vector representation or the divergence between uncertainty. The first one measures the similarity from a geometry view and the latter from a statistic view. However, none of them measures the objects themselves. We believe that the reason of this issue is that the one single BBA may express multiple kinds of information. Here is an example, a categorical BBA describes purely the state of the an object, or "content" (the state is a qualitative value) While a vacuous BBA describes purely the evidence degree (uncertainty and imprecision) which is total ignorance. Other BBAs may express these two kind of information at the same time.
To clarify this issue, we reckon that the concept of information quantity of a BBA may be helpful, which is usually measured by entropy. In [JS18], they authors made a survey on properties in different definitions of entropy in the theory of belief functions. A well defined similarity measure for BBAs should take account of both "content" and "evidence degree". As discussed in Section 7.1.4, it is more pertinent to measure the similarity between BBAs by a BBA in another discernment framework (We call it evidential similarity).

Thus, the measure of similarity on objects represented by BBAs is a projection process between two different frameworks of discernment. To realize such projection, proper properties and conditions should be firstly defined. This is the nearest work in the future.

## How to apply evidential similarity in learning algorithms?

This question is one step further than the previous one. All the distance based machine learning algorithms apply "traditional distance functions" in non-negative real numbers. Assume that a proper evidential similarity is defined, corresponding machine learning algorithms need to be designed. Thus, to develop a such method is also another important perspective. As similarities are no longer crisp, soft methods in machine learning may be helpful.

## Long term: more applications with BFpref model

The long-term perspectives concerns more applications with BFpref model. We propose several potential applications and issues to address.

## How to manage imperfect preferences in a multi-criteria context?

In the problems adressed in this thesis, alternatives are represented by a single criterion, thus these methods are also named as mono-criterion decision making methods. In some circumstancs, alternatives are represented by multiple criteria, proposing multi-criteria decision making problems (MCDM). Indeed, mono-criterion decision making is the base of multi-criteria decision.

There are already various of group decision making methods developed on MDCM problems, such as analytic hierarchy process (AHP) developed by Thomas L. Saaty in 1970s [Saa02], ELECTRE ("ELimination Et Choix Traduisant la REalité" or "ELimination and Choice Expressing REality") [Roy68, FMR05], PROMETHEE [BV85, BM05]. In multi-criteria context, preferences may also be imperfect. For uncertain cases, fuzzy set approaches: [KF87, YDP99], rough set approaches [GMS99a, GMS99b], optimization approaches [LS02, CK91] and probabilistic models [Ste05] are also important works.

In the future, we well study more problems of imperfectness in multi-criteria context, such as imprecision and incomplete problems. We believe that BFpref model can be useful in multi-criteria decision making problems as well as multi-criteria preference learning problems confronting preferences with uncertainty, imprecision as well incompleteness.

## How to apply BFpref on data of large scale?

In the theory of belief functions, for a value of $|\Omega|$ states, the discernment frame is defined on a space with dimension of $2^{\Omega}$. In BFpref, for one pair of alternatives, 16 values is registered. Moreover, as BFpref model is based on pairwise relation, on $N$ alternatives, its space complexity is $\mathcal{O}\left(N^{2}\right)$, while list-wise order model has complexity of $\mathcal{O}(N)$. When the alternative space scales up, the require of memory space increase rapidly, making the calculation costly. In order to apply BFpref in industry circumstances, it is important to ameliorate the corresponding process.

This work can be two folded. First idea is in the expression of BBAs and second in the calculation process.
Although each BBA is expressed in space of $2^{\Omega}$, most of elements are valued as 0 . Thus, it is sufficient to assign only non-zero elements and ignore the elements with 0 . For example, a simple BBA only needs to express one non-zero element.
The calculation of distances between preferences on different alternative pairs are independent. This makes it possible to propose algorithms for parallel or distributed computing, which is practical in dealing with big scale of data.

## How to apply BFpref on real world data

In the world of internet, there are usually different websites or services who work on similar business (i.e. they are competitors). eg. Yelp and TripAdviser provide restaurant recommendation service, Amazon and eBay provide retail service, Booking and PriceLine provide room and vehicle reservation services, Rotten Tomatoes and IMDb provide film rating and reviewing services. Therefore, for consumers, it is common to have accounts on different sites in the same field. This make it possible that one individual's preference on identical alternatives may have different sources. (For example, one may rate Avengers III higher than Captain American III on IMDb while equally on Rotten Tomatoes). This is similar to the case we encountered in SUSHI
data. We believe that it is valuable to build a reliable and robust recommendation system based on preferences from multiple sources. Furthermore, we would also like to apply BFpref model in social network analysis, especially in community detection. In this perspective, an important challenge exist in the estimation of BBAs from different

## Appendices

## A Proof of proposition 1

Proposition 1:
In the frame of discernment $\Omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$. If for a BBA $m$, exist $\omega_{d}$ such that

$$
\begin{gathered}
\forall \omega_{i} \in \Omega, \omega_{i} \neq \omega_{d}, \\
\operatorname{bet} P_{m}\left(\omega_{d}\right) \geqslant \operatorname{bet} P_{m}\left(\omega_{i}\right)
\end{gathered}
$$

Proof. We rewrite the Jousselme distance by its square form for simplification. Thus,

$$
\begin{align*}
& d_{J}^{2}\left(\boldsymbol{m}, \boldsymbol{m}_{\text {cat }}^{\omega_{d}}\right) \\
& =\left(\boldsymbol{m}-\boldsymbol{m}_{c a t}^{\omega_{d}}\right)^{T} \operatorname{Jacc}\left(\boldsymbol{m}-\boldsymbol{m}_{\text {cat }}^{\omega_{d}}\right) \\
& =\sum_{\substack{X \neq \omega_{d} \\
Y \neq \omega_{d}}} m(X) m(Y) J a c c_{X, Y} \\
& +\sum_{\omega_{d} \in Y}\left(m\left(\omega_{d}\right)-1\right) m(Y) \frac{1}{|Y|}+\sum_{\omega_{d} \in X}\left(m\left(\omega_{d}\right)-1\right) m(X) \frac{1}{|X|} \\
& =\sum_{\substack{X \neq \omega_{d} \\
Y \neq \omega_{d}}} m(X) m(Y) J a c c_{X, Y} \\
& +\sum_{\omega_{d} \in Y} m\left(\omega_{d}\right) m(Y) \frac{1}{|Y|}+\sum_{\omega_{d} \in X} m\left(\omega_{d}\right) m(X) \frac{1}{|X|} \\
& -\sum_{\omega_{d} \in Y} m(Y) \frac{1}{|Y|}-\sum_{\omega_{d} \in X} m(X) \frac{1}{|X|}  \tag{29}\\
& =\sum_{\substack{X \neq \omega_{d} \\
Y \neq \omega_{d}}} m(X) m(Y) J a c c_{X, Y} \\
& +\sum_{\substack{X=\omega_{d} \\
\omega_{d} \in Y}} m(X) m(Y) J a c c_{X, Y}+\sum_{\substack{\omega_{d} \in X \\
Y=\omega_{d}}} m(Y) m(X) J a c c_{Y, X} \\
& +\sum_{\substack{X=\omega_{d} \\
\omega_{d} \notin Y}} m(X) m(Y) J a c c_{X, Y}+\sum_{\substack{\omega_{d} \notin X \\
Y=\omega_{d}}} m(Y) m(X) J a c c_{Y, X} \\
& -\sum_{\omega_{d} \in Y} m(Y) \frac{1}{|Y|}-\sum_{\omega_{d} \in X} m(X) \frac{1}{|X|} \\
& =\sum m(X) m(Y) J a c c_{X, Y}-2 \sum_{\omega_{d} \in Y} m(Y) \frac{1}{|Y|}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
d_{J}^{2}\left(m, m_{c a t}^{\omega_{i}}\right)=\sum m(X) m(Y) J a c c_{X, Y}-2 \sum_{\omega_{i} \in Y} m(Y) \frac{1}{|Y|} \tag{30}
\end{equation*}
$$

Given that

$$
\operatorname{bet} P_{m}\left(\omega_{d}\right) \geqslant \operatorname{bet} P_{m}\left(\omega_{i}\right)
$$

we have

$$
\begin{gathered}
\frac{1}{1-m(\emptyset)} \sum_{\omega_{d} \in Y} m(Y) \frac{1}{|Y|} \geqslant \frac{1}{1-m(\emptyset)} \sum_{\omega_{i} \in Y} m(Y) \frac{1}{|Y|} \\
\Rightarrow \sum_{\omega_{i} \in Y} m(Y) \frac{1}{|Y|}-\sum_{\omega_{d} \in Y} m(Y) \frac{1}{|Y|} \leqslant 0
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& d_{J}^{2}\left(m, m_{c a t}^{\omega_{d}}\right)-d_{J}^{2}\left(m, m_{c a t}^{\omega_{i}}\right) \\
& =-2 \sum_{\omega_{d} \in Y} m(Y) \frac{1}{|Y|}+2 \sum_{\omega_{i} \in Y} m(Y) \frac{1}{|Y|} \leqslant 0 \\
& \quad \Rightarrow d_{J}\left(m, m_{c a t}^{\omega_{d}}\right) \leqslant d_{J}\left(m, m_{c a t}^{\omega_{i}}\right)
\end{aligned}
$$

Inequation (6.5) is true.

## B Proof of proposition 2

Proposition 2: Let a combination rule $\odot$ with the property of consistent metric for a distance $d$, then the combination rule $\odot$ is idempotent.

Proof. Let a combination rule $\odot$ with the property of consistent metric for a distance $d$ and let $m$ a BBA and $\forall$ BBA $m^{\prime} \neq m$, according to the property of identity of indiscernible and the non-negativity of the distance $d$, we have:

$$
d\left(m, m^{\prime}\right)>0 .
$$

with $d(m, m)=0$,

$$
d(m, m)+d(m, m)<d\left(m, m^{\prime}\right)+d\left(m, m^{\prime}\right)
$$

Thus,

$$
m \bigodot m=m
$$

Proposition 2: There is no combination rule owning properties of "metric consistence", "uniqueness of combination result" and "Ignorance neutrality".

Proof. Given a BBA $m \neq m_{\Omega}$, according to the property of idempotent, we have

$$
\begin{gathered}
\forall m^{\prime} \neq m \\
d(m, m)+d(m, m) \leqslant d\left(m, m^{\prime}\right)+d\left(m, m^{\prime}\right)
\end{gathered}
$$

with $d(m, m)=0$ and $m \neq m^{\prime}$ (identity of indiscernible), we have

$$
\begin{equation*}
d\left(m, m^{\prime}\right)>0 . \tag{31}
\end{equation*}
$$

(This proves that the idempotent is an intrinsic property of metric consistence)
With the uniqueness of combination result, in relation (7.5), the equality becomes impossible. Thus, Inequality (7.5) becomes

$$
\begin{equation*}
\sum_{i=1}^{k} d\left(m_{k}, m^{\prime}\right)>\sum_{i=1}^{k} d\left(m_{k}, m_{\text {comb }}\right) \tag{32}
\end{equation*}
$$

With the property of ignorance neutrality, from the relation inequality (32), we have $\forall m^{\prime} \neq m$

$$
\begin{equation*}
d(m, m)+d\left(m, m_{\Omega}\right)<d\left(m, m^{\prime}\right)+d\left(m^{\prime}, m_{\Omega}\right) \tag{33}
\end{equation*}
$$

Take $m^{\prime}=m_{\Omega}$, Inequations (31) and (33) become

$$
\begin{equation*}
d\left(m, m_{\Omega}\right)>0 \tag{34}
\end{equation*}
$$

and

$$
d\left(m, m_{\Omega}\right)<d\left(m, m_{\Omega}\right)+d\left(m_{\Omega}, m_{\Omega}\right)
$$

which can be written as:

$$
d\left(m_{\Omega}, m_{\Omega}\right)>0
$$

This is contradictory to the property of identity discernible. Thus the assumption is false.

## C Proof of proposition 3

Proposition 3: Based on Jousselme distance, we define a normalized distance for evidential preference orders $\sigma_{1}$ and $\sigma_{2}$ :

$$
d_{\text {Normalize }}\left(\sigma_{1}, \sigma_{2}\right)=\frac{1}{N b_{\text {total }}} d\left(\sigma_{1}, \sigma_{2}\right)
$$

$d_{\text {Normalize }}\left(\sigma_{1}, \sigma_{2}\right)$ is equivalent to Kendall distance when the preference orders are total and crisp.

Proof. Kendall distance: Given two complete ranking orders $\sigma_{1}$ and $\sigma_{2}$, the Kendall $\tau$ distance $d_{\tau}$ is defined as:

$$
\begin{equation*}
d_{\text {Kendall }}\left(\sigma_{1}, \sigma_{2}\right)=\sum_{\operatorname{rank}_{\sigma_{1}}\left(a_{i}\right)<\operatorname{rank}_{\sigma_{1}}\left(a_{j}\right)}\left(\operatorname{rank}_{\sigma_{2}}\left(a_{i}\right)>\operatorname{rank}_{\sigma_{2}}\left(a_{j}\right)\right), \tag{35}
\end{equation*}
$$

This is equivalent to the following equation:

$$
\begin{equation*}
d_{\text {Kendall }}\left(\sigma_{1}, \sigma_{2}\right)=\sum_{i<j} \bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right) \tag{36}
\end{equation*}
$$

where

- $\bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right)=0$ if i and j are in the same relative ranking in $\sigma_{1}$ and $\sigma_{2}$
- $\bar{K}_{i, j}\left(\sigma_{1}, \sigma_{2}\right)=1$ if i and j are in the opposite order in $\sigma_{1}$ and $\sigma_{2}$.

In BFpref model, denote the preference $a_{i}$ and $a_{j}$ in $\sigma_{1}$ and $\sigma_{2}$ as $m_{i j, 1}$ and $m_{i j, 2}$. If the preference is crisp, the two BBAs are categorical. If $a_{i}$ and $a_{j}$ are in same relative rank in both $\sigma_{1}$ and $\sigma_{2}$, we have

$$
d_{J}\left(m_{i j, \sigma_{1}}, m_{i j, \sigma_{2}}\right)=0
$$

Otherwise, $a_{i}$ and $a_{j}$ are in different relative rank in $\sigma_{1}$ and $\sigma_{2}$ (let's say $a_{i} \succ a_{j}$ in $\sigma_{1}$ and $a_{i} \prec a a_{j}$ in $\sigma_{2}$ ), we have

$$
\begin{aligned}
& m_{i j, \sigma_{1}}\left(\omega_{\succ}\right)=1 \\
& m_{i j, \sigma_{2}}\left(\omega_{\prec}\right)=1
\end{aligned}
$$

the Jousselme distance between $m_{i j, O_{1}}$ and $m_{i j, O_{2}}$

$$
d_{J}\left(m_{i j, \sigma_{1}}, m_{i j, \sigma_{2}}\right)=1
$$

For a preference structure, Jousselme distance based similarity is defined as:

$$
\begin{equation*}
d_{J, \text { structure }}\left(\sigma_{1}, \sigma_{2}\right)=\sum_{i<j} d_{J}\left(m_{i j, \sigma_{1}}, m_{i j, \sigma_{2}}\right) \tag{37}
\end{equation*}
$$

This is equivalent to Equation (36). Similarly, the proposition is also true if Jousselme distance is replaced by WSD.

## D Aggregation result of sushi preference in east and west Japan

The ranking results of east Japan and west Japan under two different distance for decision making are illustrated below, with numbers 0 to 99 indicating the types of sushi.

- Aggregation of East Japan by decision rule of Jousselme distance:

19, $8,37,9,2,15,61,6,1,41,47,11,79,53,0,10,22,20,13,26,27,4,3,21$, $31,36,76,25,5,57,34,14,7,73,46,54,32,45,43,38,65,50,88,62,18,44$, $58,82,12,66,72,63,71,39,70,23,91,16,48,51,35,33,67,29,60,96,24,74$, $28,75,68,30,77,83,42,95,55,80,52,64,92,56,85,49,69,78,87,59,99,84$, $40,90,81,86,17,98,93,89,94,97$

- Aggregation of West Japan by decision rule of Jousselme distance:
$8,19,15,9,11,2,0,13,53,20,47,61,1,22,6,3,37,26,4,41,27,10,79,43$, $14,5,21,36,34,25,45,65,88,31,73,57,30,7,76,46,39,44,12,68,48,71$, $62,54,67,50,70,72,55,32,74,18,24,95,66,82,96,52,33,63,23,51,83,29$, $35,87,58,60,49,28,75,64,85,78,16,84,69,40,81,38,56,80,89,77,94,17$, $90,99,91,42,86,59,93,98,92,97$
- Aggregation of East Japan by decision rule of WSD distance
$8,19,2,9,37,6,15,47,61,1,11,53,0,41,22,10,79,20,13,26,4,27,3,21$, $31,36,25,76,5,57,34,7,14,73,54,46,43,45,32,38,65,50,88,62,18,44$, $72,58,66,39,71,82,23,12,63,91,70,48,51,16,35,29,60,33,75,67,74,96$, $24,68,95,28,30,83,80,77,42,55,64,78,52,56,85,92,99,69,49,87,84,59$, $40,81,90,86,17,98,93,89,94,97$
- Aggregation of West Japan by decision rule of WSD distance
$8,19,15,9,11,2,53,47,13,20,1,0,61,3,37,6,26,22,27,4,41,10,79,43$, $21,14,5,36,25,34,45,65,88,31,73,76,7,46,57,48,44,71,62,68,39,30$, $12,50,54,67,72,70,74,18,55,32,95,66,24,82,63,96,33,52,51,83,23,29$, $49,60,58,87,35,75,28,85,64,78,16,84,69,81,40,56,38,80,89,17,77,94$, $90,99,91,42,59,86,93,98,92,97$


## E Sushi Information

Table 1 - Sushi information

| ID | Sushi | original oiliness <br> $(0:$ most oily <br> $4:$ least oily $)$ | inverse oiliness <br> $(0:$ least oily <br> $4:$ most oily $)$ |
| :--- | :--- | :--- | :--- |
| 0 | ebi | 2.73 | 1.27 |
| 1 | anago | 0.93 | 3.07 |
| 2 | maguro | 1.77 | 2.23 |
| 3 | ika | 2.69 | 1.31 |
| 4 | uni | 0.81 | 3.19 |
| 5 | tako | 3.09 | 0.91 |
| 6 | ikura | 1.26 | 2.74 |
| 7 | tamago | 2.37 | 1.63 |
| 8 | toro | 0.55 | 3.45 |
| 9 | amaebi | 1.91 | 2.09 |
| 10 | hotategai | 2.35 | 1.65 |
| 11 | tai | 2.99 | 1.01 |
| 12 | akagai | 2.52 | 1.48 |
| 13 | hamachi | 1.26 | 2.74 |
| 14 | awabi | 2.53 | 1.47 |
| 15 | samon | 1.27 | 2.73 |
| 16 | kazunoko | 2.68 | 1.32 |
| 17 | shako | 2.57 | 1.43 |
| 18 | saba | 1.92 | 2.08 |
| 19 | chu toro | 0.80 | 3.20 |
| 20 | hirame | 2.99 | 1.01 |
| 21 | aji | 2.32 | 1.68 |
|  |  |  |  |


| 22 | kani | 2.82 | 1.18 |
| :---: | :---: | :---: | :---: |
| 23 | kohada | 2.70 | 1.30 |
| 24 | torigai | 2.54 | 1.46 |
| 25 | unagi | 0.54 | 3.46 |
| 26 | tekka maki | 2.25 | 1.75 |
| 27 | kanpachi | 1.58 | 2.42 |
| 28 | mirugai | 2.39 | 1.61 |
| 29 | kappa maki | 3.73 | 0.27 |
| 30 | geso | 2.33 | 1.67 |
| 31 | katsuo | 1.91 | 2.09 |
| 32 | iwashi | 2.11 | 1.89 |
| 33 | hokkigai | 2.57 | 1.43 |
| 34 | shimaaji | 2.23 | 1.77 |
| 35 | kanimiso | 0.91 | 3.09 |
| 36 | engawa | 2.20 | 1.80 |
| 37 | negi toro | 1.26 | 2.74 |
| 38 | nattou maki | 1.65 | 2.35 |
| 39 | sayori | 2.80 | 1.20 |
| 40 | takuwan maki | 3.33 | 0.67 |
| 41 | botanebi | 1.99 | 2.01 |
| 42 | tobiko | 2.25 | 1.75 |
| 43 | inari | 1.58 | 2.42 |
| 44 | mentaiko | 1.81 | 2.19 |
| 45 | sarada | 2.48 | 1.52 |
| 46 | suzuki | 2.65 | 1.35 |
| 47 | tarabagani | 2.68 | 1.32 |
| 48 | ume shiso maki | 3.38 | 0.62 |
| 49 | komochi konbu | 2.24 | 1.76 |
| 50 | tarako | 1.88 | 2.12 |
| 51 | sazae | 2.41 | 1.59 |
| 52 | aoyagi | 2.50 | 1.50 |
| 53 | toro samon | 0.69 | 3.31 |
| 54 | sanma | 1.81 | 2.19 |
| 55 | hamo | 2.57 | 1.43 |
| 56 | nasu | 3.18 | 0.82 |
| 57 | shirauo | 3.08 | 0.92 |
| 58 | nattou | 1.53 | 2.47 |
| 59 | ankimo | 0.75 | 3.25 |
| 60 | kanpyo maki | 2.82 | 1.18 |
| 61 | negi toro maki | 1.26 | 2.74 |
| 62 | gyusashi | 1.15 | 2.85 |


| 63 | hamaguri | 2.29 | 1.71 |
| :--- | :--- | :--- | :--- |
| 64 | basashi | 1.48 | 2.52 |
| 65 | fugu | 3.13 | 0.87 |
| 66 | tsubugai | 2.40 | 1.60 |
| 67 | ana kyu maki | 2.22 | 1.78 |
| 68 | hiragai | 2.50 | 1.50 |
| 69 | okura | 2.37 | 1.63 |
| 70 | ume maki | 3.30 | 0.70 |
| 71 | sarada maki | 2.09 | 1.91 |
| 72 | mentaiko maki | 1.87 | 2.13 |
| 73 | buri | 0.96 | 3.04 |
| 74 | shiso maki | 3.50 | 0.50 |
| 75 | ika nattou | 1.58 | 2.42 |
| 76 | zuke | 1.49 | 2.51 |
| 77 | himo | 2.26 | 1.74 |
| 78 | kaiware | 3.41 | 0.59 |
| 79 | kurumaebi | 2.42 | 1.58 |
| 80 | mekabu | 3.05 | 0.95 |
| 81 | kue | 1.97 | 2.03 |
| 82 | sawara | 2.38 | 1.62 |
| 83 | sasami | 2.80 | 1.20 |
| 84 | kujira | 1.26 | 2.74 |
| 85 | kamo | 1.29 | 2.71 |
| 86 | himo kyu maki | 2.71 | 1.29 |
| 87 | tobiuo | 2.49 | 1.51 |
| 88 | ishigakidai | 2.66 | 1.34 |
| 89 | mamakari | 2.35 | 1.65 |
| 90 | hoya | 2.24 | 1.76 |
| 91 | battera | 1.68 | 2.33 |
| 92 | kyabia | 1.33 | 2.67 |
| 93 | karasumi | 1.71 | 2.29 |
| 94 | uni kurage | 1.44 | 2.56 |
| 95 | karei | 2.60 | 1.40 |
| 96 | hiramasa | 1.97 | 2.03 |
| 97 | namako | 1.94 | 2.06 |
| 98 | shishamo | 2.16 | 1.84 |
| 99 | kaki | 1.78 | 2.22 |
|  |  |  |  |

Remark: Original oiliness oil original is given from 0 to 4 indicating the most oily to the least oily. In our experiment, we use the data in inverse oiliness, calculated by 4 - oil original (in column inverse oiliness) to correspond that a larger value indicate a more oily sushi.

## Bibliography

$\left[\mathrm{ACH}^{+} 08\right]$ Sergio Alonso, Francisco Chiclana, Francisco Herrera, Enrique HerreraViedma, Jesús Alcalá-Fdez, and Carlos Porcel. A consistency-based procedure to estimate missing pairwise preference values. International Journal of Intelligent Systems, 23(2):155-175, 2008.
[AHVCH10] S. Alonso, E. Herrera-Viedma, F. Chiclana, and F. Herrera. A web based consensus support system for group decision making problems and incomplete preferences. Information Sciences, 180(23):4477-4495, 2010.
[Arr59] Kenneth J Arrow. Rational choice functions and orderings. Economica, 26(102):121-127, 1959.
[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge \& Data Engineering, (6):734-749, 2005.
[Ata99] Krassimir T Atanassov. Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets, pages 1-137. Springer, 1999.
$\left[\mathrm{BBD}^{+} 04\right]$ Antonio Bahamonde, Gustavo F Bayón, Jorge Díez, José Ramón Quevedo, Oscar Luaces, Juan José Del Coz, Jaime Alonso, and Félix Goyache. Feature subset selection for learning preferences: A case study. In Proceedings of the twenty-first international conference on Machine learning, page 7. ACM, 2004.
[BEF84] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy cmeans clustering algorithm. Computers \& Geosciences, 10(2-3):191-203, 1984.
[ $\left.\mathrm{BL}^{+} 07\right]$ James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and workshop, volume 2007, page 35. New York, NY, USA., 2007.
[Bli74] Jean M Blin. Fuzzy relations in group decision theory. 1974.
[Bli76] Jean-Marie Blin. A linear assignment formulation of the multiattribute decision problem. Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, 10(V2):21-32, 1976.
[BM03] Gustavo EAPA Batista and Maria Carolina Monard. An analysis of four missing data treatment methods for supervised learning. Applied artificial intelligence, 17(5-6):519-533, 2003.
[BM05] Jean-Pierre Brans and Bertrand Mareschal. Promethee methods. In Multiple criteria decision analysis: state of the art surveys, pages 163-186. Springer, 2005.
[Bog73] Kenneth P Bogart. Preference structures i: Distances between transitive preference relations. Journal of Mathematical Sociology, 3(1):49-67, 1973.
[Bog75] Kenneth P Bogart. Preference structures. ii: distances between asymmetric relations. SIAM Journal on Applied Mathematics, 29(2):254-262, 1975.
[Bre96] Leo Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996.
[BS97] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3):66-72, 1997.
[BSS78] James C Bezdek, Bonnie Spillman, and Richard Spillman. A fuzzy relation space for group decision theory. Fuzzy Sets and systems, 1(4):255-268, 1978.
[BV85] Jean-Pierre Brans and Ph Vincke. Note - a preference ranking organisation method: (the promethee method for multiple criteria decisionmaking). Management science, 31(6):647-656, 1985.
[CAHV09] Francisco Javier Cabrerizo, Sergio Alonso, and Enrique Herrera-Viedma. A consensus model for group decision making problems with unbalanced fuzzy linguistic information. International Journal of Information Technology \& Decision Making, 8(01):109-131, 2009.
[CCK $\left.{ }^{+} 05\right]$ Michael Chau, Reynold Cheng, Ben Kao, et al. Uncertain data mining: A new research direction. In Proceedings of the Workshop on the Sciences of the Artificial, Hualien, Taiwan, pages 199-204, 2005.
[CCKN06] Michael Chau, Reynold Cheng, Ben Kao, and Jackey Ng. Uncertain data mining: An example in clustering location data. In Pacific-Asia conference on knowledge discovery and data mining, pages 199-204. Springer, 2006.
[CHVAH08] Francisco Chiclana, Enrique Herrera-Viedma, Sergio Alonso, and Francisco Herrera. Cardinal consistency of reciprocal preference relations: a characterization of multiplicative transitivity. IEEE transactions on fuzzy systems, 17(1):14-23, 2008.
[CK91] Wade D. Cook and Moshe Kress. A multiple criteria decision model with ordinal preference data. European Journal of Operational Research, 54(2):191-198, 1991.
[CKS86] Wade D. Cook, Moshe Kress, and Lawrence M. Seiford. Information and preference in partial orders: A bimatrix representation. Psychometrika, 51(2):197-207, Jun 1986.
[CL02] Marie Chavent and Yves Lechevallier. Dynamical clustering of interval data: Optimization of an adequacy criterion based on hausdorff distance. In Classification, clustering, and data analysis, pages 53-60. Springer, 2002.
[CLCH13] C. Chen, C. S. Lin, F. S. Chen, and W. Hung. The criteria for evaluating the effectiveness of preference aggregation methods. In 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY), pages 167170, Dec 2013.
[CMF08] Laurent Candillier, Frank Meyer, and Françoise Fessant. Designing specific weighted similarity measures to improve collaborative filtering systems. In Industrial Conference on Data Mining, pages 242-255. Springer, 2008.
[Col13] Josep M Colomer. Ramon llull: from 'ars electionis’ to social choice theory. Social Choice and Welfare, 40(2):317-328, 2013.
[CSS98] William W Cohen, Robert E Schapire, and Yoram Singer. Learning to order things. In Advances in Neural Information Processing Systems, pages 451-457, 1998.
[DB13] Sébastien Destercke and Thomas Burger. Toward an axiomatic definition of conflict between belief functions. IEEE transactions on cybernetics, 43(2):585-596, 2013.
[dCmdC85] Jean-Antoine-Nicolas de Caritat marquis de Condorcet. Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. De l'Imprimerie royale, 1785.
[DDCLB08] Jorge Díez, Juan José Del Coz, Oscar Luaces, and Antonio Bahamonde. Clustering people according to their preference criteria. Expert Systems with Applications, 34(2):1274-1284, 2008.
[Dem67] Authur P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist., 38(2):325-339, 041967.
[Den95] Thierry Denœux. A k-nearest neighbor classification rule based on dempster-shafer theory. IEEE transactions on systems, man, and cybernetics, 25(5):804-813, 1995.
[Den06] Thierry Denœux. The cautious rule of combination for belief functions and some extensions. In 2006 9th International Conference on Information Fusion, pages 1-8. IEEE, 2006.
[DG77] Persi Diaconis and Ronald L Graham. Spearman's footrule as a measure of disarray. Journal of the Royal Statistical Society: Series B (Methodological), 39(2):262-268, 1977.
[DJBW03] Susan Dumais, Thorsten Joachims, Krishna Bharat, and Andreas Weigend. Sigir 2003 workshop report: implicit measures of user interests and preferences. In SIGIR Forum, volume 37, pages 50-54, 2003.
[DKS15a] Thierry Denœux, Orakanya Kanjanatarakul, and Songsak Sriboonchitta. Ek-nnclus: a clustering procedure based on the evidential k-nearest neighbor rule. Knowledge-Based Systems, 88:57-69, 2015.
[DKS15b] Thierry Denœeux, Orakanya Kanjanatarakul, and Songsak Sriboonchitta. Ek-nnclus: a clustering procedure based on the evidential k-nearest neighbor rule. Know.-Based Syst., 88(C):57-69, November 2015.
[DM04] Thierry Denœux and M-H Masson. Evclus: evidential clustering of proximity data. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1):95-109, 2004.
[DMÖ ${ }^{+}$12] Stéphane Deparis, Vincent Mousseau, Meltem Öztürk, Christophe Pallier, and Caroline Huron. When conflict induces the expression of incomplete preferences. European Journal of Operational Research, 221(3):593-602, 2012.
[Doy04] Jon Doyle. Prospects for preferences. Computational Intelligence, 20(2):111-136, 2004.
[DP88] Didler Dubois and Henri Prade. Representation and combination of uncertainty with belief functions and possibility measures. Computational intelligence, 4(3):244-264, 1988.
[EBMBY15] Faten Elarbi, Tassadit Bouadi, Arnaud Martin, and Boutheina Ben Yaghlane. Preference fusion for community detection in social networks. In 24ème Conférence sur la Logique Floue et ses Applications, 24ème Conférence sur la Logique Floue et ses Applications, Poitiers, France, November 2015.
[Eme13] Peter Emerson. The original borda count and partial voting. Social Choice and Welfare, 40(2):353-358, 2013.
[EMS04] Zied Elouedi, Khaled Mellouli, and Philippe Smets. Assessing sensor reliability for multisensor data fusion within the transferable belief model. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1):782-787, 2004.
[EMSBY14] Amira Essaid, Arnaud Martin, Grégory Smits, and Boutheina Ben Yaghlane. A Distance-Based Decision in the Credal Level. In International Conference on Artificial Intelligence and Symbolic Computation (AISC 2014), pages $147-156$, Sevilla, Spain, December 2014.
[EMSY14] Amira Essaid, Arnaud Martin, Grégory Smits, and Boutheina Ben Yaghlane. A distance-based decision in the credal level. In International Conference on Artificial Intelligence and Symbolic Computation, pages 147-156. Springer, 2014.
[FH03] Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning and ranking. In European conference on machine learning, pages 145-156. Springer, 2003.
[FH10] Johannes Fürnkranz and Eyke Hüllermeier. Preference Learning, pages 789-795. Springer US, Boston, MA, 2010.
[FH11] Johannes Fürnkranz and Eyke Hüllermeier. Preference Learning: An Introduction, pages 1-17. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
[ $\left.\mathrm{FHR}^{+} 14\right]$ Johannes Fürnkranz, Eyke Hüllermeier, Cynthia Rudin, Roman Slowinski, and Scott Sanner. Preference Learning (Dagstuhl Seminar 14101). Dagstuhl Reports, 4(3):1-27, 2014.
[ $\mathrm{FKM}^{+}$04] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D Sivakumar, and Erik Vee. Comparing and aggregating rankings with ties. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 47-58. ACM, 2004.
[FKS03a] Ronald Fagin, Ravi Kumar, and Dakshinamurthi Sivakumar. Comparing top k lists. SIAM Journal on discrete mathematics, 17(1):134-160, 2003.
[FKS03b] Ronald Fagin, Ravi Kumar, and Dandapani Sivakumar. Efficient similarity search and classification via rank aggregation. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pages 301-312. ACM, 2003.
[FMR05] José Figueira, Vincent Mousseau, and Bernard Roy. Electre methods. In Multiple criteria decision analysis: State of the art surveys, pages 133-153. Springer, 2005.
[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1):119-139, 1997.
[FSW $\left.{ }^{+} 17\right]$ Daniel Faber, Jennie Stephens, Victor Wallis, Roger Gottlieb, Charles Levenstein, Patrick CoatarPeter, and Boston Editorial Group of CNS.

Trump's electoral triumph: Class, race, gender, and the hegemony of the polluter-industrial complex, 2017.
[FVJ09] P Thomas Fletcher, Suresh Venkatasubramanian, and Sarang Joshi. The geometric median on riemannian manifolds with application to robust atlas estimation. NeuroImage, 45(1):S143-S152, 2009.
[GHLR01] Cyril Goutte, Lars Kai Hansen, Matthew G Liptrot, and Egill Rostrup. Feature-space clustering for fmri meta-analysis. Human brain mapping, 13(3):165-183, 2001.
[GJ94] Zoubin Ghahramani and Michael I Jordan. Supervised learning from incomplete data via an em approach. In Advances in neural information processing systems, pages 120-127, 1994.
[GMS99a] Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. Rough approximation of a preference relation by dominance relations. European Journal of operational research, 117(1):63-83, 1999.
[GMS99b] Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. The use of rough sets and fuzzy sets in mcdm. In Multicriteria decision making, pages 397-455. Springer, 1999.
[GSB10] Shengbo Guo, Scott Sanner, and Edwin V Bonilla. Gaussian process preference elicitation. In Advances in neural information processing systems, pages 262-270, 2010.
[HA85] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193-218, Dec 1985.
[HAMA16] Mohammad Haghighat, Mohamed Abdel-Mottaleb, and Wadee Alhalabi. Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition. IEEE Transactions on Information Forensics and Security, 11(9):1984-1996, 2016.
[HB01] Richard J Hathaway and James C Bezdek. Fuzzy c-means clustering of incomplete data. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(5):735-744, 2001.
[HG05] Hani Hamdan and Gérard Govaert. Mixture model clustering of uncertain data. In The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ'05., pages 879-884. IEEE, 2005.
[HKBR99] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An algorithmic framework for performing collaborative filtering. In 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999, pages 230-237. Association for Computing Machinery, Inc, 1999.
[HP08] Günter Hägele and Friedrich Pukelsheim. The electoral systems of Nicolas of Cusa in the Catholic Concordance and beyond, pages 229-249. 012008.
[HVCHA07] Enrique Herrera-Viedma, Francisco Chiclana, Francisco Herrera, and Sergio Alonso. Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1):176-189, 2007.
[IJW $\left.{ }^{+} 19\right]$ Eugene Ie, Vihan Jain, Jing Wang, Sanmit Navrekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Morgane Lustman, Vince Gatto, Paul Covington, et al. Reinforcement learning for slate-based recommender systems: A tractable decomposition and practical methodology. arXiv preprint arXiv:1905.12767, 2019.
[JD88] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Englewood Cliffs: Prentice Hall, 1988, 1988.
[JE09] Mohsen Jamali and Martin Ester. Trustwalker: a random walk model for combining trust-based and item-based recommendation. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 397-406. ACM, 2009.
[JGEB01] Anne-Laure Jousselme, Dominic Grenier, and Éloi Bossé. A new distance between two bodies of evidence. Information Fusion, 2(2):91-101, 2001.
[JM12] Anne-Laure Jousselme and Patrick Maupin. Distances in evidence theory: Comprehensive survey and generalizations. International Journal of Approximate Reasoning, 53(2):118-145, 2012.
[Joa02] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 133-142. ACM, 2002.
[JPW07] R Kang-Xing Jin, David C Parkes, and Patrick J Wolfe. Analysis of bidding networks in ebay: aggregate preference identification through community detection. 2007.
[JS18] Radim Jiroušek and Prakash P Shenoy. A new definition of entropy of belief functions in the dempster-shafer theory. International Journal of Approximate Reasoning, 92:49-65, 2018.
[Kam03a] Toshihiro Kamishima. Nantonac collaborative filtering: recommendation based on order responses. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 583-588. ACM, 2003.
[Kam03b] Toshihiro Kamishima. Nantonac collaborative filtering: Recommendation based on order responses. In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD '03, pages 583-588, New York, NY, USA, 2003. ACM.
[KBGM09] Georgia Koutrika, Benjamin Bercovitz, and Hector Garcia-Molina. Flexrecs: expressing and combining flexible recommendations. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pages 745-758. ACM, 2009.
[KDC18] John Klein, Sebastien Destercke, and Olivier Colot. Idempotent conjunctive and disjunctive combination of belief functions by distance minimization. International Journal of Approximate Reasoning, 92:32-48, 2018.
[Ken48] Maurice George Kendall. Rank correlation methods. 1948.
[KF87] George J. Klir and Tina A. Folger. Fuzzy Sets, Uncertainty, and Information. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.
[KJS96] David J Ketchen Jr and Christopher L Shook. The application of cluster analysis in strategic management research: an analysis and critique. Strategic management journal, pages 441-458, 1996.
[KKA10] Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho. A survey and empirical comparison of object ranking methods. In Preference learning, pages 181-201. Springer, 2010.
[KKKR13] Bahador Khaleghi, Alaa Khamis, Fakhreddine O Karray, and Saiedeh N Razavi. Multisensor data fusion: A review of the state-of-the-art. Information fusion, 14(1):28-44, 2013.
[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical statistics, 22(1):79-86, 1951.
[KM01] Slim Ben Khelifa and Jean-Marc Martel. A distance-based collective weak ordering. Group Decision and Negotiation, 10(4):317-329, 2001.
[KP13] Noam Koenigstein and Ulrich Paquet. Xbox movies recommendations: variational bayes matrix factorization with embedded feature selection. In Proceedings of the 7th ACM Conference on Recommender Systems, pages 129-136. ACM, 2013.
[KS63] John G. Kemeny and James Laurie Snell. Preference ranking: An axiomatic approach. In Mathematical models in the social sciences, chapter 2. Blaisdell, New York, 1963.
[LCLM16] Z. Li, R. Chen, L. Liu, and G. Min. Dynamic resource discovery based on preference and movement pattern similarity for large-scale social internet of things. IEEE Internet of Things Journal, 3(4):581-589, Aug 2016.
[LDSS04] Dan Li, Jitender Deogun, William Spaulding, and Bill Shuart. Towards missing data imputation: a study of fuzzy k-means clustering method. In International Conference on Rough Sets and Current Trends in Computing, pages 573-579. Springer, 2004.
[LDSS05] Dan Li, Jitender Deogun, William Spaulding, and Bill Shuart. Dealing with missing data: Algorithms based on fuzzy set and rough set theories. In James F. Peters and Andrzej Skowron, editors, Transactions on Rough Sets IV, pages 37-57, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
[Lip13] David Lippman. Voting theory. In Math in society. David Lippman, 2013.
[LR19] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John Wiley \& Sons, 2019.
[LS02] Risto Lahdelma and Pekka Salminen. Pseudo-criteria versus linear utility function in stochastic multi-criteria acceptability analysis. European Journal of Operational Research, 141(2):454-469, 2002.
[Luc59] R Duncan Luce. Individual choice behavior. 1959.
[Luc12] R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 2012.
[ $\left.\mathrm{M}^{+} 67\right] \quad$ James MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281-297. Oakland, CA, USA, 1967.
[Mar12] Arnaud Martin. About conflict in the theory of belief functions. In Belief Functions: Theory and Applications, pages 161-168. Springer, 2012.
[Mar19] Arnaud Martin. Conflict management in information fusion with belief functions. In Information Quality in Information Fusion and Decision Making, pages 79-97. Springer, 2019.
[MC11] José M. Merigó and Montserrat Casanovas. Decision-making with distance measures and induced aggregation operators. Computers \& Industrial Engineering, 60(1):66-76, 2011.
[MCG $\left.{ }^{+} 99\right]$ Tim Miranda, Mark Claypool, Anuja Gokhale, Tim Mir, Pavel Murnikov, Dmitry Netes, and Matthew Sartin. Combining content-based and collaborative filters in an online newspaper. In In Proceedings of ACM SIGIR Workshop on Recommender Systems. Citeseer, 1999.
[MD08] Marie-Hélène Masson and Thierry Denœux. Ecm: An evidential version of the fuzzy c-means algorithm. Pattern Recognition, 41(4):1384-1397, 2008.
[MGL13] José M Merigó and Anna M Gil-Lafuente. Induced 2-tuple linguistic generalized aggregation operators and their application in decision-making. Information Sciences, 236:1-16, 2013.
[MJO08] Arnaud Martin, Anne-Laure Jousselme, and Christophe Osswald. Conflict measure for the discounting operation on belief functions. In 2008 11th International Conference on Information Fusion, pages 1-8, June 2008.
[MO07] Arnaud Martin and Christophe Osswald. Toward a combination rule to deal with partial conflict and specificity in belief functions theory. In 2007 10th International Conference on Information Fusion, pages 1-8. IEEE, 2007.
[ $\left.\mathrm{NKC}^{+} 06\right]$ Wang Kay Ngai, Ben Kao, Chun Kit Chui, Reynold Cheng, Michael Chau, and Kevin Y Yip. Efficient clustering of uncertain data. In Sixth International Conference on Data Mining (ICDM'06), pages 436-445. IEEE, 2006.
[ÖTV05] Meltem Öztürke, Alexis Tsoukiàs, and Philippe Vincke. Preference Modelling, pages 27-59. Springer New York, New York, NY, 2005.
[Paz99] Michael J Pazzani. A framework for collaborative, content-based and demographic filtering. Artificial intelligence review, 13(5-6):393-408, 1999.
[PC09] Seung-Taek Park and Wei Chu. Pairwise preference regression for coldstart recommendation. In Proceedings of the third ACM conference on Recommender systems, pages 21-28. ACM, 2009.
[pCqX19] Hui ping Chen and Gui qiong Xu. Group decision making with incomplete intuitionistic fuzzy preference relations based on additive consistency. Computers \& Industrial Engineering, 135:560 - 567, 2019.
[PKCK12] Deuk Hee Park, Hyea Kyeong Kim, Il Young Choi, and Jae Kyeong Kim. A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11):10059-10072, 2012.
[Pla75] Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society: Series C (Applied Statistics), 24(2):193-202, 1975.
[PLP11] Yu Peng, Qinghua Luo, and Xiyuan Peng. Uck-means: A customized kmeans for clustering uncertain measurement data. In 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), volume 2, pages 1196-1200. IEEE, 2011.
[RD76] Douglas W Rae and Hans Daudt. The ostrogorski paradox: a peculiarity of compound majority decision. European Journal of Political Research, 4(4):391-398, 1976.
[Rou87] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53-65, 1987.
[Roy68] Bernard Roy. Classement et choix en présence de points de vue multiples. Revue française d'informatique et de recherche opérationnelle, 2(8):57-75, 1968.
[RS93] Bernard Roy and R Slowinski. Criterion of distance between technical programming and socio-economic priority. RAIRO-Operations Research, 27(1):45-60, 1993.
[Saa02] TL Saaty. Decision making with the analytic hierarchy process. Scientia Iranica, 9(3):215-229, 2002.
[Sha76] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.
[SM95] Upendra Shardanand and Pattie Maes. Social information filtering: algorithms for automating "word of mouth". In Chi, volume 95, pages 210-217. Citeseer, 1995.
[Sme90] Philippe Smets. The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell., 12(5):447-458, May 1990.
[Sme93] Philippe Smets. Belief functions: the disjunctive rule of combination and the generalized bayesian theorem. International Journal of approximate reasoning, 9(1):1-35, 1993.
[Sme00] Philippe Smets. Data fusion in the transferable belief model. In Proceedings of the third international conference on information fusion, volume 1, pages PS21-PS33. IEEE, 2000.
[Sme07] Philippe Smets. Analyzing the combination of conflicting belief functions. Information fusion, 8(4):387-412, 2007.
[Ste05] Theodor J. Stewart. Dealing with Uncertainties in MCDA, pages 445-466. Springer New York, New York, NY, 2005.
[Sug09] Jeffrey Sugerman. Using the disc $\circledR$ model to improve communication effectiveness. Industrial and Commercial Training, 41(3):151-154, 2009.
[Tan84] Tetsuzo Tanino. Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems, 12(2):117-131, 1984.
[Tar72] Robert Tarjan. Depth first search and linear graph algorithms. SIAM JOURNAL ON COMPUTING, 1(2), 1972.
[THJA04] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector machine learning for interdependent and structured output spaces. In Proceedings of the twenty-first international conference on Machine learning, page 104. ACM, 2004.
[Tho53] Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267-276, 1953.
[VdCL00] Rosanna Verde, Francisco de AT de Carvalho, and Yves Lechevallier. A dynamical clustering algorithm for multi-nominal data. In Data analysis, classification, and related methods, pages 387-393. Springer, 2000.
[Via15] Paolo Viappiani. Characterization of scoring rules with distances: application to the clustering of rankings. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
[WD91] Michael P. Wellman and Jon Doyle. Preferential semantics for goals. In In Proceedings of the National Conference on Artificial Intelligence, pages 698-703, 1991.
[WLXC05] David Williams, Xuejun Liao, Ya Xue, and Lawrence Carin. Incompletedata classification using logistic regression. In Proceedings of the 22nd International Conference on Machine learning, pages 972-979. ACM, 2005.
[WWY15] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pages 1235-1244. ACM, 2015.
[Xu07] Zeshui Xu. Intuitionistic preference relations and their application in group decision making. Information sciences, 177(11):2363-2379, 2007.
[Xu15] Zeshui Xu. Uncertain multi-attribute decision making: Methods and applications. Springer, 2015.
[Yag87] Ronald R Yager. On the dempster-shafer framework and new combination rules. Information sciences, 41(2):93-137, 1987.
[Yag88] Ronald R Yager. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1):183-190, 1988.
[Yag03] Ronald R Yager. Induced aggregation operators. Fuzzy sets and systems, 137(1):59-69, 2003.
[YDP99] C-H Yeh, H. Deng, and H. Pan. Multi-criteria analysis for dredger dispatching under uncertainty. Journal of the Operational Research Society, 50(1):35-43, 1999.
[YF98] Ronald R Yager and Dimitar Filev. Operations for granular computing: mixing words and numbers. In 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36228), volume 1, pages 123-128. IEEE, 1998.
[YF99] Ronald R Yager and Dimitar P Filev. Induced ordered weighted averaging operators. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(2):141-150, 1999.
[YST $\left.{ }^{+} 13\right]$ Jia-Ching Ying, Bo-Nian Shi, Vincent S Tseng, Huan-Wen Tsai, Kuang Hung Cheng, and Shun-Chieh Lin. Preference-aware community detection for item recommendation. In 2013 Conference on Technologies and Applications of Artificial Intelligence, pages 49-54. IEEE, 2013.
[Zad65] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338-353, 1965.
[ZBM17] Yiru Zhang, Tassadit Bouadi, and Arnaud Martin. Preference fusion and condorcet's paradox under uncertainty. In 2017 20th International Conference on Information Fusion (Fusion), pages 1-8. IEEE, 2017.
[ZBM18a] Yiru Zhang, Tassadit Bouadi, and Arnaud Martin. A clustering model for uncertain preferences based on belief functions. In International Conference on Big Data Analytics and Knowledge Discovery, pages 111-125. Springer, 2018.
[ZBM18b] Yiru Zhang, Tassadit Bouadi, and Arnaud Martin. An empirical study to determine the optimal k in ek-nnclus method. In International Conference on Belief Functions, pages 260-268. Springer, 2018.
[ZC03] Dao-Qiang Zhang and Song-Can Chen. Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neural processing letters, 18(3):155-162, 2003.
[ZKL15] Hongyi Zhang, Irwin King, and Michael R Lyu. Incorporating implicit link preference into overlapping community detection. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[ZMP17] Kuang Zhou, Arnaud Martin, and Quan Pan. Evidence combination for a large number of sources. In 2017 20th International Conference on Information Fusion (Fusion), pages 1-8. IEEE, 2017.
[ZMP18] Kuang Zhou, Arnaud Martin, and Quan Pan. A belief combination rule for a large number of sources. Journal of Advances in Information Fusion, 13(2), 2018.
[ZWFM06] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning from incomplete ratings using non-negative matrix factorization. In Proceedings of the 2006 SIAM international conference on data mining, pages 549-553. SIAM, 2006.
[ZYST19] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):5, 2019.

## List of Figures

1.1 Important study on preference in history. ..... 4
1.2 Photo of litchis and ramboutans. ..... 7
1.3 Two types of sushi Ebi and Maguro. ..... 8
1.4 Research topic of this thesis. ..... 9
1.5 Problems and processes concerned in the thesis ..... 10
2.1 Venn diagram of preference relations ..... 19
2.2 Relations between different type of orders ..... 29
3.1 Distance relation accepted in CS distance ..... 36
3.2 Distance relation accepted in RS distance. ..... 37
3.3 Preference distance applied in Minkowski family. $a \longrightarrow b$ implies $a>b$ $a \longleftrightarrow b$ implies $a=b$ ..... 42
3.4 Venn diagrams of the preference relations ..... 42
3.5 Preference distance applied in three different models, with: $a \longrightarrow b$ implies $a>b a \longleftrightarrow b$ implies $a=b$ ..... 43
4.1 Preference learning and related research areas within machine learning (blue), information retrieval (purple), applied mathematics (turquoise), and the decision sciences (green), from $\left[\mathrm{FHR}^{+} 14\right]$ ..... 50
4.2 Workflow of data clustering ..... 55
4.3 Topic map of preference learning ..... 59
5.1 Combination Strategy A ..... 66
5.2 Combination Strategy B ..... 67
5.3 Graphic representation of Condorcet's paradox ..... 68
5.4 Nested cycles ..... 69
5.5 Preference order of three agents ..... 72
5.6 Fusion result of strategy A ..... 73
5.7 Fusion result of strategy B ..... 73
5.8 Average of $m(\emptyset)$ with agent number increasing ..... 74
5.9 Result without Condorcet's paradox in strategy A ..... 75
5.10 Result without Condorcet's paradox in strategy B ..... 75
5.11 Entangled cycles ..... 75
5.12 Non-nested Cycles ..... 76
5.13 Performances on different preference structures ..... 77
6.1 Relations between four types of orders ..... 81
6.2 Group decision making procedure ..... 86
6.3 Uncertain preferences of 3 agents ..... 91
6.4 Decision results from two BFpref consensus rules ..... 91
6.5 Combination procedure for sushi preferences ..... 92
6.6 Sushi AOI difference between East Japan and West Japan ..... 94
7.1 Flowchart of preference clustering ..... 100
7.2 ARI and silhouette coefficient, switch $=1$ ..... 109
7.3 ARI and silhouette coefficient, switch $=2$ ..... 109
7.4 ARI and silhouette coefficient, switch $=3$ ..... 110
7.5 Silhouette plot of different metrics on SUSHI dataset ..... 110
7.6 ARI and silhouette coefficient on conflicting preferences, switch $=1$ ..... 111
7.7 ARI and silhouette coefficient on conflicting preferences, switch $=2$ ..... 111
7.8 ARI and silhouette coefficient on conflicting preferences, switch $=3$ ..... 112
7.9 Pearson correlation coefficient between ARI and silhouette vs. data sets with different std. ..... 113
7.10 Data distributions with different values of standard deviation. ..... 114
7.11 ARI and Silhouette coefficient via $k$ on different datasets. ..... 115
7.12 Results on Iris dataset. ..... 115
7.13 Results on Wine dataset. ..... 116

Titre : Modélisation et gestion des préférences imparfaites avec la théorie des fonctions de croyance

Mot clés : préférences imparfaites ; agrégation de préférences ; apprentissage des préférences; théorie des fonctions de croyance;

Résumé : Aujourd'hui, surtout dans le monde numérique, il nous est demandé nos préférences sur toute sorte de choses. La modélisation et gestion de ces préférences ouvrent de nouveaux défis. Ces travaux se concentrent sur les imperfections dans l'information des préférences, telles que l'incertitude, l'imprécision et l'incomplétude. Dans cette thèse, nous passons en revue les méthodes d'état de l'art sur l'agrégation et l'apprentissage des préférences. Fondé sur la théorie des fonctions de croyance, nous proposons une modèle, nommé BFpref, permettant à raisonner les préférences au niveau du coupe à partir d'un degré de croyance.

Le modèle BFpref est capable de représenter l'incertitude, l'imprécision ainsi que l'incomplétude par l'ignorance totale dans le cadre des fonctions de croyance. Nous proposons ensuite des stratégies pertinentes pour fusionner de multiple préférences crédibilistes. De plus, une distance sur les préférences imparfaites est introduite afin de tenir compte différemment des quatre types de relations de préférence. Cette distance est nommée Weighted Singleton Distance (WSD).
La classification non-supervisée sur les préférences crédibilistes est aussi étudiée en distinguant les préférences complètes et incomplètes.

Title: Modeling and management of imperfect preferences with the theory of belief functions
Keywords: imperfect preferences, preference aggregation, preference learning, theory of belief functions

Abstract: Today, especially in the digital world,
we are asked about our preferences on many
things. Modeling and managing these prefer-
ences open up new challenges. This work fo-
cuses on imperfections in preference informa-
tion, such as uncertainty, imprecision and in-
completeness. In this thesis, we review state-
of-the-art methods on preference aggregation
and preference learning. Based on the the-
ory of belief functions, we propose a model of
preference information on the pairs of alterna-
tives (or objects) being compared. This model
is called BFpref.
BFpref model is capable of expressing un-
certainty, imprecision and as incompleteness through total ignorance in the framework of the theory of belief functions. We then propose relevant strategies to fuse multiple belief preferences. In addition, a distance on imperfect preferences is introduced to take into account the four types of preference relationships differently. This distance is called Weighted Singleton Distance (WSD).
The unsupervised classification on imperfect preferences with BFpref model is also studied by distinguishing between complete and incomplete preferences.


[^0]:    ${ }^{1}$ The term "items" is usually applied in recommendation systems and "candidate" in electoral systems.
    ${ }^{2}$ The term "user" or "individual" is usually applied in recommendation systems and "voter" in

[^1]:    electoral systems.

[^2]:    ${ }^{1}$ As $a_{i} \succ a_{j}$ is equivalent to $a_{j} \prec a_{i}$, to avoid repetitive comparisons between two alternatives, we assume that $i<j$ in this article.

[^3]:    ${ }^{2}$ Basic Belief Assignment is also called mass function

[^4]:    ${ }^{1}$ Strictly speaking, "conflict" is not a similarity measure (semi-metric). Since it measures the consistence of different BBA, we put it in this section.

[^5]:    ${ }^{1}$ In many works, the fuzzy preference is interpreted as an expression of intensity.

[^6]:    ${ }^{2}$ Recommendation Systems are also called recommender systems, or personalization systems in different research communities

[^7]:    ${ }^{1}$ Union sign $\cup$ indicates that the decision is on an imprecision set in $2^{\Omega}$ while "or" indicates that multiple decisions are possible.

[^8]:    ${ }^{1}$ Without special remark, we use term "silhouette coefficient" for "average" value on set of samples by default.
    ${ }^{2}$ By saying neighbor size, we mean the number of samples in each cluster.

[^9]:    ${ }^{3}$ As different $K$ in EK-NNclus algorithm returns different clustering results, we compare clustering result who returns relatively high silhouette coefficients.

[^10]:    ${ }^{4}$ Iris: https://archive.ics.uci.edu/ml/datasets/Iris Wine: https://archive.ics.uci.edu/ml/datasets/wine

[^11]:    ${ }^{5}$ Acknowledgment:
    The main idea of this discussion is inspired by a discussion with Pr. Sébastien Destercke from UTC.

